
Java Language

#java

Table of Contents

About 1

Chapter 1: Getting started with Java Language 2

Remarks 2

Java Editions and Versions 2

Installing Java 3

Compiling and running Java programs 3

What's next? 3

Testing 3

Other 3

Versions 4

Examples 4

Creating Your First Java Program 4

A closer look at the Hello World program 6

Chapter 2: 2D Graphics in Java 11

Introduction 11

Examples 11

Example 1: Draw and Fill a Rectangle Using Java 11

Example 2: Drawing and Filling Oval 13

Chapter 3: Alternative Collections 14

Remarks 14

Examples 14

Apache HashBag, Guava HashMultiset and Eclipse HashBag 14

1. Using SynchronizedSortedBag from Apache: 14

2. Using TreeBag from Eclipse(GC): 15

3. Using LinkedHashMultiset from Guava: 15

More examples: 16

Multimap in Guava, Apache and Eclipse Collections 16

Nore examples: 19

Compare operation with collections - Create collections 19

Compare operation with collections - Create collections 19

Chapter 4: Annotations 25

Introduction 25

Syntax 25

Remarks 25

Parameter types 25

Examples 25

Built-in annotations 25

Runtime annotation checks via reflection 29

Defining annotation types 29

Default values 30

Meta-Annotations 30

@Target 30

Available Values 30

@Retention 31

Available values 32

@Documented 32

@Inherited 32

@Repeatable 32

Getting Annotation values at run-time 32

Repeating Annotations 33

Inherited Annotations 35

Example 35

Compile time processing using annotation processor 36

The annotation 36

The annotation processor 36

Packaging 38

Example annotated class 38

Using the annotation processor with javac 38

IDE integration 39

Netbeans 39

Result 39

The idea behind Annotations 40

Annotations for 'this' and receiver parameters 40

Add multiple annotation values 41

Chapter 5: Apache Commons Lang 42

Examples 42

Implement equals() method 42

Implement hashCode() method 42

Implement toString() method 43

Chapter 6: AppDynamics and TIBCO BusinessWorks Instrumentation for Easy Integration 45

Introduction 45

Examples 45

Example of Instrumentation of all BW Applications in a Single Step for Appdynamics 45

*** Common variables. Modify these only. *** 45

Chapter 7: Applets 47

Introduction 47

Remarks 47

Examples 47

Minimal Applet 47

Creating a GUI 48

Open links from within the applet 49

Loading images, audio and other resources 49

Load and show an image 49

Load and play an audio file 50

Load and display a text file 50

Chapter 8: Arrays 52

Introduction 52

Syntax 52

Parameters 52

Examples 52

Creating and Initializing Arrays 52

Basic cases 52

Arrays, Collections, and Streams 53

Intro 53

Creating and initializing primitive type arrays 55

Creating and initializing multi-dimensional arrays 56

Multidimensional array representation in Java 57

Creating and initializing reference type arrays 57

Creating and initializing generic type arrays 58

Filling an array after initialization 58

Separate declaration and initialization of arrays 59

Arrays may not be re-initialized with array initializer shortcut syntax 59

Creating an Array from a Collection 60

Arrays to a String 61

Creating a List from an Array 62

Important notes related to using Arrays.asList() method 63

Multidimensional and Jagged Arrays 64

How Multidimensional Arrays are represented in Java 65

ArrayIndexOutOfBoundsException 66

Getting the Length of an Array 67

Comparing arrays for equality 67

Arrays to Stream 68

Iterating over arrays 68

Copying arrays 71

for loop 71

Object.clone() 71

Arrays.copyOf() 72

System.arraycopy() 72

Arrays.copyOfRange() 72

Casting Arrays 73

Remove an element from an array 73

Using ArrayList 73

Using System.arraycopy 74

Using Apache Commons Lang 74

Array Covariance 74

How do you change the size of an array? 75

A better alternatives to array resizing 76

Finding an element in an array 76

Using Arrays.binarySearch (for sorted arrays only) 76

Using a Arrays.asList (for non-primitive arrays only) 76

Using a Stream 77

Linear search using a loop 77

Linear search using 3rd-party libraries such as org.apache.commons 77

Testing if an array contains an element 77

Sorting arrays 78

Converting arrays between primitives and boxed types 79

Chapter 9: Asserting 81

Syntax 81

Parameters 81

Remarks 81

Examples 81

Checking arithmetic with assert 81

Chapter 10: Atomic Types 82

Introduction 82

Parameters 82

Remarks 82

Examples 82

Creating Atomic Types 82

Motivation for Atomic Types 83

How does one implement Atomic Types? 84

How do Atomic Types work? 85

Chapter 11: Audio 87

Remarks 87

Examples 87

Play an Audio file Looped 87

Play a MIDI file 87

Bare metal sound 89

Basic audio output 89

Chapter 12: Autoboxing 91

Introduction 91

Remarks 91

Examples 91

Using int and Integer interchangeably 91

Using Boolean in if statement 92

Auto-unboxing may lead to NullPointerException 93

Memory and Computational Overhead of Autoboxing 93

Different Cases When Integer and int can be used interchangeably 94

Chapter 13: Basic Control Structures 96

Remarks 96

Examples 96

If / Else If / Else Control 96

For Loops 97

While Loops 98

do...while Loop 98

For Each 98

If / Else 99

Switch statement 100

Ternary Operator 102

Break 102

Try ... Catch ... Finally 102

Nested break / continue 103

Continue Statement in Java 104

Chapter 14: Benchmarks 105

Introduction 105

Examples 105

Simple JMH example 105

Chapter 15: BigDecimal 108

Introduction 108

Examples 108

BigDecimal objects are immutable 108

Comparing BigDecimals 108

Mathematical operations with BigDecimal 108

1.Addition 108

2.Subtraction 109

3.Multiplication 109

4.Division 109

5.Remainder or Modulus 110

6.Power 110

7.Max 111

8.Min 111

9.Move Point To Left 111

10.Move Point To Right 111

Using BigDecimal instead of float 112

BigDecimal.valueOf() 113

Initialization of BigDecimals with value zero, one or ten 113

Chapter 16: BigInteger 114

Introduction 114

Syntax 114

Remarks 114

Examples 115

Initialization 115

Comparing BigIntegers 116

BigInteger Mathematical Operations Examples 117

Binary Logic Operations on BigInteger 119

Generating random BigIntegers 120

Chapter 17: Bit Manipulation 122

Remarks 122

Examples 122

Packing / unpacking values as bit fragments 122

Checking, setting, clearing, and toggling individual bits. Using long as bit mask 123

Expressing the power of 2 123

Checking if a number is a power of 2 124

java.util.BitSet class 126

Signed vs unsigned shift 126

Chapter 18: BufferedWriter 128

Syntax 128

Remarks 128

Examples 128

Write a line of text to File 128

Chapter 19: ByteBuffer 130

Introduction 130

Syntax 130

Examples 130

Basic Usage - Creating a ByteBuffer 130

Basic Usage - Write Data to the Buffer 131

Basic Usage - Using DirectByteBuffer 131

Chapter 20: Bytecode Modification 133

Examples 133

What is Bytecode? 133

What's the logic behind this? 133

Well, there has to be more right? 133

How can I write / edit bytecode? 133

I'd like to learn more about bytecode! 134

How to edit jar files with ASM 134

How to load a ClassNode as a Class 137

How to rename classes in a jar file 137

Javassist Basic 138

Chapter 21: C++ Comparison 140

Introduction 140

Remarks 140

Classes Defined within Other Constructs# 140

Defined within Another Class 140

C++ 140

Java 140

Statically Defined within Another Class 140

C++ 140

Java 141

Defined within a Method 141

C++ 141

Java 141

Overriding vs Overloading 141

Polymorphism 142

Order of Construction/Destruction 142

Object Cleanup 142

Abstract Methods & Classes 143

Accessibility Modifiers 143

C++ Friend Example 143

The Dreaded Diamond Problem 144

java.lang.Object Class 144

Java Collections & C++ Containers 144

Java Collections Flowchart 144

C++ Containers Flowchart 144

Integer Types 144

Examples 145

Static Class Members 145

C++ Example 145

Java Example 145

Classes Defined within Other Constructs 146

Defined within Another Class 146

C++ 146

Java 146

Statically Defined within Another Class 146

C++ 146

Java 147

Defined within a Method 147

C++ 147

Java 147

Pass-by-value & Pass-by-reference 147

C++ Example (complete code) 147

Java Example (complete code) 148

Inheritance vs Composition 149

Outcast Downcasting 149

C++ Example 149

Java Example 149

Abstract Methods & Classes 149

Abstract Method 149

C++ 149

Java 149

Abstract Class 149

C++ 150

Java 150

Interface 150

C++ 150

Java 150

Chapter 22: Calendar and its Subclasses 151

Remarks 151

Examples 151

Creating Calendar objects 151

Increasing / Decreasing calendar fields 151

Finding AM/PM 152

Subtracting calendars 152

Chapter 23: Character encoding 153

Examples 153

Reading text from a file encoded in UTF-8 153

Writing text to a file in UTF-8 153

Getting byte representation of a string in UTF-8 154

Chapter 24: Choosing Collections 155

Introduction 155

Examples 155

Java Collections Flowchart 155

Chapter 25: Class - Java Reflection 156

Introduction 156

Examples 156

getClass() method of Object class 156

Chapter 26: Classes and Objects 157

Introduction 157

Syntax 157

Examples 157

Simplest Possible Class 157

Object Member vs Static Member 157

Overloading Methods 158

Basic Object Construction and Use 159

Constructors 162

Initializing static final fields using a static initializer 163

Explaining what is method overloading and overriding. 163

Chapter 27: Classloaders 167

Remarks 167

Examples 167

Instantiating and using a classloader 167

Implementing a custom classLoader 167

Loading an external .class file 168

Chapter 28: Collection Factory Methods 170

Introduction 170

Syntax 170

Parameters 170

Examples 170

List Factory Method Examples 170

Set Factory Method Examples 171

Map Factory Method Examples 171

Chapter 29: Collections 172

Introduction 172

Remarks 172

Examples 173

Declaring an ArrayList and adding objects 173

Constructing collections from existing data 174

Standard Collections 174

Java Collections framework 174

Google Guava Collections framework 174

Mapping Collections 174

Java Collections framework 175

Apache Commons Collections framework 175

Google Guava Collections framework 175

Join lists 176

Removing items from a List within a loop 176

INCORRECT 176

Removing in iteration of for statement Skips "Banana": 176

Removing in the enhanced for statement Throws Exception: 177

CORRECT 177

Removing in while loop using an Iterator 177

Iterating backwards 178

Iterating forward, adjusting the loop index 178

Using a "should-be-removed" list 179

Filtering a Stream 179

Using removeIf 179

Unmodifiable Collection 179

Iterating over Collections 180

Iterating over List 180

Iterating over Set 181

Iterating over Map 181

Immutable Empty Collections 182

Collections and Primitive Values 182

Removing matching items from Lists using Iterator. 183

Creating your own Iterable structure for use with Iterator or for-each loop. 184

Pitfall: concurrent modification exceptions 186

Sub Collections 186

List subList(int fromIndex, int toIndex) 186

Set subSet(fromIndex,toIndex) 187

Map subMap(fromKey,toKey) 187

Chapter 30: Command line Argument Processing 188

Syntax 188

Parameters 188

Remarks 188

Examples 188

Argument processing using GWT ToolBase 188

Processing arguments by hand 189

A command with no arguments 189

A command with two arguments 190

A command with "flag" options and at least one argument 190

Chapter 31: Common Java Pitfalls 192

Introduction 192

Examples 192

Pitfall: using == to compare primitive wrappers objects such as Integer 192

Pitfall: forgetting to free resources 193

Pitfall: memory leaks 194

Pitfall: using == to compare strings 195

Pitfall: testing a file before attempting to open it. 197

Pitfall: thinking of variables as objects 198

Example class 199

Multiple variables can point to the same object 199

The equality operator does NOT test that two objects are equal 200

Method calls do NOT pass objects at all 201

Pitfall: combining assignment and side-effects 201

Pitfall: Not understanding that String is an immutable class 202

Chapter 32: Comparable and Comparator 204

Syntax 204

Remarks 204

Examples 204

Sorting a List using Comparable or a Comparator 205

Lambda expression based comparators 208

Comparator default methods 208

Inversing the order of a comparator 208

The compareTo and compare Methods 208

Natural (comparable) vs explicit (comparator) sorting 209

Sorting Map entries 210

Creating a Comparator using comparing method 211

Chapter 33: CompletableFuture 212

Introduction 212

Examples 212

Convert blocking method to asynchonous 212

Simple Example of CompletableFuture 213

Chapter 34: Concurrent Collections 214

Introduction 214

Examples 214

Thread-safe Collections 214

Concurrent Collections 214

Thread safe but non concurrent examples 216

Insertion into ConcurrentHashMap 216

Chapter 35: Concurrent Programming (Threads) 218

Introduction 218

Remarks 218

Examples 218

Basic Multithreading 218

Producer-Consumer 219

Using ThreadLocal 220

CountDownLatch 221

Synchronization 223

Atomic operations 224

Creating basic deadlocked system 225

Pausing Execution 227

Visualizing read/write barriers while using synchronized / volatile 228

Creating a java.lang.Thread instance 229

Thread Interruption / Stopping Threads 231

Multiple producer/consumer example with shared global queue 233

Exclusive write / Concurrent read access 235

Runnable Object 237

Semaphore 237

Add two `int` arrays using a Threadpool 238

Get status of all threads started by your program excluding system threads 239

Callable and Future 240

Locks as Synchronisation aids 242

Chapter 36: Console I/O 244

Examples 244

Reading user input from the console 244

Using BufferedReader: 244

Using Scanner: 244

Using System.console: 245

Implementing Basic Command-Line Behavior 246

Aligning strings in console 247

Format strings examples 248

Chapter 37: Constructors 249

Introduction 249

Remarks 249

Examples 249

Default Constructor 249

Constructor with Arguments 250

Call parent constructor 251

Chapter 38: Converting to and from Strings 253

Examples 253

Converting other datatypes to String 253

Conversion to / from bytes 253

Base64 Encoding / Decoding 254

Parsing Strings to a Numerical Value 255

Getting a `String` from an `InputStream` 256

Converting String to other datatypes. 256

Chapter 39: Creating Images Programmatically 259

Remarks 259

Examples 259

Creating a simple image programmatically and displaying it 259

Save an Image to disk 260

Specifying image rendering quality 260

Creating an image with BufferedImage class 262

Editing and re-using image with BufferedImage 263

Setting individual pixel's color in BufferedImage 264

How to scale a BufferedImage 264

Chapter 40: Currency and Money 266

Examples 266

Add custom currency 266

Chapter 41: Date Class 267

Syntax 267

Parameters 267

Remarks 267

Examples 268

Creating Date objects 268

Comparing Date objects 269

Calendar, Date, and LocalDate 269

before, after, compareTo and equals methods 269

isBefore, isAfter, compareTo and equals methods 270

Date comparison before Java 8 270

Since Java 8 271

Converting Date to a certain String format 272

Converting String into Date 272

A basic date output 273

Convert formatted string representation of date to Date object 273

Creating a Specific Date 274

Java 8 LocalDate and LocalDateTime objects 274

Time Zones and java.util.Date 275

Convert java.util.Date to java.sql.Date 276

LocalTime 277

Chapter 42: Dates and Time (java.time.*) 278

Examples 278

Simple Date Manipulations 278

Date and time 278

Operations on dates and times 279

Instant 279

Usage of various classes of Date Time API 279

Date Time Formatting 281

Calculate Difference between 2 LocalDates 282

Chapter 43: Default Methods 283

Introduction 283

Syntax 283

Remarks 283

Default methods 283

Static methods 283

References : 284

Examples 284

Basic usage of default methods 284

Accessing other interface methods within default method 285

Accessing overridden default methods from implementing class 286

Why use Default Methods? 286

Class, Abstract class and Interface method precedence 287

Default method multiple inheritance collision 288

Chapter 44: Dequeue Interface 290

Introduction 290

Remarks 290

Examples 290

Adding Elements to Deque 290

Removing Elements from Deque 290

Retrieving Element without Removing 291

Iterating through Deque 291

Chapter 45: Disassembling and Decompiling 292

Syntax 292

Parameters 292

Examples 292

Viewing bytecode with javap 293

Chapter 46: Documenting Java Code 300

Introduction 300

Syntax 300

Remarks 301

Examples 301

Class Documentation 301

Method Documentation 302

Field Documentation 302

Package Documentation 303

Links 303

Building Javadocs From the Command Line 304

Inline Code Documentation 305

Code snippets inside documentation 306

Chapter 47: Dynamic Method Dispatch 307

Introduction 307

Remarks 307

Examples 307

Dynamic Method Dispatch - Example Code 307

Chapter 48: Encapsulation 310

Introduction 310

Remarks 310

Examples 310

Encapsulation to maintain invariants 310

Encapsulation to reduce coupling 311

Chapter 49: Enum Map 313

Introduction 313

Examples 313

Enum Map Book Example 313

Chapter 50: Enum starting with number 314

Introduction 314

Examples 314

Enum with name at begining 314

Chapter 51: Enums 315

Introduction 315

Syntax 315

Remarks 315

Restrictions 315

Tips & Tricks 315

Examples 316

Declaring and using a basic enum 316

Enums with constructors 319

Using methods and static blocks 321

Implements Interface 322

Enum Polymorphism Pattern 323

Enums with Abstract Methods 324

Documenting enums 324

Getting the values of an enum 325

Enum as a bounded type parameter 325

Get enum constant by name 326

Implement Singleton pattern with a single-element enum 326

Enum with properties (fields) 327

Convert enum to String 328

Convert using name() 328

Convert using toString() 328

By default: 328

Example of being overridden 329

Enum constant specific body 329

Zero instance enum 330

Enums with static fields 331

Compare and Contains for Enum values 332

Chapter 52: EnumSet class 334

Introduction 334

Examples 334

Enum Set Example 334

Chapter 53: Exceptions and exception handling 335

Introduction 335

Syntax 335

Examples 335

Catching an exception with try-catch 335

Try-catch with one catch block 335

Try-catch with multiple catches 336

Multi-exception catch blocks 337

Throwing an exception 337

Exception chaining 338

Custom Exceptions 339

The try-with-resources statement 340

What is a resource? 341

The basic try-with-resource statement 341

The enhanced try-with-resource statements 341

Managing multiple resources 342

Equivalence of try-with-resource and classical try-catch-finally 342

Creating and reading stacktraces 344

Printing a stacktrace 344

Understanding a stacktrace 344

Exception chaining and nested stacktraces 346

Capturing a stacktrace as a String 347

Handling InterruptedException 348

The Java Exception Hierarchy - Unchecked and Checked Exceptions 349

Checked versus Unchecked Exceptions 349

Checked exception examples 350

Introduction 352

Return statements in try catch block 354

Advanced features of Exceptions 355

Examining the callstack programmatically 355

Optimizing exception construction 355

Erasing or replacing the stacktrace 356

Suppressed exceptions 356

The try-finally and try-catch-finally statements 357

Try-finally 357

try-catch-finally 357

The 'throws' clause in a method declaration 358

What is the point of declaring unchecked exceptions as thrown? 359

Throws and method overriding 359

Chapter 54: Executor, ExecutorService and Thread pools 361

Introduction 361

Remarks 361

Examples 361

Fire and Forget - Runnable Tasks 361

ThreadPoolExecutor 362

Retrieving value from computation - Callable 363

Scheduling tasks to run at a fixed time, after a delay or repeatedly 364

Starting a task after a fixed delay 364

Starting tasks at a fixed rate 364

Starting tasks with a fixed delay 365

Handle Rejected Execution 365

submit() vs execute() exception handling differences 366

Use cases for different types of concurrency constructs 368

Wait for completion of all tasks in ExecutorService 369

Use cases for different types of ExecutorService 371

Using Thread Pools 373

Chapter 55: Expressions 374

Introduction 374

Remarks 374

Examples 374

Operator Precedence 374

Constant Expressions 375

Uses for Constant Expressions 376

Expression evaluation order 377

Simple Example 377

Example with an operator which has a side-effect 377

Expression Basics 378

The Type of an Expression 379

The value of an Expression 379

Expression Statements 379

Chapter 56: File I/O 381

Introduction 381

Examples 381

Reading all bytes to a byte[] 381

Reading an image from a file 381

Writing a byte[] to a file 381

Stream vs Writer/Reader API 382

Reading a whole file at once 383

Reading a file with a Scanner 384

Iterating over a directory and filter by file extension 384

Migrating from java.io.File to Java 7 NIO (java.nio.file.Path) 385

Point to a path 385

Paths relative to another path 385

Converting File from/to Path for use with libraries 385

Check if the file exists and delete it if it does 385

Write to a file via an OutputStream 386

Iterating on each file within a folder 386

Recursive folder iteration 387

File Read/Write Using FileInputStream/FileOutputStream 387

Reading from a binary file 389

Locking 389

Copying a file using InputStream and OutputStream 390

Reading a file using Channel and Buffer 390

Copying a file using Channel 391

Reading a file using BufferedInputStream 392

Writing a file using Channel and Buffer 392

Writing a file using PrintStream 393

Iterate over a directory printing subdirectories in it 393

Adding Directories 394

Blocking or redirecting standard output / error 394

Accessing the contents of a ZIP file 395

Reading from an existing file 395

Creating a new file 395

Chapter 57: FileUpload to AWS 397

Introduction 397

Examples 397

Upload file to s3 bucket 397

Chapter 58: Fluent Interface 400

Remarks 400

Examples 400

Truth - Fluent Testing Framework 400

Fluent programming style 400

Chapter 59: FTP (File Transfer Protocol) 403

Syntax 403

Parameters 403

Examples 403

Connecting and Logging Into a FTP Server 403

Chapter 60: Functional Interfaces 409

Introduction 409

Examples 409

List of standard Java Runtime Library functional interfaces by signature 409

Chapter 61: Generating Java Code 412

Examples 412

Generate POJO From JSON 412

Chapter 62: Generics 413

Introduction 413

Syntax 413

Remarks 413

Examples 413

Creating a Generic Class 413

Extending a generic class 414

Multiple type parameters 415

Declaring a Generic Method 416

The Diamond 417

Requiring multiple upper bounds ("extends A & B") 418

Creating a Bounded Generic Class 418

Deciding between `T`, `? super T`, and `? extends T` 420

Benefits of Generic class and interface 421

Stronger type checks at compile time 421

Elimination of casts 421

Enabling programmers to implement generic algorithms 422

Binding generic parameter to more than 1 type 422

Note: 423

Instantiating a generic type 423

Workarounds 423

Referring to the declared generic type within its own declaration 424

Use of instanceof with Generics 425

Different ways for implementing a Generic Interface (or extending a Generic Class) 426

Using Generics to auto-cast 428

Obtain class that satisfies generic parameter at runtime 428

Chapter 63: Getters and Setters 430

Introduction 430

Examples 430

Adding Getters and Setters 430

Using a setter or getter to implement a constraint 431

Why Use Getters and Setters? 431

Chapter 64: Hashtable 434

Introduction 434

Examples 434

Hashtable 434

Chapter 65: HttpURLConnection 435

Remarks 435

Examples 435

Get response body from a URL as a String 435

POST data 436

How it works 437

Delete resource 437

How it works 437

Check if resource exists 438

Explanation: 438

Example: 438

Chapter 66: Immutable Class 439

Introduction 439

Remarks 439

Examples 439

Rules to define immutable classes 439

Example without mutable refs 439

Example with mutable refs 440

What is the advantage of immutability? 441

Chapter 67: Immutable Objects 442

Remarks 442

Examples 442

Creating an immutable version of a type using defensive copying. 442

The recipe for an immutable class 443

Typical design flaws which prevent a class from being immutable 444

Chapter 68: Inheritance 448

Introduction 448

Syntax 448

Remarks 448

Examples 448

Abstract Classes 448

Static Inheritance 450

Using 'final' to restrict inheritance and overriding 451

Final classes 451

Use-cases for final classes 451

Final methods 452

The Liskov Substitution Principle 453

Inheritance 453

Inheritance and Static Methods 455

Variable shadowing 455

Narrowing and Widening of object references 456

Programming to an interface 457

Abstract class and Interface usage: "Is-a" relation vs "Has-a" capability 460

Overriding in Inheritance 463

Chapter 69: InputStreams and OutputStreams 465

Syntax 465

Remarks 465

Examples 465

Reading InputStream into a String 465

Writing bytes to an OutputStream 465

Closing Streams 466

Copying Input Stream to Output Stream 467

Wrapping Input/Output Streams 467

Useful combinations 467

List of Input/Output Stream wrappers 468

DataInputStream Example 468

Chapter 70: Installing Java (Standard Edition) 470

Introduction 470

Examples 470

Setting %PATH% and %JAVA_HOME% after installing on Windows 470

Assumptions: 470

Setup steps 470

Check your work 471

Selecting an appropriate Java SE release 471

Java release and version naming 472

What do I need for Java Development 473

Installing a Java JDK on Linux 473

Using the Package Manager 473

Installing from an Oracle Java RPM file. 475

Installing a Java JDK or JRE on Windows 475

Installing a Java JDK on macOS 476

Configuring and switching Java versions on Linux using alternatives 477

Using Alternatives 477

Arch based installs 478

Listing installed environments 478

Switching current environment 478

Post-installation checking and configuration on Linux 479

Installing oracle java on Linux with latest tar file 480

Expected output: 481

Chapter 71: Interfaces 482

Introduction 482

Syntax 482

Examples 482

Declaring and Implementing an Interface 482

Implementing multiple interfaces 483

Extending an interface 484

Using Interfaces with Generics 484

Usefulness of interfaces 487

Implementing interfaces in an abstract class 488

Default methods 489

Observer pattern implementation 489

Diamond problem 490

Use default methods to resolve compatibility issues 491

Modifiers in Interfaces 491

Variables 492

Methods 492

Strengthen bounded type parameters 492

Chapter 72: Iterator and Iterable 494

Introduction 494

Remarks 494

Examples 494

Using Iterable in for loop 494

Using the raw iterator 494

Creating your own Iterable. 495

Removing elements using an iterator 496

Chapter 73: Java Agents 498

Examples 498

Modifying classes with agents 498

Adding an agent at runtime 499

Setting up a basic agent 499

Chapter 74: Java Compiler - 'javac' 501

Remarks 501

Examples 501

The 'javac' command - getting started 501

Simple example 501

Example with packages 502

Compiling multiple files at once with 'javac'. 503

Commonly used 'javac' options 503

References 504

Compiling for a different version of Java 504

Compiling old Java with a newer compiler 504

Compiling for an older execution platform 504

Chapter 75: Java deployment 506

Introduction 506

Remarks 506

Examples 506

Making an executable JAR from the command line 506

Creating JAR, WAR and EAR files 507

Creating JAR and WAR files using Maven 508

Creating JAR, WAR and EAR files using Ant 508

Creating JAR, WAR and EAR files using an IDE 508

Creating JAR, WAR and EAR files using the jar command. 508

Introduction to Java Web Start 509

Prerequisites 509

An example JNLP file 509

Setting up the web server 510

Enabling launch via a web page 510

Launching Web Start applications from the command line 511

Creating an UberJAR for an application and its dependencies 511

Creating an UberJAR using the "jar" command 511

Creating an UberJAR using Maven 512

The advantages and drawbacks of UberJARs 512

Chapter 76: Java Editions, Versions, Releases and Distributions 513

Examples 513

Differences between Java SE JRE or Java SE JDK distributions 513

Java Runtime Environment 513

Java Development Kit 513

What is the difference between Oracle Hotspot and OpenJDK 514

Differences between Java EE, Java SE, Java ME and JavaFX 514

The Java Programming Language Platforms 514

Java SE 515

Java EE 515

Java ME 515

Java FX 516

Java SE Versions 516

Java SE Version History 516

Java SE Version Highlights 517

Chapter 77: Java Floating Point Operations 519

Introduction 519

Examples 519

Comparing floating point values 519

OverFlow and UnderFlow 521

Formatting the floating point values 522

Strict Adherence to the IEEE Specification 523

Chapter 78: Java Memory Management 524

Remarks 524

Examples 524

Finalization 524

Finalizers only run once 524

Manually triggering GC 525

Garbage collection 525

The C++ approach - new and delete 525

The Java approach - garbage collection 526

What happens when an object becomes unreachable 526

Examples of reachable and unreachable objects 527

Setting the Heap, PermGen and Stack sizes 528

Memory leaks in Java 529

Reachable objects can leak 529

Caches can be memory leaks 530

Chapter 79: Java Memory Model 531

Remarks 531

Examples 531

Motivation for the Memory Model 531

Reordering of assignments 532

Effects of memory caches 532

Proper synchronization 533

The Memory Model 533

Happens-before relationships 533

Actions 534

Program Order and Synchronization Order 534

Happens-before Order 535

Happens-before reasoning applied to some examples 535

Single-threaded code 535

Behavior of 'volatile' in an example with 2 threads 536

Volatile with three threads 537

How to avoid needing to understand the Memory Model 538

Chapter 80: Java Native Access 539

Examples 539

Introduction to JNA 539

What is JNA? 539

How can I use it? 539

Where to go now? 540

Chapter 81: Java Native Interface 541

Parameters 541

Remarks 541

Examples 541

Calling C++ methods from Java 541

Java code 541

C++ code 542

Output 543

Calling Java methods from C++ (callback) 543

Java code 543

C++ code 544

Output 544

Getting the descriptor 544

Loading native libraries 545

Target file lookup 545

Chapter 82: Java Performance Tuning 547

Examples 547

General approach 547

Reducing amount of Strings 547

An evidence-based approach to Java performance tuning 548

Chapter 83: Java Pitfalls - Exception usage 550

Introduction 550

Examples 550

Pitfall - Ignoring or squashing exceptions 550

Pitfall - Catching Throwable, Exception, Error or RuntimeException 551

Pitfall - Throwing Throwable, Exception, Error or RuntimeException 552

Declaring Throwable or Exception in a method's "throws" is problematic. 553

Pitfall - Catching InterruptedException 554

Pitfall - Using exceptions for normal flowcontrol 555

Pitfall - Excessive or inappropriate stacktraces 556

Pitfall - Directly subclassing `Throwable` 557

Chapter 84: Java Pitfalls - Language syntax 558

Introduction 558

Remarks 558

Examples 558

Pitfall - Ignoring method visibility 558

Pitfall - Missing a ‘break’ in a 'switch' case 558

Pitfall - Misplaced semicolons and missing braces 559

Pitfall - Leaving out braces: the "dangling if" and "dangling else" problems 561

Pitfall - Overloading instead of overriding 562

Pitfall - Octal literals 564

Pitfall - Declaring classes with the same names as standard classes 564

Pitfall - Using '==' to test a boolean 565

Pitfall - Wildcard imports can make your code fragile 566

Pitfall: Using 'assert' for argument or user input validation 566

Pitfall of Auto-Unboxing Null Objects into Primitives 567

Chapter 85: Java Pitfalls - Nulls and NullPointerException 569

Remarks 569

Examples 569

Pitfall - Unnecessary use of Primitive Wrappers can lead to NullPointerExceptions 569

Pitfall - Using null to represent an empty array or collection 570

Pitfall - "Making good" unexpected nulls 571

What does it mean for "a" or "b" to be null? 572

Did the null come from an uninitialized variable? 572

Does the null represent a "don't know" or "missing value"? 572

If this is a bug (or a design error) should we "make good"? 572

Is this efficient / good for code quality? 572

In summary 573

Pitfall - Returning null instead of throwing an exception 573

Pitfall - Not checking if an I/O stream isn't even initialized when closing it 573

Pitfall - Using "Yoda notation" to avoid NullPointerException 574

Chapter 86: Java Pitfalls - Performance Issues 576

Introduction 576

Remarks 576

Examples 576

Pitfall - The overheads of creating log messages 576

Solution 576

Pitfall - String concatenation in a loop does not scale 577

Pitfall - Using 'new' to create primitive wrapper instances is inefficient 578

Pitfall - Calling 'new String(String)' is inefficient 578

Pitfall - Calling System.gc() is inefficient 579

Pitfall - Over-use of primitive wrapper types is inefficient 580

Pitfall - Iterating a Map's keys can be inefficient 581

Pitfall - Using size() to test if a collection is empty is inefficient. 581

Pitfall - Efficiency concerns with regular expressions 582

Pattern and Matcher instances should be reused 582

Don't use match() when you should use find() 583

Use more efficient alternatives to regular expressions 583

Catastrophic Backtracking 584

Pitfall - Interning strings so that you can use == is a bad idea 585

Fragility 585

Costs of using 'intern()' 585

The impact on garbage collection 586

The string pool hashtable size 586

Interning as a potential denial of service vector 587

Pitfall - Small reads / writes on unbuffered streams are inefficient 587

What about character-based streams? 588

Why do buffered streams make this much difference? 588

Are buffered streams always a win? 589

Is this the fastest way to copy a file in Java? 589

Chapter 87: Java Pitfalls - Threads and Concurrency 590

Examples 590

Pitfall: incorrect use of wait() / notify() 590

The "Lost Notification" problem 590

The "Illegal Monitor State" bug 590

Wait / notify is too low-level 591

Pitfall - Extending 'java.lang.Thread' 591

Pitfall - Too many threads makes an application slower. 592

Pitfall - Thread creation is relatively expensive 593

Pitfall: Shared variables require proper synchronization 594

Will it work as intended? 595

How do we fix the problem? 595

But isn't assignment atomic? 596

Why did they do this? 596

Why can't I reproduce this? 597

Chapter 88: Java plugin system implementations 599

Remarks 599

Examples 599

Using URLClassLoader 599

Chapter 89: Java Print Service 604

Introduction 604

Examples 604

Discovering the available print services 604

Discovering the default print service 604

Creating a print job from a print service 605

Building the Doc that will be printed 605

Defining print request attributes 606

Listening print job request status change 606

The PrintJobEvent pje argument 608

Another way to achieve the same goal 608

Chapter 90: Java SE 7 Features 609

Introduction 609

Remarks 609

Examples 609

New Java SE 7 programming language features 609

Binary Literals 609

The try-with-resources statement 610

Underscores in Numeric Literals 610

Type Inference for Generic Instance Creation 610

Strings in switch Statements 611

Chapter 91: Java SE 8 Features 612

Introduction 612

Remarks 612

Examples 612

New Java SE 8 programming language features 612

Chapter 92: Java Sockets 614

Introduction 614

Remarks 614

Examples 614

A simple TCP echo back server 614

Chapter 93: Java Virtual Machine (JVM) 618

Examples 618

These are the basics. 618

Chapter 94: JavaBean 619

Introduction 619

Syntax 619

Remarks 619

Examples 620

Basic Java Bean 620

Chapter 95: JAXB 621

Introduction 621

Syntax 621

Parameters 621

Remarks 621

Examples 621

Writing an XML file (marshalling an object) 621

Reading an XML file (unmarshalling) 622

Using XmlAdapter to generate desired xml format 623

Automatic field/property XML mapping configuration (@XmlAccessorType) 624

Manual field/property XML mapping configuration 626

Specifying a XmlAdapter instance to (re)use existing data 626

Example 627

User class 627

Adapter 627

Example XMLs 628

Using the adapter 629

Binding an XML namespace to a serializable Java class. 629

Using XmlAdapter to trim string. 630

Chapter 96: JAX-WS 631

Examples 631

Basic Authentication 631

Chapter 97: JMX 632

Introduction 632

Examples 632

Simple example with Platform MBean Server 632

Chapter 98: JNDI 637

Examples 637

RMI through JNDI 637

Chapter 99: JShell 641

Introduction 641

Syntax 641

Remarks 641

Default Imports 641

Examples 641

Entering and Exiting JShell 642

Starting JShell 642

Exiting JShell 642

Expressions 642

Variables 642

Methods and Classes 643

Editting Snippets 643

Chapter 100: JSON in Java 645

Introduction 645

Remarks 645

Examples 645

Encoding data as JSON 645

Decoding JSON data 646

optXXX vs getXXX methods 646

Object To JSON (Gson Library) 647

JSON To Object (Gson Library) 647

Extract single element from JSON 647

Using Jackson Object Mapper 648

Details 648

ObjectMapper instance 648

Deserialization: 648

Method for serialization: 649

JSON Iteration 649

JSON Builder - chaining methods 649

JSONObject.NULL 650

JsonArray to Java List (Gson Library) 650

Deserialize JSON collection to collection of Objects using Jackson 651

Deserializing JSON array 651

TypeFactory approach 651

TypeReference approach 652

Deserializing JSON map 652

TypeFactory approach 652

TypeReference approach 652

Details 652

Note 652

Chapter 101: Just in Time (JIT) compiler 654

Remarks 654

History 654

Examples 654

Overview 654

Chapter 102: JVM Flags 657

Remarks 657

Examples 657

-XXaggressive 657

-XXallocClearChunks 657

-XXallocClearChunkSize 658

-XXcallProfiling 658

-XXdisableFatSpin 658

-XXdisableGCHeuristics 659

-XXdumpSize 659

-XXexitOnOutOfMemory 659

Chapter 103: JVM Tool Interface 661

Remarks 661

Examples 661

Iterate over objects reachable from object (Heap 1.0) 661

Get JVMTI environment 663

Example of initialization inside of Agent_OnLoad method 664

Chapter 104: Lambda Expressions 665

Introduction 665

Syntax 665

Examples 665

Using Lambda Expressions to Sort a Collection 665

Sorting lists 665

Sorting maps 666

Introduction to Java lambdas 667

Functional Interfaces 667

Lambda Expressions 668

Implicit Returns 669

Accessing Local Variables (value closures) 669

Accepting Lambdas 670

The Type of a Lambda Expression 670

Method References 670

Instance method reference (to an arbitrary instance) 671

Instance method reference (to a specific instance) 671

Static method reference 671

Reference to a constructor 672

Cheat-Sheet 672

Implementing multiple interfaces 672

Lambdas and Execute-around Pattern 673

Using lambda expression with your own functional interface 674

`return` only returns from the lambda, not the outer method 674

Java Closures with lambda expressions. 676

Lambda - Listener Example 678

Traditional style to Lambda style 678

Lambdas and memory utilization 679

Using lambda expressions & predicates to get a certain value(s) from a list 680

Chapter 105: LinkedHashMap 682

Introduction 682

Examples 682

Java LinkedHashMap class 682

Chapter 106: List vs SET 684

Introduction 684

Examples 684

List vs Set 684

Chapter 107: Lists 685

Introduction 685

Syntax 685

Remarks 685

Examples 686

Sorting a generic list 686

Creating a List 687

Positional Access Operations 689

Iterating over elements in a list 690

Removing elements from list B that are present in the list A 691

Finding common elements between 2 lists 692

Convert a list of integers to a list of strings 692

Creating, Adding and Removing element from an ArrayList 692

In-place replacement of a List element 693

Making a list unmodifiable 694

Moving objects around in the list 694

Classes implementing List - Pros and Cons 695

Classes implementing List 695

Pros and Cons of each implementation in term of time complexity 695

ArrayList 696

AttributeList 696

CopyOnWriteArrayList 696

LinkedList 696

RoleList 697

RoleUnresolvedList 697

Stack 697

Vector 697

Chapter 108: Literals 699

Introduction 699

Examples 699

Hexadecimal, Octal and Binary literals 699

Using underscore to improve readability 699

Escape sequences in literals 700

Unicode escapes 701

Escaping in regexes 701

Decimal Integer literals 701

Ordinary integer literals 701

Long integer literals 702

Boolean literals 702

String literals 702

Long strings 703

Interning of string literals 703

The Null literal 703

Floating-point literals 704

Simple decimal forms 704

Scaled decimal forms 705

Hexadecimal forms 705

Underscores 705

Special cases 706

Character literals 706

Chapter 109: Local Inner Class 707

Introduction 707

Examples 707

Local Inner Class 707

Chapter 110: Localization and Internationalization 708

Remarks 708

General Resources 708

Java Resources 708

Examples 708

Automatically formatted Dates using "locale" 708

Let Java do the work for you 709

String Comparison 709

Locale 709

Language 710

Creating a Locale 710

Java ResourceBundle 710

Setting Locale 710

Chapter 111: LocalTime 712

Syntax 712

Parameters 712

Remarks 712

Examples 712

Time Modification 712

Time Zones and their time difference 713

Amount of time between two LocalTime 713

Intro 714

Chapter 112: log4j / log4j2 716

Introduction 716

Syntax 716

Remarks 716

End of Life for Log4j 1 reached 716

Examples 717

How to get Log4j 717

How to use Log4j in Java code 718

Setting up property file 718

Basic log4j2.xml configuration file 719

Migrating from log4j 1.x to 2.x 719

Properties-File to log to DB 720

Filter Logoutput by level (log4j 1.x) 721

Chapter 113: Logging (java.util.logging) 723

Examples 723

Using the default logger 723

Logging levels 723

Logging complex messages (efficiently) 724

Chapter 114: Maps 727

Introduction 727

Remarks 727

Examples 727

Add an element 727

Add multiple items 728

Using Default Methods of Map from Java 8 729

Clear the map 731

Iterating through the contents of a Map 732

Merging, combine and composing Maps 733

Composing Map<X,Y> and Map<Y,Z> to get Map<X,Z> 733

Check if key exists 734

Maps can contain null values 734

Iterating Map Entries Efficiently 734

Use custom object as key 737

Usage of HashMap 738

Creating and Initializing Maps 739

Introduction 739

Chapter 115: Modules 742

Syntax 742

Remarks 742

Examples 742

Defining a basic module 742

Chapter 116: Multi-Release JAR Files 744

Introduction 744

Examples 744

Example of a multi-release Jar file's contents 744

Creating a multi-release Jar using the jar tool 744

URL of a loaded class inside a multi-release Jar 746

Chapter 117: Nashorn JavaScript engine 747

Introduction 747

Syntax 747

Remarks 747

Examples 747

Set global variables 747

Hello Nashorn 748

Execute JavaScript file 748

Intercept script output 748

Evaluate Arithmetic Strings 749

Usage of Java objects in JavaScript in Nashorn 749

Implementing an interface from script 750

Set and get global variables 751

Chapter 118: Nested and Inner Classes 752

Introduction 752

Syntax 752

Remarks 752

Terminology and classification 752

Semantic differences 753

Examples 753

A Simple Stack Using a Nested Class 753

Static vs Non Static Nested Classes 754

Access Modifiers for Inner Classes 756

Anonymous Inner Classes 757

Constructors 758

Method Local Inner Classes 758

Accessing the outer class from a non-static inner class 759

Create instance of non-static inner class from outside 760

Chapter 119: Networking 761

Syntax 761

Examples 761

Basic Client and Server Communication using a Socket 761

Server: Start, and wait for incoming connections 761

Server: Handling clients 761

Client: Connect to the server and send a message 762

Closing Sockets and Handling Exceptions 762

Basic Server and Client - complete examples 762

Loading TrustStore and KeyStore from InputStream 764

Socket example - reading a web page using a simple socket 765

Basic Client/Server Communication using UDP (Datagram) 765

Multicasting 766

Temporarily disable SSL verification (for testing purposes) 768

Downloading a file using Channel 769

Notes 770

Chapter 120: New File I/O 771

Syntax 771

Examples 771

Creating paths 771

Retrieving information about a path 771

Manipulating paths 772

Joining Two Paths 772

Normalizing a path 772

Retrieving information using the filesystem 772

Checking existence 772

Checking whether a path points to a file or a directory 773

Getting properties 773

Getting MIME type 773

Reading files 774

Writing files 774

Chapter 121: NIO - Networking 775

Remarks 775

Examples 775

Using Selector to wait for events (example with OP_CONNECT) 775

Chapter 122: Non-Access Modifiers 777

Introduction 777

Examples 777

final 777

volatile 778

static 779

abstract 780

synchronized 781

transient 782

strictfp 782

Chapter 123: NumberFormat 783

Examples 783

NumberFormat 783

Chapter 124: Object Class Methods and Constructor 784

Introduction 784

Syntax 784

Examples 784

toString() method 784

equals() method 785

Class Comparison 787

hashCode() method 788

Using Arrays.hashCode() as a short cut 789

Internal caching of hash codes 790

wait() and notify() methods 791

getClass() method 792

clone() method 793

finalize() method 794

Object constructor 795

Chapter 125: Object Cloning 798

Remarks 798

Examples 798

Cloning using a copy constructor 798

Cloning by implementing Clonable interface 798

Cloning performing a shallow copy 799

Cloning performing a deep copy 800

Cloning using a copy factory 801

Chapter 126: Object References 802

Remarks 802

Examples 802

Object References as method parameters 802

Chapter 127: Operators 806

Introduction 806

Remarks 806

Examples 806

The String Concatenation Operator (+) 806

Optimization and efficiency 807

The Arithmetic Operators (+, -, *, /, %) 808

Operand and result types, and numeric promotion 809

The meaning of division 809

The meaning of remainder 810

Integer Overflow 810

Floating point INF and NAN values 811

The Equality Operators (==, !=) 811

The Numeric == and != operators 812

The Boolean == and != operators 812

The Reference == and != operators 813

About the NaN edge-cases 813

The Increment/Decrement Operators (++/--) 813

The Conditional Operator (? :) 814

Syntax 814

Common Usage 815

The Bitwise and Logical Operators (~, &, |, ^) 816

Operand types and result types. 817

The Instanceof Operator 817

The Assignment Operators (=, +=, -=, *=, /=, %=, <<=, >>= , >>>=, &=, |= and ^=) 818

The conditional-and and conditional-or Operators (&& and ||) 820

Example - using && as a guard in an expression 821

Example - using && to avoid a costly calculation 821

The Shift Operators (<<, >> and >>>) 821

The Lambda operator (->) 823

The Relational Operators (<, <=, >, >=) 823

Chapter 128: Optional 825

Introduction 825

Syntax 825

Examples 825

Return default value if Optional is empty 825

Map 826

Throw an exception, if there is no value 827

Filter 827

Using Optional containers for primitive number types 828

Run code only if there is a value present 828

Lazily provide a default value using a Supplier 828

FlatMap 829

Chapter 129: Oracle Official Code Standard 830

Introduction 830

Remarks 830

Examples 830

Naming Conventions 830

Package names 830

Class, Interface and Enum Names 830

Method Names 831

Variables 831

Type Variables 831

Constants 831

Other guidelines on naming 831

Java Source Files 832

Special Characters 832

Package declaration 832

Import statements 832

Wildcard imports 833

Class Structure 833

Order of class members 833

Grouping of class members 834

Modifiers 834

Indentation 835

Wrapping statements 835

Wrapping Method Declarations 836

Wrapping Expressions 837

Whitespace 837

Vertical Whitespace 837

Horizontal Whitespace 837

Variable Declarations 838

Annotations 838

Lambda Expressions 839

Redundant Parentheses 839

Literals 840

Braces 840

Short forms 840

Chapter 130: Packages 842

Introduction 842

Remarks 842

Examples 842

Using Packages to create classes with the same name 842

Using Package Protected Scope 842

Chapter 131: Parallel programming with Fork/Join framework 844

Examples 844

Fork/Join Tasks in Java 844

Chapter 132: Polymorphism 846

Introduction 846

Remarks 846

Examples 846

Method Overloading 846

Method Overriding 848

Adding behaviour by adding classes without touching existing code 849

Virtual functions 850

Polymorphism and different types of overriding 851

Chapter 133: Preferences 855

Examples 855

Adding event listeners 855

PreferenceChangeEvent 855

NodeChangeEvent 855

Getting sub-nodes of Preferences 856

Coordinating preferences access across multiple application instances 857

Exporting preferences 857

Importing preferences 858

Removing event listeners 859

Getting preferences values 860

Setting preferences values 860

Using preferences 861

Chapter 134: Primitive Data Types 862

Introduction 862

Syntax 862

Remarks 862

Examples 863

The int primitive 863

The short primitive 864

The long primitive 864

The boolean primitive 865

The byte primitive 866

The float primitive 866

The double primitive 867

The char primitive 868

Negative value representation 869

Memory consumption of primitives vs. boxed primitives 870

Boxed value caches 871

Converting Primitives 871

Primitive Types Cheatsheet 872

Chapter 135: Process 874

Remarks 874

Examples 874

Simple example (Java version < 1.5) 874

Using the ProcessBuilder class 874

Blocking vs. Non-Blocking Calls 875

ch.vorburger.exec 876

Pitfall: Runtime.exec, Process and ProcessBuilder don't understand shell syntax 876

Spaces in pathnames 876

Redirection, pipelines and other shell syntax 877

Shell builtin commands don't work 878

Chapter 136: Properties Class 879

Introduction 879

Syntax 879

Remarks 879

Examples 880

Loading properties 880

Property files caveat: trailing whitespace 880

Saving Properties as XML 882

Chapter 137: Queues and Deques 885

Examples 885

The usage of the PriorityQueue 885

LinkedList as a FIFO Queue 885

Stacks 886

What is a Stack? 886

Stack API 886

Example 886

BlockingQueue 887

Queue Interface 888

Deque 889

Adding and Accessing Elements 890

Removing Elements 890

Chapter 138: Random Number Generation 891

Remarks 891

Examples 891

Pseudo Random Numbers 891

Pseudo Random Numbers in Specific Range 891

Generating cryptographically secure pseudorandom numbers 892

Select random numbers without duplicates 893

Generating Random Numbers with a Specified Seed 894

Generating Random number using apache-common lang3 894

Chapter 139: Readers and Writers 896

Introduction 896

Examples 896

BufferedReader 896

Introduction 896

Basics of using a BufferedReader 896

The BufferedReader buffer size 897

The BufferedReader.readLine() method 897

Example: reading all lines of a File into a List 897

StringWriter Example 897

Chapter 140: Recursion 899

Introduction 899

Remarks 899

Designing a Recursive Method 899

Output 899

Java and Tail-call elimination 900

Examples 900

The basic idea of recursion 900

Computing the Nth Fibonacci Number 901

Computing the sum of integers from 1 to N 901

Computing the Nth power of a number 901

Reverse a string using Recursion 902

Traversing a Tree data structure with recursion 902

Types of Recursion 903

StackOverflowError & recursion to loop 903

Example 903

Workaround 904

Example 904

Deep recursion is problematic in Java 906

Why tail-call elimination is not implemented in Java (yet) 907

Chapter 141: Reference Data Types 908

Examples 908

Instantiating a reference type 908

Dereferencing 908

Chapter 142: Reference Types 910

Examples 910

Different Reference Types 910

Chapter 143: Reflection API 912

Introduction 912

Remarks 912

Performance 912

Examples 912

Introduction 912

Invoking a method 914

Getting and Setting fields 914

Call constructor 915

Getting the Constructor Object 915

New Instance using Constructor Object 916

Getting the Constants of an Enumeration 916

Get Class given its (fully qualified) name 917

Call overloaded constructors using reflection 918

Misuse of Reflection API to change private and final variables 918

Call constructor of nested class 920

Dynamic Proxies 920

Evil Java hacks with Reflection 921

Chapter 144: Regular Expressions 924

Introduction 924

Syntax 924

Remarks 924

Imports 924

Pitfalls 924

Important Symbols Explained 924

Further reading 925

Examples 925

Using capture groups 925

Using regex with custom behaviour by compiling the Pattern with flags 926

Escape Characters 926

Matching with a regex literal. 927

Not matching a given string 927

Matching a backslash 928

Chapter 145: Remote Method Invocation (RMI) 930

Remarks 930

Examples 930

Client-Server: invoking methods in one JVM from another 930

Callback: invoking methods on a "client" 932

Overview 932

The shared remote interfaces 932

The implementations 933

Simple RMI example with Client and Server implementation 936

Server Package 936

Client package 937

Test your application 939

Chapter 146: Resources (on classpath) 940

Introduction 940

Remarks 940

Examples 941

Loading an image from a resource 941

Loading default configuration 942

Loading same-name resource from multiple JARs 942

Finding and reading resources using a classloader 942

Absolute and relative resource paths 943

Obtaining a Class or Classloader 943

The get methods 943

Chapter 147: RSA Encryption 945

Examples 945

An example using a hybrid cryptosystem consisting of OAEP and GCM 945

Chapter 148: Runtime Commands 950

Examples 950

Adding shutdown hooks 950

Chapter 149: Scanner 951

Syntax 951

Parameters 951

Remarks 951

Examples 951

Reading system input using Scanner 951

Reading file input using Scanner 951

Read the entire input as a String using Scanner 952

Using custom delimiters 952

General Pattern that does most commonly asked about tasks 953

Read an int from the command line 955

Carefully Closing a Scanner 955

Chapter 150: Secure objects 956

Syntax 956

Examples 956

SealedObject (javax.crypto.SealedObject) 956

SignedObject (java.security.SignedObject) 956

Chapter 151: Security & Cryptography 958

Examples 958

Compute Cryptographic Hashes 958

Generate Cryptographically Random Data 958

Generate Public / Private Key Pairs 959

Compute and Verify Digital Signatures 959

Encrypt and Decrypt Data with Public / Private Keys 960

Chapter 152: Security & Cryptography 962

Introduction 962

Remarks 962

Examples 962

The JCE 962

Keys and Key Management 962

Common Java vulnerabilities 962

Networking Concerns 963

Randomness and You 963

Hashing and Validation 963

Chapter 153: SecurityManager 964

Examples 964

Enabling the SecurityManager 964

Sandboxing classes loaded by a ClassLoader 964

Implementing policy deny rules 965

The DeniedPermission class 966

The DenyingPolicy class 970

Demo 972

Chapter 154: Serialization 974

Introduction 974

Examples 974

Basic Serialization in Java 974

Serialization with Gson 976

Serialization with Jackson 2 977

Custom Serialization 978

Versioning and serialVersionUID 980

Compatible Changes 981

Incompatible Changes 982

Custom JSON Deserialization with Jackson 982

Chapter 155: ServiceLoader 985

Remarks 985

Examples 985

Logger Service 985

Service 985

Implementations of the service 985

META-INF/services/servicetest.Logger 986

Usage 986

Simple ServiceLoader Example 987

Chapter 156: Sets 989

Examples 989

Declaring a HashSet with values 989

Types and Usage of Sets 989

HashSet - Random Sorting 989

LinkedHashSet - Insertion Order 989

TreeSet - By compareTo() or Comparator 990

Initialization 990

Basics of Set 991

Create a list from an existing Set 992

Eliminating duplicates using Set 993

Chapter 157: Singletons 994

Introduction 994

Examples 994

Enum Singleton 994

Thread safe Singleton with double checked locking 994

Singleton without use of Enum (eager initialization) 995

Thread-safe lazy initialization using holder class | Bill Pugh Singleton implementation 996

Extending singleton (singleton inheritance) 996

Chapter 158: Sockets 1000

Introduction 1000

Examples 1000

Read from socket 1000

Chapter 159: SortedMap 1001

Introduction 1001

Examples 1001

Introduction to sorted Map. 1001

Chapter 160: Splitting a string into fixed length parts 1003

Remarks 1003

Examples 1003

Break a string up into substrings all of a known length 1003

Break a string up into substrings all of variable length 1003

Chapter 161: Stack-Walking API 1004

Introduction 1004

Examples 1004

Print all stack frames of the current thread 1004

Print current caller class 1005

Showing reflection and other hidden frames 1005

Chapter 162: Streams 1007

Introduction 1007

Syntax 1007

Examples 1007

Using Streams 1007

Closing Streams 1008

Processing Order 1009

Differences from Containers (or Collections) 1010

Collect Elements of a Stream into a Collection 1010

Collect with toList() and toSet() 1010

Explicit control over the implementation of List or Set 1010

Cheat-Sheet 1012

Infinite Streams 1013

Consuming Streams 1014

h21 1015

Creating a Frequency Map 1015

Parallel Stream 1016

Performance impact 1016

Converting a Stream of Optional to a Stream of Values 1017

Creating a Stream 1017

Finding Statistics about Numerical Streams 1018

Get a Slice of a Stream 1019

Concatenate Streams 1019

IntStream to String 1020

Sort Using Stream 1020

Streams of Primitives 1021

Collect Results of a Stream into an Array 1021

Finding the First Element that Matches a Predicate 1021

Using IntStream to iterate over indexes 1022

Flatten Streams with flatMap() 1022

Create a Map based on a Stream 1023

Generating random Strings using Streams 1024

Using Streams to Implement Mathematical Functions 1025

Using Streams and Method References to Write Self-Documenting Processes 1025

Using Streams of Map.Entry to Preserve Initial Values after Mapping 1026

Stream operations categories 1027

Intermediate Operations: 1027

Terminal Operations 1027

Stateless Operations 1027

Stateful operations 1028

Converting an iterator to a stream 1028

Reduction with Streams 1028

Joining a stream to a single String 1031

Chapter 163: String Tokenizer 1033

Introduction 1033

Examples 1033

StringTokenizer Split by space 1033

StringTokenizer Split by comma ',' 1033

Chapter 164: StringBuffer 1035

Introduction 1035

Examples 1035

String Buffer class 1035

Chapter 165: StringBuilder 1037

Introduction 1037

Syntax 1037

Remarks 1037

Examples 1037

Repeat a String n times 1037

Comparing StringBuffer, StringBuilder, Formatter and StringJoiner 1038

Chapter 166: Strings 1040

Introduction 1040

Remarks 1040

Examples 1041

Comparing Strings 1041

Do not use the == operator to compare Strings 1042

Comparing Strings in a switch statement 1042

Comparing Strings with constant values 1043

String orderings 1043

Comparing with interned Strings 1043

Changing the case of characters within a String 1044

Finding a String Within Another String 1046

Getting the length of a String 1047

Substrings 1047

Getting the nth character in a String 1048

Platform independent new line separator 1048

Adding toString() method for custom objects 1049

Splitting Strings 1050

Joining Strings with a delimiter 1052

Reversing Strings 1053

Counting occurrences of a substring or character in a string 1054

String concatenation and StringBuilders 1054

Replacing parts of Strings 1056

Exact match 1056

Replace single character with another single character: 1056

Replace sequence of characters with another sequence of characters: 1056

Regex 1057

Replace all matches: 1057

Replace first match only: 1057

Remove Whitespace from the Beginning and End of a String 1057

String pool and heap storage 1058

Case insensitive switch 1060

Chapter 167: sun.misc.Unsafe 1061

Remarks 1061

Examples 1061

Instantiating sun.misc.Unsafe via reflection 1061

Instantiating sun.misc.Unsafe via bootclasspath 1061

Getting Instance of Unsafe 1062

Uses of Unsafe 1062

Chapter 168: super keyword 1064

Examples 1064

Super keyword use with examples 1064

Constructor Level 1064

Method Level 1065

Variable Level 1065

Chapter 169: The Classpath 1067

Introduction 1067

Remarks 1067

Examples 1067

Different ways to specify the classpath 1067

Adding all JARs in a directory to the classpath 1068

Classpath path syntax 1068

Dynamic Classpath 1069

Load a resource from the classpath 1069

Mapping classnames to pathnames 1070

What the classpath means: how searches work 1070

The bootstrap classpath 1071

Chapter 170: The Java Command - 'java' and 'javaw' 1073

Syntax 1073

Remarks 1073

Examples 1073

Running an executable JAR file 1073

Running a Java applications via a "main" class 1074

Running the HelloWorld class 1074

Specifying a classpath 1074

Entry point classes 1074

JavaFX entry-points 1075

Troubleshooting the 'java' command 1075

"Command not found" 1075

"Could not find or load main class" 1076

"Main method not found in class <name>" 1077

Other Resources 1077

Running a Java application with library dependencies 1077

Spaces and other special characters in arguments 1078

Solutions using a POSIX shell 1079

Solution for Windows 1080

Java Options 1080

Setting system properties with -D 1080

Memory, Stack and Garbage Collector options 1081

Enabling and disabling assertions 1081

Selecting the VM type 1081

Chapter 171: The java.util.Objects Class 1083

Examples 1083

Basic use for object null check 1083

For null check in method 1083

For not null check in method 1083

Objects.nonNull() method reference use in stream api 1083

Chapter 172: ThreadLocal 1084

Remarks 1084

Examples 1084

ThreadLocal Java 8 functional initialization 1084

Basic ThreadLocal usage 1084

Multiple threads with one shared object 1086

Chapter 173: TreeMap and TreeSet 1088

Introduction 1088

Examples 1088

TreeMap of a simple Java type 1088

TreeSet of a simple Java Type 1089

TreeMap/TreeSet of a custom Java type 1089

TreeMap and TreeSet Thread Safety 1091

Chapter 174: Type Conversion 1093

Syntax 1093

Examples 1093

Non-numeric primitive casting 1093

Numeric primitive casting 1093

Object casting 1094

Basic Numeric Promotion 1094

Testing if an object can be cast using instanceof 1094

Chapter 175: Unit Testing 1096

Introduction 1096

Remarks 1096

Unit Test Frameworks 1096

Unit Testing Tools 1096

Examples 1096

What is Unit Testing? 1096

Tests need to be automated 1098

Tests need to be fine-grained 1098

Enter unit-testing 1099

Chapter 176: Using Other Scripting Languages in Java 1100

Introduction 1100

Remarks 1100

Examples 1100

Evaluating A javascript file in -scripting mode of nashorn 1100

Chapter 177: Using the static keyword 1103

Syntax 1103

Examples 1103

Using static to declare constants 1103

Using static with this 1103

Reference to non-static member from static context 1104

Chapter 178: Using ThreadPoolExecutor in MultiThreaded applications. 1106

Introduction 1106

Examples 1106

Performing Asynchronous Tasks Where No Return Value Is Needed Using a Runnable Class Insta 1106

Performing Asynchronous Tasks Where a Return Value Is Needed Using a Callable Class Instan 1108

Defining Asynchronous Tasks Inline using Lambdas 1110

Chapter 179: Varargs (Variable Argument) 1113

Remarks 1113

Examples 1113

Specifying a varargs parameter 1113

Working with Varargs parameters 1113

Chapter 180: Visibility (controlling access to members of a class) 1115

Syntax 1115

Remarks 1115

Examples 1116

Interface members 1116

Public Visibility 1116

Private Visibility 1116

Package Visibility 1117

Protected Visibility 1118

Summary of Class Member Access Modifiers 1118

Chapter 181: WeakHashMap 1119

Introduction 1119

Examples 1119

Concepts of WeakHashmap 1119

Chapter 182: XJC 1121

Introduction 1121

Syntax 1121

Parameters 1121

Remarks 1121

Examples 1121

Generating Java code from simple XSD file 1121

XSD schema (schema.xsd) 1121

Using xjc 1122

Result files 1122

package-info.java 1124

Chapter 183: XML Parsing using the JAXP APIs 1125

Remarks 1125

Principles of the DOM interface 1125

Principles of the SAX interface 1125

Principles of the StAX interface 1126

Examples 1126

Parsing and navigating a document using the DOM API 1126

Parsing a document using the StAX API 1127

Chapter 184: XML XPath Evaluation 1130

Remarks 1130

Examples 1130

Evaluating a NodeList in an XML document 1130

Parsing multiple XPath Expressions in a single XML 1131

Parsing single XPath Expression multiple times in an XML 1131

Chapter 185: XOM - XML Object Model 1133

Examples 1133

Reading a XML file 1133

Writing to a XML File 1135

Credits 1139

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: java-language

It is an unofficial and free Java Language ebook created for educational purposes. All the content
is extracted from Stack Overflow Documentation, which is written by many hardworking individuals
at Stack Overflow. It is neither affiliated with Stack Overflow nor official Java Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/java-language
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Java
Language

Remarks

The Java programming language is...

General-purpose: It is designed to be used for writing software in a wide variety of
application domains, and lacks specialized features for any specific domain.

•

Class-based: Its object structure is defined in classes. Class instances always have those
fields and methods specified in their class definitions (see Classes and Objects). This is in
contrast to non-class-based languages such as JavaScript.

•

Statically-typed: the compiler checks at compile time that variable types are respected. For
example, if a method expects an argument of type String, that argument must in fact be a
string when the method is called.

•

Object-oriented: most things in a Java program are class instances, i.e. bundles of state
(fields) and behavior (methods which operate on data and form the object's interface to the
outside world).

•

Portable: It can be compiled on any platform with javac and the resultant class files can run
on any platform that has a JVM.

•

Java is intended to let application developers "write once, run anywhere" (WORA), meaning that
compiled Java code can run on all platforms that support Java without the need for recompilation.

Java code is compiled to bytecode (the .class files) which in turn get interpreted by the Java
Virtual Machine (JVM). In theory, bytecode created by one Java compiler should run the same
way on any JVM, even on a different kind of computer. The JVM might (and in real-world
programs will) choose to compile into native machine commands the parts of the bytecode that are
executed often. This is called "Just-in-time (JIT) compilation".

Java Editions and Versions

There are three "editions" of Java defined by Sun / Oracle:

Java Standard Edition (SE) is the edition that is designed for general use.•
Java Enterprise Edition (EE) adds a range of facilities for building "enterprise grade" services
in Java. Java EE is covered separately.

•

Java Micro Edition (ME) is based on a subset of Java SE and is intended for use on small
devices with limited resources.

•

There is a separate topic on Java SE / EE / ME editions.

https://riptutorial.com/ 2

http://www.riptutorial.com/java/topic/114/classes-and-objects
http://www.riptutorial.com/topic/2265
http://www.riptutorial.com/java/topic/8973/java-editions--versions--releases-and-distributions

Each edition has multiple versions. The Java SE versions are listed below.

Installing Java

There is a separate topic on Installing Java (Standard Edition).

Compiling and running Java programs

There are separate topics on:

Compiling Java source code•
Java deployment including creating JAR files•
Running Java applications•
The Classpath•

What's next?

Here are links to subjects to continue learning and understanding the Java programming
language. These subjects are the basics of the Java programming to get you started.

Primitive Data Types in Java•
Operators in Java•
Strings in Java•
Basic Control Structures in Java•
Classes and Objects in Java•
Arrays in Java•
Java code standards•

Testing

While Java does not have any support for testing in the standard library, there are 3rd-party
libraries that are designed to support testing. The two most popular unit testing libraries are:

JUnit (Official Site)•
TestNG (Official Site)•

Other

Design patterns for Java are covered in Design Patterns.•
Programming for Android is covered in Android.•
Java Enterprise Edition technologies are covered in Java EE.•
The Oracle JavaFX technologies are covered in JavaFX.•

https://riptutorial.com/ 3

http://www.riptutorial.com/java/topic/4754/installing-java--standard-edition-
http://www.riptutorial.com/java/topic/4478/java-compiler----javac-
http://www.riptutorial.com/java/topic/6840/java-deployment
http://www.riptutorial.com/java/topic/5791/the-java-command----java--and--javaw-
http://www.riptutorial.com/java/topic/3720/the-classpath
http://www.riptutorial.com/java/topic/148/primitive-data-types
http://www.riptutorial.com/java/topic/176/operators
http://www.riptutorial.com/java/topic/109/strings
http://www.riptutorial.com/java/topic/118/basic-control-structures
http://www.riptutorial.com/java/topic/114/classes-and-objects
http://www.riptutorial.com/java/topic/99/arrays
http://www.riptutorial.com/java/topic/2697/oracle-official-code-standard
http://www.riptutorial.com/topic/1838
http://junit.org/junit4/
http://www.riptutorial.com/testng/topic/5393/getting-started-with-testng
http://testng.org/doc/index.html
http://www.riptutorial.com/topic/1012
http://www.riptutorial.com/topic/85
http://www.riptutorial.com/topic/2265
http://www.riptutorial.com/topic/887

1. In Versions section the end-of-life (free) date is when Oracle will stop posting further updates of Java SE to its
public download sites. Customers who need continued access to critical bug fixes and security fixes as well as general
maintenance for Java SE can get long term support through Oracle Java SE Support.

Versions

Java SE Version Code Name End-of-life (free1) Release Date

Java SE 9 (Early Access) None future 2017-07-27

Java SE 8 Spider future 2014-03-18

Java SE 7 Dolphin 2015-04-14 2011-07-28

Java SE 6 Mustang 2013-04-16 2006-12-23

Java SE 5 Tiger 2009-11-04 2004-10-04

Java SE 1.4 Merlin prior to 2009-11-04 2002-02-06

Java SE 1.3 Kestrel prior to 2009-11-04 2000-05-08

Java SE 1.2 Playground prior to 2009-11-04 1998-12-08

Java SE 1.1 None prior to 2009-11-04 1997-02-19

Java SE 1.0 Oak prior to 2009-11-04 1996-01-21

Examples

Creating Your First Java Program

Create a new file in your text editor or IDE named HelloWorld.java. Then paste this code block into
the file and save:

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }
}

Run live on Ideone

Note: For Java to recognize this as a public class (and not throw a compile time error), the
filename must be the same as the class name (HelloWorld in this example) with a .java extension.
There should also be a public access modifier before it.

Naming conventions recommend that Java classes begin with an uppercase character, and be in
camel case format (in which the first letter of each word is capitalized). The conventions

https://riptutorial.com/ 4

http://www.oracle.com/us/technologies/java/java-se-support-393643.html?ssSourceSiteId=otnen
http://download.java.net/java/jdk9/docs/api/
http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/1.5.0/docs/api/
http://docs.oracle.com/javase/1.4.2/docs/api/
http://docs.oracle.com/javase/1.3/docs/api/
http://java.com/
http://java.com/
http://java.com/
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://ideone.com/rbWs4M
http://stackoverflow.com/questions/1841847/can-i-compile-a-java-file-with-a-different-name-than-the-class
http://www.riptutorial.com/java/example/9031/naming-conventions
https://en.wikipedia.org/wiki/Camel_case?oldformat=true

recommend against underscores (_) and dollar signs ($).

To compile, open a terminal window and navigate to the directory of HelloWorld.java:

cd /path/to/containing/folder/

Note: cd is the terminal command to change directory.

Enter javac followed by the file name and extension as follows:

$ javac HelloWorld.java

It's fairly common to get the error 'javac' is not recognized as an internal or external command,
operable program or batch file. even when you have installed the JDK and are able to run the
program from IDE ex. eclipse etc. Since the path is not added to the environment by default.

In case you get this on windows, to resolve, first try browsing to your javac.exe path, it's most
probably in your C:\Program Files\Java\jdk(version number)\bin. Then try running it with below.

$ C:\Program Files\Java\jdk(version number)\bin\javac HelloWorld.java

Previously when we were calling javac it was same as above command. Only in that case your OS
knew where javac resided. So let's tell it now, this way you don't have to type the whole path
every-time. We would need to add this to our PATH

To edit the PATH environment variable in Windows XP/Vista/7/8/10:

Control Panel ⇒ System ⇒ Advanced system settings•

Switch to "Advanced" tab ⇒ Environment Variables•

In "System Variables", scroll down to select "PATH" ⇒ Edit•

You cannot undo this so be careful. First copy your existing path to notepad. Then to get the
exact PATH to your javac browse manually to the folder where javac resides and click on the
address bar and then copy it. It should look something like c:\Program Files\Java\jdk1.8.0_xx\bin

In "Variable value" field, paste this IN FRONT of all the existing directories, followed by a semi-
colon (;). DO NOT DELETE any existing entries.

Variable name : PATH
Variable value : c:\Program Files\Java\jdk1.8.0_xx\bin;[Existing Entries...]

Now this should resolve.

For Linux Based systems try here.

Note: The javac command invokes the Java compiler.

The compiler will then generate a bytecode file called HelloWorld.class which can be executed in
the Java Virtual Machine (JVM). The Java programming language compiler, javac, reads source

https://riptutorial.com/ 5

http://www.linfo.org/cd.html
https://docs.oracle.com/javase/tutorial/essential/environment/paths.html
http://www.riptutorial.com/java/topic/4478/java-compiler----javac-
https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine

files written in the Java programming language and compiles them into bytecode class files.
Optionally, the compiler can also process annotations found in source and class files using the
Pluggable Annotation Processing API. The compiler is a command line tool but can also be invoked
using the Java Compiler API.

To run your program, enter java followed by the name of the class which contains the main method
(HelloWorld in our example). Note how the .class is omitted:

$ java HelloWorld

Note: The java command runs a Java application.

This will output to your console:

Hello, World!

You have successfully coded and built your very first Java program!

Note: In order for Java commands (java, javac, etc) to be recognized, you will need to make sure:

A JDK is installed (e.g. Oracle, OpenJDK and other sources)•
Your environment variables are properly set up•

You will need to use a compiler (javac) and an executor (java) provided by your JVM. To find out
which versions you have installed, enter java -version and javac -version on the command line.
The version number of your program will be printed in the terminal (e.g. 1.8.0_73).

A closer look at the Hello World program

The "Hello World" program contains a single file, which consists of a HelloWorld class definition, a
main method, and a statement inside the main method.

public class HelloWorld {

The class keyword begins the class definition for a class named HelloWorld. Every Java application
contains at least one class definition (Further information about classes).

 public static void main(String[] args) {

This is an entry point method (defined by its name and signature of public static void
main(String[])) from which the JVM can run your program. Every Java program should have one. It
is:

public: meaning that the method can be called from anywhere mean from outside the
program as well. See Visibility for more information on this.

•

static: meaning it exists and can be run by itself (at the class level without creating an •

https://riptutorial.com/ 6

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
http://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html
http://openjdk.java.net/install/
https://docs.oracle.com/javase/tutorial/essential/environment/paths.html
http://www.riptutorial.com/java/topic/114/classes-and-objects
http://www.riptutorial.com/java/topic/134/visibility--controlling-access-to-members-of-a-class-

object).
void: meaning it returns no value. Note: This is unlike C and C++ where a return code such
as int is expected (Java's way is System.exit()).

•

This main method accepts:

An array (typically called args) of Strings passed as arguments to main function (e.g. from
command line arguments).

•

Almost all of this is required for a Java entry point method.

Non-required parts:

The name args is a variable name, so it can be called anything you want, although it is
typically called args.

•

Whether its parameter type is an array (String[] args) or Varargs (String... args) does not
matter because arrays can be passed into varargs.

•

Note: A single application may have multiple classes containing an entry point (main) method. The
entry point of the application is determined by the class name passed as an argument to the java
command.

Inside the main method, we see the following statement:

 System.out.println("Hello, World!");

Let's break down this statement element-by-element:

Element Purpose

System
this denotes that the subsequent expression will call upon the System class, from
the java.lang package.

.
this is a "dot operator". Dot operators provide you access to a classes members
1; i.e. its fields (variables) and its methods. In this case, this dot operator allows
you to reference the out static field within the System class.

out
this is the name of the static field of PrintStream type within the System class
containing the standard output functionality.

.
this is another dot operator. This dot operator provides access to the println
method within the out variable.

println
this is the name of a method within the PrintStream class. This method in
particular prints the contents of the parameters into the console and inserts a
newline after.

(
this parenthesis indicates that a method is being accessed (and not a field) and
begins the parameters being passed into the println method.

https://riptutorial.com/ 7

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#exit-int-
http://www.riptutorial.com/java/example/404/creating-and-initializing-arrays
http://stackoverflow.com/documentation/java/84/java-overview/7980/command-line-arguments
http://www.riptutorial.com/java/topic/1948/varargs---variable-argument-

Element Purpose

"Hello,
World!"

this is the String literal that is passed as a parameter, into the println method.
The double quotation marks on each end delimit the text as a String.

)
this parenthesis signifies the closure of the parameters being passed into the
println method.

; this semicolon marks the end of the statement.

Note: Each statement in Java must end with a semicolon (;).

The method body and class body are then closed.

 } // end of main function scope
} // end of class HelloWorld scope

Here's another example demonstrating the OO paradigm. Let's model a football team with one
(yes, one!) member. There can be more, but we'll discuss that when we get to arrays.

First, let's define our Team class:

public class Team {
 Member member;
 public Team(Member member) { // who is in this Team?
 this.member = member; // one 'member' is in this Team!
 }
}

Now, let's define our Member class:

class Member {
 private String name;
 private String type;
 private int level; // note the data type here
 private int rank; // note the data type here as well

 public Member(String name, String type, int level, int rank) {
 this.name = name;
 this.type = type;
 this.level = level;
 this.rank = rank;
 }
}

Why do we use private here? Well, if someone wanted to know your name, they should ask you
directly, instead of reaching into your pocket and pulling out your Social Security card. This private
does something like that: it prevents outside entities from accessing your variables. You can only
return private members through getter functions (shown below).

After putting it all together, and adding the getters and main method as discussed before, we
have:

https://riptutorial.com/ 8

http://www.riptutorial.com/java/topic/109/strings

public class Team {
 Member member;
 public Team(Member member) {
 this.member = member;
 }

 // here's our main method
 public static void main(String[] args) {
 Member myMember = new Member("Aurieel", "light", 10, 1);
 Team myTeam = new Team(myMember);
 System.out.println(myTeam.member.getName());
 System.out.println(myTeam.member.getType());
 System.out.println(myTeam.member.getLevel());
 System.out.println(myTeam.member.getRank());
 }
}

class Member {
 private String name;
 private String type;
 private int level;
 private int rank;

 public Member(String name, String type, int level, int rank) {
 this.name = name;
 this.type = type;
 this.level = level;
 this.rank = rank;
 }

 /* let's define our getter functions here */
 public String getName() { // what is your name?
 return this.name; // my name is ...
 }

 public String getType() { // what is your type?
 return this.type; // my type is ...
 }

 public int getLevel() { // what is your level?
 return this.level; // my level is ...
 }

 public int getRank() { // what is your rank?
 return this.rank; // my rank is
 }
}

Output:

Aurieel
light
10
1

Run on ideone

Once again, the main method inside the Test class is the entry point to our program. Without the
main method, we cannot tell the Java Virtual Machine (JVM) from where to begin execution of the

https://riptutorial.com/ 9

https://ideone.com/hHWFdk

program.

1 - Because the HelloWorld class has little relation to the System class, it can only access public data.

Read Getting started with Java Language online: https://riptutorial.com/java/topic/84/getting-
started-with-java-language

https://riptutorial.com/ 10

https://riptutorial.com/java/topic/84/getting-started-with-java-language
https://riptutorial.com/java/topic/84/getting-started-with-java-language

Chapter 2: 2D Graphics in Java

Introduction

Graphics are visual images or designs on some surface, such as a wall, canvas, screen, paper, or
stone to inform, illustrate, or entertain. It includes: pictorial representation of data, as in computer-
aided design and manufacture, in typesetting and the graphic arts, and in educational and
recreational software. Images that are generated by a computer are called computer graphics.

The Java 2D API is powerful and complex. There are multiple ways to do 2D graphics in Java.

Examples

Example 1: Draw and Fill a Rectangle Using Java

This is an Example which print rectangle and fill color in the rectangle.

https://i.stack.imgur.com/dlC5v.jpg

Most methods of the Graphics class can be divided into two basic groups:

Draw and fill methods, enabling you to render basic shapes, text, and images1.
Attributes setting methods, which affect how that drawing and filling appears2.

Code Example: Let us start this with a little example of drawing a rectangle and filling color in it.
There we declare two classes, one class is MyPanel and other Class is Test. In class MyPanel we
use drawRect() & fillRect() mathods to draw rectangle and fill Color in it. We set the color by
setColor(Color.blue) method. In Second Class we Test our graphic which is Test Class we make a

https://riptutorial.com/ 11

https://i.stack.imgur.com/dlC5v.jpg
https://i.stack.imgur.com/dlC5v.jpg

Frame and put MyPanel with p=new MyPanel() object in it.By running Test Class we see a
Rectangle and a Blue Color Filled Rectangle.

First Class: MyPanel

import javax.swing.*;
import java.awt.*;
// MyPanel extends JPanel, which will eventually be placed in a JFrame
public class MyPanel extends JPanel {
 // custom painting is performed by the paintComponent method
 @Override
 public void paintComponent(Graphics g){
 // clear the previous painting
 super.paintComponent(g);
 // cast Graphics to Graphics2D
 Graphics2D g2 = (Graphics2D) g;
 g2.setColor(Color.red); // sets Graphics2D color
 // draw the rectangle
 g2.drawRect(0,0,100,100); // drawRect(x-position, y-position, width, height)
 g2.setColor(Color.blue);
 g2.fillRect(200,0,100,100); // fill new rectangle with color blue
 }
}

Second Class: Test

import javax.swing.;
import java.awt.;
public class Test { //the Class by which we display our rectangle
 JFrame f;
 MyPanel p;
 public Test(){
 f = new JFrame();
 // get the content area of Panel.
 Container c = f.getContentPane();
 // set the LayoutManager
 c.setLayout(new BorderLayout());
 p = new MyPanel();
 // add MyPanel object into container
 c.add(p);
 // set the size of the JFrame
 f.setSize(400,400);
 // make the JFrame visible
 f.setVisible(true);
 // sets close behavior; EXIT_ON_CLOSE invokes System.exit(0) on closing the JFrame
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String args[]){
 Test t = new Test();
 }
}

For More Explanation about Border Layout:
https://docs.oracle.com/javase/tutorial/uiswing/layout/border.html

paintComponent()

https://riptutorial.com/ 12

https://docs.oracle.com/javase/tutorial/uiswing/layout/border.html

It is a main method for painting•
By default, it first paints the background•
After that, it performs custom painting (drawing circle, rectangles etc.)•

Graphic2D refers Graphic2D Class

Note: The Java 2D API enables you to easily perform the following tasks:

Draw lines, rectangles and any other geometric shape.•
Fill those shapes with solid colors or gradients and textures.•
Draw text with options for fine control over the font and rendering process.•
Draw images, optionally applying filtering operations.•
Apply operations such as compositing and transforming during any of the above rendering
operations.

•

Example 2: Drawing and Filling Oval

import javax.swing.*;
import java.awt.*;

public class MyPanel extends JPanel {
 @Override
 public void paintComponent(Graphics g){
 // clear the previous painting
 super.paintComponent(g);
 Graphics2D g2 = (Graphics2D)g;
 g2.setColor(Color.blue);
 g2.drawOval(0, 0, 20,20);
 g2.fillOval(50,50,20,20);
 }
}

g2.drawOval(int x,int y,int height, int width);
This method will draw an oval at specified x and y position with given height and width.

g2.fillOval(int x,int y,int height, int width); This method will fill an oval at specified x and y
position with given height and width.

Read 2D Graphics in Java online: https://riptutorial.com/java/topic/10127/2d-graphics-in-java

https://riptutorial.com/ 13

https://riptutorial.com/java/topic/10127/2d-graphics-in-java

Chapter 3: Alternative Collections

Remarks

This topic about Java collections from guava, apache, eclipse: Multiset, Bag, Multimap, utils
function from this lib and so on.

Examples

Apache HashBag, Guava HashMultiset and Eclipse HashBag

A Bag/ultiset stores each object in the collection together with a count of occurrences. Extra
methods on the interface allow multiple copies of an object to be added or removed at once. JDK
analog is HashMap<T, Integer>, when values is count of copies this key.

Type Guava
Apache Commons
Collections

GS Collections JDK

Order not
defined

HashMultiset HashBag HashBag HashMap

Sorted TreeMultiset TreeBag TreeBag TreeMap

Insertion-
order

LinkedHashMultiset - - LinkedHashMap

Concurrent
variant

ConcurrentHashMultiset SynchronizedBag SynchronizedBag Collections.synchronizedMap(HashMap<String, Integer>)

Concurrent
and sorted

- SynchronizedSortedBag SynchronizedSortedBag Collections.synchronizedSortedMap(TreeMap<String,Integer>)

Immutable
collection

ImmutableMultiset UnmodifiableBag UnmodifiableBag Collections.unmodifiableMap(HashMap<String, Integer)]

Immutable
and sorted

ImmutableSortedMultiset UnmodifiableSortedBag UnmodifiableSortedBag
Collections.unmodifiableSortedMap(TreeMap<String, Integer>
)

Examples:

1. Using SynchronizedSortedBag from Apache:

 // Parse text to separate words
 String INPUT_TEXT = "Hello World! Hello All! Hi World!";
 // Create Multiset
 Bag bag = SynchronizedSortedBag.synchronizedBag(new

https://riptutorial.com/ 14

http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/HashMultiset.html
http://commons.apache.org/proper/commons-collections/javadocs/api-3.2.1/org/apache/commons/collections/bag/HashBag.html
http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/mutable/HashBag.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/TreeMultiset.html
http://commons.apache.org/proper/commons-collections/javadocs/api-3.2.1/org/apache/commons/collections/TreeBag.html
http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/sorted/mutable/TreeBag.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/LinkedHashMultiset.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/ConcurrentHashMultiset.html
http://commons.apache.org/proper/commons-collections/javadocs/api-3.2.1/org/apache/commons/collections/bag/SynchronizedBag.html
http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/mutable/SynchronizedBag.html
http://commons.apache.org/proper/commons-collections/javadocs/api-3.2.1/org/apache/commons/collections/bag/SynchronizedSortedBag.html
http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/sorted/mutable/SynchronizedSortedBag.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/ImmutableMultiset.html
http://commons.apache.org/proper/commons-collections/javadocs/api-3.2.1/org/apache/commons/collections/bag/UnmodifiableBag.html
http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/mutable/UnmodifiableBag.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/ImmutableSortedMultiset.html
http://commons.apache.org/proper/commons-collections/javadocs/api-3.2.1/org/apache/commons/collections/bag/UnmodifiableSortedBag.html
http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/sorted/mutable/SynchronizedSortedBag.html

TreeBag(Arrays.asList(INPUT_TEXT.split(" "))));

 // Print count words
 System.out.println(bag); // print [1:All!,2:Hello,1:Hi,2:World!]- in natural (alphabet)
order
 // Print all unique words
 System.out.println(bag.uniqueSet()); // print [All!, Hello, Hi, World!]- in natural
(alphabet) order

 // Print count occurrences of words
 System.out.println("Hello = " + bag.getCount("Hello")); // print 2
 System.out.println("World = " + bag.getCount("World!")); // print 2
 System.out.println("All = " + bag.getCount("All!")); // print 1
 System.out.println("Hi = " + bag.getCount("Hi")); // print 1
 System.out.println("Empty = " + bag.getCount("Empty")); // print 0

 // Print count all words
 System.out.println(bag.size()); //print 6

 // Print count unique words
 System.out.println(bag.uniqueSet().size()); //print 4

2. Using TreeBag from Eclipse(GC):

 // Parse text to separate words
 String INPUT_TEXT = "Hello World! Hello All! Hi World!";
 // Create Multiset
 MutableSortedBag<String> bag = TreeBag.newBag(Arrays.asList(INPUT_TEXT.split(" ")));

 // Print count words
 System.out.println(bag); // print [All!, Hello, Hello, Hi, World!, World!]- in natural
order
 // Print all unique words
 System.out.println(bag.toSortedSet()); // print [All!, Hello, Hi, World!]- in natural
order

 // Print count occurrences of words
 System.out.println("Hello = " + bag.occurrencesOf("Hello")); // print 2
 System.out.println("World = " + bag.occurrencesOf("World!")); // print 2
 System.out.println("All = " + bag.occurrencesOf("All!")); // print 1
 System.out.println("Hi = " + bag.occurrencesOf("Hi")); // print 1
 System.out.println("Empty = " + bag.occurrencesOf("Empty")); // print 0

 // Print count all words
 System.out.println(bag.size()); //print 6

 // Print count unique words
 System.out.println(bag.toSet().size()); //print 4

3. Using LinkedHashMultiset from Guava:

 // Parse text to separate words
 String INPUT_TEXT = "Hello World! Hello All! Hi World!";
 // Create Multiset
 Multiset<String> multiset = LinkedHashMultiset.create(Arrays.asList(INPUT_TEXT.split("
")));

https://riptutorial.com/ 15

http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/sorted/mutable/TreeBag.html
http://www.goldmansachs.com/gs-collections/javadoc/6.1.0/com/gs/collections/impl/bag/sorted/mutable/SynchronizedSortedBag.html

 // Print count words
 System.out.println(multiset); // print [Hello x 2, World! x 2, All!, Hi]- in predictable
iteration order
 // Print all unique words
 System.out.println(multiset.elementSet()); // print [Hello, World!, All!, Hi] - in
predictable iteration order

 // Print count occurrences of words
 System.out.println("Hello = " + multiset.count("Hello")); // print 2
 System.out.println("World = " + multiset.count("World!")); // print 2
 System.out.println("All = " + multiset.count("All!")); // print 1
 System.out.println("Hi = " + multiset.count("Hi")); // print 1
 System.out.println("Empty = " + multiset.count("Empty")); // print 0

 // Print count all words
 System.out.println(multiset.size()); //print 6

 // Print count unique words
 System.out.println(multiset.elementSet().size()); //print 4

More examples:

I. Apache Collection:

HashBag - order not defined1.
SynchronizedBag - concurrent and order not defined2.
SynchronizedSortedBag - - concurrent and sorted order3.
TreeBag - sorted order4.

II. GS / Eclipse Collection

MutableBag - order not defined5.
MutableSortedBag - sorted order6.

III. Guava

HashMultiset - order not defined7.
TreeMultiset - sorted order8.
LinkedHashMultiset - insertion order9.
ConcurrentHashMultiset - concurrent and order not defined10.

Multimap in Guava, Apache and Eclipse Collections

This multimap allows duplicate key-value pairs. JDK analogs are HashMap<K, List>, HashMap<K,
Set> and so on.

Key's
order

Value's
order

Duplicate Analog key Analog value Guava Apache
Eclipse (GS)
Collections

JDK

not
defined

Insertion-
order

yes HashMap ArrayList ArrayListMultimap MultiValueMap FastListMultimap HashMap<K,
ArrayList<V>>

https://riptutorial.com/ 16

https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/ApacheHashBagTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/ApacheSynchronizedBagTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/ApacheSynchronizedSortedBagTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/ApacheTreeBagTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/gs-eclipse/src/GsMutableBagTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/gs-eclipse/src/GsMutableSortedBagTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/guava/src/GuavaHashMultisetTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/TreeMultisetTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/LinkedHashMultisetTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/ConcurrentHashMultisetTest.java
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/ArrayListMultimap.html

Key's
order

Value's
order

Duplicate Analog key Analog value Guava Apache
Eclipse (GS)
Collections

JDK

not
defined

not
defined

no HashMap HashSet HashMultimap

MultiValueMap.
multiValueMap(new
HashMap<K, Set>(),
HashSet.class);

UnifiedSetMultimap HashMap<K,
HashSet<V>>

not
defined

sorted no HashMap TreeSet

Multimaps.
newMultimap(
HashMap, Supplier
<TreeSet>)

MultiValueMap.multiValueMap(
new HashMap<K, Set>(),
TreeSet.class)

TreeSortedSet-
Multimap

HashMap<K,
TreeSet<V>>

Insertion-
order

Insertion-
order

yes LinkedHashMap ArrayList LinkedListMultimap

MultiValueMap.
multiValueMap(new
LinkedHashMap<K, List>(),
ArrayList.class);

LinkedHashMap<
K, ArrayList>

Insertion-
order

Insertion-
order

no LinkedHashMap LinkedHashSet LinkedHashMultimap

MultiValueMap.
multiValueMap(new
LinkedHashMap<K, Set>(),
LinkedHashSet.class)

LinkedHashMap<K,
LinkedHashSet<V>>

sorted sorted no TreeMap TreeSet TreeMultimap

MultiValueMap.
multiValueMap(new
TreeMap<K,
Set>(),TreeSet.class)

TreeMap<K,
TreeSet<V>>

Examples using Multimap

Task: Parse "Hello World! Hello All! Hi World!" string to separate words and print all indexes of
every word using MultiMap (for example, Hello=[0, 2], World!=[1, 5] and so on)

1. MultiValueMap from Apache

 String INPUT_TEXT = "Hello World! Hello All! Hi World!";
 // Parse text to words and index
 List<String> words = Arrays.asList(INPUT_TEXT.split(" "));
 // Create Multimap
 MultiMap<String, Integer> multiMap = new MultiValueMap<String, Integer>();

 // Fill Multimap
 int i = 0;
 for(String word: words) {
 multiMap.put(word, i);
 i++;
 }

 // Print all words
 System.out.println(multiMap); // print {Hi=[4], Hello=[0, 2], World!=[1, 5], All!=[3]} -
in random orders
 // Print all unique words
 System.out.println(multiMap.keySet()); // print [Hi, Hello, World!, All!] - in random
orders

 // Print all indexes
 System.out.println("Hello = " + multiMap.get("Hello")); // print [0, 2]
 System.out.println("World = " + multiMap.get("World!")); // print [1, 5]
 System.out.println("All = " + multiMap.get("All!")); // print [3]

https://riptutorial.com/ 17

https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/HashMultimap.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/LinkedListMultimap.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashSet.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/LinkedHashMultimap.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/TreeMultimap.html

 System.out.println("Hi = " + multiMap.get("Hi")); // print [4]
 System.out.println("Empty = " + multiMap.get("Empty")); // print null

 // Print count unique words
 System.out.println(multiMap.keySet().size()); //print 4

2. HashBiMap from GS / Eclipse Collection

 String[] englishWords = {"one", "two", "three","ball","snow"};
 String[] russianWords = {"jeden", "dwa", "trzy", "kula", "snieg"};

 // Create Multiset
 MutableBiMap<String, String> biMap = new HashBiMap(englishWords.length);
 // Create English-Polish dictionary
 int i = 0;
 for(String englishWord: englishWords) {
 biMap.put(englishWord, russianWords[i]);
 i++;
 }

 // Print count words
 System.out.println(biMap); // print {two=dwa, ball=kula, one=jeden, snow=snieg,
three=trzy} - in random orders
 // Print all unique words
 System.out.println(biMap.keySet()); // print [snow, two, one, three, ball] - in random
orders
 System.out.println(biMap.values()); // print [dwa, kula, jeden, snieg, trzy] - in
random orders

 // Print translate by words
 System.out.println("one = " + biMap.get("one")); // print one = jeden
 System.out.println("two = " + biMap.get("two")); // print two = dwa
 System.out.println("kula = " + biMap.inverse().get("kula")); // print kula = ball
 System.out.println("snieg = " + biMap.inverse().get("snieg")); // print snieg = snow
 System.out.println("empty = " + biMap.get("empty")); // print empty = null

 // Print count word's pair
 System.out.println(biMap.size()); //print 5

HashMultiMap from Guava

 String INPUT_TEXT = "Hello World! Hello All! Hi World!";
 // Parse text to words and index
 List<String> words = Arrays.asList(INPUT_TEXT.split(" "));
 // Create Multimap
 Multimap<String, Integer> multiMap = HashMultimap.create();

 // Fill Multimap
 int i = 0;
 for(String word: words) {
 multiMap.put(word, i);
 i++;
 }

 // Print all words
 System.out.println(multiMap); // print {Hi=[4], Hello=[0, 2], World!=[1, 5], All!=[3]} -
keys and values in random orders
 // Print all unique words

3.

https://riptutorial.com/ 18

 System.out.println(multiMap.keySet()); // print [Hi, Hello, World!, All!] - in random
orders

 // Print all indexes
 System.out.println("Hello = " + multiMap.get("Hello")); // print [0, 2]
 System.out.println("World = " + multiMap.get("World!")); // print [1, 5]
 System.out.println("All = " + multiMap.get("All!")); // print [3]
 System.out.println("Hi = " + multiMap.get("Hi")); // print [4]
 System.out.println("Empty = " + multiMap.get("Empty")); // print []

 // Print count all words
 System.out.println(multiMap.size()); //print 6

 // Print count unique words
 System.out.println(multiMap.keySet().size()); //print 4

Nore examples:

I. Apache Collection:

MultiValueMap1.
MultiValueMapLinked2.
MultiValueMapTree3.

II. GS / Eclipse Collection

FastListMultimap1.
HashBagMultimap2.
TreeSortedSetMultimap3.
UnifiedSetMultimap4.

III. Guava

HashMultiMap1.
LinkedHashMultimap2.
LinkedListMultimap3.
TreeMultimap4.
ArrayListMultimap5.

Compare operation with collections - Create collections

Compare operation with collections - Create collections

1. Create List

Description JDK guava gs-collections

Create
empty list

new ArrayList<>() Lists.newArrayList() FastList.newList()

Create list Arrays.asList("1", "2",
"3") Lists.newArrayList("1", "2", "3") FastList.newListWith("1",

"2", "3")

https://riptutorial.com/ 19

https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/ApacheMultiValueMapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/ApacheMultiValueMapLinkedTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/ApacheMultiValueMapTreeTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/gs-eclipse/src/GsFastListMultimapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/gs-eclipse/src/GsHashBiMapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/gs-eclipse/src/GsTreeSortedSetMultimapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/gs-eclipse/src/GsUnifiedSetMultimapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/HashMultiMapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/LinkedHashMultimapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/LinkedListMultimapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/TreeMultimapTest.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections//src/ArrayListMultimapTest.java

Description JDK guava gs-collections

from values

Create list
with
capacity =
100

new ArrayList<>(100) Lists.newArrayListWithCapacity(100) FastList.newList(100)

Create list
from any
collectin

new
ArrayList<>(collection) Lists.newArrayList(collection) FastList.newList(collection)

Create list
from any
Iterable

- Lists.newArrayList(iterable) FastList.newList(iterable)

Create list
from Iterator

- Lists.newArrayList(iterator) -

Create list
from array

Arrays.asList(array) Lists.newArrayList(array) FastList.newListWith(array)

Create list
using
factory

- - FastList.newWithNValues(10,
() -> "1")

Examples:

 System.out.println("createArrayList start");
 // Create empty list
 List<String> emptyGuava = Lists.newArrayList(); // using guava
 List<String> emptyJDK = new ArrayList<>(); // using JDK
 MutableList<String> emptyGS = FastList.newList(); // using gs

 // Create list with 100 element
 List < String > exactly100 = Lists.newArrayListWithCapacity(100); // using guava
 List<String> exactly100JDK = new ArrayList<>(100); // using JDK
 MutableList<String> empty100GS = FastList.newList(100); // using gs

 // Create list with about 100 element
 List<String> approx100 = Lists.newArrayListWithExpectedSize(100); // using guava
 List<String> approx100JDK = new ArrayList<>(115); // using JDK
 MutableList<String> approx100GS = FastList.newList(115); // using gs

 // Create list with some elements
 List<String> withElements = Lists.newArrayList("alpha", "beta", "gamma"); // using guava
 List<String> withElementsJDK = Arrays.asList("alpha", "beta", "gamma"); // using JDK
 MutableList<String> withElementsGS = FastList.newListWith("alpha", "beta", "gamma"); //
using gs

 System.out.println(withElements);
 System.out.println(withElementsJDK);
 System.out.println(withElementsGS);

https://riptutorial.com/ 20

 // Create list from any Iterable interface (any collection)
 Collection<String> collection = new HashSet<>(3);
 collection.add("1");
 collection.add("2");
 collection.add("3");

 List<String> fromIterable = Lists.newArrayList(collection); // using guava
 List<String> fromIterableJDK = new ArrayList<>(collection); // using JDK
 MutableList<String> fromIterableGS = FastList.newList(collection); // using gs

 System.out.println(fromIterable);
 System.out.println(fromIterableJDK);
 System.out.println(fromIterableGS);
 /* Attention: JDK create list only from Collection, but guava and gs can create list from
Iterable and Collection */

 // Create list from any Iterator
 Iterator<String> iterator = collection.iterator();
 List<String> fromIterator = Lists.newArrayList(iterator); // using guava
 System.out.println(fromIterator);

 // Create list from any array
 String[] array = {"4", "5", "6"};
 List<String> fromArray = Lists.newArrayList(array); // using guava
 List<String> fromArrayJDK = Arrays.asList(array); // using JDK
 MutableList<String> fromArrayGS = FastList.newListWith(array); // using gs
 System.out.println(fromArray);
 System.out.println(fromArrayJDK);
 System.out.println(fromArrayGS);

 // Create list using fabric
 MutableList<String> fromFabricGS = FastList.newWithNValues(10, () ->
String.valueOf(Math.random())); // using gs
 System.out.println(fromFabricGS);

 System.out.println("createArrayList end");

2 Create Set

Description JDK guava gs-collections

Create
empty set

new HashSet<>() Sets.newHashSet() UnifiedSet.newSet()

Creatre set
from values

new
HashSet<>(Arrays.asList("alpha",
"beta", "gamma"))

Sets.newHashSet("alpha",
"beta", "gamma")

UnifiedSet.newSetWith("alpha",
"beta", "gamma")

Create set
from any
collections

new HashSet<>(collection) Sets.newHashSet(collection) UnifiedSet.newSet(collection)

Create set
from any
Iterable

- Sets.newHashSet(iterable) UnifiedSet.newSet(iterable)

Create set - Sets.newHashSet(iterator) -

https://riptutorial.com/ 21

Description JDK guava gs-collections

from any
Iterator

Create set
from Array

new
HashSet<>(Arrays.asList(array)) Sets.newHashSet(array) UnifiedSet.newSetWith(array)

Examples:

 System.out.println("createHashSet start");
 // Create empty set
 Set<String> emptyGuava = Sets.newHashSet(); // using guava
 Set<String> emptyJDK = new HashSet<>(); // using JDK
 Set<String> emptyGS = UnifiedSet.newSet(); // using gs

 // Create set with 100 element
 Set<String> approx100 = Sets.newHashSetWithExpectedSize(100); // using guava
 Set<String> approx100JDK = new HashSet<>(130); // using JDK
 Set<String> approx100GS = UnifiedSet.newSet(130); // using gs

 // Create set from some elements
 Set<String> withElements = Sets.newHashSet("alpha", "beta", "gamma"); // using guava
 Set<String> withElementsJDK = new HashSet<>(Arrays.asList("alpha", "beta", "gamma")); //
using JDK
 Set<String> withElementsGS = UnifiedSet.newSetWith("alpha", "beta", "gamma"); // using gs

 System.out.println(withElements);
 System.out.println(withElementsJDK);
 System.out.println(withElementsGS);

 // Create set from any Iterable interface (any collection)
 Collection<String> collection = new ArrayList<>(3);
 collection.add("1");
 collection.add("2");
 collection.add("3");

 Set<String> fromIterable = Sets.newHashSet(collection); // using guava
 Set<String> fromIterableJDK = new HashSet<>(collection); // using JDK
 Set<String> fromIterableGS = UnifiedSet.newSet(collection); // using gs

 System.out.println(fromIterable);
 System.out.println(fromIterableJDK);
 System.out.println(fromIterableGS);
 /* Attention: JDK create set only from Collection, but guava and gs can create set from
Iterable and Collection */

 // Create set from any Iterator
 Iterator<String> iterator = collection.iterator();
 Set<String> fromIterator = Sets.newHashSet(iterator); // using guava
 System.out.println(fromIterator);

 // Create set from any array
 String[] array = {"4", "5", "6"};
 Set<String> fromArray = Sets.newHashSet(array); // using guava
 Set<String> fromArrayJDK = new HashSet<>(Arrays.asList(array)); // using JDK
 Set<String> fromArrayGS = UnifiedSet.newSetWith(array); // using gs
 System.out.println(fromArray);
 System.out.println(fromArrayJDK);

https://riptutorial.com/ 22

 System.out.println(fromArrayGS);

 System.out.println("createHashSet end");

3 Create Map

Description JDK guava gs-collections

Create
empty map

new
HashMap<>() Maps.newHashMap() UnifiedMap.newMap()

Create map
with
capacity =
130

new
HashMap<>(130) Maps.newHashMapWithExpectedSize(100) UnifiedMap.newMap(130)

Create map
from other
map

new
HashMap<>(map) Maps.newHashMap(map) UnifiedMap.newMap(map)

Create map
from keys

- - UnifiedMap.newWithKeysValues("1",
"a", "2", "b")

Examples:

 System.out.println("createHashMap start");
 // Create empty map
 Map<String, String> emptyGuava = Maps.newHashMap(); // using guava
 Map<String, String> emptyJDK = new HashMap<>(); // using JDK
 Map<String, String> emptyGS = UnifiedMap.newMap(); // using gs

 // Create map with about 100 element
 Map<String, String> approx100 = Maps.newHashMapWithExpectedSize(100); // using guava
 Map<String, String> approx100JDK = new HashMap<>(130); // using JDK
 Map<String, String> approx100GS = UnifiedMap.newMap(130); // using gs

 // Create map from another map
 Map<String, String> map = new HashMap<>(3);
 map.put("k1","v1");
 map.put("k2","v2");
 Map<String, String> withMap = Maps.newHashMap(map); // using guava
 Map<String, String> withMapJDK = new HashMap<>(map); // using JDK
 Map<String, String> withMapGS = UnifiedMap.newMap(map); // using gs

 System.out.println(withMap);
 System.out.println(withMapJDK);
 System.out.println(withMapGS);

 // Create map from keys
 Map<String, String> withKeys = UnifiedMap.newWithKeysValues("1", "a", "2", "b");
 System.out.println(withKeys);

 System.out.println("createHashMap end");

More examples: CreateCollectionTest

https://riptutorial.com/ 23

https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/gs-eclipse/src/CreateCollectionTest.java

CollectionCompare1.
CollectionSearch2.
JavaTransform3.

Read Alternative Collections online: https://riptutorial.com/java/topic/2958/alternative-collections

https://riptutorial.com/ 24

https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/CollectionCompareTests.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/CollectionSearchTests.java
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/1.6-usefull-libraries/collections/apache-commons/src/JavaTransformTest.java
https://riptutorial.com/java/topic/2958/alternative-collections

Chapter 4: Annotations

Introduction

In Java, an annotation is a form of syntactic metadata that can be added to Java source code. It
provides data about a program that is not part of the program itself. Annotations have no direct
effect on the operation of the code they annotate. Classes, methods, variables, parameters and
packages are allowed to be annotated.

Syntax

@AnnotationName // 'Marker annotation' (no parameters)•
@AnnotationName(someValue) // sets parameter with the name 'value'•
@AnnotationName(param1 = value1) // named parameter•
@AnnotationName(param1 = value1, param2 = value2) // multiple named parameters•
@AnnotationName(param1 = {1, 2, 3}) // named array parameter•
@AnnotationName({value1}) // array with single element as parameter with the name 'value'•

Remarks

Parameter types

Only constant expressions of following types are allowed for parameters, as well as arrays of
these types:

String•
Class•
primitive types•
Enum types•
Annotation Types•

Examples

Built-in annotations

The Standard Edition of Java comes with some annotations predefined. You do not need to define
them by yourself and you can use them immediately. They allow the compiler to enable some
fundamental checking of methods, classes and code.

@Override

This annotation applies to a method and says that this method must override a superclass' method
or implement an abstract superclass' method definition. If this annotation is used with any other

https://riptutorial.com/ 25

https://en.wikipedia.org/wiki/Java_annotation
https://docs.oracle.com/javase/tutorial/java/annotations/
https://docs.oracle.com/javase/tutorial/java/annotations/

kind of method, the compiler will throw an error.

Concrete superclass

public class Vehicle {
 public void drive() {
 System.out.println("I am driving");
 }
}

class Car extends Vehicle {
 // Fine
 @Override
 public void drive() {
 System.out.prinln("Brrrm, brrm");
 }
}

Abstract class

abstract class Animal {
 public abstract void makeNoise();
}

class Dog extends Animal {
 // Fine
 @Override
 public void makeNoise() {
 System.out.prinln("Woof");
 }
}

Does not work

class Logger1 {
 public void log(String logString) {
 System.out.prinln(logString);
 }
}

class Logger2 {
 // This will throw compile-time error. Logger2 is not a subclass of Logger1.
 // log method is not overriding anything
 @Override
 public void log(String logString) {
 System.out.println("Log 2" + logString);
 }
}

The main purpose is to catch mistyping, where you think you are overriding a method, but are
actually defining a new one.

class Vehicle {
 public void drive() {
 System.out.println("I am driving");
 }

https://riptutorial.com/ 26

}

class Car extends Vehicle {
 // Compiler error. "dirve" is not the correct method name to override.
 @Override
 public void dirve() {
 System.out.prinln("Brrrm, brrm");
 }
}

Note that the meaning of @Override has changed over time:

In Java 5, it meant that the annotated method had to override a non-abstract method
declared in the superclass chain.

•

From Java 6 onward, it is also satisfied if the annotated method implements an abstract
method declared in the classes superclass / interface hierarchy.

•

(This can occasionally cause problems when back-porting code to Java 5.)

@Deprecated

This marks the method as deprecated. There can be several reasons for this:

the API is flawed and is impractical to fix,•

usage of the API is likely to lead to errors,•

the API has been superseded by another API,•

the API is obsolete,•

the API is experimental and is subject to incompatible changes,•

or any combination of the above.•

The specific reason for deprecation can usually be found in the documentation of the API.

The annotation will cause the compiler to emit an error if you use it. IDEs may also highlight this
method somehow as deprecated

class ComplexAlgorithm {
 @Deprecated
 public void oldSlowUnthreadSafeMethod() {
 // stuff here
 }

 public void quickThreadSafeMethod() {
 // client code should use this instead
 }
}

@SuppressWarnings

https://riptutorial.com/ 27

In almost all cases, when the compiler emits a warning, the most appropriate action is to fix the
cause. In some instances (Generics code using untype-safe pre-generics code, for example) this
may not be possible and it's better to suppress those warnings that you expect and cannot fix, so
you can more clearly see unexpected warnings.

This annotation can be applied to a whole class, method or line. It takes the category of warning
as a parameter.

@SuppressWarnings("deprecation")
public class RiddledWithWarnings {
 // several methods calling deprecated code here
}

@SuppressWarning("finally")
public boolean checkData() {
 // method calling return from within finally block
}

It is better to limit the scope of the annotation as much as possible, to prevent unexpected
warnings also being suppressed. For example, confining the scope of the annotation to a single-
line:

ComplexAlgorithm algorithm = new ComplexAlgorithm();
@SuppressWarnings("deprecation") algoritm.slowUnthreadSafeMethod();
// we marked this method deprecated in an example above

@SuppressWarnings("unsafe") List<Integer> list = getUntypeSafeList();
// old library returns, non-generic List containing only integers

The warnings supported by this annotation may vary from compiler to compiler. Only the unchecked
and deprecation warnings are specifically mentioned in the JLS. Unrecognized warning types will
be ignored.

@SafeVarargs

Because of type erasure, void method(T... t) will be converted to void method(Object[] t) meaning
that the compiler is not always able to verify that the use of varargs is type-safe. For instance:

private static <T> void generatesVarargsWarning(T... lists) {

There are instances where the use is safe, in which case you can annotate the method with the
SafeVarargs annotation to suppress the warning. This obviously hides the warning if your use is
unsafe too.

@FunctionalInterface

This is an optional annotation used to mark a FunctionalInterface. It will cause the compiler to
complain if it does not conform to the FunctionalInterface spec (has a single abstract method)

@FunctionalInterface
public interface ITrade {

https://riptutorial.com/ 28

 public boolean check(Trade t);
}

@FunctionalInterface
public interface Predicate<T> {
 boolean test(T t);
}

Runtime annotation checks via reflection

Java's Reflection API allows the programmer to perform various checks and operations on class
fields, methods and annotations during runtime. However, in order for an annotation to be at all
visible at runtime, the RetentionPolicy must be changed to RUNTIME, as demonstrated in the
example below:

@interface MyDefaultAnnotation {

}

@Retention(RetentionPolicy.RUNTIME)
@interface MyRuntimeVisibleAnnotation {

}

public class AnnotationAtRuntimeTest {

 @MyDefaultAnnotation
 static class RuntimeCheck1 {
 }

 @MyRuntimeVisibleAnnotation
 static class RuntimeCheck2 {
 }

 public static void main(String[] args) {
 Annotation[] annotationsByType = RuntimeCheck1.class.getAnnotations();
 Annotation[] annotationsByType2 = RuntimeCheck2.class.getAnnotations();

 System.out.println("default retention: " + Arrays.toString(annotationsByType));
 System.out.println("runtime retention: " + Arrays.toString(annotationsByType2));
 }
}

Defining annotation types

Annotation types are defined with @interface. Parameters are defined similar to methods of a
regular interface.

@interface MyAnnotation {
 String param1();
 boolean param2();
 int[] param3(); // array parameter
}

https://riptutorial.com/ 29

Default values

@interface MyAnnotation {
 String param1() default "someValue";
 boolean param2() default true;
 int[] param3() default {};
}

Meta-Annotations

Meta-annotations are annotations that can be applied to annotation types. Special predefined
meta-annotation define how annotation types can be used.

@Target

The @Target meta-annotation restricts the types the annotation can be applied to.

@Target(ElementType.METHOD)
@interface MyAnnotation {
 // this annotation can only be applied to methods
}

Multiple values can be added using array notation, e.g. @Target({ElementType.FIELD,
ElementType.TYPE})

Available Values

ElementType target example usage on target element

ANNOTATION_TYPE annotation types
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnnotation

CONSTRUCTOR constructors
@MyAnnotation
public MyClass() {}

FIELD fields, enum constants
@XmlAttribute
private int count;

for (@LoopVariable int i = 0; i < 100;
i++) {
 @Unused
 String resultVariable;

LOCAL_VARIABLE
variable declarations
inside methods

https://riptutorial.com/ 30

ElementType target example usage on target element

}

PACKAGE
package (in package-
info.java)

@Deprecated
package very.old;

METHOD methods
@XmlElement
public int getCount() {...}

PARAMETER
method/constructor
parameters

public Rectangle(
 @NamedArg("width") double
width,
 @NamedArg("height") double
height) {
 ...
}

TYPE
classes, interfaces,
enums

@XmlRootElement
public class Report {}

Java SE 8

ElementType target example usage on target element

TYPE_PARAMETER
Type parameter
declarations

public <@MyAnnotation T> void f(T t)
{}

TYPE_USE Use of a type
Object o = "42";
String s = (@MyAnnotation String) o;

@Retention

The @Retention meta-annotation defines the annotation visibility during the applications compilation
process or execution. By default, annotations are included in .class files, but are not visible at
runtime. To make an annotation accessible at runtime, RetentionPolicy.RUNTIME has to be set on
that annotation.

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnnotation {

https://riptutorial.com/ 31

 // this annotation can be accessed with reflections at runtime
}

Available values

RetentionPolicy Effect

CLASS The annotation is available in the .class file, but not at runtime

RUNTIME The annotation is available at runtime and can be accessed via reflection

SOURCE
The annotation is available at compile time, but not added to the .class
files. The annotation can be used e.g. by an annotation processor.

@Documented

The @Documented meta-annotation is used to mark annotations whose usage should be documented
by API documentation generators like javadoc. It has no values. With @Documented, all classes that
use the annotation will list it on their generated documentation page. Without @Documented, it's not
possible to see which classes use the annotation in the documentation.

@Inherited

The @Inherited meta-annotation is relevant to annotations that are applied to classes. It has no
values. Marking an annotation as @Inherited alters the way that annotation querying works.

For a non-inherited annotation, the query only examines the class being examined.•
For an inherited annotation, the query will also check the super-class chain (recursively) until
an instance of the annotation is found.

•

Note that only the super-classes are queried: any annotations attached to interfaces in the classes
hierarchy will be ignored.

@Repeatable

The @Repeatable meta-annotation was added in Java 8. It indicates that multiple instances of the
annotation can be attached to the annotation's target. This meta-annotation has no values.

Getting Annotation values at run-time

You can fetch the current properties of the Annotation by using Reflection to fetch the Method or
Field or Class which has an Annotation applied to it, and then fetching the desired properties.

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnnotation {
 String key() default "foo";

https://riptutorial.com/ 32

http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.riptutorial.com/java/topic/629/reflection-api

 String value() default "bar";
}

class AnnotationExample {
 // Put the Annotation on the method, but leave the defaults
 @MyAnnotation
 public void testDefaults() throws Exception {
 // Using reflection, get the public method "testDefaults", which is this method with
no args
 Method method = AnnotationExample.class.getMethod("testDefaults", null);

 // Fetch the Annotation that is of type MyAnnotation from the Method
 MyAnnotation annotation = (MyAnnotation)method.getAnnotation(MyAnnotation.class);

 // Print out the settings of the Annotation
 print(annotation);
 }

 //Put the Annotation on the method, but override the settings
 @MyAnnotation(key="baz", value="buzz")
 public void testValues() throws Exception {
 // Using reflection, get the public method "testValues", which is this method with no
args
 Method method = AnnotationExample.class.getMethod("testValues", null);

 // Fetch the Annotation that is of type MyAnnotation from the Method
 MyAnnotation annotation = (MyAnnotation)method.getAnnotation(MyAnnotation.class);

 // Print out the settings of the Annotation
 print(annotation);
 }

 public void print(MyAnnotation annotation) {
 // Fetch the MyAnnotation 'key' & 'value' properties, and print them out
 System.out.println(annotation.key() + " = " + annotation.value());
 }

 public static void main(String[] args) {
 AnnotationExample example = new AnnotationExample();
 try {
 example.testDefaults();
 example.testValues();
 } catch(Exception e) {
 // Shouldn't throw any Exceptions
 System.err.println("Exception [" + e.getClass().getName() + "] - " +
e.getMessage());
 e.printStackTrace(System.err);
 }
 }
}

The output will be

foo = bar
baz = buzz

Repeating Annotations

https://riptutorial.com/ 33

Until Java 8, two instances of the same annotation could not be applied to a single element. The
standard workaround was to use a container annotation holding an array of some other
annotation:

// Author.java
@Retention(RetentionPolicy.RUNTIME)
public @interface Author {
 String value();
}

// Authors.java
@Retention(RetentionPolicy.RUNTIME)
public @interface Authors {
 Author[] value();
}

// Test.java
@Authors({
 @Author("Mary"),
 @Author("Sam")
})
public class Test {
 public static void main(String[] args) {
 Author[] authors = Test.class.getAnnotation(Authors.class).value();
 for (Author author : authors) {
 System.out.println(author.value());
 // Output:
 // Mary
 // Sam
 }
 }
}

Java SE 8

Java 8 provides a cleaner, more transparent way of using container annotations, using the
@Repeatable annotation. First we add this to the Author class:

@Repeatable(Authors.class)

This tells Java to treat multiple @Author annotations as though they were surrounded by the
@Authors container. We can also use Class.getAnnotationsByType() to access the @Author array by its
own class, instead of through its container:

@Author("Mary")
@Author("Sam")
public class Test {
 public static void main(String[] args) {
 Author[] authors = Test.class.getAnnotationsByType(Author.class);
 for (Author author : authors) {
 System.out.println(author.value());
 // Output:
 // Mary
 // Sam
 }
 }

https://riptutorial.com/ 34

}

Inherited Annotations

By default class annotations do not apply to types extending them. This can be changed by adding
the @Inherited annotation to the annotation definition

Example

Consider the following 2 Annotations:

@Inherited
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface InheritedAnnotationType {
}

and

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface UninheritedAnnotationType {
}

If three classes are annotated like this:

@UninheritedAnnotationType
class A {
}

@InheritedAnnotationType
class B extends A {
}

class C extends B {
}

running this code

System.out.println(new A().getClass().getAnnotation(InheritedAnnotationType.class));
System.out.println(new B().getClass().getAnnotation(InheritedAnnotationType.class));
System.out.println(new C().getClass().getAnnotation(InheritedAnnotationType.class));
System.out.println("_________________________________");
System.out.println(new A().getClass().getAnnotation(UninheritedAnnotationType.class));
System.out.println(new B().getClass().getAnnotation(UninheritedAnnotationType.class));
System.out.println(new C().getClass().getAnnotation(UninheritedAnnotationType.class));

will print a result similar to this (depending on the packages of the annotation):

null
@InheritedAnnotationType()
@InheritedAnnotationType()

https://riptutorial.com/ 35

@UninheritedAnnotationType()
null
null

Note that annotations can only be inherited from classes, not interfaces.

Compile time processing using annotation processor

This example demonstrates how to do compile time checking of an annotated element.

The annotation

The @Setter annotation is a marker can be applied to methods. The annotation will be discarded
during compilation not be available afterwards.

package annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention(RetentionPolicy.SOURCE)
@Target(ElementType.METHOD)
public @interface Setter {
}

The annotation processor

The SetterProcessor class is used by the compiler to process the annotations. It checks, if the
methods annotated with the @Setter annotation are public, non-static methods with a name
starting with set and having a uppercase letter as 4th letter. If one of these conditions isn't met, a
error is written to the Messager. The compiler writes this to stderr, but other tools could use this
information differently. E.g. the NetBeans IDE allows the user specify annotation processors that
are used to display error messages in the editor.

package annotation.processor;

import annotation.Setter;
import java.util.Set;
import javax.annotation.processing.AbstractProcessor;
import javax.annotation.processing.Messager;
import javax.annotation.processing.ProcessingEnvironment;
import javax.annotation.processing.RoundEnvironment;
import javax.annotation.processing.SupportedAnnotationTypes;
import javax.annotation.processing.SupportedSourceVersion;
import javax.lang.model.SourceVersion;
import javax.lang.model.element.Element;
import javax.lang.model.element.ElementKind;

https://riptutorial.com/ 36

import javax.lang.model.element.ExecutableElement;
import javax.lang.model.element.Modifier;
import javax.lang.model.element.TypeElement;
import javax.tools.Diagnostic;

@SupportedAnnotationTypes({"annotation.Setter"})
@SupportedSourceVersion(SourceVersion.RELEASE_8)
public class SetterProcessor extends AbstractProcessor {

 private Messager messager;

 @Override
 public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment roundEnv)
{
 // get elements annotated with the @Setter annotation
 Set<? extends Element> annotatedElements =
roundEnv.getElementsAnnotatedWith(Setter.class);

 for (Element element : annotatedElements) {
 if (element.getKind() == ElementKind.METHOD) {
 // only handle methods as targets
 checkMethod((ExecutableElement) element);
 }
 }

 // don't claim annotations to allow other processors to process them
 return false;
 }

 private void checkMethod(ExecutableElement method) {
 // check for valid name
 String name = method.getSimpleName().toString();
 if (!name.startsWith("set")) {
 printError(method, "setter name must start with \"set\"");
 } else if (name.length() == 3) {
 printError(method, "the method name must contain more than just \"set\"");
 } else if (Character.isLowerCase(name.charAt(3))) {
 if (method.getParameters().size() != 1) {
 printError(method, "character following \"set\" must be upper case");
 }
 }

 // check, if setter is public
 if (!method.getModifiers().contains(Modifier.PUBLIC)) {
 printError(method, "setter must be public");
 }

 // check, if method is static
 if (method.getModifiers().contains(Modifier.STATIC)) {
 printError(method, "setter must not be static");
 }
 }

 private void printError(Element element, String message) {
 messager.printMessage(Diagnostic.Kind.ERROR, message, element);
 }

 @Override
 public void init(ProcessingEnvironment processingEnvironment) {
 super.init(processingEnvironment);

https://riptutorial.com/ 37

 // get messager for printing errors
 messager = processingEnvironment.getMessager();
 }

}

Packaging

To be applied by the compiler, the annotation processor needs to be made available to the SPI
(see ServiceLoader).

To do this a text file META-INF/services/javax.annotation.processing.Processor needs to be added to
the jar file containing the annotation processor and the annotation in addition to the other files. The
file needs to include the fully qualified name of the annotation processor, i.e. it should look like this

annotation.processor.SetterProcessor

We'll assume the jar file is called AnnotationProcessor.jar below.

Example annotated class

The following class is example class in the default package with the annotations being applied to
the correct elements according to the retention policy. However only the annotation processor only
considers the second method a valid annotation target.

import annotation.Setter;

public class AnnotationProcessorTest {

 @Setter
 private void setValue(String value) {}

 @Setter
 public void setString(String value) {}

 @Setter
 public static void main(String[] args) {}

}

Using the annotation processor with javac

If the annotation processor is discovered using the SPI, it is automatically used to process
annotated elements. E.g. compiling the AnnotationProcessorTest class using

javac -cp AnnotationProcessor.jar AnnotationProcessorTest.java

https://riptutorial.com/ 38

http://www.riptutorial.com/java/topic/5433/serviceloader

yields the following output

AnnotationProcessorTest.java:6: error: setter must be public
 private void setValue(String value) {}
 ^
AnnotationProcessorTest.java:12: error: setter name must start with "set"
 public static void main(String[] args) {}
 ^
2 errors

instead of compiling normally. No .class file is created.

This could be prevented by specifying the -proc:none option for javac. You could also forgo the
usual compilation by specifying -proc:only instead.

IDE integration

Netbeans

Annotation processors can be used in the NetBeans editor. To do this the annotation processor
needs to be specified in the project settings:

go to Project Properties > Build > Compiling1.

add check marks for Enable Annotation Processing and Enable Annotation Processing in
Editor

2.

click Add next to the annotation processor list3.

in the popup that appears enter the fully qualified class name of the annotation processor
and click Ok.

4.

Result

https://riptutorial.com/ 39

https://i.stack.imgur.com/fO8Xv.png

The idea behind Annotations

The Java Language Specification describes Annotations as follows:

An annotation is a marker which associates information with a program construct, but
has no effect at run time.

Annotations may appear before types or declarations. It is possible for them to appear in a place
where they could apply to both a type or a declaration.
What exactly an annotation applies to is governed by the "meta-annotation" @Target. See "Defining
annotation types" for more information.

Annotations are used for a multitude of purposes. Frameworks like Spring and Spring-MVC make
use of annotations to define where Dependencies should be injected or where requests should be
routed.

Other frameworks use annotations for code-generation. Lombok and JPA are prime examples,
that use annotations to generate Java (and SQL) code.

This topic aims to provide a comprehensive overview of:

How to define your own Annotations?•

What Annotations does the Java Language provide?•

How are Annotations used in practice?•

Annotations for 'this' and receiver parameters

When Java annotations were first introduced there was no provision for annotating the target of an
instance method or the hidden constructor parameter for an inner classes constructor. This was
remedied in Java 8 with addition of receiver parameter declarations; see JLS 8.4.1.

The receiver parameter is an optional syntactic device for an instance method or an
inner class's constructor. For an instance method, the receiver parameter represents
the object for which the method is invoked. For an inner class's constructor, the
receiver parameter represents the immediately enclosing instance of the newly
constructed object. Either way, the receiver parameter exists solely to allow the type of
the represented object to be denoted in source code, so that the type may be
annotated. The receiver parameter is not a formal parameter; more precisely, it is not a
declaration of any kind of variable (§4.12.3), it is never bound to any value passed as
an argument in a method invocation expression or qualified class instance creation
expression, and it has no effect whatsoever at run time.

The following example illustrates the syntax for both kinds of receiver parameter:

public class Outer {
 public class Inner {
 public Inner (Outer this) {

https://riptutorial.com/ 40

https://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.7
http://www.riptutorial.com/java/example/2060/defining-annotation-types
http://www.riptutorial.com/java/example/2060/defining-annotation-types
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.1-220

 // ...
 }
 public void doIt(Inner this) {
 // ...
 }
 }
}

The sole purpose of receiver parameters is to allow you to add annotations. For example, you
might have a custom annotation @IsOpen whose purpose is to assert that a Closeable object has not
been closed when a method is called. For example:

public class MyResource extends Closeable {
 public void update(@IsOpen MyResource this, int value) {
 // ...
 }

 public void close() {
 // ...
 }
}

At one level, the @IsOpen annotation on this could simply serve as documentation. However, we
could potentially do more. For example:

An annotation processor could insert a runtime check that this is not in closed state when
update is called.

•

A code checker could perform a static code analysis to find cases where this could be
closed when update is called.

•

Add multiple annotation values

An Annotation parameter can accept multiple values if it is defined as an array. For example the
standard annotation @SuppressWarnings is defined like this:

public @interface SuppressWarnings {
 String[] value();
}

The value parameter is an array of Strings. You can set multiple values by using a notation similar
to Array initializers:

@SuppressWarnings({"unused"})
@SuppressWarnings({"unused", "javadoc"})

If you only need to set a single value, the brackets can be omitted:

@SuppressWarnings("unused")

Read Annotations online: https://riptutorial.com/java/topic/157/annotations

https://riptutorial.com/ 41

https://riptutorial.com/java/topic/157/annotations

Chapter 5: Apache Commons Lang

Examples

Implement equals() method

To implement the equals method of an object easily you could use the EqualsBuilder class.

Selecting the fields:

@Override
public boolean equals(Object obj) {

 if(!(obj instanceof MyClass)) {
 return false;
 }
 MyClass theOther = (MyClass) obj;

 EqualsBuilder builder = new EqualsBuilder();
 builder.append(field1, theOther.field1);
 builder.append(field2, theOther.field2);
 builder.append(field3, theOther.field3);

 return builder.isEquals();
}

Using reflection:

@Override
public boolean equals(Object obj) {
 return EqualsBuilder.reflectionEquals(this, obj, false);
}

the boolean parameter is to indicates if the equals should check transient fields.

Using reflection avoiding some fields:

@Override
public boolean equals(Object obj) {
 return EqualsBuilder.reflectionEquals(this, obj, "field1", "field2");
}

Implement hashCode() method

To implement the hashCode method of an object easily you could use the HashCodeBuilder class.

Selecting the fields:

@Override
public int hashCode() {

https://riptutorial.com/ 42

 HashCodeBuilder builder = new HashCodeBuilder();
 builder.append(field1);
 builder.append(field2);
 builder.append(field3);

 return builder.hashCode();
}

Using reflection:

@Override
public int hashCode() {
 return HashCodeBuilder.reflectionHashCode(this, false);
}

the boolean parameter indicates if it should use transient fields.

Using reflection avoiding some fields:

@Override
public int hashCode() {
 return HashCodeBuilder.reflectionHashCode(this, "field1", "field2");
}

Implement toString() method

To implement the toString method of an object easily you could use the ToStringBuilder class.

Selecting the fields:

@Override
public String toString() {

 ToStringBuilder builder = new ToStringBuilder(this);
 builder.append(field1);
 builder.append(field2);
 builder.append(field3);

 return builder.toString();
}

Example result:

ar.com.jonat.lang.MyClass@dd7123[<null>,0,false]

Explicitly giving names to the fields:

@Override
public String toString() {

 ToStringBuilder builder = new ToStringBuilder(this);
 builder.append("field1",field1);

https://riptutorial.com/ 43

 builder.append("field2",field2);
 builder.append("field3",field3);

 return builder.toString();
}

Example result:

ar.com.jonat.lang.MyClass@dd7404[field1=<null>,field2=0,field3=false]

You could change the style via parameter:

@Override
public String toString() {

 ToStringBuilder builder = new ToStringBuilder(this,
 ToStringStyle.MULTI_LINE_STYLE);
 builder.append("field1", field1);
 builder.append("field2", field2);
 builder.append("field3", field3);

 return builder.toString();
}

Example result:

ar.com.bna.lang.MyClass@ebbf5c[
 field1=<null>
 field2=0
 field3=false
]

There are some styles, for example JSON, no Classname, short, etc ...

Via reflection:

@Override
public String toString() {
 return ToStringBuilder.reflectionToString(this);
}

You could also indicate the style:

@Override
public String toString() {
 return ToStringBuilder.reflectionToString(this, ToStringStyle.JSON_STYLE);
}

Read Apache Commons Lang online: https://riptutorial.com/java/topic/3338/apache-commons-
lang

https://riptutorial.com/ 44

https://riptutorial.com/java/topic/3338/apache-commons-lang
https://riptutorial.com/java/topic/3338/apache-commons-lang

Chapter 6: AppDynamics and TIBCO
BusinessWorks Instrumentation for Easy
Integration

Introduction

As AppDynamics aims to provide a way to measure application performance, speed of
development, delivery (deployment) of applications is an essential factor in making DevOps efforts
a true success. Monitoring a TIBCO BW application with AppD is generally simple and not time
consuming but when deploying large sets of applications rapid instrumentation is key. This guide
shows how to instrument all of your BW applications in a single step without modifying each
application before deploying.

Examples

Example of Instrumentation of all BW Applications in a Single Step for
Appdynamics

Locate and open your TIBCO BW bwengine.tra file typlically under
TIBCO_HOME/bw/5.12/bin/bwengine.tra (Linux environment)

1.

Look for the line that states:2.

*** Common variables. Modify these only. ***

Add the following line right after that section tibco.deployment=%tibco.deployment%3.

Go to the end of the file and add (replace ? with your own values as needed or remove the
flag that does not apply): java.extended.properties=-
javaagent:/opt/appd/current/appagent/javaagent.jar -Dappdynamics.http.proxyHost=? -
Dappdynamics.http.proxyPort=? -Dappdynamics.agent.applicationName=? -
Dappdynamics.agent.tierName=? -Dappdynamics.agent.nodeName=%tibco.deployment% -
Dappdynamics.controller.ssl.enabled=? -Dappdynamics.controller.sslPort=? -
Dappdynamics.agent.logs.dir=? -Dappdynamics.agent.runtime.dir=? -
Dappdynamics.controller.hostName=? -Dappdynamics.controller.port=? -
Dappdynamics.agent.accountName=? -Dappdynamics.agent.accountAccessKey=?

4.

Save file and redeploy. All your applications should now be instrumented automatically at
deployment time.

5.

Read AppDynamics and TIBCO BusinessWorks Instrumentation for Easy Integration online:
https://riptutorial.com/java/topic/10602/appdynamics-and-tibco-businessworks-instrumentation-for-

https://riptutorial.com/ 45

https://riptutorial.com/java/topic/10602/appdynamics-and-tibco-businessworks-instrumentation-for-easy-integration

easy-integration

https://riptutorial.com/ 46

https://riptutorial.com/java/topic/10602/appdynamics-and-tibco-businessworks-instrumentation-for-easy-integration

Chapter 7: Applets

Introduction

Applets have been part of Java since its official release and have been used to teach Java and
programming for a number of years.

Recent years have seen an active push to move away from Applets and other browser plugins,
with some browsers blocking them or actively not supporting them.

In 2016, Oracle announced their plans to deprecate the plugin, Moving to a Plugin-Free Web

Newer and better APIs are now available

Remarks

An applet is a Java application that normally runs inside a web browser. The basic idea is to
interact with the user without the need to interact with the server and transfer information. This
concept was very successful around the year 2000 when internet communication was slow and
expensive.

An applet offers five methods to control their life cycle.

method name description

init() is called once when the applet is loaded

destroy() is called once when the applet gets removed from memory

start() is called whenever the applet gets visible

stop() is called whenever the applet get overlapped by other windows

paint() is called when needed or manually triggered by calling repaint()

Examples

Minimal Applet

A very simple applet draws a rectangle and prints a string something on the screen.

public class MyApplet extends JApplet{

 private String str = "StackOverflow";

 @Override

https://riptutorial.com/ 47

https://blogs.oracle.com/java-platform-group/entry/moving_to_a_plugin_free

 public void init() {
 setBackground(Color.gray);
 }
 @Override
 public void destroy() {}
 @Override
 public void start() {}
 @Override
 public void stop() {}
 @Override
 public void paint(Graphics g) {
 g.setColor(Color.yellow);
 g.fillRect(1,1,300,150);
 g.setColor(Color.red);
 g.setFont(new Font("TimesRoman", Font.PLAIN, 48));
 g.drawString(str, 10, 80);
 }
}

The main class of an applet extends from javax.swing.JApplet.

Java SE 1.2

Before Java 1.2 and the introduction of the swing API applets had extended from
java.applet.Applet.

Applets don't require a main method. The entry point is controlled by the life cycle. To use them,
they need to be embedded in a HTML document. This is also the point where their size is defined.

<html>
 <head></head>
 <body>
 <applet code="MyApplet.class" width="400" height="200"></applet>
 </body>
</html>

Creating a GUI

Applets could easily be used to create a GUI. They act like a Container and have an add() method
that takes any awt or swing component.

public class MyGUIApplet extends JApplet{

 private JPanel panel;
 private JButton button;
 private JComboBox<String> cmbBox;
 private JTextField textField;

 @Override
 public void init(){
 panel = new JPanel();
 button = new JButton("ClickMe!");
 button.addActionListener(new ActionListener(){
 @Override
 public void actionPerformed(ActionEvent ae) {
 if(((String)cmbBox.getSelectedItem()).equals("greet")) {

https://riptutorial.com/ 48

 JOptionPane.showMessageDialog(null,"Hello " + textField.getText());
 } else {
 JOptionPane.showMessageDialog(null,textField.getText() + " stinks!");
 }
 }
 });
 cmbBox = new JComboBox<>(new String[]{"greet", "offend"});
 textField = new JTextField("John Doe");
 panel.add(cmbBox);
 panel.add(textField);
 panel.add(button);
 add(panel);
 }
}

Open links from within the applet

You can use the method getAppletContext() to get an AppletContext object that allows you to
request the browser to open a link. For this you use the method showDocument(). Its second
parameter tells the browser to use a new window _blank or the one that shows the applet _self.

public class MyLinkApplet extends JApplet{
 @Override
 public void init(){
 JButton button = new JButton("ClickMe!");
 button.addActionListener(new ActionListener(){
 @Override
 public void actionPerformed(ActionEvent ae) {
 AppletContext a = getAppletContext();
 try {
 URL url = new URL("http://stackoverflow.com/");
 a.showDocument(url,"_blank");
 } catch (Exception e) { /* omitted for brevity */ }
 }
 });
 add(button);
 }
}

Loading images, audio and other resources

Java applets are able to load different resources. But since they are running in the web browser of
the client you need to make sure that these resources are accessible. Applets are not able to
access client resources as the local file system.

If you want to load resources from the same URL the Applet is stored you can use the method
getCodeBase() to retrieve the base URL. To load resources, applets offer the methods getImage()
and getAudioClip() to load images or audio files.

Load and show an image

https://riptutorial.com/ 49

public class MyImgApplet extends JApplet{

 private Image img;

 @Override
 public void init(){
 try {
 img = getImage(new URL("http://cdn.sstatic.net/stackexchange/img/logos/so/so-
logo.png"));
 } catch (MalformedURLException e) { /* omitted for brevity */ }
 }
 @Override
 public void paint(Graphics g) {
 g.drawImage(img, 0, 0, this);
 }
}

Load and play an audio file

public class MyAudioApplet extends JApplet{

 private AudioClip audioClip;

 @Override
 public void init(){
 try {
 audioClip = getAudioClip(new URL("URL/TO/AN/AUDIO/FILE.WAV"));
 } catch (MalformedURLException e) { /* omitted for brevity */ }
 }
 @Override
 public void start() {
 audioClip.play();
 }
 @Override
 public void stop(){
 audioClip.stop();
 }
}

Load and display a text file

public class MyTextApplet extends JApplet{
 @Override
 public void init(){
 JTextArea textArea = new JTextArea();
 JScrollPane sp = new JScrollPane(textArea);
 add(sp);
 // load text
 try {
 URL url = new URL("http://www.textfiles.com/fun/quotes.txt");
 InputStream in = url.openStream();
 BufferedReader bf = new BufferedReader(new InputStreamReader(in));

https://riptutorial.com/ 50

 String line = "";
 while((line = bf.readLine()) != null) {
 textArea.append(line + "\n");
 }
 } catch(Exception e) { /* omitted for brevity */ }
 }
}

Read Applets online: https://riptutorial.com/java/topic/5503/applets

https://riptutorial.com/ 51

https://riptutorial.com/java/topic/5503/applets

Chapter 8: Arrays

Introduction

Arrays allow for the storage and retrieval of an arbitrary quantity of values. They are analogous to
vectors in mathematics. Arrays of arrays are analogous to matrices, and act as multidimensional
arrays. Arrays can store any data of any type: primitives such as int or reference types such as
Object.

Syntax

ArrayType[] myArray; // Declaring arrays•
ArrayType myArray[]; // Another valid syntax (less commonly used and discouraged)•
ArrayType[][][] myArray; // Declaring multi-dimensional jagged arrays (repeat []s)•
ArrayType myVar = myArray[index]; // Accessing (reading) element at index•
myArray[index] = value; // Assign value to position index of array•
ArrayType[] myArray = new ArrayType[arrayLength]; // Array initialization syntax•
int[] ints = {1, 2, 3}; // Array initialization syntax with values provided, length is inferred
from the number of provided values: {[value1[, value2]*]}

•

new int[]{4, -5, 6} // Can be used as argument, without a local variable•
int[] ints = new int[3]; // same as {0, 0, 0}•
int[][] ints = {{1, 2}, {3}, null}; // Multi-dimensional array initialization. int[] extends
Object (and so does anyType[]) so null is a valid value.

•

Parameters

Parameter Details

ArrayType
Type of the array. This can be primitive (int, long, byte) or Objects (String,
MyObject, etc).

index Index refers to the position of a certain Object in an array.

length
Every array, when being created, needs a set length specified. This is either
done when creating an empty array (new int[3]) or implied when specifying
values ({1, 2, 3}).

Examples

Creating and Initializing Arrays

Basic cases

https://riptutorial.com/ 52

int[] numbers1 = new int[3]; // Array for 3 int values, default value is 0
int[] numbers2 = { 1, 2, 3 }; // Array literal of 3 int values
int[] numbers3 = new int[] { 1, 2, 3 }; // Array of 3 int values initialized
int[][] numbers4 = { { 1, 2 }, { 3, 4, 5 } }; // Jagged array literal
int[][] numbers5 = new int[5][]; // Jagged array, one dimension 5 long
int[][] numbers6 = new int[5][4]; // Multidimensional array: 5x4

Arrays may be created using any primitive or reference type.

float[] boats = new float[5]; // Array of five 32-bit floating point numbers.
double[] header = new double[] { 4.56, 332.267, 7.0, 0.3367, 10.0 };
 // Array of five 64-bit floating point numbers.
String[] theory = new String[] { "a", "b", "c" };
 // Array of three strings (reference type).
Object[] dArt = new Object[] { new Object(), "We love Stack Overflow.", new Integer(3) };
 // Array of three Objects (reference type).

For the last example, note that subtypes of the declared array type are allowed in the array.

Arrays for user defined types can also be built similar to primitive types

UserDefinedClass[] udType = new UserDefinedClass[5];

Arrays, Collections, and Streams

Java SE 1.2

// Parameters require objects, not primitives

// Auto-boxing happening for int 127 here
Integer[] initial = { 127, Integer.valueOf(42) };
List<Integer> toList = Arrays.asList(initial); // Fixed size!

// Note: Works with all collections
Integer[] fromCollection = toList.toArray(new Integer[toList.size()]);

//Java doesn't allow you to create an array of a parameterized type
List<String>[] list = new ArrayList<String>[2]; // Compilation error!

Java SE 8

// Streams - JDK 8+
Stream<Integer> toStream = Arrays.stream(initial);
Integer[] fromStream = toStream.toArray(Integer[]::new);

Intro

An array is a data structure that holds a fixed number of primitive values or references to object
instances.

https://riptutorial.com/ 53

Each item in an array is called an element, and each element is accessed by its numerical index.
The length of an array is established when the array is created:

int size = 42;
int[] array = new int[size];

The size of an array is fixed at runtime when initialized. It cannot be changed after
initialization. If the size must be mutable at runtime, a Collection class such as ArrayList should be
used instead. ArrayList stores elements in an array and supports resizing by allocating a new
array and copying elements from the old array.

If the array is of a primitive type, i.e.

int[] array1 = { 1,2,3 };
int[] array2 = new int[10];

the values are stored in the array itself. In the absence of an initializer (as in array2 above), the
default value assigned to each element is 0 (zero).

If the array type is an object reference, as in

SomeClassOrInterface[] array = new SomeClassOrInterface[10];

then the array contains references to objects of type SomeClassOrInterface. Those references can
refer to an instance of SomeClassOrInterface or any subclass (for classes) or implementing class
(for interfaces) of SomeClassOrInterface. If the array declaration has no initializer then the default
value of null is assigned to each element.

Because all arrays are int-indexed, the size of an array must be specified by an int. The size of
the array cannot be specified as a long:

long size = 23L;
int[] array = new int[size]; // Compile-time error:
 // incompatible types: possible lossy conversion from
 // long to int

Arrays use a zero-based index system, which means indexing starts at 0 and ends at length - 1.

For example, the following image represents an array with size 10. Here, the first element is at
index 0 and the last element is at index 9, instead of the first element being at index 1 and the last
element at index 10 (see figure below).

https://riptutorial.com/ 54

http://www.riptutorial.com/java/topic/90/collections
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
http://www.riptutorial.com/java/example/6818/how-do-you-change-the-size-of-an-array-
http://www.riptutorial.com/java/example/6818/how-do-you-change-the-size-of-an-array-
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Accesses to elements of arrays are done in constant time. That means accessing to the first
element of the array has the same cost (in time) of accessing the second element, the third
element and so on.

Java offers several ways of defining and initializing arrays, including literal and constructor
notations. When declaring arrays using the new Type[length] constructor, each element will be
initialized with the following default values:

0 for primitive numerical types: byte, short, int, long, float, and double.•
'\u0000' (null character) for the char type.•
false for the boolean type.•
null for reference types.•

Creating and initializing primitive type arrays

int[] array1 = new int[] { 1, 2, 3 }; // Create an array with new operator and
 // array initializer.
int[] array2 = { 1, 2, 3 }; // Shortcut syntax with array initializer.
int[] array3 = new int[3]; // Equivalent to { 0, 0, 0 }
int[] array4 = null; // The array itself is an object, so it
 // can be set as null.

When declaring an array, [] will appear as part of the type at the beginning of the declaration
(after the type name), or as part of the declarator for a particular variable (after variable name), or
both:

int array5[]; /* equivalent to */ int[] array5;
int a, b[], c[][]; /* equivalent to */ int a; int[] b; int[][] c;
int[] a, b[]; /* equivalent to */ int[] a; int[][] b;
int a, []b, c[][]; /* Compilation Error, because [] is not part of the type at beginning
 of the declaration, rather it is before 'b'. */
// The same rules apply when declaring a method that returns an array:
int foo()[] { ... } /* equivalent to */ int[] foo() { ... }

In the following example, both declarations are correct and can compile and run without any
problems. However, both the Java Coding Convention and the Google Java Style Guide
discourage the form with brackets after the variable name—the brackets identify the array type
and should appear with the type designation. The same should be used for method return
signatures.

float array[]; /* and */ int foo()[] { ... } /* are discouraged */
float[] array; /* and */ int[] foo() { ... } /* are encouraged */

The discouraged type is meant to accommodate transitioning C users, who are familiar with the
syntax for C which has the brackets after the variable name.

In Java, it is possible to have arrays of size 0:

int[] array = new int[0]; // Compiles and runs fine.

https://riptutorial.com/ 55

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.3
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
https://google.github.io/styleguide/javaguide.html#s4.8.3.1-array-initializers
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
https://stackoverflow.com/questions/129178/difference-between-int-array-and-int-array/129188#129188

int[] array2 = {}; // Equivalent syntax.

However, since it's an empty array, no elements can be read from it or assigned to it:

array[0] = 1; // Throws java.lang.ArrayIndexOutOfBoundsException.
int i = array2[0]; // Also throws ArrayIndexOutOfBoundsException.

Such empty arrays are typically useful as return values, so that the calling code only has to worry
about dealing with an array, rather than a potential null value that may lead to a
NullPointerException.

The length of an array must be a non-negative integer:

int[] array = new int[-1]; // Throws java.lang.NegativeArraySizeException

The array size can be determined using a public final field called length:

System.out.println(array.length); // Prints 0 in this case.

Note: array.length returns the actual size of the array and not the number of array elements which
were assigned a value, unlike ArrayList.size() which returns the number of array elements which
were assigned a value.

Creating and initializing multi-dimensional
arrays

The simplest way to create a multi-dimensional array is as follows:

int[][] a = new int[2][3];

It will create two three-length int arrays—a[0] and a[1]. This is very similar to the classical, C-style
initialization of rectangular multi-dimensional arrays.

You can create and initialize at the same time:

int[][] a = { {1, 2}, {3, 4}, {5, 6} };

Unlike C, where only rectangular multi-dimensional arrays are supported, inner arrays do not need
to be of the same length, or even defined:

int[][] a = { {1}, {2, 3}, null };

Here, a[0] is a one-length int array, whereas a[1] is a two-length int array and a[2] is null. Arrays
like this are called jagged arrays or ragged arrays, that is, they are arrays of arrays. Multi-
dimensional arrays in Java are implemented as arrays of arrays, i.e. array[i][j][k] is equivalent to

https://riptutorial.com/ 56

https://stackoverflow.com/documentation/java/1003/nullpointerexception
http://docs.oracle.com/javase/6/docs/api/java/util/ArrayList.html#size%28%29
http://stackoverflow.com/questions/7784758/c-c-multidimensional-array-internals/7784790
http://www.riptutorial.com/java/example/496/multidimensional-and-jagged-arrays

((array[i])[j])[k]. Unlike C#, the syntax array[i,j] is not supported in Java.

Multidimensional array representation in Java

Source - Live on Ideone

Creating and initializing reference type arrays

String[] array6 = new String[] { "Laurel", "Hardy" }; // Create an array with new
 // operator and array initializer.
String[] array7 = { "Laurel", "Hardy" }; // Shortcut syntax with array
 // initializer.
String[] array8 = new String[3]; // { null, null, null }
String[] array9 = null; // null

Live on Ideone

In addition to the String literals and primitives shown above, the shortcut syntax for array
initialization also works with canonical Object types:

Object[] array10 = { new Object(), new Object() };

Because arrays are covariant, a reference type array can be initialized as an array of a subclass,
although an ArrayStoreException will be thrown if you try to set an element to something other than
a String:

Object[] array11 = new String[] { "foo", "bar", "baz" };
array11[1] = "qux"; // fine
array11[1] = new StringBuilder(); // throws ArrayStoreException

The shortcut syntax cannot be used for this because the shortcut syntax would have an implicit

https://riptutorial.com/ 57

http://stackoverflow.com/questions/597720/what-are-the-differences-between-a-multidimensional-array-and-an-array-of-arrays
https://i.stack.imgur.com/lbaMR.gif
http://math.hws.edu/eck/cs124/javanotes3/c8/s5.html
https://ideone.com/3JdAmY
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.3
https://ideone.com/WcAtr4

type of Object[].

An array can be initialized with zero elements by using String[] emptyArray = new String[0]. For
example, an array with zero length like this is used for Creating an Array from a Collection when
the method needs the runtime type of an object.

In both primitive and reference types, an empty array initialization (for example String[] array8 =
new String[3]) will initialize the array with the default value for each data type.

Creating and initializing generic type arrays

In generic classes, arrays of generic types cannot be initialized like this due to type erasure:

public class MyGenericClass<T> {
 private T[] a;

 public MyGenericClass() {
 a = new T[5]; // Compile time error: generic array creation
 }
}

Instead, they can be created using one of the following methods: (note that these will generate
unchecked warnings)

By creating an Object array, and casting it to the generic type:

a = (T[]) new Object[5];

This is the simplest method, but since the underlying array is still of type Object[], this
method does not provide type safety. Therefore, this method of creating an array is best
used only within the generic class - not exposed publicly.

1.

By using Array.newInstance with a class parameter:

public MyGenericClass(Class<T> clazz) {
 a = (T[]) Array.newInstance(clazz, 5);
}

Here the class of T has to be explicitly passed to the constructor. The return type of
Array.newInstance is always Object. However, this method is safer because the newly created
array is always of type T[], and therefore can be safely externalized.

2.

Filling an array after initialization

Java SE 1.2

Arrays.fill() can be used to fill an array with the same value after initialization:

https://riptutorial.com/ 58

http://www.riptutorial.com/java/example/433/creating-an-array-from-a-collection
http://www.riptutorial.com/java/example/433/creating-an-array-from-a-collection
http://www.riptutorial.com/java/example/433/creating-an-array-from-a-collection
http://www.riptutorial.com/java/example/433/creating-an-array-from-a-collection
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://www.riptutorial.com/java/topic/92/generics
http://www.riptutorial.com/java/topic/92/generics/10445/instantiating-a-generic-type
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Array.html#newInstance-java.lang.Class-int-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#fill-java.lang.Object:A-java.lang.Object-

Arrays.fill(array8, "abc"); // { "abc", "abc", "abc" }

Live on Ideone

fill() can also assign a value to each element of the specified range of the array:

Arrays.fill(array8, 1, 2, "aaa"); // Placing "aaa" from index 1 to 2.

Live on Ideone

Java SE 8

Since Java version 8, the method setAll, and its Concurrent equivalent parallelSetAll, can be used
to set every element of an array to generated values. These methods are passed a generator
function which accepts an index and returns the desired value for that position.

The following example creates an integer array and sets all of its elements to their respective
index value:

int[] array = new int[5];
Arrays.setAll(array, i -> i); // The array becomes { 0, 1, 2, 3, 4 }.

Live on Ideone

Separate declaration and initialization of
arrays

The value of an index for an array element must be a whole number (0, 1, 2, 3, 4, ...) and less than
the length of the array (indexes are zero-based). Otherwise, an ArrayIndexOutOfBoundsException
will be thrown:

int[] array9; // Array declaration - uninitialized
array9 = new int[3]; // Initialize array - { 0, 0, 0 }
array9[0] = 10; // Set index 0 value - { 10, 0, 0 }
array9[1] = 20; // Set index 1 value - { 10, 20, 0 }
array9[2] = 30; // Set index 2 value - { 10, 20, 30 }

Arrays may not be re-initialized with array
initializer shortcut syntax

It is not possible to re-initialize an array via a shortcut syntax with an array initializer since an array
initializer can only be specified in a field declaration or local variable declaration, or as a part of an
array creation expression.

https://riptutorial.com/ 59

https://ideone.com/eXjMml
https://ideone.com/zujsOh
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#setAll-T:A-java.util.function.IntFunction-
http://www.riptutorial.com/java/topic/121/concurrent-programming--threads-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#parallelSetAll-T:A-java.util.function.IntFunction-
https://ideone.com/txh8Xv
http://www.riptutorial.com/java/example/512/arrayindexoutofboundsexception
http://docs.oracle.com/javase/specs/jls/se8/html/jls-10.html#jls-10.6

However, it is possible to create a new array and assign it to the variable being used to reference
the old array. While this results in the array referenced by that variable being re-initialized, the
variable contents are a completely new array. To do this, the new operator can be used with an
array initializer and assigned to the array variable:

// First initialization of array
int[] array = new int[] { 1, 2, 3 };

// Prints "1 2 3 ".
for (int i : array) {
 System.out.print(i + " ");
}

// Re-initializes array to a new int[] array.
array = new int[] { 4, 5, 6 };

// Prints "4 5 6 ".
for (int i : array) {
 System.out.print(i + " ");
}

array = { 1, 2, 3, 4 }; // Compile-time error! Can't re-initialize an array via shortcut
 // syntax with array initializer.

Live on Ideone

Creating an Array from a Collection

Two methods in java.util.Collection create an array from a collection:

Object[] toArray()•

<T> T[] toArray(T[] a)•

Object[] toArray() can be used as follows:

Java SE 5

Set<String> set = new HashSet<String>();
set.add("red");
set.add("blue");

// although set is a Set<String>, toArray() returns an Object[] not a String[]
Object[] objectArray = set.toArray();

<T> T[] toArray(T[] a) can be used as follows:

Java SE 5

Set<String> set = new HashSet<String>();
set.add("red");
set.add("blue");

// The array does not need to be created up front with the correct size.
// Only the array type matters. (If the size is wrong, a new array will

https://riptutorial.com/ 60

http://ideone.com/eCbTxB
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#toArray--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#toArray-T:A-

// be created with the same type.)
String[] stringArray = set.toArray(new String[0]);

// If you supply an array of the same size as collection or bigger, it
// will be populated with collection values and returned (new array
// won't be allocated)
String[] stringArray2 = set.toArray(new String[set.size()]);

The difference between them is more than just having untyped vs typed results. Their performance
can differ as well (for details please read this performance analysis section):

Object[] toArray() uses vectorized arraycopy, which is much faster than the type-checked
arraycopy used in T[] toArray(T[] a).

•

T[] toArray(new T[non-zero-size]) needs to zero-out the array at runtime, while T[]
toArray(new T[0]) does not. Such avoidance makes the latter call faster than the former.
Detailed analysis here : Arrays of Wisdom of the Ancients.

•

Java SE 8

Starting from Java SE 8+, where the concept of Stream has been introduced, it is possible to use
the Stream produced by the collection in order to create a new Array using the Stream.toArray
method.

String[] strings = list.stream().toArray(String[]::new);

Examples taken from two answers (1, 2) to Converting 'ArrayList to 'String[]' in Java on Stack
Overflow.

Arrays to a String

Java SE 5

Since Java 1.5 you can get a String representation of the contents of the specified array without
iterating over its every element. Just use Arrays.toString(Object[]) or
Arrays.deepToString(Object[]) for multidimentional arrays:

int[] arr = {1, 2, 3, 4, 5};
System.out.println(Arrays.toString(arr)); // [1, 2, 3, 4, 5]

int[][] arr = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9}
};
System.out.println(Arrays.deepToString(arr)); // [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Arrays.toString() method uses Object.toString() method to produce String values of every item in
the array, beside primitive type array, it can be used for all type of arrays. For instance:

public class Cat { /* implicitly extends Object */

https://riptutorial.com/ 61

https://shipilev.net/blog/2016/arrays-wisdom-ancients/#_meet_solaris_studio_performance_analyzer
https://shipilev.net/blog/2016/arrays-wisdom-ancients/
http://www.riptutorial.com/java/example/383/using-streams
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#toArray-java.util.function.IntFunction-
http://stackoverflow.com/a/4042464
http://stackoverflow.com/a/30302969
http://stackoverflow.com/questions/4042434/converting-arrayliststring-to-string-in-java
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#toString-java.lang.Object:A-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#deepToString-java.lang.Object:A-
http://www.riptutorial.com/java/example/568/tostring---method

 @Override
 public String toString() {
 return "CAT!";
 }
}

Cat[] arr = { new Cat(), new Cat() };
System.out.println(Arrays.toString(arr)); // [CAT!, CAT!]

If no overridden toString() exists for the class, then the inherited toString() from Object will be
used. Usually the output is then not very useful, for example:

public class Dog {
 /* implicitly extends Object */
}

Dog[] arr = { new Dog() };
System.out.println(Arrays.toString(arr)); // [Dog@17ed40e0]

Creating a List from an Array

The Arrays.asList() method can be used to return a fixed-size List containing the elements of the
given array. The resulting List will be of the same parameter type as the base type of the array.

String[] stringArray = {"foo", "bar", "baz"};
List<String> stringList = Arrays.asList(stringArray);

Note: This list is backed by (a view of) the original array, meaning that any changes to the list will
change the array and vice versa. However, changes to the list that would change its size (and
hence the array length) will throw an exception.

To create a copy of the list, use the constructor of java.util.ArrayList taking a Collection as an
argument:

Java SE 5

String[] stringArray = {"foo", "bar", "baz"};
List<String> stringList = new ArrayList<String>(Arrays.asList(stringArray));

Java SE 7

In Java SE 7 and later, a pair of angle brackets <> (empty set of type arguments) can be used,
which is called the Diamond. The compiler can determine the type arguments from the context.
This means the type information can be left out when calling the constructor of ArrayList and it will
be inferred automatically during compilation. This is called Type Inference which is a part of Java
Generics.

// Using Arrays.asList()

String[] stringArray = {"foo", "bar", "baz"};
List<String> stringList = new ArrayList<>(Arrays.asList(stringArray));

https://riptutorial.com/ 62

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#asList-T...-
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#ArrayList-java.util.Collection-
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
http://www.riptutorial.com/java/example/457/the-diamond
http://docs.oracle.com/javase/8/docs/technotes/guides/language/type-inference-generic-instance-creation.html
http://www.riptutorial.com/java/example/388/creating-a-generic-class

// Using ArrayList.addAll()

String[] stringArray = {"foo", "bar", "baz"};
ArrayList<String> list = new ArrayList<>();
list.addAll(Arrays.asList(stringArray));

// Using Collections.addAll()

String[] stringArray = {"foo", "bar", "baz"};
ArrayList<String> list = new ArrayList<>();
Collections.addAll(list, stringArray);

A point worth noting about the Diamond is that it cannot be used with Anonymous Classes.

Java SE 8

// Using Streams

int[] ints = {1, 2, 3};
List<Integer> list = Arrays.stream(ints).boxed().collect(Collectors.toList());

String[] stringArray = {"foo", "bar", "baz"};
List<Object> list = Arrays.stream(stringArray).collect(Collectors.toList());

Important notes related to using Arrays.asList() method

This method returns List, which is an instance of Arrays$ArrayList(static inner class of Arrays
) and not java.util.ArrayList. The resulting List is of fixed-size. That means, adding or
removing elements is not supported and will throw an UnsupportedOperationException:

stringList.add("something"); // throws java.lang.UnsupportedOperationException

•

A new List can be created by passing an array-backed List to the constructor of a new List.
This creates a new copy of the data, which has changeable size and that is not backed by
the original array:

List<String> modifiableList = new ArrayList<>(Arrays.asList("foo", "bar"));

•

Calling <T> List<T> asList(T... a) on a primitive array, such as an int[], will produce a
List<int[]> whose only element is the source primitive array instead of the actual elements
of the source array.

The reason for this behavior is that primitive types cannot be used in place of generic type
parameters, so the entire primitive array replaces the generic type parameter in this case. In
order to convert a primitive array to a List, first of all, convert the primitive array to an array
of the corresponding wrapper type (i.e. call Arrays.asList on an Integer[] instead of an int[]
).

Therefore, this will print false:

•

https://riptutorial.com/ 63

http://www.riptutorial.com/java/example/457/the-diamond
http://stackoverflow.com/documentation/java/1656/anonymous-classes
http://stackoverflow.com/questions/2607289/converting-array-to-list-in-java

int[] arr = {1, 2, 3}; // primitive array of int
System.out.println(Arrays.asList(arr).contains(1));

View Demo

On the other hand, this will print true:

Integer[] arr = {1, 2, 3}; // object array of Integer (wrapper for int)
System.out.println(Arrays.asList(arr).contains(1));

View Demo

This will also print true, because the array will be interpreted as an Integer[]):

System.out.println(Arrays.asList(1,2,3).contains(1));

View Demo

Multidimensional and Jagged Arrays

It is possible to define an array with more than one dimension. Instead of being accessed by
providing a single index, a multidimensional array is accessed by specifying an index for each
dimension.

The declaration of multidimensional array can be done by adding [] for each dimension to a
regular array decleration. For instance, to make a 2-dimensional int array, add another set of
brackets to the declaration, such as int[][]. This continues for 3-dimensional arrays (int[][][])
and so forth.

To define a 2-dimensional array with three rows and three columns:

int rows = 3;
int columns = 3;
int[][] table = new int[rows][columns];

The array can be indexed and assign values to it with this construct. Note that the unassigned
values are the default values for the type of an array, in this case 0 for int.

table[0][0] = 0;
table[0][1] = 1;
table[0][2] = 2;

It is also possible to instantiate a dimension at a time, and even make non-rectangular arrays.
These are more commonly referred to as jagged arrays.

int[][] nonRect = new int[4][];

It is important to note that although it is possible to define any dimension of jagged array, it's

https://riptutorial.com/ 64

https://ideone.com/xiyy6o
https://ideone.com/QR1N59
https://ideone.com/zfhHQz
https://en.wikipedia.org/wiki/Jagged_array

preceding level must be defined.

// valid
String[][] employeeGraph = new String[30][];

// invalid
int[][] unshapenMatrix = new int[][10];

// also invalid
int[][][] misshapenGrid = new int[100][][10];

How Multidimensional Arrays are represented
in Java

Image source: http://math.hws.edu/eck/cs124/javanotes3/c8/s5.html

Jagged array literal intialization

Multidimensional arrays and jagged arrays can also be initialized with a literal expression. The
following declares and populates a 2x3 int array:

int[][] table = {
 {1, 2, 3},
 {4, 5, 6}
};

Note: Jagged subarrays may also be null. For instance, the following code declares and
populates a two dimensional int array whose first subarray is null, second subarray is of zero
length, third subarray is of one length and the last subarray is a two length array:

int[][] table = {
 null,

https://riptutorial.com/ 65

https://i.stack.imgur.com/AmnKk.gif
http://math.hws.edu/eck/cs124/javanotes3/c8/s5.html

 {},
 {1},
 {1,2}
};

For multidimensional array it is possible to extract arrays of lower-level dimension by their indices:

int[][][] arr = new int[3][3][3];
int[][] arr1 = arr[0]; // get first 3x3-dimensional array from arr
int[] arr2 = arr1[0]; // get first 3-dimensional array from arr1
int[] arr3 = arr[0]; // error: cannot convert from int[][] to int[]

ArrayIndexOutOfBoundsException

The ArrayIndexOutOfBoundsException is thrown when a non-existing index of an array is being
accessed.

Arrays are zero-based indexed, so the index of the first element is 0 and the index of the last
element is the array capacity minus 1 (i.e. array.length - 1).

Therefore, any request for an array element by the index i has to satisfy the condition 0 <= i <
array.length, otherwise the ArrayIndexOutOfBoundsException will be thrown.

The following code is a simple example where an ArrayIndexOutOfBoundsException is thrown.

String[] people = new String[] { "Carol", "Andy" };

// An array will be created:
// people[0]: "Carol"
// people[1]: "Andy"

// Notice: no item on index 2. Trying to access it triggers the exception:
System.out.println(people[2]); // throws an ArrayIndexOutOfBoundsException.

Output:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 2
 at your.package.path.method(YourClass.java:15)

Note that the illegal index that is being accessed is also included in the exception (2 in the
example); this information could be useful to find the cause of the exception.

To avoid this, simply check that the index is within the limits of the array:

int index = 2;
if (index >= 0 && index < people.length) {
 System.out.println(people[index]);
}

https://riptutorial.com/ 66

https://docs.oracle.com/javase/8/docs/api/java/lang/ArrayIndexOutOfBoundsException.html

Getting the Length of an Array

Arrays are objects which provide space to store up to its size of elements of specified type. An
array's size can not be modified after the array is created.

int[] arr1 = new int[0];
int[] arr2 = new int[2];
int[] arr3 = new int[]{1, 2, 3, 4};
int[] arr4 = {1, 2, 3, 4, 5, 6, 7};

int len1 = arr1.length; // 0
int len2 = arr2.length; // 2
int len3 = arr3.length; // 4
int len4 = arr4.length; // 7

The length field in an array stores the size of an array. It is a final field and cannot be modified.

This code shows the difference between the length of an array and amount of objects an array
stores.

public static void main(String[] args) {
 Integer arr[] = new Integer[] {1,2,3,null,5,null,7,null,null,null,11,null,13};

 int arrayLength = arr.length;
 int nonEmptyElementsCount = 0;

 for (int i=0; i<arrayLength; i++) {
 Integer arrElt = arr[i];
 if (arrElt != null) {
 nonEmptyElementsCount++;
 }
 }

 System.out.println("Array 'arr' has a length of "+arrayLength+"\n"
 + "and it contains "+nonEmptyElementsCount+" non-empty values");
}

Result:

Array 'arr' has a length of 13
and it contains 7 non-empty values

Comparing arrays for equality

Array types inherit their equals() (and hashCode()) implementations from java.lang.Object, so
equals() will only return true when comparing against the exact same array object. To compare
arrays for equality based on their values, use java.util.Arrays.equals, which is overloaded for all
array types.

int[] a = new int[]{1, 2, 3};
int[] b = new int[]{1, 2, 3};
System.out.println(a.equals(b)); //prints "false" because a and b refer to different objects
System.out.println(Arrays.equals(a, b)); //prints "true" because the elements of a and b have

https://riptutorial.com/ 67

http://www.riptutorial.com/java/example/571/equals---method
http://www.riptutorial.com/java/example/571/equals---method
http://www.riptutorial.com/java/example/571/equals---method
http://www.riptutorial.com/java/example/571/equals---method
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#equals-java.lang.Object:A-java.lang.Object:A-

the same values

When the element type is a reference type, Arrays.equals() calls equals() on the array elements to
determine equality. In particular, if the element type is itself an array type, identity comparison will
be used. To compare multidimensional arrays for equality, use Arrays.deepEquals() instead as
below:

int a[] = { 1, 2, 3 };
int b[] = { 1, 2, 3 };

Object[] aObject = { a }; // aObject contains one element
Object[] bObject = { b }; // bObject contains one element

System.out.println(Arrays.equals(aObject, bObject)); // false
System.out.println(Arrays.deepEquals(aObject, bObject));// true

Because sets and maps use equals() and hashCode(), arrays are generally not useful as set
elements or map keys. Either wrap them in a helper class that implements equals() and hashCode()
in terms of the array elements, or convert them to List instances and store the lists.

Arrays to Stream

Java SE 8

Converting an array of objects to Stream:

String[] arr = new String[] {"str1", "str2", "str3"};
Stream<String> stream = Arrays.stream(arr);

Converting an array of primitives to Stream using Arrays.stream() will transform the array to a
primitive specialization of Stream:

int[] intArr = {1, 2, 3};
IntStream intStream = Arrays.stream(intArr);

You can also limit the Stream to a range of elements in the array. The start index is inclusive and
the end index is exclusive:

int[] values = {1, 2, 3, 4};
IntStream intStream = Arrays.stream(values, 2, 4);

A method similar to Arrays.stream() appears in the Stream class: Stream.of(). The difference is that
Stream.of() uses a varargs parameter, so you can write something like:

Stream<Integer> intStream = Stream.of(1, 2, 3);
Stream<String> stringStream = Stream.of("1", "2", "3");
Stream<Double> doubleStream = Stream.of(new Double[]{1.0, 2.0});

Iterating over arrays

https://riptutorial.com/ 68

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#deepEquals-java.lang.Object:A-java.lang.Object:A-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#stream-T:A-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of-T...-

You can iterate over arrays either by using enhanced for loop (aka foreach) or by using array
indices:

int[] array = new int[10];

// using indices: read and write
for (int i = 0; i < array.length; i++) {
 array[i] = i;
}

Java SE 5

// extended for: read only
for (int e : array) {
 System.out.println(e);
}

It is worth noting here that there is no direct way to use an Iterator on an Array, but through the
Arrays library it can be easily converted to a list to obtain an Iterable object.

For boxed arrays use Arrays.asList:

Integer[] boxed = {1, 2, 3};
Iterable<Integer> boxedIt = Arrays.asList(boxed); // list-backed iterable
Iterator<Integer> fromBoxed1 = boxedIt.iterator();

For primitive arrays (using java 8) use streams (specifically in this example - Arrays.stream ->
IntStream):

int[] primitives = {1, 2, 3};
IntStream primitiveStream = Arrays.stream(primitives); // list-backed iterable
PrimitiveIterator.OfInt fromPrimitive1 = primitiveStream.iterator();

If you can't use streams (no java 8), you can choose to use google's guava library:

Iterable<Integer> fromPrimitive2 = Ints.asList(primitives);

In two-dimensional arrays or more, both techniques can be used in a slightly more complex
fashion.

Example:

int[][] array = new int[10][10];

for (int indexOuter = 0; indexOuter < array.length; indexOuter++) {
 for (int indexInner = 0; indexInner < array[indexOuter].length; indexInner++) {
 array[indexOuter][indexInner] = indexOuter + indexInner;
 }
}

Java SE 5

https://riptutorial.com/ 69

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#asList(T...)
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#stream-int:A-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#stream-int:A-
https://github.com/google/guava

for (int[] numbers : array) {
 for (int value : numbers) {
 System.out.println(value);
 }
}

It is impossible to set an Array to any non-uniform value without using an index based loop.

Of course you can also use while or do-while loops when iterating using indices.

One note of caution: when using array indices, make sure the index is between 0 and
array.length - 1 (both inclusive). Don't make hard coded assumptions on the array length
otherwise you might break your code if the array length changes but your hard coded values don't.

Example:

int[] numbers = {1, 2, 3, 4};

public void incrementNumbers() {
 // DO THIS :
 for (int i = 0; i < numbers.length; i++) {
 numbers[i] += 1; //or this: numbers[i] = numbers[i] + 1; or numbers[i]++;
 }

 // DON'T DO THIS :
 for (int i = 0; i < 4; i++) {
 numbers[i] += 1;
 }
}

It's also best if you don't use fancy calculations to get the index but use the index to iterate and if
you need different values calculate those.

Example:

public void fillArrayWithDoubleIndex(int[] array) {
 // DO THIS :
 for (int i = 0; i < array.length; i++) {
 array[i] = i * 2;
 }

 // DON'T DO THIS :
 int doubleLength = array.length * 2;
 for (int i = 0; i < doubleLength; i += 2) {
 array[i / 2] = i;
 }
}

Accessing Arrays in reverse order

int[] array = {0, 1, 1, 2, 3, 5, 8, 13};
for (int i = array.length - 1; i >= 0; i--) {
 System.out.println(array[i]);

https://riptutorial.com/ 70

}

Using temporary Arrays to reduce code repetition

Iterating over a temporary array instead of repeating code can make your code cleaner. It can be
used where the same operation is performed on multiple variables.

// we want to print out all of these
String name = "Margaret";
int eyeCount = 16;
double height = 50.2;
int legs = 9;
int arms = 5;

// copy-paste approach:
System.out.println(name);
System.out.println(eyeCount);
System.out.println(height);
System.out.println(legs);
System.out.println(arms);

// temporary array approach:
for(Object attribute : new Object[]{name, eyeCount, height, legs, arms})
 System.out.println(attribute);

// using only numbers
for(double number : new double[]{eyeCount, legs, arms, height})
 System.out.println(Math.sqrt(number));

Keep in mind that this code should not be used in performance-critical sections, as an array is
created every time the loop is entered, and that primitive variables will be copied into the array and
thus cannot be modified.

Copying arrays

Java provides several ways to copy an array.

for loop

int[] a = { 4, 1, 3, 2 };
int[] b = new int[a.length];
for (int i = 0; i < a.length; i++) {
 b[i] = a[i];
}

Note that using this option with an Object array instead of primitive array will fill the copy with
reference to the original content instead of copy of it.

https://riptutorial.com/ 71

Object.clone()

Since arrays are Objects in Java, you can use Object.clone().

int[] a = { 4, 1, 3, 2 };
int[] b = a.clone(); // [4, 1, 3, 2]

Note that the Object.clone method for an array performs a shallow copy, i.e. it returns a reference
to a new array which references the same elements as the source array.

Arrays.copyOf()

java.util.Arrays provides an easy way to perform the copy of an array to another. Here is the
basic usage:

int[] a = {4, 1, 3, 2};
int[] b = Arrays.copyOf(a, a.length); // [4, 1, 3, 2]

Note that Arrays.copyOf also provides an overload which allows you to change the type of the
array:

Double[] doubles = { 1.0, 2.0, 3.0 };
Number[] numbers = Arrays.copyOf(doubles, doubles.length, Number[].class);

System.arraycopy()
public static void arraycopy(Object src, int srcPos, Object dest, int destPos, int
length) Copies an array from the specified source array, beginning at the specified
position, to the specified position of the destination array.

Below an example of use

int[] a = { 4, 1, 3, 2 };
int[] b = new int[a.length];
System.arraycopy(a, 0, b, 0, a.length); // [4, 1, 3, 2]

Arrays.copyOfRange()

Mainly used to copy a part of an Array, you can also use it to copy whole array to another as
below:

https://riptutorial.com/ 72

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#clone()
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#clone()
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#copyOf(T%5B%5D,%20int)
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html
https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#arraycopy(java.lang.Object,%20int,%20java.lang.Object,%20int,%20int)
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#copyOfRange(T%5B%5D,%20int,%20int)

int[] a = { 4, 1, 3, 2 };
int[] b = Arrays.copyOfRange(a, 0, a.length); // [4, 1, 3, 2]

Casting Arrays

Arrays are objects, but their type is defined by the type of the contained objects. Therefore, one
cannot just cast A[] to T[], but each A member of the specific A[] must be cast to a T object.
Generic example:

public static <T, A> T[] castArray(T[] target, A[] array) {
 for (int i = 0; i < array.length; i++) {
 target[i] = (T) array[i];
 }
 return target;
}

Thus, given an A[] array:

T[] target = new T[array.Length];
target = castArray(target, array);

Java SE provides the method Arrays.copyOf(original, newLength, newType) for this purpose:

Double[] doubles = { 1.0, 2.0, 3.0 };
Number[] numbers = Arrays.copyOf(doubles, doubles.length, Number[].class);

Remove an element from an array

Java doesn't provide a direct method in java.util.Arrays to remove an element from an array. To
perform it, you can either copy the original array to a new one without the element to remove or
convert your array to another structure allowing the removal.

Using ArrayList

You can convert the array to a java.util.List, remove the element and convert the list back to an
array as follows:

String[] array = new String[]{"foo", "bar", "baz"};

List<String> list = new ArrayList<>(Arrays.asList(array));
list.remove("foo");

// Creates a new array with the same size as the list and copies the list
// elements to it.
array = list.toArray(new String[list.size()]);

System.out.println(Arrays.toString(array)); //[bar, baz]

https://riptutorial.com/ 73

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#copyOf(U%5B%5D,%20int,%20java.lang.Class)
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html
https://docs.oracle.com/javase/7/docs/api/java/util/List.html

Using System.arraycopy

System.arraycopy() can be used to make a copy of the original array and remove the element you
want. Below an example:

int[] array = new int[] { 1, 2, 3, 4 }; // Original array.
int[] result = new int[array.length - 1]; // Array which will contain the result.
int index = 1; // Remove the value "2".

// Copy the elements at the left of the index.
System.arraycopy(array, 0, result, 0, index);
// Copy the elements at the right of the index.
System.arraycopy(array, index + 1, result, index, array.length - index - 1);

System.out.println(Arrays.toString(result)); //[1, 3, 4]

Using Apache Commons Lang

To easily remove an element, you can use the Apache Commons Lang library and especially the
static method removeElement() of the class ArrayUtils. Below an example:

int[] array = new int[]{1,2,3,4};
array = ArrayUtils.removeElement(array, 2); //remove first occurrence of 2
System.out.println(Arrays.toString(array)); //[1, 3, 4]

Array Covariance

Object arrays are covariant, which means that just as Integer is a subclass of Number, Integer[] is a
subclass of Number[]. This may seem intuitive, but can result in surprising behavior:

Integer[] integerArray = {1, 2, 3};
Number[] numberArray = integerArray; // valid
Number firstElement = numberArray[0]; // valid
numberArray[0] = 4L; // throws ArrayStoreException at runtime

Although Integer[] is a subclass of Number[], it can only hold Integers, and trying to assign a Long
element throws a runtime exception.

Note that this behavior is unique to arrays, and can be avoided by using a generic List instead:

List<Integer> integerList = Arrays.asList(1, 2, 3);
//List<Number> numberList = integerList; // compile error
List<? extends Number> numberList = integerList;
Number firstElement = numberList.get(0);
//numberList.set(0, 4L); // compile error

It's not necessary for all of the array elements to share the same type, as long as they are a
subclass of the array's type:

https://riptutorial.com/ 74

https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#arraycopy(java.lang.Object,%20int,%20java.lang.Object,%20int,%20int)
https://commons.apache.org/proper/commons-lang/
http://commons.apache.org/proper/commons-lang/javadocs/api-2.6/org/apache/commons/lang/ArrayUtils.html#removeElement(java.lang.Object%5B%5D,%20java.lang.Object)
http://commons.apache.org/proper/commons-lang/javadocs/api-2.6/org/apache/commons/lang/ArrayUtils.html

interface I {}

class A implements I {}
class B implements I {}
class C implements I {}

I[] array10 = new I[] { new A(), new B(), new C() }; // Create an array with new
 // operator and array initializer.

I[] array11 = { new A(), new B(), new C() }; // Shortcut syntax with array
 // initializer.

I[] array12 = new I[3]; // { null, null, null }

I[] array13 = new A[] { new A(), new A() }; // Works because A implements I.

Object[] array14 = new Object[] { "Hello, World!", 3.14159, 42 }; // Create an array with
 // new operator and array initializer.

Object[] array15 = { new A(), 64, "My String" }; // Shortcut syntax
 // with array initializer.

How do you change the size of an array?

The simple answer is that you cannot do this. Once an array has been created, its size cannot be
changed. Instead, an array can only be "resized" by creating a new array with the appropriate size
and copying the elements from the existing array to the new one.

String[] listOfCities = new String[3]; // array created with size 3.
listOfCities[0] = "New York";
listOfCities[1] = "London";
listOfCities[2] = "Berlin";

Suppose (for example) that a new element needs to be added to the listOfCities array defined as
above. To do this, you will need to:

create a new array with size 4,1.
copy the existing 3 elements of the old array to the new array at offsets 0, 1 and 2, and2.
add the new element to the new array at offset 3.3.

There are various ways to do the above. Prior to Java 6, the most concise way was:

String[] newArray = new String[listOfCities.length + 1];
System.arraycopy(listOfCities, 0, newArray, 0, listOfCities.length);
newArray[listOfCities.length] = "Sydney";

From Java 6 onwards, the Arrays.copyOf and Arrays.copyOfRange methods can do this more simply:

String[] newArray = Arrays.copyOf(listOfCities, listOfCities.length + 1);
newArray[listOfCities.length] = "Sydney";

For other ways to copy an array, refer to the following example. Bear in mind that you need an
array copy with a different length to the original when resizing.

https://riptutorial.com/ 75

Copying arrays•

A better alternatives to array resizing

There two major drawbacks with resizing an array as described above:

It is inefficient. Making an array bigger (or smaller) involves copying many or all of the
existing array elements, and allocating a new array object. The larger the array, the more
expensive it gets.

•

You need to be able to update any "live" variables that contain references to the old array.•

One alternative is to create the array with a large enough size to start with. This is only viable if
you can determine that size accurately before allocating the array. If you cannot do that, then the
problem of resizing the array arises again.

The other alternative is to use a data structure class provided by the Java SE class library or a
third-party library. For example, the Java SE "collections" framework provides a number of
implementations of the List, Set and Map APIs with different runtime properties. The ArrayList class
is closest to performance characteristics of a plain array (e.g. O(N) lookup, O(1) get and set, O(N)
random insertion and deletion) while providing more efficient resizing without the reference update
problem.

(The resize efficiency for ArrayList comes from its strategy of doubling the size of the backing
array on each resize. For a typical use-case, this means that you only resize occasionally. When
you amortize over the lifetime of the list, the resize cost per insert is O(1). It may be possible to use
the same strategy when resizing a plain array.)

Finding an element in an array

There are many ways find the location of a value in an array. The following example snippets all
assume that the array is one of the following:

 String[] strings = new String[] { "A", "B", "C" };
 int[] ints = new int[] { 1, 2, 3, 4 };

In addition, each one sets index or index2 to either the index of required element, or -1 if the
element is not present.

Using Arrays.binarySearch (for sorted arrays only)

 int index = Arrays.binarySearch(strings, "A");
 int index2 = Arrays.binarySearch(ints, 1);

Using a Arrays.asList (for non-primitive arrays only)

 int index = Arrays.asList(strings).indexOf("A");

https://riptutorial.com/ 76

http://www.riptutorial.com/java/example/3435/copying-arrays
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#binarySearch-java.lang.Object:A-java.lang.Object-

 int index2 = Arrays.asList(ints).indexOf(1); // compilation error

Using a Stream

Java SE 8

 int index = IntStream.range(0, strings.length)
 .filter(i -> "A".equals(strings[i]))
 .findFirst()
 .orElse(-1); // If not present, gives us -1.
 // Similar for an array of primitives

Linear search using a loop

 int index = -1;
 for (int i = 0; i < array.length; i++) {
 if ("A".equals(array[i])) {
 index = i;
 break;
 }
 }
 // Similar for an array of primitives

Linear search using 3rd-party libraries such as
org.apache.commons

 int index = org.apache.commons.lang3.ArrayUtils.contains(strings, "A");
 int index2 = org.apache.commons.lang3.ArrayUtils.contains(ints, 1);

Note: Using a direct linear search is more efficient than wrapping in a list.

Testing if an array contains an element

The examples above can be adapted to test if the array contains an element by simply testing to
see if the index computed is greater or equal to zero.

Alternatively, there are also some more concise variations:

boolean isPresent = Arrays.asList(strings).contains("A");

Java SE 8

boolean isPresent = Stream<String>.of(strings).anyMatch(x -> "A".equals(x));

boolean isPresent = false;
for (String s : strings) {
 if ("A".equals(s)) {

https://riptutorial.com/ 77

https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/ArrayUtils.html

 isPresent = true;
 break;
 }
}

boolean isPresent = org.apache.commons.lang3.ArrayUtils.contains(ints, 4);

Sorting arrays

Sorting arrays can be easily done with the Arrays api.

import java.util.Arrays;

// creating an array with integers
int[] array = {7, 4, 2, 1, 19};
// this is the sorting part just one function ready to be used
Arrays.sort(array);
// prints [1, 2, 4, 7, 19]
System.out.println(Arrays.toString(array));

Sorting String arrays:

String is not a numeric data, it defines it's own order which is called lexicographic order, also
known as alphabetic order. When you sort an array of String using sort() method, it sorts array
into natural order defined by Comparable interface, as shown below :

Increasing Order

String[] names = {"John", "Steve", "Shane", "Adam", "Ben"};
System.out.println("String array before sorting : " + Arrays.toString(names));
Arrays.sort(names);
System.out.println("String array after sorting in ascending order : " +
Arrays.toString(names));

Output:

String array before sorting : [John, Steve, Shane, Adam, Ben]
String array after sorting in ascending order : [Adam, Ben, John, Shane, Steve]

Decreasing Order

Arrays.sort(names, 0, names.length, Collections.reverseOrder());
System.out.println("String array after sorting in descending order : " +
Arrays.toString(names));

Output:

String array after sorting in descending order : [Steve, Shane, John, Ben, Adam]

Sorting an Object array

https://riptutorial.com/ 78

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

In order to sort an object array, all elements must implement either Comparable or Comparator
interface to define the order of the sorting.

We can use either sort(Object[]) method to sort an object array on its natural order, but you must
ensure that all elements in the array must implement Comparable.

Furthermore, they must be mutually comparable as well, for example e1.compareTo(e2) must not
throw a ClassCastException for any elements e1 and e2 in the array. Alternatively you can sort an
Object array on custom order using sort(T[], Comparator) method as shown in following example.

// How to Sort Object Array in Java using Comparator and Comparable
Course[] courses = new Course[4];
courses[0] = new Course(101, "Java", 200);
courses[1] = new Course(201, "Ruby", 300);
courses[2] = new Course(301, "Python", 400);
courses[3] = new Course(401, "Scala", 500);

System.out.println("Object array before sorting : " + Arrays.toString(courses));

Arrays.sort(courses);
System.out.println("Object array after sorting in natural order : " +
Arrays.toString(courses));

Arrays.sort(courses, new Course.PriceComparator());
System.out.println("Object array after sorting by price : " + Arrays.toString(courses));

Arrays.sort(courses, new Course.NameComparator());
System.out.println("Object array after sorting by name : " + Arrays.toString(courses));

Output:

Object array before sorting : [#101 Java@200 , #201 Ruby@300 , #301 Python@400 , #401
Scala@500]
Object array after sorting in natural order : [#101 Java@200 , #201 Ruby@300 , #301 Python@400
, #401 Scala@500]
Object array after sorting by price : [#101 Java@200 , #201 Ruby@300 , #301 Python@400 , #401
Scala@500]
Object array after sorting by name : [#101 Java@200 , #301 Python@400 , #201 Ruby@300 , #401
Scala@500]

Converting arrays between primitives and boxed types

Sometimes conversion of primitive types to boxed types is necessary.

To convert the array, it's possible to use streams (in Java 8 and above):

Java SE 8

int[] primitiveArray = {1, 2, 3, 4};
Integer[] boxedArray =
 Arrays.stream(primitiveArray).boxed().toArray(Integer[]::new);

With lower versions it can be by iterating the primitive array and explicitly copying it to the boxed
array:

https://riptutorial.com/ 79

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

Java SE 8

int[] primitiveArray = {1, 2, 3, 4};
Integer[] boxedArray = new Integer[primitiveArray.length];
for (int i = 0; i < primitiveArray.length; ++i) {
 boxedArray[i] = primitiveArray[i]; // Each element is autoboxed here
}

Similarly, a boxed array can be converted to an array of its primitive counterpart:

Java SE 8

Integer[] boxedArray = {1, 2, 3, 4};
int[] primitiveArray =
 Arrays.stream(boxedArray).mapToInt(Integer::intValue).toArray();

Java SE 8

Integer[] boxedArray = {1, 2, 3, 4};
int[] primitiveArray = new int[boxedArray.length];
for (int i = 0; i < boxedArray.length; ++i) {
 primitiveArray[i] = boxedArray[i]; // Each element is outboxed here
}

Read Arrays online: https://riptutorial.com/java/topic/99/arrays

https://riptutorial.com/ 80

https://riptutorial.com/java/topic/99/arrays

Chapter 9: Asserting

Syntax

assert expression1;•
assert expression1 : expression2;•

Parameters

Parameter Details

expression1
The assertion statement throws an AssertionError if this expression evaluates
to false.

expression2
Optional. When used, AssertionErrors thrown by the assert statement have this
message.

Remarks

By default, assertions are disabled at runtime.

To enable assertions, you must run java with -ea flag.

java -ea com.example.AssertionExample

Assertions are statements that will throw an error if their expression evaluates to false. Assertions
should only be used to test code; they should never be used in production.

Examples

Checking arithmetic with assert

a = 1 - Math.abs(1 - a % 2);

// This will throw an error if my arithmetic above is wrong.
assert a >= 0 && a <= 1 : "Calculated value of " + a + " is outside of expected bounds";

return a;

Read Asserting online: https://riptutorial.com/java/topic/407/asserting

https://riptutorial.com/ 81

https://riptutorial.com/java/topic/407/asserting

Chapter 10: Atomic Types

Introduction

Java Atomic Types are simple mutable types that provide basic operations that are thread-safe
and atomic without resorting to locking. They are intended for use in cases where locking would be
a concurrency bottleneck, or where there is risk of deadlock or livelock.

Parameters

Parameter Description

set Volatile set of the field

get Volatile read of the field

lazySet This is a store ordered operation of the field

compareAndSet If the value is the expeed value then sent it to the new value

getAndSet get the current value and update

Remarks

Many on essentially combinations of volatile reads or writes and CAS operations. Best way to
understand this is to look at the source code directly. E.g. AtomicInteger, Unsafe.getAndSet

Examples

Creating Atomic Types

For simple multi-threaded code, using synchronization is acceptable. However, using
synchronization does have a liveness impact, and as a codebase becomes more complex, the
likelihood goes up that you will end up with Deadlock, Starvation, or Livelock.

In cases of more complex concurrency, using Atomic Variables is often a better alternative, as it
allows an individual variable to be accessed in a thread-safe manner without the overhead of
using synchronized methods or code blocks.

Creating an AtomicInteger type:

AtomicInteger aInt = new AtomicInteger() // Create with default value 0

AtomicInteger aInt = new AtomicInteger(1) // Create with initial value 1

https://riptutorial.com/ 82

https://en.wikipedia.org/wiki/Compare-and-swap
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/java/util/concurrent/atomic/AtomicInteger.java
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/sun/misc/Unsafe.java#Unsafe.getAndSetInt%28java.lang.Object%2Clong%2Cint%29
http://www.riptutorial.com/java/example/7299/synchronization
https://docs.oracle.com/javase/tutorial/essential/concurrency/deadlock.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/starvelive.html

Similarly for other instance types.

AtomicIntegerArray aIntArray = new AtomicIntegerArray(10) // Create array of specific length
AtomicIntegerArray aIntArray = new AtomicIntegerArray(new int[] {1, 2, 3}) // Initialize array
with another array

Similarly for other atomic types.

There is a notable exception that there is no float and double types. These can be simulated
through the use of Float.floatToIntBits(float) and Float.intBitsToFloat(int) for float as well as
Double.doubleToLongBits(double) and Double.longBitsToDouble(long) for doubles.

If you are willing to use sun.misc.Unsafe you can use any primitive variable as atomic by using the
atomic operation in sun.misc.Unsafe. All primitive types should be converted or encoded in int or
longs to so use it in this way. For more on this see: sun.misc.Unsafe.

Motivation for Atomic Types

The simple way to implement multi-threaded applications is to use Java's built-in synchronization
and locking primitives; e.g. the synchronized keyword. The following example shows how we might
use synchronized to accumulate counts.

public class Counters {
 private final int[] counters;

 public Counters(int nosCounters) {
 counters = new int[nosCounters];
 }

 /**
 * Increments the integer at the given index
 */
 public synchronized void count(int number) {
 if (number >= 0 && number < counters.length) {
 counters[number]++;
 }
 }

 /**
 * Obtains the current count of the number at the given index,
 * or if there is no number at that index, returns 0.
 */
 public synchronized int getCount(int number) {
 return (number >= 0 && number < counters.length) ? counters[number] : 0;
 }
}

This implementation will work correctly. However, if you have a large number of threads making
lots of simultaneous calls on the same Counters object, the synchronization is liable to be a
bottleneck. Specifically:

Each synchronized method call will start with the current thread acquiring the lock for the
Counters instance.

1.

https://riptutorial.com/ 83

http://www.riptutorial.com/java/topic/6771/sun-misc-unsafe

The thread will hold the lock while it checks number value and updates the counter.2.
Finally, the it will release the lock, allowing other threads access.3.

If one thread attempts to acquire the lock while another one holds it, the attempting thread will be
blocked (stopped) at step 1 until the lock is released. If multiple threads are waiting, one of them
will get it, and the others will continue to be blocked.

This can lead to a couple of problems:

If there is a lot of contention for the lock (i.e. lots of thread try to acquire it), then some
threads can be blocked for a long time.

•

When a thread is blocked waiting for the lock, the operating system will typically try switch
execution to a different thread. This context switching incurs a relatively large performance
impact on the processor.

•

When there are multiple threads blocked on the same lock, there are no guarantees that any
one of them will be treated "fairly" (i.e. each thread is guaranteed to be scheduled to run).
This can lead to thread starvation.

•

How does one implement Atomic Types?

Let us start by rewriting the example above using AtomicInteger counters:

public class Counters {
 private final AtomicInteger[] counters;

 public Counters(int nosCounters) {
 counters = new AtomicInteger[nosCounters];
 for (int i = 0; i < nosCounters; i++) {
 counters[i] = new AtomicInteger();
 }
 }

 /**
 * Increments the integer at the given index
 */
 public void count(int number) {
 if (number >= 0 && number < counters.length) {
 counters[number].incrementAndGet();
 }
 }

 /**
 * Obtains the current count of the object at the given index,
 * or if there is no number at that index, returns 0.
 */
 public int getCount(int number) {
 return (number >= 0 && number < counters.length) ?
 counters[number].get() : 0;
 }
}

We have replaced the int[] with an AtomicInteger[], and initialized it with an instance in each

https://riptutorial.com/ 84

element. We have also added calls to incrementAndGet() and get() in place of operations on int
values.

But the most important thing is that we can remove the synchronized keyword because locking is
no longer required. This works because the incrementAndGet() and get() operations are atomic and
thread-safe. In this context, it means that:

Each counter in the array will only be observable in the either the "before" state for an
operation (like an "increment") or in the "after" state.

•

Assuming that the operation occurs at time T, no thread will be able to see the "before" state
after time T.

•

Furthermore, while two threads might actually attempt to update the same AtomicInteger instance
at the same time, the implementations of the operations ensure that only one increment happens
at a time on the given instance. This is done without locking, often resulting in better performance.

How do Atomic Types work?

Atomic types typically rely on specialized hardware instructions in the instruction set of the target
machine. For example, Intel-based instruction sets provide a CAS (Compare and Swap) instruction
that will perform a specific sequence of memory operations atomically.

These low-level instructions are are used to implement higher-level operations in the APIs of the
respective AtomicXxx classes. For example, (again, in C-like pseudocode):

private volatile num;

int increment() {
 while (TRUE) {
 int old = num;
 int new = old + 1;
 if (old == compare_and_swap(&num, old, new)) {
 return new;
 }
 }
}

If there is no contention on the AtomicXxxx, the if test will succeed and the loop will end
immediately. If there is contention, then the if will fail for all but one of the threads, and they will
"spin" in the loop for a small number of cycles of the loop. In practice, the spinning is orders of
magnitude faster (except at unrealistically high levels of contention, where synchronized performs
better than atomic classes because when the CAS operation fails, then the retry will only add more
contention) than suspending the thread and switching to another one.

Incidentally, CAS instructions are typically used by the JVM to implement uncontended locking. If
the JVM can see that a lock is not currently locked, it will attempt to use a CAS to acquire the lock.
If the CAS succeeds, then there is no need to do the expensive thread scheduling, context
switching and so on. For more information on the techniques used, see Biased Locking in HotSpot
.

https://riptutorial.com/ 85

https://en.wikipedia.org/wiki/Compare-and-swap
https://blogs.oracle.com/dave/entry/biased_locking_in_hotspot

Read Atomic Types online: https://riptutorial.com/java/topic/5963/atomic-types

https://riptutorial.com/ 86

https://riptutorial.com/java/topic/5963/atomic-types

Chapter 11: Audio

Remarks

Instead of using the javax.sound.sampled Clip, you can also use the AudioClip which is from the
applet API. It is however recommended to use Clip since AudioClip is just older and presents
limited functionalities.

Examples

Play an Audio file Looped

Needed imports:

import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.Clip;

This code will create a clip and play it continuously once started:

Clip clip = AudioSystem.getClip();
clip.open(AudioSystem.getAudioInputStream(new URL(filename)));
clip.start();
clip.loop(Clip.LOOP_CONTINUOUSLY);

Get an Array with all supported file types:

AudioFileFormat.Type [] audioFileTypes = AudioSystem.getAudioFileTypes();

Play a MIDI file

MIDI files can be played by using several classes from the javax.sound.midi package. A Sequencer
performs playback of the MIDI file, and many of its methods can be used to set playback controls
such as loop count, tempo, track muting, and others.

General playback of MIDI data can be done in this way:

import java.io.File;
import java.io.IOException;
import javax.sound.midi.InvalidMidiDataException;
import javax.sound.midi.MidiSystem;
import javax.sound.midi.MidiUnavailableException;
import javax.sound.midi.Sequence;
import javax.sound.midi.Sequencer;

public class MidiPlayback {
 public static void main(String[] args) {
 try {
 Sequencer sequencer = MidiSystem.getSequencer(); // Get the default Sequencer

https://riptutorial.com/ 87

 if (sequencer==null) {
 System.err.println("Sequencer device not supported");
 return;
 }
 sequencer.open(); // Open device
 // Create sequence, the File must contain MIDI file data.
 Sequence sequence = MidiSystem.getSequence(new File(args[0]));
 sequencer.setSequence(sequence); // load it into sequencer
 sequencer.start(); // start the playback
 } catch (MidiUnavailableException | InvalidMidiDataException | IOException ex) {
 ex.printStackTrace();
 }
 }
}

To stop the playback use:

sequencer.stop(); // Stop the playback

A sequencer can be set to mute one or more of the sequence's tracks during playback so none of
the instruments in those specified play. The following example sets the first track in the sequence
to be muted:

import javax.sound.midi.Track;
// ...

Track[] track = sequence.getTracks();
sequencer.setTrackMute(track[0]);

A sequencer can play a sequence repeatedly if the loop count is given. The following sets the
sequencer to play a sequence four times and indefinitely:

sequencer.setLoopCount(3);
sequencer.setLoopCount(Sequencer.LOOP_CONTINUOUSLY);

The sequencer does not always have to play the sequence from the beginning, nor does it have to
play the sequence until the end. It can start and end at any point by specifying the tick in the
sequence to start and end at. It is also possible to specify manually which tick in the sequence the
sequencer should play from:

sequencer.setLoopStartPoint(512);
sequencer.setLoopEndPoint(32768);
sequencer.setTickPosition(8192);

Sequencers can also play a MIDI file at a certain tempo, which can be controlled by specifying the
tempo in beats per minute (BPM) or microseconds per quarter note (MPQ). The factor at which the
sequence is played can be adjusted as well.

sequencer.setTempoInBPM(1250f);
sequencer.setTempoInMPQ(4750f);
sequencer.setTempoFactor(1.5f);

https://riptutorial.com/ 88

When you finished using the Sequencer, remeber to close it

sequencer.close();

Bare metal sound

You can also go almost bare-metal when producing sound with java. This code will write raw
binary data into the OS audio buffer to generate sound. It's extremely important to understand the
limitations and necessary calculations to generating sound like this. Since playback is basically
instantaneous, calculations need to be performed at almost real-time.

As such this method is unusable for more complicated sound-sampling. For such purposes using
specialized tools is the better approach.

The following method generates and directly outputs a rectangle-wave of a given frequency in a
given volume for a given duration.

public void rectangleWave(byte volume, int hertz, int msecs) {
 final SourceDataLine dataLine;
 // 24 kHz x 8bit, single-channel, signed little endian AudioFormat
 AudioFormat af = new AudioFormat(24_000, 8, 1, true, false);
 try {
 dataLine = AudioSystem.getSourceDataLine(af);
 dataLine.open(af, 10_000); // audio buffer size: 10k samples
 } catch (LineUnavailableException e) {
 throw new RuntimeException(e);
 }

 int waveHalf = 24_000 / hertz; // samples for half a period
 byte[] buffer = new byte[waveHalf * 20];
 int samples = msecs * (24_000 / 1000); // 24k (samples / sec) / 1000 (ms/sec) * time(ms)

 dataLine.start(); // starts playback
 int sign = 1;

 for (int i = 0; i < samples; i += buffer.length) {
 for (int j = 0; j < 20; j++) { // generate 10 waves into buffer
 sign *= -1;
 // fill from the jth wave-half to the j+1th wave-half with volume
 Arrays.fill(buffer, waveHalf * j, waveHalf * (j+1), (byte) (volume * sign));
 }
 dataLine.write(buffer, 0, buffer.length); //
 }
 dataLine.drain(); // forces buffer drain to hardware
 dataLine.stop(); // ends playback
}

For a more differentiated way to generate different soundwaves sinus calculations and possibly
larger sample sizes are necessary. This results in significantly more complex code and is
accordingly omitted here.

Basic audio output

The Hello Audio! of Java that plays a sound file from local or internet storage looks as follows. It

https://riptutorial.com/ 89

works for uncompressed .wav files and should not be used for playing mp3 or compressed files.

import java.io.*;
import java.net.URL;
import javax.sound.sampled.*;

public class SoundClipTest {

 // Constructor
 public SoundClipTest() {
 try {
 // Open an audio input stream.
 File soundFile = new File("/usr/share/sounds/alsa/Front_Center.wav"); //you could
also get the sound file with an URL
 AudioInputStream audioIn = AudioSystem.getAudioInputStream(soundFile);
 AudioFormat format = audioIn.getFormat();
 // Get a sound clip resource.
 DataLine.Info info = new DataLine.Info(Clip.class, format);
 Clip clip = (Clip)AudioSystem.getLine(info);
 // Open audio clip and load samples from the audio input stream.
 clip.open(audioIn);
 clip.start();
 } catch (UnsupportedAudioFileException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (LineUnavailableException e) {
 e.printStackTrace();
 }
 }

 public static void main(String[] args) {
 new SoundClipTest();
 }
}

Read Audio online: https://riptutorial.com/java/topic/160/audio

https://riptutorial.com/ 90

https://riptutorial.com/java/topic/160/audio

Chapter 12: Autoboxing

Introduction

Autoboxing is the automatic conversion that Java compiler makes between primitive types and
their corresponding object wrapper classes. Example, converting int -> Integer, double -> Double...
If the conversion goes the other way, this is called unboxing. Typically, this is used in Collections
that cannot hold other than Objects, where boxing primitive types is needed before setting them in
the collection.

Remarks

Autoboxing can have performance issues when used frequently in your code.

http://docs.oracle.com/javase/1.5.0/docs/guide/language/autoboxing.html•
Integer auto-unboxing and auto-boxing gives performance issues?•

Examples

Using int and Integer interchangeably

As you use generic types with utility classes, you may often find that number types aren't very
helpful when specified as the object types, as they aren't equal to their primitive counterparts.

List<Integer> ints = new ArrayList<Integer>();

Java SE 7

List<Integer> ints = new ArrayList<>();

Fortunately, expressions that evaluate to int can be used in place of an Integer when it is needed.

for (int i = 0; i < 10; i++)
 ints.add(i);

The ints.add(i); statement is equivalent to:

ints.add(Integer.valueOf(i));

And retains properties from Integer#valueOf such as having the same Integer objects cached by
the JVM when it is within the number caching range.

This also applies to:

byte and Byte•

https://riptutorial.com/ 91

http://docs.oracle.com/javase/7/docs/technotes/guides/language/autoboxing.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/autoboxing.html
http://stackoverflow.com/questions/6037389/integer-auto-unboxing-and-auto-boxing-gives-performance-issues

short and Short•
float and Float•
double and Double•
long and Long•
char and Character•
boolean and Boolean•

Care must be taken, however, in ambiguous situations. Consider the following code:

List<Integer> ints = new ArrayList<Integer>();
ints.add(1);
ints.add(2);
ints.add(3);
ints.remove(1); // ints is now [1, 3]

The java.util.List interface contains both a remove(int index) (List interface method) and a
remove(Object o) (method inherited from java.util.Collection). In this case no boxing takes place
and remove(int index) is called.

One more example of strange Java code behavior caused by autoboxing Integers with values in
range from -128 to 127:

Integer a = 127;
Integer b = 127;
Integer c = 128;
Integer d = 128;
System.out.println(a == b); // true
System.out.println(c <= d); // true
System.out.println(c >= d); // true
System.out.println(c == d); // false

This happens because >= operator implicitly calls intValue() which returns int while == compares
references, not the int values.

By default, Java caches values in range [-128, 127], so the operator == works because the
Integers in this range reference to the same objects if their values are same. Maximal value of the
cacheable range can be defined with -XX:AutoBoxCacheMax JVM option. So, if you run the program
with -XX:AutoBoxCacheMax=1000, the following code will print true:

Integer a = 1000;
Integer b = 1000;
System.out.println(a == b); // true

Using Boolean in if statement

Due to auto unboxing, one can use a Boolean in an if statement:

Boolean a = Boolean.TRUE;
if (a) { // a gets converted to boolean
 System.out.println("It works!");
}

https://riptutorial.com/ 92

That works for while, do while and the condition in the for statements as well.

Note that, if the Boolean is null, a NullPointerException will be thrown in the conversion.

Auto-unboxing may lead to NullPointerException

This code compiles:

Integer arg = null;
int x = arg;

But it will crash at runtime with a java.lang.NullPointerException on the second line.

The problem is that a primitive int cannot have a null value.

This is a minimalistic example, but in practice it often manifests in more sophisticated forms. The
NullPointerException is not very intuitive and is often little help in locating such bugs.

Rely on autoboxing and auto-unboxing with care, make sure that unboxed values will not have
null values at runtime.

Memory and Computational Overhead of Autoboxing

Autoboxing can come at a substantial memory overhead. For example:

Map<Integer, Integer> square = new HashMap<Integer, Integer>();
for(int i = 256; i < 1024; i++) {
 square.put(i, i * i); // Autoboxing of large integers
}

will typically consume substantial amount of memory (about 60kb for 6k of actual data).

Furthermore, boxed integers usually require additional round-trips in the memory, and thus make
CPU caches less effective. In above example, the memory accessed is spread out to five different
locations that may be in entirely different regions of the memory: 1. the HashMap object, 2. the map's
Entry[] table object, 3. the Entry object, 4. the entrys key object (boxing the primitive key), 5. the
entrys value object (boxing the primitive value).

class Example {
 int primitive; // Stored directly in the class `Example`
 Integer boxed; // Reference to another memory location
}

Reading boxed requires two memory accesses, accessing primitive only one.

When getting data from this map, the seemingly innocent code

int sumOfSquares = 0;
for(int i = 256; i < 1024; i++) {
 sumOfSquares += square.get(i);

https://riptutorial.com/ 93

}

is equivalent to:

int sumOfSquares = 0;
for(int i = 256; i < 1024; i++) {
 sumOfSquares += square.get(Integer.valueOf(i)).intValue();
}

Typically, the above code causes the creation and garbage collection of an Integer object for
every Map#get(Integer) operation. (See Note below for more details.)

To reduce this overhead, several libraries offer optimized collections for primitive types that do not
require boxing. In addition to avoiding the boxing overhead, these collection will require about 4x
less memory per entry. While Java Hotspot may be able to optimize the autoboxing by working
with objects on the stack instead of the heap, it is not possible to optimize the memory overhead
and resulting memory indirection.

Java 8 streams also have optimized interfaces for primitive data types, such as IntStream that do
not require boxing.

Note: a typical Java runtime maintains a simple cache of Integer and other primitive wrapper
object that is used by the valueOf factory methods, and by autoboxing. For Integer, the default
range of this cache is -128 to +127. Some JVMs provide a JVM command-line option for changing
the cache size / range.

Different Cases When Integer and int can be used interchangeably

Case 1: While using in the place of method arguments.

If a method requires an object of wrapper class as argument.Then interchangeably the argument
can be passed a variable of the respective primitive type and vice versa.

Example:

int i;
Integer j;
void ex_method(Integer i)//Is a valid statement
void ex_method1(int j)//Is a valid statement

Case 2: While passing return values:

When a method returns a primitive type variable then an object of corresponding wrapper class
can be passed as the return value interchangeably and vice versa.

Example:

int i;
Integer j;
int ex_method()

https://riptutorial.com/ 94

{...
return j;}//Is a valid statement
Integer ex_method1()
{...
return i;//Is a valid statement
}

Case 3: While performing operations.

Whenever performing operations on numbers the primitive type variable and object of respective
wrapper class can be used interchangeably.

int i=5;
Integer j=new Integer(7);
int k=i+j;//Is a valid statement
Integer m=i+j;//Is also a valid statement

Pitfall:Remember to initialize or assign a value to an object of the wrapper class.

While using wrapper class object and primitive variable interchangeably never forget or miss to
initialize or assign a value to the wrapper class object else it may lead to null pointer exception at
runtime.

Example:

public class Test{
 Integer i;
 int j;
 public void met()
 {j=i;//Null pointer exception
 SOP(j);
 SOP(i);}
 public static void main(String[] args)
 {Test t=new Test();
 t.go();//Null pointer exception
 }

In the above example, the value of the object is unassigned and uninitialized and thus at runtime
the program will run into null pointer exception.So as clear from the above example the value of
object should never be left uninitialized and unassigned.

Read Autoboxing online: https://riptutorial.com/java/topic/138/autoboxing

https://riptutorial.com/ 95

https://riptutorial.com/java/topic/138/autoboxing

Chapter 13: Basic Control Structures

Remarks

All control structures, unless otherwise noted, make use of block statements. These are denoted
by curly braces {}.

This differs from normal statements, which do not require curly braces, but also come with a stiff
caveat in that only the line immediately following the previous statement would be considered.

Thus, it is perfectly valid to write any of these control structures without curly braces, so long as
only one statement follows the beginning, but it is strongly discouraged, as it can lead to buggy
implementations, or broken code.

Example:

// valid, but discouraged
Scanner scan = new Scanner(System.in);
int val = scan.nextInt();
if(val % 2 == 0)
 System.out.println("Val was even!");

// invalid; will not compile
// note the misleading indentation here
for(int i = 0; i < 10; i++)
 System.out.println(i);
 System.out.println("i is currently: " + i);

Examples

If / Else If / Else Control

if (i < 2) {
 System.out.println("i is less than 2");
} else if (i > 2) {
 System.out.println("i is more than 2");
} else {
 System.out.println("i is not less than 2, and not more than 2");
}

The if block will only run when i is 1 or less.

The else if condition is checked only if all the conditions before it (in previous else if constructs,
and the parent if constructs) have been tested to false. In this example, the else if condition will
only be checked if i is greater than or equal to 2.

If its result is true, its block is run, and any else if and else constructs after it will be skipped.

https://riptutorial.com/ 96

https://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.5

If none of the if and else if conditions have been tested to true, the else block at the end will be
run.

For Loops

for (int i = 0; i < 100; i++) {
 System.out.println(i);
}

The three components of the for loop (separated by ;) are variable declaration/initialization (here
int i = 0), the condition (here i < 100), and the increment statement (here i++). The variable
declaration is done once as if placed just inside the { on the first run. Then the condition is
checked, if it is true the body of the loop will execute, if it is false the loop will stop. Assuming the
loop continues, the body will execute and finally when the } is reached the increment statement
will execute just before the condition is checked again.

The curly braces are optional (you can one line with a semicolon) if the loop contains just one
statement. But, it's always recommended to use braces to avoid misunderstandings and bugs.

The for loop components are optional. If your business logic contains one of these parts, you can
omit the corresponding component from your for loop.

int i = obj.getLastestValue(); // i value is fetched from a method

for (; i < 100; i++) { // here initialization is not done
 System.out.println(i);
}

The for (;;) { function-body } structure is equal to a while (true) loop.

Nested For Loops

Any looping statement having another loop statement inside called nested loop. The same way for
looping having more inner loop is called 'nested for loop'.

 for(;;){
 //Outer Loop Statements
 for(;;){
 //Inner Loop Statements
 }
 //Outer Loop Statements
 }

Nested for loop can be demonstrated to print triangle shaped numbers.

for(int i=9;i>0;i--){//Outer Loop
 System.out.println();
 for(int k=i;k>0;k--){//Inner Loop -1
 System.out.print(" ");
 }
 for(int j=i;j<=9;j++){//Inner Loop -2
 System.out.print(" "+j);

https://riptutorial.com/ 97

 }
 }

While Loops

int i = 0;
while (i < 100) { // condition gets checked BEFORE the loop body executes
 System.out.println(i);
 i++;
}

A while loop runs as long as the condition inside the parentheses is true. This is also called the
"pre-test loop" structure because the conditional statement must be met before the main loop body
is performed every time.

The curly braces are optional if the loop contains just one statement, but some coding style
conventions prefers having the braces regardless.

do...while Loop

The do...while loop differs from other loops in that it is guaranteed to execute at least once. It is
also called the "post-test loop" structure because the conditional statement is performed after the
main loop body.

int i = 0;
do {
 i++;
 System.out.println(i);
} while (i < 100); // Condition gets checked AFTER the content of the loop executes.

In this example, the loop will run until the number 100 is printed (even though the condition is i <
100 and not i <= 100), because the loop condition is evaluated after the loop executes.

With the guarantee of at least one execution, it is possible to declare variables outside of the loop
and initialize them inside.

String theWord;
Scanner scan = new Scanner(System.in);
do {
 theWord = scan.nextLine();
} while (!theWord.equals("Bird"));

System.out.println(theWord);

In this context, theWord is defined outside of the loop, but since it's guaranteed to have a value
based on its natural flow, theWord will be initialized.

For Each

Java SE 5

https://riptutorial.com/ 98

With Java 5 and up, one can use for-each loops, also known as enhanced for-loops:

List strings = new ArrayList();

strings.add("This");
strings.add("is");
strings.add("a for-each loop");

for (String string : strings) {
 System.out.println(string);
}

For each loops can be used to iterate over Arrays and implementations of the Iterable interface,
the later includes Collections classes, such as List or Set.

The loop variable can be of any type that is assignable from the source type.

The loop variable for a enhanced for loop for Iterable<T> or T[] can be of type S, if

T extends S•
both T and S are primitive types and assignable without a cast•
S is a primitive type and T can be converted to a type assignable to S after unboxing
conversion.

•

T is a primitive type and can be converted to S by autoboxing conversion.•

Examples:

T elements = ...
for (S s : elements) {
}

T S Compiles

int[] long yes

long[] int no

Iterable<Byte> long yes

Iterable<String> CharSequence yes

Iterable<CharSequence> String no

int[] Long no

int[] Integer yes

If / Else

int i = 2;

https://riptutorial.com/ 99

http://www.riptutorial.com/java/topic/99/arrays
https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
http://www.riptutorial.com/java/topic/90/collections

if (i < 2) {
 System.out.println("i is less than 2");
} else {
 System.out.println("i is greater than 2");
}

An if statement executes code conditionally depending on the result of the condition in
parentheses. When condition in parentheses is true it will enter to the block of if statement which is
defined by curly braces like { and }. opening bracket till the closing bracket is the scope of the if
statement.

The else block is optional and can be omitted. It runs if the if statement is false and does not run
if the if statement is true Because in that case if statement executes.

See also: Ternary If

Switch statement

The switch statement is Java's multi-way branch statement. It is used to take the place of long if-
else if-else chains, and make them more readable. However, unlike if statements, one may not
use inequalities; each value must be concretely defined.

There are three critical components to the switch statement:

case: This is the value that is evaluated for equivalence with the argument to the switch
statement.

•

default: This is an optional, catch-all expression, should none of the case statements
evaluate to true.

•

Abrupt completion of the case statement; usually break: This is required to prevent the
undesired evaluation of further case statements.

•

With the exception of continue, it is possible to use any statement which would cause the abrupt
completion of a statement. This includes:

break•
return•
throw•

In the example below, a typical switch statement is written with four possible cases, including
default.

Scanner scan = new Scanner(System.in);
int i = scan.nextInt();
switch (i) {
 case 0:
 System.out.println("i is zero");
 break;
 case 1:
 System.out.println("i is one");
 break;
 case 2:
 System.out.println("i is two");

https://riptutorial.com/ 100

https://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.1
https://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.1

 break;
 default:
 System.out.println("i is less than zero or greater than two");
}

By omitting break or any statement which would an abrupt completion, we can leverage what are
known as "fall-through" cases, which evaluate against several values. This can be used to create
ranges for a value to be successful against, but is still not as flexible as inequalities.

Scanner scan = new Scanner(System.in);
int foo = scan.nextInt();
switch(foo) {
 case 1:
 System.out.println("I'm equal or greater than one");
 case 2:
 case 3:
 System.out.println("I'm one, two, or three");
 break;
 default:
 System.out.println("I'm not either one, two, or three");
}

In case of foo == 1 the output will be:

I'm equal or greater than one
I'm one, two, or three

In case of foo == 3 the output will be:

I'm one, two, or three

Java SE 5

The switch statement can also be used with enums.

enum Option {
 BLUE_PILL,
 RED_PILL
}

public void takeOne(Option option) {
 switch(option) {
 case BLUE_PILL:
 System.out.println("Story ends, wake up, believe whatever you want.");
 break;
 case RED_PILL:
 System.out.println("I show you how deep the rabbit hole goes.");
 break;

 }
}

Java SE 7

The switch statement can also be used with Strings.

https://riptutorial.com/ 101

public void rhymingGame(String phrase) {
 switch (phrase) {
 case "apples and pears":
 System.out.println("Stairs");
 break;
 case "lorry":
 System.out.println("truck");
 break;
 default:
 System.out.println("Don't know any more");
 }
}

Ternary Operator

Sometimes you have to check for a condition and set the value of a variable.

For ex.

String name;

if (A > B) {
 name = "Billy";
} else {
 name = "Jimmy";
}

This can be easily written in one line as

String name = A > B ? "Billy" : "Jimmy";

The value of the variable is set to the value immediately after the condition, if the condition is true.
If the condition is false, the second value will be given to the variable.

Break

The break statement ends a loop (like for, while) or the evaluation of a switch statement.

Loop:

while(true) {
 if(someCondition == 5) {
 break;
 }
}

The loop in the example would run forever. But when someCondition equals 5 at some point of
execution, then the loop ends.

If multiple loops are cascaded, only the most inner loop ends using break.

Try ... Catch ... Finally

https://riptutorial.com/ 102

http://www.riptutorial.com/java/example/614/switch-statement

The try { ... } catch (...) { ... } control structure is used for handling Exceptions.

String age_input = "abc";
try {
 int age = Integer.parseInt(age_input);
 if (age >= 18) {
 System.out.println("You can vote!");
 } else {
 System.out.println("Sorry, you can't vote yet.");
 }
} catch (NumberFormatException ex) {
 System.err.println("Invalid input. '" + age_input + "' is not a valid integer.");
}

This would print:

Invalid input. 'abc' is not a valid integer.

A finally clause can be added after the catch. The finally clause would always be executed,
regardless of whether an exception was thrown.

try { ... } catch (...) { ... } finally { ... }

String age_input = "abc";
try {
 int age = Integer.parseInt(age_input);
 if (age >= 18) {
 System.out.println("You can vote!");
 } else {
 System.out.println("Sorry, you can't vote yet.");
 }
} catch (NumberFormatException ex) {
 System.err.println("Invalid input. '" + age_input + "' is not a valid integer.");
} finally {
 System.out.println("This code will always be run, even if an exception is thrown");
}

This would print:

Invalid input. 'abc' is not a valid integer.
This code will always be run, even if an exception is thrown

Nested break / continue

It's possible to break / continue to an outer loop by using label statements:

outerloop:
for(...) {
 innerloop:
 for(...) {
 if(condition1)
 break outerloop;

 if(condition2)
 continue innerloop; // equivalent to: continue;

https://riptutorial.com/ 103

http://www.riptutorial.com/java/topic/89/exceptions-and-exception-handling

 }
}

There is no other use for labels in Java.

Continue Statement in Java

The continue statement is used to skip the remaining steps in the current iteration and start with
the next loop iteration. The control goes from the continue statement to the step value (increment
or decrement), if any.

String[] programmers = {"Adrian", "Paul", "John", "Harry"};

 //john is not printed out
 for (String name : programmers) {
 if (name.equals("John"))
 continue;
 System.out.println(name);
 }

The continue statement can also make the control of the program shift to the step value (if any) of
a named loop:

Outer: // The name of the outermost loop is kept here as 'Outer'
for(int i = 0; i < 5;)
{
 for(int j = 0; j < 5; j++)
 {
 continue Outer;
 }
}

Read Basic Control Structures online: https://riptutorial.com/java/topic/118/basic-control-structures

https://riptutorial.com/ 104

https://riptutorial.com/java/topic/118/basic-control-structures

Chapter 14: Benchmarks

Introduction

Writing performance benchmarks in java is not as simple as getting System.currentTimeMillis() in
the beginning and in the end and calculating the difference. To write valid performance
benchmarks, one should use proper tools.

Examples

Simple JMH example

One of the tools for writing proper benchmark tests is JMH. Let's say we want to compare
performance of searching an element in HashSet vs TreeSet.

The easiest way to get JHM into your project - is to use maven and shade plugin. Also you can
see pom.xml from JHM examples.

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>3.0.0</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <finalName>/benchmarks</finalName>
 <transformers>
 <transformer

implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
 <mainClass>org.openjdk.jmh.Main</mainClass>
 </transformer>
 </transformers>
 <filters>
 <filter>
 <artifact>*:*</artifact>
 <excludes>
 <exclude>META-INF/*.SF</exclude>
 <exclude>META-INF/*.DSA</exclude>
 <exclude>META-INF/*.RSA</exclude>
 </excludes>
 </filter>
 </filters>
 </configuration>
 </execution>
 </executions>
 </plugin>

https://riptutorial.com/ 105

http://openjdk.java.net/projects/code-tools/jmh/
https://maven.apache.org/plugins/maven-shade-plugin/
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-archetypes/jmh-java-benchmark-archetype/src/main/resources/archetype-resources/pom.xml

 </plugins>
</build>

<dependencies>
 <dependency>
 <groupId>org.openjdk.jmh</groupId>
 <artifactId>jmh-core</artifactId>
 <version>1.18</version>
 </dependency>
 <dependency>
 <groupId>org.openjdk.jmh</groupId>
 <artifactId>jmh-generator-annprocess</artifactId>
 <version>1.18</version>
 </dependency>
</dependencies>

After this you need to write benchmark class itself:

package benchmark;

import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;

import java.util.HashSet;
import java.util.Random;
import java.util.Set;
import java.util.TreeSet;
import java.util.concurrent.TimeUnit;

@State(Scope.Thread)
public class CollectionFinderBenchmarkTest {
 private static final int SET_SIZE = 10000;

 private Set<String> hashSet;
 private Set<String> treeSet;

 private String stringToFind = "8888";

 @Setup
 public void setupCollections() {
 hashSet = new HashSet<>(SET_SIZE);
 treeSet = new TreeSet<>();

 for (int i = 0; i < SET_SIZE; i++) {
 final String value = String.valueOf(i);
 hashSet.add(value);
 treeSet.add(value);
 }

 stringToFind = String.valueOf(new Random().nextInt(SET_SIZE));
 }

 @Benchmark
 @BenchmarkMode(Mode.AverageTime)
 @OutputTimeUnit(TimeUnit.NANOSECONDS)
 public void testHashSet(Blackhole blackhole) {
 blackhole.consume(hashSet.contains(stringToFind));
 }

 @Benchmark

https://riptutorial.com/ 106

 @BenchmarkMode(Mode.AverageTime)
 @OutputTimeUnit(TimeUnit.NANOSECONDS)
 public void testTreeSet(Blackhole blackhole) {
 blackhole.consume(treeSet.contains(stringToFind));
 }
}

Please keep in mind this blackhole.consume(), we'll get back to it later. Also we need main class for
running benchmark:

package benchmark;

import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;

public class BenchmarkMain {
 public static void main(String[] args) throws RunnerException {
 final Options options = new OptionsBuilder()
 .include(CollectionFinderBenchmarkTest.class.getSimpleName())
 .forks(1)
 .build();

 new Runner(options).run();
 }
}

And we're all set. We just need to run mvn package (it will create benchmarks.jar in your /target
folder) and run our benchmark test:

java -cp target/benchmarks.jar benchmark.BenchmarkMain

And after some warmup and calculation iterations, we will have our results:

Run complete. Total time: 00:01:21

Benchmark Mode Cnt Score Error Units
CollectionFinderBenchmarkTest.testHashSet avgt 20 9.940 ± 0.270 ns/op
CollectionFinderBenchmarkTest.testTreeSet avgt 20 98.858 ± 13.743 ns/op

About that blackhole.consume(). If your calculations do not change the state of your application,
java will most likely just ignore it. So, in order to avoid it, you can either make your benchmark
methods return some value, or use Blackhole object to consume it.

You can find more information about writing proper benchmarks in Aleksey Shipilëv's blog, in
Jacob Jenkov's blog and in java-performance blog: 1, 2.

Read Benchmarks online: https://riptutorial.com/java/topic/9514/benchmarks

https://riptutorial.com/ 107

https://shipilev.net/blog/2014/nanotrusting-nanotime/
http://tutorials.jenkov.com/java-performance/jmh.html
http://java-performance.info/jmh/
http://java-performance.info/introduction-jmh-profilers/
https://riptutorial.com/java/topic/9514/benchmarks

Chapter 15: BigDecimal

Introduction

The BigDecimal class provides operations for arithmetic (add, subtract, multiply, divide), scale
manipulation, rounding, comparison, hashing, and format conversion. The BigDecimal represents
immutable, arbitrary-precision signed decimal numbers. This class shall be used in a necessity of
high-precision calculation.

Examples

BigDecimal objects are immutable

If you want to calculate with BigDecimal you have to use the returned value because BigDecimal
objects are immutable:

BigDecimal a = new BigDecimal("42.23");
BigDecimal b = new BigDecimal("10.001");

a.add(b); // a will still be 42.23

BigDecimal c = a.add(b); // c will be 52.231

Comparing BigDecimals

The method compareTo should be used to compare BigDecimals:

BigDecimal a = new BigDecimal(5);
a.compareTo(new BigDecimal(0)); // a is greater, returns 1
a.compareTo(new BigDecimal(5)); // a is equal, returns 0
a.compareTo(new BigDecimal(10)); // a is less, returns -1

Commonly you should not use the equals method since it considers two BigDecimals equal only if
they are equal in value and also scale:

BigDecimal a = new BigDecimal(5);
a.equals(new BigDecimal(5)); // value and scale are equal, returns true
a.equals(new BigDecimal(5.00)); // value is equal but scale is not, returns false

Mathematical operations with BigDecimal

This example shows how to perform basic mathematical operations using BigDecimals.

1.Addition

https://riptutorial.com/ 108

http://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html#compareTo-java.math.BigDecimal-
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html#equals-java.lang.Object-

BigDecimal a = new BigDecimal("5");
BigDecimal b = new BigDecimal("7");

//Equivalent to result = a + b
BigDecimal result = a.add(b);
System.out.println(result);

Result : 12

2.Subtraction

BigDecimal a = new BigDecimal("5");
BigDecimal b = new BigDecimal("7");

//Equivalent to result = a - b
BigDecimal result = a.subtract(b);
System.out.println(result);

Result : -2

3.Multiplication

When multiplying two BigDecimals the result is going to have scale equal to the sum of the scales
of operands.

BigDecimal a = new BigDecimal("5.11");
BigDecimal b = new BigDecimal("7.221");

//Equivalent to result = a * b
BigDecimal result = a.multiply(b);
System.out.println(result);

Result : 36.89931

To change the scale of the result use the overloaded multiply method which allows passing
MathContext - an object describing the rules for operators, in particular the precision and rounding
mode of the result. For more information about available rounding modes please refer to the
Oracle Documentation.

BigDecimal a = new BigDecimal("5.11");
BigDecimal b = new BigDecimal("7.221");

MathContext returnRules = new MathContext(4, RoundingMode.HALF_DOWN);

//Equivalent to result = a * b
BigDecimal result = a.multiply(b, returnRules);
System.out.println(result);

Result : 36.90

https://riptutorial.com/ 109

4.Division

Division is a bit more complicated than the other arithmetic operations, for instance consider the
below example:

BigDecimal a = new BigDecimal("5");
BigDecimal b = new BigDecimal("7");

BigDecimal result = a.divide(b);
System.out.println(result);

We would expect this to give something similar to : 0.7142857142857143, but we would get:

Result: java.lang.ArithmeticException: Non-terminating decimal expansion; no
exact representable decimal result.

This would work perfectly well when the result would be a terminating decimal say if I wanted to
divide 5 by 2, but for those numbers which upon dividing would give a non terminating result we
would get an ArithmeticException. In the real world scenario, one cannot predict the values that
would be encountered during the division, so we need to specify the Scale and the Rounding
Mode for BigDecimal division. For more information on the Scale and Rounding Mode, refer the
Oracle Documentation.

For example, I could do:

BigDecimal a = new BigDecimal("5");
BigDecimal b = new BigDecimal("7");

//Equivalent to result = a / b (Upto 10 Decimal places and Round HALF_UP)
BigDecimal result = a.divide(b,10,RoundingMode.HALF_UP);
System.out.println(result);

Result : 0.7142857143

5.Remainder or Modulus

BigDecimal a = new BigDecimal("5");
BigDecimal b = new BigDecimal("7");

//Equivalent to result = a % b
BigDecimal result = a.remainder(b);
System.out.println(result);

Result : 5

6.Power

https://riptutorial.com/ 110

https://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html

BigDecimal a = new BigDecimal("5");

//Equivalent to result = a^10
BigDecimal result = a.pow(10);
System.out.println(result);

Result : 9765625

7.Max

BigDecimal a = new BigDecimal("5");
BigDecimal b = new BigDecimal("7");

//Equivalent to result = MAX(a,b)
BigDecimal result = a.max(b);
System.out.println(result);

Result : 7

8.Min

BigDecimal a = new BigDecimal("5");
BigDecimal b = new BigDecimal("7");

//Equivalent to result = MIN(a,b)
BigDecimal result = a.min(b);
System.out.println(result);

Result : 5

9.Move Point To Left

BigDecimal a = new BigDecimal("5234.49843776");

//Moves the decimal point to 2 places left of current position
BigDecimal result = a.movePointLeft(2);
System.out.println(result);

Result : 52.3449843776

10.Move Point To Right

BigDecimal a = new BigDecimal("5234.49843776");

//Moves the decimal point to 3 places right of current position
BigDecimal result = a.movePointRight(3);

https://riptutorial.com/ 111

System.out.println(result);

Result : 5234498.43776

There are many more options and combination of parameters for the above mentioned examples
(For instance, there are 6 variations of the divide method), this set is a non-exhaustive list and
covers a few basic examples.

Using BigDecimal instead of float

Due to way that the float type is represented in computer memory, results of operations using this
type can be inaccurate - some values are stored as approximations. Good examples of this are
monetary calculations. If high precision is necessary, other types should be used. e.g. Java 7
provides BigDecimal.

import java.math.BigDecimal;

public class FloatTest {

public static void main(String[] args) {
 float accountBalance = 10000.00f;
 System.out.println("Operations using float:");
 System.out.println("1000 operations for 1.99");
 for(int i = 0; i<1000; i++){
 accountBalance -= 1.99f;
 }
 System.out.println(String.format("Account balance after float operations: %f",
accountBalance));

 BigDecimal accountBalanceTwo = new BigDecimal("10000.00");
 System.out.println("Operations using BigDecimal:");
 System.out.println("1000 operations for 1.99");
 BigDecimal operation = new BigDecimal("1.99");
 for(int i = 0; i<1000; i++){
 accountBalanceTwo = accountBalanceTwo.subtract(operation);
 }
 System.out.println(String.format("Account balance after BigDecimal operations: %f",
accountBalanceTwo));
}

Output of this program is:

Operations using float:
1000 operations for 1.99
Account balance after float operations: 8009,765625
Operations using BigDecimal:
1000 operations for 1.99
Account balance after BigDecimal operations: 8010,000000

For a starting balance of 10000.00, after 1000 operations for 1.99, we expect the balance to be
8010.00. Using the float type gives us an answer around 8009.77, which is unacceptably
imprecise in the case of monetary calculations. Using BigDecimal gives us the proper result.

https://riptutorial.com/ 112

BigDecimal.valueOf()

The BigDecimal class contains an internal cache of frequently used numbers e.g. 0 to 10. The
BigDecimal.valueOf() methods are provided in preference to constructors with similar type
parameters i.e. in the below example a is preferred to b.

BigDecimal a = BigDecimal.valueOf(10L); //Returns cached Object reference
BigDecimal b = new BigDecimal(10L); //Does not return cached Object reference

BigDecimal a = BigDecimal.valueOf(20L); //Does not return cached Object reference
BigDecimal b = new BigDecimal(20L); //Does not return cached Object reference

BigDecimal a = BigDecimal.valueOf(15.15); //Preferred way to convert a double (or float) into
a BigDecimal, as the value returned is equal to that resulting from constructing a BigDecimal
from the result of using Double.toString(double)
BigDecimal b = new BigDecimal(15.15); //Return unpredictable result

Initialization of BigDecimals with value zero, one or ten

BigDecimal provides static properties for the numbers zero, one and ten. It's good practise to use
these instead of using the actual numbers:

BigDecimal.ZERO•
BigDecimal.ONE•
BigDecimal.TEN•

By using the static properties, you avoid an unnecessary instantiation, also you've got a literal in
your code instead of a 'magic number'.

//Bad example:
BigDecimal bad0 = new BigDecimal(0);
BigDecimal bad1 = new BigDecimal(1);
BigDecimal bad10 = new BigDecimal(10);

//Good Example:
BigDecimal good0 = BigDecimal.ZERO;
BigDecimal good1 = BigDecimal.ONE;
BigDecimal good10 = BigDecimal.TEN;

Read BigDecimal online: https://riptutorial.com/java/topic/1667/bigdecimal

https://riptutorial.com/ 113

http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html#ZERO
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html#ONE
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html#TEN
https://riptutorial.com/java/topic/1667/bigdecimal

Chapter 16: BigInteger

Introduction

The BigInteger class is used for mathematical operations involving large integers with magnitudes
too large for primitive data types. For example 100-factorial is 158 digits - much larger than a long
can represent. BigInteger provides analogues to all of Java's primitive integer operators, and all
relevant methods from java.lang.Math as well as few other operations.

Syntax

BigInteger variable_name = new BigInteger("12345678901234567890"); // a decimal integer
as a string

•

BigInteger variable_name = new
BigInteger("1010101101010100101010011000110011101011000111110000101011010010",
2) // a binary integer as a string

•

BigInteger variable_name = new BigInteger("ab54a98ceb1f0800", 16) // a hexadecimal
integer as a string

•

BigInteger variable_name = new BigInteger(64, new Random()); // a pseudorandom number
generator supplying 64 bits to construct an integer

•

BigInteger variable_name = new BigInteger(new byte[]{0, -85, 84, -87, -116, -21, 31, 10, -
46}); // signed two's complement representation of an integer (big endian)

•

BigInteger variable_name = new BigInteger(1, new byte[]{-85, 84, -87, -116, -21, 31, 10, -
46}); // unsigned two's complement representation of a positive integer (big endian)

•

Remarks

BigInteger is immutable. Therefore you can't change its state. For example, the following won't
work as sum won't be updated due to immutability.

BigInteger sum = BigInteger.ZERO;
for(int i = 1; i < 5000; i++) {
 sum.add(BigInteger.valueOf(i));
}

Assign the result to the sum variable to make it work.

sum = sum.add(BigInteger.valueOf(i));

Java SE 8

The official documentation of BigInteger states that BigInteger implementations should support all
integers between -22147483647 and 22147483647 (exclusive). This means BigIntegers can have
more than 2 billion bits!

https://riptutorial.com/ 114

https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html

Examples

Initialization

The java.math.BigInteger class provides operations analogues to all of Java's primitive integer
operators and for all relevant methods from java.lang.Math. As the java.math package is not
automatically made available you may have to import java.math.BigInteger before you can use the
simple class name.

To convert long or int values to BigInteger use:

long longValue = Long.MAX_VALUE;
BigInteger valueFromLong = BigInteger.valueOf(longValue);

or, for integers:

int intValue = Integer.MIN_VALUE; // negative
BigInteger valueFromInt = BigInteger.valueOf(intValue);

which will widen the intValue integer to long, using sign bit extension for negative values, so that
negative values will stay negative.

To convert a numeric String to BigInteger use:

String decimalString = "-1";
BigInteger valueFromDecimalString = new BigInteger(decimalString);

Following constructor is used to translate the String representation of a BigInteger in the specified
radix into a BigInteger.

String binaryString = "10";
int binaryRadix = 2;
BigInteger valueFromBinaryString = new BigInteger(binaryString , binaryRadix);

Java also supports direct conversion of bytes to an instance of BigInteger. Currently only signed
and unsigned big endian encoding may be used:

byte[] bytes = new byte[] { (byte) 0x80 };
BigInteger valueFromBytes = new BigInteger(bytes);

This will generate a BigInteger instance with value -128 as the first bit is interpreted as the sign bit.

byte[] unsignedBytes = new byte[] { (byte) 0x80 };
int sign = 1; // positive
BigInteger valueFromUnsignedBytes = new BigInteger(sign, unsignedBytes);

This will generate a BigInteger instance with value 128 as the bytes are interpreted as unsigned

https://riptutorial.com/ 115

number, and the sign is explicitly set to 1, a positive number.

There are predefined constants for common values:

BigInteger.ZERO — value of "0".•
BigInteger.ONE — value of "1".•
BigInteger.TEN — value of "10".•

There's also BigInteger.TWO (value of "2"), but you can't use it in your code because it's private.

Comparing BigIntegers

You can compare BigIntegers same as you compare String or other objects in Java.

For example:

BigInteger one = BigInteger.valueOf(1);
BigInteger two = BigInteger.valueOf(2);

if(one.equals(two)){
 System.out.println("Equal");
}
else{
 System.out.println("Not Equal");
}

Output:

Not Equal

Note:

In general, do not use use the == operator to compare BigIntegers

== operator: compares references; i.e. whether two values refer to the same object•
equals() method: compares the content of two BigIntegers.•

For example, BigIntegers should not be compared in the following way:

if (firstBigInteger == secondBigInteger) {
 // Only checks for reference equality, not content equality!
}

Doing so may lead to unexpected behavior, as the == operator only checks for reference equality.
If both BigIntegers contain the same content, but do not refer to the same object, this will fail.
Instead, compare BigIntegers using the equals methods, as explained above.

You can also compare your BigInteger to constant values like 0,1,10.

for example:

https://riptutorial.com/ 116

BigInteger reallyBig = BigInteger.valueOf(1);
if(BigInteger.ONE.equals(reallyBig)){
 //code when they are equal.
}

You can also compare two BigIntegers by using compareTo() method, as following: compareTo()
returns 3 values.

