
Scott Kaschner and Amber Russell

LINEAR
TRANSFORMATIONS
ON VECTOR SPACES



This textbook was peer-reviewed, copyedited, and published through the Pri-
vate Academic Library Network of Indiana (PALNI) PALSave Textbook Creation
Grants Program, which is funded by the Lilly Endowment Inc. For more informa-
tion about the PALSave: PALNI Affordable Learning Program, visit the PALSave
website. If you have comments, suggestions, or corrections for this textbook,
please send them to palsave@palni.edu.

©2023 Scott Kaschner and Amber Russell. Except where
otherwise indicated, this work is released under a Creative
Commons Attribution 4.0 International license (full license

text can be found at https://creativecommons.org/licenses/by/
4.0/).

This book was formatted with the free/libre/open-source LATEX typesetting system
using the amsbook document class and many other openly licensed LATEX pack-
ages, as specified in the book’s LATEX source files, all of which can be found on
the PALSave website, https://palsave.palni.org/.

Publisher: PALNI Press, Indianapolis, Indiana, USA

First printed: September 1, 2023

https://lillyendowment.org/
https://palsave.palni.org/
https://palsave.palni.org/
mailto:palsave@palni.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://palsave.palni.org/
https://palsave.palni.org/


This is stupid. A pegasus can fly. An alicorn can fly.

Everyone knows that unicorns can’t fly.

– anonymous linear algebra student



Acknowledgements

There are many people who have helped make this book what it is now. The
authors are very grateful for the generous help and support of many competent,
clever, and creative colleagues.

First of all, we would like to acknowledge our Indiana library consortium PALNI
and the Lilly Endowment for funding our revision efforts and helping us make
this available to a wider audience. They found our reviewers, Cody Patterson
and Jeremy Case, who had wonderful constructive feedback for us. They also
found our copyeditor, Jonathan Poritz, who went beyond our expectations with
his helpful advice. Our Butler Library liaison to PALNI was Cale Erwin. He has
dedicated many hours to listening to our progress and provided wonderful support
through this open publication process.

We’ve also had a great deal of assistance from our wonderful Mathematics com-
munity. Our colleagues William Johnston and Rebecca Wahl dared to use even
the roughest first versions with their students and gave us some very early feed-
back. Their support helped encourage us to continue on this strange journey, and
we are forever thankful to be working with peers like them. We also gratefully
acknowledge Leanne Holder and Kelsey Walters from Rose Hulman Institute of
Technology who used a later version with their students and shared feedback from
them in the forms of unicorn drawings and also an excellently detailed errata list.
We particularly thank William Foss, Audrey Mitchell, Josh Norris, and Grace
Sheridan from their classes for all their helpful comments.

Lastly, we would like to thank all of our students who have used this text with us
for their responses, critiques, and encouragement. In particular, Rachel Burke and
Troy Wiegand who helped us immeasurably that first semester with the roughest
of rough drafts and also helped our students with review documents and sessions.

i



Preface

Welcome to Linear Algebra! Don’t worry so much about unicorns right now. Let
us first focus on the Linear Algebra part. Unicorns will, of course, appear later on
naturally.

To All Readers

This text was originally written for the Linear Algebra course offered at Butler
University, but we have worked to make it appropriate for use elsewhere or for
self-study. The order of the topics differs from many other Linear Algebra texts,
but this was what we found worked best to help our students gain a deep under-
standing of the topic. We encourage you to follow the sections in order. We start
with a quick, preliminary discussion of sets and functions, since these are cen-
tral to the course. Then Chapters 1 and 2 focus on vector spaces. In Chapter 3,
we study linear transformations, beginning with the definition and building to the
connection with matrices. Finally, Chapters 4 and 5 are devoted to matrix theory.

If you would prefer to start the course with a discussion of matrices, we suggest
the first part of Section 3.4, followed by Section 4.1 and all but the last subsection
of Section 4.2. This covers the definition of matrices and their connections to
solving systems of equations. One could then pick up at the beginning of the text
and use the techniques just learned whenever solving a system of equations.

Some of the sections can be viewed as optional. In particular, Sections 1.5, 2.6,
3.6, 4.7, and 4.8 can be omitted without causing problems when covering future
sections. After completing Sections 5.1, 5.2, and 5.3, each of Sections 5.4, 5.5,
and 5.6 could serve independently as a capstone section with some additional
applications in Section 5.7.

The text is written to be read. The tone is conversational (and sometimes a little
silly); there is a unicorn theme, so don’t be surprised to see pictures of them
throughout. The mathematics is written thoroughly, with most results proven in
either the section or the Appendix. There are many examples and “explorations”
to engage readers as they encounter the material, written specifically with the idea
that the reader work through the explorations as they read. We leave it to the
instructor’s discretion whether to provide solutions or work some of these during
class meetings. We’ve also attempted to make it lighthearted and fun in places
because there’s no reason it shouldn’t be. We hope you enjoy reading it, but
mostly, we hope you learn from it.

ii



iii

A Note about Unicorns

While you may have heard other myths about how to summon a unicorn, we’re
happy to reveal what happened to work for us. To summon a unicorn, you should
include one in an example while writing a mathematics textbook. Apparently,
unicorns love the study of mathematics so much, they reveal themselves to any
textbook authors who appear to be receptive to their input. The ones who ap-
proached us initially were Ricky and Bubbles. We decided a nice way to include
these muses was to allow them to narrate our side notes. They did get a bit car-
ried away adding side notes of their own. Hopefully, you will not find them too
distracting. It turns out it is difficult to unsummon a unicorn.

A Message for Students

Here are some goals to keep in mind when using this book:

▶ Learn the Content. Linear Algebra is inarguably one of the most ap-
plicable areas in modern mathematics. It is foundational to advanced
mathematics courses, but is also widely used in statistics, computer sci-
ence, physics, chemistry, and a host of other fields. Note here that we
have used the word “applicable” rather than “applied.” You are not learn-
ing an applied version of Linear Algebra. The goal of this text is to give
you a strong foundation in this topic so that you can recognize the appli-
cations in your own field as you encounter them. Thus, we begin with
the conceptual definitions, but we build towards the application side as
the book progresses.

▶ Improve Independent Learning Skills. Realistically, this is the over-
all goal of undergraduate education. Yes, you will learn specific content
in courses you take, but there will always be things you still need to
learn as you continue on beyond coursework. The main goal of college
is to prepare you for life after college, and a large part of that is giving
you the tools to tackle challenges and master new concepts outside of a
classroom setting. This may be a goal in all your classes, but it is not
necessarily always addressed directly. This text helps facilitate this goal
by giving you ways to interact as you read. We encourage you to re-
work examples and also attempt all the explorations as you go through
the reading. Uncovering areas in which your conceptual understanding
can be refined is a valuable step in the learning process.

▶ Transition to Advanced Coursework. Linear Algebra is a prerequi-
site for many upper level mathematics courses and also courses in other
departments. While some of this is due to its content, part of this prereq-
uisite is also the experience of the course itself. For many students, this
content will push you to think about more abstract mathematics topics
than you may have in your previous experiences, and it will help you
to see connections between different areas of mathematics, particularly
algebra and geometry.



iv

This content will be both challenging and time consuming, but it will also be
rewarding. We hope you each find joy in the learning of this mathematics.

Best wishes,
Drs. Kaschner and Russell



Contents

Preface ii

Chapter 0. Functions on Sets 1
0.1 Sets 1
0.2 Functions 7

Chapter 1. Vector Spaces 14
1.1 Vector Spaces 14
1.2 Arrow Vectors and Rn for Small n 29
1.3 Linear Independence and Span 40
1.4 Subspaces 56
1.5 A Menagerie of Vector Spaces 71

Chapter 2. Bases 76
2.1 Introduction to Bases 76
2.2 More Fun with Bases 90
2.3 Coordinates, Inner Products, and Orthogonality: Oh my! 100
2.4 Orthogonal Sets 114
2.5 The Gram-Schmidt Process 129
2.6 Least Squares Applications 139

Chapter 3. Linear Transformations 147
3.1 More Fun with Functions 147
3.2 Linear Transformations 162
3.3 One-to-one and Onto Linear Transformations 177
3.4 Matrices 190
3.5 The Matrix of a Linear Transformation 204
3.6 More Fun with Linear Transformations 217
3.7 Applications of Linear Tranformations 228

Chapter 4. More Fun with Matrices 232
4.1 Systems of Equations and Matrices 232
4.2 More Systems of Equations and Matrices 247
4.3 Matrix Techniques 259
4.4 Matrix Operations 274
4.5 Invertible Matrices 289
4.6 Matrix Theorems 300
4.7 More Fun with Least Squares 312
4.8 Another Graphics Application 320

Chapter 5. Square Matrices and Invariant Subspaces 324
5.1 Eigenvalues and How to Find Them 324
5.2 Determinants and More Fun with Eigenvalues 337
5.3 Diagonalization 350
5.4 Jordan Canonical Form 361

v



CONTENTS vi

5.5 Spectral Theory 379
5.6 Singular Value Decomposition 388
5.7 Applications of Invariant Subspaces 395

Appendix 403
Additional Proofs 403
Answers to Selected Parts of Selected Explorations 410
Answers to Selected Exercises 413

Glossary 416



0 Functions on Sets

Functions are a ubiquitous tool in mathematics. They’ve been used by so many
fields of thought and over such a vast swath of time, many forms of notation
have evolved. Before we proceed, we should probably all get on the same page
with functions. The following crash course in function theory is a deep dive
both theoretically and notationally. Be sure to take the time to think critically
about all of the definitions; this section is the foundation for all that comes
later.

0.1 Sets

We will begin with some basic definitions and notation. It’s imperative that
the notation is understood since that is essentially the language we will be
speaking.1 1:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Well, and English. We will also
speak English.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Hey, Ricky, what about telepathy?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Sorry, Bubbles. No telepathy. . . in
this chapter.

Definition 0.1.1 A set is an unordered collection of objects we call elements.

Let’s see a few familiar examples of sets.

▶ The set of integers, Z, is the set of counting numbers, negative count-
ing numbers, and 0. That is,

Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

Note that we use brackets, { and }, to enclose our set, and we list enough
elements to see the pattern of what this set contains. We use the ellipsis, “. . . ,”
at the beginning or end of our list (both in this case) to indicate that this pattern
continues. Let us see a seemingly similar example.

1



0.1. SETS 2

▶ We don’t have a standard name for this one, so we will use C to
denote this set.

C = {−2,−1, 0, 1, 2}

While this looks similar to Z above, C is what’s called a finite set. This set has
only those 5 elements listed. We would read this as “C is the set that contains
the elements −2, −1, 0, 1, and 2.”

▶ The set of rational numbers, Q, is the set of well-defined2 ratios of 2:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Ironically, “well-defined” is not
defined well here. We just mean you
can’t divide by zero in your ratio.

integers. That is,

Q =

{
p

q
: p, q ∈ Z and q ̸= 0

}
.

We will also adopt the usual convention that two rational numbers are
equal (that is, the same rational number) if they represent the same
quantity. For example, 2/4 = 1/2, so 2/4 and 1/2 are the same
rational number.

Here, we again used brackets, { and }, to bound our set description, but this
time we were not able to list the elements. There are way too many! Instead,
we used a general form with variables,

p

q
, with conditions on the variables, p

and q. The colon is read as the phrase “such that” and separates the general
form from the conditions. In some places (not this book), you will see a bar, |,
used instead of the colon, but it means the same thing. The symbol, ∈, is used
to indicate when an element is in a set and is read as “is an element of” or “is
in.” The conditions in the above definition of Q says p and q are both elements
of Z, so they are integers.

▶ Let’s see another example of this notation.

D =
{n
2
: n ∈ Z

}
This is read as “D is the set of all elements of the form

n

2
such that

n is an integer.”

Note that since 2 is a nonzero integer, every element in this set, D, is also a
rational number, so every element of D is in Q.

Definition 0.1.2 A subset of a set A is a subcollection of the elements of A;
that is, B is a subset of A, written as B ⊆ A, if and only if every element of
B is an element of A.

From our discussion before, D is a subset of Q, and we would denote this
as D ⊆ Q. Sometimes, the notation ⊂ is used instead when we know that
there are elements of the larger set that are not in the subset. This would be

appropriate here. For example,
1

3
∈ Q but

1

3
/∈ D,3 so we could alternatively 3:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It is common that a slash
through a symbol means “not that sym-
bol’s meaning.”

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

For example, ̸� clearly means
“not a phone.”

say D ⊂ Q.

Definition 0.1.3 A is equal as a set to B, written as A = B, if and only if
A ⊆ B and B ⊆ A.



0.1. SETS 3

Example 0.1.1 ▶ It may seem obvious that C = {−2,−1, 0, 1, 2} is
not equal to Z just from their clearly different definitions. How-
ever, there are many (more subtle) situations in which this would
not be quite so clear; such situations require a concrete defini-
tion. Let’s practice using Definition 0.1.3 by verifying that C is
not equal to Z. The intuition is that we need to show there is an el-
ement that is not common to both sets. Formally, note that 3 ∈ Z,
but 3 /∈ C. Thus, Z ̸⊆ C and C ̸= Z.

▶ Consider these two sets

A = {2n+ 1: n ∈ Z} B = {2m+ 3: m ∈ Z}.

After writing out several elements for each set, one might begin to
believe that both A and B are the set of odd integers and, therefore,
equal. Let’s use the definition of set equality to show that A = B.
First, let a ∈ A. Then there is some n ∈ Z such that

a = 2n+ 1

= 2n− 2 + 2 + 1

= 2(n− 1) + 3.

Since n − 1 ∈ Z for any n ∈ Z, we know a ∈ B. This shows us
that A ⊆ B. Now, we just need to start with b ∈ B and argue that
b ∈ A. This feels like a good place for an exploration!

Exploration 1 In the example above, we defined sets A and B and that A ⊆
B. Show that B ⊆ A to complete the argument that these two sets are actually
equal.

Exploration 2 Use Definition 0.1.3 to show Z ̸= Q.

Definition 0.1.4 Let A and B be sets and B ⊆ A. The set difference of A
and B, denoted A\B, is the set of elements in A and not in B. Specifically,

A\B = {a : a ∈ A and a /∈ B}.

Example 0.1.2 Let A = {n ∈ Z : n < 0}, so A is the set of negative
integers. Then Z\A is the set of all integers except the ones in A; that is,
the set of integers that aren’t negative. Using set notation, we have

Z\A = {n ∈ Z : n ≥ 0}.



0.1. SETS 4

Definition 0.1.5 Let A and B be sets. The Cartesian product of A and B,
denoted A × B, is the set of ordered pairs with the first component from A

and the second from B. Specifically,

A×B = {(a, b) : a ∈ A and b ∈ B}.

Example 0.1.3 Let’s see an example of this. Let E = {1, 2} and F =

{a, b}. Then we have

E × F = {(1, a), (1, b), (2, a), (2, b)}.

In this case, both E and F are finite sets, so E × F is also finite. Let’s
replace F here with a set that is not finite, say

G = {1, 4, 7, 10, 13 . . . }.

Then

E×G = {(1, 1), (1, 4), (1, 7), (1, 10), . . . (2, 1), (2, 4), (2, 7), (2, 10), . . . }.

There is a very familiar example of a Cartesian product that we have not dis-
cussed. We call it R2, and it should have played a large role in many of the
courses leading up to this one. First, let R denote the set of real numbers.4 4:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

We will talk about this set quite
a bit, so definitely note that notation.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I see what you did there. Very cute.

Then we can let both sets in the Cartesian product be R and form R × R. In
set notation, this is

R× R = {(x, y) : x, y ∈ R}.
It will be convenient to refer to this as R2, mainly so we don’t have to write as
much!

Let’s consider E ×G above again for just a bit. Note that E ⊆ R and G ⊆ R.
It follows that E ×G ⊆ R2. We have a special name for this too!

Definition 0.1.6 A relation from A to B, r, is a subset of A × B; that is,
r ⊆ A×B.

Let’s take a step back now and explore why a subset might be termed a “re-
lation.” Suppose we were to ask a set of people what their favorite colors
were. For privacy’s sake, we will just use each person’s first initial in our set
of people:

P = {I, S,O,W,R}.
Our set of colors will be

C = {Red, Orange, Yellow, Blue, Green, Purple, Pink}

Now, we can use each person’s response to form a subset of P × C. Then

r = {(I,Red), (S,Pink), (O,Red), (W,Green),

(R,Yellow), (R,Blue), (R,Green), (R,Purple)},

and r is a relation. This word choice seems to fit this scenario very well. We
are able to relate people and colors in this natural way and record it mathemat-
ically!5 5:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Note that in this example, R re-
ally only claimed the first three colors
as his favorite and Purple as a secret fa-
vorite. There was no easy way to reflect
this mathematically, though.

This idea of relating elements to each other probably seems pretty vague.
That’s actually a feature of this particular definition. It gives us flexibility
so that we can define a relation by whatever goofy condition we want.



0.1. SETS 5

Example 0.1.4 Here are a couple of sets and a relation on them.

A = {1, 2, 3, 4, 5, 6, 7}
B = {1, 2, 3, 4, 5, 6, 7}
r = {(1, 3), (2, 4), (3, 5), (4, 6), (5, 7)}

Let’s describe this relation in words. Wait. Before reading the answer, do
you see the pattern? The relation r relates elements in A to elements in B

that are two greater.

Exploration 3 Now it’s your turn! Let A = {1, 3, 5} and B = {2, 4, 6, 8}.
Define a relation between the sets A and B that uses every element of A but
not every element of B.

Example 0.1.5 Great! Now let’s consider infinite sets. An example of a
relation from Z to Q would be:

r =
{(

z,
z

2

)
: z ∈ Z

}
.

Let’s list out a few of the elements in this relation to see what it looks like.

(−2,−1),
(
−1,−1

2

)
, (0, 0),

(
1,

1

2

)
, (2, 1),

(
3,

3

2

)
Note that the only elements of Q appearing here are actually elements in the
subset D from earlier! Not every element in Q is paired with an element of
Z here. Also note that each element of Z is paired with a distinct element of
Q. These are properties of relations that will be important for us soon.

Exploration 4 Now, define a relation between Z and Q yourself. Use set
notation like above but also list a few elements of your relation.



EXERCISES FOR SECTION 0.1 6

Exercises for Section 0.1

0.1.1.All of the following statements are false. Give specific examples illustrating why they are false.

(a) Q ⊂ Z

(b) R ⊂ Q

(c) If A ⊆ B, then it’s not possible for A = B.

0.1.2.Determine whether x ∈ A.

(a) x =
6

5
and A =

{
a+ 1

a
: a ∈ Z

}
(b) x =

5

3
and A =

{
a+ 1

a
: a ∈ Z

}
(c) x =

1

2
and A =

{a
4
: a ∈ Z

}

(d) x =
1

6
and A =

{
a

2
+

b

3
: a, b ∈ Z

}
(e) x = 3 and A = {2a+ 1: a ∈ Z}

(f) x = 4 and A = {2a+ 1: a ∈ Z}

(g) x = 4 and A = {2a+ 1: a ∈ R}

0.1.3.Consider the sets below:

A ={a+ b : a, b ∈ R} and

B ={c− d : c, d ∈ R}.

(a) Show A ⊆ B by writing any sum of two real numbers as a difference.

(b) Show B ⊆ A by writing any difference of two real numbers as a sum.

Congratulations! You’ve just proven that A = B!

0.1.4.Are these sets equal? Justify using the definition of set equality.

(a) A = {3n+ 1: n ∈ Z} and B = {3m+ 4: m ∈ Z}

(b) A = {2n+ 1: n ∈ Z} and B = {2m+ 2: m ∈ Z}

(c) A =
{a
2
: a ∈ Z

}
and Q

(d) A =
{a
2
: a ∈ Q

}
and Q

(e) A =
{a
b
: a, b ∈ Q

}
and Q

(f) A = {3x+ 1: x ∈ R} and R

(g) A =
{
x2 : x ∈ R

}
and R

(h) A =
{
x2 : x ∈ R

}
and B = {x : x ∈ R, x ≥ 0}

0.1.5.Define a relation between the sets A = {1, 2, 3, 4, 5} and B = {x, y, z}.

0.1.6.Find all relations between the sets C = {1, 2} and D = {a, b}.



0.2. FUNCTIONS 7

0.2 Functions

We have all the pieces now for a nice, formal definition of functions. Let’s see
if we can make sense of this and relate it (pun intended) to our intuition about
what a function is.

Definition 0.2.1 Let A and B be sets. A function from A to B, often written
f : A→ B, is a relation f from A to B such that

if (a, b1) ∈ f and (a, b2) ∈ f , then b1 = b2.
The element (a, b) ∈ f is often written f(a) = b.

Before we barrel6 forward, let’s see an example of this in action. 6:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

One of the two authors rejects
the use of “barrel” as a verb.

Example 0.2.1 Let A = {1, 3, 5, 7, 9} and B = {2, 4, 6, 8, 10}. Then the
relation f given by

f = {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)}

is a function. We could also describe this function by

f(1) = 2, f(3) = 4, f(5) = 6, f(7) = 8, and f(9) = 10.

Example 0.2.2 Let’s see a relation that is not a function with this definition.
Again, let A = {1, 3, 5, 7, 9} and B = {2, 4, 6, 8, 10}. Define the relation r

by
r = {(1, 2), (1, 4), (3, 6), (5, 8), (7, 10)}.

This is not a function because (1, 2) and (1, 4) are both in r, but 2 ̸= 4.

The notational convention at the end of Definition 0.2.1 (we write (a, b) ∈ f

as f(a) = b) allows us to rewrite the condition

“if (a, b1) ∈ f and (a, b2) ∈ f , then b1 = b2” as
“if f(a) = b1 and f(a) = b2, then b1 = b2”

Furthermore, since (a, b) ∈ f is taken to mean the same thing as f(a) = b, it
is common to see a function defined by an algebraic formula. For example, if
we were to define a function f : A→ B, where A = B = Z, by the relation

f = {(a, a+ 3): a ∈ A},

we see that for any element a ∈ A, we have (a, a+ 3) ∈ f , where a+ 3 ∈ B.
Thus, we could just as well define this relation by

f(a) = a+ 3.

That probably looks a lot more familiar,7 but what is the equation f(a) = 7:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Notice that in this notation, the
function from Example 0.2.1 would be
described using f(a) = a+ 1.

a + 3? Is it the function? No. The function’s name is f . The equation
f(a) = a + 3 is an equation that defines the relation f ; it tells us in practice
how f relates elements from A to elements from B. This may seem like a
trivial point, but a great deal of confusion springs forth from this subtlety in
terminology. Here is a concrete breakdown of the terminology:

▶ The name of the function is f ;

▶ a is an element of the first set A;

▶ f(a) is an element of the second set B; and



0.2. FUNCTIONS 8

▶ f(a) = a + 3 is an equation that indicates how to compute the ele-
ment of B related to a by f .

These four things are not interchangeable. Understanding the difference be-
tween them will be particularly important for some of the discussion later in
this text.

It’s also worth underscoring that a function need not be defined by a formula.
Indeed, if either the domain or the codomain is not a set of numbers, then a
formula becomes quite impractical.

Exploration 5 Let r1 and r2 be relations from the set A to the set B given
below:

A = {2, σ,+},
B = {1, 2, 3, 4, 5, 6, 7},
r1 = {(2, 3), (σ, 3), (+, 3), (2, 6), (σ, 6), (+, 6)}, and

r2 = {(2, 3), (σ, 3), (+, 3)}.

Which of r1 and r2 are functions?

Exploration 6 Let r be the relation from Q to Q given by

r = {(x2, x) : x ∈ Q}.

Is r a function? Justify your response.

Definition 0.2.2 Let f : A→ B be a function. The domain of f is the set

dom (f) = {a ∈ A : there exists b ∈ B such that (a, b) ∈ f}
= {a ∈ A : there exists b ∈ B such that f(a) = b}

Definition 0.2.3 Let f : A→ B be a function. The range of f is the set

ran (f) = {b ∈ B : there exists a ∈ A such that (a, b) ∈ f}
= {b ∈ B : there exists a ∈ A such that f(a) = b}

Definition 0.2.4 Let f : A → B be a function. The codomain of f , written
codom (f), is the set B.

This definition clears up a common ambiguity. If f : A → B is a function,
must f relate every element of A to an element of B? Well, no. However, in
practice, people often restrict the definition of their function to eliminate all the
elements of A not related to an element of B by f . This is not always the case,
though. Perhaps you have encountered functions like f : Q → Q, defined by
the equation f(q) = 1/q where the the domain is incorrectly referred to as



0.2. FUNCTIONS 9

Q. Have you spotted the problem? While 0 ∈ Q, 0 cannot be related to some
other rational number by the given equation. Thus, dom (f) in this example is
actually Q\{0}, all rational numbers except 0.

Here’s the takeaway from all of this. Given a function f : A→ B,

dom (f) ⊆ A, and

ran (f) ⊆ B = codom (f) .

If you’ve never heard the word “codomain” before, don’t panic. It’s just an-
other name for B, the second set in the relation f . Given an arbitrary function
f , there’s no reason to expect it to relate all the elements of A to all the el-
ements of B, so we have these subsets dom (f) and ran (f) of A and B,
respectively.

Lastly, it is common to think of elements of dom (f) as “inputs” and elements
of ran (f) as “outputs” and to refer to the relating f does from A to B as
“mapping.” For example, given f : Z → Z by f(z) = 9, one could say the
input −2 is mapped to the output 9. In fact, this very boring constant function
maps all inputs to the output 9. If this makes you happy, then so be it. It does
fit nicely with the notation f : A→ B.

Example 0.2.3 Let f : Z→ Z be given by {(z, z2) : z ∈ Z}. This would be
written as f(z) = z2. Let’s do the easy one first: codom (f) = Z. Now note
that dom (f) = Z, and this is given explicitly in the set notation. However,
using the notation f(z) = z2, we must rely on the fact that there are no
integers that cannot be squared in order to determine that dom (f) = Z.
What about the range? Formally, we have

ran (f) = {z2 : z ∈ Z} = {0, 1, 4, 9, 16, 25, . . . },

that is, ran (f) is the set of all square integers. Lastly, note that our function
f maps Z to Z, so in the equation f(z) = z2,

▶ f is the name of the function,
▶ f(z) = z2 is an equation defining the relation between Z and Z,
▶ z is an integer, and
▶ f(z) is an integer (in ran (f)); in particular, f(z) is a squared

integer.

Example 0.2.4 Let f : Z → Z be given by f(z) = z2/z2. You may be
tempted to “simplify,” whatever that means. Do not. Now, what’s the do-
main of f? Are there integers that cannot be “plugged in” for z here? Yep!
Our function, as it is defined, cannot handle 0. Thus, the domain is actually
Z\{0}. Also, the range here is not all of Z. What does f map 5 to for
example? This function maps everything to 1. Thus, ran (f) = {1}.

Exploration 7 Define the floor function f : Q→ Q by f(q) = ⌊q⌋, where ⌊q⌋
is the greatest integer less than or equal to q. You can think of this function as
the function that takes rational numbers and rounds them down to the nearest
integer. Find the domain, range, and codomain for the function f . Note that
these are all sets!



OPERATIONS ON SETS 10

Operations on Sets

Now that we’ve talked about sets, Cartesian products, and functions, we can
talk about something even more fun, binary operations on sets.

Definition 0.2.5 Let A be a set. A binary operation on a set A is a function
f : A×A→ A, where the domain is A×A.

Some familiar examples are addition, subtraction, and multiplication.8 If we 8:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yes, these stars of elementary
school mathematics are about to get the
full, formal treatment.

write these in our standard function notation, we would have

+: R× R→ R,
− : R× R→ R, and

× : R× R→ R.

However, it is much more convenient and common to write +(a, b) as a + b,
and so on for the other symbols.9 9:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Note that division is not listed
here. That’s because the old “can’t di-
vide by 0” rule makes this what’s called
a “partial binary operation.”

An important question about operations is whether they are valid operations
on a specific set. For example, let A = {x ∈ R : x < 0}; that is, A is the set of
negative real numbers. Then the operation of multiplication is not well-defined
for this set. The product of two negative real numbers is a positive real number,
which is not an element of A. This is not how we like our operations to behave;
we would say in this case that A is not closed under multiplication.

Definition 0.2.6 If a ∗ b ∈ A for any a, b ∈ A, we say the set A is closed
under the operation ∗.

Example 0.2.5 Let’s consider the set P = {x ∈ R : x ≥ 0}. That is, P
is the set of nonnegative real numbers. Since P is a subset of R, all of our
operations above make sense, but they may not give us an output that is
also in P . Thus, we have to ask whether our set P is closed under these
standard operations.

Addition:
To check this, we need to start with two elements of our set, so suppose
a, b ∈ P . That means a and b are nonnegative real numbers. Must a+ b still
be a nonnegative real number? Yes, yes it must. We know the sum of two
real numbers is again a real number, and the sum of two positive numbers
will again be positive. Also, 0 added to a positive number will just still be
that positive number.

Subtraction:
For this one, the operation is not closed. We can see this by giving an exam-
ple where the difference of two positive real numbers is no longer positive.
First, note that 5, 10 ∈ P . Then consider 5− 10 = −5. Since −5 /∈ P , our
set is not closed under this operation.

Exploration 8 Is our set P above closed under the operation of multiplication
of real numbers?



OPERATIONS ON SETS 11

Exploration 9 Can you think of a subset of R that is closed under addition but
not under multiplication?



EXERCISES FOR SECTION 0.2 12

Exercises for Section 0.2

0.2.1.All of the following statements are false. Give specific examples illustrating why they are false.

(a) Every relation from a set A to a set B is a function.

(b) It’s not possible for a function to have the same domain and codomain.

(c) It’s not possible for a function to have the same codomain and range.

0.2.2.Let A = {1, 2, 3, 4, 5} and B = {2, 4, 8, 16}. Determine whether each of the following is a relation from A

to B, a function from A to B, or neither.

(a) r1 = {(1, 2), (2, 4), (3, 8), (4, 16), (5, 16)}

(b) r2 = {(1, 16), (1, 8), (2, 16), (2, 8), (3, 16), (3, 8)}

(c) r3 = {(1, 2), (2, 3), (3, 5), (4, 4)}

(d) r4 = {(1, 4), (2, 4), (3, 4), (4, 4), (5, 4)}

0.2.3.Let f : Q→ Z be defined by f
(a
b

)
= a for any

a

b
∈ Q. Is this a function?

0.2.4.Let g : Q→ Q be defined by g
(a
b

)
=

a+ b

b
for any

a

b
∈ Q. Is this a function?

0.2.5.Consider A = {1, 2, 3} and B = {1, 3, 4, 5}. Is there a function f : A → B with ran (f) = B? Give the
function or explain why it does not exist.

0.2.6.For each function below, state the domain, codomain, and range of the function.

(a) f : R→ R defined by f(x) = x2 + 1 for all x ∈ R

(b) f : Z→ Q defined by f(n) =
n

2
for all n ∈ Z

(c) f : Z→ Q defined by f(n) =
n+ 1

3
for all n ∈ Z

(d) f : Q→ Q defined by f(r) =
r

2
for all r ∈ Q

(e) f : Q→ Q defined by f(r) =
2

r
for all r ∈ Q\{0}

(f) f : R→ R defined by f(x) = 5x for all x ∈ R

(g) f : R→ R defined by f(x) = 5 for all x ∈ R

(h) f : R→ R× R defined by f(x) = (5, 5x) for all x ∈ R

0.2.7.Determine whether the set A is closed under the given operation ⊙.



EXERCISES FOR SECTION 0.2 13

(a) A = Q and a⊙ b = ab for any a, b ∈ A

(b) A =
{
n2 : n ∈ Z

}
and a⊙ b = ab for any a, b ∈ A

(c) A = {n : n ∈ Z, n ≤ 0} and a⊙ b = ab for any a, b ∈ A

(d) A = {n : n ∈ Z, n ≤ 0} and a⊙ b = a+ b for any a, b ∈ A

(e) A = {n : n ∈ Z, n ≤ 0} and a⊙ b = a− b for any a, b ∈ A

(f) A = {x : x ∈ R, x ≥ 0} and a⊙ b = a− b for any a, b ∈ A

(g) A = {x : x ∈ R, x ≥ 0} and a⊙ b = ab for any a, b ∈ A

(h) A = {x : x ∈ R, x > 0} and a⊙ b = ab for any a, b ∈ A

(i) A = {x : x ∈ R, 0 ≤ x ≤ 1} and a⊙ b = ab for any a, b ∈ A

0.2.8.Suppose f : R→ R is a function with the property that f(ab) = af(b) for any a, b ∈ R.

(a) What must f(0) be?

(b) There are only two options for ran (f). Can you name them?

0.2.9.Suppose g : R× R→ R has the related property that g(ab, ac) = ag(b, c). To what must g map (0, 0)?

0.2.10.Let f : R× R→ R be defined by f(a, b) = a+ b+ ab.

(a) Find an (a, b) such that f(a, b) = 5.

(b) Now, for any real number, x, find an appropriate (a, b) such that f(a, b) = x for any real number x.
This will show that ran (f) = R.

(c) Is the (a, b) from part (a) unique? If so, why? If not, find a different (a, b) such that f(a, b) = 5.

0.2.11.Let f : R→ R be defined by f(a) = 2a+ a2.

(a) Find an a so that f(a) = −1.

(b) Is there an a such that f(a) = −2?

(c) Suppose f(a) = f(b). Must a = b?



1 Vector Spaces

Since Linear Algebra is the study of linear transformations on vector spaces,
the topic of vector spaces is certainly a reasonable place to start. One could
easily argue that it’s actually the only reasonable place to start.1 As we saw in 1:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Wha? Oh, yes. That is my
gauntlet on the ground!the previous chapter, you cannot construct a function without clearly defining

its domain. Linear transformations are functions, and we’ll eventually see that
vector spaces are used as their domains. Thus, we should begin here with one
of the two main characters of this story, vector spaces.

1.1 Vector Spaces

R? Yep, R. It turns out the set of real numbers, R, is a vector space. This
seems to be an excellent place to start our discussion.

There are many ways to construct the real numbers.2 That said, we’re not 2:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

They are all super interesting,
very cool, and usually discussed in a
Real Analysis course.

going to spend any time constructing the real numbers, R, any more than you
would in a typical calculus course. We’re going to step over this particular
mathematical duck by simply saying the following dissatisfying thing:

(1.1) R = (−∞,∞).

Note that the authors have chosen to number this equation. This is so that if
future equations seem mystifying, you, the reader, can be referred back to this
thing for some perspective.

The goal of this section is not to define R but to understand the properties of
R with typical operations (adding and multiplying) that we really like. Hey,
speaking of operations, let’s recall some in case any of you skipped over Chap-
ter 0.

Definition 1.1.1 Addition is the function (+): R × R → R defined by
relating two real numbers to their sum. Multiplication is the function
(·) : R× R→ R defined by relating two real numbers to their product.

14



1.1. VECTOR SPACES 15

You should be very familiar with both of these operations and all of the prop-
erties they enjoy; you probably know them all by name. Nevertheless, here’s
a nice comprehensive list:

Theorem 1.1.1 (Field Axioms for Real Numbers) Let + and · be used for
the usual operations of addition and multiplication, respectively. There are
elements 0, 1 ∈ R such that for any a, b, c ∈ R and any nonzero d ∈ R,

Commutativity of Addition a+ b = b+ a,
Associativity of Addition (a+ b) + c = a+ (b+ c),

Additive Identity a+ 0 = 0 + a = a,
Additive Inverses there is an element −a ∈ R such

that a+ (−a) = (−a) + a = 0,

Commutativity of Multiplication a · b = b · a,
Associativity of Multiplication (a · b) · c = a · (b · c),

Multiplicative Identity a · 1 = 1 · a = a,
Multiplicative Inverses there is an element d−1 ∈ R such

that d · d−1 = d−1 · d = 1, and

Distributive Property a · (b+ c) = a · b+ a · c.

The real numbers are pretty great, though. We built a whole sequence of cal-
culus courses using them! Asking that any old set do all nine of these things
is a bit much. Let’s see what happens when we change it up a bit.

Example 1.1.1 Let’s first consider the set Z. Which of these properties
hold and which fail for Z? First of all, since we’re using a different set (Z
instead of R), we need to be sure that Z is closed under the operations of
addition and multiplication as well; indeed, Z is closed under addition and
multiplication. Moreover, since these are actually the same operations as
the ones in R, the following properties hold in Z because they hold in R:

▶ Commutativity of Addition: a+ b = b+ a for a, b ∈ Z
▶ Associativity of Addition: (a+ b)+ c = a+(b+ c) for a, b, c ∈ Z
▶ Commutativity of Multiplication: a · b = b · a for a, b ∈ Z
▶ Associativity of Multiplication: (a ·b) ·c = a · (b ·c) for a, b, c ∈ Z
▶ Distributive Property: a · (b+ c) = a · b+ a · c for a, b, c ∈ Z

These were all properties of the operations + and · instead of properties of
the set. The properties of the set will require a bit more thought from us.

▶ Additive Identity: Since this is the same addition as for R, our
element 0 is still the additive identity. The condition we are now
checking is whether this element is in Z, which it is! Thus, this
one also holds for Z.

▶ Additive Inverses: Again, since any a ∈ Z is also in R, the additive
inverse of a is still the same as in R, so for any a ∈ Z, we need to
see that −a ∈ Z, which it is! Thus, this one also holds for Z.

▶ Multiplicative Identity: Same as these others, we need only note
that 1 ∈ Z to see this one holds as well.



VECTOR SPACES, BY DEFINITION 16

▶ Multiplicative Inverses: Again, the multiplicative inverses are the
same as the ones in R, so we need only check that if a ∈ Z, then
1

a
∈ Z. But this one fails! In particular, 2 ∈ Z but

1

2
/∈ Z.

Exploration 10 Can you name another set with the operations of addition and
multiplication where all these properties hold? (Hint: Many answers do exist.)

Exploration 11 Find a property that fails for R if we replace + with −.

The real numbers work super well. Having two operations is pretty great.
We get all those extra rules to make sure they both work correctly and play
nice together. We get to put them in a list and memorize them. It’s all very
satisfying.

Let’s scrap it all and start over. Don’t memorize anything yet. Well, maybe
we’ll keep that addition bit. Most people rather like that one. But multiplica-
tion? Be honest. Hasn’t “repeated addition” always felt a little scammy to you
as an operation?3 3:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Total pyramid scheme!

Vector Spaces, by Definition

In all seriousness, though, what was just described is roughly what’s about to
happen. The set of real numbers is a very complicated set. You do get a lot of
very nice properties with addition and multiplication on R, but the properties
themselves, when taken all together, can be restrictive in some ways. The idea
is to give up some of the properties we enjoyed from Theorem 1.1.1 so that we
can enjoy that smaller collection of properties on a wider variety of sets.

It’s not as bad as it sounds. In fact, we’ll still have two operations!

Definition 1.1.2 A vector space over R is a set V (whose elements we call
vectors) together with two operations that satisfies all the properties listed
below.

▶ The first operation, called vector addition (+): V × V → V ,
relates two vectors v⃗ and w⃗ to a third vector, commonly written as
v⃗ + w⃗, and called the sum of these two vectors.

▶ The second operation, called scalar multiplication (·) : R× V →
V relates any scalar a ∈ R and any vector v⃗ ∈ V to another
vector av⃗.

There are elements 0⃗ ∈ V and 1 ∈ R such that for all u⃗, v⃗, w⃗ ∈ V and all
a, b ∈ R,



VECTOR SPACES, BY DEFINITION 17

Closure under Addition u⃗+ v⃗ ∈ V ,
Associativity of Addition u⃗+ (v⃗ + w⃗) = (u⃗+ v⃗) + w⃗,

Commutativity of Addition u⃗+ v⃗ = v⃗ + u⃗,
Additive Identity v⃗ + 0⃗ = 0⃗ + v⃗ = v⃗,
Additive Inverses there exists an element −v⃗ ∈ V

such that
v⃗ + (−v⃗) = (−v⃗) + v⃗ = 0⃗,

Closure under Scalar Multiplication av⃗ ∈ V ,
Scalar and Real Multiplication a(bv⃗) = (ab)v⃗,

Multiplicative Identity 1v⃗ = v⃗,

Distributivity Over Vector Addition a(u⃗+ v⃗) = au⃗+ av⃗, and
Distributivity Over Real Addition (a+ b)v⃗ = av⃗ + bv⃗.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Fun fact: If there’s some other field
you prefer, you can use that one instead
of R here, and define vector spaces over
that field instead. Wild, right? Anywho,
we’re gonna stick with vector spaces
over R in this text.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Vector spaces over other fields are
often used in physics and computer sci-
ence and are a topic in abstract algebra
courses-

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

-ahem! We’re gonna stick with
vector spaces over R in this text.

Note that before you can even call something a vector space and start talking
about all the cool stuff it can or can’t do, you need a set and two operations.
Therefore, if someone says to you, “Hey! Check out this cool set! I think
it’s a vector space.” Your immediate reaction should be roughly, “Oh yeah?
With what operations?” If the other person runs away, they were probably
wrong about their set. If they produce two reasonable operations that could be
called vector addition and scalar multiplication, then you’ve found a worthy
companion to assist in verifying every single one of the axioms neatly listed
in Definition 1.1.2. Then, and only then, should you dare declare your set a
vector space.

Fun fact: R is a vector space.4 This is not surprising at all; it was, after all,

4:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Oh yeah? With what opera-
tions?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Addition and multiplication. You
know, the regular ones.

the muse which begat this fun new definition.5 Now, let’s take a bunch of

5:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yes,“begat.” It’s a perfectly
good word. Challenge: Find a way to
use this word in a sentence of your own
today.

Cartesian products!

Rn = R× · · · × R = {(x1, . . . , xn) : xi ∈ R for i = 1, . . . , n}

People use all sorts of goofy notaton for Rn. The preceding one is respectable
enough. Your calculus book might use something like

Rn = {⟨x1, . . . , xn⟩ : xi ∈ R for i = 1, . . . , n} .

We assume the common use of this notation is due to its pointy-ness and gen-
eral sinister appearance. We’ll more often use the seemingly obnoxious nota-
tion

(1.2) Rn =


 x1

...
xn

 : xi ∈ R for 1 ≤ i ≤ n

 .

What a neat set! Did you know that Rn is a vector space?

Ahem.

We’re waiting. . .



VECTOR SPACES, BY DEFINITION 18

Oh? Operations? Yes, of course. Vector addition is done componentwise. For
any x⃗, y⃗ ∈ Rn, where

(1.3) x⃗ =

 x1

...
xn

 and y⃗ =

 y1
...
yn

 , we define x⃗+ y⃗ =

 x1 + y1
...

xn + yn

 .

For scalar multiplication, just multiply the scalar to each component of the
given vector. That is, for any x⃗ ∈ Rn and any a ∈ R, we define

(1.4) ax⃗ = a

 x1

...
xn

 =

 ax1

...
axn

 .

Very nice, eh? Perfectly good vector addition and scalar multiplication. We
defined these using what’s called a general element of Rn. We should talk
more about this.

Many people find the most difficult part in verifying the axioms of a vector
space (besides the tedium) to be showing each axiom works for all potential
vectors in the given potential vector space. Almost all the real vector spaces
we will see end up having an infinite number of vectors, so verifying each
property for literally all vectors is not feasible. What one needs is a general
vector that could represent any vector in the set. Nothing too specific, this
vector needs to be generic enough that it satisfies all the properties required to
be in the set and nothing else. Let’s look at R3.

(1.5) R3 =


 x1

x2

x3

 : xi ∈ R for i = 1, . . . , 3


Now what does it mean exactly to be “in R3?” While we’ve settled on the
notation above, we also saw two others. Specifically,

R3 = {(x1, x2, x3) : x1, x2, x3 ∈ R} or R3 = {⟨x1, x2, x3⟩ : x1, x2, x3 ∈ R} .

It’s instructive now to consider what they all have in common. In each nota-
tion, we would use three real numbers; each could be any real number, so we
used a variable xi (where 1 ≤ i ≤ 3) for each. These sequential subscripts
also suggest these entries are ordered. That’s a lot of information that’s easy
to look past! Evidently, whether we write them vertically or horizontally does
not matter; we choose the former for reasons that will be clear later.

To make a general vector in R3, we need three real variables in order. Thus, x1

x2

x3

 is a general vector in R3;

 8

−1.3
1/2

 is not. It is a specific vector in R3.

Most of the axioms in Definition 1.1.2 involve more than one vector, so we’d
actually need two general vectors. It’s standard to just use a different letter for



VECTOR SPACES, BY DEFINITION 19

the variable, so for x⃗, y⃗ ∈ R3, we would write

x⃗ =

 x1

x2

x3

 and y⃗ =

 y1
y2
y3

 .

These are both general vectors in R3. If we can show something is true with
these, then it can be assumed to be true for any vector in R3. It’s sometimes
not hard at all to find a general vector for a vector space; they are often given
in the definition of the set, as in Equation 1.5.

Let’s show that R2 satisfies all the requirements to be a vector space given in
Definition 1.1.2.6 We’ll make careful use of general vectors to do so. 6:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

We could just as easily show R3

or R100, but it’ll take up less space if we
do R2.Example 1.1.2 Let x⃗, y⃗, z⃗ ∈ R2 and a, b ∈ R. Then,

x⃗ =

[
x1

x2

]
, y⃗ =

[
y1
y2

]
, and z⃗ =

[
z1
z2

]
for some x1, x2, y1, y2, z1, z2 ∈ R.

▶ Closure under Addition: Note that

x⃗+ y⃗ =

[
x1 + y1
x2 + y2

]
.

Since xi, yi ∈ R for each i = 1, 2 and we know R is closed under
addition, each xi + yi ∈ R. Thus, x⃗ + y⃗ ∈ R2 and R2 is closed
under this vector addition.

▶ Associativity of Addition:

x⃗+ (y⃗ + z⃗) =

[
x1

x2

]
+

[
y1 + z1
y2 + z2

]
=

[
x1 + (y1 + z1)

x2 + (y2 + z2)

]
=

[
(x1 + y1) + z1
(x2 + y2) + z2

]
=

[
x1 + y1
x2 + y2

]
+

[
z1
z2

]
= (x⃗+ y⃗) + z⃗.

Here we used the associative property for R in each component.
▶ Commutativity of Addition:

x⃗+ y⃗ =

[
x1

x2

]
+

[
y1
y2

]
=

[
x1 + y1
x2 + y2

]
=

[
y1 + x1

y2 + x2

]
=

[
y1
y2

]
+

[
x1

x2

]
= y⃗ + x⃗

Here, we used the commutative property of real numbers to see
that x1 + y1 = y1 + x1 and x2 + y2 = y2 + x2.

▶ Additive Identity: For this, we need to identify the additive iden-
tity 0⃗, the special vector in R2 such that x⃗+0⃗ = x⃗ for any x⃗ ∈ R2.
There’s something pretty obvious to guess, but that won’t always
be the case. We’ll do this one the “long way.” Suppose our identity

is the vector v⃗ =

[
v1
v2

]
. Then we know x⃗+ v⃗ = x⃗, which means[

x1

x2

]
+

[
v1
v2

]
=

[
x1

x2

]
.



VECTOR SPACES, BY DEFINITION 20

We can use the definition of our vector addition then to get[
x1 + v1
x2 + v2

]
=

[
x1

x2

]
,

so x1 + v1 = x1, which says v1 = 0. Similarly, x2 + v2 = x2,

so v2 = 0 as well. This says our v⃗ = 0⃗ =

[
0

0

]
. Fortunately,

0⃗ ∈ R2 and this calculation works for any vector x⃗, so our set
contains an additive identity!

▶ Additive Inverses: Now that we know what the additive identity
is, we can find the additive inverse of a vector x⃗ ∈ R2. This is the

special vector v⃗ such that x⃗+ v⃗ = 0⃗, so if v⃗ =

[
v1
v2

]
, we have[

x1

x2

]
+

[
v1
v2

]
=

[
0

0

]
Then we see that[

x1 + v1
x2 + v2

]
=

[
0

0

]
.

Thus, x1 + v1 = 0 and v1 = −x1. We also see v2 = −x2, so the

additive inverse of
[

x1

x2

]
is
[
−x1

−x2

]
, which is also in R2. Thus,

every element in R2 has an additive inverse in R2.
▶ Closure under Scalar Multiplication: We need to argue why

ax⃗ ∈ R2 for any real number a and any vector x⃗ ∈ R2. Note
that

ax⃗ = a

[
x1

x2

]
=

[
ax1

ax2

]
.

Then since a, x1, x2 ∈ R and R is closed under multiplication, we
know ax1, ax2 ∈ R. This means ax⃗ ∈ R2.

▶ Scalar and Real Multiplication: This property is essentially
guaranteeing our definition of scalar multiplication works well
with the usual idea of multiplication in R. Formally, we need to
show (ab)x⃗ = a(bx⃗). Using the definition of scalar multiplication
and the associative property for multiplication of real numbers, we
have

(ab)x⃗ = (ab)

[
x1

x2

]
=

[
(ab)x1

(ab)x2

]
=

[
a(bx1)

a(bx2)

]
= a

[
bx1

bx2

]
= a

(
b

[
x1

x2

])
= a(bx⃗).

▶ Multiplicative Identity: In the case of the additive identity, we
had to find it and be sure it was in the set. Here, we know the
multiplicative identity has to be 1, but we just need to check that it
does what it should with this scalar multiplication definition. Let’s
see what 1x⃗ is then.

1x⃗ = 1

[
x1

x2

]
=

[
1x1

1x2

]
=

[
x1

x2

]
= x⃗.

Yay! It works!



VECTOR SPACES, BY DEFINITION 21

▶ Distributivity Over Vector Addition: For this, we are checking
that scalar multiplication distributes across vector addition, so we
need to see a(x⃗+ y⃗) = ax⃗+ay⃗ for any real number a and any vec-
tors x⃗, y⃗ ∈ R2. Using the distributive property for real numbers,
we get

a(x⃗+ y⃗) = a

([
x1

x2

]
+

[
y1
y2

])
= a

[
x1 + y1
x2 + y2

]
=

[
a(x1 + y1)

a(x2 + y2)

]
=

[
ax1 + ay1
ax2 + ay2

]
=

[
ax1

ax2

]
+

[
ay1
ay2

]
= a

[
x1

x2

]
+ a

[
y1
y2

]
= ax⃗+ ay⃗.

▶ Distributivity Over Real Addition: This last axiom is checking
that our new operations work well with our classic addition in R.
That is, we need to verify that (a+b)x⃗ = ax⃗+bx⃗ for any real num-
bers a and b and any vector x⃗ ∈ R2. Again using the distributive
property for real numbers, we get

(a+ b)x⃗ = (a+ b)

[
x1

x2

]
=

[
(a+ b)x1

(a+ b)x2

]
=

[
ax1 + bx1

ax2 + bx2

]
=

[
ax1

ax2

]
+

[
bx1

bx2

]
= a

[
x1

x2

]
+ b

[
x1

x2

]
= ax⃗+ bx⃗.

Great! Now, you’ve seen how a set with operations of vector addition and
scalar multiplication can be shown to be a vector space! Note that for each
of the axioms, we relied upon established knowledge about R, the set of real
numbers.7 However, we only showed R2 is a vector space. We claimed that 7:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This is what we do in mathe-
matics! We build logically upon what is
already known.

Rn is a vector space for any positive integer n. Well, that proof is very similar.
Let’s see how by focusing on closure of addition for Rn. That is, given any
x⃗, y⃗ ∈ Rn, we want to show x⃗+ y⃗ ∈ Rn. Note that

x⃗ =

 x1

...
xn

 and y⃗ =

 y1
...
yn


are general vectors in Rn. Then by definition of vector addition in Rn (Equa-
tion 1.3), we have

(1.6) x⃗+ y⃗ =

 x1

...
xn

+

 y1
...
yn

 =

 x1 + y1
...

xn + yn

 .

It remains to show that the vector at the end of Equation 1.6 is a vector in Rn.
Since R is closed under addition, we know that xi + yi ∈ R for i = 1, . . . , n.
Thus,  x1 + y1

...
xn + yn

 ∈ Rn.

It follows that x⃗+ y⃗ ∈ Rn, so Rn is closed under vector addition.



OTHER VECTOR SPACES 22

Exploration 12 Following arguments similar to Example 1.1.2 and the one
above, show that Rn is a vector space when n is any positive integer. Well,
that might take a while. At least show two of the axioms hold, so you get a
feel for how this goes.

Remark: There is a small hiccup with your favorite8 vector space, R. Since 8:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

My favorite is actually R2.
we’re usually dealing with vector spaces over R, when we talk about the vector
space R, it can be unclear whether a real number is a vector or a scalar. We
resolve this ambiguity by using bold font for vectors, so if you see 5⃗ ∈ R, you
should interpret this as a vector in the vector space R. If you see 5 ∈ R, you
should interpret this as the scalar 5. Thus, if you want to rescale the vector
5⃗ ∈ R by the scalar 5, you would have

5⃗5 = 2⃗5 ∈ R.

Exactly what just happened there? Well, the vector 5⃗ rescaled by the scalar 5
gives us the vector 2⃗5. It’s potentially confusing because the real number 25 is
being interpreted as a vector. We concede this is both weird and annoying, but
it cannot be avoided. Again, we use bold font to indicate when mathematical
objects are vectors; this will always serve to answer whether or not something
is a vector.9 9:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Unless there is a typo. No guar-
antees.

Other Vector Spaces

One of the most powerful aspects of vector spaces is the wide variety of sets
that can be made into vector spaces by providing appropriate operations. We’ll
now discuss an example of a standard vector space that is not Rn, and you’ll
see other examples in the exercises.

The set of polynomials of degree n or less is also a very nice set we can make
into a vector space:

(1.7) Pn = {a0 + a1x+ a2x
2 + · · · anxn : ai ∈ R for i = 1, . . . , n}.

The “vectors” in this set are polynomials, so we often write strange-looking
things like

p⃗ = 27− 2x+ xn.

Here we’re saying that p⃗ is the polynomial in the set {a0 + a1x + a2x
2 +

· · · anxn : ai ∈ R for i = 1, . . . , n}, where a0 = 27, a1 = −2, a3 = · · · =
an−1 = 0, and an = 1.



OTHER VECTOR SPACES 23

Given general p⃗, q⃗ ∈ Pn, which we may write as

p⃗ = a0 + a1x+ · · · anxn and

q⃗ = b0 + b1x+ · · · bnxn,

where ai, bi ∈ R, and a scalar c ∈ R, we define vector addition as the usual
polynomial addition

p⃗+ q⃗ = (a0 + a1x+ · · · anxn) + (b0 + b1x+ · · · bnxn)

= (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n,

and we define scalar multiplication as

cp⃗ = c(a0 + a1x+ · · · anxn) = ca0 + ca1x+ · · ·+ canx
n.

Example 1.1.3 We won’t spoil all the fun, but let’s show Pn satisfies at least
one of the axioms to be a vector space with these operations.

▶ Commutativity of Vector Addition: Let p⃗, q⃗ ∈ Pn for some pos-
itive integer n. Then

p⃗ = a0 + a1x+ · · · anxn and q⃗ = b0 + b1x+ · · · bnxn

for some real numbers a0, . . . , an and b0, . . . , bn. Using the def-
initions above and the property of commutativity for addition of
real numbers, we have

p⃗+ q⃗ = [a0 + a1x+ · · · anxn] + [b0 + b1x+ · · · bnxn]

= (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n

= (b0 + a0) + (b1 + a1)x+ · · ·+ (bn + an)x
n

= [b0 + b1x+ · · · bnxn] + [a0 + a1x+ · · · anxn] = q⃗ + p⃗.

Yay! Vector addition commutes!

Exploration 13 We should really verify all the axioms in Definition 1.1.2 for
Pn. We’ve done one together, so that leaves nine more! For the sake of brevity,
though, let’s walk through a modified version of this exercise.

▶ What is the additive identity in Pn?

▶ What is the additive inverse of the polynomial 5x−3x3+4x7 in P8?

▶ What is the additive inverse of p⃗ = a0 + a1x+ · · · anxn in Pn?

▶ Show that 12(5x−3x3+4x7) = 2(6(5x−3x3+4x7)) by simplifying
both sides separately.



SECTION HIGHLIGHTS 24

▶ Following the specific example above, show that abp⃗ = a(bp⃗) for
any p⃗ ∈ Pn and any a, b ∈ R.

Great! That’s a total of four of the axioms down. Just six more to go!

Note that in the exploration above, we sometimes asked that you work a spe-
cific example before taking on the task of verifying the more general state-
ment. This is a worthwhile problem-solving strategy, and you may find it a
useful starting place whenever you are tasked thusly. Just be sure that you do
not confuse it with showing the general statement. An affirmative example will
not let you conclude the statement holds in general. And yet, what about when
the statement does not hold?

Example 1.1.4 We have now seen some examples of sets with operations
of vector addition and scalar multiplication that we’ve at least claimed are
vector spaces. What does it look like when the set is not a vector space?
Consider again the set Z of integers. We can use the regular addition of
integers for our vector addition and use multiplication of real numbers for
our scalar multiplication. This is not a vector space. Let’s see a property
that fails:

▶ Closure under Scalar Multiplication: When we multiply an in-
teger by a real number, we have no reason to expect the outcome
need be an integer. While this statement is true, a much stronger
statement would involve an actual example where this property
fails. Consider 2 ∈ Z and 1/3 ∈ R. Note that (1/3)2 /∈ Z, so Z is
not closed under this scalar multiplication.

The example of failure used above is a technique called “providing a coun-
terexample,” and it is a very useful way to show one of our properties of a
vector space fails.

Section Highlights

This section is where we encounter one of the two main topics of this text for
the first time, a vector space.

▶ A vector space is a set with elements we call vectors together with
the operations of vector addition and scalar multiplication.

▶ There are 10 properties that a set and operations must satisfy in order
for it to be a vector space. See Definition 1.1.2.

▶ To show one of these properties holds, one must use a general ele-
ments from the set. See Example 1.1.2.

▶ To show one of these properties fails, a specific example of it failing
using elements from the set is sufficient. See Example 1.1.4.



SECTION HIGHLIGHTS 25

▶ A few important examples of real vector spaces:
R, Rn, and Pn for any positive integer, n.



EXERCISES FOR SECTION 1.1 26

Exercises for Section 1.1

1.1.1.For each of the 10 vector space properties, define an operation of vector addition and/or scalar multiplication
on R for which the property fails. Give an explicit example to show the failure.

1.1.2.Give the complete argument that Pn is a vector space.

1.1.3.The complex numbers C are {a+ bi : a, b ∈ R} where i =
√
−1. Verify all the vector space axioms to show

that C is a vector space over the field R.

1.1.4.Below are several operations on R. To keep from confusing them with the standard operations, we’ll use
the symbol ⊞ to denote them. Determine whether these operations obey the commutative and associative
properties.

(a) a⊞ b = a+ 2b for any a, b ∈ R

(b) a⊞ b = ab for any a, b ∈ R

(c) a⊞ b = a+ b+ ab for any a, b ∈ R

(d) a⊞ b = a+ b− 3 for any a, b ∈ R

(e) a⊞ b = a+ b− ab for any a, b ∈ R

1.1.5.Below are several operations on the given set V . To keep from confusing them with the standard operations,
we’ll use the symbol ⊞ to denote them. For each of these operations, determine whether there is an additive
identity (a.k.a zero vector) z⃗ such that x⃗⊞ z⃗ = z⃗ ⊞ x⃗ = x⃗ for any x⃗ ∈ V . If it does exist, what is it?

(a) Let V = R. Define a⃗⊞ b⃗ = a+ 2b for any a⃗, b⃗ ∈ R.

(b) Let V = R. Define a⃗⊞ b⃗ = ab for any a⃗, b⃗ ∈ R.

(c) Let V = R. Define a⃗⊞ b⃗ = a+ b+ ab for any a⃗, b⃗ ∈ R.

(d) Let V = R. Define a⃗⊞ b⃗ = a+ b− 3 for any a⃗, b⃗ ∈ R.

(e) Let V = R2. Define [
a

b

]
⊞

[
c

d

]
=

[
a+ d

b+ c

]
for any a, b, c, d ∈ R.

(f) Let V = R2. Define [
a

b

]
⊞

[
c

d

]
=

[
a+ c− 3

b+ d+ 4

]
for any a, b, c, d ∈ R.



EXERCISES FOR SECTION 1.1 27

(g) Let V = R2. Define [
a

b

]
⊞

[
c

d

]
=

[
ac

b+ d

]
for any a, b, c, d ∈ R.

1.1.6.Note that the additive inverse of x⃗ ∈ V with the operation ⊞ is the unique element i⃗ such that x⃗ ⊞ i⃗ =

i⃗ ⊞ x⃗ = z⃗ where z⃗ is the additive identity. Thus, in order for an element to have an additive inverse, the
set must first have an additive identity. Use your work from the previous exercise to determine whether the
additive identity for the given vectors exists.

(a) Let V = R. Define a⃗⊞ b⃗ = ab for any a⃗, b⃗ ∈ R. If possible, find the additive inverse for 5⃗ and 0⃗.

(b) Let V = R. Define a⃗⊞ b⃗ = a+ b+ ab for any a⃗, b⃗ ∈ R. If possible, find the additive inverse for 5⃗
and −⃗1.

(c) Let V = R. Define a⃗ ⊞ b⃗ = a + b − 3 for any a⃗, b⃗ ∈ R. If possible, find the additive inverse for 5⃗
and 0⃗.

1.1.7.Define a⃗⊞ b⃗ = a+ b− 3 for any a⃗, b⃗ ∈ R. In each of the parts below, we also define a new operation ⊙ for
our scalar multiplication. With this notation, the two distributive properties become:

Distributivity Across Vector Addition k ⊙ (x⃗⊞ y⃗) = (k ⊙ x⃗)⊞ (k ⊙ y⃗)

Distributivity Across Scalar Addition (j + k)⊙ x⃗ = (j ⊙ x⃗)⊞ (k ⊙ x⃗).

Verify whether these properties hold for this vector addition ⊞ and the given ⊙.

(a) Define k ⊙ a⃗ = ka, for any k ∈ R, a⃗ ∈ R.

(b) Define k ⊙ a⃗ = ka− 3, for any k ∈ R, a⃗ ∈ R.

(c) Define k ⊙ a⃗ = ka− 3k + 3, for any k ∈ R, a⃗ ∈ R.

1.1.8.Let’s consider R, with a new operation. Let’s replace the usual vector addition with the operation “⊞” de-
fined by a⊞ b = a+ b+ ab for any a, b ∈ R. Determine whether R is still a vector space with the operation
⊞ for vector addition and the usual scalar multiplication. If it is not, which properties fail?

1.1.9.Let’s consider R, with two new operations. Let’s replace the usual vector addition with the operation “⊞”
defined by a⊞ b = a+ b− 3 for any a, b ∈ R and scalar multiplication defined by k ⊙ a = ka− 3k + 3 for
any k ∈ R and a ∈ R. Determine whether R is still a vector space with the operation ⊞ for vector addition
and the operation ⊙ for scalar multiplication. If it is not, which properties fail?

1.1.10.Let’s consider R2 with a new operation as well. Let’s vector addition with “⊞” defined by[
a

b

]
⊞

[
c

d

]
=

[
a+ d

b+ c

]
for any a, b, c, d ∈ R. Determine whether R2 is still a vector space with the operation ⊞ and the usual scalar
multiplication. If it is not, which properties fail?

1.1.11.Let’s consider P2 with a new operation. Replace vector addition with “⊞” defined by

(a+ bx+ cx2)⊞ (d+ ex+ fx2) = (b+ 2cx) + (e+ 2fx) = (b+ e) + 2(c+ f)x.



EXERCISES FOR SECTION 1.1 28

Determine whether P2 is still a vector space with the operation ⊞ and the usual scalar multiplication. If it is
not, which properties fail?

1.1.12.Let V = {a : a ∈ R, a > 0} = (0,∞). Verify V is a vector space over R with vector addition given by
a⃗ ⊞ b⃗ = a⃗b (vector addition is defined as real multiplication as positive numbers) and scalar multiplication
given by ka⃗ = ak (scalar multiplication is defined as real exponentiation) for any k ∈ R, a⃗, b⃗ ∈ V .

1.1.13.Let V = {a : a ∈ R, a > 0} = (0,∞). As in the previous exercise, let vector addition be given by
a⃗ ⊞ b⃗ = a⃗b, but now, let scalar multiplication be given by ka⃗ = ka for any k ∈ R, a⃗, b⃗ ∈ V . Determine
whether this is a vector space.

1.1.14.Let V be the interval (0, 1) on the real numbers. Define vector addition as a⃗⊞ b⃗ = a⃗b for a⃗, b⃗ ∈ V and scalar
multiplication as ka⃗ = ak for any k ∈ R and a⃗ ∈ V . This is not a vector space over R. List each of the
properties of a vector space that fail.

1.1.15.Let X = R ∪ ,, where , is a new number referred to as “unity face.” For all x ∈ X , define x + , =

, + x = , and x(,) = ,(x) = ,. With the usual addition and multiplication operations, is X a vector
space?



CONNECTION TO RN (FOR SMALL N ). 29

1.2 Arrow Vectors and Rn for Small n

Many of you have seen vectors before, whether in physics, calculus, or perhaps
your favorite animated movie. However, the definition you saw was perhaps
a bit different. You likely learned that a vector is some quantity with both
magnitude and direction, such as velocity. Well, does this match up with what
we’ve said here about vector spaces? Indeed, it would be very embarrassing if
it did not.

10:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Hey! What are all these
pictures doing in our margin?

10

v⃗

y⃗

x⃗
w⃗

u⃗

Figure 1.1: Here v⃗ and u⃗ are arrow vectors.
However, w⃗, x⃗, and y⃗ are not.

If we let a vector be a quantity with magnitude and direction, it is natural to
represent this with an arrow. The arrow points in the direction desired, and it
has a length that can be used to represent its magnitude. For now, let’s call this
an arrow vector. See Figure 1.1 to the side.

v⃗

u⃗

v⃗ + u⃗

Figure 1.2: Here v⃗ and u⃗ are added to form
the new arrow vector v⃗ + u⃗, identified with
the dashed arrow line.

Thus, we would like to establish that an arrow vector is actually an element
in some vector space over R, as we defined in the previous section. For these
arrow vectors to form a vector space over R so that the set, V , we are dealing
with is the set of all arrow vectors, we need to have a way to add them, and we
need to have a concept of scalar multiplication with scalars from R.

u⃗

v⃗

u⃗

v⃗

(v⃗ + u⃗) + w⃗

v⃗ + (u⃗+ w⃗)

w⃗

w⃗

u⃗+ w⃗

v⃗ + u⃗

Figure 1.3: Here v⃗, u⃗, and w⃗ are added to
form the new arrow vector v⃗+ u⃗+ w⃗, ideni-
fied with the dashed arrow line, two ways to
show this vector addition is associative.

First of all, since all these arrows are doing is recording magnitude and direc-
tion, their placement on this page does not matter. Thus, an arrow vector can
be moved to a new location without changing the arrow vector itself. Thus, a
natural addition of the vectors v⃗ and u⃗ is to first follow along v⃗ and then from
there, follow along u⃗. As seen in Figure 1.2, the sum is then the arrow vector
drawn from where you started to where you ended.

Now, does this addition satisfy our axioms for addition in a vector space?
We see quickly that it is closed since the result is a new arrow vector. It is
also associative and commutative from the diagrams in Figures 1.3 and 1.4
respectively. What about inverses and the zero vector? The inverse of a vector
should just reverse direction or put the arrow on the other end as in Figure
1.5. The zero vector is pictured in Figure 1.6; it is very hard to see as it has
magnitude 0. If you zoom in a lot, you might think that you’ll be able to see it.
However, even when you zoom in a lot, it still has magnitude 0, so it will be
very hard (yes, impossible) to see. Some people like to use a dot for the zero
vector, but we find our convention to be more accurate.

What should scalar multiplication be? Well, we know it must satisfy repeated
addition such as 2v⃗ = v⃗ + v⃗. The right hand side of this gives an arrow
vector that is twice as long as v⃗ but still in the same direction. Since our scalar
multiplication must agree with this, we will define it to be a scaling of the
length. Thus, αv⃗ is an arrow vector in the direction of v⃗, but of length α times
the length of v⃗ as in Figure 1.7. Convince yourself that this satisfies the rest of
the axioms.

Connection to Rn (for small n).

Now that we’ve established that our arrow vectors actually form a vector space,
how does this relate to Rn for small

11:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

We define “small” in this
context to be 1, 2, or 3.

11 n? Well, if we include the restriction that
our arrow vectors must begin at the origin in R, R2, or R3, then it becomes



CONNECTION TO RN (FOR SMALL N ). 30

fairly straightforward to show that this is equivalent to how we’ve already
defined the vector spaces R, R2, and R3!

u⃗+ v⃗
v⃗

v⃗ + u⃗ v⃗

u⃗

u⃗

Figure 1.4: Here vector addition is shown to
be commutative; this is sometimes, unimag-
inatively and with overstated importance,
called the Parallelogram Law.

−v⃗v⃗

Figure 1.5: This is a vector v⃗ and its inverse
−v⃗.

Figure 1.6: The zero vector is the arrow with
no magnitude; it is pictured above. It is very
hard to see as it has magnitude 0.

v⃗

αv⃗

−αv⃗

Figure 1.7: Here v⃗ is scalar multiplied by α

and −α for some positive scalar α.

Let us try this with R2, for example. If the arrow vector v⃗ begins at the origin
and extends to the point (x, y) ∈ R2, then we can call this the column vector[

x

y

]
.

Since all vectors begin at the origin, the tip of the arrow vector determines the
vector itself, so this naturally defines a relation from the set of points in R2

to the set of arrows in the plane beginning at the origin. Similarly, one could
define a relation from the set of arrows in the plane beginning at the origin to
the set of points in R2. We’ll get into the extent to which these sets are “the
same” later, but for now, we strongly suspect you’ll agree that these sets are
similar enough to think of them interchangeably.

Exploration 14 Let’s do an example here to see how these arrow vectors agree
with R2.

▶ Draw the vector
[

3

2

]
as described above on the grid below. Include

labels.

▶ Then, from the arrow tip of the vector you just drew, go up one square
and to the left 2.

▶ Draw the arrow vector from the origin to the place you ended above.

This is the sum of the vectors
[

3

2

]
and

[
−2
1

]
, so you should

have drawn the vector
[

1

3

]
. Did you?

Exploration 15 We haven’t mentioned scalar multiplication. Let’s do an ex-
ample with that one.



MORE GEOMETRY WITH RN 31

▶ Draw the vector v⃗ =

[
3

4

]
on the grid provided.

▶ Now, draw a line from the tip of the arrow down to the positive x-
axis. This gives you a right triangle, and you can find the length of v⃗
using the Pythagorean theorem.12 12:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

If you have forgotten what
knowledge our good friend Pythagoras
imparted, you should Google it. Then
write an essay about how wonderful it is
so that you never forget again.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Or maybe a tattoo would be bet-
ter. . .

▶ Now use the Pythagorean theorem again and compute the length of

2v⃗ =

[
6

8

]
. Did you get twice the length of v⃗?

In that last exploration, we used the Pythagorean theorem to find the length of
our vectors when viewed as vectors in R2. Well, what about when they’re in
Rn? Although we no longer have our handy arrow vectors for visualization in
Rn for n ≥ 4, we do actually have a way to discuss distances and lengths, so
that some of the geometry that feels natural in R2 and R3 can be extended to
these other cases. The next section will set this up for us.

More Geometry with Rn

As you’ll recall, we gave up our notion of multiplication between two vectors
in favor of scalar multiplication when we defined vector spaces in Definition
1.1.2. That doesn’t stop people from trying to “multiply” two vectors anyway;
there are a couple of different notions of “multiplication of vectors” out there.
At least one of them ends up being pretty useful:

Definition 1.2.1 The inner product is the function · : Rn×Rn → R defined
by relating two vectors to the real number given by summing the products
of like components of the two vectors. That is, given v⃗, u⃗ ∈ Rn, we denote



MORE GEOMETRY WITH RN 32

the inner product of v⃗ and u⃗ as v⃗ · u⃗, given by

v⃗ · u⃗ =

 v1
...
vn

 ·
 u1

...
un

 = v1u1 + · · ·+ vnun =

n∑
i=1

viui.

Inner product is also synonymously called scalar product13 and dot prod- 13:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This was either named by
codomain enthusiasts or Professor Igna-
cious J. Scalar whose surname is derived
from the Spanish infinitive that trans-
lates roughly as “to cover with scales,
weigh, and then climb”.

uct.14

14:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This term was coined
by. . . um. . . some one named Dot?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Do better, Ricky.

Exploration 16 Let’s see this in action! Let

v⃗ =

 0

1

2

 , u⃗ =

 2

0

3

 , and w⃗ =

 −11
4


be vectors in R3. Then v⃗ · u⃗ = 0+ 0+ 6 = 6 and u⃗ · w⃗ = −2 + 0+ 12 = 10.
Find v⃗ · w⃗.

Exploration 17 Let v⃗ =

[
1

2

]
and u⃗ =

 3

1

1

. Why doesn’t v⃗ · u⃗ make

sense?

Exploration 18 Is the inner product commutative? That is, for vectors v⃗ and
u⃗ in Rn, is it always true that v⃗ · u⃗ = u⃗ · v⃗? Compute an example to illustrate
your conclusion.

It turns out inner product has a lot of nice properties. Since it’s used to define
length, that’s probably a good thing.

Theorem 1.2.1 Let v⃗, u⃗, and w⃗ be vectors in the Rn, and let a be a scalar.
Then

(a) v⃗ · u⃗ = u⃗ · v⃗
(b) (v⃗ + u⃗) · w⃗ = v⃗ · w⃗ + u⃗ · w⃗
(c) (av⃗) · u⃗ = a(v⃗ · u⃗) = v⃗ · (au⃗)
(d) u⃗ · u⃗ ≥ 0 with u⃗ · u⃗ = 0 if and only if u⃗ = 0⃗.

Exploration 19 Let’s walk through the proof of Theorem 1.2.1. We will need
general forms of the vectors v⃗, u⃗, and w⃗ for this, so let

v⃗ =

 v1
...
vn

 , u⃗ =

 u1

...
un

 , and w⃗ =

 w1

...
wn

 .



MORE GEOMETRY WITH RN 33

(a) First, let’s show that, as you suspected, the inner product is commu-
tative.

v⃗ · u⃗ =v1u1 + · · ·+ vnun

=u1v1 + · · ·+ unvn = u⃗ · v⃗

(b) For this one, first, compute (v⃗ + u⃗) · w⃗.

Now, compute v⃗ · w⃗ + u⃗ · w⃗. (Then, they should be the same!)

(c) Note that cv⃗ =

 cv1
...

cvn

. Compute (cv⃗) · u⃗.

Now, compute c(v⃗ · u⃗).

Lastly, compute v⃗ · (cu⃗).

(d) Note that u⃗·u⃗ = u2
1+· · ·+u2

n. Why must this always be nonnegative?

Now, for the last part, suppose u⃗ · u⃗ = u2
1 + · · · + u2

n = 0. Then,
each of the ui must be zero for 1 ≤ i ≤ n. Thus, u⃗ = 0⃗. Also, if we
compute 0⃗ · 0⃗, we see this must be 0.

Definition 1.2.2 Length (or norm) is the function ∥ · ∥ : Rn → R defined
for any v⃗ ∈ Rn as

∥v⃗∥ =
√
v⃗ · v⃗ =

√
v21 + · · ·+ v2n.

A vector v⃗ ∈ Rn is said to be a unit vector (or to have unit length) if
∥v⃗∥ = 1.

If we’re thinking of our vectors in Rn as having the two properties, magnitude
and direction, then the inner product gives us a way to identify the magnitude
(that is, length) of a vector. Unit vectors, having length 1, are a nice way to
look at just the direction of a vector. The process of making a nonzero vector
into a unit vector by dividing it by its length is sometimes called normalizing
a vector.

Theorem 1.2.2 For any nonzero vector v⃗ ∈ Rn,
v⃗

∥v⃗∥
is a unit vector.



MORE GEOMETRY WITH RN 34

PROOF. ∥∥∥∥ v⃗

∥v⃗∥

∥∥∥∥ =

√
v⃗

∥v⃗∥
· v⃗

∥v⃗∥
=

√
v⃗ · v⃗√
∥v⃗∥2

=
∥v⃗∥
∥v⃗∥

= 1.

□

Exploration 20 Let v⃗ =

 1

2

2

.

▶ Find the length of the vector v⃗, denoted by ∥v⃗∥.

▶ Find a vector with the same direction as v⃗ but with length 1.

▶ Find a vector with the same direction as v⃗ but with length 5.

We can think of distance between points in Rn (for n ≤ 3). There are some
formulae you may have seen:

▶ For x, y ∈ R, the distance between x and y is

d(x, y) =
√
(x− y)2 = |x− y|,

which is just the usual absolute value in R.

▶ For x = (x1, x2), y = (y1, y2) ∈ R2, we have

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

This is sometimes called “the distance formula”.

▶ For x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3, we have

d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

Yeah, there’s a pattern there. This is because these are all specific versions of
the same formula. We state it below for vectors, rather than for points.

Definition 1.2.3 Distance is the function dist : Rn × Rn → R defined by
relating two vectors to the length of their difference. That is, given v⃗, u⃗ ∈
Rn, we denote the distance between v⃗ and u⃗ as dist (v⃗, u⃗) given by

dist (v⃗, u⃗) = ∥v⃗ − u⃗∥.

One of the immediate benefits of Definition 1.2.3 is that it works in Rn for
larger15 n. Indeed, it is difficult to imagine what distance looks like or means 15:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

We define “larger” in this con-
text to be an integer greater than 3.in R7. We invite you to try, just don’t spend too much time trying. A better use

of your time would be to make sure Definition 1.2.3 is really the same thing as
our notion of distance between points in Rn for small n.



SECTION HIGHLIGHTS 35

Section Highlights

The main idea of this section is to talk about some geometric properties for the
real vector spaces Rn.

▶ A vector space can be formed from a set of arrows in either R2 or
R3 using carefully chosen definitions for vector addition (Figure 1.2)
and scalar multiplication (Figure 1.7).

▶ An arrow vector starting at the origin in R2 can be associated with
the vector in R2 defined by the coordinates of the point at the tip of
the arrow. The same can be done in R3. These can be used to view
arrow vectors as a graphical representation of vectors in R2 and R3.

▶ The length of a vector in R2 or R3 is the actual length of the associ-
ated arrow vector.

▶ The distance between two vectors in R2 (or R3) is the distance be-
tween the tips of the two arrow vectors starting at the origin.

▶ This geometry can be generalized to Rn with the help of an inner
product (dot product). See Definition 1.2.1.

▶ The dot product allows us to extend geometric concepts like the
length of a vector (Definition 1.2.2) and the distance between two
vectors (Definition 1.2.3) to the vector space Rn.



EXERCISES FOR SECTION 1.2 36

Exercises for Section 1.2

1.2.1.Draw the vector w⃗1 + w⃗2 on the grid below.

w⃗2

w⃗1

1.2.2.Draw the vector w⃗1 − w⃗2 on the grid below.

w⃗2

w⃗1

1.2.3.Draw the vector r⃗1 + r⃗2 on the grid below.

r⃗2r⃗1

Then, find the column vector representations of r⃗1 and r⃗2 in R2. Use these to find r⃗1 + r⃗2. Does this agree
with what you drew?



EXERCISES FOR SECTION 1.2 37

1.2.4.Draw the vector z⃗1 − z⃗2 on the grid below.

z⃗1 z⃗2

Then, find the column vector representations of z⃗1 and z⃗2 in R2. Use these to find z⃗1 − z⃗2. Does this agree
with what you drew?

1.2.5.Let

a⃗ =

[
1

2

]
, b⃗ =

[
−3
4

]
, and c⃗ =

[
5

−6

]
.

Note that a⃗, b⃗, c⃗ ∈ R2, which is a vector space. Simplify the following expressions down to a single vector,
and indicate which properties of Definition 1.1.2 you use at each step.

(a) 3(⃗a− 2⃗b) + 2(⃗b+ c⃗)

(b) 5(c⃗+ 2⃗b)− 2(⃗b− 3a⃗) + 3(⃗a− 3⃗b− 2c⃗)

Sketch each term of each expression (for example, 3(⃗a− 2⃗b) and 2(⃗b+ c⃗) in part a) on the same grid with the
simplified vector.

1.2.6.Use u⃗1 and u⃗2 from the picture below to answer the questions.

u⃗2

u⃗1

(a) Find ||u⃗1|| and ||u⃗2||.

(b) Find a unit vector in R2 in the direction of u⃗1.

(c) Find a vector in R2 in the direction of u⃗1 with length 7.



EXERCISES FOR SECTION 1.2 38

1.2.7.Use v⃗1 and v⃗2 from the picture below to answer the questions.

v⃗1 v⃗2

(a) Find ||v⃗1|| and ||v⃗2||.

(b) Find a unit vector in R2 in the direction of v⃗2.

(c) Find a vector in R2 in the direction of v⃗2 with length 2.

1.2.8.Let v⃗ =

 1

2

−2

 and u⃗ =

 3

1

1

.

(a) Find v⃗ · u⃗.

(b) Find v⃗ · (2u⃗).

(c) Find (2v⃗) · u⃗.

(d) Find a nonzero vector w⃗ for which v⃗ · w⃗ = 0.

1.2.9.Let v⃗ =


1

2

−2
0

 and u⃗ =


1

0

1

2

.

(a) Find v⃗ · u⃗.

(b) Find a nonzero vector w⃗ for which v⃗ · w⃗ = 0.

1.2.10.Let’s define a different product between vectors in R3. Let this product, denoted by ⊠, be given by v1
v2
v3

⊠

 u1

u2

u3

 = 2v1u1 + 4v2u2 + 2v3u3.

Determine whether each property in Theorem 1.2.1 holds for ⊠.



EXERCISES FOR SECTION 1.2 39

1.2.11.Let’s again define a different product between vectors in R3. Let this product, denoted by /, be given by v1
v2
v3

/

 u1

u2

u3

 = v1u3 + v2u2 + v3u1.

Determine whether each property in Theorem 1.2.1 holds for /.



LINEAR COMBINATIONS AND SPAN 40

1.3 Linear Independence and Span

Let’s detour for a minute and talk about chess. A chessboard is an 8 by 8 grid,
and there are several different pieces with rules about how they can move. For
instance, the rook can move forward, backward, left or right, but not diago-
nally. The pawn can only move forward or diagonally forward if it is capturing
another piece. Now, we come to the reason for our detour. Which spaces on
the board can be reached by moving any piece using its specific rules? For
the rook, we can reach any space on the board by moving up and over in the
grid pattern. However, for the pawn, the spaces behind its starting space are
unobtainable since it can only move forward.

Now, let’s go back to vector spaces. Suppose we start at a vector v⃗ in a vector
space V , and we are allowed to use our operations of scalar multiplication and
vector addition to “move around” the vector space with v⃗. What other vectors
can we obtain this way? What if we are only allowed to add certain other
vectors from V ? This sounds fun like chess, right?16 16:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

One of the authors finds this
much more fun than chess.

Linear Combinations and Span

Since vector spaces are closed under vector addition and scalar multiplication,
we can do both of these operations as many times as we want to vectors in a
vector space V and still end up with a vector in V . This is so convenient that
it gets its own name and definition:

Definition 1.3.1 Let V be a vector space, v⃗1, . . . , v⃗p ∈ V , and a1, . . . , ap ∈
R. The vector in V

(1.8) a1v⃗1 + · · ·+ apv⃗p

is called a linear combination of the vectors v⃗1, . . . , v⃗p with weights (or
scalars) a1, . . . , ap.

Exploration 21 Consider the vectors

v⃗1 =

 1

2

−1

 and v⃗2 =

 1

0

1

 .

Now pick your two favorite real numbers. Did you pick 3 and 4? Great! Here’s
a linear combination of v⃗1 and v⃗2:

3v⃗1 + 4v⃗2 = 3

 1

2

−1

+ 4

 1

0

1

 =

 3 + 4

6 + 0

−3 + 4

 =

 7

6

1

 .

▶ Compute the linear combination 4v⃗1 + 3v⃗2.

Suppose we are instead given a vector and asked whether or not it is a linear
combination of some set of vectors.17 How should this be handled? Well, we 17:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This is just like our chess dis-
cussion! Which spaces can be reached
with the allowed “moves?”



LINEAR COMBINATIONS AND SPAN 41

would need to find the appropriate scalars to make it a linear combination or
show that no such scalars are possible. Let’s see an example of this.

▶ Is x⃗ =

 3

4

−1

 a linear combination of v⃗1 and v⃗2?

Well, if it is, then there exist a, b ∈ R such that av⃗1 + bv⃗2 = x⃗. This
means

a

 1

2

−1

+ b

 1

0

1

 =

 3

4

−1


Using the definitions of scalar multiplication and vector addition for
R3, we can see that this means a+ b

2a

−a+ b

 =

 3

4

−1

 .

This gives us equations a+ b = 3, 2a = 4 and −a+ b = −1. These
solve to get a = 2 and b = 1. Thus,

2

 1

2

−1

+ 1

 1

0

1

 =

 3

4

−1

 ,

which is true!

▶ Is y⃗ =

 1

1

1

 a linear combination of v⃗1 and v⃗2?

Again, if it is, there exist a, b ∈ R such that av⃗1 + bv⃗2 = y⃗. This
means

a

 1

2

−1

+ b

 1

0

1

 =

 1

1

1


Just like before, this gives us equations. Here, they are a + b = 1,
2a = 1 and −a + b = 1. However, unlike last time, these equations
have no common solution; note that from the second equation, we
have a = 1/2, which implies b = 1/2 from the first equation, but
these values do not work in the third equation. Thus, we conclude
that y⃗ is not a linear combination of v⃗1 and v⃗2.

▶ Is z⃗ =

 1

1

0

 a linear combination of v⃗1 and v⃗2?



LINEAR COMBINATIONS AND SPAN 42

Example 1.3.1 Now that we’ve seen examples in R3, let’s see how things
change in P3. Consider the vectors

p⃗1 = 1 + x, p⃗2 = x, p⃗3 = x3

in P3.
▶ Is q⃗ = 7−x+9x3 a linear combination of p⃗1, p⃗2, and p⃗3? Yes! To

see that, we should solve for a, b, c ∈ R such that ap⃗1+bp⃗2+cp⃗3 =

q⃗. That is,

a(1 + x) + b(x) + c(x3) = 7− x+ 9x3.

Rearranging the left hand side gives us

a+ (a+ b)x+ cx3 = 7− x+ 9x3.

Solving for these scalars then gives us a = 7, b = −8, and c = 9.
Then

q⃗ = 7− x+ 9x3 = 7p⃗1 − 8p⃗2 + 9p⃗3

is a linear combination of the three vectors p⃗1, p⃗2, and p⃗3.
▶ Now, let’s consider

v⃗ = 7− x+ x2 + 9x3.

Is v⃗ a linear combination of p⃗1, p⃗2, and p⃗3? Nope! No sum or
rescaling of p⃗1, p⃗2, and p⃗3 will produce the x2 term in v⃗.

We’ve spent a bit of time now asking whether or not a vector is a linear com-
bination of some set of vectors, so let’s just formalize this a bit.

Definition 1.3.2 Let V be a vector space and {v⃗1, . . . , v⃗p} ⊆ V . The span
of v⃗1, . . . , v⃗p, denoted Span {v⃗1, . . . , v⃗p}, is the set of all linear combina-
tions of v⃗1, . . . , v⃗p. That is,
(1.9)

Span {v⃗1, . . . , v⃗p} = {a1v⃗1 + · · ·+ apv⃗p : ai ∈ R for i = 1, . . . , p} .

Exploration 22 Is x⃗ =

 3

4

−1

 in Span


 1

2

−1

 ,

 1

0

1

?

Hint: This is another way to ask a question we’ve already asked, so you should
be able to answer it by looking back at a previous example.

Example 1.3.2 Let’s revisit the vectors in Example 1.3.1. That is, consider
again the vectors

p⃗1 = 1 + x, p⃗2 = x, p⃗3 = x3

in P3. Now, what is Span {p⃗1, p⃗2, p⃗3}? Well, let’s figure it out.

Span {p⃗1, p⃗2, p⃗3} = {ap⃗1 + bp⃗2 + cp⃗3 : a, b, c ∈ R}

= {a(1 + x) + b(x) + c(x3) : a, b, c ∈ R}

= {a+ (a+ b)x+ cx3 : a, b, c ∈ R}.



LINEAR COMBINATIONS AND SPAN 43

Note here that we have coefficients a, a+ b, and c. There is obviously some
relationship between a and a+ b, but in this case, the relation doesn’t really
matter. Because b is not related to a or c and can be any real number, we
could actually replace a + b with a new variable d = a + b that can be any
real number. Then we get

Span {p⃗1, p⃗2, p⃗3} = {a+ dx+ cx3 : a, d, c ∈ R}.

This makes it clear that the span is all polynomials in P3 without an x2 term.

We’ve seen in these explorations and examples how to determine whether a
specific vector is or is not in the span of some set of vectors. Then, this last
example gave us some idea about how to compute span algebraically. Now,
let’s talk a bit about the geometry and the bigger picture of what’s in a span.

Example 1.3.3 First of all, what does the span of a single vector “look like?”
Well, to picture anything, we should really think about the case of R2 or R3.
Since R2 is much easier to draw, let’s start there. Let’s look at the vector

v⃗ =

[
1

1

]
. Then Span {v⃗} is just the set of scalar multiples of v⃗, which

really forms the line that contains the vector v⃗. See Figure 1.8.

Span {v⃗}

v⃗

Figure 1.8: The single vector v⃗ is shown with
a solid arrow line, and its span, Span {v⃗} is
shown with a dashed arrow line.

In the example above, note that we chose a nonzero vector v⃗. What’s Span
{
0⃗
}

?

Well, it’s just 0⃗ since any scalar multiple of 0⃗ is just again 0⃗. Now, let’s see an
example with two nonzero vectors in R3.

Example 1.3.4 Here are two vectors

u⃗1 =

 1

0

2

 and u⃗2 =

 2

0

1


in R3. Then

Span {u⃗1, u⃗2} = {a1u⃗1 + a2u⃗2 : ai ∈ R}

=

a1

 1

0

2

+ a2

 2

0

1

 : ai ∈ R


▶ First, note that a valid choice for a2 is 0. Then Span {u⃗1, u⃗2} con-

tains any scalar multiple of u⃗1, including u⃗1 itself. Geometrically,
this is the line containing u⃗1. It’s also Span {u⃗1}! The same can
be done for u⃗2; refer to Figure 1.9.

▶ What should we expect for the span of two vectors then? Good
question. Start with Span {u⃗1} = {a1u⃗1 : a1 ∈ R}; to get
Span {u⃗1, u⃗2} = {a1u⃗1 + a2u⃗2 : ai ∈ R}, we need to add any
scalar multiple of u⃗2 to any scalar multiple of u⃗1. This means
we’re going to get Span {u⃗2} through any point of Span {u⃗1}; in
Figure 1.9, this is the red lines through any point on one of the blue
lines, yielding the plane containing the two vectors u⃗1 and u⃗2.



LINEAR COMBINATIONS AND SPAN 44

Span {u⃗1}

Span {u⃗2}

u⃗2

u⃗1

u⃗1

u⃗2

Figure 1.9: In the first image, Span {u⃗1} is the dashed line, and Span {u⃗2} is the dotted line; the second is Span {u⃗1, u⃗2}
.

Here’s another fun question. Are either of the vectors 1

1

2

 and

 2

1

1


in Span {u⃗1, u⃗2}? Nope. Note that any linear combination of u⃗1 and u⃗2

will have a zero in the second component. Neither of the given vectors have
zero in the second component, so neither is a linear combination of u⃗1 and
u⃗2. Thus, neither is in Span {u⃗1, u⃗2}.

Is the span of two vectors in R3 always a plane? Again, good question. If one
of your vectors is the zero vector, then you just get the span of the other vector,
so the answer is firmly “no.” Ok. Fine. What about the span of two nonzero
vectors in R3? Is that always a plane?



LINEAR INDEPENDENCE 45

Example 1.3.5 Here are two vectors

v⃗1 =

 1

0

2

 and v⃗2 =

 2

0

4

 .

in R3. Note that v⃗2 is a scalar multiple of v⃗1. Specifically, 2v⃗1 = v⃗2. Watch
what happens now to the span of these two vectors:

Span {v⃗1, v⃗2} = {a1v⃗1 + a2v⃗2 : a1, a2 ∈ R}
= {a1v⃗1 + a2(2v⃗1) : a1, a2 ∈ R}
= {a1v⃗1 + 2a2v⃗1 : a1, a2 ∈ R}
= {(a1 + 2a2)v⃗1 : a1, a2 ∈ R}
= {av⃗1 : a ∈ R} = Span {v⃗1} .

Here, we used the fact that any a ∈ R can be realized as a1 + 2a2 for
a1, a2 ∈ R. Note that this is equivalent to showing {a1 +2a2 : a1, a2 ∈ R}
is equal to R.
What does this mean for the span? Since v⃗2 is a scalar multiple of v⃗1, there
is redundancy in the span of the vectors. Thus, the span of these vectors will
form a line, not a plane.

In the example above, the fact that one vector was a scalar multiple of the other
gave us redundancy, so we were able to more efficiently write Span {v⃗1, v⃗2}
as Span {v⃗1}. We could also have written it as Span {v⃗2}. When can we not
do this? We definitely can’t remove all the vectors, so is there a condition that
says you can’t remove a vector?

Linear Independence

Yes! This one! This one! Notions of dependence and independence between
vectors can be used to detect the kind redundancy (or the lack of it) we saw in
the previous example.

Definition 1.3.3 A set of vectors {v⃗1, . . . , v⃗n} ⊆ V is said to be linearly
independent if

(1.10) a1v⃗1 + · · ·+ anv⃗n = 0⃗

only when a1 = · · · = an = 0. The set {v⃗1, . . . , v⃗n} ⊆ V is said to be
linearly dependent if there are scalars a1, . . . , an ∈ R, not all 0, such that

(1.11) a1v⃗1 + · · ·+ anv⃗n = 0⃗.

Before we explore how this affects the span of a set of vectors, let’s spend
some time getting comfortable with the definition.

Example 1.3.6 Consider the vectors

v⃗1 =

 2

0

1

 , v⃗2 =

 1

1

0

 , and v⃗3 =

 −11
0

 .



LINEAR INDEPENDENCE 46

Is the set {v⃗1, v⃗2, v⃗3} linearly independent or linearly dependent? To answer
this, suppose there exist scalars a, b, c ∈ R such that av⃗1 + bv⃗2 + cv⃗3 = 0⃗.
If we can find nonzero a, b, and c, then we know they are dependent. If we
cannot, then they are independent. Let’s try to find them!

a

 2

0

1

+ b

 1

1

0

+ c

 −11
0

 =

 0

0

0

 .

This leads us to the equations 2a+ b− c = 0, b+ c = 0, and a = 0. These
equations have the unique solution a = b = c = 0, so the set is linearly
independent.

Example 1.3.7 Let’s replace v⃗3 above with a new vector we’ll call v⃗4 and
consider the vectors

v⃗1 =

 2

0

1

 , v⃗2 =

 1

1

0

 , and v⃗4 =

 4

2

3

 .

Now, is the set {v⃗1, v⃗2, v⃗4} linearly independent or linearly dependent? Sup-
pose that a, b, c ∈ R are scalars such that av⃗1 + bv⃗2 + cv⃗4 = 0⃗. That is,

a

 2

0

1

+ b

 1

1

0

+ c

 4

2

1

 =

 0

0

0

 .

This gives us the equations 2a + b + 4c = 0, b + 2c = 0, and a + c = 0.
The latter two simplify to give b = −2c and a = −c. Substituting these
into the first equation gives us 0 = 0, which is of course true but seemingly
unhelpful. However, recall that if we get an equation like 0 = 0, this often
suggests that there are multiple solutions, and we can try to find one by
choosing a value for one of the variables. If we choose c = 1, we will
have a = −1 and b = −2. We can quickly check that this works to give
us a solution to av⃗1 + bv⃗2 + cv⃗4 = 0⃗ where the scalars are nonzero, and
therefore, the set is linearly dependent. Note here that we could have made
a different choice for c and found a different solution.

Exploration 23 Now it’s your turn! Here are three vectors. Are they linearly
independent or linearly dependent?

u⃗1 =

 1

0

1

 , u⃗2 =

 −11
0

 , and u⃗3 =

 0

1

1

 .

Exploration 24 Let’s explore the situation when we have a set with two vec-
tors in it.



LINEAR INDEPENDENCE 47

▶ Let

v⃗1 =

 1

2

3

 , v⃗2 =

 3

6

9

 , v⃗3 =

 −20
0

 , v⃗4 =

 0

0

0

 .

Now, determine whether the following sets are linearly independent
or linearly dependent. Hint: exactly two of these sets are linearly
dependent.

(a) {v⃗1, v⃗2}

(b) {v⃗1, v⃗3}

(c) {v⃗1, v⃗4}

▶ Let V be a vector space and u⃗, v⃗ ∈ V . Is there an easy way to tell
if {u⃗, v⃗} is a linearly independent set? In other words, is there an
advantage to only dealing with two vectors when determining linear
independence?

▶ Above, the vector v⃗4 is the zero vector in R3. Can the zero vector
ever be included in a linearly independent set?

Exploration 25 Consider the vectors

v⃗1 =

 1

−1
3

 , v⃗2 =

 1

0

4

 , v⃗3 =

 −21
1

 , v⃗4 =

 1

0

0

 .

▶ We can write v⃗1 as a linear combination of v⃗2, v⃗3, and v⃗4. To do this,
solve for a, b, c ∈ R so that 1

−1
3

 = a

 1

0

4

+ b

 −21
1

+ c

 1

0

0

 .



LINEAR INDEPENDENCE 48

▶ Now, rearrange to see that v⃗1− av⃗2− bv⃗3− cv⃗4 = 0⃗. What does this
tell us about the set {v⃗1, v⃗2, v⃗3, v⃗4}?

Did you say the vectors are linearly dependent? That is correct!!18 This works 18:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Confetti!! Picture lots of col-
orful confetti!in general and gives us another way to think about linear dependence. . . Now,

let’s prove it!

Theorem 1.3.1 A set {v⃗1, . . . , v⃗p} of two or more vectors, is linearly de-
pendent if and only if one of the vectors is a linear combination of the other
vectors.

The “if and only if” bit means this is a biconditional statement. P if and only if
Q means precisely the following two things: P implies Q and Q implies P .19 19:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Biconditional statements are
great. It’s a logical two-for-one deal. In
one statement, you get two logical im-
plications!

This means that these conditions are logically equivalent. so we can use this
as a test of dependence/independence. This is fairly common in mathematics;
an “if and only if” is usually a vehicle for an alternative way of thinking about
something.

PROOF. Suppose {v⃗1, . . . , v⃗p} is a linearly dependent set. Then there are
weights a1, . . . , ap ∈ R not all zero such that

a1v⃗1 + · · ·+ apv⃗p = 0⃗.

We can assume without loss of generality20 that it is the first weight that is 20:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

“Without loss of generality”
(sometimes abbreviated WLOG) means
we are making a new, specific assump-
tion that does effect the generality of the
proof process. It often involves simply
reordering or relabelling things.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Good point, RIcky, but did you no-
tice why we were able to assume one of
our scalars was nonzero?

nonzero, so a1 ̸= 0. Thus,

a1v⃗1 = −a2v⃗2 − · · · − apv⃗p.

Since a1 ̸= 0, we may multiply both sides of the equation by 1/a1, so

v⃗1 =
−a2
a1

v⃗2 + · · ·+
−ap
a1

v⃗p.

Thus, v1 is a linear combination of the other vectors.

Now suppose one of the vectors in the set {v⃗1, . . . , v⃗p} is a linear combination
of the other vectors. Again, we may assume without loss of generality that
the guilty vector is the first one; that is, v1 is a linear combination of the other
vectors. Then

v⃗1 = a2v⃗2 + · · ·+ anv⃗p.

We may rewrite this as

v⃗1 − a2v⃗2 − · · · − anv⃗p = 0⃗.

The weight on v⃗1 is not zero, so by definition, {v⃗1, . . . , v⃗p} is a linearly de-
pendent set. □

With this theorem in hand, we are ready now to talk about how linear indepen-
dence affects our computations of the span of a set of vectors.



MORE SPAN 49

More Span

Let’s start small, but not too small. Three vectors should be enough. Suppose
{v⃗1, v⃗2, v⃗3} is a linearly dependent set of vectors in a vector space V . Then
by Theorem 1.3.1, we know one of these vectors can be written as a linear
combination of the others. For our purposes, it’s okay to suppose that v⃗1 is a
linear combination of v⃗2 and v⃗3. That is,

v⃗1 = bv⃗2 + cv⃗3

for some b, c ∈ R.21 Now, let’s see how this connects to span. 21:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It’ll be clear in just a second
why we skipped a. . .

Span {v⃗1, v⃗2, v⃗3} = {a1v⃗1 + a2v⃗2 + a3v⃗3 : a1, a2, a3 ∈ R}
= {a1(bv⃗2 + cv⃗3) + a2v⃗2 + a3v⃗3 : a1, a2, a3 ∈ R}
= {(a1b+ a2)v⃗2 + (a1c+ a3)v⃗3 : a1, a2, a3 ∈ R}
= {d1v⃗2 + d2v⃗3 : d1, d2 ∈ R}
= Span {v⃗2, v⃗3} .

Here, we use the fact that for any a1, b, c ∈ R, the sets {a1b + a2 : a2 ∈ R}
and {a1c+ a3 : a3 ∈ R} are both equal to R.

Let’s talk a bit about what we just did. We started with the span of three
vectors, and we were able to reduce to a set of two vectors that has the same
span as the original set. This is something we can do in general.

Theorem 1.3.2 If S is a linearly dependent set of vectors in some vec-
tor space V , then there is some vector v⃗ in S such that Span {S} =

Span {S\{v⃗}}.

The proof of this theorem is very similar to the discussion preceding it, so
we’ll leave the details to the exercises for now.

Exploration 26 Consider the following vectors

v⃗1 =


1

1

0

1

 , v⃗2 =


−1
1

0

−1

 , v⃗3 =


0

3

0

0

 , v⃗4 =


0

0

1

1

 .

▶ The set S = {v⃗1, v⃗2, v⃗3, v⃗4} is linearly dependent. Find scalars
a, b, c, d ∈ R, not all 0, so that av⃗1 + bv⃗2 + cv⃗3 + dv⃗4 = 0⃗. Hint:
There isn’t a unique answer. You’ll need to make a choice for one of
the variables.

▶ From the equation above, it should be possible to identity a vector
in S that could be removed without changing the span of the set of
vectors. Actually, there are three vectors that could be chosen as the



SECTION HIGHLIGHTS 50

one removed! The only one that cannot be removed is v⃗4. Why is
this?

Example 1.3.8 Let’s see how this looks in P2. Consider the vectors

p⃗1 = 1 + x2, p⃗2 = x, p⃗3 = 1 + 3x+ x2.

The set {p⃗1, p⃗2, p⃗3} is linearly dependent. To see this, we will find scalars
a, b, c ∈ R, not all zero, so that ap⃗1 + bp⃗2 + cp⃗3 = 0. That is,

a(1 + x2) + bx+ c(1 + 3x+ x2) = 0.

Rearranging, we have

(a+ c) + (b+ 3c)x+ (a+ c)x2 = 0.

Therefore a+ c = 0 and b+3c = 0. This gives us a = −c and b = −3c. If
we choose c = 1, we can see that p⃗3 = p⃗1 + 3p⃗2. Now, we have realized p⃗3
as a linear combination of p⃗1 and p⃗2, but we could rearrange this equation to
realize p⃗1 as a linear combination of p⃗2 and p⃗3 or p⃗2 as a linear combination
of p⃗1 and p⃗3. All of this tells us that Span {p⃗1, p⃗2, p⃗3} = Span {p⃗1, p⃗2} =
Span {p⃗2, p⃗3} = Span {p⃗1, p⃗3}.

