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Preface

Non-destructive testing methods (NDT) are a group of tests, allowing to detect external

(surface) as well as internal defects of the structure. They allow the determination of the state of

micro- and macro-structures without interfering with the structure of the tested object and provide

information about the functional properties of the tested object. This basic feature and the variety

of non-destructive testing methods make them applicable in many industries. Despite the numerous

advantages, NDT methods also have limitations, one of which may be the economic factor of the cost

of purchasing testing equipment. NDT can be carried out at various stages of production, operation,

or repair. They are used to carry out the quality control of production and to determine the technical

condition of an object.

Unlike the well-known destructive testing methods that have been in use for a long time,

a large number of the testing methods classified as non-destructive have been in use relatively

recently. At present, a wide variety of non-destructive testing methods, operating on the basis of

different phenomena, can be specified. A detailed classification and description can be found in the

EN-ISO/ISO standards, among others. The most common groups of non-destructive tests include

visual methods, penetrant methods, magnetic powder methods, methods using eddy currents,

thermographic methods, vibration methods, acoustic methods, ultrasonic methods, and radiographic

methods. Visual, penetrant, and electromagnetic methods, including eddy current, are ideal for

detecting surface discontinuities. The detection of subsurface defects is made possible by eddy

currents, magnetic particles, and thermographic methods. Among the methods of non-destructive

volumetric testing, acoustic, ultrasonic, and radiographic methods should be listed first.

Grzegorz Peruń, Tangbin Xia, and Bogusław Łazarz

Editors
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Editorial

Advances in Non-Destructive Testing Methods

Grzegorz Peruń

Department of Road Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology,
40-019 Katowice, Poland; grzegorz.perun@polsl.pl

1. Introduction

Non-destructive testing (NDT) methods are a group of tests allowing one to detect
external (surface) as well as internal defects of a structure. They allow one to determine the
state of micro- and macro-structures without interfering with the structure of the tested
object, providing information about the functional properties of the tested object. This
basic feature and the variety of non-destructive testing methods make them applicable in
many industries. They are notable in the diagnosis of infrastructure defects and means
of air transportation and rail transportation, but are also applicable in the automotive
industry [1–3]. The most obvious field of application of NDT is the quality control of
final products, as well as the verification of materials and semi-finished products used in
manufacturing processes. Theoretically, non-destructive testing, unlike destructive testing,
can be applied to all manufactured pieces of a product; moreover, these methods are used
during operation to assess the technical conditions of objects. A limitation of the number of
tests conducted may be the cost of implementation and the time required to conduct the
tests [4,5]. Despite these numerous advantages, NDT methods also have limitations, where
one of which is the economic factor of the cost of purchasing testing equipment [6]. NDT
methods can be carried out at various stages of production, operation, or repair. They are
used to carry out quality control in production and to determine the technical conditions of
an object, respectively. With NDT, it is also possible to detect operational defects, including
corrosion, erosion, or cracks.

Unlike the well-known destructive testing methods that have been in use for a long
time, a large number of testing methods classified as non-destructive have been in use rela-
tively recently. At present, a wide variety of non-destructive testing methods, operating on
the basis of different phenomena, can be specified. A detailed classification and description
can be found in the work of [7–9] and in the EN-ISO/ISO standards, among others. The
most common non-destructive tests include the following:

• Visual methods;
• Penetrant methods;
• Magnetic powder methods;
• Methods using eddy currents;
• Thermographic methods;
• Vibration methods;
• Acoustic methods;
• Ultrasonic methods;
• Radiographic methods.

Visual, penetrant, and electromagnetic methods, including methods using eddy cur-
rents, are ideal for detecting surface discontinuities. The detection of subsurface defects is
made possible by eddy current, magnetic particle, and thermographic methods. Among
the methods of non-destructive volumetric testing, acoustic, ultrasonic, and radiographic
methods stand out.

Materials 2024, 17, 554. https://doi.org/10.3390/ma17030554 https://www.mdpi.com/journal/materials1
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2. A Statistical Look at the Research Presented in this Topic

The purpose of this Topic was to present both the development of various non-
destructive testing methods and examples of applications of this group of tests in various
industries. Thanks to the fact that the scope of this topic was not strictly limited to defined
methods, this study includes the presentation of a very wide spectrum of research and
applied methods. The presented research was carried out by research centers located all
over the world, and a brief description of selected studies is presented in the next chapter.
Thirteen papers were published in Applied Sciences, eleven were published in Sensors, and
four were published in Materials. The published papers include 142 authors from many
institutions. These simple statistics, presented in Figure 1, show that the topic has received
considerable interest and thus confirm the universality and popularity of NDT research.

Figure 1. Participation of individual journals in the topic “Advances in Non-Destructive Testing Methods”.

3. Summary of the Contributions

In one article [10], the authors propose a convolutional-neural-network-model-based
through-focus scanning optical microscopy (TSOM) method for measuring individual high-
aspect-ratio (HAR) grooves on silicon up to 30 μm wide and 440 μm deep. The standard
deviation and error were about one hundred nanometers or less in value.

Grazing-incidence small-angle X-ray scattering (GISAXS) is an effective method for
the structural analysis of ordered arrays of quantum dots, nanoparticles, or similar objects.
In [11], the authors demonstrate a software platform to analyze and simulate 2D GISAXS
intensity distributions from ordered networks of various nanoparticles.

The possibilities of using non-destructive testing methods in transportation are pre-
sented in [12] using air transportation as an example. High-energy radiation sources are
used to provide strong safety inspection capabilities using a non-invasive imaging system.
The authors present an air cargo inspection system using multiple radiation sources, a D-T
neutron generator, and an accelerator-based gamma-ray source to classify plastics, metals,
and organics among various sample materials. Radiation can penetrate materials tens of
centimeters thick in an air cargo container.

Similarly, aerospace transportation is an area of interest for the authors of [13]. The
purpose of this paper is to conduct a reliable non-destructive evaluation (NDE) of glued
aerospace components by developing new multidimensional data fusion techniques that
combine information obtained using ultrasonic and X-ray NDE methods.

NDT methods are also being applied to marine transportation. The marine composite
market is driven by growing demand for lightweight, corrosion-resistant, and impact-
resistant boats. Polymer matrix composites are currently the most popular composite
materials in marine applications. Ref. [14] presents a numerical analysis of the feasi-
bility of using vibrothermography to detect defects in fiberglass-reinforced laminates in
marine applications.

Pipelines are also related to transportation, which are also of interest to those in-
volved in non-destructive testing. Problems related to the classification and identification
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of defects in polyethylene (PE) gas pipelines are presented in reference [15]. The paper
proposes a framework for classifying and identifying defects of underground PE gas trans-
mission pipes. The authors prove the possibility of fast and accurate detection of defects in
PE pipelines.

Ref. [16] presents a less expensive and simpler way to apply the time delay estimation
method to locate leaks in underground pipelines. The accuracy of the TDE depends on
the acoustic velocity and attenuation of the leak signal propagating along the pipeline.
The analytical predictive model is the typical approach for obtaining the propagation
velocity and attenuation of leakage waves. To determine the effective design variables in
the algorithm based on the embedment parameters of the pipe, this study analyzed the
sensitivity of soil parameters to the wave number.

Three-dimensional localization of buried polyethylene pipes is a problem addressed
in the work of [17]. The authors developed a multi-sensor method based on the principle
of pipe vibration, which allows estimating the depth, is non-invasive and non-destructive,
and does not require prior information about the propagation medium.

In order to solve the problem of quantifying magnetic flux leakage (MFL) detection sig-
nals damaged in the operation of oil and gas pipelines, an inhomogeneous magnetic charge
model based on magnetic effects was developed. Reference [18] discusses the force–magnet
coupling relationship in the inhomogeneous magnetic charge model, develops a theoretical
model of complex magnetic charge, and analyzes the pattern of changes in the characteristic
values of MFL signals under elastic stress and plastic deformation.

In reference [19], the authors address the problems associated with measuring the
moisture content of building materials. This is important from the point of view of both
the process of building construction and the subsequent operation of said buildings. In
engineering practice, indirect moisture measurement techniques, mainly resistive and
capacitive, are the most popular. The main objective of this research work was to compare
the classical TDR measurement technique with non-invasive surface TDR sensors.

Ref. [20] proposes an inversion algorithm for predicting dynamic moduli using CNNs
which is trained using samples related to the dynamic response of a multilayer concrete
pavement structure obtained using SEM. The proposed method acts as a reliable test tool
for the falling weight deflection gauge technique of pavement structures.

The contribution of the study of [21] is the use of broadband ultrasonic attenuation
techniques in concrete-filled steel pipe samples to locate air voids. The results show a linear
relationship between the average BUA in the window of concrete-filled steel pipes and the
percentage of air voids: the higher the percentage of air voids, the higher the BUA values.

The meso-scale failure properties of concrete and mortar were investigated experimen-
tally in [22] via Brazilian disc split tensile tests combining X-ray computed tomography
(CT) and digital image correlation (DIC) technology. Taking into account water/cement
ratios and loading rates, the effects of meso-components on the macro tensile properties
and failure modes of concrete were studied.

In reference [23], the longitudinal nonlinear ultrasonic parameters of carbonatized
concrete were detected using an embedded composite piezoelectric transducer (ECPT) as
a transducer, and the effect of temperature on the nonlinear parameters of carbonatized
concrete was investigated. Higher variation in nonlinear parameters at the same time of
carbonation was observed for samples with a high water–cement ratio than for samples
with a low water–cement ratio.

The purpose of the work of [24] was to develop a technique for measuring the thickness
of non-conductive coatings on non-magnetic conductive base metals. The authors used
the amplitude-phase eddy current method and algorithms for processing measurement
information, taking into account the effect of the base metals’ specific electrical conductivity.
They found two-dimensional thickness gauge graduation characteristics using several base
metals with different values of specific electrical conductivity.

An innovative analytical protocol based on external reflection FTIR spectroscopy (ER-
FTIR), combined with spectral deconvolution and multivariate data analysis, was used

3
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in [25]. The ER-FTIR technique is fast, portable, and widely used in the field of cultural
heritage, but rarely applied to the study of textiles. This is the first time the ER-FTIR band
assignment for silk has been discussed.

A completely different topic was addressed in reference [26]. A tracking model called
Road-TransTrack based on transformer optimization was proposed to track and count
the number of damages in road videos. The tracking and counting model was improved
with a transformer and a self-observation mechanism to improve the accuracy of damage
detection and counting in road videos.

The research topic of [27] is the generation of high-quality phase-contrast computed
tomography images with given incomplete projections. The authors present the potential
for expanding applications of PCCT techniques in the fields of composite and biomedical
imaging and describe a two-domain (i.e., projection sinogram domain and image domain)
deep-learning-based enhancement framework for PCCT with sparse projections. It consists
of two convolutional neural networks (CNNs) in two domains and a phase-contrast Radon
inversion layer (PCRIL) to connect them.

Ref. [28] presents an approach to efficiently detect local defect resonances in solids with
localized defects and a method for determining the frequency of local defect resonances.
The algorithm is based on the observation that vibration amplitudes are significantly higher
for the modal shape of a local defect than the average value for a whole structure.

The work of [29] investigates surface roughness measurements using piezoelectric
acoustic discs and corresponding signal processing. Surface roughness is one of the charac-
teristics of surface texture, which can have various irregularities related to manufacturing
methods. The study concludes that acoustic friction measurement shows promising results
as a new method for measuring the surface roughness states of some materials.

In [30], the authors study various contact states of a high-voltage SF6 circuit breaker
considering different currents in power system applications. This paper aims to present
a novel method for detecting the state of HVCB contacts based on a vibration signal.
The experimental and theoretical analyses used can provide a reference for future fault
monitoring and diagnosis in HVCBs.
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Abstract: The time-delay estimation (TDE) method is the primary method for predicting leakage
locations in buried water distribution pipelines. The accuracy of TDE depends on the acoustic speed
and attenuation of the leakage signal propagating along the pipeline. The analytical prediction
model is the typical approach for obtaining the propagation speed and attenuation of leakage waves.
However, the embedding parameters of the buried pipe in this model must be measured using soil
tests, which are very difficult, costly, and time-consuming. These factors restrict the application
of the TDE method in pinpointing pipeline leakage. A method for inverse identification of pipe
embedding parameters using discrete wavenumbers obtained in field testing is presented in this
paper, and the differential evolution algorithm is introduced as an optimization solution. A field
experiment is conducted to validate the method, and the test wavenumbers are measured in a cast-
iron pipeline. The estimated sensitive parameters in the analytical model using the method are soil
elastic modulus, Poisson’s ratio, and pipe–soil contact coefficient, while the conventional soil test
is used to measure the soil density due to the character of the optimization algorithm and the soil
properties. The application effects show that the estimated parameters are close to those measured
from a conventional soil test. The wave speed based on the estimated parameters was an excellent
match for the on-site test in the engineering application. This work provides a less costly and more
straightforward way to apply the TDE method for leak localization in buried pipelines.

Keywords: buried water pipe; pipe embedding parameters estimation; differential evolutionary
algorithm; wavenumber estimation

1. Introduction

Water leakage, especially in buried pipelines, is a subject of increasing concern across
the world because of the potential public health danger, economic constraints, environ-
mental damage, and wastage of energy. Detecting and pinpointing leakage provides a key
means to solving the issue. The leak detection methods in pipes can be classified into three
categories [1]: methods based on signal processing, methods based on state estimation, and
methods based on knowledge. Most methods based on signal processing focus on utilizing
measurements collected from different sensors and applying different analytical techniques
to detect and localize faults. The state estimation methods thus far focus on developing
and using models based on fundamental principles to detect and localize leaks. Most of the
methods based on knowledge were initially designed to detect leaks in systems with single
flow. Among these methods, acoustic-based technology is more suitable for leak detection
in water distribution pipelines.

Acoustic-based leak detection techniques have been in common use in water-distribution
networks over the past 30 years [2,3]. They usually use the cross-correlation function
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between leak noise signals measured using hydrophones or accelerometers placed on both
sides of the leak. The efficacy of a correlator depends upon knowledge of the speed at
which the leak noise propagates along the pipe as well as how much it attenuates with
distance. As is known, the fluid-borne wave in the pipe is the predominant energy-carrying
mode in the pipe leakage detection field, and its propagating characteristics are profoundly
influenced by the pipe and soil properties, especially in the pipe–soil strong coupling
pipeline systems, e.g., buried plastic pipe systems. Muggleton [4] and Gao [5,6] observed
that the medium outside the pipe acts on the pipe with additional mass and additional
stiffness through the interface shear effect, affecting the acoustic speed and attenuation.
Based on the analytical and finite element models, Brennan [7] further studied the effects of
the soil properties surrounding the pipe on the propagation speed of the leakage acoustic
wave, pointing out that the shear properties of the soil mainly affected the propagation
speed of the acoustic wave, and the compression properties mainly affected the attenuation
of the acoustic wave. The models were subsequently applied to two different types of
soil—one sandy, the other clay—to validate the above study.

The theoretical model plays an important role in predicting leak wave speed and
attenuation along the pipe. Although the pipe property parameters in this model can be
determined relatively easily, estimation of the soil property parameters surrounding the
pipe is more problematic. Representative soil samples—used for parameter testing—are
difficult to obtain due to the large covering scale and the complex embedding conditions of
the on-site pipeline. The subsequent time-consuming soil tests of the soil samples make
them costly for practical applications. Meanwhile, the presumption of the theoretical
model generally reduces agreement between predicted and actual wave propagating
speed. Accordingly, in leakage-location engineering practice, a more accurate estimation
method for soil properties is needed, along with a more convenient and precise method of
determining propagating speed and attenuation of the leak wave.

Currently, in many industrial applications, the inversion identification of model pa-
rameters using field test data is an emerging approach to obtaining the soil parameters
in a model [8,9]. Jesenik et al. [10] tested different soil models on measured data and
used different metaheuristics to determine soil parameters. These inversion methods of
soil parameters are worthy of reference, but the required test methods are not suitable
for buried pipe conditions. Scussel et al. [11] introduced the idea of inversion into the
buried liquid-filled pipe and used the cost-function algorithm to estimate the bulk modulus
and shear modulus of the soil. However, the two above estimated parameters are not
independent, which easily leads to multiple solutions. Meanwhile, it is easy to be trapped
in local optima when solved by the cost-function algorithm for optimization problems with
unclear gradient information.

An embedding parameters identification method for water-filled pipes based on the
differential evolutionary algorithm is put forward using field test data. With this method,
the pipe embedding parameters can be quickly inverted based on a few discrete leakage
test data. The continuous speed in the full frequency band of interest can be obtained easily
through the amended analytical model.

2. Method for Wavenumber Prediction

The leakage acoustic wave propagation has multiple modes and dispersion charac-
teristics for the liquid-filled pipe system with a high coupling of pipe/soil. To predict
the wave speed more accurately, Fuller [12] and Pinnington [13] proposed a wave-speed
prediction analytical model for a liquid-filled pipe in a vacuum, which considered the
dispersion characteristics for the modes of sound propagation along with the fluid and
pipe. Muggleton [4] and Gao [5] proposed a theoretical model of wavenumber prediction
considering the effect of external pipe medium on sound-wave propagation under the
assumed extreme condition of lubricated contact and compact contact between pipe and
soil. They then proposed the method for calculating the propagation speed of buried
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liquid-filled pipe, meanwhile observing that the fluid-dominated axisymmetric wave is the
primary mode in leak detection.

Lu et al. [14] introduced the pipe–soil contact state variable into the fluid-dominated
axisymmetric wave equations for the first time, which broke through the assumption of the
extreme buried conditions, and the general wave equation of the axisymmetric wave of the
buried liquid-filled pipe is obtained as follows:

In the above equations, the parameters of the pipe and fluid are easily available. The
factors needing identification in the system are usually the soil parameters, which include
Young’s modulus, Poisson’s ratio, density, and contact coefficient between pipe and soil.
The first three parameters are generally obtained through conventional soil tests. The main
on-site test methods for soil density are the ring knife method and the irrigation method,
which are both mature technology [15]. The Poisson’s ratio is obtained by measuring the
volume change, and is difficult to test accurately. The determination of the elastic modulus
requires a high production level of instrument and equipment [16], which are not easy to
operate in practice. Meanwhile, the determination method for the deformation modulus
and shear modulus is easier to realize. The actual elastic modulus of the soil is often
converted from the bulk modulus and shear modulus, and the conventional test method
for both is the three-axis test [17]. At present, there is no suitable test technology for the
contact coefficient of pipe and soil interface, which can only be gained by experience.

k2
1 = k2

f (1 +
β

1 − Ω2 + α
), (1)

where: ⎧⎪⎨⎪⎩
α = −SL22 − [vp+iSL12/k1a][vp−iξSL21/k1a]

1−ξSL11/k1a

β = 2 a
h

(
1−v2

p
Ep

)
Bf

, (2)

where α stands for the surrounding medium loading and pipe parameters, which can be
used to evaluate the influence of soil load on the pipe wall displacement, β refers to fluid
and pipe parameters that can be used to evaluate the influence of fluid load on the pipe
wall displacement, Ω is the non-dimensional frequency, Ω = ωa/cL = kLa, k f = ω/c f

is the fluid wavenumber, c f =
√

Bf /ρ
f
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kr
ds, kr

rs are the compression and shear wavenumbers of soil in the radial direction respec-
tively, which can be expressed by compressed wavenumber kd, shear wavenumber kr, and
wavenumber in the axil direction ks as follows:{

(kr
ds)

2 = kd
2 − ks

2

(kr
rs)

2 = kr
2 − ks

2 , (4)

{
kd

2 = ρmω2/(λm + 2μm)
kr

2 = ρmω2/μm
, (5)
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λm, μm are Lame coefficients, and ρm is the density of the medium.

kL = ω2ρp

(
1 − vp

2
)

/Ep, (6)

{
λm = Emvm/(1 + vm)(1 − 2vm)
μm = Em/2(1 + vm)

, (7)

ξ ∈ [0, 1] represents the contact coefficients to the actual boundary conditions at the
pipe–soil interface, among which ξ = 1 represents compact contact, and ξ = 0 repre-
sents lubrication contact. The other parameter details in Equations (1)–(7) are given in
reference [14].

In the above equations, the parameters of the pipe and fluid are easily available. The
factors needing identification in the system are usually the soil parameters which include
Young’s modulus, Poisson’s ratio, density, and contact coefficient between pipe and soil.
The first three parameters are generally obtained through conventional soil tests. The main
on-site test methods for soil density are the ring knife method and the irrigation method,
which are both mature technology [15]. The Poisson’s ratio is obtained by measuring the
volume change, and is difficult to test accurately. The determination of the elastic modulus
requires a high production level of instrument and equipment [16], which are not easy to
operate in practice. Meanwhile, the determination method for the deformation modulus
and shear modulus is easier to realize. The actual elastic modulus of the soil is often
converted from the bulk modulus and shear modulus, and the conventional test method
for both is the three-axis test [17]. At present, there is no suitable test technology for the
contact coefficient of pipe and soil interface, which can only be gained by experience.

By Equation (2), β can be obtained directly, but α, related to the unknown wavenumber
k1, cannot be solved directly. As it is difficult to obtain the closed analytical solution of
Equation (1), the numerical method is adopted by transforming the differential equation
solving problems into optimization problems.

The above theoretical model can be solved using the Nelder–Mead method [18] to
obtain the wavenumber information. To pick out effective design variables in the algorithm
in Section 3, the sensitivity of the wavenumber was analyzed for each parameter, as shown
in Figures 1–3. The parameters of the pipe system are shown in Table 1.
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Figure 1. The influence of soil density on wavenumber. (a) Real part; (b) Imaginary part.
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Figure 2. The influence of soil elastic modulus on wavenumber. (a) Real part; (b) Imaginary part.
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Figure 3. The influence of Poisson’s ratio on wavenumber. (a) Real part; (b) Imaginary part.

Table 1. Properties of the theoretical model for the cast iron pipeline.

Properties Fluid Pipe Surrounding Medium

Density (kg/m3) 1000 7800 1999
Young’s modulus (N/m2) - 1.22 × 1011 4.5 × 107

Bulk modulus (N/m2) 2.25 × 109 - 5.0 × 107

Shear modulus (N/m2) - - 1.67 × 107

Poisson’s ratio - 0.25 0.35
Material loss factor - 0.01 -

It can be seen from Figures 1–3 that the effects of soil density and Poisson’s ratio on the
wavenumber are similar, both having a considerable influence on the imaginary part, but
little influence on the real part. The elastic modulus affects both the real and imaginary parts
of the wavenumber, especially when the elastic modulus increases above 4.5 × 107 N/m2.
From the optimization algorithm viewpoint, the design variables with similar influences
on the objective function are likely to produce thematical multiple solution problems. Thus,
soil density and Poisson’s ratio could not be used simultaneously as design variables for the
optimization algorithm. Density is relatively stable and easy to measure, while Poisson’s
ratio is the physical parameter that is not easy to measure accurately by the current test
means. Therefore, the Poisson’s ratio was taken as the identification target parameter of the
optimization algorithm, while the density was still determined by the conventional soil test
method.
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3. The Estimation Method of Pipe Embedding Parameters

According to the theory of wavenumber prediction, there is a mapping relationship
between pipeline embedding parameters and wavenumbers. When the wavenumbers
corresponding to some frequencies are obtained by field testing, theoretically, the pipe
embedding parameters approaching the test wavenumber can be obtained through mathe-
matical optimization.

Traditional mathematical optimization methods rely on the derivative or gradient
matrix of each iteration step to determine the next step’s search direction and step length.
However, the above theoretical wavenumber is not directly expressed by the wave equation
but obtained by numerical methods, which leads to the difficulty in obtaining a gradi-
ent matrix, and even to singularity. Consequently, the methods dependent on gradient
information are difficult to use directly for pipeline embedding parameter identification.

Due to the particularity of the engineering problems, optimization algorithms that do
not require a gradient matrix are widely adopted. The EM algorithm is a commonly used
tool for estimating the parameters for a mixture model but is more dependent on the initial
values [19]. Bio-inspired optimization that does not need to iterate with a gradient matrix
and does not depend on the initial values is a growing research topic to solve large-scale
complex optimization problems. Jesenik, et al. [20] employed bio-inspired methods to
determine a DC motor and drive parameters. Due to its huge computational amount,
complex structures and many parameters are needed to control the bio-inspired algorithm
in the application. LaTorre et al. [21] proposed methodological guidelines to prepare a
successful proposal through many surveys. Liu et al. [22] introduced a parameter control
approach utilized as feedback to control evolution processes adaptively.

Genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution
algorithm (DE) are very excellent bio-inspired optimization processes; however, each
would need to be adapted according to the actual engineering problem. DE was chosen
mainly because the algorithm does not have patent protection, which means it is possible
to popularize the soil parameter estimation method. DE was put forward by Storn and
Price [23] in 1995 and has gained wide applications [24–26].

DE is a parallel direct search method that utilizes NP dimensional parameter vectors
as population X for each generation. In searching the optimal solution, two-parent vectors
were selected and subtracted to obtain the differential vector. DE generates new parameter
vectors by adding the weighted difference between two population vectors to a third
vector, called the mutation operation. Then, the mutated vectors are mixed with the
parameters of another predetermined vector to yield the trial vector. If the trial vector
yields a lower cost function value than the target vector, the trial vector replaces the target
vector in the following generation, which is called the selection operation. Through the
several-generation evolution of mutation, crossover, and selection operation, the optimal
individuals are retained, inferior individuals are eliminated, and the population is guided
to approach the optimal value gradually.

According to the analysis in Section 2, the parameters to be identified are the Elastic
modulus E, Poisson’s ratio v of the medium surrounding the pipe, and the contact coef-
ficient of pipe and soil ξ, which constitute the vectors of the optimized design variables
x:

x = (E, v, ξ). (8)

The parameters based on their physical meaning are set as:{
xmin = [1 × 103, 0, 0]
xmax = [1 × 1010, 0.5, 1]

. (9)

NP sets of initial values are randomly generated within the constraints of the vector,
which form a population X:

X = [x1, x2, · · · , xNP], (10)

11



Sensors 2022, 22, 3942

The approximation of the wavenumber corresponding to the target value of each
group of the individual vector was calculated using the function f :

f (E, v, ξ) =

√
(wre fre)

2 + (wim fim)2 → min. (11)

Since the wavenumber is complex, it is commonly difficult to simultaneously achieve
the same degree of approximation in real and imaginary parts. Therefore, the weight
coefficient wre, wim is introduced to consider the relative importance of the real part fre and
the imaginary part fim:⎧⎨⎩ fre(E, v, ξ) = ∑M

i=1
|kre

tar(ωi)−kre
calc(ωi)|

Mkretar(ωi)

fim(E, v, ξ) = ∑M
i=1

|kim
tar(ωi)−kim

calc(ωi)|
Mkim

tar(ωi)

(12)

where M is the number of frequencies requiring calculation, ktar is the target wavenumber,
and kcalc is the calculated wavenumber in the current step.

After several generation populations of mutation, crossover, and selected operation,
the function f approximates to a minimum. When the smallest function value f in the
population no longer decreases in the subsequent t cycles, the loop will exit, and the exit
condition can be expressed as: ∣∣min fg − min fg+t

∣∣ < ε, (13)

where g is the current number of cycles, termed the generation number, and ε is the tolerance
error.

The final identified pipe embedding parameters are the vector corresponding to the
individual minimizing the function f in the last population. The solution process is shown
in Algorithm 1.

In Algorithm 1, j is the individual sequent number, and j ∈ [1, NP]; bj is the mutated
individual, uj is the crossovered individual, and xj is the individual in current population,
respectively; F is the amplification factor of the differential variation; rand(m) indicates
generating a random value from [0, 1] in each dimension; q is a dimensional sequent of the
individual vector; and CR is the crossover constant that influences computational efficiency
and accuracy—in this paper, CR = 0.5.

Choosing a reasonable amplification factor F is essential for the algorithm to weigh
the global convergence difficulty and computational efficiency. Larger values of F can
help the function jump from the local optimum to the global optimum but deteriorate the
algorithm’s convergence. Smaller values of F are in favor of the convergence; however,
against the computational efficiency and prone to a local optimum. The elastic modulus as
the design variable varies widely, and its effect on the objective function is non-monotonic.
It is improper to use a traditionally constant value for F. A variable F is employed with the
increasing generation number, termed F = 2 − g/300, and 300 is the maximum number
of cycles in this paper. At the beginning of the algorithm’s operation, a particularly high
value should be set to ensure the population’s approximation to the global optimum. In the
following stages of the algorithm, the value of F becomes smaller to ensure convergence.
F is a real and constant factor in a particular generation and varies with each generation.
If a mutant individual exceeds the boundary values shown in Equation (9), the mutant
individual will be replaced by the boundary values.

12
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Algorithm 1 Pseudo-Code for the DE Process

1. set control parameters NP, CR, ε.
2. randomly generate the initial population of vectors in 3-dimensional search space
3. g = 1
4. repeat

5. for each individual j in the population do

6. // begin mutation operation
7. F = 2 − g/300
8. select three mutually exclusive random individuals xr1, xr2, xr3
9. where, r1 �= r2 �= r3
10. generate a donor individual by Equation (14)
11.

bj = xr1 + F(xr2 − xr3) (14)

12. // end mutation operation
13. do

14. while (g ≤ 300 AND Equation (13) is false)
15. // begin crossover operation
16. m = a random integer in the range of [1, 3]
17. randD = [1, 2, 3]
18. generate a trial individual uj employing crossover by Equation (15)
19.

ujq =

{
bjq, if rand(m

)
≤ CR or randD(q) = m, q ∈ [1, 2, 3]

xjq, for all other dimensions
(15)

20. // end crossover operation
21. // begin selection operation
22. evaluate the candidate individual uj using Equation (11)
23. replace xj with uj, if fitness of uj is better than fitness of xj
24. // end selection operation
25. end while

26. g = g + 1
27. end for

4. Application of the Method

To validate the feasibility of the method, the cast-iron pipe embedding parameters
were estimated using a set of wavenumbers obtained from the on-site test. Figure 4 shows
a schematic diagram of the test of the acoustic wave propagation in a buried water pipe.
The test platform is shown in Figure 5. Sensor 0 was installed on a hydrant to collect the
vibration response in the normal direction caused by water discharge from the hydrant.
Sensors 1 and 2 were installed on the pipe wall in the inspection wells on both sides of the
hydrant to collect the leakage propagation signals.

The time delay between the two-way leak signals collected by Sensor 1 and Sensor
2 can be acquired using the cross-correlation analysis method. The corresponding wave
speed and attenuation are easily available through the acquisition of the interval distance
from the hydrant to either test point. Accordingly, the test can obtain wavenumbers at the
characteristic frequencies, as shown in Table 2, which shows the target wavenumber ktar in
Equation (12).
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Figure 4. Schematic of the set-up for acoustic wave propagation estimation.

Figure 5. Test platform.

Table 2. The real and imaginary parts of the test wavenumber.

No.
Angular Frequency

(rad/s)
Real Part of

Wavenumber
Imaginary Part of

Wavenumber

1 3121.9580 2.5080 0.00544
2 4167.0400 3.3276 0.00882
3 7221.7360 5.9966 0.02740
4 10,314.4800 8.1600 0.05960

In DE calculation, each population vector serves once as the target vector, so that NP
competitions occur in one generation. The larger the NP, the more computation in a single
cycle; however, there are fewer total cycles with larger NP. Because the NP competitions
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within the same generation can be performed in parallel, NP should be set as a multiple of
the number of computer threads. Moreover, it is also undesirable to significantly increase
NP to reduce the cycles, as this would result in a longer overall calculation time. In this
calculation, the number of computer threads is 10, setting NP as 50, and wre = 1, wim = 5
according to experience and convenience. Figure 6 shows the trend of the approximation
function f with the elastic modulus and the Poisson’s ratio. The approximation function
has a local minimum on each side of the elastic modulus of 1 × 109 N/m2. The proposed
algorithm randomly generates the initial population in the whole domain, which can
effectively jump from the local optimum to the global optimum. The final estimate is the
parameters corresponding to the minimum value of f in the figure.
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Figure 6. The variety of approximate functions with the identified soil parameters.

Table 3 shows the respective values of the pipe embedding parameters obtained
according to the conventional soil test and estimated method. As shown in the table,
the values estimated by the inversion identification approach are very close to the soil
test measurement. The deviation rate of the elastic modulus is about 6.44%, and the
deviation rate of Poisson’s ratio is about 4.97%, meeting the accuracy requirements for soil
engineering applications.

Table 3. Comparison between the identified values and the test values for soil parameter.

Items
Elastic Modulus

N/m2 Poisson Ratio Contact Coefficient

Test Values 4.5 × 107 0.35 -
Estimated Values 4.79 × 107 0.3326 0

The parameter estimation aims to provide a quick and accurate way to obtain the
continuous wave speed in the full interest frequency domain through the wavenumber
theoretical model. The soil test and estimated parameter values in Table 3 were each
substituted into the theoretical formula in Section 2. Theoretical Wavenumbers 1 and 2 were
obtained, as shown in Figure 7, and compared with the test wavenumber. The Wavenumber
1 curve represents the results calculated by soil test values, and the Wavenumber 2 curve
represents those calculated by the estimated values. As is generally believed, the test
wavenumber is the most accurate for water leakage pinpoint localization. There was a good
consistency for the real part; however, there was a notable difference for the imaginary part
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between Wavenumber 1 and Wavenumber 2. Wavenumber 2 was closer to the test value
for both the real and imaginary parts.
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Figure 7. The comparison between the theoretical wavenumbers and the field test wavenumbers.
(a) Real part; (b) Imaginary part.

The deviation rate of the two theoretical wavenumbers relative to the test wavenumber
is shown in Table 4. The theoretical wavenumber deviation rate of the real part calculated
using the estimated values of pipe embedding parameters was slightly higher than that
calculated using the soil test values generally. The deviation rates were within 5.68%,
meeting the engineering requirements. Meanwhile, regarding the deviation rate of the
imaginary part, Theoretical Wavenumber 2 had a better performance. For the soil samples
used in the soil test, it was difficult to fully represent embedding soil properties along
the pipeline due to the inhomogeneity of the site soil. This may be one of the reasons
for the large deviation of the imaginary part, as well as the real part at high-frequency
in Theoretical Wavenumber 1. Since they were derived from on-site buried conditions,
the estimated values of pipe embedding parameters adequately matched the on-site pipe
buried situation in the engineering application.

Table 4. The deviation rate relative to the test wavenumber.

No.

Angular
Frequency

(Hz)

Real Part of Imaginary Part of
Wavenumber

1
Wavenumber

2
Wavenumber

1
Wavenumber

2

1 3121.9580 0.41% 2.60% 34.38% 19.12%
2 4167.0400 1.16% 1.85% 34.01% 18.37%
3 7221.7360 1.32% 4.36% 29.45% 13.47%
4 10,314.4800 10.17% 5.68% 103.29% 9.06%

5. Conclusions

An estimation method for pipe embedding parameters was put forward to improve
the applicability of the wavenumber prediction theory model for leakage location. This
method can quickly identify the sensitive pipeline embedding parameters according to the
test wavenumber based on the differential evolutionary algorithm.

To ascertain the effective design variables in the algorithm from the pipe embedding
parameters, an analysis of the sensitivity of the soil parameters to wavenumber was carried
out in this work. Since the conventional soil test can easily measure the soil density, it was
reasonable and feasible to choose the soil elastic modulus, Poisson’s ratio, and the pipe/soil
contact coefficient as the design variables to be estimated.

The DE algorithm was briefly introduced in Section 3 of this paper, and the procedure
of the DE algorithm was given considering the specific situation of the soil parameter
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identified. Control methods for population mutation and crossover in soil parameter
estimation were given, and the feasibility of the method was validated based on the cast-
iron pipeline field test. The outputs showed that the estimated parameters were very close to
those obtained from the soil test, the deviation rate of the elastic modulus was about 6.44%,
the Poisson’s ratio is about 4.97%, and the estimated pipe–soil contact coefficient is 0, which
is consistent with traditional cast-iron pipes. Compared with the tested wavenumbers, the
maximum deviation rate of the theoretical wavenumbers calculated with the estimated
parameters was 5.68% for the real part and 19.12% for the imaginary part, which satisfies
the leakage localization requirement in engineering applications.

According to the acoustic wave propagation theory of the buried liquid-filled pipe,
the coupling effect of soil on the plastic pipe is enhanced, and wave propagating speed
and attenuation are seriously affected by the surrounding medium. Future work will
explore methods for estimating soil parameters for plastic pipes. Meanwhile, research on
the application of this method to on-site pipe leak localization engineering will also be
conducted.
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Abstract: This study examines surface roughness measurements via piezo acoustic disks and ap-
propriate signal processing. Surface roughness is one characteristic of surface texture that can have
various irregularities inherent to manufacturing methods. The surface roughness parameters and
corresponding surface profiles are acquired by a stylus profilometer. Simultaneously, elastic waves
propagated along metal surfaces caused by the friction of a diamond tip are obtained in the form
of raw sound via piezo acoustic disks. Frequency spectrum analysis showed apparent correlations
between the traditionally obtained measurement parameters and the piezo acoustic measurement
data. Thus, it is concluded that acoustic friction measurement shows promising results as a novel
measurement method for the surface roughness states of certain materials.

Keywords: roughness; machining; acoustic; measurement

1. Introduction

The surfaces of machine parts often contain irregularities that result from manufactur-
ing methods. Surface roughness, one such irregularity, is one of the important parameters
used to describe surface texture. Surface roughness can cause nonlinear problems in fluid
systems, especially in machine parts that contact each other. Studies have shown that
surface roughness affects contact pressure in interference fit [1,2], preload loss in bolted
connections [3,4], surface wear properties [5,6], surface coating properties [7], the fatigue
strength of machine parts against dynamic stresses [8,9], the strength of adhesive-bonded
joints [10,11], and frictional losses in fluid systems [12].

Surface roughness measurement is defined in ISO 21920-2:2021 [13] and has differ-
ent parameters. Ra is the most commonly used parameter in determining the surface
texture state, as it provides the most general and adequate information about the surface
roughness. However, when the fluctuations are sudden and large in amplitude, the sensi-
tivity decreases. Therefore, it is a better option to use the Rz parameter when sensitivity
becomes important. Because the mathematical formulations depend on the five highest
peaks and the five smallest valleys in the surface profile, they capture sudden spikes more
accurately [14]. In this study, the main goal is to establish a correlation between acoustic
measurements and surface roughness measurements. Therefore, the comparison with Ra
in terms of the general condition of the surface roughness and the comparison with Rz in
terms of sensitivity have gained importance in terms of determining which parameter is
more proportional to the acoustic measurement values. Therefore, both parameters are
considered within the scope of this study.

Surface roughness measurements are generally divided into contact and noncontact
methods. Stylus profilometry, a contact measurement method, is generally performed
by moving a diamond tip over the surface. Noncontact methods generally comprise
measurement methods that optically monitor the surface. However, in these methods, the
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surface to be measured must be exposed and accessible. Laser profilometry is a highly
preferred noncontact method. In this method, the laser beam intensity is dependent on the
material surface brightness. In this way, the surface roughness profile can be mapped. The
roughness mapping process plays an important role in health and pharmaceutical sciences,
where two-dimensional data acquisition is critical [15]. In addition, modulalography is a
special-case surface mapping method that is used for reconstructing Young’s modulus of
coronary arteries from radial-strain ultrasound images [16].

Surface roughness studies remain one of the most interesting topics in mechanical
engineering. In addition to traditional methods, new surface roughness measurement
methods continue to be developed [17]. These studies also note how important it is to
measure surface roughness values accurately, quickly, and effectively. Although acoustic
wave sensors and technologies have been used in certain engineering system measurements,
their use to define surface roughness has only recently attracted attention [18,19].

Through the acquisition of acoustic or elastic wave propagation within solids, various
physical data can be obtained and analyzed accordingly. Related studies can be seen in the
literature as follows: the analysis of cutting parameters of machine tools with acoustic mea-
surements [20,21]; tool life prediction via sound frequency analysis [22–24], fault detection
in roller bearings by wavelet packet transform [25], in train bearings by improved harmonic
product spectrum [26], and in low-speed bearings using acoustic emission sensors [27];
plate fatigue evaluation using high-mode Lamb waves [28]; investigation of the effects
of elastic waves on fractures [29]; and surface stress measurement with Rayleigh wave
detection [30]. In addition, while low-cost lead zirconate titanate (PZT) transducers were
previously used as buzzers for random sound generation, there are also studies where
they are used as acoustic sensors [31] for structural health monitoring [32]. Moreover,
PZT transducers and acoustic emission (AE) sensors are also used together to measure the
surface quality in the grinding process, and it was determined that the AE sensor and PZT
transducer gave similar responses to the stimuli from the grinding process [33]. In a similar
study in which AE sensors and PZT transducers were compared by applying the PLB-
(pencil lead break) test on alumina ceramic material, it was determined that the obtained
frequency values showed that PZT could be used as an alternative to AE sensors [34].

In this study, the measurement and calculation of the Ra and Rz surface roughness
parameters are first investigated. Subsequently, the surface wave propagation equations are
defined. The Ra and Rz values of the prepared test specimens are then measured. Finally,
all obtained data are transferred to a computer environment to be compared and analyzed.

2. Materials and Methods

2.1. Surface Roughness Equations

Surface roughness parameters are calculated according to ISO 21920-2:2021 [13]. The
average absolute value (Ra) is shown in Figure 1 and calculated according to Equation (1).

Ra =
1
ln

∫ ln

0
|z(x)|dx (1)

where ln and z(x) are the relative length and amplitude function of the profile, respectively.

Figure 1. Average absolute value (Ra).
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The average profile height (Rz) is the average of 5 heights, as shown in Figure 2, and
calculated according to Equation (2).

Rz =
1
5
(Rz1 + Rz2 + Rz3 + Rz4 + Rz5) (2)

Figure 2. Average profile height (Rz).

2.2. Governing Equations for Sound Propagation on Solid Surfaces

Surface Sound propagation equations for solids were investigated thoroughly in [35].
Based on this study, the equations of interest are addressed as follows.

The wave equation in solids can be written for all coordinates as:

ρ
∂2u
∂t2 = (λ + μ)grad divu + μ∇2u (3)

In Equation (3), t is time, ρ is density, ∇ is the Laplace operator, u is the displacement
vector, ν is the Poisson ratio, E is Young’s modulus, and G is the shear modulus; the Lamé
constants are λ = νE/(1 + ν)(1 − 2ν) and μ = G = E/2(1 + ν).

It is possible to prove that two types of waves propagate at different speeds in an
infinite solid medium. Accordingly, it is possible that any vector field can be presented
from the vector analysis as a summation of two vectors—one with a scalar potential and
the other with a vector potential:

u = ul + ut = gradϕ + rotψ (4)

where ϕ is the vibration velocity potential, ut is the transversal displacement vector, and
ul is the longitudinal displacement vector. It can be noted that rotul = divut = 0. Sub-
stituting Equation (4) into Equation (3) and applying the rotation (curl) and divergence
operations, the equation converts to:

∂2ul/∂t2 − c2
l ∇2ul = 0; cl =

√
(λ + 2μ)/ρ (5)

and
∂2ut/∂t2 − c2

t ∇2ut = 0; ct =
√

μ/ρ (6)

where ct is the transversal wave speed and cl is the longitudinal wave speed.
The abovementioned equations describe the propagation of elastic waves for an

unbounded solid. However, if the propagation of elastic waves on the solid surface is
considered, the equations should be expanded. These are called Rayleigh equations [36]
and are obtained by substituting Equation (7) into Equation (5) and Equation (8) into
Equation (6):

ul = Ae−
√

k2
s−k2

t ye−jksx (7)

ut = Be−
√

k2
s−k2

t ye−jksx (8)
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where ks = ω/cs and kt = ω/ct. The elastic properties of the materials used in this study
are shown in Table 1:

Table 1. Elastic properties of specimen materials [35].

Material Density ρ, 103kg/m3
Velocity of Wave Propagation c, 103m/s

Longitudinal Transversal Surface

Aluminum 2.7 6.35 3.08 2.80
Stainless Steel 8.03 5.73 3.12 2.90

AISI 1040 7.80 5.92 3.28 3.01

2.3. Significant Equations for the Principle of Piezoelectric Sensors

In this study, the piezoelectric principle is used for sensing acoustic waves. In [37],
the constitutive and governing equations of this principle for detection and actuation are
discussed extensively. Here, we will focus on the equations significant to a piezoelectric
sensor. The direct piezoelectric effect, which makes the sensing applications of dynamic
signals (including acoustic wave signals) possible, is the ability of some crystalline materials
to generate an electrical charge in proportion to the applied mechanical disturbance.

As shown below, the constitutive equations for a sensor made of a one-dimensional
piezoelectric material are [37]:

S = sET + d33E (9)

D = d33T + εTE (10)

where S and D (Coulomb/m2) are the strain and electric displacement, respectively; sE is the
compliance; T (N/m2) is the stress; E (V/m) is the electric field; d33 (m/V or Coulomb/N)
is the piezoelectric constant; and εT is the dielectric constant.

Parameters T and E are independent variables, while S and D are dependent variables
in Equations (9) and (10). If the equations are rearranged such that E and S are independent
and T and D are dependent, they take the form of:

T = −d33

sE E +
1
sE S (11)

D =

(
1 − d2

33
sEεT

)
εTE +

d33

sE S (12)

T = −e33E + cES (13)

D =
(

1 − k2
)

εTE + e33S (14)

In these equations, e33 = d33/sE (C/m2) is the product of d33 by the Young modulus,
cE = 1/sE (N/m2). The parameter k is called the electromechanical coupling factor and can
be defined as:

k2 =
d2

33
sEεT =

e2
33

cEεT (15)

The conversion of mechanical disturbance to electrical current or applied electric cur-
rent to mechanical response is evaluated by this parameter. From Equations (13) and (14),
the dielectric constant under zero strain can be seen as εT(1 − k2). If a sensor is stacked, it
is possible to obtain the constitutive equations by integrating Equations (13) and (14) over
the volume.

Δ =
1

Ka
f + nd33V (16)

Q = CV + nd33 f (17)

f = −nd33KaV + KaΔ (18)
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Q = C
(

1 − k2
)

V + nd33KaΔ (19)

The following applies to Equations (17) and (19). f is the total force (mechanical
disturbance), which is equal to A·T. Q is the total electric charge on the electrodes of the
sensor and is equal to nA·D—where n is the number of elements, and A is the cross-sectional
area. Δ = Sl is the total extension, where l = nt is the sensor length. C is the capacitance
of the sensor (C = εT ·A·n2/l), and Ka is the stiffness (Ka = A/sEl). V is the voltage applied
between the electrodes of the sensor. The electromechanical coupling factor can be written
with the n, Ka, and C parameters as:

k2 =
d2

33
sEεT =

n2d2
33Ka

C
(20)

Subsequently, Equations (18) and (19) can be inverted and rewritten as:

V =
1

C(1 − k2)
(Q − Kand33Δ) (21)

f =
Ka

1 − k2

(
−nd33

C
Q + Δ

)
(22)

It can be seen from Equations (21) and (22) that the stiffness with open electrodes
(Q= 0) is Ka/1 − k2, and the capacitance for a fixed geometry (Δ = 0) is C(1 − k2). For large
k values, the stiffness changes significantly with the electrical boundary conditions, while
the capacitance depends on the mechanical boundary conditions.

If a discrete sensor is subjected to a mechanical disturbance, such as a force with an
amplitude of f, the total power transmitted to the sensor is the sum of the mechanical ( f

.
Δ)

and electric (Vi) power. Thus, the network can be written in the differential form as:

dW = Vidt + f
.
Δdt = VdQ + f dΔ (23)

For a conservative element, Equation (23) is converted into a stored energy equa-
tion. Equation (24) is obtained by integrating this equation from the reference state
to the final state and by substituting the equivalents of f and V in the corresponding
Equations (21) and (22) to obtain the analytical expression of stored electromechanical
energy for a piezo sensor.

We(Δ, Q) =
Q2

2C(1 − k2)
− nd33Ka

C(1 − k2)
QΔ +

Ka

1 − k2
Δ2

2
(24)

The first term of Equation (24) is the electrical energy stored in the capacitance
C
(
1 − k2). The second term is the piezoelectric energy, and the last term is the elastic

strain energy stored in spring stiffness as Ka/
(
1 − k2).

Up to this point, the equations are defined for a one-dimensional sensor. For more
complicated applications, generalized equations must be addressed. Consequently, the
constitutive equations of the general piezoelectric material are [37]:

Tij = cE
ijklSkl − ekijEk (25)

Di = eiklSkl + εS
ikEk (26)

In Equations (25) and (26), εS
ik is the dielectric constant under constant strain,

eikl (Coulomb/m2) is the piezoelectric constant, cE
ijkl is Hooke’s tensor, Tij is the stress

tensor, and Skl is the strain tensor.
In these equations, classic tensor notations are used, in which all indices (i, j, k, l = 1, 2,

3, 4) and all repeated indices are summarized. Equations (25) and (26) are the generalized
forms of Equations (13) and (14). Similar to the transition from Equations (9) and (10) to
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Equations (13) and (14), the dependency of the parameters can be shifted, and
Equations (25) and (26) can be rewritten as:

Sij = sE
ijklTkl + dkijEk (27)

Di = diklTkl + εT
ikEk (28)

where dikl is the piezoelectric constant (Coulomb/N), εT
ik is the dielectric constant under

constant stress, and sE
ijkl is the tensor of compliance under a constant electric field.

The required engineering vector notations can be used instead of tensor notations:

T =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T11
T22
T33
T23
T31
T12

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
S =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S11
S22
S33

2S23
2S31
2S12

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(29)

With these changes, Equations (25)–(28) can be rewritten in matrix form:

{T} = [c]{S} − [e]{E} (30)

{D} = [e]T{S}+ [ε]{E} (31)

{S} = [s]{T}+ [d]{E} (32)

{D} = [d]T{T}+ [ε]{E} (33)

In Equations (32) and (34), the superscript T indicates the transpose of the matrix, and
for the sensing applications, the explicit form of Equation (33) is:

⎧⎨⎩
D1
D2
D3

⎫⎬⎭ =

⎡⎣ 0 0 0 0 d15 0
0 0 0 d24 0 0

d31 d32 d33 0 0 0

⎤⎦
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T11
T22
T33
T23
T31
T12

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎡⎣ε11 0 0
0 ε22 0
0 0 ε33

⎤⎦ ⎧⎨⎩
E1
E2
E3

⎫⎬⎭ (34)

2.4. Experimental Setup

A schematic of the experimental setup is shown in Figure 3a. The experiment is
performed on six specimens comprising three materials and two surface treatments for
each material: one milled and one ground aluminum specimen; one milled and one ground
AISI 1040 specimen; and one lathed and one milled stainless-steel specimen. The geo-
metric forms of the test specimens are rectangular prismatic, and their dimensions are
60 × 60 × 10 mm. The surface roughness measurement device used in the experiment
is the Mahr Perthometer M2, and a piezo disk with a diameter of 35 mm is placed on
each sample, as shown in Figure 3b. The radius of the profilometer stylus tip used for
surface roughness measurements is rtip = 2 μm. The measurement distance (λt) of the
diamond tip of the Mahr M2 device is set to 17.5 mm; the cutoff distance (λc) is set to
2.5 mm. By subtracting the cutoff length (λc) from the start and end of the total mea-
surement distance (λt), the resulting final distance provides the measurement result. The
obtained final distance is the one used in the roughness measurement result parameters.
For this reason, cutoffs are made proportionally to the first and last parts of the raw sound
signal vectors.
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(a) (b) 

Figure 3. Photograph (a) and schematic (b) of the experimental setup.

The piezo disk is connected to the computer through an AUX cable, and surface
roughness profile graphics are digitized. Using Audacity software, the piezo disk is
detected as a microphone. While the diamond tip of the Mahr M2 is moved on the specimen
to measure the Ra and Rz parameters, a sound recording was simultaneously initiated, and
the friction sound of the diamond tip moving on the specimen was recorded. The main
purpose here is to make the sounds of friction and crackling—which are barely perceptible
to the human ear—into interpretable signals using the ability of the piezo transducers to
detect very low-pitched signals or low amplitude vibrations as certain voltage values.

The Mahr Perthometer M2 surface roughness measuring device performs the rough-
ness measurement by moving the diamond tip forward and backward on the sample.
While the forward motion speed is constant, the backward return speed can be adjusted
in three stages. For the sound data to be evaluated accurately, the sound occurring at all
operating speeds of the device is recorded and analyzed. The sampling frequency for all
audio data is 44,100 Hz. Frequency spectrum data of each vector are created separately.
Subsequently, the obtained surface roughness profile data, sound recording vector data,
and voice recording spectrum data are all imported into the software.

3. Results

In the experiments, the Ra and Rz parameters and the surface roughness profiles are
obtained from the Mahr M2 device, while the original audio raw signal (Ars), audio power
spectrum (Aps) parameters, and power spectrum plots are created using the recorded sound
data from the piezo acoustic sensor. Ars and Aps parameters are calculated from the raw
sound data and power spectrum data based on the Rz Equation (2). The parameter values
are presented in Table 2:

Table 2. RMS, Ars, Aps, values of acoustic measurements; Ra and Rz values of surface
roughness measurements.

Aluminum
(Milled)

Aluminum
(Ground)

Stainless Steel
(Milled)

Stainless Steel
(Lathed)

AISI 1040
(Milled)

AISI 1040
(Ground)

Sound RMS 3.6027 1.0279 1.2262 1.3868 0.8783 0.8085
Ra (μm) 1.106 0.20 0.984 3.404 3.359 1.903
Rz (μm) 6.50 2.56 5.26 14.30 20.10 14.80

Ars 28.3730 8.0338 27.5645 33.7739 19.8591 18.3818
Aps 11.2109 9.4554 30.3371 39.7898 32.8009 24.7656

An investigation of the roughness profiles for the aluminum specimens (Figures 4 and 5)
showed that there are no sudden fluctuations on the milled surface. However, on the
ground surface, although the smoothness of the surface profile seemed to be preserved
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throughout the measurement length, sudden discontinuities were found in the two small
regions. Accordingly, when a parameter comparison is made between the milled surface
and the ground surface, the increase in milled surface values is found to be 5.53 times
in the Ra parameter and 2.56 times in the Rz parameter. Therefore, it is confirmed that a
more sensitive value is obtained with the Rz parameter, and the results obtained in acoustic
measurements are compared with this parameter.

 

Figure 4. Surface roughness profile: aluminum–milled surface.

Figure 5. Surface roughness profile: Aluminum-ground surface.

The audio power spectrum of the aluminum specimen is provided in Figure 6. From
this point on, for all audio recordings, the sampling frequency is 44,100 Hz. The local
maxima values for this specimen are observed between 800 Hz and 5000 Hz. Legend
abbreviations and corresponding sampling time values are provided in Table 3. If the
shortest sampling times are considered during the return stroke of the device tip, the
frequency response is largely similar in form for both the milled and ground surfaces, but
the amplitudes are different. Additionally, it is determined that the amplitude values of the
audio are inversely proportional to the length of the sampling time for all measurements.
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Figure 6. Piezo acoustic measurement frequency spectrum of the aluminum specimen (frequency
resolution: 50 Hz).

Table 3. Power spectrum plot legend abbreviations and corresponding sampling time values.

Legend Specimen Stroke-Speed Machining Operation Sampling Time, Sec

Al-fwd-ml Aluminum Forward–Standard Milling 55
Al-bwd-ml Aluminum Backward–Standard Milling 48
Al-bwdf-ml Aluminum Backward–Fast Milling 12.3
Al-bwds-ml Aluminum Backward–Slow Milling 35.3
Al-fwd-gr Aluminum Forward–Standard Grinding 55
Al-bwd-gr Aluminum Backward–Standard Grinding 47.5
Al-bwdf-gr Aluminum Backward–Fast Grinding 12
Al-bwds-gr Aluminum Backward–Slow Grinding 35.4
SStl-fwd-ml Stainless Steel Forward–Standard Milling 56.5
SStl-bwd-ml Stainless Steel Backward–Standard Milling 48
SStl-bwdf-ml Stainless Steel Backward–Fast Milling 12.3
SStl-bwds-ml Stainless Steel Backward–Slow Milling 35.7

SStl-fwd-lt Stainless Steel Forward–Standard Lathing 52.5
SStl-bwd-lt Stainless Steel Backward–Standard Lathing 46
SStl-bwdf-lt Stainless Steel Backward–Fast Lathing 12
SStl-bwds-lt Stainless Steel Backward–Slow Lathing 34
1040-fwd-ml AISI 1040 Forward–Standard Milling 60
1040-bwd-ml AISI 1040 Backward–Standard Milling 50
1040-bwdf-ml AISI 1040 Backward–Fast Milling 14.5
1040-bwds-ml AISI 1040 Backward–Slow Milling 35.5
1040-fwd-gr AISI 1040 Forward–Standard Grinding 62
1040-bwd-gr AISI 1040 Backward–Standard Grinding 48
1040-bwdf-gr AISI 1040 Backward–Fast Grinding 12.5
1040-bwds-gr AISI 1040 Backward–Slow Grinding 35.5

An investigation of roughness profiles for the stainless-steel specimens (Figures 7 and 8)
shows that no significant discontinuity is detected on either the milled or lathed surfaces.
However, a small deviation and an increase in profile amplitude are observed from the
4 mm point on the milled surface. Thus, compared to the 3.459 times increase in Ra values,
4.201 times increase in the value of Rz is determined. Therefore, it can be deduced that the
sensitivity of the parameters does not create a serious issue for these specimens.
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Figure 7. Surface roughness profile: Stainless steel-milled surface.

Figure 8. Surface roughness profile: Stainless steel–lathed surface.

The audio power spectrum of the stainless-steel specimen is provided in Figure 9.
The variation between the milled surface and lathed surface values appears as a shift in
the frequency spectrum. The frequency response for the milled surface shows two steps
between 700–2000 Hz and 2000–3200 Hz; for the lathed surfaces, there are three steps
between 700–1250 Hz, 1250–2000 Hz, and 2000–3200 Hz. The local maxima, as the signal
strength for the lathed surfaces, are between 700–1250 Hz.
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Figure 9. Piezo acoustic measurement frequency spectrum of the stainless steel specimen (frequency
resolution: 50 Hz).

An investigation of roughness profiles for the AISI 1040 specimens (Figures 10 and 11)
shows that considerable discontinuities are detected on both the milled surface and the
ground surfaces in terms of surface quality. This situation creates large variations between
Ra and Rz values, especially for the same machining operation. When considering these
differences, it was determined that the Ra parameter, in particular, does not provide
sensitive values for this specimen.

Figure 10. Surface roughness profile: AISI 1040–milled surface.
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Figure 11. Surface roughness profile: AISI 1040–ground surface.

The audio power spectrum of the AISI 1040 specimen is provided in Figure 12. The
frequency response for the ground surface spans a wide bandwidth and is observed
between 700–1200 Hz, 1200–2000 Hz, and 2000–3000 Hz. The frequency response for the
milled surface shows a unique amplitude spike, unlike other specimens, at approximately
7000–8000 Hz.

 
Figure 12. Piezo acoustic measurement frequency spectrum of the AISI 1040 specimen
(600–10,000 Hz) (Frequency Resolution: 50 Hz).

4. Discussion

Piezo acoustic data obtained for all samples and production operations were evaluated
in three stages: a parametric analysis, a power spectrum analysis, and finally, a comparative
analysis with standard parameters. The RMS and Ars acoustic surface roughness parameters
obtained within the scope of the first stage provided accurate information, especially about
the surface quality obtained with different production methods of the same material. These
parameters guided the other stages by taking lower values on the smoother surface for all
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materials. Then, sound power spectrum graphs, including all sampling rates, materials, and
production methods, were produced. The power spectrum of the aluminum sample showed
a frequency response compatible with the surface roughness profile obtained by standard
measurements of the same material. In this graph, it is determined that the smoother
surface creates a low-intensity signal strength and the signal strength increases when the
surface roughness increases. When stainless-steel samples are examined, it is seen that the
greatest difference between the lathed and milled surfaces is the difference in frequency
responses. It is clear that this situation is due to the very tight formation of the hills and
pits, especially on the lathed surface. Due to the aforementioned tight formation, the timbre
and the frequency of the sound were increased in the sound recordings taken from that
surface, and this was determined as the frequency shift in the power spectrum graph. This
result was shown in the power spectrum graph together with the roughness profile graphs,
where the surface quality of the AISI 1040 material is problematic. Unlike other materials,
the surface condition showed sudden “spikes”, even around 7000 Hz. When considering all
these results, it can be seen that an examination of the power-dependent power spectrum
graphs will provide as much information as the profiles obtained by the traditional method,
including the information related to the maximum and minimum values of the peak and
trough values, as well as the frequency axes in the power spectrum graphs. It has been
observed that it can be obtained by working on it. The Aps value obtained from the sound
power data of the system also obtained a numerical value comparable with the Rz value
among all materials depending on the correction parameters, the material density, and
the surface speeds, especially for the horizontal material on the horizontal axis, whether
compact compression for stainless steel or irregular compression for AISI 1040. A surface
roughness value with high sensitivity, including spreading information, has been reached.
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Abstract: Concrete-filled steel tubes (CFSTs) are structural elements that, as a consequence of an
incorrect elaboration, can exhibit internal defects that cannot be visualized, being usually air voids.
In this work, the detection of internal damage in CFST samples elaborated with a percentage of
contained air voids in concrete, was carried out by performing a complete ultrasound scan using
an immersion tank. The analysis of the ultrasound signals shows the differences presented in the
amplitude of the fundamental frequency of the signal, and in the Broadband Ultrasound Attenuation
(BUA), in comparison with a sample without defects. The main contribution of this study is the
application of the BUA technique in CFST samples for the location of air voids. The results present
a linear relationship between BUA averages over the window of the CFSTs and the percentage of
air voids contained (Pearson’s correlation coefficient r = 0.9873), the higher percentage of air voids,
the higher values of BUA. The BUA algorithm could be applied effectively to distinguish areas with
defects inside the CFSTs. Similar to the BUA results, the analysis in the frequency domain using the
FFT and the STFT was sensitive in the detection of internal damage (Pearson’s correlation coefficient
r = −0.9799, and r = −0.9672, respectively). The results establish an improvement in the evaluation of
CFST elements for the detection of internal defects.

Keywords: nondestructive evaluation; ultrasound; Broadband Ultrasound Attenuation; concrete-filled
steel tubes

1. Introduction

The use of Concrete-Filled Steel Tubular (CFST) columns is a popular solution for high
rise buildings, in modern bridges, sports stadia, towers, and offshore structures [1]. A CFST
column is formed by infilling concrete into a hollow steel tube. The steel tube confines the
concrete core and provides a permanent formwork, and the concrete core avoids or delays
the local buckling of the steel tube. This combination enhances the structural behaviour of
both materials increasing the strength capacity, ductility, and fire resistance of the column
which leads to reduced sections and more usable floor area and thus the economic benefit
of the building [2]. In addition, CFSTs are fast to erect, and it is possible to work in different
levels at the same time due to concrete can be infilled pumping from the bottom. In addition,
B.K. Oh et al. [3] demonstrated that CFSTs are more sustainable, in terms of CO2 emissions
than other traditional solutions. Many studies were carried out on CFST columns subjected
to concentric load, eccentric load, impact load [4], stiffened with V-shaped grooves [5], with
internal stiffeners [6], or with outer annular stiffener [7], and the behavior of this type of
structural elements are well-known. In contrast, a reduced number of studies were carried
out to measure the importance of the imperfections in CFST columns.
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Two materials are used in CFST columns, and both are prone to imperfections. Imper-
fections in steel tubes due to the manufacturing process affect the local and global buckling
of the columns. In CFST columns, the influence of the concrete core reduces these effects [2].
In concrete, the main problems are related to the influence of concrete compaction during
execution, corrosion of steel, working loads, and changes in temperature. Two recent works
studied the detection of cracks due to steel corrosion in reinforced cement mortar, one by
means of a correlation of the nonlinear elastic features of ultrasonic waves with the critical
events of the corrosion [8], and another through intermodulation generation of ultrasonic
waves [9]. Some of the typical defects in CFSTs are internal voids and separations between
steel and concrete that can be regional or complete. Main defects in the form of spherical
gaps between concrete core and steel tube make a negative effect on the confinement
contribution causing a decrease of compressive strength of CFSTs by almost 2–14% [10–13]
compared with a healthy specimen, creating a partially confined effect between concrete
and steel, that the compressive strength of the CFST is similar to the one of concrete without
steel. Air voids located through the matrix of concrete in CFSTs minimize the mechanical
contribution of concrete and affect it similarly as the percentage of porosity does, making a
decrease of compressive strength when the percentage of porosity increases [12]. Experi-
ments in CFSTs with simulated air voids [14] show an increase in buckling deformation
compared to a healthy specimen, and a reduction in its ultimate compressive load and
ductility. For this reason, the prevention of failures through the detection of defects is of
great importance in the elaboration of CFST elements, and existing structures using CFSTs.
A new ultrasonic index were proposed by Chao G. et al. [15,16] to determine the influence
of air-void on the final strength of the arch bridge rib of CFST; however, the work did not
study the presence of air voids inside the concrete.

CFSTs have the inconvenient that internal defects in concrete cannot be visualized. An
approach to detect internal defects is the analysis of ultrasound signals in the time-frequency
domain, using several methods such as Fast Fourier Transform [17–19], Short-Time Fourier
Transform [20,21] or Wavelet Transform [22,23]. Analyzing the spectra of frequencies of
ultrasound signals helps in the detection of internal flaws and composition of materials since it
is difficult to make a good comparison and a characterization of the ultrasound signals in the
time domain in highly attenuated materials, such as concrete. The evaluation of ultrasound
signals in the frequency domain to detect damage in concrete is mainly applied since there is
a more sensitive change in amplitudes of the signals, attenuation, and energy of harmonics
than in the ultrasonic pulse velocity method (UPV), when internal damage (small inclusions,
internal voids and cracks) is presented in concrete [22,24]. Evaluation in the frequency domain
using the Fast Fourier Transform of ultrasound signals in concrete with internal cracks
made by induced damage shows in [19] that a decrease in the energy of the fundamental
harmonics appears to be compared to the analysis of ultrasound signals in locations of the
same specimen without damage. In addition, in [18] showed that the energy spectra of
the fundamental frequency of signals in damaged concrete induced by compression tests
decreased significantly compared to the healthy elements, although UPV remained with
almost the same values. In experimentations evaluating concrete with induced porosity
by freeze-thaw cycling and salt-scaling in [17], UPV decreased just 3–9% compared to a
healthy specimen, and values of the amplitude of the fundamental harmonic, evaluating
the spectrum of the Fourier Transform, resulted in a more sensitive parameter than a change
of UPV, presenting higher values of energy of the fundamental frequency of ultrasound
signals through healthy concrete specimens than in damaged ones.

Analysis of ultrasound signals through the Wavelet Transform decomposes the signal
into a specific wave-like oscillation (wavelet), different from the Fourier Transform that
makes a decomposition of the signal into sine waves of different frequencies. Short-Time
Fourier Transform and Wavelet Transform are usually applied in pulse-echo technique,
since the detection of echoes caused by internal flaws, when ultrasound signals are sub-
merged in noise, can be done evaluating the signals in the time-frequency domain [25].
Even though, an investigation of interest [23] of a concrete structure with holes located in
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different depths, demonstrated that the UPV, using the through-transmission technique,
does not have a linear relation of the size of the internal hole, since the time of flight of
the ultrasonic pulse of the signals traveling through an internal hole were similar to the
ones in the intact concrete, but there was a clear difference in the location in time and
amplitude of the energy of the fundamental frequency evaluating the received signal in the
time-frequency domain using a combination of the Short-Time Fourier Transform and the
Wavelet Transform, called S Transform. Similar results were obtained in a simulation study
carried out by Nadom K. et al. [26]. The detection of damage and its size is subject to the
change in the colour scheme of the STFT spectrogram. The resultant images show that the
increase in the frequency of the excitation signal gives better results.

Broadband Ultrasound Attenuation (BUA) is a physically meaningful way of obtain-
ing attenuation of material as the slope of the linear regression over a certain range of
frequencies. BUA was introduced initially by Langton et al [27], applied in medical experi-
mentations to determine the effects of attenuation, scattering, and porosity of cancellous
bones. The BUA is obtained by measuring the difference of the spectra of an ultrasonic
wave transmitted through reference material, such as water, and through the material
to be analyzed [28]. The difference of both spectra results in an attenuation versus fre-
quency curve, being the BUA the slope of this curve in a certain range of frequency. As R.
Strelitzki et al. [29] mentioned, a certain range of frequencies could be selected for the BUA
regression slope, usually a range between 200 kHz to 1MHz, depending on the fundamental
resonant frequency of the transducer used, being in most of the case the selected range of
frequencies the one that best fits a linear regression. Even though it is possible that different
materials have similar BUA values, this parameter can be used to do a comparison between
healthy and unhealthy samples.

BUA parameter is commonly used in experimentations in the field of bioengineering
applied to identify properties of bones [30] as differences between healthy bones and cancel-
lous bones [31–33], and relationships between BUA parameter and porosity of bones [34],
but there are some references of experimentations done in other materials. J.B Hull et al. [35]
made an important approach of BUA applied in the identification of polymer materials and
porosity of ceramics. In this experimentation, they performed a relation of the attenuation
versus frequency regression slope (BUA) with the time of flight of the ultrasound signal
through the material to obtain Hull/Langton index (HL), used to make a comparison with
porosity in ceramics measured with hydration test, resulting in a linear relationship of HL
index increasing as the percentage of porosity in ceramics does. BUA is shown in [36] that
can be applied in the same way for detection of defects (as drill holes) in aluminum bars
making an interesting approach on how BUA has higher values when a material is analyzed
in a fully drilled area than in an area with smaller drill holes, applied with both pulse-echo
and through-transmission methods. A comparative result [37] in mortars with different
degrees of porosity demonstrated that mortars with a higher percentage of porosity have
higher regression slope values (BUA) in the attenuation versus frequency curve for a certain
range of frequencies (between 1.5 to 1.7 MHz) than mortars with less percentage of porosity.
Although the degree of porosity cannot be obtained from BUA results, there is an approach
about how BUA values allow differentiating between an element that has a percentage
of damage.

Based on the studies presented, there is a knowledge gap about the effectiveness of
the different analysis methods that can be applied to the existing ultrasound techniques
for the detection of damage, specifically air voids inside the concrete matrix of CFSTs. The
objective of this study is to measure possible internal defects in the concrete. In this line,
CFST stub columns with internal defects were manufactured including random inclusions.

The remainder of this paper is organized as follows. Section 2 describes the preparation
of samples, the experimental setup, and the algorithms employed to detect internal damage
in CFSTs. Section 3 describes the results and the discussion. Finally, Section 4 offers the
conclusions of this research and suggestions for the future.
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2. Materials and Methods

2.1. Preparation of Samples

In this work, a total of 5 CFST stub columns were tested to detect internal imperfections.
All these columns were manufactured in the laboratory of the Department of Mechanical
Engineering and Construction of the Universitat Jaume I in Castellón, Spain. The columns
were 300 mm in length with a nominal cross-section of the tubes (height (h) × width (b)
× steel thickness (t)) 100 × 100 × 4 mm (see Figure 1). The steel tubes were cold-formed
carbon steel and supplied by the same manufacturer. The nominal yield strength of the
tubes was S275JR.

Figure 1. CFST stub columns.

Air voids were simulated using a certain amount of expanded polystyrene beads with
a volume of 25 mm in diameter. This material is conformed to 98% of air, for this reason,
expanded polystyrene pieces in the concrete can be simulated as internal air voids. The
percentage of voids for each CFST is 0%, 1%, 2%, 3% and 4%. The approximate number of
air voids can be estimated with the previous information, as seen in Table 1.

Table 1. Approximate number of added polystyrene beads.

Percentage of Air Voids Polystyrene Beads

0% 0

1% 3

2% 6

3% 9

4% 12

Elaboration of concrete, fully described in [38] (proportions, Table 2), was done using a
planetary mixer to prepare the concrete mix. Concrete and polystyrene pieces were poured
in steel tubes by stages using a vibrator rod to compact concrete correctly. A concrete
specimen was used to obtain the values of the characteristic resistance. Concrete and CFSTs
were standardly cured for 28 days covered with wet clothes, then external surfaces were
treated to have a proportional dimension.

Table 2. Concrete mix proportions.

Infill Proportions

Cement (kg/m3) 348

Water (l/m3) 220

Sand (kg/m3) 1065

Gravel (kg/m3) 666
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2.2. Experimental Setup

The through-transmission technique was used to perform a 2D scan of the specimens
in an immersion tank. Figure 2 shows a controlled arm used to correct alignment between
the transducers and the specimens and to scan them without changing the distance emitter-
receiver. Taking into account the compromise of the attenuation of waves with the frequency,
immersion transducers with a central frequency of 1 MHz (0.5”-V303) were selected. The
transducer with a smaller diameter was used to increase the resolution in the 2D scan.
The maximum voltage registered by the receiver was obtained by rotating the transducers
on their vertical and horizontal axis. The distance from the emitter transducer to the
CFST samples was set to avoid near-field effects. In this case, the separation was 30 mm.
The receiver was positioned at 50 mm from the CFST sample to prevent reflections from
interfering with the recorded signal. The edge of the transducer was aligned to the lateral
edge of the CFST samples, as shown in Figure 3. The ultrasonic device was programmed to
perform measurements every 2 mm in the two dimensions of the movement.

An ultrasonic testing device with integrated pulser and receiver was employed (OP-
BOX 2.1). A maximum voltage of 360 V was set and the gain pre-amplifier of +24 dB was
used. An analog filter of 0.5–25 MHz was applied. Signals were acquired with a sampling
frequency of 100 MHz, and an averaging of 64 samples was set.

Transducer Receiver

Ultrasonic Generator
and Receiver

Computer

CNC Robotic
Scanning
System

Immersion Tank

CFST Sample

Figure 2. Experimental setup.

Figure 3. Schematic path of transducers during the scanning process. The gray circles represent the
diameter of the transducers. The arrows show the directions of movement of the same.
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2.3. Computational Algorithms
2.3.1. Fast Fourier Transform and Short-Time Fourier Transform

Transformation of the signals in the frequency domain was done using the Fast Fourier
Transform (FFT) algorithm in Matlab (R2018b, The MathWorks Inc., Natick, MA, USA). To
prevent leakage and aliasing, 8192 signal points were employed.

Short-time Fourier transform (STFT) is a sequence of Fourier transforms of a windowed
signal. STFT provides the time-localized frequency information for situations in which
frequency components of a signal vary over time. STFT algorithm of an ultrasound wave
signal s(t) can be written as,

S(τ, ω) =
∫ +∞

−∞
s(t)θ(t − τ)e−iωt dt (1)

where θ(t − τ) is the window function with time and duration, τ is the time resolution,
and ω is the radial frequency. Here, a 512-point Hamming window with 50% overlap was
employed. The spectrogram allows to represent the signal in the time-frequency domain
and evaluate the evolution of the frequencies of the signal over time to detect, in a more
precise way, differences between ultrasound signals as its phase velocity and the energy
spectrum of the fundamental frequency emitted by the transducer.

In STFT analysis, there exists a tradeoff between time and frequency resolution when
determining the window size. In other words, although a narrow-width window results
in a better resolution in the time domain, it generates a poor resolution in the frequency
domain, and vice versa.

2.3.2. Broadband Ultrasound Attenuation Analysis

The attenuation parameter to compare intact and damaged structures was obtained by
comparing the frequency spectrum of the transmitted signal through a reference material
that does not contain defects or has low attenuation and the spectrum of the analyzed
specimen to be characterized (Figure 4). In this work, degassed water was used for
reference signal.
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Figure 4. Representation of frequency spectra of reference material (degassed water) and CFST
sample (dashed line).

Attenuation at a certain frequency is the difference between the amplitudes of both
spectra, the reference material, and the characterized material [29]. Therefore, to obtain the
attenuation parameter, the subtraction of the absolute values of the spectra of the reference
material (VR), obtained from the FFT, and the absolute values of the spectra of the material
to be characterized (VS) should be obtained as,

α = 20 · Log10|VR| − 20 · Log10|VS| (2)
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where α is the attenuation.
The BUA parameter was determined by fitting the attenuation values within a selected

frequency range to a straight line (Figure 5) as follows,

α = a + BUA · f (3)

where f is the frequency in MHz and a is the intersection value of the curve with the
vertical axis. The range of frequencies to obtain BUA regression slope highly depends on
the fundamental resonant frequency of the transducers used, in this case, the transducers
used were 1 MHz. The range of frequencies to obtain BUA rate was from 0.95 MHz to
1.1 MHz (see Figure 5) because it is the range of frequencies around the fundamental
frequency of the transducer and that the variation of the attenuation as a function of
frequency has a linear behavior.
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Figure 5. Example of the attenuation versus frequency curve (black solid line) with regression slope
(red solid line).

3. Results and Discussion

3.1. FFT and STFT C-Scan Results

The FFT algorithm was applied to the received signals of the 5 CFST samples, and
a C-Scan was obtained evaluating the amplitude of the fundamental harmonic of every
signal. Results in Figure 6 present a clear difference of the energy spectrum of the signals
in the CFST samples according to the percentage of air voids contained.

As shown in Figure 6, a decrease in the amplitude of the fundamental frequency is
exhibited on the sides of the CFST samples, compared with values at the center of the CFST.
This drop in energy is given due to the high attenuation of the signals in this area since
part of the energy from the transducer travels through the water. As the transducer moves
away from the edges this effect disappears.

Average of the fundamental harmonic amplitudes, excluding the lateral part of the
CFST sample (30 mm on each side) (see Figure 7) shows a decrease of the amplitude
of the fundamental harmonic energy as the percentage of air voids contained in the
CFSTs increments.

From the obtained result of the fundamental harmonic amplitude averages over the
window of the CFST samples, it is shown that the average energy value decreases as the
percentage of polystyrene beads increases.

Similarly, the algorithm of STFT was applied to the signals of the 5 CFST samples
using the parameters described previously. The C-Scan was performed evaluating the
highest value of the energy spectrum, close to 1 MHz.
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Figure 6. C-Scan of fundamental harmonic amplitudes using FFT for the five CFST samples.
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Figure 7. Fundamental harmonic amplitude averages over the window of the CFST samples using
the FFT algorithm. The solid black line is a linear fit of the data. Pearson correlation coefficient
r = −0.9799.

Although similar results are presented in Figure 8, in comparison with the use of the
FFT algorithm, they present some differences. As seen in the C-Scan, in the top and bottom
of the CFST, there is an increment in the amplitude of the fundamental frequency due to
the signals transmitted through steel. In addition, the range of the energy spectrum is
considerably less than the obtained using the FFT algorithm.

The results of the STFT analysis show, as with the FFT algorithm, a reduction in the
average value over the analyzed window as the percentage of gaps increases (Figure 9),
motivated by the fact that the ultrasounds when traveling through the polystyrene beads
reduce the amplitude considerably due to the difference in impedance between two media.

Assumptions of the areas of damaged concrete, due to air voids contained, could be
done. The air voids that are contained in the lateral parts of the CFST cannot be visualized,
since at these positions the wave travels through the CFTS sample and part through
the water.

The analysis in the frequency domain using the FFT and the STFT was sensitive in
the detection of internal damage. When transforming the signals in the frequency domain
using the FFT a decrease in the amplitude of the fundamental frequency was presented
if the signal travels through an air void. Similar results were displayed evaluating the
time-frequency energy spectrum using the STFT where a reduction of the level of energy
of the fundamental frequency was presented. C-Scan using previous algorithms allowed
to identify damaged areas in the CFST samples. Results were validated since the average
values of both C-Scan presented a decrease in the energy of the fundamental frequency as
the percentage of air voids increased. Several works presented in the literature to detect
internal defects in the time-frequency domain showed similar results, such as Fast Fourier
Transform [17–19], and Short-Time Fourier Transform [20,21]. Analyzing the frequency
spectrum helps in the detection of internal flaws and composition of materials since it is
difficult to make a good comparison and a characterization of the ultrasound signals in the
time domain in highly attenuated materials, such as concrete.
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Figure 8. C-Scan of the fundamental harmonic amplitudes using STFT for the five CFST samples.
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Figure 9. Fundamental harmonic amplitude averages over the window of the CFST samples using
the STFT algorithm. The solid black line is a linear fit of the data. Pearson correlation coefficient
r = −0.9672.

3.2. BUA C-Scan Results

First, from the obtained signals in the five different CFST samples, a comparison
between the attenuation versus frequency curves obtained from signals taken at the center
of the CFST sample was done. As shown in Figure 10, the linear regression can be applied
in the same range of frequencies (950 kHz to 1.1 MHz) to obtain a difference in the BUA
values that allow making a distinction between signals that pass through an air void, and
from signals passing through an intact area of the CFST.
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Figure 10. Attenuation versus frequency curve from ultrasound signals measured in the 5 CFST
samples. The square bracket indicates the frequency range in which the linear regression is performed.

From the previous result, it can be distinguished that, in the attenuation versus
frequency curves a higher slope (BUA) is presented in signals that travel through air voids
than in those that travel through the concrete. Therefore, a C-Scan of the BUA values was
performed to detect the damaged areas.

Results from the BUA C-Scan are presented in Figure 11. Quantification of results was
obtained with averages of the BUA parameter over the window of the CFST samples, and
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results were plotted against the percentage of air voids, as shown in Figure 12. Results,
although affected by the lateral parts of the CFSTs, present a linear relationship between
BUA and the percentage of air voids contained, the higher percentage of air voids, the
higher values of BUA.

Figure 11. C-Scan of BUA values in dB/MHz for the five CFST samples.
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Figure 12. BUA averages over the window of the CFST samples. The solid black line is a linear fit of
the data. Pearson correlation coefficient r = 0.9873.

Similar to frequency domain analysis results from the lateral parts of the CFST are
different from the values at the center of the CFST samples. For a better comparison of the
C-Scan, results excluding the lateral and upperparts that affect the range of BUA values
were analyzed (15 mm on each side, and 10 mm top and bottom were excluded), as seen in
Figure 13.

Damage can be detected in a more accurate way area in the CFSTs samples (Figure 13),
allowing to do an estimation of the location of the expanded polystyrene beads included in
the elaboration of the CFST samples. For that purpose, a damage detection algorithm was
programmed in Matlab environment. The algorithm performs a sweep over the entire C-
scan. In each of the positions, a circle of the diameter of the polystyrene beads is positioned.
A BUA threshold is established and if the average of the values inside the circle is greater
than the determined threshold, that zone is identified with an inclusion. The set threshold
was 240 dB/MHz, obtained through iteration to capture the estimated approximate number
of voids in each CFST sample (see Table 1). Figure 13 shows the reconstruction of the air
voids, which, in general, are aligned with the longitudinal direction of the samples, which
makes sense due to the introduction of a vibrator rod for sample compaction.

Results of analyzing the signal through BUA indicate that this method could be used
to detect defects inside CFSTs. The selected range of frequencies to analyze BUA was from
950 kHz to 1.1 MHz, which has a relation with the central frequency of the transducers used.
As mentioned by R. Strelitzki et al. [29] there is certain range of frequencies that could be
selected for the BUA regression slope, depending on the fundamental resonant frequency
of the transducer used, being in most of the case the selected range of frequencies the one
that best fits a linear regression. This frequency range was analyzed since more differences
were presented in the regression slope of the attenuation versus frequency curve if an
ultrasound signal travels through an area with defects. BUA averages over the window of
the CFST samples presented a linear increase with the percentage of air voids contained in
the sample. Similar results were found in mortars with different degrees of porosity [37],
mortars with a higher percentage of porosity have higher regression slope values (BUA) in
the attenuation versus frequency curve for a certain range of frequencies than mortars with
less percentage of porosity. Although the degree of porosity cannot be obtained from BUA
results, there is an approach about how BUA values allow differentiating between elements
with different percentage of damage. In addition, the work performed by Rosalba et al. [36]
showed that BUA has higher values when aluminum bars are analyzed in a fully drilled
area than in an area with smaller drill holes, applied with through-transmission methods.
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Figure 13. C-Scan of BUA values in dB/MHz at the center of the five CFST samples. The circles
represent the position of the air voids calculated by the proposed algorithm.

Results from Pearson’s correlation study were shown in Figures 7, 9, and 12. Pearson’s
correlation coefficient r = −0.9799 for the FFT study, r = −0.9672 for the STFT study,
and r = 0.9873 for the BUA study. Despite that the three studies show high correlation
coefficients, the BUA study is the one that shows the highest value (r = 0.9873). Despite
this higher correlation, the edge effects of the C-scans (left and right areas) in both the
FFT and STFT methods (Figures 6 and 8) mask information related to possible concrete
imperfections; however, with the BUA method (Figure 11) these edge effects are reduced,
obtaining more information in the mentioned areas.
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4. Conclusions

Concrete-filled steel tubes (CFSTs), formed by infilling concrete into a hollow steel tube,
are structural elements that can present internal defects such as air voids. In this work, the
nondestructive evaluation using the analysis of ultrasound signals in the frequency domain
was presented. The Fast Fourier Transform, Short-Time Fourier Transform, and Broadband
Ultrasound Frequency techniques were employed. The detection of internal damage was
carried out by doing a complete ultrasound C-Scan in the CFST samples using an immersion
tank. Five CFST stub columns were tested, which have a certain percentage of failure being
this 0%, 1%, 2%, 3% and 4%, based on the percentage of expanded polystyrene beads added
to the concrete specimen, simulating air voids, in comparison with the volume of concrete.
For the three proposed techniques, fundamental harmonic amplitude (FFT and STFT
techniques) or BUA averages over the window of the CFST samples were performed. The
results present a linear relationship between BUA averages over the window of the CFSTs
and the percentage of air voids contained (Pearson’s correlation coefficient r = 0.9873), the
higher percentage of air voids, the higher values of BUA. The BUA algorithm could be
applied effectively to distinguish areas with defects inside the CFSTs. Similar to the BUA
results, the analysis in the frequency domain using the FFT and the STFT was sensitive
in the detection of internal damage (Pearson’s correlation coefficient r = −0.9799, and
r = −0.9672, respectively). When transforming the signals in the frequency domain using
the FFT a decrease in the amplitude of the fundamental frequency, corresponding to the
central frequency of the transducer (1 MHz), was presented if the signal travels through an
air void. Similar results were displayed evaluating the time-frequency energy spectrum
using the STFT where a reduction of the level of energy of the fundamental frequency
was presented. In summary, the results of this investigation establish an improvement in
the evaluation of CFST elements for the detection of internal defects. As future research
works, based on the limitations of this work, a study of the samples is proposed using the
pulse-echo technique, to solve the inspection difficulties by requiring two accessible faces;
as well as 2D scanning with smaller diameter transducers to achieve higher resolution and
to be able to inspect defects at the edges between the concrete and the steel.
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Abbreviations

The following abbreviations are used in this manuscript:

CFSTs Concrete-filled steel tubes
BUA Broadband Ultrasound Attenuation
CFST Concrete-Filled Steel Tubular
UPV Ultrasonic pulse velocity method
HL Hull/Langton index
FFT Fast Fourier Transform
STFT Short-time Fourier transform
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Abstract: In this paper, the mesoscale damage properties of concrete and mortar were studied
experimentally under Brazilian disc splitting tensile tests combining X-ray computed tomography
(CT) and digital image correlation (DIC) technology. Considering the factors of water/cement ratios
and loading rates, the influence of meso components on the macro tensile properties and failure
modes of concrete were studied. The experimental results and analysis indicate that the following:
(1) the existence of coarse aggregate makes the tensile strength of concrete lower than that of mortar
and reduces the sensitivity of tensile strength to the loading rates; (2) the failure modes of mortar and
concrete Brazilian discs differ in the crack initiation positions and localization phenomena. Under
high loading rates, the local failure plays a critical role in the strength improvement of concrete;
(3) for concrete, interface failure and mortar failure are the main failure modes under low loading
rates, whereas aggregate failure gradually becomes the main failure mode with increasing loading
rates. The decrease in water/cement ratios improves the strength of the mortar matrix and interfacial
bonding performance, leading to more serious aggregate damage and higher strength.

Keywords: concrete; splitting tensile strength; X-ray CT technology; digital image correlation
technology; mesoscale damage

1. Introduction

Concrete, with a complex heterogeneous structure, is considered as a three-phase com-
position of cement mortar, aggregates, and interfacial transition zones at the mesoscale [1,2].
Unlike macroscopic analysis assuming a homogeneous material, the internal stress dis-
tribution of concrete is extremely intricate, resulting in the complexity and difference of
mesoscale damage distribution in the failure progress, which would considerably influence
the macro tensile performance [3].

On the macroscopic scale, splitting tensile tests (Brazilian disc tests) are the most
popular methods to determine the uniaxial tensile strength of concrete due to simple
preparation and easy operation [4,5]. In this method, the tensile stress is indirectly generated
by applying the radial compressive pressure perpendicular to the tensile direction [6,7].
Therefore, the compressive stress concentrations near the loading strip usually disturb the
distribution of horizontal normal tensile stresses. To ensure the validity of the experiments,
the initial splitting position and failure modes are of great concern, as the initial cracks
should appear in the center of the Brazilian disc specimens and propagate along the
diameter [8].

However, with the increase in loading rates, the macro tensile behavior of concrete
specimens usually changes significantly [9]. As generally recognized, there will be an ap-
parent increase in the tensile strength of concrete under higher loading rates [10]. Previous
studies usually proposed that the energy accumulation caused by insufficient time for
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internal crack development is the key reason [11], while abundant numerical simulation
results concluded that the viscosity effect of free water under high loading rates, as well
as the inertial effect derived from the dynamic response, cannot be ignored [12,13]. For
failure modes, the crack initiation of specimens tends to be well predicted under static
or quasi-static loading [14]. Conversely, it is difficult for specimens to reach the internal
stress balance under high loading rates, and the main failure modes are hard to ensure. The
first crack may appear at any position, followed by numerous multiple secondary cracks.
Finally, multiple parallel main cracks or fragment failure modes can be observed [15,16]. A
change in the failure pattern is usually attributed to the complexity of the stress distribution
or the stress concentration at the loading end in macro analysis [17], which ignores the
localization characteristics and stress redistribution in the fracture process [18]. In summary,
it is very difficult to accurately reveal the damage characteristics and truly understand the
behavior of concrete under dynamic tension on the basis of macroscopic damage analysis.
Thus, it is necessary to analyze the tensile failure process from a mesoscopic perspective
and explore the characteristics of mesoscopic damage to highlight the effect of different
mesoscopic phases on the strengthening tensile strength.

On the mesoscopic scale, the distribution and change in internal stress are closely
associated with the volume fraction, distribution, and interaction of the three phases (i.e.,
mortar, aggregates, and the interface) of concrete [19,20]. Currently, with the development
of the nondestructive testing technology, the damage characteristics of the three phases can
be extracted using various methods such as X-ray computed tomography (X-CT), scanning
electron microscopy (SEM), ultrasonic methods, and digital image correlation technology
(DIC). Among them, indirect methods such as nonlinear ultrasonic technology have been
proven to be able to identify and quantify the damage evolution in the failure process,
which can meet the actual industrial needs [21–23]. However, it cannot directly provide
information regarding defects as the information is deduced on the basis of parameters
related to the defect [24]. In direct methods, SEM can monitor crack morphology with ex-
tremely high resolution and quantitatively analyze the parameters at the fracture boundary
to compare the fracture mechanism [25], but the sample size is limited to about 10 mm. For
specimens of tens of centimeters in size, X-CT and DIC technology are more commonly
used to detect mesoscopic damage [26].

DIC technology can establish the displacement field and strain field of the specimen
surface by using a camera and receiving surface images of the specimen. Numerous
experiments on specimens of other shapes have demonstrated the capacity of DIC for
the study of the deformation characteristics and the stress variation [27,28]. For Brazilian
disc specimens, Jin et al. [14] captured the surface of concrete specimens using a DIC
camera to evaluate the failure modes. Martínez-López et al. [8] identified the fracture
properties and elastic properties of mortar specimens by combining the DIC method and
the Brazilian disc test. Nonetheless, as a two-dimensional system, it lacks the ability to
describe the internal strain distribution for thicker specimens. To investigate internal
damage propagation, X-CT is commonly used for further analysis [29]. The images of
each layer are obtained intuitively by slicing the specimens under the X-ray, in which
multiphase materials are distinguished by density [30]. Suchorzewski et al. [5] simulated
quasi-static splitting tensile tests on concrete specimens and evaluated the effect of the
different loading types on the fracture process on the basis of CT images. Skaryński and
Tejchman [31] applied X-ray CT technology to obtain a quantitative description of the size
and distribution of pores and cracks in the fracture process. Zhu et al. [20] used the porosity
obtained from CT images to calculate the degree of mesoscale damage under tensile tests.
In addition, researchers have also explored more accurate threshold methods to separate
phases before analysis, as the gray values of solid phases in CT images are relatively
close [32]. Loeffler et al. [33] presented a quasi-3D geometric segmentation technique to
accurately identify and isolate both void clusters and large cracks, which improved the
deficiency of previous segmentation methods in identifying small holes. Hao et al. [34]
classified CT images under different deformation stages to make a connection between
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the cavity distribution and the stress change in the failure progress of concrete. Thus,
the damage parameters of concrete could be analyzed quantitatively. However, previous
research on mesoscopic damage of concrete with the application of CT or DIC technology
mainly focused on the internal pores and cracks. The specific influence of the damage
evolution of other phases on the failure progress, especially under splitting tensile tests,
remains to be further analyzed.

The aim of this paper is to investigate the influence of mesoscopic damage charac-
teristics on the macro splitting tensile properties of concrete. For this purpose, splitting
tensile tests of concrete and mortar Brazilian disc specimens under different loading rates
were carried out to compare the different effects of mesoscopic materials. Then, on the
basis of the tensile strength and failure modes obtained from the macroscale experiments,
DIC and X-CT technology were employed for the subsequent analysis. The distribution
characteristics of each phase of concrete, their roles in the failure process, and their effects
on the macrocrack morphology were discussed. Lastly, a three-dimensional model of crack
distribution was established for statistical research on the volume proportion of each phase
and the analysis of the three-dimensional morphology of cracks.

2. Experimental Program

2.1. Specimens Preparation

The specimens were categorized into a concrete group and a mortar control group for
comparative study. The mix proportions for concrete strength are summarized in Table 1.
In preparation, the cement was of grade 32.5. The size of the fine aggregates was controlled
between 0.4 and 2.5 mm, and the coarse aggregate size was within the range of 5–10 mm.

Table 1. The mix proportions for concrete and cement mortar.

Materials Type Water Cement
Fine

Aggregate
Coarse

Aggregate
Design

Strength

Concrete
CA 0.64 1.00 2.12 3.22 C25
CB 0.56 1.00 1.85 2.86 C35
CC 0.41 1.00 1.02 2.09 C45

Cement
mortar

MA 0.64 1.00 2.12 / /
MB 0.56 1.00 1.85 / /
MC 0.41 1.00 1.02 / /

In the design of the size of specimens, it is necessary to consider the obvious size effect
of concrete materials due to the nonuniformity of the meso composition in concrete [35,36].
When the size of specimens increases, the energy absorbed in the local failure zone is
smaller than that released in residual unloading regions under decreasing load, causing the
lower splitting tensile strength [5,36]. It also affects the transformation of fracture modes,
as a larger specimen is more brittle [37]. After comprehensive consideration, the size of
Brazilian disc specimens in this paper was designed as Φ 74 mm × H 37 mm.

2.2. Brazilian Disc Splitting Tensile Test

The Brazilian disc test was based on the Chinese standard GB/T 50081-2002 (standard
test method for mechanical properties of ordinal concrete) and was carried out on an
Instron 8802 servo-hydraulic testing machine, as shown in Figure 1. The Instron 8802
servo-hydraulic testing machine can be controlled by displacement or pressure. In order to
control the loading rates, the tests in this paper were controlled by displacement, i.e., the
falling displacement of the upper plate of the machine.
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Figure 1. Schematic diagram of Brazilian disc splitting tensile test.