0: When both are equal.•
1: When first is greater than second (the one in brackets).•
-1: When first is less than second.•

BigInteger reallyBig = BigInteger.valueOf(10);
BigInteger reallyBig1 = BigInteger.valueOf(100);

if(reallyBig.compareTo(reallyBig1) == 0){
 //code when both are equal.
}
else if(reallyBig.compareTo(reallyBig1) == 1){
 //code when reallyBig is greater than reallyBig1.
}
else if(reallyBig.compareTo(reallyBig1) == -1){
 //code when reallyBig is less than reallyBig1.
}

BigInteger Mathematical Operations Examples

BigInteger is in an immutable object, so you need to assign the results of any mathematical
operation, to a new BigInteger instance.

Addition: 10 + 10 = 20

BigInteger value1 = new BigInteger("10");
BigInteger value2 = new BigInteger("10");

BigInteger sum = value1.add(value2);
System.out.println(sum);

output: 20

Substraction: 10 - 9 = 1

BigInteger value1 = new BigInteger("10");
BigInteger value2 = new BigInteger("9");

BigInteger sub = value1.subtract(value2);
System.out.println(sub);

output: 1

Division: 10 / 5 = 2

https://riptutorial.com/ 117

BigInteger value1 = new BigInteger("10");
BigInteger value2 = new BigInteger("5");

BigInteger div = value1.divide(value2);
System.out.println(div);

output: 2

Division: 17/4 = 4

BigInteger value1 = new BigInteger("17");
BigInteger value2 = new BigInteger("4");

BigInteger div = value1.divide(value2);
System.out.println(div);

output: 4

Multiplication: 10 * 5 = 50

BigInteger value1 = new BigInteger("10");
BigInteger value2 = new BigInteger("5");

BigInteger mul = value1.multiply(value2);
System.out.println(mul);

output: 50

Power: 10 ^ 3 = 1000

BigInteger value1 = new BigInteger("10");
BigInteger power = value1.pow(3);
System.out.println(power);

output: 1000

Remainder: 10 % 6 = 4

BigInteger value1 = new BigInteger("10");
BigInteger value2 = new BigInteger("6");

BigInteger power = value1.remainder(value2);
System.out.println(power);

output: 4

GCD: Greatest Common Divisor (GCD) for 12and 18 is 6.

BigInteger value1 = new BigInteger("12");
BigInteger value2 = new BigInteger("18");

System.out.println(value1.gcd(value2));

https://riptutorial.com/ 118

Output: 6

Maximum of two BigIntegers:

BigInteger value1 = new BigInteger("10");
BigInteger value2 = new BigInteger("11");

System.out.println(value1.max(value2));

Output: 11

Minimum of two BigIntegers:

BigInteger value1 = new BigInteger("10");
BigInteger value2 = new BigInteger("11");

System.out.println(value1.min(value2));

Output: 10

Binary Logic Operations on BigInteger

BigInteger supports the binary logic operations that are available to Number types as well. As with
all operations they are implemented by calling a method.

Binary Or:

BigInteger val1 = new BigInteger("10");
BigInteger val2 = new BigInteger("9");

val1.or(val2);

Output: 11 (which is equivalent to 10 | 9)

Binary And:

BigInteger val1 = new BigInteger("10");
BigInteger val2 = new BigInteger("9");

val1.and(val2);

Output: 8 (which is equivalent to 10 & 9)

Binary Xor:

BigInteger val1 = new BigInteger("10");
BigInteger val2 = new BigInteger("9");

val1.xor(val2);

Output: 3 (which is equivalent to 10 ^ 9)

https://riptutorial.com/ 119

RightShift:

BigInteger val1 = new BigInteger("10");

val1.shiftRight(1); // the argument be an Integer

Output: 5 (equivalent to 10 >> 1)

LeftShift:

BigInteger val1 = new BigInteger("10");

val1.shiftLeft(1); // here parameter should be Integer

Output: 20 (equivalent to 10 << 1)

Binary Inversion (Not):

BigInteger val1 = new BigInteger("10");

val1.not();

Output: 5

NAND (And-Not):*

BigInteger val1 = new BigInteger("10");
BigInteger val2 = new BigInteger("9");

val1.andNot(val2);

Output: 7

Generating random BigIntegers

The BigInteger class has a constructor dedicated to generate random BigIntegers, given an
instance of java.util.Random and an int that specifies how many bits will the BigInteger have. Its
usage is quite simple - when you call the constructor BigInteger(int, Random) like this:

BigInteger randomBigInt = new BigInteger(bitCount, sourceOfRandomness);

then you'll end up with a BigInteger whose value is between 0 (inclusive) and 2bitCount
(exclusive).

This also means that new BigInteger(2147483647, sourceOfRandomness) may return all positive
BigIntegers given enough time.

What will the sourceOfRandomness be is up to you. For example, a new Random() is good enough in
most cases:

https://riptutorial.com/ 120

https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html#BigInteger-int-java.util.Random-

new BigInteger(32, new Random());

If you're willing to give up speed for higher-quality random numbers, you can use a new
SecureRandom() instead:

import java.security.SecureRandom;

// somewhere in the code...
new BigInteger(32, new SecureRandom());

You can even implement an algorithm on-the-fly with an anonymous class! Note that rolling out
your own RNG algorithm will end you up with low quality randomness, so always be sure to
use an algorithm that is proven to be decent unless you want the resulting BigInteger(s) to be
predictable.

new BigInteger(32, new Random() {
 int seed = 0;

 @Override
 protected int next(int bits) {
 seed = ((22695477 * seed) + 1) & 2147483647; // Values shamelessly stolen from
Wikipedia
 return seed;
 }
});

Read BigInteger online: https://riptutorial.com/java/topic/1514/biginteger

https://riptutorial.com/ 121

https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
https://riptutorial.com/java/topic/1514/biginteger

Chapter 17: Bit Manipulation

Remarks

Unlike C/C++, Java is completely endian-neutral with respect to the underlying machine
hardware. You do not get big or little endian behavior by default; you have to explicitly
specify which behavior you want.

•

The byte type is signed, with the range -128 to +127. To convert a byte value to its unsigned
equivalent, mask it with 0xFF like this: (b & 0xFF).

•

Examples

Packing / unpacking values as bit fragments

It is common for memory performance to compress multiple values into a single primitive value.
This may be useful to pass various information into a single variable.

For example, one can pack 3 bytes - such as color code in RGB - into an single int.

Packing the values

// Raw bytes as input
byte[] b = {(byte)0x65, (byte)0xFF, (byte)0x31};

// Packed in big endian: x == 0x65FF31
int x = (b[0] & 0xFF) << 16 // Red
 | (b[1] & 0xFF) << 8 // Green
 | (b[2] & 0xFF) << 0; // Blue

// Packed in little endian: y == 0x31FF65
int y = (b[0] & 0xFF) << 0
 | (b[1] & 0xFF) << 8
 | (b[2] & 0xFF) << 16;

Unpacking the values

// Raw int32 as input
int x = 0x31FF65;

// Unpacked in big endian: {0x65, 0xFF, 0x31}
byte[] c = {
 (byte)(x >> 16),
 (byte)(x >> 8),
 (byte)(x & 0xFF)
};

// Unpacked in little endian: {0x31, 0xFF, 0x65}
byte[] d = {
 (byte)(x & 0xFF),
 (byte)(x >> 8),

https://riptutorial.com/ 122

https://en.wikipedia.org/wiki/RGB_color_model

 (byte)(x >> 16)
};

Checking, setting, clearing, and toggling individual bits. Using long as bit
mask

Assuming we want to modify bit n of an integer primitive, i (byte, short, char, int, or long):

(i & 1 << n) != 0 // checks bit 'n'
i |= 1 << n; // sets bit 'n' to 1
i &= ~(1 << n); // sets bit 'n' to 0
i ^= 1 << n; // toggles the value of bit 'n'

Using long/int/short/byte as a bit mask:

public class BitMaskExample {
 private static final long FIRST_BIT = 1L << 0;
 private static final long SECOND_BIT = 1L << 1;
 private static final long THIRD_BIT = 1L << 2;
 private static final long FOURTH_BIT = 1L << 3;
 private static final long FIFTH_BIT = 1L << 4;
 private static final long BIT_55 = 1L << 54;

 public static void main(String[] args) {
 checkBitMask(FIRST_BIT | THIRD_BIT | FIFTH_BIT | BIT_55);
 }

 private static void checkBitMask(long bitmask) {
 System.out.println("FIRST_BIT: " + ((bitmask & FIRST_BIT) != 0));
 System.out.println("SECOND_BIT: " + ((bitmask & SECOND_BIT) != 0));
 System.out.println("THIRD_BIT: " + ((bitmask & THIRD_BIT) != 0));
 System.out.println("FOURTh_BIT: " + ((bitmask & FOURTH_BIT) != 0));
 System.out.println("FIFTH_BIT: " + ((bitmask & FIFTH_BIT) != 0));
 System.out.println("BIT_55: " + ((bitmask & BIT_55) != 0));
 }
}

Prints

FIRST_BIT: true
SECOND_BIT: false
THIRD_BIT: true
FOURTh_BIT: false
FIFTH_BIT: true
BIT_55: true

which matches that mask we passed as checkBitMask parameter: FIRST_BIT | THIRD_BIT | FIFTH_BIT
| BIT_55.

Expressing the power of 2

For expressing the power of 2 (2^n) of integers, one may use a bitshift operation that allows to
explicitly specify the n.

https://riptutorial.com/ 123

The syntax is basically:

int pow2 = 1<<n;

Examples:

int twoExp4 = 1<<4; //2^4
int twoExp5 = 1<<5; //2^5
int twoExp6 = 1<<6; //2^6
...
int twoExp31 = 1<<31; //2^31

This is especially useful when defining constant values that should make it apparent, that a power
of 2 is used, instead of using hexadecimal or decimal values.

int twoExp4 = 0x10; //hexadecimal
int twoExp5 = 0x20; //hexadecimal
int twoExp6 = 64; //decimal
...
int twoExp31 = -2147483648; //is that a power of 2?

A simple method to calculate the int power of 2 would be

int pow2(int exp){
 return 1<<exp;
}

Checking if a number is a power of 2

If an integer x is a power of 2, only one bit is set, whereas x-1 has all bits set after that. For
example: 4 is 100 and 3 is 011 as binary number, which satisfies the aforementioned condition. Zero
is not a power of 2 and has to be checked explicitly.

boolean isPowerOfTwo(int x)
{
 return (x != 0) && ((x & (x - 1)) == 0);
}

Usage for Left and Right Shift

Let’s suppose, we have three kind of permissions, READ, WRITE and EXECUTE. Each
permission can range from 0 to 7. (Let’s assume 4 bit number system)

RESOURCE = READ WRITE EXECUTE (12 bit number)

RESOURCE = 0100 0110 0101 = 4 6 5 (12 bit number)

How can we get the (12 bit number) permissions, set on above (12 bit number)?

0100 0110 0101

https://riptutorial.com/ 124

0000 0000 0111 (&)

0000 0000 0101 = 5

So, this is how we can get the EXECUTE permissions of the RESOURCE. Now, what if we want
to get READ permissions of the RESOURCE?

0100 0110 0101

0111 0000 0000 (&)

0100 0000 0000 = 1024

Right? You are probably assuming this? But, permissions are resulted in 1024. We want to get
only READ permissions for the resource. Don’t worry, that’s why we had the shift operators. If we
see, READ permissions are 8 bits behind the actual result, so if apply some shift operator, which
will bring READ permissions to the very right of the result? What if we do:

0100 0000 0000 >> 8 => 0000 0000 0100 (Because it’s a positive number so replaced
with 0’s, if you don’t care about sign, just use unsigned right shift operator)

We now actually have the READ permissions which is 4.

Now, for example, we are given READ, WRITE, EXECUTE permissions for a RESOURCE, what
can we do to make permissions for this RESOURCE?

Let’s first take the example of binary permissions. (Still assuming 4 bit number system)

READ = 0001

WRITE = 0100

EXECUTE = 0110

If you are thinking that we will simply do:

READ | WRITE | EXECUTE, you are somewhat right but not exactly. See, what will happen if we will
perform READ | WRITE | EXECUTE

0001 | 0100 | 0110 => 0111

But permissions are actually being represented (in our example) as 0001 0100 0110

So, in order to do this, we know that READ is placed 8 bits behind, WRITE is placed 4 bits behind
and PERMISSIONS is placed at the last. The number system being used for RESOURCE
permissions is actually 12 bit (in our example). It can(will) be different in different systems.

(READ << 8) | (WRITE << 4) | (EXECUTE)

0000 0000 0001 << 8 (READ)

https://riptutorial.com/ 125

0001 0000 0000 (Left shift by 8 bits)

0000 0000 0100 << 4 (WRITE)

0000 0100 0000 (Left shift by 4 bits)

0000 0000 0001 (EXECUTE)

Now if we add the results of above shifting, it will be something like;

0001 0000 0000 (READ)

0000 0100 0000 (WRITE)

0000 0000 0001 (EXECUTE)

0001 0100 0001 (PERMISSIONS)

java.util.BitSet class

Since 1.7 there's a java.util.BitSet class that provides simple and user-friendly bit storage and
manipulation interface:

final BitSet bitSet = new BitSet(8); // by default all bits are unset

IntStream.range(0, 8).filter(i -> i % 2 == 0).forEach(bitSet::set); // {0, 2, 4, 6}

bitSet.set(3); // {0, 2, 3, 4, 6}

bitSet.set(3, false); // {0, 2, 4, 6}

final boolean b = bitSet.get(3); // b = false

bitSet.flip(6); // {0, 2, 4}

bitSet.set(100); // {0, 2, 4, 100} - expands automatically

BitSet implements Clonable and Serializable, and under the hood all bit values are stored in long[]
words field, that expands automatically.

It also supports whole-set logical operations and, or, xor, andNot:

bitSet.and(new BitSet(8));
bitSet.or(new BitSet(8));
bitSet.xor(new BitSet(8));
bitSet.andNot(new BitSet(8));

Signed vs unsigned shift

In Java, all number primitives are signed. For example, an int always represent values from [-2^31
- 1, 2^31], keeping the first bit to sign the value - 1 for negative value, 0 for positive.

https://riptutorial.com/ 126

http://docs.oracle.com/javase/8/docs/api/java/util/BitSet.html

Basic shift operators >> and << are signed operators. They will conserve the sign of the value.

But it is common for programmers to use numbers to store unsigned values. For an int, it means
shifting the range to [0, 2^32 - 1], to have twice as much value as with a signed int.

For those power users, the bit for sign as no meaning. That's why Java added >>>, a left-shift
operator, disregarding that sign bit.

 initial value: 4 (100)
 signed left-shift: 4 << 1 8 (1000)
 signed right-shift: 4 >> 1 2 (10)
 unsigned right-shift: 4 >>> 1 2 (10)
 initial value: -4 (11111111111111111111111111111100)
 signed left-shift: -4 << 1 -8 (11111111111111111111111111111000)
 signed right-shift: -4 >> 1 -2 (11111111111111111111111111111110)
unsigned right-shift: -4 >>> 1 2147483646 (1111111111111111111111111111110)

Why is there no <<< ?

This comes from the intended definition of right-shift. As it fills the emptied places on the left, there
are no decision to take regarding the bit of sign. As a consequence, there is no need for 2 different
operators.

See this question for a more detailled answer.

Read Bit Manipulation online: https://riptutorial.com/java/topic/1177/bit-manipulation

https://riptutorial.com/ 127

https://www.quora.com/Why-is-there-no-unsigned-left-shift-operator-in-Java
https://riptutorial.com/java/topic/1177/bit-manipulation

Chapter 18: BufferedWriter

Syntax

new BufferedWriter(Writer); //The default constructor•
BufferedWriter.write(int c); //Writes a single character•
BufferedWriter.write(String str); //Writes a string•
BufferedWriter.newLine(); //Writes a line separator•
BufferedWriter.close(); //Closes the BufferedWriter•

Remarks

If you try to write from a BufferedWriter (using BufferedWriter.write()) after closing the
BufferedWriter (using BufferedWriter.close()), it will throw an IOException.

•

The BufferedWriter(Writer) constructor does NOT throw an IOException. However, the
FileWriter(File) constructor throws a FileNotFoundException, which extends IOException. So
catching IOException will also catch FileNotFoundException, there is never a need for a second
catch statement unless you plan on doing something different with the FileNotFoundException.

•

Examples

Write a line of text to File

This code writes the string to a file. It is important to close the writer, so this is done in a finally
block.

 public void writeLineToFile(String str) throws IOException {
 File file = new File("file.txt");
 BufferedWriter bw = null;
 try {
 bw = new BufferedWriter(new FileWriter(file));
 bw.write(str);
 } finally {
 if (bw != null) {
 bw.close();
 }
 }
 }

Also note that write(String s) does not place newline character after string has been written. To
put it use newLine() method.

Java SE 7

Java 7 adds the java.nio.file package, and try-with-resources:

public void writeLineToFile(String str) throws IOException {

https://riptutorial.com/ 128

https://docs.oracle.com/javase/7/docs/api/java/nio/file/package-summary.html
http://www.riptutorial.com/java/example/1581/the-try-with-resources-statement

 Path path = Paths.get("file.txt");
 try (BufferedWriter bw = Files.newBufferedWriter(path)) {
 bw.write(str);
 }
}

Read BufferedWriter online: https://riptutorial.com/java/topic/3063/bufferedwriter

https://riptutorial.com/ 129

https://riptutorial.com/java/topic/3063/bufferedwriter

Chapter 19: ByteBuffer

Introduction

The ByteBuffer class was introduced in java 1.4 to ease working on binary data. It's especially
suited to use with primitive type data. It allows the creation, but also subsequent manipulation of a
byte[]s on a higher abstraction level

Syntax

byte[] arr = new byte[1000];•
ByteBuffer buffer = ByteBuffer.wrap(arr);•
ByteBuffer buffer = ByteBuffer.allocate(1024);•
ByteBuffer buffer = ByteBuffer.allocateDirect(1024);•
byte b = buffer.get();•
byte b = buffer.get(10);•
short s = buffer.getShort(10);•
buffer.put((byte) 120);•
buffer.putChar('a');•

Examples

Basic Usage - Creating a ByteBuffer

There's two ways to create a ByteBuffer, where one can be subdivided again.

If you have an already existing byte[], you can "wrap" it into a ByteBuffer to simplify processing:

byte[] reqBuffer = new byte[BUFFER_SIZE];
int readBytes = socketInputStream.read(reqBuffer);
final ByteBuffer reqBufferWrapper = ByteBuffer.wrap(reqBuffer);

This would be a possibility for code that handles low-level networking interactions

If you do not have an already existing byte[], you can create a ByteBuffer over an array that's
specifically allocated for the buffer like this:

final ByteBuffer respBuffer = ByteBuffer.allocate(RESPONSE_BUFFER_SIZE);
putResponseData(respBuffer);
socketOutputStream.write(respBuffer.array());

If the code-path is extremely performance critical and you need direct system memory access,
the ByteBuffer can even allocate direct buffers using #allocateDirect()

https://riptutorial.com/ 130

Basic Usage - Write Data to the Buffer

Given a ByteBuffer instance one can write primitive-type data to it using relative and absolute put.
The striking difference is that putting data using the relative method keeps track of the index the
data is inserted at for you, while the absolute method always requires giving an index to put the
data at.

Both methods allow "chaining" calls. Given a sufficiently sized buffer one can accordingly do the
following:

buffer.putInt(0xCAFEBABE).putChar('c').putFloat(0.25).putLong(0xDEADBEEFCAFEBABE);

which is equivalent to:

buffer.putInt(0xCAFEBABE);
buffer.putChar('c');
buffer.putFloat(0.25);
buffer.putLong(0xDEADBEEFCAFEBABE);

Do note that the method operating on bytes is not named specially. Additionally note that it's also
valid to pass both a ByteBuffer and a byte[] to put. Other than that, all primitive types have
specialized put-methods.

An additional note: The index given when using absolute put* is always counted in bytes.

Basic Usage - Using DirectByteBuffer

DirectByteBuffer is special implementation of ByteBuffer that has no byte[] laying underneath.

We can allocate such ByteBuffer by calling:

ByteBuffer directBuffer = ByteBuffer.allocateDirect(16);

This operation will allocate 16 bytes of memory. The contents of direct buffers may reside outside
of the normal garbage-collected heap.

We can verify whether ByteBuffer is direct by calling:

directBuffer.isDirect(); // true

The main characteristics of DirectByteBuffer is that JVM will try to natively work on allocated
memory without any additional buffering so operations performed on it may be faster then those
performed on ByteBuffers with arrays lying underneath.

It is recomended to use DirectByteBuffer with heavy IO operations that rely on speed of execution,
like real time communication.

We have to be aware that if we try using array() method we will get UnsupportedOperationException.

https://riptutorial.com/ 131

So it is a good practice to chech whether our ByteBuffer has it (byte array) before we try to access
it:

 byte[] arrayOfBytes;
 if(buffer.hasArray()) {
 arrayOfBytes = buffer.array();
 }

Another use of direct byte buffer is interop through JNI. Since a direct byte buffer does not use a
byte[], but an actual block of memory, it is possible to access that memory directly through a
pointer in native code. This can save a bit of trouble and overhead on marshalling between the
Java and native representation of data.

The JNI interface defines several functions to handle direct byte buffers: NIO Support.

Read ByteBuffer online: https://riptutorial.com/java/topic/702/bytebuffer

https://riptutorial.com/ 132

http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html#nio_support
https://riptutorial.com/java/topic/702/bytebuffer

Chapter 20: Bytecode Modification

Examples

What is Bytecode?

Bytecode is the set of instructions used by the JVM. To illustrate this let's take this Hello World
program.

public static void main(String[] args){
 System.out.println("Hello World");
}

This is what it turns into when compiled into bytecode.

public static main([Ljava/lang/String; args)V
 getstatic java/lang/System out Ljava/io/PrintStream;
 ldc "Hello World"
 invokevirtual java/io/PrintStream print(Ljava/lang/String;)V

What's the logic behind this?

getstatic - Retreives the value of a static field of a class. In this case, the PrintStream "Out" of
System.

ldc - Push a constant onto the stack. In this case, the String "Hello World"

invokevirtual - Invokes a method on a loaded reference on the stack and puts the result on the
stack. Parameters of the method are also taken from the stack.

Well, there has to be more right?

There are 255 opcodes, but not all of them are implemented yet. A table with all of the current
opcodes can be found here: Java bytecode instruction listings.

How can I write / edit bytecode?

There's multiple ways to write and edit bytecode. You can use a compiler, use a library, or use a
program.

For writing:

Jasmin•

https://riptutorial.com/ 133

https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings
http://jasmin.sourceforge.net/

Krakatau•

For editing:

Libraries
ASM○

Javassist○

BCEL - Doesn't support Java 8+○

•

Tools
Bytecode-Viewer○

JBytedit○

reJ - Doesn't support Java 8+○

JBE - Doesn't support Java 8+○

•

I'd like to learn more about bytecode!

There's probably a specific documentation page specificially for bytecode. This page focuses on
the modification of bytecode using different libraries and tools.

How to edit jar files with ASM

Firstly the classes from the jar need to be loaded. We'll use three methods for this process:

loadClasses(File)•
readJar(JarFile, JarEntry, Map)•
getNode(byte[])•

Map<String, ClassNode> loadClasses(File jarFile) throws IOException {
 Map<String, ClassNode> classes = new HashMap<String, ClassNode>();
 JarFile jar = new JarFile(jarFile);
 Stream<JarEntry> str = jar.stream();
 str.forEach(z -> readJar(jar, z, classes));
 jar.close();
 return classes;
}

Map<String, ClassNode> readJar(JarFile jar, JarEntry entry, Map<String, ClassNode> classes) {
 String name = entry.getName();
 try (InputStream jis = jar.getInputStream(entry)){
 if (name.endsWith(".class")) {
 byte[] bytes = IOUtils.toByteArray(jis);
 String cafebabe = String.format("%02X%02X%02X%02X", bytes[0], bytes[1], bytes[2],
bytes[3]);
 if (!cafebabe.toLowerCase().equals("cafebabe")) {
 // This class doesn't have a valid magic
 return classes;
 }
 try {
 ClassNode cn = getNode(bytes);
 classes.put(cn.name, cn);
 } catch (Exception e) {
 e.printStackTrace();

https://riptutorial.com/ 134

https://github.com/Storyyeller/Krakatau
http://asm.ow2.org/
http://jboss-javassist.github.io/javassist/
https://commons.apache.org/proper/commons-bcel/
https://github.com/Konloch/bytecode-viewer
https://github.com/QMatt/JBytedit
http://rejava.sourceforge.net/features.html
http://www.cs.ioc.ee/~ando/jbe/

 }
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 return classes;
}

ClassNode getNode(byte[] bytes) {
 ClassReader cr = new ClassReader(bytes);
 ClassNode cn = new ClassNode();
 try {
 cr.accept(cn, ClassReader.EXPAND_FRAMES);
 } catch (Exception e) {
 e.printStackTrace();
 }
 cr = null;
 return cn;
}

With these methods loading and changing a jar file becomes a simple matter of changing
ClassNodes in a map. In this example we will replace all Strings in the jar with capitalized ones
using the Tree API.

File jarFile = new File("sample.jar");
Map<String, ClassNode> nodes = loadClasses(jarFile);
// Iterate ClassNodes
for (ClassNode cn : nodes.values()){
 // Iterate methods in class
 for (MethodNode mn : cn.methods){
 // Iterate instructions in method
 for (AbstractInsnNode ain : mn.instructions.toArray()){
 // If the instruction is loading a constant value
 if (ain.getOpcode() == Opcodes.LDC){
 // Cast current instruction to Ldc
 // If the constant is a string then capitalize it.
 LdcInsnNode ldc = (LdcInsnNode) ain;
 if (ldc.cst instanceof String){
 ldc.cst = ldc.cst.toString().toUpperCase();
 }
 }
 }
 }
}

Now that all of the ClassNode's strings have been modified we need to save the changes. In order
to save the changes and have a working output a few things have to be done:

Export ClassNodes to bytes•
Load non-class jar entries (Ex: Manifest.mf / other binary resources in jar) as bytes•
Save all bytes to a new jar•

From the last portion above, we'll create three methods.

processNodes(Map<String, ClassNode> nodes)•
loadNonClasses(File jarFile)•

https://riptutorial.com/ 135

saveAsJar(Map<String, byte[]> outBytes, String fileName)•

Usage:

Map<String, byte[]> out = process(nodes, new HashMap<String, MappedClass>());
out.putAll(loadNonClassEntries(jarFile));
saveAsJar(out, "sample-edit.jar");

The methods used:

static Map<String, byte[]> processNodes(Map<String, ClassNode> nodes, Map<String, MappedClass>
mappings) {
 Map<String, byte[]> out = new HashMap<String, byte[]>();
 // Iterate nodes and add them to the map of <Class names , Class bytes>
 // Using Compute_Frames ensures that stack-frames will be re-calculated automatically
 for (ClassNode cn : nodes.values()) {
 ClassWriter cw = new ClassWriter(ClassWriter.COMPUTE_FRAMES);
 out.put(mappings.containsKey(cn.name) ? mappings.get(cn.name).getNewName() : cn.name,
cw.toByteArray());
 }
 return out;
}

static Map<String, byte[]> loadNonClasses(File jarFile) throws IOException {
 Map<String, byte[]> entries = new HashMap<String, byte[]>();
 ZipInputStream jis = new ZipInputStream(new FileInputStream(jarFile));
 ZipEntry entry;
 // Iterate all entries
 while ((entry = jis.getNextEntry()) != null) {
 try {
 String name = entry.getName();
 if (!name.endsWith(".class") && !entry.isDirectory()) {
 // Apache Commons - byte[] toByteArray(InputStream input)
 //
 // Add each entry to the map <Entry name , Entry bytes>
 byte[] bytes = IOUtils.toByteArray(jis);
 entries.put(name, bytes);
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 jis.closeEntry();
 }
 }
 jis.close();
 return entries;
}

static void saveAsJar(Map<String, byte[]> outBytes, String fileName) {
 try {
 // Create jar output stream
 JarOutputStream out = new JarOutputStream(new FileOutputStream(fileName));
 // For each entry in the map, save the bytes
 for (String entry : outBytes.keySet()) {
 // Appent class names to class entries
 String ext = entry.contains(".") ? "" : ".class";
 out.putNextEntry(new ZipEntry(entry + ext));
 out.write(outBytes.get(entry));
 out.closeEntry();

https://riptutorial.com/ 136

 }
 out.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
}

That's it. All the changes will be saved to "sample-edit.jar".

How to load a ClassNode as a Class

/**
 * Load a class by from a ClassNode
 *
 * @param cn
 * ClassNode to load
 * @return
 */
public static Class<?> load(ClassNode cn) {
 ClassWriter cw = new ClassWriter(ClassWriter.COMPUTE_FRAMES);
 return new ClassDefiner(ClassLoader.getSystemClassLoader()).get(cn.name.replace("/", "."),
cw.toByteArray());
}

/**
 * Classloader that loads a class from bytes.
 */
static class ClassDefiner extends ClassLoader {
 public ClassDefiner(ClassLoader parent) {
 super(parent);
 }

 public Class<?> get(String name, byte[] bytes) {
 Class<?> c = defineClass(name, bytes, 0, bytes.length);
 resolveClass(c);
 return c;
 }
}

How to rename classes in a jar file

public static void main(String[] args) throws Exception {
 File jarFile = new File("Input.jar");
 Map<String, ClassNode> nodes = JarUtils.loadClasses(jarFile);

 Map<String, byte[]> out = JarUtils.loadNonClassEntries(jarFile);
 Map<String, String> mappings = new HashMap<String, String>();
 mappings.put("me/example/ExampleClass", "me/example/ExampleRenamed");
 out.putAll(process(nodes, mappings));
 JarUtils.saveAsJar(out, "Input-new.jar");
}

static Map<String, byte[]> process(Map<String, ClassNode> nodes, Map<String, String> mappings)
{
 Map<String, byte[]> out = new HashMap<String, byte[]>();
 Remapper mapper = new SimpleRemapper(mappings);
 for (ClassNode cn : nodes.values()) {

https://riptutorial.com/ 137

 ClassWriter cw = new ClassWriter(ClassWriter.COMPUTE_FRAMES);
 ClassVisitor remapper = new ClassRemapper(cw, mapper);
 cn.accept(remapper);
 out.put(mappings.containsKey(cn.name) ? mappings.get(cn.name) : cn.name,
cw.toByteArray());
 }
 return out;
}

SimpleRemapper is an existing class in the ASM library. However it only allows for class names to
be changed. If you wish to rename fields and methods you should create your own implemenation
of the Remapper class.

Javassist Basic

Javassist is a bytecode instrumentation library that allows you to modify bytecode injecting Java
code that will be converted to bytecode by Javassist and added to the instrumented class/method
at runtime.

Lets write the first transformer that actually take an hypothetical class
"com.my.to.be.instrumented.MyClass" and add to the instructions of each method a log call.

import java.lang.instrument.ClassFileTransformer;
import java.lang.instrument.IllegalClassFormatException;
import java.security.ProtectionDomain;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;

public class DynamicTransformer implements ClassFileTransformer {

 public byte[] transform(ClassLoader loader, String className, Class classBeingRedefined,
 ProtectionDomain protectionDomain, byte[] classfileBuffer) throws
IllegalClassFormatException {

 byte[] byteCode = classfileBuffer;

 // into the transformer will arrive every class loaded so we filter
 // to match only what we need
 if (className.equals("com/my/to/be/instrumented/MyClass")) {

 try {
 // retrive default Javassist class pool
 ClassPool cp = ClassPool.getDefault();
 // get from the class pool our class with this qualified name
 CtClass cc = cp.get("com.my.to.be.instrumented.MyClass");
 // get all the methods of the retrieved class
 CtMethod[] methods = cc.getDeclaredMethods()
 for(CtMethod meth : methods) {
 // The instrumentation code to be returned and injected
 final StringBuffer buffer = new StringBuffer();
 String name = meth.getName();
 // just print into the buffer a log for example
 buffer.append("System.out.println(\"Method " + name + " executed\");");
 meth.insertBefore(buffer.toString())
 }
 // create the byteclode of the class

https://riptutorial.com/ 138

 byteCode = cc.toBytecode();
 // remove the CtClass from the ClassPool
 cc.detach();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 return byteCode;
 }
}

Now in order to use this transformer (so that our JVM will call the method transform on each class
at load time) we need to add this instrumentor this with an agent:

import java.lang.instrument.Instrumentation;

public class EasyAgent {

 public static void premain(String agentArgs, Instrumentation inst) {

 // registers the transformer
 inst.addTransformer(new DynamicTransformer());
 }
}

Last step to start our first instrumentor experiment is to actually register this agent class to the
JVM machine execution. The easiest way to actually do it is to register it with an option into the
shell command:

java -javaagent:myAgent.jar MyJavaApplication

As we can see the agent/transformer project is added as a jar to the execution of any application
named MyJavaApplication that is supposed to contain a class named
"com.my.to.be.instrumented.MyClass" to actually execute our injected code.

Read Bytecode Modification online: https://riptutorial.com/java/topic/3747/bytecode-modification

https://riptutorial.com/ 139

https://riptutorial.com/java/topic/3747/bytecode-modification

Chapter 21: C++ Comparison

Introduction

Java and C++ are similar languages. This topic serves as a quick reference guide for Java and
C++ Engineers.

Remarks

Classes Defined within Other Constructs#

Defined within Another Class

C++

Nested Class[ref] (needs a reference to enclosing class)

class Outer {
 class Inner {
 public:
 Inner(Outer* o) :outer(o) {}

 private:
 Outer* outer;
 };
};

Java

[non-static] Nested Class (aka Inner Class or Member Class)

class OuterClass {
 ...
 class InnerClass {
 ...
 }
}

Statically Defined within Another Class

C++

https://riptutorial.com/ 140

https://stackoverflow.com/questions/2687544/question-about-c-inner-class

Static Nested Class

class Outer {
 class Inner {
 ...
 };
};

Java

Static Nested Class (aka Static Member Class)[ref]

class OuterClass {
 ...
 static class StaticNestedClass {
 ...
 }
}

Defined within a Method

(e.g. event handling)

C++

Local Class[ref]

void fun() {
 class Test {
 /* members of Test class */
 };
}

See also Lambda expressions

Java

Local Class[ref]

class Test {
 void f() {
 new Thread(new Runnable() {
 public void run() {
 doSomethingBackgroundish();
 }
 }).start();
 }
}

https://riptutorial.com/ 141

https://www.javatpoint.com/static-nested-class
http://www.geeksforgeeks.org/local-class-in-c/
http://en.cppreference.com/w/cpp/language/lambda
https://stackoverflow.com/questions/1183453/whats-the-use-of-a-method-local-inner-class

Overriding vs Overloading

The following Overriding vs Overloading points apply to both C++ and Java:

An overridden method has the same name and arguments as its base method.•
An overloaded method has the same name but different arguments and does not rely on
inheritance.

•

Two methods with the same name and arguments but different return type are illegal. See
related Stackoverflow questions about "overloading with different return type in Java" -
Question 1; Question 2

•

Polymorphism

Polymorphism is the ability for objects of different classes related by inheritance to respond
differently to the same method call. Here's an example:

base class Shape with area as an abstract method•
two derived classes, Square and Circle, implement area methods•
Shape reference points to Square and area is invoked•

In C++, polymorphism is enabled by virtual methods. In Java, methods are virtual by default.

Order of Construction/Destruction

Object Cleanup

In C++, it's a good idea to declare a destructor as virtual to ensure that the subclass' destructor will
be called if the base-class pointer is deleted.

In Java, a finalize method is similar a destructor in C++; however, finalizers are unpredictable
(they rely on GC). Best practice - use a "close" method to explicitly cleanup.

protected void close() {
 try {
 // do subclass cleanup
 }
 finally {
 isClosed = true;
 super.close();
 }
}

protected void finalize() {
 try {
 if(!isClosed) close();
 }

https://riptutorial.com/ 142

https://stackoverflow.com/questions/2439782/overload-with-different-return-type-in-java
https://stackoverflow.com/questions/5561436/can-two-java-methods-have-same-name-with-different-return-types

 finally {
 super.finalize();
 }
}

Abstract Methods & Classes

Concept C++ Java

Abstract Method
declared without an
implementation

pure virtual method
virtual void eat(void) = 0;

abstract method
abstract void draw();

Abstract Class
cannot be
instantiated

cannot be instantiated; has at
least 1 pure virtual method
class AB {public: virtual void
f() = 0;};

cannot be instantiated; can have
non-abstract methods
abstract class GraphicObject {}

Interface
no instance fields

no "interface" keyword, but can
mimic a Java interface with
facilities of an abstract class

very similar to abstract class, but
1) supports multiple inheritance;
2) no instance fields
interface TestInterface {}

Accessibility Modifiers

Modifier C++ Java

Public - accessible
by all

no special notes no special notes

Protected -
accessible by
subclasses

also accessible by friends
also accessible within
same package

Private - accessible
by members

also accessible by friends no special notes

default
class default is private; struct default is
public

accessible by all classes
within the same package

other
Friend - a way to grant access to private
& protected members without inheritance
(see below)

C++ Friend Example

https://riptutorial.com/ 143

class Node {
 private:
 int key; Node *next;
 // LinkedList::search() can access "key" & "next"
 friend int LinkedList::search();
};

The Dreaded Diamond Problem

The diamond problem is an ambiguity that arises when two classes B and C inherit
from A, and class D inherits from both B and C. If there is a method in A that B and C
have overridden, and D does not override it, then which version of the method does D
inherit: that of B, or that of C? (from Wikipedia)

While C++ has always been susceptible to the diamond problem, Java was susceptible until Java
8. Originally, Java didn't support multiple inheritance, but with the advent of default interface
methods, Java classes can not inherit "implementation" from more than one class.

java.lang.Object Class

In Java all classes inherit, either implicitly or explicitly, from the Object class. Any Java reference
can be cast to the Object type.

C++ doesn't have a comparable "Object" class.

Java Collections & C++ Containers

Java Collections are symonymous with C++ Containers.

Java Collections Flowchart

C++ Containers Flowchart

Integer Types

Bits Min Max
C++ Type
(on LLP64 or
LP64)

Java Type

8 -2(8-1) = -128 2(8-1)-1 = 127 char byte

8 0 2(8)-1 = 255 unsigned char --

https://riptutorial.com/ 144

https://en.wikipedia.org/wiki/Multiple_inheritance

Bits Min Max
C++ Type
(on LLP64 or
LP64)

Java Type

16 -2(16-1) = -32,768 2(16-1)-1 = 32,767 short short

16 0 (\u0000)
2(16)-1 = 65,535
(\uFFFF)

unsigned short
char
(unsigned)

32
-2(32-1) = -2.147
billion

2(32-1)-1 = 2.147 billion int int

32 0 2(32)-1 = 4.295 billion unsigned int --

64 -2(64-1) 2(16-1)-1 long* long long

64 0 2(16)-1
unsigned long*
unsigned long long

--

* Win64 API is only 32 bit

Lots more C++ types

Examples

Static Class Members

Static members have class scope as opposed to object scope

C++ Example

// define in header
class Singleton {
 public:
 static Singleton *getInstance();

 private:
 Singleton() {}
 static Singleton *instance;
};

// initialize in .cpp
Singleton* Singleton::instance = 0;

Java Example

public class Singleton {
 private static Singleton instance;

https://riptutorial.com/ 145

http://en.cppreference.com/w/cpp/language/types
http://www.bogotobogo.com/cplusplus/statics.php
http://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-examples

 private Singleton() {}

 public static Singleton getInstance() {
 if(instance == null) {
 instance = new Singleton();
 }
 return instance;
 }
}

Classes Defined within Other Constructs

Defined within Another Class

C++

Nested Class[ref] (needs a reference to enclosing class)

class Outer {
 class Inner {
 public:
 Inner(Outer* o) :outer(o) {}

 private:
 Outer* outer;
 };
};

Java

[non-static] Nested Class (aka Inner Class or Member Class)

class OuterClass {
 ...
 class InnerClass {
 ...
 }
}

Statically Defined within Another Class

C++

Static Nested Class

class Outer {
 class Inner {
 ...

https://riptutorial.com/ 146

https://stackoverflow.com/questions/2687544/question-about-c-inner-class

 };
};

Java

Static Nested Class (aka Static Member Class)[ref]

class OuterClass {
 ...
 static class StaticNestedClass {
 ...
 }
}

Defined within a Method

(e.g. event handling)

C++

Local Class[ref]

void fun() {
 class Test {
 /* members of Test class */
 };
}

Java

Local Class[ref]

class Test {
 void f() {
 new Thread(new Runnable() {
 public void run() {
 doSomethingBackgroundish();
 }
 }).start();
 }
}

Pass-by-value & Pass-by-reference

Many argue that Java is ONLY pass-by-value, but it's more nuanced than that. Compare the
following C++ and Java examples to see the many flavors of pass-by-value (aka copy) and pass-
by-reference (aka alias).

https://riptutorial.com/ 147

https://www.javatpoint.com/static-nested-class
http://www.geeksforgeeks.org/local-class-in-c/
https://stackoverflow.com/questions/1183453/whats-the-use-of-a-method-local-inner-class

C++ Example (complete code)

 // passes a COPY of the object
 static void passByCopy(PassIt obj) {
 obj.i = 22; // only a "local" change
 }

 // passes a pointer
 static void passByPointer(PassIt* ptr) {
 ptr->i = 33;
 ptr = 0; // better to use nullptr instead if '0'
 }

 // passes an alias (aka reference)
 static void passByAlias(PassIt& ref) {
 ref.i = 44;
 }

 // This is an old-school way of doing it.
 // Check out std::swap for the best way to do this
 static void swap(PassIt** pptr1, PassIt** pptr2) {
 PassIt* tmp = *pptr1;
 *pptr1 = *pptr2;
 *pptr2 = tmp;
 }

Java Example (complete code)

 // passes a copy of the variable
 // NOTE: in java only primitives are pass-by-copy
 public static void passByCopy(int copy) {
 copy = 33; // only a "local" change
 }

 // No such thing as pointers in Java
 /*
 public static void passByPointer(PassIt *ptr) {
 ptr->i = 33;
 ptr = 0; // better to use nullptr instead if '0'
 }
 */

 // passes an alias (aka reference)
 public static void passByAlias(PassIt ref) {
 ref.i = 44;
 }

 // passes aliases (aka references),
 // but need to do "manual", potentially expensive copies
 public static void swap(PassIt ref1, PassIt ref2) {
 PassIt tmp = new PassIt(ref1);
 ref1.copy(ref2);
 ref2.copy(tmp);
 }

https://riptutorial.com/ 148

https://gitlab.com/johndifini/java-algos/blob/master/PassIt.cpp
https://gitlab.com/johndifini/java-algos/blob/master/PassIt.java

Inheritance vs Composition

C++ & Java are both object-oriented languages, thus the following diagram applies to both.

Outcast Downcasting

Beware of using "downcasting" - Downcasting is casting down the inheritance hierarchy from a
base class to a subclass (i.e. opposite of polymorphism). In general, use polymorphism &
overriding instead of instanceof & downcasting.

C++ Example

// explicit type case required
Child *pChild = (Child *) &parent;

Java Example

if(mySubClass instanceof SubClass) {
 SubClass mySubClass = (SubClass)someBaseClass;
 mySubClass.nonInheritedMethod();
}

Abstract Methods & Classes

Abstract Method

declared without an implementation

C++

pure virtual method

virtual void eat(void) = 0;

Java

abstract method

abstract void draw();

https://riptutorial.com/ 149

Abstract Class

cannot be instantiated

C++

cannot be instantiated; has at least 1 pure virtual method

class AB {public: virtual void f() = 0;};

Java

cannot be instantiated; can have non-abstract methods

abstract class GraphicObject {}

Interface

no instance fields

C++

nothing comparable to Java

Java

very similar to abstract class, but 1) supports multiple inheritance; 2) no instance fields

interface TestInterface {}

Read C++ Comparison online: https://riptutorial.com/java/topic/10849/cplusplus-comparison

https://riptutorial.com/ 150

https://riptutorial.com/java/topic/10849/cplusplus-comparison

Chapter 22: Calendar and its Subclasses

Remarks

As of Java 8, Calendar and its subclasses have been superseded by the java.time package and its
subpackages. They should be preferred, unless a legacy API requires Calendar.

Examples

Creating Calendar objects

Calendar objects can be created by using getInstance() or by using the constructor
GregorianCalendar.

It's important to notice that months in Calendar are zero based, which means that JANUARY is
represented by an int value 0. In order to provide a better code, always use Calendar constants,
such as Calendar.JANUARY to avoid misunderstandings.

Calendar calendar = Calendar.getInstance();
Calendar gregorianCalendar = new GregorianCalendar();
Calendar gregorianCalendarAtSpecificDay = new GregorianCalendar(2016, Calendar.JANUARY, 1);
Calendar gregorianCalendarAtSpecificDayAndTime = new GregorianCalendar(2016, Calendar.JANUARY,
1, 6, 55, 10);

Note: Always use the month constants: The numeric representation is misleading, e.g.
Calendar.JANUARY has the value 0

Increasing / Decreasing calendar fields

add() and roll() can be used to increase/decrease Calendar fields.

Calendar calendar = new GregorianCalendar(2016, Calendar.MARCH, 31); // 31 March 2016

The add() method affects all fields, and behaves effectively if one were to add or subtract actual
dates from the calendar

calendar.add(Calendar.MONTH, -6);

The above operation removes six months from the calendar, taking us back to 30 September
2015.

To change a particular field without affecting the other fields, use roll().

calendar.roll(Calendar.MONTH, -6);

The above operation removes six months from the current month, so the month is identified as

https://riptutorial.com/ 151

http://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html
http://stackoverflow.com/questions/344380/why-is-january-month-0-in-java-calendar

September. No other fields have been adjusted; the year has not changed with this operation.

Finding AM/PM

With Calendar class it is easy to find AM or PM.

 Calendar cal = Calendar.getInstance();
 cal.setTime(new Date());
 if (cal.get(Calendar.AM_PM) == Calendar.PM)
 System.out.println("It is PM");

Subtracting calendars

To get a difference between two Calendars, use getTimeInMillis() method:

Calendar c1 = Calendar.getInstance();
Calendar c2 = Calendar.getInstance();
c2.set(Calendar.DATE, c2.get(Calendar.DATE) + 1);

System.out.println(c2.getTimeInMillis() - c1.getTimeInMillis()); //outputs 86400000 (24 * 60 *
60 * 1000)

Read Calendar and its Subclasses online: https://riptutorial.com/java/topic/165/calendar-and-its-
subclasses

https://riptutorial.com/ 152

https://riptutorial.com/java/topic/165/calendar-and-its-subclasses
https://riptutorial.com/java/topic/165/calendar-and-its-subclasses

Chapter 23: Character encoding

Examples

Reading text from a file encoded in UTF-8

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;

public class ReadingUTF8TextFile {

 public static void main(String[] args) throws IOException {
 //StandardCharsets is available since Java 1.7
 //for ealier version use Charset.forName("UTF-8");
 try (BufferedWriter wr = Files.newBufferedWriter(Paths.get("test.txt"),
StandardCharsets.UTF_8)) {
 wr.write("Strange cyrillic symbol Ы");
 }
 /* First Way. For big files */
 try (BufferedReader reader = Files.newBufferedReader(Paths.get("test.txt"),
StandardCharsets.UTF_8)) {

 String line;
 while ((line = reader.readLine()) != null) {
 System.out.print(line);
 }
 }

 System.out.println(); //just separating output

 /* Second way. For small files */
 String s = new String(Files.readAllBytes(Paths.get("test.txt")),
StandardCharsets.UTF_8);
 System.out.print(s);
 }
}

Writing text to a file in UTF-8

import java.io.BufferedWriter;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;

public class WritingUTF8TextFile {
 public static void main(String[] args) throws IOException {
 //StandardCharsets is available since Java 1.7
 //for ealier version use Charset.forName("UTF-8");
 try (BufferedWriter wr = Files.newBufferedWriter(Paths.get("test2.txt"),
StandardCharsets.UTF_8)) {

https://riptutorial.com/ 153

 wr.write("Cyrillic symbol Ы");
 }
 }
}

Getting byte representation of a string in UTF-8

import java.nio.charset.StandardCharsets;
import java.util.Arrays;

public class GetUtf8BytesFromString {

 public static void main(String[] args) {
 String str = "Cyrillic symbol Ы";
 //StandardCharsets is available since Java 1.7
 //for ealier version use Charset.forName("UTF-8");
 byte[] textInUtf8 = str.getBytes(StandardCharsets.UTF_8);

 System.out.println(Arrays.toString(textInUtf8));
 }
}

Read Character encoding online: https://riptutorial.com/java/topic/2735/character-encoding

https://riptutorial.com/ 154

https://riptutorial.com/java/topic/2735/character-encoding

Chapter 24: Choosing Collections

Introduction

Java offers a wide variety of Collections. Choosing which Collection to use can be tricky. See the
Examples section for an easy-to-follow flowchart to choose the right Collection for the job.

Examples

Java Collections Flowchart

Use the following flowchart to choose the right Collection for the job.

This flowchart was based off [http://i.stack.imgur.com/aSDsG.png).

Read Choosing Collections online: https://riptutorial.com/java/topic/10846/choosing-collections

https://riptutorial.com/ 155

https://i.stack.imgur.com/aSDsG.png)
https://riptutorial.com/java/topic/10846/choosing-collections

Chapter 25: Class - Java Reflection

Introduction

The java.lang.Class class provides many methods that can be used to get metadata, examine and
change the run time behavior of a class.

The java.lang and java.lang.reflect packages provide classes for java reflection.

Where it is used

The Reflection API is mainly used in:

IDE (Integrated Development Environment) e.g. Eclipse, MyEclipse, NetBeans etc. Debugger Test
Tools etc.

Examples

getClass() method of Object class

class Simple { }

class Test {
 void printName(Object obj){
 Class c = obj.getClass();
 System.out.println(c.getName());
 }
 public static void main(String args[]){
 Simple s = new Simple();

 Test t = new Test();
 t.printName(s);
 }
}

Read Class - Java Reflection online: https://riptutorial.com/java/topic/10151/class---java-reflection

https://riptutorial.com/ 156

https://riptutorial.com/java/topic/10151/class---java-reflection

Chapter 26: Classes and Objects

Introduction

Objects have states and behaviors. Example: A dog has states - color, name, breed as well as
behaviors – wagging the tail, barking, eating. An object is an instance of a class.

Class − A class can be defined as a template/blueprint that describes the behavior/state that the
object of its type support.

Syntax

class Example {} //class keyword, name, body•

Examples

Simplest Possible Class

class TrivialClass {}

A class consists at a minimum of the class keyword, a name, and a body, which might be empty.

You instantiate a class with the new operator.

TrivialClass tc = new TrivialClass();

Object Member vs Static Member

With this class:

class ObjectMemberVsStaticMember {

 static int staticCounter = 0;
 int memberCounter = 0;

 void increment() {
 staticCounter ++;
 memberCounter++;
 }
}

the following code snippet:

final ObjectMemberVsStaticMember o1 = new ObjectMemberVsStaticMember();
final ObjectMemberVsStaticMember o2 = new ObjectMemberVsStaticMember();

o1.increment();

https://riptutorial.com/ 157

o2.increment();
o2.increment();

System.out.println("o1 static counter " + o1.staticCounter);
System.out.println("o1 member counter " + o1.memberCounter);
System.out.println();

System.out.println("o2 static counter " + o2.staticCounter);
System.out.println("o2 member counter " + o2.memberCounter);
System.out.println();

System.out.println("ObjectMemberVsStaticMember.staticCounter = " +
ObjectMemberVsStaticMember.staticCounter);

// the following line does not compile. You need an object
// to access its members
//System.out.println("ObjectMemberVsStaticMember.staticCounter = " +
ObjectMemberVsStaticMember.memberCounter);

produces this output:

o1 static counter 3
o1 member counter 1

o2 static counter 3
o2 member counter 2

ObjectMemberVsStaticMember.staticCounter = 3

Note: You should not call static members on objects, but on classes. While it does not make a
difference for the JVM, human readers will appreciate it.

static members are part of the class and exists only once per class. Non-static members exist on
instances, there is an independent copy for each instance. This also means that you need access
to an object of that class to access its members.

Overloading Methods

Sometimes the same functionality has to be written for different kinds of inputs. At that time, one
can use the same method name with a different set of parameters. Each different set of
parameters is known as a method signature. As seen per the example, a single method can have
multiple signatures.

public class Displayer {

 public void displayName(String firstName) {
 System.out.println("Name is: " + firstName);
 }

 public void displayName(String firstName, String lastName) {
 System.out.println("Name is: " + firstName + " " + lastName);
 }

 public static void main(String[] args) {

https://riptutorial.com/ 158

 Displayer displayer = new Displayer();
 displayer.displayName("Ram"); //prints "Name is: Ram"
 displayer.displayName("Jon", "Skeet"); //prints "Name is: Jon Skeet"
 }
}

The advantage is that the same functionality is called with two different numbers of inputs. While
invoking the method according to the input we are passing, (In this case either one string value or
two string values) the corresponding method is executed.

Methods can be overloaded:

Based on the number of parameters passed.

Example: method(String s) and method(String s1, String s2).

1.

Based on the order of parameters.

Example: method(int i, float f) and method(float f, int i)).

2.

Note: Methods cannot be overloaded by changing just the return type (int method() is considered
the same as String method() and will throw a RuntimeException if attempted). If you change the
return type you must also change the parameters in order to overload.

Basic Object Construction and Use

Objects come in their own class, so a simple example would be a car (detailed explanations
below):

public class Car {

 //Variables describing the characteristics of an individual car, varies per object
 private int milesPerGallon;
 private String name;
 private String color;
 public int numGallonsInTank;

 public Car(){
 milesPerGallon = 0;
 name = "";
 color = "";
 numGallonsInTank = 0;
 }

 //this is where an individual object is created
 public Car(int mpg, int, gallonsInTank, String carName, String carColor){
 milesPerGallon = mpg;
 name = carName;
 color = carColor;
 numGallonsInTank = gallonsInTank;
 }

 //methods to make the object more usable

 //Cars need to drive

https://riptutorial.com/ 159

 public void drive(int distanceInMiles){
 //get miles left in car
 int miles = numGallonsInTank * milesPerGallon;

 //check that car has enough gas to drive distanceInMiles
 if (miles <= distanceInMiles){
 numGallonsInTank = numGallonsInTank - (distanceInMiles / milesPerGallon)
 System.out.println("Drove " + numGallonsInTank + " miles!");
 } else {
 System.out.println("Could not drive!");
 }
 }

 public void paintCar(String newColor){
 color = newColor;
 }
 //set new Miles Per Gallon
 public void setMPG(int newMPG){
 milesPerGallon = newMPG;
 }

 //set new number of Gallon In Tank
 public void setGallonsInTank(int numGallons){
 numGallonsInTank = numGallons;
 }

 public void nameCar(String newName){
 name = newName;
 }

 //Get the Car color
 public String getColor(){
 return color;
 }

 //Get the Car name
 public String getName(){
 return name;
 }

 //Get the number of Gallons
 public String getGallons(){
 return numGallonsInTank;
 }

}

Objects are instances of their class. So, the way you would create an object would be by calling
the Car class in one of two ways in your main class (main method in Java or onCreate in
Android).

Option 1

`Car newCar = new Car(30, 10, "Ferrari", "Red");

Option 1 is where you essentially tell the program everything about the Car upon creation of the
object. Changing any property of the car would require calling one of the methods such as the
repaintCar method. Example:

https://riptutorial.com/ 160

 newCar.repaintCar("Blue");

Note: Make sure you pass the correct data type to the method. In the example above, you may
also pass a variable to the repaintCar method as long as the data type is correct`.

That was an example of changing properties of an object, receiving properties of an object would
require using a method from the Car class that has a return value (meaning a method that is not
void). Example:

String myCarName = newCar.getName(); //returns string "Ferrari"

Option 1 is the best option when you have all the object's data at the time of creation.

Option 2

`Car newCar = new Car();

Option 2 gets the same effect but required more work to create an object correctly. I want to recall
this Constructor in the Car class:

public void Car(){
 milesPerGallon = 0;
 name = "";
 color = "";
 numGallonsInTank = 0;
 }

Notice that you do not have to actually pass any parameters into the object to create it. This is
very useful for when you do not have all the aspects of the object but you need to use the parts
that you do have. This sets generic data into each of the instance variables of the object so that, if
you call for a piece of data that does not exist, no errors are thrown.

Note: Do not forget that you have to set the parts of the object later that you did not initialize it
with. For example,

Car myCar = new Car();
String color = Car.getColor(); //returns empty string

This is a common mistake amongst objects that are not initialized with all their data. Errors were
avoided because there is a Constructor that allows an empty Car object to be created with stand-
in variables (public Car(){}), but no part of the myCar was actually customized. Correct example
of creating Car Object:

Car myCar = new Car();
myCar.nameCar("Ferrari");
myCar.paintCar("Purple");
myCar.setGallonsInTank(10);
myCar.setMPG(30);

https://riptutorial.com/ 161

And, as a reminder, get an object's properties by calling a method in your main class. Example:

String myCarName = myCar.getName(); //returns string "Ferrari"

Constructors

Constructors are special methods named after the class and without a return type, and are used to
construct objects. Constructors, like methods, can take input parameters. Constructors are used to
initialize objects. Abstract classes can have constructors also.

public class Hello{
 // constructor
 public Hello(String wordToPrint){
 printHello(wordToPrint);
 }
 public void printHello(String word){
 System.out.println(word);
 }
}
// instantiates the object during creating and prints out the content
// of wordToPrint

It is important to understand that constructors are different from methods in several ways:

Constructors can only take the modifiers public, private, and protected, and cannot be
declared abstract, final, static, or synchronized.

1.

Constructors do not have a return type.2.

Constructors MUST be named the same as the class name. In the Hello example, the Hello
object's constructor name is the same as the class name.

3.

The this keyword has an additional usage inside constructors. this.method(...) calls a
method on the current instance, while this(...) refers to another constructor in the current
class with different signatures.

4.

Constructors also can be called through inheritance using the keyword super.

public class SuperManClass{

 public SuperManClass(){
 // some implementation
 }

 // ... methods
}

public class BatmanClass extends SupermanClass{
 public BatmanClass(){
 super();
 }
 //... methods...

https://riptutorial.com/ 162

}

See Java Language Specification #8.8 and #15.9

Initializing static final fields using a static initializer

To initialize a static final fields that require using more than a single expression, a static
initializer can be used to assign the value. The following example initializes a unmodifiable set of
Strings:

public class MyClass {

 public static final Set<String> WORDS;

 static {
 Set<String> set = new HashSet<>();
 set.add("Hello");
 set.add("World");
 set.add("foo");
 set.add("bar");
 set.add("42");
 WORDS = Collections.unmodifiableSet(set);
 }
}

Explaining what is method overloading and overriding.

Method Overriding and Overloading are two forms of polymorphism supported by Java.

Method Overloading

Method overloading (also known as static Polymorphism) is a way you can have two (or more)
methods (functions) with same name in a single class. Yes its as simple as that.

public class Shape{
 //It could be a circle or rectangle or square
 private String type;

 //To calculate area of rectangle
 public Double area(Long length, Long breadth){
 return (Double) length * breadth;
 }

 //To calculate area of a circle
 public Double area(Long radius){
 return (Double) 3.14 * r * r;
 }
}

This way user can call the same method for area depending on the type of shape it has.

But the real question now is, how will java compiler will distinguish which method body is to be
executed?

https://riptutorial.com/ 163

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.8
http://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.9

Well Java have made it clear that even though the method names (area() in our case) can be
same but the arguments method is taking should be different.

Overloaded methods must have different arguments list (quantity and types).

That being said we cannot add another method to calculate area of a square like this : public
Double area(Long side) because in this case, it will conflict with area method of circle and will cause
ambiguity for java compiler.

Thank god, there are some relaxations while writing overloaded methods like

May have different return types.

May have different access modifiers.

May throw different exceptions.

Why is this called static polymorphism?

Well that's because which overloaded methods is to be invoked is decided at compile time, based
on the actual number of arguments and the compile-time types of the arguments.

One of common reasons of using method overloading is the simplicity of code it
provides. For example remember String.valueOf() which takes almost any type of
argument? What is written behind the scene is probably something like this :-

static String valueOf(boolean b)
static String valueOf(char c)
static String valueOf(char[] data)
static String valueOf(char[] data, int offset, int count)
static String valueOf(double d)
static String valueOf(float f)
static String valueOf(int i)
static String valueOf(long l)
static String valueOf(Object obj)

Method Overriding

Well, method overriding (yes you guess it right, it is also known as dynamic polymorphism) is
somewhat more interesting and complex topic.

In method overriding we overwrite the method body provided by the parent class. Got it? No? Let's
go through an example.

public abstract class Shape{

 public abstract Double area(){
 return 0.0;
 }
}

So we have a class called Shape and it has method called area which will probably return the area

https://riptutorial.com/ 164

of the shape.

Let's say now we have two classes called Circle and Rectangle.

public class Circle extends Shape {
 private Double radius = 5.0;

 // See this annotation @Override, it is telling that this method is from parent
 // class Shape and is overridden here
 @Override
 public Double area(){
 return 3.14 * radius * radius;
 }
}

Similarly rectangle class:

 public class Rectangle extends Shape {
 private Double length = 5.0;
 private Double breadth= 10.0;

 // See this annotation @Override, it is telling that this method is from parent
 // class Shape and is overridden here
 @Override
 public Double area(){
 return length * breadth;
 }
}

So, now both of your children classes have updated method body provided by the parent (Shape)
class. Now question is how to see the result? Well lets do it the old psvm way.

public class AreaFinder{

 public static void main(String[] args){

 //This will create an object of circle class
 Shape circle = new Circle();
 //This will create an object of Rectangle class
 Shape rectangle = new Rectangle();

 // Drumbeats
 //This should print 78.5
 System.out.println("Shape of circle : "+circle.area());

 //This should print 50.0
 System.out.println("Shape of rectangle: "+rectangle.area());

 }
}

Wow! isn't it great? Two objects of same type calling same methods and returning different values.
My friend, that's the power of dynamic polymorphism.

Here's a chart to better compare the differences between these two:-

https://riptutorial.com/ 165

Method Overloading Method Overriding

Method overloading is used to increase the
readability of the program.

Method overriding is used to provide
the specific implementation of the
method that is already provided by its
super class.

Method overloading is performed within class.
Method overriding occurs in two
classes that have IS-A (inheritance)
relationship.

In case of method overloading, parameter must be
different.

In case of method overriding,
parameter must be same.

Method overloading is the example of compile time
polymorphism.

Method overriding is the example of
run time polymorphism.

In java, method overloading can't be performed by
changing return type of the method only. Return type
can be same or different in method overloading. But
you must have to change the parameter.

Return type must be same or
covariant in method overriding.

Read Classes and Objects online: https://riptutorial.com/java/topic/114/classes-and-objects

https://riptutorial.com/ 166

https://riptutorial.com/java/topic/114/classes-and-objects

Chapter 27: Classloaders

Remarks

A classloader is a class whose primary purpose is to mediate the location and loading of classes
used by an application. A class loader can also find and loaded resources.

The standard classloader classes can load classes and resources from directories in the file
system and from JAR and ZIP files. They can also download and cache JAR and ZIP files from a
remote server.

Classloaders are normally chained, so that the JVM will try to load classes from the standard class
libraries in preference to application-provided sources. Custom classloaders allow the programmer
to alter this. The also can do such things as decrypting bytecode files and bytecode modification.

Examples

Instantiating and using a classloader

This basic example shows how an application can instantiate a classloader and use it to
dynamically load a class.

URL[] urls = new URL[] {new URL("file:/home/me/extras.jar")};
Classloader loader = new URLClassLoader(urls);
Class<?> myObjectClass = loader.findClass("com.example.MyObject");

The classloader created in this example will have the default classloader as its parent, and will first
try to find any class in the parent classloader before looking in "extra.jar". If the requested class
has already been loaded, the findClass call will return the reference to the previously loaded class.

The findClass call can fail in a variety of ways. The most common are:

If the named class cannot be found, the call with throw ClassNotFoundException.•
If the named class depends on some other class that cannot be found, the call will throw
NoClassDefFoundError.

•

Implementing a custom classLoader

Every custom loader must directly or indirectly extend the java.lang.ClassLoader class. The main
extension points are the following methods:

findClass(String) - overload this method if your classloader follows the standard delegation
model for class loading.

•

loadClass(String, boolean) - overload this method to implement an alternative delegation
model.

•

findResource and findResources - overload these methods to customize resource loading.•

https://riptutorial.com/ 167

The defineClass methods which are responsible for actually loading the class from a byte array are
final to prevent overloading. Any custom behavior needs to be performed prior to calling
defineClass.

Here is a simple that loads a specific class from a byte array:

public class ByteArrayClassLoader extends ClassLoader {
 private String classname;
 private byte[] classfile;

 public ByteArrayClassLoader(String classname, byte[] classfile) {
 this.classname = classname;
 this.classfile = classfile.clone();
 }

 @Override
 protected Class findClass(String classname) throws ClassNotFoundException {
 if (classname.equals(this.classname)) {
 return defineClass(classname, classfile, 0, classfile.length);
 } else {
 throw new ClassNotFoundException(classname);
 }
 }
}

Since we have only overridden the findClass method, this custom class loader is going to behave
as follows when loadClass is called.

The classloader's loadClass method calls findLoadedClass to see if a class with this name has
already been loaded by this classloader. If that succeeds, the resulting Class object is
returned to the requestor.

1.

The loadClass method then delegates to the parent classloader by calling its loadClass call. If
the parent can deal with the request, it will return a Class object which is then returned to the
requestor.

2.

If the parent classloader cannot load the class, findClass then calls our override findClass
method, passing the name of the class to be loaded.

3.

If the requested name matches this.classname, we call defineClass to load the actual class
from the this.classfile byte array. The resulting Class object is then returned.

4.

If the name did not match, we throw ClassNotFoundException.5.

Loading an external .class file

To load a class we first need to define it. The class is defined by the ClassLoader. There's just one
problem, Oracle didn't write the ClassLoader's code with this feature available. To define the class
we will need to access a method named defineClass() which is a private method of the ClassLoader
.

To access it, what we will do is create a new class, ByteClassLoader, and extend it to ClassLoader.
Now that we have extended our class to ClassLoader, we can access the ClassLoader's private
methods. To make defineClass() available, we will create a new method that will act like a mirror
for the private defineClass() method. To call the private method we will need the class name, name,

https://riptutorial.com/ 168

the class bytes, classBytes, the first byte's offset, which will be 0 because classBytes' data starts at
classBytes[0], and the last byte's offset, which will be classBytes.lenght because it represents the
size of the data, which will be the last offset.

public class ByteClassLoader extends ClassLoader {

 public Class<?> defineClass(String name, byte[] classBytes) {
 return defineClass(name, classBytes, 0, classBytes.length);
 }

}

Now, we have a public defineClass() method. It can be called by passing the name of the class
and the class bytes as arguments.

Let's say we have class named MyClass in the package stackoverflow...

To call the method we need the class bytes so we create a Path object representing our class' path
by using the Paths.get() method and passing the path of the binary class as an argument. Now,
we can get the class bytes with Files.readAllBytes(path). So we create a ByteClassLoader instance
and use the method we created, defineClass(). We already have the class bytes but to call our
method we also need the class name which is given by the package name (dot) the class
canonical name, in this case stackoverflow.MyClass.

Path path = Paths.get("MyClass.class");

ByteClassLoader loader = new ByteClassLoader();
loader.defineClass("stackoverflow.MyClass", Files.readAllBytes(path);

Note: The defineClass() method returns a Class<?> object. You can save it if you want.

To load the class, we just call loadClass() and pass the class name. This method can throw an
ClassNotFoundException so we need to use a try cath block

try{
 loader.loadClass("stackoverflow.MyClass");
} catch(ClassNotFoundException e){
 e.printStackTrace();
}

Read Classloaders online: https://riptutorial.com/java/topic/5443/classloaders

https://riptutorial.com/ 169

https://riptutorial.com/java/topic/5443/classloaders

Chapter 28: Collection Factory Methods

Introduction

The arrival of Java 9 brings many new features to Java's Collections API, one of which being
collection factory methods. These methods allow for easy initialization of immutable collections,
whether they be empty or nonempty.

Note that these factory methods are only available for the following interfaces: List<E>, Set<E>, and
Map<K, V>

Syntax

static <E> List<E> of()•
static <E> List<E> of(E e1)•
static <E> List<E> of(E e1, E e2)•
static <E> List<E> of(E e1, E e2, ..., E e9, E e10)•
static <E> List<E> of(E... elements)•
static <E> Set<E> of()•
static <E> Set<E> of(E e1)•
static <E> Set<E> of(E e1, E e2)•
static <E> Set<E> of(E e1, E e2, ..., E e9, E e10)•
static <E> Set<E> of(E... elements)•
static <K,V> Map<K,V> of()•
static <K,V> Map<K,V> of(K k1, V v1)•
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2)•
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, ..., K k9, V v9, K k10, V v10)•
static <K,V> Map<K,V> ofEntries(Map.Entry<? extends K,? extends V>... entries)•

Parameters

Method w/ Parameter Description

List.of(E e) A generic type that can be a class or interface.

Set.of(E e) A generic type that can be a class or interface.

Map.of(K k, V v)
A key-value pair of generic types that can each be a class
or interface.

Map.of(Map.Entry<? extends K, ?
extends V> entry)

A Map.Entry instance where its key can be K or one of its
children, and its value can be V or any of its children.

Examples

List Factory Method Examples

https://riptutorial.com/ 170

List<Integer> immutableEmptyList = List.of();
Initializes an empty, immutable List<Integer>.○

•

List<Integer> immutableList = List.of(1, 2, 3, 4, 5);
Initializes an immutable List<Integer> with five initial elements.○

•

List<Integer> mutableList = new ArrayList<>(immutableList);
Initializes a mutable List<Integer> from an immutable List<Integer>.○

•

Set Factory Method Examples

Set<Integer> immutableEmptySet = Set.of();
Initializes an empty, immutable Set<Integer>.○

•

Set<Integer> immutableSet = Set.of(1, 2, 3, 4, 5);
Initializes an immutable Set<Integer> with five initial elements.○

•

Set<Integer> mutableSet = new HashSet<>(immutableSet);
Initializes a mutable Set<Integer> from an immutable Set<Integer>.○

•

Map Factory Method Examples

Map<Integer, Integer> immutableEmptyMap = Map.of();
Initializes an empty, immutable Map<Integer, Integer>.○

•

Map<Integer, Integer> immutableMap = Map.of(1, 2, 3, 4);
Initializes an immutable Map<Integer, Integer> with two initial key-value entries.○

•

Map<Integer, Integer> immutableMap = Map.ofEntries(Map.entry(1, 2), Map.entry(3, 4));
Initializes an immutable Map<Integer, Integer> with two initial key-value entries.○

•

Map<Integer, Integer> mutableMap = new HashMap<>(immutableMap);
Initializes a mutable Map<Integer, Integer> from an immutable Map<Integer, Integer>.○

•

Read Collection Factory Methods online: https://riptutorial.com/java/topic/9783/collection-factory-
methods

https://riptutorial.com/ 171

https://riptutorial.com/java/topic/9783/collection-factory-methods
https://riptutorial.com/java/topic/9783/collection-factory-methods

Chapter 29: Collections

Introduction

The collections framework in java.util provides a number of generic classes for sets of data with
functionality that can't be provided by regular arrays.

Collections framework contains interfaces for Collection<O>, with main sub-interfaces List<O> and
Set<O>, and mapping collection Map<K,V>. Collections are the root interface and are being
implemented by many other collection frameworks.

Remarks

Collections are objects that can store collections of other objects inside of them. You can specify
the type of data stored in a collection using Generics.

Collections generally use the java.util or java.util.concurrent namespaces.

Java SE 1.4

Java 1.4.2 and below do not support generics. As such, you can not specify the type parameters
that a collection contains. In addition to not having type safety, you must also use casts to get the
correct type back from a collection.

In addition to Collection<E>, there are multiple major types of collections, some of which have
subtypes.

List<E> is an ordered collection of objects. It is similar to an array, but does not define a size
limit. Implementations will usually grow in size internally to accomodate new elements.

•

Set<E> is a collection of objects that does not allow duplicates.
SortedSet<E> is a Set<E> that also specifies element ordering.○

•

Map<K,V> is a collection of key/value pairs.
SortedMap<K,V> is a Map<K,V> that also specifies element ordering.○

•

Java SE 5

Java 5 adds in a new collection type:

Queue<E> is a collection of elements meant to be processed in a specific order. The
implementation specifies whether this is FIFO or LIFO. This obsoletes the Stack class.

•

Java SE 6

Java 6 adds in some new subtypes of collections.

NavigableSet<E> is a Set<E> with special navigation methods built in.•
NavigableMap<K,V> is a Map<K,V> with special navigation methods built in.•

https://riptutorial.com/ 172

http://www.riptutorial.com/java/topic/92/generics

Deque<E> is a Queue<E> that can be read from either end.•

Note that the above items are all interfaces. In order to use them, you must find the appropriate
implementing classes, such as ArrayList, HashSet, HashMap, or PriorityQueue.

Each type of collection has multiple implementations that have different performance metrics and
use cases.

Note that the Liskov Substitution Principle applies to the collection subtypes. That is, a
SortedSet<E> can be passed to a function expecting a Set<E>. It is also useful to read about
Bounded Parameters in the Generics section for more information on how to use collections with
class inheritance.

If you want to create your own collections, it may be easier to inherit one of the abstract classes
(such as AbstractList) instead of implementing the interface.

Java SE 1.2

Prior to 1.2, you had to use the following classes/interfaces instead:

Vector instead of ArrayList•
Dictionary instead of Map. Note that Dictionary is also an abstract class rather than an
interface.

•

Hashtable instead of HashMap•

These classes are obsolete and should not be used in modern code.

Examples

Declaring an ArrayList and adding objects

We can create an ArrayList (following the List interface):

List aListOfFruits = new ArrayList();

Java SE 5

List<String> aListOfFruits = new ArrayList<String>();

Java SE 7

List<String> aListOfFruits = new ArrayList<>();

Now, use the method add to add a String:

aListOfFruits.add("Melon");
aListOfFruits.add("Strawberry");

In the above example, the ArrayList will contain the String "Melon" at index 0 and the String

https://riptutorial.com/ 173

http://www.riptutorial.com/java/example/3106/the-liskov-substitution-principle
http://www.riptutorial.com/java/topic/92/generics/1229/bounded-parameters#t=201607211933059600587

"Strawberry" at index 1.

Also we can add multiple elements with addAll(Collection<? extends E> c) method

List<String> aListOfFruitsAndVeggies = new ArrayList<String>();
aListOfFruitsAndVeggies.add("Onion");
aListOfFruitsAndVeggies.addAll(aListOfFruits);

Now "Onion" is placed at 0 index in aListOfFruitsAndVeggies, "Melon" is at index 1 and "Strawberry"
is at index 2.

Constructing collections from existing data

Standard Collections

Java Collections framework

A simple way to construct a List from individual data values is to use java.utils.Arrays method
Arrays.asList:

List<String> data = Arrays.asList("ab", "bc", "cd", "ab", "bc", "cd");

All standard collection implementations provide constructors that take another collection as an
argument adding all elements to the new collection at the time of construction:

List<String> list = new ArrayList<>(data); // will add data as is
Set<String> set1 = new HashSet<>(data); // will add data keeping only unique values
SortedSet<String> set2 = new TreeSet<>(data); // will add data keeping unique values and
sorting
Set<String> set3 = new LinkedHashSet<>(data); // will add data keeping only unique values and
preserving the original order

Google Guava Collections framework

Another great framework is Google Guava that is amazing utility class (providing convenience static
methods) for construction of different types of standard collections Lists and Sets:

 import com.google.common.collect.Lists;
 import com.google.common.collect.Sets;
 ...
 List<String> list1 = Lists.newArrayList("ab", "bc", "cd");
 List<String> list2 = Lists.newArrayList(data);
 Set<String> set4 = Sets.newHashSet(data);
 SortedSet<String> set5 = Sets.newTreeSet("bc", "cd", "ab", "bc", "cd");

Mapping Collections

https://riptutorial.com/ 174

Java Collections framework

Similarly for maps, given a Map<String, Object> map a new map can be constructed with all
elements as follows:

Map<String, Object> map1 = new HashMap<>(map);
SortedMap<String, Object> map2 = new TreeMap<>(map);

Apache Commons Collections framework

Using Apache Commons you can create Map using array in ArrayUtils.toMap as well as MapUtils.toMap:

 import org.apache.commons.lang3.ArrayUtils;
 ...
 // Taken from org.apache.commons.lang.ArrayUtils#toMap JavaDoc

 // Create a Map mapping colors.
 Map colorMap = MapUtils.toMap(new String[][] {{
 {"RED", "#FF0000"},
 {"GREEN", "#00FF00"},
 {"BLUE", "#0000FF"}});

Each element of the array must be either a Map.Entry or an Array, containing at least two
elements, where the first element is used as key and the second as value.

Google Guava Collections framework

Utility class from Google Guava framework is named Maps:

 import com.google.common.collect.Maps;
 ...
 void howToCreateMapsMethod(Function<? super K,V> valueFunction,
 Iterable<K> keys1,
 Set<K> keys2,
 SortedSet<K> keys3) {
 ImmutableMap<K, V> map1 = toMap(keys1, valueFunction); // Immutable copy
 Map<K, V> map2 = asMap(keys2, valueFunction); // Live Map view
 SortedMap<K, V> map3 = toMap(keys3, valueFunction); // Live Map view
 }

Java SE 8

Using Stream,

Stream.of("xyz", "abc").collect(Collectors.toList());

or

Arrays.stream("xyz", "abc").collect(Collectors.toList());

https://riptutorial.com/ 175

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Join lists

Following ways can be used for joining lists without modifying source list(s).

First approach. Has more lines but easy to understand

List<String> newList = new ArrayList<String>();
newList.addAll(listOne);
newList.addAll(listTwo);

Second approach. Has one less line but less readable.

List<String> newList = new ArrayList<String>(listOne);
newList.addAll(listTwo);

Third approach. Requires third party Apache commons-collections library.

ListUtils.union(listOne,listTwo);

Java SE 8

Using Streams the same can be achieved by

List<String> newList = Stream.concat(listOne.stream(),
listTwo.stream()).collect(Collectors.toList());

References. Interface List

Removing items from a List within a loop

It is tricky to remove items from a list while within a loop, this is due to the fact that the index and
length of the list gets changed.

Given the following list, here are some examples that will give an unexpected result and some that
will give the correct result.

List<String> fruits = new ArrayList<String>();
fruits.add("Apple");
fruits.add("Banana");
fruits.add("Strawberry");

INCORRECT

Removing in iteration of for statement Skips "Banana":

The code sample will only print Apple and Strawberry. Banana is skipped because it moves to index 0
once Apple is deleted, but at the same time i gets incremented to 1.

https://riptutorial.com/ 176

https://commons.apache.org/proper/commons-collections/apidocs/org/apache/commons/collections4/ListUtils.html
https://docs.oracle.com/javase/8/docs/api/java/util/List.html#addAll-java.util.Collection-

for (int i = 0; i < fruits.size(); i++) {
 System.out.println (fruits.get(i));
 if ("Apple".equals(fruits.get(i))) {
 fruits.remove(i);
 }
}

Removing in the enhanced for statement Throws Exception:

Because of iterating over collection and modifying it at the same time.

Throws: java.util.ConcurrentModificationException

for (String fruit : fruits) {
 System.out.println(fruit);
 if ("Apple".equals(fruit)) {
 fruits.remove(fruit);
 }
}

CORRECT

Removing in while loop using an Iterator

Iterator<String> fruitIterator = fruits.iterator();
while(fruitIterator.hasNext()) {
 String fruit = fruitIterator.next();
 System.out.println(fruit);
 if ("Apple".equals(fruit)) {
 fruitIterator.remove();
 }
}

The Iterator interface has a remove() method built in just for this case. However, this method is
marked as "optional" in the documentation, and it might throw an UnsupportedOperationException.

Throws: UnsupportedOperationException - if the remove operation is not supported by
this iterator

Therefore, it is advisable to check the documentation to make sure this operation is supported (in
practice, unless the collection is an immutable one obtained through a 3rd party library or the use
of one of the Collections.unmodifiable...() method, the operation is almost always supported).

While using an Iterator a ConcurrentModificationException is thrown when the modCount of the List
is changed from when the Iterator was created. This could have happened in the same thread or
in a multi-threaded application sharing the same list.

A modCount is an int variable which counts the number of times this list has been structurally

https://riptutorial.com/ 177

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html#remove--

modified. A structural change essentially means an add() or remove() operation being invoked on
Collection object (changes made by Iterator are not counted). When the Iterator is created, it
stores this modCount and on every iteration of the List checks if the current modCount is same as and
when the Iterator was created. If there is a change in the modCount value it throws a
ConcurrentModificationException.

Hence for the above-declared list, an operation like below will not throw any exception:

Iterator<String> fruitIterator = fruits.iterator();
fruits.set(0, "Watermelon");
while(fruitIterator.hasNext()){
 System.out.println(fruitIterator.next());
}

But adding a new element to the List after initializing an Iterator will throw a
ConcurrentModificationException:

Iterator<String> fruitIterator = fruits.iterator();
fruits.add("Watermelon");
while(fruitIterator.hasNext()){
 System.out.println(fruitIterator.next()); //ConcurrentModificationException here
}

Iterating backwards

for (int i = (fruits.size() - 1); i >=0; i--) {
 System.out.println (fruits.get(i));
 if ("Apple".equals(fruits.get(i))) {
 fruits.remove(i);
 }
}

This does not skip anything. The downside of this approach is that the output is reverse. However,
in most cases where you remove items that will not matter. You should never do this with
LinkedList.

Iterating forward, adjusting the loop index

for (int i = 0; i < fruits.size(); i++) {
 System.out.println (fruits.get(i));
 if ("Apple".equals(fruits.get(i))) {
 fruits.remove(i);
 i--;
 }
}

This does not skip anything. When the ith element is removed from the List, the element originally
positioned at index i+1 becomes the new ith element. Therefore, the loop can decrement i in
order for the next iteration to process the next element, without skipping.

https://riptutorial.com/ 178

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

Using a "should-be-removed" list

ArrayList shouldBeRemoved = new ArrayList();
for (String str : currentArrayList) {
 if (condition) {
 shouldBeRemoved.add(str);
 }
}
currentArrayList.removeAll(shouldBeRemoved);

This solution enables the developer to check if the correct elements are removed in a cleaner way.

Java SE 8

In Java 8 the following alternatives are possible. These are cleaner and more straight forward if
the removing does not have to happen in a loop.

Filtering a Stream

A List can be streamed and filtered. A proper filter can be used to remove all undesired elements.

List<String> filteredList =
 fruits.stream().filter(p -> !"Apple".equals(p)).collect(Collectors.toList());

Note that unlike all the other examples here, this example produces a new List instance and
keeps the original List unchanged.

Using removeIf

Saves the overhead of constructing a stream if all that is needed is to remove a set of items.

fruits.removeIf(p -> "Apple".equals(p));

Unmodifiable Collection

Sometimes it's not a good practice expose an internal collection since it can lead to a malicious
code vulnerability due to it's mutable characteristic. In order to provide "read-only" collections java
provides its unmodifiable versions.

An unmodifiable collection is often a copy of a modifiable collection which guarantees that the
collection itself cannot be altered. Attempts to modify it will result in an
UnsupportedOperationException exception.

It is important to notice that objects which are present inside the collection can still be altered.

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

https://riptutorial.com/ 179

public class MyPojoClass {
 private List<Integer> intList = new ArrayList<>();

 public void addValueToIntList(Integer value){
 intList.add(value);
 }

 public List<Integer> getIntList() {
 return Collections.unmodifiableList(intList);
 }
}

The following attempt to modify an unmodifiable collection will throw an exception:

import java.util.List;

public class App {

 public static void main(String[] args) {
 MyPojoClass pojo = new MyPojoClass();
 pojo.addValueToIntList(42);

 List<Integer> list = pojo.getIntList();
 list.add(69);
 }
}

output:

Exception in thread "main" java.lang.UnsupportedOperationException
 at java.util.Collections$UnmodifiableCollection.add(Collections.java:1055)
 at App.main(App.java:12)

Iterating over Collections

Iterating over List

List<String> names = new ArrayList<>(Arrays.asList("Clementine", "Duran", "Mike"));

Java SE 8

names.forEach(System.out::println);

If we need parallelism use

names.parallelStream().forEach(System.out::println);

Java SE 5

for (String name : names) {

https://riptutorial.com/ 180

 System.out.println(name);
}

Java SE 5

for (int i = 0; i < names.size(); i++) {
 System.out.println(names.get(i));
}

Java SE 1.2

//Creates ListIterator which supports both forward as well as backward traversel
ListIterator<String> listIterator = names.listIterator();

//Iterates list in forward direction
while(listIterator.hasNext()){
 System.out.println(listIterator.next());
}

//Iterates list in backward direction once reaches the last element from above iterator in
forward direction
while(listIterator.hasPrevious()){
 System.out.println(listIterator.previous());
}

Iterating over Set

Set<String> names = new HashSet<>(Arrays.asList("Clementine", "Duran", "Mike"));

Java SE 8

names.forEach(System.out::println);

Java SE 5

for (Iterator<String> iterator = names.iterator(); iterator.hasNext();) {
 System.out.println(iterator.next());
}

for (String name : names) {
 System.out.println(name);
}

Java SE 5

Iterator iterator = names.iterator();
while (iterator.hasNext()) {
 System.out.println(iterator.next());
}

Iterating over Map

https://riptutorial.com/ 181

Map<Integer, String> names = new HashMap<>();
names.put(1, "Clementine");
names.put(2, "Duran");
names.put(3, "Mike");

Java SE 8

names.forEach((key, value) -> System.out.println("Key: " + key + " Value: " + value));

Java SE 5

for (Map.Entry<Integer, String> entry : names.entrySet()) {
 System.out.println(entry.getKey());
 System.out.println(entry.getValue());
}

// Iterating over only keys
for (Integer key : names.keySet()) {
 System.out.println(key);
}
// Iterating over only values
for (String value : names.values()) {
 System.out.println(value);
}

Java SE 5

Iterator entries = names.entrySet().iterator();
while (entries.hasNext()) {
 Map.Entry entry = (Map.Entry) entries.next();
 System.out.println(entry.getKey());
 System.out.println(entry.getValue());
}

Immutable Empty Collections

Sometimes it is appropriate to use an immutable empty collection. The Collections class provides
methods to get such collections in an efficient way:

List<String> anEmptyList = Collections.emptyList();
Map<Integer, Date> anEmptyMap = Collections.emptyMap();
Set<Number> anEmptySet = Collections.emptySet();

These methods are generic and will automatically convert the returned collection to the type it is
assigned to. That is, an invocation of e.g. emptyList() can be assigned to any type of List and
likewise for emptySet() and emptyMap().

The collections returned by these methods are immutable in that they will throw
UnsupportedOperationException if you attempt to call methods which would change their contents (
add, put, etc.). These collections are primarily useful as substitutes for empty method results or
other default values, instead of using null or creating objects with new.

Collections and Primitive Values

https://riptutorial.com/ 182

https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html

Collections in Java only work for objects. I.e. there is no Map<int, int> in Java. Instead, primitive
values need to be boxed into objects, as in Map<Integer, Integer>. Java auto-boxing will enable
transparent use of these collections:

Map<Integer, Integer> map = new HashMap<>();
map.put(1, 17); // Automatic boxing of int to Integer objects
int a = map.get(1); // Automatic unboxing.

Unfortunately, the overhead of this is substantial. A HashMap<Integer, Integer> will require about 72
bytes per entry (e.g. on 64-bit JVM with compressed pointers, and assuming integers larger than
256, and assuming 50% load of the map). Because the actual data is only 8 bytes, this yields a
massive overhead. Furthermore, it requires two level of indirection (Map -> Entry -> Value) it is
unnecessarily slow.

There exist several libraries with optimized collections for primitive data types (that require only
~16 bytes per entry at 50% load, i.e. 4x less memory, and one level of indirection less), that can
yield substantial performance benefits when using large collections of primitive values in Java.

Removing matching items from Lists using Iterator.

Above I noticed an example to remove items from a List within a Loop and I thought of another
example that may come in handy this time using the Iterator interface.
This is a demonstration of a trick that might come in handy when dealing with duplicate items in
lists that you want to get rid of.

Note: This is only adding on to the Removing items from a List within a loop example:

So let's define our lists as usual

 String[] names = {"James","Smith","Sonny","Huckle","Berry","Finn","Allan"};
 List<String> nameList = new ArrayList<>();

 //Create a List from an Array
 nameList.addAll(Arrays.asList(names));

 String[] removeNames = {"Sonny","Huckle","Berry"};
 List<String> removeNameList = new ArrayList<>();

 //Create a List from an Array
 removeNameList.addAll(Arrays.asList(removeNames));

The following method takes in two Collection objects and performs the magic of removing the
elements in our removeNameList that match with elements in nameList.

private static void removeNames(Collection<String> collection1, Collection<String>
collection2) {
 //get Iterator.
 Iterator<String> iterator = collection1.iterator();

 //Loop while collection has items
 while(iterator.hasNext()){
 if (collection2.contains(iterator.next()))

https://riptutorial.com/ 183

 iterator.remove(); //remove the current Name or Item
 }
}

Calling the method and passing in the nameList and the removeNameListas follows
removeNames(nameList,removeNameList);
Will produce the following output:

Array List before removing names: James Smith Sonny Huckle Berry Finn Allan
Array List after removing names: James Smith Finn Allan

A simple neat use for Collections that may come in handy to remove repeating elements within
lists.

Creating your own Iterable structure for use with Iterator or for-each loop.

To ensure that our collection can be iterated using iterator or for-each loop, we have to take care
of following steps:

The stuff we want to iterate upon has to be Iterable and expose iterator().1.
Design a java.util.Iterator by overriding hasNext(), next() and remove().2.

I have added a simple generic linked list implementation below that uses above entities to make
the linked list iterable.

package org.algorithms.linkedlist;

import java.util.Iterator;
import java.util.NoSuchElementException;

public class LinkedList<T> implements Iterable<T> {

 Node<T> head, current;

 private static class Node<T> {
 T data;
 Node<T> next;

 Node(T data) {
 this.data = data;
 }
 }

 public LinkedList(T data) {
 head = new Node<>(data);
 }

 public Iterator<T> iterator() {
 return new LinkedListIterator();
 }

 private class LinkedListIterator implements Iterator<T> {

 Node<T> node = head;

https://riptutorial.com/ 184

 @Override
 public boolean hasNext() {
 return node != null;
 }

 @Override
 public T next() {
 if (!hasNext())
 throw new NoSuchElementException();
 Node<T> prevNode = node;
 node = node.next;
 return prevNode.data;
 }

 @Override
 public void remove() {
 throw new UnsupportedOperationException("Removal logic not implemented.");
 }
 }

 public void add(T data) {
 Node current = head;
 while (current.next != null)
 current = current.next;
 current.next = new Node<>(data);
 }

}

class App {
 public static void main(String[] args) {

 LinkedList<Integer> list = new LinkedList<>(1);
 list.add(2);
 list.add(4);
 list.add(3);

 //Test #1
 System.out.println("using Iterator:");
 Iterator<Integer> itr = list.iterator();
 while (itr.hasNext()) {
 Integer i = itr.next();
 System.out.print(i + " ");
 }

 //Test #2
 System.out.println("\n\nusing for-each:");
 for (Integer data : list) {
 System.out.print(data + " ");
 }
 }
}

Output

using Iterator:
1 2 4 3
using for-each:
1 2 4 3

https://riptutorial.com/ 185

This will run in Java 7+. You can make it run on Java 5 and Java 6 also by substituting:

LinkedList<Integer> list = new LinkedList<>(1);

with

LinkedList<Integer> list = new LinkedList<Integer>(1);

or just any other version by incorporating the compatible changes.

Pitfall: concurrent modification exceptions

This exception occurs when a collection is modified while iterating over it using methods other
than those provided by the iterator object. For example, we have a list of hats and we want to
remove all those that have ear flaps:

List<IHat> hats = new ArrayList<>();
hats.add(new Ushanka()); // that one has ear flaps
hats.add(new Fedora());
hats.add(new Sombrero());
for (IHat hat : hats) {
 if (hat.hasEarFlaps()) {
 hats.remove(hat);
 }
}

If we run this code, ConcurrentModificationException will be raised since the code modifies the
collection while iterating it. The same exception may occur if one of the multiple threads working
with the same list is trying to modify the collection while others iterate over it. Concurrent
modification of collections in multiple threads is a natural thing, but should be treated with usual
tools from the concurrent programming toolbox such as synchronization locks, special collections
adopted for concurrent modification, modifying the cloned collection from initial etc.

Sub Collections

List subList(int fromIndex, int toIndex)

Here fromIndex is inclusive and toIndex is exclusive.

List list = new ArrayList();
List list1 = list.subList(fromIndex,toIndex);

If the list doesn't exist in the give range, it throws IndexOutofBoundException.1.
What ever changes made on the list1 will impact the same changes in the list.This is called
backed collections.

2.

If the fromnIndex is greater than the toIndex (fromIndex > toIndex) it throws
IllegalArgumentException.

3.

https://riptutorial.com/ 186

Example:

List<String> list = new ArrayList<String>();
List<String> list = new ArrayList<String>();
list.add("Hello1");
list.add("Hello2");
System.out.println("Before Sublist "+list);
List<String> list2 = list.subList(0, 1);
list2.add("Hello3");
System.out.println("After sublist changes "+list);

Output:
Before Sublist [Hello1, Hello2]
After sublist changes [Hello1, Hello3, Hello2]

Set subSet(fromIndex,toIndex)

Here fromIndex is inclusive and toIndex is exclusive.

Set set = new TreeSet();
Set set1 = set.subSet(fromIndex,toIndex);

The returned set will throw an IllegalArgumentException on an attempt to insert an element
outside its range.

Map subMap(fromKey,toKey)

fromKey is inclusive and toKey is exclusive

Map map = new TreeMap();
Map map1 = map.get(fromKey,toKey);

If fromKey is greater than toKey or if this map itself has a restricted range, and fromKey or toKey
lies outside the bounds of the range then it throws IllegalArgumentException.

All the collections support backed collections means changes made on the sub collection will have
same change on the main collection.

Read Collections online: https://riptutorial.com/java/topic/90/collections

https://riptutorial.com/ 187

https://riptutorial.com/java/topic/90/collections

Chapter 30: Command line Argument
Processing

Syntax

public static void main(String[] args)•

Parameters

Parameter Details

args
The command line arguments. Assuming that the main method is invoked by the
Java launcher, args will be non-null, and will have no null elements.

Remarks

When a regular Java application is launched using the java command (or equivalent), a main
method will be called, passing the arguments from the command line in the args array.

Unfortunately, the Java SE class libraries do not provide any direct support for command
argument processing. This leaves you two alternatives:

Implement the argument processing by hand in Java.•
Make use of a 3rd-party library.•

This Topic will attempt to cover some of the more popular 3rd-party libraries. For an extensive list
of the alternatives, see this answer to the StackOverflow Question "How to parse command line
arguments in Java?".

Examples

Argument processing using GWT ToolBase

If you want to parse more complex command-line arguments, e.g. with optional parameters, than
the best is to use google's GWT approach. All classes are public available at:

https://gwt.googlesource.com/gwt/+/2.8.0-
beta1/dev/core/src/com/google/gwt/util/tools/ToolBase.java

An example for handling the command-line myprogram -dir "~/Documents" -port 8888 is:

public class MyProgramHandler extends ToolBase {
 protected File dir;

https://riptutorial.com/ 188

http://stackoverflow.com/a/7829772/139985
http://stackoverflow.com/a/7829772
http://stackoverflow.com/a/7829772
https://gwt.googlesource.com/gwt/+/2.8.0-beta1/dev/core/src/com/google/gwt/util/tools/ToolBase.java
https://gwt.googlesource.com/gwt/+/2.8.0-beta1/dev/core/src/com/google/gwt/util/tools/ToolBase.java

 protected int port;
 // getters for dir and port
 ...

 public MyProgramHandler() {
 this.registerHandler(new ArgHandlerDir() {
 @Override
 public void setDir(File dir) {
 this.dir = dir;
 }
 });
 this.registerHandler(new ArgHandlerInt() {
 @Override
 public String[] getTagArgs() {
 return new String[]{"port"};
 }
 @Override
 public void setInt(int value) {
 this.port = value;
 }
 });
 }
 public static void main(String[] args) {
 MyProgramHandler myShell = new MyProgramHandler();
 if (myShell.processArgs(args)) {
 // main program operation
 System.out.println(String.format("port: %d; dir: %s",
 myShell.getPort(), myShell.getDir()));
 }
 System.exit(1);
 }
}

ArgHandler also has a method isRequired() which can be overwritten to say that the command-line
argument is required (default return is false so that the argument is optional.

Processing arguments by hand

When the command-line syntax for an application is simple, it is reasonable to do the command
argument processing entirely in custom code.

In this example, we will present a series of simple case studies. In each case, the code will
produce error messages if the arguments are unacceptable, and then call System.exit(1) to tell the
shell that the command has failed. (We will assume in each case that the Java code is invoked
using a wrapper whose name is "myapp".)

A command with no arguments

In this case-study, the command requires no arguments. The code illustrates that args.length
gives us the number of command line arguments.

public class Main {
 public static void main(String[] args) {
 if (args.length > 0) {
 System.err.println("usage: myapp");

https://riptutorial.com/ 189

 System.exit(1);
 }
 // Run the application
 System.out.println("It worked");
 }
}

A command with two arguments

In this case-study, the command requires at precisely two arguments.

public class Main {
 public static void main(String[] args) {
 if (args.length != 2) {
 System.err.println("usage: myapp <arg1> <arg2>");
 System.exit(1);
 }
 // Run the application
 System.out.println("It worked: " + args[0] + ", " + args[1]);
 }
}

Note that if we neglected to check args.length, the command would crash if the user ran it with too
few command-line arguments.

A command with "flag" options and at least one argument

In this case-study, the command has a couple of (optional) flag options, and requires at least one
argument after the options.

package tommy;
public class Main {
 public static void main(String[] args) {
 boolean feelMe = false;
 boolean seeMe = false;
 int index;
 loop: for (index = 0; index < args.length; index++) {
 String opt = args[index];
 switch (opt) {
 case "-c":
 seeMe = true;
 break;
 case "-f":
 feelMe = true;
 break;
 default:
 if (!opts.isEmpty() && opts.charAt(0) == '-') {
 error("Unknown option: '" + opt + "');
 }
 break loop;
 }
 }
 if (index >= args.length) {
 error("Missing argument(s)");
 }

https://riptutorial.com/ 190

 // Run the application
 // ...
 }

 private static void error(String message) {
 if (message != null) {
 System.err.println(message);
 }
 System.err.println("usage: myapp [-f] [-c] [<arg> ...]");
 System.exit(1);
 }
}

As you can see, processing the arguments and options gets rather cumbersome if the command
syntax is complicated. It is advisable to use a "command line parsing" library; see the other
examples.

Read Command line Argument Processing online:
https://riptutorial.com/java/topic/4775/command-line-argument-processing

https://riptutorial.com/ 191

https://riptutorial.com/java/topic/4775/command-line-argument-processing

Chapter 31: Common Java Pitfalls

Introduction

This topic outlines some of the common mistakes made by beginners in Java.

This includes any common mistakes in use of the Java language or understanding of the run-time
environment.

Mistakes associated with specific APIs can be described in topics specific to those APIs. Strings
are a special case; they're covered in the Java Language Specification. Details other than
common mistakes can be described in this topic on Strings.

Examples

Pitfall: using == to compare primitive wrappers objects such as Integer

(This pitfall applies equally to all primitive wrapper types, but we will illustrate it for Integer and int
.)

When working with Integer objects, it is tempting to use == to compare values, because that is
what you would do with int values. And in some cases this will seem to work:

Integer int1_1 = Integer.valueOf("1");
Integer int1_2 = Integer.valueOf(1);

System.out.println("int1_1 == int1_2: " + (int1_1 == int1_2)); // true
System.out.println("int1_1 equals int1_2: " + int1_1.equals(int1_2)); // true

Here we created two Integer objects with the value 1 and compare them (In this case we created
one from a String and one from an int literal. There are other alternatives). Also, we observe that
the two comparison methods (== and equals) both yield true.

This behavior changes when we choose different values:

Integer int2_1 = Integer.valueOf("1000");
Integer int2_2 = Integer.valueOf(1000);

System.out.println("int2_1 == int2_2: " + (int2_1 == int2_2)); // false
System.out.println("int2_1 equals int2_2: " + int2_1.equals(int2_2)); // true

In this case, only the equals comparison yields the correct result.

The reason for this difference in behavior is, that the JVM maintains a cache of Integer objects for
the range -128 to 127. (The upper value can be overridden with the system property
"java.lang.Integer.IntegerCache.high" or the JVM argument "-XX:AutoBoxCacheMax=size"). For
values in this range, the Integer.valueOf() will return the cached value rather than creating a new

https://riptutorial.com/ 192

http://www.riptutorial.com/java/topic/109/strings

one.

Thus, in the first example the Integer.valueOf(1) and Integer.valueOf("1") calls returned the same
cached Integer instance. By contrast, in the second example the Integer.valueOf(1000) and
Integer.valueOf("1000") both created and returned new Integer objects.

The == operator for reference types tests for reference equality (i.e. the same object). Therefore, in
the first example int1_1 == int1_2 is true because the references are the same. In the second
example int2_1 == int2_2 is false because the references are different.

Pitfall: forgetting to free resources

Every time a program opens a resource, such as a file or network connection, it is important to
free the resource once you are done using it. Similar caution should be taken if any exception
were to be thrown during operations on such resources. One could argue that the FileInputStream
has a finalizer that invokes the close() method on a garbage collection event; however, since we
can’t be sure when a garbage collection cycle will start, the input stream can consume computer
resources for an indefinite period of time. The resource must be closed in a finally section of a
try-catch block:

Java SE 7

private static void printFileJava6() throws IOException {
 FileInputStream input;
 try {
 input = new FileInputStream("file.txt");
 int data = input.read();
 while (data != -1){
 System.out.print((char) data);
 data = input.read();
 }
 } finally {
 if (input != null) {
 input.close();
 }
 }
}

Since Java 7 there is a really useful and neat statement introduced in Java 7 particularly for this
case, called try-with-resources:

Java SE 7

private static void printFileJava7() throws IOException {
 try (FileInputStream input = new FileInputStream("file.txt")) {
 int data = input.read();
 while (data != -1){
 System.out.print((char) data);
 data = input.read();
 }
 }
}

https://riptutorial.com/ 193

https://docs.oracle.com/javase/8/docs/api/java/io/FileInputStream.html
https://en.wikipedia.org/wiki/Finalizer

The try-with-resources statement can be used with any object that implements the Closeable or
AutoCloseable interface. It ensures that each resource is closed by the end of the statement. The
difference between the two interfaces is, that the close() method of Closeable throws an
IOException which has to be handled in some way.

In cases where the resource has already been opened but should be safely closed after use, one
can assign it to a local variable inside the try-with-resources

Java SE 7

private static void printFileJava7(InputStream extResource) throws IOException {
 try (InputStream input = extResource) {
 ... //access resource
 }
}

The local resource variable created in the try-with-resources constructor is effectively final.

Pitfall: memory leaks

Java manages memory automatically. You are not required to free memory manually. An object's
memory on the heap may be freed by a garbage collector when the object is no longer reachable
by a live thread.

However, you can prevent memory from being freed, by allowing objects to be reachable that are
no longer needed. Whether you call this a memory leak or memory packratting, the result is the
same -- an unnecessary increase in allocated memory.

Memory leaks in Java can happen in various ways, but the most common reason is everlasting
object references, because the garbage collector can’t remove objects from the heap while there
are still references to them.

Static fields

One can create such a reference by defining class with a static field containing some collection of
objects, and forgetting to set that static field to null after the collection is no longer needed. static
fields are considered GC roots and are never collected. Another issue is leaks in non-heap
memory when JNI is used.

Classloader leak

By far, though, the most insidious type of memory leak is the classloader leak. A classloader holds
a reference to every class it has loaded, and every class holds a reference to its classloader.
Every object holds a reference to its class as well. Therefore, if even a single object of a class
loaded by a classloader is not garbage, not a single class that that classloader has loaded can be
collected. Since each class also refers to its static fields, they cannot be collected either.

Accumulation leak The accumulation leak example could look like the following:

final ScheduledExecutorService scheduledExecutorService = Executors.newScheduledThreadPool(1);

https://riptutorial.com/ 194

https://en.wikipedia.org/wiki/Java_Native_Interface
https://zeroturnaround.com/rebellabs/rjc201/

final Deque<BigDecimal> numbers = new LinkedBlockingDeque<>();
final BigDecimal divisor = new BigDecimal(51);

scheduledExecutorService.scheduleAtFixedRate(() -> {
 BigDecimal number = numbers.peekLast();
 if (number != null && number.remainder(divisor).byteValue() == 0) {
 System.out.println("Number: " + number);
 System.out.println("Deque size: " + numbers.size());
 }
}, 10, 10, TimeUnit.MILLISECONDS);

scheduledExecutorService.scheduleAtFixedRate(() -> {
 numbers.add(new BigDecimal(System.currentTimeMillis()));
}, 10, 10, TimeUnit.MILLISECONDS);

try {
 scheduledExecutorService.awaitTermination(1, TimeUnit.DAYS);
} catch (InterruptedException e) {
 e.printStackTrace();
}

This example creates two scheduled tasks. The first task takes the last number from a deque
called numbers, and, if the number is divisible by 51, it prints the number and the deque's size. The
second task puts numbers into the deque. Both tasks are scheduled at a fixed rate, and they run
every 10 ms.

If the code is executed, you’ll see that the size of the deque is permanently increasing. This will
eventually cause the deque to be filled with objects that consume all available heap memory.

To prevent this while preserving the semantics of this program, we can use a different method for
taking numbers from the deque: pollLast. Contrary to the method peekLast, pollLast returns the
element and removes it from the deque while peekLast only returns the last element.

Pitfall: using == to compare strings

A common mistake for Java beginners is to use the == operator to test if two strings are equal. For
example:

public class Hello {
 public static void main(String[] args) {
 if (args.length > 0) {
 if (args[0] == "hello") {
 System.out.println("Hello back to you");
 } else {
 System.out.println("Are you feeling grumpy today?");
 }
 }
 }
}

The above program is supposed to test the first command line argument and print different
messages when it and isn't the word "hello". But the problem is that it won't work. That program
will output "Are you feeling grumpy today?" no matter what the first command line argument is.

https://riptutorial.com/ 195

In this particular case the String "hello" is put in the string pool while the String args[0] resides on
the heap. This means there are two objects representing the same literal, each with its reference.
Since == tests for references, not actual equality, the comparison will yield a false most of the
times. This doesn't mean that it will always do so.

When you use == to test strings, what you are actually testing is if two String objects are the same
Java object. Unfortunately, that is not what string equality means in Java. In fact, the correct way
to test strings is to use the equals(Object) method. For a pair of strings, we usually want to test if
they consist of the same characters in the same order.

public class Hello2 {
 public static void main(String[] args) {
 if (args.length > 0) {
 if (args[0].equals("hello")) {
 System.out.println("Hello back to you");
 } else {
 System.out.println("Are you feeling grumpy today?");
 }
 }
 }
}

But it actually gets worse. The problem is that == will give the expected answer in some
circumstances. For example

public class Test1 {
 public static void main(String[] args) {
 String s1 = "hello";
 String s2 = "hello";
 if (s1 == s2) {
 System.out.println("same");
 } else {
 System.out.println("different");
 }
 }
}

Interestingly, this will print "same", even though we are testing the strings the wrong way. Why is
that? Because the Java Language Specification (Section 3.10.5: String Literals) stipulates that any
two string >>literals<< consisting of the same characters will actually be represented by the same
Java object. Hence, the == test will give true for equal literals. (The string literals are "interned" and
added to a shared "string pool" when your code is loaded, but that is actually an implementation
detail.)

To add to the confusion, the Java Language Specification also stipulates that when you have a
compile-time constant expression that concatenates two string literals, that is equivalent to a
single literal. Thus:

 public class Test1 {
 public static void main(String[] args) {
 String s1 = "hello";
 String s2 = "hel" + "lo";
 String s3 = " mum";

https://riptutorial.com/ 196

https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.10.5

 if (s1 == s2) {
 System.out.println("1. same");
 } else {
 System.out.println("1. different");
 }
 if (s1 + s3 == "hello mum") {
 System.out.println("2. same");
 } else {
 System.out.println("2. different");
 }
 }
}

This will output "1. same" and "2. different". In the first case, the + expression is evaluated at
compile time and we compare one String object with itself. In the second case, it is evaluated at
run time and we compare two different String objects

In summary, using == to test strings in Java is almost always incorrect, but it is not guaranteed to
give the wrong answer.

Pitfall: testing a file before attempting to open it.

Some people recommend that you should apply various tests to a file before attempting to open it
either to provide better diagnostics or avoid dealing with exceptions. For example, this method
attempts to check if path corresponds to a readable file:

public static File getValidatedFile(String path) throws IOException {
 File f = new File(path);
 if (!f.exists()) throw new IOException("Error: not found: " + path);
 if (!f.isFile()) throw new IOException("Error: Is a directory: " + path);
 if (!f.canRead()) throw new IOException("Error: cannot read file: " + path);
 return f;
}

You might use the above method like this:

File f = null;
try {
 f = getValidatedFile("somefile");
} catch (IOException ex) {
 System.err.println(ex.getMessage());
 return;
}
try (InputStream is = new FileInputStream(file)) {
 // Read data etc.
}

The first problem is in the signature for FileInputStream(File) because the compiler will still insist
we catch IOException here, or further up the stack.

The second problem is that checks performed by getValidatedFile do not guarantee that the
FileInputStream will succeed.

https://riptutorial.com/ 197

Race conditions: another thread or a separate process could rename the file, delete the file,
or remove read access after the getValidatedFile returns. That would lead to a "plain"
IOException without the custom message.

•

There are edge cases not covered by those tests. For example, on a system with SELinux in
"enforcing" mode, an attempt to read a file can fail despite canRead() returning true.

•

The third problem is that the tests are inefficient. For example, the exists, isFile and canRead calls
will each make a syscall to perform the required check. Another syscall is then made to open the
file, which repeats the same checks behind the scenes.

In short, methods like getValidatedFile are misguided. It is better to simply attempt to open the file
and handle the exception:

try (InputStream is = new FileInputStream("somefile")) {
 // Read data etc.
} catch (IOException ex) {
 System.err.println("IO Error processing 'somefile': " + ex.getMessage());
 return;
}

If you wanted to distinguish IO errors thrown while opening and reading, you could use a nested
try / catch. If you wanted to produce better diagnostics for open failures, you could perform the
exists, isFile and canRead checks in the handler.

Pitfall: thinking of variables as objects

No Java variable represents an object.

String foo; // NOT AN OBJECT

Neither does any Java array contain objects.

String bar[] = new String[100]; // No member is an object.

If you mistakenly think of variables as objects, the actual behavior of the Java language will
surprise you.

For Java variables which have a primitive type (such as int or float) the variable holds a
copy of the value. All copies of a primitive value are indistinguishable; i.e. there is only one
int value for the number one. Primitive values are not objects and they do not behave like
objects.

•

For Java variables which have a reference type (either a class or an array type) the variable
holds a reference. All copies of a reference are indistinguishable. References may point to
objects, or they may be null which means that they point to no object. However, they are not
objects and they don't behave like objects.

•

Variables are not objects in either case, and they don't contain objects in either case. They may

https://riptutorial.com/ 198

https://en.wikipedia.org/wiki/System_call

contain references to objects, but that is saying something different.

Example class

The examples that follow use this class, which represents a point in 2D space.

public final class MutableLocation {
 public int x;
 public int y;

 public MutableLocation(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public boolean equals(Object other) {
 if (!(other instanceof MutableLocation) {
 return false;
 }
 MutableLocation that = (MutableLocation) other;
 return this.x == that.x && this.y == that.y;
 }
}

An instance of this class is an object that has two fields x and y which have the type int.

We can have many instances of the MutableLocation class. Some will represent the same locations
in 2D space; i.e. the respective values of x and y will match. Others will represent different
locations.

Multiple variables can point to the same object

 MutableLocation here = new MutableLocation(1, 2);
 MutableLocation there = here;
 MutableLocation elsewhere = new MutableLocation(1, 2);

In the above, we have declared three variables here, there and elsewhere that can hold references
to MutableLocation objects.

If you (incorrectly) think of these variables as being objects, then you are likely to misread the
statements as saying:

Copy the location "[1, 2]" to here1.
Copy the location "[1, 2]" to there2.
Copy the location "[1, 2]" to elsewhere3.

From that, you are likely to infer we have three independent objects in the three variables. In fact
there are only two objects created by the above. The variables here and there actually refer to the
same object.

We can demonstrate this. Assuming the variable declarations as above:

https://riptutorial.com/ 199

System.out.println("BEFORE: here.x is " + here.x + ", there.x is " + there.x +
 "elsewhere.x is " + elsewhere.x);
here.x = 42;
System.out.println("AFTER: here.x is " + here.x + ", there.x is " + there.x +
 "elsewhere.x is " + elsewhere.x);

This will output the following:

BEFORE: here.x is 1, there.x is 1, elsewhere.x is 1
AFTER: here.x is 42, there.x is 42, elsewhere.x is 1

We assigned a new value to here.x and it changed the value that we see via there.x. They are
referring to the same object. But the value that we see via elsewhere.x has not changed, so
elsewhere must refer to a different object.

If a variable was an object, then the assignment here.x = 42 would not change there.x.

The equality operator does NOT test that two objects are
equal

Applying the equality (==) operator to reference values tests if the values refer to the same object.
It does not test whether two (different) objects are "equal" in the intuitive sense.

 MutableLocation here = new MutableLocation(1, 2);
 MutableLocation there = here;
 MutableLocation elsewhere = new MutableLocation(1, 2);

 if (here == there) {
 System.out.println("here is there");
 }
 if (here == elsewhere) {
 System.out.println("here is elsewhere");
 }

This will print "here is there", but it won't print "here is elsewhere". (The references in here and
elsewhere are for two distinct objects.)

By contrast, if we call the equals(Object) method that we implemented above, we are going to test
if two MutableLocation instances have an equal location.

 if (here.equals(there)) {
 System.out.println("here equals there");
 }
 if (here.equals(elsewhere)) {
 System.out.println("here equals elsewhere");
 }

This will print both messages. In particular, here.equals(elsewhere) returns true because the
semantic criteria we chose for equality of two MutableLocation objects has been satisfied.

https://riptutorial.com/ 200

Method calls do NOT pass objects at all

Java method calls use pass by value1 to pass arguments and return a result.

When you pass a reference value to a method, you're actually passing a reference to an object by
value, which means that it is creating a copy of the object reference.

As long as both object references are still pointing to the same object, you can modify that object
from either reference, and this is what causes confusion for some.

However, you are not passing an object by reference2. The distinction is that if the object
reference copy is modified to point to another object, the original object reference will still point to
the original object.

void f(MutableLocation foo) {
 foo = new MutableLocation(3, 4); // Point local foo at a different object.
}

void g() {
 MutableLocation foo = MutableLocation(1, 2);
 f(foo);
 System.out.println("foo.x is " + foo.x); // Prints "foo.x is 1".
}

Neither are you passing a copy of the object.

void f(MutableLocation foo) {
 foo.x = 42;
}

void g() {
 MutableLocation foo = new MutableLocation(0, 0);
 f(foo);
 System.out.println("foo.x is " + foo.x); // Prints "foo.x is 42"
}

1 - In languages like Python and Ruby, the term "pass by sharing" is preferred for "pass by value" of an object /
reference.

2 - The term "pass by reference" or "call by reference" has a very specific meaning in programming language
terminology. In effect, it means that you pass the address of a variable or an array element, so that when the called
method assigns a new value to the formal argument, it changes the value in the original variable. Java does not
support this. For a more fulsome description of different mechanisms for passing parameters, please refer to
https://en.wikipedia.org/wiki/Evaluation_strategy.

Pitfall: combining assignment and side-effects

Occasionally we see StackOverflow Java questions (and C or C++ questions) that ask what
something like this:

i += a[i++] + b[i--];

https://riptutorial.com/ 201

https://en.wikipedia.org/wiki/Evaluation_strategy

evaluates to ... for some known initial states of i, a and b.

Generally speaking:

for Java the answer is always specified1, but non-obvious, and often difficult to figure out•
for C and C++ the answer is often unspecified.•

Such examples are often used in exams or job interviews as an attempt to see if the student or
interviewee understands how expression evaluation really works in the Java programming
language. This is arguably legitimate as a "test of knowledge", but that does not mean that you
should ever do this in a real program.

To illustrate, the following seemingly simple example has appeared a few times in StackOverflow
questions (like this one). In some cases, it appears as a genuine mistake in someone's code.

int a = 1;
a = a++;
System.out.println(a); // What does this print.

Most programmers (including Java experts) reading those statements quickly would say that it
outputs 2. In fact, it outputs 1. For a detailed explanation of why, please read this Answer.

However the real takeaway from this and similar examples is that any Java statement that both
assigns to and side-effects the same variable is going to be at best hard to understand, and at
worst downright misleading. You should avoid writing code like this.

1 - modulo potential issues with the Java Memory Model if the variables or objects are visible to other threads.

Pitfall: Not understanding that String is an immutable class

New Java programmers often forget, or fail to fully comprehend, that the Java String class is
immutable. This leads to problems like the one in the following example:

public class Shout {
 public static void main(String[] args) {
 for (String s : args) {
 s.toUpperCase();
 System.out.print(s);
 System.out.print(" ");
 }
 System.out.println();
 }
}

The above code is supposed to print command line arguments in upper case. Unfortunately, it
does not work, the case of the arguments is not changed. The problem is this statement:

s.toUpperCase();

You might think that calling toUpperCase() is going to change s to an uppercase string. It doesn't. It

https://riptutorial.com/ 202

http://stackoverflow.com/questions/7911776
http://stackoverflow.com/a/12033710/139985
http://www.riptutorial.com/java/topic/6829/java-memory-model

can't! String objects are immutable. They cannot be changed.

In reality, the toUpperCase() method returns a String object which is an uppercase version of the
String that you call it on. This will probably be a new String object, but if s was already all
uppercase, the result could be the existing string.

So in order to use this method effectively, you need to use the object returned by the method call;
for example:

s = s.toUpperCase();

In fact, the "strings never change" rule applies to all String methods. If you remember that, then
you can avoid a whole category of beginner's mistakes.

Read Common Java Pitfalls online: https://riptutorial.com/java/topic/4388/common-java-pitfalls

https://riptutorial.com/ 203

https://riptutorial.com/java/topic/4388/common-java-pitfalls

Chapter 32: Comparable and Comparator

Syntax

public class MyClass implements Comparable<MyClass>•
public class MyComparator implements Comparator<SomeOtherClass>•
public int compareTo(MyClass other)•
public int compare(SomeOtherClass o1, SomeOtherClass o2)•

Remarks

When implementing a compareTo(..) method which depends upon a double, do not do the
following:

public int comareTo(MyClass other) {
 return (int)(doubleField - other.doubleField); //THIS IS BAD
}

The truncation caused by the (int) cast will cause the method to sometimes incorrectly return 0
instead of a positive or negative number, and can thus lead to comparison and sorting bugs.

Instead, the simplest correct implementation is to use Double.compare, as such:

public int comareTo(MyClass other) {
 return Double.compare(doubleField,other.doubleField); //THIS IS GOOD
}

A non-generic version of Comparable<T>, simply Comparable, has existed since Java 1.2. Other than
for interfacing with legacy code, it's always better to implement the generic version Comparable<T>,
as it doesn't require casting upon comparison.

It is very standard for a class to be comparable to itself, as in:

public class A implements Comparable<A>

While it is possible to break from this paradigm, be cautious when doing so.

A Comparator<T> can still be used on instances of a class if that class implements Comparable<T>. In
this case, the Comparator's logic will be used; the natural ordering specified by the Comparable
implementation will be ignored.

Examples

https://riptutorial.com/ 204

http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html#compare-double-double-
http://docs.oracle.com/javame/config/cdc/ref-impl/pp1.1.2/jsr216/java/lang/Comparable.html#skip-navbar_top

Sorting a List using Comparable or a Comparator

Say we are working on a class representing a Person by their first and last names. We have
created a basic class to do this and implemented proper equals and hashCode methods.

public class Person {

 private final String lastName; //invariant - nonnull
 private final String firstName; //invariant - nonnull

 public Person(String firstName, String lastName){
 this.firstName = firstName != null ? firstName : "";
 this.lastName = lastName != null ? lastName : "";
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public String toString() {
 return lastName + ", " + firstName;
 }

 @Override
 public boolean equals(Object o) {
 if (! (o instanceof Person)) return false;
 Person p = (Person)o;
 return firstName.equals(p.firstName) && lastName.equals(p.lastName);
 }

 @Override
 public int hashCode() {
 return Objects.hash(firstName, lastName);
 }
}

Now we would like to sort a list of Person objects by their name, such as in the following scenario:

public static void main(String[] args) {
 List<Person> people = Arrays.asList(new Person("John", "Doe"),
 new Person("Bob", "Dole"),
 new Person("Ronald", "McDonald"),
 new Person("Alice", "McDonald"),
 new Person("Jill", "Doe"));
 Collections.sort(people); //This currently won't work.
}

Unfortunately, as marked, the above currently won't compile. Collections.sort(..) only knows how
to sort a list if the elements in that list are comparable, or a custom method of comparison is given.

If you were asked to sort the following list : 1,3,5,4,2, you'd have no problem saying the answer is
1,2,3,4,5. This is because Integers (both in Java and mathematically) have a natural ordering, a

https://riptutorial.com/ 205

standard, default comparison base ordering. To give our Person class a natural ordering, we
implement Comparable<Person>, which requires implementing the method compareTo(Person p):

public class Person implements Comparable<Person> {

 private final String lastName; //invariant - nonnull
 private final String firstName; //invariant - nonnull

 public Person(String firstName, String lastName) {
 this.firstName = firstName != null ? firstName : "";
 this.lastName = lastName != null ? lastName : "";
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public String toString() {
 return lastName + ", " + firstName;
 }

 @Override
 public boolean equals(Object o) {
 if (! (o instanceof Person)) return false;
 Person p = (Person)o;
 return firstName.equals(p.firstName) && lastName.equals(p.lastName);
 }

 @Override
 public int hashCode() {
 return Objects.hash(firstName, lastName);
 }

 @Override
 public int compareTo(Person other) {
 // If this' lastName and other's lastName are not comparably equivalent,
 // Compare this to other by comparing their last names.
 // Otherwise, compare this to other by comparing their first names
 int lastNameCompare = lastName.compareTo(other.lastName);
 if (lastNameCompare != 0) {
 return lastNameCompare;
 } else {
 return firstName.compareTo(other.firstName);
 }
 }
}

Now, the main method given will function correctly

public static void main(String[] args) {
 List<Person> people = Arrays.asList(new Person("John", "Doe"),
 new Person("Bob", "Dole"),
 new Person("Ronald", "McDonald"),
 new Person("Alice", "McDonald"),
 new Person("Jill", "Doe"));

https://riptutorial.com/ 206

 Collections.sort(people); //Now functions correctly

 //people is now sorted by last name, then first name:
 // --> Jill Doe, John Doe, Bob Dole, Alice McDonald, Ronald McDonald
}

If, however, you either do not want or are unable to modify class Person, you can provide a custom
Comparator<T> that handles the comparison of any two Person objects. If you were asked to sort the
following list: circle, square, rectangle, triangle, hexagon you could not, but if you were asked to
sort that list based on the number of corners, you could. Just so, providing a comparator instructs
Java how to compare two normally not comparable objects.

public class PersonComparator implements Comparator<Person> {

 public int compare(Person p1, Person p2) {
 // If p1's lastName and p2's lastName are not comparably equivalent,
 // Compare p1 to p2 by comparing their last names.
 // Otherwise, compare p1 to p2 by comparing their first names
 if (p1.getLastName().compareTo(p2.getLastName()) != 0) {
 return p1.getLastName().compareTo(p2.getLastName());
 } else {
 return p1.getFirstName().compareTo(p2.getFirstName());
 }
 }
}

//Assume the first version of Person (that does not implement Comparable) is used here
public static void main(String[] args) {
 List<Person> people = Arrays.asList(new Person("John", "Doe"),
 new Person("Bob", "Dole"),
 new Person("Ronald", "McDonald"),
 new Person("Alice", "McDonald"),
 new Person("Jill", "Doe"));
 Collections.sort(people); //Illegal, Person doesn't implement Comparable.
 Collections.sort(people, new PersonComparator()); //Legal

 //people is now sorted by last name, then first name:
 // --> Jill Doe, John Doe, Bob Dole, Alice McDonald, Ronald McDonald
}

Comparators can also be created/used as an anonymous inner class

//Assume the first version of Person (that does not implement Comparable) is used here
public static void main(String[] args) {
 List<Person> people = Arrays.asList(new Person("John", "Doe"),
 new Person("Bob", "Dole"),
 new Person("Ronald", "McDonald"),
 new Person("Alice", "McDonald"),
 new Person("Jill", "Doe"));
 Collections.sort(people); //Illegal, Person doesn't implement Comparable.

 Collections.sort(people, new PersonComparator()); //Legal

 //people is now sorted by last name, then first name:
 // --> Jill Doe, John Doe, Bob Dole, Alice McDonald, Ronald McDonald

 //Anonymous Class

https://riptutorial.com/ 207

 Collections.sort(people, new Comparator<Person>() { //Legal
 public int compare(Person p1, Person p2) {
 //Method code...
 }
 });
}

Java SE 8

Lambda expression based comparators

As of Java 8, comparators can also be expressed as lambda expressions

 //Lambda
 Collections.sort(people, (p1, p2) -> { //Legal
 //Method code....
 });

Comparator default methods

Furthermore, there are interesting default methods on the Comparator interface for building
comparators : the following builds a comparator comparing by lastName and then firstName.

Collections.sort(people, Comparator.comparing(Person::getLastName)
 .thenComparing(Person::getFirstName));

Inversing the order of a comparator

Any comparator can also easily be reversed using the reversedMethod which will change ascending
order to descending.

The compareTo and compare Methods

The Comparable<T> interface requires one method:

public interface Comparable<T> {

 public int compareTo(T other);

}

And the Comparator<T> interface requires one method:

public interface Comparator<T> {

 public int compare(T t1, T t2);

https://riptutorial.com/ 208

}

These two methods do essentially the same thing, with one minor difference: compareTo compares
this to other, whereas compare compares t1 to t2, not caring at all about this.

Aside from that difference, the two methods have similar requirements. Specifically (for
compareTo), Compares this object with the specified object for order. Returns a negative integer,
zero, or a positive integer as this object is less than, equal to, or greater than the specified object.
Thus, for the comparison of a and b:

If a < b, a.compareTo(b) and compare(a,b) should return a negative integer, and b.compareTo(a)
and compare(b,a) should return a positive integer

•

If a > b, a.compareTo(b) and compare(a,b) should return a positive integer, and b.compareTo(a)
and compare(b,a) should return a negative integer

•

If a equals b for comparison, all comparisons should return 0.•

Natural (comparable) vs explicit (comparator) sorting

There are two Collections.sort() methods:

One that takes a List<T> as a parameter where T must implement Comparable and override
the compareTo() method that determines sort order.

•

One that takes a List and a Comparator as the arguments, where the Comparator
determines the sort order.

•

First, here is a Person class that implements Comparable:

public class Person implements Comparable<Person> {
 private String name;
 private int age;

 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public int getAge() {
 return age;
 }
 public void setAge(int age) {
 this.age = age;
 }

 @Override
 public int compareTo(Person o) {
 return this.getAge() - o.getAge();
 }
 @Override
 public String toString() {
 return this.getAge()+"-"+this.getName();
 }

}

https://riptutorial.com/ 209

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/java/lang/Comparable.java#Comparable
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/java/lang/Comparable.java#Comparable

Here is how you would use the above class to sort a List in the natural ordering of its elements,
defined by the compareTo() method override:

//-- usage
List<Person> pList = new ArrayList<Person>();
 Person p = new Person();
 p.setName("A");
 p.setAge(10);
 pList.add(p);
 p = new Person();
 p.setName("Z");
 p.setAge(20);
 pList.add(p);
 p = new Person();
 p.setName("D");
 p.setAge(30);
 pList.add(p);

 //-- natural sorting i.e comes with object implementation, by age
 Collections.sort(pList);

 System.out.println(pList);

Here is how you would use an anonymous inline Comparator to sort a List that does not
implement Comparable, or in this case, to sort a List in an order other than the natural ordering:

 //-- explicit sorting, define sort on another property here goes with name
 Collections.sort(pList, new Comparator<Person>() {

 @Override
 public int compare(Person o1, Person o2) {
 return o1.getName().compareTo(o2.getName());
 }
 });
 System.out.println(pList);

Sorting Map entries

As of Java 8, there are default methods on the Map.Entry interface to allow sorting of map
iterations.

Java SE 8

Map<String, Integer> numberOfEmployees = new HashMap<>();
numberOfEmployees.put("executives", 10);
numberOfEmployees.put("human ressources", 32);
numberOfEmployees.put("accounting", 12);
numberOfEmployees.put("IT", 100);

// Output the smallest departement in terms of number of employees
numberOfEmployees.entrySet().stream()
 .sorted(Map.Entry.comparingByValue())
 .limit(1)
 .forEach(System.out::println); // outputs : executives=10

https://riptutorial.com/ 210

Of course, these can also be used outside of the stream api :

Java SE 8

List<Map.Entry<String, Integer>> entries = new ArrayList<>(numberOfEmployees.entrySet());
Collections.sort(entries, Map.Entry.comparingByValue());

Creating a Comparator using comparing method

Comparator.comparing(Person::getName)

This creates a comparator for the class Person that uses this person name as the comparison
source. Also it is possible to use method version to compare long, int and double. For example:

Comparator.comparingInt(Person::getAge)

Reversed order

To create a comparator that imposes the reverse ordering use reversed() method:

Comparator.comparing(Person::getName).reversed()

Chain of comparators

Comparator.comparing(Person::getLastName).thenComparing(Person::getFirstName)

This will create a comparator that firs compares with last name then compares with first name.
You can chain as many comparators as you want.

Read Comparable and Comparator online: https://riptutorial.com/java/topic/3137/comparable-and-
comparator

https://riptutorial.com/ 211

https://riptutorial.com/java/topic/3137/comparable-and-comparator
https://riptutorial.com/java/topic/3137/comparable-and-comparator

Chapter 33: CompletableFuture

Introduction

CompletableFuture is a class added to Java SE 8 which implements the Future interface from
Java SE 5. In addition to supporting the Future interface it adds many methods that allow
asynchronous callback when the future is completed.

Examples

Convert blocking method to asynchonous

The following method will take a second or two depending on your connection to retrieve a web
page and count the text length. Whatever thread calls it will block for that period of time. Also it
rethrows an exception which is useful later on.

public static long blockingGetWebPageLength(String urlString) {
 try (BufferedReader br = new BufferedReader(new InputStreamReader(new
URL(urlString).openConnection().getInputStream()))) {
 StringBuilder sb = new StringBuilder();
 String line;
 while ((line = br.readLine()) != null) {
 sb.append(line);
 }
 return sb.toString().length();
 } catch (IOException ex) {
 throw new RuntimeException(ex);
 }
}

This converts it to a method that will return immediately by moving the blocking method call to
another thread. By default the supplyAsync method will run the supplier on the common pool. For
a blocking method this is probably not a good choice since one might exhaust the threads in that
pool which is why I added the optional service parameter.

static private ExecutorService service = Executors.newCachedThreadPool();

static public CompletableFuture<Long> asyncGetWebPageLength(String url) {
 return CompletableFuture.supplyAsync(() -> blockingGetWebPageLength(url), service);
}

To use the function in an asynchronous fashion one should use on of the methods that accepts a
lamda to be called with the result of the of the supplier when it completes such as thenAccept.
Also it is important to use exceptionally or handle method to log any exceptions that might have
happened.

public static void main(String[] args) {

https://riptutorial.com/ 212

 asyncGetWebPageLength("https://stackoverflow.com/")
 .thenAccept(l -> {
 System.out.println("Stack Overflow returned " + l);
 })
 .exceptionally((Throwable throwable) -> {
 Logger.getLogger("myclass").log(Level.SEVERE, "", throwable);
 return null;
 });

}

Simple Example of CompletableFuture

In the example below, the calculateShippingPrice method calculates shipping cost, which takes
some processing time. In a real world example, this would e.g. be contacting another server which
returns the price based on the weight of the product and the shipping method.

By modeling this in an async way via CompletableFuture, we can continue different work in the
method (i.e. calculating packaging costs).

public static void main(String[] args) {
 int price = 15; // Let's keep it simple and work with whole number prices here
 int weightInGrams = 900;

 calculateShippingPrice(weightInGrams) // Here, we get the future
 .thenAccept(shippingPrice -> { // And then immediately work on it!
 // This fluent style is very useful for keeping it concise
 System.out.println("Your total price is: " + (price + shippingPrice));
 });
 System.out.println("Please stand by. We are calculating your total price.");
}

public static CompletableFuture<Integer> calculateShippingPrice(int weightInGrams) {
 return CompletableFuture.supplyAsync(() -> {
 // supplyAsync is a factory method that turns a given
 // Supplier<U> into a CompletableFuture<U>

 // Let's just say each 200 grams is a new dollar on your shipping costs
 int shippingCosts = weightInGrams / 200;

 try {
 Thread.sleep(2000L); // Now let's simulate some waiting time...
 } catch(InterruptedException e) { /* We can safely ignore that */ }

 return shippingCosts; // And send the costs back!
 });
}

Read CompletableFuture online: https://riptutorial.com/java/topic/10935/completablefuture

https://riptutorial.com/ 213

https://riptutorial.com/java/topic/10935/completablefuture

Chapter 34: Concurrent Collections

Introduction

A concurrent collection is a [collection][1] which permits access by more than one thread at the
same time. Different threads can typically iterate through the contents of the collection and add or
remove elements. The collection is responsible for ensuring that the collection doesn't become
corrupt. [1]:
http://stackoverflow.com/documentation/java/90/collections#t=201612221936497298484

Examples

Thread-safe Collections

By default, the various Collection types are not thread-safe.

However, it's fairly easy to make a collection thread-safe.

List<String> threadSafeList = Collections.synchronizedList(new ArrayList<String>());
Set<String> threadSafeSet = Collections.synchronizedSet(new HashSet<String>());
Map<String, String> threadSafeMap = Collections.synchronizedMap(new HashMap<String,
String>());

When you make a thread-safe collection, you should never access it through the original
collection, only through the thread-safe wrapper.

Java SE 5

Starting in Java 5, java.util.collections has several new thread-safe collections that don't need
the various Collections.synchronized methods.

List<String> threadSafeList = new CopyOnWriteArrayList<String>();
Set<String> threadSafeSet = new ConcurrentHashSet<String>();
Map<String, String> threadSafeMap = new ConcurrentHashMap<String, String>();

Concurrent Collections

Concurrent collections are a generalization of thread-safe collections, that allow for a broader
usage in a concurrent environment.

While thread-safe collections have safe element addition or removal from multiple threads, they do
not necessarily have safe iteration in the same context (one may not be able to safely iterate
through the collection in one thread, while another one modifies it by adding/removing elements).

This is where concurrent collections are used.

As iteration is often the base implementation of several bulk methods in collections, like addAll,

https://riptutorial.com/ 214

removeAll, or also collection copying (through a constructor, or other means), sorting, ... the use
case for concurrent collections is actually pretty large.

For example, the Java SE 5 java.util.concurrent.CopyOnWriteArrayList is a thread safe and
concurrent List implementation, its javadoc states :

The "snapshot" style iterator method uses a reference to the state of the array at the
point that the iterator was created. This array never changes during the lifetime of the
iterator, so interference is impossible and the iterator is guaranteed not to throw
ConcurrentModificationException.

Therefore, the following code is safe :

public class ThreadSafeAndConcurrent {

public static final List<Integer> LIST = new CopyOnWriteArrayList<>();

public static void main(String[] args) throws InterruptedException {
 Thread modifier = new Thread(new ModifierRunnable());
 Thread iterator = new Thread(new IteratorRunnable());
 modifier.start();
 iterator.start();
 modifier.join();
 iterator.join();
}

public static final class ModifierRunnable implements Runnable {
 @Override
 public void run() {
 try {
 for (int i = 0; i < 50000; i++) {
 LIST.add(i);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

public static final class IteratorRunnable implements Runnable {
 @Override
 public void run() {
 try {
 for (int i = 0; i < 10000; i++) {
 long total = 0;
 for(Integer inList : LIST) {
 total += inList;
 }
 System.out.println(total);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}
}

https://riptutorial.com/ 215

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CopyOnWriteArrayList.html

Another concurrent collection regarding iteration is ConcurrentLinkedQueue, which states :

Iterators are weakly consistent, returning elements reflecting the state of the queue at
some point at or since the creation of the iterator. They do not throw
java.util.ConcurrentModificationException, and may proceed concurrently with other
operations. Elements contained in the queue since the creation of the iterator will be
returned exactly once.

One should check the javadocs to see if a collection is concurrent, or not. The attributes of the
iterator returned by the iterator() method ("fail fast", "weakly consistent", ...) is the most important
attribute to look for.

Thread safe but non concurrent examples

In the above code, changing the LIST declaration to

public static final List<Integer> LIST = Collections.synchronizedList(new ArrayList<>());

Could (and statistically will on most modern, multi CPU/core architectures) lead to exceptions.

Synchronized collections from the Collections utility methods are thread safe for addition/removal
of elements, but not iteration (unless the underlying collection being passed to it already is).

Insertion into ConcurrentHashMap

public class InsertIntoConcurrentHashMap
{

 public static void main(String[] args)
 {
 ConcurrentHashMap<Integer, SomeObject> concurrentHashMap = new ConcurrentHashMap<>();

 SomeObject value = new SomeObject();
 Integer key = 1;

 SomeObject previousValue = concurrentHashMap.putIfAbsent(1, value);
 if (previousValue != null)
 {
 //Then some other value was mapped to key = 1. 'value' that was passed to
 //putIfAbsent method is NOT inserted, hence, any other thread which calls
 //concurrentHashMap.get(1) would NOT receive a reference to the 'value'
 //that your thread attempted to insert. Decide how you wish to handle
 //this situation.
 }

 else
 {
 //'value' reference is mapped to key = 1.
 }
 }
}

https://riptutorial.com/ 216

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html

Read Concurrent Collections online: https://riptutorial.com/java/topic/8363/concurrent-collections

https://riptutorial.com/ 217

https://riptutorial.com/java/topic/8363/concurrent-collections

Chapter 35: Concurrent Programming
(Threads)

Introduction

Concurrent computing is a form of computing in which several computations are executed
concurrently instead of sequentially. Java language is designed to support concurrent
programming through the usage of threads. Objects and resources can be accessed by multiple
threads; each thread can potentially access any object in the program and the programmer must
ensure read and write access to objects is properly synchronized between threads.

Remarks

Related topic(s) on StackOverflow:

Atomic Types•
Executor, ExecutorService and Thread pools•
Extending Thread versus implementing Runnable•

Examples

Basic Multithreading

If you have many tasks to execute, and all these tasks are not dependent of the result of the
precedent ones, you can use Multithreading for your computer to do all this tasks at the same
time using more processors if your computer can. This can make your program execution faster if
you have some big independent tasks.

class CountAndPrint implements Runnable {

 private final String name;

 CountAndPrint(String name) {
 this.name = name;
 }

 /** This is what a CountAndPrint will do */
 @Override
 public void run() {
 for (int i = 0; i < 10000; i++) {
 System.out.println(this.name + ": " + i);
 }
 }

 public static void main(String[] args) {
 // Launching 4 parallel threads
 for (int i = 1; i <= 4; i++) {
 // `start` method will call the `run` method

https://riptutorial.com/ 218

https://en.wikipedia.org/wiki/Java_concurrency
https://en.wikipedia.org/wiki/Java_concurrency
http://www.riptutorial.com/java/topic/5963/atomic-types
http://www.riptutorial.com/java/topic/143/executor--executorservice-and-thread-pools
http://www.riptutorial.com/java/example/19768/pitfall---extending--java-lang-thread-
http://www.riptutorial.com/java/example/19768/pitfall---extending--java-lang-thread-
http://www.riptutorial.com/java/example/19768/pitfall---extending--java-lang-thread-
http://www.riptutorial.com/java/example/19768/pitfall---extending--java-lang-thread-

 // of CountAndPrint in another thread
 new Thread(new CountAndPrint("Instance " + i)).start();
 }

 // Doing some others tasks in the main Thread
 for (int i = 0; i < 10000; i++) {
 System.out.println("Main: " + i);
 }
 }
}

The code of the run method of the various CountAndPrint instances will execute in non predictable
order. A snippet of a sample execution might look like this:

Instance 4: 1
Instance 2: 1
Instance 4: 2
Instance 1: 1
Instance 1: 2
Main: 1
Instance 4: 3
Main: 2
Instance 3: 1
Instance 4: 4
...

Producer-Consumer

A simple example of producer-consumer problem solution. Notice that JDK classes (AtomicBoolean
and BlockingQueue) are used for synchronization, which reduces the chance of creating an invalid
solution. Consult Javadoc for various types of BlockingQueue; choosing different implementation
may drastically change the behavior of this example (like DelayQueue or Priority Queue).

public class Producer implements Runnable {

 private final BlockingQueue<ProducedData> queue;

 public Producer(BlockingQueue<ProducedData> queue) {
 this.queue = queue;
 }

 public void run() {
 int producedCount = 0;
 try {
 while (true) {
 producedCount++;
 //put throws an InterruptedException when the thread is interrupted
 queue.put(new ProducedData());
 }
 } catch (InterruptedException e) {
 // the thread has been interrupted: cleanup and exit
 producedCount--;
 //re-interrupt the thread in case the interrupt flag is needeed higher up
 Thread.currentThread().interrupt();
 }
 System.out.println("Produced " + producedCount + " objects");

https://riptutorial.com/ 219

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/DelayQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/PriorityBlockingQueue.html

 }
}

public class Consumer implements Runnable {

 private final BlockingQueue<ProducedData> queue;

 public Consumer(BlockingQueue<ProducedData> queue) {
 this.queue = queue;
 }

 public void run() {
 int consumedCount = 0;
 try {
 while (true) {
 //put throws an InterruptedException when the thread is interrupted
 ProducedData data = queue.poll(10, TimeUnit.MILLISECONDS);
 // process data
 consumedCount++;
 }
 } catch (InterruptedException e) {
 // the thread has been interrupted: cleanup and exit
 consumedCount--;
 //re-interrupt the thread in case the interrupt flag is needeed higher up
 Thread.currentThread().interrupt();
 }
 System.out.println("Consumed " + consumedCount + " objects");
 }
}

public class ProducerConsumerExample {
 static class ProducedData {
 // empty data object
 }

 public static void main(String[] args) throws InterruptedException {
 BlockingQueue<ProducedData> queue = new ArrayBlockingQueue<ProducedData>(1000);
 // choice of queue determines the actual behavior: see various BlockingQueue
implementations

 Thread producer = new Thread(new Producer(queue));
 Thread consumer = new Thread(new Consumer(queue));

 producer.start();
 consumer.start();

 Thread.sleep(1000);
 producer.interrupt();
 Thread.sleep(10);
 consumer.interrupt();
 }
}

Using ThreadLocal

A useful tool in Java Concurrency is ThreadLocal – this allows you to have a variable that will be
unique to a given thread. Thus, if the same code runs in different threads, these executions will not
share the value, but instead each thread has its own variable that is local to the thread.

https://riptutorial.com/ 220

For example, this is frequently used to establish the context (such as authorization information) of
handling a request in a servlet. You might do something like this:

private static final ThreadLocal<MyUserContext> contexts = new ThreadLocal<>();

public static MyUserContext getContext() {
 return contexts.get(); // get returns the variable unique to this thread
}

public void doGet(...) {
 MyUserContext context = magicGetContextFromRequest(request);
 contexts.put(context); // save that context to our thread-local - other threads
 // making this call don't overwrite ours
 try {
 // business logic
 } finally {
 contexts.remove(); // 'ensure' removal of thread-local variable
 }
}

Now, instead of passing MyUserContext into every single method, you can instead use
MyServlet.getContext() where you need it. Now of course, this does introduce a variable that needs
to be documented, but it’s thread-safe, which eliminates a lot of the downsides to using such a
highly scoped variable.

The key advantage here is that every thread has its own thread local variable in that contexts
container. As long as you use it from a defined entry point (like demanding that each servlet
maintains its context, or perhaps by adding a servlet filter) you can rely on this context being there
when you need it.

CountDownLatch

CountDownLatch

A synchronization aid that allows one or more threads to wait until a set of operations
being performed in other threads completes.

A CountDownLatch is initialized with a given count.1.
The await methods block until the current count reaches zero due to invocations of the
countDown() method, after which all waiting threads are released and any subsequent
invocations of await return immediately.

2.

This is a one-shot phenomenon—the count cannot be reset. If you need a version that resets
the count, consider using a CyclicBarrier.

3.

Key Methods:

public void await() throws InterruptedException

Causes the current thread to wait until the latch has counted down to zero, unless the
thread is interrupted.

https://riptutorial.com/ 221

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

public void countDown()

Decrements the count of the latch, releasing all waiting threads if the count reaches
zero.

Example:

import java.util.concurrent.*;

class DoSomethingInAThread implements Runnable {
 CountDownLatch latch;
 public DoSomethingInAThread(CountDownLatch latch) {
 this.latch = latch;
 }
 public void run() {
 try {
 System.out.println("Do some thing");
 latch.countDown();
 } catch(Exception err) {
 err.printStackTrace();
 }
 }
}

public class CountDownLatchDemo {
 public static void main(String[] args) {
 try {
 int numberOfThreads = 5;
 if (args.length < 1) {
 System.out.println("Usage: java CountDownLatchDemo numberOfThreads");
 return;
 }
 try {
 numberOfThreads = Integer.parseInt(args[0]);
 } catch(NumberFormatException ne) {

 }
 CountDownLatch latch = new CountDownLatch(numberOfThreads);
 for (int n = 0; n < numberOfThreads; n++) {
 Thread t = new Thread(new DoSomethingInAThread(latch));
 t.start();
 }
 latch.await();
 System.out.println("In Main thread after completion of " + numberOfThreads + "
threads");
 } catch(Exception err) {
 err.printStackTrace();
 }
 }
}

output:

java CountDownLatchDemo 5
Do some thing
Do some thing
Do some thing
Do some thing

https://riptutorial.com/ 222

Do some thing
In Main thread after completion of 5 threads

Explanation:

CountDownLatch is initialized with a counter of 5 in Main thread1.
Main thread is waiting by using await() method.2.
Five instances of DoSomethingInAThread have been created. Each instance decremented the
counter with countDown() method.

3.

Once the counter becomes zero, Main thread will resume4.

Synchronization

In Java, there is a built-in language-level locking mechanism: the synchronized block, which can
use any Java object as an intrinsic lock (i.e. every Java object may have a monitor associated with
it).

Intrinsic locks provide atomicity to groups of statements. To understand what that means for us,
let's have a look at an example where synchronized is useful:

private static int t = 0;
private static Object mutex = new Object();

public static void main(String[] args) {
 ExecutorService executorService = Executors.newFixedThreadPool(400); // The high thread
count is for demonstration purposes.
 for (int i = 0; i < 100; i++) {
 executorService.execute(() -> {
 synchronized (mutex) {
 t++;
 System.out.println(MessageFormat.format("t: {0}", t));
 }
 });
 }
 executorService.shutdown();
}

In this case, if it weren't for the synchronized block, there would have been multiple concurrency
issues involved. The first one would be with the post increment operator (it isn't atomic in itself),
and the second would be that we would be observing the value of t after an arbitrary amount of
other threads has had the chance to modify it. However, since we acquired an intrinsic lock, there
will be no race conditions here and the output will contain numbers from 1 to 100 in their normal
order.

Intrinsic locks in Java are mutexes (i.e. mutual execution locks). Mutual execution means that if
one thread has acquired the lock, the second will be forced to wait for the first one to release it
before it can acquire the lock for itself. Note: An operation that may put the thread into the wait
(sleep) state is called a blocking operation. Thus, acquiring a lock is a blocking operation.

Intrinsic locks in Java are reentrant. This means that if a thread attempts to acquire a lock it
already owns, it will not block and it will successfully acquire it. For instance, the following code will

https://riptutorial.com/ 223

not block when called:

public void bar(){
 synchronized(this){
 ...
 }
}
public void foo(){
 synchronized(this){
 bar();
 }
}

Beside synchronized blocks, there are also synchronized methods.

The following blocks of code are practically equivalent (even though the bytecode seems to be
different):

synchronized block on this:

public void foo() {
 synchronized(this) {
 doStuff();
 }
}

1.

synchronized method:

 public synchronized void foo() {
 doStuff();
 }

2.

Likewise for static methods, this:

class MyClass {
 ...
 public static void bar() {
 synchronized(MyClass.class) {
 doSomeOtherStuff();
 }
 }
}

has the same effect as this:

class MyClass {
 ...
 public static synchronized void bar() {
 doSomeOtherStuff();
 }
}

Atomic operations

https://riptutorial.com/ 224

An atomic operation is an operation that is executed "all at once", without any chance of other
threads observing or modifying state during the atomic operation's execution.

Lets consider a BAD EXAMPLE.

private static int t = 0;

public static void main(String[] args) {
 ExecutorService executorService = Executors.newFixedThreadPool(400); // The high thread
count is for demonstration purposes.
 for (int i = 0; i < 100; i++) {
 executorService.execute(() -> {
 t++;
 System.out.println(MessageFormat.format("t: {0}", t));
 });
 }
 executorService.shutdown();
}

In this case, there are two issues. The first issue is that the post increment operator is not atomic.
It is comprised of multiple operations: get the value, add 1 to the value, set the value. That's why if
we run the example, it is likely that we won't see t: 100 in the output - two threads may
concurrently get the value, increment it, and set it: let's say the value of t is 10, and two threads
are incrementing t. Both threads will set the value of t to 11, since the second thread observes the
value of t before the first thread had finished incrementing it.

The second issue is with how we are observing t. When we are printing the value of t, the value
may have already been changed by a different thread after this thread's increment operation.

To fix those issues, we'll use the java.util.concurrent.atomic.AtomicInteger, which has many
atomic operations for us to use.

private static AtomicInteger t = new AtomicInteger(0);

public static void main(String[] args) {
 ExecutorService executorService = Executors.newFixedThreadPool(400); // The high thread
count is for demonstration purposes.
 for (int i = 0; i < 100; i++) {
 executorService.execute(() -> {
 int currentT = t.incrementAndGet();
 System.out.println(MessageFormat.format("t: {0}", currentT));
 });
 }
 executorService.shutdown();
}

The incrementAndGet method of AtomicInteger atomically increments and returns the new value,
thus eliminating the previous race condition. Please note that in this example the lines will still be
out of order because we make no effort to sequence the println calls and that this falls outside the
scope of this example, since it would require synchronization and the goal of this example is to
show how to use AtomicInteger to eliminate race conditions concerning state.

Creating basic deadlocked system

https://riptutorial.com/ 225

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicInteger.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicInteger.html

A deadlock occurs when two competing actions wait for the other to finish, and thus neither ever
does. In java there is one lock associated with each object. To avoid concurrent modification done
by multiple threads on single object we can use synchronized keyword, but everything comes at a
cost. Using synchronized keyword wrongly can lead to stuck systems called as deadlocked system.

Consider there are 2 threads working on 1 instance, Lets call threads as First and Second, and
lets say we have 2 resources R1 and R2. First acquires R1 and also needs R2 for its completion
while Second acquires R2 and needs R1 for completion.

so say at time t=0,

First has R1 and Second has R2. now First is waiting for R2 while Second is waiting for R1. this
wait is indefinite and this leads to deadlock.

public class Example2 {

 public static void main(String[] args) throws InterruptedException {
 final DeadLock dl = new DeadLock();
 Thread t1 = new Thread(new Runnable() {

 @Override
 public void run() {
 // TODO Auto-generated method stub
 dl.methodA();
 }
 });

 Thread t2 = new Thread(new Runnable() {

 @Override
 public void run() {
 // TODO Auto-generated method stub
 try {
 dl.method2();
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 });
 t1.setName("First");
 t2.setName("Second");
 t1.start();
 t2.start();
 }
}

class DeadLock {

 Object mLock1 = new Object();
 Object mLock2 = new Object();

 public void methodA() {
 System.out.println("methodA wait for mLock1 " + Thread.currentThread().getName());
 synchronized (mLock1) {
 System.out.println("methodA mLock1 acquired " +
Thread.currentThread().getName());

https://riptutorial.com/ 226

 try {
 Thread.sleep(100);
 method2();
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 }
 public void method2() throws InterruptedException {
 System.out.println("method2 wait for mLock2 " + Thread.currentThread().getName());
 synchronized (mLock2) {
 System.out.println("method2 mLock2 acquired " +
Thread.currentThread().getName());
 Thread.sleep(100);
 method3();
 }
 }
 public void method3() throws InterruptedException {
 System.out.println("method3 mLock1 "+ Thread.currentThread().getName());
 synchronized (mLock1) {
 System.out.println("method3 mLock1 acquired " +
Thread.currentThread().getName());
 }
 }
}

Output of this program:

methodA wait for mLock1 First
method2 wait for mLock2 Second
method2 mLock2 acquired Second
methodA mLock1 acquired First
method3 mLock1 Second
method2 wait for mLock2 First

Pausing Execution

Thread.sleep causes the current thread to suspend execution for a specified period. This is an
efficient means of making processor time available to the other threads of an application or other
applications that might be running on a computer system. There are two overloaded sleep
methods in the Thread class.

One that specifies the sleep time to the millisecond

public static void sleep(long millis) throws InterruptedException

One that specifies the sleep time to the nanosecond

public static void sleep(long millis, int nanos)

Pausing Execution for 1 second

https://riptutorial.com/ 227

Thread.sleep(1000);

It is important to note that this is a hint to the operating system's kernel's scheduler. This may not
necessarily be precise, and some implementations do not even consider the nanosecond
parameter (possibly rounding to the nearest millisecond).

It is recommended to enclose a call to Thread.sleep in try/catch and catch InterruptedException.

Visualizing read/write barriers while using synchronized / volatile

As we know that we should use synchronized keyword to make execution of a method or block
exclusive. But few of us may not be aware of one more important aspect of using synchronized and
volatile keyword: apart from making a unit of code atomic, it also provides read / write barrier.
What is this read / write barrier? Let's discuss this using an example:

class Counter {

 private Integer count = 10;

 public synchronized void incrementCount() {
 count++;
 }

 public Integer getCount() {
 return count;
 }
}

Let's suppose a thread A calls incrementCount() first then another thread B calls getCount(). In this
scenario there is no guarantee that B will see updated value of count. It may still see count as 10,
even it is also possible that it never sees updated value of count ever.

To understand this behavior we need to understand how Java memory model integrates with
hardware architecture. In Java, each thread has it's own thread stack. This stack contains: method
call stack and local variable created in that thread. In a multi core system, it is quite possible that
two threads are running concurrently in separate cores. In such scenario it is possible that part of
a thread's stack lies inside register / cache of a core. If inside a thread, an object is accessed
using synchronized (or volatile) keyword, after synchronized block that thread syncs it's local copy
of that variable with the main memory. This creates a read / write barrier and makes sure that the
thread is seeing the latest value of that object.

But in our case, since thread B has not used synchronized access to count, it might be refering
value of count stored in register and may never see updates from thread A. To make sure that B
sees latest value of count we need to make getCount() synchronized as well.

public synchronized Integer getCount() {
 return count;
}

Now when thread A is done with updating count it unlocks Counter instance, at the same time

https://riptutorial.com/ 228

creates write barrier and flushes all changes done inside that block to the main memory. Similarly
when thread B acquires lock on the same instance of Counter, it enters into read barrier and reads
value of count from main memory and sees all updates.

Same visibility effect goes for volatile read / writes as well. All variables updated prior to write to
volatile will be flushed to main memory and all reads after volatile variable read will be from
main memory.

Creating a java.lang.Thread instance

There are two main approaches to creating a thread in Java. In essence, creating a thread is as
easy as writing the code that will be executed in it. The two approaches differ in where you define
that code.

In Java, a thread is represented by an object - an instance of java.lang.Thread or its subclass. So
the first approach is to create that subclass and override the run() method.

Note: I'll use Thread to refer to the java.lang.Thread class and thread to refer to the logical
concept of threads.

class MyThread extends Thread {

https://riptutorial.com/ 229

https://i.stack.imgur.com/tnFLB.png
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

 @Override
 public void run() {
 for (int i = 0; i < 10; i++) {
 System.out.println("Thread running!");
 }
 }
}

Now since we've already defined the code to be executed, the thread can be created simply as:

MyThread t = new MyThread();

The Thread class also contains a constructor accepting a string, which will be used as the thread's
name. This can be particulary useful when debugging a multi thread program.

class MyThread extends Thread {
 public MyThread(String name) {
 super(name);
 }

 @Override
 public void run() {
 for (int i = 0; i < 10; i++) {
 System.out.println("Thread running! ");
 }
 }
}

MyThread t = new MyThread("Greeting Producer");

The second approach is to define the code using java.lang.Runnable and its only method run().
The Thread class then allows you to execute that method in a separated thread. To achieve this,
create the thread using a constructor accepting an instance of the Runnable interface.

Thread t = new Thread(aRunnable);

This can be very powerful when combined with lambdas or methods references (Java 8 only):

Thread t = new Thread(operator::hardWork);

You can specify the thread's name, too.

Thread t = new Thread(operator::hardWork, "Pi operator");

Practicaly speaking, you can use both approaches without worries. However the general wisdom
says to use the latter.

For every of the four mentioned constructors, there is also an alternative accepting an instance of
java.lang.ThreadGroup as the first parameter.

https://riptutorial.com/ 230

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
http://stackoverflow.com/questions/541487/implements-runnable-vs-extends-thread
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadGroup.html

ThreadGroup tg = new ThreadGroup("Operators");
Thread t = new Thread(tg, operator::hardWork, "PI operator");

The ThreadGroup represents a set of threads. You can only add a Thread to a ThreadGroup using
a Thread's constructor. The ThreadGroup can then be used to manage all its Threads together, as
well as the Thread can gain information from its ThreadGroup.

So to sumarize, the Thread can be created with one of these public constructors:

Thread()
Thread(String name)
Thread(Runnable target)
Thread(Runnable target, String name)
Thread(ThreadGroup group, String name)
Thread(ThreadGroup group, Runnable target)
Thread(ThreadGroup group, Runnable target, String name)
Thread(ThreadGroup group, Runnable target, String name, long stackSize)

The last one allows us to define desired stack size for the new thread.

Often the code readability suffers when creating and configuring many Threads with same
properties or from the same pattern. That's when java.util.concurrent.ThreadFactory can be used.
This interface allows you to encapsulate the procedure of creating the thread through the factory
pattern and its only method newThread(Runnable).

class WorkerFactory implements ThreadFactory {
 private int id = 0;

 @Override
 public Thread newThread(Runnable r) {
 return new Thread(r, "Worker " + id++);
 }
}

Thread Interruption / Stopping Threads

Each Java Thread has an interrupt flag, which is initially false. Interrupting a thread, is essentially
nothing more than setting that flag to true. The code running on that thread can check the flag on
occasion and act upon it. The code can also ignore it completely. But why would each Thread
have such a flag? After all, having a boolean flag on a thread is something we can just organize
ourselves, if and when we need it. Well, there are methods that behave in a special way when the
thread they're running on is interrupted. These methods are called blocking methods. These are
methods that put the thread in the WAITING or TIMED_WAITING state. When a thread is in this
state, interrupting it, will cause an InterruptedException to be thrown on the interrupted thread,
rather than the interrupt flag being set to true, and the thread becomes RUNNABLE again. Code
that invokes a blocking method is forced to deal with the InterruptedException, since it is a
checked exception. So, and hence its name, an interrupt can have the effect of interrupting a
WAIT, effectively ending it. Note that not all methods that are somehow waiting (e.g. blocking IO)
respond to interruption in that way, as they don't put the thread in a waiting state. Lastly a thread

https://riptutorial.com/ 231

https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadGroup.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadGroup.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadGroup.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadGroup.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ThreadFactory.html

that has its interrupt flag set, that enters a blocking method (i.e. tries to get into a waiting state),
will immediately throw an InterruptedException and the interrupt flag will be cleared.

Other than these mechanics, Java does not assign any special semantic meaning to interruption.
Code is free to interpret an interrupt any way it likes. But most often interruption is used to signal
to a thread it should stop running at its earliest convenience. But, as should be clear from the
above, it is up to the code on that thread to react to that interruption appropriately in order to stop
running. Stopping a thread is a collaboration. When a thread is interrupted its running code can be
several levels deep into the stacktrace. Most code doesn't call a blocking method, and finishes
timely enough to not delay the stopping of the thread unduly. The code that should mostly be
concerned with being responsive to interruption, is code that is in a loop handling tasks until there
are none left, or until a flag is set signalling it to stop that loop. Loops that handle possibly infinite
tasks (i.e. they keep running in principle) should check the interrupt flag in order to exit the loop.
For finite loops the semantics may dictate that all tasks must be finished before ending, or it may
be appropriate to leave some tasks unhandled. Code that calls blocking methods will be forced to
deal with the InterruptedException. If at all semantically possible, it can simply propagate the
InterruptedException and declare to throw it. As such it becomes a blocking method itself in regard
to its callers. If it cannot propagate the exception, it should at the very least set the interrupted flag,
so callers higher up the stack also know the thread was interrupted. In some cases the method
needs to continue waiting regardless of the InterruptedException, in which case it must delay
setting the interrupted flag until after it is done waiting, this may involve setting a local variable,
which is to be checked prior to exiting the method to then interrupt its thread.

Examples :

Example of code that stops handling tasks upon interruption

class TaskHandler implements Runnable {

 private final BlockingQueue<Task> queue;

 TaskHandler(BlockingQueue<Task> queue) {
 this.queue = queue;
 }

 @Override
 public void run() {
 while (!Thread.currentThread().isInterrupted()) { // check for interrupt flag, exit
loop when interrupted
 try {
 Task task = queue.take(); // blocking call, responsive to interruption
 handle(task);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt(); // cannot throw InterruptedException (due
to Runnable interface restriction) so indicating interruption by setting the flag
 }
 }
 }

 private void handle(Task task) {
 // actual handling
 }
}

https://riptutorial.com/ 232

Example of code that delays setting the interrupt flag until completely done :

class MustFinishHandler implements Runnable {

 private final BlockingQueue<Task> queue;

 MustFinishHandler(BlockingQueue<Task> queue) {
 this.queue = queue;
 }

 @Override
 public void run() {
 boolean shouldInterrupt = false;

 while (true) {
 try {
 Task task = queue.take();
 if (task.isEndOfTasks()) {
 if (shouldInterrupt) {
 Thread.currentThread().interrupt();
 }
 return;
 }
 handle(task);
 } catch (InterruptedException e) {
 shouldInterrupt = true; // must finish, remember to set interrupt flag when
we're done
 }
 }
 }

 private void handle(Task task) {
 // actual handling
 }
}

Example of code that has a fixed list of tasks but may quit early when interrupted

class GetAsFarAsPossible implements Runnable {

 private final List<Task> tasks = new ArrayList<>();

 @Override
 public void run() {
 for (Task task : tasks) {
 if (Thread.currentThread().isInterrupted()) {
 return;
 }
 handle(task);
 }
 }

 private void handle(Task task) {
 // actual handling
 }
}

Multiple producer/consumer example with shared global queue

https://riptutorial.com/ 233

Below code showcases multiple Producer/Consumer program. Both Producer and Consumer
threads share same global queue.

import java.util.concurrent.*;
import java.util.Random;

public class ProducerConsumerWithES {
 public static void main(String args[]) {
 BlockingQueue<Integer> sharedQueue = new LinkedBlockingQueue<Integer>();

 ExecutorService pes = Executors.newFixedThreadPool(2);
 ExecutorService ces = Executors.newFixedThreadPool(2);

 pes.submit(new Producer(sharedQueue, 1));
 pes.submit(new Producer(sharedQueue, 2));
 ces.submit(new Consumer(sharedQueue, 1));
 ces.submit(new Consumer(sharedQueue, 2));

 pes.shutdown();
 ces.shutdown();
 }
}

/* Different producers produces a stream of integers continuously to a shared queue,
which is shared between all Producers and consumers */

class Producer implements Runnable {
 private final BlockingQueue<Integer> sharedQueue;
 private int threadNo;
 private Random random = new Random();
 public Producer(BlockingQueue<Integer> sharedQueue,int threadNo) {
 this.threadNo = threadNo;
 this.sharedQueue = sharedQueue;
 }
 @Override
 public void run() {
 // Producer produces a continuous stream of numbers for every 200 milli seconds
 while (true) {
 try {
 int number = random.nextInt(1000);
 System.out.println("Produced:" + number + ":by thread:"+ threadNo);
 sharedQueue.put(number);
 Thread.sleep(200);
 } catch (Exception err) {
 err.printStackTrace();
 }
 }
 }
}
/* Different consumers consume data from shared queue, which is shared by both producer and
consumer threads */
class Consumer implements Runnable {
 private final BlockingQueue<Integer> sharedQueue;
 private int threadNo;
 public Consumer (BlockingQueue<Integer> sharedQueue,int threadNo) {
 this.sharedQueue = sharedQueue;
 this.threadNo = threadNo;
 }
 @Override
 public void run() {

https://riptutorial.com/ 234

 // Consumer consumes numbers generated from Producer threads continuously
 while(true){
 try {
 int num = sharedQueue.take();
 System.out.println("Consumed: "+ num + ":by thread:"+threadNo);
 } catch (Exception err) {
 err.printStackTrace();
 }
 }
 }
}

output:

Produced:69:by thread:2
Produced:553:by thread:1
Consumed: 69:by thread:1
Consumed: 553:by thread:2
Produced:41:by thread:2
Produced:796:by thread:1
Consumed: 41:by thread:1
Consumed: 796:by thread:2
Produced:728:by thread:2
Consumed: 728:by thread:1

and so on

Explanation:

sharedQueue, which is a LinkedBlockingQueue is shared among all Producer and Consumer
threads.

1.

Producer threads produces one integer for every 200 milli seconds continuously and append
it to sharedQueue

2.

Consumer thread consumes integer from sharedQueue continuously.3.
This program is implemented with-out explicit synchronized or Lock constructs.
BlockingQueue is the key to achieve it.

4.

BlockingQueue implementations are designed to be used primarily for producer-
consumer queues.

BlockingQueue implementations are thread-safe. All queuing methods achieve their
effects atomically using internal locks or other forms of concurrency control.

Exclusive write / Concurrent read access

It is sometimes required for a process to concurrently write and read the same "data".

The ReadWriteLock interface, and its ReentrantReadWriteLock implementation allows for an access
pattern that can be described as follow :

There can be any number of concurrent readers of the data. If there is at least one reader
access granted, then no writer access is possible.

1.

https://riptutorial.com/ 235

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

There can be at most one single writer to the data. If there is a writer access granted, then
no reader can access the data.

2.

An implementation could look like :

import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class Sample {

// Our lock. The constructor allows a "fairness" setting, which guarantees the chronology of
lock attributions.
protected static final ReadWriteLock RW_LOCK = new ReentrantReadWriteLock();

// This is a typical data that needs to be protected for concurrent access
protected static int data = 0;

/** This will write to the data, in an exclusive access */
public static void writeToData() {
 RW_LOCK.writeLock().lock();
 try {
 data++;
 } finally {
 RW_LOCK.writeLock().unlock();
 }
}

public static int readData() {
 RW_LOCK.readLock().lock();
 try {
 return data;
 } finally {
 RW_LOCK.readLock().unlock();
 }
}

}

NOTE 1 : This precise use case has a cleaner solution using AtomicInteger, but what is described
here is an access pattern, that works regardless of the fact that data here is an integer that as an
Atomic variant.

NOTE 2 : The lock on the reading part is really needed, although it might not look so to the casual
reader. Indeed, if you do not lock on the reader side, any number of things can go wrong, amongst
which :

The writes of primitive values are not guaranteed to be atomic on all JVMs, so the reader
could see e.g. only 32bits of a 64bits write if data were a 64bits long type

1.

The visibility of the write from a thread that did not perform it is guaranteed by the JVM only if
we establish Happen Before relationship between the writes and the reads. This relationship
is established when both readers and writers use their respective locks, but not otherwise

2.

Java SE 8

In case higher performance is required, an under certain types of usage, there is a faster lock type
available, called the StampedLock, that amongst other things implements an optimistic lock mode.

https://riptutorial.com/ 236

This lock works very differently from the ReadWriteLock, and this sample is not transposable.

Runnable Object

The Runnable interface defines a single method, run(), meant to contain the code executed in the
thread.

The Runnable object is passed to the Thread constructor. And Thread's start() method is called.

Example

public class HelloRunnable implements Runnable {

 @Override
 public void run() {
 System.out.println("Hello from a thread");
 }

 public static void main(String[] args) {
 new Thread(new HelloRunnable()).start();
 }
}

Example in Java8:

public static void main(String[] args) {
 Runnable r = () -> System.out.println("Hello world");
 new Thread(r).start();
}

Runnable vs Thread subclass

A Runnable object employment is more general, because the Runnable object can subclass a class
other than Thread.

Thread subclassing is easier to use in simple applications, but is limited by the fact that your task
class must be a descendant of Thread.

A Runnable object is applicable to the high-level thread management APIs.

Semaphore

A Semaphore is a high-level synchronizer that maintains a set of permits that can be acquired and
released by threads. A Semaphore can be imagined as a counter of permits that will be
decremented when a thread acquires, and incremented when a thread releases. If the amount of
permits is 0 when a thread attempts to acquire, then the thread will block until a permit is made
available (or until the thread is interrupted).

A semaphore is initialized as:

Semaphore semaphore = new Semaphore(1); // The int value being the number of permits

https://riptutorial.com/ 237

The Semaphore constructor accepts an additional boolean parameter for fairness. When set false,
this class makes no guarantees about the order in which threads acquire permits. When fairness
is set true, the semaphore guarantees that threads invoking any of the acquire methods are
selected to obtain permits in the order in which their invocation of those methods was processed.
It is declared in the following manner:

Semaphore semaphore = new Semaphore(1, true);

Now let's look at an example from javadocs, where Semaphore is used to control access to a pool
of items. A Semaphore is used in this example to provide blocking functionality in order to ensure
that there are always items to be obtained when getItem() is called.

class Pool {
 /*
 * Note that this DOES NOT bound the amount that may be released!
 * This is only a starting value for the Semaphore and has no other
 * significant meaning UNLESS you enforce this inside of the
 * getNextAvailableItem() and markAsUnused() methods
 */
 private static final int MAX_AVAILABLE = 100;
 private final Semaphore available = new Semaphore(MAX_AVAILABLE, true);

 /**
 * Obtains the next available item and reduces the permit count by 1.
 * If there are no items available, block.
 */
 public Object getItem() throws InterruptedException {
 available.acquire();
 return getNextAvailableItem();
 }

 /**
 * Puts the item into the pool and add 1 permit.
 */
 public void putItem(Object x) {
 if (markAsUnused(x))
 available.release();
 }

 private Object getNextAvailableItem() {
 // Implementation
 }

 private boolean markAsUnused(Object o) {
 // Implementation
 }
}

Add two `int` arrays using a Threadpool

A Threadpool has a Queue of tasks, of which each will be executed on one these Threads.

The following example shows how to add two int arrays using a Threadpool.

Java SE 8

https://riptutorial.com/ 238

int[] firstArray = { 2, 4, 6, 8 };
int[] secondArray = { 1, 3, 5, 7 };
int[] result = { 0, 0, 0, 0 };

ExecutorService pool = Executors.newCachedThreadPool();

// Setup the ThreadPool:
// for each element in the array, submit a worker to the pool that adds elements
for (int i = 0; i < result.length; i++) {
 final int worker = i;
 pool.submit(() -> result[worker] = firstArray[worker] + secondArray[worker]);
}

// Wait for all Workers to finish:
try {
 // execute all submitted tasks
 pool.shutdown();
 // waits until all workers finish, or the timeout ends
 pool.awaitTermination(12, TimeUnit.SECONDS);
}
catch (InterruptedException e) {
 pool.shutdownNow(); //kill thread
}

System.out.println(Arrays.toString(result));

Notes:

This example is purely illustrative. In practice, there won't be any speedup by using threads
for a task this small. A slowdown is likely, since the overheads of task creation and
scheduling will swamp the time taken to run a task.

1.

If you were using Java 7 and earlier, you would use anonymous classes instead of lambdas
to implement the tasks.

2.

Get status of all threads started by your program excluding system threads

Code snippet:

import java.util.Set;

public class ThreadStatus {
 public static void main(String args[]) throws Exception {
 for (int i = 0; i < 5; i++){
 Thread t = new Thread(new MyThread());
 t.setName("MyThread:" + i);
 t.start();
 }
 int threadCount = 0;
 Set<Thread> threadSet = Thread.getAllStackTraces().keySet();
 for (Thread t : threadSet) {
 if (t.getThreadGroup() == Thread.currentThread().getThreadGroup()) {
 System.out.println("Thread :" + t + ":" + "state:" + t.getState());
 ++threadCount;
 }
 }
 System.out.println("Thread count started by Main thread:" + threadCount);

https://riptutorial.com/ 239

 }
}

class MyThread implements Runnable {
 public void run() {
 try {
 Thread.sleep(2000);
 } catch(Exception err) {
 err.printStackTrace();
 }
 }
}

Output:

Thread :Thread[MyThread:1,5,main]:state:TIMED_WAITING
Thread :Thread[MyThread:3,5,main]:state:TIMED_WAITING
Thread :Thread[main,5,main]:state:RUNNABLE
Thread :Thread[MyThread:4,5,main]:state:TIMED_WAITING
Thread :Thread[MyThread:0,5,main]:state:TIMED_WAITING
Thread :Thread[MyThread:2,5,main]:state:TIMED_WAITING
Thread count started by Main thread:6

Explanation:

Thread.getAllStackTraces().keySet() returns all Threads including application threads and system
threads. If you are interested only in status of Threads, started by your application, iterate the
Thread set by checking Thread Group of a particular thread against your main program thread.

In absence of above ThreadGroup condition, the program returns status of below System
Threads:

Reference Handler
Signal Dispatcher
Attach Listener
Finalizer

Callable and Future

While Runnable provides a means to wrap code to be executed in a different thread, it has a
limitation in that it cannot return a result from the execution. The only way to get some return value
from the execution of a Runnable is to assign the result to a variable accessible in a scope outside
of the Runnable.

Callable was introduced in Java 5 as a peer to Runnable. Callable is essentially the same except it
has a call method instead of run. The call method has the additional capability to return a result
and is also allowed to throw checked exceptions.

The result from a Callable task submission is available to be tapped via a Future

Future can be considered a container of sorts that houses the result of the Callable computation.
Computation of the callable can carry on in another thread, and any attempt to tap the result of a
Future

https://riptutorial.com/ 240

will block and will only return the result once it is available.

Callable Interface

public interface Callable<V> {
 V call() throws Exception;
}

Future

interface Future<V> {
 V get();
 V get(long timeout, TimeUnit unit);
 boolean cancel(boolean mayInterruptIfRunning);
 boolean isCancelled();
 boolean isDone();
}

Using Callable and Future example:

public static void main(String[] args) throws Exception {
 ExecutorService es = Executors.newSingleThreadExecutor();

 System.out.println("Time At Task Submission : " + new Date());
 Future<String> result = es.submit(new ComplexCalculator());
 // the call to Future.get() blocks until the result is available.So we are in for about a
10 sec wait now
 System.out.println("Result of Complex Calculation is : " + result.get());
 System.out.println("Time At the Point of Printing the Result : " + new Date());
}

Our Callable that does a lengthy computation

public class ComplexCalculator implements Callable<String> {

 @Override
 public String call() throws Exception {
 // just sleep for 10 secs to simulate a lengthy computation
 Thread.sleep(10000);
 System.out.println("Result after a lengthy 10sec calculation");
 return "Complex Result"; // the result
 }
}

Output

Time At Task Submission : Thu Aug 04 15:05:15 EDT 2016
Result after a lengthy 10sec calculation
Result of Complex Calculation is : Complex Result
Time At the Point of Printing the Result : Thu Aug 04 15:05:25 EDT 2016

Other operations permitted on Future

While get() is the method to extract the actual result Future has provision

https://riptutorial.com/ 241

get(long timeout, TimeUnit unit) defines maximum time period during current thread will wait
for a result;

•

To cancel the task call cancel(mayInterruptIfRunning). The flag mayInterrupt indicates that
task should be interrupted if it was started and is running right now;

•

To check if task is completed/finished by calling isDone();•
To check if the lengthy task were cancelled isCancelled().•

Locks as Synchronisation aids

Prior to Java 5's concurrent package introduction threading was more low level.The introduction of
this package provided several higher level concurrent programming aids/constructs.

Locks are thread synchronisation mechanisms that essentially serve the same purpose as
synchronized blocks or key words.

Intrinsic Locking

int count = 0; // shared among multiple threads

public void doSomething() {
 synchronized(this) {
 ++count; // a non-atomic operation
 }
}

Synchronisation using Locks

int count = 0; // shared among multiple threads

Lock lockObj = new ReentrantLock();
public void doSomething() {
 try {
 lockObj.lock();
 ++count; // a non-atomic operation
 } finally {
 lockObj.unlock(); // sure to release the lock without fail
 }
}

Locks also have functionality available that intrinsic locking does not offer, such as locking but
remaining responsive to interruption, or trying to lock, and not block when unable to.

Locking, responsive to interruption

class Locky {
 int count = 0; // shared among multiple threads

 Lock lockObj = new ReentrantLock();

 public void doSomething() {
 try {
 try {
 lockObj.lockInterruptibly();

https://riptutorial.com/ 242

 ++count; // a non-atomic operation
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt(); // stopping
 }
 } finally {
 if (!Thread.currentThread().isInterrupted()) {
 lockObj.unlock(); // sure to release the lock without fail
 }
 }
 }
}

Only do something when able to lock

public class Locky2 {
 int count = 0; // shared among multiple threads

 Lock lockObj = new ReentrantLock();

 public void doSomething() {
 boolean locked = lockObj.tryLock(); // returns true upon successful lock
 if (locked) {
 try {
 ++count; // a non-atomic operation
 } finally {
 lockObj.unlock(); // sure to release the lock without fail
 }
 }
 }
}

There are several variants of lock available.For more details refer the api docs here

Read Concurrent Programming (Threads) online: https://riptutorial.com/java/topic/121/concurrent-
programming--threads-

https://riptutorial.com/ 243

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/package-summary.html
https://riptutorial.com/java/topic/121/concurrent-programming--threads-
https://riptutorial.com/java/topic/121/concurrent-programming--threads-

Chapter 36: Console I/O

Examples

Reading user input from the console

Using BufferedReader:

System.out.println("Please type your name and press Enter.");

BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
try {
 String name = reader.readLine();
 System.out.println("Hello, " + name + "!");
} catch(IOException e) {
 System.out.println("An error occurred: " + e.getMessage());
}

The following imports are needed for this code:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

Using Scanner:

Java SE 5

System.out.println("Please type your name and press Enter");

Scanner scanner = new Scanner(System.in);
String name = scanner.nextLine();

System.out.println("Hello, " + name + "!");

The following import is needed for this example:

import java.util.Scanner;

To read more than one line, invoke scanner.nextLine() repeatedly:

System.out.println("Please enter your first and your last name, on separate lines.");

Scanner scanner = new Scanner(System.in);
String firstName = scanner.nextLine();
String lastName = scanner.nextLine();

System.out.println("Hello, " + firstName + " " + lastName + "!");

https://riptutorial.com/ 244

There are two methods for obtaining Strings, next() and nextLine(). next() returns text up until the
first space (also known as a "token"), and nextLine() returns all text that the user inputted until
pressing enter.

Scanner also provides utility methods for reading data types other than String. These include:

scanner.nextByte();
scanner.nextShort();
scanner.nextInt();
scanner.nextLong();
scanner.nextFloat();
scanner.nextDouble();
scanner.nextBigInteger();
scanner.nextBigDecimal();

Prefixing any of these methods with has (as in hasNextLine(), hasNextInt()) returns true if the
stream has any more of the request type. Note: These methods will crash the program if the input
is not of the requested type (for example, typing "a" for nextInt()). You can use a try {} catch()
{} to prevent this (see: Exceptions)

Scanner scanner = new Scanner(System.in); //Create the scanner
scanner.useLocale(Locale.US); //Set number format excepted
System.out.println("Please input a float, decimal separator is .");
if (scanner.hasNextFloat()){ //Check if it is a float
 float fValue = scanner.nextFloat(); //retrive the value directly as float
 System.out.println(fValue + " is a float");
}else{
 String sValue = scanner.next(); //We can not retrive as float
 System.out.println(sValue + " is not a float");
}

Using System.console:

Java SE 6

String name = System.console().readLine("Please type your name and press Enter%n");

System.out.printf("Hello, %s!", name);

//To read passwords (without echoing as in unix terminal)
char[] password = System.console().readPassword();

Advantages:

Reading methods are synchronized•
Format string syntax can be used•

Note: This will only work if the program is run from a real command line without redirecting the
standard input and output streams. It does not work when the program is run from within certain
IDEs, such as Eclipse. For code that works within IDEs and with stream redirection, see the other
examples.

https://riptutorial.com/ 245

http://www.riptutorial.com/java/topic/89/exceptions-and-exception-handling

Implementing Basic Command-Line Behavior

For basic prototypes or basic command-line behavior, the following loop comes in handy.

public class ExampleCli {

 private static final String CLI_LINE = "example-cli>"; //console like string

 private static final String CMD_QUIT = "quit"; //string for exiting the program
 private static final String CMD_HELLO = "hello"; //string for printing "Hello World!"
on the screen
 private static final String CMD_ANSWER = "answer"; //string for printing 42 on the
screen

 public static void main(String[] args) {
 ExampleCli claimCli = new ExampleCli(); // creates an object of this class

 try {
 claimCli.start(); //calls the start function to do the work like console
 }
 catch (IOException e) {
 e.printStackTrace(); //prints the exception log if it is failed to do get the
user input or something like that
 }
 }

 private void start() throws IOException {
 String cmd = "";

 BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
 while (!cmd.equals(CMD_QUIT)) { // terminates console if user input is "quit"
 System.out.print(CLI_LINE); //prints the console-like string

 cmd = reader.readLine(); //takes input from user. user input should be started
with "hello", "answer" or "quit"
 String[] cmdArr = cmd.split(" ");

 if (cmdArr[0].equals(CMD_HELLO)) { //executes when user input starts with
"hello"
 hello(cmdArr);
 }
 else if (cmdArr[0].equals(CMD_ANSWER)) { //executes when user input starts with
"answer"
 answer(cmdArr);
 }
 }
 }

 // prints "Hello World!" on the screen if user input starts with "hello"
 private void hello(String[] cmdArr) {
 System.out.println("Hello World!");
 }

 // prints "42" on the screen if user input starts with "answer"
 private void answer(String[] cmdArr) {
 System.out.println("42");
 }
}

https://riptutorial.com/ 246

Aligning strings in console

The method PrintWriter.format (called through System.out.format) can be used to print aligned
strings in console. The method receives a String with the format information and a series of
objects to format:

String rowsStrings[] = new String[] {"1",
 "1234",
 "1234567",
 "123456789"};

String column1Format = "%-3s"; // min 3 characters, left aligned
String column2Format = "%-5.8s"; // min 5 and max 8 characters, left aligned
String column3Format = "%6.6s"; // fixed size 6 characters, right aligned
String formatInfo = column1Format + " " + column2Format + " " + column3Format;

for(int i = 0; i < rowsStrings.length; i++) {
 System.out.format(formatInfo, rowsStrings[i], rowsStrings[i], rowsStrings[i]);
 System.out.println();
}

Output:

1 1 1
1234 1234 1234
1234567 1234567 123456
123456789 12345678 123456

Using format strings with fixed size permits to print the strings in a table-like appearance with fixed
size columns:

String rowsStrings[] = new String[] {"1",
 "1234",
 "1234567",
 "123456789"};

String column1Format = "%-3.3s"; // fixed size 3 characters, left aligned
String column2Format = "%-8.8s"; // fixed size 8 characters, left aligned
String column3Format = "%6.6s"; // fixed size 6 characters, right aligned
String formatInfo = column1Format + " " + column2Format + " " + column3Format;

for(int i = 0; i < rowsStrings.length; i++) {
 System.out.format(formatInfo, rowsStrings[i], rowsStrings[i], rowsStrings[i]);
 System.out.println();
}

Output:

1 1 1
123 1234 1234
123 1234567 123456
123 12345678 123456

https://riptutorial.com/ 247

https://docs.oracle.com/javase/8/docs/api/java/io/PrintWriter.html#format-java.lang.String-java.lang.Object...-

Format strings examples

%s: just a string with no formatting•
%5s: format the string with a minimum of 5 characters; if the string is shorter it will be
padded to 5 characters and right aligned

•

%-5s: format the string with a minimum of 5 characters; if the string is shorter it will be
padded to 5 characters and left aligned

•

%5.10s: format the string with a minimum of 5 characters and a maximum of 10 characters;
if the string is shorter than 5 it will be padded to 5 characters and right aligned; if the string
is longer than 10 it will be truncated to 10 characters and right aligned

•

%-5.5s: format the string with a fixed size of 5 characters (minimum and maximum are
equals); if the string is shorter than 5 it will be padded to 5 characters and left aligned; if the
string is longer than 5 it will be truncated to 5 characters and left aligned

•

Read Console I/O online: https://riptutorial.com/java/topic/126/console-i-o

https://riptutorial.com/ 248

https://riptutorial.com/java/topic/126/console-i-o

Chapter 37: Constructors

Introduction

While not required, constructors in Java are methods recognized by the compiler to instantiate
specific values for the class which may be essential to the role of the object. This topic
demonstrates proper usage of Java class constructors.

Remarks

The Java Language Specification talks at length about the exact nature of constructor semantics.
They can be found in JLS §8.8

Examples

Default Constructor

The "default" for constructors is that they do not have any arguments. In case you do not specify
any constructor, the compiler will generate a default constructor for you.
This means the following two snippets are semantically equivalent:

public class TestClass {
 private String test;
}

public class TestClass {
 private String test;
 public TestClass() {

 }
}

The visibility of the default constructor is the same as the visibility of the class. Thus a class
defined package-privately has a package-private default constructor

However, if you have non-default constructor, the compiler will not generate a default constructor
for you. So these are not equivalent:

public class TestClass {
 private String test;
 public TestClass(String arg) {
 }
}

public class TestClass {
 private String test;
 public TestClass() {

https://riptutorial.com/ 249

https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.8

 }
 public TestClass(String arg) {
 }
}

Beware that the generated constructor performs no non-standard initialization. This means all
fields of your class will have their default value, unless they have an initializer.

public class TestClass {

 private String testData;

 public TestClass() {
 testData = "Test"
 }
}

Constructors are called like this:

TestClass testClass = new TestClass();

Constructor with Arguments

Constructors can be created with any kinds of arguments.

public class TestClass {

 private String testData;

 public TestClass(String testData) {
 this.testData = testData;
 }
}

Called like this:

TestClass testClass = new TestClass("Test Data");

A class can have multiple constructors with different signatures. To chain constructor calls (call a
different constructor of the same class when instantiating) use this().

public class TestClass {

 private String testData;

 public TestClass(String testData) {
 this.testData = testData;
 }

 public TestClass() {
 this("Test"); // testData defaults to "Test"
 }
}

https://riptutorial.com/ 250

Called like this:

TestClass testClass1 = new TestClass("Test Data");
TestClass testClass2 = new TestClass();

Call parent constructor

Say you have a Parent class and a Child class. To construct a Child instance always requires
some Parent constructor to be run at the very gebinning of the Child constructor. We can select
the Parent constructor we want by explicitly calling super(...) with the appropriate arguments as
our first Child constructor statement. Doing this saves us time by reusing the Parent classes'
constructor instead of rewriting the same code in the Child classes' constructor.

Without super(...) method:

(implicitly, the no-args version super() is called invisibly)

class Parent {
 private String name;
 private int age;

 public Parent() {} // necessary because we call super() without arguments

 public Parent(String tName, int tAge) {
 name = tName;
 age = tAge;
 }
}

// This does not even compile, because name and age are private,
// making them invisible even to the child class.
class Child extends Parent {
 public Child() {
 // compiler implicitly calls super() here
 name = "John";
 age = 42;
 }
}

With super() method:

class Parent {
 private String name;
 private int age;
 public Parent(String tName, int tAge) {
 name = tName;
 age = tAge;
 }
}

class Child extends Parent {
 public Child() {
 super("John", 42); // explicit super-call
 }
}

https://riptutorial.com/ 251

Note: Calls to another constructor (chaining) or the super constructor MUST be the first statement
inside the constructor.

If you call the super(...) constructor explicitly, a matching parent constructor must exist (that's
straightforward, isn't it?).

If you don't call any super(...) constructor explicitly, your parent class must have a no-args
constructor - and this can be either written explicitly or created as a default by the compiler if the
parent class doesn't provide any constructor.

class Parent{
 public Parent(String tName, int tAge) {}
}

class Child extends Parent{
 public Child(){}
}

The class Parent has no default constructor, so, the compiler can't add super in the Child
constructor. This code will not compile. You must change the constructors to fit both sides, or write
your own super call, like that:

class Child extends Parent{
 public Child(){
 super("",0);
 }
}

Read Constructors online: https://riptutorial.com/java/topic/682/constructors

https://riptutorial.com/ 252

https://riptutorial.com/java/topic/682/constructors

Chapter 38: Converting to and from Strings

Examples

Converting other datatypes to String

You can get the value of other primitive data types as a String using one the String class's
valueOf methods.

For example:

int i = 42;
String string = String.valueOf(i);
//string now equals "42”.

This method is also overloaded for other datatypes, such as float, double, boolean, and even
Object.

•

You can also get any other Object (any instance of any class) as a String by calling .toString
on it. For this to give useful output, the class must override toString(). Most of the standard
Java library classes do, such as Date and others.

For example:

Foo foo = new Foo(); //Any class.
String stringifiedFoo = foo.toString().

Here stringifiedFoo contains a representation of foo as a String.

•

You can also convert any number type to String with short notation like below.

int i = 10;
String str = i + "";

Or just simple way is

String str = 10 + "";

Conversion to / from bytes

To encode a string into a byte array, you can simply use the String#getBytes() method, with one of
the standard character sets available on any Java runtime:

byte[] bytes = "test".getBytes(StandardCharsets.UTF_8);

and to decode:

https://riptutorial.com/ 253

String testString = new String(bytes, StandardCharsets.UTF_8);

you can further simplify the call by using a static import:

import static java.nio.charset.StandardCharsets.UTF_8;
...
byte[] bytes = "test".getBytes(UTF_8);

For less common character sets you can indicate the character set with a string:

byte[] bytes = "test".getBytes("UTF-8");

and the reverse:

String testString = new String (bytes, "UTF-8");

this does however mean that you have to handle the checked UnsupportedCharsetException.

The following call will use the default character set. The default character set is platform specific
and generally differs between Windows, Mac and Linux platforms.

byte[] bytes = "test".getBytes();

and the reverse:

String testString = new String(bytes);

Note that invalid characters and bytes may be replaced or skipped by these methods. For more
control - for instance for validating input - you're encouraged to use the CharsetEncoder and
CharsetDecoder classes.

Base64 Encoding / Decoding

Occasionally you will find the need to encode binary data as a base64-encoded string.

For this we can use the DatatypeConverter class from the javax.xml.bind package:

import javax.xml.bind.DatatypeConverter;
import java.util.Arrays;

// arbitrary binary data specified as a byte array
byte[] binaryData = "some arbitrary data".getBytes("UTF-8");

// convert the binary data to the base64-encoded string
String encodedData = DatatypeConverter.printBase64Binary(binaryData);
// encodedData is now "c29tZSBhcmJpdHJhcnkgZGF0YQ=="

// convert the base64-encoded string back to a byte array

https://riptutorial.com/ 254

https://it.wikipedia.org/wiki/Base64
https://docs.oracle.com/javase/7/docs/api/javax/xml/bind/DatatypeConverter.html
https://docs.oracle.com/javase/7/docs/api/javax/xml/bind/package-summary.html

byte[] decodedData = DatatypeConverter.parseBase64Binary(encodedData);

// assert that the original data and the decoded data are equal
assert Arrays.equals(binaryData, decodedData);

Apache commons-codec

Alternatively, we can use Base64 from Apache commons-codec.

import org.apache.commons.codec.binary.Base64;

// your blob of binary as a byte array
byte[] blob = "someBinaryData".getBytes();

// use the Base64 class to encode
String binaryAsAString = Base64.encodeBase64String(blob);

// use the Base64 class to decode
byte[] blob2 = Base64.decodeBase64(binaryAsAString);

// assert that the two blobs are equal
System.out.println("Equal : " + Boolean.toString(Arrays.equals(blob, blob2)));

If you inspect this program wile running, you will see that someBinaryData encodes to
c29tZUJpbmFyeURhdGE=, a very managable UTF-8 String object.

Java SE 8

Details for the same can be found at Base64

// encode with padding
String encoded = Base64.getEncoder().encodeToString(someByteArray);

// encode without padding
String encoded = Base64.getEncoder().withoutPadding().encodeToString(someByteArray);

// decode a String
byte [] barr = Base64.getDecoder().decode(encoded);

Reference

Parsing Strings to a Numerical Value

String to a primitive numeric type or a numeric wrapper type:

Each numeric wrapper class provides a parseXxx method that converts a String to the
corresponding primitive type. The following code converts a String to an int using the
Integer.parseInt method:

String string = "59";
int primitive = Integer.parseInteger(string);

https://riptutorial.com/ 255

http://commons.apache.org/proper/commons-codec/
http://docs.oracle.com/javase/8/docs/api/java/util/Base64.html
http://stackoverflow.com/questions/19743851/base64-java-encode-and-decode-a-string

To convert to a String to an instance of a numeric wrapper class you can either use an overload of
the wrapper classes valueOf method:

String string = "59";
Integer wrapper = Integer.valueOf(string);

or rely on auto boxing (Java 5 and later):

String string = "59";
Integer wrapper = Integer.parseInteger(string); // 'int' result is autoboxed

The above pattern works for byte, short, int, long, float and double and the corresponding wrapper
classes (Byte, Short, Integer, Long, Float and Double).

String to Integer using radix:

String integerAsString = "0101"; // binary representation
int parseInt = Integer.parseInt(integerAsString,2);
Integer valueOfInteger = Integer.valueOf(integerAsString,2);
System.out.println(valueOfInteger); // prints 5
System.out.println(parseInt); // prints 5

Exceptions

The unchecked NumberFormatException exception will be thrown if a numeric valueOf(String) or
parseXxx(...) method is called for a string that is not an acceptable numeric representation, or that
represents a value that is out of range.

Getting a `String` from an `InputStream`

A String can be read from an InputStream using the byte array constructor.

import java.io.*;

public String readString(InputStream input) throws IOException {
 byte[] bytes = new byte[50]; // supply the length of the string in bytes here
 input.read(bytes);
 return new String(bytes);
}

This uses the system default charset, although an alternate charset may be specified:

return new String(bytes, Charset.forName("UTF-8"));

Converting String to other datatypes.

You can convert a numeric string to various Java numeric types as follows:

String to int:

https://riptutorial.com/ 256

https://docs.oracle.com/javase/7/docs/api/java/lang/NumberFormatException.html

String number = "12";
int num = Integer.parseInt(number);

String to float:

String number = "12.0";
float num = Float.parseFloat(number);

String to double:

String double = "1.47";
double num = Double.parseDouble(double);

String to boolean:

String falseString = "False";
boolean falseBool = Boolean.parseBoolean(falseString); // falseBool = false

String trueString = "True";
boolean trueBool = Boolean.parseBoolean(trueString); // trueBool = true

String to long:

String number = "47";
long num = Long.parseLong(number);

String to BigInteger:

String bigNumber = "21";
BigInteger reallyBig = new BigInteger(bigNumber);

String to BigDecimal:

String bigFraction = "17.21455";
BigDecimal reallyBig = new BigDecimal(bigFraction);

Conversion Exceptions:

The numeric conversions above will all throw an (unchecked) NumberFormatException if you attempt
to parse a string that is not a suitably formatted number, or is out of range for the target type. The
Exceptions topic discusses how to deal with such exceptions.

If you wanted to test that you can parse a string, you could implement a tryParse... method like
this:

boolean tryParseInt (String value) {
 try {
 String somechar = Integer.parseInt(value);
 return true;
 } catch (NumberFormatException e) {

https://riptutorial.com/ 257

http://www.riptutorial.com/java/topic/89/exceptions-and-exception-handling

 return false;
 }
}

However, calling this tryParse... method immediately before parsing is (arguably) poor practice. It
would be better to just call the parse... method and deal with the exception.

Read Converting to and from Strings online: https://riptutorial.com/java/topic/6678/converting-to-
and-from-strings

https://riptutorial.com/ 258

https://riptutorial.com/java/topic/6678/converting-to-and-from-strings
https://riptutorial.com/java/topic/6678/converting-to-and-from-strings

Chapter 39: Creating Images
Programmatically

Remarks

BufferedImage.getGraphics() always returns Graphics2D.

Using a VolatileImage may significantly improve the speed of drawing operations, but also has its
drawbacks: its contents may be lost at any moment and they may have to be redrawn from
scratch.

Examples

Creating a simple image programmatically and displaying it

class ImageCreationExample {

 static Image createSampleImage() {
 // instantiate a new BufferedImage (subclass of Image) instance
 BufferedImage img = new BufferedImage(640, 480, BufferedImage.TYPE_INT_ARGB);

 //draw something on the image
 paintOnImage(img);

 return img;
 }

 static void paintOnImage(BufferedImage img) {
 // get a drawable Graphics2D (subclass of Graphics) object
 Graphics2D g2d = (Graphics2D) img.getGraphics();

 // some sample drawing
 g2d.setColor(Color.BLACK);
 g2d.fillRect(0, 0, 640, 480);
 g2d.setColor(Color.WHITE);
 g2d.drawLine(0, 0, 640, 480);
 g2d.drawLine(0, 480, 640, 0);
 g2d.setColor(Color.YELLOW);
 g2d.drawOval(200, 100, 240, 280);
 g2d.setColor(Color.RED);
 g2d.drawRect(150, 70, 340, 340);

 // drawing on images can be very memory-consuming
 // so it's better to free resources early
 // it's not necessary, though
 g2d.dispose();
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Image img = createSampleImage();

https://riptutorial.com/ 259

https://docs.oracle.com/javase/8/docs/api/java/awt/image/BufferedImage.html#getGraphics--
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics2D.html
https://docs.oracle.com/javase/8/docs/api/java/awt/image/VolatileImage.html

 ImageIcon icon = new ImageIcon(img);
 frame.add(new JLabel(icon));
 frame.pack();
 frame.setVisible(true);
 }
}

Save an Image to disk

public static void saveImage(String destination) throws IOException {
 // method implemented in "Creating a simple image Programmatically and displaying it"
example
 BufferedImage img = createSampleImage();

 // ImageIO provides several write methods with different outputs
 ImageIO.write(img, "png", new File(destination));
}

Specifying image rendering quality

static void setupQualityHigh(Graphics2D g2d) {
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 g2d.setRenderingHint(RenderingHints.KEY_RENDERING, RenderingHints.VALUE_RENDER_QUALITY);
 // many other RenderingHints KEY/VALUE pairs to specify

https://riptutorial.com/ 260

http://i.stack.imgur.com/IBEHO.png

}

static void setupQualityLow(Graphics2D g2d) {
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_OFF);
 g2d.setRenderingHint(RenderingHints.KEY_RENDERING, RenderingHints.VALUE_RENDER_SPEED);
}

A comparison of QUALITY and SPEED rendering of the sample image:

https://riptutorial.com/ 261

http://i.stack.imgur.com/Bg2bS.png

Creating an image with BufferedImage class

int width = 256; //in pixels
int height = 256; //in pixels
BufferedImage image = new BufferedImage(width, height, BufferedImage.TYPE_4BYTE_ABGR);
//BufferedImage.TYPE_4BYTE_ABGR - store RGB color and visibility (alpha), see javadoc for more
info

Graphics g = image.createGraphics();

//draw whatever you like, like you would in a drawComponent(Graphics g) method in an UI
application
g.setColor(Color.RED);
g.fillRect(20, 30, 50, 50);

g.setColor(Color.BLUE);
g.drawOval(120, 120, 80, 40);

g.dispose(); //dispose graphics objects when they are no longer needed

//now image has programmatically generated content, you can use it in graphics.drawImage() to
draw it somewhere else
//or just simply save it to a file
ImageIO.write(image, "png", new File("myimage.png"));

Output:

https://riptutorial.com/ 262

http://i.stack.imgur.com/sqHhS.png

Editing and re-using image with BufferedImage

BufferedImage cat = ImageIO.read(new File("cat.jpg")); //read existing file

//modify it
Graphics g = cat.createGraphics();
g.setColor(Color.RED);
g.drawString("Cat", 10, 10);
g.dispose();

//now create a new image
BufferedImage cats = new BufferedImage(256, 256, BufferedImage.TYPE_4BYTE_ABGR);

//and draw the old one on it, 16 times
g = cats.createGraphics();
for (int i = 0; i < 4; i++) {
 for (int j = 0; j < 4; j++) {
 g.drawImage(cat, i * 64, j * 64, null);
 }
}

g.setColor(Color.BLUE);
g.drawRect(0, 0, 255, 255); //add some nice border
g.dispose(); //and done

ImageIO.write(cats, "png", new File("cats.png"));

Original cat file:

Produced file:

https://riptutorial.com/ 263

https://i.stack.imgur.com/v7Tk0.png
https://i.stack.imgur.com/Qrcc5.jpg

Setting individual pixel's color in BufferedImage

BufferedImage image = new BufferedImage(256, 256, BufferedImage.TYPE_INT_ARGB);

//you don't have to use the Graphics object, you can read and set pixel color individually
for (int i = 0; i < 256; i++) {
 for (int j = 0; j < 256; j++) {
 int alpha = 255; //don't forget this, or use BufferedImage.TYPE_INT_RGB instead
 int red = i; //or any formula you like
 int green = j; //or any formula you like
 int blue = 50; //or any formula you like
 int color = (alpha << 24) | (red << 16) | (green << 8) | blue;
 image.setRGB(i, j, color);
 }
}

ImageIO.write(image, "png", new File("computed.png"));

Output:

How to scale a BufferedImage

 /**
 * Resizes an image using a Graphics2D object backed by a BufferedImage.

https://riptutorial.com/ 264

https://i.stack.imgur.com/dKd1I.png
https://i.stack.imgur.com/AogvX.png

 * @param srcImg - source image to scale
 * @param w - desired width
 * @param h - desired height
 * @return - the new resized image
 */
private BufferedImage getScaledImage(Image srcImg, int w, int h){

 //Create a new image with good size that contains or might contain arbitrary alpha values
between and including 0.0 and 1.0.
 BufferedImage resizedImg = new BufferedImage(w, h, BufferedImage.TRANSLUCENT);

 //Create a device-independant object to draw the resized image
 Graphics2D g2 = resizedImg.createGraphics();

 //This could be changed, Cf. http://stackoverflow.com/documentation/java/5482/creating-
images-programmatically/19498/specifying-image-rendering-quality
 g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
RenderingHints.VALUE_INTERPOLATION_BILINEAR);

 //Finally draw the source image in the Graphics2D with the desired size.
 g2.drawImage(srcImg, 0, 0, w, h, null);

 //Disposes of this graphics context and releases any system resources that it is using
 g2.dispose();

 //Return the image used to create the Graphics2D
 return resizedImg;
}

Read Creating Images Programmatically online: https://riptutorial.com/java/topic/5482/creating-
images-programmatically

https://riptutorial.com/ 265

https://riptutorial.com/java/topic/5482/creating-images-programmatically
https://riptutorial.com/java/topic/5482/creating-images-programmatically

Chapter 40: Currency and Money

Examples

Add custom currency

Required JARs on classpath:

javax.money:money-api:1.0 (JSR354 money and currency api)•
org.javamoney:moneta:1.0 (Reference implementation)•
javax:annotation-api:1.2. (Common annotations used by reference implementation)•

// Let's create non-ISO currency, such as bitcoin

// At first, this will throw UnknownCurrencyException
MonetaryAmount moneys = Money.of(new BigDecimal("0.1"), "BTC");

// This happens because bitcoin is unknown to default currency
// providers
System.out.println(Monetary.isCurrencyAvailable("BTC")); // false

// We will build new currency using CurrencyUnitBuilder provided by org.javamoney.moneta
CurrencyUnit bitcoin = CurrencyUnitBuilder
 .of("BTC", "BtcCurrencyProvider") // Set currency code and currency provider name
 .setDefaultFractionDigits(2) // Set default fraction digits
 .build(true); // Build new currency unit. Here 'true' means
 // currency unit is to be registered and
 // accessible within default monetary context

// Now BTC is available
System.out.println(Monetary.isCurrencyAvailable("BTC")); // True

Read Currency and Money online: https://riptutorial.com/java/topic/8359/currency-and-money

https://riptutorial.com/ 266

https://riptutorial.com/java/topic/8359/currency-and-money

Chapter 41: Date Class

Syntax

Date object = new Date();•
Date object = new Date(long date);•

Parameters

Parameter Explanation

No
parameter

Creates a new Date object using the allocation time (to the nearest
millisecond)

long date
Creates a new Date object with the time set to the number of milliseconds
since "the epoch" (January 1, 1970, 00:00:00 GMT)

Remarks

Representation

Internally, a Java Date object is represented as a long; it is the number of milliseconds since a
specific time (referred to as the epoch). The original Java Date class had methods for dealing with
time zones, etc., but these were deprecated in favor of the then-new Calendar class.

So if all you want to do in your code is represent a specific time, you can create a Date class and
store it, etc. If you want to print out a human-readable version of that date, however, you create a
Calendar class and use its formatting to produce hours, minutes, seconds, days, time zones, etc.
Keep in mind that a specific millisecond is displayed as different hours in different time zones;
normally you want to display one in the "local" time zone, but the formatting methods have to take
into account that you may want to display it for some other one.

Also be aware that the clocks used by JVMs do not usually have millisecond accuracy; the clock
might only "tick" every 10 milliseconds, and therefore, if timing things, you cannot rely on
measuring things accurately at that level.

Import Statement

import java.util.Date;

The Date class may be imported from java.util package.

Caution

Date instances are mutable, so using them can make it difficult to write thread-safe code or can

https://riptutorial.com/ 267

accidentally provide write access to internal state. For example, in the below class, the getDate()
method allows the caller to modify the transaction date:

public final class Transaction {
 private final Date date;

 public Date getTransactionDate() {
 return date;
 }
}

The solution is to either return a copy of the date field or use the new APIs in java.time introduced
in Java 8.

Most of the constructor methods in the Date class have been deprecated and should not be used.
In almost all cases, it is advisable to use Calendar class for date operations.

Java 8

Java 8 introduces new time and date API in the package java.time, including LocalDate and
LocalTime. The classes in the java.time package provide an overhauled API that is easier to use.
If you are writing to Java 8 it is strongly encouraged that you use this new API. See Dates and
Time (java.time.*) .

Examples

Creating Date objects

Date date = new Date();
System.out.println(date); // Thu Feb 25 05:03:59 IST 2016

Here this Date object contains the current date and time when this object was created.

Calendar calendar = Calendar.getInstance();
calendar.set(90, Calendar.DECEMBER, 11);
Date myBirthDate = calendar.getTime();
System.out.println(myBirthDate); // Mon Dec 31 00:00:00 IST 1990

Date objects are best created through a Calendar instance since the use of the data constructors is
deprecated and discouraged. To do se we need to get an instance of the Calendar class from the
factory method. Then we can set year, month and day of month by using numbers or in case of
months constants provided py the Calendar class to improve readability and reduce errors.

calendar.set(90, Calendar.DECEMBER, 11, 8, 32, 35);
Date myBirthDatenTime = calendar.getTime();
System.out.println(myBirthDatenTime); // Mon Dec 31 08:32:35 IST 1990

Along with date, we can also pass time in the order of hour, minutes and seconds.

https://riptutorial.com/ 268

http://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html
http://docs.oracle.com/javase/8/docs/api/java/time/LocalTime.html
http://www.riptutorial.com/java/topic/4813/dates-and-time--java-time---
http://www.riptutorial.com/java/topic/4813/dates-and-time--java-time---

Comparing Date objects

Calendar, Date, and LocalDate

Java SE 8

before, after, compareTo and equals methods

//Use of Calendar and Date objects
final Date today = new Date();
final Calendar calendar = Calendar.getInstance();
calendar.set(1990, Calendar.NOVEMBER, 1, 0, 0, 0);
Date birthdate = calendar.getTime();

final Calendar calendar2 = Calendar.getInstance();
calendar2.set(1990, Calendar.NOVEMBER, 1, 0, 0, 0);
Date samebirthdate = calendar2.getTime();

//Before example
System.out.printf("Is %1$tF before %2$tF? %3$b%n", today, birthdate,
Boolean.valueOf(today.before(birthdate)));
System.out.printf("Is %1$tF before %1$tF? %3$b%n", today, today,
Boolean.valueOf(today.before(today)));
System.out.printf("Is %2$tF before %1$tF? %3$b%n", today, birthdate,
Boolean.valueOf(birthdate.before(today)));

//After example
System.out.printf("Is %1$tF after %2$tF? %3$b%n", today, birthdate,
Boolean.valueOf(today.after(birthdate)));
System.out.printf("Is %1$tF after %1$tF? %3$b%n", today, birthdate,
Boolean.valueOf(today.after(today)));
System.out.printf("Is %2$tF after %1$tF? %3$b%n", today, birthdate,
Boolean.valueOf(birthdate.after(today)));

//Compare example
System.out.printf("Compare %1$tF to %2$tF: %3$d%n", today, birthdate,
Integer.valueOf(today.compareTo(birthdate)));
System.out.printf("Compare %1$tF to %1$tF: %3$d%n", today, birthdate,
Integer.valueOf(today.compareTo(today)));
System.out.printf("Compare %2$tF to %1$tF: %3$d%n", today, birthdate,
Integer.valueOf(birthdate.compareTo(today)));

//Equal example
System.out.printf("Is %1$tF equal to %2$tF? %3$b%n", today, birthdate,
Boolean.valueOf(today.equals(birthdate)));
System.out.printf("Is %1$tF equal to %2$tF? %3$b%n", birthdate, samebirthdate,
 Boolean.valueOf(birthdate.equals(samebirthdate)));
System.out.printf(
 "Because birthdate.getTime() -> %1$d is different from samebirthdate.getTime() ->
%2$d, there are millisecondes!%n",
 Long.valueOf(birthdate.getTime()), Long.valueOf(samebirthdate.getTime()));

//Clear ms from calendars
calendar.clear(Calendar.MILLISECOND);
calendar2.clear(Calendar.MILLISECOND);

https://riptutorial.com/ 269

birthdate = calendar.getTime();
samebirthdate = calendar2.getTime();

System.out.printf("Is %1$tF equal to %2$tF after clearing ms? %3$b%n", birthdate,
samebirthdate,
 Boolean.valueOf(birthdate.equals(samebirthdate)));

Java SE 8

isBefore, isAfter, compareTo and equals
methods

//Use of LocalDate
final LocalDate now = LocalDate.now();
final LocalDate birthdate2 = LocalDate.of(2012, 6, 30);
final LocalDate birthdate3 = LocalDate.of(2012, 6, 30);

//Hours, minutes, second and nanoOfsecond can also be configured with an other class
LocalDateTime
//LocalDateTime.of(year, month, dayOfMonth, hour, minute, second, nanoOfSecond);

//isBefore example
System.out.printf("Is %1$tF before %2$tF? %3$b%n", now, birthdate2,
Boolean.valueOf(now.isBefore(birthdate2)));
System.out.printf("Is %1$tF before %1$tF? %3$b%n", now, birthdate2,
Boolean.valueOf(now.isBefore(now)));
System.out.printf("Is %2$tF before %1$tF? %3$b%n", now, birthdate2,
Boolean.valueOf(birthdate2.isBefore(now)));

//isAfter example
System.out.printf("Is %1$tF after %2$tF? %3$b%n", now, birthdate2,
Boolean.valueOf(now.isAfter(birthdate2)));
System.out.printf("Is %1$tF after %1$tF? %3$b%n", now, birthdate2,
Boolean.valueOf(now.isAfter(now)));
System.out.printf("Is %2$tF after %1$tF? %3$b%n", now, birthdate2,
Boolean.valueOf(birthdate2.isAfter(now)));

//compareTo example
System.out.printf("Compare %1$tF to %2$tF %3$d%n", now, birthdate2,
Integer.valueOf(now.compareTo(birthdate2)));
System.out.printf("Compare %1$tF to %1$tF %3$d%n", now, birthdate2,
Integer.valueOf(now.compareTo(now)));
System.out.printf("Compare %2$tF to %1$tF %3$d%n", now, birthdate2,
Integer.valueOf(birthdate2.compareTo(now)));

//equals example
System.out.printf("Is %1$tF equal to %2$tF? %3$b%n", now, birthdate2,
Boolean.valueOf(now.equals(birthdate2)));
System.out.printf("Is %1$tF to %2$tF? %3$b%n", birthdate2, birthdate3,
Boolean.valueOf(birthdate2.equals(birthdate3)));

//isEqual example
System.out.printf("Is %1$tF equal to %2$tF? %3$b%n", now, birthdate2,
Boolean.valueOf(now.isEqual(birthdate2)));
System.out.printf("Is %1$tF to %2$tF? %3$b%n", birthdate2, birthdate3,
Boolean.valueOf(birthdate2.isEqual(birthdate3)));

https://riptutorial.com/ 270

Date comparison before Java 8

Before Java 8, dates could be compared using java.util.Calendar and java.util.Date classes. Date
class offers 4 methods to compare dates :

after(Date when)•
before(Date when)•
compareTo(Date anotherDate)•
equals(Object obj)•

after, before, compareTo and equals methods compare the values returned by getTime() method for
each date.

compareTo method returns positive integer.

Value greater than 0 : when the Date is after the Date argument•
Value greater than 0 : when the Date is before the Date argument•
Value equals to 0 : when the Date is equal to the Date argument•

equals results can be surprising as shown in the example because values, like milliseconds, are
not initialize with the same value if not explicitly given.

Since Java 8

With Java 8 a new Object to work with Date is available java.time.LocalDate. LocalDate implements
ChronoLocalDate, the abstract representation of a date where the Chronology, or calendar
system, is pluggable.

To have the date time precision the Object java.time.LocalDateTime has to be used. LocalDate and
LocalDateTime use the same methods name for comparing.

Comparing dates using a LocalDate is different from using ChronoLocalDate because the chronology,
or calendar system are not taken in account the first one.

Because most application should use LocalDate, ChronoLocalDate is not included in examples.
Further reading here.

Most applications should declare method signatures, fields and variables as LocalDate,
not this[ChronoLocalDate] interface.

LocalDate has 5 methods to compare dates :

isAfter(ChronoLocalDate other)•
isBefore(ChronoLocalDate other)•
isEqual(ChronoLocalDate other)•
compareTo(ChronoLocalDate other)•
equals(Object obj)•

https://riptutorial.com/ 271

https://docs.oracle.com/javase/7/docs/api/java/util/Calendar.html
https://docs.oracle.com/javase/7/docs/api/java/util/Date.html
https://docs.oracle.com/javase/7/docs/api/java/util/Date.html#after(java.util.Date)
https://docs.oracle.com/javase/7/docs/api/java/util/Date.html#before(java.util.Date)
https://docs.oracle.com/javase/7/docs/api/java/util/Date.html#compareTo(java.util.Date)
https://docs.oracle.com/javase/7/docs/api/java/util/Date.html#equals(java.lang.Object)
https://docs.oracle.com/javase/7/docs/api/java/util/Date.html#getTime()
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html
https://docs.oracle.com/javase/8/docs/api/java/time/chrono/ChronoLocalDate.html
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDateTime.html
https://docs.oracle.com/javase/8/docs/api/java/time/chrono/ChronoLocalDate.html
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html#isAfter-java.time.chrono.ChronoLocalDate-
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html#isBefore-java.time.chrono.ChronoLocalDate-
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html#isEqual-java.time.chrono.ChronoLocalDate-
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html#compareTo-java.time.chrono.ChronoLocalDate-
https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html#equals-java.lang.Object-

In case of LocalDate parameter, isAfter, isBefore, isEqual, equals and compareTo now use this
method:

int compareTo0(LocalDate otherDate) {
 int cmp = (year - otherDate.year);
 if (cmp == 0) {
 cmp = (month - otherDate.month);
 if (cmp == 0) {
 cmp = (day - otherDate.day);
 }
 }
 return cmp;
}

equals method check if the parameter reference equals the date first whereas isEqual directly calls
compareTo0.

In case of an other class instance of ChronoLocalDate the dates are compared using the Epoch Day.
The Epoch Day count is a simple incrementing count of days where day 0 is 1970-01-01 (ISO).

Converting Date to a certain String format

format() from SimpleDateFormat class helps to convert a Date object into certain format String object
by using the supplied pattern string.

Date today = new Date();

SimpleDateFormat dateFormat = new SimpleDateFormat("dd-MMM-yy"); //pattern is specified here
System.out.println(dateFormat.format(today)); //25-Feb-16

Patterns can be applied again by using applyPattern()

dateFormat.applyPattern("dd-MM-yyyy");
System.out.println(dateFormat.format(today)); //25-02-2016

dateFormat.applyPattern("dd-MM-yyyy HH:mm:ss E");
System.out.println(dateFormat.format(today)); //25-02-2016 06:14:33 Thu

Note: Here mm (small letter m) denotes minutes and MM (capital M) denotes month. Pay careful
attention when formatting years: capital "Y" (Y) indicates the "week in the year" while lower-case
"y" (y) indicates the year.

Converting String into Date

parse() from SimpleDateFormat class helps to convert a String pattern into a Date object.

DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);
String dateStr = "02/25/2016"; // input String
Date date = dateFormat.parse(dateStr);
System.out.println(date.getYear()); // 116

https://riptutorial.com/ 272

There are 4 different styles for the text format, SHORT, MEDIUM (this is the default), LONG and FULL, all of
which depend on the locale. If no locale is specified, the system default locale is used.

Style Locale.US Locale.France

SHORT 6/30/09 30/06/09

MEDIUM Jun 30, 2009 30 juin 2009

LONG June 30, 2009 30 juin 2009

FULL Tuesday, June 30, 2009 mardi 30 juin 2009

A basic date output

Using the following code with the format string yyyy/MM/dd hh:mm.ss, we will receive the following
output

2016/04/19 11:45.36

// define the format to use
String formatString = "yyyy/MM/dd hh:mm.ss";

// get a current date object
Date date = Calendar.getInstance().getTime();

// create the formatter
SimpleDateFormat simpleDateFormat = new SimpleDateFormat(formatString);

// format the date
String formattedDate = simpleDateFormat.format(date);

// print it
System.out.println(formattedDate);

// single-line version of all above code
System.out.println(new SimpleDateFormat("yyyy/MM/dd
hh:mm.ss").format(Calendar.getInstance().getTime()));

Convert formatted string representation of date to Date object

This method can be used to convert a formatted string representation of a date into a Date object.

 /**
 * Parses the date using the given format.
 *
 * @param formattedDate the formatted date string
 * @param dateFormat the date format which was used to create the string.
 * @return the date
 */
 public static Date parseDate(String formattedDate, String dateFormat) {
 Date date = null;

https://riptutorial.com/ 273

 SimpleDateFormat objDf = new SimpleDateFormat(dateFormat);
 try {
 date = objDf.parse(formattedDate);
 } catch (ParseException e) {
 // Do what ever needs to be done with exception.
 }
 return date;
 }

Creating a Specific Date

While the Java Date class has several constructors, you'll notice that most are deprecated. The
only acceptable way of creating a Date instance directly is either by using the empty constructor or
passing in a long (number of milliseconds since standard base time). Neither are handy unless
you're looking for the current date or have another Date instance already in hand.

To create a new date, you will need a Calendar instance. From there you can set the Calendar
instance to the date that you need.

Calendar c = Calendar.getInstance();

This returns a new Calendar instance set to the current time. Calendar has many methods for
mutating it's date and time or setting it outright. In this case, we'll set it to a specific date.

c.set(1974, 6, 2, 8, 0, 0);
Date d = c.getTime();

The getTime method returns the Date instance that we need. Keep in mind that the Calendar set
methods only set one or more fields, they do not set them all. That is, if you set the year, the other
fields remain unchanged.

PITFALL

In many cases, this code snippet fulfills its purpose, but keep in mind that two important parts of
the date/time are not defined.

the (1974, 6, 2, 8, 0, 0) parameters are interpreted within the default timezone, defined
somewhere else,

•

the milliseconds are not set to zero, but filled from the system clock at the time the Calendar
instance is created.

•

Java 8 LocalDate and LocalDateTime objects

Date and LocalDate objects cannot be exactly converted between each other since a Date object
represents both a specific day and time, while a LocalDate object does not contain time or
timezone information. However, it can be useful to convert between the two if you only care about
the actual date information and not the time information.

Creates a LocalDate

https://riptutorial.com/ 274

// Create a default date
LocalDate lDate = LocalDate.now();

// Creates a date from values
lDate = LocalDate.of(2017, 12, 15);

// create a date from string
lDate = LocalDate.parse("2017-12-15");

// creates a date from zone
LocalDate.now(ZoneId.systemDefault());

Creates a LocalDateTime

// Create a default date time
LocalDateTime lDateTime = LocalDateTime.now();

// Creates a date time from values
lDateTime = LocalDateTime.of(2017, 12, 15, 11, 30);

// create a date time from string
lDateTime = LocalDateTime.parse("2017-12-05T11:30:30");

// create a date time from zone
LocalDateTime.now(ZoneId.systemDefault());

LocalDate to Date and vice-versa

Date date = Date.from(Instant.now());
ZoneId defaultZoneId = ZoneId.systemDefault();

// Date to LocalDate
LocalDate localDate = date.toInstant().atZone(defaultZoneId).toLocalDate();

// LocalDate to Date
Date.from(localDate.atStartOfDay(defaultZoneId).toInstant());

LocalDateTime to Date and vice-versa

Date date = Date.from(Instant.now());
ZoneId defaultZoneId = ZoneId.systemDefault();

// Date to LocalDateTime
LocalDateTime localDateTime = date.toInstant().atZone(defaultZoneId).toLocalDateTime();

// LocalDateTime to Date
Date out = Date.from(localDateTime.atZone(defaultZoneId).toInstant());

Time Zones and java.util.Date

A java.util.Date object does not have a concept of time zone.

There is no way to set a timezone for a Date•
There is no way to change the timezone of a Date object•
A Date object created with the new Date() default constructor will be initialised with the •

https://riptutorial.com/ 275

current time in the system default timezone

However, it is possible to display the date represented by the point in time described by the Date
object in a different time zone using e.g. java.text.SimpleDateFormat:

Date date = new Date();
//print default time zone
System.out.println(TimeZone.getDefault().getDisplayName());
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); //note: time zone not in
format!
//print date in the original time zone
System.out.println(sdf.format(date));
//current time in London
sdf.setTimeZone(TimeZone.getTimeZone("Europe/London"));
System.out.println(sdf.format(date));

Output:

Central European Time
2016-07-21 22:50:56
2016-07-21 21:50:56

Convert java.util.Date to java.sql.Date

java.util.Date to java.sql.Date conversion is usually necessary when a Date object needs to be
written in a database.

java.sql.Date is a wrapper around millisecond value and is used by JDBC to identify an SQL DATE
type

In the below example, we use the java.util.Date() constructor, that creates a Date object and
initializes it to represent time to the nearest millisecond. This date is used in the
convert(java.util.Date utilDate) method to return a java.sql.Date object

Example

public class UtilToSqlConversion {

 public static void main(String args[])
 {
 java.util.Date utilDate = new java.util.Date();
 System.out.println("java.util.Date is : " + utilDate);
 java.sql.Date sqlDate = convert(utilDate);
 System.out.println("java.sql.Date is : " + sqlDate);
 DateFormat df = new SimpleDateFormat("dd/MM/YYYY - hh:mm:ss");
 System.out.println("dateFormated date is : " + df.format(utilDate));
 }

 private static java.sql.Date convert(java.util.Date uDate) {
 java.sql.Date sDate = new java.sql.Date(uDate.getTime());
 return sDate;
 }

}

https://riptutorial.com/ 276

Output

java.util.Date is : Fri Jul 22 14:40:35 IST 2016
java.sql.Date is : 2016-07-22
dateFormated date is : 22/07/2016 - 02:40:35

java.util.Date has both date and time information, whereas java.sql.Date only has date
information

LocalTime

To use just the time part of a Date use LocalTime. You can instantiate a LocalTime object in a
couple ways

LocalTime time = LocalTime.now();1.
time = LocalTime.MIDNIGHT;2.
time = LocalTime.NOON;3.
time = LocalTime.of(12, 12, 45);4.

LocalTime also has a built in toString method that displays the format very nicely.

System.out.println(time);

you can also get, add and subtract hours, minutes, seconds, and nanoseconds from the
LocalTime object i.e.

time.plusMinutes(1);
time.getMinutes();
time.minusMinutes(1);

You can turn it into a Date object with the following code:

LocalTime lTime = LocalTime.now();
Instant instant = lTime.atDate(LocalDate.of(A_YEAR, A_MONTH, A_DAY)).
 atZone(ZoneId.systemDefault()).toInstant();
Date time = Date.from(instant);

this class works very nicely within a timer class to simulate an alarm clock.

Read Date Class online: https://riptutorial.com/java/topic/164/date-class

https://riptutorial.com/ 277

https://riptutorial.com/java/topic/164/date-class

Chapter 42: Dates and Time (java.time.*)

Examples

Simple Date Manipulations

Get the current date.

LocalDate.now()

Get yesterday's date.

LocalDate y = LocalDate.now().minusDays(1);

Get tomorrow's date

LocalDate t = LocalDate.now().plusDays(1);

Get a specific date.

LocalDate t = LocalDate.of(1974, 6, 2, 8, 30, 0, 0);

In addition to the plus and minus methods, there are a set of "with" methods that can be used to set
a particular field on a LocalDate instance.

LocalDate.now().withMonth(6);

The example above returns a new instance with the month set to June (this differs from
java.util.Date where setMonth was indexed a 0 making June 5).

Because LocalDate manipulations return immutable LocalDate instances, these methods may also
be chained together.

LocalDate ld = LocalDate.now().plusDays(1).plusYears(1);

This would give us tomorrow's date one year from now.

Date and time

Date and time without time zone information

LocalDateTime dateTime = LocalDateTime.of(2016, Month.JULY, 27, 8, 0);
LocalDateTime now = LocalDateTime.now();
LocalDateTime parsed = LocalDateTime.parse("2016-07-27T07:00:00");

https://riptutorial.com/ 278

Date and time with time zone information

ZoneId zoneId = ZoneId.of("UTC+2");
ZonedDateTime dateTime = ZonedDateTime.of(2016, Month.JULY, 27, 7, 0, 0, 235, zoneId);
ZonedDateTime composition = ZonedDateTime.of(localDate, localTime, zoneId);
ZonedDateTime now = ZonedDateTime.now(); // Default time zone
ZonedDateTime parsed = ZonedDateTime.parse("2016-07-27T07:00:00+01:00[Europe/Stockholm]");

Date and time with offset information (i.e. no DST changes taken into account)

ZoneOffset zoneOffset = ZoneOffset.ofHours(2);
OffsetDateTime dateTime = OffsetDateTime.of(2016, 7, 27, 7, 0, 0, 235, zoneOffset);
OffsetDateTime composition = OffsetDateTime.of(localDate, localTime, zoneOffset);
OffsetDateTime now = OffsetDateTime.now(); // Offset taken from the default ZoneId
OffsetDateTime parsed = OffsetDateTime.parse("2016-07-27T07:00:00+02:00");

Operations on dates and times

LocalDate tomorrow = LocalDate.now().plusDays(1);
LocalDateTime anHourFromNow = LocalDateTime.now().plusHours(1);
Long daysBetween = java.time.temporal.ChronoUnit.DAYS.between(LocalDate.now(),
LocalDate.now().plusDays(3)); // 3
Duration duration = Duration.between(Instant.now(), ZonedDateTime.parse("2016-07-
27T07:00:00+01:00[Europe/Stockholm]"))

Instant

Represents an instant in time. Can be thought of as a wrapper around a Unix timestamp.

Instant now = Instant.now();
Instant epoch1 = Instant.ofEpochMilli(0);
Instant epoch2 = Instant.parse("1970-01-01T00:00:00Z");
java.time.temporal.ChronoUnit.MICROS.between(epoch1, epoch2); // 0

Usage of various classes of Date Time API

Following example also have explanation required for understanding example within it.

import java.time.Clock;
import java.time.Duration;
import java.time.Instant;
import java.time.LocalDate;
import java.time.LocalDateTime;
import java.time.LocalTime;
import java.time.ZoneId;
import java.time.ZonedDateTime;
import java.util.TimeZone;
public class SomeMethodsExamples {

/**
 * Has the methods of the class {@link LocalDateTime}
 */
public static void checkLocalDateTime() {

https://riptutorial.com/ 279

 LocalDateTime localDateTime = LocalDateTime.now();
 System.out.println("Local Date time using static now() method ::: >>> "
 + localDateTime);

 LocalDateTime ldt1 = LocalDateTime.now(ZoneId.of(ZoneId.SHORT_IDS
 .get("AET")));
 System.out
 .println("LOCAL TIME USING now(ZoneId zoneId) method ::: >>>>"
 + ldt1);

 LocalDateTime ldt2 = LocalDateTime.now(Clock.system(ZoneId
 .of(ZoneId.SHORT_IDS.get("PST"))));
 System.out
 .println("Local TIME USING now(Clock.system(ZoneId.of())) ::: >>>> "
 + ldt2);

 System.out
 .println("Following is a static map in ZoneId class which has mapping of short
timezone names to their Actual timezone names");
 System.out.println(ZoneId.SHORT_IDS);

}

/**
 * This has the methods of the class {@link LocalDate}
 */
public static void checkLocalDate() {
 LocalDate localDate = LocalDate.now();
 System.out.println("Gives date without Time using now() method. >> "
 + localDate);
 LocalDate localDate2 = LocalDate.now(ZoneId.of(ZoneId.SHORT_IDS
 .get("ECT")));
 System.out
 .println("now() is overridden to take ZoneID as parametere using this we can get
the same date under different timezones. >> "
 + localDate2);
}

/**
 * This has the methods of abstract class {@link Clock}. Clock can be used
 * for time which has time with {@link TimeZone}.
 */
public static void checkClock() {
 Clock clock = Clock.systemUTC();
 // Represents time according to ISO 8601
 System.out.println("Time using Clock class : " + clock.instant());
}

/**
 * This has the {@link Instant} class methods.
 */
public static void checkInstant() {
 Instant instant = Instant.now();

 System.out.println("Instant using now() method :: " + instant);

 Instant ins1 = Instant.now(Clock.systemUTC());

 System.out.println("Instants using now(Clock clock) :: " + ins1);

}

https://riptutorial.com/ 280

/**
 * This class checks the methods of the {@link Duration} class.
 */
public static void checkDuration() {
 // toString() converts the duration to PTnHnMnS format according to ISO
 // 8601 standard. If a field is zero its ignored.

 // P is the duration designator (historically called "period") placed at
 // the start of the duration representation.
 // Y is the year designator that follows the value for the number of
 // years.
 // M is the month designator that follows the value for the number of
 // months.
 // W is the week designator that follows the value for the number of
 // weeks.
 // D is the day designator that follows the value for the number of
 // days.
 // T is the time designator that precedes the time components of the
 // representation.
 // H is the hour designator that follows the value for the number of
 // hours.
 // M is the minute designator that follows the value for the number of
 // minutes.
 // S is the second designator that follows the value for the number of
 // seconds.

 System.out.println(Duration.ofDays(2));
}

/**
 * Shows Local time without date. It doesn't store or represenet a date and
 * time. Instead its a representation of Time like clock on the wall.
 */
public static void checkLocalTime() {
 LocalTime localTime = LocalTime.now();
 System.out.println("LocalTime :: " + localTime);
}

/**
 * A date time with Time zone details in ISO-8601 standards.
 */
public static void checkZonedDateTime() {
 ZonedDateTime zonedDateTime = ZonedDateTime.now(ZoneId
 .of(ZoneId.SHORT_IDS.get("CST")));
 System.out.println(zonedDateTime);

}
}

Date Time Formatting

Before Java 8, there was DateFormat and SimpleDateFormat classes in the package java.text and
this legacy code will be continued to be used for sometime.

But, Java 8 offers a modern approach to handling Formatting and Parsing.

In formatting and parsing first you pass a String object to DateTimeFormatter, and in turn use it for

https://riptutorial.com/ 281

formatting or parsing.

import java.time.*;
import java.time.format.*;

class DateTimeFormat
{
 public static void main(String[] args) {

 //Parsing
 String pattern = "d-MM-yyyy HH:mm";
 DateTimeFormatter dtF1 = DateTimeFormatter.ofPattern(pattern);

 LocalDateTime ldp1 = LocalDateTime.parse("2014-03-25T01:30"), //Default format
 ldp2 = LocalDateTime.parse("15-05-2016 13:55",dtF1); //Custom format

 System.out.println(ldp1 + "\n" + ldp2); //Will be printed in Default format

 //Formatting
 DateTimeFormatter dtF2 = DateTimeFormatter.ofPattern("EEE d, MMMM, yyyy HH:mm");

 DateTimeFormatter dtF3 = DateTimeFormatter.ISO_LOCAL_DATE_TIME;

 LocalDateTime ldtf1 = LocalDateTime.now();

 System.out.println(ldtf1.format(dtF2) +"\n"+ldtf1.format(dtF3));
 }
}

An important notice, instead of using Custom patterns, it is good practice to use predefined
formatters. Your code look more clear and usage of ISO8061 will definitely help you in the long
run.

Calculate Difference between 2 LocalDates

Use LocalDate and ChronoUnit:

LocalDate d1 = LocalDate.of(2017, 5, 1);
LocalDate d2 = LocalDate.of(2017, 5, 18);

now, since the method between of the ChronoUnit enumerator takes 2 Temporals as parameters so
you can pass without a problem the LocalDate instances

long days = ChronoUnit.DAYS.between(d1, d2);
System.out.println(days);

Read Dates and Time (java.time.*) online: https://riptutorial.com/java/topic/4813/dates-and-time--
java-time---

https://riptutorial.com/ 282

https://riptutorial.com/java/topic/4813/dates-and-time--java-time---
https://riptutorial.com/java/topic/4813/dates-and-time--java-time---

Chapter 43: Default Methods

Introduction

Default Method introduced in Java 8, allows developers to add new methods to an interface
without breaking the existing implementations of this interface. It provides flexibility to allow the
interface to define an implementation which will be used as default when a class which
implements that interface fails to provide an implementation of that method.

Syntax

public default void methodName() {/* method body */}•

Remarks

Default methods

Can be used within an interface, to introduce a behaviour without forcing existing subclasses
to implement it.

•

Can be overridden by subclasses or by a sub-interface.•
Are not allowed to override methods in java.lang.Object class.•
If a class implementing more than one interface, inherits default methods with identical
method signatures from each of the intefaces, then it must override and provide its own
interface as if they were not default methods (as part of resolving multiple inheritance).

•

Although are intended to introduce a behaviour without breaking existing implementations,
existing subclasses with a static method with same method signature as the newly
introduced default method will still be broken. However this is true even in case of
introducing an instance method in a superclass.

•

Static methods

Can be used within an interface, primarily intended to be used as a utility method for default
methods.

•

Cannot be overridden by subclasses or by a sub-interface (is hidden to them). However as is
the case with static methods even now, each class or interface can have its own.

•

Are not allowed to override instance methods in java.lang.Object class (as is presently the
case for subclasses as well).

•

https://riptutorial.com/ 283

Below is a table summarizing the interaction between sub-class and super-class.

-
SUPER_CLASS-INSTANCE-
METHOD

SUPER_CLASS-STATIC-
METHOD

SUB_CLASS-INSTANCE-
METHOD

overrides generates-compiletime-error

SUB_CLASS-STATIC-
METHOD

generates-compiletime-error hides

Below is a table summarizing the interaction between interface and implementing-class.

-
INTERFACE-DEFAULT-
METHOD

INTERFACE-STATIC-
METHOD

IMPL_CLASS-INSTANCE-
METHOD

overrides hides

IMPL_CLASS-STATIC-
METHOD

generates-compiletime-error hides

References :

http://www.journaldev.com/2752/java-8-interface-changes-static-method-default-method•
https://docs.oracle.com/javase/tutorial/java/IandI/override.html•

Examples

Basic usage of default methods

/**
 * Interface with default method
 */
public interface Printable {
 default void printString() {
 System.out.println("default implementation");
 }
}

/**
 * Class which falls back to default implementation of {@link #printString()}
 */
public class WithDefault
 implements Printable
{

https://riptutorial.com/ 284

}

/**
 * Custom implementation of {@link #printString()}
 */
public class OverrideDefault
 implements Printable {
 @Override
 public void printString() {
 System.out.println("overridden implementation");
 }
}

The following statements

 new WithDefault().printString();
 new OverrideDefault().printString();

Will produce this output:

default implementation
overridden implementation

Accessing other interface methods within default method

You can as well access other interface methods from within your default method.

public interface Summable {
 int getA();

 int getB();

 default int calculateSum() {
 return getA() + getB();
 }
}

public class Sum implements Summable {
 @Override
 public int getA() {
 return 1;
 }

 @Override
 public int getB() {
 return 2;
 }
}

The following statement will print 3:

System.out.println(new Sum().calculateSum());

Default methods could be used along with interface static methods as well:

https://riptutorial.com/ 285

public interface Summable {
 static int getA() {
 return 1;
 }

 static int getB() {
 return 2;
 }

 default int calculateSum() {
 return getA() + getB();
 }
}

public class Sum implements Summable {}

The following statement will also print 3:

System.out.println(new Sum().calculateSum());

Accessing overridden default methods from implementing class

In classes, super.foo() will look in superclasses only. If you want to call a default implementation
from a superinterface, you need to qualify super with the interface name: Fooable.super.foo().

public interface Fooable {
 default int foo() {return 3;}
}

public class A extends Object implements Fooable {
 @Override
 public int foo() {
 //return super.foo() + 1; //error: no method foo() in java.lang.Object
 return Fooable.super.foo() + 1; //okay, returns 4
 }
}

Why use Default Methods?

