" LEARNING
Java Language

Free unaffiliated eBook created from
Stack Overflow contributors.

Table of Contents

A OUL . .. 1
Chapter 1: Getting started with Java Language.....................oooii 2
REMIAIKS . . 2
Java Editions and VersiONS. ... 2
InStalling JaVa. ... 3
Compiling and running Java ProgramS. ...t 3
WAL S MOt . 3
TOStNG .. 3
O N . 3
VIS 0N . . . 4
[1 11] o [T U 4
Creating Your First Java Program. e e e e 4

A closer look at the Hello World program ... 6
Chapter 2: 2D GraphiCS iIN JAVA. i 11
I OTUCTION. e et e 11

E XM S . ..o 11
Example 1: Draw and Fill a Rectangle USING JAVA.o.iiiiii e 11
Example 2: Drawing and Filling OVal. i e 13
Chapter 3: Alternative ColleCtions........... ... 14
RIS . 14
EX Al . .. 14
Apache HashBag, Guava HashMultiset and Eclipse HashBag.................... i 14

1. Using SynchronizedSortedBag from Apache:. i e 14

2. Using TreeBag from ECliPSE(G). .. .o e e e e e e 15

3. Using LinkedHashMuItiset from GUAVA:o. oo e 15
MOrE EXAMIPIES: . 16
Multimap in Guava, Apache and Eclipse ColleCtioNS.ot e 16
NOFE BXAMIPIES: e 19
Compare operation with collections - Create COIleCtioNS. e 19

Compare operation with collections - Create COIleCtioNS. e 19

Chapter 4: ANNOtatioNS 25

M OAU G ON . .. e 25
) 1= G U 25
RIS . . .o 25
ParaM O By PO 25
= 11] 0] (S 25
BUIIt-IN ANNOTALIONS oottt e e e 25
Runtime annotation checks via reflection. 29
DefiniNg anNOtAtION TYPESottt e et 29
DefaUlt VaIUES. 30
Meta-ANNOtAtIONS 30
(= L[] S 30
AVAIIADIE ValUBS. 30

O RN ON. . 31
AVAILADIE VAIUES s 32
@DOCUMEBNIEA. . ..o e e 32
(@1 a] s 1= g1(=Te PN 32
@ REPEALADIE. o 32
Getting AnNNotation Values at FUN-tIME o e e e et 32
REpPEatiNg ANNOtAtIONS.ottt e 33
INherited ANNOTALIONSottt e e e et ettt e e e e 35
= 10 1]] = 35
Compile time processing using anNoOtation PrOCESSON.ttt ettt et et 36
The anNNOtatiON 36
The annotation PrOCESSONo e 36
PaCKagINg o 38
Example annotated Class.................... 38
Using the annotation processor With javac. ... 38
D E I g atiONo 39
N O AN . .. 39

RESUIL. . 39

The idea behind ANNOtatiONS. o e 40

Annotations for 'this' and reCeIVEr ParamMeterS. i 40
Add multiple annotation ValUES. 41
Chapter 5: Apache COmMMONS LaNG 42
o= 10] 0] (S 42
Implement equals() MENOU. e e e e 42
Implement hashCode() MEthOd. e e 42
Implement toString() MethOd. e 43
Chapter 6: AppDynamics and TIBCO BusinessWorks Instrumentation for Easy Integration....... 45
o0 T 1o o 45

E XM S . .o 45
Example of Instrumentation of all BW Applications in a Single Step for Appdynamics............................. 45

** Common variables. Modify these only. ***. 45
Chapter 7: APPletS 47
o0 0T 1o o 47
REMIAIKS . . 47
= 10] 0] [F a7
MMl APt . . . 47
Creating @ GUIL. . ..o e e e 48
Open links from wWithin the applet. o e e 49
Loading images, audio and Other FE@SOUICES.ottt ettt e e e e e e e 49
Load and ShOW an IMaQE.uui e 49
Load and play an audio file. ... 50
Load and display a text file. 50
CRAPtEE B AITAY S 52
I OdUCTION. . e 52
117 52

P A A B S . 52
€= 0 1]] 5 52
Creating and INItIAliZING ATTAYS. ottt e e e e e e e e e e 52

BaSIC CAS S . .. 52

Arrays, Collections, and Streams..................... 53

ETO . 53
Creating and initializing primitive type arrays.o 55
Creating and initializing multi-dimensional arrays........................i 56
Multidimensional array representation inJava........................oi 57
Creating and initializing reference type arrays. ..o 57
Creating and initializing generic type arrays. ... 58
Filling an array after initialization....................... 58
Separate declaration and initialization of arrays.......................... 59
Arrays may not be re-initialized with array initializer shortcut syntax..................................... 59
Creating an Array from a ColleCtioN. ... 60
ANTAYS 10 @ SHING o 61
Creating a List frOm an ATy 62
Important notes related to using Arrays.asList) method....................... 63
Multidimensional and JAagged ArTAYS.ottt e e e e 64
How Multidimensional Arrays are represented inJava......................ooiiiiiii i 65
ArraylndexOutOfBOUNASEXCEPLION.t 66
Getting the Length of @n Array 67
Comparing arrays for @qUality. ... 67
AT Y S 10 S A . ..o ettt e 68
EraliNg OV AITAYS. ..o ettt ettt ettt et 68
670] o)V [J: 11 1>\ VA T . 71
(o] gl (oo o H S 71
Ot ClONE)o 71
AITAYS.COPYOT () . . 72
SYSIEMLAITAYCOPY() - - ettt 72
Arrays.COPYOTRANGE()o 72
CaS NG AT AY S . .. oottt 73
Remove an element from an array 73

USING A Ay LSt . .. 73

Using Apache ComMmMONS LaNG.o 74
ATAY COVANANCEottt e e e e e e e e e e e e e 74
How do you change the Size Of an array?. ..o e e e e 75

A better alternatives t0 array r€SIZING.ovriii 76
FINding @an €lement in @n ArTayoiiiii e e e e e e e e 76

Using Arrays.binarySearch (for sorted arrays Only)...........oooi i 76

Using a Arrays.asList (for non-primitive arrays oOnly)............oo 76

USING @ SEP@AIM e 77

Linear search USING @ l00P 77

Linear search using 3rd-party libraries such as org.apache.commons........................ooooiii . 77

Testing if an array contains an element. ... 77
SO AITAY S . . .ottt ettt ettt ettt e e e 78
Converting arrays between primitives and boxed types. 79

Chapter O: ASSEItING o 81

) 1= G U 81

P A A S . . 81

RIS . ..o 81

o= 10 4] 0] (2 T 81
Checking arithmetic With @SSert. e e e 81

Chapter 10: AtOMIC TYPESo 82

0T [o 1o o 82

P A A S . . 82

RIS . ..o 82

E XM S . .o 82
(1= T= 11 g To TN (o] o (o3 57/ 01 82
MOLIVAtION fOr ALOMIC TYPES . .ttt ettt e et e e e e e e e e e e e 83

How does one implement AlOmMIC Ty PES 2. ... oo e 84

HOW d0 ALOMIC Ty PES WOTK 2 e e 85

Chapter 11: AUAIO. ... 87

REMIATKS . . .o 87

EX Al . .. 87

Play an AUudio file LOOPEA. o e e e e e e 87
Play @ MIDIfille. ..o e e e 87
Bare metal SOUNG. e 89
BasSiC QUAIO OULPUL.ottt et ettt e e e e e e e 89
Chapter 12: AUtODOXING 91
o 0 T 1o o 91
REMIAIKS . . 91

E XM S . ..o 91
Using int and Integer interchangeably. 91
Using Boolean in if Statement.o e 92
Auto-unboxing may lead to NUIIPOINtErEXCEPLION.o i e 93
Memory and Computational Overhead of AUtODOXING. i e 93
Different Cases When Integer and int can be used interchangeably............ 94
Chapter 13: BasiC CONtrol StrUCLUIeS............. ... 96
REMIAIKS . .. 96
= 11] 0] [J 96
IF/EISe If /T EISe CONMIOl. e 96

0 100 T o 97

LAY 1= 0 Yo o1 98

Lo (o TRV, o1 1= o Yo o A 98

O BN . o 98
== 99
SWILCN St M N . .. 100

QL= =TV @ 1= 7> e 102

B EaK . .. 102

Try ... CatCh . FiNallY . .o 102
Nested break / CONTINUE. e e et 103
CoNntinUe SEAEMENT TN JAVA.ottt et 104
Chapter 14: BenChmarks 105
1o 0 T o o 105

= 10] 0] [105

SIMPIE IMH EXAMPIE . . oot e 105

Chapter 15: BigDecimal 108
I OTUCTION. e 108
EX AL . .. 108

BigDecimal objects are immutable. 108
Comparing BigDECIMaS. 108
Mathematical operations with BigDecimal. o e 108

A ON. .. 108

2. S UDITAC I ON 109

SIMURIPICAtION 109

A DIVISION 109

5.Remainder or ModulUS......... ... 110

B P O BT . .. 110

VX 111

BN . 111

9.Move Point To Left.o 111

10.Move Point To Right. 111
Using BigDecimal instead of float. ... 112
BigDecimal.valueOrf(). 113
Initialization of BigDecimals with value zero, 0ne OF teN...........c..u 113

Chapter 16: BigInteger.o 114
I OTUCTION. ...t 114
) 1= ¥ G 114
REMIAIKS . . 114
= 1] 0] [J 115

INILAlIZATION. 115
CoMPANNg BigINtEgerS. . ..ot 116
Biginteger Mathematical Operations EXampPIES.t 117
Binary Logic Operations 0N BigInteger. oo i e e e e 119
Generating random BigIntegers. i 120

Chapter 17: Bit Manipulation........ ... 122

REMATKS . . 122

EX APl . .. 122
Packing / unpacking values as bit fragments. i 122
Checking, setting, clearing, and toggling individual bits. Using long as bitmask.................................. 123
EXPressing the POWEr Of 2. ... o 123
Checking if a NUMDEr IS @ POWET Of 2. ... oo e e 124
JAVALULILBIESEE ClasSS. . ..ot e e e e et e 126
Signed Vs UNSIgNed Shift.o 126

Chapter 18: BufferedWrriter. ... 128

)12 128

RIS . 128

= 1011 5 128
Write a line Of teXE 10 File. oo e 128

Chapter 19: ByteBUer. 130

I OdUCTION. . e 130

R]2 130

EX APl . .. 130
Basic Usage - Creating a ByteBUI el o e e e 130
Basic Usage - Write Data to the Buffer. e 131
Basic Usage - Using DireCtByteBUfer. i e 131

Chapter 20: Bytecode Modification............. ... 133

= 1] 0] [T 133

WAt 1S BY O COUR 2. . .. e e e e e 133
What's the logic behind this?....... 133
Well, there hasto be more right?.............. 133
How can | write / edit Dytecode? 133
I'd like to learn more about bytecodel........... ... 134

How to edit jar files With ASM o o 134

How to [oad a ClassNOde @S @ ClasS.ooiiiiii e 137

How to rename classes in ajarfile.oo 137

JAVASSISE BaASIC. . . oo 138

Chapter 21: CH+ COMPANISON 140

o0 T 1o o 140
REMIAIKS . . 140
Classes Defined within Other Constructs#..................... . 140
Defined within AnOther CIass.......... ... 140
0 140
JAVA. . 140
Statically Defined within Another Class................... 140
b 140
JaV . 141
Defined within a Method. 141
o 141
JAV . 141
Overriding vs Overloading.......... ... 141
POlYmMOIPNI S .. 142
Order of Construction/DeStIUCHIONot 142
ODbJeCt CleanUp 142
Abstract Methods & Classes. 143
Accessibility Modifiers. ... 143
Gt Friend EXamDle. . ..o 143
The Dreaded Diamond Problem......... 144
java.ang.Object Class. 144
Java Collections & C++ CONtAINETS. 144
Java Collections FIOWChart. 144
C++ Containers FIOWCHAIT. 144
It g Ty P S ... 144
EX APl . .. 145
Static Class MEMIDEIS. e e 145
G EXAMIPIE . 145

JaVA EXAMIPIE . 145

Classes Defined within Other CONStTUCES. e e 146

Defined within ANOther Class............ ... 146
G 146
JAV A . o 146

Statically Defined within Another Class.................... 146
o 146
JAV . o 147

Defined within a Method. 147
e 147
JaV . o 147

Pass-by-value & Pass-by-reference. 147

C++ Example (complete code).......... ... 147

Java Example (complete code)................... 148
INheritance VS COMPOSILION. o et 149
OULCASE DOWNCASHINGottt 149

G EXaMIPI . . 149

Java EXamIPle 149
ADSEract Methods & ClasSSeS. oo 149

Abstract Method. 149
e 149
JaV . 149

ADSHraCt Class. 149
G 150
JaV A . o 150

01 (=] g =T - PP 150
o 150
B T2 - 150

Chapter 22: Calendar and its SUDCIaSSeS................oooii i 151
RIS . ..o 151
= 1] 0] [T 151

Creating Calendar ODJECES. o 151

Increasing / Decreasing calendar fields. 151

FINAING AN P M . e e e e e e 152
SUBLraCtiNg CalENUAIS. e e e 152
Chapter 23: Character enCoding........ ...t 153
= 1] 0] [J 153
Reading text from afile encoded in UTF-8. i e 153
Writing text to @ file iN UT -8 e e 153
Getting byte representation of a string iIn UTF-8. e 154
Chapter 24: Choosing ColleCtions........... ... 155
I OTUCTION. ... e e 155
= 1] 0] 1 T 155
Java Collections FIOWCRNAIT. o e e 155
Chapter 25: Class - Java Reflection.......... ..., 156
I OTUCTION. et 156
= 0] 0] 51 J 156
getClass() method of ODJECE CIaSS.o e e 156
Chapter 26: Classes and ODjJeCtS. 157
o 0 T 1o o 157
) 1= ¥ G 157
= 1] 0] [J 157
SIMPIESt POSSIDIE Class. 157
Object Member vs Static MEMDET. e 157
OVverloading MEthOS. e e e e 158
Basic Object Construction and USE.ottt e 159
CONSITUCTIONS . . . et e e e e e e e e e e e e e e 162
Initializing static final fields using a static initializer. ... 163
Explaining what is method overloading and overriding.......... ...t 163
Chapter 27: Classloaders. ... 167
RIS . 167
EX APl . . 167
Instantiating and USING @ ClasSSI0adEr o i 167

Implementing a CUSLOM ClaSSLOAUEYttt e e et e e e e e e 167

Loading an external .Class file. i 168

Chapter 28: Collection Factory Methods.................... 170
I OTUCTION. e 170

R]2 170

P A M OIS 170
B S . ..o 170
List Factory Method EXamMIES.ot 170

Set Factory Method EXamMPIES.ot e e 171
Map Factory Method EXamMPIES. e e e e e e e e e 171
Chapter 29: ColleCtiONS. 172
o0 T o o 172
REMIAIKS . .. 172
= 1] 0] [173
Declaring an ArrayList and adding ObJeCtS. 173
Constructing collections from existing data. ... 174
Standard ColleCtiONS 174
Java Collections frameworK. ... 174
Google Guava Collections frameWOrK. 174
Mapping ColleCtioNS. 174
Java Collections frameWOrK. oo 175
Apache Commons Collections framework. ... 175
Google Guava Collections framework. 175
JOIN DSt e 176
Removing items from a List Within @ l00p. i 176
INC O R RE T . .. 176
Removing in iteration of for statement SKips "Banana:......... ... 176
Removing in the enhanced for statement Throws Exception:..................... i, 177
COR RE T . 177
Removing in while 100p USiNng an erator.o 177
lterating DaCKWardS. 178

Iterating forward, adjusting the l00p INAeX.o o e 178

Using a "should-be-removed” liSt. ... 179

FIltering @ Streamo e 179
USING FEMOVEIT. . .. 179
Unmodifiable ColleCtion. 179
lterating OVer COllECHIONS. e e e e e e 180
terating OVer List. 180
erating OVer Set. 181
erating OVer Ma 181
Immutable Empty COIlECHONS. 182
Collections and Primitive ValUES. ... 182
Removing matching items from Lists using Iterator............... ... o i 183
Creating your own Iterable structure for use with Iterator or for-each loop...................ooooiiiiiil. 184
Pitfall: concurrent modification EXCEPLIONS. ... 186
SUD COlIBCHIONS 186
List subList(int fromindeX, inttolndex)................. 186
Set subSet(fromindex,tolndeX) 187
Map subMap(fromKey,toKEY) 187
Chapter 30: Command line Argument ProCesSiNg..............ooooiiiiiiiiiii i, 188
)Y 1= ¥ GO 188

P A M IS 188
REMIAIKS . . 188

E XM S . . oo 188
Argument processing USing GWT TOOIBaASE.oiiii e e e e e 188
Processing arguments DY hand. 189

A command With NO arQUMENTS. e 189
A command With tWO argUMENES. 190
A command with "flag" options and at least one argument.................ooooiiii 190
Chapter 31: Common Java Pitfalls..................... . 192
o0 T 1o o 192

E XM S . .o 192

Pitfall: using == to compare primitive wrappers objects such as Integer..................co i 192

Pitfall: forgetting to frEE rESOUICES. et e e e e e e e e e e 193

Pitfall: MEemMOrY [EaKS. 194
Pitfall: USING == 10 COMPAIe StINGS. ... et e e e e e e e e e e e 195
Pitfall: testing a file before attempting to Open it.. o 197
Pitfall: thinking of variables as ObJECTS. 198
EXAMIPIE ClaSS . .. oo 199
Multiple variables can point to the same object.......... ... 199
The equality operator does NOT test that two objects areequal.................... i, 200
Method calls do NOT pass objects at all............ 201
Pitfall: combining assignment and side-effects. 201
Pitfall: Not understanding that String is an immutable Class.................o i i 202
Chapter 32: Comparable and Comparator......................oii i 204
R)11 204
T P2 1 204

B AL S . .. 204
Sorting a List using Comparable or @ COMParator.ottt et 205
Lambda expression based COMParators............. ... 208
Comparator default methods.......... ... 208
Inversing the order of a comparator. 208
The compareTo and compare Methods. 208
Natural (comparable) vs explicit (comparator) SOrting............... e 209
SOMING MaD BNt S . .. oo 210
Creating a Comparator using comparing method............ 211
Chapter 33: CompletableFuture.......... ... 212
I OAUCHION . .o 212
= 1] 0] (= 212
Convert blocking method t0 @aSYNChONOUS. o i e e e e 212
Simple Example of CompletableFuture. e 213
Chapter 34: Concurrent ColleCtions............. ... 214
I OAU G ON . .. e 214

E XM S . ..o 214

Thread-safe CollECtONS. o e 214

ConCUITENt COlIBCHIONS e e e e e 214
Thread safe but non concurrentexamples................... 216
Insertion into ConcurrentHashMap. e 216
Chapter 35: Concurrent Programming (Threads)....................... 218
o 0 T o o 218
REMIAIKS . . 218

B XM S . ..o 218
BasiC MUIItNIEATING oo e e e e e ettt 218
PrOdUCEI-CONSUMETttt e e e e e e e e e e e e e e e e 219
USING ThreadLOCal. . ..o e e e e e e e e e e e 220
CoUNIDOWNLALCN. . .. 221
SYNCRIONIZALION. . ..t 223

F (o 1ol o] o 1] = 4o] 1 1= 224
Creating basic deadloCKed SYSteM i 225
PauSINg EXECULION. ettt e e e e e 227
Visualizing read/write barriers while using synchronized /volatile............ 228
Creating a java.lang. Thread INStANCE.ot e e e e e 229
Thread Interruption / Stopping ThrEadS. i e e e e 231
Multiple producer/consumer example with shared global queue................ .. i, 233
Exclusive write / CONCUITENE FEAA @CCESS.ttt ettt ettt e et e e et e e e 235
RUNNADIE ObJECT.ot 237

S BMaAPNOT . . 237
Add two “int” arrays using a ThreadpOol. 238
Get status of all threads started by your program excluding systemthreads...................................... 239
Callable and FULUIE. et e 240
Locks as Synchronisation @ids.t 242
Chapter 36: Console 1/O 244
EX APl . .. 244
Reading user input from the CONSOIE. o e e e 244
Using BUfferedREaAEr: 244

Implementing Basic Command-Ling BEhaVior. 246
Aligning StriNGS IN CONSOIE. e e e e e e e 247
Format StriNgS EXamMPIES 248
Chapter 37: CONSIUCIOIS 249
I OdUCTION. e 249
RIS . . 249

[1 11] o [TP 249
Default CONSIIUCTION.ttt e e e e 249
CONSITUCIOr WIth ArQUIMENTS ettt e e ettt e e e e e e 250

(OF- 1118 o T= 1=] o] ote] g 1S 1 o (o O 251
Chapter 38: Converting to and from Strings................... 253
= 1] 0] [T 253
Converting other datatypes t0 SHrING.o e e e e e 253
CoNVersioNn 10 / frOmM DY eS 253
Base64 ENCoding / DECOAING.ttt et e e e e e e e e 254
Parsing Strings to a Numerical ValUe. i e e e e 255
Getting a “String” from an " INPULSTIEaM 256
Converting String t0 Other datatyPes. 256
Chapter 39: Creating Images Programmatically..o.. 259
REMIAIKS . . 259
= 1] 0] [J 259
Creating a simple image programmatically and displaying it.......... ... i 259
SaVe an IMage t0 AiSK. e e e e 260
Specifying image rendering qUality e 260
Creating an image with Bufferedimage Class. ... e 262
Editing and re-using image with Bufferedimage. 263
Setting individual pixel's color in Bufferedimage. o 264
How to scale a BUufferedimage. o e 264
Chapter 40: Currency and MONEY 266
EX APl . .. 266

A CUSTOM CUITENCY . . . ottt ettt ettt e e e e e et e e e e e e e e e e e e e e e 266

) 1= ¥ G 267

P A A S . . 267
RIS . . 267
= 1] 0] [J 268
Creating Date ODJECTS.o 268
Comparing Date ObJECTS. e 269
Calendar, Date, and LocalDate............... ... 269
before, after, compareTo and equals methods............................. 269
isBefore, isAfter, compareTo and equals methods............................ 270
Date comparison before Java 8............ ... 270
SINCE JaVA 8. . . 271
Converting Date to a certain String format............... . 272
Converting String INT0 Date. ... 272
A DasSiC date OULPUL. 273
Convert formatted string representation of date to Date object..................oooooiiiiiiiii L. 273
Creating @ SPECIfiC DAte.uu 274
Java 8 LocalDate and LocalDateTime ODjeCtS. ... 274
Time Zones and java.util.Date. 275
Convert java.util.Date to java.sql.Date. 276
oGl TIMIE . 277
Chapter 42: Dates and Time (Java.time.*)............... 278
E XM S . . oo 278
Simple Date Manipulations. e 278
Date AN HIMe. ... e 278
Operations 0N dates and LIMES.ttt et e et 279

185 | 279
Usage of various classes of Date Time AP L. i e e 279
Date Time FOrmMatling.ottt e 281
Calculate Difference between 2 LoCalDates.o 282

Chapter 43: Default Methods. ... 283

R 1] 283
REMIAIKS . . 283
Default Methods. 283
StAtIC METNOAS. . .. 283
R EIENC S ©. .. 284
= 10] 0] [T 284
Basic usage of default methods. o 284
Accessing other interface methods within default method. 285
Accessing overridden default methods from implementing class................oo i 286
Why use Default MethOdSo e e e e e e e 286
Class, Abstract class and Interface method precedence.o e 287
Default method multiple inheritance ColliSION. e 288
Chapter 44: Dequeue Interface..................... 290
I OdUCTION. . e 290
RIS . 290
EX APl . .. 290
AddING EleMENES 10 DEOUE. . . .ottt e e e e e e e e e 290
Removing Elements from DEQUE. o e 290
Retrieving Element WithOUt REMOVING. e e e e e 291
lterating through DEQUE. e et e e e e e e e e 291
Chapter 45: Disassembling and Decompiling........................ 292
)Y 1= G 292

P Al A IS 292
= 1] 0] [T 292
Viewing bytecode WIth JAVAP.o 293
Chapter 46: Documenting Java Code........... ... 300
o0 T 1o o 300
)Y 1= ¥ GO 300
REMIAIKS . .. 301

E XM S . ..o 301

Class DOCUMENIAtION. e 301

Method DOCUMENEALION. e e e e e 302

Field DOCUMENTALION.ttt ettt ettt e e e e e e 302
Package DOCUMENTALION. ettt e e e e e e e 303
LIS . . 303
Building Javadocs From the Command LiNe.t e 304
Inline Code DOCUMENTALION.ttt ettt ettt e 305
Code snippets inside dOCUMENTALION. ettt e e e e e 306
Chapter 47: Dynamic Method Dispatch........... ... 307
o0 T o o 307
REMIAIKS . . 307
= 1] 0] [307
Dynamic Method Dispatch - Example COUE.t e e 307
Chapter 48: Encapsulation.............. ... 310
I OdUCTION. . e 310
RIS . 310

[T 11] o [T U 310
Encapsulation to maintain INVariants. s 310
Encapsulation to reduce COUPIING e e e 311
Chapter 49: ENUM Map 313
o0 T 1o o 313
= 1] 0] [J 313
ENUM Map BOOK EXaMIPIEo e e e s 313
Chapter 50: Enum starting with number................. 314
o0 T o o 314
= 1] 0] [T 314
Enum with name at begining. i 314
Chapter 51: ENUMS ... 315
o0 T 1o o 315
)11 315
RIS . 315

TIPS & THICKS . ..o 315

EX APl . .. 316
Declaring and USiNg @ basiC ENUM. o e e e et 316
ENUMS WIth CONSIIUCTONSo oot 319
Using methods and static DIOCKS. o e e 321
IMplemMENtS INTEITaCE. e 322
ENnum PolymOrphisSm Pattern 323
Enums with ADSIract MethOds. e 324
DOCUMENEING ENUMIS . ..ottt ettt e e e e e e e e e e e e 324
Getting the values of an eNUM e 325
Enum as a bounded type Parameter. e 325
Get BNUM CONSTANT DY NAMIE. ... o e e e e e e e e e 326
Implement Singleton pattern with a single-element enum. 326
Enum with properties (flelds) 327
CoNVErt @NUM 10 STIING.ttt et e et e e e e e 328

CoNVert USING NAME()o 328
Convert uSiNg tOSHING()o 328

BY JefaUIL: . . 328

Example of being OVerridden. 329
Enum constant Specific Doy 329
ZEIO INSTANCE BNUIM . ..ottt e et e ettt e e e e e e e e e e e e e et 330
Enums with static fields. o 331
Compare and Contains for ENUM VAlUES. it e e e 332

Chapter 52: ENUMSet Class...... ... 334

I OdUCTION. . e 334

EX APl . . 334
ENUM St EXAMPIE . . .ottt e e 334

Chapter 53: Exceptions and exception handling... 335

I OdUCTION. . e 335

R 1] 335

EX APl . .. 335

Catching an exception With try-CatCh. e 335

Try-catch with one catch block. 335

Try-catch with multiple catChes. 336
Multi-exception catch DIOCKS. 337
TRFOWING N EXCEPIIONttt ettt ettt et et et e e e e e e e e 337
EXCEPtioN ChainiNg.o 338
CUSTOM EXCE P I ONS . . .ottt et e e e e e e e e e e e 339
The try-With-reSOUICES StatEMENT. e 340
LAY = L LS B =T Y0 U o = 341
The basic try-with-resource statemeENt. 341
The enhanced try-with-resource StatemMeNtS. ... 341
Managing MUIIPIE rES0OUICESo 342
Equivalence of try-with-resource and classical try-catch-finally... 342
Creating and reading StaCKIraCES. o e 344
Printing @ StaCKIraCe. s 344
Understanding @ StaCKIraCe. e 344
Exception chaining and nested StaCKIraCeS.vvirii 346
Capturing a stackiraCe as @ StHNg.c..uuii 347
Handling INterruptedEXCEPLION.o ettt e e e e 348
The Java Exception Hierarchy - Unchecked and Checked Exceptions. ..., 349
Checked versus Unchecked EXCEPLIONS.oooiiii i e e 349
Checked excepltion EXamPIES.ot e 350
T 0o 11X 1o o 352
Return statements intry catch BIOCK. 354
Advanced features Of EXCEPLONS.o e e e e 355
Examining the callstack programmatically................. 355
Optimizing eXCeption CONSIIUCTION. 355
Erasing or replacing the StaCKraCe. 356
SUPPIESSEA EXCEPLIONS 356
The try-finally and try-catch-finally statements. 357
LI/ 11.= L2 357
try-CatCh-finally 357

The 'throws' clause in a method declaration.o e 358

What is the point of declaring unchecked exceptions as thrown?........., 359

Throws and method OVErriding. ... e 359
Chapter 54: Executor, ExecutorService and Thread pools... 361
I OdU G ON . . e 361
REMIAIKS . . 361
= 1] 0] [J 361
Fire and Forget - RUNNable Tasks. ... e 361
THhreadPOOIEXECULOTttt e e e e e s 362
Retrieving value from computation - Callable. 363
Scheduling tasks to run at a fixed time, after adelay orrepeatedly............. i 364
Starting a task after a fixed delay......... ..o 364
Starting tasks at a fiXed rale. 364
Starting tasks with a fixed delay.............oo 365
Handle ReJected EXECULION. ettt e et e e e e e e e e e 365
submit() vs execute() exception handling differences. 366
Use cases for different types of CONCUrrenCy CONSIIUCES.ooo it e 368
Wait for completion of all tasks in EXECULOrSEIVICE.o it e e 369
Use cases for different types of EXECULOISEIVICE.ot e 371
USING Thread PoOOIS. e e e e e e e e 373
Chapter 55 EXPreSSIONS 374
I OdU G ON . . 374
RIS . . 374
= 1] 0] [T 374
OPEIatOr PrECRABNCE. ettt et e e et e e e e e e e e 374
CONSIANE EXPIrESSIONS . . . ettt e 375
UsSES fOr CONStaNt EXPIESSIONSttt 376
EXPression evaluation OFder.ottt e e e e e e e e e e 377
SIMPIE EXaMIPIE . o 377
Example with an operator which has a side-effect.................. 377
EXPIESSION BaSICS. . ..ottt ettt e 378
The Type Of @n EXPreSSION.o e 379

The value of an EXPreSSiON. 379

EXPression StatemMeENtS.o 379

Chapter 56: File 11Oo 381
o0 T 1o o 381
= 1] 0] [T 381

Reading all bytes t0 a Dyte]]. o s 381
Reading animage from a file. o s 381
Writing @ byt 10 @ file. . ..o 381
Stream vS WIter/Reader AP L. ... 382
Reading a whole file @t ONCe. o 383
Reading a file With @ SCaNNEr. e e 384
Iterating over a directory and filter by file eXtension. 384
Migrating from java.io.File to Java 7 NIO (java.nio.file.Path)......... 385

PoINtto @ Path. ... 385

Paths relative to another path................... 385

Converting File from/to Path for use with libraries............................. ... 385

Check if the file exists and delete it ifitdoes.................... 385

Write to a file via an OutputStream....... ... 386

Iterating on each file withinafolder............ 386

Recursive folder iteration. 387
File Read/Write Using FilelnputStream/FileOutputStream..............ccooiiiiiiiiiii i 387
Reading from a binary file. ... 389
L OCKING 389
Copying a file using InputStream and OQULPULSTrEaAMt 390
Reading a file using Channel and Buffer........ 390
Copying afile using Channel. 391
Reading a file using BufferedinputStream. 392
Writing a file using Channel and Buffer...... 392
Writing a file USINg PrintStream 393
Iterate over a directory printing subdirectories init........... 393
AdAINg DIrEC O IS o i 394

Blocking or redirecting standard OULPUL / €ITOree e 394

Accessing the contents of @ ZIP file. ... 395

Reading from an existing file. 395
Creating a NeW fille. .. .o o 395
Chapter 57: FileUpload t0 AW S 397
I OTUCTION. ... e 397
= 1] 0] [J 397
Upload file 10 S3 BUCKeEL. o 397
Chapter 58: Fluent Interface.................... 400
REMIAIKS . . 400
= 1] 0] [J 400
Truth - Fluent Testing FrameworkK. e e 400
Fluent programming Sty le. 400
Chapter 59: FTP (File Transfer Protocol)................... 403
) 1= GO 403

P A M OIS 403
= 10] 0] [J 403
Connecting and Logging INto @ FTP SeIVEr.o 403
Chapter 60: Functional Interfaces......... ... 409
I OTUCTION. ...t 409

E XM S . .o 409
List of standard Java Runtime Library functional interfaces by signature........... 409
Chapter 61: Generating Java Code. i 412
= 1] 0] [J 412
Generate POJO From JSON e 412
Chapter B2: GeNEIICS 413
I OTUCTION. e e 413
)Y 1= ¥ G 413
REMIAIKS . .. 413
= 1] 0] [J 413
Creating @ GeNeriC Class.o e A3

Extending a generic Class. 414

Multiple type parameters. ... 415

Declaring a Generic Method.oo 416
THe DIAMONG. e 417
Requiring multiple upper bounds ("extends A & B"). ... 418
Creating a Bounded GeneriC Class.t 418
Deciding between "T7, "2 super T, and "2 extends T e 420
Benefits of Generic class and INterface. 421
Stronger type checks at compile time................... 421
Elimination of Casts. 421
Enabling programmers to implement generic algorithms................................... 422
Binding generic parameter to more than L type. ... 422

N O B 423
INStANTIALING @ QENEIIC LY P . .« . ettt ettt et e e e e e e e 423
VO KA OUNS . . . oo e e e 423
Referring to the declared generic type within its own declaration............... i 424
Use of iNnStanceof With GENEIICS.o e e e 425
Different ways for implementing a Generic Interface (or extending a Generic Class)...............cooovieion... 426
USING GENEIICS 10 AULO-CAST.ttt ettt e e e e et e e e e 428
Obtain class that satisfies generic parameter at runtime.ot 428
Chapter 63: Getters and Setters. 430
I OdU G ON . . e 430
B S . .o 430
AddING GEHEIS ANd SOt OIS, ottt e e ettt e e 430
Using a setter or getter to implement a CONSIraint. i e 431
Why UsSe Getlers and SetterS 2. ... ittt e e et e e e e 431
Chapter 64: Hashtable. ... 434
I OAU G ON . . 434
= 1] 0] [T 434
HaShtable . . . e 434
Chapter 65: HtpURLCONNECHON 435

REMIATKS . . . oo 435

EX Al . .. 435

Get response body from a URL @S @ StriNg.coovoiii e e 435
POST a8, .ottt 436
HOW L WOTKS . . .o e e e 437
DEIBIE TESOUICE.ttt e e e e e e e e e e 437
HOW It WOTKS . .. 437
CheCK If FESOUICE BXISTS. e 438
EXPlaNAt ON: 438
APl 438
Chapter 66: Immutable Class............. ... 439
o0 T 1o o 439
REMIAIKS . . 439
= 1] 0] [T 439
Rules to define immuUEabIe CIaSSES. o 439
Example Without mUtable refS. 439
Example With mutable refs.o 440
What is the advantage of immutability 2. 441
Chapter 67: Immutable Objects. ... 442
RIS . 442

E APl . .. 442
Creating an immutable version of a type using defensive Copying...............oiiiiii i 442
The recipe for an immutable Class. i 443
Typical design flaws which prevent a class from being immutable............... 444
Chapter 68: INheritanCe 448
o0 T 1o o 448
)Y 1= ¥ G 448
REMIAIKS . .. 448
= 1] 0] [T 448
AT ACT ClaS S . . . ettt ettt e e 448
StatiC INNEIANCE. e e 450

Using 'final' to restrict inheritance and overriding.ot e 451

FINAl ClaSSES . . .o 451

Use-cases for fiNal ClasSSES.o 451
FInal MEtNOOS. 452
The Liskov Substitution PrinCiple. e e 453

] LT > o 453
Inheritance and Static MethOUS. o e 455
Variable ShadoWing o 455
Narrowing and Widening of object references. 456
Programming t0 @an INteIfaCe. oo 457
Abstract class and Interface usage: "Is-a" relation vs "Has-a" capability................... ..., 460
OVerriding IN INNEIANCE. e e e e e e e e 463
Chapter 69: InputStreams and OutputStreams ... 465
)Y 1= GO 465

R MK . . 465
= 1] 0] [T 465
Reading InputStream iNt0 @ StriNg. i e e e e 465
Writing bytes to an OUIPULSIIEAM. ottt et et e e 465
ClOSING SITAMISottt 466
Copying Input Stream to OQUIPUL STrEAIM ettt e e e 467
Wrapping INPUY/OULPUL SErEAMIS. ettt e e ettt e e e e e e e e 467
Useful CombINAtioONS. 467
List of Input/Output Stream WIaPPEIS. 468
DatalnputStream EXamPle. ... 468
Chapter 70: Installing Java (Standard Edition)............................. 470
I OTUCTION. ... e e 470
= 10] 0] [T 470
Setting %PATH% and %JAVA_HOME% after installing on Windows. ..., 470
ASSUMPEIONS. ettt e ettt 470
S U S P .o 470
ChECK YOUN WOTK. 471
Selecting an appropriate Java SE FEIEASE.ttt 471

Java release and VErsSion NAMING.ou ittt ettt et e e e e e e e 472

What do | need for Java DeVEIOPMENT.o et e 473

Installing @ Java JDK ON LINUX.ottt e e ettt e e e 473
Using the Package Manager.o o 473
Installing from an Oracle Java RPM file........... ..o 475

Installing a Java JDK of JRE 0N WINAOWSottt e e e e e e e 475

Installing @ Java JDK 0N MACOSttt e e e e e e 476

Configuring and switching Java versions on Linux using alternatives. ..., 477

USING AREINAtIVES 477
Arch based installs. 478
Listing installed eNVIFONMENTS.o A78
SWItChiNg CUMreNt ENVIFONMENT. 478

Post-installation checking and configuration on LiNUX.ooo e 479

Installing oracle java on Linux with latest tar file. 480

EXPECIEA OULPUL . . ottt e e e e e e e e e 481

Chapter 71: INterfaCeS 482
I OAUCTION. e 482
R 1] 482
EX APl . .. 482

Declaring and Implementing an INterface. o e 482

Implementing MUltiple INtefaCeS. 483

EXtending an iNterfaCe. 484

UsiNg INterfaces WIith GENEIICS.t et e e e e e 484

USefUINeSS Of INTEITACES.o e 487

Implementing interfaces in an abstract Class. 488

Default MEthOOS. 489

Observer pattern implementation.................. 489
Diamond problem 490
Use default methods to resolve compatibility issues........................... 491
MOIfIErS IN INEEITaCES. . ..o e 491
VAT A S 492
M BtNOOS 492

Strengthen bounded type parameters. o 492

Chapter 72: Iteratorand Iterable................... . 494

I OdU G ON . . 494
RIS . . 494
= 1] 0] [T 494
Using Iterable iN fOr I00P. e 494
USING the TaW IIEIatOr.o e e et e e e e e e e e 494
Creating Your OWN [terable. 495
Removing elements USING an IteratOr. e e e e e 496
Chapter 73: Java AQeNESo 498
= 1] 0] [J 498
Modifying ClassSes With @gENtS. o e e e 498
Adding an agent at FUNTIMIE. ot et e e e e e e 499
Setting UP @ DasiC agent. 499
Chapter 74: Java Compiler - Javac'......... 501
RIS . .o 501
= 10] 0] [J 501
The ‘javac' command - getting Started. oo 501
SIMPIE EXAMPIE. .. 501
Example With packages. ... 502
Compiling multiple files at once with Javac'.............. ... 503
Commonly USed JavacC OPtiONS. 503
RO IO C S . . 504
Compiling for a different Version 0f JaVa.cooiiiii i 504
Compiling old Java with @ newer COMPIIET. e 504
Compiling for an older execution platform. e 504
Chapter 75: Java deployment. 506
M OdU G ON . . 506
RIS . .. 506
= 1] 0] [506
Making an executable JAR from the command line. 506

Creating JAR, WAR and EAR filleS. i e 507

Creating JAR and WAR files uSing Maven. ... 508

Creating JAR, WAR and EAR filesS USING ANL. ... oo e 508
Creating JAR, WAR and EARfiles using an IDE. 508
Creating JAR, WAR and EAR files using the jar command...................ooooi i 508
Introduction to Java Web Start. o 509
PO O gUISI S . . . ot 509
An example INLP file. ... 509
Setting Up the WD SEIVer. 510
Enabling launch via a Web page. 510
Launching Web Start applications from the command line.......... ..., 511
Creating an UberJAR for an application and its dependencies. ...t 511
Creating an UberJAR using the "jar" command... 511
Creating an UberJAR USINg MaVEN......... ... 512
The advantages and drawbacks of UDerJARS.......... ..., 512
Chapter 76: Java Editions, Versions, Releases and Distributions....................................... 513
= 1] 0] [513
Differences between Java SE JRE or Java SE JDK distributions..................o i 513
Java Runtime ENVIFONMENT. e e e 513
Java DevelopmENt Kit. 513
What is the difference between Oracle Hotspot and OpendDK. e 514
Differences between Java EE, Java SE, Java ME and JavaFX.......... ... i 514
The Java Programming Language Platforms...................... 514
JAVA SE .. 515
Java EE 515
JaVa ME 515
JaVa X 516
JAVA SE VOISIONS . .. 516
Java SE Version HiStOry 516
Java SE Version Highlights. ... o 517
Chapter 77: Java Floating Point Operations...................ooii 519

I OTUCHION . . .o e 519

EX Al . .. 519

Comparing floating POINt VAlUES.o e e e e e e 519
OVerFIow and UNAerFIOW.o et e e e e et e e e 521
Formatting the floating point Values. e 522
Strict Adherence to the IEEE SpecifiCation. oo e 523
Chapter 78: Java Memory Management. 524
RIS . .o 524
= 1] 0] [J 524
FINaliZatioNo 524
Finalizers ONlY FUN ONCE. o 524
Manually triggering GC.ttt 525
Garbage COllECHION. 525
The C++ approach - new and delete. ... e 525
The Java approach - garbage COlCHiON.o e 526
What happens when an object becomes unreachable............... ... 526
Examples of reachable and unreachable objects................. 527
Setting the Heap, PermGen and Stack SIZesS. e e 528
MEMOIY 1€8KS IN JAVA.o ettt e 529
Reachable objects can leak. 529
Caches can be MemOry [€aKS. ... 530
Chapter 79: Java Memory Model. 531
RIS . .o 531
E XM S . .o 531
Motivation for the Memory MOGeEL. o e 531
Reordering Of @SSIgNMENES o 532
Effects Of MEMOrY CaChES. 532
Proper SYNChrONIZatioN. ... 533
The MemMOry MOGEL. e 533
Happens-before relationships. o 533
AT ONIS . 534
Program Order and Synchronization OFder.oc i e 534

HappenS-before Order. ... o 535

Happens-before reasoning applied to SOMe eXamples.ttt e 535

Single-threaded COUE. 535
Behavior of 'volatile' in an example with 2 threads. ... 536
Volatile with three threads. 537
How to avoid needing to understand the Memory Model.............. o e 538
Chapter 80: Java NatiVe ACCESS ... 539
[1 11] o [T 539
INrOAUCTION 10 JN A . et et 539
WAL S JN A 2 539
HOW Can | USe 102, . 539
W 10 GO MOW 2 ... 540
Chapter 81: Java Native Interface ... 541
P A A B S . o 541

R MK . .. 541
= 111 0] (= T 541
Calling C++ mMethods from JAVA. e e 541
JAVA COOB. ... 541
ot L0 . 542
UL DU L et e 543
Calling Java methods from C++ (callback). ... 543
JAVA COOB. ... 543
ot COU . 544
UL PUL. . oo e 544
GettiNg the deSCHIPION. e 544
Loading Native Draries.o 545
Target fille I0OKUP. 545
Chapter 82: Java Performance TUNING......... ... 547
= 1] 0] [T 547
General aPPrOaCh. 547
Reducing amount Of SIHNGS.o e e 547

An evidence-based approach to Java performance tuning..............ooi i 548

Chapter 83: Java Pitfalls - Exception usage....................oooi i 550

o0 T 1o o 550
= 10] 0] [J 550
Pitfall - Ignoring or SqUAaShiNg EXCEPLIONS.ttt e e et e e e 550
Pitfall - Catching Throwable, Exception, Error or RuntimeEXception.................oiiiii i, 551
Pitfall - Throwing Throwable, Exception, Error or RuntimeException................ . i 552
Declaring Throwable or Exception in a method's "throws" is problematic.........................oooon . 553
Pitfall - Catching InterruptedEXCEPtiON. oo e e e e 554
Pitfall - Using exceptions for normal flowcontrol. 555
Pitfall - Excessive or inappropriate StaCKtraCes. i 556
Pitfall - Directly subclassing "Throwable e 557
Chapter 84: Java Pitfalls - Language Syntax. ... 558
I OdUCTION. e 558
RIS . 558
EX APl . . 558
Pitfall - Ignoring method VISibility o 558
Pitfall - Missing a ‘break’ in @ 'SWItCh' CaSE.ot e e 558
Pitfall - Misplaced semicolons and missing braces. ... 559
Pitfall - Leaving out braces: the "dangling if* and "dangling else" problems............. 561
Pitfall - Overloading instead of OVEIrTIdiNg.ooi e e e e el 562
Pitfall - OCtal ITEralS. o e 564
Pitfall - Declaring classes with the same names as standard classes. ..., 564
Pitfall - Using '=="to test @ bO0leaN. o 565
Pitfall - Wildcard imports can make your code fragile. 566
Pitfall: Using 'assert’ for argument or user input validation..................o i 566
Pitfall of Auto-Unboxing Null Objects into Primitives. e 567
Chapter 85: Java Pitfalls - Nulls and NullPointerException............................. .. 569
RIS . 569
E XAl S . .. 569
Pitfall - Unnecessary use of Primitive Wrappers can lead to NullPointerExceptions.............................. 569
Pitfall - Using null to represent an empty array or COlleCtion. i 570

Pitfall - "Making good" unexpected NUIIS.o 571

What does it mean for "a" or "b" t0 be NUII? o 572

Did the null come from an uninitialized variable?. ... 572
Does the null represent a "don't know" or "missing value"?............... i 572
If this is a bug (or a design error) should we "make good™?. ... 572
Is this efficient / good for code quality?........... ... 572
N SUMIM Y . .ottt 573
Pitfall - Returning null instead of throwing an exception. e 573
Pitfall - Not checking if an I/O stream isn't even initialized when closingit......................oo i 573
Pitfall - Using "Yoda notation" to avoid NullPointerException. i 574
Chapter 86: Java Pitfalls - Performance ISSUES......................ooi i 576
I OAUCTION . . 576
RIS . ..o 576
= 1] 0] [576
Pitfall - The overheads of creating l0g MESSAQES.ttt e e 576
SOIUL ON . L. 576
Pitfall - String concatenation in @ I00p dOES NOt SCAlE.o i e 577
Pitfall - Using 'new’ to create primitive wrapper instances is inefficient............. 578
Pitfall - Calling 'new String(String)' is INefficient. 578
Pitfall - Calling System.gc() IS ineffiCient. o 579
Pitfall - Over-use of primitive wrapper types is inefficient............ 580
Pitfall - Iterating a Map's keys can be ineffiCient. 581
Pitfall - Using size() to test if a collection is empty is inefficient............... i 581
Pitfall - Efficiency concerns with regular eXpresSiONS.ot 582
Pattern and Matcher instances should be reused. 582
Don't use match() when you should use find()...........cooi i 583
Use more efficient alternatives to regular eXpressionsS. ... 583
Catastrophic BacKtraCKing.............uuuiur 584
Pitfall - Interning strings so that you canuse ==isabadidea.................. i 585

[=T 1111 Y2 585
CoStS Of USING INEEIN) ... o 585
The impact on garbage COlECHION. ... e 586

The string pool hashtable Size. 586

Interning as a potential denial Of SEIVICE VECION. o 587

Pitfall - Small reads / writes on unbuffered streams are inefficient.................. 587
What about character-based StreamsS?. ... 588
Why do buffered streams make this much difference?................. 588
Are buffered streams always @ WIN2. 589
Is this the fastest way to copy afile in Java?. ... 589

Chapter 87: Java Pitfalls - Threads and CONCUITENCY.................ccooiiiiiiiiiii i, 590
B XM S . ..o 590

Pitfall: incorrect use of wait() / NOtIfY(). oo e 590
The "Lost Notification” problem. ... 590
The "lllegal Monitor State” DUQg. ... 590
Wait / notify iS 100 lOW-leVel. .. o 591

Pitfall - Extending 'java.lang. Thread'. o e 591

Pitfall - Too many threads makes an application SIOWer........ ... e 592

Pitfall - Thread creation is relatively @XpenSIVE. i e 593

Pitfall: Shared variables require proper Synchronization.......... i e 594
WIll it WOrK @S INteNAEd 2. oo e 595
How do we fiX the Problem 2. ... 595
BUL ISN'T @SSIgNMENT AlOMIC 2. ... o 596
Why did they A0 thiS 2. ... 596
Why can't | reproduCe thisS 2. ... 597

Chapter 88: Java plugin system implementations............................oo i 599
RIS . .o 599
= 1] 0] [T 599

USING URLCIASSLOAUETo e e e e e e e e e e e e e 599

Chapter 89: Java Print SEIVICE 604
I OdUCTION . . e 604
= 1] 0] [T 604

Discovering the available print SEIVICES. 604

Discovering the default print SEIVICE. e 604

Creating a print job from @ Print SEIVICEo e e e e 605

Building the Doc that will be printed. e e 605

Defining print request attribULESo 606

Listening print job request status Change. i 606
The PrintJobEvent pje argument. ... 608
Another way to achieve the same goal...................... 608
Chapter 90: Java SE 7 FeatUreS. 609

o0 T o o 609
REMIAIKS . .. 609
= 1] 0] [J 609

New Java SE 7 programming language features. e 609

BINArY Literals. . ..o e e 609

The try-With-reSOUICES StatEMENT.o e e e e e e e e e 610

Underscores in NUMETIC LITEIalS. e 610

Type Inference for Generic INStance Creation.t 610

SHNGS 1N SWILC StateMENTS. e et e e e e 611
Chapter 91: Java SE 8 Features. 612

I OTUCTION. e e 612
REMIAIKS . . 612
= 101 0] [612

New Java SE 8 programming language features. e 612

Chapter 92: Java SOCKetS 614
I OTUCTION. et 614
REMIAIKS . .. 614
= 1] 0] [T 614

A simple TCP €ChO DaCK SEIVET e 614
Chapter 93: Java Virtual Machine (JVM) 618

= 1] 0] [T 618

These are the DaSICS.o e 618

Chapter 94: JavaBean 619
I OTUCTION. ... e 619
)Y 1= G 619

EX Al . .. 620

BasiC JAVa BeaN. o 620
Chapter 95 JAX B ... 621
I OdUCTION. . e 621
) 1= G 621

P A M OIS 621
REMIAIKS . . 621

B XM S . ..o 621
Writing an XML file (marshalling an 0bject).o 621
Reading an XML file (unmarshalling).o e e e 622
Using XmlAdapter to generate desired xml format........... .. . i 623
Automatic field/property XML mapping configuration (@XmIACCESSOITYPE)......ovuneiiiii i 624
Manual field/property XML mapping Configuration. it 626
Specifying a XmlAdapter instance to (re)use existing data................ooi i 626

E XAl . o 627
USBI ClaSS . et 627

Y = T o (= O U 627
EXAMPIE XML . e 628
USING the a0apter. o e e e 629
Binding an XML namespace to a serializable Java Class. ...t 629
Using XmIAdapter t0 trim String.o e e e e e e 630
Chapter 96: JAX-W S 631
= 1] 0] [J 631
Basic AUThENTICALION. 631
Chapter O7: IM X 632
o0 T 1o o 632
= 1] 0] [632
Simple example with Platform MBean SEerVer.t e e 632
Chapter 98: INDI. ... 637
E XAl . . . 637
RMIthrough JN DI .ottt e e e e e 637

Chapter 99: JShell. ... 641

R 1] 641
REMIAIKS . . 641
Default IMPOITS. e 641
= 10] 0] [641
Entering and EXIting JShell. 642
Starting JSRell. ... oo 642
EXItING JSNEIl. ... 642
| d o] (=11 o] 1 1 O 642
VANTDIES . . . 642
Methods And CIaSSES. e e 643
EdittiNg SNIDPetS. . ot 643
Chapter 100: JSON N JAVA. 645
I OTUCTION. et 645
REMIAIKS . .. 645
= 10] 0] [J 645
ENcoding data @S JSONttt e e 645
DecodiNg JSON datal.ottt ettt e e e e e 646
OPEXXX VS QEIXXX MEBINOUSo e e e e 646
Object TO JSON (GSON LiDrary)o e e e e e e 647
JSON To ODbject (GSON LIDIary). e e e 647
Extract single element from JSON. i e e 647
UsiNg JACKSON ObECE Ma ettt e et e et e e e e e e e 648
DtallS 648
O eCtMaA PPl INSIANCEo e 648
DeserialiZatioN:. ... 648
Method for SerializatioNn:. e 649
JSON REIALION. . ..ttt e ettt e e e e e e e e 649
JSON Builder - chaining Methods. e e 649
JSONODIECENULL . ..t 650
JsonArray to Java List (GSON LIDrary) e 650

Deserialize JSON collection to collection of Objects using Jackson..................o i, 651

DeserializiNng JSON aITayo 651

TYPEFACIOIY @PPIOACK 651
TypeReference appPrOacCh. ... 652
Deserializing JSON M@o 652
TYPEFACIOIY @PPIOACK 652
TypeReference appPrOaCh. ... 652
DOtalS 652
N . . 652
Chapter 101: Justin Time (JIT) cOmpiler. 654
REMIAIKS . . 654
HiS O Y o 654
= 1] 0] [T 654
OVEBIVIBW. . . ettt et e e e e e e e e 654
Chapter 102: VM FIags 657
REMIAIKS . . 657
= 1] 0] [J 657
XK AGGE S SIV . . . ottt et e 657
SXXAllOCCIEArCRNUNKS e 657
SXXANOCCIEarCRUNKSIZE. . .. oo 658
XXCAIIPTOfIING . . .o 658
XXAISADIEF At SN . .. 658
SXXAISADIEGCHEUIISHICS et et e et 659
XKAUMIP S ZE . .ot eeeeeeeeeeee 659
SXXEXIEONOULOTMEMOIY . . . ottt e e e e e e e e e e e e e e 659
Chapter 103: JVM Tool Interface ... 661
RIS . 661
= 1011 5 661
Iterate over objects reachable from object (Heap 1.0)..... ...t e 661

Get IVMTI ENVITONMENT. . .o ottt e e et 663
Example of initialization inside of Agent_OnLoad method. i 664

Chapter 104: Lambda EXPreSSiONS..............ooiiiiii e 665

R 1] 665
B S . ..o 665
Using Lambda Expressions to Sort a ColleCtion. e 665
SOMtING lStS . .. 665
SOt I IS . .. o 666
Introduction to Java lambdas. ... 667
Functional INterfaces 667
Lambda EXPreSSIONSo 668
IMPliCIt REIUINS ... 669
Accessing Local Variables (value closures)..................... 669
AcCepting LambOas 670
The Type of a Lambda EXPression. 670
Method ReTEIENCES. ... o 670
Instance method reference (to an arbitrary inStance). ... 671
Instance method reference (t0 a SPecific INStANCE). ... 671
Static Method refereNCe. .. .o 671
Reference t0 @ CONSIIUCTOT e 672
ChEat-Sheet. .. 672
Implementing MUltiple INtEIaCES. e e 672
Lambdas and Execute-around Pattern. e e 673
Using lambda expression with your own functional interface................. i i 674
“return” only returns from the lambda, not the outer method. i 674
Java Closures with lambda eXpressioNns.o 676
Lambda - Listener EXamIPIe.o e 678
Traditional style to Lambda Style. 678
Lambdas and memory UtIlization. 679
Using lambda expressions & predicates to get a certain value(s) fromalist............ot 680
Chapter 105: LinkedHashMap 682
M OdU G ON . . e 682

= 101 0] [T 682

Java LinkedHashMap Class. e e e 682

Chapter 106: List VS SET ... 684
I OTUCTION. e 684
EX AL . .. 684

LISt VS S L. ..ttt 684

Chapter 107: LiStS 685
I OTUCTION. e e 685
) 1= GO 685
REMIAIKS . . 685
E XM S . .o 686

SOrtING @ QENEIIC lIST. . ..t e e e e e e 686
CrEatiNg @ LISt . .o 687
POSItioNal ACCESS OPEIAtIONS.\ttt ettt e e e e e e e e 689
Iterating over elements in a liSt. 690
Removing elements from list B that are presentinthe list A. 691
Finding common elements between 2 liStS. 692
Convert a list of integers to a list Of StHNGS. oot e e 692
Creating, Adding and Removing element from an ArrayLiSt.o e 692
In-place replacement of @ LiSt @lement. 693
Making a listunmodifiable.o 694
Moving objects around inthe list. 694
Classes implementing List - Pros and CONS.t e e e 695
Classes IMplemeNnting LiSt. 695
Pros and Cons of each implementation in term of time complexity... 695
AT A LISt . . 696
AT DU LISt . . .o 696
CopYONWITEAITAYLIST. 696
LINKEOLIST . . . oo 696
ROIE LIS . . . 697
ROIEUNIESOIVEALIST. e e 697
] = T 697

Chapter 108: Literals. 699

I OdU G ON . . 699
= 10] 0] [J 699
Hexadecimal, Octal and Binary [terals. e 699
Using underscore to improve readability. 699
Escape sequences iN Hterals. i e 700
UNICOOE B8 A . .. oottt 701
ESCaAPING IN OO OXES et 701
Decimal INnteger TErals.o e e e 701
Ordinary INteger literals. o 701
LONg INteger HEralS. ... 702
BOolean [teralS. 702
SN IS . . e e 702

[o S]] T 703
Interning Of StriNg lterals.o 703
LI LT L L= 703
Floating-point HEralS. e e e 704
Simple decimal fOrMIS. 704
Scaled deCimal fOMMIS. ..o 705
HeXadeCimal fOrmMS 705
L0 L= ST o0 S 705
SPECIAl CASES o i i 706
(03 0= 1= Toa (] 11 (== 706
Chapter 109: Local INNer CIaSS ... 707
I OAUCTHION . . 707
= 1] 0] (= 707
LOCAI INNEE ClaSSottt e e e e e e e e e e 707
Chapter 110: Localization and Internationalization................................ 708
RIS . .o 708
GENEIAI RESOUICES.ottt 708

JAVA RESOUICES . .. 708

EX Al . .. 708

Automatically formatted Dates using "locale". i 708
Let Java do the WOrK for YOU 709
SENG COMPATISON. et 709
LOCalE. ... 709
AU 710
Creating @ LOCale 710
Java ResourceBundle. 710
Setting LOCalE 710
Chapter 111: LOCalTiMeo 712
)Y 1= G 712

P A M IS 712
REMIAIKS . . 712
= 1] 0] [T 712
Time MOdIfICALION. e 712
Time Zones and their time difference. 713
Amount of time between two LocalTime. 713

I O 714
Chapter 112: 10g4j /1 10Q4J2. 716
I OdUCTION. e 716
)11 716
RIS . 716
End of Life for Logdj 1 reached......... 716
= 10] 0] [717

[[o LTV o T 1= o o ¥ 717
HOW to USE LOGA] IN JAVA COUB. ottt e e e e e e e e e e e e 718
Setting UP PrOPerty file . . oo 718
Basic log4j2.xml configuration file. o 719
Migrating from 10G4] L.X 10 2.X. . ..ttt ettt e e e e e e 719
Properties-File to [0g 10 DB 720

Filter Logoutput bBY [€Vel (I0G4] LX) . ..ottt et e ettt e 721

Chapter 113: Logging (java.util.logging)................oo 723

= 10] 0] [723
Using the default logger.o et e e 723
LOgOING VRIS . . . oo 723
Logging complex messages (effiCciently). 724

ChaPter 104 MaPS . .. oo 727

INEOTUCTIONo 727

RIS . ..o 727

[1 11] o [T U 727
Add AN B M. .. e e 727
A MUIRIPIE M. .. e e e e e e e 728
Using Default Methods of Map from Java 8..........o i e 729
Gl TN M. et 731
Iterating through the contents Of @ Mapo e e e e e 732
Merging, combine and COmMPOSING MaPS.ottt e e 733

Composing Map<X,Y> and Map<Y,Z>t0 get Map<X,Z>. 733
ChECK I KBY BXIStS . .. ottt e e e e e e 734

Maps cancontain null values. ... 734

Iterating Map Entries Efficiently. ... 734

UsSe CUSIOM ODJECt @S KBY oo 737

Usage Of HaShMa. ... 738

Creating and INitializing Maps. ... 739

INtrOdUCH ON 739
Chapter 115: MOdUIESo 742

) 1= ¥ G 742

RIS . .. 742

= 10] 0] [T 742
Defining a basic MOAUIE. e e 742

Chapter 116: Multi-Release JARFIleS.................. 744

M OdU G ON . . e 744

= 10] 0] [J 744

Example of a multi-release Jar file's CONtENTS. i e 744

Creating a multi-release Jar using the Jar tool. i e 744
URL of a loaded class inside a multi-release Jar........... ... 746
Chapter 117: Nashorn JavaScript @NgiNe............. ... 747
o0 T 1o o 747
)11 747
REMIAIKS . .. 747
= 1] 0] [J 747
Set global Variables. 747
Hello NaShON . . e e e e 748
EXecUte JavaS Cript file. . ..o 748

T C=T (o=t o) a=Toi o1 fo 11] 1 11 | SR 748
Evaluate Arthmetic StriNgS. e e e e 749
Usage of Java objects in JavaScript in NasShOrN. e 749
Implementing an interface from SCHPL. o el 750
Setand get global variables. o 751
Chapter 118: Nested and Inner Classes.................... 752
I OTUCTION. ... e e e 752
) 1= ¥ G 752
REMIAIKS . . 752
Terminology and Classification. 752
SemantiC differeNCES. o 753
= 10] 0] [T 753
A Simple Stack Using @ NeSted Class.ot e 753
Static Vs Non Static NeSted ClIasSeS.ot e e 754
Access Modifiers for INNEr ClaSSES.o e e 756
ANONYMOUS INNEE ClaSSESttt et e et e e e e e 757
CONSIIUCTONS . . e 758
Method Local INNEI CIASSES.t e e e e 758
Accessing the outer class from a non-static INNEr Class. e 759
Create instance of non-static inner class from OULSIde. e 760

Chapter 119: NetWorKingo 761

EX APl . .. 761
Basic Client and Server Communication using @ SOCKEL.ottt e 761
Server: Start, and wait for inComiNg CONNECLIONS.ttt 761
Server: Handling CliENtS. ... o e 761
Client: Connect to the server and SENd @ MESSAQE.ttt 762
Closing Sockets and Handling EXCEPLIONS. e 762
Basic Server and Client - complete eXamples. 762
Loading TrustStore and KeyStore from INputStream. e 764
Socket example - reading a web page using a simple socket. ... 765
Basic Client/Server Communication using UDP (Datagram)......... ..ottt 765
1o 13 g T 766
Temporarily disable SSL verification (for teSting PUIPOSES).ttt 768
Downloading a file Using Channel. 769

N O S . 770
Chapter 120: NeW File 1/O 771
)11 771

E XAl S . .. 771
CrEatiNG PALNS . .. o 771
Retrieving information about a path. 771
Manipulating Paths. 772
JoiNiNg TWO Pathis 772
Normalizing @ Path. ... 772
Retrieving information using the filesystem. 772
CheckKing EXISIENCE 772
Checking whether a path pointsto afile oradirectory.............................. 773
GettiNg PrOPE IS o 773
Getting MIME Y P o 773
REAAING filES. . ..o 774
WIHEING FIlES. . . 774

Chapter 121: NIO - NetWorkingo 775

REMATKS . . 775

EX APl . .. 775
Using Selector to wait for events (example with OP_CONNECT). ..ottt 775
Chapter 122: Non-Access Modifiers. 777
o0 T o o 777
B S . ..o 777
L1 L 777
VOl . 778

5] =T 779
=] 1 =T 780
SYNCNIONIZEA. . .. e e e e 781

LU= 10 1= o 782

ES] 1o 1o 782
Chapter 123: NumberFormat. 783
B AL S . .. 783
NUMDEIFOIMAL.ttt e e e e e e e e 783
Chapter 124: Object Class Methods and Constructor..........................oiiii, 784
I OdUCTION. . e 784
)11 784

E XAl S . . . 784
tOStNG() MEthOd. 784
eqUAIS() MELNOM. 785
ClaSS COMPANISON e 787
hashCode() MEthOd. e e e e e e 788
Using Arrays.hashCode() as a Short CUL. ... e 789
Internal caching of hash COUES. ... 790
wait() and notify() MEthOAS. e 791
0tCIAaSS() MELNOM. e 792
CloNE() MEINOM. ... e e e e 793
finalize() MEthOd. 794

L0 o] 1= o0 11 1 U [o] 795

Chapter 125: ObJeCt CIONINGo 798

REMATKS . . 798

EX APl . .. 798
Cloning USING @ COPY CONSITUCTOTo\ttt ettt ettt e e e e e e e e et e e e e e 798
Cloning by implementing Clonable iNterface. ... e 798
Cloning performing a Shallow COPYt e e e e 799
Cloning performing @ AEEP COPYo . ittt ettt et e e 800
Cloning USING @ COPY fACIOTY et e e e 801

Chapter 126: ObjeCt REferenCes......... ... 802

RIS . .. 802

E XM S . .o 802
Object References as method parameters.t e 802

Chapter 127: OPeratOrS 806

I OdU G ON . . 806

RIS . .. 806

= 0] 0] 51 J 806
The String Concatenation OPEIatOr ().ottt ettt et 806

Optimization and effiCIeNCYo o 807
The Arithmetic OPerators (F, =, %, /, 0) . . oot e e e e e e e e 808

Operand and result types, and numMeric PromotioN. oot 809

The meaning Of diVISION. e 809

The meaning Of FEMaAINUE e e e 810

INteger OVEIIOW. . ..o o 810

Floating point INF and NAN ValUES. e 811
The Equality Operators (S, 12) . oo e e e e e 811

The NUMENC == and 1= OPeIatOrS. ... oo 812

The Boolean == and 1= OperatOrS. e 812

The Reference == and 1= OPEIatOrS. e 813

ADBOUL the NAN EUQE-CaSES. o 813
The Increment/Decrement OPerators (F4/-=) i e e 813
The Conditional OPerator (2 1)ttt et e e e e e e e e e e e 814

COMMON USAQ.o 815

The Bitwise and Logical Operators (~, &, |,). ..o 816
Operand types and reSUIL tYPES. o 817
The INStaNCeOf OPEIatOr.ttt e e e e e e 817
The Assignment Operators (=, +=, -=, *=, /=, %=, <<=, >>= | >>>= &=, |Zand M) . ..o 818
The conditional-and and conditional-or Operators (&& and ||).........coooiiiii e 820
Example - using && as a guard in an eXPreSSiON. o 821
Example - using && to avoid a costly calculation. ... 821
The Shift Operators (K<, >> aNd >>3) . o e 821
The Lambaa Operator (=3). ..ottt e ettt e e e 823
The Relational Operators (<, <o, >, >m) ittt et e e 823
Chapter 128: Optional. 825
I OdU G ON . . 825
) 1= ¥ G 825
= 0] 0] 51 J 825
Return default value if Optional iS €MLY e 825
/=Y o 826
Throw an exception, if there IS NO ValUE. ... i e 827
1= 827
Using Optional containers for primitive NUMDer types. i e 828
Run code only if there is a value PreSeNnt.t e e e 828
Lazily provide a default value using a SUPPIIEr. e 828

[= 111 =T o O 829
Chapter 129: Oracle Official Code Standard....................... 830
I OAUCTHION . . 830
RIS . .o 830
= 1] 0] [830

N E= LT To T 0] 1VZ=T01 i o] o = 830
PacCkage NaAMES 830
Class, Interface and ENUM NamM@S........... ... 830
Method NaMESo 831

VAL A S 831

Type Variables 831

OIS NS 831
Other guidelines on NamIiNg................ 831
Java SOUICE FilES. ... 832
SPECIAl CNarACIEIS. . ..o 832
Package decClaration. 832

T p] oo lsY ez 10T 0 0 T=T o £ T 832
Wildcard IMP OIS . .. 833
ClasS SIIUCIUIE. e e e e e e 833
Order Of ClasSS MEMIDEIS. e 833
Grouping Of Class MemMErS. 834

1Y o T 11T £ 834
INAENTALION. . e 835
V= o] o1 To) £= 1 =] 1 =T £SO 835
Wrapping Method DeClarations. o e e e e e 836
WrapPing EXPrESSIONS.ottt ettt e et e 837

LAY 1SS o T = 837
Vertical WhiteSPaCeo 837
Horizontal WhiteSpacCeo 837
Variable DeCIarationS.o 838
ANNOTALIONS . . . 838
Lambda EXPreSSIONS. ... 839
Redundant Parentheses. 839
=T o 840
Bl S 840
SOt OIS ... 840
Chapter 130: PaCkages 842
I OdUCTION. . e 842
RIS . 842
= 1011 5 842

Using Packages to create classes withthe same name. e 842

Using Package ProteCted SCOPE.t e e e e e e e e 842

Chapter 131: Parallel programming with Fork/Join framework... 844
B S . ..o 844
FOrK/JoiN TASKS IN JAVA. . . .o oottt e e e e 844
Chapter 132: Polymorphism 846
o 0 T o o 846
REMIAIKS . . 846

B XM S . ..o 846
Method OVEIOATING.o ettt e e e e e e e e 846
MEthOd OVEITIAING . . .ottt e e e e e e e e e e e e e 848
Adding behaviour by adding classes without touching existingcode............... i, 849
VirtUal FUNCHIONSt 850
Polymorphism and different types of overriding. o 851
Chapter 133: PreferenCeso 855
= 0] 0] 51 J 855
AddING EVENE IS OIS . . . 855
PreferenCeCNaANgEEVENT. 855
NOAECNANGEEVENTttt 855
Getting sub-nodes Of PreferenCes. i 856
Coordinating preferences access across multiple application instances. ..., 857
EXPOIING PrefErENCES.ot 857
IMPOIING PrE EIENCES e e e e e 858
REMOVING EVENE IS OO S . .. e e e 859
Getling PreferenNCeS VAIUES. e e e 860
Setting PreferenCes VaAlUBS. o e 860
USING PrefIENCESottt e e e e e 861
Chapter 134: Primitive Data TYPeS...... ... 862
I OAUCTION. e 862