Let’s talk about what Theorem 1.3.1 tells us about the span of a linearly in-
dependent set of vectors. Suppose S is a linearly independent set of vectors
and v⃗ ∈ S. By Theorem 1.3.1, we know v⃗ is not a linear combination of other
vectors in S, since if it were, the set would be linearly dependent. Thus, if we
were to compare Span {S} with Span {S\{v⃗}}, these would be different! In
particular, v⃗ ∈ Span {S}, but v⃗ /∈ Span {S\{v⃗}}.

Section Highlights

▶ A linear combination of a set of vectors is a sum of scalar multiplied
vectors from the set. See Definition 1.3.1.

▶ The set of all possible linear combinations of a set of vectors is the
span of that set of vectors. See Definition 1.3.2.

▶ A system of equations can be set up and solved to determine whether
a set of vectors is linearly independent. See Example 1.3.6 and Ex-
plorations 23 and 24.

▶ A set of vectors can be shown to be linearly dependent by finding
one vector as a linear combination of the others. See Example 1.3.6
and Exploration 25.

▶ A system of equations can be set up and solved to determine whether
the vector v⃗ in Span {v⃗1, . . . , v⃗n}. See Exploration 22.

▶ A linearly dependent set of vectors contains vectors that can be re-
moved without altering the span of that set of vectors. The ones that
can be removed are determined by dependence relations. See Explo-
ration 26.



EXERCISES FOR SECTION 1.3 51

Exercises for Section 1.3

1.3.1.Some linear combinations are given, but they are missing some information. Fill in the missing information.

(a) In R2,

3

[
−1

]
+ 4

[
1

0

]
=

[
−2
−3

]
.

(b) In R2,

3

[
1

−1

]
+

[
2

1

]
=

[
7

−1

]
.

(c) In R3,

2

 1

−2

− 2

 2

2

 =

 −20
−4

 .

(d) In P2,
3(1 + x) + 2(1− x− x2)− ( ) = 5− 2x− 3x2.

1.3.2.Find the linear combination 5x⃗+ 3y⃗ − 2z⃗ for the vectors x⃗,y⃗, and z⃗ given below.

(a) x⃗ = 3x+ 2x2, y⃗ = 1 + x2, z⃗ = 3 in P2

(b) x⃗ =

[
1

−1

]
, y⃗ =

[
1

0

]
, z⃗ =

[
−2
−1

]
in R2

(c) x⃗ =

 1

0

2

, y⃗ =

 0

−3
1

, z⃗ =

 −2−1
2

 in R3

1.3.3.Determine whether v⃗ =

 1

0

2

 is in each span below:

(a) Span


 1

1

1


(b) Span


 6

0

2


(c) Span


 2

0

4


(d) Span


 6

0

2

 ,

 1

1

2



(e) Span


 6

0

2

 ,

 0

0

2


(f) Span


 6

0

2

 ,

 0

0

2

 ,

 1

0

0


(g) Span


 6

0

2

 ,

 3

0

2

 ,

 0

1

0


(h) Span


 6

0

2

 ,

 0

0

2

 ,

 1

0

1





EXERCISES FOR SECTION 1.3 52

1.3.4.Consider the set Span


 1

−1
2

 ,

 0

0

2

. Which of the vectors below are in this set?

(a)

 1

−1
2



(b)

 1

−1
2

+

 0

0

4



(c)

 3

3

0



(d)

 3

−3
0



(e)

 −20
2



(f)

 −22
2



(g)

 −22
a

 for any a ∈ R

(h)

 b

−b
a

 for any a, b ∈ R

1.3.5.Let u⃗ and v⃗ be vectors in some vector space V . Explain why u⃗ and v⃗ are both vectors in Span {u⃗, v⃗}.

1.3.6.Suppose S = {v⃗1, . . . , v⃗n} is a subset of vectors from a vector space V .

(a) Suppose u⃗ ∈ Span {S}. Explain how this implies Span {u⃗} ⊆ Span {S}.

(b) Suppose u⃗, v⃗ ∈ Span {S}. Explain how this implies Span {u⃗, v⃗} ⊆ Span {S}.

1.3.7.Let u⃗ and v⃗ be vectors in some vector space V .

(a) Explain why u⃗+ v⃗ and u⃗− v⃗ are in Span {u⃗, v⃗}.

(b) Show that u⃗ and v⃗ are both vectors in Span {u⃗+ v⃗, u⃗− v⃗}.

(c) What can you conclude then about Span {u⃗, v⃗} and Span {u⃗+ v⃗, u⃗− v⃗}?

1.3.8.Let H be the set of all vectors in R3 of the form
 −a1 − 3a2

4a1
a1 − 2a2

 : a1, a2 ∈ R

 .

Rewrite this as a linear combination of two vectors with coefficients a1 and a2. Use this to find two vectors
v⃗1 and v⃗2 such that H = Span {v⃗1, v⃗2}.

1.3.9.Let K be the set of all vectors in R3 of the form
 a1 + a2 + a3

4a1
a1 − 2a2 − 2a3

 : a1, a2, a3 ∈ R

 .



EXERCISES FOR SECTION 1.3 53

Rewrite this as a linear combination of three vectors with coefficients a1, a2 and a3. Then find two vectors
v⃗1 and v⃗2 such that K = Span {v⃗1, v⃗2}.

1.3.10.Let J be the set of all vectors in R3 of the form
 −a1 − 3a2

4a3
a1 − 2a2

 : a1, a2, a3 ∈ R

 .

Find vectors v⃗1, v⃗2 and v⃗3 such that J = Span {v⃗1, v⃗2, v⃗3}.

1.3.11.Determine whether the sets below are linearly independent or linearly dependent.

(a)
{[

1

1

]
,

[
1

0

]}

(b)
{[

1

−1

]
,

[
3

0

]
,

[
3

4

]}

(c)


 1

0

0

 ,

 −10
1

 ,

 1

0

1


(d)


 −10

1

 ,

 1

0

1


(e)


 1

0

0

 ,

 0

1

1

 ,

 0

1

−1



(f)


 1

1

0

 ,

 1

1

1

 ,

 0

1

−1


(g)

{
1 + x, x+ x2, x2

}
(h)

{
2 + 2x, 1− x+ x2, 4 + 2x2

}
(i)
{
1 + x+ x2, x+ x2, x2

}
(j)
{
1 + x, 2x, 1− x2, 1 + x2

}
(k)

{
1 + x, 2x+ x2, x2, 1

}

1.3.12.Suppose {v⃗1, v⃗2, v⃗3} is a linearly independent set in a vector space V . Which of the following sets must also
be linearly independent? Give a complete argument to support your conclusion.

(a) {v⃗2, v⃗3, v⃗1}

(b) {v⃗1, v⃗3}

(c) {v⃗1, v⃗1 + v⃗2, v⃗2}

(d) {v⃗1, v⃗1 + v⃗2}

(e) {v⃗1 − v⃗2, v⃗2 − v⃗3, v⃗1 − v⃗3}

(f) {v⃗2 − v⃗3, v⃗1 − v⃗2}

1.3.13.The set of vectors below is linearly dependent. However, it contains many linearly independent subsets. Find
all nonempty linearly independent subsets. There should be 11.v⃗1 =

 1

−1
3

 , v⃗2 =

 −22
−6

 , v⃗3 =

 0

1

1

 , v⃗4 =

 1

0

0


Circle the ones that have the same span as the original set. (Hint: They should all be the same size.)



EXERCISES FOR SECTION 1.3 54

1.3.14.For each set S below, reduce the set to a linearly independent one that has the same span.

(a) S =


 2

1

0

 ,

 4

2

0

 ,

 1

0

1

 ,

 5

1

3



(b) S =




2

0

0

1

 ,


1

1

0

1

 ,


1

1

0

−1

 ,


−1
1

0

2




(c) S =


 2

0

0

 ,

 1

2

0

 ,

 1

1

0

 ,

 −11
0



(d) S =




1

1

0

1

 ,


1

1

1

1

 ,


0

0

1

0

 ,


3

1

0

1




In Problems 1.3.15, 1.3.16, and 1.3.17 below, determine what the span of the vectors looks like geometrically.
Explicitly, find whether it is a point, a line, a plane, or all of R3.

1.3.15.Let v⃗ =

 2

1

0

 and u⃗ =

 −10
1

. Determine what Span {v⃗, u⃗} looks like geometrically.

1.3.16.Let w⃗ =

 2

1

0

 and z⃗ =

 4

2

0

. Determine what Span {w⃗, z⃗} looks like geometrically.

1.3.17.Let u⃗ =

 2

1

0

, w⃗ =

 0

1

0

, z⃗ =

 4

2

0

. Determine what Span {u⃗, w⃗, z⃗} looks like geometrically.

1.3.18.Consider the following vectors in P2:

p⃗1 = π + π2x+ π3x2

p⃗2 = π − x2

p⃗3 = π2 − πx2.

Show that {p⃗1, p⃗2, p⃗3} is a linearly dependent set.

1.3.19.Let

p⃗1 = x+ x3

p⃗2 = 1 + x2

p⃗3 = 1 + x

be vectors in P4. Describe Span {p⃗1, p⃗2, p⃗3} algebraically (in set notation) and in words.

1.3.20.Let w⃗ be an arbitrary vector in R2. Then w⃗ =

[
a

b

]
for some a, b ∈ R. Find a way to write w⃗ as a linear

combination of the vectors v⃗1 =

[
1

1

]
and v⃗2 =

[
1

−1

]
. Explain why R2 = Span

{[
1

1

]
,

[
1

−1

]}
.

1.3.21.Show that R2 = Span

{[
2

−1

]
,

[
7

0

]}
. (Hint: Follow the technique of the previous exercise.)



EXERCISES FOR SECTION 1.3 55

1.3.22.Let w⃗ be an arbitrary vector in R3. Then w⃗ =

 a

b

c

 for some a, b, c ∈ R. Find a way to write w⃗

as a linear combination of the vectors v⃗1 =

 1

1

0

, v⃗2 =

 1

−1
0

, and v⃗3 =

 0

1

1

. Conclude that

R3 = Span


 1

1

0

 ,

 1

−1
0

 ,

 0

1

1

.

1.3.23.Let H = Span


 1

1

0

 ,

 1

−1
0

 and J = Span


 1

0

0

 ,

 0

1

0

. Show that H = J .

1.3.24.Let H = Span


 1

1

1

 ,

 1

−1
0

 and J = Span


 1

0

0

 ,

 0

1

0

. Show that H ̸= J .



1.4. SUBSPACES 56

1.4 Subspaces

Vector spaces are sometimes too big. Oftentimes, the collection of vectors you
actually care about is only a small piece of the vector space with which you are
stuck. In some cases, a collection of vectors in a vector space turns out to be
a vector space itself, and this can be very convenient. Who needs extraneous
vectors just hanging around everywhere? You know what’s not convenient?
Verifying all ten axioms to show that the smaller set of vectors is a vector
space.22 22:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I don’t like verifying all ten ax-
ioms. It takes too long.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Verifying axioms is a wonderful
exercise that helps build understanding.

Ready for some good news?

Definition 1.4.1 A subspace of a vector space V is a subset H of V with the
following three properties:

▶ The zero vector is in H .
▶ (Closure under vector addition) For any v⃗ and u⃗ in H , the vector

v⃗ + u⃗ is also in H .
▶ (Closure under scalar multiplication) For any v⃗ in H and any a in

R, the vector av⃗ is also in H .
Note that vector additional and scalar multiplication for H are the same as
for V .

It only makes sense that a subspace is a vector space. Thus, if you want to
show a set is a vector space and it’s actually a subset of some vector space,
then you can just use this definition instead to show it is a subspace, right?
That is definitely better than verifying all those axioms in the definition of a
vector space. It really seems too good to be true, though, right? Well, we were
due for some good news; it is true:

Theorem 1.4.1 A subspace of a vector space is itself a vector space.

PROOF. The three axioms for a subspace take care of three of our vector space
axioms. Then the addition and scalar multiplication are the same as for the
ambient vector space, and all the other properties are inherited. □

“Inherited” is an interesting math word, and it works a lot like one might ex-
pect. If H is a subset of a vector space V with the same operations as V ,
then properties of V are oftentimes also passed on to H , like from parent to
offspring. For example, if V has properties such as commutativity and asso-
ciativity for some operations, then provided H is closed under the operations,
they still hold for H because the operations on H are the same as those on V .

Example 1.4.1 The set

H =


 v1

v2
v3

 ∈ R3 : v1 + v2 + v3 = 0

 .



1.4. SUBSPACES 57

It turns out H is a subspace of R3, so H is a vector space. You can check
this later, but for now, just trust us that it’s true. Then 1

−1
0

 ∈ H and

 1

−1
1

 /∈ H.

This is because H is the set of vectors in R3 whose components sum to zero,
and we have that 1 + (−1) + 0 = 0 but 1 + (−1) + 1 ̸= 0. Thus, we can
also check, more generally, that

H0 =


 a

−a
0

 ∈ R3 : a ∈ R

 ⊆ H, and


 a

−a
1

 ∈ R3 : a ∈ R

 ⊈ H.

Since H0 is a subset of the vector space H with the same operations as H ,
we would now only need to check the three axioms from the definition of
subspace to verify that H0 is also a vector space. It inherits the remaining
vector space properties from H!

Now, before doing anything interesting, we should note that any vector space
V has two uninteresting subspaces. It’s not hard to check23 that V is a subspace 23:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You should check.
of itself. How does one check? Just verify each of the axioms24 in Definition

24:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You really should do this, too.1.4.1 for V . The other uninteresting subspace is the zero vector. Yep, this is
the only finite set we’ll get in this course that turns out to be a vector space.
It’s also a subspace of any vector space. You should check that, too, with
Definition 1.4.1. A reasonable response to the question “How many subspaces
does vector space V have?” is “At least two.”25 It turns out, however, that there 25:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Unless V = {0⃗}.
are often26 many more.

26:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

When V = R, there are ex-
actly these two. Maybe we should show
this, though. Exercise!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You mean like running laps?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No, at the end of the section. A
homework exercise!

Example 1.4.2 Let’s start off with the familiar vector space P2. Consider
all polynomials of the form a + bx for any a, b ∈ R. Let’s call this set H
for convenience. H is a subset of P2 since P2 is all polynomials of the form
a+ bx+ cx2 for a, b, c ∈ R, and we could let c = 0. Also, it is a subspace
of P2:

▶ H contains the zero vector 0 since we could let a = b = 0.
▶ Let a1 + b1x and a2 + b2x be any polynomials in H . Then

(a1 + b1x) + (a2 + b2x) = (a1 + a2) + (b1 + b2)x ∈ H

since (a1 + a2) and (b1 + b2) are again in R. Thus, H is closed
under addition.

▶ Let k ∈ R. Then k(a + bx) = ka + kbx ∈ H since ka, kb ∈ R,
so H is closed under scalar multiplication.

Exploration 27 Now it’s your turn! Let J = {a + cx2 : a, c ∈ R}. We see
that these will all be either degree 2 or 0 polynomials, so J ⊆ P2. Show that
all 3 of the axioms for a subspace are also satisfied.

▶ What should a and c be to see that J contains the zero vector?



1.4. SUBSPACES 58

▶ Let a1+ c1x
2 and a2+ c2x

2 be any polynomials in J . Show the sum
of these two polynomials is still in J .

▶ Let k ∈ R. Show that k(a+ cx2) ∈ J for any a+ cx2 ∈ J .

Let’s consider the two subspaces H and J of P2 for a bit. How many of you
noticed that H is really P1? How often does something like this happen? Well,
for k ≤ n, we can always show that Pk is a subspace of Pn.27 However, these 27:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Expect to see this as an exer-
cise!are not all of the subspaces of Pn! The subspace J from the exploration above

is not Pk for any integer k, and you’ll see several other examples of subspaces
of Pn in the exercises.

We should really see an example of something that is not a subspace, too.

Example 1.4.3 Let’s consider the set K =

{[
a

a+ 2

]
: a ∈ R

}
. Since

for any a ∈ R we know a+ 2 ∈ R as well, this is a subset of R2. However,
it is not a subspace.

▶ First of all, this set does not contain the zero vector of R2. To see
this, suppose for some a ∈ R2[

a

a+ 2

]
=

[
0

0

]
.

Then a = 0 and a + 2 = 0. Both of these can’t be true. At this
point, we can definitively state it is not a subspace, but let’s see
what happens with the other axioms.

28:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

We only need to fail one
axiom?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yep! Once you fail one axiom,
you can’t satisfy all axioms of a
definition.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Neat.

28

▶ We can check that closure under vector addition also fails. To
show this, it is enough to check that it fails for specific vectors
rather than general ones. Let’s consider[

0

2

]
and

[
1

3

]
.

These are in K since one corresponds to a = 0 and the other to
a = 1, but the sum[

0

2

]
+

[
1

3

]
=

[
1

5

]
is not in K since we cannot have a = 1 and a + 2 = 5 both be
true.

▶ Lastly, we can show that K is not closed under scalar multiplica-
tion. Again, to show a property fails, it is enough to give a specific
case where it fails. We can choose[

0

2

]
∈ K



SUBSPACES OF RN 59

and the scalar 5 ∈ R. Then

5

[
0

2

]
=

[
0

10

]
is not in K since a = 0 and a+ 2 = 10 cannot both be true.

Exploration 28 The following subset L is not a subspace of P1. Which of the
three axioms fail?29 29:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Remember that we only need
to show one axiom fails to show L is not
a subspace!

L = {mx+ b : m, b > 0}

Now that we’ve seen some examples, let’s explore in detail what happens in
Rn.

Subspaces of Rn

If you’ve been keeping up with the sidenotes, then we’ve already mentioned
the subspaces of R. We’ve claimed that the only subspaces of R are the “un-
interesting” ones, {⃗0} and R itself. However, we also saw in the exercises of
Section 1.1 that the interval (0,∞) is a vector space when addition is given by
a⊞b = ab and scalar multiplication is ka = ak for k ∈ R and a, b ∈ (0,∞).30 30:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Unless you skipped that one
like I did.Why is this not a subspace of R? Well, the operations of addition and scalar

multiplication must be the exact same ones from the larger vector space in or-
der for a subset to be a subspace. Thus, Theorem 1.4.1 lets us say “A subspace
of a vector space V is a subset that is also a vector space” but only with the
caveat that the operations are the same as those for V .

Now let’s focus on subspaces of R3. This will give us some nice geometric
intuition to go along with the algebraic computations.

Example 1.4.4 First we’ll show that

H =


 3t

0

−5t

 : t ∈ R


is a subspace of R3. Note that the vectors here have three real components,
so H is a subset of R3. Next we need to verify the three axioms in Definition
1.4.1. The first requires that 0⃗ ∈ H . Indeed, when t = 0, we see that 0⃗ ∈ H .
That one was easy (this time). It only remains to show H is closed under
vector addition and scalar multiplication. As we did in Section 1.1, we need
to have general elements of the set H to satisfy Definition 1.4.1, which
needs to hold “for any” vectors in H . Let x, y ∈ R, so

x⃗ =

 3x

0

−5x

 , y⃗ =

 3y

0

−5y

 ∈ H



SUBSPACES OF RN 60

are general elements. Let’s see what happens when we add them:

x⃗+ y⃗ =

 3x

0

−5x

+

 3y

0

−5y

 =

 3x+ 3y

0 + 0

−5x− 5y

 =

 3(x+ y)

0

−5(x+ y)

 .

This last vector is an element of H since x + y ∈ R. Thus, the sum of
any two vectors in H is still in H , so H is closed under vector addition. To
check closure under scalar multiplication, let a ∈ R. Then

ax⃗ = a

 3x

0

−5x

 =

 a(3x)

a(0)

a(−5x)

 =

 3(ax)

0

−5(ax)

 .

Since ax ∈ R, this last vector is also in H . Thus, H is closed under scalar
multiplication. It follows that H is a subspace of R3.
Before moving on, let’s think a bit about the geometry of this subspace in
R3. Sketch this set of vectors in R3. Observe that H is actually a line
through the origin in the direction of the vector 3

0

−5

 .

What if we considered a line that does not go through the origin? Can that
be a subspace of R3? This would be a fun exploration, but let’s do this one
together.

Example 1.4.5 Here’s another subset of R3.

H =


 3t

1

−5t

 : t ∈ R


The only difference between this set and the set in Example 1.4.4 is that
these vectors have 1 as their second component, rather than 0. Geometri-
cally, this is equivalent to a line in R3 that does not go through the origin,
like we were just speculating about. It turns out this is not a subspace since
it does not contain the zero vector from R3.

Example 1.4.6 At the risk of developing a theme, here’s another subset of
R3.

H =


 0

y

z

 : y, z ∈ R


Spoiler: this one’s a subspace. Checking is very similar to Example 1.4.4,
but you should check it anyway. Let’s consider{[

y

z

]
: y, z ∈ R

}
= R2.

Well, this seems like it’s the same as H , in which case we’d have R2 as
a subspace of R3 (just like P2 is a subspace of P3). Seems okay, right?
. . . Right?



SUBSPACES OF RN 61

No! Absolutely not! While they have many things in common and “look
alike,” the definition of a subspace H of the vector space V requires first for
H to be a subset of V . Vectors in R2 are not vectors in R3; they are two
different mathematical objects. While H resembles R2 in many ways, R2

is not a subspace of R3 because it’s not even a subset of R3. You may find
this annoying. Indeed, the vectors 0

y

z

 and
[

y

z

]
carry the same information. They are alike in many ways, but they are,
strictly speaking, different mathematical objects. While this may seem ob-
noxious, this degree of rigor in definitions is necessary for consistently func-
tional (and understandable) mathematics. Later we shall investigate what we
can gain by defining and understanding what it means for vectors or vector
spaces to “look alike.”

Exploration 29 True or false? R is a subspace of R3.31 31:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

FALSE!!

What’s different about the definition of Pn that allows Pk to be a subspace of
Pn for k ≤ n?

We’ve now seen examples of several subspaces of R3 and some subsets that
are not subspaces in R3. What do subspaces of R3 look like geometrically?

▶ Well, we have {⃗0} as a subspace. This is just the point at the origin.

▶ From Examples 1.4.4 and 1.4.5 we saw a subspace that was a line
through the origin and that lines not traveling through the origin are
not subspaces. Really, we saw one example of this, but they all fail
for the exact same reason. Any line not through the origin does not
contain 0⃗.

▶ Then in Example 1.4.6, we saw that a plane could be a subspace. Are
all planes subspaces, though? Nope. Just like lines must go through
the origin, planes that are subspaces must also go through the origin
in order to contain the zero vector.

▶ Lastly, we know that R3 is a subspace of itself, and we all know what
R3 looks like, right?32 32:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

If you said a giant purple go-
rilla, you are incorrect.

We’ve discussed subspaces of Rn for n = 1 and n = 3. Note that we skipped
over R2. That’s because it will make a glorious exercise for you! We also
have not addressed subspaces for n > 3. That’s because once we leave the
comfortable 3-dimensional world we live in, we lose our geometric tools and
must rely upon just algebra. With that in mind, we will now turn to more
algebraic tools.



SPANS AS SUBSPACES 62

Spans as Subspaces

Suppose you were given a set and you suspected it was a vector space. Initially,
there were roughly ten axioms you had to verify before you could declare your
set a vector space. At the beginning of this section, we cut that list down to
three things if your set was already contained in a vector space. What’s better
than checking three things? One. Checking just one thing is better.33 33:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Wait. What’s the catch? There
has to be a catch. This feels like a trap!

Theorem 1.4.2 Let v⃗1, . . . , v⃗n be vectors in a vector space V . Then
Span {v⃗1, . . . , v⃗n} is a subspace of V . Note that Span {v⃗1, . . . , v⃗n} can be
referred to as the subspace spanned by v⃗1, . . . , v⃗n.

PROOF. Recall that

Span {v⃗1, . . . , v⃗n} = {a1v⃗1 + · · ·+ anv⃗n : ai ∈ R for i = 1, . . . , n}.

Since the ai’s can be any real number, we observe that when a1 = · · · = an =

0, we have

a1v⃗1 + · · ·+ anv⃗n = 0v⃗1 + · · ·+ 0v⃗n = 0⃗,

so Span {v⃗1, . . . , v⃗n} contains the zero vector. Now we need general vectors
in Span {v⃗1, . . . , v⃗n}:

x⃗ = a1v⃗1 + · · ·+ anv⃗n

y⃗ = b1v⃗1 + · · ·+ bnv⃗n.

To see closure under vector addition, we add x⃗ and y⃗:

x⃗+ y⃗ = (a1v⃗1 + · · ·+ anv⃗n) + (b1v⃗1 + · · ·+ bnv⃗n)

= (a1v⃗1 + b1v⃗1) + · · ·+ (anv⃗n + bnv⃗n)

= (a1 + b1)v⃗1 + · · ·+ (an + bn)v⃗n,

noting that the only reason we can pull off all that algebraic manipulation
(associativity and commutivity of vector addition and distributivity for scalar
multiplication) is because these vectors are all part of a vector space V already.
The last line of this equation is a vector in Span {v⃗1, . . . , v⃗n} since ai+bi ∈ R,
so Span {v⃗1, . . . , v⃗n} is closed under vector addition. To see closure under
scalar multiplication, we multiply x⃗ by c ∈ R:

cx⃗ = c(a1v⃗1 + · · ·+ anv⃗n)

= ca1v⃗1 + · · ·+ canv⃗n

= (ca1)v⃗1 + · · ·+ (can)v⃗n.

Again, the last line of this equation is a vector in Span {v⃗1, . . . , v⃗n} since
cai ∈ R, so Span {v⃗1, . . . , v⃗n} is closed under scalar multiplication. Behold!
Span {v⃗1, . . . , v⃗n} is a subspace of V ! □

How does one use this theorem? If you have a set of vectors in a vector space
V and want to show they form a subspace, all you have to do is show your
set is the span of some set of vectors. Just show that, and you’re done. Pretty
great, right?



SPANS AS SUBSPACES 63

Example 1.4.7 Let

H =




a− 2b

b− a

a

b

 : a, b ∈ R

 ⊂ R4.

You could show this is a subspace using the definition of a subspace, or you
could show it’s a subspace by showing it’s the span of some set of vectors.
Let’s do the latter. Note that for any a, b ∈ R,

a− 2b

b− a

a

b

 =


a

−a
a

0

+


−2b

b

0

b

 = a


1

−1
1

0

+ b


−2
1

0

1

 .

Neat, eh? Here we’ve undone vector addition and scalar multiplication, but
look what we can do now:

H =




a− 2b

b− a

a

b

 : a, b ∈ R


=

a


1

−1
1

0

+ b


−2
1

0

1

 : a, b ∈ R


= Span




1

−1
1

0

 ,


−2
1

0

1


 .

This tells us H is the span of two vectors in R4. Now it follows from
Theorem 1.4.2 that H is a subspace of R4.

Exploration 30 Let

J =


 a+ b

a+ b+ c

a+ b

 : a, b, c ∈ R

 ⊂ R3.

Find a set of vectors {v⃗1, . . . , v⃗k} such that J = Span {v⃗1, . . . , v⃗k}.

We now have a theorem that says that the span of a set of vectors in a vector
space V must be a subspace of V , which is neat. What about the other way
around? Is every subspace of V a span of some set of vectors in V ? Actually,
this turns out to be true! It’s very exciting. Unfortunately, the proof of this
fact requires a bit more than the scope of this text, so this is really all we’ll say
about it.



INTERSECTIONS AND SUMS OF SUBSPACES 64

Intersections and Sums of Subspaces

Perhaps you have two subspaces of a particular vector space V that you are
interested in. A natural question would perhaps be “How are they related to
one another?” or maybe instead “How could you combine these subspaces?”
The first of these two questions leads us to the idea of the intersection of two
subspaces. First, let’s be sure we know what an intersection is.

Definition 1.4.2 The intersection of two sets A and B is all of the elements
that are in both A and B. We denote this intersection as A ∩B.

For example, if A = {1, 2, 3, 4} and B = {2, 4, 6, 8}, then the intersection of
A and B is {2, 4}.

Now, what is the intersection of two subspaces of a vector space V ? Why, a
subspace of V !

Theorem 1.4.3 Let V be a vector space over R with subspaces U and W .
Then the intersection U ∩W is also a subspace of V .

Exploration 31 Let’s go through this proof together.

▶ We need to argue that 0⃗ is in U ∩W . Thus, we need 0⃗ to be in both
U and W . Why is this true?

▶ Now, let x⃗ and y⃗ be in U ∩W . Why is x⃗+ y⃗ in U? Why is it in W ?

Since x⃗ + y⃗ is in both U and W , it must be in U ∩ W . Thus the
intersection is closed under addition.

▶ Lastly, suppose k ∈ R and x⃗ is again in U ∩W . Follow the logic
above to show kx⃗ must be in U ∩W .

Exploration 32 Let’s look at an explicit example of this. The following are all
subspaces of R3.

U = Span


 1

1

0

 ,

 0

0

1

 V = Span


 0

1

0


W = Span


 1

0

1

 ,

 0

1

0


Let’s find the intersections of these subspaces.



INTERSECTIONS AND SUMS OF SUBSPACES 65

▶ U ∩ V : A vector that is in both U and V will satisfy the following
equation

(1.12) a

 1

1

0

+ b

 0

0

1

 = c

 0

1

0


for some real numbers a, b, and c. The top row (first component)
gives us the equation a = 0. Then, the middle row (second compo-
nent) gives us the equation a = c. The last row (third component)
gives us b = 0. Thus, a = b = c = 0. So the only vector satisfying
Equation 1.12 is the zero vector and U ∩ V = {⃗0}.

▶ U ∩W : A vector that is in both U and W will satisfy the following
equation

(1.13) a

 1

1

0

+ b

 0

0

1

 = c

 1

0

1

+ d

 0

1

0


for some real numbers a, b, c and d. Find the equations from each
row and show that a = b = c = d.

Now, what does that tell us about the intersection? Well, any vector
in the intersection must be of the form

a

 1

1

0

+ a

 0

0

1

 or equivalently a

 1

1

1

 .

Thus, U ∩W = Span


 1

1

1

.

▶ V ∩W : Follow the methods used above to compute this intersection.

The second question mentioned earlier dealt with combining subspaces. The
correct notion for this is to take the sum of the subspaces.



INTERSECTIONS AND SUMS OF SUBSPACES 66

Definition 1.4.3 Let U and W be subspaces of a vector space V . The sum
of these subspaces U +W is defined as

{u⃗+ w⃗ : u⃗ ∈ U, w⃗ ∈W}.

Additionally, if U and W have the property that U ∩W = {⃗0}, then we call
this a direct sum and denote it U ⊕W .

Theorem 1.4.4 Let U and W be subspaces of a vector space V . Then the
sum U +W is a subspace of V .

The proof of this follows a similar format as the previous one that said U ∩ V

is a subspace, so we’ll just leave that as an exercise.34 34:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

At this point, you should have
a good idea of what the homework for
this section will look like!Example 1.4.8 Let’s determine the sums of some of the vector spaces we

considered in Exploration 31. Let’s recall the definitions of the subspaces
of R3 to start.

U = Span


 1

1

0

 ,

 0

0

1

 V = Span


 0

1

0


W = Span


 1

0

1

 ,

 0

1

0


Whenever our subspaces are given to us as the span of a set of vectors,
finding the sum is fairly straightforward. We just combine the sets defining
each of the two subspaces to get a new set, then take the span. For example,

U +W = Span


 1

1

0

 ,

 0

0

1

 ,

 1

0

1

 ,

 0

1

0


= Span


 0

0

1

 ,

 1

0

1

 ,

 0

1

0

 = R3

Note here that the initial list of vectors we obtained was not linearly indepen-
dent, despite the fact the original two lists were when considered separately.
This will always be the case when your subspaces have an intersection other
than {⃗0}.
Let’s consider now the case of U + V . Since we know from Exploration
31 that U ∩ V = {⃗0}, what we’ll have instead is the direct sum U ⊕ V . In
particular,

U ⊕ V = Span


 1

1

0

 ,

 0

0

1

 ,

 0

1

0

 = R3.

Note that here the new list of vectors was linearly independent.

Direct sums give us a way to decompose a vector space neatly and will be a
topic that comes up again in the following chapters.



SECTION HIGHLIGHTS 67

Section Highlights

▶ A subspace (Definition 1.4.1) is a subset of a vector space that is
itself a vector space.

▶ For a vector space V , V and the set consisting of just the zero vector
are both subspaces.

▶ The span of a set of vectors is always a subspace. See Theorem 1.4.2.

▶ The sum of two subspaces is a subspace (Definition 1.4.3 and Theo-
rem 1.4.4), and the intersection of two subspaces is a subspace (The-
orem 1.4.3).



EXERCISES FOR SECTION 1.4 68

Exercises for Section 1.4

1.4.1.The following subsets all fail to be closed under vector addition. Give an example that illustrates this failure.

(a) {a+ bx : a, b ∈ R, a ̸= 0} ⊂ P2

(b)
{[

1

a

]
: a ∈ R

}
⊂ R2

(c)


 ab

b

a

 : a, b ∈ R

 ⊂ R3

(d)
{[

a+ 3

a

]
: a ∈ R

}
⊂ R2

1.4.2.The following subsets all fail to be closed under scalar multiplication. Give an example that illustrates this
failure.

(a) {a+ ax : a ∈ R, a ≥ 0} ⊂ P2

(b)
{[

1

a

]
: a ∈ R

}
⊂ R2

(c)


 ab

b

a

 : a, b ∈ R

 ⊂ R3

(d)
{[

a+ 3

a

]
: a ∈ R

}
⊂ R2

1.4.3.Show that the following subsets are subspaces of P3. Then, write each as the span of some set of vectors.

(a) {a+ bx3 : a, b ∈ R}

(b) {4(a+ c) + bx+ cx2 : a, b, c ∈ R}

1.4.4.Show that {4 + ax+ bx2 : a, b ∈ R} is not a subspace of P3. Identify which of the three properties fail.

1.4.5.Show that

H =


 t

0

2t

 : t ∈ R


is a subspace of R3, and write it as the span of some set of vectors.

1.4.6.Show that

H =


 0

x

y

 : x, y ∈ R


is a subspace of R3, and write it as the span of some set of vectors.



EXERCISES FOR SECTION 1.4 69

1.4.7.Show that

H =


 1

0

2t

 : t ∈ R


is not a subspace of R3. Identify which of the three properties fail.

1.4.8.Show that

H =


 t

0

2t

 : t ∈ R, t > 0


is not a subspace of R3. Identify which of the three properties fail.

1.4.9.Show that

H =


 t

0

2t

 : t ∈ R, t ≥ 0


is not a subspace of R3. Identify which of the three properties fail.

1.4.10.Suppose V is a vector space. Show that {⃗0} is a subspace of V .

1.4.11.Suppose V is a vector space. Show that V is a subspace of V .

1.4.12.Show that the only subspaces of R are R and {⃗0}. To do this, suppose there is some other subspace H of R.
If H ̸= {⃗0}, then there must be some nonzero vector v ∈ H . Conclude that H = R.

1.4.13.Suppose that H is a subset of a vector space V and you’ve shown that the second and third axioms from the
definition of subspace hold (that is, that H is vector addition under and scalar multiplication). Did you know
that if H is nonempty that this implies that the first axiom holds (that is, that H contains the zero vector) as
well? It’s true! Now prove it.

1.4.14.We will now investigate subspace in R2.

(a) Show {⃗0} is a subspace of R2.

(b) Show R2 is a subspace of R2.

(c) Show the set L(a, b) below is a subspace of R2 for any real numbers a and b.

L(a, b) =

{[
ka

kb

]
: k ∈ R

}
.

1.4.15.Show that Pk = {a0 + a1x + a2x
2 + · · · + akx

k : ai ∈ R for 0 ≤ i ≤ k} is a subspace of Pn =

{a0 + a1x+ a2x
2 + · · ·+ anx

n : ai ∈ R for 0 ≤ i ≤ n} for any 0 ≤ k ≤ n. Hint: This should look similar
to Example 1.4.2.

1.4.16.The following are all subspaces of R3.

U = Span


 0

1

0

 ,

 1

0

1

 V = Span


 0

1

0

 W = Span


 2

0

1

 ,

 1

1

0

 .

(a) Is u⃗ =

 1

1

1

 ∈ U ∩ V ?



EXERCISES FOR SECTION 1.4 70

(b) Is v⃗ =

 1

1

0

 ∈ U ∩W ?

(c) Find U ∩ V .

(d) Find U ∩W .

(e) Find V ∩W .

(f) Find U +W . Is this a direct sum?

(g) Find V +W . Is this a direct sum?

1.4.17.The following are all subspaces of R3.

U = Span


 −11

0

 ,

 0

1

1

 V = Span


 0

1

0

 ,

 1

1

0

 W = Span


 −12

1

 ,

 1

1

0

 .

(a) Is u⃗ =

 1

1

1

 ∈ U ∩ V ?

(b) Is v⃗ =

 1

0

0

 ∈ U ∩W ?

(c) Is v⃗ =

 1

1

0

 ∈ V ∩W ?

(d) Find U ∩ V .

(e) Find U ∩W .

(f) Find V ∩W .

(g) Find U +W . Is this a direct sum?

(h) Find V +W . Is this a direct sum?

1.4.18.Prove Theorem 1.4.4, which says the sum of two subspaces is a subspace.

1.4.19.Along with the concept of intersection, we often discuss the union of two sets. Let A and B be sets. The
union of A and B, denoted A∪B, is the set of all elements in either A or B. For example, if A = {1, 2, 3, 4}
and B = {2, 4, 6, 8}, then the union of A and B is {1, 2, 3, 4, 6, 8}. Let U and W be subspaces of a vector
space V . Show that U ∪W is not a subspace of V in general. Under which conditions will it be a subspace?



A PEEK INTO THE FUTURE 71

1.5 A Menagerie of Vector Spaces

We’ve had quite a few different examples of real vectors spaces already. Here’s
a list with links to where you can go back and read about them again:

▶ Rn: Equation 1.2, Section 1.1

▶ Pn: Equation 1.7, Section 1.1

▶ arrows: beginning of Section 1.2

▶ C: Exercise 1.1.3, Section 1.1

▶ (0,∞): Exercise 1.1.12, Section 1.1

▶ sums and intersections of subspaces: Theorem 1.4.4, Section 1.4

But wait! There’s more!35 35:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I’m not paying for anything.

A Peek Into the Future

There are other examples of vector spaces that will appear for us naturally
later. However, we can tell you a little about them now.36 36:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Spoilers!

Example 1.5.1 A rectangular array of numbers with m rows and n columns
is called an m×n matrix, and we call the set of all such matricesMm×n(R).
When m = 2 and n = 2, we more specifically have

M2×2(R) =
{[

a b

c d

]
: a, b, c, d ∈ R

}
.

If we define vector addition componentwise,[
a b

c d

]
+

[
e f

g h

]
=

[
a+ d b+ e

c+ g d+ h

]
,

and for scalars k, we define scalar multiplication as

k

[
a b

c d

]
=

[
ka kb

kc kd

]
.

You might have noticed that this set and its operations look a lot like R4,
just with the vector entries arranged in a different shape. If that’s the case, it
should not surprise you thatM2×2(R) is a vector space. Should you require
a review of the ten axioms, though, you should check them for practice.

Exploration 33 Let

M0 = =

{[
0 b

c d

]
: b, c, d ∈ R

}
and

M1 = =

{[
1 b

c d

]
: b, c, d ∈ R

}
.

Show that M0 is a subspace ofM2×2(R) but M1 is not.



FUNCTION SPACES 72

Example 1.5.2 Consider the general form of a linear equation in n variables:

a1x1 + · · ·+ anxn = b.

Moving the constant term to the left side, we have

a1x1 + · · ·+ anxn − b = 0,

and this looks very much like the general form of a vector in Pn. Leveraging
what we know about Pn, we can make a vector space of linear equations.
Let

V = {a1x1 + · · ·+ anxn = an+1 : ai ∈ R for i = 1, . . . , n+ 1},

and define vector addition by combining like terms and scalar multiplication
by multiplication on both sides of the equation. With these operations, this
set is a vector space.

Example 1.5.3 Suppose V and W are both vector spaces. Just like how we
took Cartesian products of sets in Chapter 0, we can do the same with vector
spaces. Consider the set

V ×W = {(v⃗, w⃗) : v⃗ ∈ V and w⃗ ∈W}.

If we use operations from V in the first component and operations from W

in the second, then the set V ×W is a vector space. Check!

Exploration 34 Do these computations in R2 × P2.

▶

([
1

2

]
, 1 + x+ x2

)
+

([
1

0

]
, 3 + x2

)
=

▶ 5

([
1

2

]
, 1 + x+ x2

)
=

Function Spaces

While we’re on the topic of additional examples of vector spaces, here’s a nice
class of them that you may find interesting.37 37:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Ooh! Look at all the fancy cal-
ligraphy!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

C’mon, Ricky. Don’t get taken in
by substance-free flash; seriously–Wait.
That “C” is very cool.

Let I ⊆ R be any interval, and define

C(I) = {f : I → R : f is continuous}
D(I) = {f : I → R : f is differentiable}
R(I) = {f : I → R : f is integrable}

Again, we’re going to think of f⃗ ∈ D(I) as a vector, knowing in our hearts
that this vector is a real-valued function defined on I . For f⃗ , g⃗ ∈ C(I) (or
D(I) orR(I)38 ) and a ∈ R, define 38:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Hang on. Why “R” for “inte-
grable?” Why not “I?”

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Do you want to write “I(I)?” The
“R” is probably for Riemann.

f⃗ + g⃗ = ⃗f + g : I → R defined by ⃗(f + g)(x) = f(x) + g(x) and

af⃗ = a⃗f : I → R defined by a⃗f(x) = af(x).



FUNCTION SPACES 73

Using these typical operations, function addition and scalar multiplication of
functions, C(I), D(I), and R(I) are all vector spaces. Of course, you should
really check this. Let’s talk about what would go into doing that. There are
some properties of continuous, differentiable, and integrable39 functions that 39:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I didn’t come here for calcu-
lus.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Settle down. No one’s asking you
to integrate anything.

should be easily located in just about any calculus text that tell us these sets are
closed under the operations of vector addition and scalar multiplication. Then
the remaining properties actually hold more broadly for the set of functions
from I to R.

Example 1.5.4 Note that f⃗ = sinx and g⃗ = cosx are both vectors in
C([0, 1]) because both sinx and cosx are continuous functions of x on the
interval [0, 1]. Note that sinπ/4 = cosπ/4. Nevertheless, f⃗ ̸= g⃗; for these
vectors to be equal, they would have to be the same for all values of x in
[0, 1].
Moreover, f⃗ and g⃗ are linearly independent. If f⃗ and g⃗ were linearly de-
pendent, we would have g⃗ = af⃗ for some nonzero scalar a, and this would
have to be true for all x. However, note that for x = 0 ∈ [0, 1], we have

1 = cos 0 = a sin 0 = 0,

so there is no a such that g⃗ = af⃗ for all x ∈ [0, 1]. Thus, f⃗ and g⃗ are linearly
independent.

Exploration 35 Let f⃗ = ex and g⃗ = x2. We know that Span
{
f⃗ , g⃗
}

is a

subspace of D(R). Show that Span
{
f⃗ , g⃗
}
̸= D(R).

Example 1.5.5 Here’s a differential equation:

(1.14) y′′′ + 3y′′ + 2y′ = 0.

We can check that y1 = e−x, y2 = e−2x, and y3 = 87 are all solutions:

y′′′1 + 3y′′1 + 2y′1 = −e−x + 3e−x − 2e−x = 0

y′′′2 + 3y′′2 + 2y′2 = −8e−x + 12e−x − 4e−x = 0

y′′′3 + 3y′′3 + 2y′3 = −0 + 3(0)− 2(0) = 0

Each function yi for i = 1, 2, 3 makes Equation 1.14 true when substituted
in for y, so all three are solutions for the differential equation.

This all may seem like a wild tangent, but note that y1, y2, and y3 from Exam-
ple 1.5.5 are all vectors in D(R). Obviously, Span {y1, y2, y3} is a subspace
of D(R).40 40:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Wait, why is this obvious?

Exploration 36 Show that any vector in Span {y1, y2, y3}, that is, any linear
combination of y1, y2, and y3, is a solution to Equation 1.14.



FUNCTION SPACES 74

Thus, Span {y1, y2, y3} is an entire subspace of solutions for the given dif-
ferential equation. This is an example of the Superposition Principle, and it
actually holds for a large class of differential equations. We should definitely
think about this more, but let’s do it later.41 41:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Later, like in a different book?



EXERCISES FOR SECTION 1.5 75

Exercises for Section 1.5

1.5.1.Let

H = =

{[
a b

c d

]
: a, b, c, d ∈ R and a+ d = 0

}
.

Show H is a subspace ofM2×2(R).

1.5.2.Determine whether H =

{[
x x+ y

x− y y

]
: x, y ∈ R

}
is a subspace ofM2×2.

1.5.3.Consider the vector space

V = {a1x1 + a2x2 = a3 : ai ∈ R for i = 1, 2, 3}.

Note that x1 + x2 = 2 is a vector in V and that x1 = x2 = 1 is a solution to this particular equation.
Determine whether the set of vectors in V for which x1 = x2 = 1 is a solution is a subspace of V . Justify
your determination.

1.5.4.Let
S = {(s1, s2, . . . ) : si ∈ R for i = 1, 2, . . . }

be the set of infinite real-valued sequences. Using

(s1, s2, . . . ) + (r1, r2, . . . ) = (s1 + r2, s2 + r2, . . . ) and

k(s1, s2, . . . ) = (ks1, ks2, . . . ),

determine whether S is a vector space.

1.5.5.Show that R2 × P2 is a vector space.

1.5.6.Let
S0 = {(s1, s2, . . . ) : si ∈ {0, 1} for i = 1, 2, . . . }

be the set of infinite binary sequences. Here’s how addition will work on {0, 1}:

1 + 0 = 1,

0 + 1 = 1,

0 + 0 = 0, and

1 + 1 = 0.

For (s1, s2, . . . ), (r1, r2, . . . ) ∈ S0, and k ∈ {0, 1}, define

(s1, s2, . . . ) + (r1, r2, . . . ) = (s1 + r2, s2 + r2, . . . ) and

k(s1, s2, . . . ) = (ks1, ks2, . . . ).

Determine whether S0 is a vector space. Note that k is only allowed to be 0 or 1; we’re not looking for a real
vector space here because we’re not using real scalars.

1.5.7.For two functions f : R → R and g : R → R, both differentiable, the Wronskian of f and g is defined as
W (x) = f(x)g′(x)− g(x)f ′(x). Show that if W (x) ̸= 0 for some x, then f and g are linearly independent.



2 Bases

In this chapter, we will begin by expanding upon the topics of span and linear
independence from Section 1.3 to build the concept of a basis of a vector space.
This will allow us to revisit our geometric tools from Section 1.2. We’ll see
that there are (usually) perfectly reasonable ways to think about and make use
of the geometry of any vector space. First, we have a bit of organizing to do.

We’ll need some basic definitions. 1 1:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

We leave it to the reader to
determine for themselves whether that
qualifies as wordplay.

2.1 Introduction to Bases

The following definition builds off of our discussion of the span of a set of
vectors in both Sections 1.3 and 1.4.

Definition 2.1.1 Let V be a vector space and v⃗1, . . . , v⃗p ∈ V . We say the
vectors v⃗1, . . . , v⃗p span V if

Span {v⃗1, . . . , v⃗p} = V.

In this situation, we call {v⃗1, . . . , v⃗p} a spanning set for V .

Compare this with Definition 1.3.2.2 The difference is subtle. Basically, all 2:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Did you notice citations like
this are hyperlinked? You’re welcome.we’ve done here is make verb and adjective versions of the noun “span.”

Example 2.1.1 Let’s consider the vectors

v⃗1 =

[
−1
1

]
, v⃗2 =

[
0

1

]
, and v⃗3 =

[
1

0

]
.

Is the set {v⃗1, v⃗2, v⃗3} a spanning set for R2?
To answer this question, we should first try to better understand
Span {v⃗1, v⃗2, v⃗3}. Because v⃗1 = v⃗2 − v⃗3, we know Span {v⃗1, v⃗2, v⃗3} =

Span {v⃗2, v⃗3} = Span {v⃗1, v⃗3} = Span {v⃗1, v⃗2}. While it is not necessary
to reduce our set, it will simplify the algebra involved in the problem since
two vectors are easier to work with than three.
Let’s now show that Span {v⃗1, v⃗2} is a spanning set for R2. Since v⃗1, v⃗2 ∈
R2, we know automatically that Span {v⃗1, v⃗2} ⊆ R2. So we only need to

76



2.1. INTRODUCTION TO BASES 77

check that R2 ⊆ Span {v⃗1, v⃗2} to have the desired set equality. To do this,
we choose a general vector in R2 and show it can be obtained as a linear
combination of v⃗1 and v⃗2. For our general vector, we choose

x⃗ =

[
x1

x2

]
where x1, x2 ∈ R. Then we need to find a, b ∈ R such that av⃗1 + bv⃗2 = x⃗.
That is,

a

[
−1
1

]
+ b

[
0

1

]
=

[
x1

x2

]
.

This gives us the equations −a = x1 and a + b = x2. Our goal is to
find a and b in terms of x1 and x2. We quickly have a = −x1, and we can
substitute and rearrange to get b = x1+x2. This gives us a way to write any
vector in R2 as a linear combination of v⃗1 and v⃗2, so R2 ⊆ Span {v⃗1, v⃗2}.
Since we started by arguing that Span {v⃗1, v⃗2, v⃗3} = Span {v⃗1, v⃗2}, we
now know that {v⃗1, v⃗2, v⃗3} is also a spanning set.

Exploration 37 Use the equations solved for in the example above to write[
2

10

]
as a linear combination of [

−1
1

]
and

[
0

1

]
.

Spanning sets may be a convenient way to describe a vector space, but this
method doesn’t preclude us from doing silly things like

R2 = Span

{[
1

0

]
,

[
0

1

]
,

[
0

2

]
,

[
0

3

]
, . . . ,

[
0

1, 234

]}
.

It’s probably a good time to decide what makes a spanning set a “good” span-
ning set, where by good, we mean avoiding inefficiencies like the preceding
example. Surely we don’t need more than one thousand vectors to span R2!
What exactly do we need then? Well, in Example 2.1.1 we used the fact that
the set was linearly dependent to reduce it to a more manageable size, and we
can do this in general. That means linearly independent sets are more desir-
able, since they cannot be reduced down further without changing the span.

Definition 2.1.2 Let V be a vector space. A finite set of vectors B =

{v⃗1, . . . , v⃗p} is a basis for V if
(a) B is linearly independent, and
(b) B spans V .

Any set satisfying the above definition is a basis. However, when we are using
a specific basis in this text, we will implicitly impose an ordering on the ele-
ments of the set as determined by the order they are listed. This is sometimes
referred to as an “ordered basis,” but we will not use this terminology. Just



. . . SO YOU THINK YOUR SET’S A BASIS 78

know that for us, if the set {v⃗1, v⃗2} is a basis, then the set {v⃗2, v⃗1} is also a
basis. However, the orderings on these two bases3 are different. 3:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

The plural of “basis” is “bases,”
pronounced with a long e.

Now, we’ve claimed that a basis is better than just any old spanning set, and it
is. However, before we tell you why, let’s spend some time with the definition
and some specific examples. How exactly do you show a set meets these
conditions?

. . . So You Think Your Set’s a Basis

Example 2.1.2 Let B = {p⃗1 = 1 + x, p⃗2 = x + x2, p⃗3 = x}. This is a
basis for the vector space P2. To show this using the definition of basis,
we’d need to show that B is linearly independent and that it spans P2. Let’s
verify!

▶ Linearly Independent: Suppose ap⃗1 + bp⃗2 + cp⃗3 = 0⃗. Then we
have a(1+x)+b(x+x2)+c(x) = 0 which simplifies to a+(a+

b + c)x + bx2 = 0. For this equation to be true, the coefficients
on each of the terms must be zero. This can only happen when
a = b = 0. Thus, we also see that c = 0 since a + b + c = 0.
The only solution is then a = b = c = 0, where all coefficients are
zero.

▶ Spans P2. Let a0+a1x+a2x
2 be any polynomial in P2. Then we

have

a0p⃗1 + a2p⃗2 + (a1 − a2 − a0)p⃗3

= a0(1 + x) + a2(x+ x2) + (a1 − a2 − a0)x

= a0 + a1x+ a2x
2

This gives us a recipe for writing any vector of P2 as a linear com-
bination of the vectors in B, so B spans P2!

Exploration 38 Let’s do another one! Let

B =

{
b⃗1 =

[
1

0

]
, b⃗2 =

[
1

1

]}
.

Verify this is a basis for R2.

▶ Argue that B is linearly independent.

▶ Now we show B spans R2. Let

x⃗ =

[
x1

x2

]
be any vector in R2. Find a “recipe” for writing x⃗ as a linear combi-
nation of b⃗1 and b⃗2.



STANDARD BASIS VECTORS 79

Exploration 39 Let B = {p⃗1 = 1 + x, p⃗2 = x+ x2}. Note that D is linearly
independent.4 Show that this is not a basis by finding a polynomial in P2 that 4:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This is actually seen in the ex-
ample above since any subset of a lin-
early independent set will still be lin-
early independent.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Oh yeah, then why not prove it?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No, you prove it.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Exercise?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Deal.

is not a linear combination of p⃗1 and p⃗2. This will mean it fails to span all of
P2.

Standard Basis Vectors

We’ve found bases now for R2 and P2, but neither of these bases is actually the
most preferred basis for its space. (Of course, preferences are debatable. . . )5 5:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

What if I have a mathematically
rigorous way to quantify preferences?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Do you though?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Not yet, but I’m working on it.

Instead, let’s define the standard basis for each of these spaces, or really, for
the more general vector spaces Rn and Pn.

▶ Standard Basis for Rn Let e⃗i be the vector with 0 in every entry
except for the ith entry, which is 1. For example, in R3,

e⃗2 =

 0

1

0

 .

Then the standard basis for Rn is

E = {e⃗1, e⃗2, . . . , e⃗n}

where each e⃗i ∈ Rn. To be thorough, we should say a bit about
verifying this is a basis. Even though its name is standard basis,
such things shouldn’t be taken for granted. The key thing to note is
that for any a1, . . . , an ∈ R,

a1e⃗1 + a2e⃗2 + · · ·+ ane⃗n =

 a1
...
an

 .

Thus, the only way that a1e⃗1 + a2e⃗2 + · · · + ane⃗n = 0⃗ is if each
ai = 0. Also, any vector in Rn can be written as a linear combination
of the vectors in B by using the ith entry of the vector for ai, the
coefficient of e⃗i in the sum. For example, 7

2

3

 = 7

 1

0

0

+ 2

 0

1

0

+ 3

 0

0

1

 = 7e⃗1 + 2e⃗2 + 3e⃗3.

▶ Standard Basis for Pn The standard basis for Pn is

{1, x, x2, ..., xn}.

Again, we should pause to convince ourselves this is a basis. Have
you convinced yourself. . . ? Good! Share your thoughts about this
below:



ANOTHER METHOD TO SHOW A SET SPANS 80

Another Method to Show a Set Spans

Suppose you have a set S that you suspect is a basis for some vector space V .
To verify it’s a basis as we’ve illustrated, there are then two things to show.
First, you need to argue that the set is linearly independent. We have a method
for how to do this from Section 1.3, which is what we did in Example 2.1.2 as
well. However, you also need to show it spans the vector space. Perhaps you
noticed in the previous examples that this part can be a bit more difficult. Here
are two strategies:

▶ Method 1: Argue that any general element of V can be obtained as a
linear combination of the vectors in S.

▶ Method 2: Argue that a known basis for V is a subset of Span {S}.

The first method is what we employed in Example 2.1.2 and Exploration 38.
It has the advantage of giving a recipe for how to write any vector in V as a
linear combination of the vectors in S. The disadvantage is that sometimes
the number of variables involved can get a bit overwhelming. Let’s talk a bit
about the second method now. It relies on the same logic we used in Example
2.1.1 in which we reasoned that if a subset is a spanning set, then the whole
set must also be a spanning set. Let’s formalize that.

Theorem 2.1.1 Suppose S = {v⃗1, . . . , v⃗n} and U = {u⃗1, . . . , u⃗k} are sub-
sets of a vector space V .

(a) If U ⊆ Span {S}, then Span {U} ⊆ Span {S}.
(b) If U ⊆ Span {S} and Span {U} = V , then Span {S} = V .

Before proceeding to our proof, we must welcome a new notation. The small
problem we have is that we will need a bunch of scalars for each of a bunch of
different vectors, and there simply aren’t enough letters. . . or subscripts. Thus,
we must implement a second subscript. For example, if given an ith vector v⃗i
that requires j scalars (for some reason), we could (that is, we will) use the
notation ai1, . . . , aij for these j scalars. This is nice6 because it also indicates 6:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I object to the description of this
as “nice.” Having two subscripts is an-
noying.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Those subscripts are actually nec-
essary, unlike, for example, having two
unicorns.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You would be so bored without
me.

these scalars’ association with this given ith vector v⃗i. Now, on to the proof.

PROOF. Suppose U = {u⃗1, . . . , u⃗k} is a subset of Span {S}. Note that the
span of a set of vectors is all linear combinations of the vectors in that set.
Thus, every vector in U is a linear combination of the vectors in S. More
specifically, we have

u⃗1 =a11v⃗1 + a12v⃗2 + · · ·+ a1nv⃗n

u⃗2 =a21v⃗1 + a22v⃗2 + · · ·+ a2nv⃗n

...

u⃗k =ak1v⃗1 + ak2v⃗2 + · · ·+ aknv⃗n



ANOTHER METHOD TO SHOW A SET SPANS 81

Suppose now that x⃗ ∈ Span {U}. Then

x⃗ = b1u⃗1 + · · · bku⃗k

= b1(a11v⃗1 + a12v⃗2 · · ·+ a1nv⃗2) + · · ·+ bk(ak1v⃗1 + ak2v⃗2 + · · ·+ aknv⃗n)

= (b1a11 + b2a21 · · ·+ bkak1)v⃗1 + · · ·+ (b1a1n + b2a2n · · ·+ bkakn)v⃗n.

Thus, x⃗ ∈ Span {S} which tells us Span {U} ⊆ Span {S}. Now, suppose
U is a spanning set. That means Span {U} = V , and thus, V ⊆ Span {S}.
Since we always have Span {S} ⊆ V , we know then that Span {S} = V and
S must also be a spanning set. □

This theorem gives us the tools for our second strategy. We know a basis is
also a spanning set. Thus, if we want to check that S = {v⃗1, . . . , v⃗n} is a
spanning set for V when we already know a basis for V , we can check that the
basis is contained in Span {S}. If V is Rn or Pn, a convenient basis to look
for is the standard one.

Example 2.1.3 Let’s show that S = {1, 1+x, 1+x+x2} is a spanning set
for P2 by showing the standard basis {1, x, x2} ⊆ Span {S}.

▶ First, we must argue that 1 ∈ Span {S}. Well, wait. We know
1 ∈ S, so there’s nothing to check here. Great!

▶ Now, we need to argue that x ∈ Span {S}. This one requires a
bit more thought, but it’s still not bad. We need to find coefficients
a, b, c ∈ R such that

a(1) + b(1 + x) + c(1 + x+ x2) = x.

This simplifies to the equations a + b = 0, b + c = 1, and
c = 0. Thus, we have a = −1, b = 1, and c = 0. That is,
x = (−1)(1) + (1 + x) ∈ Span {S}.

▶ Finally, we can argue that x2 ∈ Span {S}. Again, we need to find
coefficients a, b, c ∈ R such that

a(1) + b(1 + x) + c(1 + x+ x2) = x2.

This simplifies to the equations a + b = 0, b + c = 0, and c = 1.
Thus, we have a = 0, b = −1, and c = 1. That is, x2 = (−1)(1+
x) + (1 + x+ x2) ∈ Span {S}.

Now that we’ve checked that the standard basis is contained in Span {S},
we can conclude that S is a spanning set.

Now, if you are trying to use this method for say R10 or P9, it might take a
while to show all 10 basis vectors are in the span of the set. This method is
less efficient than Method 1 in many cases, but sometimes it is preferred just
because of the fewer variables involved.

Exploration 40 Complete the argument that S from Example 2.1.3 is a basis
by showing the vectors are linearly independent.



FINDING A BASIS 82

Exploration 41 Use Method 2 to argue

S =

{[
1

2

]
,

[
0

1

]}
is a spanning set for R2.

Finding a Basis

Alright. We’ve defined a basis. We’ve seen some examples of bases, and
we’ve discussed how to verify a set is a basis. What’s left? Well, there are
several facts we can state about bases and also things they tell us about their
respective vector spaces. Much of the next section will be involved with stating
and proving these facts.7 For now, we will focus on a very useful theorem that 7:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Those facts better be theorems.
Bubbles gets testy when you don’t do
proofs.

helps us to find a basis for a given vector space.

Part of the statement below is a repeat from Theorem 1.3.2

Theorem 2.1.2 Let V be a vector space, let S = {v⃗1, . . . , v⃗p} ⊂ V , and let
S span V .

(a) If one of the vectors v⃗k ∈ S is a linear combination of the other
vectors in S, then the set formed from S by removing v⃗k still spans
V .

(b) If V ̸= {⃗0}, then some subset of S is a basis for V .

PROOF. Let’s prove the first statement. Suppose v⃗k ∈ S is a linear combina-
tion of the other vectors in S; that is

v⃗k = a1v⃗1 + · · · ak−1v⃗k−1 + ak+1v⃗k+1 + · · ·+ apv⃗p.

Since S spans V , for any v⃗ ∈ V , there exist scalars b1, . . . , bp ∈ R such that

v⃗ = b1v⃗1 + · · ·+ bkv⃗k + · · ·+ bpv⃗p

= b1v⃗1 + · · ·+ bk(a1v⃗1 + · · ·+ ak−1v⃗k−1 + ak+1v⃗k+1 + · · ·+ apv⃗p) +

· · ·+ bpv⃗p

= (b1 + bka1)v⃗1 + · · ·+ (bk−1 + bkak−1)v⃗k−1 + (bk+1 + bkak+1)v⃗k+1 +

· · ·+ (bp + bkap)v⃗p.

Thus, any vector in V can be written as a linear combination of the vectors in
the set formed from S by removing v⃗k. It follows that the set formed from S

by removing v⃗k spans V .

Let’s move now to the second statement. If the set formed from S by removing
v⃗k is linearly independent, then we have a basis for V and we are done. If it is
linearly dependent, then one of the vectors in the set is a linear combination of
the others by Theorem 1.3.1. In this case, we start this whole procedure again;
repeating this as many times as necessary, the set will eventually be linearly
independent since the set is finite and a set with one nonzero vector is trivially



BASES OF SUBSPACES 83

linearly independent. Also, from part one of this theorem, we know the set
still spans V and is therefore a basis of V . □

This theorem gives us a nice recipe for finding a basis for any vector space
when we have a spanning set. Just remove the linearly dependent vectors one
at a time until there are none. Nice! Let’s try it!

Example 2.1.4 Recall from the beginning of this section:

R2 = Span

{[
1

0

]
,

[
0

1

]
,

[
0

2

]
,

[
0

3

]
, . . . ,

[
0

1, 234

]}
.

We’re already told the set

S =

{[
1

0

]
,

[
0

1

]
,

[
0

2

]
,

[
0

3

]
, . . . ,

[
0

1, 234

]}
spans R2, but it would be easy to check that for any vector x⃗ ∈ R2, we have

x⃗ =

[
x1

x2

]
= x1

[
1

0

]
+ x2

[
0

1

]
+ 0

[
0

2

]
+ · · ·+ 0

[
0

1, 234

]
.

By Theorem 2.1.2, all we have to do is throw out linearly dependent vectors
from S until it is linearly independent, and we’ll have a basis. Note that for
any integer 2 ≤ k ≤ 1, 234, we have[

0

k

]
= k

[
0

1

]
,

so the last 1, 232 vectors in S are linear combinations of the second vector.
By Theorem 2.1.2, we can throw them all out of S and the resulting set still
spans R2. Specifically, {[

1

0

]
,

[
0

1

]}
still spans R2. These vectors are linearly independent (since there are two
of them and they’re not scalar multiples of each other), so this is a basis

8:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It’s the standard basis for R2!
8 for

R2.

Bases of Subspaces

Theorem 2.1.2 is also very helpful9 when finding the basis for a subspace. 9:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Like me!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Debatable.Let’s see an example illustrating this.

Example 2.1.5 First, let’s define a few vectors to work with for this exam-
ple. Let

v⃗1 =


1

1

1

2

 , v⃗2 =


1

1

2

1

 . v⃗3 =


1

1

3

1

 , and v⃗4 =


1

1

4

1

 .

Now, we can define H = Span {v⃗1, v⃗2, v⃗3, v⃗4}, which is a subspace of R4.
Because of the way H is described to us, we are starting with a spanning
set. So we just need to reduce it down to a linearly independent set without



BASES OF SUBSPACES 84

changing the span. To do this, we need to find a vector that can be written
as a linear combination of other vectors.
The vector v⃗1 is a good place to start. Suppose the there exist scalars
a1, a2, a3 ∈ R such that

v⃗1 = a1v⃗2 + a2v⃗3 + a3v⃗4.

That is, 
1

1

1

2

 = a1


1

1

2

1

+ a2


1

1

3

1

+ a3


1

1

4

1

 .

Then we would have the equations a1 + a2 + a3 = 1 from the top row of
the vectors and also a1+a2+a3 = 2 from the last row of the vectors. Both
of these can’t be true, so v⃗1 is not a linear combination of the remaining
vectors.
Instead, we can check whether v⃗2 is a linear combination of v⃗3 and v⃗4. (We
don’t need to consider v⃗1 here because we’ve already ruled it out.) Let
b1, b2 ∈ R be such that

v⃗2 = b1v⃗3 + b2v⃗4.

That is, 
1

1

2

1

 = b1


1

1

3

1

+ b2


1

1

4

1

 .

Then we have the equations 1 = b1 + b2 and 2 = 3b1 +4b2, which have the
mutual solution b1 = 2 and b2 = −1, so

v⃗2 = 2v⃗3 − v⃗4.

Now by Theorem 2.1.2, we can remove one of these three vectors and
still have a spanning set. Thus, H = Span {v⃗1, v⃗3, v⃗4}. Now, is the set
{v⃗1, v⃗3, v⃗4} linearly independent? Yes! We can conclude this fairly quickly
by our previous work. We know v⃗1 is not a linear combination of v⃗3 and v⃗4,
and we also see from inspection that v⃗3 and v⃗4 are not scalar multiples of
each other. We have found a basis!

Exploration 42 In Example 2.1.5 above, we found a basis for the subspace H
of R4. Can you find a different basis for H?

What about when a subspace is described differently?10 Well, in that case, we 10:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

There’s nothing wrong with
being different.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

How is that a substantive contribu-
tion to the narrative?

start with finding a spanning set and then proceed like Example 2.1.5.

Exploration 43 Let’s consider the subspace K of R4 defined below.

K =




a+ b+ c+ d

a+ b+ c+ d

a+ 2b+ 3c+ 4d

2a+ b+ c+ d

 : a, b, c, d ∈ R

 .



SECTION HIGHLIGHTS 85

Find a set of vectors that span K. (Hint: These should look familiar!) Then
use this spanning set to find a basis for K.

Section Highlights

▶ Determine when the span of a set of vectors is a spanning set for a
vector space. See Definition 2.1.1.

▶ There are multiple methods for determining whether a set is a span-
ning set. See Examples 2.1.1 and 2.1.3.

▶ A basis for a vector space (Definition 2.1.2) is a linearly independent
spanning set.

▶ Any spanning set can be reduced to a basis by carefully removing
vectors that are linear combinations of other basis vectors. See Ex-
ample 2.1.5.



EXERCISES FOR SECTION 2.1 86

Exercises for Section 2.1

2.1.1.The following sets are not bases for R2. Determine whether they fail to be a spanning set, fail to be linearly
independent, or both.

(a)
{[

1

1

]}

(b)
{[

1

1

]
,

[
−1
−1

]}

(c)
{[

1

1

]
,

[
−1
1

]
,

[
0

1

]}
2.1.2.The following sets are not a basis for R3. Determine whether they fail to be a spanning set, fail to be linearly

independent, or both.

(a)


 1

1

1

 ,

 1

0

1


(b)


 1

1

1

 ,

 1

0

1

 ,

 2

1

2


(c)


 1

1

1

 ,

 1

0

1

 ,

 2

1

2

 ,

 0

0

1


2.1.3.The following sets are not a basis for P1. Determine whether they fail to be a spanning set, fail to be linearly

independent, or both.

(a) {1 + x}

(b) {1 + x,−1− x}

(c) {1 + x,−1− x, x}

2.1.4.The set


 0

1

1

 ,

 1

0

1

 ,

 1

1

2

 ,

 0

0

1

 ,

 1

0

1

 ,

 2

0

1

 is not a basis for R3, even though it spans R3.

Use the procedure from Theorem 2.1.2 to find a basis for R3.

2.1.5.Let B =

{[
1

2

]
,

[
3

1

]}
.

(a) Use Method 1 to show this is a spanning set for R2.

(b) Use Method 2 to show this is a spanning set for R2.

2.1.6.Let B =
{
1 + x, 1 + x2, 1 + x+ x2

}
.

(a) Use Method 1 to show this is a spanning set for P2.



EXERCISES FOR SECTION 2.1 87

(b) Use Method 2 to show this is a spanning set for P2.

2.1.7.Let B =

{[
1

1

]
,

[
−1
1

]}
.

(a) Show B is a basis for R2.

(b) Find a way to write
[

4

6

]
as a linear combination of the vectors in B.

(c) Find a way to write
[

1

0

]
as a linear combination of the vectors in B.

2.1.8.Let B =


 1

1

0

 ,

 0

1

1

 ,

 1

0

1

.

(a) Show B is a basis for R3.

(b) Find a way to write

 1

1

1

 as a linear combination of the vectors in B.

2.1.9.ShowB =


 1

1

1

 ,

 −11
1

 ,

 0

0

1

 is a basis for R3. How do you write

 0

1

1

 as a linear combination

of these basis vectors?

2.1.10.Show B = {1 + x, x} is a basis for P1.

2.1.11.Show B =
{
5 + x, 1 + x+ x2, x2

}
is a basis for P2.

2.1.12.Let B =
{
1 + x, 2x, x+ x2

}
.

(a) Show B is a basis for P2.

(b) Find 1 as a linear combination of these basis vectors.

(c) Find 1 + x+ x2 as a linear combination of these basis vectors.

2.1.13.If {v⃗1, v⃗2, v⃗3} is a basis for a vector space V , show that {v⃗1, v⃗1 + v⃗2, v⃗1 + v⃗2 + v⃗3} is also a basis. (Hint:
Method 2 may be a helpful way to show this is a spanning set.)

2.1.14.Let p⃗1 = x2 + 1, p⃗2 = x2 − 1, and p⃗3 = 3. Show that {p⃗1, p⃗2, p⃗3} is a linearly dependent set, and find a
basis for Span {p⃗1, p⃗2, p⃗3}.

2.1.15.As mentioned in the section, any nonempty subset of a linearly independent set is itself linearly independent.
Let’s show this.
Let S = {v⃗1, . . . , v⃗n} be a subset of some vector space V and suppose Ŝ = {v⃗1, . . . , v⃗k} is a subset of S.
Suppose S is a linearly independent set.

▶ Suppose Ŝ is not linearly independent. Then there are scalars a1, . . . , ak ∈ R not all zero such that

a1v⃗1 + · · · akv⃗k = 0⃗



EXERCISES FOR SECTION 2.1 88

Explain how this violates the definition of linear independence for the set S. This allows us to con-
clude Ŝ is also linearly independent since otherwise it can’t be true that S was linearly independent.

2.1.16.The subset H below is a subspace of R4. Find a basis for H .

H =




x

−y
x

y

 : x, y ∈ R

 .

2.1.17.The subset J below is a subspace of R4. Find a basis for J .

J =




2x+ 3y + z

−y
x

y + z

 : x, y, z ∈ R

 .

2.1.18.The subset K below is a subspace of R4. Find a basis for K.

K =




x+ y + 2z

−y − 2z

x

y + 2z

 : x, y, z ∈ R

 .

2.1.19.Find a basis for each subspace below.

(a) Span


 1

1

1

 ,

 −11
1

 ,

 0

1

1



(b) Span




1

0

−1
1

 ,


−1
0

0

1

 ,


1

1

1

1




(c) Span




1

0

−1
1

 ,


−1
0

0

1

 ,


1

0

1

−1

 ,


2

0

1

1




2.1.20.Let

v⃗1 =


0

−5
1

2

 , v⃗2 =


3

4

−2
5

 , and v⃗3 =


2

1

−1
4

 .

and

u⃗1 =


1

0

1

2

 , u⃗2 =


3

1

0

6


(a) Check that v⃗1 + 2v⃗2 − 3v⃗3 = 0⃗.



EXERCISES FOR SECTION 2.1 89

(b) Find a basis for H1 = Span {v⃗1, v⃗2, v⃗3}.

(c) Let H2 = Span {u⃗1, u⃗2}. Find a basis for H1 +H2.

2.1.21.Show that {1, i} is a basis for C.

2.1.22.Show that {1 + i, i} is also a basis for C.

2.1.23.In the Section 1.1 Exercises, you showed V = {a : a ∈ R, a ≥ 0} = (0,∞) is a vector space with addition
given by a ⊞ b = ab and scalar multiplication given by ka = ak for any k ∈ R, a, b ∈ V . Find a basis for
this vector space.



HOW LARGE CAN AN INDEPENDENT SET BE? 90

2.2 More Fun with Bases

In the previous section, we introduced the concept of a basis for a vector space
and we focused on finding bases or showing a suspected basis is a basis. Now,
we will see several results related to a basis for a vector space. Some of these
will help us in our search to find a basis or to tell whether a set is a basis.
Overall, they will show us how finding a basis for a vector space reveals an
intrinsic property of the vector space, called dimension.11 11:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Cool! Will I be able to use this
to visit parallel universes?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yes.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Really?!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

. . .

How Large Can An Independent Set Be?

We’ll start with a motivating example.

Example 2.2.1 Let’s consider the set

S =

{
u⃗1 =

[
1

1

]
, u⃗2 =

[
1

−1

]
, u⃗3 =

[
1

2

]}
.

While we could show the set S is linearly dependent in the same manner as
we have in the past, we’ll take a different approach for this example. Recall
that the standard basis for R2 is{

e⃗1 =

[
1

0

]
, e⃗2 =

[
0

1

]}
.

We can write each of the vectors in S as a linear combination of e⃗1 and e⃗2.
In particular,

u⃗1 = e⃗1 + e⃗2,

u⃗2 = e⃗1 − e⃗2, and

u⃗3 = e⃗1 + 2e⃗2.

Now, we can solve for e⃗1 in our first equation to get

e⃗1 = u⃗1 − e⃗2.

Then we have

u⃗2 = e⃗1 − e⃗2

= (u⃗1 − e⃗2)− e⃗2

= −u⃗1 − 2e⃗2.

Rearranging this we see that

e⃗2 =
u⃗1 + u⃗2

2
.



HOW LARGE CAN AN INDEPENDENT SET BE? 91

Then

u⃗3 = u⃗1 − e⃗2 + 2e⃗2

= u⃗1 + e⃗2

= u⃗1 +
u⃗1 + u⃗2

2

=
3u⃗1 + u⃗2

2

=
3

2
u⃗1 +

1

2
u⃗2.

Since u⃗3 is a linear combination of u⃗1 and u⃗2, this shows the set S is linearly
dependent by Theorem 1.3.1. This method relied only on the fact that the
set of vectors was larger than the size of the standard basis. Below we will
generalize this example to prove this is always enough to conclude that such
a set is linearly dependent.

Theorem 2.2.1 If a vector space V has a basis B = {v⃗1, . . . , v⃗p}, then any
set in V containing more than p vectors is linearly dependent.

PROOF. Let S = {u⃗1, . . . , u⃗p+1} ⊆ V . If any of these vectors are the zero
vector, we are done, so assume that u⃗i ̸= 0⃗ for 1 ≤ i ≤ p+1. We shall attempt
to write one of the vectors u⃗i as a linear combination of the other vectors in S.
Since B is a basis for V and u⃗1 ∈ V , there are weights such that

(2.1) u⃗1 = a11v⃗1 + · · ·+ a1pv⃗p.

Since u⃗1 ̸= 0⃗, we know a1j ̸= 0 for some 1 ≤ j ≤ p. Suppose without loss of
generality that a11 ̸= 0. Then we may solve for v⃗1 in Equation 2.1:

(2.2) v⃗1 =
1

a11
u⃗1 −

a12
a11

v⃗2 − · · · −
a1p
a11

v⃗p.

Thus, v⃗1 ∈ Span {u⃗1, v⃗2, . . . , v⃗p}. Again, sinceB is a basis for V and u⃗2 ∈ V ,
there are weights such that

(2.3) u⃗2 = a21v⃗1 + · · ·+ a2pv⃗p.

Since v⃗1 ∈ Span {u⃗1, v⃗2, . . . , v⃗p}, we can find weights such that v⃗1 = b21u⃗1+

b22v⃗2 + · · ·+ b2pv⃗p. In fact, we already found these weights in Equation 2.2!
Then

u⃗2 = a21v⃗1 + · · ·+ a2pv⃗p

= a21 (b21u⃗1 + b22v⃗2 + · · ·+ b2pv⃗p) + a22v⃗2 + · · ·+ a2pv⃗p

= a21b21u⃗1 + (a21b22 + a22)v⃗2 + · · ·+ (a21b2p + a2p)v⃗p

= c21u⃗1 + c22v⃗2 + · · ·+ c2pv⃗p,(2.4)

Where the weights, c21, . . . , c2p, are defined by the line in Equation 2.4 that
immediately precedes them. What have we done here?12 We can write u⃗2 12:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

What have we done? Was it
good?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yes. Pay attention!

as a linear combination of the vectors in B, but we can find different weights
to replace v⃗1 in our linear combination with u⃗1. This is one step on the way
to writing one of the vectors in S as a linear combination of the others. If
c22 = · · · = c2p = 0, then u⃗2 is a linear combination of u⃗1. In that case,



HOW LARGE CAN AN INDEPENDENT SET BE? 92

the set S is linearly dependent by Theorem 1.3.1, and we are done. Oth-
erwise, c2j ̸= 0 for some 2 ≤ j ≤ p, so suppose without loss of gener-
ality that c22 ̸= 0. We’ll have to do this procedure again: Solve for v⃗2 in
Equation 2.4 to show v⃗3 ∈ Span {u⃗1, u⃗2, v⃗3, . . . , v⃗p}; then use that to show
u⃗3 ∈ Span {u⃗1, u⃗2, v⃗3, . . . , v⃗p}.

How many times could we do this? One of two things must happen; either u⃗i,
for some 2 ≤ i ≤ p, will be written as a linear combination of u⃗1, . . . , u⃗i−1

(in which case S would be linearly dependent by Theorem 1.3.1), or we will
have to run this procedure p times, writing each v⃗j , for 1 ≤ j ≤ p, with linear
combinations of vectors in S. That is, for each 1 ≤ j ≤ p,

(2.5) v⃗j = c1j u⃗1 + · · ·+ cpj u⃗p =

p∑
i=1

cij u⃗i.

In this case, we still have one more vector u⃗p+1 ∈ S. Since u⃗p+1 ∈ V , we
can write u⃗p+1 as a linear combination of vectors in B and then substitute the
linear combinations in Equation 2.5 for each v⃗j :

u⃗p+1 = a1v⃗1 + · · ·+ apv⃗p

= a1

(
p∑

i=1

ci1u⃗i

)
+ · · ·+ ap

(
p∑

i=1

cipu⃗i

)
.

Thus, u⃗p+1 is a linear combination of the other vectors in S, so by Theorem
1.3.1, S is linearly dependent. □

Now, let’s consider how this works for us in R4.13 According to the theorem 13:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No particular reason to choose
4 here, just feeling like a 4 apparently.we just proved, any set of five vectors in R4 is linearly dependent (because the

standard basis for R4 has four vectors). But what about four vectors?

Example 2.2.2 Let’s consider two different sets of four vectors in R4.
Here’s the first one:

S1 =

v⃗1 =


1

1

1

1

 , v⃗2 =


1

0

1

0

 , v⃗3 =


0

1

0

1

 , v⃗4 =


1

1

0

1


 .

This set is linearly dependent. To see this, note that v⃗1 = v⃗2 + v⃗3. Here’s
another set:

S2 =

u⃗1 =


1

0

1

0

 , u⃗2 =


0

0

0

1

 , u⃗3


0

1

0

0

 , u⃗4 =


0

1

1

1


 .

This set is linearly independent. If au⃗1 + bu⃗2 + cu⃗3 + du⃗4 = 0⃗, then we
get the equations a = 0, b + d = 0, a + d = 0, c + d = 0. The only real
numbers satisfying all of these are a = b = c = d = 0.
From these examples, we see that while our theorem says every set of vec-
tors with 5 vectors in R4 must be linearly dependent, sets with 4 vector in
R4 can go either way, dependent or independent.



DIMENSION 93

Dimension

Let’s make an observation. From our explorations and examples in Section 2.1,
we’ve seen that R2 has bases{[

1

0

]
,

[
1

1

]}
and

{[
1

0

]
,

[
0

1

]}
.

From this, we see that a vector space does not have a unique basis.14 Notice 14:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This seems very inconvenient,
but we will eventually make this work to
our advantage.

something else, though: each of these bases has two vectors. We also saw that
P2 has bases {1 + x, x + x2, x} and {1, x, x2}. Again, these bases have the
same number of vectors. Well, we were due for some good news; that’s always
true!

Theorem 2.2.2 If a vector space V has a basis with p vectors, then every
basis for V must contain exactly p vectors.

PROOF. Let B be a basis for V with p vectors. Suppose B0 is another basis
for V . We know that B0 cannot have more than p vectors since then, by The-
orem 2.2.1, B0 would be linearly dependent. We also know that B0 cannot
have fewer than p vectors since then, by Theorem 2.2.1, B would be linearly
dependent. Thus, B0 also has exactly p vectors. □

Note that we didn’t really talk about spans in that proof. However, there’s
a nice corollary about spanning sets that comes from this result. Since any
set that is a basis must have the same number of vectors, we know any lin-
early independent set that has too few vectors to be a basis must fail to span.
Otherwise, we would contradict this result!

Corollary 2.2.3 If a vector space V has a basis with p vectors, then every
spanning set for V must contain at least p vectors.

Every vector space has many different bases;15 Theorem 2.2.2 guarantees that 15:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Actually, most of the vector
spaces over R we will see have infinitely
many bases!

they all have the same number of vectors. Good. This makes the following
well-defined:

Definition 2.2.1 Let V be a vector space. The dimension of V , denoted
dimV , is the number of vectors in a basis for V .

The term “dimension” is likely not new to you. People regularly make use of
three spacial dimensions, and movie-going often offers us a choice between
two and three dimensional experiences. What’s new here is giving it a formal
definition that relies on a basis. We can now say that Rn has dimension n and
also that Pn has dimension n+ 1. This tells us immediately how large a basis
for these spaces should be. This also gives us a nice way to talk about the
subspaces in these vector spaces. The only subspace of any vector space with
dimension 0 is the trivial subspace {⃗0}. In Rn, the subspaces with dimension
1 are the lines through the origin, and the subspaces with dimension 2 are
the planes through the origin. While we’re talking about subspaces, here’s a
formal statement about their dimensions.



DIMENSION 94

Theorem 2.2.4 If H is a subspace of a vector space V , then dimH ≤
dimV . Moreover, the only subspace of V with dimension dimV is V itself.

Well, it would be lovely to prove this theorem. We need something else though
first.

Theorem 2.2.5 Let V be a p-dimensional vector space, where p ≥ 1. Then
(a) Any linearly independent set of exactly p vectors in V is a basis

for V .
(b) Any set of p vectors that spans V is a basis for V .

Exploration 44 Let’s do something a bit different. Let’s prove this one to-
gether!

PROOF. ▶ First, let’s suppose D is a set of exactly p linearly indepen-
dent vectors. Well, suppose this is not a basis for V . Then, it must
not span all of V . So there must be some vector v ∈ V that is not
in the span of D. Then v is specifically not a linear combination of
any of the vectors in D, and none of the vectors in D are a linear
combination of each other. So adding v toD must still give a linearly
independent set of vectors. On the other hand, some of the results
in the previous section can be used to argue that the set that is D
with v added must be linearly dependent. Explain why it must be
linearly dependent. It can’t be both linearly independent and linearly

dependent. What’s going on here? Well, this was all built on the
supposition that D is not a basis. Since we have arrived at something
absurd based on this assumption, it must be thatD is a basis. (Which
is what we wanted to show!)16 16:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This technique of proof is
called “proof by contradiction.” As a
rule of thumb, it is a lovely way to in-
clude words such as “absurd”, “prepos-
terous”, “silly”, or “ridiculous” in your
formal mathematical writing.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Formal writing like this, right?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Well. . .

▶ Now suppose S ⊆ V is a set of exactly p vectors that spans all of
V . We want to show that S is a basis for V . Since we know it spans
V , all that is left is that we argue it must be linearly independent.
Okay, suppose it’s not. Suppose instead that it is linearly dependent.
Like before, our goal will be to arrive at something absurd using this
supposition. What does Theorem 2.1.2 allow us to do since this is
a spanning set that is linearly dependent? How does this contradict
Theorem 2.2.2?

□

That was just what we needed to prove Theorem 2.2.4!



DIMENSION 95

PROOF OF THEOREM 2.2.4. Suppose H is a subspace of a vector space V

with dimV = p. If H is also dimension p, then it must have a basis of size p.
However, from Theorem 2.2.5, we know any linearly independent set of size p
in V must be a basis for p. Thus, we must have H = V since any basis of H is
also a basis for V . Otherwise, H must have a basis that is smaller in size than
p since we know any set with more than p vectors will be linearly dependent
by Theorem 2.2.1. □

Theorem 2.2.5 has already been useful, but it gets better. To be a basis for a
vector space V , a set must do two things: it must be linearly independent and
it must span V . That is, unless you know the dimension of V , say p, and your
set of vectors already has p vectors in it. Then you only need one of the two
criterion for a basis to be true! That is sometimes very helpful.

Example 2.2.3 Hey, remember that set we showed was a spanning set
in Example 2.1.1? Oh, well, maybe we showed several sets were span-
ning sets actually since we had Span {v⃗1, v⃗2, v⃗3} = Span {v⃗2, v⃗3} =

Span {v⃗1, v⃗3} = Span {v⃗1, v⃗2}. Now, we can conclude, by Theorem 2.2.5,
that any of those spanning sets of size two are a basis for R2 because they
each have two vectors and span R2! Yay!
Let’s be slightly more specific. We can all agree that R2 has dimension two
because the standard basis {e⃗1, e⃗2} for R2 has two vectors. By Theorem
2.2.5, any spanning set of two vectors in R2 is a basis for R2. This will
work the same for Rn in general. Also, any linearly independent set of n
vectors in Rn is a basis for Rn.

Example 2.2.4 Note that P2 has standard basis {1, x, x2}, so it has dimen-
sion three. While {1 + x, x2} is a linearly independent set in P2, by The-
orem 2.2.5 it does not span. It does not have enough vectors to be linearly
independent and span P2; a set needs exactly three vectors to be linearly
independent and span (i.e. be a basis for) a three dimensional vector space.

Exploration 45 Let’s show that {p⃗1 = 1, p⃗2 = 2x, p⃗3 = −2 + 4x2, p⃗4 =

−11x + 8x3} is a basis for P3! Well, first of all, it has 4 vectors, which is
luckily the correct number. Now we need only show that it is either linearly
independent or that it spans all of P3. But which one is easier? You decide!

▶ Linearly Independent. Let a, b, c, d be real numbers such that

ap⃗1 + bp⃗2 + cp⃗3 + dp⃗4 = 0⃗.

Then

a+ 2bx− 2c+ 4cx2 − 11dx+ 8dx3 = 0.

Why can we conclude that a = b = c = d = 0?



SECTION HIGHLIGHTS 96

▶ Spans P3. Let a+ bx+ cx2 + dx3 be any vector in P3. Find coeffi-
cients of p⃗1, p⃗2, p⃗3, and p⃗4 so that

a+ bx+ cx2 + dx3 = p⃗1 + p⃗2 + p⃗3 + p⃗4.

It will be easiest to first determine the coefficient of p⃗4, then p⃗3, then
p⃗2, and lastly p⃗1. (This one seems harder. . . )

You may perhaps be wondering why you bothered at all to learn how to show a
set is a spanning set.17 The algebra of that is usually much trickier than show- 17:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I was definitely wondering.
ing a set is linearly independent. However, there is something extremely useful
about being able to write a vector as a linear combination of basis vectors, as
we’ll see in just the next section.

Before concluding our initial discussion of dimension, it is important to not
that our definition of basis specifies that a basis is a finite set of vectors. Hence,
any vector space for which we use this definition (basis or dimension) must be
finite dimensional. Indeed, one should assume that for remainder of this book,
all vectors spaces have are finite dimensional. Infinite dimensional vectors
spaces do exist and are a lot of fun, but their fun is simply too great to be
contained in this book.

Section Highlights

▶ A basis B for vector space V is a minimal spanning set in the follow-
ing sense: If any vector is removed from B, the resulting set will fail
to span V .

▶ Any set with fewer vectors than a basis will automatically fail to span
the vector space. See Corollary 2.2.3.

▶ A basis B is a maximal linearly independent set in the vector space
V in the following sense. If any vector is apended to B, the resulting
set will be linearly dependent. See Theorem 2.2.1.

▶ Every basis for a specific vector space V has the same number of
vectors. This number of vectors is the dimension of the vector space.
See Theorem 2.2.2 and Definition 2.2.1.

▶ If the dimension of a vector space is known, it can simplify the de-
termination of whether a set is a basis. See Example 2.2.3.



EXERCISES FOR SECTION 2.2 97

Exercises for Section 2.2

2.2.1.Let x⃗1, x⃗2, x⃗3 ∈ R3 be such that Span {x⃗1, x⃗2, x⃗3} = R3. Explain why {x⃗1, x⃗2, x⃗3} is a basis for R3.

2.2.2.Let v⃗1, . . . , v⃗7 ∈ R7. Suppose H6 = Span {v⃗1, . . . , v⃗6} and H7 = Span {v⃗1, . . . , v⃗7}. Explain why
R7 ̸= H6. Must it be true that R7 = H7?

2.2.3.Recall that in Exercise 1.3.21 in Section 1.3 we showed that R2 = Span

{[
2

−1

]
,

[
7

0

]}
= H . Here’s

another fun way to do that using the fact that R2 = Span {e⃗1, e⃗2}. I know[
7

0

]
∈ H,

so e⃗1 ∈ H as well. But that means

[
2

−1

]
− 2e⃗1 =

[
0

−1

]
∈ H,

so e⃗2 ∈ H . Since dimH = 2, we know H = Span {e⃗1, e⃗2} = R2. Neat, eh? Adapt this procedure to show
that

Span


 7

0

2

 ,

 5

4

3

 ,

 6

0

0

 = R3.

2.2.4.The following sets are all too large to be linearly independent. Find a vector that is a linear combination of
the others in the set to verify this.

(a) {1 + x, 1− x, 1 + x+ x2, 2x2} in P2.

(b) {1 + x2, 1− x, 1 + 2x+ x2, 1− 2x2, x} in P2.

(c)
{[

1

1

]
,

[
0

1

]
,

[
2

1

]
,

[
6

1

]}
in R2

(d)


 1

1

0

 ,

 0

1

0

 ,

 2

1

0

 ,

 6

1

1

 in R3

2.2.5.The following sets S are linearly independent but too small to be spanning sets. Find a vector that is not in
Span {S} and add it to the set to form a basis for the vector space. (Hint: If it is not a spanning set, there
must be at least one standard basis vector that is missing.)

(a) {1 + x, 1− x2} in P2.

(b) {1 + x2, 1− x} in P2.

(c)
{[

5

1

]}
in R2



EXERCISES FOR SECTION 2.2 98

(d)


 1

1

0

 ,

 0

1

0

 in R3

(e)


 1

−1
0

 ,

 0

1

1

 in R3

(f)


 0

−1
0

 ,

 1

1

1

 in R3

2.2.6.If a set is the correct size to be a basis according to the dimension of the vector space, but it is not a basis,
it must fail both conditions to be a basis. That is, it must be linearly dependent and fail to be a spanning set.
Verify that each of these sets fail both conditions to be a basis.

(a) {1 + x, 1 + 2x+ x2, 2 + 3x+ x2} in P2.

(b) {1 + x2, 1− x, x+ x2} in P2.

(c)


 1

1

0

 ,

 0

1

0

 ,

 5

7

0

 in R3

(d)


 1

−1
0

 ,

 0

1

1

 ,

 5

0

5

 in R3

(e)


 0

−1
0

 ,

 1

1

1

 ,

 5

−3
5

 in R3

2.2.7.Show the sets below are bases for the given vector space.

(a)
{
5⃗
}

for R

(b) {5, 1 + x} for P1

(c) {x, 1 + x} for P1

(d)
{[

3

1

]
,

[
−1
5

]}
for R2

(e)
{[
−2
5

]
,

[
−1
5

]}
for R2

(f)
{
x, 1 + x, x2

}
for P2



EXERCISES FOR SECTION 2.2 99

(g)
{
1 + x, x+ x2, x2

}
for P2

(h)


 0

1

−1

 ,

 −15
1

 ,

 1

5

1

 for R3

(i)


 1

1

−1

 ,

 −13
1

 ,

 1

5

1

 for R3

(j)




1

1

−1
0

 ,


1

1

0

1

 ,


1

2

1

1

 ,


1

1

1

1


 for R4

2.2.8.Find a basis for each subspace below. State the dimension of the subspace.

(a) H = Span


 1

0

1

 ,

 −20
−2

 ,

 −10
−1


(b) H = Span


 0

1

1

 ,

 2

−7
1

 ,

 −15
1



(c) H = Span




0

1

1

0

 ,


2

−7
1

0

 ,


−1
5

1

1

 ,


0

0

0

1

 ,


0

1

1

1




2.2.9.Find a basis for the set of vectors in R3 that lie in the subspace

W =


 x

y

z

 : 2x+ 4y − z = 0

 .

To do this, first identify a vector in R3 that is not in W . Then, find two linearly independent vectors that are in
W . We know W cannot be 3-dimensional because you found a vector that is not in W . Since you were able
to find two linearly independent vectors that are in W , we can conclude that dimW = 2 and these vectors
form a basis.

2.2.10.Consider the subspaces below for R3.

U =


 0

1

−1

 ,

 1

1

1

 and V =


 1

1

−1

 ,

 1

0

1


(a) Show that dimU = 2 and dimV = 2.

(b) Since both U and V are 2-dimensional subspaces of a 3-dimensional space, they must have an
intersection that is at least 1-dimensional. Why? Find U ∩ V to verify this.



BASES IN ACTION: COORDINATES 100

2.3 Coordinates, Inner Products, and Orthogonality: Oh my!

At the start of this chapter, we promised to focus more on geometry. We are
now ready to see how the concept of a basis for a vector space allows us to
extend the geometry we already talked about in Rn to other vector spaces.18 18:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

What geometry?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Length and distance via an inner
product.Bases In Action: Coordinates

One of the best things about bases is that they provide a convenient way to
organize vectors in a vector space. If every vector in the vector space V is a
linear combination of the vectors in some set B ⊆ V , then those linear combi-
nations can be used as a description for the vectors. This is something you are
actually very much accustomed to; consider the standard basis {e⃗1, e⃗2, e⃗3} for
R3. Consider the following example:

 7

8

9

 =

 7

0

0

+

 0

8

0

+

 0

0

9



= 7

 1

0

0

+ 8

 0

1

0

+ 9

 0

0

1


= 7e⃗1 + 8e⃗2 + 9e⃗3.

Now we know that {e⃗1, e⃗2, e⃗3} is a basis for R3, so we shouldn’t be surprised
that we can write any vector in R3 as a linear combination of e⃗1, e⃗2, and
e⃗3. It also turns out that the weights on that linear combination, 7, 8, and 9

respectively, have meaning. What is the vector

 7

8

9

?
It’s 7 e⃗1’s, 8 e⃗2’s, and 9 e⃗3’s. What if we used a different basis? Those weights
would probably have to change, right?

Exploration 46 Let

B =


 −10

1

 ,

 1

−1
1

 ,

 0

1

0

 and x⃗ =

 7

8

9

 .

Note that B is a basis for R3.19 Write x⃗ as a linear combination using this 19:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Or instead of “note”, maybe
you should check this?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Or maybe get a group of friends to-
gether for a basis-checking party!

basis.



BASES IN ACTION: COORDINATES 101

What if there was more than one linear combination for a particular vector and
a particular basis? Well, fortunately that cannot happen:

Theorem 2.3.1 Let B = {v⃗1, . . . , v⃗p} be a basis for a vector space V . Then
for each v⃗ ∈ V , there exists a unique set of scalars c1, . . . , cp ∈ R such that

(2.6) v⃗ = c1v⃗1 + · · ·+ cpv⃗p.

PROOF. The existence of an equation such as Equation 2.6 is guaranteed by
the fact every basis must span the vector space. Thus, the content here is
really in showing that such an equation is unique. Suppose there is another set
of scalars d1, . . . , dp ∈ R such that

(2.7) v⃗ = d1v⃗1 + · · ·+ dpv⃗p.

Subtracting Equation 2.7 from Equation 2.6, we have

0⃗ = x⃗− x⃗ = (c1 − d1)v⃗1 + · · ·+ (cp − dp)v⃗p.

Since B is a basis, we know it is linearly independent, so by Definition 1.3.3
we have that ci − di = 0 for all 1 ≤ i ≤ p. Thus, ci = di for all 1 ≤ i ≤ p;
our new batch of scalars has to be the same as the original ones. □

This is great. Given a basis for a vector space, we can write every vector in
that vector space as a unique linear combination of the basis vectors. Then we
only really need to know the weights, right? Each set of weights associated to
each vector provides all the information you need for that vector.

Definition 2.3.1 Let B = {v⃗1, . . . , v⃗p} be a basis for a vector space V , and
suppose v⃗ ∈ V . The coordinates for v⃗ relative to B (or the B-coordinates
of v⃗) are the weights c1, . . . , cp such that

(2.8) v⃗ = c1v⃗1 + · · ·+ cpv⃗p.

The coordinate vector of v⃗ relative to B is

(2.9) [v⃗]B =

 c1
...
cp

 .

Yay! Now we can use coordinates relative20 to a basis to write any vector in 20:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Some other books say “with
respect to B” rather than “relative to B.”

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

What if B is not a respectable ba-
sis?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Then those other books look very
silly.

any p-dimensional vector space as a vector in Rp! Note that the order of the
coordinates is determined entirely by the order of the basis vectors.

Example 2.3.1 Let

x⃗ =

[
4

0

]
∈ R2.

Using the standard basis for R2, {e⃗1, e⃗2}, we have that x⃗ = 4e⃗1 + 0e⃗2,
but this is neither interesting nor exciting. Perhaps we could use a different
basis, B = {v⃗1, v⃗2}, where

v⃗1 =

[
1

−2

]
and v⃗2 =

[
5

−6

]
.



BASES IN ACTION: COORDINATES 102

10
x⃗

v⃗1

v⃗2

5

FIGURE 2.1. The vector x⃗ ∈ R2 is shown with a solid ar-
row line. Using {v⃗1, v⃗2} (with dashed arrow line) as a basis
for R2, we see that x⃗ = −6v⃗1 + 2v⃗2.

We can still write x⃗ as a linear combination of the vectors in this basis:

x⃗ = −6v⃗1 + 2v⃗2,

and this can be seen in Figure 2.1. Thus, the coordinates for x⃗ relative to B
are

[x⃗]B =

[
−6
2

]
,

indicating that to get the vector x⃗ with vectors from B, you’ll need −6 v⃗1’s
and 2 v⃗2’s. You can think of these coordinates (the weights) as an address
using “the directions” given in your basis.

Exploration 47 Let’s apply what we just learned to P2. Let

B1 = {1, x, x2} and B2 = {1 + x, x+ x2, x}.

▶ Let v⃗ = 2 + 3x+ 4x2. Find [v⃗]B1
and [v⃗]B2

.

▶ Let u⃗ = a+ bx+ cx2. Find [u⃗]B1
and [u⃗]B2

.

Let’s think about what we’ve just done. We’ve used two different bases for P2

to write a vector in P2 in a way that looks like a vector in R3. This seems quite



GEOMETRY IN VECTOR SPACES 103

useful. In fact, based on what we know from Chapter 0, it seems like there
could be a function from P2 to R3 floating around here. However, the vectors
are different when the bases are different, so there’s not just a single way to do
this.

Geometry in Vector Spaces

We need to tidy up our geometric intuition a bit with respect to more general
vector spaces. In the previous chapter, we learned about an inner product on
Rn as well as the concept of distance in Rn; we just need to generalize these
definitions so they can be used for any vector space.

If only there was a way to write vectors from a vectors space V as vectors in
Rn. . . 21 21:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I know this. Don’t tell me.

Yes! Very good! Coordinate vectors!22
22:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I was just about to say that!

Definition 2.3.2 Let V be a vector space with basis B and let [·]B : V → Rn

be the function that relates vectors in V to their coordinate vector relative to
B in Rn. The inner product on V relative to B is the function ·B : V ×V →
R defined as the composition of [·]B× [·]B on V ×V with the standard inner
product · on Rn ×Rn (from Section 1.2). That is, for any vectors v⃗, u⃗ ∈ V ,
we define

(2.10) v⃗ ·B u⃗ = [v⃗]B · [u⃗]B .

There are a couple of annoying things about this. First, the inner product
on a vector space depends on the basis you’re using. Unfortunately, you’re
just going to have to deal with that; it’s a fact of life. Second, the notation
is a bit obnoxious; since the inner product depends on the basis, the dot for
our function name has to carry around a B as a subscript. We propose this
compromise. If we all agree to understand that the inner product on a vector
space is dependent on the basis you’re using, we can just suppress the subscript
B. Then Equation (2.10) becomes

v⃗ · u⃗ = [v⃗]B · [u⃗]B ,

which definitely looks better.

We also quickly glossed over that “composition” bit in Definition 2.3.2. We’ll
discuss composition in greater detail in Section 3.1, but for now, just think of
function composition as using the outputs of the first functions as the inputs of
the second function. A diagram like this

Rn × Rn

•

$$
V × V

[·]B×[·]B

OO

•B
// R,

called a commuting diagram, is often used to describe this situation. It is
read as follows: to get the inner product from V ×V to R (the arrow from left
to right), you take coordinate vectors (the up arrow) then the standard inner
product on Rn (the diagonal arrow).



GEOMETRY IN VECTOR SPACES 104

This all probably sounds much more complicated than it actually is. Let’s try
some examples.

Example 2.3.2 Let p⃗ = x2 − 2x + 1 and q⃗ = x2 + 2x + 6 be vectors in
P2. What is the inner product of p⃗ and q⃗? How does one take the inner
product of two polynomials? Right. This is exactly the issue we’ve been
solving. Before you can take an inner product, you need the coordinate
vectors for p⃗ and q⃗ relative to some basis. Let’s use the standard basis for
P2: B = {1, x, x2}. Then

[p⃗]B =

 1

−2
1

 and [q⃗]B =

 6

2

1

 .

Using the coordinate vectors, we have

p⃗ · q⃗ = [p⃗]B · [q⃗]B =

 1

−2
1

 ·
 6

2

1

 = 6− 4 + 1 = 3.