Six groups of specimens were tested under four different loading rates. The naming
rules of the specimens were as follows: type of specimens-loading rates. For the conve-
nience of recording, 02 m, 002 s, 02 s, and 2 s were used as loading rates corresponding to
loading rates of 0.2 mm/min, 0.02 mm/s, 0.20 mm/s, and 2.00 mm/s, respectively. There
were five specimens under each working condition. Moreover, two 10 mm wide and 2 mm
thick wood cushions were glued to both ends of the specimen as loading strips.

2.3. DIC Test System

According to the literature, the DIC test system can obtain the deformation information
by matching the corresponding subregions of the image before and after deformation. A
square reference subregion is taken out from the image before deformation, and then the
differences between the deformed and reference images are measured by the standard
covariance cross-correlation function Equation (1). The coordinates of one point in the
reference subregion are denoted as (x, y), and the coordinates of this point after deformation
are (x′, y′). When the correlation coefficient C(u, v) reaches the maximum, the subregion
after deformation is most similar to the reference subregion, and the displacement value of
each point in the calculation area can be obtained using an iterative method.

C(u, v) =
∑M

x=−M ∑M
y=−M[ f (x, y)− fm][g(x′, y′)− gm]√

∑M
x=−M ∑M

y=−M[ f (x, y)− fm]
2
√

∑M
x=−M ∑M

y=−M[g(x′, y′)− gm]
2

, (1)

where M is half the side length of the reference subarea, f (x, y) is the gray value of the point
(x, y), g(x′, y′) is the gray value of the point (x′, y′), fm is the average gray value of the
reference subarea, gm is the average gray value of the deformed area, u is the displacement
of the point in the X-direction, and v is the displacement of the point in the Y-direction.

During this procedure, the surface preparation of the specimens is a key factor affecting
the experimental quality, as obvious and random distribution characteristic points are
needed for correlation matching. Moreover, the experimental accuracy can be affected by
inconspicuous spraying points or light intensity fluctuations. Therefore, black speckles
were evenly and randomly sprayed on the specimen surface with a spacing of 0.1–1 mm
before experiments. In addition, a constant light source was set near the test piece to
eliminate the influence of light changes on the image.
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In the system shown in Figure 2a, the shutter speed of the lens was 1/800 s, the
aperture size was f/5, and the ISO was 3200. The exposure interval of the camera was
set as 1 s. Due to the relatively small size of the specimens, the measuring field range
was set over the entire surface. As shown in Figure 2b, the collected images were set as
8 bit grayscale images with a resolution of 1440 × 1440 pixels, and the diameter of the
specimens occupied 1020 pixels. After calibration, the object plane resolution of the system
was 0.0725 mm/pixel.

Figure 2. Digital image correlation (DIC) test system: (a) details of test setup, (b) images captured
by camera.

2.4. CT Scanning Test

In this paper, CT scanning test was carried out according to Chinese standard GB/T
37166-2018 (nondestructive testing method of composite materials for industrial computed
tomography). In the CT scanning system, the X-ray from the radiation source reaches
the detector after scanning the sample. After data processing, slice files in all directions
are received, and the three-dimensional shape of the sample is reconstructed. There are
two main factors affecting the accuracy of industrial CT systems [38]. One is the scanning
resolution of the machine. Generally, a smaller voxel size results in higher resolution
and greater accuracy. Another is the segmentation method of the images. In CT images,
materials with different densities can be distinguished by different gray levels. Therefore,
different phases of concrete can be divided after the threshold procedure. Appropriate
threshold segmentation is crucial to obtain clear and accurate mesoscale structures.

Herein, the YXLON microfocus X-ray computed tomography system was used in the
CT scanning test. In the CT scanning system shown in Figure 3, the number of detector
pixels was 1024 × 1024, and the size of the pixels was 200 microns. In images, the resolution
of the X-axis and Y-axis was 901 × 901 pixels, and the Z-axis resolution was approximately
450 pixels. The pixel size was calibrated to 0.0812 mm/pixels. In addition, the scanning
time of each projection was 2.5 s, and approximately 450 layers were sliced along the
thickness direction of each specimen.
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Figure 3. CT scanning system: (a) flat panel detector, (b) X-ray source.

3. Results and Discussion

3.1. Splitting Tensile Strength Properties

As depicted in Figure 4, the load–displacement curves of concrete and mortar were
obtained under different loading rates.

Figure 4. Load–displacement curves of splitting tensile test under different loading rates:
(a) 0.2 mm/min; (b) 0.02 mm/s; (c) 0.2 mm/s; (d) 2 mm/s.
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At the initial stage of loading, the load increased slowly with increasing displacement
due to the deformation of the gasket. After the gasket was compacted, the stress increased
sharply and declined soon after reaching the peak. Comparing the curves under different
loading rates, it can be seen that the specimens presented obvious brittle failure under
low loading rates, while the specimens presented ductile facture at a high loading rate
of 2 mm/s. Additionally, it can be found that the failure displacements of mortar had
an obvious increasing trend when the loading rate increased, gradually increasing from
2.38 mm (loading rate = 0.2 mm/min) to 2.77 mm (loading rate = 2 mm/s), which indicated
that the failure displacement of mortar was sensitive to the loading rates. However, concrete
has no obvious trend of the displacements at failure, and it varied with an average value of
2.72 mm. The aggregate may play a critical role in reducing the sensitivity of concrete.

According to ASTM D3967-16, the theoretical formula of tensile strength obtained
from Brazilian disc splitting test is shown in Equation (2).

ft =
2Pmax

πDH
, (2)

where Pmax is the peak load, D is the diameter of the Brazilian disc, and H is the height of
the Brazilian disc.

After calculation, Figure 5 presents the tensile strength and standard deviation of
each group of specimens; the tensile strength of mortar was generally higher than that
of concrete under the same water/cement ratio. The average tensile strength of mortar
under loading rates of 0.2 mm/min, 0.02 mm/s, 0.2 mm/s, and 2 mm/s was 10.3%, 17.8%,
21.3%, and 21.8% higher than that of concrete, respectively. Due to the presence of the
interface around aggregates, the damage of concrete developed faster at higher loading
rates, which made the strength of concrete lower than that of mortar. At water/cement
ratios of 0.64, 0.56, and 0.41, the average tensile strength of the mortar specimens was 13.6%,
21.4%, and 22.6% higher than that of the concrete, respectively. All specimens with lower
water/cement ratios had higher tensile strength because the interfacial strength increased
with decreasing water/cement ratio, making specimens more difficult to crack.

Figure 5. Statistical chart of tensile strength of specimens.

3.2. Failure Modes
3.2.1. Analysis of the Displacement Field and Strain Field Based on DIC Technology

In this paper, CA (concrete, water/cement ratio = 0.64) and MA specimens (mortar,
water/cement ratio = 0.64) under the loading rate of 0.2 mm/min were selected for a
comparative study of DIC images.

The characteristic points were marked on the test piece, as shown in Figure 6, and the
strain–time curves of the characteristic points were extracted, as presented in Figure 7. The
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loading time of the failure progress was divided into 22 moments, and the peak load was
at approximately the 17th moment.

Figure 6. Characteristic points.

  
(a) (b) 

  
(c) (d) 

Figure 7. Strain−time curves of characteristic points: (a) vertical loading direction of mortar speci-
mens; (b) loading direction of mortar specimens; (c) vertical loading direction of concrete specimens;
(d) loading direction of concrete specimens.
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In general, the strain level of the concrete characteristic points was higher than that
of the mortar, which indicated that the aggregates improved the deformation ability of
concrete. After reaching the peak load, the strain–time curves of the points in the vertical
loading direction fluctuated slightly while the strain of the characteristic points in the
load direction increased with time, which indicated the nonuniformity of strain at the
characteristic points of the specimens. In the horizontal direction, the strain of point V3
nearest to the center was relatively large compared with the points at the edge of the
specimens (V1 and V5). Thus, the strain level decreased from the center to the end, and
the center of the specimen was the first to fail. However, along the loading direction, the
strain levels at the edge of the mortar specimen were always higher than those at the center,
which meant that macro cracks first occurred at the end of the specimens. For the concrete
specimens, the strains at the center of the specimens were always at the highest level,
indicating that the cracks first appeared at the center of the concrete specimens, and the
crack propagated to the end of the specimen along the radial direction.

Figure 8 presents the strain maps of mortar. It can be noted that the localization
phenomenon at the loading end was obvious. Near the loading strip, the cracks often
deviated from the center of the specimen, resulting in secondary cracks. The largest tensile
strain on mortar specimens was 0.0237 along the diametral loading direction, which meant
the mortar specimens began to crack at this moment. This is very close to the value in the
literature [14]. For the strain maps of concrete specimens shown in Figure 9, the localization
phenomenon at the end was improved successfully. There was no deviation from the center
or secondary cracks. Therefore, the existence of aggregate improved the crack development
process and made the test results more reliable. After the peak time, the high strain zones
extended from the periphery of the aggregate to the end. The largest tensile strain was
0.0836 along the diametral loading direction. According to the strain maps and strain–time
curves, the failure process could be divided into three stages. In the first stage, the internal
stress level of the specimens was small, and the specimens were in the stage of linear elastic
deformation under tension. At this time, the number of microcrack initiation was small,
and stress increased relatively slowly. In the second stage, the internal stress level of the
specimen increased, and the stress localization was obvious. Although macro cracks did
not yet occur, a large number of internal microcracks were already initiated. The third stage
came after reaching the peak stress, the microcracks propagated and converged rapidly,
and a macro crack occurred.

Before the macro cracks occurred, the size of the local stress concentration area also
affected the failure process of specimens. In DIC images, the uniform width of a local-
ized zone of concrete could be described following Equations (3) and (4). The particle
displacements were fitted by the error function ERF, as shown in Equation (3). Then,
the error function evaluated at x

s
√

2
(x > 0) gave the probability that the measurement

under the influence of normally distributed errors with the standard deviation s had a
distance smaller than x from the mean value. Then, the width of localized zone Wlz could
be calculated according to the fitting function parameter s, as shown in Equation (4). In this
way, 95% of the values of the normal distribution function area were within the distance of
two standard deviations from the average value [39].

ERF(x) =
2√
x

∫ x

0
e−t2

dt, (3)

Wlz = 4·s, (4)

where x is the measured distance, s is the fitting function parameter, and Wlz is the width
of the localized zone.

Lastly, the width of the localized zone in concrete was 3.78 mm at the peak load, which
was little larger than that of mortar (3.45 mm). The localized zone of mortar appeared
earlier, but did not spread significantly before failure. The existence of aggregate made
the high strain region distribute around the aggregate in the strain map of concrete, and
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the different elastic moduli of aggregate and mortar led to uneven deformation, which
gradually expanded the localization zone from center to both ends. The width of the
localized zone in concrete was also little larger than the width recorded in other studies
such as 3.41 mm [5] and 2.80 mm [40]. This is because the width of strain localization is
also affected by the specimen size and test methods.

Figure 8. Strain maps of mortar.

Figure 9. Strain maps of concrete.
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3.2.2. Analysis of Crack Propagation Based on CT Images

CA specimens (concrete, water/cement ratio = 0.64), CC specimens (concrete, wa-
ter/cement ratio = 0.41), and MA specimens (mortar) under loading rates of 2 mm/s and
0.2 mm/min were selected for the comparative study of CT slice images. Approximately
450 slice images were derived from each specimen along the thickness direction, and the
typical slice images from the 250 images of the middle layer were extracted for analysis.
Specifically, the 100th, 170th, 240th, and 310th slices of each specimen are presented in
Figure 8. On a whole, all specimens had a main crack along the loading diameter direction
when they were destroyed, and the distribution of cracks changed along the specimen
thickness direction.

According to the crack distribution of the MA specimens shown in Figure 10a,b, the
cracks were fine at low loading rates but relatively coarse with secondary cracks at high
loading rates. The width of the central crack increased from 0.81 mm to 2.84 mm when the
loading rates increased from 0.2 mm/min to 2 mm/s. Furthermore, the distance between
the primary crack and the secondary crack was about 10 mm, which was equal to the width
of the gasket. It could be noted that the gaskets under the high loading rate resulted in
local failure at the loading end, forming a wedge-shaped area.

According to the typical section images of the group CA specimens in Figure 10c,d,
the crack morphology of each section was tortuous along the thickness direction, as the
aggregate around the diameter affected the crack evolution. At low loading rates, the
cracks were mainly distributed along the interface between the aggregates and mortar.
With increasing loading rates, the cracks passed through the large aggregates and extended
along the periphery of the small aggregates, forming local fracture zones around small
aggregates. The crack usually expanded along the weak surface between the aggregate and
mortar under low loading rates. However, under high loading rates, the stress at the crack
increased to the extent that the stone could be broken before the crack could expand along
the weak interface; thus, the crack passed directly through the coarse aggregate by looking
for the shortest path. Furthermore, the width of the central crack increased from 1.31 mm
to 3.75 mm when the loading rates increased. The shear failure occurred at the loading end
of the specimens, but there were wedge-shaped fragmentation zones instead of complete
areas left behind. This further demonstrated that concrete had more initial defects than the
mortar, which made the stress conditions at the load-bearing ends more complex.

As illustrated in Figure 10e,f, cracks also penetrated the aggregate at low loading
rates but were mainly distributed along the interface. At high loading rates, there was
a fan-shaped local failure close to 60◦ that occurred at the loading end instead of local
punching failure. Similarly, the fixed ends of the specimens also produced relatively small
areas of local crushing. The width of the central crack increased from 1.65 mm to 2.53 mm.
Under the higher loading rate, the width of the main crack was smaller than that of CA,
which meant more energy was absorbed by the local failure at the loading end under lower
water/cement ratios, resulting in slower energy release during crack propagation.

On a whole, aggregates affected the distribution of cracks along the radial and thick-
ness directions, making the crack morphology complex. The strength of concrete improved
with decreasing water/cement ratios and aggregate volume as the strength of hardening
cement mortar increased, which made crack expansion more difficult. Meanwhile, the
bonding performance of the interface between aggregate and mortar was also improved,
making the interface strength higher. In terms of the loading rates, the tensile strength
increased, and more secondary cracks appeared when the loading rates increased. The
failure modes also turned to local impact failure instead of a single main crack. It could
be inferred that multiple points of one specimen could reach the peak tensile strain at the
same time under high loading rates; thus, several local failures appeared simultaneously.
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Figure 10. Typical slice images: (a) MA-02 m; (b) MA-2 s; (c) CA-02 m; (d) CA-2 s; (e) CC-02 m;
(f) CC-2 s.
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In addition, local failure became more obvious under high loading rates, especially
for the concrete specimens, as the stress increased rapidly at the loading end. When the
stress diffused to the center of the specimen, cracks at the weak interface developed with
the main crack penetrating, forming band or block crushing zones, including aggregate
fracture and mortar cracks. However, the main crack still grew slowly when the load level
increased sharply. It can be inferred that local failure was the main reason for the enhanced
strength. The cracks at the loading end expanded and penetrated rapidly under high-level
confining pressure, causing damage to the aggregates, mortar, and interface, finally leading
to an increase in strength. Therefore, the distribution of cracks and the failure modes of
specimens also had a certain influence on the splitting tensile strength.

3.3. CT Image Segmentation and Three-Dimensional Reconstruction
3.3.1. Analysis of Gray Histogram Characteristics

A histogram can display the data frequency of each group in a graphical form, which
represents the distribution probability of the CT number of materials with different den-
sities and expresses the change in the content of each phase through the change in CT
numbers [41]. As different CT numbers corresponded to different material brightness, the
range of CT numbers of the voids, mortar, and aggregate could be determined through the
CT image histograms [18]. Additionally, when cracks were formed inside the specimens,
the gray value decreased as the average density decreased [42]. Statistical analysis of gray
histograms was carried out on the characteristic images of 100–300 layers of specimens
under various working conditions. The results are shown in Figures 11–13.

Figure 11. Gray histogram of MA: (a) before loading; (b) after loading (0.2 mm/min); (c) after loading
(2 mm/s).

Figure 12. Gray histogram of CA: (a) before loading; (b) after loading (0.2 mm/min); (c) after loading
(2 mm/s).
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Figure 13. Gray histogram of CC: (a) before loading; (b) after loading (0.2 mm/min); (c) after loading
(2 mm/s).

In general, the mortar had a relatively simple microstructure, presenting a single
peak shape with a peak, while the concrete histogram had an obvious bimodal shape. It
can be roughly inferred that a CT number in the range of 0–50 grayscale represented the
pores and cracks, in the range of 50–100 represented the mortar matrix in the concrete, and
in the range of 100–125 represented the aggregate by quantitative statistical analysis of
CT numbers.

As shown in Figure 11, the gray histograms of MA specimens presented a single peak
shape. The single peak of the histogram moved forward from [75, 125] to [60, 90] and
became more concentrated after loading, indicating that the dispersion of mortar density
decreased after failure. In addition, the CT number in the [0, 25] interval increased as the
loading rates increased, indicating that the cracks developed better at higher loading rates.

The gray histograms of the type CA specimens in Figure 12 presented obvious bimodal
properties. At low loading rates, the CT numbers of mortar decreased, but those of
aggregate remained almost unchanged after failure. Therefore, interface failure and mortar
failure were the main failure modes. At high loading rates, the bimodal property became
more obvious with the CT numbers of mortar almost unchanged, but the CT numbers
of aggregate decreased, indicating that aggregate failure was the main failure mode at
this time.

As shown in Figure 13, the gray histograms of the CC concrete specimens under the
two loading rates presented a single peak. The peak gray value was almost equal to the
average value of the gray value of aggregate and mortar. It can be inferred that the intensity
of the X-ray wave was attenuated during the CT scanning process, making the images
present a ring-shaped gray value reduction phenomenon.

3.3.2. CT Image Segmentation Method

As mentioned before, appropriate threshold segmentation is crucial to obtain clear
and accurate mesoscale structures. Since the bimodal feature of the histogram was not
obvious, the Otsu algorithm was adopted. However, the Otsu method applied to the global
specimen made the inner aggregate nebulous. Thus, a block multi-threshold segmentation
method was purposed to explore a more accurate threshold segmentation method, as
shown in Figure 14. According to the gray value of each pixel, the image could be divided
into three blocks along the radial direction, namely, the circular block within the radius of
220 pixels, the block between 220 pixels and 340 pixels, and theblock between 340 pixels
and 420 pixels. Then, the gray histogram of the CT number of each block presented the
bimodal characteristics in Figure 14b.
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Figure 14. Block multi-threshold segmentation method: (a) original image and block processed
images; (b) CT histograms of original images and segmented images; (c) segmented block image after
multi-threshold segmentation.
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Thus, multiple threshold segmentation was conducted to form a trivalued image
gi

block(x, y) from the extracted image f i
block(x, y)(i = 1, 2, 3), as shown in Equation (5).

gi
block(x, y) =

⎧⎨⎩
0.2 f i

block(x, y) < T1
0.5 T1 ≤ f i

block(x, y) < T2
0.7 T2 ≤ f i

block(x, y)
, (5)

where T1 and T2 are the segmentation threshold of the pore and mortar, respectively, and
block number i = 1, 2, 3.

Finally, the threshold segmentation image was obtained by the combination calculation
shown in Equation (6).

g(x, y) =
{

0 (x, y) /∈ f i
block(x, y)

∑i gi
block(x, y) (x, y) ∈ f i

block(x, y)
. (6)

The segmented operation realized the decoupling of the gray value of each phase
material and was used to segment and derive mortar matrix, aggregate, cracks, and holes
in the image at one time. It can be seen from Figure 14b that the image could clearly reflect
the mesoscale characteristics of concrete after threshold segmentation.

3.3.3. Mesoscale Research on the Three-Dimensional Characteristics of Concrete Damage

The three-dimensional internal damage of concrete was reconstructed according to
the segmentation method mentioned above. Then, the volume proportion of each phase of
specimens under different working conditions was arranged, as presented in Table 2.

Table 2. Volume proportion of each phase.

Type CA-02 m CA-2 s CC-02 m CC-2 s MA-02 m MA-2 s

Pore 0.05% 0.14% 0.07% 0.37% 0.24% 0.25%
Crack 1.36% 7.69% 1.51% 12.17% 1.18% 5.57%

Mortar 54.70% 50.61% 45.67% 36.13% 98.58% 94.18%
Aggregate 43.89% 41.56% 52.75% 51.33% - -

For concrete specimens, the volume ratio of aggregate was approximately 50%, which
was slightly larger than that of mortar. Under a high water/cement ratio, there were
more pores and cracks in the concrete specimens, and the volume of mortar decreased.
With increasing loading rates, the proportion of mortar and aggregate decreased while the
volume proportion of pores and cracks increased. When the loading rate increased from
0.2 mm/min to 2 mm/s, the crack volume ratio of CA specimens increased from 1.36%
to 7.69%, and that of CC specimens increased from 1.51% to 12.17%. This indicated that
specimens with higher strength cracked more seriously under the influence of the loading
rates. However, the proportion of pores was always less than 0.5%, and it was actually
smaller than the actual value, considering that the micropores along the crack propagation
path were included in the crack volume ratio by mistake. Furthermore, CT images also
missed some smaller pores. The pore proportion of the mortar specimen was larger than
that of the concrete specimen, but the crack volume was approximately 2% less than that
of the concrete, which also shows that the existence of aggregates could make the crack
develop more maturely.

The single porosity parameter could not completely reflect the relationship between
the tensile strength and the pore structure, as the distribution of pore size also had a critical
influence on strength properties [43]. Herein, specimens MA-02 m and CC-02 m were
selected, and the equivalent diameters deq were defined according to Equation (7) for the
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calculation of the distributions of pore size and aggregate size. The separation results are
shown in Figure 15.

deq =
3

√
6V3d

π
. (7)

Figure 15. Separation results: (a) results of mortar pore separation; (b) results of aggregate separation.

For specimen MA-02 m, after removing the largest volume elements (cracks), the
pores were numbered from large to small to draw the distribution curves of pore volume
and cumulative volume, as shown in Figure 16a. According to the calculated equivalent
aperture, 13 intervals were divided at a resolution of 0.2 mm, forming the probability
distribution diagram shown in Figure 16b.

Figure 16. Statistical curves of pore distribution: (a) pore volume and cumulative volume distribution
curves; (b) proportion of the pore size.

The pore volume curve was overall smooth, as presented in Figure 16a, which indi-
cated that the variation in the internal pore size of the mortar was continuous. Moreover,
the cumulative volume of pores was 247.41 mm3. According to Figure 16b, the number of

66



Materials 2022, 15, 4416

pores had an approximately normal distribution. In addition, the pore size was mainly
distributed in the range of 0.2–0.4 mm, accounting for 27.5% of the total pores, followed by
the sizes of 0–0.2 mm and 0.4–0.6 mm, both accounting for about 20% of the total pores.
However, the size of almost all pores was below 1 mm. This also indicated that the matrix
was compacted; hence, the strength was relatively high.

For specimen CC-02 m, the aggregate volume curve and cumulative volume distribu-
tion curve are shown in Figure 17a. The original curves were smooth with longer platform
segments, indicating that a large number of small volume components were contained in
the data, which is inconsistent with the aggregate separation results in Figure 15b. It could
be inferred that the broken aggregate caused errors. The volume of broken aggregate could
be roughly calculated by combining the CT images and the aggregate separation results,
and it was 12.08 × 103 mm3 for CC specimens under a loading rate of 2 mm/s. Therefore,
data extraction was required before analyzing particle size distribution statistics. After
calculation, data points with slopes of less than 1 per tangent were eliminated. Then, the
equivalent particle sizes of the aggregates were calculated, and the interval was divided
according to the 2 mm resolution, as illustrated in Figure 17b. It can be seen that the
number of aggregates with particle sizes ranging from 3 mm to 6 mm accounted for more
than 50%. The presence of small aggregates made more interfaces, and the interfaces were
weak during failure, which further explained that the mortar specimens had higher tensile
strength than the concrete specimens.

Figure 17. Statistical curves of aggregate distribution: (a) aggregate volume and cumulative volume
distribution curves; (b) proportion of the aggregate size.

A change in the stress–strain state of the specimens at the macro level leads to a
change in the deformation in the local material region [44]. To further study the influence of
various factors on the crack morphology in the failure process, the 3D crack morphology of
specimens under six working conditions was extracted, as shown in Figure 18. The width
of the crack is shown at the top right of each picture, facilitating interpretation of the shape.
The cracks of the mortar specimens were straighter and smoother than those of the concrete
specimens, and the crack texture mainly developed along with the original defects in the
specimens. With an increase in the loading rates, the cracks became coarser and bifurcated
at the loading end of the specimen, but the overall trend of the cracks changed little along
the thickness.
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Figure 18. The 3D morphology of reconstructed cracks: (a) MA-02 m; (b) CA-02 m; (c) CC-02 m;
(d) MA-2 s; (e) CA-2 s; (f) CC-2 s.

Compared with mortar, the secondary cracks of concrete specimens appeared more
frequently. At low loading rates, there were many concavities on the crack surface due to
the aggregates on the crack propagation path, for which the shape was the same as the
aggregate shape at the corresponding position. When the cracks extended to the surface
of the larger aggregates, they cracked along the surface of the aggregates, dividing the
cracks into two parts. This meant that the cracks in concrete were mainly distributed
around the aggregates at low loading rates, and that aggregates were an important factor
influencing the crack surface distribution. At high loading rates, the crack surfaces became
relatively smooth but were still affected by aggregates with larger inner concave shapes.
In addition, specimens with higher strength also had smoother crack surfaces. With the
decrease in water/cement ratios and the increase in loading rates, fragmentation zones
appeared near small aggregates, forcing small aggregates to break away from the matrix,
and this process also improved the strength of the concrete. On a whole, the aggregate
distribution influenced the distribution of cracks, and aggregate failure was an important
factor to enhance the strength of concrete.

4. Conclusions

In this paper, Brazilian disc splitting tensile tests were carried out, and X-ray CT tech-
nology and DIC technology were introduced to study the mesoscale damage characteristics
and failure process of the concrete and mortar specimens. The main conclusions could be
drawn as follows:

1. For the splitting tensile tests, the tensile strength of concrete was 11–30% lower than
that of mortar under different loading rates. Compared with concrete, the failure
displacement of mortar was more sensitive to the loading rates and increased by
16.38% when the loading rate increased from 0.2 mm/min to 2 mm/s.
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2. The stress field obtained by the DIC test showed that the cracking modes of the mortar
and concrete specimens were different. Concrete specimens cracked from the center,
and mortar specimens cracked from the edge, which could affect the reliability of
the tensile strength calculation of mortar specimens. Macro cracks gradually formed
when the tensile strain of mortar and concrete reached 0.0237 and 0.0836, respectively.

3. According to the images obtained from the CT test, the failure mode of the concrete
and mortar specimens changed from a single main crack to local punching failure
at the loading end with the increase in the loading rates and the decrease in the
water/cement ratio. For concrete, interface failure and mortar failure were the main
failures under low loading rates, whereas aggregate failure became the main failure
mode under a loading rate of 2 mm/s.

4. According to the three-dimensional reconstruction results, the internal pores of mortar
were small and dense. The size and distribution of aggregates affected the morphology
of cracks and made the cracks concave. With the decrease in the water/cement ratios
and the increase in the loading rates, the crack surfaces became relatively smooth, as
the small aggregates were forced to break away from the matrix.
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Abstract: This study applied the finite element method (FEM) and the moiré strip projection method
to evaluate the biomechanical behavior of healthy and endodontic-treated premolar teeth. The finite
element method and the moiré strip projection method were applied to evaluate the influence of
restored materials in association with cervical lesions and were considered as strain estimates for a
tooth sample with 21 units, under loads of 25, 50, 75, and 100 N, frontal and oblique applied. The
focused cases were: tooth H healthy; tooth A-MOD amalgam; tooth AL-MOD amalgam + lesion; tooth
ALR-MOD amalgam + injury restored; tooth R-MOD resin; tooth RL-MOD resin + lesion; tooth RLR-
MOD resin + injury restored. The results obtained by FEM simulation can be considered perfectly
validated by the results presented by the experimental moiré projection analysis, demonstrating
that the FEM numerical analysis can be used to evaluate the biomechanical behavior of healthy and
endodontically treated teeth. Developing an alternative protocol to generate FEM three-dimensional
models will lead to a ready and inexpensive tool since there is no need for costly equipment for tooth
extraction prognosis.

Keywords: fringe projection; premolars teeth; interferometry; FEM

1. Introduction

The loss of dental structure due to caries, trauma, cavity preparation, and endodontic
treatment has a negative impact on tooth fracture resistance [1–3]. The commonly proposed
functional reconstructions for premolars with extensive structure reduction have been the
direct adhesive techniques, using composite resins due to the high adhesion capacity to the
dental structures [4] and to seek minimal dental damage during the repair preparations [5].
Other types of treatments, generally less conservative, are available to treat posterior teeth
using indirect treatments, nowadays generally performed with CAD/CAM technology [6,7].
Endodontic treatments are not considered complete and successful until definitive coronary
restoration is performed [8–10].

Endodontic repair that restores the lost tooth structure’s biomechanical behavior
would allow for a good lifetime tooth prognosis under masticatory loads. Some authors
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recommend the use of amalgam fillings and other resinous materials fillings [11,12]. Dental
amalgams, due to their favorable mechanical properties, are widely used as restorative
materials, since they use a simple restorative technique and have a good predictable clinical
performance. However, they present some disadvantages, such as low dental structure
adhesion and a reduced strain resistance of the remaining dental structure. Amalgam-
restored teeth tend to fracture due to the multiplication of micro cracks under alternated
fatigue loads. The composites, as restoring materials, have mechanical properties, such as
elastic modulus similar to the tooth structure, that allow better distributions of stresses and
strains throughout the material and the remaining tooth structure. Even so, they have not
been successful as an alternative to amalgams to restore non-vital teeth [13]. The loss of
tooth structure in the cervical region is very common [14,15]. Cervical tooth structure wear
occurs near the cement enamel junction and affects mainly premolars, mainly as a result of
the stress concentration in the cusps of the occlusal region.

This study evaluates the influence of different types of restorative material in premolar
cavities, associated with the presence of cervical lesions under the action of axial and oblique
loads. The biomechanical behaviors of endodontic-treated premolars are analyzed by using
numerical, computational, and experimental non-destructive techniques. In order to fulfill
this purpose, frontal and oblique loads were applied in the values of 25, 50, 75, and 100 N,
in both experimental and numerical-computational biomechanical behavior evaluations.
The aforementioned loads were selected in order to compare the results obtained with
previous work developed by the authors of this work, in which the extensometry technique
was applied.

2. Materials and Methods

2.1. Selection and Preparation of Tooth Samples

From the Faculty of Dentistry Bank of Teeth, University of Sao Paulo, twenty-one
(21) healthy human pre-upper molars (1st and 2nd premolars), with an indication for
extraction, were selected. This selection was approved by the Research Ethics Committee:
Final Analysis no. 520/11 of the Research Ethics Committee for the Protocol Registration
CEP/UFU No. 171/11 and Final Analysis 372/11 of the Research Ethics Committee for
the Protocol Registration CEP/UFU 065/11 the Research Ethics Committee of the Federal
University of Uberlandia.

The teeth, after the coronary surfaces were measured, were divided into seven groups
with three teeth each, which received the following treatments: (1) endodontic treatment;
(2) mesial-distal-occlusal cavity (MOD) preparation; (3) mod resin composite/amalgam
restoration to first amalgam group and restoration in the second group; (4) cervical ripening;
(5) cervical resin composite/amalgam restoration. Thus, the teeth were classified according
to the following nomenclature, which will be used in development work: tooth H healthy;
tooth A-MOD amalgam; tooth AL-MOD amalgam + lesion; tooth ALR-MOD amalgam +
injury restored; tooth R-MOD resin; tooth RL-MOD resin + lesion; tooth RLR-MOD resin +
injury restored [16,17].

The teeth were prepared with endodontic access and different restorative materials.
The cavities made in the teeth were the mesial-distal occlusion-type (MOD) and cervical
preparation (Figure 1). The cavities were standardized following the standard thickness of
the diamond bur 1151 (KG Sorensen, Barueri, SP, Brazil). The wear amount considered was
occlusal box with an opening of 3.65 mm and the proximal box with a depth of 2.0 mm.
The inclination of the occlusal and proximal boxes was also defined by the diamond stylus
configuration and therefore parallel (Figure 2). Figure 3 shows the prepared proximal boxes,
with special attention to the detail of the rounding of angles. Figure 4 shows restoration
MOD models with cervical cavity and restoration MOD and cervical restoration, both
trying to imitate the shape of the coronary healthy tooth.
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Figure 1. Cavities made in the models of the mesial-distal occlusion-type (MOD).

Figure 2. Cavities made in models of type cervical preparation.

Figure 3. Making the proximal boxes, observe the detail of the rounding of angles. Amount of wear:
occlusal box with a 3.65 mm box opening, a proximal box with a depth of 2.0 mm.

Figure 4. Restoration: (a) MOD, (b) models with a cervical cavity, and (c) restoration MOD and
cervical restoration.
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2.2. Finite Element Analysis

Finite element analysis has been used in other studies to determine stress and strain
distribution. In [18] the hypothesis that restoration of class II mesio-occlusal-distal (MOD)
cavities can be strengthened through judicious choice of restoration geometry and material
properties was proven. Research by Shah et al. 2021 [19] used computational analysis
of prepared crowned teeth to differentiate the possibility of using porcelain material for
typical clinical conditions.

In the present work, the FEM analysis was developed using the computational code
ANSYS Academic. The establishment of the physical model was performed using the mean
dimensions of the premolars selected set and favorable coronary anatomy as a standard for
the healthy and the repaired cases. Thereafter, with the help of a scanner, the outer tooth
surface was generated, using a 0.2 mm contact tip trace calibration. The external geometry
data was stored in the type “*.STL” computer files (Stereolithographic), generated by the
scanner system. These files were exported to Bio-CAD modeling software (Computer
Assisted Design; Rhino3D 4.0, rhinoceros USA) to produce the standard three-dimensional
model of the healthy tooth. The repaired main dental regions were generated by using the
software called NURBS (Non-Uniform Rational Basis Spline) suitable for modeling complex
geometries. Figure 5 shows: (a) Model STL computer connected to the scanner system;
(b) Software Bio-modeling CAD (Computer Assisted Design; Rhino3D 4.0, Rhinoceros,
New York, NY, USA) NURBS surfaces (Non-Uniform Rational Basis Spline); (c) three-
dimensional model generation that serves as a standard healthy tooth. Figure 6 shows the
model generation of healthy teeth based on the main anatomical landmarks and with the
help of a specific tool program (NURBS surfaces). Finally, Figure 7 shows the volumes of
the internal and external structures of the reference teeth.

Figure 5. (a) Model STL, (b) Bio-CAD modeling, and (c) three-dimensional model generation.

Figure 6. Model generation is healthy, based on the main anatomical landmarks and with the help of
a specific tool program (NURBS surfaces).
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Figure 7. Generation of volumes of internal and external structures of the reference tooth.

The geometric models were exported to ANSYS Academic preprocessing software
and, for each model, meshes were generated using tetrahedral elements of the linear type,
with a total of 68,860 nodes and 40,358 elements. The generated meshes on the models
with MOD cavity [20], and endodontic access plus restoration on models with cervical [21],
and corresponding restoration cavity are shown, respectively, in Figures 8 and 9. As
shown in Figure 10, the boundary conditions were defined for perfectly simulating contacts
between the fixing structure (gray cylinder) and models with MOD cavities restored with
composite resin.

Figure 8. Mesh generated on models with MOD cavity and endodontic access with the corresponding
restoration.

Figure 9. Mesh generated on models with cervical and corresponding restoration cavity.
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Figure 10. Contact area simulation of applied loads.

The tetrahedral model consists of 68,860 nodes and 40,358 elements. The analysis
employed was a structural, linear, and elastic type for all such structures were isotropic,
linear, and homogeneous. For this, it was necessary to obtain the elastic moduli and
Poisson’s ratios of the structures which characterize each model, which are described below
in Table 1.

Table 1. Mechanical properties applied models.

Material Modulus of Elasticity E (Mpa) Poisson’s Ratio (υ)

Enamel 46.8 × 103 0.30
Dentine 18.0 × 103 0.31

Polystyrene resin 13.5 × 103 0.30
Composite resin 16.6 × 103 0.24

Amalgam 15.0 × 103 0.30

For the teeth modeled with FEM, the periodontal tissue PDL was not considered to be
maintained under the same conditions as in the moiré experiments.

Axial and oblique loads of 25 N, 50 N, 75 N, and 100 N were applied in the red area
shown in Figure 10. The models were exported to the software processing core (Ansys
Academic). For analysis of the results, criteria for normal direction deformation were used.
The materials were considered homogeneous, isotropic, and with linear-elastic behavior.

The FEM numerical simulation estimated the normal elastic strain (for X-, Y-, and
Z-axis) for all the specified cases mentioned before. Figure 11 shows, as an example, only
for loading 100 N, a typical 3D color strain representation on the Z-axis direction.

Figure 11. Cont.
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Figure 11. Typical 3D color strain representation on the Z-axis direction for 100 N loading: (a) tooth H
healthy; (b) tooth H healthy load oblique 15◦; (c) tooth A-MOD amalgam; (d) tooth A-MOD amalgam
load oblique 15◦; (e) tooth AL-MOD amalgam + lesion; (f) tooth AL-MOD amalgam + lesion oblique
load 15◦; (g) tooth ALR-MOD amalgam + restore lesion; (h) tooth ALR-MOD amalgam + restore
lesion load oblique 15◦; (i) tooth R-MOD resin; (j) tooth RMOD resin load oblique 15◦; (k) tooth
RL-MOD resin + lesion; (l) tooth RL-MOD resin + lesion oblique load 15◦; (m) tooth RLR-MOD resin
+ restore lesion; (n) tooth RLR-MOD resin + lesion oblique load 15◦.
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The FEM technique strain average results, in the Z-axis direction and for all cases
mentioned, are plotted in the graph presented in Figure 12.

Figure 12. Graph of the average results of the tension of the FEM technique in the direction of the
Z-axis for all the mentioned cases.

2.3. Moiré Projection Analysis

The moiré projection technique is a useful tool in structural engineering for measuring
and controlling complex body geometries [17]. The method was applied to strain experi-
mental evaluation of premolar tooth samples under the same conditions mentioned for the
FEM analysis. The moiré projection technique is applied according to the system diagram
shown in Figure 13a, where the projection system (SP) directs light beams (RP) over the
study object (PR-D: tooth), which reflects a network image to the observation system (OS),
which captures and superimposes with another network (RO), for the evaluation purpose.

In the implementation of the moiré technique, the same loads used for the simulation
of FEM, frontal and oblique loads, were applied in the values of 25, 50, 75, and 100 N.

This technique allows the 3D shape determination by the projection of a regular pattern
of straight fringes in an equally spaced pattern after the resulting image processing. The
distance between camera and object is 500 mm, the projector lens and camera lens are
110 mm [17]. The best experimental results can be achieved with a small lens and standard
projection fringes of 140 lines. This configuration considers the tooth object as the system
origin, where the teeth fixing apparatus is called the Originator, which provides good
flexibility to define different positions for the object. The equipment used can be considered
very common; a Mini Projector Led Benq Gp1 and a CCD camera.

The 3D shape was determined by a technique called “phase shift” which assigns a
phase angle to each pixel of the image. There is high uncertainty in the calculation of the
phase angle, mainly because the light intensity profile is nearly sinusoidal. This can be
mitigated by the acquisition and processing of three or four image fringes.

The software used for data acquisition and processing was FRINGEP, developed
specifically for this research and based on the academic version of MATLAB. Considering
the pixel size of the camera (CCD) and the pixels on the image plane, the FRINGEP soft-
ware processes the digital reconstruction of the moiré image, including reconstructions of
image intensities, interferogram intensities, phase interferogram, demodulation, and finally,
integration to get a 3D representation of the shape and displacement of the deformed tooth.

78



Appl. Sci. 2022, 12, 6768

Figure 13. Cont.
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Figure 13. 3D color maps representing the strain in the Z-axis direction for 100 N loading: (a) tooth
H healthy; (b) tooth H healthy oblique load 15◦; (c) tooth AL-MOD amalgam + lesion oblique load
15◦; (d) tooth A-MOD amalgam; (e) tooth ALR-MOD amalgam + restore lesion; (f) tooth A-MOD
amalgam oblique load 15◦; (g) tooth ALR-MOD amalgam + restore lesion oblique load. 15◦; (h) tooth
AL-MOD amalgam + lesion; (i) tooth R-MOD resin; (j) tooth R-MOD resin oblique load 15◦; (k) tooth
RL-MOD resin + lesion; (l) tooth RL-MOD resin + lesion oblique load 15◦; (m) tooth RLR-MOD resin
+ restore lesion; (n) tooth RLR-MOD resin + restore lesion oblique load 15◦.
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The moiré experimental tests were done for the same specified cases of FEM numerical
simulation. The geometric shape and strains were obtained for specified cases. Figure 13
shows, as an example, 3D color maps representing the strain in the Z-axis direction only
for 100 N loading.

The experimental moiré projection technique strain average results, in the Z-axis
direction and for all cases mentioned, are plotted in the graph presented in Figure 14.

Figure 14. Moiré technique strain results in the Z-axis direction for all cases analyzed.

3. Results and Discussion

An understanding and knowledge of the behavior of healthy and restored teeth
submitted to axial loads and tangencies are important in dental preparation planning and
is also an indication of restorative material [22].

The analysis of the healthy dental structure was the standard for the analysis of the
behavior of the tooth after the preparation in order to verify the areas to be reinforced or
altered during the preparation in order to overcome the same possible deficiencies. As
the experiments were performed on the same tooth in MEF and moiré, important data
were obtained.

From the results obtained through the analysis by finite elements, it was possible
to detect that the teeth that present a greater deformation are those where the load was
applied at 15◦, as can be seen in Figure 11f,l corresponding to tooth AL-MOD amalgam
+ lesion and tooth RL-MOD resin + lesion, whose values are 415 × 10−6 and 410 × 10−6,
respectively. While, on the other hand, the least deformations occur in the cases of tooth
A-MOD-amalgam and tooth R-MOD-resin, with 98 × 10−6 and 99 × 10−6, as presented
in Figure 11c,i, respectively. For the cases of tooth AL-MOD amalgam + lesion and tooth
RL-MOD resin + lesion similar behaviors are presented, with values of 211 × 10−6 and
207 × 10−6, as observed in Figure 11e,k. In the same way, lesions with restorations with
different materials are presented, tooth ALR-MOD amalgam + restore lesion and tooth
RLR-MOD resin + restore lesion, whose deformation is 100 × 10−6 in both cases, according
to Figure 11g,m.

From the analysis carried out and from the results obtained using the moiré method,
the cases with the greatest deformation are tooth with (MOD) amalgam + lesion and tooth
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with (MOD) resin + lesion, both with a value of 2.7 × 10−3. In the same way, behaviors
are presented in, tooth with (MOD) resin-cervical lesions restored and tooth with (MOD)
amalgam-cervical lesions restored, whose maximum values are 5.0 × 10−4 and 5.5 × 10−4,
respectively; as well as the case with tooth (MOD) amalgam and tooth with (MOD) resin,
with a maximum deformation value of 4.0× 10−4 for both. All of these results are presented
in Figure 14.

The qualitative and quantitative analysis of each test specimen in each of the exper-
imental situations can help in the understanding and evolution of dental preparations
and the improvement of restorative materials. These results may indicate the need to
change tooth wear during preparation by sparing healthy structures when using adhesive
restorations. It is believed that these data may also inform us about some possibility of
changing some form of preparation for amalgam.

The study of the reduction of dental structure is the main factor modulating the
deformation and resistance to fracture of the dental element. This reduction can occur in
different regions of the dental structure, such as inside the dental crown, reducing cusp
height, inside the root canal, and in the cervical region [16].

The FEM and moiré techniques are totally non-intrusive, non-destructive, and allow
global, non-contact measurement of displacement fields with sub-micrometric resolution.
The deformation of the dental structure of each sample was analyzed in different phases
and sequentially, that is, each sample was analyzed in the rigid phase without the occlusal
box preparation. Afterwards it received sequential wear reducing the height of the axial
wall. Each phase is measured separately. The preparations were made with a diamond tip
mounted on a standard machine for cavity preparation [16].

The presence of the lesion increased shear values for both restorative materials sub-
jected to axial loading. In oblique loading, there were no significant differences in both
resin and amalgam. However, oblique loading increased compliance values with respect
to axial loading, mainly for the AL group, since it presented higher strain values when
compared to the other groups. The cervical lesions restored with composite and amalgam
recovered biomechanical behavior similar to that of uninjured samples.

Some authors describe how under axial loading, the biomechanical behavior of the
LA group has higher strain levels as compared with the RL. This can be explained by the
amalgam elasticity modulus value, which is lower than the modulus of the composite.

The biomechanical analysis of these endodontically treated premolar teeth restored
with amalgam, subjected to oblique loading, and with cervical lesion revealed behavior
that could jeopardize the tooth structures and restorative materials. The tooth AL-MOD
amalgam + lesion and tooth RL-MOD resin + lesion showed about five times the level
of strain, when compared with all the other cases. On the other hand, when the cervical
lesions are restored with amalgam or resin, the biomechanical behaviors are similar to those
of healthy teeth.

The biomechanical results obtained by FEM and moiré show that the healthy teeth
presented a lower level of normal maximum strain in any of the three directions in the
X-, Y-, and Z-axis, for all different applied loads. For all analyzed cases, the application of
oblique loading induces higher strain levels.

4. Conclusions

Even in the geometrically complex structures, such as human upper premolar teeth,
the very low displacement and strain levels can be measured by using the moiré projecting
technique, as detailed in this study.

The results obtained by both techniques show that healthy teeth presented the lower
level of normal maximum strain for all different applied loads. In the meantime, oblique
loading induced higher strain levels for all analyzed cases. In addition, it was noticed
that the cervical lesions restored with composite and amalgam recovered biomechanical
behavior similar to that of uninjured samples.
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The results obtained by FEM simulation can be considered perfectly validated by the
results presented by the experimental moiré projection analysis, demonstrating that the
FEM numerical analysis can be used to evaluate the biomechanical behavior of healthy
and endodontic treated teeth. Developing an alternative protocol to generate FEM three-
dimensional models will lead to a ready and inexpensive tool since there is no need for
costly equipment, for the prognosis of teeth extraction.
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Abstract: Understanding the nonlinear dynamic characteristics of engineering structures is challeng-
ing, especially for the systems that exhibit asymmetric nonlinear behavior. This paper compared
four parameter identification methods for asymmetric nonlinear systems incorporating quadratic
and cubic stiffness nonlinearities. Hilbert transform, zero-crossing, direct quadrature, and wavelet
transform were used to obtain the backbone, envelope, and restoring force curves from the free
vibration time history. A nonlinear curve-fitting method was then applied to estimate the stiffness
parameters of the asymmetric systems, and a linear least square fitting approach was utilized to
estimate the damping parameters of the asymmetric systems. We used the Helmholtz–Duffing
oscillator as a numerical example and a nonlinear vibration absorber with geometric imperfections
to verify the feasibility and accuracy of these methods. The advantages and disadvantages of these
methods and the deviations in estimated results are discussed.

Keywords: quadratic and cubic stiffness nonlinearity; nonlinear system identification; envelope;
instantaneous frequency; nonlinear vibration absorber

1. Introduction

Asymmetric nonlinear engineering structures, such as a mistuning quasi-zero-stiffness
vibration isolator [1,2], cables [3], and geometric imperfect plate-like designs [4–7], have
attracted widespread attention. The dynamic characteristics of these asymmetric systems
are more complicated to analyze than those of the symmetric systems. For example,
constant drift can occur in the response when there is little linear stiffness in the quasi-
zero-stiffness vibration isolator. The nonlinear isolation system exhibits a mixed softening
and hardening characteristic [1], which results in the multiple jump phenomena and
hysteretic behavior [2]. Multivaluedness of the response curves occurs with different
features depending on cables (or plates) and excitation force parameters [3–7]. To fully
understand the nonlinear aspect of asymmetric systems, nonlinear parameter identification
is one of the crucial procedures [8–10].

In recent years, backbone curves have been used to identify stiffness parameters of
asymmetric systems. The calculation methods of the backbone curves can be classified
into two types: analytical and numerical methods. Analytical methods include harmonic
balance, multi-scale [11], and normal form methods [12,13]. The comparison of these analyt-
ical methods can be referred to [14]. Some software packages have implemented numerical
algorithms based on a nonlinear normal mode framework [15–17]. Common experimental
methods for extracting backbone curves include the resonance decay method [18], the
control-based continuation method [19,20] and phase-locked loops [21]. For multi-degree-
of-freedom systems, the nonlinear normal modes of interest are usually isolated by the
force appropriation method [22–24]. The resonance decay method is then used to estimate
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the backbone curves. Breunung and Haller [25] recently studied the backbone curves of
the forced-damped nonlinear mechanical systems. Cenedese and Haller [26] summarized
approaches for constructing backbone curves of multi-degree-of-freedom systems. There
are many applications to identify parameters using backbone curves, such as base-excited
SDOF system [27], vibration absorber [28,29], beam-shaker system [30], aircraft wing struc-
ture [31], linear–arch composite beam piezoelectric energy harvester [32]. In addition to
traditional contact measurement methods, non-contact measurement methods, such as
video processing, can also be used to identify the backbone curves of an air wing proto-
type [33]. The restoring force curve is another useful tool that can be applied to estimate
stiffness parameters of asymmetric systems [34]. Because of the asymmetric characteristics,
the positive and negative parts of the asymmetric system were analyzed separately [35,36].
The bias term obtained by the signal decomposition method is the unique information in
the asymmetric signal.

Hilbert transform [37], zero-crossing method [27], direct quadrature method [38], and
wavelet transform [39] can be used to obtain the backbone curves and restoring force
curves from the free-decay measurements. The applications of these methods to a Duffing
system have been summarized [40,41]. However, these methods cannot be directly applied
to asymmetric systems with quadratic and cubic stiffness nonlinearities, and need to be
modified to analyze positive and negative time responses separately when obtaining the
restoring force curves. The backbone curves exhibit softening-hardening nonlinear behavior
and are complex to analyze. As far as the authors know, there is no relevant comparative
study. Therefore, several identification methods are summarized and compared, which can
better guide the understanding of the parameter identification of Helmholtz–Duffing type
asymmetric engineering structures.

This paper aims to investigate the parameter identification methods applied to asym-
metric systems with quadratic and cubic stiffness nonlinearities and illustrate these meth-
ods using a Helmholtz–Duffing numerical example and a vibration absorber experiment.
Section 2 introduces the Helmholtz–Duffing example and its theoretical solutions for restor-
ing force and backbone curves. In Section 3, detailed steps of the four methods to obtain dif-
ferent curves are introduced. Section 4 discusses the identification methods, identification
results, errors of the four methods, and the corresponding advantages and disadvantages.
The application in the vibration absorber experiment is described in Section 5. Finally, this
paper is concluded in Section 6.

2. Asymmetric Model: A Helmholtz–Duffing Oscillator

The asymmetric engineering structures can be simplified to a Helmholtz–Duffing
oscillator, and its equation of motion is given by

m
..
x + c

.
x + k1x + k2x2 + k3x3 = f (t) (1)

where m is the mass, c is the damping coefficient, f (t) is the excitation force, k1, k2, and
k3 are the linear, quadratic, and cubic nonlinear stiffness coefficients, respectively. If the
system vibrates freely with an initial displacement, f (t) = 0. Then, dividing both sides of
Equation (1) by the mass m yields

..
x + 2h

.
x + ω2

0(t)x = 0 (2)

where h = c/2m is the damping factor and ω0(t) =
√
(k1 + k2x + k3x2)/m is the instan-

taneous frequency. They have the units of 1/s. It can be seen that the analytical solution
for the viscous damping force per unit mass is written as fc(x) = 2h

.
x when the range of

velocity is given, and the analytical solution for the restoring force per unit mass is given by

fk(x) =
k1

m
x +

k2

m
x2 +

k3

m
x3 (3)

where the regime of displacement is determined.
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Backbone curves for the Helmholtz–Duffing oscillator are more complex than those
for the symmetric systems [42]. Using the harmonic balance method and substituting the
approximate harmonic solution x(t) = A0 + A1 cos(ωt + θ) into Equation (1) yield

ω2 =
k1

m
+

2k2

m
A0 +

3k3

m
A2

0 +
3k3

4m
A2

1 (4)

where A0 =

⎛⎜⎝ f0
2k3

+

⎛⎝ f2
0

4k2
3
+

(
A2

1
2

+
β

3k3

)3
⎞⎠1/2

⎞⎟⎠
1/3

+

⎛⎜⎝ f0
2k3

−
⎛⎝ f2

0
4k2

3
+

(
A2

1
2

+
β

3k3

)3
⎞⎠1/2

⎞⎟⎠
1/3

− k2

3k3
is the bias term, A2

1 = −(k3 A3
0 + k2 A2

0 + k1 A0
)
/(3k3 A0/2 + k2/2) is the first har-

monic term, β = k1 − k2
2/3k3, and f0 = k1k2/3k3 − 2k3

2/27k2
3. Adding more harmonic

terms to the approximate harmonic solution can yield a more accurate solution, but the
calculation of the backbone curve is complicated. Substituting the approximate harmonic
solution x(t) = A0 + A1 cos(ωt + θ) + A2 cos(2ωt + ϕ), where the second harmonic term
A2 is included, into Equation (1) for the lightly damped case, gives

ω2 ≈ k1

m
+

2k2

m
A0 +

3k3

m
A2

0 +
3k3

4m
A2

1 +
k2

m
A2 +

k3

m

(
3
2

A2
2 + 3A0 A2

)
(5)

which can be compared well with the numerical results of the backbone curves [42]. The
comparison between analytical solutions and the numerical results is shown in Section 3.

3. Identification Methods for the Characteristic Curves

This section introduces four methods for obtaining the characteristic curves of the
Helmholtz–Duffing oscillator, which are restoring force curves, damping force curves,
envelopes, and backbone curves. These curves are combined with the analytical solu-
tions given in Section 2 to estimate the stiffness and damping parameters of asymmetric
structures. The details are discussed in Sections 4 and 5. For the sake of simplicity, the
parameters for the oscillator are m = 0.1 kg, c = 0.4 Ns/m, k1 = 4000 N/m, k2 = −107 N/m2,
and k3 = 1010 N/m3. The initial displacement and velocity are x(0) = 0.0018 m and
.
x(0) = 0 m/s. The free-decay response is numerical integration calculated by using the
fourth-order Runge-Kutta method, and the sampling frequency is f s = 2000 Hz.

For the asymmetric system, when the free decay response is measured, the restoring
force curve is constructed separately from the positive and negative signal parts [35], which
is given by

fk(x) =

{
ω2

c (t)Ac(t) x > 0

ω2
c (t)Ac(t) x ≤ 0

(6)

where Ac and ωc included positive and negative congruent envelopes and congruent
natural frequency. The viscous damping force is approximately given by

fc(x) ≈
{

2h(t)A .
x(t)

.
x > 0

−2h(t)A .
x(t)

.
x < 0

(7)

where h(t) is the instantaneous damping factor and A .
x(t) is the congruent envelope of

velocity. The backbone curves can be obtained using the relationship between instantaneous
frequency and amplitude of each harmonic term.

3.1. Hilbert Transform

Hilbert transform (HT) has been widely used in the parameter identification and
signal decomposition of nonlinear systems. Feldman applied this method to identify
free and forced vibration systems, and further applied the nonparametric identification
method to the asymmetric systems [43–46]. The complex analytic form of a free-decay
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response is given by X(t) = x(t) + jx̃(t) = A(t)ejϕ(t), where x̃(t) is the Hilbert transform
of the signal x(t), the envelope A(t) =

√
x2(t) + x̃2(t), and the instantaneous phase

ϕ(t) = arctan[x̃(t)/x(t)]. The instantaneous undamped natural frequency is given by

ω2
0(t) = ω2 −

..
A
A

+
2

.
A

2

A2 +

.
A

.
ω

Aω
(8)

and the instantaneous damping factor is given by

h(t) = −
.
A
A

−
.

ω

2ω
(9)

where
.
A,

..
A and

.
ω are the first and second derivatives of envelope and frequency, respectively.

Hilbert vibration decomposition (HVD) is a time-varying vibration decomposition
method based on the Hilbert transform [45]. The main harmonic components of asymmetric
systems can be obtained by using the HVD. By weighted summing the decomposed har-
monic components, the congruent envelope, and the congruent frequency can be obtained.
The congruent envelope Ac is given by

Ac(t) =
N

∑
l=1

Al(t) cos φl(t) (10)

where Al is the envelope of the lth order component, and φl is the phase angle between
the primary component and lth order component. Instantaneous natural frequency ω0 can
be decomposed into a sum of high-order intrinsic components. The congruent natural
frequency ωc is given by

ωc(t) =
N

∑
l=1

ω0l(t) cos φωl(t) (11)

where ω0l is the envelope of the lth order instantaneous natural frequency, and φωl is the
phase angle between the primary component and lth order component.

The Hilbert transform method and the relevant Matlab programs [46] are used in
this paper. Free-decay response of the Helmholtz–Duffing oscillator and its envelopes are
shown in Figure 1a, where the positive and negative congruent envelopes are obtained by
Equation (10). The instantaneous natural frequency and their envelopes are obtained by
Equations (8) and (11), as shown in Figure 1b. Figure 1c shows the first fourth components
of the free vibration obtained by using HVD. In order to remove the end effect of the
Hilbert transform, only the analyzed results between 0.2 to 1.7 s are chosen. The restoring
force curves are shown in Figure 1d, where the analytical solution is given by Equation (3),
and the numerical results are obtained by Equation (6). The backbone curves of the first
harmonic term A1 and bias term A0 are plotted in Figure 1e–f, respectively, where the
analytical solutions are given by Equation (5), and the numerical results are obtained
by using HVD. The logarithmic form of the envelope, instantaneous damping factor
obtained by Equation (9), and damping force curve obtained by Equation (7) are shown
in Figure 1g–i, respectively. For a weakly nonlinear system, the analytical solution of the
logarithmic envelope is approximately given by −ct/2m + ln x(0), as shown in Figure 1g.
The damping factor is h = c/2m = 21/s and the analytical damping force is fc(x) = 2h

.
x,

which are plotted in Figure 1h,i, respectively.

3.2. Zero-Crossing

The zero-crossing (ZC) method is a simple method for estimating the instantaneous
frequency and amplitude of free decay signals [27,36]. Londoño et al. [27] combined the
zero-crossing and peak picking methods to obtain the backbone curves of symmetric
nonlinear systems. Ondra et al. [36] extended the zero-crossing method to obtain the
backbone and restoring force curves of asymmetric systems. This method is explained in
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detail in Figure 2. The ith zero-crossing point ti, the pth positive peak points Ap, and the
nth negative peak points An are first obtained using the zero and peak picking procedure.
The instantaneous frequency at the zero-crossing point ti is

ω(ti) =
2π

ti+1 − ti−1
(12)

The positive and negative envelopes at the zero-crossing points are then obtained by
linear interpolating the positive and negative peak points, respectively. The corresponding
instantaneous frequencies for positive and negative envelope points are ωp = π/Tp and
ωn = π/Tn, respectively.

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 1. Hilbert transform. (a) Time domain response and envelopes, (b) frequencies, (c) HVD,
(d) restoring force curve, (e) backbone curve of first harmonic term A1, (f) backbone curve of bias
term A0, (g) logarithmic form of the envelope, (h) damping factor, (i) damping force curve. In (a,b),
thin solid lines, time domain response, and instantaneous natural frequency; dashed lines, congruent
envelope, and congruent modal frequency. In (d–i), solid lines, analytical solutions; lines with circles,
numerical results.
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Figure 2. Zero-crossing with peak picking method for the asymmetric signal. Solid line, time-domain
response; □, zero-crossing points; , positive peak points; , negative peak points; *, envelopes at
zero-crossing points obtained by interpolation.

The amplitudes of the first harmonic term A1 and bias term A0 are given by

A0 =
Ap

i + An
i

2
, A1 =

Ap
i − An

i
2

(13)

The free decay response is given in Figure 3a again. Then, the zero-crossing points
and positive and negative peak points can be obtained and plotted in Figure 3a. The instan-
taneous frequencies for the positive and negative envelopes are shown in Figure 3b. Substi-
tuting the positive and negative envelopes and instantaneous frequencies in Equation (6)
yields the restoring force curves, as shown in Figure 3c. It should be noticed that the time
history response of asymmetric systems normally contains multiple harmonic components.
Unlike the HVD, the backbone curves in the zero-crossing method are calculated using
Equations (12) and (13), where the high order harmonic terms induce estimation errors,
especially for the bias term. Before calculating the instantaneous frequency and amplitudes,
the high-order harmonic terms should be filtered to make sure that the response can be
approximately written as x(t) ≈ A0 + A1 cos(ωt + θ). For the numerical example in this
section, the free decay signal is passed through a low-pass filter with a cut-off frequency
of 50 Hz. The backbone curves are shown in Figure 3d,e. It can be seen that the backbone
curves obtained from the filtered response are closer to the analytical backbone curves.
The logarithmic form of the envelope, instantaneous damping factor, and damping force
curve are shown in Figure 3f–h. Numerical results for the damping factor and damping
force are obtained by Equations (7) and (9), where the envelope of velocity is obtained by
the peak picking method. To unify several methods, the data used in the restoring force
curve, logarithmic envelope, and damping curve are also approximately taken from 0.2 to
1.7 s. The data used in backbone curves are relatively short because part of the response in
the large amplitude regime is filtered out. The analytical solutions shown in Figure 3 are
obtained using the similar approaches mentioned in Section 3.1.

3.3. Direct Quadrature

The direct quadrature (DQ) method was proposed by Huang et al. [38]. Firstly, because
the Hilbert transform of a product of functions is limited by the Bedrosian theorem [47], a
normalization scheme was proposed to separate amplitude modulation (AM) and frequency
modulation (FM) of the signal. Secondly, according to the Nuttall theorem [48], it is not
applicable for all signals to obtain their quadrature forms using the Hilbert transform.
Therefore, the direct quadrature method is used. The direct quadrature method has been
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applied to the symmetric signal. However, when it is applied to the asymmetric signal,
some modifications are required.

  
(a) (b) (c) 

  
(d) (e) (f) 

  
(g) (h) 

Figure 3. Zero-crossing with peak picking method. (a) Time domain response, (b) frequencies,
(c) restoring force curve, (d) backbone curve of first harmonic term A1, (e) backbone curve of bias
term A0, (f) logarithmic form of the envelope, (g) damping factor, (h) damping force curve. In (a,b),
solid line, time domain response; red squares, zero-crossing points; lines with circles, positive and
negative envelopes, and frequencies. In (c–h), solid lines, analytical solutions; lines with circles,
numerical results.

The first step is to find the positive and negative peak points and use the cubic
spline function to obtain the positive and negative envelopes Ap and An. Then the
normalization process is carried out. The positive time-domain response is normal-
ized by yp(tp) = xp(tp)/Ap and the negative time-domain response is normalized by
yn(tn) = xn(tn)/An, where xp(tp) and xn(tn) are the positive and negative time-domain
responses, yp(tp) and yn(tn) are the normalized positive and negative responses. Repeat
the above steps until the normalized results are all in [−1,1]. The FM part of the signal is
F(t) = yl(t) =

[
yl

p(tp), yl
n(tn)

]
, where l is the number of iterations.
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After normalization, the AM part is given by

Ãp(tp) =
xp(tp)

yl
p(tp)

, Ãn(tn) =
xn(tn)

yl
n(tn)

(14)

Then using the cubic spline function, the positive envelope Ãp(t) and negative enve-
lope Ãn(t) in the entire time domain are obtained. The amplitudes of the first harmonic
and the bias terms are given by

A1 =
Ãp(t)− Ãn(t)

2
, A0 =

Ãp(t) + Ãn(t)
2

(15)

The time domain response and its positive and negative envelopes are shown in
Figure 4a. The FM part can be regarded as a sinusoid, so the instantaneous frequency is

ω(t) =
d
dt
[arccos(F(t))] (16)

The FM part whose absolute values are less than 0.9 is used to calculate the instanta-
neous frequency using Equation (16), and the rest of the instantaneous frequency points are
interpolated using a cubic spline. The result is shown in Figure 4b. The restoring force curve
obtained by Equation (6) is shown in Figure 4c. Similar to the zero-crossing method, the
amplitudes of the first harmonic and the bias terms are also sensitive to the high-frequency
components of the free decay response. Before calculating the backbone curves, the free
decay response is passed through a low-pass filter with a cut-off frequency of 50 Hz. The
estimated backbone curves of A1 and A0 are shown in Figure 4d,e, where amplitudes are
obtained by Equation (15), and the frequency is the filtered instantaneous frequency. The
logarithmic form of the envelope, instantaneous damping factor, and damping force curve
are shown in Figure 4f–h. The analytical solutions are also shown in Figure 4.

3.4. Wavelet Transform

Wavelet transform (WT) is a time-frequency analysis tool that can automatically adjust
the size of the analysis window with the change of frequency. With the development
in recent years, wavelet analysis has been widely applied in nonlinear system identifica-
tion [39,49–51].

For the free decay response of the Helmholtz–Duffing oscillator shown in Figure 5a,
the frequency spectrum can be obtained from the Matlab cwt function using the Morlet
wavelet and is shown in Figure 5b. From this figure, the envelope of the signal is given by

A(b) =
2|Wx(a(b), b)|√

a(b)
(17)

where a is the scale parameter, b is the translation parameter, |Wx(a(b), b)| = maxa|Wx(a, b)|
is the maximum value of wavelet coefficients at each time point. The instantaneous
frequency is obtained from the frequency points corresponding to the maximum value of
the wavelet coefficients at each time point. In order to obtain the smooth envelope and
instantaneous frequency, the results are passed through a low-pass filter with a cut-off
frequency of 20 Hz. The results are shown in Figure 5a,b. The backbone curve of A1
constructed by the instantaneous amplitude and frequency is shown in Figure 5c. The
bias term is obtained by the wavelet decomposition using the Matlab function wavedec,
as shown in Figure 5d. The logarithmic form of the envelope, instantaneous damping
factor, and damping force curve are shown in Figure 5e–g. It can be seen that the numerical
solutions can be reasonably compared well with the analytical solutions.
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(a) (b) (c) 

   
(d) (e) (f) 

  
(g) (h) 

Figure 4. Direct quadrature. (a) Time domain response and envelopes, (b) frequencies, (c) restoring
force curve, (d) backbone curve of first harmonic term A1, (e) backbone curve of bias term A0,
(f) logarithmic form of the envelope, (g) damping factor, (h) damping force curve. Thin solid lines,
time domain response in (a) and instantaneous frequency in (b); dashed lines, positive and negative
envelopes in (a) and frequencies in (b). In (c–h), thick solid lines, analytical solutions; lines with
circles, numerical results.

(a) (b)  

Figure 5. Cont.
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(c) (d) 

(e) (f) (g)

Figure 5. Wavelet transform. (a) Time-domain response and envelope, (b) spectrogram, (c) backbone
curve of first harmonic term A1, (d) backbone curve of bias term A0, (e) logarithmic form of the
envelope, (f) damping factor, (g) damping force curve. Thin solid line, time domain response; dashed
line, envelope; dotted line, instantaneous frequency; thick solid lines, analytical solutions; lines with
circles, numerical results.

4. Parameter Estimation and Discussion

In this section, the stiffness and damping parameters of the asymmetric systems are
estimated from the characteristic curves of the Helmholtz–Duffing oscillator obtained
in Section 3. The stiffness parameters are obtained by polynomial fitting the restoring
force curve shown in Equation (3). The Matlab function polyfit computes the least square
polynomial. This method is called the restoring force curve method (RFCM). Although
the backbone curve of the first harmonic term obtained by using Equation (4) deviates
from the numerical result obtained by using HVD in the bending regime [42], which is the
curved part, we can also estimate the stiffness parameters from this curve. Matlab function
fminsearch is used here to find the optimal stiffness parameters. This identification method
is called the backbone curve method (BCM). The estimated stiffness parameters are shown
in Table 1.

The viscous damping can be estimated by linear fitting the damping force curve, called
the damping force curve method (DFCM). For a weakly nonlinear system, the envelope is
approximately given by ln A(t) = −ct/2m + ln A0. Therefore, the natural logarithm of the
envelope can also be used to estimate the damping [28], called the logarithmic envelope
method (LEM). Matlab function polyfit is utilized for computing the least square linear
coefficient. The estimated damping coefficients are shown in Table 2.
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Table 1. Estimated results and errors of the stiffness parameters.

k1 (N/m) k2 (N/m2) k3 (N/m3)

RFCM BCM RFCM BCM RFCM BCM

HT 3940.7
(1.48%)

4082.0
(2.05%)

−1.002 × 107

(0.20%)
−1.007 × 107

(0.73%)
9.998 × 109

(0.02%)
1.023 × 1010

(2.31%)

ZC 4051.5
(1.29%)

4050.6
(1.27%)

−8.381 × 106

(16.19%)
−9.873 × 106

(1.27%)
7.213 × 1010

(27.87%)
1.003 × 1010

(0.31%)

DQ 4052.5
(1.31%)

4066.5
(1.66%)

−8.273 × 106

(17.27%)
−9.923 × 106

(0.77%)
7.262 × 109

(27.38%)
1.008 × 1010

(0.76%)

WT 3989.1
(0.27%)

−9.977 × 106

(0.23%)
1.043 × 1010

(4.28%)
True
value 4000 −107 1010

Table 2. Estimated results and errors of the damping coefficient.

c (Ns/m) LEM DFCM

HT 0.381 (4.80%) 0.402 (0.37%)
ZC 0.377 (5.76%) 0.406 (1.58%)
DQ 0.381 (4.82%) 0.408 (2.02%)
WT 0.370 (7.60%) 0.405 (1.30%)

True value 0.4

The estimated stiffness parameters are obtained by using the four methods. The
Hilbert transform and Hilbert vibration decomposition combined with the low pass filter
can give accurate estimation results. This method can not only decompose the signal and
obtain the backbone curve of each harmonic term, but also combine harmonic terms to
construct the restoring force. However, the Hilbert transform method has an end effect.
The data at the beginning and end need to be removed. For zero-crossing with the peak
picking method, it is straightforward to implement. Even for the asymmetric signal, this
method can analyze the positive and negative time domain separately and construct
the corresponding restoring force. However, when this method is applied to the signal
contaminated with noise, the zero-crossing points and peak points are difficult to obtain
accurately. The signal should be properly filtered to solve this issue. Also, there are only
fewer points to extract for the short-time signal. In this case, the interpolation method
can be used in the whole time domain to obtain more points. For the direct quadrature
method, part of instantaneous frequency points are interpolated using a cubic spline, so
the obtained instantaneous frequency is not accurate enough, especially for the signal with
a low sampling rate or a large amount of normalized data is over 0.9. For the wavelet
transform, the wavelet function needs to be selected carefully and appropriately.

The nonlinear stiffness parameters estimated by the restoring force curve using the
zero-crossing and direct quadrature methods are not accurate. The estimated results of
the backbone curve method are all well. The backbone curve method estimates the entire
backbone curve, so the estimated stiffness parameters are comprehensively affected by the
deviation of each amplitude regime.

For the damping coefficient, the four methods seem to achieve similar results. The
estimated solutions of the logarithmic envelope method are all less than the actual value
because it uses the analytical solution of the linear system. But this method is simple and
easy to estimate for weakly damped systems. The error of the damping force curve method
is small. The derivatives of the envelope, instantaneous frequency, and displacement
should be obtained for the damping force curve method, so the result is disturbed by noise
easily. A proper filter can be used to deal with the influence of the noise, and the Bayesian
approach is a good way to measure the uncertainty of the identification results [29].
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5. Experiment

5.1. Experimental Description

The test rig is shown in Figure 6, where Figure 6a is the photo of the test rig, and
Figure 6b,c are the elevation and plan views of the nonlinear vibration absorber. The
vibration absorber consists of a 4.86 g mass attached to a thin circle brass plate of 0.15 mm
thickness. Figure 6c also shows the contour plot for the measured geometric imperfections
obtained by moving the laser sensor through the translation surface of the plate. It can be
seen that the plate is not flat, and has a certain initial deflection, as shown in Figure 6b.

 

Figure 6. Test rig and schematic model of the vibration absorber. (a) Photo of the test rig, (b) elevation
view, (c) Plan view and contour plot for the measured geometric imperfections. Relative deviations
are in millimeters.

The excitation signal was generated by the LDS V406 shaker, then measured by the
B&K 4517 accelerometer and Microtrak™ 3 LTS-050-10 laser sensor, respectively. The
sampling frequency was 2000 Hz. Because the linear natural frequency of the vibration
absorber was much higher than the natural frequency of the shaker, the absorber and the
shaker can be regarded as a single-degree-of-freedom system [28]. The excitation signal
supplied to the shaker was from Agilent 33512B signal generator and passed through an
LDS PA500L power amplifier. The measured signals were sampled by a NI PXIe-4492
acquisition system after passing through a B&K 2693 conditioner. The equation of motion of
the plate with geometric imperfections can be simplified as a Helmholtz–Duffing oscillator,
as discussed in [4,28]. Therefore, the mathematical model of the free-decay response of the
nonlinear vibration absorber is given by

mEQ
..
x + c

.
x + k1x + k2x2 + k3x3 = 0 (18)

where mEQ = (ms + mv)(ma + m)/(ms + mv + ma + m) = 5.44 g is the equivalent mass
of the system. ms, mv, ma, and m are the mass of armature, support structure of the
absorber, accelerometer, and absorber mass, respectively. x is the vibration response of the
experimental system. Damping c, linear stiffness k1, quadratic and cubic nonlinear stiffness
k2 and k3 are the parameters to be estimated.
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5.2. Estimation and Discussion

Before the free decay experiment, several slow frequency sweep experiments from low
to high frequency were carried out to determine the system’s jump-down frequency, which
was about 201 Hz. Therefore, the excitation signal was switched off at 200 Hz. The circular
plate exhibited large stiffness nonlinearity, and the vibration modes of the system were
well-separated. In order to exclude the influence of the higher harmonics and high order
modes, the displacement of the mass measured by the laser sensor was passed through
a low pass filter with a cut-off frequency of 270 Hz, as shown in Figure 7a. The specific
experimental instruments and testing procedures were described in [42]. The data used in
identification is approximately taken from 0.205 to 0.37 s.

Figure 7b shows the restoring force curve. Because the response decayed fast, cubic
spline interpolation was used to construct envelope and frequency at each time point for
the zero-crossing method. The first several large-amplitude points were removed due to
the deviation. The restoring force was estimated by using Equation (3). The estimated
stiffness parameters are shown in Table 3. The estimated results of the zero-crossing and
direct quadrature methods are close to each other.

Table 3. Estimated stiffness parameters of the experimental system.

k1 (N/m) k2 (N/m2) k3 (N/m3)

RFCM BCM RFCM BCM RFCM BCM

HT 4837.7 4272.9 −2.252 × 107 −2.155 × 107 5.705 × 1010 6.346 × 1010

ZC 5452.3 4265.7 −2.461 × 107 −2.109 × 107 4.822 × 1010 6.302 × 1010

DQ 5597.5 4949.9 −2.193 × 107 −2.776 × 107 5.123 × 1010 8.614 × 1010

WT 4137.9 −2.152 × 107 7.096 × 1010

Figure 7c shows the backbone curve. The backbone curve obtained using the Hilbert
transform is compared well with the backbone curve obtained using the zero-crossing
method. The backbone curve obtained by using the wavelet transform shows a slight
deviation from the above two methods, while the backbone curve obtained by using the
direct quadrature method shows the most significant deviation. The estimated stiffness
parameters are shown in Table 3. It can be seen that, except for the direct quadrature
method, the estimated results of other methods are compared well. The identification
results of the Hilbert transform can be used to reasonably reconstruct the experimental
system’s restoring force and backbone curves. The stiffness parameters are also estimated
well by the zero crossing method and wavelet transform using the backbone curve.

The natural logarithm of the envelope and the damping force curve are shown in
Figure 7d,e. The results of the four methods are similar, as shown in Table 4. It can be seen
that the damping coefficient estimated by the logarithmic envelope method is less than
that estimated by the damping force curve method. The logarithmic envelope method uses
the analytical solution of the envelope of the linear system. However, the damping of the
experimental system is not strictly linear. It can be noticed from the logarithmic envelope
and damping force curve that the damping factor is amplitude dependant and decreases
with time.

Table 4. Estimated damping coefficient of the experimental system.

c (Ns/m) LEM DFCM

HT 0.234 0.320
ZC 0.232 0.317
DQ 0.232 0.325
WT 0.230 0.311
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(a) 

  
(b) (c) 

  
(d) (e) 

Figure 7. Measured (a) time domain response, (b) restoring force curve, (c) backbone curve, (d) log-
arithmic form of the envelope, (e) damping force curve. Thin solid line, time domain response;
thick solid lines, Hilbert transform; lines with diamonds, zero-crossing; lines with triangles, direct
quadrature; lines with circles, wavelet transform.

To determine whether the identification procedure is successful, a reconstructed free
decay response is compared with the measured response as shown in Figure 7a. The
approximate solution of Equation (18) is given by

x(t) = A0(t) + A1(t) cos[φ(t)] (19)
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where A0(t) is the time-dependent amplitude (or envelope) of bias term, A1(t) is the
time-dependent amplitude of the first harmonic term, and φ(t) is the time-dependent
phase. The time-dependent phase is obtained by integrating the time-dependent damped
natural frequency

φ(t) =
∫ t

0
ω(t)dt (20)

The time-dependent damped natural frequency, namely the backbone curve, is given
by Equation (4). The parameters obtained by the Hilbert transform method using the
backbone curve and the measured envelopes are used in reconstructing the free decay
response. The results are shown in Figure 8a.

 
(a) (b) 

Figure 8. Experimental and reconstructed time domain response for (a) large initial displace-
ment, and (b) small initial displacement. Solid lines, measured response; dashed-dotted lines,
reconstructed response.

For the small amplitude regime, using the multiple-scales method [11], the time
domain response is approximately given by

x(t) = A0(t) + A1e−ζωnt cos
[

ωnt +
3

16ζ

k3

k1
A2

1(1 − e−2ζωnt)

]
(21)

where A0(t) is the measured envelope of bias term, A1 is the initial amplitude of the first
harmonic term. ωn =

√
k1/mEQ and ζ = c/2

√
mEQk1 are the undamped natural frequency

and the damping ratio of the underlying linear system respectively. Damping obtained
by the logarithmic envelope method is used in reconstructing the time response. The
results are shown in Figure 8b. It can be seen that the reconstructed responses obtained
by the two reconstruction methods are compared well with the measured responses. The
reconstruction method is described in detail in [28], which is applied to identify a Duffing
type nonlinear vibration absorber.

6. Conclusions

This paper compared four identification methods for the stiffness and damping param-
eters of asymmetric systems with square and cubic nonlinearities. We verified the feasibility
and accuracy of these methods by a Helmholtz–Duffing numerical example and a non-
linear vibration absorber with geometric imperfections. Hilbert vibration decomposition
decomposes the asymmetric signal to obtain the backbone curve of each harmonic term.
The asymmetric restoring force curve is constructed by the positive and negative congruent
envelopes and frequencies obtained by using a weighted summing of the decomposed
harmonic components. The obtained curves compare well with the analytical solution,
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but the disadvantage of the Hilbert transform is the end effect. Zero-crossing with the
peak picking method extracts positive and negative peak points and obtains instantaneous
frequency more simply. The bias term and first harmonic term are obtained by using the
sum and difference of the positive and negative envelopes. The direct quadrature method
also analyzes the positive and negative signal parts separately and uses the same method
as the zero-crossing method to obtain the bias term and the first harmonic term. The two
methods are more sensitive to noise. It is essential for the wavelet transform to select
wavelet function appropriately.

The nonlinear stiffness parameters estimated are not accurate in the numerical exam-
ple when the restoring force curve is obtained using the zero-crossing method and direct
quadrature method. The identification errors for nonlinear stiffness parameters are about
20%. The other methods can estimate the stiffness parameters accurately, and the identifica-
tion errors are less than 5%. For the experimental system, the identification results of the
Hilbert transform can describe the experimental system. The stiffness parameters estimated
by the restoring force curve using the zero-crossing method and the direct quadrature
method are close to each other. The backbone curve obtained by using the direct quadrature
method deviates from those obtained by the other methods.

The logarithmic envelope can be used to estimate damping. The estimated results are
the same, and all are less than the actual values. The other tool is the damping force curve,
which is constructed by the damping factor and envelope of the velocity. The estimated
results are better than those of the logarithmic envelope. However, the damping force
curve needs the derivative of the envelope, instantaneous frequency, and displacement,
so it has poor robustness against noise. It can be seen from the logarithmic envelope and
damping force curve that the damping of the experimental system is not strictly linear.

This paper is to identify the parameters of a predetermined system model. Restoring
the force curve method and damping force curve method are nonparametric identification
methods. They produce the best functional representation of the system without a priori
assumption about the system model. However, it is necessary for the backbone curve
method to know the nonlinear system model and the theoretical solution of the backbone
curve in advance. The logarithmic envelope method is suitable for lightly damped systems
and is an approximate estimation method.
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Abstract: High-aspect-ratio structures have become increasingly important in MEMS devices. In
situ, real-time critical dimension and depth measurement for high-aspect-ratio structures is critical
for optimizing the deep etching process. Through-focus scanning optical microscopy (TSOM) is a
high-throughput and inexpensive optical measurement method for critical dimension and depth
measurement. Thus far, TSOM has only been used to measure targets with dimension of 1 μm or
less, which is far from sufficient for MEMS. Deep learning is a powerful tool that improves the TSOM
performance by taking advantage of additional intensity information. In this work, we propose a
convolutional neural network model-based TSOM method for measuring individual high-aspect-ratio
trenches on silicon with width up to 30 μm and depth up to 440 μm. Experimental demonstrations
are conducted and the results show that the proposed method is suitable for measuring the width and
depth of high-aspect-ratio trenches with a standard deviation and error of approximately a hundred
nanometers or less. The proposed method can be applied to the semiconductor field.

Keywords: optical micro-nano metrology; three-dimensional non-destructive measurement;
high-aspect-ratio structure; through-focus scanning optical microscopy; convolutional neural network

1. Introduction

Micro-electro-mechanical systems (MEMS) comprise both mechanical and electronic
components manufactured on a common silicon substrate, and have gained significant
attention in the last three decades. Due to the miniaturized size, low cost, high manufac-
turing throughput, and expectance of superior performance, MEMS are used in a wide
range of consumer, automotive, medical, and industrial products [1,2]. With the increase
in the integration density and the reduction in the feature size, high-aspect-ratio (HAR)
structures in silicon play an increasingly important role in micro-sensors and actuators [3,4].
Most MEMS HAR structures are fabricated by the dry etching process, especially deep
reactive-ion etch (DRIE) with the Bosch process [5,6]. The precisely controlled profile
of HAR structures is required for better device performance and higher resolution and
reliability [7]. Due to aspect-ratio-dependent etching and microloading effects, there is a
complex interplay during etching between the device design (topology dimensions and
shape) and etch parameters [8]. Therefore, in situ, real-time critical dimension and depth
measurement for HAR structures is critical for optimizing the Bosch deep etching process.

To date, various methods have been used to measure the HAR structures of MEMS [9,10].
Scanning electron microscopy (SEM) is a commonly used tool with high resolution and
high magnification, but it is costly, inefficient, and not suitable for online real-time detec-
tion. Optical methods, such as scatterometry and infrared reflectometry, are reported to
measure repeated structures with high throughput, but are limited in their ability for the
dimensional analysis of isolated HAR structures. Moreover, a silicon oxide film usually
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exists in etched MEMS device, which makes it more problematic for SEM and scatterometry.
Through-focus scanning optical microscopy (TSOM) is a novel fast and low-cost optical
measurement method with nanometer sensitivity, and is achieved with bright-field optical
microscopy [11]. The conventional TSOM method is a model-based metrology method
analyzing the scattering intensity reflected from the target and the intensity change as the
target performs through-focus scans along the optical axis. The dimensional information of
the target is extracted by matching the intensity information with the simulation results
in the database. For improving the performance, great attention has been paid to mini-
mizing the dissimilarities between the intensity information acquisition and simulation
conditions [12–19]. In the meantime, model-based TSOM utilizes only the optical inten-
sity range and the mean-square intensity information of the TSOM image; hence, large
amounts of intensity distribution information correlated to the dimensional information of
the targets is ignored. To date, TSOM has only been used to measure targets with critical
dimensions and depth of 1 μm or less, which is far from sufficient for MEMS.

Deep learning (DL) is a powerful artificial intelligence technology and has made impor-
tant progress in pattern recognition, computer vision, automatic speech recognition, natural
language processing, and other fields. Training DL algorithms directly with measurement
data is a new approach to TSOM, an alternative to establishing a simulation database. It
improves the TSOM performance by taking advantage of additional intensity information
and avoiding the adverse effect of the dissimilarities between information acquisition and
simulation conditions [20]. A convolutional neural network (CNN), as one of the most
representative DL algorithms, can automatically learn the deep correlations between the
scattering intensity information and dimensional information of the targets [21], and is
often used in the field of image processing.

In this paper, we describe a CNN learning model-based TSOM method for measuring
the individual HAR trench on a silicon substrate with width up to 30 μm and depth up
to 440 μm. The TSOM image is mapped to a normalized image of appropriate size, and
the width and depth measured by SEM are taken as labels for iterative training to obtain
a DL regression model that is capable of accurately predicting the width and depth. The
well-trained model can predict the width and depth of the HAR trench on the silicon
substrate with a silicon oxide film, and the standard deviation and error of a few tens of
nanometers are achieved. These results indicate that the DL-based TSOM method has great
application prospects for the micro-nano three-dimensional measuring field.

The structure of the rest of this paper is as follows: the second section introduces the
materials and methods, including the experimental setup, the acquisition of the dataset,
and the structure of the CNN model. The third section introduces our experimental results
and discussion. The fifth section introduces our conclusions.

2. Materials and Methods

2.1. TSOM Setup

A schematic of the TSOM setup is shown in Figure 1a. The TSOM setup is mainly com-
posed of a commercial bright-field optical microscope with a Kohler illumination system
(Shanghai Guangmi, Shanghai, China). A halogen lamp is used as the light source, which
has an illumination peak wavelength of 589 nm with a 3 dB spectral bandwidth of 160 nm.
A Piezoelectric Transducer (PZT, Coremorrow, Harbin, China) is placed under the sample
stage to achieve the through-focus scanning. The scattered light intensity distribution
information is acquired by a charge-coupled device (CCD) camera (Thorlabs, Newton, NJ,
USA) with a resolution of 1280 px × 1024 px and pixel size of 4.65 μm × 4.65 μm. Figure 1b
provides a photograph of the TSOM setup.

Figure 2 shows the MEMS trench section diagram and its geometric parameters that
require metrology. The HAR trench samples are etched on the silicon substrate by DRIE
with the Bosch process, and the silicon oxide film is retained. Owing to the characteristics
of DRIE, there is a width difference between the silicon oxide film and the silicon layer. In
this paper, width is defined as the width at the 50% thickness position of the silicon oxide
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film, and depth is defined as the distance from the surface of the silicon oxide film to the
bottom of the HAR trench. With the prepared TSOM setup, the width and depth of the
trench can be obtained easily.

 

 
Figure 1. (a) Schematic and (b) photograph of TSOM setup. CCD, charge-coupled device; PZT,
Piezoelectric Transducer.

Figure 2. MEMS trench section diagram and its geometric parameters. W, width; D, depth.

2.2. The Dataset

The traditional metrology method based on optical microscopy utilizes only the focal
plane image, and the nonfocal plane images are discarded as useless information. For
geometric dimensions extracted from the focal plane image, the measurement accuracy
is limited by the optical resolution and focal depth of the microscope. The light intensity
information out of the focal plane is also related to the sample shape, and reflects the
geometric characteristics on some level. Figure 3 shows the process to construct a TSOM
image. The TSOM setup captures a series of images as the sample scans through the
focus of the microscope along the optical axis. The image sequence consists of an in-focus
image and a series of defocused images of the sample. The acquired optical images are
stacked at their corresponding scan positions, and there is a slight difference between
any two adjacent images. The optical intensities in a vertical plane passing through the
trench on the target can be easily extracted to construct a TSOM image. The X axes, Y axes,
and grayscale represent the spatial position, the focus position, and the optical intensity,
respectively. Figure 4 shows the SEM images of trench sections with different widths and
depths. The insets are the corresponding TSOM images, which show obvious differences in
intensity distribution. The width and depth can be extracted by establishing the one-to-one
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correspondence between geometric characteristics and TSOM images. Therefore, TSOM
can break the limits of the optical resolution and focal depth.

Figure 3. Process to construct a TSOM image.

   

   

Figure 4. SEM images of MEMS HAR trench sections with width and depth of (a) 1.98 μm and
169 μm, (b) 10.3 μm and 321 μm, (c) 30.3 μm and 443 μm, (d) 30.3 μm and 37.3 μm, (e) 30.3μm and
131 μm, (f) 30.3 μm and 443 μm (inset: corresponding TSOM images).

For the samples, each trench is 5 mm long. When collecting the TSOM image, 10 positions
are randomly selected over each trench, as shown in Figure 5, and the part of the trench
that is contaminated or close to the ends should be avoided. Each position is scanned
through-focus to obtain a series of images. The scanning range is 250 μm with a step of
2 μm. Multiple lines are selected over each image with equal space, and we construct
multiple TSOM images.

For the HAR trench etch, the reactive-ion etch lag leads to differences in trench depths
with different trench widths [6]. For example, the depths of 2 μm, 10 μm, and 30 μm
wide trenches etched simultaneously are 169 μm, 321 μm, and 443 μm, respectively. It
is difficult to obtain trenches of the same depth with different widths in a large range
(e.g., 2 μm~30 μm). To alleviate the impact of the depth difference, the trench sets for width
prediction consist of 4 trenches with widths around 2 μm, 10 μm, and 30 μm, respectively,
and the corresponding depths are approximately 169 μm, 321 μm, and 443 μm. The
depth prediction trench sets consist of 5 trenches with widths of 1.93 μm, 10.3 μm, and
30.3 μm, respectively. The corresponding depth ranges are from 24 μm to 169 μm, 34 μm to
321 μm, and 37 μm to 443 μm. The highest aspect ratios are approximately 88:1, 31:1, and
15:1, respectively.
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Figure 5. Process to collect TSOM image dataset.

2.3. The Structure of the CNN

To reveal the correspondence between geometric characteristics and TSOM images,
we resize the TSOM image to 256 × 64 pixels, and then construct a suitable CNN model
for training. CNN models usually consist of a convolution layer, pooling layer, activation
layer, and full connection layer. An improved CNN model is designed based on the
traditional CNN model, as shown in Figure 6. The TSOM image is a grayscale image,
so the single-channel image can be convolved. There are 5 convolution layers (including
two 3 × 5 kernels and three 3 × 3 kernels), 4 pooling layers (being applied to the first
four convolution layers), and 4 full connection layers in the CNN model. All convolution
layers contain zero padding. The ReLU function is used as the activation function, and the
maximum pooling function is used as the pooling layer. The parameters of the CNN model
can be found in Figure 6. The mean-square loss is used as the final loss function to calculate
the mean-square error between the output values and the actual values. The loss function
equation is:

loss(xi, yi) = (xi − yi)
2 (1)

where xi indicates the true value of the target and yi indicates the predicted value of the
CNN model.

 

Figure 6. Schematic diagram of improved CNN model.
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The training image set and test image set contain 3000 and 200 TSOM images, re-
spectively, which are generated from one trench set. SEM is used to measure the width
and depth by the cross-section of the trench center position, and the SEM result is taken
as labels. The training data set and SEM results are applied to train the CNN model for
learning the correspondence of TSOM images and trench parameters. The trained model is
evaluated by the test data set.

3. Results and Discussion

To verify the parameter prediction performance of the trained CNN model, the position
close to the trench center was through-focus scanned continually 10 times. The center lines
of a series of microscope images were selected to construct prediction TSOM image sets,
and the average of 10 measurement results was considered as the predicted value.

Figure 7a–c show a comparison between the true (black triangles) and predicted (red
circles) widths of HAR trenches with widths of around 2 μm, 10 μm, and 30 μm, respectively.
Figure 7e shows a comparison between the actual (black triangles) and predicted (red circles)
depths of HAR trenches with widths of 1.93 μm, 10.3 μm, and 30.3 μm, respectively. The
comparison results show that the predicted value and true value match well. In order to
further analyze the results shown in Figure 4, the standard deviation and error were used
to evaluate the prediction performance. The definitions of the standard deviation and error
are given in Equations (2) and (3), respectively:

SD =

√
1

n − 1

n

∑
i=1

(
fi − f

)2
(2)

E =
∣∣∣ f − ft

∣∣∣ (3)

where fi is the predicted value, f is the average of the predicted values, ft is the true value,
and n is the number of measurements, which is 10 in this paper.

   

Figure 7. Width and depth prediction results. Comparison between the actual (black triangles) and
predicted (red circles) widths of HAR trenches with widths of around (a) 2 μm, (b) 10 μm, and
(c) 30 μm; comparison between the actual (black triangles) and predicted (red circles) depths of HAR
trenches with widths of (d) 1.93 μm, (e) 10.3 μm, and (f) 30.3 μm.
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The standard deviation and error of the width prediction results are shown in Figure 8.
As a comparison, the results predicted by the traditional machine learning (ML) method
demonstrated in Reference [22] are shown in order to verify the superiority of the CNN
model. The adopted ML model is a support vector regression (SVR) model combined
with a Histogram of Oriented Gradients (HOG) feature extractor [23–25]. The three trench
sets for width prediction were irregularly spaced, with width intervals of a few hundred
nanometers around 2 μm, 10 μm, and 30 μm. The standard deviation and error were
less than 10 nm for 2 μm and 10 μm wide trenches. The corresponding ML-predicted
results were 40 nm and 180 nm for 2 μm and 10 μm wide trenches, which were much
higher than the DL-predicted results, especially for 10 μm wide trenches. For 30 μm wide
trenches, the standard deviation and error were significantly increased, but still less than
60 nm and 80 nm, respectively. The increase in the standard deviation and error was
mainly due to the etching error, which increased as the width increased. Moreover, the
depth of the 30 μm wide trench was 443 μm. A large scanning range was necessary for a
deep trench to obtain the complete TSOM image. Incomplete TSOM images also led to
poorer performance. The corresponding ML-predicted results were 170 nm and 250 nm,
which were approximately three times the DL-predicted results. The comparison results
confirmed the superior prediction ability of the DL model for width prediction.

Figure 8. Standard deviation and error of width results for widths around (a) 2 μm, (b) 10 μm, and
(c) 30 μm, predicted by machine learning model (dot line) and deep learning model (solid line). ML,
machine learning; DL, deep learning; SD, standard deviation.

Figure 9 illustrates the standard deviation and error of the depth prediction results. The
1.93 μm, 10.3 μm, and 30.3 μm wide trench sets for depth prediction were also irregularly
spaced. As the depth increased, the depth interval also increased from a few tens of
micrometers to more than 200 μm. The standard deviation and error were 110 nm and
360 nm for 1.93 μm wide trenches. For 10.3 μm wide trenches, the results were 90 nm and
410 nm. The corresponding ML-predicted results were around a few micrometers, and were
approximately an order of magnitude higher than the DL-predicted results. For 30.3 μm
wide trenches, the standard deviation and error were 280 nm and 300 nm, respectively. The
corresponding ML-predicted results were 2.4 μm and 850 nm, which were much higher
than the DL-predicted results.

For ML depth prediction results, the predicted performance was degraded obviously
as the trench depth increased or width decreased. This can be understood by the fact that
less light reached the bottom and carried the depth information for narrow or deep trenches.
Less depth information collected resulted in a larger standard deviation and greater error.
Moreover, the scanning range was much smaller than the depth of the trench. This resulted
in incomplete TSOM images, which could lead to poorer performance. However, the DL
depth prediction performance did not change obviously as the trench depth or width
changed. It was proven that the DL model extracted more information from less input data
compared with the ML model. It was also noticed that the standard deviation and error
of the depth prediction results were obviously higher than those of the width prediction
results. This was mainly because the depth interval of the depth training trench set was
much larger than the width interval of the width training trench set, which was only a few
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hundred nanometers. The prediction performance could be further improved the proper
adoption of parameter intervals.