R 1] 862
RIS . 862
EX APl . .. 863

LI LI o] 11101101/ 863

The SOt PV . . .ottt e e e e e e 864

THE 0N PIIMITIVE . .ot e e e e e e e e e e e 364
The boolean PrimitiVe. e e e e 865
The DYte PIIMITIVE . . .ot ettt e e e 866
The float PriMItIVEo ettt e e e e e e 866
The doUblE PrIMItIVE. . ..o e e e e e e e e e 867
The Char PrImMItIVE. . .. e e e e 868
Negative value repreSentation. o e e e e e 869
Memory consumption of primitives vs. boxed primitives. 870
BOXed ValUue CACNES. 871
CoNVEIING PrIMItIVESottt e e et e e e 871
Primitive Types CheatSheet.o e e e e e 872
Chapter 135: PrOCESS 874
RIS . 874
E XAl S . .. 874
Simple example (Java Version < 1.5o . 874
Using the ProCcessBUIIAEr ClaSS. e e e e 874
Blocking vs. NoNn-Blocking CallS. e e 875
Lol Yo ¢ o 0T o =] g = (= o 876
Pitfall: Runtime.exec, Process and ProcessBuilder don't understand shell syntax................................ 876
SPACES IN PAINNAIMES 876
Redirection, pipelines and other shell syntax.................. 877
Shell builtin commands dONTWOIK. 878
Chapter 136: Properties Class..............oooiiiii 879
I OdUCTION. . e 879
172 879
RIS . 879
EX APl . . 880
(oY= To T oo I o] (0] o 1] 1 =T A 880
Property files caveat: trailing WhiteSpace. e 880
SaVING Properties @S XMLttt e e e e e e 882

Chapter 137: Queues and DeQUES.............. ..o 885

EX Al . .. 885

The usage of the PriorityQUEUE.ottt e e e e e e e e e e e 885
LinkedList as @ FIFO QUEBUE. 885
SBCKS . . . 886
What is @ StacK?o 886
S ACK APl . .. 886
EX M . . 886
BIOCKINGQUBUE 887
QUEUE [Nt aCE oo 388
DU, . 889
Adding and Accessing Elements. 890
RemMOVINg Elements.o 890
Chapter 138: Random Number Generation................................ i, 891
ReMaArKS . . 891
= 1011 5 891
Pseudo Random NUMDEIS. e 891
Pseudo Random Numbers in Specific RANQE.t e 891
Generating cryptographically secure pseudorandom numbers............. .. . i 892
Select random numbers Without dUpliCatES. 893
Generating Random Numbers with a Specified Seed. 894
Generating Random number using apache-common [ang3.t 894
Chapter 139: Readers and WIS 896
INTrOTUCTION. e 896

E XAl S . .. 896
BUIferedREader . . . o 896
INtrOTUCHION. 896
Basics of using a BufferedReader......................... 896
The BufferedReader buffer size......... ... 897
The BufferedReader.readLine() method..................... 897
Example: reading all linesof aFileintoa List... ... 897

SNV O EXaMDIe . ..o 897

Chapter 140: RECUISION s 899

I OdU G ON . . 899
RIS . . 899
Designing a Recursive Method.o 899
U UL . . 899
Java and Tail-call elimination....... ... 900

E XM S . ..o 900
The basic idea Of FECUISION. o e e e 900
Computing the Nth Fibonacci NUMbDEr o e 901
Computing the sum of integers from 1 t0 N. e 901
Computing the Nth power of @ UMDY o e e e 901
Reverse a string USING RECUISION. e e e e e e e 902
Traversing a Tree data Structure With FeCUISION.o it 902
TYPES OF RECUISION . . . ettt ettt e et e e e e e e e e e e e 903
StackOverflowError & recursion t0 00Dot e 903

EX AL, . .. 903
WOTKArOUN. 904
e 1111 o [T 904
Deep recursion is problematiC IN JAVA. e 906
Why tail-call elimination is not implemented in Java (Yet)...........ooo i 907
Chapter 141: Reference Data TYPES. 908
B S . ..o 908
INStantiating @ FEfEIENCE LY P e e e e e e 908
DEIEEIENCING . . . oottt 908
Chapter 142: ReferenCe TYPeSo 910
= 10110 5 910
DIffEreNt REEIENCE T PO . . .ttt et e e e e e e e e e 910
Chapter 143: Reflection APl 912
I OdUCTION. . e 912
RIS . 912

P O MANCE 912

EX Al . .. 912

1o o 1 ox 1T o 912
INVOKING @ MEthOd. o e e 914
Getting and Setting flelds.o i 914
(021 1o 1S3 1 o (o 915
Getting the Constructor ObjeCt. 915
New Instance using Constructor ObjeCt. ... 916
Getting the Constants of an EnUMeration. ... i e e 916

Get Class given its (fully qualified) name. ... 917
Call overloaded constructors using reflection. 918
Misuse of Reflection API to change private and final variables............... i 918

Call coNStructor Of NESIEA CIASS.ottt 920
DYNAMIC PrOXIES . . . oottt ettt e e e e e 920

Evil Java hacks with RefleCtion.o 921
Chapter 144: Regular EXPreSSiONS. 924
I OdUCTION. . e 924
)11 O 924
RIS . 924

I PO S . . 924
Pl . .. 924
Important Symbols Explained.................. 924
Further reading 925
E XAl S . .. 925
USING CAPIUIE GFOUPSottt e ettt et et et e e e e e et ettt e e et e e e e e e e e e e e e 925
Using regex with custom behaviour by compiling the Patternwithflags....................... . i) 926
ESCApe CharaClers.o e e 926
Matching with @ regexX llteral. e 927

NOt MAatChing @ QIVEN SIIINGo e ettt e e e e e e et 927
Matching a backslash. o 928
Chapter 145: Remote Method Invocation (RMI).................. 930
RIS . 930

E APl . .. 930

Client-Server: invoking methods in one JVM from another......... ... i 930

Callback: invoking methods on @ "Client" e 932

L =T QT 932
The shared remote INTEITACES.o e e e 932
The IMPIEMENTALIONS ettt e e e e e e e e e e e 933
Simple RMI example with Client and Server implementation. i i, 936
SNVl PaCKaAg e oo 936
ClHENE PACKAGE. 937
TESt YOUr APl At ON. ... 939
Chapter 146: Resources (on classpath).............................. 940
I OdUCTION. e 940
RIS . 940
= 101110 5 941
Loading an image fromM @ FESOUICE\ttt et e e e e e e e e e e e e e 941
Loading default Configuration. 942
Loading same-name resource from multiple JARS. 942
Finding and reading resources using a classloader. 942
Absolute and relative resource Paths. 943
Obtaining a Class or Classloader. i 943
The get MEtNOUS. 943
Chapter 147: RSA ENCryptioN 945
= 1] 0] [J 945
An example using a hybrid cryptosystem consisting of OAEP and GCM........... ... i, 945
Chapter 148: Runtime Commands............ ... 950
= 1] 0] [T 950
Adding ShutdOWN hOOKS. oo e e 950
Chapter 149: SCANNEY 951
)Y 1= G 951

P A M IS 951
REMIAIKS . .. 951

E XM S . ..o 951

Reading System iNPUL USING SCANNEE. et e e e e e et e et 951

Reading file INPUL USING SCaNNET. e e e e e e 951

Read the entire input as a String USING SCANNEY.ttt 952
USiNg CUSIOM eliMIterS e e e e e e e e 952
General Pattern that does most commonly asked about tasks......... ... 953
Read an int from the command liNe. ... 955
Carefully ClOSING @ SCANNET.ttt e ettt e e e e e e 955
Chapter 150: Secure 0bJecCtS. 956
)12 956
= 1011 5 956
SealedObject (javax.crypto.SealedObjeCt). oot 956
SignedObject (java.security.SignedObject).o 956
Chapter 151: Security & Cryptography ... 958
E XAl . . . 958
Compute CryptographiC Hashes.o i e e e 958
Generate Cryptographically Random Data. e e 958
Generate Public / Private Key Pairs. 959
Compute and Verify Digital SIgNatUres.o..i ittt e e e e e 959
Encrypt and Decrypt Data with Public / Private Keys. 960
Chapter 152: Security & Cryptography ... 962
I OAUCTION. e 962
RIS . . 962

E XAl S . .. 962
T JCE . i 962
Keys and KeY ManagemiEntttt et et ettt e 962
Common Java vUINerabilities.o o 962
NEtWOIrKING CONCEIMSttt ettt e e e et ettt e e e e e e e e 963
RANAOMNESS @NA YOU. . ..o e e e e e 963
Hashing and Validation. ettt e e e e e e 963
Chapter 153: SecurityManager. 964
E XAl S . .. 964
Enabling the SeCUrityManager. e e e e 964

Sandboxing classes loaded by a ClassLoader.t 964

Implementing POLICY AENY TUIES e e e e e e e e e 965

The DeniedPermisSSioNn Class. o e e e e e e 966
The DenyingPOlICY ClassS. e e e e e e e 970

D BIMIO . . 972
Chapter 154: Serialization.............. ... 974
I OdU G ON . . 974
= 1] 0] [J 974
Basic Serialization iN JAVA.o 974
Serialization With GSON e 976
Serialization With JACKSON 2. o . e e e e 977
CUSIOM SeHAliZAtION.t et e e e 978
Versioning and serialVersionUID i e 980
Compatible ChaNgeS. ... oo 981
InCompatible Changes. ... o 982
Custom JSON Deserialization With JACKSON. e 982
Chapter 155: ServiceLoader. 985
RIS . .o 985
= 1] 0] [J 985
[0 o =T S Y= /o] = 985
SO VI O . 985
Implementations Of the SEIVICE. ... 985
META-INF/services/servicetest.LOgger.o 986
U g . . o 986
Simple ServiceLoader EXampPle. 987
AP el A56: SOUS. 989
= 10] 0] [T 989
Declaring a HashSet With ValUES. e 989
Types and UsSage Of SelS.o 989
HashSet - Random Sorting...................o 989
LinkedHashSet - Insertion Order.................. 989

TreeSet - By compareTo() or Comparator. 990

I Al Z At ON . . .o 990

BaSICS Of SOt ... 991
Create a list from an exXiSting Set. 992
Eliminating dupliCates USING Set. e 993
Chapter 157: SINgIetONS 994
o0 T o o 994

E XM S . .o 994
ENUM SINGIETON. e 994
Thread safe Singleton with double checked I0CKING. e 994
Singleton without use of Enum (eager initialization)........... ... 995
Thread-safe lazy initialization using holder class | Bill Pugh Singleton implementation........................... 996
Extending singleton (singleton iNheritanCe). o 996
Chapter 158: SOCKeLS. 1000
0 T 1o o 1000
= 111 0] [J 1000
Read from SOCKET. o e 1000
Chapter 159: SOrtedMapo 1001
0 0T o o 1001
= 1] 0] [1001
INtrodUCtiON 10 SOMEA MAP.ttt e e e e et e e e e e e 1001
Chapter 160: Splitting a string into fixed lengthparts............................... ... 1003
REMIAIKS . . 1003
= 1] 0] [T 1003
Break a string up into substrings all of aknown length........ 1003
Break a string up into substrings all of variable length. 1003
Chapter 161: Stack-Walking APl 1004
o0 T 1o o 1004
= 101 0] [T 1004
Print all stack frames of the currentthread. 1004
Print current Caller Class. e 1005

Showing reflection and other hidden frames. ... 1005

Chapter 162: S rEaMSo 1007

0 T 1o o 1007
)Y 1= ¥ G 1007
= 101 0] [T 1007
USING SIrEAIMS . . .ottt et et e e e e e e e e 1007
ClOSING StrEAMIS. ... 1008
PrOCESSING OO T . .. o 1009
Differences from Containers (or ColleCtionS). i 1010
Collect Elements of a Stream into @ ColleCtion. 1010
Collect with tOLISt() @and tOSEt().oooi i 1010
Explicit control over the implementation of List or Set................ 1010
Cheat-Sheet. . ..o 1012
NN S I EAMIS . ..ot 1013
CONSUMING StrEaIMSttt e e e e e e e e e e e e e e e e 1014
P2 1015
Creating @ FreqUENCY APttt e e e e e e e e e e e e e 1015
Parallel StrEaM 1016
PerformancCe IMPACT. ... o 1016
Converting a Stream of Optional to a Stream of Values. ... e 1017
CrEALING @ S A . ..ottt e e e e 1017
Finding Statistics about Numerical Streams. e 1018
Geta SliCe Of @ St EAIM e e e 1019
Concatenale StrEAMS. 1019
INESHrEAM 10 SHIING . . . oottt ettt e e e e 1020
SO USING St EaIM . .. ettt e e e e e e e 1020
Streams Of PriMItIVES e 1021
Collect Results of @ Stream iNt0 &N ATTAYottt e e ettt e e 1021
Finding the First Element that Matches a Predicate. e 1021
Using INtStream to iterate OVEr INAEXES. ittt e e e e e e 1022
Flatten Streams with flatMap().o 1022
Create a Map based 0N @ Stream e e 1023

Generating random StriNgS USING StrEamIS.ttt et e e e e 1024

Using Streams to Implement Mathematical FUNCLIONS. i e 1025

Using Streams and Method References to Write Self-Documenting Processes.coovviiiiiiinannn.. 1025
Using Streams of Map.Entry to Preserve Initial Values after Mapping............coooiiiiiiiiiii ... 1026
Stream OPEratioNS CAtEQOIESttt ettt e e e e e e 1027
Intermediate OpPeratiONS: 1027
Terminal OpPerations. 1027
Stateless OPerations. 1027
Stateful OperatioNS. 1028
Converting an iterator 10 @ St aM 1028
RedUCHioN With StreamMS. e 1028
Joining a stream to @ SiNgle StrNg. 1031
Chapter 163: String TOKENIZEXo 1033
I OdUCTION . .. 1033

E XM S . ..o 1033
StringToKenizer SPlit DY SPaCE. e e 1033
StringTokenizer Split DY COMMA ',o e e 1033
Chapter 164: StringBuffer. 1035
0T [o 1o o 1035
= 101 0] [T 1035
SHING BUfEr ClasS. e e 1035
Chapter 165: StringBuilder. 1037
I OdUCTION . . 1037
)Y 1= ¥ G 1037
RIS . . 1037
= 101 0] [T 1037
Repeat @ StrNG N tiMIES. ...t 1037
Comparing StringBuffer, StringBuilder, Formatter and StringJoiner., 1038
Chapter 166: StiNGSo 1040
M OdUCHION . .. 1040
RIS . . 1040

o= 10] 0] [T 1041

COMIPANNG SUNGS . . .ottt ettt e e e e e e e 1041

Do not use the == operator to compare StriNgS................coooiiii 1042
Comparing Strings in a switch statement........................ . 1042
Comparing Strings with constant values........................ 1043
SNG OFBIINGS 1043
Comparing with interned StringsS. ... 1043
Changing the case of characters within @ String...................ooo 1044
Finding a String Within AnoOther String. ... e 1046
Getting the length Of @ SHNG. ... 1047
SUD SN S . ..o 1047
Getting the nth character in @ StriNg....... ... 1048
Platform independent New liNe SEPArator.t 1048
Adding toString() method for custom ObjJeCtS. ... 1049
SPIING SHINGS . .. 1050
Joining Strings With @ delimiter. 1052
REVEISING S NG So 1053
Counting occurrences of a substring or characterinastring.............................. i, 1054
String concatenation and StringBUIlders. ... 1054
Replacing parts Of StrNGS. 1056
EXaCT AN . 1056
Replace single character with another single character:. 1056
Replace sequence of characters with another sequence of characters:...................ooiiiiiiii .. 1056
RO X . 1057
Replace all MatChes: 1057
Replace first MatCh ONly:. o 1057
Remove Whitespace from the Beginning and End of a String............ooii i 1057
String Pool and heap SIOTAgE.o e 1058
Case INSENSILIVE SWILCN. oo 1060
Chapter 167: sun.misc.Unsafe. ... 1061
RIS . 1061

€= 101410 5 1061

Instantiating sun.misc.Unsafe via reflection. 1061

Instantiating sun.misc.Unsafe via bootclasspath.......... 1061
Getting Instance of UnSafe. 1062
USES Of UNSA. ..o 1062
Chapter 168: super KeYWOrd. 1064
= 101 0] [T 1064
Super keyword Use With @Xamples.o 1064
CONSTUCTOr LV . .. 1064
MEthod LeVEl. ... e 1065
Variable LeVel. .. 1065
Chapter 169: The Classpath. 1067
0 T 1o o 1067
REMIAIKS . . 1067

E XM S . ..o 1067
Different ways to specify the classpath. 1067
Adding all JARs in a directory to the classpath. 1068
Classpath Path SYNTAX.o e e 1068
DyNamiC Classpati 1069
Load a resource from the classpath. 1069
Mapping classnames t0 PathNaMIES. oot 1070
What the classpath means: how SearChes WOrK.t e 1070
The bootstrap Classpatn. e 1071
Chapter 170: The Java Command - ‘java'and 'javaw'........................oooiii 1073
1172 1073
RIS . . 1073
€= 101410 5 1073
Running an executable JAR fille. 1073
Running a Java applications via a "main" Class. ...ttt 1074
Running the HEllOWOIIA CIaSS. e 1074
Specifying @ ClasSPati. 1074
ENtrY POINE ClaSSES. o 1074

JaVaFX ENETY-POINTS 1075

Troubleshooting the 'java' command. 1075

"Command NOt fOUNA" 1075
"Could not find or load mMain Class". 1076
"Main method not found in Class <namMe>". 1077
Other RESOUICES. .. e e e 1077
Running a Java application with library dependencies. 1077
Spaces and other special characters in argUmMeNtS. it e 1078
Solutions using @ POSIX Shell. ... 1079
SOIUION TOr WINGOWS.o e e 1080
JAVA OPtIONS . . e 1080
Setting system properties With =D 1080
Memory, Stack and Garbage Collector OptioNS. ... 1081
Enabling and disabling @ssertions. 1081
SeleCtiNng the VM QY Pe e 1081
Chapter 171: The java.util.Objects Class.................... 1083
= 101 0] [J 1083
Basic use for object NUIL CheCK. 1083
For null checkinmethod. 1083
For not null checkin method........ ... 1083
Objects.nonNull() method reference use instream api.............ooooiiiiiiiii i 1083
Chapter 172: ThreadLocCal. 1084
REMIAIKS . . 1084

B XM S . ..o 1084
ThreadLocal Java 8 functional initialization. 1084
BasiC ThreadLoCal USAQE.ttt e e e e 1084
Multiple threads with one shared ObJeCt.o e 1086
Chapter 173: TreeMap and TreeSet. 1088
o0 T o o 1088
= 111 0] [T 1088
TreeMap of @ SIMPIE JaVa tYPe. ... e e 1088

TreeSet Of @ SIMPIE JaVa TYPe. ... e e e e e 1089

TreeMap/TreeSet of @ CUSIOM JAVa tYPE.ottt ettt e e e e 1089

TreeMap and TreeSet Thread Safety. e 1091
Chapter 174: TYPe CONVEISION.o 1093
R 1= 1093
e 1 11] o [T 1093
NON-NUMETIC PriMItIVE CaSTINGo e e e e e e e e e e 1093
NUMETIC PrIMItIVE CaSHING. et ettt et e e e et 1093
ODJECE CASHING. . ..ottt e e e e e 1094
Basic NUMEriC PromoOtioN. e e e e 1094
Testing if an object can be cast using INStanceof. 1094
Chapter 175: Unit Testing. ... 1096
I OdUCHION. . 1096
RIS . 1096
Unit TeSt FrameWOrKSo 1096
Unit TeStiNg TOOISo 1096
= 101 0] [J 1096
What IS UNit TeStNG 2 . ..ottt e e e e e e e e e e e 1096
Testsneedto be automated................... 1098
Tests need to be fine-grained. ... 1098
ENter UNit-teSting 1099
Chapter 176: Using Other Scripting LanguagesinJdava..........................ooooiiiiii . 1100
0 T 1o o 1100
REMIAIKS . . 1100
o= 10] 0] [T 1100
Evaluating A javascript file in -scripting mode of nashorn. 1100
Chapter 177: Using the static Keyword........... 1103
)1 F= ¥ GO 1103
= 101 0] [T 1103
Using static to declare CONSLANTS. e e 1103
UsINg Static WIth This. e 1103

Reference to non-static member from Static CONteXt. 1104

Chapter 178: Using ThreadPoolExecutor in MultiThreaded applications............................. 1106

0 T 1o o 1106
= 101 0] [T 1106
Performing Asynchronous Tasks Where No Return Value Is Needed Using a Runnable Class Insta. 1106
Performing Asynchronous Tasks Where a Return Value Is Needed Using a Callable Class Instan............ 1108
Defining Asynchronous Tasks Inline using Lambdas. ... i 1110
Chapter 179: Varargs (Variable Argument)................... 1113
RIS . 1113
T 1 11] o [T 1113
SPECIfYING @ VArargs Parameler.ottt et e e 1113
Working With Varargs ParamEters.o ettt e e e e 1113
Chapter 180: Visibility (controlling access to membersofaclass)..................................... 1115
R 1= 1115
REMIAIKS . .. 1115
e 1111 o [T 1116
It aCE MEIMDES. .. 1116
PUDBLIC ViSIDilityo 1116
Private Visibilityo 1116
Package Visibility o 1117
Protected VisSibility 1118
Summary of Class Member Access MOIfiers. ... e 1118
Chapter 181: WeakHashMap 1119
o0 T o o 1119
= 1] 0] (1 1119
Concepts of WeakHashmap. o 1119
Chapter 182: XIC ... 1121
o0 T o o 1121

R 1= 1121

P A A B S . 1121
RIS . 1121
e 1111 o [1121

Generating Java code from simple XSD file. 1121

XSD schema (schema.Xsd)......... ... 1121

USINg X . 1122
RESUIL fIlES . .. 1122
PACKAGE-INTO. JAVA. 1124
Chapter 183: XML Parsing using the JAXP APIS......... ... 1125
REMATKS. .. 1125
Principles of the DOM interface.................. 1125
Principles of the SAX nterface. ... 1125
Principles of the StAX interface................... 1126
= 1] 0] [T 1126
Parsing and navigating a document using the DOM API.o e 1126
Parsing a document using the StAX AP L. e e e e 1127
Chapter 184: XML XPath Evaluation....................... ., 1130
REMAIKS. .. 1130
B S . ..o 1130
Evaluating a NodeList in an XML dOCUMENL. e e 1130
Parsing multiple XPath Expressionsin asingle XML. 1131
Parsing single XPath Expression multiple times inan XML.....o i 1131
Chapter 185: XOM - XML Object Model................... 1133
e 1111 o [T 1133
Reading @ XML fil. ... e 1133
WIHtING 10 @ XML File. . .. e e e e e e e e e e 1135

0! (=10 [(= 1139

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: java-language

It is an unofficial and free Java Language ebook created for educational purposes. All the content
is extracted from Stack Overflow Documentation, which is written by many hardworking individuals
at Stack Overflow. It is neither affiliated with Stack Overflow nor official Java Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/java-language
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1: Getting started with Java
Language

Remarks

The Java programming language is...

» General-purpose: It is designed to be used for writing software in a wide variety of
application domains, and lacks specialized features for any specific domain.

» Class-based: Its object structure is defined in classes. Class instances always have those
fields and methods specified in their class definitions (see Classes and Objects). This is in
contrast to non-class-based languages such as JavaScript.

» Statically-typed: the compiler checks at compile time that variable types are respected. For
example, if a method expects an argument of type string, that argument must in fact be a
string when the method is called.

» Object-oriented: most things in a Java program are class instances, i.e. bundles of state
(fields) and behavior (methods which operate on data and form the object's interface to the
outside world).

» Portable: It can be compiled on any platform with javac and the resultant class files can run
on any platform that has a JVM.

Java is intended to let application developers "write once, run anywhere" (WORA), meaning that
compiled Java code can run on all platforms that support Java without the need for recompilation.

Java code is compiled to bytecode (the .c1ass files) which in turn get interpreted by the Java
Virtual Machine (JVM). In theory, bytecode created by one Java compiler should run the same
way on any JVM, even on a different kind of computer. The JVM might (and in real-world
programs will) choose to compile into native machine commands the parts of the bytecode that are
executed often. This is called "Just-in-time (JIT) compilation".

Java Editions and Versions

There are three "editions" of Java defined by Sun / Oracle:

» Java Standard Edition (SE) is the edition that is designed for general use.

» Java Enterprise Edition (EE) adds a range of facilities for building "enterprise grade" services
in Java. Java EE is covered separately.

» Java Micro Edition (ME) is based on a subset of Java SE and is intended for use on small
devices with limited resources.

There is a separate topic on Java SE / EE / ME editions.

https://riptutorial.com/ 2

http://www.riptutorial.com/java/topic/114/classes-and-objects
http://www.riptutorial.com/topic/2265
http://www.riptutorial.com/java/topic/8973/java-editions--versions--releases-and-distributions

Each edition has multiple versions. The Java SE versions are listed below.

Installing Java

There is a separate topic on Installing Java (Standard Edition).

Compiling and running Java programs

There are separate topics on:

e Compiling Java source code

» Java deployment including creating JAR files
e Running Java applications

» The Classpath

What's next?

Here are links to subjects to continue learning and understanding the Java programming
language. These subjects are the basics of the Java programming to get you started.

* Primitive Data Types in Java

e Operators in Java

e Strings in Java

« Basic Control Structures in Java
e Classes and Objects in Java

e Arrays in Java

e Java code standards

Testing

While Java does not have any support for testing in the standard library, there are 3rd-party
libraries that are designed to support testing. The two most popular unit testing libraries are:

e JUnit (Official Site)
» TestNG (Official Site)

Other

Design patterns for Java are covered in Design Patterns.
Programming for Android is covered in Android.

Java Enterprise Edition technologies are covered in Java EE.
The Oracle JavaFX technologies are covered in JavaFX.

https://riptutorial.com/

http://www.riptutorial.com/java/topic/4754/installing-java--standard-edition-
http://www.riptutorial.com/java/topic/4478/java-compiler----javac-
http://www.riptutorial.com/java/topic/6840/java-deployment
http://www.riptutorial.com/java/topic/5791/the-java-command----java--and--javaw-
http://www.riptutorial.com/java/topic/3720/the-classpath
http://www.riptutorial.com/java/topic/148/primitive-data-types
http://www.riptutorial.com/java/topic/176/operators
http://www.riptutorial.com/java/topic/109/strings
http://www.riptutorial.com/java/topic/118/basic-control-structures
http://www.riptutorial.com/java/topic/114/classes-and-objects
http://www.riptutorial.com/java/topic/99/arrays
http://www.riptutorial.com/java/topic/2697/oracle-official-code-standard
http://www.riptutorial.com/topic/1838
http://junit.org/junit4/
http://www.riptutorial.com/testng/topic/5393/getting-started-with-testng
http://testng.org/doc/index.html
http://www.riptutorial.com/topic/1012
http://www.riptutorial.com/topic/85
http://www.riptutorial.com/topic/2265
http://www.riptutorial.com/topic/887

1. In Versions section the end-of-life (free) date is when Oracle will stop posting further updates of Java SE to its
public download sites. Customers who need continued access to critical bug fixes and security fixes as well as general
maintenance for Java SE can get long term support through Oracle Java SE Support.

Versions
Java SE 9 (Early Access) None future 2017-07-27
Java SE 8 Spider future 2014-03-18
Java SE 7 Dolphin 2015-04-14 2011-07-28
Java SE 6 Mustang 2013-04-16 2006-12-23
Java SE 5 Tiger 2009-11-04 2004-10-04
Java SE 1.4 Merlin prior to 2009-11-04 2002-02-06
Java SE 1.3 Kestrel prior to 2009-11-04 2000-05-08
Java SE 1.2 Playground prior to 2009-11-04 1998-12-08
Java SE 1.1 None prior to 2009-11-04 1997-02-19
Java SE 1.0 Oak prior to 2009-11-04 1996-01-21

Examples

Creating Your First Java Program

Create a new file in your text editor or IDE named nelioworid.java. Then paste this code block into
the file and save:

public class HelloWorld {
public static void main(String[] args) {
System.out.println ("Hello, World!");
}

Run live on Ideone

Note: For Java to recognize this as a public class (and not throw a compile time error), the
filename must be the same as the class nhame (ze110worid in this example) with a . java extension.
There should also be a pub1ic access modifier before it.

Naming conventions recommend that Java classes begin with an uppercase character, and be in
camel case format (in which the first letter of each word is capitalized). The conventions

https://riptutorial.com/ 4

http://www.oracle.com/us/technologies/java/java-se-support-393643.html?ssSourceSiteId=otnen
http://download.java.net/java/jdk9/docs/api/
http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/1.5.0/docs/api/
http://docs.oracle.com/javase/1.4.2/docs/api/
http://docs.oracle.com/javase/1.3/docs/api/
http://java.com/
http://java.com/
http://java.com/
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://ideone.com/rbWs4M
http://stackoverflow.com/questions/1841847/can-i-compile-a-java-file-with-a-different-name-than-the-class
http://www.riptutorial.com/java/example/9031/naming-conventions
https://en.wikipedia.org/wiki/Camel_case?oldformat=true

recommend against underscores (_) and dollar signs (s).

To compile, open a terminal window and navigate to the directory of se11oworid. java:

cd /path/to/containing/folder/

Note: cd is the terminal command to change directory.

Enter javac followed by the file name and extension as follows:

$ javac HelloWorld.java

It's fairly common to get the error ' javac' is not recognized as an internal or external command,
operable program or batch file. €ven when you have installed the sox and are able to run the
program from 1o ex. eclipse etc. Since the path is not added to the environment by default.

In case you get this on windows, to resolve, first try browsing to your javac.exe path, it's most
probably in YOUr c:\Program Files\Java\jdk (version number) \bin. Then try running it with below.

$ C:\Program Files\Java\jdk (version number)\bin\javac HelloWorld. java

Previously when we were calling javac it was same as above command. Only in that case your os
knew where javac resided. So let's tell it now, this way you don't have to type the whole path
every-time. We would need to add this to our ratu

To edit the patu environment variable in Windows XP/Vista/7/8/10:

» Control Panel = System = Advanced system settings
» Switch to "Advanced" tab = Environment Variables
* In"System Variables", scroll down to select "PATH" = Edit

You cannot undo this so be careful. First copy your existing path to notepad. Then to get the
exact PATH to your javac browse manually to the folder where javac resides and click on the
address bar and then copy it. It should look something like c:\program Files\Java\jdk1.8.0_xx\bin

In "Variable value" field, paste this IN FRONT of all the existing directories, followed by a semi-
colon (;). DO NOT DELETE any existing entries.

Variable name : PATH
Variable value : c:\Program Files\Java\jdkl.8.0_xx\bin; [Existing Entries...]

Now this should resolve.
For Linux Based systems try here.
Note: The j-voc command invokes the Java compiler.

The compiler will then generate a bytecode file called ne11oworid.c1ass Which can be executed in
the Java Virtual Machine (JVM). The Java programming language compiler, javac, reads source

https://riptutorial.com/

http://www.linfo.org/cd.html
https://docs.oracle.com/javase/tutorial/essential/environment/paths.html
http://www.riptutorial.com/java/topic/4478/java-compiler----javac-
https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine

files written in the Java programming language and compiles them into bytecode class files.
Optionally, the compiler can also process annotations found in source and class files using the
pluggable Annotation Processing API. The compiler is a command line tool but can also be invoked
using the Java Compiler API.

To run your program, enter java followed by the name of the class which contains the nain method
(se110mworid in our example). Note how the .c1ass is omitted:

$ java HelloWorld

Note: The j-»- command runs a Java application.
This will output to your console:
Hello, World!
You have successfully coded and built your very first Java program!
Note: In order for Java commands (java, javac, €tc) to be recognized, you will need to make sure:

* A JDKs installed (e.g. Oracle, OpenJDK and other sources)
* Your environment variables are properly set up

You will need to use a compiler (5avac) and an executor (5ava) provided by your JVM. To find out
which versions you have installed, enter java —version and javac -version 0N the command line.
The version number of your program will be printed in the terminal (e.g. 1.8.0_73).

A closer look at the Hello World program

The "Hello World" program contains a single file, which consists of a ne110wor14 class definition, a
main Method, and a statement inside the main method.

public class HelloWorld {

The c1ass keyword begins the class definition for a class named se110wor1d. Every Java application
contains at least one class definition (Further information about classes).

public static void main(String[] args) {

This is an entry point method (defined by its name and signature of public static void
main (string (1)) from which the svm can run your program. Every Java program should have one. It
¥

* public: meaning that the method can be called from anywhere mean from outside the
program as well. See Visibility for more information on this.
* static: meaning it exists and can be run by itself (at the class level without creating an

https://riptutorial.com/ 6

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
http://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html
http://openjdk.java.net/install/
https://docs.oracle.com/javase/tutorial/essential/environment/paths.html
http://www.riptutorial.com/java/topic/114/classes-and-objects
http://www.riptutorial.com/java/topic/134/visibility--controlling-access-to-members-of-a-class-

object).
* void: meaning it returns no value. Note: This is unlike C and C++ where a return code such
as int IS expected (Java's way IS syscem.exit ().

This main method accepts:

* An array (typically called args) of stringS passed as arguments to main function (e.g. from
command line arguments).

Almost all of this is required for a Java entry point method.
Non-required parts:

» The name args is a variable name, so it can be called anything you want, although it is
typically called args.

* Whether its parameter type is an array (string(] args) Or Varargs (string... args) does not
matter because arrays can be passed into varargs.

Note: A single application may have multiple classes containing an entry point (main) method. The
entry point of the application is determined by the class name passed as an argument to the java
command.

Inside the main method, we see the following statement:

System.out.println("Hello, World!");

Let's break down this statement element-by-element:

this denotes that the subsequent expression will call upon the systen class, from
the java.1ang package.

System

this is a "dot operator". Dot operators provide you access to a classes members
1. j.e. its fields (variables) and its methods. In this case, this dot operator allows
you to reference the out static field within the systen class.

this is the name of the static field of printstream type within the system class
containing the standard output functionality.

out

this is another dot operator. This dot operator provides access to the printin
method within the out variable.

this is the name of a method within the PrintStream class. This method in
println particular prints the contents of the parameters into the console and inserts a
newline after.

this parenthesis indicates that a method is being accessed (and not a field) and
begins the parameters being passed into the print1n method.

https://riptutorial.com/ 7

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#exit-int-
http://www.riptutorial.com/java/example/404/creating-and-initializing-arrays
http://stackoverflow.com/documentation/java/84/java-overview/7980/command-line-arguments
http://www.riptutorial.com/java/topic/1948/varargs---variable-argument-

"Hello, this is the Siring literal that is passed as a parameter, into the print1n method.
o Lel The double quotation marks on each end delimit the text as a String.

this parenthesis signifies the closure of the parameters being passed into the
println Method.

g this semicolon marks the end of the statement.

Note: Each statement in Java must end with a semicolon (;).

The method body and class body are then closed.

} // end of main function scope
} // end of class HelloWorld scope

Here's another example demonstrating the OO paradigm. Let's model a football team with one
(yes, one!) member. There can be more, but we'll discuss that when we get to arrays.

First, let's define our team class:

public class Team {
Member member;
public Team (Member member) { // who is in this Team?
this.member = member; // one 'member' is in this Team!

}

Now, let's define our memper class:

class Member {
private String name;
private String type;
private int level; // note the data type here
private int rank; // note the data type here as well

public Member (String name, String type, int level, int rank) {
this.name = name;
this.type = type;
this.level = level;
this.rank = rank;

Why do we use private here? Well, if someone wanted to know your name, they should ask you
directly, instead of reaching into your pocket and pulling out your Social Security card. This private
does something like that: it prevents outside entities from accessing your variables. You can only
return private members through getter functions (shown below).

After putting it all together, and adding the getters and main method as discussed before, we
have:

https://riptutorial.com/ 8

http://www.riptutorial.com/java/topic/109/strings

public class Team {
Member member;
public Team (Member member) {
this.member = member;

// here's our main method

public static void main(String[] args) {
Member myMember = new Member ("Aurieel", "light", 10, 1);
Team myTeam = new Team (myMember);

System.out.println (myTeam.member.getName ()) ;

System.out.println (myTeam.member.getType ()) ;
)i

r

System.out.println (myTeam.member.getLevel (

)
)
)
)

System.out .println (myTeam.member.getRank ()

class Member {
private String name;
private String type;
private int level;
private int rank;

public Member (String name, String type, int level, int rank) {
this.name = name;
this.type = type;
this.level = level;
this.rank = rank;

/* let's define our getter functions here */
public String getName () { // what is your name?
return this.name; // my name is

public String getType() { // what is your type-?
return this.type; // my type is

public int getLevel () { // what is your level?
return this.level; // my level is

public int getRank () { // what is your rank?
return this.rank; // my rank is

Output:

Aurieel
light
10

1

Run on ideone

Once again, the nain method inside the Test class is the entry point to our program. Without the
nain Method, we cannot tell the Java Virtual Machine (JVM) from where to begin execution of the

https://riptutorial.com/

https://ideone.com/hHWFdk

program.

1 - Because the HelloWorld class has little relation to the system class, it can only access public data.

Read Getting started with Java Language online: https://riptutorial.com/java/topic/84/getting-
started-with-java-language

https://riptutorial.com/

10

https://riptutorial.com/java/topic/84/getting-started-with-java-language
https://riptutorial.com/java/topic/84/getting-started-with-java-language

C_hapter 2. 2D Graphics in Java

Introduction
Graphics are visual images or designs on some surface, such as a wall, canvas, screen, paper, or
stone to inform, illustrate, or entertain. It includes: pictorial representation of data, as in computer-

aided design and manufacture, in typesetting and the graphic arts, and in educational and
recreational software. Images that are generated by a computer are called computer graphics.

The Java 2D API is powerful and complex. There are multiple ways to do 2D graphics in Java.

Examples

Example 1: Draw and Fill a Rectangle Using Java

This is an Example which print rectangle and fill color in the rectangle.

(&) - o X

https://i.stack.imgur.com/dIC5v.jpg
Most methods of the Graphics class can be divided into two basic groups:

1. Draw and fill methods, enabling you to render basic shapes, text, and images
2. Attributes setting methods, which affect how that drawing and filling appears

Code Example: Let us start this with a little example of drawing a rectangle and filling color in it.
There we declare two classes, one class is MyPanel and other Class is Test. In class MyPanel we
use drawRect() & fillRect() mathods to draw rectangle and fill Color in it. We set the color by
setColor(Color.blue) method. In Second Class we Test our graphic which is Test Class we make a

https://riptutorial.com/ 11

https://i.stack.imgur.com/dlC5v.jpg
https://i.stack.imgur.com/dlC5v.jpg

Frame and put MyPanel with p=new MyPanel() object in it.By running Test Class we see a
Rectangle and a Blue Color Filled Rectangle.

First Class: MyPanel

import javax.swing.?*;
import java.awt.*;
// MyPanel extends JPanel, which will eventually be placed in a JFrame
public class MyPanel extends JPanel {
// custom painting is performed by the paintComponent method
@Override
public void paintComponent (Graphics g) {
// clear the previous painting
super.paintComponent (g) ;
// cast Graphics to Graphics2D
Graphics2D g2 = (Graphics2D) g;
g2.setColor (Color.red); // sets Graphics2D color
// draw the rectangle
g2.drawRect (0,0,100,100); // drawRect (x-position, y-position, width, height)
g2.setColor (Color.blue);
g2.fillRect (200,0,100,100); // £fill new rectangle with color blue

Second Class: Test

import javax.swing.;
import java.awt.;
public class Test { //the Class by which we display our rectangle
JFrame f£f;
MyPanel p;
public Test () {
f = new JFrame();
// get the content area of Panel.
Container c = f.getContentPane();
// set the LayoutManager
c.setLayout (new BorderLayout ());
p = new MyPanel ();
// add MyPanel object into container
c.add (p) ;
// set the size of the JFrame
f.setSize (400,400);
// make the JFrame visible
f.setVisible (true);
// sets close behavior; EXIT_ON_CLOSE invokes System.exit (0) on closing the JFrame
f.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;

public static void main(String args|[]){
Test t = new Test ();

For More Explanation about Border Layout:
https://docs.oracle.com/javase/tutorial/uiswing/layout/border.html

paintComponent()

https://riptutorial.com/ 12

https://docs.oracle.com/javase/tutorial/uiswing/layout/border.html

It is a main method for painting
By default, it first paints the background
After that, it performs custom painting (drawing circle, rectangles etc.)

Graphic2D refers Graphic2D Class

Note: The Java 2D API enables you to easily perform the following tasks:

Draw lines, rectangles and any other geometric shape.

Fill those shapes with solid colors or gradients and textures.

Draw text with options for fine control over the font and rendering process.

Draw images, optionally applying filtering operations.

Apply operations such as compositing and transforming during any of the above rendering
operations.

Example 2: Drawing and Filling Oval

import javax.swing.*;

import java.awt.*;

public class MyPanel extends JPanel ({

@Override

public void paintComponent (Graphics g) {
// clear the previous painting
super.paintComponent (g) ;
Graphics2D g2 = (Graphics2D)g;
g2.setColor (Color.blue);
g2 .drawOval (0, 0, 20,20);
g2.filloval (50,50,20,20);

g2.drawOval(int x,int y,int height, int width);
This method will draw an oval at specified x and y position with given height and width.

g2.fillOval(int x,int y,int height, int width); This method will fill an oval at specified x and y
position with given height and width.

Read 2D Graphics in Java online: https://riptutorial.com/java/topic/10127/2d-graphics-in-java

https://riptutorial.com/

13

https://riptutorial.com/java/topic/10127/2d-graphics-in-java

C_hapter 3: Alternative Collections

Remarks

This topic about Java collections from guava, apache, eclipse: Multiset, Bag, Multimap, utils

function from this lib and so on.

Examples

Apache HashBag, Guava HashMultiset and Eclipse HashBag

A Bag/ultiset stores each object in the collection together with a count of occurrences. Extra
methods on the interface allow multiple copies of an object to be added or removed at once. JDK
analog is HashMap<T, Integer>, when values is count of copies this key.

Type

Order not
defined

Sorted

Insertion-
order

Concurrent
variant

Concurrent
and sorted

Immutable
collection

Immutable
and sorted

Examples:

Guava

HashMultiset

TreeMultiset

LinkedHashMultiset

ConcurrentHashMultiset

ImmutableMultiset

ImmutableSortedMultiset

Apache Commons

Collections

HashBag

TreeBag

SynchronizedBag

SynchronizedSortedBag

UnmodifiableBag

UnmodifiableSortedBag

1. Using SynchronizedSortedBag from Apache:

// Parse text to separate words
String INPUT_TEXT = "Hello World!

// Create Multiset
Bag bag = SynchronizedSortedBag.synchronizedBag (new

Hello All! Hi World!";

GS Collections

HashBag

TreeBag

SynchronizedBag

SynchronizedSortedBag

UnmodifiableBag

UnmodifiableSortedBag

JDK

HashMap

TreeMap

LinkedHa

Collectios

Collectio:

Collectio:

Collectio:

)

https://riptutorial.com/

14

http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/HashMultiset.html
http://commons.apache.org/proper/commons-collections/javadocs/api-3.2.1/org/apache/commons/collections/bag/HashBag.html
http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/mutable/HashBag.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/TreeMultiset.html
http://commons.apache.org/proper/commons-collections/javadocs/api-3.2.1/org/apache/commons/collections/TreeBag.html
http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/sorted/mutable/TreeBag.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/LinkedHashMultiset.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/ConcurrentHashMultiset.html
http://commons.apache.org/proper/commons-collections/javadocs/api-3.2.1/org/apache/commons/collections/bag/SynchronizedBag.html
http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/mutable/SynchronizedBag.html
http://commons.apache.org/proper/commons-collections/javadocs/api-3.2.1/org/apache/commons/collections/bag/SynchronizedSortedBag.html
http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/sorted/mutable/SynchronizedSortedBag.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/ImmutableMultiset.html
http://commons.apache.org/proper/commons-collections/javadocs/api-3.2.1/org/apache/commons/collections/bag/UnmodifiableBag.html
http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/mutable/UnmodifiableBag.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/ImmutableSortedMultiset.html
http://commons.apache.org/proper/commons-collections/javadocs/api-3.2.1/org/apache/commons/collections/bag/UnmodifiableSortedBag.html
http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/sorted/mutable/SynchronizedSortedBag.html

TreeBag (Arrays.asList (INPUT_TEXT.split (" "))));

// Print count words

System.out.println(bag); // print [1:Al11l!,2:Hello,1:Hi,2:World!]- in natural (alphabet)
order

// Print all unique words

System.out.println (bag.uniqueSet ()); // print [All!, Hello, Hi, World!]- in natural
(alphabet) order

// Print count occurrences of words

System.out.println ("Hello = " + bag.getCount ("Hello")); // print 2
System.out.println ("World = " + bag.getCount ("World!")); // print 2
System.out.println ("All = " + bag.getCount ("A11l!")); // print 1
System.out.println ("Hi = " + bag.getCount ("Hi")); // print 1
System.out.println ("Empty = " + bag.getCount ("Empty")); // print O
// Print count all words

System.out.println (bag.size()); //print 6

// Print count unique words

System.out.println (bag.uniqueSet () .size()); //print 4

2. Using TreeBag from Eclipse(GC):

// Parse text to separate words

String INPUT_TEXT = "Hello World! Hello All! Hi World!";
// Create Multiset
MutableSortedBag<String> bag = TreeBag.newBag (Arrays.asList (INPUT_TEXT.split ("™ ")));

// Print count words

System.out.println(bag); // print [All!, Hello, Hello, Hi, World!, World!]- in natural
order

// Print all unique words

System.out.println (bag.toSortedSet ()); // print [All!, Hello, Hi, World!]- in natural

order

// Print count occurrences of words

System.out.println ("Hello = " + bag.occurrencesOf ("Hello")); // print 2
System.out.println ("World = " + bag.occurrencesOf ("World!")); // print 2
System.out.println ("All = " + bag.occurrencesOf ("Al1l1!")); // print 1
System.out.println ("Hi = " + bag.occurrencesOf ("Hi")); // print 1
System.out.println ("Empty = " + bag.occurrencesOf ("Empty")); // print O
// Print count all words

System.out.println (bag.size()); //print 6

// Print count unique words

System.out.println (bag.toSet () .size()); //print 4

3. Using LinkedHashMultiset from Guava:

// Parse text to separate words

String INPUT_TEXT = "Hello World! Hello All! Hi World!";

// Create Multiset

Multiset<String> multiset = LinkedHashMultiset.create (Arrays.asList (INPUT_TEXT.split ("
"))

https://riptutorial.com/

http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/sorted/mutable/TreeBag.html
http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/sorted/mutable/SynchronizedSortedBag.html

// Print count words

System.out.println (multiset); // print [Hello x 2, World! x 2, All!, Hi]- in predictable
iteration order

// Print all unique words

System.out.println (multiset.elementSet ()); // print [Hello, World!, All!, Hi] - in
predictable iteration order

// Print count occurrences of words

System.out.println ("Hello = " + multiset.count ("Hello")); // print 2
System.out.println ("World = " + multiset.count ("World!")); // print 2
System.out.println ("All = " + multiset.count ("Al1l!")); // print 1
System.out.println ("Hi = " + multiset.count ("Hi")); // print 1
System.out.println ("Empty = " + multiset.count ("Empty")); // print 0

// Print count all words
System.out.println (multiset.size()); //print 6

// Print count unique words
System.out.println (multiset.elementSet ().size()); //print 4

More examples:

|. Apache Collection:

1. HashBag - order not defined

2. SynchronizedBag - concurrent and order not defined

3. SynchronizedSortedBag - - concurrent and sorted order
4. TreeBag - sorted order

Il. GS / Eclipse Collection

5. MutableBag - order not defined
6. MutableSortedBag - sorted order

I1l. Guava

7. HashMultiset - order not defined
8. TreeMultiset - sorted order
9. LinkedHashMultiset - insertion order
10. ConcurrentHashMultiset - concurrent and order not defined

Multimap in Guava, Apache and Eclipse Collections

This multimap allows duplicate key-value pairs. JDK analogs are HashMap<K, List>, HashMap<K,

Duplicate | Analog key Analog value

Set> and so on.

not Insertion-

defined order HashMap ArrayList ArrayListMultimap Multival

https://riptutorial.com/ 16

https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/ApacheHashBagTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/ApacheSynchronizedBagTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/ApacheSynchronizedSortedBagTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/ApacheTreeBagTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/gs-eclipse/src/GsMutableBagTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/gs-eclipse/src/GsMutableSortedBagTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/guava/src/GuavaHashMultisetTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/TreeMultisetTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/LinkedHashMultisetTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/ConcurrentHashMultisetTest.java
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/ArrayListMultimap.html

Value's

Duplicate | Analog ke Analog value | Guava
order P g key g
not not .
) : no HashMa HashSet HashMultima
defined defined P P
t Multimaps.
no newMultimap (
defined sorted no HashMap TreeSet S
<TreeSet>)
Insertion- Insertion-
yes LinkedHashMap | ArrayList LinkedListMultimap
order order
Insertion- Insertion-
no LinkedHashMap LinkedHashSet LinkedHashMultimap
order order
sorted sorted no TreeMap TreeSet TreeMultimap

Examples using Multimap

Task: Parse "Hello World! Hello All' Hi World!" string to separate words and print all indexes of
every word using MultiMap (for example, Hello=[0, 2], World!=[1, 5] and so on)

1. MultiValueMap from Apache

String INPUT_TEXT = "Hello World! Hello All! Hi World!";

// Parse text to words and index

List<String> words = Arrays.asList (INPUT_TEXT.split (" "));

// Create Multimap

MultiMap<String, Integer> multiMap = new MultiValueMap<String, Integer>();

// Fill Multimap

int 1 = 0;

for (String word: words) {
multiMap.put (word, 1i);
SITELE

}

// Print all words

System.out.println (multiMap); // print {Hi=[4], Hello=[0, 2], World!=[1, 5], All!=[3]} -
in random orders

// Print all unique words

System.out.println (multiMap.keySet ()); // print [Hi, Hello, World!, All!] - in random
orders

// Print all indexes

System.out.println ("Hello = " + multiMap.get ("Hello")); // print [0, 2]
System.out.println ("World = " + multiMap.get ("World!")); // print [1, 5]
System.out.println ("All = " + multiMap.get ("Al1l!")); // print [3]

Multival
multival
HashMapc«
HashSet.

Multival
new Hast
TreeSet.

MultivVal
multiVa
LinkedF
ArrayLis

Multival
multival
LinkedHe
LinkedHe

Multival
multival
TreeMapc<
Set> (), 1

https://riptutorial.com/

17

https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/HashMultimap.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/LinkedListMultimap.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashSet.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/LinkedHashMultimap.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/TreeMultimap.html

System.out.println("Hi = " + multiMap.get ("Hi"));
System.out.println ("Empty = "

// Print count unique words
System.out.println (multiMap.keySet () .size());

2. HashBiMap from GS / Eclipse Collection

String[] englishWords = {"one", "two",

String[] russianWords = {"jeden", "dwa", "trzy",

// Create Multiset
MutableBiMap<String,
// Create English-Polish dictionary

String> biMap =

int 1 = 0;
for (String englishWord: englishWords) {
biMap.put (englishWord, russianWords([i]);

1++;

// Print count words

System.out.println (biMap); // print {two=dwa,

three=trzy} - in random orders

// Print all unique words

+ multiMap.get ("Empty"));

ball=kula,

// print [4]
// print null

//print 4

"three", "ball", "snow"};
"kula",

"snieg"};

new HashBiMap (englishWords.length);

one=jeden, snow=snieg,

System.out.println (biMap.keySet ()); // print [snow, two, one, three, ball] - in random
orders
System.out.println (biMap.values()); // print [dwa, kula, jeden, snieg, trzy] - in
random orders
// Print translate by words
System.out.println("one = " + biMap.get ("one")); // print one = jeden
System.out.println("two = " + biMap.get ("two")); // print two = dwa
System.out.println("kula = " + biMap.inverse () .get ("kula")); // print kula = ball
System.out.println ("snieg = " + biMap.inverse () .get ("snieg")); // print snieg = snow
System.out.println ("empty = " + biMap.get ("empty")); // print empty = null
// Print count word's pair
System.out.println (biMap.size()); //print 5
3. HashMultiMap from Guava

String INPUT_TEXT = "Hello World! Hello All! Hi World!";

// Parse text to words and index

List<String> words = Arrays.asList (INPUT_TEXT.split (" "));

// Create Multimap

Multimap<String, Integer> multiMap = HashMultimap.create();

// Fill Multimap

int 1 = 0;

for (String word: words) {

multiMap.put (word, 1i);
i++;

}

// Print all words

System.out.println(multiMap); // print {Hi=[4], Hello=[0, 2], World!=[1l, 5], All!=[3]} -

keys and values in random orders
// Print all unique words

https://riptutorial.com/

18

System.out.println (multiMap.keySet ()); // print [Hi, Hello, World!, All!] - in random

orders

// Print all indexes

System.out.println("Hello = " + multiMap.get ("Hello")); // print [0, 2]
System.out.println ("World = " + multiMap.get ("World!")); // print [1, 5]
System.out.println("All = " + multiMap.get ("AL11!")); // print [3]
System.out.println("Hi = " + multiMap.get ("Hi")); // print [4]
System.out.println ("Empty = " + multiMap.get ("Empty")); // print []

// Print count all words

System.out .println (multiMap.size()) ; //print 6

// Print count unique words

System.out.println (multiMap.keySet () .size()); //print 4

Nore examples:

|. Apache Collection:

1. MultiValueMap
2. MultiValueMapLinked
3. MultiValueMapTree

Il. GS / Eclipse Collection

1. FastListMultimap

2. HashBagMultimap

3. TreeSortedSetMultimap
4. UnifiedSetMultimap

I1l. Guava

1. HashMultiMap

2. LinkedHashMultimap
3. LinkedListMultimap
4. TreeMultimap

5. ArrayListMultimap

Compare operation with collections - Create collections

Compare operation with collections - Create collections

1. Create List

Create . . | |
en1pty list new ArrayList<>() Lists.newArrayList () FastList.newList ()

1 Arrays.asList("1", "2" FastList.newListWith("1"
Create IISt n3n)y) (! ! Lists.newArrayList ("1", "2", "3") nomw, i3n) .) (’

https://riptutorial.com/ 19

https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/ApacheMultiValueMapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/ApacheMultiValueMapLinkedTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/ApacheMultiValueMapTreeTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/gs-eclipse/src/GsFastListMultimapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/gs-eclipse/src/GsHashBiMapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/gs-eclipse/src/GsTreeSortedSetMultimapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/gs-eclipse/src/GsUnifiedSetMultimapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/HashMultiMapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/LinkedHashMultimapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/LinkedListMultimapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/TreeMultimapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/ArrayListMultimapTest.java

from values

Create list
with
capacity =
100

new ArrayList<>(100) Lists.

Create list

new

from any Lists.

ArrayList<>(collection)

collectin

Create list

from any - Lists.

Iterable

Create list
from Iterator

- Lists.

Create list
from array

Arrays.asList (array) Lists.

Create list
using - -
factory

Examples:

newArrayListWithCapacity (100) FastList.newList (100)

newArrayList (collection)

newArrayList (iterable)

newArrayList (iterator)

newArrayList (array)

System.out.println ("createArrayList start");

// Create empty list

List<String> emptyGuava = Lists.newArrayList(); // using guava

List<String> emptyJDK = new ArrayList<>();

// using JDK

MutableList<String> emptyGS = FastList.newList(); // using gs

// Create list with 100 element

List < String > exactlyl00 = Lists.newArrayListWithCapacity (100);

List<String> exactlyl00JDK

// Create list with about 100 element

new ArrayList<>(100); // using JDK
MutablelList<String> emptyl00GS = FastList.newList (100);

List<String> approxl00 = Lists.newArrayListWithExpectedSize (100);
List<String> approx100JDK = new ArrayList<>(115); // using JDK

MutablelList<String> approxl00GS = FastList.newList (115);

// Create list with some elements

FastlList.newlList (collecti

FastList.newlList (iterable

FastlList.newListWith (arra

FastList.newWithNValues (1
() _> "1")

// using guava

// using gs

// using guava

// using gs

List<String> withElements = Lists.newArrayList ("alpha", "beta", "gamma"); // using guava

List<String> withElementsJDK = Arrays.asList ("alpha", "beta", "gamma"); // using JDK
MutableList<String> withElementsGS = FastList.newListWith ("alpha", "beta", "gamma"); //

using gs

System.out.println (withElements) ;
System.out.println (withElementsJDK) ;
System.out.println (withElementsGS) ;

https://riptutorial.com/

20

// Create list from any Iterable interface (any collection)
Collection<String> collection = new HashSet<>(3);
collection.add("1");

collection.add("2");

collection.add("3");

List<String> fromIterable = Lists.newArrayList (collection); // using guava
List<String> fromIterableJDK = new ArrayList<>(collection); // using JDK
MutableList<String> fromIterableGS = FastList.newList (collection); // using gs

System.out.println (fromIterable);

System.out.println (fromIterableJDK) ;

System.out.println (fromIterableGS);

/* Attention: JDK create list only from Collection, but guava and gs can create list from
Iterable and Collection */

// Create list from any Iterator

Iterator<String> iterator = collection.iterator();

List<String> fromIterator = Lists.newArraylList (iterator); // using guava
System.out.println (fromIterator);

// Create list from any array

String[] array = {"4", "5", "6"};

List<String> fromArray = Lists.newArrayList (array); // using guava
List<String> fromArrayJDK = Arrays.asList (array); // using JDK
MutableList<String> fromArrayGS = FastList.newListWith (array); // using gs
System.out.println (fromArray) ;

System.out.println (fromArrayJDK) ;

System.out.println (fromArrayGS) ;

// Create list using fabric

MutableList<String> fromFabricGS = FastList.newWithNValues (10, () ->
String.valueOf (Math.random())); // using gs

System.out.println (fromFabricGS) ;

System.out.println ("createArrayList end");

2 Create Set

Description | JDK guava gs-collections
Create o

new HashSet<> () Sets.newHashSet () UnifiedSet.newSet ()
empty set

new
Creatre set HashSet<> (Arrays.asList ("alpha", Sets.newHashSet ("alpha", UnifiedSet.newSetWith ("a
from values i .w, "gamma")) "beta", "gamma") "beta", "gamma")
Create set
ﬁTNn any new HashSet<> (collection) Sets.newHashSet (collection) UnifiedSet.newSet (collec
collections
Create set
from any - Sets.newHashSet (iterable) UnifiedSet.newSet (iterab
Iterable
Create set - Sets.newHashSet (iterator) =

https://riptutorial.com/ 21

from any
Iterator

Create set new

. Sets.newHashSet (array) UnifiedSet.newSetWith (ar
from Array HashSet<> (Arrays.aslList (array))
Examples:
System.out.println ("createHashSet start");
// Create empty set
Set<String> emptyGuava = Sets.newHashSet (); // using guava

Set<String> emptyJDK = new HashSet<>(); // using JDK
Set<String> emptyGS = UnifiedSet.newSet (); // using gs

// Create set with 100 element

Set<String> approx100 = Sets.newHashSetWithExpectedSize (100); // using guava
Set<String> approx100JDK = new HashSet<>(130); // using JDK

Set<String> approxl00GS = UnifiedSet.newSet (130); // using gs

// Create set from some elements

Set<String> withElements = Sets.newHashSet ("alpha", "beta", "gamma"); // using guava

Set<String> withElementsJDK = new HashSet<> (Arrays.asList ("alpha", "beta", "gamma")); //
using JDK

Set<String> withElementsGS = UnifiedSet.newSetWith ("alpha", "beta", "gamma"); // using gs

System.out.println (withElements) ;
System.out.println (withElementsJDK) ;
System.out.println (withElementsGS) ;

// Create set from any Iterable interface (any collection)
Collection<String> collection = new ArrayList<>(3);
collection.add("1");

collection.add("2");

collection.add("3");

Set<String> fromIterable = Sets.newHashSet (collection); // using guava
Set<String> fromIterableJDK = new HashSet<>(collection); // using JDK
Set<String> fromIterableGS = UnifiedSet.newSet (collection); // using gs

System.out.println (fromIterable);

System.out.println (fromIterableJDK) ;

System.out.println (fromIterableGS) ;

/* Attention: JDK create set only from Collection, but guava and gs can create set from
Iterable and Collection */

// Create set from any Iterator

Iterator<String> iterator = collection.iterator();

Set<String> fromIterator = Sets.newHashSet (iterator); // using guava
System.out.println (fromIterator);

// Create set from any array

String[] array = {"4", "5", "6"};

Set<String> fromArray = Sets.newHashSet (array); // using guava

Set<String> fromArrayJDK = new HashSet<> (Arrays.aslList (array)); // using JDK
Set<String> fromArrayGS = UnifiedSet.newSetWith (array); // using gs
System.out.println (fromArray) ;

System.out.println (fromArrayJDK) ;

https://riptutorial.com/ 22

System.out.println (fromArrayGS) ;

System.out.println ("createHashSet end");

3 Create Map

Create —

H : e UnifiedMap. M
en1pty map HashMap<> () aps.newHashMap () nifiedMap.newMap ()

Create map

Wlth new

CapaCIty - HashMap<>(130)
130

Maps.newHashMapWithExpectedSize (100) UnifiedMap.newMap (130)

Create map
new

from other HashMap<> (map) Maps .newHashMap (map) UnifiedMap.newMap (map)
map

Create map UnifiedMap.newWithKeysValues("1",
from keyS "a", "2", "b")

Examples:

System.out.println ("createHashMap start");
// Create empty map

Map<String, String> emptyGuava = Maps.newHashMap(); // using guava
Map<String, String> emptyJDK = new HashMap<>(); // using JDK
Map<String, String> emptyGS = UnifiedMap.newMap(); // using gs

// Create map with about 100 element

Map<String, String> approxl100 = Maps.newHashMapWithExpectedSize (100); // using guava
Map<String, String> approxl00JDK = new HashMap<>(130); // using JDK

Map<String, String> approxl00GS = UnifiedMap.newMap (130); // using gs

// Create map from another map

Map<String, String> map = new HashMap<>(3);

map.put ("k1","v1l");

map.put ("k2","v2");

Map<String, String> withMap = Maps.newHashMap (map); // using guava
Map<String, String> withMapJdDK = new HashMap<> (map); // using JDK
Map<String, String> withMapGS = UnifiedMap.newMap (map); // using gs

System.out.println (withMap) ;

System.out .println (withMapJDK) ;

System.out.println (withMapGS) ;

// Create map from keys

Map<String, String> withKeys = UnifiedMap.newWithKeysValues("1", "a", "2", "b");

System.out.println (withKeys) ;

System.out.println ("createHashMap end");

More examples: CreateCollectionTest

https://riptutorial.com/ 23

https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/gs-eclipse/src/CreateCollectionTest.java

1. CollectionCompare
2. CollectionSearch
3. JavaTransform

Read Alternative Collections online: https://riptutorial.com/java/topic/2958/alternative-collections

https://riptutorial.com/

24

https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/CollectionCompareTests.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/CollectionSearchTests.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/JavaTransformTest.java
https://riptutorial.com/java/topic/2958/alternative-collections

C_hapter 4. Annotations

Introduction

In Java, an annotation is a form of syntactic metadata that can be added to Java source code. It
provides data about a program that is not part of the program itself. Annotations have no direct
effect on the operation of the code they annotate. Classes, methods, variables, parameters and
packages are allowed to be annotated.

Syntax

* @AnnotationName // 'Marker annotation' (no parameters)

@AnnotationName(someValue) // sets parameter with the name 'value'
@AnnotationName(paraml = valuel) // named parameter

@AnnotationName(paraml = valuel, param2 = value2) // multiple named parameters
@AnnotationName(paraml = {1, 2, 3}) // named array parameter
@AnnotationName({valuel}) // array with single element as parameter with the name ‘'value

Remarks

Parameter types

Only constant expressions of following types are allowed for parameters, as well as arrays of
these types:

® String

® Class

 primitive types

* Enum types

* Annotation Types

Examples

Built-in annotations

The Standard Edition of Java comes with some annotations predefined. You do not need to define
them by yourself and you can use them immediately. They allow the compiler to enable some
fundamental checking of methods, classes and code.

@Override

This annotation applies to a method and says that this method must override a superclass' method
or implement an abstract superclass' method definition. If this annotation is used with any other

https://riptutorial.com/ 25

https://en.wikipedia.org/wiki/Java_annotation
https://docs.oracle.com/javase/tutorial/java/annotations/
https://docs.oracle.com/javase/tutorial/java/annotations/

kind of method, the compiler will throw an error.

Concrete superclass

public class Vehicle {
public void drive () {

System.out.println ("I am driving");

class Car extends Vehicle {
// Fine
@Override
public void drive () {

System.out.prinln ("Brrrm, brrm");

Abstract class

abstract class Animal {
public abstract void makeNoise () ;

class Dog extends Animal {
// Fine
@Override
public void makeNoise () {
System.out.prinln ("Woof") ;

Does not work

class Loggerl {
public void log(String logString) {
System.out.prinln (logString) ;

class Logger2 {
// This will throw compile-time error. Logger2 is not a subclass of Loggerl.
// log method is not overriding anything

@Override
public void log(String logString) {
System.out.println("Log 2" + logString);

The main purpose is to catch mistyping, where you think you are overriding a method, but are
actually defining a new one.

class Vehicle {
public void drive () {

System.out.println ("I am driving");

https://riptutorial.com/

26

}

class Car extends Vehicle {
// Compiler error. "dirve" is not the correct method name to override.
@Override
public void dirve () {
System.out.prinln ("Brrrm, brrm");
}
Note that the meaning of eoverride has changed over time:

* InJava 5, it meant that the annotated method had to override a non-abstract method
declared in the superclass chain.

* From Java 6 onward, it is also satisfied if the annotated method implements an abstract
method declared in the classes superclass / interface hierarchy.

(This can occasionally cause problems when back-porting code to Java 5.)
@Deprecated
This marks the method as deprecated. There can be several reasons for this:
» the API is flawed and is impractical to fix,
» usage of the API is likely to lead to errors,
» the API has been superseded by another API,
» the API is obsolete,
» the API is experimental and is subject to incompatible changes,
e or any combination of the above.

The specific reason for deprecation can usually be found in the documentation of the API.

The annotation will cause the compiler to emit an error if you use it. IDEs may also highlight this
method somehow as deprecated

class ComplexAlgorithm {
@Deprecated
public void oldSlowUnthreadSafeMethod () {
// stuff here
}

public void quickThreadSafeMethod() {

// client code should use this instead

}

@SuppressWarnings

https://riptutorial.com/

27

In almost all cases, when the compiler emits a warning, the most appropriate action is to fix the
cause. In some instances (Generics code using untype-safe pre-generics code, for example) this
may not be possible and it's better to suppress those warnings that you expect and cannot fix, so
you can more clearly see unexpected warnings.

This annotation can be applied to a whole class, method or line. It takes the category of warning
as a parameter.

@SuppressWarnings ("deprecation")
public class RiddledWithWarnings {
// several methods calling deprecated code here

@SuppressWarning ("finally")
public boolean checkData () {
// method calling return from within finally block

It is better to limit the scope of the annotation as much as possible, to prevent unexpected
warnings also being suppressed. For example, confining the scope of the annotation to a single-
line:

ComplexAlgorithm algorithm = new ComplexAlgorithm() ;
@SuppressWarnings ("deprecation") algoritm.slowUnthreadSafeMethod() ;
// we marked this method deprecated in an example above

@SuppressWarnings ("unsafe") List<Integer> list = getUntypeSafelist ();
// old library returns, non-generic List containing only integers

The warnings supported by this annotation may vary from compiler to compiler. Only the unchecked
and deprecation Warnings are specifically mentioned in the JLS. Unrecognized warning types will
be ignored.

@SafeVarargs

Because of type erasure, void method(T... t) Will be converted t0 void method (0bject[] t) Meaning
that the compiler is not always able to verify that the use of varargs is type-safe. For instance:

private static <T> void generatesVarargsWarning(T... lists) {

There are instances where the use is safe, in which case you can annotate the method with the
safevarargs annotation to suppress the warning. This obviously hides the warning if your use is
unsafe too.

@Functionallnterface

This is an optional annotation used to mark a Functionalinterface. It will cause the compiler to
complain if it does not conform to the Functionalinterface spec (has a single abstract method)

@FunctionalInterface
public interface ITrade {

https://riptutorial.com/ 28

public boolean check (Trade t);

@FunctionalInterface
public interface Predicate<T> {
boolean test (T t);

Runtime annotation checks via reflection

Java's Reflection API allows the programmer to perform various checks and operations on class
fields, methods and annotations during runtime. However, in order for an annotation to be at all
visible at runtime, the retentionpolicy must be changed to runt1ME, @S demonstrated in the
example below:

@interface MyDefaultAnnotation {

@Retention (RetentionPolicy.RUNTIME)
@interface MyRuntimeVisibleAnnotation {

public class AnnotationAtRuntimeTest {

@MyDefaultAnnotation
static class RuntimeCheckl {

}

@MyRuntimeVisibleAnnotation
static class RuntimeCheck2 {

}

public static void main(String[] args) {
Annotation[] annotationsByType = RuntimeCheckl.class.getAnnotations();

Annotation[] annotationsByType2 = RuntimeCheck2.class.getAnnotations();
System.out.println ("default retention: " + Arrays.toString(annotationsByType)) ;
System.out.println ("runtime retention: " + Arrays.toString(annotationsByType2));

Defining annotation types

Annotation types are defined with einterrace. Parameters are defined similar to methods of a
regular interface.

@interface MyAnnotation {
String paraml () ;
boolean param?2 () ;
int[] param3(); // array parameter

https://riptutorial.com/ 29

Default values

@interface MyAnnotation {
String paraml () default "someValue";
boolean param2 () default true;
int[] param3() default {};

I\/I_eta—Annotations

Meta-annotations are annotations that can be applied to annotation types. Special predefined
meta-annotation define how annotation types can be used.

@Target
The erarget meta-annotation restricts the types the annotation can be applied to.