Exploration 48 We’ve said that this inner product depends on the basis, since
the coordinate vectors depend on the basis. Let’s see this in action. Again, let
p⃗ = x2 − 2x+ 1 and q⃗ = x2 + 2x+ 6. Back in Section 2.1, we showed that
B1 = {1 + x, x+ x2, x} also formed a basis of P2.

▶ Find the coordinate vectors [p⃗]B1
and [q⃗]B1

. (You might find it helpful
to look back at Example 2.1.2.)

▶ Now, use these coordinate vectors to compute p⃗ · q⃗.

The answer’s different, right? So, the inner product can depend on
the basis.

Exploration 49 In the exercises of Section 2.2, we saw that {⃗1, i⃗} forms a
basis for the complex numbers C = {a + bi : a, b ∈ R} when viewed as a
real vector space. Use this basis to compute ( ⃗1 + i) · ( ⃗−1 + 2i). Keep in mind
that the dot here indicates inner product of vectors and not multiplication of
complex numbers.

This whole “just use the coordinate vector” strategy is pretty great. Let’s apply
it to length, too!



GEOMETRY IN VECTOR SPACES 105

Definition 2.3.3 Let V be a vector space with basis B and let [·]B : V → Rn

be the function that relates vectors in V to their coordinate vector relative
to B in Rn. Length relative to B (or the norm relative to B) is the function
∥ · ∥B : V→ R defined by relating vectors to their length by composing the
function [·]B × [·]B on V with ∥ · ∥ on Rn. That is, for any vector v⃗ ∈ V , we
define

(2.11) ∥v⃗∥B = ∥[v⃗]B∥ .

Again, we’ll all agree that length is also relative to basis and regularly omit
the subscript B on the norm of vectors in general vector spaces. As before, the
idea is that if you don’t have a vector in Rn, you’ll need to make it a coordinate
vector before you can take its length.

Example 2.3.3 What is the norm of p⃗ = x3 + 4x− 2 ∈ P3? The length of
this vector depends on your choice of basis. For lack of imagination, we’ll
use the standard basis again, B = {1, x, x2, x3}. Then

[p⃗]B =


−2
4

0

1

 ,

so

∥p⃗∥ = ∥[p⃗]B∥ =

∥∥∥∥∥∥∥∥

−2
4

0

1


∥∥∥∥∥∥∥∥ =

√
(−2)2 + 42 + 02 + 12 =

√
21

Exploration 50 Now let’s do something similar using P2. As before, let B =

{1, x, x2} and B1 = {1 + x, x+ x2, x}. Let p⃗ = x+ 5.

▶ Find [p⃗]B and [p⃗]B1
.

▶ Find ∥p⃗∥B.

▶ Find ∥p⃗∥B1 .

Example 2.3.4 Now, we again have the concept of unit vectors. Let’s find
a unit vector in the direction of q⃗ = 5x4 − 2x + 3 ∈ P4 using the standard
basis B for P4. First, the coordinate vector for 5x4 − 2x+ 3 is

[q⃗]B =


3

−2
0

0

5

 .



GEOMETRY IN VECTOR SPACES 106

Now, we find that the length of this vector is

∥q⃗∥ =
√
9 + 4 + 25 =

√
38.

The unit vector is then the vector with coordinate vector given by
3√
38

−2√
38

0

0
5√
38

 .

To find the actual unit vector, we should then translate this back into a vector
in P4. Our final answer is then

3√
38
− 2x√

38
+

5x4

√
38

.

Moving forward, we’ll often need to make use of inner products. Since one
can choose from a lot of different bases and inner products on a vector space,
we’ll usually need to agree on a basis and inner product before proceeding
with the use of any inner product.

Definition 2.3.4 We call a vector space, V , together with inner product rel-
ative to basis B an inner product space.

In practice, whenever you see the words “inner product space,” know that
we’re just talking about a vectors space with a specifically chosen inner prod-
uct and basis.

Now for something completely different. What does it mean for vectors to be
perpendicular in R2? Right,23 their directions differ by 90◦ or, better yet, π/2 23:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Pun intended.
radians. What about in R3 or, better yet, R5? Can you imagine what it means
for “directions differ by 90◦” in R5? Right. The notion of perpendicular is
too restricted by geometry in Rn (for small n!) to be useful for general vector
spaces. We need something better.

Definition 2.3.5 Vectors v⃗ and u⃗ in vector space V with chosen basis B are
said to be orthogonal if v⃗ · u⃗ = 0.

Great, but does it still work the same as perpendicular in Rn for small n? It
does!

Theorem 2.3.2 Two nonzero vectors v⃗ and u⃗ in R2 are orthogonal with
respect to the standard inner product if and only if they are perpendicular.

PROOF. We first need to better define what it means to be perpendicular in
R2. Let α be the angle between v⃗ and u⃗. By the Law of Cosines and definition
of distance,

dist (v⃗, u⃗)
2

= ∥v⃗∥2 + ∥u⃗∥2 − 2∥v⃗∥∥u⃗∥ cosα and

dist (v⃗, u⃗)
2

= ∥v⃗ − u⃗∥2

= (v⃗ − u⃗) · (v⃗ − u⃗)

= ∥v⃗∥2 + ∥u⃗∥2 − 2v⃗ · u⃗.



GEOMETRY IN VECTOR SPACES 107

This gives us two different expressions, each equal to dist (v⃗, u⃗)
2. Thus we

have
∥v⃗∥2 + ∥u⃗∥2 − 2∥v⃗∥∥u⃗∥ cosα = ∥v⃗∥2 + ∥u⃗∥2 − 2v⃗ · u⃗.

Once we simplify this a bit, it follows that

v⃗ · u⃗ = ∥v⃗∥∥u⃗∥ cosα.

Since v⃗ and u⃗ are nonzero, v⃗ · u⃗ = 0 if and only if α = 90◦. □

Also, we do have a concept of the angle between vectors in R3. Since any
two vectors in R3 lie in a plane together, the angle between the vectors can
be determined by the angle between them specifically in that plane.24 Our 24:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

The Law of Cosines also
works in that plane as well!definition of orthogonality also agrees with the use of perpendicular to mean

the angle between two vectors in R3 is 90◦.

Orthogonality is great. In Rn (for small n), it means the same thing as per-
pendicular, but it also works in any vector space. That said, for the sake of
consistency, we shall only use the word “orthogonal” in this course.

Exploration 51 Let

v⃗1 =

 −25
1

 , v⃗2 =

 0

1

0

 , v⃗3 =

 1

0

2

 , v⃗4 =

 0

0

0

 .

Note that v⃗2 · v⃗3 = 0, so v⃗2 and v⃗3 are orthogonal to each other. Find all pairs
of orthogonal vectors.

Exploration 52 Let v⃗ =

 1

1

1

. The vector u⃗ =

 1

0

−1

 is orthogonal to v⃗.

Find a vector w⃗ orthogonal to v⃗ so that {u⃗, w⃗} is a linearly independent set.

As was noted in Section 1.2, length in vector spaces is a generalization of
absolute value in R. It should come as little surprise then that many of your
favorite facts about absolute value are true for length in vector spaces.

Theorem 2.3.3 (The Triangle Inequality) For any two vectors v⃗ and u⃗ in
vector space V ,

∥v⃗ + u⃗∥ ≤ ∥v⃗∥+ ∥u⃗∥.

The proof for this fact would take us a bit off track, so we’ve omitted it.

Theorem 2.3.4 (The Pythagorean Theorem) For any two orthogonal vec-
tors v⃗ and u⃗ in a vector space V ,

∥v⃗ + u⃗∥2 = ∥v⃗∥2 + ∥u⃗∥2



SECTION HIGHLIGHTS 108

Note that in the theorem above, the length function is computed using the same
basis for which the vectors are orthogonal.

PROOF. First, we need a fact about coordinate vectors. Let v⃗ and u⃗ be vectors
in a vector space V with basis B = {⃗b1, . . . , b⃗n}. Then there are real numbers
v1, . . . , vn and u1, . . . , un so that

v⃗ =v1⃗b1 + · · ·+ vnb⃗n

u⃗ =u1⃗b1 + · · ·+ unb⃗n

Thus, v⃗ + u⃗ = (v1⃗b1 + · · ·+ vnb⃗n) + (u1⃗b1 + · · ·+ unb⃗n) = (v1 + u1)⃗b1 +

· · ·+ (vn + un)⃗bn. From this equation we see that

[v⃗ + u⃗]B = [v⃗]B + [u⃗]B .

Now, we will use this to prove our theorem. Let x⃗, y⃗ ∈ Rn. Then, by the
definition of length in Rn we have

∥x⃗+ y⃗∥2 =
(√

(x1 + y1)2 + · · ·+ (xn + yn)2
)2

=(x1 + y1)
2 + · · ·+ (xn + yn)

2

=(x2
1 + 2x1y1 + y21) + · · ·+ (x2

n + 2xnyn + y2n)

=(x2
1 + · · ·+ x2

n) + 2(x1y1 + · · ·+ xnyn) + (y21 + · · ·+ y2n)

=∥x⃗∥2 + 2x⃗ · y⃗ + ∥y⃗∥2

Then if we know in addition that x⃗ and y⃗ are orthogonal, then 2x⃗ · y⃗ = 0 and
we have

∥x⃗+ y⃗∥2 = ∥x⃗∥2 + ∥y⃗∥2.

Thus, the theorem holds for vectors in Rn.

Now let v⃗ and u⃗ be orthogonal vectors in a vector space V with basis B. We
then have

∥v⃗ + u⃗∥2 =∥ [v⃗ + u⃗]B ∥
2

=∥ [v⃗]B + [u⃗]B ∥
2

=∥ [v⃗]B ∥
2 + ∥ [u⃗]B ∥

2

=∥v⃗∥2 + ∥u⃗∥2

□

Section Highlights

▶ There is a unique way to write any vector v⃗ in a vector space V as a
linear combination of the vectors in a basis for V . The coefficients
from this linear combination form the coordinate vector for v⃗. See
Theorem 2.3.1 and Definition 2.3.1.

▶ Coordinate vectors can be used to define the inner product like in
Section 1.2 for any vector space. See Definition 2.3.2.



SECTION HIGHLIGHTS 109

▶ The concept of perpendicular vectors in R2 or R3 is extended to gen-
eral vector spaces of dimension n as orthogonality. Two vectors are
said to be orthogonal if their inner product is zero. See Definition
2.3.5 and Theorem 2.3.2.



EXERCISES FOR SECTION 2.3 110

Exercises for Section 2.3

2.3.1.Let B =
{
1 + x, 2x, x+ x2

}
. This is a basis for P2.

(a) Find
[
1 + x+ x2

]
B and [1]B.

(b) Suppose p⃗ ∈ P2 has coordinate vector [p⃗]B =

 1

2

−1

. Find the polynomial p⃗ ∈ P2.

2.3.2.Let B =

{[
3

1

]
,

[
−1
5

]}
. This is a basis for R2.

(a) Find
[

4

6

]
B

and
[

1

0

]
B

.

(b) Suppose x⃗ ∈ R2 has coordinate vector [x⃗]B =

[
1

2

]
. Find x⃗.

2.3.3.Let B =


 1

1

0

 ,

 0

1

1

 ,

 1

0

1

. This is a basis for R3.

(a) Find

 1

1

1


B

and

 1

0

0


B

.

(b) Suppose x⃗ ∈ R3 has coordinate vector [x⃗]B =

 1

1

3

. Find x⃗.

2.3.4.Below are two bases for P2:

B1 =
{
x, 1 + x, x2

}
and

B2 =
{
1 + x, x+ x2, x2

}
.

Find
[
1 + 2x− 3x2

]
B1

and
[
1 + 2x− 3x2

]
B2

.

2.3.5.Below are two bases for R3:

B1 =


 0

1

−1

 ,

 −15
1

 ,

 1

5

1

 and

B2 =


 1

1

−1

 ,

 −13
1

 ,

 1

5

1

 .

Find

 1

1

1


B1

and

 1

1

1


B2

.



EXERCISES FOR SECTION 2.3 111

2.3.6.Let B = {⃗b1, b⃗2} be a basis for a vector space V . Show that for any constants k1 and k2,[
k1⃗b1

]
B
=

[
k1
0

]
and

[
k2⃗b2

]
B
=

[
0

k2

]
.

2.3.7.Find the distance between

v⃗1 =

 1

1

1

 and v⃗2 =

 0

−2
2

 .

2.3.8.Find the distance, using the standard basis {1, x, x2, x3} for P3, between 1 + x+ x3 and −2x− 2x3.

2.3.9.Let

v⃗1 =

 −22
1

 , v⃗2 =

 1

1

0

 , v⃗3 =

 0

0

2

 , and v⃗4 =

 0

−1
0

 .

Find all pairs of orthogonal vectors among v⃗1, v⃗2, v⃗3, and v⃗4.

2.3.10.Let

v⃗1 =

 2

1

1

 , v⃗2 =

 0

1

−1

 , v⃗3 =

 0

0

−1

 , and v⃗4 =

 1

1

0

 .

Find all pairs of orthogonal vectors among v⃗1, v⃗2, v⃗3, and v⃗4.

2.3.11.Let v⃗ =

 1

0

1

. The vector u⃗ =

 1

0

−1

 is orthogonal to v⃗. Find a vector w⃗ orthogonal to v⃗ so that {u⃗, w⃗}

is a linearly independent set.

2.3.12.Let v⃗, u⃗1, u⃗2 be vectors in some vector space V .

(a) Suppose v⃗ is orthogonal to u⃗1 and u⃗2. Use properties of the dot product to argue that v⃗ is orthogonal
to u⃗1 + u⃗2.

(b) Suppose v⃗ is orthogonal to u⃗1 + u⃗2. Must it be true that v⃗ is orthogonal to u⃗1 and u⃗2? Explain.

(c) Suppose v⃗ is orthogonal to u⃗1 and u⃗2. If x⃗ ∈ Span {u⃗1, u⃗2}, must v⃗ be orthogonal to x⃗? Explain.

2.3.13.Let v⃗ ∈ Rn. Why is ∥v⃗∥ ≥ 0? When is ∥v⃗∥ = 0? Explain.

2.3.14.Let B be the standard basis for P3 and C = {1, 1 + x, x + x2, x2 + x3}, which is also a basis of P3. Let
v⃗ = 2 + x+ x3 and u⃗ = x+ 3x2 − x3.

(a) Find [v⃗]B and [u⃗]B.

(b) Find v⃗ · u⃗ with respect to B.

(c) Are v⃗ and u⃗ orthogonal with respect to B?

(d) Find ∥v⃗∥ and ∥u⃗∥ with respect to B.



EXERCISES FOR SECTION 2.3 112

(e) Find [v⃗]C and [u⃗]C .

(f) Find v⃗ · u⃗ with respect to C.

(g) Are v⃗ and u⃗ orthogonal with respect to C?

(h) Find ∥v⃗∥ and ∥u⃗∥ with respect to C.

2.3.15.Let B be the standard basis for P3. Let v⃗ = x+ 3x2 + x3 and u⃗ = 2 + 3x− x2.

(a) Find [v⃗]B and [u⃗]B.

(b) Find v⃗ · u⃗ with respect to B.

(c) Are v⃗ and u⃗ orthogonal with respect to B?

(d) Give a new vector w⃗ so that w⃗ is orthogonal to v⃗.

(e) Find ∥v⃗∥ and ∥u⃗∥ with respect to B.

2.3.16.Note that B1 = {1, 1 + x, x+ x2, x3} is a basis for P3. Let v⃗ = x+ 3x2 + x3 and u⃗ = 2 + 3x− x2.

(a) Find [v⃗]B1 and [u⃗]B1 .

(b) Find v⃗ · u⃗ with respect to B1.

(c) Are v⃗ and u⃗ orthogonal with respect to B1?

(d) Give a new vector w⃗ so that w⃗ is orthogonal to v⃗.

(e) Find ∥v⃗∥ and ∥u⃗∥ with respect to B1.

2.3.17.Let S be the unit cube in R3. That is, let S be the cube with corners (0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0),
(0, 0, 1), (0, 1, 1), (1, 0, 1), and (1, 1, 1). There are four different diagonals in S (segments that connect one
corner of S to another and go through the center of S). By subtracting corners, we can write these diagonals
as vectors in R3. Show that any two of these diagonals are not orthogonal.

2.3.18.Let V be a vector space with basis B = {⃗b1, . . . , b⃗n}. Define T : V → Rn by T (v⃗) = [v⃗]B. Such a mapping
T is often called a coordinate mapping. Show that for any v⃗1, v⃗2 ∈ V and any a ∈ R, we have

T (v⃗1 + v⃗2) = T (v⃗1) + T (v⃗2) and T (av⃗1) = aT (v⃗1).



EXERCISES FOR SECTION 2.3 113

2.3.19.Let v⃗, u⃗ ∈ Rn. Following techniques similar to the proof of the Pythagorean Theorem, show ∥v⃗ + u⃗∥2 +
∥v⃗ − u⃗∥2 = 2∥v⃗∥2 + 2∥u⃗∥2. This is called the Parallelogram Law.

2.3.20.Let v⃗, u⃗ ∈ Rn. Use the Triangle Inequality to show
∣∣∥v⃗∥−∥u⃗∥∣∣ ≤ ∥v⃗− u⃗∥ using the fact that v⃗ = v⃗− u⃗+ u⃗.

This is called the Reverse Triangle Inequality.



2.4. ORTHOGONAL SETS 114

2.4 Orthogonal Sets

Here we will extend the notion of orthogonality to sets; it will end up being
very useful. When we say useful here, we mean it will produce a formula that
can save you a lot of time.

Definition 2.4.1 Let V be an inner product space and W be a subspace of
V . If a vector v⃗ ∈ V is orthogonal to every vector in W , then we say v⃗ is
orthogonal to W . The set of all vectors v⃗ ∈ V that are orthogonal to W

is called the orthogonal complement of W . The orthogonal complement of
W is denoted W⊥.

Note that orthogonality is defined in terms of an inner product, which depends
on the basis one uses. Thus, orthogonality always depends on the choice of
basis in a vector space, so we’ll almost always be working in inner product
spaces (where we have a chosen basis and inner product) when orthogonality
is relevant. Also for clarification, the notation W⊥ is usually pronounced “W
perp.”25 25:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

As in “purple?”

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

As in “perpetrator?”

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

“Porpoise?”

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It’s not pronounced “porp!”

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It is now.

Example 2.4.1 Let

W = Span


 1

2

3

 .

This is a subspace in R3. In particular, this is a line through the origin in
R3. Thus, the vectors orthogonal to this line form a plane. Specifically, they
form a plane through the origin since the zero vector is orthogonal to every
vector in R3. Now let us determine this plane.
Let v⃗ ∈ W . Since 0⃗ is orthogonal to every vector, we should specify that
v⃗ ̸= 0⃗. Then for some c ∈ R with c ̸= 0,

v⃗ =

 c

2c

3c

 .

Let  x

y

z


be a vector orthogonal (using the standard basis for R3) to v⃗. We know c

2c

3c

 ·
 x

y

z

 = cx+ 2cy + 3cz = 0.

Thus,

W⊥ =


 x

y

z

 : x+ 2y + 3z = 0

 .

Since c ̸= 0, we were able to algebraically clean up our condition and
require simply that x+ 2y + 3z = 0.



2.4. ORTHOGONAL SETS 115

However, you may perhaps feel unsatisfied with this description of W⊥. We
can also describe W⊥ as

Span


 0

3

−2

 ,

 3

0

−1

 ,

where the appropriate vectors were determined by substituting into the equa-
tion x+ 2y + 3z = 0. We know these two vectors are linearly independent
since they are not scalar multiples of each other. Thus, they must span our
2-dimensional plane. This feels more like a description we would typically
see in this book.

We saw in the example that a way to find the orthogonal complement of a sub-
space W is to consider a general element of W and determine what it means
for some other vector to be orthogonal to that vector. However, we can actually
streamline this a bit. Rather than taking a general element, we can instead sep-
arately consider each element in a spanning set of W . In the example above,
this would mean it was enough to just find all vectors orthogonal to 1

2

3

 ,

which amounts to not including the scalar multiple c. Since we simplified out
our c anyway, you can see that was exactly what we needed!

Theorem 2.4.1 Let W be a subspace of an inner product space V , and let
S = {v⃗1, . . . , v⃗n} be a set of vectors that spans W . Then v⃗ ∈ W⊥ if and
only if v⃗ is orthogonal to every vector in S.

PROOF. Suppose v⃗ ∈ W⊥. Then v⃗ is orthogonal to every vector in W , in-
cluding those in S. Now suppose v⃗ is orthogonal to every vector in S. Since
S spans W , any vector w⃗ ∈ W can be written as a linear combination of the
vectors in S:

w⃗ = a1v⃗1 + · · ·+ anv⃗n.

Since v⃗ is orthogonal to v⃗i for 1 ≤ i ≤ n,

v⃗ · w⃗ = v⃗ · (a1v⃗1 + · · ·+ anv⃗n)

= v⃗ · (a1v⃗1) + · · ·+ v⃗ · (anv⃗n)
= a1(v⃗ · v⃗1) + · · ·+ an(v⃗ · v⃗n)
= a1(0) + · · ·+ an(0)

= 0.

Thus, v⃗ ∈W⊥. It follows that v⃗ ∈W⊥ if and only if v⃗ is orthogonal to every
vector in S. □

Theorem 2.4.2 If W is a subspace of and inner product space V , then W⊥

is a subspace of V .

Exploration 53 To show W⊥ is a subspace, we will verify the three axioms
of being a subspace.



2.4. ORTHOGONAL SETS 116

▶ First, we know 0⃗ ∈ W⊥ because the zero vector is orthogonal to
every vector.

▶ Now, let v⃗ and u⃗ be in W⊥. Let w⃗ ∈ W . To show W⊥ is closed
under addition, we need to verify that (v⃗+ u⃗) ·w⃗ = 0. Use a property
of the inner product to argue that this must be true.

▶ Lastly, we need to show that W⊥ is closed under scalar multiplica-
tion. Let k ∈ R. Suppose as before that v⃗ ∈ W⊥ and w⃗ ∈ W . Then
we need to verify (kv⃗) · w⃗ = 0. Again, use a property of the inner
product to show this.

Example 2.4.2 Let v⃗ and u⃗ be any two linearly independent vectors in R3

with basis B. Then W = Span {v⃗, u⃗} is a two-dimensional subspace of R3

that can be visualized as a plane through the origin in R3. What do we know
about W⊥? It’s a subspace of R3, it must contain the zero vector, and all
of its vectors must be orthogonal to W , which is a plane through the origin.
What does it mean to be orthogonal to all the vectors in a plane in R3? As
an arrow vector, it would have to stick straight out of the plane. Imagine, for
example, that a tabletop is the plane, and you set a marker or pen standing up
on its end on the table; an arrow vector orthogonal to that plane would point
in the same direction as the marker (or pen). It could also point directly
down. It could also be any length! Our set of orthogonal vectors does, as
we’ve noted, have to contain the zero vector, too. Thus, W⊥ is the line
through the origin orthogonal to W . Moreover, dimW⊥ = 1.

Exploration 54 In Example 2.4.1, we saw the orthogonal complement of a
1-dimensional subspace in R3 had dimension 2. Then in Example 2.4.2, we
used our geometric understanding to note that the orthogonal complement of
a 2-dimensional subspace of R3 is 1-dimensional. Now let v⃗ and u⃗ be any
two linearly independent vectors in R4. Again, W = Span {v⃗, u⃗} is a two-
dimensional subspace of R4, but it’s harder to visualize this time. What is
W⊥, and what is dimW⊥?

Well, if you are having trouble figuring this out, let’s see if a more specific
example will help. Use the standard basis for R4, and let

W0 = Span




1

0

0

0

 ,


0

1

0

0


 and v⃗ =


a

b

c

d

 ∈W⊥
0 .

Then we know
a

b

c

d

 ·


1

0

0

0

 = a = 0, and


a

b

c

d

 ·


0

1

0

0

 = b = 0.



ORTHOGONAL SETS AND BASES 117

Using this information, can you determine W⊥
0 ?

Well, these examples do seem to be following a pattern. However, examples
are not enough to conclude a theorem. Let’s instead make a “conjecture.” This
is really just a guess based on some evidence. Hopefully, we’ll be able to prove
this conjecture in a future section.26 26:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Perhaps even the next section.

Conjecture 1 Let W be a subspace of an inner product space V such that
dimV = n and dimW = p. Then dimW⊥ = n− p.

Orthogonal Sets and Bases

Definition 2.4.2 If S is a set of vectors in an inner product space such that
all pairs of vectors in S are orthogonal, then S is said to be an orthogonal
set.

Theorem 2.4.3 Orthogonal sets of nonzero vectors are linearly indepen-
dent.

PROOF. We will use the definition of linear independence to show an orthogo-
nal set S = {v⃗1, . . . , v⃗p} of nonzero vectors is linearly independent. Suppose
there are scalars a1, . . . , ap such that a1v⃗1 + · · ·+ apv⃗p = 0⃗. Taking the inner
product of both sides of this equation with v⃗i for some 1 ≤ i ≤ p, we have

0 = v⃗i · 0⃗ = v⃗i · (a1v⃗1 + · · ·+ apv⃗p)

= a1v⃗i · v⃗1 + · · ·+ aiv⃗i · v⃗i + · · ·+ apv⃗i · v⃗p
= aiv⃗i · v⃗i,

since v⃗i · v⃗j = 0 for i ̸= j (by definition of orthogonal set). Since v⃗i ̸= 0⃗, we
know v⃗i · v⃗i ̸= 0. Thus, ai = 0. Since this argument holds for any 1 ≤ i ≤ p,
it follows that S is linearly independent. □

Sometimes a another useful result follows immediately from a theorem. We
call such a result a corollary to the theorem. The following is a corollary to
Theorem 2.4.3.

Corollary 2.4.4 If S is an orthogonal set in an inner product space V , then
S is a basis for the subspace Span {S}.

Orthogonality is a property enjoy by sets of vectors in a variety of contexts.
In fact, it’s such an enjoyable property, it gets its own definition with one of
favorite sets of vectors:

Definition 2.4.3 An orthogonal basis for a subspace W is a basis for W

that is also an orthogonal set.

What makes an orthogonal basis so enjoyable? We’re glad you asked.



ORTHOGONAL SETS AND BASES 118

Theorem 2.4.5 Let B = {v⃗1, . . . , v⃗p} be an orthogonal basis for a subspace
W of an inner product space V . Then for any w⃗ ∈W ,

w⃗ =

(
w⃗ · v⃗1
v⃗1 · v⃗1

)
v⃗1 +

(
w⃗ · v⃗2
v⃗2 · v⃗2

)
v⃗2 + · · ·+

(
w⃗ · v⃗p
v⃗p · v⃗p

)
v⃗p,

where the inner product is taken with respect to B.

It’s no surprise that w⃗ can be written as a linear combination of the vectors in
B because B is a basis. The innovation here is the weights; when B is an or-
thogonal basis, we get a formula for the weights. That’s extremely enjoyable.
Oh, we should prove it, though.

PROOF. This is a good one. Since B is a basis, we know there are weights ci
for 1 ≤ i ≤ p such that

w⃗ = c1v⃗1 + · · ·+ cpv⃗p.

To solve for ci for 1 ≤ i ≤ p, apply the dot product with v⃗i to both sides of
this equation. We then have

w⃗ · v⃗i = (c1v⃗1 + · · ·+ cpv⃗p) · v⃗i
= c1(v⃗1 · v⃗i) + · · ·+ ci(v⃗i · v⃗i) + · · ·+ cp(v⃗p · v⃗i)
= c1(0) + · · ·+ ci(v⃗i · v⃗i) + · · ·+ cp(0)

= civ⃗i · v⃗i,

where all but one of the dot products is zero because B is an orthogonal set.
Then just solve for ci; this can be done for each 1 ≤ i ≤ p. □

Exploration 55 Let’s do an example together to illustrate that theorem!

▶ Using the standard basis for R3, show that the set S = {v⃗1, v⃗2, v⃗3},
where

v⃗1 =

 1

2

−5

 , v⃗2 =

 −21
0

 , and v⃗3 =

 1

2

1


is an orthogonal set. This is readily verified using the definition of
inner product. Find v⃗1 · v⃗2, v⃗1 · v⃗3 and v⃗2 · v⃗3. (Hopefully, you get 0
for each one!)

▶ Now, we want to write

x⃗ =

 4

5

6


as a linear combination of the vectors in S. According to Theorem
2.4.5, we may write

x⃗ = c1v⃗1 + c2v⃗2 + c3v⃗3 where ci =
x⃗ · v⃗i
v⃗i · v⃗i

,

where 1 ≤ i ≤ 3. We compute each of the ci below:



ORTHOGONAL SETS AND BASES 119

c1 =
x⃗ · v⃗1
v⃗1 · v⃗1

=
4(1) + 5(2) + 6(−5)

1(1) + 2(2) + (−5)(−5)
=
−16
30

,

c2 =
x⃗ · v⃗2
v⃗2 · v⃗2

=
4(−2) + 5(1) + 6(0)

(−2)(−2) + 1(1) + 0(0)
=

−3
5

,

c3 =
x⃗ · v⃗3
v⃗3 · v⃗3

=
4(1) + 5(2) + 6(1)

1(1) + 2(2) + 1(1)
=

20

6
.

Thus,

x⃗ = − 8

15
v⃗1 −

3

5
v⃗2 +

10

3
v⃗3.

▶ Now that we’ve seen how it’s done, let’s write

y⃗ =

 1

−1
0


as a linear combination of the vectors in S. Find each ci below

c1 =
y⃗ · v⃗1
v⃗1 · v⃗1

=

c2 =
y⃗ · v⃗2
v⃗2 · v⃗2

= ,

c3 =
y⃗ · v⃗3
v⃗3 · v⃗3

= .

Now, use your answers for c1, c2, and c3 to fill in the blanks below

y⃗ = v⃗1 + v⃗2 + v⃗3.

If you have a vector space V , having a basis is very nice. Having an orthogonal
basis is even better. Shall we introduce a superlative?

Definition 2.4.4 If S is an orthogonal set of vectors in an inner product
space such that any vector in S is a unit vector, then S is said to be an
orthonormal set. If S happens to be an orthogonal basis and any vector in
S is a unit vector, then S is said to be an orthonormal basis.

An orthonormal set is just an orthogonal set of unit vectors. Why should we
care? In what way is this better?27 27:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

How is being normal better
than being “-gonal?” You should never
strive for normality. Always be excep-
tional.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

What are you talking about?!

Theorem 2.4.6 Let B = {v⃗1, . . . , v⃗p} be an orthonormal basis for subspace
W of inner product space V . Then for any w⃗ ∈W ,

w⃗ = (w⃗ · v⃗1) v⃗1 + (w⃗ · v⃗2) v⃗2 + · · ·+ (w⃗ · v⃗n) v⃗n,

where the inner product is taken with respect to B.

This theorem follows immediately from the proof of Theorem 2.4.5 once you
realize that v⃗i · v⃗i = 1 for all 1 ≤ i ≤ p since each v⃗i is a unit vector (since B
is an orthonormal basis).



ORTHOGONAL SETS AND BASES 120

Example 2.4.3 The set S = {v⃗1, v⃗2, v⃗3}, where

v⃗1 =

 1/
√
30

2/
√
30

−5/
√
30

 , v⃗2 =

 −2/
√
5

1/
√
5

0

 , and v⃗3 =

 1/
√
6

2/
√
6

1/
√
6


is an orthonormal set. One can see this by noting that

v⃗1 =
1√
30

 1

2

−5

 , v⃗2 =
1√
5

 −21
0

 , and v⃗3 =
1√
6

 1

2

1

 ;

then the fact that this is an orthogonal set follows from properties of inner
product and Exploration 55. For example,

v⃗1 · v⃗2 =

 1√
30

 1

2

−5

 ·
 1√

5

 −21
0


=

(
1√
30

1√
5

) 1

2

−5

 ·
 −21

0

 =

(
1√
30

1√
5

)
0 = 0.

The remaining pairs of vectors yield similar calculations and could readily
be checked. However, we must also verify that each of these vectors is a
unit vector:

∥v⃗1∥ =

∥∥∥∥∥∥ 1√
30

 1

2

−5

∥∥∥∥∥∥ =
1√
30

∥∥∥∥∥∥
 1

2

−5

∥∥∥∥∥∥ =
1√
30

√
30 = 1,

∥v⃗2∥ =

∥∥∥∥∥∥ 1√
5

 −21
0

∥∥∥∥∥∥ =
1√
5

∥∥∥∥∥∥
 −21

0

∥∥∥∥∥∥ =
1√
5

√
5 = 1,

∥v⃗3∥ =

∥∥∥∥∥∥ 1√
6

 1

2

1

∥∥∥∥∥∥ =
1√
6

∥∥∥∥∥∥
 1

2

1

∥∥∥∥∥∥ =
1√
6

√
6 = 1.

Then we can write

x⃗ =

 4

5

6


as a linear combination of the vectors in S. According to Theorem 2.4.6,
we may write

x⃗ = c1v⃗1 + c2v⃗2 + c3v⃗3 where ci = x⃗ · v⃗i,

where 1 ≤ i ≤ 3. Since

c1 = x⃗ · v⃗1 = 4(1/
√
30) + 5(2/

√
30) + 6(−5/

√
30) =

−16√
30

,

c2 = x⃗ · v⃗2 = 4(−2/
√
5) + 5(1/

√
5) + 6(0) =

−3√
5
,

c3 = x⃗ · v⃗3 = 4(1/
√
6) + 5(2/

√
6) + 6(1/

√
6) =

20√
6
.



ORTHOGONAL PROJECTION 121

Thus,

x⃗ = − 16√
30

v⃗1 −
3√
5
v⃗2 +

20√
6
v⃗3.

Note that this agrees with what we found in Exploration 55:

x⃗ = − 16√
30

1√
30

 1

2

−5

− 3√
5

1√
5

 −21
0

+
20√
6

1√
6

 1

2

1


= − 8

15

 1

2

−5

− 3

5

 −21
0

+
10

3

 1

2

1

 .

Exploration 56 Write

y⃗ =

 1

−1
0



as a linear combination of the orthonormal basis vectors from the example
above.

Perhaps you’re convinced at this point that orthogonal bases are pretty great,
and of course, orthonormal bases are even better. However, if you’re given a
random basis for a vector space, how likely do you think it is that this basis is
an orthogonal basis, much less an orthonormal one? Right;28 it is very unlikely. 28:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Pun intended, again.
Thus, it would be good to develop a method for making sets of vectors into
orthogonal sets. (Then we could take any basis and make a new orthogonal
one!)

Orthogonal Projection

Before we take on the task of making a new basis in general, we should start
with the very simple case of two vectors. That is, given two distinct, linearly
independent vectors v⃗ and u⃗ in a vector space V , is there a way to write v⃗ as
the sum of u⃗ and some other vector w⃗? Yes!

Lemma 2.4.7 Let v⃗ and u⃗ be vectors in a vector space V , and w⃗ = v⃗ − u⃗.
Then

(2.12) Span {v⃗, u⃗} = Span {u⃗+ w⃗, u⃗} = Span {w⃗, u⃗} .



ORTHOGONAL PROJECTION 122

PROOF. Note that u⃗+ w⃗ = u⃗+(v⃗− u⃗) = v⃗. Using the definition of span, we
have

Span {v⃗, u⃗} = {av⃗ + bu⃗ : a, b ∈ R}
= {a(u⃗+ w⃗) + bu⃗ : a, b ∈ R} = Span {u⃗+ w⃗, u⃗}
= {au⃗+ aw⃗ + bu⃗ : a, b ∈ R}
= {aw⃗ + (a+ b)u⃗ : a, b ∈ R}
= {aw⃗ + cu⃗ : a, c ∈ R} = Span {w⃗, u⃗} .

□

Exploration 57 Let’s be sure you believe this before moving on. Let

v⃗ =

 1

1

0

 and u⃗ =

 1

0

2

 .

▶ Find the vector w⃗ such that v⃗ = u⃗+ w⃗.

▶ Let

x⃗ ∈ Span


 1

1

0

 ,

 1

0

2

 , so x⃗ =

 a+ b

a

2b


for some a, b ∈ R. Write x⃗ as a linear combination of w⃗ and u⃗.
Hint: The coefficients should be a and (a+ b).

What does Equation (2.12) do for us? Well, as mentioned, it gives us a way
to interchange elements in a spanning set. However, our goal is to ultimately
replace a basis with an orthogonal basis, so what we really would like is for u⃗
and w⃗ to be orthogonal and satisfy v⃗ = u⃗ + w⃗. However, as we attempt this,
we see that u⃗ needs a little adjusting. Let’s instead require that some scalar
multiple of u⃗, say αu⃗, and some vector w⃗ be orthogonal such that v⃗ = αu⃗+w⃗.
Just like before, we need w⃗ = v⃗ − αu⃗. If you’re having trouble visualizing
this, refer to Figure 2.2.

Span {u⃗}

v⃗

αu⃗

v⃗ − αu⃗

FIGURE 2.2. We need to find a scalar α such that v⃗−αu⃗ is
orthogonal to u⃗.

According to Figure 2.2, we need to “tune” α so that v⃗ − αu⃗ is orthogonal to
u⃗, or

(v⃗ − αu⃗) · u⃗ = 0.



ORTHOGONAL PROJECTION 123

Using a distributive property of our inner product, we see this is true if and
only if α(u⃗ · u⃗) = v⃗ · u⃗. Solving for α, we have

α =
v⃗ · u⃗
u⃗ · u⃗

.

We’ve just constructed a vector v⃗− v⃗ · u⃗
u⃗ · u⃗

u⃗ that is orthogonal to u⃗ and satisfies
v⃗ = u⃗+ w⃗. Mission accomplished! Well, the short-term mission at least. This
takes care of a basis of size 2, but we’ll actually wait until the next section
for that whole orthogonal basis part in general because this needs a bit more
discussion.

Didn’t α look a tad familiar?29 What we’ve actually done here in finding αu⃗ 29:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

After making you compute it
in those explorations, it really should!is we have found a vector to represent the part of v⃗ that is traveling in the

direction of u⃗. This actually has its own name and special notation.

Definition 2.4.5 For any two vectors v⃗ and u⃗ in an inner product space, the
orthogonal projection of v⃗ onto u⃗ is

proj u⃗ (v⃗) =
v⃗ · u⃗
u⃗ · u⃗

u⃗.

v⃗

v⃗ − proj u⃗ (v⃗)

proj u⃗ (v⃗)u⃗

FIGURE 2.3. Here we project v⃗ onto u⃗.

Exploration 58 Let

v⃗ =

 −21
3

 , and u⃗ =

 1

−2
1

 .

▶ Let’s compute the orthogonal projection of v⃗ onto u⃗. First, we see
v⃗ · u⃗ = −2− 2 + 3 = −1 and u · u = 1 + 4 + 1 = 6. Then we get

proj u⃗ (v⃗) = −
1

6
u⃗ =

 − 1
6
1
3

− 1
6


▶ Now, let’s compute the orthogonal projection of u⃗ onto v⃗. We already

know v⃗ · u⃗ = u⃗ · v⃗ = −1 from above. Now, compute v⃗ · v⃗. Combine

these to find proj v⃗ (u⃗).

Now, why would this be useful? Let’s consider a scenario. You have a cart
loaded with gold on a train track. The cart is unfortunately not self-propelled,
but luckily, you also own a sturdy plow-horse and a very thick rope. The horse
cannot walk on the train tracks, so he cannot pull the cart directly forward



ORTHOGONAL PROJECTION 124

along the track. . . Wait. From the picture below, your plow horse is actually a
unicorn, and it flies above the track so that the rope makes a 45◦ angle with
the train track. Either way, it’s the same basic problem, so we’ll go with the
unicorn.30 See the diagram below. 30:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Is that unicorn drawing why
we’re here?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I guess so.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yikes.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yeah. Maybe we should rethink
our standards?

.:#
. .

#H¥

FIGURE 2.4. It’s just as you pictured, right?

Suppose the forward force that must be exerted on the cart for it to move is 5
N (where N stands for Newtons, a metric unit for force). If the “horse” is able
to pull with a force of 6 N, will the cart move? The way to answer this is by
computing the orthogonal projection of the “rope vector” onto the “train track
vector.” The vector representing the rope should have length 6 to represent the
force with which the unicorn can pull. Since we know the angle is 45◦, we see
that the “rope vector” is the vector[

3
√
2

3
√
2

]
when we are assigning the “train track vector” to be the vector[

1

0

]
.

proj ⃗train ( ⃗rope)

3
√
2

45◦

6

3
√
2

Because of our diagram, we can actually compute that

proj ⃗train ( ⃗rope) =

[
3
√
2

0

]
from the picture, but we also get this using the formula in our definition. Un-
fortunately, this vector has length 3

√
2, which is less than 5. Therefore, our

cart will not be moving anywhere unless we either unload some of the gold or
we provide additional fairy dust to our flying unicorn. Let this be a lesson. You
should never fill your cart before you compute the strength of your horse.31 31:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

. . . or unicorn.



SECTION HIGHLIGHTS 125

Section Highlights

▶ For any subspace W of an inner product space, there is an orthogonal
complement W⊥ that is also a subspace. See Theorem 2.4.2.

▶ Any vector in W⊥ will be orthogonal to any vector in W . See Defi-
nition 2.4.1 and Theorem 2.4.1.

▶ Any set of vectors whose vectors are pairwise orthogonal is called an
orthogonal set. See Definition 2.4.2.

▶ Any orthogonal set is linearly independent, and therefore, an orthog-
onal set of n vectors in an n-dimensional vector space will be an
orthogonal basis. See Theorem 2.4.5 and Corollary 2.4.4.

▶ If a basis is orthogonal, then there is a formula that can be used to
compute the coordinate vector with respect to that basis. See Theo-
rem 2.4.5 and Exploration 55.

▶ An orthogonal basis can be turned into an orthonormal basis by scal-
ing each vector to be a unit vector. See Definition 2.4.4 and Example
2.4.3.

▶ The projection of a vector u⃗ onto a vector v⃗ is the part of the vector
u⃗ that is in the direction of v⃗. See Definition 2.4.5.



EXERCISES FOR SECTION 2.4 126

Exercises for Section 2.4

2.4.1.

Using the standard inner product in R3, determine all orthogonal subsets of this set of vectors:v⃗1 =

 1

−1
0

 , v⃗2 =

 0

1

1

 , v⃗3 =

 1

1

1

 , v⃗4 =

 1

1

−1

 , v⃗5 =

 2

0

−2

 , v⃗6 =

 1

1

−2

 .

2.4.2.Let

v⃗1 =

 −22
1

 , v⃗2 =

 2

−2
8

 , v⃗3 =

 1

1

0

 , and x⃗ =

 2

1

2

 .

Show that {v⃗1, v⃗2, v⃗3} is an orthogonal basis for R3 with standard inner product. Then express x⃗ as a linear
combination of v⃗1, v⃗2, and v⃗3.

2.4.3.Let

v⃗1 =

 −24
1

 , v⃗2 =

 1

0

2

 , v⃗3 =

 8

5

−4

 , and x⃗ =

 2

1

2

 .

Show that {v⃗1, v⃗2, v⃗3} is an orthogonal basis for R3 standard inner product. Then express x⃗ as a linear
combination of v⃗1, v⃗2, and v⃗3.

2.4.4.Let p⃗1 = 2 + x− 2x2, p⃗2 = −1 + 4x+ x2, p⃗3 = 1 + x2, and q⃗ = 8− 4x− 3x2. Show that {p⃗1, p⃗2, p⃗3} is
an orthogonal basis for P2 with respect to the standard basis of P2. Then express q⃗ as a linear combination of
p⃗1, p⃗2, and p⃗3.

2.4.5.Using the standard inner product in R3, compute the projection from v⃗ onto u⃗, proj u⃗ (v⃗), for each pair of
vectors below. Note that the answer should always be a scalar multiple of u⃗.

(a) v⃗ =

 1

1

−1

 onto u⃗ =

 0

1

1

.

(b) v⃗ =

 1

2

−3

 onto u⃗ =

 1

0

1

.

(c) v⃗ =

 0

4

−1

 onto u⃗ =

 1

1

1

.

(d) v⃗ =

 0

4

−1

 onto u⃗ =

 1

0

0

.

(e) v⃗ =

 3

4

−1

 onto u⃗ =

 1

0

0

.

2.4.6.Using the standard basis for P2, compute the projection from p⃗ onto q⃗ below. Note that the answer should
always be a scalar multiple of q⃗.

(a) p⃗ = 1 + x+ x2 onto q⃗ = −1− x.

(b) p⃗ = 1 + 2x− x2 onto q⃗ = −1− x+ x2.



EXERCISES FOR SECTION 2.4 127

(c) p⃗ = x+ x2 onto q⃗ = −1− x.

2.4.7.We consider the distance between a vector and a subspace to be the distance from the tip of the vector to the
closest point in the subspace. When the subspace is just the span of a single vector, we’ve seen how to handle
this.

v⃗

v⃗ − proj u⃗ (v⃗)

proj u⃗ (v⃗)u⃗

As you can see from the diagram, the distance is the length of v⃗ − proj u⃗ (v⃗), denoted ∥v⃗ − proj u⃗ (v⃗) ∥.
Answer this question for each v⃗ and u⃗ below: How far is v⃗ from Span {u⃗}?

(a) v⃗ =

 1

−1
1

 and u⃗ =

 0

1

1



(b) v⃗ =

 1

0

1

 and u⃗ =

 0

1

1


(c) v⃗ =

 1

1

1

 and u⃗ =

 0

1

1



(d) v⃗ =

 1

0

1

 and u⃗ =

 2

0

2



2.4.8.Let v⃗ ∈ Rn. Using the standard inner product, show that the orthogonal projection of v⃗ onto v⃗ is v⃗.

2.4.9.Let W = Span


 2

−1
0

 ,

 0

1

0

, and use the standard inner product in R3.

(a) Show that B =


 1

−1
0

 ,

 1

1

0

 is an orthogonal basis for W . Note, you must confirm that

B ⊂W .

(b) Find a vector in W⊥ by solving for a, b, c ∈ R such that a

b

c

 ·
 1

−1
0

 = 0 and

 a

b

c

 ·
 1

1

0

 = 0

(c) What must e, f , and g be so that B1 =


 1

2

0

 ,

 e

f

g

 is also an orthogonal basis for W ? Note

that you must choose e, f , and g so that B1 ⊂W .



EXERCISES FOR SECTION 2.4 128

2.4.10.Let W = Span


 2

−1
1

, and use the standard inner product in R3.

(a) Find conditions to assure a vector

 a

b

c

 is in W⊥. Use these to write

W⊥ =


  : a, b, c ∈ R


(b) Use the description above to find a basis for W⊥.

(c) Verify v⃗ =

 −1−1
1

 ∈W⊥ and write it as a linear combination of your basis vectors.

2.4.11.Let W = Span
{
1 + x2

}
be a subspace of P2. Use the method from Exercise 2.4.10 to find W⊥ with

respect to the standard basis for P2.

2.4.12.Suppose {v⃗1, v⃗2, v⃗3, v⃗4} is an orthogonal set in inner product space V . Show that v⃗1 + v⃗2 is orthogonal to
v⃗3 + v⃗4.

2.4.13.Let W be a subspace of an inner product space V . Show that W ∩W⊥ = {⃗0}.

2.4.14.Let V be an inner product space and v⃗0 ∈ V . Define T : V → V by T (v⃗) = proj v⃗0 (v⃗). Show that for any
v⃗1, v⃗2 ∈ V and any a ∈ R, we have

T (v⃗1 + v⃗2) = T (v⃗1) + T (v⃗2) and T (av⃗1) = aT (v⃗1).



2.5. THE GRAM-SCHMIDT PROCESS 129

2.5 The Gram-Schmidt Process

We’re well on our way at this point to having a very efficient and geometrically
intuitive way to describe vectors in a vector space. For reasons that will be
obvious much later, it’s often nice to be able to think about vectors relative
to a given subspace. We actually just did this in a small way in the previous
section!32 When we found the projection of a vector v⃗ onto a vector u⃗, we 32:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

We did?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

We did! Pay attention!obtained a scalar multiple of our vector u⃗. Really, we related v⃗ to the subspace
Span {u⃗}.

Now, we’ll want a way to do this in general, when our subspace is more than
the span of a single vector. For example, if W is a subspace of a vector space
V , then we could think of any vector in V as having two parts: the part in W

and the part not in W . We’re going to explore the right way to do this, where
by “right” we mean orthogonal. You see, it’s funny because “right” has two
meanings; you may have thought we meant “the correct way,” but we really
meant it in both senses. Mediocre wordplay is really best when over-explained,
don’t you think?

Theorem 2.5.1 (The Orthogonal Decomposition Theorem) Let W be a
subspace of an inner product space V such that dimW = p < n = dimV ,
and suppose W has an orthogonal basis. Then any v⃗ ∈ V can be written
uniquely as

v⃗ = w⃗ + u⃗,

where w⃗ ∈W and u⃗ ∈W⊥.

According to this theorem, we can take any vector in V and write it as the sum
of a vector in W and some other vector orthogonal to W , and there is only one
way to do this. That’s actually pretty amazing; we should prove it.

PROOF. Let B = {v⃗1, . . . , v⃗p} be the orthogonal basis for W . The choice for
vectors w⃗ and u⃗ is key here. Inspired by the fact that we could write the part of
v⃗ in the direction of v⃗1 using a projection, let’s try doing that for all p vectors
in B. Define

w⃗ =
v⃗ · v⃗1
v⃗1 · v⃗1

v⃗1 + · · ·+
v⃗ · v⃗p
v⃗p · v⃗p

v⃗p. and

u⃗ = v⃗ − w⃗;

W

v⃗

w⃗

v⃗ − w⃗

FIGURE 2.5. This is the most important picture in Sec-
tion 2.5.

these are pictured in Figure 2.5. From these definitions, it is obvious that
v⃗ = w⃗ + u⃗ and w⃗ ∈ W . We only have to show that u⃗ ∈ W⊥. This is fun to



2.5. THE GRAM-SCHMIDT PROCESS 130

check; note that for any 1 ≤ i ≤ p, we have

u⃗ · v⃗i = (v⃗ − w⃗) · v⃗i
= v⃗ · v⃗i − w⃗ · v⃗i

= v⃗ · v⃗i −
(

v⃗ · v⃗1
v⃗1 · v⃗1

v⃗1 + · · ·+
v⃗ · v⃗p
v⃗p · v⃗p

v⃗p

)
· v⃗i

= v⃗ · v⃗i −
(

v⃗ · v⃗i
v⃗i · v⃗i

v⃗i · v⃗i
)

= v⃗ · v⃗i − v⃗ · v⃗i = 0.

Since u⃗ is orthogonal to every vector in B, a basis for W , we have from The-
orem 2.4.1 that u⃗ ∈W⊥.

The last thing to prove is that the decomposition v⃗ = w⃗ + u⃗ is unique. To do
this, we will assume there is some other decomposition and show that it has
to be the same as our original decomposition. Assume v⃗ = w⃗0 + u⃗0 for some
vectors w⃗0 ∈ W and u⃗0 ∈ W⊥. Then we have w⃗ + u⃗ = w⃗0 + u⃗0 (since both
sides are equal to v), which implies

w⃗ − w⃗0 = u⃗0 − u⃗.

Since W is a subspace of V and w⃗, w⃗0 ∈W , we have w⃗−w⃗0 ∈W . Moreover,
since W⊥ is a subspace of V and u⃗, u⃗0 ∈ W⊥, we have w⃗ − w⃗0 = u⃗− u⃗0 ∈
W⊥. Since w⃗ − w⃗0 ∈W and w⃗ − w⃗0 ∈W⊥, we have

∥w⃗ − w⃗0∥2 = (w⃗ − w⃗0) · (w⃗ − w⃗0) = 0,

and this can only happen if w⃗ − w⃗0 = 0. Thus, w⃗ = w⃗0. A similar argument
shows that u⃗ = u⃗0. Behold! The decomposition is unique! □

Corollary 2.5.2 Let W be a subspace of a vector space V . Then V =

W ⊕W⊥.

PROOF. By the Orthogonal Decomposition Theorem, every vector in V is the
sum of a vector in W and a vector in W⊥. Thus, V = W + W⊥ by the
definition of the sum of two subspaces. Also, suppose v⃗ ∈W ∩W⊥. Then, v⃗
is orthogonal to itself, which means v⃗ · v⃗ = 0. This only happens when v⃗ = 0⃗.
Thus, the intersection is only the zero vector, and we have V = W ⊕W⊥. □

In Figure 2.6, we introduce a convenient way to picture V decomposed as
W ⊕W⊥. Note that W ∪W⊥ is not equal to V ; there are vectors in V that are
in neither W nor W⊥; those vectors are represented by the white part of the
diagram. Every vector in V = W ⊕W⊥ can be written as a sum of a vector in
W and a vector in W⊥, though, so we’ve represented the whole vector space
V as W and W⊥, bridged by the direct sum symbol.



2.5. THE GRAM-SCHMIDT PROCESS 131

V

W⊥

W

FIGURE 2.6. Here is a convenient way to picture the vector
space, V , decomposed as W ⊕W⊥ and its subspaces, W
and W⊥.

It turns out that for direct sums, like the one in Corollary 2.5.2, finding a basis
for the direct sum is actually pretty easy, too.

Theorem 2.5.3 Suppose V is an inner product space with subspace U and
W such that V = U ⊕W . Let BU be a basis for U and BW be a basis for
W . Then B = BU ∪ BW is a basis for V .

PROOF. Note that if BU = {u⃗1, . . . , u⃗k} and BW = {w⃗1, . . . , w⃗ℓ}, then B =

{u⃗1, . . . , u⃗k, w⃗1, . . . , w⃗ℓ}. We know first of all that B spans V . Any vector can
be written as a sum of a vector in U and a vector in W , and these vectors in turn
can be written as linear combinations of vectors in BU and BW , respectively.
We also know that these vectors must be linearly independent separately. Thus,
we need to consider the case where a vector in BU is a linear combination of
the vectors in BW , or vice versa. Really, the argument will be the same either
way, so we’ll focus on the first case. Suppose v⃗ ∈ BU is a linear combination
of the vectors in BW . Then v⃗ ∈ Span {BW } = W . This would mean v⃗ ∈
U ∩ W ; since U ∩ W = {⃗0}, we must have v⃗ = 0⃗ ∈ BU , but this is not
possible because a basis cannot contain the zero vector. So, B must be linearly
independent as well as span V . So, B is a basis for V . □

Perhaps you will recall we made a conjecture in the last section.33 Now we 33:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

. . . ummmm. . .

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Ricky! Go back and look!can prove it!

Corollary 2.5.4 Let W be a subspace of an inner product space V such that
dimV = n and dimW = p. Then dimW⊥ = n− p.

PROOF. Let B1 be a basis for W and B2 be a basis for W⊥. Now consider
B = B1 ∪ B2. From Theorem 2.5.3, we know that B is a basis for V since
V = W ⊕ W⊥. We can conclude the statement since the dimensions are
computed using the sizes of the bases. □

Corollary 2.5.5 Let W be a subspace of an inner product space V . Suppose
B1 is an orthogonal basis for W and B2 is an orthogonal basis for W⊥.
Then B = B1 ∪ B2 is an orthogonal basis for V .

Another fun byproduct of Theorem 2.5.1 is that we can project any vector onto
a subspace,34 and this projection is unique (for the given subspace). Thus, we 34:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You need an orthogonal basis
to use the formula, though.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Right.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It’s not funny anymore, Ricky.

have the following definition.



2.5. THE GRAM-SCHMIDT PROCESS 132

Definition 2.5.1 Let B = {v⃗1, . . . , v⃗p} be an orthogonal basis for a sub-
space W of an inner product space V . For any vector v⃗ ∈ V , the orthogo-
nal projection of v⃗ onto W is

projW (v⃗) =
v⃗ · v⃗1
v⃗1 · v⃗1

v⃗1 + · · ·+
v⃗ · v⃗p
v⃗p · v⃗p

v⃗p.

W

projW (v⃗)

v⃗

v⃗ − projW (v⃗)

FIGURE 2.7. This is the same picture as in Figure 2.5, but
now we can stop pretending that w⃗ wasn’t the projection
onto W all along.

Example 2.5.1 Let’s see this Orthogonal Decomposition in action and use
the standard inner product in R3. Define

v⃗1 =

 1

−1
1

 , v⃗2 =

 1

0

−1

 , and v⃗3 =

 2

2

1

 .

Let W = Span {v⃗1, v⃗2}. Note that v⃗1 · v⃗2 = 0, so {v⃗1, v⃗2} is an orthogonal
basis for W . Let’s find the projW (v⃗3) and use this to find the orthogonal
decomposition of v⃗3. First, we compute the coefficients.

v⃗3 · v⃗1
v⃗1 · v⃗1

=
1

3
and

v⃗3 · v⃗2
v⃗2 · v⃗2

=
1

2

Now, we see

projW (v⃗3) =
1

3
v⃗1 +

1

2
v⃗2.

This will be our w⃗ in our orthogonal decomposition. Let u⃗ = v⃗3 − w⃗. Then
we have

w⃗ =
1

3
v⃗1 +

1

2
v⃗2 =

1

3

 1

−1
1

+
1

2

 1

0

−1

 =

 5
6

− 1
3

− 1
6


u⃗ = v⃗3 − w⃗ =

 2

2

1

−
 5

6

− 1
3

− 1
6

 =

 7
6
7
3
7
6





2.5. THE GRAM-SCHMIDT PROCESS 133

If we’ve done this all correctly, we should have u⃗ ∈W⊥. Let’s check!

u⃗ · v⃗1 =

 7
6
7
3
7
6

 ·
 1

−1
1

 =
7

6
− 7

3
+

7

6
= 0

u⃗ · v⃗2 =

 7
6
7
3
7
6

 ·
 1

0

−1

 =
7

6
− 7

6
= 0

Since u⃗ is orthogonal to the basis for W , it is orthogonal to all of W . So it’s
in W⊥!

Example 2.5.2 Let W = Span {v⃗1, v⃗2}, where

v⃗1 =

 1

1

1

 and v⃗2 =

 1

0

−1

 .

Let’s find a basis for W⊥. First, we should note that v⃗1 and v⃗2 are or-
thogonal. So dimW = 2 and {v⃗1, v⃗2} forms a basis of W . According to
Corollary 2.5.4, we now know dimW⊥ = 1, so we only need to find one
vector. It has to be orthogonal to both v⃗1 and v⃗2. Thus, if the vector we seek
is of the form

x⃗ =

 x1

x2

x3

 ,

then v⃗2 · x⃗ = v⃗1 · x⃗ = 0 yields

x1 − x3 = 0 and x1 + x2 + x3 = 0.

From the first equation, we see that our vector x⃗ must have x1 = x3. Ap-
plying this to the second equation, we have x2 = −2x1. There are a lot of
vectors that satisfy these criteria; here’s one:

x⃗ =

 1

−2
1

 .

One can check that v⃗2 · x⃗ = v⃗1 · x⃗ = 0. Thus, x⃗ ∈ W⊥ and will serve
nicely as a basis for W⊥. Thus, a basis for R3 = W ⊕W⊥ is given by
B = {v⃗1, v⃗2, x⃗}.

Exploration 59 Now that you’ve seen some examples, let’s try an exploration.
Define

v⃗1 =


1

1

0

−2

 , v⃗2 =


1

1

1

1

 , x⃗ =


6

6

0

0

 , and y⃗ =


0

−2
8

2

 .

Let W = Span {v⃗1, v⃗2}. Note that v⃗1 · v⃗2 = 0, so this is an orthogonal basis
of W . We would like to find a basis now for W⊥. We’ll use our Orthogonal
Decomposition Theorem to do this!

▶ Compute projW (x⃗). Use this to find a vector u⃗1 ∈W⊥.



ORTHOGONAL BASIS THROUGH THE GRAM-SCHMIDT PROCESS 134

▶ Compute projW (y⃗). Use this to find a vector u⃗2 ∈W⊥.

You should now have two linearly independent vectors in W⊥, thus a basis
for W⊥. (Caution: This may not always work. You are not guaranteed that
the projections of distinct vectors will be linearly independent, even if those
vectors are linearly independent or orthogonal. However, in the event this fails,
it could be attempted again with different vectors.)

So, we found a basis of W⊥. Wouldn’t it be better to find an orthogonal basis
for W⊥?

Orthogonal Basis Through the Gram-Schmidt Process

This orthogonality business all seems pretty good, but you may have noticed
at this point that we’ve not provided a way to actually generate an orthogonal
basis.35 The good news is there is a procedure to make an orthogonal basis 35:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

We talked about this in the last
section before we got sidetracked with
the orthogonal projection and the uni-
corn example.

from any given basis, and it should seem fairly intuitive after the two vector
example of the previous section. The bad news is that it’s not a lot of fun to
actually do.

Theorem 2.5.6 (The Gram-Schmidt Process) Let W be a subspace of vec-
tor space V with basis {v⃗1, . . . , v⃗p}. Define

w⃗1 = v⃗1,

w⃗2 = v⃗2 − proj Span{w⃗1} (v⃗2)

= v⃗2 −
v⃗2 · w⃗1

w⃗1 · w⃗1
w⃗1,

w⃗3 = v⃗3 − proj Span{w⃗1,w⃗2} (v⃗3)

= v⃗3 −
v⃗3 · w⃗1

w⃗1 · w⃗1
w⃗1 −

v⃗3 · w⃗2

w⃗2 · w⃗2
w⃗2,

...
w⃗p = v⃗p − proj Span{w⃗1,w⃗2,...,w⃗p−1} (v⃗p)

= v⃗p −
v⃗p · w⃗1

w⃗1 · w⃗1
w⃗1 −

v⃗p · w⃗2

w⃗2 · w⃗2
w⃗2 − · · · −

v⃗p · w⃗p−1

w⃗p−1 · w⃗p−1
w⃗p−1.

Then {w⃗1, . . . , w⃗p} is an orthogonal set.

There isn’t much to prove here. We get orthogonality from repeated ap-
plication of the Orthogonal Decomposition Theorem. We get the fact that
Span {v⃗1, . . . , v⃗p} = Span {w⃗1, . . . , w⃗p} by a similar repeated application of



ORTHOGONAL BASIS THROUGH THE GRAM-SCHMIDT PROCESS 135

what we did in Section 2.4. Just replace each vector one at a time so that the
span is unchanged.

Now we can take any set of linearly independent vectors and make it orthogo-
nal, but you should probably be warned at this point. The coefficients from the
projections used in the Gram-Schmidt process are usually pretty terrible. The
process actually has you feed those terrible coefficients back into a projection
formula, too. Perhaps this is better experienced than described. . .

Example 2.5.3 Let S = {v⃗1, v⃗2, v⃗3}, where

v⃗1 =

 1

2

3

 , v⃗2 =

 4

5

6

 , and v⃗3 =

 7

8

0

 .

Find an orthogonal set B such that Span {S} = Span {B}. According
to Theorem 2.5.6, we’re going to build an orthogonal set of vectors B =

{w⃗1, w⃗2, w⃗3} from S, and we can start by just letting w⃗1 = v⃗1. Then we
use a projection to find w⃗2:

w⃗2 = v⃗2 − proj Span{w⃗1} (v⃗2)

= v⃗2 −
v⃗2 · w⃗1

w⃗1 · w⃗1
w⃗1 =

 4

5

6

− 4 + 10 + 18

1 + 4 + 9

 1

2

3

 =

 12/7

3/7

−6/7

 .

Now that we have w⃗1 and w⃗2, we can use these with v⃗3 to find w⃗3:

w⃗3 = v⃗3 − proj Span{w⃗1,w⃗2} (v⃗3) = v⃗3 −
v⃗3 · w⃗1

w⃗1 · w⃗1
w⃗1 −

v⃗3 · w⃗2

w⃗2 · w⃗2
w⃗2

=

 7

8

0

− 7 + 16 + 0

1 + 4 + 9

 1

2

3

− 12 +
24

7
+ 0

144

49
+

9

49
+

36

49

 12/7

3/7

−6/7



=

 7

8

0

− 23

14

 1

2

3

− 4

 12/7

3/7

−6/7


=

 −3/23
−3/2

 .

Thus, B = {w⃗1, w⃗2, w⃗3}, where

w⃗1 =

 1

2

3

 , w⃗2 =

 12/7

3/7

−6/7

 , and w⃗3 =

 −3/23
−3/2

 .

You can check this computation by verifying that B is an orthogonal set and
that Span {S} = Span {B}. Also, let’s note something here. Can you see a
way to get a different orthogonal basis B0 using S and this procedure? What
if the vector you started with was v⃗2? or v⃗3? Yes, this algorithm could be
used to find multiple orthogonal bases for the same subspace.

Exploration 60 In Exploration 59, we found a basis for W⊥, or really you
found a basis. Now, make this an orthogonal basis using the Gram-Schmidt
Process.



SECTION HIGHLIGHTS 136

Section Highlights

▶ If W is any subspace of an inner product space V , then there is an
orthogonal decomposition of V into W ⊕W⊥. See Theorem 2.5.1.

▶ Any basis can be turned into an orthogonal basis using the Gram-
Schmidt Process. See Theorem 2.5.6.

▶ The Gram-Schmidt Process is a recursively-defined procedure where
at each step the basis vector b⃗i is replaced with b⃗i − projW

(⃗
bi

)
,

where W is the span of the previously constructed orthogonal vec-
tors. See Theorem 2.5.6 and Example 2.5.3.



EXERCISES FOR SECTION 2.5 137

Exercises for Section 2.5

For fun, we will introduce a new verb for the exercise section by verbing* a noun. Henceforth, the noun
“Gram-Schmidt” will also be the verb “to Gram-Schmidt” with the meaning “to perform the Gram-Schmidt
process on.”

2.5.1.

Below are several sets of linearly independent vectors. Use the standard inner product and Gram-Schmidt
each one to produce an orthogonal set.

(a)
{[

1

2

]
,

[
1

4

]}

(b)
{[

3

2

]
,

[
1

0

]}

(c)


 1

2

3

 ,

 1

2

4


(d)


 1

0

1

 ,

 0

1

1


(e)


 1

0

1

 ,

 0

1

0


(f)


 1

2

0

 ,

 1

1

2


(g)


 1

2

3

 ,

 1

2

4

 ,

 1

3

4



(h)


 1

1

1

 ,

 0

1

1

 ,

 0

0

1


(i)


 1

0

1

 ,

 0

1

0

 ,

 1

0

−1


(j)


 1

2

0

 ,

 1

1

2

 ,

 0

0

1



(k)




1

2

0

1

 ,


1

1

2

0

 ,


0

0

1

2




(l)




1

2

0

1

 ,


1

1

2

0

 ,


0

0

1

2

 ,


1

0

1

2




2.5.2.Let p⃗1 = 2+x, p⃗2 = 2x+x2, and W = Span {p⃗1, p⃗2}. Use the standard basis for P2 and the Gram-Schmidt
Process to find an orthogonal basis for W .

2.5.3.Here is a linearly dependent set of vectors:
 2

0

3

 ,

 1

2

5

 ,

 1

−2
−2


Use the standard inner product to Gram-Schmidt this set. Your result cannot be a basis for R3 since the
original vectors did not form a basis. How is this reflected in your answer?

*Yes, we have used the noun “verb” to implicitly introduce the act of turning a noun into a verb. This is not upsetting.



EXERCISES FOR SECTION 2.5 138

2.5.4.Suppose {v⃗1, v⃗2, v⃗3} is an orthogonal set of vectors using the standard inner product. Write out and simplify
the formulas from the Gram-Schmidt process. What can you conclude about the outcome of the Gram-
Schmidt process when the initial set is orthogonal?

2.5.5.Consider the subspace

W = Span


 2

1

3

 ,

 1

2

5

 .

(a) Use the standard inner product to construct an orthogonal basis for W .

(b) Note that x⃗ =

 1

1

1

 is not in W and compute y⃗ = x⃗− projW (x⃗).

2.5.6.Let

v⃗1 =

 −22
1

 , v⃗2 =

 2

−2
8

 , v⃗3 =

 1

1

0

 , and x⃗ =

 1

2

3

 .

As you might recall from the previous section, {v⃗1, v⃗2, v⃗3} is an orthogonal basis for R3 using the standard
inner product. Feel free to also verify this.

(a) Write the vector x⃗ as the sum of two vectors, one in Span {v⃗1, v⃗2} and one in Span {v⃗3}.

(b) Write the vector x⃗ =

 1

2

3

 as the sum of two vectors, one in Span {v⃗1} and one in Span {v⃗2, v⃗3}.

(c) Normalize the vectors in the set {v⃗1, v⃗2, v⃗3} to get an orthonormal basis for R3.

2.5.7.Consider the subspace

H =


 a+ b

a− b

b

 : a, b ∈ R

 .

(a) Construct an orthogonal basis for H using the standard inner product.

(b) Find a vector x⃗ that is not in H and compute y⃗ = x⃗− projH (x⃗).

(c) Verify y⃗ ∈ H⊥.

2.5.8.Let W be a subspace of Rn with any inner product. Show that v⃗ ∈W if and only if projW (v⃗) = v⃗.

2.5.9.Let W be a subspace of Rn with any inner product. Show that v⃗ ∈W⊥ if and only if projW (v⃗) = 0⃗.



2.6. LEAST SQUARES APPLICATIONS 139

2.6 Least Squares Applications

We’ve spent quite a lot of time learning to describe vector spaces in terms of
bases. Then we spent quite a lot more time trying to make bases that are nice
for various reasons. You probably won’t be surprised to find this was all for
a grand purpose. There are, in fact, many good uses for orthogonal bases, but
we’re going to introduce just one now. Of course by one, we mean two.

Theorem 2.6.1 Let W be a subspace of an inner product space V , and let
v⃗ ∈ V . Then projW (v⃗) is the closest vector in W to v⃗ in the sense that for
any w⃗ ∈W ,

(2.13) ∥v⃗ − projW (v⃗) ∥ ≤ ∥v⃗ − w⃗∥.

PROOF. Let v⃗ ∈ V and w⃗ ∈W . Then

v⃗ − w⃗ = v⃗ + (−projW (v) + projW (v))− w⃗

= (v⃗ − projW (v)) + (projW (v)− w⃗)

Thus, by the Pythagorean Theorem,

∥v⃗ − w⃗∥2 = ∥(v⃗ − projW (v)) + (projW (v)− w⃗)∥2

= ∥v⃗ − projW (v) ∥2 + ∥ projW (v)− w⃗∥2

Note now that v⃗−projW (v) is orthogonal to projW (v)−w⃗ because projW (v⃗)−
w⃗ ∈ W (since W is closed under vector addition) and v⃗ − projW (v⃗) is or-
thogonal to everything in W . See Figure 2.8 for the geometric picture of this.
We can rearrange now to get

∥v⃗ − w⃗∥2 − ∥ projW (v)− w⃗∥2 = ∥v⃗ − projW (v) ∥2.

Since we know ∥ projW (v)− w⃗∥2 ≥ 0, we have

∥v⃗ − w⃗∥2 ≥ ∥v⃗ − w⃗∥2 − ∥ projW (v)− w⃗∥2

= ∥v⃗ − projW (v) ∥2

Since both ∥v⃗ − w⃗∥ and ∥v⃗ − projW (v) ∥ are positive, this gives the desired
inequality. □

∥v⃗ − projW (v⃗) ∥
projW (v⃗)

v⃗

W

w⃗

v⃗ − projW (v⃗) ∥v⃗ − w⃗∥

∥ projW (v⃗)− w⃗∥

Figure 2.8: This is the most important picture in Section 2.6.



2.6. LEAST SQUARES APPLICATIONS 140

Example 2.6.1 Let

y⃗ =

 −1−5
10

 , v⃗1 =

 5

−2
1

 , v⃗2 =

 1

2

−1

 ,

and W = Span {v⃗1, v⃗2}. How far is y⃗ from W ? Let’s see! According to
Theorem 2.6.1, projW (y⃗) is the closest vector in W to y⃗, so we’ll start by
calculating projW (y⃗).

projW (y⃗) =
y⃗ · v⃗1
v⃗1 · v⃗1

v⃗1 +
y⃗ · v⃗2
v⃗2 · v⃗2

v⃗2

=
15

30

 5

−2
1

+
−21
6

 1

2

−1

 =

 −1−8
4

 .

Then

∥y⃗ − projW (y⃗) ∥ =

∥∥∥∥∥∥
 0

3

6

∥∥∥∥∥∥ = 3
√
5.

Exploration 61 Define

y⃗ =

 3

1

1

 , v⃗1 =

 1

0

1

 , v⃗2 =

 1

1

−1

 ,

Let W = Span {v⃗1, v⃗2}. Find projW (y⃗).

Did you get projW (y⃗) = y⃗? Why would that happen? What does it mean
that the “closest vector” to y⃗ in W is y⃗?

The idea of “the closest vector” to some subspace feels like something that
could be useful in general scientific settings.36 This concept allows us to 36:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Quite useful indeed!
specifically find a “line of best fit” for a set of data points in R2. Suppose
we have an independent variable x, a dependent variable y, and have four
observed data points (x, y),

(−2,−2), (−1, 0), (1, 2), and (2, 1),

as seen in Figure 2.9.

If all of these data points were on the same line, then we would be able to find
scalars m and b such that each data point satisfied the equation y = mx + b.
As seen in Figure 2.9, though, when graphed in R2, these points do not lie
on the same line together, so we shouldn’t expect to find one m and one b to
make this equation true for all four data points. This is annoying; let’s try it
with vectors. We could interpret the set of x coordinates for these data points
as a vector x⃗ ∈ R4 and do likewise for the y coordinates:



2.6. LEAST SQUARES APPLICATIONS 141

FIGURE 2.9. Here’s some data.

(−2,−2)
(−1, 0)
(1, 2)

(2, 1)

x⃗ =


−2
−1
1

2

 y⃗ =


−2
0

2

1


The four data points satisfy the equation y = mx+ b if and only if

−2 = −2m+ b

0 = −1m+ b

2 = 1m+ b and

1 = 2m+ b.

This translates into the vector equation
−2
0

2

1

 = m


−2
−1
1

2

+ b


1

1

1

1

 .

In other words, the four data points satisfy the equation y = mx + b if and
only if

y⃗ ∈ Span
{
x⃗, 1⃗
}
, where 1⃗ =


1

1

1

1

 .

However, we know for a fact that y⃗ /∈ Span
{
x⃗, 1⃗
}

.37 For simplicity of nota- 37:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Prove it!

tion, let W = Span
{
x⃗, 1⃗
}

. It would be very convenient right now to have the
vector in W that was closest to y⃗. According to Theorem 2.6.1, projW (y⃗) is
the vector in W that was closest to y⃗. Let us calculate projW (y⃗)!

Note first that x⃗ · 1⃗ = 0, so {x⃗, 1⃗} is an orthogonal set. If you think this is
one of those scams where the example in the book contains a mathematical
miracle that makes everything simple, you’re half right. While it does make
things simpler for us, keep in mind that x was our independent variable, so
we could’ve chosen whatever values we wanted for x’s. As long as you pick



2.6. LEAST SQUARES APPLICATIONS 142

FIGURE 2.10. Here’s some data with the line of best fit.

x’s in pairs symmetric about 0, this procedure will yield an orthogonal set.38
38:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Prove that, too!
Thus, we may use Theorem 2.4.5 to find

projW (y⃗) =
x⃗ · y⃗
x⃗ · x⃗

x⃗+
1⃗ · y⃗
1⃗ · 1⃗

1⃗ =
8

10
x⃗+

1

4
1⃗ =

8

10


−2
−1
1

2

+
1

4


1

1

1

1

 .

While we couldn’t find an m and b so that y⃗ = mx⃗+ b⃗1, it seems like we just
did for projW (y⃗) = mx⃗ + b⃗1. Using m = 8/10 and b = 1/4, we have an
equation for a line that best approximates our four data points:

y =
8

10
x+

1

4
.

Figure 2.10 shows this line with the four data points. We call this line a least
squares approximation for the given data.

When working with data, it’s far more common that it was collected by some-
one else. What are we to do if we aren’t fortunate enough to have an orthogo-
nal set?

Example 2.6.2 Find the line of best fit for the following data:

(−2,−1), (−1, 0), (0, 2), and (1, 4).

One can quickly check that these points are not colinear, so there are no
scalars m and b such that

y⃗ = mx⃗+ b⃗1, where y⃗ =


−1
0

2

4

 , x⃗ =


−2
−1
0

1

 , 1⃗ =


1

1

1

1

 .

Thus, we should find the closest possible vector to y⃗ in W = Span
{
x⃗, 1⃗
}

,

which is projW (y⃗). Unfortunately, you probably noticed our basis {x⃗, 1⃗}
for W is not orthogonal, so we cannot find projW (y⃗) as we did before.
Fortunately, we have a way of making an orthogonal basis {w⃗1, w⃗2} for W
from {x⃗, 1⃗} by using the Gram-Schmidt process. By Theorem 2.5.6, we



2.6. LEAST SQUARES APPLICATIONS 143

FIGURE 2.11. One last aggressively nonlinear data set.

have

w⃗1 = x⃗

w⃗2 = 1⃗− 1⃗ · w⃗1

w⃗1 · w⃗1
w⃗1 =


1

1

1

1

+
1

3


−2
−1
0

1

 =


1/3

2/3

1

4/3

 .

For good measure, one should check that w⃗1 · w⃗2 = 0 so we have an orthog-
onal basis. We do? Excellent! Then

projW (y⃗) =
w⃗1 · y⃗
w⃗1 · w⃗1

w⃗1 +
w⃗2 · y⃗
w⃗2 · w⃗2

w⃗2 = w⃗1 +
21

10
w⃗2

However, to get the line of best fit, we need projW (y⃗) in terms of x⃗ and 1⃗.
Since w⃗1 = x⃗ and w⃗2 = 1⃗ + 1

3 x⃗, we have

projW (y⃗) = w⃗1 +
21

10
w⃗2 = x⃗+

21

10

(
1⃗ +

1

3
x⃗

)
=

17

10
x⃗+

21

10
1⃗.

Thus, using m = 17/10 and b = 21/10, the line y = 17
10x + 21

10 is the line
of best fit, or least squares approximation, for the data.

Let’s do one more, but this time with a twist (or turn, depending on your point
of view).

Example 2.6.3 Find the line of best fit for the following data:

(−2, 1), (−1, 0), (0, 2), (1, 4) and (2, 11).

One can quickly check that these points are not colinear. The first four data
points are a single minus sign away from the four points in the last example.
However, our new fifth point makes this set of point even farther from being
on a line; see Figure 2.11.
In fact, these points look a lot more like they lie on a parabola than a line;
shall we try to find the quadratic curve of best fit? Yes. Yes, we shall. We
need to find scalars a, b, and c such that y = ax2 + bx + c for all five of
our points. You can tell from looking at Figure 2.11 that these points don’t
actually all lie on the same parabola. Can you verify this algebraically?



2.6. LEAST SQUARES APPLICATIONS 144

Thus, we know that no such a, b, and c exist; that is there is no set of scalars
a, b, and c such that y⃗ = aq⃗ + bx⃗+ c⃗1, where

y⃗ =


1

0

2

4

11

 , q⃗ =


4

1

0

1

4

 , x⃗ =


−2
−1
0

1

2

 , 1⃗ =


1

1

1

1

1

 .

Wait. Where did that vector q⃗ come from? We got the vector x⃗ from the
first coordinates of our data points because we had an x in the equation
y = ax2 + bx + c. Note also that we have an x2 term. Thus, we need a
second vector comprised of the square of the first coordinates of our data
points.
Again, we should find the closest possible vector to y⃗ that is in W =

Span
{
q⃗, x⃗, 1⃗

}
, which is projW (y⃗). Fortunately for us, {q⃗, x⃗, 1⃗} is al-

most an orthogonal set; note that x⃗ · 1⃗ = 0 and x⃗ · q⃗ = 0. Thus, to find
a new orthogonal basis for W , {w⃗, x⃗, 1⃗}, we only need to replace q⃗ with a
new vector w⃗. Then

w⃗ = q⃗ − x⃗ · q⃗
x⃗ · x⃗

x⃗− 1⃗ · q⃗
1⃗ · 1⃗

1⃗ =


4

1

0

1

4

− 2


1

1

1

1

1

 =


2

−1
−2
−1
2

 .

Then we have

projW (y⃗) =
w⃗ · y⃗
w⃗ · w⃗

w⃗ +
x⃗ · y⃗
x⃗ · x⃗

x⃗+
1⃗ · y⃗
1⃗ · 1⃗

1⃗ =
8

7
w⃗ +

12

5
x⃗+

18

5
1⃗.

It’s a good thing we didn’t try to guess these coefficients. This isn’t quite
what we need, though; w⃗ is the wrong vector. For this to be the parabola
of best fit, we need q⃗, the vector of squared x’s. Fortunately, we know that
w⃗ = q⃗ − (2)⃗1. Thus,

projW (y⃗) =
8

7
w⃗ +

12

5
x⃗+

18

5
1⃗

=
8

7
(q⃗ − (2)⃗1) +

12

5
x⃗+

18

5
1⃗

=
8

7
q⃗ +

12

5
x⃗+

(
18

5
− 16

7

)
1⃗ =

8

7
q⃗ +

12

5
x⃗+

46

35
1⃗

The quadratic equation y = 8
7x

2 + 12
5 x + 46

35 is the best quadratic least
squares approximation for the given data. See Figure 2.12.

It seems like we could generalize this procedure pretty easily.

Exploration 62 Let a, b, c, d, e ∈ R, and consider the data points

(−3, a), (−1, b), (0, c), (1, d), and (3, e).

Find the line of best fit for this data. Note that the equation for your line should
depend on the scalars a, b, c, d, and e.



2.6. LEAST SQUARES APPLICATIONS 145

FIGURE 2.12. The last aggressively nonlinear data set with
the parabola of best fit.



EXERCISES FOR SECTION 2.6 146

Exercises for Section 2.6

2.6.1.Let W = Span


 3

1

1

 ,

 0

−1
1

 and v⃗ =

 1

0

2

. Using the standard inner product, how far is v⃗ from

W ?

2.6.2.Let W = Span


 3

1

1

 ,

 0

−1
1

 and v⃗ =

 0

1

0

. Using the standard inner product, how far is v⃗ from

W ?

2.6.3.Let W = Span
{
x2 − 2, 3x3 + 1

}
⊂ P3 and p⃗ = x + 1. How far is p⃗ from W ? (Hint: Use coordinate

vectors relative to the standard basis for P3.)



3 Linear Transformations

In this chapter, we’re going to finally begin exploring functions on vector
spaces.1 Linear algebra is the study of linear transformations on vector spaces. 1: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It feels like this should be the
end, right?We did vector spaces, so once we do linear transformations, we should be

done, right?2 You will not be surprised that the implications for everything
2: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yes!currently known that springs forth from the definition of a linear transforma-
tion alone can fill an entire chapter. Indeed, the entanglement and conceptual
symbiosis of these two main characters in our story, vector spaces and linear
transformations, could fill volumes.

Alas, we have but this one volume and this short time together to celebrate
these two glorious concepts and their relationship with each other. Thus, we’ll
just have to hit the high points. In doing so, we’ll find that linear transforma-
tions, while being an incredibly diverse and flexible type of function, can be
understood almost entirely in a very systematic and concrete way.

As has become our custom at the beginning of chapters, though, we are getting
a bit ahead of ourselves. Let’s take a small step back to better prepare ourselves
for the coming of linear transformations. Let’s talk more about functions. . .

3.1 More Fun with Functions

There are a few more fun facts about functions for which a fresh look would be
good.3 You should be familiar, in some way, with each of the ideas we’ll cover 3: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Favorable? Fine? Funicular?
Well, at least two of those.in this section, but you may not have previously seen this level of formality.4

4: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

. . . and silliness. That should be
expected by now, right?

You are encouraged to go through this material very carefully and thoroughly;
it will serve you well in future sections.

147



ONTO FUNCTIONS 148

Onto Functions

Definition 3.1.1 For sets A and B and a function f : A → B, the function
f is onto if for every element b ∈ B, there is an element a ∈ A such that f
relates a to b, that is, f(a) = b.

Besides the formal definition of onto, we also have a more geometric charac-
terization that will be extremely useful from time to time.

Theorem 3.1.1 For sets A and B and a function f : A→ B, the function f

is onto if and only if
ran (f) = codom (f) .

The proof of this theorem follows almost directly from Definition 3.1.1. Note
that it almost follows.5 5: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Exercise!

Example 3.1.1 Let’s see some examples!

2

4

6

A

1
2
3

B
f

2
4
6

A

1
2
3
4

C
g

▶ Let A = {2, 4, 6} and B = {1, 2, 3}. Define the function f : A→
B by the rule f(a) = a/2 for every a ∈ A. This function is
onto because every element in B is half of one of the elements in
A. If we had instead mapped g : A → C where C = {1, 2, 3, 4}
using the same rule as for f , then g would not be onto. This really
illustrates how much the codomain has to do with this property.

▶ Let f : R2 → R be defined by the rule

f

([
x1

x2

])
= x1.

This map is onto. Let’s convince ourselves.
– First, let’s look at a specific example. Consider 5. It’s a real

number, so it’s in the codomain. What does f map to 5?
Yep,

f

([
5

0

])
= 5.

Also,

f

([
5

1

])
= 5.

In fact,

f

([
5

x2

])
= 5

where x2 is anything in R. Let’s be honest, there was noth-
ing special about 5. Sometimes it’s just nice to see how
these things look with numbers, but to actually prove or ver-
ify that f is onto, we’ll need to use a general element from
the codomain.

– Let y ∈ R. Then

f

([
y

0

])
= y.

Since y is a general element of the codomain, we can con-
clude that f is onto. Note that we just needed to find one



ONTO FUNCTIONS 149

element in the domain that mapped to our general element
y. As in our previous discussion, we could actually find in-
finitely many, but according to our definition of onto, that’s
overkill because we only need one.

6: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

There is still value in knowing
precisely what in the domain maps to
an element in the range. We’ll see this
again later.

6

▶ Let f : R → R be defined by f(x) = x + 2. Let’s show this is
onto! Let y ∈ R denote any element in the codomain. We need
to find an x in the domain that f maps to y. That is, we need to
solve f(x) = y for a value of x. Then f(x) = x + 2, so we
have x + 2 = y. Solving this for x we see x = y − 2. Well
f(y − 2) = (y − 2) + 2 = y, so y − 2 is the correct x value to
satisfy f(x) = y. Because we were able to do this for a general y
in the codomain, we know f is onto.

Exploration 63 Consider the function f : R → R defined by f(x) = x2 + 1.
This function is not onto. Find a value in R that is not in ran (f).

Exploration 64 Show that the map f : R → R defined by f(x) = x3 is onto.
First, let y represent a general element in the codomain R. Now, what must x
be so that f(x) = y?

Exploration 65 For each function below, determine whether it is onto. If you
are having trouble deciding, ask yourself whether there’s anything not in the
range of this function.7 If you can’t think of anything, see if there’s an input 7: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

How about an ice cream cone?
I bet that’s not in the range! Oh, maybe
you should only consider things that are
also in the codomain, too. . .

that you could use to give you any desired output.

▶ Let f : R2 → R be given by

f

([
x1

x2

])
= x1x2.

▶ Let g : R2 → R2 be given by

g

([
x1

x2

])
=

[
x1x2

x1x2

]
.



ONE-TO-ONE FUNCTIONS 150

One-to-one Functions

The definition companion to onto is one-to-one. This is an often misunder-
stood concept; at the heart of these misunderstandings is the oversimplification
of this concept to something having to do with horizontal and vertical lines.
We shall require a thorough understanding of this particular concept in a very
broad context, so let’s get the formal definition and just say no more about that
standard oversimplification.

Definition 3.1.2 For sets A and B and a function f : A → B, the function
f is one-to-one if for any b ∈ ran (f), we have a1 = a2 ∈ A if f(a1) = b

and f(a2) = b.

This definition is just requiring that if f maps both a1 and a2 to b, then it must
be that a1 = a2. That way, no more than one element from the domain can be
mapped by f to an element in the range of f .

Theorem 3.1.2 For sets A and B and a function f : A→ B, the function f

is one-to-one if and only if for all a1, a2 ∈ A,

f(a1) = f(a2) implies a1 = a2.

Note that in the definition, the universal quantifier (the “for any” bit) is on the
elements of B, but in the equivalent definition of one-to-one given in Theorem
3.1.2, the universal quantifier is on the elements of A. This makes this theorem
a bit trickier than Theorem 3.1.1.

PROOF. Let’s suppose the function f : A→ B is one-to-one by our definition.
That is, for any b ∈ ran (f), we have a1 = a2 whenever f(a1) = b and
f(a2) = b. Now, let a1 and a2 be in A and suppose they have the property that
f(a1) = f(a2). Then, f(a1) = f(a2) = b for some b ∈ B. Thus, a1 = a2 by
the definition of one-to-one.

Now, suppose we know the function f : A → B has the property that for all
a1, a2 ∈ A, f(a1) = f(a2) implies a1 = a2. Let b ∈ ran (f). Then we
know there must be some a1 ∈ A such that f(a1) = b. Suppose we also
have a2 ∈ A such that f(a2) = b. Then since f(a1) = b = f(a2), we know
a1 = a2. So this function is one-to-one by our definition. □

Example 3.1.2 Let’s revisit some familiar functions, but now, we can ask
whether they are one-to-one!

2
4
6

A

1
2
3
4

C
g

▶ Let A = {2, 4, 6} and C = {1, 2, 3, 4}. Define the function
g : A → C by the rule g(a) = a/2 for every a ∈ A. This func-
tion is one-to-one! To see this, suppose c, d ∈ A are such that
g(c) = g(d). Using the definition of g, we see c/2 = d/2, which
can be simplified to see c = d.

▶ Let f : R2 → R be defined by the rule

f

([
x1

x2

])
= x1.



COMPOSITION OF FUNCTIONS 151

This map was onto, but it is not one-to-one. Recall that we had
options about what mapped to 5. We saw that

f

([
5

0

])
= 5 = f

([
5

1

])
.

This example with specific numbers is actually enough to show
that the function does not satisfy our definition!

▶ Let f : R→ R be defined by f(x) = x+2. This one was onto, and
it is also one-to-one! Suppose a, b ∈ R are such that f(a) = f(b).
then we know a+ 2 = b+ 2. This says a = b.

Exploration 66 Determine whether the following functions are one-to-one. If
you are having trouble deciding, pick something in the range of the function.
Ask yourself whether there are multiple inputs to get that same output.

▶ Let f : R2 → R be given by

f

([
x1

x2

])
= x1x2.

▶ Let g : R2 → R2 be given by

g

([
x1

x2

])
=

[
x1 + x2

x1

]
.

As you probably expect, one-to-one and onto are both very nice properties for
a function to have. Additionally, functions with both are really quite grand.
We’ll see why shortly.

Composition of Functions

We saw composition of functions appear briefly in Section 2.3 to define inner
product on vector spaces. Let us now have the formal definition.

Definition 3.1.3 Let A, B, and C be sets and f : A → B and g : B → C

be functions. The composition of the functions f and g is the function
(g ◦ f) : A→ C such that (a, c) ∈ g ◦ f if and only if there is a b ∈ B such
that (a, b) ∈ f and (b, c) ∈ g. That is, for any a ∈ A,

(g ◦ f)(a) = g(f(a)).

As was mentioned in Section 2.3, what makes the composition of functions
work is the fact that outputs of f are inputs of g. This can be seen in both of
the commuting diagrams below:



COMPOSITION OF FUNCTIONS 152

B
g

  
A

f

OO

g◦f
// C,

A B C.

g◦f

f g

Example 3.1.3 Define
S =

{z
2
: z ∈ Z

}
.

Let f : Z → S be defined by f(z) =
z

2
and g : S → Z be defined by

g (x) = 2x. Then g ◦ f : Z → Z is the map sending an integer z to itself
since (g ◦ f)(z) = g(f(z)) = g

(z
2

)
= 2

(z
2

)
= z.

Exploration 67 Let A = {1, 2, 3, 4}, B = {2, 4, 6, 8}, C = {0, 1}.

1
2
3
4

A

2
4
6
8

B

0
1

C
f g

Here’s a picture for g ◦ f . You
should try drawing similar ones for
the other functions mentioned.

Let
f : A→ B be given by

f(a) = 2a for any a ∈ A.

Let g : B → C be given by

g(b) = 0 for all b ∈ B.

▶ Consider g ◦f : A→ C. We see g(f(1)) = g(2) = 0 and g(f(2)) =

g(4) = 0. Since g maps everything to 0, this is the map from A to C

which maps everything in A to 0.

Let k : C → B be defined by

k(0) = 2 and k(1) = 6.

▶ Consider g ◦k : C → C. We see g(k(0)) = g(2) = 0 and g(k(1)) =

g(6) = 0. Then g ◦ k is the map from C to itself sending both
elements of C to 0.

▶ Consider k ◦ g : B → B. What is k(g(2))? What about k(g(4))?
Describe k ◦ g.

Let h : A→ C be given by

h(a) = 0 if a ∈ A is even and h(a) = 1 if a ∈ A is odd.

▶ Consider k ◦ h : A→ B. Describe this map.

Example 3.1.4 Suppose f : R → R and g : R → R are both one-to-one
functions. We can show that the composition f ◦ g must also be one-to-one!
Suppose we have a1, a2 ∈ R such that (f ◦ g)(a1) = (f ◦ g)(a2). Then we
know f(g(a1)) = f(g(a2)). Since we know f is one-to-one, we know it
must be true that g(a1) = g(a2). This is because g(a1) and g(a2) are both
inputs to f with the same output from f . Now, we can use the fact that g



INVERTIBLE FUNCTIONS 153

is one-to-one to say that a1 = a2 since g(a1) = g(a2). This is what we
needed! We started with two inputs to f ◦ g that had the same output from
f ◦ g and were able to argue that the two inputs were really the same.

Exploration 68 Suppose f : R→ R and g : R→ R are both onto. Must f ◦ g
be onto?

Invertible Functions

A problem that comes up a lot in mathematics and science is whether or not
a process (often modeled by a function) can be undone in a reasonable way.
For example, if I were to replace every song file on the internet with a single
song file, then I strongly suspect many people would want a way to undo that
process. Could the “undoing” be done with a function? That’s not immediately
clear, but the forward process certainly could: I hereby relate every song file
on the internet to Jimmy Buffet’s “Pencil Thin Mustache.” 8 You’re welcome 8: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This is a perfectly reasonable
function with domain and codomain be-
ing all song files on the internet, but
range just the single specific song file for
“Pencil Thin Mustache.”

world. Oh? What’s that? You want a different function that relates “Pencil
Thin Mustache” back to every song that used to be on the internet? Ha! Good
luck with that! While there is a “Buffeting” function, I’m afraid the “Un-
Buffeting” is not functional.9

9: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This is not actually intended as a
pun. A relation that is a function is often
called a “functional” relation. However,
we gladly accept the dual meaning here.

Suppose instead that we related every song on the internet to itself, played
backwards.10 Well, if we did it again, we’d be back where we started. This

10: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Disclaimer: The authors do
not endorse the playing of songs back-
wards or the following of any nefarious
instructions heard when doing so.

is an example of a process that can be modeled by what we call an invertible
function.

Definition 3.1.4 A function f : A→ B is invertible if there is another func-
tion g : B → A such that

▶ for all a ∈ A, (g ◦ f)(a) = a, and
▶ for all b ∈ B, (f ◦ g)(b) = b.

If such a function exists, we call it the inverse of f , and denote it f−1.

Example 3.1.5 Let’s recall some maps from an earlier example. Define

S =
{z
2
: z ∈ Z

}
.

Let f : Z → S be defined by f(z) =
z

2
and g : S → Z be defined by

g (x) = 2x. Then we saw g ◦ f : Z→ Z has the property that g ◦ f(z) = z

for any z ∈ Z. We can also construct f ◦ g : S → S, and we see that

f ◦ g = f(g(a)) = f(2a) =
2a

2
= a for any a ∈ S. Thus, g = f−1.



INVERTIBLE FUNCTIONS 154

Example 3.1.6 Let’s see an example of a function that is not invertible. Let
h : R→ R2 be defined by

h(x) =

[
x

x

]
.

Note that h is not onto because any vector of the form[
x

y

]
with x ̸= y will not be in the range. Suppose h has an inverse that we will
call k : R2 → R. Then (h ◦ k)(v⃗) = v⃗ for any v⃗ ∈ R2. Let’s consider then
the vector [

1

2

]
∈ R2.

If k exists, then we have

(h ◦ k)
([

1

2

])
= h

(
k

([
1

2

]))
=

[
1

2

]
.

This says, however, that [
1

2

]
∈ ran (h) ,

which is not true. Thus, the inverse k does not exist and h is not invertible.

Example 3.1.7 Let’s see another function that fails to be invertible. Con-
sider the function φ : R2 → R2 that relates a vector x⃗ ∈ R2 to the vector
with the same first coordinate but 0 for the second coordinate. That is, for
any vector in R2,

φ

([
x1

x2

])
=

[
x1

0

]
.

The domain and codomain of φ is R2, but the range of φ is the horizontal
line {[

x1

0

]
: x1 ∈ R

}
.

Thus, the function φ collapses all of R2 (a plane!) to a single line. That
doesn’t sound like one-to-one behavior, so let’s prove this function is not
one-to-one. Note that

φ

([
42

10

])
= φ

([
42

11

])
=

[
42

0

]
.

Since φ maps two vectors to the same vector in the codomain, it is not one-
to-one. Why does this matter? Suppose g is a function that we’d like to be
an inverse of φ. By Definition 3.1.4, for any vector x⃗ ∈ R2, we must have
(g ◦ φ)(x⃗) = x⃗. However, that means

(g ◦ φ)
([

42

10

])
=

[
42

10

]
and (g ◦ φ)

([
42

11

])
=

[
42

11

]
.

This first equation tells us

g

(
φ

([
42

10

]))
= g

([
42

0

])
=

[
42

10

]
,



INVERTIBLE FUNCTIONS 155

and the second tells us that

g

(
φ

([
42

11

]))
= g

([
42

0

])
=

[
42

11

]
.

Hang on. Those two vectors aren’t equal. In order for g to be an inverse
for φ, it has to map one vector to two different vectors. That is not how any
respectable function behaves!

11: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Here, you should take a
respectable function to mean any
function. Yes, we have just claimed all
functions are respectable, even the
Buffetting one from earlier.

11

The main idea here is that if you have a function that relates elements of A to
elements of B, does there exist another function that unrelates them? More
specifically, is there another function g that relates B to A so that if f relates
a0 ∈ A to b0 ∈ B, then g relates b0 back to a0. Sounds pretty easy, right? The
part that makes this nontrivial is all that “for all” business. This property of
“unrelating” has to hold for every element in A and every element in B. That
is a very rigid condition! Fortunately, as with one-to-one and onto, there is an
alternate characterization of invertibility.

In Example 3.1.6 we saw a function that failed to be invertible because it was
not onto. In Example 3.1.7, we saw a function that failed to be invertible
because it was not one-to-one. Perhaps then this theorem will not come as a
surprise.12 12: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Oh, this makes me sad. I love
a surprise. . .

Theorem 3.1.3 A function f : A → B is invertible if and only if f is both
one-to-one and onto.

Exploration 69 Let’s start this proof together!

PROOF. First, suppose f : A → B is invertible. Then f−1 exists. Let’s use
f−1 to show that f is both one-to-one and onto.

One-to-one: Let a, b ∈ A be such that f(a) = f(b). We need to show a = b.
To do this, let’s consider the expression f−1(f(a)). Since f(a) = f(b), we
have f−1(f(a)) = f−1(f(b)). Now, why does this tell us a = b?

Onto: Let b ∈ B. Then we need to find an element a ∈ A that maps to b under
f . Use f−1 to find a.

Now, we need to prove the other direction. Suppose that f is both one-to-
one and onto. We need to define a function g : B → A so that f has an
inverse. Since we know that f is onto B, we can write any element of B as
f(a) for some a ∈ A. Moreover, since f is one-to-one, we know for any
b ∈ B that there is exactly one a ∈ A such that b = f(a). Thus, we can
define g : B → A to be the relation sending f(a) to a. Now, we need to verify
that this g is actually a function. Suppose g(b) = a1 and g(b) = a2. By
the definition of g, this says f(a1) = b = f(a2). Since f is one-to-one, we
know a1 = a2, so g is a valid function. Note that we needed f to be both
onto and one-to-one in order for g to be a function with domain B. We now
just need to verify that g is the inverse of f . Our first condition is that for all
a ∈ A, (g ◦ f)(a) = a. We see this quickly since g(◦f)(a) = g(f(a)) = a by



FUNCTIONS BETWEEN FINITE SETS 156

definition. Next we have that second condition: for all b ∈ B, (f ◦ g)(b) = b.
Let b ∈ B, then there is some a ∈ A such that f(a) = b since f is onto.
So f(g(b)) = f(g(f(a))) = f(a) = b. Thus, the second condition is also
satisfied by this function g because f is onto. □

Exploration 70 Let f : R → R be defined by f(x) = x + 2. We saw in
our previous examples that this function is both one-to-one and onto. So it’s
invertible! Can you find the inverse?

Recall our Buffeting function from earlier? Well, we can very quickly con-
vince ourselves that this function is not one-to-one.13 Thus, we have the fol- 13: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

We can also convince our-
selves that this function was ridiculous.lowing fun corollary to Theorem 3.1.3.

Corollary 3.1.4 There is no function to undo the Buffeting.

Functions Between Finite Sets

Something a little special happens when talking about the properties of one-
to-one and onto when the function is between two finite sets.

Theorem 3.1.5 Let A and B be finite sets and suppose f : A→ B is a func-
tion. Let n denote the number of elements in A and m denote the number of
elements in B.

(a) If n > m, then f is not one-to-one.
(b) If n < m, then f is not onto.
(c) If n = m, then f is either both one-to-one and onto or f is neither

one-to-one nor onto.

PROOF. First, suppose n > m. Then there are more elements in the domain of
f than in its codomain. If f is one-to-one, then we would see each element in
A map to a distinct element of B. However, there just aren’t enough elements
of B for this to happen!

Next, suppose n < m. Then this function has more elements in its codomain
than its domain. In order for f to be onto, we must have ran (f) = codom (f).
However, to be a function, f must map each element of A to only one element
of B. This means the largest ran (f) can be is n, so f cannot be onto.

Lastly, let’s suppose n = m. If f is onto, then every element in B is mapped to
by an element in A. Because these sets have the same size, the map is forced to
be one-to-one since it can only send each element of A to one distinct element
in B. Suppose now that f is one-to-one. Then it will send each element in A

to a different element in B. Since these sets have the same size, we must use
every element in B in this mapping, so f is also onto. We’ve just argued that
f is one-to-one if and only if it is onto if n = m. This gives our result. □

Since almost all of our vector spaces are infinite sets,14 you may be wondering 14: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

All except the trivial one, {0⃗},
in fact.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Nicky! What are you doing
here?!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It looked like you needed help, so
here I am. Helping.

why we bothered to tell you about Theorem 3.1.5. You’ll see in a few sections



SECTION HIGHLIGHTS 157

that there is actually a wonderful analog to this theorem in the case of functions
between vector spaces.

Section Highlights

▶ A function is one-to-one if every element in the range is mapped to
exactly once. In terms of function input from the domain and output
from the range, this means each output has exactly one input that
maps to it. See Definition 3.1.2 and Theorem 3.1.2

▶ A function is onto if its range is the entirety of the codomain. This
means every possible element in the codomain is an output mapped
to by some input in the domain. See Definition 3.1.1 and Theorem
3.1.1.

▶ Function composition is a way to combine functions. See Definition
3.1.3.

▶ If a function is both one-to-one and onto, then it is invertible. This
means that there exists an inverse function with which it composes
to form the identity map. See Definition 3.1.4 and Theorem 3.1.3.



EXERCISES FOR SECTION 3.1 158

Exercises for Section 3.1

3.1.1.Let f : R2 → R be defined by

f

([
x1

x2

])
= x1 + x2.

(a) Is f onto? Prove or give a counterexample.