The simple answer is that it allows you to evolve an existing interface without breaking existing
implementations.

For example, you have Swim interface that you published 20 years ago.

public interface Swim {
 void backStroke();
}

We did a great job, our interface is very popular, there are many implementation on that around
the world and you don't have control over their source code.

public class FooSwimmer implements Swim {
 public void backStroke() {

https://riptutorial.com/ 286

 System.out.println("Do backstroke");
 }
}

After 20 years, you've decided to add new functionality to the interface, but it looks like our
interface is frozen because it will break existing implementations.

Luckily Java 8 introduces brand new feature called Default method.

We can now add new method to the Swim interface.

public interface Swim {
 void backStroke();
 default void sideStroke() {
 System.out.println("Default sidestroke implementation. Can be overridden");
 }
}

Now all existing implementations of our interface can still work. But most importantly they can
implement the newly added method in their own time.

One of the biggest reasons for this change, and one of its biggest uses, is in the Java Collections
framework. Oracle could not add a foreach method to the existing Iterable interface without
breaking all existing code which implemented Iterable. By adding default methods, existing
Iterable implementation will inherit the default implementation.

Class, Abstract class and Interface method precedence

Implementations in classes, including abstract declarations, take precedence over all interface
defaults.

Abstract class method takes precedence over Interface Default Method.•

public interface Swim {
 default void backStroke() {
 System.out.println("Swim.backStroke");
 }
}

public abstract class AbstractSwimmer implements Swim {
 public void backStroke() {
 System.out.println("AbstractSwimmer.backStroke");
 }
}

public class FooSwimmer extends AbstractSwimmer {
}

The following statement

new FooSwimmer().backStroke();

https://riptutorial.com/ 287

https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

Will produce

AbstractSwimmer.backStroke

Class method takes precedence over Interface Default Method•

public interface Swim {
 default void backStroke() {
 System.out.println("Swim.backStroke");
 }
}

public abstract class AbstractSwimmer implements Swim {
}

public class FooSwimmer extends AbstractSwimmer {
 public void backStroke() {
 System.out.println("FooSwimmer.backStroke");
 }
}

The following statement

new FooSwimmer().backStroke();

Will produce

FooSwimmer.backStroke

Default method multiple inheritance collision

Consider next example:

public interface A {
 default void foo() { System.out.println("A.foo"); }
}

public interface B {
 default void foo() { System.out.println("B.foo"); }
}

Here are two interfaces declaring default method foo with the same signature.

If you will try to extend these both interfaces in the new interface you have to make choice of two,
because Java forces you to resolve this collision explicitly.

First, you can declare method foo with the same signature as abstract, which will override A and B
behaviour.

public interface ABExtendsAbstract extends A, B {
 @Override

https://riptutorial.com/ 288

https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

 void foo();
}

And when you will implement ABExtendsAbstract in the class you will have to provide foo
implementation:

public class ABExtendsAbstractImpl implements ABExtendsAbstract {
 @Override
 public void foo() { System.out.println("ABImpl.foo"); }
}

Or second, you can provide a completely new default implementation. You also may reuse code
of A and B foo methods by Accessing overridden default methods from implementing class.

public interface ABExtends extends A, B {
 @Override
 default void foo() { System.out.println("ABExtends.foo"); }
}

And when you will implement ABExtends in the class you will not have to provide foo implementation:

public class ABExtendsImpl implements ABExtends {}

Read Default Methods online: https://riptutorial.com/java/topic/113/default-methods

https://riptutorial.com/ 289

http://www.riptutorial.com/java/example/2442/accessing-overridden-default-methods-from-implementing-class
https://riptutorial.com/java/topic/113/default-methods

Chapter 44: Dequeue Interface

Introduction

A Deque is linear collection that supports element insertion and removal at both ends.

The name deque is short for "double ended queue" and is usually pronounced "deck".

Most Deque implementations place no fixed limits on the number of elements they may contain,
but this interface supports capacity-restricted deques as well as those with no fixed size limit.

The Deque interface is a richer abstract data type than both Stack and Queue because it
implements both stacks and queues at same time

Remarks

Generics can be used with Deque.

Deque<Object> deque = new LinkedList<Object>();

When a deque is used as a queue, FIFO (First-In-First-Out) behavior results.

Deques can also be used as LIFO (Last-In-First-Out) stacks.

For more information about methods, go through this Documentation.

Examples

Adding Elements to Deque

Deque deque = new LinkedList();

//Adding element at tail
deque.add("Item1");

//Adding element at head
deque.addFirst("Item2");

//Adding element at tail
deque.addLast("Item3");

Removing Elements from Deque

//Retrieves and removes the head of the queue represented by this deque
Object headItem = deque.remove();

//Retrieves and removes the first element of this deque.

https://riptutorial.com/ 290

https://docs.oracle.com/javase/7/docs/api/java/util/Deque.html

Object firstItem = deque.removeFirst();

//Retrieves and removes the last element of this deque.
Object lastItem = deque.removeLast();

Retrieving Element without Removing

//Retrieves, but does not remove, the head of the queue represented by this deque
Object headItem = deque.element();

//Retrieves, but does not remove, the first element of this deque.
Object firstItem = deque.getFirst();

//Retrieves, but does not remove, the last element of this deque.
Object lastItem = deque.getLast();

Iterating through Deque

//Using Iterator
Iterator iterator = deque.iterator();
while(iterator.hasNext(){
 String Item = (String) iterator.next();
}

//Using For Loop
for(Object object : deque) {
 String Item = (String) object;
}

Read Dequeue Interface online: https://riptutorial.com/java/topic/10156/dequeue-interface

https://riptutorial.com/ 291

https://riptutorial.com/java/topic/10156/dequeue-interface

Chapter 45: Disassembling and Decompiling

Syntax

javap [options] <classes>•

Parameters

Name Description

<classes>
List of classes to disassemble. Can be in either
package1.package2.Classname format, or package1/package2/Classname format.
Do not include the .class extension.

-help, --help, -? Print this usage message

-version Version information

-v, -verbose Print additional information

-l Print line number and local variable tables

-public Show only public classes and members

-protected Show protected/public classes and members

-package Show package/protected/public classes and members (default)

-p, -private Show all classes and members

-c Disassemble the code

-s Print internal type signatures

-sysinfo Show system info (path, size, date, MD5 hash) of class being processed

-constants Show final constants

-classpath
<path> Specify where to find user class files

-cp <path> Specify where to find user class files

-bootclasspath
<path> Override location of bootstrap class files

Examples

https://riptutorial.com/ 292

Viewing bytecode with javap

If you want to see the generated bytecode for a Java program, you can use the provided javap
command to view it.

Assuming that we have the following Java source file:

package com.stackoverflow.documentation;

import org.springframework.stereotype.Service;

import java.io.IOException;
import java.io.InputStream;
import java.util.List;

@Service
public class HelloWorldService {

 public void sayHello() {
 System.out.println("Hello, World!");
 }

 private Object[] pvtMethod(List<String> strings) {
 return new Object[]{strings};
 }

 protected String tryCatchResources(String filename) throws IOException {
 try (InputStream inputStream = getClass().getResourceAsStream(filename)) {
 byte[] bytes = new byte[8192];
 int read = inputStream.read(bytes);
 return new String(bytes, 0, read);
 } catch (IOException | RuntimeException e) {
 e.printStackTrace();
 throw e;
 }
 }

 void stuff() {
 System.out.println("stuff");
 }
}

After compiling the source file, the most simple usage is:

cd <directory containing classes> (e.g. target/classes)
javap com/stackoverflow/documentation/SpringExample

Which produces the output

Compiled from "HelloWorldService.java"
public class com.stackoverflow.documentation.HelloWorldService {
 public com.stackoverflow.documentation.HelloWorldService();
 public void sayHello();
 protected java.lang.String tryCatchResources(java.lang.String) throws java.io.IOException;
 void stuff();
}

https://riptutorial.com/ 293

This lists all non-private methods in the class, but that is not particularly useful for most purposes.
The following command is a lot more useful:

javap -p -c -s -constants -l -v com/stackoverflow/documentation/HelloWorldService

Which produces the output:

Classfile /Users/pivotal/IdeaProjects/stackoverflow-spring-
docs/target/classes/com/stackoverflow/documentation/HelloWorldService.class
 Last modified Jul 22, 2016; size 2167 bytes
 MD5 checksum 6e33b5c292ead21701906353b7f06330
 Compiled from "HelloWorldService.java"
public class com.stackoverflow.documentation.HelloWorldService
 minor version: 0
 major version: 51
 flags: ACC_PUBLIC, ACC_SUPER
Constant pool:
 #1 = Methodref #5.#60 // java/lang/Object."<init>":()V
 #2 = Fieldref #61.#62 // java/lang/System.out:Ljava/io/PrintStream;
 #3 = String #63 // Hello, World!
 #4 = Methodref #64.#65 // java/io/PrintStream.println:(Ljava/lang/String;)V
 #5 = Class #66 // java/lang/Object
 #6 = Methodref #5.#67 // java/lang/Object.getClass:()Ljava/lang/Class;
 #7 = Methodref #68.#69 //
java/lang/Class.getResourceAsStream:(Ljava/lang/String;)Ljava/io/InputStream;
 #8 = Methodref #70.#71 // java/io/InputStream.read:([B)I
 #9 = Class #72 // java/lang/String
 #10 = Methodref #9.#73 // java/lang/String."<init>":([BII)V
 #11 = Methodref #70.#74 // java/io/InputStream.close:()V
 #12 = Class #75 // java/lang/Throwable
 #13 = Methodref #12.#76 //
java/lang/Throwable.addSuppressed:(Ljava/lang/Throwable;)V
 #14 = Class #77 // java/io/IOException
 #15 = Class #78 // java/lang/RuntimeException
 #16 = Methodref #79.#80 // java/lang/Exception.printStackTrace:()V
 #17 = String #55 // stuff
 #18 = Class #81 // com/stackoverflow/documentation/HelloWorldService
 #19 = Utf8 <init>
 #20 = Utf8 ()V
 #21 = Utf8 Code
 #22 = Utf8 LineNumberTable
 #23 = Utf8 LocalVariableTable
 #24 = Utf8 this
 #25 = Utf8 Lcom/stackoverflow/documentation/HelloWorldService;
 #26 = Utf8 sayHello
 #27 = Utf8 pvtMethod
 #28 = Utf8 (Ljava/util/List;)[Ljava/lang/Object;
 #29 = Utf8 strings
 #30 = Utf8 Ljava/util/List;
 #31 = Utf8 LocalVariableTypeTable
 #32 = Utf8 Ljava/util/List<Ljava/lang/String;>;
 #33 = Utf8 Signature
 #34 = Utf8 (Ljava/util/List<Ljava/lang/String;>;)[Ljava/lang/Object;
 #35 = Utf8 tryCatchResources
 #36 = Utf8 (Ljava/lang/String;)Ljava/lang/String;
 #37 = Utf8 bytes
 #38 = Utf8 [B
 #39 = Utf8 read
 #40 = Utf8 I

https://riptutorial.com/ 294

 #41 = Utf8 inputStream
 #42 = Utf8 Ljava/io/InputStream;
 #43 = Utf8 e
 #44 = Utf8 Ljava/lang/Exception;
 #45 = Utf8 filename
 #46 = Utf8 Ljava/lang/String;
 #47 = Utf8 StackMapTable
 #48 = Class #81 // com/stackoverflow/documentation/HelloWorldService
 #49 = Class #72 // java/lang/String
 #50 = Class #82 // java/io/InputStream
 #51 = Class #75 // java/lang/Throwable
 #52 = Class #38 // "[B"
 #53 = Class #83 // java/lang/Exception
 #54 = Utf8 Exceptions
 #55 = Utf8 stuff
 #56 = Utf8 SourceFile
 #57 = Utf8 HelloWorldService.java
 #58 = Utf8 RuntimeVisibleAnnotations
 #59 = Utf8 Lorg/springframework/stereotype/Service;
 #60 = NameAndType #19:#20 // "<init>":()V
 #61 = Class #84 // java/lang/System
 #62 = NameAndType #85:#86 // out:Ljava/io/PrintStream;
 #63 = Utf8 Hello, World!
 #64 = Class #87 // java/io/PrintStream
 #65 = NameAndType #88:#89 // println:(Ljava/lang/String;)V
 #66 = Utf8 java/lang/Object
 #67 = NameAndType #90:#91 // getClass:()Ljava/lang/Class;
 #68 = Class #92 // java/lang/Class
 #69 = NameAndType #93:#94 //
getResourceAsStream:(Ljava/lang/String;)Ljava/io/InputStream;
 #70 = Class #82 // java/io/InputStream
 #71 = NameAndType #39:#95 // read:([B)I
 #72 = Utf8 java/lang/String
 #73 = NameAndType #19:#96 // "<init>":([BII)V
 #74 = NameAndType #97:#20 // close:()V
 #75 = Utf8 java/lang/Throwable
 #76 = NameAndType #98:#99 // addSuppressed:(Ljava/lang/Throwable;)V
 #77 = Utf8 java/io/IOException
 #78 = Utf8 java/lang/RuntimeException
 #79 = Class #83 // java/lang/Exception
 #80 = NameAndType #100:#20 // printStackTrace:()V
 #81 = Utf8 com/stackoverflow/documentation/HelloWorldService
 #82 = Utf8 java/io/InputStream
 #83 = Utf8 java/lang/Exception
 #84 = Utf8 java/lang/System
 #85 = Utf8 out
 #86 = Utf8 Ljava/io/PrintStream;
 #87 = Utf8 java/io/PrintStream
 #88 = Utf8 println
 #89 = Utf8 (Ljava/lang/String;)V
 #90 = Utf8 getClass
 #91 = Utf8 ()Ljava/lang/Class;
 #92 = Utf8 java/lang/Class
 #93 = Utf8 getResourceAsStream
 #94 = Utf8 (Ljava/lang/String;)Ljava/io/InputStream;
 #95 = Utf8 ([B)I
 #96 = Utf8 ([BII)V
 #97 = Utf8 close
 #98 = Utf8 addSuppressed
 #99 = Utf8 (Ljava/lang/Throwable;)V
 #100 = Utf8 printStackTrace

https://riptutorial.com/ 295

{
 public com.stackoverflow.documentation.HelloWorldService();
 descriptor: ()V
 flags: ACC_PUBLIC
 Code:
 stack=1, locals=1, args_size=1
 0: aload_0
 1: invokespecial #1 // Method java/lang/Object."<init>":()V
 4: return
 LineNumberTable:
 line 10: 0
 LocalVariableTable:
 Start Length Slot Name Signature
 0 5 0 this Lcom/stackoverflow/documentation/HelloWorldService;

 public void sayHello();
 descriptor: ()V
 flags: ACC_PUBLIC
 Code:
 stack=2, locals=1, args_size=1
 0: getstatic #2 // Field
java/lang/System.out:Ljava/io/PrintStream;
 3: ldc #3 // String Hello, World!
 5: invokevirtual #4 // Method
java/io/PrintStream.println:(Ljava/lang/String;)V
 8: return
 LineNumberTable:
 line 13: 0
 line 14: 8
 LocalVariableTable:
 Start Length Slot Name Signature
 0 9 0 this Lcom/stackoverflow/documentation/HelloWorldService;

 private java.lang.Object[] pvtMethod(java.util.List<java.lang.String>);
 descriptor: (Ljava/util/List;)[Ljava/lang/Object;
 flags: ACC_PRIVATE
 Code:
 stack=4, locals=2, args_size=2
 0: iconst_1
 1: anewarray #5 // class java/lang/Object
 4: dup
 5: iconst_0
 6: aload_1
 7: aastore
 8: areturn
 LineNumberTable:
 line 17: 0
 LocalVariableTable:
 Start Length Slot Name Signature
 0 9 0 this Lcom/stackoverflow/documentation/HelloWorldService;
 0 9 1 strings Ljava/util/List;
 LocalVariableTypeTable:
 Start Length Slot Name Signature
 0 9 1 strings Ljava/util/List<Ljava/lang/String;>;
 Signature: #34 //
(Ljava/util/List<Ljava/lang/String;>;)[Ljava/lang/Object;

 protected java.lang.String tryCatchResources(java.lang.String) throws java.io.IOException;
 descriptor: (Ljava/lang/String;)Ljava/lang/String;
 flags: ACC_PROTECTED
 Code:

https://riptutorial.com/ 296

 stack=5, locals=10, args_size=2
 0: aload_0
 1: invokevirtual #6 // Method
java/lang/Object.getClass:()Ljava/lang/Class;
 4: aload_1
 5: invokevirtual #7 // Method
java/lang/Class.getResourceAsStream:(Ljava/lang/String;)Ljava/io/InputStream;
 8: astore_2
 9: aconst_null
 10: astore_3
 11: sipush 8192
 14: newarray byte
 16: astore 4
 18: aload_2
 19: aload 4
 21: invokevirtual #8 // Method java/io/InputStream.read:([B)I
 24: istore 5
 26: new #9 // class java/lang/String
 29: dup
 30: aload 4
 32: iconst_0
 33: iload 5
 35: invokespecial #10 // Method java/lang/String."<init>":([BII)V
 38: astore 6
 40: aload_2
 41: ifnull 70
 44: aload_3
 45: ifnull 66
 48: aload_2
 49: invokevirtual #11 // Method java/io/InputStream.close:()V
 52: goto 70
 55: astore 7
 57: aload_3
 58: aload 7
 60: invokevirtual #13 // Method
java/lang/Throwable.addSuppressed:(Ljava/lang/Throwable;)V
 63: goto 70
 66: aload_2
 67: invokevirtual #11 // Method java/io/InputStream.close:()V
 70: aload 6
 72: areturn
 73: astore 4
 75: aload 4
 77: astore_3
 78: aload 4
 80: athrow
 81: astore 8
 83: aload_2
 84: ifnull 113
 87: aload_3
 88: ifnull 109
 91: aload_2
 92: invokevirtual #11 // Method java/io/InputStream.close:()V
 95: goto 113
 98: astore 9
 100: aload_3
 101: aload 9
 103: invokevirtual #13 // Method
java/lang/Throwable.addSuppressed:(Ljava/lang/Throwable;)V
 106: goto 113
 109: aload_2

https://riptutorial.com/ 297

 110: invokevirtual #11 // Method java/io/InputStream.close:()V
 113: aload 8
 115: athrow
 116: astore_2
 117: aload_2
 118: invokevirtual #16 // Method
java/lang/Exception.printStackTrace:()V
 121: aload_2
 122: athrow
 Exception table:
 from to target type
 48 52 55 Class java/lang/Throwable
 11 40 73 Class java/lang/Throwable
 11 40 81 any
 91 95 98 Class java/lang/Throwable
 73 83 81 any
 0 70 116 Class java/io/IOException
 0 70 116 Class java/lang/RuntimeException
 73 116 116 Class java/io/IOException
 73 116 116 Class java/lang/RuntimeException
 LineNumberTable:
 line 21: 0
 line 22: 11
 line 23: 18
 line 24: 26
 line 25: 40
 line 21: 73
 line 25: 81
 line 26: 117
 line 27: 121
 LocalVariableTable:
 Start Length Slot Name Signature
 18 55 4 bytes [B
 26 47 5 read I
 9 107 2 inputStream Ljava/io/InputStream;
 117 6 2 e Ljava/lang/Exception;
 0 123 0 this Lcom/stackoverflow/documentation/HelloWorldService;
 0 123 1 filename Ljava/lang/String;
 StackMapTable: number_of_entries = 9
 frame_type = 255 /* full_frame */
 offset_delta = 55
 locals = [class com/stackoverflow/documentation/HelloWorldService, class
java/lang/String, class java/io/InputStream, class java/lang/Throwable, class "[B", int, class
java/lang/String]
 stack = [class java/lang/Throwable]
 frame_type = 10 /* same */
 frame_type = 3 /* same */
 frame_type = 255 /* full_frame */
 offset_delta = 2
 locals = [class com/stackoverflow/documentation/HelloWorldService, class
java/lang/String, class java/io/InputStream, class java/lang/Throwable]
 stack = [class java/lang/Throwable]
 frame_type = 71 /* same_locals_1_stack_item */
 stack = [class java/lang/Throwable]
 frame_type = 255 /* full_frame */
 offset_delta = 16
 locals = [class com/stackoverflow/documentation/HelloWorldService, class
java/lang/String, class java/io/InputStream, class java/lang/Throwable, top, top, top, top,
class java/lang/Throwable]
 stack = [class java/lang/Throwable]
 frame_type = 10 /* same */

https://riptutorial.com/ 298

 frame_type = 3 /* same */
 frame_type = 255 /* full_frame */
 offset_delta = 2
 locals = [class com/stackoverflow/documentation/HelloWorldService, class
java/lang/String]
 stack = [class java/lang/Exception]
 Exceptions:
 throws java.io.IOException

 void stuff();
 descriptor: ()V
 flags:
 Code:
 stack=2, locals=1, args_size=1
 0: getstatic #2 // Field
java/lang/System.out:Ljava/io/PrintStream;
 3: ldc #17 // String stuff
 5: invokevirtual #4 // Method
java/io/PrintStream.println:(Ljava/lang/String;)V
 8: return
 LineNumberTable:
 line 32: 0
 line 33: 8
 LocalVariableTable:
 Start Length Slot Name Signature
 0 9 0 this Lcom/stackoverflow/documentation/HelloWorldService;
}
SourceFile: "HelloWorldService.java"
RuntimeVisibleAnnotations:
 0: #59()

Read Disassembling and Decompiling online:
https://riptutorial.com/java/topic/2318/disassembling-and-decompiling

https://riptutorial.com/ 299

https://riptutorial.com/java/topic/2318/disassembling-and-decompiling

Chapter 46: Documenting Java Code

Introduction

Documentation for java code is often generated using javadoc. Javadoc was created by Sun
Microsystems for the purpose of generating API documentation in HTML format from java source
code. Using the HTML format gives the convenience of being able to hyperlink related documents
together.

Syntax

/** -- start of JavaDoc on a class, field, method, or package•
@author // To name the author of the class, interface or enum. It is required.•
@version // The version of that class, interface or enum. It is required. You could use macros
like %I% or %G% for you source control software to fill in on checkout.

•

@param // To show the arguments (parameters) of a method or a constructor. Specify one
@param tag for each parameter.

•

@return // To show the return types for non-void methods.•
@exception // Shows what exceptions could be thrown from the method or constructor.
Exceptions that MUST be caught should be listed here. If you want, you can also include
those that do not need to be caught, like ArrayIndexOutOfBoundsException. Specify one
@exception for each exception that can be thrown.

•

@throws // Same as @exception.•
@see // Links to a method, field, class or package. Use in the form of
package.Class#something.

•

@since // When this method, field or class was added. For example, JDK-8 for a class like
java.util.Optional<T>.

•

@serial, @serialField, @serialData // Used to show the serialVersionUID.•
@deprecated // To mark a class, method or field as deprecated. For example, one would be
java.io.StringBufferInputStream. See a full list of existing deprecated classes here.

•

{@link} // Similar to @see, but can be used with custom text: {@link
#setDefaultCloseOperation(int closeOperation) see JFrame#setDefaultCloseOperation for
more info}.

•

{@linkplain} // Similar to {@link}, but without the code font.•
{@code} // For literal code, such as HTML tags. For example: {@code <html></html>}.
However, this will use a monospaced font. To get the same result without the monospace
font, use {@literal}.

•

{@literal} // Same as {@code}, but without the monospaced font.•
{@value} // Shows the value of a static field: The value of JFrame#EXIT_ON_CLOSE is
{@value}. Or, you could link to a certain field: Uses the app name {@value
AppConstants#APP_NAME}.

•

{@docRoot} // The root folder of the JavaDoc HTML relative to the current file. Example: Credits.

•

HTML is allowed: <code>"Hi cookies".substring(3)</code>.•

https://riptutorial.com/ 300

http://www.oracle.com/technetwork/articles/java/index-jsp-135444.html
https://en.wikipedia.org/wiki/Javadoc
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
https://docs.oracle.com/javase/8/docs/api/java/io/StringBufferInputStream.html
https://docs.oracle.com/javase/8/docs/api/deprecated-list.html

*/ -- end of JavaDoc declaration•

Remarks

Javadoc is a tool included with the JDK that allows in-code comments to be converted to an HTML
documentation. The Java API Specification was generated using Javadoc. The same is true for
much of the documentation of 3rd-party libraries.

Examples

Class Documentation

All Javadoc comments begin with a block comment followed by an asterisk (/**) and end when the
block comment does (*/). Optionally, each line can begin with arbitrary whitespace and a single
asterisk; these are ignored when the documentation files are generated.

/**
 * Brief summary of this class, ending with a period.
 *
 * It is common to leave a blank line between the summary and further details.
 * The summary (everything before the first period) is used in the class or package
 * overview section.
 *
 * The following inline tags can be used (not an exhaustive list):
 * {@link some.other.class.Documentation} for linking to other docs or symbols
 * {@link some.other.class.Documentation Some Display Name} the link's appearance can be
 * customized by adding a display name after the doc or symbol locator
 * {@code code goes here} for formatting as code
 * {@literal <>[]()foo} for interpreting literal text without converting to HTML markup
 * or other tags.
 *
 * Optionally, the following tags may be used at the end of class documentation
 * (not an exhaustive list):
 *
 * @author John Doe
 * @version 1.0
 * @since 5/10/15
 * @see some.other.class.Documentation
 * @deprecated This class has been replaced by some.other.package.BetterFileReader
 *
 * You can also have custom tags for displaying additional information.
 * Using the @custom.<NAME> tag and the -tag custom.<NAME>:htmltag:"context"
 * command line option, you can create a custom tag.
 *
 * Example custom tag and generation:
 * @custom.updated 2.0
 * Javadoc flag: -tag custom.updated:a:"Updated in version:"
 * The above flag will display the value of @custom.updated under "Updated in version:"
 *
 */
public class FileReader {
}

The same tags and format used for Classes can be used for Enums and Interfaces as well.

https://riptutorial.com/ 301

https://docs.oracle.com/javase/8/docs/api/index.html?overview-summary.html

Method Documentation

All Javadoc comments begin with a block comment followed by an asterisk (/**) and end when the
block comment does (*/). Optionally, each line can begin with arbitrary whitespace and a single
asterisk; these are ignored when the documentation files are generated.

/**
 * Brief summary of method, ending with a period.
 *
 * Further description of method and what it does, including as much detail as is
 * appropriate. Inline tags such as
 * {@code code here}, {@link some.other.Docs}, and {@literal text here} can be used.
 *
 * If a method overrides a superclass method, {@inheritDoc} can be used to copy the
 * documentation
 * from the superclass method
 *
 * @param stream Describe this parameter. Include as much detail as is appropriate
 * Parameter docs are commonly aligned as here, but this is optional.
 * As with other docs, the documentation before the first period is
 * used as a summary.
 *
 * @return Describe the return values. Include as much detail as is appropriate
 * Return type docs are commonly aligned as here, but this is optional.
 * As with other docs, the documentation before the first period is used as a
 * summary.
 *
 * @throws IOException Describe when and why this exception can be thrown.
 * Exception docs are commonly aligned as here, but this is
 * optional.
 * As with other docs, the documentation before the first period
 * is used as a summary.
 * Instead of @throws, @exception can also be used.
 *
 * @since 2.1.0
 * @see some.other.class.Documentation
 * @deprecated Describe why this method is outdated. A replacement can also be specified.
 */
public String[] read(InputStream stream) throws IOException {
 return null;
}

Field Documentation

All Javadoc comments begin with a block comment followed by an asterisk (/**) and end when the
block comment does (*/). Optionally, each line can begin with arbitrary whitespace and a single
asterisk; these are ignored when the documentation files are generated.

/**
 * Fields can be documented as well.
 *
 * As with other javadocs, the documentation before the first period is used as a
 * summary, and is usually separated from the rest of the documentation by a blank
 * line.
 *
 * Documentation for fields can use inline tags, such as:

https://riptutorial.com/ 302

 * {@code code here}
 * {@literal text here}
 * {@link other.docs.Here}
 *
 * Field documentation can also make use of the following tags:
 *
 * @since 2.1.0
 * @see some.other.class.Documentation
 * @deprecated Describe why this field is outdated
 */
public static final String CONSTANT_STRING = "foo";

Package Documentation

Java SE 5

It is possible to create package-level documentation in Javadocs using a file called package-
info.java. This file must be formatted as below. Leading whitespace and asterisks optional,
typically present in each line for formatting reason

/**
 * Package documentation goes here; any documentation before the first period will
 * be used as a summary.
 *
 * It is common practice to leave a blank line between the summary and the rest
 * of the documentation; use this space to describe the package in as much detail
 * as is appropriate.
 *
 * Inline tags such as {@code code here}, {@link reference.to.other.Documentation},
 * and {@literal text here} can be used in this documentation.
 */
package com.example.foo;

// The rest of the file must be empty.

In the above case, you must put this file package-info.java inside the folder of the Java package
com.example.foo.

Links

Linking to other Javadocs is done with the @link tag:

/**
 * You can link to the javadoc of an already imported class using {@link ClassName}.
 *
 * You can also use the fully-qualified name, if the class is not already imported:
 * {@link some.other.ClassName}
 *
 * You can link to members (fields or methods) of a class like so:
 * {@link ClassName#someMethod()}
 * {@link ClassName#someMethodWithParameters(int, String)}
 * {@link ClassName#someField}
 * {@link #someMethodInThisClass()} - used to link to members in the current class
 *
 * You can add a label to a linked javadoc like so:

https://riptutorial.com/ 303

 * {@link ClassName#someMethod() link text}
 */

With the @see tag you can add elements to the See also section. Like @param or @return the place
where they appear is not relevant. The spec says you should write it after @return.

/**
 * This method has a nice explanation but you might found further
 * information at the bottom.
 *
 * @see ClassName#someMethod()
 */

If you want to add links to external resources you can just use the HTML <a> tag. You can use it
inline anywhere or inside both @link and @see tags.

/**
 * Wondering how this works? You might want
 * to check this great service.
 *
 * @see Stack Overflow
 */

Building Javadocs From the Command Line

Many IDEs provide support for generating HTML from Javadocs automatically; some build tools (
Maven and Gradle, for example) also have plugins that can handle the HTML creation.

However, these tools are not required to generate the Javadoc HTML; this can be done using the
command line javadoc tool.

https://riptutorial.com/ 304

https://i.stack.imgur.com/3A3cX.png
https://i.stack.imgur.com/WxxAT.png
https://i.stack.imgur.com/VyrDF.png
https://maven.apache.org/
https://gradle.org/

The most basic usage of the tool is:

javadoc JavaFile.java

Which will generate HTML from the Javadoc comments in JavaFile.java.

A more practical use of the command line tool, which will recursively read all java files in [source-
directory], create documentation for [package.name] and all sub-packages, and place the
generated HTML in the [docs-directory] is:

javadoc -d [docs-directory] -subpackages -sourcepath [source-directory] [package.name]

Inline Code Documentation

Apart from the Javadoc documentation code can be documented inline.

Single Line comments are started by // and may be positioned after a statement on the same line,
but not before.

public void method() {

 //single line comment
 someMethodCall(); //single line comment after statement

}

Multi-Line comments are defined between /* and */. They can span multiple lines and may even
been positioned between statements.

public void method(Object object) {

 /*
 multi
 line
 comment
 */
 object/*inner-line-comment*/.method();
}

JavaDocs are a special form of multi-line comments, starting with /**.

As too many inline comments may decrease readability of code, they should be used sparsely in
case the code isn't self-explanatory enough or the design decision isn't obvious.

An additional use case for single-line comments is the use of TAGs, which are short, convention
driven keywords. Some development environments recognize certain conventions for such single-
comments. Common examples are

//TODO•
//FIXME•

https://riptutorial.com/ 305

Or issue references, i.e. for Jira

//PRJ-1234•

Code snippets inside documentation

The canonical way of writing code inside documentation is with the {@code } construct. If you have
multiline code wrap inside <pre></pre>.

/**
 * The Class TestUtils.
 * <p>
 * This is an {@code inline("code example")}.
 * <p>
 * You should wrap it in pre tags when writing multiline code.
 * <pre>{@code
 * Example example1 = new FirstLineExample();
 * example1.butYouCanHaveMoreThanOneLine();
 * }</pre>
 * <p>
 * Thanks for reading.
 */
class TestUtils {

Sometimes you may need to put some complex code inside the javadoc comment. The @ sign is
specially problematic. The use of the old <code> tag alongside the {@literal } construct solves the
problem.

/**
 * Usage:
 * <pre><code>
 * class SomethingTest {
 * {@literal @}Rule
 * public SingleTestRule singleTestRule = new SingleTestRule("test1");
 *
 * {@literal @}Test
 * public void test1() {
 * // only this test will be executed
 * }
 *
 * ...
 * }
 * </code></pre>
 */
class SingleTestRule implements TestRule { }

Read Documenting Java Code online: https://riptutorial.com/java/topic/140/documenting-java-code

https://riptutorial.com/ 306

https://riptutorial.com/java/topic/140/documenting-java-code

Chapter 47: Dynamic Method Dispatch

Introduction

What is Dynamic Method Dispatch?

Dynamic Method Dispatch is a process in which the call to an overridden method is resolved at
runtime rather than at compile-time. When an overridden method is called by a reference, Java
determines which version of that method to execute based on the type of object it refer to. This is
also know as runtime polymorphism.

We will see this through an example.

Remarks

Dynamic Binding = Late binding•
Abstract classes cannot be instantiated, but they can be sub-classed (Base for a child class)•
An abstract method is a method that is declared without an implementation•
Abstract class may contain a mix of methods declared with or without an implementation•
When an abstract class is sub-classed, the subclass usually provides implementations for all
of the abstract methods in its parent class. However, if it does not, then the subclass must
also be declared abstract

•

Dynamic method dispatch is a mechanism by which a call to an overridden method is
resolved at runtime. This is how java implements runtime polymorphism.

•

Upcasting : Casting a subtype to a supertype, upward to the inheritance tree.•
Runtime Polymorphism = Dynamic Polymorphism•

Examples

Dynamic Method Dispatch - Example Code

Abstract Class :

package base;

/*
Abstract classes cannot be instantiated, but they can be subclassed
*/
public abstract class ClsVirusScanner {

 //With One Abstract method
 public abstract void fnStartScan();

 protected void fnCheckForUpdateVersion(){
 System.out.println("Perform Virus Scanner Version Check");
 }

 protected void fnBootTimeScan(){

https://riptutorial.com/ 307

 System.out.println("Perform BootTime Scan");
 }
 protected void fnInternetSecutiry(){
 System.out.println("Scan for Internet Security");
 }

 protected void fnRealTimeScan(){
 System.out.println("Perform RealTime Scan");
 }

 protected void fnVirusMalwareScan(){
 System.out.println("Detect Virus & Malware");
 }
}

Overriding Abstract Method in Child Class :

import base.ClsVirusScanner;

//All the 3 child classes inherits the base class ClsVirusScanner
//Child Class 1
class ClsPaidVersion extends ClsVirusScanner{
 @Override
 public void fnStartScan() {
 super.fnCheckForUpdateVersion();
 super.fnBootTimeScan();
 super.fnInternetSecutiry();
 super.fnRealTimeScan();
 super.fnVirusMalwareScan();
 }
}; //ClsPaidVersion IS-A ClsVirusScanner
//Child Class 2

class ClsTrialVersion extends ClsVirusScanner{
 @Override
 public void fnStartScan() {
 super.fnInternetSecutiry();
 super.fnVirusMalwareScan();
 }
}; //ClsTrialVersion IS-A ClsVirusScanner

//Child Class 3
class ClsFreeVersion extends ClsVirusScanner{
 @Override
 public void fnStartScan() {
 super.fnVirusMalwareScan();
 }
}; //ClsTrialVersion IS-A ClsVirusScanner

Dynamic/Late Binding leads to Dynamic method dispatch :

//Calling Class
public class ClsRunTheApplication {

 public static void main(String[] args) {

 final String VIRUS_SCANNER_VERSION = "TRIAL_VERSION";

 //Parent Refers Null

https://riptutorial.com/ 308

 ClsVirusScanner objVS=null;

 //String Cases Supported from Java SE 7
 switch (VIRUS_SCANNER_VERSION){
 case "FREE_VERSION":

 //Parent Refers Child Object 3
 //ClsFreeVersion IS-A ClsVirusScanner
 objVS = new ClsFreeVersion(); //Dynamic or Runtime Binding
 break;
 case "PAID_VERSION":

 //Parent Refers Child Object 1
 //ClsPaidVersion IS-A ClsVirusScanner
 objVS = new ClsPaidVersion(); //Dynamic or Runtime Binding
 break;
 case "TRIAL_VERSION":

 //Parent Refers Child Object 2
 objVS = new ClsTrialVersion(); //Dynamic or Runtime Binding
 break;
 }

 //Method fnStartScan() is the Version of ClsTrialVersion()
 objVS.fnStartScan();

 }
}

Result :

Scan for Internet Security
Detect Virus & Malware

Upcasting :

objVS = new ClsFreeVersion();
objVS = new ClsPaidVersion();
objVS = new ClsTrialVersion()

Read Dynamic Method Dispatch online: https://riptutorial.com/java/topic/9204/dynamic-method-
dispatch

https://riptutorial.com/ 309

https://riptutorial.com/java/topic/9204/dynamic-method-dispatch
https://riptutorial.com/java/topic/9204/dynamic-method-dispatch

Chapter 48: Encapsulation

Introduction

Imagine you had a class with some pretty important variables and they were set (by other
programmers from their code) to unacceptable values.Their code brought errors in your code. As a
solution, In OOP, you allow the state of an object (stored in its variables) to be modified only
through methods. Hiding the state of an object and providing all interaction through an objects
methods is known as Data Encapsulation.

Remarks

It is much easier to start with marking a variable private and expose it if necessary than to hide an
already public variable.

There is one exception where encapsulation may not be beneficial: "dumb" data structures
(classes whose sole purpose is to hold variables).

public class DumbData {
 public String name;
 public int timeStamp;
 public int value;
}

In this case, the interface of the class is the data that it holds.

Note that variables marked final can be marked public without violating encapsulation because
they can't be changed after being set.

Examples

Encapsulation to maintain invariants

There are two parts of a class: the interface and the implementation.

The interface is the exposed functionality of the class. Its public methods and variables are part of
the interface.

The implementation is the internal workings of a class. Other classes shouldn't need to know
about the implementation of a class.

Encapsulation refers to the practice of hiding the implementation of a class from any users of that
class. This allows the class to make assumptions about its internal state.

For example, take this class representing an Angle:

https://riptutorial.com/ 310

public class Angle {

 private double angleInDegrees;
 private double angleInRadians;

 public static Angle angleFromDegrees(double degrees){
 Angle a = new Angle();
 a.angleInDegrees = degrees;
 a.angleInRadians = Math.PI*degrees/180;
 return a;
 }

 public static Angle angleFromRadians(double radians){
 Angle a = new Angle();
 a.angleInRadians = radians;
 a.angleInDegrees = radians*180/Math.PI;
 return a;
 }

 public double getDegrees(){
 return angleInDegrees;
 }

 public double getRadians(){
 return angleInRadians;
 }

 public void setDegrees(double degrees){
 this.angleInDegrees = degrees;
 this.angleInRadians = Math.PI*degrees/180;
 }

 public void setRadians(double radians){
 this.angleInRadians = radians;
 this.angleInDegrees = radians*180/Math.PI;
 }
 private Angle(){}
}

This class relies on a basic assumption (or invariant): angleInDegrees and angleInRadians are
always in sync. If the class members were public, there would be no guarantees that the two
representations of angles are correlated.

Encapsulation to reduce coupling

Encapsulation allows you to make internal changes to a class without affecting any code that calls
the class. This reduces coupling, or how much any given class relies on the implementation of
another class.

For example, let's change the implementation of the Angle class from the previous example:

public class Angle {

 private double angleInDegrees;

 public static Angle angleFromDegrees(double degrees){
 Angle a = new Angle();

https://riptutorial.com/ 311

 a.angleInDegrees = degrees;
 return a;
 }

 public static Angle angleFromRadians(double radians){
 Angle a = new Angle();
 a.angleInDegrees = radians*180/Math.PI;
 return a;
 }

 public double getDegrees(){
 return angleInDegrees;
 }

 public double getRadians(){
 return angleInDegrees*Math.PI / 180;
 }

 public void setDegrees(double degrees){
 this.angleInDegrees = degrees;
 }

 public void setRadians(double radians){
 this.angleInDegrees = radians*180/Math.PI;
 }

 private Angle(){}
}

The implementation of this class has changed so that it only stores one representation of the angle
and calculates the other angle when needed.

However, the implementation changed, but the interface didn't. If a calling class relied on
accessing the angleInRadians method, it would need to be changed to use the new version of
Angle. Calling classes shouldn't care about the internal representation of a class.

Read Encapsulation online: https://riptutorial.com/java/topic/1295/encapsulation

https://riptutorial.com/ 312

https://riptutorial.com/java/topic/1295/encapsulation

Chapter 49: Enum Map

Introduction

Java EnumMap class is the specialized Map implementation for enum keys. It inherits Enum and
AbstractMap classes.

the Parameters for java.util.EnumMap class.

K: It is the type of keys maintained by this map. V: It is the type of mapped values.

Examples

Enum Map Book Example

import java.util.*;
class Book {
int id;
String name,author,publisher;
int quantity;
public Book(int id, String name, String author, String publisher, int quantity) {
 this.id = id;
 this.name = name;
 this.author = author;
 this.publisher = publisher;
 this.quantity = quantity;
}
}
public class EnumMapExample {
// Creating enum
 public enum Key{
 One, Two, Three
 };
public static void main(String[] args) {
 EnumMap<Key, Book> map = new EnumMap<Key, Book>(Key.class);
 // Creating Books
 Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8);
 Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc Graw Hill",4);
 Book b3=new Book(103,"Operating System","Galvin","Wiley",6);
 // Adding Books to Map
 map.put(Key.One, b1);
 map.put(Key.Two, b2);
 map.put(Key.Three, b3);
 // Traversing EnumMap
 for(Map.Entry<Key, Book> entry:map.entrySet()){
 Book b=entry.getValue();
 System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);

 }
}
}

Read Enum Map online: https://riptutorial.com/java/topic/10158/enum-map

https://riptutorial.com/ 313

https://riptutorial.com/java/topic/10158/enum-map

Chapter 50: Enum starting with number

Introduction

Java does not allow the name of enum to start with number like 100A, 25K. In that case, we can
append the code with _ (underscore) or any allowed pattern and make check of it.

Examples

Enum with name at begining

public enum BookCode {
 _10A("Simon Haykin", "Communication System"),
 _42B("Stefan Hakins", "A Brief History of Time"),
 E1("Sedra Smith", "Electronics Circuits");

 private String author;
 private String title;

 BookCode(String author, String title) {
 this.author = author;
 this.title = title;
 }

 public String getName() {
 String name = name();
 if (name.charAt(0) == '_') {
 name = name.substring(1, name.length());
 }
 return name;
 }

 public static BookCode of(String code) {
 if (Character.isDigit(code.charAt(0))) {
 code = "_" + code;
 }
 return BookCode.valueOf(code);
 }
}

Read Enum starting with number online: https://riptutorial.com/java/topic/10719/enum-starting-
with-number

https://riptutorial.com/ 314

https://riptutorial.com/java/topic/10719/enum-starting-with-number
https://riptutorial.com/java/topic/10719/enum-starting-with-number

Chapter 51: Enums

Introduction

Java enums (declared using the enum keyword) are shorthand syntax for sizable quantities of
constants of a single class.

Syntax

[public/protected/private] enum Enum_name { // Declare a new enum.•
ENUM_CONSTANT_1[, ENUM_CONSTANT_2...]; // Declare the enum constants. This must
be the first line inside of the enum, and should be separated by commas, with a semicolon at
the end.

•

ENUM_CONSTANT_1(param)[, ENUM_CONSTANT_2(param)...]; // Declare enum
constants with parameters. The parameter types must match the constructor.

•

ENUM_CONSTANT_1 {...}[, ENUM_CONSTANT_2 {...}...]; // Declare enum constants with
overridden methods. This must be done if the enum contains abstract methods; all such
methods must be implemented.

•

ENUM_CONSTANT.name() // Returns a String with the name of the enum constant.•
ENUM_CONSTANT.ordinal() // Returns the ordinal of this enumeration constant, its position
in its enum declaration, where the initial constant is assigned an ordinal of zero.

•

Enum_name.values() // Returns a new array (of type Enum_name[]) containing every
constant of that enum everytime it is called.

•

Enum_name.valueOf("ENUM_CONSTANT") // The inverse of ENUM_CONSTANT.name() --
returns the enum constant with the given name.

•

Enum.valueOf(Enum_name.class, "ENUM_CONSTANT") // A synonym of the previous one:
The inverse of ENUM_CONSTANT.name() -- returns the enum constant with the given
name.

•

Remarks

Restrictions

Enums always extend java.lang.Enum, so it is impossible for an enum to extend a class. However,
they can implement many interfaces.

Tips & Tricks

Because of their specialized representation, there are more efficient maps and sets that can be
used with enums as their keys. These will often run quicker than their non-specialized
counterparts.

https://riptutorial.com/ 315

https://docs.oracle.com/javase/7/docs/api/java/lang/Enum.html
https://docs.oracle.com/javase/7/docs/api/java/util/EnumMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/EnumSet.html

Examples

Declaring and using a basic enum

Enum can be considered to be syntax sugar for a sealed class that is instantiated only a number
of times known at compile-time to define a set of constants.

A simple enum to list the different seasons would be declared as follows:

public enum Season {
 WINTER,
 SPRING,
 SUMMER,
 FALL
}

While the enum constants don't necessarily need to be in all-caps, it is Java convention that
names of constants are entirely uppercase, with words separated by underscores.

You can declare an Enum in its own file:

/**
 * This enum is declared in the Season.java file.
*/
public enum Season {
 WINTER,
 SPRING,
 SUMMER,
 FALL
}

But you can also declare it inside another class:

 public class Day {

 private Season season;

 public String getSeason() {
 return season.name();
 }

 public void setSeason(String season) {
 this.season = Season.valueOf(season);
 }

 /**
 * This enum is declared inside the Day.java file and
 * cannot be accessed outside because it's declared as private.
 */
 private enum Season {
 WINTER,
 SPRING,
 SUMMER,

https://riptutorial.com/ 316

https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

 FALL
 }

}

Finally, you cannot declare an Enum inside a method body or constructor:

public class Day {

 /**
 * Constructor
 */
 public Day() {
 // Illegal. Compilation error
 enum Season {
 WINTER,
 SPRING,
 SUMMER,
 FALL
 }
 }

 public void aSimpleMethod() {
 // Legal. You can declare a primitive (or an Object) inside a method. Compile!
 int primitiveInt = 42;

 // Illegal. Compilation error.
 enum Season {
 WINTER,
 SPRING,
 SUMMER,
 FALL
 }

 Season season = Season.SPRING;
 }

}

Duplicate enum constants are not allowed:

public enum Season {
 WINTER,
 WINTER, //Compile Time Error : Duplicate Constants
 SPRING,
 SUMMER,
 FALL
}

Every constant of enum is public, static and final by default. As every constant is static, they
can be accessed directly using the enum name.

Enum constants can be passed around as method parameters:

public static void display(Season s) {

https://riptutorial.com/ 317

 System.out.println(s.name()); // name() is a built-in method that gets the exact name of
the enum constant
}

display(Season.WINTER); // Prints out "WINTER"

You can get an array of the enum constants using the values() method. The values are
guaranteed to be in declaration order in the returned array:

Season[] seasons = Season.values();

Note: this method allocates a new array of values each time it is called.

To iterate over the enum constants:

public static void enumIterate() {
 for (Season s : Season.values()) {
 System.out.println(s.name());
 }
}

You can use enums in a switch statement:

public static void enumSwitchExample(Season s) {
 switch(s) {
 case WINTER:
 System.out.println("It's pretty cold");
 break;
 case SPRING:
 System.out.println("It's warming up");
 break;
 case SUMMER:
 System.out.println("It's pretty hot");
 break;
 case FALL:
 System.out.println("It's cooling down");
 break;
 }
}

You can also compare enum constants using ==:

Season.FALL == Season.WINTER // false
Season.SPRING == Season.SPRING // true

Another way to compare enum constants is by using equals() as below, which is considered bad
practice as you can easily fall into pitfalls as follows:

Season.FALL.equals(Season.FALL); // true
Season.FALL.equals(Season.WINTER); // false
Season.FALL.equals("FALL"); // false and no compiler error

https://riptutorial.com/ 318

Furthermore, although the set of instances in the enum cannot be changed at run-time, the
instances themselves are not inherently immutable because like any other class, an enum can
contain mutable fields as is demonstrated below.

public enum MutableExample {
 A,
 B;

 private int count = 0;

 public void increment() {
 count++;
 }

 public void print() {
 System.out.println("The count of " + name() + " is " + count);
 }
}

// Usage:
MutableExample.A.print(); // Outputs 0
MutableExample.A.increment();
MutableExample.A.print(); // Outputs 1 -- we've changed a field
MutableExample.B.print(); // Outputs 0 -- another instance remains unchanged

However, a good practice is to make enum instances immutable, i.e. when they either don't have
any additional fields or all such fields are marked as final and are immutable themselves. This will
ensure that for a lifetime of the application an enum won't leak any memory and that it is safe to use
its instances across all threads.

Enums implicitly implement Serializable and Comparable because the Enum class does:

public abstract class Enum<E extends Enum<E>>
extends Object
implements Comparable<E>, Serializable

Enums with constructors

An enum cannot have a public constructor; however, private constructors are acceptable
(constructors for enums are package-private by default):

public enum Coin {
 PENNY(1), NICKEL(5), DIME(10), QUARTER(25); // usual names for US coins
 // note that the above parentheses and the constructor arguments match
 private int value;

 Coin(int value) {
 this.value = value;
 }

 public int getValue() {
 return value;
 }
}

https://riptutorial.com/ 319

http://www.riptutorial.com/java/example/520/package-visibility

int p = Coin.NICKEL.getValue(); // the int value will be 5

It is recommended that you keep all fields private and provide getter methods, as there are a finite
number of instances for an enum.

If you were to implement an Enum as a class instead, it would look like this:

public class Coin<T extends Coin<T>> implements Comparable<T>, Serializable{
 public static final Coin PENNY = new Coin(1);
 public static final Coin NICKEL = new Coin(5);
 public static final Coin DIME = new Coin(10);
 public static final Coin QUARTER = new Coin(25);

 private int value;

 private Coin(int value){
 this.value = value;
 }

 public int getValue() {
 return value;
 }
}

int p = Coin.NICKEL.getValue(); // the int value will be 5

Enum constants are technically mutable, so a setter could be added to change the internal
structure of an enum constant. However, this is considered very bad practice and should be
avoided.

Best practice is to make Enum fields immutable, with final:

public enum Coin {
 PENNY(1), NICKEL(5), DIME(10), QUARTER(25);

 private final int value;

 Coin(int value){
 this.value = value;
 }

 ...

}

You may define multiple constructors in the same enum. When you do, the arguments you pass in
your enum declaration decide which constructor is called:

public enum Coin {
 PENNY(1, true), NICKEL(5, false), DIME(10), QUARTER(25);

https://riptutorial.com/ 320

 private final int value;
 private final boolean isCopperColored;

 Coin(int value){
 this(value, false);
 }

 Coin(int value, boolean isCopperColored){
 this.value = value;
 this.isCopperColored = isCopperColored;
 }

 ...

}

Note: All non-primitive enum fields should implement Serializable because the Enum class does.

Using methods and static blocks

An enum can contain a method, just like any class. To see how this works, we'll declare an enum
like this:

public enum Direction {
 NORTH, SOUTH, EAST, WEST;
}

Let's have a method that returns the enum in the opposite direction:

public enum Direction {
 NORTH, SOUTH, EAST, WEST;

 public Direction getOpposite(){
 switch (this){
 case NORTH:
 return SOUTH;
 case SOUTH:
 return NORTH;
 case WEST:
 return EAST;
 case EAST:
 return WEST;
 default: //This will never happen
 return null;
 }
 }
}

This can be improved further through the use of fields and static initializer blocks:

public enum Direction {
 NORTH, SOUTH, EAST, WEST;

 private Direction opposite;

https://riptutorial.com/ 321

https://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Enum.html

 public Direction getOpposite(){
 return opposite;
 }

 static {
 NORTH.opposite = SOUTH;
 SOUTH.opposite = NORTH;
 WEST.opposite = EAST;
 EAST.opposite = WEST;
 }
}

In this example, the opposite direction is stored in a private instance field opposite, which is
statically initialized the first time a Direction is used. In this particular case (because NORTH
references SOUTH and conversely), we cannot use Enums with constructors here (Constructors
NORTH(SOUTH), SOUTH(NORTH), EAST(WEST), WEST(EAST) would be more elegant and would allow
opposite to be declared final, but would be self-referential and therefore are not allowed).

Implements Interface

This is an enum that is also a callable function that tests String inputs against precompiled regular
expression patterns.

import java.util.function.Predicate;
import java.util.regex.Pattern;

enum RegEx implements Predicate<String> {
 UPPER("[A-Z]+"), LOWER("[a-z]+"), NUMERIC("[+-]?[0-9]+");

 private final Pattern pattern;

 private RegEx(final String pattern) {
 this.pattern = Pattern.compile(pattern);
 }

 @Override
 public boolean test(final String input) {
 return this.pattern.matcher(input).matches();
 }
}

public class Main {
 public static void main(String[] args) {
 System.out.println(RegEx.UPPER.test("ABC"));
 System.out.println(RegEx.LOWER.test("abc"));
 System.out.println(RegEx.NUMERIC.test("+111"));
 }
}

Each member of the enum can also implement the method:

import java.util.function.Predicate;

enum Acceptor implements Predicate<String> {
 NULL {
 @Override

https://riptutorial.com/ 322

http://www.riptutorial.com/java/example/602/enums-with-constructors

 public boolean test(String s) { return s == null; }
 },
 EMPTY {
 @Override
 public boolean test(String s) { return s.equals(""); }
 },
 NULL_OR_EMPTY {
 @Override
 public boolean test(String s) { return NULL.test(s) || EMPTY.test(s); }
 };
}

public class Main {
 public static void main(String[] args) {
 System.out.println(Acceptor.NULL.test(null)); // true
 System.out.println(Acceptor.EMPTY.test("")); // true
 System.out.println(Acceptor.NULL_OR_EMPTY.test(" ")); // false
 }
}

Enum Polymorphism Pattern

When a method need to accept an "extensible" set of enum values, the programmer can apply
polymorphism like on a normal class by creating an interface which will be used anywere where
the enums shall be used:

public interface ExtensibleEnum {
 String name();
}

This way, any enum tagged by (implementing) the interface can be used as a parameter, allowing
the programmer to create a variable amount of enums that will be accepted by the method. This can
be useful, for example, in APIs where there is a default (unmodifiable) enum and the user of these
APIs want to "extend" the enum with more values.

A set of default enum values can be defined as follows:

public enum DefaultValues implements ExtensibleEnum {
 VALUE_ONE, VALUE_TWO;
}

Additional values can then be defined like this:

public enum ExtendedValues implements ExtensibleEnum {
 VALUE_THREE, VALUE_FOUR;
}

Sample which shows how to use the enums - note how printEnum() accepts values from both enum
types:

private void printEnum(ExtensibleEnum val) {
 System.out.println(val.name());
}

https://riptutorial.com/ 323

printEnum(DefaultValues.VALUE_ONE); // VALUE_ONE
printEnum(DefaultValues.VALUE_TWO); // VALUE_TWO
printEnum(ExtendedValues.VALUE_THREE); // VALUE_THREE
printEnum(ExtendedValues.VALUE_FOUR); // VALUE_FOUR

Note: This pattern does not prevent you from redefining enum values, which are already defined in
one enum, in another enum. These enum values would be different instances then. Also, it is not
possible to use switch-on-enum since all we have is the interface, not the real enum.

Enums with Abstract Methods

Enums can define abstract methods, which each enum member is required to implement.

enum Action {
 DODGE {
 public boolean execute(Player player) {
 return player.isAttacking();
 }
 },
 ATTACK {
 public boolean execute(Player player) {
 return player.hasWeapon();
 }
 },
 JUMP {
 public boolean execute(Player player) {
 return player.getCoordinates().equals(new Coordinates(0, 0));
 }
 };

 public abstract boolean execute(Player player);
}

This allows for each enum member to define its own behaviour for a given operation, without
having to switch on types in a method in the top-level definition.

Note that this pattern is a short form of what is typically achieved using polymorphism and/or
implementing interfaces.

Documenting enums

Not always the enum name is clear enough to be understood. To document an enum, use standard
javadoc:

/**
 * United States coins
 */
public enum Coins {

 /**
 * One-cent coin, commonly known as a penny,
 * is a unit of currency equaling one-hundredth
 * of a United States dollar

https://riptutorial.com/ 324

 */
 PENNY(1),

 /**
 * A nickel is a five-cent coin equaling
 * five-hundredth of a United States dollar
 */
 NICKEL(5),

 /**
 * The dime is a ten-cent coin refers to
 * one tenth of a United States dollar
 */
 DIME(10),

 /**
 * The quarter is a US coin worth 25 cents,
 * one-fourth of a United States dollar
 */
 QUARTER(25);

 private int value;

 Coins(int value){
 this.value = value;
 }

 public int getValue(){
 return value;
 }
}

Getting the values of an enum

Each enum class contains an implicit static method named values(). This method returns an array
containing all values of that enum. You can use this method to iterate over the values. It is
important to note however that this method returns a new array every time it is called.

public enum Day {
 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY;

 /**
 * Print out all the values in this enum.
 */
 public static void printAllDays() {
 for(Day day : Day.values()) {
 System.out.println(day.name());
 }
 }
}

If you need a Set you can use EnumSet.allOf(Day.class) as well.

Enum as a bounded type parameter

When writing a class with generics in java, it is possible to ensure that the type parameter is an

https://riptutorial.com/ 325

enum. Since all enums extend the Enum class, the following syntax may be used.

public class Holder<T extends Enum<T>> {
 public final T value;

 public Holder(T init) {
 this.value = init;
 }
}

In this example, the type T must be an enum.

Get enum constant by name

Say we have an enum DayOfWeek:

enum DayOfWeek {
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY;
}

An enum is compiled with a built-in static valueOf() method which can be used to lookup a
constant by its name:

String dayName = DayOfWeek.SUNDAY.name();
assert dayName.equals("SUNDAY");

DayOfWeek day = DayOfWeek.valueOf(dayName);
assert day == DayOfWeek.SUNDAY;

This is also possible using a dynamic enum type:

Class<DayOfWeek> enumType = DayOfWeek.class;
DayOfWeek day = Enum.valueOf(enumType, "SUNDAY");
assert day == DayOfWeek.SUNDAY;

Both of these valueOf() methods will throw an IllegalArgumentException if the specified enum does
not have a constant with a matching name.

The Guava library provides a helper method Enums.getIfPresent() that returns a Guava Optional to
eliminate explicit exception handling:

DayOfWeek defaultDay = DayOfWeek.SUNDAY;
DayOfWeek day = Enums.valueOf(DayOfWeek.class, "INVALID").or(defaultDay);
assert day == DayOfWeek.SUNDAY;

Implement Singleton pattern with a single-element enum

Enum constants are instantiated when an enum is referenced for the first time. Therefore, that
allows to implement Singleton software design pattern with a single-element enum.

https://riptutorial.com/ 326

https://google.github.io/guava/releases/18.0/api/docs/com/google/common/base/Enums.html#getIfPresent(java.lang.Class,%20java.lang.String)
https://google.github.io/guava/releases/18.0/api/docs/com/google/common/base/Optional.html
http://www.riptutorial.com/java/topic/130/singletons

public enum Attendant {

 INSTANCE;

 private Attendant() {
 // perform some initialization routine
 }

 public void sayHello() {
 System.out.println("Hello!");
 }
}

public class Main {

 public static void main(String... args) {
 Attendant.INSTANCE.sayHello();// instantiated at this point
 }
}

According to "Effective Java" book by Joshua Bloch, a single-element enum is the best way to
implement a singleton. This approach has following advantages:

thread safety•
guarantee of single instantiation•
out-of-the-box serialization•

And as shown in the section implements interface this singleton might also implement one or more
interfaces.

Enum with properties (fields)

In case we want to use enum with more information and not just as constant values, and we want to
be able to compare two enums.

Consider the following example:

public enum Coin {
 PENNY(1), NICKEL(5), DIME(10), QUARTER(25);

 private final int value;

 Coin(int value){
 this.value = value;
 }

 public boolean isGreaterThan(Coin other){
 return this.value > other.value;
 }

}

Here we defined an Enum called Coin which represent its value. With the method isGreaterThan we
can compare two enums:

https://riptutorial.com/ 327

http://www.riptutorial.com/java/example/1809/implements-interface

Coin penny = Coin.PENNY;
Coin dime = Coin.DIME;

System.out.println(penny.isGreaterThan(dime)); // prints: false
System.out.println(dime.isGreaterThan(penny)); // prints: true

Convert enum to String

Sometimes you want to convert your enum to a String, there are two ways to do that.

Assume we have:

public enum Fruit {
 APPLE, ORANGE, STRAWBERRY, BANANA, LEMON, GRAPE_FRUIT;
}

So how do we convert something like Fruit.APPLE to "APPLE"?

Convert using name()

name() is an internal method in enum that returns the String representation of the enum, the return
String represents exactly how the enum value was defined.

For example:

System.out.println(Fruit.BANANA.name()); // "BANANA"
System.out.println(Fruit.GRAPE_FRUIT.name()); // "GRAPE_FRUIT"

Convert using toString()

toString() is, by default, overridden to have the same behavior as name()

However, toString() is likely overridden by developers to make it print a more user friendly String

Don't use toString() if you want to do checking in your code, name() is much more
stable for that. Only use toString() when you are going to output the value to logs or
stdout or something

By default:

System.out.println(Fruit.BANANA.toString()); // "BANANA"
System.out.println(Fruit.GRAPE_FRUIT.toString()); // "GRAPE_FRUIT"

https://riptutorial.com/ 328

Example of being overridden

System.out.println(Fruit.BANANA.toString()); // "Banana"
System.out.println(Fruit.GRAPE_FRUIT.toString()); // "Grape Fruit"

Enum constant specific body

In an enum it is possible to define a specific behavior for a particular constant of the enum which
overrides the default behavior of the enum, this technique is known as constant specific body.

Suppose three piano students - John, Ben and Luke - are defined in an enum named PianoClass, as
follows:

 enum PianoClass {
 JOHN, BEN, LUKE;
 public String getSex() {
 return "Male";
 }
 public String getLevel() {
 return "Beginner";
 }
 }

And one day two other students arrive - Rita and Tom - with a sex (Female) and level
(Intermediate) that do not match the previous ones:

 enum PianoClass2 {
 JOHN, BEN, LUKE, RITA, TOM;
 public String getSex() {
 return "Male"; // issue, Rita is a female
 }
 public String getLevel() {
 return "Beginner"; // issue, Tom is an intermediate student
 }
 }

so that simply adding the new students to the constant declaration, as follows, is not correct:

PianoClass2 tom = PianoClass2.TOM;
PianoClass2 rita = PianoClass2.RITA;
System.out.println(tom.getLevel()); // prints Beginner -> wrong Tom's not a beginner
System.out.println(rita.getSex()); // prints Male -> wrong Rita's not a male

It's possible to define a specific behavior for each of the constant, Rita and Tom, which overrides
the PianoClass2 default behavior as follows:

enum PianoClass3 {
 JOHN, BEN, LUKE,
 RITA {
 @Override
 public String getSex() {
 return "Female";

https://riptutorial.com/ 329

 }
 },
 TOM {
 @Override
 public String getLevel() {
 return "Intermediate";
 }
 };
 public String getSex() {
 return "Male";
 }
 public String getLevel() {
 return "Beginner";
 }
}

and now Tom's level and Rita's sex are as they should be:

PianoClass3 tom = PianoClass3.TOM;
PianoClass3 rita = PianoClass3.RITA;
System.out.println(tom.getLevel()); // prints Intermediate
System.out.println(rita.getSex()); // prints Female

Another way to define content specific body is by using constructor, for instance:

enum Friend {
 MAT("Male"),
 JOHN("Male"),
 JANE("Female");

 private String gender;

 Friend(String gender) {
 this.gender = gender;
 }

 public String getGender() {
 return this.gender;
 }
}

and usage:

Friend mat = Friend.MAT;
Friend john = Friend.JOHN;
Friend jane = Friend.JANE;
System.out.println(mat.getGender()); // Male
System.out.println(john.getGender()); // Male
System.out.println(jane.getGender()); // Female

Zero instance enum

enum Util {
 /* No instances */;

https://riptutorial.com/ 330

 public static int clamp(int min, int max, int i) {
 return Math.min(Math.max(i, min), max);
 }

 // other utility methods...
}

Just as enum can be used for singletons (1 instance classes), it can be used for utility classes (0
instance classes). Just make sure to terminate the (empty) list of enum constants with a ;.

See the question Zero instance enum vs private constructors for preventing instantiation for a
discussion on pro's and con's compared to private constructors.

Enums with static fields

If your enum class is required to have static fields, keep in mind they are created after the enum
values themselves. That means, the following code will result in a NullPointerException:

enum Example {
 ONE(1), TWO(2);

 static Map<String, Integer> integers = new HashMap<>();

 private Example(int value) {
 integers.put(this.name(), value);
 }
}

A possible way to fix this:

enum Example {
 ONE(1), TWO(2);

 static Map<String, Integer> integers;

 private Example(int value) {
 putValue(this.name(), value);
 }

 private static void putValue(String name, int value) {
 if (integers == null)
 integers = new HashMap<>();
 integers.put(name, value);
 }
}

Do not initialize the static field:

enum Example {
 ONE(1), TWO(2);

 // after initialisisation integers is null!!
 static Map<String, Integer> integers = null;

 private Example(int value) {

https://riptutorial.com/ 331

http://www.riptutorial.com/java/example/5741/implement-singleton-pattern-with-a-single-element-enum
http://stackoverflow.com/questions/25137490/zero-instance-enum-vs-private-constructors-for-preventing-instantiation

 putValue(this.name(), value);
 }

 private static void putValue(String name, int value) {
 if (integers == null)
 integers = new HashMap<>();
 integers.put(name, value);
 }
 // !!this may lead to null poiner exception!!
 public int getValue(){
 return (Example.integers.get(this.name()));
 }
}

initialisisation:

create the enum values
as side effect putValue() called that initializes integers○

•

the static values are set
integers = null; // is executed after the enums so the content of integers is lost○

•

Compare and Contains for Enum values

Enums contains only constants and can be compared directly with ==. So, only reference check is
needed, no need to use .equals method. Moreover, if .equals used incorrectly, may raise the
NullPointerException while that's not the case with == check.

enum Day {
 GOOD, AVERAGE, WORST;
}

public class Test {

 public static void main(String[] args) {
 Day day = null;

 if (day.equals(Day.GOOD)) {//NullPointerException!
 System.out.println("Good Day!");
 }

 if (day == Day.GOOD) {//Always use == to compare enum
 System.out.println("Good Day!");
 }

 }
}

To group, complement, range the enum values we have EnumSet class which contains different
methods.

EnumSet#range : To get subset of enum by range defined by two endpoints•

EnumSet#of : Set of specific enums without any range. Multiple overloaded of methods are
there.

•

https://riptutorial.com/ 332

https://docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html

EnumSet#complementOf : Set of enum which is complement of enum values provided in method
parameter

enum Page {
 A1, A2, A3, A4, A5, A6, A7, A8, A9, A10
}

public class Test {

 public static void main(String[] args) {
 EnumSet<Page> range = EnumSet.range(Page.A1, Page.A5);

 if (range.contains(Page.A4)) {
 System.out.println("Range contains A4");
 }

 EnumSet<Page> of = EnumSet.of(Page.A1, Page.A5, Page.A3);

 if (of.contains(Page.A1)) {
 System.out.println("Of contains A1");
 }
 }
}

•

Read Enums online: https://riptutorial.com/java/topic/155/enums

https://riptutorial.com/ 333

https://riptutorial.com/java/topic/155/enums

Chapter 52: EnumSet class

Introduction

Java EnumSet class is the specialized Set implementation for use with enum types. It inherits
AbstractSet class and implements the Set interface.

Examples

Enum Set Example

import java.util.*;
enum days {
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY
}
public class EnumSetExample {
 public static void main(String[] args) {
 Set<days> set = EnumSet.of(days.TUESDAY, days.WEDNESDAY);
 // Traversing elements
 Iterator<days> iter = set.iterator();
 while (iter.hasNext())
 System.out.println(iter.next());
 }
}

Read EnumSet class online: https://riptutorial.com/java/topic/10159/enumset-class

https://riptutorial.com/ 334

https://riptutorial.com/java/topic/10159/enumset-class

Chapter 53: Exceptions and exception
handling

Introduction

Objects of type Throwable and its subtypes can be sent up the stack with the throw keyword and
caught with try…catch statements.

Syntax

void someMethod() throws SomeException { } //method declaration, forces method callers to
catch if SomeException is a checked exception type

•

try {

someMethod(); //code that might throw an exception

}

•

catch (SomeException e) {

 System.out.println("SomeException was thrown!"); //code that will run if certain
exception (SomeException) is thrown

}

•

finally {

 //code that will always run, whether try block finishes or not

}

•

Examples

Catching an exception with try-catch

An exception can be caught and handled using the try...catch statement. (In fact try statements
take other forms, as described in other examples about try...catch...finally and try-with-
resources.)

Try-catch with one catch block

The most simple form looks like this:

https://riptutorial.com/ 335

http://www.riptutorial.com/java/example/25177/the-try-finally-and-try-catch-finally-statements
http://www.riptutorial.com/java/example/1581/the-try-with-resources-statement
http://www.riptutorial.com/java/example/1581/the-try-with-resources-statement

try {
 doSomething();
} catch (SomeException e) {
 handle(e);
}
// next statement

The behavior of a simple try...catch is as follows:

The statements in the try block are executed.•
If no exception is thrown by the statements in the try block, then control passes to the next
statement after the try...catch.

•

If an exception is thrown within the try block.
The exception object is tested to see if it is an instance of SomeException or a subtype.○

If it is, then the catch block will catch the exception:
The variable e is bound to the exception object.○

The code within the catch block is executed.○

If that code throws an exception, then the newly thrown exception is propagated
in place of the original one.

○

Otherwise, control passes to the next statement after the try...catch.○

○

If it is not, the original exception continues to propagate.○

•

Try-catch with multiple catches

A try...catch can also have multiple catch blocks. For example:

try {
 doSomething();
} catch (SomeException e) {
 handleOneWay(e)
} catch (SomeOtherException e) {
 handleAnotherWay(e);
}
// next statement

If there are multiple catch blocks, they are tried one at a time starting with the first one, until a
match is found for the exception. The corresponding handler is executed (as above), and then
control is passed to the next statement after the try...catch statement. The catch blocks after the
one that matches are always skipped, even if the handler code throws an exception.

The "top down" matching strategy has consequences for cases where the exceptions in the catch
blocks are not disjoint. For example:

try {
 throw new RuntimeException("test");
} catch (Exception e) {
 System.out.println("Exception");
} catch (RuntimeException e) {
 System.out.println("RuntimeException");
}

https://riptutorial.com/ 336

This code snippet will output "Exception" rather than "RuntimeException". Since RuntimeException
is a subtype of Exception, the first (more general) catch will be matched. The second (more
specific) catch will never be executed.

The lesson to learn from this is that the most specific catch blocks (in terms of the exception types)
should appear first, and the most general ones should be last. (Some Java compilers will warn you
if a catch can never be executed, but this is not a compilation error.)

Multi-exception catch blocks

Java SE 7

Starting with Java SE 7, a single catch block can handle a list of unrelated exceptions. The
exception type are listed, separated with a vertical bar (|) symbol. For example:

try {
 doSomething();
} catch (SomeException | SomeOtherException e) {
 handleSomeException(e);
}

The behavior of a multi-exception catch is a simple extension for the single-exception case. The
catch matches if the thrown exception matches (at least) one of the listed exceptions.

There is some additional subtlety in the specification. The type of e is a synthetic union of the
exception types in the list. When the value of e is used, its static type is the least common
supertype of the type union. However, if e is rethrown within the catch block, the exception types
that are thrown are the types in the union. For example:

public void method() throws IOException, SQLException
 try {
 doSomething();
 } catch (IOException | SQLException e) {
 report(e);
 throw e;
 }

In the above, IOException and SQLException are checked exceptions whose least common
supertype is Exception. This means that the report method must match report(Exception).
However, the compiler knows that the throw can throw only an IOException or an SQLException.
Thus, method can be declared as throws IOException, SQLException rather than throws Exception.
(Which is a good thing: see Pitfall - Throwing Throwable, Exception, Error or RuntimeException.)

Throwing an exception

The following example shows the basics of throwing an exception:

public void checkNumber(int number) throws IllegalArgumentException {
 if (number < 0) {
 throw new IllegalArgumentException("Number must be positive: " + number);

https://riptutorial.com/ 337

http://www.riptutorial.com/java/example/18023/pitfall---throwing-throwable--exception--error-or-runtimeexception

 }
}

The exception is thrown on the 3rd line. This statement can be broken down into two parts:

new IllegalArgumentException(...) is creating an instance of the IllegalArgumentException
class, with a message that describes the error that exception is reporting.

•

throw ... is then throwing the exception object.•

When the exception is thrown, it causes the enclosing statements to terminate abnormally until the
exception is handled. This is described in other examples.

It is good practice to both create and throw the exception object in a single statement, as shown
above. It is also good practice to include a meaningful error message in the exception to help the
programmer to understand the cause of the problem. However, this is not necessarily the
message that you should be showing to the end user. (For a start, Java has no direct support for
internationalizing exception messages.)

There are a couple more points to be made:

We have declared the checkNumber as throws IllegalArgumentException. This was not strictly
necessary, since IllegalArgumentException is a checked exception; see The Java Exception
Hierarchy - Unchecked and Checked Exceptions. However, it is good practice to do this, and
also to include the exceptions thrown a method's javadoc comments.

•

Code immediately after a throw statement is unreachable. Hence if we wrote this:

 throw new IllegalArgumentException("it is bad");
 return;

the compiler would report a compilation error for the return statement.

•

Exception chaining

Many standard exceptions have a constructor with a second cause argument in addition to the
conventional message argument. The cause allows you to chain exceptions. Here is an example.

First we define an unchecked exception that our application is going throw when it encounters a
non-recoverable error. Note that we have included a constructor that accepts a cause argument.

 public class AppErrorException extends RuntimeException {
 public AppErrorException() {
 super();
 }

 public AppErrorException(String message) {
 super(message);
 }

https://riptutorial.com/ 338

http://www.riptutorial.com/java/example/3058/the-java-exception-hierarchy---unchecked-and-checked-exceptions
http://www.riptutorial.com/java/example/3058/the-java-exception-hierarchy---unchecked-and-checked-exceptions

 public AppErrorException(String message, Throwable cause) {
 super(message, cause);
 }
 }

Next, here is some code that illustrates exception chaining.

 public String readFirstLine(String file) throws AppErrorException {
 try (Reader r = new BufferedReader(new FileReader(file))) {
 String line = r.readLine();
 if (line != null) {
 return line;
 } else {
 throw new AppErrorException("File is empty: " + file);
 }
 } catch (IOException ex) {
 throw new AppErrorException("Cannot read file: " + file, ex);
 }
 }

The throw within the try block detects a problem and reports it via an exception with a simple
message. By contrast, the throw within the catch block is handling the IOException by wrapping it in
a new (checked) exception. However, it is not throwing away the original exception. By passing
the IOException as the cause, we record it so that it can be printed in the stacktrace, as explained in
Creating and reading stacktraces.

Custom Exceptions

Under most circumstances, it is simpler from a code-design standpoint to use existing generic
Exception classes when throwing exceptions. This is especially true if you only need the exception
to carry a simple error message. In that case, RuntimeException is usually preferred, since it is not
a checked Exception. Other exception classes exist for common classes of errors:

UnsupportedOperationException - a certain operation is not supported•
IllegalArgumentException - an invalid parameter value was passed to a method•
IllegalStateException - your API has internally reached a condition that should never happen,
or which occurs as a result of using your API in an invalid way

•

Cases where you do want to use a custom exception class include the following:

You are writing an API or library for use by others, and you want to allow users of your API to
be able to specifically catch and handle exceptions from your API, and be able to
differentiate those exceptions from other, more generic exceptions.

•

You are throwing exceptions for a specific kind of error in one part of your program, which
you want to catch and handle in another part of your program, and you want to be able to
differentiate these errors from other, more generic errors.

•

You can create your own custom exceptions by extending RuntimeException for an unchecked
exception, or checked exception by extending any Exception which is not also subclass of
RuntimeException, because:

https://riptutorial.com/ 339

http://www.riptutorial.com/java/example/1815/creating-and-reading-stacktraces
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html
https://docs.oracle.com/javase/7/docs/api/java/lang/UnsupportedOperationException.html
https://docs.oracle.com/javase/7/docs/api/java/lang/IllegalArgumentException.html
https://docs.oracle.com/javase/7/docs/api/java/lang/IllegalStateException.html
https://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html

Subclasses of Exception that are not also subclasses of RuntimeException are
checked exceptions

public class StringTooLongException extends RuntimeException {
 // Exceptions can have methods and fields like other classes
 // those can be useful to communicate information to pieces of code catching
 // such an exception
 public final String value;
 public final int maximumLength;

 public StringTooLongException(String value, int maximumLength){
 super(String.format("String exceeds maximum Length of %s: %s", maximumLength, value));
 this.value = value;
 this.maximumLength = maximumLength;
 }
}

Those can be used just as predefined exceptions:

void validateString(String value){
 if (value.length() > 30){
 throw new StringTooLongException(value, 30);
 }
}

And the fields can be used where the exception is caught and handled:

void anotherMethod(String value){
 try {
 validateString(value);
 } catch(StringTooLongException e){
 System.out.println("The string '" + e.value +
 "' was longer than the max of " + e.maximumLength);
 }
}

Keep in mind that, according to Oracle's Java Documentation:

[...] If a client can reasonably be expected to recover from an exception, make it a
checked exception. If a client cannot do anything to recover from the exception, make it
an unchecked exception.

More:

Why does RuntimeException not require an explicit exception handling?•

The try-with-resources statement

Java SE 7

As the try-catch-final statement example illustrates, resource cleanup using a finally clause
requires a significant amount of "boiler-plate" code to implement the edge-cases correctly. Java 7
provides a much simpler way to deal with this problem in the form of the try-with-resources

https://riptutorial.com/ 340

http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://stackoverflow.com/a/14995225/3502776
http://www.riptutorial.com/java/example/1581/the-try-with-resources-statement

statement.

What is a resource?

Java 7 introduced the java.lang.AutoCloseable interface to allow classes to be managed using the
try-with-resources statement. Instances of classes that implement AutoCloseable are referred to as
resources. These typically need to be disposed of in a timely fashion rather than relying on the
garbage collector to dispose of them.

The AutoCloseable interface defines a single method:

public void close() throws Exception

A close() method should dispose of the resource in an appropriate fashion. The specification
states that it should be safe to call the method on a resource that has already been disposed of. In
addition, classes that implement Autocloseable are strongly encouraged to declare the close()
method to throw a more specific exception than Exception, or no exception at all.

A wide range of standard Java classes and interfaces implement AutoCloseable. These include:

InputStream, OutputStream and their subclasses•
Reader, Writer and their subclasses•
Socket and ServerSocket and their subclasses•
Channel and its subclasses, and•
the JDBC interfaces Connection, Statement and ResultSet and their subclasses.•

Application and third party classes may do this as well.

The basic try-with-resource statement

The syntax of a try-with-resources is based on classical try-catch, try-finally and try-catch-finally
forms. Here is an example of a "basic" form; i.e. the form without a catch or finally.

try (PrintStream stream = new PrintStream("hello.txt")) {
 stream.println("Hello world!");
}

The resources to be manage are declared as variables in the (...) section after the try clause. In
the example above, we declare a resource variable stream and initialize it to a newly created
PrintStream.

Once the resource variables have been initialized, the try block is executed. When that
completes, stream.close() will be called automatically to ensure that the resource does not leak.
Note that the close() call happens no matter how the block completes.

The enhanced try-with-resource statements

https://riptutorial.com/ 341

The try-with-resources statement can be enhanced with catch and finally blocks, as with the pre-
Java 7 try-catch-finally syntax. The following code snippet adds a catch block to our previous one
to deal with the FileNotFoundException that the PrintStream constructor can throw:

try (PrintStream stream = new PrintStream("hello.txt")) {
 stream.println("Hello world!");
} catch (FileNotFoundException ex) {
 System.err.println("Cannot open the file");
} finally {
 System.err.println("All done");
}

If either the resource initialization or the try block throws the exception, then the catch block will be
executed. The finally block will always be executed, as with a conventional try-catch-finally
statement.

There are a couple of things to note though:

The resource variable is out of scope in the catch and finally blocks.•
The resource cleanup will happen before the statement tries to match the catch block.•
If the automatic resource cleanup threw an exception, then that could be caught in one of the
catch blocks.

•

Managing multiple resources

The code snippets above show a single resource being managed. In fact, try-with-resources can
manage multiple resources in one statement. For example:

try (InputStream is = new FileInputStream(file1);
 OutputStream os = new FileOutputStream(file2)) {
 // Copy 'is' to 'os'
}

This behaves as you would expect. Both is and os are closed automatically at the end of the try
block. There are a couple of points to note:

The initializations occur in the code order, and later resource variable initializers can use of
the values of the earlier ones.

•

All resource variables that were successfully initialized will be cleaned up.•
Resource variables are cleaned up in reverse order of their declarations.•

Thus, in the above example, is is initialized before os and cleaned up after it, and is will be
cleaned up if there is an exception while initializing os.

Equivalence of try-with-resource and classical try-catch-
finally

The Java Language Specification specifies the behavior of try-with-resource forms in terms of the

https://riptutorial.com/ 342

classical try-catch-finally statement. (Please refer to the JLS for the full details.)

For example, this basic try-with-resource :

try (PrintStream stream = new PrintStream("hello.txt")) {
 stream.println("Hello world!");
}

is defined to be equivalent to this try-catch-finally:

// Note that the constructor is not part of the try-catch statement
PrintStream stream = new PrintStream("hello.txt");

// This variable is used to keep track of the primary exception thrown
// in the try statement. If an exception is thrown in the try block,
// any exception thrown by AutoCloseable.close() will be suppressed.
Throwable primaryException = null;

// The actual try block
try {
 stream.println("Hello world!");
} catch (Throwable t) {
 // If an exception is thrown, remember it for the finally block
 primaryException = t;
 throw t;
} finally {
 if (primaryException == null) {
 // If no exception was thrown so far, exceptions thrown in close() will
 // not be caught and therefore be passed on to the enclosing code.
 stream.close();
 } else {
 // If an exception has already been thrown, any exception thrown in
 // close() will be suppressed as it is likely to be related to the
 // previous exception. The suppressed exception can be retrieved
 // using primaryException.getSuppressed().
 try {
 stream.close();
 } catch (Throwable suppressedException) {
 primaryException.addSuppressed(suppressedException);
 }
 }
}

(The JLS specifies that the actual t and primaryException variables will be invisible to normal Java
code.)

The enhanced form of try-with-resources is specified as an equivalence with the basic form. For
example:

try (PrintStream stream = new PrintStream(fileName)) {
 stream.println("Hello world!");
} catch (NullPointerException ex) {
 System.err.println("Null filename");
} finally {
 System.err.println("All done");
}

https://riptutorial.com/ 343

is equivalent to:

try {
 try (PrintStream stream = new PrintStream(fileName)) {
 stream.println("Hello world!");
 }
} catch (NullPointerException ex) {
 System.err.println("Null filename");
} finally {
 System.err.println("All done");
}

Creating and reading stacktraces

When an exception object is created (i.e. when you new it), the Throwable constructor captures
information about the context in which the exception was created. Later on, this information can be
output in the form of a stacktrace, which can be used to help diagnose the problem that caused
the exception in the first place.

Printing a stacktrace

Printing a stacktrace is simply a matter of calling the printStackTrace() method. For example:

try {
 int a = 0;
 int b = 0;
 int c = a / b;
} catch (ArithmeticException ex) {
 // This prints the stacktrace to standard output
 ex.printStackTrace();
}

The printStackTrace() method without arguments will print to the application's standard output; i.e.
the current System.out. There are also printStackTrace(PrintStream) and
printStackTrace(PrintWriter) overloads that print to a specified Stream or Writer.

Notes:

The stacktrace does not include the details of the exception itself. You can use the
toString() method to get those details; e.g.

 // Print exception and stacktrace
 System.out.println(ex);
 ex.printStackTrace();

1.

Stacktrace printing should be used sparingly; see Pitfall - Excessive or inappropriate
stacktraces . It is often better to use a logging framework, and pass the exception object to
be logged.

2.

Understanding a stacktrace

https://riptutorial.com/ 344

http://www.riptutorial.com/java/example/19955/pitfall---excessive-or-inappropriate-stacktraces
http://www.riptutorial.com/java/example/19955/pitfall---excessive-or-inappropriate-stacktraces

Consider the following simple program consisting of two classes in two files. (We have shown the
filenames and added line numbers for illustration purposes.)

File: "Main.java"
1 public class Main {
2 public static void main(String[] args) {
3 new Test().foo();
4 }
5 }

File: "Test.java"
1 class Test {
2 public void foo() {
3 bar();
4 }
5
6 public int bar() {
7 int a = 1;
8 int b = 0;
9 return a / b;
10 }

When these files are compiled and run, we will get the following output.

Exception in thread "main" java.lang.ArithmeticException: / by zero
 at Test.bar(Test.java:9)
 at Test.foo(Test.java:3)
 at Main.main(Main.java:3)

Let us read this one line at a time to figure out what it is telling us.

Line #1 tells us that the thread called "main" has terminated due to an uncaught exception. The full
name of the exception is java.lang.ArithmeticException, and the exception message is "/ by zero".

If we look up the javadocs for this exception, it says:

Thrown when an exceptional arithmetic condition has occurred. For example, an
integer "divide by zero" throws an instance of this class.

Indeed, the message "/ by zero" is a strong hint that the cause of the exception is that some code
has attempted to divide something by zero. But what?

The remaining 3 lines are the stack trace. Each line represents a method (or constructor) call on
the call stack, and each one tells us three things:

the name of the class and method that was being executed,•
the source code filename,•
the source code line number of the statement that was being executed•

These lines of a stacktrace are listed with the frame for the current call at the top. The top frame in
our example above is in the Test.bar method, and at line 9 of the Test.java file. That is the
following line:

https://riptutorial.com/ 345

 return a / b;

If we look a couple of lines earlier in the file to where b is initialized, it is apparent that b will have
the value zero. We can say without any doubt that this is the cause of the exception.

If we needed to go further, we can see from the stacktrace that bar() was called from foo() at line
3 of Test.java, and that foo() was in turn called from Main.main().

Note: The class and method names in the stack frames are the internal names for the classes and
methods. You will need to recognize the following unusual cases:

A nested or inner class will look like "OuterClass$InnerClass".•
An anonymous inner class will look like "OuterClass$1", "OuterClass$2", etcetera.•
When code in a constructor, instance field initializer or an instance initializer block is being
executed, the method name will be "".

•

When code in a static field initializer or static initializer block is being executed, the method
name will be "".

•

(In some versions of Java, the stacktrace formatting code will detect and elide repeated
stackframe sequences, as can occur when an application fails due to excessive recursion.)

Exception chaining and nested stacktraces

Java SE 1.4

Exception chaining happens when a piece of code catches an exception, and then creates and
throws a new one, passing the first exception as the cause. Here is an example:

File: Test,java
1 public class Test {
2 int foo() {
3 return 0 / 0;
4 }
5
6 public Test() {
7 try {
8 foo();
9 } catch (ArithmeticException ex) {
10 throw new RuntimeException("A bad thing happened", ex);
11 }
12 }
13
14 public static void main(String[] args) {
15 new Test();
16 }
17 }

When the above class is compiled and run, we get the following stacktrace:

Exception in thread "main" java.lang.RuntimeException: A bad thing happened
 at Test.<init>(Test.java:10)
 at Test.main(Test.java:15)

https://riptutorial.com/ 346

Caused by: java.lang.ArithmeticException: / by zero
 at Test.foo(Test.java:3)
 at Test.<init>(Test.java:8)
 ... 1 more

The stacktrace starts with the class name, method and call stack for the exception that (in this
case) caused the application to crash. This is followed by a "Caused by:" line that reports the cause
exception. The class name and message are reported, followed by the cause exception's stack
frames. The trace ends with an "... N more" which indicates that the last N frames are the same as
for the previous exception.

The "Caused by:" is only included in the output when the primary exception's cause is not null).
Exceptions can be chained indefinitely, and in that case the stacktrace can have multiple "Caused
by:" traces.

Note: the cause mechanism was only exposed in the Throwable API in Java 1.4.0. Prior to that,
exception chaining needed to be implemented by the application using a custom exception field to
represent the cause, and a custom printStackTrace method.

Capturing a stacktrace as a String

Sometimes, an application needs to be able to capture a stacktrace as a Java String, so that it can
be used for other purposes. The general approach for doing this is to create a temporary
OutputStream or Writer that writes to an in-memory buffer and pass that to the printStackTrace(...).

The Apache Commons and Guava libraries provide utility methods for capturing a stacktrace as a
String:

org.apache.commons.lang.exception.ExceptionUtils.getStackTrace(Throwable)

com.google.common.base.Throwables.getStackTraceAsString(Throwable)

If you cannot use third party libraries in your code base, then the following method with do the
task:

 /**
 * Returns the string representation of the stack trace.
 *
 * @param throwable the throwable
 * @return the string.
 */
 public static String stackTraceToString(Throwable throwable) {
 StringWriter stringWriter = new StringWriter();
 throwable.printStackTrace(new PrintWriter(stringWriter));
 return stringWriter.toString();
 }

Note that if your intention is to analyze the stacktrace, it is simpler to use getStackTrace() and
getCause() than to attempt to parse a stacktrace.

https://riptutorial.com/ 347

http://commons.apache.org/proper/commons-lang/javadocs/api-2.6/org/apache/commons/lang/exception/ExceptionUtils.html#getStackTrace(java.lang.Throwable)
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/base/Throwables.html#getStackTraceAsString(java.lang.Throwable)

Handling InterruptedException

InterruptedException is a confusing beast - it shows up in seemingly innocuous methods like
Thread.sleep(), but handling it incorrectly leads to hard-to-manage code that behaves poorly in
concurrent environments.

At its most basic, if an InterruptedException is caught it means someone, somewhere, called
Thread.interrupt() on the thread your code is currently running in. You might be inclined to say
"It's my code! I'll never interrupt it!" and therefore do something like this:

// Bad. Don't do this.
try {
 Thread.sleep(1000);
} catch (InterruptedException e) {
 // disregard
}

But this is exactly the wrong way to handle an "impossible" event occurring. If you know your
application will never encounter an InterruptedException you should treat such an event as a
serious violation of your program's assumptions and exit as quickly as possible.

The proper way to handle an "impossible" interrupt is like so:

// When nothing will interrupt your code
try {
 Thread.sleep(1000);
} catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 throw new AssertionError(e);
}

This does two things; it first restores the interrupt status of the thread (as if the
InterruptedException had not been thrown in the first place), and then it throws an AssertionError
indicating the basic invariants of your application have been violated. If you know for certain that
you'll never interrupt the thread this code runs in this is safe since the catch block should never be
reached.

Using Guava's Uninterruptibles class helps simplify this pattern; calling
Uninterruptibles.sleepUninterruptibly() disregards the interrupted state of a thread until the sleep
duration has expired (at which point it's restored for later calls to inspect and throw their own
InterruptedException). If you know you'll never interrupt such code this safely avoids needing to
wrap your sleep calls in a try-catch block.

More often, however, you cannot guarantee that your thread will never be interrupted. In particular
if you're writing code that will be executed by an Executor or some other thread-management it's
critical that your code responds promptly to interrupts, otherwise your application will stall or even
deadlock.

In such cases the best thing to do is generally to allow the InterruptedException to propagate up
the call stack, adding a throws InterruptedException to each method in turn. This may seem kludgy

https://riptutorial.com/ 348

https://docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#sleep(long)
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#interrupt--
https://google.github.io/guava/releases/snapshot/api/docs/com/google/common/util/concurrent/Uninterruptibles.html
https://google.github.io/guava/releases/snapshot/api/docs/com/google/common/util/concurrent/Uninterruptibles.html#sleepUninterruptibly(long,%20java.util.concurrent.TimeUnit)
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html

but it's actually a desirable property - your method's signatures now indicates to callers that it will
respond promptly to interrupts.

// Let the caller determine how to handle the interrupt if you're unsure
public void myLongRunningMethod() throws InterruptedException {
 ...
}

In limited cases (e.g. while overriding a method that doesn't throw any checked exceptions) you
can reset the interrupted status without raising an exception, expecting whatever code is executed
next to handle the interrupt. This delays handling the interruption but doesn't suppress it entirely.

// Suppresses the exception but resets the interrupted state letting later code
// detect the interrupt and handle it properly.
try {
 Thread.sleep(1000);
} catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 return ...; // your expectations are still broken at this point - try not to do more work.
}

The Java Exception Hierarchy - Unchecked and Checked Exceptions

All Java exceptions are instances of classes in the Exception class hierarchy. This can be
represented as follows:

java.lang.Throwable - This is the base class for all exception classes. Its methods and
constructors implement a range of functionality common to all exceptions.

java.lang.Exception - This is the superclass of all normal exceptions.
various standard and custom exception classes.○

java.lang.RuntimeException - This the superclass of all normal exceptions that are
unchecked exceptions.

various standard and custom runtime exception classes.○

○

○

java.lang.Error - This is the superclass of all "fatal error" exceptions.○

•

Notes:

The distinction between checked and unchecked exceptions is described below.1.
The Throwable, Exception and RuntimeException class should be treated as abstract; see Pitfall
- Throwing Throwable, Exception, Error or RuntimeException.

2.

The Error exceptions are thrown by the JVM in situations where it would be unsafe or unwise
for an application to attempt to recover.

3.

It would be unwise to declare custom subtypes of Throwable. Java tools and libraries may
assume that Error and Exception are the only direct subtypes of Throwable, and misbehave if
that assumption is incorrect.

4.

Checked versus Unchecked Exceptions

One of the criticisms of exception support in some programming languages is that is difficult to

https://riptutorial.com/ 349

https://docs.oracle.com/javase/8/docs/api/java/lang/Throwable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Error.html
http://www.riptutorial.com/java/example/18023/pitfall---throwing-throwable--exception--error-or-runtimeexception
http://www.riptutorial.com/java/example/18023/pitfall---throwing-throwable--exception--error-or-runtimeexception

know which exceptions a given method or procedure might throw. Given that an unhandled
exception is liable to cause a program to crash, this can make exceptions a source of fragility.

The Java language addresses this concern with the checked exception mechanism. First, Java
classifies exceptions into two categories:

Checked exceptions typically represent anticipated events that an application should be able
to deal with. For instance, IOException and its subtypes represent error conditions that can
occur in I/O operations. Examples include, file opens failing because a file or directory does
not exist, network reads and writes failing because a network connection has been broken
and so on.

•

Unchecked exceptions typically represent unanticipated events that an application cannot
deal with. These are typically the result of a bug in the application.

•

(In the following, "thrown" refers to any exception thrown explicitly (by a throw statement), or implicitly (in a failed
dereference, type cast and so on). Similarly, "propagated" refers to an exception that was thrown in a nested call, and
not caught within that call. The sample code below will illustrate this.)

The second part of the checked exception mechanism is that there are restrictions on methods
where a checked exception may occur:

When a checked exception is thrown or propagated in a method, it must either be caught by
the method, or listed in the method's throws clause. (The significance of the throws clause is
described in this example.)

•

When a checked exception is thrown or propagated in an initializer block, it must be caught
the the block.

•

A checked exception cannot be propagated by a method call in a field initialization
expression. (There is no way to catch such an exception.)

•

In short, a checked exception must be either handled, or declared.

These restrictions do not apply to unchecked exceptions. This includes all cases where an
exception is thrown implicitly, since all such cases throw unchecked exceptions.

Checked exception examples

These code snippets are intended to illustrate the checked exception restrictions. In each case, we
show a version of the code with a compilation error, and a second version with the error corrected.

// This declares a custom checked exception.
public class MyException extends Exception {
 // constructors omitted.
}

// This declares a custom unchecked exception.
public class MyException2 extends RuntimeException {
 // constructors omitted.
}

https://riptutorial.com/ 350

http://www.riptutorial.com/java/example/25209/the--throws--clause-in-a-method-declaration

The first example shows how explicitly thrown checked exceptions can be declared as "thrown" if
they should not be handled in the method.

// INCORRECT
public void methodThrowingCheckedException(boolean flag) {
 int i = 1 / 0; // Compiles OK, throws ArithmeticException
 if (flag) {
 throw new MyException(); // Compilation error
 } else {
 throw new MyException2(); // Compiles OK
 }
}

// CORRECTED
public void methodThrowingCheckedException(boolean flag) throws MyException {
 int i = 1 / 0; // Compiles OK, throws ArithmeticException
 if (flag) {
 throw new MyException(); // Compilation error
 } else {
 throw new MyException2(); // Compiles OK
 }
}

The second example shows how a propagated checked exception can be dealt with.

// INCORRECT
public void methodWithPropagatedCheckedException() {
 InputStream is = new FileInputStream("someFile.txt"); // Compilation error
 // FileInputStream throws IOException or a subclass if the file cannot
 // be opened. IOException is a checked exception.
 ...
}

// CORRECTED (Version A)
public void methodWithPropagatedCheckedException() throws IOException {
 InputStream is = new FileInputStream("someFile.txt");
 ...
}

// CORRECTED (Version B)
public void methodWithPropagatedCheckedException() {
 try {
 InputStream is = new FileInputStream("someFile.txt");
 ...
 } catch (IOException ex) {
 System.out.println("Cannot open file: " + ex.getMessage());
 }
}

The final example shows how to deal with a checked exception in a static field initializer.

// INCORRECT
public class Test {
 private static final InputStream is =
 new FileInputStream("someFile.txt"); // Compilation error
}

// CORRECTED

https://riptutorial.com/ 351

public class Test {
 private static final InputStream is;
 static {
 InputStream tmp = null;
 try {
 tmp = new FileInputStream("someFile.txt");
 } catch (IOException ex) {
 System.out.println("Cannot open file: " + ex.getMessage());
 }
 is = tmp;
 }
}

Note that in this last case, we also have to deal with the problems that is cannot be assigned to
more than once, and yet also has to be assigned to, even in the case of an exception.

Introduction

Exceptions are errors which occur when a program is executing. Consider the Java program
below which divides two integers.

class Division {
 public static void main(String[] args) {

 int a, b, result;

 Scanner input = new Scanner(System.in);
 System.out.println("Input two integers");

 a = input.nextInt();
 b = input.nextInt();

 result = a / b;

 System.out.println("Result = " + result);
 }
}

Now we compile and execute the above code, and see the output for an attempted division by
zero:

Input two integers
7 0
Exception in thread "main" java.lang.ArithmeticException: / by zero
 at Division.main(Disivion.java:14)

Division by zero is an invalid operation that would produce a value that cannot be represented as
an integer. Java deals with this by throwing an exception. In this case, the exception is an
instance of the ArithmeticException class.

Note: The example on creating and reading stack traces explains what the output after the two
numbers means.

The utility of an exception is the flow control that it allows. Without using exceptions, a typical

https://riptutorial.com/ 352

http://www.riptutorial.com/java/example/1815/creating-and-reading-stacktraces

solution to this problem may be to first check if b == 0:

class Division {
 public static void main(String[] args) {

 int a, b, result;

 Scanner input = new Scanner(System.in);
 System.out.println("Input two integers");

 a = input.nextInt();
 b = input.nextInt();

 if (b == 0) {
 System.out.println("You cannot divide by zero.");
 return;
 }

 result = a / b;

 System.out.println("Result = " + result);
 }
}

This prints the message You cannot divide by zero. to the console and quits the program in a
graceful way when the user tries to divide by zero. An equivalent way of dealing with this problem
via exception handling would be to replace the if flow control with a try-catch block:

...

a = input.nextInt();
b = input.nextInt();

try {
 result = a / b;
}
catch (ArithmeticException e) {
 System.out.println("An ArithmeticException occurred. Perhaps you tried to divide by
zero.");
 return;
}

...

A try catch block is executed as follows:

Begin executing the code in the try block.1.
If an exception occurs in the try block, immediately abort and check to see if this exception is
caught by the catch block (in this case, when the Exception is an instance of
ArithmeticException).

2.

If the exception is caught, it is assigned to the variable e and the catch block is executed.3.
If either the try or catch block is completed (i.e. no uncaught exceptions occur during code
execution) then continue to execute code below the try-catch block.

4.

It is generally considered good practice to use exception handling as part of the normal flow

https://riptutorial.com/ 353

control of an application where behavior would otherwise be undefined or unexpected. For
instance, instead of returning null when a method fails, it is usually better practice to throw an
exception so that the application making use of the method can define its own flow control for the
situation via exception handling of the kind illustrated above. In some sense, this gets around the
problem of having to return a particular type, as any one of multiple kinds of exceptions may be
thrown to indicate the specific problem that occurred.

For more advice on how and how not to use exceptions, refer to Java Pitfalls - Exception usage

Return statements in try catch block

Although it's bad practice, it's possible to add multiple return statements in a exception handling
block:

 public static int returnTest(int number){
 try{
 if(number%2 == 0) throw new Exception("Exception thrown");
 else return x;
 }
 catch(Exception e){
 return 3;
 }
 finally{
 return 7;
 }
}

This method will always return 7 since the finally block associated with the try/catch block is
executed before anything is returned. Now, as finally has return 7;, this value supersedes the
try/catch return values.

If the catch block returns a primitive value and that primitive value is subsequently changed in the
finally block, the value returned in the catch block will be returned and the changes from the finally
block will be ignored.

The example below will print "0", not "1".

public class FinallyExample {

 public static void main(String[] args) {
 int n = returnTest(4);

 System.out.println(n);
 }

 public static int returnTest(int number) {

 int returnNumber = 0;

 try {
 if (number % 2 == 0)
 throw new Exception("Exception thrown");
 else
 return returnNumber;

https://riptutorial.com/ 354

http://www.riptutorial.com/java/topic/5381/java-pitfalls---exception-usage

 } catch (Exception e) {
 return returnNumber;
 } finally {
 returnNumber = 1;
 }
 }
}

Advanced features of Exceptions

This example covers some advanced features and use-cases for Exceptions.

Examining the callstack programmatically

Java SE 1.4

The primary use of exception stacktraces is to provide information about an application error and
its context so that the programmer can diagnose and fix the problem. Sometimes it can be used
for other things. For example, a SecurityManager class may need to examine the call stack to
decide whether the code that is making a call should be trusted.

You can use exceptions to examine the call stack programatically as follows:

 Exception ex = new Exception(); // this captures the call stack
 StackTraceElement[] frames = ex.getStackTrace();
 System.out.println("This method is " + frames[0].getMethodName());
 System.out.println("Called from method " + frames[1].getMethodName());

There are some important caveats on this:

The information available in a StackTraceElement is limited. There is no more information
available than is displayed by printStackTrace. (The values of the local variables in the frame
are not available.)

1.

The javadocs for getStackTrace() state that a JVM is permitted to leave out frames:

Some virtual machines may, under some circumstances, omit one or more stack
frames from the stack trace. In the extreme case, a virtual machine that has no
stack trace information concerning this throwable is permitted to return a zero-
length array from this method.

2.

Optimizing exception construction

As mentioned elsewhere, constructing an exception is rather expensive because it entails
capturing and recording information about all stack frames on the current thread. Sometimes, we
know that that information is never going to be used for a given exception; e.g. the stacktrace will
never be printed. In that case, there is an implementation trick that we can use in a custom
exception to cause the information to not be captured.

https://riptutorial.com/ 355

The stack frame information needed for stacktraces, is captured when the Throwable constructors
call the Throwable.fillInStackTrace() method. This method is public, which means that a subclass
can override it. The trick is to override the method inherited from Throwable with one that does
nothing; e.g.

 public class MyException extends Exception {
 // constructors

 @Override
 public void fillInStackTrace() {
 // do nothing
 }
 }

The problem with this approach is that an exception that overrides fillInStackTrace() can never
capture the stacktrace, and is useless in scenarios where you need one.

Erasing or replacing the stacktrace

Java SE 1.4

In some situations, the stacktrace for an exception created in the normal way contains either
incorrect information, or information that the developer does not want to reveal to the user. For
these scenarios, the Throwable.setStackTrace can be used to replace the array of StackTraceElement
objects that holds the information.

For example, the following can be used to discard an exception's stack information:

 exception.setStackTrace(new StackTraceElement[0]);

Suppressed exceptions

Java SE 7

Java 7 introduced the try-with-resources construct, and the associated concept of exception
suppression. Consider the following snippet:

try (Writer w = new BufferedWriter(new FileWriter(someFilename))) {
 // do stuff
 int temp = 0 / 0; // throws an ArithmeticException
}

When the exception is thrown, the try will call close() on the w which will flush any buffered output
and then close the FileWriter. But what happens if an IOException is thrown while flushing the
output?

What happens is that any exception that is thrown while cleaning up a resource is suppressed.
The exception is caught, and added to the primary exception's suppressed exception list. Next the
try-with-resources will continue with the cleanup of the other resources. Finally, primary exception

https://riptutorial.com/ 356

will be rethrown.

A similar pattern occurs if an exception it thrown during the resource initialization, or if the try
block completes normally. The first exception thrown becomes the primary exception, and
subsequent ones arising from cleanup are suppressed.

The suppressed exceptions can be retrieved from the primary exception object by calling
getSuppressedExceptions.

The try-finally and try-catch-finally statements

The try...catch...finally statement combines exception handling with clean-up code. The
finally block contains code that will be executed in all circumstances. This makes them suitable
for resource management, and other kinds of cleanup.

Try-finally

Here is an example of the simpler (try...finally) form:

try {
 doSomething();
} finally {
 cleanUp();
}

The behavior of the try...finally is as follows:

The code in the try block is executed.•
If no exception was thrown in the try block:

The code in the finally block is executed.○

If the finally block throws an exception, that exception is propagated.○

Otherwise, control passes to the next statement after the try...finally.○

•

If an exception was thrown in the try block:
The code in the finally block is executed.○

If the finally block throws an exception, that exception is propagated.○

Otherwise, the original exception continues to propagate.○

•

The code within finally block will always be executed. (The only exceptions are if System.exit(int)
is called, or if the JVM panics.) Thus a finally block is the correct place code that always needs to
be executed; e.g. closing files and other resources or releasing locks.

try-catch-finally

Our second example shows how catch and finally can be used together. It also illustrates that
cleaning up resources is not straightforward.

// This code snippet writes the first line of a file to a string
String result = null;

https://riptutorial.com/ 357

Reader reader = null;
try {
 reader = new BufferedReader(new FileReader(fileName));
 result = reader.readLine();
} catch (IOException ex) {
 Logger.getLogger.warn("Unexpected IO error", ex); // logging the exception
} finally {
 if (reader != null) {
 try {
 reader.close();
 } catch (IOException ex) {
 // ignore / discard this exception
 }
 }
}

The complete set of (hypothetical) behaviors of try...catch...finally in this example are too
complicated to describe here. The simple version is that the code in the finally block will always
be executed.

Looking at this from the perspective of resource management:

We declare the "resource" (i.e. reader variable) before the try block so that it will be in scope
for the finally block.

•

By putting the new FileReader(...), the catch is able to handle any IOError exception from
thrown when opening the file.

•

We need a reader.close() in the finally block because there are some exception paths that
we cannot intercept either in the try block or in catch block.

•

However, since an exception might have been thrown before reader was initialized, we also
need an explicit null test.

•

Finally, the reader.close() call might (hypothetically) throw an exception. We don't care about
that, but if we don't catch the exception at source, we would need to deal with it further up
the call stack.

•

Java SE 7

Java 7 and later provide an alternative try-with-resources syntax which significantly simplifies
resource clean-up.

The 'throws' clause in a method declaration

Java's checked exception mechanism requires the programmer to declare that certain methods
could throw specifed checked exceptions. This is done using the throws clause. For example:

public class OddNumberException extends Exception { // a checked exception
}

public void checkEven(int number) throws OddNumberException {
 if (number % 2 != 0) {
 throw new OddNumberException();
 }
}

https://riptutorial.com/ 358

http://www.riptutorial.com/java/example/1581/the-try-with-resources-statement

The throws OddNumberException declares that a call to checkEven could throw an exception that is of
type OddNumberException.

A throws clause can declare a list of types, and can include unchecked exceptions as well as
checked exceptions.

public void checkEven(Double number)
 throws OddNumberException, ArithmeticException {
 if (!Double.isFinite(number)) {
 throw new ArithmeticException("INF or NaN");
 } else if (number % 2 != 0) {
 throw new OddNumberException();
 }
}

What is the point of declaring unchecked exceptions as
thrown?

The throws clause in a method declaration serves two purposes:

It tells the compiler which exceptions are thrown so that the compiler can report uncaught
(checked) exceptions as errors.

1.

It tells a programmer who is writing code that calls the method what exceptions to expect.
For this purpose, it often makes to senses to include unchecked exceptions in a throws list.

2.

Note: that the throws list is also used by the javadoc tool when generating API documentation, and
by a typical IDE's "hover text" method tips.

Throws and method overriding

The throws clause forms part of a method's signature for the purpose of method overriding. An
override method can be declared with the same set of checked exceptions as thrown by the
overridden method, or with a subset. However the override method cannot add extra checked
exceptions. For example:

@Override
public void checkEven(int number) throws NullPointerException // OK—NullPointerException is an
unchecked exception
 ...

@Override
public void checkEven(Double number) throws OddNumberException // OK—identical to the
superclass
 ...

class PrimeNumberException extends OddNumberException {}
class NonEvenNumberException extends OddNumberException {}

@Override
public void checkEven(int number) throws PrimeNumberException, NonEvenNumberException //

https://riptutorial.com/ 359

OK—these are both subclasses

@Override
public void checkEven(Double number) throws IOExcepion // ERROR

The reason for this rule is that if an overriden method can throw a checked exception that the
overridden method could not throw, that would break type substitutability.

Read Exceptions and exception handling online: https://riptutorial.com/java/topic/89/exceptions-
and-exception-handling

https://riptutorial.com/ 360

https://riptutorial.com/java/topic/89/exceptions-and-exception-handling
https://riptutorial.com/java/topic/89/exceptions-and-exception-handling

Chapter 54: Executor, ExecutorService and
Thread pools

Introduction

The Executor interface in Java provides a way of decoupling task submission from the mechanics
of how each task will be run, including details of thread use, scheduling, etc. An Executor is
normally used instead of explicitly creating threads. With Executors, developers won't have to
significantly rewrite their code to be able to easily tune their program's task-execution policy.

Remarks

Pitfalls

When you schedule a task for repeated execution, depending on the
ScheduledExecutorService used, your task might be suspended from any further execution,
if an execution of your task causes an exception which isn't handled. See Mother F**k the
ScheduledExecutorService!

•

Examples

Fire and Forget - Runnable Tasks

Executors accept a java.lang.Runnable which contains (potentially computationally or otherwise
long-running or heavy) code to be run in another Thread.

Usage would be:

Executor exec = anExecutor;
exec.execute(new Runnable() {
 @Override public void run() {
 //offloaded work, no need to get result back
 }
});

Note that with this executor, you have no means to get any computed value back.
With Java 8, one can utilize lambdas to shorten the code example.

Java SE 8

Executor exec = anExecutor;
exec.execute(() -> {
 //offloaded work, no need to get result back
});

https://riptutorial.com/ 361

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Executor.html
http://code.nomad-labs.com/2011/12/09/mother-fk-the-scheduledexecutorservice
http://code.nomad-labs.com/2011/12/09/mother-fk-the-scheduledexecutorservice

ThreadPoolExecutor

A common Executor used is the ThreadPoolExecutor, which takes care of Thread handling. You can
configure the minimal amount of Threads the executor always has to maintain when there's not
much to do (it's called core size) and a maximal Thread size to which the Pool can grow, if there is
more work to do. Once the workload declines, the Pool slowly reduces the Thread count again
until it reaches min size.

ThreadPoolExecutor pool = new ThreadPoolExecutor(
 1, // keep at least one thread ready,
 // even if no Runnables are executed
 5, // at most five Runnables/Threads
 // executed in parallel
 1, TimeUnit.MINUTES, // idle Threads terminated after one
 // minute, when min Pool size exceeded
 new ArrayBlockingQueue<Runnable>(10)); // outstanding Runnables are kept here

pool.execute(new Runnable() {
 @Override public void run() {
 //code to run
 }
});

Note If you configure the ThreadPoolExecutor with an unbounded queue, then the thread count will
not exceed corePoolSize since new threads are only created if the queue is full:

ThreadPoolExecutor with all parameters:

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory,
RejectedExecutionHandler handler)

from JavaDoc

If there are more than corePoolSize but less than maximumPoolSize threads running,
a new thread will be created only if the queue is full.

Advantages:

BlockingQueue size can be controlled and out-of-memory scenarios can be avoided.
Application performance won't be degraded with limited bounded queue size.

1.

You can use existing or create new Rejection Handler policies.

In the default ThreadPoolExecutor.AbortPolicy, the handler throws a runtime
RejectedExecutionException upon rejection.

1.

In ThreadPoolExecutor.CallerRunsPolicy, the thread that invokes execute itself runs the
task. This provides a simple feedback control mechanism that will slow down the rate
that new tasks are submitted.

2.

In ThreadPoolExecutor.DiscardPolicy, a task that cannot be executed is simply dropped.3.

2.

https://riptutorial.com/ 362

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html

In ThreadPoolExecutor.DiscardOldestPolicy, if the executor is not shut down, the task at
the head of the work queue is dropped, and then execution is retried (which can fail
again, causing this to be repeated.)

4.

Custom ThreadFactory can be configured, which is useful :

To set a more descriptive thread name1.
To set thread daemon status2.
To set thread priority3.

3.

Here is a example of how to use ThreadPoolExecutor

Retrieving value from computation - Callable

If your computation produces some return value which later is required, a simple Runnable task
isn't sufficient. For such cases you can use ExecutorService.submit(Callable<T>) which returns a
value after execution completes.

The Service will return a Future which you can use to retrieve the result of the task execution.

// Submit a callable for execution
ExecutorService pool = anExecutorService;
Future<Integer> future = pool.submit(new Callable<Integer>() {
 @Override public Integer call() {
 //do some computation
 return new Random().nextInt();
 }
});
// ... perform other tasks while future is executed in a different thread

When you need to get the result of the future, call future.get()

Wait indefinitely for future to finish with a result.

 try {
 // Blocks current thread until future is completed
 Integer result = future.get();
 catch (InterruptedException || ExecutionException e) {
 // handle appropriately
 }

•

Wait for future to finish, but no longer than specified time.

 try {
 // Blocks current thread for a maximum of 500 milliseconds.
 // If the future finishes before that, result is returned,
 // otherwise TimeoutException is thrown.
 Integer result = future.get(500, TimeUnit.MILLISECONDS);
 catch (InterruptedException || ExecutionException || TimeoutException e) {
 // handle appropriately
 }

•

If the result of a scheduled or running task is no longer required, you can call

https://riptutorial.com/ 363

https://github.com/manjunathshetty/java-samples/tree/master/java-threadpool-executor-sample
http://www.riptutorial.com/java/example/18630/callable-and-future
http://www.riptutorial.com/java/example/18630/callable-and-future

Future.cancel(boolean) to cancel it.

Calling cancel(false) will just remove the task from the queue of tasks to be run.•
Calling cancel(true) will also interrupt the task if it is currently running.•

Scheduling tasks to run at a fixed time, after a delay or repeatedly

The ScheduledExecutorService class provides a methods for scheduling single or repeated tasks in
a number of ways. The following code sample assume that pool has been declared and initialized
as follows:

ScheduledExecutorService pool = Executors.newScheduledThreadPool(2);

In addition to the normal ExecutorService methods, the ScheduledExecutorService API adds 4
methods that schedule tasks and return ScheduledFuture objects. The latter can be used to retrieve
results (in some cases) and cancel tasks.

Starting a task after a fixed delay

The following example schedules a task to start after ten minutes.

ScheduledFuture<Integer> future = pool.schedule(new Callable<>() {
 @Override public Integer call() {
 // do something
 return 42;
 }
 },
 10, TimeUnit.MINUTES);

Starting tasks at a fixed rate

The following example schedules a task to start after ten minutes, and then repeatedly at a rate of
once every one minute.

ScheduledFuture<?> future = pool.scheduleAtFixedRate(new Runnable() {
 @Override public void run() {
 // do something
 }
 },
 10, 1, TimeUnit.MINUTES);

Task execution will continue according to the schedule until the pool is shut down, the future is
canceled, or one of the tasks encounters an exception.

It is guaranteed that the tasks scheduled by a given scheduledAtFixedRate call will not overlap in
time. If a task takes longer than the prescribed period, then the next and subsequent task
executions may start late.

https://riptutorial.com/ 364

Starting tasks with a fixed delay

The following example schedules a task to start after ten minutes, and then repeatedly with a
delay of one minute between one task ending and the next one starting.

ScheduledFuture<?> future = pool.scheduleWithFixedDelay(new Runnable() {
 @Override public void run() {
 // do something
 }
 },
 10, 1, TimeUnit.MINUTES);

Task execution will continue according to the schedule until the pool is shut down, the future is
canceled, or one of the tasks encounters an exception.

Handle Rejected Execution

If

you try to submit tasks to a shutdown Executor or1.
the queue is saturated (only possible with bounded ones) and maximum number of Threads
has been reached,

2.

RejectedExecutionHandler.rejectedExecution(Runnable, ThreadPoolExecutor) will be called.

The default behavior is that you'll get a RejectedExecutionException thrown at the caller. But there
are more predefined behaviors available:

ThreadPoolExecutor.AbortPolicy (default, will throw REE)•
ThreadPoolExecutor.CallerRunsPolicy (executes task on caller's thread - blocking it)•
ThreadPoolExecutor.DiscardPolicy (silently discard task)•
ThreadPoolExecutor.DiscardOldestPolicy (silently discard oldest task in queue and retry
execution of the new task)

•

You can set them using one of the ThreadPool constructors:

public ThreadPoolExecutor(int corePoolSize,
 int maximumPoolSize,
 long keepAliveTime,
 TimeUnit unit,
 BlockingQueue<Runnable> workQueue,
 RejectedExecutionHandler handler) // <--

public ThreadPoolExecutor(int corePoolSize,
 int maximumPoolSize,
 long keepAliveTime,
 TimeUnit unit,
 BlockingQueue<Runnable> workQueue,
 ThreadFactory threadFactory,
 RejectedExecutionHandler handler) // <--

https://riptutorial.com/ 365

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html#ThreadPoolExecutor-int-int-long-java.util.concurrent.TimeUnit-java.util.concurrent.BlockingQueue-java.util.concurrent.RejectedExecutionHandler-

You can as well implement your own behavior by extending RejectedExecutionHandler interface:

void rejectedExecution(Runnable r, ThreadPoolExecutor executor)

submit() vs execute() exception handling differences

Generally execute() command is used for fire and forget calls (without need of analyzing the
result) and submit() command is used for analyzing the result of Future object.

We should be aware of key difference of Exception Handling mechanisms between these two
commands.

Exceptions from submit() are swallowed by framework if you did not catch them.

Code example to understand the difference:

Case 1: submit the Runnable with execute() command, which reports the Exception.

import java.util.concurrent.*;
import java.util.*;

public class ExecuteSubmitDemo {
 public ExecuteSubmitDemo() {
 System.out.println("creating service");
 ExecutorService service = Executors.newFixedThreadPool(2);
 //ExtendedExecutor service = new ExtendedExecutor();
 for (int i = 0; i < 2; i++){
 service.execute(new Runnable(){
 public void run(){
 int a = 4, b = 0;
 System.out.println("a and b=" + a + ":" + b);
 System.out.println("a/b:" + (a / b));
 System.out.println("Thread Name in Runnable after divide by
zero:"+Thread.currentThread().getName());
 }
 });
 }
 service.shutdown();
 }
 public static void main(String args[]){
 ExecuteSubmitDemo demo = new ExecuteSubmitDemo();
 }
}

class ExtendedExecutor extends ThreadPoolExecutor {

 public ExtendedExecutor() {
 super(1, 1, 60, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(100));
 }
 // ...
 protected void afterExecute(Runnable r, Throwable t) {
 super.afterExecute(r, t);
 if (t == null && r instanceof Future<?>) {
 try {
 Object result = ((Future<?>) r).get();
 } catch (CancellationException ce) {

https://riptutorial.com/ 366

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionHandler.html#rejectedExecution-java.lang.Runnable-java.util.concurrent.ThreadPoolExecutor-

 t = ce;
 } catch (ExecutionException ee) {
 t = ee.getCause();
 } catch (InterruptedException ie) {
 Thread.currentThread().interrupt(); // ignore/reset
 }
 }
 if (t != null)
 System.out.println(t);
 }
 }

output:

creating service
a and b=4:0
a and b=4:0
Exception in thread "pool-1-thread-1" Exception in thread "pool-1-thread-2"
java.lang.ArithmeticException: / by zero
 at ExecuteSubmitDemo$1.run(ExecuteSubmitDemo.java:15)
 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
 at java.lang.Thread.run(Thread.java:744)
java.lang.ArithmeticException: / by zero
 at ExecuteSubmitDemo$1.run(ExecuteSubmitDemo.java:15)
 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
 at java.lang.Thread.run(Thread.java:744)

Case 2: Replace execute() with submit() : service.submit(new Runnable(){ In this case,
Exceptions are swallowed by framework since run() method did not catch them explicitly.

output:

creating service
a and b=4:0
a and b=4:0

Case 3: Change the newFixedThreadPool to ExtendedExecutor

//ExecutorService service = Executors.newFixedThreadPool(2);
 ExtendedExecutor service = new ExtendedExecutor();

output:

creating service
a and b=4:0
java.lang.ArithmeticException: / by zero
a and b=4:0
java.lang.ArithmeticException: / by zero

I have demonstrated this example to cover two topics : Use your custom ThreadPoolExecutor and
handle Exectpion with custom ThreadPoolExecutor.

https://riptutorial.com/ 367

Other simple solution to above problem : When you are using normal ExecutorService &
submit command, get the Future object from submit() command call get() API on Future. Catch the
three exceptions, which have been quoted in afterExecute method implementation. Advantage of
custom ThreadPoolExecutor over this approach : You have to handle Exception handling
mechanism in only one place - Custom ThreadPoolExecutor.

Use cases for different types of concurrency constructs

ExecutorService

ExecutorService executor = Executors.newFixedThreadPool(50);

It is simple and easy to use. It hides low level details of ThreadPoolExecutor.

I prefer this one when number of Callable/Runnable tasks are small in number and piling of
tasks in unbounded queue does not increase memory & degrade the performance of the
system. If you have CPU/Memory constraints, I prefer to use ThreadPoolExecutor with capacity
constraints & RejectedExecutionHandler to handle rejection of tasks.

1.

CountDownLatch

CountDownLatch will be initialized with a given count. This count is decremented by calls to the
countDown() method. Threads waiting for this count to reach zero can call one of the await()
methods. Calling await() blocks the thread until the count reaches zero. This class enables a
java thread to wait until other set of threads completes their tasks.

Use cases:

Achieving Maximum Parallelism: Sometimes we want to start a number of threads at
the same time to achieve maximum parallelism

1.

Wait N threads to completes before start execution2.

Deadlock detection.3.

2.

ThreadPoolExecutor : It provides more control. If application is constrained by number of
pending Runnable/Callable tasks, you can use bounded queue by setting the max capacity.
Once the queue reaches maximum capacity, you can define RejectionHandler. Java
provides four types of RejectedExecutionHandler policies.

ThreadPoolExecutor.AbortPolicy, the handler throws a runtime
RejectedExecutionException upon rejection.

1.

ThreadPoolExecutor.CallerRunsPolicy`, the thread that invokes execute itself runs the
task. This provides a simple feedback control mechanism that will slow down the rate
that new tasks are submitted.

2.

In ThreadPoolExecutor.DiscardPolicy, a task that cannot be executed is simply dropped.3.

ThreadPoolExecutor.DiscardOldestPolicy, if the executor is not shut down, the task at the 4.

3.

https://riptutorial.com/ 368

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html

head of the work queue is dropped, and then execution is retried (which can fail again,
causing this to be repeated.)

If you want to simulate CountDownLatch behaviour, you can use invokeAll() method.

One more mechanism you did not quote is ForkJoinPool

The ForkJoinPool was added to Java in Java 7. The ForkJoinPool is similar to the Java
ExecutorService but with one difference. The ForkJoinPool makes it easy for tasks to split their
work up into smaller tasks which are then submitted to the ForkJoinPool too. Task stealing
happens in ForkJoinPool when free worker threads steal tasks from busy worker thread
queue.

Java 8 has introduced one more API in ExecutorService to create work stealing pool. You
don't have to create RecursiveTask and RecursiveAction but still can use ForkJoinPool.

public static ExecutorService newWorkStealingPool()

Creates a work-stealing thread pool using all available processors as its target
parallelism level.

By default, it will take number of CPU cores as parameter.

4.

All these four mechanism are complimentary to each other. Depending on level of granularity you
want to control, you have to chose right ones.

Wait for completion of all tasks in ExecutorService

Let's have a look at various options to wait for completion of tasks submitted to Executor

ExecutorService invokeAll()

Executes the given tasks, returning a list of Futures holding their status and
results when everything is completed.

1.

Example:

import java.util.concurrent.*;
import java.util.*;

public class InvokeAllDemo{
 public InvokeAllDemo(){
 System.out.println("creating service");
 ExecutorService service =
Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors());

 List<MyCallable> futureList = new ArrayList<MyCallable>();
 for (int i = 0; i < 10; i++){
 MyCallable myCallable = new MyCallable((long)i);
 futureList.add(myCallable);
 }
 System.out.println("Start");

https://riptutorial.com/ 369

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

 try{
 List<Future<Long>> futures = service.invokeAll(futureList);
 } catch(Exception err){
 err.printStackTrace();
 }
 System.out.println("Completed");
 service.shutdown();
 }
 public static void main(String args[]){
 InvokeAllDemo demo = new InvokeAllDemo();
 }
 class MyCallable implements Callable<Long>{
 Long id = 0L;
 public MyCallable(Long val){
 this.id = val;
 }
 public Long call(){
 // Add your business logic
 return id;
 }
 }
}

CountDownLatch

A synchronization aid that allows one or more threads to wait until a set of
operations being performed in other threads completes.

A CountDownLatch is initialized with a given count. The await methods block
until the current count reaches zero due to invocations of the countDown() method,
after which all waiting threads are released and any subsequent invocations of
await return immediately. This is a one-shot phenomenon -- the count cannot be
reset. If you need a version that resets the count, consider using a CyclicBarrier.

2.

ForkJoinPool or newWorkStealingPool() in Executors3.

Iterate through all Future objects created after submitting to ExecutorService4.

Recommended way of shutdown from oracle documentation page of ExecutorService:

void shutdownAndAwaitTermination(ExecutorService pool) {
 pool.shutdown(); // Disable new tasks from being submitted
 try {
 // Wait a while for existing tasks to terminate
 if (!pool.awaitTermination(60, TimeUnit.SECONDS)) {
 pool.shutdownNow(); // Cancel currently executing tasks
 // Wait a while for tasks to respond to being cancelled
 if (!pool.awaitTermination(60, TimeUnit.SECONDS))
 System.err.println("Pool did not terminate");
 }
 } catch (InterruptedException ie) {
 // (Re-)Cancel if current thread also interrupted
 pool.shutdownNow();
 // Preserve interrupt status
 Thread.currentThread().interrupt();
 }

5.

https://riptutorial.com/ 370

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

shutdown(): Initiates an orderly shutdown in which previously submitted tasks are executed,
but no new tasks will be accepted.

shutdownNow():Attempts to stop all actively executing tasks, halts the processing of waiting
tasks, and returns a list of the tasks that were awaiting execution.

In above example, if your tasks are taking more time to complete, you can change if
condition to while condition

Replace

if (!pool.awaitTermination(60, TimeUnit.SECONDS))

with

while(!pool.awaitTermination(60, TimeUnit.SECONDS)) {
 Thread.sleep(60000);

}

Use cases for different types of ExecutorService

Executors returns different type of ThreadPools catering to specific need.

public static ExecutorService newSingleThreadExecutor()

Creates an Executor that uses a single worker thread operating off an unbounded
queue

There is a difference between newFixedThreadPool(1) and newSingleThreadExecutor() as the
java doc says for the latter:

Unlike the otherwise equivalent newFixedThreadPool(1) the returned executor is
guaranteed not to be reconfigurable to use additional threads.

Which means that a newFixedThreadPool can be reconfigured later in the program by:
((ThreadPoolExecutor) fixedThreadPool).setMaximumPoolSize(10) This is not possible for
newSingleThreadExecutor

Use cases:

You want to execute the submitted tasks in a sequence.1.
You need only one Thread to handle all your request2.

Cons:

Unbounded queue is harmful1.

1.

public static ExecutorService newFixedThreadPool(int nThreads)

Creates a thread pool that reuses a fixed number of threads operating off a

2.

https://riptutorial.com/ 371

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html

shared unbounded queue. At any point, at most nThreads threads will be active
processing tasks. If additional tasks are submitted when all threads are active,
they will wait in the queue until a thread is available

Use cases:

Effective use of available cores. Configure nThreads as
Runtime.getRuntime().availableProcessors()

1.

When you decide that number of thread should not exceed a number in the thread pool2.

Cons:

Unbounded queue is harmful.1.

public static ExecutorService newCachedThreadPool()

Creates a thread pool that creates new threads as needed, but will reuse
previously constructed threads when they are available

Use cases:

For short-lived asynchronous tasks1.

Cons:

Unbounded queue is harmful.1.
Each new task will create a new thread if all existing threads are busy. If the task is
taking long duration, more number of threads will be created,which will degrade the
performance of the system. Alternative in this case: newFixedThreadPool

2.

3.

public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize)

Creates a thread pool that can schedule commands to run after a given delay, or
to execute periodically.

Use cases:

Handling recurring events with delays, which will happen in future at certain interval of
times

1.

Cons:

Unbounded queue is harmful.1.

5.public static ExecutorService newWorkStealingPool()

Creates a work-stealing thread pool using all available processors as its target
parallelism level

Use cases:

For divide and conquer type of problems.1.

4.

https://riptutorial.com/ 372

Effective use of idle threads. Idle threads steals tasks from busy threads.2.

Cons:

Unbounded queue size is harmful.1.

You can see one common drawbacks in all these ExecutorService : unbounded queue. This will
be addressed with ThreadPoolExecutor

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory,
RejectedExecutionHandler handler)

With ThreadPoolExecutor, you can

Control Thread pool size dynamically1.
Set the capacity for BlockingQueue2.
Define RejectionExecutionHander when queue is full3.
CustomThreadFactory to add some additional functionality during Thread creation (public
Thread newThread(Runnable r)

4.

Using Thread Pools

Thread Pools are used mostly calling methods in ExecutorService.

The following methods can be used to submit work for execution:

Method Description

submit
Executes a the submitted work and return a future which can be used to get the
result

execute Execute the task sometime in the future without getting any return value

invokeAll Execute a list of tasks and return a list of Futures

invokeAny
Executes all the but return only the result of one that has been successful (without
exceptions)

Once you are done with the Thread Pool you can call shutdown() to terminate the Thread Pool.
This executes all pending tasks. To wait for all tasks to execute you can can loop around
awaitTermination or isShutdown().

Read Executor, ExecutorService and Thread pools online:
https://riptutorial.com/java/topic/143/executor--executorservice-and-thread-pools

https://riptutorial.com/ 373

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html#execute-java.lang.Runnable-
https://riptutorial.com/java/topic/143/executor--executorservice-and-thread-pools

Chapter 55: Expressions

Introduction

Expressions in Java are the primary construct for doing calculations.

Remarks

For a reference on the operators that can be used in expressions, see Operators.

Examples

Operator Precedence

When an expression contains multiple operators, it can potentially be read in different ways. For
example, the mathematical expression 1 + 2 x 3 could be read in two ways:

Add 1 and 2 and multiply the result by 3. This gives the answer 9. If we added parentheses,
this would look like (1 + 2) x 3.

1.

Add 1 to the result of multiplying 2 and 3. This gives the answer 7. If we added parentheses,
this would look like 1 + (2 x 3).

2.

In mathematics, the convention is to read the expression the second way. The general rule is that
multiplication and division are done before addition and subtraction. When more advanced
mathematical notation is used, either the meaning is either "self-evident" (to a trained
mathematician!), or parentheses are added to disambiguate. In either case, the effectiveness of
the notation to convey meaning depends on the intelligence and shared knowledge of the
mathematicians.

Java has the same clear rules on how to read an expression, based on the precedence of the
operators that are used.

In general, each operator is ascribed a precedence value; see the table below.

For example:

 1 + 2 * 3

The precedence of + is lower than the precedence of *, so the result of the expression is 7, not 9.

Description Operators / constructs (primary) Precedence Associativity

Qualifier
Parentheses
Instance creation

name.name
(expr)
new

15 Left to right

https://riptutorial.com/ 374

http://www.riptutorial.com/java/topic/176/operators

Description Operators / constructs (primary) Precedence Associativity

Field access
Array access
Method invocation
Method reference

primary.name
primary[expr]
primary(expr, ...)
primary::name

Post increment expr++, expr-- 14 -

Pre increment
Unary
Cast1

++expr, --expr,
+expr, -expr, ~expr, !expr,
(type)expr

13
-
Right to left
Right to left

Multiplicative * / % 12 Left to right

Additive + - 11 Left to right

Shift << >> >>> 10 Left to right

Relational < > <= >= instanceof 9 Left to right

Equality == != 8 Left to right

Bitwise AND & 7 Left to right

Bitwise exclusive
OR

^ 6 Left to right

Bitwise inclusive OR | 5 Left to right

Logical AND && 4 Left to right

Logical OR || 3 Left to right

Conditional1 ? : 2 Right to left

Assignment
Lambda1

= *= /= %= += -= <<= >>= >>>= &= ^=
|=
->

1 Right to left

1 Lambda expression precedence is complex, as it can also occur after a cast, or as the third part
of the conditional ternary operator.

Constant Expressions

A constant expression is an expression that yields a primitive type or a String, and whose value
can be evaluated at compile time to a literal. The expression must evaluate without throwing an
exception, and it must be composed of only the following:

Primitive and String literals.•

https://riptutorial.com/ 375

Type casts to primitive types or String.•

The following unary operators: +, -, ~ and !.•

The following binary operators: *, /, %, +, -, <<, >>, >>>, <, <=, >, >=, ==, !=, &, ^, |, && and ||.•

The ternary conditional operator ? :.•

Parenthesized constant expressions.•

Simple names that refer to constant variables. (A constant variable is a variable declared as
final where the initializer expression is itself a constant expression.)

•

Qualified names of the form <TypeName> . <Identifier> that refer to constant variables.•

Note that the above list excludes ++ and --, the assignment operators, class and instanceof,
method calls and references to general variables or fields.

Constant expressions of type String result in an "interned" String, and floating point operations in
constant expressions are evaluated with FP-strict semantics.

Uses for Constant Expressions

Constant expressions can be used (just about) anywhere that a normal expression can be used.
However, they have a special significance in the following contexts.

Constant expressions are required for case labels in switch statements. For example:

switch (someValue) {
case 1 + 1: // OK
case Math.min(2, 3): // Error - not a constant expression
 doSomething();
}

When the expression on the right hand side of an assignment is a constant expression, then the
assignment can perform a primitive narrowing conversion. This is allowed provided that the value
of the constant expression is within the range of the type on the left hand side. (See JLS 5.1.3 and
5.2) For example:

byte b1 = 1 + 1; // OK - primitive narrowing conversion.
byte b2 = 127 + 1; // Error - out of range
byte b3 = b1 + 1; // Error - not a constant expession
byte b4 = (byte) (b1 + 1); // OK

When a constant expression is used as the condition in a do, while or for, then it affects the
readability analysis. For example:

while (false) {
 doSomething(); // Error - statenent not reachable
}
boolean flag = false;

https://riptutorial.com/ 376

https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.3
https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.2

while (flag) {
 doSomething(); // OK
}

(Note that this does not apply if statements. The Java compiler allows the then or else block of an
if statement to be unreachable. This is the Java analog of conditional compilation in C and C++.)

Finally, static final fields in an class or interface with constant expression initializers are
initialized eagerly. Thus, it is guaranteed that these constants will be observed in the initialized
state, even when there is a cycle in the class initialization dependency graph.

For more information, refer to JLS 15.28. Constant Expressions.

Expression evaluation order

Java expressions are evaluated following the following rules:

Operands are evaluated from left to right.•
The operands of an operator are evaluated before the operator.•
Operators are evaluated according to operator precedence•
Argument lists are evaluated from left to right.•

Simple Example

In the following example:

int i = method1() + method2();

the order of evaluation is:

The left operand of = operator is evaluated to the address of i.1.
The left operand of the + operator (method1()) is evaluated.2.
The right operand of the + operator (method2()) is evaluated.3.
The + operation is evaluated.4.
The = operation is evaluated, assigning the result of the addition to i.5.

Note that if the effects of the calls are observable, you will be able to observe that the call to
method1 occurs before the call to method2.

Example with an operator which has a side-effect

In the following example:

int i = 1;
intArray[i] = ++i + 1;

the order of evaluation is:

https://riptutorial.com/ 377

https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.27.3

The left operand of = operator is evaluated. This gives the address of intArray[1].1.
The pre-increment is evaluated. This adds 1 to i, and evaluates to 2.2.
The right hand operand of the + is evaluated.3.
The + operation is evaluated to: 2 + 1 -> 3.4.
The = operation is evaluated, assigning 3 to intArray[1].5.

Note that since the left-hand operand of the = is evaluated first, it is not influenced by the side-
effect of the ++i subexpression.

Reference:

JLS 15.7 - Evaluation Order•

Expression Basics

Expressions in Java are the primary construct for doing calculations. Here are some examples:

1 // A simple literal is an expression
1 + 2 // A simple expression that adds two numbers
(i + j) / k // An expression with multiple operations
(flag) ? c : d // An expression using the "conditional" operator
(String) s // A type-cast is an expression
obj.test() // A method call is an expression
new Object() // Creation of an object is an expression
new int[] // Creation of an object is an expression

In general, an expression consists of the following forms:

Expression names which consist of:
Simple identifiers; e.g. someIdentifier○

Qualified identifiers; e.g. MyClass.someField○

•

Primaries which consist of:
Literals; e.g. 1, 1.0, 'X', "hello", false and null○

Class literal expressions; e.g. MyClass.class○

this and <TypeName> . this○

Parenthesized expressions; e.g. (a + b)○

Class instance creation expressions; e.g. new MyClass(1, 2, 3)○

Array instance creation expressions; e.g. new int[3]○

Field access expressions; e.g. obj.someField or this.someField○

Array access expressions; e.g. vector[21]○

Method invocations; e.g. obj.doIt(1, 2, 3)○

Method references (Java 8 and later); e.g. MyClass::doIt○

•

Unary operator expressions; e.g. !a or i++•
Binary operator expressions; e.g. a + b or obj == null•
Ternary operator expressions; e.g. (obj == null) ? 1 : obj.getCount()•
Lambda expressions (Java 8 and later); e.g. obj -> obj.getCount()•

The details of the different forms of expressions may be found in other Topics.

The Operators topic covers unary, binary and ternary operator expressions.•

https://riptutorial.com/ 378

https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.7
http://www.riptutorial.com/java/topic/176/operators

The Lambda expressions topic covers lambda expressions and method reference
expressions.

•

The Classes and Objects topic covers class instance creation expressions.•
The Arrays topic covers array access expressions and array instance creation expressions.•
The Literals topic covers the different kinds of literals expressions.•

The Type of an Expression

In most cases, an expression has a static type that can be determined at compile time by
examining and its subexpressions. These are referred to as stand-alone expressions.

However, (in Java 8 and later) the following kinds of expressions may be poly expressions:

Parenthesized expressions•
Class instance creation expressions•
Method invocation expressions•
Method reference expressions•
Conditional expressions•
Lambda expressions•

When an expression is a poly expression, its type may be influenced by the expression's target
type; i.e. what it is being used for.

The value of an Expression

The value of an expression is assignment compatible with its type. The exception to this is when
heap pollution has occurred; e.g. because "unsafe conversion" warnings have been
(inappropriately) suppressed or ignored.

Expression Statements

Unlike many other languages, Java does not generally allow expressions to be used as
statements. For example:

public void compute(int i, int j) {
 i + j; // ERROR
}

Since the result of evaluating an expression like cannot be use, and since it cannot affect the
execution of the program in any other way, the Java designers took the position that such usage is
either a mistake, or misguided.

However, this does not apply to all expressions. A subset of expressions are (in fact) legal as
statements. The set comprises:

Assignment expression, including operation-and-becomes assignments.•
Pre and post increment and decrement expressions.•

https://riptutorial.com/ 379

http://www.riptutorial.com/java/topic/91/lambda-expressions
http://www.riptutorial.com/java/topic/114/classes-and-objects
http://www.riptutorial.com/java/topic/99/arrays
http://www.riptutorial.com/java/topic/8250/literals

Method calls (void or non-void).•
Class instance creation expressions.•

Read Expressions online: https://riptutorial.com/java/topic/8167/expressions

https://riptutorial.com/ 380

https://riptutorial.com/java/topic/8167/expressions

Chapter 56: File I/O

Introduction

Java I/O (Input and Output) is used to process the input and produce the output. Java uses the
concept of stream to make I/O operation fast. The java.io package contains all the classes
required for input and output operations. Handling files is also done in java by Java I/O API.

Examples

Reading all bytes to a byte[]

Java 7 introduced the very useful Files class

Java SE 7

import java.nio.file.Files;
import java.nio.file.Paths;
import java.nio.file.Path;

Path path = Paths.get("path/to/file");

try {
 byte[] data = Files.readAllBytes(path);
} catch(IOException e) {
 e.printStackTrace();
}

Reading an image from a file

import java.awt.Image;
import javax.imageio.ImageIO;

...

try {
 Image img = ImageIO.read(new File("~/Desktop/cat.png"));
} catch (IOException e) {
 e.printStackTrace();
}

Writing a byte[] to a file

Java SE 7

byte[] bytes = { 0x48, 0x65, 0x6c, 0x6c, 0x6f };

try(FileOutputStream stream = new FileOutputStream("Hello world.txt")) {
 stream.write(bytes);
} catch (IOException ioe) {

https://riptutorial.com/ 381

https://docs.oracle.com/javase/7/docs/api/java/io/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/io/File.html
https://docs.oracle.com/javase/7/docs/api/java/nio/file/Files.html

 // Handle I/O Exception
 ioe.printStackTrace();
}

Java SE 7

byte[] bytes = { 0x48, 0x65, 0x6c, 0x6c, 0x6f };

FileOutputStream stream = null;
try {
 stream = new FileOutputStream("Hello world.txt");
 stream.write(bytes);
} catch (IOException ioe) {
 // Handle I/O Exception
 ioe.printStackTrace();
} finally {
 if (stream != null) {
 try {
 stream.close();
 } catch (IOException ignored) {}
 }
}

Most java.io file APIs accept both Strings and Files as arguments, so you could as well use

File file = new File("Hello world.txt");
FileOutputStream stream = new FileOutputStream(file);

Stream vs Writer/Reader API

Streams provide the most direct access to the binary content, so any InputStream / OutputStream
implementations always operate on ints and bytes.

// Read a single byte from the stream
int b = inputStream.read();
if (b >= 0) { // A negative value represents the end of the stream, normal values are in the
range 0 - 255
 // Write the byte to another stream
 outputStream.write(b);
}

// Read a chunk
byte[] data = new byte[1024];
int nBytesRead = inputStream.read(data);
if (nBytesRead >= 0) { // A negative value represents end of stream
 // Write the chunk to another stream
 outputStream.write(data, 0, nBytesRead);
}

There are some exceptions, probably most notably the PrintStream which adds the "ability to print
representations of various data values conveniently". This allows to use System.out both as a
binary InputStream and as a textual output using methods such as System.out.println().

Also, some stream implementations work as an interface to higher-level contents such as Java
objects (see Serialization) or native types, e.g. DataOutputStream / DataInputStream.

https://riptutorial.com/ 382

https://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/OutputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html
https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#out
https://docs.oracle.com/javase/7/docs/api/java/io/DataOutputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/DataInputStream.html

With the Writer and Reader classes, Java also provides an API for explicit character streams.
Although most applications will base these implementations on streams, the character stream API
does not expose any methods for binary content.

// This example uses the platform's default charset, see below
// for a better implementation.

Writer writer = new OutputStreamWriter(System.out);
writer.write("Hello world!");

Reader reader = new InputStreamReader(System.in);
char singleCharacter = reader.read();

Whenever it is necessary to encode characters into binary data (e.g. when using the
InputStreamWriter / OutputStreamWriter classes), you should specify a charset if you do not want to
depend on the platform's default charset. When in doubt, use a Unicode-compatible encoding, e.g.
UTF-8 which is supported on all Java platforms. Therefore, you should probably stay away from
classes like FileWriter and FileReader as those always use the default platform charset. A better
way to access files using character streams is this:

Charset myCharset = StandardCharsets.UTF_8;

Writer writer = new OutputStreamWriter(new FileOutputStream("test.txt"), myCharset);
writer.write('Ä');
writer.flush();
writer.close();

Reader reader = new InputStreamReader(new FileInputStream("test.txt"), myCharset);
char someUnicodeCharacter = reader.read();
reader.close();

One of the most commonly used Readers is BufferedReader which provides a method to read whole
lines of text from another reader and is presumably the simplest way to read a character stream
line by line:

// Read from baseReader, one line at a time
BufferedReader reader = new BufferedReader(baseReader);
String line;
while((line = reader.readLine()) != null) {
 // Remember: System.out is a stream, not a writer!
 System.out.println(line);
}

Reading a whole file at once

File f = new File(path);
String content = new Scanner(f).useDelimiter("\\Z").next();

\Z is the EOF (End of File) Symbol. When set as delimiter the Scanner will read the fill until the
EOF Flag is reached.

https://riptutorial.com/ 383

https://docs.oracle.com/javase/7/docs/api/java/io/Writer.html
https://docs.oracle.com/javase/7/docs/api/java/io/Reader.html

Reading a file with a Scanner

Reading a file line by line

public class Main {

 public static void main(String[] args) {
 try {
 Scanner scanner = new Scanner(new File("example.txt"));
 while(scanner.hasNextLine())
 {
 String line = scanner.nextLine();
 //do stuff
 }
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 }
}

word by word

public class Main {

 public static void main(String[] args) {
 try {
 Scanner scanner = new Scanner(new File("example.txt"));
 while(scanner.hasNext())
 {
 String line = scanner.next();
 //do stuff
 }
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 }
}

and you can also change the delimeter by using scanner.useDelimeter() method

Iterating over a directory and filter by file extension

 public void iterateAndFilter() throws IOException {
 Path dir = Paths.get("C:/foo/bar");
 PathMatcher imageFileMatcher =
 FileSystems.getDefault().getPathMatcher(
 "regex:.*(?i:jpg|jpeg|png|gif|bmp|jpe|jfif)");

 try (DirectoryStream<Path> stream = Files.newDirectoryStream(dir,
 entry -> imageFileMatcher.matches(entry.getFileName()))) {

 for (Path path : stream) {
 System.out.println(path.getFileName());
 }
 }
 }

https://riptutorial.com/ 384

Migrating from java.io.File to Java 7 NIO (java.nio.file.Path)

These examples assume that you already know what Java 7's NIO is in general, and you are used
to writing code using java.io.File. Use these examples as a means to quickly find more NIO-
centric documentation for migrating.

There is much more to Java 7's NIO such as memory-mapped files or opening a ZIP or JAR file
using FileSystem. These examples will only cover a limited number of basic use cases.

As a basic rule, if you are used to perform a file system read/write operation using a java.io.File
instance method, you will find it as a static method within java.nio.file.Files.

Point to a path

// -> IO
File file = new File("io.txt");

// -> NIO
Path path = Paths.get("nio.txt");

Paths relative to another path

// Forward slashes can be used in place of backslashes even on a Windows operating system
// -> IO
File folder = new File("C:/");
File fileInFolder = new File(folder, "io.txt");

// -> NIO
Path directory = Paths.get("C:/");
Path pathInDirectory = directory.resolve("nio.txt");

Converting File from/to Path for use with
libraries

// -> IO to NIO
Path pathFromFile = new File("io.txt").toPath();

// -> NIO to IO
File fileFromPath = Paths.get("nio.txt").toFile();

Check if the file exists and delete it if it does

// -> IO

https://riptutorial.com/ 385

https://docs.oracle.com/javase/7/docs/api/java/nio/channels/FileChannel.html
http://docs.oracle.com/javase/7/docs/technotes/guides/io/fsp/zipfilesystemprovider.html
http://docs.oracle.com/javase/7/docs/technotes/guides/io/fsp/zipfilesystemprovider.html
https://docs.oracle.com/javase/7/docs/api/java/io/File.html
https://docs.oracle.com/javase/7/docs/api/java/nio/file/Files.html

if (file.exists()) {
 boolean deleted = file.delete();
 if (!deleted) {
 throw new IOException("Unable to delete file");
 }
}

// -> NIO
Files.deleteIfExists(path);

Write to a file via an OutputStream

There are several ways to write and read from a file using NIO for different performance and
memory constraints, readability and use cases, such as FileChannel, Files.write(Path path,
byte\[\] bytes, OpenOption... options)... In this example, only OutputStream is covered, but you are
strongly encouraged to learn about memory-mapped files and the various static methods available
in java.nio.file.Files.

List<String> lines = Arrays.asList(
 String.valueOf(Calendar.getInstance().getTimeInMillis()),
 "line one",
 "line two");

// -> IO
if (file.exists()) {
 // Note: Not atomic
 throw new IOException("File already exists");
}
try (FileOutputStream outputStream = new FileOutputStream(file)) {
 for (String line : lines) {
 outputStream.write((line + System.lineSeparator()).getBytes(StandardCharsets.UTF_8));
 }
}

// -> NIO
try (OutputStream outputStream = Files.newOutputStream(path, StandardOpenOption.CREATE_NEW)) {
 for (String line : lines) {
 outputStream.write((line + System.lineSeparator()).getBytes(StandardCharsets.UTF_8));
 }
}

Iterating on each file within a folder

// -> IO
for (File selectedFile : folder.listFiles()) {
 // Note: Depending on the number of files in the directory folder.listFiles() may take a
long time to return
 System.out.println((selectedFile.isDirectory() ? "d" : "f") + " " +
selectedFile.getAbsolutePath());
}

// -> NIO
Files.walkFileTree(directory, EnumSet.noneOf(FileVisitOption.class), 1, new

https://riptutorial.com/ 386

http://stackoverflow.com/questions/7366266/best-way-to-write-string-to-file-using-java-nio
https://docs.oracle.com/javase/7/docs/api/java/nio/file/Files.html#write(java.nio.file.Path,%20byte%5B%5D,%20java.nio.file.OpenOption...)
https://docs.oracle.com/javase/7/docs/api/java/nio/file/Files.html#write(java.nio.file.Path,%20byte%5B%5D,%20java.nio.file.OpenOption...)

SimpleFileVisitor<Path>() {
 @Override
 public FileVisitResult preVisitDirectory(Path selectedPath, BasicFileAttributes attrs)
throws IOException {
 System.out.println("d " + selectedPath.toAbsolutePath());
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Path selectedPath, BasicFileAttributes attrs) throws
IOException {
 System.out.println("f " + selectedPath.toAbsolutePath());
 return FileVisitResult.CONTINUE;
 }
});

Recursive folder iteration

// -> IO
recurseFolder(folder);

// -> NIO
// Note: Symbolic links are NOT followed unless explicitly passed as an argument to
Files.walkFileTree
Files.walkFileTree(directory, new SimpleFileVisitor<Path>() {
 @Override
 public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) throws
IOException {
 System.out.println("d " + selectedPath.toAbsolutePath());
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Path selectedPath, BasicFileAttributes attrs) throws
IOException {
 System.out.println("f " + selectedPath.toAbsolutePath());
 return FileVisitResult.CONTINUE;
 }
});

private static void recurseFolder(File folder) {
 for (File selectedFile : folder.listFiles()) {
 System.out.println((selectedFile.isDirectory() ? "d" : "f") + " " +
selectedFile.getAbsolutePath());
 if (selectedFile.isDirectory()) {
 // Note: Symbolic links are followed
 recurseFolder(selectedFile);
 }
 }
}

File Read/Write Using FileInputStream/FileOutputStream

Write to a file test.txt:

https://riptutorial.com/ 387

String filepath ="C:\\test.txt";
FileOutputStream fos = null;
try {
 fos = new FileOutputStream(filepath);
 byte[] buffer = "This will be written in test.txt".getBytes();
 fos.write(buffer, 0, buffer.length);
 fos.close();
} catch (FileNotFoundException e) {
 e.printStackTrace();
} catch (IOException e) {
 e.printStackTrace();
} finally{
 if(fos != null)
 fos.close();
}

Read from file test.txt:

String filepath ="C:\\test.txt";
FileInputStream fis = null;
try {
 fis = new FileInputStream(filepath);
 int length = (int) new File(filepath).length();
 byte[] buffer = new byte[length];
 fis.read(buffer, 0, length);
} catch (FileNotFoundException e) {
 e.printStackTrace();
} catch (IOException e) {
 e.printStackTrace();
} finally{
 if(fis != null)
 fis.close();
}

Note, that since Java 1.7 the try-with-resources statement was introduced what made
implementation of reading\writing operation much simpler:

Write to a file test.txt:

String filepath ="C:\\test.txt";
try (FileOutputStream fos = new FileOutputStream(filepath)){
 byte[] buffer = "This will be written in test.txt".getBytes();
 fos.write(buffer, 0, buffer.length);
} catch (FileNotFoundException e) {
 e.printStackTrace();
} catch (IOException e) {
 e.printStackTrace();
}

Read from file test.txt:

String filepath ="C:\\test.txt";
try (FileInputStream fis = new FileInputStream(filepath)){
 int length = (int) new File(filepath).length();
 byte[] buffer = new byte[length];
 fis.read(buffer, 0, length);
} catch (FileNotFoundException e) {

https://riptutorial.com/ 388

http://www.riptutorial.com/java/example/1581/the-try-with-resources-statement

 e.printStackTrace();
} catch (IOException e) {
 e.printStackTrace();
}

Reading from a binary file

You can read an a binary file using this piece of code in all recent versions of Java:

Java SE 1.4

File file = new File("path_to_the_file");
byte[] data = new byte[(int) file.length()];
DataInputStream stream = new DataInputStream(new FileInputStream(file));
stream.readFully(data);
stream.close();

If you are using Java 7 or later, there is a simpler way using the nio API:

Java SE 7

Path path = Paths.get("path_to_the_file");
byte [] data = Files.readAllBytes(path);

Locking

A file can be locked using the FileChannel API that can be acquired from Input Output streams and
readers

Example with streams

// Open a file stream FileInputStream ios = new FileInputStream(filename);

 // get underlying channel
 FileChannel channel = ios.getChannel();

 /*
 * try to lock the file. true means whether the lock is shared or not i.e. multiple
processes can acquire a
 * shared lock (for reading only) Using false with readable channel only will generate an
exception. You should
 * use a writable channel (taken from FileOutputStream) when using false. tryLock will
always return immediately
 */
 FileLock lock = channel.tryLock(0, Long.MAX_VALUE, true);

 if (lock == null) {
 System.out.println("Unable to acquire lock");
 } else {
 System.out.println("Lock acquired successfully");
 }

 // you can also use blocking call which will block until a lock is acquired.
 channel.lock();

https://riptutorial.com/ 389

 // Once you have completed desired operations of file. release the lock
 if (lock != null) {
 lock.release();
 }

 // close the file stream afterwards
 // Example with reader
 RandomAccessFile randomAccessFile = new RandomAccessFile(filename, "rw");
 FileChannel channel = randomAccessFile.getChannel();
 //repeat the same steps as above but now you can use shared as true or false as the
channel is in read write mode

Copying a file using InputStream and OutputStream

We can directly copy data from a source to a data sink using a loop. In this example, we are
reading data from an InputStream and at the same time, writing to an OutputStream. Once we are
done reading and writing, we have to close the resource.

public void copy(InputStream source, OutputStream destination) throws IOException {
 try {
 int c;
 while ((c = source.read()) != -1) {
 destination.write(c);
 }
 } finally {
 if (source != null) {
 source.close();
 }
 if (destination != null) {
 destination.close();
 }
 }
}

Reading a file using Channel and Buffer

Channel uses a Buffer to read/write data. A buffer is a fixed sized container where we can write a
block of data at once. Channel is a quite faster than stream-based I/O.

To read data from a file using Channel we need to have the following steps-

We need an instance of FileInputStream. FileInputStreamhas a method named getChannel()
which returns a Channel.

1.

Call the getChannel() method of FileInputStream and acquire Channel.2.
Create a ByteBuffer. ByteBuffer is a fixed size container of bytes.3.
Channel has a read method and we have to provide a ByteBuffer as an argument to this
read method. ByteBuffer has two modes - read-only mood and write-only mood. We can
change the mode using flip() method call. Buffer has a position, limit, and capacity. Once a
buffer is created with a fixed size, its limit and capacity are the same as the size and the
position starts from zero. While a buffer is written with data, its position gradually increases.
Changing mode means, changing the position. To read data from the beginning of a buffer,
we have to set the position to zero. flip() method change the position

4.

https://riptutorial.com/ 390

When we call the read method of the Channel, it fills up the buffer using data.5.
If we need to read the data from the ByteBuffer, we need to flip the buffer to change its mode
to write-only to read-only mode and then keep reading data from the buffer.

6.

When there is no longer data to read, the read() method of channel returns 0 or -1.7.

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;

public class FileChannelRead {

public static void main(String[] args) {

 File inputFile = new File("hello.txt");

 if (!inputFile.exists()) {
 System.out.println("The input file doesn't exit.");
 return;
 }

 try {
 FileInputStream fis = new FileInputStream(inputFile);
 FileChannel fileChannel = fis.getChannel();
 ByteBuffer buffer = ByteBuffer.allocate(1024);

 while (fileChannel.read(buffer) > 0) {
 buffer.flip();
 while (buffer.hasRemaining()) {
 byte b = buffer.get();
 System.out.print((char) b);
 }
 buffer.clear();
 }

 fileChannel.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Copying a file using Channel

We can use Channel to copy file content faster. To do so, we can use transferTo() method of
FileChannel .

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.channels.FileChannel;

public class FileCopier {

 public static void main(String[] args) {

https://riptutorial.com/ 391

 File sourceFile = new File("hello.txt");
 File sinkFile = new File("hello2.txt");
 copy(sourceFile, sinkFile);
 }

 public static void copy(File sourceFile, File destFile) {
 if (!sourceFile.exists() || !destFile.exists()) {
 System.out.println("Source or destination file doesn't exist");
 return;
 }

 try (FileChannel srcChannel = new FileInputStream(sourceFile).getChannel();
 FileChannel sinkChanel = new FileOutputStream(destFile).getChannel()) {

 srcChannel.transferTo(0, srcChannel.size(), sinkChanel);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Reading a file using BufferedInputStream

Reading file using a BufferedInputStream generally faster than FileInputStream because it maintains
an internal buffer to store bytes read from the underlying input stream.

import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.IOException;

public class FileReadingDemo {

 public static void main(String[] args) {
 String source = "hello.txt";

 try (BufferedInputStream bis = new BufferedInputStream(new FileInputStream(source))) {
 byte data;
 while ((data = (byte) bis.read()) != -1) {
 System.out.println((char) data);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }

 }
}

Writing a file using Channel and Buffer

To write data to a file using Channel we need to have the following steps:

First, we need to get an object of FileOutputStream1.
Acquire FileChannel calling the getChannel() method from the FileOutputStream2.
Create a ByteBuffer and then fill it with data3.

https://riptutorial.com/ 392

Then we have to call the flip() method of the ByteBuffer and pass it as an argument of the
write() method of the FileChannel

4.

Once we are done writing, we have to close the resource5.

import java.io.*;
import java.nio.*;
public class FileChannelWrite {

 public static void main(String[] args) {

 File outputFile = new File("hello.txt");
 String text = "I love Bangladesh.";

 try {
 FileOutputStream fos = new FileOutputStream(outputFile);
 FileChannel fileChannel = fos.getChannel();
 byte[] bytes = text.getBytes();
 ByteBuffer buffer = ByteBuffer.wrap(bytes);
 fileChannel.write(buffer);
 fileChannel.close();
 } catch (java.io.IOException e) {
 e.printStackTrace();
 }
 }
}

Writing a file using PrintStream

We can use PrintStream class to write a file. It has several methods that let you print any data type
values. println() method appends a new line. Once we are done printing, we have to flush the
PrintStream.

import java.io.FileNotFoundException;
import java.io.PrintStream;
import java.time.LocalDate;

public class FileWritingDemo {
 public static void main(String[] args) {
 String destination = "file1.txt";

 try(PrintStream ps = new PrintStream(destination)){
 ps.println("Stackoverflow documentation seems fun.");
 ps.println();
 ps.println("I love Java!");
 ps.printf("Today is: %1$tm/%1$td/%1$tY", LocalDate.now());

 ps.flush();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }

 }
}

Iterate over a directory printing subdirectories in it

https://riptutorial.com/ 393

 public void iterate(final String dirPath) throws IOException {
 final DirectoryStream<Path> paths = Files.newDirectoryStream(Paths.get(dirPath));
 for (final Path path : paths) {
 if (Files.isDirectory(path)) {
 System.out.println(path.getFileName());
 }
 }
 }

Adding Directories

To make a new directory from a File instance you would need to use one of two methods:
mkdirs() or mkdir().

mkdir() - Creates the directory named by this abstract pathname. (source)•
mkdirs() - Creates the directory named by this abstract pathname, including any necessary
but nonexistent parent directories. Note that if this operation fails it may have succeeded in
creating some of the necessary parent directories. (source)

•

Note: createNewFile() will not create a new directory only a file.

File singleDir = new File("C:/Users/SomeUser/Desktop/A New Folder/");

File multiDir = new File("C:/Users/SomeUser/Desktop/A New Folder 2/Another Folder/");

// assume that neither "A New Folder" or "A New Folder 2" exist

singleDir.createNewFile(); // will make a new file called "A New Folder.file"
singleDir.mkdir(); // will make the directory
singleDir.mkdirs(); // will make the directory

multiDir.createNewFile(); // will throw a IOException
multiDir.mkdir(); // will not work
multiDir.mkdirs(); // will make the directory

Blocking or redirecting standard output / error

Sometimes a poorly designed 3rd-party library will write unwanted diagnostics to System.out or
System.err streams. The recommended solutions to this would be to either find a better library or
(in the case of open source) fix the problem and contribute a patch to the developers.

If the above solutions are not feasible, then you should consider redirecting the streams.

Redirection on the command line

On a UNIX, Linux or MacOSX system can be done from the shell using > redirection. For example:

$ java -jar app.jar arg1 arg2 > /dev/null 2>&1
$ java -jar app.jar arg1 arg2 > out.log 2> error.log

The first one redirects standard output and standard error to "/dev/null", which throws away
anything written to those streams. The second of redirects standard output to "out.log" and

https://riptutorial.com/ 394

https://docs.oracle.com/javase/7/docs/api/java/io/File.html#mkdir()
https://docs.oracle.com/javase/7/docs/api/java/io/File.html#mkdirs()

standard error to "error.log".

(For more information on redirection, refer to the documentation of the command shell you are
using. Similar advice applies to Windows.)

Alternatively, you could implement the redirection in a wrapper script or batch file that launches the
Java application.

Redirection within a Java application

It is also possible to redired the streams within a Java application using System.setOut() and
System.setErr(). For example, the following snippet redirects standard output and standard error to
2 log files:

System.setOut(new PrintStream(new FileOutputStream(new File("out.log"))));
System.setErr(new PrintStream(new FileOutputStream(new File("err.log"))));

If you want to throw away the output entirely, you can create an output stream that "writes" to an
invalid file descriptor. This is functionally equivalent to writing to "/dev/null" on UNIX.

System.setOut(new PrintStream(new FileOutputStream(new FileDescriptor())));
System.setErr(new PrintStream(new FileOutputStream(new FileDescriptor())));

Caution: be careful how you use setOut and setErr:

The redirection will affect the entire JVM.1.
By doing this, you are taking away the user's ability to redirect the streams from the
command line.

2.

Accessing the contents of a ZIP file

The FileSystem API of Java 7 allows to read and add entries from or to a Zip file using the Java
NIO file API in the same way as operating on any other filesystem.

The FileSystem is a resource that should be properly closed after use, therefore the try-with-
resources block should be used.

Reading from an existing file

Path pathToZip = Paths.get("path/to/file.zip");
try(FileSystem zipFs = FileSystems.newFileSystem(pathToZip, null)) {
 Path root = zipFs.getPath("/");
 ... //access the content of the zip file same as ordinary files
} catch(IOException ex) {
 ex.printStackTrace();
}

Creating a new file

https://riptutorial.com/ 395

Map<String, String> env = new HashMap<>();
env.put("create", "true"); //required for creating a new zip file
env.put("encoding", "UTF-8"); //optional: default is UTF-8
URI uri = URI.create("jar:file:/path/to/file.zip");
try (FileSystem zipfs = FileSystems.newFileSystem(uri, env)) {
 Path newFile = zipFs.getPath("/newFile.txt");
 //writing to file
 Files.write(newFile, "Hello world".getBytes());
} catch(IOException ex) {
 ex.printStackTrace();
}

Read File I/O online: https://riptutorial.com/java/topic/93/file-i-o

https://riptutorial.com/ 396

https://riptutorial.com/java/topic/93/file-i-o

Chapter 57: FileUpload to AWS

Introduction

Upload File to AWS s3 bucket using spring rest API.

Examples

Upload file to s3 bucket

Here we will create a rest APi which will take file object as a multipart parameter from
front end and upload it to S3 bucket using java rest API.

Requirement :- secrete key and Access key for s3 bucket where you wanna upload your file.

code:- DocumentController.java

@RestController
@RequestMapping("/api/v2")
public class DocumentController {

 private static String bucketName = "pharmerz-chat";
 // private static String keyName = "Pharmerz"+ UUID.randomUUID();

 @RequestMapping(value = "/upload", method = RequestMethod.POST, consumes =
MediaType.MULTIPART_FORM_DATA)
 public URL uploadFileHandler(@RequestParam("name") String name,
 @RequestParam("file") MultipartFile file) throws IOException
{

/******* Printing all the possible parameter from @RequestParam *************/

 System.out.println("*****************************");

 System.out.println("file.getOriginalFilename() " + file.getOriginalFilename());
 System.out.println("file.getContentType()" + file.getContentType());
 System.out.println("file.getInputStream() " + file.getInputStream());
 System.out.println("file.toString() " + file.toString());
 System.out.println("file.getSize() " + file.getSize());
 System.out.println("name " + name);
 System.out.println("file.getBytes() " + file.getBytes());
 System.out.println("file.hashCode() " + file.hashCode());
 System.out.println("file.getClass() " + file.getClass());
 System.out.println("file.isEmpty() " + file.isEmpty());

 /*************Parameters to b pass to s3 bucket put Object **************/
 InputStream is = file.getInputStream();
 String keyName = file.getOriginalFilename();

// Credentials for Aws
 AWSCredentials credentials = new BasicAWSCredentials("AKIA*************",
"zr**********************");

https://riptutorial.com/ 397

 /****************** DocumentController.uploadfile(credentials);
***************************/

 AmazonS3 s3client = new AmazonS3Client(credentials);
 try {
 System.out.println("Uploading a new object to S3 from a file\n");
 //File file = new File(awsuploadfile);
 s3client.putObject(new PutObjectRequest(
 bucketName, keyName, is, new ObjectMetadata()));

 URL url = s3client.generatePresignedUrl(bucketName, keyName,
Date.from(Instant.now().plus(5, ChronoUnit.MINUTES)));
 // URL url=s3client.generatePresignedUrl(bucketName,keyName,
Date.from(Instant.now().plus(5, ChronoUnit.)));
 System.out.println("************************************");
 System.out.println(url);

 return url;

 } catch (AmazonServiceException ase) {
 System.out.println("Caught an AmazonServiceException, which " +
 "means your request made it " +
 "to Amazon S3, but was rejected with an error response" +
 " for some reason.");
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, which " +
 "means the client encountered " +
 "an internal error while trying to " +
 "communicate with S3, " +
 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }

 return null;

 }

}

Front end Function

var form = new FormData();
form.append("file", "image.jpeg");

var settings = {
 "async": true,
 "crossDomain": true,
 "url": "http://url/",
 "method": "POST",
 "headers": {
 "cache-control": "no-cache"

https://riptutorial.com/ 398

 },
 "processData": false,
 "contentType": false,
 "mimeType": "multipart/form-data",
 "data": form
}

$.ajax(settings).done(function (response) {
 console.log(response);
});

Read FileUpload to AWS online: https://riptutorial.com/java/topic/10589/fileupload-to-aws

https://riptutorial.com/ 399

https://riptutorial.com/java/topic/10589/fileupload-to-aws

Chapter 58: Fluent Interface

Remarks

Goals

The primary goal of a Fluent Interface is increased readability.

When used for constructing objects, the choices available to the caller can be made clearly and
enforced via compile-time checks. For example, consider the following tree of options representing
steps along the path to construct some complex object:

A -> B
 -> C -> D -> Done
 -> E -> Done
 -> F -> Done.
 -> G -> H -> I -> Done.

A builder using a fluent interface would allow the caller to easily see what options are available at
each step. For example, A -> B is possible, but A -> C is not and would result in a compile-time
error.

Examples

Truth - Fluent Testing Framework

From "How to use Truth" http://google.github.io/truth/

String string = "awesome";
assertThat(string).startsWith("awe");
assertWithMessage("Without me, it's just aweso").that(string).contains("me");

Iterable<Color> googleColors = googleLogo.getColors();
assertThat(googleColors)
 .containsExactly(BLUE, RED, YELLOW, BLUE, GREEN, RED)
 .inOrder();

Fluent programming style

In fluent programming style you return this from fluent (setter) methods that would return nothing
in non-fluent programming style.

This allows you to chain the different method calls which makes your code shorter and easier to
handle for the developers.

Consider this non-fluent code:

public class Person {

https://riptutorial.com/ 400

http://google.github.io/truth/

 private String firstName;
 private String lastName;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String whoAreYou() {
 return "I am " + firstName + " " + lastName;
 }

 public static void main(String[] args) {
 Person person = new Person();
 person.setFirstName("John");
 person.setLastName("Doe");
 System.out.println(person.whoAreYou());
 }
}

As the setter methods don't return anything, we need 4 instructions in the mainmethod to
instantiate a Person with some data and print it. With a fluent style this code can be changed to:

public class Person {
 private String firstName;
 private String lastName;

 public String getFirstName() {
 return firstName;
 }

 public Person withFirstName(String firstName) {
 this.firstName = firstName;
 return this;
 }

 public String getLastName() {
 return lastName;
 }

 public Person withLastName(String lastName) {
 this.lastName = lastName;
 return this;
 }

 public String whoAreYou() {
 return "I am " + firstName + " " + lastName;
 }

https://riptutorial.com/ 401

 public static void main(String[] args) {
 System.out.println(new Person().withFirstName("John")
 .withLastName("Doe").whoAreYou());
 }
}

The idea is to always return some object to enable building of a method call chain and to use
method names which reflect natural speaking. This fluent style makes the code more readable.

Read Fluent Interface online: https://riptutorial.com/java/topic/5090/fluent-interface

https://riptutorial.com/ 402

https://riptutorial.com/java/topic/5090/fluent-interface

Chapter 59: FTP (File Transfer Protocol)

Syntax

FTPClient connect(InetAddress host, int port)•
FTPClient login(String username, String password)•
FTPClient disconnect()•
FTPReply getReplyStrings()•
boolean storeFile(String remote, InputStream local)•
OutputStream storeFileStream(String remote)•
boolean setFileType(int fileType)•
boolean completePendingCommand()•

Parameters

Parameters Details

host Either the host name or IP address of the FTP server

port The FTP server port

username The FTP server username

password The FTP server password

Examples

Connecting and Logging Into a FTP Server

To start using FTP with Java, you will need to create a new FTPClient and then connect and login
to the server using .connect(String server, int port) and .login(String username, String password)
.

import java.io.IOException;
import org.apache.commons.net.ftp.FTPClient;
import org.apache.commons.net.ftp.FTPReply;
//Import all the required resource for this project.

public class FTPConnectAndLogin {
 public static void main(String[] args) {
 // SET THESE TO MATCH YOUR FTP SERVER //
 String server = "www.server.com"; //Server can be either host name or IP address.
 int port = 21;
 String user = "Username";
 String pass = "Password";

 FTPClient ftp = new FTPClient;

https://riptutorial.com/ 403

 ftp.connect(server, port);
 ftp.login(user, pass);
 }
}

Now we have the basics done. But what if we have an error connecting to the server? We'll want
to know when something goes wrong and get the error message. Let's add some code to catch
errors while connecting.

try {
 ftp.connect(server, port);
 showServerReply(ftp);
 int replyCode = ftp.getReplyCode();
 if (!FTPReply.isPositiveCompletion(replyCode)) {
 System.out.printIn("Operation failed. Server reply code: " + replyCode)
 return;
 }
 ftp.login(user, pass);
} catch {

}

Let's break down what we just did, step by step.

showServerReply(ftp);

This refers to a function we will be making in a later step.

int replyCode = ftp.getReplyCode();

This grabs the reply/error code from the server and stores it as an integer.

if (!FTPReply.isPositiveCompletion(replyCode)) {
 System.out.printIn("Operation failed. Server reply code: " + replyCode)
 return;
}

This checks the reply code to see if there was an error. If there was an error, it will simply print
"Operation failed. Server reply code: " followed by the error code. We also added a try/catch block
which we will add to in the next step. Next, let's also create a function that checks ftp.login() for
errors.

boolean success = ftp.login(user, pass);
showServerReply(ftp);
if (!success) {
 System.out.println("Failed to log into the server");
 return;
 } else {
 System.out.println("LOGGED IN SERVER");
 }

Let's break this block down too.

https://riptutorial.com/ 404

boolean success = ftp.login(user, pass);

This will not just attempt to login to the FTP server, it will also store the result as a boolean.

showServerReply(ftp);

This will check if the server sent us any messages, but we will first need to create the function in
the next step.

if (!success) {
System.out.println("Failed to log into the server");
 return;
} else {
 System.out.println("LOGGED IN SERVER");
}

This statement will check if we logged in successfully; if so, it will print "LOGGED IN SERVER",
otherwise it will print "Failed to log into the server". This is our script so far:

import java.io.IOException;
import org.apache.commons.net.ftp.FTPClient;
import org.apache.commons.net.ftp.FTPReply;

public class FTPConnectAndLogin {
 public static void main(String[] args) {
 // SET THESE TO MATCH YOUR FTP SERVER //
 String server = "www.server.com";
 int port = 21;
 String user = "username"
 String pass = "password"

 FTPClient ftp = new FTPClient
 try {
 ftp.connect(server, port)
 showServerReply(ftp);
 int replyCode = ftpClient.getReplyCode();
 if (!FTPReply.isPositiveCompletion(replyCode)) {
 System.out.println("Operation failed. Server reply code: " + replyCode);
 return;
 }
 boolean success = ftp.login(user, pass);
 showServerReply(ftp);
 if (!success) {
 System.out.println("Failed to log into the server");
 return;
 } else {
 System.out.println("LOGGED IN SERVER");
 }
 } catch {

 }
 }
}

Now next let's create complete the Catch block in case we run into any errors with the whole
process.

https://riptutorial.com/ 405

} catch (IOException ex) {
 System.out.println("Oops! Something went wrong.");
 ex.printStackTrace();
}

The completed catch block will now print "Oops! Something went wrong." and the stacktrace if
there is an error. Now our final step is to create the showServerReply() we have been using for a
while now.

private static void showServerReply(FTPClient ftp) {
 String[] replies = ftp.getReplyStrings();
 if (replies != null && replies.length > 0) {
 for (String aReply : replies) {
 System.out.println("SERVER: " + aReply);
 }
 }
}

This function takes an FTPClient as a variable, and calls it "ftp". After that it stores any server
replies from the server in a string array. Next it checks if any messages were stored. If there is
any, it prints each of them as "SERVER: [reply]". Now that we have that function done, this is the
completed script:

import java.io.IOException;
import org.apache.commons.net.ftp.FTPClient;
import org.apache.commons.net.ftp.FTPReply;

public class FTPConnectAndLogin {
 private static void showServerReply(FTPClient ftp) {
 String[] replies = ftp.getReplyStrings();
 if (replies != null && replies.length > 0) {
 for (String aReply : replies) {
 System.out.println("SERVER: " + aReply);
 }
 }
 }

 public static void main(String[] args) {
 // SET THESE TO MATCH YOUR FTP SERVER //
 String server = "www.server.com";
 int port = 21;
 String user = "username"
 String pass = "password"

 FTPClient ftp = new FTPClient
 try {
 ftp.connect(server, port)
 showServerReply(ftp);
 int replyCode = ftpClient.getReplyCode();
 if (!FTPReply.isPositiveCompletion(replyCode)) {
 System.out.println("Operation failed. Server reply code: " + replyCode);
 return;
 }
 boolean success = ftp.login(user, pass);
 showServerReply(ftp);
 if (!success) {
 System.out.println("Failed to log into the server");

https://riptutorial.com/ 406

 return;
 } else {
 System.out.println("LOGGED IN SERVER");
 }
 } catch (IOException ex) {
 System.out.println("Oops! Something went wrong.");
 ex.printStackTrace();
 }
 }
}

We first need to create a new FTPClient and try connecting to the server it and logging into it using
.connect(String server, int port) and .login(String username, String password). It is important to
connect and login using a try/catch block in case our code fails to connect with the server. We will
also need to create a function that checks and displays any messages we may receive from the
server as we try connecting and logging in. We will call this function "showServerReply(FTPClient
ftp)".

import java.io.IOException;
import org.apache.commons.net.ftp.FTPClient;
import org.apache.commons.net.ftp.FTPReply;

public class FTPConnectAndLogin {
 private static void showServerReply(FTPClient ftp) {
 if (replies != null && replies.length > 0) {
 for (String aReply : replies) {
 System.out.println("SERVER: " + aReply);
 }
 }
 }

public static void main(String[] args) {
 // SET THESE TO MATCH YOUR FTP SERVER //
 String server = "www.server.com";
 int port = 21;
 String user = "username"
 String pass = "password"

FTPClient ftp = new FTPClient
try {
 ftp.connect(server, port)
 showServerReply(ftp);
 int replyCode = ftpClient.getReplyCode();
 if (!FTPReply.isPositiveCompletion(replyCode)) {
 System.out.println("Operation failed. Server reply code: " + replyCode);
 return;
 }
 boolean success = ftp.login(user, pass);
 showServerReply(ftp);
 if (!success) {
 System.out.println("Failed to log into the server");
 return;
 } else {
 System.out.println("LOGGED IN SERVER");
 }
 } catch (IOException ex) {
 System.out.println("Oops! Something went wrong.");
 ex.printStackTrace();

https://riptutorial.com/ 407

 }
 }
}

After this, you should now have your FTP server connected to you Java script.

Read FTP (File Transfer Protocol) online: https://riptutorial.com/java/topic/5228/ftp--file-transfer-
protocol-

https://riptutorial.com/ 408

https://riptutorial.com/java/topic/5228/ftp--file-transfer-protocol-
https://riptutorial.com/java/topic/5228/ftp--file-transfer-protocol-

Chapter 60: Functional Interfaces

Introduction

In Java 8+, a functional interface is an interface that has just one abstract method (aside from the
methods of Object). See JLS §9.8. Functional Interfaces.

Examples

List of standard Java Runtime Library functional interfaces by signature

Parameter Types Return Type Interface

() void Runnable

() T Supplier

() boolean BooleanSupplier

() int IntSupplier

() long LongSupplier

() double DoubleSupplier

(T) void Consumer<T>

(T) T UnaryOperator<T>

(T) R Function<T,R>

(T) boolean Predicate<T>

(T) int ToIntFunction<T>

(T) long ToLongFunction<T>

(T) double ToDoubleFunction<T>

(T, T) T BinaryOperator<T>

(T, U) void BiConsumer<T,U>

(T, U) R BiFunction<T,U,R>

(T, U) boolean BiPredicate<T,U>

(T, U) int ToIntBiFunction<T,U>

https://riptutorial.com/ 409

https://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.8
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/BooleanSupplier.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/IntSupplier.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/LongSupplier.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/DoubleSupplier.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/UnaryOperator.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/ToIntFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/ToLongFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/ToDoubleFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/BinaryOperator.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/BiConsumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/BiFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/BiPredicate.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/ToIntBiFunction.html

Parameter Types Return Type Interface

(T, U) long ToLongBiFunction<T,U>

(T, U) double ToDoubleBiFunction<T,U>

(T, int) void ObjIntConsumer<T>

(T, long) void ObjLongConsumer<T>

(T, double) void ObjDoubleConsumer<T>

(int) void IntConsumer

(int) R IntFunction<R>

(int) boolean IntPredicate

(int) int IntUnaryOperator

(int) long IntToLongFunction

(int) double IntToDoubleFunction

(int, int) int IntBinaryOperator

(long) void LongConsumer

(long) R LongFunction<R>

(long) boolean LongPredicate

(long) int LongToIntFunction

(long) long LongUnaryOperator

(long) double LongToDoubleFunction

(long, long) long LongBinaryOperator

(double) void DoubleConsumer

(double) R DoubleFunction<R>

(double) boolean DoublePredicate

(double) int DoubleToIntFunction

(double) long DoubleToLongFunction

(double) double DoubleUnaryOperator

https://riptutorial.com/ 410

https://docs.oracle.com/javase/8/docs/api/java/util/function/ToLongBiFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/ToDoubleBiFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/ObjIntConsumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/ObjLongConsumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/ObjDoubleConsumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/IntConsumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/IntFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/IntPredicate.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/IntUnaryOperator.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/IntToLongFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/IntToDoubleFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/IntBinaryOperator.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/LongConsumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/LongFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/LongPredicate.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/LongToIntFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/LongUnaryOperator.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/LongToDoubleFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/LongBinaryOperator.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/DoubleConsumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/DoubleFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/DoublePredicate.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/DoubleToIntFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/DoubleToLongFunction.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/DoubleUnaryOperator.html

Parameter Types Return Type Interface

(double, double) double DoubleBinaryOperator

Read Functional Interfaces online: https://riptutorial.com/java/topic/10001/functional-interfaces

https://riptutorial.com/ 411

https://docs.oracle.com/javase/8/docs/api/java/util/function/DoubleBinaryOperator.html
https://riptutorial.com/java/topic/10001/functional-interfaces

Chapter 61: Generating Java Code

Examples

Generate POJO From JSON

Install JSON Model Genrator plugin of Intellij by searching in Intellij setting.•

Start the plugin from 'Tools'•

Input the field of UI as following shows ('Path'、'Source'、'Package' is required): •

Click 'Generate' button and your are done.•

Read Generating Java Code online: https://riptutorial.com/java/topic/9400/generating-java-code

https://riptutorial.com/ 412

https://plugins.jetbrains.com/plugin/8062-json-model-generator
https://i.stack.imgur.com/7b8pZ.png
https://riptutorial.com/java/topic/9400/generating-java-code

Chapter 62: Generics

Introduction

Generics are a facility of generic programming that extend Java's type system to allow a type or
method to operate on objects of various types while providing compile-time type safety. In
particular, the Java collections framework supports generics to specify the type of objects stored in
a collection instance.

Syntax

class ArrayList<E> {} // a generic class with type parameter E•
class HashMap<K, V> {} // a generic class with two type parameters K and V•
<E> void print(E element) {} // a generic method with type parameter E•
ArrayList<String> names; // declaration of a generic class•
ArrayList<?> objects; // declaration of a generic class with an unknown type parameter•
new ArrayList<String>() // instantiation of a generic class•
new ArrayList<>() // instantiation with type inference "diamond" (Java 7 or later)•

Remarks

Generics are implemented in Java through Type erasure, which means that during runtime the
Type information specified in the instantiation of a generic class is not available. For example, the
statement List<String> names = new ArrayList<>(); produces a list object from which the element
type String cannot be recovered at runtime. However, if the list is stored in a field of type
List<String>, or passed to a method/constructor parameter of this same type, or returned from a
method of that return type, then the full type information can be recovered at runtime through the
Java Reflection API.

This also means that when casting to a generic type (e.g.: (List<String>) list), the cast is an
unchecked cast. Because the parameter <String> is erased, the JVM cannot check if a cast from a
List<?> to a List<String> is correct; the JVM only sees a cast for List to List at runtime.

Examples

Creating a Generic Class

Generics enable classes, interfaces, and methods to take other classes and interfaces as type
parameters.

This example uses generic class Param to take a single type parameter T, delimited by angle
brackets (<>):

public class Param<T> {

https://riptutorial.com/ 413

https://en.wikipedia.org/wiki/Generics_in_Java
https://docs.oracle.com/javase/tutorial/java/generics/

 private T value;

 public T getValue() {
 return value;
 }

 public void setValue(T value) {
 this.value = value;
 }
}

To instantiate this class, provide a type argument in place of T. For example, Integer:

Param<Integer> integerParam = new Param<Integer>();

The type argument can be any reference type, including arrays and other generic types:

Param<String[]> stringArrayParam;
Param<int[][]> int2dArrayParam;
Param<Param<Object>> objectNestedParam;

In Java SE 7 and later, the type argument can be replaced with an empty set of type arguments (
<>) called the diamond:

Java SE 7

Param<Integer> integerParam = new Param<>();

Unlike other identifiers, type parameters have no naming constraints. However their names are
commonly the first letter of their purpose in upper case. (This is true even throughout the official
JavaDocs.)
Examples include T for "type", E for "element" and K/V for "key"/"value".

Extending a generic class

public abstract class AbstractParam<T> {
 private T value;

 public T getValue() {
 return value;
 }

 public void setValue(T value) {
 this.value = value;
 }
}

AbstractParam is an abstract class declared with a type parameter of T. When extending this class,
that type parameter can be replaced by a type argument written inside <>, or the type parameter
can remain unchanged. In the first and second examples below, String and Integer replace the

https://riptutorial.com/ 414

http://www.riptutorial.com/java/example/457/the-diamond
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html
https://docs.oracle.com/javase/8/docs/api/java/util/List.html
https://docs.oracle.com/javase/8/docs/api/java/util/List.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://www.riptutorial.com/java/example/397/abstract-classes

type parameter. In the third example, the type parameter remains unchanged. The fourth example
doesn't use generics at all, so it's similar to if the class had an Object parameter. The compiler will
warn about AbstractParam being a raw type, but it will compile the ObjectParam class. The fifth
example has 2 type parameters (see "multiple type parameters" below), choosing the second
parameter as the type parameter passed to the superclass.

public class Email extends AbstractParam<String> {
 // ...
}

public class Age extends AbstractParam<Integer> {
 // ...
}

public class Height<T> extends AbstractParam<T> {
 // ...
}

public class ObjectParam extends AbstractParam {
 // ...
}

public class MultiParam<T, E> extends AbstractParam<E> {
 // ...
}

The following is the usage:

Email email = new Email();
email.setValue("test@example.com");
String retrievedEmail = email.getValue();

Age age = new Age();
age.setValue(25);
Integer retrievedAge = age.getValue();
int autounboxedAge = age.getValue();

Height<Integer> heightInInt = new Height<>();
heightInInt.setValue(125);

Height<Float> heightInFloat = new Height<>();
heightInFloat.setValue(120.3f);

MultiParam<String, Double> multiParam = new MultiParam<>();
multiParam.setValue(3.3);

Notice that in the Email class, the T getValue() method acts as if it had a signature of String
getValue(), and the void setValue(T) method acts as if it was declared void setValue(String).

It is also possible to instantiate with anonymous inner class with an empty curly braces ({}):

AbstractParam<Double> height = new AbstractParam<Double>(){};
height.setValue(198.6);

Note that using the diamond with anonymous inner classes is not allowed.

https://riptutorial.com/ 415

http://stackoverflow.com/questions/22200647/why-cant-java-7-diamond-operator-be-used-with-anonymous-classes

Multiple type parameters

Java provides the ability to use more than one type parameter in a generic class or interface.
Multiple type parameters can be used in a class or interface by placing a comma-separated list
of types between the angle brackets. Example:

public class MultiGenericParam<T, S> {
 private T firstParam;
 private S secondParam;

 public MultiGenericParam(T firstParam, S secondParam) {
 this.firstParam = firstParam;
 this.secondParam = secondParam;
 }

 public T getFirstParam() {
 return firstParam;
 }

 public void setFirstParam(T firstParam) {
 this.firstParam = firstParam;
 }

 public S getSecondParam() {
 return secondParam;
 }

 public void setSecondParam(S secondParam) {
 this.secondParam = secondParam;
 }
}

The usage can be done as below:

MultiGenericParam<String, String> aParam = new MultiGenericParam<String, String>("value1",
"value2");
MultiGenericParam<Integer, Double> dayOfWeekDegrees = new MultiGenericParam<Integer,
Double>(1, 2.6);

Declaring a Generic Method

Methods can also have generic type parameters.

public class Example {

 // The type parameter T is scoped to the method
 // and is independent of type parameters of other methods.
 public <T> List<T> makeList(T t1, T t2) {
 List<T> result = new ArrayList<T>();
 result.add(t1);
 result.add(t2);
 return result;
 }

https://riptutorial.com/ 416

https://docs.oracle.com/javase/tutorial/java/generics/

 public void usage() {
 List<String> listString = makeList("Jeff", "Atwood");
 List<Integer> listInteger = makeList(1, 2);
 }
}

Notice that we don't have to pass an actual type argument to a generic method. The compiler
infers the type argument for us, based on the target type (e.g. the variable we assign the result to),
or on the types of the actual arguments. It will generally infer the most specific type argument that
will make the call type-correct.

Sometimes, albeit rarely, it can be necessary to override this type inference with explicit type
arguments:

void usage() {
 consumeObjects(this.<Object>makeList("Jeff", "Atwood").stream());
}

void consumeObjects(Stream<Object> stream) { ... }

It's necessary in this example because the compiler can't "look ahead" to see that Object is desired
for T after calling stream() and it would otherwise infer String based on the makeList arguments.
Note that the Java language doesn't support omitting the class or object on which the method is
called (this in the above example) when type arguments are explicitly provided.

The Diamond

Java SE 7

Java 7 introduced the Diamond1 to remove some boiler-plate around generic class instantiation.
With Java 7+ you can write:

List<String> list = new LinkedList<>();

Where you had to write in previous versions, this:

List<String> list = new LinkedList<String>();

One limitation is for Anonymous Classes, where you still must provide the type parameter in the
instantiation:

// This will compile:

Comparator<String> caseInsensitiveComparator = new Comparator<String>() {
 @Override
 public int compare(String s1, String s2) {
 return s1.compareToIgnoreCase(s2);
 }
};

// But this will not:

https://riptutorial.com/ 417

http://docs.oracle.com/javase/7/docs/technotes/guides/language/type-inference-generic-instance-creation.html
http://www.riptutorial.com/java/example/18796/anonymous-inner-classes

Comparator<String> caseInsensitiveComparator = new Comparator<>() {
 @Override
 public int compare(String s1, String s2) {
 return s1.compareToIgnoreCase(s2);
 }
};

Java SE 8

Although using the diamond with Anonymous Inner Classes is not supported in Java 7 and 8, it
will be included as a new feature in Java 9.

Footnote:

1 - Some people call the <> usage the "diamond operator". This is incorrect. The diamond does not behave as an
operator, and is not described or listed anywhere in the JLS or the (official) Java Tutorials as an operator. Indeed, <>
is not even a distinct Java token. Rather it is a < token followed by a > token, and it is legal (though bad style) to have
whitespace or comments between the two. The JLS and the Tutorials consistently refer to <> as "the diamond", and
that is therefore the correct term for it.

Requiring multiple upper bounds ("extends A & B")

You can require a generic type to extend multiple upper bounds.

Example: we want to sort a list of numbers but Number doesn't implement Comparable.

public <T extends Number & Comparable<T>> void sortNumbers(List<T> n) {
 Collections.sort(n);
}

In this example T must extend Number and implement Comparable<T> which should fit all "normal"
built-in number implementations like Integer or BigDecimal but doesn't fit the more exotic ones like
Striped64.

Since multiple inheritance is not allowed, you can use at most one class as a bound and it must be
the first listed. For example, <T extends Comparable<T> & Number> is not allowed because
Comparable is an interface, and not a class.

Creating a Bounded Generic Class

You can restrict the valid types used in a generic class by bounding that type in the class
definition. Given the following simple type hierarchy:

public abstract class Animal {
 public abstract String getSound();
}

public class Cat extends Animal {
 public String getSound() {
 return "Meow";

https://riptutorial.com/ 418

http://www.riptutorial.com/java/example/18796/anonymous-inner-classes
https://bugs.openjdk.java.net/browse/JDK-8062373
https://bugs.openjdk.java.net/browse/JDK-8062373

 }
}

public class Dog extends Animal {
 public String getSound() {
 return "Woof";
 }
}

Without bounded generics, we cannot make a container class that is both generic and knows
that each element is an animal:

public class AnimalContainer<T> {

 private Collection<T> col;

 public AnimalContainer() {
 col = new ArrayList<T>();
 }

 public void add(T t) {
 col.add(t);
 }

 public void printAllSounds() {
 for (T t : col) {
 // Illegal, type T doesn't have makeSound()
 // it is used as an java.lang.Object here
 System.out.println(t.makeSound());
 }
 }
}

With generic bound in class definition, this is now possible.

public class BoundedAnimalContainer<T extends Animal> { // Note bound here.

 private Collection<T> col;

 public BoundedAnimalContainer() {
 col = new ArrayList<T>();
 }

 public void add(T t) {
 col.add(t);
 }

 public void printAllSounds() {
 for (T t : col) {
 // Now works because T is extending Animal
 System.out.println(t.makeSound());
 }
 }
}

This also restricts the valid instantiations of the generic type:

https://riptutorial.com/ 419

// Legal
AnimalContainer<Cat> a = new AnimalContainer<Cat>();

// Legal
AnimalContainer<String> a = new AnimalContainer<String>();

// Legal because Cat extends Animal
BoundedAnimalContainer<Cat> b = new BoundedAnimalContainer<Cat>();

// Illegal because String doesn't extends Animal
BoundedAnimalContainer<String> b = new BoundedAnimalContainer<String>();

Deciding between `T`, `? super T`, and `? extends T`

The syntax for Java generics bounded wildcards, representing the unknown type by ? is:

? extends T represents an upper bounded wildcard. The unknown type represents a type that
must be a subtype of T, or type T itself.

•

? super T represents a lower bounded wildcard. The unknown type represents a type that
must be a supertype of T, or type T itself.

•

As a rule of thumb, you should use

? extends T if you only need "read" access ("input")•
? super T if you need "write" access ("output")•
T if you need both ("modify")•

Using extends or super is usually better because it makes your code more flexible (as in: allowing
the use of subtypes and supertypes), as you will see below.

class Shoe {}
class IPhone {}
interface Fruit {}
class Apple implements Fruit {}
class Banana implements Fruit {}
class GrannySmith extends Apple {}

 public class FruitHelper {

 public void eatAll(Collection<? extends Fruit> fruits) {}

 public void addApple(Collection<? super Apple> apples) {}
}

The compiler will now be able to detect certain bad usage:

 public class GenericsTest {
 public static void main(String[] args){
 FruitHelper fruitHelper = new FruitHelper() ;
 List<Fruit> fruits = new ArrayList<Fruit>();
 fruits.add(new Apple()); // Allowed, as Apple is a Fruit
 fruits.add(new Banana()); // Allowed, as Banana is a Fruit
 fruitHelper.addApple(fruits); // Allowed, as "Fruit super Apple"

https://riptutorial.com/ 420

 fruitHelper.eatAll(fruits); // Allowed

 Collection<Banana> bananas = new ArrayList<>();
 bananas.add(new Banana()); // Allowed
 //fruitHelper.addApple(bananas); // Compile error: may only contain Bananas!
 fruitHelper.eatAll(bananas); // Allowed, as all Bananas are Fruits

 Collection<Apple> apples = new ArrayList<>();
 fruitHelper.addApple(apples); // Allowed
 apples.add(new GrannySmith()); // Allowed, as this is an Apple
 fruitHelper.eatAll(apples); // Allowed, as all Apples are Fruits.

 Collection<GrannySmith> grannySmithApples = new ArrayList<>();
 fruitHelper.addApple(grannySmithApples); //Compile error: Not allowed.
 // GrannySmith is not a supertype of Apple
 apples.add(new GrannySmith()); //Still allowed, GrannySmith is an Apple
 fruitHelper.eatAll(grannySmithApples);//Still allowed, GrannySmith is a Fruit

 Collection<Object> objects = new ArrayList<>();
 fruitHelper.addApple(objects); // Allowed, as Object super Apple
 objects.add(new Shoe()); // Not a fruit
 objects.add(new IPhone()); // Not a fruit
 //fruitHelper.eatAll(objects); // Compile error: may contain a Shoe, too!
}

Choosing the right T, ? super T or ? extends T is necessary to allow the use with subtypes. The
compiler can then ensure type safety; you should not need to cast (which is not type safe, and
may cause programming errors) if you use them properly.

If it is not easy to understand, please remember PECS rule:

Producer uses "Extends" and Consumer uses "Super".

(Producer has only write access, and Consumer has only read access)

Benefits of Generic class and interface

Code that uses generics has many benefits over non-generic code. Below are the main benefits

Stronger type checks at compile time

A Java compiler applies strong type checking to generic code and issues errors if the code
violates type safety. Fixing compile-time errors is easier than fixing runtime errors, which can be
difficult to find.

Elimination of casts

https://riptutorial.com/ 421

The following code snippet without generics requires casting:

List list = new ArrayList();
list.add("hello");
String s = (String) list.get(0);

When re-written to use generics, the code does not require casting:

List<String> list = new ArrayList<>();
list.add("hello");
String s = list.get(0); // no cast

Enabling programmers to implement generic
algorithms

By using generics, programmers can implement generic algorithms that work on collections of
different types, can be customized, and are type safe and easier to read.

Binding generic parameter to more than 1 type

Generic parameters can also be bound to more than one type using the T extends Type1 & Type2 &
... syntax.

Let's say you want to create a class whose Generic type should implement both Flushable and
Closeable, you can write

class ExampleClass<T extends Flushable & Closeable> {
}

Now, the ExampleClass only accepts as generic parameters, types which implement both Flushable
and Closeable.

ExampleClass<BufferedWriter> arg1; // Works because BufferedWriter implements both Flushable
and Closeable

ExampleClass<Console> arg4; // Does NOT work because Console only implements Flushable
ExampleClass<ZipFile> arg5; // Does NOT work because ZipFile only implements Closeable

ExampleClass<Flushable> arg2; // Does NOT work because Closeable bound is not satisfied.
ExampleClass<Closeable> arg3; // Does NOT work because Flushable bound is not satisfied.

The class methods can choose to infer generic type arguments as either Closeable or Flushable.

class ExampleClass<T extends Flushable & Closeable> {
 /* Assign it to a valid type as you want. */
 public void test (T param) {

https://riptutorial.com/ 422

 Flushable arg1 = param; // Works
 Closeable arg2 = param; // Works too.
 }

 /* You can even invoke the methods of any valid type directly. */
 public void test2 (T param) {
 param.flush(); // Method of Flushable called on T and works fine.
 param.close(); // Method of Closeable called on T and works fine too.
 }
}

Note:

You cannot bind the generic parameter to either of the type using OR (|) clause. Only the AND (&)
clause is supported. Generic type can extends only one class and many interfaces. Class must be
placed at the beginning of the list.

Instantiating a generic type

Due to type erasure the following will not work:

public <T> void genericMethod() {
 T t = new T(); // Can not instantiate the type T.
}

The type T is erased. Since, at runtime, the JVM does not know what T originally was, it does not
know which constructor to call.

Workarounds

Passing T's class when calling genericMethod:

public <T> void genericMethod(Class<T> cls) {
 try {
 T t = cls.newInstance();
 } catch (InstantiationException | IllegalAccessException e) {
 System.err.println("Could not instantiate: " + cls.getName());
 }
}

genericMethod(String.class);

Which throws exceptions, since there is no way to know if the passed class has an
accessible default constructor.

1.

Java SE 8

Passing a reference to T's constructor:2.

https://riptutorial.com/ 423

http://www.riptutorial.com/java/example/5080/method-references

public <T> void genericMethod(Supplier<T> cons) {
 T t = cons.get();
}

genericMethod(String::new);

Referring to the declared generic type within its own declaration

How do you go about using an instance of a (possibly further) inherited generic type within a
method declaration in the generic type itself being declared? This is one of the problems you will
face when you dig a bit deeper into generics, but still a fairly common one.

Assume we have a DataSeries<T> type (interface here), which defines a generic data series
containing values of type T. It is cumbersome to work with this type directly when we want to
perform a lot of operations with e.g. double values, so we define DoubleSeries extends
DataSeries<Double>. Now assume, the original DataSeries<T> type has a method add(values) which
adds another series of the same length and returns a new one. How do we enforce the type of
values and the type of the return to be DoubleSeries rather than DataSeries<Double> in our derived
class?

The problem can be solved by adding a generic type parameter referring back to and extending
the type being declared (applied to an interface here, but the same stands for classes):

public interface DataSeries<T, DS extends DataSeries<T, DS>> {
 DS add(DS values);
 List<T> data();
}

Here T represents the data type the series holds, e.g. Double and DS the series itself. An inherited
type (or types) can now be easily implemented by substituting the above mentioned parameter by
a corresponding derived type, thus, yielding a concrete Double-based definition of the form:

public interface DoubleSeries extends DataSeries<Double, DoubleSeries> {
 static DoubleSeries instance(Collection<Double> data) {
 return new DoubleSeriesImpl(data);
 }
}

At this moment even an IDE will implement the above interface with correct types in place, which,
after a bit of content filling may look like this:

class DoubleSeriesImpl implements DoubleSeries {
 private final List<Double> data;

 DoubleSeriesImpl(Collection<Double> data) {
 this.data = new ArrayList<>(data);
 }

 @Override
 public DoubleSeries add(DoubleSeries values) {
 List<Double> incoming = values != null ? values.data() : null;

https://riptutorial.com/ 424

 if (incoming == null || incoming.size() != data.size()) {
 throw new IllegalArgumentException("bad series");
 }
 List<Double> newdata = new ArrayList<>(data.size());
 for (int i = 0; i < data.size(); i++) {
 newdata.add(this.data.get(i) + incoming.get(i)); // beware autoboxing
 }
 return DoubleSeries.instance(newdata);
 }

 @Override
 public List<Double> data() {
 return Collections.unmodifiableList(data);
 }
}

As you can see the add method is declared as DoubleSeries add(DoubleSeries values) and the
compiler is happy.

The pattern can be further nested if required.

Use of instanceof with Generics

Using generics to define the type in instanceof

Consider the following generic class Example declared with the formal parameter <T>:

class Example<T> {
 public boolean isTypeAString(String s) {
 return s instanceof T; // Compilation error, cannot use T as class type here
 }
}

This will always give a Compilation error because as soon as the compiler compiles the Java
source into Java bytecode it applies a process known as type erasure, which converts all generic
code into non-generic code, making impossible to distinguish among T types at runtime. The type
used with instanceof has to be reifiable, which means that all information about the type has to be
available at runtime, and this is usually not the case for generic types.

The following class represents what two different classes of Example, Example<String> and
Example<Number>, look like after generics has stripped off by type erasure:

class Example { // formal parameter is gone
 public boolean isTypeAString(String s) {
 return s instanceof Object; // Both <String> and <Number> are now Object
 }
}

Since types are gone, it's not possible for the JVM to know which type is T.

Exception to the previous rule

https://riptutorial.com/ 425

https://docs.oracle.com/javase/tutorial/java/generics/nonReifiableVarargsType.html

You can always use unbounded wildcard (?) for specifying a type in the instanceof as follows:

 public boolean isAList(Object obj) {
 return obj instanceof List<?>;
 }

This can be useful to evaluate whether an instance obj is a List or not:

System.out.println(isAList("foo")); // prints false
System.out.println(isAList(new ArrayList<String>()); // prints true
System.out.println(isAList(new ArrayList<Float>()); // prints true

In fact, unbounded wildcard is considered a reifiable type.

Using a generic instance with instanceof

The other side of the coin is that using an instance t of T with instanceof is legal, as shown in the
following example:

class Example<T> {
 public boolean isTypeAString(T t) {
 return t instanceof String; // No compilation error this time
 }
}

because after the type erasure the class will look like the following:

class Example { // formal parameter is gone
 public boolean isTypeAString(Object t) {
 return t instanceof String; // No compilation error this time
 }
}

Since, even if the type erasure happen anyway, now the JVM can distinguish among different
types in memory, even if they use the same reference type (Object), as the following snippet
shows:

Object obj1 = new String("foo"); // reference type Object, object type String
Object obj2 = new Integer(11); // reference type Object, object type Integer
System.out.println(obj1 instanceof String); // true
System.out.println(obj2 instanceof String); // false, it's an Integer, not a String

Different ways for implementing a Generic Interface (or extending a Generic
Class)

Suppose the following generic interface has been declared:

public interface MyGenericInterface<T> {
 public void foo(T t);
}

https://riptutorial.com/ 426

Below are listed the possible ways to implement it.

Non-generic class implementation with a specific type

Choose a specific type to replace the formal type parameter <T> of MyGenericClass and implement
it, as the following example does:

public class NonGenericClass implements MyGenericInterface<String> {
 public void foo(String t) { } // type T has been replaced by String
}

This class only deals with String, and this means that using MyGenericInterface with different
parameters (e.g. Integer, Object etc.) won't compile, as the following snippet shows:

NonGenericClass myClass = new NonGenericClass();
myClass.foo("foo_string"); // OK, legal
myClass.foo(11); // NOT OK, does not compile
myClass.foo(new Object()); // NOT OK, does not compile

Generic class implementation

Declare another generic interface with the formal type parameter <T> which implements
MyGenericInterface, as follows:

public class MyGenericSubclass<T> implements MyGenericInterface<T> {
 public void foo(T t) { } // type T is still the same
 // other methods...
}

Note that a different formal type parameter may have been used, as follows:

public class MyGenericSubclass<U> implements MyGenericInterface<U> { // equivalent to the
previous declaration
 public void foo(U t) { }
 // other methods...
}

Raw type class implementation

Declare a non-generic class which implements MyGenericInteface as a raw type (not using generic
at all), as follows:

public class MyGenericSubclass implements MyGenericInterface {
 public void foo(Object t) { } // type T has been replaced by Object
 // other possible methods
}

This way is not recommended, since it is not 100% safe at runtime because it mixes up raw type
(of the subclass) with generics (of the interface) and it is also confusing. Modern Java compilers

https://riptutorial.com/ 427

will raise a warning with this kind of implementation, nevertheless the code - for compatibility
reasons with older JVM (1.4 or earlier) - will compile.

All the ways listed above are also allowed when using a generic class as a supertype instead of a
generic interface.

Using Generics to auto-cast

With generics, it's possible to return whatever the caller expects:

private Map<String, Object> data;
public <T> T get(String key) {
 return (T) data.get(key);
}

The method will compile with a warning. The code is actually more safe than it looks because the
Java runtime will do a cast when you use it:

Bar bar = foo.get("bar");

It's less safe when you use generic types:

List<Bar> bars = foo.get("bars");

Here, the cast will work when the returned type is any kind of List (i.e. returning List<String>
would not trigger a ClassCastException; you'd eventually get it when taking elements out of the list).

To work around this problem, you can create an API which uses typed keys:

public final static Key<List<Bar>> BARS = new Key<>("BARS");

along with this put() method:

public <T> T put(Key<T> key, T value);

With this approach, you can't put the wrong type into the map, so the result will always be correct
(unless you accidentally create two keys with the same name but different types).

Related:

Type-safe Map•

Obtain class that satisfies generic parameter at runtime

Many unbound generic parameters, like those used in a static method, cannot be recovered at
runtime (see Other Threads on Erasure). However there is a common strategy employed for
accessing the type satisfying a generic parameter on a class at runtime. This allows for generic

https://riptutorial.com/ 428

https://blog.pdark.de/2010/05/28/type-safe-object-map/

code that depends on access to type without having to thread type information through every call.

Background

Generic parameterization on a class can be inspected by creating an anonymous inner class. This
class will capture the type information. In general this mechanism is referred to as super type
tokens, which are detailed in Neal Gafter's blog post.

Implementations

Three common implementations in Java are:

Guava's TypeToken•
Spring's ParameterizedTypeReference•
Jackson's TypeReference•

Example usage

public class DataService<MODEL_TYPE> {
 private final DataDao dataDao = new DataDao();
 private final Class<MODEL_TYPE> type = (Class<MODEL_TYPE>) new TypeToken<MODEL_TYPE>
 (getClass()){}.getRawType();
 public List<MODEL_TYPE> getAll() {
 return dataDao.getAllOfType(type);
 }
}

// the subclass definitively binds the parameterization to User
// for all instances of this class, so that information can be
// recovered at runtime
public class UserService extends DataService<User> {}

public class Main {
 public static void main(String[] args) {
 UserService service = new UserService();
 List<User> users = service.getAll();
 }
}

Read Generics online: https://riptutorial.com/java/topic/92/generics

https://riptutorial.com/ 429

http://gafter.blogspot.com/2006/12/super-type-tokens.html
https://github.com/google/guava/wiki/ReflectionExplained
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/ParameterizedTypeReference.html
http://fasterxml.github.io/jackson-core/javadoc/2.0.0/com/fasterxml/jackson/core/type/TypeReference.html
https://riptutorial.com/java/topic/92/generics

Chapter 63: Getters and Setters

Introduction

This article discusses getters and setters; the standard way to provide access to data in Java
classes.

Examples

Adding Getters and Setters

Encapsulation is a basic concept in OOP. It is about wrapping data and code as a single unit. In
this case, it is a good practice to declare the variables as private and then access them through
Getters and Setters to view and/or modify them.

public class Sample {
 private String name;
 private int age;

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

These private variables cannot be accessed directly from outside the class. Hence they are
protected from unauthorized access. But if you want to view or modify them, you can use Getters
and Setters.

getXxx() method will return the current value of the variable xxx, while you can set the value of the
variable xxx using setXxx().

The naming convention of the methods are (in example variable is called variableName):

All non boolean variables

 getVariableName() //Getter, The variable name should start with uppercase
 setVariableName(..) //Setter, The variable name should start with uppercase

•

https://riptutorial.com/ 430

boolean variables

 isVariableName() //Getter, The variable name should start with uppercase
 setVariableName(...) //Setter, The variable name should start with uppercase

•

Public Getters and Setters are part of the Property definition of a Java Bean.

Using a setter or getter to implement a constraint

Setters and Getters allow for an object to contain private variables which can be accessed and
changed with restrictions. For example,

public class Person {

 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 if(name!=null && name.length()>2)
 this.name = name;
 }
}

In this Person class, there is a single variable: name. This variable can be accessed using the
getName() method and changed using the setName(String) method, however, setting a name
requires the new name to have a length greater than 2 characters and to not be null. Using a
setter method rather than making the variable name public allows others to set the value of name with
certain restrictions. The same can be applied to the getter method:

public String getName(){
 if(name.length()>16)
 return "Name is too large!";
 else
 return name;
}

In the modified getName() method above, the name is returned only if its length is less than or equal
to 16. Otherwise, "Name is too large" is returned. This allows the programmer to create variables
that are reachable and modifiable however they wish, preventing client classes from editing the
variables unwantedly.

Why Use Getters and Setters?

Consider a basic class containing an object with getters and setters in Java:

public class CountHolder {
 private int count = 0;

 public int getCount() { return count; }

https://riptutorial.com/ 431

https://docs.oracle.com/javase/tutorial/javabeans/writing/properties.html

 public void setCount(int c) { count = c; }
}

We can't access the count variable because it's private. But we can access the getCount() and the
setCount(int) methods because they are public. To some, this might raise the question; why
introduce the middleman? Why not just simply make they count public?

public class CountHolder {
 public int count = 0;
}

For all intents and purposes, these two are exactly the same, functionality-wise. The difference
between them is the extensibility. Consider what each class says:

First: "I have a method that will give you an int value, and a method that will set that value
to another int".

•

Second: "I have an int that you can set and get as you please."•

These might sound similar, but the first is actually much more guarded in its nature; it only lets you
interact with its internal nature as it dictates. This leaves the ball in its court; it gets to choose how
the internal interactions occur. The second has exposed its internal implementation externally, and
is now not only prone to external users, but, in the case of an API, committed to maintaining that
implementation (or otherwise releasing a non-backward-compatible API).

Lets consider if we want to synchronize access to modifying and accessing the count. In the first,
this is simple:

public class CountHolder {
 private int count = 0;

 public synchronized int getCount() { return count; }
 public synchronized void setCount(int c) { count = c; }
}

but in the second example, this is now nearly impossible without going through and modifying
each place where the count variable is referenced. Worse still, if this is an item that you're
providing in a library to be consumed by others, you do not have a way of performing that
modification, and are forced to make the hard choice mentioned above.

So it begs the question; are public variables ever a good thing (or, at least, not evil)?

I'm unsure. On one hand, you can see examples of public variables that have stood the test of
time (IE: the out variable referenced in System.out). On the other, providing a public variable gives
no benefit outside of extremely minimal overhead and potential reduction in wordiness. My
guideline here would be that, if you're planning on making a variable public, you should judge it
against these criteria with extreme prejudice:

The variable should have no conceivable reason to ever change in its implementation. This
is something that's extremely easy to screw up (and, even if you do get it right, requirements
can change), which is why getters/setters are the common approach. If you're going to have

1.

https://riptutorial.com/ 432

a public variable, this really needs to be thought through, especially if released in a
library/framework/API.
The variable needs to be referenced frequently enough that the minimal gains from reducing
verbosity warrants it. I don't even think the overhead for using a method versus directly
referencing should be considered here. It's far too negligible for what I'd conservatively
estimate to be 99.9% of applications.

2.

There's probably more than I haven't considered off the top of my head. If you're ever in doubt,
always use getters/setters.

Read Getters and Setters online: https://riptutorial.com/java/topic/3560/getters-and-setters

https://riptutorial.com/ 433

https://riptutorial.com/java/topic/3560/getters-and-setters

Chapter 64: Hashtable

Introduction

Hashtable is a class in Java collections which implements Map interface and extends the
Dictionary Class

Contains only unique elements and its synchronized

Examples

Hashtable

import java.util.*;
public class HashtableDemo {
 public static void main(String args[]) {
 // create and populate hash table
 Hashtable<Integer, String> map = new Hashtable<Integer, String>();
 map.put(101,"C Language");
 map.put(102, "Domain");
 map.put(104, "Databases");
 System.out.println("Values before remove: "+ map);
 // Remove value for key 102
 map.remove(102);
 System.out.println("Values after remove: "+ map);
 }
}

Read Hashtable online: https://riptutorial.com/java/topic/10709/hashtable

https://riptutorial.com/ 434

https://riptutorial.com/java/topic/10709/hashtable

Chapter 65: HttpURLConnection

Remarks

Using HttpUrlConnection on Android requires that you add the Internet permission to your
app (in the AndroidManifest.xml).

•

There are also other Java HTTP clients and libraries, such as Square's OkHttp, which are
easier to use, and may offer better performance or more features.

•

Examples

Get response body from a URL as a String

String getText(String url) throws IOException {
 HttpURLConnection connection = (HttpURLConnection) new URL(url).openConnection();
 //add headers to the connection, or check the status if desired..

 // handle error response code it occurs
 int responseCode = conn.getResponseCode();
 InputStream inputStream;
 if (200 <= responseCode && responseCode <= 299) {
 inputStream = connection.getInputStream();
 } else {
 inputStream = connection.getErrorStream();
 }

 BufferedReader in = new BufferedReader(
 new InputStreamReader(
 inputStream));

 StringBuilder response = new StringBuilder();
 String currentLine;

 while ((currentLine = in.readLine()) != null)
 response.append(currentLine);

 in.close();

 return response.toString();
}

This will download text data from the specified URL, and return it as a String.

How this works:

First, we create a HttpUrlConnection from our URL, with new URL(url).openConnection(). We
cast the UrlConnection this returns to a HttpUrlConnection, so we have access to things like
adding headers (such as User Agent), or checking the response code. (This example does
not do that, but it's easy to add.)

•

https://riptutorial.com/ 435

http://github.com/square/okhttp/

Then, create InputStream basing on the response code (for error handling)•

Then, create a BufferedReader which allows us to read text from InputStream we get from the
connection.

•

Now, we append the text to a StringBuilder, line by line.•

Close the InputStream, and return the String we now have.•

Notes:

This method will throw an IoException in case of failure (such as a network error, or no
internet connection), and it will also throw an unchecked MalformedUrlException if the given
URL is not valid.

•

It can be used for reading from any URL which returns text, such as webpages (HTML),
REST APIs which return JSON or XML, etc.

•

See also: Read URL to String in few lines of Java code.•

Usage:

Is very simple:

String text = getText(”http://example.com");
//Do something with the text from example.com, in this case the HTML.

POST data

public static void post(String url, byte [] data, String contentType) throws IOException {
 HttpURLConnection connection = null;
 OutputStream out = null;
 InputStream in = null;

 try {
 connection = (HttpURLConnection) new URL(url).openConnection();
 connection.setRequestProperty("Content-Type", contentType);
 connection.setDoOutput(true);

 out = connection.getOutputStream();
 out.write(data);
 out.close();

 in = connection.getInputStream();
 BufferedReader reader = new BufferedReader(new InputStreamReader(in));
 String line = null;
 while ((line = reader.readLine()) != null) {
 System.out.println(line);
 }
 in.close();

 } finally {
 if (connection != null) connection.disconnect();
 if (out != null) out.close();

https://riptutorial.com/ 436

http://stackoverflow.com/questions/4328711/read-url-to-string-in-few-lines-of-java-code

 if (in != null) in.close();
 }
}

This will POST data to the specified URL, then read the response line-by-line.

How it works

As usual we obtain the HttpURLConnection from a URL.•
Set the content type using setRequestProperty, by default it's application/x-www-form-
urlencoded

•

setDoOutput(true) tells the connection that we will send data.•
Then we obtain the OutputStream by calling getOutputStream() and write data to it. Don't forget
to close it after you are done.

•

At last we read the server response.•

Delete resource

 public static void delete (String urlString, String contentType) throws IOException {
 HttpURLConnection connection = null;

 try {
 URL url = new URL(urlString);
 connection = (HttpURLConnection) url.openConnection();
 connection.setDoInput(true);
 connection.setRequestMethod("DELETE");
 connection.setRequestProperty("Content-Type", contentType);

 Map<String, List<String>> map = connection.getHeaderFields();
 StringBuilder sb = new StringBuilder();
 Iterator<Map.Entry<String, String>> iterator =
responseHeader.entrySet().iterator();
 while(iterator.hasNext())
 {
 Map.Entry<String, String> entry = iterator.next();
 sb.append(entry.getKey());
 sb.append('=').append('"');
 sb.append(entry.getValue());
 sb.append('"');
 if(iterator.hasNext())
 {
 sb.append(',').append(' ');
 }
 }
 System.out.println(sb.toString());

 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (connection != null) connection.disconnect();
 }
 }

This will DELETE the resource in the specified URL, then print the response header.

https://riptutorial.com/ 437

How it works

we obtain the HttpURLConnection from a URL.•
Set the content type using setRequestProperty, by default it's application/x-www-form-
urlencoded

•

setDoInput(true) tells the connection that we intend to use the URL connection for input.•
setRequestMethod("DELETE") to perform HTTP DELETE•

At last we print the server response header.

Check if resource exists

/**
 * Checks if a resource exists by sending a HEAD-Request.
 * @param url The url of a resource which has to be checked.
 * @return true if the response code is 200 OK.
 */
public static final boolean checkIfResourceExists(URL url) throws IOException {
 HttpURLConnection conn = (HttpURLConnection) url.openConnection();
 conn.setRequestMethod("HEAD");
 int code = conn.getResponseCode();
 conn.disconnect();
 return code == 200;
}

Explanation:

If you are just checking if a resource exists, it better to use a HEAD request than a GET. This
avoids the overhead of transferring the resource.

Note that the method only returns true if the response code is 200. If you anticipate redirect (i.e.
3XX) responses, then the method may need to be enhanced to honor them.

Example:

checkIfResourceExists(new URL("http://images.google.com/")); // true
checkIfResourceExists(new URL("http://pictures.google.com/")); // false

Read HttpURLConnection online: https://riptutorial.com/java/topic/156/httpurlconnection

https://riptutorial.com/ 438

https://riptutorial.com/java/topic/156/httpurlconnection

Chapter 66: Immutable Class

Introduction

Immutable objects are instances whose state doesn’t change after it has been initialized. For
example, String is an immutable class and once instantiated its value never changes.

Remarks

Some immutable classes in Java:

java.lang.String1.
The wrapper classes for the primitive types: java.lang.Integer, java.lang.Byte,
java.lang.Character, java.lang.Short, java.lang.Boolean, java.lang.Long, java.lang.Double,
java.lang.Float

2.

Most enum classes are immutable, but this in fact depends on the concrete case.3.
java.math.BigInteger and java.math.BigDecimal (at least objects of those classes
themselves)

4.

java.io.File. Note that this represents an object external to the VM (a file on the local
system), which may or may not exist, and has some methods modifying and querying the
state of this external object. But the File object itself stays immutable.

5.

Examples

Rules to define immutable classes

The following rules define a simple strategy for creating immutable objects.

Don't provide "setter" methods - methods that modify fields or objects referred to by fields.1.
Make all fields final and private.2.
Don't allow subclasses to override methods. The simplest way to do this is to declare the
class as final. A more sophisticated approach is to make the constructor private and
construct instances in factory methods.

3.

If the instance fields include references to mutable objects, don't allow those objects to be
changed:

4.

Don't provide methods that modify the mutable objects.5.
Don't share references to the mutable objects. Never store references to external, mutable
objects passed to the constructor; if necessary, create copies, and store references to the
copies. Similarly, create copies of your internal mutable objects when necessary to avoid
returning the originals in your methods.

6.

Example without mutable refs

public final class Color {

https://riptutorial.com/ 439

 final private int red;
 final private int green;
 final private int blue;

 private void check(int red, int green, int blue) {
 if (red < 0 || red > 255 || green < 0 || green > 255 || blue < 0 || blue > 255) {
 throw new IllegalArgumentException();
 }
 }

 public Color(int red, int green, int blue) {
 check(red, green, blue);
 this.red = red;
 this.green = green;
 this.blue = blue;
 }

 public Color invert() {
 return new Color(255 - red, 255 - green, 255 - blue);
 }
}

Example with mutable refs

In this case class Point is mutable and some user can modify state of object of this class.

class Point {
 private int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public int getX() {
 return x;
 }

 public void setX(int x) {
 this.x = x;
 }

 public int getY() {
 return y;
 }

 public void setY(int y) {
 this.y = y;
 }
}

//...

public final class ImmutableCircle {
 private final Point center;
 private final double radius;

 public ImmutableCircle(Point center, double radius) {
 // we create new object here because it shouldn't be changed

https://riptutorial.com/ 440

 this.center = new Point(center.getX(), center.getY());
 this.radius = radius;
 }

What is the advantage of immutability?

The advantage of immutability comes with concurrency. It is difficult to maintain correctness in
mutable objects, as multiple threads could be trying to change the state of the same object,
leading to some threads seeing a different state of the same object, depending on the timing of the
reads and writes to the said object.

By having an immutable object, one can ensure that all threads that are looking at the object will
be seeing the same state, as the state of an immutable object will not change.

Read Immutable Class online: https://riptutorial.com/java/topic/10561/immutable-class

https://riptutorial.com/ 441

https://riptutorial.com/java/topic/10561/immutable-class

Chapter 67: Immutable Objects

Remarks

Immutable objects have fixed state (no setters), so all state must be known at object creation time.

Although not technically required, it is best practice to make all fields final. This will make the
immutable class thread-safe (cf. Java Concurrency in Practice, 3.4.1).

The examples show several patterns that can assist with achieving this.

Examples

Creating an immutable version of a type using defensive copying.

Some basic types and classes in Java are fundamentally mutable. For example, all array types are
mutable, and so are classes like java.util.Data. This can be awkward in situations where an
immutable type is mandated.

One way to deal with this is to create an immutable wrapper for the mutable type. Here is a simple
wrapper for an array of integers

public class ImmutableIntArray {
 private final int[] array;

 public ImmutableIntArray(int[] array) {
 this.array = array.clone();
 }

 public int[] getValue() {
 return this.clone();
 }
}

This class works by using defensive copying to isolate the mutable state (the int[]) from any code
that might mutate it:

The constructor uses clone() to create a distinct copy of the parameter array. If the caller of
the constructor subsequent changed the parameter array, it would not affect the state of the
ImmutableIntArray.

•

The getValue() method also uses clone() to create the array that is returned. If the caller
were to change the result array, it would not affect the state of the ImmutableIntArray.

•

We could also add methods to ImmutableIntArray to perform read-only operations on the wrapped
array; e.g. get its length, get the value at a particular index, and so on.

Note that an immutable wrapper type implemented this way is not type compatible with the original

https://riptutorial.com/ 442

type. You cannot simply substitute the former for the latter.

The recipe for an immutable class

An immutable object is an object whose state cannot be changed. An immutable class is a class
whose instances are immutable by design, and implementation. The Java class which is most
commonly presented as an example of immutability is java.lang.String.

The following is a stereotypical example:

public final class Person {
 private final String name;
 private final String ssn; // (SSN == social security number)

 public Person(String name, String ssn) {
 this.name = name;
 this.ssn = ssn;
 }

 public String getName() {
 return name;
 }

 public String getSSN() {
 return ssn;
 }
}

A variation on this is to declare the constructor as private and provide a public static factory
method instead.

The standard recipe for an immutable class is as follows:

All properties must be set in the constructor(s) or factory method(s).•
There should be no setters.•
If it is necessary to include setters for interface compatibility reasons, they should either do
nothing or throw an exception.

•

All properties should be declared as private and final.•
For all properties that are references to mutable types:

the property should be initialized with a deep copy of the value passed via the
constructor, and

○

the property's getter should return a deep copy of the property value.○

•

The class should be declared as final to prevent someone creating a mutable subclass of
an immutable class.

•

A couple of other things to note:

Immutability does not prevent object from being nullable; e.g. null can be assigned to a
String variable.

•

If an immutable classes properties are declared as final, instances are inherently thread-
safe. This makes immutable classes a good building block for implementing multi-threaded

•

https://riptutorial.com/ 443

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

applications.

Typical design flaws which prevent a class from being immutable

Using some setters, without setting all needed properties in the constructor(s)

public final class Person { // example of a bad immutability
 private final String name;
 private final String surname;
 public Person(String name) {
 this.name = name;
 }
 public String getName() { return name;}
 public String getSurname() { return surname;}
 public void setSurname(String surname) { this.surname = surname); }
}

It’s easy to show that Person class is not immutable:

Person person = new Person("Joe");
person.setSurname("Average"); // NOT OK, change surname field after creation

To fix it, simply delete setSurname() and refactor the constructor as follows:

public Person(String name, String surname) {
 this.name = name;
 this.surname = surname;
 }

Not marking instance variables as private and final

Take a look at the following class:

public final class Person {
 public String name;
 public Person(String name) {
 this.name = name;
 }
 public String getName() {
 return name;
 }

}

The following snippet shows that the above class is not immutable:

Person person = new Person("Average Joe");
person.name = "Magic Mike"; // not OK, new name for person after creation

To fix it, simply mark name property as private and final.

https://riptutorial.com/ 444

Exposing a mutable object of the class in a getter

Take a look at the following class:

import java.util.List;
import java.util.ArrayList;
public final class Names {
 private final List<String> names;
 public Names(List<String> names) {
 this.names = new ArrayList<String>(names);
 }
 public List<String> getNames() {
 return names;
 }
 public int size() {
 return names.size();
 }
}

Names class seems immutable at the first sight, but it is not as the following code shows:

List<String> namesList = new ArrayList<String>();
namesList.add("Average Joe");
Names names = new Names(namesList);
System.out.println(names.size()); // 1, only containing "Average Joe"
namesList = names.getNames();
namesList.add("Magic Mike");
System.out.println(names.size()); // 2, NOT OK, now names also contains "Magic Mike"

This happened because a change to the reference List returned by getNames() can modify the
actual list of Names.

To fix this, simply avoid returning references that reference class's mutable objects either by
making defensive copies, as follows:

public List<String> getNames() {
 return new ArrayList<String>(this.names); // copies elements
}

or by designing getters in way that only other immutable objects and primitives are returned, as
follows:

public String getName(int index) {
 return names.get(index);
}
public int size() {
 return names.size();
}

Injecting constructor with object(s) that can be modified outside the immutable class

This is a variation of the previous flaw. Take a look at the following class:

https://riptutorial.com/ 445

import java.util.List;
public final class NewNames {
 private final List<String> names;
 public Names(List<String> names) {
 this.names = names;
 }
 public String getName(int index) {
 return names.get(index);
 }
 public int size() {
 return names.size();
 }
}

As Names class before, also NewNames class seems immutable at the first sight, but it is not, in fact
the following snippet proves the contrary:

List<String> namesList = new ArrayList<String>();
namesList.add("Average Joe");
NewNames names = new NewNames(namesList);
System.out.println(names.size()); // 1, only containing "Average Joe"
namesList.add("Magic Mike");
System.out.println(names.size()); // 2, NOT OK, now names also contains "Magic Mike"

To fix this, as in the previous flaw, simply make defensive copies of the object without assigning it
directly to the immutable class, i.e. constructor can be changed as follows:

 public Names(List<String> names) {
 this.names = new ArrayList<String>(names);
 }

Letting the methods of the class being overridden

Take a look at the following class:

public class Person {
 private final String name;
 public Person(String name) {
 this.name = name;
 }
 public String getName() { return name;}
}

Person class seems immutable at the first sight, but suppose a new subclass of Person is defined:

public class MutablePerson extends Person {
 private String newName;
 public MutablePerson(String name) {
 super(name);
 }
 @Override
 public String getName() {
 return newName;
 }

https://riptutorial.com/ 446

 public void setName(String name) {
 newName = name;
 }
}

now Person (im)mutability can be exploited through polymorphism by using the new subclass:

Person person = new MutablePerson("Average Joe");
System.out.println(person.getName()); prints Average Joe
person.setName("Magic Mike"); // NOT OK, person has now a new name!
System.out.println(person.getName()); // prints Magic Mike

To fix this, either mark the class as final so it cannot be extended or declare all of its
constructor(s) as private.

Read Immutable Objects online: https://riptutorial.com/java/topic/2807/immutable-objects

https://riptutorial.com/ 447

https://riptutorial.com/java/topic/2807/immutable-objects

Chapter 68: Inheritance

Introduction

Inheritance is a basic object oriented feature in which one class acquires and extends upon the
properties of another class, using the keyword extends. For Interfaces and the keyword implements,
see interfaces.

Syntax

class ClassB extends ClassA {...}•
class ClassB implements InterfaceA {...}•
interface InterfaceB extends InterfaceA {...}•
class ClassB extends ClassA implements InterfaceC, InterfaceD {...}•
abstract class AbstractClassB extends ClassA {...}•
abstract class AbstractClassB extends AbstractClassA {...}•
abstract class AbstractClassB extends ClassA implements InterfaceC, InterfaceD {...}•

Remarks

Inheritance is often combined with generics so that the base class has one or more type
parameters. See Creating a Generic Class.

Examples

Abstract Classes

An abstract class is a class marked with the abstract keyword. It, contrary to non-abstract class,
may contain abstract - implementation-less - methods. It is, however, valid to create an abstract
class without abstract methods.

An abstract class cannot be instantiated. It can be sub-classed (extended) as long as the sub-
class is either also abstract, or implements all methods marked as abstract by super classes.

An example of an abstract class:

public abstract class Component {
 private int x, y;

 public setPosition(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public abstract void render();
}

https://riptutorial.com/ 448

http://www.riptutorial.com/java/topic/102/interfaces
http://www.riptutorial.com/java/example/388/creating-a-generic-class

The class must be marked abstract, when it has at least one abstract method. An abstract method
is a method that has no implementation. Other methods can be declared within an abstract class
that have implementation in order to provide common code for any sub-classes.

Attempting to instantiate this class will provide a compile error:

//error: Component is abstract; cannot be instantiated
Component myComponent = new Component();

However a class that extends Component, and provides an implementation for all of its abstract
methods and can be instantiated.

public class Button extends Component {

 @Override
 public void render() {
 //render a button
 }
}

public class TextBox extends Component {

 @Override
 public void render() {
 //render a textbox
 }
}

Instances of inheriting classes also can be cast as the parent class (normal inheritance) and they
provide a polymorphic effect when the abstract method is called.

Component myButton = new Button();
Component myTextBox = new TextBox();

myButton.render(); //renders a button
myTextBox.render(); //renders a text box

Abstract classes vs Interfaces

Abstract classes and interfaces both provide a way to define method signatures while requiring the
extending/implementing class to provide the implementation.

There are two key differences between abstract classes and interfaces:

A class may only extend a single class, but may implement many interfaces.•
An abstract class can contain instance (non-static) fields, but interfaces may only contain
static fields.

•

Java SE 8

Methods declared in interfaces could not contain implementations, so abstract classes were used
when it was useful to provide additional methods which implementations called the abstract

https://riptutorial.com/ 449

methods.

Java SE 8

Java 8 allows interfaces to contain default methods, usually implemented using the other methods
of the interface, making interfaces and abstract classes equally powerful in this regard.

Anonymous subclasses of Abstract Classes

As a convenience java allows for instantiation of anonymous instances of subclasses of abstract
classes, which provide implementations for the abstract methods upon creating the new object.
Using the above example this could look like this:

Component myAnonymousComponent = new Component() {
 @Override
 public void render() {
 // render a quick 1-time use component
 }
}

Static Inheritance

Static method can be inherited similar to normal methods, however unlike normal methods it is
impossible to create "abstract" methods in order to force static method overriding. Writing a
method with the same signature as a static method in a super class appears to be a form of
overriding, but really this simply creates a new function hides the other.

public class BaseClass {

 public static int num = 5;

 public static void sayHello() {
 System.out.println("Hello");
 }

 public static void main(String[] args) {
 BaseClass.sayHello();
 System.out.println("BaseClass's num: " + BaseClass.num);

 SubClass.sayHello();
 //This will be different than the above statement's output, since it runs
 //A different method
 SubClass.sayHello(true);

 StaticOverride.sayHello();
 System.out.println("StaticOverride's num: " + StaticOverride.num);
 }
}

public class SubClass extends BaseClass {

 //Inherits the sayHello function, but does not override it
 public static void sayHello(boolean test) {
 System.out.println("Hey");
 }

https://riptutorial.com/ 450

http://www.riptutorial.com/java/topic/113/default-methods
http://www.riptutorial.com/java/example/456/accessing-other-interface-methods-within-default-method
http://www.riptutorial.com/java/example/456/accessing-other-interface-methods-within-default-method
http://www.riptutorial.com/java/example/397/abstract-classes

}

public static class StaticOverride extends BaseClass {

 //Hides the num field from BaseClass
 //You can even change the type, since this doesn't affect the signature
 public static String num = "test";

 //Cannot use @Override annotation, since this is static
 //This overrides the sayHello method from BaseClass
 public static void sayHello() {
 System.out.println("Static says Hi");
 }

}

Running any of these classes produces the output:

Hello
BaseClass's num: 5
Hello
Hey
Static says Hi
StaticOverride's num: test

Note that unlike normal inheritance, in static inheritance methods are not hidden. You can always
call the base sayHello method by using BaseClass.sayHello(). But classes do inherit static methods
if no methods with the same signature are found in the subclass. If two method's signatures vary,
both methods can be run from the subclass, even if the name is the same.

Static fields hide each other in a similar way.

Using 'final' to restrict inheritance and overriding

Final classes

When used in a class declaration, the final modifier prevents other classes from being declared
that extend the class. A final class is a "leaf" class in the inheritance class hierarchy.

// This declares a final class
final class MyFinalClass {
 /* some code */
}

// Compilation error: cannot inherit from final MyFinalClass
class MySubClass extends MyFinalClass {
 /* more code */
}

Use-cases for final classes

Final classes can be combined with a private constructor to control or prevent the instantiation of

https://riptutorial.com/ 451

a class. This can be used to create a so-called "utility class" that only defines static members; i.e.
constants and static methods.

public final class UtilityClass {

 // Private constructor to replace the default visible constructor
 private UtilityClass() {}

 // Static members can still be used as usual
 public static int doSomethingCool() {
 return 123;
 }

}

Immutable classes should also be declared as final. (An immutable class is one whose instances
cannot be changed after they have been created; see the Immutable Objects topic.) By doing this,
you make it impossible to create a mutable subclass of an immutable class. That would violate the
Liskov Substitution Principle which requires that a subtype should obey the "behavioral contract"
of its supertypes.

From a practical perspective, declaring an immutable class to be final makes it easier to reason
about program behavior. It also addresses security concerns in the scenario where untrusted code
is executed in a security sandbox. (For instance, since String is declared as final, a trusted class
does not need to worry that it might be tricked into accepting mutable subclass, which the
untrusted caller could then surreptitiously change.)

One disadvantage of final classes is that they do not work with some mocking frameworks such
as Mockito. Update: Mockito version 2 now support mocking of final classes.

Final methods

The final modifier can also be applied to methods to prevent them being overridden in sub-
classes:

public class MyClassWithFinalMethod {

 public final void someMethod() {
 }
}

public class MySubClass extends MyClassWithFinalMethod {

 @Override
 public void someMethod() { // Compiler error (overridden method is final)
 }
}

Final methods are typically used when you want to restrict what a subclass can change in a class
without forbidding subclasses entirely.

https://riptutorial.com/ 452

http://www.riptutorial.com/java/topic/2807/immutable-objects
http://www.riptutorial.com/java/example/3106/the-liskov-substitution-principle

The final modifier can also be applied to variables, but the meaning of final for variables is
unrelated to inheritance.