@Target (ElementType .METHOD)
@interface MyAnnotation {

// this annotation can only be applied to methods
}

Multiple values can be added using array notation, e.g. erarget ({ElementType.FIELD,
ElementType.TYPE})

Available Values

ElementType example usage on target element

@Retention (RetentionPolicy.RUNTIME)
@interface MyAnnotation

ANNOTATION_TYPE annotation types

@MyA tati
CONSTRUCTOR constructors yannoration
public MyClass () {}
. @XmlAttribut
FIELD fields, enum constants moAttrLbute
private 1nt count;
. . for (@LoopVariable int 1 = 0; i < 100;
variable declarations i44) |

LOCAL VARIABLE .
OCAL_ inside methods @Unused

String resultVariable;

https://riptutorial.com/ 30

ElementType example usage on target element

PACKAGE
info.java)

METHOD methods

PARAMETER method/constructor
parameters

TYPE classes, interfaces,
enums

Java SE 8

package (in package-

@Deprecated
package very.old;

@XmlElement
public int getCount () {...}

public Rectangle (

@NamedArg ("width") double
width,

@NamedArg ("height") double
height) {

}

@XmlRootElement
public class Report ({}

ElementType example usage on target element

Type parameter

TYPE PARAMETER i
- declarations

TYPE_USE Use of a type

@Retention

public <@MyAnnotation T> void £(T t)
{}

Object o = "42";
String s = (@MyAnnotation String) o;

The eretention Meta-annotation defines the annotation visibility during the applications compilation
process or execution. By default, annotations are included in .c1ass files, but are not visible at
runtime. To make an annotation accessible at runtime, retentionpolicy.runTIME has to be set on

that annotation.

@Retention (RetentionPolicy.RUNTIME)
@interface MyAnnotation {

https://riptutorial.com/

31

// this annotation can be accessed with reflections at runtime

Available values

RetentionPolicy | Effect

CLASS The annotation is available in the .c1ass file, but not at runtime
RUNTIME The annotation is available at runtime and can be accessed via reflection

The annotation is available at compile time, but not added to the .ciass

SOURCE . . .
files. The annotation can be used e.g. by an annotation processor.

@Documented

The epocumented meta-annotation is used to mark annotations whose usage should be documented
by APl documentation generators like javadoc. It has no values. With epocumented, all classes that
use the annotation will list it on their generated documentation page. Without epocumented, it's not
possible to see which classes use the annotation in the documentation.

@Inherited

The e1nnerited meta-annotation is relevant to annotations that are applied to classes. It has no
values. Marking an annotation as einherited alters the way that annotation querying works.

» For a non-inherited annotation, the query only examines the class being examined.
» For an inherited annotation, the query will also check the super-class chain (recursively) until
an instance of the annotation is found.

Note that only the super-classes are queried: any annotations attached to interfaces in the classes
hierarchy will be ignored.

@Repeatable

The erepeatable meta-annotation was added in Java 8. It indicates that multiple instances of the
annotation can be attached to the annotation's target. This meta-annotation has no values.

Getting Annotation values at run-time

You can fetch the current properties of the Annotation by using Reflection to fetch the Method or
Field or Class which has an Annotation applied to it, and then fetching the desired properties.

@Retention (RetentionPolicy.RUNTIME)
@interface MyAnnotation {
String key() default "foo";

https://riptutorial.com/ 32

http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.riptutorial.com/java/topic/629/reflection-api

String value() default "bar";

class AnnotationExample {
// Put the Annotation on the method, but leave the defaults
@MyAnnotation
public void testDefaults () throws Exception {
// Using reflection, get the public method "testDefaults", which is this method with
no args
Method method = AnnotationExample.class.getMethod("testDefaults", null);

// Fetch the Annotation that is of type MyAnnotation from the Method
MyAnnotation annotation = (MyAnnotation)method.getAnnotation (MyAnnotation.class);

// Print out the settings of the Annotation
print (annotation);

//Put the Annotation on the method, but override the settings
@MyAnnotation (key="baz", value="buzz")
public void testValues () throws Exception {
// Using reflection, get the public method "testValues", which is this method with no
args
Method method = AnnotationExample.class.getMethod("testValues", null);

// Fetch the Annotation that is of type MyAnnotation from the Method
MyAnnotation annotation = (MyAnnotation)method.getAnnotation (MyAnnotation.class);

// Print out the settings of the Annotation
print (annotation);

public void print (MyAnnotation annotation) {
// Fetch the MyAnnotation 'key' & 'value' properties, and print them out
System.out.println (annotation.key() + " = " + annotation.value());

public static void main(String[] args) {

AnnotationExample example = new AnnotationExample () ;

try {
example.testDefaults () ;
example.testValues () ;

} catch(Exception e) {
// Shouldn't throw any Exceptions
System.err.println ("Exception [" + e.getClass () .getName() + "] - +

e.getMessage());

e.printStackTrace (System.err);

The output will be

foo = bar
baz = buzz

Repeating Annotations

https://riptutorial.com/

Until Java 8, two instances of the same annotation could not be applied to a single element. The
standard workaround was to use a container annotation holding an array of some other
annotation:

// Author.java
@Retention (RetentionPolicy.RUNTIME)
public @interface Author {

String value();

// Authors. java

@Retention (RetentionPolicy.RUNTIME)

public @interface Authors {
Author[] wvalue();

// Test.java
@Authors ({
@Author ("Mary"),
@Author ("Sam")
})
public class Test {
public static void main(String[] args) {

Author[] authors = Test.class.getAnnotation (Authors.class) .value();
for (Author author : authors) {

System.out.println (author.value());

// Output:

// Mary

// Sam

Java SE 8

Java 8 provides a cleaner, more transparent way of using container annotations, using the
@repeatable annotation. First we add this to the author class:

@Repeatable (Authors.class)

This tells Java to treat multiple eauthor annotations as though they were surrounded by the
eauthors container. We can also use class.getAnnotationsByType () t0 acCess the eauthor array by its
own class, instead of through its container:

@Author ("Mary")
@Author ("Sam")
public class Test {
public static void main(String[] args) {

Author[] authors = Test.class.getAnnotationsByType (Author.class);
for (Author author : authors) {

System.out.println (author.value());

// Output:

// Mary

// Sam

https://riptutorial.com/ 34

Inherited Annotations

By default class annotations do not apply to types extending them. This can be changed by adding
the e1nnerited annotation to the annotation definition

Example

Consider the following 2 Annotations:

@Inherited

@Target (ElementType.TYPE)
@Retention (RetentionPolicy.RUNTIME)
public @interface InheritedAnnotationType {

}

and

@Target (ElementType.TYPE)
@Retention (RetentionPolicy.RUNTIME)
public @interface UninheritedAnnotationType {

}

If three classes are annotated like this:

@UninheritedAnnotationType

class A {

}

@InheritedAnnotationType

class B extends A {

}

class C extends B {

}

running this code

System.
System.
System.
System.
System.
System.
System.

out
out
out
out
out
out
out

(

(

(ne
.println ("

(ne

(

(

.println (ne
.println (ne
.println(n

.getAnnotation (InheritedAnnotationType.class));
.getAnnotation (InheritedAnnotationType.class));
.getAnnotation (InheritedAnnotationType.class));

")

.println(n
.println (ne
.println (ne

w A() .getClass()
w B().getClass()
w C().getClass()
w A() .getClass()
w B().getClass()
w C().getClass()

.getAnnotation (UninheritedAnnotationType.class));
.getAnnotation (UninheritedAnnotationType.class));
.getAnnotation (UninheritedAnnotationType.class));

will print a result similar to this (depending on the packages of the annotation):

null

@InheritedAnnotationType ()

@InheritedAnnotationType ()

https://riptutorial.com/

35

@UninheritedAnnotationType ()
null
null

Note that annotations can only be inherited from classes, not interfaces.

Compile time processing using annotation processor

This example demonstrates how to do compile time checking of an annotated element.

The annotation

The esetter annotation is a marker can be applied to methods. The annotation will be discarded
during compilation not be available afterwards.

package annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import Jjava.lang.annotation.Target;

@Retention (RetentionPolicy.SOURCE)
@Target (ElementType .METHOD)
public @interface Setter {

}

The annotation processor

The setterprocessor Class is used by the compiler to process the annotations. It checks, if the
methods annotated with the esetter annotation are pubiic, NON-static Methods with a name

starting with set and having a uppercase letter as 4th letter. If one of these conditions isn't met, a

error is written to the vessager. The compiler writes this to stderr, but other tools could use this
information differently. E.g. the NetBeans IDE allows the user specify annotation processors that
are used to display error messages in the editor.

package annotation.processor;

import annotation.Setter;
import java.util.Set;

import
import
import
import
import
import
import
import
import

javax.
javax.
javax.
javax.

javax.
javax.
javax.
javax.
javax.

annotation
annotation
annotation
annotation
annotation
annotation

lang.model.
lang.model.
lang.model.

.processing.
.processing.
.processing.
.processing.
.processing.
.processing.

AbstractProcessor;
Messager;
ProcessingEnvironment;
RoundEnvironment;
SupportedAnnotationTypes;
SupportedSourceVersion;

SourceVersion;

element.Element;

element .ElementKind;

https://riptutorial.com/

36

import
import
import
import

javax.lang.model.element .ExecutableElement;
javax.lang.model.element .Modifier;
javax.lang.model.element.TypeElement;
javax.tools.Diagnostic;

@SupportedAnnotationTypes ({"annotation.Setter"})
@SupportedSourceVersion (SourceVersion.RELEASE_8)
public class SetterProcessor extends AbstractProcessor {

private Messager messager;

@Override

public boolean process (Set<? extends TypeElement> annotations,

// get elements annotated with the @Setter annotation
Set<? extends Element> annotatedElements =

roundEnv.getElementsAnnotatedWith (Setter.class);

for (Element element : annotatedElements) {
if (element.getKind() == ElementKind.METHOD) {
// only handle methods as targets
checkMethod ((ExecutableElement) element) ;

// don't claim annotations to allow other processors to process them
return false;

private void checkMethod (ExecutableElement method) {

// check for valid name
String name = method.getSimpleName () .toString();
if (!'name.startsWith("set")) {

printError (method, "setter name must start with \"set\"");

} else if (name.length() == 3) {

printError (method, "the method name must contain more than just \"set\"");
} else if (Character.isLowerCase (name.charAt (3))) {

if (method.getParameters () .size() != 1) {

printError (method, "character following \"set\" must be upper case");

// check, if setter is public
if (!method.getModifiers () .contains (Modifier.PUBLIC)) {
printError (method, "setter must be public");

// check, if method is static
if (method.getModifiers () .contains (Modifier.STATIC)) {
printError (method, "setter must not be static");

private void printError (Element element, String message) {

messager.printMessage (Diagnostic.Kind.ERROR, message, element);

@Override

public void init (ProcessingEnvironment processingEnvironment) ({

super.init (processingEnvironment) ;

RoundEnvironment roundEnv)

https://riptutorial.com/

37

// get messager for printing errors
messager = processingEnvironment.getMessager () ;

P_ackaging

To be applied by the compiler, the annotation processor needs to be made available to the SPI
(see ServicelLoader).

To do this a text file META-INF/services/javax.annotation.processing.Processor needs to be added to
the jar file containing the annotation processor and the annotation in addition to the other files. The
file needs to include the fully qualified name of the annotation processor, i.e. it should look like this

annotation.processor.SetterProcessor

We'll assume the jar file is called annotationProcessor.jar below.

Example annotated class

The following class is example class in the default package with the annotations being applied to
the correct elements according to the retention policy. However only the annotation processor only
considers the second method a valid annotation target.

import annotation.Setter;

public class AnnotationProcessorTest {

@Setter
private void setValue (String value) {}

@Setter
public void setString(String value) {}

@Setter
public static void main(String[] args) {}

mng the annotation processor with javac

If the annotation processor is discovered using the SPI, it is automatically used to process
annotated elements. E.g. compiling the annotationProcessortest Class using

javac —-cp AnnotationProcessor.jar AnnotationProcessorTest. java

https://riptutorial.com/ 38

http://www.riptutorial.com/java/topic/5433/serviceloader

yields the following output

AnnotationProcessorTest. java:6:

error: setter must be public

private void setValue (String value) {}

A

AnnotationProcessorTest.java:12:
public static void main (Stri

A

2 errors

instead of compiling normally. No

error: setter name must start with "set"

ng[] args) ({}

.class file is created.

This could be prevented by specifying the —proc:none option for javac. You could also forgo the
usual compilation by specifying -proc:only instead.

IDE Integration

Netbeans

Annotation processors can be used in the NetBeans editor. To do this the annotation processor
needs to be specified in the project settings:

1. go 10 Project Properties > Build > Compiling

2. add check marks for enabie
Editor

3. click aaa next to the annotati

Annotation Processing’and Enable Annotation Processing in

on processor list

4. in the popup that appears enter the fully qualified class name of the annotation processor

and click ox.

Result

E import annotation.Sette

r;

pukblic class Annotation

setter must be public

@ASetter

(Alt-Enter shows hints)

1
2
3
4
=
a8 £ private wvoid setValue (String value) {}
7
8
9

ng(String value) {}

(T public static void main(String[] args) {}

BSetter
= public void setStri
10
11 @Setter
13
14
15

https://riptutorial.com/

39

https://i.stack.imgur.com/fO8Xv.png

The idea behind Annotations

The Java Language Specification describes Annotations as follows:

An annotation is a marker which associates information with a program construct, but
has no effect at run time.

Annotations may appear before types or declarations. It is possible for them to appear in a place
where they could apply to both a type or a declaration.

What exactly an annotation applies to is governed by the "meta-annotation” etarget. See "Defining
annotation types" for more information.

Annotations are used for a multitude of purposes. Frameworks like Spring and Spring-MVC make
use of annotations to define where Dependencies should be injected or where requests should be
routed.

Other frameworks use annotations for code-generation. Lombok and JPA are prime examples,
that use annotations to generate Java (and SQL) code.

This topic aims to provide a comprehensive overview of:
* How to define your own Annotations?
» What Annotations does the Java Language provide?

» How are Annotations used in practice?
Annotations for 'this' and receiver parameters

When Java annotations were first introduced there was no provision for annotating the target of an
instance method or the hidden constructor parameter for an inner classes constructor. This was
remedied in Java 8 with addition of receiver parameter declarations; see JL.S 8.4.1.

The receiver parameter is an optional syntactic device for an instance method or an
inner class's constructor. For an instance method, the receiver parameter represents
the object for which the method is invoked. For an inner class's constructor, the
receiver parameter represents the immediately enclosing instance of the newly
constructed object. Either way, the receiver parameter exists solely to allow the type of
the represented object to be denoted in source code, so that the type may be
annotated. The receiver parameter is not a formal parameter; more precisely, it is not a
declaration of any kind of variable (84.12.3), it is never bound to any value passed as
an argument in a method invocation expression or qualified class instance creation
expression, and it has no effect whatsoever at run time.

The following example illustrates the syntax for both kinds of receiver parameter:

public class Outer {
public class Inner {
public Inner (Outer this) {

https://riptutorial.com/ 40

https://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.7
http://www.riptutorial.com/java/example/2060/defining-annotation-types
http://www.riptutorial.com/java/example/2060/defining-annotation-types
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.1-220

/...

}

public void doIt (Inner this) {
/...

The sole purpose of receiver parameters is to allow you to add annotations. For example, you
might have a custom annotation ersopen Whose purpose is to assert that a cioseabie Object has not
been closed when a method is called. For example:

public class MyResource extends Closeable {
public void update (@IsOpen MyResource this, int value) {
77 ooo
}

public void close() {
17 ooo
}

At one level, the ersopen annotation on this could simply serve as documentation. However, we

could potentially do more. For example:

* An annotation processor could insert a runtime check that tnis is not in closed state when
updateiS called.

» A code checker could perform a static code analysis to find cases where tnhis could be
closed when update is called.

Add multiple annotation values

An Annotation parameter can accept multiple values if it is defined as an array. For example the
standard annotation esuppresswarnings IS defined like this:

public Q@interface SuppressWarnings {
String[] value();
}

The va1ue parameter is an array of Strings. You can set multiple values by using a notation similar
to Array initializers:

@SuppressWarnings ({"unused"})
@SuppressWarnings ({"unused", "javadoc"})

If you only need to set a single value, the brackets can be omitted:

@SuppressWarnings ("unused")

Read Annotations online: https://riptutorial.com/java/topic/157/annotations

https://riptutorial.com/ 41

https://riptutorial.com/java/topic/157/annotations

C_hapter 5: Apache Commons Lang

Examples

Implement equals() method
To implement the equa1s method of an object easily you could use the equaisBuilder class.

Selecting the fields:

@Override
public boolean equals (Object obj) {

if (! (obj instanceof MyClass)) {

return false;
}
MyClass theOther = (MyClass) obj;
EqualsBuilder builder = new EqualsBuilder();
builder.append(fieldl, theOther.fieldl);
builder.append(field2, theOther.field2);
builder.append (field3, theOther.field3);

return builder.isEquals();

Using reflection:

@Override
public boolean equals (Object obj) {
return EqualsBuilder.reflectionEquals(this, obj, false);

}

the boolean parameter is to indicates if the equals should check transient fields.

Using reflection avoiding some fields:

@Override
public boolean equals (Object obj) {
return EqualsBuilder.reflectionEquals (this, obj, "fieldl", "field2");

}

Implement hashCode() method

To implement the nashcode Method of an object easily you could use the zashcodeBuilder class.

Selecting the fields:

@Override
public int hashCode () {

https://riptutorial.com/

42

HashCodeBuilder builder = new HashCodeBuilder();
builder.append(fieldl) ;
builder.append(field?2) ;
builder.append(field3) ;

return builder.hashCode();

Using reflection:

@Override
public int hashCode () {
return HashCodeBuilder.reflectionHashCode (this, false);

the boolean parameter indicates if it should use transient fields.

Using reflection avoiding some fields:

@Override
public int hashCode () {
return HashCodeBuilder.reflectionHashCode (this, "fieldl", "field2");

Implement toString() method
To implement the tostring method of an object easily you could use the Tostringeuilder Class.

Selecting the fields:

@Override
public String toString() {

ToStringBuilder builder = new ToStringBuilder (this);
builder.append(fieldl) ;
builder.append(field2) ;
builder.append(field3) ;

return builder.toString();

Example result:

ar.com. jonat.lang.MyClass@dd7123[<null>, 0, false]

Explicitly giving names to the fields:

@Override
public String toString() {

ToStringBuilder builder = new ToStringBuilder (this);
builder.append("fieldl", fieldl);

https://riptutorial.com/

43

builder.append("field2", field2);
builder.append("field3", field3);

return builder.toString();

Example result:

ar.com. jonat.lang.MyClass@dd7404 [fieldl=<null>, field2=0, field3=false]

You could change the style via parameter:

@Override
public String toString() {

ToStringBuilder builder = new ToStringBuilder (this,
ToStringStyle .MULTI_LINE_STYLE) ;

builder.append ("fieldl", fieldl);

builder.append ("field2", field2);

builder.append ("field3", field3);

return builder.toString();

Example result:

ar.com.bna.lang.MyClass@ebbf5c|[
fieldl=<null>
field2=0
field3=false

There are some styles, for example JSON, no Classname, short, etc ...

Via reflection:

@Override
public String toString() {
return ToStringBuilder.reflectionToString(this);

You could also indicate the style:

@Override
public String toString() {
return ToStringBuilder.reflectionToString(this, ToStringStyle.JSON_STYLE) ;

Read Apache Commons Lang online: https://riptutorial.com/java/topic/3338/apache-commons-
lang

https://riptutorial.com/

44

https://riptutorial.com/java/topic/3338/apache-commons-lang
https://riptutorial.com/java/topic/3338/apache-commons-lang

C_hapter 6: AppDynamics and TIBCO
BusinessWorks Instrumentation for Easy
Integration

Introduction

As AppDynamics aims to provide a way to measure application performance, speed of
development, delivery (deployment) of applications is an essential factor in making DevOps efforts
a true success. Monitoring a TIBCO BW application with AppD is generally simple and not time
consuming but when deploying large sets of applications rapid instrumentation is key. This guide
shows how to instrument all of your BW applications in a single step without modifying each
application before deploying.

Examples

Example of Instrumentation of all BW Applications in a Single Step for
Appdynamics

1. Locate and open your TIBCO BW bwengine.tra file typlically under
TIBCO_HOME/bw/5.12/bin/bwengine.tra (Linux environment)

2. Look for the line that states:

*** Common variables. Modify these only. ***

3. Add the following line right after that section tibco.deployment=%tibco.deployment%

4. Go to the end of the file and add (replace ? with your own values as needed or remove the
flag that does not apply): java.extended.properties=-
javaagent:/opt/appd/current/appagent/javaagent.jar -Dappdynamics.http.proxyHost="? -
Dappdynamics.http.proxyPort=? -Dappdynamics.agent.applicationName=? -
Dappdynamics.agent.tierName="? -Dappdynamics.agent.nodeName=%tibco.deployment% -
Dappdynamics.controller.ssl.enabled=? -Dappdynamics.controller.ssIPort=7 -
Dappdynamics.agent.logs.dir=? -Dappdynamics.agent.runtime.dir="? -
Dappdynamics.controller.hostName="? -Dappdynamics.controller.port="? -
Dappdynamics.agent.accountName=? -Dappdynamics.agent.accountAccessKey="?

5. Save file and redeploy. All your applications should now be instrumented automatically at
deployment time.

Read AppDynamics and TIBCO BusinessWorks Instrumentation for Easy Integration online:
https://riptutorial.com/java/topic/10602/appdynamics-and-tibco-businessworks-instrumentation-for-

https://riptutorial.com/ 45

https://riptutorial.com/java/topic/10602/appdynamics-and-tibco-businessworks-instrumentation-for-easy-integration

easy-integration

https://riptutorial.com/

46

https://riptutorial.com/java/topic/10602/appdynamics-and-tibco-businessworks-instrumentation-for-easy-integration

C_hapter 7. Applets

Introduction

Applets have been part of Java since its official release and have been used to teach Java and
programming for a number of years.

Recent years have seen an active push to move away from Applets and other browser plugins,
with some browsers blocking them or actively not supporting them.

In 2016, Oracle announced their plans to deprecate the plugin, Moving to a Plugin-Free Web

Newer and better APIs are now available

Remarks

An applet is a Java application that normally runs inside a web browser. The basic idea is to
interact with the user without the need to interact with the server and transfer information. This
concept was very successful around the year 2000 when internet communication was slow and
expensive.

An applet offers five methods to control their life cycle.

init () is called once when the applet is loaded

destroy () Is called once when the applet gets removed from memory

start () is called whenever the applet gets visible

stop () is called whenever the applet get overlapped by other windows

paint () is called when needed or manually triggered by calling repaint ()
Examples

Minimal Applet
A very simple applet draws a rectangle and prints a string something on the screen.

public class MyApplet extends JApplet {
private String str = "StackOverflow";

@Override

https://riptutorial.com/ 47

https://blogs.oracle.com/java-platform-group/entry/moving_to_a_plugin_free

public void init () {
setBackground (Color.gray) ;

}

@Override

public void destroy () {}

@Override

public void start () {}

@Override

public void stop () {}

@Override

public void paint (Graphics g) {
g.setColor (Color.yellow) ;

.fillRect (1,1,300,150);

.setColor (Color.red);

.setFont (new Font ("TimesRoman", Font.PLAIN, 48));

.drawString(str, 10, 80);

Q Q Q Q

The main class of an applet extends from javax.swing.Japplet.
Java SE 1.2

Before Java 1.2 and the introduction of the swing API applets had extended from

java.applet.Applet.

Applets don't require a main method. The entry point is controlled by the life cycle. To use them,
they need to be embedded in a HTML document. This is also the point where their size is defined.

<html>
<head></head>
<body>
<applet code="MyApplet.class" width="400" height="200"></applet>
</body>
</html>

Creating a GUI

Applets could easily be used to create a GUI. They act like a container and have an add () method
that takes any awt Or swing COMponent.

public class MyGUIApplet extends JApplet{

private JPanel panel;

private JButton button;

private JComboBox<String> cmbBox;
private JTextField textField;

@Override
public void init () {
panel = new JPanel ();
button = new JButton ("ClickMe!");
button.addActionListener (new ActionListener () {
@Override
public void actionPerformed (ActionEvent ae) {
if (((String)cmbBox.getSelectedItem()) .equals ("greet")) {

https://riptutorial.com/ 48

JOptionPane.showMessageDialog(null, "Hello " + textField.getText ());

} else {
JOptionPane.showMessageDialog(null, textField.getText () + " stinks!");

)i
cmbBox = new JComboBox<> (new String[]{"greet", "offend"});

textField = new JTextField("John Doe");
panel.add (cmbBox) ;

panel.add (textField) ;

panel.add (button) ;

add (panel) ;

Open links from within the applet

You can use the method getappletcontext () 10 get an appletcontext Object that allows you to
request the browser to open a link. For this you use the method showbocument (). Its second
parameter tells the browser to use a new window _biank Or the one that shows the applet _se1+.

public class MyLinkApplet extends JApplet{
@Override
public void init () {
JButton button = new JButton ("ClickMe!");
button.addActionListener (new ActionListener () {
@Override
public void actionPerformed (ActionEvent ae) {
AppletContext a = getAppletContext ();

try {
URL url = new URL("http://stackoverflow.com/");
a.showDocument (url, "_blank");
} catch (Exception e) { /* omitted for brevity */ }
t
}) i
add (button) ;

Loading images, audio and other resources

Java applets are able to load different resources. But since they are running in the web browser of
the client you need to make sure that these resources are accessible. Applets are not able to
access client resources as the local file system.

If you want to load resources from the same URL the Applet is stored you can use the method
getCodeBase () t0 retrieve the base URL. To load resources, applets offer the methods get rmage ()
and getaudioclip () to load images or audio files.

Load and show an image

https://riptutorial.com/ 49

public class MyImgApplet extends JApplet{
private Image img;
@Override

public void init () {
try {

img = getImage (new URL ("http://cdn.sstatic.net/stackexchange/img/logos/so/so—

logo.png"));
} catch (MalformedURLException e) {
}
@Override
public void paint (Graphics g) {
g.drawImage (img, 0, 0, this);

Load and play an audio file

public class MyAudioApplet extends JApplet {
private AudioClip audioClip;
@Override

public void init () {
try {

audioClip = getAudioClip (new URL ("URL/TO/AN/AUDIO/FILE.WAV"));

} catch (MalformedURLException e) {
}
@Override
public void start () {
audioClip.play () ;
}
@Override
public void stop () {
audioClip.stop () ;

Load and display a text file

public class MyTextApplet extends JApplet{
@Override
public void init () {

/* omitted for brevity */ }

/* omitted for brevity */ }

JTextArea textArea = new JTextAreal();

JScrollPane sp = new JScrollPane (textArea);

add (sp) ;
// load text
try {

URL url = new URL("http://www.textfiles.com/fun/quotes.txt");

InputStream in = url.openStream();

BufferedReader bf = new BufferedReader (new InputStreamReader (in));

https://riptutorial.com/

50

String line = "";
while ((line = bf.readLine()) != null) {
textArea.append(line + "\n");

}
} catch (Exception e) { /* omitted for brevity */ }

Read Applets online: https://riptutorial.com/java/topic/5503/applets

https://riptutorial.com/

51

https://riptutorial.com/java/topic/5503/applets

C_hapter 8. Arrays

Introduction

Arrays allow for the storage and retrieval of an arbitrary quantity of values. They are analogous to
vectors in mathematics. Arrays of arrays are analogous to matrices, and act as multidimensional
arrays. Arrays can store any data of any type: primitives such as int or reference types such as

Object.

Syntax

* arrayTypel] myArray; // Declaring arrays

* ArrayType myarray(]; // Another valid syntax (less commonly used and discouraged)

* ArrayType[][][] myArray; // Declaring multi-dimensional jagged arrays (repeat []s)

* ArrayType myVar = myArraylindex]; // Accessing (reading) element at index

® myArray[index] = value; /! ASSign value to pOSition index Of array

® ArrayTypel[] myArray = new ArrayType[arrayLength]; Il Array initialization syntax

* int[] ints = {1, 2, 3}; /[l Array initialization syntax with values provided, length is inferred
from the number of provided values: {[valuel[, value2]*]}

® new int[]{4, -5, 6} // Can be used as argument, without a local variable
® int[] ints = new int[3]; // same as {0, 0, 0}
* int[][] ints = {{1, 2}, {3}, null}; // Multi-dimensional array initialization. int[] extends

Object (and so does anyType][]) so null is a valid value.

Parameters

Type of the array. This can be primitive (int, 1ong, byte) Or Objects (string,

ArrayType
MyObject, €tc).

index Index refers to the position of a certain Object in an array.

Every array, when being created, needs a set length specified. This is either
length done when creating an empty array (new int[31) Or implied when specifying
values (i1, 2, 3}).

Examples

Creating and Initializing Arrays

Basic cases

https://riptutorial.com/ 52

int numbersl = new int[3]; // Array for 3 int values, default value is 0
int numbers2 = { 1, 2, 3 }; // Array literal of 3 int values
int numbers3 = new int[] { 1, 2, 3 }; // Array of 3 int values initialized

[] numbers5 = new int[5] [

[]
[]
[]
int[][] numbers4 = { { 1, 2}, { 3, 4, 5} }; // Jagged array literal
[] // Jagged array, one dimension 5 long
[]

17
[] numbers6 = new int [5] [4]; // Multidimensional array: 5x4

Arrays may be created using any primitive or reference type.

float[] boats = new float[5]; // Array of five 32-bit floating point numbers.
double[] header = new double[] { 4.56, 332.267, 7.0, 0.3367, 10.0 };

// Array of five 64-bit floating point numbers.
String[] theory = new String[] { "a", "b", "c" };

// Array of three strings (reference type).
Object[] dArt = new Object[] { new Object (), "We love Stack Overflow.", new Integer(3) };

// Array of three Objects (reference type).

For the last example, note that subtypes of the declared array type are allowed in the array.

Arrays for user defined types can also be built similar to primitive types

UserDefinedClass[] udType = new UserDefinedClass([5];

mays, Collections, and Streams

Java SE 1.2

// Parameters require objects, not primitives
// Auto-boxing happening for int 127 here
Integer|] initial = { 127, Integer.valueOf(42) };

List<Integer> tolList = Arrays.asList (initial); // Fixed size!

// Note: Works with all collections
Integer|[] fromCollection = tolList.toArray(new Integer|[toList.size()]);

//Java doesn't allow you to create an array of a parameterized type
List<String>[] 1list = new ArrayList<String>[2]; // Compilation error!

Java SE 8

// Streams — JDK 8+
Stream<Integer> toStream

Arrays.stream(initial);
Integer|[] fromStream = toStream.toArray(Integer[]::new);

Intro

An array is a data structure that holds a fixed number of primitive values or references to object
instances.

https://riptutorial.com/

Each item in an array is called an element, and each element is accessed by its numerical index.
The length of an array is established when the array is created:

int size = 42;
int[] array = new int[size];

The size of an array is fixed at runtime when initialized. It cannot be changed after
initialization. If the size must be mutable at runtime, a co11cction class such as 2r-ray1.ist should be
used instead. arrayrist Stores elements in an array and supports resizing by allocating a new
array and copying elements from the old array.

If the array is of a primitive type, i.e.

int[] arrayl = { 1,2,3 };
int[] array2 = new int([10];

the values are stored in the array itself. In the absence of an initializer (as in array2 above), the
default value assigned to each element is o (zero).

If the array type is an object reference, as in

SomeClassOrInterface[] array = new SomeClassOrInterface[l0];

then the array contains references to objects of type someciassorinterrace. Those references can
refer to an instance of somec1assorinterface Or any subclass (for classes) or implementing class
(for interfaces) of someciassorinterrace. If the array declaration has no initializer then the default
value of nu11 is assigned to each element.

Because all arrays are int-indexed, the size of an array must be specified by an int. The size of
the array cannot be specified as a 1ong:

long size = 23L;

int[] array = new int[size]; // Compile-time error:
// incompatible types: possible lossy conversion from
// long to int

Arrays use a zero-based index system, which means indexing starts at o and ends at 1ength - 1.

For example, the following image represents an array with size 10. Here, the first element is at
index o and the last element is at index 9, instead of the first element being at index 1 and the last
element at index 10 (see figure below).

Elerment
First imdex (at index 8)
!

[6|1 2 3 4 5 & ?\a 9 — Indices

«—— Araylength is 10 —————>

https://riptutorial.com/ 54

http://www.riptutorial.com/java/topic/90/collections
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
http://www.riptutorial.com/java/example/6818/how-do-you-change-the-size-of-an-array-
http://www.riptutorial.com/java/example/6818/how-do-you-change-the-size-of-an-array-
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Accesses to elements of arrays are done in constant time. That means accessing to the first
element of the array has the same cost (in time) of accessing the second element, the third
element and so on.

Java offers several ways of defining and initializing arrays, including literal and constructor
notations. When declaring arrays using the new type(length] constructor, each element will be
initialized with the following default values:

o for primitive numerical types: byte, short, int, long, float, aNd double.
* \woooo' (null character) for the char type.

* rfalse for the voolean type.

* nu11 for reference types.

C_reating and initializing primitive type arrays

int[] arrayl = new int[] { 1, 2, 3 }; // Create an array with new operator and
// array initializer.

int[] array2 = { 1, 2, 3 }; // Shortcut syntax with array initializer.

int[] array3 = new int([3]; // Equivalent to { 0, 0, 0 }

int[] array4 = null; // The array itself is an object, so it

// can be set as null.

When declaring an array, 11 will appear as part of the type at the beginning of the declaration
(after the type name), or as part of the declarator for a particular variable (after variable name), or
both:

int array5[]; /* equivalent to */ int[] array5;

int a, bl[]l, cl[]ll]; /* equivalent to */ int a; int[] b; int[][] c;

int[] a, bl]; /* equivalent to */ int[] a; int[][] b;

int a, [lb, cIl[]I[]; /* Compilation Error, because [] is not part of the type at beginning
of the declaration, rather it is before 'b'. */

// The same rules apply when declaring a method that returns an array:
int foo()[] { ... } /* equivalent to */ int[] foo() { ... }

In the following example, both declarations are correct and can compile and run without any
problems. However, both the Java Coding Convention and the Google Java Style Guide
discourage the form with brackets after the variable name—the brackets identify the array type
and should appear with the type designation. The same should be used for method return
signatures.

float arrayl[]; /* and */ int foo()[] { ... } /* are discouraged */
float[] array; /* and */ int[] foo() { ... } /* are encouraged */

The discouraged type is meant to accommodate transitioning C users, who are familiar with the
syntax for C which has the brackets after the variable name.

In Java, it is possible to have arrays of size o:

int[] array = new int[0]; // Compiles and runs fine.

https://riptutorial.com/ 55

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.3
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
https://google.github.io/styleguide/javaguide.html#s4.8.3.1-array-initializers
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
https://stackoverflow.com/questions/129178/difference-between-int-array-and-int-array/129188#129188

int[] array2 = {}; // Equivalent syntax.

However, since it's an empty array, no elements can be read from it or assigned to it:

array|[0] = 1; // Throws java.lang.ArrayIndexOutOfBoundsException.
int i = array2[0]; // Also throws ArrayIndexOutOfBoundsException.

Such empty arrays are typically useful as return values, so that the calling code only has to worry
about dealing with an array, rather than a potential nu11 value that may lead to a

NullPointerException.
The length of an array must be a non-negative integer:

int[] array = new int[-1]; // Throws java.lang.NegativeArraySizeException

The array size can be determined using a public final field called 1ength:

System.out.println (array.length); // Prints 0 in this case.

Note: array.length returns the actual size of the array and not the number of array elements which
were assigned a value, unlike »-r-y1isc.si-e () which returns the number of array elements which
were assigned a value.

Creating and initializing multi-dimensional
arrays

The simplest way to create a multi-dimensional array is as follows:
int[][] a = new int[2][3];

It will create two three-length int arrays—aio1 and a(11. This is very similar to the classical, C-style
initialization of rectangular multi-dimensional arrays.

You can create and initialize at the same time:
int[101 a = { {1, 2}, {3, 4}, {5, 6} };

Unlike C, where only rectangular multi-dimensional arrays are supported, inner arrays do not need
to be of the same length, or even defined:

int[]1[] a = { {1}, {2, 3}, null };
Here, a(0] is a one-length int array, whereas a1 is a two-length int array and a(21 is nu11. Arrays

like this are called jagged arrays or ragged arrays, that is, they are arrays of arrays. Multi-
dimensional arrays in Java are implemented as arrays of arrays, i.e. array(i] 3] [k] IS equivalent to

https://riptutorial.com/ 56

https://stackoverflow.com/documentation/java/1003/nullpointerexception
http://docs.oracle.com/javase/6/docs/api/java/util/ArrayList.html#size%28%29
http://stackoverflow.com/questions/7784758/c-c-multidimensional-array-internals/7784790
http://www.riptutorial.com/java/example/496/multidimensional-and-jagged-arrays

((array[il) [3]) [k]. Unlike C#, the syntax array(i, 31 iS not supported in Java.

Multidimensional array representation in Java

IT you create an array & = new int[3][4],
you should think of it a5 a "matriz” with

Al 1] 0112)1-11 3 rows and 4 columns.
F[-3] 2] 5
-5|-2| 2] 9
(4]
1
{3) 0
. 12
] -1
h\’
A (4)
\ 2
. . () -3
But in reality, & holds a reference to = 5
an array of 3 itemns, where each item = =
iz areference toan array of 4 ints. =
9

Source - Live on Ideone

Creating and initializing reference type arrays

String[] array6 = new String[] { "Laurel", "Hardy" }; // Create an array with new
// operator and array initializer.
String[] array7 = { "Laurel", "Hardy" }; // Shortcut syntax with array
// initializer.
String[] array8 = new String[3]; // { null, null, null }
String[] array9 = null; // null

Live on Ideone

In addition to the string literals and primitives shown above, the shortcut syntax for array
initialization also works with canonical object types:

Object[] arraylO = { new Object (), new Object () };

Because arrays are covariant, a reference type array can be initialized as an array of a subclass,
although an arraystoreexception Will be thrown if you try to set an element to something other than

a String:

Object[] arrayll = new String[] { "foo", "bar", "baz" };
arrayll[1l] = "qux"; // fine
arrayll[1l] = new StringBuilder(); // throws ArrayStoreException

The shortcut syntax cannot be used for this because the shortcut syntax would have an implicit

https://riptutorial.com/ 57

http://stackoverflow.com/questions/597720/what-are-the-differences-between-a-multidimensional-array-and-an-array-of-arrays
https://i.stack.imgur.com/lbaMR.gif
http://math.hws.edu/eck/cs124/javanotes3/c8/s5.html
https://ideone.com/3JdAmY
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.3
https://ideone.com/WcAtr4

type of object [7.

An array can be initialized with zero elements by using string(] emptyarray = new String[0]. FOr
example, an array with zero length like this is used for Creating an a--ay from a coliection When
the method needs the runtime type of an object.

In both primitive and reference types, an empty array initialization (for example string(] arrays =

new string([3]) Will initialize the array with the default value for each data type.

C_reating and initializing generic type arrays

In generic classes, arrays of generic types cannot be initialized like this due to type erasure:

public class MyGenericClass<T> {
private T[] a;

public MyGenericClass () {

a = new T[5]; // Compile time error: generic array creation

}

Instead, they can be created using one of the following methods: (note that these will generate
unchecked warnings)

1. By creating an onject array, and casting it to the generic type:

a = (T[]) new Object[5];

This is the simplest method, but since the underlying array is still of type object 171, this
method does not provide type safety. Therefore, this method of creating an array is best
used only within the generic class - not exposed publicly.

2. By using 2rray.newinstance With a class parameter:

public MyGenericClass (Class<T> clazz) {

a = (T[]) Array.newInstance(clazz, 5);

}

Here the class of r has to be explicitly passed to the constructor. The return type of

Array.newlInstance IS always object. However, this method is safer because the newly created

array is always of type 11, and therefore can be safely externalized.

Filling an array after initialization

Java SE 1.2

arrays.£i11 () can be used to fill an array with the same value after initialization:

https://riptutorial.com/

58

http://www.riptutorial.com/java/example/433/creating-an-array-from-a-collection
http://www.riptutorial.com/java/example/433/creating-an-array-from-a-collection
http://www.riptutorial.com/java/example/433/creating-an-array-from-a-collection
http://www.riptutorial.com/java/example/433/creating-an-array-from-a-collection
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://www.riptutorial.com/java/topic/92/generics
http://www.riptutorial.com/java/topic/92/generics/10445/instantiating-a-generic-type
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Array.html#newInstance-java.lang.Class-int-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#fill-java.lang.Object:A-java.lang.Object-

Arrays.fill (array8, "abc"); /7 4 Yelee, YaleeW, UglseW P

Live on Ideone

£i11 () can also assign a value to each element of the specified range of the array:

Arrays.fill (array8, 1, 2, "aaa"); // Placing "aaa" from index 1 to 2.

Live on Ideone
Java SE 8

Since Java version 8, the method sc:211, and its concurrent equivalent para112152c211, can be used
to set every element of an array to generated values. These methods are passed a generator
function which accepts an index and returns the desired value for that position.

The following example creates an integer array and sets all of its elements to their respective
index value:

int[] array = new int[5];
Arrays.setAll (array, i -> i); // The array becomes { 0, 1, 2, 3, 4 }.

Live on Ideone

Separate declaration and initialization of
arrays

The value of an index for an array element must be a whole number (0, 1, 2, 3, 4, ...) and less than
the length of the array (indexes are zero-based). Otherwise, an ArraylindexOutOfBoundsException
will be thrown:

int[] array9; // Array declaration - uninitialized
array9 = new int([3]; // Initialize array - { 0, 0, 0 }
array9[0] = 10; // Set index 0 value - { 10, 0, 0 }
array9[1] = 20; // Set index 1 value - { 10, 20, 0 }
array9[2] = 30; // Set index 2 value - { 10, 20, 30 }

mays may not be re-initialized with array
Initializer shortcut syntax

Itis not possible to re-initialize an array via a shortcut syntax with an array initializer since an array
initializer can only be specified in a field declaration or local variable declaration, or as a part of an
array creation expression.

https://riptutorial.com/ 59

https://ideone.com/eXjMml
https://ideone.com/zujsOh
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#setAll-T:A-java.util.function.IntFunction-
http://www.riptutorial.com/java/topic/121/concurrent-programming--threads-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#parallelSetAll-T:A-java.util.function.IntFunction-
https://ideone.com/txh8Xv
http://www.riptutorial.com/java/example/512/arrayindexoutofboundsexception
http://docs.oracle.com/javase/specs/jls/se8/html/jls-10.html#jls-10.6

However, it is possible to create a new array and assign it to the variable being used to reference

the old array. While this results in the array referenced by that variable being re-initialized, the
variable contents are a completely new array. To do this, the new Operator can be used with an

array initializer and assigned to the array variable:

// First initialization of array
int[] array = new int[] { 1, 2, 3 };

// Prints "1 2 3 ".

for (int i : array) {
System.out.print (i + " ");

// Re—initializes array to a new int[] array.
array = new intf[] { 4, 5, 6 };

// Prints "4 5 6 ".

for (int i : array) {
System.out.print (i + " ");
}
array = { 1, 2, 3, 4 }; // Compile-time error! Can't re—-initialize an array via shortcut

// syntax with array initializer.
Live on Ideone

Creating an Array from a Collection

Two methods in java.uti1.cotiect ion Create an array from a collection:

® Object[] toArray ()

Object[] toaArray() can be used as follows:

Java SE 5

Set<String> set = new HashSet<String>();
set.add ("red") ;
set.add ("blue");

// although set is a Set<String>, toArray () returns an Object[] not a Stringl[]
Object[] objectArray = set.toArray();

<T> T[] toArray (T[] a) can be used as follows:

Java SE 5

Set<String> set = new HashSet<String>();
set.add ("red");
set.add ("blue");

// The array does not need to be created up front with the correct size.
// Only the array type matters. (If the size is wrong, a new array will

https://riptutorial.com/

60

http://ideone.com/eCbTxB
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#toArray--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#toArray-T:A-

// be created with the same type.)
String[] stringArray = set.toArray(new String([0]);

// If you supply an array of the same size as collection or bigger, it
// will be populated with collection values and returned (new array

// won't be allocated)

String[] stringArray2 = set.toArray(new String[set.size()]);

The difference between them is more than just having untyped vs typed results. Their performance

can differ as well (for details please read this performance analysis section):

* Object[] toArray() USeS vectorized arraycopy, Which is much faster than the type-checked
arraycopy used "]T[] toArray (T[] a).

* T[] toArray(new T[non-zero-size]) Needs to zero-out the array at runtime, while 7
toarray (new T[0]) does not. Such avoidance makes the latter call faster than the former.
Detailed analysis here : Arrays of Wisdom of the Ancients.

Java SE 8

Starting from Java SE 8+, where the concept of < -2 has been introduced, it is possible to use

the strean produced by the collection in order to create a new Array using the st can.tonrray
method.
String[] strings = list.stream() .toArray (String[]::new);

Examples taken from two answers (1, 2) to Converting 'ArrayList to 'String[]" in Java on Stack
Overflow.

Arrays to a String

Java SE 5

Since Java 1.5 you can get a string representation of the contents of the specified array without
iterating over its every element. Just US€ ~rrays.tostring (Object (1) OF
Arrays.deepToString (Object[]) for multidimentional arrays:

int[] arr = {1, 2, 3, 4, 5};
System.out.println (Arrays.toString(arr)); // [1, 2, 3, 4, 5]

int[][] arr = {
i, 2, 3b,
{4, 5, 6},
{7, 8, 9}
}i
System.out.println (Arrays.deepToString(arr)); // [[1, 2, 31, [4, 5, 61, [7, 8, 911

Arrays.toString () Mmethod uses object.tostring () method to produce string Values of every item in
the array, beside primitive type array, it can be used for all type of arrays. For instance:

public class Cat { /* implicitly extends Object */
https://riptutorial.com/ 61

https://shipilev.net/blog/2016/arrays-wisdom-ancients/#_meet_solaris_studio_performance_analyzer
https://shipilev.net/blog/2016/arrays-wisdom-ancients/
http://www.riptutorial.com/java/example/383/using-streams
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#toArray-java.util.function.IntFunction-
http://stackoverflow.com/a/4042464
http://stackoverflow.com/a/30302969
http://stackoverflow.com/questions/4042434/converting-arrayliststring-to-string-in-java
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#toString-java.lang.Object:A-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#deepToString-java.lang.Object:A-
http://www.riptutorial.com/java/example/568/tostring---method

@Override
public String toString() {
return "CAT!";

Cat[] arr = { new Cat (), new Cat () };
System.out.println (Arrays.toString(arr)); // [CAT!, CAT!]

If no overridden tostring () exists for the class, then the inherited tostring () from object will be
used. Usually the output is then not very useful, for example:

public class Dog {
/* implicitly extends Object */
}

Dog[] arr = { new Dog() };

System.out.println (Arrays.toString(arr)); // [Dog@l7ed40e0]

Creating a List from an Array

The »rrays.as1ist () method can be used to return a fixed-size nist containing the elements of the
given array. The resulting vist will be of the same parameter type as the base type of the array.

String[] stringArray = {"foo", "bar", "baz"};
List<String> stringlist = Arrays.aslList (stringArray);

Note: This list is backed by (a view of) the original array, meaning that any changes to the list will
change the array and vice versa. However, changes to the list that would change its size (and
hence the array length) will throw an exception.

To create a copy of the list, use the constructor of 1ava.uci1.arrayiise takingacolicction as an
argument:

Java SE 5

String[] stringArray = {"foo", "bar", "baz"};
List<String> stringlist = new ArrayList<String> (Arrays.aslList (stringArray));

Java SE 7

In Java SE 7 and later, a pair of angle brackets <> (empty set of type arguments) can be used,
which is called the Diamond. The compiler can determine the type arguments from the context.
This means the type information can be left out when calling the constructor of arrayrist and it will
be inferred automatically during compilation. This is called Type Inference which is a part of Java
Generics.

// Using Arrays.asList ()

String[] stringArray = {"foo", "bar", "baz"};
List<String> stringlist = new ArraylList<>(Arrays.aslist (stringArray));

https://riptutorial.com/ 62

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#asList-T...-
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#ArrayList-java.util.Collection-
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
http://www.riptutorial.com/java/example/457/the-diamond
http://docs.oracle.com/javase/8/docs/technotes/guides/language/type-inference-generic-instance-creation.html
http://www.riptutorial.com/java/example/388/creating-a-generic-class

// Using ArrayList.addAll ()

String[] stringArray = {"foo", "bar", "baz"};
ArrayList<String> list = new ArrayList<>();
list.addAll (Arrays.aslList (stringArray));

// Using Collections.addAll ()

String[] stringArray = {"foo", "bar", "baz"};

ArrayList<String> list = new ArrayList<>();
Collections.addAll (1ist, stringArray);

A point worth noting about the Diamond is that it cannot be used with Anonymous Classes.

Java SE 8

// Using Streams

int[] ints = {1, 2, 3};
List<Integer> list = Arrays.stream(ints) .boxed().collect (Collectors.toList());

String[] stringArray = {"foo", "bar", "baz"};
List<Object> list = Arrays.stream(stringArray) .collect (Collectors.toList());

Important notes related to using Arrays.asList() method

» This method returns vist, which is an instance of arrayssarrayrist(static inner class of arrays
) and not java.util.arrayList. The resulting vist is of fixed-size. That means, adding or
removing elements is not supported and will throw an unsupportedoperationException:

stringList.add ("something"); // throws java.lang.UnsupportedOperationException

* A new List can be created by passing an array-backed vist to the constructor of a new vist.
This creates a new copy of the data, which has changeable size and that is not backed by
the original array:

List<String> modifiablelList = new ArrayList<>(Arrays.asList ("foo", "bar"));

e Calling <r> List<T> asList(T... a) ON a primitive array, such as an int (], will produce a
List<int [1> Whose only element is the source primitive array instead of the actual elements
of the source array.

The reason for this behavior is that primitive types cannot be used in place of generic type
parameters, so the entire primitive array replaces the generic type parameter in this case. In
order to convert a primitive array to a vist, first of all, convert the primitive array to an array
of the corresponding wrapper type (i.e. call arrays.asList ON an integer(] iNstead of an int [}

)-

Therefore, this will print ra1se:

https://riptutorial.com/ 63

http://www.riptutorial.com/java/example/457/the-diamond
http://stackoverflow.com/documentation/java/1656/anonymous-classes
http://stackoverflow.com/questions/2607289/converting-array-to-list-in-java

int[] arr = {1, 2, 3}; // primitive array of int
System.out.println (Arrays.aslList (arr).contains (1)) ;

View Demo

On the other hand, this will print true:

Integer([] arr = {1, 2, 3}; // object array of Integer (wrapper for int)
System.out.println (Arrays.asList (arr) .contains(1l));

View Demo

This will also print true, because the array will be interpreted as an tnteger(1):
System.out.println (Arrays.asList (1,2,3) .contains (1)) ;
View Demo
Multidimensional and Jagged Arrays

It is possible to define an array with more than one dimension. Instead of being accessed by
providing a single index, a multidimensional array is accessed by specifying an index for each
dimension.

The declaration of multidimensional array can be done by adding 1 for each dimension to a
regular array decleration. For instance, to make a 2-dimensional int array, add another set of
brackets to the declaration, such as int (1 11. This continues for 3-dimensional arrays (int(11111)
and so forth.

To define a 2-dimensional array with three rows and three columns:

int rows = 3;
int columns =

3;
int[][] table =

new int [rows] [columns];

The array can be indexed and assign values to it with this construct. Note that the unassigned
values are the default values for the type of an array, in this case o for int.

table[0] [0] 0;
table[0] [1] 1;
table[0] [2] = 2;

It is also possible to instantiate a dimension at a time, and even make non-rectangular arrays.
These are more commonly referred to as jagged arrays.

int[][] nonRect = new int[4][];

It is important to note that although it is possible to define any dimension of jagged array, it's

https://riptutorial.com/ 64

https://ideone.com/xiyy6o
https://ideone.com/QR1N59
https://ideone.com/zfhHQz
https://en.wikipedia.org/wiki/Jagged_array

preceding level must be defined.

// valid
String[][] employeeGraph = new String[30][];

// invalid
int[][] unshapenMatrix = new int[][10];

// also invalid
int[][]1[] misshapenGrid = new int[100][][10];

How Multidimensional Arrays are represented

In Java
If you create an array & = new int[3][4],
you should think of it a5 a "matrix” with
Al 11O J12]-T] 3 rows and 4 columns.
T3 2] 5
-5-2] 2] 8
4
1
(3) 0
-— 12
| -1
k\
A (<)
\ 2
. . () -3
But in reality, & holds a reference to = >
an array of 3 items, where each item 2 =
iz areference to an array of 4 ints. >
9

Image source: http://math.hws.edu/eck/cs124/javanotes3/c8/s5.html

Jagged array literal intialization

Multidimensional arrays and jagged arrays can also be initialized with a literal expression. The
following declares and populates a 2x3 int array:

int[][] table = {
1, 2, 3},
{4, 5, 6}

}i

Note: Jagged subarrays may also be nu11. For instance, the following code declares and
populates a two dimensional int array whose first subarray is nu11, second subarray is of zero
length, third subarray is of one length and the last subarray is a two length array:

int[][] table = {
null,

https://riptutorial.com/

65

https://i.stack.imgur.com/AmnKk.gif
http://math.hws.edu/eck/cs124/javanotes3/c8/s5.html

{1},

{1},

{1,2}
}i

For multidimensional array it is possible to extract arrays of lower-level dimension by their indices:

int[]1[]1[] arr = new int[3][3]1[3];

int[][] arrl = arr[0]; // get first 3x3-dimensional array from arr
int[] arr2 = arrl[0]; // get first 3-dimensional array from arrl
int[] arr3 = arr([0]; // error: cannot convert from int([][] to int[]

ArraylndexOutOfBoundsException

The 2rrayindexoutorroundsexcept ion IS thrown when a non-existing index of an array is being
accessed.

Arrays are zero-based indexed, so the index of the first element is o and the index of the last
element is the array capacity minus 1 (i.e. array.length - 1).

Therefore, any request for an array element by the index i has to satisfy the condition o <= i <
array.length, otherwise the ArrayIndexOutOfBoundsException will be thrown.

The following code is a simple example where an arrayrndexoutofBoundsException IS thrown.

String[] people = new String[] { "Carol", "Andy" };
// An array will be created:

// people[0]: "Carol"

// people[l]: "Andy"

// Notice: no item on index 2. Trying to access it triggers the exception:
System.out.println (people[2]); // throws an ArrayIndexOutOfBoundsException.

Output:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 2
at your.package.path.method (YourClass. java:15)

Note that the illegal index that is being accessed is also included in the exception (2 in the
example); this information could be useful to find the cause of the exception.

To avoid this, simply check that the index is within the limits of the array:

int index = 2;

if (index >= 0 && index < people.length) {
System.out.println (people[index]) ;

}

https://riptutorial.com/ 66

https://docs.oracle.com/javase/8/docs/api/java/lang/ArrayIndexOutOfBoundsException.html

Getting the Length of an Array

Arrays are objects which provide space to store up to its size of elements of specified type. An
array's size can not be modified after the array is created.

int[] arrl = new int([0];
int[] arr2 = new int([2];
int[] arr3 = new int([]{1, 2, 3, 4};
int[] arrd4d = {1, 2, 3, 4, 5, 6, 7};

int lenl = arrl.length; //
int len2 = arr2.length; //
int len3 = arr3.length; //
int lend4 = arrd4.length; //

N N O

The 1ength field in an array stores the size of an array. It is a rina1 field and cannot be modified.

This code shows the difference between the 1ength Of an array and amount of objects an array
stores.

public static void main(String[] args) {
Integer arr[] = new Integer([] {1,2,3,null,5,null,7,null,null,null,11,null,13};

int arraylength = arr.length;
int nonEmptyElementsCount = 0;

for (int i=0; i<arrayLength; i++) {
Integer arrElt = arr[i];
if (arrElt != null) {
nonEmptyElementsCount++;

System.out.println ("Array 'arr' has a length of "+arrayLength+"\n"
+ "and it contains "+nonEmptyElementsCount+" non-empty values");

Result:

Array 'arr' has a length of 13
and it contains 7 non-empty values

Comparing arrays for equality

Array types inherit their cqua15 () (and nasncode ()) Implementations from java.lang.Object, so
equals () Will only return true when comparing against the exact same array object. To compare
arrays for equality based on their values, use i=va.util.arrays.equails, Which is overloaded for all
array types.

int[] a = new int[]{1, 2, 3};

int[] b = new int[]{1, 2, 3};

System.out.println(a.equals(b)); //prints "false" because a and b refer to different objects
System.out.println (Arrays.equals(a, b)); //prints "true" because the elements of a and b have

https://riptutorial.com/

http://www.riptutorial.com/java/example/571/equals---method
http://www.riptutorial.com/java/example/571/equals---method
http://www.riptutorial.com/java/example/571/equals---method
http://www.riptutorial.com/java/example/571/equals---method
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#equals-java.lang.Object:A-java.lang.Object:A-

the same values

When the element type is a reference type, arrays.equals () calls equais () on the array elements to
determine equality. In particular, if the element type is itself an array type, identity comparison will
be used. To compare multidimensional arrays for equality, use ~rrays.deeprquais () instead as
below:

int af[] = { 1, 2, 3 };
int b[] = { 1, 2, 3 };

Object[] aObject { a }; // aObject contains one element
Object[] bObject = { b }; // bObject contains one element

System.out.println (Arrays.equals (aObject, bObject)); // false
System.out.println (Arrays.deepEquals (aObject, bObject));// true

Because sets and maps use equals () and nashcode (), arrays are generally not useful as set
elements or map keys. Either wrap them in a helper class that implements equais () and hashcode ()
in terms of the array elements, or convert them to vist instances and store the lists.

Arrays to Stream
Java SE 8
Converting an array of objects to stream:

String[] arr = new String[] {"strl", "str2", "str3"};
Stream<String> stream = Arrays.stream(arr);

Converting an array of primitives to stream USING 2rrays.strean () WIll transform the array to a
primitive specialization of Stream:

int[] intArr = {1, 2, 3};

IntStream intStream = Arrays.stream(intArr);

You can also limit the stream to @ range of elements in the array. The start index is inclusive and
the end index is exclusive:

int[] values = {1, 2, 3, 4};
IntStream intStream = Arrays.stream(values, 2, 4);

A method similar to arrays.stream() appears in the stream class: st rcam.or (). The difference is that
stream.of () USES @ varargs parameter, so you can write something like:

Stream<Integer> intStream = Stream.of(l, 2, 3);
Stream<String> stringStream = Stream.of("1", "2", "3");
Stream<Double> doubleStream = Stream.of (new Double[]{1.0, 2.0});

lterating over arrays

https://riptutorial.com/ 68

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#deepEquals-java.lang.Object:A-java.lang.Object:A-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#stream-T:A-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of-T...-

You can iterate over arrays either by using enhanced for loop (aka foreach) or by using array
indices:

int[] array = new int[10];

// using indices: read and write

for (int i 0; 1 < array.length; i++) {

array[i] = i;

Java SE 5

// extended for: read only
for (int e : array) {
System.out.println (e);

It is worth noting here that there is no direct way to use an Iterator on an Array, but through the
Arrays library it can be easily converted to a list to obtain an rterabie Object.

For boxed arrays use Arrays.asList:

Integer[] boxed = {1, 2, 3};
Iterable<Integer> boxedIt = Arrays.aslList (boxed); // list-backed iterable
Iterator<Integer> fromBoxedl = boxedIt.iterator();

For primitive arrays (using java 8) use streams (specifically in this example - Arrays.stream ->
IntStream):

int[] primitives = {1, 2, 3};
IntStream primitiveStream = Arrays.stream(primitives); // list-backed iterable
PrimitivelIterator.OfInt fromPrimitivel = primitiveStream.iterator();

If you can't use streams (no java 8), you can choose to use google's guava library:

Iterable<Integer> fromPrimitive2 = Ints.asList (primitives);

In two-dimensional arrays or more, both techniques can be used in a slightly more complex
fashion.

Example:
int[][] array = new int[10][10];
for (int indexOuter = 0; indexOuter < array.length; indexOuter++) {
for (int indexInner = 0; indexInner < array[indexOuter].length; indexInner++) {
array|[indexOuter] [indexInner] = indexOuter + indexInner;
}
}
Java SE 5

https://riptutorial.com/

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#asList(T...)
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#stream-int:A-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#stream-int:A-
https://github.com/google/guava

for (int[] numbers : array) {
for (int value : numbers) {

System.out.println (value);

It is impossible to set an Array to any non-uniform value without using an index based loop.

Of course you can also use while Or do-while lOOPS When iterating using indices.

One note of caution: when using array indices, make sure the index is between o and
array.length - 1 (both inclusive). Don't make hard coded assumptions on the array length
otherwise you might break your code if the array length changes but your hard coded values don't.

Example:

int[] numbers = {1, 2, 3, 4};

public void incrementNumbers () {
// DO THIS :
for (int 1 = 0; i < numbers.length; i++)

numbers[i] += 1; //or this: numbers[i]

// DON'T DO THIS :
for (int i = 0; i < 4; i++) {
numbers([i] += 1;

numbers[i] + 1; or numbers[i]++;

It's also best if you don't use fancy calculations to get the index but use the index to iterate and if

you need different values calculate those.

Example:

public void fillArrayWithDoubleIndex (int[] array)

// DO THIS :
for (int 1 = 0; i < array.length; i++) {
array[i] = 1 * 2;

}

// DON'T DO THIS :

int doublelLength = array.length * 2;

for (int 1 = 0; i < doubleLength; i += 2)
array[i / 2] = 1i;

Accessing Arrays in reverse order

int[] array = {0, 1, 1, 2, 3, 5, 8, 13};
for (int i1 = array.length - 1; i >= 0; i-—-) {
System.out.println (array[i]);

{

https://riptutorial.com/

70

Using temporary Arrays to reduce code repetition

Iterating over a temporary array instead of repeating code can make your code cleaner. It can be
used where the same operation is performed on multiple variables.

// we want to print out all of these
String name = "Margaret";

int eyeCount = 16;

double height = 50.2;

int legs = 9;

int arms = 5;

// copy-paste approach:
System.out.println (name) ;
System.out.println (eyeCount) ;
System.out.println(helght)
System.out.println(legs)
(

System.out.println (arms)

// temporary array approach:
for (Object attribute : new Object[] {name, eyeCount, height, legs, arms})
System.out.println (attribute) ;

// using only numbers

for (double number : new double[]{eyeCount, legs, arms, height})
System.out.println (Math.sqgrt (number));

Keep in mind that this code should not be used in performance-critical sections, as an array is

created every time the loop is entered, and that primitive variables will be copied into the array and

thus cannot be modified.
Copying arrays

Java provides several ways to copy an array.

for loop

int[] a = { 4, 1, 3, 2 };

int[] b = new int[a.length];

for (int 1 = 0; i < a.length; i++) {
b[i] = al[il;

Note that using this option with an Object array instead of primitive array will fill the copy with
reference to the original content instead of copy of it.

https://riptutorial.com/

71

Object.clone()

Since arrays are objectS Iin Java, you can uUse object .clone ().

int[]

a={4,1,3/2};
int[] b

a.clone(); // [4, 1, 3, 2]

Note that the object.c1one method for an array performs a shallow copy, i.e. it returns a reference
to a new array which references the same elements as the source array.

mays.copy()f()

java.util.arrays provides an easy way to perform the copy of an array to another. Here is the
basic usage:

int[] a = {4, 1, 3, 2};
int[] b = Arrays.copyOf(a, a.length); // [4, 1, 3, 2]

Note that arrays.copyor also provides an overload which allows you to change the type of the
array:

Double[] doubles { 1.0, 2.0, 3.0 };
Number[] numbers = Arrays.copyOf (doubles, doubles.length, Number[].class);

S_ystem.arraycopy()

public static void arraycopy (Object src, int srcPos, Object dest, int destPos, int

length) Copies an array from the specified source array, beginning at the specified
position, to the specified position of the destination array.

Below an example of use

int[] a = { 4, 1, 3, 2 };
int[] b = new int[a.length];
System.arraycopy(a, 0, b, 0, a.length); // [4, 1, 3, 2]

mays.copyOfRange()

Mainly used to copy a part of an Array, you can also use it to copy whole array to another as
below:

https://riptutorial.com/ 72

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#clone()
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#clone()
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#copyOf(T%5B%5D,%20int)
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html
https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#arraycopy(java.lang.Object,%20int,%20java.lang.Object,%20int,%20int)
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#copyOfRange(T%5B%5D,%20int,%20int)

int[] a={ 4, 1, 3, 2 };
int[] b = Arrays.copyOfRange(a, 0, a.length); // [4, 1, 3, 2]

Casting Arrays

Arrays are objects, but their type is defined by the type of the contained objects. Therefore, one
cannot just cast ar] to T11, but each A member of the specific a1 must be cast to a r object.
Generic example:

public static <T, A> T[] castArray (T[] target, A[] array) {
for (int 1 = 0; i < array.length; i++) {
target[i] = (T) arrayl[i];
t

return target;

Thus, given an a[] array:

T[] target = new T[array.Length];
target = castArray(target, array);

Java SE prOVideS the method Arrays.copyOf (original, newLength, newType) for this purpose:

Double[] doubles = { 1.0, 2.0, 3.0 };
Number[] numbers = Arrays.copyOf (doubles, doubles.length, Number[].class);

Remove an element from an array

Java doesn't provide a direct method in java.uci1.2arrays to remove an element from an array. To
perform it, you can either copy the original array to a new one without the element to remove or
convert your array to another structure allowing the removal.

Using ArrayList

You can convert the array to a j-v-.uti1.1is, remove the element and convert the list back to an
array as follows:
String[] array = new String[]{"foo", "bar", "baz"};

List<String> list = new ArrayList<>(Arrays.asList (array));
list.remove ("foo");

// Creates a new array with the same size as the list and copies the list
// elements to it.

array = list.toArray(new String[list.size()]);

System.out.println (Arrays.toString(array)); //[bar, baz]

https://riptutorial.com/ 73

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#copyOf(U%5B%5D,%20int,%20java.lang.Class)
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html
https://docs.oracle.com/javase/7/docs/api/java/util/List.html

Using System.arraycopy

system.arravcopy () Can be used to make a copy of the original array and remove the element you
want. Below an example:

int[] array = new int[] { 1, 2, 3, 4 }; // Original array.
int[] result = new int[array.length - 1]; // Array which will contain the result.
int index = 1; // Remove the value "2".

// Copy the elements at the left of the index.

System.arraycopy (array, 0, result, 0, index);

// Copy the elements at the right of the index.

System.arraycopy (array, index + 1, result, index, array.length - index - 1);

System.out.println (Arrays.toString(result)); //[1, 3, 4]

Using Apache Commons Lang

To easily remove an element, you can use the Apache Commons Lang library and especially the
static method rcrnoverienent () Of the class ~--2yuti1s. Below an example:

int[] array = new int[]{1,2,3,4};
array = ArrayUtils.removeElement (array, 2); //remove first occurrence of 2
System.out.println (Arrays.toString(array)); //[1, 3, 4]

Array Covariance

Object arrays are covariant, which means that just as nteger is a subclass of vumber, Integer(] IS a
subclass of numper (1. This may seem intuitive, but can result in surprising behavior:

Integer[] integerArray = {1, 2, 3};

Number [] numberArray = integerArray; // valid
Number firstElement = numberArray[0]; // valid
numberArray[0] = 4L; // throws ArrayStoreException at runtime

Although 1nteger(] is a subclass of number (1, it can only hold 1ntegerS, and trying to assign a rong
element throws a runtime exception.

Note that this behavior is unique to arrays, and can be avoided by using a generic vist instead:

List<Integer> integerlList = Arrays.aslList(l, 2, 3);

//List<Number> numberlList = integerList; // compile error
List<? extends Number> numberlList = integerlList;

Number firstElement = numberList.get (0);
//numberList.set (0, 4L); // compile error

It's not necessary for all of the array elements to share the same type, as long as they are a
subclass of the array's type:

https://riptutorial.com/ 74

https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#arraycopy(java.lang.Object,%20int,%20java.lang.Object,%20int,%20int)
https://commons.apache.org/proper/commons-lang/
http://commons.apache.org/proper/commons-lang/javadocs/api-2.6/org/apache/commons/lang/ArrayUtils.html#removeElement(java.lang.Object%5B%5D,%20java.lang.Object)
http://commons.apache.org/proper/commons-lang/javadocs/api-2.6/org/apache/commons/lang/ArrayUtils.html

interface I {}

class A implements I {}
class B implements I {}
class C implements I {}

I[] arrayl0 = new I[] { new A(), new B(), new C() }; // Create an array with new

// operator and array initializer.

I[] arrayll = { new A(), new B(), new C() }; // Shortcut syntax with array
// initializer.

I[] arrayl2 = new I[3]; // { null, null, null }
I[] arrayl3 = new A[] { new A(), new A() }; // Works because A implements I.
Object[] arrayl4 = new Object[] { "Hello, World!", 3.14159, 42 }; // Create an array with

// new operator and array initializer.

Object[] arrayl5 = { new A(), 64, "My String" }; // Shortcut syntax

// with array initializer.

How do you change the size of an array?

The simple answer is that you cannot do this. Once an array has been created, its size cannot be
changed. Instead, an array can only be "resized" by creating a new array with the appropriate size
and copying the elements from the existing array to the new one.

String[] listOfCities = new String[3]; // array created with size 3.
listOfCities[0] = "New York";

1listOfCities[1l] = "London";

listOfCities[2] = "Berlin";

Suppose (for example) that a new element needs to be added to the 1istorcities array defined as
above. To do this, you will need to:

1. create a new array with size 4,
2. copy the existing 3 elements of the old array to the new array at offsets 0, 1 and 2, and
3. add the new element to the new array at offset 3.

There are various ways to do the above. Prior to Java 6, the most concise way was:

String[] newArray = new String[listOfCities.length + 1];
System.arraycopy (listOfCities, 0, newArray, 0, listOfCities.length);
newArray[listOfCities.length] = "Sydney";

From Java 6 onwards, the arrays.copyor @and arrays.copyofrange methods can do this more simply:

String[] newArray = Arrays.copyOf (listOfCities, listOfCities.length + 1);
newArray[listOfCities.length] = "Sydney";

For other ways to copy an array, refer to the following example. Bear in mind that you need an
array copy with a different length to the original when resizing.

https://riptutorial.com/ 75

» Copying arrays

A better alternatives to array resizing

There two major drawbacks with resizing an array as described above:

* Itis inefficient. Making an array bigger (or smaller) involves copying many or all of the
existing array elements, and allocating a new array object. The larger the array, the more
expensive it gets.