(b) Is f one-to-one? Prove or give a counterexample.

3.1.2.Let f : R2 → R be defined by

f

([
x1

x2

])
= x1 + 3.

(a) Is f onto? Prove or give a counterexample.

(b) Is f one-to-one? Prove or give a counterexample.

3.1.3.For each function below, determine whether it is one-to-one.

(a) f : {a, b, c} → {1, 2, 3, 4} defined by {(a, 1), (b, 2), (c, 1)}

(b) f : {a, b, c} → {1, 2, 3, 4} defined by {(a, 1), (b, 2), (c, 4)}

(c) f : {a, b, c} → {1, 2, 3} defined by {(a, 1), (b, 2), (c, 3)}

(d) f : {a, b, c, d} → {1, 2, 3} defined by {(a, 1), (b, 2), (c, 3), (d, 2)}

(e) f : R→ R defined by f (x) =

(
x+ 1

4

)

(f) f : R2 → R defined by f

([
x1

x2

])
= x1

(g) f : R2 → R defined by f

([
x1

x2

])
= x1 + 3x2

(h) f : R2 → R2 defined by f

([
x1

x2

])
=

[
2x1

x1x2

]

(i) f : R2 → R2 defined by f

([
x1

x2

])
=

[
2x1

x1

]

(j) f : R2 → R2 defined by f

([
x1

x2

])
=

[
x1

x1 + 3

]



EXERCISES FOR SECTION 3.1 159

(k) f : R2 → R2 defined by f

([
x1

x2

])
=

[
x1 + x2

x1 + 3

]

(l) f : R2 → R2 defined by f

([
x1

x2

])
=

[
x1 + x2

2x1 + 2x2

]

(m) f : R2 → R3 defined by f

([
x1

x2

])
=

 x1 + x2

2x1 + 2x2

x2


3.1.4.For each function below, determine whether it is onto.

(a) f : {a, b, c} → {1, 2, 3, 4} defined by {(a, 1), (b, 2), (c, 1)}

(b) f : {a, b, c} → {1, 2, 3, 4} defined by {(a, 1), (b, 2), (c, 4)}

(c) f : {a, b, c} → {1, 2, 3} defined by {(a, 1), (b, 2), (c, 3)}

(d) f : {a, b, c, d} → {1, 2, 3} defined by {(a, 1), (b, 2), (c, 3), (d, 2)}

(e) f : R→ R defined by f (x) =

(
x+ 1

4

)

(f) f : R2 → R defined by f

([
x1

x2

])
= x1

(g) f : R2 → R defined by f

([
x1

x2

])
= x1 + 3x2

(h) f : R2 → R2 defined by f

([
x1

x2

])
=

[
2x1

x1x2

]

(i) f : R2 → R2 defined by f

([
x1

x2

])
=

[
2x1

x1

]

(j) f : R2 → R2 defined by f

([
x1

x2

])
=

[
x1

x1 + 3

]

(k) f : R2 → R2 defined by f

([
x1

x2

])
=

[
x1 + x2

x1 + 3

]

(l) f : R2 → R2 defined by f

([
x1

x2

])
=

[
x1 + x2

2x1 + 2x2

]

(m) f : R2 → R3 defined by f

([
x1

x2

])
=

 x1 + x2

2x1 + 2x2

x2


3.1.5.Let f : R→ R be defined by f(x) = x+ 3. Show that f is one-to-one and onto. Find f−1.



EXERCISES FOR SECTION 3.1 160

3.1.6.Let f : R3 → R3 be defined by f

 x1

x2

x3

 =

 x1 + x3

2x1 + x2

x2

. Show that f is both one-to-one and onto.

Find f−1.

3.1.7.A constant function maps every element in the domain to the same element in the codomain. Give an
example of

(a) a domain, codomain, and constant function that is onto and not invertible;

(b) a domain, codomain, and constant function that is onto and invertible.

3.1.8.Let f : R2 → R be defined by

f

([
x1

x2

])
= x1 + x2.

Does f have the property that f(v⃗ + u⃗) = f(v⃗) + f(u⃗) for any v⃗, u⃗ ∈ R2?

3.1.9.Let f : R2 → R be defined by

f

([
x1

x2

])
= x1 + 3.

Does f have the property that f(v⃗ + u⃗) = f(v⃗) + f(u⃗) for any v⃗, u⃗ ∈ R2?

3.1.10.Suppose f : R → R and g : R → R are both onto. Must f + g be onto? Give an example to support your
claim.

3.1.11.Let A, B, and C be sets and f : A→ B and g : B → C be functions.

(a) Suppose g ◦ f is one-to-one. Then the function f is one-to-one. Let’s see why. Suppose a1, a2 ∈ A

and f(a1) = f(a2). We want to show a1 = a2, and we know we need to involve g ◦ f to do this.
Let’s consider g ◦ f(a1) = g(f(a1)) and g ◦ f(a2) = g(f(a2)). How are these related?

Now use the fact that g ◦ f is one-to-one to conclude a1 = a2.

(b) Suppose g is onto. It’s not necessarily true that g ◦ f is onto. Can you come up with an example
where g is onto but g ◦ f is not?

3.1.12.Let A, B, and C be sets and f : A→ B and g : B → C be functions.

(a) Suppose f is one-to-one and g is onto.

(i) Is g ◦ f one-to-one? Prove or give a counterexample.

(ii) Is g ◦ f onto? Prove or give a counterexample.

(b) Suppose g ◦ f is onto and g is one-to-one.

(i) Is g onto? Prove or give a counterexample.



EXERCISES FOR SECTION 3.1 161

(ii) Is g ◦ f one-to-one? Prove or give a counterexample.



RESPECT THE OPERATIONS 162

3.2 Linear Transformations

We’ve now talked quite a bit about functions, but very little about functions
in relation15 to vector spaces.16 It’s time to fix that. It’s time to celebrate. It’s 15: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Pun not intended, but it’s there
anyway.

16: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Well, except for those inner
product ones, but that was ages ago now.

time to finally formally familiarize ourselves with the functions that best fit this
narrative we’ve been following. We’re all here to hear about linear transfor-
mations on vector spaces. Well, we may never actually be done with amateur
word play, but the long wait is over. Get ready. It’s linear transformation time.

Respect the Operations

Let’s think about what it means for a function to map one vector space to
another by starting with an example.

Let f : R3 → R3 be defined by

f

 a

b

c

 =

 a+ 2

b+ 2

c+ 2

 .

This seems like a perfectly good function between vector spaces. Commence
exploration!

Exploration 71 To get a sense for what this function does, let us experiment
and see what happens with a few specific vectors.

▶ Compute f

 1

0

0

 and f

 2

0

0

.

▶ Compute 2f

 1

0

0

 = f

 1

0

0

+ f

 1

0

0

.

From these computations, we see that for a vector v⃗ ∈ R3, this function has

f(v⃗ + v⃗) ̸= f(v⃗) + f(v⃗) and f(2v⃗) ̸= 2f(v⃗).

While f is a perfectly good function between the set of vectors in R3 and the
set of vectors in R3, it is not a useful function between the vector spaces. We
have v⃗ ∈ R3 and f(v⃗) ∈ R3; since R3 is closed under vector addition, we also
have that

v⃗ + v⃗ ∈ R3 and f(v⃗) + f(v⃗) ∈ R3.

Since our function related v⃗ to f(v⃗), our function would, ideally, relate v⃗+v⃗ to
f(v⃗)+ f(v⃗); that is, it would be very nice if our function related our notion of



RESPECT THE OPERATIONS 163

vector addition in the domain to our notion of vector addition in the codomain.
However, our function relates v⃗ + v⃗ to f(v⃗ + v⃗), and as we’ve already shown,
f(v⃗ + v⃗) ̸= f(v⃗) + f(v⃗). In order for our function to relate the vector space
structure in the domain to the vector space structure in the codomain, it needs
to behave well with respect to the vector space operations: vector addition and
scalar multiplication.

There is a very useful class of functions for which this respect of operations is
cleverly guaranteed.

Definition 3.2.1 A function f : V →W , where V and W are vector spaces,
is called a linear transformation if for any vectors v⃗, u⃗ ∈ V and any scalar
a ∈ R,

▶ f(v⃗ + u⃗) = f(v⃗) + f(u⃗) and
▶ f(av⃗) = af(v⃗).

Linear transformations17 resolve the issue of how vector addition and scalar 17: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yay! That’s on the cover of the
book!multiplication are defined in the range of a function (function first or operation

first) by saying it doesn’t matter. For linear transformations, the two vectors
are equal:

▶ f(v⃗ + u⃗) = f(v⃗) + f(u⃗); sum and then function, or function then
sum; it’s the same either way.

▶ f(av⃗) = af(v⃗); scale and then function, or function then scale; it’s
the same either way.

Linear transformations are often said to “preserve” vector addition and scalar
multiplication for this reason. If this seems overly restrictive, keep in mind that
these are the only operations on V , and making sure those work correctly in
the range is really the only restriction we’ve imposed. Speaking of the “range,”
you’ll find this arrangement has its advantages:

Definition 3.2.2 Let V and W be vector spaces and f : V →W be a linear
transformation. The image of f is the set of vectors w⃗ ∈W such that there
is a vector v⃗ ∈ V with w⃗ = f(v⃗). We shall use the notation

Imag f = {w⃗ ∈W : w⃗ = f(v⃗) for some v⃗ ∈ V }.

You’re probably asking yourself, “Isn’t that just the range of f?” Yeah, it is.
That’s true. However, for any function f : V → W where V and W are just
sets and v ∈ V , we often refer to f(v) as the image of v. The idea is that the
image of the point v is the point f(v). Now, when V and W are vector spaces
and f is a linear transformation, we extend this term to encompass all of the
range. Thus, the image of a vector space V is the vector space f(V ) when
f is a linear transformation. The word “image” is commonly used instead of
“range” when a function is the type that preserves the algebraic structure of
the domain.

Theorem 3.2.1 Let V and W be vector spaces and f : V → W be a linear
transformation. Then the image of f , Imag (f), is a subspace of W .

Exploration 72 Let’s prove this one together!



EXAMPLES ABOUND 164

PROOF. We know that Imag f is a subset of W , so we just need to verify
closure for addition and scalar multiplication and also that it contains 0⃗.

▶ Let v⃗ and u⃗ be vectors in V . Use the properties of the linear transfor-
mation f to show f(v⃗) + f(u⃗) is in Imag f . (To show a vector is in
Imag f , find a way to write it as f(a vector in V ).)

▶ Let v⃗ ∈ V and a ∈ R. Show af(v⃗) ∈ Imag f .

▶ The fact that 0⃗ ∈ Imag f is actually related to an exercise from all
the way back in Chapter 0. Linear transformations have the property
that f(av⃗) = af(v⃗) for any a ∈ R and any v⃗ ∈ V . Thus, if v⃗ = 0⃗

and a = 0, we have f (⃗0) = f(0⃗0) = 0f (⃗0) = 0⃗. Thus, 0⃗ ∈ Imag f

since any linear transformation maps 0⃗ to 0⃗.

□

Examples Abound

Example 3.2.1 Let’s start with a fairly straightforward function. Let
f : R2 → R be the function defined by

f

([
x1

x2

])
= x1 + x2

where x1, x2 ∈ R. Let’s verify that this is a linear transformation. We
need the axioms in the definition to hold for all vectors, so we need general
vectors. Let x⃗, y⃗ ∈ R2. Then

x⃗ =

[
x1

x2

]
and y⃗ =

[
y1
y2

]
for some x1, x2, y1, y2 ∈ R. Then

f(x⃗+ y⃗) = f

([
x1

x2

]
+

[
y1
y2

])
= f

([
x1 + y1
x2 + y2

])
= (x1 + y1) + (x2 + y2) = (x1 + x2) + (y1 + y2)

= f(x⃗) + f(y⃗).

Thus, f preserves vector addition. Suppose a ∈ R. We will show now that
f preserves scalar multiplication. We will use the same vector x⃗ as above.

18:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Now wait a minute. Weren’t
we using v⃗ and u⃗ for our vectors?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yeah, we were! What’s with all
these x⃗’s and y⃗’s?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Settle down. Using x for domain
elements is pretty standard. Now that
we’re dealing with functions, it makes
sense to change our vector naming
convention.

18

f(ax⃗) = f

(
a

[
x1

x2

])
= f

([
ax1

ax2

])
= ax1 + ax2 = a(x1 + x2) = af(x⃗).

Thus, f is a linear transformation.



EXAMPLES ABOUND 165

Example 3.2.2 Let T : R2 → R2 be given by T (x⃗) = αx⃗ for some fixed
real number α > 1. This function rescales vectors in R2 by a factor of α.
To see this in action, let S be the following square in R2:

S =

{[
x1

x2

]
∈ R2 : 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1

}
.

Figure 3.1 shows the image of S under the function T .
Let’s verify that T is a linear transformation; we already know T is a func-
tion, so we just need to verify the two properties of a linear transformation.
Let x⃗, y⃗ ∈ R2 and k ∈ R. Note that

T (x⃗+ y⃗) = α(x⃗+ y⃗) = αx⃗+ αy⃗ = T (x⃗) + T (y⃗) and

T (kx⃗) = α(kx⃗) = (αk)x⃗ = (kα)x⃗ = k(αx⃗) = kT (x⃗).

It follows that T is a linear transformation.

S

1

1

R2

1

1

R2

α

α

T (S) = αS

FIGURE 3.1. T is a linear transformation that rescales vec-
tors by α > 1.

Example 3.2.3 Let T : R3 → R2 be the function such that for any

x⃗ =

 x1

x2

x3

 ∈ R3 we define T (x⃗) = x1

[
1

0

]
+x2

[
3

1

]
+x3

[
5

4

]
.

This perhaps appears more complicated, but all we’re doing here is assign-
ing vectors in R3 to a specific linear combination of vectors in R2 by using
the components of our domain vectors as the weights of the linear combina-
tion. Not only does it turn out this is also a linear transformation, this also
is an easy and convenient way to define a linear transformation. We should
probably remember this example! Again, T is a function, so we just verify
the two properties of a linear transformation. Let x⃗, y⃗ ∈ R2, where

x⃗ =

 x1

x2

x3

 and y⃗ =

 y1
y2
y3

 ,



EXAMPLES ABOUND 166

and a ∈ R. This is gonna be a little gross. Note first that

T (x⃗+ y⃗) = T

 x1 + y1
x2 + y2
x3 + y3


= (x1 + y1)

[
1

0

]
+ (x2 + y2)

[
3

1

]
+ (x3 + y3)

[
5

4

]
=

(
x1

[
1

0

]
+ x2

[
3

1

]
+ x3

[
5

4

])
+

(
y1

[
1

0

]
+ y2

[
3

1

]
+ y3

[
5

4

])
= T (x⃗) + T (y⃗).

Similarly,

T (ax⃗) = T

 ax1

ax2

ax3

 = ax1

[
1

0

]
+ ax2

[
3

1

]
+ ax3

[
5

4

]

= a

(
x1

[
1

0

]
+ x2

[
3

1

]
+ x3

[
5

4

])
= aT (x⃗).

Exploration 73 Recall Example 3.1.7 from Section 3.1. The function φ : R2 →
R2 relates a vector x⃗ ∈ R2 to the vector with the same first coordinate but 0
for the second coordinate. That is, for any vector in R2,

φ

([
x1

x2

])
=

[
x1

0

]
.

We showed this was a function that is not invertible already. Let’s show that
it’s a linear transformation. We’ll need some general vectors in R2 to start. Let
x⃗, y⃗ ∈ R2. Then

x⃗ =

[
x1

x2

]
and y⃗ =

[
y1
y2

]
for some x1, x2, y1, y2 ∈ R.

▶ First, verify that φ(x⃗+ y⃗) = φ(x⃗) + φ(y⃗).

▶ Second, verify that φ(ax⃗) = aφ(x⃗) for any a ∈ R.

Example 3.2.4 We’ve seen several examples of functions that are linear
transformations. Let’s see another one that is not a linear transformation.



EXAMPLES ABOUND 167

Let f : R2 → R be the function defined by

f

([
x1

x2

])
= x1x2

where x1, x2 ∈ R. We can show this fails to be a linear transformation in
multiple ways. First, we can show it fails to preserve vector addition.

f

([
2

3

]
+

[
1

2

])
= f

([
3

5

])
= (3)(5) = 15,

but

f

([
2

3

])
+ f

([
1

2

])
= (2)(3) + (1)(2) = 8.

Next, note that

f

(
5

[
2

3

])
= f

([
10

15

])
= (10)(15) = 150,

but

5f

([
2

3

])
= 5(2)(3) = 30.

Thus, f also does not preserve scalar multiplication. Failing either condition
is enough though to see that it is not a linear transformation.

Example 3.2.5 Let T : P2 → R2 be defined by

T (p⃗) =

[
p(1)

p(0)

]
.

Let’s show T is a linear transformation; this one is particularly interesting
because T has a completely different domain and codomain. Let p⃗ = ax2+

bx+ c and q⃗ = dx2 + ex+ f be arbitrary vectors in P2. Note that

T (p⃗) =

[
a+ b+ c

c

]
and T (q⃗) =

[
d+ e+ f

f

]
.

Checking vector addition, we have

T (p⃗+ q⃗) = T ((ax2 + bx+ c) + (dx2 + ex+ f))

= T ((a+ d)x2 + (b+ e)x+ (c+ f))

=

[
(a+ d) + (b+ e) + (c+ f)

c+ f

]
=

[
(a+ b+ c) + (d+ e+ f)

c+ f

]
=

[
a+ b+ c

c

]
+

[
d+ e+ f

f

]
= T (p⃗) + T (q⃗).



SOME NOTEWORTHY EXAMPLES 168

All that remains is to check scalar multiplication; let α ∈ R. Then

T (αp⃗) = T (α(ax2 + bx+ c)) = T ((αa)x2 + (αb)x+ (αc))

=

[
αa+ αb+ αc

αc

]
=

[
α(a+ b+ c)

αc

]
= α

[
a+ b+ c

c

]
= αT (p⃗).

Exploration 74 Let T : P2 → R2 be defined by

T (p⃗) =

[
p(2)

p(0)

]
.

Is T a linear transformation? Justify your response.

Some Noteworthy Examples

Until now, we’ve focused on examples to illustrate how we verify a function
is a linear transformation. Now, we’ll see some examples of common linear
transformations that will be important for us in future sections.

Theorem 3.2.2 Let V be a vector space with basis B and dimension n. The
function φB : V → Rn that relates vectors in V to their coordinate vector
relative to B in Rn is a linear transformation; that is, the function given by

φB(v⃗) = [v⃗]B

is a linear transformation. This function is sometimes called the coordinate
mapping.

PROOF. In the proof of the Pythagorean Theorem in Section 2.3 we estab-
lished that [v⃗ + u⃗]B = [v⃗]B + [u⃗]B for any v⃗, u⃗ ∈ V . We just now need to
see that [αv⃗]B = α [v⃗]B for any scalar α and any v⃗ ∈ V . However, this seems
more like an exercise at this point. Expect to see this for homework. □

It turns out, quite conveniently, that compositions of linear transformations are
also linear transformations.

Theorem 3.2.3 Let V , W , and U be vector spaces, T : V → W a linear
transformation, and S : W → U a linear transformation. Then the compo-
sition S ◦ T : V → U is a linear transformation.



LINEAR TRANSFORMATIONS AND BASES 169

This can be seen in the commuting diagram below:

W

S

  
V

T

OO

S◦T
// U

PROOF. To show S ◦ T is a linear transformation, we need to show it respects
vector addition and that it respects scalar multiplication. Let v⃗1 and v⃗2 be vec-
tors in V , and let a ∈ R. Then since S and T are both linear transformations,

S◦T (v⃗1+v⃗2) = S(T (v⃗1+v⃗2)) = S(T (v⃗1)+T (v⃗2)) = S(T (v⃗1))+S(T (v⃗2)).

Similarly, we have

S ◦ T (av⃗1) = S(T (av⃗1)) = S(aT (v⃗1)) = aS(T (v⃗1)).

Thus, the composition of two linear transformations is a linear transformation.
□

While not all linear transformations are invertible, something interesting hap-
pens when they are. Inverses of linear transformations are also linear transfor-
mations.

Theorem 3.2.4 Suppose V and W are vector spaces and T : V → W is
a linear transformation. If T is invertible with inverse T−1, then T−1 is a
linear transformation.

PROOF. Recall from Theorem 3.1.3 that T is invertible if and only if it is both
one-to-one and onto. Also, from the definition of invertible, we know for any
v⃗ ∈ V that (T−1 ◦ T )(v⃗) = v⃗. Suppose then that u⃗, w⃗ are in W . Since T is
onto, there exist some x⃗, y⃗ ∈ V such that u⃗ = T (x⃗) and w⃗ = T (y⃗). Because
T−1 is the inverse of T , we must also have that T−1(u⃗) = x⃗ and T−1(w⃗) = y⃗.
Thus

T−1(u⃗+ w⃗) = T−1(T (x⃗) + T (w⃗)) = T−1(T (x⃗+ y⃗))

= (T−1 ◦ T )(x⃗+ y⃗) = x⃗+ y⃗

= T−1(u⃗) + T−1(w⃗),

and we see T−1 preserves vector addition. Let a ∈ R. Then we have

T−1(au⃗) = T−1(aT (x⃗)) = T−1(T (ax⃗)) = (T−1◦T )(ax⃗) = ax⃗ = aT−1(u⃗).

Thus, T−1 is a linear transformation because T is a linear transformation. □

We’ll talk quite a bit more about these invertible linear transformations in the
next section.

Linear Transformations and Bases

We spent quite a bit of time in Chapter 2 convincing you how great it is to have
a basis, but we had to save one of the best things about them until now. Bases
are extremely useful in helping us to understand linear transformations.



LINEAR TRANSFORMATIONS AND BASES 170Theorem 3.2.5 Suppose V is a vector space with a spanning set P =

{v⃗1, . . . , v⃗k}. Any linear transformation T : V → W is determined by
T (v⃗1), . . . , T (v⃗k). That is, for any v⃗ ∈ V , we can realize T (v⃗) as a lin-
ear combination of the vectors T (v⃗1), . . . , T (v⃗k).

PROOF. This theorem follows directly from the definitions of spanning set
and linear transformation. Since P is a spanning set of V , we know there are
coefficients c1, . . . , ck such that v⃗ = c1v⃗1 + · · ·+ ckv⃗k for any v⃗ ∈ V and

T (v⃗) = T (c1v⃗1 + · · ·+ ckv⃗k) = c1T (v⃗1) + · · ·+ ckT (v⃗k).

□

Corollary 3.2.6 Suppose V is a vector space with a spanning set P =

{v⃗1, . . . , v⃗k}. If T : V → W is a linear transformation, then Imag T =

Span {T (v⃗1), . . . , T (v⃗k)}.

Corollary 3.2.7 Suppose V is a vector space with a basis B =

{v⃗1, . . . , v⃗n}. Any linear transformation T : V → W is determined by
T (v⃗1), . . . , T (v⃗n).

Example 3.2.6 First, let’s consider the vectors

v⃗ =

[
1

−4

]
and u⃗ =

[
2

3

]
.

Since these are two linearly independent vectors in R2, we see that {v⃗, u⃗}
is a basis for R2. Let T : R2 → R2 be a linear transformation such that

T (v⃗) =

[
3

1

]
and T (u⃗) =

[
−5
7

]
.

First, let us find the images under T of 2v⃗ and 4u⃗. It seems pretty straight-
forward using our properties of a linear transformation.

T (2v⃗) = 2T (v⃗) = 2

[
3

1

]
=

[
6

2

]
, and

T (4u⃗) = 4T (u⃗) = 4

[
−5
7

]
=

[
−20
28

]
.

Similarly, we can also use linearity to find 2v⃗ + 4u⃗:

T (2v⃗ + 4u⃗) = T (2v⃗) + T (4u⃗) =

[
6

2

]
+

[
−20
28

]
=

[
−14
30

]
We saw in Theorem 3.2.5 that the linear transformation is determined by
what it does on a basis, so T is determined by T (u⃗) and T (v⃗).

Now, suppose we want to know what T maps x⃗ =

[
3

10

]
to? We need to

find the coordinate vector for x⃗! That is, we need to solve for a, b ∈ R such
that x⃗ = av⃗ + bu⃗. This is equivalent to[

3

10

]
= a

[
1

−4

]
+ b

[
2

3

]
which gives us the two equations 3 = a+ 2b and 10 = −4a+ 3b. Solving
these gives us a = −1 and b = 2. So x⃗ = −v⃗ + 2u⃗. Now we know how to



RESPECT THE KERNEL 171

find T (x⃗)!

T (x⃗) = T (−v⃗+2u⃗) = −T (v⃗)+2T (u⃗) = −
[

3

1

]
+2

[
−5
7

]
=

[
−13
13

]
.

This is the procedure we could use to find where T sends any vector, but
of course, don’t expect the coordinate vector weights to always be quite so
nice.

Respect the Kernel

We’ve seen that for a linear transformation T : V → W , where V and W are
vector spaces, Imag T is a subspace of the codomain, W . That’s great for the
codomain. Oh, to be guaranteed a subspace! How very nice, indeed. Perhaps
we should try to do the same for the domain.

Exploration 75 Recall again the function φ : R2 → R2 defined in Example
3.1.7 by

φ

([
x1

x2

])
=

[
x1

0

]
,

which we saw was a linear transformation in Exploration 73. Give an example
of a nonzero vector that maps to 0⃗.
Can you describe all the vectors that map to 0⃗?

Definition 3.2.3 Let V and W be vector spaces and T : V →W be a linear
transformation. The kernel of T is the set of vectors v⃗ ∈ V such that
T (v⃗) = 0⃗. We shall use the notation

Ker T = {v⃗ ∈ V : T (v⃗) = 0⃗}.

Theorem 3.2.8 Let V and W be vector spaces and T : V →W be a linear
transformation. Then the kernel of T is a subspace of V .

Exploration 76 PROOF. Let V and W be vector spaces and T : V →W be a
linear transformation. We know that Ker T is a subset of V , so we just need
to verify closure for addition and scalar multiplication and also that it contains
0⃗.

▶ Let v⃗ and u⃗ be vectors in Ker T , so T (v⃗) = 0⃗ and T (u⃗) = 0⃗. Show
T (v⃗ + u⃗) = 0⃗ so that v⃗ + u⃗ is in Ker T .

▶ Let v⃗ ∈ Ker T and a ∈ R. Then T (v⃗) = 0⃗. Show T (av⃗) = 0⃗ so that
av⃗ ∈ Ker T .



RESPECT THE KERNEL 172

▶ In our proof that Imag T is a subspace, we established that a linear
transformation always maps 0⃗ to 0⃗. Thus, 0⃗ ∈ Ker T .

□

Hooray! A linear transformations guarantees a subspace in the domain and
another one in the codomain, each of which will be useful for us.

Example 3.2.7 Let’s look at some of the linear transformations we’ve seen
already and see what their kernels are.

▶ Let T : R2 → R2 be given by T (x⃗) = αx⃗ for some fixed real
number α > 1. For this linear transformation, we only have αx⃗ =

0⃗ if x⃗ = 0⃗ since α ̸= 0. The kernel is then just the zero vector
space.

▶ Let T : R3 → R2 be the function such that for any

x⃗ =

 x1

x2

x3

 ∈ R3 we define

T (x⃗) = x1

[
1

0

]
+ x2

[
3

1

]
+ x3

[
5

4

]
.

Let’s determine the kernel for this one as well. This means we
need to solve

(3.1) 0⃗ = x1

[
1

0

]
+ x2

[
3

1

]
+ x3

[
5

4

]
.

Since we know any set of three vectors in R2 must be linearly de-
pendent, we know there must be nontrivial solutions to this equa-
tion. Note that

−7
[

1

0

]
+ 4

[
3

1

]
=

[
5

4

]
.

Thus we can rewrite our Equation 3.1 as

0⃗ = x1

[
1

0

]
+ x2

[
3

1

]
+ x3

(
−7
[

1

0

]
+ 4

[
3

1

])
= (x1 − 7x3)

[
1

0

]
+ (x2 + 4x3)

[
3

1

]
The vectors

[
1

0

]
and

[
3

1

]
are linearly independent, so the only

solution to this is given by

(3.2) x1 − 7x3 = 0 and x2 + 4x3 = 0

We can rearrange these to get x1 = 7x3 and x2 = −4x3. Thus,

Ker T =


 7x3

−4x3

x3

 : x3 ∈ R

 = Span


 7

−4
1

 .

Exploration 77 Define T : P2 → R2 by

T (p⃗) =

[
p(1)

p(0)

]
.



SECTION HIGHLIGHTS 173

What must Ker T be?

Now that we’ve spent some time talking about these special functions called
linear transformations, we should spend some time talking about how they
relate to the concepts of Section 3.1. We’ll do that in the next section because
this seems like enough for now.19 19:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It is. It is enough.

Section Highlights

▶ A linear transformation is a function between vector spaces that pre-
serves vector space structure. In particular, the range of a linear
transformation, called its image, is a vector space. See the discus-
sion before Definition 3.2.1 and Theorem 3.2.1.

▶ A function between vector spaces is a linear transformation if it pre-
serves the operations of vector addition and scalar multiplication.
This means that for f : V → W to be a linear transformation, it
must satisfy f(x⃗+y⃗) = f(x⃗)+f(y⃗) and f(ax⃗) = af(x⃗) where the
operations on the left of the equals are in V and the operations on the
right are in W for any vectors x⃗ and y⃗ in V . See Definition 3.2.1.

▶ The kernel of a linear transformation, T , is the subspace in the do-
main consisting of the vectors mapped to the zero vector by T . See
Definition 3.2.3 and Theorem 3.2.8. See Example 3.2.7 on how to
compute the kernel.



EXERCISES FOR SECTION 3.2 174

Exercises for Section 3.2

3.2.1.Consider the function T : R2 → R3 defined by

T

([
x1

x2

])
=

 x1

x2

0

 .

Show that T is a linear transformation.

3.2.2.Let T : R5 → R5 be defined by

T




x1

x2

x3

x4

x5



 =


5x1 + 4

x2 + x3

x3 − 1

x1

x2

 .

Show that T is not a linear transformation.

3.2.3.All of the functions between vector spaces below fail to be linear transformations. Give specific examples
illustrating why they fail.

(a) f : R2 → R defined by f

([
x1

x2

])
= x1 + 5

(b) f : R2 → R defined by f

([
x1

x2

])
= x1x2

(c) f : R2 → R2 defined by f

([
x1

x2

])
=

[
2x1

x1x2

]

(d) f : R2 → R2 defined by f

([
x1

x2

])
=

[
x1

x1 + 3

]

(e) f : R2 → R2 defined by f

([
x1

x2

])
=

[
x1 + x2

x3
1

]

3.2.4.Consider the map T : R4 → R2 defined by

T




x1

x2

x3

x4


 =

[
x1 + x2 + x3 + x4

x1 + x2 − x3 − x4

]
.

Show this is a linear transformation.

3.2.5.Let T : R5 → R5 be defined by

T




x1

x2

x3

x4

x5



 =


5x1

x2 + x3

x3

x1

x2

 .



EXERCISES FOR SECTION 3.2 175

(a) Show that T is a linear transformation.

(b) Find Ker T .

3.2.6.Consider the function T : R2 → R3 defined by

T

([
x1

x2

])
=

 x1

x1 + x2

0

 .

(a) Show that T is a linear transformation.

(b) Find Ker T .

3.2.7.Consider the function T : R2 → R defined by

T

([
x1

x2

])
= x1 + 3x2.

(a) Show that T is a linear transformation.

(b) Find Ker T .

3.2.8.Let T : P2 → R4 be defined by

T
(
a0 + a1x+ a2x

2
)
=


a0 + a1
a0 − a1
a1 − a2
a1 + a2

 .

(a) Show T is a linear transformation.

(b) Find Ker T .

3.2.9.Let T : P2 → R4 be defined by

T
(
a0 + a1x+ a2x

2
)
=


a0
a1
a2

(a2)
2

 .

Show that T is not a linear transformation.

3.2.10.Let v⃗1 =

[
1

−1

]
and v⃗2 =

[
1

0

]
. Then B = {v⃗1, v⃗2} is a basis for R2.

Suppose T : R2 → P2 is the linear transformation determined by

T (v⃗1) = 1 + x and T (v⃗2) = x+ x2.



EXERCISES FOR SECTION 3.2 176

(a) Find T (v⃗1 + 3v⃗2).

(b) Suppose [x⃗]B =

[
2

−1

]
. Find T (x⃗).

(c) Find T (e⃗2).

(d) Find T

([
3

−1

])
.

3.2.11.Suppose T : P2 → R2 is the linear transformation determined by

T (1) =

[
1

1

]
T (1 + x) =

[
1

−1

]
and T (1 + x2) =

[
1

0

]
(a) Find T (1 + x+ x2).

(b) Find T (x).

(c) Find T (x2).

3.2.12.Show that any nonzero constant function between vector spaces is not a linear transformation.

3.2.13.Let V be a vector space with basis B = {⃗b1, b⃗2, . . . , b⃗n}. Complete the proof from Theorem 3.2.2 that the
coordinate mapping is a linear transformation by showing [αv⃗]B = α [v⃗]B for any real number α and any
v⃗ ∈ V .

3.2.14.Let V be a vector space such that dimV = 4; let {v⃗1, v⃗2, v⃗3} ⊂ V be linearly independent and W =

Span {v⃗1, v⃗2, v⃗3}. Show that the function f : V → V that relates v⃗ ∈ V to projW (v⃗) is a linear transforma-
tion.



3.3. ONE-TO-ONE AND ONTO LINEAR TRANSFORMATIONS 177

3.3 One-to-one and Onto Linear Transformations

In Section 3.1, we learned about when a function is one-to-one, onto, and
invertible. Let’s revisit all of these concepts in the more specific context of
linear transformations. We’ll begin with one-to-one.

Example 3.3.1 Consider the function T : R2 → R3 defined by

T

([
x1

x2

])
=

 x1

x2

0

 .

This is a linear transformation.
20: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Does this look familiar?
Could this have been an exercise in the
last section?

20 Moreover, it is one-to-one. To show this
from the definition, suppose T (v⃗) = T (u⃗) for some v⃗, u⃗ ∈ R2. Then, we
know that if

v⃗ =

[
v1
v2

]
and u⃗ =

[
u1

u2

]
then

T (v⃗) =

 v1
v2
0

 and T (u⃗) =

 u1

u2

0

 .

Thus T (v⃗) = T (u⃗) means  v1
v2
0

 =

 u1

u2

0

 .

From this we see that v1 = u1 and v2 = u2, so v⃗ = u⃗; this tells us, by
definition, that T is one-to-one.
Now, let’s consider Ker T . If x⃗ ∈ Ker T , then T (x⃗) = 0⃗. Then

T

([
x1

x2

])
=

 x1

x2

0

 =

 0

0

0

 .

Thus, the only possibility for x⃗ is the vector 0⃗ ∈ R2. In fact, this is always
the kernel of a one-to-one function, and this can even be used to tell whether
a function is one-to-one.

This example illustrates a convenient fact that is true in general.

Theorem 3.3.1 Let V and W be vector spaces. A linear transformation
T : V →W is one-to-one if and only if Ker T = {⃗0}.

PROOF. Suppose first that the linear transformation T : V → W is one-to-
one. Then there is a unique element of V which maps to 0⃗ in W . Since we
know T (⃗0) = 0⃗ whenever T is a linear transformation, Ker T = {⃗0}.

Now suppose Ker T = {⃗0}. Let v⃗1 and v⃗2 be vectors in V such that T (v⃗1) =
T (v⃗2). We need to show that v⃗1 = v⃗2 in order for T to be one-to-one. Since



3.3. ONE-TO-ONE AND ONTO LINEAR TRANSFORMATIONS 178

T is a linear transformation, we have

T (v⃗1) =T (v⃗2)

T (v⃗1)− T (v⃗2) =0⃗

T (v⃗1 − v⃗2) =0⃗.

Thus, v⃗1 − v⃗2 ∈ Ker T = {⃗0}, so v⃗1 − v⃗2 = 0⃗. We then see v⃗1 = v⃗2, as
desired. □

Exploration 78 Consider our favorite linear transformation, φ : R2 → R2,
defined by

φ

([
x1

x2

])
=

[
x1

0

]
.

Is this function one-to-one?

Now we should consider what it means for a linear transformation to be onto.
In particular, Theorem 3.1.1 from Section 3.1 can be restated for linear trans-
formations.

Theorem 3.3.2 Let V and W be vector spaces. A linear transformation
T : V →W is onto if and only if Imag T = W .

Example 3.3.2 Let T : R3 → R2 be the linear transformation such that for
any

x⃗ =

 x1

x2

x3

 ∈ R3 we define T (x⃗) = x1

[
1

0

]
+x2

[
3

1

]
+x3

[
5

4

]
.

We know this is not one-to-one since Ker T ̸= {⃗0}.
21: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This was done in the previous
section.

21 Let’s see if it is onto,
though. Based on the definition of the function, we know x1, x2, and x3 can
be any real numbers. Thus,

Imag T = Span

{[
1

0

]
,

[
3

1

]
,

[
5

4

]}
= Span

{[
1

0

]
,

[
3

1

]}
.

Since this is a subspace of dimension 2 in R2, we see that it is all of R2.
Thus, T is onto.

Exploration 79 Let f : R2 → R be the function defined by

f

([
x1

x2

])
= x1 + x2

where x1, x2 ∈ R. We showed in the previous section that this was a linear
transformation. Now, find Ker f and Imag f to determine whether it is one-
to-one, onto, both, or neither.



ISOMORPHISMS 179

Isomorphisms

Now that we have discussed one-to-one linear transformations and onto linear
transformations, we should talk about when a linear transformation has both
of these properties. In Section 3.1, we called such functions invertible. We
have a special name for an invertible linear transformation.22 22:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No, the name is not “Ricky,”
but maybe it should be. . .

Definition 3.3.1 Let V and W be vector spaces. A linear transformation
T : V → W is called an isomorphism if it is both one-to-one and onto.
When such a linear transformation exists, we say V and W are isomorphic
vector spaces, and denote this by V ∼= W .

The notation here of V ∼= W suggests that there is a sense that V and W

are “equal” if they are isomorphic. This is essentially true, at least as vector
spaces. A one-to-one and onto map between sets means they are in many ways
interchangeable, and the fact here that such a map preserves the vector space
structure means that they have identical structure as vector spaces. However,
to claim that isomorphic is a form of equality, there are some properties of
equality that should be satisfied. 23 23: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

The properties outlined here
are those needed to form an equivalence
relation on a set. What we’ve actu-
ally saying here is that being isomorphic
gives an equivalence relation on the set
of all vector spaces.

Theorem 3.3.3 (a) If V is any vector space, then V ∼= V .
(b) If V and W are vector spaces such that V ∼= W , then W ∼= V .
(c) If V , W , and U are vector spaces such that V ∼= W and W ∼= U ,

then V ∼= U .

These properties might just come in handy later. Rather than prove these all
here, we’ll do it in the Appendix.

You might recall that the concept of vector spaces being essentially the same
has come up for us before. In Section 1.2, we equated the appropriate vector
space of arrow vectors with each of the vector spaces R1, R2, and R3. In truth,
these are isomorphic vector spaces. The elements in these sets and the ways
that they are described are very different, except they are really the same as
vector spaces; that is, they are isomorphic. We also talked in Section 1.4 about
how any plane through the origin in R3 “looks like” R2. In truth, each of these
is isomorphic to R2.

Here’s an important one; the coordinate mapping is always an isomorphism.

Theorem 3.3.4 Let V be a vector space of dimension n with basis B. The
coordinate mapping φB : V → Rn defined by φB(v⃗) = [v⃗]B is an isomor-
phism.

PROOF. From Theorem 3.2.2, we know φB is a linear transformation. We
need now to show that it is one-to-one and onto. Since Theorem 2.3.1 tells us
that each element in V is represented uniquely on the basis B, we know φB is
one-to-one. By Theorem 3.2.1, φB is onto if and only if Imag φB = Rn. By
the definition of φB, we already have that Imag φB ⊆ Rn. Since Span {B} =
V , every possible linear combination of the elements of B must be in V . Thus,
every vector in Rn appears in Imag φB. It follows that Imag φB = Rn. □



ISOMORPHISMS 180

Let’s think about what this theorem tells us for a moment. Suppose V is a
vector space of dimension n. Then the coordinate mapping gives us an iso-
morphism between V and Rn. This is actually incredibly important; it tells us
that every vector space of dimension n is in essence “the same” as Rn. This
shouldn’t make you think other vector spaces are not important, but it means a
thorough understanding of how things work in Rn can be useful for predicting
how they work in other real vector spaces.

There’s something else that should be apparent from this; the dimensions of
isomorphic vector spaces match. Let’s formalize this.

Theorem 3.3.5 Let V and W be vector spaces, and suppose B =

{v⃗1, . . . , v⃗n} is a basis of V . If T : V → W is an isomorphism, then
B̂ = {T (v⃗1), . . . , T (v⃗n)} is a basis of W .

We’ll walk through the proof of this fact in the exercises. The above theorem
tells us that isomorphic vector spaces have bases of the same size. Thus, we
have this useful corollary.

Corollary 3.3.6 Two real vector spaces are isomorphic if and only if they
have the same dimension.

PROOF. We see from Theorem 3.3.5 that two isomorphic vector spaces will
have the same dimensions since they have the same size bases. The other
direction, where we begin by assuming two vector spaces have the same di-
mension, is given to us from Theorem 3.3.4 and Theorem 3.3.3 since they
would both be isomorphic to Rn for the same n. □

We mentioned above that any plane through the origin in Rn is actually iso-
morphic to R2, but what’s the isomorphism? Let’s see an explicit example of
this.

Example 3.3.3 Depending on your background, you may have seen planes
in R3 described differently than the span of two vectors. For instance, the
solutions to the equation 3x+2y−z = 0 in R3 form a plane. Let’s translate
that plane into more of our language.

3x+ 2y − z = 0 says z = 3x+ 2y.

Thus, the plane is all vectors in the set
 x

y

3x+ 2y

 : x, y ∈ R

 =


 1

0

3

x+

 0

1

2

 y : x, y ∈ R


= Span


 1

0

3

 ,

 0

1

2

 .



ISOMORPHISMS 181

Since this is now a vector space of dimension 2, we know it must be iso-
morphic to R2 and a specific isomorphism here can be given by

T : Span


 1

0

3

 ,

 0

1

2

→ R2 defined by

T

 1

0

3

 =

[
1

0

]
and T

 0

1

2

 =

[
0

1

]
.

What if the plane we want to consider does not go through the origin? Well,
it is then not a subspace of R3, but there is a way to define our operations
of vector addition and scalar multiplication so that it is a vector space. For
an example of such operations, see the Appendix. This vector space would
again be isomorphic to R2.

Let’s take note of something from that previous example. Once we had a basis
for our plane in R3, we defined our isomorphism by mapping each basis vector
in the space to one of the standard basis vectors in R2. This is really the easiest
way to define an isomorphism.

Theorem 3.3.7 Suppose V and W are vector spaces of the same dimension.
Let {v⃗1, . . . , v⃗n} be any basis for V . A linear transformation T : V → W

is an isomorphism if and only if T maps each basis vector in {v⃗1, . . . , v⃗n}
to a distinct vector in a basis {w⃗1, . . . , w⃗n} of W .

PROOF. This is just the combination of Theorem 3.3.5 and Theorem 3.2.5.
□

Exploration 80 Let V = Span
{
1 + x, x2

}
in P2. Just like we did in Example

3.3.3, define an isomorphism T from V to R2. Say explicitly what T (1 + x)

and T (x2) are.

Exploration 81 Again let V = Span
{
1 + x, x2

}
in P2. Also, let W =

Span {1, x} in P2. We know that these vector spaces both have dimension
2, so they should be isomorphic. Use the given bases to give an isomorphism
T from V to W . Say explicitly what T (1 + x) and T (x2) are.

Exploration 82 Can you find an example of a function between vector spaces
that is both one-to-one and onto but is not an isomorphism? Hint: There’s one
somewhere in the previous section.



RANK-NULLITY THEOREM 182

Rank-Nullity Theorem

There is a theorem known as the Rank-Nullity Theorem that we should proba-
bly talk about now. We name it this because that’s what all the cool textbooks
call it. For now, you should just assume the theorem is due to amateur math-
ematicians named Ronnie Rank and Noether Nullity.24 This is, of course, a 24:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

They were also full-time
mimes; this was the gig that paid the
bills.

lie,25 but the mathematical definitions of the words rank and nullity will come

25: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

The bit about who proved the
Rank-Nullity Theorem was a lie. We,
however, choose to believe that in an
infinite universe, there exist both Ron-
nie Rank and Noether Nullity, full-time
mimes. Oh yeah, they’re unicorns, too.

later.

Theorem 3.3.8 Let V and W be inner product spaces and T : V → W be
a linear transformation between them. Then

(Ker T )
⊥ ∼= Imag T.

Corollary 3.3.9 Let V and W be inner product spaces with dimV =

dimW and T : V →W be a linear transformation between them. Then

(Ker T )
⊥ ∼= Imag T and

Ker T ∼= (Imag T )
⊥
.

Again, the various subspaces to which we will refer in the proof can be seen
in Figure 3.2.

W = codom (T )

T

V = dom (T )

(Imag T )⊥Ker T

Imag T(Ker T )⊥

FIGURE 3.2. The linear transformation T : V →W gener-
ates four subspaces: Ker T and (Ker T )⊥ in the domain, V ,
and Imag T and (Imag T )⊥ in the codomain, W . The top
two subspaces are isomorphic., and when dimV = dimW ,
the bottom subspaces are also isomorphic.

PROOF OF THEOREM 3.3.8. This proof has several elements. We’ll use bul-
lets to keep track.

▶ We know from Theorem 3.2.8 that Ker T is a subspace of V . Thus,
from Corollary 2.5.2, we know V = Ker T ⊕ (Ker T )⊥. So every
element of V can be written as n⃗+ v⃗ for some n⃗ ∈ Ker T and some
v⃗ ∈ (Ker T )⊥.

▶ To show these vector spaces are isomorphic, we need an isomor-
phism. We’ll use T restricted to (Ker T )⊥, and we’ll call this map
T to keep it straight. To be clear,

T : (Ker T )⊥ −→ Imag T

is defined by
T (x⃗) = T (x⃗)



RANK-NULLITY THEOREM 183

for any x⃗ ∈ (Ker T )⊥. This is a function since T is a function, and
it is a linear transformation since T is a linear transformation. We
need to show now that it is an isomorphism. More specifically, we
need to show this map is one-to-one and onto.

▶ To show T is onto, let y⃗ ∈ Imag T . Then there is some u⃗ ∈ V such
that T (u⃗) = y⃗. We know from above that

u⃗ = n⃗u + v⃗u

for some n⃗u ∈ Ker T and some v⃗u ∈ (Ker T )⊥. Thus,

y⃗ = T (u⃗) = T (n⃗u + v⃗u) = T (n⃗u) + T (v⃗u) = 0⃗ + T (v⃗u) = T (v⃗u).

This tells us that T maps onto Imag T .

▶ We need lastly to show that T is one-to-one. We could do this from
the definition, but Theorem 3.3.1 says we need only establish that
Ker T = {⃗0}. Suppose x⃗ ∈ Ker T . Then T (x⃗) = T (x⃗) = 0⃗ and
x⃗ ∈ Ker T . Since Ker T ∩ (Ker T )⊥ = {⃗0}, this says x⃗ = 0⃗ and
therefore T is one-to-one.

□

The following is more of a corollary to the above result, but all the other text-
books give it a fancy-sounding name. So we’ll make it a theorem. No, it’s
not just because all the other books are doing it. . . No, we wouldn’t jump off a
bridge if all the other books did. Look, it’s just that we wouldn’t want to miss
an opportunity to sound really fancy! Whatever. Just call it Theorem 3.3.10 if
you want. Can we just drop it now?26 26: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Seriously though, you should
know the name; we expect you to want
to talk about Linear Algebra with many
people throughout your lifetime, and
sadly, many have not been fortunate
enough to learn from this text. There-
fore, you need to know what everyone
else means when they refer to the Rank-
Nullity Theorem.

Theorem 3.3.10 (Rank-Nullity Theorem) Let V and W be vector spaces
and T : V → W be a linear transformation between them. Then dimV =

dimKer T + dim Imag T .

PROOF. We know from Corollary 3.3.6 that (Ker T )⊥ and Imag T have the
same dimension. From Corollary 2.5.2 of the Orthogonal Decomposition the-
orem and Theorem 2.5.3, we have that

dimV = dimKer T + dim(Ker T )⊥ = dimKer T + dim Imag T.

□

Let’s talk about those words, rank and nullity.

Definition 3.3.2 The rank of a linear transformation is the dimension of its
image. The nullity of a linear transformation is the dimension of its kernel.

Thus, the Rank-Nullity Theorem is aptly named.27 Let’s see how the theorem 27:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It was originally named (ges-
ticulate wildly with your front hooves)
by Ronnie and Noether.

can be useful.



RANK-NULLITY THEOREM 184

Example 3.3.4 Let T : R5 → R5 be defined by

T




x1

x2

x3

x4

x5



 =


5x1

x2 + x3

x3

x1

x2

 .

Since x1, x2, x3 can be any real numbers, we get that

Imag T =




5x1

x2 + x3

x3

x1

x2

 : x1, x2, x3 ∈ R



= Span




5

0

0

1

0

 ,


0

1

0

0

1

 ,


0

1

1

0

0




We can see then that dim Imag T = 3. We can then conclude Ker T has
dimension 2. This helps us to find Ker T because if we can find two linearly
independent vectors in the kernel, we know they form a basis of the kernel.

Ker T = Span




0

0

0

1

0

 ,


0

0

0

0

1




Exploration 83 Consider the linear transformation T : R4 → R2 defined by

T




x1

x2

x3

x4


 =

[
x1 + x2 + x3 + x4

x1 + x2 − x3 − x4

]
.

Convince yourself that this map is onto by identifying vectors in R4 that map
to the basis {[

1

1

]
,

[
1

−1

]}

for R2.

Now, the dimension of Ker T must be 2 from the Rank-Nullity Theorem. Find
two linearly independent vectors in the kernel.



SECTION HIGHLIGHTS 185

Another Useful Theorem

At the end of Section 3.1, we proved Theorem 3.1.5 about the properties of
one-to-one and onto when a function is defined between two finite sets. Then
in Theorem 3.2.5, we saw that linear transformations are completely deter-
mined by what they do on a spanning set. This result implies linear transfor-
mations between finite dimensional vector spaces are similar in some way to
functions between finite sets, and we can now prove a linear transformation
version of Theorem 3.1.5.

Theorem 3.3.11 Suppose T : V → W is a linear transformation between
finite dimensional vector spaces V and W .

(a) If dimV > dimW , then T is not one-to-one.
(b) If dimV < dimW , then T is not onto.
(c) If dimV = dimW , then either T is both one-to-one and onto or

T is neither one-to-one nor onto.

PROOF. Suppose first that dimV > dimW . Since we know Imag T is a
subspace of W , we know dim Imag T ≤ dimW from Theorem 2.2.4. To-
gether, this says dim Imag T < dimV . Then rearranging the Rank-Nullity
Theorem tells us that dimKer T = dimV − dim Imag T and dimKer T

must be nonzero since the inequality dim Imag T < dimV is strict. Theorem
3.3.1 says T then is not one-to-one.

Suppose next that dimV < dimW . Again, we turn to the Rank-Nullity The-
orem to see that dim Imag T = dimV − dimKer T . From this we see
that dim Imag T ≤ dimV and we can combine the inequalities to see that
dim Imag T < dimW . We know from Theorem 3.3.2 that T is not onto then
since Imag T = W would mean they have the same dimension.

Suppose lastly that dimV = dimW . If T is onto, then we know dimW =

dim Imag T . Then the Rank-Nullity Theorem says

dimW = dimV = dim Imag T + dimKer T = dimW + dimKer T.

This can only be true if dimKer T = 0. In that case, T is one-to-one by
Theorem 3.3.1. Now, if we begin by assuming that T is one-to-one, we know
dimKer T = 0 and the Rank-Nullity Theorem says dimW = dimV =

dim Imag T . This means W = Imag T and T is onto. We have argued that
T is onto if and only if it is one-to-one. The result follows. □

Section Highlights

▶ A linear transformation is one-to-one if and only if its kernel is ex-
actly the zero vector. See Theorem 3.3.1.

▶ For a linear transformation, T , the Rank-Nullity Theorem tells us that
dimdom (T ) = dimKer T + dim Imag T . See Theorem 3.3.10.

▶ For any linear transformation T , dimKer T can be used to deter-
mine whether the function is one-to-one, onto, both, or neither. In
particular:



SECTION HIGHLIGHTS 186

– T is one-to-one if and only if dimKer T = 0;

– T is onto if and only if dim Imag T = dim codom (T ), and
by the Rank-Nullity Theorem, dim Imag T = dimdom (T )−
dimKer T .

See Theorem 3.3.10, Theorem 3.3.1, and Theorem 3.3.2.

▶ If there is a one-to-one and onto linear transformation between two
vector spaces, we say the vector spaces are isomorphic, a form of
equivalence for vector spaces. See Definition 3.3.1.

▶ Any n-dimensional vector space is isomorphic to Rn via the coordi-
nate mapping. See Theorem 3.3.4.



EXERCISES FOR SECTION 3.3 187

Exercises for Section 3.3

3.3.1.Determine whether the linear transformation is one-to-one, onto, both or neither. If it is not onto, find
Imag T . If it is not one-to-one, find Ker T .

(a) T : P2 → R2 defined by

T (a0 + a1x+ a2x
2) =

[
a0 + a1

a2

]

(b) T : P2 → R3 defined by

T (a0 + a1x+ a2x
2) =

 a0
a1
a2


(c) T : P2 → R3 defined by

T (a0 + a1x+ a2x
2) =

 a0 + a1
2a1

a1 + a2


(d) T : P2 → R4 defined by

T (a0 + a1x+ a2x
2) =


a0

a1 + a2
a1 + a2

a2


(e) T : R3 → R3 defined by

T

 x1

x2

x3

 =

 x1

x1

x2


(f) T : R3 → R3 defined by

T

 x1

x2

x3

 =

 x1 − x2

x1

x2


(g) T : R3 → R2 defined by

T

 x1

x2

x3

 =

[
x1

x2

]

3.3.2.Determine whether the linear transformation is one-to-one, onto, both or neither.



EXERCISES FOR SECTION 3.3 188

(a) T : P2 → R4 defined by

T (a0 + a1x+ a2x
2) =


a0 − a1
a1 − a2

a2
a1


(b) T : P2 → R4 defined by

T (a0 + a1x+ a2x
2) =


a1

a1 − a2
a2
a1



3.3.3.Let T : P2 → R3 defined by

T (a0 + a1x+ a2x
2) =

 a0 − a1
a1 − a2
a2 − a0

 .

(a) Which of the following vectors are in Ker T ?

1− x, 1 + x+ x2, x− x2, 1− x− x2

(b) Which of the following vectors are in Imag T ? 0

1

2

 ,

 1

1

1

 ,

 0

1

0

 ,

 0

0

0



3.3.4.Find the dimension of Ker T using the Rank-Nullity Theorem.

▶ T : R3 → R2 defined by

T

 x1

x2

x3

 =

[
x2

x1

]

▶ T : R5 → R2 defined by

T




x1

x2

x3

x4

x5



 =

[
x3

x1

]

▶ T : R3 → R2 defined by

T

 x1

x2

x3

 =

[
x1

x1

]



EXERCISES FOR SECTION 3.3 189

3.3.5.Suppose T : V →W is an isomorphism of vector spaces and {v⃗1, . . . , v⃗n} is a basis for V .

(a) Use the fact that T is onto to show that {T (v⃗1), . . . , T (v⃗n)} is a spanning set of W .

(b) Use the fact that T is one-to-one to argue that {T (v⃗1), . . . , T (v⃗n)} is a linearly independent set.

This completes the proof of Theorem 3.3.5.

3.3.6.Let T : R3 → R3 by

T

 x1

x2

x3

 =

 x1 + 47x2

x2 − 48x3

x3

 .

Calculate T (e⃗1), T (e⃗2), and T (e⃗3), and explain how this proves that T is an isomorphism.

3.3.7.Let T : Rn → Rn and S : Rn → Rn.

(a) Is it possible that dimKer T < dimKer (S ◦ T )? Explain.

(b) Is it possible that dimKer S < dimKer (S ◦ T )? Explain.

(c) Is it possible that dimKer (S ◦ T ) < dimKer T ? Explain.

(d) Is it possible that dimKer (S ◦ T ) < dimKer S? Explain.

3.3.8.Let V = Span
{
x, 1 + x2

}
in P2. Find two distinct isomorphisms T and S from V to R2.



WHAT IS. . . A MATRIX? 190

3.4 Matrices

At some point, you might have been given the impression28 that Linear Alge- 28:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Certainly not from us.
bra is all about matrices. Don’t feel bad; matrix theory is often confused with
linear algebra. We know now that Linear Algebra is the study of linear trans-
formations on vector spaces.29 In this section, we will begin the discussion of 29: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

One of the three unicorns does,
anyway.what a matrix is and also how it can be connected to a linear transformation.

What is. . . a Matrix?

Definition 3.4.1 An m×n matrix A is a rectangular array of numbers with
m rows and n columns:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 .

The number aij in the ith row and jth column is called the ijth entry. Ma-
trices are sometimes also written as

A = [aij ]1≤i≤m,
1≤j≤n

.

An n × n matrix is often called a square matrix. For convenience, the set
of all m× n matrices with real number entries will be denoted byMm×n.

The numbers in a matrix may be integers, real numbers, complex numbers,
etc. The entries don’t even have to be numbers! You could make a matrix of
polynomials or even emojis30 if you really wanted. In this course, we will use 30:Or Greek symbols. Or even. . .
real numbers unless otherwise specified.31

31:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I caught that! They’re planning
to specify non-real matrices at some
point!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Probably in Chapter 5. I’ve heard
everything gets a bit more complex
there.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Do you think they’ll change the
meaning of Mm×n then?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Quite possibly.

Another common notation (that will be particularly useful for us) is to think
of an m× n matrix as n vectors from Rm all lined up next to each other, so

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn



=




a11
a21

...
am1




a12
a22

...
am2

 · · ·


a1n
a2n

...
amn


 = [⃗a1 a⃗2 · · · a⃗n] ,

where

a⃗j =

 a1j
...

amj

 , for 1 ≤ j ≤ n.

We call a⃗j a column vector for the matrix A.



BUILDING A LINEAR TRANSFORMATION FROM A MATRIX 191

Example 3.4.1 Here’s a 2× 3 matrix:

A =

[
1 2 3

4 5 6

]
= [⃗a1 a⃗2 a⃗3] ,

where

a⃗1 =

[
1

4

]
, a⃗2 =

[
2

5

]
, and a⃗3 =

[
3

6

]
.

Fun facts: a21 = 4 and a12 = 2.

Exploration 84 In the matrix A from Example 3.4.1, what are a13 and a22?

Building a Linear Transformation from a Matrix

Before we can use a matrix to make a linear transformation, we will need to
define a type of multiplication between a matrix and a vector.

Definition 3.4.2 Let A ∈Mm×n with columns a⃗1, . . . , a⃗n, and let x⃗ ∈ Rn.
The product of a matrix and a vector, that is, the product of A and x⃗, is
the linear combination of the columns of A with the entries of x⃗ as weights.
That is,

Ax⃗ = [⃗a1 a⃗2 · · · a⃗n]


x1

x2

...
xn

 = x1a⃗1 + x2a⃗2 + · · ·+ xna⃗n.

Example 3.4.2 Let

A =

[
1 2 3

4 5 6

]
, B =

 1 2

3 4

5 6

 , v⃗ =

 7

8

9

 , and u⃗ =

[
7

8

]
.

We can calculate Av⃗ and Bu⃗; see Exploration 85.
Note, however, that Au⃗ and Bv⃗ are not defined. For Au⃗, the matrix A has
three columns, while u⃗ has only two components; thus, there is no way to
form a linear combination. Similarly for Bv⃗, the matrix B has only two
columns, and v⃗ has three components.

Exploration 85 Let

A =

[
1 0 5

2 −2 6

]
, B =

 1 0

2 5

3 −1

 ,

v⃗ =

 1

−2
0

 , and u⃗ =

[
2

1

]
.

Calculate Av⃗ and Bu⃗.



BUILDING A LINEAR TRANSFORMATION FROM A MATRIX 192

Av⃗ =

[
1 2 3

4 5 6

] 7

8

9

 = 7

[
1

4

]
+ 8

[
2

5

]
+ 9

[
3

6

]

=

[
7

28

]
+

[
16

40

]
+

[
27

54

]
=

[
50

122

]

Bu⃗ =

 1 2

3 4

5 6

[ 7

8

]
= 7

 1

3

5

+ 8

 2

4

6



=

 7

21

35

+

 16

32

48

 =

 23

53

83


With this product definition in hand, we are able to make any matrix into a
linear transformation.32 32: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Read that last sentence again.
It’s a big deal.

Theorem 3.4.1 Let A ∈Mm×n, and define T : Rn → Rm by

T (x⃗) = Ax⃗.

Then T is a linear transformation.

When a linear transformation is defined as multiplication by a specific matrix,
we often use the following terminology and notation.

Definition 3.4.3 Let A ∈Mm×n, and define TA : Rn → Rm by

TA(x⃗) = Ax⃗.

We will call TA the linear transformation induced by A.

PROOF. We need to show that for any vectors x⃗, y⃗ ∈ Rn and any scalar α ∈ R,
we have

TA(x⃗+ y⃗) = TA(x⃗) + TA(y⃗) and TA(αx⃗) = αTA(x⃗).

We may write A = [⃗a1 · · · a⃗n]. First note that

TA(x⃗+ y⃗) = A(x⃗+ y⃗) = [⃗a1 · · · a⃗n]

 x1 + y1
...

xn + yn


= (x1 + y1)⃗a1 + · · ·+ (xn + yn)⃗an

= (x1a⃗1 + · · ·+ xna⃗n) + (y1a⃗1 + · · ·+ yna⃗n)

= [⃗a1 · · · a⃗n]

 x1

...
xn

+ [⃗a1 · · · a⃗n]

 y1
...
yn


= Ax⃗+Ay⃗ = TA(x⃗) + TA(y⃗).



BUILDING A LINEAR TRANSFORMATION FROM A MATRIX 193

Now, we need to show that for any scalar α ∈ R, we have TA(αx⃗) = αTA(x⃗).
To see this,

TA(αx⃗) = A(αx⃗) = [⃗a1 · · · a⃗n]

α

 x1

...
xn




= [⃗a1 · · · a⃗n]

 αx1

...
αxn


= (αx1)⃗a1 + · · ·+ (αxn)⃗an

= α(x1a⃗1 + · · ·+ xna⃗n)

= αAx⃗ = αTA(x⃗).

□

Example 3.4.3 Let

A =

[
3 0

0 −1

]
, u⃗ =

[
1

−2

]
, and v⃗ =

[
v1
v2

]
,

and define TA : R2 → R2 by TA(x⃗) = Ax⃗. Find the images TA(u⃗) and
TA(v⃗). Here our linear transformation is defined as multiplication by a ma-
trix A. We can compute

TA(u⃗) = Au⃗ =

[
3 0

0 −1

] [
1

−2

]
= (1)

[
3

0

]
+(−2)

[
0

−1

]
=

[
3

2

]
,

and both u⃗ and its image under TA can be seen in Figure 3.3.
For the arbitrary vector v⃗, we have

TA(v⃗) = Av⃗ =

[
3 0

0 −1

] [
v1
v2

]
= v1

[
3

0

]
+v2

[
0

−1

]
=

[
3v1
−v2

]
,

and now we have a nice formula for the image under TA of any vector in
R2.

1

R2

u⃗

TA(u⃗)

FIGURE 3.3. The vector u⃗ ∈ R2 and its image TA(u⃗) ∈
R2.



REVISITING IMAGE AND KERNEL 194

Exploration 86 Let’s use our matrix B from earlier to define a linear transfor-
mation. Specifically, let

B =

 1 4

2 5

3 6

 ,

and define TB : R2 → R3 by TB(x⃗) = Bx⃗.

▶ What is TB

([
1

−1

])
?

▶ What is TB

([
3

1

])
?

Example 3.4.4 Suppose we wanted to define a map G : R9 → R14 by
G(x⃗) = Ax⃗? How many rows and columns must A have for this linear
transformation to be well-defined? Since

Ax⃗ = [⃗a1 · · · a⃗n]

 x1

...
xn

 = x1a⃗1 + · · ·+ xna⃗n,

It follows that x⃗ needs as many components as A has columns. Since
x⃗ ∈ R9, we see that A must have nine columns. Moreover, Ax⃗ is a lin-
ear combination of the column vectors a⃗j . Since Ax⃗ ∈ R14, we must also
have a⃗j ∈ R14 for each 1 ≤ j ≤ 9. It follows that A must have fourteen
rows. Thus, A ∈M14×9.

Revisiting Image and Kernel

Now that we’ve seen that a matrix can define a linear transformation, we can
talk about the kernel and image of such a function. Let’s start with an example.

Example 3.4.5 Let

A =

[
1 2 3 0

0 1 −2 4

]
,

and define TA : R4 → R2 by TA(x⃗) = Ax⃗. We shall find Ker TA; that is,
we would like to describe the set

Ker TA =
{
x⃗ ∈ R4 : TA(x⃗) = 0⃗

}
=
{
x⃗ ∈ R4 : Ax⃗ = 0⃗

}
.

Solving Ax⃗ = 0⃗ means solving

[
1 2 3 0

0 1 −2 4

]
x1

x2

x3

x4

 =

[
0

0

]
, where x⃗ =


x1

x2

x3

x4

 .



REVISITING IMAGE AND KERNEL 195

After doing the matrix-vector multiplication, this becomes

x1

[
1

0

]
+ x2

[
2

1

]
+ x3

[
3

−2

]
+ x4

[
0

4

]
=

[
0

0

]
,

or [
x1 + 2x2 + 3x3

x2 − 2x3 + 4x4

]
=

[
0

0

]
.

Now we just have a system of two equation in four variables:

x1 + 2x2 + 3x3 = 0

x2 − 2x3 + 4x4 = 0.

Solving for x2 in the second component, and substituting it into the first
equation, we have

x1 = −7x3 + 8x4

x2 = 2x3 − 4x4.

These are the conditions on the vector x⃗ that must be satisfied in order for
Ax⃗ = 0⃗. Thus

Ker TA =




x1

x2

x3

x4

 ∈ R4 : x1 = −7x3 + 8x4 and x2 = 2x3 − 4x4

 .

However, this is not very satisfying. We can, in fact, clean this up quite a
bit. Note that


x1

x2

x3

x4

 ∈ R4 : x1 = −7x3 + 8x4 and x2 = 2x3 − 4x4


=



−7x3 + 8x4

2x3 − 4x4

x3

x4

 ∈ R4 : x3, x4 ∈ R


=

x3


−7
2

1

0

+ x4


8

−4
0

1

 : x3, x4 ∈ R

 .

It follows that

Ker TA = Span



−7
2

1

0

 ,


8

−4
0

1


 .

It turns out we really only needed the matrix A to tell us what TA does to a vec-
tor in R4. Since TA is completely determined by the matrix A, the following
definition makes sense.

Definition 3.4.4 Suppose A ∈ Mm×n and TA : Rn → Rm is the linear
transformation induced by A. We then define the kernel of the matrix A,



REVISITING IMAGE AND KERNEL 196

denoted Ker A, to be Ker TA. That is,

Ker A = {x⃗ ∈ Rn : Ax⃗ = 0⃗} = Ker TA.

Sometimes Ker A is called the nullspace of the matrix A.

Example 3.4.6 Define A =

[
−1 0 4

0 −1 2

]
. Then we can find Ker A by

solving for all vectors

x⃗ =

 x1

x2

x3


such that Ax⃗ = 0⃗. That is,[

−1 0 4

0 −1 2

] x1

x2

x3

 =

[
0

0

]
.

This gives us the equations

−x1 + 4x3 = 0

−x2 + 2x3 = 0

which simplify to x1 = 4x3 and x2 = 2x3. So

Ker A =


 4x3

2x3

x3

 : x3 ∈ R

 = Span


 4

2

1

 .

Exploration 87 Define A =

[
1 0 1

0 1 1

]
. Find Ker A.

Now that we’ve seen that we can extend our definition of the kernel of a linear
transformation to a matrix, let’s look at an example of the image of a linear
transformation defined by a matrix. Let’s start with a familiar example.

Example 3.4.7 Let

A =

[
1 2 3 0

0 1 −2 4

]
,

and define TA : R4 → R2 by TA(x⃗) = Ax⃗. This time, we will find
Imag TA. Let

x⃗ =


x1

x2

x3

x4

 .



REVISITING IMAGE AND KERNEL 197

We can use this general vector to see what a general element of Imag TA

must look like. That is,

TA(x⃗) = Ax⃗ =

[
1 2 3 0

0 1 −2 4

]
x1

x2

x3

x4


= x1

[
1

0

]
+ x2

[
2

1

]
+ x3

[
3

−2

]
+ x4

[
0

4

]
.

From this equation, we conclude

Imag TA = Span

{[
1

0

]
,

[
2

1

]
,

[
3

−2

]
,

[
0

4

]}
.

Since this is definitely a spanning set for R2, we can say Imag TA = R2.
Now, how does this relate to the matrix A? Well, it’s the span of the column
vectors of A! This is true in general.

Definition 3.4.5 Let A = [⃗a1 · · · a⃗n] ∈ Mm×n. The column space of A,
denoted Col A, is the span of the column vectors a⃗j for 1 ≤ j ≤ n. That is,

Col A = Span {a⃗1, . . . , a⃗n} .

Exploration 88 Find Col A where

A =

[
0 0 1

0 1 −1

]
.

Theorem 3.4.2 Let A ∈ Mm×n and suppose TA : Rn → Rm is the linear
transformation induced by A. Then Imag TA = Col A.

PROOF. Let x⃗ ∈ Rn and suppose A = [⃗a1 · · · a⃗n] where aj ∈ Rm for all
1 ≤ j ≤ n. We know

x⃗ =


x1

x2

...
xn


for some xi ∈ R for each 1 ≤ i ≤ n. Thus,

TA(x⃗) = Ax⃗ = [⃗a1 · · · a⃗n]


x1

x2

...
xn

 = x1a⃗1 + x2a⃗2 + · · ·+ xna⃗n.

From this equation, we see that a vector y⃗ ∈ Rm is in Imag TA if and only if
y⃗ ∈ Col A, and the sets are equal. □



SECTION HIGHLIGHTS 198

One-to-one and Onto for TA

Recall that we say a linear transformation is onto if its codomain and image
are equal. Thus, we have the following corollary.

Corollary 3.4.3 Let A ∈ Mm×n and suppose TA : Rn → Rm is the linear
transformation induced by A. Then TA is onto if and only if the columns of
A span Rm.

Now that we’ve brought up the concept of TA being onto, what about deter-
mining when it’s one-to-one?

Theorem 3.4.4 Let A ∈ Mm×n and suppose TA : Rn → Rm is the lin-
ear transformation induced by A. Then TA is one-to-one if and only if the
columns of A are linearly independent.

PROOF. The columns of A are linearly dependent if and only if there are
scalars (not all 0) c1, . . . , cn such that c1a⃗1 + · · · cna⃗n = 0⃗. This is true if
and only if

Ac⃗ = [⃗a1 · · · a⃗n]

 c1
...
cn

 = 0⃗.

Then we have a nonzero vector c⃗ ∈ Ker A. By Theorem 3.3.1, this is true if
and only if TA is not one-to-one. □

Example 3.4.8 Define the linear transformation T : R2 → R3 by T (x⃗) =

Ax⃗, and

A =

 0 0

1 0

0 1/2

 .

Since the columns of A fail to span R3, we have from Corollary 3.6.3 that
Imag T has dimension two. Since R3 has dimension three, it is not possible
that Imag T = R3, so by Theorem 3.1.1, T is not onto.
However, since we can see the two column vectors are linearly independent,
we know that T is one-to-one.

Exploration 89 Define the linear transformation T : R3 → R3 by T (x⃗) = Ax⃗,
where

A =

 1 1 0

1 1 1

1 1 1

 .

Is this linear transformation onto? Is it one-to-one?

Section Highlights

▶ A matrix is a rectangular array of numbers. See Definition 3.4.1.



SECTION HIGHLIGHTS 199

▶ A matrix, A, with m rows and n columns, induces a linear transfor-
mation, TA : Rn → Rm. See Theorem 3.4.1 and Definition 3.4.3.

▶ The span of the column vectors in a matrix A is called the column
space of A and denoted Col A, and Imag TA = Col A. See Defini-
tion 3.6.1 and Theorem 3.4.2.

▶ The kernel of matrix A, denoted Ker A, is defined as Ker TA. See
Definition 3.4.4.

▶ The linear transformation TA is one-to-one if and only if the columns
of the matrix A are linearly independent. See Theorem 3.6.2.

▶ The linear transformation TA is onto if and only if the columns of A
span the codomain. See Corollary 3.6.3.



EXERCISES FOR SECTION 3.4 200

Exercises for Section 3.4

3.4.1.Let x⃗ ∈ R3, y⃗ ∈ R4, z⃗ ∈ R5, and A ∈Mm×n. What must m and n be. . .

(a) . . . so that Ax⃗ = y⃗?

(b) . . . so that Ax⃗ = z⃗?

(c) . . . so that Az⃗ = y⃗?

3.4.2.Consider the vectors below:

x⃗ =

[
1

2

]
y⃗ =

 1

1

−3

 u⃗ =


1

−1
0

2

 v⃗ =


1

−2
2

3

1


For each matrix A below, exactly one of Ax⃗, Ay⃗, Au⃗, and Av⃗ can be computed. Compute the one that is
defined.

(a) A =

[
1 3

−2 5

]

(b) A =


1 −2
1 5

−2 3

1 1


(c) A =

[
1 3 2

−2 5 3

]

(d) A =

 1 0 2

−2 2 3

−2 0 3


(e) A =

[
1 3 2 1

−2 5 0 2

]

(f) A =

 1 3 2 3 1

−2 1 3 2 0

−1 1 2 0 0



3.4.3.Let TA : R4 → R2 be the linear transformation induced by A where

A =

[
1 1 −2 3

1 −1 4 −6

]
.

Find Ker A.

3.4.4.Let

A =

[
2 −2 3

0 1 −1

]
, B =

 1 −2
0 1

3 −5

 ,

v⃗ =

[
3

−2

]
, and u⃗ =

 1

0

−1

 .

(a) Compute Au⃗ and Bv⃗.



EXERCISES FOR SECTION 3.4 201

(b) Let TA : R3 → R2 be the linear transformation induced by A. Note that means TA(x⃗) = Ax⃗ for
any x⃗ ∈ R3.

(i) Find Imag TA = Col A.

(ii) Find Ker TA = Ker A.

(iii) Is TA one-to-one?

(iv) Is TA onto?

(c) Define TB : R2 → R3 to be the linear transformation induced by B.

(i) Find Imag TB = Col B.

(ii) Find Ker TB = Ker B.

(iii) Is TB one-to-one?

(iv) Is TB onto?

3.4.5.Let

A =


2 −1 0

0 1 −1
1 1 1

−1 −1 −1

 , B =

[
1 −2
−2 4

]
,

v⃗ =

[
3

−2

]
, and u⃗ =

 1

0

−1

 .

(a) Compute Au⃗ and Bv⃗.

(b) Let TA : R3 → R4 be the linear transformation induced by A. Note that means TA(x⃗) = Ax⃗ for
any x⃗ ∈ R3.

(i) Find Imag TA = Col A.

(ii) Find Ker TA = Ker A.

(iii) Is TA one-to-one?

(iv) Is TA onto?

(c) Define TB : R2 → R2 to be the linear transformation induced by B.

(i) Find Imag TB = Col B.

(ii) Find Ker TB = Ker B.

(iii) Is TB one-to-one?

(iv) Is TB onto?



EXERCISES FOR SECTION 3.4 202

3.4.6.For each matrix A below, do the following in order:

(a) Find the the domain and codomain of TA.

(b) Find a basis for Ker A and compute dimKer A.

(c) Use the Rank-Nullity Theorem to compute dimCol A.

(d) Find a basis for Col A.

(e) Determine whether TA is one-to-one, onto, both, or neither.

(f) Based on your previous answers, are the columns of A linearly independent?

(a) A =

[
1 3

0 5

]

(b) A =

[
1 2

−1 −2

]

(c) A =


1 1

0 1

0 3

0 1



(d) A =

 1 1 1

0 1 1

0 3 1


(e) A =

[
1 0 2

0 5 3

]

(f) A =

 1 0 2

−2 0 −4
0 0 3



(g) A =

[
1 3 0 1

0 5 0 2

]

(h) A =


1 3 4 1

0 5 0 2

0 1 0 1

0 2 0 1



(i) A =

 1 3 2 3 1

−2 0 3 2 0

−1 1 2 0 0



3.4.7.Suppose we have the matrix

A =

 a 1 0

1 1 1

1 1 1

 .

For what values of a is the induced linear transformation TA an onto linear transformation? Why?

3.4.8.Determine by inspection of the columns whether these matrices correspond to transformations that are one-
to-one. Explain your reasoning.

(a)

 2 1

1 2

1 1



(b)

 2 0 0 1 1

0 0 0 1 −1
1 0 1 1 0



(c)

 2 1 0

0 2 0

1 0 1



(d)


2 1 0

0 2 0

1 0 1

0 0 0





EXERCISES FOR SECTION 3.4 203

3.4.9.Determine by inspection whether these matrices correspond to transformations that are onto. Explain your
reasoning.

(a)

 2 1

1 2

1 1



(b)

 2 0 0 1 1

0 0 0 1 −1
1 0 1 1 0



(c)

 2 1 0

0 2 0

1 0 1



(d)


2 1 0

0 2 0

1 0 1

0 0 0



3.4.10.Suppose B ∈ Mn×n with induced linear transformation TB : Rn → Rn. Let x⃗1, x⃗2 ∈ Rn be such that
{x⃗1, x⃗2} is a linearly independent set. If Bx⃗1 = Bx⃗2 = 0⃗, what is the largest and smallest dimKer TB and
dim Imag TB can be? Explain your reasoning.

3.4.11.Let T : R3 → R3 be defined by T (x⃗) = Ax⃗ where

A =

 −1 0 0

0 2 0

0 0 1
2

 .

For any vector x⃗ ∈ R3, describe its image T (x⃗) geometrically.



MATRIX REPRESENTATION WITH THE STANDARD BASIS OF RN 204

3.5 The Matrix of a Linear Transformation

In the last section, we learned about matrices and how a matrix can be used to
define a linear transformation. But can we go the other way? If we start with
a linear transformation, is there a matrix that can be associated to it? Yes!33 33:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yes?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

YES! There are actually infinitely
many.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

That’s too many. You can keep al-
most all of them.

Matrix Representation with the Standard Basis of Rn

Let’s start with an example.

Example 3.5.1 Let T : R2 → R3 be a linear transformation such that for
the standard basis vectors e⃗1, e⃗2 ∈ R2, we have

T (e⃗1) =

 5

−7
2

 and T (e⃗2) =

 −38
0

 .

Note that for any vector x⃗ ∈ R2, we have

x⃗ =

[
x1

x2

]
=

[
x1

0

]
+

[
0

x2

]
= x1

[
1

0

]
+x2

[
0

1

]
= x1e⃗1 +x2e⃗2.

Then using the definition of linear transformation,

T (x⃗) = T (x1e⃗1 + x2e⃗2)

= x1T (e⃗1) + x2T (e⃗2) = x1

 5

−7
2

+ x2

 −38
0

 .

Then using the definition of the product of a matrix and a vector,

T (x⃗) = x1

 5

−7
2

+ x2

 −38
0

 =

 5 −3
−7 8

2 0

[ x1

x2

]
.

Thus, T (x⃗) = Ax⃗, where

A =

 5 −3
−7 8

2 0

 .

This strategy works in general!

Theorem 3.5.1 Let T : Rn → Rm be a linear transformation. Using the
standard basis {e⃗1, . . . , e⃗n} for Rn, define

A = [T (e⃗1) · · ·T (e⃗n)] .

Then A is the unique matrix inMm×n such that T = TA. That is, T (x⃗) =
Ax⃗ for any x⃗ ∈ Rn.

Because of its connection to the standard bases for Rn and Rm, this matrix is
sometimes referred to as the standard matrix for the linear transformation T .
If you look carefully at the steps in Example 3.6.2, you will see how to prove
this result. Let’s walk through that together.



MATRIX REPRESENTATION WITH THE STANDARD BASIS OF RN 205

Exploration 90 PROOF. Let x⃗ ∈ Rn. We would normally write x⃗ as a column
vector, but let’s write it as

x⃗ = x1e⃗1 + · · ·+ xne⃗n

instead. Note that this is the unique way to represent x⃗ in terms of the standard
basis by Theorem 2.3.1. Using x⃗ in this fashion and the linearity of T , find a
way to write T (x⃗) as Ax⃗ for some matrix A.

Our theorem states that this matrix A is unique. How does this follows from
the uniqueness result of Theorem 2.3.1?

□

Let’s see an example of this theorem in action.

Example 3.5.2 Let T : R3 → R4 by

T

 x1

x2

x3

 =


x1 − x2

0

x3

0

 .

Using Theorem 3.5.1, we can build A by finding the image by T of each
standard basis vector for R3; these will be the columns of A. Specifically,
we have T (x⃗) = Ax⃗, where

A = [T (e⃗1) T (e⃗2) T (e⃗3)] =


1 −1 0

0 0 0

0 0 1

0 0 0

 .

Note that we weren’t told at the start that this was a linear transformation.
However, if we verify that T (x⃗) = Ax⃗ for any x⃗ ∈ R3, we’ll know T is a
linear transformation from Theorem 3.4.1.

Ax⃗ =


1 −1 0

0 0 0

0 0 1

0 0 0


 x1

x2

x3

 = x1


1

0

0

0

+ x2


−1
0

0

0

+ x3


0

0

1

0



=


x1 − x2

0

x3

0

 = T (x⃗)

This tells us T is a linear transformation!

Example 3.5.3 First, let us take the frequent geometric convention to la-
bel the three coordinate directions in R3 as x, y, and z, respectively. Let
T : R3 → R3 be defined as the linear transformation rotating all vectors



GENERAL VERSION OF A MATRIX REPRESENTATION 206

π/4 radians around the z-axis and increasing by a factor of 2 in the z direc-
tion. Let’s also assume this rotation is counterclockwise in the plane

34:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This is the usual xy plane in
R3.

34
 x

y

0

 : x, y ∈ R

 .

Let’s use the standard basis {e⃗1, e⃗2, e⃗3} for the domain and codomain. Note
that

T (e⃗1) =


√
2√
2

0

 , T (e⃗2) =

 −
√
2√
2

0

 , T (e⃗3) =

 0

0

2

 .

By Theorem 3.5.1, we have

A = [T (e⃗1) T (e⃗2) T (e⃗3)] =


√
2 −

√
2 0√

2
√
2 0

0 0 2



Exploration 91 Find a linear transformation T : R4 → R4 that interchanges
the x1 axis with the x3 axis, maps the x2 axis to 0⃗, and does nothing to the x4

axis. Then find a matrix representation for T using the standard basis for R4

in the domain and the codomain.

General Version of a Matrix Representation

Using coordinate vectors, Theorem 3.5.1 generalizes nicely for arbitrary finite
dimensional vector spaces.

Theorem 3.5.2 Let V and W be vector spaces and T : V →W be a linear
transformation. For each pair of fixed bases, BV for V and BW for W ,
there exists a unique matrix A such that for all vectors v⃗ ∈ V ,

[T (v⃗)]BW
= A [v⃗]BV

.

Moreover, if BV = {v⃗1, . . . , v⃗n}, then

A =
[
[T (v⃗1)]BW

· · · [T (v⃗n)]BW

]
.

For any linear transformation T : V →W , we call the matrix A obtained from
Theorem 3.5.2 the matrix representation of T relative to the bases BV and
BW . Note that a different choice of basis for either V or W would result in
a different matrix representation. Before we delve deep into the proof of the
theorem, let’s see it in action with an example.

Example 3.5.4 Let T : P3 → P3 be defined by

T (a+ bx+ cx2 + dx3) = (a− b) + (c− d)x2.



GENERAL VERSION OF A MATRIX REPRESENTATION 207

The advantage to Theorem 3.5.2 over Theorem 3.5.1 is that with the more
general theorem, we can build a matrix representation for a linear trans-
formation between any vector spaces, even if their vectors aren’t column
vectors in Rn for some positive integer n. This is done, of course, by way
of coordinate vectors, so the matrix representation, A, will depend on our
choice of bases. Let’s use B = {1, x, x2, x3} as a basis for P3 in both the
domain and codomain. Recall that a general vector p⃗ = a+ bx+ cx2+dx3

has coordinate vector

[v⃗]B =


a

b

c

d

 ,

so, for example,

[
T (x− x3)

]
B =

[
−1 + x2

]
B =


−1
0

1

0

 .

To use Theorem 3.5.2, we need to find the coordinate of the image by T of
each basis vector in B. That is,

A =
[
[T (1)]B [T (x)]B

[
T (x2)

]
B

[
T (x3)

]
B

]
=

[
[1]B [−1]B

[
x2
]
B

[
−x2

]
B

]
=


1 −1 0 0

0 0 0 0

0 0 1 −1
0 0 0 0

 .

Great! We just built a matrix A that is a matrix representation for T . Let’s
think a bit about what all this was on the level of functions. We started with
T : P3 → P3. We know that P3

∼= R4 because the coordinate mapping
φB : P3 → R4 is an isomorphism. You probably noticed that A ∈ M4×4,
so we can define a linear transformation TA : R4 → R4 by TA(x⃗) = Ax⃗.
This gives us the following commuting diagram of linear transformations:

P3

φB

��

T // P3

φB

��
R4 TA // R4

The way you should think about this diagram is that the coordinate isomor-
phisms represented by the vertical arrows allow us to translate between T

and TA. Then, we can examine all the stuff with T and P3 or we can use
the matrix representation TA and R4. We’ll talk a bit more about diagrams
like this below.

We should be ready now to talk about the proof of Theorem 3.5.2, so let’s get
started.

PROOF. Let’s suppose V and W are vector spaces with dimV = n and
dimW = m, and fix some basesBV = {v⃗1, . . . , v⃗n} andBW = {w⃗1, . . . , w⃗m}
for V and W , respectively. We know from Theorem 3.3.4 that the coordinate
mapping gives an isomorphism between V and Rn and between W and Rm.



GENERAL VERSION OF A MATRIX REPRESENTATION 208

This statement actually involves four different linear transformations, and they
are all relevant here. Specifically, we have

▶ φBV
: V → Rn defined by φBV

(v⃗) = [v⃗]BV
for any v⃗ ∈ V

▶ φ−1
BV

: Rn → V defined by φ−1
BV


 x1

...
xn


 = x1v⃗1 + · · ·+ xnv⃗n

▶ φBW
: W → Rm defined by φBW

(w⃗) = [w⃗]BW
for any w⃗ ∈W

▶ φ−1
BW

: Rm → W defined by φ−1
BW


 x1

...
xm


 = x1w⃗1 + · · · +

xmw⃗m.

Suppose now that we have a linear transformation T : V → W . We know
from Theorem 3.2.3 that we can compose linear transformations to form new
linear transformations. Consider then the composition

φBW
◦ T ◦ φ−1

BV
: Rn → Rm.

Let’s call this new linear transformation T̂ . Here’s a useful commuting dia-
gram for this situation.

(3.3) Rn V W Rm.

T̂

φ−1
BV T φBW

This T̂ is a linear transformation which has input of coordinate vectors for BV
and whose output is in coordinate vectors for BW . Also, it is determined by
our linear transformation T ! Now, let’s compute the matrix A from Theorem
3.5.1 for T̂ .

A =
[
T̂ (e⃗1) · · · T̂ (e⃗n)

]
=
[
φBW

◦ T ◦ φ−1
BV

(e⃗1) · · · φBW
◦ T ◦ φ−1

BV
(e⃗n)

]
= [φBW

◦ T (v⃗1) · · · φBW
◦ T (v⃗n)]

= [[T (v⃗1)]BW
· · · [T (v⃗n)]BW

]

So by Theorem 3.5.1, we know T̂ = TA for this matrix A. Moreover, by
examining our functions we see that this says exactly that

[T (v⃗)]BW
= A [v⃗]BV

.

□

The commuting diagram in Figure 3.4 is a convenient way to organize all of the
sets and functions that came up in Theorem 3.5.1 and its proof. As long as we
follow the maps in the direction they point, composing functions as we go, all
that matters are the starting and ending points. As a bonus, remember that the
coordinate mappings are isomorphisms, so, while they are not pictured, there
are inverses for each of the coordinate mappings with arrows that point in the



KERNEL AND IMAGE OF T FROM A 209

opposite direction. Since these vertical arrows represent isomorphisms, we can
think of T and TA as “equivalent.” They aren’t completely the same since they
map between different spaces, but they will share all the linear transformation
properties. 35 35: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This is the same thing that iso-
morphisms do for vector spaces!

TA

W = codom (T )

T

Rn Rm

V = dom (T )

φBV
φBW

Col A

Ker A

(Ker A)⊥

(Col A)⊥

(Ker T )⊥

Ker T (Imag T )⊥

Imag T

FIGURE 3.4. The linear transformation T : V →W gener-
ates four subspaces: Ker T and (Ker T )⊥ in the domain V

and Imag T and (Imag T )⊥ in the codomain W . The ma-
trix transformation TA given by the matrix representation A

of T also generates subspaces.

Figure 3.4 also strongly suggests that there is a natural decomposition of the
domain and codomain of TA that is analogous to the decompositions for T .
This should not be terribly surprising, but we’ll put off a formal statement and
proof of that fact until the next chapter.

Kernel and Image of T from A

We have said that the advantage of this matrix representation is that we can
work with the matrix rather than the original linear transformation. In Sec-
tion 3.4, we saw this with Ker A and Ker TA. Now we can define the rela-
tionship more generally between Ker T and Ker A, where A is any matrix
representation for T . Like we said before, it’s not quite true that these are
equal. What is true is that these are isomorphic via the coordinate mapping,
which is admittedly pretty close to being equal. Let’s state this formally and
prove it.

Theorem 3.5.3 Let V and W be vector spaces with bases BV and BW ,
respectively. Let T : V → W be a linear transformation whose matrix
representation relative to BV and BW is A ∈Mm×n. Then

Ker T = {x⃗ ∈ V : A [x⃗]BV
= 0⃗}.



MORE EXAMPLES! 210

That is, x⃗ ∈ Ker T if and only if φBV
(x⃗) ∈ Ker A, and Ker T ∼= Ker A

via the coordinate mapping.

PROOF. Suppose x⃗ ∈ Ker T , so T (x⃗) = 0⃗. Since T = φ−1
BW
◦ TA ◦ φBV

, we
know T (x⃗) = 0⃗ if and only if(

φ−1
BW
◦ TA ◦ φBV

)
(x⃗) = 0⃗ if and only if

(TA ◦ φBV
) (x⃗) = φBW

(⃗0) if and only if

TA [x⃗]BV
= 0⃗.

Thus, x⃗ ∈ Ker T if and only if [x⃗]BV
∈ Ker TA = Ker A. □

We can do something similar with Imag T and Col A. These are also isomor-
phic by the coordinate mapping.

Theorem 3.5.4 Let V and W be vector spaces with bases BV and BW ,
respectively. Let T : V → W be a linear transformation whose matrix
representation with respect to BV and BW is A ∈Mm×n. Then

Imag T = {w⃗ ∈W : [w⃗]BW
∈ Col A}.

That is, w⃗ ∈ Imag T if and only if φBW
(w⃗) ∈ Col A, and Imag T ∼=

Col A via the coordinate mapping.

The proof of Theorem 3.6.1 is similar to the proof of Theorem 3.6.10.36 36:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Exercise!

Now that we know Ker T ∼= Ker A and Imag T ∼= Col A whenever A is a
matrix representation for the matrix T , we actually can tell quite a lot about T
from any matrix representation, A. For instance, if we know either dimKer T

or dim Imag T , we can say whether T is one-to-one or onto. Now, we can
conclude these from properties of the matrix A!

Theorem 3.5.5 Let V and W be vector spaces. Let T : V →W be a linear
transformation with matrix representation A ∈ Mm×n. Then we know the
following:

(a) T is one-to-one if and only if the columns of A are linearly inde-
pendent.

(b) T is onto if and only if the columns of A span Rm.
(c) T is an isomorphism if and only if the columns of A form a basis

for Rm.

This doesn’t really need a proof. For the first two statements, we’ve just
restated Corollary 3.6.3 and Theorem 3.6.2 in light of Theorems 3.6.10 and
3.6.1. Then the last statement is a combination of the first two with the defini-
tions of a basis and an isomorphism.

More Examples!

The big takeaway here is that anything you want to know about any linear
transformation on any finite dimensional vector spaces can be found using



MORE EXAMPLES! 211

matrices and column vectors. That’s actually quite amazing. We should look
into that more.

Example 3.5.5 Define T : P1 → P2 by taking the indefinite integral of
vectors in P1 and using zero for the constant of integration. That is, for
p⃗ = a+ bx, we have

T (p⃗) = T (a+ bx) = ax+
1

2
bx2 ∈ P2.

Since a and b are arbitrary real numbers, we see that Imag T is the set of
vectors in P2 with zero as a constant term.
Using the standard bases B1 = {1, x} and B2 = {1, x, x2} for P1 and P2

respectively, we have from Theorem 3.5.2 that [T (p⃗)]B2
= A [p⃗]B1

, where

A =
[
[T (1)]B2

[T (x)]B2

]
=

[
[x]B2

[
1

2
x2

]
B2

]
=

 0 0

1 0

0 1/2

 .

Then Col A is (by definition) the span of the vectors

a⃗1 =

 0

1

0

 and a⃗2 =

 0

0

1/2

 .

Since Imag T is the set of all vectors in P2 with zero as a constant term, we
have

{[p⃗]B2
∈ R3 : p⃗ ∈ Imag T} =

a

 0

1

0

+ b

 0

0

1

 : a, b ∈ R


= Span {e⃗2, e⃗3} = Span {a⃗1, a⃗2} ,

where e⃗i are the standard basis vectors in R3. This is precisely what we
were told by Theorem 3.6.1:

Col A = {[p⃗]B2
∈ R3 : p⃗ ∈ Imag T}.

Exploration 92 Let T : P2 → P1 be defined by T (a+bx+cx2) = (b−a)+ax

for any a+bx+cx2 ∈ P2. Find the matrix A that represents this transformation
relative to the bases {x2, x, 1} and {x, 1}.

What is Ker A? Use the coordinate mapping to translate your answer back to
vectors in P2 to find Ker T .



MORE EXAMPLES! 212

Example 3.5.6 Let HD = Span
{⃗
b1 = 1 + x, b⃗2 = x+ x2, b⃗3 = x3

}
, so

BD = {⃗b1, b⃗2, b⃗3} is a basis for HD. Similarly, let

HC = Span

v⃗1 =


1

2

0

0

 , v⃗2 =


0

1

1

0

 , v⃗3 =


0

0

1

1


 ,

so BC = {v⃗1, v⃗2, v⃗3} is a basis for HC . Let T : HD → HC be the linear
transformation such that T (⃗bi) = v⃗i for each i = 1, 2, 3.
We know HD

∼= R3 and HC
∼= R3, so we’d like very much to build a linear

transformation TA : R3 → R3 such that TA(x⃗) = A
[⃗
b
]
BD

=
[
T (⃗b)

]
BC

,

where A ∈M3×3. This is why we have Theorem 3.5.2:

A =

[[
T (⃗b1)

]
BC

[
T (⃗b2)

]
BC

[
T (⃗b3)

]
BC

]

=
[
[v1]BC

[v2]BC
[v3]BC

]
=

 1 0 0

0 1 0

0 0 1

 .

Wait, what? This actually checks out, but why is our matrix so simple this
time? We started with isomorphic vector spaces; note that HC

∼= HD. Then
our linear transformation was built on the basis of our choosing; this flexi-
bility to choose whatever basis you like can make your life much simpler.

In that previous example, we saw how nice our matrix can be given a careful
choice of the bases for the vector spaces. What if we start with a linear trans-
formation defined by a matrix, but we’d prefer a simpler-looking matrix. Well,
we could change the basis we are using. . .

Example 3.5.7 Let A =

 −1 −2 −1
−1 0 0

2 2 1

 and define T : R3 → R3 by

T (x⃗) = Ax⃗ for any x⃗ ∈ R3. Well, the form of A is not that bad, but let’s
see what it looks like if we were to replace the standard basis with the basis

B =

v⃗1 =

 1

1

−2

 , v⃗2 =

 −22
0

 , v⃗3 =

 0

1

−2

 .

Well, how do we do this? Actually, Theorem 3.5.2 tells us exactly what to
do. We are still using coordinate vectors, even though we didn’t actually
change vector spaces. So, we first need to find T (v⃗1), T (v⃗2), and T (v⃗3).

T (v⃗1) =

 −1 −2 −1
−1 0 0

2 2 1

 1

1

−2

 =

 −1−1
2



T (v⃗2) =

 −1 −2 −1
−1 0 0

2 2 1

 −22
0

 =

 −22
0





SECTION HIGHLIGHTS 213

T (v⃗3) =

 −1 −2 −1
−1 0 0

2 2 1

 0

1

−2

 =

 0

0

0


Now, we need to convert all of these to coordinate vectors relative to B.
Normally, to do this, we need to find coefficients a, b, c ∈ R such that av⃗1+
bv⃗2 + cv⃗3 = x⃗ where x⃗ is any vector in R3. However, we can do these
quickly by inspection. Note that T (v⃗1) = −v⃗1, T (v⃗2) = v⃗2, and T (v⃗3) =

0⃗. Thus, we have the matrix B for the linear transformation T relative to the
basis B.

B = [[T (v⃗1)]B [T (v⃗2)]B [T (v⃗3)]B ] =

 −1 0 0

0 1 0

0 0 0

 .

This new matrix B is also a matrix representation for T , and from this, we
can see quickly that T is neither one-to-one nor onto. We can also identify
that v⃗3 ∈ Ker T and that dim Imag T = 2. But where did this new basis
come from? You’ll have to wait a bit to find out, but we’ll get there.

Exploration 93 Let A =

 4 2 1

4 6 3

−8 −8 −4

 and define T : R3 → R3 by

T (x⃗) = Ax⃗ for any x⃗ ∈ R3. Just like in the example above, find a new matrix
B that represents T with respect to the basis

B =

v⃗1 =

 1

1

−2

 , v⃗2 =

 −22
0

 , v⃗3 =

 0

1

−2

 .

Section Highlights

▶ Every linear transformation on a finite dimensional vector space can
be represented by a matrix. The matrix representation depends on
the bases chosen for the domain and codomain. See Theorem 3.5.2

▶ If T : Rn → Rm is a linear transformation, then the matrix

A = [T (e⃗1) · · ·T (e⃗n)]

is called the standard matrix for T . This matrix is the matrix for
which T = TA. See Theorem 3.5.1.

▶ If T : V → V is a linear transformation and B = {v⃗1, . . . , v⃗n} is a
basis for the vector space V , then the matrix for T with respect to B
is given by

[[T (v⃗1)]B · · · [T (v⃗n)]B] .
See Theorem 3.5.2.



EXERCISES FOR SECTION 3.5 214

Exercises for Section 3.5

3.5.1.Using the standard bases for Rn and Pn, find a matrix A such that T (x⃗) = Ax⃗ for each of the following
linear transformations:

(a) T : R3 → R2 defined by

T

 x1

x2

x3

 =

[
x1 + 3x3

x2 + 4x3

]

(b) T : P2 → R4 defined by

T (a0 + a1x+ a2x
2) =


a0 + 3a2
a1 − a2

a2
a1


(c) T : R3 → R3 defined by

T

 x1

x2

x3

 =

 x1

x2

x3


(d) T : P2 → R4 defined by

T (a0 + a1x+ a2x
2) =


a1

a1 − a2
a2
a1



(e) T : R2 → R5 defined by

T

([
x1

x2

])
=


x1 + 3x2

0

x1

2x1 + x2

4x1 − 5x2


(f) T : P3 → R4 defined by

T (a0 + a1x+ a2x
2 + a3x

3) =


a1 + a3

a1 − a2 + 4a3
2a2 + a0

a1 + a2 + a3


(g) T : R4 → R2 defined by

T




x1

x2

x3

x4


 =

[
x1 + 3x2 + x4

4x1 − 5x2 + x3

]

(h) T : P3 → R2 defined by

T (a0+a1x+a2x
2+a3x

3) =

[
a0 − a1 + a3

3a1 − 2a2 + 4a3

]

3.5.2.Let T : P3 → P1 be defined by T (ax3 + bx2 + cx+ d) = (b− a)x+ (c− d).

(a) Using the standard bases for P3 and P1, find the matrix representation A of T .

(b) Find Ker A and Col A.

(c) Use your answers to part b) to find Ker T and Imag T .

3.5.3.Let T : P3 → P2 be defined by T (ax3 + bx2 + cx+ d) = (a− c)x2 + (b− d)x+ (c− a).

(a) Using the standard bases for P3 and P1, find the matrix representation A of T .

(b) Find Ker A and Col A.

(c) Use your answers to part b) to find Ker T and Imag T .



EXERCISES FOR SECTION 3.5 215

3.5.4.Consider the subspace

H =


 −2y − 3z

y

z

 : y, z ∈ R


of R3. (This is the plane determined by the equation x+ 2y + 3z = 0.)

(a) Find a basis for H .

(b) Define a linear transformation T : R2 → R3 that has Imag T = H .

(c) Find the matrix representation A for T with respect to the standard bases of R2 and R3.

3.5.5.Let T : R2 → R2 by

T

([
x1

x2

])
=

[
x1 + x2

2x1

]
.

(a) Using the standard basis for R2, find a matrix A such that T (x⃗) = Ax⃗.

(b) Using the basis B =

{[
1

1

]
,

[
0

1

]}
for R2, find a matrix B such that [T (x⃗)]B = B [x⃗]B. That

is, find the matrix representation of T relative to the basis B.

3.5.6.Suppose T : R3 → R2 is the linear transformation defined by

T

 1

1

0

 =

[
1

0

]
T

 1

−1
0

 =

[
3

1

]
T

 0

0

1

 =

[
−1
1

]

Find the matrix for T with respect to the standard bases of R2 and R3.

3.5.7.Suppose T : P2 → P2 is the linear transformation defined by

T (1 + x) = 1− x T (x) = 1− x+ x2 T (1 + x2) = 1.

Find the matrix for T with respect to the standard basis of P2.

3.5.8.Ricky has affixed a picture of Bubbles onto the square in R2 whose vertices are (0, 0), (1, 0), (1, 1), and
(0, 1). He decides this is much too small, and he prefers that Bubbles faces the other direction.

(a) Find the linear transformation T : R2 → R2 that makes the picture of Bubbles ten times bigger and
reflects the image across the vertical axis. In particular, determine T (e⃗1) and T (e⃗2).

(b) Find the matrix A that represents T with respect to the standard basis of R2.

3.5.9.Bubbles has now also affixed a picture of Ricky onto the square in R2 whose vertices are (0, 0), (1, 0), (1, 1),
and (0, 1). He would like to find a way to animate his picture by rotating around the origin.



EXERCISES FOR SECTION 3.5 216

(a) Find the linear transformation T : R2 → R2 that rotates the picture 45◦ counterclockwise, keeping
the bottom tip at (0, 0). In particular, determine T (e⃗1) and T (e⃗2).

(b) Find the matrix A that represents T with respect to the standard basis of R2.

(c) Let x⃗ = Ae⃗1. Find Ax⃗. (Repeatedly applying A would give the animation Bubbles was looking for.)