  

Figure 9. Standard deviation and error of depth results for widths of (a) 1.93 μm, (b) 10.3 μm, and
(c) 30.3 μm, predicted by machine learning model (dot line) and deep learning model (solid line). ML,
machine learning; DL, deep learning; SD, standard deviation.

Previously reported TSOM systems had achieved a nanometer measurement resolu-
tion, which was much higher than the result shown in this paper. This was mainly due to
the accuracy of the SEM values. The SEM value was taken as the true value, and directly
affected the prediction ability of the CNN model. In our study, the SEM results were
rounded to the nearest 0.01 μm for dimensions less than 10 μm, 0.1 μm for dimensions from
10 μm to 100 μm, and 1 μm for dimensions greater than 100 μm, and this was not sufficient
for dimensional measurement with nanometer accuracy. Moreover, the training trench
set and trench set for SEM were etched in the same wafer, but with different positions, so
etching errors also degraded the prediction ability of the CNN model.

4. Conclusions

In this work, HAR trenches with widths from 2 μm to 30 μm and depths from 20 μm
to 440 μm were measured by a CNN model-based TSOM method. The TSOM image was
mapped to a normalized image of appropriate size, and the width and depth measured by
SEM were taken as labels for iterative training to obtain a DL regression model that was
capable of accurately predicting the width and depth. The standard deviation and error
were around a hundred nanometers or less. The superiority of the convolutional neural
network model-based TSOM compared to machine learning-based TSOM was experimen-
tally investigated and discussed. This method has the potential to achieve nanometer
precision, and its application fields can be extended to integrated circuit metrology, such as
through-silicon via.
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Abstract: Accurately detecting the tooth profile parameters of the synchronous belt is crucial for
the transmission’s load distribution and service life. However, the existing detection methods have
low efficiency, are greatly affected by the manual experience, and cannot realize automatic detection.
A measurement method based on point cloud data is proposed to solve this issue. The surface
space points of the synchronous belt are acquired by a line-structured light sensor, and the raw
point clouds are preprocessed to remove outliers and reduce the number of points. Then, the point
clouds are divided into plane and arc regions, and different methods are used for fitting. Finally, the
parameters of each tooth are calculated. The experimental results show that the method has high
measurement accuracy and reliable stability and can replace the original detection method to realize
automatic detection.

Keywords: synchronous belt; 3D measurement; normal vector; point cloud segmentation

1. Introduction

1.1. Measurement of Synchronous Belt

The synchronous belt is an important part of power transmission [1]. It has the advan-
tages of an accurate transmission ratio, compact structure, and good wear resistance [2].
It is widely used in machine tools, light industries, chemical industries, automobiles, and
other industries [3,4]. The geometric structure of the synchronous belt plays an important
role in the load transmission, and the deviation of the tooth profile parameters will affect the
service life and reliability. A proper tooth profile will reduce the interference between the
synchronous belt and the sprocket, causing a better distribution of the load [5,6]. Conversely,
the uneven load will increase the wear of the tooth surface and generate noise and vibration
during operation, which leads to mechanical failures more frequently [7]. Therefore, it is
very important to detect the tooth profile parameters of the synchronous belt.

The tooth profile deviation of the synchronous belt has several factors [8]: the wear
of the mold, the dirt of the mold, the molding temperature, etc. During the production
process, each tooth of the synchronous belt needs to be inspected. The current detection
methods are mainly [9] the projection method and the manual method. Both methods
require human operation, which is greatly affected by the manual experience and cannot
work for a long time. The detection efficiency is low, and the cost is high.

1.2. Three-Dimensional Measurement

The definition of 3D measurement: acquiring the 3D data of the object and measuring
the object in all directions. The current methods of 3D measurement can be classified as
contact and non-contact [10]. Contact measurement methods include manual measurement
using fixtures and three-coordinate measuring machines [11]. However, these methods
have low measurement efficiency and limited measurement range, which means it is
difficult to measure large-sized and special-shaped parts. Meanwhile, these methods need
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to contact the target to be measured, which easily leads to scratches and deforms the surface
of non-rigid parts.

With the continuous development of computer technology and optical equipment,
various non-contact 3D measurement methods continue to emerge, such as projected struc-
tured light [12], laser rangefinders [13], visual inspection technology [14], etc. Among these
non-contact measurement methods, the structured light projection has become a prevalent
non-contact 3D shape measurement technology [15]. Essentially, the 3D measurement
method of structured light detects the visible surface of the object by configuring an addi-
tional light source generator to form the 3D shape of the object. The output of a 3D imaging
system is usually a set of points with (x, y, z) coordinates for each measurement point in
a Cartesian coordinate system. The advantages of the method are the simple structure,
high measurement accuracy, and better stability. It is widely used in industrial inspection,
agricultural inspection, 3D profile measurement, and other fields [16–20].

To rapidly obtain information on the 3D shape of the gear tooth flank, a 3D point cloud
measurement system based on a line structure light sensor was proposed by Guo [21]. The
measured 3D point cloud data were used to calculate the profile error and pitch error. The
results showed that the 3D point cloud measurement system could perform rapidly and
accurately in the 3D measurements of gears. Long [22] aimed to ensure the quality of aircraft
assembly, and a method based on an unstructured scanned point cloud was proposed.
Their method first detected and segmented the seam area based on the local point density
discrepancy. A projection operation is applied based on the segmentation results to convert
3D measurement to 2D measurement to reduce the computational complexity and improve
the accuracy of the measurement. Fan [23] proposed an approach to extracting curve
profiles from a scanned point cloud. A slice set was constructed to extract section line points
from the point cloud. Based on the normal angle of adjacent points, three methods were
proposed to identify the curve-profile points on the three kinds of section lines. The results
showed that extracted curve-profile points deviate from reference data within 0.1 mm
with standard deviations smaller than 0.07 mm. Xu [24] proposed a method of identifying
the longitudinal rip through 3D point cloud processing. The results indicated that this
method could identify the longitudinal rip accurately in real-time and simultaneously
characterize it.

1.3. Motivation

As can be seen, the 3D point cloud measurement methods have been widely used,
and there have been better developments in size measurement. This work aims at the
problems of low detection efficiency and human factors in the detection of the tooth profile
parameters of synchronous belts. A measurement method based on point cloud data is
proposed. Specifically, a line-structured light sensor is used to acquire point clouds on the
surface of the synchronous belt. Remove outliers and simplify the point cloud through
pre-preprocessing. Then, the point clouds are divided into plane and arc regions. Fitting
models suitable for them are established by different methods. Finally, the detection of
each tooth of the synchronous belt is completed.

Overall, our contributions are summarized as follows:

• We propose an effective method to detect the tooth profile parameters of synchronous
belts from 3D point clouds and establish a point cloud acquisition system on the
surface of synchronous belts;

• We design a point cloud segmentation algorithm based on the angle of the normal
vector, which accurately obtains the measurement area of the tooth surface arc and
establishes a fitting model;

• The 3D point cloud measurement system has better stability, and the measurement
error is less than 0.03 mm.

This paper is organized as follows: Section 2 describes the proposed method in detail.
The results of these tests are presented in Section 3 and they are discussed in Section 4.
Finally, the paper is concluded in Section 5.
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2. Methods

2.1. Methodology of Synchronous Belt Geometry Measurement

The detected object is an arc tooth of the synchronous belt, the tooth shape code is
High Torque Drive (HTD). The pitch (Pb) of the synchronous belt will cause a pitch error
during the meshing process of the synchronous belt and the synchronous wheel. The belt
tooth cannot fully enter the gear tooth slot if the pitch error is too large, resulting in an
unstable transmission system. In severe cases, the phenomenon of tooth climbing and
tooth skipping will occur, which leads to the interruption of the power transmission. The
tooth height (ht) and belt height (hs) of the synchronous belt also affect its strength and
load-carrying capacity. It is important to detect the parameters of the synchronous belt.

Measurement plan: Pb is the distance between the center of the arc at the top of the
tooth, so the Pb measurement needs to obtain the position of the centers; ht is the distance
from the center to the plane B and plus the arc radius. The hs data can be obtained in the
same way. The parameters of the synchronous belt are shown in Figure 1.

 

Figure 1. Synchronous belt parameters.

2.1.1. Point Cloud Model

An object contour point cloud acquisition system based on the principle of laser
triangulation [25] is shown in Figure 2. The laser is vertically irradiated on the surface
of the measured object and diffusely reflected [26]. The reflected light is projected on the
photosensitive chip by the camera lens. The imaged data signal will be transmitted to the
controller and stored as a point cloud with coordinate information. With the movement of
the mobile platform, the point clouds of the measured object are obtained.

 
Figure 2. Point cloud acquisition system model.

As shown in Figure 2, Ow-xwywzw is the measurement coordinate system, that is the
world coordinate system; where the Ow-xwyw plane is parallel to the working plane of
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the mobile platform, Ow-xwzw is coplanar with the structured light plane and the Owyw
direction is consistent with the movement of the mobile platform. Oc-xcyczc is the camera
coordinate system. The Oc is the imaging perspective center. Op-uv is the pixel coordinate
system, which is the image plane of the camera. Oi-xy is the image coordinate system,
Oi(u0, v0) is the coordinate of the projected position of the camera’s optical axis in the
image plane. P(xw, yw, zw) is a certain point where the structured light plane intersects the
surface of the object to be measured, and the intersection of the straight line POc and the
image plane is set to p(u, v). According to the perspective projection relationship of the
pinhole imaging model, the mathematical model of the line-structured light 3D scanning
system is established, as shown in Equation (1):

λ

⎡⎣u
v
1

⎤⎦ =

⎡⎣ fx 0 u0
0 fy v0
0 0 1

⎤⎦[ R
0T

T
1

]⎡⎢⎢⎣
xw
yw
zw
1

⎤⎥⎥⎦ (1)

where λ is the scale factor; (u, v) denotes the coordinates in the pixel coordinate system;
fx and fy denote the changing relationship between the image coordinate system and the
pixel coordinate system; (u0, v0) denotes the coordinates of the projection of the optical
axis of the camera lens in the pixel coordinate system; R is the 3 × 3 rotation matrix; T is
the 3 × 1 translation matrix, and both represent the transformational relationship between
the camera coordinate system and the world coordinate system.

2.1.2. Point Cloud Pre-Processing

In the process of point cloud collection, due to the influence of external conditions and
scanning equipment [27], the collected point clouds often contain many noise and outlier
points which are not related to the surface information of the object and are usually useless.
These will affect the measurement accuracy of the data, and the calculation process will take
a long time [28]. The outliers are sparsely distributed in space, and statistical filtering [29]
is effective for eliminating points with an obvious distribution. Therefore, according to the
characteristics of outliers, it can be defined as noise when a point cloud dataset is less than
a certain density. Statistical analysis is performed on the average distance from each point
to its nearest k points, and the distances of all points should show a Gaussian distribution
whose shape is determined by the mean μ and standard deviation σ. Let the coordinate
of the n in the point cloud be Pn(Xn, Yn, Zn), the distance Si from this point to any point
Pm(Xm, Ym, Zm) is calculated in Equation (2):

Si =

√
(Xn − Xm)

2 + (Yn − Ym)
2 + (Zn − Zm)

2 (2)

The average of the distance Si can be expressed as Equation (3):

μ =
1
n

n

∑
i=1

Si (3)

The standard deviation of the distance Si can be expressed as Equation (4):

σ =

√
1
n

n

∑
i=1

(Si − μ)2 (4)

Set std as the standard deviation multiple. The k and std need to be input during the
implementation of the algorithm. When the average distance of the k neighbors of a point
is within the standard range (μ − σ·std, μ + σ·std), the point is retained; otherwise, it is
defined as an outlier.

Statistical filtering is performed on the raw point cloud. The calculations show that
the outliers in the raw point cloud can be removed well, and relatively complete parts
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characteristics are retained when the k is 20 and the std is 3. As shown in Figure 3a, the raw
point clouds of the synchronous belt are collected, and the number of the point clouds is
22,025. Figure 3b is the point cloud to remove outliers by statistical filtering. The number
of the point clouds is 21,891, and 123 outliers are removed.

 
Figure 3. Point cloud before and after statistical filtering: (a) raw point cloud and (b) point cloud
after statistical filtering.

2.1.3. Point Cloud Voxel Down-Sampling

Due to the huge amount of raw point clouds obtained by the 3D scanning equipment,
even after statistical filtering, the number of the point cloud is still large [30]. To improve
the measurement efficiency, it is necessary to simplify the point cloud. Point cloud simpli-
fication should reduce the size of the data and eliminate redundancy, maintain the basic
shape of the object, and highlight the key features of the object [31], such as protrusions,
depressions, etc.

We compared four commonly used point cloud down-sampling methods [32], ana-
lyzed the advantages and disadvantages of different methods, and selected an appropriate
point cloud down-sampling method according to the actual measurement requirements.
Taking the Bunny of Stanford University as the comparison model, four different methods
were used to down-sample the Bunny model, the point cloud down-sampling effect is
shown in Figure 4.

Figure 4. Point cloud down-sampling effect: (a) curvature down-sampling; (b) random down-sample;
(c) uniform down-sample; and (d) voxel down-sample.

Figure 4a shows the curvature of the point cloud used as the down-sampling basis;
the larger the curvature, the more down-sampling points. Figure 4b is the result of random
down-sampling, randomly sampling a certain number of points in the raw point cloud.
Figure 4c shows the result of uniform down-sampling, the point clouds were filtered by
constructing a sphere with a specified radius, and the point closest to the center of a sphere
was used as the output point of the down-sampling. Figure 4d shows the result of voxel
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down-sampling, by creating a three-dimensional voxel grid from the raw point cloud. the
center of gravity of all points within each voxel was used to approximate the other in
the voxel. These four methods have simplified point clouds, but the point cloud position
of the surface contour of the object has been changed. To further study the positional
relationship of the object surface contour point cloud, the same position was intercepted
for the simplified point cloud. The position of the intercepted slice was the red point cloud,
as shown in Figure 4, and the contour point cloud projections are shown in Figure 5.

Figure 5. Contour point cloud projection: (a) curvature down-sampling; (b) random down-sample;
(c) uniform down-sample; and (d) voxel down-sample.

Among the three down-sampling methods of (a–c), some point cloud contours are
missing, and the distribution is scattered. While the voxel down-sampling point cloud is
relatively complete and evenly distributed, the contour features of the object are preserved
well. Therefore, we use voxel down-sampling to simplify the point cloud. The process of
the method is as follows:

(1) In the coordinate set of point cloud data, find the value Xmax, Ymax, Zmax and
Xmin, Ymin, Zmin on the three axes of X, Y and Z, obtain the side length of the minimum
bounding box of the point cloud lx, ly, lz by Equation (5). Set the side length of the voxel to
r. After that, it can find the size of the voxel grid dx, dy, dz from Equation (6).⎧⎨⎩

lx = Xmax − Xmin
ly = Y max − Y min
lz = Zmax − Zmin

(5)

⎧⎨⎩
dx = �lx/r�
dy =

⌊
ly/r

⌋
dz = �lz/r�

(6)
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(2) Calculate the barycenter of all points in each voxel to approximately represent
other points in the voxel. As shown in Figure 6, all points in the voxel can be represented by
a barycentric point. Assume that the set of the local points in each voxel is P{xi, yi, zi}(i =
1, 2 . . . k), the centroid point Pg can be found by Equation (7):

Pg =
1
k

k

∑
i=1

(xi, yi, zi) (7)

Figure 6. Process of voxel down-sampling.

The side length of the voxel grid is set according to the size of the point clouds. The
longer the side length of the voxel, the more points contained in each voxel. The resulting
point clouds are sparser, and the details of the object are less. As shown in Figure 7, the
density of the point cloud of the synchronous belt was compared in different voxel grid
side lengths. Measuring different point cloud densities found that when r was equal to
0.1 mm, the point cloud down-sampling effect was the best, which could not only meet the
measurement accuracy requirements but also significantly improved the operation speed.

Figure 7. Voxel down-sampling of point cloud with different side lengths: (a) r = 0.1 mm;
(b) r = 0.3 mm; and (c) r = 0.5 mm.

2.1.4. Point Cloud Plane Fitting

At present, the most common and simple method for fitting a plane is the least squares
fitting, but the fitting accuracy is easily affected by noise. The random sample consensus
(RANSAC) algorithm [33] can reduce the influence of noise by the iterative fitting and
improve the fitting accuracy. In the RANSAC algorithm, first, a minimum number of
random points are selected to define the geometric model of interest. The parameters of the
model equation are calculated using the randomly selected points. The model parameters

118



Sensors 2022, 22, 6372

are applied to all points, whether they fit the model or not. If the appropriate number of
points is found for the model to be defined, the parameters of the model and the error rate
are calculated to check whether the established model is the best one. The algorithm runs
iteratively until the best model is reached [34]. The process is as follows:

(1) In this work, the feature model of interest is a plane. It can be defined using at least
three points which are randomly selected from the point cloud. Equation (8) is as follows:

a·x + b·y + c·z + d = 0 (8)

where a, b, c, d are the parameters of the plane, and (x, y, z) are the 3D coordinates of
any point.

(2) Calculate the distance di from the remaining point to the plane by Equation (9):

di =
|axi + byi + czi + d|√

a2 + b2 + c2
(9)

where (xi, yi, zi) denotes the remaining point of the point cloud.
If the distance di is less than the threshold, this point is regarded as a point in the

plane, and the number of interior points under the plane is counted and recorded.

(di)stay ≤ T (10)

where T denotes the thresholds for segmenting the points of the extracted planes.
(3) Continue with steps 1~2. If the number of points in the plane exceeds the maximum

number of interior points, recalculate the plane parameters with the saved interior points;
(4) Repeat steps 1 to 3 until there are no points that meet the conditions, and finally

calculate the plane parameters again to obtain the best plane model.
According to the synchronous belt measurement plan, it is necessary to solve and

fit plane A and plane B. The fitting result is shown in Figure 8. The red regions are the
underside of the synchronous belt, and the blue regions are the point cloud of the tooth’s
bottom surface. After the algorithm fitting, the plane A and plane B models are obtained.

Figure 8. Fitting result of plane A and plane B.

2.1.5. Point Cloud Curve Fitting

To improve the measurement accuracy of the synchronous belt tooth surface arc, this
paper proposes a surface feature extraction method based on the point cloud normal vector.
Based on the normal vector of the point cloud [35], set a reference vector and calculate
the angle value between the normal vector of each point in the point cloud set and the
reference vector; determine its value and complete the adjustment of the tooth surface arc
of the synchronous belt. The process of feature extraction is as follows:
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(1) Normal vector estimation. Firstly, estimate the normal vector of the point cloud,
any point pi in the point cloud, search for its nearest neighbors k, and then use the least
squares method to calculate the local plane Pl of this point. Equation (11) is as follows:

Pl(
→
n , d) = argmin

(
→
n ,d)

k

∑
i=1

(
→
n ·pi − d)

2
(11)

where
→
n is the normal vector of the plane Pl , and d is the distance from Pl to the origin of

the coordinate.
Then, it can be considered that the normal vector of the plane fitted by k nearest points

is approximated as the normal vector of the point pi, and the estimated normal vector of the
plane Pl is obtained by performing PCA (principal component analysis). It can decompose
the eigenvalues of a covariance matrix M by Equation (12). The eigenvector corresponding
to the smallest eigenvalue of the matrix is the normal vector of the plane Pl , which is also
the normal vector of the point pi.

M =
1
k

k

∑
i=1

(pi − p0)(pi − p0)
T (12)

where p0 is the centroid of the k points.
(2) Normal vector orientation. The normal vector is ambiguous [36]. The previous

calculation only obtains the straight line where the normal vector is located but does not
determine the final direction of the normal vector [37], as shown in Figure 9a. Before using
the normal vector angle value for surface feature extraction, it is necessary to ensure normal

vector consistency. Set a reference vector
→
a , and then traverse the normal vectors

→
bi of

other points. If
→
a ·

→
bi < 0, then the vector direction is opposite. Flip the normal vector

→
bi ,;

otherwise, it remains unchanged. The adjustment result is shown in Figure 9b.

Figure 9. Normal vector orientation: (a) ambiguity of point cloud normal vector and (b) consistency
of point cloud normal vector.

(3) The region of interest curve. The tooth surface profile of the synchronous belt is
composed of two arcs, which cannot be directly fitted and solved. Therefore, it is necessary
to extract the effective arc area of the tooth surface profile to improve the measurement
accuracy. In the feature area, the deviation of the normal vector direction of the point cloud
is large, and the angle of the sampling point can be used for identification and extraction.
The extraction method is as follows: based on the consistency of the normal vector of the
point cloud, Equation (13) can calculate the angle θ between the reference vector

→
a and

the normal vector
→
bi of the sampling point and set the discrimination threshold. If θ > f ,

mark the point as a curve feature point dataset; otherwise, mark it as a non-curve feature
point set.

θ = cos
〈
→
a ,

→
b
〉

=

→
a ·

→
b∣∣∣→a ∣∣∣·∣∣∣∣→b ∣∣∣∣ (13)
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After experimental verification, when the threshold is set to f = 0.65, the error of the
measurement result is the smallest, and the segmentation effect is shown in Figure 10. The
red area is the region of the interest curve.

Figure 10. Region of Interest Curve.

(4) The tooth surface arc fitting. Through the above steps, the effective arc area of the
tooth surface profile is extracted, but the point cloud dataset is spatial three-dimensional
data. The fitting accuracy is not high, and the efficiency is low. To fit the contour of the
surface accurately and efficiently, the slicing method [38] is introduced to process the
point cloud datasets and realize the dimensionality reduction in the point cloud datasets.
The process is as follows: the essence of point cloud slicing is the intersection of a set of
planes and point cloud datasets. By setting the slice width d, the point clouds are divided
into a certain number of point cloud datasets and then projected to the plane to obtain a
two-dimensional point map of the object outline, as shown in Figure 11a. The least squares
method [39] is used to improve the fitting accuracy of slices, and the fitting process is
as follows:

Figure 11. Tooth surface arc fitting: (a) contour point cloud projection, and (b) schematic diagram of
least squares fitting circle.

(1) Build the circle Equation (14):

(x − A)2 + (y − B)2 = R2 (14)

(2) The difference between the distance from the point (Xi, Yi)i ∈ (1, 2 · · · N) to the
center of the circle and the radius is shown in Equation (15):

di = (Xi − A)2 + (Yi − B)2 − R2

= Xi
2 + Yi

2 − 2AXi − 2BYi + A2 + B2 − R2 (15)
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(3) Let a = −2A, b = −2B, c = A2 + B2 − R2, substitute them into Equation (14) and
simplify, then find Equation (16).

di = Xi
2 + Yi

2 + aXi + bYi + c (16)

(4) Let Q(a, b, c) = ∑ di
2, because Q(a, b, c) is much greater than 0. The function has

a minimum value greater than or equal to 0 and a maximum value of infinity. Find the
partial derivative for a, b, and c, and set the partial derivative equal to 0. The following can
be obtained: ⎧⎪⎨⎪⎩

∂Q(a,b,c)
∂a = ∑ 2(Xi

2 + Yi
2 + aXi + bYi + c)Xi = 0

∂Q(a,b,c)
∂b = ∑ 2(Xi

2 + Yi
2 + aXi + bYi + c)Yi = 0

∂Q(a,b,c)
∂c = ∑ 2(Xi

2 + Yi
2 + aXi + bYi + c) = 0

(17)

solve Equation (17) to obtain the extreme point, compare the function values of all extreme
points. The parameter corresponding to the minimum value is the best fitting circle
parameter, and the fitting diagram is shown in Figure 11b. The fitting circle is close to the
sampling point, which indicates the fitting result is well.

3. Results

3.1. Test Environment

The composition of the synchronous belt tooth profile experimental is shown in
Figure 12. The collection of point clouds is completed by the line laser profile sensor.
According to the belt thickness range of the synchronous belt, the distance between the
sensor and the mobile platform is 174 mm; the moving speed of the mobile platform is
350 mm/s; The line laser profile sensor is connected to the computer through Ethernet, and
the point cloud datasets are transferred to the computer for the following process. The
software platform and library are Python V3.8 and Open3D point cloud library V0.15.0.

Figure 12. Synchronous belt tooth profile measurement system composition.

3.2. Measurement Data

The arc tooth synchronous belt is placed on the platform, and the point cloud on the
surface of the arc tooth synchronous belt is obtained by the line structured light sensor.
The raw point clouds are preprocessed, and the plane and region of the interest curve are
obtained by dividing the point cloud. As in the measurement plan in Section 2, the tooth
profile parameter measurement of the synchronous belt is completed.

To verify the accuracy and stability of our method, the result of the projection and the
manual method were compared. Taking the manual measurement data as the standard,
the error analysis of the projection method and the method in this paper is carried out.
The measurement results and errors are shown in Table 1. It can be seen from the table
that the error of our method is smaller than that of the projection method, the measure-
ment data are closer to the manual measurement data, and the error range meets the
measurement requirements.
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Table 1. Measurement data of tooth profile parameters.

Number
Projection Method Manual Method Our Method

Pb/mm ht/mm hs/mm Pb/mm ht/mm hs/mm Pb/mm ht/mm hs/mm

1 4.960 2.000 4.140 5.061 2.110 4.109 5.009 2.020 4.149
2 5.020 2.060 4.120 5.043 2.108 4.114 5.020 1.983 4.142
3 4.980 1.980 4.080 5.025 2.099 4.100 4.979 1.990 4.159
4 4.960 2.020 4.120 5.033 2.051 4.125 5.004 1.998 4.146
5 5.000 2.060 4.100 5.053 2.109 4.115 5.022 1.987 4.145
6 4.980 2.040 4.140 5.035 2.073 4.112 5.004 2.001 4.159
7 5.020 2.000 4.160 5.037 2.108 4.108 5.003 1.995 4.133
8 5.040 2.020 4.140 5.023 2.064 4.122 4.991 1.991 4.159
9 4.980 2.040 4.180 5.054 2.073 4.111 5.020 2.015 4.143

10 4.980 2.040 4.160 5.043 2.104 4.117 4.997 2.006 4.134

Average 4.992 2.026 4.134 5.041 2.090 4.113 5.005 1.999 4.147
Error 0.049 0.064 0.021 0.013 0.027 0.013

4. Discussion

For the measurement data of synchronous belts, manual measurement is closer to the
actual size, but its measurement speed is slow, the stability is poor, and it cannot work for a
long time, which is difficult to process and produce automatically. It is gradually replaced
by other methods.

The projection method places the light source on the back of the object. It is suitable
for the detection of the outline of the opaque object. However, it is more sensitive to the
intensity of the light source. When the light source is weak, the edge contour of the object
is affected by burrs, and the contour of the object cannot be accurately extracted; when the
light source is strong, some details of the contour are corroded, and the contour features are
lost, and the actual size of the object cannot be measured accurately. As shown in Figures 13
and 14, the Pb and ht measured by the projection method are slightly larger than others.
In contrast, it can be seen from Figure 15 that the measurement data of the hs are slightly
smaller. This is due to the strong light source that depicts the projection profile as smaller
than the actual contours.

Figure 13. Graph of Pb measurement data.

Figure 14. Graph of ht measurement data.
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Figure 15. Graph of hs measurement data.

With our method, the surface profile information of the object is obtained by the
line-structured light sensor, and the tooth profile parameters of the synchronous belt are
measured based on the point cloud segmentation and fitting technology. Since the influence
of the light source does not need to be considered in the process of point cloud acquisition,
the measurement data are closer to the actual size, with less error than the projection
method, and the stability is better than that of the manual method, which can meet the
requirements of continuous and stable work and is conducive to the realization of automatic
processing and production work.

5. Conclusions

In this work, a 3D point cloud measurement system for synchronous belts is built
using a line-structured light sensor. Firstly, the contour point clouds of the synchronous
belt are collected. To improve the accuracy and efficiency of measurement, the raw point
clouds are filtered, and the number of the point cloud is reduced. Then, referring to the
measurement plan of the synchronous belt, the point clouds are divided into plane and arc
areas. In the plane areas, it can effectively reduce the fitting error by using the RANSAC
algorithm. To obtain the effective area of the arc, a segmentation method based on a normal
vector is proposed, which can effectively segment the target area. Subsequently, a curve
fitting model suitable for the arc tooth profile is established by the least squares method.
Finally, the parameters of each tooth are calculated. The experimental results show that
the method in this paper can accurately and quickly detect the tooth profile parameters
of the synchronous belt. The average errors of this method in parameters are less than
0.03 mm. This method provides a useful solution with a much smaller degree of error
in the stability of the tooth profile. It is an obvious advantage over the classic, common
methods. Therefore, the detection scheme has great application prospects and promotion
value. The main work in this paper focuses on point cloud noise reduction, point cloud
simplification, point cloud segmentation, and size measurement. However, the inspection
of surface defects on the synchronous belt has not been thoroughly studied. Therefore,
further research can be carried out on surface defects.
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Abstract: High-energy radiation sources have provided a strong security inspection capability using
a non-invasive imaging system. The use of multiple radiation sources in one imaging system can also
lead to a more powerful system that can classify various materials compared to using a single radiation
source. The Advanced Radiation Technology Institute of Korea Atomic Energy Research Institute
has developed an air cargo inspection system using multiple radiation sources such as fast neutrons
and gamma-rays to classify the plastics, metals, and organics among various sample materials. The
fast neutron beam with an energy of 14.1 MeV, generated using the D-T neutron generator, and the
gamma-ray beam with an energy of 6 MeV, generated by an electron linear accelerator, are projected
onto the vertically aligned scintillator-based radiation detectors. The neutron and gamma-ray images
of a cargo container moved by a motorized linear translation stage are acquired, and the image data
processing shows good material classification results. In this paper, we describe a multi-radiation
imaging system for air cargo inspection and investigate its material classification capability using
various sample materials.

Keywords: dual-modality imaging; gamma-ray; fast neutron; air cargo inspection

1. Introduction

Cargo inspection systems have been developed in the security area using various
radiation sources, such as radioactive materials [1], electron linear accelerators [2], and
neutron generators [3]. Their high penetration power is important for examining the inner
container without opening the gate [4]. The first cargo inspection system was developed
using a gamma-ray source for the cargo inspection of the carrier and container. The
gamma-ray inspection system detects metallic weapons such as guns [5], knives [6], and
bombs [7]. Non-invasive measurements that use gamma-rays are convenient and safe for
cargo users as much as for criminal investigators. However, gamma-ray systems are limited
in detecting objects made of low-density materials, such as drugs or plastic explosives.
Neutron sources have been used to analyze low-density materials in the fields of physics [8],
nuclear sciences [9], and the battery industries [10]. Neutrons with high energies of several
mega-electron volts have a higher penetrating power, similar to gamma-rays. Therefore,
the combined use of a gamma-ray and neutrons provides a powerful effect to extend the
material discrimination.

Neutrons and gamma-rays each have their advantages and disadvantages for in-
specting cargo, but combining them into one system compensates for these shortcomings.
Recently, a cargo inspection system using a Deuterium-Tritium (D-T) neutron generator
and Co-60 irradiators was developed by the Australia group in China [3], and it can differ-
entiate 16 materials. The D-T generator radiates neutrons with an energy of 14.1 MeV in
all directions (4π), using a fusion reaction with deuterium and tritium. The Co-60 emits
characteristic gamma-rays of 1.2 and 1.3 MeV, which are lighter and smaller than electroni-
cally generated gamma-rays. However, the radioactive matter has a limited use time and
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low dose rates. A gamma-ray source with higher energy and a higher dose rate can be
generated for a linear electron accelerator. The electron accelerator produces gamma-rays
with energies of a few MeV by the bremsstrahlung effect. This energy can be higher than
that of Co-60.

An air cargo inspection system requires high-energy radiation sources. The radiations
with higher energy have the higher penetrating power. For instance, the penetrating lengths
of iron with 5.995 × 10−2 cm2/g at 1 MeV and 3.057 × 10−2 cm2/g at 6 MeV of a gamma-ray
are calculated to about 2.122 cm and 4.162 cm, respectively [11].

The high penetrating power of radiation adversely affects the detector owing to its
low measurement efficiency. Plastic scintillators and silicon photomultiplier-based radia-
tion readout circuit boards are well-known radiation detectors for high-energy radiation
measurements [12,13]. Plastic scintillators have been widely used to convert high-energy
radiation to visible light. It is very attractive because of its nontoxicity, stability at varying
temperatures, and simpler geometrical control, unlike liquid scintillators and others [14–16].
A silicon photomultiplier was used to produce electrical pulses from the photon generated
in the scintillator. The radiation detector modules were vertically arranged, and the moving
cargo container was scanned.

The neutron and gamma-ray system outputs the neutron and gamma-ray transmit-
tance images of the cargo container. The transmittance of the radiation has multiple pieces
of information related to the material density, material thickness, and radiation beam
conditions. Transmittance data should be calculated to extract the radiation absorption of
materials and obtain their intrinsic characteristics for material discrimination.

In this paper, we report the development of an air cargo inspection system using
fast neutron and gamma-ray sources to investigate the ability of material classification
for security inspection. These radiation sources have a high penetration power, and the
combined imaging provides a powerful result for material classification compared to using
a single radiation source. Neutron and gamma-ray generators were installed, and their
signals were measured using scintillator-based silicon photomultiplier electric circuits.
Multiple detectors were arranged vertically to scan the air cargo using a motorized linear
translator. The acquired neutron and gamma-ray images were used to calculate the R-value,
which represented the ratio of neutron and gamma-ray attenuation coefficients. The data
processing method using R-value images can categorize materials such as metals, plastics,
and organic materials as a color map.

2. Materials and Methods

The air cargo inspection system developed at the Advanced Radiation Technology
Institute of Korea Atomic Energy Research Institute is based on a radiation imaging system
consisting of radiation sources, sample translators, and radiation detectors. Two types
of radiation sources are installed: neutrons and gamma-rays. They radiate in the same
direction from different positions, as shown in Figure 1. Radiation detectors were placed on
the opposite side of the cargo container from the source. Radiation sources and detectors
are surrounded by radiation-shielding materials, except for the emission and detection
areas. The entire area of the air cargo inspection system was shielded. The machine
control room was located sufficiently far from the inspection area, and there is no risk of
irradiation exposure. Between the radiation sources and detectors, the cargo is moved on a
motorized linear translation stage. The data acquisition system accumulates imaging data
and communicates with the machine control commands from a user-controlled computer
via a network.
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Figure 1. Air cargo inspection system: (a) image of the system, (b) diagram of the gamma-ray imaging
system, and (c) diagram of the neutron imaging system.

2.1. Gamma-ray Generation and Detection

The gamma-ray beam is produced using an electron linear accelerator system (LINAC)
to output gamma-rays. The LINAC is composed of an electron gun, radio frequency (RF)
generator, RF cavity, vacuum system, cooling system, high-voltage power system, tungsten
target, and collimator, as shown Figure 2. The generated electrons were accelerated in a
gamma-ray generator system with a size of 965 × 1515 × 1115 mm3 (width × length ×
height) and a repetition rate of 200 Hz for a tungsten target with a thickness of 2 mm. The
gamma-rays produced from the tungsten target by the bremsstrahlung process have an
energy of 6 MeV and a dose rate of 1.25 Gy/min. The gamma-ray beam passes through the
slit collimator in front of the tungsten target and radiates towards the gamma-ray detectors.
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Figure 2. Gamma-ray generator. The gamma-ray beam is produced from the linear accelerator
(LINAC) in the tungsten target by the bremsstrahlung interaction. In front of the LINAC, the
reference detector is installed.

The gamma-ray radiation that passed through the air cargo container was detected
using a gamma-ray detection tower. The structure of the gamma-ray detection tower is
built from a steel frame, as shown in Figure 1b, to vertically arrange the 30 gamma-ray
detection modules. They are connected to the gamma-ray control units and transmit the
gamma-ray image pixel values to a user-controlled computer. One gamma-ray detection
module combines CdWO4 scintillators (PSs, EPIC Crystal Co., 30,000 photons/MeV in
scintillation efficiency), a Si-PIN photodiode (Si-PIN), and a control board. The PSs with a
size of 4.6 × 7 × 30 mm3 (width × length × height) convert gamma-rays to visible light
with a wavelength of 480 nm, and the Si-PINs detect the visible light and generate electrical
signals. The control board in the gamma-ray detection module counts the number of
electrical signals and restructures the pixel values of the images. The number of vertically
arranged image pixel values in one gamma-ray detection module was 32. The image
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frame was composed of the arrangement of the image pixel values transmitted from the
gamma-ray detection modules. The other gamma-ray detection module was installed in
front of the gamma-ray generator to detect a reference signal with pure gamma-ray beam
information with no air cargo signals. The reference signal was useful for gamma-ray
image correction.

2.2. Neutron Generation and Detection

Fast neutrons were generated in nuclear fusion reactions of deuterium and tritium in a
D-T generator that emits an isotropic and mono-energetic neutron beam with an energy of
14.1 MeV. The D-T generator acts as a small particle accelerator composed of an ion source,
acceleration stage, target, and pressure stabilizer in a vacuum-sealed case. The ions were
extracted from the plasma formed in the ion source using a single-stage acceleration optic
system. The extracted beam was then focused on the target shown in Figure 3, which was
constantly supplied at 150 kV. To reduce radiation risks, the D-T generator was covered
with high-purity polyethylene panels and blocks, and 5 cm slits were open on the neutron
shielding cover to emit the neutron beam.

Figure 3. D-T generator. The red line in the center of the D-T generator indicates the position of the target.

During operation, the D-T neutron generator emits highly penetrating radiation,
including neutrons and gamma-rays. Among the radiation, only neutron property data
for air cargo must be collected. The radiation was detected using a plastic scintillator on
the neutron detector. The neutron detector module in Figure 4 shows the composition
of the plastic scintillator (PS), silicon photomultiplier (SiPM), analog-to-digital converter
(ADC) board, and visible shielding case. A polyvinyl toluene-based plastic scintillator
(PS, EJ-276G from Eljen Technology [15]) with a size of 10 × 10 × 30 mm3 was selected to
develop a fast neutron detector with PSs arranged in a 2 × 8 array. PS converts the high-
penetrating radiation to the visible region at a wavelength of approximately 490 nm. This
scintillator has a scintillation efficiency of 8000 photons/MeV. A silicon photomultiplier
(SiPM, S13360-6025CS, Hamamatsu) with a photosensitive area of 6 × 6 mm2 senses visible
light. The photon detection efficiency of this SiPM is 25%. The contact surface between
the PS and SiPM is bonded to titanium oxide grease with a refractive index similar to that
of PS to reduce optical losses. The SiPM counts a single photon generated from the PS
and generates electrical output pulses. The ADC board measuring the electrical pulse was
designed to sample it at a frequency of 125 MHz and a 14-bit resolution.
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Figure 4. Neutron detector module: (a) side view of the neutron detector module, (b) block diagram
of the neutron detector module. The plastic scintillator for the thickness of 30 mm renders high-
energy radiations visible, the multi-pixel photon counter (MPPC) generates electrical pulses, and the
analog-to-digital (ADC) board sends a signal to the DAQ system.

The electrical pulse shape is characterized by recoil protons and electrons excited by
radiation. In general, electrical pulses arising from neutron signals tend to have higher
peaks and longer tails than those arising from photon signals, as shown in Figure 5. The
peak means the highest intensity of the pulse, and the tail is the integral of the post-
peak time and the pulse end time. Using this feature, the pulse shape discrimination
(PSD) technique differentiates neutron signals from various highly penetrating radiation
signals [17,18]. With over 100,000 detections, the distribution of the electrical signals can
be spread over a spot plot with peak and tail coordinates. Under stable measurement
conditions, the PSD spot plot showed two regions: neutrons and gamma-rays. This result
can also be displayed as a histogram of the ratio between the pulse peak and tail. The
PSD histogram shows two Gaussian distributions, neutrons, and gamma-rays. In the PSD
histogram, the valley of the two Gaussian distributions is determined by the area separating
the neutron and gamma-ray signals.

The neutron detector modules were vertically arranged to create an image frame
similar to the gamma-ray detector tower. Vertically arranged neutron detector modules
were placed in front of the neutron generator. The neutron detector modules were connected
to the data acquisition boards, and they supplied high-voltage power and transmitted the
electrical pulse data.
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Figure 5. Example plot of normalized electrical pulses measured from the detectors. The peak is
the highest intensity of the electrical pulse, and the tail is the integral value after the peak and the
delay time.

2.3. Imaging Process

The gamma-ray and neutron detectors were connected to the data acquisition (DAQ)
system to record the radiation image and communicate the machine control commands
with a user computer. The number of electrical pulses obtained from the radiation detector
during the measurement time represents the image pixel value. For instance, when the
gamma-ray detector is activated for 1 s and the image pixel value is 1, and when the detector
functions for longer, the image pixel value increases. The radiation detector modules and
image pixel values were arranged vertically. The vertically arranged image pixels formed
an image frame. By repeating the measurements at regular intervals, the image frames are
horizontally accumulated, and the radiation image is expanded in two dimensions. Under
this measurement condition, the container is displayed in the radiation image when the
cargo container moves between the radiation generator and the radiation detector.

The radiation imaging system in the air cargo inspection system produces gamma-
ray and neutron images with transmission properties. In the transmission characteristics
of the radiation image, various information on the air, container, and beam, as well as
the sample material, is present. However, security inspection requires only the intrinsic
properties of the sample material. The reference and gain signals are used to extract the
intrinsic properties of the sample material. Because the reference signal is measured before
the radiation passes through the cargo container, it only has information about the pure
beam intensity of radiation. Image correction using the reference signal can remove beam
intensity fluctuations in the radiation image. The gain signal indicates the radiation signals
passing through the air or container with no information of the sample material. This image
correction using the gain signal separates the background transmission characteristics from
the mixed transmission characteristics of the sample material. When used in an optical
system, the gain correction removes the background information and characterizes the
absorption of the sample material. The absorption coefficient is an intrinsic property of a
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sample material. The optical path length is required to calculate the absorption coefficient
from the transmission data. However, because security inspection proceeds in an unopened
state, the optical path length cannot be measured, and another method is required.

The unique information of the sample material inside the air cargo container can
be extracted from the ratio of radiation absorption properties: the neutron and gamma-
ray absorption values of the sample material. The ratio of the neutron and gamma-ray
attenuation coefficients is:

R =
ln
(

In/I0
n
)

ln
(

Ig/I0
g
) (1)

where In is the measured neutron intensity through the object, In
0 is the measured neutron

intensity with the object removed, Ig is the measured gamma-ray intensity through the
object, and Ig

0 is the measured gamma-ray intensity with the object removed. The R-value
does not require the calculation of the optical path length because the radiation has the
same sample material optical path. Hence, calculating the R-values of the sample materials
made material classification using the air cargo inspection system possible. The R-value is
defined as the ratio of neutron absorption to gamma-ray absorption.

The R-values of the sample materials extracted from the radiation images were re-
painted onto the radiation image as a color map. The R-value image shows the differenti-
ation of the materials. It is important to display the R-value image so that the operators
can ensure that the positions of carriages match their R-values in real airports or cargo
inspection rooms. To match the R-values in the radiation image, the pixel numbers and
object positions must be identical between the neutron and gamma-ray images. Because
the number of pixels in the gamma-ray image is greater than that in the neutron image, the
pixel values of the neutron image are interpolated. Object position matching between the
two radiation images was performed using the image registration method.

2.4. Air Cargo Container Translator

During air cargo inspection, a radiation image is created by the linear motion of
the cargo container. The linear motion is supported by a motorized linear stage with a
translation speed of 0.1 to 1000 mm/s. The motorized stage can move between the neutron
source and the detector. The transfer movement is remotely controlled to change and adjust
the speed, direction, and distance. An air cargo container with a size of approximately
233 × 162 × 153 cm3 was fabricated to be of the type used at airports. The interior of the
container contained three layers of shelves for loading the material samples.

2.5. Sample Material Preparation

To investigate the material classification of the air cargo inspection system, 30 materials
listed in Table 1 were prepared. Their density and depth are different and in the range
of 0.41 to 19.25 g/cm3 and 17 to 430 mm, respectively. The materials had the same front
size of 20 × 25 cm2. The metallic samples were machined, and the powder samples were
contained in an acrylic case. A maximum of six samples were placed on a shelf in the
cargo container. The shelves with samples were arranged at different heights and depths
to ensure that the radiation paths did not overlap. Radiation imaging experiments were
conducted with various combinations of sample materials in different locations.

Table 1. Sample material list with density and depth.

No. Item Density (g/cm3) Depth (mm)

1 Bean Flour 0.41 300
2 Wheat Flour 0.70 250
3 Paper 0.80 210
4 Paraffin Wax 0.90 150
5 Polyethylene 0.96 150
6 Water 1.00 200
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Table 1. Cont.

No. Item Density (g/cm3) Depth (mm)

7 Polyurethane 1.05 240
8 Nylon 1.15 280
9 Acetamide 1.16 150
10 Ammonium Acetate 1.17 200
11 Lucite 1.19 150
12 Rubber 1.20 170
13 Rice 1.29 200
14 Polyester 1.36 330
15 Green Tea Powder 1.37 120
16 Rayon 1.53 430
17 Melamin 1.57 365
18 Sugar 1.59 220
19 Animal Bone 1.90 220
20 Teflon 2.20 150
21 Graphite 2.25 150
22 Glass 2.50 120
23 Concrete 2.50 120
24 Aluminum 2.70 150
25 Ceramic Powder 4.00 70
26 Titanium 4.50 80
27 Iron 7.87 60
28 Bronze 8.89 45
29 Lead 11.34 40
30 Tungsten 19.25 17

3. Results

The detected radiation is of neutrons and gamma-rays of various energies. Figure 6a
shows the representative single pulses of gamma-rays and neutrons. The tail regions of
normalized electrical pulses of neutrons have higher values. A distribution trend of the
main pulse peak intensity and tail region integration was obtained by exposing the neutron
detector with the D-T generator activated for 60 s, as shown in Figure 6b. The scatter plot
in Figure 6 shows two groups with different ratios of peak intensity and tail integration,
and these two groups are separated by a linear line. Electrical pulses with lower intensities
were considered as noise signals and were excluded from the scatter plot. The linear line in
Figure 6b is the reference value for separating the neutron signals. This reference value can
be calculated from the histogram plot of the ratio between the tail and peak in Figure 6c.
The tail and peak ratio histograms can be fitted to two Gaussian fits, and the minimum
in the valley of the Gaussian fitted plots is the reference value. In addition, the figure of
merit (FOM) can be calculated from the two Gaussian fitted plots. The FOM is a value that
establishes the ability to discriminate neutrons and other radiation and is defined as [14,19]

FOM = Dpp/(GFWHM + NFWHM),

where Dpp is the distance between the peaks of the Gaussian fitted plots, and GFWHM
and NFWHM are the full widths at half maximum (FWHM) of the gamma and neutron
peaks, respectively. The FOM of the neutron detector is approximately 1.12.

The number of electrical pulses attributed to neutrons or gamma-rays corresponds to
the image pixel value. The image pixel values are transformed to the gray color map to
display the radiation image. The radiation image is obtained with the horizontal translation
of the cargo container.

Several experiments were conducted using different combinations of sample materials
to acquire radiation images. The translation speed was adjusted from 16 mm/s to 200 mm/s.
The radiation dose rates were 1.25 Gy/min for gamma-rays and 108 n/s for neutrons. The
radiation images were captured for 30 s and 90 s for the gamma-ray and neutron images,
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respectively. Figure 7a,b show one of the results of the gamma-ray and neutron images.
These images were corrected with reference and gain signals, and they presented the
absorption properties. Figure 7c shows a visible image of the material sample inside the air
cargo container.

Figure 6. Signals detected with the neutron detector. (a) Pulse light detected from the neutron
detector modules. (b) PSD scatter plot with a PSD threshold (red line). (c) PSD histogram with
Gaussian fitting plots.

Using the gamma-ray and neutron images and the absorption properties of the radia-
tion, the R-values of the 30 sample materials were calculated, as shown in Figure 8. The
R-values were in the range of 0.26 and 1.26 for the prepared sample materials listed in
Table 1. The R-values of the metals were mainly below 0.6, but their values were sufficiently
different. Plastics have higher R-values at lower densities, and there were large differences
between the R-values for materials of different atomic compositions. Organics had R-values
greater than 0.6, except for animal bones, rubber, and melamine, most of which had values
near 1. It is considered that the R-value is affected by the atomic compound because
organics with R-values near 1 are vegetable substances, only metals have R-values under
0.6, and plastics have different R-values for different polymer families.

Figure 9 shows the R-value image of the air cargo container loaded with samples
of various materials. The R-value image is obtained from the color mapping result by
matching the sample positions of the gamma-ray and neutron absorption images and
calculating the R-value for each pixel. The mapping colors of the R values were colors of
the rainbow, as shown in the legend of Figure 9. The hollow frame and empty area in the
container are filled to the air, so their R-values are almost zero, and their areas are displayed
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to the black color. Metals with R values of less than 0.6 have reddish colors and are clearly
distinguished from other materials. Animal bones, Teflon, and rubber in the air container
had higher R-values than the metals. Acetamide and polyethylene had the highest R values
in Figure 9. The color map image cannot give detailed R values to distinguish objects of
the same materials; however, it can differentiate between the material classes of metals,
plastics, and organics.

Figure 7. (a) Gamma-ray and (b) neutron image results of (c) material samples arranged in the air
cargo container.
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Figure 8. R-values of material samples.

Figure 9. R-value image for an air cargo container with material samples.
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4. Conclusions

We developed an air cargo inspection system using a D-T neutron generator and
accelerator-based gamma-ray source. The neutron source generates neutrons with an
energy of 14.1 MeV and a flux of 108 n/sec. The gamma-ray source produced a gamma-ray
beam with an energy of 6 MeV and a dose of 1.25 Gy/min. A neutron and gamma-ray
imaging system was installed to acquire radiation transmittance images of 30 materials
loaded in an air cargo container. These radiations can penetrate materials several tens of
centimeters thick within an air cargo container. A linear motorized translator moved the
air cargo container between the radiation sources and detectors. The radiation detectors
were based on plastic scintillators, silicon photomultipliers, and electric circuits. They were
arranged vertically to scan the moving stage, including the cargo container. The radiation
signals were counted as image pixel values, according to the PSD method. As a result,
the radiation imaging system outputs neutron and gamma-ray images with transmittance.
Data processing with image interpolation and registration was used to calculate R values
from the transmittance data and displayed them on the color map image to differentiate
between 30 types of materials: metals, plastics, organics, and others. This process validates
the material classification capability.

The R-value image is powerful in distinguishing more diverse materials than the
use of a single radiation source. However, the industrial fields require more complicated
systems for use in the mixed or packed material classes in the real cargo container. In
the imaging system, the three-dimensional imaging system is required because the mixed
materials are superposed on the beam path. Our further step in the development of the
security inspection system is a tomographic inspector that uses gamma-rays and neutrons.
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Featured Application: This paper presents the open software platform GisaxStudio for analysis

of GISAXS maps from 3D lattices of nanoparticles.

Abstract: Grazing-incidence small-angle X-ray scattering (GISAXS) is a powerful method for the
structural analysis of ordered arrays of nanoparticles, quantum dots, or similar objects. However,
for the correct interpretation of the measured GISAXS intensity distributions, a proper data analysis,
including a suitable model, is required. Here, we demonstrate a software platform, GisaxStudio,
aimed at the analysis and simulation of 2D GISAXS intensity distributions from ordered lattices
of different nanoparticles. It contains several models that satisfactorily describe the GISAXS from
3D lattices or crystals of nanoparticles prepared by the self-assembly processes, pre-pattering, or
ion-beam interaction with the material within their tracks. It also supports different shapes of
nanoparticles, including core-shell structure with the center of core possibly displaced from the center
of the shell. The software is very useful for fast and accurate GISAXS data analysis.

Keywords: GISAXS; GisaxStudio; nanoparticle lattices; quantum dot crystal; quantum dots; nanopar-
ticles; structure

1. Introduction

The production of materials containing ordered lattices of nanoparticles (NPs) or other
nano-objects (NOs) is of great importance today, due to their very interesting properties and
many relevant applications in modern nanotechnology [1–3]. For example, semiconductor
quantum dots (QDs) are the focus of modern science because of their unique optical and
electrical properties, tunable by their size and internal structure due to the confinement
effects [1–5]. Especially interesting are QDs with a core-shell structure, in which confine-
ment effects are very strong in both the core and the shell [6–9]. They strongly influence the
current carrier and optical properties, ensuring that such materials are highly applicative in
solar cells, detectors sensors, and many other devices. Quantum wires (QWs) are another
very interesting material due to their specific shape, high surface to volume ratio, and
multiple exciton generation effects, which are also highly explored in many photo-sensitive
devices [10,11]. As all these properties are highly size- and shape-sensitive, it is very
important to develop effective tools for their accurate determination.

In addition to the nanoparticle shape and size, another important factor for the appli-
cation of such materials is their ordering on the surface or within the matrix. The regular
ordering is usually desirable because it allows for controlling the separation of NPs, which
greatly influences the material electrical properties. The regularity in ordering can also in-
duce some novel effects in the material, such as mini-band formation, or specific conduction
in the desired spatial direction, as well as many others [12,13].

Therefore, the tools for the detailed characterization of size, shape, and arrangement of
NPs in a material are of great importance. Grazing-incidence small-angle X-ray scattering
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(GISAXS) is the leading technique for this purpose because it provides data in reciprocal
space with excellent statistics [14–19]. The materials with ordered lattices of NPs show
characteristic peaks in GISAXS, whose positions and widths are determined by the ordering
type of NPs and the degree of regularity in their ordering. Due to that fact, even a visual
inspection of the GISAXS map enables a rough estimation of the materials structure, includ-
ing NP arrangement, separation, and shape. However, for obtaining detailed information
about the systems structure, a numerical analysis of a GISAXS map should be performed.

The main problem with the analysis of GISAXS intensity distributions is the proper
choice of a model that describes NP ordering, especially the deviations from the ideal NP
positions given by the lattice type. The deviations from the ideal NP positions are very
important because they significantly affect the position and the width of the peaks in the
GISAXS map. Therefore, only the proper choice of the model will lead to the yielding of
accurate data from GISAXS analysis. We have analyzed different types of NP ordering in
3D lattices and proposed theoretical models for the description of GISAXS in such systems.
These models provide accurate structural data [20]. In another work [21], we have analyzed
GISAXS from ion-beam treated materials in which the ion beam forms NPs along its tracks.
Finally, some examples are given in [22]. Although these models are published and have
proven to be efficient for the analysis of the GISAXS maps, they are usable only by very few
experts in GISAXS analysis and modeling. Many users from various disciplines (physics,
chemistry, biology, medicine, industry) are in need of the GISAXS technique, but most
of them do not know how to analyze the data. Therefore, the software platform which
incorporates these models and which is usable by a wide audience is still missing.

Several excellent platforms for description and analysis of GISAXS exist [23–29], while
a full list of the available software for GISAXS analysis can be found in [30].
One of the best known is IsGISAXS [23], aimed at the analysis of different types of is-
lands supported on a substrate. It supports different ordering types of islands, from
random distribution via paracrystal, to fully ordered systems. Another frequently used
platform is NANOCELL [24], which enables the simulation of 2D diffraction patterns
from single-crystals for GISAXS/GISANS geometry. Further, FitGISAXS contains models
for the description of GISAXS for monodisperse, polydisperse, and interacting particles
with various size distributions, form factors, and structure factors [25]. HipGISAXS is
suitable for the treatment of a wide range of structures, shapes, or morphologies, including
multilayered polymer films and nanoparticles on top of, or embedded in, a substrate or
polymer film layers [26]. DPDAK is a software for the processing and reduction of large
amounts of data from synchrotron scattering experiments [27]. It also contains tools for
calibration and correction of raw data, one- or two-dimensional integration, and the fitting
and further analysis of the data, including the extraction of certain parameters. The most
recently developed software is BornAgain, an excellent software for the simulation and
fitting of X-ray and neutron reflectometry, off-specular scattering, and grazing-incidence
small-angle scattering (GISAS) [28,29]. This platform includes most of the options available
in IsGISAXS, along with many new features. BornAgain has a very appealing user-interface
and it is, being fairly generic, usable for scientists from different disciplines.

Although currently existing platforms can be used to extract some important features
of the 3D assemblies of NPs produced by self-assembly processes, they lack detailed
analysis of the NP ordering properties. As stated above, and also discussed in Ref. [20],
the NP ordering properties, or more precisely, the type of deviations of the NP positions
from the ideal ones, can differ in various spatial directions in the same material. This
fact strongly influences the GISAXS intensity distribution, and simulating the intensity
distribution by the improper models usually results in incorrect structural parameters, even
if the simulated GISAXS map agrees well with the measured one. All things considered,
the current software options provide many options, but they are not detailed enough for
suitable analysis of the materials based on 3D-ordered NP lattices, nor for specific core-shell
structures with the displaced core-shell origins.
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In this paper, we present the software platform GisaxStudio for the analysis of thin
films consisting of 3D lattices of NPs produced by self-assembled growth or ion-beam
irradiation [31]. This software is a result of GISAXS data analysis and suitable model
formulation of the aforementioned thin films that has been developed over the last 20 years.
It enables the analysis and fitting of 2D GISAXS intensity distributions from 3D NP crystals,
3D lattices of NPs having spheroidal or core-shell shape, and from the NP arrays formed
within ion-beam tracks. By fitting of the entire 2D GISAXS map, or even some of its parts,
the GisaxStudio enables the determination of the NP’s shape, size, and 3D arrangement
properties, including the crystal lattice parameters and disorder type along each of the basis
vectors of the 3D lattice. It is also possible to determine statistical distributions of all these
parameters. The software includes theoretical models published in [20–22], which take into
account the NP ordering properties along each of the basis vectors of the 3D NP lattice.
The models and the software are already successfully applied in the GISAXS analysis of
many systems, including 3D NP lattices [5,7–9,11,13,20,21,32–36] and NPs formed within
ion tracks [22,37–39], where fitting of the full 2D measured map was performed. We show
how the platform is constructed, reveal its main features, and demonstrate its performance.
The process of preparation for fitting and its main steps are demonstrated. The platform
is free for non-commercial use, available at a link given in [31], and is very useful to a
broad audience for the analysis of the measured GISAXS maps or for the prediction of
measurements using its simulation option.

2. Materials and Methods

GisaxStudio is a modular, multi-platform program for GISAXS analysis of various
nanostructured materials. It is written in Java programming language, featuring a graphical
user interface (GUI), built-in optimization algorithms, and visualization. It stores all data in
the relational database, which facilitates data exchange and reproducibility. Figure 1 shows
the architecture of the GisaxStudio application. It is important to note that GisaxStudio has
been developed in a modular fashion to enable extendibility and cooperation between the
physicist and the computer scientist. Thus, physical models (see Section 3.1) are completely
decoupled from the optimization algorithms, GUI, visualization, etc.

 

Figure 1. GisaxStudio architecture. Physical models are decoupled from the generic optimization
algorithms. Images are stored in file system, and project data is stored in a JDBC-compliant relational
database.

Physicists deal only with the models, and in order to produce a new model, they
merely provide two Java classes:
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• Parameters class which extends AbstractGisaxsParam and describes the model’s
parameters. For instance, instead of the existing iBeam model, suppose our model is a
line y = ax + b. The parameter class would then have only two double members: x and
y. Members must be annotated in order to expose them to the user via GUI, so that the
parameters class would contain simply:

public class LinearModelParams extends AbstractGisaxsParam {

@GxParam(defval = 1.00, absLimits = {-1e5, 1e30}, name = "Slope (a)", group

= "Slope and intercept", tab = "First tab", ordinal = 1)

public double a;

@GxParam(defval = 0, absLimits = {-1e30, 1e5}, name = "y-intercept (b)",
group = "Slope and intercept", tab = "First tab", ordinal = 2)

public double b;

}

Through the use of reflection, GisaxStudio will analyze its own code at runtime and
dynamically build the GUI dialog for the selected model (e.g., Figure 5a for the iBeam
model). Besides primitive types, the parameter class also supports complex numbers,
lists of values (manifested as dropdowns for the user), etc. Of course, besides fittable
parameters, the parameters class can also include constants and other non-fittable
parameters that are easily assigned by the user.

• Model class, which implements the IGisaxsModel interface, defines 16 methods, the
most important being compute(double[]), which computes the model given an array
of fittable parameters. In our example, compute would receive a and b via the double
array and simply return a*x + b, where x is a vector that has already been assigned:

@Override

public double[] compute(double[] params) {

LinearModelParams pObj = (LinearModelParams)

fitVectorToParamObject(params);

return _xFit

.times(pObj.a)

.plus(pObj.b)

.toArray();

}

LinearModel is actually included as a proof-of-concept in the GisaxStudio code, and
the code shown above is taken from those two classes (although it is not shown in
Figure 1). Helper method fitVectorToParamObject is used to instantiate and popu-
late the params object so that the programmer could use meaningful variable names
(a, b) in the code and autocompletion features instead of working with params[0] and
params[1].

In conclusion, the physicist deals only with the model and the math, having at their
disposal math libraries such as Apache Commons Math [40], ParallelColt [41], and a
custom developed matrix and vector library which enables Matlab-like expressions, such
as the .times() and .plus() methods shown above. GisaxStudio could be used to fit
anything which is manifested/measured as a matrix (image). Apart from these two classes
and two parameters in the main application screen (y0 and specular shown in Figure 4),
there is nothing GISAXS-specific in the remainder of the application—everything is built
dynamically via reflection.

The fitting (optimization) process, whose simplified flow is shown on Figure 2, treats
the model as a “black box” and varies the fittable parameters according to some algorithm,
calling each time the compute method, in an attempt to find the global minimum in the
least squares sense. As GISAXS models are complex and non-linear, it is not reasonable to
pick “one best” optimization algorithm. Therefore, in accordance with the generic nature of
the application, we have opted for the following approach: GisaxStudio provides a number
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of different optimization algorithms, and the user can try them all and decide to use those
that perform best for their model. Thus, for the time being, the following eight optimization
algorithms are included: BobyQA, Bounded Hooke and Jeeves, CMA-ES, Hooke and
Jeeves, Nelder–Mead, Powell, Simulated Annealing, and Steady State GA (Figure 2). New
algorithms can be easily added, much like the GISAXS model procedure described above:
it is simply a matter of implementing the assigned interface and registering the algorithm;
the application will then pick up the algorithm and include it in the fitting process.

 
Figure 2. Fitting procedure in GisaxStudio: after the user selects the model and assigns initial values
of the corresponding model, the application spawns N threads (corresponding to the number of
chosen optimization algorithms) and initiates a multi-threaded optimization. When all the threads
are finished (or interrupted by the user), the application visualizes the resulting winning algorithms.

GisaxStudio instantiates the selected model’s class and retrieves the parameter ob-
jects from that instance, which is then inspected via reflection to dynamically build the
parameters dialog GUI. This dialog presents the last used values or default values, if it is
being used for the first time. After the user sets the initial parameter values and selects
the optimization algorithms (e.g., N = 4 in the Figure 2), the application creates N threads,
one for each algorithm, provides them with copies of the model and parameters object,
and starts the multi-threaded optimization. The main thread receives notifications from
the optimization threads and waits for them to finish or to be interrupted by the user. The
results are saved in the database as they arrive. Finally, when all the threads are finished,
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the best optimization result is selected, and a new tab with the visualizations of the winning
algorithm, i.e., parameters, is automatically created.

GisaxStudio features a project organization where one project, defined and named
by the user, comprises of an arbitrary number of GISAXS images, which are stored in the
projects/images subfolder of the application. All other data is stored in a JDBC-compliant
(Java DataBase Connectivity) relational database: metadata about the images, regions of
interest (ROIs), fits and parameters, results obtained with fits, etc. By default, the portable
in-memory H2 Database Engine is used [42], although, any other JDBC-compliant database
could be used. Note that a shared environment could also be easily configured by pointing
the GisaxStudio to the shared database example, such as PostgreSQL in a local network or
shared file system for images. However, for the sake of the simplicity, the default setup is
single-user. Such setup allows for portability by simply copying the GisaxStudio folder,
which usually contains images and database subfolders, to another computer, even if that
computer features a different operating system.

3. Results

3.1. Main Features

GisaxStudio is a platform for the GISAXS analysis of two types of NP-containing
materials: 3D lattices of nanoparticles (experiment type 3dLattice) and ion beam modified
materials (iBeam). Figure 3 shows the main window of the software with the choice of the
mentioned options. The theory describing the model and functions for the 3dLattice option
is published in [20], while the theory for the iBeam option is given in [22].

 
Figure 3. Starting window of GisaxStudio enabling the choice of the experiment type: the 3dLattice
option should be used for the analysis of GISAXS from 3D ordered lattices of NPs, while iBeam is
aimed at the analysis of NPs formed within ion-beam induced tracks.

After the project type is chosen, the window (shown in Figure 4) with the main options
for the simulation or analysis of the measured GISAXS maps is opened. The tab ‘Project’
enables setting up new project and loading the set of image files that needs to be analyzed,
or loading previous projects. The loaded files are displayed at the rightmost column of the
window. GisaxStudio enables some simple image processing of the experimental GISAXS
maps. For example, the Preprocess button removes the detector’s ‘dead’ lines (black lines in
the GISAXS maps), while the Smooth button automatically smooths out the GISAXS map.
The Replace to fit button sets the processed image as the one that will be used for further
fitting and data analysis. The tab ‘Reports’ provides direct access to the relational database
used by the program, so that data can be exported as CSV, and advanced users can even
execute custom select and update SQL queries.
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Figure 4. Window for setup the analysis options for 3dLattice experiment type. It contains the
GISAXS map which should be analysed, as well as the options for image processing and simulation
in the middle columns, followed by the list of loaded files in the current project on the right side.

One of the main steps in the fitting procedure of the measured data is to choose
an arbitrary number of ROIs that will be fitted. ROIs can be chosen using the button
Set ROI which opens the open-source ImageJ application incorporated into GisaxStudio.
Choosing particular ROIs is required because the measured GISAXS map always contains
the contribution of coherent scattering, and it usually contains contributions from the
surface roughness close to the Qy = 0 plain, which we do not wish to include in the fit
because it cannot be accounted for by the model. In addition, the measured maps often
contain some shadows of the vacuum tube, beam-stoppers, or similar items which we do
not want to fit. Therefore, we choose the areas of the map (dotted parts in Figure 4) that
contain NPs contributions only. These selected parts of the map will be used for fitting.

GisaxStudio enables the simple setting of the incident angle and the lateral beam
position directly at the measured map. The y0 parameter, represented by the vertical line
on the processed map, should be positioned at the center of the measured signal, while
specular (represented by the horizontal line) should be positioned at the reflected beam.

3.2. Visual Estimate Option

In general, a program fits the given set of parameters. These parameters have reason-
able defaults set by the GisaxStudio, which can be manually tweaked by the user. Therefore,
before the fitting process, it is very useful to use the option Vis guess, which calculates
the GISAXS map from the current parameters in the list. The same parameters will be
remembered and used as initial parameters for the subsequent fit. This is an optional step,
but it enables an experienced user to help the fitting process by moving the initial default
parameters closer to the optimal values. The number on the left of the tab ‘Vis Guess’ sets
the resolution of the simulated map, as it significantly affects the time needed to calculate
the map—lower resolutions will, of course, yield faster results. The window that appears
after pressing the Vis guess button is shown in Figure 5. This window allows for setting the
desired model and its main parameters. These are specified in six tabs: Fit, Model, Deviation,
Nanoparticle shape, Fixed Params, and Experiment Params.
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Figure 5. (a) Window for setting the parameter values that appears for the ‘Vis Guess’ option in the
main window. The opened window contains six tabs: Fit, Model, Deviation, Nanoparticle shape, Fixed
params and Experiment params. The chosen tab allows for setting the model type, scaling, and surface
parameters. (b) Scheme of possible ordering types along one of the basis vectors (a1) of the NP lattice:
long range ordering (LRO), short-range ordering (SRO), and random ordering (RO).

The Fit params tab (Figure 5a) allows us to choose the model most suitable for our
system. This tab, in addition to the model, allows us to choose the parameters, including
the overall constant, which depends on the intensity collection time, background, and
surface roughness of the sample. The choice of the model is crucial for the accuracy of the
analysis. Therefore, three main types of the NP ordering, demonstrated in Figure 5b, are
available. The program is suitable for the analysis of NP lattices with three basic types of
disorder: long range ordering (LRO), short-range ordering (SRO), and random ordering
(RO). The disorder describes deviations from the ideal positions of the NPs in a specific 3D
lattice. In the LRO model, the positions of the NPs fluctuate around predefined ideal lattice
positions, while the separation between the NPs fluctuate in the SRO model. Therefore,
the fluctuation probability is increasing from the first to the last NP along the given basis
vector. Random ordering shows NP correlations in the NP positions (these are random).

The disorder type can differ in various spatial directions. Because of this, in the
description of the 3D lattice, the final model is a combination of three ordering types, which
can be different. Each ordering type is associated with one of the three basis vectors that
defines the ordering of NP in a 3D lattice, or with some of its components. The model
can be set by the variable Model type in the tab ‘Fit parameters’, as shown in Figure 5a. For
example, the system that is grown by the self-assembly process, without any restrictions,
usually shows SRO in all spatial directions. Therefore, in order to properly describe it,
Model 1 (SRO, SRO, SRO) should be chosen. However, for the deposition of NPs in a
multilayer, the vertical positions of the layers where the NP form are predefined by the
deposition process. Here, the vertical (z component) of all basis vectors should be LRO,
while all x, y components that define deviations in the plane within the layers are SRO.
Therefore, the appropriate choice for a multilayer system is Model 3 (all x, y SRO, all z LRO).
In some cases, the positions of the NPs are predefined along one basis vector (assumed a3).
For these types of systems, Model 2 is the appropriate choice. Finally, in some cases, the
positions of the NPs are random. In this case, we mainly see, as shown on the GISAXS map,
the contribution of the NP shape, and the appropriate choice is Model 4 (all random).
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The tab ‘Model params’, shown in Figure 6a, enables setting the lattice type that defines
the ideal positions of the NPs in a 3D lattice. The ordering is described by three basis
vectors a1–a3, whose length and the number of periods along each vector (Nx,y,z) should be
specified. The main features of the basis vectors a1–a3 are illustrated in Figure 6b, where
the body centered tetragonal (BCT) lattice is shown. The presented features are the same
for other 3D lattices available in the software. The basis vectors a1 and a2 are in the plane
parallel to the films surface/substrate (x-y plane), and they describe the ordering in that
plane. The basis vector a3 describes the vertical ordering of the NPs in a 3D lattice. The
multilayer period (denoted by vertical period) is given by the z component of basis vector
a3. This is well visible in Figure 6c, where a cross-section (x-z plane) through the BCT lattice
of the NPs is given.

 

Figure 6. (a) Tab Model params with the corresponding parameters describing the lattice type and its
main parameters. (b) Scheme of ordering in a body centered tetragonal (BCT) lattice defined by basis
vectors a1–a3. (c) Cross-section of the 3D lattice of NPs having BCT unit cell with N1 = 6 and N3 = 4
periods along basis vectors a1 and a3, respectively.

The parameters that describe the disorder of the NP positions, with respect to the ideal
positions (given by the basis vectors a1–a3), are given in the tab ‘Deviation params’, shown in
Figure 7a. The deviations should be set for each spatial direction (x, y, z) of each basis vector.
Since the basis vectors a1 and a2 are in the plane parallel to the substrate surface, they
usually have the same disorder parameters (σ1,2

x,y). Therefore, the software uses the same
values of disorder for vectors a1 and a2 in all models, except for Model 2. For Model 2, each
basis vector has its own disorder. The drawback is that if the number of fitting parameters
is increased, the fitting process becomes more complex. The proper determination of
the deviation parameters is often the most difficult step in the fitting process because
they strongly influence the shape and width of the GISAXS map peaks caused by the
regularity in the NP positions. Figure 7b shows the scheme of the corresponding NP
disorder distributions. As mentioned previously, the parameters σ1,2

x,y describe disorder in
the x-y plane, while the disorder parameters σ3

x,y describe the deviations of each new layer
of NPs from the ideal position, as illustrated in the right section of Figure 7b. Therefore,
these parameters actually define the regularity of the formed 3D lattice, and it is the measure
of quality of the self-assembly process in the multilayer deposition preparation method.

The vertical (z) components of disorder σ1,2,3
z often have different properties than

the lateral components. Here again it is assumed that the disorder related to basis vectors
a1 and a2 is the same (σ1

z = σ2
z). These parameters describe the vertical fluctuation of each

NP in a layer parallel to the surface. The parameter σ3
z describes the vertical deviation

of the entire layer, as illustrated on the right in Figure 7c. If the material is produced by
the self-assembly process during multilayer deposition, the vertical disorders σ1,2,3

z are
usually much smaller than the lateral ones σ1,2,3

x,y because the NP forms within the layers
of a multilayer. Some examples are given in [20,21].
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Figure 7. (a) Tab Deviation params with the corresponding parameters. (b) Illustration of disorder
parameters σ1,2,3

xy. The disorder properties within each layer parallel to the surface (σ1,2
xy) are

usually the same (left), and they describe the deviations of each NP within a layer from the ideal
positions. The parameters σ3

xy (right) describe the disorder of each layer from the ideal position, and
therefore, are a measure of the quality of the self-assembly process that leads to formation of the 3D
NP lattice. (c) The disorder parameters in the vertical direction (perpendicular to the surface). These
parameters describe the deviation of each NP within a layer (σ1,2

z), and of each layer (σ3
z) from the

ideal positions in the vertical (z) direction.

GisaxStudio currently supports five basic types of the NP shape-structures: sphere,
spheroid, ellipsoid, tilted ellipsoid, and core-shell spheroid NPs, as shown in Figure 8.
Their parameters can be set in tab ‘Nanoparticle Shape Params’, shown in Figure 8a. The
shapes and structures are schematically illustrated in Figure 8b. The main parameters of
the NP shape are their radii along the x, y, and z directions Rx,y,z (valid for Ellipsoid). The
option Sphere uses only the radius in the x direction (Rx) for all directions, while the option
Spheroid uses Rx for radii parallel to the surface and Rz for the direction vertical to the
surface. The option Ellipsoid tilted along a3 assumes the same radii values as explained for
Ellipsoid, but the entire NP is then assumed to be tilted along the basis vector a3, as shown
in Figure 8b.

The option Core-Shell refers to a spheroid with core-shell structure. It consists of
different core and shell materials, with radii Rcore and Rshell, respectively. Their origins
can be shifted form each other by value d, as shown in Figure 8c. Such structures are often
formed by the production of core-shell QDs by thin layer deposition [7–9]. The entire
system can be scaled in the z direction by factor F, which enables the transition from a
spherical to a spheroidal shape. Therefore, actual core-shell radii in the vertical direction
are obtained by the multiplication of Rcore and Rshell by factor F.

The distribution of all NP shapes is assumed to be gamma distribution, as described
by parameter γ, and the NP radii. All directions are assumed to have the same order of the
distribution. The refraction indices of the NPs and their real and imaginary parts should
also be set in the ‘Nanoparticle Shape Params’.

The tab Fixed Params includes the refraction indices of the matrix in which the NPs are
embedded. It also includes the starting and final averaging angle, along with the step. The
averaging is assumed to be performed for the rotation of the 3D lattice around the surface
normal (z direction). This is needed because the regular 3D ordering usually appears
in domains that are randomly rotated around the surface normal when the material is
produced by the self-assembly process. If there is pre-patterning on the substrate that acts
as nuclei for the 3D lattice growth, or some other mechanism that predefines the directions
of basis vectors a1 and a2, then there is no need for averaging.
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Figure 8. (a) Tab Nanoparticle Shape Params and its parameters. (b) Some of NP shapes currently
available in the software: spheroid defined by lateral (in x-y plane) and vertical (z direction) radii Rx

and Rz, respectively. Option Ellipsoid has the additional radius Ry in the y direction; tilted ellipsoid
with the tilt along basis vector a3. (c) Core-shell spheroid with the core and shell radii Rcore and Rshell,
respectively, and the shift of the shell origin d. The spheroidal shape is defined by factor F, so that the
actual vertical radii are the product of Rcore and Rshell and factor F.

The tab Experiment Params contains the details about sample position (sample-detector
distance), the vertical position of the primary beam on the detector that may be negative if
the beam is below the detector, wavelength of the x-ray beam used for the measurement,
and the pixel size.

As previously mentioned, after the parameters in ‘Vis guess’ are set, the Run button
activates the calculation of the GISAXS intensity distribution for the given set of parameters.
The result appears as a new tab in the application. We recommend running the Vis guess
option with different sets of the parameters until the simulated GISAXS map is similar
to the measured one. For example, some parameters, such as multilayer period, the NP
shape, or NP approximate separation, could be estimated from some other microscopy
measurements. After we are satisfied with the Vis guess calculated map, we can start the
fitting process.

3.3. Fitting Options

The fitting offers eight different fitting algorithms under the Algorithms tab, as visible
in Figure 9a, where one or more options can be chosen for fitting. The other tabs that appear
after the Fit button (Figure 4) is clicked contain the same parameters as the Vis guess option.
It is important to check the limits for each parameter, which can be set in an absolute or
relative fashion. They limit the fitting of the particular parameter. If the limits are too broad,
it is more probable that the fitting will go in the wrong direction. On the other hand, if they
are too narrow, then the fit will possibly not be able to reach the correct value. However,
for most of the parameters, it is possible to estimate the limits correctly. Some of them can
be estimated from the GISAXS map, such as the multilayer period, or lateral separation
of the NPs (parameter |a1|). The background can also be easily estimated. The width of
the Bragg spots related to the 3D lattice formation can be used for the estimation of the
disorder parameters. The Vis Guess option is very helpful for this. Setting the limits is very
important because the model contains numerous parameters, and many local minima exist
in the fitting function. Therefore, if the initial parameters and the limits are not set correctly,
it is possible that the fit finishes in some local minima. When the fitting process is started,
the software updates the user about the progress of the fit via the status text window, as
visible in Figure 9b. We can stop any of the started fitting algorithms at any time using the
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options stop or kill. Some optimization algorithms can be benignly stopped, and can report
the best-found values before they were ended, while others can only be killed, and cannot
report any data. Finally, when the fitting procedure is finished, a new tab (Figure 9c) pops
up. This tab shows the simulated GISAXS map and the parameters of the fit, along with
the line profiles showing the intensity distribution at the chosen cross section.

 

Figure 9. Tabs related to the fitting of the 2D GISAXS map. (a) The window with fitting parameters,
including the same parameters as in Vis guess option and an additional Algorithms tab that enables the
choice of the fitting algorithms. (b) Window that appears after starting of the fit, showing its progress.
After the fitting is finished, the parameters are shown in the window at the bottom. (c) Results of
the fitting process, including the original and simulated GISAXS map using the best-fit parameters,
along with the line profiles at the right.

Finally, the software offers the Batch fit option. Sometimes, fitting can be a time-
consuming operation, especially if the number of parameters is large or when user wants
to check many variations. In these cases, it is possible to generate an arbitrary number
of initial parameter sets (“batch items”), store them in the database, and then launch the
batch fitting process, for instance, overnight. Figure 10a shows the dialog for setting the
parameters for batch fit. Multiple initial values of each parameter, along with lower and
upper limits, can be set by typing in comma delimited values (e.g., “1, 3, 8”), or by using
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a rudimentary “for-loop” scripting command (e.g., “for( (1, 1); (3, 3); (1, 1) )” that will
produce complex numbers “(1, 1), (2, 2), (3, 3)”. Since parallel execution on a desktop
or laptop could require too many resources, GisaxStudio will process batch items in a
sequential fashion, as follows (Figure 10b):

 

Figure 10. (a) Tab related to Batch fit option. (b) Start or delete options of Batch fit in the main window.

Repeat until there are unfinished batch items:

� load the first unprocessed batch item (parameter set) from list
� execute the batch item (fit)
� store the results to the database

A beneficial feature of the program is that batch execution can be interrupted at any
time and resumed afterwards. For instance, assume that we run a 40-batch item. The
program progresses to the, e.g., 20th item, and then the computer powers off (or a user
simply kills the program). A total of 19 items have been executed, and their results have
been stored in the database. The 20th item was interrupted, and those results are lost.
However, when the same batch is run afterwards, it will simply resume from the 20th
item and finish the whole batch. When the batch fit is completed, the user can inspect and
visualize the results.

In the above text, we have used the option 3dLattice of GisaxStudio. The other option
is iBeam, and it has all the same features as 3dLattice, except for the models describing
the NP ordering properties within the ion tracks. We have used all the models given in
Ref. [22], so we avoid repeating them here.

4. Conclusions

The software platform GisaxStudio, which is aimed at the simulation, analysis, and
fitting of GISAXS maps from different types of 2D or 3D lattices of NPs or QDs, is demon-
strated. It is specifically developed for GISAXS measured on thin films consisting of 3D
lattices of NPs grown by the self-assembly processes, and for the NPs formed within
ion-tracks during ion beam irradiation. Therefore, it contains two main groups of models:
3dLattice for application in analysis of GISAXS from NP lattices formed by self-assembled
growth, and iBeam aimed at the NPs formed during the ion-beam irradiation of materials.
Each group contains several models of the NP arrangement that depend on the material
production conditions, i.e., the type of disorder along each of the basis vectors of the formed
3D NP lattice. The main NP shapes supported by GisaxStudio are ellipsoid, spheroid, and
sphere with full or core-shell structure. The core-shell structure includes the option of
single or double shells, as well as the possibly displaced center of the core with respect to
the center of the shell. The models of the NP ordering and their main features available
in the software, along with the NP shapes, are discussed. The options for the fitting are
provided and supported by examples. The platform is suitable for use by broad audience
and non-experts in the GISAXS field.
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5. Nekić, N.; Šarić, I.; Salamon, K.; Basioli, L.; Sancho-Parramon, J.; Grenzer, J.; Hübner, R.; Bernstorff, S.; Petravić, M.; Mičetić, M.
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Abstract: Currently, the online non-destructive testing (NDT) methods to measure the contact states
of high-voltage circuit breakers (HVCBs) with SF6 gas as a quenching medium are lacking. This paper
aims to put forward a novel method to detect the contact state of an HVCB based on the vibrational
signal. First, for a 40.5-kV SF6 HVCB prototype, a mechanical vibration detection system along with a
high-current generator to provide the test current is designed. Given this, vibration test experiments
are carried out, and the vibration signal data under various currents and corresponding contact states
are obtained. Afterward, a feature extraction method based on the frequency is designed. The state
of the HVCB contacts is then determined using optimized deep neural networks (DNNs) along with
the method of adaptive moment estimation (Adam) on the obtained experimental data. Finally, the
hyperparameters for the DNNs are tuned using the Bayesian optimization (BO) technique, and a
global HVCB contact state recognition model at various currents is proposed. The obtained results
clearly depict that the proposed recognition model can accurately identify five various contact states
of HVCBs for the currents between 1000 A and 3500 A, and the recognition accuracy rate is above
96%. The designed experimental and theoretical analysis in our study will provide the references for
future monitoring and diagnosis of faults in HVCBs.

Keywords: SF6 HVCB; non-destructive testing; contact status detection; vibration signal; DNN;
Bayesian optimization

1. Introduction

Mechanical vibrations that occur in HVCBs during the current interruption operation
can be collected by installing acceleration sensors on the HVCB housing. The obtained
vibration signals are then used to identify the mechanical state of the HVCB [1–3]. In
this process, due to the influence of the HVCB’s flow size, field noise and the complex
structure of the HVCB itself, the acquired vibration signal may be distorted, which increases
the difficulty of finding an accurate and efficient contact state recognition model [4]. An
HVCB’s contacts will wear out under the impact of the mechanical closing force and contact
stress during current interruption, resulting in contact deterioration [5,6]. Establishing a
state-of-the-art HVCB contact status identification model can reduce its maintenance costs
and avoid potentially devastating consequences before a severe accident occurs [7,8].

At present, the contact status of an HVCB can only be identified by measuring its
contact resistance before the equipment is put into operation, and there are only a few
research studies that are available on the online contact state identification of in-service
HVCBs. The increasing studies on vibration detection methods in NDT for identifying the
conditions of industrial equipment (e.g., applications in bearings) are attracting significant
attention, owing to their optimized and controlled strategies. For example, scholars have
studied the fault diagnosis methods of bearings based on vibration signals, including
wavelet packet analysis [9], Complete Ensemble Empirical Mode Decomposition with
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Adaptive Noise (CEEMDAN) [10], the Teager–Kaiser Energy Operator [11], support vector
machines (SVMs) [12,13], neural networks (NNs) [14,15] and enhanced differential product
weighted morphological filtering [16]. Given this, it was observed that when the HVCB
fails, there is also an abnormal vibration signal which can be used to analyze the HVCB’s
running state. In this regard, scholars have put their efforts toward analyzing the HVCB
vibration signal for HVCB fault diagnosis [17–21]. Previous studies have indicated that the
contact mode of an HVCB changes due to deteriorated contacts [22–24]. The flowing current
through these poor contacts will cause the abnormal vibration of HVCBs. In actual practice,
it is necessary to achieve real-time and efficient monitoring and judgment of the contact
state of an HVCB at different currents, and it is necessary to further explore the relationship
between the vibration signal and the contact state of an HVCB. In terms of HVCB fault
recognition, this mainly includes three types of methods that are based on qualitative
empirical knowledge, statistical analysis and artificial intelligence (AI) techniques. The
deployment of the first two methods is difficult to implement, owing to the complex
structure of HVCBs, the strong uncertainty and the large amount of required data. Currently,
experts and scholars generally use AI algorithms to achieve fault diagnosis of HVCBs to
overcome the above problems, and the algorithms used in fault diagnosis of HVCBs
mainly include support vector machines (SVMs) [25–27], neural networks (NNs) [28,29],
clustering [30], random forest [31], autoencoder networks [32] and so on. The previously
presented fault recognition model for HVCBs mostly uses manual parameter adjustment
methods for hyperparameter optimization. The learning rate of NNs, the number of hidden
layers and the number of neurons in each layer may be problem-specific and related to
the complexity of the data. Manual parameter adjustment methods are used to set a fixed
learning rate, the number of hidden layers, the number of hidden layer nodes and the
dropout rate for the model, which are difficult to adapt due to the complex and varying
working conditions of the actual HVCB [33–35]. Therefore, based on this problem, it is an
essential need to establish an NN recognition model with hyperparameter optimization for
detecting the contact state of the HVCB while considering various currents.

Due to its remarkable arc-quenching capability and dielectric insulating properties,
SF6 is widely used as a switching and insulating gas in high-voltage apparatuses [36,37].
In addition, it is chemically inert, non-toxic and non-flammable [38]. Therefore, using
SF6 as the quenching medium, an HVCB with compact structure, strong environmental
adaptability and high working reliability can be manufactured. Nevertheless, SF6 has the
major drawback of presenting a global warming potential (GWP) of 23,500 [39]. The search
for an alternative gas for SF6 continues unceasingly. Research was conducted in the past
few decades on substitutes to SF6, covering different candidates including common gases
(nitrogen, air and CO2) and vacuum and gas mixtures [40]. Traditional gases such as dry
air, nitrogen, CO2 or their mixtures have the advantage of a low global warming potential
but very limited dielectric strength compared with SF6. A vacuum is widely used in the
medium voltage domain as a current interruption medium, but the application of a vacuum
at high voltages does not appear to be economically competitive. Moreover, mixtures of
SF6 and other gases such as SF6-CF4, SF6-C2F6 and SF6-N2 are also considered potential
SF6 substitutes [41–45]. They can be used to reduce costs and the environmental impact of
SF6 gas to a certain extent. At present, HVCBs with SF6 gas as a quenching medium will
still occupy a large share of the market for a long time. In this paper, we chose SF6 HCVB
as our research object.

In this paper, a feature extraction method based on frequency is proposed, a recognition
model composed of a DNN and BO is constructed, and an NDT for the contact state of the
SF6 HVCB is proposed.

The main contributions of this paper can be summarized as follows:

1. The vibration test platform of the SF6 HVCB is set up, and the vibration signal of
the HVCB in different contact states is obtained while considering a current between
1000 A and 3000 A.
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2. Using the method of a DNN, the amplitudes of the signal in frequency multiples of
50 Hz are used as the eigenvalue matrix to complete the recognition of the contact
state of the HVCB.

3. The BO is used for hyperparameter optimization of the NNs so that the proposed
model can be applied globally to SF6 HVCB while considering different currents while
having a wider range of applications.

The remainder of the paper is organized as follows. Section 2 explains the experimen-
tal platform of the HVCB vibration test, experimental procedures, vibration mechanism
and vibration signal analysis. The HVCB contact status recognition model is presented
in Section 3. The model recognition results and discussions are presented in Section 4.
Section 5 concludes the paper.

2. Experiments and Vibration Data Analysis

2.1. HVCB Vibration Detection Experimental System

Vibration detection in an HVCB was carried out by considering a prototype design
of a 40.5-kV SF6 HVCB as shown in the experimental platform in Figure 1. First, a large
current was injected from both ends of the HVCB interface using a high-current generator
consisting of a voltage regulator with a maximum output current of 5000 A and a single-
phase output. The maximum applied current in this study was 3500 A. The frequency
of the applied current in the experiment was 50 Hz. The current through the HVCB was
then measured using a Rogowski coil connected with an oscilloscope. In the experiment, a
Rogowski coil was sheathed on an energized conductor to measure the amount of current
flowing into the HVCB. The lead wires at both ends of the HVCB were connected in parallel
with multiple strands of copper conductors, and the total through-current cross-sectional
area was greater than 1000 mm2. The contact state of the HVCB was changed by manually
adjusting its tie rod, and the specific value of the contact resistance was confirmed by
the loop resistance tester. SF6 gas was injected into the HVCB using an air pump with a
pressure of 0.35 MPa.

 

Figure 1. Experimental platform structure diagram.

158



Sensors 2022, 22, 8490

A high-quality and high-precision data acquisition system was required for the sub-
sequent signal analysis and feature extraction. The vibration signal acquisition platform
consisted of signal detection sensors, a data acquisition card and a computer to process
the data. The various parameters of the acquisition platform are summarized in Table 1.
Considering the frequency and amplitude of the mechanical vibration, as well as the strong
magnetic field for in-service HVCBs, acceleration sensors with reliable performance from
a PCB company were selected. For the more precise and comprehensive detection of the
vibration signal in the HVCB, the acceleration sensors were connected at three different
positions and numbered as 1, 2 and 3. The different positions of the sensors were as follows:
(1) in front of the HVCB contact, (2) in front of the tie rod and (3) near the operating assem-
bly. These sensors at different positions expanded the fault monitoring range and could
effectively collect the vibration signals near the contact of the HVCB, the operation link, the
insulator and other different parts. The obtained data from the sensors were transferred to
the data acquisition card (NI9234) and recorded on a computer for further processing.

Table 1. Parameters of the acquisition system.

Parameters Value

Measuring range 0.5–3000 Hz
Sensitivity 10.2 mV/(m/s2)

Temperature range From −18 to +66 ◦C
Weight 4.0 g

Sampling rate 51.2 kHz
Sampling time length 45 s

2.2. HVCB Vibration Detection Experimental Procedures

First, the HVCB was filled with SF6 gas at a pressure of 0.35 MPa. Secondly, the
contact state of the HVCB was changed by manually adjusting the HVCB tie rod, and the
specific value of the contact resistance was confirmed with a loop resistance tester. At this
time, the HVCB contact was adjusted to a good contact state, and the contact resistance
of the HVCB was measured with a loop resistance tester to be 48 μΩ. Thirdly, the HVCB
vibration signal at 6 various currents between 1000 A and 3500 A with an incremental step
of 500 A when the HVCB was in good contact was measured using sensors placed on the
HVCB in advance. In order to ensure the safety of the experiment and ensure that the
data were not affected, after each group of experiments was completed, we stopped the
current flow, paused for 15 min and then started the next group of experiments. The above
is the acquisition of vibration signals when the HVCB contacts were in good contact under
six currents.

Next, we adjusted the HVCB tie rod appropriately to make its contact state a slightly
poor contact state. The contact resistance was measured to be 78 μΩ. At this time, the
vibration signal of the HVCB at 6 various currents between 1000 A and 3500 A with an incre-
mental step of 500 A was measured and recorded. By analogy, the subsequent experiments
for moderate contact defects (contact resistance of 93 μΩ), severe contact defects (contact
resistance of 117 μΩ) and extremely severe contact defects (contact resistance of 150 μΩ)
were continued. A total of 5 experiments under different contact states were completed,
and 6 experiments at different currents were completed in each contact state, resulting
in 30 sets of experimental data. The detection time of each set of data was 45 s, and the
sampling frequency was set to 51.2 kHz.

2.3. HVCB Vibration Characteristics

The excitation forces of the housing during the operation of the HVCB are the me-
chanical forces, the electromagnetic forces and the discharge forces. This study discusses
the vibration signal of the in-service HVCB and does not consider the phenomenon of
the HVCB closing and discharging. Therefore, only the vibration signal generated by the
electromagnetic force was considered. The electrical power between the contacts and the
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electrical forces received by the metal housing of the HVCB were calculated separately, and
their frequencies were analyzed.

First, we calculated the electrical power received at both ends of the contact. When
there is a current flowing through the equipment circuit, the current line shrinks near the
contact surface of the HVCB to generate electrical power, which causes the equipment to
vibrate. Suppose that the current passing through the contacts is i = I0 cos(ωt), where ω is
the angular frequency corresponding to the power frequency. The electrical force between
the contacts can be calculated using the following equation:

F1 =
μ0

4π
i2 ln

D
2a

=
μ0 I2

0
{cos(2ωt) + 1}

8π
ln

D
2a

(1)

The parameter a in the above equation can be calculated using the following equation:

a =

√
Fj

πζHb
(2)

where D is the diameter of the contact surface, a is the radius of the contact spot, Fj is the
initial pressure acting on the contact, ζ is the material deformation coefficient between
0.3 and 1 and Hb is the Brinell strength of the transparent material.

Therefore, under normal circumstances, the force on the HVCB contact is a simple
harmonic force with twice the frequency of the power supply so that the vibration of the
HVCB contact caused by the electromagnetic force is a vibration of twice the frequency of
the power supply.

Subsequently, the electrical power of the metal housing of the circuit breaker is cal-
culated. Suppose that R is the diameter of the cylindrical shell of the HVCB, Req is the
equivalent resistance of the current loop, μ0 is the vacuum permeability and μr is the rela-
tive permeability. BR is the magnetic induction strength of the metal cell when the contact
is introduced with the current. Assuming that the base area of the metal unit divided into
HVCB shells is S (where S approaches zero), the length is L, the metal element is treated as
a thin shell, and the electromagnetic force on the edge of the metal element divided by the
HVCB shell is approximately expressed as follows:

F2 = BRiL =
−μ2

0μ2
r I2

0 SωL
8πR2Req

sin(2ωt) (3)

Therefore, under normal circumstances, the combined force of each metal unit is a
simple harmonic force with twice the frequency of the power supply so that the vibration
of the HVCB shell caused by the electromagnetic force is a vibration of twice the frequency
of the power frequency.

From the above theoretical calculations, when the current into the HVCB is 50 Hz, and
the HVCB is in normal operation, the frequency of the vibration signal collected from the
HVCB should be 100 Hz.

2.4. Vibration Data Analysis

The contact state recognition process for the SF6 HVCB in this study included three
steps: vibration signal preprocessing, feature extraction and the establishment of a contact
state recognition model. Due to the influence of onsite high electromagnetic interference
and the complex structure of the HVCB itself, the collected vibration signal may have
contained a certain amount of noise that needed to be filtered for precise and comprehensive
measurements. Figure 2 depicts the comparison of the vibration signal acquired by sensor
1 at 2000 A before and after preprocessing when the contact state of the HVCB contact was
in good condition. It can be observed that the vibration signal was a stationary signal whose
frequency did not change with time, which is the main reason for the subsequent selection
of Fourier analysis. However, the vibration signal was not stable around the zero point of
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vibration, because during the operation of the HVCB, there was heat generated, making
the sensors appear to have the “zero drift” phenomenon. Therefore, the DC component in
the signal needed to be removed in subsequent signal processing to eliminate the impact of
“zero drift” on the data analysis.

Figure 2. Vibration signal comparison before and after preprocessing.