* You need to be able to update any "live" variables that contain references to the old array.

One alternative is to create the array with a large enough size to start with. This is only viable if
you can determine that size accurately before allocating the array. If you cannot do that, then the
problem of resizing the array arises again.

The other alternative is to use a data structure class provided by the Java SE class library or a
third-party library. For example, the Java SE "collections" framework provides a number of
implementations of the vist, set and map APIs with different runtime properties. The arrayrist class
is closest to performance characteristics of a plain array (e.g. O(N) lookup, O(1) get and set, O(N)
random insertion and deletion) while providing more efficient resizing without the reference update
problem.

(The resize efficiency for arrayrist comes from its strategy of doubling the size of the backing
array on each resize. For a typical use-case, this means that you only resize occasionally. When
you amortize over the lifetime of the list, the resize cost per insert is o (1). It may be possible to use
the same strategy when resizing a plain array.)

Finding an element in an array

There are many ways find the location of a value in an array. The following example snippets all
assume that the array is one of the following:

String[] strings = new String[] { "A", "B", "C" };
int[] ints = new int[] { 1, 2, 3, 4 };

In addition, each one sets index Or index2 tO either the index of required element, or -1 if the
element is not present.

USIng Arrays.binarySearch (for Sorted arrayS Only)

int index = Arrays.binarySearch(strings, "A");
int index2 = Arrays.binarySearch(ints, 1);

USIiNg A arrays.aszise (fOr Nnon-primitive arrays only)

int index = Arrays.asList (strings) .indexOf ("A");

https://riptutorial.com/ 76

http://www.riptutorial.com/java/example/3435/copying-arrays
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#binarySearch-java.lang.Object:A-java.lang.Object-

int index2 = Arrays.asList (ints) .indexOf (1); // compilation error

USI ng a. Stream

Java SE 8

int index = IntStream.range (0, strings.length)
.filter(i -> "A".equals(strings[i]))
.findFirst ()
.orElse(-1); // If not present, gives us -1.
// Similar for an array of primitives

Linear search using a loop

int index = -1;
for (int 1 = 0; i < array.length; i++) {

if ("A".equals (array[i])) {
index = i;
break;

}
}

// Similar for an array of primitives

Linear search using 3rd-party libraries such as
org.apache.commons

int index = org.apache.commons.lang3.ArrayUtils.contains (strings, "A");
int index2 = org.apache.commons.lang3.ArrayUtils.contains (ints, 1);

Note: Using a direct linear search is more efficient than wrapping in a list.

Testing if an array contains an element

The examples above can be adapted to test if the array contains an element by simply testing to
see if the index computed is greater or equal to zero.

Alternatively, there are also some more concise variations:

boolean isPresent = Arrays.asList (strings).contains ("A");

Java SE 8
boolean isPresent = Stream<String>.of (strings) .anyMatch(x —-> "A".equals(x));
boolean isPresent = false;
for (String s : strings) {

if ("A".equals(s)) {

https://riptutorial.com/

https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/ArrayUtils.html

isPresent = true;
break;

boolean isPresent = org.apache.commons.lang3.ArrayUtils.contains (ints, 4);

Sorting arrays
Sorting arrays can be easily done with the Arrays api.

import Jjava.util.Arrays;

// creating an array with integers

int[] array = {7, 4, 2, 1, 19};

// this is the sorting part just one function ready to be used
Arrays.sort (array) ;

// prints [1, 2, 4, 7, 19]

System.out.println (Arrays.toString(array));

Sorting String arrays:

string IS NOt @ numeric data, it defines it's own order which is called lexicographic order, also

known as alphabetic order. When you sort an array of String using sort () method, it sorts array

into natural order defined by Comparable interface, as shown below :

Increasing Order

String[] names = {"John", "Steve", "Shane", "Adam", "Ben"};

System.out.println ("String array before sorting : " + Arrays.toString(names));
Arrays.sort (names) ;

System.out.println ("String array after sorting in ascending order : " +
Arrays.toString (names)) ;

Output:
String array before sorting : [John, Steve, Shane, Adam, Ben]
String array after sorting in ascending order : [Adam, Ben, John, Shane, Steve]

Decreasing Order

Arrays.sort (names, 0, names.length, Collections.reverseOrder());
System.out.println ("String array after sorting in descending order : " +

Arrays.toString (names)) ;

Output:

String array after sorting in descending order : [Steve, Shane, John, Ben, Adam]

Sorting an Object array

https://riptutorial.com/

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

In order to sort an object array, all elements must implement either comparable Or comparator
interface to define the order of the sorting.

We can use either sort (object (1) method to sort an object array on its natural order, but you must
ensure that all elements in the array must implement comparabie.

Furthermore, they must be mutually comparable as well, for example e1.compareto (e2) must not
throw a ciasscastexception fOr any elements el and e2 in the array. Alternatively you can sort an
Object array on custom order using sort (T[], Comparator) Mmethod as shown in following example.

// How to Sort Object Array in Java using Comparator and Comparable
Course[] courses = new Coursel[4d];

new Course (101, "Java", 200);
new Course (201, "Ruby", 300);
new Course (301, "Python", 400);
new Course (401, "Scala", 500);

courses[0]
[1]
courses|[2]
[3]

courses

courses
System.out.println ("Object array before sorting : " + Arrays.toString(courses));
Arrays.sort (courses) ;

System.out.println ("Object array after sorting in natural order : " +

Arrays.toString (courses));

Arrays.sort (courses, new Course.PriceComparator());
System.out.println ("Object array after sorting by price : " + Arrays.toString(courses));

Arrays.sort (courses, new Course.NameComparator());

System.out.println ("Object array after sorting by name : " + Arrays.toString(courses));
Output:

Object array before sorting : [#101 Java@200 , #201 Ruby@300 , #301 Python@400 , #401

Scala@500]

Object array after sorting in natural order : [#101 Java@200 , #201 Ruby@300 , #301 Python@400

, #401 Scala@500]

Object array after sorting by price : [#101 Java@200 , #201 Ruby@300 , #301 Python@400 , #401

Scala@500]

Object array after sorting by name : [#101 Java@200 , #301 Python@400 , #201 Ruby@300 , #401

Scala@500]

Converting arrays between primitives and boxed types

Sometimes conversion of primitive types to boxed types is necessary.
To convert the array, it's possible to use streams (in Java 8 and above):

Java SE 8

int[] primitiveArray = {1, 2, 3, 4};
Integer[] boxedArray =
Arrays.stream(primitiveArray) .boxed () .toArray (Integer|[]: :new);

With lower versions it can be by iterating the primitive array and explicitly copying it to the boxed
array:

https://riptutorial.com/ 79

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

Java SE 8

int[] primitiveArray = {1, 2, 3, 4};
Integer[] boxedArray = new Integer[primitiveArray.length];
for (int 1 = 0; i < primitiveArray.length; ++i) {
boxedArray[i] = primitiveArray[i]; // Each element is autoboxed here

Similarly, a boxed array can be converted to an array of its primitive counterpart:

Java SE 8

Integer[] boxedArray = {1, 2, 3, 4};
int[] primitiveArray =
Arrays.stream(boxedArray) .mapTolInt (Integer::intValue) .toArray () ;

Java SE 8

Integer|[] boxedArray = {1, 2, 3, 4};
int[] primitiveArray = new int [boxedArray.length];
for (int 1 = 0; i < boxedArray.length; ++i) {
primitiveArray[i] = boxedArray[i]; // Each element is outboxed here

Read Arrays online: https://riptutorial.com/java/topic/99/arrays

https://riptutorial.com/

80

https://riptutorial.com/java/topic/99/arrays

C_hapter 9: Asserting

Syntax

 assert expressionl;
» assert expressionl : expression2;

Parameters

The assertion statement throws an assertiontrror if this expression evaluates

expressionl
10 false.

Optional. When used, assertiontrrorS thrown by the assert statement have this

expression2
message.

Remarks

By default, assertions are disabled at runtime.

To enable assertions, you must run java with -<a flag.

java —-ea com.example.AssertionExample

Assertions are statements that will throw an error if their expression evaluates to ra1se. Assertions
should only be used to test code; they should never be used in production.

Examples
Checking arithmetic with assert

a =1 - Math.abs(l - a % 2);

// This will throw an error if my arithmetic above is wrong.
assert a >= 0 && a <= 1 : "Calculated value of " + a + " is outside of expected bounds";

return a;

Read Asserting online: https://riptutorial.com/java/topic/407/asserting

https://riptutorial.com/ 81

https://riptutorial.com/java/topic/407/asserting

C_hapter 10: Atomic Types

Introduction

Java Atomic Types are simple mutable types that provide basic operations that are thread-safe
and atomic without resorting to locking. They are intended for use in cases where locking would be
a concurrency bottleneck, or where there is risk of deadlock or livelock.

Parameters
set Volatile set of the field
get Volatile read of the field
lazySet This is a store ordered operation of the field

compareAndSet If the value is the expeed value then sent it to the new value

getAndSet get the current value and update

Remarks

Many on essentially combinations of volatile reads or writes and CAS operations. Best way to
understand this is to look at the source code directly. E.g. Atomiclnteger, Unsafe.getAndSet

Examples

Creating Atomic Types

For simple multi-threaded code, using synchronization is acceptable. However, using
synchronization does have a liveness impact, and as a codebase becomes more complex, the
likelihood goes up that you will end up with Deadlock, Starvation, or Livelock.

In cases of more complex concurrency, using Atomic Variables is often a better alternative, as it
allows an individual variable to be accessed in a thread-safe manner without the overhead of
using synchronized methods or code blocks.

Creating an atonicinteger type:

AtomicInteger alnt = new AtomicInteger() // Create with default value 0

AtomicInteger alInt = new AtomicInteger(l) // Create with initial value 1

https://riptutorial.com/ 82

https://en.wikipedia.org/wiki/Compare-and-swap
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/java/util/concurrent/atomic/AtomicInteger.java
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/sun/misc/Unsafe.java#Unsafe.getAndSetInt%28java.lang.Object%2Clong%2Cint%29
http://www.riptutorial.com/java/example/7299/synchronization
https://docs.oracle.com/javase/tutorial/essential/concurrency/deadlock.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/starvelive.html

Similarly for other instance types.

AtomicIntegerArray alntArray = new AtomicIntegerArray(10) // Create array of specific length
AtomicIntegerArray alntArray = new AtomicIntegerArray(new int([] {1, 2, 3}) // Initialize array
with another array

Similarly for other atomic types.

There is a notable exception that there is no ri0at and doubie types. These can be simulated
through the use of Ficat.floatToIntBits (float) and Float.intBitsToFloat (int) for r10at as well as
Double.doubleToLongBits (double) anc‘Double.longBitsToDouble(long)for(jOUt”eS.

If you are willing to use sun.misc.unsafe YOU Can use any primitive variable as atomic by using the
atomic operation in sun.misc.unsafe. All primitive types should be converted or encoded in int or
longs to so use it in this way. For more on this see: sun.misc.Unsafe.

Motivation for Atomic Types

The simple way to implement multi-threaded applications is to use Java's built-in synchronization
and locking primitives; e.g. the synchronizeda keyword. The following example shows how we might
USe synchronized O accumulate counts.

public class Counters {
private final int[] counters;

public Counters (int nosCounters) {

counters = new int[nosCounters];
}
/**
* Increments the integer at the given index
=/

public synchronized void count (int number) {
if (number >= 0 && number < counters.length) {
counters [number] ++;

/**
* Obtains the current count of the number at the given index,
* or if there is no number at that index, returns 0.
w

public synchronized int getCount (int number) {

return (number >= 0 && number < counters.length) ? counters|[number] : 0;

This implementation will work correctly. However, if you have a large number of threads making
lots of simultaneous calls on the same counters Object, the synchronization is liable to be a
bottleneck. Specifically:

1. Each synchronizeda method call will start with the current thread acquiring the lock for the
counters INstance.

https://riptutorial.com/ 83

http://www.riptutorial.com/java/topic/6771/sun-misc-unsafe

2. The thread will hold the lock while it checks number value and updates the counter.
3. Finally, the it will release the lock, allowing other threads access.

If one thread attempts to acquire the lock while another one holds it, the attempting thread will be
blocked (stopped) at step 1 until the lock is released. If multiple threads are waiting, one of them
will get it, and the others will continue to be blocked.

This can lead to a couple of problems:

* If there is a lot of contention for the lock (i.e. lots of thread try to acquire it), then some
threads can be blocked for a long time.

* When a thread is blocked waiting for the lock, the operating system will typically try switch
execution to a different thread. This context switching incurs a relatively large performance
impact on the processor.

* When there are multiple threads blocked on the same lock, there are no guarantees that any
one of them will be treated "fairly" (i.e. each thread is guaranteed to be scheduled to run).
This can lead to thread starvation.

How does one implement Atomic Types?

Let us start by rewriting the example above using atomicinteger COUNters:

public class Counters {
private final AtomicInteger|[] counters;

public Counters (int nosCounters) {
counters = new AtomicInteger[nosCounters];
for (int i = 0; i < nosCounters; i++) {
counters[i] = new AtomicInteger();

}

/**
* Increments the integer at the given index
)
public void count (int number) {
if (number >= 0 && number < counters.length) {
counters [number] .incrementAndGet () ;
}
}

/**
* Obtains the current count of the object at the given index,
* or if there is no number at that index, returns 0.
)
public int getCount (int number) ({
return (number >= 0 && number < counters.length) °?
counters [number].get () : 0;

We have replaced the int (] with an atomicinteger (7, and initialized it with an instance in each

https://riptutorial.com/ 84

element. We have also added calls t0 incrementandcet () and get () in place of operations on int
values.

But the most important thing is that we can remove the synchronized keyword because locking is
no longer required. This works because the incrementandcet () and get () operations are atomic and
thread-safe. In this context, it means that:

» Each counter in the array will only be observable in the either the "before" state for an
operation (like an "increment") or in the "after" state.

» Assuming that the operation occurs at time 1, no thread will be able to see the "before" state
after time r.

Furthermore, while two threads might actually attempt to update the same atonicinteger inStance
at the same time, the implementations of the operations ensure that only one increment happens
at a time on the given instance. This is done without locking, often resulting in better performance.

How do Atomic Types work?

Atomic types typically rely on specialized hardware instructions in the instruction set of the target
machine. For example, Intel-based instruction sets provide a cas (Compare and Swap) instruction
that will perform a specific sequence of memory operations atomically.

These low-level instructions are are used to implement higher-level operations in the APIs of the
respective atomicxxx classes. For example, (again, in C-like pseudocode):

private volatile num;

int increment () {
while (TRUE) {

int old = num;
int new = old + 1;
if (old == compare_and_swap (&num, old, new)) {

return new;

}

If there is no contention on the atomicxxxx, the if test will succeed and the loop will end
immediately. If there is contention, then the it will fail for all but one of the threads, and they will
"spin™ in the loop for a small number of cycles of the loop. In practice, the spinning is orders of
magnitude faster (except at unrealistically high levels of contention, where synchronized performs
better than atomic classes because when the CAS operation fails, then the retry will only add more
contention) than suspending the thread and switching to another one.

Incidentally, CAS instructions are typically used by the JVM to implement uncontended locking. If
the JVM can see that a lock is not currently locked, it will attempt to use a CAS to acquire the lock.
If the CAS succeeds, then there is no need to do the expensive thread scheduling, context
switching and so on. For more information on the techniques used, see Biased Locking in HotSpot

https://riptutorial.com/ 85

https://en.wikipedia.org/wiki/Compare-and-swap
https://blogs.oracle.com/dave/entry/biased_locking_in_hotspot

Read Atomic Types online: https://riptutorial.com/java/topic/5963/atomic-types

https://riptutorial.com/

86

https://riptutorial.com/java/topic/5963/atomic-types

C_hapter 11: Audio

Remarks

Instead of using the javax.sound.sampled c1ip, you can also use the audiociip Which is from the
applet API. It is however recommended to use ciip SiNce audioclip IS just older and presents
limited functionalities.

Examples

Play an Audio file Looped
Needed imports:

import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.Clip;

This code will create a clip and play it continuously once started:

Clip clip = AudioSystem.getClip();

clip.open (AudioSystem.getAudioInputStream (new URL (filename)));
clip.start();

clip.loop(Clip.LOOP_CONTINUOUSLY) ;

Get an Array with all supported file types:

AudioFileFormat.Type [] audioFileTypes = AudioSystem.getAudioFileTypes|();

Play a MIDI file

MIDI files can be played by using several classes from the javax.sound.nidi package. A sequencer
performs playback of the MIDI file, and many of its methods can be used to set playback controls
such as loop count, tempo, track muting, and others.

General playback of MIDI data can be done in this way:

import Jjava.io.File;

import Jjava.io.IOException;

import Jjavax.sound.midi.InvalidMidiDataException;
import javax.sound.midi.MidiSystem;

import Jjavax.sound.midi.MidiUnavailableException;
import javax.sound.midi.Sequence;

import Jjavax.sound.midi.Sequencer;

public class MidiPlayback {

public static void main(String[] args) {
try {
Sequencer sequencer = MidiSystem.getSequencer(); // Get the default Sequencer

https://riptutorial.com/ 87

if (sequencer==null) {
System.err.println ("Sequencer device not supported");
return;
}
sequencer.open(); // Open device
// Create sequence, the File must contain MIDI file data.
Sequence sequence = MidiSystem.getSequence (new File (args[0]));

sequencer.setSequence (sequence); // load it into sequencer
sequencer.start (); // start the playback
} catch (MidiUnavailableException | InvalidMidiDataException | IOException ex) {

ex.printStackTrace();

To stop the playback use:

sequencer.stop(); // Stop the playback

A sequencer can be set to mute one or more of the sequence's tracks during playback so none of
the instruments in those specified play. The following example sets the first track in the sequence
to be muted:

import javax.sound.midi.Track;

70 oo

Track[] track = sequence.getTracks();
sequencer.setTrackMute (track[0]) ;

A sequencer can play a sequence repeatedly if the loop count is given. The following sets the
sequencer to play a sequence four times and indefinitely:

sequencer.setLoopCount (3) ;
sequencer.setLoopCount (Sequencer.LOOP_CONTINUOUSLY) ;

The sequencer does not always have to play the sequence from the beginning, nor does it have to
play the sequence until the end. It can start and end at any point by specifying the tick in the
sequence to start and end at. It is also possible to specify manually which tick in the sequence the
sequencer should play from:

sequencer.setLoopStartPoint (512) ;
sequencer.setLoopEndPoint (32768) ;
sequencer.setTickPosition (8192);

Sequencers can also play a MIDI file at a certain tempo, which can be controlled by specifying the
tempo in beats per minute (BPM) or microseconds per quarter note (MPQ). The factor at which the
sequence is played can be adjusted as well.

sequencer.setTempoInBPM (1250f) ;
sequencer.setTempoInMPQ (4750f) ;
sequencer.setTempoFactor (1.5f) ;

https://riptutorial.com/ 88

When you finished using the sequencer, remeber to close it

sequencer.close() ;

Bare metal sound

You can also go almost bare-metal when producing sound with java. This code will write raw
binary data into the OS audio buffer to generate sound. It's extremely important to understand the
limitations and necessary calculations to generating sound like this. Since playback is basically
instantaneous, calculations need to be performed at almost real-time.

As such this method is unusable for more complicated sound-sampling. For such purposes using
specialized tools is the better approach.

The following method generates and directly outputs a rectangle-wave of a given frequency in a
given volume for a given duration.

public void rectangleWave (byte volume, int hertz, int msecs) {

final SourceDataline datalLine;

// 24 kHz x 8bit, single-channel, signed little endian AudioFormat

AudioFormat af = new AudioFormat (24_000, 8, 1, true, false);

try {
datalLine = AudioSystem.getSourceDataline (af);
datalLine.open(af, 10_000); // audio buffer size: 10k samples

} catch (LineUnavailableException e) {
throw new RuntimeException(e);

int waveHalf = 24_000 / hertz; // samples for half a period
byte[] buffer = new byte[waveHalf * 20];
int samples = msecs * (24_000 / 1000); // 24k (samples / sec) / 1000 (ms/sec) * time (ms)

datalLine.start (); // starts playback
int sign = 1;

for (int 1 = 0; i < samples; 1 += buffer.length) {
for (int j = 0; j < 20; j++) { // generate 10 waves into buffer
sign *= -1;
// £ill from the jth wave-half to the j+lth wave-half with volume
Arrays.fill (buffer, waveHalf * j, waveHalf * (j+1), (byte) (volume * sign));

}
dataline.write (buffer, 0, buffer.length); //

}
datalLine.drain(); // forces buffer drain to hardware
dataLine.stop(); // ends playback

For a more differentiated way to generate different soundwaves sinus calculations and possibly
larger sample sizes are necessary. This results in significantly more complex code and is
accordingly omitted here.

Basic audio output

The Hello Audio! of Java that plays a sound file from local or internet storage looks as follows. It

https://riptutorial.com/ 89

works for uncompressed .wav files and should not be used for playing mp3 or compressed files.

import java.io.*;
import java.net.URL;
import javax.sound.sampled.*;

public class SoundClipTest {

// Constructor
public SoundClipTest () {

try {
// Open an audio input stream.
File soundFile = new File("/usr/share/sounds/alsa/Front_Center.wav"); //you could

also get the sound file with an URL

AudioInputStream audioIn = AudioSystem.getAudioInputStream(soundFile);
AudioFormat format = audioIn.getFormat () ;
// Get a sound clip resource.
DatalLine.Info info = new Dataline.Info(Clip.class, format);
Clip clip = (Clip)AudioSystem.getLine (info);
// Open audio clip and load samples from the audio input stream.
clip.open (audioln) ;
clip.start();

} catch (UnsupportedAudioFileException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

} catch (LineUnavailableException e) {
e.printStackTrace();

public static void main(String[] args) {
new SoundClipTest () ;

Read Audio online: https://riptutorial.com/java/topic/160/audio

https://riptutorial.com/

90

https://riptutorial.com/java/topic/160/audio

C_hapter 12: Autoboxing

Introduction

Autoboxing is the automatic conversion that Java compiler makes between primitive types and
their corresponding object wrapper classes. Example, converting int -> Integer, double -> Double...
If the conversion goes the other way, this is called unboxing. Typically, this is used in Collections
that cannot hold other than Objects, where boxing primitive types is needed before setting them in
the collection.

Remarks

Autoboxing can have performance issues when used frequently in your code.

 http://docs.oracle.com/javase/1.5.0/docs/guide/language/autoboxing.html
* Integer auto-unboxing and auto-boxing gives performance issues?

Examples

Using int and Integer interchangeably

As you use generic types with utility classes, you may often find that number types aren't very
helpful when specified as the object types, as they aren't equal to their primitive counterparts.

List<Integer> ints = new ArrayList<Integer>();
Java SE 7
List<Integer> ints = new ArrayList<>();

Fortunately, expressions that evaluate to int can be used in place of an rnteger When it is needed.

for (int i = 0; i < 10; 1i++)
ints.add (i) ;

The ints.add (i); Statement is equivalent to:
ints.add(Integer.valueOf (1)) ;

And retains properties from integer#valueor Such as having the same 1nteger 0Objects cached by
the JVM when it is within the number caching range.

This also applies to:

® byte and Byte

https://riptutorial.com/ 91

http://docs.oracle.com/javase/7/docs/technotes/guides/language/autoboxing.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/autoboxing.html
http://stackoverflow.com/questions/6037389/integer-auto-unboxing-and-auto-boxing-gives-performance-issues

* short and short

* float and riloat

* double and pouble

i long'and Long

* char and character
* boolean and Boolean

Care must be taken, however, in ambiguous situations. Consider the following code:

List<Integer> ints = new ArraylList<Integer>();
ints.add (1) ;

ints.add(2);

ints.add (3);

ints.remove(l); // ints is now [1, 3]

The java.util.nist interface contains both a remove (int index) (vist interface method) and a
remove (Object o) (Method inherited from java.util.collection). IN this case no boxing takes place
and remove (int index)iS called.

One more example of strange Java code behavior caused by autoboxing Integers with values in
range from -128 t0 127:

Integer a = 127;
Integer b = 127;
Integer c = 128;

Integer d = 128;

System.out.println(a == b); // true
System.out.println(c <= d); // true
System.out.println(c >= d); // true
System.out.println(c == d); // false

This happens because >= operator implicitly calls intvaiue () which returns int while == compares
references, not the int values.

By default, Java caches values in range (-128, 1271, SO the operator == works because the
Integers IiN this range reference to the same objects if their values are same. Maximal value of the
cacheable range can be defined with -xx:autoBoxcacheMax JVM option. So, if you run the program
With -xx:autoBoxCacheMax=1000, the following code will print ¢ rue:

Integer a = 1000;
Integer b = 1000;
System.out.println(a == b); // true

Using Boolean in if statement
Due to auto unboxing, one can use a soolean iN @n ir statement:

Boolean a = Boolean.TRUE;
if (a) { // a gets converted to boolean
System.out.println ("It works!");

https://riptutorial.com/ 92

That works for while, do while and the condition in the ror Statements as well.

Note that, if the Boolean IS null, @ Nullpointerkxception WIll be thrown in the conversion.
Auto-unboxing may lead to NullPointerException
This code compiles:

Integer arg = null;
int x = arg;

But it will crash at runtime with @ java.1lang.NullPointerException ON the second line.
The problem is that a primitive int cannot have a nu11 value.

This is a minimalistic example, but in practice it often manifests in more sophisticated forms. The
NullPointerException IS NOt very intuitive and is often little help in locating such bugs.

Rely on autoboxing and auto-unboxing with care, make sure that unboxed values will not have
null values at runtime.

Memory and Computational Overhead of Autoboxing
Autoboxing can come at a substantial memory overhead. For example:

Map<Integer, Integer> square = new HashMap<Integer, Integer>();
for(int i = 256; 1 < 1024; i++) {
square.put (i, i * i); // Autoboxing of large integers

}

will typically consume substantial amount of memory (about 60kb for 6k of actual data).

Furthermore, boxed integers usually require additional round-trips in the memory, and thus make
CPU caches less effective. In above example, the memory accessed is spread out to five different
locations that may be in entirely different regions of the memory: 1. the nashmap Object, 2. the map's
Entry[] table Object, 3. the entry Object, 4. the entrys xey object (boxing the primitive key), 5. the
entrys vaiue Object (boxing the primitive value).

class Example {
int primitive; // Stored directly in the class 'Example’
Integer boxed; // Reference to another memory location

}

Reading voxed requires two memory accesses, accessing primitive ONly one.

When getting data from this map, the seemingly innocent code

int sumOfSquares = 0;
for(int i = 256; 1 < 1024; i++) {
sumOfSquares += square.get (i);

https://riptutorial.com/ 93

is equivalent to:

int sumOfSquares = 0;
for(int i = 256; 1 < 1024; i++) {
sumOfSquares += square.get (Integer.valueOf (i)) .intValue () ;

}

Typically, the above code causes the creation and garbage collection of an 1nteger Object for
every Map#get (Integer) Operation. (See Note below for more details.)

To reduce this overhead, several libraries offer optimized collections for primitive types that do not
require boxing. In addition to avoiding the boxing overhead, these collection will require about 4x
less memory per entry. While Java Hotspot may be able to optimize the autoboxing by working
with objects on the stack instead of the heap, it is not possible to optimize the memory overhead
and resulting memory indirection.

Java 8 streams also have optimized interfaces for primitive data types, such as 1ntstream that do
not require boxing.

Note: a typical Java runtime maintains a simple cache of integer and other primitive wrapper
object that is used by the vaiueor factory methods, and by autoboxing. For rnteger, the default
range of this cache is -128 to +127. Some JVMs provide a JVM command-line option for changing
the cache size / range.

Different Cases When Integer and int can be used interchangeably

Case 1. While using in the place of method arguments.

If a method requires an object of wrapper class as argument.Then interchangeably the argument
can be passed a variable of the respective primitive type and vice versa.

Example:

int i;

Integer j;

void ex_method(Integer 1i)//Is a valid statement
void ex_methodl (int j)//Is a valid statement

Case 2: While passing return values:

When a method returns a primitive type variable then an object of corresponding wrapper class
can be passed as the return value interchangeably and vice versa.

Example:

int i;
Integer j;
int ex_method()

https://riptutorial.com/ 94

{...

return j;}//Is a valid statement
Integer ex_methodl ()

{...

return i;//Is a valid statement

}

Case 3: While performing operations.

Whenever performing operations on numbers the primitive type variable and object of respective
wrapper class can be used interchangeably.

int i=5;

Integer j=new Integer(7);

int k=i+j;//Is a valid statement

Integer m=i+7j;//Is also a valid statement

Pitfall:Remember to initialize or assign a value to an object of the wrapper class.

While using wrapper class object and primitive variable interchangeably never forget or miss to
initialize or assign a value to the wrapper class object else it may lead to null pointer exception at
runtime.

Example:

public class Test{
Integer 1i;
int j;
public void met ()
{3=1;//Null pointer exception
SOP (3J) ;
SOP (1) ;}
public static void main(String[] args)
{Test t=new Test () ;
t.go();//Null pointer exception
}

In the above example, the value of the object is unassigned and uninitialized and thus at runtime
the program will run into null pointer exception.So as clear from the above example the value of
object should never be left uninitialized and unassigned.

Read Autoboxing online: https://riptutorial.com/java/topic/138/autoboxing

https://riptutorial.com/ 95

https://riptutorial.com/java/topic/138/autoboxing

C_hapter 13: Basic Control Structures

Remarks

All control structures, unless otherwise noted, make use of block statements. These are denoted
by curly braces ;.

This differs from normal statements, which do not require curly braces, but also come with a stiff
caveat in that only the line immediately following the previous statement would be considered.

Thus, it is perfectly valid to write any of these control structures without curly braces, so long as
only one statement follows the beginning, but it is strongly discouraged, as it can lead to buggy
implementations, or broken code.

Example:

// valid, but discouraged

Scanner scan = new Scanner (System.in);
int val = scan.nextInt ();
if(val % 2 == 0)

System.out.println ("Val was even!");

// invalid; will not compile

// note the misleading indentation here

for(int i = 0; i < 10; 1i++)
System.out.println (i) ;
System.out.println("i is currently: " + 1i);

Examples
If / Else If / Else Control

if (i < 2) {
System.out.println("i is less than 2");
} else if (i > 2) {
System.out.println("i is more than 2");
} else {
System.out.println("i is not less than 2, and not more than 2");

The it block will only run when i is 1 or less.

The e1se ir condition is checked only if all the conditions before it (in previous e1se if constructs,
and the parent ir constructs) have been tested to raise. In this example, the e1se if condition will
only be checked if i is greater than or equal to 2.

If its result is true, its block is run, and any e1se if and e1se constructs after it will be skipped.

https://riptutorial.com/ 96

https://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.5

If none of the ir and e1se if conditions have been tested to true, the e1se block at the end will be
run.

For Loops

for (int i = 0; 1 < 100; i++) {
System.out.println (i) ;

The three components of the ror loop (separated by ;) are variable declaration/initialization (here
int i = 0), the condition (here i < 100), and the increment statement (here i++). The variable
declaration is done once as if placed just inside the { on the first run. Then the condition is
checked, if it is true the body of the loop will execute, if it is raise the loop will stop. Assuming the
loop continues, the body will execute and finally when the ; is reached the increment statement
will execute just before the condition is checked again.

The curly braces are optional (you can one line with a semicolon) if the loop contains just one
statement. But, it's always recommended to use braces to avoid misunderstandings and bugs.

The ror loop components are optional. If your business logic contains one of these parts, you can
omit the corresponding component from your tor loop.

int i = obj.getlLastestValue(); // i value is fetched from a method

for (; 1 < 100; i++) { // here initialization is not done
System.out.println (i) ;

The for (;;) { function-body } Structure is equal to a while (true) lOOp.

Nested For Loops

Any looping statement having another loop statement inside called nested loop. The same way for
looping having more inner loop is called 'nested for loop'.

for (;;){
//Outer Loop Statements
for (;;){
//Inner Loop Statements
}
//Outer Loop Statements

Nested for loop can be demonstrated to print triangle shaped numbers.

for (int i=9;i>0;i--) {//Outer Loop
System.out.println();
for (int k=i;k>0;k--) {//Inner Loop -1
System.out.print (" ");
}
for (int j=i; j<=9; j++) {//Inner Loop -2
System.out.print (" "+73);

https://riptutorial.com/ 97

While Loops

int i = 0;

while (i < 100) { // condition gets checked BEFORE the loop body executes
System.out.println (i) ;
i++;

A wnile loop runs as long as the condition inside the parentheses is true. This is also called the
"pre-test loop" structure because the conditional statement must be met before the main loop body
is performed every time.

The curly braces are optional if the loop contains just one statement, but some coding style
conventions prefers having the braces regardless.

do...while Loop

The «o...wnile loop differs from other loops in that it is guaranteed to execute at least once. Itis
also called the "post-test loop"” structure because the conditional statement is performed after the
main loop body.

int 1 = 0;
do {
kg
System.out.println (i) ;
} while (i < 100); // Condition gets checked AFTER the content of the loop executes.

In this example, the loop will run until the number 100 is printed (even though the condition is i <
100 and not 1 <= 100), because the loop condition is evaluated after the loop executes.

With the guarantee of at least one execution, it is possible to declare variables outside of the loop
and initialize them inside.

String theWord;
Scanner scan = new Scanner (System.in);
do {
theWord = scan.nextLine();
} while (!theWord.equals ("Bird"));

System.out.println (theWord) ;

In this context, theword is defined outside of the loop, but since it's guaranteed to have a value
based on its natural flow, thewora will be initialized.

For Each

Java SE 5

https://riptutorial.com/ 98

With Java 5 and up, one can use for-each loops, also known as enhanced for-loops:

List strings = new ArrayList();

strings.add ("This");
strings.add("is");
strings.add("a for-each loop");

for (String string : strings) ({
System.out.println(string);
}

For each loops can be used to iterate over Arrays and implementations of the 1----v1< interface,
the later includes Collections classes, such as vist Or set.

The loop variable can be of any type that is assignable from the source type.

The loop variable for a enhanced for loop for 1terabie<t> Or T[] can be of type s, if

® T extends S

both r and s are primitive types and assignable without a cast

s Is a primitive type and t can be converted to a type assignable to s after unboxing
conversion.

T IS a primitive type and can be converted to s by autoboxing conversion.

Examples:

T elements = ...

for (S s : elements) {

}

int[] long yes

long(] int no

Iterable<Byte> Iong yes

Iterable<String> CharSequence yes

Iterable<CharSequence> Stﬂng no

int[] Long no

int[] Integer yes
If / Else

int 1 = 2;

https://riptutorial.com/

99

http://www.riptutorial.com/java/topic/99/arrays
https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
http://www.riptutorial.com/java/topic/90/collections

if (1 < 2) {
System.out.println("i is less than 2");
} else {
System.out.println("i is greater than 2");

}

An ir statement executes code conditionally depending on the result of the condition in
parentheses. When condition in parentheses is true it will enter to the block of if statement which is
defined by curly braces like ; and ;. opening bracket till the closing bracket is the scope of the if
statement.

The e1se block is optional and can be omitted. It runs if the it statement is ra1se and does not run
if the ir statement is true Because in that case ir Statement executes.

See also: Ternary If
Switch statement

The switch Statement is Java's multi-way branch statement. It is used to take the place of long i -
else if-else Chains, and make them more readable. However, unlike it statements, one may not
use inequalities; each value must be concretely defined.

There are three critical components to the switch Statement:

* case! This is the value that is evaluated for equivalence with the argument to the switch
statement.

* default: This is an optional, catch-all expression, should none of the case Statements
evaluate to true.

» Abrupt completion of the case statement; usually breax: This is required to prevent the
undesired evaluation of further case statements.

With the exception of continue, it is possible to use any statement which would cause the abrupt
completion of a statement. This includes:

® Dbreak
® return

® throw

In the example below, a typical switch Statement is written with four possible cases, including

default.
Scanner scan = new Scanner (System.in);
int i = scan.nextInt();

switch (1) {

case 0:
System.out.println("i is zero");
break;

case 1:
System.out.println("i is one");
break;

case 2:
System.out.println("i is two");

https://riptutorial.com/ 100

https://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.1
https://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.1

break;
default:
System.out.println("i is less than zero or greater than two");

By omitting nreax Or any statement which would an abrupt completion, we can leverage what are
known as "fall-through" cases, which evaluate against several values. This can be used to create
ranges for a value to be successful against, but is still not as flexible as inequalities.

Scanner scan = new Scanner (System.in);
int foo = scan.nextInt ();
switch (foo) {
case 1:
System.out.println("I'm equal or greater than one");
case 2:
case 3:
System.out.println("I'm one, two, or three");
break;
default:
System.out.println("I'm not either one, two, or three");

In case of roo == 1 the output will be:

I'm equal or greater than one
I'm one, two, or three

In case of roo == 3 the output will be:

I'm one, two, or three

Java SE 5

The switch statement can also be used with enunsS.

enum Option {
BLUE_PILL,
RED_PILL

public void takeOne (Option option) {
switch (option) {

case BLUE_PILL:
System.out.println("Story ends, wake up, believe whatever you want.");
break;

case RED_PILL:
System.out.println ("I show you how deep the rabbit hole goes.");
break;

Java SE 7

The switch Statement can also be used with strings.

https://riptutorial.com/ 101

public void rhymingGame (String phrase) {
switch (phrase) {

case "apples and pears":
System.out.println("Stairs");
break;

case "lorry":
System.out.println ("truck");
break;

default:
System.out.println ("Don't know any more");

Ternary Operator

Sometimes you have to check for a condition and set the value of a variable.

For ex.

String name;

if (A > B) {

name = "Billy";
} else {
name = "Jimmy";

This can be easily written in one line as
String name = A > B ? "Billy" : "Jimmy";

The value of the variable is set to the value immediately after the condition, if the condition is true.
If the condition is false, the second value will be given to the variable.

Break
The preax statement ends a loop (like for, whiie) or the evaluation of a switch statement.
Loop:

while (true) {
if (someCondition == 5) {
break;

The loop in the example would run forever. But when somecondition €quals s at some point of
execution, then the loop ends.

If multiple loops are cascaded, only the most inner loop ends using break.

Try ... Catch ... Finally

https://riptutorial.com/ 102

http://www.riptutorial.com/java/example/614/switch-statement

} control structure is used for handling Exceptions.

The try { ... } catch (...) {
String age_input = "abc";
try {
int age = Integer.parselnt (age_input);
if (age >= 18) {
System.out.println("You can vote!");
} else {
System.out.println ("Sorry, you can't vote yet.");

}

} catch (NumberFormatException ex) {

System.err.println("Invalid input. '" + age_input + "' is not a valid integer.");

This would print:
Invalid input. 'abc’ is not a valid integer.

A rinally clause can be added after the catch. The fina11y clause would always be executed,
regardless of whether an exception was thrown.

try { ... } catch (...) { ... } finally { ... }
String age_input = "abc";
try {
int age = Integer.parselnt (age_input) ;

if (age >= 18) {
System.out.println ("You can vote!");
} else {
System.out.println ("Sorry, you can't vote yet.");
}
} catch (NumberFormatException ex) {
System.err.println("Invalid input.

} finally {
System.out.println ("This code will always be run,

'" + age_input + "' is not a valid integer.");

even i1if an exception is thrown");

This would print:

Invalid input. 'abc’ is not a valid integer.
This code will always be run, even if an exception is thrown

Nested break / continue

It's possible to break / continue t0 @an outer loop by using label statements:

outerloop:
for(...) {
innerloop:
for(...) {
if (conditionl)
break outerloop;

if (condition2)
continue innerloop; // equivalent to: continue;

https://riptutorial.com/ 103

http://www.riptutorial.com/java/topic/89/exceptions-and-exception-handling

There is no other use for labels in Java.
Continue Statement in Java

The continue statement is used to skip the remaining steps in the current iteration and start with
the next loop iteration. The control goes from the continue Statement to the step value (increment
or decrement), if any.

String[] programmers = {"Adrian", "Paul", "John", "Harry"};

//john is not printed out
for (String name : programmers) {
if (name.equals ("John"))
continue;
System.out.println (name) ;

The continue Statement can also make the control of the program shift to the step value (if any) of
a named loop:

Outer: // The name of the outermost loop is kept here as 'Outer'
for(int i = 0; i < 5;)
{

for(int j = 0; j < 5; Jj++)

{

continue Outer;

}

Read Basic Control Structures online: https://riptutorial.com/java/topic/118/basic-control-structures

https://riptutorial.com/ 104

https://riptutorial.com/java/topic/118/basic-control-structures

C_hapter 14: Benchmarks

Introduction

Writing performance benchmarks in java is not as simple as getting system.currentTimeMillis () IN
the beginning and in the end and calculating the difference. To write valid performance
benchmarks, one should use proper tools.

Examples

Simple JMH example

One of the tools for writing proper benchmark tests is JVIH. Let's say we want to compare
performance of searching an element in sashset VS Treeset.

The easiest way to get JHM into your project - is to use maven and shade plugin. Also you can
see pom.xm1 from JHM examples.

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.0.0</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<finalName>/benchmarks</finalName>
<transformers>
<transformer

implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>org.openjdk.jmh.Main</mainClass>
</transformer>
</transformers>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
</configuration>
</execution>
</executions>
</plugin>

https://riptutorial.com/ 105

http://openjdk.java.net/projects/code-tools/jmh/
https://maven.apache.org/plugins/maven-shade-plugin/
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-archetypes/jmh-java-benchmark-archetype/src/main/resources/archetype-resources/pom.xml

</plugins>
</build>

<dependencies>
<dependency>
<groupId>org.openjdk. jmh</groupIld>
<artifactId>jmh-core</artifactId>
<version>1.18</version>
</dependency>
<dependency>
<groupId>org.openijdk. jmh</groupIld>
<artifactId>jmh-generator—-annprocess</artifactId>
<version>1.18</version>
</dependency>
</dependencies>

After this you need to write benchmark class itself:

package benchmark;

import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;

import java.util.HashSet;
import java.util.Random;
import java.util.Set;

import java.util.TreeSet;

import java.util.concurrent.TimeUnit;

@State (Scope.Thread)
public class CollectionFinderBenchmarkTest ({
private static final int SET_SIZE = 10000;

private Set<String> hashSet;
private Set<String> treeSet;

private String stringToFind = "8888";

@Setup

public void setupCollections () {
hashSet = new HashSet<>(SET_SIZE);
treeSet = new TreeSet<>();

for (int i1 = 0; 1 < SET_SIZE; i++) {
final String value = String.valueOf (i) ;
hashSet .add(value);
treeSet.add(value);

stringToFind = String.valueOf (new Random () .nextInt (SET_SIZE));

@Benchmark

@BenchmarkMode (Mode.AverageTime)

@OutputTimeUnit (TimeUnit .NANOSECONDS)

public void testHashSet (Blackhole blackhole) {
blackhole.consume (hashSet.contains (stringToFind)) ;

@Benchmark

https://riptutorial.com/ 106

@BenchmarkMode (Mode .AverageTime)

@OutputTimeUnit (TimeUnit .NANOSECONDS)

public void testTreeSet (Blackhole blackhole) {
blackhole.consume (treeSet.contains (stringToFind)) ;

Please keep in mind this biackhole.consume (), We'll get back to it later. Also we need main class for

running benchmark:

package benchmark;

import org.openjdk.jmh.runner.Runner;

import org.openjdk.jmh.runner.RunnerException;

import org.openjdk.jmh.runner.options.Options;

import org.openjdk.jmh.runner.options.OptionsBuilder;

public class BenchmarkMain {
public static void main(String[] args) throws RunnerException {

final Options options = new OptionsBuilder ()
.include (CollectionFinderBenchmarkTest.class.getSimpleName ())
.forks (1)
Jbuild() ;

new Runner (options) .run();

And we're all set. We just need to run mvn package (it will create venchmarks. jar iN YOUr /target

folder) and run our benchmark test:

java -cp target/benchmarks. jar benchmark.BenchmarkMain

And after some warmup and calculation iterations, we will have our results:

Run complete. Total time: 00:01:21

Benchmark Mode Cnt Score Error Units
CollectionFinderBenchmarkTest.testHashSet avgt 20 9.940 0.270 ns/op
CollectionFinderBenchmarkTest.testTreeSet avgt 20 98.858 13.743 ns/op

+ I+

About that v1acknhole.consume (). If your calculations do not change the state of your application,
java will most likely just ignore it. So, in order to avoid it, you can either make your benchmark

methods return some value, or use silackhole Object to consume it.

You can find more information about writing proper benchmarks in Aleksey Shipilév's blog, in

Jacob Jenkov's blog and in java-performance blog: 1, 2.

Read Benchmarks online: https://riptutorial.com/java/topic/9514/benchmarks

https://riptutorial.com/

107

https://shipilev.net/blog/2014/nanotrusting-nanotime/
http://tutorials.jenkov.com/java-performance/jmh.html
http://java-performance.info/jmh/
http://java-performance.info/introduction-jmh-profilers/
https://riptutorial.com/java/topic/9514/benchmarks

C_hapter 15: BigDecimal

Introduction

The BigDecimal class provides operations for arithmetic (add, subtract, multiply, divide), scale
manipulation, rounding, comparison, hashing, and format conversion. The BigDecimal represents
immutable, arbitrary-precision signed decimal numbers. This class shall be used in a necessity of
high-precision calculation.

Examples

BigDecimal objects are immutable

If you want to calculate with BigDecimal you have to use the returned value because BigDecimal
objects are immutable:

BigDecimal a new BigDecimal ("42.23");

BigDecimal b = new BigDecimal ("10.001");
a.add(b); // a will still be 42.23

BigDecimal ¢ = a.add(b); // c will be 52.231
Comparing BigDecimals

The method ccnpareto should be used to compare eigpecimals:

BigDecimal a = new BigDecimal (5);
a.compareTo (new BigDecimal (0)); // a is greater, returns 1

a.compareTo (new BigDecimal (5)) // a is equal, returns 0

7
a.compareTo (new BigDecimal (10)); // a is less, returns -1

Commonly you should not use the =-u21s method since it considers two sigpecimals equal only if
they are equal in value and also scale:

BigDecimal a = new BigDecimal (5);
a.equals (new BigDecimal (5)); // value and scale are equal, returns true
a.equals (new BigDecimal (5.00)); // value is equal but scale is not, returns false

Mathematical operations with BigDecimal

This example shows how to perform basic mathematical operations using BigDecimals.

1.Addition

https://riptutorial.com/ 108

http://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html#compareTo-java.math.BigDecimal-
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html#equals-java.lang.Object-

BigDecimal a = new BigDecimal ("5");

BigDecimal b new BigDecimal ("7");

//Equivalent to result = a + b

BigDecimal result = a.add(b);
System.out.println (result);

Result: 12

2.Subtraction

BigDecimal a = new BigDecimal ("5");

BigDecimal b = new BigDecimal ("7");

//Equivalent to result = a - b
BigDecimal result = a.subtract (b);

System.out.println (result) ;

Result : -2

3.Multiplication

When multiplying two rigpecima1S the result is going to have scale equal to the sum of the scales
of operands.

BigDecimal a new BigDecimal ("5.11");

BigDecimal b = new BigDecimal ("7.221");

//Equivalent to result = a * b
BigDecimal result = a.multiply (b);
System.out.println (result) ;

Result : 36.89931

To change the scale of the result use the overloaded multiply method which allows passing
MathContext - an object describing the rules for operators, in particular the precision and rounding
mode of the result. For more information about available rounding modes please refer to the
Oracle Documentation.

BigDecimal a = new BigDecimal ("5.11");

BigDecimal b = new BigDecimal ("7.221");

MathContext returnRules = new MathContext (4, RoundingMode.HALF_DOWN) ;

//Equivalent to result = a * b
BigDecimal result = a.multiply (b, returnRules);

System.out.println (result) ;

Result : 36.90

https://riptutorial.com/ 109

4.Division

Division is a bit more complicated than the other arithmetic operations, for instance consider the
below example:

BigDecimal a = new BigDecimal ("5");

BigDecimal b = new BigDecimal ("7");

BigDecimal result = a.divide (b);
System.out.println (result) ;

We would expect this to give something similar to : 0.7142857142857143, but we would get:

Result: java.lang.ArithmeticException: Non-terminating decimal expansion; no
exact representable decimal result.

This would work perfectly well when the result would be a terminating decimal say if | wanted to
divide 5 by 2, but for those numbers which upon dividing would give a non terminating result we
would get an arithmeticException. IN the real world scenario, one cannot predict the values that
would be encountered during the division, so we need to specify the Scale and the Rounding
Mode for BigDecimal division. For more information on the Scale and Rounding Mode, refer the
Oracle Documentation.

For example, | could do:

BigDecimal a

new BigDecimal ("5");
BigDecimal b = new BigDecimal ("7");

//Equivalent to result = a / b (Upto 10 Decimal places and Round HALF_UP)

BigDecimal result = a.divide (b, 10, RoundingMode.HALF_UP) ;
System.out.println (result) ;

Result : 0.7142857143

5.Remainder or Modulus

BigDecimal a = new BigDecimal ("5");

BigDecimal b new BigDecimal ("7");

//Equivalent to result = a $ b

BigDecimal result = a.remainder (b);
System.out.println (result);

Result: 5

6.Power

https://riptutorial.com/ 110

https://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html

BigDecimal a = new BigDecimal ("5");
//Equivalent to result = a”10

BigDecimal result = a.pow(10);
System.out.println (result);

Result : 9765625

7.Max

BigDecimal a new BigDecimal ("5");

BigDecimal b new BigDecimal ("7");

//Equivalent to result = MAX(a,b)
BigDecimal result = a.max(b);
System.out.println (result) ;

Result : 7

8.Min

BigDecimal a = new BigDecimal ("5");

BigDecimal b new BigDecimal ("7");

//Equivalent to result = MIN(a,b)

BigDecimal result = a.min(b);
System.out.println (result) ;

Result : 5

O.Move Point To Left

BigDecimal a = new BigDecimal ("5234.49843776");
//Moves the decimal point to 2 places left of current position

BigDecimal result = a.movePointLeft (2);
System.out.println (result);

Result : 52.3449843776

10.Move Point To Right

BigDecimal a = new BigDecimal ("5234.49843776");

//Moves the decimal point to 3 places right of current position
BigDecimal result = a.movePointRight (3);

https://riptutorial.com/ 111

System.out.println (result);

Result : 5234498.43776

There are many more options and combination of parameters for the above mentioned examples
(For instance, there are 6 variations of the divide method), this set is a non-exhaustive list and
covers a few basic examples.

Using BigDecimal instead of float

Due to way that the float type is represented in computer memory, results of operations using this
type can be inaccurate - some values are stored as approximations. Good examples of this are
monetary calculations. If high precision is necessary, other types should be used. e.g. Java 7
provides BigDecimal.

import java.math.BigDecimal;
public class FloatTest {

public static void main(String[] args) {

float accountBalance = 10000.00f;

System.out.println ("Operations using float:");

System.out.println("1000 operations for 1.99");

for(int i = 0; i<1000; i++) {

accountBalance —-= 1.99f;

}

System.out.println (String.format ("Account balance after float operations: %f",
accountBalance));

BigDecimal accountBalanceTwo = new BigDecimal ("10000.00");

System.out.println ("Operations using BigDecimal:");

System.out.println("1000 operations for 1.99");

BigDecimal operation = new BigDecimal ("1.99");

for(int i = 0; i<1000; i++) {

accountBalanceTwo = accountBalanceTwo.subtract (operation) ;

}

System.out.println (String.format ("Account balance after BigDecimal operations: S$f",
accountBalanceTwo)) ;

}
Output of this program is:

Operations using float:

1000 operations for 1.99

Account balance after float operations: 8009,765625
Operations using BigDecimal:

1000 operations for 1.99

Account balance after BigDecimal operations: 8010,000000

For a starting balance of 10000.00, after 1000 operations for 1.99, we expect the balance to be
8010.00. Using the float type gives us an answer around 8009.77, which is unacceptably
imprecise in the case of monetary calculations. Using BigDecimal gives us the proper result.

https://riptutorial.com/ 112

BigDecimal.valueOf()

The BigDecimal class contains an internal cache of frequently used numbers e.g. 0 to 10. The
BigDecimal.valueOf() methods are provided in preference to constructors with similar type
parameters i.e. in the below example a is preferred to b.

BigDecimal a = BigDecimal.valueOf (10L); //Returns cached Object reference
BigDecimal b = new BigDecimal (10L); //Does not return cached Object reference
BigDecimal a = BigDecimal.valueOf (20L); //Does not return cached Object reference
BigDecimal b = new BigDecimal (20L); //Does not return cached Object reference

BigDecimal a = BigDecimal.valueOf (15.15); //Preferred way to convert a double (or float) into
a BigDecimal, as the value returned is equal to that resulting from constructing a BigDecimal
from the result of using Double.toString(double)

BigDecimal b = new BigDecimal (15.15); //Return unpredictable result

Initialization of BigDecimals with value zero, one or ten

BigDecimal provides static properties for the numbers zero, one and ten. It's good practise to use
these instead of using the actual numbers:

® BigDecimal.ZERO
® BigDecimal.ONE
® BigDecimal.TEN

By using the static properties, you avoid an unnecessary instantiation, also you've got a literal in
your code instead of a ‘magic number'.

//Bad example:

BigDecimal badO0 = new BigDecimal (0) ;
BigDecimal badl = new BigDecimal (1) ;
BigDecimal badlO = new BigDecimal (10);

//Good Example:

BigDecimal goodO = BigDecimal.ZERO;
BigDecimal goodl = BigDecimal.ONE;
BigDecimal goodl0 = BigDecimal.TEN;

Read BigDecimal online: https://riptutorial.com/java/topic/1667/bigdecimal

https://riptutorial.com/ 113

http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html#ZERO
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html#ONE
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html#TEN
https://riptutorial.com/java/topic/1667/bigdecimal

C_hapter 16: BigInteger

Introduction

The =iginteqer class is used for mathematical operations involving large integers with magnitudes
too large for primitive data types. For example 100-factorial is 158 digits - much larger than a 1ong
can represent. siginteger provides analogues to all of Java's primitive integer operators, and all
relevant methods from java.1ang.Math as well as few other operations.

Syntax

» Biginteger variable_name = new Biglnteger("12345678901234567890"); // a decimal integer
as a string

» Biglnteger variable_name = new
Biginteger("1010101101010100101010011000110011101011000111110000101011010010",
2) /l a binary integer as a string

» Biginteger variable_name = new BigInteger("ab54a98ceb1f0800", 16) // a hexadecimal
integer as a string

» Biglnteger variable_name = new Biginteger(64, new Random()); // a pseudorandom number
generator supplying 64 bits to construct an integer

» Biglnteger variable_name = new Biginteger(new byte[]{0, -85, 84, -87, -116, -21, 31, 10, -
46}); I/ signed two's complement representation of an integer (big endian)

* Biginteger variable_name = new Biginteger(1, new byte[]{-85, 84, -87, -116, -21, 31, 10, -
46}); /l unsigned two's complement representation of a positive integer (big endian)

Remarks

BigInteger IS Immutable. Therefore you can't change its state. For example, the following won't
work as sum Won't be updated due to immutability.

BigInteger sum = BigInteger.ZERO;
for(int i = 1; i < 5000; i++) {

sum.add (BigInteger.valueOf (1)) ;
}

Assign the result to the sum variable to make it work.

sum = sum.add (BigInteger.valueOf (i));

Java SE 8

The official documentation of siginteger States that siginteger implementations should support all
integers between -22147483647 gnq 22147483647 (exclusive). This means eigintegerS can have

more than 2 billion bits!

https://riptutorial.com/ 114

https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html

Examples

Initialization

The java.math.BigInteger Class provides operations analogues to all of Java's primitive integer
operators and for all relevant methods from java.1ang.vath. AS the java.math package is not
automatically made available you may have to import java.math.BigIinteger before you can use the
simple class name.

To convert 1ong O int values to BigInteger USE:

long longValue = Long.MAX_VALUE;
BigInteger valueFromLong = BigInteger.valueOf (longValue) ;

or, for integers:

int intValue = Integer.MIN_VALUE; // negative
BigInteger valueFromInt = BigInteger.valueOf (intValue) ;

which will widen the intvaiue integer to long, using sign bit extension for negative values, so that
negative values will stay negative.

To convert a numeric String tO BigInteger USE:

String decimalString = "-1";
BigInteger valueFromDecimalString = new BigInteger (decimalString);

Following constructor is used to translate the String representation of a siginteger in the specified
radix into a BigInteger.

String binaryString = "10";
int binaryRadix = 2;
BigInteger valueFromBinaryString = new BigInteger (binaryString , binaryRadix);

Java also supports direct conversion of bytes to an instance of siginteger. Currently only signed
and unsigned big endian encoding may be used:

byte[] bytes = new byte[] { (byte) 0x80 };
BigInteger valueFromBytes = new BigInteger (bytes);

This will generate a siginteger instance with value -128 as the first bit is interpreted as the sign bit.

byte[] unsignedBytes = new byte[] { (byte) 0x80 };
int sign = 1; // positive
BigInteger valueFromUnsignedBytes = new BigInteger (sign, unsignedBytes);

This will generate a siginteger instance with value 128 as the bytes are interpreted as unsigned

https://riptutorial.com/ 115

number, and the sign is explicitly set to 1, a positive number.

There are predefined constants for common values:

* BigInteger.zEro — Value of "0".
® BigInteger.ONE — value of "1".
® BigInteger.TEN — value of "10".

There's also siginteger.two (vValue of "2"), but you can't use it in your code because it's private.
Comparing Bigintegers
You can compare eigintegers SAmMe as you compare string Or other objects in Java.

For example:

BigInteger one = BigInteger.valueOf (1);
BigInteger two = BigInteger.valueOf (2);

if (one.equals (two)) {
System.out.println ("Equal");

}

else{

System.out.println ("Not Equal");

Output:

Not Equal

Note:
In general, do not use use the == operator to compare Biglntegers

» —= operator: compares references; i.e. whether two values refer to the same object
* cquals () method: compares the content of two Bigintegers.

For example, Bigintegers should not be compared in the following way:

if (firstBigInteger == secondBiglInteger) {
// Only checks for reference equality, not content equality!

}

Doing so may lead to unexpected behavior, as the == operator only checks for reference equality.
If both Biglntegers contain the same content, but do not refer to the same object, this will fail.
Instead, compare Biglntegers using the <qua1s methods, as explained above.

You can also compare your siginteger t0 constant values like 0,1,10.

for example:

https://riptutorial.com/ 116

BigInteger reallyBig = BigInteger.valueOf (1);
if (BigInteger.ONE.equals (reallyBig)) {
//code when they are equal.

You can also compare two Biglntegers by using compareto () method, as following: compareto ()
returns 3 values.

* 0: When both are equal.
* 1: When first is greater than second (the one in brackets).
» -1: When first is less than second.

BigInteger reallyBig = BigInteger.valueOf (10);
BigInteger reallyBigl = BigInteger.valueOf (100);

if (reallyBig.compareTo (reallyBigl) == 0) {

//code when both are equal.

}
else if (reallyBig.compareTo (reallyBigl) == 1) {
//code when reallyBig is greater than reallyBigl.

}
else if (reallyBig.compareTo (reallyBigl) == -1) {
//code when reallyBig is less than reallyBigl.

Biginteger Mathematical Operations Examples

Biginteger is in an immutable object, so you need to assign the results of any mathematical
operation, to a new BigInteger instance.

Addition: 10 + 10 =20

BigInteger valuel = new BigInteger ("10");
BigInteger value2 = new BigInteger ("10");

BigInteger sum = valuel.add(value2);
System.out.println (sum);

output: 20

Substraction: 10-9=1

BigInteger valuel = new BigInteger ("10");
BigInteger value2 = new BigInteger ("9");

BigInteger sub = valuel.subtract (value2);
System.out.println (sub);

output: 1

Division: 10/5=2

https://riptutorial.com/ 117

BigInteger
BigInteger

BigInteger
System.out

valuel =
value2 =

new BigInteger ("10");

new BigInteger ("5");

div = valuel.divide (value2);

output: 2

Division: 17/4 =4

BigInteger
BigInteger

BigInteger
System.out

.println (div);

valuel = new BigInteger ("17");
value2 = new BigInteger ("4");
div = valuel.divide (value2);

output: 4

.println (div) ;

Multiplication: 10 * 5 = 50

BigInteger
BigInteger

BigInteger
System.out

valuel = new BigInteger ("10");
value2 = new BigInteger ("5");
mul = valuel.multiply(value2);

output: 50

.println (mul) ;

Power: 10~ 3 =1000

BigInteger
BigInteger

valuel =

new BigInteger ("10");

power = valuel.pow(3);

System.out.println (power) ;

output: 1000

Remainder: 10 % 6 =4

BigInteger
BigInteger

BigInteger
System.out

valuel = new BigInteger ("10");
value2 = new BigInteger ("6");
power = valuel.remainder (value?2);

output: 4

GCD: Greatest Common Divisor (GCD) for 12and 1s is &.

BigInteger
BigInteger

valuel =
value2 =

.println (power) ;

new BigInteger ("12");
new BigInteger ("18");

System.out.println(valuel.gcd(value2));

https://riptutorial.com/

118

Output: 6

Maximum of two BigIntegers:

BigInteger valuel = new BigInteger ("10");
BigInteger value2 = new BigInteger ("11");

System.out.println(valuel.max (value2));

Output: 11

Minimum of two Biglntegers:

BigInteger valuel = new BigInteger ("10");
BigInteger value2 = new BigInteger ("11");

System.out.println(valuel.min (value2));
Output: 10

Binary Logic Operations on Biginteger

BigInteger supports the binary logic operations that are available to numver types as well. As with
all operations they are implemented by calling a method.

Binary Or:

BigInteger vall = new BigInteger ("10");
BigInteger val2 = new BigInteger ("9");

vall.or (val2);

Output: 11 (which is equivalent to 10 | 9)

Binary And:

BigInteger vall = new BigInteger ("10");
BigInteger val2 = new BigInteger ("9");

vall.and(val2);
Output: 8 (which is equivalent to 10 & 9)
Binary Xor:

BigInteger vall = new BigInteger ("10");
BigInteger val2 = new BigInteger ("9");

vall.xor (val2);

Output: 3 (which is equivalent to 10 ~ 9)

https://riptutorial.com/ 119

RightShift:

BigInteger vall = new BigInteger ("10");
vall.shiftRight (1); // the argument be an Integer
Output: 5 (equivalent to 10 >> 1)

LeftShift:

BigInteger vall = new BigInteger ("10");
vall.shiftLeft (1); // here parameter should be Integer
Output: 20 (equivalent to 10 << 1)

Binary Inversion (Not):

BigInteger vall = new BigInteger ("10");

vall.not ();

Output: 5

NAND (And-Not):*

BigInteger vall = new BigInteger ("10");
BigInteger val2 = new BigInteger ("9");

vall.andNot (val2);
Output: 7
Generating random Biglintegers

The siginteger class has a constructor dedicated to generate random sigintegers, given an
instance of java.util.random @and an int that specifies how many bits will the siginteger have. Its
usage is quite simple - when you call the constructor ziginceqer (int, random) like this:

BigInteger randomBigInt = new BigInteger (bitCount, sourceOfRandomness);

then you'll end up with a rigrnteger Whose value is between 0 (inclusive) and 2P1tCount
(exclusive).

This also means that new BigInteger (2147483647, sourceOfRandomness) may return all positive
BigIntegerS given enough time.

What will the sourceofrandomness be is up to you. For example, @ new random() iS good enough in
most cases:

https://riptutorial.com/ 120

https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html#BigInteger-int-java.util.Random-

new BigInteger (32, new Random());

If you're willing to give up speed for higher-quality random numbers, you can use a new
SecureR:hdom()inStead:

import java.security.SecureRandom;

// somewhere in the code...
new BigInteger (32, new SecureRandom());

You can even implement an algorithm on-the-fly with an anonymous class! Note that rolling out
your own RNG algorithm will end you up with low quality randomness, so always be sure to
use an algorithm that is proven to be decent unless you want the resulting sigrnteger(S) to be
predictable.

new BigInteger (32, new Random() {
int seed = 0;

@Override
protected int next (int bits) {
seed = ((22695477 * seed) + 1) & 2147483647; // Values shamelessly stolen from
Wikipedia
return seed;
}
1)

Read Biglnteger online: https://riptutorial.com/java/topic/1514/biginteger

https://riptutorial.com/ 121

https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
https://riptutorial.com/java/topic/1514/biginteger

C_hapter 17: Bit Manipulation

Remarks

» Unlike C/C++, Java is completely endian-neutral with respect to the underlying machine
hardware. You do not get big or little endian behavior by default; you have to explicitly
specify which behavior you want.

* The byte type is signed, with the range -128 to +127. To convert a byte value to its unsigned
equivalent, mask it with OXFF like this: (v s oxFF).

Examples

Packing / unpacking values as bit fragments

It is common for memory performance to compress multiple values into a single primitive value.
This may be useful to pass various information into a single variable.

For example, one can pack 3 bytes - such as color code in RGB - into an single int.

Packing the values

// Raw bytes as input

byte[] b = {(byte)0x65, (byte)OxFF, (byte)0x31};
// Packed in big endian: x == 0x65FF31
int x = (b[0] & OxFF) << 16 // Red

| (b[l] & OxFF) << 8 // Green
| (b[2] & OxXFF) << 0; // Blue

// Packed in little endian: y == 0x31FF65
int y = (b[0] & OxFF) << O
| (b[l] & OxFF) << 8
| (b[2] & OxFF) << 16;

Unpacking the values

// Raw 1nt32 as input
int x = 0x31FF65;

// Unpacked in big endian: {0x65, OxFF, 0x31}
byte[] ¢ = {
(byte) (x >> 16),
(byte) (x >> 8),
(byte) (x & OxFF)
}i

// Unpacked in little endian: {0x31, OxFF, 0x65}

byte[] d = {
(byte) (x & OxFF),
(byte) (x >> 8),

https://riptutorial.com/ 122

https://en.wikipedia.org/wiki/RGB_color_model

(byte) (x >> 16)

}i

Checking, setting, clearing, and toggling individual bits. Using long as bit

mask

Assuming we want to modify bit » of an integer primitive, i (byte, short, char, int, or long):

(1 & 1 << n) != 0 // checks bit 'n'

i |= 1 << n;
i &= ~(1 << n);
i *= 1 << n;

// sets bit 'n' to 1
// sets bit 'n' to 0
//

Using long/int/short/byte as a bit mask:

public class BitMaskExample {

private static

private static

private static

private static

private static

private static

public static void main (Stringl[]

final long FIRST_BIT

toggles the value of bit 'n'

= 1L << 0;

final long SECOND_BIT = 1L << 1;

final long THIRD_BIT

= 1L << 2;

final long FOURTH_BIT = 1L << 3;

final long FIFTH_BIT = 1L << 4;
final long BIT_55 = 1L << 54;
args) {

checkBitMask (FIRST BIT | THIRD BIT | FIFTH BIT | BIT 55);

private static

void checkBitMask (long bitmask) {

System.out.println ("FIRST_BIT:
System.out.println ("SECOND_BIT:
System.out.println ("THIRD_BIT:
System.out.println ("FOURTh_BIT:
System.out.println ("FIFTH_BIT:
System.out.println ("BIT_55: " +

Prints

FIRST_BIT: true
SECOND_BIT: false
THIRD_BIT: true
FOURTh_BIT: false
FIFTH_BIT: true
BIT_55: true

" + ((bitmask & FIRST_BIT) != 0));

" + ((bitmask & SECOND_BIT) != 0));
" + ((bitmask & THIRD_BIT) != 0));

" + ((bitmask & FOURTH_BIT) != 0));
" + ((bitmask & FIFTH_BIT) != 0));
((bitmask & BIT_55) != 0));

which matches that mask we passed as checkpitmask parameter: FIRST_BIT | THIRD_BIT | FIFTH_BIT

| BIT_55.

Expressing the power of 2

For expressing the power of 2 (2"*n) of integers, one may use a bitshift operation that allows to

explicitly specify the n.

https://riptutorial.com/

123

The syntax is basically:
int pow2 = 1<<nj;
Examples:

int twoExpd = 1<<4; //274
1<<5; //2"5
1<<6; //276

int twoExpb5

int twoExp6

int twoExp3l = 1<<31; //2731

This is especially useful when defining constant values that should make it apparent, that a power
of 2 is used, instead of using hexadecimal or decimal values.

0x10; //hexadecimal
0x20; //hexadecimal
64; //decimal

int twoExp4

int twoExpb5

int twoExpb6

int twoExp3l = -2147483648; //is that a power of 27

A simple method to calculate the int power of 2 would be

int pow2 (int exp) {
return 1<<exp;

}

Checking if a number is a power of 2

If an integer x is a power of 2, only one bit is set, whereas x-1 has all bits set after that. For
example: 4 is 100 and 3 is 011 as binary number, which satisfies the aforementioned condition. Zero
is not a power of 2 and has to be checked explicitly.

boolean isPowerOfTwo (int x)

{
return (x != 0) && ((x & (x — 1)) == 0);
}

Usage for Left and Right Shift

Let’s suppose, we have three kind of permissions, READ, WRITE and EXECUTE. Each
permission can range from 0 to 7. (Let’'s assume 4 bit number system)

RESOURCE = READ WRITE EXECUTE (12 bit number)
RESOURCE = 0100 0110 0101 =4 6 5 (12 bit number)
How can we get the (12 bit number) permissions, set on above (12 bit number)?

0100 0110 0101

https://riptutorial.com/ 124

0000 0000 0111 (&)
0000 0000 0101 =5

So, this is how we can get the EXECUTE permissions of the RESOURCE. Now, what if we want
to get READ permissions of the RESOURCE?

0100 0110 0101
0111 0000 0000 (&)
0100 0000 0000 = 1024

Right? You are probably assuming this? But, permissions are resulted in 1024. We want to get
only READ permissions for the resource. Don’t worry, that's why we had the shift operators. If we
see, READ permissions are 8 bits behind the actual result, so if apply some shift operator, which
will bring READ permissions to the very right of the result? What if we do:

0100 0000 0000 >> 8 => 0000 0000 0100 (Because it's a positive number so replaced
with O’s, if you don’t care about sign, just use unsigned right shift operator)

We now actually have the READ permissions which is 4.