The Liskov Substitution Principle

Substitutability is a principle in object-oriented programming introduced by Barbara Liskov in a
1987 conference keynote stating that, if class B is a subclass of class A, then wherever A is
expected, B can be used instead:

class A {...}
class B extends A {...}

public void method(A obj) {...}

A a = new B(); // Assignment OK
method(new B()); // Passing as parameter OK

This also applies when the type is an interface, where there doesn't need to any hierarchical
relationship between the objects:

interface Foo {
 void bar();
}

class A implements Foo {
 void bar() {...}
}

class B implements Foo {
 void bar() {...}
}

List<Foo> foos = new ArrayList<>();
foos.add(new A()); // OK
foos.add(new B()); // OK

Now the list contains objects that are not from the same class hierarchy.

Inheritance

With the use of the extends keyword among classes, all the properties of the superclass (also
known as the Parent Class or Base Class) are present in the subclass (also known as the Child
Class or Derived Class)

public class BaseClass {

 public void baseMethod(){
 System.out.println("Doing base class stuff");
 }
}

public class SubClass extends BaseClass {

}

https://riptutorial.com/ 453

Instances of SubClass have inherited the method baseMethod():

SubClass s = new SubClass();
s.baseMethod(); //Valid, prints "Doing base class stuff"

Additional content can be added to a subclass. Doing so allows for additional functionality in the
subclass without any change to the base class or any other subclasses from that same base
class:

public class Subclass2 extends BaseClass {

 public void anotherMethod() {
 System.out.println("Doing subclass2 stuff");
 }
}

Subclass2 s2 = new Subclass2();
s2.baseMethod(); //Still valid , prints "Doing base class stuff"
s2.anotherMethod(); //Also valid, prints "Doing subclass2 stuff"

Fields are also inherited:

public class BaseClassWithField {

 public int x;

}

public class SubClassWithField extends BaseClassWithField {

 public SubClassWithField(int x) {
 this.x = x; //Can access fields
 }
}

private fields and methods still exist within the subclass, but are not accessible:

public class BaseClassWithPrivateField {

 private int x = 5;

 public int getX() {
 return x;
 }
}

public class SubClassInheritsPrivateField extends BaseClassWithPrivateField {

 public void printX() {
 System.out.println(x); //Illegal, can't access private field x
 System.out.println(getX()); //Legal, prints 5
 }
}

SubClassInheritsPrivateField s = new SubClassInheritsPrivateField();
int x = s.getX(); //x will have a value of 5.

https://riptutorial.com/ 454

In Java, each class may extend at most one other class.

public class A{}
public class B{}
public class ExtendsTwoClasses extends A, B {} //Illegal

This is known as multiple inheritance, and while it is legal in some languages, Java does not
permit it with classes.

As a result of this, every class has an unbranching ancestral chain of classes leading to Object,
from which all classes descend.

Inheritance and Static Methods

In Java, parent and child class both can have static methods with the same name. But in such
cases implementation of static method in child is hiding parent class' implementation, it's not
method overriding. For example:

class StaticMethodTest {

 // static method and inheritance
 public static void main(String[] args) {
 Parent p = new Child();
 p.staticMethod(); // prints Inside Parent
 ((Child) p).staticMethod(); // prints Inside Child
 }

 static class Parent {
 public static void staticMethod() {
 System.out.println("Inside Parent");
 }
 }

 static class Child extends Parent {
 public static void staticMethod() {
 System.out.println("Inside Child");
 }
 }
}

Static methods are bind to a class not to an instance and this method binding happens at compile
time. Since in the first call to staticMethod(), parent class reference p was used, Parent's version of
staticMethod() is invoked. In second case, we did cast p into Child class, Child's staticMethod()
executed.

Variable shadowing

Variables are SHADOWED and methods are OVERRIDDEN. Which variable will be used depends
on the class that the variable is declared of. Which method will be used depends on the actual
class of the object that is referenced by the variable.

class Car {

https://riptutorial.com/ 455

https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.8.2

 public int gearRatio = 8;

 public String accelerate() {
 return "Accelerate : Car";
 }
}

class SportsCar extends Car {
 public int gearRatio = 9;

 public String accelerate() {
 return "Accelerate : SportsCar";
 }

 public void test() {

 }

 public static void main(String[] args) {

 Car car = new SportsCar();
 System.out.println(car.gearRatio + " " + car.accelerate());
 // will print out 8 Accelerate : SportsCar
 }
}

Narrowing and Widening of object references

Casting an instance of a base class to a subclass as in : b = (B) a; is called narrowing (as you are
trying to narrow the base class object to a more specific class object) and needs an explicit type-
cast.

Casting an instance of a subclass to a base class as in: A a = b; is called widening and does not
need a type-cast.

To illustrate, consider the following class declarations, and test code:

class Vehicle {
}

class Car extends Vehicle {
}

class Truck extends Vehicle {
}

class MotorCycle extends Vehicle {
}

class Test {

 public static void main(String[] args) {

 Vehicle vehicle = new Car();
 Car car = new Car();

https://riptutorial.com/ 456

 vehicle = car; // is valid, no cast needed

 Car c = vehicle // not valid
 Car c = (Car) vehicle; //valid
 }
}

The statement Vehicle vehicle = new Car(); is a valid Java statement. Every instance of Car is also
a Vehicle. Therefore, the assignment is legal without the need for an explicit type-cast.

On the other hand, Car c = vehicle; is not valid. The static type of the vehicle variable is Vehicle
which means that it could refer to an instance of Car, Truck,MotorCycle, or any other current or
future subclass ofVehicle. (Or indeed, an instance ofVehicleitself, since we did not declare it
as anabstractclass.) The assignment cannot be allowed, since that might lead tocarreferring to a
Truck` instance.

To prevent this situation, we need to add an explicit type-cast:

Car c = (Car) vehicle;

The type-cast tells the compiler that we expect the value of vehicle to be a Car or a subclass of Car
. If necessary, compiler will insert code to perform a run-time type check. If the check fails, then a
ClassCastException will be thrown when the code is executed.

Note that not all type-casts are valid. For example:

String s = (String) vehicle; // not valid

The Java compiler knows that an instance that is type compatible with Vehicle cannot ever be type
compatible with String. The type-cast could never succeed, and the JLS mandates that this gives
in a compilation error.

Programming to an interface

The idea behind programming to an interface is to base the code primarily on interfaces and only
use concrete classes at the time of instantiation. In this context, good code dealing with e.g. Java
collections will look something like this (not that the method itself is of any use at all, just
illustration):

public <T> Set<T> toSet(Collection<T> collection) {
 return Sets.newHashSet(collection);
}

while bad code might look like this:

public <T> HashSet<T> toSet(ArrayList<T> collection) {
 return Sets.newHashSet(collection);
}

https://riptutorial.com/ 457

Not only the former can be applied to a wider choice of arguments, its results will be more
compatible with code provided by other developers that generally adhere to the concept of
programming to an interface. However, the most important reasons to use the former are:

most of the time the context, in which the result is used, does not and should not need that
many details as the concrete implementation provides;

•

adhering to an interface forces cleaner code and less hacks such as yet another public
method gets added to a class serving some specific scenario;

•

the code is more testable as interfaces are easily mockable;•
finally, the concept helps even if only one implementation is expected (at least for testability).•

So how can one easily apply the concept of programming to an interface when writing new code
having in mind one particular implementation? One option that we commonly use is a combination
of the following patterns:

programming to an interface•
factory•
builder•

The following example based on these principles is a simplified and truncated version of an RPC
implementation written for a number of different protocols:

public interface RemoteInvoker {
 <RQ, RS> CompletableFuture<RS> invoke(RQ request, Class<RS> responseClass);
}

The above interface is not supposed to be instantiated directly via a factory, instead we derive
further more concrete interfaces, one for HTTP invocation and one for AMQP, each then having a
factory and a builder to construct instances, which in turn are also instances of the above
interface:

public interface AmqpInvoker extends RemoteInvoker {
 static AmqpInvokerBuilder with(String instanceId, ConnectionFactory factory) {
 return new AmqpInvokerBuilder(instanceId, factory);
 }
}

Instances of RemoteInvoker for the use with AMQP can now be constructed as easy as (or more
involved depending on the builder):

RemoteInvoker invoker = AmqpInvoker.with(instanceId, factory)
 .requestRouter(router)
 .build();

And an invocation of a request is as easy as:

Response res = invoker.invoke(new Request(data), Response.class).get();

Due to Java 8 permitting placing of static methods directly into interfaces, the intermediate factory

https://riptutorial.com/ 458

has become implicit in the above code replaced with AmqpInvoker.with(). In Java prior to version 8,
the same effect can be achieved with an inner Factory class:

public interface AmqpInvoker extends RemoteInvoker {
 class Factory {
 public static AmqpInvokerBuilder with(String instanceId, ConnectionFactory factory) {
 return new AmqpInvokerBuilder(instanceId, factory);
 }
 }
}

The corresponding instantiation would then turn into:

RemoteInvoker invoker = AmqpInvoker.Factory.with(instanceId, factory)
 .requestRouter(router)
 .build();

The builder used above could look like this (although this is a simplification as the actual one
permits defining of up to 15 parameters deviating from defaults). Note that the construct is not
public, so it is specifically usable only from the above AmqpInvoker interface:

public class AmqpInvokerBuilder {
 ...
 AmqpInvokerBuilder(String instanceId, ConnectionFactory factory) {
 this.instanceId = instanceId;
 this.factory = factory;
 }

 public AmqpInvokerBuilder requestRouter(RequestRouter requestRouter) {
 this.requestRouter = requestRouter;
 return this;
 }

 public AmqpInvoker build() throws TimeoutException, IOException {
 return new AmqpInvokerImpl(instanceId, factory, requestRouter);
 }
}

Generally, a builder can also be generated using a tool like FreeBuilder.

Finally, the standard (and the only expected) implementation of this interface is defined as a
package-local class to enforce the use of the interface, the factory and the builder:

class AmqpInvokerImpl implements AmqpInvoker {
 AmqpInvokerImpl(String instanceId, ConnectionFactory factory, RequestRouter requestRouter) {
 ...
 }

 @Override
 public <RQ, RS> CompletableFuture<RS> invoke(final RQ request, final Class<RS> respClass) {
 ...
 }
}

https://riptutorial.com/ 459

Meanwhile, this pattern proved to be very efficient in developing all our new code not matter how
simple or complex the functionality is.

Abstract class and Interface usage: "Is-a" relation vs "Has-a" capability

When to use abstract classes: To implement the same or different behaviour among multiple
related objects

When to use interfaces: to implement a contract by multiple unrelated objects

Abstract classes create "is a" relations while interfaces provide "has a" capability.

This can be seen in the code below:

public class InterfaceAndAbstractClassDemo{
 public static void main(String args[]){

 Dog dog = new Dog("Jack",16);
 Cat cat = new Cat("Joe",20);

 System.out.println("Dog:"+dog);
 System.out.println("Cat:"+cat);

 dog.remember();
 dog.protectOwner();
 Learn dl = dog;
 dl.learn();

 cat.remember();
 cat.protectOwner();

 Climb c = cat;
 c.climb();

 Man man = new Man("Ravindra",40);
 System.out.println(man);

 Climb cm = man;
 cm.climb();
 Think t = man;
 t.think();
 Learn l = man;
 l.learn();
 Apply a = man;
 a.apply();
 }
}

abstract class Animal{
 String name;
 int lifeExpentency;
 public Animal(String name,int lifeExpentency){
 this.name = name;
 this.lifeExpentency=lifeExpentency;
 }
 public abstract void remember();
 public abstract void protectOwner();

https://riptutorial.com/ 460

 public String toString(){
 return this.getClass().getSimpleName()+":"+name+":"+lifeExpentency;
 }
}
class Dog extends Animal implements Learn{

 public Dog(String name,int age){
 super(name,age);
 }
 public void remember(){
 System.out.println(this.getClass().getSimpleName()+" can remember for 5 minutes");
 }
 public void protectOwner(){
 System.out.println(this.getClass().getSimpleName()+ " will protect owner");
 }
 public void learn(){
 System.out.println(this.getClass().getSimpleName()+ " can learn:");
 }
}
class Cat extends Animal implements Climb {
 public Cat(String name,int age){
 super(name,age);
 }
 public void remember(){
 System.out.println(this.getClass().getSimpleName() + " can remember for 16 hours");
 }
 public void protectOwner(){
 System.out.println(this.getClass().getSimpleName()+ " won't protect owner");
 }
 public void climb(){
 System.out.println(this.getClass().getSimpleName()+ " can climb");
 }
}
interface Climb{
 void climb();
}
interface Think {
 void think();
}

interface Learn {
 void learn();
}
interface Apply{
 void apply();
}

class Man implements Think,Learn,Apply,Climb{
 String name;
 int age;

 public Man(String name,int age){
 this.name = name;
 this.age = age;
 }
 public void think(){
 System.out.println("I can think:"+this.getClass().getSimpleName());
 }
 public void learn(){
 System.out.println("I can learn:"+this.getClass().getSimpleName());
 }

https://riptutorial.com/ 461

 public void apply(){
 System.out.println("I can apply:"+this.getClass().getSimpleName());
 }
 public void climb(){
 System.out.println("I can climb:"+this.getClass().getSimpleName());
 }
 public String toString(){
 return "Man :"+name+":Age:"+age;
 }
}

output:

Dog:Dog:Jack:16
Cat:Cat:Joe:20
Dog can remember for 5 minutes
Dog will protect owner
Dog can learn:
Cat can remember for 16 hours
Cat won't protect owner
Cat can climb
Man :Ravindra:Age:40
I can climb:Man
I can think:Man
I can learn:Man
I can apply:Man

Key notes:

Animal is an abstract class with shared attributes: name and lifeExpectancy and abstract
methods: remember() and protectOwner(). Dog and Cat are Animals that have implemented the
remember() and protectOwner() methods.

1.

Cat can climb() but Dog cannot. Dog can think() but Cat cannot. These specific capabilities are
added to Cat and Dog by implementation.

2.

Man is not an Animal but he can Think , Learn, Apply, and Climb.3.

Cat is not a Man but it can Climb.4.

Dog is not a Man but it can Learn5.

Man is neither a Cat nor a Dog but can have some of the capabilities of the latter two without
extending Animal, Cat, or Dog. This is done with Interfaces.

6.

Even though Animal is an abstract class, it has a constructor, unlike an interface.7.

TL;DR:

Unrelated classes can have capabilities through interfaces, but related classes change the
behaviour through extension of base classes.

Refer to the Java documentation page to understand which one to use in a specific use case.

https://riptutorial.com/ 462

https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

Consider using abstract classes if...

You want to share code among several closely related classes.1.
You expect that classes that extend your abstract class have many common methods or
fields, or require access modifiers other than public (such as protected and private).

2.

You want to declare non-static or non-final fields.3.

Consider using interfaces if...

You expect that unrelated classes would implement your interface. For example, many
unrelated objects can implement the Serializable interface.

1.

You want to specify the behaviour of a particular data type but are not concerned about who
implements its behaviour.

2.

You want to take advantage of multiple inheritance of type.3.

Overriding in Inheritance

Overriding in Inheritance is used when you use a already defined method from a super class in a
sub class, but in a different way than how the method was originally designed in the super class.
Overriding allows the user to reuse code by using existing material and modifying it to suit the
user's needs better.

The following example demonstrates how ClassB overrides the functionality of ClassA by changing
what gets sent out through the printing method:

Example:

public static void main(String[] args) {
 ClassA a = new ClassA();
 ClassA b = new ClassB();
 a.printing();
 b.printing();
}

class ClassA {
 public void printing() {
 System.out.println("A");
 }
}

class ClassB extends ClassA {
 public void printing() {
 System.out.println("B");
 }
}

Output:

A

B

https://riptutorial.com/ 463

Read Inheritance online: https://riptutorial.com/java/topic/87/inheritance

https://riptutorial.com/ 464

https://riptutorial.com/java/topic/87/inheritance

Chapter 69: InputStreams and OutputStreams

Syntax

int read(byte[] b) throws IOException•

Remarks

Note that most of the time you do NOT use InputStreams directly but use BufferedStreams, or
similar. This is because InputStream reads from the source every time the read method is called.
This can cause significant CPU usage in context switches into and out of the kernel.

Examples

Reading InputStream into a String

Sometimes you may wish to read byte-input into a String. To do this you will need to find
something that converts between byte and the "native Java" UTF-16 Codepoints used as char.
That is done with a InputStreamReader.

To speed the process up a bit, it's "usual" to allocate a buffer, so that we don't have too much
overhead when reading from Input.

Java SE 7

public String inputStreamToString(InputStream inputStream) throws Exception {
 StringWriter writer = new StringWriter();

 char[] buffer = new char[1024];
 try (Reader reader = new BufferedReader(new InputStreamReader(inputStream, "UTF-8"))) {
 int n;
 while ((n = reader.read(buffer)) != -1) {
 // all this code does is redirect the output of `reader` to `writer` in
 // 1024 byte chunks
 writer.write(buffer, 0, n);
 }
 }
 return writer.toString();
}

Transforming this example to Java SE 6 (and lower)-compatible code is left out as an exercise for
the reader.

Writing bytes to an OutputStream

Writing bytes to an OutputStream one byte at a time

OutputStream stream = object.getOutputStream();

https://riptutorial.com/ 465

https://docs.oracle.com/javase/8/docs/api/java/io/InputStreamReader.html

byte b = 0x00;
stream.write(b);

Writing a byte array

byte[] bytes = new byte[] { 0x00, 0x00 };

stream.write(bytes);

Writing a section of a byte array

int offset = 1;
int length = 2;
byte[] bytes = new byte[] { 0xFF, 0x00, 0x00, 0xFF };

stream.write(bytes, offset, length);

Closing Streams

Most streams must be closed when you are done with them, otherwise you could introduce a
memory leak or leave a file open. It is important that streams are closed even if an exception is
thrown.

Java SE 7

try(FileWriter fw = new FileWriter("outfilename");
 BufferedWriter bw = new BufferedWriter(fw);
 PrintWriter out = new PrintWriter(bw))
{
 out.println("the text");
 //more code
 out.println("more text");
 //more code
} catch (IOException e) {
 //handle this however you
}

Remember: try-with-resources guarantees, that the resources have been closed when the block is
exited, whether that happens with the usual control flow or because of an exception.

Java SE 6

Sometimes, try-with-resources is not an option, or maybe you're supporting older version of Java 6
or earlier. In this case, proper handling is to use a finally block:

FileWriter fw = null;
BufferedWriter bw = null;
PrintWriter out = null;
try {
 fw = new FileWriter("myfile.txt");
 bw = new BufferedWriter(fw);
 out = new PrintWriter(bw);

https://riptutorial.com/ 466

 out.println("the text");
 out.close();
} catch (IOException e) {
 //handle this however you want
}
finally {
 try {
 if(out != null)
 out.close();
 } catch (IOException e) {
 //typically not much you can do here...
 }
}

Note that closing a wrapper stream will also close its underlying stream. This means you cannot
wrap a stream, close the wrapper and then continue using the original stream.

Copying Input Stream to Output Stream

This function copies data between two streams -

void copy(InputStream in, OutputStream out) throws IOException {
 byte[] buffer = new byte[8192];
 while ((bytesRead = in.read(buffer)) > 0) {
 out.write(buffer, 0, bytesRead);
 }
}

Example -

 // reading from System.in and writing to System.out
copy(System.in, System.out);

Wrapping Input/Output Streams

OutputStream and InputStream have many different classes, each of them with a unique
functionality. By wrapping a stream around another, you gain the functionality of both streams.

You can wrap a stream any number of times, just take note of the ordering.

Useful combinations

Writing characters to a file while using a buffer

File myFile = new File("targetFile.txt");
PrintWriter writer = new PrintWriter(new BufferedOutputStream(new FileOutputStream(myFile)));

Compressing and encrypting data before writing to a file while using a buffer

Cipher cipher = ... // Initialize cipher

https://riptutorial.com/ 467

File myFile = new File("targetFile.enc");
BufferedOutputStream outputStream = new BufferedOutputStream(new DeflaterOutputStream(new
CipherOutputStream(new FileOutputStream(myFile), cipher)));

List of Input/Output Stream wrappers

Wrapper Description

BufferedOutputStream/
BufferedInputStream

While OutputStream writes data one byte at a time,
BufferedOutputStream writes data in chunks. This reduces the
number of system calls, thus improving performance.

DeflaterOutputStream/
DeflaterInputStream

Performs data compression.

InflaterOutputStream/
InflaterInputStream

Performs data decompression.

CipherOutputStream/
CipherInputStream

Encrypts/Decrypts data.

DigestOutputStream/
DigestInputStream

Generates Message Digest to verify data integrity.

CheckedOutputStream/
CheckedInputStream

Generates a CheckSum. CheckSum is a more trivial version
of Message Digest.

DataOutputStream/
DataInputStream

Allows writing of primitive data types and Strings. Meant for
writing bytes. Platform independent.

PrintStream
Allows writing of primitive data types and Strings. Meant for
writing bytes. Platform dependent.

OutputStreamWriter
Converts a OutputStream into a Writer. An OutputStream
deals with bytes while Writers deals with characters

PrintWriter
Automatically calls OutputStreamWriter. Allows writing of
primitive data types and Strings. Strictly for writing characters
and best for writing characters

DataInputStream Example

package com.streams;
import java.io.*;
public class DataStreamDemo {
 public static void main(String[] args) throws IOException {
 InputStream input = new FileInputStream("D:\\datastreamdemo.txt");
 DataInputStream inst = new DataInputStream(input);

https://riptutorial.com/ 468

 int count = input.available();
 byte[] arr = new byte[count];
 inst.read(arr);
 for (byte byt : arr) {
 char ki = (char) byt;
 System.out.print(ki+"-");
 }
 }
}

Read InputStreams and OutputStreams online: https://riptutorial.com/java/topic/110/inputstreams-
and-outputstreams

https://riptutorial.com/ 469

https://riptutorial.com/java/topic/110/inputstreams-and-outputstreams
https://riptutorial.com/java/topic/110/inputstreams-and-outputstreams

Chapter 70: Installing Java (Standard Edition)

Introduction

This documentation page gives access to instructions for installing java standard edition on
Windows, Linux, and macOS computers.

Examples

Setting %PATH% and %JAVA_HOME% after installing on Windows

Assumptions:

An Oracle JDK has been installed.•
The JDK was installed to the default directory.•

Setup steps

Open Windows Explorer.1.

In the navigation pane on the left right click on This PC (or Computer for older Windows
versions). There is a shorter way without using the explorer in actual Windows versions: Just
press Win+Pause

2.

In the newly opened Control Panel window, left click Advanced System Settings which
should be in the top left corner. This will open the System Properties window.

Alternatively, type SystemPropertiesAdvanced (case insensitive) in the Run (Win+R), and hit
Enter.

3.

In the Advanced tab of System Properties select the Environment Variables... button in the
lower right corner of the window.

4.

Add a New System Variable by clicking the New... button in System Variables with the 5.

https://riptutorial.com/ 470

https://i.stack.imgur.com/6pPUC.png

name JAVA_HOME and whose value is the path to the directory where the JDK was installed.
After entering these values, press OK.

Scroll down the list of System Variables and select the Path variable.6.

CAUTION: Windows relies on Path to find important programs. If any or all of it is
removed, Windows may not be able to function properly. It must be modified to
allow Windows to run the JDK. With this in mind ,click the "Edit..." button with the
Path variable selected. Add %JAVA_HOME%\bin; to the beginning of the Path variable.

7.

It is better to append at the begining of the line because Oracle's software used to register their
own version of Java in Path - This will cause your version to be ignored if it occurs after Oracle's
declaration.

Check your work

Open the command prompt by clicking Start then typing cmd and pressing Enter.1.
Enter javac -version into the prompt. If it was successful, then the version of the JDK will be
printed to the screen.

2.

Note: If you have to try again, close the prompt before checking your work. This will force windows
to get the new version of Path.

Selecting an appropriate Java SE release

There have been many releases of Java since the original Java 1.0 release in 1995. (Refer to
Java version history for a summary.) However most releases have passed their official End Of Life
dates. This means that the vendor (typically Oracle now) has ceased new development for the
release, and no longer provides public / free patches for any bugs or security issues. (Private
patch releases are typically available for people / organizations with a support contract; contact
your vendor's sales office.)

In general, the recommended Java SE release for use will be the latest update for the latest public
version. Currently, this means the latest available Java 8 release. Java 9 is due for public release
in 2017. (Java 7 has passed its End Of Life and the last public release was in April 2015. Java 7
and earlier releases are not recommended.)

This recommendation applies for all new Java development, and anyone learning Java. It also

https://riptutorial.com/ 471

https://i.stack.imgur.com/E4c2M.png
https://en.wikipedia.org/wiki/Java_version_history

applies to people who just want to run Java software provided by a third-party. Generally
speaking, well-written Java code will work on a newer release of Java. (But check the software's
release notes, and contact the author / supplier / vendor if you have doubts.)

If you are working on an older Java codebase, you would be advised to ensure that your code
runs on the latest release of Java. Deciding when to start using the features of newer Java
releases is more difficult, as this will impact your ability to support customers who are unable or
unwilling their Java installation.

Java release and version naming

Java release naming is a little confusing. There are actually two systems of naming and
numbering, as shown in this table:

JDK version Marketing name

jdk-1.0 JDK 1.0

jdk-1.1 JDK 1.1

jdk-1.2 J2SE 1.2

... ...

jdk-1.5 J2SE 1.5 rebranded Java SE 5

jdk-1.6 Java SE 6

jdk-1.7 Java SE 7

jdk-1.8 Java SE 8

jdk-91 Java SE 9 (not released yet)

1 - It appears that Oracle intends to break from their previous practice of using a "semantic version number" scheme
in the Java version strings. It remains to be seen if they will follow through with this.

The "SE" in the marketing names refers to Standard Edition. This is the base release for running
Java on most laptops, PCs and servers (apart from Android).

There are two other official editions of Java: "Java ME" is the Micro Edition, and "Java EE" is the
Enterprise Edition. The Android flavor of Java is also significantly different from Java SE. Java ME,
Java EE and Android Java are outside of the scope of this Topic.

The full version number for a Java release looks like this:

1.8.0_101-b13

This says JDK 1.8.0, Update 101, Build #13. Oracle refers to this in the release notes as:

https://riptutorial.com/ 472

Java™ SE Development Kit 8, Update 101 (JDK 8u101)

The update number is important -- Oracle regularly issue updates to a major release with security
patches, bug fixes and (in some cases) new features. The build number is usually irrelevant. Note
that Java 8 and Java 1.8 refer to the same thing; Java 8 is just the "marketing" name for Java 1.8.

What do I need for Java Development

A JDK installation and a text editor are the bare minimum for Java development. (It is nice to have
a text editor that can do Java syntax highlighting, but you can do without.)

However for serious development work it is recommended that you also use the following:

A Java IDE such as Eclipse, Intellij IDEA or NetBeans•
A Java build tool such as Ant, Gradle or Maven•
A version control system for managing your code base (with appropriate backups, and off-
site replication)

•

Test tools and CI (continuous integration) tools•

Installing a Java JDK on Linux

Using the Package Manager

JDK and/or JRE releases for OpenJDK or Oracle can be installed using the package manager on
most mainstream Linux distribution. (The choices that are available to you will depend on the
distro.)

As a general rule, the procedure is to open terminal window and run the commands shown below.
(It is assumed that you have sufficient access to run commands as the "root" user ... which is what
the sudo command does. If you do not, then please talk to your system's administrators.)

Using the package manager is recommended because it (generally) makes it easier to keep your
Java installation up to date.

apt-get, Debian based Linux distributions (Ubuntu, etc)

The following instructions will install Oracle Java 8:

$ sudo add-apt-repository ppa:webupd8team/java
$ sudo apt-get update
$ sudo apt-get install oracle-java8-installer

Note: To automatically set up the Java 8 environment variables, you can install the following
package:

$ sudo apt-get install oracle-java8-set-default

Creating a .deb file

https://riptutorial.com/ 473

If you prefer to create the .deb file yourself from the .tar.gz file downloaded from Oracle, do the
following (assuming you've downloaded the .tar.gz to ./<jdk>.tar.gz):

$ sudo apt-get install java-package # might not be available in default repos
$ make-jpkg ./<jdk>.tar.gz # should not be run as root
$ sudo dpkg -i *j2sdk*.deb

Note: This expects the input to be provided as a ".tar.gz" file.

slackpkg, Slackware based Linux distributions

sudo slapt-get install default-jdk

yum, RedHat, CentOS, etc

sudo yum install java-1.8.0-openjdk-devel.x86_64

dnf, Fedora

On recent Fedora releases, yum has been superseded by dnf.

sudo dnf install java-1.8.0-openjdk-devel.x86_64

In recent Fedora releases, there are no packages for installing Java 7 and earlier.

pacman, Arch based Linux distributions

sudo pacman -S jdk8-openjdk

Using sudo is not required if you're running as the root user.

Gentoo Linux

The Gentoo Java guide is maintained by the Gentoo Java team and keeps an updated wiki page
including the correct portage packages and USE flags needed.

Installing Oracle JDKs on Redhat, CentOS, Fedora

Installing JDK from an Oracle JDK or JRE tar.gz file.

Download the appropriate Oracle archive ("tar.gz") file for the desired release from the
Oracle Java downloads site.

1.

Change directory to the place where you want to put the installation;2.

Decompress the archive file; e.g.

tar xzvf jdk-8u67-linux-x64.tar.gz

3.

https://riptutorial.com/ 474

https://wiki.gentoo.org/wiki/Java
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing from an Oracle Java RPM file.

Retrieve the required RPM file for the desired release from the Oracle Java downloads site.1.

Install using the rpm command. For example:

$ sudo rpm -ivh jdk-8u67-linux-x644.rpm

2.

Installing a Java JDK or JRE on Windows

Only Oracle JDKs and JREs are available for Windows platforms. The installation procedure is
straight-forward:

Visit the Oracle Java Downloads page:1.
Click on either the JDK button, the JRE button or the Server JRE button. Note that to
develop using Java you need JDK. To know the difference between JDK and JRE, see here

2.

Scroll down to the version you want to download. (Generally speaking, the most recent one
is recommended.)

3.

Select the "Accept License Agreement" radio button.4.
Download the Windows x86 (32 bit) or Windows x64 (64 bit) installer.5.
Run the installer ... in the normal way for your version of Windows.6.

An alternate way to install Java on Windows using the command prompt is to use Chocolately:

Install Chocolately from https://chocolatey.org/1.

Open a cmd instance, for example hit Win+R and then type "cmd" in the "Run" window
followed by an enter.

2.

In your cmd instance, run the following command to download and install a Java 8 JDK:

 C:\> choco install jdk8

3.

Getting up and running with portable versions

There are instances where you might want to install JDK/JRE on a system with limited privileges
like a VM or you might want to install and use multiple versions or architectures (x64/x86) of
JDK/JRE. The steps remain same till the point you download the installer (.EXE). The steps after
that are as follows (The steps are applicable for JDK/JRE 7 and above, for older versions they are
slightly different in the names of folders and files):

Move the file to an appropriate location where you would want your Java binaries to reside
permanently.

1.

Install 7-Zip or its portable version if you have limited privileges.2.

With 7-Zip, extract the files from the Java installer EXE to the location.3.

https://riptutorial.com/ 475

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://stackoverflow.com/a/1906455/3375713
https://chocolatey.org/

Open up command prompt there by holding Shift and Right-Clicking in the folder in explorer
or navigate to that location from anywhere.

4.

Navigate to the newly created folder. Let's say the folder name is jdk-7u25-windows-x64. So
type cd jdk-7u25-windows-x64. Then type the following commands in order :

cd .rsrc\JAVA_CAB10

extrac32 111

5.

This will create a tools.zip file in that location. Extract the tools.zip with 7-Zip so that the
files inside it are now created under tools in the same directory.

6.

Now execute these commands on the already opened command prompt :

cd tools

for /r %x in (*.pack) do .\bin\unpack200 -r "%x" "%~dx%~px%~nx.jar"

7.

Wait for the command to complete. Copy the contents of tools to the location where you
want your binaries to be.

8.

This way, you can install any versions of JDK/JRE you need to be installed simultaneously.

Original post : http://stackoverflow.com/a/6571736/1448252

Installing a Java JDK on macOS

Oracle Java 7 and Java 8

Java 7 and Java 8 for macOS are available from Oracle. This Oracle page answers a lot of
questions about Java for Mac. Note that Java 7 prior to 7u25 have been disabled by Apple for
security reasons.

In general, Oracle Java (Version 7 and later) requires an Intel-based Mac running macOS 10.7.3
or later.

Installation of Oracle Java

Java 7 & 8 JDK and JRE installers for macOS can be downloaded from Oracle’s website:

Java 8 - Java SE Downloads•
Java 7 - Oracle Java Archive.•

After downloading the relevant package, double click on the package and go through the normal
installation process. A JDK should get installed here:

/Library/Java/JavaVirtualMachines/<version>.jdk/Contents/Home

where corresponds to the installed version.

Command-Line Switching

https://riptutorial.com/ 476

http://stackoverflow.com/a/6571736/1448252
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/archive-139210.html

When Java is installed, the installed version is automatically set as the default. To switch between
different, use:

export JAVA_HOME=/usr/libexec/java_home -v 1.6 #Or 1.7 or 1.8

The following functions can be added to the ~/.bash_profile (If you use the default Bash shell) for
ease of use:

function java_version {
 echo 'java -version';
}

function java_set {
 if [[$1 == "6"]]
 then
 export JAVA_HOME='/usr/libexec/java_home -v 1.6';
 echo "Setting Java to version 6..."
 echo "$JAVA_HOME"
 elif [[$1 == "7"]]
 then
 export JAVA_HOME='/usr/libexec/java_home -v 1.7';
 echo "Setting Java to version 7..."
 echo "$JAVA_HOME"
 elif [[$1 == "8"]]
 then
 export JAVA_HOME='/usr/libexec/java_home -v 1.8';
 echo "Setting Java to version 8..."
 echo "$JAVA_HOME"
 fi
}

Apple Java 6 on macOS

On older versions of macOS (10.11 El Capitan and earlier), Apple's release of Java 6 comes pre-
installed. If installed, it can be be found at this location:

/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home

Note that Java 6 passed its end-of-life long ago, so upgrading to a newer version is
recommended. There is more information on reinstalling Apple Java 6 on the Oracle website.

Configuring and switching Java versions on Linux using alternatives

Using Alternatives

Many Linux distributions use the alternatives command for switching between different versions of
a command. You can use this for switching between different versions of Java installed on a
machine.

In a command shell, set $JDK to the pathname of a newly installed JDK; e.g.1.

https://riptutorial.com/ 477

$ JDK=/Data/jdk1.8.0_67

Use alternatives --install to add the commands in the Java SDK to alternatives:

 $ sudo alternatives --install /usr/bin/java java $JDK/bin/java 2
 $ sudo alternatives --install /usr/bin/javac javac $JDK/bin/javac 2
 $ sudo alternatives --install /usr/bin/jar jar $JDK/bin/jar 2

And so on.

2.

Now you can switch between different versions of a Java command as follows:

$ sudo alternatives --config javac

There is 1 program that provides 'javac'.

 Selection Command

*+ 1 /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.101-1.b14.fc23.x86_64/bin/javac
 2 /Data/jdk1.8.0_67/bin/javac

Enter to keep the current selection[+], or type selection number: 2
$

For more information on using alternatives, refer to the alternatives(8) manual entry.

Arch based installs

Arch Linux based installs come with the command archlinux-java to switch java versions.

Listing installed environments

$ archlinux-java status
Available Java environments:
 java-7-openjdk (default)
 java-8-openjdk/jre

Switching current environment

archlinux-java set <JAVA_ENV_NAME>

Eg:

archlinux-java set java-8-openjdk/jre

More information can be found on the Arch Linux Wiki

https://riptutorial.com/ 478

http://linux.die.net/man/8/alternatives
https://wiki.archlinux.org/index.php/java#Switching_between_JVM

Post-installation checking and configuration on Linux

After installing a Java SDK, it is advisable to check that it is ready to use. You can do this by
running these two commands, using your normal user account:

$ java -version
$ javac -version

These commands print out the version information for the JRE and JDK (respectively) that are on
your shell's command search path. Look for the JDK / JRE version string.

If either of the above commands fails, saying "command not found", then the JRE or JDK is
not on the search path at all; go to Configuring PATH directly below.

•

If either of the above commands displays a different version string to what you were
expecting, then either your search path or the "alternatives" system needs adjusting; go to
Checking Alternatives

•

If the correct version strings are displayed, you are nearly done; skip to Checking
JAVA_HOME

•

Configuring PATH directly

If there is no java or javac on the search path at the moment, then the simple solution is to add it to
your search path.

First, find where you installed Java; see Where was Java installed? below if you have doubts.

Next, assuming that bash is your command shell, use a text editor to add the following lines to the
end of either ~/.bash_profile or ~/.bashrc (If you use Bash as your shell).

JAVA_HOME=<installation directory>
PATH=$JAVA_HOME/bin:$PATH

export JAVA_HOME
export PATH

... replacing <installation directory> with the pathname for your Java installation directory. Note
that the above assumes that the installation directory contains a bin directory, and the bin directory
contains the java and javac commands that you are trying to use.

Next, source the file that you just edited, so that the environment variables for your current shell
are updated.

$ source ~/.bash_profile

Next, repeat the java and javac version checks. If there are still problems, use which java and which
javac to verify that you have updates the environment variables correctly.

Finally, logout and login again so that the updated environment variables ptopagate to all of your

https://riptutorial.com/ 479

shells. You should now be done.

Checking Alternatives

If java -version or javac -version worked but gave an unexpected version number, you need to
check where the commands are coming from. Use which and ls -l to find this out as follows:

$ ls -l `which java`

If the output looks like this, :

lrwxrwxrwx. 1 root root 22 Jul 30 22:18 /usr/bin/java -> /etc/alternatives/java

then the alternatives version switching is being used. You needs to decide whether to continue
using it, or simply override it by setting the PATH directly.

Configuring and Switching Java versions on Linux using alternatives•
See "Configuring PATH directly" above.•

Where was Java installed?

Java can be installed in a variety of places, depending on the installation method.

The Oracle RPMs put the Java installation in "/usr/java".•
On Fedora, the default location is "/usr/lib/jvm".•
If Java was installed by hand from ZIP or JAR files, the installation could be anywhere.•

If you are having difficultly finding the installation directory, We suggest that you use find (or
slocate) to find the command. For example:

$ find / -name java -type f 2> /dev/null

This gives you the pathnames for all files called java on your system. (The redirection of standard
error to "/dev/null" suppresses messages about files and directories that you can't access.)

Installing oracle java on Linux with latest tar file

Follow the below steps to install Oracle JDK from the latest tar file:

Download the latest tar file from here - Current latest is Java SE Development Kit 8u112.1.

You need sudo privilages:

sudo su

2.

Create a dir for jdk install:3.

https://riptutorial.com/ 480

http://www.riptutorial.com/java/example/18694/configuring-and-switching-java-versions-on-linux-using-alternatives
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

mkdir /opt/jdk

Extract downloaded tar into it:

tar -zxf jdk-8u5-linux-x64.tar.gz -C /opt/jdk

4.

Verify if the files are extracted:

ls /opt/jdk

5.

Setting Oracle JDK as the default JVM:

update-alternatives --install /usr/bin/java java /opt/jdk/jdk1.8.0_05/bin/java 100

and

update-alternatives --install /usr/bin/javac javac /opt/jdk/jdk1.8.0_05/bin/javac 100

6.

Check Java version:

java -version

7.

Expected output:

java version "1.8.0_111"
Java(TM) SE Runtime Environment (build 1.8.0_111-b14)
Java HotSpot(TM) 64-Bit Server VM (build 25.111-b14, mixed mode)

Read Installing Java (Standard Edition) online: https://riptutorial.com/java/topic/4754/installing-
java--standard-edition-

https://riptutorial.com/ 481

https://riptutorial.com/java/topic/4754/installing-java--standard-edition-
https://riptutorial.com/java/topic/4754/installing-java--standard-edition-

Chapter 71: Interfaces

Introduction

An interface is a reference type, similar to a class, which can be declared by using interface
keyword. Interfaces can contain only constants, method signatures, default methods, static
methods, and nested types. Method bodies exist only for default methods and static methods. Like
abstract classes, Interfaces cannot be instantiated—they can only be implemented by classes or
extended by other interfaces. Interface is a common way to achieve full abstraction in Java.

Syntax

public interface Foo { void foo(); /* any other methods */ }•
public interface Foo1 extends Foo { void bar(); /* any other methods */ }•
public class Foo2 implements Foo, Foo1 { /* implementation of Foo and Foo1 */ }•

Examples

Declaring and Implementing an Interface

Declaration of an interface using the interface keyword:

public interface Animal {
 String getSound(); // Interface methods are public by default
}

Override Annotation

@Override
public String getSound() {
 // Code goes here...
}

This forces the compiler to check that we are overriding and prevents the program from defining a
new method or messing up the method signature.

Interfaces are implemented using the implements keyword.

public class Cat implements Animal {

 @Override
 public String getSound() {
 return "meow";
 }
}

public class Dog implements Animal {

https://riptutorial.com/ 482

 @Override
 public String getSound() {
 return "woof";
 }
}

In the example, classes Cat and Dog must define the getSound() method as methods of an interface
are inherently abstract (with the exception of default methods).

Using the interfaces

Animal cat = new Cat();
Animal dog = new Dog();

System.out.println(cat.getSound()); // prints "meow"
System.out.println(dog.getSound()); // prints "woof"

Implementing multiple interfaces

A Java class can implement multiple interfaces.

public interface NoiseMaker {
 String noise = "Making Noise"; // interface variables are public static final by default

 String makeNoise(); //interface methods are public abstract by default
}

public interface FoodEater {
 void eat(Food food);
}

public class Cat implements NoiseMaker, FoodEater {
 @Override
 public String makeNoise() {
 return "meow";
 }

 @Override
 public void eat(Food food) {
 System.out.println("meows appreciatively");
 }
}

Notice how the Cat class must implement the inherited abstract methods in both the interfaces.
Furthermore, notice how a class can practically implement as many interfaces as needed (there is
a limit of 65,535 due to JVM Limitation).

NoiseMaker noiseMaker = new Cat(); // Valid
FoodEater foodEater = new Cat(); // Valid
Cat cat = new Cat(); // valid

Cat invalid1 = new NoiseMaker(); // Invalid
Cat invalid2 = new FoodEater(); // Invalid

https://riptutorial.com/ 483

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.11

Note:

All variables declared in an interface are public static final1.
All methods declared in an interface methods are public abstract (This statement is valid
only through Java 7. From Java 8, you are allowed to have methods in an interface, which
need not be abstract; such methods are known as default methods)

2.

Interfaces cannot be declared as final3.
If more than one interface declares a method that has identical signature, then effectively it is
treated as only one method and you cannot distinguish from which interface method is
implemented

4.

A corresponding InterfaceName.class file would be generated for each interface, upon
compilation

5.

Extending an interface

An interface can extend another interface via the extends keyword.

public interface BasicResourceService {
 Resource getResource();
}

public interface ExtendedResourceService extends BasicResourceService {
 void updateResource(Resource resource);
}

Now a class implementing ExtendedResourceService will need to implement both getResource() and
updateResource().

Extending multiple interfaces

Unlike classes, the extends keyword can be used to extend multiple interfaces (Separated by
commas) allowing for combinations of interfaces into a new interface

public interface BasicResourceService {
 Resource getResource();
}

public interface AlternateResourceService {
 Resource getAlternateResource();
}

public interface ExtendedResourceService extends BasicResourceService,
AlternateResourceService {
 Resource updateResource(Resource resource);
}

In this case a class implementing ExtendedResourceService will need to implement getResource(),
getAlternateResource(), and updateResource().

Using Interfaces with Generics

https://riptutorial.com/ 484

http://www.riptutorial.com/java/topic/113/default-methods

Let's say you want to define an interface that allows publishing / consuming data to and from
different types of channels (e.g. AMQP, JMS, etc), but you want to be able to switch out the
implementation details ...

Let's define a basic IO interface that can be re-used across multiple implementations:

public interface IO<IncomingType, OutgoingType> {

 void publish(OutgoingType data);
 IncomingType consume();
 IncomingType RPCSubmit(OutgoingType data);

}

Now I can instantiate that interface, but since we don't have default implementations for those
methods, it'll need an implementation when we instantiate it:

 IO<String, String> mockIO = new IO<String, String>() {

 private String channel = "somechannel";

 @Override
 public void publish(String data) {
 System.out.println("Publishing " + data + " to " + channel);
 }

 @Override
 public String consume() {
 System.out.println("Consuming from " + channel);
 return "some useful data";
 }

 @Override
 public String RPCSubmit(String data) {
 return "received " + data + " just now ";
 }

 };

 mockIO.consume(); // prints: Consuming from somechannel
 mockIO.publish("TestData"); // Publishing TestData to somechannel
 System.out.println(mockIO.RPCSubmit("TestData")); // received TestData just now

We can also do something more useful with that interface, let's say we want to use it to wrap some
basic RabbitMQ functions:

public class RabbitMQ implements IO<String, String> {

 private String exchange;
 private String queue;

 public RabbitMQ(String exchange, String queue){
 this.exchange = exchange;
 this.queue = queue;
 }

https://riptutorial.com/ 485

 @Override
 public void publish(String data) {
 rabbit.basicPublish(exchange, queue, data.getBytes());
 }

 @Override
 public String consume() {
 return rabbit.basicConsume(exchange, queue);
 }

 @Override
 public String RPCSubmit(String data) {
 return rabbit.rpcPublish(exchange, queue, data);
 }

}

Let's say I want to use this IO interface now as a way to count visits to my website since my last
system restart and then be able to display the total number of visits - you can do something like
this:

import java.util.concurrent.atomic.AtomicLong;

public class VisitCounter implements IO<Long, Integer> {

 private static AtomicLong websiteCounter = new AtomicLong(0);

 @Override
 public void publish(Integer count) {
 websiteCounter.addAndGet(count);
 }

 @Override
 public Long consume() {
 return websiteCounter.get();
 }

 @Override
 public Long RPCSubmit(Integer count) {
 return websiteCounter.addAndGet(count);
 }

}

Now let's use the VisitCounter:

 VisitCounter counter = new VisitCounter();

 // just had 4 visits, yay
 counter.publish(4);
 // just had another visit, yay
 counter.publish(1);

 // get data for stats counter
 System.out.println(counter.consume()); // prints 5

 // show data for stats counter page, but include that as a page view
 System.out.println(counter.RPCSubmit(1)); // prints 6

https://riptutorial.com/ 486

When implementing multiple interfaces, you can't implement the same interface twice. That also
applies to generic interfaces. Thus, the following code is invalid, and will result in a compile error:

interface Printer<T> {
 void print(T value);
}

// Invalid!
class SystemPrinter implements Printer<Double>, Printer<Integer> {
 @Override public void print(Double d){ System.out.println("Decimal: " + d); }
 @Override public void print(Integer i){ System.out.println("Discrete: " + i); }
}

Usefulness of interfaces

Interfaces can be extremely helpful in many cases. For example, say you had a list of animals and
you wanted to loop through the list, each printing the sound they make.

{cat, dog, bird}

One way to do this would be to use interfaces. This would allow for the same method to be called
on all of the classes

public interface Animal {
 public String getSound();
}

Any class that implements Animal also must have a getSound() method in them, yet they can all
have different implementations

public class Dog implements Animal {
 public String getSound() {
 return "Woof";
 }
}

public class Cat implements Animal {
 public String getSound() {
 return "Meow";
 }
}

public class Bird implements Animal{
 public String getSound() {
 return "Chirp";
 }
}

We now have three different classes, each of which has a getSound() method. Because all of these
classes implement the Animal interface, which declares the getSound() method, any instance of an
Animal can have getSound() called on it

https://riptutorial.com/ 487

Animal dog = new Dog();
Animal cat = new Cat();
Animal bird = new Bird();

dog.getSound(); // "Woof"
cat.getSound(); // "Meow"
bird.getSound(); // "Chirp"

Because each of these is an Animal, we could even put the animals in a list, loop through them,
and print out their sounds

Animal[] animals = { new Dog(), new Cat(), new Bird() };
for (Animal animal : animals) {
 System.out.println(animal.getSound());
}

Because the order of the array is Dog, Cat, and then Bird, "Woof Meow Chirp" will be printed to the
console.

Interfaces can also be used as the return value for functions. For example, returning a Dog if the
input is "dog", Cat if the input is "cat", and Bird if it is "bird", and then printing the sound of that
animal could be done using

public Animal getAnimalByName(String name) {
 switch(name.toLowerCase()) {
 case "dog":
 return new Dog();
 case "cat":
 return new Cat();
 case "bird":
 return new Bird();
 default:
 return null;
 }
}

public String getAnimalSoundByName(String name){
 Animal animal = getAnimalByName(name);
 if (animal == null) {
 return null;
 } else {
 return animal.getSound();
 }
}

String dogSound = getAnimalSoundByName("dog"); // "Woof"
String catSound = getAnimalSoundByName("cat"); // "Meow"
String birdSound = getAnimalSoundByName("bird"); // "Chirp"
String lightbulbSound = getAnimalSoundByName("lightbulb"); // null

Interfaces are also useful for extensibility, because if you want to add a new type of Animal, you
wouldn't need to change anything with the operations you perform on them.

Implementing interfaces in an abstract class

https://riptutorial.com/ 488

A method defined in an interface is by default public abstract. When an abstract class
implements an interface, any methods which are defined in the interface do not have to be
implemented by the abstract class. This is because a class that is declared abstract can contain
abstract method declarations. It is therefore the responsibility of the first concrete sub-class to
implement any abstract methods inherited from any interfaces and/or the abstract class.

public interface NoiseMaker {
 void makeNoise();
}

public abstract class Animal implements NoiseMaker {
 //Does not need to declare or implement makeNoise()
 public abstract void eat();
}

//Because Dog is concrete, it must define both makeNoise() and eat()
public class Dog extends Animal {
 @Override
 public void makeNoise() {
 System.out.println("Borf borf");
 }

 @Override
 public void eat() {
 System.out.println("Dog eats some kibble.");
 }
}

From Java 8 onward it is possible for an interface to declare default implementations of methods
which means the method won't be abstract, therefore any concrete sub-classes will not be forced
to implement the method but will inherit the default implementation unless overridden.

Default methods

Introduced in Java 8, default methods are a way of specifying an implementation inside an
interface. This could be used to avoid the typical "Base" or "Abstract" class by providing a partial
implementation of an interface, and restricting the subclasses hierarchy.

Observer pattern implementation

For example, it's possible to implement the Observer-Listener pattern directly into the interface,
providing more flexibility to the implementing classes.

interface Observer {
 void onAction(String a);
}

interface Observable{
 public abstract List<Observer> getObservers();

 public default void addObserver(Observer o){
 getObservers().add(o);

https://riptutorial.com/ 489

 }

 public default void notify(String something){
 for(Observer l : getObservers()){
 l.onAction(something);
 }
 }
}

Now, any class can be made "Observable" just by implementing the Observable interface, while
being free to be part of a different class hierarchy.

abstract class Worker{
 public abstract void work();
}

public class MyWorker extends Worker implements Observable {

 private List<Observer> myObservers = new ArrayList<Observer>();

 @Override
 public List<Observer> getObservers() {
 return myObservers;
 }

 @Override
 public void work(){
 notify("Started work");

 // Code goes here...

 notify("Completed work");
 }

 public static void main(String[] args) {
 MyWorker w = new MyWorker();

 w.addListener(new Observer() {
 @Override
 public void onAction(String a) {
 System.out.println(a + " (" + new Date() + ")");
 }
 });

 w.work();
 }
}

Diamond problem

The compiler in Java 8 is aware of the diamond problem which is caused when a class is
implementing interfaces containing a method with the same signature.

In order to solve it, an implementing class must override the shared method and provide its own
implementation.

https://riptutorial.com/ 490

https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem

interface InterfaceA {
 public default String getName(){
 return "a";
 }
}

interface InterfaceB {
 public default String getName(){
 return "b";
 }
}

public class ImpClass implements InterfaceA, InterfaceB {

 @Override
 public String getName() {
 //Must provide its own implementation
 return InterfaceA.super.getName() + InterfaceB.super.getName();
 }

 public static void main(String[] args) {
 ImpClass c = new ImpClass();

 System.out.println(c.getName()); // Prints "ab"
 System.out.println(((InterfaceA)c).getName()); // Prints "ab"
 System.out.println(((InterfaceB)c).getName()); // Prints "ab"
 }
}

There's still the issue of having methods with the same name and parameters with different return
types, which will not compile.

Use default methods to resolve compatibility
issues

The default method implementations come in very handy if a method is added to an interface in an
existing system where the interfaces is used by several classes.

To avoid breaking up the entire system, you can provide a default method implementation when
you add a method to an interface. This way, the system will still compile and the actual
implementations can be done step by step.

For more information, see the Default Methods topic.

Modifiers in Interfaces

The Oracle Java Style Guide states:

Modifiers should not be written out when they are implicit.

(See Modifiers in Oracle Official Code Standard for the context and a link to the actual Oracle

https://riptutorial.com/ 491

http://www.riptutorial.com/java/topic/113/default-methods
http://www.riptutorial.com/java/example/13444/modifiers
http://www.riptutorial.com/java/topic/2697/oracle-official-code-standard

document.)

This style guidance applies particularly to interfaces. Let's consider the following code snippet:

interface I {
 public static final int VARIABLE = 0;

 public abstract void method();

 public static void staticMethod() { ... }
 public default void defaultMethod() { ... }
}

Variables

All interface variables are implicitly constants with implicit public (accessible for all), static (are
accessible by interface name) and final (must be initialized during declaration) modifiers:

public static final int VARIABLE = 0;

Methods

All methods which don't provide implementation are implicitly public and abstract.1.

public abstract void method();

Java SE 8

All methods with static or default modifier must provide implementation and are implicitly
public.

2.

public static void staticMethod() { ... }

After all of the above changes have been applied, we will get the following:

interface I {
 int VARIABLE = 0;

 void method();

 static void staticMethod() { ... }
 default void defaultMethod() { ... }
}

Strengthen bounded type parameters

Bounded type parameters allow you to set restrictions on generic type arguments:

https://riptutorial.com/ 492

https://docs.oracle.com/javase/tutorial/java/generics/bounded.html

class SomeClass {

}

class Demo<T extends SomeClass> {

}

But a type parameter can only bind to a single class type.

An interface type can be bound to a type that already had a binding. This is achieved using the &
symbol:

interface SomeInterface {

}

class GenericClass<T extends SomeClass & SomeInterface> {

}

This strengthens the bind, potentially requiring type arguments to derive from multiple types.

Multiple interface types can be bound to a type parameter:

class Demo<T extends SomeClass & FirstInterface & SecondInterface> {

}

But should be used with caution. Multiple interface bindings is usually a sign of a code smell,
suggesting that a new type should be created which acts as an adapter for the other types:

interface NewInterface extends FirstInterface, SecondInterface {

}

class Demo<T extends SomeClass & NewInterface> {

}

Read Interfaces online: https://riptutorial.com/java/topic/102/interfaces

https://riptutorial.com/ 493

https://en.wikipedia.org/wiki/Code_smell
https://riptutorial.com/java/topic/102/interfaces

Chapter 72: Iterator and Iterable

Introduction

The java.util.Iterator is the standard Java SE interface for object that implement the Iterator
design pattern. The java.lang.Iterable interface is for objects that can provide an iterator.

Remarks

It is possible to iterate over an array using the for-each loop, though java arrays do not implement
Iterable; iterating is done by JVM using a non-accessible index in the background.

Examples

Using Iterable in for loop

Classes implementing Iterable<> interface can be used in for loops. This is actually only syntactic
sugar for getting an iterator from the object and using it to get all elements sequentially; it makes
code clearer, faster to write end less error-prone.

public class UsingIterable {

 public static void main(String[] args) {
 List<Integer> intList = Arrays.asList(1,2,3,4,5,6,7);

 // List extends Collection, Collection extends Iterable
 Iterable<Integer> iterable = intList;

 // foreach-like loop
 for (Integer i: iterable) {
 System.out.println(i);
 }

 // pre java 5 way of iterating loops
 for(Iterator<Integer> i = iterable.iterator(); i.hasNext();) {
 Integer item = i.next();
 System.out.println(item);
 }
 }
}

Using the raw iterator

While using the foreach loop (or "extended for loop") is simple, it's sometimes beneficial to use the
iterator directly. For example, if you want to output a bunch of comma-separated values, but don't
want the last item to have a comma:

List<String> yourData = //...

https://riptutorial.com/ 494

https://en.wikipedia.org/wiki/Syntactic_sugar
https://en.wikipedia.org/wiki/Syntactic_sugar

Iterator<String> iterator = yourData.iterator();
while (iterator.hasNext()){
 // next() "moves" the iterator to the next entry and returns it's value.
 String entry = iterator.next();
 System.out.print(entry);
 if (iterator.hasNext()){
 // If the iterator has another element after the current one:
 System.out.print(",");
 }
}

This is much easier and clearer than having a isLastEntry variable or doing calculations with the
loop index.

Creating your own Iterable.

To create your own Iterable as with any interface you just implement the abstract methods in the
interface. For Iterable there is only one which is called iterator(). But its return type Iterator is
itself an interface with three abstract methods. You can return an iterator associated with some
collection or create your own custom implementation:

public static class Alphabet implements Iterable<Character> {

 @Override
 public Iterator<Character> iterator() {
 return new Iterator<Character>() {
 char letter = 'a';

 @Override
 public boolean hasNext() {
 return letter <= 'z';
 }

 @Override
 public Character next() {
 return letter++;
 }

 @Override
 public void remove() {
 throw new UnsupportedOperationException("Doesn't make sense to remove a
letter");
 }
 };
 }
}

To use:

public static void main(String[] args) {
 for(char c : new Alphabet()) {
 System.out.println("c = " + c);
 }
}

https://riptutorial.com/ 495

The new Iterator should come with a state pointing to the first item, each call to next updates its
state to point to the next one. The hasNext() checks to see if the iterator is at the end. If the iterator
were connected to a modifiable collection then the iterator's optional remove() method might be
implemented to remove the item currently pointed to from the underlying collection.

Removing elements using an iterator

The Iterator.remove() method is an optional method that removes the element returned by the
previous call to Iterator.next(). For example, the following code populates a list of strings and
then removes all of the empty strings.

List<String> names = new ArrayList<>();
names.add("name 1");
names.add("name 2");
names.add("");
names.add("name 3");
names.add("");
System.out.println("Old Size : " + names.size());
Iterator<String> it = names.iterator();
while (it.hasNext()) {
 String el = it.next();
 if (el.equals("")) {
 it.remove();
 }
}
System.out.println("New Size : " + names.size());

Output :

Old Size : 5
New Size : 3

Note that is the code above is the safe way to remove elements while iterating a typical collection.
If instead, you attempt to do remove elements from a collection like this:

for (String el: names) {
 if (el.equals("")) {
 names.remove(el); // WRONG!
 }
}

a typical collection (such as ArrayList) which provides iterators with fail fast iterator semantics will
throw a ConcurrentModificationException.

The remove() method can only called (once) following a next() call. If it is called before calling
next() or if it is called twice following a next() call, then the remove() call will throw an
IllegalStateException.

The remove operation is described as an optional operation; i.e. not all iterators will allow it.
Examples where it is not supported include iterators for immutable collections, read-only views of
collections, or fixed sized collections. If remove() is called when the iterator does not support
removal, it will throw an UnsupportedOperationException.

https://riptutorial.com/ 496

Read Iterator and Iterable online: https://riptutorial.com/java/topic/172/iterator-and-iterable

https://riptutorial.com/ 497

https://riptutorial.com/java/topic/172/iterator-and-iterable

Chapter 73: Java Agents

Examples

Modifying classes with agents

Firstly, make sure that the agent being used has the following attributes in the Manifest.mf:

Can-Redefine-Classes: true
Can-Retransform-Classes: true

Starting a java agent will let the agent access the class Instrumentation. With Instrumentation you
can call addTransformer(ClassFileTransformer transformer). ClassFileTransformers will let you
rewrite the bytes of classes. The class has only a single method which supplies the ClassLoader
that loads the class, the class's name, a java.lang.Class instance of it, it's ProtectionDomain, and
lastly the bytes of the class itself.

It looks like this:

byte[] transform(ClassLoader loader, String className, Class<?> classBeingRedefined,
 ProtectionDomain protectionDomain, byte[] classfileBuffer)

Modifying a class purely from bytes can take ages. To remedy this there are libraries that can be
used to convert the class bytes into something more usable.

In this example I'll be using ASM, but other alternatives like Javassist and BCEL have similar
features.

ClassNode getNode(byte[] bytes) {
 // Create a ClassReader that will parse the byte array into a ClassNode
 ClassReader cr = new ClassReader(bytes);
 ClassNode cn = new ClassNode();
 try {
 // This populates the ClassNode
 cr.accept(cn, ClassReader.EXPAND_FRAMES);
 cr = null;
 } catch (Exception e) {
 e.printStackTrace();
 }
 return cn;
}

From here changes can be made to the ClassNode object. This makes changing field/method
access incredibly easy. Plus with ASM's Tree API modifying the bytecode of methods is a breeze.

Once the edits are finished you can convert the ClassNode back into bytes with the following
method and return them in the transform method:

public static byte[] getNodeBytes(ClassNode cn, boolean useMaxs) {

https://riptutorial.com/ 498

 ClassWriter cw = new ClassWriter(useMaxs ? ClassWriter.COMPUTE_MAXS :
ClassWriter.COMPUTE_FRAMES);
 cn.accept(cw);
 byte[] b = cw.toByteArray();
 return b;
}

Adding an agent at runtime

Agents can be added to a JVM at runtime. To load an agent you will need to use the Attach API's
VirtualMachine.attatch(String id). You can then load a compiled agent jar with the following
method:

public static void loadAgent(String agentPath) {
 String vmName = ManagementFactory.getRuntimeMXBean().getName();
 int index = vmName.indexOf('@');
 String pid = vmName.substring(0, index);
 try {
 File agentFile = new File(agentPath);
 VirtualMachine vm = VirtualMachine.attach(pid);
 vm.loadAgent(agentFile.getAbsolutePath(), "");
 VirtualMachine.attach(vm.id());
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
}

This will not call premain((String agentArgs, Instrumentation inst) in the loaded agent, but instead
will call agentmain(String agentArgs, Instrumentation inst). This requires Agent-Class to be set in
the agent Manifest.mf.

Setting up a basic agent

The Premain class will contain the method "premain(String agentArgs Instrumentation inst)"

Here is an example:

import java.lang.instrument.Instrumentation;

public class PremainExample {
 public static void premain(String agentArgs, Instrumentation inst) {
 System.out.println(agentArgs);
 }
}

When compiled into a jar file open the Manifest and ensure that it has the Premain-Class attribute.

Here is an example:

Premain-Class: PremainExample

To use the agent with another java program "myProgram" you must define the agent in the JVM

https://riptutorial.com/ 499

arguments:

java -javaagent:PremainAgent.jar -jar myProgram.jar

Read Java Agents online: https://riptutorial.com/java/topic/1265/java-agents

https://riptutorial.com/ 500

https://riptutorial.com/java/topic/1265/java-agents

Chapter 74: Java Compiler - 'javac'

Remarks

The javac command is used for compiling Java source files to bytecode files. Bytecode files are
platform independent. This means that you can compile your code on one kind of hardware and
operating system, and then run the code on any other platform that supports Java.

The javac command is included in the Java Development Kit (JDK) distributions.

The Java compiler and the rest of the standard Java toolchain places the following restrictions on
the code:

Source code is held in files with the suffix ".java"•
Bytecodes are held in files with the suffix ".class"•
For source and bytecode files in the file system, the file pathnames must reflect the package
and class naming.

•

Note: The javac compiler should not be confused with the Just in Time (JIT) compiler which
compiles bytecodes to native code.

Examples

The 'javac' command - getting started

Simple example

Assuming that the "HelloWorld.java" contains the following Java source:

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello world!");
 }
}

(For an explanation of the above code, please refer to Getting started with Java Language .)

We can compile the above file using this command:

$ javac HelloWorld.java

This produces a file called "HelloWorld.class", which we can then run as follows:

$ java HelloWorld
Hello world!

https://riptutorial.com/ 501

http://www.riptutorial.com/java/topic/5152/just-in-time--jit--compiler
http://www.riptutorial.com/java/topic/84/getting-started-with-java-language

The key points to note from this example are:

The source filename "HelloWorld.java" must match the class name in the source file ... which
is HelloWorld. If they don't match, you will get a compilation error.

1.

The bytecode filename "HelloWorld.class" corresponds to the classname. If you were to
rename the "HelloWorld.class", you would get an error when your tried to run it.

2.

When running a Java application using java, you supply the classname NOT the bytecode
filename.

3.

Example with packages

Most practical Java code uses packages to organize the namespace for classes and reduce the
risk of accidental class name collision.

If we wanted to declare the HelloWorld class in a package call com.example, the "HelloWorld.java"
would contain the following Java source:

package com.example;

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello world!");
 }
}

This source code file needs to stored in a directory tree whose structure corresponds to the
package naming.

. # the current directory (for this example)
|
 ----com
 |
 ----example
 |
 ----HelloWorld.java

We can compile the above file using this command:

$ javac com/example/HelloWorld.java

This produces a file called "com/example/HelloWorld.class"; i.e. after compilation, the file structure
should look like this:

. # the current directory (for this example)
|
 ----com
 |
 ----example
 |
 ----HelloWorld.java
 ----HelloWorld.class

https://riptutorial.com/ 502

We can then run the application as follows:

$ java com.example.HelloWorld
Hello world!

Additional points to note from this example are:

The directory structure must match the package name structure.1.
When you run the class, the full class name must be supplied; i.e.
"com.example.HelloWorld" not "HelloWorld".

2.

You don't have to compile and run Java code out of the current directory. We are just doing it
here for illustration.

3.

Compiling multiple files at once with 'javac'.

If your application consists of multiple source code files (and most do!) you can compile them one
at a time. Alternatively, you can compile multiple files at the same time by listing the pathnames:

$ javac Foo.java Bar.java

or using your command shell's filename wildcard functionality

$ javac *.java
$ javac com/example/*.java
$ javac */**/*.java #Only works on Zsh or with globstar enabled on your shell

This will compile all Java source files in the current directory, in the "com/example" directory, and
recursively in child directories respectively. A third alternative is to supply a list of source filenames
(and compiler options) as a file. For example:

$ javac @sourcefiles

where the sourcefiles file contains:

Foo.java
Bar.java
com/example/HelloWorld.java

Note: compiling code like this is appropriate for small one-person projects, and for once-off
programs. Beyond that, it is advisable to select and use a Java build tool. Alternatively, most
programmers use a Java IDE (e.g. NetBeans, eclipse, IntelliJ IDEA) which offers an embedded
compiler and incremental building of "projects".

Commonly used 'javac' options

Here are a few options for the javac command that are likely to be useful to you

https://riptutorial.com/ 503

https://netbeans.org/
https://eclipse.org/
https://www.jetbrains.com/idea/

The -d option sets a destination directory for writing the ".class" files.•
The -sourcepath option sets a source code search path.•
The -cp or -classpath option sets the search path for finding external and previously
compiled classes. For more information on the classpath and how to specify it, refer to the
The Classpath Topic.

•

The -version option prints the compiler's version information.•

A more complete list of compiler options will be described in a separate example.

References

The definitive reference for the javac command is the Oracle manual page for javac.

Compiling for a different version of Java

The Java programming language (and its runtime) has undergone numerous changes since its
release since its initial public release. These changes include:

Changes in the Java programming language syntax and semantics•
Changes in the APIs provided by the Java standard class libraries.•
Changes in the Java (bytecode) instruction set and classfile format.•

With very few exceptions (for example the enum keyword, changes to some "internal" classes, etc),
these changes are backwards compatible.

A Java program that was compiled using an older version of the Java toolchain will run on a
newer version Java platform without recompilation.

•

A Java program that was written in an older version of Java will compile successfully with a
new Java compiler.

•

Compiling old Java with a newer compiler

If you need to (re-)compile older Java code on a newer Java platform to run on the newer platform,
you generally don't need to give any special compilation flags. In a few cases (e.g. if you had used
enum as an identifier) you could use the -source option to disable the new syntax. For example,
given the following class:

public class OldSyntax {
 private static int enum; // invalid in Java 5 or later
}

the following is required to compile the class using a Java 5 compiler (or later):

$ javac -source 1.4 OldSyntax.java

Compiling for an older execution platform

https://riptutorial.com/ 504

http://www.riptutorial.com/java/topic/3720/the-classpath
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html

If you need to compile Java to run on an older Java platforms, the simplest approach is to install a
JDK for the oldest version you need to support, and use that JDK's compiler in your builds.

You can also compile with a newer Java compiler, but there are complicated. First of all, there
some important preconditions that must be satisfied:

The code you are compiling must not use Java language constructs that were not available
in the version of Java that you are targeting.

•

The code must not depend on standard Java classes, fields, methods and so on that were
not available in the older platforms.

•

Third party libraries that the code depends must also be built for the older platform and
available at compile-time and run-time.

•

Given the preconditions are met, you can recompile code for an older platform using the -target
option. For example,

$ javac -target 1.4 SomeClass.java

will compile the above class to produce bytecodes that are compatible with Java 1.4 or later JVM.
(In fact, the -source option implies a compatible -target, so javac -source 1.4 ... would have the
same effect. The relationship between -source and -target is described in the Oracle
documentation.)

Having said that, if you simply use -target or -source, you will still be compiling against the
standard class libraries provided by the compiler's JDK. If you are not careful, you can end up with
classes with the correct bytecode version, but with dependencies on APIs that are not available.
The solution is to use the -bootclasspath option. For example:

$ javac -target 1.4 --bootclasspath path/to/java1.4/rt.jar SomeClass.java

will compile against an alternative set of runtime libraries. If the class being compiled has
(accidental) dependencies on newer libraries, this will give you compilation errors.

Read Java Compiler - 'javac' online: https://riptutorial.com/java/topic/4478/java-compiler----javac-

https://riptutorial.com/ 505

https://riptutorial.com/java/topic/4478/java-compiler----javac-

Chapter 75: Java deployment

Introduction

There are a variety of technologies for "packaging" Java applications, webapps and so forth, for
deployment to the platform on which they will run. They range from simple library or executable
JAR files, WAR and EAR files, through to installers and self-contained executables.

Remarks

At the most fundamental level, a Java program can be deployed by copying a compiled class (i.e.
a ".class" file) or a directory tree containing compiled classes. However Java is normally deployed
in one of the following ways:

By copying a JAR file or collection of JAR files to the system where they will be executed;
e.g. using javac.

•

By copying or uploading a WAR, EAR or similar file to a "servlet container" or "application
server".

•

By running some kind of application installer that automates the above. The installer might
also install an embedded JRE.

•

By putting the JAR files for the application onto a web server to allow them to be launched
using Java WebStart.

•

The Creating JAR, WAR and EAR files example summarizes the different ways to create these
files.

There are numerous open source and commercial "installer generator" and "EXE generator" tools
for Java. Similarly, there are tools for obfuscating Java class files (to make reverse engineering
harder) and for adding runtime license checking. These are all out of scope for the "Java
Programming Language" documentation.

Examples

Making an executable JAR from the command line

To make a jar, you need one or more class files. This should have a main method if it is to be run
by a double click.

For this example, we will use:

import javax.swing.*;
import java.awt.Container;

https://riptutorial.com/ 506

public class HelloWorld {

 public static void main(String[] args) {
 JFrame f = new JFrame("Hello, World");
 JLabel label = new JLabel("Hello, World");
 Container cont = f.getContentPane();
 cont.add(label);
 f.setSize(400,100);
 f.setVisible(true);
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

}

It has been named HelloWorld.java

Next, we want to compile this program.

You may use any program you want to do this. To run from the command line, see the
documentation on compiling and running your first java program.

Once you have HelloWorld.class, make a new folder and call it whatever you want.

Make another file called manifest.txt and paste into it

Main-Class: HelloWorld
Class-Path: HelloWorld.jar

Put it in the same folder with HelloWorld.class
Use the command line to make your current directory (cd C:\Your\Folder\Path\Here on windows)
your folder.

Use Terminal and change directory to the directory (cd /Users/user/Documents/Java/jarfolder on
Mac) your folder

When that is done, type in jar -cvfm HelloWorld.jar manifest.txt HelloWorld.class and press
enter. This makes a jar file (in the folder with your manifest and HelloWorld.class) using the .class
files specified and named HelloWorld.jar. See the Syntax section for information about the options
(like -m and -v).
After these steps, go to your directory with the manifest file and you should find HelloWorld.jar
Clicking on it should display Hello, World in a text box.

Creating JAR, WAR and EAR files

The JAR, WAR and EAR files types are fundamentally ZIP files with a "manifest" file and (for WAR
and EAR files) a particular internal directory / file structure.

The recommended way to create these files is to use a Java-specific build tool which
"understands" the requirements for the respective file types. If you don't use a build tool, then IDE
"export" is the next option to try.

https://riptutorial.com/ 507

http://www.riptutorial.com/java/topic/84/getting-started-with-java-language

(Editorial note: the descriptions of how to create these files are best placed in the documentation
for the respective tools. Put them there. Please show some self-restraint and DON'T shoe-horn
them into this example!)

Creating JAR and WAR files using Maven

Creating a JAR or WAR using Maven is simply a matter of putting the correct <packaging> element
into the POM file; e,g,

<packaging>jar</packaging>

or

<packaging>war</packaging>

For more details. Maven can be configured to create "executable" JAR files by adding the requisite
information about the entry-point class and external dependencies as plugin properties for the
maven jar plugin. There is even a plugin for creating "uberJAR" files that combine an application
and its dependencies into a single JAR file.

Please refer to the Maven documentation (http://www.riptutorial.com/topic/898)for more
information.

Creating JAR, WAR and EAR files using Ant

The Ant build tool has separate "tasks" for building JAR, WAR and EAR. Please refer to the Ant
documentation (http://www.riptutorial.com/topic/4223) for more information.

Creating JAR, WAR and EAR files using an IDE

The three most popular Java IDEs all have built-in support for creating deployment files. The
functionality is often described as "exporting".

Eclipse - http://www.riptutorial.com/topic/1143•
NetBeans - http://www.riptutorial.com/topic/5438•
Intellij-IDEA - Exporting•

Creating JAR, WAR and EAR files using the jar command.

It is also possible to create these files "by hand" using the jar command. It is simply a matter of
assembling a file tree with the correct component files in the correct place, creating a manifest file,
and running jar to create the JAR file.

Please refer to the jar command Topic (Creating and modifying JAR files) for more information

https://riptutorial.com/ 508

http://www.riptutorial.com/topic/898
http://www.riptutorial.com/topic/4223
http://www.riptutorial.com/topic/1143
http://www.riptutorial.com/topic/5438
http://www.riptutorial.com/intellij-idea/topic/4807/exporting
http://stackoverflow.com/documentation/java/5247/creating-and-modifying-jar-files

Introduction to Java Web Start

The Oracle Java Tutorials summarize Web Start as follows:

Java Web Start software provides the power to launch full-featured applications with a
single click. Users can download and launch applications, such as a complete
spreadsheet program or an Internet chat client, without going through lengthy
installation procedures.

Other advantages of Java Web Start are support for signed code and explicit declaration of
platform dependencies, and support for code caching and deployment of application updates.

Java Web Start is also referred to as JavaWS and JAWS. The primary sources of information are:

The Java Tutorials - Lesson: Java Web Start•
Java Web Start Guide•
Java Web Start FAQ•
JNLP Specification•
javax.jnlp API Documentation•
Java Web Start Developers Site•

Prerequisites

At a high level, Web Start works by distributing Java applications packed as JAR files from a
remote webserver. The prerequisites are:

A pre-existing Java installation (JRE or JDK) on the target machine where the application is
to run. Java 1.2.2 or higher is required:

From Java 5.0 onwards, Web Start support is included in the JRE / JDK.○

For earlier releases, Web Start support is installed separately.○

The Web Start infrastructure includes some Javascript that can be included in a web
page to assist the user to install the necessary software.

○

•

The webserver that hosts the software must be accessible to the target machine.•

If the user is going to launch a Web Start application using a link in a web page, then:

they need a compatible web browser, and○

for modern (secure) browsers, they need to be told how to tell the browser to allow
Java to run ... without compromising web browser security.

○

•

An example JNLP file

The following example is intended to illustrate the basic functionality of JNLP.

<?xml version="1.0" encoding="UTF-8"?>
<jnlp spec="1.0+" codebase="https://www.example.com/demo"

https://riptutorial.com/ 509

https://docs.oracle.com/javase/tutorial/deployment/webstart/
https://docs.oracle.com/javase/tutorial/deployment/webstart/
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html

 href="demo_webstart.jnlp">
 <information>
 <title>Demo</title>
 <vendor>The Example.com Team</vendor>
 </information>
 <resources>
 <!-- Application Resources -->
 <j2se version="1.7+" href="http://java.sun.com/products/autodl/j2se"/>
 <jar href="Demo.jar" main="true"/>
 </resources>
 <application-desc
 name="Demo Application"
 main-class="com.example.jwsdemo.Main"
 width="300"
 height="300">
 </application-desc>
 <update check="background"/>
</jnlp>

As you can see, a JNLP file XML-based, and the information is all contained in the <jnlp> element.

The spec attribute gives the version of the JNPL spec that this file conforms to.•
The codebase attribute gives the base URL for resolving relative href URLs in the rest of the
file.

•

The href attribute gives the definitive URL for this JNLP file.•
The <information> element contains metadata the application including its title, authors,
description and help website.

•

The <resources> element describes the dependencies for the application including the
required Java version, OS platform and JAR files.

•

The <application-desc> (or <applet-desc>) element provides information needed to launch the
application.

•

Setting up the web server

The webserver must be configured to use application/x-java-jnlp-file as the MIMEtype for .jnlp
files.

The JNLP file and the application's JAR files must be installed on the webserver so that they are
available using the URLs indicated by the JNLP file.

Enabling launch via a web page

If the application is to be launched via a web link, the page that contains the link must be created
on the webserver.

If you can assume that Java Web Start is already installed on the user's machine, then the
web page simply needs to contain a link for launching the application. For example.

Launch the application

•

https://riptutorial.com/ 510

Otherwise, the page should also include some scripting to detect the kind of browser the
user is using and request to download and install the required version of Java.

•

NOTE: It is a bad idea to encourage users to encourage to install Java this way, or even to enable
Java in their web browsers so that JNLP web page launch will work.

Launching Web Start applications from the command line

The instructions for launching an Web Start application from the command line are simple.
Assuming that the user has a Java 5.0 JRE or JDK installed, the simply need to run this:

$ javaws <url>

where <url> is the URL for the JNLP file on the remote server.

Creating an UberJAR for an application and its dependencies

A common requirement for a Java application is that can be deployed by copying a single file. For
simple applications that depend only on the standard Java SE class libraries, this requirement is
satisfied by creating a JAR file containing all of the (compiled) application classes.

Things are not so straightforward if the application depends on third-party libraries. If you simply
put dependency JAR files inside an application JAR, the standard Java class loader will not be
able to find the library classes, and your application will not start. Instead, you need to create a
single JAR file that contains the application classes and associated resources together with the
dependency classes and resources. These need to be organized as a single namespace for the
classloader to search.

The such a JAR file is often referred to as an UberJAR.

Creating an UberJAR using the "jar"
command

The procedure for creating an UberJAR is straight-forward. (I will use Linux commands for
simplicity. The commands should be identical for Mac OS, and similar for Windows.)

Create a temporary directory, and change directory to it.

$ mkdir tempDir
$ cd tempDir

1.

For each dependent JAR file, in the reverse order that they need to appear on the
application's classpath, used the jar command to unpack the JAR into the temporary
directory.

2.

https://riptutorial.com/ 511

$ jar -xf <path/to/file.jar>

Doing this for multiple JAR files will overlay contents of the JARs.

Copy the application classes from the build tree into the temporary directory

$ cp -r path/to/classes .

3.

Create the UberJAR from the contents of the temporary directory:

$ jar -cf ../myApplication.jar

If you are creating an executable JAR file, include an appropriate MANIFEST.MF as
described here.

4.

Creating an UberJAR using Maven

If your project is built using Maven, you can get it to create an UberJAR using either the "maven-
assembly" or "maven-shade" plugins. See the Maven Assembly topic (in the Maven
documentation) for details.

The advantages and drawbacks of UberJARs

Some of advantages of UberJARs are self-evident:

An UberJAR is easy to distribute.•
You cannot break the library dependencies for an UberJAR, since the libraries are self-
contained.

•

In addition, if you use an appropriate tooling to create the UberJAR, you will have the option of
excluding library classes that are not used from the JAR file. However, that this is typically done by
static analysis of the classes. If your application uses reflection, annotation processing and similar
techniques, you need to be careful that classes are not excluded incorrectly.

UberJARs also have some disadvantages:

If you have lots of UberJARs with the same dependencies, then each one will contain a copy
of the dependencies.

•

Some open source libraries have licenses which may preclude 1 their use in an UberJAR.•

1 - Some open source library licenses allow you to use the library only of the end-user is able to replace one version
of the library with another. UberJARs can make replacement of version dependencies difficult.

Read Java deployment online: https://riptutorial.com/java/topic/6840/java-deployment

https://riptutorial.com/ 512

http://www.riptutorial.com/maven/topic/2308/maven-assembly-plugin
http://www.riptutorial.com/topic/898
https://riptutorial.com/java/topic/6840/java-deployment

Chapter 76: Java Editions, Versions,
Releases and Distributions

Examples

Differences between Java SE JRE or Java SE JDK distributions

Sun / Oracle releases of Java SE come in two forms: JRE and JDK. In simple terms, JREs support
running Java applications, and JDKs also support Java development.

Java Runtime Environment

Java Runtime Environment or JRE distributions consist of the set of libraries and tools needed to
run and manage Java applications. The tools in a typical modern JRE include:

The java command for running a Java program in a JVM (Java Virtual Machine)•
The jjs command for running the Nashorn Javascript engine.•
The keytool command for manipulating Java keystores.•
The policytool command for editing security sandbox security policies.•
The pack200 and unpack200 tools for packing and unpacking "pack200" file for web
deployment.

•

The orbd, rmid, rmiregistry and tnameserv commands that support Java CORBA and RMI
applications.

•

"Desktop JRE" installers include a Java plugin suitable for some web browser. This is deliberately
left out of "Server JRE" installers.linux syscall read benchmarku

From Java 7 update 6 onwards, JRE installers have included JavaFX (version 2.2 or later).

Java Development Kit

A Java Development Kit or JDK distribution includes the JRE tools, and additional tools for
developing Java software. The additional tools typically include:

The javac command, which compiles Java source code (".java") to bytecode files (".class").•
The tools for creating JAR files such as jar and jarsigner•
Development tools such as:

appletviewer for running applets○

idlj the CORBA IDL to Java compiler○

javah the JNI stub generator○

native2ascii for character set conversion of Java source code○

schemagen the Java to XML schema generator (part of JAXB)○

serialver generate Java Object Serialization version string.○

the wsgen and wsimport support tools for JAX-WS○

•

https://riptutorial.com/ 513

Diagnostic tools such as:
jdb the basic Java debugger○

jmap and jhat for dumping and analysing a Java heap.○

jstack for getting a thread stack dump.○

javap for examining ".class" files.○

•

Application management and monitoring tools such as:
jconsole a management console,○

jstat, jstatd, jinfo and jps for application monitoring○

•

A typical Sun / Oracle JDK installation also includes a ZIP file with the source code of the Java
libraries. Prior to Java 6, this was the only publicly available Java source code.

From Java 6 onwards, the complete source code for OpenJDK is available for download from the
OpenJDK site. It is typically not included in (Linux) JDK packages, but is available as a separate
package.

What is the difference between Oracle Hotspot and OpenJDK

Orthogonal to the JRE versus JDK dichotomy, there are two types of Java release that are widely
available:

The Oracle Hotspot releases are the ones that you download from the Oracle download
sites.

•

The OpenJDK releases are the ones that are built (typically by third-party providers) from the
OpenJDK source repositories.

•

In functional terms, there is little difference between a Hotspot release and an OpenJDK release.
There are some extra "enterprise" features in Hotspot that Oracle (paying) Java customers can
enable, but apart from that the same technology are present in both Hotspot and OpenJDK.

Another advantage of Hotspot over OpenJDK is that patch releases for Hotspot tend to be
available a bit earlier. This also depends on how agile your OpenJDK provider is; e.g. how long it
takes a Linux distribution's build team to prepare and QA a new OpenJDK build, and get it into
their public repositories.

The flipside is that the Hotspot releases are not available from the package repositories for most
Linux distributions. This means that keeping your Java software up-to-date on a Linux machine is
usually more work if you use Hotspot.

Differences between Java EE, Java SE, Java ME and JavaFX

Java technology is both a programming language and a platform. The Java programming
language is a high-level object-oriented language that has a particular syntax and style. A Java
platform is a particular environment in which Java programming language applications run.

There are several Java platforms. Many developers, even long-time Java programming language
developers, do not understand how the different platforms relate to each other.

https://riptutorial.com/ 514

The Java Programming Language Platforms

There are four platforms of the Java programming language:

Java Platform, Standard Edition (Java SE)•

Java Platform, Enterprise Edition (Java EE)•

Java Platform, Micro Edition (Java ME)•

Java FX•

All Java platforms consist of a Java Virtual Machine (VM) and an application programming
interface (API). The Java Virtual Machine is a program, for a particular hardware and software
platform, that runs Java technology applications. An API is a collection of software components
that you can use to create other software components or applications. Each Java platform
provides a virtual machine and an API, and this allows applications written for that platform to run
on any compatible system with all the advantages of the Java programming language: platform-
independence, power, stability, ease-of-development, and security.

Java SE

When most people think of the Java programming language, they think of the Java SE API. Java
SE's API provides the core functionality of the Java programming language. It defines everything
from the basic types and objects of the Java programming language to high-level classes that are
used for networking, security, database access, graphical user interface (GUI) development, and
XML parsing.

In addition to the core API, the Java SE platform consists of a virtual machine, development tools,
deployment technologies, and other class libraries and toolkits commonly used in Java technology
applications.

Java EE

The Java EE platform is built on top of the Java SE platform. The Java EE platform provides an
API and runtime environment for developing and running large-scale, multi-tiered, scalable,
reliable, and secure network applications.

Java ME

The Java ME platform provides an API and a small-footprint virtual machine for running Java
programming language applications on small devices, like mobile phones. The API is a subset of
the Java SE API, along with special class libraries useful for small device application development.

https://riptutorial.com/ 515

Java ME applications are often clients of Java EE platform services.

Java FX

Java FX technology is a platform for creating rich internet applications written in Java FX
ScriptTM. Java FX Script is a statically-typed declarative language that is compiled to Java
technology bytecode, which can then be run on a Java VM. Applications written for the Java FX
platform can include and link to Java programming language classes, and may be clients of Java
EE platform services.

Taken from the Oracle documentation•

Java SE Versions

Java SE Version History

The following table provides the timeline for the significant major versions of the Java SE platform.

Java SE Version1 Code Name
End-of-life (free2

)
Release Date

Java SE 9 (Early
Access)

None future
2017-07-27
(estimated)

Java SE 8 None future 2014-03-18

Java SE 7 Dolphin 2015-04-14 2011-07-28

Java SE 6 Mustang 2013-04-16 2006-12-23

Java SE 5 Tiger 2009-11-04 2004-10-04

Java SE 1.4.2 Mantis
prior to 2009-11-
04

2003-06-26

Java SE 1.4.1
Hopper /
Grasshopper

prior to 2009-11-
04

2002-09-16

Java SE 1.4 Merlin
prior to 2009-11-
04

2002-02-06

Java SE 1.3.1 Ladybird
prior to 2009-11-
04

2001-05-17

Java SE 1.3 Kestrel
prior to 2009-11-
04

2000-05-08

https://riptutorial.com/ 516

http://docs.oracle.com/javaee/6/firstcup/doc/gkhoy.html
http://download.java.net/java/jdk9/docs/api/
http://download.java.net/java/jdk9/docs/api/
http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/1.5.0/docs/api/
http://docs.oracle.com/javase/1.4.2/docs/api/
http://docs.oracle.com/javase/1.3/docs/api/

Java SE Version1 Code Name
End-of-life (free2

)
Release Date

Java SE 1.2 Playground
prior to 2009-11-
04

1998-12-08

Java SE 1.1 Sparkler
prior to 2009-11-
04

1997-02-19

Java SE 1.0 Oak
prior to 2009-11-
04

1996-01-21

Footnotes:

The links are to online copies of the respective releases documentation on Oracle's website.
The documentation for many older releases no longer online, though it typically can be
downloaded from the Oracle Java Archives.

1.

Most historical versions of Java SE have passed their official "end of life" dates. When a
Java version passes this milestone, Oracle stop providing free updates for it. Updates are
still available to customers with support contracts.

2.

Source:

JDK release dates by Roedy Green of Canadian Mind Products•

Java SE Version Highlights

Java SE
Version

Highlights

Java SE
8

Lambda expressions and MapReduce-inspired Streams. The Nashorn Javascript
engine. Annotations on types and repeating annotations. Unsigned arithmetic
extensions. New Date and Time APIs. Statically linked JNI libraries. JavaFX
launcher. Removal of PermGen.

Java SE
7

String switches, try-with-resource, the diamond (<>), numeric literal
enhancements and exception handling / rethrowing improvements. Concurrency
library enhancements. Enhanced support for native file systems. Timsort. ECC
crypto algorithms. Improved 2D graphics (GPU) support. Pluggable annotations.

Java SE
6

Significant performance enhancements to JVM platform and Swing. Scripting
language API and Mozilla Rhino Javascript engine. JDBC 4.0. Compiler API.
JAXB 2.0. Web Services support (JAX-WS)

Java SE
5

Generics, annotations, auto-boxing, enum classes, varargs, enhanced for loops
and static imports. Specification of the Java Memory Model. Swing and RMI
enhancements. Addition of java.util.concurrent.* package and Scanner.

https://riptutorial.com/ 517

http://mindprod.com/jgloss/jdkreleasedates.html

Java SE
Version

Highlights

Java SE
1.4

The assert keyword. Regular expression classes. Exception chaining. NIO APIs -
non-blocking I/O, Buffer and Channel. java.util.logging.* API. Image I/O API.
Integrated XML and XSLT (JAXP). Integrated security and cryptography (JCE,
JSSE, JAAS). Integrated Java Web Start. Preferences API.

Java SE
1.3

HotSpot JVM included. CORBA / RMI integration. Java Naming and Directory
Interface (JNDI). Debugger framework (JPDA). JavaSound API. Proxy API.

Java SE
1.2

The strictfp keyword. Swing APIs. The Java plugin (for web browsers). CORBA
interoperability. Collections framework.

Java SE
1.1

Inner classes. Reflection. JDBC. RMI. Unicode / character streams.
Internationalization support. Overhaul of AWT event model. JavaBeans.

Source:

Wikipedia: Java version history•

Read Java Editions, Versions, Releases and Distributions online:
https://riptutorial.com/java/topic/8973/java-editions--versions--releases-and-distributions

https://riptutorial.com/ 518

https://en.wikipedia.org/wiki/Java_version_history
https://riptutorial.com/java/topic/8973/java-editions--versions--releases-and-distributions

Chapter 77: Java Floating Point Operations

Introduction

Floating-point numbers are numbers that have fractional parts (usually expressed with a decimal
point). In Java, there is two primitive types for floating-point numbers which are float (uses 4
bytes), and double (uses 8 bytes). This documentation page is for detailing with examples
operations that can be done on floating points in Java.

Examples

Comparing floating point values

You should be careful when comparing floating-point values (float or double) using relational
operators: ==, !=, < and so on. These operators give results according to the binary representations
of the floating point values. For example:

public class CompareTest {
 public static void main(String[] args) {
 double oneThird = 1.0 / 3.0;
 double one = oneThird * 3;
 System.out.println(one == 1.0); // prints "false"
 }
}

The calculation oneThird has introduced a tiny rounding error, and when we multiply oneThird by 3
we get a result that is slightly different to 1.0.

This problem of inexact representations is more stark when we attempt to mix double and float in
calculations. For example:

public class CompareTest2 {
 public static void main(String[] args) {
 float floatVal = 0.1f;
 double doubleVal = 0.1;
 double doubleValCopy = floatVal;

 System.out.println(floatVal); // 0.1
 System.out.println(doubleVal); // 0.1
 System.out.println(doubleValCopy); // 0.10000000149011612

 System.out.println(floatVal == doubleVal); // false
 System.out.println(doubleVal == doubleValCopy); // false
 }
}

The floating point representations used in Java for the float and double types have limited number
of digits of precision. For the float type, the precision is 23 binary digits or about 8 decimal digits.
For the double type, it is 52 bits or about 15 decimal digits. On top of that, some arithmetical

https://riptutorial.com/ 519

operations will introduce rounding errors. Therefore, when a program compares floating point
values, it standard practice to define an acceptable delta for the comparison. If the difference
between the two numbers is less than the delta, they are deemed to be equal. For example

if (Math.abs(v1 - v2) < delta)

Delta compare example:

public class DeltaCompareExample {

 private static boolean deltaCompare(double v1, double v2, double delta) {
 // return true iff the difference between v1 and v2 is less than delta
 return Math.abs(v1 - v2) < delta;
 }

 public static void main(String[] args) {
 double[] doubles = {1.0, 1.0001, 1.0000001, 1.000000001, 1.0000000000001};
 double[] deltas = {0.01, 0.00001, 0.0000001, 0.0000000001, 0};

 // loop through all of deltas initialized above
 for (int j = 0; j < deltas.length; j++) {
 double delta = deltas[j];
 System.out.println("delta: " + delta);

 // loop through all of the doubles initialized above
 for (int i = 0; i < doubles.length - 1; i++) {
 double d1 = doubles[i];
 double d2 = doubles[i + 1];
 boolean result = deltaCompare(d1, d2, delta);

 System.out.println("" + d1 + " == " + d2 + " ? " + result);

 }

 System.out.println();
 }
 }
}

Result:

delta: 0.01
1.0 == 1.0001 ? true
1.0001 == 1.0000001 ? true
1.0000001 == 1.000000001 ? true
1.000000001 == 1.0000000000001 ? true

delta: 1.0E-5
1.0 == 1.0001 ? false
1.0001 == 1.0000001 ? false
1.0000001 == 1.000000001 ? true
1.000000001 == 1.0000000000001 ? true

delta: 1.0E-7
1.0 == 1.0001 ? false
1.0001 == 1.0000001 ? false
1.0000001 == 1.000000001 ? true

https://riptutorial.com/ 520

1.000000001 == 1.0000000000001 ? true

delta: 1.0E-10
1.0 == 1.0001 ? false
1.0001 == 1.0000001 ? false
1.0000001 == 1.000000001 ? false
1.000000001 == 1.0000000000001 ? false

delta: 0.0
1.0 == 1.0001 ? false
1.0001 == 1.0000001 ? false
1.0000001 == 1.000000001 ? false
1.000000001 == 1.0000000000001 ? false

Also for comparison of double and float primitive types static compare method of corresponding
boxing type can be used. For example:

double a = 1.0;
double b = 1.0001;

System.out.println(Double.compare(a, b));//-1
System.out.println(Double.compare(b, a));//1

Finally, determining what deltas are most appropriate for a comparison can be tricky. A commonly
used approach is to pick delta values that are our intuition says are about right. However, if you
know scale and (true) accuracy of the input values, and the calculations performed, it may be
possible to come up with mathematically sound bounds on the accuracy of the results, and hence
for the deltas. (There is a formal branch of Mathematics known as Numerical Analysis that used to
be taught to computational scientists that covered this kind of analysis.)

OverFlow and UnderFlow

Float data type

The float data type is a single-precision 32-bit IEEE 754 floating point.

Float overflow

Maximum possible value is 3.4028235e+38 , When it exceeds this value it produces Infinity

float f = 3.4e38f;
float result = f*2;
System.out.println(result); //Infinity

Float UnderFlow

Minimum value is 1.4e-45f, when is goes below this value it produces 0.0

 float f = 1e-45f;
 float result = f/1000;
 System.out.println(result);

https://riptutorial.com/ 521

double data type

The double data type is a double-precision 64-bit IEEE 754 floating point.

Double OverFlow

Maximum possible value is 1.7976931348623157e+308 , When it exceeds this value it produces
Infinity

double d = 1e308;
double result=d*2;
System.out.println(result); //Infinity

Double UnderFlow

Minimum value is 4.9e-324, when is goes below this value it produces 0.0

 double d = 4.8e-323;
 double result = d/1000;
 System.out.println(result); //0.0

Formatting the floating point values

Floating point Numbers can be formatted as a decimal number using String.format with 'f' flag

 //Two digits in fracttional part are rounded
 String format1 = String.format("%.2f", 1.2399);
 System.out.println(format1); // "1.24"

 // three digits in fractional part are rounded
 String format2 = String.format("%.3f", 1.2399);
 System.out.println(format2); // "1.240"

 //rounded to two digits, filled with zero
 String format3 = String.format("%.2f", 1.2);
 System.out.println(format3); // returns "1.20"

 //rounder to two digits
 String format4 = String.format("%.2f", 3.19999);
 System.out.println(format4); // "3.20"

Floating point Numbers can be formatted as a decimal number using DecimalFormat

 // rounded with one digit fractional part
 String format = new DecimalFormat("0.#").format(4.3200);
 System.out.println(format); // 4.3

 // rounded with two digit fractional part
 String format = new DecimalFormat("0.##").format(1.2323000);
 System.out.println(format); //1.23

 // formatting floating numbers to decimal number
 double dv = 123456789;
 System.out.println(dv); // 1.23456789E8
 String format = new DecimalFormat("0").format(dv);

https://riptutorial.com/ 522

 System.out.println(format); //123456789

Strict Adherence to the IEEE Specification

By default, floating point operations on float and double do not strictly adhere to the rules of the
IEEE 754 specification. An expression is allowed to use implementation-specific extensions to the
range of these values; essentially allowing them to be more accurate than required.

strictfp disables this behavior. It is applied to a class, interface, or method, and applies to
everything contained in it, such as classes, interfaces, methods, constructors, variable initializers,
etc. With strictfp, the intermediate values of a floating-point expression must be within the float
value set or the double value set. This causes the results of such expressions to be exactly those
that the IEEE 754 specification predicts.

All constant expressions are implicitly strict, even if they aren't inside a strictfp scope.

Therefore, strictfp has the net effect of sometimes making certain corner case computations less
accurate, and can also make floating point operations slower (as the CPU is now doing more work
to ensure any native extra precision does not affect the result). However, it also causes the results
to be exactly the same on all platforms. It is therefore useful in things like scientific programs,
where reproducibility is more important than speed.

public class StrictFP { // No strictfp -> default lenient
 public strictfp float strict(float input) {
 return input * input / 3.4f; // Strictly adheres to the spec.
 // May be less accurate and may be slower.
 }

 public float lenient(float input) {
 return input * input / 3.4f; // Can sometimes be more accurate and faster,
 // but results may not be reproducable.
 }

 public static final strictfp class Ops { // strictfp affects all enclosed entities
 private StrictOps() {}

 public static div(double dividend, double divisor) { // implicitly strictfp
 return dividend / divisor;
 }
 }
}

Read Java Floating Point Operations online: https://riptutorial.com/java/topic/6167/java-floating-
point-operations

https://riptutorial.com/ 523

https://riptutorial.com/java/topic/6167/java-floating-point-operations
https://riptutorial.com/java/topic/6167/java-floating-point-operations

Chapter 78: Java Memory Management

Remarks

In Java, objects are allocated in the heap, and heap memory is reclaimed by automatic garbage
collection. An application program cannot explicitly delete a Java object.

The basic principles of Java garbage collection are described in the Garbage collection example.
Other examples describe finalization, how to trigger the garbage collector by hand, and the
problem of storage leaks.

Examples

Finalization

A Java object may declare a finalize method. This method is called just before Java releases the
memory for the object. It will typically look like this:

public class MyClass {

 //Methods for the class

 @Override
 protected void finalize() throws Throwable {
 // Cleanup code
 }
}

However, there some important caveats on the behavior of Java finalization.

Java makes no guarantees about when a finalize() method will called.•
Java does not even guarantee that a finalize() method will be called some time during the
running application's lifetime.

•

The only thing that is guaranteed is that the method will be called before the object is deleted
... if the object is deleted.

•

The caveats above mean that it is a bad idea to rely on the finalize method to perform cleanup (or
other) actions that must be performed in a timely fashion. Over reliance on finalization can lead to
storage leaks, memory leaks and other problems.

In short, there are very few situation where finalization is actually a good solution.

Finalizers only run once

Normally, an object is deleted after it has been finalized. However, this doesn't happen all of the
time. Consider the following example1:

https://riptutorial.com/ 524

http://www.riptutorial.com/java/example/9473/garbage-collection

public class CaptainJack {
 public static CaptainJack notDeadYet = null;

 protected void finalize() {
 // Resurrection!
 notDeadYet = this;
 }
}

When an instance of CaptainJack becomes unreachable and the garbage collector attempts to
reclaim it, the finalize() method will assign a reference to the instance to the notDeadYet variable.
That will make the instance reachable once more, and the garbage collector won't delete it.

Question: Is Captain Jack immortal?

Answer: No.

The catch is the JVM will only run a finalizer on an object once in its lifetime. If you assign null to
notDeadYet causing a resurected instance to be unreachable once more, the garbage collector
won't call finalize() on the object.

1 - See https://en.wikipedia.org/wiki/Jack_Harkness.

Manually triggering GC

You can manually trigger the Garbage Collector by calling

System.gc();

However, Java does not guarantee that the Garbage Collector has run when the call returns. This
method simply "suggests" to the JVM (Java Virtual Machine) that you want it to run the garbage
collector, but does not force it to do so.

It is generally considered a bad practice to attempt to manually trigger garbage collection. The
JVM can be run with the -XX:+DisableExplicitGC option to disable calls to System.gc(). Triggering
garbage collection by calling System.gc() can disrupt normal garbage management / object
promotion activities of the specific garbage collector implementation in use by the JVM.

Garbage collection

The C++ approach - new and delete

In a language like C++, the application program is responsible for managing the memory used by
dynamically allocated memory. When an object is created in the C++ heap using the new operator,
there needs to be a corresponding use of the delete operator to dispose of the object:

If program forgets to delete an object and just "forgets" about it, the associated memory is
lost to the application. The term for this situation is a memory leak, and it too much memory
leaks an application is liable to use more and more memory, and eventually crash.

•

https://riptutorial.com/ 525

https://en.wikipedia.org/wiki/Jack_Harkness

On the other hand, if an application attempts to delete the same object twice, or use an
object after it has been deleted, then the application is liable to crash due to problems with
memory corruption

•

In a complicated C++ program, implementing memory management using new and delete can be
time consuming. Indeed, memory management is a common source of bugs.

The Java approach - garbage collection

Java takes a different approach. Instead of an explicit delete operator, Java provides an automatic
mechanism known as garbage collection to reclaim the memory used by objects that are no longer
needed. The Java runtime system takes responsibility for finding the objects to be disposed of.
This task is performed by a component called a garbage collector, or GC for short.

At any time during the execution of a Java program, we can divide the set of all existing objects
into two distinct subsets1:

Reachable objects are defined by the JLS as follows:

A reachable object is any object that can be accessed in any potential continuing
computation from any live thread.

In practice, this means that there is a chain of references starting from an in-scope local
variable or a static variable by which some code might be able to reach the object.

•

Unreachable objects are objects that cannot possibly be reached as above.•

Any objects that are unreachable are eligible for garbage collection. This does not mean that they
will be garbage collected. In fact:

An unreachable object does not get collected immediately on becoming unreachable1.•
An unreachable object may not ever be garbage collected.•

The Java language Specification gives a lot of latitude to a JVM implementation to decide when to
collect unreachable objects. It also (in practice) gives permission for a JVM implementation to be
conservative in how it detects unreachable objects.

The one thing that the JLS guarantees is that no reachable objects will ever be garbage collected.

What happens when an object becomes unreachable

First of all, nothing specifically happens when an object becomes unreachable. Things only
happen when the garbage collector runs and it detects that the object is unreachable.
Furthermore, it is common for a GC run to not detect all unreachable objects.

When the GC detects an unreachable object, the following events can occur.

If there are any Reference objects that refer to the object, those references will be cleared
before the object is deleted.

1.

https://riptutorial.com/ 526

If the object is finalizable, then it will be finalized. This happens before the object is deleted.2.

The object can be deleted, and the memory it occupies can be reclaimed.3.

Note that there is a clear sequence in which the above events can occur, but nothing requires the
garbage collector to perform the final deletion of any specific object in any specific time-frame.

Examples of reachable and unreachable objects

Consider the following example classes:

// A node in simple "open" linked-list.
public class Node {
 private static int counter = 0;

 public int nodeNumber = ++counter;
 public Node next;
}

public class ListTest {
 public static void main(String[] args) {
 test(); // M1
 System.out.prinln("Done"); // M2
 }

 private static void test() {
 Node n1 = new Node(); // T1
 Node n2 = new Node(); // T2
 Node n3 = new Node(); // T3
 n1.next = n2; // T4
 n2 = null; // T5
 n3 = null; // T6
 }
}

Let us examine what happens when test() is called. Statements T1, T2 and T3 create Node
objects, and the objects are all reachable via the n1, n2 and n3 variables respectively. Statement T4
assigns the reference to the 2nd Node object to the next field of the first one. When that is done, the
2nd Node is reachable via two paths:

 n2 -> Node2
 n1 -> Node1, Node1.next -> Node2

In statement T5, we assign null to n2. This breaks the first of the reachability chains for Node2, but
the second one remains unbroken, so Node2 is still reachable.

In statement T6, we assign null to n3. This breaks the only reachability chain for Node3, which
makes Node3 unreachable. However, Node1 and Node2 are both still reachable via the n1 variable.

Finally, when the test() method returns, its local variables n1, n2 and n3 go out of scope, and
therefore cannot be accessed by anything. This breaks the remaining reachability chains for Node1
and Node2, and all of the Node objects are nor unreachable and eligible for garbage collection.

https://riptutorial.com/ 527

1 - This is a simplification that ignores finalization, and Reference classes. 2 - Hypothetically, a Java implementation
could do this, but the performance cost of doing this makes it impractical.

Setting the Heap, PermGen and Stack sizes

When a Java virtual machine starts, it needs to know how big to make the Heap, and the default
size for thread stacks. These can be specified using command-line options on the java command.
For versions of Java prior to Java 8, you can also specify the size of the PermGen region of the
Heap.

Note that PermGen was removed in Java 8, and if you attempt to set the PermGen size the option
will be ignored (with a warning message).

If you don't specify Heap and Stack sizes explicitly, the JVM will use defaults that are calculated in
a version and platform specific way. This may result in your application using too little or too much
memory. This is typically OK for thread stacks, but it can be problematic for a program that uses a
lot of memory.

Setting the Heap, PermGen and default Stack sizes:

The following JVM options set the heap size:

-Xms<size> - sets the initial heap size•
-Xmx<size> - sets the maximum heap size•
-XX:PermSize<size> - sets the initial PermGen size•
-XX:MaxPermSize<size> - sets the maximum PermGen size•
-Xss<size> - sets the default thread stack size•

The <size> parameter can be a number of bytes, or can have a suffix of k, m or g. The latter specify
the size in kilobytes, megabytes and gigabytes respectively.

Examples:

$ java -Xms512m -Xmx1024m JavaApp
$ java -XX:PermSize=64m -XX:MaxPermSize=128m JavaApp
$ java -Xss512k JavaApp

Finding the default sizes:

The -XX:+printFlagsFinal option can be used to print the values of all flags before starting the JVM.
This can be used to print the defaults for the heap and stack size settings as follows:

For Linux, Unix, Solaris and Mac OSX

$ java -XX:+PrintFlagsFinal -version | grep -iE 'HeapSize|PermSize|ThreadStackSize'

•

For Windows:

java -XX:+PrintFlagsFinal -version | findstr /i "HeapSize PermSize
ThreadStackSize"

•

https://riptutorial.com/ 528

The output of the above commands will resemble the following:

uintx InitialHeapSize := 20655360 {product}
uintx MaxHeapSize := 331350016 {product}
uintx PermSize = 21757952 {pd product}
uintx MaxPermSize = 85983232 {pd product}
 intx ThreadStackSize = 1024 {pd product}

The sizes are given in bytes.

Memory leaks in Java

In the Garbage collection example, we implied that Java solves the problem of memory leaks. This
is not actually true. A Java program can leak memory, though the causes of the leaks are rather
different.

Reachable objects can leak

Consider the following naive stack implementation.

public class NaiveStack {
 private Object[] stack = new Object[100];
 private int top = 0;

 public void push(Object obj) {
 if (top >= stack.length) {
 throw new StackException("stack overflow");
 }
 stack[top++] = obj;
 }

 public Object pop() {
 if (top <= 0) {
 throw new StackException("stack underflow");
 }
 return stack[--top];
 }

 public boolean isEmpty() {
 return top == 0;
 }
}

When you push an object and then immediately pop it, there will still be a reference to the object in
the stack array.

The logic of the stack implementation means that that reference cannot be returned to a client of
the API. If an object has been popped then we can prove that it cannot "be accessed in any
potential continuing computation from any live thread". The problem is that a current generation
JVM cannot prove this. Current generation JVMs do not consider the logic of the program in
determining whether references are reachable. (For a start, it is not practical.)

But setting aside the issue of what reachability really means, we clearly have a situation here

https://riptutorial.com/ 529

http://www.riptutorial.com/java/example/9473/garbage-collection

where the NaiveStack implementation is "hanging onto" objects that ought to be reclaimed. That is
a memory leak.

In this case, the solution is straightforward:

 public Object pop() {
 if (top <= 0) {
 throw new StackException("stack underflow");
 }
 Object popped = stack[--top];
 stack[top] = null; // Overwrite popped reference with null.
 return popped;
 }

Caches can be memory leaks

A common strategy for improving service performance is to cache results. The idea is that you
keep a record of common requests and their results in an in-memory data structure known as a
cache. Then, each time a request is made, you lookup the request in the cache. If the lookup
succeeds, you return the corresponding saved results.

This strategy can be very effective if implemented properly. However, if implemented incorrectly, a
cache can be a memory leak. Consider the following example:

public class RequestHandler {
 private Map<Task, Result> cache = new HashMap<>();

 public Result doRequest(Task task) {
 Result result = cache.get(task);
 if (result == null) {
 result == doRequestProcessing(task);
 cache.put(task, result);
 }
 return result;
 }
}

The problem with this code is that while any call to doRequest could add a new entry to the cache,
there is nothing to remove them. If the service is continually getting different tasks, then the cache
will eventually consume all available memory. This is a form of memory leak.

One approach to solving this is to use a cache with a maximum size, and throw out old entries
when the cache exceeds the maximum. (Throwing out the least recently used entry is a good
strategy.) Another approach is to build the cache using WeakHashMap so that the JVM can evict
cache entries if the heap starts getting too full.

Read Java Memory Management online: https://riptutorial.com/java/topic/2804/java-memory-
management

https://riptutorial.com/ 530

https://riptutorial.com/java/topic/2804/java-memory-management
https://riptutorial.com/java/topic/2804/java-memory-management

Chapter 79: Java Memory Model

Remarks

The Java Memory Model is the section of the JLS that specifies the conditions under which one
thread is guaranteed to see the effects of memory writes made by another thread. The relevant
section in recent editions is "JLS 17.4 Memory Model" (in Java 8, Java 7, Java 6)

There was a major overhaul of the Java Memory Model in Java 5 which (among other things)
changed the way that volatile worked. Since then, the memory model been essentially
unchanged.

Examples

Motivation for the Memory Model

Consider the following example:

public class Example {
 public int a, b, c, d;

 public void doIt() {
 a = b + 1;
 c = d + 1;
 }
}

If this class is used is a single-threaded application, then the observable behavior will be exactly
as you would expect. For instance:

public class SingleThreaded {
 public static void main(String[] args) {
 Example eg = new Example();
 System.out.println(eg.a + ", " + eg.c);
 eg.doIt();
 System.out.println(eg.a + ", " + eg.c);
 }
}

will output:

0, 0
1, 1

As far as the "main" thread can tell, the statements in the main() method and the doIt() method
will be executed in the order that they are written in the source code. This is a clear requirement of
the Java Language Specification (JLS).

https://riptutorial.com/ 531

https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html#jls-17.4
https://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.4
https://docs.oracle.com/javase/specs/jls/se6/html/memory.html#17.4

Now consider the same class used in a multi-threaded application.

public class MultiThreaded {
 public static void main(String[] args) {
 final Example eg = new Example();
 new Thread(new Runnable() {
 public void run() {
 while (true) {
 eg.doIt();
 }
 }
 }).start();
 while (true) {
 System.out.println(eg.a + ", " + eg.c);
 }
 }
}

What will this print?

In fact, according to the JLS it is not possible to predict that this will print:

You will probably see a few lines of 0, 0 to start with.•
Then you probably see lines like N, N or N, N + 1.•
You might see lines like N + 1, N.•
In theory, you might even see that the 0, 0 lines continue forever1.•

1 - In practice the presence of the println statements is liable to cause some serendipitous synchronization and
memory cache flushing. That is likely to hide some of the effects that would cause the above behavior.

So how can we explain these?

Reordering of assignments

One possible explanation for unexpected results is that the JIT compiler has changed the order of
the assignments in the doIt() method. The JLS requires that statements appear to execute in
order from the perspective of the current thread. In this case, nothing in the code of the doIt()
method can observe the effect of a (hypothetical) reordering of those two statement. This means
that the JIT compiler would be permitted to do that.

Why would it do that?

On typical modern hardware, machine instructions are executed using a instruction pipeline which
allows a sequence of instructions to be in different stages. Some phases of instruction execution
take longer than others, and memory operations tend to take a longer time. A smart compiler can
optimize the instruction throughput of the pipeline by ordering the instructions to maximize the
amount of overlap. This may lead to executing parts of statements out of order. The JLS permits
this provided that not affect the result of the computation from the perspective of the current thread
.

Effects of memory caches

https://riptutorial.com/ 532

A second possible explanation is effect of memory caching. In a classical computer architecture,
each processor has a small set of registers, and a larger amount of memory. Access to registers is
much faster than access to main memory. In modern architectures, there are memory caches that
are slower than registers, but faster than main memory.

A compiler will exploit this by trying to keep copies of variables in registers, or in the memory
caches. If a variable does not need to be flushed to main memory, or does not need to be read
from memory, there are significant performance benefits in not doing this. In cases where the JLS
does not require memory operations to be visible to another thread, the Java JIT compiler is likely
to not add the "read barrier" and "write barrier" instructions that will force main memory reads and
writes. Once again, the performance benefits of doing this are significant.

Proper synchronization

So far, we have seen that the JLS allows the JIT compiler to generate code that makes single-
threaded code faster by reordering or avoiding memory operations. But what happens when other
threads can observe the state of the (shared) variables in main memory?

The answer is, that the other threads are liable to observe variable states which would appear to
be impossible ... based on the code order of the Java statements. The solution to this is to use
appropriate synchronization. The three main approaches are:

Using primitive mutexes and the synchronized constructs.•
Using volatile variables.•
Using higher level concurrency support; e.g. classes in the java.util.concurrent packages.•

But even with this, it is important to understand where synchronization is needed, and what effects
that you can rely on. This is where the Java Memory Model comes in.

The Memory Model

The Java Memory Model is the section of the JLS that specifies the conditions under which one
thread is guaranteed to see the effects of memory writes made by another thread. The Memory
Model is specified with a fair degree of formal rigor, and (as a result) requires detailed and careful
reading to understand. But the basic principle is that certain constructs create a "happens-before"
relation between write of a variable by one thread, and a subsequent read of the same variable by
another thread. If the "happens before" relation exists, the JIT compiler is obliged to generate code
that will ensure that the read operation sees the value written by the write.

Armed with this, it is possible to reason about memory coherency in a Java program, and decide
whether this will be predictable and consistent for all execution platforms.

Happens-before relationships

(The following is a simplified version of what the Java Language Specification says. For a deeper
understanding, you need to read the specification itself.)

https://riptutorial.com/ 533

Happens-before relationships are the part of the Memory Model that allow us to understand and
reason about memory visibility. As the JLS says (JLS 17.4.5):

"Two actions can be ordered by a happens-before relationship. If one action happens-
before another, then the first is visible to and ordered before the second."

What does this mean?

Actions

The actions that the above quote refers to are specified in JLS 17.4.2. There are 5 kinds of action
listed defined by the spec:

Read: Reading a non-volatile variable.•

Write: Writing a non-volatile variable.•

Synchronization actions:

Volatile read: Reading a volatile variable.○

Volatile write: Writing a volatile variable.○

Lock. Locking a monitor○

Unlock. Unlocking a monitor.○

The (synthetic) first and last actions of a thread.○

Actions that start a thread or detect that a thread has terminated.○

•

External Actions. An action that has a result that depends on the environment in which the
program.

•

Thread divergence actions. These model the behavior of certain kinds of infinite loop.•

Program Order and Synchronization Order

These two orderings (JLS 17.4.3 and JLS 17.4.4) govern the execution of statements in a Java

Program order describes the order of statement execution within a single thread.

Synchronization order describes the order of statement execution for two statements connected by
a synchronization:

An unlock action on monitor synchronizes-with all subsequent lock actions on that monitor.•

A write to a volatile variable synchronizes-with all subsequent reads of the same variable by
any thread.

•

https://riptutorial.com/ 534

https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html#jls-17.4.5
https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html#jls-17.4.2
https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html#jls-17.4.3
https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html#jls-17.4.4

An action that starts a thread (i.e. the call to Thread.start()) synchronizes-with the first action
in the thread it starts (i.e. the call to the thread's run() method).

•

The default initialization of fields synchronizes-with the first action in every thread. (See the
JLS for an explanation of this.)

•

The final action in a thread synchronizes-with any action in another thread that detects the
termination; e.g. the return of a join() call or isTerminated() call that returns true.

•

If one thread interrupts another thread, the interrupt call in the first thread synchronizes-with
the point where another thread detects that the thread was interrupted.

•

Happens-before Order

This ordering (JLS 17.4.5) is what determines whether a memory write is guaranteed to be visible
to a subsequent memory read.

More specifically, a read of a variable v is guaranteed to observe a write to v if and only if write(v)
happens-before read(v) AND there is no intervening write to v. If there are intervening writes, then
the read(v) may see the results of them rather than the earlier one.

The rules that define the happens-before ordering are as follows:

Happens-Before Rule #1 - If x and y are actions of the same thread and x comes before y
in program order, then x happens-before y.

•

Happens-Before Rule #2 - There is a happens-before edge from the end of a constructor of
an object to the start of a finalizer for that object.

•

Happens-Before Rule #3 - If an action x synchronizes-with a subsequent action y, then x
happens-before y.

•

Happens-Before Rule #4 - If x happens-before y and y happens-before z then x happens-
before z.

•

In addition, various classes in the Java standard libraries are specified as defining happens-before
relationships. You can interpret this as meaning that it happens somehow, without needing to
know exactly how the guarantee is going to be met.

Happens-before reasoning applied to some examples

We will present some examples to show how to apply happens-before reasoning to check that
writes are visible to subsequent reads.

Single-threaded code

As you would expect, writes are always visible to subsequent reads in a single-threaded program.

https://riptutorial.com/ 535

https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html#jls-17.4.5

public class SingleThreadExample {
 public int a, b;

 public int add() {
 a = 1; // write(a)
 b = 2; // write(b)
 return a + b; // read(a) followed by read(b)
 }
}

By Happens-Before Rule #1:

The write(a) action happens-before the write(b) action.1.
The write(b) action happens-before the read(a) action.2.
The read(a) action happens-before the read(a) action.3.

By Happens-Before Rule #4:

write(a) happens-before write(b) AND write(b) happens-before read(a) IMPLIES write(a)
happens-before read(a).

4.

write(b) happens-before read(a) AND read(a) happens-before read(b) IMPLIES write(b)
happens-before read(b).

5.

Summing up:

The write(a) happens-before read(a) relation means that the a + b statement is guaranteed
to see the correct value of a.

6.

The write(b) happens-before read(b) relation means that the a + b statement is guaranteed
to see the correct value of b.

7.

Behavior of 'volatile' in an example with 2 threads

We will use the following example code to explore some implications of the Memory Model for
`volatile.

public class VolatileExample {
 private volatile int a;
 private int b; // NOT volatile

 public void update(int first, int second) {
 b = first; // write(b)
 a = second; // write-volatile(a)
 }

 public int observe() {
 return a + b; // read-volatile(a) followed by read(b)
 }
}

First, consider the following sequence of statements involving 2 threads:

A single instance of VolatileExample is created; call it ve,1.
ve.update(1, 2)2.

https://riptutorial.com/ 536

is called in one thread, and
ve.observe() is called in another thread.3.

By Happens-Before Rule #1:

The write(a) action happens-before the volatile-write(a) action.1.
The volatile-read(a) action happens-before the read(b) action.2.

By Happens-Before Rule #2:

The volatile-write(a) action in the first thread happens-before the volatile-read(a) action in
the second thread.

3.

By Happens-Before Rule #4:

The write(b) action in the first thread happens-before the read(b) action in the second
thread.

4.

In other words, for this particular sequence, we are guaranteed that the 2nd thread will see the
update to the non-volatile variable b made by the first thread. However, it is should also be clear
that if the assignments in the update method were the other way around, or the observe() method
read the variable b before a, then the happens-before chain would be broken. The chain would
also be broken if volatile-read(a) in the second thread was not subsequent to the volatile-
write(a) in the first thread.

When the chain is broken, there is no guarantee that observe() will see the correct value of b.

Volatile with three threads

Suppose we to add a third thread into the previous example:

A single instance of VolatileExample is created; call it ve,1.
Two threads call update:

ve.update(1, 2) is called in one thread,•
ve.update(3, 4) is called in the second thread,•

2.

ve.observe() is subsequently called in a third thread.3.

To analyse this completely, we need to consider all of the possible interleavings of the statements
in thread one and thread two. Instead, we will consider just two of them.

Scenario #1 - suppose that update(1, 2) precedes update(3,4) we get this sequence:

write(b, 1), write-volatile(a, 2) // first thread
write(b, 3), write-volatile(a, 4) // second thread
read-volatile(a), read(b) // third thread

In this case, it is easy to see that there is an unbroken happens-before chain from write(b, 3) to
read(b). Furthermore there is no intervening write to b. So, for this scenario, the third thread is
guaranteed to see b as having value 3.

https://riptutorial.com/ 537

Scenario #2 - suppose that update(1, 2) and update(3,4) overlap and the ations are interleaved as
follows:

write(b, 3) // second thread
write(b, 1) // first thread
write-volatile(a, 2) // first thread
write-volatile(a, 4) // second thread
read-volatile(a), read(b) // third thread

Now, while there is a happens-before chain from write(b, 3) to read(b), there is an intervening
write(b, 1) action performed by the other thread. This means we cannot be certain which value
read(b) will see.

(Aside: This demonstrates that we cannot rely on volatile for ensuring visibility of non-volatile
variables, except in very limited situations.)

How to avoid needing to understand the Memory Model

The Memory Model is difficult to understand, and difficult to apply. It is useful if you need to reason
about the correctness of multi-threaded code, but you do not want to have to do this reasoning for
every multi-threaded application that you write.

If you adopt the following principals when writing concurrent code in Java, you can largely avoid
the need to resort to happens-before reasoning.

Use immutable data structures where possible. A properly implemented immutable class will
be thread-safe, and will not introduce thread-safety issues when you use it with other
classes.

•

Understand and avoid "unsafe publication".•

Use primitive mutexes or Lock objects to synchronize access to state in mutable objects that
need to be thread-safe1.

•

Use Executor / ExecutorService or the fork join framework rather than attempting to create
manage threads directly.

•

Use the `java.util.concurrent classes that provide advanced locks, semaphores, latches and
barriers, instead of using wait/notify/notifyAll directly.

•

Use the java.util.concurrent versions of maps, sets, lists, queues and deques rather than
external synchonization of non-concurrent collections.

•

The general principle is to try to use Java's built-in concurrency libraries rather than "rolling your
own" concurrency. You can rely on them working, if you use them properly.

1 - Not all objects need to be thread safe. For example, if an object or objects is thread-confined (i.e. it is only
accessible to one thread), then its thread-safety is not relevant.

Read Java Memory Model online: https://riptutorial.com/java/topic/6829/java-memory-model

https://riptutorial.com/ 538

https://riptutorial.com/java/topic/6829/java-memory-model

Chapter 80: Java Native Access

Examples

Introduction to JNA

What is JNA?

Java Native Access (JNA) is a community-developed library providing Java programs an easy
access to native shared libraries (.dll files on windows, .so files on Unix ...)

How can I use it?

Firstly, download the latest release of JNA and reference its jna.jar in your project's
CLASSPATH.

•

Secondly, copy, compile and run the Java code below•

For the purpose of this introduction, we suppose the native platform in use is Windows.
If you're running on another platform simply replace the string "msvcrt" with the string
"c" in the code below.

The small Java program below will print a message on the console by calling the C printf
function.

CRuntimeLibrary.java

package jna.introduction;

import com.sun.jna.Library;
import com.sun.jna.Native;

// We declare the printf function we need and the library containing it (msvcrt)...
public interface CRuntimeLibrary extends Library {

 CRuntimeLibrary INSTANCE =
 (CRuntimeLibrary) Native.loadLibrary("msvcrt", CRuntimeLibrary.class);

 void printf(String format, Object... args);
}

MyFirstJNAProgram.java

package jna.introduction;

// Now we call the printf function...
public class MyFirstJNAProgram {

https://riptutorial.com/ 539

https://mvnrepository.com/artifact/net.java.dev.jna/jna
http://www.riptutorial.com/topic/213

 public static void main(String args[]) {
 CRuntimeLibrary.INSTANCE.printf("Hello World from JNA !");
 }
}

Where to go now?

Jump into another topic here or jump to the official site.

Read Java Native Access online: https://riptutorial.com/java/topic/5244/java-native-access

https://riptutorial.com/ 540

https://github.com/java-native-access/jna
https://riptutorial.com/java/topic/5244/java-native-access

Chapter 81: Java Native Interface

Parameters

Parameter Details

JNIEnv Pointer to the JNI environment

jobject The object which invoked the non-static native method

jclass The class which invoked the static native method

Remarks

Setting up JNI requires both a Java and a native compiler. Depending on the IDE and OS, there is
some setting up required. A guide for Eclipse can be found here. A full tutorial can be found here.

These are the steps for setting up the Java-C++ linkage on windows:

Compile the Java source files (.java) into classes (.class) using javac.•
Create header (.h) files from the Java classes containing native methods using javah. These
files "instruct" the native code which methods it is responsible for implementing.

•

Include the header files (#include) in the C++ source files (.cpp) implementing the native
methods.

•

Compile the C++ source files and create a library (.dll). This library contains the native code
implementation.

•

Specify the library path (-Djava.library.path) and load it in the Java source file (
System.loadLibrary(...)).

•

Callbacks (Calling Java methods from native code) requires to specify a method descriptor. If the
descriptor is incorrect, a runtime error occurs. Because of this, it is helpful to have the descriptors
made for us, this can be done with javap -s.

Examples

Calling C++ methods from Java

Static and member methods in Java can be marked as native to indicate that their implementation
is to be found in a shared library file. Upon execution of a native method, the JVM looks for a
corresponding function in loaded libraries (see Loading native libraries), using a simple name
mangling scheme, performs argument conversion and stack setup, then hands over control to
native code.

Java code

https://riptutorial.com/ 541

http://codeandme.blogspot.co.il/2011/09/jni-made-easy.html
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaNativeInterface.html
http://www.riptutorial.com/java/example/13248/loading-native-libraries

/*** com/example/jni/JNIJava.java **/

package com.example.jni;

public class JNIJava {
 static {
 System.loadLibrary("libJNI_CPP");
 }

 // Obviously, native methods may not have a body defined in Java
 public native void printString(String name);
 public static native double average(int[] nums);

 public static void main(final String[] args) {
 JNIJava jniJava = new JNIJava();
 jniJava.printString("Invoked C++ 'printString' from Java");

 double d = average(new int[]{1, 2, 3, 4, 7});
 System.out.println("Got result from C++ 'average': " + d);
 }
}

C++ code

Header files containing native function declarations should be generated using the javah tool on
target classes. Running the following command at the build directory :

javah -o com_example_jni_JNIJava.hpp com.example.jni.JNIJava

... produces the following header file (comments stripped for brevity) :

// com_example_jni_JNIJava.hpp

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h> // The JNI API declarations

#ifndef _Included_com_example_jni_JNIJava
#define _Included_com_example_jni_JNIJava
#ifdef __cplusplus
extern "C" { // This is absolutely required if using a C++ compiler
#endif

JNIEXPORT void JNICALL Java_com_example_jni_JNIJava_printString
 (JNIEnv *, jobject, jstring);

JNIEXPORT jdouble JNICALL Java_com_example_jni_JNIJava_average
 (JNIEnv *, jclass, jintArray);

#ifdef __cplusplus
}
#endif
#endif

Here is an example implementation :

https://riptutorial.com/ 542

// com_example_jni_JNIJava.cpp

#include <iostream>
#include "com_example_jni_JNIJava.hpp"

using namespace std;

JNIEXPORT void JNICALL Java_com_example_jni_JNIJava_printString(JNIEnv *env, jobject jthis,
jstring string) {
 const char *stringInC = env->GetStringUTFChars(string, NULL);
 if (NULL == stringInC)
 return;
 cout << stringInC << endl;
 env->ReleaseStringUTFChars(string, stringInC);
}

JNIEXPORT jdouble JNICALL Java_com_example_jni_JNIJava_average(JNIEnv *env, jclass jthis,
jintArray intArray) {
 jint *intArrayInC = env->GetIntArrayElements(intArray, NULL);
 if (NULL == intArrayInC)
 return -1;
 jsize length = env->GetArrayLength(intArray);
 int sum = 0;
 for (int i = 0; i < length; i++) {
 sum += intArrayInC[i];
 }
 env->ReleaseIntArrayElements(intArray, intArrayInC, 0);
 return (double) sum / length;
}

Output

Running the example class above yields the following output :

Invoked C++ 'printString' from Java
Got result from C++ 'average': 3.4

Calling Java methods from C++ (callback)

Calling a Java method from native code is a two-step process :

obtain a method pointer with the GetMethodID JNI function, using the method name and
descriptor ;

1.

call one of the Call*Method functions listed here.2.

Java code

/*** com.example.jni.JNIJavaCallback.java ***/

package com.example.jni;

public class JNIJavaCallback {
 static {
 System.loadLibrary("libJNI_CPP");

https://riptutorial.com/ 543

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16656

 }

 public static void main(String[] args) {
 new JNIJavaCallback().callback();
 }

 public native void callback();

 public static void printNum(int i) {
 System.out.println("Got int from C++: " + i);
 }

 public void printFloat(float i) {
 System.out.println("Got float from C++: " + i);
 }
}

C++ code

// com_example_jni_JNICppCallback.cpp

#include <iostream>
#include "com_example_jni_JNIJavaCallback.h"

using namespace std;

JNIEXPORT void JNICALL Java_com_example_jni_JNIJavaCallback_callback(JNIEnv *env, jobject
jthis) {
 jclass thisClass = env->GetObjectClass(jthis);

 jmethodID printFloat = env->GetMethodID(thisClass, "printFloat", "(F)V");
 if (NULL == printFloat)
 return;
 env->CallVoidMethod(jthis, printFloat, 5.221);

 jmethodID staticPrintInt = env->GetStaticMethodID(thisClass, "printNum", "(I)V");
 if (NULL == staticPrintInt)
 return;
 env->CallVoidMethod(jthis, staticPrintInt, 17);
}

Output

Got float from C++: 5.221
Got int from C++: 17

Getting the descriptor

Descriptors (or internal type signatures) are obtained using the javap program on the compiled
.class file. Here is the output of javap -p -s com.example.jni.JNIJavaCallback :

Compiled from "JNIJavaCallback.java"
public class com.example.jni.JNIJavaCallback {

https://riptutorial.com/ 544

 static {};
 descriptor: ()V

 public com.example.jni.JNIJavaCallback();
 descriptor: ()V

 public static void main(java.lang.String[]);
 descriptor: ([Ljava/lang/String;)V

 public native void callback();
 descriptor: ()V

 public static void printNum(int);
 descriptor: (I)V // <---- Needed

 public void printFloat(float);
 descriptor: (F)V // <---- Needed
}

Loading native libraries

The common idiom for loading shared library files in Java is the following :

public class ClassWithNativeMethods {
 static {
 System.loadLibrary("Example");
 }

 public native void someNativeMethod(String arg);
 ...

Calls to System.loadLibrary are almost always static so as to occur during class loading, ensuring
that no native method can execute before the shared library has been loaded. However the
following is possible :

public class ClassWithNativeMethods {
 // Call this before using any native method
 public static void prepareNativeMethods() {
 System.loadLibrary("Example");
 }

 ...

This allows to defer shared library loading until necessary, but requires extra care to avoid
java.lang.UnsatisfiedLinkErrors.

Target file lookup

Shared library files are searched for in the paths defined by the java.library.path system property,
which can be overriden using the -Djava.library.path= JVM argument at runtime :

java -Djava.library.path=path/to/lib/:path/to/other/lib MainClassWithNativeMethods

https://riptutorial.com/ 545

https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#loadLibrary(java.lang.String)

Watch out for system path separators : for example, Windows uses ; instead of :.

Note that System.loadLibrary resolves library filenames in a platform-dependent manner : the code
snippet above expects a file named libExample.so on Linux, and Example.dll on Windows.

An alternative to System.loadLibrary is System.load(String), which takes the full path to a shared
library file, circumventing the java.library.path lookup :

public class ClassWithNativeMethods {
 static {
 System.load("/path/to/lib/libExample.so");
 }

 ...

Read Java Native Interface online: https://riptutorial.com/java/topic/168/java-native-interface

https://riptutorial.com/ 546

https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#load(java.lang.String)
https://riptutorial.com/java/topic/168/java-native-interface

Chapter 82: Java Performance Tuning

Examples

General approach

The internet is packed with tips for performance improvement of Java programs. Perhaps the
number one tip is awareness. That means:

Identify possible performance problems and bottlenecks.•
Use analyzing and testing tools.•
Know good practices and bad practices.•

The first point should be done during the design stage if speaking about a new system or module.
If speaking about legacy code, analyzing and testing tools come into the picture. The most basic
tool for analyzing your JVM performance is JVisualVM, which is included in the JDK.

The third point is mostly about experience and extensive research, and of course raw tips that will
show up on this page and others, like this.

Reducing amount of Strings

In Java, it's too "easy" to create many String instances which are not needed. That and other
reasons might cause your program to have lots of Strings that the GC is busy cleaning up.

Some ways you might be creating String instances:

myString += "foo";

Or worse, in a loop or recursion:

for (int i = 0; i < N; i++) {
 myString += "foo" + i;
}

The problem is that each + creates a new String (usually, since new compilers optimize some
cases). A possible optimization can be made using StringBuilder or StringBuffer:

StringBuffer sb = new StringBuffer(myString);
for (int i = 0; i < N; i++) {
 sb.append("foo").append(i);
}
myString = sb.toString();

If you build long Strings often (SQLs for example), use a String building API.

Other things to consider:

https://riptutorial.com/ 547

http://javaperformancetuning.com/tips/rawtips.shtml

Reduce usage of replace, substring etc.•
Avoid String.toArray(), especially in frequently accessed code.•
Log prints which are destined to be filtered (due to log level for example) should not be
generated (log level should be checked in advance).

•

Use libraries like this if necessary.•
StringBuilder is better if the variable is used in a non-shared manner (across threads).•

An evidence-based approach to Java performance tuning

Donald Knuth is often quoted as saying this:

"Programmers waste enormous amounts of time thinking about, or worrying about, the
speed of noncritical parts of their programs, and these attempts at efficiency actually
have a strong negative impact when debugging and maintenance are considered. We
should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil. Yet we should not pass up our opportunities in that
critical 3%."

source

Bearing that sage advice in mind, here is the recommended procedure for optimizing programs:

First of all, design and code your program or library with a focus on simplicity and
correctness. To start with, don't spend much effort on performance.

1.

Get it to a working state, and (ideally) develop unit tests for the key parts of the codebase.2.

Develop an application level performance benchmark. The benchmark should cover the
performance critical aspects of your application, and should perform a range of tasks that are
typical of how the application will be used in production.

3.

Measure the performance.4.

Compare the measured performance against your criteria for how fast the application needs
to be. (Avoid unrealistic, unattainable or unquantifiable criteria such as "as fast as possible".)

5.

If you have met the criteria, STOP. You job is done. (Any further effort is probably a waste of
time.)

6.

Profile the application while it is running your performance benchmark.7.

Examine the profiling results and pick the biggest (unoptimized) "performance hotspots"; i.e.
sections of the code where the application seems to be spending the most time.

8.

Analyse the hotspot code section to try to understand why it is a bottleneck, and think of a
way to make it faster.

9.

Implement that as a proposed code change, test and debug.10.

Rerun the benchmark to see if the code change has improved the performance:11.

https://riptutorial.com/ 548

https://commons.apache.org/proper/commons-lang/
https://en.wikiquote.org/wiki/Donald_Knuth#Computer_Programming_as_an_Art_.281974.29

If Yes, then return to step 4.•
If No, then abandon the change and return to step 9. If you are making no progress,
pick a different hotspot for your attention.

•

Eventually you will get to a point where the application is either fast enough, or you have
considered all of the significant hotspots. At this point you need to stop this approach. If a section
of code is consuming (say) 1% of the overall time, then even a 50% improvement is only going to
make the application 0.5% faster overall.

Clearly, there is a point beyond which hotspot optimization is a waste of effort. If you get to that
point, you need to take a more radical approach. For example:

Look at the algorithmic complexity of your core algorithms.•
If the application is spending a lot of time garbage collection, look for ways to reduce the rate
of object creation.

•

If key parts of the application are CPU intensive and single-threaded, look for opportunities
for parallelism.

•

If the application is already multi-threaded, look for concurrency bottlenecks.•

But wherever possible, rely on tools and measurement rather than instinct to direct your
optimization effort.

Read Java Performance Tuning online: https://riptutorial.com/java/topic/4160/java-performance-
tuning

https://riptutorial.com/ 549

https://riptutorial.com/java/topic/4160/java-performance-tuning
https://riptutorial.com/java/topic/4160/java-performance-tuning

Chapter 83: Java Pitfalls - Exception usage

Introduction

Several Java programming language misusage might conduct a program to generate incorrect
results despite being compiled correctly. This topic main purpose is to list common pitfalls related
to exception handling, and to propose the correct way to avoid having such pitfalls.

Examples

Pitfall - Ignoring or squashing exceptions

This example is about deliberately ignoring or "squashing" exceptions. Or to be more precise, it is
about how to catch and handle an exception in a way that ignores it. However, before we describe
how to do this, we should first point out that squashing exceptions is generally not the correct way
to deal with them.

Exceptions are usually thrown (by something) to notify other parts of the program that some
significant (i.e. "exceptional") event has occurred. Generally (though not always) an exception
means that something has gone wrong. If you code your program to squash the exception, there is
a fair chance that the problem will reappear in another form. To make things worse, when you
squash the exception, you are throwing away the information in the exception object and its
associated stack trace. That is likely to make it harder to figure out what the original source of the
problem was.

In practice, exception squashing frequently happens when you use an IDE's auto-correction
feature to "fix" a compilation error caused by an unhandled exception. For example, you might see
code like this:

try {
 inputStream = new FileInputStream("someFile");
} catch (IOException e) {
 /* add exception handling code here */
}

Clearly, the programmer has accepted the IDE's suggestion to make the compilation error go
away, but the suggestion was inappropriate. (If the file open has failed, the program should most
likely do something about it. With the above "correction", the program is liable to fail later; e.g. with
a NullPointerException because inputStream is now null.)

Having said that, here is an example of deliberately squashing an exception. (For the purposes of
argument, assume that we have determined that an interrupt while showing the selfie is harmless.)
The comment tells the reader that we squashed the exception deliberately, and why we did that.

try {
 selfie.show();

https://riptutorial.com/ 550

} catch (InterruptedException e) {
 // It doesn't matter if showing the selfie is interrupted.
}

Another conventional way to highlight that we are deliberately squashing an exception without
saying why is to indicate this with the exception variable's name, like this:

try {
 selfie.show();
} catch (InterruptedException ignored) { }

Some IDEs (like IntelliJ IDEA) won't display a warning about the empty catch block if the variable
name is set to ignored.

Pitfall - Catching Throwable, Exception, Error or RuntimeException

A common thought pattern for inexperienced Java programmers is that exceptions are "a problem"
or "a burden" and the best way to deal with this is catch them all1 as soon as possible. This leads
to code like this:

....
try {
 InputStream is = new FileInputStream(fileName);
 // process the input
} catch (Exception ex) {
 System.out.println("Could not open file " + fileName);
}

The above code has a significant flaw. The catch is actually going to catch more exceptions than
the programmer is expecting. Suppose that the value of the fileName is null, due to a bug
elsewhere in the application. This will cause the FileInputStream constructor to throw a
NullPointerException. The handler will catch this, and report to the user:

 Could not open file null

which is unhelpful and confusing. Worse still, suppose that the it was the "process the input" code
that threw the unexpected exception (checked or unchecked!). Now the user will get the
misleading message for a problem that didn't occur while opening the file, and may not be related
to I/O at all.

The root of the problem is that the programmer has coded a handler for Exception. This is almost
always a mistake:

Catching Exception will catch all checked exceptions, and most unchecked exceptions as
well.

•

Catching RuntimeException will catch most unchecked exceptions.•
Catching Error will catch unchecked exceptions that signal JVM internal errors. These errors
are generally not recoverable, and should not be caught.

•

Catching Throwable will catch all possible exceptions.•

https://riptutorial.com/ 551

The problem with catching too broad a set of exceptions is that the handler typically cannot handle
all of them appropriately. In the case of the Exception and so on, it is difficult for the programmer to
predict what could be caught; i.e. what to expect.

In general, the correct solution is to deal with the exceptions that are thrown. For example, you
can catch them and handle them in situ:

try {
 InputStream is = new FileInputStream(fileName);
 // process the input
} catch (FileNotFoundException ex) {
 System.out.println("Could not open file " + fileName);
}

or you can declare them as thrown by the enclosing method.

There are very few situations where catching Exception is appropriate. The only one that arises
commonly is something like this:

public static void main(String[] args) {
 try {
 // do stuff
 } catch (Exception ex) {
 System.err.println("Unfortunately an error has occurred. " +
 "Please report this to X Y Z");
 // Write stacktrace to a log file.
 System.exit(1);
 }
}

Here we genuinely want to deal with all exceptions, so catching Exception (or even Throwable) is
correct.

1 - Also known as Pokemon Exception Handling.

Pitfall - Throwing Throwable, Exception, Error or RuntimeException

While catching the Throwable, Exception, Error and RuntimeException exceptions is bad, throwing
them is even worse.

The basic problem is that when your application needs to handle exceptions, the presence of the
top level exceptions make it hard to discriminate between different error conditions. For example

try {
 InputStream is = new FileInputStream(someFile); // could throw IOException
 ...
 if (somethingBad) {
 throw new Exception(); // WRONG
 }
} catch (IOException ex) {
 System.err.println("cannot open ...");

https://riptutorial.com/ 552

http://c2.com/cgi/wiki?PokemonExceptionHandling

} catch (Exception ex) {
 System.err.println("something bad happened"); // WRONG
}

The problem is that because we threw an Exception instance, we are forced to catch it. However
as described in another example, catching Exception is bad. In this situation, it becomes difficult to
discriminate between the "expected" case of an Exception that gets thrown if somethingBad is true,
and the unexpected case where we actually catch an unchecked exception such as
NullPointerException.

If the top-level exception is allowed to propagate, we run into other problems:

We now have to remember all of the different reasons that we threw the top-level, and
discriminate / handle them.

•

In the case of Exception and Throwable we also need to add these exceptions to the throws
clause of methods if we want the exception to propagate. This is problematic, as described
below.

•

In short, don't throw these exceptions. Throw a more specific exception that more closely
describes the "exceptional event" that has happened. If you need to, define and use a custom
exception class.

Declaring Throwable or Exception in a method's "throws" is
problematic.

It is tempting to replace a long list of thrown exceptions in a method's throws clause with Exception
or even `Throwable. This is a bad idea:

It forces the caller to handle (or propagate) Exception.1.
We can no longer rely on the compiler to tell us about specific checked exceptions that need
to be handled.

2.

Handling Exception properly is difficult. It is hard to know what actual exceptions may be
caught, and if you don't know what could be caught, it is hard to know what recovery strategy
is appropriate.

3.

Handling Throwable is even harder, since now you also have to cope with potential failures
that should never be recovered from.

4.

This advice means that certain other patterns should be avoided. For example:

try {
 doSomething();
} catch (Exception ex) {
 report(ex);
 throw ex;
}

The above attempts to log all exceptions as they pass, without definitively handling them.
Unfortunately, prior to Java 7, the throw ex; statement caused the compiler to think that any
Exception

https://riptutorial.com/ 553

could be thrown. That could force you to declare the enclosing method as throws Exception. From
Java 7 onwards, the compiler knows that the set of exceptions that could be (re-thrown) there is
smaller.

Pitfall - Catching InterruptedException

As already pointed out in other pitfalls, catching all exceptions by using

try {
 // Some code
} catch (Exception) {
 // Some error handling
}

Comes with a lot of different problems. But one perticular problem is that it can lead to deadlocks
as it breaks the interrupt system when writing multi-threaded applications.

If you start a thread you usually also need to be able to stop it abruptly for various reasons.

Thread t = new Thread(new Runnable() {
 public void run() {
 while (true) {
 //Do something indefinetely
 }
 }
}

t.start();

//Do something else

// The thread should be canceld if it is still active.
// A Better way to solve this is with a shared variable that is tested
// regularily by the thread for a clean exit, but for this example we try to
// forcibly interrupt this thread.
if (t.isAlive()) {
 t.interrupt();
 t.join();
}

//Continue with program

The t.interrupt() will raise an InterruptedException in that thread, than is intended to shut down
the thread. But what if the Thread needs to clean up some resources before its completely
stopped? For this it can catch the InterruptedException and do some cleanup.

 Thread t = new Thread(new Runnable() {
 public void run() {
 try {
 while (true) {
 //Do something indefinetely
 }
 } catch (InterruptedException ex) {
 //Do some quick cleanup

https://riptutorial.com/ 554

 // In this case a simple return would do.
 // But if you are not 100% sure that the thread ends after
 // catching the InterruptedException you will need to raise another
 // one for the layers surrounding this code.
 Thread.currentThread().interrupt();
 }
 }
}

But if you have a catch-all expression in your code, the InterruptedException will be caught by it as
well and the interruption will not continue. Which in this case could lead to a deadlock as the
parent thread waits indefinitely for this thead to stop with t.join().

 Thread t = new Thread(new Runnable() {
 public void run() {
 try {
 while (true) {
 try {
 //Do something indefinetely
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 } catch (InterruptedException ex) {
 // Dead code as the interrupt exception was already caught in
 // the inner try-catch
 Thread.currentThread().interrupt();
 }
 }
}

So it is better to catch Exceptions individually, but if you insist on using a catch-all, at least catch
the InterruptedException individually beforehand.

Thread t = new Thread(new Runnable() {
 public void run() {
 try {
 while (true) {
 try {
 //Do something indefinetely
 } catch (InterruptedException ex) {
 throw ex; //Send it up in the chain
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 } catch (InterruptedException ex) {
 // Some quick cleanup code

 Thread.currentThread().interrupt();
 }
 }
}

Pitfall - Using exceptions for normal flowcontrol

https://riptutorial.com/ 555

There is a mantra that some Java experts are wont to recite:

"Exceptions should only be used for exceptional cases."

(For example: http://programmers.stackexchange.com/questions/184654)

The essence of this is that is it is a bad idea (in Java) to use exceptions and exception handling to
implement normal flow control. For example, compare these two ways of dealing with a parameter
that could be null.

public String truncateWordOrNull(String word, int maxLength) {
 if (word == null) {
 return "";
 } else {
 return word.substring(0, Math.min(word.length(), maxLength));
 }
}

public String truncateWordOrNull(String word, int maxLength) {
 try {
 return word.substring(0, Math.min(word.length(), maxLength));
 } catch (NullPointerException ex) {
 return "";
 }
}

In this example, we are (by design) treating the case where word is null as if it is an empty word.
The two versions deal with null either using conventional if ... else and or try ... catch. How should
we decide which version is better?

The first criterion is readability. While readability is hard to quantify objectively, most programmers
would agree that the essential meaning of the first version is easier to discern. Indeed, in order to
truly understand the second form, you need to understand that a NullPointerException cannot be
thrown by the Math.min or String.substring methods.

The second criterion is efficiency. In releases of Java prior to Java 8, the second version is
significantly (orders of magnitude) slower than the first version. In particular, the construction of an
exception object entails capturing and recording the stackframes, just in case the stacktrace is
required.

On the other hand, there are many situations where using exceptions is more readable, more
efficient and (sometimes) more correct than using conditional code to deal with "exceptional"
events. Indeed, there are rare situations where it is necessary to use them for "non-exceptional"
events; i.e. events that occur relatively frequently. For the latter, it is worth looking at ways to
reduce the overheads of creating exception objects.

Pitfall - Excessive or inappropriate stacktraces

One of the more annoying things that programmers can do is to scatter calls to printStackTrace()
throughout their code.

The problem is that the printStackTrace() is going to write the stacktrace to standard output.

https://riptutorial.com/ 556

http://programmers.stackexchange.com/questions/184654

For an application that is intended for end-users who are not Java programmers, a
stacktrace is uninformative at best, and alarming at worst.

•

For a server-side application, the chances are that nobody will look at the standard output.•

A better idea is to not call printStackTrace directly, or if you do call it, do it in a way that the stack
trace is written to a log file or error file rather than to the end-user's console.

One way to do this is to use a logging framework, and pass the exception object as a parameter of
the log event. However, even logging the exception can be harmful if done injudiciously. Consider
the following:

public void method1() throws SomeException {
 try {
 method2();
 // Do something
 } catch (SomeException ex) {
 Logger.getLogger().warn("Something bad in method1", ex);
 throw ex;
 }
}

public void method2() throws SomeException {
 try {
 // Do something else
 } catch (SomeException ex) {
 Logger.getLogger().warn("Something bad in method2", ex);
 throw ex;
 }
}

If the exception is thrown in method2, you are likely to see two copies of the same stacktrace in the
logfile, corresponding to the same failure.

In short, either log the exception or re-throw it further (possibly wrapped with another exception).
Don't do both.

Pitfall - Directly subclassing `Throwable`

Throwable has two direct subclasses, Exception and Error. While it's possible to create a new class
that extends Throwable directly, this is inadvisable as many applications assume only Exception and
Error exist.

More to the point there is no practical benefit to directly subclassing Throwable, as the resulting
class is, in effect, simply a checked exception. Subclassing Exception instead will result in the
same behavior, but will more clearly convey your intent.

Read Java Pitfalls - Exception usage online: https://riptutorial.com/java/topic/5381/java-pitfalls---
exception-usage

https://riptutorial.com/ 557

https://riptutorial.com/java/topic/5381/java-pitfalls---exception-usage
https://riptutorial.com/java/topic/5381/java-pitfalls---exception-usage

Chapter 84: Java Pitfalls - Language syntax

Introduction

Several Java programming language misusage might conduct a program to generate incorrect
results despite being compiled correctly. This topic main purpose is to list common pitfalls with
their causes, and to propose the correct way to avoid falling in such problems.

Remarks

This topic is about specific aspects of the Java language syntax that are either error prone or that
that should not be used in certain ways.

Examples

Pitfall - Ignoring method visibility

Even experienced Java developers tend to think that Java has only three protection modifiers. The
language actually has four! The package private (a.k.a. default) level of visibility is often
forgotten.

You should pay attention to what methods you make public. The public methods in an application
are the application’s visible API. This should be as small and compact as possible, especially if
you are writing a reusable library (see also the SOLID principle). It is important to similarly
consider the visibility of all methods, and to only use protected or package private access where
appropriate.

When you declare methods that should be private as public, you expose the internal
implementation details of the class.

A corollary to this is that you only unit test the public methods of your class - in fact you can only
test public methods. It is bad practice to increase the visibility of private methods just to be able to
run unit tests against those methods. Testing public methods that call the methods with more
restrictive visibility should be sufficient to test an entire API. You should never expand your API
with more public methods only to allow unit testing.

Pitfall - Missing a ‘break’ in a 'switch' case

These Java issues can be very embarrassing, and sometimes remain undiscovered until run in
production. Fallthrough behavior in switch statements is often useful; however, missing a “break”
keyword when such behavior is not desired can lead to disastrous results. If you have forgotten to
put a “break” in “case 0” in the code example below, the program will write “Zero” followed by
“One”, since the control flow inside here will go through the entire “switch” statement until it
reaches a “break”. For example:

https://riptutorial.com/ 558

https://en.wikipedia.org/wiki/Open/closed_principle
http://www.tutorialspoint.com/junit/junit_test_framework.htm

public static void switchCasePrimer() {
 int caseIndex = 0;
 switch (caseIndex) {
 case 0:
 System.out.println("Zero");
 case 1:
 System.out.println("One");
 break;
 case 2:
 System.out.println("Two");
 break;
 default:
 System.out.println("Default");
 }
}

In most cases, the cleaner solution would be to use interfaces and move code with specific
behaviour into separate implementations (composition over inheritance)

If a switch-statement is unavoidable it is recommended to document "expected" fallthroughs if they
occur. That way you show fellow developers that you are aware of the missing break, and that this
is expected behaviour.

switch(caseIndex) {
 [...]
 case 2:
 System.out.println("Two");
 // fallthrough
 default:
 System.out.println("Default");

Pitfall - Misplaced semicolons and missing braces

This is a mistake that causes real confusion for Java beginners, at least the first time that they do
it. Instead of writing this:

if (feeling == HAPPY)
 System.out.println("Smile");
else
 System.out.println("Frown");

they accidentally write this:

if (feeling == HAPPY);
 System.out.println("Smile");
else
 System.out.println("Frown");

and are puzzled when the Java compiler tells them that the else is misplaced. The Java compiler
with interpret the above as follows:

if (feeling == HAPPY)
 /*empty statement*/ ;

https://riptutorial.com/ 559

System.out.println("Smile"); // This is unconditional
else // This is misplaced. A statement cannot
 // start with 'else'
System.out.println("Frown");

In other cases, there will be no be compilation errors, but the code won't do what the programmer
intends. For example:

for (int i = 0; i < 5; i++);
 System.out.println("Hello");

only prints "Hello" once. Once again, the spurious semicolon means that the body of the for loop
is an empty statement. That means that the println call that follows is unconditional.

Another variation:

for (int i = 0; i < 5; i++);
 System.out.println("The number is " + i);

This will give a "Cannot find symbol" error for i. The presence of the spurious semicolon means
that the println call is attempting to use i outside of its scope.

In those examples, there is a straight-forward solution: simply delete the spurious semicolon.
However, there are some deeper lessons to be drawn from these examples:

The semicolon in Java is not "syntactic noise". The presence or absence of a semicolon can
change the meaning of your program. Don't just add them at the end of every line.

1.

Don't trust your code's indentation. In the Java language, extra whitespace at the beginning
of a line is ignored by the compiler.

2.

Use an automatic indenter. All IDEs and many simple text editors understand how to
correctly indent Java code.

3.

This is the most important lesson. Follow the latest Java style guidelines, and put braces
around the "then" and "else" statements and the body statement of a loop. The open brace (
{) should not be on a new line.

4.

If the programmer followed the style rules then the if example with a misplaced semicolons would
look like this:

if (feeling == HAPPY); {
 System.out.println("Smile");
} else {
 System.out.println("Frown");
}

That looks odd to an experienced eye. If you auto-indented that code, it would probably look like
this:

https://riptutorial.com/ 560

if (feeling == HAPPY); {
 System.out.println("Smile");
 } else {
 System.out.println("Frown");
 }

which should stand out as wrong to even a beginner.

Pitfall - Leaving out braces: the "dangling if" and "dangling else" problems

The latest version of the Oracle Java style guide mandates that the "then" and "else" statements in
an if statement should always be enclosed in "braces" or "curly brackets". Similar rules apply to
the bodies of various loop statements.

if (a) { // <- open brace
 doSomething();
 doSomeMore();
} // <- close brace

This is not actually required by Java language syntax. Indeed, if the "then" part of an if statement
is a single statement, it is legal to leave out the braces

if (a)
 doSomething();

or even

if (a) doSomething();

However there are dangers in ignoring Java style rules and leaving out the braces. Specifically,
you significantly increase the risk that code with faulty indentation will be misread.

The "dangling if" problem:

Consider the example code from above, rewritten without braces.

if (a)
 doSomething();
 doSomeMore();

This code seems to say that the calls to doSomething and doSomeMore will both occur if and only if a is
true. In fact, the code is incorrectly indented. The Java Language Specification that the
doSomeMore() call is a separate statement following the if statement. The correct indentation is as
follows:

if (a)
 doSomething();
doSomeMore();

The "dangling else" problem

https://riptutorial.com/ 561

A second problem appears when we add else to the mix. Consider the following example with
missing braces.

if (a)
 if (b)
 doX();
 else if (c)
 doY();
else
 doZ();

The code above seems to say that doZ will be called when a is false. In fact, the indentation is
incorrect once again. The correct indentation for the code is:

if (a)
 if (b)
 doX();
 else if (c)
 doY();
 else
 doZ();

If the code was written according to the Java style rules, it would actually look like this:

if (a) {
 if (b) {
 doX();
 } else if (c) {
 doY();
 } else {
 doZ();
 }
}

To illustrate why that is better, suppose that you had accidentally mis-indented the code. You
might end up with something like this:

if (a) { if (a) {
 if (b) { if (b) {
 doX(); doX();
 } else if (c) { } else if (c) {
 doY(); doY();
} else { } else {
 doZ(); doZ();
} }
} }

But in both cases, the mis-indented code "looks wrong" to the eye of an experienced Java
programmer.

Pitfall - Overloading instead of overriding

Consider the following example:

https://riptutorial.com/ 562

public final class Person {
 private final String firstName;
 private final String lastName;

 public Person(String firstName, String lastName) {
 this.firstName = (firstName == null) ? "" : firstName;
 this.lastName = (lastName == null) ? "" : lastName;
 }

 public boolean equals(String other) {
 if (!(other instanceof Person)) {
 return false;
 }
 Person p = (Person) other;
 return firstName.equals(p.firstName) &&
 lastName.equals(p.lastName);
 }

 public int hashcode() {
 return firstName.hashCode() + 31 * lastName.hashCode();
 }
}

This code is not going to behave as expected. The problem is that the equals and hashcode
methods for Person do not override the standard methods defined by Object.

The equals method has the wrong signature. It should be declared as equals(Object) not
equals(String).

•

The hashcode method has the wrong name. It should be hashCode() (note the capital C).•

These mistakes mean that we have declared accidental overloads, and these won't be used if
Person is used in a polymorphic context.

However, there is a simple way to deal with this (from Java 5 onwards). Use the @Override
annotation whenever you intend your method to be an override:

Java SE 5

public final class Person {
 ...

 @Override
 public boolean equals(String other) {

 }

 @Override
 public hashcode() {

 }
}

When we add an @Override annotation to a method declaration, the compiler will check that the
method does override (or implement) a method declared in a superclass or interface. So in the
example above, the compiler will give us two compilation errors, which should be enough to alert
us to the mistake.

https://riptutorial.com/ 563

Pitfall - Octal literals

Consider the following code snippet:

// Print the sum of the numbers 1 to 10
int count = 0;
for (int i = 1; i < 010; i++) { // Mistake here
 count = count + i;
}
System.out.println("The sum of 1 to 10 is " + count);

A Java beginner might be surprised to know that the above program prints the wrong answer. It
actually prints the sum of the numbers 1 to 8.

The reason is that an integer literal that starts with the digit zero ('0') is interpreted by the Java
compiler as an octal literal, not a decimal literal as you might expect. Thus, 010 is the octal number
10, which is 8 in decimal.

Pitfall - Declaring classes with the same names as standard classes

Sometimes, programmers who are new to Java make the mistake of defining a class with a name
that is the same as a widely used class. For example:

package com.example;

/**
 * My string utilities
 */
public class String {

}

Then they wonder why they get unexpected errors. For example:

package com.example;

public class Test {
 public static void main(String[] args) {
 System.out.println("Hello world!");
 }
}

If you compile and then attempt to run the above classes you will get an error:

$ javac com/example/*.java
$ java com.example.Test
Error: Main method not found in class test.Test, please define the main method as:
 public static void main(String[] args)
or a JavaFX application class must extend javafx.application.Application

Someone looking at the code for the Test class would see the declaration of main and look at its
signature and wonder what the java command is complaining about. But in fact, the java command

https://riptutorial.com/ 564

is telling the truth.

When we declare a version of String in the same package as Test, this version takes precedence
over the automatic import of java.lang.String. Thus, the signature of the Test.main method is
actually

void main(com.example.String[] args)

instead of

void main(java.lang.String[] args)

and the java command will not recognize that as an entrypoint method.

Lesson: Do not define classes that have the same name as existing classes in java.lang, or other
commonly used classes in the Java SE library. If you do that, you are setting yourself open for all
sorts of obscure errors.

Pitfall - Using '==' to test a boolean

Sometimes a new Java programmer will write code like this:

public void check(boolean ok) {
 if (ok == true) { // Note 'ok == true'
 System.out.println("It is OK");
 }
}

An experienced programmer would spot that as being clumsy and want to rewrite it as:

public void check(boolean ok) {
 if (ok) {
 System.out.println("It is OK");
 }
}

However, there is more wrong with ok == true than simple clumsiness. Consider this variation:

public void check(boolean ok) {
 if (ok = true) { // Oooops!
 System.out.println("It is OK");
 }
}

Here the programmer has mistyped == as = ... and now the code has a subtle bug. The expression
x = true unconditionally assigns true to x and then evaluates to true. In other words, the check
method will now print "It is OK" no matter what the parameter was.

The lesson here is to get out of the habit of using == false and == true. In addition to being
verbose, they make your coding more error prone.

https://riptutorial.com/ 565

Note: A possible alternative to ok == true that avoids the pitfall is to use Yoda conditions; i.e. put
the literal on the left side of the relational operator, as in true == ok. This works, but most
programmers would probably agree that Yoda conditions look odd. Certainly ok (or !ok) is more
concise and more natural.

Pitfall - Wildcard imports can make your code fragile

Consider the following partial example:

import com.example.somelib.*;
import com.acme.otherlib.*;

public class Test {
 private Context x = new Context(); // from com.example.somelib
 ...
}

Suppose that when when you first developed the code against version 1.0 of somelib and version
1.0 of otherlib. Then at some later point, you need to upgrade your dependencies to a later
versions, and you decide to use otherlib version 2.0. Also suppose that one of the changes that
they made to otherlib between 1.0 and 2.0 was to add a Context class.

Now when you recompile Test, you will get a compilation error telling you that Context is an
ambiguous import.

If you are familiar with the codebase, this probably is just a minor inconvenience. If not, then you
have some work to do to address this problem, here and potentially elsewhere.

The problem here is the wildcard imports. On the one hand, using wildcards can make your
classes a few lines shorter. On the other hand:

Upwards compatible changes to other parts of your codebase, to Java standard libraries or
to 3rd party libraries can lead to compilation errors.

•

Readability suffers. Unless you are using an IDE, figuring out which of the wildcard imports is
pulling in a named class can be difficult.

•

The lesson is that it is a bad idea to use wildcard imports in code that needs to be long lived.
Specific (non-wildcard) imports are not much effort to maintain if you use an IDE, and the effort is
worthwhile.

Pitfall: Using 'assert' for argument or user input validation

A question that occasionally on StackOverflow is whether it is appropriate to use assert to validate
arguments supplied to a method, or even inputs provided by the user.

The simple answer is that it is not appropriate.

Better alternatives include:

https://riptutorial.com/ 566

https://en.wikipedia.org/wiki/Yoda_conditions

Throwing an IllegalArgumentException using custom code.•
Using the Preconditions methods available in Google Guava library.•
Using the Validate methods available in Apache Commons Lang3 library.•

This is what the Java Language Specification (JLS 14.10, for Java 8) advises on this matter:

Typically, assertion checking is enabled during program development and testing, and
disabled for deployment, to improve performance.

Because assertions may be disabled, programs must not assume that the expressions
contained in assertions will be evaluated. Thus, these boolean expressions should
generally be free of side effects. Evaluating such a boolean expression should not
affect any state that is visible after the evaluation is complete. It is not illegal for a
boolean expression contained in an assertion to have a side effect, but it is generally
inappropriate, as it could cause program behavior to vary depending on whether
assertions were enabled or disabled.

In light of this, assertions should not be used for argument checking in public methods.
Argument checking is typically part of the contract of a method, and this contract must
be upheld whether assertions are enabled or disabled.

A secondary problem with using assertions for argument checking is that erroneous
arguments should result in an appropriate run-time exception (such as
IllegalArgumentException, ArrayIndexOutOfBoundsException, or NullPointerException). An
assertion failure will not throw an appropriate exception. Again, it is not illegal to use
assertions for argument checking on public methods, but it is generally inappropriate. It
is intended that AssertionError never be caught, but it is possible to do so, thus the
rules for try statements should treat assertions appearing in a try block similarly to the
current treatment of throw statements.

Pitfall of Auto-Unboxing Null Objects into Primitives

public class Foobar {
 public static void main(String[] args) {

 // example:
 Boolean ignore = null;
 if (ignore == false) {
 System.out.println("Do not ignore!");
 }
 }
}

The pitfall here is that null is compared to false. Since we're comparing a primitive boolean against
a Boolean, Java attempts to unbox the the Boolean Object into a primitive equivalent, ready for
comparison. However, since that value is null, a NullPointerException is thrown.

Java is incapable of comparing primitive types against null values, which causes a
NullPointerException at runtime. Consider the primitive case of the condition false == null; this
would generate a compile time error incomparable types: int and <null>.

https://riptutorial.com/ 567

https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.10

Read Java Pitfalls - Language syntax online: https://riptutorial.com/java/topic/5382/java-pitfalls---
language-syntax

https://riptutorial.com/ 568

https://riptutorial.com/java/topic/5382/java-pitfalls---language-syntax
https://riptutorial.com/java/topic/5382/java-pitfalls---language-syntax

Chapter 85: Java Pitfalls - Nulls and
NullPointerException

Remarks

The value null is the default value for an uninitialized value of a field whose type is a reference
type.

NullPointerException (or NPE) is the exception that is thrown when you attempt to perform an
inappropriate operation on the null object reference. Such operations include:

calling an instance method on a null target object,•
accessing a field of a null target object,•
attempting to index a null array object or access its length,•
using a null object reference as the mutex in a synchronized block,•
casting a null object reference,•
unboxing a null object reference, and•
throwing a null object reference.•

The most common root causes for NPEs:

forgetting to initialize a field with a reference type,•
forgetting to initialize elements of an array of a reference type, or•
not testing the results of certain API methods that are specified as returning null in certain
circumstances.

•

Examples of commonly used methods that return null include:

The get(key) method in the Map API will return a null if you call it with a key that doesn't have
a mapping.

•

The getResource(path) and getResourceAsStream(path) methods in the ClassLoader and Class
APIs will return null if the resource cannot be found.

•

The get() method in the Reference API will return null if the garbage collector has cleared the
reference.

•

Various getXxxx methods in the Java EE servlet APIs will return null if you attempt fetch a
non-existent request parameter, session or session attribute and so on.

•

There are strategies for avoiding unwanted NPEs, such as explicitly testing for null or using "Yoda
Notation", but these strategies often have the undesirable result of hiding problems in your code
that really ought to be fixed.

Examples

Pitfall - Unnecessary use of Primitive Wrappers can lead to

https://riptutorial.com/ 569

NullPointerExceptions

Sometimes, programmers who are new Java will use primitive types and wrappers
interchangeably. This can lead to problems. Consider this example:

public class MyRecord {
 public int a, b;
 public Integer c, d;
}

...
MyRecord record = new MyRecord();
record.a = 1; // OK
record.b = record.b + 1; // OK
record.c = 1; // OK
record.d = record.d + 1; // throws a NullPointerException

Our MyRecord class1 relies on default initialization to initialize the values on its fields. Thus, when
we new a record, the a and b fields will be set to zero, and the c and d fields will be set to null.

When we try to use the default initialized fields, we see that the int fields works all of the time, but
the Integer fields work in some cases and not others. Specifically, in the case that fails (with d),
what happens is that the expression on the right-hand side attempts to unbox a null reference,
and that is what causes the NullPointerException to be thrown.

There are a couple of ways to look at this:

If the fields c and d need to be primitive wrappers, then either we should not be relying on
default initialization, or we should be testing for null. For former is the correct approach
unless there is a definite meaning for the fields in the null state.

•

If the fields don't need to be primitive wrappers, then it is a mistake to make them primitive
wrappers. In addition to this problem, the primitive wrappers have extra overheads relative to
primitive types.

•

The lesson here is to not use primitive wrapper types unless you really need to.

1 - This class is not an example of good coding practice. For instance, a well-designed class would not have public
fields. However, that is not the point of this example.

Pitfall - Using null to represent an empty array or collection

Some programmers think that it is a good idea to save space by using a null to represent an
empty array or collection. While it is true that you can save a small amount of space, the flipside is
that it makes your code more complicated, and more fragile. Compare these two versions of a
method for summing an array:

The first version is how you would normally code the method:

/**

https://riptutorial.com/ 570

 * Sum the values in an array of integers.
 * @arg values the array to be summed
 * @return the sum
 **/
public int sum(int[] values) {
 int sum = 0;
 for (int value : values) {
 sum += value;
 }
 return sum;
}

The second version is how you need to code the method if you are in the habit of using null to
represent an empty array.

/**
 * Sum the values in an array of integers.
 * @arg values the array to be summed, or null.
 * @return the sum, or zero if the array is null.
 **/
public int sum(int[] values) {
 int sum = 0;
 if (values != null) {
 for (int value : values) {
 sum += value;
 }
 }
 return sum;
}

As you can see, the code is a bit more complicated. This is directly attributable to the decision to
use null in this way.

Now consider if this array that might be a null is used in lots of places. At each place where you
use it, you need to consider whether you need to test for null. If you miss a null test that needs to
be there, you risk a NullPointerException. Hence, the strategy of using null in this way leads to
your application being more fragile; i.e. more vulnerable to the consequences of programmer
errors.

The lesson here is to use empty arrays and empty lists when that is what you mean.

int[] values = new int[0]; // always empty
List<Integer> list = new ArrayList(); // initially empty
List<Integer> list = Collections.emptyList(); // always empty

The space overhead is small, and there are other ways to minimize it if this this is a worthwhile
thing to do.

Pitfall - "Making good" unexpected nulls

On StackOverflow, we often see code like this in Answers:

https://riptutorial.com/ 571

public String joinStrings(String a, String b) {
 if (a == null) {
 a = "";
 }
 if (b == null) {
 b = "";
 }
 return a + ": " + b;
}

Often, this is accompanied with an assertion that is "best practice" to test for null like this to avoid
NullPointerException.

Is it best practice? In short: No.

There are some underlying assumptions that need to be questioned before we can say if it is a
good idea to do this in our joinStrings:

What does it mean for "a" or "b" to be null?

A String value can be zero or more characters, so we already have a way of representing an
empty string. Does null mean something different to ""? If no, then it is problematic to have two
ways to represent an empty string.

Did the null come from an uninitialized variable?

A null can come from an uninitialized field, or an uninitialized array element. The value could be
uninitialized by design, or by accident. If it was by accident then this is a bug.

Does the null represent a "don't know" or "missing value"?

Sometimes a null can have a genuine meaning; e.g. that the real value of a variable is unknown
or unavailable or "optional". In Java 8, the Optional class provides a better way of expressing that.

If this is a bug (or a design error) should we "make good"?

One interpretation of the code is that we are "making good" an unexpected null by using an empty
string in its place. Is the correct strategy? Would it be better to let the NullPointerException happen,
and then catch the exception further up the stack and log it as a bug?

The problem with "making good" is that it is liable to either hide the problem, or make it harder to
diagnose.

Is this efficient / good for code quality?

If the "make good" approach is used consistently, your code is going to contain a lot of "defensive"
null tests. This is going to make it longer and harder to read. Furthermore, all of this testing and

https://riptutorial.com/ 572

"making good" is liable to impact on the performance of your application.

In summary

If null is a meaningful value, then testing for the null case is the correct approach. The corollary is
that if a null value is meaningful, then this should be clearly documented in the javadocs of any
methods that accept the null value or return it.

Otherwise, it is a better idea to treat an unexpected null as a programming error, and let the
NullPointerException happen so that the developer gets to know there is a problem in the code.

Pitfall - Returning null instead of throwing an exception

Some Java programmers have a general aversion to throwing or propagating exceptions. This
leads to code like the following:

public Reader getReader(String pathname) {
 try {
 return new BufferedReader(FileReader(pathname));
 } catch (IOException ex) {
 System.out.println("Open failed: " + ex.getMessage());
 return null;
 }

}

So what is the problem with that?

The problem is that the getReader is returning a null as a special value to indicate that the Reader
could not be opened. Now the returned value needs to be tested to see if it is null before it is
used. If the test is left out, the result will be a NullPointerException.

There are actually three problems here:

The IOException was caught too soon.1.
The structure of this code means that there is a risk of leaking a resource.2.
A null was used then returned because no "real" Reader was available to return.3.

In fact, assuming that the exception did need to be caught early like this, there were a couple of
alternatives to returning null:

It would be possible to implement a NullReader class; e.g. one where API's operations
behaves as if the reader was already at the "end of file" position.

1.

With Java 8, it would be possible to declare getReader as returning an Optional<Reader>.2.

Pitfall - Not checking if an I/O stream isn't even initialized when closing it

To prevent memory leaks, one should not forget to close an input stream or an output stream
whose job is done. This is usually done with a try-catch-finally statement without the catch part:

https://riptutorial.com/ 573

void writeNullBytesToAFile(int count, String filename) throws IOException {
 FileOutputStream out = null;
 try {
 out = new FileOutputStream(filename);
 for(; count > 0; count--)
 out.write(0);
 } finally {
 out.close();
 }
}

While the above code might look innocent, it has a flaw that can make debugging impossible. If
the line where out is initialized (out = new FileOutputStream(filename)) throws an exception, then
out will be null when out.close() is executed, resulting in a nasty NullPointerException!

To prevent this, simply make sure the stream isn't null before trying to close it.

void writeNullBytesToAFile(int count, String filename) throws IOException {
 FileOutputStream out = null;
 try {
 out = new FileOutputStream(filename);
 for(; count > 0; count--)
 out.write(0);
 } finally {
 if (out != null)
 out.close();
 }
}

An even better approach is to try-with-resources, since it'll automatically close the stream with a
probability of 0 to throw an NPE without the need of a finally block.

void writeNullBytesToAFile(int count, String filename) throws IOException {
 try (FileOutputStream out = new FileOutputStream(filename)) {
 for(; count > 0; count--)
 out.write(0);
 }
}

Pitfall - Using "Yoda notation" to avoid NullPointerException

A lot of example code posted on StackOverflow includes snippets like this:

if ("A".equals(someString)) {
 // do something
}

This does "prevent" or "avoid" a possible NullPointerException in the case that someString is null.
Furthermore, it is arguable that

 "A".equals(someString)

is better than:

https://riptutorial.com/ 574

 someString != null && someString.equals("A")

(It is more concise, and in some circumstances it might be more efficient. However, as we argue
below, conciseness could be a negative.)

However, the real pitfall is using the Yoda test to avoid NullPointerExceptions as a matter of habit.

When you write "A".equals(someString) you are actually "making good" the case where someString
happens to be null. But as another example (Pitfall - "Making good" unexpected nulls) explains,
"making good" null values can be harmful for a variety of reasons.

This means that Yoda conditions are not "best practice"1. Unless the null is expected, it is better
to let the NullPointerException happen so that you can get a unit test failure (or a bug report). That
allows you to find and fix the bug that caused the unexpected / unwanted null to appear.

Yoda conditions should only be used in cases where the null is expected because the object you
are testing has come from an API that is documented as returning a null. And arguably, it could
be better to use one of the less pretty ways expressing the test because that helps to highlight the
null test to someone who is reviewing your code.

1 - According to Wikipedia: "Best coding practices are a set of informal rules that the software development
community has learned over time which can help improve the quality of software.". Using Yoda notation does not
achieve this. In a lot of situations, it makes the code worse.

Read Java Pitfalls - Nulls and NullPointerException online:
https://riptutorial.com/java/topic/5680/java-pitfalls---nulls-and-nullpointerexception

https://riptutorial.com/ 575

http://www.riptutorial.com/java/example/20151/pitfall----making-good--unexpected-nulls
https://en.wikipedia.org/wiki/Best_coding_practices
https://riptutorial.com/java/topic/5680/java-pitfalls---nulls-and-nullpointerexception

Chapter 86: Java Pitfalls - Performance
Issues

Introduction

This topic describes a number of "pitfalls" (i.e. mistakes that novice java programmers make) that
relate to Java application performance.

Remarks

This topic describes some "micro" Java coding practices that are inefficient. In most cases, the
inefficiencies are relatively small, but it is still worth avoiding them is possible.

Examples

Pitfall - The overheads of creating log messages

TRACE and DEBUG log levels are there to be able to convey high detail about the operation of the
given code at runtime. Setting the log level above these is usually recommended, however some
care must be taken for these statements to not affect performance even when seemingly "turned
off".

Consider this log statement:

// Processing a request of some kind, logging the parameters
LOG.debug("Request coming from " + myInetAddress.toString()
 + " parameters: " + Arrays.toString(veryLongParamArray));

Even when the log level is set to INFO, arguments passed to debug() will be evaluated on each
execution of the line. This makes it unnecessarily consuming on several counts:

String concatenation: multiple String instances will be created•
InetAddress might even do a DNS lookup.•
the veryLongParamArray might be very long - creating a String out of it consumes memory,
takes time

•

Solution

Most logging framework provide means to create log messages using fix strings and object
references. The log message will be evaluated only if the message is actually logged. Example:

// No toString() evaluation, no string concatenation if debug is disabled
LOG.debug("Request coming from {} parameters: {}", myInetAddress, parameters));

https://riptutorial.com/ 576

This works very well as long as all parameters can be converted to strings using
String.valueOf(Object). If the log message compuation is more complex, the log level can be
checked before logging:

if (LOG.isDebugEnabled()) {
 // Argument expression evaluated only when DEBUG is enabled
 LOG.debug("Request coming from {}, parameters: {}", myInetAddress,
 Arrays.toString(veryLongParamArray);
}

Here, LOG.debug() with the costly Arrays.toString(Obect[]) computation is processed only when
DEBUG is actually enabled.

Pitfall - String concatenation in a loop does not scale

Consider the following code as an illustration:

public String joinWords(List<String> words) {
 String message = "";
 for (String word : words) {
 message = message + " " + word;
 }
 return message;
}

Unfortunate this code is inefficient if the words list is long. The root of the problem is this statement:

message = message + " " + word;

For each loop iteration, this statement creates a new message string containing a copy of all
characters in the original message string with extra characters appended to it. This generates a lot
of temporary strings, and does a lot of copying.

When we analyse joinWords, assuming that there are N words with an average length of M, we find
that O(N) temporary strings are created and O(M.N2) characters will be copied in the process. The
N2 component is particularly troubling.

The recommended approach for this kind of problem1 is to use a StringBuilder instead of string
concatenation as follows:

public String joinWords2(List<String> words) {
 StringBuilder message = new StringBuilder();
 for (String word : words) {
 message.append(" ").append(word);
 }
 return message.toString();
}

The analysis of joinWords2 needs to take account of the overheads of "growing" the StringBuilder
backing array that holds the builder's characters. However, it turns out that the number of new
objects created is O(logN) and that the number of characters copied is O(M.N) characters. The

https://riptutorial.com/ 577

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#valueOf-java.lang.Object-

latter includes characters copied in the final toString() call.

(It may be possible to tune this further, by creating the StringBuilder with the correct capacity to
start with. However, the overall complexity remains the same.)

Returning to the original joinWords method, it turns out that the critical statement will be optimized
by a typical Java compiler to something like this:

 StringBuilder tmp = new StringBuilder();
 tmp.append(message).append(" ").append(word);
 message = tmp.toString();

However, the Java compiler will not "hoist" the StringBuilder out of the loop, as we did by hand in
the code for joinWords2.

Reference:

"Is Java's String '+' operator in a loop slow?"•

1 - In Java 8 and later, the Joiner class can be used to solve this particular problem. However, that is not what this
example is really supposed to be about.

Pitfall - Using 'new' to create primitive wrapper instances is inefficient

The Java language allows you to use new to create instances Integer, Boolean and so on, but it is
generally a bad idea. It is better to either use autoboxing (Java 5 and later) or the valueOf method.

 Integer i1 = new Integer(1); // BAD
 Integer i2 = 2; // BEST (autoboxing)
 Integer i3 = Integer.valueOf(3); // OK

The reason that using new Integer(int) explicitly is a bad idea is that it creates a new object
(unless optimized out by JIT compiler). By contrast, when autoboxing or an explicit valueOf call are
used, the Java runtime will try to reuse an Integer object from a cache of pre-existing objects.
Each time the runtime has a cache "hit", it avoids creating an object. This also saves heap
memory and reduces GC overheads caused by object churn.

Notes:

In recent Java implementations, autoboxing is implemented by calling valueOf, and there are
caches for Boolean, Byte, Short, Integer, Long and Character.

1.

The caching behavior for the integral types is mandated by the Java Language Specification.2.

Pitfall - Calling 'new String(String)' is inefficient

Using new String(String) to duplicate a string is inefficient and almost always unnecessary.

String objects are immutable, so there is no need to copy them to protect against changes.•
In some older versions of Java, String objects can share backing arrays with other String •

https://riptutorial.com/ 578

http://outoffactserror.blogspot.com/2017/03/is-javas-string-operator-in-loop-slow.html

objects. In those versions, it is possible to leak memory by creating a (small) substring of a
(large) string and retaining it. However, from Java 7 onwards, String backing arrays are not
shared.

In the absence of any tangible benefit, calling new String(String) is simply wasteful:

Making the copy takes CPU time.•
The copy uses more memory which increases the application's memoru footprint and / or
increases GC overheads.

•

Operations like equals(Object) and hashCode() can be slower if String objects are copied.•

Pitfall - Calling System.gc() is inefficient

It is (almost always) a bad idea to call System.gc().

The javadoc for the gc() method specifies the following:

"Calling the gc method suggests that the Java Virtual Machine expend effort toward
recycling unused objects in order to make the memory they currently occupy available
for quick reuse. When control returns from the method call, the Java Virtual Machine
has made a best effort to reclaim space from all discarded objects."

There are a couple of important points that can be drawn from this:

The use of the word "suggests" rather than (say) "tells" means that the JVM is free to ignore
the suggestion. The default JVM behavior (recent releases) is to follow the suggestion, but
this can be overridden by setting -XX:+DisableExplicitGC when when launching the JVM.

1.

The phrase "a best effort to reclaim space from all discarded objects" implies that calling gc
will trigger a "full" garbage collection.

2.

So why is calling System.gc() a bad idea?

First, running a full garbage collection is expensive. A full GC involves visiting and "marking" every
object that is still reachable; i.e. every object that is not garbage. If you trigger this when there isn't
much garbage to be collected, then the GC does a lot of work for relatively little benefit.

Second, a full garbage collection is liable to disturb the "locality" properties of the objects that are
not collected. Objects that are allocated by the same thread at roughly the same time tend to be
allocated close together in memory. This is good. Objects that are allocated at the same time are
likely to be related; i.e. reference each other. If your application uses those references, then the
chances are that memory access will be faster because of various memory and page caching
effects. Unfortunately, a full garbage collection tend to move objects around so that objects that
were once close are now further apart.

Third, running a full garbage collection is liable to make your application pause until the collection
is complete. While this is happening, your application will be non-responsive.

In fact, the best strategy is to let the JVM decide when to run the GC, and what kind of collection

https://riptutorial.com/ 579

to run. If you don't interfere, the JVM will choose a time and collection type that optimizes
throughput or minimizes GC pause times.

At the beginning we said "... (almost always) a bad idea ...". In fact there are a couple of scenarios
where it might be a good idea:

If you are implementing a unit test for some code that is garbage collection sensitive (e.g.
something involving finalizers or weak / soft / phantom references) then calling System.gc()
may be necessary.

1.

In some interactive applications, there can be particular points in time where the user won't
care if there is a garbage collection pause. One example is a game where there are natural
pauses in the "play"; e.g. when loading a new level.

2.

Pitfall - Over-use of primitive wrapper types is inefficient

Consider these two pieces of code:

int a = 1000;
int b = a + 1;

and

Integer a = 1000;
Integer b = a + 1;

Question: Which version is more efficient?

Answer: The two versions look almost the identical, but the first version is a lot more efficient than
the second one.

The second version is using a representation for the numbers that uses more space, and is relying
on auto-boxing and auto-unboxing behind the scenes. In fact the second version is directly
equivalent to the following code:

Integer a = Integer.valueOf(1000); // box 1000
Integer b = Integer.valueOf(a.intValue() + 1); // unbox 1000, add 1, box 1001

Comparing this to the other version that uses int, there are clearly three extra method calls when
Integer is used. In the case of valueOf, the calls are each going to create and initialize a new
Integer object. All of this extra boxing and unboxing work is likely to make the second version an
order of magnitude slower than the first one.

In addition to that, the second version is allocating objects on the heap in each valueOf call. While
the space utilization is platform specific, it is likely to be in the region of 16 bytes for each Integer
object. By contrast, the int version needs zero extra heap space, assuming that a and b are local
variables.

https://riptutorial.com/ 580

Another big reason why primitives are faster then their boxed equivalent is how their respective
array types are laid out in memory.

If you take int[] and Integer[] as an example, in the case of an int[] the int values are
contiguously laid out in memory. But in the case of an Integer[] it's not the values that are laid out,
but references (pointers) to Integer objects, which in turn contain the actual int values.

Besides being an extra level of indirection, this can be a big tank when it comes to cache locality
when iterating over the values. In the case of an int[] the CPU could fetch all the values in the
array, into it's cache at once, because they are contiguous in memory. But in the case of an
Integer[] the CPU potentially has to do an additional memory fetch for each element, since the
array only contains references to the actual values.

In short, using primitive wrapper types is relatively expensive in both CPU and memory resources.
Using them unnecessarily is in efficient.

Pitfall - Iterating a Map's keys can be inefficient

The following example code is slower than it needs to be :

Map<String, String> map = new HashMap<>();
for (String key : map.keySet()) {
 String value = map.get(key);
 // Do something with key and value
}

That is because it requires a map lookup (the get() method) for each key in the map. This lookup
may not be efficient (in a HashMap, it entails calling hashCode on the key, then looking up the
correct bucket in internal data structures, and sometimes even calling equals). On a large map, this
may not be a trivial overhead.

The correct way of avoiding this is to iterate on the map's entries, which is detailed in the
Collections topic

Pitfall - Using size() to test if a collection is empty is inefficient.

The Java Collections Framework provides two related methods for all Collection objects:

size() returns the number of entries in a Collection, and•
isEmpty() method returns true if (and only if) the Collection is empty.•

Both methods can be used to test for collection emptiness. For example:

Collection<String> strings = new ArrayList<>();
boolean isEmpty_wrong = strings.size() == 0; // Avoid this
boolean isEmpty = strings.isEmpty(); // Best

While these approaches look the same, some collection implementations do not store the size. For
such a collection, the implementation of size() needs to calculate the size each time it is called.

https://riptutorial.com/ 581

http://www.riptutorial.com/java/example/5856/iterating-over-collections
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#size--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#isEmpty--

For instance:

A simple linked list class (but not the java.util.LinkedList) might need to traverse the list to
count the elements.

•

The ConcurrentHashMap class needs to sum the entries in all of the map's "segments".•
A lazy implementation of a collection might need to realize the entire collection in memory in
order to count the elements.

•

By contrast, an isEmpty() method only needs to test if there is at least one element in the
collection. This does not entail counting the elements.

While size() == 0 is not always less efficient that isEmpty(), it is inconceivable for a properly
implemented isEmpty() to be less efficient than size() == 0. Hence isEmpty() is preferred.

Pitfall - Efficiency concerns with regular expressions

Regular expression matching is a powerful tool (in Java, and in other contexts) but it does have
some drawbacks. One of these that regular expressions tends to be rather expensive.

Pattern and Matcher instances should be reused

Consider the following example:

/**
 * Test if all strings in a list consist of English letters and numbers.
 * @param strings the list to be checked
 * @return 'true' if an only if all strings satisfy the criteria
 * @throws NullPointerException if 'strings' is 'null' or a 'null' element.
 */
public boolean allAlphanumeric(List<String> strings) {
 for (String s : strings) {
 if (!s.matches("[A-Za-z0-9]*")) {
 return false;
 }
 }
 return true;
}

This code is correct, but it is inefficient. The problem is in the matches(...) call. Under the hood,
s.matches("[A-Za-z0-9]*") is equivalent to this:

Pattern.matches(s, "[A-Za-z0-9]*")

which is in turn equivalent to

Pattern.compile("[A-Za-z0-9]*").matcher(s).matches()

The Pattern.compile("[A-Za-z0-9]*") call parses the regular expression, analyze it, and construct a
Pattern object that holds the data structure that will be used by the regex engine. This is a non-
trivial computation. Then a Matcher object is created to wrap the s argument. Finally we call match()

https://riptutorial.com/ 582

to do the actual pattern matching.

The problem is that this work is all repeated for each loop iteration. The solution is to restructure
the code as follows:

private static Pattern ALPHA_NUMERIC = Pattern.compile("[A-Za-z0-9]*");

public boolean allAlphanumeric(List<String> strings) {
 Matcher matcher = ALPHA_NUMERIC.matcher("");
 for (String s : strings) {
 matcher.reset(s);
 if (!matcher.matches()) {
 return false;
 }
 }
 return true;
}

Note that the javadoc for Pattern states:

Instances of this class are immutable and are safe for use by multiple concurrent
threads. Instances of the Matcher class are not safe for such use.

Don't use match() when you should use find()

Suppose you want to test if a string s contains three or more digits in a row. You cn express this in
various ways including:

 if (s.matches(".*[0-9]{3}.*")) {
 System.out.println("matches");
 }

or

 if (Pattern.compile("[0-9]{3}").matcher(s).find()) {
 System.out.println("matches");
 }

The first one is more concise, but it is also likely to be less efficient. On the face of it, the first
version is going to try to match the entire string against the pattern. Furthermore, since ".*" is a
"greedy" pattern, the pattern matcher is likely to advance "eagerly" try to the end of the string, and
backtrack until it finds a match.

By contrast, the second version will search from left to right and will stop searching as soon as it
finds the 3 digits in a row.

Use more efficient alternatives to regular expressions

Regular expressions are a powerful tool, but they should not be your only tool. A lot of tasks can
be done more efficiently in other ways. For example:

https://riptutorial.com/ 583

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

 Pattern.compile("ABC").matcher(s).find()

does the same thing as:

 s.contains("ABC")

except that the latter is a lot more efficient. (Even if you can amortize the cost of compiling the
regular expression.)

Often, the non-regex form is more complicated. For example, the test performed by the matches()
call the earlier allAlplanumeric method can be rewritten as:

 public boolean matches(String s) {
 for (char c : s) {
 if ((c >= 'A' && c <= 'Z') ||
 (c >= 'a' && c <= 'z') ||
 (c >= '0' && c <= '9')) {
 return false;
 }
 }
 return true;
 }

Now that is more code than using a Matcher, but it is also going to be significantly faster.

Catastrophic Backtracking

(This is potentially a problem with all implementations of regular expressions, but we will mention it
here because it is a pitfall for Pattern usage.)

Consider this (contrived) example:

Pattern pat = Pattern.compile("(A+)+B");
System.out.println(pat.matcher("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB").matches());
System.out.println(pat.matcher("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC").matches());

The first println call will quickly print true. The second one will print false. Eventually. Indeed, if
you experiment with the code above, you will see that each time you add an A before the C, the
time take will double.

This is behavior is an example of catastrophic backtracking. The pattern matching engine that
implements the regex matching is fruitlessly trying all of the possible ways that the pattern might
match.

Let us look at what (A+)+B actually means. Superficially, it seems to say "one or more A characters
followed by a B value", but in reality it says one or more groups, each of which consists of one or
more A characters. So, for example:

'AB' matches one way only: '(A)B'•
'AAB' matches two ways: '(AA)B' or '(A)(A)B`•

https://riptutorial.com/ 584

'AAAB' matches four ways: '(AAA)B' or '(AA)(A)Bor '(A)(AA)B or '(A)(A)(A)B`•
and so on•

In other words, the number of possible matches is 2N where N is the number of A characters.

The above example is clearly contrived, but patterns that exhibit this kind of performance
characteristics (i.e. O(2^N) or O(N^K) for a large K) arise frequently when ill-considered regular
expressions are used. There are some standard remedies:

Avoid nesting repeating patterns within other repeating patterns.•
Avoid using too many repeating patterns.•
Use non-backtracking repetition as appropriate.•
Don't use regexes for complicated parsing tasks. (Write a proper parser instead.)•

Finally, beware of situations where a user or an API client can supply a regex string with
pathological characteristics. That can lead to accidental or deliberate "denial of service".

References:

The Regular Expressions tag, particularly http://www.riptutorial.com/regex/topic/259/getting-
started-with-regular-expressions/977/backtracking#t=201610010339131361163 and
http://www.riptutorial.com/regex/topic/259/getting-started-with-regular-
expressions/4527/when-you-should-not-use-regular-
expressions#t=201610010339593564913

•

"Regex Performance" by Jeff Atwood.•
"How to kill Java with a Regular Expression" by Andreas Haufler.•

Pitfall - Interning strings so that you can use == is a bad idea

When some programmers see this advice:

"Testing strings using == is incorrect (unless the strings are interned)"

their initial reaction is to intern strings so that they can use ==. (After all == is faster than calling
String.equals(...), isn't it.)

This is the wrong approach, from a number of perspectives:

Fragility

First of all, you can only safely use == if you know that all of the String objects you are testing have
been interned. The JLS guarantees that String literals in your source code will have been interned.
However, none of the standard Java SE APIs guarantee to return interned strings, apart from
String.intern(String) itself. If you miss just one source of String objects that haven't been
interned, your application will be unreliable. That unreliability will manifest itself as false negatives
rather than exceptions which is liable to make it harder to detect.

Costs of using 'intern()'

https://riptutorial.com/ 585

http://www.riptutorial.com/regex/topic/259/getting-started-with-regular-expressions
http://www.riptutorial.com/regex/topic/259/getting-started-with-regular-expressions/977/backtracking#t=201610010339131361163
http://www.riptutorial.com/regex/topic/259/getting-started-with-regular-expressions/977/backtracking#t=201610010339131361163
http://www.riptutorial.com/regex/topic/259/getting-started-with-regular-expressions/4527/when-you-should-not-use-regular-expressions#t=201610010339593564913
http://www.riptutorial.com/regex/topic/259/getting-started-with-regular-expressions/4527/when-you-should-not-use-regular-expressions#t=201610010339593564913
http://www.riptutorial.com/regex/topic/259/getting-started-with-regular-expressions/4527/when-you-should-not-use-regular-expressions#t=201610010339593564913
https://blog.codinghorror.com/regex-performance/
http://andreas.haufler.info/2013/09/how-to-kill-java-with-regular-expression.html

Under the hood, interning works by maintaining a hash table that contains previously interned
String objects. Some kind of weak reference mechanism is used so that the interning hash table
does not become a storage leak. While the hash table is implemented in native code (unlike
HashMap, HashTable and so on), the intern calls are still relatively costly in terms of CPU and
memory used.

This cost has to be compared with the saving of we are going to get by using == instead of equals.
In fact, we are not going to break even unless each interned string is compared with other strings
"a few" times.

(Aside: the few situations where interning is worthwhile tend to be about reducing the memory foot
print of an application where the same strings recur many times, and those strings have a long
lifetime.)

The impact on garbage collection

In addition to the direct CPU and memory costs described above, interned Strings impact on the
garbage collector performance.

For versions of Java prior to Java 7, interned strings are held in the "PermGen" space which is
collected infrequently. If PermGen needs to be collected, this (typically) triggers a full garbage
collection. If the PermGen space fills completely, the JVM crashes, even if there was free space in
the regular heap spaces.

In Java 7, the string pool was moved out of "PermGen" into the normal heap. However, the hash
table is still going to be a long-lived data structure, which is going to cause any interned strings to
be long-lived. (Even if the interned string objects were allocated in Eden space they would most
likely be promoted before they were collected.)

Thus in all cases, interning a string is going to prolong its lifetime relative to an ordinary string.
That will increase the garbage collection overheads over the lifetime of the JVM.

The second issue is that the hash table needs to use a weak reference mechanism of some kind
to prevent string interning leaking memory. But such a mechanism is more work for the garbage
collector.

These garbage collection overheads are difficult to quantify, but there is little doubt that they do
exist. If you use intern extensively, they could be significant.

The string pool hashtable size

According to this source, from Java 6 onwards, the string pool is implemented as fixed sized hash
table with chains to deal with strings that hash to the same bucket. In early releases of Java 6, the
hash table had a (hard-wired) constant size. A tuning parameter (-XX:StringTableSize) was added
as a mid-life update to Java 6. Then in a mid-life update to Java 7, the default size of the pool was
changed from 1009 to 60013.

The bottom line is that if you do intend to use intern intensively in your code, it is advisable to pick

https://riptutorial.com/ 586

http://java-performance.info/string-intern-in-java-6-7-8/

a version of Java where the hashtable size is tunable and make sure that you tune the size it
appropriately. Otherwise, the performance of intern is liable to degrade as the pool gets larger.

Interning as a potential denial of service vector

The hashcode algorithm for strings is well-known. If you intern strings supplied by malicious users
or applications, this could be used as part of a denial of service (DoS) attack. If the malicious
agent arranges that all of the strings it provides have the same hash code, this could lead to an
unbalanced hash table and O(N) performance for intern ... where N is the number of collided
strings.

(There are simpler / more effective ways to launch a DoS attack against a service. However, this
vector could be used if the goal of the DoS attack is to break security, or to evade first-line DoS
defences.)

Pitfall - Small reads / writes on unbuffered streams are inefficient

Consider the following code to copy one file to another:

import java.io.*;

public class FileCopy {

 public static void main(String[] args) throws Exception {
 try (InputStream is = new FileInputStream(args[0]);
 OutputStream os = new FileOutputStream(args[1])) {
 int octet;
 while ((octet = is.read()) != -1) {
 os.write(octet);
 }
 }
 }
}

(We have deliberated omitted normal argument checking, error reporting and so on because they
are not relevant to point of this example.)

If you compile the above code and use it to copy a huge file, you will notice that it is very slow. In
fact, it will be at least a couple of orders of magnitude slower than the standard OS file copy
utilities.

(Add actual performance measurements here!)

The primary reason that the example above is slow (in the large file case) is that it is performing
one-byte reads and one-byte writes on unbuffered byte streams. The simple way to improve
performance is to wrap the streams with buffered streams. For example:

import java.io.*;

public class FileCopy {

https://riptutorial.com/ 587

 public static void main(String[] args) throws Exception {
 try (InputStream is = new BufferedInputStream(
 new FileInputStream(args[0]));
 OutputStream os = new BufferedOutputStream(
 new FileOutputStream(args[1]))) {
 int octet;
 while ((octet = is.read()) != -1) {
 os.write(octet);
 }
 }
 }
}

These small changes will improve data copy rate by at least a couple of orders of magnitude,
depending on various platform-related factors. The buffered stream wrappers cause the data to be
read and written in larger chunks. The instances both have buffers implemented as byte arrays.

With is, data is read from the file into the buffer a few kilobytes at a time. When read() is
called, the implementation will typically return a byte from the buffer. It will only read from the
underlying input stream if the buffer has been emptied.

•

The behavior for os is analogous. Calls to os.write(int) write single bytes into the buffer.
Data is only written to the output stream when the buffer is full, or when os is flushed or
closed.

•

What about character-based streams?

As you should be aware, Java I/O provides different APIs for reading and writing binary and text
data.

InputStream and OutputStream are the base APIs for stream-based binary I/O•
Reader and Writer are the base APIs for stream-based text I/O.•

For text I/O, BufferedReader and BufferedWriter are the equivalents for BufferedInputStream and
BufferedOutputStream.

Why do buffered streams make this much difference?

The real reason that buffered streams help performance is to do with the way that an application
talks to the operating system:

Java method in a Java application, or native procedure calls in the JVM's native runtime
libraries are fast. They typically take a couple of machine instructions and have minimal
performance impact.

•

By contrast, JVM runtime calls to the operating system are not fast. They involve something
known as a "syscall". The typical pattern for a syscall is as follows:

Put the syscall arguments into registers.1.
Execute a SYSENTER trap instruction.2.

•

https://riptutorial.com/ 588

The trap handler switched to privileged state and changes the virtual memory
mappings. Then it dispatches to the code to handle the specific syscall.

3.

The syscall handler checks the arguments, taking care that it isn't being told to access
memory that the user process should not see.

4.

The syscall specific work is performed. In the case of a read syscall, this may involve:
checking that there is data to be read at the file descriptor's current position1.
calling the file system handler to fetch the required data from disk (or wherever it
is stored) into the buffer cache,

2.

copying data from the buffer cache to the JVM-supplied address3.
adjusting thstream pointerse file descriptor position4.

5.

Return from the syscall. This entails changing VM mappings again and switching out of
privileged state.

6.

As you can imagine, performing a single syscall can thousands of machine instructions.
Conservatively, at least two orders of magnitude longer than a regular method call. (Probably
three or more.)

Given this, the reason that buffered streams make a big difference is that they drastically reduce
the number of syscalls. Instead of doing a syscall for each read() call, the buffered input stream
reads a large amount of data into a buffer as required. Most read() calls on the buffered stream do
some simple bounds checking and return a byte that was read previously. Similar reasoning
applies in the output stream case, and also the character stream cases.

(Some people think that buffered I/O performance comes from the mismatch between the read
request size and the size of a disk block, disk rotational latency and things like that. In fact, a
modern OS uses a number of strategies to ensure that the application typically doesn't need to
wait for the disk. This is not the real explanation.)

Are buffered streams always a win?

Not always. Buffered streams are definitely a win if your application is going to do lots of "small"
reads or writes. However, if your application only needs to perform large reads or writes to / from a
large byte[] or char[], then buffered streams will give you no real benefits. Indeed there might
even be a (tiny) performance penalty.

Is this the fastest way to copy a file in Java?

No it isn't. When you use Java's stream-based APIs to copy a file, you incur the cost of at least
one extra memory-to-memory copy of the data. It is possible to avoid this if your use the NIO
ByteBuffer and Channel APIs. (Add a link to a separate example here.)

Read Java Pitfalls - Performance Issues online: https://riptutorial.com/java/topic/5455/java-pitfalls--
-performance-issues

https://riptutorial.com/ 589

https://riptutorial.com/java/topic/5455/java-pitfalls---performance-issues
https://riptutorial.com/java/topic/5455/java-pitfalls---performance-issues

Chapter 87: Java Pitfalls - Threads and
Concurrency

Examples

Pitfall: incorrect use of wait() / notify()

The methods object.wait(), object.notify() and object.notifyAll() are meant to be used in a very
specific way. (see http://stackoverflow.com/documentation/java/5409/wait-
notify#t=20160811161648303307)

The "Lost Notification" problem

One common beginner mistake is to unconditionally call object.wait()

private final Object lock = new Object();

public void myConsumer() {
 synchronized (lock) {
 lock.wait(); // DON'T DO THIS!!
 }
 doSomething();
}

The reason this is wrong is that it depends on some other thread to call lock.notify() or
lock.notifyAll(), but nothing guarantees that the other thread did not make that call before the
consumer thread called lock.wait().

lock.notify() and lock.notifyAll() do not do anything at all if some other thread is not already
waiting for the notification. The thread that calls myConsumer() in this example will hang forever if it
is too late to catch the notification.

The "Illegal Monitor State" bug

If you call wait() or notify() on an object without holding the lock, then the JVM will throw
IllegalMonitorStateException.

public void myConsumer() {
 lock.wait(); // throws exception
 consume();
}

public void myProducer() {
 produce();
 lock.notify(); // throws exception
}

https://riptutorial.com/ 590

http://stackoverflow.com/documentation/java/5409/wait-notify#t=20160811161648303307
http://stackoverflow.com/documentation/java/5409/wait-notify#t=20160811161648303307

(The design for wait() / notify() requires that the lock is held because this is necessary to avoid
systemic race conditions. If it was possible to call wait() or notify() without locking, then it would
be impossible to implement the primary use-case for these primitives: waiting for a condition to
occur.)

Wait / notify is too low-level

The best way to avoid problems with wait() and notify() is to not use them. Most synchronization
problems can be solved by using the higher-level synchronization objects (queues, barriers,
semaphores, etc.) that are available in the java.utils.concurrent package.

Pitfall - Extending 'java.lang.Thread'

The javadoc for the Thread class shows two ways to define and use a thread:

Using a custom thread class:

 class PrimeThread extends Thread {
 long minPrime;
 PrimeThread(long minPrime) {
 this.minPrime = minPrime;
 }

 public void run() {
 // compute primes larger than minPrime
 . . .
 }
 }

 PrimeThread p = new PrimeThread(143);
 p.start();

Using a Runnable:

 class PrimeRun implements Runnable {
 long minPrime;
 PrimeRun(long minPrime) {
 this.minPrime = minPrime;
 }

 public void run() {
 // compute primes larger than minPrime
 . . .
 }
 }

 PrimeRun p = new PrimeRun(143);
 new Thread(p).start();

(Source: java.lang.Thread javadoc.)

The custom thread class approach works, but it has a few problems:

https://riptutorial.com/ 591

http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

It is awkward to use PrimeThread in a context that uses a classic thread pool, an executor, or
the ForkJoin framework. (It is not impossible, because PrimeThread indirectly implements
Runnable, but using a custom Thread class as a Runnable is certainly clumsy, and may not be
viable ... depending on other aspects of the class.)

1.

There is more opportunity for mistakes in other methods. For example, if you declared a
PrimeThread.start() without delegating to Thread.start(), you would end up with a "thread"
that ran on the current thread.

2.

The approach of putting the thread logic into a Runnable avoids these problems. Indeed, if you use
an anonymous class (Java 1.1 onwards) to implement the Runnable the result is more succinct, and
more readable than the examples above.

 final long minPrime = ...
 new Thread(new Runnable() {
 public void run() {
 // compute primes larger than minPrime
 . . .
 }
 }.start();

With a lambda expression (Java 8 onwards), the above example would become even more
elegant:

 final long minPrime = ...
 new Thread(() -> {
 // compute primes larger than minPrime
 . . .
 }).start();

Pitfall - Too many threads makes an application slower.

A lot of people who are new to multi-threading think that using threads automatically make an
application go faster. In fact, it is a lot more complicated than that. But one thing that we can state
with certainty is that for any computer there is a limit on the number of threads that can be run at
the same time:

A computer has a fixed number of cores (or hyperthreads).•
A Java thread has to be scheduled to a core or hyperthread in order to run.•
If there are more runnable Java threads than (available) cores / hyperthreads, some of them
must wait.

•

This tells us that simply creating more and more Java threads cannot make the application go
faster and faster. But there are other considerations as well:

Each thread requires an off-heap memory region for its thread stack. The typical (default)
thread stack size is 512Kbytes or 1Mbytes. If you have a significant number of threads, the
memory usage can be significant.

•

Each active thread will refer to a number of objects in the heap. That increases the working •

https://riptutorial.com/ 592

set of reachable objects, which impacts on garbage collection and on physical memory
usage.

The overheads of switching between threads is non-trivial. It typically entails a switch into the
OS kernel space to make a thread scheduling decision.

•

The overheads of thread synchronization and inter-thread signaling (e.g. wait(), notify() /
notifyAll) can be significant.

•

Depending on the details of your application, these factors generally mean that there is a "sweet
spot" for the number of threads. Beyond that, adding more threads gives minimal performance
improvement, and can make performance worse.

If your application create for each new task, then an unexpected increase in the workload (e.g. a
high request rate) can lead to catastrophic behavior.

A better way to deal with this is to use bounded thread pool whose size you can control (statically
or dynamically). When there is too much work to do, the application needs to queue the requests.
If you use an ExecutorService, it will take care of the thread pool management and task queuing.

Pitfall - Thread creation is relatively expensive

Consider these two micro-benchmarks:

The first benchmark simply creates, starts and joins threads. The thread's Runnable does no work.

public class ThreadTest {
 public static void main(String[] args) throws Exception {
 while (true) {
 long start = System.nanoTime();
 for (int i = 0; i < 100_000; i++) {
 Thread t = new Thread(new Runnable() {
 public void run() {
 }});
 t.start();
 t.join();
 }
 long end = System.nanoTime();
 System.out.println((end - start) / 100_000.0);
 }
 }
}

$ java ThreadTest
34627.91355
33596.66021
33661.19084
33699.44895
33603.097
33759.3928
33671.5719
33619.46809
33679.92508
33500.32862
33409.70188

https://riptutorial.com/ 593

33475.70541
33925.87848
33672.89529
^C

On a typical modern PC running Linux with 64bit Java 8 u101, this benchmark shows an average
time taken to create, start and join thread of between 33.6 and 33.9 microseconds.

The second benchmark does the equivalent to the first but using an ExecutorService to submit
tasks and a Future to rendezvous with the end of the task.

import java.util.concurrent.*;

public class ExecutorTest {
 public static void main(String[] args) throws Exception {
 ExecutorService exec = Executors.newCachedThreadPool();
 while (true) {
 long start = System.nanoTime();
 for (int i = 0; i < 100_000; i++) {
 Future<?> future = exec.submit(new Runnable() {
 public void run() {
 }
 });
 future.get();
 }
 long end = System.nanoTime();
 System.out.println((end - start) / 100_000.0);
 }
 }
}

$ java ExecutorTest
6714.66053
5418.24901
5571.65213
5307.83651
5294.44132
5370.69978
5291.83493
5386.23932
5384.06842
5293.14126
5445.17405
5389.70685
^C

As you can see, the averages are between 5.3 and 5.6 microseconds.

While the actual times will depend on a variety of factors, the difference between these two results
is significant. It is clearly faster to use a thread pool to recycle threads than it is to create new
threads.

Pitfall: Shared variables require proper synchronization

Consider this example:

https://riptutorial.com/ 594

public class ThreadTest implements Runnable {

 private boolean stop = false;

 public void run() {
 long counter = 0;
 while (!stop) {
 counter = counter + 1;
 }
 System.out.println("Counted " + counter);
 }

 public static void main(String[] args) {
 ThreadTest tt = new ThreadTest();
 new Thread(tt).start(); // Create and start child thread
 Thread.sleep(1000);
 tt.stop = true; // Tell child thread to stop.
 }
}

The intent of this program is intended to start a thread, let it run for 1000 milliseconds, and then
cause it to stop by setting the stop flag.

Will it work as intended?

Maybe yes, may be no.

An application does not necessarily stop when the main method returns. If another thread has been
created, and that thread has not been marked as a daemon thread, then the application will
continue to run after the main thread has ended. In this example, that means that the application
will keep running until child thread ends. That should happens when tt.stop is set to true.

But that is actually not strictly true. In fact, the child thread will stop after it has observed stop with
the value true. Will that happen? Maybe yes, maybe no.

The Java Language Specification guarantees that memory reads and writes made in a thread are
visible to that thread, as per the order of the statements in the source code. However, in general,
this is NOT guaranteed when one thread writes and another thread (subsequently) reads. To get
guaranteed visibility, there needs to be a chain of happens-before relations between a write and a
subsequent read. In the example above, there is no such chain for the update to the stop flag, and
therefore it is not guaranteed that the child thread will see stop change to true.

(Note to authors: There should be a separate Topic on the Java Memory Model to go into the deep
technical details.)

How do we fix the problem?

In this case, there are two simple ways to ensure that the stop update is visible:

Declare stop to be volatile; i.e.1.

https://riptutorial.com/ 595

 private volatile boolean stop = false;

For a volatile variable, the JLS specifies that there is a happens-before relation between a
write by one thread and a later read by a second thread.

Use a mutex to synchronize as follows:2.

public class ThreadTest implements Runnable {

 private boolean stop = false;

 public void run() {
 long counter = 0;
 while (true) {
 synchronize (this) {
 if (stop) {
 break;
 }
 }
 counter = counter + 1;
 }
 System.out.println("Counted " + counter);
 }

 public static void main(String[] args) {
 ThreadTest tt = new ThreadTest();
 new Thread(tt).start(); // Create and start child thread
 Thread.sleep(1000);
 synchronize (tt) {
 tt.stop = true; // Tell child thread to stop.
 }
 }
}

In addition to ensuring that there is mutual exclusion, the JLS specifies that there is a happens-
before relation between the releasing a mutex in one thread and gaining the same mutex in a
second thread.

But isn't assignment atomic?

Yes it is!

However, that fact does not mean that the effects of update will be visible simultaneously to all
threads. Only a proper chain of happens-before relations will guarantee that.

Why did they do this?

Programmers doing multi-threaded programming in Java for the first time find the Memory Model
is challenging. Programs behave in an unintuitive way because the natural expectation is that
writes are visible uniformly. So why the Java designers design the Memory Model this way.

It actually comes down to a compromise between performance and ease of use (for the

https://riptutorial.com/ 596

programmer).

A modern computer architecture consists of multiple processors (cores) with individual register
sets. Main memory is accessible either to all processors or to groups of processors. Another
property of modern computer hardware is that access to registers is typically orders of magnitude
faster to access than access to main memory. As the number of cores scales up, it is easy to see
that reading and writing to main memory can become a system's main performance bottleneck.

This mismatch is addressed by implementing one or more levels of memory caching between the
processor cores and main memory. Each core access memory cells via its cache. Normally, a
main memory read only happens when there is a cache miss, and a main memory write only
happens when a cache line needs to be flushed. For an application where each core's working set
of memory locations will fit into its cache, the core speed is no longer limited by main memory
speed / bandwidth.

But that gives us a new problem when multiple cores are reading and writing shared variables.
The latest version of a variable may sit in one core's cache. Unless the that core flushes the cache
line to main memory, AND other cores invalidate their cached copy of older versions, some of
them are liable to see stale versions of the variable. But if the caches were flushed to memory
each time there is a cache write ("just in case" there was a read by another core) that would
consume main memory bandwidth unnecessarily.

The standard solution used at the hardware instruction set level is to provide instructions for cache
invalidation and a cache write-through, and leave it to the compiler to decide when to use them.

Returning to Java. the Memory Model is designed so that the Java compilers are not required to
issue cache invalidation and write-through instructions where they are not really needed. The
assumption is that the programmer will use an appropriate synchronization mechanism (e.g.
primitive mutexes, volatile, higher-level concurrency classes and so on) to indicate that it needs
memory visibility. In the absence of a happens-before relation, the Java compilers are free to
assume that no cache operations (or similar) are required.

This has significant performance advantages for multi-threaded applications, but the downside is
that writing correct multi-threaded applications is not a simple matter. The programmer does have
to understand what he or she is doing.

Why can't I reproduce this?

There are a number of reasons why problems like this are difficult to reproduce:

As explained above, the consequence of not dealing with memory visibility issues problems
properly is typically that your compiled application does not handle the memory caches
correctly. However, as we alluded to above, memory caches often get flushed anyway.

1.

When you change the hardware platform, the characteristics of the memory caches may
change. This can lead to different behavior if your application does not synchronize correctly.

2.

You may be observing the effects of serendipitous synchronization. For example, if you add 3.

https://riptutorial.com/ 597

traceprints, their is typically some synchronization happening behind the scenes in the I/O
streams that causes cache flushes. So adding traceprints often causes the application to
behave differently.

Running an application under a debugger causes it to be compiled differently by the JIT
compiler. Breakpoints and single stepping exacerbate this. These effects will often change
the way an application behaves.

4.

These things make bugs that are due to inadequate synchronization particularly difficult to solve.

Read Java Pitfalls - Threads and Concurrency online: https://riptutorial.com/java/topic/5567/java-
pitfalls---threads-and-concurrency

https://riptutorial.com/ 598

https://riptutorial.com/java/topic/5567/java-pitfalls---threads-and-concurrency
https://riptutorial.com/java/topic/5567/java-pitfalls---threads-and-concurrency

Chapter 88: Java plugin system
implementations

Remarks

If you use an IDE and/or build system, it is much easier to set up this kind of project. You create a
main application module, then API module, then create a plugin module and make it dependent on
the API module or both. Next, you configure where the project artifacts are to be put - in our case
the compiled plugin jars can be sent straight to 'plugins' directory, thus avoiding doing manual
movement.

Examples

Using URLClassLoader

There are several ways to implement a plugin system for a Java application. One of the simplest is
to use URLClassLoader. The following example will involve a bit of JavaFX code.

Suppose we have a module of a main application. This module is supposed to load plugins in form
of Jars from 'plugins' folder. Initial code:

package main;

public class MainApplication extends Application
{
 @Override
 public void start(Stage primaryStage) throws Exception
 {
 File pluginDirectory=new File("plugins"); //arbitrary directory
 if(!pluginDirectory.exists())pluginDirectory.mkdir();
 VBox loadedPlugins=new VBox(6); //a container to show the visual info later
 Rectangle2D screenbounds=Screen.getPrimary().getVisualBounds();
 Scene scene=new
Scene(loadedPlugins,screenbounds.getWidth()/2,screenbounds.getHeight()/2);
 primaryStage.setScene(scene);
 primaryStage.show();
 }
 public static void main(String[] a)
 {
 launch(a);
 }
}

Then, we create an interface which will represent a plugin.

package main;

public interface Plugin
{

https://riptutorial.com/ 599

 default void initialize()
 {
 System.out.println("Initialized "+this.getClass().getName());
 }
 default String name(){return getClass().getSimpleName();}
}

We want to load classes which implement this interface, so first we need to filter files which have a
'.jar' extension:

File[] files=pluginDirectory.listFiles((dir, name) -> name.endsWith(".jar"));

If there are any files, we need to create collections of URLs and class names:

 if(files!=null && files.length>0)
 {
 ArrayList<String> classes=new ArrayList<>();
 ArrayList<URL> urls=new ArrayList<>(files.length);
 for(File file:files)
 {
 JarFile jar=new JarFile(file);
 jar.stream().forEach(jarEntry -> {
 if(jarEntry.getName().endsWith(".class"))
 {
 classes.add(jarEntry.getName());
 }
 });
 URL url=file.toURI().toURL();
 urls.add(url);
 }

 }

Let's add a static HashSet to MainApplication which will hold loaded plugins:

static HashSet<Plugin> plugins=new HashSet<>();

Next, we instantiate a URLClassLoader, and iterate over class names, instantiating classes which
implement Plugin interface:

URLClassLoader urlClassLoader=new URLClassLoader(urls.toArray(new URL[urls.size()]));
classes.forEach(className->{
 try
 {
 Class
cls=urlClassLoader.loadClass(className.replaceAll("/",".").replace(".class",""));
//transforming to binary name
 Class[] interfaces=cls.getInterfaces();
 for(Class intface:interfaces)
 {
 if(intface.equals(Plugin.class)) //checking presence of Plugin interface
 {
 Plugin plugin=(Plugin) cls.newInstance(); //instantiating the Plugin
 plugins.add(plugin);
 break;

https://riptutorial.com/ 600

 }
 }
 }
 catch (Exception e){e.printStackTrace();}
});

Then, we can call plugin's methods, for example, to initialize them:

if(!plugins.isEmpty())loadedPlugins.getChildren().add(new Label("Loaded plugins:"));
 plugins.forEach(plugin -> {
 plugin.initialize();
 loadedPlugins.getChildren().add(new Label(plugin.name()));
});

The final code of MainApplication:

package main;
public class MainApplication extends Application
{
 static HashSet<Plugin> plugins=new HashSet<>();
 @Override
 public void start(Stage primaryStage) throws Exception
 {
 File pluginDirectory=new File("plugins");
 if(!pluginDirectory.exists())pluginDirectory.mkdir();
 File[] files=pluginDirectory.listFiles((dir, name) -> name.endsWith(".jar"));
 VBox loadedPlugins=new VBox(6);
 loadedPlugins.setAlignment(Pos.CENTER);
 if(files!=null && files.length>0)
 {
 ArrayList<String> classes=new ArrayList<>();
 ArrayList<URL> urls=new ArrayList<>(files.length);
 for(File file:files)
 {
 JarFile jar=new JarFile(file);
 jar.stream().forEach(jarEntry -> {
 if(jarEntry.getName().endsWith(".class"))
 {
 classes.add(jarEntry.getName());
 }
 });
 URL url=file.toURI().toURL();
 urls.add(url);
 }
 URLClassLoader urlClassLoader=new URLClassLoader(urls.toArray(new
URL[urls.size()]));
 classes.forEach(className->{
 try
 {
 Class
cls=urlClassLoader.loadClass(className.replaceAll("/",".").replace(".class",""));
 Class[] interfaces=cls.getInterfaces();
 for(Class intface:interfaces)
 {
 if(intface.equals(Plugin.class))
 {
 Plugin plugin=(Plugin) cls.newInstance();
 plugins.add(plugin);
 break;

https://riptutorial.com/ 601

 }
 }
 }
 catch (Exception e){e.printStackTrace();}
 });
 if(!plugins.isEmpty())loadedPlugins.getChildren().add(new Label("Loaded
plugins:"));
 plugins.forEach(plugin -> {
 plugin.initialize();
 loadedPlugins.getChildren().add(new Label(plugin.name()));
 });
 }
 Rectangle2D screenbounds=Screen.getPrimary().getVisualBounds();
 Scene scene=new
Scene(loadedPlugins,screenbounds.getWidth()/2,screenbounds.getHeight()/2);
 primaryStage.setScene(scene);
 primaryStage.show();
 }
 public static void main(String[] a)
 {
 launch(a);
 }
}

Let's create two plugins. Obviously, the plugin's source should be in a separate module.

package plugins;

import main.Plugin;

public class FirstPlugin implements Plugin
{
 //this plugin has default behaviour
}

Second plugin:

package plugins;

import main.Plugin;

public class AnotherPlugin implements Plugin
{
 @Override
 public void initialize() //overrided to show user's home directory
 {
 System.out.println("User home directory: "+System.getProperty("user.home"));
 }
}

These plugins have to be packaged into standard Jars - this process depends on your IDE or
other tools.

When Jars will be put into 'plugins' directly, MainApplication will detect them and instantiate
appropriate classes.

Read Java plugin system implementations online: https://riptutorial.com/java/topic/7160/java-

https://riptutorial.com/ 602

https://riptutorial.com/java/topic/7160/java-plugin-system-implementations

plugin-system-implementations

https://riptutorial.com/ 603

https://riptutorial.com/java/topic/7160/java-plugin-system-implementations

Chapter 89: Java Print Service

Introduction

The Java Print Service API provides functionalities to discover print services and send print
requests for them.

It includes extensible print attributes based on the standard attributes specified in the Internet
Printing Protocol (IPP) 1.1 from the IETF Specification, RFC 2911.

Examples

Discovering the available print services

To discovery all the available print services, we can use the PrintServiceLookup class. Let's see
how:

import javax.print.PrintService;
import javax.print.PrintServiceLookup;

public class DiscoveringAvailablePrintServices {

 public static void main(String[] args) {
 discoverPrintServices();
 }

 public static void discoverPrintServices() {
 PrintService[] allPrintServices = PrintServiceLookup.lookupPrintServices(null, null);

 for (Printservice printService : allPrintServices) {
 System.out.println("Print service name: " + printService.getName());
 }
 }

}

This program, when executed on a Windows environment, will print something like this:

Print service name: Fax
Print service name: Microsoft Print to PDF
Print service name: Microsoft XPS Document Viewer

Discovering the default print service

To discovery the default print service, we can use the PrintServiceLookup class. Let's see how::

import javax.print.PrintService;
import javax.print.PrintServiceLookup;

public class DiscoveringDefaultPrintService {

https://riptutorial.com/ 604

https://docs.oracle.com/javase/8/docs/technotes/guides/jps/spec/JPSTOC.fm.html
https://en.wikipedia.org/wiki/Internet_Printing_Protocol
https://en.wikipedia.org/wiki/Internet_Printing_Protocol
https://tools.ietf.org/html/rfc2911

 public static void main(String[] args) {
 discoverDefaultPrintService();
 }

 public static void discoverDefaultPrintService() {
 PrintService defaultPrintService = PrintServiceLookup.lookupDefaultPrintService();
 System.out.println("Default print service name: " + defaultPrintService.getName());
 }

}

Creating a print job from a print service

A print job is a request of printing something in a specific print service. It consists, basically, by:

the data that will be printed (see Building the Doc that will be printed)•
a set of attributes•

After picking-up the right print service instance, we can request the creation of a print job:

DocPrintJob printJob = printService.createPrintJob();

The DocPrintJob interface provide us the print method:

printJob.print(doc, pras);

The doc argument is a Doc: the data that will be printed.

And the pras argument is a PrintRequestAttributeSet interface: a set of PrintRequestAttribute. Are
examples of print request attributes:

amount of copies (1, 2 etc),•
orientation (portrait or landscape)•
chromacity (monochrome, color)•
quality (draft, normal, high)•
sides (one-sided, two-sided etc)•
and so on...•

The print method may throw a PrintException.

Building the Doc that will be printed

Doc is an interface and the Java Print Service API provide a simple implementation called SimpleDoc
.

Every Doc instance is basically made of two aspects:

the print data content itself (an E-mail, an image, a document etc)•
the print data format, called DocFlavor (MIME type + Representation class).•

https://riptutorial.com/ 605

http://www.riptutorial.com/java/example/31199/building-the-doc-that-will-be-printed

Before creating the Doc object, we need to load our document from somewhere. In the example,
we will load an specific file from the disk:

FileInputStream pdfFileInputStream = new FileInputStream("something.pdf");

So now, we have to choose a DocFlavor that matches our content. The DocFlavor class has a bunch
of constants to represent the most usual types of data. Let's pick the INPUT_STREAM.PDF one:

DocFlavor pdfDocFlavor = DocFlavor.INPUT_STREAM.PDF;

Now, we can create a new instance of SimpleDoc:

Doc doc = new SimpleDoc(pdfFileInputStream, pdfDocFlavor , null);

The doc object now can be sent to the print job request (see Creating a print job from a print
service).

Defining print request attributes

Sometimes we need to determine some aspects of the print request. We will call them attribute.

Are examples of print request attributes:

amount of copies (1, 2 etc),•
orientation (portrait or landscape)•
chromacity (monochrome, color)•
quality (draft, normal, high)•
sides (one-sided, two-sided etc)•
and so on...•

Before choosing one of them and which value each one will have, first we need to build a set of
attributes:

PrintRequestAttributeSet pras = new HashPrintRequestAttributeSet();

Now we can add them. Some examples are:

pras.add(new Copies(5));
pras.add(MediaSize.ISO_A4);
pras.add(OrientationRequested.PORTRAIT);
pras.add(PrintQuality.NORMAL);

The pras object now can be sent to the print job request (see Creating a print job from a print
service).

Listening print job request status change

For the most printing clients, is extremely useful to know if a print job has finished or failed.

https://riptutorial.com/ 606

http://www.riptutorial.com/java/example/31198/creating-a-print-job-from-a-print-service
http://www.riptutorial.com/java/example/31198/creating-a-print-job-from-a-print-service
http://www.riptutorial.com/java/example/31198/creating-a-print-job-from-a-print-service
http://www.riptutorial.com/java/example/31198/creating-a-print-job-from-a-print-service

The Java Print Service API provide some functionalities to get informed about these scenarios. All
we have to do is:

provide an implementation for PrintJobListener interface and•
register this implementation at the print job.•

When the print job state changes, we will be notified. We can do anything is needed, for example:

update a user interface,•
start another business process,•
record something in the database,•
or simply log it.•

In the example bellow, we will log every print job status change:

import javax.print.event.PrintJobEvent;
import javax.print.event.PrintJobListener;

public class LoggerPrintJobListener implements PrintJobListener {

 // Your favorite Logger class goes here!
 private static final Logger LOG = Logger.getLogger(LoggerPrintJobListener.class);

 public void printDataTransferCompleted(PrintJobEvent pje) {
 LOG.info("Print data transfer completed ;) ");
 }

 public void printJobCompleted(PrintJobEvent pje) {
 LOG.info("Print job completed =) ");
 }

 public void printJobFailed(PrintJobEvent pje) {
 LOG.info("Print job failed =(");
 }

 public void printJobCanceled(PrintJobEvent pje) {
 LOG.info("Print job canceled :| ");
 }

 public void printJobNoMoreEvents(PrintJobEvent pje) {
 LOG.info("No more events to the job ");
 }

 public void printJobRequiresAttention(PrintJobEvent pje) {
 LOG.info("Print job requires attention :O ");
 }
}

Finally, we can add our print job listener implementation on the print job before the print request
itself, as follows:

DocPrintJob printJob = printService.createPrintJob();

printJob.addPrintJobListener(new LoggerPrintJobListener());

https://riptutorial.com/ 607

printJob.print(doc, pras);

The PrintJobEvent pje argument

Notice that every method has a PrintJobEvent pje argument. We don't use it in this example for
simplicity purposes, but you can use it to explore the status. For example:

pje.getPrintJob().getAttributes();

Will return a PrintJobAttributeSet object instance and you can run them in a for-each way.

Another way to achieve the same goal

Another option to achieve the same goal is extending the PrintJobAdapter class, as the name says,
is an adapter for PrintJobListener. Implementing the interface we compulsorily have to implement
all of them. The advantage of this way it's we need to override only the methods we want. Let's
see how it works:

import javax.print.event.PrintJobEvent;
import javax.print.event.PrintJobAdapter;

public class LoggerPrintJobAdapter extends PrintJobAdapter {

 // Your favorite Logger class goes here!
 private static final Logger LOG = Logger.getLogger(LoggerPrintJobAdapter.class);

 public void printJobCompleted(PrintJobEvent pje) {
 LOG.info("Print job completed =) ");
 }

 public void printJobFailed(PrintJobEvent pje) {
 LOG.info("Print job failed =(");
 }
}

Notice that we override only some specific methods.

As the same way in the example implementing the interface PrintJobListener, we add the listener
to the print job before sending it to print:

printJob.addPrintJobListener(new LoggerPrintJobAdapter());

printJob.print(doc, pras);

Read Java Print Service online: https://riptutorial.com/java/topic/10178/java-print-service

https://riptutorial.com/ 608

https://riptutorial.com/java/topic/10178/java-print-service

Chapter 90: Java SE 7 Features

Introduction

In this topic you'll find a summary of the new features added to the Java programming language in
Java SE 7. There are many other new features in other fields such as JDBC and Java Virtual
Machine (JVM) that are not going to be covered in this topic.

Remarks

Enhancements in Java SE 7

Examples

New Java SE 7 programming language features

Binary Literals: The integral types (byte, short, int, and long) can also be expressed using the
binary number system. To specify a binary literal, add the prefix 0b or 0B to the number.

•

Strings in switch Statements: You can use a String object in the expression of a switch
statement

•

The try-with-resources Statement: The try-with-resources statement is a try statement that
declares one or more resources. A resource is as an object that must be closed after the
program is finished with it. The try-with-resources statement ensures that each resource is
closed at the end of the statement. Any object that implements java.lang.AutoCloseable,
which includes all objects which implement java.io.Closeable, can be used as a resource.

•

Catching Multiple Exception Types and Rethrowing Exceptions with Improved Type
Checking: a single catch block can handle more than one type of exception. This feature can
reduce code duplication and lessen the temptation to catch an overly broad exception.

•

Underscores in Numeric Literals: Any number of underscore characters (_) can appear
anywhere between digits in a numerical literal. This feature enables you, for example, to
separate groups of digits in numeric literals, which can improve the readability of your code.

•

Type Inference for Generic Instance Creation: You can replace the type arguments required
to invoke the constructor of a generic class with an empty set of type parameters (<>) as
long as the compiler can infer the type arguments from the context. This pair of angle
brackets is informally called the diamond.

•

Improved Compiler Warnings and Errors When Using Non-Reifiable Formal Parameters with
Varargs Methods

•

Binary Literals

// An 8-bit 'byte' value:
byte aByte = (byte)0b00100001;

// A 16-bit 'short' value:

https://riptutorial.com/ 609

http://docs.oracle.com/javase/8/docs/technotes/guides/language/enhancements.html#javase7
http://docs.oracle.com/javase/8/docs/technotes/guides/language/binary-literals.html
http://docs.oracle.com/javase/8/docs/technotes/guides/language/strings-switch.html
http://docs.oracle.com/javase/8/docs/technotes/guides/language/try-with-resources.html
http://docs.oracle.com/javase/8/docs/technotes/guides/language/catch-multiple.html
http://docs.oracle.com/javase/8/docs/technotes/guides/language/catch-multiple.html
http://docs.oracle.com/javase/8/docs/technotes/guides/language/underscores-literals.html
http://docs.oracle.com/javase/8/docs/technotes/guides/language/type-inference-generic-instance-creation.html
http://docs.oracle.com/javase/8/docs/technotes/guides/language/non-reifiable-varargs.html
http://docs.oracle.com/javase/8/docs/technotes/guides/language/non-reifiable-varargs.html

short aShort = (short)0b1010000101000101;

// Some 32-bit 'int' values:
int anInt1 = 0b10100001010001011010000101000101;
int anInt2 = 0b101;
int anInt3 = 0B101; // The B can be upper or lower case.

// A 64-bit 'long' value. Note the "L" suffix:
long aLong = 0b1010000101000101101000010100010110100001010001011010000101000101L;

The try-with-resources statement

The example reads the first line from a file. It uses an instance of BufferedReader to read data from
the file. BufferedReader is a resource that must be closed after the program is finished with it:

static String readFirstLineFromFile(String path) throws IOException {
 try (BufferedReader br = new BufferedReader(new FileReader(path))) {
 return br.readLine();
 }
}

In this example, the resource declared in the try-with-resources statement is a BufferedReader. The
declaration statement appears within parentheses immediately after the try keyword. The class
BufferedReader, in Java SE 7 and later, implements the interface java.lang.AutoCloseable. Because
the BufferedReader instance is declared in a try-with-resource statement, it will be closed
regardless of whether the try statement completes normally or abruptly (as a result of the method
BufferedReader.readLine throwing an IOException).

Underscores in Numeric Literals

The following example shows other ways you can use the underscore in numeric literals:

long creditCardNumber = 1234_5678_9012_3456L;
long socialSecurityNumber = 999_99_9999L;
float pi = 3.14_15F;
long hexBytes = 0xFF_EC_DE_5E;
long hexWords = 0xCAFE_BABE;
long maxLong = 0x7fff_ffff_ffff_ffffL;
byte nybbles = 0b0010_0101;
long bytes = 0b11010010_01101001_10010100_10010010;

You can place underscores only between digits; you cannot place underscores in the following
places:

At the beginning or end of a number•
Adjacent to a decimal point in a floating point literal•
Prior to an F or L suffix•
In positions where a string of digits is expected•

Type Inference for Generic Instance Creation

https://riptutorial.com/ 610

You can use

Map<String, List<String>> myMap = new HashMap<>();

instead of

Map<String, List<String>> myMap = new HashMap<String, List<String>>();

However, you can't use

List<String> list = new ArrayList<>();
list.add("A");

 // The following statement should fail since addAll expects
 // Collection<? extends String>

list.addAll(new ArrayList<>());

because it can't compile. Note that the diamond often works in method calls; however, it is
suggested that you use the diamond primarily for variable declarations.

Strings in switch Statements

public String getTypeOfDayWithSwitchStatement(String dayOfWeekArg) {
 String typeOfDay;
 switch (dayOfWeekArg) {
 case "Monday":
 typeOfDay = "Start of work week";
 break;
 case "Tuesday":
 case "Wednesday":
 case "Thursday":
 typeOfDay = "Midweek";
 break;
 case "Friday":
 typeOfDay = "End of work week";
 break;
 case "Saturday":
 case "Sunday":
 typeOfDay = "Weekend";
 break;
 default:
 throw new IllegalArgumentException("Invalid day of the week: " + dayOfWeekArg);
 }
 return typeOfDay;
}

Read Java SE 7 Features online: https://riptutorial.com/java/topic/8272/java-se-7-features

https://riptutorial.com/ 611

https://riptutorial.com/java/topic/8272/java-se-7-features

Chapter 91: Java SE 8 Features

Introduction

In this topic you'll find a summary of the new features added to the Java programming language in
Java SE 8. There are many other new features in other fields such as JDBC and Java Virtual
Machine (JVM) that are not going to be covered in this topic.

Remarks

Reference: Enhancements in Java SE 8

Examples

New Java SE 8 programming language features

Lambda Expressions, a new language feature, has been introduced in this release. They
enable you to treat functionality as a method argument, or code as data. Lambda
expressions let you express instances of single-method interfaces (referred to as functional
interfaces) more compactly.

Method references provide easy-to-read lambda expressions for methods that already
have a name.

○

Default methods enable new functionality to be added to the interfaces of libraries and
ensure binary compatibility with code written for older versions of those interfaces.

○

New and Enhanced APIs That Take Advantage of Lambda Expressions and Streams
in Java SE 8 describe new and enhanced classes that take advantage of lambda
expressions and streams.

○

•

Improved Type Inference - The Java compiler takes advantage of target typing to infer the
type parameters of a generic method invocation. The target type of an expression is the data
type that the Java compiler expects depending on where the expression appears. For
example, you can use an assignment statement's target type for type inference in Java SE 7.
However, in Java SE 8, you can use the target type for type inference in more contexts.

Target Typing in Lambda Expressions○

Type Inference○

•

Repeating Annotations provide the ability to apply the same annotation type more than once
to the same declaration or type use.

•

Type Annotations provide the ability to apply an annotation anywhere a type is used, not just
on a declaration. Used with a pluggable type system, this feature enables improved type
checking of your code.

•

Method parameter reflection - You can obtain the names of the formal parameters of any
method or constructor with the method java.lang.reflect.Executable.getParameters. (The
classes Method and Constructor extend the class Executable and therefore inherit the
method Executable.getParameters) However, .class files do not store formal parameter names
by default. To store formal parameter names in a particular .class file, and thus enable the

•

https://riptutorial.com/ 612

http://docs.oracle.com/javase/8/docs/technotes/guides/language/enhancements.html#javase8
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
http://docs.oracle.com/javase/8/docs/technotes/guides/language/lambda_api_jdk8.html
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#target-typing
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html
http://docs.oracle.com/javase/tutorial/java/annotations/repeating.html
http://docs.oracle.com/javase/tutorial/java/annotations/type_annotations.html
http://docs.oracle.com/javase/tutorial/reflect/member/methodparameterreflection.html

Reflection API to retrieve formal parameter names, compile the source file with the -
parameters option of the javac compiler.
Date-time-api - Added new time api in java.time. If used this, you don't need to designate
timezone.

•

Read Java SE 8 Features online: https://riptutorial.com/java/topic/8267/java-se-8-features

https://riptutorial.com/ 613

https://riptutorial.com/java/topic/8267/java-se-8-features

Chapter 92: Java Sockets

Introduction

Sockets are a low-level network interface that helps in creating a connection between two program
mainly clients which may or may not be running on the same machine.