Figure 3 is a spectrum of the vibration signal collected by sensor 1 at 2000 A when the
contact state of the HVCB contact was in good condition and was decomposed by Fourier
analysis. The vibration signal frequency of the collection point was concentrated at integer
multiples of 50 Hz, the range was 50–1500 Hz, and the amplitude was the largest at 100 Hz,
which verifies that the vibration was mainly caused by electromagnetic force, and the
frequency of the electromagnetic force was 100 Hz. At the same time, it can be seen that the
frequency of the vibration signal was mainly 99.83 Hz instead of the accurate 100 Hz, and
it was caused by the on-site high electromagnetic interference as well as the frequency of
the power supply voltage. For subsequent feature extraction, the amplitudes of the signals
with frequencies near integer multiples of 50 Hz were selected as the eigenvalue. In order
to avoid missing some feature points due to frequency shifting, in the actual calculation,
the point with the largest amplitude was selected in the range of (50×k ± 5) Hz (where k is
a positive integer between 1 and 30), and their horizontal and vertical coordinate values
were recorded. This was used as the eigenvalue to form a matrix of eigenvalues.

The preprocessed time domain and frequency domain patterns of the vibration signals
obtained by the three sensors are illustrated in Figures 4 and 5, respectively. The vibration
signals were obtained at a current of 2000 A when the HVCB contacts were in good
condition with a contact resistance of 48 μΩ. In Figure 5, the 3 sets of histograms represent
sensors 1–3, and the columns in a set of histograms represent the amplitude of the signal
collected by the sensor when the signal’s frequency was 50–1500 Hz with an integer multiple
of 50 Hz. It can be observed that the vibration amplitudes obtained by sensors 1 and 3 were
much higher compared with the vibration amplitude obtained by sensor 2. In the actual
measurement, it was found that the vibration signal obtained by sensor 3 could easily be
affected by the operating mechanism. In addition, it contained a multi-frequency signal
and richer information on noise that may bring severe challenges for the analysis and
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processing of the signal. Based on comprehensive consideration, sensor 1, which was closer
to the contact, making it easier to analyze its resulting vibration signal, was selected as the
subsequent analysis object.

 

Figure 3. Spectrum of the vibration signal.

 

Figure 4. Time domain diagram of the vibration signals acquired by different sensors when the
contacts were in good contact.
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Figure 5. Frequency domain diagram of vibration signals acquired by different sensors when contacts
were in good contact.

Figure 6 shows a comparison of the time domain of the vibration signal collected
when the contact of the HVCB was in good condition at a current between 1000 A and
3500 A with an incremental step of 500 A. The data used herein were measured by sensor 1,
as already mentioned above. After that, the obtained data were filtered and smoothed in
order to analyze the results more clearly. It can be observed from Figure 6 that the vibration
signal of the HVCB increased nonlinearly with the increase in the current.

Figure 6. Time domain diagram of the vibration signals in good contact states acquired at different currents.
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Similarly, Figure 7 shows a comparison of the frequency domains of the vibration
signals collected when the contact of the HVCB was in good condition at a current between
1000 A and 3500 A with an incremental step of 500 A. The amplitude of the vibration signal
was augmented dramatically with the increase in the current. However, the ratio of the
signal amplitudes at each frequency was not static, and the comparison was most obvious
from 2000 A to 3000 A. In this current range, the amplitude of the signal at a frequency of
100 Hz increased slightly, while the amplitude of the signal at 300 Hz rose rapidly. Given
this, it is not feasible to say directly that for different current situations, the amplitude of the
signal at each frequency is enough to determine the contact of the current HVCB. Therefore,
it is necessary to introduce deep learning methods to find potential internal laws.

 
Figure 7. Frequency domain diagram of vibration signals in good contact state acquired at different currents.

As shown in Figure 8, the contact resistance was changed by adjusting the angle of
the HVCB tie rod that was confirmed by the circuit resistance tester. Figure 8 shows the
vibration signal collected by sensor 1 at 2000 A when the contacts of the HVCB were in
poor condition with contact resistances of 78 μΩ, 93 μΩ, 117 μΩ and 150 μΩ. It is worth
mentioning that in the different contact states of the HVCB, the frequency obtained by
Fourier decomposition was basically located between 0 and 1500 Hz, and the amplitude at
100 Hz held the highest value. Additionally, there were some variations in the signal ampli-
tude near 50–1500 Hz with integer multiples of 50 Hz. As the contact state deteriorated, the
100-Hz signal amplitude showed a fluctuating change, while the 300-Hz signal amplitude
increased slightly. In short, the amplitude changes of different frequencies showed a certain
law, but it was difficult to explore its specific law based on a simple calculation. Moreover,
under actual working conditions, the current magnitude and contact resistance of the
HVCB have complex and variable relations, and the amount of data is also larger, making
them difficult to process using simple algorithms. Therefore, it is an essential need to
further excavate the potential deep information of the vibration signal in order to conduct
a more accurate and comprehensive analysis.
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Figure 8. Frequency domain plot of vibration signals in poor contact conditions.

3. HVCB Contact Status Recognition Model Based on DNNs

3.1. Deep Neural Networks (DNNs)

A DNN is a feedforward artificial NN that differs from general NNs by having multiple
layers of hidden units between the inputs and outputs. DNNs utilize many properties
of the natural signal that are combinatorial hierarchies, where higher-level features are
obtained by combining lower-level features [46]. DNN are divided according to the position
of different layers, and can be divided into the following three categories; (i) the input
layer, (ii) the hidden layer, and (iii) the output layer as shown in DNN structure diagram
in Figure 9. In this study, the input parameters for the input layer are the amplitude
of the extracted frequency signal, the number of hidden layers, (Hidden layer nodes
will be adjusted according to the model recognition.) and the output layer, representing
five classification results. The dotted line represents an idea of preventing the NN from
overfitting by randomly removing elements (along with their connections) from the NN
during training, which can be quantified by the dropout rate. Similarly, the dropout rate is
subsequently adjusted according to the identification situation.

Forward propagation calculates the predicted value and then calculates the loss based
on the difference between the predicted value and the true value, and backpropagation
updates the parameters of each layer sequentially from the last layer forward according to
the loss function. In the forward propagation phase, the hidden layer takes the output of
the previous layer as the input of the latter layer:

bL
k =

n

∑
i=0

wL
ik × aL−1

i + dL
k (4)

aL
k = f (bL

k ) (5)

In this equation, bL
k and aL

k represent the outputs of the k neuron in the Lth layer of the
DNN before and after activation, respectively, wL

ik represents the linear transfer coefficient
from aL−1

i to bL
k , dL

k represents the bias constant of the bL
k forward propagation function

and f (x) is the activation function. As a classification model, the Sigmoid function was
chosen as the activation function. The mathematical expression for the Sigmoid function is
as follows:

f (x) =
1

1 + e−x (6)
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Figure 9. DNN architecture diagram.

Binary cross-entropy is often used as a loss function for classification problems, where
cross-entropy is used as a loss function to assess the losses of the classification models in
the prediction process. When using small batch gradient descents, this updated selection of
weights leads to the risk of the loss function stagnating at the local minimum. The adaptive
moment estimation (Adam) algorithm can be used to solve the optimization problem of
large data volumes and high feature latitudes, and it requires only a small amount of
memory in machine learning [47].

3.2. Bayesian Hyperparameter Optimization (BO)

Common automated machine learning hyperparameter methods are mesh tuning,
random search and BO. The former is slower. The latter, while faster, is more likely to miss
important points in the search space during processing. The BO algorithm establishes a
substitution function based on the past evaluation results of the objective function to find
the value of the minimized objective function. Therefore, BO is comparatively much faster,
smaller in terms of iterations and more efficient [48–50]. In this paper, the BO based on a
tree-structured Parzen estimator (TPE) with a good effect and speed in a high-dimensional
space was used as a method of automatic machine learning hyperparameter optimization
for DNNs.

BO involves an iterative process along with the proxy function and the acquisition
function as its two main components. In each iteration, a probabilistic proxy model is built
using TPE:

p(x|y) =
{

l(x), y < y∗
g(x), y ≥ y∗ (7)

In the equation, x is the observation point obtained in the search spaces, y* = min{(x1,
f (x1)), . . . , (xi, f (xi))} represents the optimal value on the observation domain, where l(x)
is the density formed using the observation {xi} that results in the corresponding loss f (xi)
being less than y∗, and g(x) is the density formed using the observed value {xi} to make the
corresponding loss f (xi) greater than y∗.

In the TPE, the expected improvement (EI) is used as the acquisition function, and
the next evaluation point for the objective function value is optimized until the maximum
number of iterations is reached.
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In the equation, p(x) is the probability of reaching an observation point x, and p(y)
represents the probability that y is the optimal value. The equation for the calculation of
the EI is as follows:

EIy∗(x) =
∫ y∗

−∞
(y∗ − y)p(y|x)dy =

∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)
p(x)

dy (8)

3.3. Recognition Process

The hyperparameter combination after the iteration was used as the optimal input
parameter combination to enter the HVCB contact state recognition model and to complete
the HVCB contact state recognition. The flowchart of the HVCB contact state recognition
model is shown in Figure 10.

 

Figure 10. Contact state recognition model flowchart.

The 45-s vibration signals obtained by each set of experiments, or 2,304,000 sample
points, were evenly divided into 768 sets of data. They were analyzed separately by Fourier
decomposition, and the amplitude of the signal with a frequency of 50 times between 0 and
1500 Hz was saved, forming a matrix of 768 × 30, which would be fed into the DNN as
eigenvalues for the next step of classification.

Based on this, the number of input layer nodes for the DNN obtained was 30, and the
number of output layer nodes was 5. The experimental data were divided into three parts:
a training set, a validation set and a test set, where 70% of the data in the samples in each
state was randomly selected as the training set, while 20% was the verification set and 10%
was the test set. The training set was used to train a DNN model. The validation set was
used for BO to find suitable hyperparameters. Finally, the test set was input into the final
DNN model to test the accuracy of the recognition model and verify the effectiveness of
the recognition model.

4. Recognition Results and Discussions

Table 1 shows the accuracy of the state identification at different currents when using
fixed parameters without BO. As can be seen in Table 2, when the DNN adopted fixed
parameters, it was impossible to guarantee a high recognition rate for each current condition.
At the same time, manual parameter adjustment took a long time and was inefficient,
which could limit its usage for practical applications. Therefore, it is necessary to find more
efficient hyperparameter optimization methods.
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Table 2. Accuracy of status recognition at different currents when fixed parameters are used. (a) When
the learning rate is 0.01, the number of hidden layers is 4, and the dropout rate is 0.15. (b) When the
learning rate is 0.02, the number of hidden layers is 5, and the dropout rate is 0.25.

Current (A) Accuracy (%)

(a)

1000 20.18
1500 22.00
2000 92.65
2500 93.75
3000 97.66
3500 99.21

(b)

1000 95.05
1500 96.88
2000 96.35
2500 82.68
3000 79.56
3500 84.38

Using BO, one can set the search space and search time in advance, which can greatly
improve the accuracy of the recognition model. In the actual experiment, the manual
parameter adjustment method was first used to determine the optimization space accord-
ing to the recognition accuracy under a combination of different hyperparameters. The
optimization space set in this study is illustrated in Table 3.

Table 3. The search space set in Bayesian optimization.

Hyperparameters Search Space

Learning rate [1 × 10−5, 5 × 10−3]
The number of hidden layer nodes [128, 256, 512, 1024]

The number of hidden layers [1, 10]
Dropout rate [0.1, 0.5]

As shown in Table 4, at the current between 1000 A and 3500 A, the recognition model
could obtain a satisfactory accuracy rate and accurately identify the five contact states of
the HVCB.

Table 4. Recognition accuracy at different currents.

Current (A) Accuracy (%)

1000 96.88
1500 99.74
2000 99.87
2500 99.21
3000 100
3500 100

In order to more efficiently and precisely display the results of the HVCB contact state
recognition model, 384 sample points in the test set of the HVCB contact state recognition
model at a current of 2000 A (At this time, only a hidden layer could be classified.) were
selected, and the dimensionality reduction process was carried out by principal component
analysis (PCA). Afterward, the classifications of the sample points of the input layer, the
hidden layer and the output layer were mapped to a three-dimensional plane. The results
are shown in Figure 11. In Figure 11, the x, y and z axes represent the three dimensions
after data dimensionality reduction, and there is no specific physical meaning.
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(a) 

Figure 11. 3D display of recognition results: (a) input layer, (b) hidden layer and (c) output layer.
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It can be observed form Figure 11 that at the input layer, the locations of the sample
points were disorganized and scattered throughout the space. After going through a hidden
layer, the positions of the sample points began to show a certain pattern, and the data
points in the five cases were separated. At the output layer, the data points under different
contact resistances were further separated, presenting an ordered distribution in space.
This shows that the HVCB contact status recognition model can complete the classification
of sample points under different contact resistances, which verifies the effectiveness of
the model.

5. Conclusions

This paper studied the different states of SF6 HVCB contacts while considering various
currents for power system applications. The main conclusions of this study are summarized
as follows.

With the change in the contact state of the HVCB, the spectrogram of the vibration
signal collected by the sensors in the field showed a certain law. The vibration signal
frequency of the acquisition point was concentrated at integer multiples of 50 Hz, the range
existed in between 50 Hz and 1500 Hz, and the amplitude was the largest at 100 Hz.
The vibration was mainly caused by electromagnetic force, and the frequency of the
electromagnetic force was 100 Hz. The amplitude of the vibration signal increased with
the increase in the interruption current. When the HVCB was in poor contact, the 300-Hz
signal amplitude increased.

Considering the amplitude of the signal at a frequency of 50 Hz as the eigenvalue, the
signal was used as the eigenvalue to form an eigenvalue matrix, which could fully depict
the mechanical vibration characteristics of the SF6 HVCB when different contacts were in
contact. The contact state recognition model of the HVCB was established by replacing the
stochastic gradient descent in the DNN with an Adam algorithm supplemented by BO,
which is hyperparameter optimization. At an HVCB current of 1000–3500 A, the model
could accurately identify five different contact states. In the experiment, the accuracy rate
of the measurements could reach more than 96%. The contact state recognition model
proposed in this paper can play a certain role in the condition detection of HVCB and
promote the development of intelligent detection technology for future monitoring and
diagnosis of faults in HVCBs.
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Abstract: For the problem of classification and identification of defects in polyethylene (PE) gas
pipelines, this paper firstly performs preliminary screening of the acquired images and acquisition
efficiency of defective image acquisition was improved. Images of defective PE gas pipelines were
pre-processed. Then, edge detection of the defective images was performed using the improved
Sobel algorithm and an adaptive threshold segmentation method was applied to segment the defects
in the pipeline images. Finally, the defect images were morphologically processed to obtain binary
images. The obtained binary images were applied with VGG16 to complete the training of the defect
classifier. The experimental findings show that in the TensorFlow API environment, the test set’s
highest accuracy reached 97%, which can achieve the identification of defect types of underground
PE gas transmission pipelines.

Keywords: image pre-processing; classification; identification; VGG16; threshold segmentation;
pipeline defects

1. Introduction

In the past decades, polyethylene (PE) pipelines have been widely used in natural
gas networks around the world because of their flexibility and corrosion resistance [1].
Therefore, the long-term performance of PE pipes and their materials is of great concern
to date [2]. According to international natural gas pipeline accident statistics, natural
gas pipeline defects are frequently caused by localized corrosion [3], operator mistakes,
defective materials, and construction flaws [4]. As the use of pipelines for transporting
hazardous substances becomes more popular worldwide, the possibility of major accidents
caused by pipeline failures is gradually increasing [5]. For example, the explosion caused
by a gas pipeline leak in a residential building in Slovakia in 2019, which killed at least
seven people, reminds us that gas pipelines must be checked regularly [6]. There are
many nondestructive inspection methods for gas pipelines in practice (e.g., ultrasonic-
based sensors, laser-based systems, etc.), and compared to other inspection techniques
commonly used for PE pipelines, due to their distinctive benefits of intuitiveness, accuracy
and convenience, visual inspection techniques have been used extensively in a variety of
fields [7]. Pipeline defect detection robots equipped with intra-visual inspection of image
processing technology can directly collect, transmit and process images, reducing labor
costs [8].

Traditionally, automatic classification of images is carried out using extracted image
features, which are used to represent unclear information in the original pixel values. Con-
volutional neural networks (CNN) have taken the place of that approach in recent years [9].
Image pre-processing, which includes image de-noising [10], image enhancement [11],
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image segmentation [12], morphological operations [13], etc., is generally performed before
image classification. Based on image pre-processing, Zhou et al. [14] investigated an im-
proved spline local mean decomposition (ISLMD), proposed to be CNN-based and enabling
noise reduction of images to locate pipe leakage locations. Ma et al. [15] proposed a sewer
multi-defect detection system based on CNN-style GAN-SDM image pre-processing, and
the proposed model’s average accuracy and macro F1 score were 95.64% and 0.955, re-
spectively. Hosseinzadeh et al. [16] presented a small and simple probe design that was
used to check small-bore pipes for defects. Hua et al. [17] developed a visual recognition-
based pipeline fault detection algorithm. It is capable of both autonomous localization and
pipeline fault detection.

Several frameworks based on the original CNN structure have been proposed to
enhance target detection performance as a result of the advancement of CNN technology
and classification, such as R-CNN [18], Fast R-CNN [19], SSD [20], YOLO series [21],
etc. In this paper, a CNN-based classification framework for PE pipe defect detection is
proposed, which can automatically extract the abstract features of defects for accurate
classification of three defects, including cracks, fractures, and holes. In this paper, three
different algorithms are applied to the existing framework and the confusion matrix is
used to determine which model framework has the highest accuracy. The experimental
results indicate that the highest accuracy of the test set in this paper reached 97% in the
environment of TensorFlow API.

2. Image Pre-Processing

The pre-processing of pipe images does more than remove noise; it also enhances the
contrast between the pipeline’s background and any pipeline defects, making it simpler
to locate and categorize pipeline defects [22]. Figure 1 depicts the image pre-processing
process used in this paper.

Figure 1. Image pre-processing process.

2.1. Greyscale Processing for Pipeline Images

Grayscale is an important feature to characterize the brightness and darkness of an
image. In recent years, on the basis of image grayscale differences and discontinuous
changes, it has been used in target recognition, image segmentation, and machine vision
technique [23]. Grayscale occupies less memory and enables faster computer operations
compared to color images. The mean value method, maximum value method, and weighted
average method are the three commonly used techniques for transforming color photos
into grayscale.

Where the maximum value method is to directly take the value of the component with
the largest value among the three components of a R,G,B Equation (1). Red (R), green (G)
and blue (B) are the three color channels of color images.

R = G = B = max(R, G, B) (1)

The mean method is to take the mean of the values in the three components of R,G,B
Equation (2).

R = G = B = (R + G + B)/3 (2)

The weighted average method is based on the sensitivity of the human eye for the
R,G,B’s three colors, according to a certain weighted average, obtained in Equation (3).

I(u, v) = 0.3 × IR(u, v) + 0.59 × IG(u, v) + 0.11 × IB(u, v) (3)
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where: I(u,v) denotes the gray value at coordinate, IR(u,v), IB(u,v) and IG(u,v) denote the
luminance value of the pixel’s three color components, respectively.

The maximum value method (Figure 2B1–B3), the average value method (Figure 2C1–C3),
and the weighted average method (Figure 2D1–D3) were used to grayscale process the
three original defect images (Figure 2A1–A3) of cracks, fractures and holes, respectively.
From Figure 2, it can be seen that the weighted average method produces the best results for
the grayscale image, and the grayscale image has moderate brightness and does not cover
the characteristics of the pipe defects. As a result, the image grayscale uses the weighted
averaging method.

Figure 2. Comparison of grayscale processing methods for pipe defect images.

2.2. Defect Image Acquisition

We compared and examined the continuously captured PE pipeline images and dis-
covered that: 1. the percentage of pipeline defects in the entire PE gas pipeline network
system is small; 2. there is a significant grayscale discrepancy between the defective and
normal parts of the grayscale processed defective images; 3. after grayscale processing of
any two adjacent PE pipeline images, there is a significant grayscale discrepancy between
the normal PE pipeline images and the defective PE pipeline images in the same position,
while the grayscale discrepancy between the two normal PE pipeline images is very small.
Thus, in order to determine whether there are defects in the pipeline images, we propose
a screening method for pipeline defects to improve the detection effectiveness [24].

First, let x and y be consecutive images of any adjacent PE pipes in our pipe database,
and Δ be the greyscale discrepancy between xk and yk, which is the correspondent pixel
locations of the two images x and y, as shown in Equation (4). However, there will be
some information loss during the compression and transmission of the image data [25],
which will make the corresponding pixel grayscale values of the two adjacent images differ
greatly, even if they are both normal, resulting in incorrect judgments of the system. To
decrease this error, we improve the grayscale discrepancy Δ of two corresponding pixels to
the grayscale discrepancy of the corresponding region Δ, which is the mean of the grayscale
discrepancy of all pixels in the designated size region, as shown in Equation (5).

Δ = |xk − yk| (4)

Δ =
1

Sn

n

∑
k=1

|xk − yk| (5)
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where Sn denotes number of pixels in designated size region.
Then, for the minimum mean Δ1 of the pixel grayscale discrepancy between the

defective pipeline images and the normal pipeline images computed in the designated size
region, a statistical method can be used; the number of pixels with the smallest defect area
is calculated statistically as M, let the length of the defect area image be Ml pixels, the width
be Mw pixels, as shown in Equation (6).

M = Mw × Ml (6)

Finally, to further improve the accuracy of defect detection, we set the discrepancy
Δmin to be somewhat less than Δ1. When Δ ≥ Δmin, it is judged as abnormal and the
number of pixels in the abnormal area is counted as B, when Δ < Δmin, it is judged as
normal and the number of pixels in the normal area is counted as B1; calculate B1 and B
according to Equation (6). If B ≥ M, then there are defects in x and y, otherwise x and y are
considered as normal images.

More than 9000 consecutive images of pipes were screened using the above defect
screening method (Figure 3). A total of 160 out of 163 defective images were picked out,
and the screening accuracy rate was up to 98.15%. Figure 3 can better help us understand
the PE pipeline defect detection algorithm.

Figure 3. PE gas pipeline defect screening algorithm.

2.3. Images Enhancement for Pipe Defects

Image enhancement is the process of enhancing an image’s display by highlighting its
edges and significant texture details and suppressing the display of unimportant areas. This
somewhat enhances the image’s visual impact [26] or highlights some “useful” and com-
presses other “useless” information in the image. In this paper, global histogram equalization
(Figure 4B1–B3), adaptive histogram equalization (Figure 4C1–C3), and gamma transform
(Figure 4D1–D3) was applied to enhance the image of the grayscale (Figure 4A1–A3).
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Figure 4. Comparison of pipeline defect image enhancement effect.

Figure 4 illustrates that after the gamma transform, the defect image is not distorted;
additionally, the defect’s edges become more noticeable and stand out against the back-
ground with a greater difference. In order to increase the contrast between the background
of the pipe and the pipe defects, gamma transform was applied.

2.4. Pipe Defect Images Filtering and Denoising

During image transmission, the final image is often received with a lot of noise
due to the interference of the environment or the limitations of the equipment. Image
denoising is a classical image recovery task aiming to predict clean images from noisy
observations [27]. Bilateral filtering (Figure 5B1–B3), Gaussian filtering (Figure 5C1–C3),
mean filtering (Figure 5D1–D3), and adaptive median filtering (Figure 5E1–E3) were applied
in this paper to denoise the images obtained above (Figure 5A1–A3).

Figure 5. Comparison of pipeline defect image filtering methods.

Step-by-step processing is a very common tactic for resolving complicated noisy
images [28]. One of the weighted averages used for bilateral filtering is based on Gaussian
distribution, which removes Gaussian noise from the image. However, the removal of
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Gaussian noise will ignore salt-and-pepper noise, and adaptive median filtering is the best
algorithm to remove salt-and-pepper noise; however, it has poor results when removing
Gaussian noise [24], Therefore, it was proposed to use dual filtering (Figure 5F1–F3) to
remove the Gaussian noise by bilateral filtering after removing the salt-and-pepper noise
by median filtering. Compared to other filtering algorithms, the dual filtering preserves
the details of the edges and eliminates the noise points to achieve the effect of keeping
the edges (as shown in Figure 5). Therefore, dual filtering was used for noise reduction in
this paper.

3. Image Edge Detection and Segmentation for Pipe Defects

Image edges are the most basic feature of an image and using this feature the image
can be segmented. In many imaging applications, it is sufficient to detect the periphery of
an unknown object [29]. Image segmentation is usually performed before image feature
quantization [30]. Threshold segmentation is a pixel-division technique used in region-
based image segmentation, according to gray levels, into regions that have consistent
properties, while neighboring regions do not have such consistent properties.

3.1. Improved Edge Detection with Sobel Operator

The conventional Sobel operator first performs a weighted average process for each
pixel using a convolutional template (shown in Figure 6) and then acquires the gradient
values in the X and Y directions by performing a difference process. It is challenging for
the algorithm to achieve the desired detection results and the localization accuracy is not
satisfactory, because the prevalent Sobel algorithm is just sensitive to the X directions and Y
directions and can only assess the edges in both X directions and Y directions [24]. Various
shapes and depths of the PE gas pipeline defects lead to negligible regional variations in the
grayscale of the deficiency images; the collected images of PE gas pipeline defects contain
a lot of interference data because of compression and real-time transmission. It is ineffective
and very likely to result in missing edges, relying solely on two directional templates to
identify the edges of pipe defects. In order to detect edge pixels in images more accurately,
the Sobel algorithm was improved to eight directions [31] (as in Figure 7), which not only
detects image edges more effectively but also increases edge detection accuracy and lowers
the likelihood of incorrect edges.

Figure 6. Sobel operator template.

For the pipe defect filtered image obtained above (Figure 8A1–A3), the improved Sobel
algorithm (Figure 8B1–B3), the Sobel edge detection algorithm (Figure 8C1–C3) and the
Prewitt algorithm (Figure 8D1–D3) are used for edge detection of the image, respectively.
Figure 8 displays the outcomes of the three defects’ edge detection. According to the
comparison study, the improved Sobel algorithm extracts defect edges with more continuity
and integrity and can completely display the defect shape characteristics. Therefore, the
improved Sobel algorithm was used for edge detection in this paper.
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Figure 7. Improved Sobel operator.

Figure 8. Comparison of pipeline defect image edge detection.

3.2. Adaptive Threshold Segmentation

In the case of inhomogeneous illumination or uneven distribution of gray values,
the segmentation results obtained if global threshold is used are often unsatisfactory,
and adaptive threshold (also called local segmentation) can produce good results [32].
Adaptive threshold segmentation does not use one threshold for the whole matrix as
a global threshold, but has a corresponding threshold for each value at each position of the
input matrix.

The images (Figure 9A1–A3) present a comparison after the above edge detection
was processed by adaptive threshold (Figure 9B1–B3), global threshold (Figure 9C1–C3)
and Otsu threshold segmentation (Figure 9D1–D3), respectively. According to visual
observation, an adaptive threshold can be used to distinguish pipeline defects from the
pipe background, with the best segmentation of PE gas pipeline defects, with complete
edge segmentation and less disturbing information. Therefore, the adaptive threshold
algorithm was used to segment the image in this paper.
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Figure 9. Comparison of pipeline defect image threshold methods.

3.3. Morphological Operation

The shape of features in an image is typically the focus of morphological operation. It
has been applied to eliminate defects in a variety of shapes with the purpose of smoothing
the contours and preserving the object’s size and shape [33]. Erosion and dilation are the
two main operations.

Let f (m,n) be the input image and g(m,n) be a structure element, If the set of real
integers is denoted by Z, while assuming that (m,n) is an integer f (m,n) from Z*Z, g(m,n)
is a function of a pixel’s gray value with the given coordinates (m,n) and the gray value
is also an integer. Namely, g(m,n) to f (m,n) for grayscale dilation can be defined as f ⊕ g,
which is shown as Equation (7).

( f ⊕ g)(s, t) = max
{

f (s − m, t − n) + g(m, n) | (s − m), (t − n) ∈ Df ; (m, n) ∈ Dg

}
(7)

Equation (7) Df, Dg is the definition domain of f (m,n) and g(m,n), respectively, g(m,n) is
the structural element of the morphological treatment is also a function, the displacement
parameters (s − m), (t − n) must be in the definition domain of the function f (m,n).

The dilation operation is to find the local maximum value, and the anchor point is
assigned the maximum of pixels in the nucleus coverage area. The erosion operation is to
find the local minimum value. The minimum value of the pixel in the kernel coverage area
is assigned to the anchor point. Erosion of grayscale image is defined as Equation (8).

( f � g)(s, t) = min
{

f (s + m, t + n)− g(m, n) | (s + m), (t + n) ∈ Df ; (m, n) ∈ Dg

}
(8)

Equation (8) Df, Dg is the definition domain of f (m,n) and g(m,n), respectively, g(m,n) is
the structural element of the morphological treatment is also a function, the displacement
parameters (s + m), (t + n) must be in the definition domain of the function f (m,n).

The expressions for the opening operation and closing operation of the grayscale
image have the same form as the erosion and dilation, and the structural element g(m,n)
performing the opening operation on the image f (m,n) can be defined f ◦ g, in Equation (9).

f ◦ g = ( f � g)⊕ g (9)
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The opening operation is an erosion operation of g(m,n) on f (m,n) followed by an
dilation operation on the result of the erosion. A similar closing operation of g(m,n) on
f (m,n) can be defined f · g in Equation (10).

f · g = ( f ⊕ g) ◦ g (10)

In addition to the above operations, there is the morphological gradient operation; let
the gradient be denoted by h in Equation (11).

h = ( f ⊕ g)− ( f � g) (11)

The basic morphological operations: closed operation (Figure 10B1–B3), dilation
(Figure 10C1–C3), erosion (Figure 10D1–D3), morphological gradient (Figure 10E1–E3),
and opening operation (as in Figure 10F1–F3) are applied to the threshold segmentation
image obtained above (Figure 10A1–A3) to compare the results. As shown in Figure 10,
The opening operation’s result is to remove the image area that is slightly relative to the
structure element and keeping the image area that is larger than the structure element [34].
The open operation more fully preserves the overall impact, and in this paper, we use the
opening operation to fill the contours of defects in the images.

Figure 10. Comparison chart of different morphological operations.

4. CNN-Based Image Defect Classification

The CNN’s primary characteristic is that its front-end input obtains image information
by using multiple layers of locally interconnected neurons. The CNN can extract view
invariant features [35] and takes full account of the translation, rotation, and scaling in space.
Deep learning and convolutional networks have greatly improved the capability of target
detection and classification using images. In this paper, three classification models, VGG16,
Resnet50 and the original CNN model, are used for comparison, and the corresponding
network structures are shown in Figure 11.
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Figure 11. Comparison of three network structures.

4.1. Classification Model

VGG16 has 16 layers, including 3 fully-connected layers, 5 pooling layers, and 13 con-
volutional layers. Resnet50 has 50 layers, including 1 fully-connected layer, 2 pooling layers,
and 49 convolutional layers. The original CNN has 6 layers, including 2 fully-connected
layers, 2 pooling layers, and 4 convolutional layers. The pooling layer is not counted as
a pooling layer when determining the number of layers in the network because it has
no parameters.

4.2. Convolutional Layer

The convolutional layer’s function is to extract the data from the source image, also
referred to as image features. In the CNN architecture, the convolutional layer is typically
the first layer, and the weight (wij) controls it, where i and j are the number of input and
output feature mappings, respectively [36]. Thus, the entire convolution process can be
defined, as in Equation (12).

aj := ƒ ( ∑
i∈Mj

aj ∗ wij + bj) (12)
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In Equation (12), ∗ denotes the 2D convolution operation, aj is the set of input feature
maps, bj denotes the jth underlying feature map, and ƒ denotes the activation function.
In the CNN, each individual convolution layer performs a linear transformation from its
input to the output representation through a multichannel multidimensional convolution
operation. The convolution can be represented as a matrix–vector product, where the
linear transform matrix is derived from the convolution filter and the vector represents the
reshaped input of the layer [37].

4.3. Pooling Layer

The pooling layer’s primary function is to use specific factors to downsample the
input feature mapping size, the average pool averages the features in the neighborhood
to produce a blurring effect [38]. Spatial invariance can be attained by the pooling layer
by lowering the feature map’s resolution. Each feature map that has been combined
corresponds to a feature map from the layer before. Their cells combine inputs from a small
block of n × n cells. The size of the pooling window is flexible, and the windows may
overlap [39]. In this paper, maximum pooling is used.

4.4. Fully Connected Layer

Each feature matrix from the pooling layer is converted by the fully connected layer
into a single column feature macrovector of dimension 1 × m [40]. The most common
layer in a neural network is the fully connected layer, and each of its nodes is connected to
each node in the previous and next layer. The dimensionality may increase, decrease, or
remain constant during the transformation process [41]. In a convolutional neural network
structure for classifying images, the fully connected layer is typically placed at the very
end, and for better fitting the nonlinear problem, three fully connected layers are used in
this paper. The VGG16 framework is shown in Figure 12.

Figure 12. VGG16 framework structures.

4.5. Classification Results

This project was developed using Python and the TensorFlow API, and the graphics
card used for training, verification, and testing was an NVIDIA 2080TI, 32GB, DDR4. Each
training run is 100 epochs (as shown Figure 13). In this paper, to evaluate the classification
effectiveness of the model, the precision and recall of our confusion matrix were applied.
Equations (13) and (14) give their definitions, where, respectively, TP, FP, and FN stand for
true positives, false positives, and false negatives.

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)
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Figure 13. Accuracy and loss function of VGG16 model.

Three types of pipe defect images, 100 of each were randomly selected for each
defect as a test set from Tables 1–3, made evident that the VGG16 model’s recognition
accuracy has improved significantly, particularly for cracks and fractures in the pipe
body, where the recognition accuracy can reach an average of 98.5%, while the accuracy
rate of holes is relatively low, but still can reach about 94%. From the confusion matrix
(as shown in Figure 14), as can be seen, the classification algorithm in this paper has
successfully identified three different types of defects with an average recognition rate of
97%. Compared with 94.96% percent of Xie et al. [36], the accuracy rate of this article has
been improved by 2.04%. Compared with the 96.3% percent of Cong et al. [24], the accuracy
rate of this article has been improved by 0.7%, which can be applied to the engineering
practice of pipe defect detection and classification.

Table 1. VGG16 defect classification results.

Defect Type Picture
True Posi-

tive
False Posi-

tive
False Neg-

ative
Precision Recall

Cracks 100 99 1 5 99% 95.19%
Holes 100 94 6 2 94% 97.91%

Fractures 100 98 2 2 98% 98%

Table 2. Resnet 50 defect classification results.

Defect
Type

Picture
True

Positive
False

Positive
False

Negative
Precision Recall

Crack 100 96 4 7 96% 93.2%
Hole 100 92 8 6 92% 93.87%

Fractures 100 95 5 4 95% 95.96%

Table 3. CNN defect classification results.

Defect
Type

Picture
True

Positive
False

Positive
False

Negative
Precision Recall

Crack 100 95 5 13 95% 87.96%
Hole 100 87 13 10 87% 89.69%

Fractures 100 89 11 6 89% 93.68%
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Figure 14. Comparison of three algorithms confusion matrix.

5. Conclusions

This paper proposes a framework for classifying and identifying defects of underground
PE gas transmission pipes. Fast and accurate detection of defects in PE pipelines is made pos-
sible through experimental verification. The following are the main results of this experiment.

1. Based on the similarity of images of continuous pipelines, the images were first grayed
out using the weighted average method and then preliminary screening of the acquired
images was conducted to identify images with suspected defects, which improved the
acquisition efficiency of defect image. For the defective PE gas pipeline images, contrast
was enhanced using gamma transform, and finally noise was removed using the dual
filtering method. The results show that the pre-processing technique can speed up image
processing while retaining much of the detail of the originals.

2. In order to detect the edges of image defects, an improved Sobel algorithm was
presented. An adaptive thresholding segmentation method was used to segment the
defects in the image. Then, after morphologically processing the image to obtain
a binary image, the feature parameters of the defects were extracted.

3. The obtained binary images were trained using VGG16, and the classifier was com-
pleted by selecting appropriate parameters for classification of various defects in
images of the PE gas pipes. The experimental test results reveal that the highest
accuracy of the classification approach adopted in this paper is 97% and it can be used
not only for the identification of defective types of underground PE gas transmission
pipes, but also for steel pipes, cast iron pipes, etc.

Author Contributions: Conceptualization, Y.W.; data curation, Q.F.; formal analysis, Y.W. and N.L.;
funding acquisition, Y.W.; investigation, Y.W. and T.E.; methodology, N.L.; project administration,
Y.W.; resources, Y.W. and N.L.; software, N.L.; supervision, Y.W. and H.L.; validation, H.Z.; visual-
ization, Q.F.; writing—original draft, Q.F. and H.Z.; writing—review and editing, T.E. and H.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (no.
11903072), the Xinjiang University Doctoral Start-up Foundation (no. 620321029) and the Science and
technology planning project of State Administration for Market Regulation (no. 2022MK201).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available.

Acknowledgments: The authors wish to thank all the reviewers who participated in the review
during the preparation of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

185



Appl. Sci. 2022, 12, 11697

Nomenclature

x,y consecutive images of any adjacent PE pipes in our pipe database
xk,yk the grayscale discrepancy between the correspondent pixel locations of x, y
Sn number of pixels in designated size region
u, v coordinates of grayscale values
s,t displacement parameters
m,n the functions f and g are the corresponding coordinates
aj represents the convolution operation
bj represents the jth base feature map
ƒ activation function
wij weights
I(u,v) grayscale values
f (m,n) input image
g(m,n) structural elements
f ⊕ g dilation operation
f � g erosion operation
f ◦ g opening operation
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Abstract: In view of the low accuracy of the motion parameters generated by the typical ship
trajectory generator, and the fact that the problem of wind, current and wave interference is not
considered, this paper establishes a new ship trajectory generator by analyzing the changes in the
ship’s attitude and speed under different motion states. Through simulation, the accuracy of the
main motion parameters is significantly improved compared with the typical trajectory generator;
the time-varying non-uniform wind, current and wave fields are constructed, and the interference
effect of wind, current and waves on ship motion is analyzed by combining the empirical formulas
of force and moment; an adaptive neuro fuzzy inference system (ANFIS) based on wind, current
and wave interference is designed, and the fuzzy rules of the fuzzy system are determined by
training and testing the measured data; the motion parameters of superimposed wind, current and
wave interference are compared with the measured data, and the accuracy is further improved after
superimposing wind, current and wave interference.

Keywords: trajectory generator; ship motion; wind, current and wave; ANFIS; inertial navigation system

1. Introduction

A trajectory generator is a tool used to generate sensor group simulation data and
corresponding navigation parameters required for the simulation of an inertial navigation
system (INS) and its integrated navigation system. In the algorithm research and simulation
verification of INS and its integrated navigation, the research and application of trajectory
generators is indispensable. The principle is to generate the motion parameters required for
the simulation test of the inertial measurement unit (IMU) by simulating the maneuvering
state of the carrier [1–4]. The motion of the ship is not only affected by the maneuvering,
but it also subject to interference by the sea conditions, such as wind, current and waves. In
order to better study the algorithm of the ship strapdown inertial navigation system (SINS)
and verify the accuracy of the algorithm by simulation, the ship trajectory generator needs
to be able to generate motion parameters that conform to the ship’s motion characteristics
and consider the interference of wind, current and wave.

At present, the research objects of the trajectory generator are mainly aircraft [5,6].
The main idea of a typical trajectory generator is to calculate the acceleration and angular
velocity of the carrier by presetting ideal motion states, such as uniform linear motion,
uniform rotation motion, uniform acceleration motion, etc., and then calculate the attitude,
velocity and position of the carrier. The main idea is shown in the green part of Figure 1.
The classical example is PROFGEN, designed by the American Air Force Avionics Labora-
tory [7,8]. This trajectory generator can generate attitude, velocity and position information
by inputting the initial state, acceleration, angular velocity and other information. Due to
the preset acceleration and angular velocity information, the generated trajectory is too
ideal and does not conform to the motion characteristics of the ship, so it is difficult to meet
the requirements of high-precision ship SINS simulation tests. The ship trajectory generator
designed in reference [9,10] takes into account the characteristics of the ship, but it is still
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based on the ideal motion states, such as uniform circumference and uniform acceleration,
and cannot generate complex ship trajectories. In reference [11,12], the ship motion pa-
rameter generator designed on the basis of ship measured data can generate a relatively
complex ship motion trajectory, but it does not consider the interference of wind, current
and waves. In the study of wind, current and waves, a variety of calculation formulas
for wind, current and wave interference forces and moments have been proposed [13,14].
For example, Wu et al. [15], Zhao Qiaosheng [16] and Min Guk Seo [17] have, respectively,
studied the empirical formulas for wind, current and wave forces and moments. However,
the described formulas involve complicated hydrodynamic parameters and detailed ship
type data, which are usually difficult to obtain and cannot be directly applied to the ship
trajectory generator.

Aiming at the above problems, this paper designs a new ship trajectory generator
under wind, current and wave interference. Compared with the typical trajectory generator,
the main changes are as shown in the red area in Figure 1. The main ideas are as follows:
(1) based on the motion state, the ship motion characteristics are analyzed, and the ship
trajectory generator without wind, current and wave interference is established; (2) the
time-varying wind, current and wave field is established to analyze the interference of wind,
current and waves in the ship motion parameters; (3) an adaptive neuro fuzzy inference
system (ANFIS) is designed; with the wind and wave information of the measured data
as the input and the speed change as the output, the ANFIS rules are determined through
neural network training; (4) the ship trajectory generator after superposing wind, current
and wave interference is compared with the measured data to verify the rationality and
superiority of ANFIS.

 
Figure 1. Flow chart of design and simulation of ship trajectory generator.

2. Mathematical Model of Ship Motion

The ship motion states can be divided into uniform linear motion, variable speed
motion and steering motion. In order to simulate the ship characteristics, it is necessary to
focus on the acceleration and angular velocity change analysis of variable speed motion
and steering motion. The description of the ship motion variables in the carrier coordinate
system is shown in Figure 2.
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Figure 2. Schematic diagram of ship motion variables.

(1) Uniform linear motion
Without wind, current and wave interference, the acceleration and angular velocity of

the ship are approximately zero when the ship sails at a constant speed.
(2) Variable speed linear motion
When there is no interference of wind, current and waves, the attitude of the straight

sailing ship with variable speed will not alter, so the angular velocity can be regarded as
zero. It can be expressed as

(
ωx, ωy, ωz

)T
= 0. The variable speed motion of the ship is

mainly achieved by the maneuvering propeller, and the differential equation of its motion
can be expressed as [18]

m
.
vy = FP − Ruvy + mvxωz (1)

where FP is the propulsion force and Ru is the drag coefficient along the Y-axis. FP can be
expressed as [19] ⎧⎨⎩

FP = (1 − tP)ρn2DP
4KT(JP)

JP = (1 − vzωy) · vy/(n · DP)
KT(JP) = a0 + a1 JP

(2)

Inserting FP from Equation (2) into Equation (1), Equation (1) can be expressed as

m
.
vy +

[
Ru − a1(1 − vzωy)(1 − tP)ρn2DP

4/(nDP)
]
vy = (1 − tP)ρn2DP

4a0 (3)

where tp is the thrust reduction coefficient, n is the rotational speed of the propeller and Dp
is the propeller diameter. When the ship data are fixed, Equation (3) can be simplified as
follows:

m
.
vy + Q(n)vy = G(n) (4)

According to the actual situation, when the ship is in a stable state at different gears,
the rotational speed of the propeller is approximately a constant value. When n is a
constant value, the speed variations of the ship reflect a first-order system. Considering
the change in the rotational speed of the propeller when the ship is accelerating, combined
with the measured data, this paper adopts the second-order overdamping function as the
longitudinal speed model of the ship when the ship is accelerating. This is because the
first-order system can be regarded as a special case of the second-order system, and the
second-order system can also reflect the characteristics of the higher-order system.
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Assume that the speed of the ship at the initial moment is v0, and the speed increases
by Δv after the propeller gear is switched; thus, the speed change can be expressed as

vy(t) = v0 + ΔV(1 +
e−t/T1

T2/T1 − 1
+

e−t/T2

T1/T2 − 1
) (5)

In (5), T1 = 1
ω1(ξ1−

√
ξ1

2−1)
, T2 = 1

ω1(ξ1+
√

ξ2
1−1)

; ξ1 and ω1 are the damping ratio and

oscillating frequency, respectively. By identifying the measured data, different ξ1 and
ω1 can be obtained, which can reflect the acceleration performance of ships in different
gears [20]. Deceleration is regarded as the reverse process of acceleration and will not be
analyzed in detail.

(3) Steering motion
The amplitude of pitch and heave caused by the steering motion of a ship in still water

is very small, and the pitch angular velocity ωx and heave acceleration az are approximately
zero.

According to the transfer function of the rudder angle δ and heading angular velocity
ωz in the Nomoto response model [21],

ωz(s)
δ(s)

=
K(1 + T3s)

(1 + T1s)(1 + T2s)
(6)

Since T3 is very small and the zero point s3 = − 1
T3

is far away from the negative half
axis, the removal of this point has little impact, so the heading angular velocity can be
expressed as

ωz(t) = Kδ(t)(1 +
e−t/T3

T4/T3 − 1
+

e−t/T4

T3/T4 − 1
) (7)

In (7), the definition of T3 and T4 refers to Equation (5).
The steering movement can be divided into three stages: initial steering, constant

steering and steering recovery. Assuming that the roll angle in the first stage will increase
to the angle γ, the change in roll angle can be expressed as

θ(t) = γ(1 − 1√
1 − ξ22

e−ξ2ω2t sin(ω2

√
1 − ξ22t + β1)) (8)

In (8), ξ2 and ω2 are the damping ratio and oscillating frequency, respectively; β1 is
the initial phase. In the phase of steady steering, the roll angle remains unchanged, so the
angular velocity ωy is zero. In the phase of steering recovery, the change in roll angle can
be regarded as the reverse process of the initial phase.

The displacement and attitude angle are denoted as μ = (x, y, z, ϕ, θ, ψ)T , and the
velocity and angular velocity are denoted as τ =

(
vx, vy, vz, ωx, ωy, ωz

)T . The trajectory
parameters of the ship can be obtained from the following formula:

.
μ =

[
cn

b 03∗3
03∗3 J

]
τ (9)

In (9),

cn
b =

⎡⎣cos ψ cos θ − sin ψ cos ϕ + cos ψ sin θ sin ϕ sin ψ sin ϕ + cos ψ cos ϕ sin θ
sin ψ cos θ sin ψ cos ϕ + sin ψ sin θ sin ϕ − cos ψ sin ϕ + sin ψ cos ϕ sin θ
− sin θ cos θ sin ϕ cos θ cos ϕ

⎤⎦,

J =

⎡⎣1 sin ϕ tan θ cos ϕ tan θ
0 cos ϕ − sin ϕ
0 sin ϕ sec θ cos ϕ sec θ

⎤⎦.

In order to verify the feasibility and superiority of the above model, the simulation
verification is carried out based on the ship’s measured data in a period of relatively calm
sea conditions. The ship’s initial information and motion state are shown in Tables 1 and 2.
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Table 1. Initial information table.

Lng (◦) Lat (◦) v (kn) Heading (◦)

123.05516 31.06247 8.7 239.5

Table 2. Maneuver state table.

Time (s) 500 120 325 35 50 120

State Linear Linear Linear Steering Steering Steering

ΔV (kn) 0 8.2 0 −0.8 0.8 2

δ (◦) 0 0 0 20 15 −20

Based on the position, speed and heading of the measured data, the comparison results
of typical trajectory generators and the trajectory generator described in this paper are
shown in Figures 3 and 4. The black line in the figure denotes the data generated by the
trajectory generator, and the red line denotes the measured data.

Figure 3. Comparison between measured data and typical trajectory generator.

Figure 4. Comparison between measured data and the new trajectory generator.

In order to judge the accuracy of the simulation results more intuitively and verify
the superiority of this model, the accuracy of position, speed and heading and root-mean-
square error (RMSE) are calculated. The results are shown in Table 3.
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Table 3. Accuracy and RMSE comparison results.

Parameter Pos (m) v (m/s) Heading (◦)

Threshold 70 0.1 1

Accuracy Typical 52.09% 64.96% 94.00%

New 85.48% 68.70% 94.96%

RMSE
Typical 72.4141 0.2743 2.6821

New 50.8821 0.2441 2.1743

Accuracy refers to the accuracy within the acceptable error range (threshold), and
RMSE reflects the statistical rule of error. It can be seen from Table 3 that the accuracy of the
position, speed and heading generated by the trajectory generator described in this paper
within the threshold is higher than that of the typical trajectory generator, and the RMSE
value is also smaller. This is because the preset ideal track of the typical trajectory generator
does not conform to the motion characteristics of the ship, which also shows that the ship
trajectory generator described in this paper is superior to the typical trajectory generator.

Although the simulation effect of the model proposed in this paper is better than that
of the typical trajectory generator, because the model is not disturbed by wind, current and
waves, it is still quite different from real ship motion. In order to obtain more realistic ship
motion parameters, it is necessary to analyze the wind, current and wave interference.

3. Analysis of Wind, Current and Wave Interference

In the actual navigation of a ship, the level and direction of the wind, waves and
currents are constantly changing at random. It is difficult to directly address the variation
in the motion parameters due to the combined interference of wind, current and waves at
all times. In order to simulate the actual environment of ship navigation, it is necessary to
develop time-varying inhomogeneous wind, current and wave field models that conform
to the characteristics of the actual sea conditions.

3.1. Wind Field Model

Taking the combined wind speed model as the research object, the actual wind speed at
sea is divided into three components: average wind, gradual wind and random wind [22].

3.1.1. Average Wind

This component reflects the average wind speed of the wind field, which generally
does not change with time and can be expressed as

Vm =
1
2
(Vimax + Vimin) (10)

where i represents the wind level.

3.1.2. Gradual Wind

Gradual wind is generally simulated by the frequency density spectrum. In this paper,
the frequency spectrum of the NORSOK wind model is used, and its expression is as
follows [23]: {

Sw(ω) = 320 · (Vm/10)2 · (zcw/10)0.45/(1 + x0.468)
3.561

x = 172 · ω(zcw/10)2/3(Vm/10)−0.75 (11)
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where Vm is the wind speed; Zcw is the vertical height from the wind action point to the sea
level; ω is the frequency. The gradual wind is regarded as the result of the superposition of
multiple simple harmonic waves, so the gradual wind can be expressed as

Vdi(t) =
√

2Sw(ωi)� ωi cos(2πωit + ϕi) (12)

where ωi is the frequency of the simple harmonic component; �ωi is the frequency width
of the simple harmonic component; ϕi is the random phase.

3.1.3. Random Wind

Random wind mainly reflects the randomness of wind in the wind field, which can be
expressed by the superposition of the average wind with the first-order Markov process.{ .

Vm + a1Vm = w1.
ψw + a2ψw = w2

(13)

where a1 and a2 are constants greater than zero; w1 and w2 are white noise.
To sum up, the wind model can be expressed as

Vw = Vm +
N

∑
i=1

Vdi (14)

In 10 min, the simulation of the wind field is as shown in Figure 5 when the wind
speed is level 5 (8–10.7 m/s) and the average wind direction is 45◦.

Figure 5. Simulation diagram of wind speed and direction.

3.2. Current Field Model

Similar to the wind field, the current speed and direction also change with time and
space. In order to reflect this change, the first-order Markov process can be used to express
the change in current. Its expression is similar to that in Equation (11) and will not be
detailed here.

In 10 min, the simulation of the current velocity is 2 m/s and the current direction is
45◦, as shown in Figure 6.
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Figure 6. Simulation diagram of current speed and direction.

3.3. Wave Field Model

Generally, in practical applications, the wave energy spectrum is used to describe
irregular waves, such as the PM spectrum, ITTC/ISSC spectrum, JONSWAP spectrum,
etc. In order to reduce the unknown parameters, the ITTC single-parameter wave energy
spectrum is adopted in this paper, which can be expressed as [24]

S(ω) =
A

ω5 exp(−B/ω4) (15)

where A = 8.1 ∗ 10−3 g2; B = 3.11/h2; ω is the wave frequency; h is the significant wave
height, which can be obtained from the wave level. The wave can be expressed as

ξwa =
√

2Swa(ωp)� ωp cos(ωpt + ϕp) (16)

Waves are generally caused by wind, and the average wave direction is consistent
with the average wind direction. In 10 min, the wave height and wave direction simulation
is as shown in Figure 7 when the wave is level 6 and the average wave direction is 45◦.

Figure 7. Simulation diagram of wave speed and direction.
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3.4. Wind, Current and Wave Interference Analysis

Generally, compared with the waves, the wind has less influence on the vertical linear
acceleration and pitch angular velocity of the ship, so the vertical velocity az and pitch angle
velocity ωx caused by it can be regarded as zero. Combined with the empirical formula
of the wind force and moment, the change in the ship’s linear acceleration and angular
velocity caused by wind can be simplified as [25]⎧⎨⎩

ay = K1vrw
2 cos χrw

ax = K2vrw
2 sin χrw

ωz = K3vrw
2 sin χrw

(17)

where K1, K2 and K3 are wind-related proportional coefficients; vrw is the relative wind
speed; χrw is the relative wind direction angle.

It can be seen from the characteristics of the current that it has little influence on the
ship’s angular velocity. The interference of the current mainly exerts an influence on the
longitudinal and transverse linear velocity of the ship. Assuming that the velocity of the
current is Vc, the direction is γc, the ship’s heading is ψ and the ship’s longitudinal and
transverse speeds are Vy and Vx, respectively, and the method of speed vector synthesis is
adopted, the ship’s speed after the superimposed current interference is{

Vyc = Vy + Vc cos(π − γc − ψ)
Vxc = Vx + Vc sin(π − γc − ψ)

(18)

When the length of the ship is far less than the wave length, combined with the wave
force and moment formula and the wave surface attitude, the wave interference can be
simplified as follows [26]: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ay = K4h2 cos χwa
ax = K5h2 sin χwa

az =
.
h(t)

ωy = 0

ωx =
.
h(t)√

L2−(h(t))2

ωz = K6h2 sin χwa

(19)

where K4, K5 and K6 are the wave-related proportional coefficients; L is the length of the
ship; h is the wave amplitude of the wave, and its value is obtained from the wave field;
χwa is the relative wave direction angle.

3.5. Design of ANFIS

Due to the complexity, nonlinearity and strong coupling of the interaction between
wind, waves and ship, it is impossible to establish a clear mathematical model to reflect the
real-time movement state changes of the ship [27]. In order to obtain more accurate speed
and attitude changes, this paper designs an ANFIS based on the double-input single-output
T-S model [28,29]. The structure of the fuzzy neural network of the T-S model is shown in
Figure 8. The network consists of a premise network and consequent network. The premise
network is used to match the premise of fuzzy rules, and the consequent network is used
to generate the consequents of the fuzzy rules. The learning algorithm of ANFIS will not
be detailed here.
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Figure 8. Fuzzy neural network structure diagram of T-S model.

In this paper, the first layer of the premise network comprises two input variables,
which are the accelerations in Equation (17) and Equation (19), respectively. The member-
ship function type of the input variables is Gauss, the number of membership functions
is 5 and 7, respectively, and the output variable type is linear. The second layer is used
to calculate the membership function of the input variables. Each node in the third layer
represents a fuzzy rule, which is used to match the premise of the fuzzy rule and calculate
the fitness of each rule. The fourth layer is used to achieve normalization. In the consequent
network, the first layer is the same as the antecedent network. The second layer is used to
calculate the consequent of each rule. The third layer is used to calculate the output of the
ANFIS system, and the output is the speed change of the ship.

Taking the measured data of the ship as the training set, the input of the training set is
the measured wind speed, wind direction, wave height and wave direction. The output is
the speed change, which is the change in current speed subtracted from the ship’s speed
change. In order to reduce the influence of propeller and rudder forces, the measured
data of the ship when sailing straight at a constant speed are selected as the training data.
Because the ship is in dynamic equilibrium under this motion state, the changes in its
speed and attitude can be seen to be caused by time-varying wind, current and waves. The
training result of ANFIS is shown in Figure 9. After training, the average error between the
system output and the training data is 0.2005, meeting the error tolerance.

Figure 9. Comparison chart of training data and ANFIS output.

4. Simulation Analysis and Comparative Verification

Due to the time-varying nature and randomness of wind, current and waves, the
time-varying non-uniform wind, current and wave field constructed in this paper cannot be
consistent with the wind, current and waves encountered by the ship in actual navigation,
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and its impact on the ship’s motion state cannot be consistent with the measured data. In
order to verify the rationality and superiority of this method, the following simulation
strategies are formulated:

(1) Based on the ship trajectory generator designed in this paper, the ship motion
parameters without wind, current and wave interference are generated, and then the wind,
current and wave interferences are superimposed to compare and analyze whether the
change in motion parameters is reasonable;

(2) We select a period with a relatively large disturbance of wind and waves from the
measured data; take the actual measured wind speed, wind direction, wave height and
wave direction as the input of ANFIS; generate the corresponding speed change; and then
add it to the ship trajectory generator in this paper to observe whether the accuracy of the
main motion parameters has been improved.

4.1. Simulation Analysis

The trajectory generator described in this paper generates ship motion parameters,
sets the level of wind, current and waves and generates corresponding interferences in
combination with the wind, current and wave fields. The initial information, maneuvering
state and detailed information of wind, current and waves are shown in Tables 4–6.

Table 4. Ship’s initial condition.

Lng (◦) Lat (◦) v (kn) Heading (◦)

18.10 119.50 0 0

Table 5. Maneuver state.

Time (s) 100 50 50 50 100 50 50 50

State Linear Linear Steering Steering Linear Steering Steering Linear

ΔV (kn) 10 0 −5 5 0 −5 5 0

Table 6. Wind, current and wave conditions.

Wind Current Wave

Level Dir Speed Dir Level Dir

4 45◦ 1 m/s 90◦ 2 45◦

The simulation results are shown in Figure 10. The black lines and red lines in the figure
represent the simulation results without interference and with interference, respectively.

Figure 10. Comparison of simulation data without and with interference.
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It can be seen from Figure 10 that after the interference is added, the movement of the
ship changes as follows:

(1) The track obviously deviates to the east and north;
(2) The speed generally increases, slightly increases before steering, and then increases

as a whole;
(3) The overall trend of the heading angle changes little—it decreases slightly after the

first steering and increases slightly after the second steering.
According to the information in Tables 4–6, the above changes are analyzed as follows:
(1) The wind direction is 45◦ north by east, and the flow direction is 90◦ north by east.

Therefore, under the combined action of wind and current, the ship’s track will naturally
drift to the east and north.

(2) In the wind, current and wave interference considered in this paper, the current
has the greatest impact on the ship’s speed. Table 6 shows that when the ship does not start
to steer, the current direction is almost perpendicular to the ship’s moving direction, so it
has little impact on the speed. However, the speed caused by wind has an influence on the
ship’s speed, so the ship’s speed rises slightly before steering. After the first steering, the
current begins to exert an influence on the direction of the ship’s motion, which causes the
ship’s speed to rise.

(3) As the wave level is small, it has little influence on the heading angle. It can be
seen from the wind direction that the wind will cause the ship’s heading angle to change to
the north by east direction. The ship will move southward after the first steering, so the
wind will reduce the ship’s heading angle. After the second steering, the ship will move
northward, so its heading angle will increase.

Therefore, the above changes are reasonable after the interference, which shows the
rationality and feasibility of the wind, current and wave interference model proposed in
this paper.

4.2. Simulation Comparison Verification

In order to verify the accuracy of ANFIS, based on the ship trajectory generator
presented in this paper, the ship motion parameters are generated using the same initial
state and maneuvering state. We compare the accuracy of the ship motion parameters
with and without wind, current and wave interference. The initial information and the
maneuvering status of the ship are shown in Tables 7 and 8.

Table 7. Ship’s initial condition.

Lng Lat Speed Heading

122◦52′45′′ 30◦54′05′′ 9.6 kn 225.9◦

Table 8. Maneuver state.

Time (s) 830 106 64 77

State Linear Steering Steering Linear

ΔV (kn) 0 −5.4 2.8 1.8

The comparison results of the simulated speed and track are shown in Figure 11. The
red line in the figure is the measured data; the blue line is the data generated by the ship
trajectory generator with wind, current and wave interference; and the black line is the data
generated by the ship trajectory generator without wind, current and wave interference.
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(a) (b) 

Figure 11. Comparison chart with and without interference and measured data. (a) Speed comparison
chart (b) Track comparison chart.

It can be seen from the above figures that, compared with the ship trajectory generator
without wind, current and wave interference, the accuracy of the speed and track after
adding ANFIS is significantly improved, especially in the constant speed stage, where the
change in speed is more consistent with the measured data; the specific accuracy and RMSE
values are shown in Table 9. Since the accuracy of the position is obviously improved, if
the same threshold value as in Table 3 is adopted, the position accuracy will be 100%, so
the threshold value of the position listed in Table 9 is adjusted to 35 m.

Table 9. Accuracy and RMSE comparison results.

Parameter Pos (m) v (m/s)

Threshold 35 0.1

Accuracy Without ANFIS 42.99% 55.62%

ANFIS 88.12% 87.00%

RMSE
Without ANFIS 68.9173 0.1641

ANFIS 23.4941 0.0948

The above simulation results show that the method proposed in this paper can better
simulate the impact of the interference of wind, current and waves on ship motion, and
they also verify the advantages of ANFIS.

5. Discussion

The wind, current and wave field models constructed in this paper can reflect the
characteristics of wind, current and waves. However, due to the randomness and time
variability of wind, current and waves, there is a lack of effective evaluation and verification
methods, and it is difficult to compare and verify the model with the measured data.
Therefore, it is necessary to obtain appropriate evaluation methods for wind, current and
wave models.

The force of ship motion at sea is complex and the coupling degree of wind, current
and wave interference is high. The ANFIS designed in this paper takes the data under
the condition of straight sailing at a constant speed as the training data, and the interfer-
ence of wind, current and waves under the condition of variable speed or steering needs
further research.
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6. Conclusions

In this paper, a new mathematical model of a ship trajectory generator is established;
the interference of wind, current and waves with ship motion is analyzed, and an adaptive
neuro fuzzy inference system for wind, current and wave interference is designed. After
simulation analysis and verification, the following conclusions are obtained:

(1) The motion parameters generated by the ship trajectory generator proposed in this
paper are more accurate than those generated by the typical trajectory generator. After
the wind, current and wave disturbances are superimposed, the accuracy is further
improved. The ship trajectory generator has certain significance for the simulation
testing and algorithm research of a ship’s strapdown inertial navigation system.

(2) The wind, current and wave fields constructed in this paper can reflect the randomness
and time variability of wind, current and waves on the sea. Combined with the
designed ANFIS, we can simulate the corresponding interference, which has certain
significance for the research of ship motion under wind, current and wave conditions.

(3) Compared with the traditional mathematical model of ship motion, the trajectory
generator described in this paper does not require complicated hydrodynamic pa-
rameters, has low modeling requirements and has the advantage of high simulation
accuracy, and it can be used in the field of navigation simulators.
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Abstract: Localization of buried polyethylene pipes is an important issue for network managers.
This study focuses on an acoustic method, which consists of vibrating the pipe and observing the
signal with a receiver placed on the ground surface. This method provides an estimate of the path
of the pipe but gives no information on the depth. We developed a multi-sensor method based on
the principle of vibrating the pipe, which allows estimating the depth while being non-invasive and
non-destructive and without a priori information on the propagation medium. These sensors are
positioned perpendicular to the pipe. We developed a new estimator to estimate the depth and the
propagation velocity in the medium, which is an important variable in our problem. This estimator is
based on the MUSIC algorithm and is adapted to our choice of modeling. In this paper, two models
of travel times in typical situations are presented. The first one represents the case where all sensors
can be placed inside the trench (on the ground surface) in which the pipe is buried. The second one
represents the case where sensors are placed inside and outside the trench. These travel time models
aim to provide a fast result to allow the method to be used by field agents. They are compared with a
full wavefield modeling by finite differences.

Keywords: acoustic method; buried polyethylene pipe; MUSIC algorithm; propagation time modeling;
signal processing; full wavefield

1. Introduction

Different methods exist for locating buried pipes [1] and, more generally, for investigat-
ing near-surface structures [2–7]. The choice of method to locate buried pipes depends on
the context. The use of tracer wires is becoming increasingly widespread. This method con-
sists of burying an electric wire with the pipe, which allows, by passing a current through
the wire, the creation of an electromagnetic field and, therefore, the use of electromagnetic
methods. Electromagnetic methods provide very good results for locating pipes when
they are applicable. If there is no tracer wire, then two possible cases can be discerned.
Either the pipe is metallic, or it is not. In the case of a metal pipe, an electric current can
be injected into the pipe; electromagnetic methods, which work very well, can, therefore,
be used. In the case of non-metallic pipes, two types of processes can be distinguished
in a non-exhaustive way: (i) Ground-Penetrating Radar (GPR) [8,9] is a versatile tool for
locating buried infrastructures; however, this type of tool often needs to be calibrated
according to the type of soil to which it is applied. Moreover, it is difficult to differentiate a
water pipe from a gas pipe or a buried electrical cable. (ii) Acoustic methods are applicable
in the case of non-conductive pipes [1,10–12]. According to [1], we can refer to several
types of acoustic methods: seismic wave methods [13], point vibration measurements [14]
and pipe excitation methods [15]. The first two categories can use a specific source placed
on the ground surface for probing. These methods do not differentiate between the pipe of
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interest and other pipes present. What distinguishes the last category is its ability to vibrate
the pipe, and this vibration will then be diffused into the ground.

This study focuses on the pipe excitation methods that have the advantage of discrimi-
nating the pipe of interest in a dense urban environment with noise.

The principle of this is to inject an acoustic signal (called acoustic signature) into
the pipe. A method that has been used for many years in the field uses a receiver (geo-
phone) placed on the ground surface, which measures the vertical vibrations of the ground.
Through successive measurements of the energy of the received signal, this method can
estimate the passage of the pipe and follow its path. However, this method does not
provide any information on the pipe depth. The GasTracker tool, based on this method,
was developed by the company MADE-SA. In this study, a GasTracker is used to estimate,
experimentally on the ground surface, the X and Y position (at ±10 cm) of the pipe in order
to position the sensor network in the area where the pipe is located.

The objective of this study is to implement a multi-sensor method, based on the
differences in travel times between sensors, to estimate the depth in addition to the passage
of the pipe [10,11].

The aim of this work is to estimate the depth with an accuracy below 10 cm with a
non-destructive and non-invasive method and without any a priori information on the
propagation medium (e.g., characteristics of the soil, which can change completely from
one application area to another).

Nevertheless, some information on how the pipe is buried is known. The pipe is buried
between 0.4 and 1.5 m. It is buried in a trench whose width can vary from approximately
30 cm to over 1 m. Therefore, two different media can be distinguished, the inside of the
trench and the outside of the trench (vertical stratifications). Moreover, in this problem, the
depth is at the meter scale.

An important aim of this study is to define a model of the travel time of the signal that
provides the fastest result in order to directly estimate the depth in the field. In the travel
time models presented in this paper, we consider the first arrival time of the signals. Only
P-waves and converted S-waves are considered. Geophones used are single component
sensors. They measure the vertical component of the received vibrations.

The travel time models that we propose are confronted using a simulation with much
more complete propagation modeling than that of the complete wavefield with finite
differences. This comparison aims to verify the coherence of the estimated quantities, in
particular, the velocity.

A cylindrical scattering of the vibration induced by the pipe is considered [16–19].
To ensure that all sensors observe the same section of the vibrating pipe, they are placed
perpendicular to the pipe. This is why the problem is represented in a plane orthogonal to
the passage of the pipe. This section can be approximated by a point source.

The variables to be estimated in this problem are the position of this source, its lateral
position SX and especially its depth Sz, but also the average velocity of propagation in the
ground. An average velocity is assigned to each medium of propagation.

In the first part, the sensors are assumed to be all positioned inside the trench. There-
fore, a modeling of the travel times of the signal between the pipe and the receivers by
considering a weakly heterogeneous medium and by assigning a mean propagation veloc-
ity is presented. In order to ensure an acceptable estimation accuracy, an estimator based
on the MUSIC (Multiple Signal Classification) algorithm adapted to this modeling of travel
times is developed. This estimator allows us to evaluate variables of interest (position of
the source and the velocity). Measurements are carried out on a test area in order to work
on real data. In the second part, the sensors are positioned inside and outside the trench. As
an extension of the method developed in the first part, the modeling is adapted to this case
to fit a larger number of situations. The different compaction of the soil on either side of the
trench is taken into account. This requires considering a velocity specific to each of these
environments. This second modeling of travel times is validated within the framework of
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the problem, initially through numerical simulations, then through comparison with finite
differences, and finally by comparison with real data.

2. Modeling with a Single Propagation Medium (M1)

2.1. Propagation Time Modeling M1

In this section, all sensors are considered to be located inside the trench. Since no
information on the characteristics of the propagation medium is known, the first approach
is to consider the propagation medium as weakly heterogeneous and to assign an average
propagation velocity. The problem is represented in a plane orthogonal to the passage
of the pipe (Figure 1). The pipe section has been represented using a point source S, the
receivers Ri were placed on the ground surface perpendicular to the pipe. An average
velocity V0 has been assigned to the propagation medium. The position of the source S (SX;
SZ) and the velocity of the wave V0 were unknown. The only known parameters were the
coordinates of the receivers Ri (RiX; RiZ = 0).

Figure 1. Scheme of Model M1: case of a single propagation medium.

We defined θM1 as the vector of variables to be estimated in the case of Model M1.

θM1 =
[
SX SZ V0

]T (1)

Here, the symbol [.]T is the transposed operator, Sx the plumb of the pipe, Sz the pipe
depth and V0 is the average propagation velocity in the medium.

We note τi(θM1) as the wave travel time between the source S and the receiver Ri for
Model M1.

τi(θM1) =
|SRi|
V0

(2)

We note τ1i(θM1) as the relative delay time between sensors R1 and Ri for Model M1.

τ1i(θM1) =
|SRi| − |SR1|

V0
(3)

Relative delay times are considered because, in this problem, the emission time of the
source S is unknown, but the receivers are triggered synchronously.

2.2. Validation of Travel Time Estimate of M1 through Comparison with a Finite Difference
Modeling of the Full Wavefield

In this section, the P-wave first arrival travel time estimation proposed in this paper is
validated through comparison with full wavefield modeling using finite differences.
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The acoustic and isotropic version of the code developed by Operto et al. is used [19]
from the original formulation proposed by Jean Virieux [20,21].

A comparison of the travel time estimate of M1 through the finite difference modeling
of the full P-wavefield is presented here, which is computationally fast and accurate in the
presence of flat topography, as in the test site analyzed in this study.

The following case study has been performed: 30 sensors were aligned and spaced
0.01 m apart; sensor 1 (R1) was placed just above the source (SX = 0); the rest of the sensors
were placed increasingly far away from the source; the depth of the source (SZ) was 1.5 m,
and the average velocity of propagation (V0) was 500 m/s.

To ensure simplicity in the simulation, the origin of the reference frame was translated,
and the source was placed at the top and the sensors at the bottom, but they were symmet-
rical. In the simulation presented here, the source was placed at S (0.35; 0), and the sensors
at Ri (0.35 + (i−1) 0.01; 1.5), but this corresponds well to the situation described above. In
Figure 2, we observe the physical model used for the simulation. The source used was
a Ricker function, also called the “mexican hat”; this function is a second derivative of a
Gaussian function.

Figure 2. Physical velocity model in the case of the propagation of the full wavefield by finite
differences with one propagation medium. S indicates the source at the surface. R1 is the first receiver.

The results of this simulation are presented in Figure 3. The vertical axis represents
the spatial position of the sensors, and the horizontal axis shows the recorded times. The
simulation of the received signals using finite differences is shown in black, and the travel
time curve calculated using Model M1 is shown in blue. At the scale of the problem, Model
M1 is in agreement with the more complex full wavefield model using finite differences.

2.3. Cramer–Rao Bound from Model M1

The Cramer–Rao Bound (CRB) was calculated to obtain information on the estimation
accuracy [22,23]. The CRB represents the smallest possible standard deviations of all
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unbiased estimates of the model variables. First, the CRB was computed, and second,
simulations using the CRB were performed.

Figure 3. Comparison of travel time estimate of Model M1 (dashed blue line) with the full P-wavefield
propagation model using finite differences.

2.3.1. Calculation of the Cramer–Rao Bound from Model M1

The CRB was calculated according to the Fisher information matrix, which is denoted
by F.

CRB(θM1) = F−1(θM1/τ1i(θM1)) (4)

where ./. represents the known operator.
The Fisher information matrix is expressed

F(θM1/τ1i(θM1)) =
N

∑
i = 2

1
Var(τ1i(θM1))

∇θM1(τ1i(θM1))∇T
θM1

(τ1i(θM1)) (5)

where N is the number of sensors, Var(τ1i(θM1)) is the variance of the relative delay time
between sensor 1 and i, and ∇θM1 [.] is the gradient operator as a function of θM1.

Let us focus on the calculation of the gradient of τ1i(θM1). The expression of this
gradient can be decomposed from Equation (3),

∇θM1(τ1i(θM1)) = ∇θM1

( |SRi|
V0

)
− ∇θM1

( |SR1|
V0

)
(6)

By developing the calculation, the expression becomes

∇θM1(τ1i(θM1)) =

⎡⎢⎢⎢⎢⎢⎢⎣

SX − RiX
V0|SRi| − SX

V0|SR1|

SZ − RiZ
V0|SRi| − SZ

V0|SR1|

|SR1| − |SRi|
V2

0

⎤⎥⎥⎥⎥⎥⎥⎦ (7)
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Using this result in Equation (5), the Fisher information matrix can be calculated, and
by calculating its inverse, the CRB is obtained, as shown in Equation (4).

2.3.2. Numerical Simulation Using the Cramer–Rao Bound

The figures presented in this section are the results of the numerical simulations. These
results are not exhaustive and are used to give an idea of the impact of the variables of the
problem on the accuracy of the depth estimation. To obtain these curves, one variable was
varied and the others were fixed. The impact on the possible accuracy of depth estimation
was observed.

Figure 4a shows the evolution of the CRB with changes in depth as a function of the
error in the relative delay times. The situation considered for this simulation is as follows:
five sensors were used, the distance between sensors was 0.2 m, the plumb of the pipe (SX)
was placed at 0 m, and the average propagation velocity (V0) was 500 m/s. Curves for
two different depths (SZ), 0.4 and 1 m, were observed. An accuracy of the relative delay
times in a microsecond range was needed to obtain an accuracy of 0.1 m in the depth. In
the worst case, an accuracy of the order of 0.1 μs was needed.

(a) (b) 

Figure 4. Depth error boundary as a function of the error of the other variables: (a) depth error as
a function of the error in the relative delay times; (b) depth error as a function of the error in the
propagation velocity.

Figure 4b represents the evolution of the CRB with changes in depth as a function
of the error in the propagation velocity. The situation considered for this simulation is as
follows: the distance between the sensors was 0.2 m, the plumb of the pipe (SX) was 0 m,
and the pipe depth (SZ) was 0.4 m. The curves for different average propagation velocities
(V0) were observed. A propagation velocity accuracy of the 10% range was required to
obtain an error of less than 0.1 m in the depth.

2.4. Adaptation of the MUSIC Algorithm for Model M1

In the previous section, a relative delay time accuracy of the order of 10−6 s was defined
as a necessary condition. Following the choice to focus on the MUSIC algorithm (MUl-
tiple SIgnal Classification) [24–30] for antenna processing, the so-called ‘high resolution
algorithm’ became interesting.

2.4.1. Presentation of the MUSIC Algorithm Adapted to Our Problem

The MUSIC algorithm is usually used to discern different sources and their direction
of arrival through an antenna array [24]. It can be adapted in the near field to estimate the
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distance of sources in addition to their direction of arrival [25–30]. In this paper, the aim
was to estimate the location of a single source S in the near field and also to estimate the
propagation velocity V0 according to Model M1.

The algorithm can be divided into several steps as follow:

1. Estimate the variance–covariance matrix of the system from the signals received by sensors.
2. Decompose the variance–covariance matrix of the system into eigenvalues and eigenvectors.
3. Definition of the noise subspace, denoted by Ub, with the eigenvectors corresponding

to the smallest eigenvalues.
4. Construction of a family of vectors, denoted by ‘a’, parametrized by the variables we

want to estimate, S and V0 (Equation (1)). This family of vectors is constructed from
the modeling of relative delay times (Equation (3)).

a(S, V0) =
[
1 e−j2πf0

|SR2 | − |SR1 |
V0 . . . e−j2πf0

|SRN | − |SR1 |
V0

]T
(8)

where f0 is the signal frequency, and N is the number of sensors.

5. Knowing that the signal subspace and the noise subspace are orthogonal, the project
of a (S,V0) on the noise subspace must be at the minimum for the values of S and V0
corresponding best to the received signal. It is traditional to take the inverse of this
projection and to look for the values of S and V0 that maximize this criterion, which is
denoted by Cmusic.

CMUSIC(S, V0) =
1

a(S, V0)
HUbUb

Ha(S, V0)
(9)

where [.]H is the conjugate transposed operator.

2.4.2. Test of Estimator Using Numerical Simulation

In this part, the algorithm used in the simulation of an ideal case is verified. The
statistics of the estimator (mean and variance) using the Monte Carlo method are presented.
All estimates were made with 1000 runs of the noise, and noise is applied to the propagation
times. For these simulations, a situation has been fixed in which all the variables are known.
The signals received are simulated as a function of these variables, and then these ones
were used to run the algorithm.

The following situation is considered: a depth (SZ) of 0.7 m, a propagation velocity
(V0) of 500 m/s, and the plumb of the pipe (SX) at 0 m. Five sensors were placed at 0.2 m,
the first one vertically above the pipe.

In Table 1, the statistics of the results of the estimator, using the Monte Carlo method,
are presented. A total of 1000 runs of noise were performed. The same situation as before
was considered, and the theoretical propagation times between the source S and sensors
were noised with a white Gaussian noise of standard deviation σnoise. The propagation
times are in the millisecond range, and the propagation time differences with sensor 1 vary
between 10−5 and 10−4 seconds.

For this set of variables, which is representative, the observed accuracy is lower than
the desired accuracy of 0.1 m. It is interesting to note that increasing the number of sensors
reduces the accuracy required on the relative delay times.

2.5. Experimental Measurements

Experimental measurements were performed on a semi-controlled test area in order
to work on real data.

2.5.1. Experimental Set-Up

The measurement chain presented in this section is not innovative; this measurement
chain was designed to be adapted to experimental needs. In particular, it was necessary
to be able to control the emission and to change the type of signal emitted at any time.
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Moreover, in the reception chain, the filter should not be so fine that it could not adapt to
different types of signals that could be emitted.

Table 1. Statistics of the MUSIC estimator adapted to Model M1 using the Monte Carlo method (for
1000 runs, 5 sensors spaced 0.2 apart). Noise is applied to the propagation times, which are in the
order of a millisecond.

Mean Standard Deviation True Value

Numerical Simulation 1
with 5 sensors and σnoise = 1 × 10−7

Depth SZ (m) 0.7056 0.0486 0.7
Average velocity V0 (m/s) 494 17 500
Plumb of the pipe SX (m) 0.0047 0.0065 0

Numerical Simulation 2
with 6 sensors and σnoise = 5 × 10−7

Depth SZ (m) 0.6658 0.0317 0.7
Average velocity V0 (m/s) 499 7 500
Plumb of the pipe SX (m) 0.0172 0.0109 0

Numerical Simulation 3
with 7 sensors and σnoise = 1 × 10−6

Depth SZ (m) 0.7386 0.0466 0.7
Average velocity V0 (m/s) 501 9 500
Plumb of the pipe SX (m) 0.0325 0.0315 0

The emission chain (Figure 5) was composed of a computer to control the emitted
signal, an amplifier, which received the signal from the computer sound card, and finally,
a loudspeaker. The loudspeaker was fixed at one end of the pipe and emitted the signal
inside the pipe.

Figure 5. Experimental set-up of the acoustic emission chain: (a) diagram of the main components;
(b) photograph of the material with the battery to power the amplifier.

Experiments were carried out in an anechoic room to characterize the loudspeaker
(CNRS-LMA-Marseille, C. Pinhède). A white noise is sent in command to the loudspeaker,
and the emitted signal is measured with a microphone placed just in front of the loud-
speaker output. This experimentation allows to obtain the transfer function of the loud-
speaker. The modulus and phase of its transfer function are shown in Figure 6.

The responses of the loudspeaker to the two types of signals used in this study
are presented.

The first signal of interest is a Ricker function. The time response of the loudspeaker
to a Ricker function control signal is presented in Figure 7 and the frequency response in
Figure 8. The properties of this type of signal are used in the calculation of the propagator
in the simulation of the propagation of the complete wave field by finite differences. The
real measurements with a Ricker function emission are to compare the trend of the delay
times with the simulations.

The second signal of interest is a monochromatic signal at 500 Hz, a burst signal. It is
used to estimate the pipe depth. The time response of the loudspeaker to a burst control
signal is presented in Figure 9 and the frequency response in Figure 10.
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(a) (b) 

Figure 6. Transfer function of the loudspeaker estimated by emitting a white noise: (a) modulus; (b) phase.

 
(a) (b) 

Figure 7. Example of the loudspeaker response (Ricker function): (a) theoretical source signal (red
line); (b) experimental source signal sent by the loudspeaker through the pipe (blue line) recorded
during the controlled experiment.

 
(a) (b) 

Figure 8. Fourier transform of the Ricker function: (a) theoretical Ricker spectrum (red line) showing
the central frequency of the theoretical source around 500 Hz; (b) experimental Ricker spectrum
(loudspeaker output; blue line) showing a central frequency around 500 Hz but distorted in relation
to the command.

The loudspeaker distorts the burst less than the Ricker function, because the Ricker
function is richer in frequency.

The acoustic reception chain is presented in Figure 11. The sensors are geophones that
measure vibrations in their vertical axis. They are cylindrical with a diameter of 2.54 cm.
During the measurements, a fatty substance was added between the sensors and the ground

211



Sensors 2022, 22, 9433

in order to obtain a better coupling. Geophones receive the signals that are filtered and
amplified by electronic cards. At the input of electronic cards, signals are filtered using
a high-pass filter with a cut-off frequency of 100 Hz, and the output, using a low-pass
filter with a cut-off frequency of 100 kHz. This wide analog filtering allows us to digitally
refine the filtering. The amplification is adjustable between 0 and 112 dB, which allows the
amplification to be adjusted in the field. At the output of the electronic cards, the signals are
digitized by the acquisition card; it is an analog-to-digital converter. The digitized signals
are recovered on a computer.

 
(a) (b) 

Figure 9. Example of the loudspeaker response (burst of 100 ms at 500 Hz): (a) theoretical source
signal; (b) experimental source signal sent by the loudspeaker through the pipe.

 
(a) (b) 

Figure 10. Fourier transform of the burst of 100 ms at 500 Hz: (a) theoretical burst spectrum;
(b) experimental burst spectrum (loudspeaker output).

Figure 11. Experimental set-up of the reception chain: (a) scheme of the main components;
(b) photograph of the material.
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Figure 12 shows an example of measurements taken on the semi-controlled test area.
The trench and the sensors positioned perpendicular to the pipe passage can be observed.
Sensors are spaced 5 cm apart.

Figure 12. Example of positioning of the experimental device for signal acquisition (reception chain).
The black arrow indicates the acquisition design composed of a line of five sensors and the support
(graduated ruler), where the sensors are moved during the experiment. The green arrow indicates
the trench where a pipe is buried. The box contains the electronic cards presented in Figure 11 and,
on the left of the box, the acquisition card connected to the computer to digitalize the signals received
from the buried pipe is shown.

2.5.2. Experimental Results

Experimental measurements were performed on a semi-controlled test area. In this
test area, the position of the pipe was known, and it was a polyethylene pipe, but the
characteristics of the propagation medium were unknown. The propagation velocity
is unknown.

To take the measurements, a line of five sensors was positioned perpendicular to the
pipe route. To focus on the depth, it was assumed that the plumb of the pipe (SX) was
known, and sensor 1 was placed just above the pipe. Sensors were spaced 0.2 m apart. The
signal emitted in the pipe was a monochromatic signal at 500 Hz.

In Figure 13, an example of signals measured by sensors is presented. The signal
emitted by the loudspeaker is a burst of 100 ms at 500 Hz repeated every second. Figure 13a
shows the signals received by the sensors before digital filtering, and Figure 13b shows
the same signals digitally filtered between 480 and 520 Hz. Sensor 1 is the closest to
the pipe and sensor 5 the farthest. The sensors farthest from the pipe receive the most
attenuated signals.

(a) (b) 

Figure 13. Example of signals measured by sensors (burst emission of 100 ms at 500 Hz): (a) signals
received by sensors before digital filtering; (b) signals digitally filtered between 482 and 520 Hz.
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Results on real signals are presented, for which depth estimation with the desired
accuracy of 0.1 m (Tables 2 and 3) is reached. For a depth of 0.42 m, an accuracy of 0.03 m
(Table 2) is obtained. For a depth of 0.7 m, an accuracy of 0.05 (Table 3) is obtained.

Table 2. First example of estimation obtained with the MUSIC algorithm adapted to the problem and
to Model M1 (5 sensors spaced 0.2 m apart).

Estimate Value Reference Value

Depth (SZ) (m) 0.39 0.42

Average velocity (V0) (m/s) 360 unknown

Table 3. Second example of estimation obtained with the MUSIC algorithm adapted to the problem
and to Model M1 (5 sensors spaced 0.2 m apart).

Estimate Value Reference Value

Depth (SZ) (m) 0.75 0.70

Average velocity (V0) (m/s) 540 unknown

Figure 14a shows measured signals (filtered between 480 and 520 Hz) on the test area
that match with Model M1 (a zoom of Figure 13b). With Model M1, the more receivers are
far from the source S, the more they should receive in a delayed way the information of
the sound wave propagating in the pipe. It is on real signals of this type that the results,
presented in Tables 2 and 3, are obtained.

 
(a) (b) 

Figure 14. Example of real received signals digitally filtered between 480 and 520 Hz: (a) correspond-
ing to Model M1; (b) not corresponding to Model M1.

Figure 14b shows measured signals on the test area that do not match with Model M1.
A phenomenon can be discerned several times, in that, sensors farthest from the source S
receive the signal before the closest sensors. This phenomenon shows the role played by
the vertical discontinuities (the trench) not included in Model M1.

It is needed to evolve the model to cover a greater number of situations. This is why an
evolution of this model is presented in Section 3. Model M1 is sufficient when the transition
is smooth or the medium weakly heterogeneous.

3. Modeling with Two Propagation Media (M2)

In this part, an evolution of the model is presented. Now sensors are placed inside
and outside the trench. A vertically stratified change in medium is considered, which
represents the trench in which the pipe is buried. First, the modeling of the propagation
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times is presented, and then the calculation of the intermediate variables is presented in
more detail.

3.1. Propagation Time Modeling M2
3.1.1. Presentation of the Propagation Time Model M2

In the problem modeling, a change in medium was added to take into account the
trench (Figure 15). The pipe section was still represented using a point source S and the
sensors Ri were arranged on the ground surface in the same way as before. An average
velocity V0 was assigned to the propagation medium inside the trench and an average
velocity V1 outside the trench. For the sensors outside the trench, new intermediate
variables Pi appeared, which represented the interface points between the two media. For
each Ri outside the trench, there was a corresponding Pi.

Figure 15. Scheme of the problem modeling in the case of two propagation media: Model M2.

We defined θM2 as the vector of variables to be estimated in the case of Model M2.

θM2 =
[
SX SZ V0 V1

]T (10)

We noted τi(θM2) as the wave travel time between the source S and the receiver Ri for
Model M2. Two cases can be discerned:

• If Ri is inside the trench, it is returned to the single propagation medium case of Model
M1 (Equation (2))

• If Ri is outside the trench, then

τi(θM2) =
|S Pi|

V0
+

|Pi Ri|
V1

(11)

In the following, only the case of Ri outside the trench is considered because the case
Ri inside the trench was already covered in Section 2.

Relative delay times are also considered because the emission time of the source S is
unknown. We note τ1i(θM2) as the relative delay time between the sensors R1 and Ri for
Model M2.

τ1i(θM2) =
|S Pi| − |S R1|

V0
+

|Pi Ri|
V1

(12)

The modeling proposed in this paper depended on the interface point Pi, which was
unknown. We had to express Pi as a function of θM2.

3.1.2. Analytical Expression of the Interface Point Pi

The variable τ1i(θM2) (Equation (12)) depended on the interface point Pi (PiX; PiZ). It
was assumed that the X coordinate PiX was known a priori (i.e., we knew the position of
the medium change). However, we had no a priori information on the Z coordinate PiZ.
We focused on the analytical expression of PiZ.
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The Snell–Descartes law was considered at the interface between the two media. We
can then write

SZ − PiZ

|S Pi| =
PiZ

|Pi Ri|
V0

V1
(13)

After squaring and developing, the following fourth-order equation was obtained:

P4
iZ [V2

1 − V2
0]

+ P3
iZ [−2RiZV2

1 − 2SZV2
1 + 2SZV2

0]

+ P2
iZ [S2

ZV2
1 + R2

iZV2
1 + V2

1(RiX − PiX)
2 + 4RiZSZV2

1 − S2
ZV2

0 − V2
0(PiX − SX)

2]

+ PiZ [−2RiZS2
ZV2

1 − 2SZR2
iZV2

1 − 2SZV2
1(RiX − PiX)

2]

+ [R2
iZS2

ZV2
1 + S2

ZV2
1(RiX − PiX)

2] = 0

(14)

We propose

P4
iZ m1 + P3

iZ m2 + P2
iZ m3 + PiZ m4 + m5 = 0 (15)

After solving Equation (15), we obtained

PiZ =

√
A −

√
A − 2

(
g + A + u√

A

)
2

− m2

4m1
(16)

with

A =

⎛⎝−K +

√
K2 + 4J3

27

2

⎞⎠1/3

− J

3

(
−K +

√
K2 + 4J3

27
2

)1/3 − 2g
3

, (17)

J = −g2

3
− 4w , (18)

K =
8wg

3
− 2g3

27
− u2 , (19)

g =
m3

m1
− 3m2

2
8m2

1
, (20)

u =
m4

m1
− m2m3

2m2
1

+
m3

2
8m3

1
, (21)

w =
m5

m1
− m2m4

4m2
1

+
m2

2m3

16m3
1

− 3m4
2

256m4
1

(22)

m1 to m5 depended on θM2 (Equation (10)), the position of sensors Ri (known) and the
position of the medium change PiX (known). The expression of the interface point depth
PiZ depended on mi, so we expressed PiZ as a function of variables of interest θM2.

The theoretical delay times with Model M2 from θM2 can be estimated following
this approach.

3.2. Validation of Travel Time Estimate of M2 through Comparison with a Finite Difference
Modeling of the Full Wavefield

Here, the travel times of Model M2 are compared with the full P-wavefield propagation
modeling using finite differences in the same way as in Section 2.2. The simulations were
performed for the same case study in order to compare the results.

The following set-up was considered: sensor 1 is the origin of the reference frame; the
point source S is at a depth of SZ = 0.7 m; sensor 1 is in line with the source SX = 0 m; sensors
are spatially distributed every 0. 05 m and move away from the source; the position of the
change in medium is at PX = 0.1 m; the average propagation velocity inside the trench is
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V0 = 300 m/s and outside the trench is V1 = 600 m/s. These values were proposed for the
propagation velocities because they were close to those that would be estimated for the real
data in the test site.

To ensure simplicity in the simulation, the origin of the reference frame was translated,
and the source was placed at the top and the sensors at the bottom, but they were symmet-
rical. In the simulation presented here, the source was placed at S (0.75; 0) and the sensors
at Ri (0.75 + (i − 1)0.05; 0.7), but this corresponds well to the situation described above. In
Figure 16, the physical model used for simulation and the wavefront propagation in the
case of the full wavefield propagation modeling using finite differences are observed. Each
panel is taken at a different time, and the evolution of the wavefront over time is observed.
In this simulation, the source used was a Ricker function (Figures 7a and 8a).

Figure 16. Physical velocity model and wavefront in the case of the full P-wavefield propagation
modeling using the finite differences method.

The results of this simulation are presented in Figure 17. The abscissa represents
the spatial position of the sensors, and the ordinate indicates the recorded time. The
seismograms represent the simulation of the received signals using finite differences, and
the travel time curve calculated from Model M2 is shown in blue. At the scale of the
problem, Model M2 was in agreement with the more complex full wavefield model using
finite differences. This allowed us to obtain a first validation of the travel time estimate of
Model M2 through numerical simulation.

Figure 17. Seismograms obtained by full wavefield propagation using the finite differences method
in the physical velocity model presented in Figure 16. The horizontal axis indicates the position of
the sensors. The red arrow indicates the sensors located at the plumb of the source. The theoretical
travel times calculated in the same model (M2) by the method proposed in Section 3.1 are plotted
with a blue dashed line to assess the good agreement. The transmitted signal is considered as the
same emitted Ricker function (Figure 7a).

The same simulation is also carried out but using as source signal the signal actually
transmitted by the loudspeaker (Figures 7b and 8b). In Figure 18, a small shift between the
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travel times calculated with Model M2 and the simulations of the signals received using
finite differences can be observed, but the trend of the curve remains correct.

Figure 18. Seismograms obtained by full wavefield propagation using the finite differences method
in the physical velocity model presented in Figure 16. The horizontal axis indicates the position of the
sensors. The red arrow indicates the sensors located at the plumb of the source. The theoretical travel
times calculated in the same model (M2) by the method proposed in Section 3.1 are plotted with a
blue dashed line to assess the good agreement. We consider that the emitted signal was transformed
by the loudspeaker (Figure 7b).

3.3. Cramer–Rao Bound from Model M2

In this section, as in Section 2.3, the Cramer–Rao Bound (CRB) is calculated to obtain
information on the estimation accuracy.

3.3.1. Calculation of the Cramer–Rao Bound from Model M2

The CRB is calculated according to the Fisher information matrix, which is denoted by F.

CRB(θM2) = F−1(θM2/τ1i(θM2)) (23)

where ./. is the known operator.
The Fisher information matrix is expressed

F(θM2/τ1i(θM2)) =
N

∑
i = 2

1
Var(τ1i(θM2))

∇θM2(τ1i(θM2))∇T
θM2

(τ1i(θM2)) (24)

where N is the number of sensors, Var(τ1i(θM2)) is the variance of the relative delay time
between sensor 1 and i, and ∇θM2 [.] is the gradient operator as a function of θM2.

The gradient of τ1i(θM2) is calculated from Equation (12),

∇θM2(τ1i(θM2)) = ∇θM2

( |S Pi|
V0

)
− ∇θM2

( |S R1|
V0

)
+ ∇θM2

( |Pi Ri|
V1

)
(25)

The calculation of the gradient can be decomposed as follows

∇θM2

( |SPi|
V0

)
=

⎡⎣ (SX − PiX) − (SZ − PiZ)
∂

∂SX
PiZ

V0|SPi|
(SZ − PiZ)

(
1 − ∂

∂SZ
PiZ

)
V0|SPi|

−V0(SZ − PiZ)
∂

∂V0
PiZ − |SPi|2

V2
0|SPi|

−(SZ − PiZ)
∂

∂V1
PiZ

V0|SPi|

⎤⎦ T

(26)
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∇θM2

( |SR1|
V0

)
=

[
SX − R1X

V0|S R1|
SZ − R1Z

V0|S R1|
−|S R1|

V2
0

0

]T

(27)

∇θM2

( |Pi Ri|
V1

)
=

[
(PiZ − RiZ)

∂
∂SX

PiZ

V1|Pi Ri|
(PiZ − RiZ)

∂
∂SZ

PiZ

V1|Pi Ri|
(PiZ − RiZ)

∂
∂V0

PiZ

V1|Pi Ri|
V1(PiZ − RiZ)

∂
∂V1

PiZ − |Pi Ri|2
V2

1|Pi Ri|

]T

(28)

All these expressions depended on the gradient of PiZ. The gradient of PiZ, ∇θM2PiZ,
needed to be calculated to be able to calculate the CRB. This gradient calculation is presented
in Appendix A to avoid overloading the text.