Now, for example, we are given READ, WRITE, EXECUTE permissions for a RESOURCE, what
can we do to make permissions for this RESOURCE?

Let's first take the example of binary permissions. (Still assuming 4 bit number system)
READ = 0001
WRITE = 0100
EXECUTE = 0110

If you are thinking that we will simply do:

READ | WRITE | EXECUTE, YOU are somewhat right but not exactly. See, what will happen if we will
perform READ | WRITE | EXECUTE

0001 | 0100|0110 =>0111
But permissions are actually being represented (in our example) as 0001 0100 0110

So, in order to do this, we know that READ is placed 8 bits behind, WRITE is placed 4 bits behind
and PERMISSIONS is placed at the last. The number system being used for RESOURCE
permissions is actually 12 bit (in our example). It can(will) be different in different systems.

(READ << 8) | (WRITE << 4) | (EXECUTE)

0000 0000 0001 << 8 (READ)

https://riptutorial.com/ 125

0001 0000 0000 (Left shift by 8 bits)
0000 0000 0100 << 4 (WRITE)
0000 0100 0000 (Left shift by 4 bits)
0000 0000 0001 (EXECUTE)
Now if we add the results of above shifting, it will be something like;
0001 0000 0000 (READ)
0000 0100 0000 (WRITE)
0000 0000 0001 (EXECUTE)

0001 0100 0001 (PERMISSIONS)
java.util.BitSet class

Since 1.7 there's a java.util.BitSet class that provides simple and user-friendly bit storage and
manipulation interface:

final BitSet bitSet = new BitSet(8); // by default all bits are unset

IntStream.range (0, 8).filter(i -> i % 2 == 0).forEach(bitSet::set); // {0, 2, 4, 6}
bitSet.set(3); // {0, 2, 3, 4, 6}

bitSet.set (3, false); // {0, 2, 4, 6}

final boolean b = bitSet.get(3); // b = false

bitSet.flip(6); // {0, 2, 4}

bitSet.set (100); // {0, 2, 4, 100} - expands automatically

Bitset IMplements cionable and serializable, and under the hood all bit values are stored in 1ong]
words field, that expands automatically.

It also supports whole-set logical operations and, or, xor, andNot:

’

bitSet.and (new BitSet (8)
bitSet.or (new BitSet (8)
bitSet.xor (new BitSet (8

)
)
))
bitSet.andNot (new BitSet

(;));
Signed vs unsigned shift

In Java, all number primitives are signed. For example, an int always represent values from [-2731
- 1, 2731], keeping the first bit to sign the value - 1 for negative value, O for positive.

https://riptutorial.com/ 126

http://docs.oracle.com/javase/8/docs/api/java/util/BitSet.html

Basic shift operators >> and << are signed operators. They will conserve the sign of the value.

But it is common for programmers to use numbers to store unsigned values. For an int, it means
shifting the range to [0, 2732 - 1], to have twice as much value as with a signed int.

For those power users, the bit for sign as no meaning. That's why Java added >>>, a left-shift
operator, disregarding that sign bit.

initial value:

signed left-shift: 4 << 1
signed right-shift: 4 >> 1
unsigned right-shift: 4 >>> 1
initial value:

signed left-shift: -4 << 1
signed right-shift: -4 >> 1
unsigned right-shift: -4 >>> 1

N N o

2147483646

~ o~ o~~~ o~~~

100)
1000)
10
10
11111111111111111111111111111100
11111111111111111111111111111000

11111111111111111111111111111110

)
)
)
)
)
1111111111111111111111111111110)

Why is there no <<<?

This comes from the intended definition of right-shift. As it fills the emptied places on the left, there
are no decision to take regarding the bit of sign. As a consequence, there is no need for 2 different

operators.

See this question for a more detailled answer.

Read Bit Manipulation online: https://riptutorial.com/java/topic/1177/bit-manipulation

https://riptutorial.com/

127

https://www.quora.com/Why-is-there-no-unsigned-left-shift-operator-in-Java
https://riptutorial.com/java/topic/1177/bit-manipulation

C_hapter 18: BufferedWriter

Syntax

» new BufferedWriter(Writer); //The default constructor
» BufferedWriter.write(int c); //Writes a single character
» BufferedWriter.write(String str); //Writes a string

« BufferedWriter.newLine(); //Writes a line separator

» BufferedWriter.close(); //Closes the BufferedWriter

Remarks

* If you try to write from a sufferednriter (USING Bufferedwriter.write ()) after closing the
BufferedWriter‘(USing BufferedWriter.close()),itVV”'thrOVV adN IOException.

* The Bufferedwriter (writer) constructor does NOT throw an roexception. HOwever, the
FileWriter (File) constructor throws a FileNotFoundException, which extends I0Exception. SO
catching roexception Will also catch riienotrFoundexception, there is never a need for a second
catch statement unless you plan on doing something different with the ri1enotFoundException.

Examples

Write a line of text to File

This code writes the string to a file. It is important to close the writer, so this is done in a finaliy
block.

public void writeLineToFile (String str) throws IOException {

File file = new File("file.txt");
BufferedWriter bw = null;
try {

bw = new BufferedWriter (new FileWriter (file));

bw.write (str);
} finally {

if (bw != null) {

bw.close();

}

Also note that write (string s) does not place newline character after string has been written. To
put it use newLine () method.

Java SE 7

Java 7 adds the 2v-.ni0. 7112 package, and try-with-resources:

public void writeLineToFile (String str) throws IOException {

https://riptutorial.com/ 128

https://docs.oracle.com/javase/7/docs/api/java/nio/file/package-summary.html
http://www.riptutorial.com/java/example/1581/the-try-with-resources-statement

Path path = Paths.get ("file.txt");
try (BufferedWriter bw = Files.newBufferedWriter (path)) {
bw.write (str);

}

Read BufferedWriter online: https://riptutorial.com/java/topic/3063/bufferedwriter

https://riptutorial.com/ 129

https://riptutorial.com/java/topic/3063/bufferedwriter

C_hapter 19: ByteBuffer

Introduction

The syterurrer class was introduced in java 1.4 to ease working on binary data. It's especially
suited to use with primitive type data. It allows the creation, but also subsequent manipulation of a
byte[1S ON a higher abstraction level

Syntax

* byte[] arr = new byte[1000];

» ByteBuffer buffer = ByteBuffer.wrap(arr);

» ByteBuffer buffer = ByteBuffer.allocate(1024);

» ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
* byte b = buffer.get();

* byte b = buffer.get(10);

 short s = buffer.getShort(10);

* buffer.put((byte) 120);

 buffer.putChar(‘a’);

Examples

Basic Usage - Creating a ByteBuffer

There's two ways to create a sytesutrfer, Where one can be subdivided again.

If you have an already existing byte (], you can "wrap" it into a sytesurrer t0o Simplify processing:

byte[] regBuffer = new byte[BUFFER_SIZE];
int readBytes = socketInputStream.read(regqBuffer);
final ByteBuffer regBufferWrapper = ByteBuffer.wrap (reqBuffer);

This would be a possibility for code that handles low-level networking interactions

If you do not have an already existing byte[1, YOU Can create a syteBufrfer OVEr an array that's
specifically allocated for the buffer like this:

final ByteBuffer respBuffer = ByteBuffer.allocate (RESPONSE_BRUFFER_SIZE) ;
putResponseData (respBuffer);
socketOutputStream.write (respBuffer.array());

If the code-path is extremely performance critical and you need direct system memory access,
the syteBurfer can even allocate direct buffers using #alilocatebirect ()

https://riptutorial.com/ 130

Basic Usage - Write Data to the Buffer

Given a eyteButfer inStance one can write primitive-type data to it using relative and absolute put.
The striking difference is that putting data using the relative method keeps track of the index the
data is inserted at for you, while the absolute method always requires giving an index to put the
data at.

Both methods allow "chaining” calls. Given a sufficiently sized buffer one can accordingly do the
following:

buffer.putInt (0xCAFEBABE) .putChar('c') .putFloat (0.25) .putLong (0xDEADBEEFCAFEBABE) ;

which is equivalent to:

buffer.putInt (OxCAFEBABE) ;
buffer.putChar('c');
buffer.putFloat (0.25);
buffer.putlong (0xDEADBEEFCAFEBABE) ;

Do note that the method operating on bytes is not named specially. Additionally note that it's also
valid to pass both a eyteBurrer and a byte (] t0 put. Other than that, all primitive types have
specialized put-methods.

An additional note: The index given when using absolute put* is always counted in bytes.
Basic Usage - Using DirectByteBuffer

DirectByteBuffer IS Special implementation of sytesurfer that has no nyte1 laying underneath.

We can allocate such ByteBuffer by calling:

ByteBuffer directBuffer = ByteBuffer.allocateDirect (16);

This operation will allocate 16 bytes of memory. The contents of direct buffers may reside outside
of the normal garbage-collected heap.

We can verify whether ByteBuffer is direct by calling:

directBuffer.isDirect (); // true

The main characteristics of pirectsyterurfrer is that JVM will try to natively work on allocated
memory without any additional buffering so operations performed on it may be faster then those
performed on ByteBuffers with arrays lying underneath.

It is recomended to use pirectByteBurfer With heavy 10 operations that rely on speed of execution,
like real time communication.

We have to be aware that if we try using array () method we will get unsupportedOperationException.

https://riptutorial.com/ 131

So it is a good practice to chech whether our ByteBuffer has it (byte array) before we try to access
it:

byte[] arrayOfBytes;

if (buffer.hasArray()) {
arrayOfBytes = buffer.array();

}

Another use of direct byte buffer is interop through JNI. Since a direct byte buffer does not use a
pyte (], but an actual block of memory, it is possible to access that memory directly through a
pointer in native code. This can save a bit of trouble and overhead on marshalling between the
Java and native representation of data.

The JNI interface defines several functions to handle direct byte buffers: NIO Support.

Read ByteBuffer online: https://riptutorial.com/java/topic/702/bytebuffer

https://riptutorial.com/ 132

http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html#nio_support
https://riptutorial.com/java/topic/702/bytebuffer

C_hapter 20: Bytecode Modification

Examples

What is Bytecode?

Bytecode is the set of instructions used by the JVM. To illustrate this let's take this Hello World
program.

public static void main(String[] args) {
System.out.println ("Hello World");
}

This is what it turns into when compiled into bytecode.

public static main([Ljava/lang/String; args)V
getstatic java/lang/System out Ljava/io/PrintStream;
ldc "Hello World"
invokevirtual java/io/PrintStream print (Ljava/lang/String;)V

What's the logic behind this?

getstatic - Retreives the value of a static field of a class. In this case, the PrintStream "Out" of
System.

Idc - Push a constant onto the stack. In this case, the String "Hello World"

invokevirtual - Invokes a method on a loaded reference on the stack and puts the result on the
stack. Parameters of the method are also taken from the stack.

Well, there has to be more right?

There are 255 opcodes, but not all of them are implemented yet. A table with all of the current
opcodes can be found here: Java bytecode instruction listings.

How can | write / edit bytecode?

There's multiple ways to write and edit bytecode. You can use a compiler, use a library, or use a
program.

For writing:

¢ Jasmin

https://riptutorial.com/ 133

https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings
http://jasmin.sourceforge.net/

» Krakatau
For editing:

» Libraries

o ASM

o Javassist

- BCEL - Doesn't support Java 8+
» Tools

o Bytecode-Viewer

o JBytedit

o reJ - Doesn't support Java 8+

- JBE - Doesn't support Java 8+

I'd like to learn more about bytecode!

There's probably a specific documentation page specificially for bytecode. This page focuses on
the modification of bytecode using different libraries and tools.

How to edit jar files with ASM

Firstly the classes from the jar need to be loaded. We'll use three methods for this process:

» loadClasses(File)
» readJar(JarFile, JarEntry, Map)
» getNode(byte[])

Map<String, ClassNode> loadClasses (File jarFile) throws IOException {
Map<String, ClassNode> classes = new HashMap<String, ClassNode>();
JarFile jar = new JarFile(jarFile);

Stream<JarEntry> str = Jjar.stream();
str.forEach(z -> readJar(jar, z, classes));
jar.close () ;

return classes;

Map<String, ClassNode> readJar (JarFile jar, JarEntry entry, Map<String, ClassNode> classes) {
String name = entry.getName () ;
try (InputStream jis = jar.getInputStream(entry)) {
if (name.endsWith(".class")) {
byte[] bytes = IOUtils.toByteArray(jis);
String cafebabe = String.format ("$02X%$02X%02X%02X", bytes[0], bytes[l], bytes[2],
bytes[3]);
if (!cafebabe.tolLowerCase () .equals ("cafebabe")) {
// This class doesn't have a valid magic
return classes;
t
try {
ClassNode cn = getNode (bytes);
classes.put (cn.name, cn);
} catch (Exception e) {
e.printStackTrace () ;

https://riptutorial.com/ 134

https://github.com/Storyyeller/Krakatau
http://asm.ow2.org/
http://jboss-javassist.github.io/javassist/
https://commons.apache.org/proper/commons-bcel/
https://github.com/Konloch/bytecode-viewer
https://github.com/QMatt/JBytedit
http://rejava.sourceforge.net/features.html
http://www.cs.ioc.ee/~ando/jbe/

}
} catch (IOException e) {
e.printStackTrace () ;
}

return classes;

ClassNode getNode (byte[] bytes) {
ClassReader cr = new ClassReader (bytes);
ClassNode cn = new ClassNode () ;
try {
cr.accept (cn, ClassReader.EXPAND_FRAMES) ;
} catch (Exception e) {
e.printStackTrace () ;
}
cr = null;

return cn;

With these methods loading and changing a jar file becomes a simple matter of changing
ClassNodes in a map. In this example we will replace all Strings in the jar with capitalized ones
using the Tree API.

File jarFile = new File("sample.jar");
Map<String, ClassNode> nodes = loadClasses(jarFile);
// Iterate ClassNodes
for (ClassNode cn : nodes.values()) {
// Iterate methods in class
for (MethodNode mn : cn.methods) {
// Iterate instructions in method
for (AbstractInsnNode ain : mn.instructions.toArray()) {
// If the instruction is loading a constant value
if (ain.getOpcode () == Opcodes.LDC) {
// Cast current instruction to Ldc
// If the constant is a string then capitalize it.
LdcInsnNode ldc = (LdcInsnNode) ainj;
if (ldc.cst instanceof String) {
ldc.cst = ldc.cst.toString() .toUpperCase();

Now that all of the ClassNode's strings have been modified we need to save the changes. In order
to save the changes and have a working output a few things have to be done:

» Export ClassNodes to bytes
* Load non-class jar entries (Ex: Manifest.mf / other binary resources in jar) as bytes
» Save all bytes to a new jar

From the last portion above, we'll create three methods.

» processNodes(Map<String, ClassNode> nodes)
» loadNonClasses(File jarFile)

https://riptutorial.com/ 135

» saveAsJar(Map<String, byte[]> outBytes, String fileName)
Usage:

Map<String, byte[]> out = process (nodes, new HashMap<String, MappedClass>());
out.putAll (loadNonClassEntries (jarFile));
saveAsdJar (out, "sample-edit.jar");

The methods used:

static Map<String, byte[]> processNodes (Map<String, ClassNode> nodes, Map<String, MappedClass>
mappings) {

Map<String, byte[]> out = new HashMap<String, bytel[]>();

// Iterate nodes and add them to the map of <Class names , Class bytes>

// Using Compute_Frames ensures that stack-frames will be re-calculated automatically

for (ClassNode cn : nodes.values()) {
ClassWriter cw = new ClassWriter (ClassWriter.COMPUTE_FRAMES) ;
out .put (mappings.containsKey (cn.name) ? mappings.get (cn.name) .getNewName () : cn.name,

cw.toByteArray());
}

return out;

static Map<String, byte[]> loadNonClasses (File jarFile) throws IOException {
Map<String, byte[]> entries = new HashMap<String, bytel[]>();
ZipInputStream jis = new ZipInputStream(new FileInputStream(jarFile));
ZipEntry entry;
// Iterate all entries

while ((entry = jis.getNextEntry()) != null) {
try {
String name = entry.getName () ;
if (!name.endsWith(".class") && !entry.isDirectory()) {
// Apache Commons - byte[] toByteArray (InputStream input)
//

// Add each entry to the map <Entry name , Entry bytes>
byte[] bytes = IOUtils.toByteArray(jis);
entries.put (name, bytes);
}
} catch (Exception e) {
e.printStackTrace () ;
} finally {
jis.closeEntry () ;

}
jis.close();
return entries;

static void saveAsJar (Map<String, byte[]> outBytes, String fileName) {
try {
// Create jar output stream
JarOutputStream out = new JarOutputStream(new FileOutputStream(fileName)) ;
// For each entry in the map, save the bytes
for (String entry : outBytes.keySet ()) {
// Appent class names to class entries
String ext = entry.contains(".") ? "" : ".class";
out .putNextEntry (new ZipEntry (entry + ext));
out.write (outBytes.get (entry));
out.closeEntry () ;

https://riptutorial.com/ 136

}
out.close();

} catch (IOException e) {
e.printStackTrace () ;

That's it. All the changes will be saved to "sample-edit.jar".

How to load a ClassNode as a Class

Jxx
* Load a class by from a ClassNode
*
* @param cn
B3 ClassNode to load
* @return
=/
public static Class<?> load(ClassNode cn) {
ClassWriter cw = new ClassWriter (ClassWriter.COMPUTE_FRAMES) ;
return new ClassDefiner (ClassLoader.getSystemClassLoader ()) .get (cn.name.replace("/", "."),
cw.toByteArray ());
}

Jxx
* Classloader that loads a class from bytes.
=/
static class ClassDefiner extends ClassLoader {
public ClassDefiner (ClassLoader parent) {
super (parent) ;

public Class<?> get (String name, byte[] bytes) {
Class<?> ¢ = defineClass (name, bytes, 0, bytes.length);
resolveClass(c);
return c;

How to rename classes in a jar file

public static void main(String[] args) throws Exception {
File jarFile = new File ("Input.jar");
Map<String, ClassNode> nodes = JarUtils.loadClasses (jarFile);

Map<String, byte[]> out = JarUtils.loadNonClassEntries (jarFile);
Map<String, String> mappings = new HashMap<String, String>();
mappings.put ("me/example/ExampleClass", "me/example/ExampleRenamed") ;
out .putAll (process (nodes, mappings));

JarUtils.saveAsJar (out, "Input-new.jar");

static Map<String, byte[]> process (Map<String, ClassNode> nodes, Map<String, String> mappings)
{

Map<String, byte[]> out = new HashMap<String, bytel[]>();

Remapper mapper = new SimpleRemapper (mappings) ;

for (ClassNode cn : nodes.values()) {

https://riptutorial.com/ 137

ClassWriter cw = new ClassWriter (ClassWriter.COMPUTE_FRAMES) ;
ClassVisitor remapper = new ClassRemapper (cw, mapper);
cn.accept (remapper) ;
out .put (mappings.containsKey (cn.name) ? mappings.get (cn.name) : cn.name,
cw.toByteArray());
}

return out;

SimpleRemapper is an existing class in the ASM library. However it only allows for class names to
be changed. If you wish to rename fields and methods you should create your own implemenation
of the Remapper class.

Javassist Basic

Javassist is a bytecode instrumentation library that allows you to modify bytecode injecting Java
code that will be converted to bytecode by Javassist and added to the instrumented class/method
at runtime.

Lets write the first transformer that actually take an hypothetical class
"com.my.to.be.instrumented.MyClass" and add to the instructions of each method a log call.

import java.lang.instrument.ClassFileTransformer;

import java.lang.instrument.IllegalClassFormatException;
import java.security.ProtectionDomain;

import javassist.ClassPool;

import javassist.CtClass;

import javassist.CtMethod;

public class DynamicTransformer implements ClassFileTransformer {

public byte[] transform(ClassLoader loader, String className, Class classBeingRedefined,
ProtectionDomain protectionDomain, byte[] classfileBuffer) throws
IllegalClassFormatException {

byte[] byteCode = classfileBuffer;

// into the transformer will arrive every class loaded so we filter
// to match only what we need
if (className.equals ("com/my/to/be/instrumented/MyClass")) {

try {
// retrive default Javassist class pool
ClassPool cp = ClassPool.getDefault();
// get from the class pool our class with this qualified name
CtClass cc = cp.get ("com.my.to.be.instrumented.MyClass");
// get all the methods of the retrieved class
CtMethod[] methods = cc.getDeclaredMethods ()
for (CtMethod meth : methods) ({
// The instrumentation code to be returned and injected
final StringBuffer buffer = new StringBuffer();
String name = meth.getName () ;
// just print into the buffer a log for example
buffer.append ("System.out.println (\"Method " + name + " executed\");");
meth.insertBefore (buffer.toString())
}
// create the byteclode of the class

https://riptutorial.com/ 138

byteCode = cc.toBytecode();
// remove the CtClass from the ClassPool
cc.detach();

} catch (Exception ex) {
ex.printStackTrace();

return byteCode;

Now in order to use this transformer (so that our JVM will call the method transform on each class
at load time) we need to add this instrumentor this with an agent:
import java.lang.instrument.Instrumentation;
public class EasyAgent {
public static void premain (String agentArgs, Instrumentation inst) {

// registers the transformer
inst.addTransformer (new DynamicTransformer());

Last step to start our first instrumentor experiment is to actually register this agent class to the
JVM machine execution. The easiest way to actually do it is to register it with an option into the
shell command:

java —javaagent:myAgent.jar MyJavaApplication

As we can see the agent/transformer project is added as a jar to the execution of any application
named MyJavaApplication that is supposed to contain a class named
"com.my.to.be.instrumented.MyClass" to actually execute our injected code.

Read Bytecode Modification online: https://riptutorial.com/java/topic/3747/bytecode-modification

https://riptutorial.com/ 139

https://riptutorial.com/java/topic/3747/bytecode-modification

C_hapter 21: C++ Comparison

Introduction

Java and C++ are similar languages. This topic serves as a quick reference guide for Java and

C++ Engineers.

Remarks

asses Defined within Other Constructs#

D_efined within Another Class

C++

Nested Class|ref] (needs a reference to enclosing class)

class Outer {
class Inner {
public:
Inner (Outer* o) :outer (o) {}

private:
Outer* outer;

}i
}i

Java

[non-static] Nested Class (aka Inner Class or Member Class)

class OuterClass {
class InnerClass {

}
}

ﬁtically Defined within Another Class

C++

https://riptutorial.com/

140

https://stackoverflow.com/questions/2687544/question-about-c-inner-class

Static Nested Class

class Outer {
class Inner {

i
bi

Java

Static Nested Class (aka Static Member Class)|ref]

class OuterClass {

static class StaticNestedClass {

Defined within a Method

(e.g. event handling)
C++

Local Class|ref]

void fun () {
class Test {
/* members of Test class */

bi

See also Lambda expressions

Java

Local Class|ref]

class Test {

void f() {
new Thread (new Runnable () {
public void run() {

doSomethingBackgroundish () ;

}
}) .start () ;

https://riptutorial.com/

141

https://www.javatpoint.com/static-nested-class
http://www.geeksforgeeks.org/local-class-in-c/
http://en.cppreference.com/w/cpp/language/lambda
https://stackoverflow.com/questions/1183453/whats-the-use-of-a-method-local-inner-class

Overriding vs Overloading

The following Overriding vs Overloading points apply to both C++ and Java:

* An overridden method has the same name and arguments as its base method.

* An overloaded method has the same name but different arguments and does not rely on
inheritance.

» Two methods with the same name and arguments but different return type are illegal. See
related Stackoverflow questions about "overloading with different return type in Java" -
Question 1; Question 2

Polymorphism
Polymorphism is the ability for objects of different classes related by inheritance to respond

differently to the same method call. Here's an example:

* base class Shape with area as an abstract method
» two derived classes, Square and Circle, implement area methods
» Shape reference points to Square and area is invoked

In C++, polymorphism is enabled by virtual methods. In Java, methods are virtual by default.

Order of Construction/Destruction

O_bject Cleanup

In C++, it's a good idea to declare a destructor as virtual to ensure that the subclass' destructor will
be called if the base-class pointer is deleted.

In Java, a finalize method is similar a destructor in C++; however, finalizers are unpredictable
(they rely on GC). Best practice - use a "close" method to explicitly cleanup.

protected void close() {
try {
// do subclass cleanup
}
finally {
isClosed = true;
super.close () ;

}

protected void finalize() {
try {
if (!isClosed) close();

}

https://riptutorial.com/ 142

https://stackoverflow.com/questions/2439782/overload-with-different-return-type-in-java
https://stackoverflow.com/questions/5561436/can-two-java-methods-have-same-name-with-different-return-types

finally {
super.finalize();

}

Abstract Method
declared without an
implementation

pure virtual method

virtual void eat (void) = 0;

cannot be instantiated; has at
least 1 pure virtual method

class AB {public: virtual void
£(= 0;};

Abstract Class
cannot be
instantiated

no "interface" keyword, but can
mimic a Java interface with
facilities of an abstract class

Interface
no instance fields

Public - accessible

no special notes
by all P

Protected -
accessible by
subclasses

also accessible by friends

Private - accessible . .
also accessible by friends

|I!HHHiIIIIIIIIIIIIIIIIIIIIIIIII

abstract method

abstract void draw () ;

cannot be instantiated; can have

non-abstract methods
abstract class GraphicObject {}

very similar to abstract class, but

1) supports multiple inheritance;
2) no instance fields

interface TestInterface {}

NEVED

no special notes

also accessible within
same package

no special notes

accessible by all classes
within the same package

by members

class default is private; struct default is
default .

public

Friend - a way to grant access to private
other & protected members without inheritance

(see below)

C++ Friend Example

https://riptutorial.com/

143

class Node {
private:
int key; Node *next;
// LinkedList::search() can access "key" & "next"
friend int LinkedList::search();

T_he Dreaded Diamond Problem

The diamond problem is an ambiguity that arises when two classes B and C inherit
from A, and class D inherits from both B and C. If there is a method in A that B and C
have overridden, and D does not override it, then which version of the method does D
inherit: that of B, or that of C? (from Wikipedia)

While C++ has always been susceptible to the diamond problem, Java was susceptible until Java
8. Originally, Java didn't support multiple inheritance, but with the advent of default interface
methods, Java classes can not inherit "implementation” from more than one class.

Jjava.lang.ODbject Class

In Java all classes inherit, either implicitly or explicitly, from the Object class. Any Java reference
can be cast to the Object type.

C++ doesn't have a comparable "Object” class.

Java Collections & C++ Containers

Java Collections are symonymous with C++ Containers.

Java Collections Flowchart

C++ Containers Flowchart

Fteger Types

C++ Type

Bits | Min (on LLP64 or Java Type
LP64)

8 -2(8-1) =-128 2(8-1)-1 =127 char byte

8 0 2(8)-1 =255 unsigned char -

https://riptutorial.com/ 144

https://en.wikipedia.org/wiki/Multiple_inheritance

C++ Type
(on LLP64 or

LP64)

Java Type

16 -2(16-1) = -32,768 2(16-1)-1 = 32,767

16 0 (\u000O)

gy 2(32-1)=-2.147

billion
32 0 2(32)-1 = 4.295 billion
64 -2(64-1) 2(16-1)-1
64 0 2(16)-1

= Win64 API is only 32 bit

Lots more C++ types

Examples

Static Class Members

2(16)-1 = 65,535
(UFFFF)

2(32-1)-1 = 2.147 billion

short

unsigned short

int

unsigned int

long*

unsigned long*
unsigned long long

Static members have class scope as opposed to object scope

C++ Example

// define in header
class Singleton {
public:
static Singleton *getInstance();

private:
Singleton() {}
static Singleton *instance;

ti

// initialize in .cpp
Singleton* Singleton::instance = 0;

Java Example

public class Singleton {
private static Singleton instance;

short

char
(unsigned)

int

long long

https://riptutorial.com/

145

http://en.cppreference.com/w/cpp/language/types
http://www.bogotobogo.com/cplusplus/statics.php
http://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-examples

private Singleton() {}

public static Singleton getInstance () {
if (instance == null) {
instance = new Singleton();

}

return instance;

Classes Defined within Other Constructs

Defined within Another Class

C++

Nested Class|ref] (needs a reference to enclosing class)

class Outer {
class Inner {
public:
Inner (Outer* o) :outer (o) {}

private:
Outer* outer;
}i
}i

Java

[non-static] Nested Class (aka Inner Class or Member Class)

class OuterClass {
class InnerClass {

}

%tically Defined within Another Class

C++

Static Nested Class

class Outer {
class Inner {

https://riptutorial.com/

146

https://stackoverflow.com/questions/2687544/question-about-c-inner-class

}i
}i

Java
Static Nested Class (aka Static Member Class)|ref]

class OuterClass {

static class StaticNestedClass {

}

Defined within a Method

(e.g. event handling)
C++

Local Class|ref]

void fun () {
class Test {
/* members of Test class */

}i

Java

Local Class|ref]

class Test {
void f£() {
new Thread (new Runnable () {
public void run() {
doSomethingBackgroundish () ;

}
}) .start () ;

Pass-by-value & Pass-by-reference

Many argue that Java is ONLY pass-by-value, but it's more nuanced than that. Compare the
following C++ and Java examples to see the many flavors of pass-by-value (aka copy) and pass-
by-reference (aka alias).

https://riptutorial.com/ 147

https://www.javatpoint.com/static-nested-class
http://www.geeksforgeeks.org/local-class-in-c/
https://stackoverflow.com/questions/1183453/whats-the-use-of-a-method-local-inner-class

C++ Example (complete code)

// passes a COPY of the object
static void passByCopy (PassIt obj) {
obj.i = 22; // only a "local" change

// passes a pointer
static void passByPointer (PassIt* ptr) {
ptr—->i = 33;
ptr = 0; // better to use nullptr instead if '0'

// passes an alias (aka reference)
static void passByAlias (PassIté& ref) {
ref.i = 44;

// This is an old-school way of doing it.

// Check out std::swap for the best way to do this

static void swap (PassIt** pptrl, PassIt** pptr2) {
PassIt* tmp = *pptrl;

*pptrl *pptr2;

*pptr2 = tmp;

Java Example (complete code)

// passes a copy of the variable
// NOTE: in java only primitives are pass—-by-copy
public static void passByCopy (int copy) {

copy = 33; // only a "local" change

// No such thing as pointers in Java
/*
public static void passByPointer (PassIt *ptr) {
ptr->i = 33;
ptr = 0; // better to use nullptr instead if '0'
}
*/

// passes an alias (aka reference)
public static void passByAlias (PassIt ref) {
ref.i = 44;

// passes aliases (aka references),
// but need to do "manual", potentially expensive copies
public static void swap (PassIt refl, PassIt ref2) {
PassIt tmp = new PassIt (refl);
refl.copy (ref2);
ref2.copy (tmp) ;

https://riptutorial.com/ 148

https://gitlab.com/johndifini/java-algos/blob/master/PassIt.cpp
https://gitlab.com/johndifini/java-algos/blob/master/PassIt.java

Inheritance vs Composition

C++ & Java are both object-oriented languages, thus the following diagram applies to both.

Outcast Downcasting

Beware of using "downcasting" - Downcasting is casting down the inheritance hierarchy from a
base class to a subclass (i.e. opposite of polymorphism). In general, use polymorphism &

overriding instead of instanceof & downcasting.

C++ Example

// explicit type case required
Child *pChild = (Child *) &parent;

Java Example

i1f (mySubClass instanceof SubClass) {
SubClass mySubClass = (SubClass)someBaseClass;
mySubClass.nonInheritedMethod() ;

Abstract Methods & Classes

Abstract Method

declared without an implementation
C++

pure virtual method

virtual void eat (void) = 0;

Java

abstract method

abstract void draw();

https://riptutorial.com/

149

Abstract Class

cannot be instantiated
C++

cannot be instantiated; has at least 1 pure virtual method

class AB {public: virtual void f() = 0;};

Java

cannot be instantiated; can have non-abstract methods

abstract class GraphicObject {}

Interface

no instance fields
C++

nothing comparable to Java

Java

very similar to abstract class, but 1) supports multiple inheritance; 2) no instance fields

interface TestInterface {}

Read C++ Comparison online: https://riptutorial.com/java/topic/10849/cplusplus-comparison

https://riptutorial.com/

150

https://riptutorial.com/java/topic/10849/cplusplus-comparison

C_hapter 22:. Calendar and its Subclasses

Remarks

As of Java 8, calendar and its subclasses have been superseded by the java.time package and its
subpackages. They should be preferred, unless a legacy API requires Calendar.

Examples

Creating Calendar objects

calendar Objects can be created by using getinstance () Or by using the constructor

GregorianCalendar.

It's important to notice that months in calendar are zero based, which means that JANUARY is
represented by an int value 0. In order to provide a better code, always use calendar cOnstants,
such as calendar.January to avoid misunderstandings.

Calendar calendar = Calendar.getInstance();

Calendar gregorianCalendar = new GregorianCalendar () ;

Calendar gregorianCalendarAtSpecificDay = new GregorianCalendar (2016, Calendar.JANUARY, 1);
Calendar gregorianCalendarAtSpecificDayAndTime = new GregorianCalendar (2016, Calendar.JANUARY,
1, 6, 55, 10);

Note: Always use the month constants: The numeric representation is misleading, e.g.
calendar.JaNUuaRY has the value o

Increasing / Decreasing calendar fields
add () and ro11() can be used to increase/decrease calendar fields.

Calendar calendar = new GregorianCalendar (2016, Calendar.MARCH, 31); // 31 March 2016

The ada () method affects all fields, and behaves effectively if one were to add or subtract actual
dates from the calendar

calendar.add(Calendar.MONTH, -06);

The above operation removes six months from the calendar, taking us back to 30 September
2015.

To change a particular field without affecting the other fields, use ro11).

calendar.roll (Calendar.MONTH, -6);

The above operation removes six months from the current month, so the month is identified as

https://riptutorial.com/ 151

http://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html
http://stackoverflow.com/questions/344380/why-is-january-month-0-in-java-calendar

September. No other fields have been adjusted; the year has not changed with this operation.

Finding AM/PM
With Calendar class it is easy to find AM or PM.

Calendar cal = Calendar.getInstance();

cal.setTime (new Date());

if (cal.get (Calendar.AM_PM) == Calendar.PM)
System.out.println ("It is PM");

Subtracting calendars
To get a difference between two calendarS, US€ getTimeInMillis () method:

Calendar cl = Calendar.getInstance();
Calendar c2 = Calendar.getInstance();
c2.set (Calendar.DATE, c2.get (Calendar.DATE) + 1);

System.out.println(c2.getTimeInMillis() - cl.getTimeInMillis()); //outputs 86400000 (24 * 60 *
60 * 1000)

Read Calendar and its Subclasses online: https://riptutorial.com/java/topic/165/calendar-and-its-
subclasses

https://riptutorial.com/ 152

https://riptutorial.com/java/topic/165/calendar-and-its-subclasses
https://riptutorial.com/java/topic/165/calendar-and-its-subclasses

C_hapter 23. Character encoding

Examples
Reading text from a file encoded in UTF-8

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.IOException;

import java.nio.charset.StandardCharsets;
import java.nio.file.Files;

import java.nio.file.Paths;

public class ReadingUTF8TextFile {

public static void main(String[] args) throws IOException {

//StandardCharsets is available since Java 1.7

//for ealier version use Charset.forName ("UTF-8");

try (BufferedWriter wr = Files.newBufferedWriter (Paths.get ("test.txt"),
StandardCharsets.UTF_8)) {

wr.write ("Strange cyrillic symbol H");

}

/* First Way. For big files */

try (BufferedReader reader = Files.newBufferedReader (Paths.get ("test.txt"),
StandardCharsets.UTF_8)) {

String line;
while ((line = reader.readLine()) != null) {
System.out.print (line) ;

System.out.println(); //Jjust separating output

/* Second way. For small files */

String s = new String(Files.readAllBytes (Paths.get ("test.txt")),
StandardCharsets.UTF_8) ;

System.out.print (s);

Writing text to a file in UTF-8

import java.io.BufferedWriter;

import java.io.IOException;

import java.nio.charset.StandardCharsets;
import java.nio.file.Files;

import java.nio.file.Paths;

public class WritingUTF8TextFile {
public static void main(String[] args) throws IOException {
//StandardCharsets is available since Java 1.7
//for ealier version use Charset.forName ("UTF-8");
try (BufferedWriter wr = Files.newBufferedWriter (Paths.get ("test2.txt"),
StandardCharsets.UTF_8)) {

https://riptutorial.com/ 153

wr.write ("Cyrillic symbol H");

Getting byte representation of a string in UTF-8

import java.nio.charset.StandardCharsets;
import java.util.Arrays;

public class GetUtf8BytesFromString {
public static void main(String[] args) {
String str = "Cyrillic symbol H";
//StandardCharsets is available since Java 1.7
//for ealier version use Charset.forName ("UTF-8");

byte[] textInUtf8 = str.getBytes (StandardCharsets.UTF_8);

System.out.println (Arrays.toString (textInUt£f8));

Read Character encoding online: https://riptutorial.com/java/topic/2735/character-encoding

https://riptutorial.com/

154

https://riptutorial.com/java/topic/2735/character-encoding

C_hapter 24:. Choosing Collections

Introduction

Java offers a wide variety of Collections. Choosing which Collection to use can be tricky. See the
Examples section for an easy-to-follow flowchart to choose the right Collection for the job.

Examples

Java Collections Flowchart

Use the following flowchart to choose the right Collection for the job.
This flowchart was based off [hitp://i.stack.imgur.com/aSDsG.png).

Read Choosing Collections online: https://riptutorial.com/java/topic/10846/choosing-collections

https://riptutorial.com/ 155

https://i.stack.imgur.com/aSDsG.png)
https://riptutorial.com/java/topic/10846/choosing-collections

C_hapter 25: Class - Java Reflection

Introduction

The java.lang.Class class provides many methods that can be used to get metadata, examine and
change the run time behavior of a class.

The java.lang and java.lang.reflect packages provide classes for java reflection.
Where it is used
The Reflection API is mainly used in:

IDE (Integrated Development Environment) e.g. Eclipse, MyEclipse, NetBeans etc. Debugger Test
Tools etc.

Examples
getClass() method of Object class

class Simple { }

class Test {
void printName (Object obj) {
Class ¢ = obj.getClass();
System.out.println (c.getName ());
}
public static void main (String args([]) {
Simple s = new Simple();

Test t = new Test ();
t.printName (s);

Read Class - Java Reflection online: https://riptutorial.com/java/topic/10151/class---java-reflection

https://riptutorial.com/ 156

https://riptutorial.com/java/topic/10151/class---java-reflection

C_hapter 26: Classes and Objects

Introduction

Objects have states and behaviors. Example: A dog has states - color, name, breed as well as
behaviors — wagging the tail, barking, eating. An object is an instance of a class.

Class - A class can be defined as a template/blueprint that describes the behavior/state that the
object of its type support.

Syntax

» class Example {} //class keyword, name, body

Examples
Simplest Possible Class

class TrivialClass {}

A class consists at a minimum of the c1ass keyword, a name, and a body, which might be empty.

You instantiate a class with the new Operator.

TrivialClass tc = new TrivialClass () ;

Object Member vs Static Member

With this class:

class ObjectMemberVsStaticMember {

static int staticCounter = 0;
int memberCounter = 0;

void increment () {

staticCounter ++;
memberCounter++;

the following code snippet:

final ObjectMemberVsStaticMember ol new ObjectMemberVsStaticMember () ;
final ObjectMemberVsStaticMember 02 = new ObjectMemberVsStaticMember () ;

ol.increment () ;

https://riptutorial.com/ 157

02 .increment () ;

02 .increment () ;

System.
System.
System.

System.
System.

System.

System.

out
out
out

out

out

out

out

.println ("ol static counter " + ol.staticCounter);
.println ("ol member counter " + ol.memberCounter);
.println();

.println("o2 static counter " + o2.staticCounter);
.println ("o2 member counter " + o2.memberCounter);
.println();

.println ("ObjectMemberVsStaticMember.staticCounter = " +

ObjectMemberVsStaticMember.staticCounter) ;

// the following line does not compile. You need an object

// to access its members

//System.out.println ("ObjectMemberVsStaticMember.staticCounter = " +

ObjectMemberVsStaticMember.memberCounter) ;

produces this output:

ol static

ol member

02 static

02 member

counter 3
counter 1

counter 3
counter 2

ObjectMemberVsStaticMember.staticCounter = 3

Note: You should not call static members on objects, but on classes. While it does not make a
difference for the JVM, human readers will appreciate it.

static members are part of the class and exists only once per class. Non-static members exist on
instances, there is an independent copy for each instance. This also means that you need access
to an object of that class to access its members.

Overloading Methods

Sometimes the same functionality has to be written for different kinds of inputs. At that time, one
can use the same method name with a different set of parameters. Each different set of
parameters is known as a method signature. As seen per the example, a single method can have
multiple signatures.

public class Displayer {

public void displayName (String firstName) ({

System.out.println ("Name is:

" + firstName) ;

public void displayName (String firstName, String lastName) {

System.out.println ("Name is:

" + firstName + " " + lastName);

public static void main(String[] args) {

https://riptutorial.com/

158

Displayer displayer = new Displayer();
displayer.displayName ("Ram") ; //prints "Name is: Ram"
displayer.displayName ("Jon", "Skeet"); //prints "Name is: Jon Skeet"

The advantage is that the same functionality is called with two different numbers of inputs. While
invoking the method according to the input we are passing, (In this case either one string value or
two string values) the corresponding method is executed.

Methods can be overloaded:
1. Based on the number of parameters passed.
Example: method (string s) @nd method (String s1, String s2).
2. Based on the order of parameters.
Example: method (int i, float f) &nd method(float f, int 1i)).

Note: Methods cannot be overloaded by changing just the return type (int method() iS considered
the same as string method() and will throw a runtimeexception if attempted). If you change the
return type you must also change the parameters in order to overload.

Basic Object Construction and Use

Objects come in their own class, so a simple example would be a car (detailed explanations
below):

public class Car {

//Variables describing the characteristics of an individual car, varies per object
private int milesPerGallon;
private String name;
private String color;
public int numGallonsInTank;

public Car () {
milesPerGallon = 0;
name = " u,.
color = "";
numGallonsInTank = 0;

//this is where an individual object is created
public Car (int mpg, int, gallonsInTank, String carName, String carColor) {
milesPerGallon = mpg;
name = carName;
color = carColor;
numGallonsInTank = gallonsInTank;

//methods to make the object more usable

//Cars need to drive

https://riptutorial.com/ 159

public void drive (int distanceInMiles) {
//get miles left in car
int miles = numGallonsInTank * milesPerGallon;

//check that car has enough gas to drive distanceInMiles
if (miles <= distanceInMiles) {

numGallonsInTank = numGallonsInTank - (distanceInMiles / milesPerGallon)
System.out.println ("Drove " + numGallonsInTank + " miles!");

} else {
System.out.println ("Could not drive!");

public void paintCar (String newColor) {
color = newColor;

//set new Miles Per Gallon
public void setMPG (int newMPG) {
milesPerGallon = newMPG;

//set new number of Gallon In Tank
public void setGallonsInTank (int numGallons) {
numGallonsInTank = numGallons;

public void nameCar (String newName) {
name = newName;

//Get the Car color
public String getColor () {
return color;

//Get the Car name
public String getName () {
return name;

//Get the number of Gallons
public String getGallons () {
return numGallonsInTank;

Objects are instances of their class. So, the way you would create an object would be by calling
the Car class in one of two ways in your main class (main method in Java or onCreate in
Android).

Option 1

‘Car newCar = new Car (30, 10, "Ferrari", "Red");

Option 1 is where you essentially tell the program everything about the Car upon creation of the
object. Changing any property of the car would require calling one of the methods such as the
repaintcar method. Example:

https://riptutorial.com/ 160

newCar.repaintCar ("Blue");

Note: Make sure you pass the correct data type to the method. In the example above, you may
also pass a variable to the repaintcar method as long as the data type is correct'.

That was an example of changing properties of an object, receiving properties of an object would
require using a method from the Car class that has a return value (meaning a method that is not
void). Example:

String myCarName = newCar.getName (); //returns string "Ferrari"

Option 1 is the best option when you have all the object's data at the time of creation.

Option 2
"Car newCar = new Car();

Option 2 gets the same effect but required more work to create an object correctly. | want to recall
this Constructor in the Car class:

public void Car () {
milesPerGallon = 0;
name = "";
color = "";
numGallonsInTank = 0;

Notice that you do not have to actually pass any parameters into the object to create it. This is
very useful for when you do not have all the aspects of the object but you need to use the parts
that you do have. This sets generic data into each of the instance variables of the object so that, if
you call for a piece of data that does not exist, no errors are thrown.

Note: Do not forget that you have to set the parts of the object later that you did not initialize it
with. For example,

Car myCar = new Car();
String color = Car.getColor(); //returns empty string

This is a common mistake amongst objects that are not initialized with all their data. Errors were
avoided because there is a Constructor that allows an empty Car object to be created with stand-
in variables (pubilic car () {}), but no part of the myCar was actually customized. Correct example
of creating Car Object:

Car myCar = new Car();
myCar.nameCar ("Ferrari") ;
myCar.paintCar ("Purple");
myCar.setGallonsInTank (10) ;
myCar.setMPG (30) ;

https://riptutorial.com/ 161

And, as a reminder, get an object's properties by calling a method in your main class. Example:

String myCarName = myCar.getName (); //returns string "Ferrari"

Constructors

Constructors are special methods named after the class and without a return type, and are used to
construct objects. Constructors, like methods, can take input parameters. Constructors are used to
initialize objects. Abstract classes can have constructors also.

public class Hello{
// constructor
public Hello (String wordToPrint) {
printHello (wordToPrint) ;
}
public void printHello (String word) {
System.out.println (word) ;
}
}
// instantiates the object during creating and prints out the content
// of wordToPrint

It is important to understand that constructors are different from methods in several ways:

1. Constructors can only take the modifiers pubilic, private, and protected, and cannot be
declared abstract, final, static, Of synchronized.

2. Constructors do not have a return type.

3. Constructors MUST be named the same as the class name. In the se110 example, the se110
object's constructor name is the same as the class name.

4. The this keyword has an additional usage inside constructors. this.method(...) calls a
method on the current instance, while this...) refers to another constructor in the current
class with different signatures.

Constructors also can be called through inheritance using the keyword super.

public class SuperManClass {

public SuperManClass () {
// some implementation

}

// ... methods

public class BatmanClass extends SupermanClass {
public BatmanClass () {
super () ;
}
//... methods...

https://riptutorial.com/ 162

See Java Language Specification #8.8 and #15.9
Initializing static final fields using a static initializer

To initialize a static final fields that require using more than a single expression, a static
initializer can be used to assign the value. The following example initializes a unmodifiable set of
StringS.

public class MyClass {
public static final Set<String> WORDS;

static {
Set<String> set = new HashSet<>();
set.add ("Hello");
set.add ("World");
set.add ("foo");
set.add ("bar");
set.add("42");
WORDS = Collections.unmodifiableSet (set);

Explaining what is method overloading and overriding.

Method Overriding and Overloading are two forms of polymorphism supported by Java.
Method Overloading

Method overloading (also known as static Polymorphism) is a way you can have two (or more)
methods (functions) with same name in a single class. Yes its as simple as that.

public class Shape({
//It could be a circle or rectangle or square
private String type;

//To calculate area of rectangle

public Double area(Long length, Long breadth) {
return (Double) length * breadth;

}

//To calculate area of a circle
public Double area (Long radius) {
return (Double) 3.14 * r * r;

This way user can call the same method for area depending on the type of shape it has.

But the real question now is, how will java compiler will distinguish which method body is to be
executed?

https://riptutorial.com/ 163

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.8
http://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.9

Well Java have made it clear that even though the method names (area () in our case) can be
same but the arguments method is taking should be different.

Overloaded methods must have different arguments list (Quantity and types).

That being said we cannot add another method to calculate area of a square like this : public
Double area(Long side) because in this case, it will conflict with area method of circle and will cause
ambiguity for java compiler.

Thank god, there are some relaxations while writing overloaded methods like
May have different return types.
May have different access modifiers.
May throw different exceptions.

Why is this called static polymorphism?

Well that's because which overloaded methods is to be invoked is decided at compile time, based
on the actual number of arguments and the compile-time types of the arguments.

One of common reasons of using method overloading is the simplicity of code it
provides. For example remember string.valueof () Which takes almost any type of
argument? What is written behind the scene is probably something like this :-

static String valueOf (boolean b)

static String wvalueOf (char c)

static String valueOf (char[] data)

static String valueOf (char[] data, int offset, int count)
static String valueOf (double d)

static String valueOf (float f)

static String valueOf (int 1i)

static String valueOf (long 1)

static String valueOf (Object obj)

Method Overriding

Well, method overriding (yes you guess it right, it is also known as dynamic polymorphism) is
somewhat more interesting and complex topic.

In method overriding we overwrite the method body provided by the parent class. Got it? No? Let's
go through an example.

public abstract class Shape{
public abstract Double area () {

return 0.0;

}

So we have a class called Shape and it has method called area which will probably return the area

https://riptutorial.com/ 164

of the shape.

Let's say now we have two classes called Circle and Rectangle.

public class Circle extends Shape {
private Double radius = 5.0;

// See this annotation Q@Override, it is telling that this method is from parent
// class Shape and is overridden here

@Override

public Double area() {

return 3.14 * radius * radius;

Similarly rectangle class:

public class Rectangle extends Shape {
private Double length = 5.0;
private Double breadth= 10.0;

// See this annotation @Override, it is telling that this method is from parent
// class Shape and is overridden here
@Override
public Double areaf() {
return length * breadth;

So, now both of your children classes have updated method body provided by the parent (shape)

class. Now question is how to see the result? Well lets do it the old psvm Way.

public class AreaFinder{
public static void main(String[] args) {

//This will create an object of circle class
Shape circle = new Circle();

//This will create an object of Rectangle class
Shape rectangle = new Rectangle();

// Drumbeats
//This should print 78.5

System.out.println ("Shape of circle : "+circle.area());

//This should print 50.0

System.out.println ("Shape of rectangle: "+rectangle.area());

Wow! isn't it great? Two objects of same type calling same methods and returning different values.

My friend, that's the power of dynamic polymorphism.

Here's a chart to better compare the differences between these two:-

https://riptutorial.com/

Method Overloading Method Overriding

Method overloading is used to increase the
readability of the program.

Method overloading is performed within class.

In case of method overloading, parameter must be
different.

Method overloading is the example of compile time
polymorphism.

In java, method overloading can't be performed by
changing return type of the method only. Return type
can be same or different in method overloading. But
you must have to change the parameter.

Method overriding is used to provide
the specific implementation of the
method that is already provided by its
super class.

Method overriding occurs in two
classes that have IS-A (inheritance)
relationship.

In case of method overriding,
parameter must be same.

Method overriding is the example of
run time polymorphism.

Return type must be same or
covariant in method overriding.

https://riptutorial.com/java/topic/114/classes-and-objects

https://riptutorial.com/

166

https://riptutorial.com/java/topic/114/classes-and-objects

C_hapter 27. Classloaders

Remarks

A classloader is a class whose primary purpose is to mediate the location and loading of classes
used by an application. A class loader can also find and loaded resources.

The standard classloader classes can load classes and resources from directories in the file
system and from JAR and ZIP files. They can also download and cache JAR and ZIP files from a
remote server.

Classloaders are normally chained, so that the JVM will try to load classes from the standard class
libraries in preference to application-provided sources. Custom classloaders allow the programmer
to alter this. The also can do such things as decrypting bytecode files and bytecode modification.

Examples

Instantiating and using a classloader

This basic example shows how an application can instantiate a classloader and use it to
dynamically load a class.

URL[] urls = new URL[] {new URL("file:/home/me/extras.jar") };
Classloader loader = new URLClassLoader (urls);
Class<?> myObjectClass = loader.findClass ("com.example.MyObject");

The classloader created in this example will have the default classloader as its parent, and will first
try to find any class in the parent classloader before looking in "extra.jar". If the requested class
has already been loaded, the rindciass call will return the reference to the previously loaded class.

The rindciass call can fail in a variety of ways. The most common are:

* If the named class cannot be found, the call with throw ciassNotFoundexception.
« If the named class depends on some other class that cannot be found, the call will throw

NoClassDefFoundError.

Implementing a custom classLoader

Every custom loader must directly or indirectly extend the java.1ang.classLoader class. The main
extension points are the following methods:

* findClass (String) - overload this method if your classloader follows the standard delegation
model for class loading.

* loadClass (String, boolean) - Overload this method to implement an alternative delegation
model.

* findresource and findresources - Overload these methods to customize resource loading.

https://riptutorial.com/ 167

The serineciass methods which are responsible for actually loading the class from a byte array are
final tO prevent overloading. Any custom behavior needs to be performed prior to calling

defineClass

Here is a simple that loads a specific class from a byte array:

public class ByteArrayClassLoader extends ClassLoader {

private String classname;
private byte[] classfile;

public ByteArrayClassLoader (String classname, byte[] classfile) {

this.classname = classname;
this.classfile = classfile.clone();
}
@Override

protected Class findClass (String classname) throws ClassNotFoundException {

if (classname.equals(this.classname)) {
return defineClass (classname, classfile, 0, classfile.length);
} else {

throw new ClassNotFoundException (classname) ;

Since we have only overridden the rindc1ass method, this custom class loader is going to behave
as follows when 1o0adciass is called.

1.

5.

The classloader's 10adciass method calls findroadedciass to see if a class with this name has
already been loaded by this classloader. If that succeeds, the resulting c1ass object is
returned to the requestor.

. The 10adc1ass method then delegates to the parent classloader by calling its 10adciass call. If

the parent can deal with the request, it will return a c1ass object which is then returned to the
requestor.

. If the parent classloader cannot load the class, rindciass then calls our override findciass

method, passing the name of the class to be loaded.

. If the requested name matches this.classname, We Call derineciass to load the actual class

from the this.c1assfile byte array. The resulting ci1ass object is then returned.
If the name did not match, we throw ciassnotFoundException.

Loading an external .class file

To load a class we first need to define it. The class is defined by the ciassvLoader. There's just one
problem, Oracle didn't write the ciassiLoader's code with this feature available. To define the class
we will need to access a method named derineciass () Which is a private method of the ciassroader

To access it, what we will do is create a new class, Byteciasstoader, and extend it t0 classroader.
Now that we have extended our class to ciassLoader, We can access the ciassroader's private
methods. To make derineciass () available, we will create a new method that will act like a mirror
for the private derineciass () method. To call the private method we will need the class name, name,

https://riptutorial.com/ 168

the class bytes, ci1asssytes, the first byte's offset, which will be o because c1asseytes' data starts at
classBytes[0], and the last byte's offset, which will be ciasseytes.1enght because it represents the
size of the data, which will be the last offset.

public class ByteClassLoader extends ClassLoader {

public Class<?> defineClass (String name, byte[] classBytes) {
return defineClass (name, classBytes, 0, classBytes.length);

}

Now, we have a public derineciass () method. It can be called by passing the name of the class
and the class bytes as arguments.

Let's say we have class named uyc1ass in the package stackoverfiow...

To call the method we need the class bytes so we create a rath 0Object representing our class' path
by using the ratns.get () method and passing the path of the binary class as an argument. Now,
we can get the class bytes with riles.readaliBytes (path). SO We create a syteClassLoader iINStance
and use the method we created, derineciass (). We already have the class bytes but to call our
method we also need the class hame which is given by the package name (dot) the class
canonical name, in this case stackoverflow.MyClass.

Path path = Paths.get ("MyClass.class");

ByteClassLoader loader = new ByteClassLoader();
loader.defineClass ("stackoverflow.MyClass", Files.readAllBytes (path);

Note: The defrineciass () method returns a ciass<2> object. You can save it if you want.

To load the class, we just call 10adc1ass () and pass the class name. This method can throw an
ClassNotFoundException SO We need to use a try cath block

try{
loader.loadClass ("stackoverflow.MyClass") ;
} catch(ClassNotFoundException e) {
e.printStackTrace () ;

}

Read Classloaders online: https://riptutorial.com/java/topic/5443/classloaders

https://riptutorial.com/ 169

https://riptutorial.com/java/topic/5443/classloaders

C_hapter 28: Collection Factory Methods

Introduction

The arrival of Java 9 brings many new features to Java's Collections API, one of which being
collection factory methods. These methods allow for easy initialization of immutable collections,
whether they be empty or nonempty.

Note that these factory methods are only available for the following interfaces: vist<e>, set<e>, and

Map<K, V>

Syntax

® static
® static
® static
® static
® static
® static
® static
® static
® static
® static
® static
® static
® static
® static

® static

<E>
<E>
<E>
<E>
<E>
<E>
<E>
<E>
<E>

<E>

List<E>
List<E>
List<E>
List<E>
List<E>
Set<E>
Set<E>
Set<E>
Set<E>
Set<E>

of ()
of (E
of (E
of (E

of (E...

of ()

<K, V> Map<K, V>

o
<K, V> Map<K,V> o
<K, V> Map<K, V> o

<K, V> Map<K,V> o

<K, V> Map<K, V> o

Parameters

List.of (E e)

Set.of (E e)

Map.of (K k, V v)

el)
el, E e2)
el, E e2, ..., E e9, E el0)

elements)

el)
el, E e2)
el, E e2, ..., E e9, E e10)
. elements)
£()
f(K k1, V vl)
f(K k1, vV vl, K k2, V v2)
f(K k1, v vl, K k2, Vv2, ..., Kk9, Vv9, K k10, V v10)

fEntries (Map.Entry<? extends K,? extends V>... entries)

A generic type that can be a class or interface.
A generic type that can be a class or interface.

A key-value pair of generic types that can each be a class
or interface.

Map.of (Map.Entry<? extends K, 2 A vap.Entry INStance where its key can be x or one of its

extends V> entry)

Examples

children, and its value can be v or any of its children.

List Factory Method Examples

https://riptutorial.com/

170

® List<Integer> immutableEmptyList = List.of();
o Initializes an empty, immutable vist<integer>.
® List<Integer> immutablelist = List.of (1, 2, 3, 4, 5);
o Initializes an immutable rist<integer> With five initial elements.

® List<Integer> mutablelist = new ArrayList<> (immutablelist);

> Initializes a mutable rist<integer> from an immutable rist<integers>.

Set Factory Method Examples

® Set<Integer> immutableEmptySet = Set.of();

o Initializes an empty, immutable set<integer>.
® Set<Integer> immutableSet = Set.of(l, 2, 3, 4, 5);

o Initializes an immutable set<integer> With five initial elements.

® Set<Integer> mutableSet = new HashSet<> (immutableSet);

o Initializes a mutable set<integer> from an immutable set<integers>.

Map Factory Method Examples

® Map<Integer, Integer> immutableEmptyMap = Map.of();
o Initializes an empty, immutable vap<integer, Integer>.
® Map<Integer, Integer> immutableMap = Map.of (1, 2, 3, 4);
o Initializes an immutable vap<integer, Integer> With two initial key-value entries.
® Map<Integer, Integer> immutableMap = Map.ofEntries (Map.entry(l, 2), Map.entry (3, 4));

o Initializes an immutable Map<integer, Integer> With two initial key-value entries.
® Map<Integer, Integer> mutableMap = new HashMap<> (immutableMap) ;

o Initializes a mutable Map<integer, Integer> from an immutable Map<integer, Integers.

Read Collection Factory Methods online: https://riptutorial.com/java/topic/9783/collection-factory-
methods

https://riptutorial.com/ 171

https://riptutorial.com/java/topic/9783/collection-factory-methods
https://riptutorial.com/java/topic/9783/collection-factory-methods

C_hapter 29: Collections

Introduction

The collections framework in java.uti1 provides a number of generic classes for sets of data with
functionality that can't be provided by regular arrays.

Collections framework contains interfaces for coi11ection<o>, with main sub-interfaces vist<o> and
set<0>, and mapping collection map<k, v>. Collections are the root interface and are being
implemented by many other collection frameworks.

Remarks

Collections are objects that can store collections of other objects inside of them. You can specify
the type of data stored in a collection using Generics.

Collections generally use the java.util O java.util.concurrent NAMESpPAaces.
Java SE 1.4

Java 1.4.2 and below do not support generics. As such, you can not specify the type parameters
that a collection contains. In addition to not having type safety, you must also use casts to get the
correct type back from a collection.

In addition to co11ection<e>, there are multiple major types of collections, some of which have
subtypes.

* List<e> IS an ordered collection of objects. It is similar to an array, but does not define a size
limit. Implementations will usually grow in size internally to accomodate new elements.
* set<e> IS a collection of objects that does not allow duplicates.
o sortedset<E> IS @ set<k> that also specifies element ordering.
* wMap<k,v> IS & collection of key/value pairs.
o sortedMap<K, V> IS & Map<k, v> that also specifies element ordering.

Java SE 5
Java 5 adds in a new collection type:

* oueue<k> IS a collection of elements meant to be processed in a specific order. The
implementation specifies whether this is FIFO or LIFO. This obsoletes the stack class.

Java SE 6
Java 6 adds in some new subtypes of collections.

* NavigableSet<E> IS @ set<e> With special navigation methods built in.
* NavigableMap<K, V> IS @ Map<k, v> With special navigation methods built in.

https://riptutorial.com/ 172

http://www.riptutorial.com/java/topic/92/generics

* Deque<E> IS @ queue<k> that can be read from either end.

Note that the above items are all interfaces. In order to use them, you must find the appropriate
implementing classes, such as arrayList, HashSet, HashMap, Of PriorityQueue.

Each type of collection has multiple implementations that have different performance metrics and
use cases.

Note that the Liskov Substitution Principle applies to the collection subtypes. That is, a
sortedset<g> Can be passed to a function expecting a set<e>. It is also useful to read about
Bounded Parameters in the Generics section for more information on how to use collections with
class inheritance.

If you want to create your own collections, it may be easier to inherit one of the abstract classes
(such as abstractrist) instead of implementing the interface.

Java SE 1.2
Prior to 1.2, you had to use the following classes/interfaces instead:

* vector instead OfArrayList

* pictionary INStead of Map. Note that Dictionary is also an abstract class rather than an
interface.

* Hashtable instead of HashMap

These classes are obsolete and should not be used in modern code.

Examples

Declaring an ArrayList and adding objects
We can create an arrayrist (following the vist interface):

List aListOfFruits = new ArrayList();

Java SE 5

List<String> aListOfFruits = new ArraylList<String>();

Java SE 7

List<String> aListOfFruits = new ArrayList<>();

Now, use the method add to add a string:

aListOfFruits.add("Melon");
alistOfFruits.add ("Strawberry");

In the above example, the arrayrist will contain the string "Melon™ at index 0 and the string

https://riptutorial.com/ 173

http://www.riptutorial.com/java/example/3106/the-liskov-substitution-principle
http://www.riptutorial.com/java/topic/92/generics/1229/bounded-parameters#t=201607211933059600587

"Strawberry" at index 1.

Also we can add multiple elements with addai1 (collection<? extends E> c) method

List<String> alistOfFruitsAndVeggies = new ArrayList<String>();
alistOfFruitsAndVeggies.add ("Onion") ;
alistOfFruitsAndvVeggies.addAll (aListOfFruits);

Now "Onion" is placed at 0 index in aListofFruitsandveggies, "Melon" is at index 1 and "Strawberry
is at index 2.

Constructing collections from existing data

Standard Collections

Java Collections framework

A simple way to construct a rist from individual data values is to use java.utils.arrays method

Arrays.asList:

List<String> data = Arrays.asList ("ab", "bc", "cd", "ab", "bc", "cd");

All standard collection implementations provide constructors that take another collection as an
argument adding all elements to the new collection at the time of construction:

List<String> list = new ArrayList<>(data); // will add data as is

Set<String> setl = new HashSet<>(data); // will add data keeping only unique values
SortedSet<String> set2 = new TreeSet<>(data); // will add data keeping unique values and
sorting

Set<String> set3 = new LinkedHashSet<>(data); // will add data keeping only unique values and
preserving the original order

Google Guava Collections framework

Another great framework is coogle cuava that is amazing utility class (providing convenience static
methods) for construction of different types of standard collections rists and sets:

import com.google.common.collect.Lists;
import com.google.common.collect.Sets;

List<String> listl = Lists.newArrayList ("ab", "bc", "cd");

List<String> list2 = Lists.newArraylList (data);

Set<String> set4 = Sets.newHashSet (data);

SortedSet<String> set5 = Sets.newTreeSet ("bc", "cd", "ab", "bc", "cd");

pring Collections

https://riptutorial.com/ 174

Java Collections framework

Similarly for maps, given a map<string, oObject> map @ NEW map can be constructed with all
elements as follows:

Map<String, Object> mapl = new HashMap<> (map) ;
SortedMap<String, Object> map2 = new TreeMap<> (map);

Apache Commons Collections framework

Using apache commons YOU can create Map using array in arrayutils.toMap &S Well @S Maputils.toMap:

import org.apache.commons.lang3.ArrayUtils;
// Taken from org.apache.commons.lang.ArrayUtils#toMap JavaDoc

// Create a Map mapping colors.

Map colorMap = MapUtils.toMap (new String[][] {{
{"RED", "#FFOOOO"},
{"GREEN", "#00FF0O0"},

{"BLUE", "#O00OOFF"}});

Each element of the array must be either a Map.Entry or an Array, containing at least two
elements, where the first element is used as key and the second as value.

Google Guava Collections framework

Utility class from coogle Guava framework is named vaps:

import com.google.common.collect.Maps;

void howToCreateMapsMethod (Function<? super K,V> valueFunction,
Iterable<KkK> keysl,
Set<K> keys2,
SortedSet<K> keys3) {
ImmutableMap<K, V> mapl = toMap (keysl, valueFunction); // Immutable copy
Map<K, V> map2 = asMap (keys2, valueFunction); // Live Map view
SortedMap<K, V> map3 = toMap (keys3, valueFunction); // Live Map view

Java SE 8

using st rean,

Stream.of ("xyz", "abc").collect (Collectors.toList());
or
Arrays.stream("xyz", "abc").collect (Collectors.tolList());

https://riptutorial.com/ 175

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Join lists

Following ways can be used for joining lists without modifying source list(s).

First approach. Has more lines but easy to understand

List<String> newlist = new ArrayList<String>();
newList.addAll (1istOne) ;
newList.addAll (1istTwo) ;

Second approach. Has one less line but less readable.

List<String> newlist = new ArrayList<String>(listOne) ;
newList.addAll (1istTwo) ;

Third approach. Requires third party Apache commons-collections library.

ListUtils.union (listOne, 1istTwo) ;

Java SE 8

Using Streams the same can be achieved by

List<String> newlList = Stream.concat (listOne.stream(),
listTwo.stream()) .collect (Collectors.toList ());

References. Interface List
Removing items from a List within a loop

It is tricky to remove items from a list while within a loop, this is due to the fact that the index and
length of the list gets changed.

Given the following list, here are some examples that will give an unexpected result and some that
will give the correct result.

List<String> fruits = new ArrayList<String>();
fruits.add("Apple");

fruits.add ("Banana") ;
fruits.add("Strawberry");

INCORRECT

Removing in iteration of . Statement Skips "Banana":

The code sample will only print app1e and strawberry. Banana iS Skipped because it moves to index o
once apple IS deleted, but at the same time i gets incremented to 1.

https://riptutorial.com/ 176

https://commons.apache.org/proper/commons-collections/apidocs/org/apache/commons/collections4/ListUtils.html
https://docs.oracle.com/javase/8/docs/api/java/util/List.html#addAll-java.util.Collection-

for (int i = 0; i < fruits.size(); i++) {
System.out.println (fruits.get(i));
if ("Apple".equals (fruits.get(i))) {
fruits.remove (i) ;

}

Removing in the enhanced :: statement Throws Exception:

Because of iterating over collection and modifying it at the same time.

Throws: java.util. ConcurrentModificationException

for (String fruit : fruits) {
System.out.println (fruit);

if ("Apple".equals (fruit)) {
fruits.remove (fruit) ;

}

CORRECT

Removing in while loop using an rcerator

Iterator<String> fruitIterator = fruits.iterator();
while (fruitIterator.hasNext ()) {
String fruit = fruitlIterator.next ();
System.out.println (fruit);
{

’

if ("Apple".equals (fruit))
fruitIterator.remove ()

}

The 1terator interface has a remove () method built in just for this case. However, this method is
marked as "optional” in the documentation, and it might throw an unsupportedoperationException.

Throws: UnsupportedOperationException - if the remove operation is not supported by
this iterator

Therefore, it is advisable to check the documentation to make sure this operation is supported (in
practice, unless the collection is an immutable one obtained through a 3rd party library or the use
of one of the collections.unmodifiable... () Method, the operation is almost always supported).

While using adlN Iterator @ ConcurrentModificationException is thrown when the modcount Of the rist
is changed from when the 1terator was created. This could have happened in the same thread or
in a multi-threaded application sharing the same list.

A modcount IS @n int variable which counts the number of times this list has been structurally

https://riptutorial.com/ 177

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html#remove--

modified. A structural change essentially means an add () Or remove () Operation being invoked on
collection Object (changes made by rterator are not counted). When the 1terator IS created, it
stores this modcount @and on every iteration of the vist checks if the current modcount iS Same as and
when the 1terator was created. If there is a change in the modcount value it throws a

ConcurrentModificationException.

Hence for the above-declared list, an operation like below will not throw any exception:

Iterator<String> fruitIterator = fruits.iterator();
fruits.set (0, "Watermelon");
while (fruitIterator.hasNext ()) {

System.out.println (fruitIterator.next ());

But adding a new element to the vist after initializing an rterator will throw a

ConcurrentModificationException.

Iterator<String> fruitIterator = fruits.iterator();
fruits.add ("Watermelon") ;
while (fruitIterator.hasNext ()) {
System.out.println (fruitIterator.next ()); //ConcurrentModificationException here

Iterating backwards

for (int i = (fruits.size() - 1); i >=0; i--) {
System.out.println (fruits.get(i));
if ("Apple".equals (fruits.get (i))) {
fruits.remove (1) ;

}

This does not skip anything. The downside of this approach is that the output is reverse. However,
in most cases where you remove items that will not matter. You should never do this with
LinkedList.