3.5.10.Fix an angle θ ∈ [0, 2π), and let T : R2 → R2 be the linear transformation that rotates vectors about the
origin by θ radians (counterclockwise). Find the matrix A that represents T with respect to the standard basis
of R2.

3.5.11.Suppose T : R3 → R3 is the linear transformation defined by

T

 x1

x2

x3

 =

 2x1 + 4x2

2x2 + x3

0

 .

For each basis Bi below, find the matrix representation for T with respect to Bi.

(a) B1 =


 1

1

1

 ,

 1

0

1

 ,

 0

−1
1


(b) B2 =


 1

1

1

 ,

 2

0

1

 ,

 1

−1
1


(c) B3 =


 1

2

1

 ,

 1

0

−1

 ,

 1

−1
1


Note that this basis is orthogonal. Use this to simplify the computations.

3.5.12.Suppose T : P2 → P2 is the linear transformation defined by

T
(
a0 + a1x+ a2x

2
)
= (a0 + a1) + 3a2x

2.

For each basis Bi below, find the matrix representation for T with respect to Bi.

(a) B1 =
{
1 + x, 1− x, x2

}
(b) B2 =

{
1, 1− x, x+ x2

}
(c) B3 =

{
1 + x, 1− x+ x2, x2

}
3.5.13.Prove Theorem 3.6.1.



KERNEL AND IMAGE OF A MATRIX 217

3.6 More Fun with Linear Transformations

Now that we have a fun and convenient way to represent our linear transfor-
mations with matrices, we should go back and think about all the things we’ve
learned about linear transformations. Some things become a bit easier in the
context of matrices, so we’re devoting this section to understanding what we
can learn about a linear transformation from its matrix representation.

Kernel and Image of a Matrix

Let V and W be vector spaces (with dimV = n and dimW = m), and let
T : V → W be a linear transformation. Fix bases BV and BW for V and
W respectively, and using Theorem 3.5.2, let A ∈ Mm×n be the matrix that
represents T with respect to these bases. To be clear,

A = [[T (v⃗1)]BW
. . . [T (v⃗n)]BW

] and T (v⃗) = A[v⃗]BV

where BV = {v⃗1, . . . , v⃗n}.

Recall from Example 3.5.4 that the matrix A determines a linear transforma-
tion TA : Rn → Rm defined by TA(v⃗) = Av⃗ for any v⃗ ∈ Rn. This trans-
formation differs from T since we are not assuming V is Rn, only that it is
isomorphic to Rn under the coordinate mapping. Using the isomorphisms we
get from the coordinate mappings φBV

and φBW
, we have the following com-

muting diagram:

V

φBV

��

T // W

φBW

��
Rn TA // Rm

With all of these maps in hand, consider

Ker A = {v⃗ ∈ Rn : Av⃗ = 0⃗}.

This is something we can compute from the matrix A. By the definition of TA,
this subspace of Rn is Ker TA. Its image under the inverse of the coordinate
mapping φBV

is then Ker T . Thus, the representation A can identify a set in
Rn that is isomorphic to Ker T in V , but it also actually identifies the exact
kernel of T in V when the subspace is tracked back through the coordinate
mapping. This is best illustrated by an example.

Example 3.6.1 Let T : P2 → R2 be defined by

T (p⃗) =

[
p(0)

0

]
.

We showed a similar function was linear in Example 3.2.5, and T here is
also a linear transformation. It is also not hard to check that Ker T is the
set of polynomials in P2 with 0 for the constant term. We want to show here
that using the basis B = {x2, x, 1} for V , we have

Ker T = {p⃗ ∈ P2 : T (p⃗) = 0⃗} = {p⃗ ∈ P2 : A [p⃗]B = 0⃗}.



KERNEL AND IMAGE OF A MATRIX 218

According to Theorem 3.5.2,

A = [T ([e⃗1]B) T ([e⃗2]B) T ([e⃗3]B)] =
[
T (x2) T (x) T (1)

]
=

[
0 0 1

0 0 0

]
.

For any polynomial p⃗ = ax2 + bx+ c ∈ P2, we have

[p⃗]B =

 a

b

c

 ,

so we must solve the equation

(3.4) A [p⃗]B = 0⃗, or
[

0 0 1

0 0 0

] a

b

c

 =

[
0

0

]
.

From computing the matrix multiplication, we have[
c

0

]
=

[
0

0

]
.

Thus, c = 0 while a and b are free to be any real number; that is, the solution
to Equation 3.4 is 

 a

b

c

 ∈ R3 : c = 0

 .

This set of coordinate vectors corresponds to the set of vectors in Ker T ⊂
P2.

While we can use different bases to get different matrix representations for T ,
they all identify the same set of vectors in V that T maps to 0⃗. Because of this,
we choose not to feel guilty about the following slightly abusive notation:

Ker T = Ker A.

Indeed, for future reference, Ker A will refer to the kernel of the linear trans-
formation T which A represents.

Exploration 94 Let T : R3 → R2 be defined by T (x⃗) = Ax⃗ for any x⃗ ∈ R3

where

A =

[
0 0 1

0 1 −1

]
.

Find Ker T by finding all vectors x⃗ such that

Ax⃗ =

[
0 0 1

0 1 −1

] x1

x2

x3

 =

[
0

0

]
.

Exploration 95 Let T : P2 → P1 be defined by T (a+bx+cx2) = (b−a)+ax

for any a+bx+cx2 ∈ P2. Find the matrix A that represents this transformation



KERNEL AND IMAGE OF A MATRIX 219

relative to the bases {x2, x, 1} and {x, 1}.

You should have gotten an A that looks very familiar. What is Ker A? How
does this translate into finding Ker T ?

Definition 3.6.1 Let A = [⃗a1 · · · a⃗n] ∈ Mm×n. The column space of A,
denoted Col A, is the span of the column vectors a⃗j for 1 ≤ j ≤ n. That is,

Col A = Span {a⃗1, . . . , a⃗n} .

Exploration 96 Find Col A where

A =

[
0 0 1

0 1 −1

]
.

Theorem 3.6.1 Let V and W be vector spaces with bases BV =

{v⃗1, . . . , v⃗n} and BW = {w⃗1, . . . , w⃗m}, respectively. Let T : V → W

be a linear transformation with matrix representation A ∈Mm×n. Then

Col A = {[w⃗]BW
∈ Rm : w⃗ ∈ Imag T}.

Simply put, this theorem says that Col A is Imag T as coordinate vectors
relative to BW . This will provide us with an easy way to describe Imag T .
The proof of this theorem is similar to that of Theorem 3.6.10 at the end of
this section, so we do not include it here.

Again, because of this, we choose not to feel guilty about this other slightly
abusive notation:

Imag T = Col A.

For future reference, Col A can be thought of as the image of the linear trans-
formation T which A represents.

Example 3.6.2 Define T : P1 → P2 by taking the indefinite integral of
vectors in P1 and using zero for the constant of integration. That is, for
p⃗ = a+ bx, we have

T (p⃗) = T (a+ bx) = ax+
1

2
bx2 ∈ P2.

Since a and b are arbitrary real numbers, we see that Imag T is the set of
vectors in P2 with zero as a constant term.



KERNEL AND IMAGE OF A MATRIX 220

Using the standard bases B1 = {1, x} and B2 = {1, x, x2} for P1 and P2

respectively, we have from Theorem 3.5.2 that [T (p⃗)]B2
= A [p⃗]B1

, where

A =
[
[T (1)]B2

[T (x)]B2

]
=

[
[x]B2

[
1

2
x2

]
B2

]
=

 0 0

1 0

0 1/2

 .

Then Col A is (by definition) the span of the vectors

a⃗1 =

 0

1

0

 and a⃗2 =

 0

0

1/2

 .

Since Imag T is the set of all vectors in P2 with zero as a constant term, we
have

{[p⃗]B2
∈ R3 : p⃗ ∈ Imag T} =

a

 0

1

0

+ b

 0

0

1

 : a, b ∈ R


= Span {e⃗2, e⃗3} = Span {a⃗1, a⃗2} ,

where e⃗i are the standard basis vectors in R3. This is precisely what we
were told by Theorem 3.6.1:

Col A = {[p⃗]B2
∈ R3 : p⃗ ∈ Imag T}.

We get some very useful results for A immediately. We’ll state them for linear
transformations from Rn to Rm for simplicity of notation, but be aware that
these results hold for general vector spaces as well.

Theorem 3.6.2 Let A be the matrix such that the linear transformation
T : Rn → Rm is given by T (x⃗) = Ax⃗. Then T is one-to-one if and only if
the columns of A are linearly independent.

PROOF. The columns of A are linearly dependent if and only if there are
scalars (not all 0) c1, . . . , cn such that c1a⃗1 + · · · cna⃗n = 0⃗. This is true if
and only if

Ac⃗ = [⃗a1 · · · a⃗n]

 c1
...
cn

 = 0⃗.

Then we have a nonzero vector c⃗ ∈ Ker A. By Theorem 3.3.1, this is true if
and only if T is not one-to-one. □

Example 3.6.3 As we saw in Example 3.6.2, the linear transformation
T : P1 → P2 given by taking the indefinite integral of vectors in P1 and
using zero for the constant of integration has matrix representation (with
respect to the standard basis)

A =

 0 0

1 0

0 1/2

 .

Since the columns of A are linearly independent, we have from Theorem
3.6.2 that T is one-to-one.



KERNEL AND IMAGE OF A MATRIX 221

Theorem 3.6.3 Let A be the matrix such that the linear transformation
T : Rn → Rm is given by T (x⃗) = Ax⃗. The linearly independent columns
of A form a basis for Imag T .

PROOF. Let x⃗ ∈ Rn, so T (x⃗) is an arbitrary vector in Imag T . Since

T (x⃗) = Ax⃗ = x1a⃗1 + · · ·xna⃗n,

it follows that x⃗ ∈ Span {a⃗1, . . . , a⃗n}, so Imag T ⊆ Span {a⃗1, . . . , a⃗n}.
Now pick y⃗ ∈ Span {a⃗1, . . . , a⃗n}, so y⃗ = c1a⃗1 + · · ·+ cna⃗n for some scalars
c1, . . . , cn. It follows that

y⃗ = [⃗a1 · · · a⃗n]

 c1
...
cn

 = Ac⃗,

so y⃗ ∈ Imag T . Thus, Span {a⃗1, . . . , a⃗n} ⊆ Imag T , so Span {a⃗1, . . . , a⃗n} =
Imag T . The result then follows from Theorem 2.1.2, the fact that a subset of
a spanning set is a basis. □

Corollary 3.6.4 Let A be the matrix such that the linear transformation
T : Rn → Rm is given by T (x⃗) = Ax⃗. Then T is onto if and only if the
columns of A span Rm.

Example 3.6.4 Define the linear transformation T : R2 → R3 by T (x⃗) =

Ax⃗, and

A =

 0 0

1 0

0 1/2

 .

Since the columns of A fail to span R3, we have from Theorem 3.6.3 that
Imag T has dimension two. Since R3 has dimension three, it is not possible
that Imag T = R3, so by Theorem 3.1.1, T is not onto.

Exploration 97 Define the linear transformation T : R3 → R3 by T (x⃗) = Ax⃗,
and

A =

 1 1 0

1 1 1

1 1 1

 .

Is this linear transformation onto?

Exploration 98 Suppose V and W are vector spaces with the property that
dimW > dimV . Let T : V → W be a linear transformation. Use Theorem
3.6.3 and an argument similar to the one in the example above to explain why
T is not onto.



SUBSPACES INDUCED BY MATRIX REPRESENTATIONS 222

Subspaces Induced by Matrix Representations

Not only do matrices allow us to discover more about our favorite subspaces
generated by linear transformations, they naturally generate some new sub-
spaces we’ve not yet discussed. Before we get to those, though, there’s another
tool we’ll need.

Definition 3.6.2 Let A ∈ Mm×n. The transpose of A, denoted AT , is the
matrix in Mn×m derived from A by making the jth column of A into the
jth row for each 1 ≤ j ≤ n.

Example 3.6.5 Let

A =

 1 4

2 5

3 6

 and B =

 1 2 3

0 4 5

0 0 6

 .

Then

AT =

[
1 2 3

4 5 6

]
and BT =

 1 0 0

2 4 0

3 5 6

 .

Theorem 3.6.5 Let A,B ∈Mm×n and α ∈ R. Then
▶ (A+B)T = AT +BT ,
▶ (αA)T = αAT , and
▶ (AT )T = A.

PROOF. These are obvious.37 □ 37:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Prove it!

Corollary 3.6.6 Let TT :Mm×n →Mn×m be the function that relates any
matrix A ∈Mm×n to AT ∈Mn×m. Then TT is a linear transformation.

Exploration 99 Let TT :Mm×n →Mn×m be the linear transformation that
relates any matrix A ∈Mm×n to AT ∈Mn×m. Find a matrix representation
for TT when m = 3 and n = 2 using the bases in Figure 3.5.

Hint: The answer is

A =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1


.



SUBSPACES INDUCED BY MATRIX REPRESENTATIONS 223

B3×2 =


 1 0

0 0

0 0

 ,

 0 1

0 0

0 0

 ,

 0 0

1 0

0 0

 ,

 0 0

0 1

0 0

 ,

 0 0

0 0

1 0

 ,

 0 0

0 0

0 1


B2×3 =

{[
1 0 0

0 0 0

]
,

[
0 1 0

0 0 0

]
,

[
0 0 1

0 0 0

]
,[

0 0 0

1 0 0

]
,

[
0 0 0

0 1 0

]
,

[
0 0 0

0 0 1

]}

Figure 3.5: These are basis for M3×2 and M2×3

Speaking of rows of a matrix,

Definition 3.6.3 For a matrix A ∈Mm×n, let r⃗i be the vector formed from
the ith row of A for each 1 ≤ i ≤ m. The row space of A, denoted Row A,
is the span of these row vectors. That is,

Row A = Span {r⃗1, . . . , r⃗m} .

Theorem 3.6.7 For a matrix A ∈Mm×n, Row A is a subspace of Rm.

PROOF. This follows from Theorem 3.6.3 by taking the transpose of your
matrix. □

Now for something really cool. We have fun subspaces of domains and co-
domains for linear transformations (the kernel and image, respectively), but
what about the rest of the domain and codomain? You would not be shocked
to find that the orthogonal complement of the kernel is a subspace of the do-
main38, and the orthogonal complement of the image is a subspace of the 38:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This is even isomorphic to the
image from a theorem in Section 3.3.codomain (Theorem 2.4.2). What is surprising is that these orthogonal com-

plements are also given by the matrix representation for the linear transforma-
tion. Behold!

Theorem 3.6.8 Let A be the matrix such that the linear transformation
T : Rn → Rm is given by T (x⃗) = Ax⃗. Then

Ker A = (Row A)
⊥ and Imag A =

(
Ker AT

)⊥
.

See Figure 4.3 for some geometric intuition.

PROOF. Let A = [aij ] for 1 ≤ i ≤ m and 1 ≤ j ≤ n, let r⃗i for 1 ≤ i ≤ m

be the row vectors of A, and let a⃗j for 1 ≤ j ≤ n be the column vectors of A.



SUBSPACES INDUCED BY MATRIX REPRESENTATIONS 224

Then

x⃗ ∈ Ker A

⇔ Ax⃗ = 0⃗

⇔ x1a⃗1 + · · ·+ xna⃗n = 0⃗

⇔ x1

 a11
...

am1

+ · · ·+ xn

 a1n
...

amn

 =

 0
...
0


⇔ x1ai1 + · · ·+ xnain = 0 for 1 ≤ i ≤ n

⇔ x⃗ · r⃗i = 0 for 1 ≤ i ≤ n.

Thus, x⃗ ∈ Ker A if and only if it is orthogonal to every row of A. Since
Row A is the span of the rows of A, the result follows. A similar argument
proves (Ker AT )⊥ = Col A. □

Exploration 100 Consider the matrix

A =

[
0 0 1

0 1 −1

]
.

We spent some time earlier considering Col A and Ker A. Find Row A and
Ker AT .

Check that the claims of the theorem line up as expected.

Corollary 3.6.9 Let A be the matrix such that the linear transformation
T : Rn → Rm is given by T (x⃗) = Ax⃗. Then

dom (T ) = Ker A⊕ Row A and codom (T ) = Imag A⊕Ker AT .

Row A

Ker A

Rn

0

Rm

0

Col A

A

Ker AT

FIGURE 3.6. Some people refer to this as “the splits” of
dom (T ) and codom (T ).



SUBSPACES INDUCED BY MATRIX REPRESENTATIONS 225

At the beginning of this section, we spent some time relating Ker A to Ker T .
Let’s state this formally and prove it.

Theorem 3.6.10 Let V and W be vector spaces with bases BV =

{v⃗1, . . . , v⃗n} and BW = {w⃗1, . . . , w⃗m}, respectively. Let T : V → W

be a linear transformation with matrix representation A ∈Mm×n. Then

Ker T = {v⃗ ∈ V : A [v⃗]BV
= 0⃗}.

PROOF. Suppose v⃗ ∈ Ker T , so T (x⃗) = 0⃗, and there are weights a1, . . . , an
such that x⃗ = a1v⃗1 + · · ·+ anv⃗n, that is,

[x⃗]BV
=

 a1
...
an

 .

By Theorem 3.2.2, the coordinate mapping is a linear transformation, so it
maps the zero vector to the zero vector. Thus T (x⃗) = 0⃗ if and only if
[T (x⃗)]BW

= 0⃗. Moreover, since T and the coordinate mapping are both linear,

[T (a1v⃗1 + · · ·+ anv⃗n)]BW
= 0⃗

⇔ a1 [T (v⃗1)]BW
+ · · ·+ an [T (v⃗n)]BW

= 0⃗

⇔
[
[T (v⃗1)]BW

· · · [T (v⃗n)]BW

]  a1
...
an

 = 0⃗

⇔ A [x⃗]BV
= 0⃗.

□



EXERCISES FOR SECTION 3.6 226

Exercises for Section 3.6

3.6.1.n Define the linear transformation T : R3 → R3 by T (x⃗) = Ax⃗, and

A =

 a 1 0

1 1 1

1 1 1

 .

For what values of a is this an onto linear transformation?

3.6.2.Prove Theorem 4.4.8. That is, let A,B ∈Mm×n and α ∈ R. Prove

(a) (A+B)T = AT +BT ,

(b) (αA)T = αAT , and

(c) (AT )T = A.

3.6.3.Let T : P3 → P1 by T (ax3 + bx2 + cx + d) = (b − a)x + (c − d). Using the standard bases for P3 and
P1, find the matrix representation of T and use this to find Ker A and Col A. What are dimKer AT and
dimRow A?

3.6.4.Let T : P3 → P2 by T (ax3 + bx2 + cx+ d) = (a− c)x2 +(b− d)x+(c− a). Using the standard bases for
P3 and P2, find the matrix representation of T and use this to find Ker A and Col A. What are dimKer AT

and dimRow A?

3.6.5.Determine by inspection of the columns whether these matrices correspond to transformations that are one-
to-one.

(a)

 2 1

1 2

1 1



(b)

 2 0 0 1 1

0 0 0 1 −1
1 0 1 1 0



(c)

 2 1 0

0 2 0

1 0 1



(d)


2 1 0

0 2 0

1 0 1

0 0 0


3.6.6.Determine by inspection whether these matrices correspond to transformations that are onto.

(a)

 2 1

1 2

1 1



(b)

 2 0 0 1 1

0 0 0 1 −1
1 0 1 1 0





EXERCISES FOR SECTION 3.6 227

(c)

 2 1 0

0 2 0

1 0 1



(d)


2 1 0

0 2 0

1 0 1

0 0 0


3.6.7.Let A be any n×m matrix. Prove (Ker AT )⊥ = Col A.

3.6.8.Find Ker A, Row A, Col A, and Ker AT when A is the matrix below.

(a)
[

2 1 0

1 2 1

]

(b)

 2 −1 0 1

1 2 0 1

1 1 1 1



(c)

 1 1 0

−1 0 1

0 1 1





COMPUTER GRAPHICS AND ANIMATION 228

3.7 Applications of Linear Tranformations

Computer Graphics and Animation

See the picture of Ricky’s beautiful unicorn hooves in Figure 3.7. Yes, Ricky
likes to wear zebra leg warmers.39 A single vector would be a reasonable 39:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Doesn’t everyone?
model40 of Ricky’s leg if unicorn legs did not bend. However, since Ricky has

40:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

As we’ll see, it’s actually a
very reasonable model.

both knees and ankles, we should use three vectors; again, see Figure 3.7.

FIGURE 3.7. There are unicorn feet to the left and a vector
impression of a unicorn leg to the right. The middle vector
is dashed to simulate Ricky’s beautiful zebra leg warmers;
they’re arranged to suggest a very horse-like galloping mo-
tion.

Our goal here is to animate our picture of Ricky’s leg; more specifically, we
will animate the vector representation of Ricky’s leg. What should this entail?
We should be able to translate, rotate, and scale the image. In this context,
scaling might be weird. Legs usually stay the same size, but perhaps uni-
corns have some strange, little-known, femur-stretching powers. All kidding
aside, scaling is actually extremely useful in images to give the impression that
something is getting nearer or farther away. That’s three things we’ll need to
do then: translation, rotation, and scaling.

When animating an image using a computer, sometimes it’s better to use a
vector (to represent a unicorn femur, for example), and sometimes it makes
more sense to use a point (to represent a hoof, for example). For the entirety
of this book, we’ve used different types of brackets or fonts to indicate whether
something is a point or a vector. Since it’s relatively difficult to explain this
distinction to a computer, an additional component is often added to the vec-
tors; we put a 1 in that component if our object is a vector and a 0 if it’s a
point. For example,



COMPUTER GRAPHICS AND ANIMATION 229

The vector v⃗ =

 x

y

z

 is v⃗ =


x

y

z

1

.

The point v = (x, y, z) is v =


x

y

z

0

.

Since vector convention has vectors rooted at the origin and leg convention has
bones connected to other bones, we need to translate our second and third leg
vectors so they are appropriately attached to the preceding leg vector. This is
another handy41 feature of the point/vector distinction; they allow us to trans- 41: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No pun intended. Seriously!
We promise!late our vectors in space. If you are concerned that translation is not a linear

transformation, your concern is very well placed. Any translation by a nonzero
vector is not a linear transformation. Oh, hey. We should prove that.

Exploration 101 Let A ∈ Mm×n, and let v⃗ ∈ Rm be nonzero. Define
T : Rn → Rm by T (x⃗) = Ax⃗+ v⃗. Show that T is not a linear transformation.

Looks like we’re gonna need a new definition.

Definition 3.7.1 An affine transformation is a linear transformation com-
posed with a translation.

To avoid ambiguity, when doing an affine transformation, we will use the point
notation for the translation part of the transformation.

Example 3.7.1 Let M ∈ Mm×n, and let b be a point in Rm. Then
T : Rn → Rm by T (x⃗) = Mx⃗ + b is an affine transformation. More-
over, T is a linear transformation if and only if b is the point at the origin.
Lastly, it’s important to note that the “+” in the equation is not vector addi-
tion; b isn’t even a vector! The duplicitous plus, in this very specific context,
indicates simply to “do translation by b when you’re done with your matrix
multiplication by M .”

Let’s get back to vector unicorn legs. See Figure 3.8. Note that the vector t⃗+ f⃗

is not attached to the end of f⃗ , it’s way too long, and it’s pointing in the wrong
direction. However, the translated vector t⃗+f has none of the aforementioned
problems. Hooray for affine transformations!

Now we can do translations; that was the hard part. We’ve actually done
rotation already; see Exercise 3.5.10 in Section 3.5. Indeed, to rotate a vector



COMPUTER GRAPHICS AND ANIMATION 230

f⃗

t⃗+ f

t⃗

t⃗+ f⃗

FIGURE 3.8. The shin bone t⃗ is connected to the thigh bone
f⃗ . The thigh bone f⃗ is connected to the hip bone (not pic-
tured). We have chosen the letters “f” and “t” for femur
and tibia because we don’t know anything about biology, no
one knows anything about unicorn biology, and couldn’t be
bothered to do a quick internet search.

v⃗ ∈ R3 counterclockwise around the z-axis by an angle θ, we multiply

v⃗ =


x

y

z

1

 by


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

 .

The last row and column are there to accommodate our vector/point notational
convention. More generally, if we’d like to rotate a vector v⃗ ∈ R3 counter-
clockwise around an arbitrary unit vector u⃗ by an angle θ, we multiply

v⃗ =


x

y

z

1


by

cos θ + u2
1(1− cos θ) u1u2(1− cos θ)− u3 sin θ u1u3(1− cos θ) + u2 sin θ 0

u1u2(1− cos θ) + u3 sin θ cos θ + u2
2(1− cos θ) u2u3(1− cos θ)− u1 sin θ 0

u1u3(1− cos θ)− u2 sin θ u2u3(1− cos θ) + u1 sin θ cos θ + u2
3(1− cos θ) 0

0 0 0 1

 .

That’s not hard to verify, but it is pretty gross and annoying.

The only thing remaining to do is scaling, and this, like rotation, is a linear
transformation, so it can be represented as a matrix transformation.

Exploration 102 Let a, b, c ∈ R and T : R3 → R3 by scaling the first coordi-
nate of vectors by a, the second coordinate by b, and the third coordinate by c.
Find a matrix representation for T .



COMPUTER GRAPHICS AND ANIMATION 231

Alright! We now have a way to do translation, rotation, and scaling of our
vector model of Ricky’s leg. This is gonna be great. As we decided earlier,
our vector model of Ricky’s leg has three vectors, but now we label them
carefully using affine transformations so that they are appropriately connected
to each other. For example, since we want t⃗ to connect to the end of vector f⃗ ,
we use an affine transformation to translate it to the end of f⃗ , giving us t⃗+ f .
Similarly, to appropriately place a⃗, we use a⃗+ t+ f ; see Figure 3.9.

Let A, B, and C be rotation matrices that rotate vectors counterclockwise
about the origin by θ1, θ2, and θ3 radians respectively. If we use A to rotate
f⃗ by θ1 radians, we must according rotate the translation parts of each affine
transformation we used that involved f⃗ . However, we might also want t⃗ to
move, so we could apply B to t⃗ and the translation parts of each affine trans-
formation we used that involved t⃗. Lastly, we can apply C to the little ankle
vector a⃗. Again, see Figure 3.9. By appropriately moving the angles θ1, θ2,
and θ3, we can make this vector leg gallop (or spin in wildly unnatural ways if
so desired).

In practice, we would then construct three more vector unicorn legs and use
translations to place them on a vector unicorn body. At this point, we leave
it to the professionals, but we know, by the power of linear algebra, we could
do it were we so inclined. In the late 1970’s and early 1980’s many video
games used just vectors to create “graphics” of tanks and asteroids and the
like. More recently, carefully rendered, realistic images are associated to each
vector. Indeed, we could overlay Ricky’s zebra leg-warmer covered tibia over
the vector t⃗, and that would be a significant improvement for realism’s sake
over the blue vector. Again, we leave this to the professionals.

t⃗+ f

a⃗+ t+ f

f⃗

t⃗+Af

a⃗+ t+Af

Af⃗ Af⃗

Bt⃗+Af

Ca⃗+Bt+Af

Figure 3.9: Various transformations of various leg vectors



4 More Fun with Matrices

4.1 Systems of Equations and Matrices

In the previous chapter, we introduced the concept of a matrix and explained
the connections they enjoy with linear transformations. Many texts actually
begin with matrices because they are a rich and convenient computational tool,
especially useful for solving systems of equations. You’ll note that many of the
questions we asked previously boiled down to solving a system of equations.
It shouldn’t be a surprise then to learn that we can revisit topics, such as linear
independence and coordinate vectors, using matrices. In this chapter, we will
do all this. . . and more.

Systems of Equations Algebraically

As mentioned above, matrices are an important tool for solving systems of
equations. Let’s start there.

Consider this situation. A new dorm is being built on campus and the rooms
come in two types. The first type is a “pod” which holds 6 students, and the
second type is a standard room that holds 2 students. The university would
like the dorm to hold 952 students in a total of 200 rooms.1 We can set up 1:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

We’re not sure why these spe-
cific numbers, but we know not to ques-
tion such decisions.

a system of equations to represent this scenario and determine how many of
each rooms should be included in the new dorm.

Let x represent the number of pods and y represent the number of standard
rooms. Then we have

6x+ 2y = 952 and x+ y = 200.

There are multiple ways you learned in previous algebra courses to solve this
system of equations. You could graph these lines and see where they inter-
sect.2 You could solve one equation for x and then substitute the result into 2:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Do not do this. This is the worst
way to solve this problem!the other. Then there’s elimination. We’re going to use something pretty close

to elimination to solve this by manipulating our system using two operations.

232



SYSTEMS OF EQUATIONS ALGEBRAICALLY 233

▶ We can replace either equation in the system by a scalar multiple of
that equation.

▶ We can replace either equation in the system by the addition of that
equation and a scalar multiple of the other equation.

Let’s begin.

6x+ 2y = 952(4.1)

x+ y = 200(4.2)

We replace Equation 4.1 with Equation 4.1 scaled by 1/2.

3x+ y = 476(4.3)

x+ y = 200(4.4)

We replace Equation 4.3 with Equation 4.3 plus Equation 4.4 scaled by (−1).

2x+yy = 276(4.5)

x+ y = 200(4.6)

We scale Equation 4.5 by 1/2.

x+yy = 138(4.7)

x+ y = 200(4.8)

We replace Equation 4.8 by Equation 4.8 plus Equation 4.7 scaled by (−1).

x+yy = 138(4.9)

y = 62(4.10)

Solved! We need 138 pods and 62 standard rooms. Ready for some good
news? We can use matrices as a shorthand for those operations. We’ll use
a matrix for the coefficients on the left hand side of our linear equations, a
vertical bar to separate the left hand side from the right hand side, and a column
for the constants on the right hand side. For example, given a system of m
equations in n variables, such as

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

,

we can form the matrix
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
...

. . .
...

...
am1 am2 · · · amn bm

 .

This matrix is called an augmented matrix, and there’s definitely more to
it than we’re presenting here. For now, though, it certainly provides a more
convenient notational convention. You’re welcome.3 3:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Hey! I’ll handle the snarkiness
around here!

Here’s the previous example as an augmented matrix and the sequence of op-
erations we did to it.[

6 2 952

1 1 200

]
→
[

3 1 476

1 1 200

]
→
[

2 0 276

1 1 200

]
→



SYSTEM REPRESENTATIONS 234[
1 0 138

1 1 200

]
→
[

1 0 138

0 1 62

]
That’s so much less to write! Matrices might be another way to solve systems
of equations that is worth further exploration, right?4 4:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You know what that means. . .

Exploration 103 Let’s translate the rules we followed to solve the system of
equations into the language of matrices.

▶ Any row may be replaced by a scalar multiple of itself.

▶ Any row may be replaced by the sum of that row and a scalar multiple
of another row.

Suppose the total number of rooms in the above example were changed to 240.
Solve this new system using the matrix notation.

Our primary concern in this section will be identifying solutions for systems
of equations, so we should probably define solution formally.

Definition 4.1.1 A solution for a system of linear equations

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

is an n-tuple (x1, . . . , xn) that makes all the linear equations in the system
true.

System Representations

The matrix notation we used at the beginning of the section was sold as a
notational convenience, but it’s actually a lot more natural than it may seem.
Given a system of m equations in n variables,

(4.11)

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm,

we could use the definition of the product of a scalar and a vector to write this
as the vector equation

(4.12) x1a⃗1 + x2a⃗2 + · · ·+ xna⃗n = b⃗,



SYSTEM REPRESENTATIONS 235

where for 1 ≤ j ≤ n,

a⃗j =


a1j
a2j

...
amj

 and b⃗ =


b1
b2
...
bm

 .

Using the definition of the product of a matrix and a vector, we find that the
vector equation (4.12) is equivalent to

[⃗a1 a⃗2 · · · a⃗n] x⃗ = b⃗,

where

x⃗ =


x1

x2

...
xn

 .

This is a matrix equation

(4.13) Ax⃗ = b⃗,

where

A = [⃗a1 a⃗2 · · · a⃗n] =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 .

is called the coefficient matrix. We summarize this in the following theorem.

Theorem 4.1.1 Using the matrix and vectors

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn.

 , x⃗ =


x1

x2

...
xn

 , and b⃗ =


b1
b2
...
bm

 ,

the following are all equivalent representations
(a) System of equations:

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm,

(b) Vector equation:

x1a⃗1 + x2a⃗2 + · · ·+ xna⃗n = b⃗,

(c) Matrix equation:
Ax⃗ = b⃗,

(d) Augmented matrix:
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
...

. . .
...

...
am1 am2 · · · amn bm

 .



GAUSS-JORDAN ELIMINATION 236

This theorem gives us the flexibility to view a system of equations in four
different contexts.

Exploration 104 Consider the system below.

6x1 + 2x2 − x3 = 111

x1 + 7x2 − 2x3 = 56

−5x1 + x2 + 4x3 = 12

Write it as a vector equation, matrix equation, and an augmented matrix. When
you’re done, do it again, but make it really, really small.

Gauss-Jordan Elimination

The goal here is to change our system of equations without altering the solu-
tion(s) to make it easier to identify the solution(s). Thinking back to the exam-
ple at the beginning of this section (or other methods you’ve used to solve sys-
tems), this is precisely what one typically does. The strategy we are about to
show you is called Gauss-Jordan elimination, named for Carl Friedrich Gauss
and Wilhelm Jordan, despite the fact that Gauss apparently had nothing to do
with it. First, we’ll outline the operations we can do in this elimination proce-
dure.5 Next, we’ll formalize a goal for the procedure so that we know when 5: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Two of these already made an
appearance in that opening example.we can stop. Lastly, we’ll see the procedure described as an algorithm. Got all

that? Good. Let’s get started.

Operations: Three Things You Can Do

What are things you can do to a system that don’t change the solution for the
system? Some things are so simple, they’re not obvious. We could change the
order of our equations; that certainly wouldn’t alter any of the solutions for any
of the equations, so the system solution would remain unchanged as well. We
could also multiply both sides of an equation by a nonzero scalar; again, the
solution set for that equation wouldn’t change, so the system solution remains
unchanged.

We keep “doing stuff” to equations; let’s get a little more specific. Let V be
the set of all linear equations in n variables with real coefficients. That is,

(4.14) V = {a1x1 + a2x2 + · · ·+ anxn = b : ai, b ∈ R for 1 ≤ i ≤ n}.



GAUSS-JORDAN ELIMINATION 237

For any nonzero scalar α and any equation v ∈ V , define the nonzero scalar
multiple of v by α as the equation one gets by multiplying both sides of v by
α. For any v, u ∈ V , define the sum of the equations v and u to be the equation
one gets by equating the sum of the left sides of v and u to the sum of the right
sides of v and u. 6 6:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

These operations should remind
you of something if you have not forgot-
ten everything we talked about in Sec-
tion 1.1.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Or if you haven’t skipped ahead to
Chapter 4 because matrices are your fa-
vorite topic. . .

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

What!? That’s not allowed!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Actually, it is. . . There’s a note in
the introduction and everything.

There is a third, less obvious, thing one could do to a system without changing
the solution. Let’s pile it onto the other two and call it a theorem.7

7:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You may note that Gauss-
Jordan elimination fans on the internet
often neglect proving this all-important
fact.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It’s true.

Theorem 4.1.2 The following three operations on a system of m equations
in n variables do not change the system’s solution:

(a) interchanging the position of any two equations in the system;
(b) multiplying an equation by a nonzero scalar; and
(c) replacing the ith equation with the sum of the ith equation and any

nonzero scalar multiple of any of the other equations.

PROOF. We’ve already covered both a and b. To prove c, the following obser-
vation will simplify things: we could write any equation a1x1 + a2x2 + · · ·+
anxn = b as

a⃗ · x⃗ = b,

where

a⃗ =


a1
a2

...
an

 and x⃗ =


x1

x2

...
xn

 .

Suppose we have two equations from a system in this notation:

a⃗ · x⃗ = b(4.15)

c⃗ · x⃗ = d.(4.16)

Suppose x⃗ is a solution to both of these equations. Then for any nonzero scalar
α,

c⃗ · x⃗+ αb = d+ αb since c⃗ · x⃗ = d,

c⃗ · x⃗+ α(⃗a · x⃗) = d+ αb since a⃗ · x⃗ = b, and

(c⃗+ αa⃗) · x⃗ = d+ αb by distributive properties of inner product.

Thus, x⃗ is also a solution to the sum of equations (4.15) and (4.16). Now
suppose x⃗ is a solution to the system

a⃗ · x⃗ = b(4.17)

(c⃗+ αa⃗) · x⃗ = αb+ d.(4.18)

Then for any nonzero scalar α,

(c⃗+ αa⃗) · x⃗− αb = d by Equation (4.18),

(c⃗+ αa⃗) · x⃗− α(⃗a · x⃗) = d since a⃗ · x⃗ = b, and

c⃗ · x⃗ = d by distributive properties of inner product.

Thus, x⃗ is also a solution to c⃗ · x⃗ = d. Since x⃗ is a solution to (c⃗+ αa⃗) · x⃗ =

d + αb if and only if it is a solution to both a⃗ · x⃗ = b and c⃗ · x⃗ = d, we have



GAUSS-JORDAN ELIMINATION 238

that the following systems have the same set of solutions:

a⃗ · x⃗ = b a⃗ · x⃗ = b

c⃗ · x⃗ = d (c⃗+ αa⃗) · x⃗ = d+ αb

□

Corollary 4.1.3 One may apply any number of the operations in Theorem
4.1.2 in any order to a system of equations without changing the set of solu-
tions for that system.

Since a system of equations can also be represented as an augmented matrix,
we can do the analogous operations to a matrix.

Definition 4.1.2 Let A ∈ Mm×n. The following manipulations of A are
called row operations:

(a) interchanging any two rows in A;
(b) multiplying any row by a nonzero scalar; and
(c) replacing the ith row with the sum of the ith row and any nonzero

scalar multiple of any of the other rows.
Any matrix resulting from any row operation on A is called row equivalent
to A.

8:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

“Row equivalent” is really
nothing like “equivalent.” Maybe there
should be another word.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

What about “row similar”?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Noooo! Don’t say that. “Similar”
will mean something better than ”row
equivalent” in the next chapter, and
now you’ve confused everyone!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It’ll be fine. You’re assuming
they’re reading these remarks. I’m sure
no one saw that one. . . Also, who picks
these words anyway?

8

Corollary 4.1.4 Let [A|⃗b] be the augmented matrix for a given system of m
equations in n variables. Row operations on [A|⃗b] do not change the set of
solutions for the associated system.

PROOF. This follows immediately from Theorem 4.1.2 and Theorem 4.1.1.
□

Corollary 4.1.4 and augmented matrices are the primary means by which sys-
tems of equations are solved in most linear algebra courses, so we should prob-
ably work on that a bit. Keep in mind, though, that Theorem 4.1.1 provides
multiple ways to represent a system of equations, so there may be situations
where other methods are preferred.

For organizational purposes, we need to pick a notational convention for row
operations. Here’s one:

(a) A
r⃗i↔r⃗j

−−−−−−−−→ B means interchanging row i and row j in A results
in the matrix B;

(b) A
ar⃗i→r⃗i

−−−−−−−−→ B means multiplying row i by a ̸= 0 results in the
matrix B; and

(c) A
ar⃗i+r⃗j→r⃗j

−−−−−−−−→ B means replacing the jth row with the sum of the
jth row and a ̸= 0 times the ith row results in the matrix B.

This gives us a way to keep track of our operations, but most of us omit these
once we’ve mastered row reduction.9 9: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You’ll likely find yourself do-
ing the steps of row reduction “in your
head” sooner than you’d expect. At that
point, though, you should use this nota-
tion to punish yourself when you make
an error.



TARGET FORMAT: REDUCED ROW-ECHELON FORM 239

Example 4.1.1 Solve the system

x1 + 2x2 + 3x3 = 4

5x1 + 6x2 + 7x3 = 8

10x2 + 11x3 = 12.

By Theorem 4.1.1, this system is equivalent to the augmented matrix 1 2 3 4

5 6 7 8

0 10 11 12

 .

 1 2 3 4

5 6 7 8

0 10 11 12

 −5r⃗1+r⃗2→r⃗2
−−−−−−−−−−→

 1 2 3 4

0 −4 −8 −12
0 10 11 12


−1/4r⃗2→r⃗2

−−−−−−−−−−→

 1 2 3 4

0 1 2 3

0 10 11 12


−10r⃗2+r⃗3→r⃗3
−−−−−−−−−−→

 1 2 3 4

0 1 2 3

0 0 −9 −18


−1/9r⃗3→r⃗3

−−−−−−−−−−→

 1 2 3 4

0 1 2 3

0 0 1 2


We could be done here; we see from the last row of the last matrix that
x3 = 2, and we could substitute this into the other two equations to find
x1 and x2 as well. Alternatively, we can just keep cooking with the row
reduction. 1 2 3 4

0 1 2 3

0 0 1 2

 −2r⃗3+r⃗2→r⃗2
−−−−−−−−−−→

 1 2 3 4

0 1 0 −1
0 0 1 2


−3r⃗3+r⃗1→r⃗1
−−−−−−−−−−→

 1 2 0 −2
0 1 0 −1
0 0 1 2


−2r⃗2+r⃗1→r⃗1
−−−−−−−−−−→

 1 0 0 0

0 1 0 −1
0 0 1 2


Well, that’s easy to read. We have x1 = 0, x2 = −1, and x3 = 2, which is
the unique solution to the original system.

Target Format: Reduced Row-Echelon Form

Note that Corollary 4.1.3 implies that one has a lot of options when applying
row operations to an augmented matrix. This can be a bit overwhelming. It
is entirely possible to apply one thousand row operations (correctly) to an
augmented matrix only to get the augmented matrix you started with. This
can be a bit frustrating. We should avoid feeling overwhelmed and frustrated.
It will help us to have a target in mind for our row operations.



TARGET FORMAT: REDUCED ROW-ECHELON FORM 240

Definition 4.1.3 Let A ∈ Mm×n. We say the matrix A is in row-echelon
form if

▶ the first nonzero number from the left, also called the pivot, of any
nonzero row is always strictly to the right of the pivot of the row
above, and

▶ any row with nonzero entries is above any row of all zeros.
We say A is in reduced row-echelon form if

▶ it is in row-echelon form,
▶ every pivot is a 1, and
▶ every pivot is the only nonzero entry in its column.

This probably seems like a really weird definition; it definitely reads more like
a tax form than most definitions. Nevertheless, it will have its uses. Let us
explore the echelon-iness of some matrices.10 10:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

What does “echelon” mean?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Model name of a Ford sedan from
the 1970’s?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I think there’s a sci-fi series-

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Michael Jordan’s middle name?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No! I’m quite sure it’s not a proper
noun!

Example 4.1.2 Here are some matrices. Let’s determine whether they are
in row-echelon form, reduced row-echelon form, or neither.

▶

 0 2 4 1

1 1 1 1

1 0 1 1


This matrix is in neither form. In fact, it does not appear to be row
reduced whatsoever.

▶

 4 2 4 8

0 10 5 5

0 0 0 0

,

 1 3 0 1

0 2 3 4

0 0 −2 2

,

 1 0 0 1

0 0 1 5

0 0 0 0

,

 1 0 0 0

0 0 1 0

0 0 0 1

,

 1 3 0 0

0 0 1 0

0 0 0 1


These matrices are all in row-echelon form. The pivots have been
colored red.

11:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Do I have to pronounce the t
in “pivot”?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yes. Can I pronounce it with a
long i?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Sure. What could go wrong?

11

▶

 1 0 0 1

0 1 0 5

0 0 0 0

,

 1 0 0 1

0 1 0 5

0 0 1 0

,

 1 0 0 1

0 0 1 5

0 0 0 0

,

 1 0 0 0

0 0 1 0

0 0 0 1

,

 1 3 0 0

0 0 1 0

0 0 0 1


These matrices are all in reduced row-echelon form. Almost all the
pivots have been colored red; one rogue pivot

12:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Rogue Pivot! Dibs on band
name!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Only with a long i and a silent t.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I hate to admit it, but that is a solid
name.

12 has been colored
blue for no good reason at all.

Exploration 105 The matrices in each bullet list below are row reductions of
the same matrix. Circle the row-echelon form matrices. Put a square around
the matrix in reduced row-echelon form. Highlight your favorite column vec-
tor with a pink sparkle pen.

▶

 0 2 4 1

1 1 1 1

1 0 1 1

,

 1 0 0 3/4

0 1 0 0

0 0 1 1/4

,

 1 1 1 1

0 2 4 1

0 −1 0 0

,



PROCEDURE FOR GAUSS-JORDAN ELIMINATION 241 1 1 1 1

0 −1 0 0

0 0 4 1

,

 1 1 1 1

0 1 0 0

0 0 1 1/4



▶

 1 −2 0 1

2 0 2 2

1 0 1 1

,

 1 −2 0 1

0 2 1 0

0 0 0 0

,

 1 0 1 1

0 1 1/2 0

0 0 0 0


Now, consider if these had been augmented matrices with the bar before the
final column missing. Which form is the easiest to use when determining the
solution of your system of linear equations?

Indeed, reduced row-echelon form is the form in which it is arguably13 easiest 13:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I will fight you.
to find the solution(s) to the associated system, and there are other benefits we
shall uncover later.

Now that we’ve talked about reduced row-echelon form and implied that this
is the target format from the subsection title, you might be wondering whether
this target is actually always achievable. Well, it is. Here’s a theorem that says
so, so it must be true.14 14:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This is a classic example of
“proof by intimidation.” The idea here is
that if you argue something with strong
enough language, even without sound
logic, the reader might believe it.

Theorem 4.1.5 Suppose A ∈ Mm×n. Then there exists a unique matrix
B ∈ Mm×n in reduced row-echelon form that can be obtained from A by
performing row operations.

The proof of this statement relies on the technique of mathematical induction
and Gauss-Jordan Elimination, so we will leave it to the Appendix.15 Note 15:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Oh, good. I was worried we
were just going to declare it as fact with-
out proof.

here that it is reduced row-echelon form that is unique. In fact, scaling any
row in a row-echelon form matrix produces a different row-echelon matrix
associated to the same system of equations. Perhaps you are wondering why
we even bother defining row-echelon form then? Well, the columns which
contain pivots can be identified once the matrix is placed in row-echelon form,
and there are some situations where the only information needed to answer a
question is this. We’ll see examples of these types of questions in the next two
sections in particular. For now, though, it really will be reduced row-echelon
form that is our target.

Procedure for Gauss-Jordan Elimination

We mentioned Gauss-Jordan elimination before, but never precisely defined
it. That’s because we needed a bit of terminology. Gauss-Jordan elimina-
tion is an algorithm that uses only the row operations to put any matrix into
reduced row-echelon form. Thus, by Corollary 4.1.4, the resulting reduced
row-echelon matrix has the same solution as the original matrix. It is defi-
nitely a thing you (or a computer!) could do. Here are the steps:

(1) Move any row of all zeros to the bottom of the matrix.



PROCEDURE FOR GAUSS-JORDAN ELIMINATION 242

(2) Start at the leftmost column that has a nonzero entry in a row not
already containing a reduced pivot. Designate an entry in this column
to be a pivot and scale that row so that the pivot is a 1.

(3) Move the row of the pivot you are currently working with to be the
highest row without a pivot already in reduced position.

(4) Use this pivot to produce zeros in every entry below it in the same
column (by adding appropriate multiples of the pivot’s row to the
rows below).

(5) Repeat Steps 1–4.

(6) Continue this process until there are no more columns satisfying Step
2.

(7) Now begin at the bottom nonzero row and use the pivot to produce
zeros (as in Step 3) in every entry above it in the same column.

(8) Move up one row and repeat Step 7.

(9) Repeat Step 8 until there are no more rows.

Example 4.1.3 Example 4.1.1 was this exact procedure. Go look at it again.
Did you look? Seriously, you have to go look at it.

Example 4.1.4 Fine. We’ll do another one. Let

A =


0 0 0 0 0

2 4 6 −1 6

0 0 0 1 0

1 1 1 1 −1

 .

(a) Move any row of all zeros at the bottom of the matrix. Alright::

A
r⃗1↔r⃗4

−−−−−−−−−−→


1 1 1 1 −1
2 4 6 −1 6

0 0 0 1 0

0 0 0 0 0


(b) Start at the leftmost column that has a nonzero entry in a row not

already containing a reduced pivot and designate a pivot. Scale
this pivot’s row so that the pivot is 1 (by multiplying the row by
the appropriate nonzero scalar). Already done! Take that, Gauss!
You’re not the boss of me!

(c) Move the row of the pivot to be the highest row without a pivot
already in reduced position. Hmmm... That seems to already be
done as well. We are rocking this!

(d) Use this pivot to produce zeros in every entry below it in the same
column (by adding appropriate multiples of the pivot’s row to the
rows below). So ordered:

1 1 1 1 −1
2 4 6 −1 6

0 0 0 1 0

0 0 0 0 0

 −2r⃗1+r⃗2→r⃗2
−−−−−−−−→


1 1 1 1 −1
0 2 4 −3 8

0 0 0 1 0

0 0 0 0 0





PROCEDURE FOR GAUSS-JORDAN ELIMINATION 243

(e) Repeat steps 1–4. Ugh, that’s a lot to ask.
1 1 1 1 −1
0 2 4 −3 8

0 0 0 1 0

0 0 0 0 0

 1/2r⃗2→r⃗2
−−−−−−−−→


1 1 1 1 −1
0 1 2 −3/2 4

0 0 0 1 0

0 0 0 0 0


Well, I guess that wasn’t so bad.

(f) Continue this process until there are no more columns satisfying
Step 2. Hey, all those zeros and ones were pretty convenient!

(g) Now begin at the bottom nonzero row and use the pivot to produce
zeros (as in step 4) in every entry above it in the same column.

1 1 1 1 −1
0 1 2 −3/2 4

0 0 0 1 0

0 0 0 0 0

 3/2r⃗3+r⃗2→r⃗2
−−−−−−−−→


1 1 1 1 −1
0 1 2 0 4

0 0 0 1 0

0 0 0 0 0


−r⃗3+r⃗1→r⃗1
−−−−−−−−→


1 1 1 0 −1
0 1 2 0 4

0 0 0 1 0

0 0 0 0 0


(h) Move up one row and repeat step 6.
1 1 1 0 −1
0 1 2 0 4

0 0 0 1 0

0 0 0 0 0

 −r⃗2+r⃗1→r⃗1
−−−−−−−−−−→


1 0 −1 0 −5
0 1 2 0 4

0 0 0 1 0

0 0 0 0 0


Victory!

(i) Repeat step 8 until there are no more columns satisfying Step 2.
Thanks for the advice, but we already declared victory.

Exploration 106 Let’s play a bit of fill in the blanks. We’ll row reduce a
matrix using Gauss-Jordan Elimination, but leave out the names of the row
operations. You fill in the operation that was done at each step. Ready? Go!

2 4 0

3 6 3

0 0 0

2 2 2

 →


2 4 0

3 6 3

2 2 2

0 0 0

 →


1 2 0

3 6 3

2 2 2

0 0 0



→


1 2 0

0 0 3

2 2 2

0 0 0

 →


1 2 0

0 0 3

0 −2 2

0 0 0

 →


1 2 0

0 0 3

0 1 −1
0 0 0

 →


1 2 0

0 1 −1
0 0 3

0 0 0

 →


1 2 0

0 1 −1
0 0 1

0 0 0



→


1 2 0

0 1 0

0 0 1

0 0 0

 →


1 0 0

0 1 0

0 0 1

0 0 0





SECTION HIGHLIGHTS 244

Section Highlights

▶ A system of equations can be represented equivalently as a vector
equation, a matrix equation, or an augmented matrix. See Theorem
4.1.1.

▶ There are three types of row operations that can be done to a matrix
as part of Gauss-Jordan Elimination:

– Rows can be scaled by any nonzero real number.

– Rows can be swapped.

– Any row can be replaced by a linear combination of other rows.

See Definition 4.1.2.

▶ Gauss-Jordan Elimination is a process that uses row operations to
transform a matrix into reduced row-echelon form. See Definition
4.1.3 and Example 4.1.4.

▶ If row operations from Gauss-Jordan Elimination are used on an aug-
mented matrix, then the system of equations corresponding to the
resulting matrix has the same set of solutions as the system corre-
sponding to the original augmented matrix. This gives a convenient
way to solve a system of equations since reduced row-echelon form
makes the solution easier to identify. See Corollary 4.1.4 and Exam-
ple 4.1.1.



EXERCISES FOR Section 4.1 245

Exercises for Section 4.1

4.1.1.Write the system as a vector equation, a matrix equation, and an augmented matrix.

(a)
x1 + 3x2 = 5

3x1 = 2

x1 − x2 = 1

(b)
x1 + x2 − x3 = 5

3x1 + x3 = 2

x2 − x3 = 0

(c)
x1 + x2 − x3 = 5

3x1 + 2x3 + x5 = 2

x2 − x3 + x4 = 1

(d)
x1 + x2 − x3 − x4 = 1

3x1 + x3 + x4 = 1

x2 − x3 = 1

4.1.2.Determine whether the matrices below are in row-echelon form, reduced row-echelon form, or neither.

(a)
[

1 0

0 3

]

(b)
[

1 0 1

0 1 2

]

(c)


1 0 1

0 1 2

0 0 1

0 0 0



(d)

 1 0 1 0

0 1 2 0

0 0 0 1



(e)

 1 0 1 0

0 2 2 0

0 0 0 0



4.1.3.Write down every possible reduced row-echelon matrix in M2×4. You may use any symbol you like to
represent real numbers that are neither 1 nor 0.

4.1.4.Write down every possible reduced row-echelon matrix in M3×3. You may use any symbol you like to
represent real numbers that are neither 1 nor 0.

4.1.5.Determine whether or not the pair of matrices is row equivalent. If they are list the row operations that
transform the former into the latter.

(a)
[

1 1

1 2

]
,
[

3 1

2 2

]

(b)
[

1 −1
1 2

]
,
[

3 −6
−2 4

]

(c)

 1 0 −1
1 2 0

0 1 1

,

 1 1 1

1 −1 2

0 1 1


4.1.6.Row reduce the matrices to obtain reduced row-echelon form. (That is, perform Gauss-Jordan Elimination.)



EXERCISES FOR Section 4.1 246

(a)
[

1 −2
1 6

]

(b)
[

2 −2
1 −1

]

(c)

 2 −2
1 −1
3 2


(d)

[
3 0 −1
2 1 −4

]

(e)

 1 1 −1
2 0 −4
3 0 −6



(f)

 0 0 −1
0 6 6

0 0 6



(g)

 1 1 −1
2 2 −2
3 0 6



(h)

 1 1 −1 1 2

2 2 −2 1 0

0 0 6 1 4



(i)

 1 1 1 −1
1 1 6 6

0 3 0 6



(j)


1 1 1 −1
1 1 6 6

1 2 2 0

0 1 1 1



(k)

 1 1 1 1 −1
1 1 6 2 6

0 3 0 6 0



4.1.7.Is V from Equation 4.14, the set of all linear equations in n variables with real coefficients, a vector space?
Justify your argument.



PARAMETRIC SOLUTIONS TO SYSTEMS 247

4.2 More Systems of Equations and Matrices

Now that we have a new method to solve a system of equations, we should
spend some time talking about what a solution might look like and say a bit
more about how matrices help us find them.

Parametric Solutions to Systems

Augmented matrices in reduced row-echelon form have the wonderful prop-
erty that one can “read” the solution to the associated system right off the
matrix. Just look back at Example 4.1.1. There is a small subtlety, though.

Example 4.2.1 Let’s solve the system

x1 + 2x2 + 3x3 = 4

5x1 + 6x2 + 7x3 = 8

9x1 + 10x2 + 11x3 = 12. 1 2 3 4

5 6 7 8

9 10 11 12

 −5r⃗1 + r⃗2 → r⃗2
−9r⃗1 + r⃗3 → r⃗3

−−−−−−−−−−→

 1 2 3 4

0 −4 −8 −12
0 −8 −16 −24


−2r⃗2+r⃗3→r⃗3
−−−−−−−−−−→

 1 2 3 4

0 −4 −8 −12
0 0 0 0


(−1/4)r⃗2→r⃗2
−−−−−−−−−−→

 1 2 3 4

0 1 2 3

0 0 0 0


−2r⃗2+r⃗1→r⃗1
−−−−−−−−−−→

 1 0 −1 −2
0 1 2 3

0 0 0 0


The final matrix above is in reduced row-echelon form. Now we can solve
the system. The top row says x1 − x3 = −2 and the second row says
x2 + 2x3 = 3. Solving for x1 and x2 gives us

x1 = x3 − 2

x2 = −2x3 + 3.

In terms of vectors, this would be all vectors of the form x3 − 2

−2x3 + 3

x3

 =

 1

−2
1

x3 +

 −23
0


where x3 ∈ R.

The augmented matrix in reduced row-echelon form in the previous example
did not have a pivot in every variable column. That seems somewhat annoying,
but it happens a lot. How did we deal with it in the example? We were able to
solve for all the variables associated to a column containing a pivot, and some
of those variables were in terms of the variable not associated to a pivot. This
is not a coincidence.



PARAMETRIC SOLUTIONS TO SYSTEMS 248

Definition 4.2.1 A pivot variable is a variable in a system of equations
whose column in the associated augmented matrix in reduced echelon form
contains a pivot. A free variable is a variable in a system of equations that
is not a pivot variable. That is, a free variable in a system of equations is
one whose column in the associated augmented matrix in reduced echelon
form does not contain a pivot.

Exploration 107 Solve for each of the pivot variables in terms of free variables
in the augmented matrices below.

▶

 1 0 3 2

0 1 5 1

0 0 0 0



▶

 1 2 0 2

0 0 5 1

0 0 0 0



▶

 1 0 3 2 2

0 1 5 3 1

0 0 0 0 0



Definition 4.2.2 A parametric solution for a system of m equations in n

variables that has an infinite number of solutions is a representation of the
solutions in which the pivot variables are given in terms of the free variables
(often called parameters).

Your answers from the exploration above were all parametric solutions to the
systems represented by the matrices. We will often also make note of which
variables are free variables in solutions of this form.

Example 4.2.2 Consider the augmented matrix below. 1 0 0 1 2

0 1 5 1 −1
0 0 0 0 0


Solving for the pivot variables in terms of the free variables and taking note
of which variables are free gives us a solution that looks like

x1 = 2− x4,

x2 = −1− x4 − 5x3,

x3 free,
x4 free.

.

We could write this in set notation with vectors asx3


0

−5
1

0

+ x4


−1
−1
0

1

+


2

−1
0

0

 : x3, x4 ∈ R

 .



ZERO, ONE, OR MANY 249

Zero, One, or Many

The Gauss-Jordan elimination procedure and row-echelon form make deter-
mining whether a system has a solution pretty simple. First of all, when an
augmented matrix is in even just row-echelon form, we can tell quickly that a
solution does not exist.

Theorem 4.2.1 A system of m equations in n variables has no solutions if
the associated augmented matrix in row-echelon form has a pivot in the last
column.

PROOF. Let [A|⃗b] be the associated augmented matrix in row-echelon form.
Suppose [A|⃗b] has a pivot in the last row. Then this row corresponds to an
equation in the associated system of the form

0x1 + 0x2 + · · ·+ 0xn = bi,

for some bi ̸= 0. This equation has no solutions, so any system of which it is
a part also has no solution. □

Now, if we do not have a pivot in the final column, there are actually two
possibilities.

Theorem 4.2.2 A system of m equations in n variables has a unique solu-
tion if the associated augmented matrix in reduced row-echelon form has a
pivot in every column except the last.

PROOF. Suppose [A|⃗b] is the augmented matrix in reduced row-echelon form.
We note that any nonzero row of this matrix has a 1 in a single pivot location
and a 0 in all remaining locations except the final one. Thus, any associated
equation will be of the form

xi = bi

where xi is a variable and bi is the ith entry in the final column b⃗. Thus, each
variable is determined by the entries of b⃗, and there is a unique solution. □

Theorem 4.2.3 A system of m equations in n variables has infinitely many
solutions if the associated augmented matrix in reduced row-echelon form
has no pivot in the last column and at least one other column. That is, the
system has infinitely many solutions if it has a free variable and no pivot in
the final column.

PROOF. Suppose [A|⃗b] is the augmented matrix in reduced row-echelon form.
Any nonzero row of this matrix has a 1 in a single pivot location and a 0 in all
remaining pivot locations. Thus, we can solve for the pivot variable in terms
of the free variables and the entry in our solution column. That is, if x is a
pivot variable, there is some row of [A|⃗b] whose associated equation is

x+ a1y1 + · · ·+ akyk = b



ZERO, ONE, OR MANY 250

where a1, . . . , ak ∈ R, y1, . . . yk are free variables, and b is the corresponding
entry in the solution column. This allows us to say

x = b− a1y1 − · · · − akyk.

Since we assumed there is no pivot in the final column, each row containing
a pivot can be treated thusly, and doing so gives us a full parametric solution
for the system of equations. All rows not containing a pivot are rows of zero
since we are in reduced row-echelon form. Then, we can choose a real num-
ber for each free variable. Any choice gives a valid solution, and there are
infinitely many possible choices for these real numbers. Furthermore, each
distinct choice gives rise to a distinct solution since the free variables them-
selves would then be distinct. Thus, there are infinitely many solutions. □

Combining these three theorems, we can state the following:

Corollary 4.2.4 A system of m equations in n variables has either zero
solutions, one solution, or infinitely many solutions.

Corollary 4.2.5 A system of m equations in n variables has no solutions
if and only if the associated augmented matrix in row-echelon form has a
pivot in the last column.

Note also that Theorem 4.2.2 and Theorem 4.2.3 stated that the matrix was
in reduced row-echelon form. This is really just to make the proofs clearer.
Since the locations of pivots can be identified once the matrix is in row-echelon
form, we could have stated these theorems using the weaker condition instead.
Therefore, if you are trying to answer the question of how many solutions
rather than actually finding them, you could actually save yourself some time
by only reducing the matrix to row-echelon form.

Exploration 108 The matrices below are the examples of row-echelon form
from the previous section. Cross out the ones that correspond to systems with
no solution. Circle the ones with a unique solution. Do the ones left have
infinitely many solutions?

 4 2 4 8

0 10 5 5

0 0 0 0

,

 1 3 0 1

0 2 3 4

0 0 −2 2

,

 1 0 0 1

0 0 1 5

0 0 0 0

,

 1 0 0 0

0 0 1 0

0 0 0 1

, and

 1 3 0 0

0 0 1 0

0 0 0 1

 .

Exploration 109 The augmented matrices below are in row-echelon form.
Determine whether the corresponding systems of equations have no solution, a
single solution, or infinitely many solutions. If there are infinitely many, write
the parametric solution.



GEOMETRY OF SOLUTIONS 251

▶

 1 0 2 2

0 1 3 1

0 0 0 0



▶

 1 0 2 2

0 1 3 1

0 0 1 0



▶

 1 0 2 2

0 1 3 1

0 0 0 2



Geometry of Solutions

There are a lot of subtle misconceptions about the relationship between linear
equations and their graphical representations. For example, it’s very common
to hear the equation y = mx + b referred to as “a line.” It’s not that this is
completely wrong, but it’s definitely inaccurate. An equation and a line are
two different things. Before we proceed, we should establish some concrete
lingo.

Definition 4.2.3 A solution for a linear equation a1x1 + · · ·+ anxn = b is
an n-tuple (x1, . . . , xn) that makes the linear equation true. The graph of
a linear equation a1x1 + · · · + anxn = b is a visual representation of the
set of all n-tuples (x1, . . . , xn) in Rn that make the linear equation true.

There is a not-so-subtle distinction between the linear equation a1x1 + · · · +
anxn = b, its set of solutions, and its graph. These three things are respec-
tively an algebraic equation (that may or may not be true), a set of points, and
a visual representation of that set of points.

Let us explore the consequences of this definition for systems. A solution for
a system must be a solution for each equation in the system. We now have
multiple ways of thinking about this:

▶ The solution for a system is the intersection of the sets of solutions
for each equation in the system.

▶ The graph of the solution for a system is a visual representation of
this intersection. That is, the graph of the solution for a system is
where the graphs of each equation in the system intersect.

We need at least two variables for this to be the slightest bit interesting, so
we’ll start there.

Two Variable Cases:



GEOMETRY OF SOLUTIONS 252

▶ Two variables, one equation:
Classic. If we have a1x1 + a2x2 = b, we could write

x2 = −a1
a2

x1 +
b

a2
,

the standard “slope-intercept” form. Note that since we’re defining
x2 as a function of x1, we need a2 ̸= 0 to have an x2, which works
out really well since we also have to divide by a2. In this case, there’s
always an infinite number of solutions in R2 for one linear equation
in two variables. The graph of this equation, the set of all solutions
to the equation, forms a line in the R2 plane.

▶ Two variables, two equations:
This is significantly more interesting. With two equations, we have
an infinite number of solutions for each equation. However, since
a solution for a system must be a solution for all equations in the
system, there are three possibilities. The set of solutions for each
equation is a line in the plane, and these lines may be parallel, overlap
completely, or intersect at one point. These three cases correspond
to the system having infinite solutions, no solutions, or exactly one
solution, respectively. See Figure 4.1.

▶ Two variables, three or more equations:
This is not all that different from the previous case; the graph of the
third equation simply provides a third line in the R2 plane. Any ad-
ditional equations do the same. Convince yourself that we still only
have three options for this system: infinite solutions, no solutions, or
exactly one solution.

Figure 4.1: There are only three possible ways for two lines in R2 to intersect.

Three Variable Cases:

▶ Three variables, one equation:
This is an equation of the form a1x1 + a2x2 + a3x3 = b, and the
graph of this equation is a plane in R3. We can easily find y1, y2, y3
such that b = −(a1y1+a2y2+a3y3). Then a1x1+a2x2+a3x3 = b

if and only if

a1(x1 − y1) + a2(x2 − y2) + a3(x3 − y3) = 0,

or a⃗ · (x⃗− y⃗) = 0, where

a⃗ =

 a1
a2
a3

 , x⃗ =

 x1

x2

x3

 , and y⃗ =

 y1
y2
y3

 .



THE MANY DIMENSIONS OF “INFINITELY MANY” 253

Since a⃗ · (x⃗ − y⃗) = 0 if and only if a⃗ and x⃗ − y⃗ are orthogonal, we
have that (x1, x2, x3) ∈ R3 is a solution for a1x1+a2x2+a3x3 = b

if and only if x⃗ − y⃗ is orthogonal to a⃗. Thus, the graph of a1x1 +

a2x2 + a3x3 = b is the plane of points orthogonal to a⃗, containing
the point (y1, y2, y3).

▶ Three variables, two equations:
Now we have two planes, each the graph of one of the equations,
in R3. How can two planes intersect in R3? They can be the same
plane, parallel planes, or intersect in a line. Thus, we have infinite
solutions for the system (a plane of solutions or a line of solutions)
or no solutions.

▶ Three variables, three equations:
This one’s nice. There are a lot of ways three planes can intersect in
R3. See Figure 4.2 for a couple of them. The three planes could co-
incide, yielding a plane of solutions for the system. All three planes
could intersect in a line, and all three planes could intersect in a point.
Lastly, if any two of the planes are parallel, then there are no solu-
tions for the system.

▶ Three variables, four or more equations:
Well, now there are planes shooting all over the place. Good luck
drawing this one. It’ll probably be harder to make them all intersect,
but it’s not hard to arrange cases where we have a plane of solutions
for the system, a line of solutions for the system, a single point for
the solution, or no solution for the system.

Figure 4.2: There are many ways for three planes in R3 to intersect.

The Many Dimensions of “Infinitely Many”

We saw before that when a system has a solution and a free variable, there are
infinitely many solutions. Yet, in the examples we just looked at, we see that
perhaps there is an infinite “line-worth” of solutions, or perhaps there is an
infinite“plane-worth” of solutions. Actually, there’s a bit more we can say in
the case where there are infinitely many solutions.



THE MANY DIMENSIONS OF “INFINITELY MANY” 254Theorem 4.2.6 If a system of m linear equations in n variables has a so-
lution, then the set of solutions is in one-to-one correspondence onto a
k−dimensional subspace of Rn, where k is the number of free variables
in the reduced row-echelon form of the coefficient matrix associated to the
system.

Now, in the case that there are no free variables, this statement reduces natu-
rally to the statement that there is a unique solution. What’s really interesting
here is that we get a concept of size based on the number of free variable in
the situation of infinitely many solutions. The proof of this statement gets a bit
off track, so we have moved it to the Appendix. However, we can show you
an example that will help illustrate the idea of the proof.

Example 4.2.3 Let’s start with a system of equations.

x1 + x2 + 2x3 + 2x4 = 3

2x1 + 2x2 + x3 + 4x4 = 3

4x1 + 4x2 + 2x3 + 8x4 = 6

Great! Now, let’s make that into an augmented matrix. 1 1 2 2 3

2 2 1 4 3

4 4 2 8 6


Wonderful! Now let’s row reduce to reduced row-echelon form. We’ll skip
the steps, just to keep this example short. 1 1 0 2 1

0 0 1 0 1

0 0 0 0 0


Stupendous! We can see from this reduced row-echelon form that x2 and
x4 are free variables and x1 and x3 are pivot variables. Moreover, we can
write out a parametric solution for this system.

x1 = 1− x2 − 2x4

x3 = 1

x2 free
x4 free

This says the set of solutions to this system is

Usoln =




1

0

1

0

+


−1
1

0

0

x2 +


−2
0

0

1

x4 : x2, x4 ∈ R

 .

By Theorem 4.2.6, we expect then that there is a 2-dimensional subspace in
one-to-one correspondence with this set Usoln. The 2-dimensional subspace
is actually the kernel of a matrix. Define

A =

 1 1 0 2

0 0 1 0

0 0 0 0

 .

This is the matrix obtained by just omitting the last column of the reduced
row-echelon augmented matrix. To find Ker A, we need to solve Ax⃗ = 0⃗.
Since A is in reduced row-echelon form and the augmented column will be



THE MANY DIMENSIONS OF “INFINITELY MANY” 255

all 0’s, we can go straight to a parametric solution.

x1 = −x2 − 2x4

x3 = 0

x2 free
x4 free

That is,

Ker A =



−1
1

0

0

x2 +


−2
0

0

1

x4 : x2, x4 ∈ R

 .

By comparing Usoln to Ker A we see that Usoln is actually a shifted version
of Ker A. The one-to-one and onto correspondence is then just the function
that shifts Ker A appropriately; specifically, the map S : Ker A → Usoln

given by

S(x⃗) = x⃗+


1

0

1

0


is the invertible shift function.

16:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Is there a joke to be made
about S being “shifty”?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Ugh. Let’s just assume you made
it. Well done. Moving on. . .

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Did you two catch that S is not an
isomorphism since Usoln is not a
subspace of R4?

16 It follows that geometrically, the solution
space, Usoln, is a plane that does not go through the origin in R4.

Exploration 110 Describe the solution space for the system geometrically if
possible.

x1 + x2 + 2x3 + 2x4 = 3

2x1 + 2x2 + 4x4 = 3

3x1 + 3x2 + 2x3 + 4x4 = 0

Let’s think for a minute about what Theorem 4.2.6 tells us about the kernel of
a matrix. Suppose A ∈ Mm×n. Then finding Ker A is equivalent to solving
the matrix equation Ax⃗ = 0⃗. Thus, there is a system of m equations and n

unknowns involved here, and Ker A is the solution space for this system.

Corollary 4.2.7 If A ∈ Mm×n row reduces to a matrix with k free vari-
ables, then dimKer A = k.

Additionally, we know that if A is a matrix representation for some linear
transformation T : V → W , then Ker T is isomorphic to Ker A. We also
know dim Imag T can be determined once dimKer T is known because of
the Rank-Nullity Theorem.



SECTION HIGHLIGHTS 256

Corollary 4.2.8 Suppose T : V → W is a linear transformation with ma-
trix representation A ∈ Mm×n. Then dimKer T is the number of free
variables identified once A is row reduced and dim Imag T is the number
of pivot variables.

Section Highlights

▶ A system of equations has either one solution, infinitely many solu-
tions, or no solutions. See Corollary 4.2.4.

▶ The number of solutions for a system of equations can be quickly
determined by examining the pivots in the row-echelon form of the
corresponding augmented matrix. In particular:

– If there is a pivot in the augmented column, then the system
has no solutions.

– If there is a pivot in all columns except the final augmented
column, then the system has exactly one solution.

– If neither of the above two situations occur, then the system
has infinitely many solutions.

See Corollary 4.2.5, Theorem 4.2.2, and Theorem 4.2.3.

▶ If a system has infinitely many solutions, then they can be described
parametrically in terms of the free variables. See Definition 4.2.2 and
Example 4.2.2.



EXERCISES FOR SECTION 4.2 257

Exercises for Section 4.2

4.2.1.Determine by inspection whether the system represented by the augmented matrix has no solution, one so-
lution, or infinitely many solutions.

(a)

 1 0 1 1

0 3 3 1

0 0 0 3



(b)

 1 0 1 1

0 3 3 1

0 0 0 0



(c)

 1 0 0 2

0 1 2 1

0 0 1 0



(d)

 1 0 3 2 2

0 1 5 3 1

0 0 0 1 0



(e)


1 0 3 2 2

0 1 5 3 1

0 0 0 1 0

0 0 0 0 0



(f)


1 0 3 2 2

0 1 5 3 1

0 0 0 1 0

0 0 0 0 1



4.2.2.For each augmented matrix in reduced row-echelon form below, give either the unique solution or the para-
metric solution.

(a)

 1 0 0 2

0 1 0 −1
0 0 1 3



(b)

 1 0 1 1

0 1 3 1

0 0 0 0



(c)

 1 2 0 3

0 0 1 5

0 0 0 0



(d)

 1 0 3 0 2

0 1 5 0 1

0 0 0 1 0



(e)


1 0 3 0 1 4

0 1 5 0 3 4

0 0 0 1 1 1

0 0 0 0 0 0



(f)


1 0 0 2 0 2

0 1 0 3 0 1

0 0 1 1 0 0

0 0 0 0 1 1



(g)


1 0 0 2 0 5 2

0 1 0 3 0 −1 1

0 0 1 1 0 3 0

0 0 0 0 1 2 1

0 0 0 0 0 0 1


4.2.3.Determine the value (or values) of k for which the system will have zero, exactly one, or infinitely many

solutions, if possible.

(a)
2x + ky = 6

3x + 6y = 0
(b)

2x + ky = 0

x + 4y = 0



EXERCISES FOR SECTION 4.2 258

(c)

x − ky + z = k

x + 2y − 2z = k

2kx + 2y − 2z = 2k.

4.2.4.Show that for any k1, k2 ∈ R, if ad− bc ̸= 0, then

ax + by = k1

cx + dy = k2

has a unique solution and state the solution.

4.2.5.Find the line of intersection for the planes given by the equations in the system.

(a)
−2x− 7y + z = 12

x+ 2y + 4z = 0.
(b)

x− y + z = 3

3x− 3y = 6.

4.2.6.Set up an augmented matrix and row reduce to solve the system of equations.

(a)

x1 + x2 = 4

−x1 + 2x2 = 2

x1 + x2 = 3

(b)
x1 + x2 = 4

−x1 + 2x2 = 2

(c)
x1 + x2 = 4

−x1 − x2 = −4

(d)

x1 + x3 = 4

−x1 + 2x2 = 2

3x2 + x3 = 3

(e)

x1 + x2 + x3 = 4

−x1 + 2x2 + 3x3 = 2

x1 + 3x2 + x3 = 3

(f)

x1 + 5x2 + 5x3 = 5

−x1 + 2x2 + 3x3 = 2

2x1 + 3x2 + 2x3 = 3

(g)

x1 + 5x2 + 5x3 + x4 = 5

−x1 + 2x2 + 3x3 + x4 = 2

2x1 + 3x2 + 2x3 = 3

(h)

x1 + 5x2 + 6x3 = 5

−x1 + 2x2 + 3x3 = 2

2x1 + 3x2 + 3x3 = 3

(i)

x1 + 5x2 + 4x3 = 1

−x1 + 2x2 + 1x3 = 2

2x1 + 3x2 + 3x3 = 3

(j)

x1 − 2x2 + 5x3 + x4 + x5 = 2

−x1 + 2x2 − x3 + x4 = 2

x1 + 3x2 + 2x3 + x5 = 3

(k)

x1 + 5x3 + x4 + x5 = 2

−x1 + 2x2 − x4 = 2

x1 + 3x2 + 2x3 + x5 = 3

x1 + 2x4 + x5 = 0



LINEAR INDEPENDENCE 259

4.3 Matrix Techniques

Gauss-Jordan elimination was a useful tool for finding solutions for a system
of equations in the last section. Now, think back to all those times we’ve
needed to solve a system of equations so far. All the work to learn this tech-
nique is about to pay off in a huge way.

It should also be noted that technology is often quite useful and helpful when
implementing Gauss-Jordan elimination.17 As with all technology, there are 17:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You mean with robots?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No, not specifically robots.advantages (efficiency!) and disadvantages (potential for inaccuracy!), but it
is not difficult to find reasonably simple-to-use matrix calculators.18

18:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Robots!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No, Ricky! Not robots!Linear Independence

If we’d like to determine whether or not a set is linearly independent, there is
a matrix we can construct and row reduce to answer this question.

Theorem 4.3.1 A set of vectors S = {v⃗1, . . . , v⃗n} ⊂ Rn is linearly inde-
pendent if and only if the matrix A = [v⃗1 · · · v⃗n] row reduces to a matrix
with a pivot in every column.

PROOF. We know that the set S is linearly independent if and only if the only
solution to

(4.19) x1v⃗1 + · · ·+ xnv⃗n = 0⃗

is the trivial solution with x1 = x2 = · · · = xn = 0. Let A = [v⃗1 · · · v⃗n]. We
can then rewrite Equation 4.19 as Ax⃗ = 0⃗ where

x⃗ =

 x1

...
xn

 .

We know this equation has the trivial solution, so whether or not that is the
only solution comes down to whether there are free variables. Now, we can
row reduce A. By Theorem 4.2.2, we know this will be the only solution if
and only if A has a pivot in every column. □

Example 4.3.1 Let us discover if the following set of vectors are linearly
independent: 

1

2

−1
1

 ,


−1
0

2

−2

 ,


0

−1
−2
2

 , and


2

1

1

−1

 .

Using these vectors as columns in a matrix, we have
1 −1 0 2

2 0 −1 1

−1 2 −2 1

1 −2 2 −1

 ,



FINDING A BASIS 260

which in reduced row-echelon form is
1 0 0 −1
0 1 0 −3
0 0 1 −3
0 0 0 0

 .

By Theorem 4.3.1, these vectors are not linearly independent since the last
column does not contain a pivot.

Exploration 111 Recall a set of three vectors in R3 will be a basis if it is
linearly independent since dimR3 = 3. Use Theorem 4.3.1 to determine
whether this set is a basis for R3. Note that row-echelon form is enough to
identify the locations of pivots.


 1

1

1

 ,

 1

1

0

 ,

 2

0

1



Finding a Basis

In that last exploration, we used row reduction to identify a basis since we
already knew the dimension of our space. What about when we don’t know
the dimension? Well, row reduction can do this for us too. However, we first
need to define some terminology to help us out.

Definition 4.3.1 The ith column in a matrix A is called pivot column if the
ith column of the row-echelon form of A contains a pivot. Since the rows
and columns of a matrix are each vectors, we will often refer to a pivot
column as a vector.

Note that a pivot column is the original column in the matrix before you put
the matrix in row-echelon form. Doing Gauss-Jordan elimination will identify,
not yield, which columns are pivot columns. For example, if you row reduce a
matrix A and find that the resulting matrix B has a pivot in the third column.
The third column of B is not a pivot column of A. However, since B has
a pivot in the third column, we know that the third column of A is a pivot
column.

Pivot columns, it turns out, are very important.19 19:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yes, but what about pea-voh
columns?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I think you’re supposed to accent
the second syllable in pea-voh.

Theorem 4.3.2 Let S = {v⃗1, . . . , v⃗n} be a set vectors in Rm. The pivot
columns of the matrix [v⃗1 · · · v⃗n] form a basis for Span {S}.



FINDING A BASIS 261

PROOF. Let A = [v⃗1 · · · v⃗n]. We can row reduce A to reduced row-echelon
form and identify the pivot columns. For reference, we will denote this re-
duced row echelon form of A by B. From Theorem 4.3.1, we see that in the
case where all the columns of A are pivot columns, the set S is linearly in-
dependent and forms a basis for Span {S}. Suppose now that there are free
variables, so that Ax⃗ = 0⃗ or equivalently

(4.20) x1v⃗1 + · · ·+ xnv⃗n = 0⃗.

has infinitely many solutions. Let us re-label the variables in Equation 4.20 so
that we sort between pivot and free variables. We will use y1, . . . , yk to denote
the pivot variables and z1, . . . , zl to denote the free variables. Then Equation
4.20 can be rearranged as

(4.21) y1v⃗y1
+ · · ·+ ykv⃗yk

+ z1v⃗z1 + · · ·+ zlv⃗zl = 0⃗.

Recall that our matrix B is the reduced row-echelon form of A. Thus, each
row is either a row of all zeros or it contains a pivot. Since we are trying to
determine linear independence, we can augment our matrix A by a column of
zeros, and the result for B will remain a column of zeros. We can then use
our technique of parametric solutions to write each pivot variable as a linear
combination of the free variables. That is, we can write

y1 = c11z1 + · · ·+ c1lzl

...

yk = ck1z1 + · · ·+ cklzl

for some real numbers cij determined by the entries of B. Now, any choice for
the free variables gives one specific solution in our solution space for Ax⃗ = 0⃗.
If we choose z1 = −1 and z2 = · · · = zl = 0, then y1, . . . , yk are determined
and give a solution to

y1v⃗y1
+ · · ·+ ykv⃗yk

− v⃗z1 = 0⃗.

This rearranges to give us

y1v⃗y1
+ · · ·+ ykv⃗yk

= v⃗z1 .

So the free variable vector v⃗z1 can be written as a linear combination of the
pivot column vectors v⃗y1 , · · · , v⃗yk

. The same can be done with a similar
choice for the free variables to solve for each of the vectors v⃗zi . Thus, the
pivot column vectors v⃗y1

, · · · , v⃗yk
are a spanning set for Span {S}.

To be a basis, we must also show that they are linearly independent. The easi-
est way to confirm this is to form the new matrix C = [y⃗1 · · · y⃗k] and perform
the same row operations on C as those used to reduce A to B. Because of the
definition of pivot columns, we will have a matrix with a pivot in every col-
umn, so the vectors {y⃗1, . . . , y⃗k} are linearly independent by Theorem 4.3.1.
Therefore, the pivot columns are a linearly independent spanning set, a.k.a. a
basis for Span {S}. □



FINDING A BASIS 262

Example 4.3.2 Let’s use this theorem to find a basis for a subspace. Let

S =




1

4

3

0

−1

 ,


2

0

−1
0

2

 ,


3

4

2

0

1

 ,


1

1

1

1

1

 ,


2

5

4

1

0

 ,


0

0

0

1

0




.

Now, we can use a matrix and row reduction to find a basis for Span {S}.
1 2 3 1 2 0

4 0 4 1 5 0

3 −1 2 1 4 0

0 0 0 1 1 1

−1 2 1 1 0 0

→


1 0 1 0 1 0

0 1 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1

0 0 0 0 0 0


Wow, we row reduced that one fast! Okay, fine. We just omitted all of
the steps. If you’re looking for some additional row reduction practice, this
would be a good one to try since you already have the answer. Now, let’s
talk about our basis for Span {S}. We see that columns 1, 2, 4, and 6 are
the pivot columns, so

B =




1

4

3

0

−1

 ,


2

0

−1
0

2

 ,


1

1

1

1

1

 ,


0

0

0

1

0




is a basis for Span {S}.

Exploration 112 Use the technique from the previous example to find a basis
for

Span




1

3

1

0

 ,


1

0

0

1

 ,


0

−6
−2
2

 ,


4

5

1

1

 ,


2

2

0

0


 .

One place we have needed to find a basis for a subspace in the past is when
computing the column space of a matrix. The concept of pivot columns helps
here naturally.



LINEAR COMBINATIONS 263

Example 4.3.3 Consider the matrix A defined below.

A =


1 0 2 3 1

3 1 2 1 2

3 1 2 1 2

1 0 2 0 1


Then we can row reduce to get

1 0 2 0 1

0 1 −4 0 −1
0 0 0 1 0

0 0 0 0 0

 .

Based on pivot columns, we see then that

B =




1

3

3

1

 ,


0

1

1

0

 ,


3

1

1

0




forms a basis for Col A. Recall that Col A = Imag TA, where TA is the
linear transformation induced by the matrix A. Thus, this gives us a way
to find the image of a linear transformation using matrix representations as
well.

We’ve seen now that row reducing a matrix can help us find a basis for the span
of a set of vectors. However, what would that look like when the set of vectors
is a spanning set for the vector space? Well, to be a spanning set, the expected
number of basis vectors identified would be at least the dimension of the vector
space. Since the dimension of the vector space is the same as the number of
rows in the matrix, we would see a pivot in every row of the corresponding
matrix, since the number of pivot columns must match the dimension of the
vector space.

Corollary 4.3.3 Suppose S = {v⃗1, . . . , v⃗m} is a subset of Rn. If the matrix
A = [v⃗1 . . . v⃗m] has a pivot in every row when row reduced, then S is a
spanning set for Rn.

Linear Combinations

We can actually do better than just determining whether vectors are linearly
dependent or not. If they are in fact linearly dependent, this matrix method
provides a nice way to write one of the vectors as a linear combination of the
others. To see this, let’s look at an example.

Example 4.3.4 Let’s just use the matrix from Example 4.3.2 for this one.

A =


1 2 3 1 2 0

4 0 4 1 5 0

3 −1 2 1 4 0

0 0 0 1 1 1

−1 2 1 1 0 0

→


1 0 1 0 1 0

0 1 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1

0 0 0 0 0 0





COORDINATE VECTORS 264

In our proof for Theorem 4.3.2, we saw that there was a way to solve for
any free variable vector in terms of the pivot columns by choosing −1 for
one free variable and 0 for the rest. Let’s see what happens when we do
this here. Using the convention of y’s for pivot variables and z’s for free
variables as in the proof, our parametric solution for Ax⃗ = 0⃗ becomes

y1 = −z1 − z2(4.22)

y2 = −z1(4.23)

y3 = −z2(4.24)

y4 = 0(4.25)

where y1, y2, y3, and y4 correspond to the pivot columns v⃗1, v⃗2, v⃗4, and v⃗6
and z1 and z2 correspond to the free variable columns v⃗3 and v⃗5. Choosing
z1 = −1 and z2 = 0 gives us a way to write v⃗3 as a linear combination of
the pivot columns, and choosing z1 = 0 and z2 = −1 gives us a way to
write v⃗5 as a linear combination of the pivot columns. Specifically, we have

v⃗3 = v⃗1 + v⃗2

v⃗5 = v⃗1 + v⃗4.

Because of how nice reduced row-echelon form is, we can actually see the
outcomes of these directly from the reduced free variable column.

Exploration 113 Form the same matrix as from Example 4.3.3 and then use
the entries in the reduced free variable columns to write the free variable col-
umn vectors as linear combinations of the pivot columns. Check your answer
by computing the linear combinations with the vectors.

Exploration 114 The following set of vectors are clearly linearly dependent.
Set up a matrix and row reduce to find a way to write one of the vectors as a
linear combination of the others.

 1

1

1

 ,

 1

1

0

 ,

 2

2

1

 ,

 2

1

1



Coordinate Vectors

Now that we are talking about how matrices allow us to write vectors as linear
combinations of basis vectors, we should really say something about coordi-
nate vectors, too.



COORDINATE VECTORS 265

Recall that if we have a basis B = {⃗b1, . . . , b⃗n} for a vector space V , then for
any vector v⃗ ∈ V , we can write v⃗ as a unique linear combination of the vectors
in B; that is, v⃗ = a1⃗b1+ · · ·+anb⃗n for some scalars a1, . . . , an. These scalars
are the coordinates for v⃗ relative to B:

[v⃗]B =

 a1
...
an

 .

We now have a very convenient method for finding these coordinates. We want
to solve the vector equation

(4.26) a1⃗b1 + · · ·+ anb⃗n = v⃗

for the scalars a1, . . . , an. If V = Rn, then this is equivalent to the matrix
equation and augmented matrix,[⃗

b1 · · · b⃗n
]
[v⃗]B = v⃗ and

[⃗
b1 · · · b⃗n | v⃗

]
,

respectively. This is also equivalent to a system of equations, but at this point,
we suspect solving by way of the augmented matrix is the preferred method.

Example 4.3.5 Let

H = Span




1

2

−1
1

 ,


−1
0

2

−2

 ,


0

−1
−2
2


 .

From the row reduction in Example 4.3.1 and Theorem 4.3.2, we know these
three vectors

B =

b⃗1 =


1

2

−1
1

 , b⃗2 =


−1
0

2

−2

 , b⃗3 =


0

−1
−2
2


 .

form a basis for H . Let’s find the coordinates for

v⃗ =


2

1

1

−1


relative to B. That is, we want to find scalars a1, a2, a3 where

v⃗ = a1⃗b1 + a2⃗b2 + a3⃗b3, so that [v⃗]B =

 a1
a2
a3

 .

This vector equation can be written as an augmented matrix and its reduced
row-echelon form

1 −1 0 2

2 0 −1 1

−1 2 −2 1

1 −2 2 −1

 and


1 0 0 −1
0 1 0 −3
0 0 1 −3
0 0 0 0

 .



COORDINATE VECTORS 266

From this we see that v⃗ = −b⃗1 − 3⃗b2 − 3⃗b3, so [v⃗]B =

 −1−3
−3

.

Exploration 115 Consider the basis B0 =


 1

1

1

 ,

 1

0

1

 ,

 0

1

1

 of R3.

Write the vector

 3

1

0

 as a linear combination of these basis vectors.

What about if we want to find multiple coordinate vectors with respect to the
same basis? This was what we had to do when finding the matrix representa-
tions for a linear transformation with respect to a non-standard basis. Well, we
can augment with multiple vectors at once!

Example 4.3.6 Again consider the basis

B0 =


 1

1

1

 ,

 1

0

1

 ,

 0

1

1

 of R3.

Suppose we have a linear transformation T : R3 → R3 such that

T

 1

1

1

 =

 −1−1
2

 ,

T

 1

0

1

 =

 −10
0

 , and

T

 0

1

1

 =

 0

1

1

 .

In order to find the matrix representation for T with respect to the basis B0,
we need now to convert the outputs given here into coordinate vectors for
B0. Instead of row-reducing 3 separate times, we can do this all at once.



COORDINATE VECTORS 267

 1 1 0 −1 −1 0

1 0 1 −1 0 1

1 1 1 2 0 1

→
 1 0 0 −4 −1 0

0 1 0 3 0 0

0 0 1 3 1 1


Then

A =

 −4 −1 0

3 0 0

3 1 1


is the matrix representation for T with respect to the basis B0.

Lastly, can row reduction help us when our vector space is not Rn for some
positive integer n? Of course it can. The key is finding coordinate vectors, and
it’s best to choose the standard basis since it’s easier to work with. From there,
we could apply any technique we want from the Rn setting and then translate
our results back.

Example 4.3.7 Let’s determine the coordinates for p⃗ = 2x3−4x+5 relative
to the vectors in the basis

B =
{
1, x, x2 − 1, x3 − 3x

}
for P3. Righto. We just need to find scalars a1, . . . , a4 such that

a1(1) + a2(x) + a3(x
2 − 1) + a4(x

3 − 3x) = 2x3 − 4x+ 5.

Maybe that sounds like fun to you. If it does, great! There is, however,
another way. . .
Recall that the standard basis for P3 is

E =
{
1, x, x2, x3

}
,

so we can write

[1]E =


1

0

0

0

 , [x]E =


0

1

0

0

 ,

[
x2 − 1

]
E =


−1
0

1

0

 , and
[
x3 − 3x

]
E =


0

−3
0

1

 .

Similarly,

[p⃗]E =
[
2x3 − 4x+ 5

]
E =


5

−4
0

2

 .

Now we can turn the problem of finding scalars such that

a1 [1]E + a2 [x]E + a3
[
x2 − 1

]
E + a4

[
x3 − 3x

]
E =

[
2x3 − 4x+ 5

]
,

or

a1


1

0

0

0

+ a2


0

1

0

0

+ a3


−1
0

1

0

+ a4


0

−3
0

1

 =


5

−4
0

2

 .



KERNEL OF A MATRIX 268

As we’ve seen, we can write this as the augmented matrix
1 0 −1 0 5

0 1 0 −3 −4
0 0 1 0 0

0 0 0 1 2

 ,

which, in reduced row-echelon form, is
1 0 0 0 5

0 1 0 0 2

0 0 1 0 0

0 0 0 1 2

 .

Thus, a1 = 5, a2 = 2, a3 = 0, and a4 = 2. Note that along the way
we also verified that B is a basis for P3 since the columns in the reduced
matrix corresponding to B all contain pivots and the set’s size matches the
dimension of P3.

Kernel of a Matrix

We’ve already discussed this in some examples in the previous section, but it’s
important enough to revisit. By definition,

Ker A = {x⃗ ∈ Rn : Ax⃗ = 0⃗}

for any A ∈ Mm×n. Now, solving Ax⃗ = 0⃗ for x⃗ can be done using the
augmented matrix representation of the matrix equation.

Example 4.3.8 Let’s find Ker A where

A =


1 −1 0 2

2 0 −1 1

−1 2 −2 1

1 −2 2 −1

 .

Then we row reduce this to get
1 0 0 −1
0 1 0 −3
0 0 1 −3
0 0 0 0

 .

Since we are solving Ax⃗ = 0⃗, the column we would augment would only be
a column of zeros, and such a column is never changed by row operations.
Thus, we can omit the augmentation when solving Ax⃗ = 0⃗. To find Ker A,
we write the parametric solution.

x1 = x4

x2 = 3x4

x3 = 3x4

x4 free

Now, we can convert this to a set of solutions. In this case, we know the set
of solutions will actually be a subspace since we know Ker A is always a



KERNEL OF A MATRIX 269

subspace. Thus,

Ker A =




1

3

3

1

x4 : x4 ∈ R

 = Span




1

3

3

1


 .

Recall that for any linear transformation T : V → W , we can find a matrix
representation A. Then Ker A can be translated by a coordinate mapping into
Ker T , and thus, computing Ker A can be an essential step for finding Ker T .

Example 4.3.9 Suppose T : P3 → R4 is defined by

T (a+ bx+ cx2 + dx3) =


a− b+ 2d

2a− c+ d

−a+ 2b− 2c+ d

a− 2b+ 2c− d

 .

Then the matrix representation with respect to the standard bases for P3 and
R4 is the familiar

A =


1 −1 0 2

2 0 −1 1

−1 2 −2 1

1 −2 2 −1

 .

From our previous example, we know

Ker A =




1

3

3

1

x4 : x4 ∈ R

 = Span




1

3

3

1


 .

Now, to translate this to Ker T , we need to view these as coordinate
vectors with respect to our standard basis for P3. Thus, Ker T =

Span
{
1 + 3x+ 3x2 + x3

}
.

Exploration 116 Let T : R3 → R3 be defined by

T

 x1

x2

x3

 =

 x1 + x2

x3

x3

 .

Find the matrix representation A for the linear transformation T on the stan-
dard basis vectors for R3. Use this matrix to find a basis for both Imag T and
Ker T .



SECTION HIGHLIGHTS 270

Section Highlights

▶ Any column of a matrix, A, that has a pivot when row reduced is
called a pivot column. Note that the pivot column is a column in the
original matrix A, not its row reduced form. See Definition 4.3.1.

▶ A set of vectors in Rn is linearly independent if and only if the ma-
trix with those vectors as columns has a pivot in every column. See
Theorem 4.3.1.

▶ A set of vectors in Rn is a spanning set for Rn if and only if the
matrix formed using those vectors as columns has a pivot in every
row when row reduced. See Corollary 4.3.3.

▶ Suppose H = Span {v⃗1, . . . , v⃗n} is a subspace of Rm. The set of
pivot columns of A = [v⃗1 . . . v⃗n] is a basis for H . See Theorem
4.3.2.

▶ The set of pivot columns of a matrix, A, is a basis for Col A, which
is the image of the linear transformation TA. See Example 4.3.3.

▶ The coordinate vector for a vector x⃗ with respect to a basis B can be
computed in the following manner:

– Use the vectors in B as the columns of a matrix and augment
it with x⃗.

– Row reduce to reduced row-echelon form.

– Read the coordinate vector for x⃗ from the augmented column.

See Example 4.3.5 and Example 4.3.7

▶ Row operations do not change the kernel of a matrix. Thus, to find
the kernel, row reduce to reduced row-echelon form; the parametric
solution to the row reduce matrix augmented with the zero vector
describes the kernel. See Example 4.3.8.



EXERCISES FOR SECTION 4.3 271

Exercises for Section 4.3

4.3.1.Determine whether the set is linearly dependent or linearly independent. If they are linearly dependent, set
up a matrix and row reduce to find a way to write one of the vectors as a linear combination of the others.

(a)


 1

1

1

 ,

 −1−1
−2

 ,

 5

5

3


(b)


 1

0

1

 ,

 1

−1
−2

 ,

 3

5

3


(c)


 1

−1
1

 ,

 −10
−1

 ,

 2

4

2


(d)


 1

0

1

 ,

 1

−1
1

 ,

 3

5

3

 ,

 1

0

0



(e)




1

0

1

1

 ,


1

−1
1

0

 ,


3

5

3

0

 ,


1

0

0

0




(f)




2

0

−6
0

 ,


1

−1
−3
0

 ,


3

0

−3
0

 ,


−2
2

6

0




(g)




2

0

−6
0

 ,


1

−1
−3
0

 ,


3

0

−3
0

 ,


−2
2

6

0

 ,


−1
0

0

1




4.3.2.Use the concept of pivot columns to determine whether the set is a basis for R3.

(a)


 1

1

1

 ,

 1

1

0

 ,

 2

1

0


(b)


 1

−1
1

 ,

 1

1

0

 ,

 2

0

1


(c)


 1

−1
1

 ,

 1

1

0

 ,

 2

1

1





EXERCISES FOR SECTION 4.3 272

(d)


 1

−1
−1

 ,

 1

0

0

 ,

 1

1

1


4.3.3.Use the concept of pivot columns to determine a basis for each subspace H .

(a) H = Span




1

1

1

0

 ,


1

−1
0

1

 ,


4

2

3

0

 ,


0

0

1

0




(b) H = Span




1

1

1

0

−1

 ,


−1
−1
0

1

0

 ,


0

1

0

0

0

 ,


0

1

0

0

1




(c) H = Span

{
1 + x, 2− x+ x4, x2 − 3x3, 1− 2x+ x4

}
(d) H = Span

{
1 + x+ x4, 1− 2x, 1 + x2 − 3x3, 2− x+ x4

}

(e) H = Span




1

1

0

0

1

 ,


1

−1
0

0

1

 ,


2

0

3

0

1

 ,


0

0

1

0

0




4.3.4.Consider the basis B0 =


 1

0

1

 ,

 1

2

1

 ,

 0

0

1

 of R3. Write the vector

 3

1

1

 as a linear combina-

tion of these basis vectors.

4.3.5.Consider the basis B1 =


 2

1

0

 ,

 1

1

1

 ,

 1

1

3

 of R3. Write the vector

 3

1

0

 as a linear combina-

tion of these basis vectors.

4.3.6.Consider the basis B2 =


 1

−1
0

 ,

 1

1

−1

 ,

 1

0

1

 of R3. Find the coordinate vectors below.

(a)

 1

−1
0


B2

(b)

 2

−1
0


B2

(c)

 0

−1
1


B2

(d)

 2

−1
3


B2



EXERCISES FOR SECTION 4.3 273

4.3.7.Use the method from Example 4.3.6 to find the matrix for T with respect to the given basis B.

(a) T : R3 → R3 be defined by

T

 x1

x2

x3

 =

 x1 + x2

x3

3x1 + 3x2

 with respect to the basis B =


 1

−1
0

 ,

 2

1

−1

 ,

 0

0

1



(b) T : R3 → R3 be defined by

T

 x1

x2

x3

 =

 x1 + x2

x3

3x1 + 3x2 + x3

 with respect to the basis B =


 0

−1
0

 ,

 1

1

−1

 ,

 0

0

1


(c) T : P2 → P2 be defined by

T
(
a0 + a1x+ a2x

2
)
= (a0 + a1) + (a2)x

2 with respect to the basis B =
{
1, 1 + x, 1 + x+ x2

}

4.3.8.Let T : R3 → R3 be defined by

T

 x1

x2

x3

 =

 x2 − x3

x2 + x3

x3

 .

Find the matrix A that represents T on the standard basis vectors for R3. Use this matrix to compute Imag T

and Ker T .

4.3.9.Let T : R3 → R3 be defined by

T

 x1

x2

x3

 =

 x1 − x3

x2 − x3

x3

 .

Find the matrix A that represents T on the standard basis vectors for R3. Use this matrix to compute Imag T

and Ker T .

4.3.10.Let T : P2 → P3 be defined by

T
(
a0 + a1x+ a2x

2
)
= a0x+ 3a0x

2 + (a1 + a2)x
3.

Find the matrix A that represents T on the standard basis vectors for P2 and P3. Use this matrix to compute
Imag T and Ker T .

4.3.11.Let T : P2 → R2 be defined by

T
(
a0 + a1x+ a2x

2
)
=

[
a0 + a1 + a2
2a0 − a2

]
.

Find the matrix A that represents T on the standard basis vectors for P2 and R2. Use this matrix to compute
Imag T and Ker T .



ADDITION, SCALAR MULTIPLICATION, AND MATRIX/VECTOR MULTIPLICATION 274

4.4 Matrix Operations

Where are we now?20 We’ve introduced matrices as a convenient way to repre- 20:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

As a civilization?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I think I have a map here some-
where. . .

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Oh! The margin! We are in the
margin.

sent linear transformations. We’ve also developed a systematic way to simplify
them, row operations and Gauss-Jordan Elimination, and seen that since this
helps us solve systems of equations, it is essentially an alternative method for
doing everything we’ve learned so far. Well, except showing a set’s a vector
space. Row operations are no help there. That does remind us though that we
should talk about vector space-style operations on matrices. That’s where we
are.

Addition, Scalar Multiplication, and Matrix/Vector Multipli-
cation

We’ve made a big deal so far about how a matrix can be used to represent
a linear transformation. Now, a linear transformation is a function, and an
operation we have for two functions with the same domain and codomain is
function addition.

Example 4.4.1 Let f : R → R be defined by f(x) = x+ 3 and g : R → R
be defined by g(x) = x− 4. There is then a function

f + g : R→ R

defined by

(f + g)(x) = f(x) + g(x) = (x+ 3) + (x− 4) = 2x− 1.

This is likely something you’ve seen before. Now, we haven’t discussed
whether adding two linear transformations with the same domain and codomain
should give us a new linear transformation. It does; we just haven’t mentioned
it before. We can also scale a linear transformation to obtain a new linear
transformation. Maybe we should say this using official-sounding words.

Theorem 4.4.1 Let T : V →W and S : V →W be linear transformations.
(a) Then T + S : V →W defined using the usual function addition is

also a linear transformation.
(b) Let k ∈ R. Then kT : V → W defined by scaling each output of

the linear transformation T by k is also a linear transformation.

The proof of this gets us a bit off-track, so we’ve put it in the exercises. You
do remember how to show a function is a linear transformation, right?

Let’s get back to talking about matrices. We’ve just defined two operations
on linear transformations. Since we’ve made it quite clear that matrices and
linear transformations are deeply linked, there should be analogous operations
for matrices. We call these componentwise addition and scalar multiplication.