3.3.2. Numerical Simulation Using the Cramer–Rao Bound from Model M2

The figures presented in this section are the result of numerical simulations. These
results are not exhaustive and are used to give an idea of the impact of the variables of the
problem on the accuracy of the depth estimation.

Figure 19 shows the evolution of the CRB on the depth as a function of the error
in the relative delay times. For these simulations, the following situation is considered:
the distance between sensors is 0.2 m; the plumb of the pipe (SX) is at 0 m; the average
propagation velocity inside the trench (V0) is 300 m/s; the average propagation velocity
outside the trench (V1) is 600 m/s; and the position of the change in medium (PX) is at
0.15 m.

 
(a) (b) 

Figure 19. Depth error as a function of the error in the relative delay times: (a) for several numbers of
sensors; (b) for several depths.

For Figure 19a, a depth of 0.7 m is considered, and the curves for different numbers
of sensors are observed. The accuracy constraint on the relative delay times is relaxed by
increasing the number of sensors.

For Figure 19b, seven sensors are considered, and the curves for different depths are
observed. The estimation of relative delay times should be more accurate as the depth
increases. For example, here, with seven sensors, to obtain a precision of 0.1 m for the
depth, the precision of the relative delay times is needed to be in a 0.1 μs range.

3.4. Validation of the Travel Time Model M2 on Real Data

To compare travel time modeling with real data, an experiment was performed on the
semi-controlled test area in a case similar to the simulation in Section 3.2. The same signal
as in the simulation, a Ricker, was emitted. Sensors were placed every 0.05 m perpendicular
to the pipe passage (as in Figure 15). Since we did not have a large enough number of
sensors, several successive measurements were performed by leaving one sensor fixed and
moving the others to mesh the space and act as if there were a large number of sensors. The
time bases were recalculated with respect to the fixed sensor of each measurement to act as
if only one measurement had been realized with many sensors. This added an error in the
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travel times, but here, we were only interested in the trend of the evolution of the relative
delay times in order to validate Model M2.

Sensor 1 was taken as a reference, which was the closest to the source S, to calculate
the relative delay times. Figure 20 shows the evolution of the relative delay times between
sensors 1 and i in black. These relative delay times were estimated using cross-correlation
between the signal received by sensor 1 and that of sensor i.

Figure 20. Comparison of the relative delay times between the real data and Model M2.

The propagation velocities were unknown, a priori, for the semi-controlled test area.
The velocities V0 and V1 of Model M2 can be estimated a posteriori by knowing the
position of the source S in the test area. After determining all the variables in the test zone
a posteriori, the relative delay times of Model M2 (blue curve of Figure 20) were calculated.

In the beginning, the relative delay times increased until the break that marked the
change in environment. Then, they started to increase again. In the simulation (blue curve),
the position of the change in medium was fixed at 0.1 m. On the real data (black curve), the
change in medium, highlighted by the break of the curve, was instead between 0.15 and
0.2 m. The Model M2 is representative of reality. It is logical and is in agreement with the
observation of real data.

3.5. Depth Estimation from Model M2
3.5.1. Numerical Simulation with MUSIC Algorithm Adapted to Model M2

In this section, numerical simulations are performed to qualify the MUSIC estimator
adapted to Model M2 (as in Section 2.4.2). The statistics of the estimator using the Monte
Carlo method (1000 runs of noise) are presented. Consider the following situation 1: a
depth (SZ) of 0.7 m, a propagation velocity (V0) of 300 m/s, a propagation velocity (V1)
of 600 m/s, the plumb of the pipe (SX) at 0 m, and the position of the change in medium
(PX) at 0.15 m. Seven sensors were spaced 0.2 m apart, the first one directly at the plumb of
the pipe.

In Table 4, the statistics of the results of the estimator using the Monte Carlo method are
presented. A total of 1000 runs of noise were performed. The theoretical propagation times
between the source S and sensors were noised with a white Gaussian noise of standard
deviation σnoise. The propagation times are in the millisecond range, and the propagation
time differences with sensor 1 vary between 10−5 and 10−3 seconds. In this situation, an
accuracy in a microsecond range is required on the delay times to obtain an accuracy of
less than 0.1 m on the depth. These results confirm those presented in Section 3.3.2.
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Table 4. Statistics of the MUSIC estimator adapted to Model M2 using the Monte Carlo method in
situation 1 (7 sensors spaced 0.2 m apart). Noise is applied to the propagation times, which are in the
order of a millisecond.

Mean Standard Deviation True Value

Numerical Simulation 1
with σnoise = 5 × 10−6

Depth SZ (m) 0.7294 0.0849 0.7
Average velocity V0 (m/s) 293 19 300
Average velocity V1 (m/s) 592 41 600

Numerical Simulation 2
with σnoise = 5 × 10−5

Depth SZ (m) 0.6666 0.2246 0.7
Average velocity V0 (m/s) 261 58 300
Average velocity V1 (m/s) 638 128 600

Now, the case with seventeen sensors spaced 0.05 m apart is presented. Consider
the following situation 2: a depth (SZ) of 0.7 m, a propagation velocity (V0) of 300 m/s, a
propagation velocity (V1) of 600 m/s, the plumb of the pipe (SX) at 0 m, and the position of
the change in medium (PX) at 0.15 m. Seventeen sensors were spaced 0.05 m apart, the first
one directly at the plumb of the pipe.

The results in Table 5 show that an error of the order of microseconds in delay times
allows an accuracy of 0.1 m on the depth.

Table 5. Statistics of the MUSIC estimator adapted to Model M2 using the Monte Carlo method in
situation 2 (17 sensors spaced 0.05 m apart). Noise is applied to the propagation times, which are in
the order of a millisecond.

Mean Standard Deviation True Value

Numerical Simulation 1
with σnoise = 5 × 10−6

Depth SZ (m) 0.6604 0.0704 0.7
Average velocity V0 (m/s) 293 18 300
Average velocity V1 (m/s) 611 79 600

3.5.2. Estimation on Real Data

At least seven sensors are required (Section 3.3.2) to use the MUSIC algorithm adapted to
Model M2. As mentioned in Section 3.4, we only had five sensors. The sensors were moved
to perform successive measurements. The different measurements are then not synchronized.
Therefore, our estimator, based on MUSIC, cannot be used on these measurements.

However, results evaluated from the delay times between the sensors are presented
in Figure 20 (black curve). These delay times were obtained after retiming, introducing
additional errors.

The criterion presented here is the inverse of the squared error between the estimated
delay times and the delay times calculated by Model M2.

The values of the criterion are obtained by varying the variables to be estimated: the
depth (SZ), the velocity inside the trench (V0) and the velocity outside the trench (V1). The
lateral position of the pipe (SX) and the position of the medium change (PX) are considered
known. Indeed, SX estimated with the GasTracker tool and PX from the temporal break are
observed in Figure 20.

Figure 21 is a display of the obtained criterion. The estimation results are presented
in Table 6. The error in the depth is less than 0.1 m. In addition, the velocity estimates
are really small, which could be due to the large error in the delay times. The parameters
SX and PX are fixed by an a priori estimate. It would be interesting to also vary these
parameters around their estimated position.

These results obtained with least squares are encouraging, but we would like to have a
more discriminating criterion. The next step of our work will be to test the MUSIC algorithm
on real synchronous data in order to have a criterion with a better resolution power.
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Figure 21. The inverse of the squared error between the estimated delay times and the delay
times calculated by Model M2. For this display, the velocity outside the trench V1 is fixed at the
estimated value.

Table 6. Estimation obtained with least squares from Model M2.

Estimate Value Reference Value

Depth (SZ) (m) 0.64 0.70

Average velocity inside the trench (V0) (m/s) 140 unknown

Average velocity outside the trench (V1) (m/s) 250 unknown

4. Conclusions and Future Perspectives

We developed a method using several sensors positioned perpendicular to the passage
of the pipe. This allows us to model the problem in a plane orthogonal to the passage of
the pipe. The vibrating section of the pipe is represented by a point source.

In the first section, an initial model of the problem was defined by considering a single
propagation medium (M1), i.e., all sensors are located at the ground surface inside the
trench. This Model M1 was validated, on the scale of the problem, by comparing it to a more
complete modeling (full wavefield modeling by finite differences). The Cramer–Rao bound
was calculated to obtain theoretical information on the accuracy reached by the variables,
in particular on the relative delay times. The error in the positioning of the sensors (e.g.,
line of sensors not perpendicular to the pipe) induces an error in the travel times. This is
why, in these simulations and theoretical studies, the error in the depth estimation was
quantified as a function of the error in the delay times. The MUSIC algorithm was adapted
to Model M1, and then the algorithm was tested on real data. This allowed us to question
the model and thus, to advance it. The results obtained from the M1 model show that the
depth estimates reach the desired accuracy of 0.1m.

In the second section, a second model of the problem was defined by considering two
vertically stratified propagation media (M2), i.e., sensors are located at the ground surface
inside and outside the trench, according to the information obtained from experiments
onto a test area. This model was validated in two steps, first through numerical simulation
by comparing it to a more complete model, then by comparing it to real data. The Cramer–
Rao bound was also calculated to obtain theoretical information on the accuracy reached
by the variables. The MUSIC algorithm was adapted to this Model M2 and was tested
in simulation.

Model M2 aims to cover the case of a marked change in medium (inside/outside the
trench). The results obtained with the Cramér–Rao bound show that seven or eight sensors
would be needed to obtain a satisfactory depth estimate. Not having real synchronous
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measurements realized with eight sensors, a least squares criterion between the delay times
estimated from the real signals and those given by Model M2 was established. The results
obtained on real data reach the desired accuracy.

In our future work, with more sensors, we will test the estimator based on the MUSIC
algorithm adapted to Model M2 on real data. Depending on the feedback from these
experiments, we will be able to continue to evolve the model by potentially considering
other propagation media, such as the layer of sand surrounding the pipe or the layer of tar
covering the ground. This aims to produce a model closer to real situations that provide
the fastest possible result to be able to apply the method in the field in real-time.

Author Contributions: Conceptualization, W.X. and G.S.; methodology, W.X.; software, W.X. and
A.R.; validation, W.X., G.S., A.R., P.P. and L.Z.; formal analysis, W.X.; investigation, W.X.; resources,
P.P. and L.Z.; data curation, W.X.; writing—original draft preparation, W.X.; writing—review and
editing, W.X., G.S. and A.R.; visualization, W.X. and A.R.; supervision, G.S.; project administration,
not applicable; funding acquisition, not applicable. All authors have read and agreed to the published
version of the manuscript.

Funding: This project is supported by the CIFRE contract between MADE-SA and CNRS-UMR7330,
CEREGE, from the ANRT French program of CNRS (Agence National de la Recherche Technique).
This project is partially supported by RICE (Research and Innovation Center of Energy), GRTgaz.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the Laboratory of Mechanics and Acoustics (LMA—CNRS),
Marseille, France. We also express our sincere gratitude to Cédric Pinhède, research engineer at LMA,
who allowed us to access the anechoic chamber of LMA and to qualify our loudspeaker. We gratefully
acknowledge S. Operto for providing the wave propagation finite difference modeling code used in
this study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Calculation of the Gradient of PiZ

In this section, the gradient of PiZ is expressed with respect to θM2. The notations from
Section 3.1.2 are used in the calculation of PiZ.

From Equation (16),

∇θM2 PiZ =
1
2

⎛⎜⎜⎝ 1
2
√

A
∇θM2 (A) −

∇θM2 (A) − 2
[
∇θM2 (g) + ∇θM2 (A) + ∇θM2

(
u√
A

)]
2
√

A − 2
(

g + A + u√
A

)
⎞⎟⎟⎠ − m1∇θM2 (m2) − m2∇θM2 (m1)

4 m2
1

(A1)

The gradients of all intermediate variables are calculated (A, J, K, g, u, w, m1, m2, m3,
m4, m5) to express ∇θM2PiZ. The variable A (Equation (17)) is decomposed into three terms
to ensure that the calculation is still readable.

A = A1 + A2 + A3 (A2)

with

A1 =

⎛⎝−K +

√
K2 + 4J3

27

2

⎞⎠1/3

, A2 = − J

3

(
−K +

√
K2 + 4J3

27
2

)1/3 , A3 = −2g
3

(A3)
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The gradient of each term is calculated.

∇θM2(A1) =

−∇θM2(K) +
2K∇θM2 (K) + 12J2

27 ∇θM2 (J)

2
√

K2 + 4J3
27

6

(
−K +

√
K2 + 4J3

27
2

)2/3 (A4)

∇θM2(A2) = −1
3

∇θM2(J)

(
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√
K2 + 4J3

27
2

)1/3

− J∇θM2(A1)(
− K +

√
K2 + 4J3

27
2

)2/3 (A5)

∇θM2(A3) = −2
3
∇θM2(g) (A6)

Once the gradient of A was calculated, the gradients of J and K can be calculated
(Equations (18) and (19)).

∇θM2(J) = −2g
3
∇θM2(g) − 4∇θM2(w) (A7)

∇θM2(K) =
8
3
[
g ∇θM2(w) + w ∇θM2(g)

] − 2g2

9
∇θM2(g) − 2u∇θM2(u) (A8)

The calculation of the gradients of g, u and w can be realized (Equations (20)–(22)).

∇θM2(g) =
m1∇θM2(m3) − m3∇θM2(m1)

m2
1

− 3
4

m2m1∇θM2(m2) − m2
2∇θM2(m1)

m3
1

(A9)

∇θM2 (u) =
m1∇θM2 (m4) − m4∇θM2 (m1)
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1

− 1
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[
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(A10)

∇θM2(w) =

⎧⎪⎨⎪⎩
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(A11)

Then, the gradients from m1 to m5, on which all other gradients depended, were calculated.

∇θM2(m1) = [0 0 − 2V0 2V1]
T (A12)

∇θM2 m2 = [0 2[V2
0 − V2

1] 4SZV0 −4V1[RiZ + SZ]]
T (A13)

∇θM2 (m3) = [2V2
0(PiX − SX) 2SZV2

1 + 4RiZV2
1 − 2SZV2

0 −2V0[S2
Z + (PiX − SX)

2] 2V1[S2
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T (A14)

∇θM2(m4) = [0 −2V2
1[2RiZSZ + R2

iZ + (RiX − PiX)
2] 0 −4V1SZ[RiZSZ + R2

iZ + (RiX − PiX)
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(A15)

∇θM2(m5) = [0 2SZV2
1[R

2
iZ + (RiX − PiX)

2] 0 2S2
ZV1[R2

iZ + (RiX − PiX)
2]
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(A16)

The gradients of m1 to m5 were calculated and expressed according to the gradients of PiZ.
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Abstract: In order to explore the monitoring technique of concrete carbonation in various tempera-
tures, longitudinal ultrasonic nonlinear parameters of carbonated concrete are measured by using an
embedded composite piezoelectric transducer (ECPT) and a surface-mounted transducer. The effect
of temperature from −20 ◦C to 40 ◦C with a temperature interval of 5 ◦C and water–cement ratio on
the measurements of ultrasonic parameters for carbonated concrete is investigated. The ultrasonic
transmission detection method and the second harmonic generation (SHG) technique for longitudinal
waves are used in the study. Results of the experiment demonstrate that ECPT is effective in the
monitoring of the changes in ultrasonic parameters of carbonated concrete. At the temperature
ranging from 15 ◦C to 40 ◦C, the increasing temperature slightly increases the relative nonlinear
parameters of carbonated concrete. It decreases significantly that the relative nonlinear parameters
of carbonated concrete measured at 0 ◦C compared with that at 10 ◦C. The configuration in this
measurement is also appropriate for the assessment of carbonated concrete during carbonation time
in low-temperature environments (below 0 ◦C). In the same carbonation time, the relative nonlinear
parameters also increase slightly when the temperature is at −20 ◦C to 0 ◦C, but it does not change
too much. Furthermore, there is a more significant variation of the nonlinear parameters in the same
carbonation time for the specimens with a high water–cement ratio than that with a low one.

Keywords: concrete carbonation; nonlinear parameter; temperature effects; embedded composite
piezoelectric transducer; nondestructive testing

1. Introduction

Ultrasonic measurement as non-destructive testing technology has been widely used to
determine the characterization of concrete structures for a long time. Nonlinear resonance
ultrasonic spectroscopy (NRUS) technology has been used in the testing of progressive dam-
age occurring in concrete, such as alkali–silica reaction [1], thermal damage [2], and delayed
ettringite formation in concrete [3]. These progressive changes in concrete increase the ma-
terial nonlinearity, resulting in a shift of the resonance frequency and amplitude in concrete.
During concrete carbonation, the material nonlinearity is also changed by the effects of
the carbonation product on the porosity and microcracks in concrete. Bouchaala et al. [4],
reported that resonant ultrasonic nonlinear parameters have the feasibility of measuring
concrete carbonation. Eiras et al. [5] used resonance ultrasonic spectroscopy technology to
study the effect of concrete carbonation on the linear and nonlinear dynamic properties of
cement-based materials. The linear and nonlinear dynamic properties can be used to deem
material against carbonation in laboratory tests, whereas concrete has inherent nonlinearity
due to its material composition. The nonlinear response of the concrete to the incident wave
distorts the waveform when a single-frequency ultrasonic wave is transmitted into the
concrete. Then, the higher harmonic waves will be generated in the transmitted wave. Kim
et al. [6,7] investigated the feasibility of the second harmonic generation (SHG) technology
of Rayleigh surface wave to characterize the carbonation of concrete. The amplitude of the
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active acoustic source of SHG technology is constant, while the percussive force of NURS
needs to be control.

At present, health inspection of concrete structures is usually performed by manually
carrying external ultrasonic probes. However, the use of large external probes requires
extensive work preparation, which not only hinders the use of this technique for moni-
toring but also greatly limits the measurement area of concrete structures [8]. In contrast,
embedding low-cost piezoelectric transducers in concrete structures allows for a more
flexible configuration of the measurement network on the one hand, and long-term stable
health measurements of the structure on the other. Such kinds of transducers have been
successfully used for the monitoring of concrete hydration by deducing the evolution of
Young’s modulus based on the flight time of the acoustic wave [9–12], the evolution of the
concrete compressive strength at an early age [10,13], concrete cracking [8,14–18], water
seepage [19], and mechanical properties of concrete as well as the acoustoelastic effect in
compression [20–23], applying piezoelectric lead zirconate titanate (PZT) patches to the
rebar by monitoring the conductance changes of the piezoelectric patches to study the
effect of concrete carbonation on rebar corrosion [24,25]. In the current research of embed-
ded transducers, it is found that cement-based and marble-based piezoelectric composite
sensors have the feature of diminishing the distortion of signal and benefiting the energy
transmission efficiency [26,27]. However, these large size transducers are not suitable for
detecting P waves at close distances due to the carbonation of concrete developing from the
surface. Qin et al. [12] and Chen et al. [28] provided two ideas for small size transducers in
specimens with specific sizes. The signal transmitted by these transducers at an operating
state with a high frequency and high energy carries less sensor nonlinearity than cement-
based or marble-based transducers, whereas the influence of boundary reflection [6,29,30]
on the signal should be considered in both time domain analysis and frequency domain
analysis when the wave is propagating in small-size concrete. Otherwise, the parameters
obtained from a small-size concrete are not suitable for the characterization of the large one
due to the distance of boundary reflection.

In this paper, the ultrasonic transmission detection method was taken with an embed-
ded transducer and a surface-mounted transducer. The embedded composite piezoelectric
transducer (ECPT) which was composited with four materials was developed and used
to detect the evolution of ultrasonic parameters in carbonated concrete by the SHG [31]
technique of ultrasonic longitudinal waves to verify the effect of the concrete water–cement
ratio on the relative nonlinear parameters of carbonation. This kind of ECPT had the
advantage combined with the transducers used by Qin et al. [12] and Chen et al. [28],
such as small size and electromagnetic shielding. Subsequently, the effect of the ambient
temperature on the ultrasonic longitudinal detection parameters of carbonated concrete
was also studied.

2. Materials and Methods

2.1. Specimens

In this experiment, concrete specimens (CI, CII, CIII) with different water–cement
ratios were designed. The coarse aggregate used in the concrete was a continuous grade of
natural gravel from 5 mm to 25 mm and the fine aggregate was natural river sand with a
fineness modulus of 2.56. Table 1 shows the mixture design of the concrete specimens.

Table 1. Mixture ratio of the concrete specimen.

Category CI CII CIII

OPC (kg/m3) 342 375 415
Fine aggregate (kg/m3) 708 695 680
Coarse aggregate (kg/m3) 1155 1135 1110
Water (kg/m3) 195 195 195
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The structure of the embedded composite piezoelectric transducer (ECPT) is shown
in Figure 1a. It consisted of a metal shielding layer, an encapsulation layer, a piezoelectric
lead zirconate titanate (PZT) patch, and a composite backing layer. The model of the
PZT was PSN-33 with a size of φ 8 mm × 0.48 mm, which was provided by the Haiying
company. Table 2 shows the parameters of PZT, where d33 is piezoelectric strain constant,
C is capacitance, tan δ is dielectric dissipation factor, f t is resonance frequency, and Zr
is impedance.

Table 2. The parameters of PZT.

Model d33 (pC · N−1) C (pF) tan δ (%) f t (MHz) Zr (Ω)

PSN-33 377 1167 1.77 4.03 5.45

This kind of composite increased the structural strength of the transducer and made it
have good waterproofing and working performance. In addition, the ECPT could resist
certain electromagnetic wave interference and suppress the interference of some noise to
the signal during operation. The ECPT vibrated along the poling direction to generate
mechanical waves when connected with the electric field. As shown in Figure 1b, the PZT
patch is fastened to the printed circuit film in this transducer. This connection method
ensured the working stability of the PZT patch and improved the convenience of the
manufacturing process for the embedded composite transducer. The sensitivity of ECPT
was verified with the face-to-face secondary calibration method (GB/T 19801-2005/ISO
12714:1999) [32–34]. The sensors were placed in the symmetry location to transmit and
receive elastic waves from the solid medium surface—whereafter, the sensitivity of the
sensor was calculated by the output signals. Figure 2 shows the sensitivity of ECPT.

Figure 1. ECPT: (a) structure of ECPT; (b) the finished product of ECPT.

Figure 2. Response curves for ECPT.

There were three specimens for each kind of concrete. Each size of the concrete
specimen was 100 mm × 100 mm × 100 mm. As shown in Figure 3a, only one ECPT is
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embedded in the concrete specimen as a transmitter. On the surface in which CO2 was
ingressed, a surface mounted transducer was fixed to obtain the nonlinear parameters of
the ultrasonic radial propagation in carbonated concrete. The reason for this arrangement
was that the received signal transmitted from inner concrete was experimentally found to
be more stable than from the surface. In addition, this configuration could also be used
in a large concrete structure. It was assumed that two transducers were embedded in one
concrete and their poling direction pointed to the surface in which CO2 was ingressed, and
the reflected P wave would be affected by the S wave [27].

As shown in Figure 3a, Section 1-1 is the plane perpendicular to the bottom surface of
the concrete and along the central axis of the ECPT. Section 2-2 is perpendicular to the plane
of the ECPT shielding layer on the bottom of the concrete in Figure 3a and the projection
of ECPT on this plane is a circle. Figure 3b is Section 1-1 of the concrete in which the
transducer is embedded. The central axis of the ECPT is 45 mm from the bottom surface of
the specimen in Figure 3a. In addition, the concrete is up to 70 mm away from the surface
of the shielding layer of the ECPT. Figure 3c is a Section 2-2 view of the concrete in which
the transducer embedded. It can be found from the figure that the closest distance between
the central axis of the ECPT and the surface of the concrete is 42 mm.

Figure 3. Arrangement of the embedded composite piezoelectric ultrasonic transducer: (a) partial
cutaway perspective view of the specimen; (b) Section 1-1; (c) Section 2-2.

2.2. Accelerated Carbonation Experiment

Concrete specimens were cured in an environmental chamber with a temperature
of 20 ± 3 °C and a relative humidity of 95%. After 28 days of curing, all surfaces of the
specimens were sealed with paraffin wax except for the surface which CO2 ingressed.
The concrete specimens were placed in the carbonation chamber for concrete carbonation
experiments. In this case, the ambient temperature was 20 ◦C, the CO2 concentration
was 20%, and the relative humidity was 70%. The carbonation depth was measured with
phenolphthalein in spare samples after 0, 7, and 21 days of carbonation.

2.3. Testing Methods

The specimens were removed from the carbonation chamber after 3, 7, 14, and 21 days
of concrete carbonation, respectively. In order to test the ultrasonic parameters of carbon-
ated concrete under different temperature environments, the concrete was placed in an
environment chamber at the temperature from −20 ◦C to 40 ◦C for 24 h with a temperature
interval of 5 ◦C, and the relative humidity was controlled at 70%. Figure 4 shows the
experimental setup. A function waveform generator (DG 4202) generated 15-cycle, 1 MHz
frequency, 10 peak-to-peak voltage sinusoidal waveform signal pulses at a burst interval
of 3 ms. Then, the signal was amplified to a peak-to-peak voltage of 120 V by a broad-
band power amplifier (KROHN-HITE 7602M, Brockton, MA, USA), and the ultrasonic
signal was transmitted by the ECPT in the concrete. It should be noted that the receiving
transducer fixed to the concrete surface had the same central axis as the ECPT. The oscil-
loscope (Keysight InfiniiVision DSOX 3014T, Santa Rosa, CA, USA) was connected to the
receiving transducer to acquire a time domain signal with a sampling length of 16,000 at a
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sampling frequency of 625 MSa/s, and the acquisition mode was the average acquisition
of 2048 times. At the same time, a sync output line connected the function waveform
generator to the oscilloscope to receive the reference waveform. The measurements of per
specimen were repeated 10 times. Finally, received signal was subjected to post-processing
such as denoising (wavelet transform), interception, windowing, and fast Fourier transform
(FFT) by the computer.

Figure 4. Experimental device: (a) connection of experimental instruments; (b) the photos of the
experimental device.

The received time domain signal (the blue squares indicate the width of the Hann
window) of carbonated concrete acquired by the oscilloscope is shown in Figure 5a. It
should be noted that the time for the concrete boundary reflection wave to reach the
receiving transducer measured in the experiment was around 28 μs. However, the pulse
time length of the excitation wave was less than the time length required for the arrival of
the reflected wave. In order to ensure maximum signal accuracy and avoid the influence
of boundary reflection waves on the received time-domain signal, the first ten cycles of
the time-domain signal were intercepted for windowing (Hanning) and subjected to FFT
processing. The spectrum of the FFT processed signal is shown in Figure 5b, and the
fundamental amplitude (A1) and the second harmonic amplitude (A2) can be observed
from the figure. The products of the carbonation reaction filled the pores in concrete,
resulting in an effect on the nonlinear response of concrete. Subsequently, the fundamental
amplitude (A1) and the harmonic amplitude (A2) of the transmitted wave were changed
by this effect. As such, the relative nonlinear parameter (A2/A2

1) could be assessed for the
change in carbonated concrete.

Figure 5. Time signal and spectrum for measurement: (a) received time domain signal; (b) spectrum
signal after FFT (A1: 1MHz, A2: 2MHz).

3. Results and Discussion

The carbonation depth was measured with phenolphthalein in spare samples after 0, 7,
and 21 days of carbonation. Table 3 shows the average carbonation depth (cd). The carbonation
depth of concrete with different water cement ratio was different at the same carbonation time.
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Table 3. The average carbonation depth.

0 Day–cd (mm) 7 Day–cd (mm) 21 Day–cd (mm)

CI w/c = 0.57 0.51 6.41 11.83
CII w/c = 0.52 0.32 5.17 9.51
CIII w/c = 0.47 0.11 3.65 7.12

During the concrete carbonation progress, the existing pores and microcracks were
deposited by the carbonation product CaCO3 [5,35]. The molar volume of carbonated
products was higher than that of hydrates, resulting in a decrease in the porosity of concrete
and an increase in the density of concrete. These microstructural changes altered the
ultrasonic parameters of the concrete. After 3, 7, 14, and 21 days of concrete carbonation,
the concrete specimens were removed for ultrasonic measurement at 20 ◦C. It can be
observed from Figure 6 that the ultrasonic parameters change with the carbonation time
of concrete. As shown in Figure 6b, the fundamental amplitude (A1) of concrete increases
with the concrete carbonation time. Meanwhile, the amplitude of the second harmonic (A2)
shows a decreasing trend in general. Hence, the relative nonlinear parameters (A2/A2

1)
of concrete are reduced by the change of the fundamental amplitude (A1) and the second
harmonic amplitude (A2). The variation trend of relative nonlinear parameters with the
carbonation progress measured by the configuration at 20 ◦C in this study is similar to that
obtained by the second harmonic generation (SHG) technology of Rayleigh surface wave
taken by Kim et al. [6,7]. The relative nonlinear parameters decrease with the carbonation
progress. Although the water–cement ratios of CI, CII, and CIII are different, the variation
of their ultrasonic parameters of carbonated concrete follows this trend.

Figure 6. Variation of ultrasonic average parameters with carbonation time: (a) fundamental ampli-
tude A1; (b) second harmonic amplitude A2; (c) nonlinear parameter A2/A2

1.

After 3, 7, 14, and 21 days of concrete carbonation, specimens were placed in an
environment chamber at the temperature from −20 ◦C to 40 ◦C for 24 h with a temperature
interval of 5 ◦C, all with a relative humidity of 70%. Figures 7 and 8 show the average
fundamental amplitudes and second harmonic amplitudes of the ultrasonic longitudinal
wave measured at different ambient temperatures after 14 days of concrete carbonation.
The fundamental amplitudes and second harmonic amplitudes of the three kinds of concrete
are different at various ambient temperatures. As shown in Figure 7, the fundamental
amplitude is also affected by the increasing temperature from −20 ◦C to 40 ◦C. It can be
seen that the fundamental amplitude measured at 15 ◦C is the lowest. The fundamental
amplitude (A1) measured at 40 ◦C increased significantly compared with that at 15 ◦C.
Then, the fundamental amplitude also rises in the temperature decreasing from 15 ◦C
to 0 ◦C. This may be due to the trend of water freezing in concrete pores increasing the
acoustic impedance of concrete. The fundamental amplitude (A1) at −20 ◦C does not
change much from that at 0 ◦C. It may be the reason that the water in the concrete pores
at 0 ◦C is in the state of a mixture of ice and water. Whereafter, the water in the concrete
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pores froze into ice at −20 ◦C. As shown in Figure 8, the temperature reduction can not
increase the second harmonic amplitudes (A2). The second harmonic amplitudes (A2) also
rise after temperature increases ranging from 0 ◦C to 40 ◦C. Interestingly, the rising trend of
the second harmonic amplitudes (A2) is greater when the temperature ranges from 0 ◦C to
10 ◦C than when the temperature ranges from 10 ◦C to 40 ◦C. It can be seen clearly that the
second harmonic amplitudes (A2) of the three kinds of specimens decrease quickly with
the temperature reduction. The amplitudes of the second harmonic decrease slightly at a
temperature between −20 ◦C and 0 ◦C. Significantly, the amplitude of the second harmonic
at low-temperature decreases by nearly 80% compared with that at 10 ◦C.

It can be seen from Figures 9–12 that the relative nonlinear parameters (A2/A2
1) of

carbonated concrete are changed by the influence of temperature during the carbonation
time. The relative nonlinear parameters (A2/A2

1) measured at any temperature decrease
with carbonation time. The relative nonlinear parameters of carbonated concrete measured
at 0 ◦C compared with that at 10 ◦C decrease significantly (around 80 ∼ 90%), whereas
the relative nonlinear parameters of carbonated concrete measured at 15 ◦C to 40 ◦C increase
slightly. The relative nonlinear parameters also increase slightly when the temperature is
at −20 ◦C to 0 ◦C, but it does not change too much. Table 4 shows the measured relative
nonlinear parameters in different temperatures at the carbonation day 14.

Figure 7. Variation of fundamental amplitude A1 at different temperatures: (a) fundamental ampli-
tude A1 of CI; (b) fundamental amplitude A1 of CII; (c) fundamental amplitude A1 of CIII.

Figure 8. Variation of second harmonic amplitude A2 at different temperatures. (a) second harmonic
amplitude A2 of CI; (b) second harmonic amplitude A2 of CII; (c) second harmonic amplitude A2

of CIII.
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Figure 9. Variation of nonlinear parameter A2/A2
1 at different temperatures (day 3): (a) nonlinear

parameter A2/A2
1 of CI; (b) nonlinear parameter A2/A2

1 of CII; (c) nonlinear parameter A2/A2
1 of CIII.

Figure 10. Variation of nonlinear parameter A2/A2
1 at different temperatures (day 7): (a) nonlinear

parameter A2/A2
1 of CI; (b) nonlinear parameter A2/A2

1 of CII; (c) nonlinear parameter A2/A2
1 of CIII.

Figure 11. Variation of nonlinear parameter A2/A2
1 at different temperatures (day 14): (a) nonlinear

parameter A2/A2
1 of CI; (b) nonlinear parameter A2/A2

1 of CII; (c) nonlinear parameter A2/A2
1 of CIII.

Table 4. The measured average relative nonlinear parameters.

Temperature (◦C) −20 −15 −10 −5 0 5 10 15 20 25 30 35 40

CI w/c = 0.57 0.00867 0.00842 0.00752 0.00843 0.00951 0.05216 0.16068 0.18743 0.19172 0.18288 0.18733 0.18284 0.19091
CII w/c = 0.52 0.01052 0.01169 0.01128 0.01135 0.01236 0.05288 0.0984 0.14073 0.15304 0.15215 0.15699 0.15659 0.16099
CIII w/c = 0.47 0.01362 0.01453 0.01512 0.01587 0.01564 0.06761 0.15755 0.17139 0.17661 0.16495 0.17859 0.17563 0.17809
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Figure 12. Variation of nonlinear parameter A2/A2
1 at different temperatures (day 21): (a) nonlinear

parameter A2/A2
1 of CI; (b) nonlinear parameter A2/A2

1 of CII; (c) nonlinear parameter A2/A2
1 of CIII.

As shown in Figures 9–12, the values of the relative nonlinear parameters are more
minor at 0 ◦C than at 10 ◦C, whereas the measured nonlinear parameters for the three con-
crete specimens change obviously with carbonation time in low-temperature environments
as shown in Figures 13 and 14. In the same carbonation environment, the carbonation
rate of concrete with high water–cement ratios is faster than that with low water–cement
ratios [36]. The data in Table 3 follow this trend and can also be reflected from the changes
of the relative nonlinear parameters in Figures 13 and 14. In addition, the variational degree
of nonlinear parameter is greater for CI (w/c = 0.57) than for CII (w/c = 0.52) and CIII
(w/c = 0.47). It means that the detection method in this study is suitable for the assessment
of carbonated concrete in low-temperature environments as well.

Figure 13. Variation of nonlinear parameter A2/A2
1 at 0 ◦C: (a) nonlinear parameter A2/A2

1 of CI;
(b) nonlinear parameter A2/A2

1 of CII; (c) nonlinear parameter A2/A2
1 of CIII.

Figure 14. Variation of nonlinear parameter A2/A2
1 at −20 ◦C: (a) nonlinear parameter A2/A2

1 of CI;
(b) nonlinear parameter A2/A2

1 of CII; (c) nonlinear parameter A2/A2
1 of CIII.
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4. Conclusions

In this paper, the longitudinal nonlinear ultrasonic parameters of carbonated concrete
were detected using an embedded composite piezoelectric transducer (ECPT) as the trans-
mitter, and the effect of temperature on the nonlinear parameters of carbonated concrete is
investigated. Conclusions are drawn from the experimental results as follows:

• Though only one ECPT was embedded in the concrete specimen as a transmitter,
the nonlinear parameters of the ultrasonic radial propagation in carbonated concrete
could also be obtained by the surface-mounted transducer fixed on the surface in
which CO2 was ingressed. This configuration can detect concrete carbonation with
a monitoring network for a long time without damage when the surface-mounted
transducer is permanently fixed on the structural surface.

• The relative nonlinear parameter of carbonated concrete can be affected by the water–
cement ratio of the concrete. There is a more significant variation of the nonlinear
parameters in the same carbonation time for the specimens with a high water–cement
ratio than that with a low one. It indicates that the change of relative nonlinear
parameters is closely related to the concrete carbonation depth.

• At the same ambient relative humidity (RH = 0.7), the fundamental amplitudes (A1)
and the second harmonic amplitudes (A2) are increased by the increasing temperature
from 15 ◦C to 40 ◦C, and the relative nonlinear parameters (A2/A2

1) between the two
temperatures are also increased slightly. The fundamental amplitude of carbonated
concrete at temperatures below 15 ◦C increases dramatically, while the second har-
monic amplitude decreases sharply below 0 ◦C compared with that at 10 ◦C (fell
around 80%). The relative nonlinear parameters of carbonated concrete measured
at 0 ◦C compared with that at 10 ◦C decreases significantly (around 80∼90%). The
relative nonlinear parameters also increase slightly when the temperature is at −20 ◦C
to 0 ◦C, but it does not change too much. As such, the relative nonlinear parameters
in low temperatures below 0 ◦C are much smaller than at temperatures above 10 ◦C.
It may be related to the water condensation in the concrete. In addition, the detection
method in this study is also appropriate for the measurement of carbonated concrete
in low-temperature environments, since the measured nonlinear parameters for the
three concrete specimens change obviously with carbonation time.

• Considering the effect of temperature variations on the relative parameters of car-
bonated concrete, temperature compensation should be performed for the relative
nonlinear parameters when continuously monitoring the concrete carbonation process.

It can be seen from the results that the relative nonlinear parameters change sig-
nificantly at the temperature from 0 ◦C to 10 ◦C. The variation of the relative nonlinear
parameter in this temperature interval needs to be studied further. Moreover, future studies
could investigate the quantitative association between the relative nonlinear parameters
and concrete carbonation depth for different kinds of concrete. In addition, the other factors
in the measurements for carbonated concrete nonlinear parameters will be investigated in
more detail.
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Citation: Jasiūnienė, E.; Yilmaz, B.;

Smagulova, D.; Bhat, G.A.; Cicėnas,
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Abstract: The aim of this work is to achieve reliable nondestructive evaluation (NDE) of adhesively
bonded aerospace components by developing novel multidimensional data fusion techniques, which
would combine the information obtained by ultrasonic and X-ray NDE methods. Separately, both
NDE techniques have their advantages and limitations. The integration of data obtained from pulse
echo immersion ultrasound testing and radiography holds immense potential to help improve the
reliability of non-destructive evaluation. In this study, distinctive features obtained from single
techniques, traditional ultrasonic pulse echo testing, and radiography, as well as fused images, were
investigated and the suitability of these distinctive features and fusion techniques for improving the
probability of defect detection was evaluated. For this purpose, aluminum single lap joints with brass
inclusions were analyzed using ultrasound pulse echo and radiography techniques. The distinctive
features were extracted from the data obtained, and images of features obtained by both techniques
were fused together. Different combinations of features and fusion algorithms were investigated,
considering the desire to automate data evaluation in the future.

Keywords: data fusion; ultrasonics; radiography; adhesive joints; adhesive bond; non-destructive
evaluation; interface defects; multiple reflections; signal modeling

1. Introduction

Recently, adhesive bonding technology has gained considerable attention in various
industrial sectors, especially in the aviation, automobile, civil, and marine industries due to
the weight reduction of the structure, uniform distribution of mechanical stresses, fairly
high strength-to-weight ratio, and ability to join dissimilar materials [1–3]. Adhesive
joints also provide improved performance of the structure and reduce fuel consumption,
which benefits the economic sector. All the advantages and abilities of adhesive joints
make this technology the most effective and practical for joining material components, in
comparison to traditional bonding techniques, such as riveting, welding, etc. Adhesives are
used to bond metal and composite materials to produce different structural components
and advanced materials. In the aerospace industry, a substantial number of parts are
fabricated using the adhesive bonding of metal and composite materials; however, the
manufacturing processes are still unfavorably manual, resulting in various types of defects
in the components [4,5]. Factors that can affect the durability of adhesive joints and
cause the occurrence of different defects are moisture, poor curing, contamination, a
constant structural load, impact force, and others [2,3]. Distinct types of defects, such as
delamination, debonding, and weak or kissing bonds, can appear in adhesive joints. These
internal defects are extremely critical for structural integrity due to their invisibility and
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the strong influence on bonding quality. As a result, it becomes difficult to predict the
mechanical behavior of the joints in the case of the presence of internal defects [6]. The
presence of flaws or discontinuities in the bonded joints should be avoided at all costs
for implementing them in critical aerospace components to provide environmental safety,
safety of human life and health, and economic benefits.

Recently, many different investigations were carried out using different non-destructive
testing (NDT) methods, such as ultrasonic [7], thermography [8,9], eddy current stimulated
thermography [10], and others for the inspection of adhesive joints [11–14]. However, each
non-destructive method has its own advantages and limitations upon which the selection
of the appropriate method depends. Moreover, the choice of method depends on the
structure to be inspected, since most of the methods become impractical after the structure
is assembled due to the geometrical complexity of the structure, one-sided access, or even
coverage with other layers of functional material [15].

The ultrasonic testing technique is widely and successfully used for the inspection of
different structures. Ultrasonic non-destructive testing is advantageous and widely used
in identifying and locating defects and can be utilized to evaluate the coherence of the
adhesive bonded joints. This method was used by many researchers for the characterization
of adhesion quality [16,17]. Adhesive joints can have complex geometry, roughness of the
surface, curved surface, or interface layers of the component, which in addition can be
not parallel, with varying thicknesses of the materials and their types. All these factors
influence the ability of the technique used to detect defects. Zhang et al. [18] investigated
the detection of disbonds in multi-layered structures using the laser ultrasonic technique.
The technique used was pulse-echo mode for defect detection, and quantitative evaluation
was used for defect sizing. Numerical simulations and ultrasonic inspection were also used
for the detection of fatigue debonding in composite lap joints in the work of Liu et al. [19].
Liu et al. [20] used numerical and experimental investigations of ultrasonic guided waves.
Disbonds were detected because of the variation in the arrival time of the ultrasonic waves.
Many other researchers suggest the use of different ultrasonic methods for the detection
of interface defects in multi-layered structures, including guided waves, laser ultrasonics,
and non-linear ultrasonic evaluation [13,21–24]. Samaitis et al. proposed a novel approach
based on the classical pulse echo technique and machine learning for the classification of
weak bonds [25] As a result, ultrasonic techniques are extremely popular and more suitable
for the inspection of multi-layered structures for detecting debonding-type defects.

X-ray radiography can offer significant spatial resolution and can investigate the
overall thickness of the adhesive. For this reason, X-rays can image and quantify voids over
the entire adhesively bonded joint, being an attractive alternative for different inspection
techniques [26]. However, in terms of feature detection, contrast is required [27]. Good
contrast is achieved when the attenuation coefficient of the X-rays differs significantly in
the material inspected in contrast to the defect and/or there is a significant difference in
the propagation path length of X-rays in the various materials (defect/non-defect) [28].
Therefore, X-ray radiography is especially good for the detection of volumetric defects,
such as large voids [29] or inclusions. In the case of the inspections of thin structures,
such as lap joints, where the thickness of the adhesive is small, this poses difficulties in
detecting the defects in the joints where thickness along the propagation path of the X-rays
is negligibly small (such as in the case of disbonds) and where the attenuation of X-rays in
good/bad joints are almost the same.

In addition, it is difficult to detect interface defects with high reliability, since there are
many influencing factors depending on the techniques used, samples under investigation,
and interface defect types. Therefore, it is significantly important to select and develop a
high-performance NDT technique that will satisfy the requirements of testing adhesive
joints for high-reliability internal defect detection. The limitation of identifying appropriate
NDT techniques has had a considerable influence on the general usage of adhesives, as it is
widely assumed that if NDT techniques were reliable enough to ensure bond line integrity,
adhesive bonding would be utilized significantly more than it is now.
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Given that each non-destructive evaluation technique has varying sensitivity to differ-
ent defects depending on the component inspected, multiple non-destructive evaluation
methods are frequently applied to achieve improved, more reliable, and precise results,
demonstrating the need for data fusion of multiple techniques [30]. X. E. Gros published
the first book on the applications of NDT data fusion [31]. It provides a variety of research
studies reflecting on how multi-sensor NDT is competent to integrate redundant data,
distinguishing flaws more precisely and achieving a better signal-to-noise ratio (SNR) [32].
Later, a state-of-the-art survey of NDE data fusion techniques was provided by Liu et al. [33].
Each individual non-destructive method has its own advantages and limitations. For exam-
ple, ultrasonic waves are best for the detection of delamination or disbond type of defects,
while radiography is best for the detection of changes in density. Therefore, the most
suitable single NDT method has to be selected according to the requirements to achieve
the evaluation goal. Furthermore, it is observed that none of the single NDE techniques
can fully characterize the object inspected, and it has its own uncertainty of the obtained
result. Moreover, accuracy and reliability requirements are constantly increasing, especially
in the field of aerospace and nuclear power industries. Therefore, to meet such require-
ments, multiple inspection techniques are needed. The fusion of multiple inspections
benefits from the advantages of all individual non-destructive inspection methods and
diminishes the uncertainty of the measurement result, as well as enhancing the signal.
In addition, combining fusion techniques with advanced post-processing algorithms can
improve the evaluation results. Fusion can help reduce the uncertainty of the results [33].
Currently, data fusion extends to a wide range of diverse applications [34]. B. Yilmaz et al.
illustrated the implementation of the data fusion algorithm in advanced NDT techniques
for the identification of defects in single lap composite adhesive joints [35]. Wang et al.
have performed terahertz and X-ray image fusion to improve the evaluation of damage of
composite materials [36].

In addition, when NDE is applied in industry, there is always a desire to automate
the evaluation of data to avoid human factor and increase the probability of detection [37].
Therefore, one of the objectives of this work is to develop the process of determination
and extraction of features for different inspection results for their further fusion, as well as
to create a fusion algorithm to develop a reliable NDT technique for the investigation of
multi-layered structures with bonding defects.

The aim of this work is to achieve reliable non-destructive evaluation (NDE) of adhe-
sively bonded aerospace components by developing novel multidimensional data fusion
techniques, which would combine the information obtained by ultrasonic and X-ray NDE
methods. Separately, both NDE techniques have their advantages and limitations. For
instance, ultrasonic NDE methods are sensitive to elastic properties and density and are
good at detecting planar defects, such as lack of bonding/delamination; however, they
may suffer from attenuation or diffraction. X-rays are very sensitive to changes in density
and volumetric defects, but their performance on planar defects is limited. The integration
of data obtained from pulse-echo immersion ultrasound testing and radiography holds
immense potential for helping to improve the reliability of non-destructive evaluation. The
objective of this investigation was to study and compare distinctive features obtained from
single techniques, traditional ultrasonic pulse echo testing and radiography, and fused
images, as well as to evaluate the suitability of different features and fusion techniques to
improve the probability of defect detection.

On the basis of the data fusion algorithms, this article presents feature-based image
fusion of ultrasonic and radiography testing. For this purpose, single lap aluminum
joints with brass inclusions were analyzed using ultrasound pulse echo and radiography
techniques. Then, different features were extracted from the obtained data. Then, images of
the features of both techniques were fused together. Different combinations of features and
fusion algorithms were investigated considering the desire to automate data evaluation in
the future. The discussion of the qualitative and quantitative analysis obtained is presented
in the discussion section, followed by the conclusions.
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2. Materials and Methods

The workflow of the NDE of the adhesive joints using ultrasonic, radiography, and
data fusion of both is presented in Figure 1. It consists of the following steps:

• Data acquisition (using ultrasonic and radiography techniques);
• Modelling of ultrasonic signal to determine the zone of interest in ultrasonic A-scans;
• Feature extraction;
• Feature-based data fusion;
• Evaluation of results.

 

Figure 1. Schematic algorithm of the workflow.

2.1. Sample Description

The aluminum–epoxy adhesive single lap joints were manufactured by COTESA
GmBH, Germany. For aluminum–epoxy joints, adherend was selected as 1.6 mm sheet
2024 aerospace aluminum alloy. The aluminum plate shown in Figure 2 had dimensions of
280 × 215 × 1.6 mm. A 3M Scotch-Weld AF 163-K red structural adhesive epoxy film with
a thickness of 0.16 mm was used as adhesive. The lap joint was 25 mm wide. Following
the necessary surface preparation, the epoxy film was placed on the adherend. There were
10 brass inclusions placed on the adhesive of different dimensions—5 large inclusions
with a size of 12.7 mm, while the space between the consecutive defects is approximately
12.75 mm. On the other side, five smaller brass inclusions of size 6.35 mm were equally
distributed with the space between the consecutive defects, approx. 18.05 mm. In further
investigations, four out of five smaller defects were investigated because the holder was
shadowing one of the defects. The schematics of the sample with the size and position of
the defects is shown below in Figure 2. The thickness of the double-sided brass inclusion
was 0.05 mm.
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(a) 

 
(b) 

Figure 2. Single lap adhesive joints with brass inclusions prior to bonding: (a) schematic;
(b) aluminum–epoxy joint.

2.2. Investigation Techniques

The aluminum single lap joint was examined using pulse-echo immersion ultrasonic
and radiographic testing, and then the fusion of the results obtained by these two techniques
was performed.

2.2.1. Immersion Ultrasonic Testing

The investigation of the aluminum adhesive lap joint with brass inclusion was carried
out in an immersion tank using an Olympus V328-SU focused transducer with a central fre-
quency of 15 MHz and a diameter of 10 mm. The far-field distance between the transducer
and the sample top surface was kept fixed at 48 mm. The transducer was positioned in
such a way that the emitted beam was perpendicular to the sample surface. Investigation
of the single-lap joint was carried out on the entire bonded region with a 0.2 mm scan step
and 1422 × 289 scanning points. The schematics of the ultrasonic pulse-echo immersion
testing is shown in Figure 3.
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Figure 3. Experimental set-up of ultrasonic pulse-echo immersion.

2.2.2. Radiographic Testing

The adhesive bonded single lap joint was scanned using radiography as well. For
this, the Rayscan 3D CT system was used. In this investigation, a 225 kV microfocus tube
was used. The detector of the computed tomography system was a 2048 × 2048 flat matrix
detector equipped with a scintillator. The schematic of the experimental set-up of the
radiographic testing is shown in Figure 4. During the measurements, an X-ray source
irradiated the sample at a voltage of 150 kV and a current of 300 μA with the cone beam
and a 2D image was recorded at the detector with the integration time of 1500 ms. The
focal spot was 47 μm, while the voxel size was 145 μm.

 

Figure 4. Schematic of experimental set-up for radiographic inspection.

2.3. Ultrasonic Signal Modelling

Modelling was performed to study the behaviour of ultrasonic waves propagating
through the layers of adhesively bonded aluminum to aluminum with brass inclusion
defects located between metal and adhesive, as well as to study their propagation and
reflection paths from the sample interfaces to determine time instances of each for determi-
nation of gates to be used when selecting the part of the signal of interest for determination
of features. According to our previous work [3], it was discovered that the analysis of
multiple interface reflections improves the probability of defect detection. Therefore, time
instances of ultrasonic impulses that correspond to multiple interface reflections were
studied in this part.
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The model that complies with the sample under investigation was modelled in MatLab
software. Sample and medium characteristics are presented in Table 1. The distance
between the focused transducer and the sample surface was 48 mm.

Table 1. Characteristics of the sample materials and medium.

Material Thickness, mm Density, kg/m3 Ultrasound
Velocity, m/s

Water 48.5 998 1496
Aluminum 1.6 2780 6532
Adhesive 0.16 1214 2433

Brass inclusion 0.05 8730 4430

As a result of modelling, pulse responses of each reflection from the structure boundary
were obtained. Images with impulse plots characterizing the arrival time of each signal
reflected from different sample boundaries with and without defects are presented below
in Figure 5. Additionally, in Figure 6 the propagation paths of the ultrasonic wave for each
signal impulse reflected from the sample interfaces, as well as their time moments for the
non-defective and defective options, are presented.

Figure 5. Impulses characterizing each signal reflection from the boundaries of the sample: (a) without
defect; (b) with defect.
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Figure 6. Ultrasonic wave propagation paths through the boundaries and time instances for: (a) not
defected and (b) defected options.

According to obtained plots of impulses, the time moments of multiple reflected
signals from the sample interfaces coincided: aluminum–adhesive interface (impulses 2, 5,
7) in the case of the sample without defect and aluminum–brass inclusion (impulses 2, 5, 7)
for the sample with defect. In addition, for the sample with defect, there was a change in
phase, for multiple interface reflections: aluminum–brass inclusion, which differed from
the option of sample without defect. In addition, additional wave reflections from the brass
inclusion bottom appear and overlap with other reflections from the boundaries.

To obtain time diagrams of the signals propagating in the investigated structure, the
convolution of the pulse response and the excitation signal was performed. The excitation
signal was a sine burst of 15 MHz frequency 2 periods with a Gaussian envelope. The time
diagrams obtained in defect-free and defective objects are presented in Figure 7a,b, respec-
tively. In the case of defect-free objects, individual pulses reflected from different material
boundaries were easily distinguished. Pulse no.1 was surface reflection, pulse no.2 was
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reflection obtained from aluminum–adhesive boundary, pulses no.3–5 were multiple reflec-
tions in adhesive layer, and pulse no.6 was the second reflection from aluminum–adhesive
boundary. However, in the case of a defective sample, the analysis of the reflected signals
(Figure 7b) was much more complicated: pulse no.1 was surface reflection, while pulse no.2
was the result of interference of pulses reflected from aluminum–brass, brass–adhesive,
and adhesive–aluminum boundaries (see Figure 5b pulses 2–7). It can be observed that it
was impossible to separate signals reflected from separate boundaries. However, there is a
particularly important feature that allows us to determine the presence of the defect—the
phases of second reflections were opposites. In case of defect-free sample wave, it reflected
from aluminum–adhesive boundary, i.e., from material with lower acoustic impedance. In
this case, the wave was reflected with opposite phase. In case of defective sample ultrasonic
wave, it reflected from aluminum–brass boundary, i.e., from material with higher acoustic
impedance. In this case, the wave is reflected with the same phase.

(a) 

(b) 

Figure 7. Impulses characterizing each signal reflection from the boundaries of the sample: (a) without
defect, (b) with defect.
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In terms of the impulse response, Figure 7 presents the main signals reflected from
the different layers of the sample, whereas in Figure 8 the experimental data are presented
with an overlayed theoretically calculated impulse response. Red spikes denote pulses
with positive phase, blue with negative, and green is the combination of two pulses with
the same flight time but opposite phases, as can be seen in Figure 8. The measured data
were normalized according to the first plate backwall and adhesive interface reflection.

(a) 

(b) 

Figure 8. Measured signal and impulse response function overlay: sample part without defect (a) and
defected (b). The black line denotes the measured ultrasonic signal, and the color bars denote the
reflected impulse time moments presented in Figure 7.

According to the analysis of impulses and waves propagation paths, most the informa-
tion of the defect was from time moment of wave reflection from the aluminum–defect inter-
face. From the previous study [3], analysis of multiple reflections increases the probability
of defect detection. Therefore, time intervals starting from the moment of aluminum–defect
reflection to the next multiple reflections were used as a feature for setting the gates in the
step of data fusion.

2.4. Data Fusion

It is not always possible to extract all relevant data from a single sensor and detect
defects in a component. Often, there is a need to have information from two or more
sensors/techniques for the better evaluation of the results. Data fusion can be used at
various levels: pixel, signal, feature level [38]. In this work, feature-based fusion was chosen
for the fusion of ultrasonic and radiographic testing results. In Figure 9, the workflow of the
procedures applied is shown. Using two different measurement techniques, the different
features were extracted. Then, different combinations of ultrasonic and radiographic
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features were supplied to a variety of fusion algorithms to test the suitability of features
and fusion algorithms for automation of the defect detection in the future.

 
Figure 9. Workflow of data fusion.

2.4.1. Preparation of Data for Data Fusion

Before the fusion, the data needed to be prepared, undergoing several steps of prepa-
ration: noise reduction, coordinate matching, registration/interpolation, and normalization
(see Figure 10). It was important to align the data obtained from different NDE techniques
before the implementation of the data fusion. The raw data obtained from the experimental
investigation of the single lap adhesive joint using ultrasonic and radiographic testing
were aligned based on different parameters, such as noise removal, coordinate matching,
interpolation, and normalization. The multi-step algorithm describing the pre-processing
on the experimental data of two different techniques of non-destructive testing is shown in
Figure 10.

The evaluation of bonding quality in the aluminum single-lap joint was conducted
using separate experimental set-ups, and as such the data obtained had a local coordinate
system. To perform data fusion on such varied systems, the coordinates of the experimental
data from the investigation had to be matched. The data were aligned with the position of
the bonding edges of the adhesive joint to match the coordinates. The data from immersion
ultrasonic inspection had to be flipped to match the radiographic testing data and further
interpolated to match the coordinates of the newly registered data shown. Finally, the
values of the radiographic and ultrasonic data were normalized using linear scaling (0 to 1).

2.4.2. Selection of Features

Several distinctive features for both the ultrasonic and radiographic experimental
data were used as input for data fusion. Previous work on the reliability of detecting
debonding defects with ultrasonic techniques in adhesive joints showed that in addition
to the amplitude of the ultrasonic echo, the attenuation and the amplitude in frequency
domain play important roles in the defect contrast [2], allowing higher probability of defect
detection. Therefore, in this study, in addition to the peak-to-peak amplitude, we also
selected signal attenuation, frequency domain maximum amplitude, and absolute energy as
features of the ultrasonic inspection results, as shown in Table 2. The features are extracted
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by applying the specified formula to 3D ultrasonic data (x, y, t), hence the dimensions
are reduced to 2D (x, y). On the other hand, we applied 2D image processing techniques
to obtain 2D (x, y) X-ray radiography results to create additional features, namely, FAST
(features from accelerated segment test), Harris corner detection, and Sobel edge detection.

 

Figure 10. Measured data preparation for data fusion.

Table 2. Different features extracted from the measured data.

NDT
Technique

Feature Formula

Ultrasonic Peak-to-peak
amplitude max(A(t))− min(A(t))

Ultrasonic Attenuation (max(A(t0))−min(A(t0)))−(max(A(tk))−min(A(tk)))
max(A(t0))−min(A(t0))

Ultrasonic Frequency domain
maximum amplitude max(FFT(A(t)))

Ultrasonic Absolute
energy ∑

t
A(t)2

X-ray Amplitude none

X-ray FAST Sp→x =

⎧⎨⎩
d, Ip→x ≤ Ip − T
s, Ip − T < Ip→x <
b, Ip + T ≤ Ip→x

Ip + T

X-ray
Harris
Corner

Detection
E(u, v) = ∑

x,y
w(x, y) [I(x + u, y + v)− I(x, y)]2

X-ray Sobel Edge
Detection

Gx =

⎡⎣1
2
1

⎤⎦ ∗ ([+1 0 − 1] ∗ A),
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0
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⎤⎦ ∗ ([1 2 1] ∗ A),
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(
Gx, Gy

)
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2.4.3. Data Fusion Algorithms

The main purposes of employing data fusion in different testing environmental condi-
tions are to reduce the probability of error and improve the reliability of defect detection. A
wide range of fusion algorithms can be used for the fusion of two-dimensional data, in-
cluding wavelet-based combinations, Bayesian theory, Kalman filter, Dempster Shafer [39],
and artificial neural networks [40]. This piece of work focused on the application of multi-
ple feature-based fusion algorithms, namely averaging, difference, Hadamard, Dempster
Shafer rule of combination, and pyramid fusion with saliency detection.

Simplest of all fusion algorithms, average, is performed at a pixel level—the average
of feature matrices obtained from two sources is calculated. On the other hand, difference
fusion is estimated based on the feature value difference on each pixel value from different
NDT results. Hadamard fusion is calculated with the pixel-wise multiplication of same-
size matrices.

The Dempster–Shafer theory was initially proposed by Arthur Dempster in the 1960s
for reasoning uncertainties and later developed by Glenn Shafer in the 1970s [41,42]. The
Dempster–Shafer (DS) theory is applicable to instances wherein non-probability uncertainty
is evident. The DS evidence theory is based on mass, belief, and plausibility functions.
The DS rule of combination is used to calculate the unique evidence mass (m) for the
hypothesis by incorporating the evidence masses (m1, m2). In this study, the hypothesis
was categorized as positive in case of defects and negative in case of non-defects.

Saliency detection is a hot topic that has recently piqued the interest of researchers
from a wide range of disciplines. In our investigation, source images of ultrasonic and
radiographic testing were decomposed into approximation base layer coefficients and detail
layer coefficients using the multi-scale decomposition algorithm [43]. The salient features
of the X-ray and ultrasonic features are extracted using a basic saliency map detection
algorithm [44].

The data fusion algorithms used, their short descriptions, and mathematical formulas
are provided in Table 3.

Table 3. Data fusion algorithms.

Fusion Algorithm Description Mathematical Formula

Average at the pixel level, the average of feature
matrices from two sources: UT 1 and RT 2

FUT+FRT
2

Difference at the pixel level, the difference of feature
matrices from two sources: UT 1 and RT 2 FUT − FRT

Hadamard t pixel-wise multiplication of same-size feature
matrices of two sources UT 1 and RT 2 (FUT ◦ FRT)ij = (FUT)ij(FRT)ij

Dempster –Shafer evidence theory based on mass, belief,
and plausibility functions 3 (m1 ⊕ m2)(A) = 1

K−1 ∑
FUT∩FRT=A �=∅

m1(FUT)m2(FRT)

Saliency
the salient features of the X-ray and ultrasonic

features are extracted using a basic saliency
map detection algorithm

χm =
∣∣κη(p, q)− κμ(p, q)

∣∣
1 UT stands for feature matrix of ultrasonic testing. 2 RT stands for feature matrix of radiographic testing.
3 F—feature matrix; κη is the mean filter output, and κμ is the median filter output of the source images p, q;
K = ∑

B∩C=∅

m1(B)m2(C).

3. Results

The aluminum adhesive lap joint with brass inclusions of varied sizes has been investi-
gated using the techniques described above: ultrasonic immersion testing and radiography.

3.1. Features

From the results obtained, different feature images were extracted to be used later for
data fusion. The selection of features was based on our previous investigations of adhesive
joints [35]. The features described in the previous sections were used. In Figure 11, images

250



Appl. Sci. 2022, 12, 12930

for the following ultrasonic features are presented: peak-to-peak amplitude, attenuation,
and frequency. In the case of radiographic testing, the following features were analyzed
(see Figure 12): amplitude, FAST corners, Harris corners, Sobel edges.

3.2. Data Fusion

Data fusion was applied to the combination of ultrasonic and X-ray-based features, as
shown in Table 2, using five fusion algorithms. The selected combinations of the results are
presented in Figure 13.

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 11. C-scans of different ultrasonic features: (a) peak-to-peak amplitude in the region from 2 to
11; (b) peak-to-peak amplitude in the region from 11 to 17; (c) attenuation in between gates 2 and 11;
(d) attenuation in between gates 11 and 17; (e) frequency domain max amplitude; (f) absolute energy.
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(a) 

(b) 

(c) 

(d) 

Figure 12. Features extracted from radiography images: (a) radiography; (b) FAST corners; (c) Harris
corners; (d) Sobel edges.
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 13. Examples of different combinations of fused features and used fusion algorithms:
(a) U5X4 average; (b) U4X1 difference; (c) U2X1 Hadamard; (d) U6X1 Dempster Shafer Positive;
(e) U6X4 saliency.

4. Comparison of Different Techniques and Discussion

The features and fused images of the X-ray and ultrasonic testing were analyzed using
the response operating characteristics (ROC) curves and the area under curve (AUC) values.
The photo of the sample with defects before bonding, as shown in Figure 2, was used as
the reference image to evaluate the quality of the fusion results: the form and position
of the defects was extracted from this photo to evaluate the accuracy of the features and
fused images, in terms of inclusion-type defect recognition. First, registration (including
interpolation and normalization) and coordinate matching have been applied to the image,
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considering the fusion data size. Then, the defect positions have been determined via
postprocessing of the edge detection algorithm. The fusion results of each defect have
been evaluated separately, considering this image. The results are evaluated using the area
under curve estimations of response operating characteristic curves.

An arbitrary reference matrix was constructed based on the known location of the
defects, with defected regions given the value 1 and perfectly bonded regions—0. By
knowing the position of the defects, it was possible to create a mathematical formulation of
a defect and a non-defect matrix that was used for comparing techniques. Every reference
matrix was converted to binary so that the ROC curve could be used for the evaluation.
Histogram-based segmentation was carried out. The segmented pixels in the matrix were
then categorized into one of four categories: true positive (TP) indicates the presence of
a defect in the defect position, false positive (FP) indicates the defect in a perfect bond
region, true negative (TN) represents the defect-free good bond region, and false negative
(FN) represents the defect-free position. The true positive and false positive rates for each
segmented matrix were calculated in accordance with specific and sensitivity information
and could be mathematically expressed as follows:

RTP =
NTP

NTP + NFN
(X)

RFP =
NFP

NFP + NTN
(X)

where RTP is the true positive rate, RFP is the false positive rate, NTP is the number of true
positives, NFN is the number of false negatives, NFP is the number of false positives, and
NTN is the number of true negatives.

Figure 14 shows the average performance of the distinctive features, according to the
ROC curves and AUC values. It could be observed that in the case of the inclusion type
of the defect, all features extracted from radiography data perform better according to the
ROC curves and the AUC values.

Figure 14. Overall defect detection performance of different features, according to ROC curves and
AUC values.

The fused results were evaluated with distinctive features that were extracted from
the results obtained by different techniques and are presented in Figure 15. The analysis
of the results shows that from the fusion algorithms used, simple average and saliency
gave the best results in the case of a brass inclusion type of defect. It is surprising that the
performance of the Hadamard and Dempster–Shafer algorithms was much worse than
expected. For ultrasonic features in terms of suitability for fusion, the best performance was
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achieved when using following features: ultrasonic signal attenuation (U2), peak-to-peak
(U4), and absolute energy (U6). Although all radiographic features performed similarly,
the final result was more influenced by the fusion algorithm.

Figure 15. Evaluation of results using receiver operating characteristics (ROC) curve.

The AUC values for each feature are given in Figure 14, and the AUC values presented
for each feature and fusion combination are presented in Figure 15. The combination
of features refers to the values given in Figure 9. It could be observed that fusion with
averaging and saliency performs best in almost all fusion combinations. Additionally,
the defect detection performance of radiographic features (except for the radiography
amplitude feature) can be improved by the fusion application of the best performing
ultrasonic signals (U2, U4, U6).

In addition, the visual examination of the fusion results presented in Figure 13 reveals
that fused results give additional information about the structure. It is obvious that radio-
graphy reveals the inclusion type defects very well; however, ultrasonic results provide
additional information about the structure—additional disbond regions around the edges
of the inclusions are visible.

5. Conclusions

The purpose of this investigation was to develop a feature-based data fusion tech-
nique to improve the probability of defect detection in the adhesive lap joints. Data were
experimentally obtained using two common NDE techniques: ultrasonic pulse-echo and
radiography. For this investigation, single lap adhesive-bonded aluminum joint with differ-
ent sizes of brass inclusions were used. For the selection of the zone of interest in ultrasonic
A-scans, theoretical analysis and modelling of impulse responses from interfaces in the
sample were performed and multiple reflections inside the sample were analyzed, as well
as different propagation paths. The modelling results were confirmed by experimental
investigations of the propagation of ultrasonic waves. For the analysis, several distinctive
features were extracted from the experimental ultrasonic and radiographic data and used
as inputs for the data fusion. The comparison of extracted features shows that, at least
in the case of the inclusion type of defect, the most promising features giving the highest
contrast in terms of the defect/non-defect region from ultrasonic images are signal attenu-
ation, peak-to-peak amplitude, and absolute energy; however, other features, especially
frequency domain related, should not be disregarded. Feature-based image fusion of both
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techniques was also applied and evaluated using different data fusion algorithms. This
helps to overcome the limitation of multimodal imaging and improves the prediction
possibility and reconstruction of the missing information from the images of the single
techniques. The fused image i provides intricate details of the defects in the sample on a
finer scale. Although radiographic image contributes to the detection of the inclusion type
of defect the most, the ultrasonic image provides extra information about additional types
of defects, such as disbonds around the edges of the inclusions, which are not visible in the
radiographic images. Of the fusion algorithms used, the best performance was achieved
using average and saliency algorithms—AUC values of more than 0.99 are achieved.
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5 Department of Farm and Food Machinery, Institute of Technology, Hungarian University of Agriculture and
Life Sciences, 2100 Gödöllő, Hungary
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Abstract: This work aims to estimate the shelf life of Golden Delicious apple fruit stored at room
temperature by determining the changing trend in color every week using a non-destructive mea-
surement method. Moreover, the study will measure the changes in weight loss (Δm) and the total
soluble solids (TSS) contained in the apple. The research focuses on the last stage of ripening and the
effect of shelf life affecting consumer behavior; therefore, the examined fruits were picked at the end
of the season and were stored at an ambient temperature and in controlled laboratory conditions for
six weeks, at 24 ◦C under 60% RH relative. Color measurements were performed with a portable
color sensor, which provided a simple and effective examination method in the case of an appropriate
number of fruit samples. The findings showed a significant increase in TSS and weight loss over
time. Color varying (ΔE) and chroma (C*) parameters increased with prolonged storage duration,
meaning that the color of the apples became darker and more color-saturated at the end of storage.
While weight loss and TSS follow a linear tendency in the given storage period, the color changes
in deteriorating fruits were characterized by exponential asymptotic regression. It was found that
although the moisture content reaches its limit value during the drying process of apples, the satu-
ration of color coordinates allows for determination of the limit parameters of consumption in the
linear stage of weight loss. The saturation limits (70.97; 12.77; 56.34 CIELAB L*; a*; b*), the dominant
color part (b*), and the growth rate of the saturation curves allow an accurate characterization of
ripening from the visual aspect, thus determining the limit parameters of shelf life and improving the
critical analysis factors affecting the life of fruits after harvest. By assessing color characteristics using
a non-destructive technology, customers may quickly evaluate the quality of apples and make better
decisions during their purchase.

Keywords: Golden Delicious apple; storage; weight loss; color; total soluble solids; shelf life; food engineering

1. Introduction

Apple (Malus × domestica Borkh) belongs to the family of Rosaceae and sub-family
Pomoideae and is one of the most widely produced and economically significant fruits
worldwide. In 2020, the production of apples around the world reached 86,442,716 tons [1],
and they are typically most appealing and health-promoting when gathered at their opti-
mum ripeness. The apple is one of those fruits whose quality changes quickly over time
while being stored, which causes variations in customer acceptance. First, it is assessed
based on its appearance, including color and size, and then its total soluble solids content.
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Over the years, research on post-harvest storage of fruits and vegetables has focused on
studying fruit’s appearance, quality, and mechanical properties under different conditions
such as temperature or shelf life to meet consumer expectations [2–4].

Fruits include numerous critical nutrients and phytochemicals that may help prevent
and reduce the risk of, for example, chronic illnesses such as heart disease, obesity, diabetes,
some forms of cancer, inflammation, stroke, and septic shock [5,6]. It is popular among pro-
ducers and consumers because of its excellent nutritional content and remarkable ecological
resilience [7–9]. Fruits are a good source of water, soluble solids, sugars, organic acids, and
dietary fiber [10,11]. For instance, an apple is a “healthy fast food” that replenishes the
body’s stores of vitamins, minerals, and trace elements. Over 600 essential and intermediate
chemicals beneficial to human nutrition and health are found in apple fruits. [12].

Several widespread methods are applied to evaluate fruit quality. Visual examination
and destructive procedures are generally used to assess product quality. [13] In recent years,
specific spectroscopic and imaging techniques have been effectively used in food quality
inspection to deal with destructive methods’ challenges [14].

These non-contact imaging techniques are made possible by technological advance-
ments in cameras and robust computer hardware, software, and analysis tools. They are
now a crucial instrument in applications for quality evaluation [15,16].

Total soluble solids (TSS) are generally a crucial quality indicator linked to the texture
and composition of apples and other fruits [17,18].

Water loss causes the product’s weight to drop, causing the quality of the fruit to
deteriorate. On the exterior of the apple fruit, there is a natural wax coating that acts
like a protective barrier or coating, preserving the fruit as it grows. Fruit weight loss is
determined by the skin’s structure and the waxes’ composition on the fruit’s surface [19].
The moisture loss decreases the visual quality and contributes to the loss of turgor pressure
and subsequent softening; in industrial terms, moisture loss is also an economic [20,21]
Therefore, fruit weight measurement is critical in fruit quality evaluation too.

Although fruit may be kept fresh for a long time in cold storage, fruit storage after
harvesting is one of the significant difficulties in the world today. The availability of cold
storage facilities is entirely restricted in contrast to fruit production, which raises the price
of the produce. Additionally, customers can buy the fruits at their small local market,
where they are often kept at room temperature. As a result, it is crucial to evaluate the
apple’s quality while it is being stored at room temperature. The non-destructive method to
measure the color can help consumers to assess the quality of fruit during purchasing [22].
Consumers’ first delightful experience with fruits is a healthy, fresh, and colorful appear-
ance, influencing the remainder of the observed sensations. The color is the initial point
of contact [23] between the product and the consumer, which is crucial in purchasing [24].
Using a sophisticated picture processing system and RGB and hyperspectral photography,
researchers [24] carefully graded and tracked the color progression of the subjects. Com-
pared to RGB imaging, the hyperspectral approach showed more promise for objectively
differentiating apple ripeness during shelf life.

The fruit’s surface chlorophyll degradation occurs throughout the ripening phase;
while-colored pigments, such as carotenoids (yellow) and anthocyanins (red), are created.
Two colors may appear: one is the background color, yellow, and the other is the surface
color, red. Golden Delicious apples have a faint pinkish tint ranging from green to yellow-
green tones [24].

Some cultivars, such as Golden Delicious, have a long shelf life of roughly four weeks
at room temperature [25], although the fruit softens and the peel color changes from
green to yellow [26]. Analysis of the green-to-yellow skin color shift in Golden Delicious
apples revealed that carotenoid production and chlorophyll degradation are responsible
for the alterations [27,28]. Rutkowski et al. [29] proposed a non-destructive determination
of the Golden Delicious ripening stage. However, they confirmed in the end that their
development is still a destructive estimation due to their chlorophyll content assay of the
apple peel.
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Even though numerous research has been conducted during storage, there is little
information about fruit color changes and the classification of ripening stages during
shelf life. Cárdenas-Pérez et al. [26] showed that color changes during storage could be
used as a classification approach. Apple quality deteriorates significantly during storage,
impacting consumer acceptance [30,31]. According to the findings in the literature above,
our approach focuses on highlighting the post-harvest late shelf life saturation of Golden
Delicious color parameters, based on weight, TSS, and colorimetry data, which is raised as
a novel approach in the field.

Due to its resemblance to the human perception of color, CIELAB color space is an
appropriate choice to describe the color ingredients of fruits and vegetables [5,32]. The
CIELAB color scale comprises L*, a*, and b* coordinates, with L* denoting brightness, a*
denoting red or green, and b* denoting yellow or blue color perception.

Complex computer vision systems require sensor-based measurements, but flexible
and frequent in-situ investigations are a continuous requirement during ambient storage.
A calibrated portable device (in a laboratory environment at this research stage) can also be
implemented to examine the color changes of different ripening stages, taking multiple,
simple, and fast measurements on the surface of given fruits.

Besides examining fresh products, it is also essential to evaluate the results mentioned
in the last stage of ripening, where the limiting parameters of shelf life can be observed
with the saturation limits of the investigated changes in the crucial color parameters. In
the case of room temperature storage, these circumstances can be achieved if the examined
fruits are selected from the end of the season.

This study aims to characterize the ripening process with an applied sensor-based
colorimetric approach. It aims to identify the changes in the weight, color, and TSS proper-
ties of Golden Delicious apple fruit during storage at room temperature, focusing on the
changes in TSS and color parameters that objectively indicate the shelf life limitations of the
given cultivar based on asymptotic regression. For the description of the observed limits of
the parameters, the approach of exponential asymptotic regression was considered instead
of power function [25] to characterize the weekly ripening process, and a color sensor-based
measurement method was applied to improve the effectivity of such investigations further.

2. Materials and Methods

A fresh “Golden Delicious” variety of apple fruit was collected directly from a farm
near Kecskemét, Hungary, in 2021. The fruits were all picked at a maturity stage corre-
sponding to the commercial harvest date.

Golden Delicious apples were placed in six boxes, and each one separately contained
24 apple samples. All apples have an identity code (Example: B1A1, B for box A for apple).
The apples were sorted manually for approximately similar sizes and a lack of any external
damage. The average weight of the total fruit sample was 150 ± 12 g, and the average
diameter size of the apple samples were d = 70 ± 2 mm; three measurements were applied
for each sample for geometry and weight measurement. The apples were stored at ambient
conditions (24 ± 1 ◦C) under relative humidity (RH 60%) for six weeks. The samples in the
first three groups were examined with non-destructive methods: weight measurement (g)
and color parameters (L*, a*, b* in CIELab color space [5,26,32]) acquisition. The fourth,
fifth, and sixth batches were prepared to measure the total soluble solids (TSS), which
required a destructive approach.

2.1. Measurement of Weight Loss

All of the apples were weighed before, during, and after the storage period, and three
measurements were applied for each sample for the weight loss measurement. The same
samples were assessed for weight loss at weekly intervals until the end of the experiment.

Weight loss Δm (%) was calculated using the following equation:

Δm =
m0 − m

m0
·100, [%] (1)
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where m is the mass of apples (g) during storage and m0 is apples’ beginning mass (g). The
samples of apple fruits in the first three groups (72 apples) were taken and weighed on a
precision scale type KERN (KERN & SHON GmbH, Balingen, Germany, KERN PCB 3500-2,
max.: 3500 g ± 0.01 g) to calculate the average fruit weight.

2.2. Measurement of Color

Color parameters were measured using a Nix Pro wireless color sensor (Nix Sensor
Ltd., Hamilton, Ont, Canada, NixPro Mini). The device blocks ambient light, provides its
own calibrated LED-based light source during measurement, and works with a proprietary
sensor module. The Nix Pro Device has a circular shape with a 15 mm diameter and
45/0◦ measuring geometry. Two high-CRI LEDs designed explicitly for color reproduc-
tion provided the light source for the measurements. The instrument has <0.1 DE2000
repeatability.

The color data are used to match physical colors. The results were investigated using
the CIELAB color system from the Nix pro color sensor application (App version v1.33, Nix
Sensor Ltd., Hamilton, ON, Canada), which displays the RGB, CMYK, HEX, CIELAB, and
XYZ values for each color. Three repeated measurement data of 72 apples were obtained for
each storage time (from week one to week six) using the HunterLab colorimeter (illuminant
D50 and 2◦ standard observer). The color was recorded using a CIELAB uniform color
space (Lab), where L* indicates lightness, a* indicates chromaticity on a green (−) to red (+)
axis and b* chromaticity on a blue (−) to yellow (+) axis. We calculated color parameters
from the L*, a*, and b* data. ΔE is the difference between two colors represented by two
points in the CIELAB color space and chroma (C*), which expresses the degree of color for
an area viewed with its brightness.

ΔE =

√
(L∗

0 − L∗)2 +
(
a∗0 − a∗

)2
+ (b∗

0 − b∗)2, (2)

C∗ =
√

a∗2 + b∗2, (3)

where L∗
0, a∗0, and b∗

0 represent the color data based on the samples, and L*, a*, and b*
indicate the color of the measured instantaneous data.

At the end of the storage process, the color of the apples will always turn into some
shade of brown, which can be considered a final state or limiting color. Since the a* and
b* coordinates of green and yellow shades are less than the coordinates of brown shades,
the color change process can thus be considered as a saturation or limited growth process,
pointing to asymptotic regression analysis.

2.3. Measurement of Total Soluble Solids (TSS)

The apple juice was extracted from the fruit without peeling using a hand mixer
(BRAUN, Rubi, Barcelona, Spain, MODEL: MR-5550 BC-HC, 600 W + Turbo, 13,500 RPM)
with stainless steel blades to measure the total soluble solids content. The extraction juice
takes one minute for all fruit samples. The TSS of juice was measured using a refractometer
with automatic temperature compensation. The digital hand refractometer (Ebro Electronic
GmbH, Ingolsadt, Germany, Model: DR-10) has a measurement range between 0 and
54 ◦Brix within the +5 . . . +60◦ sample temperature; the instrument works between the
+5 . . . +40◦ temperature range with ±0.2 ◦Brix/ ±1 ◦C accuracy and 0.1 ◦Brix/0.1 ◦C
resolution. The results were expressed in ◦Brix (±0.2).

2.4. Statistical Analysis

All the quality attributes in each experiment on every apple were measured three
times. The results were compared by one-way analysis of variance (ANOVA). Deviations
between groups were tested with Levene’s test. For post hoc tests, Dunnett’s T3 test or
Tukey’s test was applied, respectively, depending on whether the variances between groups
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were significant or not. The whole process is presented in detail only in the case of the
examination of weight loss, and then the process is consequential for the rest of the cases.

The exponential asymptotic regression can be described with the following differen-
tial equation

y′ = c(a − y), (4)

where a is the limit coordinate and c is proportional to the growth rate. The differential
equation has the solution:

y(w) = a − be−cw, (5)

which was fitted for a* and b* (and C*). It is similar to the von Bertalanffy growth function
and the differential equation describing the process [33].

Regression analysis was carried out for all investigated variables as a function of time
(measured in weeks). The fitted functions were linear (of the form Y = aw + b) or based on
exponential functions (of the form Y = a − (a − b)e−cw for saturation-like processes or of
the form Y = a + be−cw for a process with exponential decay). The method of least squares
was used for model fitting. An important parameter of this analysis was the limit where
the saturation is nearing the asymptote.

All analyses were performed using Excel and IBM SPSS Statistics v27 software, and
differences at the 5% level (p < 0.05) were considered statistically significant.

3. Results

3.1. Weight Loss (%)

The percentage cumulative weight loss (Δm) of apple fruit during storage under
ambient temperature (24 ± 1 ◦C, ϕ = 60RH%) over six weeks is presented in Figure 1.

Figure 1. Effect of ambient temperature on the weight loss of Golden Delicious apples during storage.

Apple fruit weight loss increased strongly throughout storage at an ambient tempera-
ture. A linear function with a coefficient of determination, R2 = 0.9853, fitted reasonably
well to the data regarding the weight loss percentage of the apples during storage under
ambient conditions. The moisture and subsequent weight loss in fruits changed linearly
with storage duration due to water loss and respiration [34]. The average weight reduction
was 5.29% in the first week of measurement, reaching 25.32% at the end of the sixth week
(Figure 1). The weight loss percentage grew linearly with each additional week of storage,
reaching 22.51 and 25.32 per cent in the fifth and sixth weeks, respectively.

Using ANOVA, this study showed significant (F = 121.371, p < 0.001) differences
in fruit weight loss among the storage durations. Based on Levene’s test, there was an
important (F = 8.615, p < 0.001) difference between the variances of groups (that is, the data
belonging to each week) for the post-hoc test. Dunnett’s T3 test was applied. In Table 1,
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the p values are presented. Since the table is symmetric and the main diagonal is out of
interest, only the values above the main diagonal are included.

Table 1. p values results from one-way analysis of variance ANOVA.

Week 2 3 4 5 6

1 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
2 p < 0.001 p < 0.001 p < 0.001 p < 0.001
3 p < 0.001 p < 0.001 p < 0.001
4 p = 0.018 p < 0.001
5 p = 0.025

It shows that the weight loss in weeks one, two, and three is statistically different from
all other weeks, but it is statistically the same between weeks four and five and five and
six. A change describes this phenomenon within the ripening process. The next stage in
weight loss tendency is developing to move to an asymptotic model, similar to the moisture
content characteristics during the given fruits’ drying process [35]. The changes in the fruit
during ripening are related to an increase in ethylene production and respiration. Ethylene
is considered the primary signal for regulating fruit ripening, which begins just before the
onset of this process and determines its correct evolution [36]. Exogenous ethylene speeds
up the ripening process in climacteric fruit such as apples, whether it comes from other
climacteric fruit or is created artificially by substances such as 2-chloroethyl-phosphonic
acid [37].

Interestingly, in line with this, the deterioration of the apples was observed in the
samples after the third week and during handling as well. The rapid increase in deviance
(from Figure 1) also emphasizes this observation.

In short, the detailed presentation of the post-hoc tests is ignored for the latter exam-
ined quantities, and only a summary and discussion of the results are included. In addition,
also in short, we state that for all other quantities, Levene’s test was significant except in
the case of TSS; furthermore, ANOVA showed a significant difference between at least two
of the groups (weeks) for all quantities, as noted above.

3.2. Color Analysis

Across the entire storage process, a vast difference in color from week one to week six
could be observed, changing from qualitative smooth green to yellow and brown spotted
apples (Figure 2).

Figure 2. Color of a Golden Delicious apple at week one (a) and week six (b).

For quantitatively evaluating color changes in apple skin during storage, L*, a*, and b*
are plotted in Figures 3–5.
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Figure 3. Effect of ambient temperature on L* values of apple during storage: lightness factor
decreases to a specific limit.

Figure 4. Effect of ambient temperature on a* values of apples during storage: the red color parameter
increases to a specific limit.

Figure 5. Effect of ambient temperature on b* color values of apple during storage: the yellow color
parameter increases to a specific limit.

The L* value decreases from week one to week six. This result could be associated with
the change from green to bright green and then yellow with brown spots. L* values change
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from 74.81 in week one to 71.27 in week six. L* variation is related to PPO (polyphenol
oxidase) activity, which alters the tissue surface and reduces apple pigments [38].

This study statistically confirmed a significant difference between this parameter’s
baseline and end state (p < 0.05).

The a* and b* values increase during storage at room temperature. This increase is
related to the chlorophyll breakdown processes that lead to its decrease and fruit ripen-
ing [38]. The a* values change from −5.77 in week one to 9.47 in week six, and the b* values
change from 47.15 in week 1 to a maximum in week 6 of 56.45. For parameters a* and b*, it
can also be stated that there is a significant difference between the data measured in the
first week and the data measured in the last week (p < 0.05).

According to Itle and Kabelka, higher b* values are associated with high carotenoids
and xanthophylls and the loss of chlorophylls in the pericarp during climacteric fruit
ripening of pumpkins and squash [39]. These changes result from the decrease in the
greenness of the apple and an increase in its yellowness. In addition, it must be noted that
the yellow (b*) color parameter reaches the limiting asymptote much earlier than the red
(a*). This could be because Golden Delicious can develop a red color, even at the storage
stage, where both light (blue-violet and UV) and temperature affect this color change [40].
However, we showed that this change is slower than for the other color parameter.

It is also interesting to see how outliers are grouped from Figures 3–5, meaning that
these values can be attributed to one outlier sample, apples (giving meaningful outlier
results on three different sampling points per apple). It must be noted that the outliers
and the deviances generally increase with time, meaning that the investigated parameters
vary more with the imminent degradation of the samples, which can also affect consumer
preference.one 1 to 25.82 on week six (Figure 6). The higher the Delta E value, the lower the
color accuracy. The increment in delta E values confirmed the samples’ visual color changes.

Figure 6. Apple color changes (ΔE) during storage at an ambient temperature: the yellow color
parameter increases to a specific limit.

Chroma C* is the distance from the axis of lightness (L) to the origin of color and begins
at zero in the center. It describes the degree of color for an area seen with its brightness; it
becomes increasingly relevant as color coordinates go away from the origin. Values for C*
and are plotted in Figure 7. With regards to the chroma parameter, it is seen to increase
from 47.61 to 57.45 across the whole ripening period; during storage, the color of the apple
became less bright and more color-saturated than at the time of harvest [26].
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Figure 7. Chroma (C*) values during storage at the ambient temperature of apple.

Apples lose their green skin and flesh color during maturity as chlorophyll is lost.
Before maturation, chlorophyll is continuously regenerated; once growth begins, the rate of
chlorophyll production slows, initially causing a loss of green coloration. As the chlorophyll
disappears further, other pigmentation, often yellow, dominates [41].

Chlorophyll depletion, the synthesis of new pigments such as carotenoids and antho-
cyanins and the revealing of other pigments previously created throughout the growth of
the fruit are all factors in the color changes that occur in many fruits. Such mechanisms are
intimately associated with increased respiration, oxygen generation, and starch degradation
in fruits with a climacteric ripening pattern [42].

3.3. Total Soluble Solids

As shown in Figure 8, the TSS of apples increased week by week. At the initial week
of storage, the TSS was 13.61 ◦Brix. The maximum TSS attained during storage was about
14.78 ◦Brix.

Figure 8. The effect of ambient temperature on the total soluble solids content (TSS) of Golden
Delicious apples during storage.

The analysis of the variance homogeneity test showed that the variances for the
parameters TSS are the same (p = 0.053). Due to the identical standard deviations in the TSS
case, Tukey’s b-test can be used to distinguish the two groups in terms of means. Tukey’s
b-test shows that week one is significantly different from weeks five and six (α = 0.05).

For TSS, a different (non-linear) trend was reported by Cárdenas-Pérez et al. [26]. They
also observed an increase in TSS; our results align with our initial results with weight loss,
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which is in a linear stage. The rise in TSS could be attributed to moisture loss, leading
to the concentration of sugars inside the fruit [43]. The other possible reason for the
increased TSS contents is the breakdown of starch into sugars or the hydrolysis of cell
wall polysaccharides [44]. The existence of a substrate is recognized to be essential to the
respiration process. This substrate serves as a store for carbohydrates such as starch in
numerous tissues. These complicated compounds are converted into simple sugars and
enter the respiratory route to supply energy for plant vital nutrients. Different quantities
of oxygen are used relative to the amount of CO2 generated when specific substrates are
used and fully oxidized. The lower discovered TSS levels of apples in early periods rather
than the last weeks may be attributed to the slower respiration process, which reveals the
lower total sugar content in apples’ tissue. Starch hydrolysis begins during fruit ripening
and storage. This pattern may also be explained by considering that the TSS increases with
increasing weight loss values. The metabolic processes involved in fruit ripening, including
the rapid conversion of starch into sugar and the rise in fruit sweetness during storage,
may be the cause of the direct association between TSS and weight loss [38].

In addition, these results back up the studies of Crouch and Ali et al. [45,46]. When
several cultivars of apples were maintained at room temperature, they saw an increase in
total soluble solids, starch, and sugar content.

According to the current research, total soluble solids in apple fruit increased during
storage at an ambient temperature.

4. Discussion

The regression equations and their corresponding coefficients of determination that
perfectly represented the weight loss, color values L*, a*, b*, ΔE, C*, and TSS are given in
Table 2.

Table 2. Regression equations regarding the storage period with their corresponding coefficient of
determination (R2) for measured quality parameters.

Color Change

Regression Equations Coefficient of Determination (R2) A-Limit Parameter Consumption Limit (90% Saturation Level)

L* = −7.64 e−0.64w − 70.97 0.840 70.97 (decay) 71.35
a* = −26.19 e−0.34w + 12.77 0.999 12.77 (association) 10.92
b* = −26.85 e−1.08w + 56.34 0.981 56.34 (association) 55.42
C* = −21.77 e−0.82w + 57.29 0.970 57.29 (association) 56.32

ΔE = 3.16 w + 6.44 0.991 - -

Weight Loss

Regression Equations Coefficient of Determination (R2) A-Limit Parameter Consumption Limit (90% Saturation Level)

Δm = 4.44 w 0.985 - -

Total Soluble Solids (TSS)

Regression Equations Coefficient of Determination (R2) A-Limit Parameter Consumption Limit (90% Saturation Level)

TSS = 0.24 w + 13.44 0.961 - -

During the storage period, apples become less acceptable with time from the aspect
of consumer evaluation because of color change. The increasing tendency of a* and b*
coordinates results in a color shift toward brown and yellow tones on the surface of the
examined Golden Delicious specimens. Jha et al., Vieira et al., and Mizrach et al. have also
observed similar variations in the values of L*, a*, and b* in the case of Golden Delicious
apples and different varieties; however, they used image processing methodologies and
other storage conditions [30,47,48]. As a novel and important finding, we can connect the
significant changes in TSS in the fifth and sixth weeks, where L* and b* (yellowness) and
C* values were nearing saturation.

During the six weeks, the 90% saturation level is defined as the last consumption stage
before the total degradation of stored fruits. Table 3 shows the percentage of examined
fruits exceeding this quality level each week.
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Table 3. The proportion of fruit specimens beyond the consumption limit in the case of color
coordinates and TSS.

Storage Time (Weeks)
Parameters beyond Consumption Limit [%]

L* a* b* C* TSS

1 15.3 0.0 0.0 0.0 5.6
2 11.1 0.0 31.9 25.0 16.7
3 44.4 0.0 40.3 36.1 30.6
4 50.0 11.1 55.6 51.4 25.0
5 36.1 34.7 66.7 67.1 27.8
6 58.3 55.6 63.9 60.0 63.9

By investigating the time constant (τ) of the a* and b* values (4.216 and 2.012 weeks,
respectively), it must be noted that the b* constant reaches this value significantly earlier,
rendering it the dominant part of the visual degradation based on CIELAB color space.
It must be pointed out that all asymptotic curves present their τ in the investigated time
region (Figure 9).

Figure 9. Time constants of color coordinates at 67% and 90% saturation levels during ripening (top
left: L*, top right: a*, bottom left: b*, bottom right: C*).

Apples have a short shelf life because they are perishable foods with a rapid metabolism
and respiration rate. Because losses during post-harvest handling might reach 25–28% [49],
improvements in the post-harvest handling of fresh fruit are crucial for boosting food
supply [50].

Apples contain a variety of nutritional benefits; however, they are destroyed during
processing after harvest. Both internal and external circumstances influence losses that
happen during storage. The most significant effects on apple storage effectiveness, fruit
quality traits, and shelf life are caused by temperature and relative humidity during post-
harvest handling activities [51]. For instance, they impact the fruit’s firmness, weight loss,
color, and total soluble solids. Fruit’s shelf life is affected by the pectin degradation process
that occurs during ripening and plays a significant part in breaking the fruit’s cell walls [52].

Proper post-harvest treatment requires changing the product’s natural environment to
extend the product’s post-harvest life. A new approach must be developed to increase the
shelf life of fruit stored at room temperature and to prevent softening and senescence [53].

268



Appl. Sci. 2023, 13, 159

Physical means can satisfy this demand (high-voltage electric field, UV–C light, IR radiation,
and microwave radiation).

5. Conclusions

Apple fruit undergoes a post-harvest ripening process that leads to generalized soften-
ing and a decline in quality, noticeable in physical and biochemical parameters such as a
decrease in weight, color change, and increased sugar content in the juice. All these changes
primarily affect the shelf life. The changes in the fruit during ripening are related to an
increase in ethylene synthesis; the respiration process and the process of pectin degradation
play an essential role in cell wall degradation, affecting the shelf life.

In this study, we combined the changes in weight loss, TSS, and color properties (L*,
a*, b*, ΔE and C*) of Golden Delicious apple fruit during storage under room tempera-
ture in a novel way to improve their assessment during ambient shelf life with a novel
multidisciplinary approach. Analysis using IBM SPSS Statistics v27 software showed a
significant difference between the values measured at the beginning and the end state
for all parameters during the six weeks of the apple storage experiment. We found all
measured apple quality parameters to vary during storage at 24 ◦C during the study.