Iterating forward, adjusting the loop index

for (int 1 = 0; i < fruits.size(); i++) {
System.out.println (fruits.get(i));
if ("Apple".equals (fruits.get (i))) {
fruits.remove (1) ;

i-—;

This does not skip anything. When the ith element is removed from the vist, the element originally
positioned at index i+1 becomes the new ith element. Therefore, the loop can decrement : in
order for the next iteration to process the next element, without skipping.

https://riptutorial.com/ 178

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

Using a "should-be-removed" list

ArrayList shouldBeRemoved = new ArrayList();
for (String str : currentArrayList) {
if (condition) {
shouldBeRemoved.add (str) ;
}
}

currentArrayList.removeAll (shouldBeRemoved) ;

This solution enables the developer to check if the correct elements are removed in a cleaner way.
Java SE 8

In Java 8 the following alternatives are possible. These are cleaner and more straight forward if
the removing does not have to happen in a loop.

Filtering a Stream

A List can be streamed and filtered. A proper filter can be used to remove all undesired elements.

List<String> filteredList =
fruits.stream() .filter(p -> !"Apple".equals(p)) .collect (Collectors.tolList());

Note that unlike all the other examples here, this example produces a new vist instance and
keeps the original rist unchanged.

US I n g removeIf

Saves the overhead of constructing a stream if all that is needed is to remove a set of items.

fruits.removelIf (p —> "Apple".equals(p));

Unmodifiable Collection

Sometimes it's not a good practice expose an internal collection since it can lead to a malicious
code vulnerability due to it's mutable characteristic. In order to provide "read-only" collections java
provides its unmodifiable versions.

An unmodifiable collection is often a copy of a modifiable collection which guarantees that the
collection itself cannot be altered. Attempts to modify it will result in an
UnsupportedOperationException exception.

It is important to notice that objects which are present inside the collection can still be altered.

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

https://riptutorial.com/ 179

public class MyPojoClass {
private List<Integer> intList = new ArrayList<>();

public void addValueToIntList (Integer value) {

intList.add(value);

public List<Integer> getIntList () {
return Collections.unmodifiablelList (intList);

The following attempt to modify an unmodifiable collection will throw an exception:

import java.util.List;
public class App {
public static void main(String[] args) {
MyPojoClass pojo = new MyPojoClass();

pojo.addValueToIntList (42);

List<Integer> list = pojo.getIntList();
list.add (69);

output:

Exception in thread "main" Jjava.lang.UnsupportedOperationException
at java.util.Collections$UnmodifiableCollection.add(Collections.java:1055)
at App.main (App.java:12)

Iterating over Collections

Iterating over List

List<String> names = new ArraylList<> (Arrays.asList ("Clementine", "Duran", "Mike"));
Java SE 8
names.forEach (System.out::println);

If we need parallelism use

names.parallelStream() . forEach (System.out: :println);
Java SE 5

for (String name : names) {

https://riptutorial.com/ 180

System.out.println (name) ;

Java SE 5

for (int 1 = 0; 1 < names.size(); 1i++) {

System.out.println (names.get (1)) ;

Java SE 1.2

//Creates ListIterator which supports both forward as well as backward traversel
ListIterator<String> listIterator = names.listIterator();

//Iterates list in forward direction

while (listIterator.hasNext ()) {
System.out.println(listIterator.next ());

//Iterates list in backward direction once reaches the last element from above iterator in
forward direction
while (listIterator.hasPrevious()) {

System.out.println (listIterator.previous());

lterating over Set

Set<String> names = new HashSet<> (Arrays.asList ("Clementine", "Duran", "Mike"));
Java SE 8
names.forEach (System.out: :println);

Java SE 5

for (Iterator<String> iterator = names.iterator(); iterator.hasNext ();) {
System.out.println (iterator.next ());

for (String name : names) {
System.out.println (name) ;

Java SE 5

Iterator iterator = names.iterator();
while (iterator.hasNext ()) {
System.out.println (iterator.next ());

Iterating over Map

https://riptutorial.com/ 181

Map<Integer, String> names = new HashMap<>();
names.put (1, "Clementine");

names.put (2, "Duran");

names.put (3, "Mike");

Java SE 8

names.forEach ((key, value) —-> System.out.println ("Key: " + key + " Value: " + value));
Java SE 5

for (Map.Entry<Integer, String> entry : names.entrySet ()) {

System.out.println (entry.getKey ());
System.out.println (entry.getValue());

// Iterating over only keys

for (Integer key : names.keySet()) {
System.out.println (key) ;

}

// Iterating over only values

for (String value : names.values()) {
System.out.println (value) ;

Java SE 5

Iterator entries = names.entrySet ().iterator();
while (entries.hasNext ()) {

Map.Entry entry = (Map.Entry) entries.next ();

(
System.out.println(entry.getKey());
System.out.println (entry.getValue());

Immutable Empty Collections

Sometimes it is appropriate to use an immutable empty collection. The co11ccti0ns class provides
methods to get such collections in an efficient way:

List<String> anEmptyList = Collections.emptyList ();
Map<Integer, Date> anEmptyMap = Collections.emptyMap () ;
Set<Number> anEmptySet = Collections.emptySet ();

These methods are generic and will automatically convert the returned collection to the type it is
assigned to. That is, an invocation of e.g. emptyList () can be assigned to any type of 1ist and
likewise for emptySet () and emptyMap () .

The collections returned by these methods are immutable in that they will throw
UnsupportedOperationException if you attempt to call methods which would change their contents (
add, put, etc.). These collections are primarily useful as substitutes for empty method results or
other default values, instead of using nu11 or creating objects with new.

Collections and Primitive Values

https://riptutorial.com/ 182

https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html

Collections in Java only work for objects. I.e. there is No mMap<int, int> in Java. Instead, primitive
values need to be boxed into objects, as in map<integer, Integer>. Java auto-boxing will enable
transparent use of these collections:

Map<Integer, Integer> map = new HashMap<>();
map.put (1, 17); // Automatic boxing of int to Integer objects
int a = map.get(l); // Automatic unboxing.

Unfortunately, the overhead of this is substantial. A sashMap<integer, Integer> Will require about 72
bytes per entry (e.g. on 64-bit JVM with compressed pointers, and assuming integers larger than
256, and assuming 50% load of the map). Because the actual data is only 8 bytes, this yields a
massive overhead. Furthermore, it requires two level of indirection (Map -> Entry -> Value) it is
unnecessarily slow.

There exist several libraries with optimized collections for primitive data types (that require only
~16 bytes per entry at 50% load, i.e. 4x less memory, and one level of indirection less), that can
yield substantial performance benefits when using large collections of primitive values in Java.

Removing matching items from Lists using lterator.

Above | noticed an example to remove items from a List within a Loop and | thought of another
example that may come in handy this time using the rterator interface.

This is a demonstration of a trick that might come in handy when dealing with duplicate items in
lists that you want to get rid of.

Note: This is only adding on to the Removing items from a List within a loop example:

So let's define our lists as usual

String[] names = {"James","Smith","Sonny", "Huckle","Berry","Finn","Allan"};
List<String> namelist = new ArrayList<>();

//Create a List from an Array
namelList.addAll (Arrays.asList (names)) ;

String[] removeNames = {"Sonny", "Huckle", "Berry"};
List<String> removeNamelList = new ArrayList<>();

//Create a List from an Array
removeNameList.addAll (Arrays.asList (removeNames)) ;

The following method takes in two Collection objects and performs the magic of removing the
elements in our removenameList that match with elements in namerist.

private static void removeNames (Collection<String> collectionl, Collection<String>
collection2) {
//get Iterator.
Iterator<String> iterator = collectionl.iterator();

//Loop while collection has items
while (iterator.hasNext ()) {
if (collection2.contains(iterator.next()))

https://riptutorial.com/ 183

iterator.remove (); //remove the current Name or Item

Calling the method and passing in the namerist and the removenameristas follows
removeNames (namelList, removeNameList) ;

Will produce the following output:

Array List before removing names: James Smith Sonny Huckle Berry Finn Allan
Array List after removing names: James Smith Finn Allan

A simple neat use for Collections that may come in handy to remove repeating elements within
lists.

Creating your own lterable structure for use with Iterator or for-each loop.

To ensure that our collection can be iterated using iterator or for-each loop, we have to take care
of following steps:

1. The stuff we want to iterate upon has to be rterabie and expose iterator ().
2. Design ad java.util.Iterator by Overriding hasNext (), next () and remove ().

| have added a simple generic linked list implementation below that uses above entities to make
the linked list iterable.
package org.algorithms.linkedlist;
import java.util.Iterator;
import java.util.NoSuchElementException;
public class LinkedList<T> implements Iterable<T> {
Node<T> head, current;
private static class Node<T> {
T data;

Node<T> next;

Node (T data) {
this.data = data;

public LinkedList (T data) {
head = new Node<> (data);

}

public Iterator<T> iterator () {
return new LinkedListIterator();

}
private class LinkedListIterator implements Iterator<T> {

Node<T> node = head;

https://riptutorial.com/ 184

@Override
public boolean hasNext () {
return node != null;

@Override
public T next () {
if ('hasNext ())
throw new NoSuchElementException () ;
Node<T> prevNode = node;
node = node.next;
return prevNode.data;

@Override
public void remove () {
throw new UnsupportedOperationException ("Removal logic not implemented.");

public void add(T data) {

Node current = head;

while (current.next != null)
current = current.next;

current ..next = new Node<> (data);

class App {
public static void main(String[] args) {

LinkedList<Integer> list = new LinkedList<>(1);
list.add(2);
list.add (4);
list.add(3);

//Test #1
System.out.println ("using Iterator:");
Iterator<Integer> itr = list.iterator();
while (itr.hasNext ()) {
Integer i = itr.next();
System.out.print (i + " ");
}
//Test #2

System.out.println("\n\nusing for-each:");
for (Integer data : list) {
System.out.print (data + " ");

Output

using Iterator:
12 4 3
using for-each:
12 4 3

https://riptutorial.com/ 185

This will run in Java 7+. You can make it run on Java 5 and Java 6 also by substituting:
LinkedList<Integer> list = new LinkedList<>(1);

with
LinkedList<Integer> list = new LinkedList<Integer>(1);

or just any other version by incorporating the compatible changes.

Pitfall: concurrent modification exceptions

This exception occurs when a collection is modified while iterating over it using methods other
than those provided by the iterator object. For example, we have a list of hats and we want to
remove all those that have ear flaps:

List<IHat> hats = new ArrayList<>();
hats.add (new Ushanka()); // that one has ear flaps
hats.add (new Fedora());
hats.add (new Sombrero());
for (IHat hat : hats) {
if (hat.hasEarFlaps()) {
hats.remove (hat) ;

}

If we run this code, ConcurrentModificationException will be raised since the code modifies the
collection while iterating it. The same exception may occur if one of the multiple threads working
with the same list is trying to modify the collection while others iterate over it. Concurrent
modification of collections in multiple threads is a natural thing, but should be treated with usual
tools from the concurrent programming toolbox such as synchronization locks, special collections
adopted for concurrent modification, modifying the cloned collection from initial etc.

Sub Collections

List subList(int fromiIndex, int tolndex)

Here fromlIndex is inclusive and tolndex is exclusive.

List list = new ArrayList();
List listl = list.subList (fromIndex,toIndex);

1. If the list doesn't exist in the give range, it throws IndexOutofBoundException.

2. What ever changes made on the listl will impact the same changes in the list.This is called
backed collections.

3. If the fromnindex is greater than the tolndex (fromindex > tolndex) it throws
lllegalArgumentException.

https://riptutorial.com/ 186

Example:

List<String> list = new ArrayList<String>();
List<String> list = new ArrayList<String>();
list.add ("Hellol");

list.add ("Hello2");

System.out.println ("Before Sublist "+list);
List<String> list2 = list.subList (0, 1);
list2.add("Hello3");

System.out.println ("After sublist changes "+list);

Output:
Before Sublist [Hellol1, Hello2]
After sublist changes [Hellol, Hello3, Hello2]

Set subSet(fromindex,tolndex)

Here fromlIndex is inclusive and tolndex is exclusive.

Set set = new TreeSet ();
Set setl = set.subSet (fromIndex,tolIndex);

The returned set will throw an lllegalArgumentException on an attempt to insert an element
outside its range.

Map subMap(fromKey,toKey)

fromKey is inclusive and toKey is exclusive

Map map = new TreeMap();
Map mapl = map.get (fromKey, toKey) ;

If fromKey is greater than toKey or if this map itself has a restricted range, and fromKey or toKey
lies outside the bounds of the range then it throws lllegalArgumentException.

All the collections support backed collections means changes made on the sub collection will have
same change on the main collection.

Read Collections online: https://riptutorial.com/java/topic/90/collections

https://riptutorial.com/ 187

https://riptutorial.com/java/topic/90/collections

C_hapter 30: Command line Argument
Processing

Syntax

* public static void main(String[] args)

Parameters

The command line arguments. Assuming that the main method is invoked by the

args - .
g Java launcher, args will be non-null, and will have no nu11 elements.

Remarks

When a regular Java application is launched using the java command (or equivalent), a main
method will be called, passing the arguments from the command line in the args array.

Unfortunately, the Java SE class libraries do not provide any direct support for command
argument processing. This leaves you two alternatives:

» Implement the argument processing by hand in Java.
» Make use of a 3rd-party library.

This Topic will attempt to cover some of the more popular 3rd-party libraries. For an extensive list
of the alternatives, see this answer to the StackOverflow Question "How to parse command line
arguments in Java?".

Examples

Argument processing using GWT ToolBase

If you want to parse more complex command-line arguments, e.g. with optional parameters, than
the best is to use google's GWT approach. All classes are public available at:

https://gwt.googlesource.com/gwt/+/2.8.0-
betal/dev/core/src/com/google/gwt/util/tools/ToolBase.java

An example for handling the command-line myprogram -dir "~/Documents" -port 8888 IS:

public class MyProgramHandler extends ToolBase {
protected File dir;

https://riptutorial.com/ 188

http://stackoverflow.com/a/7829772/139985
http://stackoverflow.com/a/7829772
http://stackoverflow.com/a/7829772
https://gwt.googlesource.com/gwt/+/2.8.0-beta1/dev/core/src/com/google/gwt/util/tools/ToolBase.java
https://gwt.googlesource.com/gwt/+/2.8.0-beta1/dev/core/src/com/google/gwt/util/tools/ToolBase.java

protected int port;
// getters for dir and port

public MyProgramHandler () {
this.registerHandler (new ArgHandlerDir () {
@Override
public void setDir (File dir) {
this.dir = dir;

)i
this.registerHandler (new ArgHandlerInt () {
@Override
public String[] getTagArgs() {
return new String[]{"port"};
}
@Override
public void setInt (int value) {
this.port = value;

)i
}
public static void main(String[] args) {
MyProgramHandler myShell = new MyProgramHandler () ;
if (myShell.processArgs (args)) {
// main program operation
System.out .println (String.format ("port: %d; dir: %s",
myShell.getPort (), myShell.getDir()));
}
System.exit (1) ;

argHandler alsO has a method isrequired () Which can be overwritten to say that the command-line
argument is required (default return is ra1se so that the argument is optional.

Processing arguments by hand

When the command-line syntax for an application is simple, it is reasonable to do the command
argument processing entirely in custom code.

In this example, we will present a series of simple case studies. In each case, the code will
produce error messages if the arguments are unacceptable, and then call system.exit (1) to tell the
shell that the command has failed. (We will assume in each case that the Java code is invoked
using a wrapper whose name is "myapp".)

A command with no arguments

In this case-study, the command requires no arguments. The code illustrates that args.1ength
gives us the number of command line arguments.

public class Main {
public static void main(String[] args) {
if (args.length > 0) {
System.err.println ("usage: myapp");

https://riptutorial.com/ 189

System.exit (1) ;

}
// Run the application
System.out.println ("It worked");

A command with two arguments

In this case-study, the command requires at precisely two arguments.

public class Main {
public static void main(String[] args) {

if (args.length != 2) {
System.err.println ("usage: myapp <argl> <arg2>");
System.exit (1) ;

}

// Run the application

System.out.println ("It worked: " + args[0] + ", " + args([l]);

Note that if we neglected to check args.1ength, the command would crash if the user ran it with too
few command-line arguments.

A command with "flag" options and at least one argument

In this case-study, the command has a couple of (optional) flag options, and requires at least one
argument after the options.

package tommy;
public class Main {
public static void main(String[] args) {

boolean feelMe = false;

boolean seeMe = false;

int index;

loop: for (index = 0; index < args.length; index++) {
String opt = args[index];

switch (opt) {
case "-c":
seeMe = true;
break;
case "-f":
feelMe = true;

break;
default:
if (!opts.isEmpty () && opts.charAt (0) == '-') {
error ("Unknown option: '" + opt + "');
}
break loop;

t
if (index >= args.length) {
error ("Missing argument (s)");

https://riptutorial.com/ 190

// Run the application
/] ..

private static void error (String message) {
if (message != null) {
System.err.println (message);

}

System.err.println ("usage: myapp [-f] [-c] [<arg> ...]1");
System.exit (1) ;

As you can see, processing the arguments and options gets rather cumbersome if the command

syntax is complicated. It is advisable to use a "command line parsing" library; see the other
examples.

Read Command line Argument Processing online:
https://riptutorial.com/java/topic/4775/command-line-argument-processing

https://riptutorial.com/ 191

https://riptutorial.com/java/topic/4775/command-line-argument-processing

C_hapter 31: Common Java Pitfalls

Introduction

This topic outlines some of the common mistakes made by beginners in Java.

This includes any common mistakes in use of the Java language or understanding of the run-time
environment.

Mistakes associated with specific APIs can be described in topics specific to those APIs. Strings
are a special case; they're covered in the Java Language Specification. Details other than
common mistakes can be described in this topic on Strings.

Examples

Pitfall: using ==to compare primitive wrappers objects such as Integer

(This pitfall applies equally to all primitive wrapper types, but we will illustrate it for integer and int

)

When working with 1nteger Objects, it is tempting to use == to compare values, because that is
what you would do with int values. And in some cases this will seem to work:

Integer intl_1 = Integer.valueOf ("1");
Integer intl_2 = Integer.valueOf(1l);

System.out.println("intl_1 == intl_2: " + (intl_1 == intl_2)); // true
System.out.println ("intl_1 equals intl_2: " + intl_l.equals(intl_2)); // true

Here we created two 1nteger Objects with the value 1 and compare them (In this case we created
one from a string and one from an int literal. There are other alternatives). Also, we observe that
the two comparison methods (== and equa1s) both yield true.

This behavior changes when we choose different values:

Integer int2_1 = Integer.valueOf ("1000");
Integer.valueOf (1000) ;

Integer int2_2

System.out.println("int2_1 == int2_2: " 4+ (int2_1 == int2_2)); // false
System.out.println("int2_1 equals int2_2: " + int2_1l.equals(int2_2)); // true

In this case, only the equa1s comparison yields the correct result.

The reason for this difference in behavior is, that the JVM maintains a cache of integer 0Objects for
the range -128 to 127. (The upper value can be overridden with the system property
"jJava.lang.Integer.IntegerCache.high” or the JVM argument "-XX:AutoBoxCacheMax=size"). For
values in this range, the tnteger.valueor () Will return the cached value rather than creating a new

https://riptutorial.com/ 192

http://www.riptutorial.com/java/topic/109/strings

one.

Thus, in the first example the tnteger.valueof (1) and 1nteger.valueost ("1 calls returned the same
cached 1nteger instance. By contrast, in the second example the 1nteger.valueor (1000) and
Integer.valueOf ("1000") both created and returned new rnteger Objects.

The == operator for reference types tests for reference equality (i.e. the same object). Therefore, in
the first example int1_1 == int1_2 iS true because the references are the same. In the second
example int2_1 == int2_2 iS false because the references are different.

Pitfall: forgetting to free resources

Every time a program opens a resource, such as a file or network connection, it is important to
free the resource once you are done using it. Similar caution should be taken if any exception
were to be thrown during operations on such resources. One could argue that the = 1cinputstrean
has a finalizer that invokes the c10se () method on a garbage collection event; however, since we
can’'t be sure when a garbage collection cycle will start, the input stream can consume computer
resources for an indefinite period of time. The resource must be closed in a rina11y section of a
try-catch block:

Java SE 7

private static void printFileJavab6 () throws IOException {
FileInputStream input;
try {
input = new FileInputStream("file.txt");
int data = input.read();
while (data != -1){
System.out.print ((char) data);
data = input.read();
}
} finally {
if (input !'= null) {
input.close();

Since Java 7 there is a really useful and neat statement introduced in Java 7 particularly for this
case, called try-with-resources:

Java SE 7
private static void printFileJava7 () throws IOException {
try (FilelInputStream input = new FileInputStream("file.txt")) {
int data = input.read();
while (data != -1){

System.out.print ((char) data);
data = input.read();

https://riptutorial.com/ 193

https://docs.oracle.com/javase/8/docs/api/java/io/FileInputStream.html
https://en.wikipedia.org/wiki/Finalizer

The try-with-resources statement can be used with any object that implements the cioseabie OF
autoCloseable INterface. It ensures that each resource is closed by the end of the statement. The
difference between the two interfaces is, that the ci1ose () method of cioseable throws an
ToException Which has to be handled in some way.

In cases where the resource has already been opened but should be safely closed after use, one
can assign it to a local variable inside the try-with-resources

Java SE 7

private static void printFileJava7 (InputStream extResource) throws IOException {
try (InputStream input = extResource) {
. //access resource

}

The local resource variable created in the try-with-resources constructor is effectively final.
Pitfall: memory leaks

Java manages memory automatically. You are not required to free memory manually. An object's
memory on the heap may be freed by a garbage collector when the object is no longer reachable
by a live thread.

However, you can prevent memory from being freed, by allowing objects to be reachable that are
no longer needed. Whether you call this a memory leak or memory packratting, the result is the
same -- an unnecessary increase in allocated memory.

Memory leaks in Java can happen in various ways, but the most common reason is everlasting
object references, because the garbage collector can’t remove objects from the heap while there
are still references to them.

Static fields

One can create such a reference by defining class with a static field containing some collection of
objects, and forgetting to set that static field to nu11 after the collection is no longer needed. static
fields are considered GC roots and are never collected. Another issue is leaks in non-heap
memory when JNI is used.

Classloader leak

By far, though, the most insidious type of memory leak is the classloader leak. A classloader holds
a reference to every class it has loaded, and every class holds a reference to its classloader.
Every object holds a reference to its class as well. Therefore, if even a single object of a class
loaded by a classloader is not garbage, not a single class that that classloader has loaded can be
collected. Since each class also refers to its static fields, they cannot be collected either.

Accumulation leak The accumulation leak example could look like the following:

final ScheduledExecutorService scheduledExecutorService = Executors.newScheduledThreadPool (1);

https://riptutorial.com/ 194

https://en.wikipedia.org/wiki/Java_Native_Interface
https://zeroturnaround.com/rebellabs/rjc201/

final Deque<BigDecimal> numbers = new LinkedBlockingDeque<>();
final BigDecimal divisor = new BigDecimal (51);

scheduledExecutorService.scheduleAtFixedRate (() —> {
BigDecimal number = numbers.peekLast ();
if (number '= null && number.remainder (divisor) .byteValue() == 0) {
System.out.println ("Number: " + number);
System.out.println ("Deque size: " + numbers.size());
}
}, 10, 10, TimeUnit.MILLISECONDS) ;

scheduledExecutorService.scheduleAtFixedRate (() —-> {
numbers.add (new BigDecimal (System.currentTimeMillis()));
}, 10, 10, TimeUnit.MILLISECONDS) ;

try {

scheduledExecutorService.awaitTermination (1, TimeUnit.DAYS);
} catch (InterruptedException e) {

e.printStackTrace () ;

This example creates two scheduled tasks. The first task takes the last number from a deque
called numbers, and, if the number is divisible by 51, it prints the number and the deque's size. The
second task puts numbers into the deque. Both tasks are scheduled at a fixed rate, and they run
every 10 ms.

If the code is executed, you'll see that the size of the deque is permanently increasing. This will
eventually cause the deque to be filled with objects that consume all available heap memory.

To prevent this while preserving the semantics of this program, we can use a different method for
taking numbers from the deque: po111ast. Contrary to the method peekirast, polirast returns the
element and removes it from the deque while peekrast only returns the last element.

Pitfall: using ==to compare strings

A common mistake for Java beginners is to use the == operator to test if two strings are equal. For
example:

public class Hello {
public static void main(String[] args) {
if (args.length > 0) {
if (args[0] == "hello") {
System.out.println ("Hello back to you");
} else {

System.out.println ("Are you feeling grumpy today?");

The above program is supposed to test the first command line argument and print different
messages when it and isn't the word "hello”. But the problem is that it won't work. That program
will output "Are you feeling grumpy today?" no matter what the first command line argument is.

https://riptutorial.com/ 195

In this particular case the string "hello” is put in the string pool while the string args[0] resides on
the heap. This means there are two objects representing the same literal, each with its reference.
Since == tests for references, not actual equality, the comparison will yield a false most of the
times. This doesn't mean that it will always do so.

When you use == to test strings, what you are actually testing is if two string Objects are the same
Java object. Unfortunately, that is not what string equality means in Java. In fact, the correct way
to test strings is to use the equais (object) method. For a pair of strings, we usually want to test if
they consist of the same characters in the same order.

public class Hello2 {
public static void main(String[] args) {
if (args.length > 0) {
if (args[0].equals("hello")) {
System.out.println ("Hello back to you");
} else {
System.out.println ("Are you feeling grumpy today?");

But it actually gets worse. The problem is that == will give the expected answer in some
circumstances. For example

public class Testl {
public static void main(String[] args) {
String sl = "hello";
String s2 = "hello";
if (sl == s2) {
System.out.println ("same") ;
} else {

System.out.println ("different");

Interestingly, this will print "same", even though we are testing the strings the wrong way. Why is
that? Because the Java Language Specification (Section 3.10.5: String Literals) stipulates that any
two string >>literals<< consisting of the same characters will actually be represented by the same
Java object. Hence, the == test will give true for equal literals. (The string literals are "interned" and
added to a shared "string pool" when your code is loaded, but that is actually an implementation
detail.)

To add to the confusion, the Java Language Specification also stipulates that when you have a
compile-time constant expression that concatenates two string literals, that is equivalent to a
single literal. Thus:

public class Testl {
public static void main(String[] args) {

String sl = "hello";
String s2 = "hel" + "lo";
String s3 = " mun";

https://riptutorial.com/ 196

https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.10.5

if (sl == s2) {
System.out.println("1l. same");
} else {
System.out.println("1l. different");
}
if (sl + s3 == "hello mum") {
System.out.println("2. same");
} else {
System.out.println("2. different");

This will output "1. same" and "2. different". In the first case, the + expression is evaluated at

compile time and we compare one string Object with itself. In the second case, it is evaluated at

run time and we compare two different string Objects

In summary, using == to test strings in Java is almost always incorrect, but it is not guaranteed to

give the wrong answer.

Pitfall: testing a file before attempting to open it.

Some people recommend that you should apply various tests to a file before attempting to open it

either to provide better diagnostics or avoid dealing with exceptions. For example, this method

attempts to check if path corresponds to a readable file:

public static File getValidatedFile (String path) throws IOException ({

File f = new File(path);

if (!f.exists()) throw new IOException("Error: not found:
if (!f.isFile()) throw new IOException ("Error: Is a directory:
if (!f.canRead()) throw new IOException("Error: cannot read file:

return f;

You might use the above method like this:

File £ = null;
try {
f = getValidatedFile ("somefile");
} catch (IOException ex) {
System.err.println (ex.getMessage ()) ;
return;
}
try (InputStream is = new FileInputStream(file)) {
// Read data etc.
}

" + path);
" + path);
" + path);

The first problem is in the signature for riiernputstream(rile) because the compiler will still insist

we catch roexception here, or further up the stack.

The second problem is that checks performed by getvalidatedrile do not guarantee that the

FileInputstream Will SUCCEEd.

https://riptutorial.com/

197

» Race conditions: another thread or a separate process could rename the file, delete the file,
or remove read access after the getvalidatedrile returns. That would lead to a "plain”
IoException Without the custom message.

» There are edge cases not covered by those tests. For example, on a system with SELinux in
"enforcing” mode, an attempt to read a file can fail despite canread() returning true.

The third problem is that the tests are inefficient. For example, the exists, isFile and canread calls
will each make a syscall to perform the required check. Another syscall is then made to open the
file, which repeats the same checks behind the scenes.

In short, methods like getvalidatedrile are misguided. It is better to simply attempt to open the file
and handle the exception:

try (InputStream is = new FileInputStream("somefile")) {
// Read data etc.
} catch (IOException ex) {
System.err.println ("IO Error processing 'somefile': " + ex.getMessage());

return;

If you wanted to distinguish 10 errors thrown while opening and reading, you could use a nested
try / catch. If you wanted to produce better diagnostics for open failures, you could perform the
exists, isFile and canread checks in the handler.

Pitfall: thinking of variables as objects
No Java variable represents an object.

String foo; // NOT AN OBJECT

Neither does any Java array contain objects.

String bar[] = new String[l100]; // No member is an object.

If you mistakenly think of variables as objects, the actual behavior of the Java language will
surprise you.

» For Java variables which have a primitive type (such as int Or r10at) the variable holds a
copy of the value. All copies of a primitive value are indistinguishable; i.e. there is only one
int Value for the number one. Primitive values are not objects and they do not behave like
objects.

» For Java variables which have a reference type (either a class or an array type) the variable
holds a reference. All copies of a reference are indistinguishable. References may point to
objects, or they may be nu11 which means that they point to no object. However, they are not
objects and they don't behave like objects.

Variables are not objects in either case, and they don't contain objects in either case. They may

https://riptutorial.com/ 198

https://en.wikipedia.org/wiki/System_call

contain references to objects, but that is saying something different.

Example class

The examples that follow use this class, which represents a point in 2D space.

public final class MutableLocation {
public int x;
public int vy;

public MutableLocation (int x, int y) {
this.x = x;
this.y = y;

}

public boolean equals (Object other) {
if (! (other instanceof Mutablelocation) {
return false;

}
Mutablelocation that = (MutablelLocation) other;
return this.x == that.x && this.y == that.y;

An instance of this class is an object that has two fields x and y which have the type int.

We can have many instances of the mutableLocation class. Some will represent the same locations
in 2D space; i.e. the respective values of x and y will match. Others will represent different
locations.

Multiple variables can point to the same object

MutableLocation here = new MutableLocation(l, 2);
MutableLocation there = here;
MutableLocation elsewhere = new MutableLocation(l, 2);

In the above, we have declared three variables here, there and e1sewhere that can hold references
tO0 MutableLocation objects.

If you (incorrectly) think of these variables as being objects, then you are likely to misread the
statements as saying:

1. Copy the location "[1, 2]" tO here
2. Copy the location "[1, 2]" tO there
3. Copy the location "[1, 2]" t0 e1sewhere

From that, you are likely to infer we have three independent objects in the three variables. In fact
there are only two objects created by the above. The variables nere and tnere actually refer to the
same object.

We can demonstrate this. Assuming the variable declarations as above:

https://riptutorial.com/ 199

System.out.println ("BEFORE: here.x is " + here.x + ", there.x is " + there.x +

"elsewhere.x is " + elsewhere.x);

here.x = 42;

System.out.println ("AFTER: here.x is " + here.x + ", there.x is " + there.x +
"elsewhere.x is " + elsewhere.x);

This will output the following:

BEFORE: here.x is 1, there.x is 1, elsewhere.x is 1
AFTER: here.x is 42, there.x is 42, elsewhere.x is 1

We assigned a new value to nere.x and it changed the value that we see via there.x. They are
referring to the same object. But the value that we see via c1sewhere.x has not changed, so
elsewhere Must refer to a different object.

If a variable was an object, then the assignment here.x = 42 would not change there.x.

The equality operator does NOT test that two objects are
equal

Applying the equality (==) operator to reference values tests if the values refer to the same object.
It does not test whether two (different) objects are "equal” in the intuitive sense.

MutableLocation here = new MutableLocation(l, 2);
MutableLocation there = here;

MutableLocation elsewhere = new MutableLocation (1, 2);

if (here == there) {
System.out.println ("here is there");

}

if (here == elsewhere) {

System.out.println ("here is elsewhere");

This will print "here is there", but it won't print "here is elsewhere". (The references in here and
elsewhere are for two distinct objects.)

By contrast, if we call the equais (object) method that we implemented above, we are going to test
if tWo MutableLocation iNStances have an equal location.

if (here.equals (there)) {
System.out.println ("here equals there");

}

if (here.equals (elsewhere)) {
System.out.println ("here equals elsewhere");

This will print both messages. In particular, nere.equals (elsewhere) returns true because the
semantic criteria we chose for equality of two mutabierocation Objects has been satisfied.

https://riptutorial.com/ 200

Method calls do NOT pass objects at all

Java method calls use pass by valuel to pass arguments and return a resuilt.

When you pass a reference value to a method, you're actually passing a reference to an object by
value, which means that it is creating a copy of the object reference.

As long as both object references are still pointing to the same object, you can modify that object
from either reference, and this is what causes confusion for some.

However, you are not passing an object by reference2. The distinction is that if the object
reference copy is modified to point to another object, the original object reference will still point to
the original object.

void f (MutableLocation foo) {

foo = new MutableLocation (3, 4); // Point local foo at a different object.
}
void g() f{

MutableLocation foo = MutableLocation(l, 2);

f (foo);

System.out.println("foo.x is " + foo.x); // Prints "foo.x is 1".

Neither are you passing a copy of the object.

void f (Mutablelocation foo) {
foo.x = 42;

}

void g() {
MutableLocation foo = new MutableLocation (0, 0);
f (foo);
System.out.println("foo.x is " + foo.x); // Prints "foo.x is 42"

1 - In languages like Python and Ruby, the term "pass by sharing" is preferred for "pass by value" of an object /
reference.

2 - The term "pass by reference" or "call by reference" has a very specific meaning in programming language
terminology. In effect, it means that you pass the address of a variable or an array element, so that when the called
method assigns a new value to the formal argument, it changes the value in the original variable. Java does not
support this. For a more fulsome description of different mechanisms for passing parameters, please refer to
https://en.wikipedia.org/wiki/Evaluation_strategy.

Pitfall: combining assignment and side-effects

Occasionally we see StackOverflow Java questions (and C or C++ questions) that ask what
something like this:

i += a[i++] + bl[i--1;

https://riptutorial.com/ 201

https://en.wikipedia.org/wiki/Evaluation_strategy

evaluates to ... for some known initial states of i, a and .
Generally speaking:

« for Java the answer is always specified!, but non-obvious, and often difficult to figure out
» for C and C++ the answer is often unspecified.

Such examples are often used in exams or job interviews as an attempt to see if the student or
interviewee understands how expression evaluation really works in the Java programming
language. This is arguably legitimate as a "test of knowledge", but that does not mean that you
should ever do this in a real program.

To illustrate, the following seemingly simple example has appeared a few times in StackOverflow
guestions (like this one). In some cases, it appears as a genuine mistake in someone's code.

int a = 1;
a = at+;
System.out.println(a); // What does this print.

Most programmers (including Java experts) reading those statements quickly would say that it
outputs 2. In fact, it outputs 1. For a detailed explanation of why, please read this Answer.

However the real takeaway from this and similar examples is that any Java statement that both
assigns to and side-effects the same variable is going to be at best hard to understand, and at
worst downright misleading. You should avoid writing code like this.

1 - modulo potential issues with the Java Memory Model if the variables or objects are visible to other threads.

Pitfall: Not understanding that String is an immutable class

New Java programmers often forget, or fail to fully comprehend, that the Java string Class is
immutable. This leads to problems like the one in the following example:

public class Shout {
public static void main(String[] args) {

for (String s : args) {
s.toUpperCase () ;
System.out.print (s);
System.out.print (" ");

}

System.out.println () ;

The above code is supposed to print command line arguments in upper case. Unfortunately, it
does not work, the case of the arguments is not changed. The problem is this statement:

s.toUpperCase () ;

You might think that calling touppercase () iS going to change s to an uppercase string. It doesn't. It

https://riptutorial.com/ 202

http://stackoverflow.com/questions/7911776
http://stackoverflow.com/a/12033710/139985
http://www.riptutorial.com/java/topic/6829/java-memory-model

can't! string Objects are immutable. They cannot be changed.

In reality, the touppercase () method returns a string Object which is an uppercase version of the
string that you call it on. This will probably be a new string 0Object, but if s was already all
uppercase, the result could be the existing string.

So in order to use this method effectively, you need to use the object returned by the method call;
for example:

s = s.toUpperCase();

In fact, the "strings never change” rule applies to all string methods. If you remember that, then
you can avoid a whole category of beginner's mistakes.

Read Common Java Pitfalls online: https://riptutorial.com/java/topic/4388/common-java-pitfalls

https://riptutorial.com/ 203

https://riptutorial.com/java/topic/4388/common-java-pitfalls

C_hapter 32: Comparable and Comparator

Syntax

» public class MyClass implements Comparable<vyciass>

* public class MyComparator implements Comparator<someotherclass>
* public int compareTo(MyClass other)

* public int compare(SomeOtherClass 01, SomeOtherClass 02)

Remarks

When implementing a compareTo (..) method which depends upon a doubie, do not do the
following:

public int comareTo (MyClass other) ({
return (int) (doubleField - other.doubleField); //THIS IS BAD
t

The truncation caused by the (int) cast will cause the method to sometimes incorrectly return o
instead of a positive or negative number, and can thus lead to comparison and sorting bugs.

Instead, the simplest correct implementation is to use Double.compare, as such:

public int comareTo (MyClass other) {
return Double.compare (doubleField, other.doubleField); //THIS IS GOOD

}

A non-generic version of comparable<T>, SIMPlY comparable, has existed since Java 1.2. Other than
for interfacing with legacy code, it's always better to implement the generic version comparable<t>,
as it doesn't require casting upon comparison.

It is very standard for a class to be comparable to itself, as in:

public class A implements Comparable<A>

While it is possible to break from this paradigm, be cautious when doing so.

A comparator<t> €an still be used on instances of a class if that class implements comparabie<t>. In
this case, the comparator's logic will be used; the natural ordering specified by the comparabie
implementation will be ignored.

Examples

https://riptutorial.com/ 204

http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html#compare-double-double-
http://docs.oracle.com/javame/config/cdc/ref-impl/pp1.1.2/jsr216/java/lang/Comparable.html#skip-navbar_top

Sorting a List using Comparable or a Comparator

Say we are working on a class representing a Person by their first and last names. We have
created a basic class to do this and implemented proper equals and hashcode methods.

public class Person {

private final String lastName; //invariant - nonnull
private final String firstName; //invariant - nonnull

public Person(String firstName, String lastName) {
this.firstName = firstName != null ? firstName : "";
this.lastName = lastName != null ? lastName : "";

public String getFirstName () {
return firstName;

public String getLastName () {
return lastName;

public String toString() {
return lastName + ", " + firstName;

@Override
public boolean equals (Object o) {
if (! (o instanceof Person)) return false;
Person p = (Person)o;
return firstName.equals (p.firstName) && lastName.equals (p.lastName);

@Override
public int hashCode () {
return Objects.hash(firstName, lastName);

Now we would like to sort a list of rerson 0Objects by their name, such as in the following scenario:

public static void main(String[] args) {
List<Person> people = Arrays.asList (new Person ("John", "Doe"),
new Person ("Bob", "Dole"),
new Person ("Ronald", "McDonald"),
new Person ("Alice", "McDonald"),
new Person ("Jill", "Doe"));
Collections.sort (people); //This currently won't work.

Unfortunately, as marked, the above currently won't compile. col1ections.sort (..) only knows how
to sort a list if the elements in that list are comparable, or a custom method of comparison is given.

If you were asked to sort the following list : 1, 3, 5, 4, 2, you'd have no problem saying the answer is
1,2,3,4,5. This is because Integers (both in Java and mathematically) have a natural ordering, a

https://riptutorial.com/ 205

standard, default comparison base ordering. To give our Person class a natural ordering, we
implement Comparable<Person>, Which requires implementing the method compareTo (Person p):

public class Person implements Comparable<Person> {

private final String lastName; //invariant - nonnull

private final String firstName; //invariant - nonnull

public Person(String firstName, String lastName) {

firstName != null ? firstName

this.firstName "

lastName != null ? lastName

this.lastName "

public String getFirstName () {
return firstName;

public String getLastName () {
return lastName;

public String toString() {

return lastName + ", " + firstName;

@Override
public boolean equals (Object o) {
if (!
Person p

(o instanceof Person)) return false;

(Person)o;

return firstName.equals (p.firstName) && lastName.equals (p.lastName) ;

@Override
public int hashCode () {

return Objects.hash(firstName, lastName) ;

@Override
public int compareTo (Person other) ({
// If this' lastName and other's lastName are not comparably equivalent,
// Compare this to other by comparing their last names.
// Otherwise, compare this to other by comparing their first names
int lastNameCompare = lastName.compareTo (other.lastName) ;
if (lastNameCompare != 0) {
return lastNameCompare;
} else {

return firstName.compareTo (other.firstName);

Now, the main method given will function correctly

public static void main(String[] args) {
List<Person> people = Arrays.asList (new Person ("John", "Doe"),
new Person ("Bob", "Dole"),
new Person ("Ronald", "McDonald"),
new Person ("Alice", "McDonald"),
new Person ("Jill", "Doe"));

https://riptutorial.com/

206

Collections.sort (people); //Now functions correctly

//people is now sorted by last name, then first name:
// ——> Jill Doe, John Doe, Bob Dole, Alice McDonald, Ronald McDonald

If, however, you either do not want or are unable to modify class rerson, you can provide a custom
comparator<T> that handles the comparison of any two rerson Objects. If you were asked to sort the
following list: circle, square, rectangle, triangle, hexagon YOU could not, but if you were asked to
sort that list based on the number of corners, you could. Just so, providing a comparator instructs
Java how to compare two normally not comparable objects.

public class PersonComparator implements Comparator<Person> {

public int compare (Person pl, Person p2) {
// If pl's lastName and p2's lastName are not comparably equivalent,
// Compare pl to p2 by comparing their last names.
// Otherwise, compare pl to p2 by comparing their first names

if (pl.getLastName () .compareTo (p2.getLastName()) !'= 0) {
return pl.getLastName () .compareTo (p2.getLastName());

} else {
return pl.getFirstName () .compareTo (p2.getFirstName());

//Assume the first version of Person (that does not implement Comparable) is used here
public static void main(String[] args) {

List<Person> people = Arrays.asList (new Person ("John", "Doe"),
new Person ("Bob", "Dole"),
new Person ("Ronald", "McDonald"),
new Person ("Alice", "McDonald"),
new Person ("Jill", "Doe"));

Collections.sort (people); //Illegal, Person doesn't implement Comparable.
Collections.sort (people, new PersonComparator()); //Legal

//people is now sorted by last name, then first name:
// ——> Jill Doe, John Doe, Bob Dole, Alice McDonald, Ronald McDonald

Comparators can also be created/used as an anonymous inner class

//Assume the first version of Person (that does not implement Comparable) is used here
public static void main(String[] args) {

List<Person> people = Arrays.aslList (new Person ("John", "Doe"),

new Person ("Bob", "Dole"),

new Person ("Ronald", "McDonald"),

new Person ("Alice", "McDonald"),

new Person ("Jill", "Doe"));
Collections.sort (people); //Illegal, Person doesn't implement Comparable.
Collections.sort (people, new PersonComparator()); //Legal

//people is now sorted by last name, then first name:
// —-> Jill Doe, John Doe, Bob Dole, Alice McDonald, Ronald McDonald

//Anonymous Class

https://riptutorial.com/ 207

Collections.sort (people, new Comparator<Person> () { //Legal
public int compare (Person pl, Person p2) {
//Method code...

Java SE 8

Lambda expression based comparators

As of Java 8, comparators can also be expressed as lambda expressions

//Lambda

Collections.sort (people, (pl, p2) -> { //Legal
//Method code....

1)

gmparator default methods

Furthermore, there are interesting default methods on the Comparator interface for building
comparators : the following builds a comparator comparing by 1astxame and then firstname.

Collections.sort (people, Comparator.comparing(Person::getLastName)
.thenComparing (Person: :getFirstName)) ;

Inversing the order of a comparator

Any comparator can also easily be reversed using the reversedmethod Which will change ascending
order to descending.

The compareTo and compare Methods
The comparable<t> interface requires one method:

public interface Comparable<T> ({

public int compareTo (T other);

And the comparator<t> interface requires one method:

public interface Comparator<T> {

public int compare(T tl, T t2);

https://riptutorial.com/ 208

These two methods do essentially the same thing, with one minor difference: compareto COMpares
this 10 other, Whereas compare cOMpares t1 to t2, not caring at all about tnis.

Aside from that difference, the two methods have similar requirements. Specifically (for
compareTo), Compares this object with the specified object for order. Returns a negative integer,
zero, or a positive integer as this object is less than, equal to, or greater than the specified object.
Thus, for the comparison of a and »:

e If a < b, a.compareTo (b) @nd compare (a,b) Should return a negative integer, and v. compareTo (a)
and compare (b, a) Should return a positive integer

* Ifa > b, a.compareTo (b) and compare (a,b) Should return a positive integer, and . compareTo (a)
and compare (b, a) Should return a negative integer

* If 2 equals » for comparison, all comparisons should return o.

Natural (comparable) vs explicit (comparator) sorting

There are two collections.sort () methods:

* One that takes a rist<T> as a parameter where T must implement Comparable and override
the compareto () Mmethod that determines sort order.

* One that takes a List and a Comparator as the arguments, where the Comparator
determines the sort order.

First, here is a Person class that implements Comparable:

public class Person implements Comparable<Person> {
private String name;
private int age;

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

}

public int getAge () {
return age;

}

public void setAge (int age) {
this.age = age;

@Override
public int compareTo (Person o) {
return this.getAge () - o.getAge();
}
@Override
public String toString() {
return this.getAge ()+"-"+this.getName () ;

https://riptutorial.com/ 209

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/java/lang/Comparable.java#Comparable
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/java/lang/Comparable.java#Comparable

Here is how you would use the above class to sort a List in the natural ordering of its elements,
defined by the compareto () method override:

//—— usage

List<Person> pList = new ArrayList<Person>();
Person p = new Person();
p.setName ("A") ;
p.setAge (10);
plList.add(p) ;
p = new Person();
p.setName ("Z2") ;
p.setAge (20) ;
plList.add(p) ;
p = new Person();
p.setName ("D") ;
p.setAge (30);
plList.add(p) ;

//—— natural sorting i.e comes with object implementation, by age
Collections.sort (pList);

System.out.println (pList);

Here is how you would use an anonymous inline Comparator to sort a List that does not
implement Comparable, or in this case, to sort a List in an order other than the natural ordering:

//—— explicit sorting, define sort on another property here goes with name
Collections.sort (pList, new Comparator<Person> () {
@Override

public int compare (Person ol, Person 02) {
return ol.getName () .compareTo (02.getName ()) ;

)i

System.out.println (pList);

Sorting Map entries

As of Java 8, there are default methods on the map.entry interface to allow sorting of map
iterations.

Java SE 8

Map<String, Integer> numberOfEmployees = new HashMap<> () ;
numberOfEmployees.put ("executives", 10);
numberOfEmployees.put ("human ressources", 32);
numberOfEmployees.put ("accounting”, 12);
numberOfEmployees.put ("IT", 100);

// Output the smallest departement in terms of number of employees

numberOfEmployees.entrySet () .stream()
.sorted (Map.Entry.comparingByValue ())
Llimit (1)
.forEach (System.out: :println); // outputs : executives=10

https://riptutorial.com/ 210

Of course, these can also be used outside of the stream api :

Java SE 8

List<Map.Entry<String, Integer>> entries = new ArrayList<> (numberOfEmployees.entrySet ());
Collections.sort (entries, Map.Entry.comparingByValue());

Creating a Comparator using comparing method
Comparator.comparing (Person: :getName)

This creates a comparator for the class rerson that uses this person name as the comparison
source. Also it is possible to use method version to compare long, int and double. For example:

Comparator.comparingInt (Person: :getAge)
Reversed order

To create a comparator that imposes the reverse ordering use reversed () method:

Comparator.comparing (Person: :getName) .reversed ()

Chain of comparators

Comparator.comparing (Person: :getLastName) .thenComparing (Person: :getFirstName)

This will create a comparator that firs compares with last name then compares with first name.
You can chain as many comparators as you want.

Read Comparable and Comparator online: https://riptutorial.com/java/topic/3137/comparable-and-
comparator

https://riptutorial.com/ 211

https://riptutorial.com/java/topic/3137/comparable-and-comparator
https://riptutorial.com/java/topic/3137/comparable-and-comparator

C_hapter 33:. CompletableFuture

Introduction

CompletableFuture is a class added to Java SE 8 which implements the Future interface from
Java SE 5. In addition to supporting the Future interface it adds many methods that allow
asynchronous callback when the future is completed.

Examples

Convert blocking method to asynchonous

The following method will take a second or two depending on your connection to retrieve a web
page and count the text length. Whatever thread calls it will block for that period of time. Also it
rethrows an exception which is useful later on.

public static long blockingGetWebPageLength (String urlString) {
try (BufferedReader br = new BufferedReader (new InputStreamReader (new
URL (urlString) .openConnection () .getInputStream()))) {
StringBuilder sb = new StringBuilder();
String line;
while ((line = br.readLine()) != null) {
sb.append (line) ;
}
return sb.toString () .length();
} catch (IOException ex) {
throw new RuntimeException (ex) ;

}

This converts it to a method that will return immediately by moving the blocking method call to
another thread. By default the supplyAsync method will run the supplier on the common pool. For
a blocking method this is probably not a good choice since one might exhaust the threads in that
pool which is why | added the optional service parameter.

static private ExecutorService service = Executors.newCachedThreadPool () ;

static public CompletableFuture<Long> asyncGetWebPagelength (String url) {
return CompletableFuture.supplyAsync(() —-> blockingGetWebPagelLength (url), service);

}

To use the function in an asynchronous fashion one should use on of the methods that accepts a
lamda to be called with the result of the of the supplier when it completes such as thenAccept.
Also it is important to use exceptionally or handle method to log any exceptions that might have
happened.

public static void main(String[] args) {

https://riptutorial.com/ 212

asyncGetWebPageLength ("https://stackoverflow.com/")

.thenAccept (1 —> {
System.out.println("Stack Overflow returned " + 1);

})

.exceptionally ((Throwable throwable) -> {
Logger.getLogger ("myclass") .log(Level.SEVERE, "", throwable);
return null;

)i

Simple Example of CompletableFuture

In the example below, the cailculateshippingprice method calculates shipping cost, which takes

some processing time. In a real world example, this would e.g. be contacting another server which
returns the price based on the weight of the product and the shipping method.

By modeling this in an async way via completableruture, We can continue different work in the

method (i.e. calculating packaging costs).

public static void main(String[] args) {

int price = 15; // Let's keep it simple and work with whole number prices here

int weightInGrams = 900;

calculateShippingPrice (weightInGrams) // Here, we get the future

.thenAccept (shippingPrice -> { // And then immediately work on it!
// This fluent style is very useful for keeping it concise
System.out.println ("Your total price is: " + (price + shippingPrice));

}) i

System.out.println ("Please stand by. We are calculating your total price.");

public static CompletableFuture<Integer> calculateShippingPrice (int weightInGrams)

return CompletableFuture.supplyAsync(() —> {

Read CompletableFuture online: https://riptutorial.com/java/topic/10935/completablefuture

// supplyAsync is a factory method that turns a given
// Supplier<U> into a CompletableFuture<U>

// Let's Jjust say each 200 grams is a new dollar on your shipping costs
int shippingCosts = weightInGrams / 200;

try {
Thread.sleep (2000L); // Now let's simulate some waiting time...
} catch(InterruptedException e) { /* We can safely ignore that */ }

return shippingCosts; // And send the costs back!

https://riptutorial.com/

213

https://riptutorial.com/java/topic/10935/completablefuture

C_hapter 34. Concurrent Collections

Introduction

A concurrent collection is a [collection][1] which permits access by more than one thread at the
same time. Different threads can typically iterate through the contents of the collection and add or
remove elements. The collection is responsible for ensuring that the collection doesn't become
corrupt. [1]:
http://stackoverflow.com/documentation/java/90/collections#t=201612221936497298484

Examples

Thread-safe Collections

By default, the various Collection types are not thread-safe.

However, it's fairly easy to make a collection thread-safe.

List<String> threadSafelist = Collections.synchronizedList (new ArrayList<String>());
Set<String> threadSafeSet = Collections.synchronizedSet (new HashSet<String>());
Map<String, String> threadSafeMap = Collections.synchronizedMap (new HashMap<String,
String>());

When you make a thread-safe collection, you should never access it through the original
collection, only through the thread-safe wrapper.

Java SE 5

Starting in Java 5, java.util.collections has several new thread-safe collections that don't need
the various colilections. synchronized methods.

List<String> threadSafelist = new CopyOnWriteArrayList<String>();
Set<String> threadSafeSet = new ConcurrentHashSet<String>();
Map<String, String> threadSafeMap = new ConcurrentHashMap<String, String>();

Concurrent Collections

Concurrent collections are a generalization of thread-safe collections, that allow for a broader
usage in a concurrent environment.

While thread-safe collections have safe element addition or removal from multiple threads, they do
not necessarily have safe iteration in the same context (one may not be able to safely iterate
through the collection in one thread, while another one modifies it by adding/removing elements).

This is where concurrent collections are used.

As iteration is often the base implementation of several bulk methods in collections, like adda11,

https://riptutorial.com/ 214

removeall, OF also collection copying (through a constructor, or other means), sorting, ... the use
case for concurrent collections is actually pretty large.

For example, the Java SE 5 java.util.concurrent.CopyOnWriteArrayList is a thread safe and
concurrent nist implementation, its javadoc states :

The "snapshot” style iterator method uses a reference to the state of the array at the
point that the iterator was created. This array never changes during the lifetime of the
iterator, so interference is impossible and the iterator is guaranteed not to throw
ConcurrentModificationException.

Therefore, the following code is safe :

public class ThreadSafeAndConcurrent {
public static final List<Integer> LIST = new CopyOnWriteArrayList<>();

public static void main(String[] args) throws InterruptedException {
Thread modifier = new Thread (new ModifierRunnable());
Thread iterator = new Thread(new IteratorRunnable());
modifier.start ();
iterator.start () ;
modifier.join();
iterator.join();

public static final class ModifierRunnable implements Runnable {
@Override
public void run() {
try {
for (int 1 = 0; i < 50000; i++) {
LIST.add (i) ;
}
} catch (Exception e) {
e.printStackTrace () ;

public static final class IteratorRunnable implements Runnable {
@Override
public void run() {
try {
for (int 1 = 0; i < 10000; i++) {
long total = 0;
for (Integer inList : LIST) {
total += inList;
}
System.out.println (total);
}
} catch (Exception e) {
e.printStackTrace () ;

https://riptutorial.com/

215

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CopyOnWriteArrayList.html

Another concurrent collection regarding iteration is concurrentninkedoueue, Which states :

Iterators are weakly consistent, returning elements reflecting the state of the queue at
some point at or since the creation of the iterator. They do not throw
java.util.ConcurrentModificationException, and may proceed concurrently with other
operations. Elements contained in the queue since the creation of the iterator will be
returned exactly once.

One should check the javadocs to see if a collection is concurrent, or not. The attributes of the
iterator returned by the iterator () method (“fail fast", "weakly consistent", ...) is the most important
attribute to look for.

Thread safe but non concurrent examples

In the above code, changing the w1st declaration to

public static final List<Integer> LIST = Collections.synchronizedList (new ArrayList<>());

Could (and statistically will on most modern, multi CPU/core architectures) lead to exceptions.

Synchronized collections from the co11ections utility methods are thread safe for addition/removal
of elements, but not iteration (unless the underlying collection being passed to it already is).

Insertion into ConcurrentHashMap

public class InsertIntoConcurrentHashMap

{

public static void main(String[] args)
{

ConcurrentHashMap<Integer, SomeObject> concurrentHashMap = new ConcurrentHashMap<>();

SomeObject value = new SomeObject ();
Integer key = 1;

SomeObject previousValue = concurrentHashMap.putIfAbsent (1, value);
if (previousValue != null)
{
//Then some other value was mapped to key = 1. 'value' that was passed to

//putIfAbsent method is NOT inserted, hence, any other thread which calls
//concurrentHashMap.get (1) would NOT receive a reference to the 'value'
//that your thread attempted to insert. Decide how you wish to handle
//this situation.

//'value' reference is mapped to key = 1.

https://riptutorial.com/ 216

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html

Read Concurrent Collections online: https://riptutorial.com/java/topic/8363/concurrent-collections

https://riptutorial.com/ 217

https://riptutorial.com/java/topic/8363/concurrent-collections

C_hapter 35: Concurrent Programming
(Threads)

Introduction

Concurrent computing is a form of computing in which several computations are executed
concurrently instead of sequentially. Java language is designed to support concurrent
programming through the usage of threads. Objects and resources can be accessed by multiple
threads; each thread can potentially access any object in the program and the programmer must
ensure read and write access to objects is properly synchronized between threads.

Remarks

Related topic(s) on StackOverflow:

e Atomic Types
« Executor, ExecutorService and Thread pools
* Extending thread versus implementing runnabie

Examples

Basic Multithreading

If you have many tasks to execute, and all these tasks are not dependent of the result of the
precedent ones, you can use Multithreading for your computer to do all this tasks at the same
time using more processors if your computer can. This can make your program execution faster if
you have some big independent tasks.

class CountAndPrint implements Runnable {
private final String name;

CountAndPrint (String name) {
this.name = name;

}

/** This is what a CountAndPrint will do */
@Override
public void run() {
for (int 1 = 0; i < 10000; i++) {
System.out.println(this.name + ": " + 1i);
}
}

public static void main(String[] args) {
// Launching 4 parallel threads
for (int i = 1; i <= 4; i++) {
// “start’ method will call the 'run’ method

https://riptutorial.com/ 218

https://en.wikipedia.org/wiki/Java_concurrency
https://en.wikipedia.org/wiki/Java_concurrency
http://www.riptutorial.com/java/topic/5963/atomic-types
http://www.riptutorial.com/java/topic/143/executor--executorservice-and-thread-pools
http://www.riptutorial.com/java/example/19768/pitfall---extending--java-lang-thread-
http://www.riptutorial.com/java/example/19768/pitfall---extending--java-lang-thread-
http://www.riptutorial.com/java/example/19768/pitfall---extending--java-lang-thread-
http://www.riptutorial.com/java/example/19768/pitfall---extending--java-lang-thread-

// of CountAndPrint in another thread
new Thread (new CountAndPrint ("Instance " + 1i)).start();

// Doing some others tasks in the main Thread
for (int 1 = 0; i < 10000; i++) {
System.out.println ("Main: " + 1i);

The code of the run method of the various countanderint instances will execute in non predictable
order. A snippet of a sample execution might look like this:

Instance
Instance
Instance
Instance
Instance
Main: 1

Instance
Main: 2

Instance
Instance

[N N SIS
ST SR

Producer-Consumer

A simple example of producer-consumer problem solution. Notice that JDK classes (atomicBoolean
and e1ockingoueue) are used for synchronization, which reduces the chance of creating an invalid
solution. Consult Javadoc for various types of BlockingQueue; choosing different implementation

may drastically change the behavior of this example (like DelayQueue or Priority Queue).

public class Producer implements Runnable {

private final BlockingQueue<ProducedData> queue;

publ

publ

ic Producer (BlockingQueue<ProducedData> queue) {

this.queue = queue;

ic void run() {
int producedCount = 0;
try {
while (true) {
producedCount++;
//put throws an InterruptedException when the thread is interrupted
queue.put (new ProducedData());
}
} catch (InterruptedException e) ({
// the thread has been interrupted: cleanup and exit
producedCount——;
//re-interrupt the thread in case the interrupt flag is needeed higher up
Thread.currentThread () .interrupt () ;
}

System.out.println ("Produced " + producedCount + " objects");

https://riptutorial.com/

219

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/DelayQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/PriorityBlockingQueue.html

public class Consumer implements Runnable {
private final BlockingQueue<ProducedData> queue;

public Consumer (BlockingQueue<ProducedData> queue) {

this.queue = queue;

}

public void run() {
int consumedCount = 0;
try {

while (true) {
//put throws an InterruptedException when the thread is interrupted
ProducedData data = queue.poll (10, TimeUnit.MILLISECONDS) ;
// process data
consumedCount++;
}
} catch (InterruptedException e) {
// the thread has been interrupted: cleanup and exit
consumedCount——;
//re—interrupt the thread in case the interrupt flag is needeed higher up
Thread.currentThread () .interrupt () ;

}

System.out.println ("Consumed " + consumedCount + " objects");

public class ProducerConsumerExample {
static class ProducedData {
// empty data object

public static void main(String[] args) throws InterruptedException {
BlockingQueue<ProducedData> queue = new ArrayBlockingQueue<ProducedData> (1000) ;
// choice of queue determines the actual behavior: see various BlockingQueue

implementations

Thread producer = new Thread (new Producer (queue)) ;
Thread consumer = new Thread (new Consumer (queue)) ;

producer.start () ;
consumer.start () ;

Thread.sleep (1000) ;
producer.interrupt () ;
Thread.sleep(10);
consumer.interrupt () ;

Using ThreadLocal

A useful tool in Java Concurrency is threadrocal — this allows you to have a variable that will be
unique to a given thread. Thus, if the same code runs in different threads, these executions will not
share the value, but instead each thread has its own variable that is local to the thread.

https://riptutorial.com/ 220

For example, this is frequently used to establish the context (such as authorization information) of
handling a request in a servlet. You might do something like this:

private static final ThreadLocal<MyUserContext> contexts = new ThreadLocal<>();
public static MyUserContext getContext () {
return contexts.get(); // get returns the variable unique to this thread

}

public void doGet (...) {
MyUserContext context = magicGetContextFromRequest (request) ;

contexts.put (context); // save that context to our thread-local - other threads
// making this call don't overwrite ours
try {
// business logic
} finally {

contexts.remove (); // 'ensure' removal of thread-local variable

}

Now, instead of passing myusercontext INtO every single method, you can instead use
MyServlet.getContext () Where you need it. Now of course, this does introduce a variable that needs
to be documented, but it's thread-safe, which eliminates a lot of the downsides to using such a
highly scoped variable.

The key advantage here is that every thread has its own thread local variable in that contexts
container. As long as you use it from a defined entry point (like demanding that each servlet
maintains its context, or perhaps by adding a servlet filter) you can rely on this context being there
when you need it.

CountDownLatch

CountDownLatch

A synchronization aid that allows one or more threads to wait until a set of operations
being performed in other threads completes.

1. A countpownLatch IS initialized with a given count.

2. The await methods block until the current count reaches zero due to invocations of the
countdown () Method, after which all waiting threads are released and any subsequent
invocations of await return immediately.

3. This is a one-shot phenomenon—the count cannot be reset. If you need a version that resets
the count, consider using a cyclicBarrier.

Key Methods:

public void await () throws InterruptedException

Causes the current thread to wait until the latch has counted down to zero, unless the
thread is interrupted.

https://riptutorial.com/ 221

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

public void countDown ()

Decrements the count of the latch, releasing all waiting threads if the count reaches
zero.

Example:

import java.util.concurrent.*;

class DoSomethingInAThread implements Runnable {
CountDownLatch latch;
public DoSomethingInAThread (CountDownLatch latch) {
this.latch = latch;
}
public void run() {
try {
System.out.println ("Do some thing");
latch.countDown () ;
} catch (Exception err) {
err.printStackTrace () ;

public class CountDownLatchDemo {
public static void main(String[] args) {
try {
int numberOfThreads = 5;
if (args.length < 1) {
System.out.println ("Usage: java CountDownLatchDemo numberOfThreads");
return;
}
try {
numberOfThreads = Integer.parselnt (args[0]);
} catch (NumberFormatException ne) {

}

CountDownLatch latch = new CountDownLatch (numberOfThreads) ;

for (int n = 0; n < numberOfThreads; n++) {
Thread t = new Thread(new DoSomethingInAThread(latch));
t.start ();

}
latch.await () ;
System.out.println("In Main thread after completion of " + numberOfThreads + "
threads") ;
} catch (Exception err) {
err.printStackTrace () ;

output:

java CountDownLatchDemo 5
Do some thing
Do some thing
Do some thing
Do some thing

https://riptutorial.com/ 222

Do some thing
In Main thread after completion of 5 threads

Explanation:

1. countbownratch IS initialized with a counter of 5 in Main thread

2. Main thread is waiting by using await () method.

3. Five instances of posomethingInaThread have been created. Each instance decremented the
counter with countpown () method.

4. Once the counter becomes zero, Main thread will resume

Synchronization

In Java, there is a built-in language-level locking mechanism: the synchronizea block, which can
use any Java object as an intrinsic lock (i.e. every Java object may have a monitor associated with

it).

Intrinsic locks provide atomicity to groups of statements. To understand what that means for us,
let's have a look at an example where synchronized is useful:

private static int t = O;
private static Object mutex = new Object () ;

public static void main(String[] args) {
ExecutorService executorService = Executors.newFixedThreadPool (400); // The high thread
count is for demonstration purposes.
for (int i1 = 0; 1 < 100; i++) {
executorService.execute (() —> {
synchronized (mutex) {
t++;
System.out.println (MessageFormat.format ("t: {0}", t));

)i
}

executorService.shutdown () ;

In this case, if it weren't for the synchronized block, there would have been multiple concurrency
issues involved. The first one would be with the post increment operator (it isn't atomic in itself),
and the second would be that we would be observing the value of t after an arbitrary amount of
other threads has had the chance to modify it. However, since we acquired an intrinsic lock, there
will be no race conditions here and the output will contain numbers from 1 to 100 in their normal
order.

Intrinsic locks in Java are mutexes (i.e. mutual execution locks). Mutual execution means that if
one thread has acquired the lock, the second will be forced to wait for the first one to release it
before it can acquire the lock for itself. Note: An operation that may put the thread into the wait
(sleep) state is called a blocking operation. Thus, acquiring a lock is a blocking operation.

Intrinsic locks in Java are reentrant. This means that if a thread attempts to acquire a lock it
already owns, it will not block and it will successfully acquire it. For instance, the following code will

https://riptutorial.com/ 223

not block when called:

public void bar () {
synchronized (this) {

}
public void foo () {
synchronized (this) {
bar () ;

Beside synchronized blocks, there are also synchronized methods.

The following blocks of code are practically equivalent (even though the bytecode seems to be
different):

1. synchronized block on this:

public void foo () {
synchronized (this) {
doStuff ();

2.synchronizedrneth0d:

public synchronized void foo () {
doStuff ();

Likewise for static methods, this:

class MyClass {
public static void bar() {

synchronized (MyClass.class) {
doSomeOtherStuff () ;

has the same effect as this:

class MyClass {

public static synchronized void bar () {
doSomeOtherStuff ();

Atomic operations

https://riptutorial.com/ 224

An atomic operation is an operation that is executed "all at once", without any chance of other
threads observing or modifying state during the atomic operation's execution.

Lets consider a BAD EXAMPLE.

private static int t = O;

public static void main(String[] args) {
ExecutorService executorService = Executors.newFixedThreadPool (400); // The high thread
count is for demonstration purposes.
for (int i1 = 0; i < 100; i++) {
executorService.execute (() —> {
Earr2
System.out.println (MessageFormat.format ("t: {0}", t));
1)
}

executorService.shutdown () ;

In this case, there are two issues. The first issue is that the post increment operator is not atomic.
It is comprised of multiple operations: get the value, add 1 to the value, set the value. That's why if
we run the example, it is likely that we won't see t: 100 in the output - two threads may
concurrently get the value, increment it, and set it: let's say the value of t is 10, and two threads
are incrementing t. Both threads will set the value of t to 11, since the second thread observes the
value of t before the first thread had finished incrementing it.

The second issue is with how we are observing t. When we are printing the value of t, the value
may have already been changed by a different thread after this thread's increment operation.

To fix those issues, we'll use the java.util.concurrent.atomic.AtomicInteger, which has many
atomic operations for us to use.

private static AtomicInteger t = new AtomicInteger (0);

public static void main(String[] args) {
ExecutorService executorService = Executors.newFixedThreadPool (400); // The high thread
count is for demonstration purposes.
for (int i = 0; i < 100; i++) {
executorService.execute (() —> {
int currentT = t.incrementAndGet () ;
System.out.println (MessageFormat.format ("t: {0}", currentT));
1)
}

executorService.shutdown () ;

The incrementandcet method of ~tomicinteqer atomically increments and returns the new value,
thus eliminating the previous race condition. Please note that in this example the lines will still be
out of order because we make no effort to sequence the print1n calls and that this falls outside the
scope of this example, since it would require synchronization and the goal of this example is to
show how to use atomicinteger t0 eliminate race conditions concerning state.

Creating basic deadlocked system

https://riptutorial.com/ 225

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicInteger.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicInteger.html

A deadlock occurs when two competing actions wait for the other to finish, and thus neither ever
does. In java there is one lock associated with each object. To avoid concurrent modification done
by multiple threads on single object we can use synchronized keyword, but everything comes at a
cost. Using synchronized keyword wrongly can lead to stuck systems called as deadlocked system.

Consider there are 2 threads working on 1 instance, Lets call threads as First and Second, and
lets say we have 2 resources R1 and R2. First acquires R1 and also needs R2 for its completion
while Second acquires R2 and needs R1 for completion.

SO say at time t=0,

First has R1 and Second has R2. now First is waiting for R2 while Second is waiting for R1. this
wait is indefinite and this leads to deadlock.

public class Example2 {

public static void main(String[] args) throws InterruptedException {
final DeadLock dl = new DeadLock () ;
Thread tl = new Thread(new Runnable () {

@Override

public void run() {
// TODO Auto-generated method stub
dl.methodA () ;

}) i
Thread t2 = new Thread(new Runnable () {

@Override
public void run() {
// TODO Auto-generated method stub
try {
dl.method2 () ;
} catch (InterruptedException e) ({
// TODO Auto-generated catch block
e.printStackTrace () ;

1)

tl.setName ("First");
t2.setName ("Second") ;
tl.start ();
t2.start ();

class DeadLock {

Object mLockl = new Object () ;
Object mLock2 = new Object () ;

public void methodA() {

System.out.println ("methodA wait for mLockl " + Thread.currentThread () .getName()) ;
synchronized (mLockl) {
System.out.println ("methodA mLockl acquired 4
Thread.currentThread () .getName ()) ;

https://riptutorial.com/ 226

try {
Thread.sleep(100);
method2 () ;
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;

}
public void method2 () throws InterruptedException {
System.out.println ("method2 wait for mLock2 " + Thread.currentThread() .getName());
synchronized (mLock2) {
System.out.println ("method2 mLock2 acquired "o+
Thread.currentThread () .getName()) ;
Thread.sleep(100);
method3 () ;

}
public void method3 () throws InterruptedException {
System.out.println ("method3 mLockl "+ Thread.currentThread() .getName ());
synchronized (mLockl) {
System.out.println ("method3 mLockl acquired " +
Thread.currentThread () .getName()) ;
}

Output of this program:

methodA wait for mLockl First
method2 wait for mLock2 Second
method2 mLock2 acquired Second
methodA mLockl acquired First
method3 mLockl Second

method2 wait for mLock2 First

Pausing Execution

Thread.sleep CaUses the current thread to suspend execution for a specified period. This is an
efficient means of making processor time available to the other threads of an application or other
applications that might be running on a computer system. There are two overloaded sieep
methods in the Thread class.