Socket Programming is one of the most widely used networking concepts.

Remarks

There are two types of Internet Protocol Traffic -
1. TCP - Transmission Control Protocol 2. UDP - User Datagram Protocol

TCP is a connection-oriented protocol.
UDP is a connectionless protocol.

TCP is suited for applications that require high reliability, and transmission time is relatively less
critical.

UDP is suitable for applications that need fast, efficient transmission, such as games. UDP's
stateless nature is also useful for servers that answer small queries from huge numbers of clients.

In simpler words -
Use TCP when you cannot afford to loose data and when time to send and receive data doesn't
matter. Use UDP when you cannot afford to loose time and when loss of data doesn't matter.

There is an absolute guarantee that the data transferred remains intact and arrives in the same
order in which it was sent in case of TCP.
whereas there is no guarantee that the messages or packets sent would reach at all in UDP.

Examples

A simple TCP echo back server

Our TCP echo back server will be a separate thread. It's simple as its a start. It will just echo back
whatever you send it but in capitalised form.

public class CAPECHOServer extends Thread{

 // This class implements server sockets. A server socket waits for requests to come
 // in over the network only when it is allowed through the local firewall
 ServerSocket serverSocket;

 public CAPECHOServer(int port, int timeout){
 try {
 // Create a new Server on specified port.

https://riptutorial.com/ 614

 serverSocket = new ServerSocket(port);
 // SoTimeout is basiacally the socket timeout.
 // timeout is the time until socket timeout in milliseconds
 serverSocket.setSoTimeout(timeout);
 } catch (IOException ex) {
 Logger.getLogger(CAPECHOServer.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

 @Override
 public void run(){
 try {
 // We want the server to continuously accept connections
 while(!Thread.interrupted()){

 }
 // Close the server once done.
 serverSocket.close();
 } catch (IOException ex) {
 Logger.getLogger(CAPECHOServer.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

}

Now to accept connections. Let's update the run method.

@Override
public void run(){
 while(!Thread.interrupted()){
 try {
 // Log with the port number and machine ip
 Logger.getLogger((this.getClass().getName())).log(Level.INFO, "Listening for
Clients at {0} on {1}", new Object[]{serverSocket.getLocalPort(),
InetAddress.getLocalHost().getHostAddress()});
 Socket client = serverSocket.accept(); // Accept client conncetion
 // Now get DataInputStream and DataOutputStreams
 DataInputStream istream = new DataInputStream(client.getInputStream()); // From
client's input stream
 DataOutputStream ostream = new DataOutputStream(client.getOutputStream());
 // Important Note
 /*
 The server's input is the client's output
 The client's input is the server's output
 */
 // Send a welcome message
 ostream.writeUTF("Welcome!");

 // Close the connection
 istream.close();
 ostream.close();
 client.close();
 } catch (IOException ex) {
 Logger.getLogger(CAPECHOServer.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

 // Close the server once done

 try {

https://riptutorial.com/ 615

 serverSocket.close();
 } catch (IOException ex) {
 Logger.getLogger(CAPECHOServer.class.getName()).log(Level.SEVERE, null, ex);
 }
}

Now if you can open telnet and try connecting You'll see a Welcome message.

You must connect with the port you specified and IP Adress.

You should see a result similar to this:

Welcome!

Connection to host lost.

Well, the connection was lost because we terminated it. Sometimes we would have to program our
own TCP client. In this case, we need a client to request input from the user and send it across the
network, receive the capitalised input.

If the server sends data first, then the client must read the data first.

public class CAPECHOClient extends Thread{

Socket server;
Scanner key; // Scanner for input

 public CAPECHOClient(String ip, int port){
 try {
 server = new Socket(ip, port);
 key = new Scanner(System.in);
 } catch (IOException ex) {
 Logger.getLogger(CAPECHOClient.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

 @Override
 public void run(){
 DataInputStream istream = null;
 DataOutputStream ostream = null;
 try {
 istream = new DataInputStream(server.getInputStream()); // Familiar lines
 ostream = new DataOutputStream(server.getOutputStream());
 System.out.println(istream.readUTF()); // Print what the server sends
 System.out.print(">");
 String tosend = key.nextLine();
 ostream.writeUTF(tosend); // Send whatever the user typed to the server
 System.out.println(istream.readUTF()); // Finally read what the server sends
before exiting.
 } catch (IOException ex) {
 Logger.getLogger(CAPECHOClient.class.getName()).log(Level.SEVERE, null, ex);
 } finally {
 try {
 istream.close();
 ostream.close();
 server.close();
 } catch (IOException ex) {

https://riptutorial.com/ 616

 Logger.getLogger(CAPECHOClient.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
 }
}

Now update the server

ostream.writeUTF("Welcome!");

String inString = istream.readUTF(); // Read what the user sent
String outString = inString.toUpperCase(); // Change it to caps
ostream.writeUTF(outString);

// Close the connection
istream.close();

And now run the server and client, You should have an output similar to this

Welcome!
>

Read Java Sockets online: https://riptutorial.com/java/topic/9923/java-sockets

https://riptutorial.com/ 617

https://riptutorial.com/java/topic/9923/java-sockets

Chapter 93: Java Virtual Machine (JVM)

Examples

These are the basics.

JVM is an abstract computing machine or Virtual machine that resides in your RAM. It has a
platform-independent execution environment that interprets Java bytecode into native machine
code. (Javac is Java Compiler which compiles your Java code into Bytecode)

Java program will be running inside the JVM which is then mapped onto the underlying physical
machine. It is one of programming tool in JDK.

(Byte code is platform-independent code which is run on every platform and Machine code is
platform-specific code which is run in only specific platform such as windows or linux; it depend on
execution.)

Some of the components:-

Class Loder - load the .class file into RAM.•
Bytecode verifier - check whether there are any access restriction violations in your code.•
Execution engine - convert the byte code into executable machine code.•
JIT(just in time) - JIT is part of JVM which used to improves the performance of JVM.It will
dynamically compile or translate java bytecode into native machine code during execution
time.

•

(Edited)

Read Java Virtual Machine (JVM) online: https://riptutorial.com/java/topic/8110/java-virtual-
machine--jvm-

https://riptutorial.com/ 618

https://riptutorial.com/java/topic/8110/java-virtual-machine--jvm-
https://riptutorial.com/java/topic/8110/java-virtual-machine--jvm-

Chapter 94: JavaBean

Introduction

JavaBeans (TM) is a pattern for designing Java class APIs that allows instances (beans) to be
used in various contexts and using various tools without explicitly writing Java code. The patterns
consists of conventions for defining getters and setters for properties, for defining constructors,
and for defining event listener APIs.

Syntax

JavaBean Property Naming Rules•
If the property is not a boolean, the getter method's prefix must be get. For example,
getSize()is a valid JavaBeans getter name for a property named "size." Keep in mind that
you do not need to have a variable named size. The name of the property is inferred from
the getters and setters, not through any variables in your class. What you return from
getSize() is up to you.

•

If the property is a boolean, the getter method's prefix is either get or is. For example,
getStopped() or isStopped() are both valid JavaBeans names for a boolean property.

•

The setter method's prefix must be set. For example, setSize() is the valid JavaBean name
for a property named size.

•

To complete the name of a getter or setter method, change the first letter of the property
name to uppercase, and then append it to the appropriate prefix (get, is, or set).

•

Setter method signatures must be marked public, with a void return type and an argument
that represents the property type.

•

Getter method signatures must be marked public, take no arguments, and have a return type
that matches the argument type of the setter method for that property.

•

JavaBean Listener Naming Rules•
Listener method names used to "register" a listener with an event source must use the prefix
add, followed by the listener type. For example, addActionListener() is a valid name for a
method that an event source will have to allow others to register for Action events.

•

Listener method names used to remove ("unregister") a listener must use the prefix remove,
followed by the listener type (using the same rules as the registration add method).

•

The type of listener to be added or removed must be passed as the argument to the method.•
Listener method names must end with the word "Listener".•

Remarks

In order for a class to be a Java Bean must follow this standard - in summary:

All of its properties must be private and only accessible through getters and setters.•
It must have a public no-argument constructor.•
Must implement the java.io.Serializable interface.•

https://riptutorial.com/ 619

http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

Examples

Basic Java Bean

public class BasicJavaBean implements java.io.Serializable{

 private int value1;
 private String value2;
 private boolean value3;

 public BasicJavaBean(){}

 public void setValue1(int value1){
 this.value1 = value1;
 }

 public int getValue1(){
 return value1;
 }

 public void setValue2(String value2){
 this.value2 = value2;
 }

 public String getValue2(){
 return value2;
 }

 public void setValue3(boolean value3){
 this.value3 = value3;
 }

 public boolean isValue3(){
 return value3;
 }
}

Read JavaBean online: https://riptutorial.com/java/topic/8157/javabean

https://riptutorial.com/ 620

https://riptutorial.com/java/topic/8157/javabean

Chapter 95: JAXB

Introduction

JAXB or Java Architecture for XML Binding (JAXB) is a software framework that allows Java
developers to map Java classes to XML representations. This Page will introduce readers to JAXB
using detailed examples about its functions provided mainly for marshaling and un-marshaling
Java Objects into xml format and vice-versa.

Syntax

JAXB.marshall(object, fileObjOfXML);•

Object obj = JAXB.unmarshall(fileObjOfXML, className);•

Parameters

Parameter Details

fileObjOfXML File object of an XML file

className Name of a class with .class extension

Remarks

Using the XJC tool available in the JDK, java code for a xml structure described in a xml schema (
.xsd file) can be automatically generated, see XJC topic.

Examples

Writing an XML file (marshalling an object)

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
public class User {

 private long userID;
 private String name;

 // getters and setters
}

By using the annotation XMLRootElement, we can mark a class as a root element of an XML file.

https://riptutorial.com/ 621

https://en.wikipedia.org/wiki/Java_Architecture_for_XML_Binding
http://www.riptutorial.com/java/topic/4538/xjc

import java.io.File;
import javax.xml.bind.JAXB;

public class XMLCreator {
 public static void main(String[] args) {
 User user = new User();
 user.setName("Jon Skeet");
 user.setUserID(8884321);

 try {
 JAXB.marshal(user, new File("UserDetails.xml"));
 } catch (Exception e) {
 System.err.println("Exception occurred while writing in XML!");
 } finally {
 System.out.println("XML created");
 }
 }
}

marshal() is used to write the object's content into an XML file. Here userobject and a new File
object are passed as arguments to the marshal().

On successful execution, this creates an XML file named UserDetails.xml in the class-path with the
below content.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<user>
 <name>Jon Skeet</name>
 <userID>8884321</userID>
</user>

Reading an XML file (unmarshalling)

To read an XML file named UserDetails.xml with the below content

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<user>
 <name>Jon Skeet</name>
 <userID>8884321</userID>
</user>

We need a POJO class named User.java as below

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
public class User {

 private long userID;
 private String name;

 // getters and setters
}

Here we have created the variables and class name according to the XML nodes. To map them,

https://riptutorial.com/ 622

we use the annotation XmlRootElement on the class.

public class XMLReader {
 public static void main(String[] args) {
 try {
 User user = JAXB.unmarshal(new File("UserDetails.xml"), User.class);
 System.out.println(user.getName()); // prints Jon Skeet
 System.out.println(user.getUserID()); // prints 8884321
 } catch (Exception e) {
 System.err.println("Exception occurred while reading the XML!");
 }
 }
}

Here unmarshal() method is used to parse the XML file. It takes the XML file name and the class
type as two arguments. Then we can use the getter methods of the object to print the data.

Using XmlAdapter to generate desired xml format

When desired XML format differs from Java object model, an XmlAdapter implementation can be
used to transform model object into xml-format object and vice versa. This example demonstrates
how to put a field's value into an attribute of an element with field's name.

public class XmlAdapterExample {

 @XmlAccessorType(XmlAccessType.FIELD)
 public static class NodeValueElement {

 @XmlAttribute(name="attrValue")
 String value;

 public NodeValueElement() {
 }

 public NodeValueElement(String value) {
 super();
 this.value = value;
 }

 public String getValue() {
 return value;
 }

 public void setValue(String value) {
 this.value = value;
 }
 }

 public static class ValueAsAttrXmlAdapter extends XmlAdapter<NodeValueElement, String> {

 @Override
 public NodeValueElement marshal(String v) throws Exception {
 return new NodeValueElement(v);
 }

 @Override
 public String unmarshal(NodeValueElement v) throws Exception {

https://riptutorial.com/ 623

 if (v==null) return "";
 return v.getValue();
 }
 }

 @XmlRootElement(name="DataObject")
 @XmlAccessorType(XmlAccessType.FIELD)
 public static class DataObject {

 String elementWithValue;

 @XmlJavaTypeAdapter(value=ValueAsAttrXmlAdapter.class)
 String elementWithAttribute;
 }

 public static void main(String[] args) {
 DataObject data = new DataObject();
 data.elementWithValue="value1";
 data.elementWithAttribute ="value2";

 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 JAXB.marshal(data, baos);

 String xmlString = new String(baos.toByteArray(), StandardCharsets.UTF_8);

 System.out.println(xmlString);
 }
}

Automatic field/property XML mapping configuration (@XmlAccessorType)

Annotation @XmlAccessorType determines whether fields/properties will be automatically serialized to
XML. Note, that field and method annotations @XmlElement, @XmlAttribute or @XmlTransient take
precedence over the default settings.

public class XmlAccessTypeExample {

@XmlAccessorType(XmlAccessType.FIELD)
static class AccessorExampleField {
 public String field="value1";

 public String getGetter() {
 return "getter";
 }

 public void setGetter(String value) {}
}

@XmlAccessorType(XmlAccessType.NONE)
static class AccessorExampleNone {
 public String field="value1";

 public String getGetter() {
 return "getter";
 }

 public void setGetter(String value) {}
}

https://riptutorial.com/ 624

https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/annotation/XmlAccessorType.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/annotation/XmlElement.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/annotation/XmlAttribute.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/annotation/XmlTransient.html

@XmlAccessorType(XmlAccessType.PROPERTY)
static class AccessorExampleProperty {
 public String field="value1";

 public String getGetter() {
 return "getter";
 }

 public void setGetter(String value) {}
}

@XmlAccessorType(XmlAccessType.PUBLIC_MEMBER)
static class AccessorExamplePublic {
 public String field="value1";

 public String getGetter() {
 return "getter";
 }

 public void setGetter(String value) {}
}

public static void main(String[] args) {
 try {
 System.out.println("\nField:");
 JAXB.marshal(new AccessorExampleField(), System.out);
 System.out.println("\nNone:");
 JAXB.marshal(new AccessorExampleNone(), System.out);
 System.out.println("\nProperty:");
 JAXB.marshal(new AccessorExampleProperty(), System.out);
 System.out.println("\nPublic:");
 JAXB.marshal(new AccessorExamplePublic(), System.out);
 } catch (Exception e) {
 System.err.println("Exception occurred while writing in XML!");
 }
}

} // outer class end

Output

Field:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<accessorExampleField>
 <field>value1</field>
</accessorExampleField>

None:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<accessorExampleNone/>

Property:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<accessorExampleProperty>
 <getter>getter</getter>
</accessorExampleProperty>

Public:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

https://riptutorial.com/ 625

<accessorExamplePublic>
 <field>value1</field>
 <getter>getter</getter>
</accessorExamplePublic>

Manual field/property XML mapping configuration

Annotations @XmlElement, @XmlAttribute or @XmlTransient and other in package
javax.xml.bind.annotation allow the programmer to specify which and how marked fields or
properties should be serialized.

@XmlAccessorType(XmlAccessType.NONE) // we want no automatic field/property marshalling
public class ManualXmlElementsExample {

 @XmlElement
 private String field="field value";

 @XmlAttribute
 private String attribute="attr value";

 @XmlAttribute(name="differentAttribute")
 private String oneAttribute="other attr value";

 @XmlElement(name="different name")
 private String oneName="different name value";

 @XmlTransient
 private String transientField = "will not get serialized ever";

 @XmlElement
 public String getModifiedTransientValue() {
 return transientField.replace(" ever", ", unless in a getter");
 }

 public void setModifiedTransientValue(String val) {} // empty on purpose

 public static void main(String[] args) {
 try {
 JAXB.marshal(new ManualXmlElementsExample(), System.out);
 } catch (Exception e) {
 System.err.println("Exception occurred while writing in XML!");
 }
 }
}

Specifying a XmlAdapter instance to (re)use existing data

Sometimes specific instances of data should be used. Recreation is not desired and referencing
static data would have a code smell.

It is possible to specify a XmlAdapter instance the Unmarshaller should use, which allows the user to
use XmlAdapters with no zero-arg constructor and/or pass data to the adapter.

https://riptutorial.com/ 626

https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/annotation/XmlElement.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/annotation/XmlAttribute.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/annotation/XmlTransient.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/annotation/package-summary.html

Example

User class

The following class contains a name and a user's image.

import java.awt.image.BufferedImage;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter;

@XmlRootElement
public class User {

 private String name;
 private BufferedImage image;

 @XmlAttribute
 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @XmlJavaTypeAdapter(value=ImageCacheAdapter.class)
 @XmlAttribute
 public BufferedImage getImage() {
 return image;
 }

 public void setImage(BufferedImage image) {
 this.image = image;
 }

 public User(String name, BufferedImage image) {
 this.name = name;
 this.image = image;
 }

 public User() {
 this("", null);
 }

}

Adapter

To avoid creating the same image in memory twice (as well as downloading the data again), the
adapter stores the images in a map.

Java SE 7

For valid Java 7 code replace the getImage method with

https://riptutorial.com/ 627

public BufferedImage getImage(URL url) {
 BufferedImage image = imageCache.get(url);
 if (image == null) {
 try {
 image = ImageIO.read(url);
 } catch (IOException ex) {
 Logger.getLogger(ImageCacheAdapter.class.getName()).log(Level.SEVERE, null, ex);
 return null;
 }
 imageCache.put(url, image);
 reverseIndex.put(image, url);
 }
 return image;
}

import java.awt.image.BufferedImage;
import java.io.IOException;
import java.net.URL;
import java.util.HashMap;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.imageio.ImageIO;
import javax.xml.bind.annotation.adapters.XmlAdapter;

public class ImageCacheAdapter extends XmlAdapter<String, BufferedImage> {

 private final Map<URL, BufferedImage> imageCache = new HashMap<>();
 private final Map<BufferedImage, URL> reverseIndex = new HashMap<>();

 public BufferedImage getImage(URL url) {
 // using a single lookup using Java 8 methods
 return imageCache.computeIfAbsent(url, s -> {
 try {
 BufferedImage img = ImageIO.read(s);
 reverseIndex.put(img, s);
 return img;
 } catch (IOException ex) {
 Logger.getLogger(ImageCacheAdapter.class.getName()).log(Level.SEVERE, null,
ex);
 return null;
 }
 });
 }

 @Override
 public BufferedImage unmarshal(String v) throws Exception {
 return getImage(new URL(v));
 }

 @Override
 public String marshal(BufferedImage v) throws Exception {
 return reverseIndex.get(v).toExternalForm();
 }

}

Example XMLs

https://riptutorial.com/ 628

The following 2 xmls are for Jon Skeet and his earth 2 counterpart, which both look exactly the
same and therefore use the same avatar.

<?xml version="1.0" encoding="UTF-8"?>

<user name="Jon Skeet"
image="https://www.gravatar.com/avatar/6d8ebb117e8d83d74ea95fbdd0f87e13?s=328&d=identicon&r=PG"/>

<?xml version="1.0" encoding="UTF-8"?>

<user name="Jon Skeet (Earth 2)"
image="https://www.gravatar.com/avatar/6d8ebb117e8d83d74ea95fbdd0f87e13?s=328&d=identicon&r=PG"/>

Using the adapter

ImageCacheAdapter adapter = new ImageCacheAdapter();

JAXBContext context = JAXBContext.newInstance(User.class);

Unmarshaller unmarshaller = context.createUnmarshaller();

// specifiy the adapter instance to use for every
// @XmlJavaTypeAdapter(value=ImageCacheAdapter.class)
unmarshaller.setAdapter(ImageCacheAdapter.class, adapter);

User result1 = (User) unmarshaller.unmarshal(Main.class.getResource("user.xml"));

// unmarshal second xml using the same adapter instance
Unmarshaller unmarshaller2 = context.createUnmarshaller();
unmarshaller2.setAdapter(ImageCacheAdapter.class, adapter);
User result2 = (User) unmarshaller2.unmarshal(Main.class.getResource("user2.xml"));

System.out.println(result1.getName());
System.out.println(result2.getName());

// yields true, since image is reused
System.out.println(result1.getImage() == result2.getImage());

Binding an XML namespace to a serializable Java class.

This is an example of a package-info.java file that binds an XML namespace to a serializable Java
class. This should be placed in the same package as the Java classes that should be serialized
using the namespace.

/**
 * A package containing serializable classes.
 */
@XmlSchema
(
 xmlns =
 {
 @XmlNs(prefix = MySerializableClass.NAMESPACE_PREFIX, namespaceURI =
MySerializableClass.NAMESPACE)

https://riptutorial.com/ 629

 },
 namespace = MySerializableClass.NAMESPACE,
 elementFormDefault = XmlNsForm.QUALIFIED
)
package com.test.jaxb;

import javax.xml.bind.annotation.XmlNs;
import javax.xml.bind.annotation.XmlNsForm;
import javax.xml.bind.annotation.XmlSchema;

Using XmlAdapter to trim string.

package com.example.xml.adapters;

import javax.xml.bind.annotation.adapters.XmlAdapter;

public class StringTrimAdapter extends XmlAdapter<String, String> {
 @Override
 public String unmarshal(String v) throws Exception {
 if (v == null)
 return null;
 return v.trim();
 }

 @Override
 public String marshal(String v) throws Exception {
 if (v == null)
 return null;
 return v.trim();
 }
}

And in package-info.java add following declaration.

@XmlJavaTypeAdapter(value = com.example.xml.adapters.StringTrimAdapter.class, type =
String.class)
package com.example.xml.jaxb.bindings;// Packge where you intend to apply trimming filter

import javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter;

Read JAXB online: https://riptutorial.com/java/topic/147/jaxb

https://riptutorial.com/ 630

https://riptutorial.com/java/topic/147/jaxb

Chapter 96: JAX-WS

Examples

Basic Authentication

The way to do a JAX-WS call with basic authentication is a little unobvious.

Here is an example where Service is the service class representation and Port is the service port
you want to access.

Service s = new Service();
Port port = s.getPort();

BindingProvider prov = (BindingProvider)port;
prov.getRequestContext().put(BindingProvider.USERNAME_PROPERTY, "myusername");
prov.getRequestContext().put(BindingProvider.PASSWORD_PROPERTY, "mypassword");

port.call();

Read JAX-WS online: https://riptutorial.com/java/topic/4105/jax-ws

https://riptutorial.com/ 631

https://riptutorial.com/java/topic/4105/jax-ws

Chapter 97: JMX

Introduction

The JMX technology provides the tools for building distributed, Web-based, modular and dynamic
solutions for managing and monitoring devices, applications, and service-driven networks. By
design, this standard is suitable for adapting legacy systems, implementing new management and
monitoring solutions, and plugging into those of the future.

Examples

Simple example with Platform MBean Server

Let's say we have some server that registers new users and greets them with some message. And
we want to monitor this server and change some of it's parameters.

First, we need an interface with our monitoring and control methods

public interface UserCounterMBean {
 long getSleepTime();

 void setSleepTime(long sleepTime);

 int getUserCount();

 void setUserCount(int userCount);

 String getGreetingString();

 void setGreetingString(String greetingString);

 void stop();
}

And some simple implementation that will let us see how it's working and how we affect it

public class UserCounter implements UserCounterMBean, Runnable {
 private AtomicLong sleepTime = new AtomicLong(10000);
 private AtomicInteger userCount = new AtomicInteger(0);
 private AtomicReference<String> greetingString = new AtomicReference<>("welcome");
 private AtomicBoolean interrupted = new AtomicBoolean(false);

 @Override
 public long getSleepTime() {
 return sleepTime.get();
 }

 @Override
 public void setSleepTime(long sleepTime) {
 this.sleepTime.set(sleepTime);
 }

https://riptutorial.com/ 632

 @Override
 public int getUserCount() {
 return userCount.get();
 }

 @Override
 public void setUserCount(int userCount) {
 this.userCount.set(userCount);
 }

 @Override
 public String getGreetingString() {
 return greetingString.get();
 }

 @Override
 public void setGreetingString(String greetingString) {
 this.greetingString.set(greetingString);
 }

 @Override
 public void stop() {
 this.interrupted.set(true);
 }

 @Override
 public void run() {
 while (!interrupted.get()) {
 try {
 System.out.printf("User %d, %s%n", userCount.incrementAndGet(),
greetingString.get());
 Thread.sleep(sleepTime.get());
 } catch (InterruptedException ignored) {
 }
 }
 }
}

For simple example with local or remote management, we need to register our MBean:

import javax.management.InstanceAlreadyExistsException;
import javax.management.MBeanRegistrationException;
import javax.management.MBeanServer;
import javax.management.MalformedObjectNameException;
import javax.management.NotCompliantMBeanException;
import javax.management.ObjectName;
import java.lang.management.ManagementFactory;

public class Main {
 public static void main(String[] args) throws MalformedObjectNameException,
NotCompliantMBeanException, InstanceAlreadyExistsException, MBeanRegistrationException,
InterruptedException {
 final UserCounter userCounter = new UserCounter();
 final MBeanServer mBeanServer = ManagementFactory.getPlatformMBeanServer();
 final ObjectName objectName = new ObjectName("ServerManager:type=UserCounter");
 mBeanServer.registerMBean(userCounter, objectName);

 final Thread thread = new Thread(userCounter);
 thread.start();

https://riptutorial.com/ 633

 thread.join();
 }
}

After that we can run our application and connect to it via jConsole, which can be found in your
$JAVA_HOME/bin directory. First, we need to find our local java process with our application

then switch to MBeans tab and find that MBean that we used in our Main class as an ObjectName (in
the example above it's ServerManager). In Attributes section we can see out attributes. If you
specified get method only, attribute will be readable but not writeable. If you specified both get and
set methods, attribute would be readable and writeable.

https://riptutorial.com/ 634

https://i.stack.imgur.com/21xsM.png

Specified methods can be invoked in Operations section.

If you want to be able to use remote management, you will need additional JVM parameters, like:

-Dcom.sun.management.jmxremote=true //true by default
-Dcom.sun.management.jmxremote.port=36006
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

https://riptutorial.com/ 635

https://i.stack.imgur.com/tlDAo.png
https://i.stack.imgur.com/9SFoH.png

These parameters can be found in Chapter 2 of JMX guides. After that you will be able to connect
to your application via jConsole remotely with jconsole host:port or with specifying host:port or
service:jmx:rmi:///jndi/rmi://hostName:portNum/jmxrmi in jConsole GUI.

Useful links:

JMX guides•
JMX Best practices•

Read JMX online: https://riptutorial.com/java/topic/9278/jmx

https://riptutorial.com/ 636

https://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
https://docs.oracle.com/javase/8/docs/technotes/guides/management/overview.html
http://www.oracle.com/us/technologies/java/best-practices-jsp-136021.html
https://riptutorial.com/java/topic/9278/jmx

Chapter 98: JNDI

Examples

RMI through JNDI

This example shows how JNDI works in RMI. It has two roles:

to provide the server with a bind/unbind/rebind API to the RMI Registry•
to provide the client with a lookup/list API to the RMI Registry.•

The RMI Registry is part of RMI, not JNDI.

To make this simple, we will use java.rmi.registry.CreateRegistry() to create the RMI Registry.

Server.java(the JNDI server)

package com.neohope.jndi.test;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import java.io.IOException;
import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
import java.util.Hashtable;

/**
 * JNDI Server
 * 1.create a registry on port 1234
 * 2.bind JNDI
 * 3.wait for connection
 * 4.clean up and end
 */
public class Server {
 private static Registry registry;
 private static InitialContext ctx;

 public static void initJNDI() {
 try {
 registry = LocateRegistry.createRegistry(1234);
 final Hashtable jndiProperties = new Hashtable();
 jndiProperties.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.rmi.registry.RegistryContextFactory");
 jndiProperties.put(Context.PROVIDER_URL, "rmi://localhost:1234");
 ctx = new InitialContext(jndiProperties);
 } catch (NamingException e) {
 e.printStackTrace();
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 }

 public static void bindJNDI(String name, Object obj) throws NamingException {

1.

https://riptutorial.com/ 637

 ctx.bind(name, obj);
 }

 public static void unbindJNDI(String name) throws NamingException {
 ctx.unbind(name);
 }

 public static void unInitJNDI() throws NamingException {
 ctx.close();
 }

 public static void main(String[] args) throws NamingException, IOException {
 initJNDI();
 NMessage msg = new NMessage("Just A Message");
 bindJNDI("/neohope/jndi/test01", msg);
 System.in.read();
 unbindJNDI("/neohope/jndi/test01");
 unInitJNDI();
 }
}

Client.java(the JNDI client)

package com.neohope.jndi.test;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import java.util.Hashtable;

/**
 * 1.init context
 * 2.lookup registry for the service
 * 3.use the service
 * 4.end
 */
public class Client {
 public static void main(String[] args) throws NamingException {
 final Hashtable jndiProperties = new Hashtable();
 jndiProperties.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.rmi.registry.RegistryContextFactory");
 jndiProperties.put(Context.PROVIDER_URL, "rmi://localhost:1234");

 InitialContext ctx = new InitialContext(jndiProperties);
 NMessage msg = (NeoMessage) ctx.lookup("/neohope/jndi/test01");
 System.out.println(msg.message);
 ctx.close();
 }
}

2.

NMessage.java (RMI server class)

package com.neohope.jndi.test;

import java.io.Serializable;
import java.rmi.Remote;

/**

3.

https://riptutorial.com/ 638

 * NMessage
 * RMI server class
 * must implements Remote and Serializable
 */
public class NMessage implements Remote, Serializable {
 public String message = "";

 public NMessage(String message)
 {
 this.message = message;
 }
}

How to run the eaxmple:

build and start the server1.
build and start the client2.

Introduce

The Java Naming and Directory Interface (JNDI) is a Java API for a directory service that allows
Java software clients to discover and look up data and objects via a name. It is designed to be
independent of any specific naming or directory service implementation.

The JNDI architecture consists of an API (Application Programming Interface) and an SPI (Service
Provider Interface). Java applications use this API to access a variety of naming and directory
services. The SPI enables a variety of naming and directory services to be plugged in
transparently, allowing the Java application using the API of the JNDI technology to access their
services.

As you can see form the picture above, JNDI supports LDAP, DNS, NIS, NDS, RMI and CORBA.
Of course, you can extend it.

https://riptutorial.com/ 639

http://i.stack.imgur.com/pGG8z.jpg

How it works

In this example, the Java RMI use the JNDI API to look up objects in a network. If you want to look
up a object, you need at least two pieces of information:

Where to find the object•

The RMI Registry manages the name bindings, it tells you where to find the object.

The name of the object•

What is a object's name? It is usually a string, it can also be a object that implements the Name
interface.

Step by step

First you need a registry, which manage the name binding. In this example, we use
java.rmi.registry.LocateRegistry.

//This will start a registry on localhost, port 1234
registry = LocateRegistry.createRegistry(1234);

1.

Both client and server need a Context. Server use the Context to bind the name and object.
Client use the Context to lookup the name and get the object.

//We use com.sun.jndi.rmi.registry.RegistryContextFactory as the InitialContextFactory
final Hashtable jndiProperties = new Hashtable();
jndiProperties.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.rmi.registry.RegistryContextFactory");
//the registry usrl is "rmi://localhost:1234"
jndiProperties.put(Context.PROVIDER_URL, "rmi://localhost:1234");
InitialContext ctx = new InitialContext(jndiProperties);

2.

The server bind the name and object

//The jndi name is "/neohope/jndi/test01"
bindJNDI("/neohope/jndi/test01", msg);

3.

The client look up the object by the name "/neohope/jndi/test01"

//look up the object by name "java:com/neohope/jndi/test01"
NeoMessage msg = (NeoMessage) ctx.lookup("/neohope/jndi/test01");

4.

Now the client can use the object5.

When the server is ending, need to clean up.

ctx.unbind("/neohope/jndi/test01");
ctx.close();

6.

Read JNDI online: https://riptutorial.com/java/topic/5720/jndi

https://riptutorial.com/ 640

https://riptutorial.com/java/topic/5720/jndi

Chapter 99: JShell

Introduction

JShell is an interactive REPL for Java added in JDK 9. It allows developers to instantly evaluate
expressions, test classes, and experiment with the Java language. Early access for jdk 9 can be
obtained from: http://jdk.java.net/9/

Syntax

$ jshell — Start the JShell REPL•
jshell> /<command> — Run a given JShell command•
jshell> /exit — Exit JShell•
jshell> /help — See a list of JShell commands•
jshell> <java_expression> - Evaluate the given Java expression (semicolon optional)•
jshell> /vars OR /methods OR /types — See a list of variables, methods, or classes,
respectively.

•

jshell> /open <file> — read a file as input to the shell•
jshell> /edit <identifier> — edit a snippet in the set editor•
jshell> /set editor <command> — set the command to be used to edit snippets using /edit•
jshell> /drop <identifier> — delete a snippet•
jshell> /reset — Reset the JVM and delete all snippets•

Remarks

JShell requires the Java 9 JDK, which can currently (March 2017) be downloaded as early access
snapshots from jdk9.java.net. If, when you try to run the jshell command, you get an error
beginning with Unable to locate an executable, make sure JAVA_HOME is set correctly.

Default Imports

The following packages are imported automatically when JShell starts:

import java.io.*
import java.math.*
import java.net.*
import java.nio.file.*
import java.util.*
import java.util.concurrent.*
import java.util.function.*
import java.util.prefs.*
import java.util.regex.*
import java.util.stream.*

Examples

https://riptutorial.com/ 641

http://jdk.java.net/9/
http://jdk9.java.net

Entering and Exiting JShell

Starting JShell

Before trying to start JShell, make sure your JAVA_HOME environment variable points to a JDK 9
installation. To start JShell, run the following command:

$ jshell

If all goes well, you should see a jshell> prompt.

Exiting JShell

To exit JShell, run the following command from the JShell prompt:

jshell> /exit

Expressions

Within JShell, you can evaluate Java expressions, with or without semicolons. These can range
from basic expressions and statements to more complex ones:

jshell> 4+2
jshell> System.out.printf("I am %d years old.\n", 421)

Loops and conditionals are fine, too:

jshell> for (int i = 0; i<3; i++) {
 ...> System.out.println(i);
 ...> }

It is important to note that expressions within blocks must have semicolons!

Variables

You can declare local variables within JShell:

jshell> String s = "hi"
jshell> int i = s.length

Keep in mind that variables can be redeclared with different types; this is perfectly valid in JShell:

jshell> String var = "hi"
jshell> int var = 3

To see a list of variables, enter /vars at the JShell prompt.

https://riptutorial.com/ 642

Methods and Classes

You can define methods and classes within JShell:

jshell> void speak() {
 ...> System.out.println("hello");
 ...> }

jshell> class MyClass {
 ...> void doNothing() {}
 ...> }

No access modifiers are necessary. As with other blocks, semicolons are required inside of
method bodies. Keep in mind that, as with variables, it is possible to redefine methods and
classes. To see a list of methods or classes, enter /methods or /types at the JShell prompt,
respectively.

Editting Snippets

The basic unit of code used by JShell is the snippet, or source entry. Every time you declare a
local variable or define a local method or class, you create a snippet whose name is the identifier
of the variable/method/class. At any time, you can edit a snippet you have created with the /edit
command. For example, let's say I have created the class Foo with a single, method, bar:

jshell> class Foo {
 ...> void bar() {
 ...> }
 ...> }

Now, I want to fill in the body of my method. Rather than rewrite the entire class, I can edit it:

jshell> /edit Foo

By default, a swing editor will pop up with the most basic features possible. However you can
change the editor that JShell uses:

jshell> /set editor emacs
jshell> /set editor vi
jshell> /set editor nano
jshell> /set editor -default

Note that if the new version of the snippet contains any syntax errors, it may not be saved.
Likewise, a snippet is only created if the original declaration/definition is syntactically correct; the
following does not work:

jshell> String st = String 3
//error omitted
jshell> /edit st
| No such snippet: st

https://riptutorial.com/ 643

However, snippets may be compiled and hence editable despite certain compile-time errors, such
as mismatched types—the following works:

jshell> int i = "hello"
//error omitted
jshell> /edit i

Finally, snippets may be deleted using the /drop command:

jshell> int i = 13
jshell> /drop i
jshell> System.out.println(i)
| Error:
| cannot find symbol
| symbol: variable i
| System.out.println(i)
|

To delete all snippets, thereby reseting the state of the JVM, use \reset:

jshell> int i = 2

jshell> String s = "hi"

jshell> /reset
| Resetting state.

jshell> i
| Error:
| cannot find symbol
| symbol: variable i
| i
| ^

jshell> s
| Error:
| cannot find symbol
| symbol: variable s
| s
| ^

Read JShell online: https://riptutorial.com/java/topic/9511/jshell

https://riptutorial.com/ 644

https://riptutorial.com/java/topic/9511/jshell

Chapter 100: JSON in Java

Introduction

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data
exchange format that is easy for humans and machines to read and write. JSON can represent
two structured types: objects and arrays. JSON is often used in Ajax applications, configurations,
databases, and RESTful web services. The Java API for JSON Processing provides portable APIs
to parse, generate, transform, and query JSON.

Remarks

This example focuses on parsing and creating JSON in Java using various libraries such as the
Google Gson library, Jackson Object Mapper, and others..

Examples using other libraries could be found here: How to parse JSON in Java

Examples

Encoding data as JSON

If you need to create a JSONObject and put data in it, consider the following example:

// Create a new javax.json.JSONObject instance.
JSONObject first = new JSONObject();

first.put("foo", "bar");
first.put("temperature", 21.5);
first.put("year", 2016);

// Add a second object.
JSONObject second = new JSONObject();
second.put("Hello", "world");
first.put("message", second);

// Create a new JSONArray with some values
JSONArray someMonths = new JSONArray(new String[] { "January", "February" });
someMonths.put("March");
// Add another month as the fifth element, leaving the 4th element unset.
someMonths.put(4, "May");

// Add the array to our object
object.put("months", someMonths);

// Encode
String json = object.toString();

// An exercise for the reader: Add pretty-printing!
/* {
 "foo":"bar",
 "temperature":21.5,

https://riptutorial.com/ 645

http://www.oracle.com/technetwork/articles/java/json-1973242.html
https://github.com/google/gson
http://stackoverflow.com/q/2591098/5020253

 "year":2016,
 "message":{"Hello":"world"},
 "months":["January","February","March",null,"May"]
 }
*/

Decoding JSON data

If you need to get data from a JSONObject, consider the following example:

String json =
"{\"foo\":\"bar\",\"temperature\":21.5,\"year\":2016,\"message\":{\"Hello\":\"world\"},\"months\":[\"January\",\"February\",\"March\",null,\"May\"]}";

// Decode the JSON-encoded string
JSONObject object = new JSONObject(json);

// Retrieve some values
String foo = object.getString("foo");
double temperature = object.getDouble("temperature");
int year = object.getInt("year");

// Retrieve another object
JSONObject secondary = object.getJSONObject("message");
String world = secondary.getString("Hello");

// Retrieve an array
JSONArray someMonths = object.getJSONArray("months");
// Get some values from the array
int nMonths = someMonths.length();
String february = someMonths.getString(1);

optXXX vs getXXX methods

JSONObject and JSONArray have a few methods that are very useful while dealing with a possibility
that a value your are trying to get does not exist or is of another type.

JSONObject obj = new JSONObject();
obj.putString("foo", "bar");

// For existing properties of the correct type, there is no difference
obj.getString("foo"); // returns "bar"
obj.optString("foo"); // returns "bar"
obj.optString("foo", "tux"); // returns "bar"

// However, if a value cannot be coerced to the required type, the behavior differs
obj.getInt("foo"); // throws JSONException
obj.optInt("foo"); // returns 0
obj.optInt("foo", 123); // returns 123

// Same if a property does not exist
obj.getString("undefined"); // throws JSONException
obj.optString("undefined"); // returns ""
obj.optString("undefined", "tux"); // returns "tux"

The same rules apply to the getXXX / optXXX methods of JSONArray.

https://riptutorial.com/ 646

Object To JSON (Gson Library)

Lets assume you have a class called Person with just name

private class Person {
 public String name;

 public Person(String name) {
 this.name = name;
 }
}

Code:

Gson g = new Gson();

Person person = new Person("John");
System.out.println(g.toJson(person)); // {"name":"John"}

Of course the Gson jar must be on the classpath.

JSON To Object (Gson Library)

Lets assume you have a class called Person with just name

private class Person {
 public String name;

 public Person(String name) {
 this.name = name;
 }
}

Code:

Gson gson = new Gson();
String json = "{\"name\": \"John\"}";

Person person = gson.fromJson(json, Person.class);
System.out.println(person.name); //John

You must have gson library in your classpath.

Extract single element from JSON

String json = "{\"name\": \"John\", \"age\":21}";

JsonObject jsonObject = new JsonParser().parse(json).getAsJsonObject();

System.out.println(jsonObject.get("name").getAsString()); //John
System.out.println(jsonObject.get("age").getAsInt()); //21

https://riptutorial.com/ 647

http://central.maven.org/maven2/com/google/code/gson/gson/2.3.1/gson-2.3.1.jar
https://mvnrepository.com/artifact/com.google.code.gson/gson

Using Jackson Object Mapper

Pojo Model

public class Model {
 private String firstName;
 private String lastName;
 private int age;
 /* Getters and setters not shown for brevity */
}

Example: String to Object

Model outputObject = objectMapper.readValue(
 "{\"firstName\":\"John\",\"lastName\":\"Doe\",\"age\":23}",
 Model.class);
System.out.println(outputObject.getFirstName());
//result: John

Example: Object to String

String jsonString = objectMapper.writeValueAsString(inputObject));
//result: {"firstName":"John","lastName":"Doe","age":23}

Details

Import statement needed:

import com.fasterxml.jackson.databind.ObjectMapper;

Maven dependency: jackson-databind

ObjectMapper instance

//creating one
ObjectMapper objectMapper = new ObjectMapper();

ObjectMapper is threadsafe•
recommended: have a shared, static instance•

Deserialization:

<T> T readValue(String content, Class<T> valueType)

valueType needs to be specified -- the return will be of this type•
Throws

IOException○

•

https://riptutorial.com/ 648

https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-databind

- in case of a low-level I/O problem
JsonParseException - if underlying input contains invalid content○

JsonMappingException - if the input JSON structure does not match object structure○

Usage example (jsonString is the input string):

Model fromJson = objectMapper.readValue(jsonString, Model.class);

Method for serialization:

String writeValueAsString(Object value)

Throws
JsonProcessingException in case of an error○

Note: prior to version 2.1, throws clause included IOException; 2.1 removed it.○

•

JSON Iteration

Iterate over JSONObject properties

JSONObject obj = new JSONObject("{\"isMarried\":\"true\", \"name\":\"Nikita\",
\"age\":\"30\"}");
Iterator<String> keys = obj.keys();//all keys: isMarried, name & age
while (keys.hasNext()) { //as long as there is another key
 String key = keys.next(); //get next key
 Object value = obj.get(key); //get next value by key
 System.out.println(key + " : " + value);//print key : value
}

Iterate over JSONArray values

JSONArray arr = new JSONArray(); //Initialize an empty array
//push (append) some values in:
arr.put("Stack");
arr.put("Over");
arr.put("Flow");
for (int i = 0; i < arr.length(); i++) {//iterate over all values
 Object value = arr.get(i); //get value
 System.out.println(value); //print each value
}

JSON Builder - chaining methods

You can use method chaining while working with JSONObject and JSONArray.

JSONObject example

JSONObject obj = new JSONObject();//Initialize an empty JSON object
//Before: {}
obj.put("name","Nikita").put("age","30").put("isMarried","true");
//After: {"name":"Nikita","age":30,"isMarried":true}

https://riptutorial.com/ 649

https://en.wikipedia.org/wiki/Method_chaining

JSONArray

JSONArray arr = new JSONArray();//Initialize an empty array
//Before: []
arr.put("Stack").put("Over").put("Flow");
//After: ["Stack","Over","Flow"]

JSONObject.NULL

If you need to add a property with a null value, you should use the predefined static final
JSONObject.NULL and not the standard Java null reference.

JSONObject.NULL is a sentinel value used to explicitly define a property with an empty value.

JSONObject obj = new JSONObject();
obj.put("some", JSONObject.NULL); //Creates: {"some":null}
System.out.println(obj.get("some"));//prints: null

Note

JSONObject.NULL.equals(null); //returns true

Which is a clear violation of Java.equals() contract:

For any non-null reference value x, x.equals(null) should return false

JsonArray to Java List (Gson Library)

Here is a simple JsonArray which you would like to convert to a Java ArrayList:

{
 "list": [
 "Test_String_1",
 "Test_String_2"
]
}

Now pass the JsonArray 'list' to the following method which returns a corresponding Java ArrayList:

public ArrayList<String> getListString(String jsonList){
 Type listType = new TypeToken<List<String>>() {}.getType();
 //make sure the name 'list' matches the name of 'JsonArray' in your 'Json'.
 ArrayList<String> list = new Gson().fromJson(jsonList, listType);
 return list;
}

You should add the following maven dependency to your POM.xml file:

<!-- https://mvnrepository.com/artifact/com.google.code.gson/gson -->
<dependency>
 <groupId>com.google.code.gson</groupId>

https://riptutorial.com/ 650

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#equals(java.lang.Object)

 <artifactId>gson</artifactId>
 <version>2.7</version>
</dependency>

Or you should have the jar com.google.code.gson:gson:jar:<version> in your classpath.

Deserialize JSON collection to collection of Objects using Jackson

Suppose you have a pojo class Person

public class Person {
 public String name;

 public Person(String name) {
 this.name = name;
 }
}

And you want to parse it into a JSON array or a map of Person objects. Due to type erasure you
cannot construct classes of List<Person> and Map<String, Person> at runtime directly (and thus use
them to deserialize JSON). To overcome this limitation jackson provides two approaches -
TypeFactory and TypeReference.

TypeFactory

The approach taken here is to use a factory (and its static utility function) to build your type for
you. The parameters it takes are the collection you want to use (list, set, etc.) and the class you
want to store in that collection.

TypeReference

The type reference approach seems simpler because it saves you a bit of typing and looks
cleaner. TypeReference accepts a type parameter, where you pass the desired type List<Person>.
You simply instantiate this TypeReference object and use it as your type container.

Now let's look at how to actually deserialize your JSON into a Java object. If your JSON is
formatted as an array, you can deserialize it as a List. If there is a more complex nested structure,
you will want to deserialize to a Map. We will look at examples of both.

Deserializing JSON array

String jsonString = "[{\"name\": \"Alice\"}, {\"name\": \"Bob\"}]"

TypeFactory approach

CollectionType listType =
 factory.constructCollectionType(List.class, Person.class);
List<Preson> list = mapper.readValue(jsonString, listType);

https://riptutorial.com/ 651

TypeReference approach

TypeReference<Person> listType = new TypeReference<List<Person>>() {};
List<Person> list = mapper.readValue(jsonString, listType);

Deserializing JSON map

String jsonString = "{\"0\": {\"name\": \"Alice\"}, \"1\": {\"name\": \"Bob\"}}"

TypeFactory approach

CollectionType mapType =
 factory.constructMapLikeType(Map.class, String.class, Person.class);
List<Person> list = mapper.readValue(jsonString, mapType);

TypeReference approach

TypeReference<Person> mapType = new TypeReference<Map<String, Person>>() {};
Map<String, Person> list = mapper.readValue(jsonString, mapType);

Details

Import statement used:

import com.fasterxml.jackson.core.type.TypeReference;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.type.CollectionType;

Instances used:

ObjectMapper mapper = new ObjectMapper();
TypeFactory factory = mapper.getTypeFactory();

Note

While TypeReference approach may look better it has several drawbacks:

TypeReference should be instantiated using anonymous class1.
You should provide generic explicity2.

Failing to do so may lead to loss of generic type argument which will lead to deserialization failure.

https://riptutorial.com/ 652

Read JSON in Java online: https://riptutorial.com/java/topic/840/json-in-java

https://riptutorial.com/ 653

https://riptutorial.com/java/topic/840/json-in-java

Chapter 101: Just in Time (JIT) compiler

Remarks

History

The Symantec JIT compiler was available in the Sun Java from 1.1.5 onwards, but it had
problems.

The Hotspot JIT compiler was added to Sun Java in 1.2.2 as a plugin. In Java 1.3, JIT was
enabled by default.

(Source: When did Java get a JIT compiler?

Examples

Overview

https://riptutorial.com/ 654

http://stackoverflow.com/questions/692136/when-did-java-get-a-jit-compiler)

The Just-In-Time (JIT) compiler is a component of the Java™ Runtime Environment that improves
the performance of Java applications at run time.

Java programs consists of classes, which contain platform-neutral bytecodes that can be
interpreted by a JVM on many different computer architectures.

•

At run time, the JVM loads the class files, determines the semantics of each individual
bytecode, and performs the appropriate computation.

•

The additional processor and memory usage during interpretation means that a Java
application performs more slowly than a native application.

The JIT compiler helps improve the performance of Java programs by compiling
bytecodes into native machine code at run time.

The JIT compiler is enabled by default, and is activated when a Java method is called. The JIT
compiler compiles the bytecodes of that method into native machine code, compiling it "just in
time" to run.

https://riptutorial.com/ 655

http://i.stack.imgur.com/Zt9wt.png

When a method has been compiled, the JVM calls the compiled code of that method directly
instead of interpreting it. Theoretically, if compilation did not require processor time and memory
usage, compiling every method could allow the speed of the Java program to approach that of a
native application.

JIT compilation does require processor time and memory usage. When the JVM first starts up,
thousands of methods are called. Compiling all of these methods can significantly affect startup
time, even if the program eventually achieves very good peak performance.

In practice, methods are not compiled the first time they are called. For each method, the
JVM maintains a call count which is incremented every time the method is called.

•

The JVM interprets a method until its call count exceeds a JIT compilation threshold.•
Therefore, often-used methods are compiled soon after the JVM has started, and less-used
methods are compiled much later, or not at all.

•

The JIT compilation threshold helps the JVM start quickly and still have improved
performance.

•

The threshold has been carefully selected to obtain an optimal balance between startup
times and long term performance.

•

After a method is compiled, its call count is reset to zero and subsequent calls to the method
continue to increment its count.

•

When the call count of a method reaches a JIT recompilation threshold, the JIT compiler
compiles it a second time, applying a larger selection of optimizations than on the previous
compilation.

•

This process is repeated until the maximum optimization level is reached.•

The busiest methods of a Java program are always optimized most aggressively,
maximizing the performance benefits of using the JIT compiler.

The JIT compiler can also measure operational data at run time, and use that data to improve the
quality of further recompilations.

The JIT compiler can be disabled, in which case the entire Java program will be
interpreted. Disabling the JIT compiler is not recommended except to diagnose or work
around JIT compilation problems.

Read Just in Time (JIT) compiler online: https://riptutorial.com/java/topic/5152/just-in-time--jit--
compiler

https://riptutorial.com/ 656

https://riptutorial.com/java/topic/5152/just-in-time--jit--compiler
https://riptutorial.com/java/topic/5152/just-in-time--jit--compiler

Chapter 102: JVM Flags

Remarks

It is strongly recommended that you use these options only:

If you have a thorough understanding of your system.•
Are aware that, if used improperly, these options can have negative effect on the stability or
performance of your system.

•

Information gathered from official Java documentation.

Examples

-XXaggressive

-XXaggressive is a collection of configurations that make the JVM perform at a high speed and
reach a stable state as soon as possible. To achieve this goal, the JVM uses more internal
resources at startup; however, it requires less adaptive optimization once the goal is reached. We
recommend that you use this option for long-running, memory-intensive applications that work
alone.

Usage:

-XXaggressive:<param>

<param> Description

opt
Schedules adaptive optimizations earlier and enables new optimizations, which
are expected to be the default in future releases.

memory
Configures the memory system for memory-intensive workloads and sets an
expectation to enable large amounts of memory resources to ensure high
throughput. JRockit JVM will also use large pages, if available.

-XXallocClearChunks

This option allows you to clear a TLA for references and values at TLA allocation time and pre-
fetch the next chunk. When an integer, a reference, or anything else is declared, it has a default
value of 0 or null (depending upon type). At the appropriate time, you will need to clear these
references and values to free the memory on the heap so Java can use- or reuse- it. You can do
either when the object is allocated or, by using this option, when you request a new TLA.

Usage:

https://riptutorial.com/ 657

http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/jrdocs/refman/optionXX.html

-XXallocClearChunks

-XXallocClearChunks=<true | false>

The above is a boolean option and is generally recommended on IA64 systems; ultimately, its use
depends upon the application. If you want to set the size of chunks cleared, combine this option
with -XXallocClearChunkSize. If you use this flag but do not specify a boolean value, the default is
true.

-XXallocClearChunkSize

When used with -XXallocClearChunkSize, this option sets the size of the chunks to be cleared. If this
flag is used but no value is specified, the default is 512 bytes.

Usage:

-XXallocClearChunks -XXallocClearChunkSize=<size>[k|K][m|M][g|G]

-XXcallProfiling

This option enables the use of call profiling for code optimizations. Profiling records useful runtime
statistics specific to the application and can—in many cases—increase performance because JVM
can then act on those statistics.

Note: This option is supported with the JRockit JVM R27.3.0 and later version. It may
become default in future versions.

Usage:

java -XXcallProfiling myApp

This option is disabled by default. You must enable it to use it.

-XXdisableFatSpin

This option disables the fat lock spin code in Java, allowing threads that block trying to acquire a
fat lock go to sleep directly.

Objects in Java become a lock as soon as any thread enters a synchronized block on that object.
All locks are held (that is, stayed locked) until released by the locking thread. If the lock is not
going to be released very fast, it can be inflated to a “fat lock.” “Spinning” occurs when a thread
that wants a specific lock continuously checks that lock to see if it is still taken, spinning in a tight
loop as it makes the check. Spinning against a fat lock is generally beneficial although, in some
instances, it can be expensive and might affect performance. -XXdisableFatSpin allows you to turn
off spinning against a fat lock and eliminate the potential performance hit.

Usage:

https://riptutorial.com/ 658

-XXdisableFatSpin

-XXdisableGCHeuristics

This option disables the garbage collector strategy changes. Compaction heuristics and nursery
size heuristics are not affected by this option. By default, the garbage collection heuristics are
enabled.

Usage:

-XXdisableFatSpin

-XXdumpSize

This option causes a dump file to be generated and allows you to specify the relative size of that
file (that is, small, medium, or large).

Usage:

-XXdumpsize:<size>

<size> Description

none Does not generate a dump file.

small

On Windows, a small dump file is generated (on Linux a full core dump is
generated). A small dump only include the thread stacks including their traces and
very little else. This was the default in the JRockit JVM 8.1 with service packs 1 and
2, as well as 7.0 with service pack 3 and higher).

normal
Causes a normal dump to be generated on all platforms. This dump file includes all
memory except the java heap. This is the default value for the JRockit JVM 1.4.2
and later.

large
Includes everything that is in memory, including the Java heap. This option makes -
XXdumpSize equivalent to -XXdumpFullState.

-XXexitOnOutOfMemory

This option makes JRockit JVM exit on the first occurrence of an out of memory error. It can be
used if you prefer restarting an instance of JRockit JVM rather than handling out of memory errors.
Enter this command at startup to force JRockit JVM to exit on the first occurrence of an out of
memory error.

Usage:

-XXexitOnOutOfMemory

https://riptutorial.com/ 659

Read JVM Flags online: https://riptutorial.com/java/topic/2500/jvm-flags

https://riptutorial.com/ 660

https://riptutorial.com/java/topic/2500/jvm-flags

Chapter 103: JVM Tool Interface

Remarks

JVM TM Tool Interface

Version 1.2

http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html

Examples

Iterate over objects reachable from object (Heap 1.0)

#include <vector>
#include <string>

#include "agent_util.hpp"
//this file can be found in Java SE Development Kit 8u101 Demos and Samples
//see http://download.oracle.com/otn-pub/java/jdk/8u101-b13-demos/jdk-8u101-windows-x64-
demos.zip
//jdk1.8.0_101.zip!\demo\jvmti\versionCheck\src\agent_util.h

/*
* Struct used for jvmti->SetTag(object, <pointer to tag>);
* http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html#SetTag
*
*/
typedef struct Tag
{
 jlong referrer_tag;
 jlong size;
 char* classSignature;
 jint hashCode;
} Tag;

/*
* Utility function: jlong -> Tag*
*/
static Tag* pointerToTag(jlong tag_ptr)
{
 if (tag_ptr == 0)
 {
 return new Tag();
 }
 return (Tag*)(ptrdiff_t)(void*)tag_ptr;
}

/*
* Utility function: Tag* -> jlong
*/
static jlong tagToPointer(Tag* tag)
{

https://riptutorial.com/ 661

http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html

 return (jlong)(ptrdiff_t)(void*)tag;
}

/*
* Heap 1.0 Callback
* http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html#jvmtiObjectReferenceCallback
*/
static jvmtiIterationControl JNICALL heabObjectReferencesCallback(
 jvmtiObjectReferenceKind reference_kind,
 jlong class_tag,
 jlong size,
 jlong* tag_ptr,
 jlong referrer_tag,
 jint referrer_index,
 void* user_data)
{
 //iterate only over reference field
 if (reference_kind != JVMTI_HEAP_REFERENCE_FIELD)
 {
 return JVMTI_ITERATION_IGNORE;
 }
 auto tag_ptr_list = (std::vector<jlong>*)(ptrdiff_t)(void*)user_data;
 //create and assign tag
 auto t = pointerToTag(*tag_ptr);
 t->referrer_tag = referrer_tag;
 t->size = size;
 *tag_ptr = tagToPointer(t);
 //collect tag
 (*tag_ptr_list).push_back(*tag_ptr);

 return JVMTI_ITERATION_CONTINUE;
}

/*
* Main function for demonstration of Iterate Over Objects Reachable From Object
*
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html#IterateOverObjectsReachableFromObject

*
*/
void iterateOverObjectHeapReferences(jvmtiEnv* jvmti, JNIEnv* env, jobject object)
{
 std::vector<jlong> tag_ptr_list;

 auto t = new Tag();
 jvmti->SetTag(object, tagToPointer(t));
 tag_ptr_list.push_back(tagToPointer(t));

 stdout_message("tag list size before call callback: %d\n", tag_ptr_list.size());
 /*
 * Call Callback for every reachable object reference
 * see
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html#IterateOverObjectsReachableFromObject

 */
 jvmti->IterateOverObjectsReachableFromObject(object, &heabObjectReferencesCallback,
(void*)&tag_ptr_list);
 stdout_message("tag list size after call callback: %d\n", tag_ptr_list.size());

 if (tag_ptr_list.size() > 0)
 {

https://riptutorial.com/ 662

 jint found_count = 0;
 jlong* tags = &tag_ptr_list[0];
 jobject* found_objects;
 jlong* found_tags;

 /*
 * collect all tagged object (via *tag_ptr = pointer to tag)
 * see
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html#GetObjectsWithTags
 */
 jvmti->GetObjectsWithTags(tag_ptr_list.size(), tags, &found_count, &found_objects,
&found_tags);
 stdout_message("found %d objects\n", found_count);

 for (auto i = 0; i < found_count; ++i)
 {
 jobject found_object = found_objects[i];

 char* classSignature;
 jclass found_object_class = env->GetObjectClass(found_object);
 /*
 * Get string representation of found_object_class
 * see
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html#GetClassSignature
 */
 jvmti->GetClassSignature(found_object_class, &classSignature, nullptr);

 jint hashCode;
 /*
 * Getting hash code for found_object
 * see
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html#GetObjectHashCode
 */
 jvmti->GetObjectHashCode(found_object, &hashCode);

 //save all it in Tag
 Tag* t = pointerToTag(found_tags[i]);
 t->classSignature = classSignature;
 t->hashCode = hashCode;
 }

 //print all saved information
 for (auto i = 0; i < found_count; ++i)
 {
 auto t = pointerToTag(found_tags[i]);
 auto rt = pointerToTag(t->referrer_tag);

 if (t->referrer_tag != 0)
 {
 stdout_message("referrer object %s#%d --> object %s#%d (size: %2d)\n",
 rt->classSignature, rt->hashCode, t->classSignature, t->hashCode, t-
>size);
 }
 }
 }
}

Get JVMTI environment

Inside Agent_OnLoad method:

https://riptutorial.com/ 663

jvmtiEnv* jvmti;
/* Get JVMTI environment */
vm->GetEnv(reinterpret_cast<void **>(&jvmti), JVMTI_VERSION);

Example of initialization inside of Agent_OnLoad method

/* Callback for JVMTI_EVENT_VM_INIT */
static void JNICALL vm_init(jvmtiEnv* jvmti, JNIEnv* env, jthread thread)
{
 jint runtime_version;
 jvmti->GetVersionNumber(&runtime_version);
 stdout_message("JVMTI Version: %d\n", runtime_verision);
}

/* Agent_OnLoad() is called first, we prepare for a VM_INIT event here. */
JNIEXPORT jint JNICALL
Agent_OnLoad(JavaVM* vm, char* options, void* reserved)
{
 jint rc;
 jvmtiEventCallbacks callbacks;
 jvmtiCapabilities capabilities;
 jvmtiEnv* jvmti;

 /* Get JVMTI environment */
 rc = vm->GetEnv(reinterpret_cast<void **>(&jvmti), JVMTI_VERSION);
 if (rc != JNI_OK)
 {
 return -1;
 }

 /* Immediately after getting the jvmtiEnv* we need to ask for the
 * capabilities this agent will need.
 */
 jvmti->GetCapabilities(&capabilities);
 capabilities.can_tag_objects = 1;
 jvmti->AddCapabilities(&capabilities);

 /* Set callbacks and enable event notifications */
 memset(&callbacks, 0, sizeof(callbacks));
 callbacks.VMInit = &vm_init;

 jvmti->SetEventCallbacks(&callbacks, sizeof(callbacks));
 jvmti->SetEventNotificationMode(JVMTI_ENABLE, JVMTI_EVENT_VM_INIT, nullptr);

 return JNI_OK;
}

Read JVM Tool Interface online: https://riptutorial.com/java/topic/3316/jvm-tool-interface

https://riptutorial.com/ 664

https://riptutorial.com/java/topic/3316/jvm-tool-interface

Chapter 104: Lambda Expressions

Introduction

Lambda expressions provide a clear and concise way of implementing a single-method interface
using an expression. They allow you to reduce the amount of code you have to create and
maintain. While similar to anonymous classes, they have no type information by themselves. Type
inference needs to happen.

Method references implement functional interfaces using existing methods rather than
expressions. They belong to the lambda family as well.

Syntax

() -> { return expression; } // Zero-arity with function body to return a value.•
() -> expression // Shorthand for the above declaration; there is no semicolon for
expressions.

•

() -> { function-body } // Side-effect in the lambda expression to perform operations.•
parameterName -> expression // One-arity lambda expression. In lambda expressions with
only one argument, the parenthesis can be removed.

•

(Type parameterName, Type secondParameterName, ...) -> expression // lambda evaluating
an expression with parameters listed to the left

•

(parameterName, secondParameterName, ...) -> expression // Shorthand that removes the
parameter types for the parameter names. Can only be used in contexts that can be inferred
by the compiler where the given parameter list size matches one (and only one) of the size
of the functional interfaces expected.

•

Examples

Using Lambda Expressions to Sort a Collection

Sorting lists

Prior to Java 8, it was necessary to implement the java.util.Comparator interface with an
anonymous (or named) class when sorting a list1:

Java SE 1.2

List<Person> people = ...
Collections.sort(
 people,
 new Comparator<Person>() {
 public int compare(Person p1, Person p2){
 return p1.getFirstName().compareTo(p2.getFirstName());
 }

https://riptutorial.com/ 665

https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

 }
);

Starting with Java 8, the anonymous class can be replaced with a lambda expression. Note that
the types for the parameters p1 and p2 can be left out, as the compiler will infer them automatically:

Collections.sort(
 people,
 (p1, p2) -> p1.getFirstName().compareTo(p2.getFirstName())
);

The example can be simplified by using Comparator.comparing and method references expressed
using the :: (double colon) symbol.

Collections.sort(
 people,
 Comparator.comparing(Person::getFirstName)
);

A static import allows us to express this more concisely, but it is debatable whether this improves
overall readability:

import static java.util.Collections.sort;
import static java.util.Comparator.comparing;
//...
sort(people, comparing(Person::getFirstName));

Comparators built this way can also be chained together. For example, after comparing people by
their first name, if there are people with the same first name, the thenComparing method with also
compare by last name:

sort(people, comparing(Person::getFirstName).thenComparing(Person::getLastName));

1 - Note that Collections.sort(...) only works on collections that are subtypes of List. The Set and Collection APIs
do not imply any ordering of the elements.

Sorting maps

You can sort the entries of a HashMap by value in a similar fashion. (Note that a LinkedHashMap must
be used as the target. The keys in an ordinary HashMap are unordered.)

Map<String, Integer> map = new HashMap(); // ... or any other Map class
// populate the map
map = map.entrySet()
 .stream()
 .sorted(Map.Entry.<String, Integer>comparingByValue())
 .collect(Collectors.toMap(k -> k.getKey(), v -> v.getValue(),
 (k, v) -> k, LinkedHashMap::new));

https://riptutorial.com/ 666

https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html#comparing-java.util.function.Function-
http://www.riptutorial.com/java/example/5080/method-references

Introduction to Java lambdas

Functional Interfaces

Lambdas can only operate on a functional interface, which is an interface with just one abstract
method. Functional interfaces can have any number of default or static methods. (For this
reason, they are sometimes referred to as Single Abstract Method Interfaces, or SAM Interfaces).

interface Foo1 {
 void bar();
}

interface Foo2 {
 int bar(boolean baz);
}

interface Foo3 {
 String bar(Object baz, int mink);
}

interface Foo4 {
 default String bar() { // default so not counted
 return "baz";
 }
 void quux();
}

When declaring a functional interface the @FunctionalInterface annotation can be added. This has
no special effect, but a compiler error will be generated if this annotation is applied to an interface
which is not functional, thus acting as a reminder that the interface should not be changed.

@FunctionalInterface
interface Foo5 {
 void bar();
}

@FunctionalInterface
interface BlankFoo1 extends Foo3 { // inherits abstract method from Foo3
}

@FunctionalInterface
interface Foo6 {
 void bar();
 boolean equals(Object obj); // overrides one of Object's method so not counted
}

Conversely, this is not a functional interface, as it has more than one abstract method:

interface BadFoo {
 void bar();
 void quux(); // <-- Second method prevents lambda: which one should
 // be considered as lambda?
}

https://riptutorial.com/ 667

http://www.riptutorial.com/java/topic/113/default-methods
https://docs.oracle.com/javase/8/docs/api/java/lang/FunctionalInterface.html

This is also not a functional interface, as it does not have any methods:

interface BlankFoo2 { }

Take note of the following. Suppose you have

interface Parent { public int parentMethod(); }

and

interface Child extends Parent { public int ChildMethod(); }

Then Child cannot be a functional interface since it has two specified methods.

Java 8 also provides a number of generic templated functional interfaces in the package
java.util.function. For example, the built-in interface Predicate<T> wraps a single method which
inputs a value of type T and returns a boolean.

Lambda Expressions

The basic structure of a Lambda expression is:

fi will then hold a singleton instance of a class, similar to an anonymous class, which implements
FunctionalInterface and where the one method's definition is { System.out.println("Hello"); }. In
other words, the above is mostly equivalent to:

FunctionalInterface fi = new FunctionalInterface() {
 @Override
 public void theOneMethod() {
 System.out.println("Hello");
 }
};

The lambda is only "mostly equivalent" to the anonymous class because in a lambda, the meaning
of expressions like this, super or toString() reference the class within which the assignment takes
place, not the newly created object.

You cannot specify the name of the method when using a lambda—but you shouldn't need to,
because a functional interface must have only one abstract method, so Java overrides that one.

https://riptutorial.com/ 668

https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html
http://www.riptutorial.com/java/topic/113/default-methods

In cases where the type of the lambda is not certain, (e.g. overloaded methods) you can add a
cast to the lambda to tell the compiler what its type should be, like so:

Object fooHolder = (Foo1) () -> System.out.println("Hello");
System.out.println(fooHolder instanceof Foo1); // returns true

If the functional interface's single method takes parameters, the local formal names of these
should appear between the brackets of the lambda. There is no need to declare the type of the
parameter or return as these are taken from the interface (although it is not an error to declare the
parameter types if you want to). Thus, these two examples are equivalent:

Foo2 longFoo = new Foo2() {
 @Override
 public int bar(boolean baz) {
 return baz ? 1 : 0;
 }
};
Foo2 shortFoo = (x) -> { return x ? 1 : 0; };

The parentheses around the argument can be omitted if the function only has one argument:

Foo2 np = x -> { return x ? 1 : 0; }; // okay
Foo3 np2 = x, y -> x.toString() + y // not okay

Implicit Returns

If the code placed inside a lambda is a Java expression rather than a statement, it is treated as a
method which returns the value of the expression. Thus, the following two are equivalent:

IntUnaryOperator addOneShort = (x) -> (x + 1);
IntUnaryOperator addOneLong = (x) -> { return (x + 1); };

Accessing Local Variables (value closures)

Since lambdas are syntactic shorthand for anonymous classes, they follow the same rules for
accessing local variables in the enclosing scope; the variables must be treated as final and not
modified inside the lambda.

IntUnaryOperator makeAdder(int amount) {
 return (x) -> (x + amount); // Legal even though amount will go out of scope
 // because amount is not modified
}

IntUnaryOperator makeAccumulator(int value) {
 return (x) -> { value += x; return value; }; // Will not compile
}

https://riptutorial.com/ 669

If it is necessary to wrap a changing variable in this way, a regular object that keeps a copy of the
variable should be used. Read more in Java Closures with lambda expressions.

Accepting Lambdas

Because a lambda is an implementation of an interface, nothing special needs to be done to make
a method accept a lambda: any function which takes a functional interface can also accept a
lambda.

public void passMeALambda(Foo1 f) {
 f.bar();
}
passMeALambda(() -> System.out.println("Lambda called"));

The Type of a Lambda Expression

A lambda expression, by itself, does not have a specific type. While it is true that the types and
number of parameters, along with the type of a return value can convey some type information,
such information will only constrain what types it can be assigned to. The lambda receives a type
when it is assigned to a functional interface type in one of the following ways:

Direct assignment to a functional type, e.g. myPredicate = s -> s.isEmpty()•
Passing it as a parameter that has a functional type, e.g. stream.filter(s -> s.isEmpty())•
Returning it from a function that returns a functional type, e.g. return s -> s.isEmpty()•
Casting it to a functional type, e.g. (Predicate<String>) s -> s.isEmpty()•

Until any such assignment to a functional type is made, the lambda does not have a definite type.
To illustrate, consider the lambda expression o -> o.isEmpty(). The same lambda expression can
be assigned to many different functional types:

Predicate<String> javaStringPred = o -> o.isEmpty();
Function<String, Boolean> javaFunc = o -> o.isEmpty();
Predicate<List> javaListPred = o -> o.isEmpty();
Consumer<String> javaStringConsumer = o -> o.isEmpty(); // return value is ignored!
com.google.common.base.Predicate<String> guavaPredicate = o -> o.isEmpty();

Now that they are assigned, the examples shown are of completely different types even though
the lambda expressions looked the same, and they cannot be assigned to each other.

Method References

Method references allow predefined static or instance methods that adhere to a compatible
functional interface to be passed as arguments instead of an anonymous lambda expression.

Assume that we have a model:

https://riptutorial.com/ 670

http://www.riptutorial.com/java/example/14441/java-closures-with-lambda-expressions-

class Person {
 private final String name;
 private final String surname;

 public Person(String name, String surname){
 this.name = name;
 this.surname = surname;
 }

 public String getName(){ return name; }
 public String getSurname(){ return surname; }
}

List<Person> people = getSomePeople();

Instance method reference (to an arbitrary instance)

people.stream().map(Person::getName)

The equivalent lambda:

people.stream().map(person -> person.getName())

In this example, a method reference to the instance method getName() of type Person, is being
passed. Since it's known to be of the collection type, the method on the instance (known later) will
be invoked.

Instance method reference (to a specific instance)

people.forEach(System.out::println);

Since System.out is an instance of PrintStream, a method reference to this specific instance is being
passed as an argument.

The equivalent lambda:

people.forEach(person -> System.out.println(person));

Static method reference

Also for transforming streams we can apply references to static methods:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6);
numbers.stream().map(String::valueOf)

This example passes a reference to the static valueOf() method on the String type. Therefore, the

https://riptutorial.com/ 671

instance object in the collection is passed as an argument to valueOf().

The equivalent lambda:

 numbers.stream().map(num -> String.valueOf(num))

Reference to a constructor

List<String> strings = Arrays.asList("1", "2", "3");
strings.stream().map(Integer::new)

Read Collect Elements of a Stream into a Collection to see how to collect elements to collection.

The single String argument constructor of the Integer type is being used here, to construct an
integer given the string provided as the argument. In this case, as long as the string represents a
number, the stream will be mapped to Integers. The equivalent lambda:

strings.stream().map(s -> new Integer(s));

Cheat-Sheet

Method Reference Format Code Equivalent Lambda

Static method TypeName::method (args) -> TypeName.method(args)

Non-static method (on instance
*)

instance::method (args) -> instance.method(args)

Non-static method (no
instance)

TypeName::method (instance, args) ->
instance.method(args)

Constructor** TypeName::new (args) -> new TypeName(args)

Array constructor TypeName[]::new (int size) -> new TypeName[size]

* instance can be any expression that evaluates to a reference to an instance, e.g.
getInstance()::method, this::method

** If TypeName is a non-static inner class, constructor reference is only valid within the scope of an
outer class instance

Implementing multiple interfaces

Sometimes you may want to have a lambda expression implementing more than one interface.

https://riptutorial.com/ 672

http://www.riptutorial.com/java/example/384/collect-elements-of-a-stream-into-a-collection

This is mostly useful with marker interfaces (such as java.io.Serializable) since they don't add
abstract methods.

For example, you want to create a TreeSet with a custom Comparator and then serialize it and send
it over the network. The trivial approach:

TreeSet<Long> ts = new TreeSet<>((x, y) -> Long.compare(y, x));

doesn't work since the lambda for the comparator does not implement Serializable. You can fix
this by using intersection types and explicitly specifying that this lambda needs to be serializable:

TreeSet<Long> ts = new TreeSet<>(
 (Comparator<Long> & Serializable) (x, y) -> Long.compare(y, x));

If you're frequently using intersection types (for example, if you're using a framework such as
Apache Spark where almost everything has to be serializable), you can create empty interfaces
and use them in your code instead:

public interface SerializableComparator extends Comparator<Long>, Serializable {}

public class CustomTreeSet {
 public CustomTreeSet(SerializableComparator comparator) {}
}

This way you're guaranteed that the passed comparator will be serializable.

Lambdas and Execute-around Pattern

There are several good examples of using lambdas as a FunctionalInterface in simple scenarios.
A fairly common use case that can be improved by lambdas is what is called the Execute-Around
pattern. In this pattern, you have a set of standard setup/teardown code that is needed for multiple
scenarios surrounding use case specific code. A few common example of this are file io, database
io, try/catch blocks.

interface DataProcessor {
 void process(Connection connection) throws SQLException;;
}

public void doProcessing(DataProcessor processor) throws SQLException{
 try (Connection connection = DBUtil.getDatabaseConnection();) {
 processor.process(connection);
 connection.commit();
 }
}

Then to call this method with a lambda it might look like:

public static void updateMyDAO(MyVO vo) throws DatabaseException {
 doProcessing((Connection conn) -> MyDAO.update(conn, ObjectMapper.map(vo)));
}

https://riptutorial.com/ 673

https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/7/docs/api/java/util/TreeSet.html
http://spark.apache.org/

This is not limited to I/O operations. It can apply to any scenario where similar setup/tear down
tasks are applicable with minor variations. The main benefit of this Pattern is code re-use and
enforcing DRY (Don't Repeat Yourself).

Using lambda expression with your own functional interface

Lambdas are meant to provide inline implementation code for single method interfaces and the
ability to pass them around as we have been doing with normal variables. We call them Functional
Interface.

For example, writing a Runnable in anonymous class and starting a Thread looks like:

//Old way
new Thread(
 new Runnable(){
 public void run(){
 System.out.println("run logic...");
 }
 }
).start();

//lambdas, from Java 8
new Thread(
 ()-> System.out.println("run logic...")
).start();

Now, in line with above, lets say you have some custom interface:

interface TwoArgInterface {
 int operate(int a, int b);
}

How do you use lambda to give implementation of this interface in your code? Same as Runnable
example shown above. See the driver program below:

public class CustomLambda {
 public static void main(String[] args) {

 TwoArgInterface plusOperation = (a, b) -> a + b;
 TwoArgInterface divideOperation = (a,b)->{
 if (b==0) throw new IllegalArgumentException("Divisor can not be 0");
 return a/b;
 };

 System.out.println("Plus operation of 3 and 5 is: " + plusOperation.operate(3, 5));
 System.out.println("Divide operation 50 by 25 is: " + divideOperation.operate(50,
25));

 }
}

`return` only returns from the lambda, not the outer method

https://riptutorial.com/ 674

The return method only returns from the lambda, not the outer method.

Beware that this is different from Scala and Kotlin!

void threeTimes(IntConsumer r) {
 for (int i = 0; i < 3; i++) {
 r.accept(i);
 }
}

void demo() {
 threeTimes(i -> {
 System.out.println(i);
 return; // Return from lambda to threeTimes only!
 });
}

This can lead to unexpected behavior when attempting to write own language constructs, as in
builtin constructs such as for loops return behaves differently:

void demo2() {
 for (int i = 0; i < 3; i++) {
 System.out.println(i);
 return; // Return from 'demo2' entirely
 }
}

In Scala and Kotlin, demo and demo2 would both only print 0. But this is not more consistent. The
Java approach is consistent with refactoring and the use of classes - the return in the code at the
top, and the code below behaves the same:

void demo3() {
 threeTimes(new MyIntConsumer());
}

class MyIntConsumer implements IntConsumer {
 public void accept(int i) {
 System.out.println(i);
 return;
 }
}

Therefore, the Java return is more consistent with class methods and refactoring, but less with the
for and while builtins, these remain special.

Because of this, the following two are equivalent in Java:

IntStream.range(1, 4)
 .map(x -> x * x)
 .forEach(System.out::println);
IntStream.range(1, 4)
 .map(x -> { return x * x; })
 .forEach(System.out::println);

https://riptutorial.com/ 675

Furthermore, the use of try-with-resources is safe in Java:

class Resource implements AutoCloseable {
 public void close() { System.out.println("close()"); }
}

void executeAround(Consumer<Resource> f) {
 try (Resource r = new Resource()) {
 System.out.print("before ");
 f.accept(r);
 System.out.print("after ");
 }
}

void demo4() {
 executeAround(r -> {
 System.out.print("accept() ");
 return; // Does not return from demo4, but frees the resource.
 });
}

will print before accept() after close(). In the Scala and Kotlin semantics, the try-with-resources
would not be closed, but it would print before accept() only.

Java Closures with lambda expressions.

A lambda closure is created when a lambda expression references the variables of an enclosing
scope (global or local). The rules for doing this are the same as those for inline methods and
anonymous classes.

Local variables from an enclosing scope that are used within a lambda have to be final. With Java
8 (the earliest version that supports lambdas), they don't need to be declared final in the outside
context, but must be treated that way. For example:

int n = 0; // With Java 8 there is no need to explicit final
Runnable r = () -> { // Using lambda
 int i = n;
 // do something
};

This is legal as long as the value of the n variable is not changed. If you try to change the variable,
inside or outside the lambda, you will get the following compilation error:

"local variables referenced from a lambda expression must be final or effectively final".

For example:

int n = 0;
Runnable r = () -> { // Using lambda
 int i = n;
 // do something
};
n++; // Will generate an error.

https://riptutorial.com/ 676

If it is necessary to use a changing variable within a lambda, the normal approach is to declare a
final copy of the variable and use the copy. For example

int n = 0;
final int k = n; // With Java 8 there is no need to explicit final
Runnable r = () -> { // Using lambda
 int i = k;
 // do something
};
n++; // Now will not generate an error
r.run(); // Will run with i = 0 because k was 0 when the lambda was created

Naturally, the body of the lambda does not see the changes to the original variable.

Note that Java does not support true closures. A Java lambda cannot be created in a way that
allows it to see changes in the environment in which it was instantiated. If you want to implement a
closure that observes or makes changes to its environment, you should simulate it using a regular
class. For example:

// Does not compile ...
public IntUnaryOperator createAccumulator() {
 int value = 0;
 IntUnaryOperator accumulate = (x) -> { value += x; return value; };
 return accumulate;
}

The above example will not compile for reasons discussed previously. We can work around the
compilation error as follows:

// Compiles, but is incorrect ...
public class AccumulatorGenerator {
 private int value = 0;

 public IntUnaryOperator createAccumulator() {
 IntUnaryOperator accumulate = (x) -> { value += x; return value; };
 return accumulate;
 }
}

The problem is that this breaks the design contract for the IntUnaryOperator interface which states
that instances should be functional and stateless. If such a closure is passed to built-in functions
that accept functional objects, it is liable to cause crashes or erroneous behavior. Closures that
encapsulate mutable state should be implemented as regular classes. For example.

// Correct ...
public class Accumulator {
 private int value = 0;

 public int accumulate(int x) {
 value += x;
 return value;
 }
}

https://riptutorial.com/ 677

Lambda - Listener Example

Anonymous class listener

Before Java 8, it’s very common that an anonymous class is used to handle click event of a
JButton, as shown in the following code. This example shows how to implement an anonymous
listener within the scope of btn.addActionListener.

JButton btn = new JButton("My Button");
btn.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent e) {
 System.out.println("Button was pressed");
 }
});

Lambda listener

Because the ActionListener interface defines only one method actionPerformed(), it is a functional
interface which means there’s a place to use Lambda expressions to replace the boilerplate code.
The above example can be re-written using Lambda expressions as follows:

JButton btn = new JButton("My Button");
btn.addActionListener(e -> {
 System.out.println("Button was pressed");
});

Traditional style to Lambda style

Traditional way

interface MathOperation{
 boolean unaryOperation(int num);
}

public class LambdaTry {
 public static void main(String[] args) {
 MathOperation isEven = new MathOperation() {
 @Override
 public boolean unaryOperation(int num) {
 return num%2 == 0;
 }
 };

 System.out.println(isEven.unaryOperation(25));
 System.out.println(isEven.unaryOperation(20));
 }
}

Lambda style

Remove class name and functional interface body.1.

https://riptutorial.com/ 678

public class LambdaTry {
 public static void main(String[] args) {
 MathOperation isEven = (int num) -> {
 return num%2 == 0;
 };

 System.out.println(isEven.unaryOperation(25));
 System.out.println(isEven.unaryOperation(20));
 }
}

Optional type declaration2.

MathOperation isEven = (num) -> {
 return num%2 == 0;
};

Optional parenthesis around parameter, if it is single parameter3.

MathOperation isEven = num -> {
 return num%2 == 0;
};

Optional curly braces, if there is only one line in function body4.
Optional return keyword, if there is only one line in function body5.

MathOperation isEven = num -> num%2 == 0;

Lambdas and memory utilization

Since Java lambdas are closures, they can "capture" the values of variables in the enclosing
lexical scope. While not all lambdas capture anything -- simple lambdas like s -> s.length()
capture nothing and are called stateless -- capturing lambdas require a temporary object to hold
the captured variables. In this code snippet, the lambda () -> j is a capturing lambda, and may
cause an object to be allocated when it is evaluated:

public static void main(String[] args) throws Exception {
 for (int i = 0; i < 1000000000; i++) {
 int j = i;
 doSomethingWithLambda(() -> j);
 }
}

Although it might not be immediately obvious since the new keyword doesn't appear anywhere in
the snippet, this code is liable to create 1,000,000,000 separate objects to represent the instances
of the () -> j lambda expression. However, it should also be noted that future versions of Java1
may be able to optimize this so that at runtime the lambda instances were reused, or were
represented in some other way.

1 - For instance, Java 9 introduces an optional "link" phase to the Java build sequence which will provide the

https://riptutorial.com/ 679

opportunity for doing global optimizations like this.

Using lambda expressions & predicates to get a certain value(s) from a list

Starting with Java 8, you can use lambda expressions & predicates.

Example: Use a lambda expressions & a predicate to get a certain value from a list. In this
example every person will be printed out with the fact if they are 18 and older or not.

Person Class:

public class Person {
 private String name;
 private int age;

 public Person(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public int getAge() { return age; }
 public String getName() { return name; }
}

The built-in interface Predicate from the java.util.function.Predicate packages is a functional
interface with a boolean test(T t) method.

Example Usage:

import java.util.ArrayList;
import java.util.List;
import java.util.function.Predicate;

public class LambdaExample {
 public static void main(String[] args) {
 List<Person> personList = new ArrayList<Person>();
 personList.add(new Person("Jeroen", 20));
 personList.add(new Person("Jack", 5));
 personList.add(new Person("Lisa", 19));

 print(personList, p -> p.getAge() >= 18);
 }

 private static void print(List<Person> personList, Predicate<Person> checker) {
 for (Person person : personList) {
 if (checker.test(person)) {
 System.out.print(person + " matches your expression.");
 } else {
 System.out.println(person + " doesn't match your expression.");
 }
 }
 }
}

The print(personList, p -> p.getAge() >= 18); method takes a lambda expression (because the
Predicate is used a parameter) where you can define the expression that is needed. The checker's

https://riptutorial.com/ 680

test method checks if this expression is correct or not: checker.test(person).

You can easily change this to something else, for example to print(personList, p ->
p.getName().startsWith("J"));. This will check if the person's name starts with a "J".

Read Lambda Expressions online: https://riptutorial.com/java/topic/91/lambda-expressions

https://riptutorial.com/ 681

https://riptutorial.com/java/topic/91/lambda-expressions

Chapter 105: LinkedHashMap

Introduction

LinkedHashMap class is Hash table and Linked list implementation of the Map interface, with
predictable iteration order. It inherits HashMap class and implements the Map interface.

The important points about Java LinkedHashMap class are: A LinkedHashMap contains values
based on the key. It contains only unique elements. It may have one null key and multiple null
values. It is same as HashMap instead maintains insertion order.

Examples

Java LinkedHashMap class

Key Points:-

Is Hash table and Linked list implementation of the Map interface, with predictable iteration
order.

•

inherits HashMap class and implements the Map interface.•

contains values based on the key.•

only unique elements.•

may have one null key and multiple null values.•

same as HashMap instead maintains insertion order.•

Methods :-

void clear().•
boolean containsKey(Object key).•
Object get(Object key).•
protected boolean removeEldestEntry(Map.Entry eldest)•

Example :-

public static void main(String arg[])
 {
 LinkedHashMap<String, String> lhm = new LinkedHashMap<String, String>();
 lhm.put("Ramesh", "Intermediate");
 lhm.put("Shiva", "B-Tech");
 lhm.put("Santosh", "B-Com");
 lhm.put("Asha", "Msc");
 lhm.put("Raghu", "M-Tech");

 Set set = lhm.entrySet();

https://riptutorial.com/ 682

 Iterator i = set.iterator();
 while (i.hasNext()) {
 Map.Entry me = (Map.Entry) i.next();
 System.out.println(me.getKey() + " : " + me.getValue());
 }

 System.out.println("The Key Contains : " + lhm.containsKey("Shiva"));
 System.out.println("The value to the corresponding to key : " + lhm.get("Asha"));
 }

Read LinkedHashMap online: https://riptutorial.com/java/topic/10750/linkedhashmap

https://riptutorial.com/ 683

https://riptutorial.com/java/topic/10750/linkedhashmap

Chapter 106: List vs SET

Introduction

What are differences between List and Set collection at the top level and How to choose when to
use List in java and when to use Set in Java

Examples

List vs Set

import java.util.ArrayList;

import java.util.HashSet; import java.util.List; import java.util.Set;

public class SetAndListExample { public static void main(String[] args) { System.out.println("List
example"); List list = new ArrayList(); list.add("1"); list.add("2"); list.add("3"); list.add("4");
list.add("1");

 for (String temp : list){
 System.out.println(temp);
 }

 System.out.println("Set example");
 Set<String> set = new HashSet<String>();
 set.add("1");
 set.add("2");
 set.add("3");
 set.add("4");
 set.add("1");
 set.add("2");
 set.add("5");

 for (String temp : set){
 System.out.println(temp);
 }
}

}

Output List example 1 2 3 4 1 Set example 3 2 10 5 4

Read List vs SET online: https://riptutorial.com/java/topic/10125/list-vs-set

https://riptutorial.com/ 684

https://riptutorial.com/java/topic/10125/list-vs-set

Chapter 107: Lists

Introduction

A list is an ordered collection of values. In Java, lists are part of the Java Collections Framework.
Lists implement the java.util.List interface, which extends java.util.Collection.

Syntax

ls.add(E element); //Adds an element•
ls.remove(E element); //Removes an element•
for(E element : ls){} //Iterates over each element•
ls.toArray(new String[ls.length]); //Converts a List of Strings to an array of Strings•
ls.get(int index); //Returns the element at the specified index.•
ls.set(int index, E element); //Replaces the element at a specified position .•
ls.isEmpty(); //Returns true if the array contains no elements, otherwise it returns false.•
ls.indexOf(Object o); //Returns the index of the first location of the specified element o, or, if
it is not present, returns -1.

•

ls.lastIndexOf(Object o); //Returns the index of the last location of the specified element o,
or, if it is not present, returns -1.

•

ls.size(); //Returns the number of elements in the List.•

Remarks

A list is an object which stores a an ordered collection of values. "Ordered" means the values are
stored in a particular order--one item comes first, one comes second, and so on. The individual
values are commonly called "elements". Java lists typically provide these features:

Lists may contain zero or more elements.•
Lists may contain duplicate values. In other words, an element can be inserted into a list
more than once.

•

Lists store their elements in a particular order, meaning one element comes first, one comes
next, and so on.

•

Each element has an index indicating its position within the list. The first element has index
0, the next has index 1, and so on.

•

Lists permit inserting elements at the beginning, at the end, or at any index within the list.•
Testing whether a list contains a particular value generally means examining each element
in the list. This means that the time to perform this check is O(n), proportional to the size of
the list.

•

Adding a value to a list at some point other than the end will move all of the following elements
"down" or "to the right". In other words, adding an element at index n moves the element which
used to be at index n to index n+1, and so on. For example:

https://riptutorial.com/ 685

http://docs.oracle.com/javase/8/docs/technotes/guides/collections/index.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
https://en.wikipedia.org/wiki/Big_O_notation

List<String> list = new ArrayList<>();
list.add("world");
System.out.println(list.indexOf("world")); // Prints "0"
// Inserting a new value at index 0 moves "world" to index 1
list.add(0, "Hello");
System.out.println(list.indexOf("world")); // Prints "1"
System.out.println(list.indexOf("Hello")); // Prints "0"

Examples

Sorting a generic list

The Collections class offers two standard static methods to sort a list:

sort(List<T> list) applicable to lists where T extends Comparable<? super T>, and•
sort(List<T> list, Comparator<? super T> c) applicable to lists of any type.•

Applying the former requires amending the class of list elements being sorted, which is not always
possible. It might also be undesirable as although it provides the default sorting, other sorting
orders may be required in different circumstances, or sorting is just a one off task.

Consider we have a task of sorting objects that are instances of the following class:

public class User {
 public final Long id;
 public final String username;

 public User(Long id, String username) {
 this.id = id;
 this.username = username;
 }

 @Override
 public String toString() {
 return String.format("%s:%d", username, id);
 }
}

In order to use Collections.sort(List<User> list) we need to modify the User class to implement
the Comparable interface. For example

public class User implements Comparable<User> {
 public final Long id;
 public final String username;

 public User(Long id, String username) {
 this.id = id;
 this.username = username;
 }

 @Override
 public String toString() {
 return String.format("%s:%d", username, id);
 }

https://riptutorial.com/ 686

 @Override
 /** The natural ordering for 'User' objects is by the 'id' field. */
 public int compareTo(User o) {
 return id.compareTo(o.id);
 }
}

(Aside: many standard Java classes such as String, Long, Integer implement the Comparable
interface. This makes lists of those elements sortable by default, and simplifies implementation of
compare or compareTo in other classes.)

With the modification above, the we can easily sort a list of User objects based on the classes
natural ordering. (In this case, we have defined that to be ordering based on id values). For
example:

List<User> users = Lists.newArrayList(
 new User(33L, "A"),
 new User(25L, "B"),
 new User(28L, ""));
Collections.sort(users);

System.out.print(users);
// [B:25, C:28, A:33]

However, suppose that we wanted to sort User objects by name rather than by id. Alternatively,
suppose that we had not been able to change the class to make it implement Comparable.

This is where the sort method with the Comparator argument is useful:

Collections.sort(users, new Comparator<User>() {
 @Override
 /* Order two 'User' objects based on their names. */
 public int compare(User left, User right) {
 return left.username.compareTo(right.username);
 }
});
System.out.print(users);
// [A:33, B:25, C:28]

Java SE 8

In Java 8 you can use a lambda instead of an anonymous class. The latter reduces to a one-liner:

Collections.sort(users, (l, r) -> l.username.compareTo(r.username));

Further, there Java 8 adds a default sort method on the List interface, which simplifies sorting
even more.

users.sort((l, r) -> l.username.compareTo(r.username))

Creating a List

https://riptutorial.com/ 687

Giving your list a type

To create a list you need a type (any class, e.g. String). This is the type of your List. The List will
only store objects of the specified type. For example:

List<String> strings;

Can store "string1", "hello world!", "goodbye", etc, but it can't store 9.2, however:

List<Double> doubles;

Can store 9.2, but not "hello world!".

Initialising your list

If you try to add something to the lists above you will get a NullPointerException, because strings
and doubles both equal null!

There are two ways to initialise a list:

Option 1: Use a class that implements List

List is an interface, which means that does not have a constructor, rather methods that a class
must override. ArrayList is the most commonly used List, though LinkedList is also common. So
we initialise our list like this:

List<String> strings = new ArrayList<String>();

or

List<String> strings = new LinkedList<String>();

Java SE 7

Starting from Java SE 7, you can use a diamond operator:

List<String> strings = new ArrayList<>();

or

List<String> strings = new LinkedList<>();

Option 2: Use the Collections class

The Collections class provides two useful methods for creating Lists without a List variable:

emptyList(): returns an empty list.•
singletonList(T): creates a list of type T and adds the element specified.•

https://riptutorial.com/ 688

http://www.riptutorial.com/java/topic/109/strings
http://www.riptutorial.com/java/example/388/creating-a-generic-class

And a method which uses an existing List to fill data in:

addAll(L, T...): adds all the specified elements to the list passed as the first parameter.•

Examples:

import java.util.List;
import java.util.Collections;

List<Integer> l = Collections.emptyList();
List<Integer> l1 = Collections.singletonList(42);
Collections.addAll(l1, 1, 2, 3);

Positional Access Operations

The List API has eight methods for positional access operations:

add(T type)•
add(int index, T type)•
remove(Object o)•
remove(int index)•
get(int index)•
set(int index, E element)•
int indexOf(Object o)•
int lastIndexOf(Object o)•

So, if we have a List:

List<String> strings = new ArrayList<String>();

And we wanted to add the strings "Hello world!" and "Goodbye world!" to it, we would do it as
such:

strings.add("Hello world!");
strings.add("Goodbye world!");

And our list would contain the two elements. Now lets say we wanted to add "Program starting!" at
the front of the list. We would do this like this:

strings.add(0, "Program starting!");

NOTE: The first element is 0.

Now, if we wanted to remove the "Goodbye world!" line, we could do it like this:

strings.remove("Goodbye world!");

And if we wanted to remove the first line (which in this case would be "Program starting!", we
could do it like this:

https://riptutorial.com/ 689

strings.remove(0);

Note:

Adding and removing list elements modify the list, and this can lead to a
ConcurrentModificationException if the list is being iterated concurrently.

1.

Adding and removing elements can be O(1) or O(N) depending on the list class, the method
used, and whether you are adding / removing an element at the start, the end, or in the
middle of the list.

2.

In order to retrieve an element of the list at a specified position you can use the E get(int index);
method of the List API. For example:

strings.get(0);

will return the first element of the list.

You can replace any element at a specified position by using the set(int index, E element);. For
example:

strings.set(0,"This is a replacement");

This will set the String "This is a replacement" as the first element of the list.

Note: The set method will overwrite the element at the position 0. It will not add the new String at
the position 0 and push the old one to the position 1.

The int indexOf(Object o); returns the position of the first occurrence of the object passed as
argument. If there are no occurrences of the object in the list then the -1 value is returned. In
continuation of the previous example if you call:

strings.indexOf("This is a replacement")

the 0 is expected to be returned as we set the String "This is a replacement" in the position 0 of
our list. In case where there are more than one occurrence in the list when int indexOf(Object o);
is called then as mentioned the index of the first occurrence will be returned. By calling the int
lastIndexOf(Object o) you can retrieve the index of the last occurrence in the list. So if we add
another "This is a replacement":

strings.add("This is a replacement");
strings.lastIndexOf("This is a replacement");

This time the 1 will be returned and not the 0;

Iterating over elements in a list

For the example, lets say that we have a List of type String that contains four elements: "hello, ",

https://riptutorial.com/ 690

"how ", "are ", "you?"

The best way to iterate over each element is by using a for-each loop:

public void printEachElement(List<String> list){
 for(String s : list){
 System.out.println(s);
 }
}

Which would print:

hello,
how
are
you?

To print them all in the same line, you can use a StringBuilder:

public void printAsLine(List<String> list){
 StringBuilder builder = new StringBuilder();
 for(String s : list){
 builder.append(s);
 }
 System.out.println(builder.toString());
}

Will print:

hello, how are you?

Alternatively, you can use element indexing (as described in Accessing element at ith Index from
ArrayList) to iterate a list. Warning: this approach is inefficient for linked lists.

Removing elements from list B that are present in the list A

Lets suppose you have 2 Lists A and B, and you want to remove from B all the elements that you
have in A the method in this case is

 List.removeAll(Collection c);

#Example:

public static void main(String[] args) {
 List<Integer> numbersA = new ArrayList<>();
 List<Integer> numbersB = new ArrayList<>();
 numbersA.addAll(Arrays.asList(new Integer[] { 1, 3, 4, 7, 5, 2 }));
 numbersB.addAll(Arrays.asList(new Integer[] { 13, 32, 533, 3, 4, 2 }));
 System.out.println("A: " + numbersA);
 System.out.println("B: " + numbersB);

 numbersB.removeAll(numbersA);

https://riptutorial.com/ 691

http://stackoverflow.com/documentation/java/2989/lists/18794/accessing-element-at-ith-index-from-arraylist
http://stackoverflow.com/documentation/java/2989/lists/18794/accessing-element-at-ith-index-from-arraylist

 System.out.println("B cleared: " + numbersB);
 }

this will print

A: [1, 3, 4, 7, 5, 2]

B: [13, 32, 533, 3, 4, 2]

B cleared: [13, 32, 533]

Finding common elements between 2 lists

Suppose you have two lists: A and B, and you need to find the elements that exist in both lists.

You can do it by just invoking the method List.retainAll().

Example:

public static void main(String[] args) {
 List<Integer> numbersA = new ArrayList<>();
 List<Integer> numbersB = new ArrayList<>();
 numbersA.addAll(Arrays.asList(new Integer[] { 1, 3, 4, 7, 5, 2 }));
 numbersB.addAll(Arrays.asList(new Integer[] { 13, 32, 533, 3, 4, 2 }));

 System.out.println("A: " + numbersA);
 System.out.println("B: " + numbersB);
 List<Integer> numbersC = new ArrayList<>();
 numbersC.addAll(numbersA);
 numbersC.retainAll(numbersB);

 System.out.println("List A : " + numbersA);
 System.out.println("List B : " + numbersB);
 System.out.println("Common elements between A and B: " + numbersC);

}

Convert a list of integers to a list of strings

List<Integer> nums = Arrays.asList(1, 2, 3);
List<String> strings = nums.stream()
 .map(Object::toString)
 .collect(Collectors.toList());

That is:

Create a stream from the list1.
Map each element using Object::toString2.
Collect the String values into a List using Collectors.toList()3.

Creating, Adding and Removing element from an ArrayList

ArrayList

https://riptutorial.com/ 692

is one of the inbuilt data structures in Java. It is a dynamic array (where the size of the data
structure not needed to be declared first) for storing elements (Objects).

It extends AbstractList class and implements List interface. An ArrayList can contain duplicate
elements where it maintains insertion order. It should be noted that the class ArrayList is non-
synchronized, so care should be taken when handling concurrency with ArrayList. ArrayList allows
random access because array works at the index basis. Manipulation is slow in ArrayList because
of shifting that often occurs when an element is removed from the array list.

An ArrayList can be created as follows:

List<T> myArrayList = new ArrayList<>();

Where T (Generics) is the type that will be stored inside ArrayList.

The type of the ArrayList can be any Object. The type can't be a primitive type (use their wrapper
classes instead).

To add an element to the ArrayList, use add() method:

myArrayList.add(element);

Or to add item to a certain index:

myArrayList.add(index, element); //index of the element should be an int (starting from 0)

To remove an item from the ArrayList, use the remove() method:

myArrayList.remove(element);

Or to remove an item from a certain index:

myArrayList.remove(index); //index of the element should be an int (starting from 0)

In-place replacement of a List element

This example is about replacing a List element while ensuring that the replacement element is at
the same position as the element that is replaced.

This can be done using these methods:

set(int index, T type)•
int indexOf(T type)•

Consider an ArrayList containing the elements "Program starting!", "Hello world!" and "Goodbye
world!"

List<String> strings = new ArrayList<String>();

https://riptutorial.com/ 693

http://www.riptutorial.com/java/topic/92/generics
https://en.wikipedia.org/wiki/Primitive_wrapper_class
https://en.wikipedia.org/wiki/Primitive_wrapper_class

strings.add("Program starting!");
strings.add("Hello world!");
strings.add("Goodbye world!");

If we know the index of the element we want to replace, we can simply use set as follows:

strings.set(1, "Hi world");

If we don't know the index, we can search for it first. For example:

int pos = strings.indexOf("Goodbye world!");
if (pos >= 0) {
 strings.set(pos, "Goodbye cruel world!");
}

Notes:

The set operation will not cause a ConcurrentModificationException.1.
The set operation is fast (O(1)) for ArrayList but slow (O(N)) for a LinkedList.2.
An indexOf search on an ArrayList or LinkedList is slow (O(N)).3.

Making a list unmodifiable

The Collections class provides a way to make a list unmodifiable:

List<String> ls = new ArrayList<String>();
List<String> unmodifiableList = Collections.unmodifiableList(ls);

If you want an unmodifiable list with one item you can use:

List<String> unmodifiableList = Collections.singletonList("Only string in the list");

Moving objects around in the list

The Collections class allows for you to move objects around in the list using various methods (ls is
the List):

Reversing a list:

Collections.reverse(ls);

Rotating positions of elements in a list

The rotate method requires an integer argument. This is how many spots to move it along the line
by. An example of this is below:

List<String> ls = new ArrayList<String>();
ls.add(" how");
ls.add(" are");

https://riptutorial.com/ 694

ls.add(" you?");
ls.add("hello,");
Collections.rotate(ls, 1);

for(String line : ls) System.out.print(line);
System.out.println();

This will print "hello, how are you?"

Shuffling elements around in a list

Using the same list above, we can shuffle the elements in a list:

Collections.shuffle(ls);

We can also give it a java.util.Random object that it uses to randomly place objects in spots:

Random random = new Random(12);
Collections.shuffle(ls, random);

Classes implementing List - Pros and Cons

The List interface is implemented by different classes. Each of them has its own way for
implementing it with different strategies and providing different pros and cons.

Classes implementing List

These are all of the public classes in Java SE 8 that implement the java.util.List interface:

Abstract Classes:
AbstractList•
AbstractSequentialList•

1.

Concrete Classes:
ArrayList•
AttributeList•
CopyOnWriteArrayList•
LinkedList•
RoleList•
RoleUnresolvedList•
Stack•
Vector•

2.

Pros and Cons of each implementation in term of time
complexity

https://riptutorial.com/ 695

https://docs.oracle.com/javase/7/docs/api/java/util/List.html

ArrayList

public class ArrayList<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, Serializable

ArrayList is a resizable-array implementation of the List interface. Storing the list into an array,
ArrayList provides methods (in addition to the methods implementing the List interface) for
manipulating the size of the array.

Initialize ArrayList of Integer with size 100

List<Integer> myList = new ArrayList<Integer>(100); // Constructs an empty list with the
specified initial capacity.

- PROS:

The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. So getting and
setting each element of the List has the same time cost:

int e1 = myList.get(0); // \
int e2 = myList.get(10); // | => All the same constant cost => O(1)
myList.set(2,10); // /

- CONS:

Being implemented with an array (static structure) adding elements over the size of the array has
a big cost due to the fact that a new allocation need to be done for all the array. However, from
documentation:

The add operation runs in amortized constant time, that is, adding n elements requires
O(n) time

Removing an element requires O(n) time.

AttributeList

On coming

CopyOnWriteArrayList

On coming

LinkedList

https://riptutorial.com/ 696

https://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html

public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, Serializable

LinkedList is implemented by a doubly-linked list a linked data structure that consists of a set of
sequentially linked records called nodes.

Iitialize LinkedList of Integer

List<Integer> myList = new LinkedList<Integer>(); // Constructs an empty list.

- PROS:

Adding or removing an element to the front of the list or to the end has constant time.

myList.add(10); // \
myList.add(0,2); // | => constant time => O(1)
myList.remove(); // /

- CONS: From documentation:

Operations that index into the list will traverse the list from the beginning or the end,
whichever is closer to the specified index.

Operations such as:

myList.get(10); // \
myList.add(11,25); // | => worst case done in O(n/2)
myList.set(15,35); // /

RoleList

On coming

RoleUnresolvedList

On coming

Stack

On coming

Vector

https://riptutorial.com/ 697

https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html
https://en.wikipedia.org/wiki/Doubly_linked_list
https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

On coming

Read Lists online: https://riptutorial.com/java/topic/2989/lists

https://riptutorial.com/ 698

https://riptutorial.com/java/topic/2989/lists

Chapter 108: Literals

Introduction

A Java literal is a syntactic element (i.e. something you find in the source code of a Java program)
that represents a value. Examples are 1, 0.333F, false, 'X' and "Hello world\n".

Examples

Hexadecimal, Octal and Binary literals

A hexadecimal number is a value in base-16. There are 16 digits, 0-9 and the letters A-F (case does
not matter). A-F represent 10-16.

An octal number is a value in base-8, and uses the digits 0-7.

A binary number is a value in base-2, and uses the digits 0 and 1.

All of these numbers result in the same value, 110:

int dec = 110; // no prefix --> decimal literal
int bin = 0b1101110; // '0b' prefix --> binary literal
int oct = 0156; // '0' prefix --> octal literal
int hex = 0x6E; // '0x' prefix --> hexadecimal literal

Note that binary literal syntax was introduced in Java 7.

The octal literal can easily be a trap for semantic errors. If you define a leading '0' to your decimal
literals you will get the wrong value:

int a = 0100; // Instead of 100, a == 64

Using underscore to improve readability

Since Java 7 it has been possible to use one or more underscores (_) for separating groups of
digits in a primitive number literal to improve their readability.

For instance, these two declarations are equivalent:

Java SE 7

int i1 = 123456;
int i2 = 123_456;
System.out.println(i1 == i2); // true

This can be applied to all primitive number literals as shown below:

Java SE 7

https://riptutorial.com/ 699

byte color = 1_2_3;
short yearsAnnoDomini= 2_016;
int socialSecurtyNumber = 999_99_9999;
long creditCardNumber = 1234_5678_9012_3456L;
float piFourDecimals = 3.14_15F;
double piTenDecimals = 3.14_15_92_65_35;

This also works using prefixes for binary, octal and hexadecimal bases:

Java SE 7

short binary= 0b0_1_0_1;
int octal = 07_7_7_7_7_7_7_7_0;
long hexBytes = 0xFF_EC_DE_5E;

There are a few rules about underscores which forbid their placement in the following places:

At the beginning or end of a number (e.g. _123 or 123_ are not valid)•
Adjacent to a decimal point in a floating point literal (e.g. 1._23 or 1_.23 are not valid)•
Prior to an F or L suffix (e.g. 1.23_F or 9999999_L are not valid)•
In positions where a string of digits is expected (e.g. 0_xFFFF is not valid)•

Escape sequences in literals

String and character literals provide an escape mechanism that allows express character codes
that would otherwise not be allowed in the literal. An escape sequence consists of a backslash
character (\) followed by one ore more other characters. The same sequences are valid in both
character an string literals.

The complete set of escape sequences is as follows:

Escape sequence Meaning

\\ Denotes an backslash (\) character

\' Denotes a single-quote (') character

\" Denotes a double-quote (") character

\n Denotes a line feed (LF) character

\r Denotes a carriage return (CR) character

\t Denotes a horizontal tab (HT) character

\f Denotes a form feed (FF) character

\b Denotes a backspace (BS) character

\<octal> Denotes a character code in the range 0 to 255.

https://riptutorial.com/ 700

The <octal> in the above consists of one, two or three octal digits ('0' through '7') which represent
a number between 0 and 255 (decimal).

Note that a backslash followed by any other character is an invalid escape sequence. Invalid
escape sequences are treated as compilation errors by the JLS.

Reference:

JLS 3.10.6. Escape Sequences for Character and String Literals•

Unicode escapes

In addition to the string and character escape sequences described above, Java has a more
general Unicode escaping mechanism, as defined in JLS 3.3. Unicode Escapes. A Unicode
escape has the following syntax:

'\' 'u' <hex-digit> <hex-digit> <hex-digit> <hex-digit>

where <hex-digit> is one of '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f',
'A', 'B', 'C', 'D', 'E', 'F'.

A Unicode escape is mapped by the Java compiler to a character (strictly speaking a 16-bit
Unicode code unit), and can be used anywhere in the source code where the mapped character is
valid. It is commonly used in character and string literals when you need to represent a non-ASCII
character in a literal.

Escaping in regexes

TBD

Decimal Integer literals

Integer literals provide values that can be used where you need a byte, short, int, long or char
instance. (This example focuses on the simple decimal forms. Other examples explain how to
literals in octal, hexadecimal and binary, and the use of underscores to improve readability.)

Ordinary integer literals

The simplest and most common form of integer literal is a decimal integer literal. For example:

 0 // The decimal number zero (type 'int')
 1 // The decimal number one (type 'int')
 42 // The decimal number forty two (type 'int')

You need to be careful with leading zeros. A leading zero causes an integer literal to be
interpreted as octal not decimal.

https://riptutorial.com/ 701

https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.10.6
https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.3

 077 // This literal actually means 7 x 8 + 7 ... or 63 decimal!

Integer literals are unsigned. If you see something like -10 or +10, these are actually expressions
using the unary - and unary + operators.

The range of integer literals of this form have an intrinsic type of int, and must fall in the range
zero to 231 or 2,147,483,648.

Note that 231 is 1 greater than Integer.MAX_VALUE. Literals from 0 through to 2147483647 can be used
anywhere, but it is a compilation error to use 2147483648 without a preceding unary - operator. (In
other words, it is reserved for expressing the value of Integer.MIN_VALUE.)

 int max = 2147483647; // OK
 int min = -2147483648; // OK
 int tooBig = 2147483648; // ERROR

Long integer literals

Literals of type long are expressed by adding an L suffix. For example:

 0L // The decimal number zero (type 'long')
 1L // The decimal number one (type 'long')
 2147483648L // The value of Integer.MAX_VALUE + 1

 long big = 2147483648; // ERROR
 long big2 = 2147483648L; // OK

Note that the distinction between int and long literals is significant in other places. For example

 int i = 2147483647;
 long l = i + 1; // Produces a negative value because the operation is
 // performed using 32 bit arithmetic, and the
 // addition overflows
 long l2 = i + 1L; // Produces the (intuitively) correct value.

Reference: JLS 3.10.1 - Integer Literals

Boolean literals

Boolean literals are the simplest of the literals in the Java programming language. The two
possible boolean values are represented by the literals true and false. These are case-sensitive.
For example:

boolean flag = true; // using the 'true' literal
flag = false; // using the 'false' literal

String literals

https://riptutorial.com/ 702

https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.10.1

String literals provide the most convenient way to represent string values in Java source code. A
String literal consists of:

An opening double-quote (") character.•
Zero or more other characters that are neither a double-quote or a line-break character. (A
backslash (\) character alters the meaning of subsequent characters; see Escape
sequences in literals.)

•

A closing double-quote character.•

For example:

"Hello world" // A literal denoting an 11 character String
"" // A literal denoting an empty (zero length) String
"\"" // A literal denoting a String consisting of one
 // double quote character
"1\t2\t3\n" // Another literal with escape sequences

Note that a single string literal may not span multiple source code lines. It is a compilation error for
a line-break (or the end of the source file) to occur before a literal's closing double-quote. For
example:

"Jello world // Compilation error (at the end of the line!)

Long strings

If you need a string that is too long to fit on a line, the conventional way to express it is to split it
into multiple literals and use the concatenation operator (+) to join the pieces. For example

String typingPractice = "The quick brown fox " +
 "jumped over " +
 "the lazy dog"

An expression like the above consisting of string literals and + satisfies the requirements to be a
Constant Expression. That means that the expression will be evaluated by the compiler and
represented at runtime by a single String object.

Interning of string literals

When class file containing string literals is loaded by the JVM, the corresponding String objects
are interned by the runtime system. This means that a string literal used in multiple classes
occupies no more space than if it was used in one class.

For more information on interning and the string pool, refer to the String pool and heap storage
example in the Strings topic.

The Null literal

The Null literal (written as null) represents the one and only value of the null type. Here are some

https://riptutorial.com/ 703

http://www.riptutorial.com/java/example/26505/escape-sequences-in-literals
http://www.riptutorial.com/java/example/26505/escape-sequences-in-literals
http://www.riptutorial.com/java/example/26261/constant-expressions
http://www.riptutorial.com/java/example/10577/string-pool-and-heap-storage

examples

 MyClass object = null;
 MyClass[] objects = new MyClass[]{new MyClass(), null, new MyClass()};

 myMethod(null);

 if (objects != null) {
 // Do something
 }

The null type is rather unusual. It has no name, so you cannot express it in Java source code.
(And it has no runtime representation either.)

The sole purpose of the null type is to be the type of null. It is assignment compatible with all
reference types, and can be type cast to any reference type. (In the latter case, the cast does not
entail a runtime type check.)

Finally, null has the property that null instanceof <SomeReferenceType> will evaluate to false, no
matter what the type is.

Floating-point literals

Floating point literals provide values that can be used where you need a float or double instance.
There are three kinds of floating point literal.

Simple decimal forms•
Scaled decimal forms•
Hexadecimal forms•

(The JLS syntax rules combine the two decimal forms into a single form. We treat them separately
for ease of explanation.)

There are distinct literal types for float and double literals, expressed using suffixes. The various
forms use letters to express different things. These letters are case insensitive.

Simple decimal forms

The simplest form of floating point literal consists of one or more decimal digits and a decimal
point (.) and an optional suffix (f, F, d or D). The optional suffix allows you to specify that the literal
is a float (f or F) or double (d or D) value. The default (when no suffix is specified) is double.

For example

 0.0 // this denotes zero
 .0 // this also denotes zero
 0. // this also denotes zero
 3.14159 // this denotes Pi, accurate to (approximately!) 5 decimal places.
 1.0F // a `float` literal
 1.0D // a `double` literal. (`double` is the default if no suffix is given)

https://riptutorial.com/ 704

In fact, decimal digits followed by a suffix is also a floating point literal.

 1F // means the same thing as 1.0F

The meaning of a decimal literal is the IEEE floating point number that is closest to the infinite
precision mathematical Real number denoted by the decimal floating point form. This conceptual
value is converted to IEEE binary floating point representation using round to nearest. (The
precise semantics of decimal conversion are specified in the javadocs for Double.valueOf(String)
and Float.valueOf(String), bearing in mind that there are differences in the number syntaxes.)

Scaled decimal forms

Scaled decimal forms consist of simple decimal with an exponent part introduced by an E or e, and
followed by a signed integer. The exponent part is a short hand for multiplying the decimal form by
a power of ten, as shown in the examples below. There is also an optional suffix to distinguish
float and double literals. Here are some examples:

 1.0E1 // this means 1.0 x 10^1 ... or 10.0 (double)
 1E-1D // this means 1.0 x 10^(-1) ... or 0.1 (double)
 1.0e10f // this means 1.0 x 10^(10) ... or 10000000000.0 (float)

The size of a literal is limited by the representation (float or double). It is a compilation error if the
scale factor results in a value that is too large or too small.

Hexadecimal forms

Starting with Java 6, it is possible to express floating point literals in hexadecimal. The
hexadecimal form have an analogous syntax to the simple and scaled decimal forms with the
following differences:

Every hexadecimal floating point literal starts with a zero (0) and then an x or X.1.
The digits of the number (but not the exponent part!) also include the hexadecimal digits a
through f and their uppercase equivalents.

2.

The exponent is mandatory, and is introduced by the letter p (or P) instead of an e or E. The
exponent represents a scaling factor that is a power of 2 instead of a power of 10.

3.

Here are some examples:

0x0.0p0f // this is zero expressed in hexadecimal form (`float`)
0xff.0p19 // this is 255.0 x 2^19 (`double`)

Advice: since hexadecimal floating-point forms are unfamiliar to most Java programmers, it is
advisable to use them sparingly.

Underscores

https://riptutorial.com/ 705

http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html#valueOf-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/java/lang/Float.html#valueOf-java.lang.String-

Starting with Java 7, underscores are permitted within the digit strings in all three forms of floating
point literal. This applies to the "exponent" parts as well. See Using underscores to improve
readability.

Special cases

It is a compilation error if a floating point literal denotes a number that is too large or too small to
represent in the selected representation; i.e. if the number would overflow to +INF or -INF, or
underflow to 0.0. However, it is legal for a literal to represent a non-zero denormalized number.

The floating point literal syntax does not provide literal representations for IEEE 754 special values
such as the INF and NaN values. If you need to express them in source code, the recommended
way is to use the constants defined by the java.lang.Float and java.lang.Double; e.g. Float.NaN,
Float.NEGATIVE_INFINITY and Float.POSITIVE_INFINITY.

Character literals

Character literals provide the most convenient way to express char values in Java source code. A
character literal consists of:

An opening single-quote (') character.•
A representation of a character. This representation cannot be a single-quote or a line-break
character, but it can be an escape sequence introduced by a backslash (\) character; see
Escape sequences in literals.

•

A closing single-quote (') character.•

For example:

char a = 'a';
char doubleQuote = '"';
char singleQuote = '\'';

A line-break in a character literal is a compilation error:

char newline = '
// Compilation error in previous line
char newLine = '\n'; // Correct

Read Literals online: https://riptutorial.com/java/topic/8250/literals

https://riptutorial.com/ 706

http://www.riptutorial.com/java/example/12632/using-underscore-to-improve-readability
http://www.riptutorial.com/java/example/12632/using-underscore-to-improve-readability
http://www.riptutorial.com/java/example/26505/escape-sequences-in-literals
https://riptutorial.com/java/topic/8250/literals

Chapter 109: Local Inner Class

Introduction

A class i.e. created inside a method is called local inner class in java. If you want to invoke the
methods of local inner class, you must instantiate this class inside the method.

Examples

Local Inner Class

public class localInner1{
 private int data=30;//instance variable
 void display(){
 class Local{
 void msg(){System.out.println(data);}
 }
 Local l=new Local();
 l.msg();
 }
 public static void main(String args[]){
 localInner1 obj=new localInner1();
 obj.display();
 }
}

Read Local Inner Class online: https://riptutorial.com/java/topic/10160/local-inner-class

https://riptutorial.com/ 707

https://riptutorial.com/java/topic/10160/local-inner-class

Chapter 110: Localization and
Internationalization

Remarks

Java comes with a powerful and flexible mechanism for localizing your applications, but it's also
easy to misuse and wind up with a program that disregards or mangles the user's locale, and
therefore how they expect your program to behave.

Your users will expect to see data localized to the formats they're used to, and attempting to
support this manually is a fools errand. Here is just a small example of the different ways users
expect to see content you might assume is "always" displayed a certain way:

Dates Numbers Local Currency Foreign Currency Distances

Brazil

China

Egypt

Mexico 20/3/16 1.234,56 $1,000.50 1,000.50 USD

UK 20/3/16 1,234.56 £1,000.50 100 km

USA 3/20/16 1,234.56 $1,000.50 1,000.50 MXN 60 mi

General Resources

Wikipedia: Internationalization and Localization•

Java Resources

Java Tutorial: Internationalization•
Oracle: Internationalization: Understanding Locale in the Java Platform•
JavaDoc: Locale•

Examples

Automatically formatted Dates using "locale"

SimpleDateFormatter is great in a pinch, but like the name suggests it doesn't scale well.

https://riptutorial.com/ 708

https://en.wikipedia.org/wiki/Internationalization_and_localization
https://docs.oracle.com/javase/tutorial/i18n/index.html
http://www.oracle.com/us/technologies/java/locale-140624.html
https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html

If you hard-code "MM/dd/yyyy" all over your application your international users won't be happy.

Let Java do the work for you

Use the static methods in DateFormat to retrieve the right formatting for your user. For a desktop
application (where you'll rely on the default locale), simply call:

String localizedDate = DateFormat.getDateInstance(style).format(date);

Where style is one of the formatting constants (FULL, LONG, MEDIUM, SHORT, etc.) specified in
DateFormat.

For a server-side application where the user specifies their locale as part of the request, you
should pass it explicitly to getDateInstance() instead:

String localizedDate =
 DateFormat.getDateInstance(style, request.getLocale()).format(date);

String Comparison

Compare two Strings ignoring case:

"School".equalsIgnoreCase("school"); // true

Don't use

text1.toLowerCase().equals(text2.toLowerCase());

Languages have different rules for converting upper and lower case. A 'I' would be converted to 'i'
in English. But in Turkish a 'I' becomes a 'ı'. If you have to use toLowerCase() use the overload
which expects a Locale: String.toLowerCase(Locale).

Comparing two Strings ignoring minor differences:

Collator collator = Collator.getInstance(Locale.GERMAN);
collator.setStrength(Collator.PRIMARY);
collator.equals("Gärten", "gaerten"); // returns true

Sort Strings respecting natural language order, ignoring case (use collation key to:

String[] texts = new String[] {"Birne", "äther", "Apfel"};
Collator collator = Collator.getInstance(Locale.GERMAN);
collator.setStrength(Collator.SECONDARY); // ignore case
Arrays.sort(texts, collator::compare); // will return {"Apfel", "äther", "Birne"}

Locale

https://riptutorial.com/ 709

https://docs.oracle.com/javase/8/docs/api/java/text/DateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html#getDefault--

The java.util.Locale class is used to represent a "geographical, political or cultural" region to
localize a given text, number, date or operation to. A Locale object may thus contain a country,
region, language, and also a variant of a language, for instance a dialect spoken in a certain
region of a country, or spoken in a different country than the country from which the language
originates.

The Locale instance is handed to components that need to localize their actions, whether it is
converting the input, output, or just need it for internal operations. The Locale class cannot do any
internationalization or localization by itself

Language

The language must be an ISO 639 2 or 3 character language code, or a registered language
subtag of up to 8 characters. In case a language has both a 2 and 3 character language code, use
the 2 character code. A full list of language codes can be found in the IANA Language Subtag
Registry.

Language codes are case insensitive, but the Locale class always use lowercase versions of the
language codes

Creating a Locale

Creating a java.util.Locale instance can be done in four different ways:

Locale constants
Locale constructors
Locale.Builder class
Locale.forLanguageTag factory method

Java ResourceBundle

You create a ResourceBundle instance like this:

Locale locale = new Locale("en", "US");
ResourceBundle labels = ResourceBundle.getBundle("i18n.properties");
System.out.println(labels.getString("message"));

Consider I have a property file i18n.properties:

message=This is locale

Output:

This is locale

https://riptutorial.com/ 710

Setting Locale

If you want to reproduce the state using other languages, you can use setDefault() method. Its
usage:

 setDefault(Locale.JAPANESE); //Set Japanese

Read Localization and Internationalization online:
https://riptutorial.com/java/topic/4086/localization-and-internationalization

https://riptutorial.com/ 711

https://riptutorial.com/java/topic/4086/localization-and-internationalization

Chapter 111: LocalTime

Syntax

LocalTime time = LocalTime.now(); // Initializes with current system clock•
LocalTime time = LocalTime.MIDNIGHT; // 00:00•
LocalTime time = LocalTime.NOON; // 12:00•
LocalTime time = LocalTime.of(12, 12, 45); // 12:12:45•

Parameters

Method Output

LocalTime.of(13, 12, 11) 13:12:11

LocalTime.MIDNIGHT 00:00

LocalTime.NOON 12:00

LocalTime.now() Current time from system clock

LocalTime.MAX The maximum supported local time 23:59:59.999999999

LocalTime.MIN The minimum supported local time 00:00

LocalTime.ofSecondOfDay(84399) 23:59:59 , Obtains Time from second-of-day value

LocalTime.ofNanoOfDay(2000000000) 00:00:02 , Obtains Time from nanos-of-day value

Remarks

As class name denotes, LocalTime represents a time without a time-zone. It doesn't represent a
date. It's a simple label for a given time.

The class is value-based and the equals method should be used when doing comparisons.

This class is from the package java.time.

Examples

Time Modification

You can add hours, minutes, seconds and nanoseconds:

LocalTime time = LocalTime.now();

https://riptutorial.com/ 712

LocalTime addHours = time.plusHours(5); // Add 5 hours
LocaLTime addMinutes = time.plusMinutes(15) // Add 15 minutes
LocalTime addSeconds = time.plusSeconds(30) // Add 30 seconds
LocalTime addNanoseconds = time.plusNanos(150_000_000) // Add 150.000.000ns (150ms)

Time Zones and their time difference

import java.time.LocalTime;
import java.time.ZoneId;
import java.time.temporal.ChronoUnit;

public class Test {
 public static void main(String[] args)
 {
 ZoneId zone1 = ZoneId.of("Europe/Berlin");
 ZoneId zone2 = ZoneId.of("Brazil/East");

 LocalTime now = LocalTime.now();
 LocalTime now1 = LocalTime.now(zone1);
 LocalTime now2 = LocalTime.now(zone2);

 System.out.println("Current Time : " + now);
 System.out.println("Berlin Time : " + now1);
 System.out.println("Brazil Time : " + now2);

 long minutesBetween = ChronoUnit.MINUTES.between(now2, now1);
 System.out.println("Minutes Between Berlin and Brazil : " + minutesBetween
+"mins");
 }
}

Amount of time between two LocalTime

There are two equivalent ways to calculate the amount of time unit between two LocalTime: (1)
through until(Temporal, TemporalUnit) method and through (2) TemporalUnit.between(Temporal,
Temporal).

import java.time.LocalTime;
import java.time.temporal.ChronoUnit;

public class AmountOfTime {

 public static void main(String[] args) {

 LocalTime start = LocalTime.of(1, 0, 0); // hour, minute, second
 LocalTime end = LocalTime.of(2, 10, 20); // hour, minute, second

 long halfDays1 = start.until(end, ChronoUnit.HALF_DAYS); // 0
 long halfDays2 = ChronoUnit.HALF_DAYS.between(start, end); // 0

 long hours1 = start.until(end, ChronoUnit.HOURS); // 1
 long hours2 = ChronoUnit.HOURS.between(start, end); // 1

 long minutes1 = start.until(end, ChronoUnit.MINUTES); // 70
 long minutes2 = ChronoUnit.MINUTES.between(start, end); // 70

https://riptutorial.com/ 713

 long seconds1 = start.until(end, ChronoUnit.SECONDS); // 4220
 long seconds2 = ChronoUnit.SECONDS.between(start, end); // 4220

 long millisecs1 = start.until(end, ChronoUnit.MILLIS); // 4220000
 long millisecs2 = ChronoUnit.MILLIS.between(start, end); // 4220000

 long microsecs1 = start.until(end, ChronoUnit.MICROS); // 4220000000
 long microsecs2 = ChronoUnit.MICROS.between(start, end); // 4220000000

 long nanosecs1 = start.until(end, ChronoUnit.NANOS); // 4220000000000
 long nanosecs2 = ChronoUnit.NANOS.between(start, end); // 4220000000000

 // Using others ChronoUnit will be thrown UnsupportedTemporalTypeException.
 // The following methods are examples thereof.
 long days1 = start.until(end, ChronoUnit.DAYS);
 long days2 = ChronoUnit.DAYS.between(start, end);
 }
}

Intro

LocalTime is an immutable class and thread-safe, used to represent time, often viewed as hour-
min-sec. Time is represented to nanosecond precision. For example, the value
"13:45.30.123456789" can be stored in a LocalTime.

This class does not store or represent a date or time-zone. Instead, it is a description of the local
time as seen on a wall clock. It cannot represent an instant on the time-line without additional
information such as an offset or time-zone. This is a value based class, equals method should be
used for comparisons.

Fields

MAX - The maximum supported LocalTime, '23:59:59.999999999'. MIDNIGHT, MIN, NOON

Important Static Methods

now(), now(Clock clock), now(ZoneId zone), parse(CharSequence text)

Important Instance Methods

isAfter(LocalTime other), isBefore(LocalTime other), minus(TemporalAmount amountToSubtract),
minus(long amountToSubtract, TemporalUnit unit), plus(TemporalAmount amountToAdd),
plus(long amountToAdd, TemporalUnit unit)

ZoneId zone = ZoneId.of("Asia/Kolkata");
LocalTime now = LocalTime.now();
LocalTime now1 = LocalTime.now(zone);
LocalTime then = LocalTime.parse("04:16:40");

Difference in time can be calculated in any of following ways

long timeDiff = Duration.between(now, now1).toMinutes();
long timeDiff1 = java.time.temporal.ChronoUnit.MINUTES.between(now2, now1);

https://riptutorial.com/ 714

You can also add/subtract hours, minutes or seconds from any object of LocalTime.

minusHours(long hoursToSubtract), minusMinutes(long hoursToMinutes), minusNanos(long
nanosToSubtract), minusSeconds(long secondsToSubtract), plusHours(long hoursToSubtract),
plusMinutes(long hoursToMinutes), plusNanos(long nanosToSubtract), plusSeconds(long
secondsToSubtract)

now.plusHours(1L);
now1.minusMinutes(20L);

Read LocalTime online: https://riptutorial.com/java/topic/3065/localtime

https://riptutorial.com/ 715

https://riptutorial.com/java/topic/3065/localtime

Chapter 112: log4j / log4j2

Introduction

Apache Log4j is a Java-based logging utility, it is one of several Java logging frameworks. This
topic is to show how to setup and configure Log4j in Java with detailed examples on all of its
possible aspects of usage.

Syntax

Logger.debug("text to log"); // Logging debugging info•
Logger.info("text to log"); // Logging common info•
Logger.error("text to log"); // Logging error info•
Logger.warn("text to log"); // Logging warnings•
Logger.trace("text to log"); // Logging trace info•
Logger.fatal("text to log"); // Logging fatal errors•
Log4j2 usage with parameter logging:•
Logger.debug("Debug params {} {} {}", param1, param2, param3); // Logging debug with
parameters

•

Logger.info("Info params {} {} {}", param1, param2, param3); // Logging info with parameters•
Logger.error("Error params {} {} {}", param1, param2, param3); // Logging error with
parameters

•

Logger.warn("Warn params {} {} {}", param1, param2, param3); // Logging warnings with
parameters

•

Logger.trace("Trace params {} {} {}", param1, param2, param3); // Logging trace with
parameters

•

Logger.fatal("Fatal params {} {} {}", param1, param2, param3); // Logging fatal with
parameters

•

Logger.error("Caught Exception: ", ex); // Logging exception with message and stacktrace
(will automatically be appended)

•

Remarks

End of Life for Log4j 1 reached

On August 5, 2015 the Logging Services Project Management Committee announced
that Log4j 1.x had reached end of life. For complete text of the announcement please
see the Apache Blog. Users of Log4j 1 are recommended to upgrade to Apache
Log4j 2.

From: http://logging.apache.org/log4j/1.2/

https://riptutorial.com/ 716

https://en.wikipedia.org/wiki/Log4j
http://logging.apache.org/log4j/1.2/

Examples

How to get Log4j

Current version (log4j2)

Using Maven:
Add the following dependency to your POM.xml file:

<dependencies>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
 <version>2.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>
 <version>2.6.2</version>
 </dependency>
</dependencies>

Using Ivy:

<dependencies>
 <dependency org="org.apache.logging.log4j" name="log4j-api" rev="2.6.2" />
 <dependency org="org.apache.logging.log4j" name="log4j-core" rev="2.6.2" />
</dependencies>

Using Gradle:

dependencies {
 compile group: 'org.apache.logging.log4j', name: 'log4j-api', version: '2.6.2'
 compile group: 'org.apache.logging.log4j', name: 'log4j-core', version: '2.6.2'
}

Getting log4j 1.x

Note: Log4j 1.x has reached End-of-Life (EOL) (see Remarks).

Using Maven:

Declare this dependency in the POM.xml file:

<dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>

https://riptutorial.com/ 717

</dependency>

Using Ivy:

<dependency org="log4j" name="log4j" rev="1.2.17"/>

Usign Gradle:

compile group: 'log4j', name: 'log4j', version: '1.2.17'

Using Buildr:

'log4j:log4j:jar:1.2.17'

Adding manually in path build:

Download from Log4j website project

How to use Log4j in Java code

First need to create a final static logger object:

final static Logger logger = Logger.getLogger(classname.class);

Then, call logging methods:

//logs an error message
logger.info("Information about some param: " + parameter); // Note that this line could throw
a NullPointerException!

//in order to improve performance, it is advised to use the `isXXXEnabled()` Methods
if(logger.isInfoEnabled()){
 logger.info("Information about some param: " + parameter);
}

// In log4j2 parameter substitution is preferable due to readability and performance
// The parameter substitution only takes place if info level is active which obsoletes the use
of isXXXEnabled().
logger.info("Information about some param: {}" , parameter);

//logs an exception
logger.error("Information about some error: ", exception);

Setting up property file

Log4j gives you posibility to log data into console and file at same time. Create a log4j.properties
file and put inside this basic configuration:

Root logger option
log4j.rootLogger=DEBUG, stdout, file

https://riptutorial.com/ 718

http://logging.apache.org/log4j/1.2/download.html

Redirect log messages to console
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n

Redirect log messages to a log file, support file rolling.
log4j.appender.file=org.apache.log4j.RollingFileAppender
log4j.appender.file.File=C:\\log4j-application.log
log4j.appender.file.MaxFileSize=5MB
log4j.appender.file.MaxBackupIndex=10
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n

If you are using maven, put this propertie file in path:

/ProjectFolder/src/java/resources

Basic log4j2.xml configuration file

<?xml version="1.0" encoding="UTF-8"?>
<Configuration>
 <Appenders>
 <Console name="STDOUT" target="SYSTEM_OUT">
 <PatternLayout pattern="%d %-5p [%t] %C{2} %m%n"/>
 </Console>
 </Appenders>
 <Loggers>
 <Root level="debug">
 <AppenderRef ref="STDOUT"/>
 </Root>
 </Loggers>
</Configuration>

This is a basic log4j2.xml configuration which has a console appender and a root logger. The
pattern layout specifies which pattern should be used for logging the statements.
In order to debug the loading of log4j2.xml you can add the attribute status = <WARN | DEBUG |
ERROR | FATAL | TRACE | INFO> in the configuration tag of your log4j2.xml.
You can also add a monitor interval so that it loads the configuration again after the specified
interval period. The monitor interval can be added to the configuration tag as follows:
monitorInterval = 30. It means that the config will be loaded every 30 seconds.

Migrating from log4j 1.x to 2.x

If you want to migrate from existing log4j 1.x in your project to log4j 2.x then remove all existing
log4j 1.x dependencies and add the following dependency:

Log4j 1.x API Bridge

Maven Build

<dependencies>

https://riptutorial.com/ 719

 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-1.2-api</artifactId>
 <version>2.6.2</version>
 </dependency>
</dependencies>

Ivy Build

<dependencies>
 <dependency org="org.apache.logging.log4j" name="log4j-1.2-api" rev="2.6.2" />
</dependencies>

Gradle Build

dependencies {
 compile group: 'org.apache.logging.log4j', name: 'log4j-1.2-api', version: '2.6.2'
}

Apache Commons Logging Bridge If your project is using Apache Commons Logging which use
log4j 1.x and you want to migrate it to log4j 2.x then add the following dependencies:

Maven Build

<dependencies>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-jcl</artifactId>
 <version>2.6.2</version>
 </dependency>
</dependencies>

Ivy Build

<dependencies>
 <dependency org="org.apache.logging.log4j" name="log4j-jcl" rev="2.6.2" />
</dependencies>

Gradle Build

dependencies {
 compile group: 'org.apache.logging.log4j', name: 'log4j-jcl', version: '2.6.2'
}

Note: Do not remove any existing dependencies of Apache commons logging

Reference: https://logging.apache.org/log4j/2.x/maven-artifacts.html

Properties-File to log to DB

For this example to work you'll need a JDBC driver compatible to the system the database is

https://riptutorial.com/ 720

https://logging.apache.org/log4j/2.x/maven-artifacts.html

running on. An opensource one that allows you to connect to DB2 databases on an IBM System i
can be found here: JT400

Even though this example is DB2 specific, it works for almost every other system if you exchange
the driver and adapt the JDBC URL.

Root logger option
log4j.rootLogger= ERROR, DB

Redirect log messages to a DB2
Define the DB appender
log4j.appender.DB=org.apache.log4j.jdbc.JDBCAppender

Set JDBC URL (!!! adapt to your target system !!!)
log4j.appender.DB.URL=jdbc:as400://10.10.10.1:446/DATABASENAME;naming=system;errors=full;

Set Database Driver (!!! adapt to your target system !!!)
log4j.appender.DB.driver=com.ibm.as400.access.AS400JDBCDriver

Set database user name and password
log4j.appender.DB.user=USER
log4j.appender.DB.password=PASSWORD

Set the SQL statement to be executed.
log4j.appender.DB.sql=INSERT INTO DB.TABLENAME VALUES('%d{yyyy-MM-
dd}','%d{HH:mm:ss}','%C','%p','%m')

Define the layout for file appender
log4j.appender.DB.layout=org.apache.log4j.PatternLayout

Filter Logoutput by level (log4j 1.x)

You can use a filter to log only messages "lower" than e.g. ERROR level. But the filter is not
supported by PropertyConfigurator. So you must change to XML config to use it. See log4j-
Wiki about filters.

Example "specific level"

<appender name="info-out" class="org.apache.log4j.FileAppender">
 <param name="File" value="info.log"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%m%n"/>
 </layout>
 <filter class="org.apache.log4j.varia.LevelMatchFilter">
 <param name="LevelToMatch" value="info" />
 <param name="AcceptOnMatch" value="true"/>
 </filter>
 <filter class="org.apache.log4j.varia.DenyAllFilter" />
</appender>

Or "Level range"

<appender name="info-out" class="org.apache.log4j.FileAppender">
 <param name="File" value="info.log"/>
 <layout class="org.apache.log4j.PatternLayout">

https://riptutorial.com/ 721

http://jt400.sourceforge.net/
http://wiki.apache.org/logging-log4j/LogToAppenderByLevel?highlight=%28filter%29
http://wiki.apache.org/logging-log4j/LogToAppenderByLevel?highlight=%28filter%29

 <param name="ConversionPattern" value="%m%n"/>
 </layout>
 <filter class="org.apache.log4j.varia.LevelRangeFilter">
 <param name="LevelMax" value="info"/>
 <param name="LevelMin" value="info"/>
 <param name="AcceptOnMatch" value="true"/>
 </filter>
</appender>

Read log4j / log4j2 online: https://riptutorial.com/java/topic/2472/log4j---log4j2

https://riptutorial.com/ 722

https://riptutorial.com/java/topic/2472/log4j---log4j2

Chapter 113: Logging (java.util.logging)

Examples

Using the default logger

This example shows how to use the default logging api.

import java.util.logging.Level;
import java.util.logging.Logger;

public class MyClass {

 // retrieve the logger for the current class
 private static final Logger LOG = Logger.getLogger(MyClass.class.getName());

 public void foo() {
 LOG.info("A log message");
 LOG.log(Level.INFO, "Another log message");

 LOG.fine("A fine message");

 // logging an exception
 try {
 // code might throw an exception
 } catch (SomeException ex) {
 // log a warning printing "Something went wrong"
 // together with the exception message and stacktrace
 LOG.log(Level.WARNING, "Something went wrong", ex);
 }

 String s = "Hello World!";

 // logging an object
 LOG.log(Level.FINER, "String s: {0}", s);

 // logging several objects
 LOG.log(Level.FINEST, "String s: {0} has length {1}", new Object[]{s, s.length()});
 }

}

Logging levels

Java Logging Api has 7 levels. The levels in descending order are:

SEVERE (highest value)•
WARNING•
INFO•
CONFIG•
FINE•
FINER•
FINEST (lowest value)•

https://riptutorial.com/ 723

https://docs.oracle.com/javase/8/docs/api/java/util/logging/Level.html

The default level is INFO (but this depends on the system and used a virtual machine).

Note: There are also levels OFF (can be used to turn logging off) and ALL (the oposite of OFF).

Code example for this:

import java.util.logging.Logger;

public class Levels {
 private static final Logger logger = Logger.getLogger(Levels.class.getName());

 public static void main(String[] args) {

 logger.severe("Message logged by SEVERE");
 logger.warning("Message logged by WARNING");
 logger.info("Message logged by INFO");
 logger.config("Message logged by CONFIG");
 logger.fine("Message logged by FINE");
 logger.finer("Message logged by FINER");
 logger.finest("Message logged by FINEST");

 // All of above methods are really just shortcut for
 // public void log(Level level, String msg):
 logger.log(Level.FINEST, "Message logged by FINEST");
 }
}

By default running this class will output only messages with level higher then CONFIG:

Jul 23, 2016 9:16:11 PM LevelsExample main
SEVERE: Message logged by SEVERE
Jul 23, 2016 9:16:11 PM LevelsExample main
WARNING: Message logged by WARNING
Jul 23, 2016 9:16:11 PM LevelsExample main
INFO: Message logged by INFO

Logging complex messages (efficiently)

Let's look at a sample of logging which you can see in many programs:

public class LoggingComplex {

 private static final Logger logger =
 Logger.getLogger(LoggingComplex.class.getName());

 private int total = 50, orders = 20;
 private String username = "Bob";

 public void takeOrder() {
 // (...) making some stuff
 logger.fine(String.format("User %s ordered %d things (%d in total)",
 username, orders, total));
 // (...) some other stuff
 }

 // some other methods and calculations

https://riptutorial.com/ 724

}

The above example looks perfectly fine, but many programmers forgets that Java VM is stack
machine. This means that all method's parameters are calculated before executing the method.

This fact is crucial for logging in Java, especially for logging something in low levels like FINE, FINER
, FINEST which are disabled by default. Let's look at Java bytecode for the takeOrder() method.

The result for javap -c LoggingComplex.class is something like this:

public void takeOrder();
 Code:
 0: getstatic #27 // Field logger:Ljava/util/logging/Logger;
 3: ldc #45 // String User %s ordered %d things (%d in total)
 5: iconst_3
 6: anewarray #3 // class java/lang/Object
 9: dup
 10: iconst_0
 11: aload_0
 12: getfield #40 // Field username:Ljava/lang/String;
 15: aastore
 16: dup
 17: iconst_1
 18: aload_0
 19: getfield #36 // Field orders:I
 22: invokestatic #47 // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
 25: aastore
 26: dup
 27: iconst_2
 28: aload_0
 29: getfield #34 // Field total:I
 32: invokestatic #47 // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
 35: aastore
 36: invokestatic #53 // Method
java/lang/String.format:(Ljava/lang/String;[Ljava/lang/Object;)Ljava/lang/String;
 39: invokevirtual #59 // Method java/util/logging/Logger.fine:(Ljava/lang/String;)V
 42: return

Line 39 runs the actual logging. All of the previous work (loading variables, creating new objects,
concatenating Strings in format method) can be for nothing if logging level is set higher then FINE
(and by default it is). Such logging can be very inefficient, consuming unnecessary memory and
processor resources.

That's why you should ask if the level you want to use is enabled.

The right way should be:

public void takeOrder() {
 // making some stuff
 if (logger.isLoggable(Level.FINE)) {
 // no action taken when there's no need for it
 logger.fine(String.format("User %s ordered %d things (%d in total)",
 username, orders, total));
 }
 // some other stuff
}

https://riptutorial.com/ 725

Since Java 8:

The Logger class has additional methods that take a Supplier<String> as parameter, which can
simply be provided by a lambda:

public void takeOrder() {
 // making some stuff
 logger.fine(() -> String.format("User %s ordered %d things (%d in total)",
 username, orders, total));
 // some other stuff
}

The Suppliers get()method - in this case the lambda - is only called when the corresponding level
is enabled and so the ifconstruction is not needed anymore.

Read Logging (java.util.logging) online: https://riptutorial.com/java/topic/2010/logging--java-util-
logging-

https://riptutorial.com/ 726

https://riptutorial.com/java/topic/2010/logging--java-util-logging-
https://riptutorial.com/java/topic/2010/logging--java-util-logging-

Chapter 114: Maps

Introduction

The java.util.Map interface represents a mapping between keys and their values. A map cannot
contain duplicate keys; and each key can map to at most one value.

Since Map is an interface, then you need to instantiate a concrete implementation of that interface
in order to use it; there are several Map implementations, and mostly used are the java.util.HashMap
and java.util.TreeMap

Remarks

A map is an object which store keys with an associated value for each key. A key and its value are
sometimes called a key/value pair or an entry. Maps typically provide these features:

Data is stored into the map in key/value pairs.•
The map may contain only one entry for a particular key. If a map contains an entry with a
particular key, and you try to store a second entry with the same key, then the second entry
will replace the first. In other words, this will change the value associated with the key.

•

Maps provide fast operations to test whether a key exists in the map, to fetch the value
associated with a key, and to remove a key/value pair.

•

The most commonly used map implementation is HashMap. It works well with keys that are strings
or numbers.

Plain maps such as HashMap are unordered. Iterating through key/value pairs may return
individual entries in any order. If you need to iterate through map entries in a controlled fashion,
you should look at the following:

Sorted maps such as TreeMap will iterate through keys in their natural order (or in an order
that you can specify, by providing a Comparator). For example, a sorted map using numbers
as keys would be expected to iterate through its entries in numeric order.

•

LinkedHashMap permits iterating through entries in the same order that they were inserted
into the map, or by the order of most recently accessed.

•

Examples

Add an element

Addition1.

Map<Integer, String> map = new HashMap<>();
map.put(1, "First element.");
System.out.println(map.get(1));

https://riptutorial.com/ 727

https://docs.oracle.com/javase/7/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/SortedMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html

Output: First element.

Override2.

Map<Integer, String> map = new HashMap<>();
map.put(1, "First element.");
map.put(1, "New element.");
System.out.println(map.get(1));

Output: New element.

HashMap is used as an example. Other implementations that implement the Map interface may be
used as well.

Add multiple items

We can use V put(K key,V value):

Associates the specified value with the specified key in this map (optional operation). If
the map previously contained a mapping for the key, the old value is replaced by the
specified value.

String currentVal;
Map<Integer, String> map = new TreeMap<>();
currentVal = map.put(1, "First element.");
System.out.println(currentVal);// Will print null
currentVal = map.put(2, "Second element.");
System.out.println(currentVal); // Will print null yet again
currentVal = map.put(2, "This will replace 'Second element'");
System.out.println(currentVal); // will print Second element.
System.out.println(map.size()); // Will print 2 as key having
// value 2 was replaced.

Map<Integer, String> map2 = new HashMap<>();
map2.put(2, "Element 2");
map2.put(3, "Element 3");

map.putAll(map2);

System.out.println(map.size());

Output:

3

To add many items you can use an inner classes like this:

Map<Integer, String> map = new HashMap<>() {{
 // This is now an anonymous inner class with an unnamed instance constructor
 put(5, "high");
 put(4, "low");
 put(1, "too slow");
}};

https://riptutorial.com/ 728

Keep in mind that creating an anonymous inner class is not always efficient and can lead to
memory leaks so when possible, use an initializer block instead:

static Map<Integer, String> map = new HashMap<>();

static {
 // Now no inner classes are created so we can avoid memory leaks
 put(5, "high");
 put(4, "low");
 put(1, "too slow");
}

The example above makes the map static. It can also be used in a non-static context by removing
all occurences of static.

In addition to that most implementations support putAll, which can add all entries in one map to
another like this:

another.putAll(one);

Using Default Methods of Map from Java 8

Examples of using Default Methods introduced in Java 8 in Map interface

Using getOrDefault1.

Returns the value mapped to the key, or if the key is not present, returns the default value

Map<Integer, String> map = new HashMap<>();
map.put(1, "First element");
map.get(1); // => First element
map.get(2); // => null
map.getOrDefault(2, "Default element"); // => Default element

Using forEach2.

Allows to perform the operation specified in the 'action' on each Map Entry

 Map<Integer, String> map = new HashMap<Integer, String>();
 map.put(1, "one");
 map.put(2, "two");
 map.put(3, "three");
 map.forEach((key, value) -> System.out.println("Key: "+key+ " :: Value: "+value));

 // Key: 1 :: Value: one
 // Key: 2 :: Value: two
 // Key: 3 :: Value: three

Using replaceAll3.

Will replace with new-value only if key is present

https://riptutorial.com/ 729

 Map<String, Integer> map = new HashMap<String, Integer>();
 map.put("john", 20);
 map.put("paul", 30);
 map.put("peter", 40);
 map.replaceAll((key,value)->value+10); //{john=30, paul=40, peter=50}

Using putIfAbsent4.

Key-Value pair is added to the map, if the key is not present or mapped to null

 Map<String, Integer> map = new HashMap<String, Integer>();
 map.put("john", 20);
 map.put("paul", 30);
 map.put("peter", 40);
 map.putIfAbsent("kelly", 50); //{john=20, paul=30, peter=40, kelly=50}

Using remove

Removes the key only if its associated with the given value

 Map<String, Integer> map = new HashMap<String, Integer>();
 map.put("john", 20);
 map.put("paul", 30);
 map.put("peter", 40);
 map.remove("peter",40); //{john=30, paul=40}

5.

Using replace

If the key is present then the value is replaced by new-value. If the key is not present, does
nothing.

6.

Map<String, Integer> map = new HashMap<String, Integer>();
map.put("john", 20);
map.put("paul", 30);
map.put("peter", 40);
map.replace("peter",50); //{john=20, paul=30, peter=50}
map.replace("jack",60); //{john=20, paul=30, peter=50}

Using computeIfAbsent7.

This method adds an entry in the Map. the key is specified in the function and the value is the
result of the application of the mapping function

 Map<String, Integer> map = new HashMap<String, Integer>();
 map.put("john", 20);
 map.put("paul", 30);
 map.put("peter", 40);
 map.computeIfAbsent("kelly", k->map.get("john")+10); //{john=20, paul=30, peter=40,
kelly=30}
 map.computeIfAbsent("peter", k->map.get("john")+10); //{john=20, paul=30, peter=40,
kelly=30} //peter already present

Using computeIfPresent8.

https://riptutorial.com/ 730

This method adds an entry or modifies an existing entry in the Map. Does nothing if an entry with
that key is not present

 Map<String, Integer> map = new HashMap<String, Integer>();
 map.put("john", 20);
 map.put("paul", 30);
 map.put("peter", 40);
 map.computeIfPresent("kelly", (k,v)->v+10); //{john=20, paul=30, peter=40} //kelly not
present
 map.computeIfPresent("peter", (k,v)->v+10); //{john=20, paul=30, peter=50} // peter
present, so increase the value

Using compute9.

This method replaces the value of a key by the newly computed value

 Map<String, Integer> map = new HashMap<String, Integer>();
 map.put("john", 20);
 map.put("paul", 30);
 map.put("peter", 40);
 map.compute("peter", (k,v)->v+50); //{john=20, paul=30, peter=90} //Increase the value

Using merge10.

Adds the key-value pair to the map, if key is not present or value for the key is null Replaces the
value with the newly computed value, if the key is present Key is removed from the map , if new
value computed is null

 Map<String, Integer> map = new HashMap<String, Integer>();
 map.put("john", 20);
 map.put("paul", 30);
 map.put("peter", 40);

 //Adds the key-value pair to the map, if key is not present or value for the key is null
 map.merge("kelly", 50 , (k,v)->map.get("john")+10); // {john=20, paul=30, peter=40,
kelly=50}

 //Replaces the value with the newly computed value, if the key is present
 map.merge("peter", 50 , (k,v)->map.get("john")+10); //{john=20, paul=30, peter=30,
kelly=50}

 //Key is removed from the map , if new value computed is null
 map.merge("peter", 30 , (k,v)->map.get("nancy")); //{john=20, paul=30, kelly=50}

Clear the map

Map<Integer, String> map = new HashMap<>();

map.put(1, "First element.");
map.put(2, "Second element.");
map.put(3, "Third element.");

map.clear();

https://riptutorial.com/ 731

System.out.println(map.size()); // => 0

Iterating through the contents of a Map

Maps provide methods which let you access the keys, values, or key-value pairs of the map as
collections. You can iterate through these collections. Given the following map for example:

Map<String, Integer> repMap = new HashMap<>();
repMap.put("Jon Skeet", 927_654);
repMap.put("BalusC", 708_826);
repMap.put("Darin Dimitrov", 715_567);

Iterating through map keys:

for (String key : repMap.keySet()) {
 System.out.println(key);
}

Prints:

Darin Dimitrov
Jon Skeet
BalusC

keySet() provides the keys of the map as a Set. Set is used as the keys cannot contain duplicate
values. Iterating through the set yields each key in turn. HashMaps are not ordered, so in this
example the keys may be returned in any order.

Iterating through map values:

for (Integer value : repMap.values()) {
 System.out.println(value);
}

Prints:

715567
927654
708826

values() returns the values of the map as a Collection. Iterating through the collection yields each
value in turn. Again, the values may be returned in any order.

Iterating through keys and values together

for (Map.Entry<String, Integer> entry : repMap.entrySet()) {
 System.out.printf("%s = %d\n", entry.getKey(), entry.getValue());
}

Prints:

https://riptutorial.com/ 732

http://docs.oracle.com/javase/8/docs/api/java/util/Set.html
http://docs.oracle.com/javase/8/docs/api/java/util/Collection.html

Darin Dimitrov = 715567
Jon Skeet = 927654
BalusC = 708826

entrySet() returns a collection of Map.Entry objects. Map.Entry gives access to the key and value
for each entry.

Merging, combine and composing Maps

Use putAll to put every member of one map into another. Keys already present in the map will
have their corresponding values overwritten.

Map<String, Integer> numbers = new HashMap<>();
numbers.put("One", 1)
numbers.put("Three", 3)
Map<String, Integer> other_numbers = new HashMap<>();
other_numbers.put("Two", 2)
other_numbers.put("Three", 4)

numbers.putAll(other_numbers)

This yields the following mapping in numbers:

"One" -> 1
"Two" -> 2
"Three" -> 4 //old value 3 was overwritten by new value 4

If you want to combine values instead of overwriting them, you can use Map.merge, added in Java 8,
which uses a user-provided BiFunction to merge values for duplicate keys. merge operates on
individual keys and values, so you'll need to use a loop or Map.forEach. Here we concatenate
strings for duplicate keys:

for (Map.Entry<String, Integer> e : other_numbers.entrySet())
 numbers.merge(e.getKey(), e.getValue(), Integer::sum);
//or instead of the above loop
other_numbers.forEach((k, v) -> numbers.merge(k, v, Integer::sum));

If you want to enforce the constraint there are no duplicate keys, you can use a merge function
that throws an AssertionError:

mapA.forEach((k, v) ->
 mapB.merge(k, v, (v1, v2) ->
 {throw new AssertionError("duplicate values for key: "+k);}));

Composing Map<X,Y> and Map<Y,Z> to get Map<X,Z>

If you want to compose two mappings, you can do it as follows

 Map<String, Integer> map1 = new HashMap<String, Integer>();

https://riptutorial.com/ 733

http://docs.oracle.com/javase/8/docs/api/java/util/Map.Entry.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html#merge-K-V-java.util.function.BiFunction-

 map1.put("key1", 1);
 map1.put("key2", 2);
 map1.put("key3", 3);

 Map<Integer, Double> map2 = new HashMap<Integer, Double>();
 map2.put(1, 1.0);
 map2.put(2, 2.0);
 map2.put(3, 3.0);

 Map<String, Double> map3 = new new HashMap<String, Double>();
 map1.forEach((key,value)->map3.put(key,map2.get(value)));

This yields the following mapping

 "key1" -> 1.0
 "key2" -> 2.0
 "key3" -> 3.0

Check if key exists

Map<String, String> num = new HashMap<>();
num.put("one", "first");

if (num.containsKey("one")) {
 System.out.println(num.get("one")); // => first
}

Maps can contain null values

For maps, one has to be carrefull not to confuse "containing a key" with "having a value". For
example, HashMaps can contain null which means the following is perfectly normal behavior :

Map<String, String> map = new HashMap<>();
map.put("one", null);
if (map.containsKey("one")) {
 System.out.println("This prints !"); // This line is reached
}
if (map.get("one") != null) {
 System.out.println("This is never reached !"); // This line is never reached
}

More formally, there is no guarantee that map.contains(key) <=> map.get(key)!=null

Iterating Map Entries Efficiently

This section provides code and benchmarks for ten unique example implementations which iterate
over the entries of a Map<Integer, Integer> and generate the sum of the Integer values. All of the
examples have an algorithmic complexity of Θ(n), however, the benchmarks are still useful for
providing insight on which implementations are more efficient in a "real world" environment.

Implementation using Iterator with Map.Entry1.

https://riptutorial.com/ 734

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.Entry.html

 Iterator<Map.Entry<Integer, Integer>> it = map.entrySet().iterator();
 while (it.hasNext()) {
 Map.Entry<Integer, Integer> pair = it.next();
 sum += pair.getKey() + pair.getValue();
 }

Implementation using for with Map.Entry2.

 for (Map.Entry<Integer, Integer> pair : map.entrySet()) {
 sum += pair.getKey() + pair.getValue();
 }

Implementation using Map.forEach (Java 8+)3.

 map.forEach((k, v) -> sum[0] += k + v);

Implementation using Map.keySet with for4.

 for (Integer key : map.keySet()) {
 sum += key + map.get(key);
 }

Implementation using Map.keySet with Iterator5.

 Iterator<Integer> it = map.keySet().iterator();
 while (it.hasNext()) {
 Integer key = it.next();
 sum += key + map.get(key);
 }

Implementation using for with Iterator and Map.Entry6.

 for (Iterator<Map.Entry<Integer, Integer>> entries =
 map.entrySet().iterator(); entries.hasNext();) {
 Map.Entry<Integer, Integer> entry = entries.next();
 sum += entry.getKey() + entry.getValue();
 }

Implementation using Stream.forEach (Java 8+)7.

 map.entrySet().stream().forEach(e -> sum += e.getKey() + e.getValue());

Implementation using Stream.forEach with Stream.parallel (Java 8+)8.

 map.entrySet()
 .stream()
 .parallel()
 .forEach(e -> sum += e.getKey() + e.getValue());

Implementation using IterableMap from Apache Collections9.

https://riptutorial.com/ 735

https://docs.oracle.com/javase/8/docs/technotes/guides/language/foreach.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.Entry.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#forEach-java.util.function.BiConsumer-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#keySet--
https://docs.oracle.com/javase/8/docs/technotes/guides/language/foreach.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#keySet--
https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/foreach.html
https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.Entry.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach-java.util.function.Consumer-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach-java.util.function.Consumer-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/BaseStream.html#parallel--
https://commons.apache.org/proper/commons-collections/javadocs/api-release/org/apache/commons/collections4/IterableMap.html
https://commons.apache.org/proper/commons-collections/

 MapIterator<Integer, Integer> mit = iterableMap.mapIterator();
 while (mit.hasNext()) {
 sum += mit.next() + it.getValue();
 }

Implementation using MutableMap from Eclipse Collections10.

 mutableMap.forEachKeyValue((key, value) -> {
 sum += key + value;
 });

Performance Tests (Code available on Github)
Test Environment: Windows 8.1 64-bit, Intel i7-4790 3.60GHz, 16 GB

Average Performance of 10 Trials (100 elements) Best: 308±21 ns/op

Benchmark Score Error Units
test3_UsingForEachAndJava8 308 ± 21 ns/op
test10_UsingEclipseMutableMap 309 ± 9 ns/op
test1_UsingWhileAndMapEntry 380 ± 14 ns/op
test6_UsingForAndIterator 387 ± 16 ns/op
test2_UsingForEachAndMapEntry 391 ± 23 ns/op
test7_UsingJava8StreamAPI 510 ± 14 ns/op
test9_UsingApacheIterableMap 524 ± 8 ns/op
test4_UsingKeySetAndForEach 816 ± 26 ns/op
test5_UsingKeySetAndIterator 863 ± 25 ns/op
test8_UsingJava8StreamAPIParallel 5552 ± 185 ns/op

1.

Average Performance of 10 Trials (10000 elements) Best: 37.606±0.790 μs/op

Benchmark Score Error Units
test10_UsingEclipseMutableMap 37606 ± 790 ns/op
test3_UsingForEachAndJava8 50368 ± 887 ns/op
test6_UsingForAndIterator 50332 ± 507 ns/op
test2_UsingForEachAndMapEntry 51406 ± 1032 ns/op
test1_UsingWhileAndMapEntry 52538 ± 2431 ns/op
test7_UsingJava8StreamAPI 54464 ± 712 ns/op
test4_UsingKeySetAndForEach 79016 ± 25345 ns/op
test5_UsingKeySetAndIterator 91105 ± 10220 ns/op
test8_UsingJava8StreamAPIParallel 112511 ± 365 ns/op
test9_UsingApacheIterableMap 125714 ± 1935 ns/op

2.

Average Performance of 10 Trials (100000 elements) Best: 1184.767±332.968 μs/op

Benchmark Score Error Units
test1_UsingWhileAndMapEntry 1184.767 ± 332.968 μs/op
test10_UsingEclipseMutableMap 1191.735 ± 304.273 μs/op
test2_UsingForEachAndMapEntry 1205.815 ± 366.043 μs/op
test6_UsingForAndIterator 1206.873 ± 367.272 μs/op
test8_UsingJava8StreamAPIParallel 1485.895 ± 233.143 μs/op
test5_UsingKeySetAndIterator 1540.281 ± 357.497 μs/op
test4_UsingKeySetAndForEach 1593.342 ± 294.417 μs/op
test3_UsingForEachAndJava8 1666.296 ± 126.443 μs/op
test7_UsingJava8StreamAPI 1706.676 ± 436.867 μs/op
test9_UsingApacheIterableMap 3289.866 ± 1445.564 μs/op

3.

https://riptutorial.com/ 736

https://www.eclipse.org/collections/javadoc/8.0.0/org/eclipse/collections/api/map/MutableMap.html
https://www.eclipse.org/collections/
https://github.com/Vedenin/useful-java-links/blob/master/helloworlds/5.0-other-examples/src/main/java/other_examples/IterateThroughHashMapTest.java

A Comparison of Performance Variations Respective to Map Size4.

 x: Size of Map
 f(x): Benchmark Score (μs/op)

 100 600 1100 1600 2100

 10 | 0.333 1.631 2.752 5.937 8.024
 3 | 0.309 1.971 4.147 8.147 10.473
 6 | 0.372 2.190 4.470 8.322 10.531
 1 | 0.405 2.237 4.616 8.645 10.707
Tests 2 | 0.376 2.267 4.809 8.403 10.910
 f(x) 7 | 0.473 2.448 5.668 9.790 12.125
 9 | 0.565 2.830 5.952 13.22 16.965
 4 | 0.808 5.012 8.813 13.939 17.407
 5 | 0.81 5.104 8.533 14.064 17.422
 8 | 5.173 12.499 17.351 24.671 30.403

Use custom object as key

Before using your own object as key you must override hashCode() and equals() method of your

https://riptutorial.com/ 737

https://i.stack.imgur.com/17VGh.png

object.

In simple case you would have something like:

class MyKey {
 private String name;
 MyKey(String name) {
 this.name = name;
 }

 @Override
 public boolean equals(Object obj) {
 if(obj instanceof MyKey) {
 return this.name.equals(((MyKey)obj).name);
 }
 return false;
 }

 @Override
 public int hashCode() {
 return this.name.hashCode();
 }
}

hashCode will decide which hash bucket the key belongs to and equals will decide which object
inside that hash bucket.

Without these method, the reference of your object will be used for above comparison which will
not work unless you use the same object reference everytime.

Usage of HashMap

HashMap is an implementation of the Map interface that provides a Data Structure to store data in
Key-Value pairs.

1. Declaring HashMap

Map<KeyType, ValueType> myMap = new HashMap<KeyType, ValueType>();

KeyType and ValueType must be valid types in Java, such as - String, Integer, Float or any
custom class like Employee, Student etc..

For Example : Map<String,Integer> myMap = new HashMap<String,Integer>();

2. Putting values in HashMap.

To put a value in the HashMap, we have to call put method on the HashMap object by passing the
Key and the Value as parameters.

myMap.put("key1", 1);
myMap.put("key2", 2);

If you call the put method with the Key that already exists in the Map, the method will override its

https://riptutorial.com/ 738

value and return the old value.

3. Getting values from HashMap.

For getting the value from a HashMap you have to call the get method, by passing the Key as a
parameter.

myMap.get("key1"); //return 1 (class Integer)

If you pass a key that does not exists in the HashMap, this method will return null

4. Check whether the Key is in the Map or not.

myMap.containsKey(varKey);

5. Check whether the Value is in the Map or not.

myMap.containsValue(varValue);

The above methods will return a boolean value true or false if key, value exists in the Map or not.

Creating and Initializing Maps

Introduction

Maps stores key/value pairs, where each key has an associated value. Given a particular key, the
map can look up the associated value very quickly.

Maps, also known as associate array, is an object that stores the data in form of keys and values. In
Java, maps are represented using Map interface which is not an extension of the collection
interface.

Way 1 :-

 /*J2SE < 5.0*/
 Map map = new HashMap();
 map.put("name", "A");
 map.put("address", "Malviya-Nagar");
 map.put("city", "Jaipur");
 System.out.println(map);

•

Way 2 :-

 /*J2SE 5.0+ style (use of generics):*/
 Map<String, Object> map = new HashMap<>();
 map.put("name", "A");
 map.put("address", "Malviya-Nagar");
 map.put("city", "Jaipur");
 System.out.println(map);

•

https://riptutorial.com/ 739

Way 3 :-

 Map<String, Object> map = new HashMap<String, Object>(){{
 put("name", "A");
 put("address", "Malviya-Nagar");
 put("city", "Jaipur");
 }};
 System.out.println(map);

•

Way 4 :-

 Map<String, Object> map = new TreeMap<String, Object>();
 map.put("name", "A");
 map.put("address", "Malviya-Nagar");
 map.put("city", "Jaipur");
 System.out.println(map);

•

Way 5 :-

 //Java 8
 final Map<String, String> map =
 Arrays.stream(new String[][] {
 { "name", "A" },
 { "address", "Malviya-Nagar" },
 { "city", "jaipur" },
 }).collect(Collectors.toMap(m -> m[0], m -> m[1]));
 System.out.println(map);

•

Way 6 :-

 //This way for initial a map in outside the function
 final static Map<String, String> map;
 static
 {
 map = new HashMap<String, String>();
 map.put("a", "b");
 map.put("c", "d");
 }

•

Way 7 :- Creating an immutable single key-value map.

 //Immutable single key-value map
 Map<String, String> singletonMap = Collections.singletonMap("key", "value");

Please note, that it is impossible to modify such map.

Any attemts to modify the map will result in throwing the UnsupportedOperationException.

 //Immutable single key-value pair
 Map<String, String> singletonMap = Collections.singletonMap("key", "value");
 singletonMap.put("newKey", "newValue"); //will throw UnsupportedOperationException
 singletonMap.putAll(new HashMap<>()); //will throw UnsupportedOperationException
 singletonMap.remove("key"); //will throw UnsupportedOperationException

•

https://riptutorial.com/ 740

 singletonMap.replace("key", "value", "newValue"); //will throw
UnsupportedOperationException
 //and etc

Read Maps online: https://riptutorial.com/java/topic/105/maps

https://riptutorial.com/ 741

https://riptutorial.com/java/topic/105/maps

Chapter 115: Modules

Syntax

requires java.xml;•
requires public java.xml; # exposes module to dependents for use•
exports com.example.foo; # dependents can use public types in this package•
exports com.example.foo.impl to com.example.bar; # restrict usage to a module•

Remarks

The use of modules is encouraged but not required, this allows existing code to continue working
in Java 9. It also allows for a gradual transition to modular code.

Any non-modular code is put in an unnamed module when it is compiled. This is a special module
that is able to use types from all other modules but only from packages which have an exports
declaration.

All packages in the unnamed module are exported automatically.

Keywords, e.g. module etc..., are restricted in use within the module declaration but can be
continue to be used as identifiers elsewhere.

Examples

Defining a basic module

Modules are defined in a file named module-info.java, named a module descriptor. It should be
placed in the source-code root:

 |-- module-info.java
 |-- com
 |-- example
 |-- foo
 |-- Foo.java
 |-- bar
 |-- Bar.java

Here is a simple module descriptor:

module com.example {
 requires java.httpclient;
 exports com.example.foo;
}

The module name should be unique and it is recommended that you use the same Reverse-DNS
naming notation as used by packages to help ensure this.

https://riptutorial.com/ 742

https://en.wikipedia.org/wiki/Reverse_domain_name_notation
https://en.wikipedia.org/wiki/Reverse_domain_name_notation

The module java.base, which contains Java's basic classes, is implicitly visible to any module and
does not need to be included.

The requires declaration allows us to use other modules, in the example the module
java.httpclient is imported.

A module can also specify which packages it exports and therefore makes it visible to other
modules.

The package com.example.foo declared in the exports clause will be visible to other modules. Any
sub-packages of com.example.foo will not be exported, they need their own export declarations.

Conversely, com.example.bar which is not listed in exports clauses will not be visible to other
modules.

Read Modules online: https://riptutorial.com/java/topic/5286/modules

https://riptutorial.com/ 743

https://riptutorial.com/java/topic/5286/modules

Chapter 116: Multi-Release JAR Files

Introduction

One of the features introduced in Java 9 is the multi-release Jar (MRJAR) which allows bundling
code targeting multiple Java releases within the same Jar file. The feature is specified in JEP 238.

Examples

Example of a multi-release Jar file's contents

By setting Multi-Release: true in the MANIFEST.MF file, the Jar file becomes a multi-release Jar
and the Java runtime (as long as it supports the MRJAR format) will pick the appropriate versions
of classes depending on the current major version.

The structure of such a Jar is the following:

jar root
 - A.class
 - B.class
 - C.class
 - D.class
 - META-INF
 - versions
 - 9
 - A.class
 - B.class
 - 10
 - A.class

On JDKs < 9, only the classes in the root entry are visible to the Java runtime.•
On a JDK 9, the classes A and B will be loaded from the directory root/META-INF/versions/9,
while C and D will be loaded from the base entry.

•

On a JDK 10, class A would be loaded from the directory root/META-INF/versions/10.•

Creating a multi-release Jar using the jar tool

The jar command can be used to create a multi-release Jar containing two versions of the same
class compiled for both Java 8 and Java 9, albeit with a warning telling that the classes are
identical:

C:\Users\manouti>jar --create --file MR.jar -C sampleproject-base demo --release 9 -C
sampleproject-9 demo
Warning: entry META-INF/versions/9/demo/SampleClass.class contains a class that
is identical to an entry already in the jar

The --release 9 option tells jar to include everything that follows (the demo package inside the
sampleproject-9 directory) inside a versioned entry in the MRJAR, namely under root/META-

https://riptutorial.com/ 744

http://openjdk.java.net/jeps/238
http://download.java.net/java/jdk9/docs/api/java/util/jar/Attributes.Name.html#MULTI_RELEASE

INF/versions/9. The result is the following contents:

jar root
 - demo
 - SampleClass.class
 - META-INF
 - versions
 - 9
 - demo
 - SampleClass.class

Let us now create a class called Main that prints the URL of the SampleClass, and add it for the
Java 9 version:

package demo;

import java.net.URL;

public class Main {

 public static void main(String[] args) throws Exception {
 URL url = Main.class.getClassLoader().getResource("demo/SampleClass.class");
 System.out.println(url);
 }
}

If we compile this class and re-run the jar command, we get an error:

C:\Users\manouti>jar --create --file MR.jar -C sampleproject-base demo --release 9 -C
sampleproject-9 demoentry: META-INF/versions/9/demo/Main.class, contains a new public class
not found in base entries
Warning: entry META-INF/versions/9/demo/Main.java, multiple resources with same name
Warning: entry META-INF/versions/9/demo/SampleClass.class contains a class that
is identical to an entry already in the jar
invalid multi-release jar file MR.jar deleted

The reason is that the jar tool prevents adding public classes to versioned entries if they are not
added to the base entries as well. This is done so that the MRJAR exposes the same public API
for the different Java versions. Note that at runtime, this rule is not required. It may be only applied
by tools like jar. In this particular case, the purpose of Main is to run sample code, so we can
simply add a copy in the base entry. If the class were part of a newer implementation that we only
need for Java 9, it could be made non-public.

To add Main to the root entry, we first need to compile it to target a pre-Java 9 release. This can be
done using the new --release option of javac:

C:\Users\manouti\sampleproject-base\demo>javac --release 8 Main.java
C:\Users\manouti\sampleproject-base\demo>cd ../..
C:\Users\manouti>jar --create --file MR.jar -C sampleproject-base demo --release 9 -C
sampleproject-9 demo

Running the Main class shows that the SampleClass gets loaded from the versioned directory:

https://riptutorial.com/ 745

C:\Users\manouti>java --class-path MR.jar demo.Main
jar:file:/C:/Users/manouti/MR.jar!/META-INF/versions/9/demo/SampleClass.class

URL of a loaded class inside a multi-release Jar

Given the following multi-release Jar:

jar root
 - demo
 - SampleClass.class
 - META-INF
 - versions
 - 9
 - demo
 - SampleClass.class

The following class prints the URL of the SampleClass:

package demo;

import java.net.URL;

public class Main {

 public static void main(String[] args) throws Exception {
 URL url = Main.class.getClassLoader().getResource("demo/SampleClass.class");
 System.out.println(url);
 }
}

If the class is compiled and added on the versioned entry for Java 9 in the MRJAR, running it
would result in:

C:\Users\manouti>java --class-path MR.jar demo.Main
jar:file:/C:/Users/manouti/MR.jar!/META-INF/versions/9/demo/SampleClass.class

Read Multi-Release JAR Files online: https://riptutorial.com/java/topic/9866/multi-release-jar-files

https://riptutorial.com/ 746

https://riptutorial.com/java/topic/9866/multi-release-jar-files

Chapter 117: Nashorn JavaScript engine

Introduction

Nashorn is a JavaScript engine developed in Java by Oracle, and has been released with Java 8.
Nashorn allows embedding Javascript in Java applications via JSR-223 and allows to develop
standalone Javascript applications, and it provides better runtime performance and better
compliance with the ECMA normalized Javascript specification.

Syntax

ScriptEngineManager // Provides a discovery and installation mechanism for ScriptEngine
classes; uses a SPI (Service Provider Interface)

•

ScriptEngineManager.ScriptEngineManager() // Recommended constructor•
ScriptEngine // Provides the interface to the scripting language•
ScriptEngine ScriptEngineManager.getEngineByName(String shortName) // Factory method
for the given implementation

•

Object ScriptEngine.eval(String script) // Executes the specified script•
Object ScriptEngine.eval(Reader reader) // Loads and then executes a script from the
specified source

•

ScriptContext ScriptEngine.getContext() // Returns the default bindings, readers and writers
provider

•

void ScriptContext.setWriter(Writer writer) // Sets the destination to send script output to•

Remarks

Nashorn is a JavaScript engine written in Java and included in Java 8. Everything you need is
bundled in the javax.script package.

Note that the ScriptEngineManager provides a generic API allowing you to obtain script engines for
various scripting languages (i.e. not only Nashorn, not only JavaScript).

Examples

Set global variables

// Obtain an instance of JavaScript engine
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("nashorn");

// Define a global variable
engine.put("textToPrint", "Data defined in Java.");

// Print the global variable
try {
 engine.eval("print(textToPrint);");

https://riptutorial.com/ 747

https://en.wikipedia.org/wiki/Nashorn_(JavaScript_engine)
http://www.oracle.com/technetwork/articles/java/jf14-nashorn-2126515.html

} catch (ScriptException ex) {
 ex.printStackTrace();
}

// Outcome:
// 'Data defined in Java.' printed on standard output

Hello Nashorn

// Obtain an instance of JavaScript engine
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("nashorn");

// Execute an hardcoded script
try {
 engine.eval("print('Hello Nashorn!');");
} catch (ScriptException ex) {
 // This is the generic Exception subclass for the Scripting API
 ex.printStackTrace();
}

// Outcome:
// 'Hello Nashorn!' printed on standard output

Execute JavaScript file

// Required imports
import javax.script.ScriptEngineManager;
import javax.script.ScriptEngine;
import javax.script.ScriptException;
import java.io.FileReader;
import java.io.FileNotFoundException;

// Obtain an instance of the JavaScript engine
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("nashorn");

// Load and execute a script from the file 'demo.js'
try {
 engine.eval(new FileReader("demo.js"));
} catch (FileNotFoundException ex) {
 ex.printStackTrace();
} catch (ScriptException ex) {
 // This is the generic Exception subclass for the Scripting API
 ex.printStackTrace();
}

// Outcome:
// 'Script from file!' printed on standard output

demo.js:

print('Script from file!');

Intercept script output

https://riptutorial.com/ 748

// Obtain an instance of JavaScript engine
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("nashorn");

// Setup a custom writer
StringWriter stringWriter = new StringWriter();
// Modify the engine context so that the custom writer is now the default
// output writer of the engine
engine.getContext().setWriter(stringWriter);

// Execute some script
try {
 engine.eval("print('Redirected text!');");
} catch (ScriptException ex) {
 ex.printStackTrace();
}

// Outcome:
// Nothing printed on standard output, but
// stringWriter.toString() contains 'Redirected text!'

Evaluate Arithmetic Strings

// Obtain an instance of JavaScript engine
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("JavaScript");

//String to be evaluated
String str = "3+2*4+5";
//Value after doing Arithmetic operation with operator precedence will be 16

//Printing the value
try {
 System.out.println(engine.eval(str));
} catch (ScriptException ex) {
 ex.printStackTrace();
}

//Outcome:
//Value of the string after arithmetic evaluation is printed on standard output.
//In this case '16.0' will be printed on standard output.

Usage of Java objects in JavaScript in Nashorn

It's possible to pass Java objects to Nashorn engine to be processed in Java code. At the same
time, there are some JavaScript (and Nashorn) specific constructions, and it's not always clear
how they work with java objects.

Below there is a table which describes behaviour of native Java objects inside JavaScript
constructions.

Tested constructions:

Expression in if clause. In JS expression in if clause doesn't have to be boolean unlike Java.
It's evaluated as false for so called falsy values (null, undefined, 0, empty strings etc)

1.

https://riptutorial.com/ 749

for each statement Nashorn has a special kind of loop - for each - which can iterate over
different JS and Java object.

2.

Getting object size. In JS objects have a property length, which returns size of an array or a
string.

3.

Results:

Type If for each .length

Java null false No iterations Exception

Java empty string false No iterations 0

Java string true Iterates over string characters Length of the string

Java Integer/Long value != 0 No iterations undefined

Java ArrayList true Iterates over elements Length of the list

Java HashMap true Iterates over values null

Java HashSet true Iterates over items undefined

Recommendatons:

It's advisable to use if (some_string) to check if a string is not null and not empty•
for each can be safely used to iterate over any collection, and it doesn't raise exceptions if
the collection is not iterable, null or undefined

•

Before getting length of an object it must be checked for null or undefined (the same is true
for any attempt of calling a method or getting a property of Java object)

•

Implementing an interface from script

import java.io.FileReader;
import java.io.IOException;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class InterfaceImplementationExample {
 public static interface Pet {
 public void eat();
 }

 public static void main(String[] args) throws IOException {
 // Obtain an instance of JavaScript engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("nashorn");

 try {
 //evaluate a script

https://riptutorial.com/ 750

 /* pet.js */
 /*
 var Pet = Java.type("InterfaceImplementationExample.Pet");

 new Pet() {
 eat: function() { print("eat"); }
 }
 */

 Pet pet = (Pet) engine.eval(new FileReader("pet.js"));

 pet.eat();
 } catch (ScriptException ex) {
 ex.printStackTrace();
 }

 // Outcome:
 // 'eat' printed on standard output
 }
}

Set and get global variables

// Obtain an instance of JavaScript engine
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("nashorn");

try {
 // Set value in the global name space of the engine
 engine.put("name","Nashorn");
 // Execute an hardcoded script
 engine.eval("var value='Hello '+name+'!';");
 // Get value
 String value=(String)engine.get("value");
 System.out.println(value);
} catch (ScriptException ex) {
 // This is the generic Exception subclass for the Scripting API
 ex.printStackTrace();
}

// Outcome:
// 'Hello Nashorn!' printed on standard output

Read Nashorn JavaScript engine online: https://riptutorial.com/java/topic/166/nashorn-javascript-
engine

https://riptutorial.com/ 751

https://riptutorial.com/java/topic/166/nashorn-javascript-engine
https://riptutorial.com/java/topic/166/nashorn-javascript-engine

Chapter 118: Nested and Inner Classes

Introduction

Using Java, developers have the ability to define a class within another class. Such a class is
called a Nested Class. Nested Classes are called Inner Classes if they were declared as non-
static, if not, they are simply called Static Nested Classes. This page is to document and provide
details with examples on how to use Java Nested and Inner Classes.

Syntax

public class OuterClass { public class InnerClass { } } // Inner classes can also be private•
public class OuterClass { public static class StaticNestedClass { } } // Static nested classes
can also be private

•

public void method() { private class LocalClass { } } // Local classes are always private•
SomeClass anonymousClassInstance = new SomeClass() { }; // Anonymous inner classes
cannot be named, hence access is moot. If 'SomeClass()' is abstract, the body must
implement all abstract methods.

•

SomeInterface anonymousClassInstance = new SomeInterface() { }; // The body must
implement all interface methods.

•

Remarks

Terminology and classification

The Java Language Specification (JLS) classifies the different kinds of Java class as follows:

A top level class is a class that is not a nested class.

A nested class is any class whose declaration occurs within the body of another class
or interface.

An inner class is a nested class that is not explicitly or implicitly declared static.

An inner class may be a non-static member class, a local class, or an anonymous
class. A member class of an interface is implicitly static so is never considered to be an
inner class.

In practice programmers refer to a top level class that contains an inner class as the "outer class".
Also, there is a tendency to use "nested class" to refer to only to (explicitly or implicitly) static
nested classes.

Note that there is a close relationship between anonymous inner classes and the lambdas, but
lambdas are classes.

https://riptutorial.com/ 752

https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

Semantic differences

Top level classes are the "base case". They are visible to other parts of a program subject to
normal visibility rules based on access modifier semantics. If non-abstract, they can be
instantiated by any code that where the relevant constructors are visible based on the
access modifiers.

•

Static nested classes follow the same access and instantiation rules as top level classes,
with two exceptions:

A nested class may be declared as private, which makes it inaccessible outside of its
enclosing top level class.

○

A nested class has access to the private members of the enclosing top-level class and
all of its tested class.

○

This makes static nested classes useful when you need to represent multiple "entity types"
within a tight abstraction boundary; e.g. when the nested classes are used to hide
"implementation details".

•

Inner classes add the ability to access non-static variables declared in enclosing scopes:

A non-static member class can refer to instance variables.○

A local class (declared within a method) can also refer to the local variables of the
method, provided that they are final. (For Java 8 and later, they can be effectively final
.)

○

An anonymous inner class can be declared within either a class or a method, and can
access variables according to the same rules.

○

The fact that an inner class instance can refer to variables in a enclosing class instance has
implications for instantiation. Specifically, an enclosing instance must be provided, either
implicitly or explicitly, when an instance of an inner class is created.

•

Examples

A Simple Stack Using a Nested Class

public class IntStack {

 private IntStackNode head;

 // IntStackNode is the inner class of the class IntStack
 // Each instance of this inner class functions as one link in the
 // Overall stack that it helps to represent
 private static class IntStackNode {

 private int val;
 private IntStackNode next;

 private IntStackNode(int v, IntStackNode n) {
 val = v;

https://riptutorial.com/ 753

 next = n;
 }
 }

 public IntStack push(int v) {
 head = new IntStackNode(v, head);
 return this;
 }

 public int pop() {
 int x = head.val;
 head = head.next;
 return x;
 }
}

And the use thereof, which (notably) does not at all acknowledge the existence of the nested
class.

public class Main {
 public static void main(String[] args) {

 IntStack s = new IntStack();
 s.push(4).push(3).push(2).push(1).push(0);

 //prints: 0, 1, 2, 3, 4,
 for(int i = 0; i < 5; i++) {
 System.out.print(s.pop() + ", ");
 }
 }
}

Static vs Non Static Nested Classes

When creating a nested class, you face a choice of having that nested class static:

public class OuterClass1 {

 private static class StaticNestedClass {

 }

}

Or non-static:

public class OuterClass2 {

 private class NestedClass {

 }

}

At its core, static nested classes do not have a surrounding instance of the outer class, whereas

https://riptutorial.com/ 754

non-static nested classes do. This affects both where/when one is allowed to instantiate a nested
class, and what instances of those nested classes are allowed to access. Adding to the above
example:

public class OuterClass1 {

 private int aField;
 public void aMethod(){}

 private static class StaticNestedClass {
 private int innerField;

 private StaticNestedClass() {
 innerField = aField; //Illegal, can't access aField from static context
 aMethod(); //Illegal, can't call aMethod from static context
 }

 private StaticNestedClass(OuterClass1 instance) {
 innerField = instance.aField; //Legal
 }

 }

 public static void aStaticMethod() {
 StaticNestedClass s = new StaticNestedClass(); //Legal, able to construct in static
context
 //Do stuff involving s...
 }

}

public class OuterClass2 {

 private int aField;

 public void aMethod() {}

 private class NestedClass {
 private int innerField;

 private NestedClass() {
 innerField = aField; //Legal
 aMethod(); //Legal
 }
 }

 public void aNonStaticMethod() {
 NestedClass s = new NestedClass(); //Legal
 }

 public static void aStaticMethod() {
 NestedClass s = new NestedClass(); //Illegal. Can't construct without surrounding
OuterClass2 instance.
 //As this is a static context, there is no
surrounding OuterClass2 instance
 }
}

Thus, your decision of static vs non-static mainly depends on whether or not you need to be able

https://riptutorial.com/ 755

to directly access fields and methods of the outer class, though it also has consequences for when
and where you can construct the nested class.

As a rule of thumb, make your nested classes static unless you need to access fields and methods
of the outer class. Similar to making your fields private unless you need them public, this
decreases the visibility available to the nested class (by not allowing access to an outer instance),
reducing the likelihood of error.

Access Modifiers for Inner Classes

A full explanation of Access Modifiers in Java can be found here. But how do they interact with
Inner classes?

public, as usual, gives unrestricted access to any scope able to access the type.

public class OuterClass {

 public class InnerClass {

 public int x = 5;

 }

 public InnerClass createInner() {
 return new InnerClass();
 }
}

public class SomeOtherClass {

 public static void main(String[] args) {
 int x = new OuterClass().createInner().x; //Direct field access is legal
 }
}

both protected and the default modifier (of nothing) behave as expected as well, the same as they
do for non-nested classes.

private, interestingly enough, does not restrict to the class it belongs to. Rather, it restricts to the
compilation unit - the .java file. This means that Outer classes have full access to Inner class fields
and methods, even if they are marked private.

public class OuterClass {

 public class InnerClass {

 private int x;
 private void anInnerMethod() {}
 }

 public InnerClass aMethod() {
 InnerClass a = new InnerClass();
 a.x = 5; //Legal
 a.anInnerMethod(); //Legal

https://riptutorial.com/ 756

http://www.riptutorial.com/java/topic/134/visibility--controlling-access-to-members-of-a-class-

 return a;
 }
}

The Inner Class itself can have a visibility other than public. By marking it private or another
restricted access modifier, other (external) classes will not be allowed to import and assign the
type. They can still get references to objects of that type, however.

public class OuterClass {

 private class InnerClass{}

 public InnerClass makeInnerClass() {
 return new InnerClass();
 }
}

public class AnotherClass {

 public static void main(String[] args) {
 OuterClass o = new OuterClass();

 InnerClass x = o.makeInnerClass(); //Illegal, can't find type
 OuterClass.InnerClass x = o.makeInnerClass(); //Illegal, InnerClass has visibility
private
 Object x = o.makeInnerClass(); //Legal
 }
}

Anonymous Inner Classes

An anonymous inner class is a form of inner class that is declared and instantiated with a single
statement. As a consequence, there is no name for the class that can be used elsewhere in the
program; i.e. it is anonymous.

Anonymous classes are typically used in situations where you need to be able to create a light-
weight class to be passed as a parameter. This is typically done with an interface. For example:

public static Comparator<String> CASE_INSENSITIVE =
 new Comparator<String>() {
 @Override
 public int compare(String string1, String string2) {
 return string1.toUpperCase().compareTo(string2.toUpperCase());
 }
 };

This anonymous class defines a Comparator<String> object (CASE_INSENSITIVE) that compares two
strings ignoring differences in case.

Other interfaces that are frequently implemented and instantiated using anonymous classes are
Runnable and Callable. For example:

// An anonymous Runnable class is used to provide an instance that the Thread

https://riptutorial.com/ 757

// will run when started.
Thread t = new Thread(new Runnable() {
 @Override
 public void run() {
 System.out.println("Hello world");
 }
 });
t.start(); // Prints "Hello world"

Anonymous inner classes can also be based on classes. In this case, the anonymous class
implicitly extends the existing class. If the class being extended is abstract, then the anonymous
class must implement all abstract methods. It may also override non-abstract methods.

Constructors

An anonymous class cannot have an explicit constructor. Instead, an implicit constructor is defined
that uses super(...) to pass any parameters to a constructor in the class that is being extended.
For example:

SomeClass anon = new SomeClass(1, "happiness") {
 @Override
 public int someMethod(int arg) {
 // do something
 }
 };

The implicit constructor for our anonymous subclass of SomeClass will call a constructor of SomeClass
that matches the call signature SomeClass(int, String). If no constructor is available, you will get a
compilation error. Any exceptions that are thrown by the matched constructor are also thrown by
the implicit constructor.

Naturally, this does not work when extending an interface. When you create an anonymous class
from an interface, the classes superclass is java.lang.Object which only has a no-args constructor.

Method Local Inner Classes

A class written within a method called method local inner class. In that case the scope of the
inner class is restricted within the method.

A method-local inner class can be instantiated only within the method where the inner class is
defined.

The example of using method local inner class:

public class OuterClass {
 private void outerMethod() {
 final int outerInt = 1;
 // Method Local Inner Class
 class MethodLocalInnerClass {
 private void print() {
 System.out.println("Method local inner class " + outerInt);

https://riptutorial.com/ 758

 }
 }
 // Accessing the inner class
 MethodLocalInnerClass inner = new MethodLocalInnerClass();
 inner.print();
 }

 public static void main(String args[]) {
 OuterClass outer = new OuterClass();
 outer.outerMethod();
 }
}

Executing will give an output: Method local inner class 1.

Accessing the outer class from a non-static inner class

The reference to the outer class uses the class name and this

public class OuterClass {
 public class InnerClass {
 public void method() {
 System.out.println("I can access my enclosing class: " + OuterClass.this);
 }
 }
}

You can access fields and methods of the outer class directly.

public class OuterClass {
 private int counter;

 public class InnerClass {
 public void method() {
 System.out.println("I can access " + counter);
 }
 }
}

But in case of name collision you can use the outer class reference.

public class OuterClass {
 private int counter;

 public class InnerClass {
 private int counter;

 public void method() {
 System.out.println("My counter: " + counter);
 System.out.println("Outer counter: " + OuterClass.this.counter);

 // updating my counter
 counter = OuterClass.this.counter;
 }
 }
}

https://riptutorial.com/ 759

Create instance of non-static inner class from outside

An inner class which is visible to any outside class can be created from this class as well.

The inner class depends on the outside class and requires a reference to an instance of it. To
create an instance of the inner class, the new operator only needs to be called on an instance of
the outer class.

class OuterClass {

 class InnerClass {
 }
}

class OutsideClass {

 OuterClass outer = new OuterClass();

 OuterClass.InnerClass createInner() {
 return outer.new InnerClass();
 }
}

Note the usage as outer.new.

Read Nested and Inner Classes online: https://riptutorial.com/java/topic/3317/nested-and-inner-
classes

https://riptutorial.com/ 760

https://riptutorial.com/java/topic/3317/nested-and-inner-classes
https://riptutorial.com/java/topic/3317/nested-and-inner-classes

Chapter 119: Networking

Syntax

new Socket("localhost", 1234); //Connects to a server at address "localhost" and port 1234•
new SocketServer("localhost", 1234); //Creates a socket server that can listen for new
sockets at address localhost and port 1234

•

socketServer.accept(); //Accepts a new Socket object which can be used to communicate
with the client

•

Examples

Basic Client and Server Communication using a Socket

Server: Start, and wait for incoming connections

//Open a listening "ServerSocket" on port 1234.
ServerSocket serverSocket = new ServerSocket(1234);

while (true) {
 // Wait for a client connection.
 // Once a client connected, we get a "Socket" object
 // that can be used to send and receive messages to/from the newly
 // connected client
 Socket clientSocket = serverSocket.accept();

 // Here we'll add the code to handle one specific client.
}

Server: Handling clients

We'll handle each client in a separate thread so multiple clients could interact with the server at
the same time. This technique works fine as long as the number of clients is low (<< 1000 clients,
depending on the OS architecture and the expected load of each thread).

new Thread(() -> {
 // Get the socket's InputStream, to read bytes from the socket
 InputStream in = clientSocket.getInputStream();
 // wrap the InputStream in a reader so you can read a String instead of bytes
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(in, StandardCharsets.UTF_8));
 // Read text from the socket and print line by line
 String line;
 while ((line = reader.readLine()) != null) {
 System.out.println(line);
 }
 }).start();

https://riptutorial.com/ 761

Client: Connect to the server and send a message

// 127.0.0.1 is the address of the server (this is the localhost address; i.e.
// the address of our own machine)
// 1234 is the port that the server will be listening on
Socket socket = new Socket("127.0.0.1", 1234);

// Write a string into the socket, and flush the buffer
OutputStream outStream = socket.getOutputStream();
PrintWriter writer = new PrintWriter(
 new OutputStreamWriter(outStream, StandardCharsets.UTF_8));
writer.println("Hello world!");
writer.flush();

Closing Sockets and Handling Exceptions

The above examples left out some things to make them easier to read.

Just like files and other external resources, it's important we tell the OS when we're done
with them. When we're done with a socket, call socket.close() to properly close it.

1.

Sockets handle I/O (Input/Output) operations that depend on a variety of external factors.
For example what if the other side suddenly disconnects? What if there are network error?
These things are beyond our control. This is why many socket operations might throw
exceptions, especially IOException.

2.

A more complete code for the client would therefore be something like this:

 // "try-with-resources" will close the socket once we leave its scope
 try (Socket socket = new Socket("127.0.0.1", 1234)) {
 OutputStream outStream = socket.getOutputStream();
 PrintWriter writer = new PrintWriter(
 new OutputStreamWriter(outStream, StandardCharsets.UTF_8));
 writer.println("Hello world!");
 writer.flush();
 } catch (IOException e) {
 //Handle the error
 }

Basic Server and Client - complete examples

Server:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.ServerSocket;
import java.net.Socket;
import java.nio.charset.StandardCharsets;

public class Server {

https://riptutorial.com/ 762

 public static void main(String args[]) {
 try (ServerSocket serverSocket = new ServerSocket(1234)) {
 while (true) {
 // Wait for a client connection.
 Socket clientSocket = serverSocket.accept();

 // Create and start a thread to handle the new client
 new Thread(() -> {
 try {
 // Get the socket's InputStream, to read bytes
 // from the socket
 InputStream in = clientSocket.getInputStream();
 // wrap the InputStream in a reader so you can
 // read a String instead of bytes
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(in, StandardCharsets.UTF_8));
 // Read from the socket and print line by line
 String line;
 while ((line = reader.readLine()) != null) {
 System.out.println(line);
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 } finally {
 // This finally block ensures the socket is closed.
 // A try-with-resources block cannot be used because
 // the socket is passed into a thread, so it isn't
 // created and closed in the same block
 try {
 clientSocket.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }).start();
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }

 }
}

Client:

import java.io.IOException;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.net.Socket;
import java.nio.charset.StandardCharsets;

public class Client {
 public static void main(String args[]) {
 try (Socket socket = new Socket("127.0.0.1", 1234)) {
 // We'll reach this code once we've connected to the server

 // Write a string into the socket, and flush the buffer

https://riptutorial.com/ 763

 OutputStream outStream = socket.getOutputStream();
 PrintWriter writer = new PrintWriter(
 new OutputStreamWriter(outStream, StandardCharsets.UTF_8));
 writer.println("Hello world!");
 writer.flush();
 } catch (IOException e) {
 // Exception should be handled.
 e.printStackTrace();
 }
 }
}

Loading TrustStore and KeyStore from InputStream

public class TrustLoader {

 public static void main(String args[]) {
 try {
 //Gets the inputstream of a a trust store file under ssl/rpgrenadesClient.jks
 //This path refers to the ssl folder in the jar file, in a jar file in the
same directory
 //as this jar file, or a different directory in the same directory as the jar
file
 InputStream stream =
TrustLoader.class.getResourceAsStream("/ssl/rpgrenadesClient.jks");
 //Both trustStores and keyStores are represented by the KeyStore object
 KeyStore trustStore = KeyStore.getInstance(KeyStore.getDefaultType());
 //The password for the trustStore
 char[] trustStorePassword = "password".toCharArray();
 //This loads the trust store into the object
 trustStore.load(stream, trustStorePassword);

 //This is defining the SSLContext so the trust store will be used
 //Getting default SSLContext to edit.
 SSLContext context = SSLContext.getInstance("SSL");
 //TrustMangers hold trust stores, more than one can be added
 TrustManagerFactory factory =
TrustManagerFactory.getInstance(TrustManagerFactory.getDefaultAlgorithm());
 //Adds the truststore to the factory
 factory.init(trustStore);
 //This is passed to the SSLContext init method
 TrustManager[] managers = factory.getTrustManagers();
 context.init(null, managers, null);
 //Sets our new SSLContext to be used.
 SSLContext.setDefault(context);
 } catch (KeyStoreException | IOException | NoSuchAlgorithmException
 | CertificateException | KeyManagementException ex) {
 //Handle error
 ex.printStackTrace();
 }

 }
}

Intiating a KeyStore works the same, except replace any word Trust in a object name with Key.
Additionally, the KeyManager[] array must be passed to the the first argument of SSLContext.init.
That is SSLContext.init(keyMangers, trustMangers, null)

https://riptutorial.com/ 764

Socket example - reading a web page using a simple socket

import java.io.*;
import java.net.Socket;

public class Main {

 public static void main(String[] args) throws IOException {//We don't handle Exceptions in
this example
 //Open a socket to stackoverflow.com, port 80
 Socket socket = new Socket("stackoverflow.com",80);

 //Prepare input, output stream before sending request
 OutputStream outStream = socket.getOutputStream();
 InputStream inStream = socket.getInputStream();
 BufferedReader reader = new BufferedReader(new InputStreamReader(inStream));
 PrintWriter writer = new PrintWriter(new BufferedOutputStream(outStream));

 //Send a basic HTTP header
 writer.print("GET / HTTP/1.1\nHost:stackoverflow.com\n\n");
 writer.flush();

 //Read the response
 System.out.println(readFully(reader));

 //Close the socket
 socket.close();
 }

 private static String readFully(Reader in) {
 StringBuilder sb = new StringBuilder();
 int BUFFER_SIZE=1024;
 char[] buffer = new char[BUFFER_SIZE]; // or some other size,
 int charsRead = 0;
 while ((charsRead = rd.read(buffer, 0, BUFFER_SIZE)) != -1) {
 sb.append(buffer, 0, charsRead);
 }
 }
}

You should get a response that starts with HTTP/1.1 200 OK, which indicates a normal HTTP
response, followed by the rest of the HTTP header, followed by the raw web page in HTML form.

Note the readFully() method is important to prevent a premature EOF exception. The last line of
the web page may be missing a return, to signal the end of line, then readLine() will complain, so
one must read it by hand or use utility methods from Apache commons-io IOUtils

This example is meant as a simple demonstration of connecting to an existing resource using a
socket, it's not a practical way of accessing web pages. If you need to access a web page using
Java, it's best to use an existing HTTP client library such as Apache's HTTP Client or Google's
HTTP Client

Basic Client/Server Communication using UDP (Datagram)

Client.java

https://riptutorial.com/ 765

https://github.com/apache/commons-io/blob/2.5/src/main/java/org/apache/commons/io/IOUtils.java
https://hc.apache.org/httpcomponents-client-ga/
https://developers.google.com/api-client-library/java/google-http-java-client/
https://developers.google.com/api-client-library/java/google-http-java-client/

import java.io.*;
import java.net.*;

public class Client{
 public static void main(String [] args) throws IOException{
 DatagramSocket clientSocket = new DatagramSocket();
 InetAddress address = InetAddress.getByName(args[0]);

 String ex = "Hello, World!";
 byte[] buf = ex.getBytes();

 DatagramPacket packet = new DatagramPacket(buf,buf.length, address, 4160);
 clientSocket.send(packet);
 }
}

In this case, we pass in the address of the server, via an argument (args[0]). The port we are
using is 4160.

Server.java

import java.io.*;
import java.net.*;

public class Server{
 public static void main(String [] args) throws IOException{
 DatagramSocket serverSocket = new DatagramSocket(4160);

 byte[] rbuf = new byte[256];
 DatagramPacket packet = new DatagramPacket(rbuf, rbuf.length);
 serverSocket.receive(packet);
 String response = new String(packet.getData());
 System.out.println("Response: " + response);
 }
}

On the server-side, declare a DatagramSocket on the same port which we sent our message to
(4160) and wait for a response.

Multicasting

Multicasting is a type of Datagram Socket. Unlike regular Datagrams, Multicasting doesn't handle
each client individually instead it sends it out to one IP Address and all subscribed clients will get
the message.

https://riptutorial.com/ 766

Example code for a server side:

public class Server {

 private DatagramSocket serverSocket;

 private String ip;

 private int port;

 public Server(String ip, int port) throws SocketException, IOException{
 this.ip = ip;
 this.port = port;
 // socket used to send
 serverSocket = new DatagramSocket();
 }

 public void send() throws IOException{
 // make datagram packet
 byte[] message = ("Multicasting...").getBytes();
 DatagramPacket packet = new DatagramPacket(message, message.length,
 InetAddress.getByName(ip), port);
 // send packet
 serverSocket.send(packet);
 }

 public void close(){
 serverSocket.close();
 }
}

Example code for a client side:

public class Client {

 private MulticastSocket socket;

 public Client(String ip, int port) throws IOException {

 // important that this is a multicast socket
 socket = new MulticastSocket(port);

https://riptutorial.com/ 767

http://i.stack.imgur.com/QW3lT.png

 // join by ip
 socket.joinGroup(InetAddress.getByName(ip));
 }

 public void printMessage() throws IOException{
 // make datagram packet to recieve
 byte[] message = new byte[256];
 DatagramPacket packet = new DatagramPacket(message, message.length);

 // recieve the packet
 socket.receive(packet);
 System.out.println(new String(packet.getData()));
 }

 public void close(){
 socket.close();
 }
}

Code for running the Server:

public static void main(String[] args) {
 try {
 final String ip = args[0];
 final int port = Integer.parseInt(args[1]);
 Server server = new Server(ip, port);
 server.send();
 server.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
}

Code for running a Client:

public static void main(String[] args) {
 try {
 final String ip = args[0];
 final int port = Integer.parseInt(args[1]);
 Client client = new Client(ip, port);
 client.printMessage();
 client.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
}

Run the Client First: The Client must subscribe to the IP before it can start receiving any packets.
If you start the server and call the send() method, and then make a client (& call printMessage()).
Nothing will happen because the client connected after the message was sent.

Temporarily disable SSL verification (for testing purposes)

Sometimes in a development or testing environment, the SSL certificate chain might not have
been fully established (yet).

https://riptutorial.com/ 768

To continue developing and testing, you can turn off SSL verification programmatically by installing
an "all-trusting" trust manager:

try {
 // Create a trust manager that does not validate certificate chains
 TrustManager[] trustAllCerts = new TrustManager[] {
 new X509TrustManager() {
 public X509Certificate[] getAcceptedIssuers() {
 return null;
 }
 public void checkClientTrusted(X509Certificate[] certs, String authType) {
 }
 public void checkServerTrusted(X509Certificate[] certs, String authType) {
 }
 }
 };

 // Install the all-trusting trust manager
 SSLContext sc = SSLContext.getInstance("SSL");
 sc.init(null, trustAllCerts, new java.security.SecureRandom());
 HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

 // Create all-trusting host name verifier
 HostnameVerifier allHostsValid = new HostnameVerifier() {
 public boolean verify(String hostname, SSLSession session) {
 return true;
 }
 };

 // Install the all-trusting host verifier
 HttpsURLConnection.setDefaultHostnameVerifier(allHostsValid);
} catch (NoSuchAlgorithmException | KeyManagementException e) {
 e.printStackTrace();
}

Downloading a file using Channel

If the file already exists, it will be overwritten!

String fileName = "file.zip"; // name of the file
String urlToGetFrom = "http://www.mywebsite.com/"; // URL to get it from
String pathToSaveTo = "C:\\Users\\user\\"; // where to put it

//If the file already exists, it will be overwritten!

//Opening OutputStream to the destination file
try (ReadableByteChannel rbc =
 Channels.newChannel(new URL(urlToGetFrom + fileName).openStream())) {
 try (FileChannel channel =
 new FileOutputStream(pathToSaveTo + fileName).getChannel();) {
 channel.transferFrom(rbc, 0, Long.MAX_VALUE);
 }
 catch (FileNotFoundException e) { /* Output directory not found */ }
 catch (IOException e) { /* File IO error */ }
}
catch (MalformedURLException e) { /* URL is malformed */ }
catch (IOException e) { /* IO error connecting to website */ }

https://riptutorial.com/ 769

Notes

Don't leave the catch blocks empty!•
In case of error, check if the remote file exists•
This is a blocking operation, can take long time with large files•

Read Networking online: https://riptutorial.com/java/topic/149/networking

https://riptutorial.com/ 770

https://riptutorial.com/java/topic/149/networking

Chapter 120: New File I/O

Syntax

Paths.get(String first, String... more) // Creates a Path instance by its String elements•
Paths.get(URI uri) // Creates a Path instance by a URI•

Examples

Creating paths

The Path class is used to programmaticaly represent a path in the file system (and can therefore
point to files as well as directories, even to non-existent ones)

A path can be obtained using the helper class Paths:

Path p1 = Paths.get("/var/www");
Path p2 = Paths.get(URI.create("file:///home/testuser/File.txt"));
Path p3 = Paths.get("C:\\Users\\DentAr\\Documents\\HHGTDG.odt");
Path p4 = Paths.get("/home", "arthur", "files", "diary.tex");

Retrieving information about a path

Information about a path can be get using the methods of a Path object:

toString() returns the string representation of the path

Path p1 = Paths.get("/var/www"); // p1.toString() returns "/var/www"

•

getFileName() returns the file name (or, more specifically, the last element of the path

Path p1 = Paths.get("/var/www"); // p1.getFileName() returns "www"
Path p3 = Paths.get("C:\\Users\\DentAr\\Documents\\HHGTDG.odt"); // p3.getFileName()
returns "HHGTDG.odt"

•

getNameCount() returns the number of elements that form the path

Path p1 = Paths.get("/var/www"); // p1.getNameCount() returns 2

•

getName(int index) returns the element at the given index

Path p1 = Paths.get("/var/www"); // p1.getName(0) returns "var", p1.getName(1) returns
"www"

•

getParent() returns the path of the parent directory•

https://riptutorial.com/ 771

Path p1 = Paths.get("/var/www"); // p1.getParent().toString() returns "/var"

getRoot() returns the root of the path

Path p1 = Paths.get("/var/www"); // p1.getRoot().toString() returns "/"
Path p3 = Paths.get("C:\\Users\\DentAr\\Documents\\HHGTDG.odt"); //
p3.getRoot().toString() returns "C:\\"

•

Manipulating paths

Joining Two Paths

Paths can be joined using the resolve() method. The path passed has to be a partial path, which
is a path that doesn't include the root element.

Path p5 = Paths.get("/home/");
Path p6 = Paths.get("arthur/files");
Path joined = p5.resolve(p6);
Path otherJoined = p5.resolve("ford/files");

joined.toString() == "/home/arthur/files"
otherJoined.toString() == "/home/ford/files"

Normalizing a path

Paths may contain the elements . (which points to the directory you're currently in) and ..(which
points to the parent directory).

When used in a path, . can be removed at any time without changing the path's destination, and
.. can be removed together with the preceding element.

With the Paths API, this is done using the .normalize() method:

Path p7 = Paths.get("/home/./arthur/../ford/files");
Path p8 = Paths.get("C:\\Users\\.\\..\\Program Files");

p7.normalize().toString() == "/home/ford/files"
p8.normalize().toString() == "C:\\Program Files"

Retrieving information using the filesystem

To interact with the filesystem you use the methods of the class Files.

Checking existence

https://riptutorial.com/ 772

To check the existence of the file or directory a path points to, you use the following methods:

Files.exists(Path path)

and

Files.notExists(Path path)

!Files.exists(path) does not neccesarily have to be equal to Files.notExists(path), because there
are three possible scenarios:

A file's or directory's existence is verified (exists returns true and notExists returns false in
this case)

•

A file's or directory's nonexistence is verfied (exists returns false and notExists returns true)•
Neither the existence nor the nonexistence of a file or a directory can be verified (for
example due to access restrictions): Both exists and nonExists return false.

•

Checking whether a path points to a file or a
directory

This is done using Files.isDirectory(Path path) and Files.isRegularFile(Path path)

Path p1 = Paths.get("/var/www");
Path p2 = Paths.get("/home/testuser/File.txt");

Files.isDirectory(p1) == true
Files.isRegularFile(p1) == false

Files.isDirectory(p2) == false
Files.isRegularFile(p2) == true

Getting properties

This can be done using the following methods:

Files.isReadable(Path path)
Files.isWritable(Path path)
Files.isExecutable(Path path)

Files.isHidden(Path path)
Files.isSymbolicLink(Path path)

Getting MIME type

https://riptutorial.com/ 773

Files.probeContentType(Path path)

This tries to get the MIME type of a file. It returns a MIME type String, like this:

text/plain for text files•
text/html for HTML pages•
application/pdf for PDF files•
image/png for PNG files•

Reading files

Files can be read byte- and line-wise using the Files class.

Path p2 = Paths.get(URI.create("file:///home/testuser/File.txt"));
byte[] content = Files.readAllBytes(p2);
List<String> linesOfContent = Files.readAllLines(p2);

Files.readAllLines() optionally takes a charset as parameter (default is StandardCharsets.UTF_8):

List<String> linesOfContent = Files.readAllLines(p2, StandardCharsets.ISO_8859_1);

Writing files

Files can be written bite- and line-wise using the Files class

Path p2 = Paths.get("/home/testuser/File.txt");
List<String> lines = Arrays.asList(
 new String[]{"First line", "Second line", "Third line"});

Files.write(p2, lines);

Files.write(Path path, byte[] bytes)

Existing files wile be overridden, non-existing files will be created.

Read New File I/O online: https://riptutorial.com/java/topic/5519/new-file-i-o

https://riptutorial.com/ 774

https://riptutorial.com/java/topic/5519/new-file-i-o

Chapter 121: NIO - Networking

Remarks

SelectionKey defines the different selectable operations and information between its Selector and
Channel. In particular, the attachment can be used to store connection-related information.

Handling OP_READ is pretty straight-forward. However, care should be taken when dealing with
OP_WRITE: most of the time, data can be written to sockets so the event will keep firing. Make sure
to register OP_WRITE only before you want to write data (see that answer).

Also, OP_CONNECT should be cancelled once the Channel has connected (because, well, it is
connected. See this and that answers on SO). Hence the OP_CONNECT removal after finishConnect()
succeeded.

Examples

Using Selector to wait for events (example with OP_CONNECT)

NIO appeared in Java 1.4 and introduced the concept of "Channels", which are supposed to be
faster than regular I/O. Network-wise, the SelectableChannel is the most interesting as it allows to
monitor different states of the Channel. It works in a similar manner as the C select() system call:
we get woken-up when certain types of events occur:

connection received (OP_ACCEPT)•
connection realized (OP_CONNECT)•
data available in read FIFO (OP_READ)•
data can be pushed to write FIFO (OP_WRITE)•

It allows for separation between detecting socket I/O (something can be read/written/...) and
performing the I/O (read/write/...). Especially, all I/O detection can be done in a single thread for
multiple sockets (clients), while performing I/O can be handled in a thread pool or anywhere else.
That allows for an application to scale easily to the number of connected clients.

The following example shows the basics:

Create a Selector1.
Create a SocketChannel2.
Register the SocketChannelto the Selector3.
Loop with the Selector to detect events4.

Selector sel = Selector.open(); // Create the Selector
SocketChannel sc = SocketChannel.open(); // Create a SocketChannel
sc.configureBlocking(false); // ... non blocking
sc.setOption(StandardSocketOptions.SO_KEEPALIVE, true); // ... set some options

// Register the Channel to the Selector for wake-up on CONNECT event and use some description

https://riptutorial.com/ 775

https://docs.oracle.com/javase/7/docs/api/java/nio/channels/SelectionKey.html
https://docs.oracle.com/javase/7/docs/api/java/nio/channels/SelectionKey.html#selector()
https://docs.oracle.com/javase/7/docs/api/java/nio/channels/SelectionKey.html#channel()
https://docs.oracle.com/javase/7/docs/api/java/nio/channels/SelectionKey.html#attachment()
http://stackoverflow.com/a/6646131/1098603
http://stackoverflow.com/a/9326318/1098603
http://stackoverflow.com/a/205354/1098603
https://docs.oracle.com/javase/7/docs/api/java/nio/channels/SelectableChannel.html
https://docs.oracle.com/javase/7/docs/api/java/nio/channels/Selector.html
https://docs.oracle.com/javase/7/docs/api/java/nio/channels/SocketChannel.html

as an attachement
sc.register(sel, SelectionKey.OP_CONNECT, "Connection to google.com"); // Returns a
SelectionKey: the association between the SocketChannel and the Selector
System.out.println("Initiating connection");
if (sc.connect(new InetSocketAddress("www.google.com", 80)))
 System.out.println("Connected"); // Connected right-away: nothing else to do
else {
 boolean exit = false;
 while (!exit) {
 if (sel.select(100) == 0) // Did something happen on some registered Channels during
the last 100ms?
 continue; // No, wait some more

 // Something happened...
 Set<SelectionKey> keys = sel.selectedKeys(); // List of SelectionKeys on which some
registered operation was triggered
 for (SelectionKey k : keys) {
 System.out.println("Checking "+k.attachment());
 if (k.isConnectable()) { // CONNECT event
 System.out.print("Connected through select() on "+k.channel()+" -> ");
 if (sc.finishConnect()) { // Finish connection process
 System.out.println("done!");
 k.interestOps(k.interestOps() & ~SelectionKey.OP_CONNECT); // We are
already connected: remove interest in CONNECT event
 exit = true;
 } else
 System.out.println("unfinished...");
 }
 // TODO: else if (k.isReadable()) { ...
 }
 keys.clear(); // Have to clear the selected keys set once processed!
 }
}
System.out.print("Disconnecting ... ");
sc.shutdownOutput(); // Initiate graceful disconnection
// TODO: emtpy receive buffer
sc.close();
System.out.println("done");

Would give the following output:

Initiating connection
Checking Connection to google.com
Connected through 'select()' on java.nio.channels.SocketChannel[connection-pending
remote=www.google.com/216.58.208.228:80] -> done!
Disconnecting ... done

Read NIO - Networking online: https://riptutorial.com/java/topic/5513/nio---networking

https://riptutorial.com/ 776

https://riptutorial.com/java/topic/5513/nio---networking

Chapter 122: Non-Access Modifiers

Introduction

Non-Access Modifiers do not change the accessibility of variables and methods, but they do
provide them special properties.

Examples

final

final in Java can refer to variables, methods and classes. There are three simple rules:

final variable cannot be reassigned•
final method cannot be overriden•
final class cannot be extended•

Usages

Good Programming Practice

Some developer consider it good practice to mark a variable final when you can. If you have a
variable that should not be changed, you should mark it final.

An important use of final keyword if for method parameters. If you want to emphasize that a
method doesn't change its input parameters, mark the properties as final.

public int sumup(final List<Integer> ints);

This emphasizes that the sumup method is not going to change the ints.

Inner class Access

If your anonymous inner class wants to access a variable, the variable should be marked final

 public IPrintName printName(){
 String name;
 return new IPrintName(){
 @Override
 public void printName(){
 System.out.println(name);
 }
 };
}

This class doesn't compile, as the variable name, is not final.

Java SE 8

https://riptutorial.com/ 777

Effectively final variables are an exception. These are local variables that are written to only once
and could therefore be made final. Effectively final variables can be accessed from anonymus
classes too.

final static variable

Even though the code below is completely legal when final variable foo is not static, in case of
static it will not compile:

class TestFinal {
 private final static List foo;

 public Test() {
 foo = new ArrayList();
 }
}

The reason is, let's repeat again, final variable cannot be reassigned. Since foo is static, it is
shared among all instances of class TestFinal. When a new instance of a class TestFinal is
created, its constructor is invoked and therefore foo gets reassigned which compiler does not
allow. A correct way to initialize variable foo in this case is either:

class TestFinal {
 private static final List foo = new ArrayList();
 //..
}

or by using a static initializer:

class TestFinal {
 private static final List foo;
 static {
 foo = new ArrayList();
 }
 //..
}

final methods are useful when base class implements some important functionality that derived
class is not supposed to change it. They are also faster than non-final methods, because there is
no concept of virtual table involved.

All wrapper classes in Java are final, such as Integer, Long etc. Creators of these classes didn't
want that anyone can e.g. extend Integer into his own class and change the basic behavior of
Integer class. One of the requirements to make a class immutable is that subclasses may not
override methods. The simplest way to do this is to declare the class as final.

volatile

The volatile modifier is used in multi threaded programming. If you declare a field as volatile it is
a signal to threads that they must read the most recent value, not a locally cached one.
Furthermore, volatile reads and writes are guaranteed to be atomic (access to a non-volatile

https://riptutorial.com/ 778

long or double is not atomic), thus avoiding certain read/write errors between multiple threads.

public class MyRunnable implements Runnable
{
 private volatile boolean active;

 public void run(){ // run is called in one thread
 active = true;
 while (active){
 // some code here
 }
 }

 public void stop(){ // stop() is called from another thread
 active = false;
 }
}

static

The static keyword is used on a class, method, or field to make them work independently of any
instance of the class.

Static fields are common to all instances of a class. They do not need an instance to access
them.

•

Static methods can be run without an instance of the class they are in. However, they can
only access static fields of that class.

•

Static classes can be declared inside of other classes. They do not need an instance of the
class they are in to be instantiated.

•

public class TestStatic
{
 static int staticVariable;

 static {
 // This block of code is run when the class first loads
 staticVariable = 11;
 }

 int nonStaticVariable = 5;

 static void doSomething() {
 // We can access static variables from static methods
 staticVariable = 10;
 }

 void add() {
 // We can access both static and non-static variables from non-static methods
 nonStaticVariable += staticVariable;
 }

 static class StaticInnerClass {
 int number;
 public StaticInnerClass(int _number) {
 number = _number;
 }

https://riptutorial.com/ 779

 void doSomething() {
 // We can access number and staticVariable, but not nonStaticVariable
 number += staticVariable;
 }

 int getNumber() {
 return number;
 }
 }
}

// Static fields and methods
TestStatic object1 = new TestStatic();

System.out.println(object1.staticVariable); // 11
System.out.println(TestStatic.staticVariable); // 11

TestStatic.doSomething();

TestStatic object2 = new TestStatic();

System.out.println(object1.staticVariable); // 10
System.out.println(object2.staticVariable); // 10
System.out.println(TestStatic.staticVariable); // 10

object1.add();

System.out.println(object1.nonStaticVariable); // 15
System.out.println(object2.nonStaticVariable); // 10

// Static inner classes
StaticInnerClass object3 = new TestStatic.StaticInnerClass(100);
StaticInnerClass object4 = new TestStatic.StaticInnerClass(200);

System.out.println(object3.getNumber()); // 100
System.out.println(object4.getNumber()); // 200

object3.doSomething();

System.out.println(object3.getNumber()); // 110
System.out.println(object4.getNumber()); // 200

abstract

Abstraction is a process of hiding the implementation details and showing only functionality to the
user. An abstract class can never be instantiated. If a class is declared as abstract then the sole
purpose is for the class to be extended.

abstract class Car
{
 abstract void tagLine();
}

class Honda extends Car
{
 void tagLine()

https://riptutorial.com/ 780

 {
 System.out.println("Start Something Special");
 }
}

class Toyota extends Car
{
 void tagLine()
 {
 System.out.println("Drive Your Dreams");
 }
}

synchronized

Synchronized modifier is used to control the access of a particular method or a block by multiple
threads. Only one thread can enter into a method or a block which is declared as synchronized.
synchronized keyword works on intrinsic lock of an object, in case of a synchronized method
current objects lock and static method uses class object. Any thread trying to execute a
synchronized block must acquire the object lock first.

class Shared
{
 int i;

 synchronized void SharedMethod()
 {
 Thread t = Thread.currentThread();

 for(int i = 0; i <= 1000; i++)
 {
 System.out.println(t.getName()+" : "+i);
 }
 }

 void SharedMethod2()
 {
 synchronized (this)
 {
 System.out.println("Thais access to currect object is synchronize "+this);
 }
 }
}

public class ThreadsInJava
{
 public static void main(String[] args)
 {
 final Shared s1 = new Shared();

 Thread t1 = new Thread("Thread - 1")
 {
 @Override
 public void run()
 {
 s1.SharedMethod();
 }
 };

https://riptutorial.com/ 781

 Thread t2 = new Thread("Thread - 2")
 {
 @Override
 public void run()
 {
 s1.SharedMethod();
 }
 };

 t1.start();

 t2.start();
 }
}

transient

A variable which is declared as transient will not be serialized during object serialization.

public transient int limit = 55; // will not persist
public int b; // will persist

strictfp

Java SE 1.2

strictfp modifier is used for floating-point calculations. This modifier makes floating point variable
more consistent across multiple platforms and ensure all the floating point calculations are done
according to IEEE 754 standards to avoid errors of calculation (round-off errors), overflows and
underflows on both 32bit and 64bit architecture. This cannot be applied on abstract methods,
variables or constructors.

// strictfp keyword can be applied on methods, classes and interfaces.

strictfp class A{}

strictfp interface M{}

class A{
 strictfp void m(){}
}

Read Non-Access Modifiers online: https://riptutorial.com/java/topic/4401/non-access-modifiers

https://riptutorial.com/ 782

https://riptutorial.com/java/topic/4401/non-access-modifiers

Chapter 123: NumberFormat

Examples

NumberFormat

Different countries have different number formats and considering this we can have different
formats using Locale of java. Using locale can help in formatting

Locale locale = new Locale("en", "IN");
NumberFormat numberFormat = NumberFormat.getInstance(locale);

using above format you can perform various tasks

Format Number

numberFormat.format(10000000.99);

1.

Format Currency

NumberFormat currencyFormat = NumberFormat.getCurrencyInstance(locale);
currencyFormat.format(10340.999);

2.

Format Percentage

NumberFormat percentageFormat = NumberFormat.getPercentInstance(locale);
percentageFormat.format(10929.999);

3.

Control Number of Digits4.

numberFormat.setMinimumIntegerDigits(int digits)
numberFormat.setMaximumIntegerDigits(int digits)
numberFormat.setMinimumFractionDigits(int digits)
numberFormat.setMaximumFractionDigits(int digits)

Read NumberFormat online: https://riptutorial.com/java/topic/7399/numberformat

https://riptutorial.com/ 783

https://riptutorial.com/java/topic/7399/numberformat

Chapter 124: Object Class Methods and
Constructor

Introduction

This documentation page is for showing details with example about java class constructors and
about Object Class Methods which are automatically inherited from the superclass Object of any
newly created class.

Syntax

public final native Class<?> getClass()•
public final native void notify()•
public final native void notifyAll()•
public final native void wait(long timeout) throws InterruptedException•
public final void wait() throws InterruptedException•
public final void wait(long timeout, int nanos) throws InterruptedException•
public native int hashCode()•
public boolean equals(Object obj)•
public String toString()•
protected native Object clone() throws CloneNotSupportedException•
protected void finalize() throws Throwable•

Examples

toString() method

The toString() method is used to create a String representation of an object by using the object´s
content. This method should be overridden when writing your class. toString() is called implicitly
when an object is concatenated to a string as in "hello " + anObject.

Consider the following:

public class User {
 private String firstName;
 private String lastName;

 public User(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 @Override
 public String toString() {
 return firstName + " " + lastName;
 }

https://riptutorial.com/ 784

https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html
https://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html

 public static void main(String[] args) {
 User user = new User("John", "Doe");
 System.out.println(user.toString()); // Prints "John Doe"
 }
}

Here toString() from Object class is overridden in the User class to provide meaningful data
regarding the object when printing it.

When using println(), the object's toString() method is implicitly called. Therefore, these
statements do the same thing:

System.out.println(user); // toString() is implicitly called on `user`
System.out.println(user.toString());

If the toString() is not overridden in the above mentioned User class, System.out.println(user) may
return User@659e0bfd or a similar String with almost no useful information except the class name.
This will be because the call will use the toString() implementation of the base Java Object class
which does not know anything about the User class's structure or business rules. If you want to
change this functionality in your class, simply override the method.

equals() method

TL;DR

== tests for reference equality (whether they are the same object)

.equals() tests for value equality (whether they are logically "equal")

equals() is a method used to compare two objects for equality. The default implementation of the
equals() method in the Object class returns true if and only if both references are pointing to the
same instance. It therefore behaves the same as comparison by ==.

public class Foo {
 int field1, field2;
 String field3;

 public Foo(int i, int j, String k) {
 field1 = i;
 field2 = j;
 field3 = k;
 }

 public static void main(String[] args) {
 Foo foo1 = new Foo(0, 0, "bar");
 Foo foo2 = new Foo(0, 0, "bar");

 System.out.println(foo1.equals(foo2)); // prints false
 }
}

https://riptutorial.com/ 785

Even though foo1 and foo2 are created with the same fields, they are pointing to two different
objects in memory. The default equals() implementation therefore evaluates to false.

To compare the contents of an object for equality, equals() has to be overridden.

public class Foo {
 int field1, field2;
 String field3;

 public Foo(int i, int j, String k) {
 field1 = i;
 field2 = j;
 field3 = k;
 }

 @Override
 public boolean equals(Object obj) {
 if (this == obj) {
 return true;
 }
 if (obj == null || getClass() != obj.getClass()) {
 return false;
 }

 Foo f = (Foo) obj;
 return field1 == f.field1 &&
 field2 == f.field2 &&
 (field3 == null ? f.field3 == null : field3.equals(f.field3));
 }

 @Override
 public int hashCode() {
 int hash = 1;
 hash = 31 * hash + this.field1;
 hash = 31 * hash + this.field2;
 hash = 31 * hash + (field3 == null ? 0 : field3.hashCode());
 return hash;
 }

 public static void main(String[] args) {
 Foo foo1 = new Foo(0, 0, "bar");
 Foo foo2 = new Foo(0, 0, "bar");

 System.out.println(foo1.equals(foo2)); // prints true
 }
}

Here the overridden equals() method decides that the objects are equal if their fields are the same.

Notice that the hashCode() method was also overwritten. The contract for that method states that
when two objects are equal, their hash values must also be the same. That's why one must almost
always override hashCode() and equals() together.

Pay special attention to the argument type of the equals method. It is Object obj, not Foo obj. If you
put the latter in your method, that is not an override of the equals method.

When writing your own class, you will have to write similar logic when overriding equals() and
hashCode()

https://riptutorial.com/ 786

. Most IDEs can automatically generate this for you.

An example of an equals() implementation can be found in the String class, which is part of the
core Java API. Rather than comparing pointers, the String class compares the content of the
String.

Java SE 7

Java 1.7 introduced the java.util.Objects class which provides a convenience method, equals,
that compares two potentially null references, so it can be used to simplify implementations of the
equals method.

@Override
public boolean equals(Object obj) {
 if (this == obj) {
 return true;
 }
 if (obj == null || getClass() != obj.getClass()) {
 return false;
 }

 Foo f = (Foo) obj;
 return field1 == f.field1 && field2 == f.field2 && Objects.equals(field3, f.field3);
}

Class Comparison

Since the equals method can run against any object, one of the first things the method often does
(after checking for null) is to check if the class of the object being compared matches the current
class.

@Override
public boolean equals(Object obj) {
 //...check for null
 if (getClass() != obj.getClass()) {
 return false;
 }
 //...compare fields
}

This is typically done as above by comparing the class objects. However, that can fail in a few
special cases which may not be obvious. For example, some frameworks generate dynamic
proxies of classes and these dynamic proxies are actually a different class. Here is an example
using JPA.

Foo detachedInstance = ...
Foo mergedInstance = entityManager.merge(detachedInstance);
if (mergedInstance.equals(detachedInstance)) {
 //Can never get here if equality is tested with getClass()
 //as mergedInstance is a proxy (subclass) of Foo
}

https://riptutorial.com/ 787

One mechanism to work around that limitation is to compare classes using instanceof

@Override
public final boolean equals(Object obj) {
 if (!(obj instanceof Foo)) {
 return false;
 }
 //...compare fields
}

However, there are a few pitfalls that must be avoided when using instanceof. Since Foo could
potentially have other subclasses and those subclasses might override equals() you could get into
a case where a Foo is equal to a FooSubclass but the FooSubclass is not equal to Foo.

Foo foo = new Foo(7);
FooSubclass fooSubclass = new FooSubclass(7, false);
foo.equals(fooSubclass) //true
fooSubclass.equals(foo) //false

This violates the properties of symmetry and transitivity and thus is an invalid implementation of
the equals() method. As a result, when using instanceof, a good practice is to make the equals()
method final (as in the above example). This will ensure that no subclass overrides equals() and
violates key assumptions.

hashCode() method

When a Java class overrides the equals method, it should override the hashCode method as well. As
defined in the method's contract:

Whenever it is invoked on the same object more than once during an execution
of a Java application, the hashCode method must consistently return the same
integer, provided no information used in equals comparisons on the object is
modified. This integer need not remain consistent from one execution of an
application to another execution of the same application.

•

If two objects are equal according to the equals(Object) method, then calling the
hashCode method on each of the two objects must produce the same integer
result.

•

It is not required that if two objects are unequal according to the equals(Object)
method, then calling the hashCode method on each of the two objects must
produce distinct integer results. However, the programmer should be aware that
producing distinct integer results for unequal objects may improve the
performance of hash tables.

•

Hash codes are used in hash implementations such as HashMap, HashTable, and HashSet. The result
of the hashCode function determines the bucket in which an object will be put. These hash
implementations are more efficient if the provided hashCode implementation is good. An important
property of good hashCode implementation is that the distribution of the hashCode values is uniform.
In other words, there is a small probability that numerous instances will be stored in the same
bucket.

https://riptutorial.com/ 788

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

An algorithm for computing a hash code value may be similar to the following:

public class Foo {
 private int field1, field2;
 private String field3;

 public Foo(int field1, int field2, String field3) {
 this.field1 = field1;
 this.field2 = field2;
 this.field3 = field3;
 }

 @Override
 public boolean equals(Object obj) {
 if (this == obj) {
 return true;
 }
 if (obj == null || getClass() != obj.getClass()) {
 return false;
 }

 Foo f = (Foo) obj;
 return field1 == f.field1 &&
 field2 == f.field2 &&
 (field3 == null ? f.field3 == null : field3.equals(f.field3);
 }

 @Override
 public int hashCode() {
 int hash = 1;
 hash = 31 * hash + field1;
 hash = 31 * hash + field2;
 hash = 31 * hash + (field3 == null ? 0 : field3.hashCode());
 return hash;
 }
}

Using Arrays.hashCode() as a short cut

Java SE 1.2

In Java 1.2 and above, instead of developing an algorithm to compute a hash code, one can be
generated using java.util.Arrays#hashCode by supplying an Object or primitives array containing
the field values:

@Override
public int hashCode() {
 return Arrays.hashCode(new Object[] {field1, field2, field3});
}

Java SE 7

Java 1.7 introduced the java.util.Objects class which provides a convenience method,
hash(Object... objects), that computes a hash code based on the values of the objects supplied to
it. This method works just like java.util.Arrays#hashCode.

https://riptutorial.com/ 789

@Override
public int hashCode() {
 return Objects.hash(field1, field2, field3);
}

Note: this approach is inefficient, and produces garbage objects each time your custom hashCode()
method is called:

A temporary Object[] is created. (In the Objects.hash() version, the array is created by the
"varargs" mechanism.)

•

If any of the fields are primitive types, they must be boxed and that may create more
temporary objects.

•

The array must be populated.•
The array must iterated by the Arrays.hashCode or Objects.hash method.•
The calls to Object.hashCode() that Arrays.hashCode or Objects.hash has to make (probably)
cannot be inlined.

•

Internal caching of hash codes

Since the calculation of an object's hash code can be expensive, it can be attractive to cache the
hash code value within the object the first time that it is calculated. For example

public final class ImmutableArray {
 private int[] array;
 private volatile int hash = 0;

 public ImmutableArray(int[] initial) {
 array = initial.clone();
 }

 // Other methods

 @Override
 public boolean equals(Object obj) {
 // ...
 }

 @Override
 public int hashCode() {
 int h = hash;
 if (h == 0) {
 h = Arrays.hashCode(array);
 hash = h;
 }
 return h;
 }
}

This approach trades off the cost of (repeatedly) calculating the hash code against the overhead of
an extra field to cache the hash code. Whether this pays off as a performance optimization will
depend on how often a given object is hashed (looked up) and other factors.

You will also notice that if the true hashcode of an ImmutableArray happens to be zero (one chance

https://riptutorial.com/ 790

in 232), the cache is ineffective.

Finally, this approach is much harder to implement correctly if the object we are hashing is
mutable. However, there are bigger concerns if hash codes change; see the contract above.

wait() and notify() methods

wait() and notify() work in tandem – when one thread calls wait() on an object, that thread will
block until another thread calls notify() or notifyAll() on that same object.

(See Also: wait()/notify())

package com.example.examples.object;

import java.util.concurrent.atomic.AtomicBoolean;

public class WaitAndNotify {

 public static void main(String[] args) throws InterruptedException {
 final Object obj = new Object();
 AtomicBoolean aHasFinishedWaiting = new AtomicBoolean(false);

 Thread threadA = new Thread("Thread A") {
 public void run() {
 System.out.println("A1: Could print before or after B1");
 System.out.println("A2: Thread A is about to start waiting...");
 try {
 synchronized (obj) { // wait() must be in a synchronized block
 // execution of thread A stops until obj.notify() is called
 obj.wait();
 }
 System.out.println("A3: Thread A has finished waiting. "
 + "Guaranteed to happen after B3");
 } catch (InterruptedException e) {
 System.out.println("Thread A was interrupted while waiting");
 } finally {
 aHasFinishedWaiting.set(true);
 }
 }
 };

 Thread threadB = new Thread("Thread B") {
 public void run() {
 System.out.println("B1: Could print before or after A1");

 System.out.println("B2: Thread B is about to wait for 10 seconds");
 for (int i = 0; i < 10; i++) {
 try {
 Thread.sleep(1000); // sleep for 1 second
 } catch (InterruptedException e) {
 System.err.println("Thread B was interrupted from waiting");
 }
 }

 System.out.println("B3: Will ALWAYS print before A3 since "
 + "A3 can only happen after obj.notify() is called.");

 while (!aHasFinishedWaiting.get()) {

https://riptutorial.com/ 791

http://stackoverflow.com/documentation/java/5409/wait-notify#t=20160811161648303307

 synchronized (obj) {
 // notify ONE thread which has called obj.wait()
 obj.notify();
 }
 }
 }
 };

 threadA.start();
 threadB.start();

 threadA.join();
 threadB.join();

 System.out.println("Finished!");
 }
}

Some example output:

A1: Could print before or after B1
B1: Could print before or after A1
A2: Thread A is about to start waiting...
B2: Thread B is about to wait for 10 seconds
B3: Will ALWAYS print before A3 since A3 can only happen after obj.notify() is called.
A3: Thread A has finished waiting. Guaranteed to happen after B3
Finished!

B1: Could print before or after A1
B2: Thread B is about to wait for 10 seconds
A1: Could print before or after B1
A2: Thread A is about to start waiting...
B3: Will ALWAYS print before A3 since A3 can only happen after obj.notify() is called.
A3: Thread A has finished waiting. Guaranteed to happen after B3
Finished!

A1: Could print before or after B1
A2: Thread A is about to start waiting...
B1: Could print before or after A1
B2: Thread B is about to wait for 10 seconds
B3: Will ALWAYS print before A3 since A3 can only happen after obj.notify() is called.
A3: Thread A has finished waiting. Guaranteed to happen after B3
Finished!

getClass() method

The getClass() method can be used to find the runtime class type of an object. See the example
below:

public class User {

 private long userID;
 private String name;

 public User(long userID, String name) {
 this.userID = userID;
 this.name = name;

https://riptutorial.com/ 792

 }
}

public class SpecificUser extends User {
 private String specificUserID;

 public SpecificUser(String specificUserID, long userID, String name) {
 super(userID, name);
 this.specificUserID = specificUserID;
 }
}

public static void main(String[] args){
 User user = new User(879745, "John");
 SpecificUser specificUser = new SpecificUser("1AAAA", 877777, "Jim");
 User anotherSpecificUser = new SpecificUser("1BBBB", 812345, "Jenny");

 System.out.println(user.getClass()); //Prints "class User"
 System.out.println(specificUser.getClass()); //Prints "class SpecificUser"
 System.out.println(anotherSpecificUser.getClass()); //Prints "class SpecificUser"
}

The getClass() method will return the most specific class type, which is why when getClass() is
called on anotherSpecificUser, the return value is class SpecificUser because that is lower down
the inheritance tree than User.