The weight loss of samples was increased, indicating that the internal transpiration
of the fruit mainly influenced the weight loss. Although the moisture content reaches
its limit value during the drying process of apples, the saturation of color coordinates
allows for determination of the limit parameters of consumption in the linear weight loss
stage. In the laboratory, we applied a flexible and effective measurement method, which
can easily be used in a commercial environment. These results improve the provision of
helpful information regarding apples’ quality changes during storage, which influences
customer behavior.
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11. Milošević, T.; Milošević, N.; Mladenović, J. Role of Apple Clonal Rootstocks on Yield, Fruit Size, Nutritional Value and Antioxidant

Activity of ‘Red Chief® Camspur’ Cultivar. Sci. Hortic. 2018, 236, 214–221. [CrossRef]
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Abstract: The measurement of the moisture content of building materials is of key importance both in
the process of building structures and in their subsequent operation. In engineering practice, indirect
techniques of moisture measurement, mainly, resistance and capacitive, are the most popular. The
main objective of this research work was to compare the classic TDR measurement technique to the
non-invasive, surface TDR sensors. Moisture measurements were carried out on samples made of
cellular concrete with density class of 400 and 600. These samples were moist to various degrees,
from 0 to 69% (400 c.c.) and from 0 to 55 (600 c.c.). For each sample, five measurements were carried
out. Both the RMSE and the expanded uncertainty values were more favorable for the TDR FP/mts
probe and were consistent with the literature data. Compared to them, the measurement result for
the 400 c.c. samples with the S1 probe was 154.6%, and that with the S2 probe was 87.03% of the
values obtained with the invasive probe. When measuring the 600 c.c. samples, we found values of
122.16% for S1 and of 120.1% for S2 of those obtained with the invasive probe. The use of surface TDR
sensors provided an easy and quick measurement without damaging the surface and structure of the
tested material, as there was no need to introduce the probe actuators inside the tested material.

Keywords: TDR sensor; moisture; porous materials; calibration model

1. Introduction

Measurement research has been refined over the years by developing various data
acquisition methods. The study of environmental factors involves many measurement
aspects. One of such factors is moisture, which affects the building materials, but also
the quality of life of the building users [1]. The moisture of building materials depends
primarily on their absorption properties, as well as on the operating conditions and on
independent external factors, which are often difficult to detect also due to the improper
construction of objects, faults or the lack of anti-moisture insulation [2,3]. Moisture tests
are also carried out in order to determine all the factors that lead to the multiplication
of fungi, especially molds, that threaten human health [2]. Moisture can cause physical,
chemical and biological damage [4]. A moistened material is subject to faster corrosion.
With increased fungal infection, it can also be a substrate for the development of other
microorganisms, additionally losing its thermal insulation properties [5]. If the moisture
condensed in the porous space freezes, the structure of the material is destroyed. The
processes of freezing and thawing lower the strength parameters of building materials [6].
An important element when examining building structures is the assessment of moisture
parameters and the identification of harmful salts that may be present in the building
material in various proportions [7]. The sources of moisture are often unnoticeable and may
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be hidden under the insulation or located deep in the building material, which may make
their detection difficult [8,9]. Capillary water located deep in a wall is especially harmful.
This water destroys the wall from the inside and is invisible on the wall surface, unlike
condensation water that appears on the surface and is the result of improper ventilation of
a room [10].

For the quick detection of moisture in a wall, indirect techniques are the most useful,
enabling to estimate the moisture of a partition on the basis of other physical parameters, the
values of which indirectly depend on moisture. Most often, these are electrical techniques
based on the measurement of electrical conductivity or dielectric permittivity [11]. An
advantageous feature of the electrical methods is that most often these methods are non-
invasive and allow the testing of building materials without disturbing their structure
and shape [12–14]. The basic electrical method is the resistance technique, which consists
in measuring the conductivity or electrical resistance of the tested materials in porous
materials depending on the degree of their moisture [15]. The measures based on this
method are most often calibrated to the mass moisture of the material [16] and are most
often used to determine the moisture of construction wood. However, the environmental
parameters of walls or partitions are commonly determined using other methods [17,18].
These include the capacitive Frequency Domain (FD) method, which is considered to be
better than the resistance technique. The FD method consists in measuring the capacitance
of a properly constructed capacitor with alternating voltage. In FD methods, the conductive
electrodes in the area of the test medium are treated as capacitor plates. The dielectric of
this capacitor is the material to be measured. The value of the apparent permittivity of the
material affects the capacity of the capacitor thus formed. The measurement of this capacity
allows the assessment of the material’s moisture [19,20]. Another non-invasive method,
i.e., microwaves, allows measuring the phase shift and the degree of electromagnetic wave
attenuation in the tested material, which allows the further determination of the moisture
content. With the help of microwave moisture measurements, it is possible to determine
the degree of moisture in building partitions inside their structure and on their surface.
Microwave radiation is absorbed by matter through ionic conductivity or through the
phenomenon of dielectric losses resulting from dipole polarization [21–24]. Water is a
dipole which, while appearing in the structure of another material, still maintains the
asymmetric nature of its molecules [25].

A separate group of measurement methods are the direct methods that enable to
measure the presence of water. These are mostly invasive methods that interfere with the
structure or shape of the tested element. The invasive measurement method which is most
frequently used to determine the moisture in walls is the gravimetric method [26]. The
basic instrument used in this method is a moisture analyzer, which can be used to test the
material taken from a wall. The test material is weighed and then dried and reweighed in
order to determine the weight differences [27]. It is a method that requires the destruction
of the material structure.

Destructive methods also include the carbide method (CM) [28]. This is an indirect
method that also involves sampling and testing with a CM hygrometer using the chemical
process of calcium carbide decomposition by water. During decomposition, acetylene gas
is released, which causes an increase in pressure in the device [29]. Other invasive methods
supporting the moisture measurement process also include measurements with a Peltier
probe, which determines a sample’s suction potential in a given moisture state. Instead
of the material moisture, the psychrometric Peltier probe measures the water potential,
which is an indicator of the ability of a porous material to bind water [30]. Thus, the
relative moisture of a porous material can be calculated [31]. In order to conduct invasive
psychrometric measurements, the probe must be placed in the tested material by drilling a
hole, which, if the material is loose, can be done by pressing the probe [31]. It is a standard
form of measurement, additionally used to determine parameters that can support the
process of measuring the moisture content of building materials.
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A measuring technique that can combine the advantages of destructive and non-
invasive techniques is Time Domain Reflectometry (TDR), which uses the measurement of
the propagation time of a short electromagnetic pulse in a material sample to determine
the apparent permittivity of porous materials, which is strongly dependent on the water
presence, i.e., material moisture [21,32–41]. The apparent permittivity of the medium
determines the velocity of signal propagation along the waveguide. The TDR sensor can
also be used for the non-invasive monitoring of changes in moisture content in rigid porous
materials [42]. The design of a TDR sensor determines the shape of the reflected signal,
and the accuracy of the propagation time measurement depends on its design details [43].
Common applications of the TDR technique are based on the use of typical invasive probes
introduced into the tested porous medium; this technique is most often used in soil science.
With reference to building materials, its use involves the destruction of samples or walls [44].
Therefore, in the case of hard and rigid media, which include building materials, surface
sensors are an alternative to traditional probes [42,45,46]. In the measurement of the basic
environmental factors of building partitions, which include moisture, the TDR technique
should be treated as a method at the stage of implementation for the purpose of testing
walls. In order to improve this measurement technology, the obtained test results should
be properly analyzed using typical invasive and non-invasive sensors and compared to the
reference values obtained by direct testing [11]. The aim of this article was to determine
the possibility of measuring moisture in building materials with non-invasive TDR sensors
and to compare the measuring potential of this method to that of the TDR method using
traditional invasive sensors.

2. Materials and Methods

A set of cellular concrete samples was used for the measurements. The devices that
were utilized for sample preparation were the following: a 06-DZ-3BC laboratory oven
(Chemland, Stargard, Poland), an SBS-LW-3000N laboratory scale (Steinberg Systems,
Zielona Góra, Poland), TDR equipment including a LOM laboratory multimeter (ETest,
Lublin, Poland), traditional TDR FP/mts probes described in detail in Section 2.1.1 (ETest,
Lublin, Poland), TDR surface sensors (manufactured in Lublin University of Technology)
described in detail in Section 2.1.2 and a Personal Computer serving for TDR multimeter
control and data management.

2.1. Materials
2.1.1. TDR Meter Description

The measurements were conducted with a TDR multimeter emitting a needle peak
signal with rise time equal to 300 ps, produced by ETest manufacturer, Lublin, Poland.
The emitted signal propagated along the coaxial cable to the sensor where reflections
occurred on the characteristic points of the propagation line. Those reflections derived from
both the beginning of the sensor and its termination and served as measurement markers.
The time differences between those reflections were read by the TDR meter and could be
automatically or manually recalculated into the apparent permittivity value that depends
on a material’s moisture.

2.1.2. FP/Mts Sensor

The FP/mts sensor presented in Figure 1 was intentionally designed for the in situ
evaluation of soil moisture but for several years has been successfully applied for the
moisture evaluation of soft building materials [42].

Its main functional elements are the two 10 cm long sharpened acid-resistant steel
rods (2 mm in diameter, separated by 14 mm), a sensor support made from a section of a
PVC tube of 2 cm outer diameter and length, and a coaxial cable of length from 1.5 to 6 m,
from the sensor to the terminating SMA connector.
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Figure 1. FP/mts TDR sensor applied in this research (ETest, Lublin, Poland).

2.1.3. Non-Invasive TDR Sensors

For the experiment, two non-invasive TDR sensors manufactured in Lublin Univer-
sity of Technology were applied. The sensors were previously described in articles by
Suchorab et al. [42,43].

2.1.4. S1 Non-Invasive Sensor

The S1 non-invasive sensor (Figure 2a,b) is made of black polyoxymethylene, charac-
terized by an apparent permittivity value of 3.8 [-] [47]. The length of the measuring probe
is 200 mm, and its width is 50 mm. The measuring rods are made of a brass flat bar with a
cross section of 2 × 10 mm. The sensor communicated with the TDR meter via an angled
BNC connector that was soldered to the printed circuit board that linked the measuring
rods to the connector. In the design of this sensor, a flat bar was placed in a dielectric.

(a) (b) 

Figure 2. S1 non-invasive TDR sensor [42]. (a) Isometric view, (b) view from the bottom.

2.1.5. S2 Non-Invasive Sensor

The S2 sensor shown in Figure 3a,b is similar in construction and made of the same
material as the S1 sensor. Its length is 200 mm, and its width is 100 mm. As in the case
of the S1 sensor, the waveguides of the probes were made of a brass flat bar with a cross
section of 2 mm × 10 mm.

275



Appl. Sci. 2023, 13, 665

(a) (b) 

Figure 3. S2 non-invasive TDR sensor [42]. (a) Isometric view, (b) view from the bottom.

2.2. Description of the Tested Material

Cellular concrete was used for the tests as the building material. In the presented
research, samples of 400 kg/m3 and 600 kg/m3 of cellular concrete were used.

2.3. Samples and Preparations
2.3.1. Samples for Invasive Measurements

Due to the FP/mts invasive probe geometry and its sensitivity range (ETest, Lublin,
Poland), a set of samples of cellular concrete was prepared. The samples with dimensions
equal to 5 × 5 × 12 cm were prepared in the amount of 40 pieces in the case of the
400 kg/m3 cellular concrete (400 c.c.) and of 35 pieces in the case of the 600 kg/m3 cellular
concrete (600 c.c.). They were dried to a constant mass at a temperature of 105 ◦C. Then,
the samples were saturated to the desired moisture by dosing the appropriate amount of
water until the expected moisture was obtained, in steps of 10% by mass, until the state of
full saturation (69% mass in the case of cellular concrete 400, and 55% mass in the case of
cellular concrete 600).

2.3.2. Samples for Non-Invasive Measurements

The dimensions of the samples used in non-invasive research were
220 mm × 120 mm × 40 mm. Similarly to the samples for invasive measurements, they
were dried to a constant mass and gradually moistened to achieve 69% and 55% of moisture.
The samples were weighed to check the moisture status. Then, the samples were examined
with the non-invasive S1 sensor and subsequently with the S2 sensor in order to obtain the
measurement results.

2.4. Methods
Description of the Measurement Procedure

The research consisted in measuring the apparent permittivity of the material with
different moisture values. The measurements were made on dry samples (5 readouts for
statistical purposes) and then on samples of increasing moisture until saturation. The
tests were carried out under constant conditions of temperature (20 ◦C) and relative air
moisture (50%).

In the case of the invasive FP/mts probes, they were introduced into the structure of
the tested material.

In the case of the non-invasive sensors, the measurements were carried out using the
touch method on the samples with dimensions of 220 mm × 120 mm × 40 mm.

2.5. Data Analysis Method

As a result of this research, we obtained measurements based on the relationship
between the apparent permittivity readings obtained with the TDR sensors and the mass
moisture content of the material of the tested samples. The uncertainty of the measurements
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was assessed with the use of appropriate regression models. A polynomial relationship
was used for the calibration based on the formula:

ŵ = β1·ε2 + β2·ε + β3+ ∈ (1)

where ŵ is the mass moisture value estimated using a polynomial model [%mass], ε is the
apparent permittivity measured using TDR, ε is the random error of normal distribution,
β1−3 are the model estimators.

The parameters defining the measurement uncertainty of the methods are the mean-
square error (RMSE) and the coefficient of determination R2, which allows for the assess-
ment of the regression model adaptation and the quality of the model fit in relation to the
measured data.

Additionally, an extended assessment of the measurement uncertainty (standard and
extended uncertainty) of the invasive FP/mts TDR sensors and the non-invasive S1 and S2
sensors was performed based on the GUM guidelines [48].

The uncertainty assessment included the complex uncertainty assessment, which
is a combination of two types of uncertainty, i.e., type A, that is statistical uncertainty
depending on the quality of the adopted model fit, and type B, which depends on the
uncertainty and resolution of the individual device. With a complex standard uncertainty,
the expanded measurement uncertainty was estimated [43].

For the applied measurement methods, type B uncertainties were much lower than
type A uncertainties and were ignored in the calculations; therefore, the following elements
were taken into account for the estimation of uncertainty: the estimators β0, β1, β2 and the
relative permeability (ε):

w = f (β1, β2, β3, ε) (2)

The composite standard uncertainty of the measurement mentioned above, which
included both type A and type B uncertainties, can be described by the formula:

uC(w) =

√(
∂w
∂ε

u(ε)
)2

+ ∑2
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(
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)2
+ 2 ∑2
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∂βi

∂w
∂β j

u
(

βi, β j
)

(3)

The expanded uncertainty can be described with the following formula [47].

U(w) = kp· uc(w) (4)

where kp is the coverage factor that depends on the number of degrees of freedom, whose
value is approximately 2.

3. Results

Tables 1–6 show the permittivity readings by the different sensor types (i.e., invasive
FP/mts and non-invasive S1 and S2) for the two classes of cellular concrete with different
bulk moisture (400 and 600). The first column of each table shows the mass moisture w, and
the following columns show the individual moisture readings for each tested sample, ε1–ε5.

Table 1. Results of the apparent permittivity ε measurements with the FP/mts invasive probe for
different values of material moisture w; 400 c.c. sample.

Moisture w [%]
Apparent Permittivity ε [-]

ε1 ε2 ε3 ε4 ε5

0 1.18 1.16 1.14 1.2 1.18
10 2.14 2.01 2.22 1.84 2.41
20 5.31 5.82 5.09 5.42 5.47
30 7.17 6.87 7.55 7.25 7.02
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Table 1. Cont.

Moisture w [%]
Apparent Permittivity ε [-]

ε1 ε2 ε3 ε4 ε5

40 9.32 9.47 9.37 9.27 9.07
50 12.54 11.91 12.35 12.01 12.78
60 15.55 15.38 14.84 15.83 15.26
69 20.35 20.27 20.33 20.55 20.11

Table 2. Results of the apparent permittivity ε measurements with the S1 surface sensor for different
values of moisture w; 400 c.c. sample.

Moisture w [%]
Apparent Permittivity ε [-]

ε1 ε2 ε3 ε4 ε5

0 3.63 3.73 3.54 3.44 3.65
10 4.06 3.97 4.05 3.921 4.17
20 5.00 5.09 5.05 5.09 5.09
30 6.05 6.00 6.05 5.67 5.43
40 7.54 7.53 7.42 7.77 7.48
50 7.98 7.54 7.81 7.77 7.95
60 8.94 9.13 9.07 8.88 9.21
69 12.92 13.16 12.92 12.64 12.71

Table 3. Results of the apparent permittivity ε measurements with the S2 surface sensor for different
values of moisture w; 400 c.c. sample.

Moisture w [%]
Apparent Permittivity ε [-]

ε1 ε2 ε3 ε4 ε5

0 3.56 3.59 3.67 3.79 3.71
10 4.18 3.88 4.01 4.25 4.28
20 5.38 5.16 5.34 5.02 5.20
30 6.04 6.24 5.90 6.38 6.17
40 7.26 7.30 6.84 6.69 7.10
50 8.31 7.86 7.69 7.69 7.96
60 9.62 9.56 10.22 10.22 10.09
69 12.25 11.86 11.53 11.67 11.88

Table 4. Results of the apparent permittivity ε measurements with the FP/mts invasive probe for
different values of moisture w; 600 c.c. sample.

Moisture w [%]
Apparent Permittivity ε [-]

ε1 ε2 ε3 ε4 ε5

0 1.06 1.07 1.11 1.22 1.04
10 2.75 2.38 2.91 2.83 2.64
20 5.48 5.21 5.84 5.49 5.65
30 6.74 7.20 6.91 6.59 7.07
40 11.45 11.31 10.94 11.24 11.67
50 16.57 16.24 16.97 16.85 16.78
55 19.20 20.41 19.48 20.30 20.21
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Table 5. Results of the apparent permittivity ε measurements with the S1 surface sensor for different
values of moisture w; 600 c.c. sample.

Moisture w [%]
Apparent Permittivity ε [-]

ε1 ε2 ε3 ε4 ε5

0 3.33 3.42 3.25 3.32 3.50
10 3.82 4.05 3.94 3.88 3.77
20 5.27 5.44 5.28 5.29 5.20
30 6.27 6.58 6.50 6.39 6.58
40 9.05 8.79 8.58 8.83 8.85
50 9.78 10.27 9.82 10.05 9.84
55 12.05 12.25 12.31 12.62 12.35

Table 6. Results of the apparent permittivity ε measurements with the S2 surface sensor for different
values of moisture w; 600 c.c. sample.

Moisture w [%]
Apparent Permittivity ε [-]

ε1 ε2 ε3 ε4 ε5

0 3.11 3.32 3.27 3.31 3.43
10 3.72 3.76 3.87 3.94 3.84
20 5.11 5.24 5.42 5.30 5.36
30 6.75 6.81 6.99 6.85 6.86
40 8.82 8.96 9.10 9.12 8.96
50 10.53 10.28 10.05 9.96 10.18
55 12.65 12.49 12.88 12.72 12.57

4. Discussion

4.1. Regression Model

The graphs in Figure 4 present the relationships obtained on the basis of the results
presented in Tables 1–6. The graphs show the average permittivity readings from the five
measurements for all examined moisture contents and the confidence intervals.

Figure 4. Relationship between the apparent permittivity reads determined with the use of the
FP/mts invasive probe and the non-invasive probe and the moisture content of class 400 c.c. and
600 c.c. samples.
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The graphs in Figure 4 confirmed the relationship between the apparent permittivity
and the moisture content of the material. The effect of the apparent bulk density of the
material was not high, and the different regression courses resulted from the fact that the
two materials had different water absorption capacity, i.e., a maximum of 55% for the
aerated concrete 600 and a maximum of 69% for the aerated concrete 400, which was a
consequence of the different structure of the porous medium.

There were differences in the permittivity readings between the invasive probes and
the surface sensors, which resulted from their construction and the type of contact between
the measuring element and the material. In the case of the invasive probes, the measuring
rods were inserted into the material, whereas in the case of the surface sensors, they were
in contact with the surface of the material. The invasive probes read the permittivity of
the tested material, and the apparent permittivity read by the sensors S1 and S2 was the
average value of the apparent permittivity of the tested material as well as of the housing
from which the sensor was made. As a consequence, in the case of the invasive sensors for
dry material, the average apparent permittivity value was 1.17 [-] for the cellular concrete
400 and 1.1 [-] for the cellular concrete 600. However, in the case of the S1 and S2 probes,
they were 3.60 [-] and 3.66 [-] for the concrete 400 and 3.36 [-] and 3.29 [-] for the concrete 600.
For the maximum saturation of the 400 cellular concrete sample, the apparent permittivity
result when measured with an invasive probe exceeded 20 [-].

On the basis of the measurements, the obtained data and the adopted polynomial
regression model described by formula (1), the values of the β1 β2 and β3 estimators were
calculated for the individual sensor models and the classes of cellular concrete. These
values are summarized in Tables 7 and 8.

Table 7. Estimator values of the adopted calibration models for the measuring probes used
(400 c.c. sample).

Sensor β1 β2 β3 R2 F Statistic
RSE

[%mass]
RMSE

[%mass]

Invasive −0.098 ** 5.660 *** −5.005 0.994 419.593 ***
(df = 2; 5) 2.212 1.748806

Non-invasive (S1) −0.733 ** 19.419 *** −58.949 *** 0.986 174.069 ***
(df = 2; 5) 3.42 2.703889

Non-invasive (S2) −0.684 ** 18.86 *** −58.64 *** 0.996 555.122 ***
(df = 2; 5) 1.925 1.521514

df—degree of freedom, p—critical level of significance (* p < 0.05; ** p < 0.01; *** p < 0.001).

Table 8. Estimator values of the adopted calibration models of the measuring probes used
(600 c.c. sample).

Sensor β1 β2 β3 R2 F Statistic
RSE

[%mass]
RMSE

[%mass]

Invasive −0.127 ** 5.482 *** −4.827 0.993 286.774 ***
(df = 2; 4) 2.089 1.579467

Non-invasive (S1) −0.458 * 13.056 ** −36.376 ** 0.990 191.525 ***
(df = 2; 4) 2.552 1.929395

Non-invasive (S2) −0.379 * 11.670 ** −31.802 ** 0.990 555.122 ***
(df = 2; 5) 2.509 1.896724

df—degree of freedom, p—critical level of significance (* p < 0.05; ** p < 0.01; *** p < 0.001).

In Table 7, it can be seen that the measurement error expressed as RMSE in the case
of 400 c.c. was the highest when using the S1 non-invasive sensor. On the other hand,
the values of the determination coefficient R2 were similar for all analyzed sensors and
exceeded the value of 0.98, which proved a very good fit of the adopted model to the
dependence tested. In turn, in the case of class 600 c.c., the RMSE error values presented in
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Table 8 were the highest for the invasive measurement by the FP/mts probe. As in the case
of the 400 c.c. sample, the values of the R2 coefficient were similar in all measurements for
the class 600 c.c. samples and, in each case, exceeded 0.99.

In the case of the cellular concrete 400, the critical significance levels of the β2 and β3
estimators assumed a value lower than 0.001 for all sensors, which means that they were
statistically significant. In turn, the critical significance levels of β1 for all sensors assumed a
value of less than 0.01. In the case of the aerated concrete 600, the β2 and β3 estimators were
less than 0.1, and the β1 estimator was less than 0.05. This means that their significance
levels were lower for all sensors. On the other hand, the analysis of the F statistic (p < 0.001)
in all cases confirmed the statistical significance of the adopted regression models.

4.2. Uncertainty Analysis

The results obtained from the measurements made it possible to describe the relation-
ship between the apparent permittivity and the moisture content of the material with the
second-grade polynomial regression model according to formula (2) and to determine the
quality of the model fit to the obtained data using the determination coefficients R2, as well
as the standard errors of measurement expressed as Residual Standard Error (RSE) and
Root-Mean-Square Error (RMSE). Additionally, based on the GUM [49], the analysis of the
measurement uncertainty and expanded uncertainty in the material moisture function was
performed. The calculations were made on the basis of formulas (3) and (4). The obtained
results are presented in the form of graphs in Figure 5.

 

Figure 5. Uncertainty dependence on material moisture: invasive, S1 and S2 sensor, 400 and 600 c.c.
samples.

4.3. Discussion of the Calibration Results and Uncertainty Calculations

In the case of dry samples and a moisture content below 0.05 cm3/cm3, the apparent
permittivity determined by means of the surface sensors ranged from 3 to 4. This was
a consequence of the value of the apparent permittivity of the solid phase of the tested

281



Appl. Sci. 2023, 13, 665

material and the apparent permittivity of polyoxymethylene of 3.8 [-] [43]. In the higher
moisture ranges, the TDR surface sensor readings showed higher moisture values than the
conventional invasive probe.

This was also confirmed by the statistical characteristics of the model used, mainly,
the coefficient of determination (R2) equal to 0.986 and 0.996 for the S1 and S2 TDR surface
sensors and to 0.988 for the invasive probe. The RSE values were equal to 1.925 and 3.42 for
the non-invasive TDR sensors and to 3.183 for the invasive probe. Similar observations were
made in the case of the RMSE. It was equal to 2.70- and 1.52 for the TDR surface sensors and
to 2.52 for the invasive probe. The RSE and RSME values were lower for the non-invasive
S2 probe, while R2 was the highest for this probe among the tested sensors [42,49].

Due to the fact that in the measurements of building materials and partitions the most
frequently used quantity is the mass moisture (in %), calibration models were developed for
these units. Unfortunately, in the case of the TDR technique, most of the available literature
expresses a material’s moisture content as volumetric moisture; therefore, for the purposes
of literature discussion, the obtained values were converted to cm3/cm3 according to the
formula presented in [11,42].

Tables 7 and 8 show that the RMSE values obtained for all probe models ranged from
1.521% mass to 2.7% mass (0.0091 to 0.0162 cm3/cm3) for the cellular concrete 400 and
from 1.579% mass to 1.929% mass (0.0063 to 0.0077 cm3/cm3) for the aerated concrete 600.
The lowest values of this coefficient, 1.521% mass (0.0091 cm3/cm3), for the concrete 400
were recorded when measured with the non-invasive S2 sensor. In the case of the aerated
concrete 600, the lowest value of this coefficient was achieved in the case of measurement
with an invasive probe and was 1.579% mass (0.0063 cm3/cm3).

In turn, the maximum values of the RMSE coefficient for the cellular concrete 400 were
obtained with the non-invasive S1 sensor (1.58% mass, 0.0162 cm3/cm3) and for the cellular
concrete 600, again with the same sensor (1.93% mass, 0.0077 cm3/cm3).

According to the data presented by [49], the application of Topp et al. [49] in rela-
tion to selected soil centers resulted in uncertainties expressed as RMSE in the range of
0.01–0.066 cm3/cm3. In the case of the model proposed by Roth et al. [50], the RMSE ranged
from 0.008 to 0.037 cm3/cm3. The RMSE for the popular calibration formula proposed by
Malicki et al. (1996) was set at 0.03 cm3/cm3. It should be borne in mind that in most of the
cited literature sources, the proposed models were universal. For this reason, the quality of
the fit to the measured data was lower. The obtained RMSE values were comparable and in
many cases lower than the values determined by the team of Udawatta et al. for regression
models developed individually for each material (0.008–0.034 cm3/cm3) [51].

When analyzing the characteristics of the influence of moisture on the measurement
uncertainty (Figure 5), it can also be noticed that the measurement uncertainties for the
sensors S1 and S2 were smaller compared to those obtained for classic invasive probes. It
was also found that the uncertainties read at low and high material moisture levels were
greater than those obtained at middle moisture levels, which is a typical observation for
many measuring devices. It also resulted from the adopted regression model [11,27].

In turn, in the case of the measurement uncertainty, it can be referred to the expanded
uncertainty U. As its value is mainly influenced by the measurement uncertainty of type A,
related to the quality of fit of the adopted regression model, the correlation between the U
and the RMSE values was clearly visible. Only the U values from the middle measuring
range were analyzed. The lowest value of expanded uncertainty was observed for the S2
sensor (concrete 400 class) corresponding to 1.799% mass. In the case of the measurement
in concrete 600, the same values were also obtained with the S2 sensor, i.e., 2.468%mass.

Various literature sources indicate the following values of measurement uncertain-
ties of models developed for soil media and invasive probes: according to [52] and [53],
this uncertainty was in the range of 0.022–0.023 cm3/cm3; according to [54], it was
0.0269 cm3/cm3, according to [55], it was 0.004–0.018 cm3/cm3, and according to [50],
it was 0.011–0.013 cm3/cm3. Most of these values are higher or comparable to those ob-
tained in the course of the experimental research performed in this work.
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5. Conclusions

The use of TDR surface sensors (noninvasive S1 and S2 type) showed that the Time
Domain Reflectometry technique can be successfully used for non-invasive research to
determine the moisture content of rigid porous materials used in construction. The TDR
sensors provide very good responses similar to the measurements made with traditional
invasive sensors.

Since, in contrast to the invasive probes, the electrodes of the TDR sensors do not re-
quire to be immersed into the tested material, the measurements are significantly simplified,
and potential damage to both the sensor and the tested object is avoided.

When switching to the use of TDR sensors, however, one should be aware that they
require individual calibration, which may be technically difficult to perform, especially in
the case of partitions of objects, the characteristics of which are not known before starting
the test.

It was also noticed that the RMSE of the tested sensor was higher for the almost dry
and almost saturated states of the measured material. The obtained test results allow
concluding that more accurate measurement results are achieved with the use of invasive
sensors. The extended measurement uncertainty U(w) for measurements with an invasive
probe (middle range of material moisture w) was equal to 2.955 [-] for the cellular concrete
400, while, for the cellular concrete 600, it was 2.897 [-]. In the case of the non-invasive
sensors S1 it was for the 400 c.c. sample, 3.114 [-], and for the 600 c.c. sample, 2.889 [-]. In
the case of S2 and the cellular concrete 400, it was 1.956 [-], and for the cellular concrete 600,
it was 2.893 [-]. Finally, it should be stated that the expanded uncertainty for the FP/mts
probe was 94.1% of that for S1 and 151% of that for S2 (cellular concrete 400); 99.72% of that
for S1 and 99.86% of that for S2 (cellular concrete 600).

This does not change the fact that the surface sensors, despite the slightly different
results compared to those obtained with the invasive probe, have a number of advantages.
The following can be mentioned among them: (1) a simple and fast implementation
allowing for more measurements per unit of time; (2) the time needed to prepare the device
and the test object itself is much shorter than in the case of measurements with invasive
probes; (3) the surface TDR sensors allow measuring the moisture of the tested objects
without damaging them. The lack of need to introduce elements deep into the tested object
allows maintaining the continuity of the structure of the object. Therefore, it is possible to
measure fragile objects, e.g., objects with historic value or objects whose structure must not
be destroyed.
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53, 29–39. [PubMed]
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badań grawimetrycznych wybranych materiałów budowlanych. Bud. I Archit. 2016, 15, 163–171. [CrossRef]
28. Hola, A. Measuring of the Moisture Content in Brick Walls of Historical Buildings—The Overview of Methods. IOP Conf. Ser.

Mater. Sci. Eng. 2017, 251, 012067. [CrossRef]
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54. Černý, R. Time-Domain Reflectometry Method and Its Application for Measuring Moisture Content in Porous Materials: A
Review. Measurement 2009, 42, 329–336. [CrossRef]

55. Malicki, M.A.; Plagge, R.; Roth, C.H. Improving the Calibration of Dielectric TDR Soil Moisture Determination Taking into
Account the Solid Soil. Eur. J. Soil Sci. 1996, 47, 357–366. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

285



Citation: Chen, G.; Chen, X.; Yang, L.;

Han, Z.; Bassir, D. An Inversion

Algorithm for the Dynamic Modulus

of Concrete Pavement Structures

Based on a Convolutional Neural

Network. Appl. Sci. 2023, 13, 1192.

https://doi.org/10.3390/

app13021192

Academic Editors: Bogusław Łazarz,
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Abstract: Based on the spectral element method (SEM) and a convolutional neural network (CNN),
an inversion algorithm for the dynamic modulus of concrete pavement structures is proposed in
this paper. In order to evaluate the service performance of pavement structures more systematically
and accurately via the existing testing techniques using a falling weight deflectometer (FWD), it
is necessary to obtain accurate dynamic modulus parameters of the structures. In this work, an
inversion algorithm for predicting the dynamic modulus is established by using a CNN which is
trained with the dynamic response samples of a multi-layered concrete pavement structure obtained
through SEM. The gradient descent method is used to adjust the weight parameters in the network
layer by layer in reverse. As a result, the accuracy of the CNN can be improved via iterative training.
With the proposed algorithm, more accurate results of the dynamic modulus of pavement structures
are obtained. The accuracy and numerical stability of the proposed algorithm are verified by several
numerical examples. The dynamic modulus and thickness of concrete pavement structure layers
can be accurately predicted by the CNN trained with a certain number of training samples based on
the displacement curve of the deflection basin from the falling weight deflectometer. The proposed
method can provide a reliable testing tool for the FWD technique of pavement structures.

Keywords: pavement structure; dynamic modulus; convolution neural network; inversion algorithm;
falling weight deflectometer

1. Introduction

In recent years, with the vigorous development of nondestructive testing techniques for
pavements, falling weight deflectometer (FWD) has been widely applied. Simultaneously,
the inversion analysis of the dynamic modulus of pavement structures has also become
one of the most critical techniques used in their service performance evaluation [1]. The
method for solving the dynamic responses of a multi-layered pavement under impact
loads is limited by the boundary conditions and computational efficiency; thus, in the early
development stage of FWD instruments, most inversion software was based on the quasi-
static analysis method [2]. However, this method cannot simulate the dynamic effect of
vehicle loads. Moreover, the static inversion method is prone to causing the phenomenon of
“modulus transferring”, which leads to the failure of the inversion results [3]. Although the
dynamic effect of loads can be considered in the dynamic response analysis of the pavement
structure system by the finite element method (FEM), its solution process requires meshing
the pavement structures, which greatly reduces its solution efficiency and seriously affects
its application in the inversion of the dynamic modulus of the pavement structures [4,5].
In recent years, with the deepening of research on the dynamic responses of layered
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semi-infinite media, increasingly more dynamic response algorithms have emerged, most
notably the integral equation transformation method [6–9]. These algorithms can obtain
the dynamic displacement and stress responses of layered soil under dynamic load in the
frequency domain and can reveal the dynamic characteristics of the layered soil. However,
when solving the displacement responses of road surfaces under FWD loads, it is necessary
to solve the infinite integral problem; thus, the solution efficiency is greatly reduced. As
an algorithm for solving the dynamic responses of layered soil under axisymmetric loads,
the spectral element method (SEM) not only can consider the dynamic effect of FWD loads
to obtain accurate calculation results, but also has high solution efficiency [10,11]. Thus, it
has been successfully applied to the back-calculation of the dynamic modulus of pavement
structures [3,12–17].

With the development of forward algorithms for the dynamic responses of layered
pavement structures, a variety of dynamic modulus inversion software has been developed
based on nondestructive testing techniques using FWD equipment. However, most existing
inversion software is based on the peak deflection of the road surface, which only reflects
the overall bearing capacity of the pavement structure. The deflection basin displacement
time–history curve obtained by FWD testing equipment contains comprehensive pavement
structure information, which cannot be completely reflected by its peak deflection. In the
inversion process, the insufficient input conditions usually lead to the non-unique problem
of parameter inversion. It is thus difficult for the inversion results to objectively characterize
the actual performance of each structural layer of the pavement [13–15]. Zhang et al. [13]
used SEM as the forward model, and used the backpropagation neural network (BPNN)
and real-coded multi-population genetic algorithm to predict the structural parameters of
pavements. While the input conditions of the pavement mechanical model were increased
(the interlayer contact conditions and transverse isotropic properties of materials), the
non-unique problem could not be solved by relying only on the maximum deflection of
the road surface. Cao et al. [3] also used SEM as a forward analysis method, constructed
an optimization objective function using the measured deflection time–history curve and
theoretical calculation results, and carried out the dynamic inversion of the mechanical
parameters of a pavement via numerical optimization methods. Compared with traditional
static methods, better inversion results were achieved, and the phenomenon of “modulus
transferring” was effectively avoided, but the inversion is not efficient and the results
are not accurate. Li et al. [18] overcame the low search efficiency and heavy calculation
workload by applying the conventional particle swarm optimization (PSO) [19] algorithm
to the inversion of geotechnical engineering parameters, and proposed an improved PSO
algorithm. However, the inversion based on peak deflection was still characterized by
the problem of non-unique solutions, while the inversion based on the time–history curve
involved a large calculation workload. Moreover, a single objective function cannot reflect
the complex nonlinear function optimization problem.

The existing inversion algorithms are restricted by various factors. To solve the current
challenges, an accurate and effective inversion method is needed. The convolutional neural
network (CNN) has a strong feature extraction ability [20,21]. It is a potential scheme
to realize pavement detection based on vibration signals, and can effectively solve the
challenges faced by the above research. Due to its unique mechanism of partial connection
and weight sharing, the CNN has exceptional advantages in processing massive data. In
the field of damage detection based on vibration signals, Teng et al. [22] used a CNN to
determine the damage location of a steel structure. Furthermore, Teng et al. [23] presented
a novel and efficient approach for detection of structural damage from real-time vibration
signals via a CNN. In terms of the prediction of the mechanical properties of materials by
CNNs, Hu et al. [24] carried out research on the mechanical properties of hot-rolled steel.
To further improve the computational efficiency of the CNN, Zheng et al. [25] established a
fault diagnosis method for cylindrical roller bearing cages based on vibration signals and a
1-D CNN. These applications all confirm the unique advantages of CNNs in the field of
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diagnosis and prediction, as well as their potential application prospects for the task of
processing pavement vibration signals and the inversion of pavement structural parameters.

For this reason, this study develops an accurate and effective inversion algorithm for
the parameter identification of multi-layered pavement structures based on a CNN with
SEM as the forward calculation model. As an algorithm for solving the dynamic responses
of pavement structures, SEM can accurately simulate the dynamic effect of FWD loads
and avoid the phenomenon of “modulus transferring”. In addition, most of the inversion
calculations use the maximum value of the deflection as the training samples, which do
not reflect the overall dynamic characteristics of the pavement structures. As a result, the
inversion results suffer from the non-unique problem, and the calculation accuracy cannot
be guaranteed. In this paper, the deflection curves are used to replace the peak values of
the deflection curves as the training samples, which can reflect the dynamic characteristics
of the pavement structure more comprehensively. The CNN model is used to predict the
dynamic modulus and thickness of the pavement structure layers. The proposed inversion
algorithm is verified by the assumed numerical model of pavement structures, and relevant
parameters in the algorithm are analyzed.

2. Forward Modeling of Pavement Structures

2.1. Pavement Structure System

It is assumed that a layered pavement structure is placed on a layered semi-infinite
soil (Figure 1), both of which are isotropic and homogeneous, and the bottom soil can be
an elastic or rigid bedrock. As displayed in Figure 1, a rectangular coordinate system is
established. The coordinate origin O is set on the surface of the layered pavement structure,
with the z-axis vertically downward and the x-axis in the horizontal direction. An FWD
load is applied to a disc with a radius of Δ, and the center of the disk is at the origin of the
coordinate system. The load is axisymmetric and expressed as P(r, t) = S(r)F(t), where
S(r) represents the spatial distribution of the load and F(t) represents its change with time.
As the wave propagation under the load is axisymmetric, a cylindrical coordinate system is
then established in Figure 2. In this study, SEM is used to solve the displacement responses
of the deflection basin under FWD loads and provide an efficient and accurate forward
model for the inversion calculation of the dynamic modulus and thickness of the layered
pavement structure.

 
Figure 1. The schematic diagram of the FWD system.
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Figure 2. The wave propagation in the cylindrical coordinate system.

2.2. Spectral Element Method

For the axisymmetric wave problem, only the radial and vertical displacements are
considered. The wave propagation formula of the continuous medium in the time–spatial
domain under the cylindrical coordinate system is

∂σr
∂r + ∂τzr

∂z + σr−σθ
r = ρ ∂2ur

∂t2 ,
∂τzr
∂r + ∂σz

∂z + τzr
r = ρ ∂2uz

∂t2 ,
(1)

where σi (i = r, θ, z) is the normal stress in the subscript direction, τzr is the shear stress in
the z-r plane, ρ represents the mass density of the medium, and ur and uz represent the
radial and vertical displacements of the medium, respectively.

In Helmholtz decomposition, the displacement field of the medium can be expressed
as the gradient of scalar potential α and the curl of vector potential β, i.e.,

u = ∇α +∇× β, (2)

where ∇ represents a partial differential operator. In the axisymmetric wave problem, vector
potential β has only one component βθ , so the problem to be solved can be simplified as a
scalar potential problem. For simplicity, β is used to represent βθ . As it is an axisymmetric
problem, the displacement of the medium in the circumferential direction θ is zero, and the
radial and vertical displacement can be expressed as follows [10]:

ur =
∂α

∂r
− ∂β

∂z
, uz =

∂α

∂z
+

1
r

∂(rβ)

∂r
. (3)

The relationship between stress and displacement in the cylindrical coordinate sys-
tem is

σr = (λ + 2μ) ∂ur
∂r + μ

(
ur
r + ∂uz

∂z

)
,

σθ = (λ + 2μ) ur
r + μ

(
∂ur
∂r + ∂uz

∂z

)
,

σz = (λ + 2μ) ∂uz
∂z + μ

(
∂ur
∂r + ur

r

)
,

τzr = μ
(

∂uz
∂r + ∂ur

∂z

)
,

(4)

where λ and μ are the Lamé constants, and

λ =
νE

(1 + ν)(1 − 2ν)
, μ =

E
2(1 + ν)

, (5)

where E is the Young’s modulus and ν is the Poisson’s ratio.
Equation (4) is substituted into Equation (1) and the displacement is expressed by

the scalar potential in Equation (3). After algebraic simplification, the following equations
are satisfied:

(λ + 2μ)

(
∂2α

∂r2 +
∂2α

∂z2 +
∂α

r∂r

)
= ρ

∂2α

∂t2 (6)

μ

(
∂2β

∂z2 +
∂2β

∂r2 +
∂β

r∂r
− β

r2

)
= ρ

∂2β

∂t2 (7)
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It is evident that Equations (6) and (7) represent two forms of waves, namely P and

SH waves, respectively, the wave velocities of which are cP =
√

(λ+2μ)
ρ and cSH =

√
μ
ρ ,

respectively. For isotropic layered media, the two waves can be decoupled and solved
separately. The potential function α in Equation (6) in the frequency–wavenumber domain
can be obtained by using the variable separation method:

α̂(r, z) = Ane−ikpzz J0(kr), (8)

where superscript “ˆ” represents the function of the frequency–wavenumber domain, An
represents an unknown constant which is determined by the boundary conditions, J0 is the
first kind of Bessel function, and k is the wavenumber. The expression of kpz is

kpz =

(
ω2

n

c2
P
− k2

) 1
2

, (9)

where ωn is the frequency.
To introduce the boundary conditions in the radial direction, the amplitude of the

oscillation at the radial boundary r = R (far away from the load source) is considered to
vanish. That requires the item J0(kR) to be equal to 0. This condition can be satisfied at the
infinite positive roots kmR of the J0 function. Hence, the m functions,

α̂mn(r, z) = Amne−ikpzz J0(kmr), (10)

In the same way, the solution of the potential function β in the frequency–wavenumber
domain in Equation (7) is

β̂mn(r, z) = Bmne−ikszz J1(kmr), (11)

where Bmn is a constant determined by the boundary conditions and J1 is the first kind of
Bessel function. Moreover, ksz represents the vertical shear wavenumber, and is expressed as

ksz =

(
ω2

n

c2
SH

− km
2

) 1
2

(12)

Because Equations (6) and (7) are linear homogeneous formulas, the superposition
principle is applicable, i.e., the solutions of the potential functions α and β can be obtained
by the superposition of the infinitely many solutions of α̂mn and β̂mn. The inversion of the
integral transformation is usually solved using infinite numerical integration [6,26]. A high
number of wavenumbers must be calculated to approximate the infinite integration. In
order to obtain an accurate result, the step of the integration needs to be divided very small,
which can reduce the computational efficiency significantly. In SEM, the double-sum of the
discrete angular frequency ωn (n = 1, 2, . . . , N) and wavenumber km (m = 1, 2, . . . , M) is
used to obtain all arrays of the whole system dissipated at r = R (R is a large finite value).
The summation over the wave numbers in SEM is discontinuous, and the wave number is
finite. Therefore, the general solution of the wave formula of an axisymmetric system can
be obtained by superimposing the special solution [10], as follows.

α(r, z, t) = ∑
N

∑
M

Amne−ikpzz J0(kmr)e−iωnt (13)

β(r, z, t) = ∑
N

∑
M

Bmne−ikszz J1(kmr)e−iωnt (14)

The finite values N and M in the general solution Equations (13) and (14) can be
determined by the time and spatial amplitude spectra of the excitation load. The sum of N
frequencies can be obtained by using the fast Fourier transform (FFT), and the sum of M
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wavenumbers can be obtained by using the Fourier–Bessel series. The sum of wavenumbers
replaces the integral from 0 to infinity in the conventional numerical integration method,
which is crucial to improving the efficiency of the algorithm. For the infinite integral, when
the damping ratio of the medium is zero, the integrand has singular points, which makes
its integral calculation more expensive. The sum of the wavenumbers in double-sum form
can effectively avoid this problem.

The general solutions of the potential functions α and β (Equations (13) and (14)) are
substituted into Equation (3) to obtain the displacements of the axisymmetric problem,
as follows: {

ur(r, z, t)
uz(r, z, t)

}
= ∑

n
∑
m

{
Ĝrz(km, z)J1(kmr)
Ĝzz(km, z)J0(kmr)

}
F̂mF̂neiωnt, (15)

where Ĝ(km, z) represents the flexibility coefficient of the medium in the conversion domain,
and its solution is evident [10], and F̂m is the Fourier–Bessel transformation coefficient
of the excitation load S(r), which can be obtained by the Fourier–Bessel transformation
of the excitation load S(r). For the contact boundary condition at the interface between
the adjacent layers, the displacements and stresses meet the continuous conditions. If the
layered soil is underlain by an elastic semi-infinite space, the radiation condition should be
considered. Two spectral elements were developed in the literature [10] to illustrate the
solution of Ĝ(km, z) as well as the contact boundary condition and radiation condition.

Assuming that the FWD load is applied to the disc with radius Δ, S(r) can be expressed
as follows:

S(r) =
{

q for 0 � r � Δ
0 for r > Δ

, (16)

The Fourier–Bessel transformation of S(r) is

S(r) = ∑
M

F̂m J0(kmr), (17)

where F̂m can be parsed as

F̂m =
2

R2 J2
1 (αm)

∫ a

0
rJ0

(αm

R
r
)

dr =
2Δ

αmRJ2
1 (αm)

J1

(αm

R
Δ
)

, (18)

where αm = km
R , and F̂n is the Fourier transform coefficient of excitation load F(t), which can

be obtained by FFT. Under the discrete Fourier transform state, the relationship between
F(t) and F̂n is

F(jΔt) = 1
N ∑

n
F̂n
( n

N·Δt
)
e

i2πnj
N (n = 1, 2, . . . , N − 1),

F̂n
( n

N·Δt
)
= ∑

j
F(jΔt)e−

i2πnj
N (j = 1, 2, . . . , N − 1),

(19)

where Δt is the load time step.

2.3. Forward Model Validation

First, the accuracy of SEM was verified by selecting a three-layer pavement structure
model placed on a homogeneous semi-infinite soil. Grenier et al. [27] studied a general
pavement in Quebec, Canada, including a 150 mm thick asphalt layer, a 300 mm thick
granular material base course, and a 600 mm thick subbase sand layer set on the semi-
infinite soil, as shown in Figure 3. The generic pavement was isotropic, and its material
parameters, including its Young’s modulus, Poisson’s ratio, mass density, and damping
ratio, are reported in Table 1.
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Figure 3. A generic multi-layered pavement structure resting on a homogeneous half-space.

Table 1. The properties of the generic pavement.

Layers h (m) E (MPa) μ ρ (kg/m3) ζ (%)

Asphalt 0.15 3000 0.35 2400 5
Base course 0.30 300 0.35 2300 2

Subbase 0.60 150 0.35 1900 2
Subgrade - 75 0.35 1800 2

The FWD load applied on the pavement is shown in Figure 4; the load amplitude was
40 kN, the duration was 30 ms, the number of Fourier transform samples N = 2048, and the
number of wavenumber samples M = 200. The load acted within a circle of radius 0.15 m,
i.e., the radius of the drop hammer was 0.15 m. The displacement of the deflection point
was calculated at the radial distances from the load center point r = 0, 0.25, 0.375, 0.50, 0.625,
0.75, 1.00, 1.25, 1.50, and 2.00 m. The oscillation dissipation distance was assumed to be
R = 150 m. The calculated displacement time–history curve is shown in Figure 5a, and the
calculated maximum displacement curve at the deflection point is shown in Figure 5b. The
calculation results were compared with the published results in the reference [27]. The
figure reveals that the two results were basically completely matched, thus verifying the
accuracy of the calculation results of the proposed algorithm in the time domain.

Figure 4. The FWD load pulse on the circular disk.
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(a) (b) 

Figure 5. The response of the generic multi-layered pavement system [27]. (a) Displacement-time
curve at deflection points; (b) Maximum displacement curve at deflection points.

3. Inversion Method for the Dynamic Modulus of Pavement Structures

3.1. Convolutional Neural Network

A CNN can effectively reduce the number of network parameters, alleviate the model
overfitting problem, and reduce the memory occupied by deep networks. A standard
fitting CNN is usually composed of convolution layers, pooling layers, activation layers,
fully connected layers, and regression layers. In practical applications, the convolution
and activation layers are often referred to together as convolution layers. The data input
(network input) transmits through a series of layers, and is finally mapped to the fitting
value corresponding to the original data through regression layers. In particular, the input
of a 1-D CNN is a 1 × N or N × 1 matrix. Figure 6 presents the basic structure of the
CNN. The feature extraction is carried out through the convolution layer and the pooling
layer, and the fitting value (parameter value of soil layers 1–3) is finally obtained in the
regression layer.

Figure 6. The basic structure of the CNN.
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A 1-D CNN is often used in sequence models. Figure 7a presents a typical 1-D
CNN operation, in which the original data of the convolution layer are an input matrix
whose size is 1 × 6, and the convolution kernel is a matrix whose size is 1 × 3. The
convolution operation process is to multiply each element in the convolution kernel with
the corresponding element in a sub-region (e.g., orange box or purple dotted box) of the
original data of the convolution layers, and then add the results to obtain an element in the
feature vector. Each time the convolution operation is performed, the convolution kernel
moves down with a certain step size (the step size is 1 in Figure 7a), and the operation
process is repeated until all elements of the original data are traversed. Finally, after the
convolution operation, a new array is formed (for example, the feature vector [8 23 6 29]).

2 2 0 5 2 3

4 0 3

8

2 4+0 0+5 3=23

8 623 29

23

2 2 0 5 2 3

2

Max(2,2,0)=2

5

Max(2,0,5)=5

2 5 5 5

(a) Convolution operation (b) Pooling operation

Input matrix:

Convolution kernel: 

Input matrix: 

Feature vector: Feature vector:

Figure 7. The basic principle of the convolution and pooling operations.

The pooling operation is a down sampling technique. By reducing the characteristic
dimensions of the output after convolution, the network parameters can be effectively
reduced, thus accelerating the calculation process. This can greatly improve the compu-
tational speed of the CNN and effectively prevent overfitting. During pooling, the input
matrix is divided into several regions, and the maximum value is output for each sub-
region. There are usually two different pooling methods, namely maximum pooling and
average pooling. For the purposes of this study, maximum pooling is superior to average
pooling. Figure 7b shows the maximum pooling operation.

The activation function introduces nonlinear factors into the neural network and
improves its fitting ability to learn complex features. Thus, the neural network can approxi-
mate any nonlinear function, and the convergence of the network can also be accelerated.
Common activation functions include the Sigmoid, Tanh, ReLU, and Leaky ReLU. The
activation function used in this study is Leaky ReLU, which is similar to ReLU and helps
to expand the applicability of the ReLU function. This function retains the characteristic
information that the negative values may contain. It has greater application significance
than the ReLU function. Its form is

Leaky ReLU(x) =
{

x,
αx,

x ≥ 0
x < 0

(20)

where x is the input value of the network, and α is 0.01 by default.
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3.2. Inversion Process

The training process of the CNN is divided into two stages, namely forward prop-
agation and backward propagation. In this study, the time–history curve of pavement
deflection obtained by using SEM is used as the CNN input, and the parameter value of
the dynamic modulus of the three-layer pavement structure is used as the CNN output.
In the forward propagation process, the pavement deflection time–history curve is calcu-
lated via a series of convolution–activation–pooling to obtain the dynamic modulus of the
three-layer pavement structures, i.e., the parameters of the soil layers are predicted through
the response. By comparing the difference between the predicted and exact values, the
training error of the CNN is obtained. When the error is greater than the expected value,
the backward propagation process is carried out, the error is sent back to the network to
readjust the weight, and the training is continued to reduce the error. When the error is
equal to or less than the expected value (close to 0, reaching convergence), the network
ends the training.

The data set of the CNN prediction model used in this study consisted of a training
set, a validation set, and a testing set. The training set was used to train the parameters
in the neural network, and the validation set was used to verify the performance of the
training model. Whether the network training reached convergence was judged according
to the root mean square error (RMSE) and the loss function of the validation set. The testing
set was used to evaluate the performance of the trained neural network.

To ensure the accuracy of the inversion results, two groups of comparative training
were conducted. According to the elastic modulus E of the three-layer pavement structure
(as shown in Figure 3), different values were selected to establish the sample set. The
value range of E1 of the first layer was selected as 1500–4500 MPa, the value range of E2
of the second layer was 150–450 MPa, and the value range of E3 of the third layer was
75–225 MPa. The elastic modulus of each layer was considered to be 11 different values
at equal intervals. Therefore, 1331 samples were established as the data set of the neural
network. A certain number of samples were randomly selected from the 1331 samples for
training and testing.

To avoid random and accidental errors in the experiment process, both the testing and
validation sets are 100 randomly selected discrete samples from the 1331 samples.

The first group of comparative training aimed to find the optimal sample input
dimension. The specific division of the training data set is shown in Table 2. The first
sampling method was to take the peak values of the 10 FWD deflection basin curves, and
the second sampling method was to take the entire curves. The sample input and output
dimensions are reported in Table 3.

Table 2. The division of the first group of comparative training data sets.

Project Training Set Validation Set Testing Set Total

Quantity 950 100 100 1150

Table 3. The input and output dimensions of the first group of comparative training.

Sampling Method Input Dimension Output Dimension

Peak value of 10 deflection curves 10 3
All values of 10 deflection time history curves 20,480 3

The purpose of the second group of comparative training was to determine the optimal
number of training samples and carry out a comparative test in which the number of
training samples in eight groups varied from 600 to 950. The specific division of the second
group of comparative training data sets is exhibited in Table 4.
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Table 4. The division of the second group of comparative training data sets.

The Best Training Sample
Quantity Comparison Training

Training Set Validation Set Testing Set Total

1© 600 100 100 800
2© 650 100 100 850
3© 700 100 100 900
4© 750 100 100 950
5© 800 100 100 1000
6© 850 100 100 1050
7© 900 100 100 1100
8© 950 100 100 1150

Based on the divided data set, the specific parameter settings of the convolution layer
after CNN model optimization are presented in Table 5. The pooled window size of a
pooled layer was 1 × 2, and the pooled window moved in two steps. The activation
function used by the activation layer was the Leaky ReLU function.

Table 5. The parameter settings of the convolution layer.

Convolution Layer Size Step
Number of

Convolution Kernels
Padding

1 1 × 2 1 60 0

The performance evaluation indicators of common regression models mainly include
the RMSE, mean absolute error (MAE), mean square error (MSE), and R2 value. Among
them, the RMSE is a typical evaluation indicator of regression models, and is used to
represent the size of the error generated in the model prediction process. In this study, the
RMSE and relative error were used as the evaluation indicators of the CNN model, and
their expressions are

RMSE =

√√√√ 1
N

N

∑
t=1

(observedt − predictedt)
2, (21)

Relative error =
observedt − predictedt

observedt
∗ 100% (22)

where N is the number of samples.

4. Analysis of the Inversion Results

4.1. Influence of Different Input Dimensions on the Inversion Results

The trained CNN was used to predict the validation sample, and the RMSE values
are reported in Table 6. The RMSE obtained by the first input condition (peak value of
10 deflection curves in Table 3) was found to be far greater than that obtained by the second
input condition (all values of 10 deflection time history curves in Table 3). Therefore, the
inversion of the entire deflection curves was more accurate than their peak values. The
first input condition does not reflect the overall dynamic characteristics of the pavement
structures. As a result, the inversion results have a non-unique problem. In this example,
the deflection curves are used to replace the maximum values of the deflection curves
as the training samples, which can reflect the dynamic characteristics of the pavement
structure more comprehensively. The calculation results also show the high accuracy of
the algorithm. The main reason why existing algorithms seldom use the entire deflection
time–history curve for inversion is that they cannot cope with huge data sets. The CNN
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inversion model used in this study has better regression performance and can overcome
this problem more effectively.

Table 6. The comparison of the training effects of CNN models with two kinds of input data.

Sampling Method Peak Values of 10 Deflection Curves All Values of 10 Deflection Curves

RMSE of validation samples 0.1564 0.0417

4.2. Influence of Different Sample Numbers on the Inversion Results

The final calculation results of the second comparison group are exhibited in Figure 8.
With the increase in the number of training samples, the RMSE of the validation samples
decreased gradually. Figure 8 shows that when the number of training samples was 950, the
RMSE of the validation samples reached the minimum value of 0.0417, and the validation
accuracy of the CNN model reached about 96%. To further illustrate the accuracy of
this algorithm for the inversion of the dynamic modulus of the pavement structure, the
evaluation metrics (RMSE, R2 value, MAPE (mean absolute percentage error), and MAE)
of the algorithm in this paper are shown in Table 7 when the training set samples are taken
as 950.

Figure 8. The RMSE change of the validation samples.

Table 7. Training result.

Training Set RMSE R2 MAPE MAE

950 0.0417 0.9809 [4.11% 3.18% 3.34%] [101.0193 8.6192 4.5244]

4.3. The Inversion Calculation Results of the Dynamic Modulus for Pavement Structures

To further illustrate the accuracy of the proposed algorithm for the inversion of the
dynamic modulus of the pavement structure, the 950 training samples used in Section 3.2
were used for exploration. The resulting changes in the RMSE and training loss curve of
the training samples predicted by the CNN model are shown in Figure 9. During the first
300 iterations of the CNN training, the loss curve showed a downward trend with the
improvement of prediction accuracy. After 3000 iterations at a certain stage of training,
the loss value reached the minimum, the loss curve tended to be stable, and the CNN
model converged. The changing trend of the RMSE curve of the training samples decreased
greatly at first and then tended to be stable.
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Figure 9. The RMSE and loss change curve of the training samples.

To reflect the prediction effect of the proposed inversion model more intuitively for the
dynamic moduli of the pavement structure layers, the inversion results of the validation
samples were compared with the exact values, as exhibited in Figure 10. Figure 10a–c
represent the comparison results of the dynamic elastic moduli E1, E2, and E3 of the
pavement structure layers, respectively. The predicted and exact values of the dynamic
elastic modulus of the first layer of the pavement were found to be basically completely
matched. Furthermore, the dynamic elastic moduli of the second and third layers were
also well-matched, with only a few samples having certain errors. As the FWD load is
applied on the road surface, the deflection curves obtained contain more information on
the dynamic characteristics of the surface layer than that of the deep pavement layers. That
is, with the increase in the depth, the correlation of the pavement structure properties to the
displacement of the road surface decreases; thus, the relative error of its dynamic modulus
gradually increases. The relative errors of the inversion results of the dynamic elastic
moduli E1, E2, and E3 of the three-layer pavement structure are shown in Figure 11. The
MAPE of the first layer was 4.11%, and the maximum relative error was 9.53%. The MAPE
of the second and third layers were basically within 3.34%, and their maximum relative
errors were 11.33% and 11.91%, respectively. It is worth noting that only 950 samples were
selected for training in this example. More accurate inversion results can be achieved if the
number of training samples is increased.

4.4. The Inversion Calculation of the Dynamic Modulus and Depth for Pavement Structures

As with the dynamic modulus, the thickness of the pavement structures also has a
significant effect on the pavement deflection. In this example, the same pavement profile
as in Section 4.3 was used with the assumption that, in addition to the dynamic modulus,
the thicknesses of the three pavement structure layers were also unknown. Hence, the
number of the unknown inversion variables is twice as large as the example in Section 4.3.
In order to obtain an accurate result, more samples are needed for the training than the
previous example. A total of 3000 samples are calculated, of which 2400 samples were used
for training, 300 samples for validation, and 300 samples for testing. The dynamic modulus
and thickness are randomly generated in these 3000 samples. The value ranges of these
inversion variables are shown in Table 8.
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Figure 10. The curves of the predicted and measured values of the testing samples. (a) Dynamic elastic
modulus of the first layer of the pavement structure; (b) Dynamic elastic modulus of the second layer
of the pavement structure; (c) Dynamic elastic modulus of the third layer of the pavement structure.

Table 8. The value range of the inversion variables.

Inversion Variables
E1

(MPa)
E2

(MPa)
E3

(MPa)
h1(m) h2(m) h3(m)

Value range 1500–4500 150–450 75–225 0.075–0.225 0.15–0.45 0.30–0.90
average relative error 7.96% 3.52% 6.90% 10.58% 8.51% 11.97%

The inversion results of the validation samples were compared with the exact values,
as exhibited in Figures 12 and 13. Figure 12a–c represent the comparison results of the
dynamic elastic moduli E1, E2, and E3 of the pavement structure layers, respectively.
Figure 13a–c represent the comparison results of the dynamic elastic moduli h1, h2, and h3
of the pavement structure layers, respectively. The average relative error of the six inversion
variables is listed in Table 8. As the figures show, the predicted modulus and depth obtained
by the presented inversion algorithm have a good agreement with exact modulus and
depth. The non-unique problem in the inversion calculation of the pavement structure
parameters is solved by the proposed algorithm in engineering accuracy requirements.
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Figure 11. The relative error curve of the testing samples. (a) Relative error of the first layer of the
pavement structure; (b) Relative error of the second layer of the pavement structure; (c) Relative error
of the second layer of the pavement structure.

Figure 12. Comparison between the predicted and exact dynamic modulus of the testing samples.
(a) Dynamic elastic modulus of the first layer of the pavement structure; (b) Dynamic elastic modulus
of the second layer of the pavement structure; (c) Dynamic elastic modulus of the third layer of the
pavement structure.
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Figure 13. Comparison between the predicted and exact depth of the testing samples. (a) Thickness of
the first layer of the pavement structure; (b) Thickness of the second layer of the pavement structure;
(c) Thickness of the third layer of the pavement structure.

5. Conclusions

In this study, an algorithm for parameter identification of concrete pavement structures
has been presented. SEM was used as the forward algorithm for the dynamic responses
of layered pavement structures, and the time–history curve of the pavement deflection
basin displacement responses under FWD loads was obtained. The accuracy of the forward
algorithm was verified via a comparison with the existing literature. Based on this, the
CNN was adopted, and the deflection basin displacement time–history curves were taken
as the input condition to establish a numerical model for the parameter identification of
layered pavement structures. The main conclusions of this research are as follows.

1. Compared with inversion using the peak values of the pavement deflection basin
displacement as the input condition, more accurate inversion results can be obtained
by using the entire time–history curves of the pavement deflection basin displacement
as the input condition. The phenomenon of “modulus transferring” is avoided, as
well as the non-unique problem.

2. With the increase in the number of samples, the accuracy of the inversion results
increases gradually. For the inversion model of the dynamic modulus of the three-layer
pavement structure, when the number of training samples reached 950, the RMSE was
only 0.0417, which proves the high accuracy of the proposed inversion algorithm. For
the inversion of the dynamic modulus of the pavement structure, the MAPE of the
inversion results was found to be basically controlled within 4.11%, and the MAPE
of the inversion results of the base and subbase layers were also basically controlled
within 3.34%. Thus, inversion results were found to have adequate numerical stability.

3. The algorithm can also be used for the inversion of the thickness and dynamic modu-
lus of the pavement structure layer. As the number of inversion variables increases,
the inversion accuracy will decline to a certain extent. The algorithm in this paper
is of a high solution accuracy for the inversion of the dynamic elastic modulus of
the pavement structure surface. The average relative error of the inversion results
is basically controlled within 8%, while the inversion accuracy for the thickness is
relatively low. The average relative error of the inversion results is basically controlled
within 12%, and the inversion results have adequate numerical stability.

4. The limitation of this study is that the contact boundary conditions between the
pavement structure and the subgrade are not considered, and all the results obtained
are purely simulation results without considering the impact of noise. Previous
research shows that the interface between the pavement structure and the subgrade
will have a certain degree of relative slip, which has a certain impact on the dynamic
response of the pavement surface. Therefore, the inversion accuracy of pavement
structure dynamic modulus will also be affected. The contact boundary conditions
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will be considered in future research, and the proposed algorithm will be applied to
the actual tests and engineering practice.
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Abstract: In order to solve the problem of the quantification of detection signals in the magnetic flux
leakage (MFL) of defective in-service oil and gas pipelines, a non-uniform magnetic charge model
was established based on magnetic effects. The distribution patterns of magnetic charges under
different stresses were analyzed. The influences of the elastic load and plastic deformation on the
characteristic values of MFL signals were quantitatively assessed. The experimental results showed
that the magnetic charge density was large at the edges of the defect and small at the center, and
approximately decreased linearly with increasing stress. The eigenvalues of the axial and radial
components of the MFL signals were compared, and it was found that the eigenvalues of the radial
component exhibited a larger decline rate and were more sensitive to stress. With the increase in
the plastic deformation, the characteristic values of the MFL signals initially decreased and then
increased, and there was an inflection point. The location of the inflection point was associated with
the magnetostriction coefficient. Compared with the uniform magnetic charge model, the accuracy
of the axial and radial components of the MFL signals in the elastic stage of the improved magnetic
charge model rose by 17% and 16%, respectively. The accuracy of the axial and radial components of
the MFL signals were elevated by 9.15% and 9%, respectively, in the plastic stage.

Keywords: magnetic flux leakage detection; magnetic charge model; force-magnetic coupling;
magnetic flux leakage signal

1. Introduction

With the rapid development of the global economy and the improvement of people’s
living standards, the demand for different energy resources, such as oil and natural gas, is
gradually increasing. Due to the advantages of the cheap and convenient transportation of
long-distance oil and gas pipelines, they are widely used in the oil and gas industries [1,2].
Long-distance oil and gas pipelines in long-term service are prone to accidents due to aging,
corrosion, and other risk factors, which pose a serious threat to the global economy and
people’s safety. Therefore, the safety of pipelines cannot be overlooked [3]. At present,
of the majority of in-service pipelines in China are at the aging accident stage. In order
to ensure the safe operation of oil and gas pipelines, they must be tested and monitored
regularly [4,5]. The in-pipeline testing technology is the main nondestructive testing
method, which has been developed for several decades, mainly including piezoelectric
ultrasonic testing, electromagnetic ultrasonic testing, magnetic flux leakage (MFL) testing,
etc. [6,7].

The MFL internal detection technology has shown an outstanding diagnostic perfor-
mance [8,9], which can detect crack defects, weld defects, corrosion pits, metal losses, and
other abnormal operating conditions of pipelines [10]. Compared with other detection tech-
nologies, the MFL internal detection technology possesses the advantages of non-pollution,
non-coupling, high speed, and high reliability [11]. It is more appropriate for the rapid
online detection of long-haul oil and gas pipelines, and it is globally recognized as the most
effective detection method for the safety detection of pipelines [12,13]. The quantization of
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the pipeline MFL signal is the ultimate goal of MFL detection [14]. Most of the quantization
methods are to carry out a large number of calibrations of experimental data [15,16], but the
failure to take into account the complex situation in the pipeline will lead to poor accuracy
and impracticality of the quantization method; therefore, the quantization of the theoretical
model has become a hot research topic [17,18]. Under the influence of the internal pressure
of the medium and the surrounding environment, there is a large stress concentration area
at the defect [19,20]. The existing quantization model does not consider the influence of the
stress concentration area on the magnetic leakage signal [21,22], resulting in poor quantiza-
tion accuracy. Therefore, it is of great significance for the establishment of a quantitative
model of magnetic leakage internal detection and quantitative calculation of the magnetic
leakage signal [23,24].

In the present study, the force-magnetic coupling relationship between the non-
uniform magnetic charge model and the analytical model of compound magnetic charge
was developed. The distribution of the magnetic charges on the side wall under different
stresses was analyzed. The influences of the elastic load and plastic deformation on the
MFL signals and their characteristic values were studied. Compared with the experimental
data, the reliability and accuracy of the model were verified. The research could provide a
scientific basis for the quantitative detection of defects in long-distance oil and gas pipelines.

2. Model Development

2.1. Classical Model

The pipeline is magnetized by the excitation device of the MFL internal detection. If
there is no defect in the pipeline, the magnetic lines of force pass through the inside of the
pipe wall, and the probe cannot detect the magnetic leakage field in the air. When there are
defects in the pipeline, the magnetic field lines in the wall will leak into the air because the
permeability of the defect is small and the reluctance is large, thereby forming a magnetic
leakage field, as shown in Figure 1a.

 
(a)  

Figure 1. Cont.
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(b)  

Figure 1. Schematic diagram of defects in pipeline and distribution of magnetic charges. (a) Schematic
diagram of MFL internal detection of defects in pipeline. (b) Schematic diagram of non-uniform
distribution of magnetic charges on the side wall of the defect.

At present, magnetic charge models are widely used in the analysis of magnetic
leakage fields [25,26]. As shown in Figure 1b, magnetic charges are generated at the defects
and distributed on the side walls. The magnetic leakage field, when the micro-element
surface dydz on the side wall is distant from point p, is formulated as follows:

dH =
ρdydz

4πμ0r3 (1)

where the uniform magnetic charge density is ρ = 5.3
(

Dz/Dx+1
Dz/(Dxμ)+1

)
H0 [27]. The magnetic

charge at the defect is affected by the shape of the defect, and the magnetic charge in the
stable state presents a non-uniform distribution under the action of Coulomb force [28,29],
which is difficult to overcome. As shown in Figure 1b, the rectangular defect with the
defect side length dy × dz is divided into m × n sub-regions, and the side length of each
sub-region is Dy

n × Dz
m . Therefore, only the magnetic charge carried by each sub-region is

required, and the distribution of the magnetic charge density in each sub-region can be
calculated as [30]:

ρij =
Qij

s
(2)

where i = 1, 2, 3... n, j = 1, 2, 3... m, p is the magnetic charge density in the subregion, Q(i,j)
is the magnetic charge in the subregion, and s is the area of the side wall of the defect.
As illustrated in Figure 1b, the mathematical model is established in the S1 plane. The
magnetic charge is repulsive in the S1 plane and attracted by the magnetic charge in the S2
plane. When the magnetic charge of the side wall of the defect is in a stable state, the vector
sum of the magnetic force received by the magnetic charge is 0; thus, the Coulomb force
received by the magnetic charge of any subregion is formulated as follows [31,32]:

F =
Kq(a,b)Q(i,j)

r32 +
Kq(a,b)Q(i,j)−

r4
2 = 0 (3)

where Q(i,j)+ is the magnetic charge of any subregion in the S1 plane, Q(i,j)- is the magnetic
charge of any subregion in the S2 plane, and q (a, b) is the unit point magnetic charge in the
plane region (a = 1, 2, 3... n − 1, b = 1, 2, 3... m − 1, a �= b),

r3 =

√(
Dy
m

)2( 2b+1
2 − j

)2
+
(

Dz
n

)2( 2a+1
2 − i

)2
is the distance between the magnetic

306



Sensors 2023, 23, 1857

charges on the same plane, r4 =

√(
Dy
m

)2( 2b+1
2 − j

)2
+
(

Dz
n

)2( 2a+1
2 − i

)2
+ Dx2 is the

distance between the magnetic charges on different planes, and K is the Coulomb con-
stant. Therefore, the horizontal and vertical components of any q(a,b) unit magnetic charge
subjected to the Coulomb force in the subregion Q(i,j) are expressed as:

Fm =
( 2b+1

2 −j)
r3

× Kq(a,b)Q(i,j)+

r32 +
( 2b+1

2 −j)
r3

× Kq(a,b)Q(i,j)−
r4

= 0 (4)

Fn =
( 2a+1

2 −i)
r3

× Kq(a,b)Q(i,j)+

r32 +
( 2a+1

2 −i)
r3

× Kq(a,b)Q(i,j)−
r4

= 0 (5)

As there are several magnetic charge regions in the plane, the force analysis of several
magnetic charge regions is combined into a system of equations, as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

n
∑

i=1

m
∑

j=1

n−1
∑

a=1

m−1
∑

b=1
Fm = 0

n
∑

i=1

m
∑

j=1

n−1
∑

a=1

m−1
∑

b=1
Fn = 0

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
( 3

2−1)Kq
(1,1)

Q
(1,1)+

r3
3/2 +

( 3
2−1)Kq

(1,1)
Q
(1,1)−

r3×r4
+ · · · · · ·+ ( 3

2−j)Kq
(1,1)

Q
(i,j)+

r3
3/2 +

( 3
2−j)Kq

(1,1)
Q
(i,j)−

r3×r4
= 0
)

...(
( 3

2−1)Kq
(1,1)

Q
(1,1)+

r3
3/2 +

( 3
2−1)Kq

(1,1)
Q
(1,1)−

r3×r4
+ · · · · · ·+ ( 3

2−i)Kq
(1,1)

Q
(i,j)+

r3
3/2 +

( 3
2−i)Kq

(1,1)
Q
(i,j)−

r3×r4
= 0
)

...

(6)

Through the above-mentioned equations, the magnetic charge of Q(n,m)+ in any subre-
gion can be solved. By substituting the magnetic charge in the magnetic region obtained
from Equation (6) into Equation (2), the magnetic charge density expression in the S1 plane
can be formulated as follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ(1,1) = 0.136 Dy
2Dz

2

Dx2

ρ(1,2) = 0.131 Dy
2Dz

2

Dx2

...

(7)

The non-uniform distribution of the magnetic charge on the side wall of the defect
can be solved by Equation (7), as shown in Figure 2, which is the schematic diagram of the
non-uniform distribution of the magnetic charge on the side wall of the S1 plane.

Figure 2. Contour map of non-uniform distribution of magnetic charges.
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The magnetic charge density on the side wall of the defect presents a non-uniform
distribution, and the magnetic charge density in the middle is small, whilst it gradually
increases near the edge, and the magnetic charge density at the edge is the largest (Figure 2).

2.2. An Improved Magnetic Dipole Model

An in-service pipeline is affected by the internal pressure of the pipeline, and a
stress concentration area is formed at the defect. Therefore, the establishment of the
computational model of the magnetic charge density at the defect under the action of stress
is more compatible with the actual condition. The magnetic field intensity at the defect can
be expressed as [33]:

Heff = H + He
σ + Hp

σ (8)

where H is the strength of the excitation magnetic field, Heff represents the effective mag-
netic field, He

σ denotes the effective magnetoelastic field, and Hp
σ is the effective plastic field.

In the leakage magnetism, He
σ can be expressed as [34]:

He
σ =

3σλs

μ0Ms

(
cos2 θ − υ sin2 θ

)
(9)

where θ is the angle between the direction of magnetization and the direction of stress, and
v is Poisson’s ratio. In the leakage magnetism, Hp

σ is the effective plastic field, which can be
expressed as [35]:

Hp
σ =

6kEεpλs

μ0Ms
− k′ ε2

p Ms (10)

Equations (9) and (10) are substituted into Equation (8) to achieve:

Heff = H +
3λs

μ0Ms

(
2kEεp + σ

(
cos2 θ − υ sin2 θ

))
− k′ ε2

p Ms (11)

According to the relationship between the magnetization of ferromagnetic materials
and the magnetic charge density, it can be expressed as [36,37]:

M = Ms[coth
(He f f

a

)
− a

He f f
] (12)

ρ′
(i,j) = μ0M(i,j) = ρ(i,j)[coth

(He f f

a

)
− a

He f f
] (13)

By substituting Equation (13) into Equation (1), the magnetic charge density under
stress can be obtained. Then, the magnetic charge model under the enhanced stress can be
formulated as follows:

dH =
n

∑
i=1

m

∑
j=1

ρ′
(i,j)dydz

4πμ0r3 (14)

According to the non-uniform magnetic charge model under stress, this study pre-
sented a method to quantify the MFL signals of defects [38,39].

3. Calculation and Analysis

In this study, the control variable method was used to assess the variations of the
magnetic signal in the elastoplastic stage.

The test specimen used was a X70 pipe. The material parameter k is the ratio of
elastic energy to magnetic energy, k’ is the average density of the pinpoint in the unit
volume, the Young’s modulus (E) is 207 GPa, the Poisson’s ratio (υ) is 0.3, the saturation
magnetization (Ms) is 1.585 × 106A/m−1, the saturation magnetostriction (λs) is 1.2 ppm,
σ is the stress, the angle between the stress and magnetic field (θ) is 0◦, and εp is the amount
of plastic deformation.
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3.1. Relationship between Internal Pressure and Stress

In the process of pipeline transportation, the internal pressure of the pipeline is within
the range of 5~10 MPa, and the stress concentration area at the defect is remarkably larger
than that in the other areas [40]. Therefore, the corresponding relationship between the
stress at the defect and the internal pressure is formulated as follows [41,42]:

σ =
F
√

πDy/QpR
t

(15)

where Q is expansion coefficient, p is the internal pressure, R is the radius of pipeline, t is
the wall thickness of the pipeline, and Dy is the defect depth. In addition, F is the stress
intensity factor at the crack tip and only depends on the crack size and internal pressure.
The radius R of the pipelines was 259 mm, the wall thickness t was 12 mm, the defect
depth was 10 mm, the axial length was 1 mm, and the internal pressure of 0.5~10 MPa was
applied to the pipeline. The calculated stress is shown in Figure 3.

Figure 3. Relationship between pressure and stress in pipeline.

3.2. Effects of Stress on Magnetic Charge Density

The stress concentration area at the defect leads to the change in the magnetization of
the side wall of the defect. In the present study, the defect sizes were designed with length
Dx = 1 mm, width Dy = 10 mm, and depth Dz = 10 mm, and tensile forces of 0, 10, 20, 30, 40,
and 50 MPa were applied to analyze the variation pattern of the magnetic charge density
under different stresses. Figure 4 shows the distribution of the magnetic charge density on
the side wall of the defects under stress.

With the increase in the stress, the magnetic charge density on the side wall of the
defect gradually decreased, and the overall magnetic charge presented a non-uniform
distribution (Figure 4). The corresponding relationship between the stress and magnetic
charge density is shown in Figure 5.

The magnetic charge density approximately decreased linearly with the increase in
the stress. The rates of the change in the magnetic charge density were 6.25%, 6.67%, 4.28%,
3.73%, and 3.87%, respectively.
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Figure 4. Distribution of magnetic charge density on the side wall of defects under stress.

Figure 5. Relationship between stress and magnetic charge.

3.3. The Effects of Elastic Strain on the MFL Signals

When the same defect size is associated with different stresses, the MFL signals are
significantly different. Therefore, the MFL signals of the defect were analyzed under
different stresses, the defect size was designed with length Dx = 10 mm, width Dy = 1 mm,
and depth Dz = 1 mm, and the stresses of 0, 10, 20, 30, and 40 kN were applied (Figure 6).

Figure 6 shows the MFL signals with defects under different stresses. It was revealed
that the axial component had the maximum point and the radial component had peaks and
troughs. The great eigenvalues of the axial component and the peak and valley eigenvalues
of the radial component were extracted, as shown in Figure 7, for the correspondence
between the stress and eigenvalue.

The results showed that the eigenvalues of the MFL signals decreased nonlinearly with
the increase in the stress, where the rates of the change in the axial component eigenvalues
were 20.36%, 6.5%, 16.7%, and 9.2%, and the rates of the change in the radial component
were 23.24%, 7.82%, 18.12%, and 5.51%, yielding a larger rate of change in the radial
component eigenvalues, which exhibited more sensitivity to stress changes (Figure 7).
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(a) (b) 

Figure 6. Changes of MFL signals under different stresses. (a) Axial components of MFL signals
under different stresses. (b) Radial components of MFL signals under different stresses.

 
Figure 7. Relationship between stress and eigenvalue at the defect.

3.4. The Influences of Plastic Deformation on MFL Signals

In the transportation process of long-distance oil and gas pipelines, the wall of the
pipeline is in continuous stress under the action of long-time stress, and the plastic defor-
mation of the defects is noteworthy. In order to study the variation trend of the MFL signals
in the plastic stage, the MFL signals were analyzed under the plastic deformation values of
0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50% (Figure 8).

 
(a) (b) 

Figure 8. MFL signals with different plastic deformation values. (a) Axial component of MFL signals
with different plastic deformation values. (b) Radial component of MFL signals with different plastic
deformation values.
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With the increase in the plastic deformation, the MFL signals presented an upward
trend, followed by a downward trend. The eigenvalues of the axial and radial components
in the plastic deformation were extracted (Figure 9).

 
Figure 9. Relationship between plastic deformation and characteristic values.

The MFL signals had an inflection point, a very small value, and the trend could
be divided into two stages: in the first stage, a non-linear exponential reduction in the
characteristics of the MLF signals was found with the increase in the plastic deformation;
in the second stage, the characteristic values of the MLF signals non-linearly increased with
the elevation of the plastic deformation.

The effects of plastic deformation on the MFL signals under different stresses and the
influences of the stress on the inflection point were analyzed. As shown in Figure 10, the
effects of plastic deformation on the MFL signals at stresses of 10, 20, 30, 40, and 50 kN
were analyzed.

  
(a) (b) 

Figure 10. Relationship between plastic deformation and eigenvalues under different stresses.
(a) The relationship between plastic deformation under different stresses and the eigenvalues of axial
component of MFL signals. (b) The relationship between plastic deformation under different stresses
and the eigenvalues of radial component of MFL signals.

In the plastic stage, the intensity of the MFL signals decreased with the increase in the
stress, initially decreased and then increased with the elevation of the plastic deformation,
and an inflection point was found in the plastic deformation of 0.2–0.3 (Figure 10). As the
magnetostriction coefficient λs is material-dependent, λs was analyzed and a tensile force
of 10 kN was applied with magnetostriction coefficients λs of 1, 2, 3, and 4 ppm (Figure 11).

It was revealed that the magnetostriction coefficient λs affected the position of the
inflection point, and with the increase in the magnetostriction coefficient λs, the inflection
point shifted to the right. Therefore, it could be concluded that the inflection point was
associated with the properties of ferromagnetic materials (Figure 11).
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Figure 11. Positional relationship between magnetostriction and inflection point.

3.5. Comparative Analysis of Improved Magnetic Charge Model and Classical Magnetic Charge
Model with Different Defect Sizes
3.5.1. Comparative Analysis of Improved Magnetic Charge Model and Classical
Magnetic Charge Model under Different Defect Lengths

In order to study the variation rules of the magnetic leakage signals of the improved
model and the classical model under different defect lengths, the width Dy = 1 mm, depth
Dz = 1 mm, and length Dx were set as 1–10 mm to simulate the variation rules of the
magnetic leakage signals with different defect lengths. (Figure 12).

 
(a) (b) 

  
(c) (d) 

Figure 12. Comparative analysis of MFL signals between improved magnetic charge model and
classical magnetic charge model under different defect lengths. (a) MFL of the axial component of
improved magnetic charge model with different defect lengths. (b)MFL of the radial component
of improved magnetic charge model with different defect lengths. (c) MFL of axial components
of classical magnetic charge model with different defect lengths. (d) MFL of radial components of
classical magnetic charge model with different defect lengths.

As shown in Figure 12, the improved magnetic charge model and the classical magnetic
charge model decrease with the increase in the defect length, the axial component has
a double peak value, and the distance between the peak and valley values of the radial
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component becomes larger, and the change trend is consistent. As shown in Figure 13, the
variation rule of the eigenvalues is studied.

 
 

(a) (b) 

Figure 13. Analysis of characteristic values under different defect lengths. (a) Analysis of ax-
ial eigenvalues under different defect lengths. (b) Analysis of radial eigenvalues under different
defect lengths.

As shown in Figure 13, it can be seen that with the increase in the defect length, the
characteristic value of the improved model decreases nonlinearly, and the characteristic
value of the improved magnetic charge model is smaller than that of the classical magnetic
charge model.

3.5.2. Comparative Analysis between the Improved Magnetic Charge Model and the
Classical Magnetic Charge under Different Defect Depths

As can be seen from Equation (7), the influence results of the depth and width are
consistent. Therefore, the variation rules of the magnetic leakage signals of the improved
model and the classical model under different defect depths were studied. The width
Dy = 1 mm, length Dx = 1 mm, and depth Dz were set as 1–10 mm to simulate the variation
rules of the magnetic leakage signals with different defect lengths. (Figure 14).

 
(a) (b) 

Figure 14. Cont.
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(c) (d) 

Figure 14. Comparative analysis of MFL signals between the improved magnetic charge model and
the classical magnetic charge model under different defect depth. (a) MFL of the axial component of
the improved magnetic charge model with different defect depth. (b) MFL of the radial component
of the improved magnetic charge model with different defect depth. (c) MFL of axial components
of classical magnetic charge model with different defect depth. (d) MFL of radial components of
classical magnetic charge model with different defect depth.

As shown in Figure 14, the MFL signals of the improved magnetic charge model and
the classical magnetic charge model increase with the increase in the defect depth, and the
peak-valley value spacing of the radial component does not change. Figure 15 shows the
variation rules of the characteristic values under different defect depths.

 
(a) (b) 

Figure 15. Analysis of characteristic values under different defect depth. (a) Analysis of axial eigen-
values under different defect depth. (b) Analysis of radial eigenvalues under different defect depth.

As shown in Figure 15, it can be seen that with the increase in the defect depth, the
eigenvalues increase nonlinearly, and the eigenvalues of the improved magnetic charge
model are smaller than the classical magnetic charge model.

4. Experiment and Analysis

In order to verify the influences of the elastic-plastic stage on the MFL signals under
different stresses, the trend of the change in the MFL signals was analyzed by tensile strip
testing of an X70 steel pipe. The machining defects in the X70 steel pipe were analyzed
using EDM technology. The chemical composition and mechanical properties of X70 steel
are shown in Table 1.
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Table 1. Chemical composition and mechanical properties of X70 steel pipe.

Chemical Component (%) Mechanical Property

C Si Mn P S Strength of Extension (Mpa) Yield Strength (Mpa)

0.12 0.45 1.07 0.025 0.015 570 485–638

4.1. Experimental Equipment and Materials

As shown in Figure 16, the experimental device was mainly composed of a tensile
testing machine, X70 ferrimagnet, software control system, and signal acquisition system.

  
(a) (b) 

Figure 16. X70 steel strip tensile test device. (a) Tensile testing machine. (b) Software control systems
and signal acquisition systems.

The size of the ferromagnetic material type used was 800 × 60 × 16 mm3, the cross-
sectional area was 60 × 16 mm2, and the defect size was 16 × 1 × 2 mm3. The tensile tester
model SHT-4106, with clamps on the top and bottom sides, was utilized to tighten and
apply tension to the ferromagnetic materials. The probe in the signal acquisition system
was a three-axis Mlx90393 magnetic induction sensor with a 16-bit magnetic field resolution,
the lifting distance of which is 2 mm. (Figure 16).

4.2. Experimental Analysis and Verification of Elastic Deformation

Uniform tensile forces of 0, 10, 20, 30, and 40 kN were applied to the steel pipe, and
the magnitudes of the MFL signals were recorded. Figure 17 shows the MFL signals of
the axial and radial components of the X70 specimen in the elastic stage under different
tensile forces.

 
(a) (b) 

Figure 17. MFL signals under different stresses. (a) Axial component of MFL signals. (b) Radial
component of MFL signals.

The MFL signals recorded by the experimental equipment are illustrated in Figure 17.
With the increase in the pressure, the intensity of the MFL signals gradually decreased,
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and the peak values of the axial and radial components were gradually reduced. The peak
value of the axial component and the peak value of the radial component were extracted
and studied. The MFL signals under different stresses are shown in Figure 18.

•

 

•

 
(a) (b) 

Figure 18. Eigenvalues under different stresses. (a) Axial component fitting and eigenvalue analysis.
(b) Radial component fitting and eigenvalue analysis.

It was revealed that in the elastic stage, with the increase in the tension, the charac-
teristic values of the axial and radial components nonlinearly decreased. The variation
trend of the experimental data was consistent with that of the calculated model, and the
characteristic values of the radial component were larger than those of the axial component.
Compared with the uniform magnetic charge model, the accuracy of the characteristic
values of the axial and radial components of the modified magnetic charge model was 87%
and 88%, and the accuracy of the characteristic values of the axial and radial components
of the uniform magnetic charge model was 70% and 72%, which increased by 17% and
16%, respectively.

4.3. Experimental Analysis and Verification of Plastic Deformation

As shown in Figure 15, the plastic deformation of the ferromagnetic signal material is
10%, 20%, 30%, 40% and 50% under different pulling forces.

It was revealed that the variation patterns of the characteristic values under differ-
ent pulling forces were similar (Figure 19). With the increase in the pulling forces, the
characteristic values of the MFL signals were reduced. With the increase in the plastic
deformation, the eigenvalue initially decreased, and then increased gradually. The im-
proved magnetic charge model and the uniform magnetic charge model were compared
and analyzed (Table 2).

Table 2. Precision analysis of the improved magnetic charge model and uniform magnetic
charge model.

Accuracy of Improved Magnetic Charge Model (%) Accuracy of Uniform Magnetic Charge Model (%)

Stress (kN) Axial Component Radial Component Axial Component Radial Component

10 85.2 87.3 75.8 76.5
20 84.4 85.1 73.5 74.3
30 85.2 85.6 73.7 78.2
40 83.4 86.4 78.6 79.4

It can be concluded from Table 2 that the average accuracy of the eigenvalue of the
axial component of the improved magnetic charge model was 84.55%, and that of the radial
component was 86.1%. The average accuracy of the eigenvalues of the axial component
and the radial component of the uniform magnetic charge model was 75.4% and 77.1%,
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which increased by 9.15% and 9%, respectively. Therefore, the model can be used to predict
the variation pattern of the characteristic values of MFL signals in the plastic deformation
stage under different stresses.

 

⎯⎯ ⎯⎯ ⎯⎯ ⎯⎯

⎯⎯ ⎯⎯ ⎯⎯⎯⎯

(a) 10kN stress (c) 20kN stress (e) 30kN stress (g) 40kN stress 

(b) 10kN stress (d) 20kN stress (f) 30kN stress (h) 40kN stress 

Figure 19. Relationship between plastic deformation and eigenvalue under different stresses.

5. Conclusions

This study presented the force-magnetic coupling relationship for the non-uniform
magnetic charge model, established a theoretical model of compound magnetic charge, and
analyzed the variation pattern of characteristic values of MFL signals under the influences
of elastic stress and plastic deformation. The research results can be summarized as follows:

(1) The characteristic values of the MFL signals under elastic stress gradually decreased
with the increase in the stress, and the characteristic values of axial and radial compo-
nents conformed to the nonlinear decline.

(2) At the plastic stage, the characteristic values of the MFL signals initially increased,
and then decreased, with the rise of the deformation, showing an inflection point.
This may be attributed to the material properties. The radial component of the MFL
signals exhibited sensitivity to the change in the plastic deformation.

(3) The MFL signals in the elastic and plastic stages were compared with the uniform
magnetic charge model. The accuracy of the axial component of the MFL signals in the
elastic stage rose by 16%, and the accuracy of the radial component of the MFL signals
was elevated by 17%. The accuracy of the axial component of the MFL signals and the
radial component of the MFL signals increased by 9.15% and 9%, respectively, in the
plastic stage. It can effectively predict the magnitude of MFL signals under stress.
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Abstract: To correctly manage a collection of historical silks, it is important to detect if the yarn
has been originally subjected to degumming. This process is generally applied to eliminate
sericin; the obtained fiber is named soft silk, in contrast with hard silk which is unprocessed. The
distinction between hard and soft silk gives both historical information and useful indications
for informed conservation. With this aim, 32 samples of silk textiles from traditional Japanese
samurai armors (15th–20th century) were characterized in a non-invasive way. ATR-FTIR
spectroscopy has been previously used to detect hard silk, but data interpretation is challenging.
To overcome this difficulty, an innovative analytical protocol based on external reflection FTIR
(ER-FTIR) spectroscopy was employed, coupled with spectral deconvolution and multivariate
data analysis. The ER-FTIR technique is rapid, portable, and widely employed in the cultural
heritage field, but rarely applied to the study of textiles. The ER-FTIR band assignment for silk
was discussed for the first time. Then, the evaluation of the OH stretching signals allowed for a
reliable distinction between hard and soft silk. Such an innovative point of view, which exploits
a “weakness” of FTIR spectroscopy—the strong absorption from water molecules—to indirectly
obtain the results, can have industrial applications too.

Keywords: samurai armor; silk; sericin; FTIR spectroscopy; spectral deconvolution; PCA

1. Introduction

Preventive conservation in museums is essential to carry cultural heritage from the
past to future generations. To correctly manage different materials, an assessment about
their nature should be scheduled, by means of micro-invasive and non-invasive analytical
techniques [1,2]. Moreover, chemical analyses for conservation purposes often offer the
chance to deepen the knowledge about a collection, thus enhancing its historical value. Silk
textiles are a good example of the issue, as few scientific works deeply investigated silk
variability and decay despite the wide geographical and historical diffusion of this precious
yarn. Silk textiles have been appreciated for their strength, luster, and vivid color which is
obtained through the dyeing process.

Silk is obtained from the Bombyx mori silkworm. The silk cocoon is treated with hot
water to obtain the single filaments which are successively wound together to give a raw
silk thread or grège [3]. Then, the raw silk generally undergoes the degumming process,
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where hot water and other substances are employed to remove the gum covering [3–6].
Gum is mainly composed of sericin, which is soluble in hot water, unlike the two core
brins of fibroin. More details are given in the Appendix A. According to the degree of
degumming of the silk fiber, three different yarns could be distinguished.

(i) Raw or hard silk. It is obtained after twisting some single filaments together in order to
obtain the thread. The sericin coating is still present, which makes dyeing difficult [3].

(ii) Partially degummed or supple silk [3].
(iii) Degummed or soft silk. It is the most diffused material, which possesses the typical

lustrousness and smoothness. The fiber can be dyed easily [3,7].

The practice of partially or totally degumming silk is related to the geographical,
historical, and cultural context which the silk was intended for [3]. There are few recent
examples of hard silks in collections, such as the United States first ladies’ gowns at the
Smithsonian Institution [8], but it is probable that many other collections of silk textiles
could be made of supple silk. On the contrary, hard silk can easily be found in the
archaeological contexts of East-Asian countries, on condition that they are found in arid
burial environments that are essential to preserving ancient fibers with an intact sericin
coating [6]. In China [3,6], during the first millennium C.E., silk with gum was often
found as the ground cloth for paintings and writings, due to its stiffness. Instead, soft silk
was present in a profusion of garments and banners, often resist-dyed or embroidered
in order to create a polychrome design. For a long time, in Japan [9], only samurai and
rich merchants could afford silk (kinu), which had been imported already degummed
from China and Korea since the third century C.E. Since the Edo period, it started to be
produced locally, but it remained for a long time as a luxury product, which was reserved
for the well-off, as sumptuary laws prevented peasants from using this yarn. They could
use only raw silk and production waste, which were spun into a coarse and matt yarn.
High-quality silk was extensively used in samurai armors to make the odoshi-ge (lacing
among metal plates) and for linings brocades. It is reported that hard silk was chosen for
the samurai armor, as the stronger fiber improved armor quality in battle [10]. Soft silk has
been diffused in armor making since the Edo period for the sake of aesthetics to obtain
more vivid colors and a more lustrous effect. In that period, the armor had in fact lost its
practical value and became a ceremonial dress.