ADDITION, SCALAR MULTIPLICATION, AND MATRIX/VECTOR MULTIPLICATION 275

First, we can illustrate this with 2× 2 matrices.[
a b

c d

]
+

[
e f

g h

]
=

[
a+ e b+ f

c+ g d+ h

]
and

k

[
a b

c d

]
=

[
ka kb

kc kd

]
,

for some scalar k ∈ R. Generally, we have the following definition.

Definition 4.4.1 ▶ The sum of two m × n matrices
21: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

They must have the same
dimensions!

21 [aij ] and [bij ]

is the m× n matrix [cij ] whose entries satisfy cij = aij + bij .
▶ The scalar multiple of a matrix [aij ] by a scalar k ∈ R is the m×n

matrix [dij ] whose entries satisfy dij = kaij .

Exploration 117 Use the definitions above to compute these:

▶

[
1 2 4

3 1 −2

]
+

[
−2 0 1

−1 −2 4

]
=

▶ 3

[
1 2 4

3 1 −2

]
=

We’ve saved matrices for the latter half of the book, but we could have dis-
cussed them back in Section 1.1 because we can also think of them as vectors.
For example, observe that

[
a b c

d e f

]
∈M2×3 and



a

b

c

d

e

f


∈ R6

contain the same information. Our operations of vector addition and scalar
multiplication in this case would even match this new componentwise addition
and scalar multiplication for matrices. Thus, the following theorem shouldn’t
be a surprise.

Theorem 4.4.2 The set of m × n matrices, denoted Mm×n, is a vector
space with componentwise addition and scalar multiplication.

We could further explore the identification between matrices in Mm×n and
vectors in Rmn to actually form an isomorphism and prove this theorem.
Moveover, once we’ve agreed Mm×n is a vector space, we can get the fol-
lowing corollary.

Corollary 4.4.3 The set of linear transformations T : Rn → Rm is a vector
space with function addition and scalar multiplication.



MATRIX MULTIPLICATION 276

The statement follows because we could map any matrix A to its induced
linear transformation TA and get an isomorphism. This game of declaring
something is a vector space because we can define an isomorphism seems like
a lot of fun,22 but let’s get back to matrices. 22: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Because it is!

While we didn’t previously talk about how matrices form a vector space, we
did define a way to multiply a matrix A = [⃗a1 · · · a⃗n] and a vector x⃗ ∈ Rn:

Ax⃗ = [⃗a1 · · · a⃗n]

 x1

...
xn

 = x1a⃗1 + · · ·+ xna⃗n.

We’ve gotten a lot of mileage out of this definition; most notably, it allowed us
to think of matrices as functions, which paved the way for using matrices as
representations for linear transformations. We should “jump start” something
to complete the lap of car metaphors.23 23:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

or perhaps. . . we should tap on
the brakes?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Oh, well done, Bubbles!
Matrix Multiplication

The next logical operation on matrices would be multiplication of two ma-
trices.24 As with vectors, there are a lot of ways to think about a product of 24: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Recall from Chapter 1 that this
was complicated for vectors.matrices, but a particularly useful and instructive one comes from function

composition, an essential tool in function theory.25 We saw in Theorem 3.2.3
25: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Recall from Chapter 3 that we
needed function composition to make
inverses.

that the composition of two linear transformations is again a linear transfor-
mation.

Just as we just did with addition and scalar multiplication, we’d like to translate
this operation to matrices. Suppose A = [⃗a1 · · · a⃗n] ∈ Mm×n and B =

[⃗b1 · · · b⃗p] ∈ Mn×p; we have induced linear transformations TA : Rn → Rm

and TB : Rp → Rn. From Theorem 3.2.3, we know the composition TA ◦
TB : Rp → Rm forms a linear transformation. How can the matrices A and B

to reflect this?

Let x⃗ ∈ Rp. Then we have

(TA ◦ TB)(x⃗) = TA (TB(x⃗)) by definition of composition
= TA(Bx⃗) since TB(x⃗) = Bx⃗

= A(Bx⃗) since Bx⃗ ∈ Rn

and TA(u⃗) = Au⃗ for all u⃗ ∈ Rn.

Thus, for composition to agree with matrix multiplication, we need to have
our matrix product AB satisfy (AB)x⃗ = A(Bx⃗). Calculating the expression
on the right hand side of this, we have

A(Bx⃗) = A
(
x1⃗b1 + · · ·xnb⃗n

)
= x1Ab⃗1 + · · ·+ xnAb⃗n = [Ab⃗1 · · ·Ab⃗n]x⃗.

This then dictates precisely what our matrix product should be.

Definition 4.4.2 Let A ∈ Mm×n and B = [⃗b1 · · · b⃗p] ∈ Mn×p. Then we
define the product of matrices A and B to be the matrix AB ∈ Mm×p



MATRIX MULTIPLICATION 277

given by
AB = A[⃗b1 · · · b⃗p] = [Ab⃗1 · · ·Ab⃗p].

Defining the product AB in this fashion gives us a natural way to have a matrix
representation for a composition of linear transformations.

Theorem 4.4.4 Let A ∈ Mm×n and B ∈ Mn×p, and let TA : Rn → Rm

and TB : Rp → Rn be the induced linear transformations. Then the matrix
AB ∈Mm×p has induced linear transformation TAB = TA ◦ TB .

PROOF. Note first that the product AB makes sense based on the dimensions
of the matrices A and B. This is equivalent to checking that the composition
TA ◦ TB also maps between the appropriate spaces.26 Let x⃗ ∈ Rp. Using 26: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Exercise!
the definition of matrix multiplication and our definition for the linear trans-
formation induced by a matrix, we have TAB(x⃗) = (AB)x⃗ = A(Bx⃗) =

A(TB(x⃗)) = TA(TB(x⃗)) = TA ◦ TB(x⃗).27 □ 27: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You will also justify each of
these equalities as an exercise.

Example 4.4.2 Let

A =

[
1 2 3

4 5 6

]
and B =

 7 8

9 10

11 12

 .

Let’s calculate AB. To make it clear what’s happening, let’s also shade the
second column of B.

AB = A

 7 8

9 10

11 12



=

 A

 7

9

11

 A

 8

10

12




=

 [
1 2 3

4 5 6

] 7

9

11

 [
1 2 3

4 5 6

] 8

10

12




=

[
7

[
1

4

]
+ 9

[
2

5

]
+ 11

[
3

6

]
8

[
1

4

]
+ 10

[
2

5

]
+ 12

[
3

6

] ]

=

[
7 + 18 + 33 8 + 20 + 36

28 + 45 + 66 32 + 50 + 72

]

=

[
58 64

139 154

]
.



MATRIX MULTIPLICATION VIA TRANSPOSE 278

Let’s calculate BA. Hey, three columns in A? We’ll shade the middle
column to help keep things clear.

BA = B

[
1 2 3

4 5 6

]

=

[
B

[
1

4

]
B

[
2

5

]
B

[
3

6

] ]

=


 7 8

9 10

11 12

[
1

4

]  7 8

9 10

11 12

[
2

5

]  7 8

9 10

11 12

[
3

6

] 

=

1

 7

9

11

+ 4

 8

10

12

 2

 7

9

11

+ 5

 8

10

12

 3

 7

9

11

+ 6

 8

10

12




=

 7 + 32 14 + 40 21 + 48

9 + 40 18 + 50 27 + 60

11 + 48 22 + 60 33 + 72



=

 39 54 69

49 68 87

59 82 105

 .

You probably noticed that AB ̸= BA. Lots of types of multiplication are
commutative, but evidently, matrix multiplication is not. Matrix multiplica-
tion is so badly not commutative, the product AB and the product BA are
not even the same dimension!

Exploration 118 Let

A =

[
1 2

3 4

]
and B =

[
5 6

7 8

]
.

Calculate AB and BA and verify that matrix multiplication does not commute.

Matrix Multiplication via Transpose

There is another way to think about this matrix multiplication that is often
used. We will first need a new definition.

Definition 4.4.3 Let A ∈ Mm×n. The transpose of A, denoted AT , is the
matrix in Mn×m derived from A by making the jth column of A into the
jth row for each 1 ≤ j ≤ n.



MATRIX MULTIPLICATION VIA TRANSPOSE 279

Example 4.4.3 Let

A =

 1 4

2 5

3 6

 and B =

 1 2 3

0 4 5

0 0 6

 .

Then

AT =

[
1 2 3

4 5 6

]
and BT =

 1 0 0

2 4 0

3 5 6

 .

Now that we have that, we make the following observation:

Mn×1 =


 x1

...
xn

 : xi ∈ R

 = Rn,

and

M1×n = {[x1 · · ·xn] : xi ∈ R} =


 x1

...
xn


T

: xi ∈ R

 ∼= Rn.

28 Clearly, the concept of a matrix transpose applies on a single row or column 28: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I always write my vectors hor-
izontally with ⟨, ⟩ brackets, so it is your
weird set that is isomorphic to Rn.

vector because they are matrices. This gives us the following fun interpretation
of matrix multiplication.

Theorem 4.4.5 Let A ∈ Mm×p and B ∈ Mp×n. Then the product AB ∈
Mm×n is the matrix whose entry in the ith row and jth column is the inner
product of the transpose of the ith row of A with the jth column of B for all
1 ≤ i ≤ m and 1 ≤ j ≤ n. That is,

AB = [(ab)ij ] , where (ab)ij = r⃗Ti · b⃗j ,

where r⃗i is the ith row of A and b⃗j is the jth column of B.

Exploration 119 We will prove Theorem 4.4.5 together! First, let x⃗ ∈ Rp and
write out Ax⃗ as a single vector

Now convince yourself that for any vector x⃗ ∈ Rp, we have

Ax⃗ =

 r⃗T1 · x⃗
...

r⃗Tm · x⃗

 ,

where r⃗i are the row vectors of A for 1 ≤ i ≤ m.



PROPERTIES OF MATRIX MULTIPLICATION 280

Now use the fact that AB = [Ab⃗1 · · ·Ab⃗n] to complete the proof.

Example 4.4.4 Let

A =

[
1 2 3

4 5 6

]
and B =

 7 8

9 10

11 12

 .

Let’s calculate AB using this new method. Note first that we have

r⃗T1 =

 1

2

3

 , r⃗T2 =

 4

5

6

 , b⃗1 =

 7

9

11

 , and b⃗2 =

 8

10

12


Then

AB =

[
r⃗T1 · b⃗1 r⃗T1 · b⃗2
r⃗T2 · b⃗1 r⃗T2 · b⃗2

]

=



 1

2

3

 ·
 7

9

11

  1

2

3

 ·
 8

10

12


 4

5

6

 ·
 7

9

11

  4

5

6

 ·
 8

10

12




=

[
58 64

139 154

]
.

Properties of Matrix Multiplication

Like any other respectable mathematical operation, matrix multiplication has
some nice properties. We’ve already discovered the deplorable fact that ma-
trix multiplication is not commutative, and that makes everybody very sad.29 29: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Except the algebraists special-
izing in non-commutative algebras.Before we celebrate some things that matrix multiplication actually does well,

we need a definition:

Definition 4.4.4 The identity matrix is the square matrix In ∈ Mn×n

whose columns are the standard basis for Rn in order. That is,

In = [e⃗1 e⃗2 · · · e⃗n] =


1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1

 .



PROPERTIES OF MATRIX MULTIPLICATION 281

Note that the identity matrix corresponds to the identity map for a vector space,
the linear transformation that sends each vector to itself. Formally, TI = T ,
where T : V → V is given by T (x⃗) = x⃗ for all x⃗ ∈ V . Now, commence
celebration!

Theorem 4.4.6 Let k ∈ R, and A ∈ Mm×n, and let B and C be matrices
of the size necessary for each of the following operations to be well-defined.
Then

(a) (AB)C = A(BC) (associativity of matrix multiplication)
(b) A(B+C) = AB+AC (left distribution of matrix multiplication)
(c) (B+C)A = BA+CA (right distribution of matrix multiplication)
(d) k(AB) = (kA)B = A(kB)

(e) ImA = A = AIn (identity for matrix multiplication)

Those look wonderful! Unfortunately, their proofs do not. They are not diffi-
cult, but the amount of notation and page space required makes them an eye-
sore we would rather avoid. Let’s verify one of these for 2× 2 matrices just so
we don’t feel quite so bad about cheating you out of the glorious satisfaction
of a thorough proof.30 30:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I always knew you authors
were dirty cheaters! How dare you not
include the proof?! I know Nicky, for
one, will never forgive you.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Umm. . . I know the proof here, and
I’m actually good with the fact that they
chose not to show it.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Really? I’m not. I demand satis-
faction!

Example 4.4.5 Let’s start with some 2× 2 matrices.

A =

[
a1 a2
a3 a4

]
B =

[
b1 b2
b3 b4

]
C =

[
c1 c2
c3 c4

]
Now, we will verify A(B + C) = AB + AC. This one should give us a
nice flavor for what all of the proofs would have looked like.

A(B+C) =

[
a1 a2
a3 a4

]([
b1 b2
b3 b4

]
+

[
c1 c2
c3 c4

])
=

[
a1 a2
a3 a4

] [
b1 + c1 b2 + c2
b3 + c3 b4 + c4

]
=

[
a1(b1 + c1) + a2(b3 + c3) a1(b2 + c2) + a2(b4 + c4)

a3(b1 + c1) + a4(b3 + c3) a3(b2 + c2) + a4(b4 + c4)

]
=

[
a1b1 + a1c1 + a2b3 + a2c3 a1b2 + a1c2 + a2b4 + a2c4
a3b1 + a3c1 + a4b3 + a4c3 a3b2 + a3c2 + a4b4 + a4c4

]
=

[
a1b1 + a2b3 a1b2 + a2b4
a3b1 + a4b3 a3b2 + a4b4

]
+

[
a1c1 + a2c3 a1c2 + a2c4
a3c1 + a4c3 a3c2 + a4c4

]
=AB +AC

Now that you’ve seen Example 4.4.5, you can imagine how the general proofs
for these statements go.31 31:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I take back that dirty cheater
comment. Thank you for omitting these.

There’s something cool we get as a consequence of these properties.

Corollary 4.4.7 Let A ∈Mn×m. There is a linear transformation

MA :Mm×p →Mn×p

defined by MA(B) = AB for any B ∈Mm×p.

The proof of this is a wonderful application of Theorem 4.4.6 that you should
expect to see as an exercise.



ROW OPERATIONS AS MATRIX MULTIPLICATION 282

Properties of the Transpose

As part of our second definition of matrix multiplication, we introduced the
concept of the transpose of a matrix. This concept will actually have some
nice connections to applications, so we should say a bit more about it. Recall
that computing the transpose of a matrix is done by taking a row vector and
making it a column vector.32 There are several nice properties of this operation. 32: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Or vice-versa, right?

Theorem 4.4.8 Let A,B ∈Mm×n and α ∈ R. Then
(a) (A+B)T = AT +BT ,
(b) (αA)T = αAT , and
(c) (AT )T = A.

PROOF. Some of these should be done as an exercise, but we’ll get the ball
rolling by doing a together. Suppose A = [aij ] and B = [bij ] for 1 ≤ i ≤ n

and 1 ≤ j ≤ m. Then, A + B = [aij + bij ] by the definition of addition of
matrices. Note that we defined the transpose as swapping rows and columns,
but we can also say what happens to each entry. If aij is in the ith row and
jth column of A, then it is in the jth row and ith column of AT . Let’s denote
this entry in AT as aji and note that it is equal to aij . Keeping this notational
convention, we can denote the entry in the jth row and ith column of (A+B)T

as a+ bji and it will be equal to aij+bij . This is then equal to aji+bji. Thus,
(A+B)T = AT +BT . □

This next one is a fun property.

Theorem 4.4.9 Let A ∈Mm×p and B ∈Mp×n. Then

(AB)T = BTAT .

PROOF. It is easy to check that both (AB)T , BTAT ∈Mn×n. Let cij be the
entry in BTAT in the ith row and jth column. By Theorem 4.4.5, cij is the
inner product of the ith row of BT and the jth column of AT . This is the same
as the inner product of the j row of A and the ith column of B. It follows that
cij is also the entry in (AB)T in the ith row and jth column. □

Row Operations as Matrix Multiplication

We’ve now discussed several matrix operations and seen how they are tied
closely to analogous operations on linear transformations. One we haven’t
yet connected back to linear transformations is row operations, so let’s do that
now. Let A ∈ Mn×m. Since each of our row operations on A treat an entire
row of A the same, there is actually a linear transformation Tr : Rn → Rn for
each of the row operations r. For example, the row operation that swaps the
first two rows of A corresponds to the linear transformation Tr⃗1↔r⃗2 : Rn →



ROW OPERATIONS AS MATRIX MULTIPLICATION 283

Rn defined as

Tr⃗1↔r⃗2




x1

x2

...
xn


 =


x2

x1

...
xn

 .

Swapping any other rows would be similar. The row operation that scales the
first row of A by a nonzero scalar k ∈ R corresponds to the linear transforma-
tion Tkr⃗1→r⃗1 : Rn → Rn defined as

Tkr⃗1→r⃗1




x1

x2

...
xn


 =


kx1

x2

...
xn

 .

Scaling any other rows would be similar. The row operation that replaces the
first row with the sum of the first row and the second row scaled by k ∈ R
corresponds to the linear transformation Tr⃗1+kr⃗2→r⃗1 : Rn → Rn defined as

Tr⃗1+kr⃗2→r⃗1




x1

x2

...
xn


 =


x1 + kx2

x2

...
xn

 .

As before, doing this with other rows would be similar. Each of these linear
transformations then has a matrix representation Er with respect to the stan-
dard basis.

Er⃗1↔r⃗2 =


0 1 · · · 0

1 0 · · · 0
...

...
. . .

...
0 0 · · · 1

 Ekr⃗1→r⃗1 =


k 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



Er⃗1+kr⃗2→r⃗1 =


1 k · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


Now, we didn’t actually prove that these were linear transformations or that
these were the matrix representations.33 Since this section is already getting a 33:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I believe that these are linear
transformations. Seems pretty obvious.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Didn’t you demand satisfaction for
matrix addition just a couple of pages
ago?

bit long, we’ll relegate these formalities to the exercises.

We defined these to correspond to row operations, but each linear transforma-
tion, Er : Rn → Rn, will really only convert a column at a time. However,
using our definition of matrix multiplication and Theorem 4.4.7, we can define
Er :Mn×m →Mn×m by

ErA = Er [⃗a1 a⃗2 · · · a⃗m] = [Era⃗1 Era⃗2 · · ·Era⃗m].

This means we can row reduce A using matrix multiplication! These matri-
ces that correspond to row operations are important enough to have their own
name.



SECTION HIGHLIGHTS 284

Definition 4.4.5 We call E ∈ Mn×n an elementary matrix if for any A ∈
Mn×m, the matrix EA is the matrix A after performing a row operation
on A.

If we look at the specific elementary matrices we’ve seen so far, they are all
one row operation away from the identity matrix In.

Theorem 4.4.10 If B ∈Mn×m is the result of performing a row operation
on a matrix A ∈ Mn×m and E is the result of performing that same row
operation on In, then B = EA.

This is very convenient. If you want to do a row operation to A, then you could
just do it to In and multiply that with A, and you get the same result as if you
did the row operation to A. The proof of this theorem has a very similar flavor
to how we found the Er above, so we will omit it.34 34:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

CHEATERS!

Example 4.4.6 Let’s see it in action though. Let us define

A =

 2 1 0

−1 3 −2
1 1 1

 .

Suppose we would like to swap the first and third rows of A. Then the
appropriate elementary matrix E would be

E = Er⃗1↔r⃗3 =

 0 0 1

0 1 0

1 0 0

 .

This is exactly the identity matrix with the first and third rows swapped.
Now,

EA =

 0 0 1

0 1 0

1 0 0

 2 1 0

−1 3 −2
1 1 1

 =

 1 1 1

−1 3 −2
2 1 0

 .

Exploration 120 Consider the matrices A and B below.

A =

[
1 3 2 0

4 3 0 0

]
B =

[
1 3 2 0

0 −9 −8 0

]
Find the elementary matrix E such that B = EA.

Section Highlights

▶ Matrices of the same size can be added. Combining this with scalar
multiplication of matrices gives us the fact that the space of matrices
of a given size forms a vector space. See Theorem 4.4.2.

▶ A matrix of size m× n and a matrix of size n× k can be multiplied
to form a matrix of size m × k. This multiplication is the matrix



SECTION HIGHLIGHTS 285

equivalent to function composition for linear transformations. See
Definition 4.4.2 and Theorem 4.4.4.

▶ Since function composition is not commutative, matrix multiplica-
tion is not commutative. See Example 4.4.2.

▶ The n×n matrix, In, that has 1’s on the diagonal and 0’s everywhere
else is called the identity matrix. Multiplying a matrix by In does not
change the matrix. See Definition 4.4.4.

▶ The transpose of an m × n matrix is the n × m matrix formed by
turning rows into columns (or vice versa). See Definition 4.4.3.

▶ Elementary matrices are matrix representations of row operations,
providing a way to do row operations as matrix multiplication. See
Definition 4.4.5 and Theorem 4.4.10



EXERCISES FOR SECTION 4.4 286

Exercises for Section 4.4

4.4.1.Perform the indicated operations.

(a)
[

1 2

−1 3

]
+

[
0 1

2 2

]

(b) 5

[
1 2

−1 3

]
−
[

0 1

2 2

]

(c)
[

1 0 2

3 1 3

]
+

[
0 1 0

2 2 2

]

(d) 3

[
1 0 2

3 1 3

]
− 2

[
0 1 0

2 2 2

]

(e) 3

[
1 0 2

3 1 3

]T
− 2

[
0 1 0

2 2 2

]T

4.4.2.Multiply these matrices.

(a)
[

1 2

−1 3

] [
0 1

2 2

]

(b)
[

1 2

−1 3

] [
0 1 3

2 2 2

]

(c)
[

1 2 1

−1 3 2

] 0 3

2 2

1 −1



(d)

 1 2 1

−1 3 2

1 1 0

 0 3

2 2

1 −1



(e)

 1 2 1

−1 3 2

1 1 0

 0 3 1

2 2 −1
1 −1 −1



(f)
[

1 0 −1
−1 1 2

]T  0 4

2 1

1 −2

T

(g)
[

1 2 1

−1 3 2

]T  0 3

2 2

1 −1

T

4.4.3.Let

A =

[
1 2 3

4 5 6

]
, B =

[
7 8

9 10

]
, C =

 −7 8

9 −10
−11 12


D =

[
1

−6

]
, E =

 7

9

−10

 , F =
[
−8 10 12

]
Compute the following matrices if it is possible. If it is not possible, draw your best dragon.

(a) AB

(b) BA

(c) C(BD)

(d) B(CD)

(e) EF

(f) FE

(g) B(AE)

(h) CE

(i) (FC)D

(j) (DF )C

4.4.4.Row reduce the matrices to reduced row-echelon form and find the elementary matrices for each row opera-
tion.



EXERCISES FOR SECTION 4.4 287

(a)
[

1 2

−1 3

]

(b)
[

1 0

−1 2

]

(c)
[

1 2 0

−1 0 3

]

(d)

 1 −1 0

−1 0 3

0 0 1



(e)

 2 −1 0

−1 0 1

0 0 1



4.4.5.Let T : R3 → R2 and S : R2 → R3 be defined by

T

 x1

x2

x3

 =

[
x1 + 5x2 + x3

x3

]
and S

([
x1

x2

])
=

 x1 + x2

x2

3x1

 .

(a) Find the matrix representation A for T and the matrix representation B for S with respect to the
standard bases for R2 and R3.

(b) Compute AB and BA.

(c) Verify that the matrix for T ◦ S with respect to the standard basis for R2 is AB.

(d) Verify that the matrix for S ◦ T with respect to the standard basis for R3 is BA.

4.4.6.Verify the associative property for matrix multiplication for 2× 2 matrices. That is, show([
a b

c d

] [
e f

g h

])[
x y

u w

]
=

[
a b

c d

]([
e f

g h

] [
x y

u w

])
4.4.7.Verify the left distribution of matrix multiplication for 2× 2 matrices.

4.4.8.Verify Theorem 4.4.9 for 2× 2 matrices.

4.4.9.Prove Theorem 4.4.1. That is, verify these maps are linear transformations.

4.4.10.Prove MA from Corollary 4.4.7 is a linear transformation.

4.4.11.Complete the proof of Theorem 4.4.8. That is, let A ∈Mm×n and α ∈ R.

(a) Prove (αA)T = αAT .

(b) Prove (AT )T = A.

4.4.12.Prove the following are linear transformations and verify the matrix representations with respect to the
standard basis as stated in the text.

(a) Tr⃗1↔r⃗2

(b) Tkr⃗1→r⃗1



EXERCISES FOR SECTION 4.4 288

(c) Tr⃗1+kr⃗2→r⃗1



MATRIX INVERSES FROM LINEAR TRANSFORMATIONS 289

4.5 Invertible Matrices

In the previous section, we learned about matrix multiplication and how it
strengthens the connection between matrices and linear transformations. Well,
when you hear multiplication, often you think about division as well. Really
though, you are thinking of a way to “undo” the multiplication.35 While we do 35:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I was told that subtraction and
division are a lie and that fields only
have two operations, usually thought of
as addition and multiplication.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Wha? Ricky?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

That’s right. Subtraction and divi-
sion are just the inverse operations of ad-
dition and multiplication, respectively.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Oh. You.

not have a concept of division for matrices, we do have an “inverse” of a ma-
trix. This will match what you would expect from our discussion of inverses
of functions from Section 3.1 because of the connection between matrix mul-
tiplication and composition of linear transformations, and our row operations
will give us a nice computational algorithm to compute these inverses when
they exist. We’ve given away enough of what’s coming; we should just get
started.

Matrix Inverses from Linear Transformations

Matrix representations have already proven to be a very convenient tool for un-
derstanding pretty much everything about linear transformations, so it should
come as little surprise that they also simplify determining invertibility and
finding inverses for linear transformations as well.36 Recall Definition 3.1.4; 36: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Is there an isomorphism be-
tween matrix stuff and linear transfor-
mation stuff?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No. Maybe a one-to-one and onto
function, though. You’d still probably
have to be quite finicky about how you
define your domain and codomain.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Exercise!

for vector spaces V and W and the linear transformation T : V →W , we call
S : W → V the inverse of T if

▶ for any v⃗ ∈ V , (S ◦ T )(v⃗) = v⃗ and

▶ for any w⃗ ∈W , (T ◦ S)(w⃗) = w⃗.

Moreover, we know from Theorem 3.1.3 that T is invertible if and only if it is
both one-to-one and onto; thus, a linear transformation is invertible if and only
if it is an isomorphism. Since T is an isomorphism, we also know that V and
W are isomorphic, so by Corollary 3.3.6, they must have the same dimension.

If A and B are matrix representations of T and S respectively, then we know
A,B ∈Mn×n for some n since V and W are the same dimension.37 To keep 37:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Did you catch that these are
square matrices?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Wait, did we define a square ma-
trix anywhere?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You’re asking me? In case we
didn’t, it’s just a matrix with the same
number of rows and columns.

things from being too crazy, let’s restrict these matrix representations to be
relative to a specific chosen basis for V and also a specific chosen basis for
W . In this context, we see that the criteria for invertibility above becomes the
following. For the linear transformation TA : Rn → Rn, we call SB : Rn →
Rn the inverse of TA if for any x⃗ ∈ Rn,

(SB ◦ TA)(x⃗) = BAx⃗ = x⃗ = ABx⃗ = (TA ◦ SB)(x⃗).

From Definition 4.4.4, we already know the identity matrix In is a matrix such
that Inx⃗ = x⃗ for any x⃗ ∈ Rn. That’s not all. . . well, actually, that is all.

Theorem 4.5.1 The identity matrix In ∈ Mn×n is the unique matrix such
that for all x⃗ ∈ Rn, Inx⃗ = x⃗.

PROOF. Suppose there is some matrix A = [⃗a1 · · · a⃗n] ∈Mn×n such that for
all x⃗ ∈ Rn, Ax⃗ = x⃗. We also know that for all x⃗ ∈ Rn, Inx⃗ = x⃗, so for all
x⃗ ∈ Rn, we have

Inx⃗ = Ax⃗.



ONE-TO-ONE AND ONTO USING PIVOTS 290

In particular, for any 1 ≤ j ≤ n, we have e⃗i = Ine⃗i = Ae⃗i = a⃗i. Thus, the
columns of A are the vectors e⃗1, . . . , e⃗n, so A = In. □

Thus, the linear transformation TA above is invertible if and only if there is
another linear transformation SB such that AB = In = BA. This motivates
the following definition.

Definition 4.5.1 A matrix A ∈Mn×n is invertible if there is another matrix
B ∈Mn×n such that

AB = In = BA.

We call the matrix B the inverse of the matrix A and denote it as A−1.

Example 4.5.1 Here are a few matrices. Let’s see if they are inverses of
each other.

A =

[
1 2

−3 −5

]
B =

[
0 1

−2 0

]
C =

[
−5 −2
3 1

]
.

It’s easy to check that AC = CA = I2, but AB ̸= I2 and BC ̸= I2. Thus,
C is the inverse of A (and vice versa). That is, C = A−1 and A = C−1.

Note that this definition is stated just in terms of matrices and matrix multi-
plication. The concept of an inverse here is really “undoing” matrix multi-
plication, so it’s our form of “division.” Note that it only works for a square
matrix, and even then, there will be many square matrices that are not invert-
ible. Just like we can’t divide by 0, there will be some square matrices with
no inverses.38 By the discussion prior to the definition and Theorem 4.4.4, we 38:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Do you hear Jimmy Buffett
music? I hear Jimmy Buffet suddenly
for some reason.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

What’s he singing?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

. . . something about boats?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Nope. It’s just you.

then have the following theorem.

Theorem 4.5.2 A matrix A ∈Mn×n is invertible if and only if the induced
linear transformation TA is invertible.

That’s great! To tell whether a matrix is invertible, we just need to check
whether the induced linear transformation is both one-to-one and onto. Maybe
it’d be better, though, if we could tell this from the matrix itself. Let’s revisit
these concepts now that we know more about matrices.

One-to-one and Onto Using Pivots

In Chapter 3, we learned that a function is one-to-one if every element in the
domain is mapped to a distinct output in the codomain. For linear transforma-
tions, Theorem 3.3.1 told us that a linear transformation will be one-to-one if
and only if its kernel is just the zero vector. We can restate this now using a
matrix equation to better align with our recent discussions.

Theorem 4.5.3 A linear transformation T : V → W with matrix represen-
tation A ∈ Mm×n is one-to-one if and only if the matrix equation Ax⃗ = 0⃗

has only the trivial solution, x⃗ = 0⃗.

PROOF. This follows immediately from Theorem 3.3.1 and the definition of
Ker A. □



ONE-TO-ONE AND ONTO USING PIVOTS 291

We also saw in Theorem 3.5.5 that a linear transformation will be one-to-one if
and only if the columns of the matrix representation are linearly independent.
We can now use row reduction to determine this, so we can make the following
statement.

Corollary 4.5.4 A linear transformation T : V →W with matrix represen-
tation A ∈ Mm×n is one-to-one if and only if every column of A is a pivot
column.

PROOF. This is a restatement of Theorem 3.5.5 using Theorem 4.3.1. □

Exploration 121 Suppose the matrices below are matrices corresponding to
linear transformations. Which ones correspond to a linear transformation that
is one-to-one? Circle them.

1 −1 0 2

0 1 −1 1

0 0 1 1

0 0 0 0

 ,

 1 −1 0 2

0 1 −1 1

0 0 1 1

 ,


1 −1 0 2

0 1 −1 1

0 0 1 1

0 0 0 1

 ,

 1 −1
0 1

0 0


That was so effective! It turns out detecting whether a linear transformation is
onto can be similarly efficient. We learned in Chapter 3 that a function is onto
when everything in the codomain appears as an output for some input from the
domain. For linear transformations, we saw that the desired version is that the
image is equal to the codomain. We shall restate the definition of onto in the
context of matrix equations first.

Corollary 4.5.5 A linear transformation T : V → W with matrix repre-
sentation A ∈ Mm×n is onto if and only if for every b⃗ ∈ Rm, the matrix
equation Ax⃗ = b⃗ has a solution.

PROOF. This follows immediately from the definition of onto, Theorem 3.5.2,
and Theorem 4.1.1. □

We also saw in Theorem 3.5.5 that a linear transformation will be onto if the
columns of the matrix representation span the codomain. From Theorem 4.2.8,
we know the dimension of the image will be equal to the number of pivot
columns. The dimension of the codomain is equal to the number of rows, so
for a linear transformation to be onto, we need the number of rows to be equal
to the number of pivots. Since each row can have only one pivot, we can state
the following theorem.

Theorem 4.5.6 A linear transformation T : V → W with matrix represen-
tation A ∈ Mm×n is onto if and only if A can be row reduced to have a
pivot in every row.

PROOF. Read the paragraph before the theorem. That’s the proof. □



COMPUTING THE INVERSE 292

Exploration 122 Suppose the matrices below are matrices corresponding to
linear transformations. Which ones correspond to a linear transformation that
is onto? Circle them.

1 −1 0 2

0 1 −1 1

0 0 1 1

0 0 0 0

 ,

 1 −1 0 2

0 1 −1 1

0 0 1 1

,




1 −1 0 2

0 1 −1 1

0 0 1 1

0 0 0 1

 ,

 1 −1
0 1

0 0



Now that we’ve talked about both one-to-one and onto, what about matrices
for linear transformations that are both? We know for this we need to only
consider square matrices. In this case, a pivot in every column is equivalent to
a pivot in every row. This agrees with our expectations from Theorem 3.3.11
that a linear transformation between spaces of equal dimension will be either
both one-to-one and onto or neither. This also gives us a nice condition for
when a linear transformation is invertible.

Corollary 4.5.7 A linear transformation T : V → V with matrix represen-
tation A ∈Mn×n is invertible if and only if A has n pivots.

Computing the Inverse

When dealing with 2×2 matrices, there is a convenient formula for the inverse
when it exists. This formula can be computed using a bit of algebra, and we’ve
included just such a computation for you in the exercises. For now, we’ll just
tell you the answer though.

Theorem 4.5.8 Given the matrix

A =

[
a b

c d

]
inM2×2, the inverse is given by the formula

A−1 =
1

ad− bc

[
d −b
−c a

]
if ad− bc ̸= 0.

Exploration 123 Use Theorem 4.5.8 to find A−1 for

A =

[
1 3

2 2

]

Now we know how to find the inverse of a 2× 2 matrix, but what about other
for larger matrices? Well, from Theorem 4.5.2 and the discussion preceding
it, the inverse of a matrix A is the matrix for the inverse linear transformation
T−1
A . Now, how do we find this matrix? Coordinate vectors!



COMPUTING THE INVERSE 293

Example 4.5.2 Let’s use a 2× 2 matrix so that we can check our work with
the formula from Theorem 4.5.8. Let

A =

[
1 −1
2 −3

]
.

Now, with the goal of understanding T−1
A , let’s begin by finding where TA

maps the standard basis vectors e⃗1 and e⃗2.

TA(e⃗1) =

[
1 −1
2 −3

] [
1

0

]
=

[
1

2

]
TA(e⃗2) =

[
1 −1
2 −3

] [
0

1

]
=

[
−1
−3

]
Note that we just recovered the column vectors from A here! This is al-
ways what happens when we input the standard basis vectors to our linear
transformation. Also, we can see that

B =

{
b⃗1 =

[
1

2

]
, b⃗2 =

[
−1
−3

]}
is a basis for R2, so TA is an isomorphism and A is invertible. Now, we
know T−1

A : R2 → R2 is the linear transformation such that

T−1
A

([
1

2

])
=

[
1

0

]
(4.27)

T−1
A

([
−1
−3

])
=

[
0

1

]
.(4.28)

Now, to find the matrix for T−1
A , we need to determine T−1

A (e⃗1) and
T−1
A (e⃗2), but we only know what T−1

A (⃗b1) and T−1
A (⃗b2) are from Equa-

tions 4.27 and 4.28. If only there was a way to write e⃗1 and e⃗2 as linear
combinations of b⃗1 and b⃗2. . . wait! There is! For this, we must find the co-
ordinate vectors for e⃗1 and e⃗2 with respect to the basis B. We can do this
with row reduction![

1 −1 1 0

2 −3 0 1

]
∼
[

1 −1 1 0

0 −1 −2 1

]
∼
[

1 0 3 −1
0 1 2 −1

]
This says that e⃗1 = 3⃗b1 + 2⃗b2 and e⃗2 = −b⃗1 − b⃗2. Most important for
our purposes though, we have that T−1

A (e⃗1) = 3T−1
A (⃗b1) + 2T−1

A (⃗b2) =

3e⃗1 + 2e⃗2 and T−1
A (e⃗2) = −T−1

A (⃗b1)− T−1
A (⃗b2) = −e⃗1 − e⃗2. That is,

T−1
A

([
1

0

])
=

[
3

2

]
T−1
A

([
0

1

])
=

[
−1
−1

]
.

Thus, the matrix representation for T−1
A with respect to the standard basis

of R2 is

B =

[
3 −1
2 −1

]
.

Note that this was exactly the right side of the augmented matrix we used
for our row reduction. Because we are using the standard basis here and the
matrix we started with was invertible, it will always work out like this. If the
matrix we started with had not been invertible, we would have still gotten



COMPUTING THE INVERSE 294

column vectors as our outputs when we input the standard basis vectors to
TA, but these would not have formed a basis.
This method using row reduction gives us an algorithm for both determining
invertibility and computing the inverse of the matrix when it exists.

Exploration 124 Use the formula for the inverse of a 2× 2 matrix from The-
orem 4.5.8 to check our answer from Example 4.5.2.

Theorem 4.5.9 Suppose A ∈ Mn×n is an invertible matrix. Then the aug-
mented matrix [A|In] row reduces to [In|A−1].

The proof for this is essentially replacing the specific 2× 2 matrix in Example
4.5.2 with a general n×n matrix. We’ll save that for the Appendix.39 There is 39:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You can keep your row reduc-
tion proof.also an alternative way to think about computing the inverse, but the outcome

is this same algorithm. Note that we row reduced A to the identity matrix as
part of Theorem4.5.9. There’s a corollary there.

Corollary 4.5.10 A matrix A is invertible if and only if it is row equivalent
to an identity matrix In for some positive integer n.

Therefore, if a matrix A ∈ Mn×n is invertible, there is a sequence of row
operations {r1, r2, . . . , rk} sending A to In. Converting this into elementary
matrices gives us that

In = Erk(· · · (Er2(Er1A) = (Erk · · ·Er2Er1)A.

Thus, another way to find A−1 is to compute (Erk · · ·Er2Er1). Via Theorem
4.4.10, each of these matrices is obtained by applying the corresponding row
operation to the identity matrix In. Thus, to compute A−1 with this method,
we start with the identity matrix and then perform the same row operations as
we used to row reduce A, in the same order. Thus, we can view Theorem 4.5.9
as keeping track of our elementary matrices with the augmented portion of the
matrix.

Now that we’ve explained why our algorithm for computing the inverse works
in two different ways, let’s actually see it in action.

Example 4.5.3 Here’s a matrix:

A =

 1 2 3

4 5 6

7 8 9

 .

Let’s see if we can find an inverse. Well, after row reducing, we have

A→

 1 0 −1
0 1 2

0 0 0

 ,



MATRIX INVERSES AND EQUATIONS 295

so A is not invertible. Alright. Let’s try

B =

 1 −2 6

1 −3 2

0 0 1

→
 1 0 0

0 1 0

0 0 1

 .

Good. B is invertible. Oh, drat! We forgot to augment B with the identity
matrix. Well, at least it was easy to row reduce. Let’s augment B with I3
and try again.

[B | I3] =

 1 −2 6 1 0 0

1 −3 2 0 1 0

0 0 1 0 0 1

 ∼
 1 0 0 3 2 −14

0 1 0 1 1 −4
0 0 1 0 0 1

 .

Thus, B−1 =

 3 2 −14
1 1 −4
0 0 1

.

Exploration 125 Now it’s your turn! Find the inverse of the matrix below
using the method of augmentation by I3.

B =

 1 0 1

1 −1 1

1 2 2



Nice job! Now, check your answer by multiplying the original matrix by your
new suspected inverse. Did you get I3? If not, you might need to check your
row reduction.

Matrix Inverses and Equations

Maybe now is a good time to think about why we should care about the inverse
of a matrix. The inverse of a matrix will eventually turn out to be useful in a
lot of contexts, but the definition alone immediately provides a great tool. To
solve the equation 2x = 4 for x, we know we should “divide both sides by
2.” However, what we’re really doing is multiplying both sides of the equation
by the multiplicative inverse of 2.40 Now suppose we have a matrix equation 40:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

See! I told you!
Ax⃗ = b⃗. If A is invertible, we can employ the exact same strategy. If B is the



SECTION HIGHLIGHTS 296

inverse of A, then we have AB = BA = I2, so multiplying both sides of our
matrix equation by B, we have

BAx⃗ = Bb⃗,

and
x⃗ = I2x⃗ = BAx⃗ = Bb⃗.

We can solve for x⃗ by multiplying by the inverse of A. This can be very
convenient.

Exploration 126 Suppose the inverse of A ∈M2×2 is

B =

[
−1 2

2 4

]
.

Solve the matrix equation

Ax⃗ =

[
42

−12

]
.

Section Highlights

▶ A matrix A is invertible if and only if its induced linear transforma-
tion TA is invertible. This also means there is an inverse matrix A−1

such that
AA−1 = In = A−1A.

See Definition 4.5.1 and Theorem 4.5.2.

▶ The inverse of an invertible matrix A is computed by augmenting A

with an appropriately sized identity matrix In and row reducing to
reduced row-echelon form. The inverse is the resulting augmented
side. See Theorem 4.5.9.

▶ A linear transformation is onto if and only if the row reduced form
of any matrix representing it has a pivot in every row. See Theorem
4.5.6.

▶ A linear transformation is one-to-one if and only if the row reduced
form of any matrix representing it has a pivot in every column. See
Corollary 4.5.4.



EXERCISES FOR SECTION 4.5 297

Exercises for Section 4.5

4.5.1.For each matrix, row reduce to determine whether the corresponding linear transformation is one-to-one,
onto, both or neither.

(a)
[

1 0

2 1

]

(b)
[

1 0 1

3 0 3

]

(c)

 1 0 1

−2 1 −2
1 1 1



(d)

 1 0 1

−2 1 −2
1 1 1



(e)

 1 0 1 1

−2 1 −2 1

1 1 1 2



4.5.2.Let T : R3 → R3 be defined by

T

 x1

x2

x3

 =

 x1 − x2 + x3

x3

x3

 .

Find the matrix A that represents T on the standard basis vectors for R3. Use this matrix to determine whether
T is one-to-one, onto, both or neither.

4.5.3.Let T : R3 → R3 be defined by

T

 x1

x2

x3

 =

 x1 − x2 + x3

x1 + x3

x2

 .

Find the matrix A that represents T on the standard basis vectors for R3. Use this matrix to determine whether
T is one-to-one, onto, both or neither.

4.5.4.Determine whether the following matrices are invertible. If the matrix is invertible, find the inverse.

(a)
[

1 2

2 2

]

(b)
[

1 −2
−2 4

]

(c)
[

1 0

−2 3

]

(d)
[

2 −2
−2 2

]

(e)

 1 0 2

−2 1 −4
1 1 2



(f)

 1 0 2

−2 0 −4
0 1 2



(g)

 1 0 1

−2 0 0

0 1 0



(h)

 1 −2 1

−2 1 4

1 1 1



(i)

 1 0 1

0 1 4

2 1 1





EXERCISES FOR SECTION 4.5 298

4.5.5.Let A =

 3 2 6

−2 2 −1
0 1 1

 and

b⃗1 =

 −11
0

 , b⃗2 =

 1

1

1

 , and b⃗3 =

 −2−1
−1

 .

Find the inverse of A and use it to solve Ax⃗ = b⃗1, Ax⃗ = b⃗2, and Ax⃗ = b⃗3.

4.5.6.Find a matrix representation for the linear transformation to determine whether it is invertible.

(a) T : R2 → R2 defined by

T

([
x1

x2

])
=

[
x1 − 5x2

x1 + x2

]

(b) T : R2 → R2 defined by

T

([
x1

x2

])
=

[
x1 − x2

−x1 + x2

]

(c) T : R3 → R3 defined by

T

 x1

x2

x3

 =

 x1 − x2

−x1 + x2

x1 + x2 + x3



(d) T : R3 → R3 defined by

T

 x1

x2

x3

 =

 x1 − x2

−x1 + x2

x1 − x2 + x3



4.5.7.Let’s see if we can find the general formula for the inverse of a 2 × 2 matrix using just matrices. Given a
matrix A ∈M2×2, we want to find a formula for a matrix B such that AB = BA = I2. Let

A =

[
a b

c d

]
and B =

[
e f

g h

]
We need to solve for e, f, g, and h in terms of a, b, c and d so that AB = BA = I2.

(a) First, calculate AB.

(b) We want this result to be I2, so use the fact that we should have 0 in two of the four components to
solve for f and g in terms of the other constants.



EXERCISES FOR SECTION 4.5 299

(c) Substitute these expressions for f and g into the two expressions that should be equal to 1 and solve
for e and h.

(d) Now you can substitute your expressions for e and h back into your expressions for f and g. You
should now have e, f, g, and h in terms of a, b, c and d. A little more algebra should yield a nice
formula for you.



SUBSPACES INDUCED BY MATRIX REPRESENTATIONS 300

4.6 Matrix Theorems

In this section, we’ve combined several nice results about matrices. The main
work for these results has already occurred, so the goal here is primarily orga-
nize them and to remind you of them.

Subspaces Induced by Matrix Representations

First, let’s introduce a new subspace related to a matrix. It shouldn’t be sur-
prising though since we know that each row is a vector.

Definition 4.6.1 For a matrix A ∈Mm×n, let r⃗i be the vector formed from
the ith row of A for each 1 ≤ i ≤ m. The row space of A, denoted Row A,
is the span of these row vectors. That is,

Row A = Span {r⃗1, . . . , r⃗m} .

Theorem 4.6.1 For a matrix A ∈Mm×n, Row A is a subspace of Rn.

PROOF. This follows from Theorem 3.6.3 by taking the transpose of your
matrix. □

Now for something really cool. Suppose we have a linear transformation
between two inner product spaces. We have fun subspaces of domains and
codomains for linear transformations (the kernel and image, respectively), but
what about the rest of the domain and codomain? You would not be shocked
to find that the orthogonal complement of the kernel is a subspace of the do-
main,41 and the orthogonal complement of the image is a subspace of the 41: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

The orthogonal complement of
the kernel is even isomorphic to the im-
age from a theorem in Section 3.3.

codomain (Theorem 2.4.2). What is surprising is that these orthogonal com-
plements are also given by the matrix representation for the linear transforma-
tion. Behold!

Theorem 4.6.2 Suppose V and W are inner product spaces. Let T : V →
W be a linear transformation represented by the n×m matrix A. Then

Ker A = (Row A)
⊥ and Ker AT = (Col A)

⊥
.

PROOF. Let A = [aij ] for 1 ≤ i ≤ m and 1 ≤ j ≤ n, let r⃗i for 1 ≤ i ≤ m

be the row vectors of A, and let a⃗j for 1 ≤ j ≤ n be the column vectors of A.
Then

x⃗ ∈ Ker A

⇔ Ax⃗ = 0⃗

⇔ x1a⃗1 + · · ·+ xna⃗n = 0⃗

⇔ x1

 a11
...

am1

+ · · ·+ xn

 a1n
...

amn

 =

 0
...
0


⇔ x1ai1 + · · ·+ xnain = 0 for 1 ≤ i ≤ n

⇔ x⃗ · r⃗i = 0 for 1 ≤ i ≤ n.



SUBSPACES INDUCED BY MATRIX REPRESENTATIONS 301

Thus, x⃗ ∈ Ker A if and only if it is orthogonal to every row of A. Since
Row A is the span of the rows of A, the result follows. The other equality is
then achieved by noting Row AT = Col A. □

Exploration 127 Consider the matrix

A =


1 0 1

0 1 −1
1 1 0

2 2 0

 .

Find Ker A and check that it is orthogonal to each row vector.

Find Ker AT and check that it is orthogonal to each column vector.

Corollary 4.6.3 Let A be an n×m matrix with induced linear transforma-
tion TA : Rn → Rm. Then

dom (TA) = Ker A⊕ Row A and codom (TA) = Col A⊕Ker AT .

We are now able to complete the vector spaces in our big commuting diagram;
see Figure 4.3.

Rn

W = codom (T )

TA

T

[w⃗]BW
[v⃗]BV

Rm

V = dom (T )

Row A Col A

Ker ATKer A

Imag T⊥

Imag TKer T⊥

Ker T

FIGURE 4.3. Some people refer to this as “the splits” of
dom (TA) and codom (TA).



SUBSPACES INDUCED BY MATRIX REPRESENTATIONS 302

Theorem 4.6.4 (Invertible Matrix Theorem) Let A ∈ Mn×n, and let
T : Rn → Rn be defined by T (x⃗) = Ax⃗. Note that the matrix A is a
square matrix, one where the rows and columns have the same length. The
following are equivalent statements.

(a) A is invertible.
(b) A can be row reduced to In.
(c) T is invertible.
(d) T is one-to-one.
(e) T is onto.
(f) A has a pivot in every column.
(g) A has a pivot in every row.
(h) The columns of A are linearly independent.
(i) The rows of A are linearly independent.
(j) Ker A = {⃗0}.
(k) AT is invertible.

PROOF. Let’s actually take it from the top and bottom here. We know from
Theorem 4.4.9 that (AB)T = BTAT . Now, A is invertible if and only if there
is some matrix B such that AB = In. Combining this with the fact that the
identity matrix is its own transpose gives us

In = ITn = (AB)T = BTAT .

Thus, BT is the inverse of AT if B is the inverse of A. Since (AT )T = A,
we see that A is invertible if and only if AT is invertible. From this point, the
equivalence of all of these statements follows from previous theorems, mostly
contained or mentioned in the previous section. □

You should definitely believe every one of the statements in this theorem is
equivalent to all the others at this point. We’ve definitely proved all of these
results independently. If you are the slightest bit suspicious42 about any of 42:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I am!
these connections, you should find the theorem and definitions in sections past
that prove it.43 43:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Fine! I will!

Example 4.6.1 Let’s check whether the following matrices are invertible.
Let

A =

 1 2 3

0 4 5

0 0 6

 , B =

 0 2 3

0 4 5

0 0 6

 , and C =

 1 2 3

0 4 6

0 2 3


A is invertible for any of the eleven reasons on Theorem 4.6.4. B and C are
not, again for any of the ten reasons.

Exploration 128 Determine whether each matrix below is invertible without
performing any row operations. Note which part of the Invertible Matrix The-
orem you use. 1 0 1

1 1 1

0 1 0

  4 1 −2
0 2 1

0 0 3

  1 2 3

0 1 2

2 4 6





CHANGE OF BASIS MATRICES 303

Change of Basis Matrices

Our next topic is one we’ve seen in some examples, but we’re finally ready to
give it a proper discussion. We’ll start, though, with an example.

Example 4.6.2 Let

B =


 1

1

1

 ,

 −11
0

 ,

 0

1

−1

 ,

which is a basis for R3. We can consider the coordinate map

φB : R3 → R3 defined as φB(v⃗) = [v⃗]B .

Then the matrix representation for φB with respect to the standard basis is

B = [[e⃗1]B . . . [e⃗2]B].

To find this, we need to compute all the coordinate vectors for the standard
basis vectors with respect to B. We can do this by augmenting the vectors
of B with the standard basis vectors and row reducing. Does this sound
familiar though? It should. Theorem 4.5.9 gave this as the algorithm for
finding the inverse of a matrix. Let’s see what this gives us. 1 −1 0 1 0 0

1 1 1 0 1 0

1 0 −1 0 0 1

→
 1 0 0 1/3 1/3 1/3

0 1 0 −2/3 1/3 1/3

0 0 1 1/3 1/3 −2/3


Then

C =

 1/3 1/3 1/3

−2/3 1/3 1/3

1/3 1/3 −2/3

 .

It turns out that the matrix we were finding the inverse for is actually the
matrix representation for φ−1

B , the linear transformation that converts a co-
ordinate vector for B into a vector on the standard basis. Let’s call our
matrix representation of φ−1

B here P since it’s the one that’s easier to find.
Then we have

P =

 1 −1 0

1 1 1

1 0 −1

 and P−1 = C.

With these two matrices, we can efficiently travel back and forth between the
standard basis and our basis B! We can even use these two matrices to convert
any matrix representation for a linear transformation T from the standard basis
to this new basis B. We did this for a different basis back in Example 3.5.7,
but now we can use matrix multiplication instead of those methods.

Example 4.6.3 Let’s use P and P−1 from Example 4.6.2 above to compute
the matrix representation for T : R3 → R3 defined by

T

 x1

x2

x3

 =

 x1 − x2 + x3

x1 + x3

x2





CHANGE OF BASIS MATRICES 304

with respect to the basis B. First, we need the matrix with respect to the
standard basis.

A =

 1 −1 1

1 0 1

0 1 0

 .

Now, we should think about how to construct the desired matrix. When we
think about this matrix as a function, it will have input of coordinate vectors
for B and output of coordinate vectors for B. Consider then the product
P−1AP .

▶ Since we read function composition right to left, we see that this
will first apply P , which converts a coordinate vector for B to a
vector in the standard basis.

▶ Then A will map this according to the linear transformation T .
▶ Finally, by applying P−1, we convert the output of A to be a co-

ordinate vector for B.
This then will produce the matrix representation for T with respect to the
basis B.

P−1AP =

 1/3 1/3 1/3

−2/3 1/3 1/3

1/3 1/3 −2/3

 1 −1 1

1 0 1

0 1 0

 1 −1 0

1 1 1

1 0 −1


=

 4/3 −2/3 −2/3
1/3 4/3 4/3

1/3 −5/3 −5/3

 .

Since we have an alternative method for finding this matrix representation,
we can check that this method produces the same matrix representation. By
“we” there, we mean you. You should check this.

44: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Explore!
44

Exploration 129 Use the method from Example 3.5.7 to find the matrix rep-
resentation of T above with respect to the basis B.

The matrices P and P−1 were examples of change of basis matrices. Specifi-
cally, P−1 is the change of basis matrix from the standard basis to the basis B
and P is the change of basis matrix from the basis B to the standard basis. We
can do this, though, with any two bases.

Definition 4.6.2 Let V be an n-dimensional vector space with bases

B = {⃗b1, b⃗2, . . . , b⃗n} and C = {c⃗1, c⃗2, . . . , c⃗n}.

Define the isomorphism

φB▷C : V → V by φB▷C(c⃗i) = b⃗i for each 1 ≤ i ≤ n.

Then the change of basis matrix from B to C is the matrix for φB▷C with
respect to the basis C. In particular, it is the matrix PB▷C ∈ Mn×n defined



CHANGE OF BASIS MATRICES 305

by
PB▷C =

[[⃗
b1

]
C
· · ·
[⃗
bn

]
C

]
.

Note that the inverse of a change of basis matrix is again a change of basis
matrix. Perhaps that should be stated as a theorem.

Theorem 4.6.5 For any two bases B and C of a vector space V , we have

P−1
B▷C = PC▷B.

PROOF. This follows directly from the definition since we can quickly see
φ−1
B▷C = φC▷B. Thus, the matrix representations will also be inverses of one

another. □

When we combine the definition of our change of basis matrix with our method
from Section 4.3 for computing the coordinate vectors, we see there is a handy
algorithm like Theorem 4.5.9 that we can use to compute these matrices.

Theorem 4.6.6 Let B = {⃗b1, b⃗2, . . . , b⃗n} and C = {c⃗1, c⃗2, . . . , c⃗n} be bases
for Rn. Then the matrix

[⃗c1 c⃗2 · · · c⃗n |⃗b1 b⃗2 · · · b⃗n] row reduces to [In|PB▷C ] .

Similarly,

[⃗b1 b⃗2 · · · b⃗n |⃗c1 c⃗2 · · · c⃗n] row reduces to [In|PC▷B] .

In the case that one of the two bases involved is the standard basis for Rn, we
see that one direction will require no work and the other will only require us
to compute the inverse of a matrix. This was what happened in Example 4.6.3.
Let’s see an example between two non-standard bases.

Example 4.6.4 Let’s just do two different bases of R2. Define

B =

{[
1

1

]
,

[
−1
0

]}
and C =

{[
2

−1

]
,

[
−1
1

]}
.

We can see quickly that these are both bases of R2. Now, we can construct
PB▷C and PC▷B using Theorem 4.6.6.[

2 −1 1 −1
−1 1 1 0

]
→
[

1 0 2 −1
0 1 3 −1

]
and [

1 −1 2 −1
1 0 −1 1

]
→
[

1 0 −1 1

0 1 −3 2

]
.

This tells us

PB▷C =

[
2 −1
3 −1

]
and PC▷B =

[
−1 1

−3 2

]
.

Note that these two matrices are inverses of each other, as they should be!

Now that we’ve defined the change of basis matrix and talked about how to
find it, let’s see what it does for us. Hopefully, it changes a basis.



CHANGE OF BASIS MATRICES 306

Theorem 4.6.7 Let B and C be bases for the vector space V . For any x⃗ ∈ V ,

PB▷C [x⃗]B = [x⃗]C .

PROOF. Let x⃗ ∈ V and suppose [x⃗]B =

 a1
...
an

. Then

PB▷C [x⃗]B =
[[⃗
b1

]
C
· · ·
[⃗
bn

]
C

] a1
...
an


=a1

[⃗
b1

]
C
+ · · ·+ an

[⃗
bn

]
C

=
[
a1⃗b1 + · · · anb⃗n

]
C
= [x⃗]C .

□

Oh, good. It is named appropriately! Let’s see an example of this theorem
in action. Note that we restricted Theorem 4.6.6 for simplicity to bases of
Rn, but this algorithm works for any vector space once coordinate vectors are
computed.

Example 4.6.5 Here, let’s consider two bases of P2. Let

B = {1, 1 + x, x+ x2} and C = {x, 1 + x2, 1}.

Then under the coordinate mapping using the standard basis, {1, x, x2},
these become

B =


 1

0

0

 ,

 1

1

0

 ,

 0

1

1

 and C =


 0

1

0

 ,

 1

0

1

 ,

 1

0

0

 .

We can then apply Theorem 4.6.6 to these bases of coordinate vectors to
find PB▷C . 0 1 1 1 1 0

1 0 0 0 1 1

0 1 0 0 0 1

→
 1 0 0 0 1 1

0 1 0 0 0 1

0 0 1 1 1 −1


Thus, we have

PB▷C =

 0 1 1

0 0 1

1 1 −1

 .

We can now check that this works as expected. Consider p⃗ = 2 + x + x2.
Then from inspection we can see

[p⃗]B =

 2

0

1

 and [p⃗]C =

 1

1

1

 .



CHANGE OF BASIS MATRICES 307

To see for ourselves that PB▷C converts coordinate vectors for B into ones
for C, we compute  0 1 1

0 0 1

1 1 −1

 2

0

1

 =

 1

1

1


as expected.

Now that we know these matrices convert between coordinate vectors for dif-
ferent bases, we can expand them to matrix representations of a linear trans-
formation.

Corollary 4.6.8 Let vector space V have bases B and C and T : V → V

have matrix representation B with respect to B and C with respect to C.
Define the matrix P ∈Mn×n by

P = PB▷C =
[[⃗
b1

]
C
· · ·
[⃗
bn

]
C

]
.

Then we know

C = PBP−1 and B = P−1CP.

This was what we did in Example 4.6.3, but it’s worth seeing again.

Example 4.6.6 Consider the linear transformation T : R3 → R3 defined by

T

 x1

x2

x3

 =

 x1 − x2 + x3

x1 + x3

x2

 .

Let’s find the matrix for this linear transformation with respect to two dif-
ferent bases of R3. First, the standard basis E = {e⃗1, e⃗2, e⃗3}. We have

T (e⃗1) =

 1

1

0

 ; T (e⃗2) =

 −10
1

 ; T (e⃗3) =

 1

1

0

 .

Thus, the matrix for the linear transformation on the basis E is

A =

 1 −1 1

1 0 1

0 1 0

 .

Let’s write the matrix for T now with respect to the basis

B =

b⃗1 =

 1

0

−1

 , b⃗2 =

 1

1

0

 , b⃗3 =

 0

0

1

 .

We have

T (⃗b1) =

 0

0

0

 ; T (⃗b2) =

 0

1

1

 ; T (⃗b3) =

 1

1

0

 ,

but these are vectors in coordinates relative to the standard basis E . We can
augment a matrix and row reduce to convert these to coordinate vectors for



CHANGE OF BASIS MATRICES 308

B.  1 1 0 0 0 1

0 1 0 0 1 1

−1 0 1 0 1 0

→
 1 0 0 0 −1 0

0 1 0 0 1 1

0 0 1 0 0 0

 .

Thus, the matrix for the linear transformation on the basis B is

B =

 0 −1 0

0 1 1

0 0 0

 .

For notational simplicity, let’s denote

P = PB▷E =
[[⃗
b1

]
E

[⃗
b2

]
E

[⃗
b3

]
E

]
=

 1 1 0

0 1 0

−1 0 1

 .

After verifying that

P−1 =

 1 −1 0

0 1 0

−1 0 1

 ,

one can check that

P−1AP =

 1 −1 0

0 1 0

−1 0 1

 1 −1 1

1 0 1

0 1 0

 1 1 0

0 1 0

−1 0 1


=

 0 −1 0

0 1 1

0 0 0

 = B.

Exploration 130 Let

B0 =


 1

1

2

 ,

 1

0

0

 ,

 0

1

1

 .

This is a basis of R3. What is PB0▷E , where E is again the standard basis?

Now45, use the matrix P−1
B0▷E to find [x⃗]B0

when x⃗ =

 1

1

0

. 45:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Hey, have you seen Ricky?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It’s not like Ricky to not just be
hanging around.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

[gasping] Hey guys. I’ve been all
over this chapter. The proofs are all
there.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You know they’re all hyperlinked,
right?



SECTION HIGHLIGHTS 309

Section Highlights

▶ For an m× n matrix, A, the span of the rows of A forms a subspace
of Rn called Row A. See Definition 4.6.1 and Theorem 4.6.1.

▶ For any m × n matrix, A, there is an orthogonal decomposition of
Rn into Row A ⊕ Ker A and an orthogonal decomposition of Rm

into Col A⊕Ker AT . See Corollary 4.6.3 and Figure 4.3.

▶ There are many conditions equivalent to a matrix being invertible.
See Theorem 4.6.4.

▶ If B and C are both bases for a vector space V , then the change of
basis matrix PB▷C converts coordinate vectors for B into coordinate
vectors for C. See Definition 4.6.2.

▶ If A is the matrix representation with respect to a basis B for a lin-
ear transformation, then the matrix representation with respect to the
basis C is PB▷CAP−1

B▷C . See Corollary 4.6.8 and Example 4.6.6.



EXERCISES FOR SECTION 4.6 310

Exercises for Section 4.6

4.6.1.Find Ker A, Row A, Col A, and Ker AT when A is the matrix below.

(a)
[

2 −4
1 −2

]

(b)


2 −1 1

1 2 0

1 1 1

1 −1 1



(c)

 1 1 0 1 0

−1 0 1 0 1

0 1 1 0 1



(d)
[

2 1 0

1 2 1

]

(e)

 2 −1 0 1

1 2 0 1

1 1 1 1



(f)

 1 1 0

−1 0 1

0 1 1



4.6.2.Do each of these for the bases and vectors below.

▶ Find the change of basis matrix P that converts from the basis B to the standard basis.

▶ Find P−1.

▶ Use P−1 to find [x⃗]B.

(a) B =

{[
1

1

]
,

[
2

1

]}
; x⃗ =

[
3

10

]

(b) B =


 1

1

0

 ,

 2

1

0

 ,

 0

1

1

 ; x⃗ =

 1

1

1



(c) B =


 1

0

0

 ,

 1

1

1

 ,

 0

2

1

 ; x⃗ =

 3

4

5



4.6.3.Let B =


 1

−1
0

 ,

 1

1

0

 ,

 1

0

1

. Let C be the standard basis for R3.

(a) Find the matrix PB▷C and the matrix PC▷B.

(b) Use PB▷C and PC▷B to convert each of these matrices to the basis B.

A =

 1 1 1

−1 0 1

0 2 0

 B =

 1 1 0

−1 0 1

0 1 1

 C =

 1 −1 0

−1 0 3

0 −1 1





EXERCISES FOR SECTION 4.6 311

4.6.4.Let V be a vector space with bases B = {⃗b1, b⃗2, b⃗3} and C = {c⃗1, c⃗2, c⃗3}. If

c⃗1 = b⃗1 + 2⃗b2 + b⃗3
c⃗2 = −b⃗1 − b⃗2 + b⃗3
c⃗2 = b⃗2 + b⃗3

For x⃗ ∈ V , find a matrix P such that P [x⃗]B = [x⃗]C . Find P−1 and verify that P−1 [x⃗]C = [x⃗]B.



4.7. MORE FUN WITH LEAST SQUARES 312

4.7 More Fun with Least Squares

Here’s a matrix equation:
Ax⃗ = b⃗.

Depending on A and b⃗, sometimes this equation has exactly one solution or an
infinite number of solutions. That’s very nice; everyone likes solutions. How-
ever, from Corollary 4.2.4 we know it’s also possible that this matrix equation
has no solutions. That must be very frustrating for everyone involved. Surely
there’s something one can do in this case! We can’t just pretend that solutions
exist; Corollary 4.2.4 is pretty clear about solutions existing or not existing,
as is the binary nature of existence. However, if you find you’re stuck in that
latter case, what’s the next best thing to an honest solution?46 Perhaps, maybe, 46:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

A dishonest one! Some would
argue honesty is also binary in nature.just possibly. . . an approximate one will do.

Let’s assume A ∈ Mm×n, so x⃗ ∈ Rn and b⃗ ∈ Rm. Let’s also assume some
fool picked a rotten matrix A and a lonely vector b⃗ such that Ax⃗ = b⃗ has no
solutions.

Definition 4.7.1 A least squares solution for the matrix equation Ax⃗ = b⃗ is
a vector ˆ⃗x ∈ Rn such that for all x⃗ ∈ Rn,

∥Aˆ⃗x− b⃗∥ ≤ ∥Ax⃗− b⃗∥.

The least squares error of a least squares solution is ∥Aˆ⃗x− b⃗∥.

These are the vectors in Rn whose images are as close to b⃗ as any other image
vector. Good. In the absence of a solution to Ax⃗ = b⃗, these least-squares
solutions are the closest you can get to a solution, and the least squares error
quantifies how close. This inequality should look familiar; we’ve already en-
countered a situation like this. According to Theorem 2.6.1, if a vector b⃗ is not
in a subspace W , then the vector in W closest to b⃗ is projW

(⃗
b
)

. See Figure
4.4. Using Col A as the subspace W , we have the following corollary.

Corollary 4.7.1 The least squares solutions for Ax⃗ = b⃗ are the solutions to
the equation

Ax⃗ = projCol A

(⃗
b
)
.

PROOF. By Theorem 2.6.1,

∥ projCol A

(⃗
b
)
− b⃗∥ ≤ ∥y⃗ − b⃗∥

for all y⃗ ∈ Col A. By definition of column space, for every vector y⃗ ∈ Col A,
there is a set of vectors x⃗ ∈ Rn such that Ax⃗ = y⃗, and projCol A

(⃗
b
)
∈

Col A. The result follows from defining ˆ⃗x to be the set of vectors such that
Aˆ⃗x = projCol A

(⃗
b
)

. □

Corollary 4.7.1 suggests a strategy for finding the least squares solutions; one
only need to solve the equation Ax⃗ = projCol A

(⃗
b
)

. Of course, this means

first finding, projCol A

(⃗
b
)

, and to do this efficiently, you need an orthogonal
basis for Col A. Suddenly, this feels like a lot of work.



4.7. MORE FUN WITH LEAST SQUARES 313

Rn

b⃗

Col A

∥ proj Col A

(⃗
b
)
− y⃗∥

∥⃗b− y⃗∥
∥⃗b− proj Col A

(⃗
b
)
∥

y⃗

proj Col A

(⃗
b
)

x̂

Rm

Figure 4.4: Here’s a picture we’ve boosted from Section 2.6 and relabelled.

Example 4.7.1 Let’s find the least squares solutions for the equation Ax⃗ =

b⃗, where

A =

 1 2 3

2 4 6

0 0 1

 and b⃗ =

 0

1

1

 .

One should first check that b⃗ /∈ Col A. It’s not? Good. Thank you for
checking. If we’re going to solve the equation Ax⃗ = projCol A

(⃗
b
)

, we’d

better first calculate projCol A

(⃗
b
)

, so we need an orthogonal basis for
Col A. After using Gram-Schmit, we havew⃗1 =

 1

2

0

 , w⃗2 =

 0

0

1


as an orthogonal basis for Col A. Then

projCol A

(⃗
b
)
=

w⃗1 · b⃗
w⃗1 · w⃗1

w⃗1 +
w⃗2 · b⃗
w⃗2 · w⃗2

w⃗2 =
2

5
w⃗1 + w⃗2 =

 2/5

4/5

1

 .

We know projCol A

(⃗
b
)
∈ Col A, so the matrix equation Ax⃗ =

projCol A

(⃗
b
)

definitely has at least one solution. We can just row reduce
the augmented matrix 1 2 3 2/5

2 4 6 4/5

0 0 1 1

→
 1 2 0 −13/5

0 0 1 1

0 0 0 0


Thus, the least squares solutions for Ax⃗ = b⃗ are the vectors

x⃗ = x2

 −21
0

+

 −13/50
1

 ,

for any real number x2. These least squares solutions have least squares
error

∥Aˆ⃗x− b⃗∥ = ∥ projCol A

(⃗
b
)
− b⃗∥ =

∥∥∥∥∥∥
 2/5

4/5

0

∥∥∥∥∥∥ =
2
√
5

5
.



4.7. MORE FUN WITH LEAST SQUARES 314

That didn’t feel like a great way to find least squares solutions. Perhaps you’re
beginning to despair because you thought this way was our last hope. No,
there is another. . .

We’re all tired of writing projCol A

(⃗
b
)

over and over again, right? Right.
Let’s define

ˆ⃗
b = projCol A

(⃗
b
)
.

Then our least squares solutions are the vectors ˆ⃗x ∈ Rn such that

Aˆ⃗x =
ˆ⃗
b,

which looks like a totally respectable matrix equation.47 By Theorem 2.5.1 47:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Especially with all the fancy
hats!(the orthogonal decomposition theorem!), we know that b⃗− ˆ⃗

b is orthogonal to
Col A. That is,

b⃗− ˆ⃗
b ∈ (Col A)⊥ = (Span {a⃗1, . . . , a⃗n})⊥ ,

where a1, . . . an are the columns of A. See Figure 4.4. It follows that b⃗− ˆ⃗
b is

orthogonal to every column of A; that is, for any column a⃗i of A, we have

0 = a⃗i · (⃗b−
ˆ⃗
b) = (⃗ai)

T (⃗b− ˆ⃗
b).

Since we have (⃗ai)
T (⃗b− ˆ⃗

b) = 0 for every row vector (⃗ai)T , it follows that

AT (⃗b− ˆ⃗
b) = 0⃗,

or AT ˆ⃗b = AT b⃗. Recall that Aˆ⃗x =
ˆ⃗
b, so we have

ATAˆ⃗x = AT b⃗

for any ˆ⃗x ∈ Rn. Wow. That seems like a very conventional equation that we
got by exploiting orthogonality. I wonder what we should call it.

Definition 4.7.2 The normal equation for a matrix A ∈ Mm×n and a vec-
tor b⃗ ∈ Rm is

ATAˆ⃗x = AT b⃗.

We just proved the following theorem.

Theorem 4.7.2 For a matrix A ∈ Mm×n and a vector b⃗ ∈ Rm, a vector
ˆ⃗x ∈ Rn is a least squares solution for Ax⃗ = b⃗ if and only if ˆ⃗x is a solution
to the normal equation

ATAˆ⃗x = AT b⃗.

Since Corollary 4.7.1 indicates that least squares solutions to Ax⃗ = b⃗ are
solutions to Ax⃗ = projCol A

(⃗
b
)

, and projCol A

(⃗
b
)
∈ Col A, we know that

least squares solutions always exist. Thus, we have another fun corollary:

Corollary 4.7.3 For a matrix A ∈ Mm×n, the normal equation ATAˆ⃗x =

AT b⃗ always has at least one solution.



4.7. MORE FUN WITH LEAST SQUARES 315

Example 4.7.2 Let’s find the least squares solutions (again!) for the equa-
tion Ax⃗ = b⃗, where

A =

 1 2 3

2 4 6

0 0 1

 and b⃗ =

 0

1

1

 .

By Theorem 4.7.2, we want to find the solutions to ATAˆ⃗x = AT b⃗. Note
that

ATA =

 1 2 0

2 4 0

3 6 1

 1 2 3

2 4 6

0 0 1

 =

 5 10 15

10 20 30

15 30 46

 and

AT b⃗ =

 1 2 0

2 4 0

3 6 1

 0

1

1

 =

 2

4

7

 .

Thus, we need to solve the matrix equation 5 10 15

10 20 30

15 30 46

 x⃗ =

 2

4

7

 ,

whose augmented matrix in reduced row-echelon form is 1 2 0 −13/5
0 0 1 1

0 0 0 0

 ,

which definitely looks familiar. It follows that the least squares solutions to
Ax⃗ = b⃗ are still the vectors

x⃗ = x2

 −21
0

+

 −13/50
1

 ,

for any real number x2.

Exploration 131 Let

A =


1 0 −2
2 −2 −2
0 1 1

0 0 2

 , b⃗1 =


0

2

3

4

 , and b⃗2 =


0

2

3

5

 .

Find the least squares solution(s) and least squares error for Ax⃗ = b⃗1 and
Ax⃗ = b⃗2.



4.7. MORE FUN WITH LEAST SQUARES 316

This particular method for finding least squares solutions is really handy when
finding curves of best fit. Let’s try!

FIGURE 4.5. That old aggressively nonlinear data set again.

Example 4.7.3 Find (again!) the curve of best fit for the following data:

(−2, 1), (−1, 0), (0, 2), (1, 4) and (2, 11).

We checked before that these points are not colinear; see Figure 4.5.
Recall the example with the parabola of best fit? Sure you do. We need to
find scalars a, b, and c such that y = ax2 + bx+ c for all five of our points,
but we know that no such a, b, and c exist; that is, there is no set of scalars
a, b, and c such that

y⃗ = aq⃗ + bx⃗+ c⃗1, where

y⃗ =


1

0

2

4

11

 , q⃗ =


4

1

0

1

4

 , x⃗ =


−2
−1
0

1

2

 , and 1⃗ =


1

1

1

1

1

 .

Here are two other ways of putting it:

y⃗ /∈ Span
{
q⃗, x⃗, 1⃗

}
= Col [q⃗, x⃗, 1⃗],

or the matrix equation

[q⃗, x⃗, 1⃗]

 a

b

c

 = y⃗



4.7. MORE FUN WITH LEAST SQUARES 317

has no solutions. Hey! No solutions? Let’s find the least squares solutions!
Let A = [q⃗, x⃗, 1⃗]. Then

ATA =

 4 1 0 1 4

−2 −1 0 1 2

1 1 1 1 1




4 −2 1

1 −1 1

0 0 1

1 1 1

4 2 1


=

 34 0 10

0 −10 0

10 0 5

 , and

AT y⃗ =

 4 1 0 1 4

−2 −1 0 1 2

1 1 1 1 1




1

0

2

4

11

 =

 52

24

18

 .

Since we’re looking for least squares solutions, we can solve the normal
equation  34 0 10

0 10 0

10 0 5

 a

b

c

 =

 52

24

18

 ,

whose augmented matrix in reduced row-echelon form is 1 0 0 8/7

0 1 0 12/5

0 0 1 46/35

 .

Hey! No Gram-Schmit required. Nice!
The quadratic equation y = 8

7x
2 + 12

5 x + 46
35 is the best quadratic least

squares approximation for the given data. See Figure 4.6.

FIGURE 4.6. The last aggressively nonlinear data set with
the parabola of best fit.



SECTION HIGHLIGHTS 318

Section Highlights

▶ When a matrix equation Ax⃗ = b⃗ does not have a solution, an approx-
imate solution can be found using the least squares solution. This is
a solution to the matrix equation ATAx⃗ = AT b⃗. See Definition 4.7.1
and Theorem 4.7.2.

▶ By converting data points into appropriate matrix equations, the tech-
nique of least squares can be used to find curves of best fit for data.
See Example 4.7.3.



EXERCISES FOR SECTION 4.7 319

Exercises for Section 4.7

4.7.1.For any matrix A ∈ Mm×n, show that ATA is square and symmetric. That is, ATA ∈ Mn×n and
(ATA)T = ATA.

4.7.2.Suppose A ∈ Mm×n and b⃗ ∈ Col A. Prove that the solutions to Ax⃗ = b⃗ are exactly the least squares
solutions to Ax⃗ = b⃗.

4.7.3.Make a matrix A ∈ M4×3 with twelve reasonably nice integers. Find the least squares solutions and least
squares error for Ax⃗ = e⃗1.

4.7.4.Repeat the previous exercise.

4.7.5.Find the cubic curve of best fit for the following data:

(−2, 1), (−1, 6), (0, 2), (1, 4) and (2, 11).



CONVOLUTION AND EDGE DETECTION 320

4.8 Another Graphics Application

Convolution and Edge Detection

Definition 4.8.1 Let A = [aij ], B = [bij ] ∈ Mm×n. The convolution of A
and B, denoted A ∗B, is

A ∗B =

m∑
i=1

n∑
j=1

|aijbij |.

Example 4.8.1 Let

A =

[
a b

c d

]
and B =

[
−2 3

4 −5

]
.

Then

A∗B =

m∑
i=1

n∑
j=1

|aijbij | = |−2a|+|3b|+|4c|+|−5d| = 2a+3b+4c+5d.

This probably seems like a weird thing to do with matrices. It is. Let’s see
just how weird. Fix a matrix B ∈ Mm×n and define TB :Mm×n → R by
TB(A) = A∗B. It turns out that TB is not a linear transformation. Indeed, let

A = B =

[
1 1

1 1

]
and C =

[
−1 −1
−1 −1

]
.

One can readily check that

TB(A+ C) = 0 ̸= 8 = TB(A) + TB(C).

Exploration 132 Is it true for any k ∈ R that TB(kA) = kTB(A)?

It’s too bad for convolution that being “half linear” isn’t a thing. It’s worth
noting that convolution is in part componentwise multiplication, and while
this might seem like a reasonable way to define matrix multiplication, we see
here that it definitely fails to preserve vector space properties in any reasonable
way.

Definition 4.8.2 Let

Gx =

 −1 0 1

−2 0 2

−1 0 1

 and Gy =

 1 2 1

0 0 0

−1 −2 −1

 .



CONVOLUTION AND EDGE DETECTION 321

The Sobel operator is the function S : M3×3 → R defined by

S(A) = (A ∗Gx) + (A ∗Gy).

“Operator” is just another word for a function. It’s most commonly used in
conjunction with “linear;” the term “linear operator” usually refers to a linear
transformation with a vector space of functions as its domain. In the case of
Sobel operators, though, we know well that it just means “function” because
the Sobel operator, S, is not a linear transformation.48 48: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Exercise!

Example 4.8.2 Let

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

Then

S(A) = (A ∗Gx) + (A ∗Gy)

= |(a13 + 2a23 + a33)− (a11 + 2a21 + a31)|
+|(a11 + 2a12 + a13)− (a31 + 2a32 + a33)|.

That’s a pretty convenient way to calculate S(A), but what does it mean?
Why would anyone do something like this?

Let us experiment a bit with S. Perhaps we can find a use for it.

Example 4.8.3 Let

A =

 1 2 3

1 2 3

1 2 3

 , B =

 1 1 1

2 2 2

3 3 3

 , and C =

 7 7 7

7 7 7

7 7 7

 .

One can check that
Gx ∗A = 8 Gx ∗B = 0 Gx ∗ C = 0

Gy ∗A = 0 Gy ∗B = 8 Gy ∗ C = 0

The last example illustrates the fact that Gx∗A quantifies how much the entries
in a matrix A change horizontally. This is why Gx ∗A is positive, and Gy ∗B
is zero; the entries of B don’t change horizontally. Similarly, Gy quantifies
how much the entries of a matrix A change vertically. This is something like a
discrete version of a gradient of a function of two variables; we’re quantifying
the rate of change in the vertical and horizontal direction. Thus, the Sobel
operator, S, quantifies the total change, both vertical and horizontal, in the
entries of a 3× 3 matrix.

Exploration 133 Find matrices A1, A2, and A3 such that S(Ai) is zero, small,
and large, respectively.



CONVOLUTION AND EDGE DETECTION 322

The Sobel operator is a surprisingly effective detector of edges in images.
Given a pixelated image (say of size 100×100), we can assign a value to each
pixel to represent its color to create a matrix A ∈ M100×100. Then we apply
the Sobel operator to every 3× 3 section of A. Sufficiently large values for S
would suggest the values in that section of A (that is, the colors in that section
of the picture) were changing quickly either vertically or horizontally. This
indicates the likely existence of an edge in the picture. Fun! Let’s try it.

Example 4.8.4 Suppose we had a nice picture of a beautiful orange right
triangle on a glorious brown plane. Using zeros for brown and ones for
orange, we could construct a matrix A ∈ M12×12 to represent a badly
pixilated version of such a picture. It might look something like

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 1 1 1 1 0

0 0 0 0 0 0 1 1 1 1 1 0

0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 0 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0



.

See the triangle made of 1’s? It’s still pretty great; matrices make everything
better. For 2 ≤ i, j ≤ 11, let Ai,j be the 3 × 3 submatrix of A centered at
the entry in the ith row and jth column. For example, A2,2 is the submatrix
of entries in the shaded region in the upper left corner of the matrix, and
A6,6 is the submatrix of entries in the shaded region near the center of the
matrix:

A2,2 =

 0 0 0

0 0 0

0 0 0

 and A6,6 =

 0 0 0

0 0 1

0 1 1

 .

Now let’s construct a new matrix by applying the Sobel operator to each
Ai,j :

 S(A2,2) · · · S(A2,11)
...

. . .
...

S(A11,2) · · · S(A11,11)

 =



0 0 0 0 0 0 0 2 6 4

0 0 0 0 0 0 2 6 6 4

0 0 0 0 0 2 6 6 2 4

0 0 0 0 2 6 6 2 0 4

0 0 0 2 6 6 2 0 0 4

0 0 2 6 6 2 0 0 0 4

0 2 6 6 2 0 0 0 0 4

2 6 6 2 0 0 0 0 0 4

6 6 2 0 0 0 0 0 0 4

4 4 4 4 4 4 4 4 4 6


Returning to the original matrix A, we have colored white all the entries on
the edge of the matrix (the Sobel operator was not defined for these entries),



CONVOLUTION AND EDGE DETECTION 323

and we have also colored white all entries for which S(Ai,j) < 4. To be
clear, we are just now seeing the entries that produce large (4 or greater)
values with the Sobel operator, and we have nicely identified the boundary
of the triangle.

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 1 0

0 0 0 0 0 0 0 2 0 1 1 0

0 0 0 0 0 0 2 0 1 2 1 0

0 0 0 0 0 2 0 1 2 0 1 0

0 0 0 0 2 0 1 2 0 0 1 0

0 0 0 2 0 1 2 0 0 0 1 0

0 0 2 0 1 2 0 0 0 0 1 0

0 2 0 1 2 0 0 0 0 0 1 0

0 0 1 2 0 0 0 0 0 0 1 0

0 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0


This is obviously a very simplified example for the purposes of being able
to do the calculations by hand, but with minimal programing, one can im-
plement this procedure very quickly with very high resolution images. See
Figure 4.7.

FIGURE 4.7. On the left is a fractal image. On the right is
the boundary in the image, as identified using Sobel matri-
ces.

Some optimized code and slightly more sophisticated linear algebra techniques
(soon!) make applications like this very efficient. Again, this just scratches the
surface of the power of linear algebra in computer graphics.



5 Square Matrices and Invariant Subspaces

It is extremely common in applications for a linear transformation to have the
same vector space for its domain and codomain. In such a case, the standard
matrix for this linear transformation will be a square matrix. In this chapter,
we focus our attention on this very case. While most of our attention will be
paid to matrix transformations, keep in mind this can all be applied to any
linear transformation from a vector space to itself once we find a matrix rep-
resentation for the linear transformation.

5.1 Eigenvalues and How to Find Them

In general, when we multiply a matrix A by a vector x⃗, it’s not easy to know
what the result will be before doing the computation. Will Ax⃗ have a differ-
ent magnitude than x⃗? Probably. Will it have a different direction? Yeah,
probably.1 When can we expect Ax⃗ to maintain some of the properties of x⃗? 1:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Recall that quantities with mag-
nitude and direction were a way to think
about vectors from back in Chapter 1.
Magnitude correlates to length and di-
rection can be represented with a unit
vector.

This is actually a pretty common question in mathematics; many mathematical
questions boil down to some kind of invariance issue like this.

Eigenvalues and Eigenvectors

As we so often do, let us begin with an example.

Example 5.1.1 Consider the matrix and vector below.

B =

[
2 1

1 2

]
and x⃗ =

[
2

2

]
Okay, can you guess what happens when we multiply x⃗ by the matrix B?
Did you do the computation in your head to figure it out? That’s cheating.

324



EIGENVALUES AND EIGENVECTORS 325

Let’s compute Bx⃗.

Bx⃗ =

[
2 1

1 2

] [
2

2

]
=

[
6

6

]
= 3

[
2

2

]
.

That’s pretty cool. Multiplying by the matrix really just scales the vector by
3, so B preserves the direction of x⃗. Is B special, or is x⃗? What happens
with other vectors? Let’s check a few others.[

2 1

1 2

] [
1

1

]
=

[
3

3

] [
2 1

1 2

] [
−2
2

]
=

[
−2
2

]
[

2 1

1 2

] [
1

2

]
=

[
4

4

] [
2 1

1 2

] [
0

1

]
=

[
1

2

]
Well, that’s interesting. We found another one it scales by 3, one it scales
by 1, and two that it seems to just change completely. There seems to be
something special about some vectors relative to B. We should explore this
more.

We state the following definition with the general term scalar, but for us, since
our vector spaces are over R, this means a real number.

Definition 5.1.1 An eigenvector of a matrix A ∈Mn×n is a nonzero vector
x⃗ ∈ Rn such that Ax⃗ = λx⃗ for some scalar λ. A scalar λ is called an
eigenvalue of A if there is a nontrivial solution x⃗ ∈ Rn of Ax⃗ = λx⃗, and
we call such an x⃗ an eigenvector corresponding to λ.

Think about that Ax⃗ = λx⃗ equation for a second. This is saying that when
you multiply x⃗ by the matrix A, it’s the same as just rescaling x⃗ by λ. That’s
dynamite! Think of all the things A could do to x⃗, and yet, it just rescales x⃗.

Example 5.1.2 Let

A =

[
1 −1
6 −4

]
and x⃗ =

[
1

3

]
.

Is x⃗ an eigenvector of A? Behold,

Ax⃗ =

[
1 −1
6 −4

] [
1

3

]
=

[
−2
−6

]
= −2

[
1

3

]
= −2x⃗.

The matrix A rescales the vector x⃗ by −2, so yes, x⃗ is an eigenvector of A
with eigenvalue λ = −2.

Example 5.1.3 Let

A =

[
3 2

3 8

]
.

Is λ = 2 an eigenvalue of A? This is a slightly more difficult question. We
need to know if there are nontrivial solutions to Ax⃗ = 2x⃗. We could just
solve the associated system of equations. Alternatively, note that

Ax⃗ = λx⃗ if and only if

Ax⃗− λx⃗ = 0⃗ if and only if

(A− λI)x⃗ = 0⃗.



EIGENVALUES AND EIGENVECTORS 326

where I here is the 2 × 2 identity matrix. This is a more familiar problem.
We’re looking for the kernel of the new matrix A−2I . That is, x⃗ ∈ Ker (A−
2I) if and only if Ax⃗ = 2x⃗. Observe that

A− λI = A− 2I =

[
3 2

3 8

]
− 2

[
1 0

0 1

]
=

[
1 2

3 6

]
→
[

1 2

0 0

]
.

Thus,

Ker (A− 2I) = Span

{[
−2
1

]}
.

One can check that

A

[
−2
1

]
= 2

[
−2
1

]
,

A

[
−4
2

]
= 2

[
−4
2

]
, and

A

[
200

−100

]
= 2

[
200

−100

]
.

In fact, for any scalar k ∈ R and any x⃗ ∈ R2, we know that A(kx⃗) = kAx⃗

so

A

(
k

[
−2
1

])
= 2

(
k

[
−2
1

])
.

That example illustrates that if you have an eigenvector corresponding to λ,
then you definitely have more than one. Specifically, if Ker (A−λI) contains
a nonzero vector, then Ker (A− λI) is a nontrivial subspace.

Definition 5.1.2 The set of all solutions of

(A− λI)x⃗ = 0⃗

is a subspace of Rn called the eigenspace corresponding to λ relative to
the matrix A.

Theorem 5.1.1 For any n×n matrix A, the eigenspace corresponding to λ

is a subspace of Rn. Note that it is a nontrivial subspace if and only if λ is
an eigenvalue for A.

PROOF. This follows from the fact that the eigenspace corresponding to λ is
Ker (A−λI), which is a subspace. We call λ an eigenvalue of A exactly when
there are nontrivial solutions to Ax⃗ = λx⃗. Thus, this will be a subspace of at
least dimension one (i.e. nontrivial) exactly when λ is an eigenvalue. □

Example 5.1.4 Let

A =

 4 0 −1
3 0 3

2 −2 5

 .



EIGENVALUES AND EIGENVECTORS 327

Let’s find a basis for the eigenspace of A corresponding to the eigenvalue
λ = 3.

A− 3I =

 1 0 −1
3 −3 3

2 −2 2

→
 1 0 −1

0 1 −2
0 0 0


Thus, the eigenspace corresponding to λ = 3 is

Ker (A− 3I) = Span


 1

2

1

 ,

so


 1

2

1

 is a basis.

Example 5.1.5 Let’s try that again for the same matrix A, but suppose that
λ = 1.

A− 1I =

 3 0 −1
3 −1 3

2 −2 4

→
 3 0 −1

0 −2 14/3

0 0 5/3


This matrix has a pivot in every column, so its kernel is trivial. What this
calculation shows us is that λ = 1 is not a valid eigenvalue for the matrix A

since A− 1I does not have nontrivial solutions.

Exploration 134 Without calculation, find one eigenvalue and two linearly
independent eigenvectors of

A =

 3 3 3

3 3 3

3 3 3

 .

Hint: If Ker A is nontrivial, then 0 is an eigenvalue with eigenspace Ker A.

We’ve seen now that eigenspaces are subspaces. Let A ∈Mn×n, and suppose
E1 is the eigenspace corresponding to the eigenvalue λ1 of A and E2 is the
eigenspace corresponding to the eigenvalue λ2 of A, where λ1 ̸= λ2. What
could the intersection E1 ∩ E2 look like? Well, suppose x⃗ ∈ E1 ∩ E2. That
means x⃗ ∈ E1, so Ax⃗ = λ1x⃗. Also, x⃗ ∈ E2, so Ax⃗ = λ2x⃗. The only
way both of these equations can be true is if x⃗ = 0⃗. Thus, the intersection of
eigenspaces corresponding to distinct eigenvalues must be trivial. This idea
motivates the following extremely useful2 theorem. 2: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

We’ll get to the useful bit in the
next section. Be patient.

Theorem 5.1.2 If v⃗1, v⃗2, . . . , v⃗r are eigenvectors that correspond to dis-
tinct eigenvalues λ1, λ2, . . . , λr, of an n × n matrix A, then the set
{v⃗1, v⃗2, . . . , v⃗r} is linearly independent.

PROOF. Suppose {v⃗1, v⃗2, . . . , v⃗r} is linearly dependent, so one of these vec-
tors must be a linear combination of some of the others, which we may choose
to be linearly independent. We can assume without loss of generality that
v⃗1 = a2v⃗2 + · · · + arv⃗p for some scalars a2, . . . , ap (not all zero), where the
vectors v⃗2, . . . , v⃗p are linearly independent. Then multiplying by A and using



THE POWER METHOD 328

linearity of A and the fact that each v⃗i is an eigenvector corresponding to λi,
we have

Av⃗1 = a2Av⃗2 + · · ·+ arAv⃗p, so

λ1v⃗1 = a2λ2v⃗2 + · · ·+ apλrv⃗p.(5.1)

Multiplying v⃗1 = a2v⃗2 + · · ·+ arv⃗p by λ1 and subtracting this from equation
(5.1), we have

0⃗ = a2(λ2 − λ1)v⃗2 + · · ·+ ap(λp − λ1)v⃗p.

Since the set {v⃗2, . . . , v⃗p} is linearly independent, we know that

a2(λ2 − λ1) = · · · = ap(λp − λ1) = 0.

Since the scalars a2, . . . , ap are not all zero, we must have λ1 = λi for some
2 ≤ i ≤ p. This contradicts the fact that the eigenvalues are all distinct. Thus,
{v⃗1, v⃗2, . . . , v⃗r} is linearly independent. □

Corollary 5.1.3 Suppose A is an n × n matrix with n distinct eigenvalues.
Then the set of vectors formed by taking one eigenvector for each eigenvalue
is a basis for Rn. That is, there exists a basis of Rn consisting entirely of
eigenvectors for A.

Eigenvalue Finding Algorithms

If you’re working with small enough matrices, say inM2×2 orM3×3, there
are some algebraic methods for finding both eigenvalues and eigenvectors.
We’re going to tell you about these methods. . . in the next section. Unless
you’re working with a matrix inM2×2 or maybeM3×3, you’re almost cer-
tainly going to use technology to find eigenvalues and eigenvectors, so let’s ex-
plore how that works a little bit. There are many algorithms for finding eigen-
values and eigenvectors that make various compromises in accuracy, compli-
cation, and speed. We’ll just look at the most common and simple ones here,
but know that the interested reader is free to fall down that rabbit hole if they
wish, but we’re not gonna push you.

The Power Method

This method will be used to find just a single eigenvalue and eigenvector, and
as the name implies, we will use powers of matrices to help us in our compu-
tation. Before we start though, let’s take note of a property of eigenvalues and
eigenvectors related to matrix powers.3 3:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I shall smite thee with my Ma-
trix Powers!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

No! Not the Matrix Powers! Ahh!Theorem 5.1.4 If A ∈Mn×n has eigenvalue λ with eigenvector v⃗, then

Akv⃗ = λkv⃗

for any integer k > 0.

Rather than a formal proof, let’s consider the case where k = 2. Then we have

A2v⃗ = A(Av⃗) = A(λv⃗) = λ(Av⃗) = λ(λv⃗) = λ2v⃗.



THE POWER METHOD 329

The proof for the general statement works the same, just with bulkier notation.
Now, using this theorem as motivation, let’s see an example of a numerical
approximation procedure for finding an eigenvector.

Example 5.1.6 We’ll start with a 2 × 2 matrix and a randomly selected
vector,

A =

[
1 3

2 1

]
and x⃗ =

[
1

1

]
.

That seems simple enough. Is x⃗ an eigenvector for A?

Ax⃗ =

[
1 3

2 1

] [
1

1

]
=

[
4

3

]
Well, it seems not. Certainly Ax⃗ is not a scalar multiple of x⃗. Let’s see what
happens when we compute Akx⃗ for large values of k even though we know
x⃗ is not an eigenvector. Since A preserves direction for eigenvectors, we’ll
also include here the unit vector for each result, so we can compare how the
direction is changing.

Unit Vector

A2x⃗ =

[
1 3

2 1

]2 [
1

1

]
=

[
13

11

] [
0.763386

0.645942

]

A8x⃗ =

[
1 3

2 1

]8 [
1

1

]
=

[
22, 297

18, 209

] [
0.774536

0.63253

]

A14x⃗ =

[
1 3

2 1

]14 [
1

1

]
=

[
37, 567, 993

30, 674, 171

] [
0.774596

0.632456

]

A20x⃗ =

[
1 3

2 1

]20 [
1

1

]
=

[
63, 291, 789, 517

51, 677, 530, 049

] [
0.774597

0.632456

]

Well, that unit vector certainly seems to be converging to something. Could
it be an eigenvector? How could we check? Let’s see what A does to it.[

1 3

2 1

] [
0.774597

0.632456

]
=

[
2.67197

2.18165

]
≈ 3.4495

[
0.774597

0.632456

]
So, not quite an eigenvector, but approximately one.

In the following theorem, we need to refer to the magnitude of an eigenvalue.
If λ ∈ R, then the magnitude is the absolute value, |λ|. This corresponds to
how we referred to the magnitude of a vector in R back in Chapter 1.

Theorem 5.1.5 (Power Method) Suppose A ∈ Mn×n has n distinct real
eigenvalues λ1, . . . , λn with corresponding eigenvectors v⃗1, . . . , v⃗n that can
be arranged such that

|λ1| > |λ2| > · · · > |λn|.

Let λ1 be the eigenvalue with the largest magnitude, then for any x⃗ /∈
Span {v⃗2, . . . , v⃗n}, Akx⃗ approaches Span {v⃗1} as k increases; that is, as
k goes to infinity, ∥∥Akx⃗− proj Span{v⃗1}

(
Akx⃗

)∥∥→ 0.



THE POWER METHOD 330

What a cool name for a theorem. I’m impressed. This says that for almost
any x⃗ you pick, Akx⃗ will approach, as k increases, an eigenvector whose
eigenvalue has the largest magnitude. This must be exactly what happened in
Example 5.1.6. Let’s prove it.

PROOF. We can order and number all of the eigenvalues by magnitude:

|λ1| > |λ2| > · · · > |λn|.

Let v⃗1, . . . , v⃗n be the corresponding eigenvectors. Note that from Corollary
5.1.3 we know these eigenvectors form a basis for Rn. Then for x⃗, we have
x⃗ = c1v⃗1 + · · ·+ cnv⃗n with c1 ̸= 0,4 and 4: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

We know c1 ̸= 0 because we
assumed x⃗ /∈ Span {v⃗2, . . . , v⃗n}.

Akx⃗ = Ak(c1v⃗1 + · · ·+ cnv⃗n)

= c1A
kv⃗1 + · · ·+ cnA

kv⃗n

= c1λ
k
1 v⃗1 + · · ·+ cnλ

k
nv⃗n.

Factoring out λk
1 , we have

Akx⃗ = λk
1

(
c1v⃗1 + c2

λk
2

λk
1

v⃗2 + · · ·+ cn
λk
n

λk
1

v⃗n

)
= λk

1

(
c1v⃗1 + c2

(
λ2

λ1

)k

v⃗2 + · · ·+ cn

(
λn

λ1

)k

v⃗n

)
.

Since |λi/λ1| < 1 for every i = 2, . . . , n, we have that (λi/λ1)
k is very

small. Thus, for very large k, Akx⃗ is very close to λk
1c1v⃗1 ∈ Span {v⃗1}. More

specifically,

∥Akx⃗− proj Span{v⃗1}
(
Akx⃗

)
∥ = ∥Akx⃗− λkc1v⃗1∥

=

∥∥∥∥∥c2
(
λ2

λ1

)k

v⃗2 + · · ·+ cn

(
λn

λ1

)k

v⃗n

∥∥∥∥∥ ,
which goes to zero as k goes to infinity. □

More precise statements can be made and proved using limits. This is not
calculus class, so we don’t have to do that.

5:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Note that Theorem 5.1.5 also
works with complex eigenvalues by
replacing absolute value with the
complex number version of magnitude.
However, we have simplified it here
since we have so far only talked about
vector spaces over R.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

So far?! Wait, are we going to talk
about complex vector spaces?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Shhh! Not here.

5 Nevertheless, Theorem 5.1.5
actually allows us to make an algorithm that rescales our vector at each step,
and this rescaling allows it to converge to a specific vector as k →∞.

Corollary 5.1.6 Suppose A ∈ Mn×n. Let λ1 be the eigenvalue with the
largest magnitude and unit eigenvector v⃗1, and let {v⃗1, b⃗2, . . . , b⃗n} be a

basis for Rn. For any x⃗0 /∈ Span
{⃗
b2, . . . , b⃗n

}
, and any integer k ≥ 0,

define x⃗k+1 = Ax⃗k/∥Ax⃗k∥. Then

lim
k→∞

∥x⃗k − v⃗1∥ = 0.

Note that here the unit vectors are incorporated into the algorithm itself to
make a nice convergence statement.

6: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It should also be noted here that
convergence in norm like this only
implies the convergence of the vectors
here because our vector space is finite
dimensional.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Wait. Things break when you
need a basis with infinite vectors?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yep. We’re not going to talk about
any of those things here, though.

6 Once we have our eigenvector, v⃗1, find-
ing the eigenvalue is not so hard because Av⃗1 = λ1v⃗1. Let’s see another
example.



THE QR METHOD 331

Example 5.1.7 Now that we have the theorem, we can be a bit more efficient
here. Let

B =

[
1 −1
−2 1

]
.

Now, if our theorem applies, we should see that applying a large enough
power of B to some vector x⃗ will approximate an eigenvector. Let’s try
k = 20 and

x⃗ =

[
1

1

]
.

Then

B20x⃗ =

[
6, 625, 109

−9, 369, 319

]
with unit vector u⃗ =

[
0.57735

−0.816497

]
.

Now, we can check whether u⃗ is an approximate eigenvector.[
1 −1
−2 1

] [
0.57735

−0.816497

]
=

[
1.39385

−1.9712

]
≈ 2.414

[
0.57735

−0.816497

]
Yay! We found an approximate eigenvalue and eigenvector.

Exploration 135 Use technology capable of computing powers of matrices to
recreate the previous example with the matrix

C =

[
1 −1
−3 1

]
.

While this method works almost all the time, you’ll note that there were a few
conditions on the theorem for when this exact technique applies and also on
that initial vector choice. Also, be aware that we have worked examples of this
with 2 × 2 matrices just for illustrative purposes. There are other techniques
that are sometimes preferable for smaller matrices.

Perhaps you are sad that the Power Method only gives you one eigenvector
and one eigenvalue. That is sad. It definitely makes me sad. Think of how left
out all those other eigenvalues must feel. Fortunately, there are algorithms that
find more eigenvalues. Let’s see a different method.

The QR Method

For this method, we will need to decompose our matrix. This means we will
write our matrix as the product of other matrices. We’ve already seen this in
Chapter 4 when we discussed the change of basis matrices though we did not
use this term, and we will discuss it quite a bit more in the upcoming sections.
First, we need some handy definitions and theorems.



THE QR METHOD 332

Definition 5.1.3 The main diagonal of a square matrix A ∈Mn×n are the
entries a11, a22, . . . ann starting at the upper left corner of the matrix and
going diagonally to the lower right entry. A matrix is called upper (lower)
triangular if all the entries below (above) the main diagonal are zero.

Remember orthogonality from Chapter 2? What’s better than orthogonality?
Orthonormality!

Definition 5.1.4 A matrix A ∈ Mn×n is an orthogonal matrix if it has
orthonormal columns.

An “orthogonal” matrix has “orthonormal” columns? We concede this is con-
fusing terminology but happily pass the buck to our mathematical ancestors.
We’ll gladly let this one slide because they also coined the terminology “spec-
tral theory.”7 We’ll talk about spectral theory soon. Anyway, orthogonal ma- 7:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

A term cool enough for super-
heroes to misuse so they sound smart.trices, you will not be surprised, have very cool properties.

Lemma 5.1.7 If A ∈Mn×n is orthogonal, then A−1 = AT .
8:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Easiest inverse to calculate,
ever!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

What about In?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

That’s an orthogonal matrix, so
it’s inverse calculation is a subset of
these calculations.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

What calculation? It’s its own
inverse.