It is noteworthy that, while the getClass method is declared as:

public final native Class<?> getClass();

The actual static type returned by a call to getClass is Class<? extends T> where T is the static type
of the object on which getClass is called.

i.e. the following will compile:

Class<? extends String> cls = "".getClass();

clone() method

The clone() method is used to create and return a copy of an object. This method arguable should
be avoided as it is problematic and a copy constructor or some other approach for copying should
be used in favour of clone().

For the method to be used all classes calling the method must implement the Cloneable interface.

The Cloneable interface itself is just a tag interface used to change the behaviour of the native
clone() method which checks if the calling objects class implements Cloneable. If the caller does
not implement this interface a CloneNotSupportedException will be thrown.

The Object class itself does not implement this interface so a CloneNotSupportedException will be
thrown if the calling object is of class Object.

https://riptutorial.com/ 793

For a clone to be correct it should be independent of the object it is being cloned from, therefore it
may be necessary to modify the object before it gets returned. This means to essentially create a
"deep copy" by also copying any of the mutable objects that make up the internal structure of the
object being cloned. If this is not implemented correctly the cloned object will not be independent
and have the same references to the mutable objects as the object that it was cloned from. This
would result in inconsistent behaviour as any changes to those in one would affect the other.

class Foo implements Cloneable {
 int w;
 String x;
 float[] y;
 Date z;

 public Foo clone() {
 try {
 Foo result = new Foo();
 // copy primitives by value
 result.w = this.w;
 // immutable objects like String can be copied by reference
 result.x = this.x;

 // The fields y and z refer to a mutable objects; clone them recursively.
 if (this.y != null) {
 result.y = this.y.clone();
 }
 if (this.z != null) {
 result.z = this.z.clone();
 }

 // Done, return the new object
 return result;

 } catch (CloneNotSupportedException e) {
 // in case any of the cloned mutable fields do not implement Cloneable
 throw new AssertionError(e);
 }
 }
}

finalize() method

This is a protected and non-static method of the Object class. This method is used to perform
some final operations or clean up operations on an object before it gets removed from the
memory.

According to the doc, this method gets called by the garbage collector on an object
when garbage collection determines that there are no more references to the object.

But there are no guarantees that finalize() method would gets called if the object is still reachable
or no Garbage Collectors run when the object become eligible. That's why it's better not rely on
this method.

In Java core libraries some usage examples could be found, for instance in FileInputStream.java:

https://riptutorial.com/ 794

protected void finalize() throws IOException {
 if ((fd != null) && (fd != FileDescriptor.in)) {
 /* if fd is shared, the references in FileDescriptor
 * will ensure that finalizer is only called when
 * safe to do so. All references using the fd have
 * become unreachable. We can call close()
 */
 close();
 }
}

In this case it's the last chance to close the resource if that resource has not been closed before.

Generally it's considered bad practice to use finalize() method in applications of any kind and
should be avoided.

Finalizers are not meant for freeing resources (e.g., closing files). The garbage collector gets
called when (if!) the system runs low on heap space. You can't rely on it to be called when the
system is running low on file handles or, for any other reason.

The intended use-case for finalizers is for an object that is about to be reclaimed to notify some
other object about its impending doom. A better mechanism now exists for that purpose---the
java.lang.ref.WeakReference<T> class. If you think you need write a finalize() method, then you
should look into whether you can solve the same problem using WeakReference instead. If that won't
solve your problem, then you may need to re-think your design on a deeper level.

For further reading here is an Item about finalize() method from "Effective Java" book by Joshua
Bloch.

Object constructor

All constructors in Java must make a call to the Object constructor. This is done with the call
super(). This has to be the first line in a constructor. The reason for this is so that the object can
actually be created on the heap before any additional initialization is performed.

If you do not specify the call to super() in a constructor the compiler will put it in for you.

So all three of these examples are functionally identical

with explicit call to super() constructor

public class MyClass {

 public MyClass() {
 super();
 }
}

with implicit call to super() constructor

public class MyClass {

https://riptutorial.com/ 795

http://www.informit.com/articles/article.aspx?p=1216151&seqNum=7

 public MyClass() {
 // empty
 }
}

with implicit constructor

public class MyClass {

}

What about Constructor-Chaining?

It is possible to call other constructors as the first instruction of a constructor. As both the explicit
call to a super constructor and the call to another constructor have to be both first instructions,
they are mutually exclusive.

public class MyClass {

 public MyClass(int size) {

 doSomethingWith(size);

 }

 public MyClass(Collection<?> initialValues) {

 this(initialValues.size());
 addInitialValues(initialValues);
 }
}

Calling new MyClass(Arrays.asList("a", "b", "c")) will call the second constructor with the List-
argument, which will in turn delegate to the first constructor (which will delegate implicitly to
super()) and then call addInitialValues(int size) with the second size of the list. This is used to
reduce code duplication where multiple constructors need to do the same work.

How do I call a specific constructor?

Given the example above, one can either call new MyClass("argument") or new MyClass("argument",
0). In other words, much like method overloading, you just call the constructor with the parameters
that are necessary for your chosen constructor.

What will happen in the Object class constructor?

Nothing more than would happen in a sub-class that has a default empty constructor (minus the
call to super()).

The default empty constructor can be explicitly defined but if not the compiler will put it in for you
as long as no other constructors are already defined.

How is an Object then created from the constructor in Object?

https://riptutorial.com/ 796

http://www.riptutorial.com/java/example/3187/method-overloading

The actual creation of objects is down to the JVM. Every constructor in Java appears as a special
method named <init> which is responsible for instance initializing. This <init> method is supplied
by the compiler and because <init> is not a valid identifier in Java, it cannot be used directly in the
language.

How does the JVM invoke this <init> method?

The JVM will invoke the <init> method using the invokespecial instruction and can only be invoked
on uninitialized class instances.

For more information take a look at the JVM specification and the Java Language Specification:

Special Methods (JVM) - JVMS - 2.9•
Constructors - JLS - 8.8•

Read Object Class Methods and Constructor online: https://riptutorial.com/java/topic/145/object-
class-methods-and-constructor

https://riptutorial.com/ 797

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html
https://riptutorial.com/java/topic/145/object-class-methods-and-constructor
https://riptutorial.com/java/topic/145/object-class-methods-and-constructor

Chapter 125: Object Cloning

Remarks

Cloning can be tricky, especially when the object's fields hold other objects. There are situations
where you want to perform a deep copy, instead of only copying the field values (i.e. references to
the other objects).

The bottom line is clone is broken, and you should think twice before implementing the Cloneable
interface and overriding the clone method. The clone method is declared in the Object class and
not in the Cloneable interface, so Cloneable fails to function as an interface because it lacks a public
clone method. The result is the contract for using clone is thinly documented and weakly enforced.
For example, a class that overrides clone sometimes relies on all its parent classes also overriding
clone. They are not enforced to do so, and if they do not your code may throw exceptions.

A much better solution for providing cloning functionality is to provide a copy constructor or copy
factory. Refer to Joshua Bloch's Effective Java Item 11: Override clone judiciously.

Examples

Cloning using a copy constructor

An easy way to clone an object is by implementing a copy constructor.

public class Sheep {

 private String name;

 private int weight;

 public Sheep(String name, int weight) {
 this.name = name;
 this.weight = weight;
 }

 // copy constructor
 // copies the fields of other into the new object
 public Sheep(Sheep other) {
 this.name = other.name;
 this.weight = other.weight;
 }

}

// create a sheep
Sheep sheep = new Sheep("Dolly", 20);
// clone the sheep
Sheep dolly = new Sheep(sheep); // dolly.name is "Dolly" and dolly.weight is 20

Cloning by implementing Clonable interface

https://riptutorial.com/ 798

https://en.wikipedia.org/wiki/Object_copying#Deep_copy
http://www.artima.com/intv/bloch13.html
https://amzn.com/B00B8V09HY

Cloning an object by implementing the Cloneable interface.

public class Sheep implements Cloneable {

 private String name;

 private int weight;

 public Sheep(String name, int weight) {
 this.name = name;
 this.weight = weight;
 }

 @Override
 public Object clone() throws CloneNotSupportedException {
 return super.clone();
 }

}

// create a sheep
Sheep sheep = new Sheep("Dolly", 20);
// clone the sheep
Sheep dolly = (Sheep) sheep.clone(); // dolly.name is "Dolly" and dolly.weight is 20

Cloning performing a shallow copy

Default behavior when cloning an object is to perform a shallow copy of the object's fields. In that
case, both the original object and the cloned object, hold references to the same objects.

This example shows that behavior.

import java.util.List;

public class Sheep implements Cloneable {

 private String name;

 private int weight;

 private List<Sheep> children;

 public Sheep(String name, int weight) {
 this.name = name;
 this.weight = weight;
 }

 @Override
 public Object clone() throws CloneNotSupportedException {
 return super.clone();
 }

 public List<Sheep> getChildren() {
 return children;
 }

 public void setChildren(List<Sheep> children) {
 this.children = children;

https://riptutorial.com/ 799

https://docs.oracle.com/javase/8/docs/api/java/lang/Cloneable.html
https://en.wikipedia.org/wiki/Object_copying#Shallow_copy

 }

}

import java.util.Arrays;
import java.util.List;

// create a sheep
Sheep sheep = new Sheep("Dolly", 20);

// create children
Sheep child1 = new Sheep("Child1", 4);
Sheep child2 = new Sheep("Child2", 5);

sheep.setChildren(Arrays.asList(child1, child2));

// clone the sheep
Sheep dolly = (Sheep) sheep.clone();
List<Sheep> sheepChildren = sheep.getChildren();
List<Sheep> dollysChildren = dolly.getChildren();
for (int i = 0; i < sheepChildren.size(); i++) {
 // prints true, both arrays contain the same objects
 System.out.println(sheepChildren.get(i) == dollysChildren.get(i));
}

Cloning performing a deep copy

To copy nested objects, a deep copy must be performed, as shown in this example.

import java.util.ArrayList;
import java.util.List;

public class Sheep implements Cloneable {

 private String name;

 private int weight;

 private List<Sheep> children;

 public Sheep(String name, int weight) {
 this.name = name;
 this.weight = weight;
 }

 @Override
 public Object clone() throws CloneNotSupportedException {
 Sheep clone = (Sheep) super.clone();
 if (children != null) {
 // make a deep copy of the children
 List<Sheep> cloneChildren = new ArrayList<>(children.size());
 for (Sheep child : children) {
 cloneChildren.add((Sheep) child.clone());
 }
 clone.setChildren(cloneChildren);
 }
 return clone;
 }

https://riptutorial.com/ 800

https://en.wikipedia.org/wiki/Object_copying#Deep_copy

 public List<Sheep> getChildren() {
 return children;
 }

 public void setChildren(List<Sheep> children) {
 this.children = children;
 }

}

import java.util.Arrays;
import java.util.List;

// create a sheep
Sheep sheep = new Sheep("Dolly", 20);

// create children
Sheep child1 = new Sheep("Child1", 4);
Sheep child2 = new Sheep("Child2", 5);

sheep.setChildren(Arrays.asList(child1, child2));

// clone the sheep
Sheep dolly = (Sheep) sheep.clone();
List<Sheep> sheepChildren = sheep.getChildren();
List<Sheep> dollysChildren = dolly.getChildren();
for (int i = 0; i < sheepChildren.size(); i++) {
 // prints false, both arrays contain copies of the objects inside
 System.out.println(sheepChildren.get(i) == dollysChildren.get(i));
}

Cloning using a copy factory

public class Sheep {

 private String name;

 private int weight;

 public Sheep(String name, int weight) {
 this.name = name;
 this.weight = weight;
 }

 public static Sheep newInstance(Sheep other);
 return new Sheep(other.name, other.weight)
 }

}

Read Object Cloning online: https://riptutorial.com/java/topic/2830/object-cloning

https://riptutorial.com/ 801

https://riptutorial.com/java/topic/2830/object-cloning

Chapter 126: Object References

Remarks

This should help you understand a "Null Pointer Exception" -- one gets one of those because an
object reference is null, but the program code expects the program to use something in that object
reference. However, that deserves its own topic...

Examples

Object References as method parameters

This topic explains the concept of an object reference; it is targeted at people who are new to
programming in Java. You should already be familiar with some terms and meanings: class
definition, main method, object instance, and the calling of methods "on" an object, and passing
parameters to methods.

public class Person {

 private String name;

 public void setName(String name) { this.name = name; }

 public String getName() { return name; }

 public static void main(String [] arguments) {
 Person person = new Person();
 person.setName("Bob");

 int i = 5;
 setPersonName(person, i);

 System.out.println(person.getName() + " " + i);
 }

 private static void setPersonName(Person person, int num) {
 person.setName("Linda");
 num = 99;
 }
}

To be fully competent in Java programming, you should be able to explain this example to
someone else off the top of your head. Its concepts are fundamental to understanding how Java
works.

As you can see, we have a main that instantiates an object to the variable person, and calls a
method to set the name field in that object to "Bob". Then it calls another method, and passes person
as one of two parameters; the other parameter is an integer variable, set to 5.

The method called sets the name value on the passed object to "Linda', and sets the integer

https://riptutorial.com/ 802

variable passed to 99, then returns.

So what would get printed?

Linda 5

So why does the change made to person take effect in main, but the change made to the integer
does not?

When the call is made, the main method passes an object reference for person to the setPersonName
method; any change that setAnotherName makes to that object is part of that object, and so those
changes are still part of that object when the method returns.

Another way of saying the same thing: person points to an object (stored on the heap, if you're
interested). Any change the method makes to that object are made "on that object", and are not
affected by whether the method making the change is still active or has returned. When the
method returns, any changes made to the object are still stored on that object.

Contrast this with the integer that is passed. Since this is a primitive int (and not an Integer object
instance), it is passed "by value", meaning its value is provided to the method, not a pointer to the
original integer passed in. The method can change it for the method's own purposes, but that does
not affect the variable used when the method call is made.

In Java, all primitives are passed by value. Objects are passed by reference, which means that a
pointer to the object is passed as the parameter to any methods that take them.

One less-obvious thing this means: it is not possible for a called method to create a new object
and return it as one of the parameters. The only way for a method to return an object that is
created, directly or indirectly, by the method call, is as a return value from the method. Let's first
see how that would not work, and then how it would work.

Let's add another method to our little example here:

private static void getAnotherObjectNot(Person person) {
 person = new Person();
 person.setName("George");
}

And, back in the main, below the call to setAnotherName, let's put a call to this method and another
println call:

getAnotherObjectNot(person);
System.out.println(person.getName());

Now the program would print out:

Linda 5
Linda

https://riptutorial.com/ 803

http://www.riptutorial.com/java/topic/148/primitive-data-types

What happened to the object that had George? Well, the parameter that was passed in was a
pointer to Linda; when the getAnotherObjectNot method created a new object, it replaced the
reference to the Linda object with a reference to the George object. The Linda object still exists
(on the heap), the main method can still access it, but the getAnotherObjectNot method wouldn't be
able to do anything with it after that, because it has no reference to it. It would appear that the
writer of the code intended for the method to create a new object and pass it back, but if so, it
didn't work.

If that is what the writer wanted to do, he would need to return the newly created object from the
method, something like this:

private static Person getAnotherObject() {
 Person person = new Person();
 person.setName("Mary");
 return person;
}

Then call it like this:

Person mary;
mary = getAnotherObject();
System.out.println(mary.getName());

And the entire program output would now be:

Linda 5
Linda
Mary

Here is the entire program, with both additions:

public class Person {
 private String name;

 public void setName(String name) { this.name = name; }
 public String getName() { return name; }

 public static void main(String [] arguments) {
 Person person = new Person();
 person.setName("Bob");

 int i = 5;
 setPersonName(person, i);
 System.out.println(person.getName() + " " + i);

 getAnotherObjectNot(person);
 System.out.println(person.getName());

 Person person;
 person = getAnotherObject();
 System.out.println(person.getName());
 }

 private static void setPersonName(Person person, int num) {

https://riptutorial.com/ 804

 person.setName("Linda");
 num = 99;
 }

 private static void getAnotherObjectNot(Person person) {
 person = new Person();
 person.setMyName("George");
 }

 private static person getAnotherObject() {
 Person person = new Person();
 person.setMyName("Mary");
 return person;
 }
}

Read Object References online: https://riptutorial.com/java/topic/5454/object-references

https://riptutorial.com/ 805

https://riptutorial.com/java/topic/5454/object-references

Chapter 127: Operators

Introduction

Operators in Java programming language are special symbols that perform specific operations on
one, two, or three operands, and then return a result.

Remarks

An operator is a symbol (or symbols) that tells a Java program to perform an operation on one,
two or three operands. An operator and its operands form an expression (see the Expressions
topic). The operands of an operator are themselves expressions.

This topic describes the 40 or so distinct operators defined by Java. The separate Expressions
topic explains:

how operators, operands and other things are combined into expressions,•
how the expressions are evaluated, and•
how expression typing, conversions, and expression evaluation work.•

Examples

The String Concatenation Operator (+)

The + symbol can mean three distinct operators in Java:

If there is no operand before the +, then it is the unary Plus operator.•
If there are two operands, and they are both numeric. then it is the binary Addition operator.•
If there are two operands, and at least one of them is a String, then it it the binary
Concatenation operator.

•

In the simple case, the Concatenation operator joins two strings to give a third string. For example:

String s1 = "a String";
String s2 = "This is " + s1; // s2 contains "This is a String"

When one of the two operands is not a string, it is converted to a String as follows:

An operand whose type is a primitive type is converted as if by calling toString() on the
boxed value.

•

An operand whose type is a reference type is converted by calling the operand's toString()
method. If the operand is null, or if the toString() method returns null, then the string literal
"null" is used instead.

•

For example:

https://riptutorial.com/ 806

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

int one = 1;
String s3 = "One is " + one; // s3 contains "One is 1"
String s4 = null + " is null"; // s4 contains "null is null"
String s5 = "{1} is " + new int[]{1}; // s5 contains something like
 // "{} is [I@xxxxxxxx"

The explanation for the s5 example is that the toString() method on array types is inherited from
java.lang.Object, and the behavior is to produce a string that consists of the type name, and the
object's identity hashcode.

The Concatenation operator is specified to create a new String object, except in the case where
the expression is a Constant Expression. In the latter case, the expression is evaluated at compile
type, and its runtime value is equivalent to a string literal. This means that there is no runtime
overhead in splitting a long string literal like this:

String typing = "The quick brown fox " +
 "jumped over the " +
 "lazy dog"; // constant expression

Optimization and efficiency

As noted above, with the exception of constant expressions, each string concatenation expression
creates a new String object. Consider this code:

public String stars(int count) {
 String res = "";
 for (int i = 0; i < count; i++) {
 res = res + "*";
 }
 return res;
}

In the method above, each iteration of the loop will create a new String that is one character
longer than the previous iteration. Each concatenation copies all of the characters in the operand
strings to form the new String. Thus, stars(N) will:

create N new String objects, and throw away all but the last one,•
copy N * (N + 1) / 2 characters, and•
generate O(N^2) bytes of garbage.•

This is very expensive for large N. Indeed, any code that concatenates strings in a loop is liable to
have this problem. A better way to write this would be as follows:

public String stars(int count) {
 // Create a string builder with capacity 'count'
 StringBuilder sb = new StringBuilder(count);
 for (int i = 0; i < count; i++) {
 sb.append("*");
 }
 return sb.toString();
}

https://riptutorial.com/ 807

Ideally, you should set the capacity of the StringBuilder, but if this is not practical, the class will
automatically grow the backing array that the builder uses to hold characters. (Note: the
implementation expands the backing array exponentially. This strategy keeps that amount of
character copying to a O(N) rather than O(N^2).)

Some people apply this pattern to all string concatenations. However, this is unnecessary because
the JLS allows a Java compiler to optimize string concatenations within a single expression. For
example:

String s1 = ...;
String s2 = ...;
String test = "Hello " + s1 + ". Welcome to " + s2 + "\n";

will typically be optimized by the bytecode compiler to something like this;

StringBuilder tmp = new StringBuilder();
tmp.append("Hello ")
tmp.append(s1 == null ? "null" + s1);
tmp.append("Welcome to ");
tmp.append(s2 == null ? "null" + s2);
tmp.append("\n");
String test = tmp.toString();

(The JIT compiler may optimize that further if it can deduce that s1 or s2 cannot be null.) But note
that this optimization is only permitted within a single expression.

In short, if you are concerned about the efficiency of string concatenations:

Do hand-optimize if you are doing repeated concatenation in a loop (or similar).•
Don't hand-optimize a single concatenation expression.•

The Arithmetic Operators (+, -, *, /, %)

The Java language provides 7 operators that perform arithmetic on integer and floating point
values.

There are two + operators:
The binary addition operator adds one number to another one. (There is also a binary +
operator that performs string concatenation. That is described in a separate example.)

○

The unary plus operator does nothing apart from triggering numeric promotion (see
below)

○

•

There are two - operators:
The binary subtraction operator subtracts one number from another one.○

The unary minus operator is equivalent to subtracting its operand from zero.○

•

The binary multiply operator (*) multiplies one number by another.•
The binary divide operator (/) divides one number by another.•
The binary remainder1 operator (%) calculates the remainder when one number is divided by
another.

•

1. This is often incorrectly referred to as the "modulus" operator. "Remainder" is the term that is used by the JLS.

https://riptutorial.com/ 808

"Modulus" and "remainder" are not the same thing.

Operand and result types, and numeric promotion

The operators require numeric operands and produce numeric results. The operand types can be
any primitive numeric type (i.e. byte, short, char, int, long, float or double) or any numeric wrapper
type define in java.lang; i.e. (Byte, Character, Short, Integer, Long, Float or Double.

The result type is determined base on the types of the operand or operands, as follows:

If either of the operands is a double or Double, then the result type is double.•
Otherwise, if either of the operands is a float or Float, then the result type is float.•
Otherwise, if either of the operands is a long or Long, then the result type is long.•
Otherwise, the result type is int. This covers byte, short and char operands as well as `int.•

The result type of the operation determines how the arithmetic operation is performed, and how
the operands are handled

If the result type is double, the operands are promoted to double, and the operation is
performed using 64-bit (double precision binary) IEE 754 floating point arithmetic.

•

If the result type is float, the operands are promoted to float, and the operation is performed
using 32-bit (single precision binary) IEE 754 floating point arithmetic.

•

If the result type is long, the operands are promoted to long, and the operation is performed
using 64-bit signed twos-complement binary integer arithmetic.

•

If the result type is int, the operands are promoted to int, and the operation is performed
using 32-bit signed twos-complement binary integer arithmetic.

•

Promotion is performed in two stages:

If the operand type is a wrapper type, the operand value is unboxed to a value of the
corresponding primitive type.

•

If necessary, the primitive type is promoted to the required type:
Promotion of integers to int or long is loss-less.○

Promotion of float to double is loss-less.○

Promotion of an integer to a floating point value can lead to loss of precision. The
conversion is performed using IEE 768 "round-to-nearest" semantics.

○

•

The meaning of division

The / operator divides the left-hand operand n (the dividend) and the right-hand operand d (the
divisor) and produces the result q (the quotient).

Java integer division rounds towards zero. The JLS Section 15.17.2 specifies the behavior of Java
integer division as follows:

The quotient produced for operands n and d is an integer value q whose magnitude is
as large as possible while satisfying |d ⋅ q| ≤ |n|. Moreover, q is positive when |n| ≥
|d| and n and d have the same sign, but q is negative when |n| ≥ |d| and n and d have

https://riptutorial.com/ 809

https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.17.2

opposite signs.

There are a couple of special cases:

If the n is MIN_VALUE, and the divisor is -1, then integer overflow occurs and the result is
MIN_VALUE. No exception is thrown in this case.

•

If d is 0, then `ArithmeticException is thrown.•

Java floating point division has more edge cases to consider. However the basic idea is that the
result q is the value that is closest to satisfying d . q = n.

Floating point division will never result in an exception. Instead, operations that divide by zero
result in an INF and NaN values; see below.

The meaning of remainder

Unlike C and C++, the remainder operator in Java works with both integer and floating point
operations.

For integer cases, the result of a % b is defined to be the number r such that (a / b) * b + r is
equal to a, where /, * and + are the appropriate Java integer operators. This applies in all cases
except when b is zero. That case, remainder results in an ArithmeticException.

It follows from the above definition that a % b can be negative only if a is negative, and it be
positive only if a is positive. Moreover, the magnitude of a % b is always less than the magnitude of
b.

Floating point remainder operation is a generalization of the integer case. The result of a % b is the
remainder r is defined by the mathematical relation r = a - (b ⋅ q) where:

q is an integer,•
it is negative only if a / b is negative an positive only if a / b is positive, and•
its magnitude is as large as possible without exceeding the magnitude of the true
mathematical quotient of a and b.

•

Floating point remainder can produce INF and NaN values in edge-cases such as when b is zero;
see below. It will not throw an exception.

Important note:

The result of a floating-point remainder operation as computed by % is not the same as
that produced by the remainder operation defined by IEEE 754. The IEEE 754
remainder may be computed using the Math.IEEEremainder library method.

Integer Overflow

Java 32 and 64 bit integer values are signed and use twos-complement binary representation. For
example, the range of numbers representable as (32 bit) int -231 through +231 - 1.

https://riptutorial.com/ 810

When you add, subtract or multiple two N bit integers (N == 32 or 64), the result of the operation
may be too large to represent as an N bit integer. In this case, the operation leads to integer
overflow, and the result can be computed as follows:

The mathematical operation is performed to give a intermediate two's-complement
representation of the entire number. This representation will be larger than N bits.

•

The bottom 32 or 64 bits of the intermediate representation are used as the result.•

It should be noted that integer overflow does not result in exceptions under any circumstances.

Floating point INF and NAN values

Java uses IEE 754 floating point representations for float and double. These representations have
some special values for representing values that fall outside of the domain of Real numbers:

The "infinite" or INF values denote numbers that are too large. The +INF value denote
numbers that are too large and positive. The -INF value denote numbers that are too large
and negative.

•

The "indefinite" / "not a number" or NaN denote values resulting from meaningless
operations.

•

The INF values are produced by floating operations that cause overflow, or by division by zero.

The NaN values are produced by dividing zero by zero, or computing zero remainder zero.

Surprisingly, it is possible perform arithmetic using INF and NaN operands without triggering
exceptions. For example:

Adding +INF and a finite value gives +INF.•
Adding +INF and +INF gives +INF.•
Adding +INF and -INF gives NaN.•
Dividing by INF gives either +0.0 or -0.0.•
All operations with one or more NaN operands give NaN.•

For full details, please refer to the relevant subsections of JLS 15. Note that this is largely
"academic". For typical calculations, an INF or NaN means that something has gone wrong; e.g. you
have incomplete or incorrect input data, or the calculation has been programmed incorrectly.

The Equality Operators (==, !=)

The == and != operators are binary operators that evaluate to true or false depending on whether
the operands are equal. The == operator gives true if the operands are equal and false otherwise.
The != operator gives false if the operands are equal and true otherwise.

These operators can be used operands with primitive and reference types, but the behavior is
significantly different. According to the JLS, there are actually three distinct sets of these
operators:

https://riptutorial.com/ 811

https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html

The Boolean == and != operators.•
The Numeric == and != operators.•
The Reference == and != operators.•

However, in all cases, the result type of the == and != operators is boolean.

The Numeric == and != operators

When one (or both) of the operands of an == or != operator is a primitive numeric type (byte, short,
char, int, long, float or double), the operator is a numeric comparison. The second operand must
be either a primitive numeric type, or a boxed numeric type.

The behavior other numeric operators is as follows:

If one of the operands is a boxed type, it is unboxed.1.
If either of the operands now a byte, short or char, it is promoted to an int.2.
If the types of the operands are not the same, then the operand with the "smaller" type is
promoted to the "larger" type.

3.

The comparison is then carried out as follows:
If the promoted operands are int or long then the values are tested to see if they are
identical.

•

If the promoted operands are float or double then:
the two versions of zero (+0.0 and -0.0) are treated as equal○

a NaN value is treated as not equals to anything, and○

other values are equal if their IEEE 754 representations are identical.○

•

4.

Note: you need to be careful when using == and != to compare floating point values.

The Boolean == and != operators

If both operands are boolean, or one is boolean and the other is Boolean, these operators the
Boolean == and != operators. The behavior is as follows:

If one of the operands is a Boolean, it is unboxed.1.
The unboxed operands are tested and the boolean result is calculated according to the
following truth table

2.

A B A == B A != B

false false true false

false true false true

true false false true

true true true false

https://riptutorial.com/ 812

There are two "pitfalls" that make it advisable to use == and != sparingly with truth values:

If you use == or != to compare two Boolean objects, then the Reference operators are used.
This may give an unexpected result; see Pitfall: using == to compare primitive wrappers
objects such as Integer

•

The == operator can easily be mistyped as =. For most operand types, this mistake leads to a
compilation error. However, for boolean and Boolean operands the mistake leads to incorrect
runtime behavior; see Pitfall - Using '==' to test a boolean

•

The Reference == and != operators

If both operands are object references, the == and != operators test if the two operands refer to
the same object. This often not what you want. To test if two objects are equal by value, the
.equals() method should be used instead.

String s1 = "We are equal";
String s2 = new String("We are equal");

s1.equals(s2); // true

// WARNING - don't use == or != with String values
s1 == s2; // false

Warning: using == and != to compare String values is incorrect in most cases; see
http://www.riptutorial.com/java/example/16290/pitfall--using----to-compare-strings . A similar
problem applies to primitive wrapper types; see
http://www.riptutorial.com/java/example/8996/pitfall--using----to-compare-primitive-wrappers-
objects-such-as-integer .

About the NaN edge-cases

JLS 15.21.1 states the following:

If either operand is NaN, then the result of == is false but the result of != is true. Indeed,
the test x != x is true if and only if the value of x is NaN.

This behavior is (to most programmers) unexpected. If you test if a NaN value is equal to itself, the
answer is "No it isn't!". In other words, == is not reflexive for NaN values.

However, this is not a Java "oddity", this behavior is specified in the IEEE 754 floating-point
standards, and you will find that it is implemented by most modern programming languages. (For
more information, see http://stackoverflow.com/a/1573715/139985 ... noting that this is written by
someone who was "in the room when the decisions were made"!)

The Increment/Decrement Operators (++/--)

Variables can be incremented or decremented by 1 using the ++ and -- operators, respectively.

https://riptutorial.com/ 813

http://www.riptutorial.com/java/example/8996/pitfall--using----to-compare-primitive-wrappers-objects-such-as-integer
http://www.riptutorial.com/java/example/8996/pitfall--using----to-compare-primitive-wrappers-objects-such-as-integer
http://www.riptutorial.com/java/example/20112/pitfall---using------to-test-a-boolean
http://www.riptutorial.com/java/example/16290/pitfall--using----to-compare-strings
http://www.riptutorial.com/java/example/8996/pitfall--using----to-compare-primitive-wrappers-objects-such-as-integer
http://www.riptutorial.com/java/example/8996/pitfall--using----to-compare-primitive-wrappers-objects-such-as-integer
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.21.1
http://stackoverflow.com/a/1573715/139985

When the ++ and -- operators follow variables, they are called post-increment and post-
decrement respectively.

int a = 10;
a++; // a now equals 11
a--; // a now equals 10 again

When the ++ and -- operators precede the variables the operations are called pre-increment and
pre-decrement respectively.

int x = 10;
--x; // x now equals 9
++x; // x now equals 10

If the operator precedes the variable, the value of the expression is the value of the variable after
being incremented or decremented. If the operator follows the variable, the value of the expression
is the value of the variable prior to being incremented or decremented.

int x=10;

System.out.println("x=" + x + " x=" + x++ + " x=" + x); // outputs x=10 x=10 x=11
System.out.println("x=" + x + " x=" + ++x + " x=" + x); // outputs x=11 x=12 x=12
System.out.println("x=" + x + " x=" + x-- + " x=" + x); // outputs x=12 x=12 x=11
System.out.println("x=" + x + " x=" + --x + " x=" + x); // outputs x=11 x=10 x=10

Be careful not to overwrite post-increments or decrements. This happens if you use a post-
in/decrement operator at the end of an expression which is reassigned to the in/decremented
variable itself. The in/decrement will not have an effect. Even though the variable on the left hand
side is incremented correctly, its value will be immediately overwritten with the previously
evaluated result from the right hand side of the expression:

int x = 0;
x = x++ + 1 + x++; // x = 0 + 1 + 1
 // do not do this - the last increment has no effect (bug!)
System.out.println(x); // prints 2 (not 3!)

Correct:

int x = 0;
x = x++ + 1 + x; // evaluates to x = 0 + 1 + 1
x++; // adds 1
System.out.println(x); // prints 3

The Conditional Operator (? :)

Syntax

{condition-to-evaluate} ? {statement-executed-on-true} : {statement-executed-on-false}

https://riptutorial.com/ 814

As shown in the syntax, the Conditional Operator (also known as the Ternary Operator1) uses the
? (question mark) and : (colon) characters to enable a conditional expression of two possible
outcomes. It can be used to replace longer if-else blocks to return one of two values based on
condition.

result = testCondition ? value1 : value2

Is equivalent to

if (testCondition) {
 result = value1;
} else {
 result = value2;
}

It can be read as “If testCondition is true, set result to value1; otherwise, set result to
value2”.

For example:

// get absolute value using conditional operator
a = -10;
int absValue = a < 0 ? -a : a;
System.out.println("abs = " + absValue); // prints "abs = 10"

Is equivalent to

// get absolute value using if/else loop
a = -10;
int absValue;
if (a < 0) {
 absValue = -a;
} else {
 absValue = a;
}
System.out.println("abs = " + absValue); // prints "abs = 10"

Common Usage

You can use the conditional operator for conditional assignments (like null checking).

String x = y != null ? y.toString() : ""; //where y is an object

This example is equivalent to:

String x = "";

if (y != null) {
 x = y.toString();

https://riptutorial.com/ 815

}

Since the Conditional Operator has the second-lowest precedence, above the Assignment
Operators, there is rarely a need for use parenthesis around the condition, but parenthesis is
required around the entire Conditional Operator construct when combined with other operators:

// no parenthesis needed for expressions in the 3 parts
10 <= a && a < 19 ? b * 5 : b * 7

// parenthesis required
7 * (a > 0 ? 2 : 5)

Conditional operators nesting can also be done in the third part, where it works more like chaining
or like a switch statement.

a ? "a is true" :
b ? "a is false, b is true" :
c ? "a and b are false, c is true" :
 "a, b, and c are false"

//Operator precedence can be illustrated with parenthesis:

a ? x : (b ? y : (c ? z : w))

Footnote:

1 - Both the Java Language Specification and the Java Tutorial call the (? :) operator the Conditional Operator. The
Tutorial says that it is "also known as the Ternary Operator" as it is (currently) the only ternary operator defined by
Java. The "Conditional Operator" terminology is consistent with C and C++ and other languages with an equivalent
operator.

The Bitwise and Logical Operators (~, &, |, ^)

The Java language provides 4 operators that perform bitwise or logical operations on integer or
boolean operands.

The complement (~) operator is a unary operator that performs a bitwise or logical inversion
of the bits of one operand; see JLS 15.15.5..

•

The AND (&) operator is a binary operator that performs a bitwise or logical "and" of two
operands; see JLS 15.22.2..

•

The OR (|) operator is a binary operator that performs a bitwise or logical "inclusive or" of
two operands; see JLS 15.22.2..

•

The XOR (^) operator is a binary operator that performs a bitwise or logical "exclusive or" of
two operands; see JLS 15.22.2..

•

The logical operations performed by these operators when the operands are booleans can be
summarized as follows:

https://riptutorial.com/ 816

http://www.riptutorial.com/java/example/12239/the-assignment-operators-----plus---and----
http://www.riptutorial.com/java/example/12239/the-assignment-operators-----plus---and----
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.25
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op2.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.15.5
https://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.22.2
https://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.22.2
https://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.22.2

A B ~A A & B A | B A ^ B

0 0 1 0 0 0

0 1 1 0 1 1

1 0 0 0 1 1

1 1 0 1 1 0

Note that for integer operands, the above table describes what happens for individual bits. The
operators actually operate on all 32 or 64 bits of the operand or operands in parallel.

Operand types and result types.

The usual arithmetic conversions apply when the operands are integers. Common use-cases for
the bitwise operators

The ~ operator is used to reverse a boolean value, or change all the bits in an integer operand.

The & operator is used for "masking out" some of the bits in an integer operand. For example:

int word = 0b00101010;
int mask = 0b00000011; // Mask for masking out all but the bottom
 // two bits of a word
int lowBits = word & mask; // -> 0b00000010
int highBits = word & ~mask; // -> 0b00101000

The | operator is used to combine the truth values of two operands. For example:

int word2 = 0b01011111;
// Combine the bottom 2 bits of word1 with the top 30 bits of word2
int combined = (word & mask) | (word2 & ~mask); // -> 0b01011110

The ^ operator is used for toggling or "flipping" bits:

int word3 = 0b00101010;
int word4 = word3 ^ mask; // -> 0b00101001

For more examples of the use of the bitwise operators, see Bit Manipulation

The Instanceof Operator

This operator checks whether the object is of a particular class/interface type. instanceof operator
is written as:

(Object reference variable) instanceof (class/interface type)

https://riptutorial.com/ 817

http://www.riptutorial.com/java/topic/1177/bit-manipulation

Example:

public class Test {

 public static void main(String args[]){
 String name = "Buyya";
 // following will return true since name is type of String
 boolean result = name instanceof String;
 System.out.println(result);
 }
}

This would produce the following result:

true

This operator will still return true if the object being compared is the assignment compatible with
the type on the right.

Example:

class Vehicle {}

public class Car extends Vehicle {
 public static void main(String args[]){
 Vehicle a = new Car();
 boolean result = a instanceof Car;
 System.out.println(result);
 }
}

This would produce the following result:

true

The Assignment Operators (=, +=, -=, *=, /=, %=, <<=, >>= , >>>=, &=, |= and ^=)

The left hand operand for these operators must be a either a non-final variable or an element of an
array. The right hand operand must be assignment compatible with the left hand operand. This
means that either the types must be the same, or the right operand type must be convertible to the
left operands type by a combination of boxing, unboxing or widening. (For complete details refer to
JLS 5.2.)

The precise meaning of the "operation and assign" operators is specified by JLS 15.26.2 as:

A compound assignment expression of the form E1 op= E2 is equivalent to E1 = (T)
((E1) op (E2)), where T is the type of E1, except that E1 is evaluated only once.

Note that there is an implicit type-cast before the final assignment.

1. =

https://riptutorial.com/ 818

http://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.2
http://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.26.2

The simple assignment operator: assigns the value of the right hand operand to the left hand
operand.

Example: c = a + b will add the value of a + b to the value of c and assign it to c

2. +=

The "add and assign" operator: adds the value of right hand operand to the value of the left hand
operand and assigns the result to left hand operand. If the left hand operand has type String, then
this a "concatenate and assign" operator.

Example: c += a is roughly the same as c = c + a

3. -=

The "subtract and assign" operator: subtracts the value of the right operand from the value of the
left hand operand and assign the result to left hand operand.

Example: c -= a is roughly the same as c = c - a

4. *=

The "multiply and assign" operator: multiplies the value of the right hand operand by the value of
the left hand operand and assign the result to left hand operand. .

Example: c *= a is roughly the same as c = c * a

5. /=

The "divide and assign" operator: divides the value of the right hand operand by the value of the
left hand operand and assign the result to left hand operand.

Example: c /*= a is roughly the same as c = c / a

6. %=

The "modulus and assign" operator: calculates the modulus of the value of the right hand operand
by the value of the left hand operand and assign the result to left hand operand.

Example: c %*= a is roughly the same as c = c % a

7. <<=

The "left shift and assign" operator.

Example: c <<= 2 is roughly the same as c = c << 2

8. >>=

The "arithmetic right shift and assign" operator.

Example: c >>= 2 is roughly the same as c = c >> 2

https://riptutorial.com/ 819

9. >>>=

The "logical right shift and assign" operator.

Example: c >>>= 2 is roughly the same as c = c >>> 2

10. &=

The "bitwise and and assign" operator.

Example: c &= 2 is roughly the same as c = c & 2

11. |=

The "bitwise or and assign" operator.

Example: c |= 2 is roughly the same as c = c | 2

12. ^=

The "bitwise exclusive or and assign" operator.

Example: c ^= 2 is roughly the same as c = c ^ 2

The conditional-and and conditional-or Operators (&& and ||)

Java provides a conditional-and and a conditional-or operator, that both take one or two operands
of type boolean and produce a boolean result. These are:

&& - the conditional-AND operator,•

|| - the conditional-OR operators. The evaluation of <left-expr> && <right-expr> is equivalent
to the following pseudo-code:

{
 boolean L = evaluate(<left-expr>);
 if (L) {
 return evaluate(<right-expr>);
 } else {
 // short-circuit the evaluation of the 2nd operand expression
 return false;
 }
}

•

The evaluation of <left-expr> || <right-expr> is equivalent to the following pseudo-code:

 {
 boolean L = evaluate(<left-expr>);
 if (!L) {
 return evaluate(<right-expr>);
 } else {
 // short-circuit the evaluation of the 2nd operand expression
 return true;

https://riptutorial.com/ 820

 }
 }

As the pseudo-code above illustrates, the behavior of the short-circuit operators are equivalent to
using if / else statements.

Example - using && as a guard in an expression

The following example shows the most common usage pattern for the && operator. Compare these
two versions of a method to test if a supplied Integer is zero.

public boolean isZero(Integer value) {
 return value == 0;
}

public boolean isZero(Integer value) {
 return value != null && value == 0;
}

The first version works in most cases, but if the value argument is null, then a NullPointerException
will be thrown.

In the second version we have added a "guard" test. The value != null && value == 0 expression
is evaluated by first performing the value != null test. If the null test succeeds (i.e. it evaluates to
true) then the value == 0 expression is evaluated. If the null test fails, then the evaluation of value
== 0 is skipped (short-circuited), and we don't get a NullPointerException.

Example - using && to avoid a costly calculation

The following example shows how && can be used to avoid a relatively costly calculation:

public boolean verify(int value, boolean needPrime) {
 return !needPrime | isPrime(value);
}

public boolean verify(int value, boolean needPrime) {
 return !needPrime || isPrime(value);
}

In the first version, both operands of the | will always be evaluated, so the (expensive) isPrime
method will be called unnecessarily. The second version avoids the unnecessary call by using ||
instead of |.

The Shift Operators (<<, >> and >>>)

The Java language provides three operator for performing bitwise shifting on 32 and 64 bit integer
values. These are all binary operators with the first operand being the value to be shifted, and the
second operand saying how far to shift.

https://riptutorial.com/ 821

The << or left shift operator shifts the value given by the first operand leftwards by the
number of bit positions given by the second operand. The empty positions at the right end
are filled with zeros.

•

The '>>' or arithmetic shift operator shifts the value given by the first operand rightwards by
the number of bit positions given by the second operand. The empty positions at the left end
are filled by copying the left-most bit. This process is known as sign extension.

•

The '>>>' or logical right shift operator shifts the value given by the first operand rightwards
by the number of bit positions given by the second operand. The empty positions at the left
end are filled with zeros.

•

Notes:

These operators require an int or long value as the first operand, and produce a value with
the same type as the first operand. (You will need to use an explicit type cast when
assigning the result of a shift to a byte, short or char variable.)

1.

If you use a shift operator with a first operand that is a byte, char or short, it is promoted to an
int and the operation produces an int.)

2.

The second operand is reduced modulo the number of bits of the operation to give the
amount of the shift. For more about the mod mathematical concept, see Modulus
examples.

3.

The bits that are shifted off the left or right end by the operation are discarded. (Java does
not provide a primitive "rotate" operator.)

4.

The arithmetic shift operator is equivalent dividing a (two's complement) number by a power
of 2.

5.

The left shift operator is equivalent multiplying a (two's complement) number by a power of
2.

6.

The following table will help you see the effects of the three shift operators. (The numbers have
been expressed in binary notation to aid vizualization.)

Operand1 Operand2 << >> >>>

0b0000000000001011 0 0b0000000000001011 0b0000000000001011 0b0000000000001011

0b0000000000001011 1 0b0000000000010110 0b0000000000000101 0b0000000000000101

0b0000000000001011 2 0b0000000000101100 0b0000000000000010 0b0000000000000010

0b0000000000001011 28 0b1011000000000000 0b0000000000000000 0b0000000000000000

0b0000000000001011 31 0b1000000000000000 0b0000000000000000 0b0000000000000000

0b0000000000001011 32 0b0000000000001011 0b0000000000001011 0b0000000000001011

...

https://riptutorial.com/ 822

http://stackoverflow.com/documentation/java/176/operators/14283/modulus-examples#t=201607262031550001554
http://stackoverflow.com/documentation/java/176/operators/14283/modulus-examples#t=201607262031550001554

Operand1 Operand2 << >> >>>

0b1000000000001011 0 0b1000000000001011 0b1000000000001011 0b1000000000001011

0b1000000000001011 1 0b0000000000010110 0b1100000000000101 0b0100000000000101

0b1000000000001011 2 0b0000000000101100 0b1110000000000010 0b00100000000000100

0b1000000000001011 31 0b1000000000000000 0b1111111111111111 0b0000000000000001

There examples of the user of shift operators in Bit manipulation

The Lambda operator (->)

From Java 8 onwards, the Lambda operator (->) is the operator used to introduce a Lambda
Expression. There are two common syntaxes, as illustrated by these examples:

Java SE 8

 a -> a + 1 // a lambda that adds one to its argument
 a -> { return a + 1; } // an equivalent lambda using a block.

A lambda expression defines an anonymous function, or more correctly an instance of an
anonymous class that implements a functional interface.

(This example is included here for completeness. Refer to the Lambda Expressions topic for the
full treatment.)

The Relational Operators (<, <=, >, >=)

The operators <, <=, > and >= are binary operators for comparing numeric types. The meaning of
the operators is as you would expect. For example, if a and b are declared as any of byte, short,
char, int, long, float, double or the corresponding boxed types:

- `a < b` tests if the value of `a` is less than the value of `b`.
- `a <= b` tests if the value of `a` is less than or equal to the value of `b`.
- `a > b` tests if the value of `a` is greater than the value of `b`.
- `a >= b` tests if the value of `a` is greater than or equal to the value of `b`.

The result type for these operators is boolean in all cases.

Relational operators can be used to compare numbers with different types. For example:

int i = 1;
long l = 2;
if (i < l) {
 System.out.println("i is smaller");
}

Relational operators can be used when either or both numbers are instances of boxed numeric
types. For example:

https://riptutorial.com/ 823

http://www.riptutorial.com/java/topic/1177/bit-manipulation
http://www.riptutorial.com/java/topic/91/lambda-expressions

Integer i = 1; // 1 is autoboxed to an Integer
Integer j = 2; // 2 is autoboxed to an Integer
if (i < j) {
 System.out.println("i is smaller");
}

The precise behavior is summarized as follows:

If one of the operands is a boxed type, it is unboxed.1.
If either of the operands now a byte, short or char, it is promoted to an int.2.
If the types of the operands are not the same, then the operand with the "smaller" type is
promoted to the "larger" type.

3.

The comparison is performed on the resulting int, long, float or double values.4.

You need to be careful with relational comparisons that involve floating point numbers:

Expressions that compute floating point numbers often incur rounding errors due to the fact
that the computer floating-point representations have limited precision.

•

When comparing an integer type and a floating point type, the conversion of the integer to
floating point can also lead to rounding errors.

•

Finally, Java does bit support the use of relational operators with any types other than the ones
listed above. For example, you cannot use these operators to compare strings, arrays of numbers,
and so on.

Read Operators online: https://riptutorial.com/java/topic/176/operators

https://riptutorial.com/ 824

https://riptutorial.com/java/topic/176/operators

Chapter 128: Optional

Introduction

Optional is a container object which may or may not contain a non-null value. If a value is present,
isPresent() will return true and get() will return the value.

Additional methods that depend on the presence of the contained value are provided, such as
orElse(), which returns a default value if value not present, and ifPresent() which executes a
block of code if the value is present.

Syntax

Optional.empty() // Creates an empty Optional instance.•
Optional.of(value) // Returns an Optional with the specified non-null value. A
NullPointerException will be thrown if the passed value is null.

•

Optional.ofNullable(value) // Returns an Optional with the specified value that may be null.•

Examples

Return default value if Optional is empty

Don't just use Optional.get() since that may throw NoSuchElementException. The Optional.orElse(T)
and Optional.orElseGet(Supplier<? extends T>) methods provide a way to supply a default value in
case the Optional is empty.

String value = "something";

return Optional.ofNullable(value).orElse("defaultValue");
// returns "something"

return Optional.ofNullable(value).orElseGet(() -> getDefaultValue());
// returns "something" (never calls the getDefaultValue() method)

String value = null;

return Optional.ofNullable(value).orElse("defaultValue");
// returns "defaultValue"

return Optional.ofNullable(value).orElseGet(() -> getDefaultValue());
// calls getDefaultValue() and returns its results

The crucial difference between the orElse and orElseGet is that the latter is only evaluated when
the Optional is empty while the argument supplied to the former one is evaluated even if the
Optional is not empty. The orElse should therefore only be used for constants and never for
supplying value based on any sort of computation.

https://riptutorial.com/ 825

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElse-T-
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElse-T-
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElseGet-java.util.function.Supplier-

Map

Use the map() method of Optional to work with values that might be null without doing explicit null
checks:

(Note that the map() and filter() operations are evaluated immediately, unlike their Stream
counterparts which are only evaluated upon a terminal operation.)

Syntax:

public <U> Optional<U> map(Function<? super T,? extends U> mapper)

Code examples:

String value = null;

return Optional.ofNullable(value).map(String::toUpperCase).orElse("NONE");
// returns "NONE"

String value = "something";

return Optional.ofNullable(value).map(String::toUpperCase).orElse("NONE");
// returns "SOMETHING"

Because Optional.map() returns an empty optional when its mapping function returns null, you can
chain several map() operations as a form of null-safe dereferencing. This is also known as Null-
safe chaining.

Consider the following example:

String value = foo.getBar().getBaz().toString();

Any of getBar, getBaz, and toString can potentially throw a NullPointerException.

Here is an alternative way to get the value from toString() using Optional:

String value = Optional.ofNullable(foo)
 .map(Foo::getBar)
 .map(Bar::getBaz)
 .map(Baz::toString)
 .orElse("");

This will return an empty string if any of the mapping functions returned null.

Below is an another example, but slightly different. It will print the value only if none of the
mapping functions returned null.

Optional.ofNullable(foo)
 .map(Foo::getBar)
 .map(Bar::getBaz)

https://riptutorial.com/ 826

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#map-java.util.function.Function-
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#map-java.util.function.Function-
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#filter-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#map-java.util.function.Function-

 .map(Baz::toString)
 .ifPresent(System.out::println);

Throw an exception, if there is no value

Use the orElseThrow() method of Optional to get the contained value or throw an exception, if it
hasn't been set. This is similar to calling get(), except that it allows for arbitrary exception types.
The method takes a supplier that must return the exception to be thrown.

In the first example, the method simply returns the contained value:

Optional optional = Optional.of("something");

return optional.orElseThrow(IllegalArgumentException::new);
// returns "something" string

In the second example, the method throws an exception because a value hasn't been set:

Optional optional = Optional.empty();

return optional.orElseThrow(IllegalArgumentException::new);
// throws IllegalArgumentException

You can also use the lambda syntax if throwing an exception with message is needed:

optional.orElseThrow(() -> new IllegalArgumentException("Illegal"));

Filter

filter() is used to indicate that you would like the value only if it matches your predicate.

Think of it like if (!somePredicate(x)) { x = null; }.

Code examples:

String value = null;
Optional.ofNullable(value) // nothing
 .filter(x -> x.equals("cool string"))// this is never run since value is null
 .isPresent(); // false

String value = "cool string";
Optional.ofNullable(value) // something
 .filter(x -> x.equals("cool string"))// this is run and passes
 .isPresent(); // true

String value = "hot string";
Optional.ofNullable(value) // something
 .filter(x -> x.equals("cool string"))// this is run and fails
 .isPresent(); // false

https://riptutorial.com/ 827

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElseThrow-java.util.function.Supplier-
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#filter-java.util.function.Predicate-

Using Optional containers for primitive number types

OptionalDouble, OptionalInt and OptionalLong work like Optional, but are specifically designed to
wrap primitive types:

OptionalInt presentInt = OptionalInt.of(value);
OptionalInt absentInt = OptionalInt.empty();

Because numeric types do have a value, there is no special handling for null. Empty containers
can be checked with:

presentInt.isPresent(); // Is true.
absentInt.isPresent(); // Is false.

Similarly, shorthands exist to aid value management:

// Prints the value since it is provided on creation.
presentInt.ifPresent(System.out::println);

// Gives the other value as the original Optional is empty.
int finalValue = absentInt.orElseGet(this::otherValue);

// Will throw a NoSuchElementException.
int nonexistentValue = absentInt.getAsInt();

Run code only if there is a value present

Optional<String> optionalWithValue = Optional.of("foo");
optionalWithValue.ifPresent(System.out::println);//Prints "foo".

Optional<String> emptyOptional = Optional.empty();
emptyOptional.ifPresent(System.out::println);//Does nothing.

Lazily provide a default value using a Supplier

The normal orElse method takes an Object, so you might wonder why there is an option to provide
a Supplier here (the orElseGet method).

Consider:

String value = "something";
return Optional.ofNullable(value)
 .orElse(getValueThatIsHardToCalculate()); // returns "something"

It would still call getValueThatIsHardToCalculate() even though it's result is not used as the optional
is not empty.

To avoid this penalty you supply a supplier:

String value = "something";

https://riptutorial.com/ 828

https://docs.oracle.com/javase/8/docs/api/java/util/OptionalDouble.html
https://docs.oracle.com/javase/8/docs/api/java/util/OptionalInt.html
https://docs.oracle.com/javase/8/docs/api/java/util/OptionalLong.html
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElse-T-

return Optional.ofNullable(value)
 .orElseGet(() -> getValueThatIsHardToCalculate()); // returns "something"

This way getValueThatIsHardToCalculate() will only be called if the Optional is empty.

FlatMap

flatMap is similar to map. The difference is described by the javadoc as follows:

This method is similar to map(Function), but the provided mapper is one whose result is
already an Optional, and if invoked, flatMap does not wrap it with an additional Optional.

In other words, when you chain a method call that returns an Optional, using Optional.flatMap
avoids creating nested Optionals.

For example, given the following classes:

public class Foo {
 Optional<Bar> getBar(){
 return Optional.of(new Bar());
 }
}

public class Bar {
}

If you use Optional.map, you will get a nested Optional; i.e. Optional<Optional<Bar>>.

Optional<Optional<Bar>> nestedOptionalBar =
 Optional.of(new Foo())
 .map(Foo::getBar);

However, if you use Optional.flatMap, you will get a simple Optional; i.e. Optional<Bar>.

Optional<Bar> optionalBar =
 Optional.of(new Foo())
 .flatMap(Foo::getBar);

Read Optional online: https://riptutorial.com/java/topic/152/optional

https://riptutorial.com/ 829

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#flatMap-java.util.function.Function-
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#map-java.util.function.Function-
https://riptutorial.com/java/topic/152/optional

Chapter 129: Oracle Official Code Standard

Introduction

Oracle official style guide for the Java Programming Language is a standard followed by
developers at Oracle and recommended to be followed by any other Java developer. It covers
filenames, file organization, indentation, comments, declarations, statements, white space, naming
conventions, programming practices and includes a code example.

Remarks

The examples above strictly follow the new official style guide from Oracle. They are in other
words not subjectively made up by the authors of this page.

•

The official style guide has been carefully written to be backward compatible with the original
style guide and the majority of code out in the wild.

•

The official style guide has been peer reviewed by among others, Brian Goetz (Java
Language Architect) and Mark Reinhold (Chief Architect of the Java Platform).

•

The examples are non-normative; While they intend to illustrate correct way of formatting the
code, there may be other ways to correctly format the code. This is a general principle:
There may be several ways to format the code, all adhering to the official guidelines.

•

Examples

Naming Conventions

Package names

Package names should be all lower case without underscores or other special characters.•
Package names begin with the reversed authority part of the web address of the company of
the developer. This part can be followed a by project/program structure dependent package
substructure.

•

Don’t use plural form. Follow the convention of the standard API which uses for instance
java.lang.annotation and not java.lang.annotations.

•

Examples: com.yourcompany.widget.button, com.yourcompany.core.api•

Class, Interface and Enum Names

Class and enum names should typically be nouns.•
Interface names should typically be nouns or adjectives ending with …able.•

https://riptutorial.com/ 830

http://cr.openjdk.java.net/~alundblad/styleguide
http://cr.openjdk.java.net/~alundblad/styleguide
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
http://mail.openjdk.java.net/pipermail/discuss/2015-August/003766.html
http://mail.openjdk.java.net/pipermail/discuss/2015-August/003771.html

Use mixed case with the first letter in each word in upper case (i.e. CamelCase).•
Match the regular expression ^[A-Z][a-zA-Z0-9]*$.•
Use whole words and avoid using abbreviations unless the abbreviation is more widely used
than the long form.

•

Format an abbreviation as a word if the it is part of a longer class name.•
Examples: ArrayList, BigInteger, ArrayIndexOutOfBoundsException, Iterable.•

Method Names

Method names should typically be verbs or other descriptions of actions

They should match the regular expression ^[a-z][a-zA-Z0-9]*$.•
Use mixed case with the first letter in lower case.•
Examples: toString, hashCode•

Variables

Variable names should be in mixed case with the first letter in lower case

Match the regular expression ^[a-z][a-zA-Z0-9]*$•
Further recommendation: Variables•
Examples: elements, currentIndex•

Type Variables

For simple cases where there are few type variables involved use a single upper case letter.

Match the regular expression ^[A-Z][0-9]?$•
If one letter is more descriptive than another (such as K and V for keys and values in maps or
R for a function return type) use that, otherwise use T.

•

For complex cases where single letter type variables become confusing, use longer names
written in all capital letters and use underscore (_) to separate words.

•

Examples: T, V, SRC_VERTEX•

Constants

Constants (static final fields whose content is immutable, by language rules or by convention)
should be named with all capital letters and underscore (_) to separate words.

Match the regular expression ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$•
Examples: BUFFER_SIZE, MAX_LEVEL•

https://riptutorial.com/ 831

https://en.wikipedia.org/wiki/CamelCase
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html

Other guidelines on naming

Avoid hiding/shadowing methods, variables and type variables in outer scopes.•
Let the verbosity of the name correlate to the size of the scope. (For instance, use
descriptive names for fields of large classes and brief names for local short-lived variables.)

•

When naming public static members, let the identifier be self descriptive if you believe they
will be statically imported.

•

Further reading: Naming Section (in the official Java Style Guide)•

Source: Java Style Guidelines from Oracle

Java Source Files

All lines must be terminated with a line feed character (LF, ASCII value 10) and not for
instance CR or CR+LF.

•

There may be no trailing white space at the end of a line.•

The name of a source file must equal the name of the class it contains followed by the .java
extension, even for files that only contain a package private class. This does not apply to
files that do not contain any class declarations, such as package-info.java.

•

Special Characters

Apart from LF the only allowed white space character is Space (ASCII value 32). Note that
this implies that other white space characters (in, for instance, string and character literals)
must be written in escaped form.

•

\', \", \\, \t, \b, \r, \f, and \n should be preferred over corresponding octal (e.g. \047) or
Unicode (e.g. \u0027) escaped characters.

•

Should there be a need to go against the above rules for the sake of testing, the test should
generate the required input programatically.

•

Package declaration

package com.example.my.package;

The package declaration should not be line wrapped, regardless of whether it exceeds the
recommended maximum length of a line.

Import statements

// First java/javax packages
import java.util.ArrayList;
import javax.tools.JavaCompiler;

https://riptutorial.com/ 832

http://cr.openjdk.java.net/~alundblad/styleguide/index-v6.html#toc-naming
http://cr.openjdk.java.net/~alundblad/styleguide/index-v6.html

// Then third party libraries
import com.fasterxml.jackson.annotation.JsonProperty;

// Then project imports
import com.example.my.package.ClassA;
import com.example.my.package.ClassB;

// Then static imports (in the same order as above)
import static java.util.stream.Collectors.toList;

Import statements should be sorted…

…primarily by non-static / static with non-static imports first.○

…secondarily by package origin according to the following order
java packages○

javax packages○

external packages (e.g. org.xml)○

internal packages (e.g. com.sun)○

○

…tertiary by package and class identifier in lexicographical order○

•

Import statements should not be line wrapped, regardless of whether it exceeds the
recommended maximum length of a line.

•

No unused imports should be present.•

Wildcard imports

Wildcard imports should in general not be used.•
When importing a large number of closely-related classes (such as implementing a visitor
over a tree with dozens of distinct “node” classes), a wildcard import may be used.

•

In any case, no more than one wildcard import per file should be used.•

Class Structure

Order of class members

Class members should be ordered as follows:

Fields (in order of public, protected and private)1.
Constructors2.
Factory methods3.
Other Methods (in order of public, protected and private)4.

Ordering fields and methods primarily by their access modifiers or identifier is not required.

Here is an example of this order:

class Example {

https://riptutorial.com/ 833

 private int i;

 Example(int i) {
 this.i = i;
 }

 static Example getExample(int i) {
 return new Example(i);
 }

 @Override
 public String toString() {
 return "An example [" + i + "]";
 }

}

Grouping of class members

Related fields should be grouped together.•
A nested type may be declared right before its first use; otherwise it should be declared
before the fields.

•

Constructors and overloaded methods should be grouped together by functionality and
ordered with increasing arity. This implies that delegation among these constructs flow
downward in the code.

•

Constructors should be grouped together without other members between.•
Overloaded variants of a method should be grouped together without other members
between.

•

Modifiers

class ExampleClass {
 // Access modifiers first (don't do for instance "static public")
 public static void main(String[] args) {
 System.out.println("Hello World");
 }
}

interface ExampleInterface {
 // Avoid 'public' and 'abstract' since they are implicit
 void sayHello();
}

Modifiers should go in the following order

Access modifier (public / private / protected)○

abstract○

static○

final○

transient○

volatile○

default○

•

https://riptutorial.com/ 834

synchronized○

native○

strictfp○

Modifiers should not be written out when they are implicit. For example, interface methods
should neither be declared public nor abstract, and nested enums and interfaces should not
be declared static.

•

Method parameters and local variables should not be declared final unless it improves
readability or documents an actual design decision.

•

Fields should be declared final unless there is a compelling reason to make them mutable.•

Indentation

Indentation level is four spaces.•
Only space characters may be used for indentation. No tabs.•
Empty lines must not be indented. (This is implied by the no trailing white space rule.)•
case lines should be indented with four spaces, and statements within the case should be
indented with another four spaces.

•

switch (var) {
 case TWO:
 setChoice("two");
 break;
 case THREE:
 setChoice("three");
 break;
 default:
 throw new IllegalArgumentException();
}

Refer to Wrapping statements for guidelines on how to indent continuation lines.

Wrapping statements

Source code and comments should generally not exceed 80 characters per line and rarely if
ever exceed 100 characters per line, including indentation.

The character limit must be judged on a case by case basis. What really matters is the
semantical “density” and readability of the line. Making lines gratuitously long makes them
hard to read; similarly, making “heroic attempts” to fit them into 80 columns can also make
them hard to read. The flexibility outlined here aims to enable developers to avoid these
extremes, not to maximize use of monitor real-estate.

•

URLs or example commands should not be wrapped.•

// Ok even though it might exceed max line width when indented.
Error e = isTypeParam
 ? Errors.InvalidRepeatableAnnotationNotApplicable(targetContainerType, on)
 : Errors.InvalidRepeatableAnnotationNotApplicableInContext(targetContainerType));

https://riptutorial.com/ 835

http://www.riptutorial.com/java/example/13447/wrapping-statements

// Wrapping preferable
String pretty = Stream.of(args)
 .map(Argument::prettyPrint)
 .collectors(joining(", "));

// Too strict interpretation of max line width. Readability suffers.
Error e = isTypeParam
 ? Errors.InvalidRepeatableAnnotationNotApplicable(
 targetContainerType, on)
 : Errors.InvalidRepeatableAnnotationNotApplicableInContext(
 targetContainerType);

// Should be wrapped even though it fits within the character limit
String pretty = Stream.of(args).map(Argument::prettyPrint).collectors(joining(", "));

Wrapping at a higher syntactical level is preferred over wrapping at a lower syntactical level.•

There should be at most 1 statement per line.•

A continuation line should be indented in one of the following four ways

Variant 1: With 8 extra spaces relative to the indentation of the previous line.○

Variant 2: With 8 extra spaces relative to the starting column of the wrapped
expression.

○

Variant 3: Aligned with previous sibling expression (as long as it is clear that it’s a
continuation line)

○

Variant 4: Aligned with previous method call in a chained expression.○

•

Wrapping Method Declarations

int someMethod(String aString,
 List<Integer> aList,
 Map<String, String> aMap,
 int anInt,
 long aLong,
 Set<Number> aSet,
 double aDouble) {
 …
}

int someMethod(String aString, List<Integer> aList,
 Map<String, String> aMap, int anInt, long aLong,
 double aDouble, long aLong) {
 …
}

int someMethod(String aString,
 List<Map<Integer, StringBuffer>> aListOfMaps,
 Map<String, String> aMap)
 throws IllegalArgumentException {
 …
}

int someMethod(String aString, List<Integer> aList,
 Map<String, String> aMap, int anInt)

https://riptutorial.com/ 836

 throws IllegalArgumentException {
 …
}

Method declarations can be formatted by listing the arguments vertically, or by a new line
and +8 extra spaces

•

If a throws clause needs to be wrapped, put the line break in front of the throws clause and
make sure it stands out from the argument list, either by indenting +8 relative to the function
declaration, or +8 relative to the previous line.

•

Wrapping Expressions

If a line approaches the maximum character limit, always consider breaking it down into
multiple statements / expressions instead of wrapping the line.

•

Break before operators.•
Break before the . in chained method calls.•

popupMsg("Inbox notification: You have "
 + newMsgs + " new messages");

// Don't! Looks like two arguments
popupMsg("Inbox notification: You have " +
 newMsgs + " new messages");

Whitespace

Vertical Whitespace

A single blank line should be used to separate…

Package declaration○

Class declarations○

Constructors○

Methods○

Static initializers○

Instance initializers○

•

…and may be used to separate logical groups of

import statements○

fields○

statements○

•

Multiple consecutive blank lines should only be used to separate groups of related members
and not as the standard inter-member spacing.

•

https://riptutorial.com/ 837

Horizontal Whitespace

A single space should be used…

To separate keywords from neighboring opening or closing brackets and braces○

Before and after all binary operators and operator like symbols such as arrows in
lambda expressions and the colon in enhanced for loops (but not before the colon of a
label)

○

After // that starts a comment.○

After commas separating arguments and semicolons separating the parts of a for loop.○

After the closing parenthesis of a cast.○

•

In variable declarations it is not recommended to align types and variables.•

Variable Declarations

One variable per declaration (and at most one declaration per line)•
Square brackets of arrays should be at the type (String[] args) and not on the variable (
String args[]).

•

Declare a local variable right before it is first used, and initialize it as close to the declaration
as possible.

•

Annotations

Declaration annotations should be put on a separate line from the declaration being annotated.

@SuppressWarnings("unchecked")
public T[] toArray(T[] typeHolder) {
 ...
}

However, few or short annotations annotating a single-line method may be put on the same line as
the method if it improves readability. For example, one may write:

@Nullable String getName() { return name; }

For a matter of consistency and readability, either all annotations should be put on the same line
or each annotation should be put on a separate line.

// Bad.
@Deprecated @SafeVarargs
@CustomAnnotation
public final Tuple<T> extend(T... elements) {
 ...
}

// Even worse.
@Deprecated @SafeVarargs
@CustomAnnotation public final Tuple<T> extend(T... elements) {

https://riptutorial.com/ 838

 ...
}

// Good.
@Deprecated
@SafeVarargs
@CustomAnnotation
public final Tuple<T> extend(T... elements) {
 ...
}

// Good.
@Deprecated @SafeVarargs @CustomAnnotation
public final Tuple<T> extend(T... elements) {
 ...
}

Lambda Expressions

Runnable r = () -> System.out.println("Hello World");

Supplier<String> c = () -> "Hello World";

// Collection::contains is a simple unary method and its behavior is
// clear from the context. A method reference is preferred here.
appendFilter(goodStrings::contains);

// A lambda expression is easier to understand than just tempMap::put in this case
trackTemperature((time, temp) -> tempMap.put(time, temp));

Expression lambdas are preferred over single-line block lambdas.•
Method references should generally be preferred over lambda expressions.•
For bound instance method references, or methods with arity greater than one, a lambda
expression may be easier to understand and therefore preferred. Especially if the behavior of
the method is not clear from the context.

•

The parameter types should be omitted unless they improve readability.•
If a lambda expression stretches over more than a few lines, consider creating a method.•

Redundant Parentheses

return flag ? "yes" : "no";

String cmp = (flag1 != flag2) ? "not equal" : "equal";

// Don't do this
return (flag ? "yes" : "no");

Redundant grouping parentheses (i.e. parentheses that does not affect evaluation) may be
used if they improve readability.

•

Redundant grouping parentheses should typically be left out in shorter expressions involving
common operators but included in longer expressions or expressions involving operators
whose precedence and associativity is unclear without parentheses. Ternary expressions
with non-trivial conditions belong to the latter.

•

https://riptutorial.com/ 839

The entire expression following a return keyword must not be surrounded by parentheses.•

Literals

long l = 5432L;
int i = 0x123 + 0xABC;
byte b = 0b1010;
float f1 = 1 / 5432f;
float f2 = 0.123e4f;
double d1 = 1 / 5432d; // or 1 / 5432.0
double d2 = 0x1.3p2;

long literals should use the upper case letter L suffix.•
Hexadecimal literals should use upper case letters A-F.•
All other numerical prefixes, infixes, and suffixes should use lowercase letters.•

Braces

class Example {
 void method(boolean error) {
 if (error) {
 Log.error("Error occurred!");
 System.out.println("Error!");
 } else { // Use braces since the other block uses braces.
 System.out.println("No error");
 }
 }
}

Opening braces should be put on the end of the current line rather than on a line by its own.•

There should be a new line in front of a closing brace unless the block is empty (see Short
Forms below)

•

Braces are recommended even where the language makes them optional, such as single-
line if and loop bodies.

If a block spans more than one line (including comments) it must have braces.○

If one of the blocks in a if / else statement has braces, the other block must too.○

If the block comes last in an enclosing block, it must have braces.○

•

The else, catch and the while keyword in do…while loops go on the same line as the closing
brace of the preceding block.

•

Short forms

enum Response { YES, NO, MAYBE }
public boolean isReference() { return true; }

The above recommendations are intended to improve uniformity (and thus increase familiarity /

https://riptutorial.com/ 840

readability). In some cases “short forms” that deviate from the above guidelines are just as
readable and may be used instead. These cases include for instance simple enum declarations
and trivial methods and lambda expressions.

Read Oracle Official Code Standard online: https://riptutorial.com/java/topic/2697/oracle-official-
code-standard

https://riptutorial.com/ 841

https://riptutorial.com/java/topic/2697/oracle-official-code-standard
https://riptutorial.com/java/topic/2697/oracle-official-code-standard

Chapter 130: Packages

Introduction

package in java is used to group class and interfaces. This helps developer to avoid conflict when
there are huge numbers of classes. If we use this package the classes we can create a
class/interface with same name in different packages. By using packages we can import the piece
of again in another class. There many built in packages in java like > 1.java.util > 2.java.lang >
3.java.io We can define our own user defined packages.

Remarks

Packages provide access protection.

package statement must be first line of source code. There can only be one package in
one source file.

With help of packages conflict between different modules can be avoided.

Examples

Using Packages to create classes with the same name

First Test.class:

package foo.bar

public class Test {

}

Also Test.class in another package

package foo.bar.baz

public class Test {

}

The above is fine because the two classes exist in different packages.

Using Package Protected Scope

In Java if you don't provide an access modifier the default scope for variables is package-
protected level. This means that classes can access the variables of other classes within the same
package as if those variables were publicly available.

https://riptutorial.com/ 842

package foo.bar

public class ExampleClass {
 double exampleNumber;
 String exampleString;

 public ExampleClass() {
 exampleNumber = 3;
 exampleString = "Test String";
 }
 //No getters or setters
}

package foo.bar

public class AnotherClass {
 ExampleClass clazz = new ExampleClass();

 System.out.println("Example Number: " + clazz.exampleNumber);
 //Prints Example Number: 3
 System.out.println("Example String: " + clazz.exampleString);
 //Prints Example String: Test String
}

This method will not work for a class in another package:

package baz.foo

public class ThisShouldNotWork {
 ExampleClass clazz = new ExampleClass();

 System.out.println("Example Number: " + clazz.exampleNumber);
 //Throws an exception
 System.out.println("Example String: " + clazz.exampleString);
 //Throws an exception
}

Read Packages online: https://riptutorial.com/java/topic/8273/packages

https://riptutorial.com/ 843

https://riptutorial.com/java/topic/8273/packages

Chapter 131: Parallel programming with
Fork/Join framework

Examples

Fork/Join Tasks in Java

The fork/join framework in Java is ideal for a problem that can be divided into smaller pieces and
solved in parallel. The fundamental steps of a fork/join problem are:

Divide the problem into multiple pieces•
Solve each of the pieces in parallel to each other•
Combine each of the sub-solutions into one overall solution•

A ForkJoinTask is the interface that defines such a problem. It is generally expected that you will
subclass one of its abstract implementations (usually the RecursiveTask) rather than implement
the interface directly.

In this example, we are going to sum a collection of integers, dividing until we get to batch sizes of
no more than ten.

import java.util.List;
import java.util.concurrent.RecursiveTask;

public class SummingTask extends RecursiveTask<Integer> {
 private static final int MAX_BATCH_SIZE = 10;

 private final List<Integer> numbers;
 private final int minInclusive, maxExclusive;

 public SummingTask(List<Integer> numbers) {
 this(numbers, 0, numbers.size());
 }

 // This constructor is only used internally as part of the dividing process
 private SummingTask(List<Integer> numbers, int minInclusive, int maxExclusive) {
 this.numbers = numbers;
 this.minInclusive = minInclusive;
 this.maxExclusive = maxExclusive;
 }

 @Override
 public Integer compute() {
 if (maxExclusive - minInclusive > MAX_BATCH_SIZE) {
 // This is too big for a single batch, so we shall divide into two tasks
 int mid = (minInclusive + maxExclusive) / 2;
 SummingTask leftTask = new SummingTask(numbers, minInclusive, mid);
 SummingTask rightTask = new SummingTask(numbers, mid, maxExclusive);

 // Submit the left hand task as a new task to the same ForkJoinPool
 leftTask.fork();

https://riptutorial.com/ 844

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RecursiveTask.html

 // Run the right hand task on the same thread and get the result
 int rightResult = rightTask.compute();

 // Wait for the left hand task to complete and get its result
 int leftResult = leftTask.join();

 // And combine the result
 return leftResult + rightResult;
 } else {
 // This is fine for a single batch, so we will run it here and now
 int sum = 0;
 for (int i = minInclusive; i < maxExclusive; i++) {
 sum += numbers.get(i);
 }
 return sum;
 }
 }
}

An instance of this task can now be passed to an instance of ForkJoinPool.

// Because I am not specifying the number of threads
// it will create a thread for each available processor
ForkJoinPool pool = new ForkJoinPool();

// Submit the task to the pool, and get what is effectively the Future
ForkJoinTask<Integer> task = pool.submit(new SummingTask(numbers));

// Wait for the result
int result = task.join();

Read Parallel programming with Fork/Join framework online:
https://riptutorial.com/java/topic/4245/parallel-programming-with-fork-join-framework

https://riptutorial.com/ 845

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
https://riptutorial.com/java/topic/4245/parallel-programming-with-fork-join-framework

Chapter 132: Polymorphism

Introduction

Polymorphism is one of main OOP(object oriented programming) concepts. Polymorphism word
was derived from the greek words "poly" and "morphs". Poly means "many" and morphs means
"forms" (many forms).

There are two ways to perform polymorphism. Method Overloading and Method Overriding.

Remarks

Interfaces are another way to achieve polymorphism in Java, apart from class based inheritance.
Interfaces define a list of methods which form the API of the program. Classes must implement an
interface by overriding all its methods.

Examples

Method Overloading

Method overloading, also known as function overloading, is the ability of a class to have
multiple methods with the same name, granted that they differ in either number or type of
arguments.

Compiler checks method signature for method overloading.

Method signature consists of three things -

Method name1.
Number of parameters2.
Types of parameters3.

If these three are same for any two methods in a class, then compiler throws duplicate method
error.

This type of polymorphism is called static or compile time polymorphism because the appropriate
method to be called is decided by the compiler during the compile time based on the argument list.

class Polymorph {

 public int add(int a, int b){
 return a + b;
 }

 public int add(int a, int b, int c){
 return a + b + c;
 }

https://riptutorial.com/ 846

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

 public float add(float a, float b){
 return a + b;
 }

 public static void main(String... args){
 Polymorph poly = new Polymorph();
 int a = 1, b = 2, c = 3;
 float d = 1.5, e = 2.5;

 System.out.println(poly.add(a, b));
 System.out.println(poly.add(a, b, c));
 System.out.println(poly.add(d, e));
 }

}

This will result in:

2
6
4.000000

Overloaded methods may be static or non-static. This also does not effect method overloading.

public class Polymorph {

 private static void methodOverloaded()
 {
 //No argument, private static method
 }

 private int methodOverloaded(int i)
 {
 //One argument private non-static method
 return i;
 }

 static int methodOverloaded(double d)
 {
 //static Method
 return 0;
 }

 public void methodOverloaded(int i, double d)
 {
 //Public non-static Method
 }
}

Also if you change the return type of method, we are unable to get it as method overloading.

public class Polymorph {

void methodOverloaded(){
 //No argument and No return type
}

https://riptutorial.com/ 847

int methodOverloaded(){
 //No argument and int return type
 return 0;
}

Method Overriding

Method overriding is the ability of subtypes to redefine (override) the behavior of their supertypes.

In Java, this translates to subclasses overriding the methods defined in the super class. In Java,
all non-primitive variables are actually references, which are akin to pointers to the location of the
actual object in memory. The references only have one type, which is the type they were declared
with. However, they can point to an object of either their declared type or any of its subtypes.

When a method is called on a reference, the corresponding method of the actual object being
pointed to is invoked.

class SuperType {
 public void sayHello(){
 System.out.println("Hello from SuperType");
 }

 public void sayBye(){
 System.out.println("Bye from SuperType");
 }
}

class SubType extends SuperType {
 // override the superclass method
 public void sayHello(){
 System.out.println("Hello from SubType");
 }
}

class Test {
 public static void main(String... args){
 SuperType superType = new SuperType();
 superType.sayHello(); // -> Hello from SuperType

 // make the reference point to an object of the subclass
 superType = new SubType();
 // behaviour is governed by the object, not by the reference
 superType.sayHello(); // -> Hello from SubType

 // non-overridden method is simply inherited
 superType.sayBye(); // -> Bye from SuperType
 }
}

Rules to keep in mind

To override a method in the subclass, the overriding method (i.e. the one in the subclass) MUST
HAVE:

https://riptutorial.com/ 848

same name•
same return type in case of primitives (a subclass is allowed for classes, this is also known
as covariant return types).

•

same type and order of parameters•
it may throw only those exceptions that are declared in the throws clause of the superclass's
method or exceptions that are subclasses of the declared exceptions. It may also choose
NOT to throw any exception. The names of the parameter types do not matter. For example,
void methodX(int i) is same as void methodX(int k)

•

We are unable to Override final or Static methods. Only thing that we can do change only
method body.

•

Adding behaviour by adding classes without touching existing code

import java.util.ArrayList;
import java.util.List;

import static java.lang.System.out;

public class PolymorphismDemo {

 public static void main(String[] args) {
 List<FlyingMachine> machines = new ArrayList<FlyingMachine>();
 machines.add(new FlyingMachine());
 machines.add(new Jet());
 machines.add(new Helicopter());
 machines.add(new Jet());

 new MakeThingsFly().letTheMachinesFly(machines);
 }
}

class MakeThingsFly {
 public void letTheMachinesFly(List<FlyingMachine> flyingMachines) {
 for (FlyingMachine flyingMachine : flyingMachines) {
 flyingMachine.fly();
 }
 }
}

class FlyingMachine {
 public void fly() {
 out.println("No implementation");
 }
}

class Jet extends FlyingMachine {
 @Override
 public void fly() {
 out.println("Start, taxi, fly");
 }

 public void bombardment() {
 out.println("Fire missile");
 }
}

class Helicopter extends FlyingMachine {

https://riptutorial.com/ 849

 @Override
 public void fly() {
 out.println("Start vertically, hover, fly");
 }
}

Explanation

a) The MakeThingsFly class can work with everything that is of type FlyingMachine.

b) The method letTheMachinesFly also works without any change (!) when you add a new class, for
example PropellerPlane:

public void letTheMachinesFly(List<FlyingMachine> flyingMachines) {
 for (FlyingMachine flyingMachine : flyingMachines) {
 flyingMachine.fly();
 }
 }
}

That's the power of polymorphism. You can implement the open-closed-principle with it.

Virtual functions

Virtual Methods are methods in Java that are non-static and without the keyword Final in front. All
methods by default are virtual in Java. Virtual Methods play important roles in Polymorphism
because children classes in Java can override their parent classes' methods if the function being
overriden is non-static and has the same method signature.

There are, however, some methods that are not virtual. For example, if the method is declared
private or with the keyword final, then the method is not Virtual.

Consider the following modified example of inheritance with Virtual Methods from this
StackOverflow post How do virtual functions work in C# and Java? :

public class A{
 public void hello(){
 System.out.println("Hello");
 }

 public void boo(){
 System.out.println("Say boo");

 }
}

public class B extends A{
 public void hello(){
 System.out.println("No");
 }

 public void boo(){
 System.out.println("Say haha");

https://riptutorial.com/ 850

https://en.wikipedia.org/wiki/Open/closed_principle#Polymorphic_open.2Fclosed_principle
http://stackoverflow.com/questions/460446/how-do-virtual-functions-work-in-c-sharp-and-java)

 }
}

If we invoke class B and call hello() and boo(), we would get "No" and "Say haha" as the resulting
output because B overrides the same methods from A. Even though the example above is almost
exactly the same as method overriding, it is important to understand that the methods in class A
are all, by default, Virtual.

Additionally, we can implement Virtual methods using the abstract keyword. Methods declared
with the keyword "abstract" does not have a method definition, meaning the method's body is not
yet implemented. Consider the example from above again, except the boo() method is declared
abstract:

public class A{
 public void hello(){
 System.out.println("Hello");
 }

 abstract void boo();
}

public class B extends A{
 public void hello(){
 System.out.println("No");
 }

 public void boo(){
 System.out.println("Say haha");

 }
}

If we invoke boo() from B, the output will still be "Say haha" since B inherits the abstract method
boo() and makes boo () output "Say haha".

Sources used and further readings:

How do virtual functions work in C# and Java?

Check out this great answer that gives a much more complete information about Virtual functions:

Can you write virtual functions / methods in Java?

Polymorphism and different types of overriding

From java tutorial

The dictionary definition of polymorphism refers to a principle in biology in which an
organism or species can have many different forms or stages. This principle can also
be applied to object-oriented programming and languages like the Java language.
Subclasses of a class can define their own unique behaviors and yet share some
of the same functionality of the parent class.

https://riptutorial.com/ 851

http://stackoverflow.com/questions/460446/how-do-virtual-functions-work-in-c-sharp-and-java
http://stackoverflow.com/questions/4547453/can-you-write-virtual-functions-methods-in-java
https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html

Have a look at this example to understand different types of overriding.

Base class provides no implementation and sub-class has to override complete method -
(abstract)

1.

Base class provides default implementation and sub-class can change the behaviour2.
Sub-class adds extension to base class implementation by calling super.methodName() as first
statement

3.

Base class defines structure of the algorithm (Template method) and sub-class will override
a part of algorithm

4.

code snippet:

import java.util.HashMap;

abstract class Game implements Runnable{

 protected boolean runGame = true;
 protected Player player1 = null;
 protected Player player2 = null;
 protected Player currentPlayer = null;

 public Game(){
 player1 = new Player("Player 1");
 player2 = new Player("Player 2");
 currentPlayer = player1;
 initializeGame();
 }

 /* Type 1: Let subclass define own implementation. Base class defines abstract method to
force
 sub-classes to define implementation
 */

 protected abstract void initializeGame();

 /* Type 2: Sub-class can change the behaviour. If not, base class behaviour is applicable
*/
 protected void logTimeBetweenMoves(Player player){
 System.out.println("Base class: Move Duration: player.PlayerActTime -
player.MoveShownTime");
 }

 /* Type 3: Base class provides implementation. Sub-class can enhance base class
implementation by calling
 super.methodName() in first line of the child class method and specific implementation
later */
 protected void logGameStatistics(){
 System.out.println("Base class: logGameStatistics:");
 }
 /* Type 4: Template method: Structure of base class can't be changed but sub-class can
some part of behaviour */
 protected void runGame() throws Exception{
 System.out.println("Base class: Defining the flow for Game:");
 while (runGame) {
 /*
 1. Set current player
 2. Get Player Move
 */

https://riptutorial.com/ 852

 validatePlayerMove(currentPlayer);
 logTimeBetweenMoves(currentPlayer);
 Thread.sleep(500);
 setNextPlayer();
 }
 logGameStatistics();
 }
 /* sub-part of the template method, which define child class behaviour */
 protected abstract void validatePlayerMove(Player p);

 protected void setRunGame(boolean status){
 this.runGame = status;
 }
 public void setCurrentPlayer(Player p){
 this.currentPlayer = p;
 }
 public void setNextPlayer(){
 if (currentPlayer == player1) {
 currentPlayer = player2;
 }else{
 currentPlayer = player1;
 }
 }
 public void run(){
 try{
 runGame();
 }catch(Exception err){
 err.printStackTrace();
 }
 }
}

class Player{
 String name;
 Player(String name){
 this.name = name;
 }
 public String getName(){
 return name;
 }
}

/* Concrete Game implementation */
class Chess extends Game{
 public Chess(){
 super();
 }
 public void initializeGame(){
 System.out.println("Child class: Initialized Chess game");
 }
 protected void validatePlayerMove(Player p){
 System.out.println("Child class: Validate Chess move:" + p.getName());
 }
 protected void logGameStatistics(){
 super.logGameStatistics();
 System.out.println("Child class: Add Chess specific logGameStatistics:");
 }
}
class TicTacToe extends Game{
 public TicTacToe(){
 super();

https://riptutorial.com/ 853

 }
 public void initializeGame(){
 System.out.println("Child class: Initialized TicTacToe game");
 }
 protected void validatePlayerMove(Player p){
 System.out.println("Child class: Validate TicTacToe move:" + p.getName());
 }
}

public class Polymorphism{
 public static void main(String args[]){
 try{

 Game game = new Chess();
 Thread t1 = new Thread(game);
 t1.start();
 Thread.sleep(1000);
 game.setRunGame(false);
 Thread.sleep(1000);

 game = new TicTacToe();
 Thread t2 = new Thread(game);
 t2.start();
 Thread.sleep(1000);
 game.setRunGame(false);

 }catch(Exception err){
 err.printStackTrace();
 }
 }
}

output:

Child class: Initialized Chess game
Base class: Defining the flow for Game:
Child class: Validate Chess move:Player 1
Base class: Move Duration: player.PlayerActTime - player.MoveShownTime
Child class: Validate Chess move:Player 2
Base class: Move Duration: player.PlayerActTime - player.MoveShownTime
Base class: logGameStatistics:
Child class: Add Chess specific logGameStatistics:

Child class: Initialized TicTacToe game
Base class: Defining the flow for Game:
Child class: Validate TicTacToe move:Player 1
Base class: Move Duration: player.PlayerActTime - player.MoveShownTime
Child class: Validate TicTacToe move:Player 2
Base class: Move Duration: player.PlayerActTime - player.MoveShownTime
Base class: logGameStatistics:

Read Polymorphism online: https://riptutorial.com/java/topic/980/polymorphism

https://riptutorial.com/ 854

https://riptutorial.com/java/topic/980/polymorphism

Chapter 133: Preferences

Examples

Adding event listeners

There are two types of events emitted by a Preferences object: PreferenceChangeEvent and
NodeChangeEvent.

PreferenceChangeEvent

A PreferenceChangeEvent gets emitted by a Properties object every time one of the node's key-
value-pairs changes. PreferenceChangeEvents can be listened for with a PreferenceChangeListener:

Java SE 8

preferences.addPreferenceChangeListener(evt -> {
 String newValue = evt.getNewValue();
 String changedPreferenceKey = evt.getKey();
 Preferences changedNode = evt.getNode();
});

Java SE 8

preferences.addPreferenceChangeListener(new PreferenceChangeListener() {
 @Override
 public void preferenceChange(PreferenceChangeEvent evt) {
 String newValue = evt.getNewValue();
 String changedPreferenceKey = evt.getKey();
 Preferences changedNode = evt.getNode();
 }
});

This listener will not listen to changed key-value pairs of child nodes.

NodeChangeEvent

This event will be fired whenever a child node of a Properties node is added or removed.

preferences.addNodeChangeListener(new NodeChangeListener() {
 @Override
 public void childAdded(NodeChangeEvent evt) {
 Preferences addedChild = evt.getChild();
 Preferences parentOfAddedChild = evt.getParent();
 }

 @Override
 public void childRemoved(NodeChangeEvent evt) {
 Preferences removedChild = evt.getChild();
 Preferences parentOfRemovedChild = evt.getParent();
 }

https://riptutorial.com/ 855

https://docs.oracle.com/javase/8/docs/api/java/util/prefs/Preferences.html
https://docs.oracle.com/javase/8/docs/api/java/util/prefs/PreferenceChangeEvent.html
https://docs.oracle.com/javase/8/docs/api/java/util/prefs/NodeChangeEvent.html
https://docs.oracle.com/javase/8/docs/api/java/util/prefs/PreferenceChangeListener.html

});

Getting sub-nodes of Preferences

Preferences objects always represent a specific node in a whole Preferences tree, kind of like this:

/userRoot
├── com
│ └── mycompany
│ └── myapp
│ ├── darkApplicationMode=true
│ ├── showExitConfirmation=false
│ └── windowMaximized=true
└── org
 └── myorganization
 └── anotherapp
 ├── defaultFont=Helvetica
 ├── defaultSavePath=/home/matt/Documents
 └── exporting
 ├── defaultFormat=pdf
 └── openInBrowserAfterExport=false

To select the /com/mycompany/myapp node:

By convention, based on the package of a class:

package com.mycompany.myapp;

// ...

// Because this class is in the com.mycompany.myapp package, the node
// /com/mycompany/myapp will be returned.
Preferences myApp = Preferences.userNodeForPackage(getClass());

1.

By relative path:

Preferences myApp = Preferences.userRoot().node("com/mycompany/myapp");

Using a relative path (a path not starting with a /) will cause the path to be resolved relative
to the parent node it is resolved on. For example, the following example will return the node
of the path /one/two/three/com/mycompany/myapp:

Preferences prefix = Preferences.userRoot().node("one/two/three");
Preferences myAppWithPrefix = prefix.node("com/mycompany/myapp");
// prefix is /one/two/three
// myAppWithPrefix is /one/two/three/com/mycompany/myapp

2.

By absolute path:

Preferences myApp = Preferences.userRoot().node("/com/mycompany/myapp");

Using an absolute path on the root node will not be different from using a relative path. The

3.

https://riptutorial.com/ 856

difference is that, if called on a sub-node, the path will be resolved relative to the root node.

Preferences prefix = Preferences.userRoot().node("one/two/three");
Preferences myAppWitoutPrefix = prefix.node("/com/mycompany/myapp");
// prefix is /one/two/three
// myAppWitoutPrefix is /com/mycompany/myapp

Coordinating preferences access across multiple application instances

All instances of Preferences are always thread-safe across the threads of a single Java Virtual
Machine (JVM). Because Preferences can be shared across multiple JVMs, there are special
methods that deal with synchronizing changes across virtual machines.

If you have an application which is supposed to run in a single instance only, then no external
synchronization is required.

If you have an application which runs in multiple instances on a single system and therefore
Preferences access needs to be coordinated between the JVMs on the system, then the sync()
method of any Preferences node may be used to ensure changes to the Preferences node are
visible to other JVMs on the system:

// Warning: don't use this if your application is intended
// to only run a single instance on a machine once
// (this is probably the case for most desktop applications)
try {
 preferences.sync();
} catch (BackingStoreException e) {
 // Deal with any errors while saving the preferences to the backing storage
 e.printStackTrace();
}

Exporting preferences

Preferences nodes can be exported into a XML document representing that node. The resulting
XML tree can be imported again. The resulting XML document will remember whether it was
exported from the user or system Preferences.

To export a single node, but not its child nodes:

Java SE 7

try (OutputStream os = ...) {
 preferences.exportNode(os);
} catch (IOException ioe) {
 // Exception whilst writing data to the OutputStream
 ioe.printStackTrace();
} catch (BackingStoreException bse) {
 // Exception whilst reading from the backing preferences store
 bse.printStackTrace();
}

Java SE 7

https://riptutorial.com/ 857

OutputStream os = null;
try {
 os = ...;
 preferences.exportSubtree(os);
} catch (IOException ioe) {
 // Exception whilst writing data to the OutputStream
 ioe.printStackTrace();
} catch (BackingStoreException bse) {
 // Exception whilst reading from the backing preferences store
 bse.printStackTrace();
} finally {
 if (os != null) {
 try {
 os.close();
 } catch (IOException ignored) {}
 }
}

To export a single node with its child nodes:

Java SE 7

try (OutputStream os = ...) {
 preferences.exportNode(os);
} catch (IOException ioe) {
 // Exception whilst writing data to the OutputStream
 ioe.printStackTrace();
} catch (BackingStoreException bse) {
 // Exception whilst reading from the backing preferences store
 bse.printStackTrace();
}

Java SE 7

OutputStream os = null;
try {
 os = ...;
 preferences.exportSubtree(os);
} catch (IOException ioe) {
 // Exception whilst writing data to the OutputStream
 ioe.printStackTrace();
} catch (BackingStoreException bse) {
 // Exception whilst reading from the backing preferences store
 bse.printStackTrace();
} finally {
 if (os != null) {
 try {
 os.close();
 } catch (IOException ignored) {}
 }
}

Importing preferences

Preferences nodes can be imported from a XML document. Importing is meant to be used in
conjunction with the exporting functionality of Preferences, since it creates the correct
corresponding XML documents.

https://riptutorial.com/ 858

The XML documents will remember whether they were exported from the user or system
Preferences. Therefore, they can be imported into their respective Preferences trees again, without
you having to figure out or know where they came from. The static function will automatically find
out whether the XML document was exported from the user or system Preferences and will
automatically import them into the tree they were exported from.

Java SE 7

try (InputStream is = ...) {
 // This is a static call on the Preferences class
 Preferences.importPreferences(is);
} catch (IOException ioe) {
 // Exception whilst reading data from the InputStream
 ioe.printStackTrace();
} catch (InvalidPreferencesFormatException ipfe) {
 // Exception whilst parsing the XML document tree
 ipfe.printStackTrace();
}

Java SE 7

InputStream is = null;
try {
 is = ...;
 // This is a static call on the Preferences class
 Preferences.importPreferences(is);
} catch (IOException ioe) {
 // Exception whilst reading data from the InputStream
 ioe.printStackTrace();
} catch (InvalidPreferencesFormatException ipfe) {
 // Exception whilst parsing the XML document tree
 ipfe.printStackTrace();
} finally {
 if (is != null) {
 try {
 is.close();
 } catch (IOException ignored) {}
 }
}

Removing event listeners

Event listeners can be removed again from any Properties node, but the instance of the listener
has to be kept around for that.

Java SE 8

Preferences preferences = Preferences.userNodeForPackage(getClass());

PreferenceChangeListener listener = evt -> {
 System.out.println(evt.getKey() + " got new value " + evt.getNewValue());
};
preferences.addPreferenceChangeListener(listener);

//
// later...

https://riptutorial.com/ 859

//

preferences.removePreferenceChangeListener(listener);

Java SE 8

Preferences preferences = Preferences.userNodeForPackage(getClass());

PreferenceChangeListener listener = new PreferenceChangeListener() {
 @Override
 public void preferenceChange(PreferenceChangeEvent evt) {
 System.out.println(evt.getKey() + " got new value " + evt.getNewValue());
 }
};
preferences.addPreferenceChangeListener(listener);

//
// later...
//

preferences.removePreferenceChangeListener(listener);

The same applies for NodeChangeListener.

Getting preferences values

A value of a Preferences node can be of the type String, boolean, byte[], double, float, int or long.
All invocations must provide a default value, in case the specified value is not present in the
Preferences node.

Preferences preferences = Preferences.userNodeForPackage(getClass());

String someString = preferences.get("someKey", "this is the default value");
boolean someBoolean = preferences.getBoolean("someKey", true);
byte[] someByteArray = preferences.getByteArray("someKey", new byte[0]);
double someDouble = preferences.getDouble("someKey", 887284.4d);
float someFloat = preferences.getFloat("someKey", 38723.3f);
int someInt = preferences.getInt("someKey", 13232);
long someLong = preferences.getLong("someKey", 2827637868234L);

Setting preferences values

To store a value into the Preferences node, one of the putXXX() methods is used. A value of a
Preferences node can be of the type String, boolean, byte[], double, float, int or long.

Preferences preferences = Preferences.userNodeForPackage(getClass());

preferences.put("someKey", "some String value");
preferences.putBoolean("someKey", false);
preferences.putByteArray("someKey", new byte[0]);
preferences.putDouble("someKey", 187398123.4454d);
preferences.putFloat("someKey", 298321.445f);
preferences.putInt("someKey", 77637);
preferences.putLong("someKey", 2873984729834L);

https://riptutorial.com/ 860

Using preferences

Preferences can be used to store user settings that reflect a user's personal application settings,
e.g. their editor font, whether they prefer the application to be started in full-screen mode, whether
they checked a "don't show this again" checkbox and things like that.

public class ExitConfirmer {
 private static boolean confirmExit() {
 Preferences preferences = Preferences.userNodeForPackage(ExitConfirmer.class);
 boolean doShowDialog = preferences.getBoolean("showExitConfirmation", true); // true
is default value

 if (!doShowDialog) {
 return true;
 }

 //
 // Show a dialog here...
 //
 boolean exitWasConfirmed = ...; // whether the user clicked OK or Cancel
 boolean doNotShowAgain = ...; // get value from "Do not show again" checkbox

 if (exitWasConfirmed && doNotShowAgain) {
 // Exit was confirmed and the user chose that the dialog should not be shown again
 // Save these settings to the Preferences object so the dialog will not show again
next time
 preferences.putBoolean("showExitConfirmation", false);
 }

 return exitWasConfirmed;
 }

 public static void exit() {
 if (confirmExit()) {
 System.exit(0);
 }
 }
}

Read Preferences online: https://riptutorial.com/java/topic/582/preferences

https://riptutorial.com/ 861

https://riptutorial.com/java/topic/582/preferences

Chapter 134: Primitive Data Types

Introduction

The 8 primitive data types byte, short, int, long, char, boolean, float, and double are the types that
store most raw numerical data in Java programs.

Syntax

int aInt = 8; // The defining (number) part of this int declaration is called a literal.•

int hexInt = 0x1a; // = 26; You can define literals with hex values prefixed with 0x.•

int binInt = 0b11010; // = 26; You can also define binary literals; prefixed with 0b.•

long goodLong = 10000000000L; // By default, integer literals are of type int. By adding the L
at the end of the literal you are telling the compiler that the literal is a long. Without this the
compiler would throw an "Integer number too large" error.

•

double aDouble = 3.14; // Floating-Point Literals are of type double by default.•

float aFloat = 3.14F; // By default this literal would have been a double (and caused an
"Incompatible Types" error), but by adding an F we tell the compiler it is a float.

•

Remarks

Java has 8 primitive data types, namely boolean, byte, short, char, int, long, float and double. (All
other types are reference types. This includes all array types, and built-in object types / classes
that have special significance in the Java language; e.g. String, Class and Throwable and its
subclasses.)

The result of all operations (addition, subtraction, multiplication, etc) on a primitive type is at least
an int, thus adding a short to a short produces an int, as does adding a byte to a byte, or a char to
a char. If you want to assign the result of that back to a value of the same type, you must cast it.
e.g.

byte a = 1;
byte b = 2;
byte c = (byte) (a + b);

Not casting the operation will result in a compile error.

This is due to the following part of the Java Language Spec, §2.11.1:

A compiler encodes loads of literal values of types byte and short using Java Virtual
Machine instructions that sign-extend those values to values of type int at compile-

https://riptutorial.com/ 862

http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html#jvms-2.11.1

time or run-time. Loads of literal values of types boolean and char are encoded using
instructions that zero-extend the literal to a value of type int at compile-time or run-
time. [..]. Thus, most operations on values of actual types boolean, byte, char, and short
are correctly performed by instructions operating on values of computational type int.

The reason behind this is also specified in that section:

Given the Java Virtual Machine's one-byte opcode size, encoding types into opcodes
places pressure on the design of its instruction set. If each typed instruction supported
all of the Java Virtual Machine's run-time data types, there would be more instructions
than could be represented in a byte. [...] Separate instructions can be used to convert
between unsupported and supported data types as necessary.

Examples

The int primitive

A primitive data type such as int holds values directly into the variable that is using it, meanwhile
a variable that was declared using Integer holds a reference to the value.

According to java API: "The Integer class wraps a value of the primitive type int in an object. An
object of type Integer contains a single field whose type is int."

By default, int is a 32-bit signed integer. It can store a minimum value of -231, and a maximum
value of 231 - 1.

int example = -42;
int myInt = 284;
int anotherInt = 73;

int addedInts = myInt + anotherInt; // 284 + 73 = 357
int subtractedInts = myInt - anotherInt; // 284 - 73 = 211

If you need to store a number outside of this range, long should be used instead. Exceeding the
value range of int leads to an integer overflow, causing the value exceeding the range to be
added to the opposite site of the range (positive becomes negative and vise versa). The value is
((value - MIN_VALUE) % RANGE) + MIN_VALUE, or ((value + 2147483648) % 4294967296) - 2147483648

int demo = 2147483647; //maximum positive integer
System.out.println(demo); //prints 2147483647
demo = demo + 1; //leads to an integer overflow
System.out.println(demo); // prints -2147483648

The maximum and minimum values of int can be found at:

int high = Integer.MAX_VALUE; // high == 2147483647
int low = Integer.MIN_VALUE; // low == -2147483648

The default value of an int is 0

https://riptutorial.com/ 863

https://docs.oracle.com/javase/7/docs/api/

int defaultInt; // defaultInt == 0

The short primitive

A short is a 16-bit signed integer. It has a minimum value of -215 (-32,768), and a maximum value
of 215 ‑1 (32,767)

short example = -48;
short myShort = 987;
short anotherShort = 17;

short addedShorts = (short) (myShort + anotherShort); // 1,004
short subtractedShorts = (short) (myShort - anotherShort); // 970

The maximum and minimum values of short can be found at:

short high = Short.MAX_VALUE; // high == 32767
short low = Short.MIN_VALUE; // low == -32768

The default value of a short is 0

short defaultShort; // defaultShort == 0

The long primitive

By default, long is a 64-bit signed integer (in Java 8, it can be either signed or unsigned). Signed, it
can store a minimum value of -263, and a maximum value of 263 - 1, and unsigned it can store a
minimum value of 0 and a maximum value of 264 - 1

long example = -42;
long myLong = 284;
long anotherLong = 73;

//an "L" must be appended to the end of the number, because by default,
//numbers are assumed to be the int type. Appending an "L" makes it a long
//as 549755813888 (2 ^ 39) is larger than the maximum value of an int (2^31 - 1),
//"L" must be appended
long bigNumber = 549755813888L;

long addedLongs = myLong + anotherLong; // 284 + 73 = 357
long subtractedLongs = myLong - anotherLong; // 284 - 73 = 211

The maximum and minimum values of long can be found at:

long high = Long.MAX_VALUE; // high == 9223372036854775807L
long low = Long.MIN_VALUE; // low == -9223372036854775808L

The default value of a long is 0L

long defaultLong; // defaultLong == 0L

https://riptutorial.com/ 864

Note: letter "L" appended at the end of long literal is case insensitive, however it is good practice
to use capital as it is easier to distinct from digit one:

2L == 2l; // true

Warning: Java caches Integer objects instances from the range -128 to 127. The reasoning is
explained here: https://blogs.oracle.com/darcy/entry/boxing_and_caches_integer_valueof

The following results can be found:

Long val1 = 127L;
Long val2 = 127L;

System.out.println(val1 == val2); // true

Long val3 = 128L;
Long val4 = 128L;

System.out.println(val3 == val4); // false

To properly compare 2 Object Long values, use the following code(From Java 1.7 onward):

Long val3 = 128L;
Long val4 = 128L;

System.out.println(Objects.equal(val3, val4)); // true

Comparing a primitive long to an Object long will not result in a false negative like comparing 2
objects with == does.

The boolean primitive

A boolean can store one of two values, either true or false

boolean foo = true;
System.out.println("foo = " + foo); // foo = true

boolean bar = false;
System.out.println("bar = " + bar); // bar = false

boolean notFoo = !foo;
System.out.println("notFoo = " + notFoo); // notFoo = false

boolean fooAndBar = foo && bar;
System.out.println("fooAndBar = " + fooAndBar); // fooAndBar = false

boolean fooOrBar = foo || bar;
System.out.println("fooOrBar = " + fooOrBar); // fooOrBar = true

boolean fooXorBar = foo ^ bar;
System.out.println("fooXorBar = " + fooXorBar); // fooXorBar = true

The default value of a boolean is false

https://riptutorial.com/ 865

https://blogs.oracle.com/darcy/entry/boxing_and_caches_integer_valueof

boolean defaultBoolean; // defaultBoolean == false

The byte primitive

A byte is a 8-bit signed integer. It can store a minimum value of -27 (-128), and a maximum value
of 27 - 1 (127)

byte example = -36;
byte myByte = 96;
byte anotherByte = 7;

byte addedBytes = (byte) (myByte + anotherByte); // 103
byte subtractedBytes = (byte) (myBytes - anotherByte); // 89

The maximum and minimum values of byte can be found at:

byte high = Byte.MAX_VALUE; // high == 127
byte low = Byte.MIN_VALUE; // low == -128

The default value of a byte is 0

byte defaultByte; // defaultByte == 0

The float primitive

A float is a single-precision 32-bit IEEE 754 floating point number. By default, decimals are
interpreted as doubles. To create a float, simply append an f to the decimal literal.

double doubleExample = 0.5; // without 'f' after digits = double
float floatExample = 0.5f; // with 'f' after digits = float

float myFloat = 92.7f; // this is a float...
float positiveFloat = 89.3f; // it can be positive,
float negativeFloat = -89.3f; // or negative
float integerFloat = 43.0f; // it can be a whole number (not an int)
float underZeroFloat = 0.0549f; // it can be a fractional value less than 0

Floats handle the five common arithmetical operations: addition, subtraction, multiplication,
division, and modulus.

Note: The following may vary slightly as a result of floating point errors. Some results have been
rounded for clarity and readability purposes (i.e. the printed result of the addition example was
actually 34.600002).

// addition
float result = 37.2f + -2.6f; // result: 34.6

// subtraction
float result = 45.1f - 10.3f; // result: 34.8

// multiplication

https://riptutorial.com/ 866

float result = 26.3f * 1.7f; // result: 44.71

// division
float result = 37.1f / 4.8f; // result: 7.729166

// modulus
float result = 37.1f % 4.8f; // result: 3.4999971

Because of the way floating point numbers are stored (i.e. in binary form), many numbers don't
have an exact representation.

float notExact = 3.1415926f;
System.out.println(notExact); // 3.1415925

While using float is fine for most applications, neither float nor double should be used to store
exact representations of decimal numbers (like monetary amounts), or numbers where higher
precision is required. Instead, the BigDecimal class should be used.

The default value of a float is 0.0f.

float defaultFloat; // defaultFloat == 0.0f

A float is precise to roughly an error of 1 in 10 million.

Note: Float.POSITIVE_INFINITY, Float.NEGATIVE_INFINITY, Float.NaN are float values. NaN stands for
results of operations that cannot be determined, such as dividing 2 infinite values. Furthermore 0f
and -0f are different, but == yields true:

float f1 = 0f;
float f2 = -0f;
System.out.println(f1 == f2); // true
System.out.println(1f / f1); // Infinity
System.out.println(1f / f2); // -Infinity
System.out.println(Float.POSITIVE_INFINITY / Float.POSITIVE_INFINITY); // NaN

The double primitive

A double is a double-precision 64-bit IEEE 754 floating point number.

double example = -7162.37;
double myDouble = 974.21;
double anotherDouble = 658.7;

double addedDoubles = myDouble + anotherDouble; // 315.51
double subtractedDoubles = myDouble - anotherDouble; // 1632.91

double scientificNotationDouble = 1.2e-3; // 0.0012

Because of the way floating point numbers are stored, many numbers don't have an exact
representation.

https://riptutorial.com/ 867

double notExact = 1.32 - 0.42; // result should be 0.9
System.out.println(notExact); // 0.9000000000000001

While using double is fine for most applications, neither float nor double should be used to store
precise numbers such as currency. Instead, the BigDecimal class should be used

The default value of a double is 0.0d

public double defaultDouble; // defaultDouble == 0.0

Note: Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY, Double.NaN are double values. NaN stands
for results of operations that cannot be determined, such as dividing 2 infinite values. Furthermore
0d and -0d are different, but == yields true:

double d1 = 0d;
double d2 = -0d;
System.out.println(d1 == d2); // true
System.out.println(1d / d1); // Infinity
System.out.println(1d / d2); // -Infinity
System.out.println(Double.POSITIVE_INFINITY / Double.POSITIVE_INFINITY); // NaN

The char primitive

A char can store a single 16-bit Unicode character. A character literal is enclosed in single quotes

char myChar = 'u';
char myChar2 = '5';
char myChar3 = 65; // myChar3 == 'A'

It has a minimum value of \u0000 (0 in the decimal representation, also called the null character)
and a maximum value of \uffff (65,535).

The default value of a char is \u0000.

char defaultChar; // defaultChar == \u0000

In order to define a char of ' value an escape sequence (character preceded by a backslash) has
to be used:

char singleQuote = '\'';

There are also other escape sequences:

char tab = '\t';
char backspace = '\b';
char newline = '\n';
char carriageReturn = '\r';
char formfeed = '\f';
char singleQuote = '\'';
char doubleQuote = '\"'; // escaping redundant here; '"' would be the same; however still

https://riptutorial.com/ 868

allowed
char backslash = '\\';
char unicodeChar = '\uXXXX' // XXXX represents the Unicode-value of the character you want to
display

You can declare a char of any Unicode character.

char heart = '\u2764';
System.out.println(Character.toString(heart)); // Prints a line containing "❤".

It is also possible to add to a char. e.g. to iterate through every lower-case letter, you could do to
the following:

for (int i = 0; i <= 26; i++) {
 char letter = (char) ('a' + i);
 System.out.println(letter);
}

Negative value representation

Java and most other languages store negative integral numbers in a representation called 2's
complement notation.

For a unique binary representation of a data type using n bits, values are encoded like this:

The least significant n-1 bits store a positive integral number x in integral representation. Most
significant value stores a bit vith value s. The value repesented by those bits is

x - s * 2n-1

i.e. if the most significant bit is 1, then a value that is just by 1 larger than the number you could
represent with the other bits (2n-2 + 2n-3 + ... + 21 + 20 = 2n-1 - 1) is subtracted allowing a unique
binary representation for each value from - 2n-1 (s = 1; x = 0) to 2n-1 - 1 (s = 0; x = 2n-1 - 1).

This also has the nice side effect, that you can add the binary representations as if they were
positive binary numbers:

v1 = x1 - s1 * 2n-1
v2 = x2 - s2 * 2n-1

s1 s2
x1 + x2
overflow

addition result

0 0 No x1 + x2 = v1 + v2

0 0 Yes too large to be represented with data type (overflow)

0 1 No
x1 + x2 - 2n-1 = x1 + x2 - s2 * 2n-1
 = v1 + v2

https://riptutorial.com/ 869

s1 s2
x1 + x2
overflow

addition result

0 1 Yes (x1 + x2) mod 2n-1 = x1 + x2 - 2n-1
 = v1 + v2

1 0 * see above (swap summands)

1 1 No
too small to be represented with data type (x1 + x2 - 2n < -2n-1 ;
underflow)

1 1 Yes
(x1 + x2) mod 2n-1 - 2n-1 = (x1 + x2 - 2n-1) - 2n-1
 = (x1 - s1 * 2n-1) + (x2 - s2 * 2n-1)
 = v1 + v2

Note that this fact makes finding binary representation of the additive inverse (i.e. the negative
value) easy:

Observe that adding the bitwise complement to the number results in all bits being 1. Now add 1 to
make value overflow and you get the neutral element 0 (all bits 0).

So the negative value of a number i can be calculated using (ignoring possible promotion to int
here)

(~i) + 1

Example: taking the negative value of 0 (byte):

The result of negating 0, is 11111111. Adding 1 gives a value of 100000000 (9 bits). Because a byte
can only store 8 bits, the leftmost value is truncated, and the result is 00000000

Original Process Result

0 (00000000) Negate -0 (11111111)

11111111 Add 1 to binary 100000000

100000000 Truncate to 8 bits 00000000 (-0 equals 0)

Memory consumption of primitives vs. boxed primitives

Primitive Boxed Type Memory Size of primitive / boxed

boolean Boolean 1 byte / 16 bytes

https://riptutorial.com/ 870

Primitive Boxed Type Memory Size of primitive / boxed

byte Byte 1 byte / 16 bytes

short Short 2 bytes / 16 bytes

char Char 2 bytes / 16 bytes

int Integer 4 bytes / 16 bytes

long Long 8 bytes / 16 bytes

float Float 4 bytes / 16 bytes

double Double 8 bytes / 16 bytes

Boxed objects always require 8 bytes for type and memory management, and because the size of
objects is always a multiple of 8, boxed types all require 16 bytes total. In addition, each usage of
a boxed object entails storing a reference which accounts for another 4 or 8 bytes, depending on
the JVM and JVM options.

In data-intensive operations, memory consumption can have a major impact on performance.
Memory consumption grows even more when using arrays: a float[5] array will require only 32
bytes; whereas a Float[5] storing 5 distinct non-null values will require 112 bytes total (on 64 bit
without compressed pointers, this increases to 152 bytes).

Boxed value caches

The space overheads of the boxed types can be mitigated to a degree by the boxed value caches.
Some of the boxed types implement a cache of instances. For example, by default, the Integer
class will cache instances to represent numbers in the range -128 to +127. This does not, however,
reduce the additional cost arising from the additional memory indirection.

If you create an instance of a boxed type either by autoboxing or by calling the static
valueOf(primitive) method, the runtime system will attempt to use a cached value. If your
application uses a lot of values in the range that is cached, then this can substantially reduce the
memory penalty of using boxed types. Certainly, if you are creating boxed value instances "by
hand", it is better to use valueOf rather than new. (The new operation always creates a new
instance.) If, however, the majority of your values are not in the cached range, it can be faster to
call new and save the cache lookup.

Converting Primitives

In Java, we can convert between integer values and floating-point values. Also, since every
character corresponds to a number in the Unicode encoding, char types can be converted to and
from the integer and floating-point types. boolean is the only primitive datatype that cannot be
converted to or from any other primitive datatype.

https://riptutorial.com/ 871

There are two types of conversions: widening conversion and narrowing conversion.

A widening conversion is when a value of one datatype is converted to a value of another datatype
that occupies more bits than the former. There is no issue of data loss in this case.

Correspondingly, A narrowing conversion is when a value of one datatype is converted to a value
of another datatype that occupies fewer bits than the former. Data loss can occur in this case.

Java performs widening conversions automatically. But if you want to perform a narrowing
conversion (if you are sure that no data loss will occur), then you can force Java to perform the
conversion using a language construct known as a cast.

Widening Conversion:

int a = 1;
double d = a; // valid conversion to double, no cast needed (widening)

Narrowing Conversion:

double d = 18.96
int b = d; // invalid conversion to int, will throw a compile-time error
int b = (int) d; // valid conversion to int, but result is truncated (gets rounded down)
 // This is type-casting
 // Now, b = 18

Primitive Types Cheatsheet

Table showing size and values range of all primitive types:

data
type

numeric
representation

range of values
default
value

boolean n/a false and true false

byte 8-bit signed -27 to 27 - 1 0

-128 to +127

short 16-bit signed -215 to 215 - 1 0

-32,768 to +32,767

int 32-bit signed -231 to 231 - 1 0

-2,147,483,648 to +2,147,483,647

long 64-bit signed -263 to 263 - 1 0L

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

https://riptutorial.com/ 872

data
type

numeric
representation

range of values
default
value

float
32-bit floating
point

1.401298464e-45 to 3.402823466e+38 (positive
or negative)

0.0F

double
64-bit floating
point

4.94065645841246544e-324d to
1.79769313486231570e+308d (positive or
negative)

0.0D

char 16-bit unsigned 0 to 216 - 1 0

0 to 65,535

Notes:

The Java Language Specification mandates that signed integral types (byte through long)
use binary twos-complement representation, and the floating point types use standard IEE
754 binary floating point representations.

1.

Java 8 and later provide methods to perform unsigned arithmetic operations on int and long.
While these methods allow a program to treat values of the respective types as unsigned,
the types remain signed types.

2.

The smallest floating point shown above are subnormal; i.e. they have less precision than a
normal value. The smallest normal numbers are 1.175494351e−38 and
2.2250738585072014e−308

3.

A char conventionally represents a Unicode / UTF-16 code unit.4.
Although a boolean contains just one bit of information, its size in memory varies depending
on the Java Virtual Machine implementation (see boolean type).

5.

Read Primitive Data Types online: https://riptutorial.com/java/topic/148/primitive-data-types

https://riptutorial.com/ 873

http://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.3.4
https://riptutorial.com/java/topic/148/primitive-data-types

Chapter 135: Process

Remarks

Notice that the API recommends that, as of version 1.5, the preferred way to create a Process is
using ProcessBuilder.start().

Another important remark is that the exit value produced by waitFor is dependent from the
program/script being executed. For instance, the exit codes produced by calc.exe are different
from notepad.exe.

Examples

Simple example (Java version < 1.5)

This example will call the windows calculator. It's important to notice that the exit code will vary
accordingly to the program/script that is being called.

package process.example;

import java.io.IOException;

public class App {

 public static void main(String[] args) {
 try {
 // Executes windows calculator
 Process p = Runtime.getRuntime().exec("calc.exe");

 // Wait for process until it terminates
 int exitCode = p.waitFor();

 System.out.println(exitCode);
 } catch (IOException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

Using the ProcessBuilder class

The ProcessBuilder class makes it easy to send a command through the command line. All it
requires is a List of Strings that make up the commands to be entered. You simply call the start()
method on your ProcessBuilder instance to execute the command.

If you have a program called Add.exe which takes two arguments and adds them, the code would
look something like this:

https://riptutorial.com/ 874

List<String> cmds = new ArrayList<>();
cmds.add("Add.exe"); //the name of the application to be run
cmds.add("1"); //the first argument
cmds.add("5"); //the second argument

ProcessBuilder pb = new ProcessBuilder(cmds);

//Set the working directory of the ProcessBuilder so it can find the .exe
//Alternatively you can just pass in the absolute file path of the .exe
File myWorkingDirectory = new File(yourFilePathNameGoesHere);
pb.workingDirectory(myWorkingDirectory);

try {
 Process p = pb.start();
} catch (IOException e) {
 e.printStackTrace();
}

Some things to keep in mind:

The array of commands must all be a String array•
The commands must be in the order (in the array) that they would be if you made the call to
the program in the command line itself (ie. the name of the .exe can't go after the first
argument

•

When setting the working directory you need to pass in a File object and not just the file
name as a String

•

Blocking vs. Non-Blocking Calls

In general when making a call to the command line, the program will send the command and then
continue its execution.

However you may want to wait for the called program to finish before continuing your own
execution (ex. The called program will write data to a file and your program needs that to access
that data.)

This can easily be done by calling the waitFor() method from the returned Process instance.

Usage example:

//code setting up the commands omitted for brevity...

ProcessBuilder pb = new ProcessBuilder(cmds);

try {
 Process p = pb.start();
 p.waitFor();
} catch (IOException e) {
 e.printStackTrack();
} catch (InterruptedException e) {
 e.printStackTrace();
}

//more lines of code here...

https://riptutorial.com/ 875

ch.vorburger.exec

Launching external processes from Java using the raw java.lang.ProcessBuilder API directly can
be a little cumbersome. The Apache Commons Exec library makes it a little easier. The
ch.vorburger.exec library further extends upon Commons Exec to make it truly convenient:

 ManagedProcess proc = new ManagedProcessBuilder("path-to-your-executable-binary")
 .addArgument("arg1")
 .addArgument("arg2")
 .setWorkingDirectory(new File("/tmp"))
 .setDestroyOnShutdown(true)
 .setConsoleBufferMaxLines(7000)
 .build();

proc.start();
int status = proc.waitForExit();
int status = proc.waitForExitMaxMsOrDestroy(3000);
String output = proc.getConsole();

proc.startAndWaitForConsoleMessageMaxMs("started!", 7000);
// use service offered by external process...
proc.destroy();

Pitfall: Runtime.exec, Process and ProcessBuilder don't understand shell
syntax

The Runtime.exec(String ...) and Runtime.exec(String) methods allow you to execute a command
as an external process1. In the first version, you supply the command name and the command
arguments as separate elements of the string array, and the Java runtime requests the OS
runtime system to start the external command. The second version is deceptively easy to use, but
it has some pitfalls.

First of all, here is an example of using exec(String) being used safely:

Process p = Runtime.exec("mkdir /tmp/testDir");
p.waitFor();
if (p.exitValue() == 0) {
 System.out.println("created the directory");
}

Spaces in pathnames

Suppose that we generalize the example above so that we can create an arbitrary directory:

Process p = Runtime.exec("mkdir " + dirPath);
// ...

This will typically work, but it will fail if dirPath is (for example) "/home/user/My Documents". The
problem is that exec(String) splits the string into a command and arguments by simply looking for
whitespace. The command string:

https://riptutorial.com/ 876

https://commons.apache.org/proper/commons-exec/
https://github.com/vorburger/MariaDB4j/issues/45

"mkdir /home/user/My Documents"

will be split into:

"mkdir", "/home/user/My", "Documents"

and this will cause the "mkdir" command to fail because it expects one argument, not two.

Faced with this, some programmers try to add quotes around the pathname. This doesn't work
either:

"mkdir \"/home/user/My Documents\""

will be split into:

"mkdir", "\"/home/user/My", "Documents\""

The extra double-quote characters that were added in attempt to "quote" the spaces are treated
like any other non-whitespace characters. Indeed, anything we do quote or escape the spaces is
going to fail.

The way to deal with this particular problems is to use the exec(String ...) overload.

Process p = Runtime.exec("mkdir", dirPath);
// ...

This will work if dirpath includes whitespace characters because this overload of exec does not
attempt to split the arguments. The strings are passed through to the OS exec system call as-is.

Redirection, pipelines and other shell syntax

Suppose that we want to redirect an external command's input or output, or run a pipeline. For
example:

Process p = Runtime.exec("find / -name *.java -print 2>/dev/null");

or

Process p = Runtime.exec("find source -name *.java | xargs grep package");

(The first example lists the names of all Java files in the file system, and the second one prints the
package statements2 in the Java files in the "source" tree.)

These are not going to work as expected. In the first case, the "find" command will be run with
"2>/dev/null" as a command argument. It will not be interpreted as a redirection. In the second
example, the pipe character ("|") and the works following it will be given to the "find" command.

https://riptutorial.com/ 877

The problem here is that the exec methods and ProcessBuilder do not understand any shell syntax.
This includes redirections, pipelines, variable expansion, globbing, and so on.

In a few cases (for example, simple redirection) you can easily achieve the desired effect using
ProcessBuilder. However, this is not true in general. An alternative approach is to run the command
line in a shell; for example:

Process p = Runtime.exec("bash", "-c",
 "find / -name *.java -print 2>/dev/null");

or

Process p = Runtime.exec("bash", "-c",
 "find source -name *.java | xargs grep package");

But note that in the second example, we needed to escape the wildcard character ("*") because
we want the wildcard to be interpreted by "find" rather than the shell.

Shell builtin commands don't work

Suppose the following examples won't work on a system with a UNIX-like shell:

Process p = Runtime.exec("cd", "/tmp"); // Change java app's home directory

or

Process p = Runtime.exec("export", "NAME=value"); // Export NAME to the java app's
environment

There are a couple of reasons why this won't work:

On "cd" and "export" commands are shell builtin commands. They don't exist as distinct
executables.

1.

For shell builtins to do what they are supposed to do (e.g. change the working directory,
update the environment), they need to change the place where that state resides. For a
normal application (including a Java application) the state is associated with the application
process. So for example, the child process that would run the "cd" command could not
change the working directory of its parent "java" process. Similarly, one exec'd process
cannot change the working directory for a process that follows it.

2.

This reasoning applies to all shell builtin commands.

1 - You can use ProcessBuilder as well, but that is not relevant to the point of this example.

2 - This is a bit rough and ready ... but once again, the failings of this approach are not relevant to the example.

Read Process online: https://riptutorial.com/java/topic/4682/process

https://riptutorial.com/ 878

https://riptutorial.com/java/topic/4682/process

Chapter 136: Properties Class

Introduction

The properties object contains key and value pair both as a string. The java.util.Properties class is
the subclass of Hashtable.

It can be used to get property value based on the property key. The Properties class provides
methods to get data from properties file and store data into properties file. Moreover, it can be
used to get properties of system.

Advantage of properties file

Recompilation is not required, if information is changed from properties file: If any information is
changed from

Syntax

In a properties file:•
key=value•
#comment•

Remarks

A Properties object is a Map whose keys and values are Strings by convention. Although the
methods of Map can be used to access the data, the more type-safe methods getProperty,
setProperty, and stringPropertyNames are usually used instead.

Properties are frequently stored in Java property files, which are simple text files. Their format is
documented thoroughly in the Properties.load method. In summary:

Each key/value pair is a line of text with whitespace, equals (=), or colon (:) between the key
and the value. The equals or colon may have any amount of whitespace before and after it,
which is ignored.

•

Leading whitespace is always ignored, trailing whitespace is always included.•
A backslash can be used to escape any character (except lowercase u).•
A backslash at the end of the line indicates the next line is a continuation of the current line.
However, as with all lines, leading whitespace in the continuation line is ignored.

•

Just like in Java source code, \u followed by four hexadecimal digits represents a UTF-16
character.

•

Most frameworks, including Java SE’s own facilities like java.util.ResourceBundle, load property
files as InputStreams. When loading a property file from an InputStream, that file is may only
contain ISO 8859-1 characters (that is, characters in the 0–255 range). Any other characters must
be represented as \u escapes. However, you can write a text file in any encoding and use the

https://riptutorial.com/ 879

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#getProperty-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#setProperty-java.lang.String-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#stringPropertyNames--
http://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load-java.io.Reader-

native2ascii tool (which comes with every JDK) to do that escaping for you.

If you are loading a property file with your own code, it can be in any encoding, as long as you
create a Reader (such as an InputStreamReader) based on the corresponding Charset. You can
then load the file using load(Reader) instead of the legacy load(InputStream) method.

You can also store properties in a simple XML file, which allows the file itself to define the
encoding. Such a file can be loaded with the loadFromXML method. The DTD describing the
structure of such XML files is located at http://java.sun.com/dtd/properties.dtd .

Examples

Loading properties

To load a properties file bundled with your application:

public class Defaults {

 public static Properties loadDefaults() {
 try (InputStream bundledResource =
 Defaults.class.getResourceAsStream("defaults.properties")) {

 Properties defaults = new Properties();
 defaults.load(bundledResource);
 return defaults;
 } catch (IOException e) {
 // Since the resource is bundled with the application,
 // we should never get here.
 throw new UncheckedIOException(
 "defaults.properties not properly packaged"
 + " with application", e);
 }
 }

}

Property files caveat: trailing whitespace

Take a close look at these two property files which are seemingly completely identical:

except they are really not identical:

https://riptutorial.com/ 880

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/native2ascii.html
http://docs.oracle.com/javase/8/docs/api/java/io/InputStreamReader.html
http://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
http://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load-java.io.Reader-
http://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#loadFromXML-java.io.InputStream-
http://java.sun.com/dtd/properties.dtd
http://i.stack.imgur.com/PogHE.png
http://i.stack.imgur.com/RV40f.png

(screenshots are from Notepad++)

Since trailing whitespace is preserved the value of lastName would be "Smith" in the first case and
"Smith " in the second case.

Very rarely this is what users expect and one and can only speculate why this is the default
behavior of Properties class. It is however easy to create an enhanced version of Properties that
fixes this problem. The following class, TrimmedProperties, does just that. It is a drop-in
replacement for standard Properties class.

import java.io.FileInputStream;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.Reader;
import java.util.Map.Entry;
import java.util.Properties;

/**
 * Properties class where values are trimmed for trailing whitespace if the
 * properties are loaded from a file.
 *
 * <p>
 * In the standard {@link java.util.Properties Properties} class trailing
 * whitespace is always preserved. When loading properties from a file such
 * trailing whitespace is almost always <i>unintentional</i>. This class fixes
 * this problem. The trimming of trailing whitespace only takes place if the
 * source of input is a file and only where the input is line oriented (meaning
 * that for example loading from XML file is <i>not</i> changed by this class).
 * For this reason this class is almost in all cases a safe drop-in replacement
 * for the standard <tt>Properties</tt>
 * class.
 *
 * <p>
 * Whitespace is defined here as any of space (U+0020) or tab (U+0009).
 * *
 */
public class TrimmedProperties extends Properties {

 /**
 * Reads a property list (key and element pairs) from the input byte stream.
 *
 * <p>Behaves exactly as {@link java.util.Properties#load(java.io.InputStream) }
 * with the exception that trailing whitespace is trimmed from property values
 * if <tt>inStream</tt> is an instance of <tt>FileInputStream</tt>.
 *
 * @see java.util.Properties#load(java.io.InputStream)
 * @param inStream the input stream.
 * @throws IOException if an error occurred when reading from the input stream.
 */
 @Override
 public void load(InputStream inStream) throws IOException {
 if (inStream instanceof FileInputStream) {
 // First read into temporary props using the standard way
 Properties tempProps = new Properties();
 tempProps.load(inStream);
 // Now trim and put into target
 trimAndLoad(tempProps);
 } else {

https://riptutorial.com/ 881

 super.load(inStream);
 }
 }

 /**
 * Reads a property list (key and element pairs) from the input character stream in a
simple line-oriented format.
 *
 * <p>Behaves exactly as {@link java.util.Properties#load(java.io.Reader)}
 * with the exception that trailing whitespace is trimmed on property values
 * if <tt>reader</tt> is an instance of <tt>FileReader</tt>.
 *
 * @see java.util.Properties#load(java.io.Reader) }
 * @param reader the input character stream.
 * @throws IOException if an error occurred when reading from the input stream.
 */
 @Override
 public void load(Reader reader) throws IOException {
 if (reader instanceof FileReader) {
 // First read into temporary props using the standard way
 Properties tempProps = new Properties();
 tempProps.load(reader);
 // Now trim and put into target
 trimAndLoad(tempProps);
 } else {
 super.load(reader);
 }
 }

 private void trimAndLoad(Properties p) {
 for (Entry<Object, Object> entry : p.entrySet()) {
 if (entry.getValue() instanceof String) {
 put(entry.getKey(), trimTrailing((String) entry.getValue()));
 } else {
 put(entry.getKey(), entry.getValue());
 }
 }
 }

 /**
 * Trims trailing space or tabs from a string.
 *
 * @param str
 * @return
 */
 public static String trimTrailing(String str) {
 if (str != null) {
 // read str from tail until char is no longer whitespace
 for (int i = str.length() - 1; i >= 0; i--) {
 if ((str.charAt(i) != ' ') && (str.charAt(i) != '\t')) {
 return str.substring(0, i + 1);
 }
 }
 }
 return str;
 }
}

Saving Properties as XML

https://riptutorial.com/ 882

Storing Properties in a XML File

The way you store properties files as XML files is very similar to the way you would store them as
.properties files. Just instead of using the store() you would use storeToXML().

public void saveProperties(String location) throws IOException{
 // make new instance of properties
 Properties prop = new Properties();

 // set the property values
 prop.setProperty("name", "Steve");
 prop.setProperty("color", "green");
 prop.setProperty("age", "23");

 // check to see if the file already exists
 File file = new File(location);
 if (!file.exists()){
 file.createNewFile();
 }

 // save the properties
 prop.storeToXML(new FileOutputStream(file), "testing properties with xml");
}

When you open the file it will look like this.

Loading Properties from a XML File

Now to load this file as a properties you need to call the loadFromXML() instead of the load() that
you would use with regular .propeties files.

public static void loadProperties(String location) throws FileNotFoundException, IOException{
 // make new properties instance to load the file into
 Properties prop = new Properties();

 // check to make sure the file exists
 File file = new File(location);
 if (file.exists()){
 // load the file
 prop.loadFromXML(new FileInputStream(file));

 // print out all the properties
 for (String name : prop.stringPropertyNames()){

https://riptutorial.com/ 883

http://i.stack.imgur.com/svWEh.png

 System.out.println(name + "=" + prop.getProperty(name));
 }
 } else {
 System.err.println("Error: No file found at: " + location);
 }
}

When you run this code you will get the following in the console:

age=23
color=green
name=Steve

Read Properties Class online: https://riptutorial.com/java/topic/576/properties-class

https://riptutorial.com/ 884

https://riptutorial.com/java/topic/576/properties-class

Chapter 137: Queues and Deques

Examples

The usage of the PriorityQueue

PriorityQueue is a data structure. Like SortedSet, PriorityQueue sorts also its elements based on
their priorities. The elements, which have a higher priority, comes first. The type of the
PriorityQueue should implement comparable or comparator interface, whose methods decides the
priorities of the elements of the data structure.

//The type of the PriorityQueue is Integer.
PriorityQueue<Integer> queue = new PriorityQueue<Integer>();

//The elements are added to the PriorityQueue
queue.addAll(Arrays.asList(9, 2, 3, 1, 3, 8));

//The PriorityQueue sorts the elements by using compareTo method of the Integer Class
//The head of this queue is the least element with respect to the specified ordering
System.out.println(queue); //The Output: [1, 2, 3, 9, 3, 8]
queue.remove();
System.out.println(queue); //The Output: [2, 3, 3, 9, 8]
queue.remove();
System.out.println(queue); //The Output: [3, 8, 3, 9]
queue.remove();
System.out.println(queue); //The Output: [3, 8, 9]
queue.remove();
System.out.println(queue); //The Output: [8, 9]
queue.remove();
System.out.println(queue); //The Output: [9]
queue.remove();
System.out.println(queue); //The Output: []

LinkedList as a FIFO Queue

The java.util.LinkedList class, while implementing java.util.List is a general-purpose
implementation of java.util.Queue interface too operating on a FIFO (First In, First Out) principle.

In the example below, with offer() method, the elements are inserted into the LinkedList. This
insertion operation is called enqueue. In the while loop below, the elements are removed from the
Queue based on FIFO. This operation is called dequeue.

Queue<String> queue = new LinkedList<String>();

queue.offer("first element");
queue.offer("second element");
queue.offer("third element");
queue.offer("fourth. element");
queue.offer("fifth. element");

while (!queue.isEmpty()) {
 System.out.println(queue.poll());

https://riptutorial.com/ 885

https://en.wikipedia.org/wiki/FIFO

}

The output of this code is

first element
second element
third element
fourth element
fifth element

As seen in the output, the first inserted element "first element" is removed firstly, "second element"
is removed in the second place etc.

Stacks

What is a Stack?

In Java, Stacks are a LIFO (Last In, First Out) Data structure for objects.

Stack API

Java contains a Stack API with the following methods

Stack() //Creates an empty Stack
isEmpty() //Is the Stack Empty? Return Type: Boolean
push(Item item) //push an item onto the stack
pop() //removes item from top of stack Return Type: Item
size() //returns # of items in stack Return Type: Int

Example

import java.util.*;

public class StackExample {

 public static void main(String args[]) {
 Stack st = new Stack();
 System.out.println("stack: " + st);

 st.push(10);
 System.out.println("10 was pushed to the stack");
 System.out.println("stack: " + st);

 st.push(15);
 System.out.println("15 was pushed to the stack");
 System.out.println("stack: " + st);

 st.push(80);
 System.out.println("80 was pushed to the stack");

https://riptutorial.com/ 886

 System.out.println("stack: " + st);

 st.pop();
 System.out.println("80 was popped from the stack");
 System.out.println("stack: " + st);

 st.pop();
 System.out.println("15 was popped from the stack");
 System.out.println("stack: " + st);

 st.pop();
 System.out.println("10 was popped from the stack");
 System.out.println("stack: " + st);

 if(st.isEmpty())
 {
 System.out.println("empty stack");
 }
 }
}

This Returns:

stack: []
10 was pushed to the stack
stack: [10]
15 was pushed to the stack
stack: [10, 15]
80 was pushed to the stack
stack: [10, 15, 80]
80 was popped from the stack
stack: [10, 15]
15 was popped from the stack
stack: [10]
10 was popped from the stack
stack: []
empty stack

BlockingQueue

A BlockingQueue is an interface, which is a queue that blocks when you try to dequeue from it and
the queue is empty, or if you try to enqueue items to it and the queue is already full. A thread
trying to dequeue from an empty queue is blocked until some other thread inserts an item into the
queue. A thread trying to enqueue an item in a full queue is blocked until some other thread
makes space in the queue, either by dequeuing one or more items or clearing the queue
completely.

BlockingQueue methods come in four forms, with different ways of handling operations that cannot
be satisfied immediately, but may be satisfied at some point in the future: one throws an
exception, the second returns a special value (either null or false, depending on the operation), the
third blocks the current thread indefinitely until the operation can succeed, and the fourth blocks
for only a given maximum time limit before giving up.

https://riptutorial.com/ 887

Operation Throws Exception Special Value Blocks Times out

Insert add() offer(e) put(e) offer(e, time, unit)

Remove remove() poll() take() poll(time, unit)

Examine element() peek() N/A N/A

A BlockingQueue can be bounded or unbounded. A bounded BlockingQueue is one which is
initialized with initial capacity.

BlockingQueue<String> bQueue = new ArrayBlockingQueue<String>(2);

Any calls to a put() method will be blocked if the size of the queue is equal to the initial capacity
defined.

An unbounded Queue is one which is initialized without capacity, actually by default it initialized
with Integer.MAX_VALUE.

Some common implementations of BlockingQueue are:

ArrayBlockingQueue1.
LinkedBlockingQueue2.
PriorityBlockingQueue3.

Now let's look at an example of ArrayBlockingQueue:

BlockingQueue<String> bQueue = new ArrayBlockingQueue<>(2);
bQueue.put("This is entry 1");
System.out.println("Entry one done");
bQueue.put("This is entry 2");
System.out.println("Entry two done");
bQueue.put("This is entry 3");
System.out.println("Entry three done");

This will print:

Entry one done
Entry two done

And the thread will be blocked after the second output.

Queue Interface

Basics

A Queue is a collection for holding elements prior to processing. Queues typically, but not
necessarily, order elements in a FIFO (first-in-first-out) manner.

https://riptutorial.com/ 888

Head of the queue is the element that would be removed by a call to remove or poll. In a FIFO
queue, all new elements are inserted at the tail of the queue.

The Queue Interface

public interface Queue<E> extends Collection<E> {
 boolean add(E e);

 boolean offer(E e);

 E remove();

 E poll();

 E element();

 E peek();
}

Each Queue method exists in two forms:

one throws an exception if the operation fails;•
other returns a special value if the operation fails (either null or false depending on the
operation.

•

Type of operation Throws exception Returns special value

Insert add(e) offer(e)

Remove remove() poll()

Examine element() peek()

Deque

A Deque is a "double ended queue" which means that a elements can be added at the front or the
tail of the queue. The queue only can add elements to the tail of a queue.

The Deque inherits the Queue interface which means the regular methods remain, however the
Deque interface offers additional methods to be more flexible with a queue. The additional
methods really speak for them self if you know how a queue works, since those methods are
intended to add more flexibility:

Method Brief description

getFirst() Gets the first item of the head of the queue without removing it.

getLast() Gets the first item of the tail of the queue without removing it.

addFirst(E e) Adds an item to the head of the queue

https://riptutorial.com/ 889

Method Brief description

addLast(E e) Adds an item to the tail of the queue

removeFirst() Removes the first item at the head of the queue

removeLast() Removes the first item at the tail of the queue

Of course the same options for offer, poll and peek are available, however they do not work with
exceptions but rather with special values. There is no point in showing what they do here.

Adding and Accessing Elements

To add elements to the tail of a Deque you call its add() method. You can also use the addFirst()
and addLast() methods, which add elements to the head and tail of the deque.

Deque<String> dequeA = new LinkedList<>();

dequeA.add("element 1"); //add element at tail
dequeA.addFirst("element 2"); //add element at head
dequeA.addLast("element 3"); //add element at tail

You can peek at the element at the head of the queue without taking the element out of the queue.
This is done via the element() method. You can also use the getFirst() and getLast() methods,
which return the first and last element in the Deque. Here is how that looks:

String firstElement0 = dequeA.element();
String firstElement1 = dequeA.getFirst();
String lastElement = dequeA.getLast();

Removing Elements

To remove elements from a deque, you call the remove(), removeFirst() and removeLast() methods.
Here are a few examples:

String firstElement = dequeA.remove();
String firstElement = dequeA.removeFirst();
String lastElement = dequeA.removeLast();

Read Queues and Deques online: https://riptutorial.com/java/topic/7196/queues-and-deques

https://riptutorial.com/ 890

https://riptutorial.com/java/topic/7196/queues-and-deques

Chapter 138: Random Number Generation

Remarks

Nothing is really random and thus the javadoc calls those numbers pseudorandom. Those
numbers are created with a pseudorandom number generator.

Examples

Pseudo Random Numbers

Java provides, as part of the utils package, a basic pseudo-random number generator,
appropriately named Random. This object can be used to generate a pseudo-random value as any
of the built-in numerical datatypes (int, float, etc). You can also use it to generate a random
Boolean value, or a random array of bytes. An example usage is as follows:

import java.util.Random;

...

Random random = new Random();
int randInt = random.nextInt();
long randLong = random.nextLong();

double randDouble = random.nextDouble(); //This returns a value between 0.0 and 1.0
float randFloat = random.nextFloat(); //Same as nextDouble

byte[] randBytes = new byte[16];
random.nextBytes(randBytes); //nextBytes takes a user-supplied byte array, and fills it with
random bytes. It returns nothing.

NOTE: This class only produces fairly low-quality pseudo-random numbers, and should never be
used to generate random numbers for cryptographic operations or other situations where higher-
quality randomness is critical (For that, you would want to use the SecureRandom class, as noted
below). An explanation for the distinction between "secure" and "insecure" randomness is beyond
the scope of this example.

Pseudo Random Numbers in Specific Range

The method nextInt(int bound) of Random accepts an upper exclusive boundary, i.e. a number that
the returned random value must be less than. However, only the nextInt method accepts a bound;
nextLong, nextDouble etc. do not.

Random random = new Random();
random.nextInt(1000); // 0 - 999

int number = 10 + random.nextInt(100); // number is in the range of 10 to 109

https://riptutorial.com/ 891

https://en.wikipedia.org/wiki/Pseudorandom_number_generator

Starting in Java 1.7, you may also use ThreadLocalRandom (source). This class provides a thread-
safe PRNG (pseudo-random number generator). Note that the nextInt method of this class
accepts both an upper and lower bound.

import java.util.concurrent.ThreadLocalRandom;

// nextInt is normally exclusive of the top value,
// so add 1 to make it inclusive
ThreadLocalRandom.current().nextInt(min, max + 1);

Note that the official documentation states that nextInt(int bound) can do weird things when bound
is near 230+1 (emphasis added):

The algorithm is slightly tricky. It rejects values that would result in an uneven
distribution (due to the fact that 2^31 is not divisible by n). The probability of a value
being rejected depends on n. The worst case is n=2^30+1, for which the probability
of a reject is 1/2, and the expected number of iterations before the loop
terminates is 2.

In other words, specifying a bound will (slightly) decrease the performance of the nextInt method,
and this performance decrease will become more pronounced as the bound approaches half the
max int value.

Generating cryptographically secure pseudorandom numbers

Random and ThreadLocalRandom are good enough for everyday use, but they have a big problem:
They are based on a linear congruential generator, an algorithm whose output can be predicted
rather easily. Thus, these two classes are not suitable for cryptographic uses (such as key
generation).

One can use java.security.SecureRandom in situations where a PRNG with an output that is very
hard to predict is required. Predicting the random numbers created by instances of this class is
hard enough to label the class as cryptographically secure.

import java.security.SecureRandom;
import java.util.Arrays;

public class Foo {
 public static void main(String[] args) {
 SecureRandom rng = new SecureRandom();
 byte[] randomBytes = new byte[64];
 rng.nextBytes(randomBytes); // Fills randomBytes with random bytes (duh)
 System.out.println(Arrays.toString(randomBytes));
 }
}

Besides being cryptographically secure, SecureRandom has a gigantic period of 2160, compared to
Randoms period of 248. It has one drawback of being considerably slower than Random and other
linear PRNGs such as Mersenne Twister and Xorshift, however.

https://riptutorial.com/ 892

http://stackoverflow.com/questions/363681/generating-random-integers-in-a-specific-range
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Mersenne_Twister
https://en.wikipedia.org/wiki/Xorshift

Note that SecureRandom implementation is both platform and provider dependent. The default
SecureRandom (given by SUN provider in sun.security.provider.SecureRandom):

on Unix-like systems, seeded with data from /dev/random and/or /dev/urandom.•
on Windows, seeded with calls to CryptGenRandom() in CryptoAPI.•

Select random numbers without duplicates

/**
 * returns a array of random numbers with no duplicates
 * @param range the range of possible numbers for ex. if 100 then it can be anywhere from 1-
100
 * @param length the length of the array of random numbers
 * @return array of random numbers with no duplicates.
 */
public static int[] getRandomNumbersWithNoDuplicates(int range, int length){
 if (length<range){
 // this is where all the random numbers
 int[] randomNumbers = new int[length];

 // loop through all the random numbers to set them
 for (int q = 0; q < randomNumbers.length; q++){

 // get the remaining possible numbers
 int remainingNumbers = range-q;

 // get a new random number from the remainingNumbers
 int newRandSpot = (int) (Math.random()*remainingNumbers);

 newRandSpot++;

 // loop through all the possible numbers
 for (int t = 1; t < range+1; t++){

 // check to see if this number has already been taken
 boolean taken = false;
 for (int number : randomNumbers){
 if (t==number){
 taken = true;
 break;
 }
 }

 // if it hasnt been taken then remove one from the spots
 if (!taken){
 newRandSpot--;

 // if we have gone though all the spots then set the value
 if (newRandSpot==0){
 randomNumbers[q] = t;
 }
 }
 }
 }
 return randomNumbers;
 } else {
 // invalid can't have a length larger then the range of possible numbers
 }
 return null;

https://riptutorial.com/ 893

https://en.wikipedia.org/wiki/Microsoft_CryptoAPI

}

The method works by looping though an array that has the size of the requested length and finds
the remaining length of possible numbers. It sets a random number of those possible numbers
newRandSpot and finds that number within the non taken number left. It does this by looping through
the range and checking to see if that number has already been taken.

For example if the range is 5 and the length is 3 and we have already chosen the number 2. Then
we have 4 remaining numbers so we get a random number between 1 and 4 and we loop through
the range(5) skipping over any numbers that we have already used(2).

Now let's say the next number chosen between 1 & 4 is 3. On the first loop we get 1 which has not
yet been taken so we can remove 1 from 3 making it 2. Now on the second loop we get 2 which
has been taken so we do nothing. We follow this pattern until we get to 4 where once we remove 1
it becomes 0 so we set the new randomNumber to 4.

Generating Random Numbers with a Specified Seed

//Creates a Random instance with a seed of 12345.
Random random = new Random(12345L);

//Gets a ThreadLocalRandom instance
ThreadLocalRandom tlr = ThreadLocalRandom.current();

//Set the instance's seed.
tlr.setSeed(12345L);

Using the same seed to generate random numbers will return the same numbers every time, so
setting a different seed for every Random instance is a good idea if you don't want to end up with
duplicate numbers.

A good method to get a Long that is different for every call is System.currentTimeMillis():

Random random = new Random(System.currentTimeMillis());
ThreadLocalRandom.current().setSeed(System.currentTimeMillis());

Generating Random number using apache-common lang3

We can use org.apache.commons.lang3.RandomUtils to generate random numbers using a single line.

int x = RandomUtils.nextInt(1, 1000);

The method nextInt(int startInclusive, int endExclusive) takes a range.

Apart from int, we can generate random long, double, float and bytes using this class.

RandomUtils class contains the following methods-

https://riptutorial.com/ 894

https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#currentTimeMillis()

static byte[] nextBytes(int count) //Creates an array of random bytes.
static double nextDouble() //Returns a random double within 0 - Double.MAX_VALUE
static double nextDouble(double startInclusive, double endInclusive) //Returns a random double
within the specified range.
static float nextFloat() //Returns a random float within 0 - Float.MAX_VALUE
static float nextFloat(float startInclusive, float endInclusive) //Returns a random float
within the specified range.
static int nextInt() //Returns a random int within 0 - Integer.MAX_VALUE
static int nextInt(int startInclusive, int endExclusive) //Returns a random integer within the
specified range.
static long nextLong() //Returns a random long within 0 - Long.MAX_VALUE
static long nextLong(long startInclusive, long endExclusive) //Returns a random long within
the specified range.

Read Random Number Generation online: https://riptutorial.com/java/topic/890/random-number-
generation

https://riptutorial.com/ 895

https://riptutorial.com/java/topic/890/random-number-generation
https://riptutorial.com/java/topic/890/random-number-generation

Chapter 139: Readers and Writers

Introduction

Readers and Writers and their respective subclasses provide simple I/O for text / character-based
data.

Examples

BufferedReader

Introduction

The BufferedReader class is a wrapper for other Reader classes that serves two main purposes:

A BufferedReader provides buffering for the wrapped Reader. This allows an application to read
characters one at a time without undue I/O overheads.

1.

A BufferedReader provides functionality for reading text a line at a time.2.

Basics of using a BufferedReader

The normal pattern for using a BufferedReader is as follows. First, you obtain the Reader that you
want to read characters from. Next you instantiate a BufferedReader that wraps the Reader. Then
you read character data. Finally you close the BufferedReader which close the wrapped `Reader.
For example:

File someFile = new File(...);
int aCount = 0;
try (FileReader fr = new FileReader(someFile);
 BufferedReader br = new BufferedReader(fr)) {
 // Count the number of 'a' characters.
 int ch;
 while ((ch = br.read()) != -1) {
 if (ch == 'a') {
 aCount++;
 }
 }
 System.out.println("There are " + aCount + " 'a' characters in " + someFile);
}

You can apply this pattern to any Reader

Notes:

We have used Java 7 (or later) try-with-resources to ensure that the underlying reader is 1.

https://riptutorial.com/ 896

always closed. This avoids a potential resource leak. In earlier versions of Java, you would
explicitly close the BufferedReader in a finally block.

The code inside the try block is virtually identical to what we would use if we read directly
from the FileReader. In fact, a BufferedReader functions exactly like the Reader that it wraps
would behave. The difference is that this version is a lot more efficient.

2.

The BufferedReader buffer size

The BufferedReader.readLine() method

Example: reading all lines of a File into a List

This is done by getting each line in a file, and adding it into a List<String>. The list is then
returned:

public List<String> getAllLines(String filename) throws IOException {
 List<String> lines = new ArrayList<String>();
 try (BufferedReader br = new BufferedReader(new FileReader(filename))) {
 String line = null;
 while ((line = reader.readLine) != null) {
 lines.add(line);
 }
 }
 return lines;
}

Java 8 provides a more concise way to do this using the lines() method:

public List<String> getAllLines(String filename) throws IOException {
 try (BufferedReader br = new BufferedReader(new FileReader(filename))) {
 return br.lines().collect(Collectors.toList());
 }
 return Collections.empty();
}

StringWriter Example

Java StringWriter class is a character stream that collects output from string buffer, which can be
used to construct a string.

The StringWriter class extends the Writer class.

In StringWriter class, system resources like network sockets and files are not used, therefore
closing the StringWriter is not necessary.

import java.io.*;

https://riptutorial.com/ 897

public class StringWriterDemo {
 public static void main(String[] args) throws IOException {
 char[] ary = new char[1024];
 StringWriter writer = new StringWriter();
 FileInputStream input = null;
 BufferedReader buffer = null;
 input = new FileInputStream("c://stringwriter.txt");
 buffer = new BufferedReader(new InputStreamReader(input, "UTF-8"));
 int x;
 while ((x = buffer.read(ary)) != -1) {
 writer.write(ary, 0, x);
 }
 System.out.println(writer.toString());
 writer.close();
 buffer.close();
 }
}

The above example helps us to know simple example of StringWriter using BufferedReader to
read file data from the stream.

Read Readers and Writers online: https://riptutorial.com/java/topic/10618/readers-and-writers

https://riptutorial.com/ 898

https://riptutorial.com/java/topic/10618/readers-and-writers

Chapter 140: Recursion

Introduction

Recursion occurs when a method calls itself. Such a method is called recursive. A recursive
method may be more concise than an equivalent non-recursive approach. However, for deep
recursion, sometimes an iterative solution can consume less of a thread's finite stack space.

This topic includes examples of recursion in Java.

Remarks

Designing a Recursive Method

When designing a recursive method keep in mind that you need:

Base Case. This will define when your recursion will stop and output the result. The base
case in the factorial example is:

if (n <= 1) {
 return 1;
}

•

Recursive Call. In this statement you re-call the method with a changed parameter. The
recursive call in the factorial example above is:

else {
 return n * factorial(n - 1);
}

•

Output

In this example you compute the n-th factorial number. The first factorials are:

0! = 1

1! = 1

2! = 1 x 2 = 2

3! = 1 x 2 x 3 = 6

4! = 1 x 2 x 3 x 4 = 24

...

https://riptutorial.com/ 899

Java and Tail-call elimination

Current Java compilers (up to and including Java 9) do not perform tail-call elimination. This can
impact the performance of recursive algorithms, and if the recursion is deep enough, it can lead to
StackOverflowError crashes; see Deep recursion is problematic in Java

Examples

The basic idea of recursion

What is recursion:

In general, recursion is when a function invokes itself, either directly or indirectly. For example:

// This method calls itself "infinitely"
public void useless() {
 useless(); // method calls itself (directly)
}

Conditions for applying recursion to a problem:

There are two preconditions for using recursive functions to solving a specific problem:

There must be a base condition for the problem, which will be the endpoint for the recursion.
When a recursive function reaches the base condition, it makes no further (deeper) recursive
calls.

1.

Each level of recursion should be attempting a smaller problem. The recursive function thus
divides the problem into smaller and smaller parts. Assuming that the problem is finite, this
will ensure that the recursion terminates.

2.

In Java there is a third precondition: it should not be necessary to recurse too deeply to solve the
problem; see Deep recursion is problematic in Java

Example

The following function calculates factorials using recursion. Notice how the method factorial calls
itself within the function. Each time it calls itself, it reduces the parameter n by 1. When n reaches
1 (the base condition) the function will recurse no deeper.

public int factorial(int n) {
 if (n <= 1) { // the base condition
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

This is not a practical way of computing factorials in Java, since it does not take account of integer overflow, or call

https://riptutorial.com/ 900

http://www.riptutorial.com/java/example/15048/deep-recursion-is-problematic-in-java
http://www.riptutorial.com/java/example/15048/deep-recursion-is-problematic-in-java

stack overflow (i.e. StackOverflowError exceptions) for large values of n.

Computing the Nth Fibonacci Number

The following method computes the Nth Fibonacci number using recursion.

public int fib(final int n) {
 if (n > 2) {
 return fib(n - 2) + fib(n - 1);
 }
 return 1;
}

The method implements a base case (n <= 2) and a recursive case (n>2). This illustrates the use
of recursion to compute a recursive relation.

However, while this example is illustrative, it is also inefficient: each single instance of the method
will call the function itself twice, leading to an exponential growth in the number of times the
function is called as N increases. The above function is O(2N), but an equivalent iterative solution
has complexity O(N). In addition, there is a "closed form" expression that can be evaluated in O(N)
floating-point multiplications.

Computing the sum of integers from 1 to N

The following method computes the sum of integers from 0 to N using recursion.

public int sum(final int n) {
 if (n > 0) {
 return n + sum(n - 1);
 } else {
 return n;
 }
}

This method is O(N) and can be reduced to a simple loop using tail-call optimization. In fact there
is a closed form expression that computes the sum in O(1) operations.

Computing the Nth power of a number

The following method computes the value of num raised to the power of exp using recursion:

public long power(final int num, final int exp) {
 if (exp == 0) {
 return 1;
 }
 if (exp == 1) {
 return num;
 }
 return num * power(num, exp - 1);
}

This illustrates the principles mentioned above: the recursive method implements a base case

https://riptutorial.com/ 901

(two cases, n = 0 and n = 1) that terminates the recursion, and a recursive case that calls the
method again. This method is O(N) and can be reduced to a simple loop using tail-call
optimization.

Reverse a string using Recursion

Below is a recursive code to reverse a string

/**
 * Just a snippet to explain the idea of recursion
 *
 **/

public class Reverse {
 public static void main (String args[]) {
 String string = "hello world";
 System.out.println(reverse(string)); //prints dlrow olleh
 }

 public static String reverse(String s) {
 if (s.length() == 1) {
 return s;
 }

 return reverse(s.substring(1)) + s.charAt(0);
 }
}

Traversing a Tree data structure with recursion

Consider the Node class having 3 members data, left child pointer and right child pointer like
below.

public class Node {
 public int data;
 public Node left;
 public Node right;

 public Node(int data){
 this.data = data;
 }
}

We can traverse the tree constructed by connecting multiple Node class's object like below, the
traversal is called in-order traversal of tree.

public static void inOrderTraversal(Node root) {
 if (root != null) {
 inOrderTraversal(root.left); // traverse left sub tree
 System.out.print(root.data + " "); // traverse current node
 inOrderTraversal(root.right); // traverse right sub tree
 }
 }

https://riptutorial.com/ 902

As demonstrated above, using recursion we can traverse the tree data structure without using
any other data structure which is not possible with the iterative approach.

Types of Recursion

Recursion can be categorized as either Head Recursion or Tail Recursion, depending on where
the recursive method call is placed.

In head recursion, the recursive call, when it happens, comes before other processing in the
function (think of it happening at the top, or head, of the function).

In tail recursion, it’s the opposite—the processing occurs before the recursive call. Choosing
between the two recursive styles may seem arbitrary, but the choice can make all the difference.

A function with a path with a single recursive call at the beginning of the path uses what is called
head recursion. The factorial function of a previous exhibit uses head recursion. The first thing it
does once it determines that recursion is needed is to call itself with the decremented parameter.
A function with a single recursive call at the end of a path is using tail recursion.

public void tail(int n) public void head(int n)
{ {
 if(n == 1) if(n == 0)
 return; return;
 else else
 System.out.println(n); head(n-1);

 tail(n-1); System.out.println(n);
} }

If the recursive call occurs at the end of a method, it is called a tail recursion. The tail recursion is
similar to a loop. The method executes all the statements before jumping into the next recursive
call.

If the recursive call occurs at the beginning of a method, it is called a head recursion. The method
saves the state before jumping into the next recursive call.

Reference: The difference between head & tail recursion

StackOverflowError & recursion to loop

If a recursive call goes "too deep", this results in a StackOverflowError. Java allocates a new frame
for every method call on its thread's stack. However, the space of each thread's stack is limited.
Too many frames on the stack leads to the Stack Overflow (SO).

Example

public static void recursion(int depth) {
 if (depth > 0) {
 recursion(depth-1);
 }

https://riptutorial.com/ 903

http://stackoverflow.com/questions/21426688/the-difference-between-head-tail-recursion

}

Calling this method with large parameters (e.g. recursion(50000) probably will result in a stack
overflow. The exact value depends on the thread stack size, which in turn depends on the thread
construction, command-line parameters such as -Xss, or the default size for the JVM.

Workaround

A recursion can be converted to a loop by storing the data for each recursive call in a data
structure. This data structure can be stored on the heap rather than on the thread stack.

In general the data required to restore the state of a method invocation can be stored in a stack
and a while loop can be used to "simulate" the recursive calls. Data that may be required include:

the object the method was called for (instance methods only)•
the method parameters•
local variables•
the current position in the execution or the method•

Example

The following class allows recursive of a tree structure printing up to a specified depth.

public class Node {

 public int data;
 public Node left;
 public Node right;

 public Node(int data) {
 this(data, null, null);
 }

 public Node(int data, Node left, Node right) {
 this.data = data;
 this.left = left;
 this.right = right;
 }

 public void print(final int maxDepth) {
 if (maxDepth <= 0) {
 System.out.print("(...)");
 } else {
 System.out.print("(");
 if (left != null) {
 left.print(maxDepth-1);
 }
 System.out.print(data);
 if (right != null) {
 right.print(maxDepth-1);
 }
 System.out.print(")");
 }

https://riptutorial.com/ 904

 }

}

e.g.

Node n = new Node(10, new Node(20, new Node(50), new Node(1)), new Node(30, new Node(42),
null));
n.print(2);
System.out.println();

Prints

(((...)20(...))10((...)30))

This could be converted to the following loop:

public class Frame {

 public final Node node;

 // 0: before printing anything
 // 1: before printing data
 // 2: before printing ")"
 public int state = 0;
 public final int maxDepth;

 public Frame(Node node, int maxDepth) {
 this.node = node;
 this.maxDepth = maxDepth;
 }

}

List<Frame> stack = new ArrayList<>();
stack.add(new Frame(n, 2)); // first frame = initial call

while (!stack.isEmpty()) {
 // get topmost stack element
 int index = stack.size() - 1;
 Frame frame = stack.get(index); // get topmost frame
 if (frame.maxDepth <= 0) {
 // termial case (too deep)
 System.out.print("(...)");
 stack.remove(index); // drop frame
 } else {
 switch (frame.state) {
 case 0:
 frame.state++;

 // do everything done before the first recursive call
 System.out.print("(");
 if (frame.node.left != null) {
 // add new frame (recursive call to left and stop)
 stack.add(new Frame(frame.node.left, frame.maxDepth - 1));
 break;
 }

https://riptutorial.com/ 905

 case 1:
 frame.state++;

 // do everything done before the second recursive call
 System.out.print(frame.node.data);
 if (frame.node.right != null) {
 // add new frame (recursive call to right and stop)
 stack.add(new Frame(frame.node.right, frame.maxDepth - 1));
 break;
 }
 case 2:
 // do everything after the second recursive call & drop frame
 System.out.print(")");
 stack.remove(index);
 }
 }
}
System.out.println();

Note: This is just an example of the general approach. Often you can come up with a much better
way to represent a frame and/or store the frame data.

Deep recursion is problematic in Java

Consider the following naive method for adding two positive numbers using recursion:

public static int add(int a, int b) {
 if (a == 0) {
 return b;
 } else {
 return add(a - 1, b + 1); // TAIL CALL
 }
}

This is algorithmically correct, but it has a major problem. If you call add with a large a, it will crash
with a StackOverflowError, on any version of Java up to (at least) Java 9.

In a typical functional programming language (and many other languages) the compiler optimizes
tail recursion. The compiler would notice that the call to add (at the tagged line) is a tail call, and
would effectively rewrite the recursion as a loop. This transformation is called tail-call elimination.

However, current generation Java compilers do not perform tail call elimination. (This is not a
simple oversight. There are substantial technical reasons for this; see below.) Instead, each
recursive call of add causes a new frame to be allocated on the thread's stack. For example, if you
call add(1000, 1), it will take 1000 recursive calls to arrive at the answer 1001.

The problem is that the size of Java thread stack is fixed when the thread is created. (This
includes the "main" thread in a single-threaded program.) If too many stack frames are allocated
the stack will overflow. The JVM will detect this and throw a StackOverflowError.

One approach to dealing with this is to simply use a bigger stack. There are JVM options that
control the default size of a stack, and you can also specify the stack size as a Thread constructor
parameter. Unfortunately, this only "puts off" the stack overflow. If you need to do a computation

https://riptutorial.com/ 906

http://www.riptutorial.com/java/example/12829/types-of-recursion
https://en.wikipedia.org/wiki/Tail_call

that requires an even larger stack, then the StackOverflowError comes back.

The real solution is to identify recursive algorithms where deep recursion is likely, and manually
perform the tail-call optimization at the source code level. For example, our add method can be
rewritten as follows:

public static int add(int a, int b) {
 while (a != 0) {
 a = a - 1;
 b = b + 1;
 }
 return b;
}

(Obviously, there are better ways to add two integers. The above is simply to illustrate the effect of
manual tail-call elimination.)

Why tail-call elimination is not implemented in Java (yet)

There are a number of reasons why adding tail call elimination to Java is not easy. For example:

Some code could rely on StackOverflowError to (for example) place a bound on the size of a
computational problem.

•

Sandbox security managers often rely on analyzing the call stack when deciding whether to
allow non-privileged code to perform a privileged action.

•

As John Rose explains in "Tail calls in the VM":

"The effects of removing the caller’s stack frame are visible to some APIs, notably
access control checks and stack tracing. It is as if the caller’s caller had directly called
the callee. Any privileges possessed by the caller are discarded after control is
transferred to the callee. However, the linkage and accessibility of the callee method
are computed before the transfer of control, and take into account the tail-calling
caller."

In other words, tail-call elimination could cause an access control method to mistakenly think that
a security sensitive API was was being called by trusted code.

Read Recursion online: https://riptutorial.com/java/topic/914/recursion

https://riptutorial.com/ 907

https://blogs.oracle.com/jrose/entry/tail_calls_in_the_vm
https://riptutorial.com/java/topic/914/recursion

Chapter 141: Reference Data Types

Examples

Instantiating a reference type

Object obj = new Object(); // Note the 'new' keyword

Where:

Object is a reference type.•
obj is the variable in which to store the new reference.•
Object() is the call to a constructor of Object.•

What happens:

Space in memory is allocated for the object.•
The constructor Object() is called to initialize that memory space.•
The memory address is stored in obj, so that it references the newly created object.•

This is different from primitives:

int i = 10;

Where the actual value 10 is stored in i.

Dereferencing

Dereferencing happens with the . operator:

Object obj = new Object();
String text = obj.toString(); // 'obj' is dereferenced.

Dereferencing follows the memory address stored in a reference, to the place in memory where
the actual object resides. When an object has been found, the requested method is called (
toString in this case).

When a reference has the value null, dereferencing results in a NullPointerException:

Object obj = null;
obj.toString(); // Throws a NullpointerException when this statement is executed.

null indicates the absence of a value, i.e. following the memory address leads nowhere. So there
is no object on which the requested method can be called.

https://riptutorial.com/ 908

http://stackoverflow.com/documentation/java/1003/nullpointerexception

Read Reference Data Types online: https://riptutorial.com/java/topic/1046/reference-data-types

https://riptutorial.com/ 909

https://riptutorial.com/java/topic/1046/reference-data-types

Chapter 142: Reference Types

Examples

Different Reference Types

java.lang.ref package provides reference-object classes, which support a limited degree of
interaction with the garbage collector.

Java has four main different reference types. They are:

Strong Reference•
Weak Reference•
Soft Reference•
Phantom Reference•

1. Strong Reference

This is the usual form of creating objects.

MyObject myObject = new MyObject();

The variable holder is holding a strong reference to the object created. As long as this variable is
live and holds this value, the MyObject instance will not be collected by the garbage collector.

2. Weak Reference

When you do not want to keep an object longer, and you need to clear/free the memory allocated
for an object as soon as possible, this is the way to do so.

WeakReference myObjectRef = new WeakReference(MyObject);

Simply, a weak reference is a reference that isn't strong enough to force an object to remain in
memory. Weak references allow you to leverage the garbage collector's ability to determine
reachability for you, so you don't have to do it yourself.

When you need the object you created, just use .get() method:

myObjectRef.get();

Following code will exemplify this:

WeakReference myObjectRef = new WeakReference(MyObject);
System.out.println(myObjectRef.get()); // This will print the object reference address
System.gc();
System.out.println(myObjectRef.get()); // This will print 'null' if the GC cleaned up the
object

https://riptutorial.com/ 910

https://docs.oracle.com/javase/7/docs/api/java/lang/ref/package-summary.html

3. Soft Reference

Soft references are slightly stronger than weak references. You can create a soft referenced
object as following:

SoftReference myObjectRef = new SoftReference(MyObject);

They can hold onto the memory more strongly than the weak reference. If you have enough
memory supply/resources, garbage collector will not clean the soft references as enthusiastically
as weak references.

Soft references are handy to use in caching. You can create soft referenced objects as a cache,
where they kept until your memory runs out. When your memory can't supply enough resources,
garbage collector will remove soft references.

SoftReference myObjectRef = new SoftReference(MyObject);
System.out.println(myObjectRef.get()); // This will print the reference address of the Object
System.gc();
System.out.println(myObjectRef.get()); // This may or may not print the reference address of
the Object

4. Phantom Reference

This is the weakest referencing type. If you created an object reference using Phantom Reference,
the get() method will always return null!

The use of this referencing is that "Phantom reference objects, which are enqueued after the
collector determines that their referents may otherwise be reclaimed. Phantom references are
most often used for scheduling pre-mortem cleanup actions in a more flexible way than is possible
with the Java finalization mechanism." - From Phantom Reference Javadoc from Oracle.

You can create an object of Phantom Reference as following:

PhantomReference myObjectRef = new PhantomReference(MyObject);

Read Reference Types online: https://riptutorial.com/java/topic/4017/reference-types

https://riptutorial.com/ 911

https://docs.oracle.com/javase/8/docs/api/java/lang/ref/PhantomReference.html
https://riptutorial.com/java/topic/4017/reference-types

Chapter 143: Reflection API

Introduction

Reflection is commonly used by programs which require the ability to examine or modify the
runtime behavior of applications running in the JVM. Java Reflection API is used for that purpose
where it makes it possible to inspect classes, interfaces, fields and methods at runtime, without
knowing their names at compile time. And It also makes it possible to instantiate new objects, and
to invoke methods using reflection.

Remarks

Performance

Keep in mind that reflection might decrease performance, only use it when your task cannot be
completed without reflection.

From the Java tutorial The Reflection API :

Because reflection involves types that are dynamically resolved, certain Java virtual
machine optimizations can not be performed. Consequently, reflective operations have
slower performance than their non-reflective counterparts, and should be avoided in
sections of code which are called frequently in performance-sensitive applications.

Examples

Introduction

Basics

The Reflection API allows one to check the class structure of the code at runtime and invoke code
dynamically. This is very powerful, but it is also dangerous since the compiler is not able to
statically determine whether dynamic invocations are valid.

A simple example would be to get the public constructors and methods of a given class:

import java.lang.reflect.Constructor;
import java.lang.reflect.Method;

// This is a object representing the String class (not an instance of String!)
Class<String> clazz = String.class;

Constructor<?>[] constructors = clazz.getConstructors(); // returns all public constructors of
String
Method[] methods = clazz.getMethods(); // returns all public methods from String and parents

https://riptutorial.com/ 912

https://docs.oracle.com/javase/tutorial/reflect/
https://docs.oracle.com/javase/tutorial/reflect/

With this information it is possible to instance the object and call different methods dynamically.

Reflection and Generic Types

Generic type information is available for:

method parameters, using getGenericParameterTypes().•
method return types, using getGenericReturnType().•
public fields, using getGenericType.•

The following example shows how to extract the generic type information in all three cases:

import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.List;
import java.util.Map;

public class GenericTest {

 public static void main(final String[] args) throws Exception {
 final Method method = GenericTest.class.getMethod("testMethod", Map.class);
 final Field field = GenericTest.class.getField("testField");

 System.out.println("Method parameter:");
 final Type parameterType = method.getGenericParameterTypes()[0];
 displayGenericType(parameterType, "\t");

 System.out.println("Method return type:");
 final Type returnType = method.getGenericReturnType();
 displayGenericType(returnType, "\t");

 System.out.println("Field type:");
 final Type fieldType = field.getGenericType();
 displayGenericType(fieldType, "\t");

 }

 private static void displayGenericType(final Type type, final String prefix) {
 System.out.println(prefix + type.getTypeName());
 if (type instanceof ParameterizedType) {
 for (final Type subtype : ((ParameterizedType) type).getActualTypeArguments()) {
 displayGenericType(subtype, prefix + "\t");
 }
 }

 }

 public Map<String, Map<Integer, List<String>>> testField;

 public List<Number> testMethod(final Map<String, Double> arg) {
 return null;
 }

}

This results in the following output:

https://riptutorial.com/ 913

Method parameter:
 java.util.Map<java.lang.String, java.lang.Double>
 java.lang.String
 java.lang.Double
Method return type:
 java.util.List<java.lang.Number>
 java.lang.Number
Field type:
 java.util.Map<java.lang.String, java.util.Map<java.lang.Integer,
java.util.List<java.lang.String>>>
 java.lang.String
 java.util.Map<java.lang.Integer, java.util.List<java.lang.String>>
 java.lang.Integer
 java.util.List<java.lang.String>
 java.lang.String

Invoking a method

Using reflection, a method of an object can be invoked during runtime.

The example shows how to invoke the methods of a String object.

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

String s = "Hello World!";

// method without parameters
// invoke s.length()
Method method1 = String.class.getMethod("length");
int length = (int) method1.invoke(s); // variable length contains "12"

// method with parameters
// invoke s.substring(6)
Method method2 = String.class.getMethod("substring", int.class);
String substring = (String) method2.invoke(s, 6); // variable substring contains "World!"

Getting and Setting fields

Using the Reflection API, it is possible to change or get the value of a field at runtime. For
example, you could use it in an API to retrieve different fields based on a factor, like the OS. You
can also remove modifiers like final to allow modifing fields that are final.

To do so, you will need to use the method Class#getField() in a way such as the one shown
below:

// Get the field in class SomeClass "NAME".
Field nameField = SomeClass.class.getDeclaredField("NAME");

// Get the field in class Field "modifiers". Note that it does not
// need to be static
Field modifiersField = Field.class.getDeclaredField("modifiers");

// Allow access from anyone even if it's declared private
modifiersField.setAccessible(true);

https://riptutorial.com/ 914

https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getField-java.lang.String-

// Get the modifiers on the "NAME" field as an int.
int existingModifiersOnNameField = nameField.getModifiers();

// Bitwise AND NOT Modifier.FINAL (16) on the existing modifiers
// Readup here https://en.wikipedia.org/wiki/Bitwise_operations_in_C
// if you're unsure what bitwise operations are.
int newModifiersOnNameField = existingModifiersOnNameField & ~Modifier.FINAL;

// Set the value of the modifiers field under an object for non-static fields
modifiersField.setInt(nameField, newModifiersOnNameField);

// Set it to be accessible. This overrides normal Java
// private/protected/package/etc access control checks.
nameField.setAccessible(true);

 // Set the value of "NAME" here. Note the null argument.
 // Pass null when modifying static fields, as there is no instance object
nameField.set(null, "Hacked by reflection...");

// Here I can directly access it. If needed, use reflection to get it. (Below)
System.out.println(SomeClass.NAME);

Getting fields is much easier. We can use Field#get() and its variants to get its value:

// Get the field in class SomeClass "NAME".
Field nameField = SomeClass.class.getDeclaredField("NAME");

// Set accessible for private fields
nameField.setAccessible(true);

// Pass null as there is no instance, remember?
String name = (String) nameField.get(null);

Do note this:

When using Class#getDeclaredField, use it to get a field in the class itself:

class HackMe extends Hacked {
 public String iAmDeclared;
}

class Hacked {
 public String someState;
}

Here, HackMe#iAmDeclared is declared field. However, HackMe#someState is not a declared field as it is
inherited from its superclass, Hacked.

Call constructor

Getting the Constructor Object

You can obtain Constructor class from the Class object like this:

https://riptutorial.com/ 915

https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Field.html#get-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getDeclaredField-java.lang.String-

Class myClass = ... // get a class object
Constructor[] constructors = myClass.getConstructors();

Where the constructors variable will have one Constructor instance for each public constructor
declared in the class.

If you know the precise parameter types of the constructor you want to access, you can filter the
specific constructor. The next example returns the public constructor of the given class which
takes a Integer as parameter:

Class myClass = ... // get a class object
Constructor constructor = myClass.getConstructor(new Class[]{Integer.class});

If no constructor matches the given constructor arguments a NoSuchMethodException is thrown.

New Instance using Constructor Object

Class myClass = MyObj.class // get a class object
Constructor constructor = myClass.getConstructor(Integer.class);
MyObj myObj = (MyObj) constructor.newInstance(Integer.valueOf(123));

Getting the Constants of an Enumeration

Giving this enumeration as Example:

enum Compass {
 NORTH(0),
 EAST(90),
 SOUTH(180),
 WEST(270);
 private int degree;
 Compass(int deg){
 degree = deg;
 }
 public int getDegree(){
 return degree;
 }
}

In Java an enum class is like any other class but has some definied constants for the enum
values. Additionally it has a field that is an array that holds all the values and two static methods
with name values() and valueOf(String).
We can see this if we use Reflection to print all fields in this class

for(Field f : Compass.class.getDeclaredFields())
 System.out.println(f.getName());

the output will be:

NORTH

https://riptutorial.com/ 916

EAST
SOUTH
WEST
degree
ENUM$VALUES

So we could examine enum classes with Reflection like any other class. But the Reflection API
offers three enum-specific methods.

enum check

Compass.class.isEnum();

Returns true for classes that represents an enum type.

retrieving values

Object[] values = Compass.class.getEnumConstants();

Returns an array of all enum values like Compass.values() but without the need of an instance.

enum constant check

for(Field f : Compass.class.getDeclaredFields()){
 if(f.isEnumConstant())
 System.out.println(f.getName());
}

Lists all the class fields that are enum values.

Get Class given its (fully qualified) name

Given a String containing the name of a class, it's Class object can be accessed using
Class.forName:

Class clazz = null;
try {
 clazz = Class.forName("java.lang.Integer");
} catch (ClassNotFoundException ex) {
 throw new IllegalStateException(ex);
}

Java SE 1.2

It can be specified, if the class should be initialized (second parameter of forName) and which
ClassLoader should be used (third parameter):

ClassLoader classLoader = ...
boolean initialize = ...
Class clazz = null;

https://riptutorial.com/ 917

try {
 clazz = Class.forName("java.lang.Integer", initialize, classLoader);
} catch (ClassNotFoundException ex) {
 throw new IllegalStateException(ex);
}

Call overloaded constructors using reflection

Example: Invoke different constructors by passing relevant parameters

import java.lang.reflect.*;

class NewInstanceWithReflection{
 public NewInstanceWithReflection(){
 System.out.println("Default constructor");
 }
 public NewInstanceWithReflection(String a){
 System.out.println("Constructor :String => "+a);
 }
 public static void main(String args[]) throws Exception {

 NewInstanceWithReflection object =
(NewInstanceWithReflection)Class.forName("NewInstanceWithReflection").newInstance();
 Constructor constructor = NewInstanceWithReflection.class.getDeclaredConstructor(new
Class[] {String.class});
 NewInstanceWithReflection object1 =
(NewInstanceWithReflection)constructor.newInstance(new Object[]{"StackOverFlow"});

 }
}

output:

Default constructor
Constructor :String => StackOverFlow

Explanation:

Create instance of class using Class.forName : It calls default constructor1.
Invoke getDeclaredConstructor of the class by passing type of parameters as Class array2.
After getting the constructor, create newInstance by passing parameter value as Object array3.

Misuse of Reflection API to change private and final variables

Reflection is useful when it is properly used for right purpose. By using reflection, you can access
private variables and re-initialize final variables.

Below is the code snippet, which is not recommended.

import java.lang.reflect.*;

public class ReflectionDemo{
 public static void main(String args[]){

https://riptutorial.com/ 918

 try{
 Field[] fields = A.class.getDeclaredFields();
 A a = new A();
 for (Field field:fields) {
 if(field.getName().equalsIgnoreCase("name")){
 field.setAccessible(true);
 field.set(a, "StackOverFlow");
 System.out.println("A.name="+field.get(a));
 }
 if(field.getName().equalsIgnoreCase("age")){
 field.set(a, 20);
 System.out.println("A.age="+field.get(a));
 }
 if(field.getName().equalsIgnoreCase("rep")){
 field.setAccessible(true);
 field.set(a,"New Reputation");
 System.out.println("A.rep="+field.get(a));
 }
 if(field.getName().equalsIgnoreCase("count")){
 field.set(a,25);
 System.out.println("A.count="+field.get(a));
 }
 }
 }catch(Exception err){
 err.printStackTrace();
 }
 }
}

class A {
 private String name;
 public int age;
 public final String rep;
 public static int count=0;

 public A(){
 name = "Unset";
 age = 0;
 rep = "Reputation";
 count++;
 }
}

Output:

A.name=StackOverFlow
A.age=20
A.rep=New Reputation
A.count=25

Explanation:

In normal scenario, private variables can't be accessed outside of declared class (without getter
and setter methods). final variables can't be re-assigned after initialization.

Reflection breaks both barriers can be abused to change both private and final variables as
explained above.

https://riptutorial.com/ 919

field.setAccessible(true) is the key to achieve desired functionality.

Call constructor of nested class

If you want to create an instance of an inner nested class you need to provide a class object of the
enclosing class as an extra parameter with Class#getDeclaredConstructor.

public class Enclosing{
 public class Nested{
 public Nested(String a){
 System.out.println("Constructor :String => "+a);
 }
 }
 public static void main(String args[]) throws Exception {
 Class<?> clazzEnclosing = Class.forName("Enclosing");
 Class<?> clazzNested = Class.forName("Enclosing$Nested");
 Enclosing objEnclosing = (Enclosing)clazzEnclosing.newInstance();
 Constructor<?> constructor = clazzNested.getDeclaredConstructor(new
Class[]{Enclosing.class, String.class});
 Nested objInner = (Nested)constructor.newInstance(new Object[]{objEnclosing,
"StackOverFlow"});
 }
}

If the nested class is static you will not need this enclosing instance.

Dynamic Proxies

Dynamic Proxies do not really have much to do with Reflection but they are part of the API. It's
basically a way to create a dynamic implementation of an interface. This could be helpful when
creating mockup services.
A Dynamic Proxy is an instance of an interface that is created with a so-called invocation handler
that intercepts all method calls and allows the handling of their invocation manually.

public class DynamicProxyTest {

 public interface MyInterface1{
 public void someMethod1();
 public int someMethod2(String s);
 }

 public interface MyInterface2{
 public void anotherMethod();
 }

 public static void main(String args[]) throws Exception {
 // the dynamic proxy class
 Class<?> proxyClass = Proxy.getProxyClass(
 ClassLoader.getSystemClassLoader(),
 new Class[] {MyInterface1.class, MyInterface2.class});
 // the dynamic proxy class constructor
 Constructor<?> proxyConstructor =
 proxyClass.getConstructor(InvocationHandler.class);

 // the invocation handler

https://riptutorial.com/ 920

http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html#getDeclaredConstructor%28java.lang.Class...%29

 InvocationHandler handler = new InvocationHandler(){
 // this method is invoked for every proxy method call
 // method is the invoked method, args holds the method parameters
 // it must return the method result
 @Override
 public Object invoke(Object proxy, Method method, Object[] args) throws Throwable
{
 String methodName = method.getName();

 if(methodName.equals("someMethod1")){
 System.out.println("someMethod1 was invoked!");
 return null;
 }
 if(methodName.equals("someMethod2")){
 System.out.println("someMethod2 was invoked!");
 System.out.println("Parameter: " + args[0]);
 return 42;
 }
 if(methodName.equals("anotherMethod")){
 System.out.println("anotherMethod was invoked!");
 return null;
 }
 System.out.println("Unkown method!");
 return null;
 }
 };

 // create the dynamic proxy instances
 MyInterface1 i1 = (MyInterface1) proxyConstructor.newInstance(handler);
 MyInterface2 i2 = (MyInterface2) proxyConstructor.newInstance(handler);

 // and invoke some methods
 i1.someMethod1();
 i1.someMethod2("stackoverflow");
 i2.anotherMethod();
 }
}

The result of this code is this:

someMethod1 was invoked!
someMethod2 was invoked!
Parameter: stackoverflow
anotherMethod was invoked!

Evil Java hacks with Reflection

The Reflection API could be used to change values of private and final fields even in the JDK
default library. This could be used to manipulate the behaviour of some well known classes as we
will see.

What is not possible

Lets start first with the only limitation means the only field we can't change with Reflection. That is
the Java SecurityManager. It is declared in java.lang.System as

https://riptutorial.com/ 921

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/java/lang/System.java

private static volatile SecurityManager security = null;

But it won't be listed in the System class if we run this code

for(Field f : System.class.getDeclaredFields())
 System.out.println(f);

Thats because of the fieldFilterMap in sun.reflect.Reflection that holds the map itself and the
security field in the System.class and protects them against any access with Reflection. So we
could not deactivate the SecurityManager.

Crazy Strings

Each Java String is represented by the JVM as an instance of the String class. However, in some
situations the JVM saves heap space by using the same instance for Strings that are. This
happens for string literals, and also for strings that have been "interned" by calling String.intern().
So if you have "hello" in your code multiple times it is always the same object instance.

Strings are supposed to be immutable, but it is possible to use "evil" reflection to change them.
The example below show how we can change the characters in a String by replacing its value
field.

public class CrazyStrings {
 static {
 try {
 Field f = String.class.getDeclaredField("value");
 f.setAccessible(true);
 f.set("hello", "you stink!".toCharArray());
 } catch (Exception e) {
 }
 }
 public static void main(String args[]) {
 System.out.println("hello");
 }
}

So this code will print "you stink!"

1 = 42

The same idea could be used with the Integer Class

public class CrazyMath {
 static {
 try {
 Field value = Integer.class.getDeclaredField("value");
 value.setAccessible(true);
 value.setInt(Integer.valueOf(1), 42);
 } catch (Exception e) {
 }
 }
 public static void main(String args[]) {
 System.out.println(Integer.valueOf(1));

https://riptutorial.com/ 922

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/sun/reflect/Reflection.java

 }
}

Everything is true

And according to this stackoverflow post we can use reflection to do something really evil.

public class Evil {
 static {
 try {
 Field field = Boolean.class.getField("FALSE");
 field.setAccessible(true);
 Field modifiersField = Field.class.getDeclaredField("modifiers");
 modifiersField.setAccessible(true);
 modifiersField.setInt(field, field.getModifiers() & ~Modifier.FINAL);
 field.set(null, true);
 } catch (Exception e) {
 }
 }
 public static void main(String args[]){
 System.out.format("Everything is %s", false);
 }
}

Note that what we are doing here is going to cause the JVM to behave in inexplicable ways. This
is very dangerous.

Read Reflection API online: https://riptutorial.com/java/topic/629/reflection-api

https://riptutorial.com/ 923

http://stackoverflow.com/questions/3301635/change-private-static-final-field-using-java-reflection
https://riptutorial.com/java/topic/629/reflection-api

Chapter 144: Regular Expressions

Introduction

A regular expression is a special sequence of characters that helps in matching or finding other
strings or sets of strings, using a specialized syntax held in a pattern. Java has support for regular
expression usage through the java.util.regex package. This topic is to introduce and help
developers understand more with examples on how Regular Expressions must be used in Java.

Syntax

Pattern patternName = Pattern.compile(regex);•
Matcher matcherName = patternName.matcher(textToSearch);•
matcherName.matches() //Returns true if the textToSearch exactly matches the regex•
matcherName.find() //Searches through textToSearch for first instance of a substring
matching the regex. Subsequent calls will search the remainder of the String.

•

matcherName.group(groupNum) //Returns the substring inside of a capturing group•
matcherName.group(groupName) //Returns the substring inside of a named capturing group
(Java 7+)

•

Remarks

Imports

You will need to add the following imports before you can use Regex:

import java.util.regex.Matcher
import java.util.regex.Pattern

Pitfalls

In java, a backslash is escaped with a double backslash, so a backslash in the regex string should
be inputted as a double backslash. If you need to escape a double backslash (to match a single
backslash with the regex, you need to input it as a quadruple backslash.

Important Symbols Explained

https://riptutorial.com/ 924

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Character Description

* Match the preceding character or subexpression 0 or more times

+ Match the preceding character or subexpression 1 or more times

? Match the preceding character or subexpression 0 or 1 times

Further reading

The regex topic contains more information about regular expressions.

Examples

Using capture groups

If you need to extract a part of string from the input string, we can use capture groups of regex.

For this example, we'll start with a simple phone number regex:

\d{3}-\d{3}-\d{4}

If parentheses are added to the regex, each set of parentheses is considered a capturing group. In
this case, we are using what are called numbered capture groups:

(\d{3})-(\d{3})-(\d{4})
^-----^ ^-----^ ^-----^
Group 1 Group 2 Group 3

Before we can use it in Java, we must not forget to follow the rules of Strings, escaping the
backslashes, resulting in the following pattern:

"(\\d{3})-(\\d{3})-(\\d{4})"

We first need to compile the regex pattern to make a Pattern and then we need a Matcher to match
our input string with the pattern:

Pattern phonePattern = Pattern.compile("(\\d{3})-(\\d{3})-(\\d{4})");
Matcher phoneMatcher = phonePattern.matcher("abcd800-555-1234wxyz");

Next, the Matcher needs to find the first subsequence that matches the regex:

phoneMatcher.find();

Now, using the group method, we can extract the data from the string:

https://riptutorial.com/ 925

http://www.riptutorial.com/topic/259

String number = phoneMatcher.group(0); //"800-555-1234" (Group 0 is everything the regex
matched)
String aCode = phoneMatcher.group(1); //"800"
String threeDigit = phoneMatcher.group(2); //"555"
String fourDigit = phoneMatcher.group(3); //"1234"

Note: Matcher.group() can be used in place of Matcher.group(0).

Java SE 7

Java 7 introduced named capture groups. Named capture groups function the same as numbered
capture groups (but with a name instead of a number), although there are slight syntax changes.
Using named capture groups improves readability.

We can alter the above code to use named groups:

(?<AreaCode>\d{3})-(\d{3})-(\d{4})
^----------------^ ^-----^ ^-----^
AreaCode Group 2 Group 3

To get the contents of "AreaCode", we can instead use:

String aCode = phoneMatcher.group("AreaCode"); //"800"

Using regex with custom behaviour by compiling the Pattern with flags

A Pattern can be compiled with flags, if the regex is used as a literal String, use inline modifiers:

Pattern pattern = Pattern.compile("foo.", Pattern.CASE_INSENSITIVE | Pattern.DOTALL);
pattern.matcher("FOO\n").matches(); // Is true.

/* Had the regex not been compiled case insensitively and singlelined,
 * it would fail because FOO does not match /foo/ and \n (newline)
 * does not match /./.
 */

Pattern anotherPattern = Pattern.compile("(?si)foo");
anotherPattern.matcher("FOO\n").matches(); // Is true.

"foOt".replaceAll("(?si)foo", "ca"); // Returns "cat".

Escape Characters

Generally

To use regular expression specific characters (?+| etc.) in their literal meaning they need to be
escaped. In common regular expression this is done by a backslash \. However, as it has a
special meaning in Java Strings, you have to use a double backslash \\.

These two examples will not work:

https://riptutorial.com/ 926

"???".replaceAll ("?", "!"); //java.util.regex.PatternSyntaxException
"???".replaceAll ("\?", "!"); //Invalid escape sequence

This example works

"???".replaceAll ("\\?", "!"); //"!!!"

Splitting a Pipe Delimited String

This does not return the expected result:

"a|b".split ("|"); // [a, |, b]

This returns the expected result:

"a|b".split ("\\|"); // [a, b]

Escaping backslash \

This will give an error:

"\\".matches("\\"); // PatternSyntaxException
"\\".matches("\\\"); // Syntax Error

This works:

"\\".matches("\\\\"); // true

Matching with a regex literal.

If you need to match characters that are a part of the regular expression syntax you can mark all
or part of the pattern as a regex literal.

\Q marks the beginning of the regex literal. \E marks the end of the regex literal.

// the following throws a PatternSyntaxException because of the un-closed bracket
"[123".matches("[123");

// wrapping the bracket in \Q and \E allows the pattern to match as you would expect.
"[123".matches("\\Q[\\E123"); // returns true

An easier way of doing it without having to remember the \Q and \E escape sequences is to use
Pattern.quote()

"[123".matches(Pattern.quote("[") + "123"); // returns true

Not matching a given string

https://riptutorial.com/ 927

To match something that does not contain a given string, one can use negative lookahead:

Regex syntax: (?!string-to-not-match)

Example:

//not matching "popcorn"
String regexString = "^(?!popcorn).*$";
System.out.println("[popcorn] " + ("popcorn".matches(regexString) ? "matched!" : "nope!"));
System.out.println("[unicorn] " + ("unicorn".matches(regexString) ? "matched!" : "nope!"));

Output:

[popcorn] nope!
[unicorn] matched!

Matching a backslash

If you want to match a backslash in your regular expression, you'll have to escape it.

Backslash is an escape character in regular expressions. You can use '\\' to refer to a single
backslash in a regular expression.

However, backslash is also an escape character in Java literal strings. To make a regular
expression from a string literal, you have to escape each of its backslashes. In a string literal '\\\\'
can be used to create a regular expression with '\\', which in turn can match '\'.

For example, consider matching strings like "C:\dir\myfile.txt". A regular expression ([A-Za-
z]):\\(.*) will match, and provide the drive letter as a capturing group. Note the doubled
backslash.

To express that pattern in a Java string literal, each of the backslashes in the regular expression
needs to be escaped.

 String path = "C:\\dir\\myfile.txt";
 System.out.println("Local path: " + path); // "C:\dir\myfile.txt"

 String regex = "([A-Za-z]):\\\\.*"; // Four to match one
 System.out.println("Regex: " + regex); // "([A-Za-z]):\\(.*)"

 Pattern pattern = Pattern.compile(regex);
 Matcher matcher = pattern.matcher(path);
 if (matcher.matches()) {
 System.out.println("This path is on drive " + matcher.group(1) + ":.");
 // This path is on drive C:.
 }

If you want to match two backslashes, you'll find yourself using eight in a literal string, to represent
four in the regular expression, to match two.

 String path = "\\\\myhost\\share\\myfile.txt";

https://riptutorial.com/ 928

 System.out.println("UNC path: " + path); // \\myhost\share\myfile.txt"

 String regex = "\\\\\\\\(.+?)\\\\(.*)"; // Eight to match two
 System.out.println("Regex: " + regex); // \\\\(.+?)\\(.*)

 Pattern pattern = Pattern.compile(regex);
 Matcher matcher = pattern.matcher(path);

 if (matcher.matches()) {
 System.out.println("This path is on host '" + matcher.group(1) + "'.");
 // This path is on host 'myhost'.
 }

Read Regular Expressions online: https://riptutorial.com/java/topic/135/regular-expressions

https://riptutorial.com/ 929

https://riptutorial.com/java/topic/135/regular-expressions

Chapter 145: Remote Method Invocation
(RMI)

Remarks

RMI requires 3 components: client, server and a shared remote interface. The shared remote
interface defines the client-server contract by specifying the methods a server must implement.
The interface must be visible to the server so that it can implement the methods; the interface
must be visible to the client so that it knows which methods ("services") the server provides.
Any object implementing a remote interface is destined to take the role of a server. As such, a
client-server relationship in which the server can also invoke methods in the client is in fact a
server-server relationship. This is termed callback since the server can call back the "client". With
this in mind, it is acceptable to use the designation client for the servers that function as such.

The shared remote interface is any interface extending Remote. An object that functions as a server
undergoes the following:

Implements the shared remote interface, either explicitly or implicitly by extending
UnicastRemoteObject which implements Remote.

1.

Exported, either implicitly if it extends UnicastRemoteObject, or explicitly by being passed to
UnicastRemoteObject#exportObject.

2.

Binded in a registry, either directly through Registry or indirectly through Naming. This is only
necessary for establishing initial communication since further stubs can be passed directly
through RMI.

3.

In the project setup, the client and server projects are completely unrelated, but each specifies a
shared project in its build path. The shared project contains the remote interfaces.

Examples

Client-Server: invoking methods in one JVM from another

The shared remote interface:

package remote;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface RemoteServer extends Remote {

 int stringToInt(String string) throws RemoteException;
}

The server implementing the shared remote interface:

https://riptutorial.com/ 930

https://docs.oracle.com/javase/8/docs/api/java/rmi/Remote.html
https://docs.oracle.com/javase/8/docs/api/java/rmi/server/UnicastRemoteObject.html
https://docs.oracle.com/javase/8/docs/api/java/rmi/registry/Registry.html
https://docs.oracle.com/javase/8/docs/api/java/rmi/Naming.html

package server;

import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import java.rmi.server.UnicastRemoteObject;

import remote.RemoteServer;

public class Server implements RemoteServer {

 @Override
 public int stringToInt(String string) throws RemoteException {

 System.out.println("Server received: \"" + string + "\"");
 return Integer.parseInt(string);
 }

 public static void main(String[] args) {

 try {
 Registry reg = LocateRegistry.createRegistry(Registry.REGISTRY_PORT);
 Server server = new Server();
 UnicastRemoteObject.exportObject(server, Registry.REGISTRY_PORT);
 reg.rebind("ServerName", server);
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 }
}

The client invoking a method on the server (remotely):

package client;

import java.rmi.NotBoundException;
import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;

import remote.RemoteServer;

public class Client {

 static RemoteServer server;

 public static void main(String[] args) {

 try {
 Registry reg = LocateRegistry.getRegistry();
 server = (RemoteServer) reg.lookup("ServerName");
 } catch (RemoteException | NotBoundException e) {
 e.printStackTrace();
 }

 Client client = new Client();
 client.callServer();
 }

 void callServer() {

https://riptutorial.com/ 931

 try {
 int i = server.stringToInt("120");
 System.out.println("Client received: " + i);
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 }
}

Output:

Server received: "120"
Client received: 120

Callback: invoking methods on a "client"

Overview

In this example 2 clients send information to each other through a server. One client sends the
server a number which is relayed to the second client. The second client halves the number and
sends it back to the first client through the server. The first client does the same. The server stops
the communication when the number returned to it by any of the clients is less than 10. The return
value from the server to the clients (the number it got converted to string representation) then
backtracks the process.

A login server binds itself to a registry.1.
A client looks up the login server and calls the login method with its information. Then:

The login server stores the client information. It includes the client's stub with the
callback methods.

•

The login server creates and returns a server stub ("connection" or "session") to the
client to store. It includes the server's stub with its methods including a logout method
(unused in this example).

•

2.

A client calls the server's passInt with the name of the recipient client and an int.3.
The server calls the half on the recipient client with that int. This initiates a back-and-forth
(calls and callbacks) communication until stopped by the server.

4.

The shared remote interfaces

The login server:

package callbackRemote;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface RemoteLogin extends Remote {

 RemoteConnection login(String name, RemoteClient client) throws RemoteException;
}

https://riptutorial.com/ 932

The server:

package callbackRemote;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface RemoteConnection extends Remote {

 void logout() throws RemoteException;

 String passInt(String name, int i) throws RemoteException;
}

The client:

package callbackRemote;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface RemoteClient extends Remote {

 void half(int i) throws RemoteException;
}

The implementations

The login server:

package callbackServer;

import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import java.rmi.server.UnicastRemoteObject;
import java.util.HashMap;
import java.util.Map;

import callbackRemote.RemoteClient;
import callbackRemote.RemoteConnection;
import callbackRemote.RemoteLogin;

public class LoginServer implements RemoteLogin {

 static Map<String, RemoteClient> clients = new HashMap<>();

 @Override
 public RemoteConnection login(String name, RemoteClient client) {

 Connection connection = new Connection(name, client);
 clients.put(name, client);
 System.out.println(name + " logged in");
 return connection;
 }

 public static void main(String[] args) {

https://riptutorial.com/ 933

 try {
 Registry reg = LocateRegistry.createRegistry(Registry.REGISTRY_PORT);
 LoginServer server = new LoginServer();
 UnicastRemoteObject.exportObject(server, Registry.REGISTRY_PORT);
 reg.rebind("LoginServerName", server);
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 }
}

The server:

package callbackServer;

import java.rmi.NoSuchObjectException;
import java.rmi.RemoteException;
import java.rmi.registry.Registry;
import java.rmi.server.UnicastRemoteObject;
import java.rmi.server.Unreferenced;

import callbackRemote.RemoteClient;
import callbackRemote.RemoteConnection;

public class Connection implements RemoteConnection, Unreferenced {

 RemoteClient client;
 String name;

 public Connection(String name, RemoteClient client) {

 this.client = client;
 this.name = name;
 try {
 UnicastRemoteObject.exportObject(this, Registry.REGISTRY_PORT);
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 }

 @Override
 public void unreferenced() {

 try {
 UnicastRemoteObject.unexportObject(this, true);
 } catch (NoSuchObjectException e) {
 e.printStackTrace();
 }
 }

 @Override
 public void logout() {

 try {
 UnicastRemoteObject.unexportObject(this, true);
 } catch (NoSuchObjectException e) {
 e.printStackTrace();
 }
 }

https://riptutorial.com/ 934

 @Override
 public String passInt(String recipient, int i) {

 System.out.println("Server received from " + name + ":" + i);
 if (i < 10)
 return String.valueOf(i);
 RemoteClient client = LoginServer.clients.get(recipient);
 try {
 client.half(i);
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 return String.valueOf(i);
 }
}

The client:

package callbackClient;

import java.rmi.NotBoundException;
import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import java.rmi.server.UnicastRemoteObject;

import callbackRemote.RemoteClient;
import callbackRemote.RemoteConnection;
import callbackRemote.RemoteLogin;

public class Client implements RemoteClient {

 RemoteConnection connection;
 String name, target;

 Client(String name, String target) {

 this.name = name;
 this.target = target;
 }

 public static void main(String[] args) {

 Client client = new Client(args[0], args[1]);
 try {
 Registry reg = LocateRegistry.getRegistry();
 RemoteLogin login = (RemoteLogin) reg.lookup("LoginServerName");
 UnicastRemoteObject.exportObject(client, Integer.parseInt(args[2]));
 client.connection = login.login(client.name, client);
 } catch (RemoteException | NotBoundException e) {
 e.printStackTrace();
 }

 if ("Client1".equals(client.name)) {
 try {
 client.connection.passInt(client.target, 120);
 } catch (RemoteException e) {
 e.printStackTrace();
 }

https://riptutorial.com/ 935

 }
 }

 @Override
 public void half(int i) throws RemoteException {

 String result = connection.passInt(target, i / 2);
 System.out.println(name + " received: \"" + result + "\"");
 }
}

Running the example:

Run the login server.1.
Run a client with the arguments Client2 Client1 1097.2.
Run a client with the arguments Client1 Client2 1098.3.

The outputs will appear in 3 consoles since there are 3 JVMs. here they are lumped together:

Client2 logged in
Client1 logged in
Server received from Client1:120
Server received from Client2:60
Server received from Client1:30
Server received from Client2:15
Server received from Client1:7
Client1 received: "7"
Client2 received: "15"
Client1 received: "30"
Client2 received: "60"

Simple RMI example with Client and Server implementation

This is a simple RMI example with five Java classes and two packages, server and client.

Server Package

PersonListInterface.java

public interface PersonListInterface extends Remote
{
 /**
 * This interface is used by both client and server
 * @return List of Persons
 * @throws RemoteException
 */
 ArrayList<String> getPersonList() throws RemoteException;
}

PersonListImplementation.java

https://riptutorial.com/ 936

public class PersonListImplementation
extends UnicastRemoteObject
implements PersonListInterface
{

 private static final long serialVersionUID = 1L;

 // standard constructor needs to be available
 public PersonListImplementation() throws RemoteException
 {}

 /**
 * Implementation of "PersonListInterface"
 * @throws RemoteException
 */
 @Override
 public ArrayList<String> getPersonList() throws RemoteException
 {
 ArrayList<String> personList = new ArrayList<String>();

 personList.add("Peter Pan");
 personList.add("Pippi Langstrumpf");
 // add your name here :)

 return personList;
 }
}

Server.java

public class Server {

 /**
 * Register servicer to the known public methods
 */
 private static void createServer() {
 try {
 // Register registry with standard port 1099
 LocateRegistry.createRegistry(Registry.REGISTRY_PORT);
 System.out.println("Server : Registry created.");

 // Register PersonList to registry
 Naming.rebind("PersonList", new PersonListImplementation());
 System.out.println("Server : PersonList registered");

 } catch (final IOException e) {
 e.printStackTrace();
 }
 }

 public static void main(final String[] args) {
 createServer();
 }
}

Client package

PersonListLocal.java

https://riptutorial.com/ 937

public class PersonListLocal {
 private static PersonListLocal instance;
 private PersonListInterface personList;

 /**
 * Create a singleton instance
 */
 private PersonListLocal() {
 try {
 // Lookup to the local running server with port 1099
 final Registry registry = LocateRegistry.getRegistry("localhost",
 Registry.REGISTRY_PORT);

 // Lookup to the registered "PersonList"
 personList = (PersonListInterface) registry.lookup("PersonList");
 } catch (final RemoteException e) {
 e.printStackTrace();
 } catch (final NotBoundException e) {
 e.printStackTrace();
 }
 }

 public static PersonListLocal getInstance() {
 if (instance == null) {
 instance = new PersonListLocal();
 }

 return instance;
 }

 /**
 * Returns the servers PersonList
 */
 public ArrayList<String> getPersonList() {
 if (instance != null) {
 try {
 return personList.getPersonList();
 } catch (final RemoteException e) {
 e.printStackTrace();
 }
 }

 return new ArrayList<>();
 }
 }

PersonTest.java

public class PersonTest
{
 public static void main(String[] args)
 {
 // get (local) PersonList
 ArrayList<String> personList = PersonListLocal.getInstance().getPersonList();

 // print all persons
 for(String person : personList)
 {
 System.out.println(person);
 }

https://riptutorial.com/ 938

 }
}

Test your application

Start main method of Server.java. Output:•

Server : Registry created.
Server : PersonList registered

Start main method of PersonTest.java. Output:•

Peter Pan
Pippi Langstrumpf

Read Remote Method Invocation (RMI) online: https://riptutorial.com/java/topic/171/remote-
method-invocation--rmi-

https://riptutorial.com/ 939

https://riptutorial.com/java/topic/171/remote-method-invocation--rmi-
https://riptutorial.com/java/topic/171/remote-method-invocation--rmi-

Chapter 146: Resources (on classpath)

Introduction

Java allows the retrieval of file-based resources stored inside of a JAR alongside compiled
classes. This topic focuses on loading those resources and making them available to your code.

Remarks

A resource is file-like data with a path-like name, which resides in the classpath. The most
common use of resources is bundling application images, sounds, and read-only data (such as
default configuration).

Resources can be accessed with the ClassLoader.getResource and
ClassLoader.getResourceAsStream methods. The most common use case is to have resources
placed in the same package as the class which reads them; the Class.getResource and
Class.getResourceAsStream methods serve this common use case.

The only difference between a getResource method and getResourceAsStream method is that the
former returns a URL, while the latter opens that URL and returns an InputStream.

The methods of ClassLoader accept a path-like resource name as an argument and search each
location in the ClassLoader’s classpath for an entry matching that name.

If a classpath location is a .jar file, a jar entry with the specified name is considered a match.•
If a classpath location is a directory, a relative file under that directory with the specified
name is considered a match.

•

The resource name is similar to the path portion of a relative URL. On all platforms, it uses forward
slashes (/) as directory separators. It must not start with a slash.

The corresponding methods of Class are similar, except:

The resource name may start with a slash, in which case that initial slash is removed and the
rest of the name is passed to the corresponding method of ClassLoader.

•

If the resource name does not start with a slash, it is treated as relative to the class whose
getResource or getResourceAsStream method is being called. The actual resource name
becomes package/name, where package is the name of the package to which the class
belongs, with each period replaced by a slash, and name is the original argument given to
the method.

•

For instance:

package com.example;

public class ExampleApplication {
 public void readImage()

https://riptutorial.com/ 940

http://docs.oracle.com/javase/8/docs/api/java/lang/ClassLoader.html#getResource-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/java/lang/ClassLoader.html#getResourceAsStream-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getResource-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getResourceAsStream-java.lang.String-

 throws IOException {

 URL imageURL = ExampleApplication.class.getResource("icon.png");

 // The above statement is identical to:
 // ClassLoader loader = ExampleApplication.class.getClassLoader();
 // URL imageURL = loader.getResource("com/example/icon.png");

 Image image = ImageIO.read(imageURL);
 }
}

Resources should be placed in named packages, rather than in the root of a .jar file, for the same
reason classes are placed in packages: To prevent collisions among multiple vendors. For
example, if multiple .jar files are in the classpath, and more than one of them contains a
config.properties entry in its root, calls to the getResource or getResourceAsStream methods will
return the config.properties from whichever .jar is listed first in the classpath. This is not
predictable behavior in environments where the classpath order is not under the direct control of
the application, such as Java EE.

All getResource and getResourceAsStream methods return null if the specified resource does not
exist. Since resources must be added to the application at build time, their locations should be
known when the code is being written; a failure to find a resource at runtime is usually the result of
programmer error.

Resources are read-only. There is no way to write to a resource. Novice developers often make
the mistake of assuming that since the resource is a separate physical file when developing in an
IDE (like Eclipse), it will be safe to treat it like a separate physical file in the general case.
However, this is not correct; applications are almost always distributed as archives such as .jar or
.war files, and in such cases, a resource will not be a separate file and will not be writable. (The
getFile method of the URL class is not a workaround for this; despite its name, it merely returns
the path portion of a URL, which is by no means guaranteed to be a valid filename.)

There is no safe way to list resources at runtime. Again, since the developers are responsible for
adding resource files to the application at build time, developers should already know their paths.
While there are workarounds, they are not reliable and will eventually fail.

Examples

Loading an image from a resource

To load a bundled image:

package com.example;

public class ExampleApplication {
 private Image getIcon() throws IOException {
 URL imageURL = ExampleApplication.class.getResource("icon.png");
 return ImageIO.read(imageURL);
 }
}

https://riptutorial.com/ 941

Loading default configuration

To read default configuration properties:

package com.example;

public class ExampleApplication {
 private Properties getDefaults() throws IOException {
 Properties defaults = new Properties();

 try (InputStream defaultsStream =
 ExampleApplication.class.getResourceAsStream("config.properties")) {

 defaults.load(defaultsStream);
 }

 return defaults;
 }
}

Loading same-name resource from multiple JARs

Resource with same path and name may exist in more than one JAR file on the classpath.
Common cases are resources following a convention or that are part of a packaging specification.
Examples for such resources are

META-INF/MANIFEST.MF•
META-INF/beans.xml (CDI Spec)•
ServiceLoader properties containing implementation providers•

To get access to all of these resources in different jars, one has to use a ClassLoader, which has
a method for this. The returned Enumeration can be conveniently converted to a List using a
Collections function.

Enumeration<URL> resEnum = MyClass.class.getClassLoader().getResources("META-
INF/MANIFEST.MF");
ArrayList<URL> resources = Collections.list(resEnum);

Finding and reading resources using a classloader

Resource loading in Java comprises the following steps:

Finding the Class or ClassLoader that will find the resource.1.
Finding the resource.2.
Obtaining the byte stream for the resource.3.
Reading and processing the byte stream.4.
Closing the byte stream.5.

The last three steps are typically accomplished by passing the URL to a library method or
constructor to load the resource. You will typically use a getResource method in this case. It is also
possible to read the resource data in application code. You will typically use getResourceAsStream in

https://riptutorial.com/ 942

this case.

Absolute and relative resource paths

Resources that can be loaded from the classpath are denoted by a path. The syntax of the path is
similar to a UNIX / Linux file path. It consists of simple names separated by forward slash (/)
characters. A relative path starts with a name, and an absolute path starts with a separator.

As the Classpath examples describe, a JVM's classpath defines a namespace by overlaying the
namespaces of the directories and JAR or ZIP files in the classpath. When an absolute path is
resolved, it the classloaders interpret the initial / as meaning the root of the namespace. By
contrast, a relative path may be resolved relative to any "folder" in the namespace. The folder
used will depend on the object that you use to resolve the path.

Obtaining a Class or Classloader

A resource can be located using either a Class object or a ClassLoader object. A Class object can
resolve relative paths, so you will typically use one of these if you have a (class) relative resource.
There are a variety of ways to obtain a Class object. For example:

A class literal will give you the Class object for any class that you can name in Java source
code; e.g. String.class gives you the Class object for the String type.

•

The Object.getClass() will give you the Class object for the type od any object; e.g.
"hello".getClass() is another way to get Class of the String type.

•

The Class.forName(String) method will (if necessary) dynamically load a class and return its
Class object; e.g. Class.forName("java.lang.String").

•

A ClassLoader object is typically obtained by calling getClassLoader() on a Class object. It is also
possible to get hold of the JVM's default classloader using the static
ClassLoader.getSystemClassLoader() method.

The get methods

Once you have a Class or ClassLoader instance, you can find a resource, using one of the following
methods:

Methods Description

ClassLoader.getResource(path)
ClassLoader.getResources(path)

Returns a URL which represents the location of the
resource with the given path.

ClassLoader.getResources(path)
Class.getResources(path)

Returns an Enumeration<URL> giving the URLs which
can be used to locate the foo.bar resource; see
below.

https://riptutorial.com/ 943

Methods Description

ClassLoader.getResourceAsStream(path)
Class.getResourceStream(path)

Returns an InputStream from which you can read the
contents of the foo.bar resource as a sequence of
bytes.

Notes:

The main difference between the ClassLoader and Class versions of the methods is in the way
that relative paths are interpreted.

The Class methods resolve a relative path in the "folder" that corresponds to the
classes package.

○

The ClassLoader methods treat relative paths as if they were absolute; i.e. the resolve
them in the "root folder" of the classpath namespace.

○

•

If the requested resource (or resources) cannot be found, the getResource and
getResourceAsStreammethods returnnull, and thegetResourcesmethods return an empty
Enumeration`.

•

The URLs returned will be resolvable using URL.toStream(). They could be file: URLs or
other conventional URLs, but if the resource resides in a JAR file, they will be jar: URLs that
identify the JAR file and a specific resource within it.

•

If your code uses a getResourceAsStream method (or URL.toStream()) to obtain an InputStream,
it is responsible for closing the stream object. Failure to close the stream could lead to a
resource leak.

•

Read Resources (on classpath) online: https://riptutorial.com/java/topic/2433/resources--on-
classpath-

https://riptutorial.com/ 944

https://riptutorial.com/java/topic/2433/resources--on-classpath-
https://riptutorial.com/java/topic/2433/resources--on-classpath-

Chapter 147: RSA Encryption

Examples

An example using a hybrid cryptosystem consisting of OAEP and GCM

The following example encrypts data by using a hybrid cryptosystem consisting of AES GCM and
OAEP, using their default parameter sizes and an AES key size of 128 bits.

OAEP is less vulnerable to padding oracle attacks than PKCS#1 v1.5 padding. GCM is also
protected against padding oracle attacks.

Decryption can be performed by first retrieving the length of the encapsulated key and then by
retrieving the encapsulated key. The encapsulated key can then be decrypted using the RSA
private key that forms a key pair with the public key. After that the AES/GCM encrypted ciphertext
can be decrypted to the original plaintext.

The protocol consists of:

a length field for the wrapped key (RSAPrivateKey misses a getKeySize() method);1.
the wrapped/encapsulated key, of the same size as the RSA key size in bytes;2.
the GCM ciphertext and 128 bit authentication tag (automatically added by Java).3.

Notes:

To correctly use this code you should supply an RSA key of at least 2048 bits, bigger is
better (but slower, especially during decryption);

•

To use AES-256 you should install the unlimited cryptography policy files first;•
Instead creating your own protocol you might want to use a container format such as the
Cryptographic Message Syntax (CMS / PKCS#7) or PGP instead.

•

So here's the example:

/**
 * Encrypts the data using a hybrid crypto-system which uses GCM to encrypt the data and OAEP
to encrypt the AES key.
 * The key size of the AES encryption will be 128 bit.
 * All the default parameter choices are used for OAEP and GCM.
 *
 * @param publicKey the RSA public key used to wrap the AES key
 * @param plaintext the plaintext to be encrypted, not altered
 * @return the ciphertext
 * @throws InvalidKeyException if the key is not an RSA public key
 * @throws NullPointerException if the plaintext is null
 */
public static byte[] encryptData(PublicKey publicKey, byte[] plaintext)
 throws InvalidKeyException, NullPointerException {

 // --- create the RSA OAEP cipher ---

https://riptutorial.com/ 945

https://en.wikipedia.org/wiki/Hybrid_cryptosystem
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

 Cipher oaep;
 try {
 // SHA-1 is the default and not vulnerable in this setting
 // use OAEPParameterSpec to configure more than just the hash
 oaep = Cipher.getInstance("RSA/ECB/OAEPwithSHA1andMGF1Padding");
 } catch (NoSuchAlgorithmException e) {
 throw new RuntimeException(
 "Runtime doesn't have support for RSA cipher (mandatory algorithm for
runtimes)", e);
 } catch (NoSuchPaddingException e) {
 throw new RuntimeException(
 "Runtime doesn't have support for OAEP padding (present in the standard Java
runtime sinze XX)", e);
 }
 oaep.init(Cipher.WRAP_MODE, publicKey);

 // --- wrap the plaintext in a buffer

 // will throw NullPointerException if plaintext is null
 ByteBuffer plaintextBuffer = ByteBuffer.wrap(plaintext);

 // --- generate a new AES secret key ---

 KeyGenerator aesKeyGenerator;
 try {
 aesKeyGenerator = KeyGenerator.getInstance("AES");
 } catch (NoSuchAlgorithmException e) {
 throw new RuntimeException(
 "Runtime doesn't have support for AES key generator (mandatory algorithm for
runtimes)", e);
 }
 // for AES-192 and 256 make sure you've got the rights (install the
 // Unlimited Crypto Policy files)
 aesKeyGenerator.init(128);
 SecretKey aesKey = aesKeyGenerator.generateKey();

 // --- wrap the new AES secret key ---

 byte[] wrappedKey;
 try {
 wrappedKey = oaep.wrap(aesKey);
 } catch (IllegalBlockSizeException e) {
 throw new RuntimeException(
 "AES key should always fit OAEP with normal sized RSA key", e);
 }

 // --- setup the AES GCM cipher mode ---

 Cipher aesGCM;
 try {
 aesGCM = Cipher.getInstance("AES/GCM/Nopadding");
 // we can get away with a zero nonce since the key is randomly generated
 // 128 bits is the recommended (maximum) value for the tag size
 // 12 bytes (96 bits) is the default nonce size for GCM mode encryption
 GCMParameterSpec staticParameterSpec = new GCMParameterSpec(128, new byte[12]);
 aesGCM.init(Cipher.ENCRYPT_MODE, aesKey, staticParameterSpec);
 } catch (NoSuchAlgorithmException e) {
 throw new RuntimeException(
 "Runtime doesn't have support for AES cipher (mandatory algorithm for
runtimes)", e);
 } catch (NoSuchPaddingException e) {

https://riptutorial.com/ 946

 throw new RuntimeException(
 "Runtime doesn't have support for GCM (present in the standard Java runtime
sinze XX)", e);
 } catch (InvalidAlgorithmParameterException e) {
 throw new RuntimeException(
 "IvParameterSpec not accepted by this implementation of GCM", e);
 }

 // --- create a buffer of the right size for our own protocol ---

 ByteBuffer ciphertextBuffer = ByteBuffer.allocate(
 Short.BYTES
 + oaep.getOutputSize(128 / Byte.SIZE)
 + aesGCM.getOutputSize(plaintext.length));

 // - element 1: make sure that we know the size of the wrapped key
 ciphertextBuffer.putShort((short) wrappedKey.length);

 // - element 2: put in the wrapped key
 ciphertextBuffer.put(wrappedKey);

 // - element 3: GCM encrypt into buffer
 try {
 aesGCM.doFinal(plaintextBuffer, ciphertextBuffer);
 } catch (ShortBufferException | IllegalBlockSizeException | BadPaddingException e) {
 throw new RuntimeException("Cryptographic exception, AES/GCM encryption should not
fail here", e);
 }

 return ciphertextBuffer.array();
}

Of course, encryption is not very useful without decryption. Note that this will return minimal
information if decryption fails.

/**
 * Decrypts the data using a hybrid crypto-system which uses GCM to encrypt
 * the data and OAEP to encrypt the AES key. All the default parameter
 * choices are used for OAEP and GCM.
 *
 * @param privateKey
 * the RSA private key used to unwrap the AES key
 * @param ciphertext
 * the ciphertext to be encrypted, not altered
 * @return the plaintext
 * @throws InvalidKeyException
 * if the key is not an RSA private key
 * @throws NullPointerException
 * if the ciphertext is null
 * @throws IllegalArgumentException
 * with the message "Invalid ciphertext" if the ciphertext is invalid (minimize
information leakage)
 */
public static byte[] decryptData(PrivateKey privateKey, byte[] ciphertext)
 throws InvalidKeyException, NullPointerException {

 // --- create the RSA OAEP cipher ---

 Cipher oaep;
 try {

https://riptutorial.com/ 947

 // SHA-1 is the default and not vulnerable in this setting
 // use OAEPParameterSpec to configure more than just the hash
 oaep = Cipher.getInstance("RSA/ECB/OAEPwithSHA1andMGF1Padding");
 } catch (NoSuchAlgorithmException e) {
 throw new RuntimeException(
 "Runtime doesn't have support for RSA cipher (mandatory algorithm for
runtimes)",
 e);
 } catch (NoSuchPaddingException e) {
 throw new RuntimeException(
 "Runtime doesn't have support for OAEP padding (present in the standard Java
runtime sinze XX)",
 e);
 }
 oaep.init(Cipher.UNWRAP_MODE, privateKey);

 // --- wrap the ciphertext in a buffer

 // will throw NullPointerException if ciphertext is null
 ByteBuffer ciphertextBuffer = ByteBuffer.wrap(ciphertext);

 // sanity check #1
 if (ciphertextBuffer.remaining() < 2) {
 throw new IllegalArgumentException("Invalid ciphertext");
 }
 // - element 1: the length of the encapsulated key
 int wrappedKeySize = ciphertextBuffer.getShort() & 0xFFFF;
 // sanity check #2
 if (ciphertextBuffer.remaining() < wrappedKeySize + 128 / Byte.SIZE) {
 throw new IllegalArgumentException("Invalid ciphertext");
 }

 // --- unwrap the AES secret key ---

 byte[] wrappedKey = new byte[wrappedKeySize];
 // - element 2: the encapsulated key
 ciphertextBuffer.get(wrappedKey);
 SecretKey aesKey;
 try {
 aesKey = (SecretKey) oaep.unwrap(wrappedKey, "AES",
 Cipher.SECRET_KEY);
 } catch (NoSuchAlgorithmException e) {
 throw new RuntimeException(
 "Runtime doesn't have support for AES cipher (mandatory algorithm for
runtimes)",
 e);
 } catch (InvalidKeyException e) {
 throw new RuntimeException(
 "Invalid ciphertext");
 }

 // --- setup the AES GCM cipher mode ---

 Cipher aesGCM;
 try {
 aesGCM = Cipher.getInstance("AES/GCM/Nopadding");
 // we can get away with a zero nonce since the key is randomly
 // generated
 // 128 bits is the recommended (maximum) value for the tag size
 // 12 bytes (96 bits) is the default nonce size for GCM mode
 // encryption

https://riptutorial.com/ 948

 GCMParameterSpec staticParameterSpec = new GCMParameterSpec(128,
 new byte[12]);
 aesGCM.init(Cipher.DECRYPT_MODE, aesKey, staticParameterSpec);
 } catch (NoSuchAlgorithmException e) {
 throw new RuntimeException(
 "Runtime doesn't have support for AES cipher (mandatory algorithm for
runtimes)",
 e);
 } catch (NoSuchPaddingException e) {
 throw new RuntimeException(
 "Runtime doesn't have support for GCM (present in the standard Java runtime
sinze XX)",
 e);
 } catch (InvalidAlgorithmParameterException e) {
 throw new RuntimeException(
 "IvParameterSpec not accepted by this implementation of GCM",
 e);
 }

 // --- create a buffer of the right size for our own protocol ---

 ByteBuffer plaintextBuffer = ByteBuffer.allocate(aesGCM
 .getOutputSize(ciphertextBuffer.remaining()));

 // - element 3: GCM ciphertext
 try {
 aesGCM.doFinal(ciphertextBuffer, plaintextBuffer);
 } catch (ShortBufferException | IllegalBlockSizeException
 | BadPaddingException e) {
 throw new RuntimeException(
 "Invalid ciphertext");
 }

 return plaintextBuffer.array();
}

Read RSA Encryption online: https://riptutorial.com/java/topic/1889/rsa-encryption

https://riptutorial.com/ 949

https://riptutorial.com/java/topic/1889/rsa-encryption

Chapter 148: Runtime Commands

Examples

Adding shutdown hooks

Sometimes you need a piece of code to execute when the program stops, such as releasing
system resources that you open. You can make a thread run when the program stops with the
addShutdownHook method:

Runtime.getRuntime().addShutdownHook(new Thread(() -> {
 ImportantStuff.someImportantIOStream.close();
}));

Read Runtime Commands online: https://riptutorial.com/java/topic/7304/runtime-commands

https://riptutorial.com/ 950

https://riptutorial.com/java/topic/7304/runtime-commands

Chapter 149: Scanner

Syntax

Scanner scanner = new Scanner(Source source);•
Scanner scanner = new Scanner(System.in);•

Parameters

Parameter Details

Source Source could be either one of String, File or any kind of InputStream

Remarks

The Scanner class was introduced in Java 5. The reset() method was added in Java 6, and a
couple of new constructors were added in Java 7 for interoperability with the (then) new Path
interface.

Examples

Reading system input using Scanner

Scanner scanner = new Scanner(System.in); //Scanner obj to read System input
String inputTaken = new String();
while (true) {
 String input = scanner.nextLine(); // reading one line of input
 if (input.matches("\\s+")) // if it matches spaces/tabs, stop reading
 break;
 inputTaken += input + " ";
}
System.out.println(inputTaken);

The scanner object is initialized to read input from keyboard. So for the below input from keyboar,
it'll produce the output as Reading from keyboard

Reading
from
keyboard
 //space

Reading file input using Scanner

Scanner scanner = null;
try {

https://riptutorial.com/ 951

 scanner = new Scanner(new File("Names.txt"));
 while (scanner.hasNext()) {
 System.out.println(scanner.nextLine());
 }
} catch (Exception e) {
 System.err.println("Exception occurred!");
} finally {
 if (scanner != null)
 scanner.close();
}

Here a Scanner object is created by passing a File object containing the name of a text file as
input. This text file will be opened by the File object and read in by the scanner object in the
following lines. scanner.hasNext() will check to see if there is a next line of data in the text file.
Combining that with a while loop will allow you to iterate through every line of data in the Names.txt
file. To retrieve the data itself, we can use methods such as nextLine(),nextInt(),nextBoolean(),
etc. In the example above, scanner.nextLine()is used. nextLine() refers to the following line in a
text file, and combining it with a scanner object allows you to print the contents of the line. To close
a scanner object, you would use .close().

Using try with resources (from Java 7 onwards), the above mentioned code can be written
elegantly as below.

try (Scanner scanner = new Scanner(new File("Names.txt"))) {
 while (scanner.hasNext()) {
 System.out.println(scanner.nextLine());
 }
} catch (Exception e) {
 System.err.println("Exception occurred!");
}

Read the entire input as a String using Scanner

You can use Scanner to read all of the text in the input as a String, by using \Z (entire input) as the
delimiter. For example, this can be used to read all text in a text file in one line:

String content = new Scanner(new File("filename")).useDelimiter("\\Z").next();
System.out.println(content);

Remember that you'll have to close the Scanner, as well as catch the IoException this may throw,
as described in the example Reading file input using Scanner.

Using custom delimiters

You can use custom delimiters (regular expressions) with Scanner, with .useDelimiter(","), to
determine how the input is read. This works similarly to String.split(...). For example, you can
use Scanner to read from a list of comma separated values in a String:

Scanner scanner = null;
try{
 scanner = new Scanner("i,like,unicorns").useDelimiter(",");;

https://riptutorial.com/ 952

http://www.riptutorial.com/java/example/610/reading-file-input-using-scanner

 while(scanner.hasNext()){
 System.out.println(scanner.next());
 }
}catch(Exception e){
 e.printStackTrace();
}finally{
 if (scanner != null)
 scanner.close();
}

This will allow you to read every element in the input individually. Note that you should not use this
to parse CSV data, instead, use a proper CSV parser library, see CSV parser for Java for other
possibilities.

General Pattern that does most commonly asked about tasks

The following is how to properly use the java.util.Scanner class to interactively read user input
from System.in correctly(sometimes referred to as stdin, especially in C, C++ and other languages
as well as in Unix and Linux). It idiomatically demonstrates the most common things that are
requested to be done.

package com.stackoverflow.scanner;

import javax.annotation.Nonnull;
import java.math.BigInteger;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.*;
import java.util.regex.Pattern;

import static java.lang.String.format;

public class ScannerExample
{
 private static final Set<String> EXIT_COMMANDS;
 private static final Set<String> HELP_COMMANDS;
 private static final Pattern DATE_PATTERN;
 private static final String HELP_MESSAGE;

 static
 {
 final SortedSet<String> ecmds = new TreeSet<String>(String.CASE_INSENSITIVE_ORDER);
 ecmds.addAll(Arrays.asList("exit", "done", "quit", "end", "fino"));
 EXIT_COMMANDS = Collections.unmodifiableSortedSet(ecmds);
 final SortedSet<String> hcmds = new TreeSet<String>(String.CASE_INSENSITIVE_ORDER);
 hcmds.addAll(Arrays.asList("help", "helpi", "?"));
 HELP_COMMANDS = Collections.unmodifiableSet(hcmds);
 DATE_PATTERN = Pattern.compile("\\d{4}([-\\/])\\d{2}\\1\\d{2}"); //
http://regex101.com/r/xB8dR3/1
 HELP_MESSAGE = format("Please enter some data or enter one of the following commands
to exit %s", EXIT_COMMANDS);
 }

 /**
 * Using exceptions to control execution flow is always bad.
 * That is why this is encapsulated in a method, this is done this
 * way specifically so as not to introduce any external libraries

https://riptutorial.com/ 953

http://stackoverflow.com/questions/101100/csv-api-for-java

 * so that this is a completely self contained example.
 * @param s possible url
 * @return true if s represents a valid url, false otherwise
 */
 private static boolean isValidURL(@Nonnull final String s)
 {
 try { new URL(s); return true; }
 catch (final MalformedURLException e) { return false; }
 }

 private static void output(@Nonnull final String format, @Nonnull final Object... args)
 {
 System.out.println(format(format, args));
 }

 public static void main(final String[] args)
 {
 final Scanner sis = new Scanner(System.in);
 output(HELP_MESSAGE);
 while (sis.hasNext())
 {
 if (sis.hasNextInt())
 {
 final int next = sis.nextInt();
 output("You entered an Integer = %d", next);
 }
 else if (sis.hasNextLong())
 {
 final long next = sis.nextLong();
 output("You entered a Long = %d", next);
 }
 else if (sis.hasNextDouble())
 {
 final double next = sis.nextDouble();
 output("You entered a Double = %f", next);
 }
 else if (sis.hasNext("\\d+"))
 {
 final BigInteger next = sis.nextBigInteger();
 output("You entered a BigInteger = %s", next);
 }
 else if (sis.hasNextBoolean())
 {
 final boolean next = sis.nextBoolean();
 output("You entered a Boolean representation = %s", next);
 }
 else if (sis.hasNext(DATE_PATTERN))
 {
 final String next = sis.next(DATE_PATTERN);
 output("You entered a Date representation = %s", next);
 }
 else // unclassified
 {
 final String next = sis.next();
 if (isValidURL(next))
 {
 output("You entered a valid URL = %s", next);
 }
 else
 {
 if (EXIT_COMMANDS.contains(next))

https://riptutorial.com/ 954

 {
 output("Exit command %s issued, exiting!", next);
 break;
 }
 else if (HELP_COMMANDS.contains(next)) { output(HELP_MESSAGE); }
 else { output("You entered an unclassified String = %s", next); }
 }
 }
 }
 /*
 This will close the underlying Readable, in this case System.in, and free those
resources.
 You will not be to read from System.in anymore after this you call .close().
 If you wanted to use System.in for something else, then don't close the Scanner.
 */
 sis.close();
 System.exit(0);
 }
}

Read an int from the command line

import java.util.Scanner;

Scanner s = new Scanner(System.in);
int number = s.nextInt();

If you want to read an int from the command line, just use this snippet. First of all, you have to
create a Scanner object, that listens to System.in, which is by default the Command Line, when
you start the program from the command line. After that, with the help of the Scanner object, you
read the first int that the user passes into the command line and store it in the variable number.
Now you can do whatever you want with that stored int.

Carefully Closing a Scanner

it can happen that you use a scanner with the System.in as parameter for the constructor, then
you need to be aware that closing the scanner will close the InputStream too giving as next that
every try to read the input on that (Or any other scanner object) will throw an
java.util.NoSuchElementException or an java.lang.IllegalStateException

example:

 Scanner sc1 = new Scanner(System.in);
 Scanner sc2 = new Scanner(System.in);
 int x1 = sc1.nextInt();
 sc1.close();
 // java.util.NoSuchElementException
 int x2 = sc2.nextInt();
 // java.lang.IllegalStateException
 x2 = sc1.nextInt();

Read Scanner online: https://riptutorial.com/java/topic/551/scanner

https://riptutorial.com/ 955

https://riptutorial.com/java/topic/551/scanner

Chapter 150: Secure objects

Syntax

SealedObject sealedObject = new SealedObject(obj, cipher);•
SignedObject signedObject = new SignedObject(obj, signingKey, signingEngine);•

Examples

SealedObject (javax.crypto.SealedObject)

This class enables a programmer to create an object and protect its confidentiality with a
cryptographic algorithm.

Given any Serializable object, one can create a SealedObject that encapsulates the original
object, in serialized format (i.e., a "deep copy"), and seals (encrypts) its serialized contents, using
a cryptographic algorithm such as AES, DES, to protect its confidentiality. The encrypted content
can later be decrypted (with the corresponding algorithm using the correct decryption key) and de-
serialized, yielding the original object.

Serializable obj = new String("John");
// Generate key
KeyGenerator kgen = KeyGenerator.getInstance("AES");
kgen.init(128);
SecretKey aesKey = kgen.generateKey();
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, aesKey);
SealedObject sealedObject = new SealedObject(obj, cipher);
System.out.println("sealedObject-" + sealedObject);
System.out.println("sealedObject Data-" + sealedObject.getObject(aesKey));

SignedObject (java.security.SignedObject)

https://riptutorial.com/ 956

http://i.stack.imgur.com/Pz2NR.png

SignedObject is a class for the purpose of creating authentic runtime objects whose integrity
cannot be compromised without being detected.

More specifically, a SignedObject contains another Serializable object, the (to-be-)signed object
and its signature.

//Create a key
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA", "SUN");
SecureRandom random = SecureRandom.getInstance("SHA1PRNG", "SUN");
keyGen.initialize(1024, random);
// create a private key
PrivateKey signingKey = keyGen.generateKeyPair().getPrivate();
// create a Signature
Signature signingEngine = Signature.getInstance("DSA");
signingEngine.initSign(signingKey);
// create a simple object
Serializable obj = new String("John");
// sign our object
SignedObject signedObject = new SignedObject(obj, signingKey, signingEngine);

System.out.println("signedObject-" + signedObject);
System.out.println("signedObject Data-" + signedObject.getObject());

Read Secure objects online: https://riptutorial.com/java/topic/5528/secure-objects

https://riptutorial.com/ 957

http://i.stack.imgur.com/nSE3Z.png
https://riptutorial.com/java/topic/5528/secure-objects

Chapter 151: Security & Cryptography

Examples

Compute Cryptographic Hashes

To compute the hashes of relatively small blocks of data using different algorithms:

final MessageDigest md5 = MessageDigest.getInstance("MD5");
final MessageDigest sha1 = MessageDigest.getInstance("SHA-1");
final MessageDigest sha256 = MessageDigest.getInstance("SHA-256");

final byte[] data = "FOO BAR".getBytes();

System.out.println("MD5 hash: " + DatatypeConverter.printHexBinary(md5.digest(data)));
System.out.println("SHA1 hash: " + DatatypeConverter.printHexBinary(sha1.digest(data)));
System.out.println("SHA256 hash: " + DatatypeConverter.printHexBinary(sha256.digest(data)));

Produces this output:

MD5 hash: E99E768582F6DD5A3BA2D9C849DF736E
SHA1 hash: 0135FAA6323685BA8A8FF8D3F955F0C36949D8FB
SHA256 hash: 8D35C97BCD902B96D1B551741BBE8A7F50BB5A690B4D0225482EAA63DBFB9DED

Additional algorithms may be available depending on your implementation of the Java platform.

Generate Cryptographically Random Data

To generate samples of cryptographically random data:

final byte[] sample = new byte[16];

new SecureRandom().nextBytes(sample);

System.out.println("Sample: " + DatatypeConverter.printHexBinary(sample));

Produces output similar to:

Sample: E4F14CEA2384F70B706B53A6DF8C5EFE

Note that the call to nextBytes() may block while entropy is gathered depending on the algorithm
being used.