The presence of the remnant sericin gum may have a consequence on the preservation
of silk artefacts. In 1995, Becker [8,11] first proposed that even if sericin yellows, it can
protect silk fibroin against light-induced damage. The role of sericin as a free-radical-
scavenging antioxidant was confirmed recently [12]. In 2011, Zhang and co-workers [6,13]
tested mock-up samples under heat and moisture and found that sericin can provide
some protection against fibroin deterioration, but in high humidity environments, soft
and hard silk ages at the same rate because of the leaching of sericin. For this reason, the
most ancient samples, which could be made of hard silk, are hardly likely to retain their
sericin coating. Since heat and moisture are important factors which may be relevant in
promoting the decay of silk within historic collections, any wet treatment with aqueous
solvents is detrimental to the preservation of the sericin coatings [6,8], as well as too high
humidity conditions during exposure or conservation could be harmful [6,14]. Specific
studies devoted to raw silk suggest that it should be stored below 50% RH. As a matter
of fact, silk is known to be a very hygroscopic textile fiber, with hard silk being even
more hygroscopic [14]. The reason for this behavior could be related to silk’s amino acidic
composition (more details in the Appendix A). Hard silk contains both fibroin and sericin,
while soft silk is composed of fibroin only [15]. Sericin contains three times the polar
side groups of fibroin. The higher content of polar side groups makes sericin more prone
to bind water molecules and soluble in hot water [7]. As an example, under standard
atmospheric conditions, i.e., 27 ◦C and 65% RH (relative humidity), mulberry raw silk fiber
has a moisture regain of 11% w/w, which reduces to about 9% w/w after degumming [16].
Zhang et al. report that both hard and soft silk show a reduction of water sorption related
to ageing [6]. Another issue which affects water uptake is crystallinity. While sericin
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has an amorphous structure [17], fibroin is characterized to show both crystalline and
amorphous domains [15]. The superior mechanical properties in terms of toughness which
are attributed to silk fiber depend on this particular mixed structure so any variation in the
size of crystallites and in the crystallinity degree could affect the physical properties of the
yarn. The amorphous region is responsible for the elasticity, while highly ordered regions
play a major role in determining the strength and stiffness. As happens with other natural
polymers, water acts as a plasticizer in fibroin, penetrating only the amorphous regions’
fiber [7]. Therefore, when silk is stored in an environment with a relative humidity below
40% or at high temperatures, it can desiccate, becoming rigid, brittle and less soft.

Most of the scientific investigations about silk focus on fibroin, and only a few studies
deal with sericin. Many of them investigate sericin as a biomaterial and deal with its
extraction [4–6,17,18]. The ageing behavior of hard silk has been theoretically studied
using mock-up samples [6,8,11,13,19]. To the best of our knowledge, only a few authors
were interested in detecting sericin on historical silk [8,11,19,20]. Initially, amino acid
analysis was used to detect sericin [8,11,19]. Zhang et al. first proposed the use of FTIR
spectroscopy [13,18], even if they admitted that amino acid analysis showed the best
performance [6]. Traditional transmission FTIR spectroscopy has proved to be a sensitive
technique for the identification of natural fibers and in particular of silk fibroin, since
the first studies in the Fifties [21,22]. However, ATR and reflection modes are definitely
easier and more rapid to use, even if some modification of spectra can appear [23,24].
ATR-FTIR spectroscopy is commonly used to characterize fibroin [25–28] and especially its
secondary structure [2,13,25,29], but pure sericin has also been investigated [30,31]. The
possibility to use microsamples and no need for pretreatment makes the technique widely
used for the study of cultural heritage materials [32–36]. External reflection FTIR (ER-FTIR)
spectroscopy is a reflection technique as well and uses an extended MIR (medium infrared)
region, collecting signals from 7500 to 375 cm−1. It has demonstrated great possibilities in
the last decade, thanks to its portability and non-invasiveness; it has been tested mainly
in the study of mortars [37] and pigments [38–40], but it has also been confirmed to
be a sensitive technique to detect silk fibroin and sericin [18,41,42]. Nevertheless, some
problems with the interpretations of spectra can occur, in the form of bands’ distortions
and variations of their intensity ratio, due to the influence of both the physical and optical
properties of the surface that is being investigated [24]. Thus, it is often difficult to make
direct comparisons between peaks in ATR and external reflection modes, requiring the
construction of dedicated databases [41]. An advantage of the extended spectral range
is that a part of the NIR (near infrared) region is available for interpretation. Pure NIR
spectroscopy in reflection mode has also been used to study silk, using chemometrics
for the interpretation. Firstly, NIR spectroscopy can assess the nature of the yarn [43–45].
Secondly, some theoretical studies used the technique to indirectly estimate silk decay
by measuring the loss of tensile strength [46] and the different moisture sorption of aged
silk [47]. However, the last method cannot be applied to museum collections, due to
the need to conditionate the textile under different fixed RHs, which is not possible in
museum spaces and is problematic for the conservation of artefacts. On the contrary, NIR
spectroscopy is a well-known method to measure dampness in the textile industry [45].
Finally, Mossotti et al. [48] first used NIR data associated with chemometrics to detect
sericin on textiles, considering water as an interferent for the analyses.

Aim of the Work

External reflection FTIR spectroscopy is proposed in our work as a simple and non-
invasive technique to discriminate hard and soft silk samples from a collection of historical
silk. The present work arises as a part of a challenging work of characterization of the
ancient materials of Japanese traditional armors belonging to Museo delle Culture (Lugano,
Switzerland). The project is of particular interest, as this kind of applied art has never been
tested so thoroughly and extensively before. ER-FTIR spectroscopy was chosen to analyze
historical samples mainly due to its non-invasiveness. This permitted us to investigate a
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great number of samples, chosen to represent the majority of colors and textures. As ER-
FTIR spectroscopy is a practically new technique for silk recognition, the band assignment
has been discussed and compared with the well-studied ATR mode, focusing also on part
of the NIR spectral range, which is not commonly considered. Studies about water uptake
in silk have been evaluated and reviewed in accordance with hard silk features and with
data from water absorption tests. Instead of considering water as an interferent for the
analysis, the signals arising from water in the O-H stretching band were studied to detect
differences in the affinity to the water of hard and soft silk. Peak fitting analysis was used to
confirm and quantify the differences in the spectra. Finally, principal component analysis
was applied to propose visual discrimination of the two kinds of silk.

This work demonstrates for the first time that ER-FTIR spectroscopy is a successful
tool to differentiate hard and soft silk, in historical samples too. The recognition of
hard silk textiles provides doubly valuable information. Besides its historical signifi-
cance, the detection of sericin is essential for preventive conservation and for targeted
restoration works.

2. Materials and Methods

2.1. Reference Silk

Modern samples of hard and soft Bombyx mori silk were used as reference materials.
Some of them were obtained from Museo della Seta (Como, Italy), while others were
borrowed from Centro Tessile Serico Sostenibile (Como, Italy). The reference samples are
the following:

- HS1 and HS2: Hard silk cloth
- HS3: Hard silk yarn
- SS1, SS2, and SS3: Soft silk cloth

Water absorption by the reference silk samples was controlled using two different
strategies. High humidity conditions were reproduced by storing the samples for 65 h
in a desiccator over K2SO4 saturated aqueous solution. The relative humidity level was
constantly monitored using a data logger and set at approximately 97%. The dry condition
was reproduced by leaving the samples for 65 h at 40 ◦C in a ventilated laboratory oven.
The samples were generally analyzed under ambient laboratory conditions, except where
explicitly stated in the text.

2.2. The Morigi Collection of Traditional Japanese Armors

The analyses discussed in this paper were carried out on a representative core of the
collection of Japanese samurai armors which Museo delle Culture in Lugano received from
collector Paolo Morigi in 2017. After a limited exhibit in 2018, the works of art became
part of the museum’s permanent collections. The armors cover a wide range of styles
and historical periods, from the Azuchi–Momoyama era (second half of the 16th century)
to the Showa era (1926 to 1989) through to the Edo period (1603–1868), as reported in
Tables 1 and S1.
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Table 1. List of samples from the Morigi collection. A photograph of the full armor is reported with
its inventory number. On the right, the samples are listed and the presumed dating for each analyzed
part is reported.

2017.Mor.1

 

Sample Dating 2017.Mor.2 Sample Dating
1_2 Late 16th c. 2_2 Late 19th c.
1_6 Late 16th c. 2_3 Late 19th c.
1_8 Late 16th c.
1_9 Late 16th c.

1_26 Late 16th c.

2017.Mor.3 Sample Dating 2017.Mor.4 Sample Dating
3_3 17th c. 4_2 18th c.
3_4 17th c. 4_3 18th c.
3_8 17th c. 4_4 18th c.

3_10 17th c. 4_11 18th c.
3_11 17th c. 4_13 18th c.
3_12 17th c.
3_18 17th c.
3_23 Late 16th c.

2017.Mor.5 Sample Dating 2017.Mor.7

 

Sample Dating
5_1 After 1926 7_4 17th c.
5_2 After 1926 7_8 17th c.
5_9 After 1926

2017.Mor.8 Sample Dating 2017.Mor.9 Sample Dating
8_4 17th c. 9_5 Late 19th c.
8_7 17th c. 9_6 Late 19th c.

8_12 Early 16th c. 9_17 Late 19th c.
8_18 Early 16th c.

c. is the abbreviation for a century.
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Some armors were actually used in battle, as can be inferred from the fit that was
comfortable and protected; others were exhibited only for celebrations and parades. Further
details on the eras to which they belong have been described elsewhere [32].

The armors which are the object of this study and the sampling points are shown
in Table 1. The armors silk textiles showed great variability in their colors and typology.
Details for each analyzed sample are reported in Table S1. The parts of the traditional
Japanese armor are shown in Figure S1. Non-invasive analyses with ER-FTIR spectroscopy
were performed on different areas which were chosen to represent the majority of the colors
and textures.

2.3. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

ATR-FTIR spectra were acquired with a Thermo Scientific Nicolet iS10 instrument
equipped with a fast recovery deuterated triglycine sulphate (DTGS) detector. The param-
eters used were 32 scans, 4 cm−1 resolution, and a range between 4000 and 600 cm−1. A
background spectrum was acquired periodically to allow the software to automatically
subtract the atmospheric air spectrum from that of the sample. The spectra obtained are
generally presented omitting the 2400–1800 cm−1 region, which is not very informative
because it shows, at around 2100 cm−1, the typical absorption of the crystal of analysis
consisting of a diamond. The ATR-FTIR analysis was conducted on the reference samples.

2.4. External Reflection Fourier Transform Infrared Spectroscopy

In situ analyses on the Morigi collection were performed in ER-FTIR mode, using
a portable Alpha Bruker FTIR spectrophotometer equipped with an external reflection
module for contactless measurements and a DTGS detector. The analysis parameters used
are 200 scans, 4 cm−1 resolution, and a range of 7500–375 cm−1. Periodically, a background
spectrum was acquired using a flat gold mirror. The measurement area was approximately
6 mm in diameter and the instrument was placed in a frontal position relative to the analysis
point, at a working distance of approximately 1–1.5 cm. Fine-tuning of the optimal distance
was then achieved by searching for the maximum signal directly in the interferogram using
the software. The acquired spectra were processed using pseudo-absorbance [log (1/R);
R = reflectance] as the intensity unit.

2.5. Data Treatment and Elaboration

The spectra of the samples were interpreted by comparing them with the reference
samples and the literature. The optical spectroscopy software Spectragryph, version 1.2.16.1,
was used to visualize and manipulate the ATR-FTIR and ER-FTIR spectra [49]. The same
software was used to convert native ER-FTIR spectra into .jdx files in order to manipulate
them with chemometrics.

Baseline correction was applied to all spectra. FTIR spectra are also commonly pre-
processed to remove the effects of light scattering phenomena. For this purpose, the
SNV (standard normal variate) method is often used to effectively remove multiplicative
interference of scattering and particle size [50]. This pre-processing method eliminates the
information about the absolute intensity of the signals but enhances the subtle differences
in the band shape of the different superimposed spectra. In this study, SNV pre-processing
was applied, when necessary, to the entire spectrum or only to a region of it.

The application of SNV is based on the following mathematical operation:

yij (SNV) =
yij − y√
Σ(yi−y)2

n−1

(1)

That is subtracting the mean spectra y to each intensity value yi of the original spec-
trum and then dividing for the standard deviation value.
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2.6. Spectral Deconvolution/Curve-Fitting Analysis

Based on the literature and our previous work, the OH stretching band was analyzed
using a band fitting method [28,32,51,52]. The selected spectra were cut to the range of
3800–2400 cm−1; then, a baseline correction was applied using a linear function passing
through the ordinates at the endpoints of this interval, and SNV correction was performed
too. The FitPeaks Pro function of the peak analyzer package of Origin Pro 2018 software
(OriginLab Corporation) was used for band fitting as follows.

As a first step, the second derivative of the convoluted spectra was calculated and
smoothed using the adjacency averaging method (measurement smoothing window 20).
This made it possible to identify the position of the bands, which were then compared
with the literature. Next, the spectra were deconvoluted using Gaussian curves and a
constant baseline (constrained to zero absorbance). Some bands were allowed to shift from
their initial position, within a specific range, while the full width at half height (FWH)
of the bands was fit to a specific range based on the theoretical width of the band [53].
Table 2 shows the bounds setting. The fitting was iterated until convergence and a Chi-Sqr
tolerance value of 10−6 was obtained.

Table 2. Bounds setting for the curve fitting of the OH-stretching band.

Peak 1 2 3 4 5 6 7 8 9

Centre (cm−1) 3630 3560 3400 3320 3220 3060 2977 2931 2875

Centre bounds (cm−1) ±15 ±15 ±30 ±15 ±30 ±5 ±5 ±5 ±5

FWHH bounds (cm−1) 0–200 0–200 0–200 0–80 0–350 0–80 0–50 0–50 0–50

A similar method was developed in order to deconvolute the water band at 5170 cm−1

in the NIR region. The spectral region between 5400 and 5000 cm−1 was selected, smoothed
(Savitsky–Golay method, interval = 21, polynomial order = 2), and baselined. The position
of the bands was found by means of the second derivative, accordingly to the literature [47].
The bands were assigned as follows: non-freezing water, 5050 cm−1; freezing bound water,
5140 cm−1; bulk water, 5220 cm−1.

2.7. Principal Component Analysis

ER-FTIR datasets were subjected to principal component analysis (PCA). All data
were centered before further analysis. Prior to model calculation, different preprocessing
techniques were tested and evaluated in order to correct unwanted data modification
such as, as an example, different scattering. The preprocessing step was optimized by
assessing the suitable mathematical transformation to remove the unwanted artefacts from
the spectra. The Savitsky–Golay derivative, SNV, baseline correction, range reduction, and
a combination of them were tested. The software used for the chemometric calculations
was R version 3.6.3 (Rstudio version 1.4.1106).

3. Results and Discussion

Firstly, the ATR-FTIR and ER-FTIR spectra of soft silk are reported and compared, as a
complete band assignation for silk fibroin with ER-FTIR has never been discussed before.
The spectral differences arising from water uptake are then evaluated for both ATR-FTIR
and ER-FTIR spectra, by means of water absorption tests. Finally, reference hard silk is
investigated, and compared with soft silk in order to find a key for discrimination. Peak
fitting analysis is used to validate our supposition. At the end, the proposed method is
tested on a case study, by applying it on historical silk samples. PCA is applied to visually
detect samples made of hard silk.
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3.1. ATR-FTIR and ER-FTIR Spectra of Soft Silk

The band assignment for the ATR-FTIR spectra has been discussed and published
extensively for fibroin [18,25,29]. The main absorption bands are due to the absorptions
by amides A, B, I, II, and III, which are typical for the protein backbone [53,54]; alongside
these absorptions which are shared by all proteins with little variations, other signals arise
from the amino acids’ side chains, such as ν(CC) and δ(CH) in tyrosine, ν(C=O) in aspartic
acid, and ν(CO) in serine [53–56]. Figure 1 compares the spectra of the same reference of
soft silk taken with ATR-FTIR and ER-FTIR spectroscopy.

Figure 1. Comparison of ATR-FTIR and ER-FTIR spectra of soft silk. The region 7500–4000 cm−1 of
the ER-FTIR spectrum is not shown.

The spectra appear very different; in particular, some shifts appeared mainly in amides
A, I and II’s peaks. At first sight, the peaks at 1706 cm−1 and 1680 cm−1 appear extremely
enhanced by external reflection, while below 1450 cm−1, no sensitive differences are noticed.
Amides I and II’d peaks apparently show a great shift. In our opinion, their intensities
were probably enhanced to the point that they appear as inverted peaks. This is a common
problem with the ER-FTIR mode [40], but also with diffuse reflectance infrared Fourier
transform spectroscopy (DRIFT) [27]. Thus, some peaks should be considered as inverted
and their maxima could be identified at 1698, 1628–1618, and 1508 cm−1. The assignment
of ER-FTIR bands is proposed in Table 3, making a tentative comparison with ATR-FTIR
spectral features which are reported in the literature.
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Table 3. Comparison between the spectral features of the ER-FTIR and ATR-FTIR modes. The most
evident shifts are in bold.

ER-FTIR (cm−1) ATR-FTIR (cm−1) ATR-FTIR Band Assignment

~3630 3630 Free OH (water dimers) [54]

~3560 3500 (sh) Non-freezing water (O-H—O=C) [57,58]

~3400 3420 (sh) Freezing bound water (O-H—polar groups) [57–59]

3320 3274 Amide A, N-H stretching [18,42]

3220 3220 O-H stretching, bulk
water (—OH—OH—OH—) [59–61]

3080 3080 Amide B, N-H stretching [54]

1698 (inv) 1698 (sh) ν(C=O) amide I bond, β-sheets [25,29]

1682 1675 (sh) Amide I, β-turn [25,29]

1650 1650 Amide I, α-helix/random coil [25,29]

1627–17 (inv) 1628–1621 Amide I, intermolecular β-sheets [25,29]

1621–1616 Aggregated β-strand/intermolecular β-sheet

1567 1555 Amide II, β-sheets [25,29]

1541 1545 Amide II, α-helix/random coil [25,29]

1508 (inv) 1515 Amide II, β-sheets [25,29]

1453 1440 CH2, CH3 bending in alanine [25,29]

1270 1260 Amide III, β-sheets [62,63]

1238 1230 Amide III, α-helix/random coil [62,63]
(sh): shoulder; (inv): inverted peak.

3.2. Water Uptake Behavior of Soft Silk

Another characteristic of the ER-FTIR spectrum (Figure 1) is the broadening of the
band at 3330 cm−1, which creates a single band together with the water OH stretching
band between 3400 and 3600 cm−1, as previously reported [18]. The enhancement of the
-OH signal with respect to the ATR spectra is typical of the ER-FTIR mode [41].

The spectral region between 3600 and 3000 cm−1 is generally associated with in-
tramolecular and intermolecular hydrogen bonding and free hydroxyls in polar macro-
molecules, such as cellulose, but also with the free or the bound water linked to the
substrate. Water FTIR signals are strongly influenced by their state of aggregation [59]. In
particular, water molecules bind in different forms when they are adsorbed on a protein
film [54,64] or a biocompatible polymer [57,58], such as silk [7]. On the interface, water
and the C=O and N-H groups of the protein backbone form hydrogen bonds, some of
which can replace direct N-H· · ·O=C hydrogen bonds which are typical of crystalline
domains of fibroin. This water is the so-called non-freezing water, as it never crystallizes
due to the tight bond to carbonyl groups. Freezing bound water, which instead crystallizes
below 0 ◦C, interacts with the other polar groups in the side chain. Finally, bulk or freezing
water, which crystallizes at ∼0 ◦C, has a bulk-water-like structure with an O-H—O-H
hydrogen bond network and it weakly adsorbs to the surface. As the degree of hydro-
gen bonding between water and protein increases, the FTIR peaks are shifted to higher
wavenumbers [54]. Assignments for each type of O-H stretching are reported in Table 3
and compared with the same vibrations in the ATR mode. Some shifts between the ER and
ATR modes were experienced. Some soft silk samples were conditioned under different
RH conditions to evaluate spectral differences which arise from the water uptake of silk.
The spectra were taken both with ATR-FTIR mode and the ER-FTIR mode, and they are
shown in Figure 2.
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Figure 2. (a) ATR-FTIR spectra of soft silk under different relative humidity conditions; (b) ER-FTIR
spectra of soft silk under different relative humidity conditions.

As expected, soft silk shows very hygroscopic behavior. The bands which are associ-
ated with water uptake are highlighted in Figure 2a,b. Under increasing RH conditions, the
overall intensity of the spectra increases, thus suggesting the enhancement of the broad
bulk water absorption at around 3220 cm−1. Similarly, both signals associated respectively
to freezing bound (3420–3400 cm−1) and non-freezing water (3560–3500 cm−1) are strongly
influenced by both low and high humidity conditions. Their intensity is enhanced, and the
spectral shape is changed. No shifts appear yet. When humidity conditions are changed,
the ATR-FTIR and ER-FTIR modes show different responses. The ATR-FTIR spectrum at
low humidity appears very different from the spectra under ambient and high humidity
conditions, while the ER-FTIR spectra under low and ambient conditions are similar. In
the ER-FTIR spectra, it is interesting to also note the OH combination band at 5170 cm−1,
whose intensity is strongly enhanced only under high humidity conditions. In Figure 2b,
the different contributions to the overall band are indicated and assigned to the different
types of water. These contributions are discussed in Section 3.3. As the conditioned samples
were analyzed with ATR-FTIR and ER-FTIR paying particular attention to maintaining the
correct conditioning, the results suggest that ER-FTIR is not so strongly influenced by low
humidity conditions with respect to the ATR mode.

3.3. Characterization of Hard and Soft Silk

The possibility to discriminate hard and soft silk with ATR-FTIR spectroscopy
was the theoretical basis of this research project. Band assignment for the ATR-FTIR
spectra has been published extensively for fibroin [18,25,29]. Sericin shows similar
signals [18,30,31] and the main source of the slight differences lies in their distinct
conformation of the secondary structure, in addition to differences in amino acid
composition [25,65]. The literature [17,18,30,31] reports that slight shifts in amides I
and II’s peaks are the main signs of sericin’s presence, together with a broader amide A
band at 3270 cm−1 and a water sorption band centered at 3400 cm−1, which are signals
for raised hydroxyl content. Generally, the authors report that peaks at about 1400 cm−1

(C-H and O-H bending [17,25,31]) and 1075–52 cm−1 (C-OH stretching [25,31] or C-C
bending [54,65]) are distinctive of serine [18,30,31,54] and as a consequence are useful
to distinguish sericin (mainly composed of serine) from fibroin [20,65]. Moreover,
Zhang et al. [18] suggest that a decrease in intensity of the 1000 and 975 cm−1 peaks,
which are typical of fibroin, could infer the presence of a sericin coating. Generally
speaking, it appears that the distinction between hard and soft silk is challenging, as
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there are no evident peak shifts or spectral features belonging to hard silk only. It
is important to also consider the possibility of sericin leaching due to high humidity
conditions [18].

The reference samples of hard and soft silk were analyzed with ATR-FTIR spectroscopy
to evaluate the best markers for differentiating hard and soft silk. The spectra of reference
samples of hard and soft silk (Figure 3) confirm what is reported in the literature. In
particular, the decreased intensity of peaks at 3270 and 1440 cm−1 and the increased
intensity at 2920, 2850, and 1071 cm−1 could be markers for hard silk detection. The
decrease in the peaks at 1000 and 975 cm−1 is quite difficult to notice. In our opinion, the
best indicator is the broadening of the bands at 3500–3420 cm−1. Such broad bands can
be attributed to hydrogen-bonded water, whose absorption can be found between 3600
and 2900 cm−1 according to the strength of hydrogen bonding [54,66]. The shoulder at
3500 cm−1 is ascribable to H-bonded OH to C=O of the amide [67]. Another interesting
difference is the increase in the band at 3220 cm−1. Both silk types have a high capability
to adsorb moisture, but hard silk is more prone to bind water due to its composition and
amorphous structure, as discussed in the Introduction.

Figure 3. ATR-FTIR spectra of the reference samples of hard and soft silk.

External reflection infrared spectroscopy was applied on the same reference mate-
rials to test if the same spectral features which characterize hard silk in the ATR-FTIR
spectra could be recognized. Figures S2 and S3 show the ER-FTIR spectra for all of the
references of hard and soft silk. The instrumental spectral range is split into two spectra
(range 6100–3800 cm−1 and range 3800–400 cm−1). The region 7500–6100 cm−1 of the ER-
FTIR spectrum is not shown. For clarity, only two references are shown in Figure 4, which
represent the range 3800–900 cm−1.
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Figure 4. ER-FTIR spectra of hard and soft silk. The region of 3800–900 cm−1 is shown.

In this region, the main differences are located in the band of the hydrogen-bonded
water and in the intensities of some of amides I and II’s peaks. Assuming that the max-
ima of amides I and II are inverted peaks, we point out the shift of the absorption from
1618 (hard silk) to 1626 cm−1 (soft silk) and the differences between the samples and ref-
erences at around 1510 cm−1. The inverted peak at 1618 cm−1 attests the higher content
of β-strands for hard silk, while the shoulder at 1650 cm−1 is a sign of the high content of
random coil conformation. Both findings agree with the description of hard silk. Similarly,
a decrease in intensity is observed at 1680 cm−1, probably due to β-turn content which is
lower in hard silk. The amide II peak at 1560 cm−1 shows a shift and a decrease in intensity,
too. At around 1510 cm−1, the inverted peaks are due to C-N and N-H from amide II.
Another characteristic of the hard silk spectrum is the impressive broadening of the band
between 3400 and 3600 cm−1, which is more enhanced with respect to soft silk and centered
around the new peak at 3560 cm−1. The variations in intensities which are distinctive for
hard silk in the ATR mode are not present, so other markers for sericin should be identified.

We think that the different water uptake values under the same environmental con-
ditions are the key to discrimination. The amorphous fraction of silk (sericin and the
disordered fraction of fibroin) is mainly affected by the absorption of non-freezing water, as
crystalline regions are hardly accessible to water [47,68]. As a matter of fact, the amorphous
phase is responsible for 70% of the uptake of environmental water [69]. The amino acid
composition could have some influence too, as the polar amino acid serine is the main
component of sericin with 30% w/w in contrast to the serine content in fibroin which is
nearly 15% w/w [18]. In particular, where the structure presents grooves, as in the case of
hard silk, the nature of the side chain has greater importance in the interactions with water
molecules [70]. Therefore, the combined influence of the morphology and the amino acid
composition could make hard silk more prone to bind water with respect to soft silk under
the same environmental conditions. These considerations are visualized in Figure 5.
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Figure 5. Details of the ER-FTIR spectra of hard and soft silk reference (region 5500–2250 cm−1).
Absorptions due to different types of water are highlighted.

In order to study the different contributions of water to the overall band, a peak fitting
analysis was carried out. Figure 6a,b shows the deconvolution models of the region of
3800–2400 cm−1. Some areas under the Gaussian curve forming the overall curve are
reported in form of percentages to highlight the difference between the two kinds of silk
(Figure 6c).

Figure 6. Deconvolution of the O-H stretching band (region 3715–2800 cm−1): (a) soft silk; (b) hard
silk; (c) comparison of the peak areas for each contribution in soft and hard silk.
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In hard silk, the area of the water band centered at 3560 cm−1 is definitely higher
than in soft silk. This band is related to non-freezing water, which is evidently associated
to the amorphous structure which is accessible to water. The band at around 3630 cm−1,
which is assigned to non-hydrogen bonded water, is higher in hard silk than in soft silk,
while the signal of freezing bound water (around 3420 cm−1) is unexpectedly higher in
soft silk, but this band can also be influenced by the contribution of the amide A peak. In
the ATR mode, the signal is located at 3270 cm−1, but the literature [54] reports that H-
bonding could be responsible for a blueshift towards 3310 cm−1. Actually, both are probably
present, as N-H groups exist in two forms, both C=O-bonded (NH—OC) and water-bonded
(NH—OH2), giving rise to two different signals [71]. At 3270 cm−1, the absorption is due
to intermolecular bonded N-H stretching, as confirmed by theoretical calculations [72];
at 3313 cm−1, the signal could be ascribable to water-bonded N-H stretching, as it is
experimentally seen in the polyamides’ spectra [61,73]. Manas et al. [74] confirmed that
amides show different signals at the same time, when solvent-exposed domains differ from
the bulk which has little interaction with water. The blueshift is due to the NH—OH2
hydrogen bond, which tends to increase the force constant of the NH in-plane bending
motion. Actually, it is important to recall that the region 3400–3200 cm−1 is overlapped
with O-H stretching signals, so that it is difficult to clearly discriminate the contributions.
Similarly, the signal of bulk water at 3220 cm−1 can be partially overlapped with N-H
stretching. Anyway, it is definitely higher in hard silk than in soft silk, as we can expect as
it is reported that hard silk absorbs much more water than soft silk [16].

The NIR range (7000–4000 cm−1) of the spectrum of hard and soft silk references HS1
and SS1 is shown in Figure 7, while Figure S3 shows the same range for all of the references.
The literature [47,48,75–77] about silk reports overtone and combination bands arising
from OH (water and serine), NH (peptides), and CH (peptides, alanine, serine, etc.). The
main assignments are described in Table 4. Significant changes in intensities occur in this
region; while the water band at 5170 cm−1 (O-H combination) increases in hard silk, amides
bands at 4850, 4620, and 4520 cm−1 (hydrogen bonded N-H and C=O vibration) are more
prominent in soft silk, as experienced by Mossotti et al. [48]. Mo et al.’s study [76] showed
that NIR bands are sensitive to conformational changes, so higher intensities in soft silk
are probably due to the dominant conformation of fibroin, which is β-sheet. Hard silk is
covered by amorphous sericin, so the signal from crystalline fibroin is lower. On the other
hand, sericin makes hard silk more prone to adsorb water, probably causing enhancement
of the band.

 

Figure 7. ER-FTIR spectra of hard and soft silk references. The region 6100–3800 cm−1 is shown.
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Table 4. List of peaks and their assignations in the NIR range of the spectrum (7000–4000 cm−1).

Wavenumber (cm−1) Assignment [47,48,75,76]

7500–6000 Water, first overtone

5900–5700 ν(CH), first overtone

5170 O-H combination

4860 Amide A ν(NH) + amide I/amide II

4620 Amide A ν(NH) + amide III/amide B + amide II

4534 Amide A ν(NH) + amide III/amide B + amide II

4420 ν + δ(CH)

4358 ν + δ(CH)

4205 ν + δ(CH)

If the band at 5170 cm−1 is deconvoluted (Figure 8), it reveals other important infor-
mation about the water degree of association with silk [47]. Due to its asymmetric aspect,
it can be deconvolved into at least three components (5219, 5139, and 5046 cm−1). As the
degree of C=O and N-H groups’ hydrogen bonding to water increases, peaks are shifted
to lower wavenumbers. There are three types of signals, which could be attributed to
non-freezing, freezing bound, and bulk water [76]. In all cases, water is more prone to bind
hard silk, which contains an amorphous sericin covering and less β-sheet structured fibroin
(the degumming process increases the crystallinity index of silk), hence the higher areas of
hard silk shown in Figure 8c, obtained through the peak fitting analysis. The two higher
wavenumber bands offer a distinction of bound water with different degrees of hydrogen
bonding. They are located at 5222 and 5141 cm−1, assigned to bulk and bound-freezing
water, respectively. The band at 5050 cm−1 is assigned to strongly hydrogen-bonded struc-
tural water, which is non-freezing water. Values associated with this band account in hard
silk for more than twice as much as for soft silk. This demonstrates that the capacity to
strongly bond water is higher in hard silk than in soft silk due to structural differences. The
percentages for bound-freezing water are significant, too; as higher values are associated
with aminoacidic composition richer in polar side chains, hard silk is confirmed to be more
prone to bond freezing bound water. As for bulk water, differences in absorption are still
present, even less evidently, because hydrated proteins offer a similar surface to bind bulk
water. The different contributions of the combination band of water are shown in Figure 5.
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Figure 8. Deconvolution of the band at 5170 cm−1. Deconvolution of the O-H combination band
(region 5350–5000 cm−1): (a) soft silk; (b) hard silk; (c) comparison of the peak areas for each
contribution in soft and hard silk.

3.4. Characterization of Silk in Traditional Japanese Armors

External reflection FTIR spectroscopy was applied to a wide selection of textiles from
armors in order to test extensively the variability in the appearance and color of silk yarns.
The same main peaks (1706, 1566, 1454, 1265, and 1071 cm−1) are found in all the spectra,
so we can infer that they are all made of pure silk, without peculiar samples showing other
recognizable signals. However, samples 4_2 and 4_11, belonging to the Mor.004 armor
(17th century), appear different from the others, especially in their water sorption band
(3200–3600 cm−1), which is shown in Figure 9a, and in the amides region (1800–1500 cm−1),
which is not shown. In order to obtain Figure 9a, the spectra were truncated between
3800–2600 cm−1, linearly baselined, and SNV corrected. It is clear that samples 4_2 and
4_11 are different from all of the other samples, mainly due to the shape of the OH stretching
band. Through comparison of this feature, the spectra of hard and soft silk samples could
be visually differentiated. For the sake of clarity, in Figure 9b, just two representative
spectra of the samples are shown together with the references. The spectrum of sample
4_2 strictly resembles the spectrum of the hard silk reference, and the same happens for
sample 5_1 and the soft silk reference.
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Figure 9. (a) ER-FTIR spectra of samples. (b) ER-FTIR spectra of samples 4_2 and 5_1 together with
the spectra of hard and soft silk references.

In Figure 2a,b, we showed how OH stretching bands in soft silk spectra are influenced
under different RH conditions. It could be argued that it is not possible to distinguish
between the enhanced absorption due to high humidity conditions from that caused by the
presence of the sericin coating. Actually, under the same temperature and RH, hard silk
is doomed to show higher absorptions in the OH stretching band with respect to soft silk.
Thus, the comparison method works provided that the textiles to be compared belong to
the same collection or are stored under the same RH conditions. Within the analysis of a
part of a collection, it could be useful to conditionate two reference clothes—made of hard
and soft silk—under the same temperature and RH conditions of the collection. Recording
their spectra together with other samples would make it easier to visually evaluate the
spectra. As shown in Figures S2, S3 and 9b, the reference materials do not differ significantly
among them and from historical hard silk samples. With respect to an earlier proposed
method [48], there is no need to conditionate the textiles of the collection under fixed RH
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before the analysis, which would be difficult to obtain and potentially dangerous for their
preservation.

Finally, it is worth pointing out that the recognition of hard silk was achieved on
samples dating back to 17th century. It is a high-value consideration as it shows that the
proposed method works on both modern mock-up samples and historical samples. It is
proof that the decay condition does not generally prevent the identification of hard silk,
provided that sericin has not been degraded. Indeed, the chance to detect sericin decreases
as decay takes place. Thus, the most ancient samples, which have a higher probability of
being made of hard silk for historical reasons, can hardly show spectral features of sericin.
In this case, more sophisticated techniques should be used. Moreover, the proposed method
cannot falsely indicate the presence of sericin in a degummed textile. Indeed, the rise of
water sorption cannot be related to the aging of the samples, as both hard and soft silk
show a reduction of water sorption related to aging [6].

Instead of visual comparison, principal component analysis (PCA) can be applied to
the ER-FTIR spectra. The method is more rigorous and objective to evaluate differences
among sets of samples and to search groups among them. Similar samples locate themselves
in the same region of the scores plot, while samples belonging to different groups are far
apart. PCA is an unsupervised learning algorithm, with it being able to find some patterns
and regularities without direct supervision of an operator and thus objectively. The scores
plot permits obtaining visual recognition of such differences. According to the purpose
of this research, hard and soft silk samples should create two different groups. Samples
appearing as disturbing or unusual are named as outliers, and care of them must be taken
to obtain reliable models [78]. In general, the spectrum of the sample could be intended as
an outlier if it lies outside the distribution obtained from those of the other samples, and it
should be corrected or removed from the model. Outliers’ evaluation can be carried out
according to the Hoteling Tˆ2 statistic and the Q statistic, and their presence is due to a
gross error producing an anomalous acquisition or the peculiar features of the sample in
respect to the others (e.g., strongly IR-absorbing substances adhering to the textile).

In this work, different spectral ranges were tested to choose the most significant. The
MIR region and NIR region were initially considered independently in order to evaluate
the specific preprocessing method for each part. A successively extended NIR region
(7400–2400 cm−1) was tested in order to enhance the information from the most important
bands. Finally, the whole spectrum was considered and preprocessed with Savitsky–Golay
smoothing (derivative order zero, second polynomial order, window width 71) and MSC.
This appeared as the best choice as the sum of the explained variance for PC1 and PC2 was
higher, and by observing these spectra, the artefacts were removed in an effective way. The
relative scores plot of PC1 vs. PC2 is shown in Figure 10. These two components describe
69.9% and 7.4% of the total variation respectively.

In the scores plot, the samples are black colored. Most of them are located at low
positive and low negative values on PC1 and PC2, thus forming a group in the middle of
the graph. With respect to the main group, samples 4_2 and 4_11 appear at higher values
on both PC1 and PC2. In order to have a visual evaluation of their nature, some hard and
soft silk references were projected into the PCA. They are blue and red colored, respectively.
As a matter of fact, the soft silk reference correctly joined the group in the middle of the
graph, while hard silk references locate themselves near to samples 4_2 and 4_11. The hard
silk reference HS3 is not shown as it was recognized as an outlier. Probably their spectra
show similarities. In order to study the spectral features which contribute to such a scores
plot, the analysis of the loadings plot of the first two PCs is needed.
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Figure 10. Scores plot for the first two principal components. Red and blue points are the hard and
soft silk references, respectively, which were projected into the PCA.

The loadings for PC1 and PC2 are depicted as lines in Figure 11, together with the
spectra of references for hard and soft silk. It is worthwhile to recall that high loading
values (both positive and negative values) indicate important variables and thus, in this
case, important peaks. The regions of the spectra where the loading values are higher are
more significant, so they are highlighted.

Figure 11. Loadings plot of PC1 and PC2, shown together with the ER-FTIR spectra of the references
for hard and soft silk. The region 5400–700 cm−1 is shown. The blue and red regions represent the
most important regions for the differentiation between hard and soft silk, respectively.
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The PC1 loadings showed a shape that resembles the one of the hard silk spectrum.
This is not surprising as the first PC mainly describes the differences between the hard silk
and the other silk samples. Negative high loadings values are strongly associated with
peaks which are typical of soft silk (red colored bands in Figure 11), such as the amide A
peak (3313 cm−1), β-turn (1681 cm−1), amide II (1560 cm−1), and amide III (1260 cm−1).
The positive values at around 3650–3520 cm−1 could be attributed to an enhancement of
the contribution due to non-bonded water and to non-freezing water (blue colored bands
in Figure 11). Similarly, positive values at around 1770 cm−1 are associated with hard silk
(blue colored band in Figure 11), as they appear in the band broadening in Figures 4 and S2.

PC2 shows high values for variables (peaks) which can be associated with water
uptake in the region 3580–3400 cm−1 (blue colored bands in Figure 11). A positive value at
around 3580 cm−1 is associated with the vibration of non-freezing water, whose content is
much higher in hard silk than in soft silk. On the contrary, the negative value at around
3305 cm−1 is associated with NH stretching (red colored band in Figure 11), which ap-
pears more evidently in soft silk. As for the NIR region, the positive value at around
5200 cm−1 could be associated with the raised water content of hard silk (blue colored band
in Figure 11).

4. Conclusions

The proposed method to discriminate hard and soft silk is based on the different
water uptake during the storage at the same temperature and RH, followed by ER-FTIR
spectroscopy. This is an innovative point of view, which exploits a “weakness” of FTIR
spectroscopy—the strong absorption from water molecules—in order to indirectly obtain
the results. Indeed, OH stretching bands are generally considered “forbidden” regions,
since the analytical information about the molecule under analysis is covered by environ-
mental water, which is very difficult to remove from silk textiles too. Actually, we showed
that these bands are useful to study adsorbed water, by means of peak fitting analysis
which appeared as an interesting tool to evaluate the different contributions of the OH
stretching band. In particular, we found that the contribution of non-freezing water is
decisive for differentiating hard and soft silk.

When samples are stored under the same conditions, the higher water content, which
causes the broad absorption at around 3600 cm−1, is linked to the presence of sericin and,
indirectly, to the detection of hard silk. Thus, through the analysis of the shape of the
OH stretching band, it is possible to differentiate hard and soft silk textiles, using a rapid
and completely non-invasive technique. With respect to previous methods developed
with ATR-FTIR spectroscopy, the proposed method is also easier, as only a single broad
band had to be taken into consideration. The recognition of hard silk is obtained by visual
comparison of spectra—two conditioned reference clothes made of hard and soft silk can
be used to make identification easier. Alternatively, principal component analysis allows a
more rigorous and objective comparison of the spectra, paying particular attention to the
presence of outliers.

The proposed approach could infer very useful information about the nature and
authenticity of historical silk textiles, thus suggesting the best conservation conditions and
leading to targeted restoration works. Great campaigns of analyses can be managed, as
the technique is rapid and non-invasive. The method could be useful within the industrial
refining of silk too. Quality control analyses are fundamental to assure that the product
achieves standard levels, but the measurement of the degumming extent of raw silk is
difficult with traditional protocols. Instead, reflection infrared spectroscopy could be
applied by manufacturers for continuous process control, as the working parameters are
controlled and constant. The indirect measurement of degumming extent in the industrial
context could be an interesting future outlook, even if further studies are needed to obtain
quantitative data and chemometrics would be fundamental to manage them.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16051819/s1. Table S1: List of samples from the Morigi
collection. For each sample the presumed dating, color, the armor part which the sample comes from,
and the kind of textile are reported; Figure S1: Scheme of the main parts of the traditional Japanese
armor; Figure S2: ER-FTIR spectra of hard and soft silk references (region 3800–400 cm−1); Figure S3:
ER-FTIR spectra of hard and soft silk references (region 6100–3800 cm−1).
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Appendix A

Fibroin and sericin are the main proteins that form Bombyx mori silk fiber [15]. Sericin,
which accounts for 25–30% of the weight, is a coating for the two core brins of fibroin, so
that the raw silk fiber has about a 20 μm width. In particular, the B. mori silk fibroin is
composed of two protein chains, a heavy-chain (H-fibroin) and a light chain (L-fibroin)
covalently linked by a disulfide bond at the carboxy terminus of the two subunits. The
complete amino acid sequence of the B. mori fibroin heavy chain is composed of a highly
repetitive (Gly-Ala)n sequence motif and tyrosine-rich domains, together with some other
amino acids whose sum does not exceed 20% (molar mass). On the contrary, in sericin, the
majority of the amino acids are polar including serine and aspartic acid, with non-polar
amino acids accounting for only 22% of the protein [5].

Silk fibers in cocoons [5], before any treatment, exhibit a layered structure, where
slightly different types of sericin are found moving closer to the inner fibroin core. The
outermost layer of sericin is the richest in polar amino acids, so it is easily solubilized in hot
or boiling water. It is obtained through raw silk yarn or grège. This procedure is named silk
reeling. The subsequent process of removing sericin, or “gum”, from the hard silk is named
degumming or refining. Generally, hot water was used [4], adding soap in Europe [3,5], while
alkaline substances and/or enzymes derived from porcine pancreas were used together
with water in China [3,6]. This process makes the final silk yarn lustrous and smooth, also
making the fiber more able to bind to dyes. After degumming, silk loses up to 25% of its
weight, so it generally undergoes the weighting process. Inorganic salts or other substances
are employed to replace some of the lost weight, or even to exceed the original weight.
These substances could be also added to act as mordanting agents, to make fibers more
prone to bind dyes [3,7]. Instead of removing sericin directly on the grège, which has lost
only a minor part of sericin [3], the degumming can be performed after weaving the yarn
with its gum into a cloth that can be degummed and dyed in piece; alternatively, the raw
yarn can be twisted to obtain a stronger thread and finally degummed and dyed in yarn.
Actually, textiles may be also used in a partially degummed form, named supple silk [3], or
used with their gum, although dyeing gives poor results and is difficult to obtain.
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Abstract: The marine composites market is driven by the increasing demand for lightweight,
corrosion-resistant, and impact-resistant boats. Polymer matrix composites are currently the most
popular composite material in marine applications. Fiberglass composites are practically the main
type of fiber composites that are used extensively in marine applications. Due to the aggressive sea
environment, composite structural elements of ships are exposed to damage due to the phenomenon
of osmosis. This damage is also favored by defects that result from impacts and technological errors
during the production of these elements. Non-destructive testing methods are necessary to detect
damage in the internal structure of the composite. The paper presents a numerical analysis of the
possibility of using vibrothermography in the detection of defects in glass–fiber reinforced laminates
in marine applications. Numerical simulations have shown that the most favorable method for
detecting defects will be acoustic waves. This is an unusual application because, as a rule, the range of
ultrasonic waves is used in vibrothermography. In our further works, it is planned to verify numerical
calculations through experimental research. The applicability of the terahertz technique was also
assessed. During the experimental testing, all defects in the test sample of the glass–fiber reinforced
composite were detected using this technique. The presented results indicate the applicability of the
presented methods for the detection of defects in composites used in marine applications.

Keywords: composites; vibrothermography; terahertz radiation; non-destructive testing

1. Introduction

Interest in composite materials in many industries results from the possibility of
designing their functional properties required in a specific application. This creates the
possibility of new design solutions that have been previously unavailable with the use of
traditional materials, e.g., metals. Fiber-reinforced composites are particularly attractive
materials. The use of fibers in the composite makes the material stronger and stiffer [1]. It
may have physical parameters comparable to metals but have a lower specific weight. Most
often, composites employ textile materials joined together with plastics, such as a binder,
to create multi-layered composite materials used, for example, in marine applications.
Glass–fiber reinforced composites are most often used in the construction of yachts. More
and more often there are constructions where there is a layer of rigid polyvinyl chloride
foam between two layers of glass–fiber reinforced composite X.

Damage to the composite structure may occur both as a result of technological errors
in the production phase and during operation as material fatigue. The main type of damage
to watercraft is damage to the composite structure caused by impacts, which is one of
the most critical failures. The effects of impact damage can be considered as the internal
fracture surface is characterized

(1) impact damage resistance which is related to the response and damage caused by
impact [2],

(2) impact damage tolerance, associated with the reduced stability and strength of the
structure due to the damage [3,4].
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Another factor that contributes to the damage to the composite hulls of watercraft is
the phenomenon of osmosis (Figure 1). Osmosis in hulls is the penetration of water through
the gelcoat layer into the laminate. Even the best-made laminate is not a homogeneous
structure. There are micro-air bubbles and microcracks, both in the resin itself and at the
junction of resin and glass. In these voids of the laminate, water collects, which forms
acetic and hydrochloric acids and glycol as a result of hydrolysis. Since glycol is a strongly
hygroscopic substance, the amount of water absorbed into the hull increases and the
degradation process accelerates. The molecules of water contaminated with compounds
formed as a result of hydrolysis strive to equalize the degree of their contamination with
the environment. As a result of diffusion, pure water molecules penetrate the laminate
unhindered, accelerating the osmosis phenomenon. Hydrolysis and diffusion are more
intense in seawater, which is alkaline (pH 8–8.5). As a result of these phenomena, the
connections between the fibers of the glass reinforcement and resins were destroyed in the
first place. Water spreads along the reinforcement fibers, separating them from each other.
The effect of this phenomenon is the gradual degradation of the laminate manifested by the
formation of blisters filled with a specifically fragrant, acidic liquid with a pH of 0 to 6.5.
Osmotic blisters can vary in size—from the size of a pinhead to a diameter of 10 cm. As a
result of osmosis, not only does the laminate structure gradually deteriorate but the water
content in the laminate increases, and the weight of the hull increases. Changing the water
content in the laminate has a direct impact on the depth of immersion, maneuverability,
speed, and fuel consumption [5].

 
Figure 1. The process of the osmosis phenomenon [5].

Damage resulting from impacts or technological errors in the production of composite
hulls of floating units accelerate the formation of damage caused by the phenomenon of
osmosis. Figure 2 shows osmosis foci on the surface of the yacht’s hull after removing the
gelcoat layer. In this picture you can see what damage can be caused by the phenomenon
of osmosis.
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Figure 2. Osmosis foci on the yacht’s hull [5].

So far, a commonly used method of detecting the effects of osmosis has been tapping,
for example, with a hammer on the surface of the yacht’s hull. The characteristic sound
caused by tapping is information about the existence of damage due to osmosis. However,
such a damage detection technique requires the repairperson to have a lot of experience,
especially when the damage surface is very small. This method, in many cases, does not
allow us to detect the places where the osmosis process begins.

Compared to the literature on non-destructive testing of composites, publications
on testing composites used in marine applications are a small part. More often, it is only
mentioned that composites used in marine applications can be tested with the presented
NDT methods [6]. In the study of composites in marine applications, in most cases, the
methods used in similar composites for other purposes are used [7]. These are methods
such as ultrasonic tests, optical methods (holography and sherography [8]), microwaves,
thermography, and radiography [9]. A certain exception is the acoustic method, which is
often used in the study of composites used in marine applications [10], and occasionally in
other applications. In recent years, results from the use of terahertz radiation have been
presented, most often from the use of THz SWT (Stationary Wavelet Transform) [11] and
THz TDS (Time–Domain Spectroscopy) [12] methods.

Non-destructive testing methods make it possible to detect the defects described
above, formed in composite hulls of watercraft. The purpose of our work was to analyze
the possibility of determining the parameters of non-destructive testing method, which
would be both effective in detecting defects resulting from the phenomenon of osmosis and
would allow relatively fast testing of the composite hull. Our many years of experience in
non-destructive composites showed that one of these such methods is vibrothermography,
and the possibilities of its use for detecting defects in composite hulls will be analyzed in
this paper. The possibility of using the terahertz transmission method to detect defects
caused by osmosis is also analyzed.

2. Vibrothermography

In infrared thermography, the distribution of the temperature field on the surface of
the test object is used to assess the condition of the test object. Modern thermal imaging
cameras can record changes in electromagnetic energy in the infrared band radiated from
the surface of the tested object with high frequency and temperature resolution (approx. 15
mK). The whole process, after transforming the radiated energy into an electronic signal, is
recorded in the form of a sequence of images [13].
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Non-destructive testing with infrared thermography can be performed with both
passive and active techniques [14–22]. When using an active technique, it is necessary to
use the source of thermal excitation of the tested object. For this purpose, either the heating
or the cooling source of the test object can be used. Material defects which, before the
test begins, have a homogeneous temperature equal to the ambient temperature do not
generate “useful” temperature signals and, for this purpose, require heating or cooling the
whole object or its part. During such a test a dynamic temperature field is created, and the
results of the test of temperature distribution depending on the observation time.

The name vibrothermography itself can be slightly misleading because this method
does not rely on a direct combination of the physical phenomena used in the vibration
method and thermography. The vibration method uses information on the change of
direction and time of passage of waves inside the tested structure, which are affected by
the elasticity and homogeneity of this structure. The detection of defects is influenced
by, among other factors, the length of the mechanical wavelength and the ratio of the
wavelength to the size of the defect. Only the source-generating mechanical waves were
adopted from the vibration method to vibrothermography.

In vibrothermography, the evaluation of latent structural heterogeneities of materials
is based on changes in the surface temperature field under cyclic mechanical loads. The
reason for the increase in temperature is the internal friction of the cavity walls when they
are stimulated by mechanical waves. If the cyclic loads do not exceed the elasticity of the
material and the rate of their changes is high, then heat losses due to thermal conductivity
are small. After removing the load, the tested object returns to its original shape and tem-
perature. Thermographic methods are usually non-contact methods. Vibrothermography
differs from this principle, and the generator of mechanical waves must be in contact with
the surface of the tested object.

In order to effectively detect defects using vibrotermography, the most favorable
values of the frequency and amplitude of the mechanical waves for thermal excitation
of the tested object should be determined. The ThermoSon software was developed for
this purpose.

In vibrothermography, ultrasounds are usually used to excite the material under test,
the frequency range of which is from 20 kHz to 1 GHz. Occasionally, sound waves with a
frequency range of 20 Hz to 20 kHz are used.

3. Modelling Vibrothermography NDT

3.1. Matematical Problem

The principles of vibrothermography are illustrated in Figure 3.

T 

Transducer 

T 

Ta 

Coordinate 

Figure 3. Vibrothermography principle [21].

Theoretical numerical calculations can be divided into two steps with 3D solutions to
the following problems:
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• propagation of mechanical waves in the object and the thermal power generated by
the defect,

• propagation of heat generated by the defects based on the results of the first stage.

Below, a description of the steps for numerical calculations is presented. The pre-
sented algorithms were developed on the basis of the theoretical approach described in the
publications [23,24].

The thermomechanical model implements parallel numerical solutions for the propa-
gation of thermal energy and mechanical waves. Figure 3 shows the mechanical stresses
(normal and tangential) that act on each face of the elementary volume of the tested object.
Along the two coordinates, the tangential stresses have two components. By adding up one
normal component and two tangent components there are three stress components on each
surface of the parallelepiped. For example, on the surface perpendicular to X we have one
normal component, σx, and two tangent components, τxy and τxz (the first subscript shows
the coordinate axis which is parallel to the normal vector of the parallelepiped surface,
and the second subscript indicates the coordinate axis which is parallel to the tangent
stress component).

As described in Figure 4, the mechanical stresses acting on each plane of a solid
parallelepiped act as three components of stress. For example, on the plane perpendicular
to the x coordinate, these are σx, τxy, and τxz stresses. The balance of forces along x can be
described by the formula:

(σx+0 − σx−0)ΔyΔz +
(
τy+0,x − τy−0,z

)
ΔxΔz + (τz+0,x − τz−0,x)ΔxΔy + XΔxΔyΔz = 0 (1)

where Δx, Δy, and Δz are the parallelepiped dimensions and X is the projection of volume
forces (if they are present) on the x axis. The subscripts x + 0 and x − 0 correspond to the
maximum and minimum x coordinates.

Figure 4. Distribution of stresses acting on the tested sample with an elemental volume [25].

The differential form of Equation (1) will be as follows:

∂σx

∂x
+

∂σyz

∂y
+

∂σzx

∂z
+ X = 0 (2)
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The numerical solution of the obtained set of basic equations was made using Ther-
moSon software:

(λ + 2G)
∂2U
∂x2 + G

(
∂2U
∂y2 +

∂2U
∂z2

)
+ (λ + G)

∂2V
∂x∂y

+ (λ + G)
∂2W
∂x∂z

= 0 (3)

where λ is the Lamė constant, G is the shear modulus, and U, V, and W are the displacement
projections on the x, y, z coordinates.

The right element of the Lame Equation (3) was replaced with the corresponding
components of the inertia forces Fin. This is because we are considering elastic waves in
a solid.

Fin in a chosen elementary volume. For instance, in the x direction:

Fin,x = ρ
∂2U
∂τ2 (4)

where ρ is the material density.
The following model boundary conditions were adopted:

(1) normal and tangential stresses on the surface of the upper and lower plate do not occur
(2) zero vertical displacements on the lower surface and forced harmonic vibrations at

the point of stimulation.

The internal fracture surface is characterized by nonlinear boundary conditions. At the
crack compression stage, no tangential stresses are assumed, and at the crack deformation
stage, the condition of zero normal stresses is added. Assuming that the appropriate
elements of Equation (3) are equal to zero, the above conditions will be achieved. As a
starting condition, the displacements are assumed to be zero at τ = 0. By solving Equation
(3), it is possible to calculate the displacement for the x, y and z coordinates at each time
step. The vertical displacement of the surface at the stimulation point is described by
the equation:

W = A[1Δcos(2π f τ)]/2 (5)

where A and f are the vibration amplitude and frequency, respectively.
The heating power in a crack perpendicular to the x direction is calculated by:

P =
k f rσxS f r

τ∗
∫ τ∗

0

∣∣∣∣∂U
∂τ

∣∣∣∣dτ (6)

where kfr is the crack wall friction coefficient, σx is the stress normal to the crack surface,
and Sfr is the crack surface.

For the second step, a 3D heat conduction equation was numerically solved to calculate
the temperature distribution in a sample [16].

3.2. Model

The multi-layered structure to be tested consists of layers of glass fabric joined with an
epoxy resin glue. The analysed model composite has a thickness of 10 mm and lateral size
250 mm. Three air-filled defects with dimensions D1—50 × 100 mm, D2—20 × 50 mm, and
D3—20 × 50 mm (Figure 5) were placed at different depths (D1—0.25 mm, D2—0.5 mm,
and D3—0.25 mm) below the surface of the tested composite sample model. All defects are
very thin and have a thickness of 0.1 mm.

The model takes into account differences in the propagation of heat generated by the
defect as a result of simulation with mechanical waves, which are when heat propagates
along the fibers and perpendicular to them. The structure of the model corresponds to the
structure of the real composite used for the hulls of the boats.

Table 1 contains the thermal and strength parameters that were determined experimen-
tally. The thermal properties of air were adopted on the basis of the literature (Table 2) [14].
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Figure 5. Model of composite where 1, 2, and 3 correspond to the defects 1, 2, and 3, respectively.

Table 1. Thermal and strength properties of the composite [26].

Parameter Value Unit

Specific heat 1.62 J·kg−1·K−1

Density 2000 kg·m−3

Thermal conductivity 0.38 W·m−1·K−1

Poisson’s coefficient 0.24 -
Young’s modulus 36 GPa

Table 2. Thermal properties of air.

Parameter Value Unit

Specific heat 1005 J·kg−1·K−1

Density 1.2 kg·m−3

Thermal conductivity 0.07 W·m−1·K−1

4. Results and Discussion

The performed numerical calculations showed that the best imaging of all defects
was obtained at the frequency f = 1 kHz (this is the frequency of the sound wave) and the
amplitude A = 0.1 mm. Figure 6 shows the graphs of temperature changes over time on
the sample surface over the defects. The simulation time of generating vibrations (heating)
was th = 3 s, and the total simulation time t = 5 s. The point of application of the center of
the vibration transducer (with an area of 1 cm2) on the sample surface was: x = 50, y = 50
(Figure 5).
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Figure 6. The course of temperature changes on the sample surface over the defects (location of the
center of the vibration transducer x = 50, y = 50).

Figure 7 shows the temperature distribution after 3 s from the start of vibration
generation. Then, as shown in Figure 5, the increases in temperature values above the
defects were the highest.

Figure 7. The temperature distribution after 3 s from the start of vibration generation (location of the
center of the vibration transducer x = 50, y = 50).

The shape of defects cannot be determined in Figure 7, which shows the thermogram
simulation. The Fourier transform was used to improve this visualization (Figure 8).
Such an operation is possible thanks to the ThermoSon software used in the simulation.
The principle of processing thermograms using the Fourier transform is described in the
paper [27]. As you can see in Figure 8, the shape of the defects is very visible and consistent
with the model shown in Figure 5. The image shown in Figure 5 was obtained for the
14th harmonic.
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Figure 8. Image of the thermogram from Figure 6 after analysis using the Fourier transform for the
14th harmonic.

Determining the shape and dimensions of the defect, especially when it is not visually
visible, is important to repair the damaged part of the hull of the watercraft. The example
of using the Fourier transform presented in the article shows how helpful the thermogram
processing methods (described in [27]) can be in detecting defects using infrared thermog-
raphy. Figures 9 and 10 show how the temperature rise changes with time during the
heating and cooling phase over the defects when the position of the center of the vibration
transducer changes.
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Figure 9. The course of temperature changes on the sample surface over the defects (location of the
center of the vibration transducer x = 40, y = 50).
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Figure 10. The course of temperature changes on the sample surface over the defects (location of the
center of the vibration transducer x = 25, y = 55).

The presented simulation results clearly show that the impact on the detection of the
defect (increase in the temperature value on the surface of the sample above the defect),
with the same thermal forcing parameters (vibration transducer operating parameters), is
significantly influenced by three factors: the size of the defect area, the distance between the
defect, the transducer application point, and the depth under the surface where the defect
is located. The defect D1, which has the largest surface area, generates the highest increase
in temperature, as it can be seen in the graphs in Figures 7 and 9. Figure 7 shows the
effect of the depth at which the defect is located under the sample surface. The transducer
application point is at a similar distance from the D2 and D3 defects. The defect D2 is
located deeper under the surface of the sample and the value of the temperature rise on
this defect is lower than that on the defect D3, even though the surfaces of these defects are
the same. The shift of the transducer application points towards the D2 defect (Figure 10),
which resulted in a significant increase in the value of the temperature signal over this
defect compared to the graph shown in Figure 7. However, there is no increase in the
temperature signal over the D1 and D3 defects. This proves that the defect detection is
possible with the distance of the transducer application not more than a few centimeters
from the defect. No experimental tests have been carried out that would confirm the results
of numerical calculations due to the lack of access to a source generating vibrations with
parameters specified in the numerical calculations.

In order to compare the results with a different frequency of generated longitudinal
waves but with the same other parameters, simulations were carried out for the frequencies
of 20 kHz and 30 kHz. These are frequencies from the range of ultrasonic waves most often
used for thermal excitation in ultrasonic thermography. The obtained results are presented
in Table 3.

Table 3. The temperature increase over defects by thermal stimulation with ultrasounds.

Defect Number 20 kHz 30 kHz

D1 4.55 2.2
D2 0.11 0.25
D3 0.47 0.05

From the results presented in Table 3, it can be seen that the temperature rises over the
defects when using a sound wave (Figure 3) is higher than when using ultrasound. This
shows that thermal stimulation of the composite used to build boat hulls with the use of
sound waves increases the probability of detecting a defect caused by the phenomenon of
osmosis compared to ultrasonic waves.
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5. Terahertz Test

As an alternative and future-proof method of non-destructive testing that can be used
for damage testing of boat hulls, we present the terahertz transmission method.

As part of the work on the use of terahertz radiation in non-destructive testing of
composites, experimental tests of the composite reinforced with glass fiber were also carried
out. A sample of the composite approximately 10 mm thick with circular incomplete holes
milled to various depths and diameters of different sizes was made at the Air Force Institute
of Technology.

The transmission technique was chosen as the test method. The source of terahertz
radiation and the scanner were stationary, and the test sample moved at a constant speed.
Figure 11 shows a diagram of the stand.

Figure 11. Schematic representation of experimental setup operated via Terahertz method in trans-
mission mode [28].

Terasense Development Labs equipment was used in the study. A line scanner with
the following parameters was used as a detector of terahertz radiation: image resolution
512 × 1 pixel with a pixel pitch of 0.5 mm and a frequency of ~300 GHz. The IMPATT THz
generator, with the parameters of frequency 292 GHz ± 5 GHz and power ~10 mW, was
the source of terahertz radiation. This source incorporates innovative THz reflective optics
based on a specially configured high-gain horn antenna in combination with a metallic
mirror. The distance between the radiation source antenna and the center of the mirror was
280 mm, and the distance between the center of the mirror and the scanner was 310 mm.
The scanner was located about 5 mm from the sample surface.

Due to the adopted solution, the amount of power reaching the linear sensor matrix
increases significantly. This has a decisive influence on the improvement of THz imaging.
The data were recorded using dedicated software.

As can be seen in Figure 12, the dimensions and shapes of the incomplete holes are
clearly visible. The outlines of the circles visible outside the periphery of the holes may be
the result of terahertz radiation scattering through the walls of the holes or the detected
damage resulting from hole milling. This phenomenon will be explained in the course of
our further research.

In the THz image (Figure 12), disturbances (darker spots) are visible on the surface of
the sample, apart from defects. These disturbances can be reduced by carefully selecting
the appropriate sample speed.
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Figure 12. THz image of a glass–fiber reinforced composite with defects in the form of incomplete holes.

6. Conclusions

The computer simulations carried out have shown that vibration thermography can
be an effective method in detecting defects in the hulls of vessels made of fiberglass-based
composite. Both damages caused by the phenomenon of osmosis and impacts can be
effectively detected by this method. The selection of the vibration source parameters
is important.

In our simulations, we used sound waves that are unusual and very rarely used
in vibrothermography, which (as our simulations have shown) can be more effective in
detecting defects in boat hulls than the use of the ultrasound. The highest temperature
increase over the defects was achieved at the frequency of 1 kHz (acoustic wave). This
shows that at this frequency it will be possible to detect defects of much smaller dimensions
that are located much deeper in the structure of the composite than at other frequencies.

In further work, we plan to conduct experimental research in order to verify our
numerical calculations regarding the use of acoustic waves in the detection of defects
caused by the phenomenon of osmosis. We intend to determine what the limitations are of
the method resulting from the dimensions of the defects and at what stage of osmosis we
can detect its destructive effects.

As results from the test carried out with the terahertz method show, it has great
potential for its application to the detection of defects in composites. This technique is
constantly evolving and has great potential in the future for non-destructive testing.

In further research, we will test this method in the reflection configuration, which is
more practical due to the research object, which is the hull of the vessel. Both the radiation
source and the scanner are located on the same side of the tested object. In this case, the
hull will be stationary and the source with the scanner will move along the hull.
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Abstract: The paper presents an approach to efficiently detect local defect resonances (LDRs) in
solids with localized defects. The 3D scanning laser Doppler vibrometry (3D SLDV) technique is
applied to acquire vibration responses on the surface of a test sample due to a broadband vibration
excitation applied by a piezoceramic transducer and modal shaker. Based on the response signals
and known excitation, the frequency characteristics for individual response points are determined.
The proposed algorithm then processes these characteristics to extract both out-of-plane and in-plane
LDRs. Identification is based on calculating the ratio between local vibration levels and the mean
vibration level of the structure as a background. The proposed procedure is verified on simulated
data obtained from finite element (FE) simulations and validated experimentally for an equivalent
test scenario. The obtained results confirmed the effectiveness of the method in identifying in-plane
and out-of-plane LDRs for both numerical and experimental data. The results of this study are
important for damage detection techniques utilizing LDRs to enhance the efficiency of detection.

Keywords: local defect resonance; damage detection; structural dynamics; non-destructive testing;
laser vibrometry; structural health monitoring

1. Introduction

The increasing use of advanced materials in modern engineering structures demands
new inspection strategies offering reliable and accurate data. In recent years, a wide range of
non-destructive testing (NDT) methods and structural health monitoring (SHM) techniques
have been developed for assessing the structural integrity of engineering materials [1–3].
Among them, methods based on the analysis of non-linear vibration/acoustic phenomena,
such as higher and subharmonics generation and elastic waves modulation, have been
gaining special attention [2–8]. This is mainly due to their better sensitivity to small damage
severities than their linear counterparts. In this context, a novel non-invasive procedure
that uses sonic or ultrasonic frequency excitation tuned to the local dynamic properties
of defect to activate a resonant response was recently proposed by Solodov et al. [9]. The
principle behind this is that the presence of embedded defects results in a local loss of
stiffness that gives rise to characteristic resonant frequencies of the defect itself, known
as Local Defect Resonances (LDRs). As for the classical modal testing approach, the
match between excitation and LDR frequency corresponds to the maximum wave–defect
interaction. The energy delivered by the impinging wave is selectively trapped within
the damaged area, leading to a significant increase in the defect response amplitude. This
increase is strongly localized in the defect area, providing an excellent contrast between
the damage and the intact specimen. Solodov et al. further applied the concepts of LDR
to a Flat Bottom Hole (FBH) [10]. Experimental results were validated through numerical
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modeling, and an analytical formulation was proposed to determine the LDR frequencies
of defects such as FBH, delaminations in composite materials, and laminar defects in rolled
sheet metals. The effects of local defects on the non-linear ultrasonic response were also
investigated in the literature, revealing that the defect excited at its LDR frequency exhibited
a transition to a non-linear regime. Consequently, the input energy was efficiently converted
into non-linear frequencies components, such as sub- and higher harmonics inside the
damaged region [11,12]. LDR frequencies have also been used to enhance the thermal
response of a damaged structure [13]. Solodov et al. [14] developed an analytical solution
for different planar defect shapes, which was validated through a series of experimental
tests. In the experiments, a wide-bans chirp signal was used to excite the specimens, and
the laser vibrometer was used for response measurements. Laser Doppler vibrometry
has been used by other researchers to extract LDR frequencies of aluminum and PMMA
plates with FBHs, and delaminations in glass-fiber reinforced polymer (GFRP) and carbon-
fiber reinforced polymer (CFRP) [15,16]. Moreover, it has been demonstrated that LDR
behavior does not limit itself to out-of-plane direction but can be extended towards in-plane
characteristics [17,18]. Experiments on different types of defects, i.e., FBHs, surface cracks
and BVIDs (Barely Visible Impact Damage), showed a clear in-plane LDR at an elevated
frequency range due to the high in-plane bending stiffness.

Even though many papers deal with the LDR frequencies for imaging damage, only
a few attempts were made to develop a robust algorithm to identify the LDR frequencies
among the system’s natural frequencies, making the procedure cumbersome and time-
consuming, starting from the analytical formulation proposed in [14], which can be applied
only for a few classes of idealized defects and only when the geometry and position of the
fault are known. More recently, in [19,20], the authors proposed an approach based on the
bicoherence analysis to obtain the LDR of FBH in an aluminum plate and of delamination
in a GFRP composite plate.

The current study proposes a novel algorithm for the efficient detection of LDRs. The
main goal of the algorithm is to automate the process of identifying LDR frequencies, which
is a particularly tedious task for structures with a considerable number of resonances. It is
designed to exhibit unique features, including:

• Possibility of investigating structures with multiple defects;
• Detection of multiple frequencies (and their mode shapes) for the same defect, which

is needed for in-plane LDRs extraction associated with higher-order modes;
• Possibility of examining structures without a priori knowledge of defects’ locations or

limits regarding their size.

The above-listed features make the proposed approach novel with respect to the
existing approaches, such as the algorithm proposed in [12], which is based on a similar
index to that presented in this paper. However, the processing procedure of the proposed
index is modified to improve the algorithm’s features.

In this paper, we present the work carried out to develop, validate and verify the
effectiveness of the method of searching the LDRs (both out-of-plane and in-plane) in the
broad spectrum of vibration modes. Firstly, we describe the algorithm in Section 2. The test
sample, experimental setup, and finite element models are presented in Section 3. Damage
detection and localization results are presented in Section 4. Finally, the paper is concluded
in Section 5.

2. Materials and Methods

As a result of the local loss of stiffness, the LDRs are specific for the selected area
of a structure. Hence, vibrations in the corresponding frequencies are increased in dam-
aged regions, and a negligibly small background response is observed simultaneously. It
indicates that for the local modes, the vibration amplitudes in the areas of damage are
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significantly higher than the mean value of the amplitudes of the whole structure. Based
on this observation, we introduce the Average Ratio (AR):

ARi, f =
Ai, f

E
[

A f

] , (1)

where Ai, f is the velocity amplitude of vibration of the single point i in the single frequency

f, and E
[

A f

]
is the mean value of amplitudes of all points in the single frequency. Having

frequency response functions (FRF) for all the points of a structure, we can create the M × N
matrix of absolute FRF values, where M is the number of points and N is the number of
frequencies. This allows for the calculation of the AR matrix. Then, selecting the maximum
AR value in each column gives the ARmax characteristic (see Figure 1).

 

Figure 1. Example of the ARmax characteristic.

The ARmax characteristic contains information about the relative differences between
points with the highest amplitudes and mean values for a whole structure. The higher
the value is, the more distinct LDR is detected. Two parameters determine the threshold
for LDR frequency selection. The first one is the sum of the mean and standard deviation
of prominence to define the minimum peak prominence. The second one is the standard
deviation of ARmax values, respectively, for the whole characteristic to define minimum
peak height. The algorithm’s sensitivity is controlled by the maximum number of peaks to
be detected. Usually, it is set to 9–24. The concept and main steps of the calculations are
schematically summarized in Figure 2.

Figure 2. The flowchart of the automated LDR extraction algorithm.
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To sum up, the algorithm works as follows: the FRF computed for measured or sim-
ulated data is the input for the algorithm. Firstly, the absolute value of FRF is computed.
Next, the AR matrix is calculated according to Equation (1) and the ARmax index is calcu-
lated as introduced above. Then, the peaks of the ARmax are found, taking into account
threshold and sensitivity presets. Frequencies corresponding to those peaks are interpreted
as LDR frequencies.

3. Examination Setup

3.1. Test Sample with FBHs

The test sample made of poly(methyl methacrylate) (PMMA) was manufactured for
the experimental testing of the algorithm’s operation. The dimensions of the plate are
as follows: 300 × 300 × 18 mm. Damages of FBH-type were introduced in the plate to
represent three sizes of deep defects with nominal diameters of 58, 40, and 18 mm. The
designed depth of all FBHs was 17 mm, which corresponds to the 1 mm thickness of the
residual material in the damaged area. The test specimen’s dimensions are presented in
Figure 3A. Please note that the sample is presented from the intact-side view, while in
Figure 3B the manufactured sample is presented from the damaged-side perspective.

(A) (B) 

  
Figure 3. PMMA test sample with FBHs: nominal dimensions in [mm] (A) and the sample prepared
for experiments (B).

A preliminary study revealed that non-negligible differences were observed between
the simulated and experimentally measured natural frequencies, which was not expected
for a relatively simple structure under consideration. Therefore, we decided to verify the
geometrical dimensions of the sample with respect to their desired nominal values in order
to tune the numerical model accordingly. The dimensions of FBHs of the test sample are
summarized in Table 1.

Table 1. Design and measured dimensions of the test sample.

Dimension Type Nominal Value Identified Values

Thickness of plate 18 mm 18.455 mm
FBH “Ø58 mm” diameter 58 mm 57.646 mm

FBH “Ø58 mm” residual thickness 1 mm 0.686 mm
FBH “Ø40 mm” diameter 40 mm 39.64 mm

FBH “Ø40 mm” residual thickness 1 mm 0.707 mm
FBH “Ø18 mm” diameter 18 mm 17.566 mm

FBH “Ø18 mm” residual thickness 1 mm 0.715 mm

It has been confirmed that the differences observed between the designed and mea-
sured dimensions of FHBs were the reason for the inconsistencies between the preliminary
results of the numerical calculations and the experiments. The following formula allows for
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the prediction of the LDR frequencies for FBHs, and it was used to determine the influence
of the variation of FBHs’ dimensions on LDR frequencies:

fLDR =
6.4t
a2

√
E

12ρ (1 − v2)
(2)

where t is the defect’s residual material thickness, a is the diameter of the FBH, E is the
Young’s Modulus, ρ is the density, and v is the Poisson ration of the material.

The data shown in Figure 4 prove that a slight change in the residual thickness or the
diameter of the damage can significantly shift the LDR frequency.

(A) 

 

(B) 

 

Figure 4. Influence of damage diameter (A) and residual thickness (B) variation on theoretical LDR
frequencies calculations made for the design values of FBH dimensions.

3.2. Experimental Modal Analysis

In experiments, the sample was freely suspended to avoid boundaries’ nonlinearities.
Preliminary studies have shown that a model shaker is required to excite the largest FBH’s
normal modes effectively. At the same time, the piezoceramic transducer was needed to
excite higher-frequency modes of LDRs. A frequency sweep signal was used to excite the
sample in the following frequency ranges: 0.5–3 kHz using a modal shaker and 0.5–20
kHz in the case of using a piezoceramic transducer. The excitation amplitudes were set
as 0.2 V and 8 V for the shaker and piezoceramic transducer, respectively. An external
signal generator generated the signal, and next the power amplifier amplified it ten times
and passed it on to the piezoceramic transducer. In the case of using a modal shaker, the
generated signal was amplified using a built-in amplifier. In both cases, the test sample’s
response was measured using 3D scanning laser Doppler vibrometry (3D SLDV). The
sample surface was mapped with 362 equally spaced measurement grid points. The Polytec
PSV400 3D laser vibrometer was used for non-contact measurements of vibration responses.
The sampling frequency and single point measurement duration were 5 kHz and 1.6 s in the
shaker measurement and 125 kHz and 2.048 s in the piezoceramic transducer measurement.
For both acquisitions, we used three averages per point. The Frequency Response Functions
(FRFs) were calculated from the experimental input and output data using the Polytec PSV
software v9.0. The experimental arrangement for measurements is presented graphically in
Figure 5.
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Figure 5. Measurement system used in experiments—configuration with piezoceramic transducer.

3.3. Numerical Models

Numerical simulations can be used to predict the dynamic properties of a structure. In
the context of this work, a computational modal analysis and FRF synthesis were used to
generate input data for the identification algorithm. Two numerical models employing the
Finite Element Method (FEM) to simulate the test specimen with FBHs were formulated.
The first model was based on 3D 8-node brick Finite Elements (FEs) and is assumed to
accurately reflect the real structure’s response. The second proposed model, based on 2D
4-node shell FEs, is supposed to allow for a rough determination of LDRs in a shorter
computing time. Both models were formulated using the Altair HyperMesh v2020 software
and computed with the MSC.Nastran v2020 solver.

Figure 6 presents the FE mesh used in the 2D and 3D numerical models. The geometric
dimensions of the model correspond to the measured ones. The thickness of shell 2D FEs
corresponds to the thickness of the material in a given area of the sample. The thicknesses
of shell FEs used in the 2D model are described in the legend in Figure 6A. The influence
of the piezoceramic transducer was modeled as constraints in X and Y directions on
the transducer’s montage side. The division of elements in the XY plane is the same in
both models.

(A) (B) 

 
Figure 6. Formulated numerical models based on 2D FEs (A) and 3D FEs (B).

A mesh convergence analysis was carried out, comparing the first LDR frequency
of the damage. According to the outcomes of this analysis, the recommended number of
FEs per FBH diameter was determined as 16. Three FEs were modeled on the thickness
of the residual material in the damaged area in the case of the 3D model and eleven FEs
in the intact area of the plate. The material parameters adopted in the simulations are
summarized in Table 2.
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Table 2. Material properties of the material used in numerical models.

Parameter Value

Young’s modulus 4919 MPa
Poisson ratio 0.4

Density 1.204 g/cm3

A comparison of selected normal models was carried out to check the correctness of
the material model parameters. The numerical results of the natural frequencies of the test
sample were compared with the measured ones. One of the analyzed normal modes is
presented in Figure 7—hereinafter referred to as global mode ‘B’.

(A) (B) (C) 

   
Figure 7. One of the global normal modes selected for validation: experiment (A), 2D FE model (B),
3D FE model (C).

Analogous comparisons were made for two other global normal modes, called ‘A’ and
‘C’. The results of the validation are presented in Table 3.

Table 3. Natural frequencies of the test sample.

Model with 2D FEs Model with 3D FEs

Global Mode Experiment Simulation Error Simulation Error

‘A’ 478 Hz 476 Hz 0.4% 480 Hz 0.4%
‘B’ 1207 Hz 1121 Hz 7.1% 1151 Hz 4.6%
‘C’ 2360 Hz 2181 Hz 7.6% 2296 Hz 2.7%

The obtained results confirm a good agreement of the numerical model formulated
with 3D FEs with the experimental results. The maximum error was observed for the
normal mode marked as ‘B’, which was less than 5% between the model and experiment.
This error is more significant for the model made of 2D FEs, and amounts to a maximum of
7.6% for the ‘C’ normal mode. The model made of 3D FEs can be considered to be more
accurate. It should be noted that the thickness of the test sample in numerical models was
assumed to be constant, but in reality it most likely varied over the sample, which may be
the reason for the discrepancy between numerical results and experimental ones in global
normal modes.

4. Results and Discussion

4.1. Out-of-Plane LDRs

Four datasets for the detection of out-of-plane LDRs were examined. The results were
derived from experiments with a piezoceramic transducer, a modal shaker (described in
Section 3.2) and the numerical results (2D and 3D FE models defined in Section 3.3). The
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determined ARmax characteristics for datasets were computed and analyzed, and finally
LDR frequencies were found by the proposed algorithm. Exemplary results of the ARmax
index for experimental data and the 3D numerical model are presented in Figure 8. Similar
results were computed for the 2D numerical model, but are not presented here to limit
the manuscript’s size. The maximum number of peaks to be detected in the algorithm
was limited to nine. The LDR frequencies determined by the algorithm are marked with
red triangles.

(A) 

 

(B) 

 
Figure 8. Computed ARmax characteristics and LDR frequencies selected by the algorithm for
experimental data (A) and the numerical results (B).

When comparing numerical and experimental results, it can be noticed that the damp-
ing in the actual structure is higher than in the numerical model, as the ratio of amplitudes
shown in the ARmax characteristic is lower. The higher frequencies in the real system are
damped more. The numerical models consider a 0.3% modal damping, which is the same
for all modes. Normal mode shapes corresponding to the first and second LDRs were
determined by the algorithm and are visualized in Figures 9–11 for subsequent datasets.
The results are presented for experimental data and numerical ones using the 3D FE model.
Similar results were obtained for the 2D FE model.

The visualizations of LDRs of the FBH Ø58 mm allow for determining its location and
shape. The algorithm identified similar frequencies to LDRs for numerical and experimental
data. The first out-of-plane LDR turned out to occur below 1 kHz, so it was necessary to
use a modal shaker instead of a piezoceramic transducer in the experimental setup. Piezo-
stack was used to excite the structure at higher frequencies, but it was ineffective in the
low-frequency range. It resulted in heavily noised signals, so using the detection algorithm
on low-quality data did not make sense. For this reason, the tests for the low-frequency
range were repeated using a modal shaker. It allowed for correct excitation of the first
mode of out-of-plane LDR for the largest FBH. Unfortunately, the excitation of the second
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out-of-plane mode of LDR of FBH Ø58 mm was accompanied by the first out-of-plane
mode of LDR of FBH Ø40 mm. As a result, the average vibration level was high, and
thus the ARmax index was low. The same observations were noted in experimental and
numerical results (both 2D and 3D models)—see Figure 9B,D. This caused a false negative
indication for the second out-of-plane LDR mode of FBH Ø58 mm. It must also be noted
that the algorithm also found higher LDRs, but the presentation is limited to the first two
ones (first and second out-of-plane modes).

(A) (B) 

  
(C) (D) 

  
Figure 9. Visualization of out-of-plane vibrations—FBH Ø58 mm. The first LDR in experimental
data (A) and numerical results based on the 3D FE model (C). The second LDR in experimental data
(B) and numerical results based on the 3D FE model (D).
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(A) (B) 

  
(C) (D) 

  
Figure 10. Visualization of out-of-plane vibrations—FBH Ø40 mm. The first LDR in experimental
data (A) and numerical results based on the 3D FE model (C). The second LDR in experimental data
(B) and numerical results based on the 3D FE model (D).

In the FBH Ø40 mm case, the algorithm correctly identified the first two modes of
out-of-plane LDRs. The discrepancies between the experimental data and the results of
the 3D model are minor, as presented in Figure 10. However, it should be added that
these conclusions apply only to the model based on 3D FEs. The algorithm working on the
numerical results from the 2D FEs model did not correctly indicate the second out-of-plane
mode of LDR of FBH Ø40 mm (false negative indication). On the other hand, the first
out-of-plane mode was correctly extracted.

The FBH Ø18 mm is the only defect for which the algorithm’s indications are only
true positive. It applies to all datasets, i.e., experimental data and 2D and 3D FE models.
The visualizations of first and second out-of-plane LDRs of FBH Ø18 mm extracted by the
algorithm for various datasets are depicted in Figure 11.

The summary of detected modes for three FBHs is presented in Table 4. The LDR
frequencies determined by the algorithm were compared for different datasets to assess the
accuracy of the numerical models. The summary is given in Table 4, and is limited to the
first and second detected LDR frequencies for given defects and presents relative errors
for the two proposed FE models (based on 2D and 3D FEs). It can be observed that the
results obtained from numerical models correspond very closely with the experimental
results, which prove the successful validation of the numerical models. As expected, when
focusing on the first out-of-plane mode of the LDR, the 3D model turned out to be more
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accurate—the maximum error was observed for FBH Ø40 mm, and it amounted to 0.7%
compared to the experimental data.

(A) (B) 

 
(C) (D) 

  
Figure 11. Visualization of out-of-plane vibrations—FBH Ø18 mm. The first LDR in experimental
data (A) and numerical results based on the 3D FE model (C). The second LDR in experimental data
(B) and numerical results based on the 3D FE model (D).

Table 4. Comparison of out-of-plane LDRs frequencies detected by the algorithm for numerical
models and experiments.

The Model with 2D FEs The Model with 3D FEs

Defect Type Experiment Simulation Error Simulation Error

First LDR
(out-of-plane)

FBH Ø58 mm 857 Hz 855 Hz 0.23% 859 Hz 0.23%
FBH Ø40 mm 1867 Hz 1859 Hz 0.43% 1854 Hz 0.70%
FBH Ø18 mm 9189 Hz 9455 Hz 2.90% 9250 Hz 0.67%

Second LDR
(out-of-plane)

FBH Ø58 mm Not found Not found — Not found —
FBH Ø40 mm 3997 Hz Not found — 3924 Hz 1.83%
FBH Ø18 mm 19,350 Hz 19,771 Hz 2.18% 19,684 Hz 1.73%
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The maximal error in the 2D model was observed for the FBH Ø18 mm, which
amounted to 2.9% compared to the experimental data, but it was still an acceptable result
in most applications. Similarly, when comparing the second out-of-plane mode of LDRs,
the 3D FE model proved slightly more accurate. The maximum error was observed for FBH
Ø18 mm, but the difference was not as evident as for the first out-of-plane mode of LDRs,
i.e., 1.73% and 2.18% for 3D and 2D FE models, respectively. It must also be noted that for
any datasets, the algorithm found the second out-of-plane mode of FBH Ø58 mm. This
problem was addressed earlier in the text. Unfortunately, the second out-of-plane mode of
FBH Ø40 mm was also not recognized by the algorithm working with 2D FE model results.

It can therefore be summed up that 3D modeling gives more realistic results. In
the case of 2D modeling, the results showed a more significant maximum divergence
compared to the experiment than the results of the 3D FEs model. The algorithm working
on the experimental data and the results from the 3D model correctly indicated the second
out-of-plane mode of LDR (FBH Ø40 mm), which was not shown in the 2D data. On
the other hand, the 2D model deserves attention, as it is much faster to formulate and is
characterized by a three times lower computing time than for the 3D model. It can be
successfully employed for a rough determination of the first out-of-plane LDR modes.
Moreover, the 2D FE model allows the easy manipulation of the material’s thickness, saving
a lot of time in the model-tuning process. The simulations were performed on a workstation
with an AMD Ryzen® 9 5950X 16-core processor.

4.2. Damage Size Assessment

The higher order out-of-plane LDR modes allowed for a more accurate identification
of the FBH damage size. Figure 12 presents a visualization of the detected out-of-plane
modes of FBH Ø40 mm using the discussed algorithm. The view was limited only to the
damaged area. The algorithm’s sensitivity was increased to 24 peaks across the entire
frequency spectrum. It allowed for the identification of higher out-of-plane LDRs of the
FBH Ø40 mm damage. Horizontal lines were drawn to allow the quantification of the
damage size based on the shape of the highest noted mode (23,062 Hz). The determined
size of the damage was Ø37 mm. This indication was therefore underestimated in relation
to the nominal damage diameter by 3 mm. Nevertheless, the lower modes underestimated
the damage diameter to a much greater extent. The first out-of-plane mode, especially,
underestimated the damage diameter by about 15 mm, which resulted in a damage size of
Ø25 mm.

 

Figure 12. Comparison of the diameter of FBH Ø40 mm based on different LDR modes.

4.3. In-Plane LDRs

The proposed algorithm successfully detects out-of-plane modes of LDRs. Nonethe-
less, another examination was performed to check the possibility of identifying the in-plane
LDRs using the presented algorithm. In this case, the ARmax characteristic was computed
based on the velocity amplitude of vibrations in the XY plane instead of the velocity Z
component. In the case of experimental data, visualization was provided with the Y (verti-
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cal) component of vibration velocities. The algorithm’s sensitivity was set to 24 because
in-plane LDRs are usually related to higher mode shapes.

Although the analysis concerned in-plane modes, most detected resonance frequencies
corresponded to out-of-plane modes of LDRs. Further investigation showed that out-
of-plane modes are, in fact, always accompanied by increased vibrations in the in-plane
directions, as presented in Figure 13, where for the same eigenvalue (3925 Hz) the out-of-
plane (Figure 13A) and in-plane (Figure 13B) vibration components are depicted.

(A) (B) 

  

Figure 13. One of the mode shapes of FBH Ø40 mm LDR: out-of-plane component (A) and in-plane
component (B).

The assessment of the normal modes determined by the algorithm showed that all
indications referred to the FBHs introduced into the plate. None of the indications was a
false-positive, proving the validity of the proposed approach. As mentioned earlier, most
indications referred to the out-of-plane modes, for which significant in-plane vibrations
were also observed. For this reason, these indications cannot be considered incorrect even
though they do not correspond to ‘clear’ in-plane modes. In the determined results, two
modes could be recognized as ‘clear’ in-plane modes. Those modes refer to the Ø58 mm
and Ø40 mm FBHs, and are visualized in Figure 14. No ‘clear’ in-plane LDRs of FBH Ø18
mm were found, which is likely to be out of range of the analysis. The summary of detected
in-plane LDRs is presented in Table 5.

Table 5. Comparison of in-plane LDRs detected by the algorithm for numerical models and experiments.

The Model with 2D FEs The Model with 3D FEs

Defect Type Experiment Simulation Error Simulation Error

FBH Ø58 mm 19,895 Hz 23,164 Hz 16.43 % 20,966 Hz 5.38%
FBH Ø40 mm 29,402 Hz 33,443 Hz 13.74 % 29,623 Hz 0.75%
FBH Ø18 mm Not found Not found — Not found —

In the case of using the algorithm to identify in-plane LDR modes, the developed
approach also proved to be very effective. It can be noticed that the 3D numerical model
allows the representation of in-plane modes of FBHs more accurately than the model
based on 2D FEs. The errors reported for the 2D FE model (more than 13%) questioned
the correctness of in-plane LDR frequency representation for this modeling technique.
The observed differences with the experimental results were more significant than for the
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out-of-plane modes for both FE models. It was associated with a worse representation of
real structures by numerical models in the higher frequency range.

(A) (B) 

  
(C) (D) 

  
Figure 14. ‘Clear’ in-plane LDRs of FBH Ø58 mm based on experimental data (A) and 3D FE model
results (C); ‘Clear’ in-plane LDRs of FBH Ø40 mm based on experimental data (B) and 3D FE model
results (D).

5. Conclusions

This paper presents a method for determining the frequencies of local defect reso-
nances. The algorithm was based on the observation that the vibration amplitudes were
significantly higher for the local defect’s mode shape than the mean value of the whole
structure. Based on that observation, the ARmax was computed as a ratio between the
maximum amplitude of vibrations for a given frequency and the mean vibrations level.
The algorithm found the ARmax index’s peaks and identified them as LDR frequencies.

To sum up, the most significant achievements reported in this paper are as follows:

• A novel algorithm for the automatic extraction of LDRs was developed. The algorithm
was successfully implemented to identify out-of-plane and in-plane modes of LDRs.
Various datasets, including experimental and numerical data of a test specimen with
FBH of different diameters, were examined;

• The algorithm allowed the determination of higher-order LDR modes, which usually
better represented FBH shape and size. Finding higher-order LDRs was also essential
to correctly extract in-plane modes. This feature was a significant improvement
compared to the current state-of-the-art methods;
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• Two numerical models based on the FEM were developed. One employed 3D FEs, and
the other was based on 2D FEs. The algorithm worked successfully with the results
provided by both models;

• The indicated LDRs proved that, in most cases, the 2D model was sufficient for
determining FBH-type out-of-plane LDRs. The recorded error between corresponding
LDRs in experiments and results of the 2D FE model was less than 3%. On the other
hand, a false negative indication was noted for this dataset. The results provided by
the 3D FE model were better fitted with an actual structure, which corresponded with
the relative error of less than 2% in out-of-plane modes;

• The 3D FE numerical model allowed the capturing of in-plane modes of FBHs more
accurately than the 2D FE model. The errors of in-plane LDRs called into question the
applicability of the 2D modeling technique to represent in-plane modes.

It should be emphasized that the presented work is the basis for further research.
Future works will concern the use of the developed algorithm for LDRs detection for other
types of damage, such as delaminations in composites or fatigue cracks.
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Featured Application: The presented results can be used in devices for measuring the thickness

of a non-conductive coating on non-magnetic electrically conductive base metals and non-metals.

Abstract: The known amplitude-sensitive eddy-current method for measuring the thickness of
non-conductive coatings on conductive non-magnetic base metals does not satisfy the accuracy
requirements. A primary consideration is the significant influence of a change in the specific electrical
conductivity of the base metals on results of measurements. In this study, we developed a technique
for measuring the thickness of non-conductive coatings on non-magnetic conductive base metals by
using the eddy-current amplitude-phase method and implemented algorithms to process obtained
information. Our method considered the influence of the specific electrical conductivity of the base
metals by forming a two-dimensional graduation characteristic of the thickness gauge by using
several base metals with different specific electrical conductivity. The algorithm for point-in-polygon
determination was applied, which allowed us to measure the thickness of the coatings and the
specific electrical conductivity of the base metals as independent values. The equipment necessary
to construct the two-dimensional graduation characteristic and the algorithm for calculation of the
thickness are described in detail.

Keywords: eddy-current; thickness gauge; amplitude-phase algorithm; two-dimensional graduation

1. Introduction

1.1. Amplitude-Sensitive Eddy-Current Method for Measuring the Thickness of Coating

To measure the thickness d of a non-conductive coating on non-magnetic electrically
conductive base metals, the amplitude-sensitive eddy-current method of non-destructive
testing is provided [1,2]. The operation principle of eddy-current devices is based on
the fact that a high-frequency electromagnetic field generated by an eddy-current probe
(ECP) produces eddy currents in a conductive base metal beneath the coating on which the
ECP is placed (Figure 1). The density of eddy currents depends on the distance between
the excitation coil and the surface of the conductive base metal. These eddy currents
cause a change in the electromagnetic field surrounding the coil of the ECP and affect the
impedance of the coil.

The change in the impedance permits obtaining a set of calibration values by using
reference standards for thickness of coating, and then, to calculate the thickness of a coating
on an electrically conductive base metal.

In most practical applications, the single ECP excitation coil is a part of a self-oscillating
circuit, as shown in Figure 2.
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Figure 1. Amplitude-sensitive eddy-current method of measurement of the thickness of coating.
1—probe core with coil W, 2—high frequency magnetic field, 3—non-conductive coating, 4—non-
magnetic electrically conductive base metals, 5—induced eddy current, I—exciting current, U—signal
of eddy-current converter.

Figure 2. Structure of eddy-current probe with self-oscillating circuit.

The output signal of the self-oscillating circuit is the resonance frequency f, determined
by the formulas:

f = 1
2π

√
LC

C = C1·C2
C1+C2

(1)

ECP of this type is called parametric, the parameter determining the output signal
being the inductance L of the ECP coil, depending on the thickness of a coating d. The
ohmic resistance r of the ECP coil does not affect the output signal of the self-oscillating
circuit directly. The value f is a measure of d, and it is converted to d by means of a
graduation curve.

1.2. Stray Parameters When Measuring d by Using the Amplitude-Sensitive Eddy-Current Method

Stray parameters affecting the value of measurement uncertainty can be divided into
the following groups:

- Geometric: curvature and roughness of a base metal and coating surfaces; the tilt of
ECP; contamination of the coating and ECP surfaces resulting in a gap between the
ECP and the test object; edge effect.

- Technological: the pressure of ECP on the coating; intermediate coatings; the influence
of temperature and external electromagnetic fields.

- Electromagnetic: the specific electrical conductivity σ of the base metal.

Practice shows that the value of σ and its changing along the surface of the base metal
and/or from one object to another make the greatest contribution to the measurement
uncertainty [3].

To study the influence of the test and stray parameters, one should use the analysis of
the ECP parameters on the complex plane.
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The coil impedance Z of a parametric ECP is a complex value determined by the formula:

Z = r + jXl
Xl = 2π f L,

(2)

where r is ohmic resistance and Xl is inductive resistance.
Figure 3 (on the left) shows the dependence of the coil impedance Z of the parametric

ECP on d on the complex plane, Figure 3 (on the right) shows the local hodograph diagrams
of the coil impedance of the parametric ECP when changing d from 0 to ∞ at σ = 5 MS/m,
17 MS/m and 58 MS/m and σ from 0 to 58 MS/m.

 
Figure 3. Dependence of the coil impedance of the parametric ECP on the thickness of coating and
specific electrical conductivity.