One that specifies the sleep time to the millisecond

public static void sleep(long millis) throws InterruptedException

One that specifies the sleep time to the nanosecond

public static void sleep(long millis, int nanos)

Pausing Execution for 1 second

https://riptutorial.com/ 227

Thread.sleep (1000);

It is important to note that this is a hint to the operating system's kernel's scheduler. This may not
necessarily be precise, and some implementations do not even consider the nanosecond
parameter (possibly rounding to the nearest millisecond).

It is recommended to enclose a call to thread.s1eep In try/catch and catch nterruptedexception.
Visualizing read/write barriers while using synchronized / volatile

As we know that we should use synchronizea keyword to make execution of a method or block
exclusive. But few of us may not be aware of one more important aspect of using synchronized and
volatile Keyword: apart from making a unit of code atomic, it also provides read / write barrier.
What is this read / write barrier? Let's discuss this using an example:

class Counter ({
private Integer count = 10;

public synchronized void incrementCount () {
count++;

}

public Integer getCount () {
return count;

}

Let's suppose a thread A calls incrementcount () first then another thread B calls getcount (). In this
scenario there is no guarantee that B will see updated value of count. It may still see count as 1o,
even it is also possible that it never sees updated value of count ever.

To understand this behavior we need to understand how Java memory model integrates with
hardware architecture. In Java, each thread has it's own thread stack. This stack contains: method
call stack and local variable created in that thread. In a multi core system, it is quite possible that
two threads are running concurrently in separate cores. In such scenario it is possible that part of
a thread's stack lies inside register / cache of a core. If inside a thread, an object is accessed
using synchronized (OF volatile) keyword, after synchronizea block that thread syncs it's local copy
of that variable with the main memory. This creates a read / write barrier and makes sure that the
thread is seeing the latest value of that object.

But in our case, since thread B has not used synchronized access to count, it might be refering
value of count Stored in register and may never see updates from thread A. To make sure that B
sees latest value of count we need to make getcount () Synchronized as well.

public synchronized Integer getCount () {
return count;

}

Now when thread A is done with updating count it unlocks counter instance, at the same time

https://riptutorial.com/ 228

creates write barrier and flushes all changes done inside that block to the main memory. Similarly
when thread B acquires lock on the same instance of counter, it enters into read barrier and reads
value of count from main memory and sees all updates.

Thread A ‘ Acquire lock

‘ Increment '‘count’

‘ Release lock Flush everything to
main memory

Updates its local copy Aco

with main memory

Same visibility effect goes for vo1atiie read / writes as well. All variables updated prior to write to
volatile Will be flushed to main memory and all reads after voiatiie variable read will be from
main memory.

Creating a java.lang.Thread instance

There are two main approaches to creating a thread in Java. In essence, creating a thread is as
easy as writing the code that will be executed in it. The two approaches differ in where you define
that code.

In Java, a thread is represented by an object - an instance of java.lang.Thread or its subclass. So
the first approach is to create that subclass and override the run() method.

Note: I'll use Thread to refer to the java.lang.Thread class and thread to refer to the logical
concept of threads.

class MyThread extends Thread {

https://riptutorial.com/ 229

https://i.stack.imgur.com/tnFLB.png
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

@Override
public void run() {
for (int i = 0; i < 10; 1i++) {
System.out.println ("Thread running!");

Now since we've already defined the code to be executed, the thread can be created simply as:

MyThread t = new MyThread();

The Thread class also contains a constructor accepting a string, which will be used as the thread's
name. This can be particulary useful when debugging a multi thread program.

class MyThread extends Thread {
public MyThread (String name) {
super (name) ;

}

@Override
public void run() {
for (int i = 0; i < 10; i++) {
System.out.println ("Thread running! ");

MyThread t = new MyThread ("Greeting Producer");

The second approach is to define the code using java.lang.Runnable and its only method run().
The Thread class then allows you to execute that method in a separated thread. To achieve this,
create the thread using a constructor accepting an instance of the Runnable interface.

Thread t = new Thread (aRunnable);

This can be very powerful when combined with lambdas or methods references (Java 8 only):
Thread t = new Thread(operator::hardWork) ;

You can specify the thread's name, too.
Thread t = new Thread (operator::hardWork, "Pi operator");

Practicaly speaking, you can use both approaches without worries. However the general wisdom
says to use the latter.

For every of the four mentioned constructors, there is also an alternative accepting an instance of
Java.lang.ThreadGroup as the first parameter.

https://riptutorial.com/ 230

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
http://stackoverflow.com/questions/541487/implements-runnable-vs-extends-thread
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadGroup.html

ThreadGroup tg = new ThreadGroup ("Operators");
Thread t = new Thread(tg, operator::hardWwork, "PI operator");

The ThreadGroup represents a set of threads. You can only add a Thread to a ThreadGroup using
a Thread's constructor. The ThreadGroup can then be used to manage all its Threads together, as
well as the Thread can gain information from its ThreadGroup.

So to sumarize, the Thread can be created with one of these public constructors:

Thread ()
Thread (String name)

Thread (Runnable target)

Thread
Thread (ThreadGroup group, Runnable target)

ThreadGroup group, String name)

(
(
(
Thread (Runnable target, String name)
(
(
Thread (ThreadGroup group, Runnable target, String name)
(

Thread (ThreadGroup group, Runnable target, String name, long stackSize)

The last one allows us to define desired stack size for the new thread.

Often the code readability suffers when creating and configuring many Threads with same
properties or from the same pattern. That's when java.util.concurrent. ThreadFactory can be used.
This interface allows you to encapsulate the procedure of creating the thread through the factory
pattern and its only method newThread(Runnable).

class WorkerFactory implements ThreadFactory {
private int id = 0;

@Override
public Thread newThread (Runnable r) {
return new Thread(r, "Worker " + id++);

}

Thread Interruption / Stopping Threads

Each Java Thread has an interrupt flag, which is initially false. Interrupting a thread, is essentially
nothing more than setting that flag to true. The code running on that thread can check the flag on
occasion and act upon it. The code can also ignore it completely. But why would each Thread
have such a flag? After all, having a boolean flag on a thread is something we can just organize
ourselves, if and when we need it. Well, there are methods that behave in a special way when the
thread they're running on is interrupted. These methods are called blocking methods. These are
methods that put the thread in the WAITING or TIMED_WAITING state. When a thread is in this
state, interrupting it, will cause an InterruptedException to be thrown on the interrupted thread,
rather than the interrupt flag being set to true, and the thread becomes RUNNABLE again. Code
that invokes a blocking method is forced to deal with the InterruptedException, since it is a
checked exception. So, and hence its name, an interrupt can have the effect of interrupting a
WAIT, effectively ending it. Note that not all methods that are somehow waiting (e.g. blocking 10)
respond to interruption in that way, as they don't put the thread in a waiting state. Lastly a thread

https://riptutorial.com/ 231

https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadGroup.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadGroup.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadGroup.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadGroup.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ThreadFactory.html

that has its interrupt flag set, that enters a blocking method (i.e. tries to get into a waiting state),
will immediately throw an InterruptedException and the interrupt flag will be cleared.

Other than these mechanics, Java does not assign any special semantic meaning to interruption.
Code is free to interpret an interrupt any way it likes. But most often interruption is used to signal
to a thread it should stop running at its earliest convenience. But, as should be clear from the
above, it is up to the code on that thread to react to that interruption appropriately in order to stop
running. Stopping a thread is a collaboration. When a thread is interrupted its running code can be
several levels deep into the stacktrace. Most code doesn't call a blocking method, and finishes
timely enough to not delay the stopping of the thread unduly. The code that should mostly be
concerned with being responsive to interruption, is code that is in a loop handling tasks until there
are none left, or until a flag is set signalling it to stop that loop. Loops that handle possibly infinite
tasks (i.e. they keep running in principle) should check the interrupt flag in order to exit the loop.
For finite loops the semantics may dictate that all tasks must be finished before ending, or it may
be appropriate to leave some tasks unhandled. Code that calls blocking methods will be forced to
deal with the InterruptedException. If at all semantically possible, it can simply propagate the
InterruptedException and declare to throw it. As such it becomes a blocking method itself in regard
to its callers. If it cannot propagate the exception, it should at the very least set the interrupted flag,
so callers higher up the stack also know the thread was interrupted. In some cases the method
needs to continue waiting regardless of the InterruptedException, in which case it must delay
setting the interrupted flag until after it is done waiting, this may involve setting a local variable,
which is to be checked prior to exiting the method to then interrupt its thread.

Examples :

Example of code that stops handling tasks upon interruption

class TaskHandler implements Runnable {
private final BlockingQueue<Task> queue;

TaskHandler (BlockingQueue<Task> queue) {
this.queue = queue;
}

@Override
public void run() {
while (!Thread.currentThread().isInterrupted()) { // check for interrupt flag, exit
loop when interrupted
try {
Task task = queue.take(); // blocking call, responsive to interruption
handle (task);
} catch (InterruptedException e) ({
Thread.currentThread () .interrupt (); // cannot throw InterruptedException (due
to Runnable interface restriction) so indicating interruption by setting the flag
}
}
}

private void handle (Task task) {
// actual handling
}

https://riptutorial.com/ 232

Example of code that delays setting the interrupt flag until completely done :

class MustFinishHandler implements Runnable {
private final BlockingQueue<Task> queue;

MustFinishHandler (BlockingQueue<Task> queue) {

this.queue = queue;
}
@Override
public void run() {
boolean shouldInterrupt = false;

while (true) {
try {
Task task = queue.take();
if (task.isEndOfTasks()) {
if (shouldInterrupt) {
Thread.currentThread () .interrupt () ;
}
return;
}
handle (task);
} catch (InterruptedException e) {

shouldInterrupt = true; // must finish, remember to set interrupt flag when
we're done

private void handle (Task task) {
// actual handling

Example of code that has a fixed list of tasks but may quit early when interrupted

class GetAsFarAsPossible implements Runnable {
private final List<Task> tasks = new ArrayList<>();

@Override
public void run() {
for (Task task : tasks) {
if (Thread.currentThread() .isInterrupted()) {
return;
}
handle (task) ;

private void handle (Task task) {
// actual handling

Multiple producer/consumer example with shared global queue

https://riptutorial.com/ 233

Below code showcases multiple Producer/Consumer program. Both Producer and Consumer
threads share same global queue.

import java.util.concurrent.*;

import java.util.Random;

public class ProducerConsumerWithES {

public static void main(String args[]) {

BlockingQueue<Integer> sharedQueue = new LinkedBlockingQueue<Integer>();
ExecutorService pes = Executors.newFixedThreadPool (2);
ExecutorService ces = Executors.newFixedThreadPool (2);

pes.submit (new Producer (sharedQueue,

pes.submit (new Producer (sharedQueue,

ces.submit (new Consumer (sharedQueue,

(
(
(
(

ces.submit (new Consumer (sharedQueue,

pes.shutdown () ;
ces.shutdown () ;

/* Different producers produces a stream of integers continuously to a shared queue,

which is shared between all Producers and consumers */

class Producer implements Runnable {

}

private final BlockingQueue<Integer> sharedQueue;
private int threadNo;
private Random random = new Random() ;
public Producer (BlockingQueue<Integer> sharedQueue, int threadNo) {
this.threadNo = threadNo;
this.sharedQueue = sharedQueue;
}
@Override
public void run() {
// Producer produces a continuous stream of numbers for every 200 milli seconds
while (true) {
try {
int number = random.nextInt (1000);
System.out.println ("Produced:" + number + ":by thread:"+ threadNo);
sharedQueue.put (number) ;
Thread.sleep (200);
} catch (Exception err) {
err.printStackTrace () ;

/* Different consumers consume data from shared queue, which is shared by both producer

consumer threads */
class Consumer implements Runnable {

private final BlockingQueue<Integer> sharedQueue;

private int threadNo;

public Consumer (BlockingQueue<Integer> sharedQueue,int threadNo) {
this.sharedQueue = sharedQueue;
this.threadNo = threadNo;

}

@Override

public void run() {

and

https://riptutorial.com/

234

// Consumer consumes numbers generated from Producer threads continuously
while (true) {
try {
int num = sharedQueue.take();
System.out.println ("Consumed: "+ num + ":by thread:"+threadNo);
} catch (Exception err) {
err.printStackTrace();

output:

Produced:69:by thread:2

Produced:553:by thread:1
Consumed: 69:by thread:1
Consumed: 553:by thread:2
Produced:41:by thread:2

Produced:796:by thread:1
Consumed: 41l:by thread:1
Consumed: 796:by thread:2
Produced:728:by thread:2
Consumed: 728:by thread:1

and soon...............
Explanation:

1. sharedgueue, Which is @ LinkedBlockingoueue IS Shared among all Producer and Consumer
threads.
2. Producer threads produces one integer for every 200 milli seconds continuously and append
it to sharedQueue
. consumer thread consumes integer from sharedoueue cONtinuously.
4. This program is implemented with-out expliCit synchronized Or Lock CONStructs.
BlockingQueue is the key to achieve it.

w

BlockingQueue implementations are designed to be used primarily for producer-
consumer queues.

BlockingQueue implementations are thread-safe. All queuing methods achieve their
effects atomically using internal locks or other forms of concurrency control.

Exclusive write / Concurrent read access

It is sometimes required for a process to concurrently write and read the same "data".

The RreadwriteLock interface, and itS reentrantreadwriteLock IMplementation allows for an access
pattern that can be described as follow :

1. There can be any number of concurrent readers of the data. If there is at least one reader
access granted, then no writer access is possible.

https://riptutorial.com/ 235

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

2. There can be at most one single writer to the data. If there is a writer access granted, then
no reader can access the data.

An implementation could look like :

import java.util.concurrent.locks.ReadWriteLock;
import Jjava.util.concurrent.locks.ReentrantReadWriteLock;
public class Sample {

// Our lock. The constructor allows a "fairness" setting, which guarantees the chronology of
lock attributions.

protected static final ReadWriteLock RW_LOCK = new ReentrantReadWriteLock () ;

// This 1is a typical data that needs to be protected for concurrent access
protected static int data = 0;

/** This will write to the data, in an exclusive access */

public static void writeToData() {
RW_LOCK.writeLock () .lock () ;
try {
data++;

} finally {
RW_LOCK.writeLock () .unlock () ;
}

public static int readData () {
RW_LOCK.readLock () .lock () ;
try {
return data;
} finally {
RW_LOCK.readLock () .unlock () ;
}

NOTE 1 : This precise use case has a cleaner solution using atomicinteger, but what is described
here is an access pattern, that works regardless of the fact that data here is an integer that as an
Atomic variant.

NOTE 2 : The lock on the reading part is really needed, although it might not look so to the casual
reader. Indeed, if you do not lock on the reader side, any number of things can go wrong, amongst
which :

1. The writes of primitive values are not guaranteed to be atomic on all JVMs, so the reader
could see e.g. only 32bits of a 64bits write if cata were a 64bits long type

2. The visibility of the write from a thread that did not perform it is guaranteed by the JVM only if
we establish Happen Before relationship between the writes and the reads. This relationship
is established when both readers and writers use their respective locks, but not otherwise

Java SE 8

In case higher performance is required, an under certain types of usage, there is a faster lock type
available, called the stampedrock, that amongst other things implements an optimistic lock mode.

https://riptutorial.com/ 236

This lock works very differently from the readqwriterock, and this sample is not transposable.
Runnable Object

The runnabie interface defines a single method, run (), meant to contain the code executed in the
thread.

The runnabie Object is passed to the threada constructor. And Thread's start () method is called.

Example

public class HelloRunnable implements Runnable {

@Override
public void run() {

System.out.println ("Hello from a thread");
}

public static void main(String[] args) {
new Thread(new HelloRunnable()) .start();

}

Example in Javas8:

public static void main(String[] args) {
Runnable r = () —-> System.out.println("Hello world");
new Thread(r) .start();

Runnable vs Thread subclass

A runnable Object employment is more general, because the runnabie Object can subclass a class
other than thread.

Thread SUbclassing is easier to use in simple applications, but is limited by the fact that your task
class must be a descendant of Thread.

A runnable Object is applicable to the high-level thread management APIs.
Semaphore

A Semaphore is a high-level synchronizer that maintains a set of permits that can be acquired and
released by threads. A Semaphore can be imagined as a counter of permits that will be
decremented when a thread acquires, and incremented when a thread releases. If the amount of
permits is o when a thread attempts to acquire, then the thread will block until a permit is made
available (or until the thread is interrupted).

A semaphore is initialized as:

Semaphore semaphore = new Semaphore(l); // The int value being the number of permits

https://riptutorial.com/ 237

The Semaphore constructor accepts an additional boolean parameter for fairness. When set false,
this class makes no guarantees about the order in which threads acquire permits. When fairness
is set true, the semaphore guarantees that threads invoking any of the acquire methods are
selected to obtain permits in the order in which their invocation of those methods was processed.
It is declared in the following manner:

Semaphore semaphore = new Semaphore(l, true);

Now let's look at an example from javadocs, where Semaphore is used to control access to a pool
of items. A Semaphore is used in this example to provide blocking functionality in order to ensure
that there are always items to be obtained when get1tem() is called.

class Pool {

/*
* Note that this DOES NOT bound the amount that may be released!
* This is only a starting value for the Semaphore and has no other
* significant meaning UNLESS you enforce this inside of the
* getNextAvailableItem() and markAsUnused () methods
v

private static final int MAX AVAILABLE = 100;

private final Semaphore available = new Semaphore (MAX AVAILABLE, true);

/**
* Obtains the next available item and reduces the permit count by 1.
* If there are no items available, block.
oy
public Object getItem() throws InterruptedException {
available.acquire();
return getNextAvailableItem();

/**
* Puts the item into the pool and add 1 permit.
Wy
public void putItem(Object x) {
if (markAsUnused (x))
available.release();

private Object getNextAvailableItem() {
// Implementation

}

private boolean markAsUnused (Object o) {
// Implementation

}

Add two 'int” arrays using a Threadpool

A Threadpool has a Queue of tasks, of which each will be executed on one these Threads.
The following example shows how to add two int arrays using a Threadpool.

Java SE 8

https://riptutorial.com/ 238

int[]
int[]
int[]

secondArray = { ’
result = { 0, 0, 0, 0 };

firstArray = { 2, 4, 6, 8 };

ExecutorService pool = Executors.newCachedThreadPool () ;

// Setup the ThreadPool:
// for each element in the array, submit a worker to the pool that adds elements
for (int 1 = 0; i < result.length; i++) {

final int worker = i;
pool.submit (() —-> result[worker] = firstArray|[worker] + secondArray[worker]);

// Wait for all Workers to finish:

try {

// execute all submitted tasks
pool.shutdown () ;
// waits until all workers finish, or the timeout ends

pool.awaitTermination (12, TimeUnit.SECONDS) ;

}

catch

(InterruptedException e) {

pool.shutdownNow (); //kill thread

System.out.println (Arrays.toString (result));

Notes:

1. This example is purely illustrative. In practice, there won't be any speedup by using threads

for a task this small. A slowdown is likely, since the overheads of task creation and

scheduling will swamp the time taken to run a task.

2. If you were using Java 7 and earlier, you would use anonymous classes instead of lambdas
to implement the tasks.

Get status of all threads started by your program excluding system threads

Code snippet:

import java.util.Set;

public class ThreadStatus {
public static void main(String args[]) throws Exception {

for (int i = 0; i < 5; i++){
Thread t = new Thread (new MyThread());
t.setName ("MyThread:" + 1);
t.start ();
}
int threadCount = 0;
Set<Thread> threadSet = Thread.getAllStackTraces () .keySet();
for (Thread t : threadSet) {

if (t.getThreadGroup () == Thread.currentThread() .getThreadGroup()) {
System.out.println ("Thread :" + t + ":" + "state:" + t.getState());
++threadCount;

}
System.out.println ("Thread count started by Main thread:" + threadCount);

https://riptutorial.com/

239

class MyThread implements Runnable {
public void run() {
try {
Thread.sleep (2000) ;
} catch (Exception err) {
err.printStackTrace () ;

Output:

Thread :Thread[MyThread:1,5,main] :state:TIMED_WAITING
Thread :Thread[MyThread:3,5,main] :state:TIMED_WAITING
Thread :Thread[main,5,main]:state:RUNNABLE

Thread :Thread[MyThread:4,5,main] :state:TIMED_WAITING
Thread :Thread[MyThread:0,5,main] :state:TIMED_WAITING
Thread :Thread[MyThread:2,5,main] :state:TIMED_WAITING
Thread count started by Main thread:6

Explanation:

Thread.getAllStackTraces () .keySet () returns all Threads including application threads and system
threads. If you are interested only in status of Threads, started by your application, iterate the
Thread Set by checking Thread Group of a particular thread against your main program thread.

In absence of above ThreadGroup condition, the program returns status of below System
Threads:

Reference Handler
Signal Dispatcher
Attach Listener
Finalizer

Callable and Future

While runnab1e provides a means to wrap code to be executed in a different thread, it has a
limitation in that it cannot return a result from the execution. The only way to get some return value
from the execution of a runnabie iS t0 assign the result to a variable accessible in a scope outside
of the runnable.

callable Was introduced in Java 5 as a peer to runnable. callable iS €ssentially the same except it
has a ca11 method instead of run. The ca11 method has the additional capability to return a result
and is also allowed to throw checked exceptions.

The result from a Callable task submission is available to be tapped via a Future

ruture Can be considered a container of sorts that houses the result of the ca11ab1e computation.
Computation of the callable can carry on in another thread, and any attempt to tap the result of a

Future

https://riptutorial.com/ 240

will block and will only return the result once it is available.

Callable Interface

public interface Callable<V> {
V call() throws Exception;

Future

interface Future<vV> {
Vo get ();
V get (long timeout, TimeUnit unit);
boolean cancel (boolean mayInterruptIfRunning) ;
boolean isCancelled();
boolean isDone () ;

Using Callable and Future example:

public static void main(String[] args) throws Exception {

ExecutorService es = Executors.newSingleThreadExecutor () ;
System.out.println ("Time At Task Submission : " + new Date());
Future<String> result = es.submit (new ComplexCalculator());

// the call to Future.get () blocks until the result is available.So we are in for about a
10 sec wait now

System.out.println ("Result of Complex Calculation is : " + result.get());

System.out.println ("Time At the Point of Printing the Result : " + new Date());

Our Callable that does a lengthy computation

public class ComplexCalculator implements Callable<String> {

@Override

public String call() throws Exception {
// Jjust sleep for 10 secs to simulate a lengthy computation
Thread.sleep (10000) ;
System.out.println ("Result after a lengthy 10sec calculation");
return "Complex Result"; // the result

Output

Time At Task Submission : Thu Aug 04 15:05:15 EDT 2016

Result after a lengthy 10sec calculation

Result of Complex Calculation is : Complex Result

Time At the Point of Printing the Result : Thu Aug 04 15:05:25 EDT 2016

Other operations permitted on Future

While get () is the method to extract the actual result Future has provision

https://riptutorial.com/ 241

* get (long timeout, TimeUnit unit) defines maximum time period during current thread will wait
for a result;

e To cancel the task call cancel (mayInterruptIfRunning). The flag mayInterrupt indicates that
task should be interrupted if it was started and is running right now;

» To check if task is completed/finished by calling ispone ();

» To check if the lengthy task were cancelled iscancelied().

Locks as Synchronisation aids

Prior to Java 5's concurrent package introduction threading was more low level.The introduction of
this package provided several higher level concurrent programming aids/constructs.

Locks are thread synchronisation mechanisms that essentially serve the same purpose as
synchronized blocks or key words.

Intrinsic Locking

int count = 0; // shared among multiple threads
public void doSomething () {

synchronized (this) {
++count; // a non—-atomic operation

Synchronisation using Locks

int count = 0; // shared among multiple threads

Lock lockObj = new ReentrantLock();
public void doSomething () {

try {

lockObj.lock () ;

++count; // a non-atomic operation
} finally {

lockObj.unlock (); // sure to release the lock without fail
}

Locks also have functionality available that intrinsic locking does not offer, such as locking but
remaining responsive to interruption, or trying to lock, and not block when unable to.

Locking, responsive to interruption

class Locky {
int count = 0; // shared among multiple threads

Lock lockObj = new ReentrantLock();

public void doSomething () {
try {
try {
lockObj.lockInterruptibly () ;

https://riptutorial.com/ 242

++count; // a non—-atomic operation
} catch (InterruptedException e) {
Thread.currentThread () .interrupt (); // stopping
}
} finally {
if (!Thread.currentThread() .isInterrupted()) {
lockObj.unlock(); // sure to release the lock without fail

Only do something when able to lock

public class Locky2 {
int count = 0; // shared among multiple threads

Lock lockObj = new ReentrantLock();

public void doSomething () {
boolean locked = lockObj.tryLock(); // returns true upon successful lock
if (locked) {
try {
++count; // a non-atomic operation
} finally {
lockObj.unlock(); // sure to release the lock without fail

There are several variants of lock available.For more details refer the api docs here

Read Concurrent Programming (Threads) online: https://riptutorial.com/java/topic/121/concurrent-
programming--threads-

https://riptutorial.com/ 243

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/package-summary.html
https://riptutorial.com/java/topic/121/concurrent-programming--threads-
https://riptutorial.com/java/topic/121/concurrent-programming--threads-

C_hapter 36: Console I/O

Examples

Reading user input from the console

LJSSiF](] BufferedReader:

System.out.println ("Please type your name and press Enter.");

BufferedReader reader = new BufferedReader (new InputStreamReader (System.in));

try {
String name = reader.readLine();
System.out.println("Hello, " + name + "!");

} catch (IOException e) {
System.out.println ("An error occurred: " + e.getMessage());

The following imports are needed for this code:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

US I n g Scanner:

Java SE 5

System.out.println ("Please type your name and press Enter");

Scanner scanner = new Scanner (System.in);
String name = scanner.nextLine();

System.out.println("Hello, " + name + "!");
The following import is needed for this example:
import java.util.Scanner;
To read more than one line, iNnVOke scanner.nextLine () repeatedly:

System.out.println ("Please enter your first and your last name, on separate lines.");

Scanner scanner = new Scanner (System.in);

String firstName = scanner.nextLine () ;
String lastName = scanner.nextLine();
System.out.println ("Hello, " + firstName + " " + lastName + "!");

https://riptutorial.com/ 244

There are two methods for obtaining strings, next () @nd nextLine (). next () returns text up until the
first space (also known as a "token"), and nextrine () returns all text that the user inputted until
pressing enter.

scanner also provides utility methods for reading data types other than string. These include:

scanner.nextByte () ;
scanner.nextShort () ;
scanner.nextInt ();
scanner.nextLong () ;
scanner.nextFloat ();
scanner.nextDouble () ;
scanner.nextBigInteger () ;
scanner.nextBigDecimal () ;

Prefixing any of these methods with has (&S in hasNextLine (), hasNextInt ()) returns true if the
stream has any more of the request type. Note: These methods will crash the program if the input
is not of the requested type (for example, typing "a" for nextint ()). YOU Can US€ @ try {} catch()
{1 to prevent this (see: Exceptions)

Scanner scanner = new Scanner (System.in); //Create the scanner
scanner.uselocale (Locale.US); //Set number format excepted

System.out.println ("Please input a float, decimal separator is .");

if (scanner.hasNextFloat()){ //Check if it is a float
float fValue = scanner.nextFloat(); //retrive the value directly as float
System.out.println (fValue + " is a float");

lelse{
String sValue = scanner.next(); //We can not retrive as float
System.out.println (sValue + " is not a float");

LJS;ir]QJ System.console:

Java SE 6
String name = System.console () .readlLine ("Please type your name and press Enter%n");
System.out.printf ("Hello, %s!", name);

//To read passwords (without echoing as in unix terminal)
char[] password = System.console () .readPassword() ;

Advantages:

» Reading methods are synchronized
» Format string syntax can be used

Note: This will only work if the program is run from a real command line without redirecting the
standard input and output streams. It does not work when the program is run from within certain
IDES, such as Eclipse. For code that works within IDEs and with stream redirection, see the other
examples.

https://riptutorial.com/ 245

http://www.riptutorial.com/java/topic/89/exceptions-and-exception-handling

Implementing Basic Command-Line Behavior
For basic prototypes or basic command-line behavior, the following loop comes in handy.

public class ExampleCli {

private static final String CLI_LINE = "example-cli>"; //console like string
private static final String CMD_QUIT = "quit"; //string for exiting the program
private static final String CMD_HELLO = "hello"; //string for printing "Hello World!"
on the screen
private static final String CMD_ANSWER = "answer"; //string for printing 42 on the
screen
public static void main(String[] args) {
ExampleCli claimCli = new ExampleCli(); // creates an object of this class
try {
claimCli.start () ; //calls the start function to do the work like console
}
catch (IOException e) {
e.printStackTrace () ; //prints the exception log if it is failed to do get the

user input or something like that

}

private void start () throws IOException {
String cmd = "";

BufferedReader reader = new BufferedReader (new InputStreamReader (System.in));

while (!cmd.equals (CMD_QUIT)) { // terminates console if user input is "quit"

System.out.print (CLI_LINE) ; //prints the console-like string

cmd = reader.readLine(); //takes input from user. user input should be started
with "hello", T"answer" or "quit"

String[] cmdArr = cmd.split (" ");

if (cmdArr[0].equals (CMD_HELLO)) { //executes when user input starts with
"hello"

hello(cmdArr);

}

else if (cmdArr[0].equals (CMD_ANSWER)) { //executes when user input starts with
"answer"

answer (cmdArr) ;

// prints "Hello World!" on the screen if user input starts with "hello"
private void hello(String[] cmdArr) {
System.out.println("Hello World!");

// prints "42" on the screen if user input starts with "answer"
private void answer (String[] cmdArr) {
System.out.println ("42");

https://riptutorial.com/ 246

Aligning strings in console

The method v+ intwriter. rornat (called through system.out. format) can be used to print aligned
strings in console. The method receives a string With the format information and a series of
objects to format:

String rowsStrings/[] new String[] {"1",
"1234",
"1234567",

"123456789"};

String columnlFormat = "%-3s"; // min 3 characters, left aligned

String column2Format = "%$-5.8s"; // min 5 and max 8 characters, left aligned
String column3Format = "%6.6s"; // fixed size 6 characters, right aligned
String formatInfo = columnlFormat + " " + column2Format + " " + column3Format;
for(int 1 = 0; i < rowsStrings.length; i++) {

System.out.format (formatInfo, rowsStrings[i], rowsStrings[i], rowsStrings[i]);
System.out.println () ;

Output:
1 1 1
1234 1234 1234

1234567 1234567 123456
123456789 12345678 123456

Using format strings with fixed size permits to print the strings in a table-like appearance with fixed
size columns:

String rowsStrings[] = new String[] {"1",
"1234",
"1234567",
"123456789"};

String columnlFormat = "%-3.3s"; // fixed size 3 characters, left aligned
String column2Format = "%-8.8s"; // fixed size 8 characters, left aligned
String column3Format = "%6.6s"; // fixed size 6 characters, right aligned
String formatInfo = columnlFormat + " " + column2Format + " " + column3Format;
for(int i = 0; i < rowsStrings.length; i++) {

System.out.format (formatInfo, rowsStrings[i], rowsStrings[i], rowsStrings[i]);
System.out.println();

Output:
1 1 1
123 1234 1234

123 1234567 123456
123 12345678 123456

https://riptutorial.com/ 247

https://docs.oracle.com/javase/8/docs/api/java/io/PrintWriter.html#format-java.lang.String-java.lang.Object...-

Format strings examples

* ss!just a string with no formatting

* 35s: format the string with a minimum of 5 characters; if the string is shorter it will be
padded to 5 characters and right aligned

* 555 format the string with a minimum of 5 characters; if the string is shorter it will be
padded to 5 characters and left aligned

* 35.10s: format the string with a minimum of 5 characters and a maximum of 10 characters;
if the string is shorter than 5 it will be padded to 5 characters and right aligned; if the string
is longer than 10 it will be truncated to 10 characters and right aligned

* 5-5.55: format the string with a fixed size of 5 characters (minimum and maximum are
equals); if the string is shorter than 5 it will be padded to 5 characters and left aligned,; if the
string is longer than 5 it will be truncated to 5 characters and left aligned

Read Console I/O online: https://riptutorial.com/java/topic/126/console-i-o

https://riptutorial.com/ 248

https://riptutorial.com/java/topic/126/console-i-o

C_hapter 37: Constructors

Introduction

While not required, constructors in Java are methods recognized by the compiler to instantiate
specific values for the class which may be essential to the role of the object. This topic
demonstrates proper usage of Java class constructors.

Remarks

The Java Language Specification talks at length about the exact nature of constructor semantics.
They can be found in JLS §8.8

Examples

Default Constructor

The "default” for constructors is that they do not have any arguments. In case you do not specify
any constructor, the compiler will generate a default constructor for you.
This means the following two snippets are semantically equivalent:

public class TestClass {
private String test;

}

public class TestClass {
private String test;
public TestClass () {

}

The visibility of the default constructor is the same as the visibility of the class. Thus a class
defined package-privately has a package-private default constructor

However, if you have non-default constructor, the compiler will not generate a default constructor
for you. So these are not equivalent:

public class TestClass {
private String test;
public TestClass (String arg) {
}

public class TestClass {
private String test;
public TestClass () {

https://riptutorial.com/ 249

https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.8

}
public TestClass (String arg) {
}

Beware that the generated constructor performs no non-standard initialization. This means all
fields of your class will have their default value, unless they have an initializer.

public class TestClass {
private String testData;
public TestClass () {

testData = "Test"
}

Constructors are called like this:

TestClass testClass = new TestClass();

Constructor with Arguments

Constructors can be created with any kinds of arguments.

public class TestClass {
private String testData;

public TestClass (String testData) {

this.testData = testData;
}

Called like this:

TestClass testClass = new TestClass ("Test Data");

A class can have multiple constructors with different signatures. To chain constructor calls (call a
different constructor of the same class when instantiating) use this ().

public class TestClass {
private String testData;

public TestClass (String testData) {
this.testData = testData;

public TestClass () {
this ("Test"); // testData defaults to "Test"

https://riptutorial.com/ 250

Called like this:

TestClass testClassl = new TestClass ("Test Data");
TestClass testClass2 = new TestClass|();

Call parent constructor

Say you have a Parent class and a Child class. To construct a Child instance always requires
some Parent constructor to be run at the very gebinning of the Child constructor. We can select
the Parent constructor we want by explicitly calling super (. ..) with the appropriate arguments as
our first Child constructor statement. Doing this saves us time by reusing the Parent classes'
constructor instead of rewriting the same code in the Child classes' constructor.

Without super (...) method:

(implicitly, the no-args version super () is called invisibly)

class Parent {
private String name;
private int age;

public Parent () {} // necessary because we call super () without arguments

public Parent (String tName, int tAge) {
name = tName;
age = tAge;

// This does not even compile, because name and age are private,
// making them invisible even to the child class.
class Child extends Parent {
public Child() {
// compiler implicitly calls super () here
name = "John";
age = 42;

With super () method:

class Parent {
private String name;
private int age;
public Parent (String tName, int tAge) {
name = tName;
age = tAge;

class Child extends Parent ({
public Child() {
super ("John", 42); // explicit super-call

https://riptutorial.com/ 251

Note: Calls to another constructor (chaining) or the super constructor MUST be the first statement
inside the constructor.

If you call the super(...) constructor explicitly, a matching parent constructor must exist (that's
straightforward, isn't it?).

If you don't call any super(...) constructor explicitly, your parent class must have a no-args
constructor - and this can be either written explicitly or created as a default by the compiler if the
parent class doesn't provide any constructor.

class Parent{
public Parent (String tName, int tAge) {}
t

class Child extends Parent{
public Child() {}
t

The class Parent has no default constructor, so, the compiler can't add super in the Child
constructor. This code will not compile. You must change the constructors to fit both sides, or write
your own super call, like that:

class Child extends Parent({
public Child() {
super ("",0);

}

Read Constructors online: https://riptutorial.com/java/topic/682/constructors

https://riptutorial.com/ 252

https://riptutorial.com/java/topic/682/constructors

C_hapter 38: Converting to and from Strings

Examples

Converting other datatypes to String

* You can get the value of other primitive data types as a String using one the String class's
valueof methods.

For example:

int i = 42;
String string = String.valueOf (i);
//string now equals "42”.

This method is also overloaded for other datatypes, such as tioat, double, boolean, and even

Object.

* You can also get any other Object (any instance of any class) as a String by calling .tostring
on it. For this to give useful output, the class must override tostring (). Most of the standard
Java library classes do, such as pate and others.

For example:

Foo foo = new Foo(); //Any class.
String stringifiedFoo = foo.toString() .

Here stringifiedroo CONtaiNs a representation of roo as a String.

You can also convert any number type to String with short notation like below.

int i = 10;

String str = i + "";
Or just simple way is

String str = 10 + "";

Conversion to / from bytes

To encode a string into a byte array, you can simply use the string#getsytes () method, with one of
the standard character sets available on any Java runtime:

byte[] bytes = "test".getBytes (StandardCharsets.UTF_8) ;

and to decode:

https://riptutorial.com/ 253

String testString = new String(bytes, StandardCharsets.UTF_8);

you can further simplify the call by using a static import:

import static java.nio.charset.StandardCharsets.UTF_8;

byte[] bytes = "test".getBytes (UTF_8);

For less common character sets you can indicate the character set with a string:
byte[] bytes = "test".getBytes ("UTF-8");

and the reverse:
String testString = new String (bytes, "UTF-8");

this does however mean that you have to handle the checked unsupportedcharsetException.

The following call will use the default character set. The default character set is platform specific
and generally differs between Windows, Mac and Linux platforms.

byte[] bytes = "test".getBytes();
and the reverse:

String testString = new String(bytes);

Note that invalid characters and bytes may be replaced or skipped by these methods. For more
control - for instance for validating input - you're encouraged to use the charsetincoder and
CharsetDecoder Classes.

Base64 Encoding / Decoding

Occasionally you will find the need to encode binary data as a base64-encoded string.

For this we can use the DatatypeConverter class from the javax.xml.bind package:

import javax.xml.bind.DatatypeConverter;
import java.util.Arrays;

// arbitrary binary data specified as a byte array
byte[] binaryData = "some arbitrary data".getBytes ("UTF-8");

// convert the binary data to the base64-encoded string
String encodedData = DatatypeConverter.printBase64Binary (binaryData);

// encodedData is now "c29tZSBhcmJpdHJIhcnkgZGFOYQ=="

// convert the base64-encoded string back to a byte array

https://riptutorial.com/ 254

https://it.wikipedia.org/wiki/Base64
https://docs.oracle.com/javase/7/docs/api/javax/xml/bind/DatatypeConverter.html
https://docs.oracle.com/javase/7/docs/api/javax/xml/bind/package-summary.html

byte[] decodedData = DatatypeConverter.parseBase64Binary (encodedData) ;

// assert that the original data and the decoded data are equal
assert Arrays.equals (binaryData, decodedData);

Apache commons-codec

Alternatively, we can use sases4 from Apache commons-codec.

import org.apache.commons.codec.binary.Base64;

// your blob of binary as a byte array
byte[] blob = "someBinaryData".getBytes();

// use the Base64 class to encode
String binaryAsAString = Base64.encodeBase6t4String(blob);

// use the Base64 class to decode
byte[] blob2 = Base64.decodeBaseb64 (binaryAsAString) ;

// assert that the two blobs are equal
System.out.println ("Equal : " + Boolean.toString(Arrays.equals (blob, blob2)));

If you inspect this program wile running, you will see that someBinarypata €ncodes to
c29tzUJpbmFyeURhdGE=, & Very managable UTF-8 String object.

Java SE 8

Details for the same can be found at Base64

// encode with padding
String encoded = Base64.getEncoder () .encodeToString (someByteArray) ;

// encode without padding
String encoded = Baseb64.getEncoder (). .withoutPadding() .encodeToString (someByteArray) ;

// decode a String
byte [] barr = Base64.getDecoder () .decode (encoded) ;

Reference

Parsing Strings to a Numerical Value

String to a primitive numeric type or a numeric wrapper type:

Each numeric wrapper class provides a parsexxx method that converts a string to the
corresponding primitive type. The following code converts a string t0 @an int using the
Integer.parseInt Method:

String string = "59";
int primitive = Integer.parselnteger (string);

https://riptutorial.com/

255

http://commons.apache.org/proper/commons-codec/
http://docs.oracle.com/javase/8/docs/api/java/util/Base64.html
http://stackoverflow.com/questions/19743851/base64-java-encode-and-decode-a-string

To convert to a string to an instance of a numeric wrapper class you can either use an overload of
the wrapper classes valueor method:

String string = "59";
Integer wrapper = Integer.valueOf (string);

or rely on auto boxing (Java 5 and later):

String string = "59";
Integer wrapper = Integer.parselnteger (string); // 'int' result is autoboxed

The above pattern works for byte, short, int, long, float and double and the corresponding wrapper
classes (Byte, Short, Integer, Long, Float and Double).

String to Integer using radix:

String integerAsString = "0101"; // binary representation
int parseInt = Integer.parselnt (integerAsString,?2);

Integer valueOfInteger = Integer.valueOf (integerAsString, 2);
System.out.println(valueOfInteger); // prints 5
System.out.println (parseInt); // prints 5

Exceptions

The unchecked NumberFormatException exception will be thrown if a numeric valueof (string) OF
parsexxx (...) method is called for a string that is not an acceptable numeric representation, or that
represents a value that is out of range.

Getting a "String” from an ‘InputStream”
A string can be read from an inputstream UsSing the byte array constructor.

import java.io.*;

public String readString(InputStream input) throws IOException {
byte[] bytes = new byte[50]; // supply the length of the string in bytes here
input.read(bytes);
return new String(bytes);

This uses the system default charset, although an alternate charset may be specified:

return new String(bytes, Charset.forName ("UTF-8")) ;

Converting String to other datatypes.

You can convert a numeric string to various Java numeric types as follows:

String to int:

https://riptutorial.com/ 256

https://docs.oracle.com/javase/7/docs/api/java/lang/NumberFormatException.html

String number = "12";

int num = Integer.parselnt (number);

String to float:

String number = "12.0";
float num = Float.parseFloat (number) ;

String to double:

String double = "1.47";
double num = Double.parseDouble (double) ;

String to boolean:

String falseString = "False";

boolean falseBool = Boolean.parseBoolean (falseString); // falseBool = false
String trueString = "True";

boolean trueBool = Boolean.parseBoolean (trueString); // trueBool = true

String to long:

String number = "47";
long num = Long.parselLong (number) ;

String to Biglnteger:

String bigNumber = "21";
BigInteger reallyBig = new BigInteger (bigNumber) ;

String to BigDecimal:

String bigFraction = "17.21455";
BigDecimal reallyBig = new BigDecimal (bigFraction);

Conversion Exceptions:

The numeric conversions above will all throw an (unchecked) NumberFormatException If you attempt
to parse a string that is not a suitably formatted number, or is out of range for the target type. The
Exceptions topic discusses how to deal with such exceptions.

If you wanted to test that you can parse a string, you could implement a tryparse... method like
this:

boolean tryParselInt (String wvalue) {
try {
String somechar = Integer.parselnt (value);
return true;
} catch (NumberFormatException e) {

https://riptutorial.com/ 257

http://www.riptutorial.com/java/topic/89/exceptions-and-exception-handling

return false;

However, calling this tryrarse... method immediately before parsing is (arguably) poor practice. It
would be better to just call the parse... method and deal with the exception.

Read Converting to and from Strings online: https://riptutorial.com/java/topic/6678/converting-to-
and-from-strings

https://riptutorial.com/ 258

https://riptutorial.com/java/topic/6678/converting-to-and-from-strings
https://riptutorial.com/java/topic/6678/converting-to-and-from-strings

C_hapter 39: Creating Images

Programmatically

Remarks

BufferedImage.getGraphics () always returns craphics2p.

Using a vo1ati1e1mage may significantly improve the speed of drawing operations, but also has its
drawbacks: its contents may be lost at any moment and they may have to be redrawn from

scratch.

Examples

Creating a simple image programmatically and displaying it

class ImageCreationExample {

static Image createSampleImage () {

// instantiate a new BufferedImage
BufferedImage img = new BufferedImage (640,

//draw something on the image
paintOnImage (img) ;

return img;

static void paintOnImage (BufferedImage img)

// get a drawable Graphics2D
Graphics2D g2d = (Graphics2D)

// some sample drawing
g2d.setColor (Color.BLACK) ;
g2d.fillRect (0, 0, 640, 480);
g2d.setColor (Color.WHITE) ;
, 0, 640, 480);
, 480, 640, 0);
Color.YELLOW) ;

g2d.drawLine (0
g2d.drawLine (0

(
(
(
(
g2d.setColor (
(
(
(

g2d.drawOval (200, 100, 240, 280);
g2d.setColor (Color.RED) ;
g2d.drawRect (150, 70, 340, 340);

(subclass of Image)
BufferedImage.TYPE_INT_ARGB) ;

480,

{

(subclass of Graphics)
img.getGraphics();

// drawing on images can be very memory-consuming

// so it's better to free resources early

// it's not necessary,
g2d.dispose () ;

though

public static void main(String[] args)

JFrame frame = new JFrame();

{

instance

object

frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;

Image img = createSamplelImage () ;

https://riptutorial.com/

259

https://docs.oracle.com/javase/8/docs/api/java/awt/image/BufferedImage.html#getGraphics--
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics2D.html
https://docs.oracle.com/javase/8/docs/api/java/awt/image/VolatileImage.html

ImageIcon icon = new Imagelcon (img) ;
frame.add (new JLabel (icon));
frame.pack () ;
frame.setVisible (true) ;

Save an Image to disk

public static void saveImage (String destination) throws IOException {
// method implemented in "Creating a simple image Programmatically and displaying it"
example

BufferedImage img = createSampleImage () ;

// ImageIO provides several write methods with different outputs
ImageIO.write(img, "png", new File(destination));

Specifying image rendering quality

static void setupQualityHigh (Graphics2D g2d) {
g2d.setRenderingHint (RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
g2d.setRenderingHint (RenderingHints.KEY_RENDERING, RenderingHints.VALUE_RENDER_QUALITY) ;
// many other RenderingHints KEY/VALUE pairs to specify

https://riptutorial.com/ 260

http://i.stack.imgur.com/IBEHO.png

static void setupQualityLow (Graphics2D g2d) {
g2d.setRenderingHint (RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_OFF);
g2d.setRenderingHint (RenderingHints.KEY_RENDERING, RenderingHints.VALUE_RENDER_SPEED) ;

A comparison of QUALITY and SPEED rendering of the sample image:

https://riptutorial.com/ 261

http://i.stack.imgur.com/Bg2bS.png

Creating an image with Bufferedimage class

int width = 256; //in pixels

int height = 256; //in pixels

BufferedImage image = new BufferedImage (width, height, BufferedImage.TYPE_4BYTE_ABGR) ;
//BufferedImage.TYPE_4BYTE_ABGR - store RGB color and visibility (alpha), see javadoc for more
info

Graphics g = image.createGraphics();

//draw whatever you like, like you would in a drawComponent (Graphics g) method in an UI
application

g.setColor (Color.RED) ;

g.fillRect (20, 30, 50, 50);

g.setColor (Color.BLUE) ;
g.drawOval (120, 120, 80, 40);

g.dispose(); //dispose graphics objects when they are no longer needed
//now image has programmatically generated content, you can use it in graphics.drawImage () to
draw it somewhere else

//or Jjust simply save it to a file
ImagelIO.write (image, "png", new File ("myimage.png"));

Output:

https://riptutorial.com/ 262

http://i.stack.imgur.com/sqHhS.png

Editing and re-using image with Bufferedimage

BufferedImage cat = ImagelO.read(new File("cat.]jpg")); //read existing file

//modify it

Graphics g = cat.createGraphics();
g.setColor (Color.RED) ;
g.drawString("Cat", 10, 10);
g.dispose () ;

//now create a new image
BufferedImage cats = new BufferedImage (256, 256, BufferedImage.TYPE_4BYTE_ABGR) ;

//and draw the old one on it, 16 times
g = cats.createGraphics();
for (int i = 0; 1 < 4; i++) {
for (int j = 0; J < 4; Jj++) {
g.drawImage (cat, 1 * 64, j * 64, null);

g.setColor (Color.BLUE) ;
g.drawRect (0, 0, 255, 255); //add some nice border
g.dispose(); //and done

ImagelIO.write (cats, "png", new File("cats.png"));

Original cat file:

Produced file:

https://riptutorial.com/

263

https://i.stack.imgur.com/v7Tk0.png
https://i.stack.imgur.com/Qrcc5.jpg

i i i e
ok | o e
"'-.n.r

ok | o e ok | o e
"'-.n.r

ok | o e
L7 W g L7 W g

I

d } 4 5 4 5 i b
"‘-' "'- o Sl ity Sl ity ol Faig]

4

1..” 1..” 1..” 1..”

Setting individual pixel's color in Bufferedlimage

BufferedImage image = new BufferedImage (256, 256, BufferedImage.TYPE_INT_ARGB) ;

//you don't have to use the Graphics object, you can read and set pixel color individually
for (int i = 0; 1 < 256; i++) {
for (int j = 0; j < 256; Jj++) {

int alpha 255; //don't forget this, or use BufferedImage.TYPE_INT_RGB instead
int red = i; //or any formula you like

int green = j; //or any formula you like

int blue = 50; //or any formula you like

int color = (alpha << 24) | (red << 16) | (green << 8) | blue;

image.setRGB (i, j, color);

ImagelIO.write (image, "png", new File ("computed.png"));

Output:

How to scale a Bufferedlmage

/**

* Resizes an image using a Graphics2D object backed by a BufferedImage.

https://riptutorial.com/

264

https://i.stack.imgur.com/dKd1I.png
https://i.stack.imgur.com/AogvX.png

* @param srcImg - source image to scale
* @param w - desired width

* @param h - desired height

* @return - the new resized image

v

private BufferedImage getScaledImage (Image srcImg, int w, int h) {

//Create a new image with good size that contains or might contain arbitrary alpha values

between and including 0.0 and 1.0.
BufferedImage resizedImg = new BufferedImage (w, h, BufferedImage.TRANSLUCENT) ;

//Create a device—-independant object to draw the resized image
Graphics2D g2 = resizedImg.createGraphics();

//This could be changed, Cf. http://stackoverflow.com/documentation/java/5482/creating-
images—-programmatically/19498/specifying—image-rendering-quality

g2 .setRenderingHint (RenderingHints.KEY_INTERPOLATION,
RenderingHints.VALUE_INTERPOLATION_BILINEAR) ;

//Finally draw the source image in the Graphics2D with the desired size.
g2 .drawImage (srcImg, 0, 0, w, h, null);

//Disposes of this graphics context and releases any system resources that it is using
g2 .dispose () ;

//Return the image used to create the Graphics2D
return resizedImg;

Read Creating Images Programmatically online: https://riptutorial.com/java/topic/5482/creating-

Images-programmatically

https://riptutorial.com/

265

https://riptutorial.com/java/topic/5482/creating-images-programmatically
https://riptutorial.com/java/topic/5482/creating-images-programmatically

C_hapter 40: Currency and Money

Examples

Add custom currency

Required JARs on classpath:

* javax.money:money-api:1.0 (JSR354 money and currency api)
» org.javamoney:moneta:1.0 (Reference implementation)
* javax:annotation-api:1.2. (Common annotations used by reference implementation)

// Let's create non-ISO currency, such as bitcoin

// At first, this will throw UnknownCurrencyException
MonetaryAmount moneys = Money.of (new BigDecimal ("0.1"), "BTC");

// This happens because bitcoin is unknown to default currency
// providers
System.out.println (Monetary.isCurrencyAvailable ("BTC")); // false

// We will build new currency using CurrencyUnitBuilder provided by org.javamoney.moneta

CurrencyUnit bitcoin = CurrencyUnitBuilder

.0f ("BIC", "BtcCurrencyProvider") // Set currency code and currency provider name
.setDefaultFractionDigits (2) // Set default fraction digits
.build(true); // Build new currency unit. Here 'true' means

// currency unit is to be registered and
// accessible within default monetary context

// Now BTC is available
System.out.println (Monetary.isCurrencyAvailable ("BTC")); // True

Read Currency and Money online: https://riptutorial.com/java/topic/8359/currency-and-money

https://riptutorial.com/

266

https://riptutorial.com/java/topic/8359/currency-and-money

C_hapter 41: Date Class

Syntax

® Date object = new Date();

® Date object = new Date(long date);

Parameters

No Creates a new Date object using the allocation time (to the nearest
parameter millisecond)

Creates a new Date object with the time set to the number of milliseconds

long date since "the epoch" (January 1, 1970, 00:00:00 GMT)

Remarks

Representation

Internally, a Java Date object is represented as a long; it is the number of milliseconds since a
specific time (referred to as the epoch). The original Java Date class had methods for dealing with
time zones, etc., but these were deprecated in favor of the then-new Calendar class.

So if all you want to do in your code is represent a specific time, you can create a Date class and
store it, etc. If you want to print out a human-readable version of that date, however, you create a
Calendar class and use its formatting to produce hours, minutes, seconds, days, time zones, etc.
Keep in mind that a specific millisecond is displayed as different hours in different time zones;
normally you want to display one in the "local” time zone, but the formatting methods have to take
into account that you may want to display it for some other one.

Also be aware that the clocks used by JVMs do not usually have millisecond accuracy; the clock
might only "tick" every 10 milliseconds, and therefore, if timing things, you cannot rely on
measuring things accurately at that level.

Import Statement
import java.util.Date;
The pate class may be imported from java.uti1 package.

Caution

pate iNstances are mutable, so using them can make it difficult to write thread-safe code or can

https://riptutorial.com/ 267

accidentally provide write access to internal state. For example, in the below class, the getpate ()
method allows the caller to modify the transaction date:

public final class Transaction {
private final Date datej;

public Date getTransactionDate () {
return date;

}

The solution is to either return a copy of the aate field or use the new APIs in java.time introduced
in Java 8.

Most of the constructor methods in the pate class have been deprecated and should not be used.
In almost all cases, it is advisable to use caiendar class for date operations.

Java 8

Java 8 introduces new time and date API in the package java.time, including LocalDate and
LocalTime. The classes in the java.time package provide an overhauled API that is easier to use.
If you are writing to Java 8 it is strongly encouraged that you use this new API. See Dates and
Time (java.time.*) .

Examples

Creating Date objects

Date date = new Date () ;
System.out.println (date); // Thu Feb 25 05:03:59 IST 2016

Here this pate 0Object contains the current date and time when this object was created.

Calendar calendar = Calendar.getInstance();

calendar.set (90, Calendar.DECEMBER, 11);

Date myBirthDate = calendar.getTime () ;

System.out.println (myBirthDate); // Mon Dec 31 00:00:00 IST 1990

pate Objects are best created through a cailendar instance since the use of the data constructors is
deprecated and discouraged. To do se we need to get an instance of the caiendar class from the
factory method. Then we can set year, month and day of month by using humbers or in case of
months constants provided py the Calendar class to improve readability and reduce errors.

calendar.set (90, Calendar.DECEMBER, 11, 8, 32, 35);
Date myBirthDatenTime = calendar.getTime () ;
System.out.println (myBirthDatenTime); // Mon Dec 31 08:32:35 IST 1990

Along with date, we can also pass time in the order of hour, minutes and seconds.

https://riptutorial.com/ 268

http://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html
http://docs.oracle.com/javase/8/docs/api/java/time/LocalTime.html
http://www.riptutorial.com/java/topic/4813/dates-and-time--java-time---
http://www.riptutorial.com/java/topic/4813/dates-and-time--java-time---

Comparing Date objects

Calendar, Date, and LocalDate

Java SE 8

before, after, compareTo and equals methods

//Use of Calendar and

Date objects

final Date today = new Date();

final Calendar calendar = Calendar.getInstance();

calendar.set (1990, Calendar.NOVEMBER, 1, 0, 0, 0);

Date birthdate = calendar.getTime () ;

final Calendar calendar2 = Calendar.getInstance();

calendar2.set (1990, Calendar.NOVEMBER, 1, 0, 0, 0);

Date samebirthdate =

//Before example

calendar2.getTime () ;

System.out.printf ("Is %1tF before %2tF? %3b%n", today, birthdate,
Boolean.valueOf (today.before (birthdate)));
System.out.printf ("Is $%$1$tF before 1tF? %3b%n", today, today,
Boolean.valueOf (today.before (today)));
System.out.printf ("Is %2$tF before 1tF? %3b%n", today, birthdate,
Boolean.valueOf (birthdate.before (today)));
//After example
System.out.printf ("Is 1tF after %2tF? %3b%n", today, birthdate,
Boolean.valueOf (today.after (birthdate))) ;
System.out.printf ("Is 1tF after 1tF? %3b%n", today, birthdate,
Boolean.valueOf (today.after (today)));
System.out.printf ("Is %2tF after 1tF? %3b%n", today, birthdate,
Boolean.valueOf (birthdate.after (today))) ;
//Compare example
System.out.printf ("Compare %$1S$tF to %2S$tF: %3$d%n", today, birthdate,
Integer.valueOf (today.compareTo (birthdate)));
System.out.printf ("Compare %$1S$tF to %$1S$tF: %3d%n", today, birthdate,
Integer.valueOf (today.compareTo (today))) ;
System.out.printf ("Compare %2S$tF to %$1S$tF: %$3$d%n", today, birthdate,
Integer.valueOf (birthdate.compareTo (today))) ;
//Equal example
System.out.printf ("Is 1tF equal to %2$tF? %3$b%n", today, birthdate,
Boolean.valueOf (today.equals (birthdate)));
System.out.printf ("Is 1tF equal to %2tF? %3$b%n", birthdate, samebirthdate,
Boolean.valueOf (birthdate.equals (samebirthdate)));
System.out .printf (
"Because birthdate.getTime () —-> %1d is different from samebirthdate.getTime () ->
%$25d, there are millisecondes!%n",
Long.valueOf (birthdate.getTime ()), Long.valueOf (samebirthdate.getTime()));
//Clear ms from calendars
calendar.clear (Calendar .MILLISECOND) ;
calendar2.clear (Calendar .MILLISECOND) ;
https://riptutorial.com/ 269

birthdate = calendar.getTime () ;
samebirthdate = calendar2.getTime () ;

System.out.printf ("Is 1tF equal to %2tF after clearing ms? %3b%n", birthdate,

samebirthdate,
Boolean.valueOf (birthdate.equals (samebirthdate)));

Java SE 8

IsBefore, iIsAfter, compareTo and equals
methods

//Use of LocalDate

final LocalDate now = LocalDate.now();

final LocalDate birthdate2 = LocalDate.of (2012, 6, 30);
final LocalDate birthdate3 = LocalDate.of (2012, 6, 30);

//Hours, minutes, second and nanoOfsecond can also be configured with an other class
LocalDateTime
//LocalDateTime.of (year, month, dayOfMonth, hour, minute, second, nanoOfSecond) ;

//isBefore example

System.out.printf ("Is 1tF before 2tF? %3b%n", now, birthdate2,
Boolean.valueOf (now.isBefore (birthdate2)));

System.out.printf ("Is 1tF before 1tF? %3b%n", now, birthdate2,
Boolean.valueOf (now.isBefore (now)));

System.out.printf ("Is %2$tF before 1tF? %3b%n", now, birthdate2,
Boolean.valueOf (birthdate2.isBefore (now))) ;

//isAfter example

System.out.printf ("Is 1tF after 2tF? $%$3$b%n", now, birthdate2,
Boolean.valueOf (now.isAfter (birthdate2)));

System.out.printf ("Is 1tF after 1tF? 3b%n", now, birthdate2,
Boolean.valueOf (now.isAfter (now)));

System.out.printf ("Is %2tF after 1tF? 3b%n", now, birthdate2,
Boolean.valueOf (birthdate2.isAfter (now)));

//compareTo example

System.out.printf ("Compare $1S$tF to %2S$tF %$3$d%n", now, birthdate2,
Integer.valueOf (now.compareTo (birthdate2)));

System.out.printf ("Compare $1S$tF to %$1S$tF %3d%n", now, birthdate2,
Integer.valueOf (now.compareTo (now))) ;

System.out.printf ("Compare $2S$tF to %$1S$tF %3d%n", now, birthdate2,
Integer.valueOf (birthdate2.compareTo (now))) ;

//equals example

System.out.printf ("Is 1tF equal to $%$2$tF? %$3$b%n", now, birthdate2,
Boolean.valueOf (now.equals (birthdate2))) ;

System.out.printf ("Is 1tF to %$2S$tF? %3b%n", birthdate2, birthdate3,
Boolean.valueOf (birthdate2.equals (birthdate3)));

//isEqual example

System.out.printf ("Is 1tF equal to $%$2$tF? %3$b%n", now, birthdate2,
Boolean.valueOf (now.isEqual (birthdate2)));

System.out.printf ("Is 1tF to $2S$tF? %3b%n", birthdate2, birthdate3,
Boolean.valueOf (birthdate2.isEqual (birthdate3)));

https://riptutorial.com/ 270

Date comparison before Java 8

Before Java 8, dates could be compared using java.util.Calendar and java.util.Date classes. Date
class offers 4 methods to compare dates :

 after(Date when)

* before(Date when)

e compareTo(Date anotherDate)
e equals(Object obj)

after, before, compareTo &Nd equals Methods compare the values returned by getTime() method for
each date.

compareTo Method returns positive integer.

» Value greater than O : when the Date is after the Date argument
» Value greater than 0 : when the Date is before the Date argument
» Value equals to O : when the Date is equal to the Date argument

equals results can be surprising as shown in the example because values, like milliseconds, are
not initialize with the same value if not explicitly given.

Since Java 8

With Java 8 a new Object to work with Date is available java.time.LocalDate. Locaipate implements
ChronolLocalDate, the abstract representation of a date where the Chronology, or calendar
system, is pluggable.

To have the date time precision the Object java.time.LocalDateTime has to be used. rocaipate and
LocalDateTime US€ the same methods name for comparing.

Comparing dates using a rocalpate is different from using chronorocalnate because the chronology,
or calendar system are not taken in account the first one.

Because most application should use rocalpate, chronoLocalbate IS NOt included in examples.
Further reading here.

Most applications should declare method signatures, fields and variables as LocalDate,
not this[ChronoLocalDate] interface.

Localpate has 5 methods to compare dates :

* isAfter(ChronoLocalDate other)
 isBefore(ChronoLocalDate other)
 isequal(ChronoLocalDate other)

e compareTo(ChronoLocalDate other)
« equals(Object obj)

https://riptutorial.com/ 271

https://docs.oracle.com/javase/7/docs/api/java/util/Calendar.html
https://docs.oracle.com/javase/7/docs/api/java/util/Date.html
https://docs.oracle.com/javase/7/docs/api/java/util/Date.html#after(java.util.Date)
https://docs.oracle.com/javase/7/docs/api/java/util/Date.html#before(java.util.Date)
https://docs.oracle.com/javase/7/docs/api/java/util/Date.html#compareTo(java.util.Date)
https://docs.oracle.com/javase/7/docs/api/java/util/Date.html#equals(java.lang.Object)
https://docs.oracle.com/javase/7/docs/api/java/util/Date.html#getTime()
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html
https://docs.oracle.com/javase/8/docs/api/java/time/chrono/ChronoLocalDate.html
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDateTime.html
https://docs.oracle.com/javase/8/docs/api/java/time/chrono/ChronoLocalDate.html
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html#isAfter-java.time.chrono.ChronoLocalDate-
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html#isBefore-java.time.chrono.ChronoLocalDate-
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html#isEqual-java.time.chrono.ChronoLocalDate-
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html#compareTo-java.time.chrono.ChronoLocalDate-
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html#equals-java.lang.Object-

In case of r.ocalpate pafanﬁeter,isAfter,isBefore,isEqual,equals and compareTo now use this
method:

int compareToO (LocalDate otherDate) {

int cmp = (year - otherDate.year);
if (cmp == 0) {
cmp = (month - otherDate.month);
if (cmp == 0) {
cmp = (day - otherDate.day);

}
}

return cmp;

equals method check if the parameter reference equals the date first whereas isequai directly calls

compareToO.

In case of an other class instance of chronorocalnate the dates are compared using the epoch pay.
The Epoch Day count is a simple incrementing count of days where day 0 is 1970-01-01 (ISO).

Converting Date to a certain String format

format () from simplepaterormat Class helps to convert a nate Object into certain format string Object
by using the supplied pattern string.
Date today = new Date();

SimpleDateFormat dateFormat = new SimpleDateFormat ("dd-MMM-yy"); //pattern is specified here
System.out.println (dateFormat.format (today)); //25-Feb-16

Patterns can be applied again by using appiyrattern ()

dateFormat.applyPattern ("dd-MM-yyyy") ;
System.out.println (dateFormat.format (today)); //25-02-2016

dateFormat.applyPattern ("dd-MM-yyyy HH:mm:ss E");
System.out.println (dateFormat.format (today)); //25-02-2016 06:14:33 Thu

Note: Here nn (small letter m) denotes minutes and v (capital M) denotes month. Pay careful
attention when formatting years: capital "Y" (v) indicates the "week in the year" while lower-case
"y" (v) indicates the year.

Converting String into Date
parse () from simplepaterormat Class helps to convert a string pattern into a pate object.

DateFormat dateFormat = DateFormat.getDatelnstance (DateFormat.SHORT, Locale.US);
String dateStr = "02/25/2016"; // input String

Date date = dateFormat.parse (dateStr);

System.out.println(date.getYear()); // 116

https://riptutorial.com/ 272

There are 4 different styles for the text format, ssort, Meprum (this is the default), Lonc and rurz, all of
which depend on the locale. If no locale is specified, the system default locale is used.

SHORT 6/30/09 30/06/09
MEDIUM Jun 30, 2009 30 juin 2009
LONG June 30, 2009 30 juin 2009

FULL Tuesday, June 30, 2009 mardi 30 juin 2009

A basic date output

Using the following code with the format string yyyy/mv/dd hn:mn.ss, we will receive the following
output

2016/04/19 11:45.36

// define the format to use
String formatString = "yyyy/MM/dd hh:mm.ss";

// get a current date object
Date date = Calendar.getInstance () .getTime () ;

// create the formatter
SimpleDateFormat simpleDateFormat = new SimpleDateFormat (formatString);

// format the date
String formattedDate = simpleDateFormat.format (date);

// print it
System.out.println (formattedDate) ;

// single—-line version of all above code
System.out.println (new SimpleDateFormat ("yyyy/MM/dd
hh:mm.ss") .format (Calendar.getInstance () .getTime()));

Convert formatted string representation of date to Date object
This method can be used to convert a formatted string representation of a date into a pate Object.

/**
* Parses the date using the given format.
*
* @param formattedDate the formatted date string
* @param dateFormat the date format which was used to create the string.
* @return the date
*/
public static Date parseDate (String formattedDate, String dateFormat) {
Date date = null;

https://riptutorial.com/ 273

SimpleDateFormat objDf = new SimpleDateFormat (dateFormat) ;
try {

date = objDf.parse (formattedDate);
} catch (ParseException e) {

// Do what ever needs to be done with exception.

}

return date;

Creating a Specific Date

While the Java Date class has several constructors, you'll notice that most are deprecated. The
only acceptable way of creating a Date instance directly is either by using the empty constructor or
passing in a long (number of milliseconds since standard base time). Neither are handy unless
you're looking for the current date or have another Date instance already in hand.

To create a new date, you will need a Calendar instance. From there you can set the Calendar
instance to the date that you need.

Calendar c¢ = Calendar.getInstance();

This returns a new Calendar instance set to the current time. Calendar has many methods for
mutating it's date and time or setting it outright. In this case, we'll set it to a specific date.

c.set (1974, 6, 2, 8, 0, 0);
Date d = c.getTime();

The getTime method returns the Date instance that we need. Keep in mind that the Calendar set
methods only set one or more fields, they do not set them all. That is, if you set the year, the other
fields remain unchanged.

PITFALL

In many cases, this code snippet fulfills its purpose, but keep in mind that two important parts of
the date/time are not defined.

* the (1974, 6, 2, 8, 0, 0) parameters are interpreted within the default timezone, defined
somewhere else,

« the milliseconds are not set to zero, but filled from the system clock at the time the Calendar
instance is created.

Java 8 LocalDate and LocalDateTime objects

Date and LocalDate objects cannot be exactly converted between each other since a Date object
represents both a specific day and time, while a LocalDate object does not contain time or
timezone information. However, it can be useful to convert between the two if you only care about
the actual date information and not the time information.

Creates a LocalDate

https://riptutorial.com/ 274

// Create a default date
LocalDate 1lDate = LocalDate.now();

// Creates a date from values
lDate = LocalDate.of (2017, 12, 15);

// create a date from string
1Date = LocalDate.parse("2017-12-15");

// creates a date from zone
LocalDate.now (ZonelId.systemDefault ());

Creates a LocalDateTime

// Create a default date time
LocalDateTime lDateTime = LocalDateTime.now() ;

// Creates a date time from values
lDateTime = LocalDateTime.of (2017, 12, 15, 11, 30);

// create a date time from string
lDateTime = LocalDateTime.parse("2017-12-05T11:30:30");

// create a date time from zone
LocalDateTime.now (ZonelId.systemDefault ());

LocalDate to Date and vice-versa

Date date = Date.from(Instant.now());
Zoneld defaultZoneld = Zoneld.systemDefault ();

// Date to LocalDate
LocalDate localDate = date.toInstant () .atZone(defaultZonelId) .toLocalDate();

// LocalDate to Date
Date.from(localDate.atStartOfDay (defaultZonelId) .toInstant ());

LocalDateTime to Date and vice-versa

Date date = Date.from(Instant.now());
Zoneld defaultZoneld = Zoneld.systemDefault ();

// Date to LocalDateTime
LocalDateTime localDateTime = date.toInstant ().atZone (defaultZoneld) .toLocalDateTime () ;

// LocalDateTime to Date
Date out = Date.from(localDateTime.atZone (defaultZoneld) .toInstant());

Time Zones and java.util.Date

A java.util.pate Object does not have a concept of time zone.