To specify the algorithm and provider:

final byte[] sample = new byte[16];
final SecureRandom randomness = SecureRandom.getInstance("SHA1PRNG", "SUN");

randomness.nextBytes(sample);

https://riptutorial.com/ 958

System.out.println("Provider: " + randomness.getProvider());
System.out.println("Algorithm: " + randomness.getAlgorithm());
System.out.println("Sample: " + DatatypeConverter.printHexBinary(sample));

Produces output similar to:

Provider: SUN version 1.8
Algorithm: SHA1PRNG
Sample: C80C44BAEB352FD29FBBE20489E4C0B9

Generate Public / Private Key Pairs

To generate key pairs using different algorithms and key sizes:

final KeyPairGenerator dhGenerator = KeyPairGenerator.getInstance("DiffieHellman");
final KeyPairGenerator dsaGenerator = KeyPairGenerator.getInstance("DSA");
final KeyPairGenerator rsaGenerator = KeyPairGenerator.getInstance("RSA");

dhGenerator.initialize(1024);
dsaGenerator.initialize(1024);
rsaGenerator.initialize(2048);

final KeyPair dhPair = dhGenerator.generateKeyPair();
final KeyPair dsaPair = dsaGenerator.generateKeyPair();
final KeyPair rsaPair = rsaGenerator.generateKeyPair();

Additional algorithms and key sizes may be available on your implementation of the Java platform.

To specify a source of randomness to use when generating the keys:

final KeyPairGenerator generator = KeyPairGenerator.getInstance("RSA");

generator.initialize(2048, SecureRandom.getInstance("SHA1PRNG", "SUN"));

final KeyPair pair = generator.generateKeyPair();

Compute and Verify Digital Signatures

To compute a signature:

final PrivateKey privateKey = keyPair.getPrivate();
final byte[] data = "FOO BAR".getBytes();
final Signature signer = Signature.getInstance("SHA1withRSA");

signer.initSign(privateKey);
signer.update(data);

final byte[] signature = signer.sign();

Note that the signature algorithm must be compatible with the algorithm used to generate the key
pair.

https://riptutorial.com/ 959

To verify a signature:

final PublicKey publicKey = keyPair.getPublic();
final Signature verifier = Signature.getInstance("SHA1withRSA");

verifier.initVerify(publicKey);
verifier.update(data);

System.out.println("Signature: " + verifier.verify(signature));

Produces this output:

Signature: true

Encrypt and Decrypt Data with Public / Private Keys

To encrypt data with a public key:

final Cipher rsa = Cipher.getInstance("RSA");

rsa.init(Cipher.ENCRYPT_MODE, keyPair.getPublic());
rsa.update(message.getBytes());
final byte[] result = rsa.doFinal();

System.out.println("Message: " + message);
System.out.println("Encrypted: " + DatatypeConverter.printHexBinary(result));

Produces output similar to:

Message: Hello
Encrypted: 5641FBB9558ECFA9ED...

Note that when creating the Cipher object, you have to specify a transformation that is compatible
with the type of key being used. (See JCA Standard Algorithm Names for a list of supported
transformations.). For RSA encryption data message.getBytes() length must be smaller than the key
size. See this SO Answer for detail.

To decrypt the data:

final Cipher rsa = Cipher.getInstance("RSA");

rsa.init(Cipher.DECRYPT_MODE, keyPair.getPrivate());
rsa.update(cipherText);
final String result = new String(rsa.doFinal());

System.out.println("Decrypted: " + result);

Produces the following output:

Decrypted: Hello

https://riptutorial.com/ 960

https://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#Cipher
http://stackoverflow.com/a/5868456/669265

Read Security & Cryptography online: https://riptutorial.com/java/topic/7529/security---
cryptography

https://riptutorial.com/ 961

https://riptutorial.com/java/topic/7529/security---cryptography
https://riptutorial.com/java/topic/7529/security---cryptography

Chapter 152: Security & Cryptography

Introduction

Security practices in Java can be separated into two broad, vaguely defined categories; Java
platform security, and secure Java programming.

Java platform security practices deal with managing the security and integrity of the JVM. It
includes such topics as managing JCE providers and security policies.

Secure Java programming practices concern the best ways to write secure Java programs. It
includes such topics as using random numbers and cryptography, and preventing vulnerabilities.

Remarks

While examples should be clearly made, some topics that must be covered are:

The JCE provider concept/structure1.
List item2.

Examples

The JCE

The Java Cryptography Extension (JCE) is a framework built into the JVM to allow developers to
easily and securely use cryptography in their programs. It does this by providing a simple, portable
interface to programmers, while using a system of JCE Providers to securely implement the
underlying cryptographic operations.

Keys and Key Management

While the JCE secures cryptographic operations and key generation, it is up to the developer to
actually manage their keys. More information needs to be provided here.

One commonly-accepted best practice for handling keys at runtime is to store them only as byte
arrays, and never as strings. This is because Java strings are immutable, and cannot be manually
"cleared" or "zeroed out" in memory; while a reference to a string can be removed, the exact string
will remain in memory until its segment of memory is garbage-collected and reused. An attacker
would have a large window in which they could dump the program's memory and easily find the
key. Contrarily, byte arrays are mutable, and can have their contents overwritten in place; it is a
good idea to 'zero-out' your keys as soon as you no longer need them.

Common Java vulnerabilities

Needs content

https://riptutorial.com/ 962

Networking Concerns

Needs content

Randomness and You

Needs content

For most applications, the java.utils.Random class is a perfectly fine source of "random" data. If
you need to choose a random element from an array, or generate a random string, or create a
temporary "unique" identifier, you should probably use Random.

However, many cryptographic systems rely on randomness for their security, and the randomness
provided by Random simply isn't of high enough quality. For any cryptographic operation that
requires a random input, you should use SecureRandom instead.

Hashing and Validation

More information needed.

A cryptographic hash function is a member of a class of functions with three vital properties;
consistency, uniqueness, and irreversibility.

Consistency: Given the same data, a hash function will always return the same value. That is, if
X = Y, f(x) will always equal f(y) for hash function f.

Uniqueness: No two inputs to a hash function will ever result in the same output. That is, if X != Y,
f(x) != f(y), for any values of X and Y.

Irreversibility: It is impractically difficult, if not impossible, to "reverse" a hash function. That is,
given only f(X), there should be no way of finding the original X short of putting every possible
value of X through the function f (brute-force). There should be no function f1 such that f1(f(X)) =
X.

Many functions lack at least one of these attributes. For example, MD5 and SHA1 are known to
have collisions, i.e. two inputs that have the same output, so they lack uniqueness. Some
functions that are currently believed to be secure are SHA-256 and SHA-512.

Read Security & Cryptography online: https://riptutorial.com/java/topic/9371/security---
cryptography

https://riptutorial.com/ 963

https://riptutorial.com/java/topic/9371/security---cryptography
https://riptutorial.com/java/topic/9371/security---cryptography

Chapter 153: SecurityManager

Examples

Enabling the SecurityManager

Java Virtual Machines (JVMs) can be run with a SecurityManager installed. The SecurityManager
governs what the code running in the JVM is allowed to do, based on factors such as where the
code was loaded from and what certificates were used to sign the code.

The SecurityManager can be installed by setting the java.security.manager system property on the
command line when starting the JVM:

java -Djava.security.manager <main class name>

or programatically from within Java code:

System.setSecurityManager(new SecurityManager())

The standard Java SecurityManager grants permissions on the basis of a Policy, which is defined
in a policy file. If no policy file is specified, the default policy file under
$JAVA_HOME/lib/security/java.policy will be used.

Sandboxing classes loaded by a ClassLoader

The ClassLoader needs to provide a ProtectionDomain identifying the source of the code:

public class PluginClassLoader extends ClassLoader {
 private final ClassProvider provider;

 private final ProtectionDomain pd;

 public PluginClassLoader(ClassProvider provider) {
 this.provider = provider;
 Permissions permissions = new Permissions();

 this.pd = new ProtectionDomain(provider.getCodeSource(), permissions, this, null);
 }

 @Override
 protected Class<?> findClass(String name) throws ClassNotFoundException {
 byte[] classDef = provider.getClass(name);
 Class<?> clazz = defineClass(name, classDef, 0, classDef.length, pd);
 return clazz;
 }
}

By overriding findClass rather than loadClass the delegational model is preserved, and the
PluginClassLoader will first query the system and parent classloader for class definitions.

https://riptutorial.com/ 964

Create a Policy:

public class PluginSecurityPolicy extends Policy {
 private final Permissions appPermissions = new Permissions();
 private final Permissions pluginPermissions = new Permissions();

 public PluginSecurityPolicy() {
 // amend this as appropriate
 appPermissions.add(new AllPermission());
 // add any permissions plugins should have to pluginPermissions
 }

 @Override
 public Provider getProvider() {
 return super.getProvider();
 }

 @Override
 public String getType() {
 return super.getType();
 }

 @Override
 public Parameters getParameters() {
 return super.getParameters();
 }

 @Override
 public PermissionCollection getPermissions(CodeSource codesource) {
 return new Permissions();
 }

 @Override
 public PermissionCollection getPermissions(ProtectionDomain domain) {
 return isPlugin(domain)?pluginPermissions:appPermissions;
 }

 private boolean isPlugin(ProtectionDomain pd){
 return pd.getClassLoader() instanceof PluginClassLoader;
 }

}

Finally, set the policy and a SecurityManager (default implementation is fine):

 Policy.setPolicy(new PluginSecurityPolicy());
 System.setSecurityManager(new SecurityManager());

Implementing policy deny rules

It is occasionally desirable to deny a certain Permission to some ProtectionDomain, regardless of
any other permissions that domain accrues. This example demonstrates just one of all the
possible approaches for satisfying this kind of requirement. It introduces a "negative" permission
class, along with a wrapper that enables the default Policy to be reused as a repository of such
permissions.

https://riptutorial.com/ 965

Notes:

The standard policy file syntax and mechanism for permission assignment in general remain
unaffected. This means that deny rules within policy files are still expressed as grants.

•

The policy wrapper is meant to specifically encapsulate the default file-backed Policy
(assumed to be com.sun.security.provider.PolicyFile).

•

Denied permissions are only processed as such at the policy level. If statically assigned to a
domain, they will by default be treated by that domain as ordinary "positive" permissions.

•

The DeniedPermission class

package com.example;

import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Modifier;
import java.security.BasicPermission;
import java.security.Permission;
import java.security.UnresolvedPermission;
import java.text.MessageFormat;

/**
 * A representation of a "negative" privilege.
 * <p>
 * A <code>DeniedPermission</code>, when "granted" (to some <code>ProtectionDomain</code>
and/or
 * <code>Principal</code>), represents a privilege which cannot be exercised,
regardless of
 * any positive permissions (<code>AllPermission</code> included) possessed. In other words,
if a
 * set of granted permissions, P, contains a permission of this class, D,
then the
 * set of effectively granted permissions is

 *

 * { P_{implied} - D_{implied} }.
 * </p>
 * <p>
 * Each instance of this class encapsulates a target permission, representing the
 * "positive" permission being denied.
 * </p>
 * Denied permissions employ the following naming scheme:

 *

 *
 <target_class_name>:<target_name>(:<target_actions>)

 *

 * where:
 *
 * target_class_name is the name of the target permission's class,
 * target_name is the name of the target permission, and
 * target_actions is, optionally, the actions string of the target
permission.
 *
 * A denied permission, having a target permission t, is said to imply
another
 * permission p, if:
 *
 * p is not itself a denied permission, and <code>(t.implies(p) == true)</code>,

https://riptutorial.com/ 966

 * or
 * p is a denied permission, with a target t1, and
 * <code>(t.implies(t1) == true)</code>.
 *
 * <p>
 * It is the responsibility of the policy decision point (e.g., the <code>Policy</code>
provider) to
 * take denied permission semantics into account when issuing authorization statements.
 * </p>
 */
public final class DeniedPermission extends BasicPermission {

 private final Permission target;
 private static final long serialVersionUID = 473625163869800679L;

 /**
 * Instantiates a <code>DeniedPermission</code> that encapsulates a target permission of
the
 * indicated class, specified name and, optionally, actions.
 *
 * @throws IllegalArgumentException
 * if:
 *
 * <code>targetClassName</code> is <code>null</code>, the empty string,
does not
 * refer to a concrete <code>Permission</code> descendant, or refers to
 * <code>DeniedPermission.class</code> or
<code>UnresolvedPermission.class</code>.
 * <code>targetName</code> is <code>null</code>.
 * <code>targetClassName</code> cannot be instantiated, and it's the
caller's fault;
 * e.g., because <code>targetName</code> and/or <code>targetActions</code> do
not adhere
 * to the naming constraints of the target class; or due to the target class
not
 * exposing a <code>(String name)</code>, or <code>(String name, String
actions)</code>
 * constructor, depending on whether <code>targetActions</code> is
<code>null</code> or
 * not.
 *
 */
 public static DeniedPermission newDeniedPermission(String targetClassName, String
targetName,
 String targetActions) {
 if (targetClassName == null || targetClassName.trim().isEmpty() || targetName == null)
{
 throw new IllegalArgumentException(
 "Null or empty [targetClassName], or null [targetName] argument was
supplied.");
 }
 StringBuilder sb = new StringBuilder(targetClassName).append(":").append(targetName);
 if (targetName != null) {
 sb.append(":").append(targetName);
 }
 return new DeniedPermission(sb.toString());
 }

 /**
 * Instantiates a <code>DeniedPermission</code> that encapsulates a target permission of
the class,

https://riptutorial.com/ 967

 * name and, optionally, actions, collectively provided as the <code>name</code> argument.
 *
 * @throws IllegalArgumentException
 * if:
 *
 * <code>name</code>'s target permission class name component is empty,
does not
 * refer to a concrete <code>Permission</code> descendant, or refers to
 * <code>DeniedPermission.class</code> or
<code>UnresolvedPermission.class</code>.
 * <code>name</code>'s target name component is <code>empty</code>
 * the target permission class cannot be instantiated, and it's the
caller's fault;
 * e.g., because <code>name</code>'s target name and/or target actions
component(s) do
 * not adhere to the naming constraints of the target class; or due to the
target class
 * not exposing a <code>(String name)</code>, or
 * <code>(String name, String actions)</code> constructor, depending on
whether the
 * target actions component is empty or not.
 *
 */
 public DeniedPermission(String name) {
 super(name);
 String[] comps = name.split(":");
 if (comps.length < 2) {
 throw new IllegalArgumentException(MessageFormat.format("Malformed name [{0}]
argument.", name));
 }
 this.target = initTarget(comps[0], comps[1], ((comps.length < 3) ? null : comps[2]));
 }

 /**
 * Instantiates a <code>DeniedPermission</code> that encapsulates the given target
permission.
 *
 * @throws IllegalArgumentException
 * if <code>target</code> is <code>null</code>, a
<code>DeniedPermission</code>, or an
 * <code>UnresolvedPermission</code>.
 */
 public static DeniedPermission newDeniedPermission(Permission target) {
 if (target == null) {
 throw new IllegalArgumentException("Null [target] argument.");
 }
 if (target instanceof DeniedPermission || target instanceof UnresolvedPermission) {
 throw new IllegalArgumentException("[target] must not be a DeniedPermission or an
UnresolvedPermission.");
 }
 StringBuilder sb = new
StringBuilder(target.getClass().getName()).append(":").append(target.getName());
 String targetActions = target.getActions();
 if (targetActions != null) {
 sb.append(":").append(targetActions);
 }
 return new DeniedPermission(sb.toString(), target);
 }

 private DeniedPermission(String name, Permission target) {
 super(name);

https://riptutorial.com/ 968

 this.target = target;
 }

 private Permission initTarget(String targetClassName, String targetName, String
targetActions) {
 Class<?> targetClass;
 try {
 targetClass = Class.forName(targetClassName);
 }
 catch (ClassNotFoundException cnfe) {
 if (targetClassName.trim().isEmpty()) {
 targetClassName = "<empty>";
 }
 throw new IllegalArgumentException(
 MessageFormat.format("Target Permission class [{0}] not found.",
targetClassName));
 }
 if (!Permission.class.isAssignableFrom(targetClass) ||
Modifier.isAbstract(targetClass.getModifiers())) {
 throw new IllegalArgumentException(MessageFormat
 .format("Target Permission class [{0}] is not a (concrete) Permission.",
targetClassName));
 }
 if (targetClass == DeniedPermission.class || targetClass ==
UnresolvedPermission.class) {
 throw new IllegalArgumentException("Target Permission class cannot be a
DeniedPermission itself.");
 }
 Constructor<?> targetCtor;
 try {
 if (targetActions == null) {
 targetCtor = targetClass.getConstructor(String.class);
 }
 else {
 targetCtor = targetClass.getConstructor(String.class, String.class);
 }
 }
 catch (NoSuchMethodException nsme) {
 throw new IllegalArgumentException(MessageFormat.format(
 "Target Permission class [{0}] does not provide or expose a (String name)
or (String name, String actions) constructor.",
 targetClassName));
 }
 try {
 return (Permission) targetCtor
 .newInstance(((targetCtor.getParameterCount() == 1) ? new Object[] {
targetName }
 : new Object[] { targetName, targetActions }));
 }
 catch (ReflectiveOperationException roe) {
 if (roe instanceof InvocationTargetException) {
 if (targetName == null) {
 targetName = "<null>";
 }
 else if (targetName.trim().isEmpty()) {
 targetName = "<empty>";
 }
 if (targetActions == null) {
 targetActions = "<null>";
 }
 else if (targetActions.trim().isEmpty()) {

https://riptutorial.com/ 969

 targetActions = "<empty>";
 }
 throw new IllegalArgumentException(MessageFormat.format(
 "Could not instantiate target Permission class [{0}]; provided target
name [{1}] and/or target actions [{2}] potentially erroneous.",
 targetClassName, targetName, targetActions), roe);
 }
 throw new RuntimeException(
 "Could not instantiate target Permission class [{0}]; an unforeseen error
occurred - see attached cause for details",
 roe);
 }
 }

 /**
 * Checks whether the given permission is implied by this one, as per the {@link
DeniedPermission
 * overview}.
 */
 @Override
 public boolean implies(Permission p) {
 if (p instanceof DeniedPermission) {
 return target.implies(((DeniedPermission) p).target);
 }
 return target.implies(p);
 }

 /**
 * Returns this denied permission's target permission (the actual positive permission
which is not
 * to be granted).
 */
 public Permission getTargetPermission() {
 return target;
 }

}

The DenyingPolicy class

package com.example;

import java.security.CodeSource;
import java.security.NoSuchAlgorithmException;
import java.security.Permission;
import java.security.PermissionCollection;
import java.security.Policy;
import java.security.ProtectionDomain;
import java.security.UnresolvedPermission;
import java.util.Enumeration;

/**
 * Wrapper that adds rudimentary {@link DeniedPermission} processing capabilities to the
standard
 * file-backed <code>Policy</code>.
 */
public final class DenyingPolicy extends Policy {

 {

https://riptutorial.com/ 970

 try {
 defaultPolicy = Policy.getInstance("javaPolicy", null);
 }
 catch (NoSuchAlgorithmException nsae) {
 throw new RuntimeException("Could not acquire default Policy.", nsae);
 }
 }

 private final Policy defaultPolicy;

 @Override
 public PermissionCollection getPermissions(CodeSource codesource) {
 return defaultPolicy.getPermissions(codesource);
 }

 @Override
 public PermissionCollection getPermissions(ProtectionDomain domain) {
 return defaultPolicy.getPermissions(domain);
 }

 /**
 * @return
 *
 * <code>true</code> if:
 *
 * <code>permission</code> is not an instance of
 * <code>DeniedPermission</code>,
 * an <code>implies(domain, permission)</code> invocation on the system-
default
 * <code>Policy</code> yields <code>true</code>, and
 * <code>permission</code> is not implied by any
<code>DeniedPermission</code>s
 * having potentially been assigned to <code>domain</code>.
 *
 * <code>false</code>, otherwise.
 *
 */
 @Override
 public boolean implies(ProtectionDomain domain, Permission permission) {
 if (permission instanceof DeniedPermission) {
 /*
 * At the policy decision level, DeniedPermissions can only themselves imply, not
be implied (as
 * they take away, rather than grant, privileges). Furthermore, clients aren't
supposed to use this
 * method for checking whether some domain _does not_ have a permission (which is
what
 * DeniedPermissions express after all).
 */
 return false;
 }

 if (!defaultPolicy.implies(domain, permission)) {
 // permission not granted, so no need to check whether denied
 return false;
 }

 /*
 * Permission granted--now check whether there's an overriding DeniedPermission. The
following
 * assumes that previousPolicy is a sun.security.provider.PolicyFile (different

https://riptutorial.com/ 971

implementations
 * might not support #getPermissions(ProtectionDomain) and/or handle
UnresolvedPermissions
 * differently).
 */

 Enumeration<Permission> perms = defaultPolicy.getPermissions(domain).elements();
 while (perms.hasMoreElements()) {
 Permission p = perms.nextElement();
 /*
 * DeniedPermissions will generally remain unresolved, as no code is expected to
check whether other
 * code has been "granted" such a permission.
 */
 if (p instanceof UnresolvedPermission) {
 UnresolvedPermission up = (UnresolvedPermission) p;
 if (up.getUnresolvedType().equals(DeniedPermission.class.getName())) {
 // force resolution
 defaultPolicy.implies(domain, up);
 // evaluate right away, to avoid reiterating over the collection
 p = new DeniedPermission(up.getUnresolvedName());
 }
 }
 if (p instanceof DeniedPermission && p.implies(permission)) {
 // permission denied
 return false;
 }
 }
 // permission granted
 return true;
 }

 @Override
 public void refresh() {
 defaultPolicy.refresh();
 }

}

Demo

package com.example;

import java.security.Policy;

public class Main {

 public static void main(String... args) {
 Policy.setPolicy(new DenyingPolicy());
 System.setSecurityManager(new SecurityManager());
 // should fail
 System.getProperty("foo.bar");
 }

}

Assign some permissions:

https://riptutorial.com/ 972

grant codeBase "file:///path/to/classes/bin/-"
 permission java.util.PropertyPermission "*", "read,write";
 permission com.example.DeniedPermission "java.util.PropertyPermission:foo.bar:read";
};

Lastly, run the Main and watch it fail, due to the "deny" rule (the DeniedPermission) overriding the
grant (its PropertyPermission). Note that a setProperty("foo.baz", "xyz") invocation would instead
have succeeded, since the denied permission only covers the "read" action, and solely for the
"foo.bar" property.

Read SecurityManager online: https://riptutorial.com/java/topic/5712/securitymanager

https://riptutorial.com/ 973

https://riptutorial.com/java/topic/5712/securitymanager

Chapter 154: Serialization

Introduction

Java provides a mechanism, called object serialization where an object can be represented as a
sequence of bytes that includes the object's data as well as information about the object's type
and the types of data stored in the object.

After a serialized object has been written into a file, it can be read from the file and deserialized
that is, the type information and bytes that represent the object and its data can be used to
recreate the object in memory.

Examples

Basic Serialization in Java

What is Serialization

Serialization is the process of converting an object's state (including its references) to a sequence
of bytes, as well as the process of rebuilding those bytes into a live object at some future time.
Serialization is used when you want to persist the object. It is also used by Java RMI to pass
objects between JVMs, either as arguments in a method invocation from a client to a server or as
return values from a method invocation, or as exceptions thrown by remote methods. In general,
serialization is used when we want the object to exist beyond the lifetime of the JVM.

java.io.Serializable is a marker interface (has no body). It is just used to "mark" Java classes as
serializable.

The serialization runtime associates with each serializable class a version number, called a
serialVersionUID, which is used during de-serialization to verify that the sender and receiver of a
serialized object have loaded classes for that object that are compatible with respect to
serialization. If the receiver has loaded a class for the object that has a different serialVersionUID
than that of the corresponding sender's class, then deserialization will result in an
InvalidClassException. A serializable class can declare its own serialVersionUID explicitly by
declaring a field named serialVersionUID that must be static, final, and of type long:

ANY-ACCESS-MODIFIER static final long serialVersionUID = 1L;

How to make a class eligible for serialization

To persist an object the respective class must implement the java.io.Serializable interface.

import java.io.Serializable;

public class SerialClass implements Serializable {

 private static final long serialVersionUID = 1L;

https://riptutorial.com/ 974

 private Date currentTime;

 public SerialClass() {
 currentTime = Calendar.getInstance().getTime();
 }

 public Date getCurrentTime() {
 return currentTime;
 }
}

How to write an object into a file

Now we need to write this object to a file system. We use java.io.ObjectOutputStream for this
purpose.

import java.io.FileOutputStream;
import java.io.ObjectOutputStream;
import java.io.IOException;

public class PersistSerialClass {

 public static void main(String [] args) {
 String filename = "time.ser";
 SerialClass time = new SerialClass(); //We will write this object to file system.
 try {
 ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream(filename));
 out.writeObject(time); //Write byte stream to file system.
 out.close();
 } catch(IOException ex){
 ex.printStackTrace();
 }
 }
 }

How to recreate an object from its serialized state

The stored object can be read from file system at later time using java.io.ObjectInputStream as
shown below:

import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.io.IOException;
import java.io.java.lang.ClassNotFoundException;

 public class ReadSerialClass {

 public static void main(String [] args) {
 String filename = "time.ser";
 SerialClass time = null;

 try {
 ObjectInputStream in = new ObjectInputStream(new FileInputStream(filename));
 time = (SerialClass)in.readObject();
 in.close();
 } catch(IOException ex){
 ex.printStackTrace();

https://riptutorial.com/ 975

 } catch(ClassNotFoundException cnfe){
 cnfe.printStackTrace();
 }
 // print out restored time
 System.out.println("Restored time: " + time.getTime());
 }
 }

The serialized class is in binary form. The deserialization can be problematic if the class definition
changes: see the Versioning of Serialized Objects chapter of the Java Serialization Specification
for details.

Serializing an object serializes the entire object graph of which it is the root, and operates correctly
in the presence of cyclic graphs. A reset() method is provided to force the ObjectOutputStream to
forget about objects that have already been serialized.

Transient-fields - Serialization

Serialization with Gson

Serialization with Gson is easy and will output correct JSON.

public class Employe {

 private String firstName;
 private String lastName;
 private int age;
 private BigDecimal salary;
 private List<String> skills;

 //getters and setters
}

(Serialization)

//Skills
List<String> skills = new LinkedList<String>();
skills.add("leadership");
skills.add("Java Experience");

//Employe
Employe obj = new Employe();
obj.setFirstName("Christian");
obj.setLastName("Lusardi");
obj.setAge(25);
obj.setSalary(new BigDecimal("10000"));
obj.setSkills(skills);

//Serialization process
Gson gson = new Gson();
String json = gson.toJson(obj);
//{"firstName":"Christian","lastName":"Lusardi","age":25,"salary":10000,"skills":["leadership","Java
Experience"]}

Note that you can not serialize objects with circular references since that will result in infinite

https://riptutorial.com/ 976

https://docs.oracle.com/javase/8/docs/platform/serialization/spec/version.html
http://stackoverflow.com/questions/910374/why-does-java-have-transient-fields

recursion.

(Deserialization)

//it's very simple...
//Assuming that json is the previous String object....

Employe obj2 = gson.fromJson(json, Employe.class); // obj2 is just like obj

Serialization with Jackson 2

Following is an implementation that demonstrates how an object can be serialized into its
corresponding JSON string.

class Test {

 private int idx;
 private String name;

 public int getIdx() {
 return idx;
 }

 public void setIdx(int idx) {
 this.idx = idx;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

Serialization:

Test test = new Test();
test.setIdx(1);
test.setName("abc");

ObjectMapper mapper = new ObjectMapper();

String jsonString;
try {
 jsonString = mapper.writerWithDefaultPrettyPrinter().writeValueAsString(test);
 System.out.println(jsonString);
} catch (JsonProcessingException ex) {
 // Handle Exception
}

Output:

{

https://riptutorial.com/ 977

 "idx" : 1,
 "name" : "abc"
}

You can omit the Default Pretty Printer if you don't need it.

The dependency used here is as follows:

<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>2.6.3</version>
</dependency>

Custom Serialization

In this example we want to create a class that will generate and output to console, a random
number between a range of two integers which are passed as arguments during the initialization.

 public class SimpleRangeRandom implements Runnable {
 private int min;
 private int max;

 private Thread thread;

 public SimpleRangeRandom(int min, int max){
 this.min = min;
 this.max = max;
 thread = new Thread(this);
 thread.start();
 }

 @Override
 private void WriteObject(ObjectOutputStreamout) throws IO Exception;
 private void ReadObject(ObjectInputStream in) throws IOException, ClassNotFoundException;
 public void run() {
 while(true) {
 Random rand = new Random();
 System.out.println("Thread: " + thread.getId() + " Random:" + rand.nextInt(max -
min));
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 }

Now if we want to make this class Serializable there will be some problems. The Thread is one of
the certain system-level classes that are not Serializable. So we need to declare the thread as
transient. By doing this we will be able to serialize the objects of this class but we will still have an
issue. As you can see in the constructor we set the min and the max values of our randomizer and
after this we start the thread which is responsible for generating and printing the random value.
Thus when restoring the persisted object by calling the readObject() the constructor will not run

https://riptutorial.com/ 978

again as there is no creation of a new object. In that case we need to develop a Custom
Serialization by providing two methods inside the class. Those methods are:

private void writeObject(ObjectOutputStream out) throws IOException;
private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException;

Thus by adding our implementation in the readObject() we can initiate and start our thread:

class RangeRandom implements Serializable, Runnable {

private int min;
private int max;

private transient Thread thread;
//transient should be any field that either cannot be serialized e.g Thread or any field you
do not want serialized

public RangeRandom(int min, int max){
 this.min = min;
 this.max = max;
 thread = new Thread(this);
 thread.start();
}

@Override
public void run() {
 while(true) {
 Random rand = new Random();
 System.out.println("Thread: " + thread.getId() + " Random:" + rand.nextInt(max -
min));
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

private void writeObject(ObjectOutputStream oos) throws IOException {
 oos.defaultWriteObject();
}

private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException {
 in.defaultReadObject();
 thread = new Thread(this);
 thread.start();
}
}

Here is the main for our example:

public class Main {
public static void main(String[] args) {
 System.out.println("Hello");
 RangeRandom rangeRandom = new RangeRandom(1,10);

 FileOutputStream fos = null;
 ObjectOutputStream out = null;

https://riptutorial.com/ 979

 try
 {
 fos = new FileOutputStream("test");
 out = new ObjectOutputStream(fos);
 out.writeObject(rangeRandom);
 out.close();
 }
 catch(IOException ex)
 {
 ex.printStackTrace();
 }

 RangeRandom rangeRandom2 = null;
 FileInputStream fis = null;
 ObjectInputStream in = null;
 try
 {
 fis = new FileInputStream("test");
 in = new ObjectInputStream(fis);
 rangeRandom2 = (RangeRandom)in.readObject();
 in.close();
 }
 catch(IOException ex)
 {
 ex.printStackTrace();
 }
 catch(ClassNotFoundException ex)
 {
 ex.printStackTrace();
 }

}
}

If you run the main you will see that there are two threads running for each RangeRandom
instance and that is because the Thread.start() method is now in both the constructor and the
readObject().

Versioning and serialVersionUID

When you implement java.io.Serializable interface to make a class serializable, the compiler
looks for a static final field named serialVersionUID of type long. If the class doesn't have this
field declared explicitly then the compiler will create one such field and assign it with a value which
comes out of a implementation dependent computation of serialVersionUID. This computation
depends upon various aspects of the class and it follows the Object Serialization Specifications
given by Sun. But, the value is not guaranteed to be the same across all compiler
implementations.

This value is used for checking the compatibility of the classes with respect to serialization and this
is done while de-serializing a saved object. The Serialization Runtime verifies that serialVersionUID
read from the de-serialized data and the serialVersionUID declared in the class are exactly the
same. If that is not the case, it throws an InvalidClassException.

It's highly recommended that you explicitly declare and initialize the static, final field of type long

https://riptutorial.com/ 980

https://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html

and named 'serialVersionUID' in all your classes you want to make Serializable instead of relying
on the default computation of the value for this field even if you are not gonna use versioning.
'serialVersionUID' computation is extremely sensitive and may vary from one compiler
implementation to another and hence you may turn up getting the InvalidClassException even
for the same class just because you used different compiler implementations on the sender
and the receiver ends of the serialization process.

public class Example implements Serializable {
 static final long serialVersionUID = 1L /*or some other value*/;
 //...
}

As long as serialVersionUID is the same, Java Serialization can handle different versions of a
class. Compatible and incompatible changes are;

Compatible Changes

Adding fields : When the class being reconstituted has a field that does not occur in the
stream, that field in the object will be initialized to the default value for its type. If class-
specific initialization is needed, the class may provide a readObject method that can initialize
the field to nondefault values.

•

Adding classes : The stream will contain the type hierarchy of each object in the stream.
Comparing this hierarchy in the stream with the current class can detect additional classes.
Since there is no information in the stream from which to initialize the object, the class's
fields will be initialized to the default values.

•

Removing classes : Comparing the class hierarchy in the stream with that of the current
class can detect that a class has been deleted. In this case, the fields and objects
corresponding to that class are read from the stream. Primitive fields are discarded, but the
objects referenced by the deleted class are created, since they may be referred to later in
the stream. They will be garbage-collected when the stream is garbage-collected or reset.

•

Adding writeObject/readObject methods : If the version reading the stream has these
methods then readObject is expected, as usual, to read the required data written to the
stream by the default serialization. It should call defaultReadObject first before reading any
optional data. The writeObject method is expected as usual to call defaultWriteObject to
write the required data and then may write optional data.

•

Adding java.io.Serializable : This is equivalent to adding types. There will be no values in
the stream for this class so its fields will be initialized to default values. The support for
subclassing nonserializable classes requires that the class's supertype have a no-arg
constructor and the class itself will be initialized to default values. If the no-arg constructor is
not available, the InvalidClassException is thrown.

•

Changing the access to a field : The access modifiers public, package, protected, and
private have no effect on the ability of serialization to assign values to the fields.

•

Changing a field from static to nonstatic or transient to nontransient : When relying on
default serialization to compute the serializable fields, this change is equivalent to adding a
field to the class. The new field will be written to the stream but earlier classes will ignore the
value since serialization will not assign values to static or transient fields.

•

https://riptutorial.com/ 981

Incompatible Changes

Deleting fields : If a field is deleted in a class, the stream written will not contain its value.
When the stream is read by an earlier class, the value of the field will be set to the default
value because no value is available in the stream. However, this default value may adversely
impair the ability of the earlier version to fulfill its contract.

•

Moving classes up or down the hierarchy : This cannot be allowed since the data in the
stream appears in the wrong sequence.

•

Changing a nonstatic field to static or a nontransient field to transient : When relying
on default serialization, this change is equivalent to deleting a field from the class. This
version of the class will not write that data to the stream, so it will not be available to be read
by earlier versions of the class. As when deleting a field, the field of the earlier version will be
initialized to the default value, which can cause the class to fail in unexpected ways.

•

Changing the declared type of a primitive field : Each version of the class writes the data
with its declared type. Earlier versions of the class attempting to read the field will fail
because the type of the data in the stream does not match the type of the field.

•

Changing the writeObject or readObject method so that it no longer writes or reads the
default field data or changing it so that it attempts to write it or read it when the previous
version did not. The default field data must consistently either appear or not appear in the
stream.

•

Changing a class from Serializable to Externalizable or vice versa is an incompatible change
since the stream will contain data that is incompatible with the implementation of the
available class.

•

Changing a class from a non-enum type to an enum type or vice versa since the stream will
contain data that is incompatible with the implementation of the available class.

•

Removing either Serializable or Externalizable is an incompatible change since when written
it will no longer supply the fields needed by older versions of the class.

•

Adding the writeReplace or readResolve method to a class is incompatible if the behavior
would produce an object that is incompatible with any older version of the class.

•

Custom JSON Deserialization with Jackson

We consume rest API as a JSON format and then unmarshal it to a POJO. Jackson’s
org.codehaus.jackson.map.ObjectMapper “just works” out of the box and we really don’t do
anything in most cases. But sometimes we need custom deserializer to fulfill our custom needs
and this tutorial will guide you through the process of creating your own custom deserializer.

Let’s say we have following entities.

public class User {
 private Long id;
 private String name;
 private String email;

 //getter setter are omitted for clarity
}

https://riptutorial.com/ 982

And

public class Program {
 private Long id;
 private String name;
 private User createdBy;
 private String contents;

 //getter setter are omitted for clarity
}

Let’s serialize/marshal an object first.

User user = new User();
user.setId(1L);
user.setEmail("example@example.com");
user.setName("Bazlur Rahman");

Program program = new Program();
program.setId(1L);
program.setName("Program @# 1");
program.setCreatedBy(user);
program.setContents("Some contents");

ObjectMapper objectMapper = new ObjectMapper();

final String json = objectMapper.writeValueAsString(program); System.out.println(json);

The above code will produce following JSON-

{
 "id": 1,
 "name": "Program @# 1",
 "createdBy": {
 "id": 1,
 "name": "Bazlur Rahman",
 "email": "example@example.com"
 },
 "contents": "Some contents"
}

Now can do the opposite very easily. If we have this JSON, we can unmarshal to a program object
using ObjectMapper as following –

Now let’s say, this is not the real case, we are going to have a different JSON from an API which
doesn’t match with our Program class.

{
"id": 1,
"name": "Program @# 1",
"ownerId": 1
"contents": "Some contents"
}

Look at the JSON string, you can see, it has a different field that is owenerId.

https://riptutorial.com/ 983

Now if you want to serialize this JSON as we did earlier, you will have exceptions.

There are two ways to avoid exceptions and have this serialized –

Ignore the unknown fields

Ignore the onwerId. Add the following annotation in the Program class

@JsonIgnoreProperties(ignoreUnknown = true)
public class Program {}

Write custom deserializer

But there are cases when you actually need this owerId field. Let's say you want to relate it as an id
of the User class.

In such case, you need to write a custom deserializer-

As you can see, first you have to access the JsonNode from the JonsParser. And then you can easily
extract information from a JsonNode using the get() method. and you have to make sure about the
field name. It should be the exact name, spelling mistake will cause exceptions.

And finally, you have to register your ProgramDeserializer to the ObjectMapper.

ObjectMapper mapper = new ObjectMapper();
SimpleModule module = new SimpleModule();
module.addDeserializer(Program.class, new ProgramDeserializer());

mapper.registerModule(module);

String newJsonString = "{\"id\":1,\"name\":\"Program @# 1\",\"ownerId\":1,\"contents\":\"Some
contents\"}";
final Program program2 = mapper.readValue(newJsonString, Program.class);

Alternatively, you can use annotation to register the deserializer directly –

@JsonDeserialize(using = ProgramDeserializer.class)
public class Program {
}

Read Serialization online: https://riptutorial.com/java/topic/767/serialization

https://riptutorial.com/ 984

https://riptutorial.com/java/topic/767/serialization

Chapter 155: ServiceLoader

Remarks

ServiceLoader can be used to get instances of classes extending a given type(=service) that are
specified in a file packed in a .jar file. The service that is extended/implemented is often a
interface, but this is not required.

The extending/implementing classes need to provide a zero argument constructor for the
ServiceLoader to instantiate them.

To be discovered by the ServiceLoader a text file with the name of the fully qualified type name of
the implemented service needs to be stored inside the META-INF/services directory in the jar file.
This file contains one fully qualified name of a class implementing the service per line.

Examples

Logger Service

The following example shows how to instantiate a class for logging via the ServiceLoader.

Service

package servicetest;

import java.io.IOException;

public interface Logger extends AutoCloseable {

 void log(String message) throws IOException;
}

Implementations of the service

The following implementation simply writes the message to System.err

package servicetest.logger;

import servicetest.Logger;

public class ConsoleLogger implements Logger {

 @Override
 public void log(String message) {
 System.err.println(message);
 }

https://riptutorial.com/ 985

 @Override
 public void close() {
 }

}

The following implementation writes the messages to a text file:

package servicetest.logger;

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import servicetest.Logger;

public class FileLogger implements Logger {

 private final BufferedWriter writer;

 public FileLogger() throws IOException {
 writer = new BufferedWriter(new FileWriter("log.txt"));
 }

 @Override
 public void log(String message) throws IOException {
 writer.append(message);
 writer.newLine();
 }

 @Override
 public void close() throws IOException {
 writer.close();
 }

}

META-INF/services/servicetest.Logger

The META-INF/services/servicetest.Logger file lists the names of the Logger implementations.

servicetest.logger.ConsoleLogger
servicetest.logger.FileLogger

Usage

The following main method writes a message to all available loggers. The loggers are instantiated
using ServiceLoader.

public static void main(String[] args) throws Exception {
 final String message = "Hello World!";

 // get ServiceLoader for Logger

https://riptutorial.com/ 986

 ServiceLoader<Logger> loader = ServiceLoader.load(servicetest.Logger.class);

 // iterate through instances of available loggers, writing the message to each one
 Iterator<Logger> iterator = loader.iterator();
 while (iterator.hasNext()) {
 try (Logger logger = iterator.next()) {
 logger.log(message);
 }
 }
}

Simple ServiceLoader Example

The ServiceLoader is a simple and easy to use built-in mechanism for dynamic loading of interface
implementations. With the service loader - providing means for instantation (but not the wiring) - a
simple dependency injection mechanism can be built in Java SE. With the ServiceLoader interface
and implementation separation becomes natural and programs can be conveniently extended.
Actually a lot of Java API are implented based on the ServiceLoader

The basic concepts are

Operating on interfaces of services•
Obtaining implementation(s) of the service via ServiceLoader•
Providing implementation of servics•

Lets start with the interface and put it in a jar, named for example accounting-api.jar

package example;

public interface AccountingService {

 long getBalance();
}

Now we provide an implementation of that service in a jar named accounting-impl.jar, containing
an implementation of the service

package example.impl;
import example.AccountingService;

public interface DefaultAccountingService implements AccouningService {

 public long getBalance() {
 return balanceFromDB();
 }

 private long balanceFromDB(){
 ...
 }
}

further, the accounting-impl.jar contains a file declaring that this jar provides an implementation of
AccountingService. The file has to have a path starting with META-INF/services/ and must have the

https://riptutorial.com/ 987

same name as the fully-qualified name of the interface:

META-INF/services/example.AccountingService•

The content of the file is the fully-qualfified name of the implementation:

example.impl.DefaultAccountingService

Given both jars are in the classpath of the program, that consumes the AccountingService, an
instance of the Service can be obtained by using the ServiceLauncher

ServiceLoader<AccountingService> loader = ServiceLoader.load(AccountingService.class)
AccountingService service = loader.next();
long balance = service.getBalance();

As the ServiceLoader is an Iterable, it supports multiple implementation providers, where the
program may choose from:

ServiceLoader<AccountingService> loader = ServiceLoader.load(AccountingService.class)
for(AccountingService service : loader) {
 //...
}

Note that when invoking next() a new instance will allways be created. If you want to re-use an
instance, you have to use the iterator() method of the ServiceLoader or the for-each loop as
shown above.

Read ServiceLoader online: https://riptutorial.com/java/topic/5433/serviceloader

https://riptutorial.com/ 988

https://riptutorial.com/java/topic/5433/serviceloader

Chapter 156: Sets

Examples

Declaring a HashSet with values

You can create a new class that inherits from HashSet:

Set<String> h = new HashSet<String>() {{
 add("a");
 add("b");
}};

One line solution:

Set<String> h = new HashSet<String>(Arrays.asList("a", "b"));

Using guava:

Sets.newHashSet("a", "b", "c")

Using Streams:

Set<String> set3 = Stream.of("a", "b", "c").collect(toSet());

Types and Usage of Sets

Generally, sets are a type of collection which stores unique values. Uniqueness is determined by
the equals() and hashCode() methods.

Sorting is determined by the type of set.

HashSet - Random Sorting

Java SE 7

Set<String> set = new HashSet<> ();
set.add("Banana");
set.add("Banana");
set.add("Apple");
set.add("Strawberry");

// Set Elements: ["Strawberry", "Banana", "Apple"]

https://riptutorial.com/ 989

LinkedHashSet - Insertion Order

Java SE 7

Set<String> set = new LinkedHashSet<> ();
set.add("Banana");
set.add("Banana");
set.add("Apple");
set.add("Strawberry");

// Set Elements: ["Banana", "Apple", "Strawberry"]

TreeSet - By compareTo() or Comparator

Java SE 7

Set<String> set = new TreeSet<> ();
set.add("Banana");
set.add("Banana");
set.add("Apple");
set.add("Strawberry");

// Set Elements: ["Apple", "Banana", "Strawberry"]

Java SE 7

Set<String> set = new TreeSet<> ((string1, string2) -> string2.compareTo(string1));
set.add("Banana");
set.add("Banana");
set.add("Apple");
set.add("Strawberry");

// Set Elements: ["Strawberry", "Banana", "Apple"]

Initialization

A Set is a Collection that cannot contain duplicate elements. It models the mathematical set
abstraction.

Set have its implementation in various classes like HashSet, TreeSet, LinkedHashSet.

For example:

HashSet:

Set<T> set = new HashSet<T>();

Here T can be String, Integer or any other object. HashSet allows for quick lookup of O(1) but
does not sort the data added to it and loses the insertion order of items.

https://riptutorial.com/ 990

TreeSet:

It stores data in a sorted manner sacrificing some speed for basic operations which take O(lg(n)).
It does not maintain the insertion order of items.

TreeSet<T> sortedSet = new TreeSet<T>();

LinkedHashSet:

It is a linked list implementation of HashSet Once can iterate over the items in the order they were
added. Sorting is not provided for its contents. O(1) basic operations are provided, however there
is higher cost than HashSet in maintaining the backing linked list.

LinkedHashSet<T> linkedhashset = new LinkedHashSet<T>();

Basics of Set

What is a Set?

A set is a data structure which contains a set of elements with an important property that no two
elements in the set are equal.

Types of Set:

HashSet: A set backed by a hash table (actually a HashMap instance)1.
Linked HashSet: A Set backed by Hash table and linked list, with predictable iteration order2.
TreeSet: A NavigableSet implementation based on a TreeMap.3.

Creating a set

Set<Integer> set = new HashSet<Integer>(); // Creates an empty Set of Integers

Set<Integer> linkedHashSet = new LinkedHashSet<Integer>(); //Creates a empty Set of Integers,
with predictable iteration order

Adding elements to a Set

Elements can be added to a set using the add() method

 set.add(12); // - Adds element 12 to the set
 set.add(13); // - Adds element 13 to the set

Our set after executing this method:

set = [12,13]

Delete all the elements of a Set

set.clear(); //Removes all objects from the collection.

https://riptutorial.com/ 991

After this set will be:

set = []

Check whether an element is part of the Set

Existence of an element in the set can be checked using the contains() method

set.contains(0); //Returns true if a specified object is an element within the set.

Output: False

Check whether a Set is empty

isEmpty() method can be used to check whether a Set is empty.

set.isEmpty(); //Returns true if the set has no elements

Output: True

Remove an element from the Set

 set.remove(0); // Removes first occurrence of a specified object from the collection

Check the Size of the Set

set.size(); //Returns the number of elements in the collection

Output: 0

Create a list from an existing Set

Using a new List

List<String> list = new ArrayList<String>(listOfElements);

Using List.addAll() method

 Set<String> set = new HashSet<String>();
 set.add("foo");
 set.add("boo");

 List<String> list = new ArrayList<String>();
 list.addAll(set);

Using Java 8 Steam API

List<String> list = set.stream().collect(Collectors.toList());

https://riptutorial.com/ 992

Eliminating duplicates using Set

Suppose you have a collection elements, and you want to create another collection containing the
same elements but with all duplicates eliminated:

Collection<Type> noDuplicates = new HashSet<Type>(elements);

Example:

List<String> names = new ArrayList<>(
 Arrays.asList("John", "Marco", "Jenny", "Emily", "Jenny", "Emily", "John"));
Set<String> noDuplicates = new HashSet<>(names);
System.out.println("noDuplicates = " + noDuplicates);

Output:

noDuplicates = [Marco, Emily, John, Jenny]

Read Sets online: https://riptutorial.com/java/topic/3102/sets

https://riptutorial.com/ 993

https://riptutorial.com/java/topic/3102/sets

Chapter 157: Singletons

Introduction

A singleton is a class that only ever has one single instance. For more information on the
Singleton design pattern, please refer to the Singleton topic in the Design Patterns tag.

Examples

Enum Singleton

Java SE 5

public enum Singleton {
 INSTANCE;

 public void execute (String arg) {
 // Perform operation here
 }
}

Enums have private constructors, are final and provide proper serialization machinery. They are
also very concise and lazily initialized in a thread safe manner.

The JVM provides a guarantee that enum values will not be instantiated more than once each,
which gives the enum singleton pattern a very strong defense against reflection attacks.

What the enum pattern doesn't protect against is other developers physically adding more
elements to the source code. Consequently, if you choose this implementation style for your
singletons it is imperative that you very clearly document that no new values should be added to
those enums.

This is the recommended way of implementing the singleton pattern, as explained by Joshua
Bloch in Effective Java.

Thread safe Singleton with double checked locking

This type of Singleton is thread safe, and prevents unnecessary locking after the Singleton
instance has been created.

Java SE 5

public class MySingleton {

 // instance of class
 private static volatile MySingleton instance = null;

 // Private constructor

https://riptutorial.com/ 994

http://www.riptutorial.com/design-patterns/topic/2179/singleton
http://www.riptutorial.com/topic/1012
http://www.riptutorial.com/java/topic/155/enums
http://www.informit.com/articles/article.aspx?p=1216151&seqNum=3

 private MySingleton() {
 // Some code for constructing object
 }

 public static MySingleton getInstance() {
 MySingleton result = instance;

 //If the instance already exists, no locking is necessary
 if(result == null) {
 //The singleton instance doesn't exist, lock and check again
 synchronized(MySingleton.class) {
 result = instance;
 if(result == null) {
 instance = result = new MySingleton();
 }
 }
 }
 return result;
 }
}

It must be emphasized -- in versions prior to Java SE 5, the implementation above is incorrect and
should be avoided. It is not possible to implement double-checked locking correctly in Java prior to
Java 5.

Singleton without use of Enum (eager initialization)

public class Singleton {

 private static final Singleton INSTANCE = new Singleton();

 private Singleton() {}

 public static Singleton getInstance() {
 return INSTANCE;
 }
}

It can be argued that this example is effectively lazy initialization. Section 12.4.1 of the Java
Language Specification states:

A class or interface type T will be initialized immediately before the first occurrence of
any one of the following:

T is a class and an instance of T is created•
T is a class and a static method declared by T is invoked•
A static field declared by T is assigned•
A static field declared by T is used and the field is not a constant variable•
T is a top level class, and an assert statement lexically nested within T is
executed.

•

Therefore, as long as there are no other static fields or static methods in the class, the Singleton
instance will not be initialized until the method getInstance() is invoked the first time.

https://riptutorial.com/ 995

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.4.1
https://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.4.1

Thread-safe lazy initialization using holder class | Bill Pugh Singleton
implementation

public class Singleton {
 private static class InstanceHolder {
 static final Singleton INSTANCE = new Singleton();
 }

 public static Singleton getInstance() {
 return InstanceHolder.INSTANCE;
 }

 private Singleton() {}
}

This initializes the INSTANCE variable on the first call to Singleton.getInstance(), taking advantage of
the language's thread safety guarantees for static initialization without requiring additional
synchronization.

This implementation is also known as Bill Pugh singleton pattern. [Wiki]

Extending singleton (singleton inheritance)

In this example, base class Singleton provides getMessage() method that returns "Hello world!"
message.

It's subclasses UppercaseSingleton and LowercaseSingleton override getMessage() method to
provide appropriate representation of the message.

//Yeah, we'll need reflection to pull this off.
import java.lang.reflect.*;

/*
Enumeration that represents possible classes of singleton instance.
If unknown, we'll go with base class - Singleton.
*/
enum SingletonKind {
 UNKNOWN,
 LOWERCASE,
 UPPERCASE
}

//Base class
class Singleton{

 /*
 Extended classes has to be private inner classes, to prevent extending them in
 uncontrolled manner.
 */
 private class UppercaseSingleton extends Singleton {

 private UppercaseSingleton(){
 super();
 }

https://riptutorial.com/ 996

https://en.wikipedia.org/wiki/Singleton_pattern#Initialization-on-demand_holder_idiom

 @Override
 public String getMessage() {
 return super.getMessage().toUpperCase();
 }
 }

 //Another extended class.
 private class LowercaseSingleton extends Singleton
 {
 private LowercaseSingleton(){
 super();
 }

 @Override
 public String getMessage() {
 return super.getMessage().toLowerCase();
 }
 }

 //Applying Singleton pattern
 private static SingletonKind kind = SingletonKind.UNKNOWN;

 private static Singleton instance;

 /*
 By using this method prior to getInstance() method, you effectively change the
 type of singleton instance to be created.
 */
 public static void setKind(SingletonKind kind) {
 Singleton.kind = kind;
 }

 /*
 If needed, getInstance() creates instance appropriate class, based on value of
 singletonKind field.
 */
 public static Singleton getInstance()
 throws NoSuchMethodException,
 IllegalAccessException,
 InvocationTargetException,
 InstantiationException {

 if(instance==null){
 synchronized (Singleton.class){
 if(instance==null){
 Singleton singleton = new Singleton();
 switch (kind){
 case UNKNOWN:

 instance = singleton;
 break;

 case LOWERCASE:

 /*
 I can't use simple

 instance = new LowercaseSingleton();

 because java compiler won't allow me to use
 constructor of inner class in static context,

https://riptutorial.com/ 997

 so I use reflection API instead.

 To be able to access inner class by reflection API,
 I have to create instance of outer class first.
 Therefore, in this implementation, Singleton cannot be
 abstract class.
 */

 //Get the constructor of inner class.
 Constructor<LowercaseSingleton> lcConstructor =

LowercaseSingleton.class.getDeclaredConstructor(Singleton.class);

 //The constructor is private, so I have to make it accessible.
 lcConstructor.setAccessible(true);

 // Use the constructor to create instance.
 instance = lcConstructor.newInstance(singleton);

 break;

 case UPPERCASE:

 //Same goes here, just with different type
 Constructor<UppercaseSingleton> ucConstructor =

UppercaseSingleton.class.getDeclaredConstructor(Singleton.class);
 ucConstructor.setAccessible(true);
 instance = ucConstructor.newInstance(singleton);
 }
 }
 }
 }
 return instance;
 }

 //Singletons state that is to be used by subclasses
 protected String message;

 //Private constructor prevents external instantiation.
 private Singleton()
 {
 message = "Hello world!";
 }

 //Singleton's API. Implementation can be overwritten by subclasses.
 public String getMessage() {
 return message;
 }
}

//Just a small test program
public class ExtendingSingletonExample {

 public static void main(String args[]){

 //just uncomment one of following lines to change singleton class

 //Singleton.setKind(SingletonKind.UPPERCASE);
 //Singleton.setKind(SingletonKind.LOWERCASE);

https://riptutorial.com/ 998

 Singleton singleton = null;
 try {
 singleton = Singleton.getInstance();
 } catch (NoSuchMethodException e) {
 e.printStackTrace();
 } catch (IllegalAccessException e) {
 e.printStackTrace();
 } catch (InvocationTargetException e) {
 e.printStackTrace();
 } catch (InstantiationException e) {
 e.printStackTrace();
 }
 System.out.println(singleton.getMessage());
 }
}

Read Singletons online: https://riptutorial.com/java/topic/130/singletons

https://riptutorial.com/ 999

https://riptutorial.com/java/topic/130/singletons

Chapter 158: Sockets

Introduction

A socket is one end-point of a two-way communication link between two programs running on the
network.

Examples

Read from socket

String hostName = args[0];
int portNumber = Integer.parseInt(args[1]);

try (
 Socket echoSocket = new Socket(hostName, portNumber);
 PrintWriter out =
 new PrintWriter(echoSocket.getOutputStream(), true);
 BufferedReader in =
 new BufferedReader(
 new InputStreamReader(echoSocket.getInputStream()));
 BufferedReader stdIn =
 new BufferedReader(
 new InputStreamReader(System.in))
) {
 //Use the socket
}

Read Sockets online: https://riptutorial.com/java/topic/9918/sockets

https://riptutorial.com/ 1000

https://riptutorial.com/java/topic/9918/sockets

Chapter 159: SortedMap

Introduction

Introduction to sorted Map.

Examples

Introduction to sorted Map.

Keypoint :-

SortedMap interface extends Map.•
entries are maintained in an ascending key order.•

Methods of sorted Map :

Comparator comparator().•
Object firstKey().•
SortedMap headMap(Object end).•
Object lastKey().•
SortedMap subMap(Object start, Object end).•
SortedMap tailMap(Object start).•

Example

public static void main(String args[]) {
 // Create a hash map
 TreeMap tm = new TreeMap();

 // Put elements to the map
 tm.put("Zara", new Double(3434.34));
 tm.put("Mahnaz", new Double(123.22));
 tm.put("Ayan", new Double(1378.00));
 tm.put("Daisy", new Double(99.22));
 tm.put("Qadir", new Double(-19.08));

 // Get a set of the entries
 Set set = tm.entrySet();

 // Get an iterator
 Iterator i = set.iterator();

 // Display elements
 while(i.hasNext()) {
 Map.Entry me = (Map.Entry)i.next();
 System.out.print(me.getKey() + ": ");
 System.out.println(me.getValue());
 }
 System.out.println();

https://riptutorial.com/ 1001

 // Deposit 1000 into Zara's account
 double balance = ((Double)tm.get("Zara")).doubleValue();
 tm.put("Zara", new Double(balance + 1000));
 System.out.println("Zara's new balance: " + tm.get("Zara"));
 }

Read SortedMap online: https://riptutorial.com/java/topic/10748/sortedmap

https://riptutorial.com/ 1002

https://riptutorial.com/java/topic/10748/sortedmap

Chapter 160: Splitting a string into fixed
length parts

Remarks

The goal here is to not lose content, so the regex must not consume (match) any input. Rather it
must match between the last character of the previous target input and the first character of the
next target input. eg for 8-character substrings, we need to break the input up (ie match) at the
places marked below:

a b c d e f g h i j k l m n o p q r s t u v w x y z
 ^ ^ ^

Ignore the spaces in the input which were required to show between character positions.

Examples

Break a string up into substrings all of a known length

The trick is to use a look-behind with the regex \G, which means "end of previous match":

String[] parts = str.split("(?<=\\G.{8})");

The regex matches 8 characters after the end of the last match. Since in this case the match is
zero-width, we could more simply say "8 characters after the last match".

Conveniently, \G is initialized to start of input, so it works for the first part of the input too.

Break a string up into substrings all of variable length

Same as the known length example, but insert the length into regex:

int length = 5;
String[] parts = str.split("(?<=\\G.{" + length + "})");

Read Splitting a string into fixed length parts online: https://riptutorial.com/java/topic/5613/splitting-
a-string-into-fixed-length-parts

https://riptutorial.com/ 1003

https://riptutorial.com/java/topic/5613/splitting-a-string-into-fixed-length-parts
https://riptutorial.com/java/topic/5613/splitting-a-string-into-fixed-length-parts

Chapter 161: Stack-Walking API

Introduction

Prior to Java 9, access to the thread stack frames was limited to an internal class
sun.reflect.Reflection. Specifically the method sun.reflect.Reflection::getCallerClass. Some
libraries relies on this method which is deprecated.

An alternative standard API is now provided in JDK 9 via the java.lang.StackWalker class, and is
designed to be efficient by allowing lazy access to the stack frames. Some applications may use
this API to traverse the execution stack and filter on classes.

Examples

Print all stack frames of the current thread

The following prints all stack frames of the current thread:

1 package test;
2
3 import java.lang.StackWalker.StackFrame;
4 import java.lang.reflect.InvocationTargetException;
5 import java.lang.reflect.Method;
6 import java.util.List;
7 import java.util.stream.Collectors;
8
9 public class StackWalkerExample {
10
11 public static void main(String[] args) throws NoSuchMethodException, SecurityException,
IllegalAccessException, IllegalArgumentException, InvocationTargetException {
12 Method fooMethod = FooHelper.class.getDeclaredMethod("foo", (Class<?>[])null);
13 fooMethod.invoke(null, (Object[]) null);
14 }
15 }
16
17 class FooHelper {
18 protected static void foo() {
19 BarHelper.bar();
20 }
21 }
22
23 class BarHelper {
24 protected static void bar() {
25 List<StackFrame> stack = StackWalker.getInstance()
26 .walk((s) -> s.collect(Collectors.toList()));
27 for(StackFrame frame : stack) {
28 System.out.println(frame.getClassName() + " " + frame.getLineNumber() + " " +
frame.getMethodName());
29 }
30 }
31 }

https://riptutorial.com/ 1004

Output:

test.BarHelper 26 bar
test.FooHelper 19 foo
test.StackWalkerExample 13 main

Print current caller class

The following prints the current caller class. Note that in this case, the StackWalker needs to be
created with the option RETAIN_CLASS_REFERENCE, so that Class instances are retained in the
StackFrame objects. Otherwise an exception would occur.

public class StackWalkerExample {

 public static void main(String[] args) {
 FooHelper.foo();
 }

}

class FooHelper {
 protected static void foo() {
 BarHelper.bar();
 }
}

class BarHelper {
 protected static void bar() {

System.out.println(StackWalker.getInstance(Option.RETAIN_CLASS_REFERENCE).getCallerClass());
 }
}

Output:

class test.FooHelper

Showing reflection and other hidden frames

A couple of other options allow stack traces to include implementation and/or reflection frames.
This may be useful for debugging purposes. For instance, we can add the SHOW_REFLECT_FRAMES
option to the StackWalker instance upon creation, so that the frames for the reflective methods are
printed as well:

package test;

import java.lang.StackWalker.Option;
import java.lang.StackWalker.StackFrame;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.util.List;
import java.util.stream.Collectors;

https://riptutorial.com/ 1005

http://download.java.net/java/jdk9/docs/api/java/lang/StackWalker.html
http://download.java.net/java/jdk9/docs/api/java/lang/StackWalker.Option.html#RETAIN_CLASS_REFERENCE
http://download.java.net/java/jdk9/docs/api/java/lang/StackWalker.StackFrame.html
http://download.java.net/java/jdk9/docs/api/java/lang/StackWalker.Option.html#SHOW_REFLECT_FRAMES
http://download.java.net/java/jdk9/docs/api/java/lang/StackWalker.html

public class StackWalkerExample {

 public static void main(String[] args) throws NoSuchMethodException, SecurityException,
IllegalAccessException, IllegalArgumentException, InvocationTargetException {
 Method fooMethod = FooHelper.class.getDeclaredMethod("foo", (Class<?>[])null);
 fooMethod.invoke(null, (Object[]) null);
 }
}

class FooHelper {
 protected static void foo() {
 BarHelper.bar();
 }
}

class BarHelper {
 protected static void bar() {
 // show reflection methods
 List<StackFrame> stack = StackWalker.getInstance(Option.SHOW_REFLECT_FRAMES)
 .walk((s) -> s.collect(Collectors.toList()));
 for(StackFrame frame : stack) {
 System.out.println(frame.getClassName() + " " + frame.getLineNumber() + " " +
frame.getMethodName());
 }
 }
}

Output:

test.BarHelper 27 bar
test.FooHelper 20 foo
jdk.internal.reflect.NativeMethodAccessorImpl -2 invoke0
jdk.internal.reflect.NativeMethodAccessorImpl 62 invoke
jdk.internal.reflect.DelegatingMethodAccessorImpl 43 invoke
java.lang.reflect.Method 563 invoke
test.StackWalkerExample 14 main

Note that line numbers for some reflection methods may not be available so
StackFrame.getLineNumber() may return negative values.

Read Stack-Walking API online: https://riptutorial.com/java/topic/9868/stack-walking-api

https://riptutorial.com/ 1006

https://riptutorial.com/java/topic/9868/stack-walking-api

Chapter 162: Streams

Introduction

A Stream represents a sequence of elements and supports different kind of operations to perform
computations upon those elements. With Java 8, Collection interface has two methods to
generate a Stream: stream() and parallelStream(). Stream operations are either intermediate or
terminal. Intermediate operations return a Stream so multiple intermediate operations can be
chained before the Stream is closed. Terminal operations are either void or return a non-stream
result.

Syntax

collection.stream()•
Arrays.stream(array)•
Stream.iterate(firstValue, currentValue -> nextValue)•
Stream.generate(() -> value)•
Stream.of(elementOfT[, elementOfT, ...])•
Stream.empty()•
StreamSupport.stream(iterable.spliterator(), false)•

Examples

Using Streams

A Stream is a sequence of elements upon which sequential and parallel aggregate operations can
be performed. Any given Stream can potentially have an unlimited amount of data flowing through
it. As a result, data received from a Stream is processed individually as it arrives, as opposed to
performing batch processing on the data altogether. When combined with lambda expressions
they provide a concise way to perform operations on sequences of data using a functional
approach.

Example: (see it work on Ideone)

Stream<String> fruitStream = Stream.of("apple", "banana", "pear", "kiwi", "orange");

fruitStream.filter(s -> s.contains("a"))
 .map(String::toUpperCase)
 .sorted()
 .forEach(System.out::println);

Output:

APPLE
BANANA

https://riptutorial.com/ 1007

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
http://www.riptutorial.com/java/topic/91/lambda-expressions
https://ideone.com/IUWRdv

ORANGE
PEAR

The operations performed by the above code can be summarized as follows:

Create a Stream<String> containing a sequenced ordered Stream of fruit String elements using
the static factory method Stream.of(values).

1.

The filter() operation retains only elements that match a given predicate (the elements that
when tested by the predicate return true). In this case, it retains the elements containing an
"a". The predicate is given as a lambda expression.

2.

The map() operation transforms each element using a given function, called a mapper. In this
case, each fruit String is mapped to its uppercase String version using the method-reference
String::toUppercase.

Note that the map() operation will return a stream with a different generic type if
the mapping function returns a type different to its input parameter. For example
on a Stream<String> calling .map(String::isEmpty) returns a Stream<Boolean>

3.

The sorted() operation sorts the elements of the Stream according to their natural ordering
(lexicographically, in the case of String).

4.

Finally, the forEach(action) operation performs an action which acts on each element of the
Stream, passing it to a Consumer. In the example, each element is simply being printed to the
console. This operation is a terminal operation, thus making it impossible to operate on it
again.

Note that operations defined on the Stream are performed because of the terminal
operation. Without a terminal operation, the stream is not processed. Streams
can not be reused. Once a terminal operation is called, the Stream object
becomes unusable.

5.

Operations (as seen above) are chained together to form what can be seen as a query on the
data.

Closing Streams

Note that a Stream generally does not have to be closed. It is only required to close
streams that operate on IO channels. Most Stream types don't operate on resources

https://riptutorial.com/ 1008

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of-T...-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#filter-java.util.function.Predicate-
http://www.riptutorial.com/java/topic/91/lambda-expressions
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#map-java.util.function.Function-
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#toUpperCase--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach-java.util.function.Consumer-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted-java.util.Comparator-
https://i.stack.imgur.com/6p8aM.png

and therefore don't require closing.

The Stream interface extends AutoCloseable. Streams can be closed by calling the close method or
by using try-with-resource statements.

An example use case where a Stream should be closed is when you create a Stream of lines from a
file:

try (Stream<String> lines = Files.lines(Paths.get("somePath"))) {
 lines.forEach(System.out::println);
}

The Stream interface also declares the Stream.onClose() method which allows you to register
Runnable handlers which will be called when the stream is closed. An example use case is where
code which produces a stream needs to know when it is consumed to perform some cleanup.

public Stream<String>streamAndDelete(Path path) throws IOException {
 return Files.lines(path).onClose(() -> someClass.deletePath(path));
}

The run handler will only execute if the close() method gets called, either explicitly or implicitly by
a try-with-resources statement.

Processing Order

A Stream object's processing can be sequential or parallel.

In a sequential mode, the elements are processed in the order of the source of the Stream. If the
Stream is ordered (such as a SortedMap implementation or a List) the processing is guaranteed to
match the ordering of the source. In other cases, however, care should be taken not to depend on
the ordering (see: is the Java HashMap keySet() iteration order consistent?).

Example:

List<Integer> integerList = Arrays.asList(0, 1, 2, 3, 42);

// sequential
long howManyOddNumbers = integerList.stream()
 .filter(e -> (e % 2) == 1)
 .count();

System.out.println(howManyOddNumbers); // Output: 2

Live on Ideone

Parallel mode allows the use of multiple threads on multiple cores but there is no guarantee of the
order in which elements are processed.

If multiple methods are called on a sequential Stream, not every method has to be invoked. For

https://riptutorial.com/ 1009

https://docs.oracle.com/javase/8/docs/api/java/lang/AutoCloseable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/AutoCloseable.html#close--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/BaseStream.html#onClose-java.lang.Runnable-
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
http://www.riptutorial.com/java/example/2785/parallel-stream
https://docs.oracle.com/javase/8/docs/api/java/util/SortedMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://stackoverflow.com/q/1882762/1667004
http://stackoverflow.com/q/1882762/1667004
http://stackoverflow.com/q/1882762/1667004
http://stackoverflow.com/q/1882762/1667004
http://stackoverflow.com/q/1882762/1667004
https://ideone.com/FuMz1c

example, if a Stream is filtered and the number of elements is reduced to one, a subsequent call to
a method such as sort will not occur. This can increase the performance of a sequential Stream —
an optimization that is not possible with a parallel Stream.

Example:

// parallel
long howManyOddNumbersParallel = integerList.parallelStream()
 .filter(e -> (e % 2) == 1)
 .count();

System.out.println(howManyOddNumbersParallel); // Output: 2

Live on Ideone

Differences from Containers (or Collections)

While some actions can be performed on both Containers and Streams, they ultimately serve
different purposes and support different operations. Containers are more focused on how the
elements are stored and how those elements can be accessed efficiently. A Stream, on the other
hand, doesn't provide direct access and manipulation to its elements; it is more dedicated to the
group of objects as a collective entity and performing operations on that entity as a whole. Stream
and Collection are separate high-level abstractions for these differing purposes.

Collect Elements of a Stream into a Collection

Collect with toList() and toSet()

Elements from a Stream can be easily collected into a container by using the Stream.collect
operation:

System.out.println(Arrays
 .asList("apple", "banana", "pear", "kiwi", "orange")
 .stream()
 .filter(s -> s.contains("a"))
 .collect(Collectors.toList())
);
// prints: [apple, banana, pear, orange]

Other collection instances, such as a Set, can be made by using other Collectors built-in methods.
For example, Collectors.toSet() collects the elements of a Stream into a Set.

Explicit control over the implementation of List or Set

According to documentation of Collectors#toList() and Collectors#toSet(), there are no
guarantees on the type, mutability, serializability, or thread-safety of the List or Set returned.

https://riptutorial.com/ 1010

https://ideone.com/FuMz1c
http://www.riptutorial.com/java/topic/90/collections
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#toList--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#toSet--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.stream.Collector-
https://docs.oracle.com/javase/8/docs/api/java/util/Set.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#toSet--
https://docs.oracle.com/javase/8/docs/api/java/util/Set.html
https://docs.oracle.com/javase/8/docs/api/java/util/List.html
https://docs.oracle.com/javase/8/docs/api/java/util/Set.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#toList--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#toSet--
https://docs.oracle.com/javase/8/docs/api/java/util/List.html
https://docs.oracle.com/javase/8/docs/api/java/util/Set.html

For explicit control over the implementation to be returned, Collectors#toCollection(Supplier) can
be used instead, where the given supplier returns a new and empty collection.

// syntax with method reference
System.out.println(strings
 .stream()
 .filter(s -> s != null && s.length() <= 3)
 .collect(Collectors.toCollection(ArrayList::new))
);

// syntax with lambda
System.out.println(strings
 .stream()
 .filter(s -> s != null && s.length() <= 3)
 .collect(Collectors.toCollection(() -> new LinkedHashSet<>()))
);

Collecting Elements using toMap

Collector accumulates elements into a Map, Where key is the Student Id and Value is Student
Value.

 List<Student> students = new ArrayList<Student>();
 students.add(new Student(1,"test1"));
 students.add(new Student(2,"test2"));
 students.add(new Student(3,"test3"));

 Map<Integer, String> IdToName = students.stream()
 .collect(Collectors.toMap(Student::getId, Student::getName));
 System.out.println(IdToName);

Output :

{1=test1, 2=test2, 3=test3}

The Collectors.toMap has another implementation Collector<T, ?, Map<K,U>> toMap(Function<?
super T, ? extends K> keyMapper, Function<? super T, ? extends U> valueMapper, BinaryOperator<U>
mergeFunction).The mergeFunction is mostly used to select either new value or retain old value if
the key is repeated when adding a new member in the Map from a list.

The mergeFunction often looks like: (s1, s2) -> s1 to retain value corresponding to the repeated
key, or (s1, s2) -> s2 to put new value for the repeated key.

Collecting Elements to Map of Collections

Example: from ArrayList to Map<String, List<>>

Often it requires to make a map of list out of a primary list. Example: From a student of list, we
need to make a map of list of subjects for each student.

 List<Student> list = new ArrayList<>();
 list.add(new Student("Davis", SUBJECT.MATH, 35.0));
 list.add(new Student("Davis", SUBJECT.SCIENCE, 12.9));

https://riptutorial.com/ 1011

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#toCollection-java.util.function.Supplier-
http://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#toMap-java.util.function.Function-java.util.function.Function-

 list.add(new Student("Davis", SUBJECT.GEOGRAPHY, 37.0));

 list.add(new Student("Sascha", SUBJECT.ENGLISH, 85.0));
 list.add(new Student("Sascha", SUBJECT.MATH, 80.0));
 list.add(new Student("Sascha", SUBJECT.SCIENCE, 12.0));
 list.add(new Student("Sascha", SUBJECT.LITERATURE, 50.0));

 list.add(new Student("Robert", SUBJECT.LITERATURE, 12.0));

 Map<String, List<SUBJECT>> map = new HashMap<>();
 list.stream().forEach(s -> {
 map.computeIfAbsent(s.getName(), x -> new ArrayList<>()).add(s.getSubject());
 });
 System.out.println(map);

Output:

{ Robert=[LITERATURE],
Sascha=[ENGLISH, MATH, SCIENCE, LITERATURE],
Davis=[MATH, SCIENCE, GEOGRAPHY] }

Example: from ArrayList to Map<String, Map<>>

 List<Student> list = new ArrayList<>();
 list.add(new Student("Davis", SUBJECT.MATH, 1, 35.0));
 list.add(new Student("Davis", SUBJECT.SCIENCE, 2, 12.9));
 list.add(new Student("Davis", SUBJECT.MATH, 3, 37.0));
 list.add(new Student("Davis", SUBJECT.SCIENCE, 4, 37.0));

 list.add(new Student("Sascha", SUBJECT.ENGLISH, 5, 85.0));
 list.add(new Student("Sascha", SUBJECT.MATH, 1, 80.0));
 list.add(new Student("Sascha", SUBJECT.ENGLISH, 6, 12.0));
 list.add(new Student("Sascha", SUBJECT.MATH, 3, 50.0));

 list.add(new Student("Robert", SUBJECT.ENGLISH, 5, 12.0));

 Map<String, Map<SUBJECT, List<Double>>> map = new HashMap<>();

 list.stream().forEach(student -> {
 map.computeIfAbsent(student.getName(), s -> new HashMap<>())
 .computeIfAbsent(student.getSubject(), s -> new ArrayList<>())
 .add(student.getMarks());
 });

 System.out.println(map);

Output:

{ Robert={ENGLISH=[12.0]},
Sascha={MATH=[80.0, 50.0], ENGLISH=[85.0, 12.0]},
Davis={MATH=[35.0, 37.0], SCIENCE=[12.9, 37.0]} }

Cheat-Sheet

https://riptutorial.com/ 1012

Goal Code

Collect to a List Collectors.toList()

Collect to an ArrayList with pre-
allocated size

Collectors.toCollection(() -> new ArrayList<>(size))

Collect to a Set Collectors.toSet()

Collect to a Set with better iteration
performance

Collectors.toCollection(() -> new LinkedHashSet<>())

Collect to a case-insensitive
Set<String>

Collectors.toCollection(() -> new
TreeSet<>(String.CASE_INSENSITIVE_ORDER))

Collect to an EnumSet<AnEnum> (best
performance for enums)

Collectors.toCollection(() ->
EnumSet.noneOf(AnEnum.class))

Collect to a Map<K,V> with unique
keys

Collectors.toMap(keyFunc,valFunc)

Map MyObject.getter() to unique
MyObject

Collectors.toMap(MyObject::getter, Function.identity())

Map MyObject.getter() to multiple
MyObjects

Collectors.groupingBy(MyObject::getter)

Infinite Streams

It is possible to generate a Stream that does not end. Calling a terminal method on an infinite Stream
causes the Stream to enter an infinite loop. The limit method of a Stream can be used to limit the
number of terms of the Stream that Java processes.

This example generates a Stream of all natural numbers, starting with the number 1. Each
successive term of the Stream is one higher than the previous. By calling the limit method of this
Stream, only the first five terms of the Stream are considered and printed.

// Generate infinite stream - 1, 2, 3, 4, 5, 6, 7, ...
IntStream naturalNumbers = IntStream.iterate(1, x -> x + 1);

// Print out only the first 5 terms
naturalNumbers.limit(5).forEach(System.out::println);

Output:

1
2
3
4
5

https://riptutorial.com/ 1013

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#limit-long-

Another way of generating an infinite stream is using the Stream.generate method. This method
takes a lambda of type Supplier.

// Generate an infinite stream of random numbers
Stream<Double> infiniteRandomNumbers = Stream.generate(Math::random);

// Print out only the first 10 random numbers
infiniteRandomNumbers.limit(10).forEach(System.out::println);

Consuming Streams

A Stream will only be traversed when there is a terminal operation, like count(), collect() or
forEach(). Otherwise, no operation on the Stream will be performed.

In the following example, no terminal operation is added to the Stream, so the filter() operation
will not be invoked and no output will be produced because peek() is NOT a terminal operation.

IntStream.range(1, 10).filter(a -> a % 2 == 0).peek(System.out::println);

Live on Ideone

This is a Stream sequence with a valid terminal operation, thus an output is produced.

You could also use forEach instead of peek:

IntStream.range(1, 10).filter(a -> a % 2 == 0).forEach(System.out::println);

Live on Ideone

Output:

2
4
6
8

After the terminal operation is performed, the Stream is consumed and cannot be reused.

Although a given stream object cannot be reused, it's easy to create a reusable Iterable that
delegates to a stream pipeline. This can be useful for returning a modified view of a live data set
without having to collect results into a temporary structure.

List<String> list = Arrays.asList("FOO", "BAR");
Iterable<String> iterable = () -> list.stream().map(String::toLowerCase).iterator();

for (String str : iterable) {
 System.out.println(str);
}
for (String str : iterable) {
 System.out.println(str);

https://riptutorial.com/ 1014

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#generate-java.util.function.Supplier-
http://www.riptutorial.com/java/topic/91/lambda-expressions
https://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#count--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.stream.Collector-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach-java.util.function.Consumer-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#filter-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#peek-java.util.function.Consumer-
https://ideone.com/YDijRj
https://ideone.com/LzUoM6

}

Output:

foo
bar
foo
bar

This works because Iterable declares a single abstract method Iterator<T> iterator(). That
makes it effectively a functional interface, implemented by a lambda that creates a new stream on
each call.

In general, a Stream operates as shown in the following image:

NOTE: Argument checks are always performed, even without a terminal operation:

try {
 IntStream.range(1, 10).filter(null);
} catch (NullPointerException e) {
 System.out.println("We got a NullPointerException as null was passed as an argument to
filter()");
}

Live on Ideone

Output:

We got a NullPointerException as null was passed as an argument to filter()

Creating a Frequency Map

The groupingBy(classifier, downstream) collector allows the collection of Stream elements into a Map
by classifying each element in a group and performing a downstream operation on the elements
classified in the same group.

A classic example of this principle is to use a Map to count the occurrences of elements in a Stream.
In this example, the classifier is simply the identity function, which returns the element as-is. The
downstream operation counts the number of equal elements, using counting().

Stream.of("apple", "orange", "banana", "apple")
 .collect(Collectors.groupingBy(Function.identity(), Collectors.counting()))

https://riptutorial.com/ 1015

https://i.stack.imgur.com/lrwjM.jpg
https://ideone.com/zrkoRz
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#groupingBy-java.util.function.Function-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#counting--

 .entrySet()
 .forEach(System.out::println);

The downstream operation is itself a collector (Collectors.counting()) that operates on elements of
type String and produces a result of type Long. The result of the collect method call is a
Map<String, Long>.

This would produce the following output:

banana=1
orange=1
apple=2

Parallel Stream

Note: Before deciding which Stream to use please have a look at ParallelStream vs Sequential
Stream behavior.

When you want to perform Stream operations concurrently, you could use either of these ways.

List<String> data = Arrays.asList("One", "Two", "Three", "Four", "Five");
Stream<String> aParallelStream = data.stream().parallel();

Or:

Stream<String> aParallelStream = data.parallelStream();

To execute the operations defined for the parallel stream, call a terminal operator:

aParallelStream.forEach(System.out::println);

(A possible) output from the parallel Stream:

Three
Four
One
Two
Five

The order might change as all the elements are processed in parallel (Which may make it faster).
Use parallelStream when ordering does not matter.

Performance impact

In case networking is involved, parallel Streams may degrade the overall performance of an
application because all parallel Streams use a common fork-join thread pool for the network.

On the other hand, parallel Streams may significantly improve performance in many other cases,

https://riptutorial.com/ 1016

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#counting--
http://stackoverflow.com/a/20375622/585398
http://stackoverflow.com/a/20375622/585398
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#parallelStream--

depending of the number of available cores in the running CPU at the moment.

Converting a Stream of Optional to a Stream of Values

You may need to convert a Stream emitting Optional to a Stream of values, emitting only values from
existing Optional. (ie: without null value and not dealing with Optional.empty()).

 Optional<String> op1 = Optional.empty();
 Optional<String> op2 = Optional.of("Hello World");

 List<String> result = Stream.of(op1, op2)
 .filter(Optional::isPresent)
 .map(Optional::get)
 .collect(Collectors.toList());

 System.out.println(result); //[Hello World]

Creating a Stream

All java Collection<E>s have stream() and parallelStream() methods from which a Stream<E> can be
constructed:

Collection<String> stringList = new ArrayList<>();
Stream<String> stringStream = stringList.parallelStream();

A Stream<E> can be created from an array using one of two methods:

String[] values = { "aaa", "bbbb", "ddd", "cccc" };
Stream<String> stringStream = Arrays.stream(values);
Stream<String> stringStreamAlternative = Stream.of(values);

The difference between Arrays.stream() and Stream.of() is that Stream.of() has a varargs
parameter, so it can be used like:

Stream<Integer> integerStream = Stream.of(1, 2, 3);

There are also primitive Streams that you can use. For example:

IntStream intStream = IntStream.of(1, 2, 3);
DoubleStream doubleStream = DoubleStream.of(1.0, 2.0, 3.0);

These primitive streams can also be constructed using the Arrays.stream() method:

IntStream intStream = Arrays.stream(new int[]{ 1, 2, 3 });

It is possible to create a Stream from an array with a specified range.

int[] values= new int[]{1, 2, 3, 4, 5};
IntStream intStram = Arrays.stream(values, 1, 3);

https://riptutorial.com/ 1017

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#empty--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#parallelStream--
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#stream-T:A-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of-T...-

Note that any primitive stream can be converted to boxed type stream using the boxed method :

Stream<Integer> integerStream = intStream.boxed();

This can be useful in some case if you want to collect the data since primitive stream does not
have any collect method that takes a Collector as argument.

Reusing intermediate operations of a stream chain

Stream is closed when ever terminal operation is called. Reusing the stream of intermediate
operations, when only terminal operation is only varying. we could create a stream supplier to
construct a new stream with all intermediate operations already set up.

Supplier<Stream<String>> streamSupplier = () -> Stream.of("apple", "banana","orange",
"grapes", "melon","blueberry","blackberry")
.map(String::toUpperCase).sorted();

 streamSupplier.get().filter(s -> s.startsWith("A")).forEach(System.out::println);

// APPLE

 streamSupplier.get().filter(s -> s.startsWith("B")).forEach(System.out::println);

 // BANANA
 // BLACKBERRY
 // BLUEBERRY

int[] arrays can be converted to List<Integer> using streams

int[] ints = {1,2,3};
List<Integer> list = IntStream.of(ints).boxed().collect(Collectors.toList());

Finding Statistics about Numerical Streams

Java 8 provides classes called IntSummaryStatistics, DoubleSummaryStatistics and
LongSummaryStatistics which give a state object for collecting statistics such as count, min, max, sum,
and average.

Java SE 8

List<Integer> naturalNumbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
IntSummaryStatistics stats = naturalNumbers.stream()
 .mapToInt((x) -> x)
 .summaryStatistics();
System.out.println(stats);

Which will result in:

Java SE 8

IntSummaryStatistics{count=10, sum=55, min=1, max=10, average=5.500000}

https://riptutorial.com/ 1018

http://docs.oracle.com/javase/8/docs/api/java/util/IntSummaryStatistics.html
https://docs.oracle.com/javase/8/docs/api/java/util/DoubleSummaryStatistics.html
https://docs.oracle.com/javase/8/docs/api/java/util/LongSummaryStatistics.html

Get a Slice of a Stream

Example: Get a Stream of 30 elements, containing 21st to 50th (inclusive) element of a collection.

final long n = 20L; // the number of elements to skip
final long maxSize = 30L; // the number of elements the stream should be limited to
final Stream<T> slice = collection.stream().skip(n).limit(maxSize);

Notes:

IllegalArgumentException is thrown if n is negative or maxSize is negative•
both skip(long) and limit(long) are intermediate operations•
if a stream contains fewer than n elements then skip(n) returns an empty stream•
both skip(long) and limit(long) are cheap operations on sequential stream pipelines, but
can be quite expensive on ordered parallel pipelines

•

Concatenate Streams

Variable declaration for examples:

Collection<String> abc = Arrays.asList("a", "b", "c");
Collection<String> digits = Arrays.asList("1", "2", "3");
Collection<String> greekAbc = Arrays.asList("alpha", "beta", "gamma");

Example 1 - Concatenate two Streams

final Stream<String> concat1 = Stream.concat(abc.stream(), digits.stream());

concat1.forEach(System.out::print);
// prints: abc123

Example 2 - Concatenate more than two Streams

final Stream<String> concat2 = Stream.concat(
 Stream.concat(abc.stream(), digits.stream()),
 greekAbc.stream());

System.out.println(concat2.collect(Collectors.joining(", ")));
// prints: a, b, c, 1, 2, 3, alpha, beta, gamma

Alternatively to simplify the nested concat() syntax the Streams can also be concatenated with
flatMap():

final Stream<String> concat3 = Stream.of(
 abc.stream(), digits.stream(), greekAbc.stream())
 .flatMap(s -> s);
 // or `.flatMap(Function.identity());` (java.util.function.Function)

System.out.println(concat3.collect(Collectors.joining(", ")));
// prints: a, b, c, 1, 2, 3, alpha, beta, gamma

https://riptutorial.com/ 1019

Be careful when constructing Streams from repeated concatenation, because accessing an
element of a deeply concatenated Stream can result in deep call chains or even a
StackOverflowException.

IntStream to String

Java does not have a Char Stream, so when working with Strings and constructing a Stream of
Characters, an option is to get a IntStream of code points using String.codePoints() method. So
IntStream can be obtained as below:

public IntStream stringToIntStream(String in) {
 return in.codePoints();
}

It is a bit more involved to do the conversion other way around i.e. IntStreamToString. That can be
done as follows:

public String intStreamToString(IntStream intStream) {
 return intStream.collect(StringBuilder::new, StringBuilder::appendCodePoint,
StringBuilder::append).toString();
}

Sort Using Stream

List<String> data = new ArrayList<>();
data.add("Sydney");
data.add("London");
data.add("New York");
data.add("Amsterdam");
data.add("Mumbai");
data.add("California");

System.out.println(data);

List<String> sortedData = data.stream().sorted().collect(Collectors.toList());

System.out.println(sortedData);

Output:

[Sydney, London, New York, Amsterdam, Mumbai, California]
[Amsterdam, California, London, Mumbai, New York, Sydney]

It's also possible to use different comparison mechanism as there is a overloaded sorted version
which takes a comparator as its argument.

Also, you can use a lambda expression for sorting:

List<String> sortedData2 = data.stream().sorted((s1,s2) ->
s2.compareTo(s1)).collect(Collectors.toList());

https://riptutorial.com/ 1020

https://docs.oracle.com/javase/8/docs/api/java/util/stream/IntStream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted-java.util.Comparator-

This would output [Sydney, New York, Mumbai, London, California, Amsterdam]

You can use Comparator.reverseOrder() to have a comparator that imposes the reverse of the
natural ordering.

List<String> reverseSortedData =
data.stream().sorted(Comparator.reverseOrder()).collect(Collectors.toList());

Streams of Primitives

Java provides specialized Streams for three types of primitives IntStream (for ints), LongStream (for
longs) and DoubleStream (for doubles). Besides being optimized implementations for their respective
primitives, they also provide several specific terminal methods, typically for mathematical
operations. E.g.:

IntStream is = IntStream.of(10, 20, 30);
double average = is.average().getAsDouble(); // average is 20.0

Collect Results of a Stream into an Array

Analog to get a collection for a Stream by collect() an array can be obtained by the
Stream.toArray() method:

List<String> fruits = Arrays.asList("apple", "banana", "pear", "kiwi", "orange");

String[] filteredFruits = fruits.stream()
 .filter(s -> s.contains("a"))
 .toArray(String[]::new);

// prints: [apple, banana, pear, orange]
System.out.println(Arrays.toString(filteredFruits));

String[]::new is a special kind of method reference: a constructor reference.

Finding the First Element that Matches a Predicate

It is possible to find the first element of a Stream that matches a condition.

For this example, we will find the first Integer whose square is over 50000.

IntStream.iterate(1, i -> i + 1) // Generate an infinite stream 1,2,3,4...
 .filter(i -> (i*i) > 50000) // Filter to find elements where the square is >50000
 .findFirst(); // Find the first filtered element

This expression will return an OptionalInt with the result.

Note that with an infinite Stream, Java will keep checking each element until it finds a result. With a
finite Stream, if Java runs out of elements but still can't find a result, it returns an empty OptionalInt.

https://riptutorial.com/ 1021

Using IntStream to iterate over indexes

Streams of elements usually do not allow access to the index value of the current item. To iterate
over an array or ArrayList while having access to indexes, use IntStream.range(start,
endExclusive).

String[] names = { "Jon", "Darin", "Bauke", "Hans", "Marc" };

IntStream.range(0, names.length)
 .mapToObj(i -> String.format("#%d %s", i + 1, names[i]))
 .forEach(System.out::println);

The range(start, endExclusive) method returns another ÌntStream and the mapToObj(mapper) returns
a stream of String.

Output:

#1 Jon
#2 Darin
#3 Bauke
#4 Hans
#5 Marc

This is very similar to using a normal for loop with a counter, but with the benefit of pipelining and
parallelization:

for (int i = 0; i < names.length; i++) {
 String newName = String.format("#%d %s", i + 1, names[i]);
 System.out.println(newName);
}

Flatten Streams with flatMap()

A Stream of items that are in turn streamable can be flattened into a single continuous Stream:

Array of List of Items can be converted into a single List.

List<String> list1 = Arrays.asList("one", "two");
 List<String> list2 = Arrays.asList("three","four","five");
 List<String> list3 = Arrays.asList("six");
 List<String> finalList = Stream.of(list1, list2,
list3).flatMap(Collection::stream).collect(Collectors.toList());
System.out.println(finalList);

// [one, two, three, four, five, six]

Map containing List of Items as values can be Flattened to a Combined List

Map<String, List<Integer>> map = new LinkedHashMap<>();
map.put("a", Arrays.asList(1, 2, 3));
map.put("b", Arrays.asList(4, 5, 6));

https://riptutorial.com/ 1022

https://docs.oracle.com/javase/8/docs/api/java/util/stream/IntStream.html#range-int-int-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/IntStream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/IntStream.html#mapToObj-java.util.function.IntFunction-

List<Integer> allValues = map.values() // Collection<List<Integer>>
 .stream() // Stream<List<Integer>>
 .flatMap(List::stream) // Stream<Integer>
 .collect(Collectors.toList());

System.out.println(allValues);
// [1, 2, 3, 4, 5, 6]

List of Map can be flattened into a single continuous Stream

List<Map<String, String>> list = new ArrayList<>();
Map<String,String> map1 = new HashMap();
map1.put("1", "one");
map1.put("2", "two");

Map<String,String> map2 = new HashMap();
map2.put("3", "three");
map2.put("4", "four");
list.add(map1);
list.add(map2);

Set<String> output= list.stream() // Stream<Map<String, String>>
 .map(Map::values) // Stream<List<String>>
 .flatMap(Collection::stream) // Stream<String>
 .collect(Collectors.toSet()); //Set<String>
// [one, two, three,four]

Create a Map based on a Stream

Simple case without duplicate keys

Stream<String> characters = Stream.of("A", "B", "C");

Map<Integer, String> map = characters
 .collect(Collectors.toMap(element -> element.hashCode(), element -> element));
// map = {65=A, 66=B, 67=C}

To make things more declarative, we can use static method in Function interface -
Function.identity(). We can replace this lambda element -> element with Function.identity().

Case where there might be duplicate keys

The javadoc for Collectors.toMap states:

If the mapped keys contains duplicates (according to Object.equals(Object)), an
IllegalStateException is thrown when the collection operation is performed. If the
mapped keys may have duplicates, use toMap(Function, Function, BinaryOperator)
instead.

Stream<String> characters = Stream.of("A", "B", "B", "C");

Map<Integer, String> map = characters

https://riptutorial.com/ 1023

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html#identity--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#toMap-java.util.function.Function-java.util.function.Function-java.util.function.BinaryOperator-

 .collect(Collectors.toMap(
 element -> element.hashCode(),
 element -> element,
 (existingVal, newVal) -> (existingVal + newVal)));

// map = {65=A, 66=BB, 67=C}

The BinaryOperator passed to Collectors.toMap(...) generates the value to be stored in the case of
a collision. It can:

return the old value, so that the first value in the stream takes precedence,•
return the new value, so that the last value in the stream takes precedence, or•
combine the old and new values•

Grouping by value

You can use Collectors.groupingBy when you need to perform the equivalent of a database
cascaded "group by" operation. To illustrate, the following creates a map in which people's names
are mapped to surnames:

List<Person> people = Arrays.asList(
 new Person("Sam", "Rossi"),
 new Person("Sam", "Verdi"),
 new Person("John", "Bianchi"),
 new Person("John", "Rossi"),
 new Person("John", "Verdi")
);

Map<String, List<String>> map = people.stream()
 .collect(
 // function mapping input elements to keys
 Collectors.groupingBy(Person::getName,
 // function mapping input elements to values,
 // how to store values
 Collectors.mapping(Person::getSurname, Collectors.toList()))
);

// map = {John=[Bianchi, Rossi, Verdi], Sam=[Rossi, Verdi]}

Live on Ideone

Generating random Strings using Streams

It is sometimes useful to create random Strings, maybe as Session-ID for a web-service or an
initial password after registration for an application. This can be easily achieved using Streams.

First we need to initialize a random number generator. To enhance security for the generated
Strings, it is a good idea to use SecureRandom.

Note: Creating a SecureRandom is quite expensive, so it is best practice to only do this once and call
one of its setSeed() methods from time to time to reseed it.

private static final SecureRandom rng = new SecureRandom(SecureRandom.generateSeed(20));

https://riptutorial.com/ 1024

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#groupingBy-java.util.function.Function-java.util.stream.Collector-
https://ideone.com/2Ar9IA

//20 Bytes as a seed is rather arbitrary, it is the number used in the JavaDoc example

When creating random Strings, we usually want them to use only certain characters (e.g. only
letters and digits). Therefore we can create a method returning a boolean which can later be used
to filter the Stream.

//returns true for all chars in 0-9, a-z and A-Z
boolean useThisCharacter(char c){
 //check for range to avoid using all unicode Letter (e.g. some chinese symbols)
 return c >= '0' && c <= 'z' && Character.isLetterOrDigit(c);
}

Next we can utilize the RNG to generate a random String of specific length containing the charset
which pass our useThisCharacter check.

public String generateRandomString(long length){
 //Since there is no native CharStream, we use an IntStream instead
 //and convert it to a Stream<Character> using mapToObj.
 //We need to specify the boundaries for the int values to ensure they can safely be cast
to char
 Stream<Character> randomCharStream = rng.ints(Character.MIN_CODE_POINT,
Character.MAX_CODE_POINT).mapToObj(i -> (char)i).filter(c ->
this::useThisCharacter).limit(length);

 //now we can use this Stream to build a String utilizing the collect method.
 String randomString = randomCharStream.collect(StringBuilder::new, StringBuilder::append,
StringBuilder::append).toString();
 return randomString;
}

Using Streams to Implement Mathematical Functions

Streams, and especially IntStreams, are an elegant way of implementing summation terms (∑). The
ranges of the Stream can be used as the bounds of the summation.

E.g., Madhava's approximation of Pi is given by the formula (Source: wikipedia):

This can be calculated with an arbitrary precision. E.g., for 101 terms:

double pi = Math.sqrt(12) *
 IntStream.rangeClosed(0, 100)
 .mapToDouble(k -> Math.pow(-3, -1 * k) / (2 * k + 1))
 .sum();

Note: With double's precision, selecting an upper bound of 29 is sufficient to get a result that's
indistinguishable from Math.Pi.

Using Streams and Method References to Write Self-Documenting Processes

https://riptutorial.com/ 1025

https://en.wikipedia.org/wiki/Approximations_of_%CF%80
http://i.stack.imgur.com/XY9Kr.png

Method references make excellent self-documenting code, and using method references with
Streams makes complicated processes simple to read and understand. Consider the following
code:

public interface Ordered {
 default int getOrder(){
 return 0;
 }
}

public interface Valued<V extends Ordered> {
 boolean hasPropertyTwo();
 V getValue();
}

public interface Thing<V extends Ordered> {
 boolean hasPropertyOne();
 Valued<V> getValuedProperty();
}

public <V extends Ordered> List<V> myMethod(List<Thing<V>> things) {
 List<V> results = new ArrayList<V>();
 for (Thing<V> thing : things) {
 if (thing.hasPropertyOne()) {
 Valued<V> valued = thing.getValuedProperty();
 if (valued != null && valued.hasPropertyTwo()){
 V value = valued.getValue();
 if (value != null){
 results.add(value);
 }
 }
 }
 }
 results.sort((a, b)->{
 return Integer.compare(a.getOrder(), b.getOrder());
 });
 return results;
}

This last method rewritten using Streams and method references is much more legible and each
step of the process is quickly and easily understood - it's not just shorter, it also shows at a glance
which interfaces and classes are responsible for the code in each step:

public <V extends Ordered> List<V> myMethod(List<Thing<V>> things) {
 return things.stream()
 .filter(Thing::hasPropertyOne)
 .map(Thing::getValuedProperty)
 .filter(Objects::nonNull)
 .filter(Valued::hasPropertyTwo)
 .map(Valued::getValue)
 .filter(Objects::nonNull)
 .sorted(Comparator.comparing(Ordered::getOrder))
 .collect(Collectors.toList());
}

Using Streams of Map.Entry to Preserve Initial Values after Mapping

https://riptutorial.com/ 1026

When you have a Stream you need to map but want to preserve the initial values as well, you can
map the Stream to a Map.Entry<K,V> using a utility method like the following:

public static <K, V> Function<K, Map.Entry<K, V>> entryMapper(Function<K, V> mapper){
 return (k)->new AbstractMap.SimpleEntry<>(k, mapper.apply(k));
}

Then you can use your converter to process Streams having access to both the original and
mapped values:

Set<K> mySet;
Function<K, V> transformer = SomeClass::transformerMethod;
Stream<Map.Entry<K, V>> entryStream = mySet.stream()
 .map(entryMapper(transformer));

You can then continue to process that Stream as normal. This avoids the overhead of creating an
intermediate collection.

Stream operations categories

Stream operations fall into two main categories, intermediate and terminal operations, and two
sub-categories, stateless and stateful.

Intermediate Operations:

An intermediate operation is always lazy, such as a simple Stream.map. It is not invoked until the
stream is actually consumed. This can be verified easily:

Arrays.asList(1, 2 ,3).stream().map(i -> {
 throw new RuntimeException("not gonna happen");
 return i;
});

Intermediate operations are the common building blocks of a stream, chained after the source and
are usually followed by a terminal operation triggering the stream chain.

Terminal Operations

Terminal operations are what triggers the consumption of a stream. Some of the more common
are Stream.forEach or Stream.collect. They are usually placed after a chain of intermediate
operations and are almost always eager.

https://riptutorial.com/ 1027

Stateless Operations

Statelessness means that each item is processed without the context of other items. Stateless
operations allow for memory-efficient processing of streams. Operations like Stream.map and
Stream.filter that do not require information on other items of the stream are considered to be
stateless.

Stateful operations

Statefulness means the operation on each item depends on (some) other items of the stream. This
requires a state to be preserved. Statefulness operations may break with long, or infinite, streams.
Operations like Stream.sorted require the entirety of the stream to be processed before any item is
emitted which will break in a long enough stream of items. This can be demonstrated by a long
stream (run at your own risk):

// works - stateless stream
long BIG_ENOUGH_NUMBER = 999999999;
IntStream.iterate(0, i -> i + 1).limit(BIG_ENOUGH_NUMBER).forEach(System.out::println);

This will cause an out-of-memory due to statefulness of Stream.sorted:

// Out of memory - stateful stream
IntStream.iterate(0, i -> i +
1).limit(BIG_ENOUGH_NUMBER).sorted().forEach(System.out::println);

Converting an iterator to a stream

Use Spliterators.spliterator() or Spliterators.spliteratorUnknownSize() to convert an iterator to a
stream:

Iterator<String> iterator = Arrays.asList("A", "B", "C").iterator();
Spliterator<String> spliterator = Spliterators.spliteratorUnknownSize(iterator, 0);
Stream<String> stream = StreamSupport.stream(spliterator, false);

Reduction with Streams

Reduction is the process of applying a binary operator to every element of a stream to result in
one value.

The sum() method of an IntStream is an example of a reduction; it applies addition to every term of
the Stream, resulting in one final value:

https://riptutorial.com/ 1028

This is equivalent to (((1+2)+3)+4)

The reduce method of a Stream allows one to create a custom reduction. It is possible to use the
reduce method to implement the sum() method:

IntStream istr;

//Initialize istr

OptionalInt istr.reduce((a,b)->a+b);

The Optional version is returned so that empty Streams can be handled appropriately.

Another example of reduction is combining a Stream<LinkedList<T>> into a single LinkedList<T>:

https://riptutorial.com/ 1029

http://i.stack.imgur.com/2Krwx.png

Stream<LinkedList<T>> listStream;

//Create a Stream<LinkedList<T>>

Optional<LinkedList<T>> bigList = listStream.reduce((LinkedList<T> list1, LinkedList<T>
list2)->{
 LinkedList<T> retList = new LinkedList<T>();
 retList.addAll(list1);
 retList.addAll(list2);
 return retList;
});

You can also provide an identity element. For example, the identity element for addition is 0, as
x+0==x. For multiplication, the identity element is 1, as x*1==x. In the case above, the identity
element is an empty LinkedList<T>, because if you add an empty list to another list, the list that you
are "adding" to doesn't change:

Stream<LinkedList<T>> listStream;

//Create a Stream<LinkedList<T>>

LinkedList<T> bigList = listStream.reduce(new LinkedList<T>(), (LinkedList<T> list1,
LinkedList<T> list2)->{
 LinkedList<T> retList = new LinkedList<T>();
 retList.addAll(list1);
 retList.addAll(list2);
 return retList;
});

Note that when an identity element is provided, the return value is not wrapped in an Optional—if
called on an empty stream, reduce() will return the identity element.

The binary operator must also be associative, meaning that (a+b)+c==a+(b+c). This is because the
elements may be reduced in any order. For example, the above addition reduction could be
performed like this:

https://riptutorial.com/ 1030

This reduction is equivalent to writing ((1+2)+(3+4)). The property of associativity also allows Java
to reduce the Stream in parallel—a portion of the Stream can be reduced by each processor, with a
reduction combining the result of each processor at the end.

Joining a stream to a single String

A use case that comes across frequently, is creating a String from a stream, where the stream-
items are separated by a certain character. The Collectors.joining() method can be used for this,
like in the following example:

Stream<String> fruitStream = Stream.of("apple", "banana", "pear", "kiwi", "orange");

String result = fruitStream.filter(s -> s.contains("a"))
 .map(String::toUpperCase)
 .sorted()
 .collect(Collectors.joining(", "));

System.out.println(result);

Output:

APPLE, BANANA, ORANGE, PEAR

The Collectors.joining() method can also cater for pre- and postfixes:

https://riptutorial.com/ 1031

http://i.stack.imgur.com/sCqVF.png

String result = fruitStream.filter(s -> s.contains("e"))
 .map(String::toUpperCase)
 .sorted()
 .collect(Collectors.joining(", ", "Fruits: ", "."));

System.out.println(result);

Output:

Fruits: APPLE, ORANGE, PEAR.

Live on Ideone

Read Streams online: https://riptutorial.com/java/topic/88/streams

https://riptutorial.com/ 1032

http://ideone.com/e.js/MH4kmG
https://riptutorial.com/java/topic/88/streams

Chapter 163: String Tokenizer

Introduction

The java.util.StringTokenizer class allows you to break a string into tokens. It is simple way to
break string.

The set of delimiters (the characters that separate tokens) may be specified either at creation time
or on a per-token basis.

Examples

StringTokenizer Split by space

import java.util.StringTokenizer;
public class Simple{
 public static void main(String args[]){
 StringTokenizer st = new StringTokenizer("apple ball cat dog"," ");
 while (st.hasMoreTokens()) {
 System.out.println(st.nextToken());
 }
 }
}

Output:

apple

ball

cat

dog

StringTokenizer Split by comma ','

public static void main(String args[]) {
 StringTokenizer st = new StringTokenizer("apple,ball cat,dog", ",");
 while (st.hasMoreTokens()) {
 System.out.println(st.nextToken());
 }
 }

Output:

apple

ball cat

https://riptutorial.com/ 1033

dog

Read String Tokenizer online: https://riptutorial.com/java/topic/10563/string-tokenizer

https://riptutorial.com/ 1034

https://riptutorial.com/java/topic/10563/string-tokenizer

Chapter 164: StringBuffer

Introduction

Introduction to Java StringBuffer class.

Examples

String Buffer class

Key Points :-

used to created mutable (modifiable) string.•

Mutable :- Which can be changed.•

is thread-safe i.e. multiple threads cannot access it simultaneously.•

Methods :-

public synchronized StringBuffer append(String s)•

public synchronized StringBuffer insert(int offset, String s)•

public synchronized StringBuffer replace(int startIndex, int endIndex, String str)•

public synchronized StringBuffer delete(int startIndex, int endIndex)•

public synchronized StringBuffer reverse()•

public int capacity()•

public void ensureCapacity(int minimumCapacity)•

public char charAt(int index)•

public int length()•

public String substring(int beginIndex)•

public String substring(int beginIndex, int endIndex)•

Example Showing diffrence between String and String Buffer implementation :-

class Test {
 public static void main(String args[])
 {
 String str = "study";
 str.concat("tonight");

https://riptutorial.com/ 1035

 System.out.println(str); // Output: study

 StringBuffer strB = new StringBuffer("study");
 strB.append("tonight");
 System.out.println(strB); // Output: studytonight
 }
}

Read StringBuffer online: https://riptutorial.com/java/topic/10757/stringbuffer

https://riptutorial.com/ 1036

https://riptutorial.com/java/topic/10757/stringbuffer

Chapter 165: StringBuilder

Introduction

Java StringBuilder class is used to create mutable (modifiable) string. The Java StringBuilder class
is same as StringBuffer class except that it is non-synchronized. It is available since JDK 1.5.

Syntax

new StringBuilder ()•

new StringBuilder (int capacity)•

new StringBuilder (CharSequence seq)•

new StringBuilder (StringBuilder builder)•

new StringBuilder (String string)•

new StringJoiner (CharSequence delimiter)•

new StringJoiner (CharSequence delimiter, CharSequence prefix, CharSequence suffix)•

Remarks

Creating a new StringBuilder with type char as a parameter would result in calling the constructor
with argument int capacity and not the one with argument String string:

 StringBuilder v = new StringBuilder('I'); //'I' is a character, "I" is a String.
 System.out.println(v.capacity()); --> output 73
 System.out.println(v.toString()); --> output nothing

Examples

Repeat a String n times

Problem: Create a String containing n repetitions of a String s.

The trivial approach would be repeatedly concatenating the String

final int n = ...
final String s = ...
String result = "";

for (int i = 0; i < n; i++) {
 result += s;

https://riptutorial.com/ 1037

}

This creates n new string instances containing 1 to n repetitions of s resulting in a runtime of
O(s.length() * n²) = O(s.length() * (1+2+...+(n-1)+n)).

To avoid this StringBuilder should be used, which allows creating the String in O(s.length() * n)
instead:

final int n = ...
final String s = ...

StringBuilder builder = new StringBuilder();

for (int i = 0; i < n; i++) {
 builder.append(s);
}

String result = builder.toString();

Comparing StringBuffer, StringBuilder, Formatter and StringJoiner

The StringBuffer, StringBuilder, Formatter and StringJoiner classes are Java SE utility classes that
are primarily used for assembling strings from other information:

The StringBuffer class has been present since Java 1.0, and provides a variety of methods
for building and modifying a "buffer" containing a sequence of characters.

•

The StringBuilder class was added in Java 5 to address performance issues with the original
StringBuffer class. The APIs for the two clases are essentially the same. The main
difference between StringBuffer and StringBuilder is that the former is thread-safe and
synchronized and the latter is not.

•

This example shows how StringBuilder is can be used:

int one = 1;
String color = "red";
StringBuilder sb = new StringBuilder();
sb.append("One=").append(one).append(", Color=").append(color).append('\n');
System.out.print(sb);
// Prints "One=1, Colour=red" followed by an ASCII newline.

(The StringBuffer class is used the same way: just change StringBuilder to StringBuffer in the
above)

The StringBuffer and StringBuilder classes are suitable for both assembling and modifying strings;
i.e they provide methods for replacing and removing characters as well as adding them in various.
The remining two classes are specific to the task of assembling strings.

The Formatter class was added in Java 5, and is loosely modeled on the sprintf function in
the C standard library. It takes a format string with embedded format specifiers and a
sequences of other arguments, and generates a string by converting the arguments into text

•

https://riptutorial.com/ 1038

and substituting them in place of the format specifiers. The details of the format specifiers
say how the arguments are converted into text.

The StringJoiner class was added in Java 8. It is a special purpose formatter that succinctly
formats a sequence of strings with separators between them. It is designed with a fluent API,
and can be used with Java 8 streams.

•

Here are some typical examples of Formatter usage:

// This does the same thing as the StringBuilder example above
int one = 1;
String color = "red";
Formatter f = new Formatter();
System.out.print(f.format("One=%d, colour=%s%n", one, color));
// Prints "One=1, Colour=red" followed by the platform's line separator

// The same thing using the `String.format` convenience method
System.out.print(String.format("One=%d, color=%s%n", one, color));

The StringJoiner class is not ideal for the above task, so here is an example of a formatting an
array of strings.

StringJoiner sj = new StringJoiner(", ", "[", "]");
for (String s : new String[]{"A", "B", "C"}) {
 sj.add(s);
}
System.out.println(sj);
// Prints "[A, B, C]"

The use-cases for the 4 classes can be summarized:

StringBuilder suitable for any string assembly OR string modification task.•
StringBuffer use (only) when you require a thread-safe version of StringBuilder.•
Formatter provides much richer string formatting functionality, but is not as efficient as
StringBuilder. This is because each call to Formatter.format(...) entails:

parsing the format string,○

creating and populate a varargs array, and○

autoboxing any primitive type arguments.○

•

StringJoiner provides succinct and efficient formatting of a sequence of strings with
separators, but is not suitable for other formatting tasks.

•

Read StringBuilder online: https://riptutorial.com/java/topic/1037/stringbuilder

https://riptutorial.com/ 1039

https://riptutorial.com/java/topic/1037/stringbuilder

Chapter 166: Strings

Introduction

Strings (java.lang.String) are pieces of text stored in your program. Strings are not a primitive
data type in Java, however, they are very common in Java programs.

In Java, Strings are immutable, meaning that they cannot be changed. (Click here for a more
thorough explanation of immutability.)

Remarks

Since Java strings are immutable, all methods which manipulate a String will return a new String
object. They do not change the original String. This includes to substring and replacement
methods that C and C++ programers would expect to mutate the target String object.

Use a StringBuilder instead of String if you want to concatenate more than two String objects
whose values cannot be determined at compile-time. This technique is more performant than
creating new String objects and concatenating them because StringBuilder is mutable.

StringBuffer can also be used to concatenate String objects. However, this class is less
performant because it is designed to be thread-safe, and acquires a mutex before each operation.
Since you almost never need thread-safety when concatenating strings, it is best to use
StringBuilder.

If you can express a string concatenation as a single expression, then it is better to use the +
operator. The Java compiler will convert an expression containing + concatenations into an
efficient sequence of operations using either String.concat(...) or StringBuilder. The advice to
use StringBuilder explicitly only applies when the concatenation involves a multiple expressions.

Don't store sensitive information in strings. If someone is able to obtain a memory dump of your
running application, then they will be able to find all of the existing String objects and read their
contents. This includes String objects that are unreachable and are awaiting garbage collection. If
this is a concern, you will need to wipe sensitive string data as soon as you are done with it. You
cannot do this with String objects since they are immutable. Therefore, it is advisable to use a
char[] objects to hold sensitive character data, and wipe them (e.g. overwrite them with '\000'
characters) when you are done.

All String instances are created on the heap, even instances that correspond to string literals. The
special thing about string literals is that the JVM ensures that all literals that are equal (i.e. that
consists of the same characters) are represented by a single String object (this behavior is
specified in JLS). This is implemented by JVM class loaders. When a class loader loads a class, it
scans for string literals that are used in the class definition, each time it sees one, it checks if there

https://riptutorial.com/ 1040

http://stackoverflow.com/questions/10430582/primitive-data-types-in-java
http://stackoverflow.com/questions/10430582/primitive-data-types-in-java
http://stackoverflow.com/questions/279507/what-is-meant-by-immutable
https://en.wikipedia.org/wiki/Immutable_object
https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/StringBuilder.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/StringBuffer.html

is already a record in the string pool for this literal (using the literal as a key). If there is already an
entry for the literal, the reference to a String instance stored as the pair for that literal is used.
Otherwise, a new String instance is created and a reference to the instance is stored for the literal
(used as a key) in the string pool. (Also see string interning).

The string pool is held in the Java heap, and is subject to normal garbage collection.

Java SE 7

In releases of Java before Java 7, the string pool was held in a special part of the heap known as
"PermGen". This part was only collected occasionally.

Java SE 7

In Java 7, the string pool was moved off from "PermGen".

Note that string literals are implicitly reachable from any method that uses them. This means that
the corresponding String objects can only be garbage collected if the code itself is garbage
collected.

Up until Java 8, String objects are implemented as a UTF-16 char array (2 bytes per char). There
is a proposal in Java 9 to implement String as a byte array with an encoding flag field to note if the
string is encoded as bytes (LATIN-1) or chars (UTF-16).

Examples

Comparing Strings

In order to compare Strings for equality, you should use the String object's equals or
equalsIgnoreCase methods.

For example, the following snippet will determine if the two instances of String are equal on all
characters:

String firstString = "Test123";
String secondString = "Test" + 123;

if (firstString.equals(secondString)) {
 // Both Strings have the same content.
}

Live demo

This example will compare them, independent of their case:

String firstString = "Test123";
String secondString = "TEST123";

if (firstString.equalsIgnoreCase(secondString)) {

https://riptutorial.com/ 1041

https://en.wikipedia.org/wiki/String_interning
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#equals-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#equalsIgnoreCase-java.lang.String-
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://ideone.com/TjaYMR

 // Both Strings are equal, ignoring the case of the individual characters.
}

Live demo

Note that equalsIgnoreCase does not let you specify a Locale. For instance, if you compare the two
words "Taki" and "TAKI" in English they are equal; however, in Turkish they are different (in
Turkish, the lowercase I is ı). For cases like this, converting both strings to lowercase (or
uppercase) with Locale and then comparing with equals is the solution.

String firstString = "Taki";
String secondString = "TAKI";

System.out.println(firstString.equalsIgnoreCase(secondString)); //prints true

Locale locale = Locale.forLanguageTag("tr-TR");

System.out.println(firstString.toLowerCase(locale).equals(
 secondString.toLowerCase(locale))); //prints false

Live demo

Do not use the == operator to compare
Strings

Unless you can guarantee that all strings have been interned (see below), you should not use the
== or != operators to compare Strings. These operators actually test references, and since multiple
String objects can represent the same String, this is liable to give the wrong answer.

Instead, use the String.equals(Object) method, which will compare the String objects based on
their values. For a detailed explanation, please refer to Pitfall: using == to compare strings.

Comparing Strings in a switch statement

Java SE 7

As of Java 1.7, it is possible to compare a String variable to literals in a switch statement. Make
sure that the String is not null, otherwise it will always throw a NullPointerException. Values are
compared using String.equals, i.e. case sensitive.

String stringToSwitch = "A";

switch (stringToSwitch) {
 case "a":
 System.out.println("a");
 break;

https://riptutorial.com/ 1042

https://ideone.com/XxKmM1
https://ideone.com/uWc348
http://www.riptutorial.com/java/example/16290/pitfall--using----to-compare-strings
http://stackoverflow.com/documentation/java/1003/nullpointerexception#t=201608020755368222531

 case "A":
 System.out.println("A"); //the code goes here
 break;
 case "B":
 System.out.println("B");
 break;
 default:
 break;
}

Live demo

Comparing Strings with constant values

When comparing a String to a constant value, you can put the constant value on the left side of
equals to ensure that you won't get a NullPointerException if the other String is null.

"baz".equals(foo)

While foo.equals("baz") will throw a NullPointerException if foo is null, "baz".equals(foo) will
evaluate to false.

Java SE 7

A more readable alternative is to use Objects.equals(), which does a null check on both
parameters: Objects.equals(foo, "baz").

(Note: It is debatable as to whether it is better to avoid NullPointerExceptions in general, or let
them happen and then fix the root cause; see here and here. Certainly, calling the avoidance
strategy "best practice" is not justifiable.)

String orderings

The String class implements Comparable<String> with the String.compareTo method (as described at
the start of this example). This makes the natural ordering of String objects case-sensitive order.
The String class provide a Comparator<String> constant called CASE_INSENSITIVE_ORDER suitable for
case-insensitive sorting.

Comparing with interned Strings

The Java Language Specification (JLS 3.10.6) states the following:

"Moreover, a string literal always refers to the same instance of class String. This is
because string literals - or, more generally, strings that are the values of constant
expressions - are interned so as to share unique instances, using the method
String.intern."

https://riptutorial.com/ 1043

https://ideone.com/fbWBUR
http://www.riptutorial.com/java/example/20151/pitfall----making-good--unexpected-nulls
http://www.riptutorial.com/java/example/23490/pitfall---using--yoda-notation--to-avoid-nullpointerexception
https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.10.5

This means it is safe to compare references to two string literals using ==. Moreover, the same is
true for references to String objects that have been produced using the String.intern() method.

For example:

String strObj = new String("Hello!");
String str = "Hello!";

// The two string references point two strings that are equal
if (strObj.equals(str)) {
 System.out.println("The strings are equal");
}

// The two string references do not point to the same object
if (strObj != str) {
 System.out.println("The strings are not the same object");
}

// If we intern a string that is equal to a given literal, the result is
// a string that has the same reference as the literal.
String internedStr = strObj.intern();

if (internedStr == str) {
 System.out.println("The interned string and the literal are the same object");
}

Behind the scenes, the interning mechanism maintains a hash table that contains all interned
strings that are still reachable. When you call intern() on a String, the method looks up the object
in the hash table:

If the string is found, then that value is returned as the interned string.•
Otherwise, a copy of the string is added to the hash table and that string is returned as the
interned string.

•

It is possible to use interning to allow strings to be compared using ==. However, there are
significant problems with doing this; see Pitfall - Interning strings so that you can use == is a bad
idea for details. It is not recommended in most cases.

Changing the case of characters within a String

The String type provides two methods for converting strings between upper case and lower case:

toUpperCase to convert all characters to upper case•
toLowerCase to convert all characters to lower case•

These methods both return the converted strings as new String instances: the original String
objects are not modified because String is immutable in Java. See this for more on immutability :
Immutability of Strings in Java

String string = "This is a Random String";
String upper = string.toUpperCase();
String lower = string.toLowerCase();

https://riptutorial.com/ 1044

http://www.riptutorial.com/java/example/23991/pitfall---interning-strings-so-that-you-can-use----is-a-bad-idea
http://www.riptutorial.com/java/example/23991/pitfall---interning-strings-so-that-you-can-use----is-a-bad-idea
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#toUpperCase--
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#toLowerCase--
http://stackoverflow.com/questions/1552301/immutability-of-strings-in-java

System.out.println(string); // prints "This is a Random String"
System.out.println(lower); // prints "this is a random string"
System.out.println(upper); // prints "THIS IS A RANDOM STRING"

Non-alphabetic characters, such as digits and punctuation marks, are unaffected by these
methods. Note that these methods may also incorrectly deal with certain Unicode characters
under certain conditions.

Note: These methods are locale-sensitive, and may produce unexpected results if used on strings
that are intended to be interpreted independent of the locale. Examples are programming
language identifiers, protocol keys, and HTML tags.

For instance, "TITLE".toLowerCase() in a Turkish locale returns "tıtle", where ı (\u0131) is the
LATIN SMALL LETTER DOTLESS I character. To obtain correct results for locale insensitive
strings, pass Locale.ROOT as a parameter to the corresponding case converting method (e.g.
toLowerCase(Locale.ROOT) or toUpperCase(Locale.ROOT)).

Although using Locale.ENGLISH is also correct for most cases, the language invariant way is
Locale.ROOT.

A detailed list of Unicode characters that require special casing can be found on the Unicode
Consortium website.

Changing case of a specific character within an ASCII string:

To change the case of a specific character of an ASCII string following algorithm can be used:

Steps:

Declare a string.1.
Input the string.2.
Convert the string into a character array.3.
Input the character that is to be searched.4.
Search for the character into the character array.5.
If found,check if the character is lowercase or uppercase.

If Uppercase, add 32 to the ASCII code of the character.•
If Lowercase, subtract 32 from the ASCII code of the character.•

6.

Change the original character from the Character array.7.
Convert the character array back into the string.8.

Voila, the Case of the character is changed.

An example of the code for the algorithm is:

Scanner scanner = new Scanner(System.in);
System.out.println("Enter the String");
String s = scanner.next();
char[] a = s.toCharArray();
System.out.println("Enter the character you are looking for");
System.out.println(s);

https://riptutorial.com/ 1045

http://www.fileformat.info/info/unicode/char/0131/index.htm
http://unicode.org/Public/UNIDATA/SpecialCasing.txt
http://unicode.org/Public/UNIDATA/SpecialCasing.txt

String c = scanner.next();
char d = c.charAt(0);

for (int i = 0; i <= s.length(); i++) {
 if (a[i] == d) {
 if (d >= 'a' && d <= 'z') {
 d -= 32;
 } else if (d >= 'A' && d <= 'Z') {
 d += 32;
 }
 a[i] = d;
 break;
 }
}
s = String.valueOf(a);
System.out.println(s);

Finding a String Within Another String

To check whether a particular String a is being contained in a String b or not, we can use the
method String.contains() with the following syntax:

b.contains(a); // Return true if a is contained in b, false otherwise

The String.contains() method can be used to verify if a CharSequence can be found in the String.
The method looks for the String a in the String b in a case-sensitive way.

String str1 = "Hello World";
String str2 = "Hello";
String str3 = "helLO";

System.out.println(str1.contains(str2)); //prints true
System.out.println(str1.contains(str3)); //prints false

Live Demo on Ideone

To find the exact position where a String starts within another String, use String.indexOf():

String s = "this is a long sentence";
int i = s.indexOf('i'); // the first 'i' in String is at index 2
int j = s.indexOf("long"); // the index of the first occurrence of "long" in s is 10
int k = s.indexOf('z'); // k is -1 because 'z' was not found in String s
int h = s.indexOf("LoNg"); // h is -1 because "LoNg" was not found in String s

Live Demo on Ideone

The String.indexOf() method returns the first index of a char or String in another String. The
method returns -1 if it is not found.

Note: The String.indexOf() method is case sensitive.

Example of search ignoring the case:

https://riptutorial.com/ 1046

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#contains-java.lang.CharSequence-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#contains-java.lang.CharSequence-
https://ideone.com/Tdef6b
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#indexOf-java.lang.String-
https://ideone.com/RHHcF0
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#indexOf-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#indexOf-java.lang.String-

String str1 = "Hello World";
String str2 = "wOr";
str1.indexOf(str2); // -1
str1.toLowerCase().contains(str2.toLowerCase()); // true
str1.toLowerCase().indexOf(str2.toLowerCase()); // 6

Live Demo on Ideone

Getting the length of a String

In order to get the length of a String object, call the length() method on it. The length is equal to
the number of UTF-16 code units (chars) in the string.

String str = "Hello, World!";
System.out.println(str.length()); // Prints out 13

Live Demo on Ideone

A char in a String is UTF-16 value. Unicode codepoints whose values are ≥ 0x1000 (for example,
most emojis) use two char positions. To count the number of Unicode codepoints in a String,
regardless of whether each codepoint fits in a UTF-16 char value, you can use the codePointCount
method:

int length = str.codePointCount(0, str.length());

You can also use a Stream of codepoints, as of Java 8:

int length = str.codePoints().count();

Substrings

String s = "this is an example";
String a = s.substring(11); // a will hold the string starting at character 11 until the end
("example")
String b = s.substring(5, 10); // b will hold the string starting at character 5 and ending
right before character 10 ("is an")
String b = s.substring(5, b.length()-3); // b will hold the string starting at character 5
ending right before b' s lenght is out of 3 ("is an exam")

Substrings may also be applied to slice and add/replace character into its original String. For
instance, you faced a Chinese date containing Chinese characters but you want to store it as a
well format Date String.

String datestring = "2015�11�17�"
datestring = datestring.substring(0, 4) + "-" + datestring.substring(5,7) + "-" +
datestring.substring(8,10);
//Result will be 2015-11-17

The substring method extracts a piece of a String. When provided one parameter, the parameter

https://riptutorial.com/ 1047

https://ideone.com/TQtcMf
https://ideone.com/0RWKcA
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#substring-int-

is the start and the piece extends until the end of the String. When given two parameters, the first
parameter is the starting character and the second parameter is the index of the character right
after the end (the character at the index is not included). An easy way to check is the subtraction
of the first parameter from the second should yield the expected length of the string.

Java SE 7

In JDK <7u6 versions the substring method instantiates a String that shares the same backing
char[] as the original String and has the internal offset and count fields set to the result start and
length. Such sharing may cause memory leaks, that can be prevented by calling new
String(s.substring(...)) to force creation of a copy, after which the char[] can be garbage
collected.

Java SE 7

From JDK 7u6 the substring method always copies the entire underlying char[] array, making the
complexity linear compared to the previous constant one but guaranteeing the absence of memory
leaks at the same time.

Getting the nth character in a String

String str = "My String";

System.out.println(str.charAt(0)); // "M"
System.out.println(str.charAt(1)); // "y"
System.out.println(str.charAt(2)); // " "
System.out.println(str.charAt(str.length-1)); // Last character "g"

To get the nth character in a string, simply call charAt(n) on a String, where n is the index of the
character you would like to retrieve

NOTE: index n is starting at 0, so the first element is at n=0.

Platform independent new line separator

Since the new line separator varies from platform to platform (e.g. \n on Unix-like systems or \r\n
on Windows) it is often necessary to have a platform-independent way of accessing it. In Java it
can be retrieved from a system property:

System.getProperty("line.separator")

Java SE 7

Because the new line separator is so commonly needed, from Java 7 on a shortcut method
returning exactly the same result as the code above is available:

System.lineSeparator()

Note: Since it is very unlikely that the new line separator changes during the program's execution,

https://riptutorial.com/ 1048

it is a good idea to store it in in a static final variable instead of retrieving it from the system
property every time it is needed.

When using String.format, use %n rather than \n or '\r\n' to output a platform independent new line
separator.

System.out.println(String.format('line 1: %s.%nline 2: %s%n', lines[0],lines[1]));

Adding toString() method for custom objects

Suppose you have defined the following Person class:

public class Person {

 String name;
 int age;

 public Person (int age, String name) {
 this.age = age;
 this.name = name;
 }
}

If you instantiate a new Person object:

Person person = new Person(25, "John");

and later in your code you use the following statement in order to print the object:

System.out.println(person.toString());

Live Demo on Ideone

you'll get an output similar to the following:

Person@7ab89d

This is the result of the implementation of the toString() method defined in the Object class, a
superclass of Person. The documentation of Object.toString() states:

The toString method for class Object returns a string consisting of the name of the
class of which the object is an instance, the at-sign character `@', and the unsigned
hexadecimal representation of the hash code of the object. In other words, this method
returns a string equal to the value of:

getClass().getName() + '@' + Integer.toHexString(hashCode())

So, for meaningful output, you'll have to override the toString() method:

https://riptutorial.com/ 1049

https://ideone.com/tAl58G

@Override
public String toString() {
 return "My name is " + this.name + " and my age is " + this.age;
}

Now the output will be:

My name is John and my age is 25

You can also write

System.out.println(person);

Live Demo on Ideone

In fact, println() implicitly invokes the toString method on the object.

Splitting Strings

You can split a String on a particular delimiting character or a Regular Expression, you can use
the String.split() method that has the following signature:

public String[] split(String regex)

Note that delimiting character or regular expression gets removed from the resulting String Array.

Example using delimiting character:

String lineFromCsvFile = "Mickey;Bolton;12345;121216";
String[] dataCells = lineFromCsvFile.split(";");
// Result is dataCells = { "Mickey", "Bolton", "12345", "121216"};

Example using regular expression:

String lineFromInput = "What do you need from me?";
String[] words = lineFromInput.split("\\s+"); // one or more space chars
// Result is words = {"What", "do", "you", "need", "from", "me?"};

You can even directly split a String literal:

String[] firstNames = "Mickey, Frank, Alicia, Tom".split(", ");
// Result is firstNames = {"Mickey", "Frank", "Alicia", "Tom"};

Warning: Do not forget that the parameter is always treated as a regular expression.

"aaa.bbb".split("."); // This returns an empty array

In the previous example . is treated as the regular expression wildcard that matches any
character, and since every character is a delimiter, the result is an empty array.

https://riptutorial.com/ 1050

https://ideone.com/51al3w
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://www.riptutorial.com/topic/259
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#split-java.lang.String-

Splitting based on a delimiter which is a regex meta-character

The following characters are considered special (aka meta-characters) in regex

 < > - = ! () [] { } \ ^ $ | ? * + .

To split a string based on one of the above delimiters, you need to either escape them using \\ or
use Pattern.quote():

Using Pattern.quote():

 String s = "a|b|c";
 String regex = Pattern.quote("|");
 String[] arr = s.split(regex);

•

Escaping the special characters:

 String s = "a|b|c";
 String[] arr = s.split("\\|");

•

Split removes empty values

split(delimiter) by default removes trailing empty strings from result array. To turn this
mechanism off we need to use overloaded version of split(delimiter, limit) with limit set to
negative value like

String[] split = data.split("\\|", -1);

split(regex) internally returns result of split(regex, 0).

The limit parameter controls the number of times the pattern is applied and therefore affects the
length of the resulting array.
If the limit n is greater than zero then the pattern will be applied at most n - 1 times, the array's
length will be no greater than n, and the array's last entry will contain all input beyond the last
matched delimiter.
If n is negative, then the pattern will be applied as many times as possible and the array can have
any length.
If n is zero then the pattern will be applied as many times as possible, the array can have any
length, and trailing empty strings will be discarded.

Splitting with a StringTokenizer

Besides the split() method Strings can also be split using a StringTokenizer.

StringTokenizer is even more restrictive than String.split(), and also a bit harder to use. It is
essentially designed for pulling out tokens delimited by a fixed set of characters (given as a String
). Each character will act as a separator. Because of this restriction, it's about twice as fast as

https://riptutorial.com/ 1051

http://www.riptutorial.com/topic/259

String.split().

Default set of characters are empty spaces (\t\n\r\f). The following example will print out each
word separately.

String str = "the lazy fox jumped over the brown fence";
StringTokenizer tokenizer = new StringTokenizer(str);
while (tokenizer.hasMoreTokens()) {
 System.out.println(tokenizer.nextToken());
}

This will print out:

the
lazy
fox
jumped
over
the
brown
fence

You can use different character sets for separation.

String str = "jumped over";
// In this case character `u` and `e` will be used as delimiters
StringTokenizer tokenizer = new StringTokenizer(str, "ue");
while (tokenizer.hasMoreTokens()) {
 System.out.println(tokenizer.nextToken());
}

This will print out:

j
mp
d ov
r

Joining Strings with a delimiter

Java SE 8

An array of strings can be joined using the static method String.join():

String[] elements = { "foo", "bar", "foobar" };
String singleString = String.join(" + ", elements);

System.out.println(singleString); // Prints "foo + bar + foobar"

Similarly, there's an overloaded String.join() method for Iterables.

https://riptutorial.com/ 1052

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#join-java.lang.CharSequence-java.lang.CharSequence...-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#join-java.lang.CharSequence-java.lang.Iterable-

To have a fine-grained control over joining, you may use StringJoiner class:

StringJoiner sj = new StringJoiner(", ", "[", "]");
 // The last two arguments are optional,
 // they define prefix and suffix for the result string

sj.add("foo");
sj.add("bar");
sj.add("foobar");

System.out.println(sj); // Prints "[foo, bar, foobar]"

To join a stream of strings, you may use the joining collector:

Stream<String> stringStream = Stream.of("foo", "bar", "foobar");
String joined = stringStream.collect(Collectors.joining(", "));
System.out.println(joined); // Prints "foo, bar, foobar"

There's an option to define prefix and suffix here as well:

Stream<String> stringStream = Stream.of("foo", "bar", "foobar");
String joined = stringStream.collect(Collectors.joining(", ", "{", "}"));
System.out.println(joined); // Prints "{foo, bar, foobar}"

Reversing Strings

There are a couple ways you can reverse a string to make it backwards.

StringBuilder/StringBuffer:

 String code = "code";
 System.out.println(code);

 StringBuilder sb = new StringBuilder(code);
 code = sb.reverse().toString();

 System.out.println(code);

1.

Char array:

String code = "code";
System.out.println(code);

char[] array = code.toCharArray();
for (int index = 0, mirroredIndex = array.length - 1; index < mirroredIndex; index++,
mirroredIndex--) {
 char temp = array[index];
 array[index] = array[mirroredIndex];
 array[mirroredIndex] = temp;
}

// print reversed
System.out.println(new String(array));

2.

https://riptutorial.com/ 1053

https://docs.oracle.com/javase/8/docs/api/java/util/StringJoiner.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#joining-java.lang.CharSequence-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#joining-java.lang.CharSequence-java.lang.CharSequence-java.lang.CharSequence-

Counting occurrences of a substring or character in a string

countMatches method from org.apache.commons.lang3.StringUtils is typically used to count
occurences of a substring or character in a String:

import org.apache.commons.lang3.StringUtils;

String text = "One fish, two fish, red fish, blue fish";

// count occurrences of a substring
String stringTarget = "fish";
int stringOccurrences = StringUtils.countMatches(text, stringTarget); // 4

// count occurrences of a char
char charTarget = ',';
int charOccurrences = StringUtils.countMatches(text, charTarget); // 3

Otherwise for does the same with standard Java API's you could use Regular Expressions:

import java.util.regex.Matcher;
import java.util.regex.Pattern;

String text = "One fish, two fish, red fish, blue fish";
System.out.println(countStringInString("fish", text)); // prints 4
System.out.println(countStringInString(",", text)); // prints 3

public static int countStringInString(String search, String text) {
 Pattern pattern = Pattern.compile(search);
 Matcher matcher = pattern.matcher(text);

 int stringOccurrences = 0;
 while (matcher.find()) {
 stringOccurrences++;
 }
 return stringOccurrences;
}

String concatenation and StringBuilders

String concatenation can be performed using the + operator. For example:

String s1 = "a";
String s2 = "b";
String s3 = "c";
String s = s1 + s2 + s3; // abc

Normally a compiler implementation will perform the above concatenation using methods involving
a StringBuilder under the hood. When compiled, the code would look similar to the below:

StringBuilder sb = new StringBuilder("a");
String s = sb.append("b").append("c").toString();

StringBuilder has several overloaded methods for appending different types, for example, to

https://riptutorial.com/ 1054

http://org.apache.commons.lang3.stringutils
https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html

append an int instead of a String. For example, an implementation can convert:

String s1 = "a";
String s2 = "b";
String s = s1 + s2 + 2; // ab2

to the following:

StringBuilder sb = new StringBuilder("a");
String s = sb.append("b").append(2).toString();

The above examples illustrate a simple concatenation operation that is effectively done in a single
place in the code. The concatenation involves a single instance of the StringBuilder. In some
cases, a concatenation is carried out in a cumulative way such as in a loop:

String result = "";
for(int i = 0; i < array.length; i++) {
 result += extractElement(array[i]);
}
return result;

In such cases, the compiler optimization is usually not applied, and each iteration will create a new
StringBuilder object. This can be optimized by explicitly transforming the code to use a single
StringBuilder:

StringBuilder result = new StringBuilder();
for(int i = 0; i < array.length; i++) {
 result.append(extractElement(array[i]));
}
return result.toString();

A StringBuilder will be initialized with an empty space of only 16 characters. If you know in
advance that you will be building larger strings, it can be beneficial to initialize it with sufficient size
in advance, so that the internal buffer does not need to be resized:

StringBuilder buf = new StringBuilder(30); // Default is 16 characters
buf.append("0123456789");
buf.append("0123456789"); // Would cause a reallocation of the internal buffer otherwise
String result = buf.toString(); // Produces a 20-chars copy of the string

If you are producing many strings, it is advisable to reuse StringBuilders:

StringBuilder buf = new StringBuilder(100);
for (int i = 0; i < 100; i++) {
 buf.setLength(0); // Empty buffer
 buf.append("This is line ").append(i).append('\n');
 outputfile.write(buf.toString());
}

If (and only if) multiple threads are writing to the same buffer, use StringBuffer, which is a
synchronized version of StringBuilder. But because usually only a single thread writes to a buffer, it

https://riptutorial.com/ 1055

https://docs.oracle.com/javase/7/docs/api/java/lang/StringBuffer.html

is usually faster to use StringBuilder without synchronization.

Using concat() method:

String string1 = "Hello ";
String string2 = "world";
String string3 = string1.concat(string2); // "Hello world"

This returns a new string that is string1 with string2 added to it at the end. You can also use the
concat() method with string literals, as in:

"My name is ".concat("Buyya");

Replacing parts of Strings

Two ways to replace: by regex or by exact match.

Note: the original String object will be unchanged, the return value holds the changed String.

Exact match

Replace single character with another single character:

String replace(char oldChar, char newChar)

Returns a new string resulting from replacing all occurrences of oldChar in this string
with newChar.

String s = "popcorn";
System.out.println(s.replace('p','W'));

Result:

WoWcorn

Replace sequence of characters with another sequence of characters:

String replace(CharSequence target, CharSequence replacement)

Replaces each substring of this string that matches the literal target sequence with the
specified literal replacement sequence.

String s = "metal petal et al.";
System.out.println(s.replace("etal","etallica"));

Result:

https://riptutorial.com/ 1056

metallica petallica et al.

Regex

Note: the grouping uses the $ character to reference the groups, like $1.

Replace all matches:

String replaceAll(String regex, String replacement)

Replaces each substring of this string that matches the given regular expression with
the given replacement.

String s = "spiral metal petal et al.";
System.out.println(s.replaceAll("(\\w*etal)","$1lica"));

Result:

spiral metallica petallica et al.

Replace first match only:

String replaceFirst(String regex, String replacement)

Replaces the first substring of this string that matches the given regular expression
with the given replacement

String s = "spiral metal petal et al.";
System.out.println(s.replaceAll("(\\w*etal)","$1lica"));

Result:

spiral metallica petal et al.

Remove Whitespace from the Beginning and End of a String

The trim() method returns a new String with the leading and trailing whitespace removed.

String s = new String(" Hello World!! ");
String t = s.trim(); // t = "Hello World!!"

If you trim a String that doesn't have any whitespace to remove, you will be returned the same
String instance.

Note that the trim() method has its own notion of whitespace, which differs from the notion used
by the Character.isWhitespace() method:

https://riptutorial.com/ 1057

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html#trim--
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html#trim--
http://stackoverflow.com/q/1437933/2170192
http://docs.oracle.com/javase/8/docs/api/java/lang/Character.html#isWhitespace-char-

All ASCII control characters with codes U+0000 to U+0020 are considered whitespace and are
removed by trim(). This includes U+0020 'SPACE', U+0009 'CHARACTER TABULATION', U+000A 'LINE
FEED' and U+000D 'CARRIAGE RETURN' characters, but also the characters like U+0007 'BELL'.

•

Unicode whitespace like U+00A0 'NO-BREAK SPACE' or U+2003 'EM SPACE' are not recognized by
trim().

•

String pool and heap storage

Like many Java objects, all String instances are created on the heap, even literals. When the JVM
finds a String literal that has no equivalent reference in the heap, the JVM creates a
corresponding String instance on the heap and it also stores a reference to the newly created
String instance in the String pool. Any other references to the same String literal are replaced with
the previously created String instance in the heap.

Let's look at the following example:

class Strings
{
 public static void main (String[] args)
 {
 String a = "alpha";
 String b = "alpha";
 String c = new String("alpha");

 //All three strings are equivalent
 System.out.println(a.equals(b) && b.equals(c));

 //Although only a and b reference the same heap object
 System.out.println(a == b);
 System.out.println(a != c);
 System.out.println(b != c);
 }
}

The output of the above is:

true
true
true
true

https://riptutorial.com/ 1058

When we use double quotes to create a String, it first looks for String with same value in the String
pool, if found it just returns the reference else it creates a new String in the pool and then returns
the reference.

However using new operator, we force String class to create a new String object in heap space.
We can use intern() method to put it into the pool or refer to other String object from string pool
having same value.

The String pool itself is also created on the heap.

Java SE 7

Before Java 7, String literals were stored in the runtime constant pool in the method area of
PermGen, that had a fixed size.

The String pool also resided in PermGen.

Java SE 7

https://riptutorial.com/ 1059

https://i.stack.imgur.com/S8Ouk.png

RFC: 6962931

In JDK 7, interned strings are no longer allocated in the permanent generation of the
Java heap, but are instead allocated in the main part of the Java heap (known as the
young and old generations), along with the other objects created by the application.
This change will result in more data residing in the main Java heap, and less data in
the permanent generation, and thus may require heap sizes to be adjusted. Most
applications will see only relatively small differences in heap usage due to this change,
but larger applications that load many classes or make heavy use of the
String.intern() method will see more significant differences.

Case insensitive switch

Java SE 7

switch itself can not be parameterised to be case insensitive, but if absolutely required, can
behave insensitive to the input string by using toLowerCase() or toUpperCase:

switch (myString.toLowerCase()) {
 case "case1" :
 ...
 break;
 case "case2" :
 ...
 break;
}

Beware

Locale might affect how changing cases happen!•
Care must be taken not to have any uppercase characters in the labels - those will never get
executed!

•

Read Strings online: https://riptutorial.com/java/topic/109/strings

https://riptutorial.com/ 1060

http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www.riptutorial.com/java/example/515/changing-the-case-of-characters-within-a-string
https://riptutorial.com/java/topic/109/strings

Chapter 167: sun.misc.Unsafe

Remarks

The Unsafe class allows a program to do things that are not allowed by the Java compiler. Normal
programs should avoid using Unsafe.

WARNINGS

If you make a mistake using the Unsafe APIs, your applications are liable to cause the JVM to
crash and/or exhibit symptoms that are hard to diagnose.

1.

The Unsafe API is subject to change without notice. If you use it in your code, you may need
to rewrite the code when changing Java versions.

2.

Examples

Instantiating sun.misc.Unsafe via reflection

public static Unsafe getUnsafe() {
 try {
 Field unsafe = Unsafe.class.getDeclaredField("theUnsafe");
 unsafe.setAccessible(true);
 return (Unsafe) unsafe.get(null);
 } catch (IllegalAccessException e) {
 // Handle
 } catch (IllegalArgumentException e) {
 // Handle
 } catch (NoSuchFieldException e) {
 // Handle
 } catch (SecurityException e) {
 // Handle
 }
}

sun.misc.Unsafe has a Private constructor, and the static getUnsafe() method is guarded with a
check of the classloader to ensure that the code was loaded with the primary classloader.
Therefore, one method of loading the instance is to use reflection to get the static field.

Instantiating sun.misc.Unsafe via bootclasspath

public class UnsafeLoader {
 public static Unsafe loadUnsafe() {
 return Unsafe.getUnsafe();
 }
}

While this example will compile, it is likely to fail at runtime unless the Unsafe class was loaded
with the primary classloader. To ensure that happens the JVM should be loaded with the

https://riptutorial.com/ 1061

appropriate arguments, like:

java -Xbootclasspath:$JAVA_HOME/jre/lib/rt.jar:./UnsafeLoader.jar foo.bar.MyApp

The foo.bar.MyApp class can then use UnsafeLoader.loadUnsafe().

Getting Instance of Unsafe

Unsafe is stored as a private field that cannot be accessed directly. The constructor is private and
the only method to access public static Unsafe getUnsafe() has privileged access. By use of
reflection, there is a work-around to make private fields accessible:

public static final Unsafe UNSAFE;

static {
 Unsafe unsafe = null;

 try {
 final PrivilegedExceptionAction<Unsafe> action = () -> {
 final Field f = Unsafe.class.getDeclaredField("theUnsafe");
 f.setAccessible(true);

 return (Unsafe) f.get(null);
 };

 unsafe = AccessController.doPrivileged(action);
 } catch (final Throwable t) {
 throw new RuntimeException("Exception accessing Unsafe", t);
 }

 UNSAFE = unsafe;
}

Uses of Unsafe

Some uses of unsafe is s follows:

Use API

Off heap / direct memory allocation,
reallocation and deallocation

allocateMemory(bytes), reallocateMemory(address,
bytes) and freeMemory(address)

Memory fences loadFence(), storeFence(), fullFence()

Parking current thread park(isAbsolute, time), unpark(thread)

Direct field and or memory access get* and put* family of methods

Throwing unchecked exceptions throwException(e)

CAS and Atomic Operations compareAndSwap* family of methods

https://riptutorial.com/ 1062

Use API

Setting out memory setMemory

Volatile or concurrent operations get*Volatile, put*Volatile, putOrdered*

The get and put family of methods are relative to a given object. If the object is null then it is
treated as an absolute address.

// Putting a value to a field
protected static long fieldOffset = UNSAFE.objectFieldOffset(getClass().getField("theField"));
UNSAFE.putLong(this, fieldOffset , newValue);

// Puting an absolute value
 UNSAFE.putLong(null, address, newValue);
 UNSAFE.putLong(address, newValue);

Some methods are only defined for int and longs. You can use these methods on floats and
doubles using floatToRawIntBits, intBitsToFloat,doubleToRawLongBits,longBitsToDouble`

Read sun.misc.Unsafe online: https://riptutorial.com/java/topic/6771/sun-misc-unsafe

https://riptutorial.com/ 1063

https://riptutorial.com/java/topic/6771/sun-misc-unsafe

Chapter 168: super keyword

Examples

Super keyword use with examples

super keyword performs important role in three places

Constructor Level1.
Method Level2.
Variable Level3.

Constructor Level

super keyword is used to call parent class constructor. This constructor can be default constructor
or parameterized constructor.

Default constructor : super();•

Parameterized constructor : super(int no, double amount, String name);

 class Parentclass
 {
 Parentclass(){
 System.out.println("Constructor of Superclass");
 }
 }
 class Subclass extends Parentclass
 {
 Subclass(){
 /* Compile adds super() here at the first line
 * of this constructor implicitly
 */
 System.out.println("Constructor of Subclass");
 }
 Subclass(int n1){
 /* Compile adds super() here at the first line
 * of this constructor implicitly
 */
 System.out.println("Constructor with arg");
 }
 void display(){
 System.out.println("Hello");
 }
 public static void main(String args[]){
 // Creating object using default constructor
 Subclass obj= new Subclass();
 //Calling sub class method
 obj.display();
 //Creating object 2 using arg constructor
 Subclass obj2= new Subclass(10);
 obj2.display();

•

https://riptutorial.com/ 1064

 }
 }

Note: super() must be the first statement in constructor otherwise we will get the compilation error
message.

Method Level

super keyword can also be used in case of method overriding. super keyword can be used to
invoke or call parent class method.

class Parentclass
{
 //Overridden method
 void display(){
 System.out.println("Parent class method");
 }
}
class Subclass extends Parentclass
{
 //Overriding method
 void display(){
 System.out.println("Child class method");
 }
 void printMsg(){
 //This would call Overriding method
 display();
 //This would call Overridden method
 super.display();
 }
 public static void main(String args[]){
 Subclass obj= new Subclass();
 obj.printMsg();
 }
}

Note:If there is not method overriding then we do not need to use super keyword to call parent
class method.

Variable Level

super is used to refer immediate parent class instance variable. In case of inheritance, there may
be possibility of base class and derived class may have similar data members.In order to
differentiate between the data member of base/parent class and derived/child class, in the context
of derived class the base class data members must be preceded by super keyword.

//Parent class or Superclass
class Parentclass
{
 int num=100;
}
//Child class or subclass
class Subclass extends Parentclass

https://riptutorial.com/ 1065

{
 /* I am declaring the same variable
 * num in child class too.
 */
 int num=110;
 void printNumber(){
 System.out.println(num); //It will print value 110
 System.out.println(super.num); //It will print value 100
 }
 public static void main(String args[]){
 Subclass obj= new Subclass();
 obj.printNumber();
 }
}

Note: If we are not writing super keyword before the base class data member name then it will be
referred as current class data member and base class data member are hidden in the context of
derived class.

Read super keyword online: https://riptutorial.com/java/topic/5764/super-keyword

https://riptutorial.com/ 1066

https://riptutorial.com/java/topic/5764/super-keyword

Chapter 169: The Classpath

Introduction

The classpath lists places where the Java runtime should look for classes and resources. The
classpath is also used by the Java compiler to find previously compiled and external
dependencies.

Remarks

Java class loading

The JVM (Java Virtual Machine) will load classes as and when the classes are required (this is
called lazy-loading). Locations of the classes to be used are specified in three places:-

Those required by the Java Platform are loaded first, such as those in the Java Class Library
and it's dependencies.

1.

Extension classes are loaded next (i.e. those in jre/lib/ext/)2.
User-defined classes via the classpath are then loaded3.

Classes are loaded using classes that are subtypes of java.lang.ClassLoader. This described in a
more detail in this Topic: Classloaders.

Classpath

The classpath is a parameter used by the JVM or compiler which specifies the locations of user-
defined classes and packages. This can be set in the command line as with most of these
examples or through an environmental variable (CLASSPATH)

Examples

Different ways to specify the classpath

There are three ways to set the classpath.

It can be set using the CLASSPATH environment variable :

 set CLASSPATH=... # Windows and csh
 export CLASSPATH=... # Unix ksh/bash

1.

It can be set on the command line as follows

 java -classpath ...
 javac -classpath ...

Note that the -classpath (or -cp) option takes precedence over the CLASSPATH environment

2.

https://riptutorial.com/ 1067

http://www.riptutorial.com/java/topic/5443/classloaders

variable.

The classpath for an executable JAR file is specified using the Class-Path element in
MANIFEST.MF:

 Class-Path: jar1-name jar2-name directory-name/jar3-name

Note that this only applies when the JAR file is executed like this:

 java -jar some.jar ...

In this mode of execution, the -classpath option and the CLASSPATH environment variable
will be ignored, even if the JAR file has no Class-Path element.

3.

If no classpath is specified, then the default classpath is the selected JAR file when using java -
jar, or the current directory otherwise.

Related:

https://docs.oracle.com/javase/tutorial/deployment/jar/downman.html•
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/classpath.html•

Adding all JARs in a directory to the classpath

If you want to add all the JARs in directory to the classpath, you can do this concisely using
classpath wildcard syntax; for example:

 someFolder/*

This tells the JVM to add all JAR and ZIP files in the someFolder directory to the classpath. This
syntax can be used in a -cp argument, a CLASSPATH environment variable, or a Class-Path attribute
in an executable JAR file's manifest file.See Setting the Class Path: Class Path Wild Cards for
examples and caveats.

Notes:

Classpath wildcards were first introduced in Java 6. Earlier versions of Java do not treat "*"
as a wildcard.

1.

You cannot put other characters before or after the ""; e.g. "someFolder/.jar" is not a
wildcard.

2.

A wildcard matches only files with the suffix ".jar" or ".JAR". ZIP files are ignored, as are JAR
files with a different suffixes.

3.

A wildcard matches only JAR files in the directory itself, not in its subdirectories.4.
When a group of JAR files is matched by a wildcard entry, their relative order on the
classpath is not specified.

5.

Classpath path syntax

https://riptutorial.com/ 1068

https://docs.oracle.com/javase/tutorial/deployment/jar/downman.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/classpath.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/classpath.html#A1100762

The classpath is a sequence of entries which are directory pathnames, JAR or ZIP file pathnames,
or JAR / ZIP wildcard specifications.

For a classpath specified on the command line (e.g. -classpath) or as an environment
variable, the entries must be separated with ; (semicolon) characters on Windows, or :
(colon) characters on other platforms (Linux, UNIX, MacOSX and so on).

•

For the Class-Path element in a JAR file's MANIFEST.MF, use a single space to separate the
entries.

•

Sometimes it is necessary to embed a space in a classpath entry

When the classpath is specified on the command line, it is simply a matter of using the
appropriate shell quoting. For example:

export CLASSPATH="/home/user/My JAR Files/foo.jar:second.jar"

(The details may depend on the command shell that you use.)

•

When the classpath is specified in a JAR file's a "MANIFEST.MF" file, URL encoding must
be used.

 Class-Path: /home/user/My%20JAR%20Files/foo.jar second.jar

•

Dynamic Classpath

Sometimes, just adding all the JARs from a folder isn't enough, for example when you have native
code and need to select a subset of JARs. In this case, you need two main() methods. The first
one builds a classloader and then uses this classloader to call the second main().

Here is an example which selects the correct SWT native JAR for your platform, adds all your
application's JARs and then invokes the real main() method: Create cross platform Java SWT
Application

Load a resource from the classpath

It can be useful to load a resource (image, text file, properties, KeyStore, ...) that is packaged
inside a JAR. For this purpose, we can use the Class and ClassLoaders.

Suppose we have the following project structure :

program.jar
|
\-com
 \-project
 |
 |-file.txt
 \-Test.class

https://riptutorial.com/ 1069

http://stackoverflow.com/questions/2706222/create-cross-platform-java-swt-application/3204032#3204032
http://stackoverflow.com/questions/2706222/create-cross-platform-java-swt-application/3204032#3204032

And we want to access the contents of file.txt from the Test class. We can do so by asking the
classloader :

InputStream is = Test.class.getClassLoader().getResourceAsStream("com/project/file.txt");

By using the classloader, we need to specify the fully qualified path of our resource (each
package).

Or alternatively, we can ask the Test class object directly

InputStream is = Test.class.getResourceAsStream("file.txt");

Using the class object, the path is relative to the class itself. Our Test.class being in the
com.project package, the same as file.txt, we do not need to specify any path at all.

We can, however, use absolute paths from the class object, like so :

 is = Test.class.getResourceAsStream("/com/project/file.txt");

Mapping classnames to pathnames

The standard Java toolchain (and 3rd-party tools designed to interoperate with them) have specific
rules for mapping the names of classes to the pathnames of files and other resources that
represent them.

The mappings are as follows

For classes in the default package, the pathnames are simple filenames.•
For classes in a named package, the package name components map to directories.•
For named nested and inner classes, the filename component is formed by joining the class
names with a $ character.

•

For anonymous inner classes, numbers are used in place of names.•

This is illustrated in the following table:

Classname Source pathname Classfile pathname

SomeClass SomeClass.java SomeClass.class

com.example.SomeClass com/example/SomeClass.java com/example/SomeClass.class

SomeClass.Inner (in SomeClass.java) SomeClass$Inner.class

SomeClass anon inner
classes

(in SomeClass.java)
SomeClass$1.class, SomeClass$2.class
, etc

What the classpath means: how searches work

https://riptutorial.com/ 1070

The purpose of the classpath is to tell a JVM where to find classes and other resources. The
meaning of the classpath and the search process are intertwined.

The classpath is a form of search path which specifies a sequence of locations to look for
resources. In a standard classpath, these places are either, a directory in the host file system, a
JAR file or a ZIP file. In each cases, the location is the root of a namespace that will be searched.

The standard procedure for searching for a class on the classpath is as follows:

Map the class name to a relative classfile pathname RP. The mapping for class names to
class filenames is described elsewhere.

1.

For each entry E in the classpath:

If the entry is a filesystem directory:
Resolve RP relative to E to give an absolute pathname AP.○

Test if AP is a path for an existing file.○

If yes, load the class from that file○

•

If the entry is a JAR or ZIP file:
Lookup RP in the JAR / ZIP file index.○

If the corresponding JAR / ZIP file entry exists, load the class from that entry.○

•

2.

The procedure for searching for a resource on the classpath depends on whether the resource
path is absolute or relative. For an absolute resource path, the procedure is as above. For a
relative resource path resolved using Class.getResource or Class.getResourceAsStream, the path for
the classes package is prepended prior to searching.

(Note these are the procedures implemented by the standard Java classloaders. A custom
classloader might perform the search differently.)

The bootstrap classpath

The normal Java classloaders look for classes first in the bootstrap classpath, before checking for
extensions and the application classpath. By default, the bootstrap classpath consists of the "rt.jar"
file and some other important JAR files that are supplied by the JRE installation. These provide all
of the classes in the standard Java SE class library, along with various "internal" implementation
classes.

Under normal circumstances, you don't need to concern yourself with this. By default, commands
like java, javac and so on will use the appropriate versions of the runtime libraries.

Very occasionally, it is necessary to override the normal behavior of the Java runtime by using an
alternative version of a class in the standard libraries. For example, you might encounter a "show
stopper" bug in the runtime libraries that you cannot work around by normal means. In such a
situation, it is possible to create a JAR file containing the altered class and then add it to the
bootstrap classpath which launching the JVM.

The java command provides the following -X options for modifying the bootstrap classpath:

https://riptutorial.com/ 1071

-Xbootclasspath:<path> replaces the current boot classpath with the path provided.•
-Xbootclasspath/a:<path> appends the provided path to the current boot classpath.•
-Xbootclasspath/p:<path> prepends the provided path to the current boot classpath.•

Note that when use the bootclasspath options to replace or override a Java class (etcetera), you
are technically modifying Java. There may be licensing implications if you then distribute your
code. (Refer to the terms and conditions of the Java Binary License ... and consult a lawyer.)

Read The Classpath online: https://riptutorial.com/java/topic/3720/the-classpath

https://riptutorial.com/ 1072

https://riptutorial.com/java/topic/3720/the-classpath

Chapter 170: The Java Command - 'java' and
'javaw'

Syntax

java [<opt> ...] <class-name> [<argument> ...]•

java [<opt> ...] -jar <jar-file-pathname> [<argument> ...]•

Remarks

The java command is used for running a Java application from the command line. It is available as
a part of any Java SE JRE or JDK.

On Windows systems there are two variants of the java command:

The java variant launches the application in a new console window.•
The javaw variant launches the application without creating a new console window.•

On other systems (e.g. Linux, Mac OSX, UNIX) only the java command is provided, and it does
not launch a new console window.

The <opt> symbol in the syntax denotes an option on the java command line. The "Java Options"
and "Heap and stack sizing options" topics cover the most commonly used options. Others are
covered in the JVM Flags topic.

Examples

Running an executable JAR file

Executable JAR files are the simplest way to assemble Java code into a single file that can be
executed. *(Editorial Note: Creation of JAR files should be covered by a separate Topic.) *

Assuming that you have an executable JAR file with pathname <jar-path>, you should be able to
run it as follows:

java -jar <jar-path>

If the command requires command-line arguments, add them after the <jar-path>. For example:

java -jar <jar-path> arg1 arg2 arg3

If you need to provide additional JVM options on the java command line, they need to go before
the -jar option. Note that a -cp / -classpath option will be ignored if you use -jar. The application's
classpath is determined by the JAR file manifest.

https://riptutorial.com/ 1073

http://www.riptutorial.com/java/topic/2500/jvm-flags

Running a Java applications via a "main" class

When an application has not been packaged as an executable JAR, you need to provide the name
of an entry-point class on the java command line.

Running the HelloWorld class

The "HelloWorld" example is described in Creating a new Java program . It consists of a single
class called HelloWorld which satisfies the requirements for an entry-point.

Assuming that the (compiled) "HelloWorld.class" file is in the current directory, it can be launched
as follows:

java HelloWorld

Some important things to note are:

We must provide the name of the class: not the pathname for the ".class" file or the ".java"
file.

•

If the class is declared in a package (as most Java classes are), then the class name we
supply to the java command must be the full classname. For instance if SomeClass is declared
in the com.example package, then the full classname will be com.example.SomeClass.

•

Specifying a classpath

Unless we are using in the java -jar command syntax, the java command looks for the class to be
loaded by searching the classpath; see The Classpath. The above command is relying on the
default classpath being (or including) the current directory. We can be more explicit about this by
specifying the classpath to be used using the -cp option.

java -cp . HelloWorld

This says to make the current directory (which is what "." refers to) the sole entry on the classpath.

The -cp is an option that is processed by the java command. All options that are intended for the
java command should be before the classname. Anything after the class will be treated as an
command line argument for the Java application, and will be passed to application in the String[]
that is passed to the main method.

(If no -cp option is provided, the java will use the classpath that is given by the CLASSPATH
environment variable. If that variable is unset or empty, java uses "." as the default classpath.)

Entry point classes

A Java entry-point class has a main method with the following signature and modifiers:

https://riptutorial.com/ 1074

http://www.riptutorial.com/java/example/20433/entry-point-classes
http://www.riptutorial.com/java/example/378/creating-your-first-java-program
http://www.riptutorial.com/java/topic/3720/the-classpath

public static void main(String[] args)

Sidenote: because of how arrays work, it can also be (String args[])

When the java command starts the virtual machine, it loads the specified entry-point classes and
tries to find main. If successful, the arguments from command line are converted to Java String
objects and assembled into an array. If main is invoked like this, the array will not be null and won't
contain any null entries.

A valid entry-point class method must do the following:

Be named main (case-sensitive)•
Be public and static•
Have a void return type•
Have a single argument with an array String[]. The argument must be present and no more
than one argument is allowed.

•

Be generic: type parameters are not allowed.•
Have a non-generic, top-level (not nested or inner) enclosing class•

It is conventional to declare the class as public but this not strictly necessary. From Java 5
onward, the main method's argument type may be a String varargs instead of a string array. main
can optionally throw exceptions, and its parameter can be named anything, but conventionally it is
args.

JavaFX entry-points

From Java 8 onwards the java command can also directly launch a JavaFX application. JavaFX is
documented in the JavaFX tag, but a JavaFX entry-point must do the following:

Extend javafx.application.Application•
Be public and not abstract•
Not be generic or nested•
Have an explicit or implicit public no-args constructor•

Troubleshooting the 'java' command

This example covers common errors with using the 'java' command.

"Command not found"

If you get an error message like:

java: command not found

when trying to run the java command, this means that there is no java command on your shell's
command search path. The cause could be:

https://riptutorial.com/ 1075

http://www.riptutorial.com/topic/887

you don't have a Java JRE or JDK installed at all,•
you have not updated the PATH environment variable (correctly) in your shell initialization file,
or

•

you have not "sourced" the relevant initialization file in the current shell.•

Refer to "Installing Java" for the steps that you need to take.

"Could not find or load main class"

This error message is output by the java command if it has been unable to find / load the entry-
point class that you have specified. In general terms, there are three broad reasons that this can
happen:

You have specified an entry point class that does not exist.•
The class exists, but you have specified it incorrectly.•
The class exists and you have specified it correctly, but Java cannot it find it because the
classpath is incorrect.

•

Here is a procedure to diagnose and solve the problem:

Find out the full name of the entry-point class.

If you have source code for a class, then the full name consists of the package name
and the simple class name. The instance the "Main" class is declared in the package
"com.example.myapp" then its full name is "com.example.myapp.Main".

•

If you have a compiled class file, you can find the class name by running javap on it.•
If the class file is in a directory, you can infer the full class name from the directory
names.

•

If the class file is in a JAR or ZIP file, you can infer the full class name from the file path
in the JAR or ZIP file.

•

1.

Look at the error message from the java command. The message should end with the full
class name that java is trying to use.

Check that it exactly matches the full classname for the entry-point class.•
It should not end with ".java" or ".class".•
It should not contain slashes or any other character that is not legal in a Java identifier1

.
•

The casing of the name should exactly match the full class name.•

2.

If you are using the correct classname, make sure that the class is actually on the classpath:

Work out the pathname that the classname maps to; see Mapping classnames to
pathnames

•

Work out what the classpath is; see this example: Different ways to specify the
classpath

•

Look at each of the JAR and ZIP files on the classpath to see if they contain a class
with the required pathname.

•

3.

https://riptutorial.com/ 1076

http://www.riptutorial.com/java/topic/4754/installing-java--standard-edition-
http://www.riptutorial.com/java/example/19816/mapping-classnames-to-pathnames
http://www.riptutorial.com/java/example/19816/mapping-classnames-to-pathnames
http://www.riptutorial.com/java/example/12852/different-ways-to-specify-the-classpath
http://www.riptutorial.com/java/example/12852/different-ways-to-specify-the-classpath

Look at each directory to see if the pathname resolves to a file within the directory.•

If checking the classpath by hand did not find the issue, you could add the -Xdiag and -
XshowSettings options. The former lists all classes that are loaded, and the latter prints out settings
that include the effective classpath for the JVM.

Finally, there are some obscure causes for this problem:

An executable JAR file with a Main-Class attribute that specifies a class that does not exist.•
An executable JAR file with an incorrect Class-Path attribute.•
If you mess up2 the options before the classname, the java command may attempt to
interpret one of them as the classname.

•

If someone has ignored Java style rules and used package or class identifiers that differ only
in letter case, and you are running on a platform that treats letter case in filenames as non-
significant.

•

Problems with homoglyphs in class names in the code or on the command line.•

"Main method not found in class <name>"

This problem happens when the java command is able to find and load the class that you
nominated, but is then unable to find an entry-point method.

There are three possible explanations:

If you are trying to run an executable JAR file, then the JAR's manifest has an incorrect
"Main-Class" attribute that specifies a class that is not a valid entry point class.

•

You have told the java command a class that is not an entry point class.•
The entry point class is incorrect; see Entry point classes for more information.•

Other Resources

What does "Could not find or load main class" mean?•
http://docs.oracle.com/javase/tutorial/getStarted/problems/index.html•

1 - From Java 8 and later, the java command will helpfully map a filename separator ("/" or "") to a period (".").
However, this behavior is not documented in the manual pages.

2 - A really obscure case is if you copy-and-paste a command from a formatted document where the text editor has
used a "long hyphen" instead of a regular hyphen.

Running a Java application with library dependencies

This is a continuation of the "main class" and "executable JAR" examples.

Typical Java applications consist of an application-specific code, and various reusable library code
that you have implemented or that has been implemented by third parties. The latter are
commonly referred to as library dependencies, and are typically packaged as JAR files.

https://riptutorial.com/ 1077

http://www.riptutorial.com/java/example/20433/entry-point-classes
http://stackoverflow.com/questions/18093928/what-does-could-not-find-or-load-main-class-mean
http://docs.oracle.com/javase/tutorial/getStarted/problems/index.html
http://www.riptutorial.com/java/example/20432/running-a-java-applications-via-a--main--class
http://www.riptutorial.com/java/example/20407/running-an-executable-jar-file

Java is a dynamically bound language. When you run a Java application with library
dependencies, the JVM needs to know where the dependencies are so that it can load classes as
required. Broadly speaking, there are two ways to deal with this:

The application and its dependencies can be repackaged into a single JAR file that contains
all of the required classes and resources.

•

The JVM can be told where to find the dependent JAR files via the runtime classpath.•

For an executable JAR file, the runtime classpath is specified by the "Class-Path" manifest
attribute. (Editorial Note: This should be described in a separate Topic on the jar command.)
Otherwise, the runtime classpath needs to be supplied using the -cp option or using the CLASSPATH
environment variable.

For example, suppose that we have a Java application in the "myApp.jar" file whose entry point
class is com.example.MyApp. Suppose also that the application depends on library JAR files
"lib/library1.jar" and "lib/library2.jar". We could launch the application using the java command as
follows in a command line:

$ # Alternative 1 (preferred)
$ java -cp myApp.jar:lib/library1.jar:lib/library2.jar com.example.MyApp

$ # Alternative 2
$ export CLASSPATH=myApp.jar:lib/library1.jar:lib/library2.jar
$ java com.example.MyApp

(On Windows, you would use ; instead of : as the classpath separator, and you would set the
(local) CLASSPATH variable using set rather than export.)

While a Java developer would be comfortable with that, it is not "user friendly". So it is common
practice to write a simple shell script (or Windows batch file) to hide the details that the user
doesn't need to know about. For example, if you put the following shell script into a file called
"myApp", made it executable, and put it into a directory on the command search path:

#!/bin/bash
The 'myApp' wrapper script

export DIR=/usr/libexec/myApp
export CLASSPATH=$DIR/myApp.jar:$DIR/lib/library1.jar:$DIR/lib/library2.jar
java com.example.MyApp

then you could run it as follows:

$ myApp arg1 arg2 ...

Any arguments on the command line will be passed to the Java application via the "$@" expansion.
(You can do something similar with a Windows batch file, though the syntax is different.)

Spaces and other special characters in arguments

https://riptutorial.com/ 1078

First of all, the problem of handling spaces in arguments is NOT actually a Java problem. Rather it
is a problem that needs to be handled by the command shell that you are using when you run a
Java program.

As an example, let us suppose that we have the following simple program that prints the size of a
file:

import java.io.File;

public class PrintFileSizes {

 public static void main(String[] args) {
 for (String name: args) {
 File file = new File(name);
 System.out.println("Size of '" + file + "' is " + file.size());
 }
 }
}

Now suppose that we want print the size of a file whose pathname has spaces in it; e.g.
/home/steve/Test File.txt. If we run the command like this:

$ java PrintFileSizes /home/steve/Test File.txt

the shell won't know that /home/steve/Test File.txt is actually one pathname. Instead, it will pass 2
distinct arguments to the Java application, which will attempt to find their respective file sizes, and
fail because files with those paths (probably) do not exist.

Solutions using a POSIX shell

POSIX shells include sh as well derivatives such as bash and ksh. If you are using one of these
shells, then you can solve the problem by quoting the argument.

$ java PrintFileSizes "/home/steve/Test File.txt"

The double-quotes around the pathname tell the shell that it should be passed as a single
argument. The quotes will be removed when this happens. There are a couple of other ways to do
this:

$ java PrintFileSizes '/home/steve/Test File.txt'

Single (straight) quotes are treated like double-quotes except that they also suppress various
expansions within the argument.

$ java PrintFileSizes /home/steve/Test\ File.txt

A backslash escapes the following space, and causes it not to be interpreted as an argument
separator.

https://riptutorial.com/ 1079

For more comprehensive documentation, including descriptions of how to deal with other special
characters in arguments, please refer to the quoting topic in the Bash documentation.

Solution for Windows

The fundamental problem for Windows is that at the OS level, the arguments are passed to a child
process as a single string (source). This means that the ultimate responsibility of parsing (or re-
parsing) the command line falls on either program or its runtime libraries. There is lots of
inconsistency.

In the Java case, to cut a long story short:

You can put double-quotes around an argument in a java command, and that will allow you
to pass arguments with spaces in them.

•

Apparently, the java command itself is parsing the command string, and it gets it more or
less right

•

However, when you try to combine this with the use of SET and variable substitution in a
batch file, it gets really complicated as to whether double-quotes get removed.

•

The cmd.exe shell apparently has other escaping mechanisms; e.g. doubling double-quotes,
and using ^ escapes.

•

For more detail, please refer to the Batch-File documentation.

Java Options

The java command supports a wide range of options:

All options start with a single hyphen or minus-sign (-): the GNU/Linux convention of using --
for "long" options is not supported.

•

Options must appear before the <classname> or the -jar <jarfile> argument to be
recognized. Any arguments after them will be treated as arguments to be passed to Java
app that is being run.

•

Options that do not start with -X or -XX are standard options. You can rely on all Java
implementations1 to support any standard option.

•

Options that start with -X are non-standard options, and may be withdrawn from one Java
version to the next.

•

Options that start with -XX are advanced options, and may also be withdrawn.•

Setting system properties with -D

The -D<property>=<value> option is used to set a property in the system Properties object. This

https://riptutorial.com/ 1080

http://www.riptutorial.com/bash/topic/729/quoting
http://www.riptutorial.com/bash/topic/300/getting-started-with-bash
https://blogs.msdn.microsoft.com/twistylittlepassagesallalike/2011/04/23/everyone-quotes-command-line-arguments-the-wrong-way/
http://www.riptutorial.com/batch-file/topic/1277/getting-started-with-batch-file

parameter can be repeated to set different properties.

Memory, Stack and Garbage Collector options

The main options for controlling the heap and stack sizes are documented in Setting the Heap,
PermGen and Stack sizes. (Editorial note: Garbage Collector options should be described in the
same topic.)

Enabling and disabling assertions

The -ea and -da options respectively enable and disable Java assert checking:

All assertion checking is disabled by default.•
The -ea option enables checking of all assertions•
The -ea:<packagename>... enables checking of assertions in a package and all subpackages.•
The -ea:<classname>... enables checking of assertions in a class.•
The -da option disables checking of all assertions•
The -da:<packagename>... disables checking of assertions in a package and all subpackages.•
The -da:<classname>... disables checking of assertions in a class.•
The -esa option enables checking for all system classes.•
The -dsa option disables checking for all system classes.•

The options can be combined. For example.

$ # Enable all assertion checking in non-system classes
$ java -ea -dsa MyApp

$ # Enable assertions for all classes in a package except for one.
$ java -ea:com.wombat.fruitbat... -da:com.wombat.fruitbat.Brickbat MyApp

Note that enabling to assertion checking is liable to alter the behavior of a Java programming.

It is liable make the application slower in general.•
It can cause specific methods to take longer to run, which could change timing of threads in
a multi-threaded application.

•

It can introduce serendipitous happens-before relations which can cause memory anomalies
to disappear.

•

An incorrectly implemented assert statement could have unwanted side-effects.•

Selecting the VM type

The -client and -server options allow you to select between two different forms of the HotSpot
VM:

The "client" form is tuned for user applications and offers faster startup.•
The "server" form is tuned for long running applications. It takes longer capturing statistic
during JVM "warm up" which allows the JIT compiler to do a better of job of optimizing the

•

https://riptutorial.com/ 1081

http://www.riptutorial.com/java/example/18190/setting-the-heap--permgen-and-stack-sizes
http://www.riptutorial.com/java/example/18190/setting-the-heap--permgen-and-stack-sizes

native code.

By default, the JVM will run in 64bit mode if possible, depending on the capabilities of the platform.
The -d32 and -d64 options allow you to select the mode explicitly.

1 - Check the official manual for the java command. Sometimes a standard option is described as "subject to
change".

Read The Java Command - 'java' and 'javaw' online: https://riptutorial.com/java/topic/5791/the-
java-command----java--and--javaw-

https://riptutorial.com/ 1082

https://riptutorial.com/java/topic/5791/the-java-command----java--and--javaw-
https://riptutorial.com/java/topic/5791/the-java-command----java--and--javaw-

Chapter 171: The java.util.Objects Class

Examples

Basic use for object null check

For null check in method

Object nullableObject = methodReturnObject();
if (Objects.isNull(nullableObject)) {
 return;
}

For not null check in method

Object nullableObject = methodReturnObject();
if (Objects.nonNull(nullableObject)) {
 return;
}

Objects.nonNull() method reference use in stream api

In the old fashion way for collection null check

List<Object> someObjects = methodGetList();
for (Object obj : someObjects) {
 if (obj == null) {
 continue;
 }
 doSomething(obj);
}

With the Objects.nonNull method and Java8 Stream API, we can do the above in this way:

List<Object> someObjects = methodGetList();
someObjects.stream()
 .filter(Objects::nonNull)
 .forEach(this::doSomething);

Read The java.util.Objects Class online: https://riptutorial.com/java/topic/5768/the-java-util-objects-
class

https://riptutorial.com/ 1083

https://riptutorial.com/java/topic/5768/the-java-util-objects-class
https://riptutorial.com/java/topic/5768/the-java-util-objects-class

Chapter 172: ThreadLocal

Remarks

Best used for objects which depend on internals during invoking a call, but are stateless otherwise,
like SimpleDateFormat, Marshaller

For Random ThreadLocal usage, consider using ThreadLocalRandom

Examples

ThreadLocal Java 8 functional initialization

public static class ThreadLocalExample
{
 private static final ThreadLocal<SimpleDateFormat> format =
 ThreadLocal.withInitial(() -> new SimpleDateFormat("yyyyMMdd_HHmm"));

 public String formatDate(Date date)
 {
 return format.get().format(date);
 }
}

Basic ThreadLocal usage

Java ThreadLocal is used to create thread local variables. It is known that threads of an Object
share it’s variables, so the variable is not thread safe. We can use synchronization for thread
safety but if we want to avoid synchronization,ThreadLocal allows us to create variables which are
local to the thread, i.e. only that thread can read or write to those variables, so the other threads
executing the same piece of code will not be able to access each others ThreadLocal variables.

This can be usedwe can use ThreadLocal variables. in situations where you have a thread pool like
for example in a web service. For example, Creating a SimpleDateFormat object every time for every
request is time consuming and a Static one cannot be created as SimpleDateFormat is not thread
safe, so we can create a ThreadLocal so that we can perform thread safe operations without the
overhead of creating SimpleDateFormat every time.

The below piece of code shows how it can be used:

Every thread has it’s own ThreadLocal variable and they can use it’s get() and set() methods to get
the default value or change it’s value local to Thread.

ThreadLocal instances are typically private static fields in classes that wish to associate state with a
thread.

Here is a small example showing use of ThreadLocal in java program and proving that every

https://riptutorial.com/ 1084

thread has it’s own copy of ThreadLocal variable.

package com.examples.threads;

import java.text.SimpleDateFormat;
import java.util.Random;

public class ThreadLocalExample implements Runnable{

 // SimpleDateFormat is not thread-safe, so give one to each thread
 // SimpleDateFormat is not thread-safe, so give one to each thread
 private static final ThreadLocal<SimpleDateFormat> formatter = new
ThreadLocal<SimpleDateFormat>(){
 @Override
 protected SimpleDateFormat initialValue()
 {
 return new SimpleDateFormat("yyyyMMdd HHmm");
 }
 };

 public static void main(String[] args) throws InterruptedException {
 ThreadLocalExample obj = new ThreadLocalExample();
 for(int i=0 ; i<10; i++){
 Thread t = new Thread(obj, ""+i);
 Thread.sleep(new Random().nextInt(1000));
 t.start();
 }
 }

 @Override
 public void run() {
 System.out.println("Thread Name= "+Thread.currentThread().getName()+" default
Formatter = "+formatter.get().toPattern());
 try {
 Thread.sleep(new Random().nextInt(1000));
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 formatter.set(new SimpleDateFormat());

 System.out.println("Thread Name= "+Thread.currentThread().getName()+" formatter =
"+formatter.get().toPattern());
 }

}

Output:

Thread Name= 0 default Formatter = yyyyMMdd HHmm

Thread Name= 1 default Formatter = yyyyMMdd HHmm

Thread Name= 0 formatter = M/d/yy h:mm a

Thread Name= 2 default Formatter = yyyyMMdd HHmm

Thread Name= 1 formatter = M/d/yy h:mm a

Thread Name= 3 default Formatter = yyyyMMdd HHmm

https://riptutorial.com/ 1085

Thread Name= 4 default Formatter = yyyyMMdd HHmm

Thread Name= 4 formatter = M/d/yy h:mm a

Thread Name= 5 default Formatter = yyyyMMdd HHmm

Thread Name= 2 formatter = M/d/yy h:mm a

Thread Name= 3 formatter = M/d/yy h:mm a

Thread Name= 6 default Formatter = yyyyMMdd HHmm

Thread Name= 5 formatter = M/d/yy h:mm a

Thread Name= 6 formatter = M/d/yy h:mm a

Thread Name= 7 default Formatter = yyyyMMdd HHmm

Thread Name= 8 default Formatter = yyyyMMdd HHmm

Thread Name= 8 formatter = M/d/yy h:mm a

Thread Name= 7 formatter = M/d/yy h:mm a

Thread Name= 9 default Formatter = yyyyMMdd HHmm

Thread Name= 9 formatter = M/d/yy h:mm a

As we can see from the output that Thread-0 has changed the value of formatter but still thread-2
default formatter is same as the initialized value.

Multiple threads with one shared object

In this example we have only one object but it is shared between/executed on different threads.
Ordinary usage of fields to save state would not be possible because the other thread would see
that too (or probably not see).

public class Test {
 public static void main(String[] args) {
 Foo foo = new Foo();
 new Thread(foo, "Thread 1").start();
 new Thread(foo, "Thread 2").start();
 }
}

In Foo we count starting from zero. Instead of saving the state to a field we store our current
number in the ThreadLocal object which is statically accessible. Note that the synchronization in
this example is not related to the usage of ThreadLocal but rather ensures a better console output.

public class Foo implements Runnable {
 private static final int ITERATIONS = 10;
 private static final ThreadLocal<Integer> threadLocal = new ThreadLocal<Integer>() {
 @Override
 protected Integer initialValue() {
 return 0;
 }
 };

https://riptutorial.com/ 1086

 @Override
 public void run() {
 for (int i = 0; i < ITERATIONS; i++) {
 synchronized (threadLocal) {
 //Although accessing a static field, we get our own (previously saved) value.
 int value = threadLocal.get();
 System.out.println(Thread.currentThread().getName() + ": " + value);

 //Update our own variable
 threadLocal.set(value + 1);

 try {
 threadLocal.notifyAll();
 if (i < ITERATIONS - 1) {
 threadLocal.wait();
 }
 } catch (InterruptedException ex) {
 }
 }
 }
 }
}

From the output we can see that each thread counts for itself and does not use the value of the
other one:

Thread 1: 0
Thread 2: 0
Thread 1: 1
Thread 2: 1
Thread 1: 2
Thread 2: 2
Thread 1: 3
Thread 2: 3
Thread 1: 4
Thread 2: 4
Thread 1: 5
Thread 2: 5
Thread 1: 6
Thread 2: 6
Thread 1: 7
Thread 2: 7
Thread 1: 8
Thread 2: 8
Thread 1: 9
Thread 2: 9

Read ThreadLocal online: https://riptutorial.com/java/topic/2001/threadlocal

https://riptutorial.com/ 1087

https://riptutorial.com/java/topic/2001/threadlocal

Chapter 173: TreeMap and TreeSet

Introduction

TreeMap and TreeSet are basic Java collections added in Java 1.2. TreeMap is a mutable, ordered,
Map implementation. Similarly, TreeSet is a mutable, ordered Set implementation.

TreeMap is implemented as a Red-Black tree, which provides O(log n) access times. TreeSet is
implemented using a TreeMap with dummy values.

Both collections are not thread-safe.

Examples

TreeMap of a simple Java type

First, we create an empty map, and insert some elements into it:

Java SE 7

TreeMap<Integer, String> treeMap = new TreeMap<>();

Java SE 7

TreeMap<Integer, String> treeMap = new TreeMap<Integer, String>();

treeMap.put(10, "ten");
treeMap.put(4, "four");
treeMap.put(1, "one");
treeSet.put(12, "twelve");

Once we have a few elements in the map, we can perform some operations:

System.out.println(treeMap.firstEntry()); // Prints 1=one
System.out.println(treeMap.lastEntry()); // Prints 12=twelve
System.out.println(treeMap.size()); // Prints 4, since there are 4 elemens in the map
System.out.println(treeMap.get(12)); // Prints twelve
System.out.println(treeMap.get(15)); // Prints null, since the key is not found in the map

We can also iterate over the map elements using either an Iterator, or a foreach loop. Note that
the entries are printed according to their natural ordering, not the insertion order:

Java SE 7

for (Entry<Integer, String> entry : treeMap.entrySet()) {
 System.out.print(entry + " "); //prints 1=one 4=four 10=ten 12=twelve
}

https://riptutorial.com/ 1088

https://docs.oracle.com/javase/tutorial/collections/interfaces/order.html

Iterator<Entry<Integer, String>> iter = treeMap.entrySet().iterator();
while (iter.hasNext()) {
 System.out.print(iter.next() + " "); //prints 1=one 4=four 10=ten 12=twelve
}

TreeSet of a simple Java Type

First, we create an empty set, and insert some elements into it:

Java SE 7

TreeSet<Integer> treeSet = new TreeSet<>();

Java SE 7

TreeSet<Integer> treeSet = new TreeSet<Integer>();

treeSet.add(10);
treeSet.add(4);
treeSet.add(1);
treeSet.add(12);

Once we have a few elements in the set, we can perform some operations:

System.out.println(treeSet.first()); // Prints 1
System.out.println(treeSet.last()); // Prints 12
System.out.println(treeSet.size()); // Prints 4, since there are 4 elemens in the set
System.out.println(treeSet.contains(12)); // Prints true
System.out.println(treeSet.contains(15)); // Prints false

We can also iterate over the map elements using either an Iterator, or a foreach loop. Note that
the entries are printed according to their natural ordering, not the insertion order:

Java SE 7

for (Integer i : treeSet) {
 System.out.print(i + " "); //prints 1 4 10 12
}

Iterator<Integer> iter = treeSet.iterator();
while (iter.hasNext()) {
 System.out.print(iter.next() + " "); //prints 1 4 10 12
}

TreeMap/TreeSet of a custom Java type

Since TreeMaps and TreeSets maintain keys/elements according to their natural ordering. Therefor
TreeMap keys and TreeSet elements have to comparable to one another.

Say we have a custom Person class:

https://riptutorial.com/ 1089

https://docs.oracle.com/javase/tutorial/collections/interfaces/order.html
https://docs.oracle.com/javase/tutorial/collections/interfaces/order.html

public class Person {

 private int id;
 private String firstName, lastName;
 private Date birthday;

 //... Constuctors, getters, setters and various methods
}

If we store it as-is in a TreeSet (or a Key in a TreeMap):

TreeSet<Person2> set = ...
set.add(new Person(1,"first","last",Date.from(Instant.now())));

Then we'd run into an Exception such as this one:

Exception in thread "main" java.lang.ClassCastException: Person cannot be cast to
java.lang.Comparable
 at java.util.TreeMap.compare(TreeMap.java:1294)
 at java.util.TreeMap.put(TreeMap.java:538)
 at java.util.TreeSet.add(TreeSet.java:255)

To fix that, let's assume that we want to order Person instances based on the order of their ids (
private int id). We could do it in one of two ways:

One solution is to modify Person so it would implement the Comparable interface:

public class Person implements Comparable<Person> {
 private int id;
 private String firstName, lastName;
 private Date birthday;

 //... Constuctors, getters, setters and various methods

 @Override
 public int compareTo(Person o) {
 return Integer.compare(this.id, o.id); //Compare by id
 }
}

1.

Another solution is to provide the TreeSet with a Comparator:2.

Java SE 8

TreeSet<Person> treeSet = new TreeSet<>((personA, personB) -> Integer.compare(personA.getId(),
personB.getId()));

TreeSet<Person> treeSet = new TreeSet<>(new Comparator<Person>(){
 @Override
 public int compare(Person personA, Person personB) {
 return Integer.compare(personA.getId(), personB.getId());
 }
});

https://riptutorial.com/ 1090

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

However, there are two caveats to both approaches:

It's very important not to modify any fields used for ordering once an instance has been
inserted into a TreeSet/TreeMap. In the above example, if we change the id of a person that's
already inserted into the collection, we might run into unexpected behavior.

1.

It's important to implement the comparison properly and consistently. As per the Javadoc:2.

The implementor must ensure sgn(x.compareTo(y)) == -sgn(y.compareTo(x)) for all x and
y. (This implies that x.compareTo(y) must throw an exception iff y.compareTo(x) throws an
exception.)

The implementor must also ensure that the relation is transitive: (x.compareTo(y)>0 &&
y.compareTo(z)>0) implies x.compareTo(z)>0.

Finally, the implementor must ensure that x.compareTo(y)==0 implies that
sgn(x.compareTo(z)) == sgn(y.compareTo(z)), for all z.

TreeMap and TreeSet Thread Safety

TreeMap and TreeSet are not thread-safe collections, so care must be taken to ensure when used in
multi-threaded programs.

Both TreeMap and TreeSet are safe when read, even concurrently, by multiple threads. So if they
have been created and populated by a single thread (say, at the start of the program), and only
then read, but not modified by multiple threads, there's no reason for synchronization or locking.

However, if read and modified concurrently, or modified concurrently by more than one thread, the
collection might throw a ConcurrentModificationException or behave unexpectedly. In these cases,
it's imperative to synchronize/lock access to the collection using one of the following approaches:

Using Collections.synchronizedSorted..:

SortedSet<Integer> set = Collections.synchronizedSortedSet(new TreeSet<Integer>());
SortedMap<Integer,String> map = Collections.synchronizedSortedMap(new
TreeMap<Integer,String>());

This will provide a SortedSet/SortedMap implementation backed by the actual collection, and
synchronized on some mutex object. Note that this will synchronize all read and write access
to the collection on a single lock, so even concurrent reads would not be possible.

1.

By manually synchronizing on some object, like the collection itself:

 TreeSet<Integer> set = new TreeSet<>();

...

//Thread 1
synchronized (set) {

2.

https://riptutorial.com/ 1091

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/ConcurrentModificationException.html
https://docs.oracle.com/javase/8/docs/api/java/util/SortedSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/SortedMap.html

 set.add(4);
}

...

//Thread 2
synchronized (set) {
 set.remove(5);
}

By using a lock, such as a ReentrantReadWriteLock:

 TreeSet<Integer> set = new TreeSet<>();
 ReentrantReadWriteLock lock = new ReentrantReadWriteLock();

...

 //Thread 1
 lock.writeLock().lock();
 set.add(4);
 lock.writeLock().unlock();

...

 //Thread 2
 lock.readLock().lock();
 set.contains(5);
 lock.readLock().unlock();

3.

As opposed to the previous synchronization methods, using a ReadWriteLock allows multiple
threads to read from the map concurrently.

Read TreeMap and TreeSet online: https://riptutorial.com/java/topic/9905/treemap-and-treeset

https://riptutorial.com/ 1092

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReadWriteLock.html
https://riptutorial.com/java/topic/9905/treemap-and-treeset

Chapter 174: Type Conversion

Syntax

TargetType target = (SourceType) source;•

Examples

Non-numeric primitive casting

The boolean type cannot be cast to/from any other primitive type.

A char can be cast to/from any numeric type by using the code-point mappings specified by
Unicode. A char is represented in memory as an unsigned 16-bit integer value (2 bytes), so
casting to byte (1 byte) will drop 8 of those bits (this is safe for ASCII characters). The utility
methods of the Character class use int (4 bytes) to transfer to/from code-point values, but a short
(2 bytes) would also suffice for storing a Unicode code-point.

int badInt = (int) true; // Compiler error: incompatible types

char char1 = (char) 65; // A
byte byte1 = (byte) 'A'; // 65
short short1 = (short) 'A'; // 65
int int1 = (int) 'A'; // 65

char char2 = (char) 8253; // ‽
byte byte2 = (byte) '‽'; // 61 (truncated code-point into the ASCII range)
short short2 = (short) '‽'; // 8253
int int2 = (int) '‽'; // 8253

Numeric primitive casting

Numeric primitives can be cast in two ways. Implicit casting happens when the source type has
smaller range than the target type.

//Implicit casting
byte byteVar = 42;
short shortVar = byteVar;
int intVar = shortVar;
long longVar = intvar;
float floatVar = longVar;
double doubleVar = floatVar;

Explicit casting has to be done when the source type has larger range than the target type.

//Explicit casting
double doubleVar = 42.0d;
float floatVar = (float) doubleVar;
long longVar = (long) floatVar;

https://riptutorial.com/ 1093

int intVar = (int) longVar;
short shortVar = (short) intVar;
byte byteVar = (byte) shortVar;

When casting floating point primitives (float, double) to whole number primitives, the number is
rounded down.

Object casting

As with primitives, objects can be cast both explicitly and implicitly.

Implicit casting happens when the source type extends or implements the target type (casting to a
superclass or interface).

Explicit casting has to be done when the source type is extended or implemented by the target
type (casting to a subtype). This can produce a runtime exception (ClassCastException) when the
object being cast is not of the target type (or the target's subtype).

Float floatVar = new Float(42.0f);
Number n = floatVar; //Implicit (Float implements Number)
Float floatVar2 = (Float) n; //Explicit
Double doubleVar = (Double) n; //Throws exception (the object is not Double)

Basic Numeric Promotion

 static void testNumericPromotion() {

 char char1 = 1, char2 = 2;
 short short1 = 1, short2 = 2;
 int int1 = 1, int2 = 2;
 float float1 = 1.0f, float2 = 2.0f;

 // char1 = char1 + char2; // Error: Cannot convert from int to char;
 // short1 = short1 + short2; // Error: Cannot convert from int to short;
 int1 = char1 + char2; // char is promoted to int.
 int1 = short1 + short2; // short is promoted to int.
 int1 = char1 + short2; // both char and short promoted to int.
 float1 = short1 + float2; // short is promoted to float.
 int1 = int1 + int2; // int is unchanged.
}

Testing if an object can be cast using instanceof

Java provides the instanceof operator to test if an object is of a certain type, or a subclass of that
type. The program can then choose to cast or not cast that object accordingly.

Object obj = Calendar.getInstance();
long time = 0;

if(obj instanceof Calendar)
{
 time = ((Calendar)obj).getTime();

https://riptutorial.com/ 1094

}
if(obj instanceof Date)
{
 time = ((Date)obj).getTime(); // This line will never be reached, obj is not a Date type.
}

Read Type Conversion online: https://riptutorial.com/java/topic/1392/type-conversion

https://riptutorial.com/ 1095

https://riptutorial.com/java/topic/1392/type-conversion

Chapter 175: Unit Testing

Introduction

Unit testing is an integral part of test-driven development, and an important feature for building any
robust application. In Java, Unit testing is almost exclusively performed using external libraries and
frameworks, most of which have their own documentation tag. This stub serves as a means of
introducing the reader to the tools available, and their respective documentation.

Remarks

Unit Test Frameworks

There are numerous frameworks available for unit testing within Java. The most popular option by
far is JUnit. It is documented under the following:

JUnit

JUnit4 - Proposed tag for JUnit4 features; not yet implemented.

Other unit test frameworks do exist, and have documentation available:

TestNG

Unit Testing Tools

There are several other tools used for unit testing:

Mockito - Mocking framework; allows objects to be mimicked. Useful for mimicking the expected
behavior of an external unit within a given unit's test, as to not link the external unit's behavior to
the given unit's tests.

JBehave - BDD Framework. Allows tests to be linked to user behaviors (allowing
requirement/scenario validation). No documents tag available at time of writing; here is an external
link.

Examples

What is Unit Testing?

This is a bit of a primer. It's mostly put it in because documentation is forced to have an example,
even if it's intended as a stub article. If you already know unit-testing basics, feel free to skip
forward to the remarks, where specific frameworks are mentioned.

https://riptutorial.com/ 1096

http://www.riptutorial.com/topic/1838
http://www.riptutorial.com/junit/topic/1838/getting-started-with-junit
http://www.riptutorial.com/topic/5393
http://www.riptutorial.com/topic/2055
https://en.wikipedia.org/wiki/Mock_object
https://en.wikipedia.org/wiki/Behavior-driven_development
http://jbehave.org/

Unit testing is ensuring that a given module behaves as expected. In large-scale applications,
ensuring the appropriate execution of modules in a vacuum is an integral part of ensuring
application fidelity.

Consider the following (trivial) pseudo-example:

public class Example {
 public static void main (String args[]) {
 new Example();
 }

 // Application-level test.
 public Example() {
 Consumer c = new Consumer();
 System.out.println("VALUE = " + c.getVal());
 }

 // Your Module.
 class Consumer {
 private Capitalizer c;

 public Consumer() {
 c = new Capitalizer();
 }

 public String getVal() {
 return c.getVal();
 }
 }

 // Another team's module.
 class Capitalizer {
 private DataReader dr;

 public Capitalizer() {
 dr = new DataReader();
 }

 public String getVal() {
 return dr.readVal().toUpperCase();
 }
 }

 // Another team's module.
 class DataReader {
 public String readVal() {
 // Refers to a file somewhere in your application deployment, or
 // perhaps retrieved over a deployment-specific network.
 File f;
 String s = "data";
 // ... Read data from f into s ...
 return s;
 }
 }
}

So this example is trivial; DataReader gets the data from a file, passes it to the Capitalizer, which
converts all the characters to upper-case, which then gets passed to the Consumer. But the

https://riptutorial.com/ 1097

DataReader is heavily-linked to our application environment, so we defer testing of this chain until
we are ready to deploy a test release.

Now, assume, somewhere along the way in a release, for reasons unknown, the getVal() method
in Capitalizer changed from returning a toUpperCase() String to a toLowerCase() String:

 // Another team's module.
 class Capitalizer {
 ...

 public String getVal() {
 return dr.readVal().toLowerCase();
 }
 }

Clearly, this breaks expected behavior. But, because of the arduous processes involved with
execution of the DataReader, we won't notice this until our next test deployment. So
days/weeks/months go by with this bug sitting in our system, and then the product manager sees
this, and instantly turns to you, the team leader associated with the Consumer. "Why is this
happening? What did you guys change?" Obviously, you're clueless. You have no idea what's
going on. You didn't change any code that should be touching this; why is it suddenly broken?

Eventually, after discussion between the teams and collaboration, the issue is traced, and the
problem solved. But, it begs the question; how could this have been prevented?

There are two obvious things:

Tests need to be automated

Our reliance upon manual testing let this bug go by unnoticed far too long. We need a way to
automate the process under which bugs are introduced instantly. Not 5 weeks from now. Not 5
days from now. Not 5 minutes from now. Right now.

You have to appreciate that, in this example, I've expressed one very trivial bug that was
introduced and unnoticed. In an industrial application, with dozens of modules constantly being
updated, these can creep in all over the place. You fix something with one module, only to realize
that the very behavior you "fixed" was relied upon in some manner elsewhere (either internally or
externally).

Without rigorous validation, things will creep into the system. It's possible that, if neglected far
enough, this will result in so much extra work trying to fix changes (and then fixing those fixes,
etc.), that a product will actually increase in remaining work as effort is put into it. You do not want
to be in this situation.

Tests need to be fine-grained

The second problem noted in our above example is the amount of time it took to trace the bug.

https://riptutorial.com/ 1098

The product manager pinged you when the testers noticed it, you investigated and found that the
Capitalizer was returning seemingly bad data, you pinged the Capitalizer team with your findings,
they investigated, etc. etc. etc.

The same point I made above about the quantity and difficulty of this trivial example hold here.
Obviously anyone reasonably well-versed with Java could find the introduced problem quickly. But
it's often much, much more difficult to trace and communicate issues. Maybe the Capitalizer team
provided you a JAR with no source. Maybe they're located on the other side of the world, and
communication hours are very limited (perhaps to e-mails that get sent once daily). It can result in
bugs taking weeks or longer to trace (and, again, there could be several of these for a given
release).

In order to mitigate against this, we want rigorous testing on as fine a level as possible (you also
want coarse-grained testing to ensure modules interact properly, but that's not our focal point
here). We want to rigorously specify how all outward-facing functionality (at minimum) operates,
and tests for that functionality.

Enter unit-testing

Imagine if we had a test, specifically ensuring that the getVal() method of Capitalizer returned a
capitalized string for a given input string. Furthermore, imagine that test was run before we even
committed any code. The bug introduced into the system (that is, toUpperCase() being replaced
with toLowerCase()) would cause no issues because the bug would never be introduced into the
system. We would catch it in a test, the developer would (hopefully) realize their mistake, and an
alternative solution would be reached as to how to introduce their intended effect.

There's some omissions made here as to how to implement these tests, but those are covered in
the framework-specific documentation (linked in the remarks). Hopefully, this serves as an
example of why unit testing is important.

Read Unit Testing online: https://riptutorial.com/java/topic/8155/unit-testing

https://riptutorial.com/ 1099

https://riptutorial.com/java/topic/8155/unit-testing

Chapter 176: Using Other Scripting
Languages in Java

Introduction

Java in itself is an extremely powerful language, but its power can further be extended Thanks to
JSR223 (Java Specification Request 223) introducing a script engine

Remarks

The Java Scripting API enables external scripts to interact with Java

The Scripting API can enable interaction between the script and java. The Scripting Languages
must have an implementation of Script Engine on the classpath.

By Default JavaScript (also known as ECMAScript) is provided by nashorn by default. Every Script
Engine has a script context where all the variables, functions, methods are stored in bindings.
Sometimes you might want to use multiple contexts as they support redirecting the output to a
buffered Writer and error to another.

There are many other script engine libraries like Jython and JRuby. As long as they are on the
classpath you can eval code.

We can use bindings to expose variables into the script. We need multiple bindings in some cases
as exposing variables to the engine basically is exposing variables to only that engine, sometimes
we require to expose certain variables like system environment and path that is the same for all
engines of the same type. In that case, we require a binding which is a global scope. Exposing
variables to that expose it to all script engines created by the same EngineFactory

Examples

Evaluating A javascript file in -scripting mode of nashorn

public class JSEngine {

 /*
 * Note Nashorn is only available for Java-8 onwards
 * You can use rhino from ScriptEngineManager.getEngineByName("js");
 */

 ScriptEngine engine;
 ScriptContext context;
 public Bindings scope;

 // Initialize the Engine from its factory in scripting mode
 public JSEngine(){
 engine = new NashornScriptEngineFactory().getScriptEngine("-scripting");

https://riptutorial.com/ 1100

 // Script context is an interface so we need an implementation of it
 context = new SimpleScriptContext();
 // Create bindings to expose variables into
 scope = engine.createBindings();
 }

 // Clear the bindings to remove the previous variables
 public void newBatch(){
 scope.clear();
 }

 public void execute(String file){
 try {
 // Get a buffered reader for input
 BufferedReader br = new BufferedReader(new FileReader(file));
 // Evaluate code, with input as bufferdReader
 engine.eval(br);
 } catch (FileNotFoundException ex) {
 Logger.getLogger(JSEngine.class.getName()).log(Level.SEVERE, null, ex);
 } catch (ScriptException ex) {
 // Script Exception is basically when there is an error in script
 Logger.getLogger(JSEngine.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

 public void eval(String code){
 try {
 // Engine.eval basically treats any string as a line of code and evaluates it,
executes it
 engine.eval(code);
 } catch (ScriptException ex) {
 // Script Exception is basically when there is an error in script
 Logger.getLogger(JSEngine.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

 // Apply the bindings to the context and set the engine's default context
 public void startBatch(int SCP){
 context.setBindings(scope, SCP);
 engine.setContext(context);
 }

 // We use the invocable interface to access methods from the script
 // Invocable is an optional interface, please check if your engine implements it
 public Invocable invocable(){
 return (Invocable)engine;
 }

}

Now the main method

public static void main(String[] args) {
 JSEngine jse = new JSEngine();
 // Create a new batch probably unecessary
 jse.newBatch();
 // Expose variable x into script with value of hello world
 jse.scope.put("x", "hello world");
 // Apply the bindings and start the batch
 jse.startBatch(ScriptContext.ENGINE_SCOPE);

https://riptutorial.com/ 1101

 // Evaluate the code
 jse.eval("print(x);");
}

Your output should be similar to this
hello world

As you can see the exposed variable x has been printed. Now testing with a file.

Here we have test.js

print(x);
function test(){
 print("hello test.js:test");
}
test();

And the updated main method

public static void main(String[] args) {
 JSEngine jse = new JSEngine();
 // Create a new batch probably unecessary
 jse.newBatch();
 // Expose variable x into script with value of hello world
 jse.scope.put("x", "hello world");
 // Apply the bindings and start the batch
 jse.startBatch(ScriptContext.ENGINE_SCOPE);
 // Evaluate the code
 jse.execute("./test.js");
}

Assuming that test.js is in the same directory as your application You should have output similar to
this

hello world
hello test.js:test

Read Using Other Scripting Languages in Java online:
https://riptutorial.com/java/topic/9926/using-other-scripting-languages-in-java

https://riptutorial.com/ 1102

https://riptutorial.com/java/topic/9926/using-other-scripting-languages-in-java

Chapter 177: Using the static keyword

Syntax

public static int myVariable; //Declaring a static variable•
public static myMethod() { } //Declaring a static method•
public static final double MY_CONSTANT; //Declaring a constant variable that is shared
among all instances of the class

•

public final double MY_CONSTANT; // Declaring a constant variable specific to this instance
of the class (best used in a constructor that generates a different constant for each instance)

•

Examples

Using static to declare constants

As the static keyword is used for accessing fields and methods without an instantiated class, it
can be used to declare constants for use in other classes. These variables will remain constant
across every instantiation of the class. By convention, static variables are always ALL_CAPS and
use underscores rather than camel case. ex:

 static E STATIC_VARIABLE_NAME

As constants cannot change, static can also be used with the final modifier:

For example, to define the mathematical constant of pi:

public class MathUtilities {

 static final double PI = 3.14159265358

}

Which can be used in any class as a constant, for example:

public class MathCalculations {

 //Calculates the circumference of a circle
 public double calculateCircumference(double radius) {
 return (2 * radius * MathUtilities.PI);
 }

}

Using static with this

Static gives a method or variable storage that is not allocated for each instance of the class.
Rather, the static variable is shared among all class members. Incidentally, trying to treat the static

https://riptutorial.com/ 1103

variable like a member of the class instance will result in a warning:

public class Apple {
 public static int test;
 public int test2;
}

Apple a = new Apple();
a.test = 1; // Warning
Apple.test = 1; // OK
Apple.test2 = 1; // Illegal: test2 is not static
a.test2 = 1; // OK

Methods that are declared static behave in much the same way, but with an additional restriction:

You can't use the this keyword in them!

public class Pineapple {

 private static int numberOfSpikes;
 private int age;

 public static getNumberOfSpikes() {
 return this.numberOfSpikes; // This doesn't compile
 }

 public static getNumberOfSpikes() {
 return numberOfSpikes; // This compiles
 }

}

In general, it's best to declare generic methods that apply to different instances of a class (such as
clone methods) static, while keeping methods like equals() as non-static. The main method of a
Java program is always static, which means that the keyword this cannot be used inside main().

Reference to non-static member from static context

Static variables and methods are not part of an instance, There will always be a single copy of that
variable no matter how many objects you create of a particular class.

For example you might want to have an immutable list of constants, it would be a good idea to
keep it static and initialize it just once inside a static method. This would give you a significant
performance gain if you are creating several instances of a particular class on a regular basis.

Furthermore you can also have a static block in a class as well. You can use it to assign a default
value to a static variable. They are executed only once when the class is loaded into memory.

Instance variable as the name suggest are dependent on an instance of a particular object, they
live to serve the whims of it. You can play around with them during a particular life cycle of an
object.

https://riptutorial.com/ 1104

All the fields and methods of a class used inside a static method of that class must be static or
local. If you try to use instance (non-static) variables or methods, your code will not compile.

public class Week {
 static int daysOfTheWeek = 7; // static variable
 int dayOfTheWeek; // instance variable

 public static int getDaysLeftInWeek(){
 return Week.daysOfTheWeek-dayOfTheWeek; // this will cause errors
 }

 public int getDaysLeftInWeek(){
 return Week.daysOfTheWeek-dayOfTheWeek; // this is valid
 }

 public static int getDaysLeftInTheWeek(int today){
 return Week.daysOfTheWeek-today; // this is valid
 }

}

Read Using the static keyword online: https://riptutorial.com/java/topic/2253/using-the-static-
keyword

https://riptutorial.com/ 1105

https://riptutorial.com/java/topic/2253/using-the-static-keyword
https://riptutorial.com/java/topic/2253/using-the-static-keyword

Chapter 178: Using ThreadPoolExecutor in
MultiThreaded applications.

Introduction

When creating a performant and data-driven application, it can be very helpful to complete time-
intensive tasks in an asynchronous manner and to have multiple tasks running concurrently. This
topic will introduce the concept of using ThreadPoolExecutors to complete multiple ansynchronous
tasks concurrently.

Examples

Performing Asynchronous Tasks Where No Return Value Is Needed Using a
Runnable Class Instance

Some applications may want to create so-called "Fire & Forget" tasks which can be periodically
triggered and do not need to return any type of value returned upon completion of the assigned
task (for example, purging old temp files, rotating logs, autosaving state).

In this example, we will create two classes: One which implements the Runnable interface, and
one which contains a main() method.

AsyncMaintenanceTaskCompleter.java

import lombok.extern.java.Log;

import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;

@Log
public class AsyncMaintenanceTaskCompleter implements Runnable {
 private int taskNumber;

 public AsyncMaintenanceTaskCompleter(int taskNumber) {
 this.taskNumber = taskNumber;
 }

 public void run() {
 int timeout = ThreadLocalRandom.current().nextInt(1, 20);
 try {
 log.info(String.format("Task %d is sleeping for %d seconds", taskNumber,
timeout));
 TimeUnit.SECONDS.sleep(timeout);
 log.info(String.format("Task %d is done sleeping", taskNumber));

 } catch (InterruptedException e) {
 log.warning(e.getMessage());
 }
 }
}

https://riptutorial.com/ 1106

AsyncExample1

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class AsyncExample1 {
 public static void main(String[] args){
 ExecutorService executorService = Executors.newCachedThreadPool();
 for(int i = 0; i < 10; i++){
 executorService.execute(new AsyncMaintenanceTaskCompleter(i));
 }
 executorService.shutdown();
 }
}

Running AsyncExample1.main() resulted in the following output:

Dec 28, 2016 2:21:03 PM AsyncMaintenanceTaskCompleter run
INFO: Task 8 is sleeping for 18 seconds
Dec 28, 2016 2:21:03 PM AsyncMaintenanceTaskCompleter run
INFO: Task 6 is sleeping for 4 seconds
Dec 28, 2016 2:21:03 PM AsyncMaintenanceTaskCompleter run
INFO: Task 2 is sleeping for 6 seconds
Dec 28, 2016 2:21:03 PM AsyncMaintenanceTaskCompleter run
INFO: Task 3 is sleeping for 4 seconds
Dec 28, 2016 2:21:03 PM AsyncMaintenanceTaskCompleter run
INFO: Task 9 is sleeping for 14 seconds
Dec 28, 2016 2:21:03 PM AsyncMaintenanceTaskCompleter run
INFO: Task 4 is sleeping for 9 seconds
Dec 28, 2016 2:21:03 PM AsyncMaintenanceTaskCompleter run
INFO: Task 5 is sleeping for 10 seconds
Dec 28, 2016 2:21:03 PM AsyncMaintenanceTaskCompleter run
INFO: Task 0 is sleeping for 7 seconds
Dec 28, 2016 2:21:03 PM AsyncMaintenanceTaskCompleter run
INFO: Task 1 is sleeping for 9 seconds
Dec 28, 2016 2:21:03 PM AsyncMaintenanceTaskCompleter run
INFO: Task 7 is sleeping for 8 seconds
Dec 28, 2016 2:21:07 PM AsyncMaintenanceTaskCompleter run
INFO: Task 6 is done sleeping
Dec 28, 2016 2:21:07 PM AsyncMaintenanceTaskCompleter run
INFO: Task 3 is done sleeping
Dec 28, 2016 2:21:09 PM AsyncMaintenanceTaskCompleter run
INFO: Task 2 is done sleeping
Dec 28, 2016 2:21:10 PM AsyncMaintenanceTaskCompleter run
INFO: Task 0 is done sleeping
Dec 28, 2016 2:21:11 PM AsyncMaintenanceTaskCompleter run
INFO: Task 7 is done sleeping
Dec 28, 2016 2:21:12 PM AsyncMaintenanceTaskCompleter run
INFO: Task 4 is done sleeping
Dec 28, 2016 2:21:12 PM AsyncMaintenanceTaskCompleter run
INFO: Task 1 is done sleeping
Dec 28, 2016 2:21:13 PM AsyncMaintenanceTaskCompleter run
INFO: Task 5 is done sleeping
Dec 28, 2016 2:21:17 PM AsyncMaintenanceTaskCompleter run
INFO: Task 9 is done sleeping
Dec 28, 2016 2:21:21 PM AsyncMaintenanceTaskCompleter run
INFO: Task 8 is done sleeping

Process finished with exit code 0

https://riptutorial.com/ 1107

Observations of Note: There are several things to note in the output above,

The tasks did not execute in a predictable order.1.
Since each task was sleeping for a (pseudo)random amount of time, they did not necessarily
complete in the order in which they were invoked.

2.

Performing Asynchronous Tasks Where a Return Value Is Needed Using a
Callable Class Instance

It is often necessary to execute a long-running task and use the result of that task once it has
completed.

In this example, we will create two classes: One which implements the Callable<T> interface
(where T is the type we wish to return), and one which contains a main() method.

AsyncValueTypeTaskCompleter.java

import lombok.extern.java.Log;

import java.util.concurrent.Callable;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;

@Log
public class AsyncValueTypeTaskCompleter implements Callable<Integer> {
 private int taskNumber;

 public AsyncValueTypeTaskCompleter(int taskNumber) {
 this.taskNumber = taskNumber;
 }

 @Override
 public Integer call() throws Exception {
 int timeout = ThreadLocalRandom.current().nextInt(1, 20);
 try {
 log.info(String.format("Task %d is sleeping", taskNumber));
 TimeUnit.SECONDS.sleep(timeout);
 log.info(String.format("Task %d is done sleeping", taskNumber));

 } catch (InterruptedException e) {
 log.warning(e.getMessage());
 }
 return timeout;
 }
}

AsyncExample2.java

import lombok.extern.java.Log;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

https://riptutorial.com/ 1108

import java.util.concurrent.Future;

@Log
public class AsyncExample2 {
 public static void main(String[] args) {
 ExecutorService executorService = Executors.newCachedThreadPool();
 List<Future<Integer>> futures = new ArrayList<>();
 for (int i = 0; i < 10; i++){
 Future<Integer> submittedFuture = executorService.submit(new
AsyncValueTypeTaskCompleter(i));
 futures.add(submittedFuture);
 }
 executorService.shutdown();
 while(!futures.isEmpty()){
 for(int j = 0; j < futures.size(); j++){
 Future<Integer> f = futures.get(j);
 if(f.isDone()){
 try {
 int timeout = f.get();
 log.info(String.format("A task just completed after sleeping for %d
seconds", timeout));
 futures.remove(f);
 } catch (InterruptedException | ExecutionException e) {
 log.warning(e.getMessage());
 }
 }
 }
 }
 }
}

Running AsyncExample2.main() resulted in the following output:

Dec 28, 2016 3:07:15 PM AsyncValueTypeTaskCompleter call
INFO: Task 7 is sleeping
Dec 28, 2016 3:07:15 PM AsyncValueTypeTaskCompleter call
INFO: Task 8 is sleeping
Dec 28, 2016 3:07:15 PM AsyncValueTypeTaskCompleter call
INFO: Task 2 is sleeping
Dec 28, 2016 3:07:15 PM AsyncValueTypeTaskCompleter call
INFO: Task 1 is sleeping
Dec 28, 2016 3:07:15 PM AsyncValueTypeTaskCompleter call
INFO: Task 4 is sleeping
Dec 28, 2016 3:07:15 PM AsyncValueTypeTaskCompleter call
INFO: Task 9 is sleeping
Dec 28, 2016 3:07:15 PM AsyncValueTypeTaskCompleter call
INFO: Task 0 is sleeping
Dec 28, 2016 3:07:15 PM AsyncValueTypeTaskCompleter call
INFO: Task 6 is sleeping
Dec 28, 2016 3:07:15 PM AsyncValueTypeTaskCompleter call
INFO: Task 5 is sleeping
Dec 28, 2016 3:07:15 PM AsyncValueTypeTaskCompleter call
INFO: Task 3 is sleeping
Dec 28, 2016 3:07:16 PM AsyncValueTypeTaskCompleter call
INFO: Task 8 is done sleeping
Dec 28, 2016 3:07:16 PM AsyncExample2 main
INFO: A task just completed after sleeping for 1 seconds
Dec 28, 2016 3:07:17 PM AsyncValueTypeTaskCompleter call
INFO: Task 2 is done sleeping
Dec 28, 2016 3:07:17 PM AsyncExample2 main

https://riptutorial.com/ 1109

INFO: A task just completed after sleeping for 2 seconds
Dec 28, 2016 3:07:17 PM AsyncValueTypeTaskCompleter call
INFO: Task 9 is done sleeping
Dec 28, 2016 3:07:17 PM AsyncExample2 main
INFO: A task just completed after sleeping for 2 seconds
Dec 28, 2016 3:07:19 PM AsyncValueTypeTaskCompleter call
INFO: Task 3 is done sleeping
Dec 28, 2016 3:07:19 PM AsyncExample2 main
INFO: A task just completed after sleeping for 4 seconds
Dec 28, 2016 3:07:20 PM AsyncValueTypeTaskCompleter call
INFO: Task 0 is done sleeping
Dec 28, 2016 3:07:20 PM AsyncExample2 main
INFO: A task just completed after sleeping for 5 seconds
Dec 28, 2016 3:07:21 PM AsyncValueTypeTaskCompleter call
INFO: Task 5 is done sleeping
Dec 28, 2016 3:07:21 PM AsyncExample2 main
INFO: A task just completed after sleeping for 6 seconds
Dec 28, 2016 3:07:25 PM AsyncValueTypeTaskCompleter call
INFO: Task 1 is done sleeping
Dec 28, 2016 3:07:25 PM AsyncExample2 main
INFO: A task just completed after sleeping for 10 seconds
Dec 28, 2016 3:07:27 PM AsyncValueTypeTaskCompleter call
INFO: Task 6 is done sleeping
Dec 28, 2016 3:07:27 PM AsyncExample2 main
INFO: A task just completed after sleeping for 12 seconds
Dec 28, 2016 3:07:29 PM AsyncValueTypeTaskCompleter call
INFO: Task 7 is done sleeping
Dec 28, 2016 3:07:29 PM AsyncExample2 main
INFO: A task just completed after sleeping for 14 seconds
Dec 28, 2016 3:07:31 PM AsyncValueTypeTaskCompleter call
INFO: Task 4 is done sleeping
Dec 28, 2016 3:07:31 PM AsyncExample2 main
INFO: A task just completed after sleeping for 16 seconds

Observations of Note:

There are several things to note in the output above,

Each call to ExecutorService.submit() returned an instance of Future, which was stored in a
list for later use

1.

Future contains a method called isDone() which can be used to check whether our task has
been completed before attempting to check it's return value. Calling the Future.get() method
on a Future that is not yet done will block the current thread until the task is complete,
potentially negating many benefits gained from performing the task Asynchronously.

2.

The executorService.shutdown() method was called prior to checking the return values of the
Future objects. This is not required, but was done in this way to show that it is possible. The
executorService.shutdown() method does not prevent the completion of tasks which have
already been submitted to the ExecutorService, but rather prevents new tasks from being
added to the Queue.

3.

Defining Asynchronous Tasks Inline using Lambdas

While good software design often maximizes code reusability, sometimes it can be useful to define
asynchronous tasks inline in your code via Lambda expressions to maximize code readability.

https://riptutorial.com/ 1110

In this example, we will create a single class which contains a main() method. Inside this method,
we will use Lambda expressions to create and execute instances of Callable and Runnable<T>.

AsyncExample3.java

import lombok.extern.java.Log;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.*;

@Log
public class AsyncExample3 {
 public static void main(String[] args) {
 ExecutorService executorService = Executors.newCachedThreadPool();
 List<Future<Integer>> futures = new ArrayList<>();
 for(int i = 0; i < 5; i++){
 final int index = i;
 executorService.execute(() -> {
 int timeout = getTimeout();
 log.info(String.format("Runnable %d has been submitted and will sleep for %d
seconds", index, timeout));
 try {
 TimeUnit.SECONDS.sleep(timeout);
 } catch (InterruptedException e) {
 log.warning(e.getMessage());
 }
 log.info(String.format("Runnable %d has finished sleeping", index));
 });
 Future<Integer> submittedFuture = executorService.submit(() -> {
 int timeout = getTimeout();
 log.info(String.format("Callable %d will begin sleeping", index));
 try {
 TimeUnit.SECONDS.sleep(timeout);
 } catch (InterruptedException e) {
 log.warning(e.getMessage());
 }
 log.info(String.format("Callable %d is done sleeping", index));
 return timeout;
 });
 futures.add(submittedFuture);
 }
 executorService.shutdown();
 while(!futures.isEmpty()){
 for(int j = 0; j < futures.size(); j++){
 Future<Integer> f = futures.get(j);
 if(f.isDone()){
 try {
 int timeout = f.get();
 log.info(String.format("A task just completed after sleeping for %d
seconds", timeout));
 futures.remove(f);
 } catch (InterruptedException | ExecutionException e) {
 log.warning(e.getMessage());
 }
 }
 }
 }
 }

https://riptutorial.com/ 1111

 public static int getTimeout(){
 return ThreadLocalRandom.current().nextInt(1, 20);
 }
}

Observations of Note:

There are several things to note in the output above,

Lambda expressions have access to variables and methods which are available to the scope
in which they are defined, but all variables must be final (or effectively final) for use inside a
lambda expression.

1.

We do not have to specify whether our Lambda expression is a Callable or a Runnable<T>
explicitly, the return type is inferred automatically by the return type.

2.

Read Using ThreadPoolExecutor in MultiThreaded applications. online:
https://riptutorial.com/java/topic/8646/using-threadpoolexecutor-in-multithreaded-applications-

https://riptutorial.com/ 1112

https://riptutorial.com/java/topic/8646/using-threadpoolexecutor-in-multithreaded-applications-

Chapter 179: Varargs (Variable Argument)

Remarks

A “varargs” method argument allows callers of that method to specify multiple arguments of the
designated type, each as a separate argument. It is specified in the method declaration by three
ASCII periods (...) after the base type.

The method itself receives those arguments as a single array, whose element type is the type of
the varargs argument. The array is created automatically (though callers are still permitted to pass
an explicit array instead of passing multiple values as separate method arguments).

Rules for varargs:

Varargs must be the last argument.1.
There can be only one Varargs in the method.2.

You must follow above rules otherwise program will give compile error.

Examples

Specifying a varargs parameter

void doSomething(String... strings) {
 for (String s : strings) {
 System.out.println(s);
 }
}

The three periods after the final parameter's type indicate that the final argument may be passed
as an array or as a sequence of arguments. Varargs can be used only in the final argument
position.

Working with Varargs parameters

Using varargs as a parameter for a method definition, it is possible to pass either an array or a
sequence of arguments. If a sequence of arguments are passed, they are converted into an array
automatically.

This example shows both an array and a sequence of arguments being passed into the
printVarArgArray() method, and how they are treated identically in the code inside the method:

public class VarArgs {

 // this method will print the entire contents of the parameter passed in

 void printVarArgArray(int... x) {

https://riptutorial.com/ 1113

 for (int i = 0; i < x.length; i++) {
 System.out.print(x[i] + ",");
 }
 }

 public static void main(String args[]) {
 VarArgs obj = new VarArgs();

 //Using an array:
 int[] testArray = new int[]{10, 20};
 obj.printVarArgArray(testArray);

 System.out.println(" ");

 //Using a sequence of arguments
 obj.printVarArgArray(5, 6, 5, 8, 6, 31);
 }
}

Output:

10,20,
5,6,5,8,6,31

If you define the method like this, it will give compile-time errors.

void method(String... a, int... b , int c){} //Compile time error (multiple varargs)

void method(int... a, String b){} //Compile time error (varargs must be the last argument

Read Varargs (Variable Argument) online: https://riptutorial.com/java/topic/1948/varargs---
variable-argument-

https://riptutorial.com/ 1114

https://riptutorial.com/java/topic/1948/varargs---variable-argument-
https://riptutorial.com/java/topic/1948/varargs---variable-argument-

Chapter 180: Visibility (controlling access to
members of a class)

Syntax

public type name[= value];•
private type name[= value];•
protected type name[= value];•
type name[= value];•
public class name{•
class name{•

Remarks

From the Java tutorial:

Access level modifiers determine whether other classes can use a particular field or invoke a
particular method. There are two levels of access control:

At the top level—public, or package-private (no explicit modifier).•
At the member level—public, private, protected, or package-private (no explicit modifier).•

A class may be declared with the modifier public, in which case that class is visible to all classes
everywhere. If a class has no modifier (the default, also known as package-private), it is visible
only within its own package.

At the member level, you can also use the public modifier or no modifier (package-private) just as
with top-level classes, and with the same meaning. For members, there are two additional access
modifiers: private and protected. The private modifier specifies that the member can only be
accessed in its own class. The protected modifier specifies that the member can only be accessed
within its own package (as with package-private) and, in addition, by a subclass of its class in
another package.

The following table shows the access to members permitted by each modifier.

Access Levels:

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

https://riptutorial.com/ 1115

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Examples

Interface members

public interface MyInterface {
 public void foo();
 int bar();

 public String TEXT = "Hello";
 int ANSWER = 42;

 public class X {
 }

 class Y {
 }
}

Interface members always have public visibility, even if the public keyword is omitted. So both
foo(), bar(), TEXT, ANSWER, X, and Y have public visibility. However, access may still be limited by the
containing interface - since MyInterface has public visibility, its members may be accessed from
anywhere, but if MyInterface had had package visibility, its members would only have been
accessible from within the same package.

Public Visibility

Visible to the class, package, and subclass.

Let's see an example with the class Test.

public class Test{
 public int number = 2;

 public Test(){

 }
}

Now let's try to create an instance of the class. In this example, we can access number because it
is public.

public class Other{

 public static void main(String[] args){
 Test t = new Test();
 System.out.println(t.number);
 }

}

Private Visibility

https://riptutorial.com/ 1116

private visibility allows a variable to only be accessed by its class. They are often used in
conjunction with public getters and setters.

class SomeClass {
 private int variable;

 public int getVariable() {
 return variable;
 }

 public void setVariable(int variable) {
 this.variable = variable;
 }
}

public class SomeOtherClass {
 public static void main(String[] args) {
 SomeClass sc = new SomeClass();

 // These statement won't compile because SomeClass#variable is private:
 sc.variable = 7;
 System.out.println(sc.variable);

 // Instead, you should use the public getter and setter:
 sc.setVariable(7);
 System.out.println(sc.getVariable());
 }
}

Package Visibility

With no modifier, the default is package visibility. From the Java Documentation, "[package
visibility] indicates whether classes in the same package as the class (regardless of their
parentage) have access to the member." In this example from javax.swing,

package javax.swing;
public abstract class JComponent extends Container … {
 …
 static boolean DEBUG_GRAPHICS_LOADED;
 …
}

DebugGraphics is in the same package, so DEBUG_GRAPHICS_LOADED is accessible.

package javax.swing;
public class DebugGraphics extends Graphics {
 …
 static {
 JComponent.DEBUG_GRAPHICS_LOADED = true;
 }
 …
}

This article gives some background on the topic.

https://riptutorial.com/ 1117

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/javax/swing
http://programmers.stackexchange.com/q/220053

Protected Visibility

Protected visibility causes means that this member is visible to its package, along with any of its
subclasses.

As an example:

package com.stackexchange.docs;
public class MyClass{
 protected int variable; //This is the variable that we are trying to access
 public MyClass(){
 variable = 2;
 };
}

Now we'll extend this class and try to access one of its protected members.

package some.other.pack;
import com.stackexchange.docs.MyClass;
public class SubClass extends MyClass{
 public SubClass(){
 super();
 System.out.println(super.variable);
 }
}

You would be also able to access a protected member without extending it if you are accessing it
from the same package.

Note that this modifier only works on members of a class, not on the class itself.

Summary of Class Member Access Modifiers

Access Modifier Visibility Inheritance

Private Class only Can't be inherited

No modifier / Package In package Available if subclass in package

Protected In package Available in subclass

Public Everywhere Available in subclass

There was once a private protected (both keywords at once) modifier that could be applied to
methods or variables to make them accessible from a subclass outside the package, but make
them private to the classes in that package. However, this was removed in Java 1.0's release.

Read Visibility (controlling access to members of a class) online:
https://riptutorial.com/java/topic/134/visibility--controlling-access-to-members-of-a-class-

https://riptutorial.com/ 1118

http://stackoverflow.com/q/41431533/6754053
https://riptutorial.com/java/topic/134/visibility--controlling-access-to-members-of-a-class-

Chapter 181: WeakHashMap

Introduction

Concepts of weak Hashmap

Examples

Concepts of WeakHashmap

Key Points:-

Implementation of Map.•
stores only weak references to its keys.•

Weak References : The objects that are referenced only by weak references are garbage
collected eagerly; the GC won’t wait until it needs memory in that case.

Diffrence between Hashmap and WeakHashMap:-

If the Java memory manager no longer has a strong reference to the object specified as a key,
then the entry in the map will be removed in WeakHashMap.

Example :-

public class WeakHashMapTest {
 public static void main(String[] args) {
 Map hashMap= new HashMap();

 Map weakHashMap = new WeakHashMap();

 String keyHashMap = new String("keyHashMap");
 String keyWeakHashMap = new String("keyWeakHashMap");

 hashMap.put(keyHashMap, "Ankita");
 weakHashMap.put(keyWeakHashMap, "Atul");
 System.gc();
 System.out.println("Before: hash map value:"+hashMap.get("keyHashMap")+" and weak hash
map value:"+weakHashMap.get("keyWeakHashMap"));

 keyHashMap = null;
 keyWeakHashMap = null;

 System.gc();

 System.out.println("After: hash map value:"+hashMap.get("keyHashMap")+" and weak hash
map value:"+weakHashMap.get("keyWeakHashMap"));
 }

Size differences (HashMap vs WeakHashMap):

https://riptutorial.com/ 1119

Calling size() method on HashMap object will return the same number of key-value pairs. size will
decrease only if remove() method is called explicitly on the HashMap object.

Because the garbage collector may discard keys at anytime, a WeakHashMap may behave as
though an unknown thread is silently removing entries. So it is possible for the size method to
return smaller values over time.So, in WeakHashMap size decrease happens automatically.

Read WeakHashMap online: https://riptutorial.com/java/topic/10749/weakhashmap

https://riptutorial.com/ 1120

https://riptutorial.com/java/topic/10749/weakhashmap

Chapter 182: XJC

Introduction

XJC is a Java SE tool that compiles an XML schema file into fully annotated Java classes.

It is distributed within the JDK package and is located at /bin/xjc path.

Syntax

xjc [options] schema file/URL/dir/jar ... [-b bindinfo] ...•

Parameters

Parameter Details

schema file The xsd schema file to convert to java

Remarks

The XJC tool is available as part of the JDK. It allows creating java code annotated with JAXB
annotations suitable for (un)marshalling.

Examples

Generating Java code from simple XSD file

XSD schema (schema.xsd)

The following xml schema (xsd) defines a list of users with attributes name and reputation.

<?xml version="1.0"?>

<xs:schema version="1.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ns="http://www.stackoverflow.com/users"
 elementFormDefault="qualified"
 targetNamespace="http://www.stackoverflow.com/users">
 <xs:element name="users" type="ns:Users"/>

 <xs:complexType name="Users">
 <xs:sequence>
 <xs:element type="ns:User" name="user" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

https://riptutorial.com/ 1121

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/xjc.html
http://www.riptutorial.com/java/topic/147/jaxb

 <xs:complexType name="User">
 <xs:attribute name="name" use="required" type="xs:string"/>
 <xs:attribute name="reputation" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:int">
 <xs:minInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
</xs:schema>

Using xjc

This requires the path to the xjc tool (JDK binaries) to be in the OS path variable.

The code generation can be started using

xjc schema.xsd

This will generate java files in the working directory.

Result files

There will be some additional comments, but basically the java files generated look like this:

package com.stackoverflow.users;

import java.util.ArrayList;
import java.util.List;
import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlType;

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "Users", propOrder = {
 "user"
})
public class Users {

 protected List<User> user;

 public List<User> getUser() {
 if (user == null) {
 user = new ArrayList<User>();
 }
 return this.user;
 }

}

package com.stackoverflow.users;

https://riptutorial.com/ 1122

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlType;

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "User")
public class User {

 @XmlAttribute(name = "name", required = true)
 protected String name;
 @XmlAttribute(name = "reputation", required = true)
 protected int reputation;

 public String getName() {
 return name;
 }

 public void setName(String value) {
 this.name = value;
 }

 public int getReputation() {
 return reputation;
 }

 public void setReputation(int value) {
 this.reputation = value;
 }

}

package com.stackoverflow.users;

import javax.xml.bind.JAXBElement;
import javax.xml.bind.annotation.XmlElementDecl;
import javax.xml.bind.annotation.XmlRegistry;
import javax.xml.namespace.QName;

@XmlRegistry
public class ObjectFactory {

 private final static QName _Users_QNAME = new QName("http://www.stackoverflow.com/users",
"users");

 public ObjectFactory() {
 }

 public Users createUsers() {
 return new Users();
 }

 public User createUser() {
 return new User();
 }

 @XmlElementDecl(namespace = "http://www.stackoverflow.com/users", name = "users")
 public JAXBElement<Users> createUsers(Users value) {
 return new JAXBElement<Users>(_Users_QNAME, Users.class, null, value);
 }

https://riptutorial.com/ 1123

}

package-info.java

@javax.xml.bind.annotation.XmlSchema(namespace = "http://www.stackoverflow.com/users",
elementFormDefault = javax.xml.bind.annotation.XmlNsForm.QUALIFIED)
package com.stackoverflow.users;

Read XJC online: https://riptutorial.com/java/topic/4538/xjc

https://riptutorial.com/ 1124

https://riptutorial.com/java/topic/4538/xjc

Chapter 183: XML Parsing using the JAXP
APIs

Remarks

XML Parsing is the interpretation of XML documents in order to manipulate their content using
sensible constructs, be they "nodes", "attributes", "documents", "namespaces", or events related
to these constructs.

Java has a native API for XML document handling, called JAXP, or Java API for XML Processing.
JAXP and a reference implementation has been bundled with every Java release since Java 1.4
(JAXP v1.1) and has evolved since. Java 8 shipped with JAXP version 1.6.

The API provides different ways of interacting with XML documents, which are :

The DOM interface (Document Object Model)•
The SAX interface (Simple API for XML)•
The StAX interface (Streaming API for XML)•

Principles of the DOM interface

The DOM interface aims to provide a W3C DOM compliant way of interpreting XML. Various
versions of JAXP have supported various DOM Levels of specification (up to level 3).

Under the Document Object Model interface, an XML document is represented as a tree, starting
with the "Document Element". The base type of the API is the Node type, it allows to navigate from
a Node to its parent, its children, or its siblings (although, not all Nodes can have children, for
example, Text nodes are final in the tree, and never have childre). XML tags are represented as
Elements, which notably extend the Node with attribute-related methods.

The DOM interface is very usefull since it allows a "one line" parsing of XML documents as trees,
and allows easy modification of the constructed tree (node addition, suppression, copying, ...), and
finally its serialization (back to disk) post modifications. This comes at a price, though : the tree
resides in memory, therefore, DOM trees are not always practical for huge XML documents.
Furthermore, the construction of the tree is not always the fastest way of dealing with XML
content, especially if one is not interested in all parts of the XML document.

Principles of the SAX interface

The SAX API is an event-oriented API to deal with XML documents. Under this model, the
components of an XML documents are interpreted as events (e.g. "a tag has been opened", "a tag
has been closed", "a text node has been encountered", "a comment has been encountered")...

https://riptutorial.com/ 1125

https://jaxp.java.net/
https://www.w3.org/DOM/
https://docs.oracle.com/javase/8/docs/api/org/w3c/dom/Node.html

The SAX API uses a "push parsing" approach, where a SAX Parser is responsible for interpreting
the XML document, and invokes methods on a delegate (a ContentHandler) to deal with whatever
event is found in the XML document. Usually, one never writes a parser, but one provides a
handler to gather all needed informations from the XML document.

The SAX interface overcomes the DOM interface's limitations by keeping only the minimum
necessary data at the parser level (e.g. namespaces contexts, validation state), therefore, only
informations that are kept by the ContentHandler - for which you, the developer, is responsible - are
held into memory. The tradeoff is that there is no way of "going back in time/the XML document"
with such an approach : while DOM allows a Node to go back to its parent, there is no such
possibility in SAX.

Principles of the StAX interface

The StAX API takes a similar approach to processing XML as the SAX API (that is, event driven),
the only very significative difference being that StAX is a pull parser (where SAX was a push
parser). In SAX, the Parser is in control, and uses callbacks on the ContentHandler. In Stax, you call
the parser, and control when/if you want to obtain the next XML "event".

The API starts with XMLStreamReader (or XMLEventReader), which are the gateways through
which the developer can ask nextEvent(), in an iterator-style way.