:. . .

8

PROOF. Let A = [⃗a1 · · · a⃗n]. Using the definition of matrix multiplication
from Theorem 4.4.5 gives that the aij entry of ATA is a⃗i · a⃗j . The result
follows immediately then from the fact that a⃗i · a⃗j = 0 if and only if i ̸= j,
and a⃗i · a⃗j = 1 if and only if i = j since the columns are orthonormal. □

Theorem 5.1.8 (QR Decomposition) If A ∈ Mn×n, then there is an or-
thogonal matrix Q ∈ Mn×n and an upper triangular matrix R ∈ Mn×n

such that A = QR.

PROOF. All we have to do is perform the Gram-Schmidt process to the columns
of A = [⃗a1 · · · a⃗n].9 Let w⃗1, . . . , w⃗n be the resulting vectors. Then nor- 9:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yeah! Gram-Schmidt those
columns!malize them (divide each of them by their own norm so the resulting vec-

tor has norm one); for i = 1, . . . , n, define u⃗i = w⃗i/∥w⃗i∥. It follows that
Q = [u⃗1 · · · u⃗n] ∈ Mn×n is an orthogonal matrix. Now define the upper
triangular matrix

R = [r⃗1 · · · r⃗n] =


a⃗1 · u⃗1 a⃗2 · u⃗1 · · · a⃗n · u⃗1

0 a⃗2 · u⃗2 · · · a⃗n · u⃗2

...
...

. . .
...

0 0 · · · a⃗n · u⃗n

 ∈Mn×n.

One can check that A = QR; behold that for any i = 1, . . . , n, we have

Qr⃗i = [u⃗1 · · · u⃗n]



a⃗i · u⃗1

a⃗i · u⃗2

...
a⃗i · u⃗i

0
...
0


= (⃗ai · u⃗1)u⃗1 + (⃗ai · u⃗2)u⃗2 + · · ·+ (⃗ai · u⃗i)u⃗i = a⃗i.



THE QR METHOD 333

□

That last equality is some sneaky business with Gram-Schmidt. Expect to
work out the details as an exercise. Also, fun fact: there is a version of this
theorem for rectangular matrices as well.10Note that the proof of this theorem, 10:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Non-square matrices are dead
to me!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

That’s mean, Bubbles! Guess
who’s writing the proof for the general
statement now?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

. . . Um. . . the readers?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Oh, I was thinking you, but sure.
That’s fine, too.

quite importantly, gives us a way to find the QR decomposition for a matrix,
not just tells us that it exists. That’s so helpful! Also, if you perhaps skipped
over the proof, you should definitely go back and look at that. Let’s see an
example.

Example 5.1.8 Let’s find this decomposition for the matrix from Example
5.1.6,

A =

[
1 3

2 1

]
.

We’ll refer to the columns here as a⃗1 and a⃗2, respectively. Now, the Gram-
Schmidt process gives us

w⃗1 =

[
1

2

]
and

w⃗2 = a⃗2 − proj w⃗1
(⃗a2) =

[
3

1

]
− 5

5

[
1

2

]
=

[
2

−1

]
.

Normalizing these vectors gives us

u⃗1 =

[
1/
√
5

2/
√
5

]
and u⃗2 =

[
2/
√
5

−1/
√
5

]
.

Thus,

Q =

[
1/
√
5 2/

√
5

2/
√
5 −1/

√
5

]
and R =

[ √
5
√
5

0
√
5

]
.

Exploration 136 Verify that A = QR with the matrices from the example
above.

Now that we’ve learned about our decomposition, we can use it to find eigen-
values and eigenvectors. The following theorem gives us our algorithm.

Theorem 5.1.9 (QR Algorithm) Suppose A0 ∈ Mn×n has n distinct
eigenvalues such that

|λ1| > |λ2| > · · · > |λn| > 0.

For any integer k ≥ 0, let QkRk be the QR decomposition for Ak, and
define

Ak+1 = RkQk.

Then the diagonal entries of Ak converge to the eigenvalues of A0 as k →
∞.

We’re not going to prove this one; we’d need some machinery that’s scattered
throughout the next few sections. Thus, we will settle for seeing it in action.
First, let’s take note of a simplification. By using Lemma 5.1.7, the application
of this theorem becomes a little easier in practice. Since Ak = RkQk, we



SECTION HIGHLIGHTS 334

know Rk = Q−1
k Ak = QT

kAk by Lemma 5.1.7. Then we have

Ak+1 = QT
kAkQk,

so we don’t even need to compute R. That’s neat! Now, it’s time for that
example.

Example 5.1.9 Here’s a matrix,

A0 =

 5 6 −6
−7 −12 15

−4 −8 11

 ,

with eigenvalues 3, 2, and −1. A quick
11:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Ha!
11 computation shows that, with

entries rounded to the nearest thousandth,

A1 =

 3.205 1.291 26.28

0.391 2.419 2.18

−0.101 −0.108 −1.624


A3 =

 2.92 0.604 26.172

0.215 2.141 −4.046
−0.011 −0.007 −1.061


A17 =

 3 0.334 24.288

0.001 2 −10.582
0 0 −1

 .

Note that in A1 the diagonal entries are already getting near the eigenvalues.
Did we cheat by starting with a matrix whose diagonal entries were pretty
close to the eigenvalues already? Yes. Yes, we did. It’s not uncommon to
need hundreds of steps for this algorithm for reasonable precision.

This (or, technically, a more procedurally complicated, more efficient ver-
sion12 of this) is a super common way to find eigenvalues. However, you 12:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

How can something more
complicated be more efficient?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

There are more steps in the algo-
rithm, but it converges much faster.

probably noticed that hypothesis about needing n distinct nonzero eigenvalues
all with different magnitudes. Yeah. That’s a strong one. It makes proving the
convergence in this theorem possible, though. The good news is, this algo-
rithm works a lot of the time in general, even without knowing anything about
the eigenvalues.

Section Highlights

▶ Suppose A is an n × n matrix and x⃗ ∈ Rn. We say nonzero x⃗ is an
eigenvector for A if Ax⃗ = λx⃗ for some λ ∈ R. In this situation, we
call λ an eigenvalue for A. See Definition 5.1.1.

▶ A real number λ is an eigenvalue for A if and only if dimKer (A −
λI) ≥ 1. Moreover, any nonzero vector in Ker (A−λI) is an eigen-
vector with eigenvalue λ. See Theorem 5.1.1.

▶ Any collection of eigenvectors corresponding to distinct eigenvalues
form a linearly independent set. See Theorem 5.1.2.

▶ The power method and QR method are used to approximate eigen-
values of matrices. See Example 5.1.6 and Example 5.1.9.



EXERCISES FOR SECTION 5.1 335

Exercises for Section 5.1

5.1.1.Let A =


1 2 1 1

2 1 1 1

1 1 2 1

1 1 1 2

 . Multiply each of the following vectors by A to determine whether or not they

are eigenvectors for A. If they are, state the eigenvalue.

(a)


1

1

1

−1

,

(b)


1

1

1

1

,

(c)


1

−1
0

0

,

(d)


0

0

−1
1

,

(e)


1

1

0

−2

,

(f)


1

0

0

1

,

(g)


−1
−1
2

0

,

(h)


0

0

1

1



5.1.2.Ricky has affixed a picture of Bubbles onto the square in R2 whose vertices are (0, 0), (1, 0), (1, 1), and
(0, 1). (He’s done this at least once before.) He decides again that this is much too small, and he prefers
that Bubbles faces the other direction. Let T : R2 → R2 be the linear transformation that makes the picture
of Bubbles twenty times bigger and reflects the image across the vertical axis. Find the eigenvalues for T .
Justify. Hint: No algebra required!

5.1.3.Let T : R4 → R4 be the linear transformation that interchanges the x1 axis with the x3 axis, maps the x2

axis to 0⃗, and does nothing to the x4 axis. Find all eigenvalues for T . Justify. Hint: No algebra required!

5.1.4.Determine whether or not 2 is an eigenvalue for each of the following matrices.

(a) A =

[
1 −1
1 3

]
(b) B =

 2 3 −1
0 2 0

0 1 1


(c) C =


1 1 π 0

0 2 1 0

0 1 1 1

0 0 0 2



5.1.5.The following matrices all have eigenvalues 1 and 2. Find a basis for the eigenspace for each eigenvalue.

(a) A =

 2 1 −1
0 2 0

0 1 1

 (b) B =

 2 3 −1
0 2 0

0 1 1

 (c) C =

 1 1 0

0 2 0

0 1 1



5.1.6.Let B =

 −1 4 −1
1 2 −1
3 −1 0

 . The eigenvalues for B are −2, 2, and 1. Find an eigenvector corresponding

to each eigenvalue.

5.1.7.Let B =

 −1 4 0

1 2 0

3 −1 0

 . The eigenvalues for B are −2, 3, and 0. Find an eigenvector corresponding to

each eigenvalue.



EXERCISES FOR SECTION 5.1 336

5.1.8.The matrix

A =


1 0 −2 2

−3 7 −6 3

−3 5 −4 3

−3 4 −6 6


has eigenvalues 1, 2, 3, and 4. According to Theorem 5.1.2, the associated eigenvectors should form a
linearly independent set. Find an eigenvector for each eigenvalue, and verify that this set of four eigenvalues
is linearly independent.

5.1.9.Explain why A ∈Mn×n can have at most n distinct eigenvalues.

5.1.10.Suppose A2 = I . Show that the only possible eigenvalues are −1 and 1.

5.1.11.Determine whether or not the following matrices are orthogonal matrices.

(a) A =

 2 0 0

0 2 −1
0 1 2



(b) B =

 1/
√
3 1/

√
3 1/

√
3

−1/
√
2 0 1/

√
2

−1/
√
6
√
2/3 −1/

√
6


(c) C =

 1/
√
3 1/

√
3 11/

√
3

−1/
√
3 1/

√
3 1/

√
23

−1/
√
3 −1/

√
3 −1/

√
3



5.1.12.Let A =

[
1 −1
3 5

]
. Use the Power Method with e⃗1 to approximate an eigenvector for the largest magni-

tude eigenvalue for A.

5.1.13.Let A =

[
1 −1
3 5

]
. Find the QR decomposition for A.

5.1.14.Let a⃗1, . . . , a⃗n ∈ Rn, and let {u⃗1, . . . , u⃗n} be the orthonormal set of vectors resulting from performing
Gram-Schmidt on a⃗1, . . . , a⃗n and normalizing. Show that for i = 1, . . . , n,

(⃗ai · u⃗1)u⃗1 + (⃗ai · u⃗2)u⃗2 + · · ·+ (⃗ai · u⃗i)u⃗i = a⃗i.

5.1.15.Adapt the statement and proof of Theorem 5.1.8 to hold for A ∈Mm×n, where m ̸= n.



DETERMINANTS 337

5.2 Determinants and More Fun with Eigenvalues

It’s been a while since we dealt with real-valued functions, so this will be a
nice change.13 The first part of this section is devoted to defining a function 13:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Really? Somehow I’m skepti-
cal.from Mn×n to R that has some very convenient properties. It’s called the

determinant. Then, we will use this function as a tool to compute eigenvalues,
as we promised in the previous section. Since our ultimate goal here will be
our hunt for eigenvalues, we have omitted many of the proofs related to the
determinant function.

Determinants

Here’s a neat fact. The determinant is the unique function from Mn×n to
R that is n-linear, alternating, and maps the identity matrix In to 1. If we
had a couple dozen extra pages we could figure out what all of that means and
use it to define the determinant function. That would be really great. However,
we’re going to take a more. . . um. . . equestrian approach. Yeah, that’s the word
I wanted. This way has more horses. Tons more horses. 14 14:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

How dare you betray us after
all we’ve done for you! Horses?!

Oh? Did you think I meant pedestrian? Nope. Not at all. There is nothing
the slightest bit pedestrian about determinants. Ultimately, we’re just building
a function here (pedestrian), but this function is neat and hairy (equestrian).
However, rather than build the spike-wheeled chariot of alternating, multi-
linear functionals, we’re going to build a more equestrian/pedestrian saddle
of a function. Just know in your heart that if you wanted to turn in your
determinant saddle for a determinant chariot, all you have to do is watch Ben
Hur and look up “determinant” on Wikipedia.

Commence construction! Let det :M2×2 → R, and let’s make it so that for
any A ∈ M2×2, we have det(A) ̸= 0 if and only if A is invertible.15 From 15: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Well, that’s a handy property!
this, we can build a formula for det. In Section 4.5, we saw that a matrix

A =

[
a11 a12
a21 a22

]
∈M2×2

has an inverse

1

a11a22 − a12a21

[
−a11 a21
a12 −a22

]

if and only if a11a22 − a12a21 ̸= 0. Great! Then we define det :M2×2 → R
by

det(A) = a11a22 − a12a21.

That was easy, like riding a bike (being pulled by a horse).16 Here’s a defini- 16:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Strike that. The authors have
it on good authority that you don’t want
to ride a bike being pulled by a horse.
Ever.

tion of a function det :Mn×n → R that uses this det function we just defined
onM2×2.



DETERMINANTS 338

Definition 5.2.1 For n ≥ 2, the determinant of a matrix A = [aij ] ∈
Mn×n is the sum

detA = a11 detA11 − a12 detA12 + · · ·+ (−1)n+1a1n detA1n

=

n∑
j=1

(−1)j+1a1j detA1j ,

where Aij ∈ M(n−1)×(n−1) is the submatrix of A resulting from removing
the ith row and jth column.

Defining the determinant this way allows us to maintain the property that
det(A) ̸= 0 if and only if A is invertible; we’ll prove that later in this sec-
tion. It also turns out that this determinant function is unique (in a very spe-
cific sense). However, perhaps you are asking yourself the following question:
What is this grossly complicated thing? That is a fair question. Hopefully an
example will clarify.

Example 5.2.1 Let’s calculate a determinant. Let A ∈ M3×3, so our for-
mula from Definition 5.2.1 is

detA = a11 detA11 − a12 detA12 + a13 detA13.

If

A =

 1 2 3

4 5 6

7 8 9

 ,

then

a11 = 1, A11 =

[
5 6

8 9

]
;

a12 = 2, A12 =

[
4 6

7 9

]
; and

a13 = 3, A13 =

[
4 5

7 8

]
.

It follows that

det

 1 2 3

4 5 6

7 8 9

 = det

[
5 6

8 9

]
− 2 det

[
4 6

7 9

]
+ 3det

[
4 5

7 8

]
= (−3)− 2(−6) + 3(−3) = 0

That was anticlimactic. Neglect ye not the minus signs that alternate from
submatrix to submatrix!

Exploration 137 Calculate the determinants of the matrices below.

A =

 1 2 3

4 5 6

0 8 9

 B =

 1 0 3

4 5 6

0 8 9

 C =

 1 0 0

4 5 6

400 8 9





DETERMINANTS 339

Did you appreciate the zeroes across the top row in that matrix C? Yes, we
thought you would. Suppose those zeroes had been in the second row. It would
have still simplified the computation, but not quite as much. It’d be great if we
could just pick whichever row or column we wanted and use that to compute
the determinant. We could always pick the one with the most zeroes. Well,
guess what? We can do exactly that. Before stating this as a theorem, though,
we need a definition.

Definition 5.2.2 Let A ∈ Mn×n and suppose Aij is the submatrix formed
by deleting the ith row and jth column from A. Then the number

Cij = (−1)i+j detAij

is called the (i, j)−cofactor of A.

With this terminology and notation, we can write Definition 5.2.1 as

detA = a11C11 + a12C12 + · · ·+ a1nC1n.

We call this a cofactor expansion of the determinant. Now, for that lovely
theorem about picking your favorite row or column.

Theorem 5.2.1 The determinant of a matrix A ∈ Mn×n can be computed
by a cofactor expansion across any row or down any column. In particular,
the expansion across the ith row is

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

and the expansion down the jth column is

detA = a1jC1j + a2jC2j + · · ·+ anjCnj

Example 5.2.2 Let’s start with a matrix.

A =

 1 1 1

0 2 0

3 2 0


Now, we can compute the determinant across any row or column. Let’s pick
row 2!

detA =− 0

[
1 1

2 0

]
+ 2

[
1 1

3 0

]
− 0

[
1 1

3 2

]
=2(0− 3) = −6

Let’s do it again! This time, we’ll use column 3!

detA =1

[
0 2

3 2

]
− 0

[
1 1

3 2

]
+ 0

[
1 1

0 2

]
=1(0− 6) = −6

Is 0 now your favorite number? Maybe it should be.

Now, let’s talk about those negative signs. Did you catch in Example 5.2.2
that they alternated in the pattern −, +, − when going across the second row
but +, −, + when going down the third column? Well, there’s a nice way
to remember where the negative signs go. Whatever size your matrix, you
can build a checkerboard pattern to remind you how these work. Here are the



PROPERTIES OF DETERMINANTS 340

checkerboards for 3× 3 and 4× 4 for reference. + − +

− + −
+ − +




+ − + −
− + − +

+ − + −
− + − +


Exploration 138 Compute the determinant by cofactor expansion along the
row or column that involves the least amount of computation.

A =


6 0 0 5

1 7 2 −5
2 0 0 0

8 3 1 8



That last theorem simplified our computations when we have a few zeroes.
This next one will simplify it even more depending on where the zeroes are
located.

Theorem 5.2.2 The determinant of an n × n triangular matrix A is the
product of the diagonal entries.

PROOF. If A ∈Mn×n is upper triangular, the result follows from doing each
cofactor expansion down the first column. If A is lower triangular, do each
cofactor expansion down the last column. □

Example 5.2.3 Let’s calculate some more determinants!

A =


1 2 3 4 π2

0 1 4 6 42

0 0 4 8 e

0 0 0 1 1, 234

0 0 0 0 1


By Theorem 5.2.2, detA = 4.

This method was great, but it relied on having a very specific form for the
matrix. Are we allowed to alter the form of the matrix? Well, yes and no. We
have those handy row operations, but we’d need to know how those interact
with the determinant. It seems we are ready to explore how this function
behaves with some of the other things we’ve encountered.

Properties of Determinants

By carefully breaking down the definition of the determinant, we can say pre-
cisely how it is affected by each row operation.



PROPERTIES OF DETERMINANTS 341Theorem 5.2.3 (Row Operations and Determinants) Let A be a square ma-
trix.

(a) If a multiple of one row of A is added to another to produce matrix
B, then detB = detA.

(b) If two rows of A are interchanged to produce B, then detB =

−detA.
(c) If one row of A is multiplied by k to produce B, then detB =

k · detA.

Thus, we are allowed to modify the format of a matrix to help in calculating
the determinant, but we’ll need to carefully keep track of the row operations
to do so.

Example 5.2.4 Let’s use properties of determinants to simplify the compu-
tation of determinants.

A =


1 3 3 −4
0 1 2 −5
2 5 4 −3
−3 −7 −5 2


Using only the row operation of adding a multiple of one row to another,
one can show that

A→


1 3 3 −4
0 1 2 −5
0 0 0 0

0 0 −6 10

 = B

By Theorem 5.2.3, detA = detB, and by using the cofactor expansion
across the third row of B, we see that detB = 0. Thus, detA = 0.

Recall that elementary matrices allow us to convert row operations to matrix
multiplication. Thus, we have the following corollary.

Corollary 5.2.4 Suppose A ∈ Mn×n and E ∈ Mn×n is an elementary
matrix. Then detEA = detE detA.

This proof here can be done by computing detE for each type of elementary
matrix and comparing to Theorem 5.2.3, but we will leave this for the exer-
cises. This corollary might have you questioning whether we can always break
up the determinant across matrix multiplication. Well, yes, actually we can.
Before we can prove that though, we need our promised connection between
the determinant and invertibility.

Theorem 5.2.5 A square matrix A is invertible if and only if detA ̸= 0.

PROOF. This follows from Theorem 5.2.3. Let B be the row-echelon form
for the matrix A. We can always obtain row-echelon form without rescaling
the rows since we are not required to make the pivots 1s, and since adding a
scalar multiple of a row does not change the determinant, we only need to keep
track of the row swaps to compute the relationship between detA and detB.
Suppose r row swaps were needed. Then

detA = (−1)r detB.



PROPERTIES OF DETERMINANTS 342

Now, A is invertible if and only if B has a pivot in every column, which means
A is invertible if and only if B has no zeroes on its diagonal. Thus, the result
follows from Theorem 5.2.2. □

Example 5.2.5 Use determinants to decide if the matrix is invertible.

A =

 2 3 0

1 3 4

1 2 1


Since detA = −1 ̸= 0, A is invertible by Theorem 5.2.5.

Because of the Invertible Matrix Theorem, knowing whether or not a matrix is
invertible can also tell us other interesting things.

Exploration 139 Use determinants to decide if the set of vectors is linearly
independent.  7

−4
−6

 ,

 −85
7

 ,

 7

0

−5



Now, we have everything needed to expand Corollary 5.2.4 into a more general
statement.

Theorem 5.2.6 (Multiplicative Property) If A,B ∈Mn×n, then

detAB = (detA)(detB)

PROOF. Let A,B ∈ Mn×n. Suppose first that A is not invertible. Then
TA : Rn → Rn is not onto and Imag TA ̸= Rn. This means TAB = TA ◦ TB

cannot be onto since Imag TAB must be a subset of Imag TA. Thus, AB is
also not invertible. By Theorem 5.2.5, detA = 0 and detAB = 0. We can
then conclude detAB = 0 = detA detB.

Suppose now that A is invertible. Then A is row equivalent to the identity
matrix and there is some sequence of row operations {r1, . . . , rk} such that
A = (Erk · · ·Er1)In where Eri are each elementary matrices. We saw in
Corollary 5.2.4 that the determinant breaks up across the product of an ele-
mentary matrix and a regular matrix, so we have

detAB = det((Erk · · ·Er1)InB)

= (detErk) · · · (detEr1)(det In)(detB)

= (detA)(detB).

□



FINDING EIGENVALUES WITH ALGEBRA 343

Beware! There is no analogue for sums of matrices. That is, det(A + B) ̸=
detA+ detB in general. We’ll verify this in an exercise.

Exploration 140 Let’s use Theorem 5.2.6 to find the relationship between
detA and detA−1 when A is invertible.

Suppose we know detA = k for some k ∈ R. If A is invertible, we know
k ̸= 0 from Theorem 5.2.5. Then there exists some A−1 such that AA−1 =

In. From Theorem 5.2.2, what must det In be?

Finally, what must detA−1 be?

Exploration 141 Compute detA5 if A =

 1 1 1

0 1 2

1 2 1



Let’s see one last property before moving on to eigenvalues. From Theo-
rem 5.2.1, we know detA can be computed using a cofactor expansion along
any row or column. Thus, since the transpose operation just swaps rows and
columns, the following theorem should not be surprising.

Theorem 5.2.7 If A ∈Mn×n, then detAT = detA.

Finding Eigenvalues with Algebra

You’ve probably noticed we haven’t explicitly outlined a method for finding
eigenvalues by hand. That must be very annoying. We should fix that. But
first, more terminology!

Definition 5.2.3 For A ∈ Mn×n, the degree n polynomial det(A − λI) is
called the characteristic polynomial for A.

Yes, take the determinant. What does the determinant tell us? Well, if it’s
nonzero, our matrix is invertible. But do we want A−λI to be invertible? No!
We want a nontrivial kernel for A−λI . We very specifically want to figure out
which λ give us a non-invertible matrix A−λI . Thus, we need to know when
this characteristic polynomial is zero. Let’s bundle this up into a theorem.

Theorem 5.2.8 For A ∈ Mn×n, λ is an eigenvalue of A if and only if it is
a zero of the characteristic polynomial for A.

Yay! We’ve turned this into the algebra problem of finding zeros for a polyno-
mial. That’s easy, right?

17: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Right. . . This is actually an
extremely deep problem. For a
polynomial of degree two, we have the
quadratic equation, and there are also
formulas that exist for degree 3 and
degree 4. One of the most
groundbreaking results of the early
1800s is that no similar formula exists
for polynomials of degrees 5 and
higher. Mathematicians had searched
for a solution for hundreds of years
before it was proven none existed.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

So. . . maybe not easy?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Hundreds of years? Is that
supposed to be a long time?

. . .

17



FINDING EIGENVALUES WITH ALGEBRA 344

Example 5.2.6 Let’s find the eigenvalues of

A =

 0 1 5

0 1 0

5 1 0

 .

We have

det(A− λI) = det

 0 1 5

0 1 0

5 1 0

− λ

 1 0 0

0 1 0

0 0 1


= det

 0 1 5

0 1 0

5 1 0

−
 λ 0 0

0 λ 0

0 0 λ


= det

 −λ 1 5

0 1− λ 0

5 1 −λ


= −λ[(1− λ)(−λ)] + 5[−5(1− λ)]

= −λ3 + λ2 + 25λ− 25 = −(λ− 1)(λ+ 5)(λ− 5).

Thus, we know that det(A − λI) = 0 when λ = −5, 1, and 5; thus, the
eigenvalues of A are −5, 1, and 5.

Exploration 142 Find the eigenvalues of

A =

 3 3 3

3 3 3

3 3 3


using Theorem 5.2.8.

Great! This gives us a systematic approach to finding eigenvalues by hand.18 18: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Hem, hem. When n ≤ 4.
Otherwise you need some machine to do
factoring approximation for you.

But sometimes, our task is even easier. For example, if it is quickly apparent
that the matrix is itself not invertible, then 0 is one of its eigenvalues. Also, if
the matrix is triangular, either upper or lower triangular, we have the following
result.

Theorem 5.2.9 The eigenvalues of a triangular matrix are the entries on its
main diagonal.

PROOF. Let A ∈ Mn×n be triangular. Then the matrix A − λI is also trian-
gular. For a triangular matrix, we can compute the determinant by multiplying
the entries on the diagonal. Thus, if a1, a2, . . . , an are the entries on the di-
agonal of A, the diagonal of A − λI is (a1 − λ), (a2 − λ), . . . , (an − λ). So
det(A − λI) = (a1 − λ)(a2 − λ) · · · (an − λ), and its zeros are exactly the
entries on the diagonal of A. □



FINDING EIGENVALUES WITH ALGEBRA 345

Exploration 143 We know from Theorem 5.2.9 that the eigenvalues of

A =

 a b c

0 d e

0 0 f


should be a, d, and f . Verify this by finding det(A− λI), where λ = a, d, f .

At this point, we’ve defined all the eigenstuff19 and developed a variety of 19:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

What a fun word!

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It’s not a real word.methods for finding both eigenvalues and eigenvectors. We’ve proven our
supposedly useful theorem about eigenvectors for different eigenvalues be-
ing linearly independent. What’s left? More terminology, you say? Why, of
course, if you insist.

Definition 5.2.4 For an eigenvalue λ of a matrix A ∈ Mn×n, the alge-
braic multiplicity of λ is the multiplicity of λ as a root of the characteristic
polynomial for A. The geometric multiplicity of λ is the dimension of the
eigenspace corresponding to λ.

The multiplicity of λ as a root of a polynomial, p(x), is then number of times
x − λ appears in the factorization of p(x). For example, the multiplicity of 3
as a roof of x2 − 6x+ 9 is two because x2 − 6x+ 9 = (x− 3)2.

Algebraic and geometric multiplicity give us a language to help organize the
information about a matrix’s eigenvalues and eigenvectors.

Example 5.2.7 Let

A =

 5 1 0

0 5 1

0 0 5

 .

Since A is triangular, we know its only eigenvalue is 5. Moreover, the char-
acteristic polynomial is (5 − λ)3, so the eigenvalue 5 has algebraic multi-
plicity of 3. Computing the geometric multiplicity takes a bit more work.
We need to find the dimension of Ker (A− 5I).

A− 5I =

 0 1 0

0 0 1

0 0 0


Oh, well maybe it’s not much work in this case. This matrix has exactly two
pivots, so the dimension of the kernel is one by the Rank-Nullity Theorem.

20:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Thank you, Ronnie Rank and
Noether Nullity!

20

Thus, the geometric multiplicity of the eigenvalue 5 is 1.



SECTION HIGHLIGHTS 346

It would be really great if algebraic and geometric multiplicities were the same
all the time.

21:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Clearly this isn’t the case.
Besides the evidence of the previous
example, why would there be two types
of multiplicities with distinct names if
they always agreed?

21 It would also be great if the world was all candy canes and choo-
choo trains, where the children of tomorrow dream away.

22:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It’s not.

22

Example 5.2.8 Let

A =

[
3 1

0 3

]
and B =

[
3 0

0 3

]
.

By Theorem 5.2.9, 3 is the only eigenvalue of both A and B. For both matri-
ces, the characteristic polynomial is (λ−3)2, so the algebraic multiplicity of
the eigenvalue 3 is 2. However, it’s easy to check that dimKer (A−3I) = 1,
and dimKer (B − 3I) = 2. Thus, the geometric multiplicity of the eigen-
value 3 for A is 1, and the geometric multiplicity of the eigenvalue 3 for B
is 2.

You probably noticed that A and B are row equivalent. Yeah, that’s right,
they’re row equivalent but have different eigenspaces. Row operations mess
up your eigenspace. Fun fact: both A and B are also row equivalent to the
identity, which doesn’t even have the same eigenvalues, let alone eigenspaces.
How messed up is that?

Exploration 144 Compare the eigenspaces of

A =

 1 2 3

0 4 5

0 0 4

 and B =

 −2 −3 8

1 2 −3
−5 −5 9

 .

Hint: They have the same eigenvalues.

Maybe you noticed that A and B are both invertible, so they’re row equivalent
matrices since both are row equivalent to I3. What are we to conclude from
this? Sometimes matrices with the same eigenvalues have the same geometric
multiplicity and sometimes they don’t? That is very dissatisfying. If only there
were a way to classify when this happens? Clearly, row equivalence is not the
right condition, but what could this condition be?23 23:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Stay tuned for next week’s
episode, when our heroes Ronnie and
Noether unravel the mystery of the un-
matched algebraic and geometric multi-
plicities!

Section Highlights

▶ The determinant of a square matrix is a real number associated to
that matrix that is computed through a recursive algorithm. See Def-
inition 5.2.1, Example 5.2.1 and Theorem 5.2.1.

▶ A matrix is invertible if and only if its determinant is nonzero. See
Theorem 5.2.5.

▶ If a matrix is diagonal, upper triangular, or lower triangular, then the
determinant is the product of the diagonal entries, and the entries on



SECTION HIGHLIGHTS 347

the diagonal are the eigenvalues. See Theorem 5.2.2 and Theorem
5.2.9.

▶ The characteristic polynomial of a matrix A is det(A−xI). Its zeros
are the eigenvalues of A. See Definition 5.2.3 and Theorem 5.2.8.

▶ Every eigenvalue has an algebraic multiplicity (number of times it is
the zero of the characteristic polynomial) and geometric multiplicity
(dimension of the kernel of the associated eigenspace). See Defini-
tion 5.2.4.



EXERCISES FOR SECTION 5.2 348

Exercises for Section 5.2

5.2.1.Find the determinants of the matrices below.

(a)
[

1 2

2 2

]

(b)
[

1 −2
−2 4

]

(c)
[

1 0

−2 3

]

(d)
[

2 −2
−2 2

]

(e)

 1 0 2

−2 1 −4
1 1 2



(f)

 1 0 2

−2 0 −4
0 1 2



(g)

 1 0 1

−2 0 0

0 1 0



(h)

 1 −2 1

−2 1 4

1 1 1



(i)

 1 0 1

0 1 4

2 1 1



5.2.2.Use determinants to determine whether each of the following sets are linearly independent.

(a)
{[

1

2

]
,

[
−1
3

]}

(b)


 3

1

−1

 ,

 −20
3

 ,

 1

1

2


5.2.3.Let A ∈Mn×n and k ∈ R. Find a formula for det(kA).

5.2.4.Let A,B ∈ Mn×n. Show that while AB may or may not be equal to BA, it is always the case that
det(AB) = det(BA).

5.2.5.Let A ∈Mn×n be such that ATA = In. Show that either detA = 1 or detA = −1.

5.2.6.Let A,B ∈ M4×4 be such that detA = −1 and detB = 2. Calculate any of the following that can be
calculated with the given information:

(a) det(4AT )

(b) det(A+B)

(c) det(ABA−1)

(d) detB3



EXERCISES FOR SECTION 5.2 349

5.2.7.Find the eigenvalues and corresponding eigenspaces for the following matrices. Also state the algebraic and
geometric multiplicity of each eigenvalue.

A =

 1 1 1

0 1 1

0 1 1

 B =

 1 1 1

0 −1 1

0 −1 1

 C =

 1 1 1

1 0 1

1 0 −1


5.2.8.Bubbles was taking the train down to Gorky Park. A fellow passenger named Klaus claimed that λ is an

eigenvalue of A if and only if λ is an eigenvalue of AT . Decide if this is nonsense; then prove it or provide a
counterexample.

5.2.9.Show that 0 is an eigenvalue of A ∈Mn×n if and only if A is not invertible.

5.2.10.Let

A =


13 113/2 113 25/2

−50 −251 −478 −25
25 235/2 241 25/2

−25 −253/2 −253 −49/2

 .

Check that x⃗ =


−2
4

−2
2

 is an eigenvector for A. Use this fact to calculate A10x⃗. What is limn→∞ Anx⃗?

5.2.11.If v⃗ is an eigenvector of both A and B, show it is an eigenvector of AB and A+B.



LINEAR TRANSFORMATIONS AND INVARIANT SUBSPACES 350

5.3 Diagonalization

In the last section we talked about this eigenstuff24 for matrices. However, we 24: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Still not a word.
all know by now that matrices are inextricably linked to linear transformations
between vector spaces. Let’s talk a bit about eigenstuff in the context of linear
transformations.

Linear Transformations and Invariant Subspaces

Suppose T : V → V is a linear transformation from an n-dimensional vector
space V to itself, and let A ∈ Mn×n be the matrix representing this linear
transformation with respect to some basis B for V . Suppose λ is an eigenvalue
for A with eigenvector w⃗λ ∈ Rn. Then there is a vector v⃗λ ∈ V for which
w⃗λ is the coordinate vector with respect to B. Thus, we know T (v⃗λ) = λv⃗λ.
Since T is a linear transformation, we also know

T (av⃗λ) = aT (v⃗λ) = aλ(v⃗λ) = λ(av⃗λ)

for any a ∈ R. This says Span {v⃗λ} is preserved by the linear transformation
T . That is, T (x⃗) ∈ Span {v⃗λ} for any x⃗ ∈ Span {v⃗λ}. In this situation, we
call Span {v⃗λ} an invariant subspace of V for T . Perhaps that should be a
definition.

Definition 5.3.1 Let T : V → V be a linear transformation from a vector
space V to itself, and suppose W is a subspace of V . We say W is an
invariant subspace of V for T if for any x⃗ ∈ W , the vector T (x⃗) is also in
W .

In the discussion preceding the definition, we motivated this topic with its
connection to eigenvectors, but that is not the only way these occur. It is quite
possible to have invariant subspaces unrelated to eigenvectors.

Example 5.3.1 Consider the linear transformation T : R4 → R4 defined by

T




x1

x2

x3

x4


 =


x2

x1

x3 + x4

x3 + x4

 .

Then W = Span {e⃗1, e⃗2} and U = Span {e⃗3, e⃗4} are invariant subspaces
of R4 for T . Let’s verify this for W together. Note first that T (e⃗1) = e⃗2 ∈
W and T (e⃗2) = e⃗1 ∈ W . Since these form a basis for W , this is actually
enough to show the entire subspace is invariant. To see this, note that any
element of W is of the form ae⃗1 + be⃗2 for some a, b ∈ R, and

T (ae⃗1 + be⃗2) = ae⃗2 + be⃗1 ∈W.

Exploration 145 Check that U is an invariant subspace as claimed.

There are very practical reasons to be aware of invariant subspaces in general.
For instance, we mentioned in Chapter 1 that we can use subspaces containing



LINEAR TRANSFORMATIONS AND INVARIANT SUBSPACES 351

all of our relevant data to reduce the size of the vector space we consider. Now,
we can use invariant subspaces to reduce the “size” of linear transformations,
while continuing to work in the current square matrix setting.

Definition 5.3.2 Let T : V → V be a linear transformation from a vector
space V to itself, and suppose W is a subspace of V . The map

T |W : W → V given by T |W (w⃗) = T (w⃗)

for all w⃗ ∈W is a map called the restriction of T to W .

Theorem 5.3.1 Let T : V → V be a linear transformation from a vector
space V to itself, and suppose W is a subspace of V . The restriction of T
to W is a linear transformation. Moreover, if W is an invariant subspace
of V for T , then T |W : W →W .

This fact can quickly be proven since the linearity properties for T imply them
for T |W , so we will leave this for the exercises. Note that while we can al-
ways restrict ourselves to a subspace of the domain and define such a linear
transformation, this is particularly nice when the subspace is invariant since
this again gives us a linear transformation that can be represented by a square
matrix.

Example 5.3.2 Suppose T : V → V is a linear transformation, V with basis
BV = {⃗b1, . . . , b⃗7,000}, and W is an invariant subspace of V for T with
basis BW = {⃗b1, b⃗2}. Note first that the matrix representation for T will be
7, 000×7, 000, which isn’t actually that large in practice (using computers),
but it’s certainly too large to write in this book. If T (⃗b1) = b⃗1, and T (⃗b2) =

b⃗1 + b⃗2, then the matrix representation with respect to BW for T |W is[
1 1

0 1

]
,

which doesn’t even spill into the margin.
25:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Hey! You stay out of the
margin!

25

Now, our goal was to discuss linear transformations and eigenstuff, so how
does this fit in? Well, eigenspaces give us examples of invariant subspaces.

Theorem 5.3.2 Suppose T : V → V is a linear transformation with matrix
representation A ∈ Mn×n with respect to the basis B of V for T . Suppose
W is a subspace of V with a basis {v⃗1, v⃗2, . . . , v⃗k} such that [v⃗i]B is an
eigenvector for A for each 1 ≤ i ≤ k. Then W is an invariant subspace of
T .

PROOF. Suppose B = {v⃗1, . . . , v⃗k} is the described basis of W , and suppose
they have eigenvalues {λ1, . . . , λk}, respectively. If w⃗ ∈W , then w⃗ = a1v⃗1+

· · · + akv⃗k for some a1, . . . , ak ∈ R. We know that [T (x⃗)]B = A [x⃗]B, and
thus, if [x⃗]B is an eigenvector for A with eigenvalue λ, then T (x⃗) = λx⃗.
Therefore,

T (w⃗) = T (a1v⃗1 + · · ·+ akv⃗k) = a1λ1v⃗1 + · · ·+ akλkv⃗k ∈W

and W is preserved by T . □



LINEAR TRANSFORMATIONS AND INVARIANT SUBSPACES 352

Since any eigenspace is made up entirely of eigenvectors, this implies any
eigenspace for the matrix representation corresponds to an invariant subspace
for the linear transformation. Thus, eigenvalues and eigenvectors provide an
incredibly convenient way to find invariant subspaces.

Example 5.3.3 Define T : P1 → P1 by

T (a+ bx) = 2b+ 2ax.

Then the matrix A for T using the basis {1, x} for P1 is

A =

[
0 2

2 0

]
.

Let’s find an eigenvalue and an eigenvector for this matrix.

det(A− λI) = λ2 − 4

λ = −2, 2

For λ = 2, we have

A− 2I =

[
−2 2

2 −2

]
→
[
−1 1

0 0

]
.

By computing the kernel of A− 2I from this row reduction, we see that

v⃗2 =

[
1

1

]
is an eigenvector for A corresponding to the eigenvalue 2.

26: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Did you catch what just
happened? Did we just review all the
procedures from the previous section?
Why, yes, now that you mention it, we
did. Isn’t reviewing fun?

26 Now, let’s go
back to our linear transformation T . The eigenvector we found corresponds
to the polynomial 1 + x. By our defining description of T , we have

T (1 + x) = 2 + 2x = 2(1 + x).

Aha! The “specialness” of 2 and v⃗2 is present in the linear transformation T ,
not just it’s matrix representation A. This says Span {1 + x} is an invariant
subspace of P1 for the linear transformation T .
What happens if we have a different matrix representation for T ? If we
consider a different basis for P1, will we still have this property? Let’s see!
Let B = {1− x, 1 + x}. This is a new basis

27:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

In the spirit of review, could
you show this?

27 for P1. Since

T (1− x) = −2+2x = −2(1−x) and T (1 + x) = 2+2x = 2(1+x)

we see the matrix B which represents T on this basis is

B =

[
−2 0

0 2

]
.

Because this matrix is diagonal, we know it’s eigenvalues are the entries on
the diagonal 2 and −2, the same as those for A.

28: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Wow, the review topics just
keep on coming!

28 Now, let’s consider the
eigenvectors for B. Repeating our procedure of computing the kernel of
(B − λI) from above we see that

for λ = −2 : v⃗−2 =

[
1

0

]
and for λ = 2 : v⃗2 =

[
0

1

]



SIMILAR MATRICES 353

Okay, these aren’t the same eigenvectors as we had for A, even though these
two matrices did have the same eigenvalues. However, what we should
really be writing is this:

for λ = −2 : [v⃗−2]B =

[
1

0

]
and for λ = 2 : [v⃗2]B =

[
0

1

]
.

Since B is with respect to the basis B, the eigenvectors for it are also with
respect to the basis B. Note that

[v⃗2]B =

[
0

1

]
means v⃗2 = 0(1− x) + 1(1 + x) = 1 + x.

This agrees with the invariant subspace of P1 we found using the matrix A!

The example above illustrates that the eigenspaces of a matrix can be used to
determine an invariant subspace for the linear transformation that corresponds
to that matrix. Also, note how nice that diagonal matrix B looked. We’ll
talk more about this later. Lastly, these two matrices representing the same
linear transformation had the same eigenvalues. Well, that’s true in general.
However, it’s a bit easier to see if we momentarily forget about our linear
transformation and focus specifically on matrices.

Similar Matrices

The matrices in the example above have the property that they both represent
the same linear transformation, just with respect to different bases. Well, con-
sidering what we know from Section 4.6 about changing the basis, we have
the following definition.

Definition 5.3.3 Matrices A,B ∈Mn×n are similar if there is an invertible
matrix P ∈Mn×n such that A = PBP−1, or equivalently, B = P−1AP .

As mentioned above, two square matrices are similar if and only if they are
matrix representations for the same linear transformations, just with different
bases. Now, we can prove all we observed in the previous example using this
concept of similarity.

Theorem 5.3.3 Similar matrices have the same characteristic polynomial.

Exploration 146 Proof by exploration! Suppose A and B are similar, so there
is an invertible matrix P such that A = PBP−1. Convince yourself that
A−λI = PBP−1−λPP−1. Use this to show that A−λI = P (B−λI)P−1.

Use the last equation to show that det(A− λI) = det(B − λI).



SIMILAR MATRICES 354

Corollary 5.3.4 If A has an eigenvalue λ with algebraic multiplicity k and
B is similar to A, then B has the same λ as an eigenvalue with algebraic
multiplicity k as well.

Example 5.3.4 Recall Exploration 144 from Section 5.1. The matrices

A =

 1 2 3

0 4 5

0 0 4

 and B =

 −2 −3 8

1 2 −3
−5 −5 9


have the same eigenvalues, each with the same multiplicities, both geomet-
ric and algebraic. This is not a coincidence; these matrices are similar by
way of the matrix

P =

 0 −1 0

1 1 0

−1 −1 1

 .

This is readily verified:

PBP−1 =

 0 −1 0

1 1 0

−1 −1 1

 −2 −3 8

1 2 −3
−5 −5 9

 1 1 0

−1 0 0

0 1 1


=

 1 2 3

0 4 5

0 0 4

 = A.

Theorem 5.3.3, however, is a one-way street. Having the same characteristic
polynomial does not guarantee similarity. For example,[

1 1

0 1

]
and I2 =

[
1 0

0 1

]
have the same characteristic polynomial, but they are not similar.

This next theorem seems like maybe it should have been stated last section,
when the concepts of algebraic and geometric multiplicities were introduced.
Our proof, however, relies on Corollary 5.3.4.

Theorem 5.3.5 For any eigenvalue, the algebraic multiplicity is greater
than or equal to the geometric multiplicity.

PROOF. Suppose A ∈ Mn×n has geometric multiplicity k for eigenvalue
λ, and {x⃗1, . . . , x⃗k} is a basis for the eigenspace Eλ associated to λ. Let
{v⃗k+1, . . . , v⃗n} be a basis for E⊥

λ . Then {x⃗1, . . . , x⃗k, v⃗k+1, . . . , v⃗n} forms
a basis of Rn since we know Rn = Eλ ⊕ E⊥

λ . Consider the matrix S =

[x⃗1 · · · x⃗k v⃗k+1 · · · v⃗n]. The columns of this matrix are a basis and thus lin-
early independent, so the matrix is invertible. Then the first k columns of
B = S−1AS are the vectors λe⃗1, . . . λe⃗k since the first k basis vectors are
eigenvectors for the eigenvalue λ.29 Because λ is our specific eigenvalue, let 29: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

If this seems unbelievable, you
should do an example to convince your-
self.

us consider the characteristic polynomial as a polynomial in the variable x in-
stead. Then (λ− x)k divides the characteristic polynomial of B. This can be
seen by realizing the first k columns of B are all zero except with λ on the
diagonal, so computing the determinant of (B − xI) will be straightforward
using the cofactor method down the first k columns. Thus, λ has algebraic



DIAGONALIZATION 355

multiplicity at least k for B. By Corollary 5.3.4, it follows that λ has algebraic
multiplicity at least k for A as well. □

Remember from Theorem 5.3.2 that the eigenspace of the matrix representa-
tion for a linear transformation is an invariant subspace for the linear transfor-
mation. Moreover, two matrices that both represent the linear transformation
T with respect to different bases will have the same eigenvalues and their
eigenspaces will identify the same invariant subspaces for T . In other words,
similar matrices must have the same eigenvalues with the same geometric mul-
tiplicities. We could prove this result using Theorem 5.3.2, but we will give a
proof here that is in line with our matrix results instead.30 30: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Oh, I’m sad. I prefer the linear
transformations.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You’re in luck! The authors ac-
cidentally proved it both ways, so that
proof is in the Appendix.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

How do you accidentally do twice
the amount of work?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

(shrugs)

Theorem 5.3.6 If A ∈ Mn×n has an eigenvalue λ with geometric multi-
plicity k and B ∈ Mn×n is similar to A, then B has λ as an eigenvalue
with geometric multiplicity k as well.

PROOF. Suppose {x⃗1, . . . , x⃗k} is a basis for the eigenspace corresponding to
the eigenvalue λ of A. Since A = PBP−1, we have B = P−1AP , and as
we’ve seen before, B − λI = P−1(A − λI)P . Then for any 1 ≤ i ≤ k, we
have

(B − λI)P−1x⃗i = [P−1(A− λI)P ]P−1x⃗i

= P−1(A− λI)x⃗i since PP−1 = In
= P−10⃗ since x⃗i ∈ Ker (A− λI)

= 0⃗,

so B = {P−1x⃗1, . . . , P
−1x⃗k} ⊂ Ker (B − λI). Moreover, since P−1 is

invertible, we know that B is a linearly independent set. Thus, the geometric
multiplicity of λ for B is at least k. To see that it is exactly k, we could re-
verse this argument, starting with B rather than A, and conclude the geometric
multiplicity for A must be at least that of B. Thus, they must be equal. □

Diagonalization

Let’s discuss an application of all this. Well, it will eventually be an appli-
cation. Suppose T is a linear transformation with matrix representation A,
and suppose you have a valid, nay,31 an important reason to apply T to a vec- 31:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Neigh? Is one of the authors
trolling us?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It says “nay.”

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I prefer trolls to horses.

. . .

tor many, many times. That is, suppose you would like to iterate T . You
would like to find T (x⃗) for some vector x⃗ and then you would also like to find
T (T (x⃗)). Then maybe you would like to find T (T (T (x⃗))). Well, since com-
position of linear transformations corresponds to matrix multiplication, this
means you need to know how to compute Ak for k ≥ 1. Now, let’s connect
this to the concept of similarity we’ve been spending so much time on in this
section.

Example 5.3.5 Suppose A is similar to B, so there is an invertible matrix P

such that A = PBP−1. Then for any integer k ≥ 1, Ak is similar to Bk.



DIAGONALIZATION 356

Behold:

Ak =
(
PBP−1

)k
=

(
PBP−1

) (
PBP−1

)
· · ·
(
PBP−1

)
= PB(P−1P )B · · · (P−1P )BP−1 = PBkP−1.

Great! This seems to be leading somewhere. If only we had some particularly
useful format of a matrix that we could use when raising it to a power...

Definition 5.3.4 A matrix of the form

D =


d11 0 · · · 0

0 d22 · · · 0
...

...
. . .

...
0 0 · · · dnn

 ∈Mn×n

is called a diagonal matrix.

Diagonal matrices have the convenient property that

Dk =


ak11 0 · · · 0

0 ak22 · · · 0
...

...
. . .

...
0 0 · · · aknn


Similarity allows us to exploit this further; if P is invertible, D is diagonal,
and A = P−1DP , then as we saw in Example 5.3.5,

Ak = (P−1DP )k = P−1DkP.

Definition 5.3.5 A matrix is called diagonalizable if it is similar to a diag-
onal matrix.

Exploration 147 If[
−2 12

−1 5

]
=

[
3 4

1 1

] [
2 0

0 1

] [
−1 4

1 −3

]
,

find [
−2 12

−1 5

]k
.

Where does one find such a matrix P ? Eigenvectors! It’s literally a change of
basis matrix formed by eigenvectors.

Theorem 5.3.7 A matrix A ∈ Mn×n is diagonalizable if and only if A has
n linearly independent eigenvectors.



DIAGONALIZATION 357

PROOF. Suppose A is diagonalizable, so there is an invertible matrix P =

[v⃗1 · · · v⃗n] and a diagonal matrix D such that A = PDP−1, or AP = PD.
Note that

AP = [Av⃗1 · · ·Av⃗n] and

PD = [d11v⃗1 · · · dnnv⃗n];

since AP = PD, we have for all 1 ≤ j ≤ n,

Av⃗j = djj v⃗j .

Thus, the jth column of P is an eigenvector corresponding to the jth entry
on the diagonal of D. That is, every column of P is an eigenvector of A.
Moreover, since P is invertible, its columns are linearly independent, so these
eigenvectors must be linearly independent.

On the other hand, suppose A has n linearly independent eigenvectors. Then
one can construct P and D (as above) and readily verify that AP = PD. □

Corollary 5.3.8 The matrix A ∈ Mn×n is diagonalizable if and only if for
every eigenvalue of A, its geometric multiplicity is equal to its algebraic
multiplicity.

Corollary 5.3.9 A matrix A ∈ Mn×n with n distinct eigenvalues is diago-
nalizable.

Here’s a procedure for diagonalizing a matrix. Given a matrix A ∈Mn×n,

(a) Find the eigenvalues of A.

(b) Find n linearly independent eigenvectors v1, . . .vn. If there are not
n of them, then be very sad; A is not diagonalizable.

(c) Construct P from these eigenvectors: P = [v1 · · ·vn].

(d) Construct D from the eigenvalues with the eigenvalues along the di-
agonal in the same order as the eigenvectors in P .

(e) Check that AP = PD (same as A = PDP−1).32 32:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Is checking really part of the
procedure? Or is it just good advice?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I am glad that you are not a civil
engineer.

Example 5.3.6 Let

A =


5 0 0 0

0 5 0 0

1 4 −3 0

−1 −2 0 −3

 .

Is A diagonalizable? Indeed. One can check that

−8
4

1

0

 ,


−16

4

0

1






SECTION HIGHLIGHTS 358

is a basis for the eigenspace corresponding to the eigenvalue 5, and


0

0

1

0

 ,


0

0

0

1




is a basis for the eigenspace corresponding to the eigenvalue −3. Then

P =


−8 −16 0 0

4 4 0 0

1 0 1 0

0 1 0 1

 and D =


5 0 0 0

0 5 0 0

0 0 −3 0

0 0 0 −3

 .

Exploration 148 Let

A =


5 −3 0 9

0 3 1 −2
0 0 2 0

0 0 0 2

 .

Is A diagonalizable?

Section Highlights

▶ Matrices A and B are similar if there is some change of basis matrix
P such that A = PBP−1. See Definition 5.3.3 and the discussion
surrounding it. Since they only differ by the basis they are with re-
spect to, A and B are both matrix representations for the same linear
transformation.

▶ We say a matrix is diagonalizable if it is similar to a diagonal matrix.
See Definition 5.3.5 and Definition 5.3.3. If matrices A and B are
both matrix representations for the same linear transformation, we
say A and B are similar.

▶ An n×n matrix A is diagonalizable if and only if there is a basis for
Rn made of eigenvectors for A. See Theorem 5.3.7.

▶ To diagonalize a matrix, we use the change of basis matrix to convert
from the standard basis to a basis of eigenvectors. See Example 5.3.6.

▶ If λ is an eigenvalue for A, the algebraic multiplicity of λ is the
multiplicity of (x − λ) in the characteristic polynomial for A, and
the geometric multiplicity of λ is the dimension of Ker (A−λI). It’s
always true that the geometric multiplicity is less than or equal to the
algebraic multiplicity. See Definition 5.2.4 and Theorem 5.3.5.

▶ A matrix A is diagonalizable if and only if the geometric and alge-
braic multiplicities agree for every eigenvalue. See Corollary 5.3.8.



EXERCISES FOR SECTION 5.3 359

Exercises for Section 5.3

5.3.1.Let P =

[
1 2

3 5

]
, D =

[
−1 0

0 2

]
, and A = PDP−1. Calculate A9.

5.3.2.Here’s a pretty big matrix:

A =



1 2 1 2 1 2

0 1 3 1 3 1

0 0 1 4 1 4

0 0 0 2 5 2

0 0 0 0 2 6

0 0 0 0 0 3


.

Hey, at least it’s triangular.

(a) Without calculation of any kind, what are the eigenvalues and their algebraic multiplicities?

(b) Without calculation of any kind, what are the upper and lower bounds on the geometric multiplicity
of each eigenvalue?

(c) Calculate the geometric multiplicities of each eigenvalue. Is A diagonalizable?

5.3.3.With minimal calculation, determine whether each of the following matrices is diagonalizable.

(a)


1 0 0 1

0 0 0 0

0 0 2 0

0 0 0 2



(b)


1 0 1 0

0 0 0 0

0 0 2 0

0 0 0 2



(c)


1 1 0 0

0 0 0 0

0 0 2 0

0 0 0 2



(d)


1 0 0 0

0 0 0 1

0 0 2 0

0 0 0 2



(e)


1 0 0 0

0 0 1 0

0 0 2 0

0 0 0 2





EXERCISES FOR SECTION 5.3 360

(f)


1 0 0 0

0 0 0 0

0 0 2 1

0 0 0 2


5.3.4.Let

A =


0 2 1 0

2 0 0 1

1 0 0 2

0 1 2 0

 .

Find an invertible matrix P and a diagonal matrix D such that that A = PDP−1.

5.3.5.Let

A =


1 2 3 −4
0 1 2 −3
−1 0 1 −2
−2 −1 0 −1

 .

Find an invertible matrix P and a diagonal matrix D such that that A = PDP−1.

5.3.6.For each of the following pairs of matrices, determine whether or not the matrices are similar. If they are
similar, find a matrix P such that A = P−1BP .

(a) A =

[
1 0

0 0

]
, B =

[
1 0

0 1

]

(b) A =

 1 0 0

0 2 0

0 0 2

, B =

 1 0 0

0 2 1

0 0 2



(c) A =


1 0 0 1

0 0 0 0

0 0 2 0

0 0 0 2

, B =


1 1 0 0

0 0 0 0

0 0 2 0

0 0 0 2


5.3.7.Show that every eigenspace is an invariant subspace. That is, if A ∈ Mn×n has an eigenvalue λ with

eigenspace E, show that E is an invariant subspace of Rn for TA.

5.3.8.Let

A =

 4 0 0

1 1 −1
−1 3 5

 .

It turns out that λ = 2 is an eigenvalue for A. Let E be the eigenspace associated to 2, and find a matrix
representation for A|E .



A NEW FORM 361

5.4 Jordan Canonical Form

Perhaps you’re sold at this point on the greatness of diagonalizability. Whether
or not that’s the case, just how special are these diagonalizable matrices? What
about matrices that aren’t diagonalizable? How miserably “not diagaonaliz-
able” can a matrix be? We’ll see now, that they’re not too miserable at all!

A New Form

Up to this point, we’ve only used vector spaces over R, meaning all the scalars
we use in scalar multiplication have been real numbers. See Definition 1.1.2.
Even when we used the complex numbers as a vector space, it was as a real
vector space. See Exercise 1.1.3. That ends now!

WARNING ALERT CAUTION ALERT WARNING

For the rest of the book, we’re going to be using C for our scalars. That’s what
the garish warning was all about. Just know that it’s happening, and don’t
panic. Vector spaces over C have their charm. Also, we won’t explicitly be
using them until we get to the proofs later in this section, and we’ll keep the
examples and explorations as real as possible.33 33:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Really?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Really.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

But aren’t we all imaginary?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

. . . !

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I don’t know about you two, but
I’m totally real.

We have a good idea at this point how diagonalizable matrices work and which
square matrices are diagonalizable. Now it is time to deal with the rest of them.
That’s right, the rest of them. It turns out that even square matrices that aren’t
diagonalizable are almost diagonalizable in a very specific, consistent sense.
Let’s see an example first, an incredibly long but deeply inspiring example.

Example 5.4.1 Here’s a square matrix with its eigenvalue and eigenvector:

A =

 2 −5 −6
−2 2 −4
5 7 14

 , λ = 6, v⃗0 =

 2

2

−3

 .

That’s right. There’s only one eigenvalue with algebraic multiplicity 3 and
geometric multiplicity 1. If we wanted to diagonalize A, we would need
three linearly independent eigenvectors to use as the columns of P so that
AP = PD, where D is a diagonal matrix. Alas, we only have one eigen-
vector. This matrix is not even a little bit diagonalizable. Well. . .
maybe a little bit. . .
We’re missing two eigenvectors to build the matrix P used to diagonalize A,
but perhaps we can find two stand-ins. What’s so great about v⃗0, anyway?
Since it’s an eigenvector for λ = 6, we know (A − 6I)v⃗0 = 0⃗. What if we
found a vector that maps into Ker (A− 6I)? In particular, we’d like to find
a vector, v⃗1 such that

(A− 6I)v⃗1 = v⃗0.

Then (A − 6I)v⃗1 = v⃗0 ̸= 0⃗ but (A − 6I)2v⃗1 = 0⃗. This new vector, v⃗1,
isn’t in Ker (A − 6I) because A − 6I doesn’t map it to 0⃗, but if you apply
A − 6I to v⃗1 twice, you do get 0⃗. Thus, v⃗1 isn’t an eigenvector for λ = 6,
but it’s “the next best thing.” It eventually gets mapped to 0⃗ by repeated
applications of A− 6I .



A NEW FORM 362

How do you find v⃗1? Just solve (A − 6I)x⃗ = v⃗0 for x⃗. Neat, right? Oh,
why should a solution to (A− 6I)x⃗ = v⃗0 exist? Yeah. That’s a really good
question. For now, let’s just enjoy that is does, and we’ll state and prove
a theorem about that later. While we’re at it, (A − 6I)x⃗ = v⃗1 also has
solutions; we’ll call the one we’re gonna use v⃗2. Specifically, here are the
solutions we chose:

v⃗2 =

 −1−2
2

 v⃗1 =

 1

3

−3

 .

Alright. What exactly do these vectors, v⃗1 and v⃗2, do? They both eventually
map to 0⃗ after repeated application of A− 6I . In fact,

v⃗2
A−6I−→ v⃗1

A−6I−→ v⃗0
A−6I−→ 0⃗

This is neat, but you’re probably wondering what good this little sequence
(sometimes called a Jordan chain) is. We have the following two convenient
implications:

(A− 6I)v⃗1 = v⃗0 ⇒ Av⃗1 = v⃗0 + 6v⃗1

(A− 6I)v⃗2 = v⃗1 ⇒ Av⃗2 = v⃗1 + 6v⃗2.

Now, let’s make a matrix P = [v⃗0 v⃗1 v⃗2]. Then

AP = A[v⃗0 v⃗1 v⃗2]

= [Av⃗0 Av⃗1 Av⃗2]

= [6v⃗0 v⃗0 + 6v⃗1 v⃗1 + 6v⃗2]

= [v⃗0 v⃗1 v⃗2]

 6 1 0

0 6 1

0 0 6

 = P

 6 1 0

0 6 1

0 0 6

 ,

so

A = PJP−1, where J =

 6 1 0

0 6 1

0 0 6

 .

You may have noticed that J is not diagonal, but it’s almost diagonal (except
for those 1’s). Well, v⃗1 and v⃗2 are not eigenvectors, but we chose them
because they were the next best thing.

We mentioned a term in that example that deserves its own definition box:

Definition 5.4.1 If A ∈ Mn×n(C) has eigenvalue λ with eigenvector v⃗0,
then a Jordan chain for λ is a set of vectors S = {v⃗1, . . . v⃗k} for some
k < n such that

v⃗k
A−λI−→ v⃗k−1

A−λI−→ · · · A−λI−→ v⃗1
A−λI−→ v⃗0

A−λI−→ 0⃗

This almost-diagonal matrix with all the rogue 1’s just above the diagonal is
also going to come up a lot.

Definition 5.4.2 A Jordan block is a square matrix whose entries are the
same constant, λ ∈ C, on the diagonal, 1 on each entry immediately above
the diagonal, and zero elsewhere.



A NEW FORM 363

Example 5.4.2 Here are some Jordan blocks:

J1 =
[
4
]
, J2 =

[
5
]
, J3 =

[
5 1

0 5

]
J4 =

 6 1 0

0 6 1

0 0 6

 .

Using appropriately sized matrices [⃗0], we can combine Jordan blocks into
one big matrix, too:


J1 0⃗ 0⃗ 0⃗

0⃗ J2 0⃗ 0⃗

0⃗ 0⃗ J3 0⃗

0⃗ 0⃗ 0⃗ J4

 =



4 0 0 0 0 0 0

0 5 0 0 0 0 0

0 0 5 1 0 0 0

0 0 0 5 0 0 0

0 0 0 0 6 1 0

0 0 0 0 0 6 1

0 0 0 0 0 0 6


,

Pretty close to diagonal, right?

Theorem 5.4.1 (Jordan Canonical Form) Every square matrix, A ∈
Mn×n(C), is similar by P ∈ Mn×n(C) to a matrix, J ∈ Mn×n(C),
whose only nonzero entries are Jordan blocks on the diagonal. Moreover, J
is unique (allowing for the reordering of the Jordan blocks). The matrix J

is called the Jordan Canonical Form of the matrix A.

Perhaps at this point, you find this very believable. There are some things to
prove, but let’s wait a minute and play with this fun new theorem first.

Example 5.4.3

A =



11 5 2 0 −2 −7 −3
−5 3 1 0 1 4 3

14 13 11 0 −5 −19 −7
2 0 −3 4 0 1 −2
1 3 3 0 4 −4 0

8 8 4 0 −3 −6 −4
−9 −8 −3 0 3 12 10


,

P = [p⃗1 p⃗2 p⃗3 p⃗4 p⃗5 p⃗6 p⃗7]

=



0 1 0 0 1 0 0

0 1 1 1 0 1 1

0 0 −1 0 1 1 0

1 0 1 0 0 0 −1
0 4 0 −1 0 1 1

0 0 0 1 1 1 0

0 1 1 0 0 −1 1


, and



A NEW FORM 364

J =



4 0 0 0 0 0 0

0 5 0 0 0 0 0

0 0 5 1 0 0 0

0 0 0 5 0 0 0

0 0 0 0 6 1 0

0 0 0 0 0 6 1

0 0 0 0 0 0 6


.

You can check that A = PJP−1 (or you can trust us). J is the Jordan
Canonical Form for A. Here are some fun facts about eigenvalues and eigen-
vectors for A that you can check:

eigenvalue 4 5 6
alg. mult. 1 3 3

eigenvectors p⃗1 =



0

0

0

1

0

0

0


p⃗2 =



1

1

0

0

4

0

1


, p⃗3 =



0

1

−1
1

0

0

1


p⃗5 =



1

0

1

0

0

1

0


This begs the question, where did p⃗4, p⃗6, and p⃗7 come from? As in the
example from the beginning of this section, we found the vectors p⃗4, p⃗6,
and p⃗7 so that

(A− 5I)p⃗4 = p⃗3,

(A− 6I)p⃗6 = p⃗5, and

(A− 6I)p⃗7 = p⃗6.

Finding these vectors is as easy as solving these matrix equations. The
remarkable thing about Theorem 5.4.1 is that is guarantees these vectors
exist. We’ll get into how this is done procedurally at the end of the section
(after we prove the theorem).

Recall our heuristic for diagonalization. If an n × n matrix is diagonalizable,
it’s similar to a diagonal matrix, so the matrix is just scalar multiplication in
n linearly independent directions. What are we to make of Jordan Canonical
form? We need a couple more definitions.

Definition 5.4.3 The left shift on Cn is the linear transformation L : Cn →
Cn given by L(x1, . . . , xn) = (x2, . . . , xn, 0).

Or is it an up shift? Lots of people write their vectors vertically, so this linear
transformation, even when written that way, is called the left shift. You should
verify that the left shift is a linear transformation! Oh, hey; find its kernel and
image, too!34 34:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Exercise!

Theorem 5.4.2 As a linear transformation, any Jordan block is the sum of
a scalar multiple of the identity map and the left shift.



A NEW FORM 365

PROOF. Let J ∈Mn×n(C) be a Jordan block, so for x⃗ ∈ Cn,

Jx⃗ =



λ 1 0 · · · 0 0

0 λ 1 · · · 0 0

0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1

0 0 0 · · · 0 λ





x1

x2

x3

...
xn−1

xn



=



λx1 + x2

λx2 + x3

λx3 + x4

...
λxn−1 + xn

λxn


=



λx1

λx2

λx3

...
λxn−1

λxn


+



x2

x3

x4

...
xn

0


= λx⃗+ L(x⃗),

where L is the left shift. How very gaudy. We probably should’ve just done
this with a 3× 3 and asked you to use your imagination. □

Definition 5.4.4 Let T : V → V be a linear transformation with invariant
subspaces V1 and V2 such that V = V1 ⊕ V2. Then every element of v⃗ ∈ V

can be written as v⃗ = v⃗1 + v⃗2 for some v⃗1 ∈ V1 and v⃗2 ∈ V2. Thus, we
have

T (v⃗) = T (v⃗1 + v⃗2) = T (v⃗1) + T (v⃗2) = T |V1
(v⃗1) + T |V2

(v⃗2).

In this situation, we say T decomposes into the direct sum of linear trans-
formations T |V1 and T |V2 and denote this as T = T |V1 ⊕ T |V2 .

Note that we only defined this here for two invariant subspaces V1 and V2, but
it’s possible that the vector space V = V1 ⊕ · · · ⊕ Vk for some k ≥ 2, where
each Vi is an invariant subspace. The definition makes sense in this setting as
well.35 35:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Really? Are you sure?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Exercise!Now, we previously talked quite a bit about how two matrices are similar if
they are each the matrix representation for the same linear transformation.
Well, we can flip this as well, to talk about when two different linear transfor-
mations have a relationship given by their matrix representations.

Definition 5.4.5 Two linear transformations are similar linear transforma-
tions if they have similar matrix representations.

The following corollary nicely describes what Jordan Canonical Form actually
does and is due to Terry Tao.

Corollary 5.4.3 Every linear transformation is similar to a direct sum of
linear transformations, where each summand is itself the sum of a scalar
multiple of the identity map and the left shift.

It’s not quite as good as diagonalization, where a matrix is similar to a di-
rect sum of scalar multiplication maps, but it’s not too far off. It’s just a lit-
tle. . . shiftier.



PROOF FOR JORDAN CANONICAL FORM 366

Example 5.4.4 Let T : P2 → P2 by T (c+bx+ax2) = b+2ax. The matrix
representation for T using the basis {1, x, x2} is a matrix A, where

A =

 0 1 0

0 0 2

0 0 0

 .

We can see that A is similar to a matrix

B =

 0 1 0

0 0 1

0 0 0

 ,

since

B =

 1 0 0

0 1 0

0 0 2

 0 1 0

0 0 2

0 0 0

 1 0 0

0 1 0

0 0 1/2

 .

Note that B = 0I3 + L, so T is similar to T1, where T1(c + bx + ax2) =

b+ax = 0(c+ bx+ax2)+L(c+ bx+ax2), where the first term is a scalar
multiple of the identity and the second is a left shift.

In Example 5.4.4, we identified two matrices were similar by finding the ma-
trix P such that B = P−1AP . Well, it can sometimes be difficult to find that
matrix. However, Jordan Canonical Form gives us a systematic approach to
identifying whether two matrices are similar.

Corollary 5.4.4 Suppose A ∈ Mn×n(C) and B ∈ Mn×n(C). Then A

and B are similar if and only if they are both similar to the same matrix in
Jordan Canonical Form.

This follows from the fact that the Jordan Canonical Form is unique up to
rearranging placements of the Jordan blocks along the diagonal and one can
use similarity to permute blocks along the diagonal.

Proof for Jordan Canonical Form

We still have some proving to do. We should also talk about how one actually
finds a Jordan Canonical Form in practice. Proofs first!

Remember the beginning of this section when we announced the arrival of
complex numbers? Right. Allowing complex numbers gives us the following
super-handy theorem.

Theorem 5.4.5 (The Fundamental Theorem of Algebra) Every degree
n ≥ 1 polynomial in one variable with complex coefficients has exactly
n complex roots (counting the multiplicity of the repeated roots).

Proofs of the Fundamental Theorem of Algebra are readily available. We pro-
vide none of them here.

Maybe we should have mentioned this before, but there is a small cost asso-
ciated to the switch to complex numbers. Almost everything we’ve done up



PROOF FOR JORDAN CANONICAL FORM 367

to this point remains the same, but with complex numbers, we need to make a
small change to the definition of inner product (and hence, norm).

Complex numbers are like sand; once you have some of them in a vector
space, they get all over everything. Even just using complex scalars, we end
up having to deal with complex vectors as well because of linear combinations
with complex scalars. For example, if x⃗, y⃗ ∈ Rn, then the linear combination

(1 + i)x⃗+ (2 + 4i)y⃗

is definitely not in Rn. It is in Cn, though. How is this a problem? Well, for
x⃗ ∈ Rn, we defined ∥x⃗∥ =

√
x⃗ · x⃗. What happens with this definition for a

complex vector?

∥∥∥∥[ 1 + i

1

]∥∥∥∥ =

√[
1 + i

1

]
·
[

1 + i

1

]
=

√
(1 + i)(1 + i) + 1

=
√
1 + 2i.

This is weird. You probably wouldn’t be surprised to find that the square root
of complex numbers is a complex number that is almost always not a real
number; that is the case with

√
1 + 2i. If the norm of a vector is supposed

to represent the magnitude of a vector, what are we to make of a complex
magnitude? Right. We should fix that. The fix, it turns out, is pretty easy.

Definition 5.4.6 For z = x + iy ∈ C, the conjugate of z is the complex
number z̄ = x− iy.

Definition 5.4.7 The Hermitian Inner product is the function · : Cn×Cn →
C defined by

v⃗ · u⃗ = v1ū1 + · · ·+ vnūn =

n∑
i=1

viūi.

The notation is the same as the real inner product because the Hermitian inner
product on real vectors is just the usual inner product.36 The key is simply to 36:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Check this!
remember that when you have complex vectors to conjugate the entries of the
second vector when doing an inner product. How does this help? It turns out
that for any z ∈ C, we have zz̄ ∈ R.37 37:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You check this!

Definition 5.4.8 The Hermitian norm is the function ∥ ·∥ : Cn → R defined
for any v⃗ ∈ Cn as

∥v⃗∥ =
√
v⃗ · v⃗ =

√
v1v̄1 + · · ·+ vnv̄n.

Using the Hermitian inner product and norm is the only alteration we will need
to make in this book when working with complex numbers. In the interest of
full disclosure, here’s a potentially upsetting fact; there are a lot of different
ways we could’ve defined inner products. We chose some specific ones for
simplicity’s sake here and in earlier chapters.

Now, back to Jordan Canonical Form. We get to use the Fundamental Theorem
of Algebra right away!



PROOF FOR JORDAN CANONICAL FORM 368

Lemma 5.4.6 Suppose W1 and W2 are subspaces of vector space V with
bases B1 and B2, respectively, and that W1⊕W2 = V . Let A be the matrix
representation of T |W1 with respect to B1, and B be the matrix represen-
tation of T |W2 with respect to B2. If W1 and W2 are both invariant for T ,
then [

A 0⃗

0⃗ B

]
is the matrix representation of T with respect to the basis B1 ∪ B2. If just
W1 is invariant for T , then [

A R

0⃗ B

]
is the matrix representation of T with respect to the basis B1 ∪ B2.

Note that if B1 = {x⃗1, . . . , xk}, B2 = {y⃗k+1, . . . , y⃗n} and both W1 and W2

are invariant for T , then for any x⃗i ∈W1 and y⃗i ∈W2, we have

T (x⃗i) = ai1x⃗1 + · · ·+ aikx⃗k + 0y⃗k+1 + · · ·+ 0y⃗n,

T (y⃗i) = 0x⃗1 + · · ·+ 0x⃗k + ai(k+1)y⃗k+1 + · · ·+ aiky⃗n.

The proof follows then from computing the matrix for T with respect to this
basis B1 ∪ B2. We leave this proof then as an exercise, but we will revisit a
familiar example illustrating this.

Exploration 149 Consider the linear transformation T : R4 → R4 defined by

T




x1

x2

x3

x4


 =


x2

x1

x3 + x4

x3 + x4

 .

In Example 5.3.1, we saw that T has two invariant subspaces W = Span {e⃗1, e⃗2}
and U = Span {e⃗3, e⃗4}. Compute the matrix for T with respect to the standard
basis. Compare this to the form from Lemma 5.4.6.

Theorem 5.4.7 If A ∈ Mn×n(C), then there is an invertible matrix Q

and an upper triangular matrix U such that A = QUQ−1 and U has the
eigenvalues of A on its diagonal.

PROOF. By the Fundamental Theorem of Algebra, det(A − λI) = 0 has a
solution, call it λ1. By Theorem 5.2.8, λ1 is an eigenvalue, so it has at least
one eigenvector. Let {x⃗1, . . . , x⃗j} be a basis for E1, the eigenspace for λ1.
Using this with a basis for E⊥

1 , {v⃗j+1, . . . , v⃗n}, define the change of basis
matrix, Q1 = [x⃗1 · · · x⃗j v⃗j+1 · · · v⃗n]. While E1 is an invariant subspace, E⊥

1

might not be,38 so by Lemma 5.4.6 38: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Make an example in which
E⊥ is not invariant!

Q−1
1 AQ1 =

[
λ1Ij R1

0⃗ C1

]
,

where R1 ∈ M1,n−j(C), 0⃗ ∈ Mn−j,1(C), and C1 ∈ Mn−j,n−j(C). This
was a very nice and repeatable procedure.



PROOF FOR JORDAN CANONICAL FORM 369

Again by the Fundamental Theorem of Algebra, C1 has an eigenvalue, λ2.
Let {y⃗1, . . . , y⃗k} be a basis for E2, the eigenspace for λ2. Using this with
a basis for E⊥

2 , {u⃗n−j−k, . . . , u⃗n}, define the change of basis matrix Q2 =

[e⃗1, . . . , e⃗j y⃗1 · · · y⃗k u⃗n−k−j · · · u⃗n], where each e⃗i is a standard basis vector.
Then

Q−1
2 Q−1

1 AQ1Q2 = Q−1
2

[
λ1Ij R1

0⃗ C1

]
Q2 =

 λ1Ij R2 R3

0⃗ λ2Ik R4

0⃗ 0⃗ C2

 ,

where C3 ∈ Mn−j−k×n−j−k(C). Do this n − 2 more times, and define
Q = Q1Q2 · · ·Qn−1.

By the Fundamental Theorem of Algebra, det(A − λI) = 0 has n solutions,
counting multiplicity, which are all eigenvalues; call them λ1, . . . , λm, and
det(U − λI) = det(Q−1AQ− λI) = 0 has the same n solutions, which are
the eigenvalues of A. By construction, these eigenvalues are on the diagonal
of U . □

Theorem 5.4.8 Let U ∈ Mn×n(C) be upper triangular with diagonal en-
tries di, for i = 1, . . . , n. Then for any integer k ≥ 0, Uk is upper trian-
gular with diagonal entries dki , for i = 1, . . . , n. If the diagonal entries of
U are all zeros, then for any 0 ≤ k ≤ n, Uk will have zero for all of its
diagonal entries and for all k entries above each diagonal entry.

Proof for this theorem can be found in the Appendix.

Lemma 5.4.9 If A ∈ Mn×n(C) has eigenvalue, λ, with algebraic multi-
plicity k and geometric multiplicity j, then there is a positive integer k0 ≤ k

such that
dimKer (A− λI)k0 = k,

and for each i = 1, . . . , k0−1, there is an mi+1 such that 1 ≤ mi+1 ≤ k−j,

dimKer (A− λI)i +mi+1 = dimKer (A− λI)i+1,

and j +m2 + · · ·+mk0
= k.

PROOF. Using Theorem 5.4.7, we have that A is similar to an upper triangu-
lar matrix, U , such that the diagonal contains the eigenvalues of A, counting
multiplicity. Let’s cleverly arrange that the λ’s are the first k entries on the
diagonal. If E is the eigenspace for λ, then

U |E =


λ ∗ · · · · · · ∗
0⃗ λ ∗ · · · ∗
...

. . . . . . . . .
...

0⃗ · · · 0⃗ λ ∗
0⃗ · · · · · · 0⃗ λ

 , (U−λI)|E =


0⃗ ∗ · · · · · · ∗
0⃗ 0⃗ ∗ · · · ∗
...

. . . . . . . . .
...

0⃗ · · · 0⃗ 0⃗ ∗
0⃗ · · · · · · 0⃗ 0⃗

 .

By Theorem 5.4.8, we know that (U − λI)|k0

E = 0⃗, the zero matrix. Since the
last n− k diagonal entries of U are different from λ, the last n− k entries of
U − λI must be nonzero. Thus, dimKer (U − λI)k0 = k. Since (U − λI)k0

is similar39 to (A − λI)k0 , we know from Theorem 5.3.6 that dimKer (A − 39: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Do you remember why? If not,
can you verify the calculation?λI)k0 = k as well. Moreover, at each step from (U − λI)i to (U − λI)i+1



PROOF FOR JORDAN CANONICAL FORM 370

for I = 1, . . . , k0 − 1, at least one more free variable is produced, so we also
have that dimKer (A− λI)i + 1 ≤ dimKer (A− λI)i+1. □

That “at least one more free variable” bit is annoying. Look at this matrix and
its square:

B − 2I =


0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

 (B − 2I)2 =


0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


Note that B−2I has two free variables, but (B−2I)2 has four; dimKer (B−
2I)2 has increased by two. What is happening here? It turns out that the eigen-
value 2 has two distinct Jordan chains corresponding to two distinct eigenvec-
tors, e⃗1 and e⃗4:

e⃗3
B−2I−→ e⃗2

B−2I−→ e⃗1
B−2I−→ 0⃗

e⃗5
B−2I−→ e⃗4

B−2I−→ 0⃗.

Here {e⃗1, e⃗4} is a basis for Ker (B − 2I), and {e⃗1, . . . , e⃗5} is a basis for
Ker (B − 2I)3.

Here, finally, is the formal statement of the fact that we can find nice substitutes
for eigenvectors, like we did in Example 5.4.1. If a matrix has an eigenvalue
with algebraic multiplicity k and geometric multiplicity j, then you can always
find j Jordan chains with a combined total length of k. Here’s the more formal
statement:

Lemma 5.4.10 Let A ∈ Mn×n(C) have an eigenvalue, λ, with algebraic
multiplicity k and geometric multiplicity j. Then there are j Jordan chains,
S1, . . . , Sj , such that S1 ∪ · · · ∪ Sj is a basis for Ker (A − λI)k, and in
particular,

Ker (A− λI)k = Span {S1} ⊕ · · · ⊕ Span {Sj} .

It’s not hard to believe there are j Jordan chains because there are j distinct
eigenvectors that form a linearly independent set. It is definitely worth check-
ing, though, that the associated Jordan chains are also formed of vectors that
collectively form a basis for Ker (A− λI)k.

There is a lot of bookkeeping and paperwork in the proof for this lemma. The
process is neither elegant nor enlightening, so we relegate most of the fine
details to the Appendix. For now, we’ll provide a sketch of how the proof
works.

Our goal is to first argue that these j Jordan chains exist and are distinct, and
then argue that they form a basis for Ker (A − λI)k. Once they form a basis,
we know we can rearrange these basis vectors as the Jordan chains, S1,. . . ,Sj ,
to get

Ker (A− λI)k = Span {S1} ⊕ · · · ⊕ Span {Sj} .

As was stated earlier, though, we begin with the argument that these distinct
chains exist. We’ll use the same notation as Lemma 5.4.9, noting that for some



PROOF FOR JORDAN CANONICAL FORM 371

k0 ≤ k, we have Ker (A− λI)k = Ker (A− λI)k0 . One can also check that

Ker (A− λI) ⊂ Ker (A− λI)2 ⊂ · · · ⊂ Ker (A− λI)k0 .

Using the Orthogonal Decomposition Theorem several times,40 we get a nice 40: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Is it exactly k0 − 1 times?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

It’s cheating if you read ahead.
break down of Ker (A − λI)k0 into orthogonal parts. Specifically, we can
write

E1 = Ker (A− λI), dimE1 = j

E2 = (E1)
⊥ ∩Ker (A− λI)2, dimE2 = m2

E3 = (E1 ⊕ E2)
⊥ ∩Ker (A− λI)3, dimE3 = m3

...
Ek0 = (E1 ⊕ · · · ⊕ Ek0−1)

⊥, dimEk0 = mk0 .

From this construction, we have

Ker (A− λI) = E1

Ker (A− λI)2 = E1 ⊕ E2

Ker (A− λI)3 = E1 ⊕ E2 ⊕ E3

...

Ker (A− λI)k0 = E1 ⊕ · · · ⊕ Ek0

Now we can build all of our chains, all at once. Starting with a basis for Ek0
,

we multiply each of these basis vectors by (A − λI) and extend the resulting
set of vectors to make a basis for E1 ⊕ · · · ⊕ Ek0−1. Next, we multiply some
of the vectors in that basis by (A − λI) and again extend the resulting set of
vectors to be a basis for E1 ⊕ · · · ⊕ Ek0−2. We keep doing this until finally
arriving in E1. Not so bad, right? At each step, however, we have to argue that
our sets of vectors are linearly independent so that we know the chains remain
distinct; this is aided by the use of orthogonal complements to define each of
the sets, Ei. The result will be a basis for E1 built out of the final vectors
from each of the Jordan chains (some of which will be of length one). This
construction gives us our j distinct Jordan chains. Then we only need to argue
that any two Jordan chains are linearly independent, so that the collection of
all the chains forms a basis for Ker (A− λI)k as desired.

Since we will use these Jordan chains to form a basis of our domain Cn, we
need to know that they are also linearly independent when they correspond to
different eigenvalues.

Lemma 5.4.11 If S1 and S2 are Jordan chains for A ∈ Mn×n(C) for
different eigenvalues, then S1 ∪ S2 is linearly independent.

The proof of this is similar to the one for Theorem 5.1.2, so we’ve put it as an
exercise. Now, for one final lemma before we prove the theorem.

Lemma 5.4.12 Let A ∈ Mn×n(C) have an eigenvalue, λ, with Jordan
chain S of length k, the algebraic multiplicity of λ. Then the matrix repre-
sentation with respect to S for A is a Jordan block.

This proof is very similar to the argument in Example 5.4.1, so this is also an
exercise.



COMPUTING JORDAN CANONICAL FORM 372

PROOF OF THEOREM 5.4.1. Applying Lemma 5.4.10 to all the eigenvalues
of A, we have a set of Jordan chains with n vectors, and by Lemma 5.4.11,
they are all linearly independent; thus, this set is a basis for Cn, call it B. Once
we show the span of each chain, Span {Si}, from Lemma 5.4.10 is invariant
for A, we can apply Lemmas 5.4.6 and 5.4.12 to each Span {Si}, and we’re
done.

Let S = {v⃗1, . . . , v⃗k} be a Jordan chain for eigenvalue λ and v⃗ ∈ Span {S}.
Then (A − λI)v⃗i = v⃗i−1 for each i = 2, . . . , k − 1, and (A − λI)v⃗1 = 0⃗; it
follows that Av⃗i = λv⃗i + v⃗i−1, and Av⃗1 = λv⃗1. Moreover, v⃗ = a1v⃗1 + · · ·+
anv⃗n for some scalars a1, . . . , an. Observe that

Av⃗ = A(a1v⃗1 + · · ·+ anv⃗n)

= a1(λv⃗1) + a2(λv⃗2 + v⃗1) + · · ·+ an(λv⃗n + v⃗n+1)

= (a1λ+ a2)v⃗1 + (a2λ+ a3)v⃗2 + · · ·+ (an−1λ+ an)v⃗n−1 + (anλ)v⃗n,

which is a vector in Span {S}, so Span {S} is invariant.

To see that the Jordan form is unique up to rearranging the blocks on the diag-
onal, note that the sizes of the blocks correspond to the lengths of the Jordan
chains. These in turn were determined by the dimensions of each relevant
Ker (A − λI)l for the eigenvalues λ. Since these are intrinsic to the original
matrix and did not rely upon choices, the form is unique. □

Alright! Victory!

Computing Jordan Canonical Form

The procedure for finding Jordan Canonical Form is actually pretty thoroughly
described in Example 5.4.1. We’ll just go through one more example in detail
and then call it a day.

Example 5.4.5 Consider the matrix

A =


5 2 −1 0 2

−2 1 2 1 −3
−1 −1 2 −1 0

1 1 0 3 1

0 0 −1 −1 4

 .

We can use techniques from the previous section to find the characteristic
polynomial. Of course, then it’s a degree 5 polynomial that needs factor-
ing, so we’ll just go ahead and tell you the characteristic polynomial here
is p(λ) = (3 − λ)5. Thus, the only eigenvalue is 3, and it has an algebraic
multiplicity of 5. Let’s compute Ker A− 3I to see the geometric multiplic-
ity.

A− 3I =


2 2 −1 0 2

−2 −2 2 1 −3
−1 −1 −1 −1 0

1 1 0 0 1

0 0 −1 −1 1

→


1 1 0 0 1

0 0 1 0 0

0 0 0 1 −1
0 0 0 0 0

0 0 0 0 0

 .



COMPUTING JORDAN CANONICAL FORM 373

Thus,

Ker (A− 3I) = Span


v⃗1 =


−1
1

0

0

0

 , v⃗2 =


−1
0

0

1

1




.

Since the geometric multiplicity is 2, we need 2 Jordan chains. To get the
next step, we need to solve (A−3I)v⃗3 = v⃗1 and also (A−3I)v⃗4 = v⃗2. We
can do this more efficiently by augmenting with two vectors and performing
the same row reduction steps as we used above.

2 2 −1 0 2 −1 −1

−2 −2 2 1 −3 1 0

−1 −1 −1 −1 0 0 0

1 1 0 0 1 0 1

0 0 −1 −1 1 0 1



→


1 1 0 0 1 0 1

0 0 1 0 0 1 3

0 0 0 1 −1 −1 −4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

 .

This tells us that

v⃗3 ∈




−x2 − x5

x2

1

−1 + x5

x5

 : x2, x5 ∈ R


and

v⃗4 ∈




1− x2 − x5

x2

3

−4 + x5

x5

 : x2, x5 ∈ R


.

We have infinitely many choices here for v⃗3 and v⃗4, but we can simply
choose that x2 = x5 = 0 in both sets to get

v⃗3 =


1

0

3

−4
0

 and v⃗4 =


0

0

1

−1
0

 .

Now, since we need just one more vector to form a basis, we know only one
of these chains continues. However, it’s not obvious which one it is. We can
again augment by two vectors and solve simultaneously for (A−3I)v⃗5 = v⃗3



COMPUTING JORDAN CANONICAL FORM 374

and (A− 3I)v⃗6 = v⃗4, knowing that only one of these has a solution.
2 2 −1 0 2 1 0

−2 −2 2 1 −3 0 0

−1 −1 −1 −1 0 3 1

1 1 0 0 1 −4 −1

0 0 −1 −1 1 0 0



→


1 1 0 0 1 −4 −1

0 0 1 0 0 −9 −2

0 0 0 1 −1 10 2

0 0 0 0 0 0 0

0 0 0 0 0 1 0

 .

This says v⃗5 does not exist and

v⃗6 ∈




−1− x2 − x5

x2

−2
2 + x5

x5

 : x2, x5 ∈ R


.

Again, we can choose that x2 = x5 = 0, so that

v⃗6 =


−1
0

−2
2

0

 .

Now, our Jordan chains are

v⃗6
A−3I−→ v⃗4

A−3I−→ v⃗2
A−3I−→ 0⃗

v⃗3
A−3I−→ v⃗1

A−3I−→ 0⃗,

and our basis for Jordan Canonical Form is {v⃗1, v⃗3, v⃗2, v⃗4, v⃗6}.

Exploration 150 Verify that when A in Example 5.4.5 above is changed to the
basis given for Jordan Canonical Form that the outcome is

J =


3 1 0 0 0

0 3 0 0 0

0 0 3 1 0

0 0 0 3 1

0 0 0 0 3



Note that in Example 5.4.5, we performed the same row reduction multiple
times. This will always be the case if we compute our chains in this manner. If
you’d prefer to avoid so many repetitive row reductions, you could instead find
the product of elementary matrices that represents these row operations the
first time you are doing them by augmenting with the identity matrix to keep



SECTION HIGHLIGHTS 375

track. Remember, this was one way we described how to find the inverse of a
matrix back in Section 4.5. Then, you can do a simple matrix multiplication
to see what the outcome would have been from the row reduction.

Example 5.4.6 Let’s revisit Example 5.4.5 using the product of elementary
matrices to see how those computations work. First, we augment A− 3I by
the identity matrix and row reduce.

2 2 −1 0 2 1 0 0 0 0

−2 −2 2 1 −3 0 1 0 0 0

−1 −1 −1 −1 0 0 0 1 0 0

1 1 0 0 1 0 0 0 1 0

0 0 −1 −1 1 0 0 0 0 1



→


1 1 0 0 1 0 0 0 1 0

0 0 0 0 0 1 1 1 1 0

0 0 1 0 0 −1 0 0 2 0

0 0 0 1 −1 2 1 0 −2 0

0 0 0 0 0 1 1 0 0 1

 .

Notice that here we have lined up our pivots on the left hand side to be on
the diagonal. This is then not in reduced row-echelon form, but this form
will actually allow us to more quickly see our answers since we are always
making the choice that the free variables are 0. Let us define now the matrix

B =


0 0 0 1 0

1 1 1 1 0

−1 0 0 2 0

2 1 0 −2 0

1 1 0 0 1


We find Ker A − 3I in the same way as before to get the same v⃗1 and v⃗2.
Now, we can use B to find v⃗3 and v⃗4 since Bv⃗1 = v⃗3 and Bv⃗2 = v⃗4. Once
we have v⃗3 and v⃗4, we can again use B to find v⃗6 since Bv⃗4 = v⃗6. To see
that v⃗5 does not exist, note that Bv⃗3 would have a nonzero entry for x5,
which does not align with our choice that x2 = x5 = 0.

You should all be prepared now for the exercises that await.

Section Highlights

▶ A matrix in Jordan Canonical Form has eigenvalues on the diagonal,
1’s or 0’s immediately above the diagonal, and 0’s everywhere else.
See Definition 5.4.2 and Theorem 5.4.1.

▶ While not all matrices inMn×n are diagonalizable, it is always pos-
sible to find a basis of Cn that puts a matrix into Jordan Canonical
Form. See Theorem 5.4.1.

▶ Every matrix inMn×n has a unique Jordan Canonical Form (allow-
ing for rearrangement of blocks), and two matrices are similar if and
only if they have the same Jordan Canonical Forms (again, allow-
ing for rearrangement of blocks). See Theorem 5.4.1 and Corollary
5.4.4.



SECTION HIGHLIGHTS 376

▶ The procedure for computing Jordan Canonical Form is illustrated in
Example 5.4.1 and Example 5.4.5.



EXERCISES FOR SECTION 5.4 377

Exercises for Section 5.4

5.4.1.Now you will create examples.

(a) Make a matrix inM4×4 with 4 Jordan blocks.

(b) Make a matrix inM4×4 with 3 Jordan blocks. Use those same Jordan blocks to make a different
matrix inM4×4.

(c) Make a matrix inM4×4 with 2 Jordan blocks. Use those same Jordan blocks to make a different
matrix inM4×4.

(d) Make a matrix inM4×4 with 1 Jordan block.

5.4.2.Find the Jordan Canonical Form for the following matrices.

(a) A =

 2 1 −1
1 2 −1
0 1 1



(b) B =

 1 1 0

1 1 −1
−1 1 2



(c) C =

 2 0 −1
0 0 −1
0 1 1


5.4.3.Here are some matrices:

A =

 1 1 0

−1 3 1

2 −3 −1

 B =


1 1 1 0 −1
2 1 0 −1 −1
−1 1 2 1 −1
0 1 0 1 0

−1 1 1 1 0

 .

(a) A has eigenvalue 1 with algebraic multiplicity 3 and geometric multiplicity 1. Find a Jordan chain
for 1 of length 3.

(b) B has eigenvalue 1 with algebraic multiplicity 5 and geometric multiplicity 1. Find a Jordan chain
for 1 of length 5.

5.4.4.Let’s explore the left shift! Define L : Rn → Rn by L(x⃗1, . . . , x⃗n) = (x⃗2, . . . , x⃗n, 0).

(a) Prove that the left shift is a linear transformation.



EXERCISES FOR SECTION 5.4 378

(b) Find a matrix representation for L using the standard basis on Rn.

(c) Find the kernel and image of L.

(d) Show that L is nilpotent; that is, show that there is some positive integer k such that Lk = 0, where
0 is the linear transformation that maps all vectors to 0⃗.

5.4.5.Let T : V → V be a linear transformation with invariant subspaces V1, . . . , Vn such that V = V1⊕· · ·⊕Vn.
Show that T decomposes into the direct sum of linear transformations T |V1 , . . . , T |Vn .

5.4.6.Complete the proof of Lemma 5.4.6.

5.4.7.Prove Lemma 5.4.11.

5.4.8.Prove Lemma 5.4.12.



SYMMETRIC MATRICES 379

5.5 Spectral Theory

As we saw in Section 5.3, some square matrices are diagonalizable, which is
neat, but as we just saw in Section 5.4, all matrices are very nearly diagonal-
izable. Great, but you probably still wonder what precisely it is about a matrix
that makes it diagonalizable. Sure, the diagonalizability of an n× n matrix is
characterized by having n linearly independent eigenvectors, but what’s that
all about? Why should some matrices have a maximal number of invariant
subspaces and others not? That is a good question, and we shall see that it has
something like a good answer.

Symmetric Matrices

Recall that AT , the transpose of the matrix A, is a matrix whose columns are
the rows of A.41 41: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

This is true for all kinds of ma-
trices, real or complex.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

What about matrices of abstract
shapes?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

The definition still works, but what
are you doing with abstract shapes?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

You don’t understand my art!

Definition 5.5.1 A symmetric matrix is a matrix A such that AT = A.

Symmetric matrices must be square, and entries “mirror each other across the
main diagonal.”

Example 5.5.1 Here are some matrices:

A =

 1 2 3

2 4 5

3 5 6

 and B =

[
1 2

3 4

]
.

Note that AT = A (check it!), so A is symmetric. You could also note that
a12 = a21 = 2, a13 = a31 = 3, and a23 = a32 = 5. However, B is not
symmetric because b12 = 2 ̸= 3 = b21.

These neatly organized matrices we call “symmetric” have extremely nice
properties. You’ll recall from Theorem 5.1.2 that we already know eigenvec-
tors from different eigenspaces are always going to be linearly independent.
The additional hypothesis of symmetry improves this linear independence to
orthogonality.

Theorem 5.5.1 If a matrix A is symmetric, then any two eigenvectors from
different eigenspaces are orthogonal.

PROOF OF THEOREM 5.5.1. First of all, recall from Theorem 4.4.9 that for
any two appropriately sized matrices B and C, we know (BC)T = CTBT .
Suppose Av⃗1 = λ1v⃗2 and Av⃗2 = λ2v⃗2, where λ1 ̸= λ2. Since A is symmetric,
we know AT = A. Then

λ1v⃗1 · v⃗2 = Av⃗1 · v⃗2
= (Av⃗1)

T v⃗2

= v⃗T1 A
T v⃗2

= v⃗T1 Av⃗2

= v⃗T1 λ2v⃗2 = λ2v⃗1 · v⃗2.



THE SPECTRAL THEOREM 380

Then (λ1−λ2)(v⃗1 · v⃗2) = 0. Since λ1−λ2 ̸= 0, we must have v⃗1 · v⃗2 = 0. □

Example 5.5.2 Let’s try Theorem 5.5.1 on the symmetric matrix

A =

 1 −6 4

−6 2 −2
4 −2 −3


One can check that the eigenvalues and eigenvectors are as follows:

λ1 = 9, v⃗1 =

 2

−2
1

 ,

λ2 = −6, v⃗2 =

 −2−1
2

 , and

λ3 = −3, v⃗3 =

 1

2

2


One can also verify that v⃗1 · v⃗2 = v⃗1 · v⃗3 = v⃗2 · v⃗3 = 0.

Exploration 151 Find the eigenvalues and eigenvectors for the symmetric ma-
trix

A =

[
3 4

4 −3

]
.

Verify that the eigenvectors are orthogonal.

The Spectral Theorem

Let’s start with the most tongue-twistery terminology.

Definition 5.5.2 A matrix A is orthogonally diagonalizable if there is an
orthogonal matrix P and a diagonal matrix D such that

A = PDPT = PDP−1.

Example 5.5.3 Orthogonally diagonalize

A =

 1 −6 4

−6 2 −2
4 −2 −3

 .

We know from Example 5.5.2 that
 2/3

−2/3
1/3

 ,

 −2/3−1/3
2/3

 ,

 1/3

2/3

2/3





THE SPECTRAL THEOREM 381

is an orthogonal set of eigenvectors. Observe that we have also normalized
each of them, so this is actually an orthonormal set of eigenvectors. If we
define,

P =

 2/3 −2/3 1/3

−2/3 −1/3 2/3

1/3 2/3 2/3

 and D =

 9 0 0

0 −6 0

0 0 −3

 ,

then we can then check that A = PDPT .

Theorem 5.5.2 If a matrix A is orthogonally diagonalizable, then A is sym-
metric.

PROOF. Suppose A = PDPT , where P is an orthogonal matrix and D is a
diagonal matrix. Then

AT = (PDPT )T = (PT )TDTPT = PDPT = A.

□

Theorem 5.5.2 is only half the story. It’s actually true that A is orthogonally
diagonalizable if and only if A is symmetric. The following theorem, known
as the Spectral Theorem,42 makes it so; we leave the proof of this theorem for 42: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

The spectrum of a matrix A is
the set of all eigenvalues, and the spec-
tral radius is the maximum magnitude
of all the eigenvalues of A.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Yeah, that’s not nearly as cool as
you probably thought it would be. Sorry.

the end of the section.

Theorem 5.5.3 (The Real Spectral Theorem) A symmetric matrix A ∈
Mn×n(R) has the following properties:

(a) A has n real eigenvalues, counting multiplicities.
(b) For each eigenvalue λ, the geometric multiplicity of λ equals the

algebraic multiplicity of λ.
(c) The eigenspaces of A are mutually orthogonal.
(d) A is orthogonally diagonalizable.

Besides being amazing, the Spectral Theorem is also quite useful. Behold!

Definition 5.5.3 The spectral decomposition of an orthogonally diagonal-
izable matrix A is

A = λ1u⃗1u⃗
T
1 + λ2u⃗2u⃗

T
2 + · · ·+ λnu⃗nu⃗

T
n ,

where for 1 ≤ i ≤ n, λi are eigenvalues of A, and u⃗i are corresponding
orthonormal eigenvectors of A.

Note that each u⃗iu⃗
T
i is a matrix that projects onto the subspace spanned by

u⃗i. In fact, we can make43 a more general statement about such projection 43: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

And prove!
matrices.

Theorem 5.5.4 Let B = {w⃗1, . . . , w⃗k} be an orthonormal basis for a sub-
space W of Rn, and let A = [w⃗1 · · · w⃗k]. For all v⃗ ∈ Rn,

projW (x⃗) = AAT x⃗.

PROOF. Recall from way back in Chapter 2 that

projW (x⃗) =
x⃗ · w⃗1

w⃗1 · w⃗1
w⃗1 + · · ·+

x⃗ · w⃗k

w⃗k · w⃗k
w⃗k.



THE COMPLEX SPECTRAL THEOREM 382

Using the fact that vectors in B are unit vectors, the fact that the inner product
is commutative, and rewriting our inner products as matrix products, we have

projW (x⃗) = (x⃗ · w⃗1)w⃗1 + · · ·+ (x⃗ · w⃗k)w⃗k

= (w⃗1 · x⃗)w⃗1 + · · ·+ (w⃗k · x⃗)w⃗k

= (w⃗T
1 x⃗)w⃗1 + · · ·+ (w⃗T

k x⃗)w⃗k

Then we have

projW (x⃗) = [w⃗1 · · · w⃗k]

 w⃗T
1 x⃗
...

w⃗T
k x⃗

 = AAT x⃗.

□

Example 5.5.4 Let’s find the spectral decomposition of

A =

[
6 −2
−2 9

]
.

Note first that A is symmetric, so we know from the Spectral Theorem that
the spectral decomposition exists. Here are the eigenvalues and eigenvectors
of A:

λ1 = 10, v⃗1 =

[
−1
2

]
, λ2 = 5, v⃗2 =

[
2

1

]
.

We need unit vectors, so let’s use

u⃗1 =

[
−
√
5/5

2
√
5/5

]
, u⃗2 =

[
2
√
5/5√
5/5

]
.

Then

λ1u⃗1u⃗
T
1 + λ2u⃗2u⃗

T
2 = 10

[
−
√
5/5

2
√
5/5

] [
−
√
5/5 2

√
5/5

]
+5

[
2
√
5/5√
5/5

] [
2
√
5/5

√
5/5

]
= 10

[
1/5 −2/5
−2/5 4/5

]
+ 5

[
4/5 2/5

2/5 1/5

]
This is the spectral decomposition of A. When written in this fashion, A is
a linear combination of projections, which is computationally efficient. It is
easy to verify from this point that this linear combination is equal to A:

10

[
1/5 −2/5
−2/5 4/5

]
+ 5

[
4/5 2/5

2/5 1/5

]
=

[
2 −4
−4 8

]
+

[
4 2

2 1

]
=

[
6 −2
−2 9

]

The Complex Spectral Theorem

Definition 5.5.4 For z = x + iy ∈ C, the conjugate of z is the complex
number z̄ = x − iy. For A ∈ Mm×n(C), the conjugate of A is the ma-
trix A = [āij ] ∈ Mm×n(C) obtained by conjugating every entry A. The



THE COMPLEX SPECTRAL THEOREM 383

conjugate transpose of A, denoted by AH , is obtained by conjugating the
transpose of A; that is, AH = AT .

Definition 5.5.5 A matrix A ∈Mn×n(C) is called Hermitian if A = AH .