* There is no way to set a timezone for a Date
* There is no way to change the timezone of a Date object
» A Date object created with the new pate () default constructor will be initialised with the

https://riptutorial.com/

275

current time in the system default timezone

However, it is possible to display the date represented by the point in time described by the Date

object in a different time zone using €.g. java.text.SimpleDateFormat:

Date date = new Date();
//print default time zone
System.out.println (TimeZone.getDefault () .getDisplayName ()) ;

SimpleDateFormat sdf = new SimpleDateFormat ("yyyy-MM-dd HH:mm:ss");

format!

//print date in the original time zone
System.out.println (sdf.format (date)) ;

//current time in London

sdf.setTimeZone (TimeZone.getTimeZone ("Europe/London")) ;
System.out.println (sdf.format (date)) ;

Output:

Central European Time
2016-07-21 22:50:56
2016-07-21 21:50:56

Convert java.util.Date to java.sgl.Date

//note:

time zone not in

java.util.Date 1O java.sql.Date CONVersion is usually necessary when a Date object needs to be

written in a database.

java.sql.Date IS @ Wrapper around millisecond value and is used by Jo=c to identify an sor pate

type

In the below example, we use the java.util.pate() cONstructor, that creates a Date object and
initializes it to represent time to the nearest millisecond. This date is used in the
convert (java.util.Date utilDate) method to return ad java.sgl.Date otﬂect

Example

public class UtilToSglConversion {

public static void main (String args([])
{

java.util.Date utilDate = new java.util.Date();

System.out.println ("java.util.Date is : " + utilDate);
java.sqgl.Date sglDate = convert (utilDate);
System.out.println ("java.sgl.Date is : " + sqglDate);

DateFormat df = new SimpleDateFormat ("dd/MM/YYYY - hh:mm:ss");

System.out.println ("dateFormated date is : " + df.format (utilDate));

private static java.sgl.Date convert (java.util.Date uDate) {
java.sqgl.Date sDate = new java.sqgl.Date (uDate.getTime());
return sDate;

https://riptutorial.com/

276

Output

java.util.Date is : Fri Jul 22 14:40:35 IST 2016
java.sgl.Date is : 2016-07-22
dateFormated date is : 22/07/2016 - 02:40:35

java.util.pate has both date and time information, whereas java.sql.pate Only has date
information

LocalTime

To use just the time part of a Date use LocalTime. You can instantiate a LocalTime object in a

couple ways

. LocalTime time = LocalTime.now();
. time = LocalTime.MIDNIGHT;

. time = LocalTime.NOON;

. time = LocalTime.of (12, 12, 45);

A WNPF

LocalTime alSO has a built in toString method that displays the format very nicely.
System.out.println (time) ;

you can also get, add and subtract hours, minutes, seconds, and nanoseconds from the
LocalTime object i.e.

time.plusMinutes (1) ;
time.getMinutes () ;
time.minusMinutes (1) ;

You can turn it into a Date object with the following code:

LocalTime 1Time = LocalTime.now () ;

Instant instant = 1Time.atDate (LocalDate.of (A_YEAR, A_MONTH, A_DAY)).
atZone (Zoneld.systemDefault ()) .toInstant () ;

Date time = Date.from(instant);

this class works very nicely within a timer class to simulate an alarm clock.

Read Date Class online: https://riptutorial.com/java/topic/164/date-class

https://riptutorial.com/

277

https://riptutorial.com/java/topic/164/date-class

C_hapter 42:. Dates and Time (java.time.*)

Examples

Simple Date Manipulations
Get the current date.

LocalDate.now ()

Get yesterday's date.

LocalDate y = LocalDate.now() .minusDays (1) ;

Get tomorrow's date

LocalDate t = LocalDate.now() .plusDays(1l);

Get a specific date.

LocalDate t = LocalDate.of (1974, 6, 2, 8, 30, 0, 0);

In addition to the p1us and ninus methods, there are a set of "with" methods that can be used to set
a particular field on a rocaipate instance.

LocalDate.now () .withMonth (6) ;

The example above returns a new instance with the month set to June (this differs from
java.util.Dpate Where setmonth was indexed a 0 making June 5).

Because LocalDate manipulations return immutable LocalDate instances, these methods may also
be chained together.

LocalDate 1d = LocalDate.now() .plusDays (1) .plusYears(l);
This would give us tomorrow's date one year from now.
Date and time
Date and time without time zone information

LocalDateTime dateTime = LocalDateTime.of (2016, Month.JULY, 27, 8, 0);
LocalDateTime now = LocalDateTime.now () ;
LocalDateTime parsed = LocalDateTime.parse("2016-07-27T07:00:00") ;

https://riptutorial.com/ 278

Date and time with time zone information

ZzonelId zoneld = ZoneId.of ("UTC+2");

ZonedDateTime dateTime = ZonedDateTime.of (2016, Month.JuLrny, 27, 7, 0, 0, 235, zoneld);

ZonedDateTime composition = ZonedDateTime.of (localDate, localTime, zoneld);
ZonedDateTime now = ZonedDateTime.now(); // Default time zone

ZonedDateTime parsed = ZonedDateTime.parse ("2016-07-27T07:00:00+01:00 [Europe/Stockholm]");

Date and time with offset information (i.e. no DST changes taken into account)

ZoneOffset zoneOffset = ZoneOffset.ofHours(2);

OffsetDateTime dateTime = OffsetDateTime.of (2016, 7, 27, 7, 0, 0, 235, zoneOffset);

OffsetDateTime composition = OffsetDateTime.of (localDate, localTime, zoneOffset);
OffsetDateTime now = OffsetDateTime.now(); // Offset taken from the default Zoneld
OffsetDateTime parsed = OffsetDateTime.parse("2016-07-27T07:00:00+02:00") ;

Operations on dates and times

LocalDate tomorrow = LocalDate.now () .plusDays(1l);

LocalDateTime anHourFromNow = LocalDateTime.now () .plusHours (1) ;

Long daysBetween = java.time.temporal.ChronoUnit.DAYS.between (LocalDate.now(),
LocalDate.now () .plusDays (3)); // 3

Duration duration = Duration.between (Instant.now(), ZonedDateTime.parse ("2016-07-
27T07:00:00+01:00 [Europe/Stockholm]"))

Instant

Represents an instant in time. Can be thought of as a wrapper around a Unix timestamp.

Instant now = Instant.now();

Instant epochl = Instant.ofEpochMilli (0);

Instant epoch2 = Instant.parse("1970-01-01T00:00:002");
Jjava.time.temporal.ChronoUnit .MICROS.between (epochl, epoch2); // 0

Usage of various classes of Date Time API

Following example also have explanation required for understanding example within it.

import java.time.Clock;

import java.time.Duration;

import java.time.Instant;

import java.time.LocalDate;

import java.time.LocalDateTime;
import java.time.LocalTime;

import java.time.Zoneld;

import Jjava.time.ZonedDateTime;
import java.util.TimeZone;

public class SomeMethodsExamples {

/**
* Has the methods of the class {@link LocalDateTime}
=y

public static void checkLocalDateTime () {

https://riptutorial.com/

279

LocalDateTime localDateTime = LocalDateTime.now () ;
System.out.println ("Local Date time using static now() method ::: >>> "
+ localDateTime) ;

LocalDateTime 1dtl = LocalDateTime.now (ZonelId.of (ZoneId.SHORT_IDS
.get ("AET")));
System.out
.println ("LOCAL TIME USING now (ZoneId zoneId) method ::: >>>>"
+ 1dt1l);

LocalDateTime 1dt2 = LocalDateTime.now (Clock.system(ZoneId
.0f (ZoneId.SHORT_IDS.get ("PST"))));

System.out
.println ("Local TIME USING now (Clock.system(ZoneId.of())) ::: >>>> "
+ 1dt2);
System.out

.println("Following is a static map in ZoneId class which has mapping of short
timezone names to their Actual timezone names");
System.out.println (ZoneId.SHORT_IDS) ;

/**
* This has the methods of the class {@link LocalDate}
v
public static void checkLocalDate () {
LocalDate localDate = LocalDate.now();
System.out.println ("Gives date without Time using now () method. >> "
+ localDate);
LocalDate localDate2 = LocalDate.now(ZoneId.of (ZoneId.SHORT_IDS
.get ("ECT")));
System.out
.println("now () is overridden to take ZoneID as parametere using this we can get
the same date under different timezones. >> "
+ localDate?2);

/**
* This has the methods of abstract class {Q@link Clock}. Clock can be used
* for time which has time with {Q@link TimeZone}.
v
public static void checkClock () {
Clock clock = Clock.systemUTC() ;
// Represents time according to ISO 8601

System.out.println ("Time using Clock class : " + clock.instant());
}
/**
* This has the {Q@link Instant} class methods.
=/
public static void checkInstant () {
Instant instant = Instant.now();
System.out.println("Instant using now() method :: " + instant);
Instant insl = Instant.now (Clock.systemUTC());
System.out.println("Instants using now(Clock clock) :: " + insl);

https://riptutorial.com/ 280

/**
* This class checks the methods of the {Q@link Duration} class.
=/
public static void checkDuration () {
// toString() converts the duration to PTnHnMnS format according to ISO
// 8601 standard. If a field is zero its ignored.

// P is the duration designator (historically called "period") placed at
// the start of the duration representation.

// Y is the year designator that follows the value for the number of
// years.

// M is the month designator that follows the value for the number of
// months.

// W is the week designator that follows the value for the number of
// weeks.

// D is the day designator that follows the value for the number of

// days.

// T is the time designator that precedes the time components of the
// representation.

// H is the hour designator that follows the value for the number of
// hours.

// M is the minute designator that follows the value for the number of
// minutes.

// S is the second designator that follows the value for the number of
// seconds.

System.out.println (Duration.ofDays (2));

/**
* Shows Local time without date. It doesn't store or represenet a date and
* time. Instead its a representation of Time like clock on the wall.
v
public static void checkLocalTime () {
LocalTime localTime = LocalTime.now () ;
System.out.println("LocalTime :: " + localTime);

/**
* A date time with Time zone details in ISO-8601 standards.
v
public static void checkZonedDateTime () {
ZonedDateTime zonedDateTime = ZonedDateTime.now (Zoneld
.0f (ZoneId.SHORT_IDS.get ("CST")));
System.out.println (zonedDateTime) ;

Date Time Formatting

Before Java 8, there was paterormat and simplepaterormat Classes in the package java.text and

this legacy code will be continued to be used for sometime.

But, Java 8 offers a modern approach to handling Formatting and Parsing.

In formatting and parsing first you pass a string Object t0 pateTimeFormatter, and in turn use it for

https://riptutorial.com/

281

formatting or parsing.

import java.time.*;
import java.time.format.*;

class DateTimeFormat

{

public static void main(String[] args) {

//Parsing
String pattern = "d-MM-yyyy HH:mm";
DateTimeFormatter dtF1l = DateTimeFormatter.ofPattern (pattern);

LocalDateTime ldpl = LocalDateTime.parse ("2014-03-25T01:30"), //Default format
1dp2 = LocalDateTime.parse ("15-05-2016 13:55",dtF1); //Custom format

System.out.println (ldpl + "\n" + 1dp2); //Will be printed in Default format

//Formatting
DateTimeFormatter dtF2

DateTimeFormatter.ofPattern ("EEE d, MMMM, yyyy HH:mm");

DateTimeFormatter dtF3

DateTimeFormatter.ISO_LOCAL_DATE_TIME;
LocalDateTime 1dtfl = LocalDateTime.now();

System.out.println (1dtfl.format (dtF2) +"\n"+1dtfl.format (dtF3));

An important notice, instead of using Custom patterns, it is good practice to use predefined
formatters. Your code look more clear and usage of ISO8061 will definitely help you in the long
run.

Calculate Difference between 2 LocalDates

Use rocalpate and chronoUnit’

LocalDate dl = LocalDate.of (2017, 5, 1);
LocalDate d2 = LocalDate.of (2017, 5, 18);

now, since the method between Of the chronounit enumerator takes 2 temporalS as parameters so
you can pass without a problem the rocaipate insStances

long days = ChronoUnit.DAYS.between (dl, d2);
System.out.println(days);

Read Dates and Time (java.time.*) online: https://riptutorial.com/java/topic/4813/dates-and-time--
java-time---

https://riptutorial.com/ 282

https://riptutorial.com/java/topic/4813/dates-and-time--java-time---
https://riptutorial.com/java/topic/4813/dates-and-time--java-time---

C_hapter 43: Default Methods

Introduction

Default Method introduced in Java 8, allows developers to add new methods to an interface
without breaking the existing implementations of this interface. It provides flexibility to allow the
interface to define an implementation which will be used as default when a class which
implements that interface fails to provide an implementation of that method.

Syntax

 public default void methodName() {/* method body */}

Remarks

Default methods

» Can be used within an interface, to introduce a behaviour without forcing existing subclasses
to implement it.

e Can be overridden by subclasses or by a sub-interface.

» Are not allowed to override methods in java.lang.Object class.

* If a class implementing more than one interface, inherits default methods with identical
method signatures from each of the intefaces, then it must override and provide its own
interface as if they were not default methods (as part of resolving multiple inheritance).

» Although are intended to introduce a behaviour without breaking existing implementations,
existing subclasses with a static method with same method signature as the newly
introduced default method will still be broken. However this is true even in case of
introducing an instance method in a superclass.

Static methods

» Can be used within an interface, primarily intended to be used as a utility method for default
methods.

» Cannot be overridden by subclasses or by a sub-interface (is hidden to them). However as is
the case with static methods even now, each class or interface can have its own.

» Are not allowed to override instance methods in java.lang.Object class (as is presently the
case for subclasses as well).

https://riptutorial.com/ 283

Below is a table summarizing the interaction between sub-class and super-class.

SUPER_CLASS-INSTANCE- SUPER_CLASS-STATIC-

METHOD METHOD
SUE GLASSHINSIANES overrides enerates-compiletime-error
METHOD g P
SUB CLASS-STATIC- o .
- generates-compiletime-error hides

METHOD

Below is a table summarizing the interaction between interface and implementing-class.

INTERFACE-DEFAULT- INTERFACE-STATIC-

METHOD METHOD

IMPL_CLASS-INSTANCE-

METHOD overrides hides

IMPL_CLASS-STATIC-

METHOD generates-compiletime-error hides

References :

* http://www.journaldev.com/2752/java-8-interface-changes-static-method-default-method
* https://docs.oracle.com/javase/tutorial/java/landl/override.html

Examples
Basic usage of default methods

/**
* Interface with default method
*/
public interface Printable {
default void printString() {
System.out.println("default implementation");
}
}

/**
* Class which falls back to default implementation of {@link #printString() }
*/
public class WithDefault
implements Printable

{

https://riptutorial.com/ 284

/*'k
* Custom implementation of {@link #printString() }
v
public class OverrideDefault
implements Printable {
@Override
public void printString() {
System.out.println("overridden implementation");

The following statements

new WithDefault () .printString();
new OverrideDefault () .printString();

Will produce this output:

default implementation

overridden implementation

Accessing other interface methods within default method
You can as well access other interface methods from within your default method.

public interface Summable {
int getA();

int getB();

default int calculateSum() {
return getA() + getB();

public class Sum implements Summable {
@Override
public int getA() {
return 1;

@Override
public int getB() {
return 2;

The following statement will print 3:

System.out.println(new Sum() .calculateSum());

Default methods could be used along with interface static methods as well:

https://riptutorial.com/ 285

public interface Summable {
static int getA () {
return 1;

static int getB() {
return 2;

default int calculateSum() {
return getA () + getB();

public class Sum implements Summable {}

The following statement will also print 3:

System.out.println (new Sum() .calculateSum());

Accessing overridden default methods from implementing class

In classes, super.foo () Will look in superclasses only. If you want to call a default implementation
from a superinterface, you need to qualify super with the interface name: rooable.super.foo ().

public interface Fooable {
default int foo () {return 3;}
t

public class A extends Object implements Fooable {
@Override
public int foo () {
//return super.foo() + 1; //error: no method foo() in java.lang.Object
return Fooable.super.foo() + 1; //okay, returns 4

Why use Default Methods?

The simple answer is that it allows you to evolve an existing interface without breaking existing
implementations.

For example, you have swin interface that you published 20 years ago.

public interface Swim {
void backStroke () ;
}

We did a great job, our interface is very popular, there are many implementation on that around
the world and you don't have control over their source code.

public class FooSwimmer implements Swim {
public void backStroke () {

https://riptutorial.com/ 286

System.out.println ("Do backstroke");

After 20 years, you've decided to add new functionality to the interface, but it looks like our
interface is frozen because it will break existing implementations.

Luckily Java 8 introduces brand new feature called Default method.

We can now add new method to the swim interface.

public interface Swim {
void backStroke () ;
default void sideStroke () {

System.out.println ("Default sidestroke implementation. Can be overridden");

Now all existing implementations of our interface can still work. But most importantly they can
implement the newly added method in their own time.

One of the biggest reasons for this change, and one of its biggest uses, is in the Java Collections
framework. Oracle could not add a roreach method to the existing Iterable interface without
breaking all existing code which implemented Iterable. By adding default methods, existing
Iterable implementation will inherit the default implementation.

Class, Abstract class and Interface method precedence

Implementations in classes, including abstract declarations, take precedence over all interface
defaults.

» Abstract class method takes precedence over Interface Default Method.

public interface Swim {
default void backStroke () {
System.out.println ("Swim.backStroke");
}
}

public abstract class AbstractSwimmer implements Swim {
public void backStroke () {
System.out.println ("AbstractSwimmer.backStroke");

}
}

public class FooSwimmer extends AbstractSwimmer ({

}

The following statement

new FooSwimmer () .backStroke () ;

https://riptutorial.com/ 287

https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

Will produce

AbstractSwimmer.backStroke

» Class method takes precedence over Interface Default Method

public interface Swim {
default void backStroke () {
System.out.println ("Swim.backStroke") ;

public abstract class AbstractSwimmer implements Swim {

}

public class FooSwimmer extends AbstractSwimmer {
public void backStroke () {
System.out.println ("FooSwimmer.backStroke");

The following statement

new FooSwimmer () .backStroke () ;

Will produce

FooSwimmer.backStroke

Default method multiple inheritance collision
Consider next example:

public interface A {
default void foo() { System.out.println("A.foo"); }

public interface B {
default void foo() { System.out.println("B.foo"); }
Here are two interfaces declaring sefau1t method foo with the same signature.

If you will try to extenda these both interfaces in the new interface you have to make choice of two,
because Java forces you to resolve this collision explicitly.

First, you can declare method roo with the same signature as abstract, Which will override a and s
behaviour.

public interface ABExtendsAbstract extends A, B {
@Override

https://riptutorial.com/ 288

https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

void foo();

And when you Will implement ABExtendsabstract IN the class you will have to provide foo
implementation:

public class ABExtendsAbstractImpl implements ABExtendsAbstract {
@Override
public void foo() { System.out.println ("ABImpl.foo"); }

Or second, you can provide a completely new derauit implementation. You also may reuse code
of a and B foo methods by Accessing overridden default methods from implementing class.

public interface ABExtends extends A, B {
@Override
default void foo() { System.out.println ("ABExtends.foo"); }

And when you will implement ABExtends in the ciass you will not have to prOVide foo implementation:

public class ABExtendsImpl implements ABExtends {}

Read Default Methods online: https://riptutorial.com/java/topic/113/default-methods

https://riptutorial.com/ 289

http://www.riptutorial.com/java/example/2442/accessing-overridden-default-methods-from-implementing-class
https://riptutorial.com/java/topic/113/default-methods

C_hapter 44:. Dequeue Interface

Introduction

A Deque is linear collection that supports element insertion and removal at both ends.
The name deque is short for "double ended queue" and is usually pronounced "deck".

Most Deque implementations place no fixed limits on the number of elements they may contain,
but this interface supports capacity-restricted deques as well as those with no fixed size limit.

The Deque interface is a richer abstract data type than both Stack and Queue because it
implements both stacks and queues at same time

Remarks

Generics can be used with Deque.

Deque<Object> deque = new LinkedList<Object>();

When a deque is used as a queue, FIFO (First-In-First-Out) behavior results.
Deques can also be used as LIFO (Last-In-First-Out) stacks.

For more information about methods, go through this Documentation.

Examples
Adding Elements to Deque

Deque deque = new LinkedList () ;

//Adding element at tail
deque.add("Iteml") ;

//Adding element at head
deque.addFirst ("Item2");

//Adding element at tail

deque.addLast ("Item3") ;

Removing Elements from Deque

//Retrieves and removes the head of the queue represented by this deque
Object headItem = deque.remove () ;

//Retrieves and removes the first element of this deque.

https://riptutorial.com/

290

https://docs.oracle.com/javase/7/docs/api/java/util/Deque.html

Object firstItem = deque.removeFirst();

//Retrieves and removes the last element of this deque.
Object lastItem = deque.removelast ();

Retrieving Element without Removing

//Retrieves, but does not remove, the head of the queue represented by this deque
Object headItem = deque.element ();

//Retrieves, but does not remove, the first element of this deque.
Object firstItem = deque.getFirst();

//Retrieves, but does not remove, the last element of this deque.
Object lastItem = deque.getLast();

Iterating through Deque

//Using Iterator
Iterator iterator = deque.iterator();
while (iterator.hasNext () {

String Item = (String) iterator.next ();

//Using For Loop
for (Object object : deque) {
String Item = (String) object;

Read Dequeue Interface online: https://riptutorial.com/java/topic/10156/dequeue-interface

https://riptutorial.com/ 291

https://riptutorial.com/java/topic/10156/dequeue-interface

Syntax

» javap [options] <classes>

Parameters

<classes>

—-help, ——help, -7

—-version
-v, —verbose
=1

-public
—protected
-package

-p, —private

-sysinfo
—constants

—classpath
<path>

—cp <path>

-bootclasspath
<path>

Examples

List of classes to disassemble. Can be in either
packagel.packageZ.Classnameforn1aL Orpackagel/packageZ/Classnamef0rn1at
Do not include the .c1ass extension.

Print this usage message

Version information

Print additional information

Print line number and local variable tables

Show only public classes and members

Show protected/public classes and members

Show package/protected/public classes and members (default)
Show all classes and members

Disassemble the code

Print internal type signatures

Show system info (path, size, date, MD5 hash) of class being processed

Show final constants
Specify where to find user class files
Specify where to find user class files

Override location of bootstrap class files

https://riptutorial.com/ 292

Viewing bytecode with javap

If you want to see the generated bytecode for a Java program, you can use the provided javap
command to view it.

Assuming that we have the following Java source file:

package com.stackoverflow.documentation;
import org.springframework.stereotype.Service;

import java.io.IOException;
import java.io.InputStream;
import java.util.List;

@Service
public class HelloWorldService ({

public void sayHello () {
System.out.println ("Hello, World!");

private Object[] pvtMethod (List<String> strings) {
return new Object[] {strings};

protected String tryCatchResources (String filename) throws IOException {

try (InputStream inputStream = getClass () .getResourceAsStream(filename)) {
byte[] bytes = new byte[8192];
int read = inputStream.read(bytes);
return new String(bytes, 0, read);

} catch (IOException | RuntimeException e) {
e.printStackTrace () ;
throw e;

void stuff () {
System.out.println ("stuff");

After compiling the source file, the most simple usage is:

cd <directory containing classes> (e.g. target/classes)
javap com/stackoverflow/documentation/SpringExample

Which produces the output

Compiled from "HelloWorldService.java"
public class com.stackoverflow.documentation.HelloWorldService {
public com.stackoverflow.documentation.HelloWorldService () ;
public void sayHello();
protected java.lang.String tryCatchResources (java.lang.String) throws java.io.IOException;
void stuff();

https://riptutorial.com/ 293

This lists all non-private methods in the class, but that is not particularly useful for most purposes.
The following command is a lot more useful:

javap -p
Which pro

Classfile
docs/targ
Last mo
MD5 che
Compile
public cl
minor v
major v
flags:
Constant
#1
#2
#3
#4
#5
#6
#7
java/lang
#8
#9
#10
#11
#12
#13
java/la
#14
#15
#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32
#33
#34
#35
#36
#37
#38
#39
#40

ng

-c —-s -constants -1 -v com/stackoverflow/documentation/HelloWorldService

duces the output:

/Users/pivotal/IdeaProjects/stackoverflow-spring—
et/classes/com/stackoverflow/documentation/HelloWorldService.class

dified Jul 22, 2016; size 2167 bytes

cksum 6e33b5c292ead21701906353b7£06330

d from "HelloWorldService. java"

ass com.stackoverflow.documentation.HelloWorldService

ersion: 0

ersion: 51

ACC_PUBLIC, ACC_SUPER

pool:

Methodref #5.#60 // Jjava/lang/Object."<init>": ()V

Fieldref #61.4#62 // Jjava/lang/System.out:Ljava/io/PrintStream;
String #63 // Hello, World!

Methodref #64.4#65 // Jjava/io/PrintStream.println: (Ljava/lang/String;)V
Class #66 // Jjava/lang/Object

Methodref #5.#67 // Jjava/lang/Object.getClass: ()Ljava/lang/Class;
Methodref #68.#69 //

/Class.getResourceAsStream: (Ljava/lang/String;)Ljava/io/InputStream;
Methodref #70.#71 // java/io/InputStream.read: ([B)I

Class #72 // Jjava/lang/String

Methodref #9.#73 // Jjava/lang/String."<init>": ([BII)V
Methodref #70.#74 // java/io/InputStream.close: ()V

Class #75 // Jjava/lang/Throwable

Methodref #12.476 //

/Throwable.addSuppressed: (Ljava/lang/Throwable;)V

Class #77 // Jjava/io/IOException

Class #78 // Jjava/lang/RuntimeException

Methodref #79.480 // Jjava/lang/Exception.printStackTrace: ()V
String #55 // stuff

Class #81 // com/stackoverflow/documentation/HelloWorldService
Utfs8 <init>

Utf8 Ov

Utf8 Code

Utf8 LineNumberTable

Utf8 LocalVariableTable

Utfs8 this

Utfs Lcom/stackoverflow/documentation/HelloWorldService;

Utfs8 sayHello

Utfs8 pvtMethod

Utf8 (Ljava/util/List;) [Ljava/lang/Object;

Utfs8 strings

Utfs8 Ljava/util/List;

Utfs8 LocalVariableTypeTable

Utfs8 Ljava/util/List<Ljava/lang/String;>;

Utfs8 Signature

Utfs8 (Ljava/util/List<Ljava/lang/String; >;) [Ljava/lang/Object;
Utfs8 tryCatchResources

Utf8 (Ljava/lang/String;)Ljava/lang/String;

Utfs8 bytes

Utfs8 [B

Utfs8 read

Utf8 I

https://riptutorial.com/

294

#41
#42
#43
#44
#45
#46
#47
#48
#49
#50
#51
#52
#53
#54
#55
#56
#57
#58
#59
#60
#61
#62
#63
#64
#65
#66
#67
#68
#69

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Class

Class

Class

Class

Class

Class

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8
NameAndType
Class
NameAndType
Utfs8

Class
NameAndType
Utfs8
NameAndType
Class
NameAndType

inputStream

Ljava/io/InputStream;

@

Ljava/lang/Exception;

filename

Ljava/lang/String;

StackMapTable

#81 // com/stackoverflow/documentation/HelloWorldService
#72 // java/lang/String
#82 // java/io/InputStream
#75 // java/lang/Throwable
#38 // "[B"

#83 // java/lang/Exception
Exceptions

stuff

SourceFile

HelloWorldService. java

RuntimeVisibleAnnotations

Lorg/springframework/stereotype/Service;

#19:#20 //
#84 //
#85:#86 //
Hello, World!

#87 //
#88:#89 //
java/lang/Object
#90:#91 //
#92 //
#93:#94 //

"<init>":()V
java/lang/System
out:Ljava/io/PrintStream;

java/io/PrintStream
println: (Ljava/lang/String;)V

getClass: () Ljava/lang/Class;
java/lang/Class

getResourceAsStream: (Ljava/lang/String;)Ljava/io/InputStream;

#70
#71
#72
#73
#74
#75
#76
#77
#78
#79
#80
#81
#82
#83
#84
#85
#86
#87
#88
#89
#90
#91
#92
#93
#94
#95
#96
#97
#98
#99
#100

Class
NameAndType
Utfs8
NameAndType
NameAndType
Utfs8
NameAndType
Utfs8

Utfs8

Class
NameAndType
Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

Utfs8

#82 // java/io/InputStream

#39:#95 // read: ([B)I

java/lang/String

#19:4#96 // "<init>": ([BII)V

#97:#20 // close: ()V

java/lang/Throwable

#98:499 // addSuppressed: (Ljava/lang/Throwable;)V

java/io/IOException

java/lang/RuntimeException

#83
#100:#20

1/
1/

java/lang/Exception
printStackTrace: ()V

com/stackoverflow/documentation/HelloWorldService

java/io/InputStream

java/lang/Exception

java/lang/System

out

Ljava/io/PrintStream;

java/io/PrintStream

println

(Ljava/lang/String;)V

getClass

()Ljava/lang/Class;

java/lang/Class

getResourceAsStream

(Ljava/lang/String;)Ljava/io/InputStream;

([B)I
([BII)V
close

addSuppressed

(Ljava/lang/Throwable;)V
printStackTrace

https://riptutorial.com/

295

public com.stackoverflow.documentation.HelloWorldService () ;
descriptor: ()V
flags: ACC_PUBLIC
Code:
stack=1, locals=1l, args_size=1
0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: return
LineNumberTable:
line 10: O
LocalVariableTable:
Start Length Slot Name Signature
0 5 0 this Lcom/stackoverflow/documentation/HelloWorldService;

public void sayHello();

descriptor: ()V

flags: ACC_PUBLIC

Code:

stack=2, locals=1l, args_size=1
0: getstatic #2 // Field
java/lang/System.out:Ljava/io/PrintStream;

3: ldc #3 // String Hello, World!
5: invokevirtual #4 // Method

java/io/PrintStream.println: (Ljava/lang/String;)V
8: return

LineNumberTable:
line 13: O
line 14: 8
LocalVariableTable:
Start Length Slot Name Signature
0 9 0 this Lcom/stackoverflow/documentation/HelloWorldService;

private java.lang.Object[] pvtMethod(java.util.List<java.lang.String>);
descriptor: (Ljava/util/List;) [Ljava/lang/Object;
flags: ACC_PRIVATE
Code:
stack=4, locals=2, args_size=2
0: iconst_1

1: anewarray #5 // class java/lang/Object
4: dup
5: iconst_0
6: aload 1
7: aastore
8: areturn
LineNumberTable:
line 17: O
LocalVariableTable:
Start Length Slot Name Signature
0 9 0 this Lcom/stackoverflow/documentation/HelloWorldService;
0 9 1 strings Ljava/util/List;

LocalVariableTypeTable:
Start Length Slot Name Signature
0 9 1 strings Ljava/util/List<Ljava/lang/String;>;
Signature: #34 //
(Ljava/util/List<Ljava/lang/String;>;) [Ljava/lang/Object;

protected java.lang.String tryCatchResources (java.lang.String) throws java.io.IOException;

descriptor: (Ljava/lang/String;)Ljava/lang/String;
flags: ACC_PROTECTED
Code:

https://riptutorial.com/

296

stack=5, locals=10, args_size=2

: ()Ljava/lang/Class;

// Method

// Method

java/lang/Class.getResourceAsStream: (Ljava/lang/String;)Ljava/io/InputStream;

// Method java/io/InputStream.read: ([B)I

// class java/lang/String

// Method java/lang/String."<init>": ([BII)V

// Method java/io/InputStream.close: ()V

// Method

java/lang/Throwable.addSuppressed: (Ljava/lang/Throwable;)V

// Method java/io/InputStream.close: ()V

// Method java/io/InputStream.close: ()V

// Method

java/lang/Throwable.addSuppressed: (Ljava/lang/Throwable;)V

0: aload_0
1: invokevirtual #6
java/lang/Object.getClass

4: aload_1

5: invokevirtual #7

8: astore_2

9: aconst_null

10: astore_3

11: sipush 8192
14: newarray byte
16: astore 4
18: aload_2

19: aload 4
21: invokevirtual #8
24: istore 5
26: new #9
29: dup

30: aload 4
32: iconst_0

33: iload 5
35: invokespecial #10
38: astore 6
40: aload_2

41: ifnull 70
44: aload_3

45: ifnull 66
48: aload_2

49: invokevirtual #11
52: goto 70
55: astore 7
57: aload_3

58: aload 7
60: invokevirtual #13
63: goto 70
66: aload_2

67: invokevirtual #11
70: aload 6
72: areturn

73: astore

75: aload

77: astore_3

78: aload 4
80: athrow

8l: astore 8
83: aload_2

84: ifnull 113
87: aload_3

88: ifnull 109
91: aload_2

92: invokevirtual #11
95: goto 113
98: astore 9
100: aload_3
101: aload 9
103: invokevirtual #13
106: goto 113
109: aload_ 2

https://riptutorial.com/

297

110: invokevirtual #11 // Method java/io/InputStream.close: ()V

113: aload 8

115: athrow

116: astore_2

117: aload_2

118: invokevirtual #16 // Method
java/lang/Exception.printStackTrace: ()V

121: aload_2

122: athrow

Exception table:

from to target type
48 52 55 Class java/lang/Throwable
11 40 73 Class java/lang/Throwable
11 40 81 any
91 95 98 Class java/lang/Throwable
73 83 81 any
0 70 116 Class java/io/IOException
0 70 116 Class java/lang/RuntimeException

73 116 116 Class java/io/IOException
73 116 116 Class java/lang/RuntimeException
LineNumberTable:
line 21: O
line 22: 11
line 23: 18
line 24: 26
line 25: 40
line 21: 73
line 25: 81
line 26: 117
line 27: 121
LocalVariableTable:
Start Length Slot Name Signature

18 55 4 bytes [B
26 47 5 read I
9 107 2 inputStream Ljava/io/InputStream;
117 6 2 e Ljava/lang/Exception;
0 123 0 this Lcom/stackoverflow/documentation/HelloWorldService;
0 123 1 filename Ljava/lang/String;
StackMapTable: number_of_entries = 9

frame_type = 255 /* full_frame */
offset_delta = 55

locals = [class com/stackoverflow/documentation/HelloWorldService, class
java/lang/String, class java/io/InputStream, class java/lang/Throwable, class "[B", int, class
java/lang/String]
stack = [class java/lang/Throwable]
frame_type = 10 /* same */
frame_type = 3 /* same */

frame_type = 255 /* full_frame */
offset_delta = 2

locals = [class com/stackoverflow/documentation/HelloWorldService, class
java/lang/String, class java/io/InputStream, class java/lang/Throwable]
stack = [class java/lang/Throwable]
frame_type = 71 /* same_locals_1_stack_item */
stack = [class java/lang/Throwable]

frame_type = 255 /* full_frame */
offset_delta = 16
locals = [class com/stackoverflow/documentation/HelloWorldService, class
java/lang/String, class java/io/InputStream, class java/lang/Throwable, top, top, top, top,
class java/lang/Throwable]
stack = [class java/lang/Throwable]
frame_type = 10 /* same */

https://riptutorial.com/ 298

frame_type = 3 /* same */
frame_type = 255 /* full_frame */
offset_delta = 2

locals = [class com/stackoverflow/documentation/HelloWorldService, class
java/lang/String]
stack = [class java/lang/Exception]
Exceptions:

throws java.io.IOException

void stuff();

descriptor: ()V

flags:

Code:

stack=2, locals=1l, args_size=1
0: getstatic #2 // Field
java/lang/System.out:Ljava/io/PrintStream;

3: 1ldc #17 // String stuff
5: invokevirtual #4 // Method

java/io/PrintStream.println: (Ljava/lang/String;)V
8: return

LineNumberTable:
line 32: O
line 33: 8
LocalVariableTable:
Start Length Slot Name Signature
0 9 0 this Lcom/stackoverflow/documentation/HelloWorldService;

}

SourceFile: "HelloWorldService. java"
RuntimeVisibleAnnotations:
0: #59()

Read Disassembling and Decompiling online:
https://riptutorial.com/java/topic/2318/disassembling-and-decompiling

https://riptutorial.com/

299

https://riptutorial.com/java/topic/2318/disassembling-and-decompiling

C_hapter 46: Documenting Java Code

Introduction

Documentation for java code is often generated using javadoc. Javadoc was created by Sun

Microsystems for the purpose of generating API documentation in HTML format from java source
code. Using the HTML format gives the convenience of being able to hyperlink related documents

together.

Syntax

[** -- start of JavaDoc on a class, field, method, or package

@author // To name the author of the class, interface or enum. It is required.

@version // The version of that class, interface or enum. It is required. You could use macros
like %1% or %G% for you source control software to fill in on checkout.

@param // To show the arguments (parameters) of a method or a constructor. Specify one
@param tag for each parameter.

@return // To show the return types for non-void methods.

@exception // Shows what exceptions could be thrown from the method or constructor.
Exceptions that MUST be caught should be listed here. If you want, you can also include
those that do not need to be caught, like ArraylndexOutOfBoundsException. Specify one
@exception for each exception that can be thrown.

@throws // Same as @exception.

@see /I Links to a method, field, class or package. Use in the form of
package.Class#something.

@since // When this method, field or class was added. For example, JDK-8 for a class like
java.util.Optional<T>.

@serial, @serialField, @serialData // Used to show the serialVersionUID.

@deprecated // To mark a class, method or field as deprecated. For example, one would be
Java.io.StringBufferinputStream. See a full list of existing deprecated classes here.

{@link} /I Similar to @see, but can be used with custom text: {@Iink
#setDefaultCloseOperation(int closeOperation) see JFrame#setDefaultCloseOperation for
more info}.

{@linkplain} // Similar to {@Ilink}, but without the code font.

{@code} // For literal code, such as HTML tags. For example: {@code <htmI></htm|>}.
However, this will use a monospaced font. To get the same result without the monospace
font, use {@literal}.

{@literal} // Same as {@code}, but without the monospaced font.

{@value} // Shows the value of a static field: The value of JFrame#EXIT_ON_CLOSE is
{@value}. Or, you could link to a certain field: Uses the app name {@value
AppConstants#APP_NAME}.

{@docRoot} // The root folder of the JavaDoc HTML relative to the current file. Example: Credits.

HTML is allowed: <code>"Hi cookies".substring(3)</code>.

https://riptutorial.com/

300

http://www.oracle.com/technetwork/articles/java/index-jsp-135444.html
https://en.wikipedia.org/wiki/Javadoc
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
https://docs.oracle.com/javase/8/docs/api/java/io/StringBufferInputStream.html
https://docs.oracle.com/javase/8/docs/api/deprecated-list.html

+ */ -- end of JavaDoc declaration

Remarks

Javadoc is a tool included with the JDK that allows in-code comments to be converted to an HTML
documentation. The Java API Specification was generated using Javadoc. The same is true for
much of the documentation of 3rd-party libraries.

Examples

Class Documentation

All Javadoc comments begin with a block comment followed by an asterisk (/++) and end when the
block comment does (+/). Optionally, each line can begin with arbitrary whitespace and a single
asterisk; these are ignored when the documentation files are generated.

* Brief summary of this class, ending with a period.

* It is common to leave a blank line between the summary and further details.
* The summary (everything before the first period) is used in the class or package
* overview section.

* The following inline tags can be used (not an exhaustive list):

* {@link some.other.class.Documentation} for linking to other docs or symbols

* {@link some.other.class.Documentation Some Display Name} the link's appearance can be
* customized by adding a display name after the doc or symbol locator

* {Q@code code goes here} for formatting as code

* {@literal <>[]()foo} for interpreting literal text without converting to HTML markup
* or other tags.

* Optionally, the following tags may be used at the end of class documentation
* (not an exhaustive list):

* @author John Doe

* @version 1.0

* @since 5/10/15

* @see some.other.class.Documentation

* @deprecated This class has been replaced by some.other.package.BetterFileReader

* You can also have custom tags for displaying additional information.
* Using the @custom.<NAME> tag and the -tag custom.<NAME>:htmltag:"context"
* command line option, you can create a custom tag.

* Example custom tag and generation:

* @custom.updated 2.0

* Javadoc flag: -tag custom.updated:a:"Updated in version:"

* The above flag will display the value of @custom.updated under "Updated in version:"

*/

public class FileReader {

}

The same tags and format used for ciasses can be used for enums and interraces as well.

https://riptutorial.com/ 301

https://docs.oracle.com/javase/8/docs/api/index.html?overview-summary.html

Method Documentation

All Javadoc comments begin with a block comment followed by an asterisk (/++) and end when the
block comment does (+/). Optionally, each line can begin with arbitrary whitespace and a single

asterisk; these are ignored when the documentation files are generated.

/**

* Brief summary of method, ending with a period.

* Further description of method and what it does, including as much detail as is
* appropriate. Inline tags such as
* {Qcode code here}, {Qlink some.other.Docs}, and {Qliteral text here} can be used.

* If a method overrides a superclass method, {Q@inheritDoc} can be used to copy the
* documentation
* from the superclass method

* (@param stream Describe this parameter. Include as much detail as is appropriate

o Parameter docs are commonly aligned as here, but this is optional.

o As with other docs, the documentation before the first period is

3 used as a summary.

*

* @return Describe the return values. Include as much detail as is appropriate

o Return type docs are commonly aligned as here, but this is optional.

o As with other docs, the documentation before the first period is used as a
3 summary.

* @throws IOException Describe when and why this exception can be thrown.

o Exception docs are commonly aligned as here, but this is

o optional.

o As with other docs, the documentation before the first period
o is used as a summary.

o Instead of @throws, @exception can also be used.

* @since 2.1.0
* @see some.other.class.Documentation
* @deprecated Describe why this method is outdated. A replacement can also be specified.
#/
public String[] read(InputStream stream) throws IOException {
return null;

Field Documentation

All Javadoc comments begin with a block comment followed by an asterisk (/++) and end when the
block comment does (+/). Optionally, each line can begin with arbitrary whitespace and a single

asterisk; these are ignored when the documentation files are generated.

/**

* Fields can be documented as well.
* As with other javadocs, the documentation before the first period is used as a
* summary, and is usually separated from the rest of the documentation by a blank

* line.

* Documentation for fields can use inline tags, such as:

https://riptutorial.com/

302

*

*

v
pub

{Q@Qcode code here}
{@literal text here}
{@link other.docs.Here}

Field documentation can also make use of the following tags:
@since 2.1.0
@see some.other.class.Documentation

@deprecated Describe why this field is outdated

lic static final String CONSTANT_STRING = "foo";

Package Documentation

Java SE 5

Itis

info

possible to create package-level documentation in Javadocs using a file called package-
.java. This file must be formatted as below. Leading whitespace and asterisks optional,

typically present in each line for formatting reason

*

*

*/

Package documentation goes here; any documentation before the first period will
be used as a summary.

It is common practice to leave a blank line between the summary and the rest
of the documentation; use this space to describe the package in as much detail
as 1s appropriate.

Inline tags such as {Q@code code here}, {@link reference.to.other.Documentation},
and {Q@literal text here} can be used in this documentation.

package com.example.foo;

//

In the above case, you must put this file package-info.java inside the folder of the Java package

com.

Lin

The rest of the file must be empty.

example.foo.

ks

Linking to other Javadocs is done with the e1ink tag:

/**

*

You can link to the javadoc of an already imported class using {@link ClassName}.

You can also use the fully-qualified name, if the class is not already imported:
{@link some.other.ClassName}

You can link to members (fields or methods) of a class like so:
{@link ClassName#someMethod () }
{@link ClassName#someMethodWithParameters (int, String) }
{@link ClassName#someField}
{@link #someMethodInThisClass ()} — used to link to members in the current class

You can add a label to a linked javadoc like so:

https://riptutorial.com/

303

* {Q@link ClassName#someMethod () link text}
#

You can link to the javadoc of an already imported class using ClassName.

You can also use the fuly-gualfied name, if the class is not already imported: scme. other.ClassName

You can link to members (fields or methods) of a class like so:

ClazsName.someMethod ()

ClassName.someMethodWithParametera{int, String)

ClassName.someField

acmeMethedInThisClass () - used to link to members in the current class

You can add a lbel to a linked javadoc like so: 1link text

With the esee tag you can add elements to the See also section. Like e¢param Or ¢return the place
where they appear is not relevant. The spec says you should write it after ereturn.

/**
* This method has a nice explanation but you might found further

* information at the bottom.
*

* @see ClassName#someMethod ()

*/

This method has a nice explanation but you rmight found furthe

See Also:
ClassName.someMethod ()

If you want to add links to external resources you can just use the HTML <a> tag. You can use it
inline anywhere or inside both e1ink and esece tags.

/**
* Wondering how this works? You might want

* to check this great service.
*

* @see Stack Overflow
w/

Vondering how this works? You might want to check this great service.

See Also:
Stack Overflow

Building Javadocs From the Command Line

Many IDEs provide support for generating HTML from Javadocs automatically; some build tools (
Maven and Gradle, for example) also have plugins that can handle the HTML creation.

However, these tools are not required to generate the Javadoc HTML,; this can be done using the
command line javadoc tool.

https://riptutorial.com/ 304

https://i.stack.imgur.com/3A3cX.png
https://i.stack.imgur.com/WxxAT.png
https://i.stack.imgur.com/VyrDF.png
https://maven.apache.org/
https://gradle.org/

The most basic usage of the tool is:

javadoc JavaFile. java

Which will generate HTML from the Javadoc comments in savarile. java.

A more practical use of the command line tool, which will recursively read all java files in [source-
directory], Create documentation for [package.name] and all sub-packages, and place the
generated HTML in the [docs—-directory] is:

javadoc —-d [docs-directory] -subpackages -sourcepath [source-directory] [package.name]

Inline Code Documentation

Apart from the Javadoc documentation code can be documented inline.

Single Line comments are started by // and may be positioned after a statement on the same line,
but not before.

public void method() {

//single line comment
someMethodCall (); //single line comment after statement

Multi-Line comments are defined between /+ and +,/. They can span multiple lines and may even
been positioned between statements.

public void method(Object object) {

/*
multi
line
comment

Y

object/*inner-line—-comment*/.method () ;

JavaDocs are a special form of multi-line comments, starting with /++.

As too many inline comments may decrease readability of code, they should be used sparsely in
case the code isn't self-explanatory enough or the design decision isn't obvious.

An additional use case for single-line comments is the use of TAGs, which are short, convention
driven keywords. Some development environments recognize certain conventions for such single-
comments. Common examples are

® //TODO
® //FIXME

https://riptutorial.com/ 305

Or issue references, i.e. for Jira

® //PRJ-1234

Code snippets inside documentation

The canonical way of writing code inside documentation is with the (ecode } construct. If you have
multiline code wrap inside <pre></pre>.

* The Class TestUtils.
* <p>
* This is an {@code inline("code example")}.
* <p>
* You should wrap it in pre tags when writing multiline code.
* <pre>{@code
* Example examplel = new FirstLineExample () ;
* examplel.butYouCanHaveMoreThanOneLine () ;
* }</pre>
* <p>
* Thanks for reading.
)
class TestUtils {

Sometimes you may need to put some complex code inside the javadoc comment. The e sign is
specially problematic. The use of the old <code> tag alongside the (e1itera1l } construct solves the
problem.

* Usage:

* <pre><code>

* class SomethingTest {

* {@literal RQ}Rule

* public SingleTestRule singleTestRule = new SingleTestRule ("testl");

* {@literal Q}Test
* public void testl () {
& // only this test will be executed

*)
* </code></pre>
*/
class SingleTestRule implements TestRule { }

Read Documenting Java Code online: https://riptutorial.com/java/topic/140/documenting-java-code

https://riptutorial.com/ 306

https://riptutorial.com/java/topic/140/documenting-java-code

C_hapter 47: Dynamic Method Dispatch

Introduction

What is Dynamic Method Dispatch?

Dynamic Method Dispatch is a process in which the call to an overridden method is resolved at
runtime rather than at compile-time. When an overridden method is called by a reference, Java
determines which version of that method to execute based on the type of object it refer to. This is
also know as runtime polymorphism.

We will see this through an example.

Remarks

* Dynamic Binding = Late binding

» Abstract classes cannot be instantiated, but they can be sub-classed (Base for a child class)

* An abstract method is a method that is declared without an implementation

» Abstract class may contain a mix of methods declared with or without an implementation

* When an abstract class is sub-classed, the subclass usually provides implementations for all
of the abstract methods in its parent class. However, if it does not, then the subclass must
also be declared abstract

» Dynamic method dispatch is a mechanism by which a call to an overridden method is
resolved at runtime. This is how java implements runtime polymorphism.

» Upcasting : Casting a subtype to a supertype, upward to the inheritance tree.

* Runtime Polymorphism = Dynamic Polymorphism

Examples

Dynamic Method Dispatch - Example Code
Abstract Class :

package base;

/*
Abstract classes cannot be instantiated, but they can be subclassed
=/

public abstract class ClsVirusScanner {

//With One Abstract method
public abstract void fnStartScan();

protected void fnCheckForUpdateVersion () {
System.out.println ("Perform Virus Scanner Version Check");

}

protected void fnBootTimeScan () {

https://riptutorial.com/ 307

System.out.println ("Perform BootTime Scan");

}

protected void fnInternetSecutiry () {
System.out.println("Scan for Internet Security");

protected void fnRealTimeScan () {
System.out.println ("Perform RealTime Scan");

protected void fnVirusMalwareScan () {
System.out.println ("Detect Virus & Malware");

Overriding Abstract Method in Child Class :

import base.ClsVirusScanner;

//A1ll the 3 child classes inherits the base class ClsVirusScanner
//Child Class 1
class ClsPaidVersion extends ClsVirusScanner{
@Override
public void fnStartScan() {
super.fnCheckForUpdateVersion () ;
super.fnBootTimeScan () ;
super.fnInternetSecutiry () ;
super.fnRealTimeScan () ;
super.fnVirusMalwareScan () ;

b e //ClsPaidVersion IS—-A ClsVirusScanner
//Child Class 2

class ClsTrialVersion extends ClsVirusScanner{
@Override
public void fnStartScan() {
super.fnInternetSecutiry () ;
super.fnVirusMalwareScan () ;
bi //ClsTrialVersion IS—-A ClsVirusScanner
//Child Class 3
class ClsFreeVersion extends ClsVirusScanner{
@Override
public void fnStartScan() {

super.fnVirusMalwareScan () ;

b e //ClsTrialVersion IS—-A ClsVirusScanner

Dynamic/Late Binding leads to Dynamic method dispatch :

//Calling Class
public class ClsRunTheApplication {

public static void main(String[] args) {
final String VIRUS_SCANNER_VERSION = "TRIAL_VERSION";

//Parent Refers Null

https://riptutorial.com/ 308

ClsVirusScanner objVS=null;

//String Cases Supported from Java SE 7
switch (VIRUS_SCANNER_VERSION) {
case "FREE_VERSION":

//Parent Refers Child Object 3
//ClsFreeVersion IS-A ClsVirusScanner
objVS = new ClsFreeVersion(); //Dynamic or Runtime Binding
break;
case "PAID_VERSION":

//Parent Refers Child Object 1
//ClsPaidVersion IS-A ClsVirusScanner
objVS = new ClsPaidVersion(); //Dynamic or Runtime Binding
break;
case "TRIAL_VERSION":

//Parent Refers Child Object 2

objVS = new ClsTrialVersion(); //Dynamic or Runtime Binding
break;

//Method fnStartScan() is the Version of ClsTrialVersion ()
objVS.fnStartScan () ;

Result :

Scan for Internet Security
Detect Virus & Malware

Upcasting :
0bjVS = new ClsFreeVersion();
0bjVS = new ClsPaidVersion();
0bjVS = new ClsTrialVersion ()

Read Dynamic Method Dispatch online: https://riptutorial.com/java/topic/9204/dynamic-method-
dispatch

https://riptutorial.com/ 309

https://riptutorial.com/java/topic/9204/dynamic-method-dispatch
https://riptutorial.com/java/topic/9204/dynamic-method-dispatch

C_hapter 48. Encapsulation

Introduction

Imagine you had a class with some pretty important variables and they were set (by other
programmers from their code) to unacceptable values.Their code brought errors in your code. As a
solution, In OOP, you allow the state of an object (stored in its variables) to be modified only
through methods. Hiding the state of an object and providing all interaction through an objects
methods is known as Data Encapsulation.

Remarks

It is much easier to start with marking a variable private and expose it if necessary than to hide an
already pub1ic variable.

There is one exception where encapsulation may not be beneficial: "dumb” data structures
(classes whose sole purpose is to hold variables).

public class DumbData {
public String name;
public int timeStamp;
public int wvalue;

In this case, the interface of the class is the data that it holds.

Note that variables marked rina1 can be marked pub1ic without violating encapsulation because
they can't be changed after being set.

Examples

Encapsulation to maintain invariants

There are two parts of a class: the interface and the implementation.

The interface is the exposed functionality of the class. Its public methods and variables are part of
the interface.

The implementation is the internal workings of a class. Other classes shouldn't need to know
about the implementation of a class.

Encapsulation refers to the practice of hiding the implementation of a class from any users of that
class. This allows the class to make assumptions about its internal state.

For example, take this class representing an Angle:

https://riptutorial.com/ 310

public class Angle {

private double angleInDegrees;
private double angleInRadians;

public static Angle angleFromDegrees (double degrees) {
Angle a = new Angle();
a.angleInDegrees = degrees;
a.angleInRadians = Math.PI*degrees/180;
return a;

public static Angle angleFromRadians (double radians) {
Angle a = new Angle();
a.angleInRadians = radians;
a.angleInDegrees = radians*180/Math.PI;
return a;

public double getDegrees () {
return angleInDegrees;

public double getRadians () {
return angleInRadians;

public void setDegrees (double degrees) {
this.angleInDegrees = degrees;
this.angleInRadians = Math.PI*degrees/180;

public void setRadians (double radians) {
this.angleInRadians = radians;
this.angleInDegrees = radians*180/Math.PI;

}
private Angle () {}

This class relies on a basic assumption (or invariant): anglelnDegrees and anglelnRadians are
always in sync. If the class members were public, there would be no guarantees that the two
representations of angles are correlated.

Encapsulation to reduce coupling

Encapsulation allows you to make internal changes to a class without affecting any code that calls
the class. This reduces coupling, or how much any given class relies on the implementation of
another class.

For example, let's change the implementation of the Angle class from the previous example:

public class Angle {
private double angleInDegrees;

public static Angle angleFromDegrees (double degrees) {
Angle a = new Angle();

https://riptutorial.com/ 311

a.angleInDegrees = degrees;
return a;

public static Angle angleFromRadians (double radians) {
Angle a = new Angle();
a.angleInDegrees = radians*180/Math.PI;

return a;

public double getDegrees () {
return angleInDegrees;

public double getRadians () {
return angleInDegrees*Math.PI / 180;

public void setDegrees (double degrees) {
this.angleInDegrees = degrees;

public void setRadians (double radians) {
this.angleInDegrees = radians*180/Math.PI;

private Angle () {}

The implementation of this class has changed so that it only stores one representation of the angle
and calculates the other angle when needed.

However, the implementation changed, but the interface didn't. If a calling class relied on
accessing the anglelInRadians method, it would need to be changed to use the new version of
angle. Calling classes shouldn't care about the internal representation of a class.

Read Encapsulation online: https://riptutorial.com/java/topic/1295/encapsulation

https://riptutorial.com/ 312

https://riptutorial.com/java/topic/1295/encapsulation

C_hapter 49: Enum Map

Introduction

Java EnumMap class is the specialized Map implementation for enum keys. It inherits Enum and

AbstractMap classes.
the Parameters for java.util. EnumMap class.

K: It is the type of keys maintained by this map. V: It is the type of mapped values.

Examples
Enum Map Book Example

import java.util.*;
class Book {
int id;
String name,author,publisher;
int quantity;
public Book (int id, String name, String author, String publisher, int quantity) {
this.id = id;
this.name = name;
this.author = author;
this.publisher = publisher;
this.quantity = quantity;
}
}
public class EnumMapExample {
// Creating enum
public enum Key({
One, Two, Three
}i
public static void main(String[] args) {
EnumMap<Key, Book> map = new EnumMap<Key, Book> (Key.class);
// Creating Books
Book bl=new Book (101, "Let us C","Yashwant Kanetkar", "BPB",8);
Book b2=new Book (102, "Data Communications & Networking","Forouzan","Mc Graw Hill",4);
Book b3=new Book (103, "Operating System","Galvin","Wiley",6);
// Adding Books to Map
map.put (Key.One, bl);
map.put (Key.Two, b2);
map.put (Key.Three, Db3);
// Traversing EnumMap
for (Map.Entry<Key, Book> entry:map.entrySet ()) {
Book b=entry.getValue();
System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);

Read Enum Map online: https://riptutorial.com/java/topic/10158/enum-map

https://riptutorial.com/

313

https://riptutorial.com/java/topic/10158/enum-map

C_hapter 50: Enum starting with number

Introduction

Java does not allow the name of enum to start with number like 100A, 25K. In that case, we can
append the code with _ (underscore) or any allowed pattern and make check of it.

Examples

Enum with name at begining

public enum BookCode {
_10A("Simon Haykin", "Communication System"),
_42B("Stefan Hakins", "A Brief History of Time"),
El ("Sedra Smith", "Electronics Circuits");

private String author;
private String title;

BookCode (String author, String title) {
this.author = author;
this.title = title;

public String getName () {
String name = name () ;

if (name.charAt (0) == '_") {
name = name.substring(l, name.length());

I~

}

return name;

public static BookCode of (String code) {
if (Character.isDigit (code.charAt (0))) {
code = "_" + code;
}

return BookCode.valueOf (code) ;

Read Enum starting with number online: https://riptutorial.com/java/topic/10719/enum-starting-
with-number

https://riptutorial.com/ 314

https://riptutorial.com/java/topic/10719/enum-starting-with-number
https://riptutorial.com/java/topic/10719/enum-starting-with-number

C_hapter 51: Enums

Introduction

Java enums (declared using the enun keyword) are shorthand syntax for sizable quantities of
constants of a single class.

Syntax

* [public/protected/private] enum Enum_name { // Declare a new enum.

* ENUM_CONSTANT_1[, ENUM_CONSTANT_2...]; /l Declare the enum constants. This must
be the first line inside of the enum, and should be separated by commas, with a semicolon at
the end.

« ENUM_CONSTANT _1(param)[, ENUM_CONSTANT_2(param)...]; // Declare enum
constants with parameters. The parameter types must match the constructor.

« ENUM_CONSTANT_1{...}|, ENUM_CONSTANT_2{...}...]; // Declare enum constants with
overridden methods. This must be done if the enum contains abstract methods; all such
methods must be implemented.

« ENUM_CONSTANT.name() // Returns a String with the name of the enum constant.

« ENUM_CONSTANT.ordinal() // Returns the ordinal of this enumeration constant, its position
in its enum declaration, where the initial constant is assigned an ordinal of zero.

* Enum_name.values() // Returns a new array (of type Enum_name[]) containing every
constant of that enum everytime it is called.

e Enum_name.valueOf("ENUM_CONSTANT") // The inverse of ENUM_CONSTANT.name() --
returns the enum constant with the given name.

e Enum.valueOf(Enum_name.class, "ENUM_CONSTANT") // A synonym of the previous one:
The inverse of ENUM_CONSTANT.name() -- returns the enum constant with the given
name.

Remarks

Restrictions

Enums always extend ;-va.1-ng.20um, SO it is impossible for an enum to extend a class. However,
they can implement many interfaces.

Tips & Tricks

Because of their specialized representation, there are more efficient maps and sets that can be
used with enums as their keys. These will often run quicker than their non-specialized
counterparts.

https://riptutorial.com/ 315

https://docs.oracle.com/javase/7/docs/api/java/lang/Enum.html
https://docs.oracle.com/javase/7/docs/api/java/util/EnumMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/EnumSet.html

Examples

Declaring and using a basic enum

Enum can be considered to be syntax sugar for a sealed class that is instantiated only a number

of times known at compile-time to define a set of constants.

A simple enum to list the different seasons would be declared as follows:

public enum Season {
WINTER,
SPRING,
SUMMER,
FALL

While the enum constants don't necessarily need to be in all-caps, it is Java convention that
names of constants are entirely uppercase, with words separated by underscores.

You can declare an Enum in its own file:

/**
* This enum is declared in the Season.java file.
*/
public enum Season {
WINTER,
SPRING,
SUMMER,
FALL

But you can also declare it inside another class:

public class Day {
private Season season;

public String getSeason() {
return season.name () ;

}

public void setSeason (String season) {
this.season = Season.valueOf (season) ;

}

/**
* This enum is declared inside the Day.java file and
* cannot be accessed outside because it's declared as private.
)
private enum Season {
WINTER,
SPRING,
SUMMER,

https://riptutorial.com/

316

https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

FALL

Finally, you cannot declare an Enum inside a method body or constructor:

public class Day {

/**
* Constructor
=/
public Day () {
// Illegal. Compilation error
enum Season {
WINTER,
SPRING,
SUMMER,
FALL

public void aSimpleMethod () {
// Legal. You can declare a primitive (or an Object) inside a method. Compile!
int primitivelInt = 42;

// Illegal. Compilation error.
enum Season {

WINTER,

SPRING,

SUMMER,

FALL

Season season = Season.SPRING;

Duplicate enum constants are not allowed:

public enum Season {
WINTER,
WINTER, //Compile Time Error : Duplicate Constants
SPRING,
SUMMER,
FALL

Every constant of enum is public, static and £inal by default. As every constant is static, they
can be accessed directly using the enum name.

Enum constants can be passed around as method parameters:

public static void display (Season s) {

https://riptutorial.com/ 317

System.out.println(s.name()); // name () is a built-in method that gets the exact name of
the enum constant

}

display (Season.WINTER) ; // Prints out "WINTER"

You can get an array of the enum constants using the vaiues () method. The values are
guaranteed to be in declaration order in the returned array:

Season[] seasons = Season.values();

Note: this method allocates a new array of values each time it is called.

To iterate over the enum constants:

public static void enumIterate() {
for (Season s : Season.values()) {
System.out.println (s.name());

You can use enums in a switch Statement:

public static void enumSwitchExample (Season s) {
switch(s) {

case WINTER:
System.out.println ("It's pretty cold");
break;

case SPRING:
System.out.println("It's warming up");
break;

case SUMMER:
System.out.println("It's pretty hot");
break;

case FALL:
System.out.println ("It's cooling down");
break;

You can also compare enum constants using ==:

Season.FALL == Season.WINTER // false
Season.SPRING == Season.SPRING // true

Another way to compare enum constants is by using equa1s () as below, which is considered bad
practice as you can easily fall into pitfalls as follows:

Season.FALL.equals (Season.FALL); // true
Season.FALL.equals (Season.WINTER); // false
Season.FALL.equals ("FALL"); // false and no compiler error

https://riptutorial.com/ 318

Furthermore, although the set of instances in the enum cannot be changed at run-time, the
instances themselves are not inherently immutable because like any other class, an enum can
contain mutable fields as is demonstrated below.

public enum MutableExample {

A,

B;

private int count = O0;
public void increment () {

count++;

}

public void print () {

System.out.println ("The count of " + name() + " is " + count);
}

}
// Usage:
MutableExample.A.print () ; // Outputs O
MutableExample.A.increment () ;
MutableExample.A.print () ; // Outputs 1 -- we've changed a field
MutableExample.B.print () ; // Outputs 0 —-- another instance remains unchanged

However, a good practice is to make enum instances immutable, i.e. when they either don't have
any additional fields or all such fields are marked as rina1 and are immutable themselves. This will
ensure that for a lifetime of the application an enum won't leak any memory and that it is safe to use
its instances across all threads.

Enums implicitly implement serializable and comparable because the enum class does:

public abstract class Enum<E extends Enum<E>>
extends Object
implements Comparable<E>, Serializable

Enums with constructors

An enum Cannot have a public constructor; however, private constructors are acceptable
(constructors for enums are package-private by default):

public enum Coin {
PENNY (1), NICKEL(5), DIME(10), QUARTER(25); // usual names for US coins
// note that the above parentheses and the constructor arguments match
private int value;

Coin (int value) {
this.value = value;

public int getValue () {
return value;

}

https://riptutorial.com/ 319

http://www.riptutorial.com/java/example/520/package-visibility

int p = Coin.NICKEL.getValue(); // the

int value will be 5

It is recommended that you keep all fields private and provide getter methods, as there are a finite
number of instances for an enum.

If you were to implement an enunm @S a ci1ass instead, it would look like this:

public class Coin<T extends Coin<T>> implements Comparable<T>,

public
public
public
public

static
static
static
static

final Coin
final Coin
final Coin
final Coin

private int value;

private Coin (int wvalue) {

this.value

= value;

public int getValue () {

return value;

PENNY = n
NICKEL =
DIME = ne
QUARTER =

int p = Coin.NICKEL.getValue(); // the

ew Coin(1);
new Coin (5);
w Coin (10);
new Coin (25);

int value will be 5

Serializable{

Enum constants are technically mutable, so a setter could be added to change the internal
structure of an enum constant. However, this is considered very bad practice and should be

avoided.

Best practice is to make Enum fields immutable, with finai:

public enum Coin {
PENNY (1),

NICKEL(5),

private final int value;

Coin (int wvalue) {

this.value

= value;

DIME (10), QUARTER(25);

You may define multiple constructors in the same enum. When you do, the arguments you pass in
your enum declaration decide which constructor is called:

public enum Coin {
PENNY (1,

true), NICKEL (5,

false),

DIME (10), QUARTER(25);

https://riptutorial.com/

320

private final int value;
private final boolean isCopperColored;

Coin (int wvalue) {

this (value, false);

Coin (int value, boolean isCopperColored) {
this.value = value;

this.isCopperColored = isCopperColored;

Note: All non-primitive enum fields should implement s--:21:-251- because the =»un class does.
Using methods and static blocks

An enum can contain a method, just like any class. To see how this works, we'll declare an enum
like this:

public enum Direction {
NORTH, SOUTH, EAST, WEST;

Let's have a method that returns the enum in the opposite direction:

public enum Direction {
NORTH, SOUTH, EAST, WEST;

public Direction getOpposite () {
switch (this) {
case NORTH:
return SOUTH;
case SOUTH:
return NORTH;
case WEST:
return EAST;
case EAST:
return WEST;
default: //This will never happen
return null;

This can be improved further through the use of fields and static initializer blocks:

public enum Direction {
NORTH, SOUTH, EAST, WEST;

private Direction opposite;

https://riptutorial.com/ 321

https://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Enum.html

public Direction getOpposite () {
return opposite;

static {
NORTH.opposite = SOUTH;
SOUTH.opposite = NORTH;
WEST.opposite = EAST;
EAST.opposite = WEST;

In this example, the opposite direction is stored in a private instance field opposite, which is
statically initialized the first time a pirection iS used. In this particular case (because vortx
references soutn and conversely), we cannot use Enums with constructors here (Constructors
NORTH (SOUTH), SOUTH (NORTH), EAST (WEST), WEST (EAST) wWould be more elegant and would allow
opposite t0 be declared rina1, but would be self-referential and therefore are not allowed).

Implements Interface

This is an enum that is also a callable function that tests string inputs against precompiled regular

expression patterns.

import java.util.function.Predicate;
import java.util.regex.Pattern;

enum RegEx implements Predicate<String> {

UPPER (" [A-Z]+"), LOWER("[a-z]+"), NUMERIC("[+-]2[0-9]1+");

private final Pattern pattern;

private RegEx (final String pattern) {
this.pattern = Pattern.compile (pattern);

@Override
public boolean test (final String input) {
return this.pattern.matcher (input) .matches () ;

public class Main {
public static void main(String[] args) {
System.out.println (RegEx.UPPER.test ("ABC"));
System.out.println (RegEx.LOWER.test ("abc"));
System.out.println (RegEx.NUMERIC.test ("+111"));

Each member of the enum can also implement the method:

import java.util.function.Predicate;

enum Acceptor implements Predicate<String> {
NULL {
@Override

https://riptutorial.com/

322

http://www.riptutorial.com/java/example/602/enums-with-constructors

public boolean test (String s) { return s == null; }

b
EMPTY {
@Override
public boolean test (String s) { return s.equals(""); }

by
NULL_OR_EMPTY {
@Override
public boolean test (String s) { return NULL.test(s) || EMPTY.test (s); }

}i

public class Main {
public static void main(String[] args) {
System.out.println (Acceptor.NULL.test (null)); // true
System.out.println (Acceptor.EMPTY.test ("")); // true
System.out.println (Acceptor.NULL_OR_EMPTY.test (" ")); // false

Enum Polymorphism Pattern

When a method need to accept an "extensible" set of enum values, the programmer can apply
polymorphism like on a normal c1ass by creating an interface which will be used anywere where
the enuns shall be used:

public interface ExtensibleEnum {

String name () ;

This way, any enun tagged by (implementing) the interface can be used as a parameter, allowing
the programmer to create a variable amount of enunS that will be accepted by the method. This can
be useful, for example, in APIs where there is a default (unmodifiable) enum and the user of these
APIs want to "extend" the enum With more values.

A set of default enum values can be defined as follows:

public enum DefaultValues implements ExtensibleEnum {
VALUE_ONE, VALUE_TWO;

Additional values can then be defined like this:

public enum ExtendedValues implements ExtensibleEnum {
VALUE_THREE, VALUE_FOUR;

Sample which shows how to use the enums - note how printenum() accepts values from both enum
types:

private void printEnum(ExtensibleEnum val) {
System.out.println(val.name());

https://riptutorial.com/ 323

printEnum (DefaultValues.VALUE_ONE) ; // VALUE_ONE
printEnum (DefaultValues.VALUE_TWO) ; // VALUE_TWO
printEnum (ExtendedValues.VALUE_THREE); // VALUE_THREE
printEnum (ExtendedValues.VALUE_FOUR); // VALUE_FOUR

Note: This pattern does not prevent you from redefining enum values, which are already defined in
one enum, in another enum. These enum values would be different instances then. Also, it is not
possible to use switch-on-enum since all we have is the interface, not the real enum.

Enums with Abstract Methods
Enums can define abstract methods, which each enum member is required to implement.

enum Action {
DODGE {
public boolean execute (Player player) {
return player.isAttacking();
}
}y
ATTACK {
public boolean execute (Player player) {
return player.hasWeapon () ;
}
}y
JU