Examples

Parsing and navigating a document using the DOM API

Considering the following document :

<?xml version='1.0' encoding='UTF-8' ?>
<library>
 <book id='1'>Effective Java</book>
 <book id='2'>Java Concurrency In Practice</book>
</library>

One can use the following code to build a DOM tree out of a String :

import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.xml.sax.InputSource;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import java.io.StringReader;

public class DOMDemo {

public static void main(String[] args) throws Exception {
 String xmlDocument = "<?xml version='1.0' encoding='UTF-8' ?>"

https://riptutorial.com/ 1126

https://docs.oracle.com/javase/7/docs/api/javax/xml/parsers/SAXParser.html
https://docs.oracle.com/javase/7/docs/api/org/xml/sax/ContentHandler.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/stream/XMLStreamReader.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/stream/XMLStreamReader.html

 + "<library>"
 + "<book id='1'>Effective Java</book>"
 + "<book id='2'>Java Concurrency In Practice</book>"
 + "</library>";

 DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();
 // This is useless here, because the XML does not have namespaces, but this option is
usefull to know in cas
 documentBuilderFactory.setNamespaceAware(true);
 DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();
 // There are various options here, to read from an InputStream, from a file, ...
 Document document = documentBuilder.parse(new InputSource(new StringReader(xmlDocument)));

 // Root of the document
 System.out.println("Root of the XML Document: " +
document.getDocumentElement().getLocalName());

 // Iterate the contents
 NodeList firstLevelChildren = document.getDocumentElement().getChildNodes();
 for (int i = 0; i < firstLevelChildren.getLength(); i++) {
 Node item = firstLevelChildren.item(i);
 System.out.println("First level child found, XML tag name is: " +
item.getLocalName());
 System.out.println("\tid attribute of this tag is : " +
item.getAttributes().getNamedItem("id").getTextContent());
 }

 // Another way would have been
 NodeList allBooks = document.getDocumentElement().getElementsByTagName("book");
}
}

The code yields the following :

Root of the XML Document: library
First level child found, XML tag name is: book
id attribute of this tag is : 1
First level child found, XML tag name is: book
id attribute of this tag is : 2

Parsing a document using the StAX API

Considering the following document :

<?xml version='1.0' encoding='UTF-8' ?>
<library>
 <book id='1'>Effective Java</book>
 <book id='2'>Java Concurrency In Practice</book>
 <notABook id='3'>This is not a book element</notABook>
</library>

One can use the following code to parse it and build a map of book titles by book id.

import javax.xml.stream.XMLInputFactory;
import javax.xml.stream.XMLStreamConstants;
import javax.xml.stream.XMLStreamReader;

https://riptutorial.com/ 1127

import java.io.StringReader;
import java.util.HashMap;
import java.util.Map;

public class StaxDemo {

public static void main(String[] args) throws Exception {
 String xmlDocument = "<?xml version='1.0' encoding='UTF-8' ?>"
 + "<library>"
 + "<book id='1'>Effective Java</book>"
 + "<book id='2'>Java Concurrency In Practice</book>"
 + "<notABook id='3'>This is not a book element </notABook>"
 + "</library>";

 XMLInputFactory xmlInputFactory = XMLInputFactory.newFactory();
 // Various flavors are possible, e.g. from an InputStream, a Source, ...
 XMLStreamReader xmlStreamReader = xmlInputFactory.createXMLStreamReader(new
StringReader(xmlDocument));

 Map<Integer, String> bookTitlesById = new HashMap<>();

 // We go through each event using a loop
 while (xmlStreamReader.hasNext()) {
 switch (xmlStreamReader.getEventType()) {
 case XMLStreamConstants.START_ELEMENT:
 System.out.println("Found start of element: " +
xmlStreamReader.getLocalName());
 // Check if we are at the start of a <book> element
 if ("book".equals(xmlStreamReader.getLocalName())) {
 int bookId = Integer.parseInt(xmlStreamReader.getAttributeValue("",
"id"));
 String bookTitle = xmlStreamReader.getElementText();
 bookTitlesById.put(bookId, bookTitle);
 }
 break;
 // A bunch of other things are possible : comments, processing instructions,
Whitespace...
 default:
 break;
 }
 xmlStreamReader.next();
 }

 System.out.println(bookTitlesById);
}

This outputs :

Found start of element: library
Found start of element: book
Found start of element: book
Found start of element: notABook
{1=Effective Java, 2=Java Concurrency In Practice}

In this sample, one must be carreful of a few things :

THe use of xmlStreamReader.getAttributeValue works because we have checked first that the
parser is in the START_ELEMENT state. In evey other states (except ATTRIBUTES), the parser is

1.

https://riptutorial.com/ 1128

mandated to throw IllegalStateException, because attributes can only appear at the
beginning of elements.

same goes for xmlStreamReader.getTextContent(), it works because we are at a START_ELEMENT
and we know in this document that the <book> element has no non-text child nodes.

2.

For more complex documents parsing (deeper, nested elements, ...), it is a good practice to
"delegate" the parser to sub-methods or other objets, e.g. have a BookParser class or method, and
have it deal with every element from the START_ELEMENT to the END_ELEMENT of the book
XML tag.

One can also use a Stack object to keep around important datas up and down the tree.

Read XML Parsing using the JAXP APIs online: https://riptutorial.com/java/topic/3943/xml-parsing-
using-the-jaxp-apis

https://riptutorial.com/ 1129

https://riptutorial.com/java/topic/3943/xml-parsing-using-the-jaxp-apis
https://riptutorial.com/java/topic/3943/xml-parsing-using-the-jaxp-apis

Chapter 184: XML XPath Evaluation

Remarks

XPath expressions are used to navigate and select one or more nodes within an XML tree
document, such as selecting a certain element or attribute node.

See this W3C recommendation for a reference on this language.

Examples

Evaluating a NodeList in an XML document

Given the following XML document:

<documentation>
 <tags>
 <tag name="Java">
 <topic name="Regular expressions">
 <example>Matching groups</example>
 <example>Escaping metacharacters</example>
 </topic>
 <topic name="Arrays">
 <example>Looping over arrays</example>
 <example>Converting an array to a list</example>
 </topic>
 </tag>
 <tag name="Android">
 <topic name="Building Android projects">
 <example>Building an Android application using Gradle</example>
 <example>Building an Android application using Maven</example>
 </topic>
 <topic name="Layout resources">
 <example>Including layout resources</example>
 <example>Supporting multiple device screens</example>
 </topic>
 </tag>
 </tags>
</documentation>

The following retrieves all example nodes for the Java tag (Use this method if only evaluating XPath
in the XML once. See other example for when multiple XPath calls are evaluated in the same XML
file.):

XPathFactory xPathFactory = XPathFactory.newInstance();
XPath xPath = xPathFactory.newXPath(); //Make new XPath
InputSource inputSource = new InputSource("path/to/xml.xml"); //Specify XML file path

NodeList javaExampleNodes = (NodeList)
xPath.evaluate("/documentation/tags/tag[@name='Java']//example", inputSource,
XPathConstants.NODESET); //Evaluate the XPath
...

https://riptutorial.com/ 1130

https://www.w3.org/TR/xpath/

Parsing multiple XPath Expressions in a single XML

Using the same example as Evaluating a NodeList in an XML document, here is how you would
make multiple XPath calls efficiently:

Given the following XML document:

<documentation>
 <tags>
 <tag name="Java">
 <topic name="Regular expressions">
 <example>Matching groups</example>
 <example>Escaping metacharacters</example>
 </topic>
 <topic name="Arrays">
 <example>Looping over arrays</example>
 <example>Converting an array to a list</example>
 </topic>
 </tag>
 <tag name="Android">
 <topic name="Building Android projects">
 <example>Building an Android application using Gradle</example>
 <example>Building an Android application using Maven</example>
 </topic>
 <topic name="Layout resources">
 <example>Including layout resources</example>
 <example>Supporting multiple device screens</example>
 </topic>
 </tag>
 </tags>
</documentation>

This is how you would use XPath to evaluate multiple expressions in one document:

XPath xPath = XPathFactory.newInstance().newXPath(); //Make new XPath
DocumentBuilder builder = DocumentBuilderFactory.newInstance();
Document doc = builder.parse(new File("path/to/xml.xml")); //Specify XML file path

NodeList javaExampleNodes = (NodeList)
xPath.evaluate("/documentation/tags/tag[@name='Java']//example", doc, XPathConstants.NODESET);
//Evaluate the XPath
xPath.reset(); //Resets the xPath so it can be used again
NodeList androidExampleNodes = (NodeList)
xPath.evaluate("/documentation/tags/tag[@name='Android']//example", doc,
XPathConstants.NODESET); //Evaluate the XPath

...

Parsing single XPath Expression multiple times in an XML

In this case, you want to have the expression compiled before the evaluations, so that each call to
evaluate does not compile the same expression. The simple syntax would be:

XPath xPath = XPathFactory.newInstance().newXPath(); //Make new XPath
XPathExpression exp = xPath.compile("/documentation/tags/tag[@name='Java']//example");

https://riptutorial.com/ 1131

DocumentBuilder builder = DocumentBuilderFactory.newInstance();
Document doc = builder.parse(new File("path/to/xml.xml")); //Specify XML file path

NodeList javaExampleNodes = (NodeList) exp.evaluate(doc, XPathConstants.NODESET); //Evaluate
the XPath from the already-compiled expression

NodeList javaExampleNodes2 = (NodeList) exp.evaluate(doc, XPathConstants.NODESET); //Do it
again

Overall, two calls to XPathExpression.evaluate() will be much more efficient than two calls to
XPath.evaluate().

Read XML XPath Evaluation online: https://riptutorial.com/java/topic/4148/xml-xpath-evaluation

https://riptutorial.com/ 1132

https://riptutorial.com/java/topic/4148/xml-xpath-evaluation

Chapter 185: XOM - XML Object Model

Examples

Reading a XML file

In order to load the XML data with XOM you will need to make a Builder from which you can build
it into a Document.

Builder builder = new Builder();
Document doc = builder.build(file);

To get the root element, the highest parent in the xml file, you need to use the getRootElement() on
the Document instance.

Element root = doc.getRootElement();

Now the Element class has a lot of handy methods that make reading xml really easy. Some of the
most useful are listed below:

getChildElements(String name) - returns an Elements instance that acts as an array of
elements

•

getFirstChildElement(String name) - returns the first child element with that tag.•
getValue() - returns the value inside the element.•
getAttributeValue(String name) - returns the value of an attribute with the specified name.•

When you call the getChildElements() you get a Elements instance. From this you can loop through
and call the get(int index) method on it to retrieve all the elements inside.

Elements colors = root.getChildElements("color");
for (int q = 0; q < colors.size(); q++){
 Element color = colors.get(q);
}

Example: Here is an example of reading an XML File:

XML File:

https://riptutorial.com/ 1133

http://www.xom.nu/

Code for reading and printing it:

import java.io.File;
import java.io.IOException;
import nu.xom.Builder;
import nu.xom.Document;
import nu.xom.Element;
import nu.xom.Elements;
import nu.xom.ParsingException;

public class XMLReader {

 public static void main(String[] args) throws ParsingException, IOException{
 File file = new File("insert path here");
 // builder builds xml data
 Builder builder = new Builder();
 Document doc = builder.build(file);

 // get the root element <example>
 Element root = doc.getRootElement();

 // gets all element with tag <person>
 Elements people = root.getChildElements("person");

 for (int q = 0; q < people.size(); q++){
 // get the current person element
 Element person = people.get(q);

 // get the name element and its children: first and last
 Element nameElement = person.getFirstChildElement("name");
 Element firstNameElement = nameElement.getFirstChildElement("first");
 Element lastNameElement = nameElement.getFirstChildElement("last");

 // get the age element

https://riptutorial.com/ 1134

http://i.stack.imgur.com/gHNjo.png

 Element ageElement = person.getFirstChildElement("age");

 // get the favorite color element
 Element favColorElement = person.getFirstChildElement("fav_color");

 String fName, lName, ageUnit, favColor;
 int age;

 try {
 fName = firstNameElement.getValue();
 lName = lastNameElement.getValue();
 age = Integer.parseInt(ageElement.getValue());
 ageUnit = ageElement.getAttributeValue("unit");
 favColor = favColorElement.getValue();

 System.out.println("Name: " + lName + ", " + fName);
 System.out.println("Age: " + age + " (" + ageUnit + ")");
 System.out.println("Favorite Color: " + favColor);
 System.out.println("----------------");

 } catch (NullPointerException ex){
 ex.printStackTrace();
 } catch (NumberFormatException ex){
 ex.printStackTrace();
 }
 }
 }

}

This will print out in the console:

Name: Smith, Dan
Age: 23 (years)
Favorite Color: green

Name: Autry, Bob
Age: 3 (months)
Favorite Color: N/A

Writing to a XML File

Writing to a XML File using XOM is very similar to reading it except in this case we are making the
instances instead of retrieving them off the root.

To make a new Element use the constructor Element(String name). You will want to make a root
element so that you can easily add it to a Document.

Element root = new Element("root");

The Element class has some handy methods for editing elements. They are listed below:

appendChild(String name) - this will basically set the value of the element to name.•
appendChild(Node node) - this will make node the elements parent. (Elements are nodes so you •

https://riptutorial.com/ 1135

http://www.xom.nu/

can parse elements).
addAttribute(Attribute attribute) - will add an attribute to the element.•

The Attribute class has a couple of different constructors. The simplest one is Attribute(String
name, String value).

Once you have all of your elements add to your root element you can turn it into a Document.
Document will take a Element as an argument in it's constructor.

You can use a Serializer to write your XML to a file. You will need to make a new output stream to
parse in the constructor of Serializer.

FileOutputStream fileOutputStream = new FileOutputStream(file);
Serializer serializer = new Serializer(fileOutputStream, "UTF-8");
serializer.setIndent(4);
serializer.write(doc);

Example

Code:

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import nu.xom.Attribute;
import nu.xom.Builder;
import nu.xom.Document;
import nu.xom.Element;
import nu.xom.Elements;
import nu.xom.ParsingException;
import nu.xom.Serializer;

public class XMLWriter{

 public static void main(String[] args) throws UnsupportedEncodingException,
 IOException{
 // root element <example>
 Element root = new Element("example");

 // make a array of people to store
 Person[] people = {new Person("Smith", "Dan", "years", "green", 23),
 new Person("Autry", "Bob", "months", "N/A", 3)};

 // add all the people
 for (Person person : people){

 // make the main person element <person>
 Element personElement = new Element("person");

 // make the name element and it's children: first and last
 Element nameElement = new Element("name");
 Element firstNameElement = new Element("first");
 Element lastNameElement = new Element("last");

https://riptutorial.com/ 1136

 // make age element
 Element ageElement = new Element("age");

 // make favorite color element
 Element favColorElement = new Element("fav_color");

 // add value to names
 firstNameElement.appendChild(person.getFirstName());
 lastNameElement.appendChild(person.getLastName());

 // add names to name
 nameElement.appendChild(firstNameElement);
 nameElement.appendChild(lastNameElement);

 // add value to age
 ageElement.appendChild(String.valueOf(person.getAge()));

 // add unit attribute to age
 ageElement.addAttribute(new Attribute("unit", person.getAgeUnit()));

 // add value to favColor
 favColorElement.appendChild(person.getFavoriteColor());

 // add all contents to person
 personElement.appendChild(nameElement);
 personElement.appendChild(ageElement);
 personElement.appendChild(favColorElement);

 // add person to root
 root.appendChild(personElement);
 }

 // create doc off of root
 Document doc = new Document(root);

 // the file it will be stored in
 File file = new File("out.xml");
 if (!file.exists()){
 file.createNewFile();
 }

 // get a file output stream ready
 FileOutputStream fileOutputStream = new FileOutputStream(file);

 // use the serializer class to write it all
 Serializer serializer = new Serializer(fileOutputStream, "UTF-8");
 serializer.setIndent(4);
 serializer.write(doc);
 }

 private static class Person {

 private String lName, fName, ageUnit, favColor;
 private int age;

 public Person(String lName, String fName, String ageUnit, String favColor, int age){
 this.lName = lName;
 this.fName = fName;
 this.age = age;
 this.ageUnit = ageUnit;
 this.favColor = favColor;

https://riptutorial.com/ 1137

 }

 public String getLastName() { return lName; }
 public String getFirstName() { return fName; }
 public String getAgeUnit() { return ageUnit; }
 public String getFavoriteColor() { return favColor; }
 public int getAge() { return age; }
 }

}

This will be the contents of "out.xml":

Read XOM - XML Object Model online: https://riptutorial.com/java/topic/5091/xom---xml-object-
model

https://riptutorial.com/ 1138

http://i.stack.imgur.com/k4tmR.png
https://riptutorial.com/java/topic/5091/xom---xml-object-model
https://riptutorial.com/java/topic/5091/xom---xml-object-model

Credits

S.
No

Chapters Contributors

1
Getting started with
Java Language

aa_oo, Aaqib Akhtar, abhinav, Abhishek Jain, Abob, acdcjunior,
Adeel Ansari, adsalpha, AER, akhilsk, Akshit Soota, Alex A,
alphaloop, altomnr, Amani Kilumanga, AndroidMechanic, Ani
Menon, ankit dassor, Ankur Anand, antonio, Arkadiy, Ashish
Ahuja, Ben Page, Blachshma, bpoiss, Burkhard, Carlton,
Charlie H, Coffeehouse Coder, cʟᴅsᴇᴇᴅ, Community, Confiqure,
CraftedCart, dabansal, Daksh Gupta, Dan Hulme, Dan Morenus
, DarkV1, David G., David Grinberg, David Newcomb,
DeepCoder, Do Nhu Vy, Draken, Durgpal Singh, Dushko
Jovanovski, E_net4, Edvin Tenovimas, Emil Sierżęga, Emre
Bolat, enrico.bacis, Eran, explv, fgb, Francesco Menzani,
Functino, garg10may, Gautam Jose, GingerHead, Grzegorz
Górkiewicz, iliketocode, ıɯɐƃoʇ ǝızuǝʞ, intboolstring, ipsi, J F,
James Taylor, Jason, JavaHopper, Javant, javydreamercsw,
Jean Vitor, Jean-François Savard, Jeffrey Brett Coleman,
Jeffrey Lin, Jens Schauder, John Fergus, John Riddick, John
Slegers, Jojodmo, JonasCz, Jonathan, Jonny Henly, Jorn
Vernee, kaartic, Lambda Ninja, LostAvatar, madx, Magisch,
Makoto, manetsus, Marc, Mark Adelsberger, Maroun Maroun,
Matt, Matt, mayojava, Mitch Talmadge, mnoronha, Mrunal
Pagnis, Mukund B, Mureinik, NageN, Nathan Arthur, nevster,
Nithanim, Nuri Tasdemir, nyarasha, ochi, OldMcDonald, Onur,
Ortomala Lokni, OverCoder, P.J.Meisch, Pavneet_Singh, Petter
Friberg, philnate, Phrancis, Pops, ppeterka, Přemysl Šťastný,

Pritam Banerjee, Radek Postołowicz, Radouane ROUFID,

Rafael Mello, Rakitić, Ram, RamenChef, rekire, René Link,
Reut Sharabani, Richard Hamilton, Ronnie Wang, ronnyfm,
Ross Drew, RotemDev, Ryan Hilbert, SachinSarawgi,
Sanandrea, Sandeep Chatterjee, Sayakiss, ShivBuyya, Shoe,
Siguza, solidcell, stackptr, Stephen C, Stephen Leppik, sudo,
Sumurai8, Sнаđошƒа, tbodt, The Coder, ThePhantomGamer,
Thisaru Guruge, Thomas Gerot, ThomasThiebaud,
ThunderStruct, tonirush, Tushar Mudgal, Unihedron,
user1133275, user124993, uzaif, Vaibhav Jain, Vakerrian,
vasili111, Victor Stafusa, Vin, VinayVeluri, Vogel612, vorburger,
Wilson, worker_bee, Yash Jain, Yury Fedorov, Zachary David
Saunders, Ze Rubeus

2 2D Graphics in Java 17slim, ABDUL KHALIQ

https://riptutorial.com/ 1139

https://riptutorial.com/contributor/5876080/aa-oo
https://riptutorial.com/contributor/7933189/aaqib-akhtar
https://riptutorial.com/contributor/2082437/abhinav
https://riptutorial.com/contributor/3857465/abhishek-jain
https://riptutorial.com/contributor/4111606/abob
https://riptutorial.com/contributor/1850609/acdcjunior
https://riptutorial.com/contributor/42769/adeel-ansari
https://riptutorial.com/contributor/6380626/adsalpha
https://riptutorial.com/contributor/4644817/aer
https://riptutorial.com/contributor/3869736/akhilsk
https://riptutorial.com/contributor/705471/akshit-soota
https://riptutorial.com/contributor/6452488/alex-a
https://riptutorial.com/contributor/352315/alphaloop
https://riptutorial.com/contributor/1130812/altomnr
https://riptutorial.com/contributor/4957418/amani-kilumanga
https://riptutorial.com/contributor/1957401/androidmechanic
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/7724088/ankit-dassor
https://riptutorial.com/contributor/3027001/ankur-anand
https://riptutorial.com/contributor/4558709/antonio
https://riptutorial.com/contributor/3458/arkadiy
https://riptutorial.com/contributor/4688119/ashish-ahuja
https://riptutorial.com/contributor/4688119/ashish-ahuja
https://riptutorial.com/contributor/29924/ben-page
https://riptutorial.com/contributor/1379664/blachshma
https://riptutorial.com/contributor/2039482/bpoiss
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/3940445/carlton
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/8089674/coffeehouse-coder
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/5495287/craftedcart
https://riptutorial.com/contributor/3734852/dabansal
https://riptutorial.com/contributor/5662469/daksh-gupta
https://riptutorial.com/contributor/967945/dan-hulme
https://riptutorial.com/contributor/6680981/dan-morenus
https://riptutorial.com/contributor/6275934/darkv1
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/1305516/david-grinberg
https://riptutorial.com/contributor/52070/david-newcomb
https://riptutorial.com/contributor/6639835/deepcoder
https://riptutorial.com/contributor/3728901/do-nhu-vy
https://riptutorial.com/contributor/833070/draken
https://riptutorial.com/contributor/1759015/durgpal-singh
https://riptutorial.com/contributor/1458909/dushko-jovanovski
https://riptutorial.com/contributor/1458909/dushko-jovanovski
https://riptutorial.com/contributor/1233251/e-net4
https://riptutorial.com/contributor/3884852/edvin-tenovimas
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/6382007/emre-bolat
https://riptutorial.com/contributor/6382007/emre-bolat
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/1221571/eran
https://riptutorial.com/contributor/6391367/explv
https://riptutorial.com/contributor/298029/fgb
https://riptutorial.com/contributor/3453226/francesco-menzani
https://riptutorial.com/contributor/3601420/functino
https://riptutorial.com/contributor/3151415/garg10may
https://riptutorial.com/contributor/4921429/gautam-jose
https://riptutorial.com/contributor/1358722/gingerhead
https://riptutorial.com/contributor/4280359/grzegorz-gorkiewicz
https://riptutorial.com/contributor/4280359/grzegorz-gorkiewicz
https://riptutorial.com/contributor/3739391/iliketocode
https://riptutorial.com/contributor/436524/i---o---izu--
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/415877/ipsi
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/1944335/james-taylor
https://riptutorial.com/contributor/481248/jason
https://riptutorial.com/contributor/3059893/javahopper
https://riptutorial.com/contributor/6523710/javant
https://riptutorial.com/contributor/198108/javydreamercsw
https://riptutorial.com/contributor/5318192/jean-vitor
https://riptutorial.com/contributor/2683146/jean-francois-savard
https://riptutorial.com/contributor/5893681/jeffrey-brett-coleman
https://riptutorial.com/contributor/1440897/jeffrey-lin
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/5284011/john-fergus
https://riptutorial.com/contributor/4539626/john-riddick
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/2767207/jojodmo
https://riptutorial.com/contributor/4428462/jonascz
https://riptutorial.com/contributor/69875/jonathan
https://riptutorial.com/contributor/1241334/jonny-henly
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/5614968/kaartic
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/1541458/lostavatar
https://riptutorial.com/contributor/3138238/madx
https://riptutorial.com/contributor/5389107/magisch
https://riptutorial.com/contributor/1079354/makoto
https://riptutorial.com/contributor/3555000/manetsus
https://riptutorial.com/contributor/4382892/marc
https://riptutorial.com/contributor/7050130/mark-adelsberger
https://riptutorial.com/contributor/1735406/maroun-maroun
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/5024726/matt
https://riptutorial.com/contributor/997537/mayojava
https://riptutorial.com/contributor/2364405/mitch-talmadge
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/5387134/mrunal-pagnis
https://riptutorial.com/contributor/5387134/mrunal-pagnis
https://riptutorial.com/contributor/7087617/mukund-b
https://riptutorial.com/contributor/2422776/mureinik
https://riptutorial.com/contributor/3282002/nagen
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/36510/nevster
https://riptutorial.com/contributor/2060704/nithanim
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/3490881/nyarasha
https://riptutorial.com/contributor/600486/ochi
https://riptutorial.com/contributor/6049263/oldmcdonald
https://riptutorial.com/contributor/3133545/onur
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/2164304/overcoder
https://riptutorial.com/contributor/4393565/p-j-meisch
https://riptutorial.com/contributor/4936904/pavneet-singh
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/1377224/philnate
https://riptutorial.com/contributor/3626537/phrancis
https://riptutorial.com/contributor/122607/pops
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/2976142/premysl-stastny
https://riptutorial.com/contributor/2976142/premysl-stastny
https://riptutorial.com/contributor/1475228/pritam-banerjee
https://riptutorial.com/contributor/4800355/radek-postolowicz
https://riptutorial.com/contributor/4800355/radek-postolowicz
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/4681144/rafael-mello
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/2270563/ram
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/995926/rekire
https://riptutorial.com/contributor/974186/rene-link
https://riptutorial.com/contributor/948550/reut-sharabani
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/4710155/ronnie-wang
https://riptutorial.com/contributor/204968/ronnyfm
https://riptutorial.com/contributor/2075524/ross-drew
https://riptutorial.com/contributor/6657215/rotemdev
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/2663579/sachinsarawgi
https://riptutorial.com/contributor/1073786/sanandrea
https://riptutorial.com/contributor/2058368/sandeep-chatterjee
https://riptutorial.com/contributor/1291716/sayakiss
https://riptutorial.com/contributor/1654631/shivbuyya
https://riptutorial.com/contributor/493122/shoe
https://riptutorial.com/contributor/2302862/siguza
https://riptutorial.com/contributor/343299/solidcell
https://riptutorial.com/contributor/2469027/stackptr
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6714194/sudo
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/4362675/the-coder
https://riptutorial.com/contributor/3807967/thephantomgamer
https://riptutorial.com/contributor/3615862/thisaru-guruge
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/3580745/thomasthiebaud
https://riptutorial.com/contributor/3551916/thunderstruct
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/3880277/tushar-mudgal
https://riptutorial.com/contributor/3622940/unihedron
https://riptutorial.com/contributor/1133275/user1133275
https://riptutorial.com/contributor/3286267/user124993
https://riptutorial.com/contributor/3786332/uzaif
https://riptutorial.com/contributor/3128652/vaibhav-jain
https://riptutorial.com/contributor/2547495/vakerrian
https://riptutorial.com/contributor/1601703/vasili111
https://riptutorial.com/contributor/540552/victor-stafusa
https://riptutorial.com/contributor/5888265/vin
https://riptutorial.com/contributor/1594817/vinayveluri
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/421602/vorburger
https://riptutorial.com/contributor/6511967/wilson
https://riptutorial.com/contributor/8256277/worker-bee
https://riptutorial.com/contributor/4855012/yash-jain
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/7015351/zachary-david-saunders
https://riptutorial.com/contributor/7015351/zachary-david-saunders
https://riptutorial.com/contributor/4232386/ze-rubeus
https://riptutorial.com/contributor/3927528/17slim
https://riptutorial.com/contributor/7775489/abdul-khaliq

3
Alternative
Collections

mnoronha, ppeterka, Viacheslav Vedenin

4 Annotations

Ad Infinitum, Alon .G., Andrei Maieras, Andrii Abramov, bruno,
Conrad.Dean, Dariusz, Demon Coldmist, Drizzt321, Dushko
Jovanovski, fabian, faraa, GhostCat, hd84335, Hendrik Ebbers,
J Atkin, Jorn Vernee, Kapep, Malt, MasterBlaster, matt freake,
Nolequen, Ortomala Lokni, Ram, shmosel, Stephen C, Umberto
Raimondi, Vogel612, ΦXocę Пepeúpa ツ

5
Apache Commons
Lang

Jonathan Barbero

6

AppDynamics and
TIBCO
BusinessWorks
Instrumentation for
Easy Integration

Alexandre Grimaud

7 Applets ArcticLord, Enigo, MadProgrammer, ppeterka

3442, 416E64726577, A Boschman, A.M.K, A_Arnold,
Abhishek Jain, Abubakkar, acdcjunior, Ad Infinitum, Addis,
Adrian Krebs, AER, afzalex, agilob, Alan, Alex Shesterov,
Alexandru, altomnr, Amani Kilumanga, Andrew Tobilko, Andrii
Abramov, AndroidMechanic, Anil, ankidaemon, ankit dassor,
anotherGatsby, antonio, Ares, Arthur, Ashish Ahuja, assylias,
AstroCB, baao, Beggs, Berzerk, Big Fan, BitNinja, bjb568,
Blubberguy22, Bob Rivers, bpoiss, Bryan, BudsNanKis,
Burkhard, bwegs, c1phr, Cache Staheli, Cerbrus, Charitha,
Charlie H, Chris Midgley, Christophe Weis, Christopher
Schneider, Codebender, coder-croc, Cold Fire, Colin Pickard,
Community, Confiqure, CptEric, Daniel Käfer, Daniel
Stradowski, Dariusz, DarkV1, David G., DeepCoder, Devid
Farinelli, Dhrubajyoti Gogoi, Dmitry Ginzburg, dorukayhan, Duh-
Wayne-101, Durgpal Singh, DVarga, Ed Cottrell, Edvin
Tenovimas, Eilit, eisbehr, Elad, Emil Sierżęga, Emre Bolat,
Eng.Fouad, enrico.bacis, Eran, Erik Minarini, Etki, explv, fabian,
fedorqui, Filip Haglund, Forest White, fracz, Franck Dernoncourt
, Functino, futureelite7, Gal Dreiman, gar, Gene Marin,
GingerHead, granmirupa, Grexis, Grzegorz Sancewicz, Gubbel,
Guilherme Torres Castro, Gustavo Coelho, hhj8i, Hiren, Idos,
ihatecsv, iliketocode, Ilya, Ilyas Mimouni, intboolstring, Irfan, J
Atkin, jabbathehutt1234, JakeD, James Taylor, Jamie, Jamie
Rees, Janez Kuhar, Jared Rummler, Jargonius, Jason Sturges,
JavaHopper, Javant, Jeeter, Jeffrey Bosboom, Jens Schauder,
Jérémie Bolduc, Jeutnarg, jhnance, Jim Garrison, jitendra
varshney, jmattheis, Joffrey, Johannes, johannes_preiser, John

8 Arrays

https://riptutorial.com/ 1140

https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/4318868/viacheslav-vedenin
https://riptutorial.com/contributor/6451425/ad-infinitum
https://riptutorial.com/contributor/6007933/alon--g-
https://riptutorial.com/contributor/4605817/andrei-maieras
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/770254/bruno
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/1961634/dariusz
https://riptutorial.com/contributor/6228266/demon-coldmist
https://riptutorial.com/contributor/570291/drizzt321
https://riptutorial.com/contributor/1458909/dushko-jovanovski
https://riptutorial.com/contributor/1458909/dushko-jovanovski
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/3431964/faraa
https://riptutorial.com/contributor/1531124/ghostcat
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/1286009/hendrik-ebbers
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/897024/kapep
https://riptutorial.com/contributor/3199595/malt
https://riptutorial.com/contributor/4475997/masterblaster
https://riptutorial.com/contributor/1168884/matt-freake
https://riptutorial.com/contributor/7643517/nolequen
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/2270563/ram
https://riptutorial.com/contributor/1553851/shmosel
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1155984/umberto-raimondi
https://riptutorial.com/contributor/1155984/umberto-raimondi
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/14811/jonathan-barbero
https://riptutorial.com/contributor/8195498/alexandre-grimaud
https://riptutorial.com/contributor/3812201/arcticlord
https://riptutorial.com/contributor/5151575/enigo
https://riptutorial.com/contributor/992484/madprogrammer
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/5249858/3442
https://riptutorial.com/contributor/2930268/416e64726577
https://riptutorial.com/contributor/3230218/a-boschman
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/5050431/a-arnold
https://riptutorial.com/contributor/3857465/abhishek-jain
https://riptutorial.com/contributor/1151456/abubakkar
https://riptutorial.com/contributor/1850609/acdcjunior
https://riptutorial.com/contributor/6451425/ad-infinitum
https://riptutorial.com/contributor/5791997/addis
https://riptutorial.com/contributor/4304038/adrian-krebs
https://riptutorial.com/contributor/4644817/aer
https://riptutorial.com/contributor/3626698/afzalex
https://riptutorial.com/contributor/1238944/agilob
https://riptutorial.com/contributor/6526765/alan
https://riptutorial.com/contributor/2170192/alex-shesterov
https://riptutorial.com/contributor/2972255/alexandru
https://riptutorial.com/contributor/1130812/altomnr
https://riptutorial.com/contributor/4957418/amani-kilumanga
https://riptutorial.com/contributor/4922375/andrew-tobilko
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/1957401/androidmechanic
https://riptutorial.com/contributor/711308/anil
https://riptutorial.com/contributor/5850195/ankidaemon
https://riptutorial.com/contributor/7724088/ankit-dassor
https://riptutorial.com/contributor/7369809/anothergatsby
https://riptutorial.com/contributor/4558709/antonio
https://riptutorial.com/contributor/2887760/ares
https://riptutorial.com/contributor/6395535/arthur
https://riptutorial.com/contributor/4688119/ashish-ahuja
https://riptutorial.com/contributor/829571/assylias
https://riptutorial.com/contributor/3366929/astrocb
https://riptutorial.com/contributor/3993662/baao
https://riptutorial.com/contributor/1953261/beggs
https://riptutorial.com/contributor/4686348/berzerk
https://riptutorial.com/contributor/6632777/big-fan
https://riptutorial.com/contributor/2872987/bitninja
https://riptutorial.com/contributor/2371861/bjb568
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/51754/bob-rivers
https://riptutorial.com/contributor/2039482/bpoiss
https://riptutorial.com/contributor/413537/bryan
https://riptutorial.com/contributor/1260472/budsnankis
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/745750/bwegs
https://riptutorial.com/contributor/2047504/c1phr
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/1391687/charitha
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/2591803/chris-midgley
https://riptutorial.com/contributor/4173303/christophe-weis
https://riptutorial.com/contributor/3059385/christopher-schneider
https://riptutorial.com/contributor/3059385/christopher-schneider
https://riptutorial.com/contributor/2775450/codebender
https://riptutorial.com/contributor/1997093/coder-croc
https://riptutorial.com/contributor/5148907/cold-fire
https://riptutorial.com/contributor/12744/colin-pickard
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/4763177/cpteric
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/1961634/dariusz
https://riptutorial.com/contributor/6275934/darkv1
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/6639835/deepcoder
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/2409095/dhrubajyoti-gogoi
https://riptutorial.com/contributor/1828937/dmitry-ginzburg
https://riptutorial.com/contributor/6304349/dorukayhan
https://riptutorial.com/contributor/4356188/duh-wayne-101
https://riptutorial.com/contributor/4356188/duh-wayne-101
https://riptutorial.com/contributor/1759015/durgpal-singh
https://riptutorial.com/contributor/5966775/dvarga
https://riptutorial.com/contributor/2057919/ed-cottrell
https://riptutorial.com/contributor/3884852/edvin-tenovimas
https://riptutorial.com/contributor/3884852/edvin-tenovimas
https://riptutorial.com/contributor/2948683/eilit
https://riptutorial.com/contributor/6498658/eisbehr
https://riptutorial.com/contributor/2261244/elad
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/6382007/emre-bolat
https://riptutorial.com/contributor/597657/eng-fouad
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/1221571/eran
https://riptutorial.com/contributor/6093353/erik-minarini
https://riptutorial.com/contributor/2908793/etki
https://riptutorial.com/contributor/6391367/explv
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/1983854/fedorqui
https://riptutorial.com/contributor/596041/filip-haglund
https://riptutorial.com/contributor/4957333/forest-white
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/3601420/functino
https://riptutorial.com/contributor/69783/futureelite7
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/485695/gar
https://riptutorial.com/contributor/432378/gene-marin
https://riptutorial.com/contributor/1358722/gingerhead
https://riptutorial.com/contributor/4532326/granmirupa
https://riptutorial.com/contributor/845567/grexis
https://riptutorial.com/contributor/1068288/grzegorz-sancewicz
https://riptutorial.com/contributor/415304/gubbel
https://riptutorial.com/contributor/1107651/guilherme-torres-castro
https://riptutorial.com/contributor/736244/gustavo-coelho
https://riptutorial.com/contributor/6588249/hhj8i
https://riptutorial.com/contributor/5326728/hiren
https://riptutorial.com/contributor/2204926/idos
https://riptutorial.com/contributor/3894173/ihatecsv
https://riptutorial.com/contributor/3739391/iliketocode
https://riptutorial.com/contributor/1458740/ilya
https://riptutorial.com/contributor/2822643/ilyas-mimouni
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/3275134/irfan
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/5619332/jabbathehutt1234
https://riptutorial.com/contributor/6655092/jaked
https://riptutorial.com/contributor/1944335/james-taylor
https://riptutorial.com/contributor/3222831/jamie
https://riptutorial.com/contributor/3329836/jamie-rees
https://riptutorial.com/contributor/3329836/jamie-rees
https://riptutorial.com/contributor/6367213/janez-kuhar
https://riptutorial.com/contributor/1048340/jared-rummler
https://riptutorial.com/contributor/2639179/jargonius
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/3059893/javahopper
https://riptutorial.com/contributor/6523710/javant
https://riptutorial.com/contributor/1085937/jeeter
https://riptutorial.com/contributor/3614835/jeffrey-bosboom
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/4735402/jeremie-bolduc
https://riptutorial.com/contributor/4602283/jeutnarg
https://riptutorial.com/contributor/4935665/jhnance
https://riptutorial.com/contributor/18157/jim-garrison
https://riptutorial.com/contributor/6402939/jitendra-varshney
https://riptutorial.com/contributor/6402939/jitendra-varshney
https://riptutorial.com/contributor/4244993/jmattheis
https://riptutorial.com/contributor/1540818/joffrey
https://riptutorial.com/contributor/5223579/johannes
https://riptutorial.com/contributor/5778854/johannes-preiser
https://riptutorial.com/contributor/1946501/john-slegers

Slegers, JohnB, Jojodmo, Jonathan, Jordi Castilla, Jorn, Jorn
Vernee, Josh, JStef, JudgingNotJudging, Justin, Kapep,
KartikKannapur, Kayathiri, Kaz Wolfe, Kenster, Kevin Thorne,
Lambda Ninja, Liju Thomas, llamositopia, Loris Securo, Luan
Nico, Lucas Paolillo, maciek, Magisch, Makoto, Makyen, Malt,
Marc, Markus, Marvin, MasterBlaster, Matas Vaitkevicius,
matsve, Matt, Matt, Matthias Braun, Maxim Kreschishin, Maxim
Plevako, Maximillian Laumeister, MC Emperor, Menasheh,
Michael Piefel, michaelbahr, Miljen Mikic, Minhas Kamal, Mitch
Talmadge, Mohamed Fadhl, Muhammed Refaat, Muntasir,
Mureinik, Mzzzzzz, NageN, Nathaniel Ford, Nayuki, nicael,
Nigel Nop, niyasc, noɥʇʎԀʎzɐɹƆ, Nuri Tasdemir, Ocracoke,
OldMcDonald, Onur, orccrusher99, Ortomala Lokni, Panda,
Paolo Forgia, Paul Bellora, Paweł Albecki, PeerNet, Peter

Gordon, phatfingers, Pimgd, Piyush, ppeterka, Přemysl Šťastný
, PSN, Pujan Srivastava, QoP, Radiodef, Radouane ROUFID,
Raidri, Rajesh, Rakitić, Ram, RamenChef, Ravi Chandra, René
Link, Reut Sharabani, Richard Hamilton, Robert Columbia,
rolfedh, rolve, Roman Cherepanov, roottraveller, Ross, Ryan
Hilbert, Sam Hazleton, sandbo00, Saurabh, Sayakiss, sebkur,
Sergii Bishyr, sevenforce, shmosel, Shoe, Siguza, Simulant,
Slayther, Smi, solidcell, Spencer Wieczorek, Squidward,
stackptr, stark, Stephen C, Stephen Leppik, Sualeh Fatehi,
sudo, Sumurai8, Sunnyok, syb0rg, tbodt, tdelev, tharkay,
Thomas, ThunderStruct, Tol182, ʇolɐǝz ǝɥʇ qoq, tpunt, Travis J,
Tunaki, Un3qual, Unihedron, user6653173, uzaif, vasili111,
VedX, Ven, Victor G., Vikas Gupta, vincentvanjoe, Vogel612,
Wilson, Winter, X.lophix, YCF_L, Yohanes Khosiawan , yuku,
Yury Fedorov, zamonier, ΦXocę Пepeúpa ツ

9 Asserting
Jonathan, Makoto, rajah9, RamenChef, The Guy with The Hat,
Uri Agassi

10 Atomic Types
Daniel Nugent, Stephen C, Suminda Sirinath S. Dharmasena,
xTrollxDudex

11 Audio
Dac Saunders, Petter Friberg, RamenChef, TNT, tonirush, Tot
Zam, Vogel612

12 Autoboxing

17slim, Anony-Mousse, Bob Rivers, Chuck Daniels,
cshubhamrao, fabian, hd84335, J Atkin, janos, kaartic, Kirill
Sokolov, Luan Nico, Nayuki, piyush_baderia, Ram, RamenChef
, Saagar Jha, Stephen C, Unihedron, Vladimir Vagaytsev

Adrian Krebs, AJNeufeld, Andrew Brooke, AshanPerera, Buddy
, Caleb Brinkman, Cas Eliëns, Coffeehouse Coder, CraftedCart,
dedmass, ebo, fabian, intboolstring, Inzimam Tariq IT, Jens

13
Basic Control
Structures

https://riptutorial.com/ 1141

https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/3015768/johnb
https://riptutorial.com/contributor/2767207/jojodmo
https://riptutorial.com/contributor/69875/jonathan
https://riptutorial.com/contributor/3850595/jordi-castilla
https://riptutorial.com/contributor/8681/jorn
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/421784/josh
https://riptutorial.com/contributor/5986817/jstef
https://riptutorial.com/contributor/6357392/judgingnotjudging
https://riptutorial.com/contributor/1896169/justin
https://riptutorial.com/contributor/897024/kapep
https://riptutorial.com/contributor/3001733/kartikkannapur
https://riptutorial.com/contributor/5950520/kayathiri
https://riptutorial.com/contributor/1817097/kaz-wolfe
https://riptutorial.com/contributor/13317/kenster
https://riptutorial.com/contributor/3502776/kevin-thorne
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/4714914/liju-thomas
https://riptutorial.com/contributor/2036090/llamositopia
https://riptutorial.com/contributor/6245535/loris-securo
https://riptutorial.com/contributor/1217989/luan-nico
https://riptutorial.com/contributor/1217989/luan-nico
https://riptutorial.com/contributor/3481973/lucas-paolillo
https://riptutorial.com/contributor/1161025/maciek
https://riptutorial.com/contributor/5389107/magisch
https://riptutorial.com/contributor/1079354/makoto
https://riptutorial.com/contributor/3773011/makyen
https://riptutorial.com/contributor/3199595/malt
https://riptutorial.com/contributor/4382892/marc
https://riptutorial.com/contributor/3880038/markus
https://riptutorial.com/contributor/4616087/marvin
https://riptutorial.com/contributor/4475997/masterblaster
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/4849950/matsve
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/5024726/matt
https://riptutorial.com/contributor/775954/matthias-braun
https://riptutorial.com/contributor/4336080/maxim-kreschishin
https://riptutorial.com/contributor/5343328/maxim-plevako
https://riptutorial.com/contributor/5343328/maxim-plevako
https://riptutorial.com/contributor/2234742/maximillian-laumeister
https://riptutorial.com/contributor/507738/mc-emperor
https://riptutorial.com/contributor/3817111/menasheh
https://riptutorial.com/contributor/2621917/michael-piefel
https://riptutorial.com/contributor/1309035/michaelbahr
https://riptutorial.com/contributor/1460628/miljen-mikic
https://riptutorial.com/contributor/4684058/minhas-kamal
https://riptutorial.com/contributor/2364405/mitch-talmadge
https://riptutorial.com/contributor/2364405/mitch-talmadge
https://riptutorial.com/contributor/5817706/mohamed-fadhl
https://riptutorial.com/contributor/1638739/muhammed-refaat
https://riptutorial.com/contributor/5456631/muntasir
https://riptutorial.com/contributor/2422776/mureinik
https://riptutorial.com/contributor/145988/mzzzzzz
https://riptutorial.com/contributor/3282002/nagen
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/839689/nayuki
https://riptutorial.com/contributor/2963652/nicael
https://riptutorial.com/contributor/2622145/nigel-nop
https://riptutorial.com/contributor/1520248/niyasc
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1132499/ocracoke
https://riptutorial.com/contributor/6049263/oldmcdonald
https://riptutorial.com/contributor/3133545/onur
https://riptutorial.com/contributor/3524867/orccrusher99
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/1685157/paolo-forgia
https://riptutorial.com/contributor/697449/paul-bellora
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/3964160/peernet
https://riptutorial.com/contributor/1476989/peter-gordon
https://riptutorial.com/contributor/1476989/peter-gordon
https://riptutorial.com/contributor/1031887/phatfingers
https://riptutorial.com/contributor/540837/pimgd
https://riptutorial.com/contributor/5754623/piyush
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/2976142/premysl-stastny
https://riptutorial.com/contributor/2976142/premysl-stastny
https://riptutorial.com/contributor/4161385/psn
https://riptutorial.com/contributor/349710/pujan-srivastava
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/2891664/radiodef
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/2610249/raidri
https://riptutorial.com/contributor/3702862/rajesh
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/2270563/ram
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/820800/ravi-chandra
https://riptutorial.com/contributor/974186/rene-link
https://riptutorial.com/contributor/974186/rene-link
https://riptutorial.com/contributor/948550/reut-sharabani
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/3005258/rolfedh
https://riptutorial.com/contributor/1374678/rolve
https://riptutorial.com/contributor/2893903/roman-cherepanov
https://riptutorial.com/contributor/5167682/roottraveller
https://riptutorial.com/contributor/539394/ross
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/1227207/sam-hazleton
https://riptutorial.com/contributor/6290345/sandbo00
https://riptutorial.com/contributor/3619691/saurabh
https://riptutorial.com/contributor/1291716/sayakiss
https://riptutorial.com/contributor/1268759/sebkur
https://riptutorial.com/contributor/5604676/sergii-bishyr
https://riptutorial.com/contributor/1091453/sevenforce
https://riptutorial.com/contributor/1553851/shmosel
https://riptutorial.com/contributor/493122/shoe
https://riptutorial.com/contributor/2302862/siguza
https://riptutorial.com/contributor/1515052/simulant
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/1128737/smi
https://riptutorial.com/contributor/343299/solidcell
https://riptutorial.com/contributor/3149020/spencer-wieczorek
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/2469027/stackptr
https://riptutorial.com/contributor/1507325/stark
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/100856/sualeh-fatehi
https://riptutorial.com/contributor/6714194/sudo
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/4290193/sunnyok
https://riptutorial.com/contributor/1937270/syb0rg
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/122861/tdelev
https://riptutorial.com/contributor/410143/tharkay
https://riptutorial.com/contributor/637853/thomas
https://riptutorial.com/contributor/3551916/thunderstruct
https://riptutorial.com/contributor/5632321/tol182
https://riptutorial.com/contributor/3696113/-ol--z-----qoq
https://riptutorial.com/contributor/4530326/tpunt
https://riptutorial.com/contributor/1026459/travis-j
https://riptutorial.com/contributor/1743880/tunaki
https://riptutorial.com/contributor/3067217/un3qual
https://riptutorial.com/contributor/3622940/unihedron
https://riptutorial.com/contributor/6653173/user6653173
https://riptutorial.com/contributor/3786332/uzaif
https://riptutorial.com/contributor/1601703/vasili111
https://riptutorial.com/contributor/1878022/vedx
https://riptutorial.com/contributor/1737909/ven
https://riptutorial.com/contributor/6854434/victor-g-
https://riptutorial.com/contributor/2915208/vikas-gupta
https://riptutorial.com/contributor/466023/vincentvanjoe
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/6511967/wilson
https://riptutorial.com/contributor/5771029/winter
https://riptutorial.com/contributor/6848530/x-lophix
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/500452/yohanes-khosiawan----
https://riptutorial.com/contributor/500452/yohanes-khosiawan----
https://riptutorial.com/contributor/500452/yohanes-khosiawan----
https://riptutorial.com/contributor/500452/yohanes-khosiawan----
https://riptutorial.com/contributor/11238/yuku
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/1034956/zamonier
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/69875/jonathan
https://riptutorial.com/contributor/1079354/makoto
https://riptutorial.com/contributor/509840/rajah9
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2846923/the-guy-with-the-hat
https://riptutorial.com/contributor/1120015/uri-agassi
https://riptutorial.com/contributor/4409409/daniel-nugent
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/676644/suminda-sirinath-s--dharmasena
https://riptutorial.com/contributor/3308999/xtrollxdudex
https://riptutorial.com/contributor/108207/dac-saunders
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3386144/tnt
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/3927528/17slim
https://riptutorial.com/contributor/1060350/anony-mousse
https://riptutorial.com/contributor/51754/bob-rivers
https://riptutorial.com/contributor/4504725/chuck-daniels
https://riptutorial.com/contributor/2561129/cshubhamrao
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/641955/janos
https://riptutorial.com/contributor/5614968/kaartic
https://riptutorial.com/contributor/6625678/kirill-sokolov
https://riptutorial.com/contributor/6625678/kirill-sokolov
https://riptutorial.com/contributor/1217989/luan-nico
https://riptutorial.com/contributor/839689/nayuki
https://riptutorial.com/contributor/6849461/piyush-baderia
https://riptutorial.com/contributor/2270563/ram
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5230900/saagar-jha
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/3622940/unihedron
https://riptutorial.com/contributor/2753863/vladimir-vagaytsev
https://riptutorial.com/contributor/4304038/adrian-krebs
https://riptutorial.com/contributor/3690024/ajneufeld
https://riptutorial.com/contributor/2278598/andrew-brooke
https://riptutorial.com/contributor/6462678/ashanperera
https://riptutorial.com/contributor/1715829/buddy
https://riptutorial.com/contributor/2489497/caleb-brinkman
https://riptutorial.com/contributor/2525319/cas-eliens
https://riptutorial.com/contributor/8089674/coffeehouse-coder
https://riptutorial.com/contributor/5495287/craftedcart
https://riptutorial.com/contributor/1916721/dedmass
https://riptutorial.com/contributor/13226/ebo
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/5055401/inzimam-tariq-it
https://riptutorial.com/contributor/66686/jens-schauder

Schauder, JonasCz, Jorn Vernee, juergen d, Makoto, Matt
Champion, philnate, Ram, Santhosh Ramanan, sevenforce,
Stephen C, teek, Unihedron, Uri Agassi, xwoker

14 Benchmarks esin88

15 BigDecimal
alain.janinm, Christian, Dth, Enigo, ggolding, Harish Gyanani,
John Nash, Loris Securo, Łukasz Piaszczyk, Manish Kothari,
mszymborski, RamenChef, sudo, xwoker

16 BigInteger

Alek Mieczkowski, Alex Shesterov, Amani Kilumanga, Andrii
Abramov, azurefrog, Byte1518, dimo414, dorukayhan, Emil Sier
żęga, fabian, GPI, Ha., hd84335, janos, Kaushal28, Maarten
Bodewes, Makoto, matt freake, Md. Nasir Uddin Bhuiyan, Nufail
, Pritam Banerjee, Ruslan Bes, ShivBuyya, Stendika, Vogel612

17 Bit Manipulation
Aimee Borda, Blubberguy22, dosdebug, esin88, Gerald Mücke,
Jorn Vernee, Kineolyan, mnoronha, Nayuki, Rednivrug, Ryan
Hilbert, Stephen C, thatguy

18 BufferedWriter Andrii Abramov, fabian, Jorn Vernee, Robin, VatsalSura

19 ByteBuffer
Community, Jon Ericson, Jorn Vernee, Tarık Yılmaz, Tomasz
Bawor, victorantunes, Vogel612

20
Bytecode
Modification

bloo, Display Name, rakwaht, Squidward

21 C++ Comparison John DiFini

22
Calendar and its
Subclasses

Bob Rivers, cdm, kann, Makoto, mnoronha, ppeterka, Ram,
VGR

23 Character encoding Ilya

24
Choosing
Collections

John DiFini

25
Class - Java
Reflection

gobes, KIRAN KUMAR MATAM

26 Classes and Objects

Community, Confiqure, Daniel LIn, Dave Ranjan, EJP, eveysky,
fabian, Jens Schauder, Kevin Johnson, KIRAN KUMAR
MATAM, MasterBlaster, Mureinik, Rakitić, Ram, RamenChef,
Ryan Cocuzzo, Salman Kazmi, Tyler Zika

27 Classloaders FFY00, Flow, Holger, Makoto, Stephen C

28
Collection Factory
Methods

Jacob G.

https://riptutorial.com/ 1142

https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/4428462/jonascz
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/575376/juergen-d
https://riptutorial.com/contributor/1079354/makoto
https://riptutorial.com/contributor/6081776/matt-champion
https://riptutorial.com/contributor/6081776/matt-champion
https://riptutorial.com/contributor/1377224/philnate
https://riptutorial.com/contributor/2270563/ram
https://riptutorial.com/contributor/6589979/santhosh-ramanan
https://riptutorial.com/contributor/1091453/sevenforce
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/3551126/teek
https://riptutorial.com/contributor/3622940/unihedron
https://riptutorial.com/contributor/1120015/uri-agassi
https://riptutorial.com/contributor/2615437/xwoker
https://riptutorial.com/contributor/1553934/esin88
https://riptutorial.com/contributor/1140748/alain-janinm
https://riptutorial.com/contributor/2497492/christian
https://riptutorial.com/contributor/2440202/dth
https://riptutorial.com/contributor/5151575/enigo
https://riptutorial.com/contributor/1964623/ggolding
https://riptutorial.com/contributor/1495703/harish-gyanani
https://riptutorial.com/contributor/6280993/john-nash
https://riptutorial.com/contributor/6245535/loris-securo
https://riptutorial.com/contributor/6825151/lukasz-piaszczyk
https://riptutorial.com/contributor/2736638/manish-kothari
https://riptutorial.com/contributor/5339966/mszymborski
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6714194/sudo
https://riptutorial.com/contributor/2615437/xwoker
https://riptutorial.com/contributor/2669025/alek-mieczkowski
https://riptutorial.com/contributor/2170192/alex-shesterov
https://riptutorial.com/contributor/4957418/amani-kilumanga
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/1361506/azurefrog
https://riptutorial.com/contributor/4402844/byte1518
https://riptutorial.com/contributor/113632/dimo414
https://riptutorial.com/contributor/6304349/dorukayhan
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/2131074/gpi
https://riptutorial.com/contributor/289684/ha-
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/641955/janos
https://riptutorial.com/contributor/5353128/kaushal28
https://riptutorial.com/contributor/589259/maarten-bodewes
https://riptutorial.com/contributor/589259/maarten-bodewes
https://riptutorial.com/contributor/1079354/makoto
https://riptutorial.com/contributor/1168884/matt-freake
https://riptutorial.com/contributor/4663552/md--nasir-uddin-bhuiyan
https://riptutorial.com/contributor/923179/nufail
https://riptutorial.com/contributor/1475228/pritam-banerjee
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/1654631/shivbuyya
https://riptutorial.com/contributor/3138305/stendika
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/2809449/aimee-borda
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/1951909/dosdebug
https://riptutorial.com/contributor/1553934/esin88
https://riptutorial.com/contributor/3985482/gerald-mucke
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/3252477/kineolyan
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/839689/nayuki
https://riptutorial.com/contributor/7564323/rednivrug
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6181599/thatguy
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/1076463/robin
https://riptutorial.com/contributor/6239674/vatsalsura
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/2395656/tarik-yilmaz
https://riptutorial.com/contributor/2395656/tarik-yilmaz
https://riptutorial.com/contributor/5904368/tomasz-bawor
https://riptutorial.com/contributor/5904368/tomasz-bawor
https://riptutorial.com/contributor/2109492/victorantunes
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/6637654/bloo
https://riptutorial.com/contributor/5620200/display-name
https://riptutorial.com/contributor/5226835/rakwaht
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/6230654/john-difini
https://riptutorial.com/contributor/51754/bob-rivers
https://riptutorial.com/contributor/4663542/cdm
https://riptutorial.com/contributor/919158/kann
https://riptutorial.com/contributor/1079354/makoto
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/2270563/ram
https://riptutorial.com/contributor/1831987/vgr
https://riptutorial.com/contributor/1458740/ilya
https://riptutorial.com/contributor/6230654/john-difini
https://riptutorial.com/contributor/574059/gobes
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/4434245/daniel-lin
https://riptutorial.com/contributor/4161024/dave-ranjan
https://riptutorial.com/contributor/207421/ejp
https://riptutorial.com/contributor/7424245/eveysky
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/1556343/kevin-johnson
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/4475997/masterblaster
https://riptutorial.com/contributor/2422776/mureinik
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/2270563/ram
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6127225/ryan-cocuzzo
https://riptutorial.com/contributor/4340520/salman-kazmi
https://riptutorial.com/contributor/1086315/tyler-zika
https://riptutorial.com/contributor/5269673/ffy00
https://riptutorial.com/contributor/194894/flow
https://riptutorial.com/contributor/2711488/holger
https://riptutorial.com/contributor/1079354/makoto
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/7294647/jacob-g-

29 Collections

4castle, A_Arnold, Ad Infinitum, Alek Mieczkowski, alex s,
altomnr, Andy Thomas, Anony-Mousse, Ashok Felix,
Aurasphere, Bob Rivers, ced-b, ChandrasekarG, Chirag Parmar
, clinomaniac, Codebender, Craig Gidney, Daniel Stradowski,
dcod, DimaSan, Dušan Rychnovský, Enigo, Eran, fabian, fgb,
GPI, Grzegorz Górkiewicz, ionyx, Jabir, Jan Vladimir Mostert,
KartikKannapur, Kenster, KIRAN KUMAR MATAM, koder23,
KudzieChase, Makoto, Maroun Maroun, Martin Frank,
Matsemann, Mike H, Mo.Ashfaq, Mrunal Pagnis, mystarrocks,
Oleg Sklyar, Pablo, Paweł Albecki, Petter Friberg, philnate,
Polostor, Poonam, Powerlord, ppeterka, Prasad Reddy,
Radiodef, rajadilipkolli, rd22, rdonuk, Ruslan Bes, Samk, SjB,
Squidward, Stephen C, Stephen Leppik, Unihedron,
user2296600, user3105453, Vasiliy Vlasov, Vasily Kabunov,
VatsalSura, vsminkov, webo80, xploreraj

30
Command line
Argument
Processing

Burkhard, Michael von Wenckstern, Stephen C

31
Common Java
Pitfalls

akvyalkov, Anand Vaidya, Andy Thomas, Anton Hlinisty,
anuvab1911, Conrad.Dean, Daniel Nugent, Dushko Jovanovski,
Enwired, Gal Dreiman, Gerald Mücke, HTNW, james large,
Jenny T-Type, John Starich, Lahiru Ashan, Makoto, Morgan
Zhang, NamshubWriter, P.J.Meisch, Pirate_Jack, ppeterka,
RamenChef, screab, Siva Sankar Rajendran, Squidward,
Stephen C, Stephen Leppik, Steve Harris, tonirush, TuringTux,
user3105453

32
Comparable and
Comparator

Andrii Abramov, Conrad.Dean, Daniel Nugent, fabian, GPI,
Hazem Farahat, JAVAC, Mshnik, Nolequen, Petter Friberg,
Prateek Agarwal, sebkur, Stephen C

33 CompletableFuture Adowrath, Kishore Tulsiani, WillShackleford

34
Concurrent
Collections

GPI, Kenster, Powerlord, user2296600

adino, Alex, assylias, bfd, Bhagyashree Jog, bowmore,
Burkhard, Chetya, corsiKa, Dariusz, Diane Chastain, DimaSan,
dimo414, Fildor, Freddie Coleman, GPI, Grzegorz Górkiewicz,
hd84335, hellrocker, hexafraction, Ilya, james large, Jens
Schauder, Johannes, Jorn Vernee, Kakarot, Lance Clark, Malt,
Matěj Kripner, Md. Nasir Uddin Bhuiyan, Michael Piefel,
michaelbahr, Mitchell Tracy, MSB, Murat K., Mureinik, mvd,
NatNgs, nickguletskii, Olivier Durin, OlivierTheOlive, Panda,
parakmiakos, Paweł Albecki, ppeterka, RamenChef, Ravindra
babu, rd22, RudolphEst, snowe2010, Squidward, Stephen C,

35
Concurrent
Programming
(Threads)

https://riptutorial.com/ 1143

https://riptutorial.com/contributor/5743988/4castle
https://riptutorial.com/contributor/5050431/a-arnold
https://riptutorial.com/contributor/6451425/ad-infinitum
https://riptutorial.com/contributor/2669025/alek-mieczkowski
https://riptutorial.com/contributor/2650960/alex-s
https://riptutorial.com/contributor/1130812/altomnr
https://riptutorial.com/contributor/202009/andy-thomas
https://riptutorial.com/contributor/1060350/anony-mousse
https://riptutorial.com/contributor/668240/ashok-felix
https://riptutorial.com/contributor/4921205/aurasphere
https://riptutorial.com/contributor/51754/bob-rivers
https://riptutorial.com/contributor/2649570/ced-b
https://riptutorial.com/contributor/3102252/chandrasekarg
https://riptutorial.com/contributor/5456160/chirag-parmar
https://riptutorial.com/contributor/3179169/clinomaniac
https://riptutorial.com/contributor/2775450/codebender
https://riptutorial.com/contributor/52239/craig-gidney
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/5165560/dcod
https://riptutorial.com/contributor/4390212/dimasan
https://riptutorial.com/contributor/1103412/dusan-rychnovsky
https://riptutorial.com/contributor/5151575/enigo
https://riptutorial.com/contributor/1221571/eran
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/298029/fgb
https://riptutorial.com/contributor/2131074/gpi
https://riptutorial.com/contributor/4280359/grzegorz-gorkiewicz
https://riptutorial.com/contributor/1785840/ionyx
https://riptutorial.com/contributor/2106815/jabir
https://riptutorial.com/contributor/527533/jan-vladimir-mostert
https://riptutorial.com/contributor/3001733/kartikkannapur
https://riptutorial.com/contributor/13317/kenster
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/3054241/koder23
https://riptutorial.com/contributor/5230401/kudziechase
https://riptutorial.com/contributor/1079354/makoto
https://riptutorial.com/contributor/1735406/maroun-maroun
https://riptutorial.com/contributor/2910751/martin-frank
https://riptutorial.com/contributor/923847/matsemann
https://riptutorial.com/contributor/220940/mike-h
https://riptutorial.com/contributor/2456732/mo-ashfaq
https://riptutorial.com/contributor/5387134/mrunal-pagnis
https://riptutorial.com/contributor/934307/mystarrocks
https://riptutorial.com/contributor/3165602/oleg-sklyar
https://riptutorial.com/contributor/1796236/pablo
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/1377224/philnate
https://riptutorial.com/contributor/4745695/polostor
https://riptutorial.com/contributor/5245957/poonam
https://riptutorial.com/contributor/15880/powerlord
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/3048005/prasad-reddy
https://riptutorial.com/contributor/2891664/radiodef
https://riptutorial.com/contributor/5557885/rajadilipkolli
https://riptutorial.com/contributor/1515111/rd22
https://riptutorial.com/contributor/971067/rdonuk
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/6837911/samk
https://riptutorial.com/contributor/140934/sjb
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/3622940/unihedron
https://riptutorial.com/contributor/2296600/user2296600
https://riptutorial.com/contributor/3105453/user3105453
https://riptutorial.com/contributor/4563745/vasiliy-vlasov
https://riptutorial.com/contributor/2219237/vasily-kabunov
https://riptutorial.com/contributor/6239674/vatsalsura
https://riptutorial.com/contributor/3239417/vsminkov
https://riptutorial.com/contributor/1096905/webo80
https://riptutorial.com/contributor/1841181/xploreraj
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/6679991/michael-von-wenckstern
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/2530910/akvyalkov
https://riptutorial.com/contributor/4675277/anand-vaidya
https://riptutorial.com/contributor/202009/andy-thomas
https://riptutorial.com/contributor/6544942/anton-hlinisty
https://riptutorial.com/contributor/1448252/anuvab1911
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/4409409/daniel-nugent
https://riptutorial.com/contributor/1458909/dushko-jovanovski
https://riptutorial.com/contributor/1442870/enwired
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/3985482/gerald-mucke
https://riptutorial.com/contributor/5684257/htnw
https://riptutorial.com/contributor/801894/james-large
https://riptutorial.com/contributor/3541440/jenny-t-type
https://riptutorial.com/contributor/1530494/john-starich
https://riptutorial.com/contributor/1672920/lahiru-ashan
https://riptutorial.com/contributor/1079354/makoto
https://riptutorial.com/contributor/4880056/morgan--zhang
https://riptutorial.com/contributor/4880056/morgan--zhang
https://riptutorial.com/contributor/95725/namshubwriter
https://riptutorial.com/contributor/4393565/p-j-meisch
https://riptutorial.com/contributor/1817722/pirate-jack
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6702288/screab
https://riptutorial.com/contributor/1034051/siva-sankar-rajendran
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/7471556/steve-harris
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/6377268/turingtux
https://riptutorial.com/contributor/3105453/user3105453
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/4409409/daniel-nugent
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/2131074/gpi
https://riptutorial.com/contributor/740012/hazem-farahat
https://riptutorial.com/contributor/198166/javac
https://riptutorial.com/contributor/3267497/mshnik
https://riptutorial.com/contributor/7643517/nolequen
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/2153211/prateek-agarwal
https://riptutorial.com/contributor/1268759/sebkur
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/5236247/adowrath
https://riptutorial.com/contributor/4386547/kishore-tulsiani
https://riptutorial.com/contributor/5171540/willshackleford
https://riptutorial.com/contributor/2131074/gpi
https://riptutorial.com/contributor/13317/kenster
https://riptutorial.com/contributor/15880/powerlord
https://riptutorial.com/contributor/2296600/user2296600
https://riptutorial.com/contributor/1010960/adino
https://riptutorial.com/contributor/744015/alex
https://riptutorial.com/contributor/829571/assylias
https://riptutorial.com/contributor/6598970/bfd
https://riptutorial.com/contributor/3741182/bhagyashree-jog
https://riptutorial.com/contributor/1886012/bowmore
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/1171622/chetya
https://riptutorial.com/contributor/330057/corsika
https://riptutorial.com/contributor/1961634/dariusz
https://riptutorial.com/contributor/6929620/diane-chastain
https://riptutorial.com/contributor/4390212/dimasan
https://riptutorial.com/contributor/113632/dimo414
https://riptutorial.com/contributor/982149/fildor
https://riptutorial.com/contributor/3297820/freddie-coleman
https://riptutorial.com/contributor/2131074/gpi
https://riptutorial.com/contributor/4280359/grzegorz-gorkiewicz
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/4923905/hellrocker
https://riptutorial.com/contributor/1424875/hexafraction
https://riptutorial.com/contributor/1458740/ilya
https://riptutorial.com/contributor/801894/james-large
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/5223579/johannes
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/1142253/kakarot
https://riptutorial.com/contributor/5450594/lance-clark
https://riptutorial.com/contributor/3199595/malt
https://riptutorial.com/contributor/5502426/matej-kripner
https://riptutorial.com/contributor/5502426/matej-kripner
https://riptutorial.com/contributor/4663552/md--nasir-uddin-bhuiyan
https://riptutorial.com/contributor/2621917/michael-piefel
https://riptutorial.com/contributor/1309035/michaelbahr
https://riptutorial.com/contributor/6243347/mitchell-tracy
https://riptutorial.com/contributor/2910269/msb
https://riptutorial.com/contributor/4467208/murat-k-
https://riptutorial.com/contributor/2422776/mureinik
https://riptutorial.com/contributor/1541619/mvd
https://riptutorial.com/contributor/6532640/natngs
https://riptutorial.com/contributor/704104/nickguletskii
https://riptutorial.com/contributor/6291211/olivier-durin
https://riptutorial.com/contributor/3519141/oliviertheolive
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/3202885/parakmiakos
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4999394/ravindra-babu
https://riptutorial.com/contributor/4999394/ravindra-babu
https://riptutorial.com/contributor/1515111/rd22
https://riptutorial.com/contributor/2111876/rudolphest
https://riptutorial.com/contributor/1394698/snowe2010
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/139985/stephen-c

Sudhir Singh, Tobias Friedinger, Unihedron, Vasiliy Vlasov,
Vlad-HC, Vogel612, wolfcastle, xTrollxDudex, YCF_L, Yury
Fedorov, ZX9

36 Console I/O
Aaron Franke, Ani Menon, Erkan Haspulat, Francesco Menzani,
jayantS, Lankymart, Loris Securo, manetsus, Olivier Grégoire,
Petter Friberg, rolve, Saagar Jha, Stephen C

37 Constructors
Andrii Abramov, Asiat, BrunoDM, ced-b, Codebender, Dylan,
George Bailey, Jeremy, Ralf Kleberhoff, RamenChef, Thomas
Gerot, tynn, Vogel612

38
Converting to and
from Strings

Chirag Parmar, DarkV1, Gihan Chathuranga, Jabir, JonasCz,
Kaushal28, Lachlan Dowding, Laurel, Maarten Bodewes, Matt
Clark, PSo, RamenChef, Shaan, Stephen C, still_learning

39
Creating Images
Programmatically

alain.janinm, Dariusz, kajacx, Kenster, mnoronha

40 Currency and Money Alexey Lagunov

41 Date Class

A_Arnold, alain.janinm, arcy, Bob Rivers, Christian Wilkie, explv
, Jabir, Jean-Baptiste Yunès, John Smith, Matt Clark, Miles,
NamshubWriter, Nicktar, Nishant123, Ph0bi4, ppeterka, Ralf
Kleberhoff, Ram, skia.heliou, Squidward, Stephen C, Vinod
Kumar Kashyap

42
Dates and Time
(java.time.*)

Bilbo Baggins, bowmore, Michael Piefel, Miles, mnoronha,
Simon, Squidward, Tarun Maganti, Vogel612, ΦXocę Пepeúpa

ツ

43 Default Methods

ar4ers, hd84335, intboolstring, javac, Jeffrey Bosboom, Jens
Schauder, Kai, matt freake, o_nix, philnate, Ravindra HV,
richersoon, Ruslan Bes, Stephen C, Stephen Leppik, Vasiliy
Vlasov

44 Dequeue Interface Suketu Patel

45
Disassembling and
Decompiling

ipsi, mnoronha

46
Documenting Java
Code

Blubberguy22, Burkhard, Caleb Brinkman, Carter Brainerd,
Community, Do Nhu Vy, Emil Sierżęga, George Bailey, Gerald
Mücke, hd84335, ipsi, Kevin Thorne, Martijn Woudstra, Mitch
Talmadge, Nagesh Lakinepally, PizzaFrog, Radouane ROUFID,
RamenChef, sargue, Stephan, Stephen C, Trevor Sears,
Universal Electricity

Dynamic Method 47 Jeet

https://riptutorial.com/ 1144

https://riptutorial.com/contributor/4274119/sudhir-singh
https://riptutorial.com/contributor/6579112/tobias-friedinger
https://riptutorial.com/contributor/3622940/unihedron
https://riptutorial.com/contributor/4563745/vasiliy-vlasov
https://riptutorial.com/contributor/3009130/vlad-hc
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/212589/wolfcastle
https://riptutorial.com/contributor/3308999/xtrollxdudex
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/4163002/zx9
https://riptutorial.com/contributor/4441547/aaron-franke
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/178753/erkan-haspulat
https://riptutorial.com/contributor/3453226/francesco-menzani
https://riptutorial.com/contributor/1056133/jayants
https://riptutorial.com/contributor/692942/lankymart
https://riptutorial.com/contributor/6245535/loris-securo
https://riptutorial.com/contributor/3555000/manetsus
https://riptutorial.com/contributor/180719/olivier-gregoire
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/1374678/rolve
https://riptutorial.com/contributor/5230900/saagar-jha
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/2515719/asiat
https://riptutorial.com/contributor/3385651/brunodm
https://riptutorial.com/contributor/2649570/ced-b
https://riptutorial.com/contributor/2775450/codebender
https://riptutorial.com/contributor/4819996/dylan
https://riptutorial.com/contributor/463304/george-bailey
https://riptutorial.com/contributor/485960/jeremy
https://riptutorial.com/contributor/8207228/ralf-kleberhoff
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/3385212/tynn
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/5456160/chirag-parmar
https://riptutorial.com/contributor/6275934/darkv1
https://riptutorial.com/contributor/5213194/gihan-chathuranga
https://riptutorial.com/contributor/2106815/jabir
https://riptutorial.com/contributor/4428462/jonascz
https://riptutorial.com/contributor/5353128/kaushal28
https://riptutorial.com/contributor/1369198/lachlan-dowding
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/589259/maarten-bodewes
https://riptutorial.com/contributor/1790644/matt-clark
https://riptutorial.com/contributor/1790644/matt-clark
https://riptutorial.com/contributor/5771658/pso
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6263070/shaan
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/2948765/still-learning
https://riptutorial.com/contributor/1140748/alain-janinm
https://riptutorial.com/contributor/1961634/dariusz
https://riptutorial.com/contributor/1003886/kajacx
https://riptutorial.com/contributor/13317/kenster
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/4590852/alexey-lagunov
https://riptutorial.com/contributor/5050431/a-arnold
https://riptutorial.com/contributor/1140748/alain-janinm
https://riptutorial.com/contributor/3893496/arcy
https://riptutorial.com/contributor/51754/bob-rivers
https://riptutorial.com/contributor/657205/christian-wilkie
https://riptutorial.com/contributor/6391367/explv
https://riptutorial.com/contributor/2106815/jabir
https://riptutorial.com/contributor/719263/jean-baptiste-yunes
https://riptutorial.com/contributor/4917882/john-smith
https://riptutorial.com/contributor/1790644/matt-clark
https://riptutorial.com/contributor/34746/miles
https://riptutorial.com/contributor/95725/namshubwriter
https://riptutorial.com/contributor/682559/nicktar
https://riptutorial.com/contributor/4331291/nishant123
https://riptutorial.com/contributor/5004677/ph0bi4
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/8207228/ralf-kleberhoff
https://riptutorial.com/contributor/8207228/ralf-kleberhoff
https://riptutorial.com/contributor/2270563/ram
https://riptutorial.com/contributor/1678392/skia-heliou
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1416620/vinod-kumar-kashyap
https://riptutorial.com/contributor/1416620/vinod-kumar-kashyap
https://riptutorial.com/contributor/1486762/bilbo-baggins
https://riptutorial.com/contributor/1886012/bowmore
https://riptutorial.com/contributor/2621917/michael-piefel
https://riptutorial.com/contributor/34746/miles
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/473181/simon
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/4669984/tarun-maganti
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/1981450/ar4ers
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/4521040/javac
https://riptutorial.com/contributor/3614835/jeffrey-bosboom
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/714965/kai
https://riptutorial.com/contributor/1168884/matt-freake
https://riptutorial.com/contributor/1380744/o-nix
https://riptutorial.com/contributor/1377224/philnate
https://riptutorial.com/contributor/2862341/ravindra-hv
https://riptutorial.com/contributor/3448799/richersoon
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/4563745/vasiliy-vlasov
https://riptutorial.com/contributor/4563745/vasiliy-vlasov
https://riptutorial.com/contributor/6606123/suketu-patel
https://riptutorial.com/contributor/415877/ipsi
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/2489497/caleb-brinkman
https://riptutorial.com/contributor/6781533/carter-brainerd
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3728901/do-nhu-vy
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/463304/george-bailey
https://riptutorial.com/contributor/3985482/gerald-mucke
https://riptutorial.com/contributor/3985482/gerald-mucke
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/415877/ipsi
https://riptutorial.com/contributor/3502776/kevin-thorne
https://riptutorial.com/contributor/6272743/martijn-woudstra
https://riptutorial.com/contributor/2364405/mitch-talmadge
https://riptutorial.com/contributor/2364405/mitch-talmadge
https://riptutorial.com/contributor/4848127/nagesh-lakinepally
https://riptutorial.com/contributor/4756763/pizzafrog
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/518992/sargue
https://riptutorial.com/contributor/363573/stephan
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/4997194/trevor-sears
https://riptutorial.com/contributor/3278662/universal-electricity
https://riptutorial.com/contributor/4416792/jeet

Dispatch

48 Encapsulation Adam Ratzman, Adil, Daniel M., Drayke, VISHWANATH N P

49 Enum Map KIRAN KUMAR MATAM

50
Enum starting with
number

Sugan

51 Enums

1d0m3n30, A Boschman, aioobe, Amani Kilumanga, Andreas
Fester, Andrew Sklyarevsky, Andrew Tobilko, Andrii Abramov,
Anony-Mousse, bcosynot, Bob Rivers, coder-croc, Community,
Constantine, Daniel Käfer, Daniel M., Danilo Guimaraes,
DVarga, Emil Sierżęga, enrico.bacis, f_puras, fabian, Gal
Dreiman, Gene Marin, Grexis, Grzegorz Oledzki, ipsi, J Atkin,
Jared Hooper, javac, Jérémie Bolduc, Johannes, Jon Ericson,
k3b, Kenster, Lahiru Ashan, Maarten Bodewes, madx, Mark,
Michael Myers, Mick Mnemonic, NageN, Nef10, Nolequen,
OldCurmudgeon, OliPro007, OverCoder, P.J.Meisch, Panther,
Paweł Albecki, Petter Friberg, Punika, Radouane ROUFID,
RamenChef, rd22, Ronon Dex, Ryan Hilbert, S.K. Venkat,
Samk, shmosel, Spina, Stephen Leppik, Tarun Maganti, Tim,
Torsten, VGR, Victor G., Vinay , Wolf, Yury Fedorov, Zefick, Φ
Xocę Пepeúpa ツ

52 EnumSet class KIRAN KUMAR MATAM

53
Exceptions and
exception handling

Adrian Krebs, agilob, akhilsk, Andrii Abramov, Bhavik Patel,
Burkhard, Cache Staheli, Codebender, Dariusz, DarkV1,
dimo414, Draken, EAX, Emil Sierżęga, enrico.bacis, fabian,
FMC, Gal Dreiman, GreenGiant, Hernanibus, hexafraction, Ilya,
intboolstring, Jabir, James Jensen, JavaHopper, Jens Schauder
, John Nash, John Slegers, JonasCz, Kai, Kevin Thorne, Malt,
Manish Kothari, Md. Nasir Uddin Bhuiyan, michaelbahr, Miljen
Mikic, Mitch Talmadge, Mrunal Pagnis, Myridium, mzc, Nikita
Kurtin, Oleg Sklyar, P.J.Meisch, Paweł Albecki, Peter Gordon,

Petter Friberg, ppeterka, Radek Postołowicz, Radouane
ROUFID, Raj, RamenChef, rdonuk, Renukaradhya, RobAu,
sandbo00, Saša Šijak, sharif.io, Stephen C, Stephen Leppik,
still_learning, Sudhir Singh, sv3k, tatoalo, Thomas Fritsch,
Tripta Kiroula, vic-3, Vogel612, Wilson, yiwei

54
Executor,
ExecutorService and
Thread pools

Andrii Abramov, Cache Staheli, Fildor, hd84335, Jens Schauder
, JonasCz, noscreenname, Olivier Grégoire, philnate, Ravindra
babu, Shettyh, Stephen C, Suminda Sirinath S. Dharmasena,
sv3k, tones, user1121883, Vlad-HC, Vogel612

1d0m3n30, Andreas, EJP, Li357, RamenChef, shmosel, 55 Expressions

https://riptutorial.com/ 1145

https://riptutorial.com/contributor/6620312/adam-ratzman
https://riptutorial.com/contributor/5594698/adil
https://riptutorial.com/contributor/4508007/daniel-m-
https://riptutorial.com/contributor/6936987/drayke
https://riptutorial.com/contributor/6467521/vishwanath-n-p
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/5829396/sugan
https://riptutorial.com/contributor/4089359/1d0m3n30
https://riptutorial.com/contributor/3230218/a-boschman
https://riptutorial.com/contributor/276052/aioobe
https://riptutorial.com/contributor/4957418/amani-kilumanga
https://riptutorial.com/contributor/1611055/andreas-fester
https://riptutorial.com/contributor/1611055/andreas-fester
https://riptutorial.com/contributor/894973/andrew-sklyarevsky
https://riptutorial.com/contributor/4922375/andrew-tobilko
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/1060350/anony-mousse
https://riptutorial.com/contributor/283143/bcosynot
https://riptutorial.com/contributor/51754/bob-rivers
https://riptutorial.com/contributor/1997093/coder-croc
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2267100/constantine
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/4508007/daniel-m-
https://riptutorial.com/contributor/4566490/danilo-guimaraes
https://riptutorial.com/contributor/5966775/dvarga
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/1606632/f-puras
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/432378/gene-marin
https://riptutorial.com/contributor/845567/grexis
https://riptutorial.com/contributor/118587/grzegorz-oledzki
https://riptutorial.com/contributor/415877/ipsi
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/3872894/jared-hooper
https://riptutorial.com/contributor/4521040/javac
https://riptutorial.com/contributor/4735402/jeremie-bolduc
https://riptutorial.com/contributor/5223579/johannes
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/519334/k3b
https://riptutorial.com/contributor/13317/kenster
https://riptutorial.com/contributor/1672920/lahiru-ashan
https://riptutorial.com/contributor/589259/maarten-bodewes
https://riptutorial.com/contributor/3138238/madx
https://riptutorial.com/contributor/4823977/mark
https://riptutorial.com/contributor/13531/michael-myers
https://riptutorial.com/contributor/905488/mick-mnemonic
https://riptutorial.com/contributor/3282002/nagen
https://riptutorial.com/contributor/3386893/nef10
https://riptutorial.com/contributor/7643517/nolequen
https://riptutorial.com/contributor/823393/oldcurmudgeon
https://riptutorial.com/contributor/5487099/olipro007
https://riptutorial.com/contributor/2164304/overcoder
https://riptutorial.com/contributor/4393565/p-j-meisch
https://riptutorial.com/contributor/3617127/panther
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/4336990/punika
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1515111/rd22
https://riptutorial.com/contributor/2629460/ronon-dex
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/2383136/s-k--venkat
https://riptutorial.com/contributor/6837911/samk
https://riptutorial.com/contributor/1553851/shmosel
https://riptutorial.com/contributor/170587/spina
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/4669984/tarun-maganti
https://riptutorial.com/contributor/1489963/tim
https://riptutorial.com/contributor/1691457/torsten
https://riptutorial.com/contributor/1831987/vgr
https://riptutorial.com/contributor/6854434/victor-g-
https://riptutorial.com/contributor/362416/vinay
https://riptutorial.com/contributor/2932052/wolf
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/2865757/zefick
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/4304038/adrian-krebs
https://riptutorial.com/contributor/1238944/agilob
https://riptutorial.com/contributor/3869736/akhilsk
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/2003642/bhavik-patel
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/2775450/codebender
https://riptutorial.com/contributor/1961634/dariusz
https://riptutorial.com/contributor/6275934/darkv1
https://riptutorial.com/contributor/113632/dimo414
https://riptutorial.com/contributor/833070/draken
https://riptutorial.com/contributor/6941907/eax
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/4174188/fmc
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/539048/greengiant
https://riptutorial.com/contributor/3282474/hernanibus
https://riptutorial.com/contributor/1424875/hexafraction
https://riptutorial.com/contributor/1458740/ilya
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/2106815/jabir
https://riptutorial.com/contributor/1984357/james-jensen
https://riptutorial.com/contributor/3059893/javahopper
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/6280993/john-nash
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/4428462/jonascz
https://riptutorial.com/contributor/714965/kai
https://riptutorial.com/contributor/3502776/kevin-thorne
https://riptutorial.com/contributor/3199595/malt
https://riptutorial.com/contributor/2736638/manish-kothari
https://riptutorial.com/contributor/4663552/md--nasir-uddin-bhuiyan
https://riptutorial.com/contributor/1309035/michaelbahr
https://riptutorial.com/contributor/1460628/miljen-mikic
https://riptutorial.com/contributor/1460628/miljen-mikic
https://riptutorial.com/contributor/2364405/mitch-talmadge
https://riptutorial.com/contributor/5387134/mrunal-pagnis
https://riptutorial.com/contributor/1351182/myridium
https://riptutorial.com/contributor/5162063/mzc
https://riptutorial.com/contributor/3219049/nikita-kurtin
https://riptutorial.com/contributor/3219049/nikita-kurtin
https://riptutorial.com/contributor/3165602/oleg-sklyar
https://riptutorial.com/contributor/4393565/p-j-meisch
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/1476989/peter-gordon
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/4800355/radek-postolowicz
https://riptutorial.com/contributor/4800355/radek-postolowicz
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/1714078/raj
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/971067/rdonuk
https://riptutorial.com/contributor/4527079/renukaradhya
https://riptutorial.com/contributor/461499/robau
https://riptutorial.com/contributor/6290345/sandbo00
https://riptutorial.com/contributor/257501/sasa-sijak
https://riptutorial.com/contributor/1540689/sharif-io
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2948765/still-learning
https://riptutorial.com/contributor/4274119/sudhir-singh
https://riptutorial.com/contributor/1449674/sv3k
https://riptutorial.com/contributor/3715508/tatoalo
https://riptutorial.com/contributor/7248342/thomas-fritsch
https://riptutorial.com/contributor/4695645/tripta-kiroula
https://riptutorial.com/contributor/6470162/vic-3
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/6511967/wilson
https://riptutorial.com/contributor/1470257/yiwei
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/982149/fildor
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/4428462/jonascz
https://riptutorial.com/contributor/1989695/noscreenname
https://riptutorial.com/contributor/180719/olivier-gregoire
https://riptutorial.com/contributor/1377224/philnate
https://riptutorial.com/contributor/4999394/ravindra-babu
https://riptutorial.com/contributor/4999394/ravindra-babu
https://riptutorial.com/contributor/4909445/shettyh
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/676644/suminda-sirinath-s--dharmasena
https://riptutorial.com/contributor/1449674/sv3k
https://riptutorial.com/contributor/599609/tones
https://riptutorial.com/contributor/1121883/user1121883
https://riptutorial.com/contributor/3009130/vlad-hc
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/4089359/1d0m3n30
https://riptutorial.com/contributor/5221149/andreas
https://riptutorial.com/contributor/207421/ejp
https://riptutorial.com/contributor/5647260/li357
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1553851/shmosel

Stephen C, Stephen Leppik

56 File I/O

Alper Fırat Kaya, Arthur, assylias, ata, Aurasphere, Burkhard,
Conrad.Dean, Daniel M., Enigo, FlyingPiMonster, Gerald Mücke
, Gubbel, Hay, hd84335, Jabir, James Jensen, Jason Sturges,
Jordy Baylac, leaqui, mateuscb, MikaelF, Moshiour, Myridium,
Nicktar, Peter Gordon, Petter Friberg, ppeterka, RAnders00,
RobAu, rokonoid, Sampada, sebkur, ShivBuyya, Squidward,
Stephen C, still_learning, Tilo, Tobias Friedinger, TuringTux,
Will Hardwick-Smith

57 FileUpload to AWS Amit Gujarathi

58 Fluent Interface bn., noscreenname, P.J.Meisch, RamenChef, TuringTux

59
FTP (File Transfer
Protocol)

Kelvin Kellner

60
Functional
Interfaces

Andreas

61
Generating Java
Code

Tony

62 Generics

1d0m3n30, 4444, Aaron Digulla, Abhishek Jain, Alex Meiburg,
alex s, Andrei Maieras, Andrii Abramov, Anony-Mousse, Bart
Enkelaar, bitek, Blubberguy22, Bob Brinks, Burkhard, Cache
Staheli, Cannon, Ce7, Chriss, code11, Codebender, Daniel
Figueroa, daphshez, DVarga, Emil Sierżęga, enrico.bacis, Eran,
faraa, hd84335, hexafraction, Jan Vladimir Mostert, Jens
Schauder, Jorn Vernee, Jude Niroshan, kcoppock, Kevin
Montrose, Lahiru Ashan, Lii, manfcas, Mani Muthusamy, Marc,
Matt, Mistalis, Mshnik, mvd, Mzzzzzz, NatNgs, nishizawa23,
Oleg Sklyar, Onur, Ortomala Lokni, paisanco, Paul Bellora,
Paweł Albecki, PcAF, Petter Friberg, phant0m, philnate,
Radouane ROUFID, RamenChef, rap-2-h, rd22, Rogério, rolve,
RutledgePaulV, S.K. Venkat, Siguza, Stephen C, Stephen
Leppik, suj1th, tainy, ThePhantomGamer, Thomas, TNT, ʇolɐǝz
ǝɥʇ qoq, Unihedron, Vlad-HC, Wesley, Wilson, yiwei, Yury
Fedorov

63 Getters and Setters
Fildor, Ironcache, Kröw, martin, Petter Friberg, Stephen C,
Sujith Niraikulathan, Thisaru Guruge, uzaif

64 Hashtable KIRAN KUMAR MATAM

65 HttpURLConnection
Community, Datagrammar, EJP, Inzimam Tariq IT, JonasCz,
kiedysktos, Mureinik, NageN, Stephen C, still_learning

https://riptutorial.com/ 1146

https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/3188061/alper-firat-kaya
https://riptutorial.com/contributor/3188061/alper-firat-kaya
https://riptutorial.com/contributor/6395535/arthur
https://riptutorial.com/contributor/829571/assylias
https://riptutorial.com/contributor/150830/ata
https://riptutorial.com/contributor/4921205/aurasphere
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/4508007/daniel-m-
https://riptutorial.com/contributor/5151575/enigo
https://riptutorial.com/contributor/4250629/flyingpimonster
https://riptutorial.com/contributor/3985482/gerald-mucke
https://riptutorial.com/contributor/415304/gubbel
https://riptutorial.com/contributor/4506528/hay
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/2106815/jabir
https://riptutorial.com/contributor/1984357/james-jensen
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/4793100/jordy-baylac
https://riptutorial.com/contributor/4000655/leaqui
https://riptutorial.com/contributor/461958/mateuscb
https://riptutorial.com/contributor/7096763/mikaelf
https://riptutorial.com/contributor/3861538/moshiour
https://riptutorial.com/contributor/1351182/myridium
https://riptutorial.com/contributor/682559/nicktar
https://riptutorial.com/contributor/1476989/peter-gordon
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/4464702/randers00
https://riptutorial.com/contributor/461499/robau
https://riptutorial.com/contributor/893197/rokonoid
https://riptutorial.com/contributor/5934435/sampada
https://riptutorial.com/contributor/1268759/sebkur
https://riptutorial.com/contributor/1654631/shivbuyya
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/2948765/still-learning
https://riptutorial.com/contributor/631004/tilo
https://riptutorial.com/contributor/6579112/tobias-friedinger
https://riptutorial.com/contributor/6377268/turingtux
https://riptutorial.com/contributor/1696114/will-hardwick-smith
https://riptutorial.com/contributor/6477936/amit-gujarathi
https://riptutorial.com/contributor/89339/bn-
https://riptutorial.com/contributor/1989695/noscreenname
https://riptutorial.com/contributor/4393565/p-j-meisch
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6377268/turingtux
https://riptutorial.com/contributor/6670001/kelvin-kellner
https://riptutorial.com/contributor/5221149/andreas
https://riptutorial.com/contributor/2870532/tony
https://riptutorial.com/contributor/4089359/1d0m3n30
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/34088/aaron-digulla
https://riptutorial.com/contributor/3857465/abhishek-jain
https://riptutorial.com/contributor/569046/alex-meiburg
https://riptutorial.com/contributor/2650960/alex-s
https://riptutorial.com/contributor/4605817/andrei-maieras
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/1060350/anony-mousse
https://riptutorial.com/contributor/446496/bart-enkelaar
https://riptutorial.com/contributor/446496/bart-enkelaar
https://riptutorial.com/contributor/313113/bitek
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/1001450/bob-brinks
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/6622628/cannon
https://riptutorial.com/contributor/2813019/ce7
https://riptutorial.com/contributor/932656/chriss
https://riptutorial.com/contributor/1456253/code11
https://riptutorial.com/contributor/2775450/codebender
https://riptutorial.com/contributor/520684/daniel-figueroa
https://riptutorial.com/contributor/520684/daniel-figueroa
https://riptutorial.com/contributor/79332/daphshez
https://riptutorial.com/contributor/5966775/dvarga
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/1221571/eran
https://riptutorial.com/contributor/3431964/faraa
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/1424875/hexafraction
https://riptutorial.com/contributor/527533/jan-vladimir-mostert
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/4506140/jude-niroshan
https://riptutorial.com/contributor/321697/kcoppock
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/1672920/lahiru-ashan
https://riptutorial.com/contributor/452775/lii
https://riptutorial.com/contributor/596013/manfcas
https://riptutorial.com/contributor/1315254/mani-muthusamy
https://riptutorial.com/contributor/4382892/marc
https://riptutorial.com/contributor/5024726/matt
https://riptutorial.com/contributor/4927984/mistalis
https://riptutorial.com/contributor/3267497/mshnik
https://riptutorial.com/contributor/1541619/mvd
https://riptutorial.com/contributor/145988/mzzzzzz
https://riptutorial.com/contributor/6532640/natngs
https://riptutorial.com/contributor/7280124/nishizawa23
https://riptutorial.com/contributor/3165602/oleg-sklyar
https://riptutorial.com/contributor/3133545/onur
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/3697273/paisanco
https://riptutorial.com/contributor/697449/paul-bellora
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/4932834/pcaf
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/383124/phant0m
https://riptutorial.com/contributor/1377224/philnate
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/1515111/rd22
https://riptutorial.com/contributor/2326914/rogerio
https://riptutorial.com/contributor/1374678/rolve
https://riptutorial.com/contributor/2103383/rutledgepaulv
https://riptutorial.com/contributor/2383136/s-k--venkat
https://riptutorial.com/contributor/2302862/siguza
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/4077935/suj1th
https://riptutorial.com/contributor/3141068/tainy
https://riptutorial.com/contributor/3807967/thephantomgamer
https://riptutorial.com/contributor/637853/thomas
https://riptutorial.com/contributor/3386144/tnt
https://riptutorial.com/contributor/3696113/-ol--z-----qoq
https://riptutorial.com/contributor/3696113/-ol--z-----qoq
https://riptutorial.com/contributor/3622940/unihedron
https://riptutorial.com/contributor/3009130/vlad-hc
https://riptutorial.com/contributor/95869/wesley
https://riptutorial.com/contributor/6511967/wilson
https://riptutorial.com/contributor/1470257/yiwei
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/982149/fildor
https://riptutorial.com/contributor/1601729/ironcache
https://riptutorial.com/contributor/5921170/krow
https://riptutorial.com/contributor/618495/martin
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/4804264/sujith-niraikulathan
https://riptutorial.com/contributor/3615862/thisaru-guruge
https://riptutorial.com/contributor/3786332/uzaif
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5409369/datagrammar
https://riptutorial.com/contributor/207421/ejp
https://riptutorial.com/contributor/5055401/inzimam-tariq-it
https://riptutorial.com/contributor/4428462/jonascz
https://riptutorial.com/contributor/3886961/kiedysktos
https://riptutorial.com/contributor/2422776/mureinik
https://riptutorial.com/contributor/3282002/nagen
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/2948765/still-learning

66 Immutable Class Mykola Yashchenko

67 Immutable Objects
1d0m3n30, Bohemian, Holger, Idcmp, Jon Ericson, kristyna,
Michael Piefel, Stephen C, Vogel612

68 Inheritance

Ad Infinitum, Adam, Adrian Krebs, agoeb, Ali Dehghani, Andrii
Abramov, ar4ers, Arkadiy, Blubberguy22, Bohemian, Brad
Larson, Burkhard, CodeCore, coder-croc, Dariusz, David
Grinberg, devnull69, DonyorM, DVarga, Emre Bolat, explv,
fabian, gattsbr, geniushkg, GhostCat, Gubbel, hirosht, HON95,
J Atkin, Jason V, JavaHopper, Jeffrey Bosboom, Jens
Schauder, Jonathan, Jorn Vernee, Kai, Kevin DiTraglia,
kiuby_88, Lahiru Ashan, Luan Nico, maheshkumar, Mshnik,
Muhammed Refaat, OldMcDonald, Oleg Sklyar, Ortomala Lokni
, PM 77-1, Prateek Agarwal, QoP, Radouane ROUFID,
RamenChef, Ravindra babu, Shog9, Simulant, SjB, Slava Babin
, Stephen C, Stephen Leppik, still_learning, Sudhir Singh, Theo,
ToTheMaximum, uhrm, Unihedron, Vasiliy Vlasov, Vucko

69
InputStreams and
OutputStreams

akgren_soar, EJP, Gubbel, J Atkin, Jens Schauder, John Nash,
Kip, KIRAN KUMAR MATAM, Matt Clark, Michael, RamenChef,
Stephen C, Vogel612

70
Installing Java
(Standard Edition)

4444, Adeel Ansari, ajablonski, akhilsk, Alex A, altomnr, Ani
Menon, Anthony Raymond, anuvab1911, Confiqure,
CraftedCart, Emil Sierżęga, Gautam Jose, hd84335, ipsi,
Jeffrey Brett Coleman, Lambda Ninja, Nithanim, Radouane
ROUFID, Rakitić, ronnyfm, Sanandrea, Sandeep Chatterjee,

sohnryang, Stephen C, Sнаđошƒа, tonirush, Walery Strauch,
Ze Rubeus

71 Interfaces

100rabh, A Boschman, Abhishek Jain, Adowrath, Alex
Shesterov, Andrew Tobilko, Andrii Abramov, Cà phê đen,
Chirag Parmar, Conrad.Dean, Daniel Käfer, devguy, DVarga,
Hilikus, inovaovao, intboolstring, James Oswald, Jan Vladimir
Mostert, JavaHopper, Johannes, Jojodmo, Jonathan, Jorn
Vernee, Kai, kstandell, Laurel, Marvin, MikeW, Paul Nelson
Baker, Peter Rader, ppovoski, Prateek Agarwal, Radouane
ROUFID, RamenChef, Robin, Simulant, someoneigna, Stephen
C, Stephen Leppik, Sujith Niraikulathan, Thomas Gerot,
user187470, Vasiliy Vlasov, Vince Emigh, xwoker, Zircon

72 Iterator and Iterable
Abubakkar, Comic Sans, Dariusz, Hulk, Lukas Knuth,
RamenChef, Stephen C, user1121883, WillShackleford

73 Java Agents Display Name, mnoronha

Java Compiler - CraftedCart, Jatin Balodhi, Mark Stewart, nishizawa23, Stephen 74

https://riptutorial.com/ 1147

https://riptutorial.com/contributor/5207023/mykola-yashchenko
https://riptutorial.com/contributor/4089359/1d0m3n30
https://riptutorial.com/contributor/256196/bohemian
https://riptutorial.com/contributor/2711488/holger
https://riptutorial.com/contributor/464457/idcmp
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/3808179/kristyna
https://riptutorial.com/contributor/2621917/michael-piefel
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/6451425/ad-infinitum
https://riptutorial.com/contributor/147265/adam
https://riptutorial.com/contributor/4304038/adrian-krebs
https://riptutorial.com/contributor/1439946/agoeb
https://riptutorial.com/contributor/1393484/ali-dehghani
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/1981450/ar4ers
https://riptutorial.com/contributor/3458/arkadiy
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/256196/bohemian
https://riptutorial.com/contributor/19679/brad-larson
https://riptutorial.com/contributor/19679/brad-larson
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/4622908/codecore
https://riptutorial.com/contributor/1997093/coder-croc
https://riptutorial.com/contributor/1961634/dariusz
https://riptutorial.com/contributor/1305516/david-grinberg
https://riptutorial.com/contributor/1305516/david-grinberg
https://riptutorial.com/contributor/1030974/devnull69
https://riptutorial.com/contributor/2719960/donyorm
https://riptutorial.com/contributor/5966775/dvarga
https://riptutorial.com/contributor/6382007/emre-bolat
https://riptutorial.com/contributor/6391367/explv
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/1684720/gattsbr
https://riptutorial.com/contributor/871270/geniushkg
https://riptutorial.com/contributor/1531124/ghostcat
https://riptutorial.com/contributor/415304/gubbel
https://riptutorial.com/contributor/1529983/hirosht
https://riptutorial.com/contributor/1709946/hon95
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/8031594/jason-v
https://riptutorial.com/contributor/3059893/javahopper
https://riptutorial.com/contributor/3614835/jeffrey-bosboom
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/69875/jonathan
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/714965/kai
https://riptutorial.com/contributor/1316346/kevin-ditraglia
https://riptutorial.com/contributor/2598606/kiuby-88
https://riptutorial.com/contributor/1672920/lahiru-ashan
https://riptutorial.com/contributor/1217989/luan-nico
https://riptutorial.com/contributor/3620928/maheshkumar
https://riptutorial.com/contributor/3267497/mshnik
https://riptutorial.com/contributor/1638739/muhammed-refaat
https://riptutorial.com/contributor/6049263/oldmcdonald
https://riptutorial.com/contributor/3165602/oleg-sklyar
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/2055998/pm-77-1
https://riptutorial.com/contributor/2153211/prateek-agarwal
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4999394/ravindra-babu
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/1515052/simulant
https://riptutorial.com/contributor/140934/sjb
https://riptutorial.com/contributor/3001523/slava-babin
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2948765/still-learning
https://riptutorial.com/contributor/4274119/sudhir-singh
https://riptutorial.com/contributor/751096/theo
https://riptutorial.com/contributor/6253351/tothemaximum
https://riptutorial.com/contributor/1147926/uhrm
https://riptutorial.com/contributor/3622940/unihedron
https://riptutorial.com/contributor/4563745/vasiliy-vlasov
https://riptutorial.com/contributor/5647037/vucko
https://riptutorial.com/contributor/6943913/akgren-soar
https://riptutorial.com/contributor/207421/ejp
https://riptutorial.com/contributor/415304/gubbel
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/6280993/john-nash
https://riptutorial.com/contributor/18511/kip
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/1790644/matt-clark
https://riptutorial.com/contributor/188626/michael
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/42769/adeel-ansari
https://riptutorial.com/contributor/1736792/ajablonski
https://riptutorial.com/contributor/3869736/akhilsk
https://riptutorial.com/contributor/6452488/alex-a
https://riptutorial.com/contributor/1130812/altomnr
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/2275818/anthony-raymond
https://riptutorial.com/contributor/1448252/anuvab1911
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/5495287/craftedcart
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/4921429/gautam-jose
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/415877/ipsi
https://riptutorial.com/contributor/5893681/jeffrey-brett-coleman
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/2060704/nithanim
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/204968/ronnyfm
https://riptutorial.com/contributor/1073786/sanandrea
https://riptutorial.com/contributor/2058368/sandeep-chatterjee
https://riptutorial.com/contributor/5769640/sohnryang
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/906523/walery-strauch
https://riptutorial.com/contributor/4232386/ze-rubeus
https://riptutorial.com/contributor/5381656/100rabh
https://riptutorial.com/contributor/3230218/a-boschman
https://riptutorial.com/contributor/3857465/abhishek-jain
https://riptutorial.com/contributor/5236247/adowrath
https://riptutorial.com/contributor/2170192/alex-shesterov
https://riptutorial.com/contributor/2170192/alex-shesterov
https://riptutorial.com/contributor/4922375/andrew-tobilko
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/4494979/ca-phe-den
https://riptutorial.com/contributor/4494979/ca-phe-den
https://riptutorial.com/contributor/5456160/chirag-parmar
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/6623910/devguy
https://riptutorial.com/contributor/5966775/dvarga
https://riptutorial.com/contributor/1086540/hilikus
https://riptutorial.com/contributor/574351/inovaovao
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/6342516/james-oswald
https://riptutorial.com/contributor/527533/jan-vladimir-mostert
https://riptutorial.com/contributor/527533/jan-vladimir-mostert
https://riptutorial.com/contributor/3059893/javahopper
https://riptutorial.com/contributor/5223579/johannes
https://riptutorial.com/contributor/2767207/jojodmo
https://riptutorial.com/contributor/69875/jonathan
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/714965/kai
https://riptutorial.com/contributor/2702815/kstandell
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/4616087/marvin
https://riptutorial.com/contributor/4555785/mikew
https://riptutorial.com/contributor/1478636/paul-nelson-baker
https://riptutorial.com/contributor/1478636/paul-nelson-baker
https://riptutorial.com/contributor/843943/peter-rader
https://riptutorial.com/contributor/7107027/ppovoski
https://riptutorial.com/contributor/2153211/prateek-agarwal
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1076463/robin
https://riptutorial.com/contributor/1515052/simulant
https://riptutorial.com/contributor/1919297/someoneigna
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/4804264/sujith-niraikulathan
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/5247502/user187470
https://riptutorial.com/contributor/4563745/vasiliy-vlasov
https://riptutorial.com/contributor/2398375/vince-emigh
https://riptutorial.com/contributor/2615437/xwoker
https://riptutorial.com/contributor/4793951/zircon
https://riptutorial.com/contributor/1151456/abubakkar
https://riptutorial.com/contributor/362364/comic-sans
https://riptutorial.com/contributor/1961634/dariusz
https://riptutorial.com/contributor/2513200/hulk
https://riptutorial.com/contributor/717341/lukas-knuth
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1121883/user1121883
https://riptutorial.com/contributor/5171540/willshackleford
https://riptutorial.com/contributor/5620200/display-name
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/5495287/craftedcart
https://riptutorial.com/contributor/5739389/jatin-balodhi
https://riptutorial.com/contributor/4178262/mark-stewart
https://riptutorial.com/contributor/7280124/nishizawa23
https://riptutorial.com/contributor/139985/stephen-c

'javac' C, Sнаđошƒа, Tom Gijselinck

75 Java deployment
garg10may, nishizawa23, Pseudonym Patel, RamenChef, Smit,
Stephen C

76
Java Editions,
Versions, Releases
and Distributions

Gal Dreiman, screab, Stephen C

77
Java Floating Point
Operations

Dariusz, hd84335, HTNW, Ilya, Mr. P, Petter Friberg, ravthiru,
Stephen C, Stephen Leppik, Vogel612

78
Java Memory
Management

Daniel M., engineercoding, fgb, John Nash, jwd630, mnoronha,
OverCoder, padippist, RamenChef, Squidward, Stephen C

79 Java Memory Model Shree, Stephen C, Suminda Sirinath S. Dharmasena

80 Java Native Access Ezekiel Baniaga, Stephan, Stephen C

81
Java Native
Interface

Coffee Ninja, Fjoni Yzeiri, Jorn Vernee, RamenChef, Stephen C
, user1803551

82
Java Performance
Tuning

Gene Marin, jatanp, Stephen C, Vogel612

83
Java Pitfalls -
Exception usage

Bhoomika, bruno, dimo414, Gal Dreiman, hd84335,
SachinSarawgi, scorpp, Stephen C, Stephen Leppik,
user3105453

84
Java Pitfalls -
Language syntax

Alex T., Cody Gray, Enwired, Friederike, Gal Dreiman, hd84335
, Hiren, Peter Rader, piyush_baderia, RamenChef, Ravindra HV
, RudolphEst, Stephen C, Todd Sewell, user3105453

85
Java Pitfalls - Nulls
and
NullPointerException

17slim, Andrii Abramov, Daniel Nugent, dorukayhan, fabian,
François Cassin, Miles, Stephen C, Zircon

86
Java Pitfalls -
Performance Issues

Dorian, GPI, John Starich, Jorn Vernee, Michał Rybak,
mnoronha, ppeterka, Sharon Rozinsky, steffen, Stephen C,
xTrollxDudex

87
Java Pitfalls -
Threads and
Concurrency

dorukayhan, james large, Stephen C

88
Java plugin system
implementations

Alexiy

89 Java Print Service Danilo Guimaraes, Leonardo Pina

https://riptutorial.com/ 1148

https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/4667966/tom-gijselinck
https://riptutorial.com/contributor/3151415/garg10may
https://riptutorial.com/contributor/7280124/nishizawa23
https://riptutorial.com/contributor/5526401/pseudonym-patel
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5809504/smit
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/6702288/screab
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1961634/dariusz
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/5684257/htnw
https://riptutorial.com/contributor/1458740/ilya
https://riptutorial.com/contributor/1459174/mr--p
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/737936/ravthiru
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/4508007/daniel-m-
https://riptutorial.com/contributor/3554071/engineercoding
https://riptutorial.com/contributor/298029/fgb
https://riptutorial.com/contributor/6280993/john-nash
https://riptutorial.com/contributor/1124740/jwd630
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/2164304/overcoder
https://riptutorial.com/contributor/4199385/padippist
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6870594/shree
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/676644/suminda-sirinath-s--dharmasena
https://riptutorial.com/contributor/1421919/ezekiel-baniaga
https://riptutorial.com/contributor/363573/stephan
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1529061/coffee-ninja
https://riptutorial.com/contributor/6337937/fjoni-yzeiri
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1803551/user1803551
https://riptutorial.com/contributor/432378/gene-marin
https://riptutorial.com/contributor/959/jatanp
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/6492357/bhoomika
https://riptutorial.com/contributor/770254/bruno
https://riptutorial.com/contributor/113632/dimo414
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/2663579/sachinsarawgi
https://riptutorial.com/contributor/679052/scorpp
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/3105453/user3105453
https://riptutorial.com/contributor/1701465/alex-t-
https://riptutorial.com/contributor/366904/cody-gray
https://riptutorial.com/contributor/1442870/enwired
https://riptutorial.com/contributor/2291955/friederike
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/5326728/hiren
https://riptutorial.com/contributor/843943/peter-rader
https://riptutorial.com/contributor/6849461/piyush-baderia
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2862341/ravindra-hv
https://riptutorial.com/contributor/2111876/rudolphest
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/5517612/todd-sewell
https://riptutorial.com/contributor/3105453/user3105453
https://riptutorial.com/contributor/3927528/17slim
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/4409409/daniel-nugent
https://riptutorial.com/contributor/6304349/dorukayhan
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/556236/francois-cassin
https://riptutorial.com/contributor/34746/miles
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/4793951/zircon
https://riptutorial.com/contributor/1369579/dorian
https://riptutorial.com/contributor/2131074/gpi
https://riptutorial.com/contributor/1530494/john-starich
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/1995170/michal-rybak
https://riptutorial.com/contributor/1995170/michal-rybak
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/899302/sharon-rozinsky
https://riptutorial.com/contributor/845034/steffen
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/3308999/xtrollxdudex
https://riptutorial.com/contributor/6304349/dorukayhan
https://riptutorial.com/contributor/801894/james-large
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/2723001/alexiy
https://riptutorial.com/contributor/4566490/danilo-guimaraes
https://riptutorial.com/contributor/6626496/leonardo-pina

90 Java SE 7 Features compuhosny, RamenChef

91 Java SE 8 Features compuhosny, RamenChef, sun-solar-arrow

92 Java Sockets Nikhil R

93
Java Virtual Machine
(JVM)

Dushman, RamenChef, Rory McCrossan, Stephen Leppik

94 JavaBean foxt7ot, J. Pichardo, James Fry, SaWo, Stephen C

95 JAXB
Dariusz, Drunix, fabian, hd84335, Jabir, ppeterka, Ram,
Stephan, Thomas Fritsch, vallismortis, Walery Strauch

96 JAX-WS ext1812, Jonathan Barbero, Stephen Leppik

97 JMX esin88

98 JNDI EJP, neohope, RamenChef

99 JShell ostrichofevil, Sudip Bhandari

100 JSON in Java

Asaph, Bogdan Korinnyi, Burkhard, Cache Staheli, hd84335,
ipsi, Jared Hooper, Kurzalead, MikaelF, Mrunal Pagnis,
Nicholas J Panella, Nikita Kurtin, ppeterka, Prem Singh Bist,
RamenChef, Ray Kiddy, SirKometa, still_learning, Stoyan
Dekov, systemfreund, Tim, Vikas Gupta, vsminkov, Yury
Fedorov

101
Just in Time (JIT)
compiler

Liju Thomas, Stephen C

102 JVM Flags Confiqure, RamenChef

103 JVM Tool Interface desilijic

Abhishek Jain, Ad Infinitum, Adam, aioobe, Amit Gupta, Andrei
Maieras, Andrew Tobilko, Andrii Abramov, Ankit Katiyar, Anony-
Mousse, assylias, Brian Goetz, Burkhard, Conrad.Dean, cringe,
Daniel M., David Soroko, dimitrisli, Draken, DVarga, Emre Bolat
, enrico.bacis, fabian, fgb, Gal Dreiman, gar, GPI, Hank D,
hexafraction, Ivan Vergiliev, J Atkin, Jean-François Savard,
Jeroen Vandevelde, John Slegers, JonasCz, Jorn Vernee, Jude
Niroshan, JudgingNotJudging, Kevin Raoofi, Malt, Mark Green,
Matt, Matthew Trout, Matthias Braun, ncmathsadist, nobeh,
Ortomala Lokni, Paŭlo Ebermann, Paweł Albecki, Petter Friberg
, philnate, Pujan Srivastava, Radouane ROUFID, RamenChef,
rolve, Saclyr Barlonium, Sergii Bishyr, Skylar Sutton,
solomonope, Stephen C, Stephen Leppik, timbooo, Tunaki,
Unihedron, vincentvanjoe, Vlasec, Vogel612, webo80, William

104
Lambda
Expressions

https://riptutorial.com/ 1149

https://riptutorial.com/contributor/4871061/compuhosny
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4871061/compuhosny
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6366398/sun-solar-arrow
https://riptutorial.com/contributor/7980731/nikhil-r
https://riptutorial.com/contributor/4155961/dushman
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/519413/rory-mccrossan
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/3517923/foxt7ot
https://riptutorial.com/contributor/4952551/j--pichardo
https://riptutorial.com/contributor/2553510/james-fry
https://riptutorial.com/contributor/1203728/sawo
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1961634/dariusz
https://riptutorial.com/contributor/1852723/drunix
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/2106815/jabir
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/2270563/ram
https://riptutorial.com/contributor/363573/stephan
https://riptutorial.com/contributor/7248342/thomas-fritsch
https://riptutorial.com/contributor/2074605/vallismortis
https://riptutorial.com/contributor/906523/walery-strauch
https://riptutorial.com/contributor/1073665/ext1812
https://riptutorial.com/contributor/14811/jonathan-barbero
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/1553934/esin88
https://riptutorial.com/contributor/207421/ejp
https://riptutorial.com/contributor/1369532/neohope
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5792507/ostrichofevil
https://riptutorial.com/contributor/4589003/sudip-bhandari
https://riptutorial.com/contributor/166339/asaph
https://riptutorial.com/contributor/5651359/bogdan-korinnyi
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/415877/ipsi
https://riptutorial.com/contributor/3872894/jared-hooper
https://riptutorial.com/contributor/5491115/kurzalead
https://riptutorial.com/contributor/7096763/mikaelf
https://riptutorial.com/contributor/5387134/mrunal-pagnis
https://riptutorial.com/contributor/4760390/nicholas-j-panella
https://riptutorial.com/contributor/3219049/nikita-kurtin
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/1089149/prem-singh-bist
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/869809/ray-kiddy
https://riptutorial.com/contributor/727078/sirkometa
https://riptutorial.com/contributor/2948765/still-learning
https://riptutorial.com/contributor/5020253/stoyan-dekov
https://riptutorial.com/contributor/5020253/stoyan-dekov
https://riptutorial.com/contributor/584322/systemfreund
https://riptutorial.com/contributor/6342442/tim
https://riptutorial.com/contributor/2915208/vikas-gupta
https://riptutorial.com/contributor/3239417/vsminkov
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/4714914/liju-thomas
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2688050/desilijic
https://riptutorial.com/contributor/3857465/abhishek-jain
https://riptutorial.com/contributor/6451425/ad-infinitum
https://riptutorial.com/contributor/1385174/adam
https://riptutorial.com/contributor/276052/aioobe
https://riptutorial.com/contributor/453767/amit-gupta
https://riptutorial.com/contributor/4605817/andrei-maieras
https://riptutorial.com/contributor/4605817/andrei-maieras
https://riptutorial.com/contributor/4922375/andrew-tobilko
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/3373597/ankit-katiyar
https://riptutorial.com/contributor/1060350/anony-mousse
https://riptutorial.com/contributor/1060350/anony-mousse
https://riptutorial.com/contributor/829571/assylias
https://riptutorial.com/contributor/3553087/brian-goetz
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/834/cringe
https://riptutorial.com/contributor/4508007/daniel-m-
https://riptutorial.com/contributor/239101/david-soroko
https://riptutorial.com/contributor/185723/dimitrisli
https://riptutorial.com/contributor/833070/draken
https://riptutorial.com/contributor/5966775/dvarga
https://riptutorial.com/contributor/6382007/emre-bolat
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/298029/fgb
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/485695/gar
https://riptutorial.com/contributor/2131074/gpi
https://riptutorial.com/contributor/3487617/hank-d
https://riptutorial.com/contributor/1424875/hexafraction
https://riptutorial.com/contributor/596167/ivan-vergiliev
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/2683146/jean-francois-savard
https://riptutorial.com/contributor/4347628/jeroen-vandevelde
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/4428462/jonascz
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/4506140/jude-niroshan
https://riptutorial.com/contributor/4506140/jude-niroshan
https://riptutorial.com/contributor/6357392/judgingnotjudging
https://riptutorial.com/contributor/1379329/kevin-raoofi
https://riptutorial.com/contributor/3199595/malt
https://riptutorial.com/contributor/2890451/mark-green
https://riptutorial.com/contributor/5024726/matt
https://riptutorial.com/contributor/2261980/matthew-trout
https://riptutorial.com/contributor/775954/matthias-braun
https://riptutorial.com/contributor/467379/ncmathsadist
https://riptutorial.com/contributor/248082/nobeh
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/600500/paulo-ebermann
https://riptutorial.com/contributor/600500/paulo-ebermann
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/1377224/philnate
https://riptutorial.com/contributor/349710/pujan-srivastava
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1374678/rolve
https://riptutorial.com/contributor/6919927/saclyr-barlonium
https://riptutorial.com/contributor/5604676/sergii-bishyr
https://riptutorial.com/contributor/215166/skylar-sutton
https://riptutorial.com/contributor/190064/solomonope
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/128660/timbooo
https://riptutorial.com/contributor/1743880/tunaki
https://riptutorial.com/contributor/3622940/unihedron
https://riptutorial.com/contributor/466023/vincentvanjoe
https://riptutorial.com/contributor/1977151/vlasec
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/1096905/webo80
https://riptutorial.com/contributor/1078437/william-ritson

Ritson, Wolfgang, Xaerxess, xploreraj, Yogi, Ze Rubeus

105 LinkedHashMap Amit Gujarathi, KIRAN KUMAR MATAM

106 List vs SET KIRAN KUMAR MATAM

107 Lists

17slim, A Boschman, Arthur, Avinash Kumar Yadav,
Blubberguy22, ced-b, Daniel Nugent, granmirupa, Ilya, Jan
Vladimir Mostert, janos, JD9999, jopasserat, Karthikeyan
Vaithilingam, Kenster, Krzysztof Krasoń, Oleg Sklyar,
RamenChef, Sheshnath, Stephen C, sudo, Thisaru Guruge,
Vasilis Vasilatos, ΦXocę Пepeúpa ツ

108 Literals 1d0m3n30, EJP, ParkerHalo, Stephen C, ThePhantomGamer

109 Local Inner Class KIRAN KUMAR MATAM

110
Localization and
Internationalization

Code.IT, dimo414, Eduard Wirch, emotionlessbananas,
Squidward, sun-solar-arrow

111 LocalTime

100rabh, A_Arnold, Alex, Andrii Abramov, Bob Rivers, Cache
Staheli, DimaSan, Jasper, Kakarot, Kuroda, Manuel Vieda,
Michael Piefel, phatfingers, RamenChef, Skylar Sutton, Vivek
Anoop

112 log4j / log4j2
Daniel Wild, Fildor, HCarrasko, hd84335, Mrunal Pagnis, Rens
van der Heijden

113
Logging
(java.util.logging)

bn., Christophe Weis, Emil Sierżęga, P.J.Meisch, vallismortis

114 Maps

17slim, agilob, alain.janinm, ata, Binary Nerd, Burkhard, coobird
, Dmitriy Kotov, Durgpal Singh, Emil Sierżęga, Emily Mabrey,
Enigo, fabian, GPI, hd84335, J Atkin, Jabir, Javant, Javier Diaz,
Jeffrey Bosboom, johnnyaug, Jonathan, Kakarot,
KartikKannapur, Kenster, michaelbahr, Mo.Ashfaq, Nathaniel
Ford, phatfingers, Ram, RamenChef, ravthiru, sebkur, Stephen
C, Stephen Leppik, Viacheslav Vedenin, VISHWANATH N P,
Vogel612

115 Modules Jonathan, user140547

116
Multi-Release JAR
Files

manouti

117
Nashorn JavaScript
engine

ben75, ekaerovets, Francesco Menzani, hd84335, Ilya,
InitializeSahib, kasperjj, VatsalSura

Nested and Inner ChemicalFlash, DimaSan, fgb, hd84335, Mshnik, RamenChef, 118

https://riptutorial.com/ 1150

https://riptutorial.com/contributor/1078437/william-ritson
https://riptutorial.com/contributor/1979340/wolfgang
https://riptutorial.com/contributor/708434/xaerxess
https://riptutorial.com/contributor/1841181/xploreraj
https://riptutorial.com/contributor/1484017/yogi
https://riptutorial.com/contributor/4232386/ze-rubeus
https://riptutorial.com/contributor/6477936/amit-gujarathi
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/3927528/17slim
https://riptutorial.com/contributor/3230218/a-boschman
https://riptutorial.com/contributor/6395535/arthur
https://riptutorial.com/contributor/7525482/avinash-kumar-yadav
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/2649570/ced-b
https://riptutorial.com/contributor/4409409/daniel-nugent
https://riptutorial.com/contributor/4532326/granmirupa
https://riptutorial.com/contributor/1458740/ilya
https://riptutorial.com/contributor/527533/jan-vladimir-mostert
https://riptutorial.com/contributor/527533/jan-vladimir-mostert
https://riptutorial.com/contributor/641955/janos
https://riptutorial.com/contributor/4741655/jd9999
https://riptutorial.com/contributor/470341/jopasserat
https://riptutorial.com/contributor/916225/karthikeyan-vaithilingam
https://riptutorial.com/contributor/916225/karthikeyan-vaithilingam
https://riptutorial.com/contributor/13317/kenster
https://riptutorial.com/contributor/48382/krzysztof-krason
https://riptutorial.com/contributor/48382/krzysztof-krason
https://riptutorial.com/contributor/3165602/oleg-sklyar
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4662041/sheshnath
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6714194/sudo
https://riptutorial.com/contributor/3615862/thisaru-guruge
https://riptutorial.com/contributor/6350636/vasilis-vasilatos
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/4089359/1d0m3n30
https://riptutorial.com/contributor/207421/ejp
https://riptutorial.com/contributor/5514765/parkerhalo
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/3807967/thephantomgamer
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/2739334/code-it
https://riptutorial.com/contributor/113632/dimo414
https://riptutorial.com/contributor/17428/eduard-wirch
https://riptutorial.com/contributor/4029174/emotionlessbananas
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/6366398/sun-solar-arrow
https://riptutorial.com/contributor/5381656/100rabh
https://riptutorial.com/contributor/5050431/a-arnold
https://riptutorial.com/contributor/3669423/alex
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/51754/bob-rivers
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/4390212/dimasan
https://riptutorial.com/contributor/321366/jasper
https://riptutorial.com/contributor/1142253/kakarot
https://riptutorial.com/contributor/2287101/kuroda
https://riptutorial.com/contributor/2420517/manuel-vieda
https://riptutorial.com/contributor/2621917/michael-piefel
https://riptutorial.com/contributor/1031887/phatfingers
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/215166/skylar-sutton
https://riptutorial.com/contributor/4622192/vivek-anoop
https://riptutorial.com/contributor/4622192/vivek-anoop
https://riptutorial.com/contributor/5283746/daniel-wild
https://riptutorial.com/contributor/982149/fildor
https://riptutorial.com/contributor/1768737/hcarrasko
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/5387134/mrunal-pagnis
https://riptutorial.com/contributor/4787916/rens-van-der-heijden
https://riptutorial.com/contributor/4787916/rens-van-der-heijden
https://riptutorial.com/contributor/89339/bn-
https://riptutorial.com/contributor/4173303/christophe-weis
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/4393565/p-j-meisch
https://riptutorial.com/contributor/2074605/vallismortis
https://riptutorial.com/contributor/3927528/17slim
https://riptutorial.com/contributor/1238944/agilob
https://riptutorial.com/contributor/1140748/alain-janinm
https://riptutorial.com/contributor/150830/ata
https://riptutorial.com/contributor/256376/binary-nerd
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/17172/coobird
https://riptutorial.com/contributor/3439135/dmitriy-kotov
https://riptutorial.com/contributor/1759015/durgpal-singh
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/2446574/emily-mabrey
https://riptutorial.com/contributor/5151575/enigo
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/2131074/gpi
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/2106815/jabir
https://riptutorial.com/contributor/6523710/javant
https://riptutorial.com/contributor/1766828/javier-diaz
https://riptutorial.com/contributor/3614835/jeffrey-bosboom
https://riptutorial.com/contributor/2696779/johnnyaug
https://riptutorial.com/contributor/69875/jonathan
https://riptutorial.com/contributor/1142253/kakarot
https://riptutorial.com/contributor/3001733/kartikkannapur
https://riptutorial.com/contributor/13317/kenster
https://riptutorial.com/contributor/1309035/michaelbahr
https://riptutorial.com/contributor/2456732/mo-ashfaq
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/1031887/phatfingers
https://riptutorial.com/contributor/2270563/ram
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/737936/ravthiru
https://riptutorial.com/contributor/1268759/sebkur
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/4318868/viacheslav-vedenin
https://riptutorial.com/contributor/6467521/vishwanath-n-p
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/69875/jonathan
https://riptutorial.com/contributor/4945535/user140547
https://riptutorial.com/contributor/1064245/manouti
https://riptutorial.com/contributor/1818045/ben75
https://riptutorial.com/contributor/2660039/ekaerovets
https://riptutorial.com/contributor/3453226/francesco-menzani
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/1458740/ilya
https://riptutorial.com/contributor/6147266/initializesahib
https://riptutorial.com/contributor/34240/kasperjj
https://riptutorial.com/contributor/6239674/vatsalsura
https://riptutorial.com/contributor/1224440/chemicalflash
https://riptutorial.com/contributor/4390212/dimasan
https://riptutorial.com/contributor/298029/fgb
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/3267497/mshnik
https://riptutorial.com/contributor/6392939/ramenchef

Classes Sandesh, sargue, Slava Babin, Stephen C, tynn

119 Networking
Arthur, Burkhard, devnull69, DonyorM, glee8e, Grayson Croom,
Ilya, Malt, Matej Kormuth, Matthieu, Mine_Stone, ppeterka,
RamenChef, Stephen C, Tot Zam, vsav

120 New File I/O dorukayhan, niheno, TuringTux

121 NIO - Networking Matthieu, mnoronha

122
Non-Access
Modifiers

Ankit Katiyar, Arash, fabian, Florian Weimer, FlyingPiMonster,
Grzegorz Górkiewicz, J-Alex, JavaHopper, Ken Y-N, KIRAN
KUMAR MATAM, Miljen Mikic, NageN, Nuri Tasdemir, Onur,
ppeterka, Prateek Agarwal

123 NumberFormat arpit pandey, John Nash, RamenChef, ΦXocę Пepeúpa ツ

124
Object Class
Methods and
Constructor

A Boschman, Ad Infinitum, Andrii Abramov, Ani Menon,
anuvab1911, Arthur Noseda, augray, Brett Kail, Burkhard,
CaffeineToCode, Chris Midgley, cricket_007, Dariusz, Elazar,
Emil Sierżęga, Enigo, fabian, fgb, Floern, fzzfzzfzz, hd84335,
intboolstring, james large, JamesENL, Jens Schauder, John
Slegers, Jorn Vernee, kstandell, Lahiru Ashan, Laurel, Miljen
Mikic, mnoronha, mykey, NageN, Nayuki, Nicktar, Pace, Petter
Friberg, Radouane ROUFID, Ram, Robert Columbia, Ronnie
Wang, shmosel, Stephen C, TNT

125 Object Cloning Ayush Bansal, Christophe Weis, Jonathan

126 Object References Andrii Abramov, arcy, Vasiliy Vlasov

127 Operators

17slim, 1d0m3n30, A Boschman, acdcjunior, afuc func, AJ
Jwair, Amani Kilumanga, Andreas, Andrew, Andrii Abramov,
Blake Yarbrough, Blubberguy22, Bobas_Pett, c.uent, Cache
Staheli, Chris Midgley, Claudia, clinomaniac, Dariusz, Darth
Shadow, Davis, EJP, Emil Sierżęga, Eran, fabian, FedeWar,
FlyingPiMonster, futureelite7, Harsh Vakharia, hd84335, J Atkin
, JavaHopper, Jérémie Bolduc, jimrm, Jojodmo, Jorn Vernee,
kanhaiya agarwal, Kevin Thorne, Li357, Loris Securo, Lynx
Brutal, Maarten Bodewes, Mac70, Makoto, Marvin, Michael
Anderson, Mshnik, NageN, Nuri Tasdemir, Ortomala Lokni,
OverCoder, ParkerHalo, Peter Gordon, ppeterka, qxz, rahul
tyagi, RamenChef, Ravan, Reut Sharabani, Rubén, sargue,
Sean Owen, ShivBuyya, shmosel, SnoringFrog, Stephen C,
tonirush, user3105453, Vogel612, Winter

A Boschman, Abubakkar, Andrey Rubtsov, Andrii Abramov,
assylias, bowmore, Charlie H, Chris H., Christophe Weis,
compuhosny, Dair, Emil Sierżęga, enrico.bacis, fikovnik,

128 Optional

https://riptutorial.com/ 1151

https://riptutorial.com/contributor/1018966/sandesh
https://riptutorial.com/contributor/518992/sargue
https://riptutorial.com/contributor/3001523/slava-babin
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/3385212/tynn
https://riptutorial.com/contributor/6395535/arthur
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/1030974/devnull69
https://riptutorial.com/contributor/2719960/donyorm
https://riptutorial.com/contributor/5818889/glee8e
https://riptutorial.com/contributor/7405794/grayson-croom
https://riptutorial.com/contributor/1458740/ilya
https://riptutorial.com/contributor/3199595/malt
https://riptutorial.com/contributor/721809/matej-kormuth
https://riptutorial.com/contributor/1098603/matthieu
https://riptutorial.com/contributor/6557067/mine-stone
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/1136610/vsav
https://riptutorial.com/contributor/6304349/dorukayhan
https://riptutorial.com/contributor/7600096/niheno
https://riptutorial.com/contributor/6377268/turingtux
https://riptutorial.com/contributor/1098603/matthieu
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/3373597/ankit-katiyar
https://riptutorial.com/contributor/617157/arash
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/8316315/florian-weimer
https://riptutorial.com/contributor/4250629/flyingpimonster
https://riptutorial.com/contributor/4280359/grzegorz-gorkiewicz
https://riptutorial.com/contributor/5898696/j-alex
https://riptutorial.com/contributor/3059893/javahopper
https://riptutorial.com/contributor/1270789/ken-y-n
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/1460628/miljen-mikic
https://riptutorial.com/contributor/3282002/nagen
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/3133545/onur
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/2153211/prateek-agarwal
https://riptutorial.com/contributor/4906610/arpit-pandey
https://riptutorial.com/contributor/6280993/john-nash
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/3230218/a-boschman
https://riptutorial.com/contributor/6451425/ad-infinitum
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/1448252/anuvab1911
https://riptutorial.com/contributor/2139422/arthur-noseda
https://riptutorial.com/contributor/2540669/augray
https://riptutorial.com/contributor/142446/brett-kail
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/4005742/caffeinetocode
https://riptutorial.com/contributor/2591803/chris-midgley
https://riptutorial.com/contributor/2308683/cricket-007
https://riptutorial.com/contributor/1961634/dariusz
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/5151575/enigo
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/298029/fgb
https://riptutorial.com/contributor/559745/floern
https://riptutorial.com/contributor/4318200/fzzfzzfzz
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/801894/james-large
https://riptutorial.com/contributor/2357233/jamesenl
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/2702815/kstandell
https://riptutorial.com/contributor/1672920/lahiru-ashan
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/1460628/miljen-mikic
https://riptutorial.com/contributor/1460628/miljen-mikic
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/883938/mykey
https://riptutorial.com/contributor/3282002/nagen
https://riptutorial.com/contributor/839689/nayuki
https://riptutorial.com/contributor/682559/nicktar
https://riptutorial.com/contributor/202694/pace
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/2270563/ram
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/4710155/ronnie-wang
https://riptutorial.com/contributor/4710155/ronnie-wang
https://riptutorial.com/contributor/1553851/shmosel
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/3386144/tnt
https://riptutorial.com/contributor/5094531/ayush-bansal
https://riptutorial.com/contributor/4173303/christophe-weis
https://riptutorial.com/contributor/1772/jonathan
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/3893496/arcy
https://riptutorial.com/contributor/4563745/vasiliy-vlasov
https://riptutorial.com/contributor/3927528/17slim
https://riptutorial.com/contributor/4089359/1d0m3n30
https://riptutorial.com/contributor/3230218/a-boschman
https://riptutorial.com/contributor/1850609/acdcjunior
https://riptutorial.com/contributor/6398936/afuc-func
https://riptutorial.com/contributor/3602926/aj-jwair
https://riptutorial.com/contributor/3602926/aj-jwair
https://riptutorial.com/contributor/4957418/amani-kilumanga
https://riptutorial.com/contributor/5221149/andreas
https://riptutorial.com/contributor/6401844/andrew
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/3434874/blake-yarbrough
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/5999533/bobas-pett
https://riptutorial.com/contributor/4565682/c-uent
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/2591803/chris-midgley
https://riptutorial.com/contributor/7167257/claudia
https://riptutorial.com/contributor/3179169/clinomaniac
https://riptutorial.com/contributor/1961634/dariusz
https://riptutorial.com/contributor/3476387/darth-shadow
https://riptutorial.com/contributor/3476387/darth-shadow
https://riptutorial.com/contributor/4621303/davis
https://riptutorial.com/contributor/207421/ejp
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1221571/eran
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/5501669/fedewar
https://riptutorial.com/contributor/4250629/flyingpimonster
https://riptutorial.com/contributor/69783/futureelite7
https://riptutorial.com/contributor/1924979/harsh-vakharia
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/3059893/javahopper
https://riptutorial.com/contributor/4735402/jeremie-bolduc
https://riptutorial.com/contributor/4288596/jimrm
https://riptutorial.com/contributor/2767207/jojodmo
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/4762484/kanhaiya-agarwal
https://riptutorial.com/contributor/3502776/kevin-thorne
https://riptutorial.com/contributor/5647260/li357
https://riptutorial.com/contributor/6245535/loris-securo
https://riptutorial.com/contributor/6466339/lynx-brutal
https://riptutorial.com/contributor/6466339/lynx-brutal
https://riptutorial.com/contributor/589259/maarten-bodewes
https://riptutorial.com/contributor/2352462/mac70
https://riptutorial.com/contributor/1079354/makoto
https://riptutorial.com/contributor/4616087/marvin
https://riptutorial.com/contributor/221955/michael-anderson
https://riptutorial.com/contributor/221955/michael-anderson
https://riptutorial.com/contributor/3267497/mshnik
https://riptutorial.com/contributor/3282002/nagen
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/2164304/overcoder
https://riptutorial.com/contributor/5514765/parkerhalo
https://riptutorial.com/contributor/1476989/peter-gordon
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/1848578/qxz
https://riptutorial.com/contributor/4156508/rahul-tyagi
https://riptutorial.com/contributor/4156508/rahul-tyagi
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5355012/ravan
https://riptutorial.com/contributor/948550/reut-sharabani
https://riptutorial.com/contributor/7950855/ruben
https://riptutorial.com/contributor/518992/sargue
https://riptutorial.com/contributor/64174/sean-owen
https://riptutorial.com/contributor/1654631/shivbuyya
https://riptutorial.com/contributor/1553851/shmosel
https://riptutorial.com/contributor/919057/snoringfrog
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/3105453/user3105453
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/5771029/winter
https://riptutorial.com/contributor/3230218/a-boschman
https://riptutorial.com/contributor/1151456/abubakkar
https://riptutorial.com/contributor/1554326/andrey-rubtsov
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/829571/assylias
https://riptutorial.com/contributor/1886012/bowmore
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/2062572/chris-h-
https://riptutorial.com/contributor/4173303/christophe-weis
https://riptutorial.com/contributor/4871061/compuhosny
https://riptutorial.com/contributor/667648/dair
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/219584/fikovnik

Grzegorz Górkiewicz, gwintrob, Hadson, hd84335, hzpz, J Atkin
, Jean-François Savard, John Slegers, Jude Niroshan, Maroun
Maroun, Michael Wiles, OldMcDonald, shmosel, Squidward,
Stefan Dollase, Stephen C, ultimate_guy, Unihedron,
user140547, Vince, vsminkov, xwoker

129
Oracle Official Code
Standard

Ahmed Ashour, aioobe, akhilsk, alex s, Andrii Abramov, Cassio
Mazzochi Molin, Dan Whitehouse, Enigo, erickson, f_puras,
fabian, giucal, hd84335, J.D. Sandifer, Lahiru Ashan, Mac70,
NamshubWriter, Nicktar, Petter Friberg, Pradatta, Pritam
Banerjee, RamenChef, sanjaykumar81, Santa Claus, Santhosh
Ramanan, VGR

130 Packages JamesENL, KIRAN KUMAR MATAM

131
Parallel
programming with
Fork/Join framework

Community, Joe C

132 Polymorphism
Adrian Krebs, Amani Kilumanga, Daniel LIn, Dushman, Kakarot,
Lernkurve, Markus L, NageN, Pawan, Ravindra babu, Saiful
Azad, Stephen C

133 Preferences RAnders00

134 Primitive Data Types

17slim, 1d0m3n30, Amani Kilumanga, Ani Menon, Anony-
Mousse, Bilesh Ganguly, Bob Rivers, Burkhard, Conrad.Dean,
Daniel, Dariusz, DimaSan, dnup1092, Do Nhu Vy, enrico.bacis,
fabian, Francesco Menzani, Francisco Guimaraes, gar, Ilya,
IncrediApp, ipsi, J Atkin, JakeD, javac, Jean-François Savard,
Jojodmo, Kapep, KdgDev, Lahiru Ashan, Master Azazel, Matt,
mayojava, MBorsch, nimrod, Pang, Panther, ParkerHalo, Petter
Friberg, Radek Postołowicz, Radouane ROUFID, RAnders00,
RobAu, Robert Columbia, Simulant, Squidward, Stephen C,
Stephen Leppik, Sundeep, SuperStormer, ThePhantomGamer,
TMN, user1803551, user2314737, Veedrac, Vogel612

135 Process Andy Thomas, Bob Rivers, ppeterka, vorburger, yitzih

136 Properties Class
17slim, Arthur, J Atkin, Jabir, KIRAN KUMAR MATAM, Marvin,
peterh, Stephen C, VGR, vorburger

137 Queues and Deques
Ad Infinitum, Alek Mieczkowski, Androbin, DimaSan,
engineercoding, ppeterka, RamenChef, rd22, Samk, Stephen C

138
Random Number
Generation

Arthur, David Grant, David Soroko, dorukayhan, F. Stephen Q,
Kichiin, MasterBlaster, michaelbahr, rokonoid, Stephen C,
Thodgnir

https://riptutorial.com/ 1152

https://riptutorial.com/contributor/4280359/grzegorz-gorkiewicz
https://riptutorial.com/contributor/1125346/gwintrob
https://riptutorial.com/contributor/6631006/hadson
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/3790806/hzpz
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/2683146/jean-francois-savard
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/4506140/jude-niroshan
https://riptutorial.com/contributor/1735406/maroun-maroun
https://riptutorial.com/contributor/1735406/maroun-maroun
https://riptutorial.com/contributor/117839/michael-wiles
https://riptutorial.com/contributor/6049263/oldmcdonald
https://riptutorial.com/contributor/1553851/shmosel
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/3888450/stefan-dollase
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6820775/ultimate-guy
https://riptutorial.com/contributor/3622940/unihedron
https://riptutorial.com/contributor/4945535/user140547
https://riptutorial.com/contributor/1181162/vince
https://riptutorial.com/contributor/3239417/vsminkov
https://riptutorial.com/contributor/2615437/xwoker
https://riptutorial.com/contributor/184201/ahmed-ashour
https://riptutorial.com/contributor/276052/aioobe
https://riptutorial.com/contributor/3869736/akhilsk
https://riptutorial.com/contributor/2650960/alex-s
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/1426227/cassio-mazzochi-molin
https://riptutorial.com/contributor/1426227/cassio-mazzochi-molin
https://riptutorial.com/contributor/2225183/dan-whitehouse
https://riptutorial.com/contributor/5151575/enigo
https://riptutorial.com/contributor/3474/erickson
https://riptutorial.com/contributor/1606632/f-puras
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/4047785/giucal
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/6451307/j-d--sandifer
https://riptutorial.com/contributor/1672920/lahiru-ashan
https://riptutorial.com/contributor/2352462/mac70
https://riptutorial.com/contributor/95725/namshubwriter
https://riptutorial.com/contributor/682559/nicktar
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/1970752/pradatta
https://riptutorial.com/contributor/1475228/pritam-banerjee
https://riptutorial.com/contributor/1475228/pritam-banerjee
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3782992/sanjaykumar81
https://riptutorial.com/contributor/2446155/santa-claus
https://riptutorial.com/contributor/6589979/santhosh-ramanan
https://riptutorial.com/contributor/6589979/santhosh-ramanan
https://riptutorial.com/contributor/1831987/vgr
https://riptutorial.com/contributor/2357233/jamesenl
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6815131/joe-c
https://riptutorial.com/contributor/4304038/adrian-krebs
https://riptutorial.com/contributor/4957418/amani-kilumanga
https://riptutorial.com/contributor/4434245/daniel-lin
https://riptutorial.com/contributor/4155961/dushman
https://riptutorial.com/contributor/1142253/kakarot
https://riptutorial.com/contributor/33311/lernkurve
https://riptutorial.com/contributor/2878556/markus-l
https://riptutorial.com/contributor/3282002/nagen
https://riptutorial.com/contributor/1691530/pawan
https://riptutorial.com/contributor/4999394/ravindra-babu
https://riptutorial.com/contributor/1919324/saiful-azad
https://riptutorial.com/contributor/1919324/saiful-azad
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/4464702/randers00
https://riptutorial.com/contributor/3927528/17slim
https://riptutorial.com/contributor/4089359/1d0m3n30
https://riptutorial.com/contributor/4957418/amani-kilumanga
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/1060350/anony-mousse
https://riptutorial.com/contributor/1060350/anony-mousse
https://riptutorial.com/contributor/6042824/bilesh-ganguly
https://riptutorial.com/contributor/51754/bob-rivers
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/3858162/daniel
https://riptutorial.com/contributor/1961634/dariusz
https://riptutorial.com/contributor/4390212/dimasan
https://riptutorial.com/contributor/3745636/dnup1092
https://riptutorial.com/contributor/3728901/do-nhu-vy
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/3453226/francesco-menzani
https://riptutorial.com/contributor/289368/francisco-guimaraes
https://riptutorial.com/contributor/485695/gar
https://riptutorial.com/contributor/1458740/ilya
https://riptutorial.com/contributor/829407/incrediapp
https://riptutorial.com/contributor/415877/ipsi
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/6655092/jaked
https://riptutorial.com/contributor/4521040/javac
https://riptutorial.com/contributor/2683146/jean-francois-savard
https://riptutorial.com/contributor/2767207/jojodmo
https://riptutorial.com/contributor/897024/kapep
https://riptutorial.com/contributor/80907/kdgdev
https://riptutorial.com/contributor/1672920/lahiru-ashan
https://riptutorial.com/contributor/5219300/master-azazel
https://riptutorial.com/contributor/6850985/matt
https://riptutorial.com/contributor/997537/mayojava
https://riptutorial.com/contributor/1447381/mborsch
https://riptutorial.com/contributor/5216875/nimrod
https://riptutorial.com/contributor/1402846/pang
https://riptutorial.com/contributor/3617127/panther
https://riptutorial.com/contributor/5514765/parkerhalo
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/4800355/radek-postolowicz
https://riptutorial.com/contributor/4800355/radek-postolowicz
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/4464702/randers00
https://riptutorial.com/contributor/461499/robau
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/1515052/simulant
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/375093/sundeep
https://riptutorial.com/contributor/7941251/superstormer
https://riptutorial.com/contributor/3807967/thephantomgamer
https://riptutorial.com/contributor/69471/tmn
https://riptutorial.com/contributor/1803551/user1803551
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/1763356/veedrac
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/202009/andy-thomas
https://riptutorial.com/contributor/51754/bob-rivers
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/421602/vorburger
https://riptutorial.com/contributor/3452803/yitzih
https://riptutorial.com/contributor/3927528/17slim
https://riptutorial.com/contributor/6395535/arthur
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/2106815/jabir
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/4616087/marvin
https://riptutorial.com/contributor/1504556/peterh
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1831987/vgr
https://riptutorial.com/contributor/421602/vorburger
https://riptutorial.com/contributor/6451425/ad-infinitum
https://riptutorial.com/contributor/2669025/alek-mieczkowski
https://riptutorial.com/contributor/4969370/androbin
https://riptutorial.com/contributor/4390212/dimasan
https://riptutorial.com/contributor/3554071/engineercoding
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1515111/rd22
https://riptutorial.com/contributor/6837911/samk
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6395535/arthur
https://riptutorial.com/contributor/40581/david-grant
https://riptutorial.com/contributor/239101/david-soroko
https://riptutorial.com/contributor/6304349/dorukayhan
https://riptutorial.com/contributor/5019769/f--stephen-q
https://riptutorial.com/contributor/6387668/kichiin
https://riptutorial.com/contributor/4475997/masterblaster
https://riptutorial.com/contributor/1309035/michaelbahr
https://riptutorial.com/contributor/893197/rokonoid
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/5238420/thodgnir

139 Readers and Writers
JD9999, KIRAN KUMAR MATAM, Mureinik, Stephen C,
VatsalSura

140 Recursion

Andy Thomas, atom, Bobas_Pett, Ce7, charlesreid1, Confiqure,
David Soroko, fabian, hamena314, hd84335, JavaHopper,
Javant, Matej Kormuth, mayojava, Nicktar, Peter Gordon,
RamenChef, Raviteja, Ruslan Bes, Stephen C, sumit

141
Reference Data
Types

Do Nhu Vy, giucal, Jorn Vernee, Lord Farquaad, Yohanes
Khosiawan

142 Reference Types EJP, NageN, Thisaru Guruge

143 Reflection API

Ali786, ArcticLord, Aurasphere, Blubberguy22, Bohemian,
Christophe Weis, Drizzt321, fabian, hd84335, Joeri Hendrickx,
Luan Nico, madx, Michael Myers, Onur, Petter Friberg,
RamenChef, Ravindra babu, Squidward, Stephen C, Tony
BenBrahim, Universal Electricity, ΦXocę Пepeúpa ツ

144 Regular Expressions

Amani Kilumanga, Andy Thomas, Asaph, ced-b, Daniel M.,
fabian, hd84335, intboolstring, kaotikmynd, Laurel, Makoto,
nhahtdh, ppeterka, Ram, RamenChef, Saif, Tot Zam, Unihedron
, Vogel612

145
Remote Method
Invocation (RMI)

RamenChef, smichel, Stephen C, user1803551, Vasiliy Vlasov

146
Resources (on
classpath)

Androbin, Christian, Emily Mabrey, Enwired, fabian, Gerald
Mücke, Jesse van Bekkum, Kenster, Stephen C, timbooo, VGR,
vorburger

147 RSA Encryption
Dennis Kriechel, Drunix, iqbal_cs, Maarten Bodewes, Nicktar,
Shog9

148 Runtime Commands RamenChef

149 Scanner
Alek Mieczkowski, Chirag Parmar, Community, Jon Ericson,
JonasCz, Ram, RamenChef, Redterd, Stephen C, sun-solar-
arrow, ΦXocę Пepeúpa ツ

150 Secure objects Ankit Katiyar

151
Security &
Cryptography

John Nash, shibli049

152 SecurityManager alphaloop, hexafraction, Uux

akhilsk, Batty, Bilesh Ganguly, Burkhard, EJP,
emotionlessbananas, faraa, GradAsso, KIRAN KUMAR
MATAM, noscreenname, Onur, rokonoid, Siva Sainath Reddy

153 Serialization

https://riptutorial.com/ 1153

https://riptutorial.com/contributor/4741655/jd9999
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/2422776/mureinik
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6239674/vatsalsura
https://riptutorial.com/contributor/202009/andy-thomas
https://riptutorial.com/contributor/2051126/atom
https://riptutorial.com/contributor/5999533/bobas-pett
https://riptutorial.com/contributor/2813019/ce7
https://riptutorial.com/contributor/463213/charlesreid1
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/239101/david-soroko
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/1368690/hamena314
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/3059893/javahopper
https://riptutorial.com/contributor/6523710/javant
https://riptutorial.com/contributor/721809/matej-kormuth
https://riptutorial.com/contributor/997537/mayojava
https://riptutorial.com/contributor/682559/nicktar
https://riptutorial.com/contributor/1476989/peter-gordon
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5416718/raviteja
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/2637998/sumit
https://riptutorial.com/contributor/3728901/do-nhu-vy
https://riptutorial.com/contributor/4047785/giucal
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/5212501/lord-farquaad
https://riptutorial.com/contributor/500452/yohanes-khosiawan----
https://riptutorial.com/contributor/500452/yohanes-khosiawan----
https://riptutorial.com/contributor/500452/yohanes-khosiawan----
https://riptutorial.com/contributor/500452/yohanes-khosiawan----
https://riptutorial.com/contributor/500452/yohanes-khosiawan----
https://riptutorial.com/contributor/207421/ejp
https://riptutorial.com/contributor/3282002/nagen
https://riptutorial.com/contributor/3615862/thisaru-guruge
https://riptutorial.com/contributor/3404637/ali786
https://riptutorial.com/contributor/3812201/arcticlord
https://riptutorial.com/contributor/4921205/aurasphere
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/256196/bohemian
https://riptutorial.com/contributor/4173303/christophe-weis
https://riptutorial.com/contributor/570291/drizzt321
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/396618/joeri-hendrickx
https://riptutorial.com/contributor/1217989/luan-nico
https://riptutorial.com/contributor/3138238/madx
https://riptutorial.com/contributor/13531/michael-myers
https://riptutorial.com/contributor/3133545/onur
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4999394/ravindra-babu
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/80075/tony-benbrahim
https://riptutorial.com/contributor/80075/tony-benbrahim
https://riptutorial.com/contributor/3278662/universal-electricity
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/4957418/amani-kilumanga
https://riptutorial.com/contributor/202009/andy-thomas
https://riptutorial.com/contributor/166339/asaph
https://riptutorial.com/contributor/2649570/ced-b
https://riptutorial.com/contributor/4508007/daniel-m-
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/1387113/hd84335
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/577123/kaotikmynd
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/1079354/makoto
https://riptutorial.com/contributor/1400768/nhahtdh
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/2270563/ram
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1354334/saif
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/3622940/unihedron
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/7089830/smichel
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1803551/user1803551
https://riptutorial.com/contributor/4563745/vasiliy-vlasov
https://riptutorial.com/contributor/4969370/androbin
https://riptutorial.com/contributor/112670/christian
https://riptutorial.com/contributor/2446574/emily-mabrey
https://riptutorial.com/contributor/1442870/enwired
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/3985482/gerald-mucke
https://riptutorial.com/contributor/3985482/gerald-mucke
https://riptutorial.com/contributor/961977/jesse-van-bekkum
https://riptutorial.com/contributor/13317/kenster
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/128660/timbooo
https://riptutorial.com/contributor/1831987/vgr
https://riptutorial.com/contributor/421602/vorburger
https://riptutorial.com/contributor/2546444/dennis-kriechel
https://riptutorial.com/contributor/1852723/drunix
https://riptutorial.com/contributor/6254077/iqbal-cs
https://riptutorial.com/contributor/589259/maarten-bodewes
https://riptutorial.com/contributor/682559/nicktar
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2669025/alek-mieczkowski
https://riptutorial.com/contributor/5456160/chirag-parmar
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/4428462/jonascz
https://riptutorial.com/contributor/2270563/ram
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3599225/redterd
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6366398/sun-solar-arrow
https://riptutorial.com/contributor/6366398/sun-solar-arrow
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/3373597/ankit-katiyar
https://riptutorial.com/contributor/6280993/john-nash
https://riptutorial.com/contributor/669265/shibli049
https://riptutorial.com/contributor/352315/alphaloop
https://riptutorial.com/contributor/1424875/hexafraction
https://riptutorial.com/contributor/3986374/uux
https://riptutorial.com/contributor/3869736/akhilsk
https://riptutorial.com/contributor/2761035/batty
https://riptutorial.com/contributor/6042824/bilesh-ganguly
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/207421/ejp
https://riptutorial.com/contributor/4029174/emotionlessbananas
https://riptutorial.com/contributor/3431964/faraa
https://riptutorial.com/contributor/2830342/gradasso
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/1989695/noscreenname
https://riptutorial.com/contributor/3133545/onur
https://riptutorial.com/contributor/893197/rokonoid
https://riptutorial.com/contributor/8009045/siva-sainath-reddy-bandi

Bandi, Vasilis Vasilatos, Vasiliy Vlasov

154 ServiceLoader fabian, Florian Genser, Gerald Mücke

155 Sets
A_Arnold, atom, ced-b, Chirag Parmar, Daniel Stradowski,
demongolem, DimaSan, fabian, Kaushal28, Kenster

156 Singletons

aasu, Andrew Antipov, Daniel Käfer, Dave Ranjan, David
Soroko, Emil Sierżęga, Enigo, fabian, Filip Smola, GreenGiant,
Gubbel, Hulk, Jabir, Jens Schauder, JonasCz, Jonathan, JonK,
Malt, Matsemann, Michael Lloyd Lee mlk, Mifeet, Miroslav
Bradic, NamshubWriter, Pablo, Peter Rader, RamenChef, riyaz-
ali, sanastasiadis, shmosel, Stefan Dollase, stefanobaghino,
Stephen C, Stephen Leppik, still_learning, Uri Agassi,
user3105453, Vasiliy Vlasov, Vlad-HC, Vogel612, xploreraj

157 Sockets Ordiel

158 SortedMap Amit Gujarathi

159
Splitting a string into
fixed length parts

Bohemian

160 Stack-Walking API manouti

4castle, Abubakkar, acdcjunior, Aimee Borda, Akshit Soota,
Amitay Stern, Andrew Tobilko, Andrii Abramov, ArsenArsen,
Bart Kummel, berko, Blubberguy22, bpoiss, Brendan B,
Burkhard, Cerbrus, Charlie H, Claudio, Community,
Conrad.Dean, Constantine, Daniel Käfer, Daniel M., Daniel
Stradowski, Dariusz, David G., DonyorM, Dth, Durgpal Singh,
Dushko Jovanovski, DVarga, dwursteisen, Eirik Lygre,
enrico.bacis, Eran, explv, Fildor, Gal Dreiman, gontard,
GreenGiant, Grzegorz Oledzki, Hank D, Hulk, iliketocode,
ItachiUchiha, izikovic, J Atkin, Jamie Rees, JavaHopper, Jean-
François Savard, John Slegers, Jon Erickson, Jonathan, Jorn
Vernee, Jude Niroshan, JudgingNotJudging, Justin, Kapep, Kip,
LisaMM, Makoto, Malt, malteo, Marc, MasterBlaster, Matt, Matt,
Matt S., Matthieu, Michael Piefel, MikeW, Mitch Talmadge,
Mureinik, Muto, Naresh Kumar, Nathaniel Ford, Nuri Tasdemir,
OldMcDonald, Oleg L., omiel, Ortomala Lokni, Pawan, Paweł
Albecki, Petter Friberg, Philipp Wendler, philnate, Pirate_Jack,

ppeterka, Radnyx, Radouane ROUFID, Rajesh Kumar, Rakitić,
RamenChef, Ranadip Dutta, ravthiru, reto, Reut Sharabani,
RobAu, Robin, Roland Illig, Ronnie Wang, rrampage,
RudolphEst, sargue, Sergii Bishyr, sevenforce, Shailesh Kumar
Dayananda, shmosel, Shoe, solidcell, Spina, Squidward, SRJ,
stackptr, stark, Stefan Dollase, Stephen C, Stephen Leppik,

161 Streams

https://riptutorial.com/ 1154

https://riptutorial.com/contributor/8009045/siva-sainath-reddy-bandi
https://riptutorial.com/contributor/6350636/vasilis-vasilatos
https://riptutorial.com/contributor/4563745/vasiliy-vlasov
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/5337924/florian-genser
https://riptutorial.com/contributor/3985482/gerald-mucke
https://riptutorial.com/contributor/5050431/a-arnold
https://riptutorial.com/contributor/2051126/atom
https://riptutorial.com/contributor/2649570/ced-b
https://riptutorial.com/contributor/5456160/chirag-parmar
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/236247/demongolem
https://riptutorial.com/contributor/4390212/dimasan
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/5353128/kaushal28
https://riptutorial.com/contributor/13317/kenster
https://riptutorial.com/contributor/2762451/aasu
https://riptutorial.com/contributor/6619917/andrew-antipov
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/4161024/dave-ranjan
https://riptutorial.com/contributor/239101/david-soroko
https://riptutorial.com/contributor/239101/david-soroko
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/5151575/enigo
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/6544665/filip-smola
https://riptutorial.com/contributor/539048/greengiant
https://riptutorial.com/contributor/415304/gubbel
https://riptutorial.com/contributor/2513200/hulk
https://riptutorial.com/contributor/2106815/jabir
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/4428462/jonascz
https://riptutorial.com/contributor/1772/jonathan
https://riptutorial.com/contributor/3419894/jonk
https://riptutorial.com/contributor/3199595/malt
https://riptutorial.com/contributor/923847/matsemann
https://riptutorial.com/contributor/157672/michael-lloyd-lee-mlk
https://riptutorial.com/contributor/2032064/mifeet
https://riptutorial.com/contributor/8353029/miroslav-bradic
https://riptutorial.com/contributor/8353029/miroslav-bradic
https://riptutorial.com/contributor/95725/namshubwriter
https://riptutorial.com/contributor/1796236/pablo
https://riptutorial.com/contributor/843943/peter-rader
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6611700/riyaz-ali
https://riptutorial.com/contributor/6611700/riyaz-ali
https://riptutorial.com/contributor/3652270/sanastasiadis
https://riptutorial.com/contributor/1553851/shmosel
https://riptutorial.com/contributor/3888450/stefan-dollase
https://riptutorial.com/contributor/3314107/stefanobaghino
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2948765/still-learning
https://riptutorial.com/contributor/1120015/uri-agassi
https://riptutorial.com/contributor/3105453/user3105453
https://riptutorial.com/contributor/4563745/vasiliy-vlasov
https://riptutorial.com/contributor/3009130/vlad-hc
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/1841181/xploreraj
https://riptutorial.com/contributor/865910/ordiel
https://riptutorial.com/contributor/6477936/amit-gujarathi
https://riptutorial.com/contributor/256196/bohemian
https://riptutorial.com/contributor/1064245/manouti
https://riptutorial.com/contributor/5743988/4castle
https://riptutorial.com/contributor/1151456/abubakkar
https://riptutorial.com/contributor/1850609/acdcjunior
https://riptutorial.com/contributor/2809449/aimee-borda
https://riptutorial.com/contributor/705471/akshit-soota
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/4922375/andrew-tobilko
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/3809164/arsenarsen
https://riptutorial.com/contributor/872814/bart-kummel
https://riptutorial.com/contributor/5958144/berko
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/2039482/bpoiss
https://riptutorial.com/contributor/5031171/brendan-b
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/1117751/claudio
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/2267100/constantine
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/4508007/daniel-m-
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/1961634/dariusz
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/2719960/donyorm
https://riptutorial.com/contributor/2440202/dth
https://riptutorial.com/contributor/1759015/durgpal-singh
https://riptutorial.com/contributor/1458909/dushko-jovanovski
https://riptutorial.com/contributor/5966775/dvarga
https://riptutorial.com/contributor/476690/dwursteisen
https://riptutorial.com/contributor/293391/eirik-lygre
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/1221571/eran
https://riptutorial.com/contributor/6391367/explv
https://riptutorial.com/contributor/982149/fildor
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/1594933/gontard
https://riptutorial.com/contributor/539048/greengiant
https://riptutorial.com/contributor/118587/grzegorz-oledzki
https://riptutorial.com/contributor/3487617/hank-d
https://riptutorial.com/contributor/2513200/hulk
https://riptutorial.com/contributor/3739391/iliketocode
https://riptutorial.com/contributor/1759128/itachiuchiha
https://riptutorial.com/contributor/2208343/izikovic
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/3329836/jamie-rees
https://riptutorial.com/contributor/3059893/javahopper
https://riptutorial.com/contributor/2683146/jean-francois-savard
https://riptutorial.com/contributor/2683146/jean-francois-savard
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1950/jon-erickson
https://riptutorial.com/contributor/69875/jonathan
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/4506140/jude-niroshan
https://riptutorial.com/contributor/6357392/judgingnotjudging
https://riptutorial.com/contributor/1896169/justin
https://riptutorial.com/contributor/897024/kapep
https://riptutorial.com/contributor/18511/kip
https://riptutorial.com/contributor/3580458/lisamm
https://riptutorial.com/contributor/1079354/makoto
https://riptutorial.com/contributor/3199595/malt
https://riptutorial.com/contributor/213819/malteo
https://riptutorial.com/contributor/4382892/marc
https://riptutorial.com/contributor/4475997/masterblaster
https://riptutorial.com/contributor/386806/matt
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/155631/matt-s-
https://riptutorial.com/contributor/1098603/matthieu
https://riptutorial.com/contributor/2621917/michael-piefel
https://riptutorial.com/contributor/4555785/mikew
https://riptutorial.com/contributor/2364405/mitch-talmadge
https://riptutorial.com/contributor/2422776/mureinik
https://riptutorial.com/contributor/6479160/muto
https://riptutorial.com/contributor/5917671/naresh-kumar
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/6049263/oldmcdonald
https://riptutorial.com/contributor/6400048/oleg-l-
https://riptutorial.com/contributor/2608009/omiel
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/1691530/pawan
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/396730/philipp-wendler
https://riptutorial.com/contributor/1377224/philnate
https://riptutorial.com/contributor/1817722/pirate-jack
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/2697944/radnyx
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/3160243/rajesh-kumar
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/737936/ravthiru
https://riptutorial.com/contributor/133645/reto
https://riptutorial.com/contributor/948550/reut-sharabani
https://riptutorial.com/contributor/461499/robau
https://riptutorial.com/contributor/2895816/robin
https://riptutorial.com/contributor/225757/roland-illig
https://riptutorial.com/contributor/4710155/ronnie-wang
https://riptutorial.com/contributor/1625748/rrampage
https://riptutorial.com/contributor/2111876/rudolphest
https://riptutorial.com/contributor/518992/sargue
https://riptutorial.com/contributor/5604676/sergii-bishyr
https://riptutorial.com/contributor/1091453/sevenforce
https://riptutorial.com/contributor/3068324/shailesh-kumar-dayananda
https://riptutorial.com/contributor/3068324/shailesh-kumar-dayananda
https://riptutorial.com/contributor/1553851/shmosel
https://riptutorial.com/contributor/493122/shoe
https://riptutorial.com/contributor/343299/solidcell
https://riptutorial.com/contributor/170587/spina
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/585398/srj
https://riptutorial.com/contributor/2469027/stackptr
https://riptutorial.com/contributor/1507325/stark
https://riptutorial.com/contributor/3888450/stefan-dollase
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik

Steve K, Sugan, suj1th, thiagogcm, tpunt, Tunaki, Unihedron,
user1133275, user1803551, Valentino, vincentvanjoe, vsnyc,
Wilson, Ze Rubeus, zwl

162 String Tokenizer M M

163 StringBuffer Amit Gujarathi

164 StringBuilder
Andrii Abramov, Cache Staheli, David Soroko, Enigo, fabian,
fgb, JudgingNotJudging, KIRAN KUMAR MATAM, Nicktar,
P.J.Meisch, Stephen C

17slim, A.J. Brown, A_Arnold, Abhishek Jain, Abubakkar, Adam
Ratzman, Adrian Krebs, agilob, Aiden Deom, Alex Meiburg,
Alex Shesterov, altomnr, Amani Kilumanga, Andrew Tobilko,
Andrii Abramov, Andy Thomas, Anony-Mousse, Asaph,
Ataeraxia, Austin, Austin Day, ben75, bfd, Bob Brinks, bpoiss,
Burkhard, Cache Staheli, Caner Balım, Chris Midgley, Christian,
Christophe Weis, coder-croc, Community, cyberscientist, Daniel
Käfer, Daniel Stradowski, DarkV1, dedmass, DeepCoder,
dnup1092, dorukayhan, drov, DVarga, ekeith, Emil Sierżęga,
emotionlessbananas, enrico.bacis, Enwired, fabian,
FlyingPiMonster, Gabriele Mariotti, Gal Dreiman, Gergely Toth,
Gihan Chathuranga, GingerHead, giucal, Gray, GreenGiant,
hamena314, Harish Gyanani, HON95, iliketocode, Ilya, Infuzed
guy, intboolstring, J Atkin, Jabir, javac, JavaHopper, Jeffrey Lin,
Jens Schauder, Jérémie Bolduc, John Slegers, Jojodmo, Jon
Ericson, JonasCz, Jordi Castilla, Jorn Vernee, JSON C11, Jude
Niroshan, Kamil Akhuseyinoglu, Kapep, Kaushal28, Kaushik NP
, Kehinde Adedamola Shittu, Kenster, kstandell, Lachlan
Dowding, Lahiru Ashan, Laurel, Leo Aso, Liju Thomas, LisaMM,
M.Sianaki, Maarten Bodewes, Makoto, Malav, Malt, Manoj,
Manuel Spigolon, Mark Stewart, Marvin, Matej Kormuth, Matt
Clark, Matthias Braun, maxdev, Maxim Plevako, mayha,
Michael, MikeW, Miles, Miljen Mikic, Misa Lazovic, mr5,
Myridium, NikolaB, Nufail, Nuri Tasdemir, OldMcDonald,
OliPro007, Onur, Optimiser, ozOli, P.J.Meisch, Paolo Forgia,
Paweł Albecki, Petter Friberg, phant0m, piyush_baderia,

ppeterka, Přemysl Šťastný, PSo, QoP, Radouane ROUFID, Raj
, RamenChef, RAnders00, Rocherlee, Ronnie Wang, Ryan
Hilbert, ryanyuyu, Sayakiss, SeeuD1, sevenforce, Shaan,
ShivBuyya, Shoe, Sky, SmS, solidcell, Squidward, Stefan Isele
- prefabware.com, stefanobaghino, Stephen C, Stephen Leppik,
Steven Benitez, still_learning, Sudhir Singh, Swanand Pathak,
Sнаđошƒа, TDG, TheLostMind, ThePhantomGamer, Tony
BenBrahim, Unihedron, VGR, Vishal Biyani, Vogel612,
vsminkov, vvtx, Wilson, winseybash, xwoker, yuku, Yury

165 Strings

https://riptutorial.com/ 1155

https://riptutorial.com/contributor/2020820/steve-k
https://riptutorial.com/contributor/5829396/sugan
https://riptutorial.com/contributor/4077935/suj1th
https://riptutorial.com/contributor/2353506/thiagogcm
https://riptutorial.com/contributor/4530326/tpunt
https://riptutorial.com/contributor/1743880/tunaki
https://riptutorial.com/contributor/3622940/unihedron
https://riptutorial.com/contributor/1133275/user1133275
https://riptutorial.com/contributor/1803551/user1803551
https://riptutorial.com/contributor/3062203/valentino
https://riptutorial.com/contributor/466023/vincentvanjoe
https://riptutorial.com/contributor/2063026/vsnyc
https://riptutorial.com/contributor/6511967/wilson
https://riptutorial.com/contributor/4232386/ze-rubeus
https://riptutorial.com/contributor/5090056/zwl
https://riptutorial.com/contributor/5227589/m-m
https://riptutorial.com/contributor/6477936/amit-gujarathi
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/239101/david-soroko
https://riptutorial.com/contributor/5151575/enigo
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/298029/fgb
https://riptutorial.com/contributor/6357392/judgingnotjudging
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/682559/nicktar
https://riptutorial.com/contributor/4393565/p-j-meisch
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/3927528/17slim
https://riptutorial.com/contributor/264016/a-j--brown
https://riptutorial.com/contributor/5050431/a-arnold
https://riptutorial.com/contributor/3857465/abhishek-jain
https://riptutorial.com/contributor/1151456/abubakkar
https://riptutorial.com/contributor/6620312/adam-ratzman
https://riptutorial.com/contributor/6620312/adam-ratzman
https://riptutorial.com/contributor/4304038/adrian-krebs
https://riptutorial.com/contributor/1238944/agilob
https://riptutorial.com/contributor/5322470/aiden-deom
https://riptutorial.com/contributor/569046/alex-meiburg
https://riptutorial.com/contributor/2170192/alex-shesterov
https://riptutorial.com/contributor/1130812/altomnr
https://riptutorial.com/contributor/4957418/amani-kilumanga
https://riptutorial.com/contributor/4922375/andrew-tobilko
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/202009/andy-thomas
https://riptutorial.com/contributor/1060350/anony-mousse
https://riptutorial.com/contributor/166339/asaph
https://riptutorial.com/contributor/7903932/ataeraxia
https://riptutorial.com/contributor/668540/austin
https://riptutorial.com/contributor/4539472/austin-day
https://riptutorial.com/contributor/1818045/ben75
https://riptutorial.com/contributor/6598970/bfd
https://riptutorial.com/contributor/1001450/bob-brinks
https://riptutorial.com/contributor/2039482/bpoiss
https://riptutorial.com/contributor/12860/burkhard
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/1107607/caner-balim
https://riptutorial.com/contributor/1107607/caner-balim
https://riptutorial.com/contributor/2591803/chris-midgley
https://riptutorial.com/contributor/2670792/christian
https://riptutorial.com/contributor/4173303/christophe-weis
https://riptutorial.com/contributor/1997093/coder-croc
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/825957/cyberscientist
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/6275934/darkv1
https://riptutorial.com/contributor/1916721/dedmass
https://riptutorial.com/contributor/6639835/deepcoder
https://riptutorial.com/contributor/3745636/dnup1092
https://riptutorial.com/contributor/6304349/dorukayhan
https://riptutorial.com/contributor/4289519/drov
https://riptutorial.com/contributor/5966775/dvarga
https://riptutorial.com/contributor/5344433/ekeith
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/1411160/emil-sierzega
https://riptutorial.com/contributor/4029174/emotionlessbananas
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/1442870/enwired
https://riptutorial.com/contributor/2991525/fabian
https://riptutorial.com/contributor/4250629/flyingpimonster
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/1107608/gergely-toth
https://riptutorial.com/contributor/5213194/gihan-chathuranga
https://riptutorial.com/contributor/1358722/gingerhead
https://riptutorial.com/contributor/4047785/giucal
https://riptutorial.com/contributor/179850/gray
https://riptutorial.com/contributor/539048/greengiant
https://riptutorial.com/contributor/1368690/hamena314
https://riptutorial.com/contributor/1495703/harish-gyanani
https://riptutorial.com/contributor/1709946/hon95
https://riptutorial.com/contributor/3739391/iliketocode
https://riptutorial.com/contributor/1458740/ilya
https://riptutorial.com/contributor/4184530/infuzed-guy
https://riptutorial.com/contributor/4184530/infuzed-guy
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/2106815/jabir
https://riptutorial.com/contributor/4521040/javac
https://riptutorial.com/contributor/3059893/javahopper
https://riptutorial.com/contributor/1440897/jeffrey-lin
https://riptutorial.com/contributor/66686/jens-schauder
https://riptutorial.com/contributor/4735402/jeremie-bolduc
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/2767207/jojodmo
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/4428462/jonascz
https://riptutorial.com/contributor/3850595/jordi-castilla
https://riptutorial.com/contributor/3699139/jorn-vernee
https://riptutorial.com/contributor/1244127/json-c11
https://riptutorial.com/contributor/4506140/jude-niroshan
https://riptutorial.com/contributor/4506140/jude-niroshan
https://riptutorial.com/contributor/6058646/kamil-akhuseyinoglu
https://riptutorial.com/contributor/897024/kapep
https://riptutorial.com/contributor/5353128/kaushal28
https://riptutorial.com/contributor/7550472/kaushik-np
https://riptutorial.com/contributor/4639860/kehinde-adedamola-shittu
https://riptutorial.com/contributor/13317/kenster
https://riptutorial.com/contributor/2702815/kstandell
https://riptutorial.com/contributor/1369198/lachlan-dowding
https://riptutorial.com/contributor/1369198/lachlan-dowding
https://riptutorial.com/contributor/1672920/lahiru-ashan
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/1426469/leo-aso
https://riptutorial.com/contributor/4714914/liju-thomas
https://riptutorial.com/contributor/3580458/lisamm
https://riptutorial.com/contributor/5600256/m-sianaki
https://riptutorial.com/contributor/589259/maarten-bodewes
https://riptutorial.com/contributor/1079354/makoto
https://riptutorial.com/contributor/3572733/malav
https://riptutorial.com/contributor/3199595/malt
https://riptutorial.com/contributor/4472665/manoj
https://riptutorial.com/contributor/3309466/manuel-spigolon
https://riptutorial.com/contributor/4178262/mark-stewart
https://riptutorial.com/contributor/4616087/marvin
https://riptutorial.com/contributor/721809/matej-kormuth
https://riptutorial.com/contributor/1790644/matt-clark
https://riptutorial.com/contributor/1790644/matt-clark
https://riptutorial.com/contributor/775954/matthias-braun
https://riptutorial.com/contributor/1206549/maxdev
https://riptutorial.com/contributor/5343328/maxim-plevako
https://riptutorial.com/contributor/6579771/mayha
https://riptutorial.com/contributor/13379/michael
https://riptutorial.com/contributor/4555785/mikew
https://riptutorial.com/contributor/34746/miles
https://riptutorial.com/contributor/1460628/miljen-mikic
https://riptutorial.com/contributor/2430434/misa-lazovic
https://riptutorial.com/contributor/2304737/mr5
https://riptutorial.com/contributor/1351182/myridium
https://riptutorial.com/contributor/2119041/nikolab
https://riptutorial.com/contributor/923179/nufail
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/6049263/oldmcdonald
https://riptutorial.com/contributor/5487099/olipro007
https://riptutorial.com/contributor/3133545/onur
https://riptutorial.com/contributor/3146742/optimiser
https://riptutorial.com/contributor/358238/ozoli
https://riptutorial.com/contributor/4393565/p-j-meisch
https://riptutorial.com/contributor/1685157/paolo-forgia
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/6057220/pawel-albecki
https://riptutorial.com/contributor/5292302/petter-friberg
https://riptutorial.com/contributor/383124/phant0m
https://riptutorial.com/contributor/6849461/piyush-baderia
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/2976142/premysl-stastny
https://riptutorial.com/contributor/2976142/premysl-stastny
https://riptutorial.com/contributor/5771658/pso
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/1714078/raj
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4464702/randers00
https://riptutorial.com/contributor/2935333/rocherlee
https://riptutorial.com/contributor/4710155/ronnie-wang
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/4320665/ryanyuyu
https://riptutorial.com/contributor/1291716/sayakiss
https://riptutorial.com/contributor/3288649/seeud1
https://riptutorial.com/contributor/1091453/sevenforce
https://riptutorial.com/contributor/6263070/shaan
https://riptutorial.com/contributor/1654631/shivbuyya
https://riptutorial.com/contributor/493122/shoe
https://riptutorial.com/contributor/7808133/sky
https://riptutorial.com/contributor/6867952/sms
https://riptutorial.com/contributor/343299/solidcell
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/3608192/stefan-isele---prefabware-com
https://riptutorial.com/contributor/3608192/stefan-isele---prefabware-com
https://riptutorial.com/contributor/3314107/stefanobaghino
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/454470/steven-benitez
https://riptutorial.com/contributor/2948765/still-learning
https://riptutorial.com/contributor/4274119/sudhir-singh
https://riptutorial.com/contributor/6450215/swanand-pathak
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3426328/tdg
https://riptutorial.com/contributor/2193767/thelostmind
https://riptutorial.com/contributor/3807967/thephantomgamer
https://riptutorial.com/contributor/80075/tony-benbrahim
https://riptutorial.com/contributor/80075/tony-benbrahim
https://riptutorial.com/contributor/3622940/unihedron
https://riptutorial.com/contributor/1831987/vgr
https://riptutorial.com/contributor/873601/vishal-biyani
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/3239417/vsminkov
https://riptutorial.com/contributor/5638612/vvtx
https://riptutorial.com/contributor/6511967/wilson
https://riptutorial.com/contributor/4270597/winseybash
https://riptutorial.com/contributor/2615437/xwoker
https://riptutorial.com/contributor/11238/yuku
https://riptutorial.com/contributor/4378400/yury-fedorov

Fedorov, Zachary David Saunders, Zack Teater, Ze Rubeus, Φ
Xocę Пepeúpa ツ

166 sun.misc.Unsafe
4444, Daniel Nugent, Grexis, Stephen C, Suminda Sirinath S.
Dharmasena

167 super keyword Abhijeet

168 The Classpath
Aaron Digulla, GPI, K'', Kenster, Ruslan Ulanov, Stephen C,
trashgod

169
The Java Command
- 'java' and 'javaw'

4444, Ben, mnoronha, Stephen C, Vogel612

170
The java.util.Objects
Class

mnoronha, RamenChef, Stephen C

171 ThreadLocal Dariusz, Liju Thomas, Manish Kothari, Nithanim, taer

172
TreeMap and
TreeSet

Malt, Stephen C

173 Type Conversion
4castle, Filip Smola, Joshua Carmody, Nick Donnelly,
RamenChef, Squidward

174 Unit Testing Ironcache

175
Using Other
Scripting Languages
in Java

Nikhil R

176
Using the static
keyword

17slim, Amir Rachum, Andrew Brooke, Arthur, ben75,
CarManuel, Daniel Nugent, EJP, Hi I'm Frogatto, Mark Yisri,
Sadiq Ali, Skepter, Squidward

177

Using
ThreadPoolExecutor
in MultiThreaded
applications.

Brendon Dugan

178
Varargs (Variable
Argument)

Daniel Nugent, Dushman, Omar Ayala, Rafael Pacheco,
RamenChef, VGR, xsami

179
Visibility (controlling
access to members
of a class)

Aasmund Eldhuset, Abhishek Balaji R, Catalina Island, Daniel
M., intboolstring, Jonathan, Mark Yisri, Mureinik, NageN,
ParkerHalo, Stephen C, Vogel612

180 WeakHashMap Amit Gujarathi, KIRAN KUMAR MATAM

181 XJC Danilo Guimaraes, fabian

https://riptutorial.com/ 1156

https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/7015351/zachary-david-saunders
https://riptutorial.com/contributor/1176178/zack-teater
https://riptutorial.com/contributor/4232386/ze-rubeus
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/982161/-xoce----epeupa--
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/4409409/daniel-nugent
https://riptutorial.com/contributor/845567/grexis
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/676644/suminda-sirinath-s--dharmasena
https://riptutorial.com/contributor/676644/suminda-sirinath-s--dharmasena
https://riptutorial.com/contributor/5790498/abhijeet
https://riptutorial.com/contributor/34088/aaron-digulla
https://riptutorial.com/contributor/2131074/gpi
https://riptutorial.com/contributor/856696/k--
https://riptutorial.com/contributor/13317/kenster
https://riptutorial.com/contributor/1007955/ruslan-ulanov
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/230513/trashgod
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/7234338/ben
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1961634/dariusz
https://riptutorial.com/contributor/4714914/liju-thomas
https://riptutorial.com/contributor/2736638/manish-kothari
https://riptutorial.com/contributor/2060704/nithanim
https://riptutorial.com/contributor/358688/taer
https://riptutorial.com/contributor/3199595/malt
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/5743988/4castle
https://riptutorial.com/contributor/6544665/filip-smola
https://riptutorial.com/contributor/8409/joshua-carmody
https://riptutorial.com/contributor/1320066/nick-donnelly
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/1601729/ironcache
https://riptutorial.com/contributor/7980731/nikhil-r
https://riptutorial.com/contributor/3927528/17slim
https://riptutorial.com/contributor/166067/amir-rachum
https://riptutorial.com/contributor/2278598/andrew-brooke
https://riptutorial.com/contributor/6395535/arthur
https://riptutorial.com/contributor/1818045/ben75
https://riptutorial.com/contributor/7563898/carmanuel
https://riptutorial.com/contributor/4409409/daniel-nugent
https://riptutorial.com/contributor/207421/ejp
https://riptutorial.com/contributor/1841194/hi-i-m-frogatto
https://riptutorial.com/contributor/6754053/mark-yisri
https://riptutorial.com/contributor/6364956/sadiq-ali
https://riptutorial.com/contributor/4779071/skepter
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/873043/brendon-dugan
https://riptutorial.com/contributor/4409409/daniel-nugent
https://riptutorial.com/contributor/4155961/dushman
https://riptutorial.com/contributor/2345592/omar-ayala
https://riptutorial.com/contributor/3613766/rafael-pacheco
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1831987/vgr
https://riptutorial.com/contributor/3700378/xsami
https://riptutorial.com/contributor/626853/aasmund-eldhuset
https://riptutorial.com/contributor/4962229/abhishek-balaji-r
https://riptutorial.com/contributor/261156/catalina-island
https://riptutorial.com/contributor/4508007/daniel-m-
https://riptutorial.com/contributor/4508007/daniel-m-
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/1772/jonathan
https://riptutorial.com/contributor/6754053/mark-yisri
https://riptutorial.com/contributor/2422776/mureinik
https://riptutorial.com/contributor/3282002/nagen
https://riptutorial.com/contributor/5514765/parkerhalo
https://riptutorial.com/contributor/139985/stephen-c
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/6477936/amit-gujarathi
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/4566490/danilo-guimaraes
https://riptutorial.com/contributor/2991525/fabian

182
XML Parsing using
the JAXP APIs

GPI

183
XML XPath
Evaluation

17slim, manouti

184
XOM - XML Object
Model

Arthur, Makoto

https://riptutorial.com/ 1157

https://riptutorial.com/contributor/2131074/gpi
https://riptutorial.com/contributor/3927528/17slim
https://riptutorial.com/contributor/1064245/manouti
https://riptutorial.com/contributor/6395535/arthur
https://riptutorial.com/contributor/1079354/makoto

	About
	Chapter 1: Getting started with Java Language
	Remarks

	Java Editions and Versions
	Installing Java
	Compiling and running Java programs
	What's next?
	Testing
	Other
	Versions
	Examples
	Creating Your First Java Program

	A closer look at the Hello World program
	Chapter 2: 2D Graphics in Java
	Introduction
	Examples
	Example 1: Draw and Fill a Rectangle Using Java
	Example 2: Drawing and Filling Oval

	Chapter 3: Alternative Collections
	Remarks
	Examples
	Apache HashBag, Guava HashMultiset and Eclipse HashBag
	1. Using SynchronizedSortedBag from Apache:
	2. Using TreeBag from Eclipse(GC):
	3. Using LinkedHashMultiset from Guava:

	More examples:
	Multimap in Guava, Apache and Eclipse Collections

	Nore examples:
	Compare operation with collections - Create collections
	Compare operation with collections - Create collections

	Chapter 4: Annotations
	Introduction
	Syntax
	Remarks

	Parameter types
	Examples
	Built-in annotations
	Runtime annotation checks via reflection
	Defining annotation types

	Default values

	Meta-Annotations
	@Target
	Available Values

	@Retention
	Available values

	@Documented
	@Inherited
	@Repeatable
	Getting Annotation values at run-time
	Repeating Annotations
	Inherited Annotations

	Example
	Compile time processing using annotation processor

	The annotation
	The annotation processor
	Packaging
	Example annotated class
	Using the annotation processor with javac
	IDE integration
	Netbeans
	Result
	The idea behind Annotations
	Annotations for 'this' and receiver parameters
	Add multiple annotation values

	Chapter 5: Apache Commons Lang
	Examples
	Implement equals() method
	Implement hashCode() method
	Implement toString() method

	Chapter 6: AppDynamics and TIBCO BusinessWorks Instrumentation for Easy Integration
	Introduction
	Examples
	Example of Instrumentation of all BW Applications in a Single Step for Appdynamics

	*** Common variables. Modify these only. ***
	Chapter 7: Applets
	Introduction
	Remarks
	Examples
	Minimal Applet
	Creating a GUI
	Open links from within the applet
	Loading images, audio and other resources

	Load and show an image
	Load and play an audio file
	Load and display a text file

	Chapter 8: Arrays
	Introduction
	Syntax
	Parameters
	Examples
	Creating and Initializing Arrays

	Basic cases
	Arrays, Collections, and Streams
	Intro
	Creating and initializing primitive type arrays
	Creating and initializing multi-dimensional arrays
	Multidimensional array representation in Java
	Creating and initializing reference type arrays
	Creating and initializing generic type arrays
	Filling an array after initialization
	Separate declaration and initialization of arrays
	Arrays may not be re-initialized with array initializer shortcut syntax
	Creating an Array from a Collection
	Arrays to a String
	Creating a List from an Array
	Important notes related to using Arrays.asList() method
	Multidimensional and Jagged Arrays

	How Multidimensional Arrays are represented in Java
	ArrayIndexOutOfBoundsException
	Getting the Length of an Array
	Comparing arrays for equality
	Arrays to Stream
	Iterating over arrays
	Copying arrays

	for loop
	Object.clone()
	Arrays.copyOf()
	System.arraycopy()
	Arrays.copyOfRange()
	Casting Arrays
	Remove an element from an array
	Using ArrayList
	Using System.arraycopy
	Using Apache Commons Lang
	Array Covariance
	How do you change the size of an array?

	A better alternatives to array resizing
	Finding an element in an array

	Using Arrays.binarySearch (for sorted arrays only)
	Using a Arrays.asList (for non-primitive arrays only)
	Using a Stream
	Linear search using a loop
	Linear search using 3rd-party libraries such as org.apache.commons
	Testing if an array contains an element
	Sorting arrays
	Converting arrays between primitives and boxed types

	Chapter 9: Asserting
	Syntax
	Parameters
	Remarks
	Examples
	Checking arithmetic with assert

	Chapter 10: Atomic Types
	Introduction
	Parameters
	Remarks
	Examples
	Creating Atomic Types
	Motivation for Atomic Types

	How does one implement Atomic Types?
	How do Atomic Types work?

	Chapter 11: Audio
	Remarks
	Examples
	Play an Audio file Looped
	Play a MIDI file
	Bare metal sound
	Basic audio output

	Chapter 12: Autoboxing
	Introduction
	Remarks
	Examples
	Using int and Integer interchangeably
	Using Boolean in if statement
	Auto-unboxing may lead to NullPointerException
	Memory and Computational Overhead of Autoboxing
	Different Cases When Integer and int can be used interchangeably

	Chapter 13: Basic Control Structures
	Remarks
	Examples
	If / Else If / Else Control
	For Loops
	While Loops
	do...while Loop
	For Each
	If / Else
	Switch statement
	Ternary Operator
	Break
	Try ... Catch ... Finally
	Nested break / continue
	Continue Statement in Java

	Chapter 14: Benchmarks
	Introduction
	Examples
	Simple JMH example

	Chapter 15: BigDecimal
	Introduction
	Examples
	BigDecimal objects are immutable
	Comparing BigDecimals
	Mathematical operations with BigDecimal

	1.Addition
	2.Subtraction
	3.Multiplication
	4.Division
	5.Remainder or Modulus
	6.Power
	7.Max
	8.Min
	9.Move Point To Left
	10.Move Point To Right
	Using BigDecimal instead of float
	BigDecimal.valueOf()
	Initialization of BigDecimals with value zero, one or ten

	Chapter 16: BigInteger
	Introduction
	Syntax
	Remarks
	Examples
	Initialization
	Comparing BigIntegers
	BigInteger Mathematical Operations Examples
	Binary Logic Operations on BigInteger
	Generating random BigIntegers

	Chapter 17: Bit Manipulation
	Remarks
	Examples
	Packing / unpacking values as bit fragments
	Checking, setting, clearing, and toggling individual bits. Using long as bit mask
	Expressing the power of 2
	Checking if a number is a power of 2
	java.util.BitSet class
	Signed vs unsigned shift

	Chapter 18: BufferedWriter
	Syntax
	Remarks
	Examples
	Write a line of text to File

	Chapter 19: ByteBuffer
	Introduction
	Syntax
	Examples
	Basic Usage - Creating a ByteBuffer
	Basic Usage - Write Data to the Buffer
	Basic Usage - Using DirectByteBuffer

	Chapter 20: Bytecode Modification
	Examples
	What is Bytecode?

	What's the logic behind this?
	Well, there has to be more right?
	How can I write / edit bytecode?
	I'd like to learn more about bytecode!
	How to edit jar files with ASM
	How to load a ClassNode as a Class
	How to rename classes in a jar file
	Javassist Basic

	Chapter 21: C++ Comparison
	Introduction
	Remarks

	Classes Defined within Other Constructs#
	Defined within Another Class
	C++
	Java

	Statically Defined within Another Class
	C++
	Java

	Defined within a Method
	C++
	Java

	Overriding vs Overloading
	Polymorphism
	Order of Construction/Destruction
	Object Cleanup
	Abstract Methods & Classes
	Accessibility Modifiers
	C++ Friend Example

	The Dreaded Diamond Problem
	java.lang.Object Class
	Java Collections & C++ Containers
	Java Collections Flowchart
	C++ Containers Flowchart

	Integer Types
	Examples
	Static Class Members

	C++ Example
	Java Example
	Classes Defined within Other Constructs

	Defined within Another Class
	C++
	Java

	Statically Defined within Another Class
	C++
	Java

	Defined within a Method
	C++
	Java
	Pass-by-value & Pass-by-reference

	C++ Example (complete code)
	Java Example (complete code)
	Inheritance vs Composition
	Outcast Downcasting

	C++ Example
	Java Example
	Abstract Methods & Classes

	Abstract Method
	C++
	Java

	Abstract Class
	C++
	Java

	Interface
	C++
	Java

	Chapter 22: Calendar and its Subclasses
	Remarks
	Examples
	Creating Calendar objects
	Increasing / Decreasing calendar fields
	Finding AM/PM
	Subtracting calendars

	Chapter 23: Character encoding
	Examples
	Reading text from a file encoded in UTF-8
	Writing text to a file in UTF-8
	Getting byte representation of a string in UTF-8

	Chapter 24: Choosing Collections
	Introduction
	Examples
	Java Collections Flowchart

	Chapter 25: Class - Java Reflection
	Introduction
	Examples
	getClass() method of Object class

	Chapter 26: Classes and Objects
	Introduction
	Syntax
	Examples
	Simplest Possible Class
	Object Member vs Static Member
	Overloading Methods
	Basic Object Construction and Use
	Constructors
	Initializing static final fields using a static initializer
	Explaining what is method overloading and overriding.

	Chapter 27: Classloaders
	Remarks
	Examples
	Instantiating and using a classloader
	Implementing a custom classLoader
	Loading an external .class file

	Chapter 28: Collection Factory Methods
	Introduction
	Syntax
	Parameters
	Examples
	List Factory Method Examples
	Set Factory Method Examples
	Map Factory Method Examples

	Chapter 29: Collections
	Introduction
	Remarks
	Examples
	Declaring an ArrayList and adding objects
	Constructing collections from existing data

	Standard Collections
	Java Collections framework
	Google Guava Collections framework

	Mapping Collections
	Java Collections framework
	Apache Commons Collections framework
	Google Guava Collections framework
	Join lists
	Removing items from a List within a loop

	INCORRECT
	Removing in iteration of for statement Skips "Banana":
	Removing in the enhanced for statement Throws Exception:

	CORRECT
	Removing in while loop using an Iterator
	Iterating backwards
	Iterating forward, adjusting the loop index
	Using a "should-be-removed" list
	Filtering a Stream
	Using removeIf
	Unmodifiable Collection
	Iterating over Collections

	Iterating over List
	Iterating over Set
	Iterating over Map
	Immutable Empty Collections
	Collections and Primitive Values
	Removing matching items from Lists using Iterator.
	Creating your own Iterable structure for use with Iterator or for-each loop.
	Pitfall: concurrent modification exceptions
	Sub Collections

	List subList(int fromIndex, int toIndex)
	Set subSet(fromIndex,toIndex)
	Map subMap(fromKey,toKey)
	Chapter 30: Command line Argument Processing
	Syntax
	Parameters
	Remarks
	Examples
	Argument processing using GWT ToolBase
	Processing arguments by hand

	A command with no arguments
	A command with two arguments
	A command with "flag" options and at least one argument

	Chapter 31: Common Java Pitfalls
	Introduction
	Examples
	Pitfall: using == to compare primitive wrappers objects such as Integer
	Pitfall: forgetting to free resources
	Pitfall: memory leaks
	Pitfall: using == to compare strings
	Pitfall: testing a file before attempting to open it.
	Pitfall: thinking of variables as objects

	Example class
	Multiple variables can point to the same object
	The equality operator does NOT test that two objects are equal
	Method calls do NOT pass objects at all
	Pitfall: combining assignment and side-effects
	Pitfall: Not understanding that String is an immutable class

	Chapter 32: Comparable and Comparator
	Syntax
	Remarks
	Examples
	Sorting a List using Comparable or a Comparator

	Lambda expression based comparators
	Comparator default methods
	Inversing the order of a comparator
	The compareTo and compare Methods
	Natural (comparable) vs explicit (comparator) sorting
	Sorting Map entries
	Creating a Comparator using comparing method

	Chapter 33: CompletableFuture
	Introduction
	Examples
	Convert blocking method to asynchonous
	Simple Example of CompletableFuture

	Chapter 34: Concurrent Collections
	Introduction
	Examples
	Thread-safe Collections
	Concurrent Collections

	Thread safe but non concurrent examples
	Insertion into ConcurrentHashMap

	Chapter 35: Concurrent Programming (Threads)
	Introduction
	Remarks
	Examples
	Basic Multithreading
	Producer-Consumer
	Using ThreadLocal
	CountDownLatch
	Synchronization
	Atomic operations
	Creating basic deadlocked system
	Pausing Execution
	Visualizing read/write barriers while using synchronized / volatile
	Creating a java.lang.Thread instance
	Thread Interruption / Stopping Threads
	Multiple producer/consumer example with shared global queue
	Exclusive write / Concurrent read access
	Runnable Object
	Semaphore
	Add two `int` arrays using a Threadpool
	Get status of all threads started by your program excluding system threads
	Callable and Future
	Locks as Synchronisation aids

	Chapter 36: Console I/O
	Examples
	Reading user input from the console

	Using BufferedReader:
	Using Scanner:
	Using System.console:
	Implementing Basic Command-Line Behavior
	Aligning strings in console

	Format strings examples

	Chapter 37: Constructors
	Introduction
	Remarks
	Examples
	Default Constructor
	Constructor with Arguments
	Call parent constructor

	Chapter 38: Converting to and from Strings
	Examples
	Converting other datatypes to String
	Conversion to / from bytes
	Base64 Encoding / Decoding
	Parsing Strings to a Numerical Value
	Getting a `String` from an `InputStream`
	Converting String to other datatypes.

	Chapter 39: Creating Images Programmatically
	Remarks
	Examples
	Creating a simple image programmatically and displaying it
	Save an Image to disk
	Specifying image rendering quality
	Creating an image with BufferedImage class
	Editing and re-using image with BufferedImage
	Setting individual pixel's color in BufferedImage
	How to scale a BufferedImage

	Chapter 40: Currency and Money
	Examples
	Add custom currency

	Chapter 41: Date Class
	Syntax
	Parameters
	Remarks
	Examples
	Creating Date objects
	Comparing Date objects

	Calendar, Date, and LocalDate
	before, after, compareTo and equals methods
	isBefore, isAfter, compareTo and equals methods
	Date comparison before Java 8
	Since Java 8
	Converting Date to a certain String format
	Converting String into Date
	A basic date output
	Convert formatted string representation of date to Date object
	Creating a Specific Date
	Java 8 LocalDate and LocalDateTime objects
	Time Zones and java.util.Date
	Convert java.util.Date to java.sql.Date
	LocalTime

	Chapter 42: Dates and Time (java.time.*)
	Examples
	Simple Date Manipulations
	Date and time
	Operations on dates and times
	Instant
	Usage of various classes of Date Time API
	Date Time Formatting
	Calculate Difference between 2 LocalDates

	Chapter 43: Default Methods
	Introduction
	Syntax
	Remarks
	Default methods
	Static methods
	References :
	Examples
	Basic usage of default methods
	Accessing other interface methods within default method
	Accessing overridden default methods from implementing class
	Why use Default Methods?
	Class, Abstract class and Interface method precedence
	Default method multiple inheritance collision

	Chapter 44: Dequeue Interface
	Introduction
	Remarks
	Examples
	Adding Elements to Deque
	Removing Elements from Deque
	Retrieving Element without Removing
	Iterating through Deque

	Chapter 45: Disassembling and Decompiling
	Syntax
	Parameters
	Examples
	Viewing bytecode with javap

	Chapter 46: Documenting Java Code
	Introduction
	Syntax
	Remarks
	Examples
	Class Documentation
	Method Documentation
	Field Documentation
	Package Documentation
	Links
	Building Javadocs From the Command Line
	Inline Code Documentation
	Code snippets inside documentation

	Chapter 47: Dynamic Method Dispatch
	Introduction
	Remarks
	Examples
	Dynamic Method Dispatch - Example Code

	Chapter 48: Encapsulation
	Introduction
	Remarks
	Examples
	Encapsulation to maintain invariants
	Encapsulation to reduce coupling

	Chapter 49: Enum Map
	Introduction
	Examples
	Enum Map Book Example

	Chapter 50: Enum starting with number
	Introduction
	Examples
	Enum with name at begining

	Chapter 51: Enums
	Introduction
	Syntax
	Remarks
	Restrictions
	Tips & Tricks
	Examples
	Declaring and using a basic enum
	Enums with constructors
	Using methods and static blocks
	Implements Interface
	Enum Polymorphism Pattern
	Enums with Abstract Methods
	Documenting enums
	Getting the values of an enum
	Enum as a bounded type parameter
	Get enum constant by name
	Implement Singleton pattern with a single-element enum
	Enum with properties (fields)
	Convert enum to String

	Convert using name()
	Convert using toString()
	By default:
	Example of being overridden
	Enum constant specific body
	Zero instance enum
	Enums with static fields
	Compare and Contains for Enum values

	Chapter 52: EnumSet class
	Introduction
	Examples
	Enum Set Example

	Chapter 53: Exceptions and exception handling
	Introduction
	Syntax
	Examples
	Catching an exception with try-catch

	Try-catch with one catch block
	Try-catch with multiple catches
	Multi-exception catch blocks
	Throwing an exception

	Exception chaining
	Custom Exceptions
	The try-with-resources statement

	What is a resource?
	The basic try-with-resource statement
	The enhanced try-with-resource statements
	Managing multiple resources
	Equivalence of try-with-resource and classical try-catch-finally
	Creating and reading stacktraces

	Printing a stacktrace
	Understanding a stacktrace
	Exception chaining and nested stacktraces
	Capturing a stacktrace as a String
	Handling InterruptedException
	The Java Exception Hierarchy - Unchecked and Checked Exceptions

	Checked versus Unchecked Exceptions
	Checked exception examples
	Introduction
	Return statements in try catch block
	Advanced features of Exceptions

	Examining the callstack programmatically
	Optimizing exception construction
	Erasing or replacing the stacktrace
	Suppressed exceptions
	The try-finally and try-catch-finally statements

	Try-finally
	try-catch-finally
	The 'throws' clause in a method declaration

	What is the point of declaring unchecked exceptions as thrown?
	Throws and method overriding

	Chapter 54: Executor, ExecutorService and Thread pools
	Introduction
	Remarks
	Examples
	Fire and Forget - Runnable Tasks
	ThreadPoolExecutor
	Retrieving value from computation - Callable
	Scheduling tasks to run at a fixed time, after a delay or repeatedly

	Starting a task after a fixed delay
	Starting tasks at a fixed rate
	Starting tasks with a fixed delay
	Handle Rejected Execution
	submit() vs execute() exception handling differences
	Use cases for different types of concurrency constructs
	Wait for completion of all tasks in ExecutorService
	Use cases for different types of ExecutorService
	Using Thread Pools

	Chapter 55: Expressions
	Introduction
	Remarks
	Examples
	Operator Precedence
	Constant Expressions

	Uses for Constant Expressions
	Expression evaluation order

	Simple Example
	Example with an operator which has a side-effect
	Expression Basics

	The Type of an Expression
	The value of an Expression
	Expression Statements

	Chapter 56: File I/O
	Introduction
	Examples
	Reading all bytes to a byte[]
	Reading an image from a file
	Writing a byte[] to a file
	Stream vs Writer/Reader API
	Reading a whole file at once
	Reading a file with a Scanner
	Iterating over a directory and filter by file extension
	Migrating from java.io.File to Java 7 NIO (java.nio.file.Path)

	Point to a path
	Paths relative to another path
	Converting File from/to Path for use with libraries
	Check if the file exists and delete it if it does
	Write to a file via an OutputStream
	Iterating on each file within a folder
	Recursive folder iteration
	File Read/Write Using FileInputStream/FileOutputStream
	Reading from a binary file
	Locking
	Copying a file using InputStream and OutputStream
	Reading a file using Channel and Buffer
	Copying a file using Channel
	Reading a file using BufferedInputStream
	Writing a file using Channel and Buffer
	Writing a file using PrintStream
	Iterate over a directory printing subdirectories in it
	Adding Directories
	Blocking or redirecting standard output / error
	Accessing the contents of a ZIP file
	Reading from an existing file
	Creating a new file

	Chapter 57: FileUpload to AWS
	Introduction
	Examples
	Upload file to s3 bucket

	Chapter 58: Fluent Interface
	Remarks
	Examples
	Truth - Fluent Testing Framework
	Fluent programming style

	Chapter 59: FTP (File Transfer Protocol)
	Syntax
	Parameters
	Examples
	Connecting and Logging Into a FTP Server

	Chapter 60: Functional Interfaces
	Introduction
	Examples
	List of standard Java Runtime Library functional interfaces by signature

	Chapter 61: Generating Java Code
	Examples
	Generate POJO From JSON

	Chapter 62: Generics
	Introduction
	Syntax
	Remarks
	Examples
	Creating a Generic Class

	Extending a generic class
	Multiple type parameters
	Declaring a Generic Method
	The Diamond
	Requiring multiple upper bounds ("extends A & B")
	Creating a Bounded Generic Class
	Deciding between `T`, `? super T`, and `? extends T`
	Benefits of Generic class and interface

	Stronger type checks at compile time
	Elimination of casts
	Enabling programmers to implement generic algorithms
	Binding generic parameter to more than 1 type
	Note:
	Instantiating a generic type

	Workarounds
	Referring to the declared generic type within its own declaration
	Use of instanceof with Generics
	Different ways for implementing a Generic Interface (or extending a Generic Class)
	Using Generics to auto-cast
	Obtain class that satisfies generic parameter at runtime

	Chapter 63: Getters and Setters
	Introduction
	Examples
	Adding Getters and Setters
	Using a setter or getter to implement a constraint
	Why Use Getters and Setters?

	Chapter 64: Hashtable
	Introduction
	Examples
	Hashtable

	Chapter 65: HttpURLConnection
	Remarks
	Examples
	Get response body from a URL as a String
	POST data

	How it works
	Delete resource

	How it works
	Check if resource exists

	Explanation:
	Example:
	Chapter 66: Immutable Class
	Introduction
	Remarks
	Examples
	Rules to define immutable classes
	Example without mutable refs
	Example with mutable refs
	What is the advantage of immutability?

	Chapter 67: Immutable Objects
	Remarks
	Examples
	Creating an immutable version of a type using defensive copying.
	The recipe for an immutable class
	Typical design flaws which prevent a class from being immutable

	Chapter 68: Inheritance
	Introduction
	Syntax
	Remarks
	Examples
	Abstract Classes
	Static Inheritance
	Using 'final' to restrict inheritance and overriding

	Final classes
	Use-cases for final classes
	Final methods
	The Liskov Substitution Principle
	Inheritance
	Inheritance and Static Methods
	Variable shadowing
	Narrowing and Widening of object references
	Programming to an interface
	Abstract class and Interface usage: "Is-a" relation vs "Has-a" capability
	Overriding in Inheritance

	Chapter 69: InputStreams and OutputStreams
	Syntax
	Remarks
	Examples
	Reading InputStream into a String
	Writing bytes to an OutputStream
	Closing Streams
	Copying Input Stream to Output Stream
	Wrapping Input/Output Streams

	Useful combinations
	List of Input/Output Stream wrappers
	DataInputStream Example

	Chapter 70: Installing Java (Standard Edition)
	Introduction
	Examples
	Setting %PATH% and %JAVA_HOME% after installing on Windows

	Assumptions:
	Setup steps
	Check your work
	Selecting an appropriate Java SE release
	Java release and version naming
	What do I need for Java Development
	Installing a Java JDK on Linux

	Using the Package Manager
	Installing from an Oracle Java RPM file.
	Installing a Java JDK or JRE on Windows
	Installing a Java JDK on macOS
	Configuring and switching Java versions on Linux using alternatives

	Using Alternatives
	Arch based installs
	Listing installed environments
	Switching current environment
	Post-installation checking and configuration on Linux
	Installing oracle java on Linux with latest tar file
	Expected output:

	Chapter 71: Interfaces
	Introduction
	Syntax
	Examples
	Declaring and Implementing an Interface
	Implementing multiple interfaces
	Extending an interface
	Using Interfaces with Generics
	Usefulness of interfaces
	Implementing interfaces in an abstract class
	Default methods

	Observer pattern implementation
	Diamond problem
	Use default methods to resolve compatibility issues
	Modifiers in Interfaces
	Variables
	Methods
	Strengthen bounded type parameters

	Chapter 72: Iterator and Iterable
	Introduction
	Remarks
	Examples
	Using Iterable in for loop
	Using the raw iterator
	Creating your own Iterable.
	Removing elements using an iterator

	Chapter 73: Java Agents
	Examples
	Modifying classes with agents
	Adding an agent at runtime
	Setting up a basic agent

	Chapter 74: Java Compiler - 'javac'
	Remarks
	Examples
	The 'javac' command - getting started

	Simple example
	Example with packages
	Compiling multiple files at once with 'javac'.
	Commonly used 'javac' options
	References
	Compiling for a different version of Java

	Compiling old Java with a newer compiler
	Compiling for an older execution platform

	Chapter 75: Java deployment
	Introduction
	Remarks
	Examples
	Making an executable JAR from the command line
	Creating JAR, WAR and EAR files

	Creating JAR and WAR files using Maven
	Creating JAR, WAR and EAR files using Ant
	Creating JAR, WAR and EAR files using an IDE
	Creating JAR, WAR and EAR files using the jar command.
	Introduction to Java Web Start

	Prerequisites
	An example JNLP file
	Setting up the web server
	Enabling launch via a web page
	Launching Web Start applications from the command line
	Creating an UberJAR for an application and its dependencies

	Creating an UberJAR using the "jar" command
	Creating an UberJAR using Maven
	The advantages and drawbacks of UberJARs
	Chapter 76: Java Editions, Versions, Releases and Distributions
	Examples
	Differences between Java SE JRE or Java SE JDK distributions

	Java Runtime Environment
	Java Development Kit
	What is the difference between Oracle Hotspot and OpenJDK
	Differences between Java EE, Java SE, Java ME and JavaFX

	The Java Programming Language Platforms
	Java SE
	Java EE
	Java ME
	Java FX
	Java SE Versions
	Java SE Version History
	Java SE Version Highlights

	Chapter 77: Java Floating Point Operations
	Introduction
	Examples
	Comparing floating point values
	OverFlow and UnderFlow
	Formatting the floating point values
	Strict Adherence to the IEEE Specification

	Chapter 78: Java Memory Management
	Remarks
	Examples
	Finalization

	Finalizers only run once
	Manually triggering GC
	Garbage collection

	The C++ approach - new and delete
	The Java approach - garbage collection
	What happens when an object becomes unreachable
	Examples of reachable and unreachable objects
	Setting the Heap, PermGen and Stack sizes
	Memory leaks in Java

	Reachable objects can leak
	Caches can be memory leaks

	Chapter 79: Java Memory Model
	Remarks
	Examples
	Motivation for the Memory Model

	Reordering of assignments
	Effects of memory caches
	Proper synchronization
	The Memory Model
	Happens-before relationships

	Actions
	Program Order and Synchronization Order
	Happens-before Order
	Happens-before reasoning applied to some examples

	Single-threaded code
	Behavior of 'volatile' in an example with 2 threads
	Volatile with three threads
	How to avoid needing to understand the Memory Model

	Chapter 80: Java Native Access
	Examples
	Introduction to JNA

	What is JNA?
	How can I use it?
	Where to go now?
	Chapter 81: Java Native Interface
	Parameters
	Remarks
	Examples
	Calling C++ methods from Java

	Java code
	C++ code
	Output
	Calling Java methods from C++ (callback)

	Java code
	C++ code
	Output
	Getting the descriptor
	Loading native libraries

	Target file lookup

	Chapter 82: Java Performance Tuning
	Examples
	General approach
	Reducing amount of Strings
	An evidence-based approach to Java performance tuning

	Chapter 83: Java Pitfalls - Exception usage
	Introduction
	Examples
	Pitfall - Ignoring or squashing exceptions
	Pitfall - Catching Throwable, Exception, Error or RuntimeException
	Pitfall - Throwing Throwable, Exception, Error or RuntimeException

	Declaring Throwable or Exception in a method's "throws" is problematic.
	Pitfall - Catching InterruptedException
	Pitfall - Using exceptions for normal flowcontrol
	Pitfall - Excessive or inappropriate stacktraces
	Pitfall - Directly subclassing `Throwable`

	Chapter 84: Java Pitfalls - Language syntax
	Introduction
	Remarks
	Examples
	Pitfall - Ignoring method visibility
	Pitfall - Missing a ‘break’ in a 'switch' case
	Pitfall - Misplaced semicolons and missing braces
	Pitfall - Leaving out braces: the "dangling if" and "dangling else" problems
	Pitfall - Overloading instead of overriding
	Pitfall - Octal literals
	Pitfall - Declaring classes with the same names as standard classes
	Pitfall - Using '==' to test a boolean
	Pitfall - Wildcard imports can make your code fragile
	Pitfall: Using 'assert' for argument or user input validation
	Pitfall of Auto-Unboxing Null Objects into Primitives

	Chapter 85: Java Pitfalls - Nulls and NullPointerException
	Remarks
	Examples
	Pitfall - Unnecessary use of Primitive Wrappers can lead to NullPointerExceptions
	Pitfall - Using null to represent an empty array or collection
	Pitfall - "Making good" unexpected nulls

	What does it mean for "a" or "b" to be null?
	Did the null come from an uninitialized variable?
	Does the null represent a "don't know" or "missing value"?
	If this is a bug (or a design error) should we "make good"?
	Is this efficient / good for code quality?
	In summary
	Pitfall - Returning null instead of throwing an exception
	Pitfall - Not checking if an I/O stream isn't even initialized when closing it
	Pitfall - Using "Yoda notation" to avoid NullPointerException

	Chapter 86: Java Pitfalls - Performance Issues
	Introduction
	Remarks
	Examples
	Pitfall - The overheads of creating log messages

	Solution
	Pitfall - String concatenation in a loop does not scale
	Pitfall - Using 'new' to create primitive wrapper instances is inefficient
	Pitfall - Calling 'new String(String)' is inefficient
	Pitfall - Calling System.gc() is inefficient
	Pitfall - Over-use of primitive wrapper types is inefficient
	Pitfall - Iterating a Map's keys can be inefficient
	Pitfall - Using size() to test if a collection is empty is inefficient.
	Pitfall - Efficiency concerns with regular expressions

	Pattern and Matcher instances should be reused
	Don't use match() when you should use find()
	Use more efficient alternatives to regular expressions
	Catastrophic Backtracking
	Pitfall - Interning strings so that you can use == is a bad idea

	Fragility
	Costs of using 'intern()'
	The impact on garbage collection
	The string pool hashtable size
	Interning as a potential denial of service vector
	Pitfall - Small reads / writes on unbuffered streams are inefficient

	What about character-based streams?
	Why do buffered streams make this much difference?
	Are buffered streams always a win?
	Is this the fastest way to copy a file in Java?

	Chapter 87: Java Pitfalls - Threads and Concurrency
	Examples
	Pitfall: incorrect use of wait() / notify()

	The "Lost Notification" problem
	The "Illegal Monitor State" bug
	Wait / notify is too low-level
	Pitfall - Extending 'java.lang.Thread'
	Pitfall - Too many threads makes an application slower.
	Pitfall - Thread creation is relatively expensive
	Pitfall: Shared variables require proper synchronization

	Will it work as intended?
	How do we fix the problem?
	But isn't assignment atomic?
	Why did they do this?
	Why can't I reproduce this?

	Chapter 88: Java plugin system implementations
	Remarks
	Examples
	Using URLClassLoader

	Chapter 89: Java Print Service
	Introduction
	Examples
	Discovering the available print services
	Discovering the default print service
	Creating a print job from a print service
	Building the Doc that will be printed
	Defining print request attributes
	Listening print job request status change

	The PrintJobEvent pje argument
	Another way to achieve the same goal
	Chapter 90: Java SE 7 Features
	Introduction
	Remarks
	Examples
	New Java SE 7 programming language features
	Binary Literals
	The try-with-resources statement
	Underscores in Numeric Literals
	Type Inference for Generic Instance Creation
	Strings in switch Statements

	Chapter 91: Java SE 8 Features
	Introduction
	Remarks
	Examples
	New Java SE 8 programming language features

	Chapter 92: Java Sockets
	Introduction
	Remarks
	Examples
	A simple TCP echo back server

	Chapter 93: Java Virtual Machine (JVM)
	Examples
	These are the basics.

	Chapter 94: JavaBean
	Introduction
	Syntax
	Remarks
	Examples
	Basic Java Bean

	Chapter 95: JAXB
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Writing an XML file (marshalling an object)
	Reading an XML file (unmarshalling)
	Using XmlAdapter to generate desired xml format
	Automatic field/property XML mapping configuration (@XmlAccessorType)
	Manual field/property XML mapping configuration
	Specifying a XmlAdapter instance to (re)use existing data

	Example
	User class
	Adapter
	Example XMLs
	Using the adapter
	Binding an XML namespace to a serializable Java class.
	Using XmlAdapter to trim string.

	Chapter 96: JAX-WS
	Examples
	Basic Authentication

	Chapter 97: JMX
	Introduction
	Examples
	Simple example with Platform MBean Server

	Chapter 98: JNDI
	Examples
	RMI through JNDI

	Chapter 99: JShell
	Introduction
	Syntax
	Remarks
	Default Imports
	Examples
	Entering and Exiting JShell

	Starting JShell
	Exiting JShell
	Expressions
	Variables
	Methods and Classes
	Editting Snippets

	Chapter 100: JSON in Java
	Introduction
	Remarks
	Examples
	Encoding data as JSON
	Decoding JSON data
	optXXX vs getXXX methods
	Object To JSON (Gson Library)
	JSON To Object (Gson Library)
	Extract single element from JSON
	Using Jackson Object Mapper

	Details
	ObjectMapper instance
	Deserialization:
	Method for serialization:
	JSON Iteration
	JSON Builder - chaining methods
	JSONObject.NULL
	JsonArray to Java List (Gson Library)
	Deserialize JSON collection to collection of Objects using Jackson

	Deserializing JSON array
	TypeFactory approach
	TypeReference approach

	Deserializing JSON map
	TypeFactory approach
	TypeReference approach

	Details
	Note
	Chapter 101: Just in Time (JIT) compiler
	Remarks
	History
	Examples
	Overview

	Chapter 102: JVM Flags
	Remarks
	Examples
	-XXaggressive
	-XXallocClearChunks
	-XXallocClearChunkSize
	-XXcallProfiling
	-XXdisableFatSpin
	-XXdisableGCHeuristics
	-XXdumpSize
	-XXexitOnOutOfMemory

	Chapter 103: JVM Tool Interface
	Remarks
	Examples
	Iterate over objects reachable from object (Heap 1.0)
	Get JVMTI environment
	Example of initialization inside of Agent_OnLoad method

	Chapter 104: Lambda Expressions
	Introduction
	Syntax
	Examples
	Using Lambda Expressions to Sort a Collection

	Sorting lists
	Sorting maps
	Introduction to Java lambdas

	Functional Interfaces
	Lambda Expressions
	Implicit Returns
	Accessing Local Variables (value closures)
	Accepting Lambdas
	The Type of a Lambda Expression
	Method References
	Instance method reference (to an arbitrary instance)
	Instance method reference (to a specific instance)
	Static method reference
	Reference to a constructor
	Cheat-Sheet
	Implementing multiple interfaces
	Lambdas and Execute-around Pattern
	Using lambda expression with your own functional interface
	`return` only returns from the lambda, not the outer method
	Java Closures with lambda expressions.
	Lambda - Listener Example
	Traditional style to Lambda style
	Lambdas and memory utilization
	Using lambda expressions & predicates to get a certain value(s) from a list

	Chapter 105: LinkedHashMap
	Introduction
	Examples
	Java LinkedHashMap class

	Chapter 106: List vs SET
	Introduction
	Examples
	List vs Set

	Chapter 107: Lists
	Introduction
	Syntax
	Remarks
	Examples
	Sorting a generic list
	Creating a List
	Positional Access Operations
	Iterating over elements in a list
	Removing elements from list B that are present in the list A
	Finding common elements between 2 lists
	Convert a list of integers to a list of strings
	Creating, Adding and Removing element from an ArrayList
	In-place replacement of a List element
	Making a list unmodifiable
	Moving objects around in the list
	Classes implementing List - Pros and Cons

	Classes implementing List
	Pros and Cons of each implementation in term of time complexity
	ArrayList
	AttributeList
	CopyOnWriteArrayList
	LinkedList
	RoleList
	RoleUnresolvedList
	Stack
	Vector

	Chapter 108: Literals
	Introduction
	Examples
	Hexadecimal, Octal and Binary literals
	Using underscore to improve readability
	Escape sequences in literals

	Unicode escapes
	Escaping in regexes
	Decimal Integer literals

	Ordinary integer literals
	Long integer literals
	Boolean literals
	String literals

	Long strings
	Interning of string literals
	The Null literal
	Floating-point literals

	Simple decimal forms
	Scaled decimal forms
	Hexadecimal forms
	Underscores
	Special cases
	Character literals

	Chapter 109: Local Inner Class
	Introduction
	Examples
	Local Inner Class

	Chapter 110: Localization and Internationalization
	Remarks
	General Resources
	Java Resources
	Examples
	Automatically formatted Dates using "locale"

	Let Java do the work for you
	String Comparison
	Locale

	Language
	Creating a Locale
	Java ResourceBundle
	Setting Locale
	Chapter 111: LocalTime
	Syntax
	Parameters
	Remarks
	Examples
	Time Modification
	Time Zones and their time difference
	Amount of time between two LocalTime
	Intro

	Chapter 112: log4j / log4j2
	Introduction
	Syntax
	Remarks

	End of Life for Log4j 1 reached
	Examples
	How to get Log4j
	How to use Log4j in Java code
	Setting up property file
	Basic log4j2.xml configuration file
	Migrating from log4j 1.x to 2.x
	Properties-File to log to DB
	Filter Logoutput by level (log4j 1.x)

	Chapter 113: Logging (java.util.logging)
	Examples
	Using the default logger
	Logging levels
	Logging complex messages (efficiently)

	Chapter 114: Maps
	Introduction
	Remarks
	Examples
	Add an element
	Add multiple items
	Using Default Methods of Map from Java 8
	Clear the map
	Iterating through the contents of a Map
	Merging, combine and composing Maps

	Composing Map<X,Y> and Map<Y,Z> to get Map<X,Z>
	Check if key exists

	Maps can contain null values
	Iterating Map Entries Efficiently
	Use custom object as key
	Usage of HashMap
	Creating and Initializing Maps

	Introduction
	Chapter 115: Modules
	Syntax
	Remarks
	Examples
	Defining a basic module

	Chapter 116: Multi-Release JAR Files
	Introduction
	Examples
	Example of a multi-release Jar file's contents
	Creating a multi-release Jar using the jar tool
	URL of a loaded class inside a multi-release Jar

	Chapter 117: Nashorn JavaScript engine
	Introduction
	Syntax
	Remarks
	Examples
	Set global variables
	Hello Nashorn
	Execute JavaScript file
	Intercept script output
	Evaluate Arithmetic Strings
	Usage of Java objects in JavaScript in Nashorn
	Implementing an interface from script
	Set and get global variables

	Chapter 118: Nested and Inner Classes
	Introduction
	Syntax
	Remarks
	Terminology and classification
	Semantic differences
	Examples
	A Simple Stack Using a Nested Class
	Static vs Non Static Nested Classes
	Access Modifiers for Inner Classes
	Anonymous Inner Classes

	Constructors
	Method Local Inner Classes
	Accessing the outer class from a non-static inner class
	Create instance of non-static inner class from outside

	Chapter 119: Networking
	Syntax
	Examples
	Basic Client and Server Communication using a Socket

	Server: Start, and wait for incoming connections
	Server: Handling clients
	Client: Connect to the server and send a message
	Closing Sockets and Handling Exceptions
	Basic Server and Client - complete examples
	Loading TrustStore and KeyStore from InputStream
	Socket example - reading a web page using a simple socket
	Basic Client/Server Communication using UDP (Datagram)
	Multicasting
	Temporarily disable SSL verification (for testing purposes)
	Downloading a file using Channel

	Notes

	Chapter 120: New File I/O
	Syntax
	Examples
	Creating paths
	Retrieving information about a path
	Manipulating paths

	Joining Two Paths
	Normalizing a path
	Retrieving information using the filesystem

	Checking existence
	Checking whether a path points to a file or a directory
	Getting properties
	Getting MIME type
	Reading files
	Writing files

	Chapter 121: NIO - Networking
	Remarks
	Examples
	Using Selector to wait for events (example with OP_CONNECT)

	Chapter 122: Non-Access Modifiers
	Introduction
	Examples
	final
	volatile
	static
	abstract
	synchronized
	transient
	strictfp

	Chapter 123: NumberFormat
	Examples
	NumberFormat

	Chapter 124: Object Class Methods and Constructor
	Introduction
	Syntax
	Examples
	toString() method
	equals() method

	Class Comparison
	hashCode() method

	Using Arrays.hashCode() as a short cut
	Internal caching of hash codes
	wait() and notify() methods
	getClass() method
	clone() method
	finalize() method
	Object constructor

	Chapter 125: Object Cloning
	Remarks
	Examples
	Cloning using a copy constructor
	Cloning by implementing Clonable interface
	Cloning performing a shallow copy
	Cloning performing a deep copy
	Cloning using a copy factory

	Chapter 126: Object References
	Remarks
	Examples
	Object References as method parameters

	Chapter 127: Operators
	Introduction
	Remarks
	Examples
	The String Concatenation Operator (+)

	Optimization and efficiency
	The Arithmetic Operators (+, -, *, /, %)

	Operand and result types, and numeric promotion
	The meaning of division
	The meaning of remainder
	Integer Overflow
	Floating point INF and NAN values
	The Equality Operators (==, !=)

	The Numeric == and != operators
	The Boolean == and != operators
	The Reference == and != operators
	About the NaN edge-cases
	The Increment/Decrement Operators (++/--)
	The Conditional Operator (? :)

	Syntax
	Common Usage
	The Bitwise and Logical Operators (~, &, |, ^)
	Operand types and result types.
	The Instanceof Operator
	The Assignment Operators (=, +=, -=, *=, /=, %=, <<=, >>= , >>>=, &=, |= and ^=)
	The conditional-and and conditional-or Operators (&& and ||)

	Example - using && as a guard in an expression
	Example - using && to avoid a costly calculation
	The Shift Operators (<<, >> and >>>)
	The Lambda operator (->)
	The Relational Operators (<, <=, >, >=)

	Chapter 128: Optional
	Introduction
	Syntax
	Examples
	Return default value if Optional is empty
	Map
	Throw an exception, if there is no value
	Filter
	Using Optional containers for primitive number types
	Run code only if there is a value present
	Lazily provide a default value using a Supplier
	FlatMap

	Chapter 129: Oracle Official Code Standard
	Introduction
	Remarks
	Examples
	Naming Conventions

	Package names
	Class, Interface and Enum Names
	Method Names
	Variables
	Type Variables
	Constants
	Other guidelines on naming
	Java Source Files
	Special Characters
	Package declaration
	Import statements

	Wildcard imports
	Class Structure
	Order of class members
	Grouping of class members
	Modifiers
	Indentation
	Wrapping statements
	Wrapping Method Declarations
	Wrapping Expressions
	Whitespace

	Vertical Whitespace
	Horizontal Whitespace
	Variable Declarations
	Annotations
	Lambda Expressions
	Redundant Parentheses
	Literals
	Braces

	Short forms
	Chapter 130: Packages
	Introduction
	Remarks
	Examples
	Using Packages to create classes with the same name
	Using Package Protected Scope

	Chapter 131: Parallel programming with Fork/Join framework
	Examples
	Fork/Join Tasks in Java

	Chapter 132: Polymorphism
	Introduction
	Remarks
	Examples
	Method Overloading
	Method Overriding
	Adding behaviour by adding classes without touching existing code
	Virtual functions
	Polymorphism and different types of overriding

	Chapter 133: Preferences
	Examples
	Adding event listeners
	PreferenceChangeEvent
	NodeChangeEvent
	Getting sub-nodes of Preferences
	Coordinating preferences access across multiple application instances
	Exporting preferences
	Importing preferences
	Removing event listeners
	Getting preferences values
	Setting preferences values
	Using preferences

	Chapter 134: Primitive Data Types
	Introduction
	Syntax
	Remarks
	Examples
	The int primitive
	The short primitive
	The long primitive
	The boolean primitive
	The byte primitive
	The float primitive
	The double primitive
	The char primitive
	Negative value representation
	Memory consumption of primitives vs. boxed primitives

	Boxed value caches
	Converting Primitives
	Primitive Types Cheatsheet

	Chapter 135: Process
	Remarks
	Examples
	Simple example (Java version < 1.5)
	Using the ProcessBuilder class
	Blocking vs. Non-Blocking Calls
	ch.vorburger.exec
	Pitfall: Runtime.exec, Process and ProcessBuilder don't understand shell syntax

	Spaces in pathnames
	Redirection, pipelines and other shell syntax
	Shell builtin commands don't work

	Chapter 136: Properties Class
	Introduction
	Syntax
	Remarks
	Examples
	Loading properties
	Property files caveat: trailing whitespace
	Saving Properties as XML

	Chapter 137: Queues and Deques
	Examples
	The usage of the PriorityQueue
	LinkedList as a FIFO Queue
	Stacks

	What is a Stack?
	Stack API
	Example
	BlockingQueue
	Queue Interface
	Deque

	Adding and Accessing Elements
	Removing Elements
	Chapter 138: Random Number Generation
	Remarks
	Examples
	Pseudo Random Numbers
	Pseudo Random Numbers in Specific Range
	Generating cryptographically secure pseudorandom numbers
	Select random numbers without duplicates
	Generating Random Numbers with a Specified Seed
	Generating Random number using apache-common lang3

	Chapter 139: Readers and Writers
	Introduction
	Examples
	BufferedReader

	Introduction
	Basics of using a BufferedReader
	The BufferedReader buffer size
	The BufferedReader.readLine() method
	Example: reading all lines of a File into a List
	StringWriter Example

	Chapter 140: Recursion
	Introduction
	Remarks
	Designing a Recursive Method

	Output
	Java and Tail-call elimination
	Examples
	The basic idea of recursion
	Computing the Nth Fibonacci Number
	Computing the sum of integers from 1 to N
	Computing the Nth power of a number
	Reverse a string using Recursion
	Traversing a Tree data structure with recursion
	Types of Recursion
	StackOverflowError & recursion to loop
	Example

	Workaround
	Example
	Deep recursion is problematic in Java
	Why tail-call elimination is not implemented in Java (yet)

	Chapter 141: Reference Data Types
	Examples
	Instantiating a reference type
	Dereferencing

	Chapter 142: Reference Types
	Examples
	Different Reference Types

	Chapter 143: Reflection API
	Introduction
	Remarks

	Performance
	Examples
	Introduction
	Invoking a method
	Getting and Setting fields
	Call constructor

	Getting the Constructor Object
	New Instance using Constructor Object
	Getting the Constants of an Enumeration
	Get Class given its (fully qualified) name
	Call overloaded constructors using reflection
	Misuse of Reflection API to change private and final variables
	Call constructor of nested class
	Dynamic Proxies
	Evil Java hacks with Reflection

	Chapter 144: Regular Expressions
	Introduction
	Syntax
	Remarks

	Imports
	Pitfalls
	Important Symbols Explained
	Further reading
	Examples
	Using capture groups
	Using regex with custom behaviour by compiling the Pattern with flags
	Escape Characters
	Matching with a regex literal.
	Not matching a given string
	Matching a backslash

	Chapter 145: Remote Method Invocation (RMI)
	Remarks
	Examples
	Client-Server: invoking methods in one JVM from another
	Callback: invoking methods on a "client"
	Overview
	The shared remote interfaces
	The implementations
	Simple RMI example with Client and Server implementation

	Server Package
	Client package
	Test your application

	Chapter 146: Resources (on classpath)
	Introduction
	Remarks
	Examples
	Loading an image from a resource
	Loading default configuration
	Loading same-name resource from multiple JARs
	Finding and reading resources using a classloader

	Absolute and relative resource paths
	Obtaining a Class or Classloader
	The get methods

	Chapter 147: RSA Encryption
	Examples
	An example using a hybrid cryptosystem consisting of OAEP and GCM

	Chapter 148: Runtime Commands
	Examples
	Adding shutdown hooks

	Chapter 149: Scanner
	Syntax
	Parameters
	Remarks
	Examples
	Reading system input using Scanner
	Reading file input using Scanner
	Read the entire input as a String using Scanner
	Using custom delimiters
	General Pattern that does most commonly asked about tasks
	Read an int from the command line
	Carefully Closing a Scanner

	Chapter 150: Secure objects
	Syntax
	Examples
	SealedObject (javax.crypto.SealedObject)
	SignedObject (java.security.SignedObject)

	Chapter 151: Security & Cryptography
	Examples
	Compute Cryptographic Hashes
	Generate Cryptographically Random Data
	Generate Public / Private Key Pairs
	Compute and Verify Digital Signatures
	Encrypt and Decrypt Data with Public / Private Keys

	Chapter 152: Security & Cryptography
	Introduction
	Remarks
	Examples
	The JCE
	Keys and Key Management
	Common Java vulnerabilities
	Networking Concerns
	Randomness and You
	Hashing and Validation

	Chapter 153: SecurityManager
	Examples
	Enabling the SecurityManager
	Sandboxing classes loaded by a ClassLoader
	Implementing policy deny rules
	The DeniedPermission class
	The DenyingPolicy class
	Demo

	Chapter 154: Serialization
	Introduction
	Examples
	Basic Serialization in Java
	Serialization with Gson
	Serialization with Jackson 2
	Custom Serialization
	Versioning and serialVersionUID

	Compatible Changes
	Incompatible Changes
	Custom JSON Deserialization with Jackson

	Chapter 155: ServiceLoader
	Remarks
	Examples
	Logger Service

	Service
	Implementations of the service

	META-INF/services/servicetest.Logger
	Usage
	Simple ServiceLoader Example

	Chapter 156: Sets
	Examples
	Declaring a HashSet with values
	Types and Usage of Sets

	HashSet - Random Sorting
	LinkedHashSet - Insertion Order
	TreeSet - By compareTo() or Comparator
	Initialization
	Basics of Set
	Create a list from an existing Set
	Eliminating duplicates using Set

	Chapter 157: Singletons
	Introduction
	Examples
	Enum Singleton
	Thread safe Singleton with double checked locking
	Singleton without use of Enum (eager initialization)
	Thread-safe lazy initialization using holder class | Bill Pugh Singleton implementation
	Extending singleton (singleton inheritance)

	Chapter 158: Sockets
	Introduction
	Examples
	Read from socket

	Chapter 159: SortedMap
	Introduction
	Examples
	Introduction to sorted Map.

	Chapter 160: Splitting a string into fixed length parts
	Remarks
	Examples
	Break a string up into substrings all of a known length
	Break a string up into substrings all of variable length

	Chapter 161: Stack-Walking API
	Introduction
	Examples
	Print all stack frames of the current thread
	Print current caller class
	Showing reflection and other hidden frames

	Chapter 162: Streams
	Introduction
	Syntax
	Examples
	Using Streams

	Closing Streams
	Processing Order
	Differences from Containers (or Collections)
	Collect Elements of a Stream into a Collection

	Collect with toList() and toSet()
	Explicit control over the implementation of List or Set
	Cheat-Sheet
	Infinite Streams
	Consuming Streams

	h21
	Creating a Frequency Map
	Parallel Stream

	Performance impact
	Converting a Stream of Optional to a Stream of Values
	Creating a Stream
	Finding Statistics about Numerical Streams
	Get a Slice of a Stream
	Concatenate Streams
	IntStream to String
	Sort Using Stream
	Streams of Primitives
	Collect Results of a Stream into an Array
	Finding the First Element that Matches a Predicate
	Using IntStream to iterate over indexes
	Flatten Streams with flatMap()
	Create a Map based on a Stream
	Generating random Strings using Streams
	Using Streams to Implement Mathematical Functions
	Using Streams and Method References to Write Self-Documenting Processes
	Using Streams of Map.Entry to Preserve Initial Values after Mapping
	Stream operations categories

	Intermediate Operations:
	Terminal Operations
	Stateless Operations
	Stateful operations
	Converting an iterator to a stream
	Reduction with Streams
	Joining a stream to a single String

	Chapter 163: String Tokenizer
	Introduction
	Examples
	StringTokenizer Split by space
	StringTokenizer Split by comma ','

	Chapter 164: StringBuffer
	Introduction
	Examples
	String Buffer class

	Chapter 165: StringBuilder
	Introduction
	Syntax
	Remarks
	Examples
	Repeat a String n times
	Comparing StringBuffer, StringBuilder, Formatter and StringJoiner

	Chapter 166: Strings
	Introduction
	Remarks
	Examples
	Comparing Strings

	Do not use the == operator to compare Strings
	Comparing Strings in a switch statement
	Comparing Strings with constant values
	String orderings
	Comparing with interned Strings
	Changing the case of characters within a String
	Finding a String Within Another String
	Getting the length of a String
	Substrings
	Getting the nth character in a String
	Platform independent new line separator
	Adding toString() method for custom objects
	Splitting Strings
	Joining Strings with a delimiter
	Reversing Strings
	Counting occurrences of a substring or character in a string
	String concatenation and StringBuilders
	Replacing parts of Strings
	Exact match
	Replace single character with another single character:
	Replace sequence of characters with another sequence of characters:

	Regex
	Replace all matches:
	Replace first match only:
	Remove Whitespace from the Beginning and End of a String
	String pool and heap storage
	Case insensitive switch

	Chapter 167: sun.misc.Unsafe
	Remarks
	Examples
	Instantiating sun.misc.Unsafe via reflection
	Instantiating sun.misc.Unsafe via bootclasspath
	Getting Instance of Unsafe
	Uses of Unsafe

	Chapter 168: super keyword
	Examples
	Super keyword use with examples

	Constructor Level
	Method Level
	Variable Level

	Chapter 169: The Classpath
	Introduction
	Remarks
	Examples
	Different ways to specify the classpath
	Adding all JARs in a directory to the classpath
	Classpath path syntax
	Dynamic Classpath
	Load a resource from the classpath
	Mapping classnames to pathnames
	What the classpath means: how searches work
	The bootstrap classpath

	Chapter 170: The Java Command - 'java' and 'javaw'
	Syntax
	Remarks
	Examples
	Running an executable JAR file
	Running a Java applications via a "main" class

	Running the HelloWorld class
	Specifying a classpath
	Entry point classes

	JavaFX entry-points
	Troubleshooting the 'java' command

	"Command not found"
	"Could not find or load main class"
	"Main method not found in class <name>"
	Other Resources
	Running a Java application with library dependencies
	Spaces and other special characters in arguments

	Solutions using a POSIX shell
	Solution for Windows
	Java Options

	Setting system properties with -D
	Memory, Stack and Garbage Collector options
	Enabling and disabling assertions
	Selecting the VM type

	Chapter 171: The java.util.Objects Class
	Examples
	Basic use for object null check

	For null check in method
	For not null check in method
	Objects.nonNull() method reference use in stream api

	Chapter 172: ThreadLocal
	Remarks
	Examples
	ThreadLocal Java 8 functional initialization
	Basic ThreadLocal usage
	Multiple threads with one shared object

	Chapter 173: TreeMap and TreeSet
	Introduction
	Examples
	TreeMap of a simple Java type
	TreeSet of a simple Java Type
	TreeMap/TreeSet of a custom Java type
	TreeMap and TreeSet Thread Safety

	Chapter 174: Type Conversion
	Syntax
	Examples
	Non-numeric primitive casting
	Numeric primitive casting
	Object casting
	Basic Numeric Promotion
	Testing if an object can be cast using instanceof

	Chapter 175: Unit Testing
	Introduction
	Remarks

	Unit Test Frameworks
	Unit Testing Tools
	Examples
	What is Unit Testing?

	Tests need to be automated
	Tests need to be fine-grained
	Enter unit-testing
	Chapter 176: Using Other Scripting Languages in Java
	Introduction
	Remarks
	Examples
	Evaluating A javascript file in -scripting mode of nashorn

	Chapter 177: Using the static keyword
	Syntax
	Examples
	Using static to declare constants
	Using static with this
	Reference to non-static member from static context

	Chapter 178: Using ThreadPoolExecutor in MultiThreaded applications.
	Introduction
	Examples
	Performing Asynchronous Tasks Where No Return Value Is Needed Using a Runnable Class Instance
	Performing Asynchronous Tasks Where a Return Value Is Needed Using a Callable Class Instance
	Defining Asynchronous Tasks Inline using Lambdas

	Chapter 179: Varargs (Variable Argument)
	Remarks
	Examples
	Specifying a varargs parameter
	Working with Varargs parameters

	Chapter 180: Visibility (controlling access to members of a class)
	Syntax
	Remarks
	Examples
	Interface members
	Public Visibility
	Private Visibility
	Package Visibility
	Protected Visibility
	Summary of Class Member Access Modifiers

	Chapter 181: WeakHashMap
	Introduction
	Examples
	Concepts of WeakHashmap

	Chapter 182: XJC
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Generating Java code from simple XSD file

	XSD schema (schema.xsd)
	Using xjc
	Result files
	package-info.java

	Chapter 183: XML Parsing using the JAXP APIs
	Remarks

	Principles of the DOM interface
	Principles of the SAX interface
	Principles of the StAX interface
	Examples
	Parsing and navigating a document using the DOM API
	Parsing a document using the StAX API

	Chapter 184: XML XPath Evaluation
	Remarks
	Examples
	Evaluating a NodeList in an XML document
	Parsing multiple XPath Expressions in a single XML
	Parsing single XPath Expression multiple times in an XML

	Chapter 185: XOM - XML Object Model
	Examples
	Reading a XML file
	Writing to a XML File

	Credits