Example 5.5.5 Both of these matrices are Hermitian, but only one is sym-
metric.  1 2 4

2 5 7

4 7 9

  1 2 + 3i 4

2− 3i 5 7− 8i

4 7 + 8i 9


Exploration 152 Prove that all symmetric matrices inMn×n(R) are Hermit-
ian. Also, find an example to show that there are matrices inMn×n(C) that
are symmetric but not Hermitian.

Exploration 153 Prove that all Hermitian matrices have real entries on their
main diagonal.

There is a complex analog of Theorem 5.5.1 for Hermitian matrices. Its proof
is nearly identical to the proof of Theorem 5.5.1. However, just as in Sec-
tion 5.4, we need to use the Hermitian inner product and norm (Definitions
5.4.7 and 5.4.8) when dealing with matrices in Mn×n(C). Other than that,
the proof is nearly identical.

Corollary 5.5.5 If A is Hermitian, then any two eigenvectors from different
eigenspaces are orthogonal.

Just like how Hermitian matrices are the complex generalization of symmetric
matrices, we have a complex generalization of orthogonal matrices.

Definition 5.5.6 A matrix U ∈ Mn×n(C) is called unitary if UUH =

UHU = In.

Unitary matrices enjoy many properties analogous to the nice properties en-
joyed by real symmetric matrices:

Theorem 5.5.6 Let U ∈ Mn×n(C). The following conditions are equiva-
lent:

(a) U is unitary.
(b) U is invertible with U−1 = UH .



THE COMPLEX SPECTRAL THEOREM 384

(c) The columns of U are an orthonormal basis for Cn.

We leave the proof of Theorem 5.5.6 as an exercise.

Here’s a surprising fact. Well, it’s surprising if you’re not at all familiar with
the Spectral Theorem.

Theorem 5.5.7 If A ∈ Mn×n(C) is Hermitian, then all of the eigenvalues
of A are real.

PROOF. We know from the Fundamental Theorem of Algebra that det(A −
λI) = 0 has a solution, which by definition is an eigenvalue. Suppose λ =

x+ iy for some x, y ∈ R and that v⃗ is an associated eigenvector, so Av⃗ = λv⃗.
We will make extensive use of our Hermitian inner product and use the fact that
for any A,B ∈ Mn×n(C) we have (AB)H = BHAH and A = (AH)H .44 44:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Exercise!
Note first that

(Av⃗) · v⃗ = v⃗H(Av⃗) by conversion to matrix multiplication,
= (v⃗HA)v⃗ by associativity of matrix multiplication,
= (AH v⃗)H v⃗ since (AB)H = BHAH and A = (AH)H ,
= v⃗ · (AH v⃗) by conversion back to inner product,
= v⃗ · (Av⃗) since A is Hermitian,
= v⃗ · (λv⃗)
= λ̄(v⃗ · v⃗) by definition of Hermitian inner product.

Also, we have

(Av⃗) · v⃗ = (λv⃗) · v⃗
= λ(v⃗ · v⃗) by definition of Hermitian inner product.

It follows that λ̄(v⃗ · v⃗) = λ(v⃗ · v⃗), but since v⃗ is an eigenvector, we know that
v⃗ · v⃗ > 0. Thus, λ̄ = λ, or x + iy = x − iy. This implies that y = −y, so
y = 0. Then λ = x ∈ R. □

Theorem 5.5.8 (The Spectral Theorem) If A ∈ Mn×n(C) is Hermitian,
then there is a unitary matrix U and a real diagonal matrix D such that
A = UHDU .

The proof is similar in flavor to the proof of Theorem 5.4.7, but the fact that A
is Hermitian will make our calculations much nicer. Let’s have a lemma first.

Lemma 5.5.9 For square matrices A and B, (AB)H = BHAH .

PROOF. We will use the fact that for z, w ∈ C, zw = z̄w̄, and you will prove
that as an exercise.

(AB)H = (AB)T = BTAT = BHAH .

□

PROOF OF THEOREM 5.5.8. Let λ1 be an eigenvalue for A; we know λ1 ex-
ists from the Fundamental Theorem of Algebra, and we know that λ1 is real
from Theorem 5.5.7. Let x⃗1 be one of its associated eigenvectors such that
∥x⃗1∥ = 1 and E1 = Span {x⃗1}. Then dimE⊥

1 = n − 1. Make a basis for



SECTION HIGHLIGHTS 385

Cn using x⃗1 and n − 1 orthonormal vectors, v⃗2, . . . , v⃗n ∈ E⊥
1 , and define

Q1 = [x⃗1 v⃗2 · · · v⃗n]. By Theorem 5.5.6, Q1 is a unitary matrix, and

QH
1 AQ1 =


x⃗H
1

v⃗H2
...

v⃗Hn

 [λ1x⃗1 Av⃗2 · · ·Av⃗n].

Observe that x⃗H
1 x⃗1 = ∥x⃗1∥ = 1 and v⃗Hi x⃗1 = 0 for i = 2, . . . , n, so the first

column of QH
1 AQ1 is λ1e⃗1. Moreover, since

(QH
1 AQ1)

H = QH
1 AH(QH

1 )H = QH
1 AQ1,

QH
1 AQ1 is Hermitian. Thus,

QH
1 A1Q1 =

[
λ1 0⃗T

0⃗ C1

]
,

where 0⃗ ∈ Mn−1,1 and C1 ∈ Mn−1,n−1(C) is also Hermitian. Since C1 is
Hermitian, this is a very nice and repeatable procedure.

Again, C1 has a real eigenvalue, call it λ2, with an eigenvector, call it x⃗2, such
that ∥x⃗2∥ = 1 and E2 = Span {x⃗2}. We can build a unitary matrix using
e⃗1, x⃗2, and n − 2 more orthonormal vectors, u⃗2, . . . , u⃗n ∈ E⊥

2 and define
Q2 = [e⃗1 x⃗2 u⃗2 · · · u⃗n]. Then

QH
2 QH

1 AQ1Q2 = QH
2

[
λ1 0⃗T

0⃗ C1

]
Q2 =

 λ1 0 0⃗T

0 λ2 0⃗T

0⃗ 0⃗ C2

 ,

where 0⃗ ∈Mn−2,1 and C2 ∈Mn−2,n−2(C) is also Hermitian.

Do this n− 2 more times, and define U = Q1Q2 . . . Qn−1. It remains only to
verify that Q is unitary.45 □ 45: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

As an exercise!

The proof of Theorem 5.5.3 now follows quickly, but for reference, we provide
the details.

PROOF OF THEOREM 5.5.3. Part a follows from Theorem 5.5.7, part b fol-
lows from part a, and part c follows from Theorem 5.5.1]. Since A ∈Mn×n(R)
is symmetric, it is Hermitian, so part d follows from Theorem 5.5.8, noting
that since A is had only real entries, U is a symmetric matrix inMn×n(R) by
construction. □

Section Highlights

▶ A matrix is orthogonally diagonalizable if there exists an orthogonal
basis with respect to which it is diagonal. See Definition 5.5.2.

▶ A matrix is called symmetric if it is equal to its own transpose. See
Definition 5.5.1.

▶ A real-valued matrix will be orthogonally diagonalizable if and only
if it is symmetric. Thus, a symmetric real-valued matrix is always



SECTION HIGHLIGHTS 386

diagonalizable and always has all real eigenvalues. This is part of the
Real Spectral Theorem. See Theorem 5.5.2 and Theorem 5.5.3.

▶ For any real-valued symmetric matrix A, there is a spectral decom-
position that decomposes A into a sum of symmetric matrices scaled
by the eigenvalues of A. See Definition 5.5.3 and Example 5.5.4.

▶ For matrices with complex entries, the concept of Hermitian matrices
replaces that of symmetric matrices, and there is a more-general ver-
sion of the Spectral Theorem. See Definition 5.5.5, Theorem 5.5.7,
Definition 5.5.6, and Theorem 5.5.8.



EXERCISES FOR SECTION 5.5 387

Exercises for Section 5.5

5.5.1.Here’s a symmetric matrix:

A =

 0 1 −1
1 1 1

−1 1 1

 .

According to Theorem 5.5.1, any two eigenvectors from different eigenspaces are orthogonal. Verify this is
true for A.

5.5.2.Let

D =

 1 0 0

0 2 0

0 0 3

 and P =

 0 1 −1
0 1 1

1 −1 1

 .

(a) Show that PDP−1 is not symmetric.

(b) Use the Gram-Schmidt process on the columns of P , normalize the resulting three vectors, and use
them to make an orthogonal matrix Q.

(c) Show that QDQ−1 is symmetric.

5.5.3.Find the spectral decomposition for each of the following matrices.

(a) A =

[
1 1

1 1

]

(b) B =

 1 1 0

1 1 0

0 0 1



(c) C =


−1 1 0 0

1 1 0 0

0 0 0 1

0 0 1 2


5.5.4.Prove that for any A,B ∈ Mn×n(C), (AB)H = BHAH . Hint: See Theorem 4.4.9 and make sure to keep

track of the conjugates from the Hermitian inner product.

5.5.5.Prove Theorem 5.5.6.

5.5.6.Recall that for z = x+ iy ∈ C, z̄ = x− iy. Prove that for z, w ∈ C, zw = z̄w̄.

5.5.7.Prove that if A1, . . . , An ∈Mn×n(C) are unitary, then A1 · · ·An is unitary.



5.6. SINGULAR VALUE DECOMPOSITION 388

5.6 Singular Value Decomposition

We’ve spent the entire chapter to this point dealing only with square matrices.
Now we’ll take what we learned and apply it to the more general setting of
rectangular matrices. No mucking about. Let’s have the theorem.

Theorem 5.6.1 (Real Singular Value Decomposition) Let A ∈
Mm×n(R). Then there is an orthogonal matrix U ∈ Mm×m(R), an
orthogonal matrix V ∈ Mn×n(R), and a rectangular diagonal matrix
D ∈Mm×n(R) such that

A = UDV T .

It doesn’t take a lot of imagination to correctly guess what a rectangular diag-
onal matrix is. We’re not giving the formal definition until you guess.

. . . ok. Ready?

Definition 5.6.1 A matrix D ∈ Mm×n with entries di,j is called a rectan-
gular diagonal matrix if di,j = 0 whenever i ̸= j.

For example, matrices of the form

D =


d11 0 · · · 0 0 · · · 0

0 d22 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · dmm 0 · · · 0


or

D =



d11 0 · · · 0

0 d22 · · · 0
...

...
. . .

...
0 0 · · · dnn
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


are rectangular diagonal matrices.

Example 5.6.1 Here’s a non-square matrix:

A =

[
−20 8 −2
−10 19 14

]
You can check that A = UDV T , UUT = UTU = I3, and V V T =

V TV = I4, where

U =
1

5

[
−4 3

3 4

]
,

D =

[
15 0 0

0 30 0

]
, and

V T =
1

3

 2 −2 1

1 2 2

2 1 −2

 .



5.6. SINGULAR VALUE DECOMPOSITION 389

How do you actually find such a decomposition? We need one more definition.

Definition 5.6.2 A nonnegative σ ∈ R is a singular value for A ∈
Mm×n(R) if there are unit vectors u⃗ ∈ Rm and v⃗Rn such that

Av⃗ = σu⃗ and AT u⃗ = σv⃗.

In this case, u⃗ and v⃗ are called left-singular and right-singular vectors,
respectively.

The left-singular vectors will be the columns of U , the right-singular vectors
will be the columns of V , and the singular values will be the diagonal entries
on D. If you’re willing to believe that the singular value decomposition exists
(and you should; we’ll prove it soon), then finding the singular values and
vectors is not terribly difficult. Note first that since U and V are orthogonal
and D is rectangular diagonal, we have

AAT = (UDV T )(UDV T )T = (UDV T )(V DTUT ) = U(DDT )UT

ATA = (UDV T )T (UDV T ) = (V DTUT )(UDV T ) = V (DTD)V T

Here are some handy facts that we’ll prove later:

Theorem 5.6.2 If A ∈ Mm×n(R), then AAT and ATA are both symmet-
ric.

Corollary 5.6.3 If D ∈Mm×n(R) is rectangular diagonal, then DDT and
DTD are both diagonal and have the same nonzero entries.

Since AAT and ATA are both symmetric, we know from the Spectral The-
orem that the columns of U and V should normalized eigenvectors of AAT

and ATA, respectively. It’s a little less obvious, but the eigenvalues of A,
which become the entries on the diagonal of D, are the square roots of the
eigenvalues of AAT (or ATA).

The only catch is that normalized eigenvectors aren’t necessarily left-singular
or right-singular vectors, but they do give us a starting point. If u⃗ is an eigen-
vector for AAT , then calculate AT u⃗. It should be one of the eigenvectors
for ATA. One may need to rescale some of these vectors by −1, but in this
fashion, one can find and properly order the left-singular and right-singular
vectors.

Example 5.6.2 Here’s a matrix A with AAT and ATA:

A =

 1 0 0 1

1 0 1 0

0 −1 0 0



AAT =

 2 1 0

1 2 0

0 0 1

 ATA =


2 0 1 1

0 1 0 0

1 0 1 0

1 0 0 1

 .



5.6. SINGULAR VALUE DECOMPOSITION 390

As indicated by Theorem 5.6.2, both AAT and ATA are symmetric. Here
is some additional handy information:

Eigenvalues/eigenvectors for AAT

eigenvalue eigenvectors

√
3 u⃗1 =

 1/
√
2

1/
√
2

0


1 u⃗2 =

 0

0

1

 , u⃗3 =

 −1/
√
2

1/
√
2

0


Eigenvalues/eigenvectors for ATA

eigenvalue eigenvectors

√
3 v⃗1 =


2/
√
6

0

1/
√
6

1/
√
6



1 v⃗2 =


0

0

−1/
√
2

1/
√
2

 , v⃗3 =


0

1

0

0



0 v⃗4 =


−1/
√
3

0

1/
√
3

1/
√
3


Using the eigenvalues for AAT , we have singular values 1, 1, and

√
3, so

D =

 1 0 0 0

0 1 0 0

0 0 3 0

 .

You can check that Av⃗1 =
√
3u⃗1. However, Av⃗2 = −u⃗3 and AT u⃗2 = −v⃗3.

Thus, u⃗1 and v⃗1 are left-singular and right-singular vectors, but we need to
use −u⃗3 and −u⃗2 (in that order) to have left-singular vectors if we use v⃗2
and v⃗3 as left-singular vectors. Defining

U = [u⃗1 − u⃗3 − u⃗2] and V = [v⃗1 v⃗2 v⃗3 v⃗4],

we have the singular value decomposition A = UDV T .

Exploration 154 Find the singular value decomposition of

A =


1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

 .

The proof of Theorem 5.6.1 uses The Spectral Theorem and follows the roughly
same procedure from Example 5.6.2, so we’ll just take care of it in the exer-
cises.



PSEUDOINVERSES 391

Pseudoinverses

We come immediately to a convenient application of the singular value de-
composition. We also get a fun new term.

Definition 5.6.3 Let A ∈ Mm×n(R) have singular value decomposition
UDV T , r be min{m,n}, k be the number of nonzero singular values, and
σ1, . . . , σk, 0k1

, . . . , 0r be the diagonal entries of D. The pseudoinverse of
A, denoted A+, is the matrix V D+UT , where D+ ∈Mn×m is rectangular
diagonal with diagonal entries 1/σ1, . . . , 1/σk, 0, . . . , 0.

Example 5.6.3 Here’s a matrix:

A =

 1 0 0 1

1 0 1 0

0 0 0 0

 .

Its singular value decomposition is UDV T , where

U =

 1/
√
2 1/

√
2 0

1/
√
2 −1/

√
2 0

0 0 1

 ,

D =


√
3 0 0 0

0 1 0 0

0 0 0 0

 , and

V =


2/
√
6 0 0 −1

√
3

0 0 1 0

1/
√
6 −1/

√
2 0 1/

√
3

1/
√
6 1/

√
2 0 1/

√
3

 .

The pseudoinverse of A is A+ = V D+UT , where

D+ =

 1/
√
3 0 0 0

0 1 0 0

0 0 0 0

 .

Thus, we have

A+ = V D+UT =
1

3


1 1 0

0 0 0

−1 2 0

2 −1 0

 .

That’s a neat thing to do. What can we do this this fun new matrix, though?
Recall that if A is invertible, A−1 can be used to find solutions to the matrix
equation Ax⃗ = b⃗ by multiplying both sides of the equation by A−1, so we
have x⃗ = A−1⃗b. The compelling name, pseudoinverse, strongly suggests we
can find vectors that are almost solutions; no invertibility required! That sure
sounds familiar. . .

Theorem 5.6.4 Let A ∈ Mm×n(Rn). Then AA+b⃗ = projCol A

(⃗
b
)

. In

particular, x̂ is a least squares solution to Ax⃗ = b⃗ if and only if Âx =

AA+b⃗.



PSEUDOINVERSES 392

PROOF. Recall that x̂ is a least squares solution if and only if it holds that
Ax̂ = projCol A

(⃗
b
)

. Note that x̂ = A+b⃗ if and only if Ax̂ = AA+b⃗, or

Ax̂ = (UDV T )(V D+UT )⃗b = UUT b⃗.

Recall from Theorem 5.5.4 that UUT b⃗ = projCol U

(⃗
b
)

. Since you will
prove Col A = Col U as an exercise, we are done. □

There is a subtle advantage here. To find the least squares solutions to Ax⃗ = b⃗,
where A ∈Mm×n, we can solve either

ATAx⃗ = AT b⃗, or(5.2)

Ax⃗ = AA+b⃗.(5.3)

The augmented matrix for Equation 5.2 is n by n+ 1. The augmented matrix
for Equation 5.6.3 is still m by n+1, just like the original augmented matrix..

Example 5.6.4 Using

A =

 1 0 0 1 0 0 1

1 0 1 0 0 1 0

0 0 0 0 0 0 0

 ,

we have

A+ =
1

8



2 2 0

0 0 0

−1 3 0

3 −1 0

0 0 0

−1 3 0

3 −1 0


.

One can quickly check that e⃗1 + e⃗3 /∈ Col A. To find the least squares
solutions for Ax⃗ = e⃗1+e⃗3 using the normal equation ATAx⃗ = AT (e⃗1+e⃗3),
we have a 6 × 7 auxiliary matrix. However, note that the auxiliary matrix
for Ax⃗ = AA+b⃗ is 3× 7, which is substantially smaller and easier to solve.
One can check that AA+b⃗ = e⃗1 and that the augmented matrix for Ax⃗ =

AA+(e⃗1 + e⃗3) is  1 0 0 1 0 0 1 1

1 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0

 ,

so the least squares solutions for Ax⃗ = e⃗1 + e⃗3 are x̂ =

x2



0

1

0

0

0

0

0


+x4



−1
0

1

1

0

0

0


+x5



0

0

0

0

1

0

0


+x6



0

0

−1
0

0

1

0


+x7



−1
0

1

0

0

0

1


+



−1
0

1

0

0

0

0


,

where x2, x4, x5, x6, x7 ∈ R.



SECTION HIGHLIGHTS 393

Great. The pseudoinverse does nice things for us, but it’s also the unique
matrix that does so. . . in the following very specific sense. This nicely mirrors
the fact that actual inverses of invertible matrices are unique.

Theorem 5.6.5 For A ∈ Mm×n(Rn) singular value decomposition
UDV T , the pseudoinverse A+ = V D+UT is the unique matrix satisfy-
ing all of the following properties:

(a) AA+A = A

(AA+ maps the columns of A to the columns of A),
(b) A+AA+ = A+

(A+A maps the columns of A+ to the columns of A+),
(c) (AA+)T = AA+

(AA+ is symmetric), and
(d) (A+A)T = A+A

(A+A is symmetric).

Proof of Theorem 5.6.5 can be obtained by direct calculation, so. . . exercise!

The Complex Singular Value Decomposition

Corollary 5.6.6 If A ∈ Mn×m(C), then AAH ∈ Mn×n(R), AHA ∈
Mm×m(R), and both AAH and AHA are Hermitian.

This corollary comes from clever conjugation. Exercise! Proof of the follow-
ing theorem then follows from the (complex) Spectral Theorem.

Theorem 5.6.7 (Singular Value Decomposition) Let A ∈ Mm×n(C).
Then there is a unitary matrix U ∈ Mm×m(C), a unitary matrix V ∈
Mn×n(C), and a rectangular diagonal matrix D ∈Mm×n(R) such that

A = UDV H .

It’s worth noting that this works even if A has complex entries, and in that
case, D still has only real entries.

Exploration 155 Find the singular value decomposition of

A =

 1 1 1 1 1

i i i i i

1 1 1 1 1

 .

Section Highlights

▶ While diagonalization was a topic for square matrices, there is a way
to decompose any matrix using the singular value decomposition.
See Theorem 5.6.1 and Example 5.6.2.

▶ One application of the singular value decomposition is the existence
of a pseudoinverse, which can be used to compute least squares so-
lutions. See Definition 5.6.3 and Theorem 5.6.4.



EXERCISES FOR SECTION 5.6 394

Exercises for Section 5.6

5.6.1.We will prove Theorem 5.6.1 in a few steps. Suppose n > m. Let A ∈ Mm×n(R). Use the Spectral
Theorem on ATA ∈Mn×n(R) to get orthonormal vectors v⃗1, . . . , v⃗n and eigenvalues λ1, . . . , λn (counting
multiplicity). For each i = 1, . . . , n, define σi =

√
λi > 0.

(a) Use the σis to define D.

(b) For each i = 1, . . . , n, define

u⃗i =
1

σi
Av⃗i,

and verify that U = [u⃗1 · · · u⃗n] is orthogonal.

(c) Verify that AV = UD and use that to show A = UDV T .

(d) Now suppose m > n, and verify that a similar proof works after using the Spectral Theorem on
AAT .

(e) Complete the proof by verifying the m = n case.

5.6.2.Prove Corollary 5.6.6.

5.6.3.Let A ∈Mm×n(Rn) have singular value decomposition UDV T . Verify that Col A = Col U .

5.6.4.Let A ∈Mm×n(Rn) have singular value decomposition UDV T . Prove Theorem 5.6.5.



DISCRETE DYNAMICS AND MARKOV CHAINS 395

5.7 Applications of Invariant Subspaces

We’ve constructed an impressive catalog of incredible theorems, and there are
dozens of practical uses for each of them. We will show you two.

Discrete Dynamics and Markov Chains

The fictitious city of Narwhal Springs has exactly two restaurants, and they
both serve pizza exclusively. All is not well in Narwhal Springs, though.
One restaurant serves Chicago deep-dish pizza, the other serves New York
thin-crust pizza, and it turns out some people have very strong feelings about
these two types of pizza. A weekly survey of the townspeople is conducted
in which they are forced to choose which type of pizza they prefer. People,
being very entrenched in their pizza preferences, tend to stick with the same
type of pizza they currently prefer. Specifically, next week 90% of people that
prefer Chicago pizza will still prefer Chicago pizza, and 80% of people that
prefer New York pizza will still prefer New York pizza. That means 10% of
Chicago pizza people convert to New York pizza people, and 20% of New
York pizza people convert to Chicago pizza. Here is a convenient diagram,
called a transition diagram, that summarizes all of this information:

CH NY0.9

0.1

0.8

0.2

Here are some important features of this situation:

▶ The probabilities predicting future preference only depend on the
current preference.

▶ There are only a finite number of choices (two in this case).

We can put this situation into action using vectors and matrices. First let’s start
with a vector representing the distribution of people’s pizza preference:

x⃗ =

[
c

n

]
←− proportion of people preferring Chicago pizza
←− proportion of people preferring New York pizza

Note that the entries of x⃗ must sum to 1; that is c + n = 1. This is because
these are the proportions,46 and we have proportions associated to all possible 46: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

We could also think about
them as probabilities.outcomes; in this case, there are only two possible restaurant choices, and we

made people pick one. Using our transition diagram, we can predict the next
week’s proportions of pizza preference,[

0.9c+ 0.2n

0.1c+ 0.8n

]
=

[
0.9 0.2

0.1 0.8

] [
c

n

]
= Ax⃗,

which we can also write as a matrix, A, multiplied by x⃗. Such a matrix is
sometimes called a transition matrix, and we can use Ax⃗, A2x⃗, A3x⃗, and so
on to predict how weekly changes in pizza preference progress.

Let’s get more formal:



DISCRETE DYNAMICS AND MARKOV CHAINS 396

Definition 5.7.1 Given a finite set of states, {1, 2, . . . , n}, in which the prob-
ability of transition from the current state to another depends only on the
current state, a Markov chain is a sequence describing how a distribution
amongst the states evolves as a result of these probabilities.

A common way to represent Markov chains is with vectors and matrices:

Definition 5.7.2 A vector whose entries are all nonnegative and sum to 1 is
called a probability vector. A square matrix whose columns are all proba-
bility vectors is called a transition matrix.

Theorem 5.7.1 The product of a transition matrix and a probability vector
is a probability vector.

Exploration 156 Let’s prove Theorem 5.7.1 for a 2 × 2 transition matrix and
a probability vector in R2. Suppose

A =

[
a b

c d

]
is a transition matrix. Then a+ c = 1 and b+ d = 1. Suppose

x⃗ =

[
e

f

]
is a probability vector. Then e + f = 1. Compute Ax⃗ and show it is also a
probability vector.

If A is a transition matrix, and x⃗ is a probability vector, then x⃗, Ax⃗, A2x⃗, A3x⃗, . . .

is a Markov chain. Transition matrices also have another convenient property.

Theorem 5.7.2 If A ∈Mn×n is a transition matrix with eigenvalue λ, then
|λ| ≤ 1. Moreover, A has 1 as an eigenvalue.

PROOF. First, suppose λ is an eigenvalue for A with |λ| > 1 with eigenvector
x⃗. For large enough k, we have that ∥Akx⃗∥ = ∥λkx⃗∥ > (|x1|+· · ·+|xn|). By
Theorem 5.7.1 and the definition of matrix multiplication, we know that Ak is
a transition matrix, so each column of Ak, a⃗i for i = 1, . . . , n, has ∥a⃗i∥ ≤ 1.
Observe that

∥Akx⃗∥ = ∥x1a⃗1 + · · ·+ xna⃗n∥
≤ |x1|∥a⃗1∥+ · · ·+ |xn|∥a⃗n∥
≤ |x1|+ · · ·+ |xn|.

However, we already have that ∥Akx⃗∥ > (|x1|+ · · ·+ |xn|), so it must be that
there are no eigenvalues λ with |λ| > 1.



DISCRETE DYNAMICS AND MARKOV CHAINS 397

To see that A has an eigenvalue of 1, note first that since the entries in every
column of A sum to 1, we have

AT


1

1
...
1

 =


1

1
...
1

 ,

so 1 is an eigenvalue for AT . By Theorem 5.3.3, A and AT have the same
characteristic polynomial, so 1 is an eigenvalue for A as well. □

Example 5.7.1 Recall the preceding pizza problem had transition matrix

A =

[
0.9 0.2

0.1 0.8

]
Then starting with two different probability vectors, x⃗ and y⃗,

x⃗ =

[
0.5

0.5

]
y⃗ =

[
0.1

0.9

]
Ax⃗ =

[
0.55

0.45

]
Ay⃗ =

[
0.27

0.73

]
A2x⃗ =

[
0.585

0.415

]
A2y⃗ =

[
0.389

0.611

]
...

...

A100x⃗ ≈
[

2/3

1/3

]
A100y⃗ ≈

[
2/3

1/3

]
are both Markov chains. It’s not surprising, based on the transition diagram,
that the proportion of Chicago pizza preferences increases and New York
pizza preferences decreases each week. Perhaps what is surprising is that
it seems to settle, in both cases, to a specific set of proportions. There is
actually an eigenvalue-based reason that this is happening; you can check
that the eigenvalues for A are 1 and 0.7, with eigenvectors,

v⃗1 =

[
2

1

]
and v⃗2 =

[
−1
1

]
,

respectively. Since {v⃗1, v⃗2} is a basis, any vector can be written as x⃗ =

c1v⃗1 + c2v⃗2 for some scalars c1 and c2. Then

Akx⃗ = A

(
c1

[
2

1

]
+ c2

[
−1
1

])
= c1A

k

[
2

1

]
+ c2A

k

[
−1
1

]
= c1(1)

k

[
2

1

]
+ c2(0.7)

k

[
−1
1

]
.

Thus,

lim
k→∞

Akx⃗ = c1

[
2

1

]
.

From Theorem 5.7.1, we know that

c1

[
2

1

]



DISCRETE DYNAMICS AND MARKOV CHAINS 398

must be a probability vector, so c1 = 1/3. Thus, for any probability vector
x⃗, we have proved the surprising fact that Akx⃗ converges to 1/3v⃗1 as k →
∞.

Or maybe you already know the following definitions and theorem and are
not-at-all surprised. That is also possible.

Definition 5.7.3 For a transition matrix, A, a steady-state vector is a prob-
ability vector, x⃗, such that Ax⃗ = x⃗.

Example 5.7.2 Again, recall the preceding pizza problem had transition ma-
trix

A =

[
0.9 0.2

0.1 0.8

]
The probability vector

x⃗ =

[
2/3

1/3

]
is a steady-state vector because Ax⃗ = x⃗.

Definition 5.7.4 A transition matrix, A, is called regular if Ak has no zero
entries for some positive integer k.

A transition matrix being regular is equivalent to being able to get from any
state in a transition diagram to any other state by following paths in the dia-
gram. A Markov chain from a regular transition matrices has very predictable
long-term behavior:

Theorem 5.7.3 If A ∈ Mn×n is a regular transition matrix, then there is a
unique steady-state vector, x⃗0, such that for any probability vector, x⃗ ∈ Rn,
we have

lim
k→∞

Akx⃗ = x⃗0.

There’s a lot going on in Theorem 5.7.3. For regular transition matrices,
Markov chains starting at any probability vector all converge to the same
unique steady-state vector. That is exactly what happened in Example 5.7.1;
note that the transition matrix, A, is regular (because it already has no zero
entries).

The proof of Theorem 5.7.3 is hard, and we don’t want to do it. It’s the end of
the book. Give us a break!

Exploration 157 The Office of Bureaucracy and Mismanagement has three
queues for filing paperwork. Properly filed paperwork requires the queues to
be done consecutively; that is, when a hapless citizen delivers their paperwork
at the front of Queue A, they must then wait in Queue B to deliver paperwork
there; then they do the same in Queue C; then, and only then, can they escape.
Here are some more fun facts about the OBM:

▶ 90% of citizens attempting to file paperwork in Queue A are asked to
go to the back of the line and wait in Queue A again; the remaining
10% move on to Queue B.



DISCRETE DYNAMICS AND MARKOV CHAINS 399

▶ 80% filing in Queue B are told to go to the back of their line, and
20% move on to Queue C.

▶ The bureaucrats running Queue C are particularly cruel; while 50%
of filers must go to the back of Queue C, 10% must go to the back of
Queue B; the rest escape.

▶ 90% of citizens that escape the Office of Bureaucracy and Misman-
agement never return; the remaining 10% go back to Queue A.

Here are the transition diagram and matrix:

A

B

C

E

0.9

0.1

0.8

0.2

0.5

0.4

0.1

0.9

0.1

A =


0.9 0 0 0.1

0.1 0.8 0.1 0

0 0.2 0.5 0

0 0 0.4 0.9



What percent of people eventually escape the Office of Bureaucracy and Mis-
management?

Exploration 158 The overlords at the Office of Bureaucracy and Mismanage-
ment were dissatisfied with the insufficient level of misery they created, so
some changes were implemented.47 As a result, now 100% of people that es- 47:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

That’s right! Get those citi-
zens in some queues!cape never return. Nothing else changed. Show that the resulting transition

matrix is not regular but that everyone eventually escapes.

As much fun as we’ve had with pizza and bureaucracy, it should definitely be
noted that Markov processes have an incredible variety of uses, from flight
scheduling to internet search engines. The possibilities are only limited by
one’s imagination. For more information, we refer you to said internet search
engines.



RANK K APPROXIMATION 400

Rank k Approximation

Here comes a handy technique. First, let’s ruin your day with a big, awkward
matrix:

A =


3 0 0 0 0 0 0

0 2 −1 −1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

 .

You can check that A has singular values
√
10,
√
6, and 1. Thinking of the

singular value decomposition, A = UDV T , where U = [u⃗1 · · · u⃗4] and V =

[v⃗1 · · · v⃗7] are orthogonal and

D =


√
10 0 0 0 0 0 0

0
√
6 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

 .

Note that since A = UDV T , we could, inspired by the spectral decomposition
for square matrices, write a singular value decomposition similarly.

Theorem 5.7.4 If A ∈ Mm×n has singular value decomposition A =

UDV T with U = [u⃗1 · · · u⃗m], V = [v⃗1 · · · v⃗n], and singular values
σ1, . . . , σm, then

A = σ1u⃗1v⃗
T
1 + · · ·+ σku⃗mv⃗Tm.

Proof of this theorem comes from direct calculation, so let’s skip that48 and 48:

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Aaarrgg!
just look at it in the context of our matrix A.

A =
√
10u⃗1v⃗

T
1 +
√
6u⃗2v⃗

T
2 + u⃗3v⃗

T
3 + 0u⃗4v⃗

T
4 .

How much does that last term contribute to what the matrix A does to vectors?
Literally nothing at all, but the third term doesn’t contribute much either. Since√
10 and

√
6 are much larger than the other singular values, 1 and 0, much

more scaling is done by the first two terms of this decomposition. In this case,
v⃗1 and v⃗2 are right-singular vectors for

√
10 and

√
6, respectively, so most of

the linear transforming done by A is in the directions of v⃗1 and v⃗2. Working
this way, we can feasibly restrict our attention to a linear transformation on a
dimension two subspace that behaves a lot like A on a dimension seven space.
In fact, all we have to do is cut off that last term and define

A0 =
√
10u⃗1v⃗

T
1 +
√
6u⃗2v⃗

T
2 .

We can calculate v⃗1 = e⃗1 and v⃗2 = (−2e⃗2 + e⃗3e⃗3)/
√
6 and note that

Av⃗1 =
√
10u⃗1 and

Av⃗2 =
√
6u⃗2

to see

A0 =


3 0 0 0 0 0 0

0 2 −1 −1 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

 .



RANK K APPROXIMATION 401

Indeed, one can see that A and A0 are very much alike. Moreover, one can
test Ax⃗ and A0x⃗ with a variety of vectors, x⃗, to see how similarly they behave
as linear transformations.49 49: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Do it!

While A0 is a reasonable approximation for A, A0 is still quite large; it’s the
exact same size as A! Let’s see what we can do about that. Note that

A0 =
√
10u⃗1v⃗

T
1 +
√
6u⃗2v⃗

T
2 = [u⃗1 u⃗2]

[ √
10 0

0
√
6

]
[v⃗1 v⃗2]

T ,

and we can rewrite this as

A0[v⃗1 v⃗2] = [u⃗1 u⃗2]

[ √
10 0

0
√
6

]
.

Would you believe that

A[v⃗1 v⃗2] = [u⃗1 u⃗2]

[ √
10 0

0
√
6

]
as well? Let’s check.

A[v⃗1 v⃗2] =


3 0 0 0 0 0 0

0 2 −1 −1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0





1 0

0 −2/
√
6

0 1/
√
6

0 1/
√
6

0 0

0 0

0 0



=


3 0

0 −
√
6

0 0

1 0

 = [u⃗1 u⃗2]

[ √
10 0

0
√
6

]
.

When we define A0 by cutting off that last term in the singular value de-
composition of A, what’s actually happening is that we’re restricting A to the
projection of the domain of A onto the span of v⃗1 and v⃗2. This sounds a lot
like a theorem. First, we’ll have a definition to formalize this “cutting off”
procedure.

Definition 5.7.5 If A ∈ M×n has singular value decomposition A =

UDV T with U = [u⃗1 · · · u⃗m], V = [v⃗1 · · · v⃗n], and singular values
σ1, . . . , σm, then for any positive integer k ≤ m, a rank k approximation
of A is

Ak = σ1u⃗1v⃗
T
1 + · · ·+ σku⃗kv⃗

T
k .

Theorem 5.7.5 If A ∈Mm×n has rank k approximation, Ak = σ1u⃗1v⃗
T
1 +

· · · + σku⃗kv⃗
T
k , then for any positive integer k ≤ m, Ak is the composition

of A with the projection onto Span {v⃗1, . . . , v⃗k}. In particular,

Ak = [u⃗1 · · · u⃗k]

 σ1 · · · 0
...

. . .
...

0 · · · σk

 [v⃗1 · · · v⃗k]T = A[v⃗1 · · · v⃗k][v⃗1 · · · v⃗k]T .

Moreover,
A[v⃗1 · · · v⃗k] = [σ1u⃗1 · · ·σku⃗k] .



RANK K APPROXIMATION 402

PROOF. The first equality comes from matrix multiplication. The second
comes from the singular value decomposition for A and Theorem 5.5.4, which
states that [v⃗1 · · · v⃗k][v⃗1 · · · v⃗k]T is the projection onto Span {v⃗1, . . . , v⃗k}. The
last inequality comes from the second after multiplication by [v⃗1 · · · v⃗k] and
noting that [v⃗1 · · · v⃗k]T [v⃗1 · · · v⃗k] = Ik. □

Theorem 5.7.5 is particularly useful because

A ∈ Mm×n and

A[v⃗1 · · · v⃗k] ∈ Mm×k,

and we could potentially choose k to be substantially smaller than n. 50 50: .Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Wait. Is that the end?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

Looks like it is. I guess we should
go home?

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

I like it here. I think I’ll stay.

.Hue·· ··

*
Utt
i

:ms
...-.·
·· ·· ist ...

·

Ne··
-s... ...·

·· ..... ··

a·=

But what’ll we do?

. . .



Appendix

Additional Proofs

As we were writing this book, some statements needed proofs for complete-
ness, but we felt including those proofs detracted from the interactive expe-
rience of the readers. Thus, we created an appendix to include these results.
Actually, first we lied about creating an appendix, and then we had to make
it for real once we realized this was turning into something other instructors
might one day use. We have ordered these based on where the results appear
in the text.

Chapter 3

Theorem (3.3.3) (a) If V is any vector space, then V ∼= V .
(b) If V and W are vector spaces such that V ∼= W , then W ∼= V .
(c) If V , W , and U are all vector spaces such that V ∼= W and W ∼=

U , then V ∼= U .

PROOF. First, we should establish that if V is any vector space, then V ∼= V .
In this situation, the identity map id : V → V that maps each vector to itself is
the isomorphism. Second, suppose V and W are vector spaces such that V ∼=
W . We proved in Section 3.2 that if T is an invertible linear transformation,
then T−1 is as well. Thus, we also have W ∼= V with the inverse function
giving the isomorphism.

We also know from that section that the composition of two linear transfor-
mations will again be a linear transformation, and from Section 3.1 that the
compositions of two maps that are one to one and onto will also be one to
one and onto. Suppose V ∼= W and W ∼= U . Then there are isomorphisms
T : V → W and S : W → U . The composition S ◦ T : V → U is then an
isomorphism as well, and V ∼= U . □

We mentioned there is a way to define our operations of scalar multiplication
and vector addition so that a plane in R3 that does not go through the origin
is still a vector space. To do this, we need to shift the zero vector away from

403



ADDITIONAL PROOFS 404 0

0

0

. Suppose our goal is to impose a vector space structure on

V =


 x

y

z

 : x+ y + z = 6;x, y, z ∈ R

 .

We need to first identify a vector in V . Well,

 1

2

3

 ∈ V since 1+2+3 = 6.

Let’s make this our new zero vector. For this, we need to shift our vector

addition so that adding

 1

2

3

 does nothing.

 x1

y1
z1

⊞

 x2

y2
z2

 =

 x1 + x2 − 1

y1 + y2 − 2

z1 + z2 − 3


Now, we need to define a version of scalar multiplication that does not move

our new zero vector

 1

2

3

.

k

 x1

y1
z1

 =

 kx1 − k + 1

ky1 − 2k + 2

kz1 − 3k + 3


Now, checking the vector space axioms for R3 with these operations would be
a wonderful exercise, so we will leave it as that. If we assume this is a valid
vector space, we can then just check the subspace axioms to see that V is a
subspace.

Chapter 4

Theorem (4.1.5) Suppose A ∈ Mm×n. Then there exists a unique matrix
B ∈ Mm×n in reduced row echelon form that can be obtained from A by
performing row operations.

PROOF. The statement we are claiming is that a reduced row echelon form
matrix both exists and is unique. Suppose first of all that A ∈ Mm×1, so that
A is just a single column. Then, if this column has no nonzero entries, then the
matrix is in reduced row echelon form already, and this is the unique reduced
row echelon form since any row operation will preserve a column of all zeros.
Suppose instead that A has a nonzero entry. Then we can select any nonzero
entry in the column and scale that row so that it is a 1. We can then move that
pivot to be in the top row if it is not currently. Then, we can use this pivot to
reduce all the entries below to 0. This is the unique single column reduced row
echelon form matrix with a pivot. Now, suppose A ∈ Mm×n and any matrix
inMm×n−1 can be row reduced to a unique reduced row echelon form. So
the first n − 1 columns of A can be row reduced uniquely to reduced row



ADDITIONAL PROOFS 405

echelon form. If the final column has only nonzero entries in rows already
containing pivots, then the A is in reduced row echelon form. This form is
unique since any row operation would change not just the final column but
all the ones previously, creating a contradiction to our assumption that the
first n − 1 columns were arranged uniquely in reduced row echelon form. If
the final column contains a nonzero entry in a row not already containing a
pivot, we should scale that row so that the entry is a 1. We know this row
must contain only 0 in all the previous entries since it is in a row that did not
previously contain a pivot, so we can now clear out all the other entries in the
final column and move the row with a pivot up to be the final nonzero row.
This matrix is now in reduced row echelon form. None of the row operations
affected the previous columns, and the final column is forced to be all zeros
except for a 1 in the pivot location. Thus, this is the unique matrix in reduced
row echelon form obtained from A by row operations, and the result holds by
induction. □

Theorem (4.2.3) If a system of m linear equations in n variables has a
solution, then the set of solutions is in one to one correspondence onto a
k−dimensional subspace of Rn, where k is the number of free variables
in the reduced row echelon form of the coefficient matrix associated to the
system.

PROOF. Given our system of m linear equations in n variable, we can form an
augmented matrix [C|d⃗]. Suppose [C|d⃗] row reduces to [A|⃗b] in reduced row
echelon form, and further suppose A has i columns containing pivots. Con-
sider the equation Ax⃗ = 0⃗. We can define the induced linear transformation
TA : Rn → Rm by TA(x⃗) = Ax⃗. Then, solving the equation Ax⃗ = 0⃗ is equiv-
alent to finding Ker A = Ker TA. We know from the Rank-Nullity Theorem
that dimKer TA + dim Imag TA = n. Also, we know Imag TA = Col A.
Each column containing a pivot in reduced row echelon form is a different
standard basis vector for Rn, so we know they are linearly independent. Also,
any column not containing a pivot will only have nonzero entries correspond-
ing to the locations of the pivots. Thus, the columns containing pivots are a
basis for Imag TA, so dim Imag TA = i, where i is the number of columns
containing pivots. We must then have that dimKer TA = k since i+ k = n.

We have shown that for the equation Ax⃗ = 0⃗, the set of solutions is a subspace
of dimension k, where k is the number of free variables in A. We have assumed
that the original system of equations had a solution, or equivalently, the matrix
equation Ax⃗ = b⃗ has a solution. Thus, there is some z⃗ ∈ Rn such that Az⃗ = b⃗.
Now, let us show that there exists a one to one map from the set of solutions
for Ax⃗ = 0⃗ onto the set of solutions for Ax⃗ = b⃗. Let

Ub⃗ = {y⃗ ∈ Rn|Ay⃗ = b⃗}.

We know z⃗ ∈ Ub⃗. Let us define a map f : Ker A → Ub⃗ by f(k⃗) = k⃗ + z⃗.
Let’s first see that this map is well-defined. To do this, we need to establish
that k⃗ + z⃗ ∈ Ub⃗ for any k⃗ ∈ Ker A. We know A(k⃗ + z⃗) = Ak⃗ + Az⃗ since
this is a property of linear transformations. Then, since k⃗ ∈ Ker A, we know
Ak⃗+Az⃗ = 0⃗+Az⃗ = b⃗. Thus, k⃗+ z⃗ ∈ Ub⃗ for each k⃗ ∈ Ker A. Now, we need
to show this is one to one and onto. Let’s start with one to one. Suppose that



ADDITIONAL PROOFS 406

k⃗1, k⃗2 ∈ Ker A and that f(k⃗1) = f(k⃗2). This means k⃗1 + z⃗ = k⃗2 + z⃗, which
says k⃗1 = k⃗2. Thus, f is one to one. Now, to see that it is onto. Suppose
y⃗0 ∈ Ub⃗. We need to find some k⃗0 ∈ Ker A such that y⃗0 = f(k⃗0) = k⃗0 + z⃗.
Well, solving for k⃗0 here gives us k⃗0 = y⃗0 − z⃗0. This satisfies the desired
equation and also is in Ker A since A(y⃗0 − z⃗) = Ay⃗0 − Az⃗ = b⃗ − b⃗ = 0⃗.
Thus, f is a one to one and onto map between Ub⃗ and Ker A. □

Theorem (4.5.9) Suppose A ∈ Mn×n is an invertible matrix. Then the
augmented matrix [A|In] row reduces to [In|A−1].

PROOF. Since we know A is a invertible, the columns of A form a basis for
Rn. Let’s name this basis B = {v⃗1, . . . , v⃗n}. Then A is the matrix for the
coordinate mapping that sends each standard basis vector to the corresponding
vector in B. That is, Ae⃗i = v⃗i. Thus, the inverse linear transformation will
map v⃗i to e⃗i. Now, from Theorem 3.5.2, we have

A−1 = [[T (v⃗1)]B · · · [T (v⃗n)]B] = [[e⃗1]B · · · [e⃗n]B] .
In order to compute coordinate vectors, we solve the equation

ai1v⃗1 + · · · ainv⃗n = e⃗i

for each standard basis vector e⃗i. As seen in Section 4.3, we can do this all
at once by augmenting the matrix A with each of the vectors that need to be
converted to coordinate vectors and then row reducing. Specifically, we have

[v⃗1 · · · v⃗n|e⃗1 · · · e⃗n]→ [e⃗1 · · · e⃗n|w⃗1 · · · w⃗n]

where A−1 = [w⃗1 · · · w⃗n]. □

Chapter 5

Theorem (5.3.6) If A ∈ Mn×n has an eigenvalue λ with geometric mul-
tiplicity k and B ∈ Mn×n is similar to A, then B has λ as an eigenvalue
with geometric multiplicity k as well.

PROOF. Suppose A ∈Mn×n has an eigenvalue λ with geometric multiplicity
k and A is the matrix representation for a linear transformation T : V → V

with respect to some basis B. Let EA ⊆ Rn denote the eigenspace for A

with respect to λ. By Theorem 5.3.2, we know there is a corresponding in-
variant subspace W ⊆ V with EA

∼= W under the coordinate mapping.
Thus, dimW = dimEA = k. Let {v⃗1, . . . , v⃗k} denote a basis of W . Sup-
pose B ∈ Mn×n is similar to A. Then there is some basis P of V such
that B is the matrix representation for T with respect to P . Then for each
1 ≤ i ≤ k, we know [v⃗i]P must be an eigenvector for B with the eigenvalue
λ since T (v⃗i) = λv⃗i. Since the coordinate mapping is an isomorphism, we
know {[v⃗1]P , . . . , [v⃗k]P}will be a linearly independent set of eigenvectors for
B with eigenvalue λ. Thus, the geometric multiplicity of λ for B is at least
k. To see that it is exactly k, we can suppose the geometric multiplicity of λ
with respect to B is j ≥ k and repeat this argument starting with B instead of



ADDITIONAL PROOFS 407

A. We would then conclude the geometric multiplicity of λ for A is at least j,
giving us k ≥ j. We then conclude j = k. □

Lemma (5.4.10) Let A ∈ Mn×n have an eigenvalue, λ, with algebraic
multiplicity k and geometric multiplicity j. Then there are j Jordan chains,
S1, . . . , Sj , such that S1 ∪ · · · ∪ Sj is a basis for Ker (A − λI)k, and in
particular,

Ker (A− λI)k = Span {S1} ⊕ · · · ⊕ Span {Sj} .

PROOF. Part 1: The Jordan chains exist and are distinct. By Lemma 5.4.9,
the dimension of Ker (A − λI)i increases by a amount, mi, each time i in-
creases. In particular, one can check that

Ker (A− λI) ⊂ · · · ⊂ Ker (A− λI)k−1 ⊂ Ker (A− λI)k.

We will use these increases in dimKer (A − λI)i to acquire extra “links” in
our Jordan chains. To simplify all the notation, let’s assume that k0 = 4; that
is, dimKer (A−λI)4 = k, and note the general argument is similar. First, we
will use the Orthogonal Decomposition Theorem several times to get a nice
break down of Ker (A− λI)4. Specifically, we can write

E1 = Ker (A− λI)

E2 = E⊥
1 ∩Ker (A− λI)2 ⇒ Ker (A− λI)2 = E2 ⊕ E1

E3 = (E2 ⊕ E1)
⊥ ∩Ker (A− λI)3 ⇒ Ker (A− λI)3 = E3 ⊕ E2 ⊕ E1

E4 = (E3 ⊕ E2 ⊕ E1)
⊥ ⇒ Ker (A− λI)4 = E4 ⊕ E3 ⊕ E2 ⊕ E1

where dimE1 = j, dimE2 = m2, dimE3 = m3, and dimE4 = m4.

Choose a basis {z⃗1, · · · , z⃗m4} for E4. It’s not difficult to show that

{(A− λI)z⃗1, . . . , (A− λI)z⃗m4}

is a linearly independent set. In fact, let’s do that.

Claim 1: If {u⃗1, . . . , u⃗l} is a linearly independent set such that

Span {u⃗1, . . . , u⃗l} ∩Ker (A− λI) = {⃗0},

then {(A− λI)u⃗1, . . . , (A− λI)u⃗l} is linearly independent.

Proof of Claim 1. To see this, without loss of generality, we can suppose

(A− λI)u⃗1 = a2(A− λI)u⃗2 + · · · al(A− λI)u⃗l.

Thus, we have

A(u⃗1 − a2u⃗2 − · · · − alu⃗l) = λ(u⃗1 − a2u⃗2 − · · · − alu⃗l).

This means

(u⃗1 − a2u⃗2 − · · · − alu⃗l) ∈ Span {u⃗1, . . . , u⃗l} ∩Ker (A− λI) = {⃗0}.

However, this cannot be possible since {u⃗1, · · · , u⃗l}was linearly independent.
Thus, we know {(A− λI)u⃗1, . . . , (A− λI)u⃗l} is also a linearly independent
set.

■



ADDITIONAL PROOFS 408

Now, back to the main proof. We know each (A−λI)z⃗i is in Ker (A−λI)3 =

E3 ⊕ E2 ⊕ E1 since

(A− λI)4z⃗i = (A− λI)3(A− λI)z⃗i = 0⃗.

Moreover, we know (A − λI)3z⃗i ̸= 0⃗ since z⃗i ∈ E4. Thus, for each i =

1, . . . ,m4, we have

(A− λI)z⃗i = y⃗i + x⃗i + v⃗i

for some y⃗i ∈ E3, x⃗i ∈ E2, v⃗i ∈ E1 with y⃗i ̸= 0⃗.

One can argue that {y⃗1, . . . , y⃗m4
} must be a linearly independent set in E3.

Again, let’s do this.

Claim 2: The vectors {y⃗1, . . . , y⃗m4
} must be linearly independent.

Proof of Claim 2. To see this, suppose instead, without loss of generality, that
y⃗1 = a2y⃗2 + · · ·+ am4

y⃗m4
. Note that y⃗i = (A− λI)z⃗i − x⃗i − v⃗i for each i.

Then we have

(A− λI)z⃗1 − x⃗1 − v⃗1 =

a2((A− λI)z⃗2 − x⃗2 − v⃗2) + · · ·+ am4((A− λI)z⃗m4 − x⃗m4 − v⃗m4)

which means

(A− λI)(z⃗1 − a2z⃗2 − · · · am4
z⃗m4

) =

(x⃗1 + v⃗1)− a2(x⃗2 − v⃗2) · · · − am4
(x⃗m4

− v⃗m4
)

This would put (z⃗1−a2z⃗2−· · · zm4 z⃗m4) ∈ Ker (A−λI)3 = E3⊕E2⊕E1,
which is not possible since z⃗1, · · · , z⃗m4

∈ E4.
■

Since it’s linearly independent and in E3, we know {y⃗1, . . . , y⃗m4
} can be ex-

tended to a basis for E3 with vectors {y⃗m4+1, . . . , y⃗m3
}. This also tells us

{y⃗1 + x⃗1, . . . , y⃗m4 + x⃗m4 , y⃗m4+1, . . . , y⃗m3} is a linearly independent set in
E3⊕E2 since adding vectors from the orthogonal complement will not change
the independence. Now, consider the set

{(A− λI)(y⃗1 + x⃗1), . . . , (A− λI)(y⃗m4 + x⃗m4), (A− λI)(y⃗m4+1), . . .

. . . , (A− λI)(y⃗m3
)}.

From Claim 1, we know this set is linearly independent, and it must be in
Ker (A− λI)2 = E2 ⊕ E1. Also, since v⃗i ∈ Ker (A− λI), we know

(A− λI)(y⃗i + x⃗i) = (A− λI)(y⃗i + x⃗i) + (A− λI)v⃗i = (A− λI)2z⃗i

for each 1 ≤ i ≤ m4. Thus, our set is really

{(A− λI)2z⃗1, . . . , (A− λI)2z⃗m4
, (A− λI)(y⃗m4+1), . . . , (A− λI)(y⃗m3

)}.

Each of these must be equal to x⃗i + v⃗i for some x⃗i ∈ E2 and v⃗i ∈ E1 with
x⃗i ̸= 0 by reasons similar to those before. Also, in an argument that mirrors
the one for Claim 2, we can show {x⃗1, . . . , x⃗m3

} is a linearly independent set
in E2. We can now extend this to a basis for E2 using {x⃗m3+1, . . . , x⃗m2

}.
This gives us a set

{(A− λI)x⃗1, . . . , (A− λI)x⃗m2}



ADDITIONAL PROOFS 409

which is linearly independent in E1 by Claim 1. Additionally, we have

(A−λI)x⃗i = (A−λI)x⃗i+(A−λI)v⃗i =

{
(A− λI)3z⃗i if 1 ≤ i ≤ m4

(A− λI)2y⃗i if m4 + 1 ≤ i ≤ m3.

Thus, the set is really

{(A− λI)3z⃗1, . . . , (A− λI)3z⃗m4
, (A− λI)2(y⃗m4+1), . . .

. . . , (A− λI)2(y⃗m3), (A− λI)x⃗m3+1, . . . , (A− λI)x⃗m2}.

This set can be extended to a basis of E1 with the vectors {˜⃗vm2+1, . . . ˜⃗vj}, and
each element in this basis corresponds to the end of a distinct Jordan chain,
with the ˜⃗vi’s being chains of length 1.

It remains only to show that any two of these chains must be linearly indepen-
dent. This would then means we could form a basis for Ker (A − λI)3 out
of the Jordan chains, giving us the direct sum decomposition claimed in the
proof.

Part 2: The union of any two Jordan chains is linearly independent. Now
suppose S1 and S2 are both Jordan chains for the same eigenvalue λ, so that

S1 = {(A− λI)n1 x⃗, . . . , (A− λI)2x⃗, (A− λI)x⃗, x⃗},
S2 = {(A− λI)n2 y⃗, . . . , (A− λI)2y⃗, (A− λI)y⃗, y⃗},

and n1 ≥ n2. Assume for some scalars, cn1
, . . . , c0, dn2

, . . . , d0, that

0⃗ = cn1(A− λI)n1 x⃗+ · · ·+ c2(A− λI)2x⃗+ c1(A− λI)x⃗,+c0x⃗

+dn2
(A− λI)n2 y⃗ + · · ·+ d2(A− λI)2y⃗ + d1(A− λI)y⃗ + d0y⃗.

Then multiplying by (A− λI)n1 , we have

0⃗ = c0(A− λI)n1 x⃗,

which implies (A− λI)n1 x⃗ = 0⃗ or c0 = 0. Since we know (A− λI)n1 x⃗ = 0⃗

is not possible, we must have c0 = 0. Now, we can multiply both sides by
(A− λI)n1−1 to get

0⃗ = c1(A− λI)n1 x⃗.

Again, this will allow us to conclude c1 = 0. This repeats until we have ci = 0

for each 0 ≤ i ≤ n1 − n2 − 1. Then, we can multiply by (A− λI)n2 to get

0⃗ = cn1−n2
(A− λI)n1 x⃗+ d0(A− λI)n2 y⃗.

Since these are in the basis we built for Ker (A− λI), we know they must be
linearly independent. Thus, cm1−m2 = 0 and d0 = 0. The argument continues
in this fashion until all coefficients are forced to be 0, thus the set S1 ∪ S2 is
linearly independent. Moreover, this tells us any set built as the union of these
distinct Jordan chains will be linearly independent, so S1∪· · ·∪Sj is a linearly
independent set the size of a basis of Ker (A − λI)k and must be a basis for
Ker (A− λI)k. □



ANSWERS TO SELECTED PARTS OF SELECTED EXPLORATIONS 410

Answers to Selected Parts of Selected Explorations

Chapter 0

3 {(1, 2), (3, 2), (5, 2), (7, 2)}; 5 Just r2; 6 No.
(−1, 1), (1, 1) ∈ r; 7 dom (f) = Q, ran (f) = Z,
codom (f) = Q

Section 1.1

10 Q, C; 11 commutativity of addition, associativ-
ity of addition, additive identity, additive inverse; 13
p⃗ = 0, −5x+ 3x3 − 4x7, −a0 − a1x− · · · − anx

n,
both are equal to 60x−36x3+48x7, (ab)(a0+a1x+

· · · + anx
n) = a(b(a0 + a1x + · · · + anx

n)) =

a(ba0 + ba1x+ · · ·+ banx
n)

Section 1.2

14 ;

15 ,√
62 + 82 = 10, twice the length of v⃗;

16 v⃗ · w⃗ = 0 + 1 + 8 = 9; 17 Vectors have different
number of components; 18 w⃗ · v⃗ = 0 + 1 + 8 =

9 = v⃗ · w⃗; 20 ∥v⃗∥ = 3, v⃗
∥v⃗∥ =

 1/3

2/3

2/3

,

5 v⃗
∥v⃗∥ =

 5/3

10/3

10/3


Section 1.3

24 Dependent, independent, dependent, yes, no ;

Section 1.4

28 Since b > 0, there cannot be a zero vector, and
the set is not closed under scalar multiplication by
any negative scalar; 29 False; neither is a subset of

the other; 30

 a+ b

a+ b+ c

a+ b

 = (a + b)

 1

1

1

 +

c

 0

1

0

; 32

 a

a

0

 +

 0

0

b

 =

 c

0

c

 +

 0

d

0

,

so a = c, a = d, and b = c

Section 2.1

38 b⃗2 is not a scalar multiple of b⃗1,
[

x1

x2

]
= (x1 −

x2)

[
1

0

]
+ x2

[
1

1

]
;

Section 2.2

45 a+ c
2 , 8b+11d

16 , c
4 , d

8

Section 2.3

46 b⃗1 + 8⃗b2 + 16⃗b3; 47 [v⃗]B1
=

 2

3

4

, [v⃗]B2
=

 2

4

−3

, [u⃗]B1
=

 a

b

c

, [u⃗]B2
=

 a

c

b− a− c

;

48 [p⃗]B1
=

 1

1

−4

, [q⃗]B1
=

 6

1

−5

, p⃗ · q⃗ = 27;

49 ( ⃗1 + i) · ( ⃗−1 + 2i) = 1; 50 [p⃗]B =

 5

1

0

,

[p⃗]B1
=

 5

0

−4

, ∥[p⃗]B∥ =
√
26,

∥∥[p⃗]B1

∥∥ =
√
41

; 51 v⃗1 · v⃗3 = v⃗1 · v⃗4 = v⃗2 · v⃗4 = v⃗3 · v⃗4 = 0; 52

w⃗ =

 1

−1
0


Section 2.4

54 dimW⊥ = 2, so W⊥ is a plane in R4, W⊥
0 =



ANSWERS TO SELECTED PARTS OF SELECTED EXPLORATIONS 411

Span




0

0

1

0

 ,


0

0

0

1


; 55 y⃗ = − 1

30 v⃗1 −
3
5 v⃗2 −

1
6 v⃗3; 56 y⃗ = − 1√

30
v⃗1 − 3√

5
v⃗2 − 1√

6
v⃗3; ; 57 w⃗ = 0

1

−2

, x⃗ = aw⃗ + (a + b)u⃗; 58 v⃗ · v⃗ = 14,

proj v⃗ (u⃗) =

 1/7

−1/14
−3/14


Section 2.5

59 projW (x⃗) =


5

5

3

−1

, u⃗1 =


1

1

−3
1

,

projW (y⃗) =


1

1

2

4

, u⃗2 =


−1
−3
6

−2

; 60




1

1

−3
1

 ,


1

−1
0

0




Section 2.6

61 projW (y⃗) =

 3

1

1


Section 3.1

63 Any number less than 1; 64 x = 3
√
y; 67

k(g(2)) = 2, k ◦ g maps everything in B to 2, k ◦ h
maps evens in A to 2 and odds in A to 6; 68 Yes.
There are many examples;

Section 3.2

71 f

 1

0

0

 =

 3

2

2

, f

 2

0

0

 =

 4

2

2

, 2f

 1

0

0

 =

 6

4

4

; 74 Yes! Ver-

ify both axioms from the definition; 75
[

0

42

]
,{[

0

x2

]
: x2 ∈ R

}
; 76 0⃗ = T (v⃗) + T (u⃗) = T (v⃗+

u⃗), 0⃗ = aT (v⃗) = T (av⃗); 77 Ker T = {ax2 −
ax : a ∈ R}

Section 3.3

78 No, f
([

7

x2

])
=

[
7

0

]
for any x2 ∈ R; 80

Note that
{[

45

46

]
,

[
47

48

]}
is a basis for R2, so

let T (1 + x) =

[
45

46

]
and T (x2) =

[
47

48

]
- an-

swers may vary; 81 T (1 + x) = 1 and T (x2) = x;

82 T

([
x1

x2

])
= x1 + x2 + 3 is not linear;

Section 3.4

85 Av⃗ =

[
76

100

]
, Bu⃗ =

 23

53

83

; 87 Ker A =

Span


 −1−1

1


Section 3.5

96 Col A = Span

{[
0

1

]
,

[
1

−1

]}
; 97 No

to both, Col A = Span


 1

1

1

 ,

 0

1

1

 ̸=

R3; 90 T (x⃗) = [T (e⃗1) · · ·T (e⃗n)]

 x1

...
xn

; 91

A =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 1

; 95 A =

[
0 0 1

0 1 −1

]
,

Ker A = Span {e⃗1}, Ker T = Span
{
x2
}

;

Section 4.1

103 x = 118, y = 122; 105 The second, fourth, fifth,
seventh, and eighth are in row echelon form. The sec-
ond and eighth are in reduced row echelon form;

Section 4.2

107 x1 = −3x3 + 2, x2 = −5x3 + 1; x1 =

−2x2 + 2, x3 = 1/5; x1 = −3x3 − 2x4 + 2,
x2 = −5x3 − 3x4 + 1 108 The forth and fifth corre-
spond to systems with no solution;



ANSWERS TO SELECTED PARTS OF SELECTED EXPLORATIONS 412

Section 4.3

111 The vectors are linearly dependent be-

cause

 1 1 2

1 1 2

1 0 1

 ∼

 1 0 0

0 1 0

0 0 0

, so

it’s not a basis; 114 v⃗3 = v⃗1 + v⃗2; 115 1 1 0 3

1 0 1 1

1 1 1 0

 ∼

 1 0 0 4

0 1 0 −1
0 0 1 −3

, so

 3

1

0

 = 4

 1

1

1

 −
 1

0

1

 − 3

 0

1

1

; 116

Imag T = Span


 1

0

0

 ,

 0

1

1

, Ker T =

Span


 −11

0

;

Section 4.4

118 AB =

[
19 22

43 50

]
, BA =

[
23 34

31 46

]
;

119 Ax⃗ =

 x1a11 + · · ·+ xpa1p
...

x1am1 + · · ·+ xpamp

; if r⃗i is the

ith row of A, then r⃗Ti =

 ai1
...

aip

, so r⃗Ti · x⃗ =

ai1x1 + · · · + aipxp; AB =
[
Ab⃗1 · · ·Ab⃗n

]
= r⃗T1 · b⃗1+ · · · +r⃗T1 · b⃗n

...
. . .

...
r⃗Tm · b⃗1+ · · · +r⃗Tm · b⃗n


Section 4.5

121 The third and fourth correspond to one-to-one
linear transformations; 122 The second and third cor-
respond to onto linear transformations; 125 B−1 = 4 −2 −1

1 −1 0

−3 2 1

; 126 x⃗ =

[
−24

9

]
;

Section 4.6

127 Row A = Span


 −10

1

 ,

 0

1

−1

,

Ker A = Span


 −11

1

 128 Not invertible, in-

vertible, not invertible; 130 P =

 1 1 0

1 0 1

2 0 1

,

[x⃗]B0
=

 −12
2


Section 4.7

131 x̂1 =

 4

1

2

, 0; x̂1 =

 57/13

25/26

61/26

, 2
√
13

Section 5.1

134 λ = 9 has eigenvector

 1

1

1

, and λ = 0

has linearly independent eigenvectors

 1

0

−1

 and

 1

−1
0

;

Section 5.2

137 detA = 21, detB = 93, detC = −3;
138 detA = 10; 139 linearly independent; 140
detA−1 = (detA)−1; 141 detA5 = −32 142
det(A− λI) = 5λ(15− λ); 144 A has eigenvectors 1

0

0

 and

 2

3

0

, respectively. B has eigenvectors

 1

−1
0

 and

 5

−2
3

, respectively.

Section 5.3

147 Ak =

[
−3(2k) + 4 12(2k)− 12

−(2k) + 1 4(2k)− 3

]
; 148 The

eigenvalue λ = 2 has geometric multiplicity two, so
A is diagonalizable.



ANSWERS TO SELECTED EXERCISES 413

Answers to Selected Exercises

These are at least as reliable as answers you’d find on the internet. In many cases, only answers without the
appropriate explanation are provided.

Section 0.1

0.2.2 (a) function, (b) relation, (c) neither, (d) func-
tion; 0.2.3 no, check 1/2 and 2/4; 0.2.4 yes; 0.2.5 no;
0.2.8 (a) 0; 0.2.10 (a) (1, 2); 0.2.11 (a) −1, (b) no

Section 1.1

Section 1.2

1.2.6 (a) ∥u⃗1∥ =
√
10, (b)

√
10
10 u⃗1, (c) 7

√
10

10 u⃗1 1.2.8
v⃗ · u⃗ = 3 1.2.9 v⃗ · u⃗ = −1

Section 1.3

1.3.3 (a) no, (b), no, (c) yes, (d) no, (e) yes, (f) yes;
1.3.11 (a) linearly independent, (b) linearly depen-
dent, (c) linearly dependent, (d) linearly independent;

1.3.15 plane; 1.3.8 v⃗1 =

 −14
1

, v⃗2 =

 −30
−2


Section 1.4

1.4.4 0⃗ /∈ {4 + ax+ bx2 : a, b ∈ R}; 1.4.8

 1

0

2

 ∈
H , but −7

 1

0

2

 /∈ H; 1.4.10 0⃗ ∈ {⃗0}, 0⃗ + 0⃗ =

0⃗ ∈ {⃗0}, and k0⃗ = 0⃗ ∈ {⃗0}; 1.4.16 (c) V , (d)

Span


 1

−1
1


Section 2.1

2.1.2 (a) doesn’t span, (b) linearly dependent,

(c) linearly dependent; 2.1.7 (b)
[

4

6

]
=

5

[
1

1

]
+

[
−1
1

]
; 2.1.16




1

0

1

0

 ,


0

−1
0

1


;

2.1.9

 0

1

1

 = 1
2

 1

1

1

 + 1
2

 −11
1

 + 0

 0

0

1

;

2.1.23 answers may vary, {2} works.

Section 2.2

2.2.2 dimH6 ≤ 6 < 7 = dimR7, it is possible that
R7 ̸= H7;

Section 2.3

2.3.6 k1⃗b1 = k1⃗b1 + 0⃗b2, similar for k2⃗b2; 2.3.1 (b)[
1 + x+ x2

]
B =

 1

−1/2
1

, [1]B =

 1

−1/2
0

;

Section 2.4

Section 2.5

Section 2.6

Section 3.1

3.1.1 Onto: f

([
y

0

])
= y, not one to one:

f

([
0

0

])
= 0 = f

([
7

−7

])
;

Section 3.2

3.2.6 Calculate T (x⃗ + y⃗) and T (x⃗) + T (y⃗) to see
they are the same. Then do the same for T (ax⃗) and
aT (x⃗). Ker T = {⃗0} 3.2.12 Since T (u⃗+ v⃗) = c and
T (v⃗) + T (v⃗) = 2c, we would need c = 0 for T to be
linear;

Section 3.3

3.3.1 (a) just onto, (b) both, (c) both, (d) just one to
one; 3.3.4 1, 3, 2

Section 3.4

3.4.1 a) m = 4 and n = 3, b) m = 5

and n = 3, c) m = 4 and n = 5; 3.4.3



ANSWERS TO SELECTED EXERCISES 414

Span



−1
3

1

0

 ,


3/2

9/2

0

1


; 3.4.4 a)

[
−1
1

]
,

 7

−2
19

; 3.4.10 2 ≤ dimKer TB ≤ n and 0 ≤

dim Imag TB ≤ n − 2 since x⃗1, x⃗2 ⊆ Ker TB and
the Rank-Nullity Theorem tells us dim Imag TB =

n− dimKer TB .

Section 3.5

3.5.1 (a)
[

1 0 3

0 1 4

]
; 3.5.5 (a)

[
1 1

2 0

]
;

Section 3.6

3.6.1 It is never onto; 3.6.5 (a) yes, (b) no, (c) yes, (d)
yes; 3.6.6 (a) no, (b) yes, (c) yes, (d) no

Section 4.1

4.1.5 (a) yes, (b) no, (c) yes; 4.1.6

Section 4.2

4.2.1 (a) no solution, (b) infinitely many, (c) one solu-
tion; 4.2.3 (a) There is no solution when k = 4, other-
wise there is a unique solution 4.2.5 (a) y = − 3

10x−
8
5

Section 4.3

4.3.2 (a) yes, (b) no, (c) yes, operations left to reader;

4.3.1 (a) no; 4.3.8 A =

 0 1 −1
0 1 1

0 0 1

; 4.3.9 A =

 1 0 −1
0 1 −1
0 0 1

; 4.3.4 x⃗ = 5
2 b⃗1 +

1
2 b⃗2 − 2⃗b3

Section 4.4

4.4.2 (a)
[

4 5

6 5

]
, (b)

[
4 5 7

6 5 3

]
, (c)

[
5 6

8 1

]
,

(d)

 5 6

8 1

2 5

, (e)

 5 6 −2
8 1 −6
2 5 0

, 4.4.3 (a) dragon,

(b)
[

39 54 69

49 68 87

]
, (c)

 −121−879
−161

, (d) dragon, (e)

 −56 70 84

−72 90 108

80 −100 −120

, (f)
[
−86

]
, (g)

[
69

85

]
,

(h) dragon, (i)
[
−1066

]
, (j)

[
14 180

−84 −1080

]
;

Section 4.5

4.5.4 (a)
[
−1 1

1 − 1
2

]
, (b) nope, (h)

1
6 − 1

6
1
2

− 1
3 0 1

3

1
6

1
6

1
6

; 4.5.6 (a) yes, (b) no;

Section 4.6

4.6.2 (a) P−1 =

[
−1 2

1 −1

]
and [x⃗]B =

[
17

−7

]
, (b) P−1 =

 −1 2 −2
1 −1 1

0 0 1

 and [x⃗]B =

 −11
1


Section 4.7

4.7.3 Using A =


1 2 3

4 5 6

7 8 9

10 11 12

, x̂ =

x3

 1

−2
1

+

 2/5

−3/10
0

; 4.7.5 y = 7
6x

3 + 5
7x

2 −

13
6 x+ 118

35

Section 5.1

5.1.1 (a) no, (b) 5, (c) −1, (d) 1, (e) 1, (f) no, (g) 1,
(h) no;

Section 5.2

5.2.3 det(kA) = kn detA; 5.2.6 (a) −256, (b) no,
(c) 2, (d) 8 5.2.8 Nonsense! However, if A is square,
then it it true. Prove it; 5.2.10 1

210 x⃗, 0⃗

Section 5.3

5.3.1 A = P

[
−1 0

0 512

]
P−1, but

you should finish the calculation; ; 5.3.4



ANSWERS TO SELECTED EXERCISES 415

P =


1 1 −1 −1
−1 1 1 −1
−1 1 −1 1

1 1 1 1

, D =


−3 0 0 0

0 3 0 0

0 0 −1 0

0 0 0 1





Glossary

Addition: Addition is the function (+): R × R → R defined by relating two real numbers to their
sum. Multiplication is the function (·) : R × R → R defined by relating two real numbers to their
product.. 14

affine transformation: An affine transformation is a linear transformation composed with a transla-
tion.. 229

algebraic multiplicity: For an eigenvalue λ of a matrix A ∈Mn×n, the algebraic multiplicity of λ is
the multiplicity of λ as a root of the characteristic polynomial for A.. 345

basis: Let V be a vector space. A finite set of vectors B = {v⃗1, . . . , v⃗p} is a basis for V if

(a) B is linearly independent, and

(b) B spans V .

. 77

binary operation: Let A be a set. A binary operation on a set A is a function f : A×A→ A where
the domain is A×A.. 10

Cartesian product: Let A and B be sets. The Cartesian product of A and B, denoted A × B, is the
set

{(a, b) : a ∈ A and a ∈ B}.

. 4

change of basis matrix: Let V be an n-dimensional vector space with bases

B = {⃗b1, b⃗2, . . . , b⃗n} and C = {c⃗1, c⃗2, . . . , c⃗n}.

Define the isomorphism

φB▷C : V → V by φB▷C(c⃗i) = b⃗i for each 1 ≤ i ≤ n.

Then the change of basis matrix from B to C is the matrix for φB▷C with respect to the basis C. In
particular, it is the matrix PB▷C ∈Mn×n defined by

PB▷C =
[[⃗
b1

]
C
· · ·
[⃗
bn

]
C

]
.

. 304

characteristic polynomial: For A ∈ Mn×n, the degree n polynomial det(A − λI) is called the
characteristic polynomial for A.. 343

416



Glossary 417

closed under the operation: If a ∗ b ∈ A for any a, b ∈ A, we say the set A is closed under the
operation ∗.. 10

codomain: Let f : A→ B be a function. The codomain of f , written codom (f), is the set B.. 8

coefficient matrix: The matrix A in the matrix equation Ax⃗ = b⃗ or the augmented matrix [A|⃗b] is
called a coefficient matrix. . 235

column space: Let A = [⃗a1 · · · a⃗n] ∈Mm×n. The column space of A, denoted Col A, is the span of
the column vectors a⃗j for 1 ≤ j ≤ n. That is,

Col A = Span {a⃗1, . . . , a⃗n} .

. 197, 219

composition: Let A, B, and C be sets and f : A→ B and g : B → C be functions. The composition
of the functions f and g is the function (g ◦ f) : A→ C such that (a, c) ∈ g ◦ f if and only if there
is a b ∈ B such that (a, b) ∈ f and (b, c) ∈ g. That is, for any a ∈ A,

(g ◦ f)(a) = g(f(a)).

. 151

conjugate of A: For A ∈ Mm×n(C), the conjugate of A is the matrix A = [āij ] ∈ Mm×n(C)
obtained by conjugating every entry A. . 382

conjugate of z: For z = x+ iy ∈ C, the conjugate of z is the complex number z̄ = x− iy. . 367, 382

conjugate transpose of A: The conjugate transpose of A, denoted by AH , is obtained by conjugating
the transpose of A; that is, AH = AT . . 383

convolution: Let A = [aij ], B = [bij ] ∈Mm×n. The convolution of A and B, denoted A ∗B, is

A ∗B =

m∑
i=1

n∑
j=1

|aijbij |.

. 320

coordinate vector: The coordinate vector of v⃗ relative to B is

[v⃗]B =

 c1
...
cp

 .

. 101

coordinates: Let B = {v⃗1, . . . , v⃗p} be a basis for vector space V , and suppose v⃗ ∈ V . The coordi-
nates for v⃗ relative to B (or the B-coordinates of v⃗) are the weights c1, . . . , cp such that

v⃗ = c1v⃗1 + · · ·+ cpv⃗p.

. 101

determinant: For n ≥ 2, the determinant of a matrix A = [aij ] ∈Mn×n is the sum

detA = a11 detA11 − a12 detA12 + · · ·+ (−1)n+1a1n detA1n

=

n∑
j=1

(−1)j+1a1j detA1j ,



Glossary 418

where Aij is the submatrix of A resulting from removing the ith row and jth column.. 338

diagonal matrix: A matrix of the form

D =


d11 0 · · · 0

0 d22 · · · 0
...

...
. . .

...
0 0 · · · dnn

 ∈Mn×n

is called a diagonal matrix.. 356

diagonalizable: A matrix is called diagonalizable if it is similar to a diagonal matrix.. 356

dimension: Let V be a vector space. The dimension of V , denoted dimV , is the number of vectors in
a basis for V .. 93

direct sum of linear transformations: Let V1 and V2 be vector spaces and T1 : V1 → V1 and T2 : V2 →
V2 be linear transformations. The direct sum of linear transformations of a square matrix T1 and T2

is the linear transformation T1 ⊕ T2 : V1 ⊕ V2 → V1 ⊕ V2 given by

(T1 ⊕ T2)(v⃗1, v⃗2) = (T v⃗1, T v⃗2)

. 365

Distance: is the function dist : Rn × Rn → R defined by relating two vectors to the length of their
difference. That is, given v⃗, u⃗ ∈ Rn, we denote the distance between v⃗ and u⃗ as dist (v⃗, u⃗) given by

dist (v⃗, u⃗) = ∥v⃗ − u⃗∥.

. 34

domain: Let f : A→ B be a function. The domain of f is the set

dom (f) = {a ∈ A : there exists b ∈ B such that (a, b) ∈ f}
= {a ∈ A : there exists b ∈ B such that f(a) = b}

. 8

eigenspace: The set of all solutions of

(A− λI)x⃗ = 0⃗

is a subspace of Rn called the eigenspace corresponding to λ relative to the matrix A.. 326

eigenvalue: A scalar λ is called an eigenvalue of A if there is a nontrivial solution x⃗Rn of Ax⃗ = λx⃗,
and we call such an x⃗ an eigenvector corresponding to λ.. 325

eigenvector: An eigenvector of a matrix A ∈ Mn×n is a nonzero vector x⃗Rn such that Ax⃗ = λx⃗ for
some scalar λ. . 325

elementary matrix: We call E ∈Mn×n an elementary matrix if for any A ∈Mn×n, the matrix EA

is the matrix A after performing a row operation on A.. 284, 418

equal as a set: A is equal to B as a set, written as A = B, if and only if A ⊆ B and B ⊆ A.. 2



Glossary 419

free variable: A free variable is a variable in a system of equations that is not a pivot variable. That
is, a free variable in a system of equations is one whose column in the associated augmented matrix
in reduced echelon form does not contain a pivot. . 248

function: Let A and B be sets. A function from A to B, often written f : A→ B, is a relation f from
A to B such that

if (a, b1) ∈ f and (a, b2) ∈ f , then b1 = b2.

For (a, b) ∈ f , it is often written f(a) = b.. 7

geometric multiplicity: The geometric multiplicity of λ is the dimension of the eigenspace corre-
sponding to λ. . 345

Hermitian: A matrix A ∈Mn×n(C) is called Hermitian if A = AH . . 383

Hermitian Inner product: Hermitian Inner product is the function · : Cn × Cn → C defined by

v⃗ · v⃗ = v1ū1 + · · ·+ vnūn =

n∑
i=1

viūi.

. 367

Hermitian norm: The Hermitian norm is the function ∥ · ∥ : Cn → R defined for any v⃗ ∈ Cn as

∥v⃗∥ =
√
v⃗ · v⃗ =

√
v1v̄1 + · · ·+ vnv̄n.

. 367

identity matrix: The identity matrix is the square matrix In ∈Mn×n whose columns are the standard
basis for Rn in order. That is,

In = [e⃗1 e⃗2 · · · e⃗n] =


1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1

 .

. 280

image: Let V and W be vector spaces and f : V → W be a linear transformation. The image of f is
the set of vectors w⃗ ∈W such that there is a vector v⃗ ∈ V and w⃗ = f(v⃗). We shall use the notation

Imag f = {w⃗ ∈W : w⃗ = f(v⃗) for some v⃗ ∈ V }.

. 163

inner product: The inner product is the function · : Rn × Rn → R defined by relating two vectors
to the real number given by summing the products of like components of the two vectors. That is,
given v⃗, u⃗ ∈ Rn, we denote the inner product of v⃗ and u⃗ as v⃗ · u⃗, given by

v⃗ · u⃗ =

 v1
...
vn

 ·
 u1

...
un

 = v1u1 + · · ·+ vnun =

n∑
i=1

viui.



Glossary 420

Let V be a vector space with basis B and let [·]B : V → Rn be the function that relates vectors in V

to their coordinate vector relative to B in Rn. The inner product on V relative to B is the function
·B : V ×V → R defined as the composition of [·]B × [·]B on V ×V with the standard inner product
· on Rn × Rn. That is, for any vectors v⃗, u⃗ ∈ V , we define

v⃗ ·B u⃗ = [v⃗]B · [u⃗]B .

. 31, 103

inner product space: We call a vector space, V , together with inner product relative to basis B an
inner product space.. 106

integers: The set of integers, Z, is the set of counting numbers, negative counting numbers, and 0.
That is,

Z = {. . . ,−2,−1, 0, 1, 2, . . . }.
. 1

intersection: The intersection of two sets A and B is all of the elements that are in both A and B. We
denote this intersection as A ∩B.. 64

invariant subspace: Let T : V → V be a linear transformation from an n-dimensional vector space
V to itself and suppose W is a subspace of V . We say W is an invariant subspace of V for T if for
any x⃗ ∈W , the vector T (x⃗) is also in W . . 350

invertible: A function f : A→ B is invertible if there is another function g : B → A such that

▶ for all a ∈ A, (g ◦ f)(a) = a, and

▶ for all b ∈ B, (f ◦ g)(b) = b.

If such a function exists, we call it the inverse of f , and denote it f−1.
A matrix A ∈Mm×n is invertible if there is another matrix B ∈Mn×n such that

AB = In = BA.

We call the matrix B the inverse of the matrix A.. 153, 290

isomorphism: Let V and W be vector spaces. A linear transformation T : V → W is called an
isomorphism if it is both one-to-one and onto. In this case, we say V and W are isomorphic vector
spaces, and denote this by V ∼= W .. 179

Jordan block: A Jordan block is a square matrix whose entries are the same constant, λ ∈ C, on the
diagonal, 1 on each entry immediately above the diagonal, and zero elsewhere.. 362

Jordan chain: If A ∈Mn×n(C) has eigenvalue λ with eigenvector v⃗0, then a Jordan chain for λ is a
set of vectors S = {v⃗1, . . . v⃗k} for some k < n such that

v⃗k
A−λI−→ v⃗k−1

A−λI−→ · · · A−λI−→ v⃗1
A−λI−→ v⃗0

A−λI−→ 0⃗

. 362

kernel: Let V and W be vector spaces and f : V → W be a linear transformation. The kernel of f is
the set of vectors v⃗ ∈ V such that f(v⃗) = 0⃗. We shall use the notation

Ker f = {v⃗ ∈ V : f(v⃗) = 0⃗}.



Glossary 421

. 171

least squares solution: A least squares solution for the matrix equation Ax⃗ = b⃗ is a vector x̂ ∈ Rn

such that for all x⃗ ∈ Rn,
∥Ax̂− b⃗∥ ≤ ∥Ax⃗− b⃗∥.

The least squares error of a least squares solution is ∥Ax̂− b⃗∥.. 312

left shift: The left shift on Cn is the linear transformation L : Cn → Cn given by

L


 x1

...
xn


 =


x2

...
xn

0

 .

. 364

left-singular: If there are unit vectors u⃗ and v⃗ such that

Av⃗ = σu⃗ and AT u⃗ = σv⃗

for some nonnegative scalar σ, then u⃗ and v⃗ are called left-singular and right-singular vectors,
respectively. . 389

Length: is the function ∥ · ∥ : Rn → R defined by relating vectors to their length. That is, given
v⃗ ∈ Rn, we denote the length of v⃗ as ∥v⃗∥, given by

∥v⃗∥ =
√
v⃗ · v⃗ =

√
v21 + · · ·+ v2n.

Let V be a vector space with basis B and let [·]B : V → Rn be the function that relates vectors in
V to their coordinate vector relative to B in Rn. Length relative to B is the function ∥ · ∥B : V→ R
defined by relating vectors to their length by composing the function [·]B × [·]B on V with ∥ · ∥ on
Rn. That is, for any vector v⃗ ∈ V , we define

∥v⃗∥B = ∥[v⃗]B∥ .

. 33, 105

linear combination: The vector in V

a1v⃗1 + · · ·+ apv⃗p

is called a linear combination of the vectors v⃗1, . . . , v⃗p with weights a1, . . . , ap.. 40

linear transformation: A function f : V → W , where V and W are vector spaces, is called a linear
transformation if for any vectors v⃗, u⃗ ∈ V and any scalar a ∈ R,

▶ f(v⃗ + u⃗) = f(v⃗) + f(u⃗) and

▶ f(av⃗) = af(v⃗).

For v⃗ ∈ V , the vector f(v⃗) ∈W is often called the image of v⃗.. 163

linearly dependent: The set {v⃗1, . . . , v⃗n} ⊆ V is said to be linearly dependent if there are scalars
a1, . . . , an ∈ R, not all 0, such that

a1v⃗1 + · · ·+ anv⃗n = 0⃗.

. 45



Glossary 422

linearly independent: A set of vectors {v⃗1, . . . , v⃗n} ⊆ V is said to be linearly independent if

a1v⃗1 + · · ·+ anv⃗n = 0⃗

only when a1 = · · · = an = 0.. 45

main diagonal: The main diagonal of a square matrix A ∈ Mn×n are the entries a11, a22, . . . ann
starting at the upper left corner of the matrix and going diagonally to the lower right entry. A matrix
is called upper (lower) triangular if all the entries below (above) the main diagonal are zero.. 332

Markov chain: Given a finite set of states, {1, 2, . . . , n}, in which the probability of transition from
the current state to another depends only on the current state, a Markov chain is a sequence describ-
ing how a distribution amongst the states evolves as a result of these probabilities. . 396

matrix: An m× n matrix A is a rectangular array of numbers with m rows and n columns:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 .

The number aij in the ith row and jth column is called the ijth entry. Matrices are sometimes also
written as

A = [aij ]1≤i≤m,
1≤j≤n

.

An n× n matrix is often called a square matrix.. 190

matrix representation: For any linear transformation T : V → W , we call the matrix A obtained
from Theorem 3.5.2 a matrix representation of T . . 206

norm: is the function ∥ ·∥ : Rn → R defined by relating vectors to their length. That is, given v⃗ ∈ Rn,
we denote the length of v⃗ as ∥v⃗∥, given by

∥v⃗∥ =
√
v⃗ · v⃗ =

√
v21 + · · ·+ v2n.

Let V be a vector space with basis B and let [·]B : V → Rn be the function that relates vectors in
V to their coordinate vector relative to B in Rn. Norm relative to B is the function ∥ · ∥B : V → R
defined by relating vectors to their length by composing the function [·]B × [·]B on V with ∥ · ∥ on
Rn. That is, for any vector v⃗ ∈ V , we define

∥v⃗∥B = ∥[v⃗]B∥ .

. 33, 105

normal equation: The normal equation for a matrix A ∈Mm×n and a vector b⃗ ∈ Rm is

ATAx̂ = AT b⃗.

. 314

one-to-one: For sets A and B and a function f : A → B, the function f is one-to-one if for any
b ∈ ran (f), we have a1 = a2 if f(a1) = b and f(a2) = b.. 150

onto: For sets A and B and a function f : A → B, the function f is onto if for every element b ∈ B,
there is an element a ∈ A such that f relates a to b, that is, f(a) = b.. 148



Glossary 423

orthogonal: Vectors v⃗ and u⃗ in vector space V with chosen basis B are said to be orthogonal if
v⃗ · u⃗ = 0. Let V be an inner product space and W be a subspace of V . If a vector v⃗ ∈ V is
orthogonal to every vector in W , then we say v⃗ is orthogonal to W .. 106, 114

orthogonal basis: An orthogonal basis for a subspace W is a basis for W that is also an orthogonal
set.. 117

orthogonal complement: The set of all vectors v⃗ ∈ V that are orthogonal to W is called the orthog-
onal complement of W . The orthogonal complement of W is denoted W⊥.. 114

orthogonal projection: For any two vectors v⃗ and u⃗ in an inner product space, the orthogonal projec-
tion of v⃗ onto u⃗ is

proj u⃗ (v⃗) =
v⃗ · u⃗
u⃗ · u⃗

u⃗.

Let B = {v⃗1, . . . , v⃗p} be an orthogonal basis for a subspace W of vector space V . For any vector
v⃗ ∈ V , the orthogonal projection of v⃗ onto W is

projW (v⃗) =
v⃗ · v⃗1
v⃗1 · v⃗1

v⃗1 + · · ·+
v⃗ · v⃗p
v⃗p · v⃗p

v⃗p.

. 123, 132

orthogonal set: If S is a set of vectors in a vector space with inner product relative to basis B such
that all pairs of vectors in S are orthogonal, then S is said to be an orthogonal set.. 117

orthonormal basis: If S is an orthogonal basis of vectors in a vector space such that any vector in S

is a unit vector, then S is said to be an orthonormal basis.. 119

orthonormal set: If S is an orthogonal set of vectors in a vector space such that any vector in S is a
unit vector, then S is said to be an orthonormal set.. 119

parametric solution: A parametric solution for a system of m equations in n variables that has an
infinite number of solutions is a representation of the solutions in which the free variables serve as
parameters.. 248

pivot column: A pivot column is a column in a matrix that would contain a pivot were the matrix put
in row-echelon form. . 260

pivot variable: A pivot variable is a variable in a system of equations whose column in the associated
augmented matrix in reduced echelon form contains a pivot. . 248

probability vector: A vector whose entries are all nonnegative and sum to 1 is called a probability
vector. . 396

product of a matrix and a vector: Let A ∈ Mm×n with columns a⃗1, . . . , a⃗n, and let x⃗ ∈ Rn. The
product of a matrix and a vector, that is, the product of A and x⃗, is the linear combination of the
columns of A with the entries of x⃗ as weights. That is,

Ax⃗ = [⃗a1 a⃗2 · · · a⃗n]


x1

x2

...
xn

 = x1a⃗1 + x2a⃗2 + · · ·+ xna⃗n.

. 191



Glossary 424

product of matrices: Let A ∈ Mm×n and B = [⃗b1 · · · b⃗p] ∈ Mn×p. Then we define the product of
matrices A and B to be the matrix AB ∈Mm×p given by

AB = A[⃗b1 · · · b⃗p] = [Ab⃗1 · · ·Ab⃗p].

. 276

pseudoinverse: Let A ∈ Mm×n have singular value decomposition UDV T , r be minm,n, k be
the number of nonzero singular values, and σ1, . . . , σk, 0k1 , . . . , 0r be the diagonal entries of D.
The pseudoinverse of A, denoted A+, is the matrix V D+U , where D+ ∈ Mn×m is rectangular
diagonal with diagonal entries 1/σ1, . . . , 1/σk, 0, . . . , 0. . 391

range: Let f : A→ B be a function. The range of f is the set

ran (f) = {b ∈ B : there exists a ∈ A such that (a, b) ∈ f}
= {b ∈ B : there exists a ∈ A such that f(a) = b}

. 8

rational numbers: The set of rational numbers, Q, is the set of well-defined ratios of integers. That
is,

Q =

{
p

q
: p, q ∈ Z and q ̸= 0

}
.

. 2

regular: A transition matrix, A, is called regular if Ak has no zero entries for some positive integer k.
. 398

relation: A relation from A to B, r, is a subset of A×B; that is, r ⊆ A×B.. 4

restriction of T : Let T : V → V be a linear transformation from a vector space V to itself, and
suppose W is a invariant subspace of V for T . The linear transformation T |W : W → W given by
T |W (w⃗) = T (w⃗) for all w⃗ ∈W is called the restriction of T to W . . 351

right-singular: If there are unit vectors u⃗ and v⃗ such that

Av⃗ = σu⃗ and AT u⃗ = σv⃗

for some nonnegative scalar σ, then u⃗ and v⃗ are called left-singular and right-singular vectors,
respectively. . 389

row operations: Let A ∈Mm×n. The following manipulations of A are called row operations:

(a) interchanging any two rows in A;

(b) multiplying any row by a nonzero scalar; and

(c) replacing the ith row with the sum of the ith row and any nonzero scalar multiple of any of
the other rows.

Any matrix resulting from any row operation on A is called row equivalent to A.. 238

row space: For a matrix A ∈ Mm×n, let r⃗i be the vector formed from the ith row of A for each
1 ≤ i ≤ m. The row space of A, denoted Row A, is the span of these row vectors. That is,

Row A = Span {r⃗1, . . . , r⃗m} .

. 223, 300



Glossary 425

row-echelon form: Let A ∈Mm×n. We say the matrix A is in row-echelon form if

▶ the first nonzero number from the left, also called the pivot, of any nonzero row is always
strictly to the right of the pivot of the row above, and

▶ any row with nonzero entries is above any row of all zeros.

We say A is in reduced row-echelon form if

▶ it is in row-echelon form,

▶ every pivot is a 1, and

▶ every pivot is the only nonzero entry in its column.

. 240

set: A set is an unordered collection of objects we call elements.. 1

set difference: Let A and B be sets and B ⊆ A. The set difference of A and B, denoted A\B, is the
set of elements in A and not in B. Specifically,

A\B = {a : a ∈ A and b /∈ B}.

. 3

similar: Matrices A,B ∈ Mn×n are similar if there is an invertible matrix P ∈ Mn×n such that
A = PBP−1, or equivalently, B = P−1AP .. 353

similar linear transformations: Two linear transformations are similar linear transformations if they
have similar matrix representations. . 365

singular value: A nonnegative σ ∈ R is a singular value for A ∈Mm×n(C) if there are unit vectors
u⃗ ∈ Rm and v⃗ ∈ Rn such that

Av⃗ = σu⃗ and AT u⃗ = σv⃗.

. 389

Sobel operator: Let

Gx =

 −1 0 1

−2 0 2

−1 0 1

 and Gy =

 1 2 1

0 0 0

−1 −2 −1

 .

The Sobel operator is the function S : M3×3 → R defined by

S(A) = (A ∗Gx) + (A ∗Gy).

. 321

solution: A solution for a linear equation a1x1 + · · · + anxn = b is an n-tuple (x1, . . . , xn) that
makes the linear equation true. The graph of a linear equation a1x1 + · · · + anxn = b is a visual
representation of the set of all n-tuples (x1, . . . , xn) in Rn that make the linear equation true.. 251



Glossary 426

solution for a system: A solution for a system of linear equations

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

is an n-tuple (x1, . . . , xn) that makes all the linear equations in the system true. . 234

span: Let V be a vector space and {v⃗1, . . . , v⃗p} ⊆ V . The span of v⃗1, . . . , v⃗p, denoted Span {v⃗1, . . . , v⃗p},
is the set of all linear combinations of v⃗1, . . . , v⃗p. That is,

Span {v⃗1, . . . , v⃗p} = {a1v⃗1 + · · ·+ apv⃗p : ai ∈ R for 1 ≤ i ≤ p} .

. 42

steady-state vector: For a transition matrix, A, a steady-state vector is a probability vector, x⃗, such
that Ax⃗ = x⃗. . 398

subset: A subset of a set A is a subcollection of the elements of A; that is, B is a subset of A, written
as B ⊆ A, if and only if every element of B is an element of A.. 2

subspace: A subspace of a vector space V is a subset H of V with the following three properties:

▶ The zero vector is in H .

▶ (Closure under vector addition) For any v⃗ and u⃗ in H , the vector v⃗ + u⃗ is also in H .

▶ (Closure under scalar multiplication) For any v⃗ in H and any a in R, the vector av⃗ is also in
H .

. 56

sum: Let U and W be subspaces of a vector space V . The sum of these subspaces U +W is defined
as

{u⃗+ w⃗ : u⃗ ∈ U, w⃗ ∈W}.
Additionally, if U and W have the property that U ∩W = {⃗0}, then we call this a direct sum and
denote it U ⊕W .. 66

symmetric: A symmetric matrix is a matrix A such that AT = A.. 379

transition matrix: A square matrix whose columns are all probability vectors is called a transition
matrix. . 396

transpose: Let A ∈ Mm×n. The transpose of A, denoted AT , is the matrix inMn×m derived from
A by making the jth column of A into the jth row for each 1 ≤ j ≤ n.. 222, 278

unit vector: A vector v⃗ ∈ Rn is said to be a unit vector (or to have unit length) if ∥v⃗∥ = 1.. 33

unitary: A matrix U ∈Mn×n(C) is called unitary if UUH = UHU = In. . 383

vector space: A vector space is a set V together with two operations that satisfies all the ten vector
space axioms.. 16


	Acknowledgements
	Preface
	Preface
	


	Chapter 0. Functions on Sets
	0.1. Sets
	Exercises for Section 0.1
	0.2. Functions
	Operations on Sets
	Exercises for Section 0.2

	Chapter 1. Vector Spaces
	1.1. Vector Spaces
	Vector Spaces, by Definition
	Other Vector Spaces
	Section Highlights
	Exercises for Section 1.1
	1.2. Arrow Vectors and Rn for Small n
	Connection to Rn (for small n).
	More Geometry with Rn
	Section Highlights
	Exercises for Section 1.2
	1.3. Linear Independence and Span
	Linear Combinations and Span
	Linear Independence
	More Span
	Section Highlights
	Exercises for Section 1.3
	1.4. Subspaces
	Subspaces of Rn
	Spans as Subspaces
	Intersections and Sums of Subspaces
	Section Highlights
	Exercises for Section 1.4
	1.5. A Menagerie of Vector Spaces
	A Peek Into the Future
	Function Spaces
	Exercises for Section 1.5

	Chapter 2. Bases
	2.1. Introduction to Bases
	…So You Think Your Set's a Basis
	Standard Basis Vectors
	Another Method to Show a Set Spans
	Finding a Basis
	Bases of Subspaces
	Section Highlights
	Exercises for Section 2.1
	2.2. More Fun with Bases
	How Large Can An Independent Set Be?
	Dimension
	Section Highlights
	Exercises for Section 2.2
	2.3. Coordinates, Inner Products, and Orthogonality: Oh my!
	Bases In Action: Coordinates
	Geometry in Vector Spaces
	Section Highlights
	Exercises for Section 2.3
	2.4. Orthogonal Sets
	Orthogonal Sets and Bases
	Orthogonal Projection
	Section Highlights
	Exercises for Section 2.4
	2.5. The Gram-Schmidt Process
	Orthogonal Basis Through the Gram-Schmidt Process
	Section Highlights
	Exercises for Section 2.5
	2.6. Least Squares Applications
	Exercises for Section 2.6

	Chapter 3. Linear Transformations
	3.1. More Fun with Functions
	Onto Functions
	One-to-one Functions
	Composition of Functions
	Invertible Functions
	Functions Between Finite Sets
	Section Highlights
	Exercises for Section 3.1
	3.2. Linear Transformations
	Respect the Operations
	Examples Abound
	Some Noteworthy Examples
	Linear Transformations and Bases
	Respect the Kernel
	Section Highlights
	Exercises for Section 3.2
	3.3. One-to-one and Onto Linear Transformations
	Isomorphisms
	Rank-Nullity Theorem
	Another Useful Theorem
	Section Highlights
	Exercises for Section 3.3
	3.4. Matrices
	What is…a Matrix?
	Building a Linear Transformation from a Matrix
	Revisiting Image and Kernel
	One-to-one and Onto for TA
	Section Highlights
	Exercises for Section 3.4
	3.5. The Matrix of a Linear Transformation
	Matrix Representation with the Standard Basis of Rn
	General Version of a Matrix Representation
	Kernel and Image of T from A
	More Examples!
	Section Highlights
	Exercises for Section 3.5
	3.6. More Fun with Linear Transformations
	Kernel and Image of a Matrix
	Subspaces Induced by Matrix Representations
	Exercises for Section 3.6
	3.7. Applications of Linear Tranformations
	Computer Graphics and Animation

	Chapter 4. More Fun with Matrices
	4.1. Systems of Equations and Matrices
	Systems of Equations Algebraically
	System Representations
	Gauss-Jordan Elimination
	Target Format: Reduced Row-Echelon Form
	Procedure for Gauss-Jordan Elimination
	Section Highlights
	Exercises for SEC:SYSTEMS
	4.2. More Systems of Equations and Matrices
	Parametric Solutions to Systems
	Zero, One, or Many
	Geometry of Solutions
	The Many Dimensions of ``Infinitely Many''
	Section Highlights
	Exercises for Section 4.2
	4.3. Matrix Techniques
	Linear Independence
	Finding a Basis
	Linear Combinations
	Coordinate Vectors
	Kernel of a Matrix
	Section Highlights
	Exercises for Section 4.3
	4.4. Matrix Operations
	Addition, Scalar Multiplication, and Matrix/Vector Multiplication
	Matrix Multiplication
	Matrix Multiplication via Transpose
	Properties of Matrix Multiplication
	Properties of the Transpose
	Row Operations as Matrix Multiplication
	Section Highlights
	Exercises for Section 4.4
	4.5. Invertible Matrices
	Matrix Inverses from Linear Transformations
	One-to-one and Onto Using Pivots
	Computing the Inverse
	Matrix Inverses and Equations
	Section Highlights
	Exercises for Section 4.5
	4.6. Matrix Theorems
	Subspaces Induced by Matrix Representations
	Change of Basis Matrices
	Section Highlights
	Exercises for Section 4.6
	4.7. More Fun with Least Squares
	Section Highlights
	Exercises for Section 4.7
	4.8. Another Graphics Application
	Convolution and Edge Detection

	Chapter 5. Square Matrices and Invariant Subspaces
	5.1. Eigenvalues and How to Find Them
	Eigenvalues and Eigenvectors
	Eigenvalue Finding Algorithms
	The Power Method
	The QR Method
	Section Highlights
	Exercises for Section 5.1
	5.2. Determinants and More Fun with Eigenvalues
	Determinants
	Properties of Determinants
	Finding Eigenvalues with Algebra
	Section Highlights
	Exercises for Section 5.2
	5.3. Diagonalization
	Linear Transformations and Invariant Subspaces
	Similar Matrices
	Diagonalization
	Section Highlights
	Exercises for Section 5.3
	5.4. Jordan Canonical Form
	A New Form
	Proof for Jordan Canonical Form
	Computing Jordan Canonical Form
	Section Highlights
	Exercises for Section 5.4
	5.5. Spectral Theory
	Symmetric Matrices
	The Spectral Theorem
	The Complex Spectral Theorem
	Section Highlights
	Exercises for Section 5.5
	5.6. Singular Value Decomposition
	Pseudoinverses
	The Complex Singular Value Decomposition
	Section Highlights
	Exercises for Section 5.6
	5.7. Applications of Invariant Subspaces
	Discrete Dynamics and Markov Chains
	Rank k Approximation

	Appendix
	Additional Proofs
	Answers to Selected Parts of Selected Explorations
	Answers to Selected Exercises

	Glossary