On placing an ECP on an uncoated base metal (d = 0) with nominal value σ = 17 MS/m,
the impedance on the complex plane corresponds to the point d = 0, σ = 17 MS/m. With
an increase in d, the hodograph diagram of the impedance change describes line 1. When
an ECP is placed on an uncoated base metal (d = 0) with a different specific electrical
conductivity; for example, σ = 58 MS/m or 5 MS/m, the impedance on the complex plane
corresponds to the point d = 0, σ = 58 MS/m or d = 0, σ = 5 MS/m. As d increases, the
hodograph diagram of impedance change is line 2 or 3. In this case, the dependence f on
d at σ = 5 MS/m, σ = 17 MS/m and at σ = 58 MS/m is described by the curves shown in
Figure 4a, and the dependence the deviation of d on σ on a logarithmic scale is shown in
Figure 4b.

When measuring d on base metals with different values of σ, a multiplicative change
in f occurs, which can be compensated by adjusting (calibrating) the ECP on an uncoated
base metal or a coated base metal with a known thickness d. Such a compensation will be
observed in a small range of d near the calibration point. However, sometimes, we cannot
perform a compensation; for example, in the following cases:

- The thickness is measured on a fully painted product, and removing the coating from
a part of the surface (for ECP calibration) is not possible;

- σ changes considerably on the surface of base metal;
- The test object has different temperatures on the surface. In this case, a deviation of σ

is observed.
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(a) 

(b) 

Figure 4. (a) Dependence f on d at σ = 5 MS/m, σ = 17 MS/m and at σ = 58 MS/m, (b), dependence
the deviation of d on σ.

In these cases, it is necessary to provide the suppression the influence of σ by im-
plementing the adaptive structure of the measuring probe, which has functional redun-
dancy [4,5].

In indirect measurement methods using the ECP graduation curve, the interpolation
error of the graduation curve is an additional source of measurement uncertainty. The
curve is constructed for a limited number of graduation points, but at the same time,
it should cover the entire measurement range, for the interpolation of the curve power
or logarithmic functions are usually applied. Large distances between graduation and
interpolation points may result in significant deviations of obtained values from the real
transmission characteristic of the measuring probe. This is due to the uncertainty of the
points of graduation curve and the choice of interpolating functions.

1.3. A Review of the Methods for a Suppression of the Influence of σ Deviation

In the patent [6], the problem of reducing the influence of σ is solved by turning the
hodographs of signals on the complex plane. This method allows the suppressing the
influence of σ for the base metal, but it does not take into account a change in the sensitivity
of the ECP to the thickness of the coating when σ of the base metal changes. In general, the
proposed method is effective for insignificant changes in σ when different objects are made
of metal of the same brand.

The paper [7] describes the algorithm for measuring the thickness of an electrically
conductive plate, which is not sensitive to σ. This algorithm assumes the use of a sweep-
frequency eddy current testing. It may be applied to measure the thickness of the coating
on an electrically conductive base. At the same time, the variable-frequency method
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necessitates equipping the thickness gauge with a complex electronic circuit, which is
acceptable for stationary devices and unacceptable for portable ones.

In the paper [8], the authors proposed the algorithm for measuring the thickness of an
electrically conductive film. It was not sensitive to the gap between the VTP and the film.
This algorithm also assumed the application of a sweep-frequency eddy current testing.
Along with it, a simplified variant based on a small set of excitation frequencies was also
considered. In this case, the selection of suitable pre-calculated sets of film thicknesses
and gap parameters satisfying the measured signals of the ECP at several frequencies was
carried out.

In periodicals, besides those mentioned, a large number of articles describing the tech-
nology of measuring the thickness of the coating by the multi-frequency method, variable
frequency method and pulse method were published. Unfortunately, all these methods are
not applicable for implementation in portable devices. The works concerning ECP with
two or more measuring coils (for example: [9]) are also of little use for implementation in
miniature ECP.

One of obvious solutions of the problem discussed is to develop a method using a
single fixed excitation frequency for an absolute transformer compensated ECP.

2. Materials and Methods

2.1. Description of an Amplitude-Phase Probe

It should be noted that the solving the discussed problem by implementing a self-
oscillating ECP is practically impossible because the output signal f is one-parameter, but it
is influenced by both d and σ, and their influences cannot be separated.

We propose to use a three-coil transformer compensated amplitude-phase eddy-
current probe (AP ECP), the block diagram of which is shown in Figure 5 [10].

 

Figure 5. Block diagram of three-coil transformer compensated amplitude-phase eddy-current probe.
Here, We—excitation coil, Wc—compensating coil, Wm—measuring coil, AE—excitation signal
amplifier, AM—added voltage amplifier.

Using the built-in DAC, the microcontroller synthesizes a harmonic excitation signal
of a given frequency. The excitation signal amplifier (AE) is the source of the required
excitation voltage. The excitation voltage applied to the excitation coil (We) creates a
magnetic field that interacts with the base metal of the test object. The resulting magnetic
field, derived from the interaction of the magnetic field of the excitation coil and the eddy
currents field in the base metal of the test object, is picked by the measuring coil (Wm).
The compensating coil (Wc) senses the magnetic field We but does not pick the magnetic
field of the eddy currents. Wm and Wc are connected in-series in opposite directions,
which results in compensating the constant component of the Wm signal. The signal of
the measuring coil output corresponds to the added voltage of the AP ECP. This voltage
is applied to the added voltage amplifier (AM), and then, the signal arrives to the ADC.
The ADC signal is transmitted through the communication unit for further processing.
The output signal of the AP ECP is a complex value containing two independent signal
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parameters (Re; Im)—the real and imaginary components of the added voltage of the AP
ECP [11].

2.2. Description of the Finite Element Model of AP ECP

To calculate and optimize the parameters of AP ECP and obtain model signals for
debugging the mathematical processing algorithms, a finite element model of the primary
measuring probe was developed.

To study the influence of test and stray parameters on the signal of a transformer-
type AP ECP, the analysis of the AP ECP added voltage on the complex plane should
be performed. Despite a number of obvious differences, the hodograph diagrams of
transformer AP ECP signals were similar to the diagrams of the parametric ECP ones.

The graphical representation of the finite element model of AP ECP coils placed over
a base metal is shown in Figure 6a and the hodograph diagrams of the signals are shown in
Figure 6b.

 

 
(a) (b) 

Figure 6. (a) The representation of the finite element model of AP ECP coils over a base metal,
(b) hodograph diagrams of the signals of the AP ECP finite element model. 1—measuring coil,
2—compensating coil, 3—excitation coil, 4—base metal.

2.3. Overview of Two-Parameter Measurement Methods

Among the methods for multidimensional analysis of ECP signals, one should mention
the method of principal components [12]. Its application shows good results if the influences
of both parameters are unidirectional when switching to an alternative coordinate system.
The joint application of the amplitude-sensitive and phase-sensitive eddy-current methods
was described in [13,14]. It allows correcting the results of measurement of the parameter
obtained by the amplitude-sensitive method according to the results of measuring the
second parameter obtained by the phase-sensitive method. It is assumed that a change in
the parameter measured by the amplitude-sensitive method does not affect the results of
measurements for the second parameter. Obviously, the achieved measurement accuracy
does not meet the modern requirements of consumers of the equipment being developed.
Methods of two-parameter measurements in eddy-current testing using excitation of eddy
currents at different frequencies [15] cannot be applied for miniature ECPs and for small-
sized test objects.

2.4. Description of the Proposed Graduation Technique

In existing devices, each point of the graduation curve corresponds to one or more
values of the thickness of coating on the base metal.

The proposed technique involves a two-dimensional graduation characteristic. In-
stead of graduating the AP ECP on a single base metal with σ corresponding to a certain
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measurement average [16], it is necessary to graduate the AP ECP on a set of reference
conductive non-magnetic base metals, for which values of σ are different and cover the
entire range of actual σ values. The graduation characteristic is similar to hodograph
diagrams in Figure 6b.

A two-dimensional graduation characteristic involving several base metals compli-
cates the graduation procedure considerably. To eliminate this problem, we propose to use
a simulating system for the thickness of a non-conductive coating (CTSS). It consists of a
precision linear actuator, a servo drive, a basic supporting structure and software providing
an automated ECP graduation procedure (Figure 7).

 

Figure 7. Non-conductive coating thickness simulating system. 1—precision linear actuator, 2—servo
drive, 3—basic supporting structure, 4—reference base metal, 5—ECP.

During the automated graduation process, CTSS software generates a graduation
curve containing a large number of graduation points. This number is comparable to
the resolution of the thickness gauge implemented by AP EC. It enables one to omit
inappropriate interpolating functions. Reducing the complexity of construction of the
curve for one base metal allows graduating the AP ECP on several reference base metals
with known σ without any significant complication in the graduation procedure.

2.5. Description of the Proposed Measurement Technique

The test parameter is d, while σ is the stray parameter. The value σ is not displayed on
the indicator of the thickness gauge, as it is not relevant for the user.

The graduation characteristic is represented as a fan-shaped grid on the plane. The
grid thickens in d direction and thinning out in σ direction. In these conditions, the
algorithm for processing the measurement information has only one task—to determine
the section of this grid that corresponds to the point of the signal obtained during the
measurement. Obviously, for the effective operation of the proposed technique in conditions
of a large set of graduation points (approximately several thousands) and relatively low-
performance of single-core ARM architecture of microcontrollers, it is necessary to optimize
the computational algorithm.

The proposed two-dimensional algorithm to calculate σ and d is based on the checking
whether a point lies in a polygon [17] (pp. 142–146).

2.5.1. General Description of Two-Dimensional Algorithm for the Calculation σ and d

A generalized graphical interpretation of the two-dimensional algorithm for calcula-
tion of σ and d is shown in Figure 8. In Figure 8, for brevity, we denote graduation table
as GT; graphical interpretation of the graduation characteristic in the form of hodograph
diagrams of the signals of AP ECP finite element model is shown in Figure 6b.
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Figure 8. Two-dimensional algorithm of the calculation σ and d.

The lines of the graduation characteristic obtained on different reference base metals
are presented as lines d(σ). These lines converge fanwise at a single point—an air point
with coordinates (ReAir; ImAir). For clarity, the points with the same d value on different
lines of the graduation characteristic are connected by lines which are denoted as σ(d).
During a measurement process, the signal which has coordinates (Re; Im) is calculated. In
the figure, it is denoted as the point “(Re; Im)”.

The task of the algorithm for calculation σ and d is to determine whether the signal
belongs to one of the sections bounded by four lines of the grid and to calculate its value
relative to these boundaries.

Due to the large number of sections of the graduation characteristic, the calculation is
carried out by using the “half section” method [18].
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An example of the graduation characteristic of AP ECP in tabular form is presented in
Table 1.

Table 1. Graduation characteristic of AP ECP in tabular form.

d
Σ

σ1 σ2 -//- σcolumn

d0 (Re d0, σ1; Im d0, σ1) (Re d0, σ2; Im d0, σ2) -//- (Re d0, σcolumn; Im d0, σcolumn)
d1 (Re d1, σ1; Im d1, σ1) (Re d1, σ2; Im d1, σ2) -//- (Re d1, σcolumn; Im d1, σcolumn)
d2 (Re d2, σ1; Im d2, σ1) (Re d2, σ2; Im d2, σ2) -//- (Re d2, σcolumn; Im d2, σcolumn)

-//- -//- -//- -//- -//-
d row (Re d row, σ1; Im d row, σ1) (Re d row, σ2; Im d row, σ2) -//- (Re d row, σcolumn; Im d row, σcolumn)

2.5.2. “Signal-in-Section” Check

The graduation table is divided in half and the belonging of the signal to a section of
the upper or lower half of the graduation table is determined.

Only 3 rows from the table are selected: d = d0, d = drow/2 and d = drow.
The belonging the signal to the sections separated by the polyline σ(drow/2) is deter-

mined by condition 2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n = 0
(starting conditions)

i f
(
Imd,σ ≤ Im < Imd+1,σ or Imj, k ≥ Im >Imd+1,σ

)
and

(
Re ≥ (Red,σ−Red+1,σ)·(Im−Imd,σ)

Imd,σ−Imd+1,σ
+ Red,σ+1

)
, then n = n + 1

(check o f lower boundary)

i f (Imd,σ+1 ≤ Im < Imd+1,σ+1 or Imd,σ+1 ≥ Im >Imd+1,σ+1) and
(

Re >
(Red,σ+1−Red+1,σ+1)·(Im−Imd,σ+1)

Imd,σ+1−Imd+1,σ+1
+ Red,σ+1

)
, then n = n + 1

(check o f upper boundary)

i f (Imd+1,σ ≤ Im < Imd+1,σ+1 or Imd+1,σ ≥ Im >Imd+1,σ+1) and
(

Re >
(Red+1,σ−Red+1,σ+1)·(Im−Imd+1,σ)

Imd,σ+1−Imd+1,σ+1
+ Red+1,σ

)
, then n = n + 1

(check o f right boundary)

i f (Imd,σ ≤ Im < Imd,σ+1 or Imd,σ ≥ Im >Imd,σ+1) and
(

Re ≥ (Red,σ−Red,σ+1)·(Im−Imd,σ)
Imd,σ−Imd,σ+1

+ Red,σ

)
, then n = n + 1

(check o f le f t boundary )
n = 1 or n = 3

(check o f the number o f intersections )

(3)

where d—selected line number of the graduation table (d = 0 or row/2), σ—column number
of the graduation table (σ = 1 . . . column).

• If the condition is met for d = 0, then the signal belongs to the upper half of the
table. In this case, for the next iteration, points from the upper half of the table (d = 0,
d = row/4 and d = row/2) are selected;

• If the condition is met for d = row/2, then the signal belongs to the lower half of the
table. In this case, for the next iteration, points from the lower half of the table (d = 0,
d = row3/4 and d = row) are selected;

• If the condition is not met neither for d = 0, nor for d = row/2, then either the signal
belongs to one of the extrapolated sections, or the signal is in one of the dead zones of
the algorithm. In this case, the signal is checked for belonging to one of the extrapolated
sections of the table;

• If the condition is met for none of the interpolated sections of the graduation charac-
teristic, then the signal belongs to one of “dead zones” of the algorithm; in this case,
the signal is checked for belonging to “dead zones”;

• If the condition is met for none of “dead zones” of the algorithm, then the signal is an
error and is not subject to further processing.

The signal can belong only to one section of the table; when determining the section, it
is necessary to proceed to the next iteration.

In the next iteration, the involving half of the graduation table is divided in half, the
belonging the signal to one of the sections of a quarter of the table is checked by analogy
with previous iteration. It should be marked that the case when the signal does not belong
to any quarter of the graduation table cannot occur. The result of this calculation in the
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described branch of the two-dimensional graduation algorithm is the determination of the
number of the row and column of the graduation table to which the signal (d; σ) belongs.
In this case, we can perform an additional optimization of the algorithm, namely not check
the columns σ which differ significantly from the value determined at the previous stages.

The thickness of coating is determined by the line of the graduation characteristic. In
this case, the number of lines of the graduation characteristic can be several times fewer
than the number of possible values of d in the measurement range of the thickness gauge.
To ensure the specified resolution of the thickness gauge measurement, it is necessary to
use the accumulation and averaging of the results of calculation of d.

2.5.3. Extrapolation of the Graduation Characteristic and “Dead Zones” of the Algorithm

A two-dimensional graduation characteristic is a field bound by values of d from
0 to ∞ and σ from σmin to σmax. It should be taken into consideration that in practice
measurements outside the specified boundaries are not excluded:

• Example 1. The measure σmax is taken for copper, σ ≈ 58 MS/m. If we measure d on a
copper base at low temperature of the test object, the value of σ may exceed the σmax.

• Example 2. As was mentioned before, in practice, the curvature of the surface of the
test object is a non-excluded stray parameter. When graduating, we use only measures
for flat surfaces. If measurements are taken on an object with a concave surface, the d
readings decrease. With a small d value, the readings may be negative.

However, such situations should not cause failures in the operation of the algorithm for
mathematical processing of AP ECP signals. For this purpose, the graduation characteristic
is extrapolated in the directions σ > σmax, σ < σmin and d < 0 by using empirically selected
polynomial extrapolation functions.

Descriptions of methods for extrapolating the graduation characteristic and mathe-
matical processing of the signal belonging to the “dead zone” of the algorithm are beyond
the scope of this article.

3. Results

Tests of the described algorithm were carried out by using the finite element model
described above. The tests had two stages:

At the first stage, the graduation of the ECP model was carried out. To carry it out, we
used a base metal model with values of σ corresponding to the real base metal measures
used for the graduation of ECP: 0.63, 0.94, 2.12, 3.77, 5.33, 9.81, 14.4, 16.9, 26.3, 35.0, 40.5,
50.6, 58.8 MS/m. The values of σ for the graduation base metals were selected so that they
had an approximately monotonous arrangement on a logarithmic scale. The values of d
were set in a vicinity of the test values. Due to the fact that, in general, the algorithm has a
high accuracy of calculation, the graduation of the model was carried out with a resolution
of 0.1 microns, which is significantly higher than necessary for practical applications. The
data obtained during the calibration of the ECP model were loaded into the program
implementing the algorithm described above.

At the second stage, the ECP model was tested. For this, we used a base metal model
with a value of σ that changes uniformly on a logarithmic scale with a small step. The
following test values d were set: 0, 10, 100, 1000 microns. The test results in the form of a
dependence of the deviation of the calculated value of d on the value of σ on a logarithmic
scale are shown in Figure 9.

From the data shown in Figure 9, it can be seen that the deviation of d value was
expected to be minimal in a vicinity of the graduation points. The largest deviation d was
observed at σ ≈ 1.4 MS/m. This value corresponds to a group of low-alloyed titanium
alloys. Despite the fact that the practical significance of measuring the thickness of the
coating on such base metals is not obvious, including an additional graduation base metal
with σ ≈ 1.4 MS/m in the table significantly improved the quality of the graduation
characteristics for this type of ECP. The test results of the proposed method in comparison
with the amplitude-sensitive eddy-current method showed a decrease in the deviation d
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under the influence of the change σ by about two orders of magnitude, which was obvious
when comparing the data given in Figures 4b and 9.

 
Figure 9. Dependence of the deviation of the measured value d on the value σ.

The tests carried out showed the expected component of the measurement uncertainty
conditioned by the operation of the algorithm for calculating d and the correctness of the
selection of the values of the graduation base metals.

The study of the influence of a measuring device, actions of the operator and external
factors on the measurement uncertainty are beyond the scope of this article.

4. Discussion

The proposed algorithm, in addition to the tasks of measuring the thickness of a
non-conductive coating on a non-magnetic conductive base metal, can be used in the
following tasks:

• Measurement of the thickness of a non-conductive coating on a magnetic and non-
magnetic conductive base metal and non-metal base;

• Simultaneous measurement of the thickness of layers of a non-conductive coating with
a sublayer of a conductive non-magnetic coating on a conductive magnetic base metal,
for example, a paint coating applied to a steel base with a zinc underlayer;

• Measurement of the thickness of non-magnetic conductive sheet with suppression of
its specific electrical conductivity;

• Measurement of the specific electrical conductivity of the base metal with suppression
of the influence of the lift-off or the thickness of the paint coating in a wide range of
the base metal specific electrical conductivity values.
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Abstract: Phase contrast computed tomography (PCCT) provides an effective non-destructive testing
tool for weak absorption objects. Limited by the phase stepping principle and radiation dose
requirement, sparse-view sampling is usually performed in PCCT, introducing severe artifacts in
reconstruction. In this paper, we report a dual-domain (i.e., the projection sinogram domain and
image domain) enhancement framework based on deep learning (DL) for PCCT with sparse-view
projections. It consists of two convolutional neural networks (CNN) in dual domains and the phase
contrast Radon inversion layer (PCRIL) to connect them. PCRIL can achieve PCCT reconstruction, and
it allows the gradients to backpropagate from the image domain to the projection sinogram domain
while training. Therefore, parameters of CNNs in dual domains are updated simultaneously. It could
overcome the limitations that the enhancement in the image domain causes blurred images and the
enhancement in the projection sinogram domain introduces unpredictable artifacts. Considering the
grating-based PCCT as an example, the proposed framework is validated and demonstrated with
experiments of the simulated datasets and experimental datasets. This work can generate high-quality
PCCT images with given incomplete projections and has the potential to push the applications of
PCCT techniques in the field of composite imaging and biomedical imaging.

Keywords: phase contrast computed tomography; sparse-view sampling; dual domain; convolutional
neural network; radon inversion layer

1. Introduction

Attenuation and refraction occur when X-rays penetrate objects, which correspond
to the absorption and phase contrast. Conventional absorption-based X-ray computed
tomography (CT) is widely used in clinical diagnosis [1–4] and industrial testing [5–8].
It plays a crucial role in imaging strong absorption objects, while it performs poorly
when encountering weak absorption objects such as soft tissue, rare Earth materials and
composite materials.

Phase contrast computed tomography (PCCT) provides better image contrast for
weak absorption objects than absorption-based CT [9–14]. Several PCCT techniques have
been developed in the past years, and the results have indicated that PCCT can greatly
improve image quality for weak absorption objects [15–18]. Grating-based PCCT is the
most sensitive and universal approach since a coherent X-ray tube is not required during
imaging. It is based on the Talbot effect. However, limited by the phase stepping principle,
grating-based PCCT usually requires several samplings at each view to extract the contrast
signals, which results in a high radiation dose. Sparse-view sampling is usually performed
to reduce imaging radiation [19,20], while it introduces artifacts and noise in reconstruction.
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In recent years, deep learning (DL) has been popular in image processing [21–26].
DL has also been applied to the field of CT [27–29], which generally is grouped into
two categories. The first category can be classified as enhancement in the projection
sinogram domain. By using the residual network (ResNet) for better convergence and
patch-wise training to reduce memory, Lee et al. proposed a DL framework to in-paint the
missing data in the sparse-view projection sinogram [30]. It significantly outperformed
conventional linear interpolation algorithms. Moreover, their subsequent work that utilized
UNet [31] and residual learning [32] outperformed the existing interpolation methods and
IR approaches [33]. Different from using UNet to correct sparse-view sinograms, Fu et al.
proposed a deep learning filtered back-projection (DLFBP) framework to use differential
forward projection of the image reconstructed with incomplete data as input and a dense
connection net to output a complete sinogram [34]. The results showed that this framework
can generate high-quality reconstructed images with given incomplete data. However,
these approaches may introduce unpredictable artifacts, since the reconstruction process is
extremely susceptible to the inherent consistency of the sinogram.

The second category can be classified as enhancement in the image domain. Chen et al.
developed a deep convolutional neural network (CNN) to map low-dose CT reconstructed
images to their corresponding normal-dose images in a patch-by-patch fashion [35]. The
results demonstrated the great potential of the proposed method for artifact reduction. By
using a directional wavelet transform to extract the directional component of artifacts and to
exploit the intra- and inter-band correlations, Min et al. proposed a DL method that utilized
the wavelet transform coefficients of low-dose images [36]. It could effectively suppress
CT-specific noise. Zhang et al. used Dense Net and deconvolution to remove streaking
artifacts from sparse-view CT images [37]. The results showed that it can effectively
suppress artifacts in reconstructed images. These approaches offer a significant advantage
in reducing artifacts and noise in reconstruction, while they may oversmooth the images.

Several methods working in dual domains (i.e., the projection sinogram domain and
image domain) have been developed [38,39]. They are grouped into two categories, and
each of them has its own limitations: (i) using fully connected layers to connect dual
domains, which incurs a huge computational overhead; (ii) training networks in dual
domains separately, which superimposes the degradation of dual domains. In addition,
most of the studies focus on conventional absorption-based CT, while there is currently
a scarcity of studies on applying DL to low-dose PCCT, and the development of related
techniques is still in great demand. In this paper, we propose an end-to-end DL framework
for PCCT with sparse-view projections. Different from these mentioned methods, the
CNNs of dual domains are trained together, allowing network parameters of both CNNs to
be updated simultaneously for further removal of artifacts. Therefore, the network in this
framework consists of an enhanced network in the projection sinogram domain to restore
the projection structure, an enhanced network in the image domain to reduce artifacts
in reconstruction and a phase contrast Radon inversion layer (PCRIL) to connect them.
PCRIL can achieve PCCT reconstruction, and it allows for backpropagation of the gradients
from the image domain to the projection sinogram domain, which enables CNNs in dual
domains to be trained simultaneously. In addition, the differential forward projections of
the images reconstructed with sparse-view projections are used as input of the network,
and the reconstructed images with complete-view projections are used as the targets. Once
trained, the network is fixed and can reduce artifacts in the reconstructed images. The
experiments with the simulated datasets and experimental datasets are performed to
validate the effect of this framework. The results show that the proposed framework can
output high-quality reconstructed images with incomplete PCCT projections.

2. Materials and Methods

2.1. Framework Overview

Figure 1 shows the end-to-end DL reconstruction framework for PCCT with sparse-
view projections. The network in the framework can update parameters of the CNNs in dual
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domains synchronously, which is indicated with the green dotted rectangle. This framework
is referred to as DDPC-Net. The differential forward projection operator combined with
the PCCT filtered back-projection (FBP) algorithm is required to transform the size of
the sparse-view sinogram to be the same as the complete sinogram. In addition, a PCCT
reconstruction layer allowing the gradients to backpropagate from the image domain to
the projection sinogram domain is needed to achieve the mapping between dual domains
and to output the reconstructed image while taking the projection sinogram as input.
Therefore, the proposed framework has five components: (i) the FBP reconstruction for
PCCT, (ii) the differential forward projection, (iii) the enhanced network in the projection
sinogram domain, (iv) the PCCT reconstruction layer allowing for the backpropagation of
gradients, and (v) the enhanced network in the image domain.

Figure 1. The architecture of the proposed DL framework for PCCT. It consists of the FBP algorithm
for PCCT, the differential forward projection operation, and the neural network that allows the
network parameters in dual domains to be synchronously updated.

Equations (1) and (2) present the fan-beam FBP algorithm for PCCT, where δ(x, y)
represents the reconstructed image, U represents the geometrical weight factor, αθ(s)
represents the sinogram, s represents the sinogram index, h represents the Hilbert filter, v
represents the frequency, and θ represents the rotation angle.

δ(x, y) =
1
2

∫ 2π

0
U · αθ(s) ∗ h(v)dθ (1)

h(v) =
1

2π
isgn(v) (2)

Equations (3) and (4) present the three-point differential forward projection operator
in the proposed framework to generate PCCT sinograms, where P(s, θ) represents the
forward projection, and l represents the forward projection path.

αθ(s) ≈ P(s + 1, θ)− P(s − 1, θ)

2
(3)

P(s, θ) =
∫

l
δ(x, y)dl (4)
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Equation (5) presents the end-to-end neural network. The information-missing sino-
gram is transmitted into the network, and then, the corresponding high quality recon-
structed image rec is output.

rec = DDPC(αθ(s)) (5)

2.2. Neural Network Architecture
2.2.1. The Enhanced Network in the Projection Sinogram Domain

As shown in Figure 1, the enhanced network in the projection sinogram domain is
indicated with the larger blue solid rectangle, which adopts a multi-scale feature extraction
network. PCCT is commonly used in medical diagnosis, where medical images often consist
of tissue, organs, and structures of different scales. After projection, these different scales of
information are distributed in the projected sinogram. Therefore, the network can effectively
capture information at different scales from the projected sinogram, improving the accuracy
of image feature extraction. Here, initialization is performed as the first step. Then, four
downsamplings of different scales are performed for multi-scale feature extraction. Finally,
the multi-scale features are fused using the concatenate block represented by the gray
rectangle to output the restored sinogram.

Initialization: Initialization is performed with the convolution filter to convert the
corrupted PCCT projection sinogram into its feature image, which is represented with
the green cuboid. Increasing the size of the convolution kernel could improve the effect
of feature extraction, while it exponentially increases the learning parameters and even
causes overfitting. Studies have shown that multi-layer convolutional filters with smaller-
sized convolution kernels could enlarge the receptive field and decrease the parameters.
Therefore, the convolution filter with a size of 3 × 3 is used as the feature extractor. The
stride is set to 1 to ensure that the sinogram has the same size as its feature. Rectified linear
units (ReLU) and batch normalization (BN) techniques are integrated into initialization, so
as to overcome the problem of vanishing gradients and to greatly speed up training.

Multi-scale feature extraction: Multi-scale feature extraction is performed by four
downsampling branches, where each branch contains a different number of downsampling
blocks and the subsequent ResNets. Each downsampling block has a convolution kernel
size of 3 × 3 and a stride of 2, as represented with the pink cuboid in Figure 1. The
downsampling convolution intersects the conventional downsampling methods in DL,
such as max-pooling or mean-pooling operations, to achieve higher learning accuracy
and efficiency.

However, the multi-scale feature extraction may cause degradation problems due to
the network depth. ResNet provides an effective solution to the degradation problem of
deep neural networks and accelerates convergence. Therefore, ResNets are introduced for
the multi-scale feature extraction to enable the convergence and the acceleration of network
training. As shown in Figure 1, four ResNets labeled “ResNet1”, “ResNet2”, “ResNet3” and
“ResNet4” are used, and each of them is connected after the previous downsampling blocks.

ResNet consists of four layers of convolutions with the linear rectification function
(ReLU) and batch normalization (BN), where each layer has the structure as shown in the
lower right corner of Figure 1. It adopts the highway network architecture for introducing
an additional identity mapping transmission, which is performed by directly transmitting
each layer’s input to its subsequent layer’s outputs. ResNet keeps the integrity of infor-
mation to a certain extent, ensuring that the performance of the deep network is at least
the same as the performance of the shallow one, not worse. Moreover, it only requires
learning the difference between the input and output to speed up the learning process by
simplifying its objectives and difficulty.

Feature restoration: Upsampling is required to restore low-resolution features of the
downsampling branches, since the previous step yields features with four proportionally
decreased sizes. As represented with the yellow cuboid, upsampling is performed with
the deconvolution operation referred to as the transpose convolution (ConvTranspose),
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which is the reverse operation of convolution. In addition, features of different scales match
upsampling of different multiples. Finally, the concatenation layer is used to merge features
of these ConvTransposes.

2.2.2. Phase Contrast Radon Inversion Layer

The PCCT reconstruction is required since it can achieve mapping from the projection
sinogram domain to the image domain. However, conventional reconstruction algorithms
do not allow for the backpropagation of gradients, resulting in that only parameters of
the enhanced networt in the image domain are updated. The Radon inversion layer (RIL)
proposed by Lin [40], acting as an efficient and differentiable variant of FBP, allows for
the backpropagation of gradients. It is adopted in the absorption-based CT and obtains
excellent performance on reducing metal artifacts. Based on RIL, the PCRIL is derived in
this work, which consists of the phase contrast filter, the back-projection derivation and
the gradients of the backpropagation. The fan-beam back-projection is required since the
grating-based PCCT allows for the use of the laboratory source.

Hilbert Transform Filter: The phase contrast filter is performed with the Hilbert
transform in the PCCT reconstruction. It can provide a phase shift of 90◦ without affecting
the amplitude. Therefore, the Hilbert transform is equivalent to the quadrature phase shift
of the signal, making them quadrature pairs [41]. As presented in Equations (6) and (7),
the sinogram is filtered with the Hilbert transform filter, where H represents the filter,
ω represents the frequency, x represents the initial sinogram, X represents the filtered
sinogram, F and F−1 represent the discrete Fourier transform (DFT) and inverse discrete
Fourier transform (iDFT), respectively.

H(ω) = −i · sgn(ω) =

{
−i, ω ≥ 0
i, ω < 0

(6)

X = F−1[−i · sgn(ω) · F(x)] (7)

Back-projection Module: Back-projection is when the value of each pixel in the recon-
structed image is regarded as the sum of all projections passing through it.
Equations (8) and (9) present the back-projection process, where Y represents the re-
constructed image with a size of row × col, θ represents the rotation angle, D and D0,
respectively, represent the distance between the source and detector and that between the
source and object, o f f set represents the offset between the rotation center and the detector
center, i represents the sinogram index, and �� and �� represent the round up and round
down operators. Moreover, the computation can be highly parallel since the back-projection
at each view is independent.

Y =
∫ 2π

0
X(θ,

D0 ∗ (row · cos θ + col · sin θ)

D − row · sin θ + col · cos θ
+ o f f set)dθ

≈ Δθ ∑i X(θi,
D0 ∗ (row · cos θ + col · sin θ)

D − row · sin θ + col · cos θ
+ o f f set)

≈ Δθ ∑i(�ti� − ti)X(θi, �ti�) + (ti − �ti�)X(θi, �ti�)

(8)

ti =
D0 ∗ (row · cos θ + col · sin θ)

D − row · sin θ + col · cos θ
+ o f f set (9)
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Backpropagation gradients: While backpropagating, the gradients from the image
domain to the projection sinogram domain are presented as Equation (10), where the
symbols have the same representation as those of Equation (8).

∂Y
∂X

=

⎧⎪⎨⎪⎩
Δθ(�ti� − ti), t = �ti�
Δθ(ti − �ti�), t = �ti�
0, otherwide

(10)

2.2.3. The Enhanced Network in the Image Domain

The enhanced network in the image domain adopts an improved UNet. UNet is
a classic CNN that is particularly suitable for image processing tasks due to its special
symmetric downsampling and upsampling structure. In addition, skip connections are used
to connect the downsampling module and the symmetric upsampling module, allowing
UNet to simultaneously utilize features at different levels. As shown in Figure 1, the
enhanced network in the image domain is indicated with the smaller blue solid rectangle.
By cascading a ResNet, advanced feature extraction can be performed while reducing the
depth of the UNet.

Primary feature extraction: The primary features of the reconstructed images opti-
mized in the sinogram domain are extracted by a UNet. The architecture of the UNet refers
to [31].

Advanced feature extraction: Advanced features of the reconstructed images opti-
mized in the sinogram domain are extracted by a series of convolution layers. High-quality
reconstructed images are then generated as output. It consists of two convolutional layers
with a size of 3 × 3, a stride of 1 and a filter of 32, four residual blocks, one convolutional
layer with a size of 3 × 3, a stride of 1, and a filter of 32. The output is obtained by adding
the result to the primary feature. The enhanced network in the image domain aims to
eliminate artifacts while preserving the image structure as much as possible.

3. Experiments

3.1. Data Preparation
3.1.1. Simulation

The simulated datasets are generated by performing the differential fan-beam forward
projection operation to images in the head and neck CT image database of The Cancer
Imaging Archive (TCIA) [42,43], as shown in Figure 2. TCIA is a large-scale open-access
database that contains medical images of common tumors and the corresponding clinical
information, such as magnetic resonance imaging (MRI), positron emission computed
tomography (PET), and CT. While performing the differential forward projection operation,
the sampling step is set to 0.5, 2, 3, 4, and 6 with complete scanning of 360◦, corresponding
to 720, 180, 120, 90, and 60 views, respectively. Projection sinograms with 720 views are
considered as complete and others as sparse-view. The distance between the source and
detector and that between the source and object are set to 20,000 and 18,000 pixels. The
offset is set to 0.600 CT images from 30 patients, and a size of 368 × 368 pixels is used to
generate the simulated datasets, where 400 CT images are used to train the network and
200 CT images to test the network. Each patient provides 20 CT images.

Specifically, the differential forward projection as expressed in Equations (3) and (4) of
the mentioned sampling factors are performed on the phantoms, where complete projection
sinograms are used as the labels of the enhanced network in the projection sinogram
domain. The PCCT FBP reconstruction as expressed in Equations (1) and (2) is executed
on these sinograms to obtain the reconstructed images, where the images reconstructed
with complete projection sinograms are used as the labels of the enhanced network in the
image domain. Finally, the differential forward projection of 720 views is performed on
the degraded images reconstructed with sparse-view projection sinograms, and the results
are used as the input of the network. In addition, the projection sinograms used in this
network have a size of 720 × 368 pixels and the CT images 368 × 368 pixels.
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Figure 2. The data preparation process of the simulated datasets.

3.1.2. Experimental

The experimental datasets were generated by performing the fan-beam PCCT experi-
ments on the mouse paw, which was provided by Institute of High Energy Physics, Chinese
Academy of Sciences. The used mouse was kept in a pathogen-free environment and was
fed ad lib. The procedures for care and use of this mouse were conducted in accordance
with the “Guiding Principles in the Care and Use of Animals” [44] and were approved
by the Ethics Committee of the Institute of High Energy Physics, Chinese Academy of
Sciences. While scanning, 720 views were acquired within 360 degrees using the laboratory
fan-beam X-ray source to obtain complete projections. Four phase steppings occurred at
each sampling view. Then, sparse sampling was carried out on the complete projections to
obtain sparse-view projections with 180, 120, 90, and 60 views. The distances between the
source and detector and that between the source and object were 22,400 and 20,200 pixels.
The offset was four pixels. The acquired projection images had a size of 512 × 512 pixels,
and the corresponding sinograms and reconstructed images had sizes of 720 × 512 and
512 × 512 pixels, respectively. In the experiments, 600 tomographic images were obtained,
where the first 400 images from top to bottom were chosen for training and the remaining
200 images for testing.

3.2. Implementation

The proposed DDPC-Net was implemented by Python 3.5.2 and Tensorflow 1.8, and
the Adam [45] optimizer with a mini-batch size of 2 was applied to train this framework.
All the models were trained for 100 epochs on Nvidia GTX 1080Ti graphics processing
unit (GPU).

Equations (11)–(13) present the loss function of this framework containing the penalties
on the dual domains, where the subscripts 1 and 2 represent the projection sinogram domain
and the image domain, and α and α̂ represent the learning result and the ground truth. The
loss function in each domain is the same, composed of the weighted sum of the mean square
error (MSE) and the multi-scale structure similarity (MS-SSIM). MSE helps to reduce the
difference in pixel values, and MS-SSIM is closer to subjective quality evaluation methods.
The learning rate gradually decreased from 1 × 10−4 to 1 × 10−6 while training.

loss = loss1 + loss2 (11)
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loss1 = MSE(α1, α̂1) + 0.2 · (1 − MS_SSIM(α1, α̂1)) (12)

loss2 = MSE(α2, α̂2) + 0.2 · (1 − MS_SSIM(α2, α̂2)) (13)

3.3. Comparison Methods

Several existing DL-based CT approaches are used as comparisons for DDPC-Net,
including the denseness-deconvolution network (DD-Net) [37], the DLFBP framework [34],
and the hybrid domain neural network (HD-Net) [38], which respectively represent
the enhanced network in the projection sinogram domain, the image domain, and the
dual domains.

3.4. Image Evaluation

Image evaluation consisted of qualitative and quantitative evaluation. Qualitative
evaluation was achieved by observing the reconstructed images and the regions of inter-
est (ROI). The feature similarity (FSIM) and the information weighted SSIM (IW-SSIM)
were used for quantitative evaluation, which outperforms other evaluation methods on
accuracy [46].

In addition, the relative improvement ratios (rel I) for the above two evaluation indexes
are defined in Equation (14), where MFBP and M represent the image evaluation indexes of
the results from FBP and other methods.

rel I =
M − MFBP

MFBP
(14)

3.5. Efficiency

The efficiency of the used deep learning methods was evaluated based on the number
of parameters included in each framework and the runtime with the same epochs. The
number of parameters was calculated by adding one of each layer in the network, as
presented in Equation (16), where Nl p represents the number of parameters in each layer, Ni
represents the number of input feature images, No represents the number of output feature
images, and fh and fw respectively represent the height and width of the convolutional
filter. The runtime was obtained by subtracting the end time and start time.

Nlp = (Ni × fh × fw + 1)× No (15)

3.6. Results
3.6.1. Simulation

Figure 3 presents the results of the simulated testing datasets with 60 views. The ROI
is indicated with the dashed square, which is enlarged and shown for better visualization.
The image profiles along the blue line in Figure 3 are drawn and shown in Figure 4.

As expected, severe streak artifacts introduced by sparse-view sampling exist in FBP
reconstruction and much less in the results of other methods. However, for DD-Net, the
image is blurred, and some image structure still vanishes. For DLFBP, great unpredictable
artifacts exist, which affect the visual observation of the image structure. HD-Net and
DDPC-Net efficiently suppress artifacts and restore the vanished structure, while the result
of HD-NET is a little more blurred compared with DDPC-Net. As presented in Figure 4,
the intensity curves in the images from DLFBP and DDPC-Net are noticeably closer to the
ground truth, while the intensity curve of DLFBP is relatively more undulating. Table 1
lists the FSIM and IW-SSIM values of the images in Figure 3. DDPC-Net achieves at least
5% higher values in terms of FSIM and IW-SSIM, which support the conclusion of the
visual observation.
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Figure 3. The reconstructed images of one of the results of the simulated testing datasets. This
sinogram has 60 sampling views, and the reconstructed images were obtained by five methods.

Figure 4. The profiles along the blue solid line in Figure 3.

Table 1. The FSIM and IW-SSIM values of the images in Figure 3.

Evaluation FBP DD-Net DLFBP HD-Net DDPC-Net

FSIM 0.5632 0.8922 0.8780 0.9153 0.9652
IW-SSIM 0.5673 0.9278 0.8922 0.9300 0.9793

Table 2 lists the average FSIM and IW-SSIM values of the results of the mentioned five
methods. It can be observed that as the number of sampling views increases, the average
FSIM and IW-SSIM values increase, and the methods except for FBP obtain values higher
than 90%. In addition, DDPC-Net achieves slightly better values than the other methods.
The rel I of the average values of the average FSIM and IW-SSIM values are drawn in
Figure 5. The same conclusion can be drawn that DDPC-Net outperforms other methods.
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Moreover, Figure 5 shows that the image quality of the results decreases drastically with
the decrease in number of the sampling views. Table 3 lists the efficiency of the four
deep learning methods. As expected, the efficiency of the dual-domain reconstruction
frameworks is slightly lower than that of the single-domain reconstruction framework,
both in terms of the number of parameters and runtime. However, compared to HD-Net,
which trains enhancement networks in the projection sinogram domain and image domain
separately and cascades them, DDPC-Net is more efficient. This indicates that the proposed
method can balance image quality and efficiency.

Table 2. The average values of FSIM and IW-SSIM for the results of the simulated testing datasets.

Evaluation Methods
Cases

60 90 120 180

FSIM

FBP 0.5851 0.6387 0.6671 0.7495
DD-Net 0.9168 0.9234 0.9333 0.9475
DLFBP 0.9037 0.9139 0.9221 0.9432
HD-Net 0.9234 0.9357 0.9552 0.9604

DDPC-Net 0.9722 0.9772 0.9874 0.9884

IW-SSIM

FBP 0.5879 0.6831 0.7961 0.9074
DD-Net 0.9174 0.9254 0.9439 0.9589
DLFBP 0.8955 0.9109 0.9360 0.9528
HD-Net 0.9233 0.9318 0.9470 0.9616

DDPC-Net 0.9795 0.9876 0.9957 0.9978

Figure 5. The relI curves of the average values of FSIM and IW-SSIM of the simulated testing datasets.

Table 3. The efficiency of the used methods with simulated datasets.

Efficiency DD-Net DLFBP HD-Net DDPC-Net

Parameters (million) 1.06 1.36 4.14 3.28
Runtime (s) 0.17 0.21 0.47 0.41

3.6.2. Experimental

Figure 6 shows the results of the experimental testing datasets with 60 views. The
ROI is indicated with the dashed square, which is enlarged and shown to obtain better
visualization. The analysis of the experimental datasets was performed as the same as that
of the simulation datasets. The corresponding curves and index values are presented in
Figures 7 and 8 and Tables 4–6. The same conclusion can be drawn as that of the simulation
datasets. The images of DD-Net and HD-Net are blurred and lose some structure. There
are severe artifacts existing in the images of DLFBP. Furthermore, DDPC-Net outperforms
the comparison methods. In addition, the FSIM and IW-SSIM values of the experimental
datasets are significantly worse than those of the simulation datasets, since noise introduced
during the experiment degrades the experimental datasets.

396



Appl. Sci. 2023, 13, 6051

Figure 6. The reconstructed images of the results of the experimental testing datasets. This sinogram
has 60 sampling views, and the reconstructed images were obtained by five methods.

Figure 7. The profiles along the blue solid line in Figure 5.

Table 4. The FSIM and IW-SSIM values of the images in Figure 6.

Evaluation FBP DD-Net DLFBP HD-Net DDPC-Net

FSIM 0.7272 0.8957 0.8751 0.9026 0.9584
IW-SSIM 0.5957 0.8844 0.8750 0.9168 0.9690
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Table 5. The average values of FSIM and IW-SSIM of the results of the experimental testing datasets.

Evaluation Methods
Cases

60 90 120 180

FSIM

FBP 0.7279 0.7756 0.8172 0.8858
DD-Net 0.8922 0.8979 0.9006 0.9265
DLFBP 0.8707 0.8841 0.8901 0.9138
HD-Net 0.8959 0.9063 0.9145 0.9350

DDPC-Net 0.9453 0.9564 0.9642 0.9791

IW-SSIM

FBP 0.5812 0.7052 0.7994 0.8753
DD-Net 0.8758 0.8820 0.8988 0.9299
DLFBP 0.8626 0.8784 0.8917 0.9287
HD-Net 0.9047 0.9196 0.9294 0.9482

DDPC-Net 0.9574 0.9697 0.9779 0.9915

Figure 8. The relI curves of the average values of FSIM and IW-SSIM of the experimental test-
ing datasets.

Table 6. The efficiency of the used methods with experimental datasets.

Efficiency DD-Net DLFBP HD-Net DDPC-Net

Parameters (million) 1.46 2.04 5.91 4.48
Runtime (s) 0.22 0.29 0.61 0.52

4. Discussion

After the network architecture is determined, the loss function has a great effect on
the results. In this work, the weighted sums of MSE and MS-SSIM are adopted as the loss
function, as shown in Equation (16), where ω1 and ω2 represent the weight of MSE and
MS-SSIM. ω1 of 1 and ω2 of 0.2 are adopted in the experiments. To discuss the influence
of the weight values on the image quality and to validate that the best weight values
are adopted, the experiments are repeated with different ω1 and ω2. Considering the
experimental datasets as examples, the network is trained with several commonly used
loss functions (i.e., Loss1, Loss2, Loss3, Loss4, Loss5, and Loss6), as presented in Table 7.

loss = ω1MSE(α, α̂) + ω2(1 − MS_SSIM(α, α̂)) (16)

Table 7. The weight values of loss functions used in this work.

Weight Loss1 Loss2 Loss3 Loss4 Loss5 Loss6

ω1 1 1 1 1 1 0
ω2 0 0.1 0.2 0.5 1 1
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Figure 9 shows one of the results of the experimental testing datasets with 60 views,
and the ROI is indicated with a dashed square, which is enlarged and shown for better
visualization. It can be observed that Loss2 and Loss3 help to obtain high-quality results,
and the result with Loss3 has a relatively clearer structure. Table 8 lists the FSIM and
IW-SSIM values of the images in Figure 9. These values provide evidence that the network
trained with Loss3 outperforms those trained with other loss functions mentioned.

Figure 9. The reconstructed images of one of the results of the experimental testing datasets with
different loss functions. This sinogram has 60 sampling views, and the reconstructed images are
obtained by DDPC-Net with loss functions as presented in Table 7.

Table 8. The weight values of loss functions used in this work.

Evaluation Loss1 Loss2 Loss3 Loss4 Loss5 Loss6

FSIM 0.9301 0.9348 0.9509 0.9340 0.9339 0.9270
IW-SSIM 0.9531 0.9573 0.9676 0.9558 0.9535 0.9458

Table 9 lists the average FSIM and MS-SSIM values of the results with different
loss functions. Figure 10 presents the rel I of the average values of FSIM and IW-SIIM.
Furthermore, regarding the number of the sampling view, DDPC-Net with Loss3 enables
the best performance in imaging. It also indicates that the CNNs with a combination of
several losses may outperform that with a single loss of the applications in the field of CT.
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Table 9. The average values of FSIM and IW-SSIM of the results of the experimental testing datasets.

Evaluation Methods
Cases

60 90 120 180

FSIM

Loss1 0.9262 0.9359 0.9448 0.9662
Loss2 0.9300 0.9374 0.9520 0.9666
Loss3 0.9403 0.9514 0.9582 0.9741
Loss4 0.9293 0.9430 0.9522 0.9684
Loss5 0.9275 0.9427 0.9491 0.9642
Loss6 0.9207 0.9369 0.9462 0.9554

IW-SSIM

Loss1 0.9353 0.9492 0.9606 0.9789
Loss2 0.9402 0.9501 0.9662 0.9797
Loss3 0.9524 0.9647 0.9729 0.9866
Loss4 0.9400 0.9560 0.9667 0.9806
Loss5 0.9382 0.9561 0.9632 0.9796
Loss6 0.9295 0.9502 0.9615 0.9782

Figure 10. The relI curves of the average values of FSIM and IW-SSIM of the experimental testing
datasets with loss functions as presented in Table 7.

5. Conclusions

In this paper, we reported a DL reconstruction framework for PCCT with sparse-view
projections and validated it with experiments of the simulation datasets and experimental
datasets. The proposed framework consists of CNNs in dual domains and PCRIL as the
connection between them. PCRIL can achieve PCCT reconstruction, and it allows for the
backpropagation of gradients from the image domain to the projection sinogram domain.
Therefore, this framework enables the CNNs in dual domains to be trained simultaneously
for further reduction of artifacts and to restore the missing structure introduced by sparse-
view sampling. In addition, the differential forward projection of the image reconstructed
with the sparse-view projection sinogram is adopted as the input of the network, instead of
the interpolation of the sparse-view projection sinogram. It efficiently improves the image
quality of the images reconstructed with given sparse-view PCCT projections. This work
has the potential to push PCCT techniques to applications in the field of composite imaging
and biomedical imaging.
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Abstract: At present, the surface quality of Yuba skin is determined by sensory methods. In order to
realize the intelligent classification detection of Yuba skin quality, this study designed a system that
automatically determines the quality of Yuba skin surfaces based on image processing and support
vector machine (SVM) approaches. Specifically, the system uses image preprocessing to extract the
grayscale eigenvalues, gray level co-occurrence matrix (GLCM) eigenvalues, and gray level run
length matrix (GLRLM) eigenvalues of the sample image and uses them as input values for a quality
grading system. Through model evaluation of three classification models, the SVM classification
model was selected according to the evaluation results, and different kernel functions were used
in the model for sample training. Based on Matlab, the quality grading software of Yuba skin was
developed and designed. Intelligent detection and grading were realized through the radial basis
kernel function support vector machine (RBF-SVM) grading model. The best penalty factor (c = 3.50)
and kernel parameter value (g = 0.98) were obtained through cross-validation. The accuracy of the
model was 95.31% and 94.16% for the training and test sets, respectively. The grading accuracy of the
RBF-SVM grading system was 93.56%, and the error was less than 5% compared with the traditional
sensory method of grading; thus, the quality classification method based on the SVM classification
system for Yuba skin is feasible and can be used for quality detection.

Keywords: Yuba; multiple eigenvalues; RBF-SVM hierarchical model; quality detection

1. Introduction

Yuba skin, a common nonfermented soybean product, is a film formed on the surface
of boiled soybean milk maintained at a constant temperature [1,2]. Yuba skin has a fine
texture and contains protein, oil, carbohydrates, zinc, magnesium, iron, calcium, and
other nutrients; it is highly sought after because it is nutritious, tasty, and easy to digest
(digestibility rate: 93%). Many studies have evaluated the correlations between soybean
variety, slurry concentration during processing, heating temperature and method, and the
perceptible quality of Yuba skin [3]. Nonetheless, few studies have formulated automated
detection methods for judging Yuba skin quality [4]. Determinations of Yuba skin quality
are based on the color of undried Yuba skin. Thus, machine vision can be used to obtain
assessments of Yuba skin quality based on its color and shape [5]. The principal component
analysis for Yuka skin involves several factors and is conducted according to the “DB
52/519-2007 Yuba Quality Standard”. The results indicate that the surface color of Yuba
skin reflects its freshness and contributes the most to its surface quality.

In recent years, researchers have analyzed the acoustic properties [6,7], optical proper-
ties [8,9], and acoustic vibration [10,11] for nondestructive testing. With the development
of machine vision technology [12–15], extensive research has been con-ducted on sorting
operations for numerous agricultural products. Su et al. analyzed the appearance and
size characteristics of potatoes using a convolutional neural network. Non-destructive
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grading of potatoes was achieved [16]. Tian et al. analyzed the image features of apples
using the YOLOv3 model. Non-destructive grading of apples was achieved [17]. Liu et al.
analyzed the color characteristics of tomatoes with different ripeness using a color HSV
model. Nondestructive grading of tomatoes was achieved [18]. Kumar et al. analyzed
the color, shape, and texture features of tomatoes using an SVM model. Non-destructive
grading of tomatoes was achieved [19]. Olaniyi et al. analyzed the GLCM texture fea-
tures of bananas using a neural network model. Non-destructive grading of bananas
was achieved [20]. Huang et al. analyzed the image features of spinach samples using
a BPNN model with multisensory data fusion. Non-destructive grading of spinach was
achieved [21]. At present, the quality inspection of Yuba skin relies on human experience
to determine the color and texture characteristics of the Yuba skin surface through human
eyes, and then grade the Yuba skin, which is not accurate and cannot achieve intelligent
grading of the Yuba skin quality. Thus, machine vision holds promise as an objective and
nondestructive means for improving Yuba skin testing and accuracy, thereby adding value.

This study formulated an image processing method for automated Yuba skin quality
assessment. The Yuba image is captured at the terminal of the conjunctival trough, and the
image is preprocessed [22]. The average gray value is used to extract the eigenvalues of the
degree of darkness on the surface of the Yuba skin, and the grayscale run length matrix
(GLRLM) and the gray-level co-occurrence matrix (GLCM) are used to extract the surface
texture eigenvalues of the conjunctival terminal Yuba skin. Finally, the nine extracted
eigenvalue factors are used as the support vector machine (SVM) input values and Yuba
skin quality is output as a classification result [23,24]. Thus, the SVM quality classification
training model was established to detect the quality of the Yuba skin.

2. Materials and Methods

2.1. Sensory Classification Experiment Design

The test material was made from Heilongjiang Hairui No. 2 soybean. Through the
analysis of the bean curd quality questionnaire produced by different soybeans, it can
be seen that the quality of the bean curd skin produced from Heilongjiang Hairui No. 2
soybean meets the requirements of this test. The surface quality of Yuba skin has an
important influence on human appetite. According to the “DB 52/519-2007 Yuba Quality
Standard”, a principal component analysis was conducted on several influencing factors,
and the results showed that the surface color of Yuba skin had the highest contribution
to the surface quality of Yuba skin. The color of Yuba skin is a general term for color
and luster, which is a mixture of the color of light (light not absorbed and transmitted by
the food) reflected by the Yuba skin when it is illuminated by light. The color and luster
of the Yuba skin can reflect the freshness of the Yuba skin. For soybean products, the
formulation and the conjugation process of Yuba skin can affect the color of the surface. A
suitable processing process can make the Yuba skin neatly shaped, light yellow in color,
uniform and consistent in color, and fine in texture, without short strips and broken pieces.
The traditional method of judging the shade of the surface of the Yuba skin is to rely on
the human eyes to qualitatively discriminate, such as dark color, light color, etc., but the
qualitative analysis of similar colors is generally difficult to distinguish or the results of the
judgment will vary from person to person. Based on the national standard for the quality
of Yuba skin in this paper, a color sensory scale was developed to provide a judgment basis
for the subsequent sensory method, and color scoring was performed by six reviewers on
five groups of test samples through the sensory method.

2.1.1. Design of Scoring Criteria

The scores for each grade are shown in Table 1. The region of interest (ROI) selection
of the sample images was performed before the quality grading, and the sensory scoring
table of the Yuba skin was developed based on the criteria.
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Table 1. Criteria for sensory grading of Yuba skin.

Sensory
Level

Color
Color

Uniformity
Surface Texture

ROI Region
Extraction

9–10 (Master) Light yellow Uniform and
consistent

Fine texture and no
impurities

 

7–9 (Medium) Light yellow Basically
uniform

Short strips of broken
pieces without

obvious impurities  

0–7 (Inferior) Dark yellow or
deep red Large differences

Short strips of debris
and obvious
impurities

 

2.1.2. Sensory Method Grading Test

Five concentrations of bean slurry (6.5%, 7%, 7.5%, 8%, and 8.5%) were used to carry
out the Yuba skin production test. Each concentration of Yuba skin was collected at the
end of the production line, and a total of 5 groups of test samples were collected. The
collected Yuba skin was stored in a drying oven and labeled. In this evaluation experiment,
six evaluation experts were selected, aged 20–30, including three males and three females,
all of whom were in good health and had normal vision. Relevant evaluation training was
provided to the reviewers before the evaluation to ensure accurate evaluation results. The
test site was a room with normal light, and the six judges scored the color of the five groups
of test samples, and the subjective evaluation value of the color of the fermented soybean
peel was obtained; the results are shown in Table 2. As can be seen from Table 2, the surface
color scores of the five groups of Yuba skin samples at different concentrations ranged from
6.28 to 9.05, and the Yuba skin sample with the highest color score was group 5. When
the original image of the sample was visually inspected, the color change of the Yuba skin
sample corresponds to different slurry concentrations, which represents that an increase in
the pre-pulp concentration which can moderately deepen the Yuba skin color.

Table 2. Sensory evaluation from six experts.

Concentration
(%)

Sensory Score of The Luster
Average

Expert A Expert B Expert C Expert D Expert E Expert F

6.5 6.2 6.1 6.5 6.3 6.2 6.4 6.28
7 6.8 7.1 6.3 6.5 6.9 6.1 6.62

7.5 7.5 7.6 7.8 7.8 7.1 7.9 7.62
8 8.2 8.5 8.1 8.6 8.9 8.5 8.47

8.5 8.6 9.2 9.3 8.9 8.8 9.5 9.05

The process of sensory scoring at different concentrations is shown in Figure 1, and
the color score of the Yuba skin samples showed an increasing trend with the increase in
concentration. This is because, as the slurry concentration increases, the protein content
increases, and the color of the Yuba skin also deepens. However, when the concentration
increases to a certain value, with the evaporation of the water on the surface of the slurry,
the slurry is further concentrated, the protein content increases significantly, and the color
of the Yuba skin becomes light yellow and shiny, which improves the color score. It can
also be observed through the raw images that the compounds formed by the increased
concentration of the slurry cause a visible color change in the Yuba skin, and this color
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change in the Yuba skin samples can be considered as a suitable method to estimate the
surface color of the Yuba skin through image processing.

Figure 1. Sensory scoring processes at different concentrations.

2.2. RBF-SVM Intelligent Grading System Design

In the processing of the conjunctiva of Yuba skin, different grades of Yuba skin have
some differences in texture and morphology. Therefore, the texture features on the surface
of Yuba skin can be extracted to distinguish the surface image features of Yuba skin and
use them to design an intelligent grading system for Yuba skin.

2.2.1. System Solution Design

The specific process of the grading system is shown in Figure 2. Firstly, the ROI region
extraction and pre-processing are performed on the fermented skin images captured by
the industrial camera. The gray histogram distribution of sample images are analyzed
through MATLAB, and histogram equalization was carried out to reduce errors. The
grayscale eigenvalues, gray level co-occurrence matrix (GLCM) eigenvalues, and gray
level run length matrix (GLRLM) eigenvalues of the equalized image are extracted. The
gray characteristic value contains only one factor of the degree of darkness (DOD). GLCM
contains four factors of Angular Second Moment (ASM), Contrast (CON), Correlation
(COR), and Inverse Different Moment (IDM). GLRLM contains four factors of Short Run
Emphasis (SRE), Long Run Emphasis (LRE), Gray Level Different Uniformity (GLD), and
Run Length Different Uniformity (RLD). The SVM quality detection model was established
based on the data of the three groups of characteristic values, and the 9 factors with
different combination methods are detected by the model. To select the appropriate kernel
function, we used different kernel functions to test the quality detection model and conduct
a comparative analysis of the test results. Additionally, we determined the optimal quality
grading model by comparing and analyzing the evaluation results and grading accuracy
of 3 different grading models. After the design of the grading system was completed, a
quality grading test was carried out to verify the rationality of the grading system.

2.2.2. Image Pre-Processing and Feature Value Extraction

The initial acquisition of the terminal Yuba skin conjunctiva image is completed
by the image acquisition system, and then the target extraction of the region of interest
(ROI) in the original image is performed, and the unwanted information in the image is
eliminated by noise reduction pre-processing. Finally, the image is converted into a clear
black-and-white effect image, which in turn provides the necessary basis for the extraction
of multi-texture feature values in the next step. Through comparison, a Gaussian filter and
Sobel operator edge detection were finally selected to achieve noise reduction of the image,
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and a clear black-and-white effect map is obtained by segmentation of the Big Law method
in binarization. The results after pre-processing are shown in Figure 3.

 

Figure 2. Software design flow chart.

  

(a) (b) 

  
(c) (d) 

Figure 3. Image preprocessing. (a) Original image; (b) Gaussian filter graph; (c) Sobel edge detection;
(d) Big Law division.

The factors affecting the quality score of Yuba skin mainly include the processing
equipment and technological process. In the technological process, if the concentration of
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slurry increases, the protein content becomes higher, and the color of Yuba skin deepens
which the main reasons for the quality change. Therefore, we need to further explore
the average gray level to determine whether there is a certain correlation between the
value and the quality of Yuba skin. The quality scores of Yuba skin samples produced at
different concentrations were determined by the sensory method, and the average gray
value of the surface of Yuba skin samples at different concentrations was determined by
the image processing method. When the image is an 8-bit pixel image, the brightest pixel
has a value of 255 (white), the darkest pixel has a value of 0 (black), and the other pixels
have different grayscale intensity values between 0 and 255. According to this, the average
gray intensity value was normalized using Equation (1), and the obtained normalized
value was defined as the degree of darkness (DOD) of the Yuba skin. The three groups
of image processing results (prediction data) and sensory scoring results (experimental
data) were linearly fitted, as shown in Figure 4a. The data fitting results show that there
is a strong relationship between the average gray value and the quality of the Yuba skin.
Correlation (R2 of the three groups are 0.99453, 0.99247, 0.99077, respectively), therefore, of
the grayscale eigenvalues can be used as an alternative method for the quality score of the
Yuba skin.

Degree of Darkness =
255 − Mean Gray Value

255
(1)

  
(a) (b) 

Figure 4. Comparison of sensory scores with image processing data fitting and DOD values. (a) Sen-
sory scores fit to image processing data; (b) DOD numerical comparison.

Master, medium, and inferior Yuba skin sample images were randomly selected, with
50 for each grade. First, the gray histogram distribution of the Yuba skin sample image
was analyzed by MATLAB, the histogram equalization is carried out, and then the gray
characteristic value was extracted from the image after the equalization. The results shown
in Figure 4b show that the grayscale darkness value of the superior and medium Yuba
skins changed relatively smoothly, and their distribution were concentrated in the ranges
of 0.34–0.38 and 0.29–0.33, respectively. There is still quite a difference between these two
grades of Yuba skin and the dark degree value range of the inferior Yuba skin which was
mainly concentrated in the range of 0.22–0.31. Therefore, the average gray characteristic
value is suitable to be used as the quality classification standard for Yuba skin.

The greycomatrix function in MATLAB was used to generate the GLCM and calculate
the required parameters. A total of 150 samples were randomly selected at the terminal of
the yuba skin and conjunctiva. The GLCM was obtained by calling the “Gray-Comatrix”
function, and then GLCM characteristic values were extracted. The characteristic value
factors were calculated, including angular second moment (ASM), contrast (CON), Correla-
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tion (COR), and inverse different moment (IDM). According to the analysis of the GLCM
characteristic results, the GLCM characteristic values of the three different grades of Yuba
skin have obvious differences; therefore, the GLCM characteristic values are suitable for
the quality detection standard of Yuba skin. The GLCM eigenvalues are shown in Figure 5.

  
(a) (b) 

  
(c) (d) 

Figure 5. GLCM eigenvalue comparisons. (a) ASM numerical comparison; (b) CON numerical
comparison; (c) COR numerical comparison; (d) IDM numerical comparison. In the figure, black
represents inferior Yuba skin, red represents medium Yuba skin, green represents master Yuba skin.

The getGraylevelRumatrix function in MATLAB was used to obtain the GLRLM
and calculate the parameters to be collected. The same 150 Yuba skin samples were
selected, the images were subjected to grayscale processing and quantification, and the
GLRLM eigenvalues were extracted. The chosen parameter directions were 0◦ and 45◦. We
calculated the eigenvalues of the GLRLM, and the mean values of the data were collected
from the two angles. The GLRLM eigenvalues of SRE, LRE, GLD and, RLD were calculated.
Finally, the mean values of the data collected from the two angles were calculated. The
comparative analysis of the GLRLM eigenvalue parameters indicated notable differences in
the eigenvalues of SRE, GLD, LRE, and RLD among the three different grades of Yuba skin.
Our results suggest that the mean value of GLRLM eigenvalue is suitable as a classification
standard for Yuba skin quality. The GLRLM eigenvalue results are shown in Figure 6.
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(a) (b) 

 
(c) (d) 

Figure 6. GLRLM eigenvalue comparisons. (a) SRE numerical comparison; (b) GLD numerical
comparison; (c) LRE numerical comparison; (d) RLD numerical comparison. In the figure, blue
represents inferior Yuba skin, green represents medium Yuba skin, red represents master Yuba skin.

2.2.3. RBF-SVM Hierarchical Model Construction

SVM is a binary classification model that uses a linear classifier and determines the
largest interval defined on the feature space [25]. This largest interval function distinguishes
it from a perceptron. SVM contains different kernel functions, which can effectively solve
linear or nonlinear classification and prediction problems. We set the Yuba skin quality
classification training sample to the following:

D = {(xi, yi), i = 1, 2, · · · , l}xi ∈ Rd (2)

The following is the hyperplane equation of the SVM classifier:

ωxi + b = 0 (3)

where:

xi—Training vectors;
ω—normal vector;
b—Offset of the hyperplane.

Because the quality of Yuba is indicated by one of three grades, a three-classifier
module was used. When the system automatically carries out the quality classification
test of Yuba skin, it first loads the sample set for treatment classification, and obtains
the optimal value of the penalty factor c and kernel parameter g using the characteristic
parameters of the sample set. The training and learning module in the system carries
out repeated training and learning through the treatment of the test sample set, and can
finally automatically form a quality grade classifier model. The test module in the system
carries out grade classification through the treatment of the test sample set. When the
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kernel function of the classification model is the radial basis function kernel (RBF) or
the polynomial kernel function, the features of GLCM and GLRLM perform better than
those of other kernel functions. Overall, when the kernel function of the classification
model was the RBF radial basis kernel function, the model was the most accurate on the
training and testing sets than when the other kernel functions were used. When the feature
category was TOTAL, the accuracy rates for the model on the training and testing sets were
95.31% and 94.16%, respectively, and the optimal parameters of the model were c = 3.50 and
g = 0.98. Additionally, the robustness of the SVM classification model was the best under
these conditions.

2.2.4. Establishment and Analysis of Three Classification Model Evaluation Criteria

To verify the performance of the RBF-SVM algorithm proposed in this paper, two
classification algorithms, the GBDT algorithm and BP neural network (Back Propagation),
were used to compare with the RBF-SVM algorithm. The maximum error (Max error),
mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square
error (RMSE), and coefficient of determination (R2) of the model were calculated. The
maximum error describes the extreme case of the prediction result, and the mean absolute
error and the average absolute percentage error are based on the absolute error, which can
be used together to describe the model’s prediction of the limit value, and the root mean
square error and coefficient of determination describe the overall regression of the model.
The results of the evaluation indicators are shown in Table 3.

MAE(y, ŷ) =
1
n

n

∑
i=1

|yi − ŷi| (4)

MAPE(y, ŷ) =
1
n

n

∑
i=1

|yi − ŷi|
ŷi

(5)

RMSE(y, ŷ) =

√
1
n
(yi − ŷi)

2 (6)

R2(y, ŷ) = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (7)

Table 3. Comparison of three models’ regression evaluation index data.

SVM BPNN GBDT

Max error 7.69% 19.3% 9.68%
MAE 0.38 0.72 0.42

MAPE 5.38% 10.35% 6.04%
RMSE 0.392 0.82 0.43

R2 0.9846 0.9528 0.9786

The comparison diagram and absolute percentage absolute errors of the prediction
results of the SVM, BPNN, and GBDT quality prediction models are shown in Figure 7.
The bias of the BPNN prediction was large, all its regression indicators were the worst, and
its comprehensive prediction accuracy was the lowest. The prediction deviations of GBDT
and SVM were similar, and the average absolute error and average absolute percentage
error indicators were also relatively close; however, the maximum error, root mean square
error, and coefficient of determination index were different, with the GBDT model having
extreme errors. The subjective evaluation results of humans are linear, and the use of
non-sexual models can cause bias during the training process of the sample, resulting in a
decrease in the stability of the accuracy of the prediction results.
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(a) (b) 

Figure 7. Comparison of prediction results and absolute percentage errors of three models. (a) Model
prediction comparison; (b) comparison of model prediction errors.

3. Results and Analysis

3.1. Quality Grading Software Interface

SVM-based software for grading the quality of Yuba skin was developed using a
graphical user interface library in MATLAB. The grading software interface consisted of a
preprocessing image module, feature value extraction module, and quality result module
(which has a final kernel function). The software preprocesses and displays the image of
the Yuba skin to be evaluated. The corresponding eigenvalue in the feature value extraction
module is then calculated, and the user clicks the RBF-SVM grading button in the final
quality result module to display the corresponding quality grading results. The software
interface is presented in Figure 8.

 

Figure 8. Yuba quality grading software interface.

3.2. RBF-SVM Intelligent Grading Test Analysis

The software was run on a test platform (Figure 9). The platform positions the charge-
coupled device (CCD) industrial camera to a position where the best pictures can be taken,
and the light emissivity controller is used to set the brightness of the light source. When a
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stable brightness is reached, the image is captured, and the photos are uploaded to the host
computer through a USB connection. After opening the Yuba skin quality classification
software, the Yuba skin images that need to be classified are automatically selected by
clicking the image selection button, and the images are preprocessed and displayed. Then,
in the feature value extraction module, the corresponding feature values are displayed in
the software by clicking the corresponding button. Finally, the corresponding results of the
quality classification can be attained by clicking the RBF-SVM classification button in the
final quality result module.

Figure 9. Quality grading system test platform. (1) CCD; (2) Z stage; (3) LCD; (4) LED light source;
(5) plane light source; (6) Yuba skin; (7) portable computer.

The collected multi-eigenvalue factors were input into the pre-established SVM grad-
ing model as input values, and the SVM grading models with different kernel functions
were used to determine Yuba skin quality. Different grading results were obtained with
different sum function models, and the specific grading test results are shown in Table 4.

Table 4. Test results of different SVM kernel functions.

Eigenvalue Combination Method

SVM Kernel Function

LKF Linear
Kernel

PKF Polynomial
Kernel

RBF Radial
Basis Core

ASM 62.36% 67.62% 68.89%
CON 68.38% 72.06% 70.32%
COR 72.55% 74.65% 60.24%
IDM 78.54% 75.36% 67.75%
SRE 64.32% 73.68% 75.66%
LRE 73.59% 79.69% 69.98%
GLD 69.72% 82.69% 70.63%
RLD 72.28% 81.63% 72.39%
DOD 83.57% 82.77% 74.68%

ASM+CON 77.68% 83.64% 79.68%
ASM+CON+COR 82.32% 84.66% 85.55%

ASM+CON+COR+IDM 83.54% 85.78% 87.07%
ASM+CON+COR+IDM+SRE 84.36% 86.69% 88.46%

ASM+CON+COR+IDM+SRE+LRE 86.65% 87.68% 89.97%
ASM+CON+COR+IDM+SRE+LRE+GLD 86.64% 88.55% 90.54%

ASM+CON+COR+IDM+SRE+LRE+GLD+RLD 87.32% 88.87% 91.35%
ASM+CON+COR+IDM+SRE+LRE+GLD+RLD+DOD 88.87% 89.75% 93.56%
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The test results indicate that the SVM grading system’s accuracy increased gradually with
longer combinations of eigenvalues. The RBF radial basis kernel function had a 93.56% accuracy
rate for the eigenvalue combination of ASM+CON+COR+IDM+SRE+LRE+GLD+RLD+DOD.
Despite this promising result, further improvements can be made, possibly with a larger or
more varied image dataset for training.

3.3. Sensory Method and RBF-SVM Grading Systematic Error Analysis

Two methods were used to score the Yuba skins with different concentrations, and
10 groups of Yuba skin samples were produced using the same concentration, and the
scoring results were shown in Figure 10. Both methods showed that, in the concentration
range of 6.5% to 8.5%, the score of the Yuba skin gradually increased with the increase
in concentration. Moreover, the average score difference obtained by the two methods
was small, which verifies that the results of the RBF-SVM grading system are in good
agreement with the results of the actual sensory method. The average score data of each
concentration using the two methods were calculated and analyzed, and the relative error
results of the actual sensory method score value and the RBF-SVM grading system score
value are shown in Figure 11. As shown in Figure 11, the relative error of the two methods
reached a maximum of 3.31% when the concentration was 8.0%, and the minimum error
of the two methods was 0.06% when the concentration was 7.0%. The relative error of the
different concentration test groups was within 5%, and the test results were in line with
expectations, which further proves the applicability of the RBF-SVM grading system in the
quality detection of Yuba skin.

 

(a) (b) 

Figure 10. Comparison of sensory method and RBF-SVM grading system scores. (a) Sensory method
scores; (b) RBF-SVM grading system scores.
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Figure 11. Average score relative errors of sensory method and RBF-SVM grading system.

4. Discussion

In this study, an RBF-SVM classification system was designed based on image pro-
cessing. The initial image is preprocessed, and then the required eigenvalues are extracted.
Finally, the data of each eigenvalue are processed, and the quality grade of Yuba skin is
obtained by RBF-SVM classification recognition system. However, only 150 sample images
were collected for training in the establishment of the RBF-SVM model. On this basis,
the number of sample images can be further increased to improve the accuracy of the
RBF-SVM model.

At present, there are few studies in the field of quality classification of Yuba skin. In
this paper, industrial cameras were used to shoot images of bean curd skin. In the actual
test process, the accuracy of the characteristic values extracted from Yuba skin images
may be affected due to changes in lighting conditions, thus affecting the accuracy of the
classification. Therefore, in future research, we can carry out detailed research on image
feature extraction of Yuba skin and design a classification system with a higher accuracy.

5. Conclusions

Our study collected 150 sample images to train and construct an SVM hierarchical
model that evaluates Yuba skin quality. Different kernel functions were used in the model
for sample training. The best penalty factor (c = 3.50) and kernel parameter value (g = 0.98)
were obtained through cross-validation. The accuracy of the model was 95.31% and 94.16%
for the training and test sets, respectively.

In this study, a quality grading software of Yuba skin based on the SVM model was
designed. By preprocessing the initial image, then extracting the required eigenvalues, and
finally processing the data of each eigenvalue, the quality of Yuba skin can be obtained
through the SVM classification and recognition system. In terms of quality level, the
accuracy rate reached 93.56%.

The traditional sensory method and RBF-SVM grading system were used to grade
samples of Yuba skin made from different concentrations of bean curd slurry. The results
show that the sensory method has good consistency with the results of the RBF-SVM
grading system, and the detection error of the RBF-SVM grading system was less than 5%,
which can meet the needs of automated production of Yuba skin.
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Abstract: Large-span spatial lattice structures generally have characteristics such as incomplete
modal information, high modal density, and high degrees of freedom. To address the problem of
misjudgment in the damage detection of large-span spatial structures caused by these characteristics,
this paper proposed a damage identification method based on time series models. Firstly, the order
of the autoregressive moving average (ARMA) model was selected based on the Akaike information
criterion (AIC). Then, the long autoregressive method was used to estimate the parameters of the
ARMA model and extract the residual sequence of the autocorrelation part of the model. Furthermore,
principal component analysis (PCA) was introduced to reduce the dimensionality of the model while
retaining the characteristic values. Finally, the Mahalanobis distance (MD) was used to construct the
damage sensitive feature (DSF). The dome of Taiyuan Botanical Garden in China is one of the largest
non-triangular timber lattice shells worldwide. Relying on the structural health monitoring (SHM)
project of this structure, this paper verified the effectiveness of the damage identification model
through numerical simulation and determined the damage degree of the dome structure through
SHM measurement data. The results demonstrated that the proposed damage identification method
can effectively identify the damage of large-span timber lattice structures, locate the damage position,
and estimate the degree of damage. The constructed DSF had relatively strong robustness to small
damage and environmental noise and has practical application value for SHM in engineering.

Keywords: damage identification; damage sensitive feature; spatial lattice structure; structural health monitoring;
timber structure; time series model

1. Introduction

During long-term service, structures may suffer damage due to material aging, cor-
rosion, prolonged loading, and natural disasters such as fire and earthquakes [1]. For
major engineering structures, such as large-span bridges, high-rise buildings, large-span
spatial lattice structures, large-scale water conservancy structures, and large-scale offshore
platforms, failure can cause significant economic damage and human casualties. Therefore,
SHM is of great significance in civil engineering and related fields [2].

Damage identification and localization are crucial processes in SHM since damage
alters the stiffness, mass, or damping of structures. Consequently, stiffness reduction caused
by cracking or loosening of connections will lead to changes in structural vibration modes,
resulting in alterations in its dynamic response [3,4]. However, obtaining complete and
accurate high-order modal information through theoretical analysis for actual structures,
particularly for large-span spatial structures with numerous degrees of freedom, is chal-
lenging due to the complex vibration data involved. In addition, in practical engineering, it
is almost impossible to obtain input and output signals by artificially exciting the structure
and accurately identifying the structural modal information.
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The damage identification method based on time series does not involve modal pa-
rameter identification. This method is based on statistical theory and can represent a large
amount of effective information contained in structural response data with fewer parame-
ters. By identifying the change pattern of the system through the interrelationships within
the data, the changes in the model parameters can be used as the basis for detecting the
existence and location of damage [5]. The time series model is sensitive to the identification
of small structural damage, with strong noise reduction ability and operability, and has
great potential in theoretical research and engineering applications. In recent years, it has
received widespread attention and development from scholars [6,7].

The ARMA model, as an important component of time domain methods, is often used
to fit regression structures to acceleration response data and extract DSF from it. Zuo and
Guo [8] proposed a nonlinear damage identification method based on the autoregressive
(AR) model and Kullback–Leibler distance, which has high sensitivity to minor damage.
Razavi et al. [4]. suggested a damage feature identification method based on ARMA model
and residual sample power spectral density, introducing Jeffrey distance and Smith distance
for damage localization, and verifying the effectiveness of the damage identification model
through vibration response experiments. Zhu et al. [9] studied the correlation between AR
coefficients and structural stiffness reduction, proposing a method to identify structural
damage using underdetermined equations established by AR coefficients, and solving
underdetermined equations using the sparse regularization method. The effectiveness of
the method was verified through experiments. Chen et al. [10] proposed a method for
identifying structural nonlinear damage based on ARMA model and vector space cosine
similarity (VSCS), and verified the feasibility of the method through experimental studies,
solving the nonlinear problems that traditional methods cannot effectively handle caused
by structural damage. Zeng et al. [11] advanced a time series model based on fuzzy c-means
clustering algorithm, characterizing the degree of structural damage by the change of model
coefficients, and verifying the feasibility and accuracy of the method through experimental
and numerical studies. The method has low computational cost and is suitable for real-time
monitoring of civil engineering. Diao et al. [12] combined the AR model with cointegration
in econometrics to cointegrate variables at different nodes of the offshore platform. The
method employs cointegration residuals as damage indicators and utilizes X-bar control
charts for structural damage identification. The effectiveness of this approach was validated
through both numerical simulation and experimental studies. Hu et al. [13] discussed a
nonlinear ARMA(n,m) time series structural damage assessment method based on residual
algorithm, proposing that higher-order models are more sensitive to disguised outliers,
and verifying the method through dynamic monitoring tests. Liu et al. [7] explored the
implementation method of damage feature extraction and damage warning for structures
based on the ARMA model, and verified the significant changes of DSF index before and
after damage through a t-test.

After obtaining the DSF, structural damage identification is reduced to a pattern
recognition problem. Machine learning, as the main method of pattern recognition, in-
cludes Gaussian processes, support vector machines, neural networks, etc. Tang et al. [14]
presented a damage identification method based on the AR model and Gaussian pro-
cess, introducing parameters that characterize damage location and state information,
and achieving a probability output of multi-damage localization and damage severity.
Sui et al. [15] obtained the feature vector by arranging the damage indicators obtained
by the AR model in order, and inputting it into the support vector machine optimized
by a Bayesian algorithm for structural damage identification. The effectiveness of the
method in identifying structural damage location was verified through experiments.
Xu et al. [16] proposed a damage identification method based on the AR model and a
BP neural network for lattice shell structures, which does not require modal parameter
identification and excitation information, avoids the dependence of damage identification
results on the accuracy of structural finite element (FE) models, and has high damage
identification accuracy.
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This article introduced PCA on the basis of existing research to extract features from
the residual sequence. The advantage of incorporating PCA lies in its ability to reduce the
dimensionality of the data while retaining the most informative features [17]. This not only
simplifies the subsequent analysis but also helps to identify the most significant damage
indicators. In addition, the MD was used in constructing DSF because it takes into account
the differences and correlations in the variability of each observed variable. In addition, it
can effectively eliminate the influence of scale on different measurement values.

Furthermore, existing studies were limited to theoretical research and simple experi-
mental verification, lacking engineering applications and practices for large and complex
structures. Based on the SHM project for a timber lattice shell dome in Taiyuan Botanical
Garden, this paper proposes a damage identification method based on time series analysis.
The effectiveness of the damage identification model was verified using numerical simula-
tion, and the degree of damage to the lattice shell structure was identified using measured
data from SHM. This paper combined theoretical research with engineering applications to
verify the effectiveness and feasibility of applying the time-series-analysis-based damage
identification method for practical engineering.

2. Research Background

This study took the timber lattice shell of Taiyuan Botanical Garden as the research
background, which is located in Taiyuan, Shanxi, China. It is one of the largest non-
triangular timber lattice structures worldwide. It was designed by Delugan Meissl As-
sociated Architects (DMMA) from Austria and is now a landmark building in Taiyuan.
The dome, from above, is shaped like a shell and glazed with double-curved panes of
glass. The span of the dome is 89.5 m, with a span-to-height ratio of 3.0 and a projected
area of approximately 6000 m2. The dome consists of double-curved laminated timber
beams, which are arranged in two or three intersecting layers. The beams in the intersection
joint area are connected by steel pins and self-tapping screws. The splicing connection
of the beam adopts the half-lap joint form and is connected by self-tapping screws. To
improve the overall rigidity of the structure, a bidirectional prestressed steel cable net was
installed inside it, arranged diagonally to the timber beams. The steel support of the dome
is connected to the timber beam using anti-shear steel plates and self-tapping screws and
connected to the concrete foundation using chemical anchor bolts. The appearance and
structural details of the dome are shown in Figure 1. For more details of the dome, please
refer to reference [18].

  

(a) (b) 

Figure 1. Cont.
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(c) (d) 

Figure 1. Timber lattice shell dome of Taiyuan Botanical Garden. (a) Appearance; (b) joint and its
spatial relationship; (c) bidirectional cross steel cable; (d) root support.

3. Methodology

This section provides an overview of the fundamental principles of utilizing the ARMA
model for time series analysis. It also elucidates the techniques for determining the order
and estimating the parameters of the ARMA model using AIC and LAR. Furthermore,
this section offers a theoretical exposition of the principal component analysis method
introduced and defines a DSF construction method based on MD.

3.1. Time Series Analysis Modeling

Time series analysis is a statistical method for dynamic data processing, which is based
on the theory of stochastic processes and mathematical statistics. It uses parameter models
to process ordered random sampling data and studies the statistical laws followed by data
sequences, in order to perform system identification [19,20]. Any structure can be regarded
as a mechanical system composed of stiffness, mass, and damping matrices, which can
be described by a motion differential equation and can be transformed into a difference
equation in the discrete time domain. This difference equation has the same expression
form as the time series model. Therefore, the equivalent relationship between the time
series model and the structural motion differential equation can be used to determine the
state of the structure and perform damage identification of the system.

3.1.1. Basic Theory of ARMA Model

The ARMA model is a statistical model commonly used in time series analysis. It takes
past observations of the time series as independent variables and current observations as
the dependent variables to describe the randomness and autocorrelation of the time series
data. The ARMA model consists of two parts: the AR model and the moving average (MA)
model, and has the characteristics of both models. The AR or MA model is a special case
of the ARMA model, so the ARMA model is more general for system response and is the
most commonly used model in time series analysis.

For a multi-degree-of-freedom system, its vibration differential equation is:

M
..
x(t) + C

.
x(t) + Kx(t) = F(t), (1)

where M, C, and K represent the mass matrix, damping matrix, and stiffness matrix of the
structure, respectively.

..
x(t),

.
x(t), and x(t) represent the acceleration vector, velocity vector,

and displacement vector of the structure, respectively. F(t) is the excitation force applied
to the system.
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Equation (1) is equivalent to a 2n-order non-homogeneous differential equation system.
Under the action of a single excitation f (t), the vibration differential equation is expressed
as follows:

ϕ2nx(2n) + ϕ2n−1x(2n−1) + · · ·+ ϕ1
.
x + ϕ0x

= θ2n−2 f (2n−2)
t + θ2n−1 f (2n−1)

t + · · ·+ θ1
.
ft + θ0 ft

(2)

Discretizing Equation (2) and using a white noise sequence at ∼ ND
(
0, σ2

a ) as the system
input yields a single degree of freedom ARMA (p,q) model [21]:

xt −
p

∑
i=1

ϕixt−i = θ0at −
q

∑
j=1

θjat−j (3)

In the equation, ϕi represents the i-th order AR coefficient, θj represents the j-th order MA
coefficient, and p and q are the AR and MA orders, respectively. By introducing a backward
shift operator B, defined as Bkxt = xt−k [5], Equation (3) can be transformed into:

xt =
1 − ∑

q
j=1 θjBj

1 − ∑
p
i=1 ϕiBi

at =
θ(B)
ϕ(B)

at (4)

According to Equation (4), the ARMA model describes a system with a transfer
function of θ(B)/ϕ(B), where ϕ(B) represents the inherent characteristics of the system
and θ(B) represents the relationship between the system and the external environment. As
the input signals of large civil engineering structures are often difficult to test or measure,
the performance and behavior of the structure can only be inferred through the analysis
of output signals. The ARMA model can be established by analyzing the output signal of
the structure, without considering the specific information of the input signals, and only
using the white noise sequence {at} as input to establish an analysis model. This makes
the ARMA model increasingly widely used in the field of civil engineering. In the analysis
of time series models, the AR, MA, and ARMA models have their own characteristics,
which can be used to preliminarily determine the appropriate time series model. The
characteristics of the models are shown in Table 1.

Table 1. Basic characteristics of time series models.

Model Type Autocorrelation Function (ACF) Partial Autocorrelation Function (PACF)

AR Tailing Truncation
MA Truncation Tailing

ARMA Tailing Tailing

3.1.2. Determination of ARMA Order

When applying the ARMA model for time series analysis, it is necessary to determine
the order of the ARMA model, and the quality of the order setting has a significant impact
on the parameter identification results. If the order is too high, the model will be too
complex, resulting in overfitting and unnecessary calculations; if the order is too low, the
model will be too simple to capture important features of the time series, leading to poor
model fitting. Currently, one of the mostly used methods for determining the order of the
ARMA model is AIC [22]. The function of AIC is defined as follows:

AIC(p + q) = ln
(

σ2
a

)
+ 2(p + q)/N (5)

In Equation (5), N represents the length of the time series xt, σ2
a represents the variance

of the ARMA model residuals, and p and q represent the AR and MA order, respectively.
As the sum of model orders (p + q) increases, ln

(
σ2

a
)

will decrease and 2(p + q)/N will
increase. Therefore, under the given parameter estimation method, the order with the
minimum AIC(p + q) value should be chosen.
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3.1.3. Estimation of ARMA Parameter

This article used the long autoregressive (LAR) method to estimate the parameters
of the ARMA model. Compared with other methods for parameter estimation, the LAR
method can transform nonlinear regression problems into linear regression problems,
which can simplify the calculation process and improve efficiency. According to the theory
of LAR method, the ARMA model and the AR model are equivalent mathematical models.
Therefore, the parameters of the AR model can be estimated first, and then the parameters
of the ARMA model can be estimated based on the relationship of the transfer functions.
The equivalent relationship between the transfer functions of AR and ARMA models is
as follows:

1
1 − ∑

p
i=1 IiBi

=
1 − ∑m

j=1 θjBj

1 − ∑n
k=1 ϕiBk (6)

In Equation (6), the left side represents the transfer function of an AR(p) model, and the
inverse function Ii is equal to the parameter ϕi of the AR model. The right side represents
the transfer function of an ARMA(n,m) model. By moving the same power coefficients of
the shift operator B in Equation (6), it can be deduced that

ϕ1 = θ1 + I1
ϕ2 = θ2 − θ1 I1 + I2
. . . . . .
ϕn = θm In−m − . . . − θ2 In−2 − θ1 In−1 + In
0 = θm Ik−m − . . . − θ2 Ik−2 − θ1 Ik−1 + Ik

(7)

According to Equation (7), the solution for ϕi(i = 1, 2, . . . , n) can be obtained as follows:⎡⎢⎢⎢⎢⎢⎣
ϕ1
ϕ2
ϕ3
...

ϕn

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
θ1
θ2
θ3
...

θn

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
1 0 0 . . . 0

−θ1 1 0 . . . 0
−θ2 −θ1 1 . . . 0

...
...

...
. . .

...
−θn−1 −θ1 −θ1 . . . 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
I1
I2
I3
...
In

⎤⎥⎥⎥⎥⎥⎦
(
when j > 0, θj = 0

)
(8)

For the last term in Equation (7), let k = n + 1, n + 2, . . . , n + m, where n + m = p. Then,
Ii(i = n + 1, n + 2, . . . , n + m) can be expressed as⎡⎢⎢⎢⎢⎢⎣

In+1
In+2
In+3

...
In+m

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
In In−1 In−2 . . . In+1−m

In+1 In In−1 . . . In+2−m
In+2 In+1 In . . . In+3−m

...
...

...
. . .

...
In+m−1 In+m−2 In+m−3 . . . In

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
θ1
θ2
θ3
...

θn

⎤⎥⎥⎥⎥⎥⎦ (9)

Both Equations (8) and (9) are linear equation sets about θj, so θj can be solved first according
to Equation (9), and then ϕi can be solved according to Equation (8).

Based on the theoretical research of Ljung [23], this paper adopted the order scheme
of p = 2m, q = 2m − 1 to establish the ARMA model of a multi-degree-of-freedom system,
which is also a widely used model scheme in engineering [24].

3.1.4. Principal Component Analysis

There is a large amount of environmental noise in the on-site measurement data of
a structure, which greatly reduces the efficiency and reliability of damage monitoring.
Therefore, it is necessary to conduct feature analysis on the data to remove the noise
influence and amplify the impact of structural damage on data changes. In this paper,
PCA was adopted for feature extraction, which can filter out noise and redundancy in the
original high-dimensional feature space data and transform it into interpretable data in a
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low-dimensional feature space. It can eliminate confusing data while preserving the main
information [25].

For a dataset X ∈ Rn×p with p variables and n samples,

X =

⎡⎢⎢⎢⎣
x11 x12 . . . x1p
x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp

⎤⎥⎥⎥⎦ =
[
X1 X2 . . . Xp

]
(10)

the i-th principal component of X can be represented as

Yi = u1iX1 + u2iX2 + · · ·+ upiXp
(i = 1, 2, · · · , p)

(11)

where upi represents the characteristic vector. After standardizing the original data ma-
trix X, the resulting matrix X* has a covariance matrix S that is equal to the correlation
coefficient matrix:

S =
1

n − 1
X∗X∗T (12)

The eigenvalues of the covariance matrix of X* are denoted by λ1, λ2, . . . , λp, and
λ1 ≥ λ2 ≥ . . . ≥ λp > 0. The number of principal components n is determined by
the variance accumulative contribution rate (ACR) ∑n

i=1 λi/∑
p
i=1 λi. If the ACR of the first n

principal components is not less than 85%, it indicates that the first n principal components
have incorporated most of the original data information [26].

3.2. Damage Sensitive Feature

DSF refers to the characteristic or indicators used to identify and locate potential
structural damage, which can reflect the internal state changes of the structure or system. It
requires the establishment of an ARMA model to analyze the signal, and the parameters
of the model include the inherent characteristics of the system. By extracting the carrier
containing structural features, it can be determined whether the structure is damaged.
Because the AR coefficients reflect the dynamic characteristics of the system, they can be
used to construct the DSF.

3.2.1. Mahalanobis Distance

The principle of the structural damage detection method based on statistical pattern
recognition is to compare two sets of model parameters, one set is the model feature
parameters of the structure in the healthy state, and the other set is the feature parameters
in the unknown (to be identified) state. In the damage identification method based on
the ARMA model, the MD is usually used to determine the distance between the sample
data and the reference data after feature extraction, and then evaluate the health status of
the structure. MD calculates the distance between two multivariate sets by considering
the correlation between them, which is an effective method for computing the similarity
between two unknown-state sample sets. The expression of the MD between the sample
set z and the population G is:

dM(z, G) =
[(

z − vG)
T ∑−1

(z − vG)
] 1

2 (13)

where vG represents the mean vector of G, and Σ represents the covariance matrix of G.

425



Sensors 2023, 23, 6710

3.2.2. Construction of DSF

ARMA models were established for the unknown-state sample set, reference sample
set, and training sample set. The DSF was constructed by measuring the differences
between the data parameters of the ARMA model under the unknown state and the healthy
state. The formula is as follows:

DSF(u, r) =
d2

M(u, T)
d2

M(r, T)
(14)

where u represents the unknown-state sample set, r represents the reference sample set of
the healthy state, and T represents the training sample set of the healthy state. A DSF value
close to 1 indicates that the structure is in a healthy state, while a DSF value greater than 1
indicates damage. Moreover, the severity of the damage is positively correlated with the
magnitude of the DSF.

4. Results and Discussions

This section provides an explanation and discussion of the damage identification
results using the FE models and SHM measured data. Firstly, a concise introduction is pro-
vided for the FE model, which includes the setup of five simulated DCs. The establishment
of a time series model and the detailed results of damage identification are then elaborated.
Finally, the obtained results are thoroughly explained and discussed. Furthermore, this
section is based on two years of SHM data collected from the timber lattice shell dome of
Taiyuan Botanical Garden. The proposed damage identification method from this article is
applied to identify the damage in the dome, and the identification results are subsequently
analyzed and discussed.

4.1. Damage Identification Based on Numerical Models

Structural damage in practical engineering exhibits characteristics such as random-
ness and finiteness, making it difficult to determine the effectiveness and availability of
time series models through measured data. However, FE methods can be used to simu-
late the health and damage status of the structure, in order to establish and validate the
ARMA model.

To verify the feasibility and applicability of the ARMA model for large-span timber
lattice structures, this paper used Midas Gen, a general structural analysis software, to
perform FE modeling and analysis for the timber lattice dome of Taiyuan Botanical Garden.
The stiffness of individual or multiple components was reduced to simulate the structural
damage conditions (DC). Gaussian white noise was used to excite the structure, and the
response results of multiple measuring points (MP) were extracted to evaluate the damage
identification effect of the ARMA model.

4.1.1. Finite Element Model

This paper used 3D line elements to analyze the spatial structure of the dome. The
timber beams were modeled with beam elements, while the cable net was modeled with
cable (tensile only) elements. In this study, the maximum main stress and maximum
vertical deformation were employed as the convergence indicators. The analysis findings
demonstrated that as the number of elements increased from 7732 to 334,817, both the
maximum stress and maximum deformation exhibited a gradual convergence. The mesh
convergence plot is shown in Figure 2. Notably, the maximum stress was more sensitive to
the element number, thus serving as the primary controlling factor. Taking into account
both computational accuracy and efficiency, the 134,372-element model was ultimately
selected, which achieved a maximum stress convergence within a 5% range and satisfied
the required computational accuracy.

The FE model took into account the fact that the three-layer timber beams are not
coplanar, as shown in Figure 3. The timber beams are made of European spruce glued laminated
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timber GL28h, with a main beam section of 200 mm × 400 mm (width × height) and a secondary
beam section of 200 mm × 300 mm (width × height). The components of the lattice structure
are mainly subjected to axial forces, and glued laminated timber has relatively ideal material
properties. According to material tests [27] and related studies [28–30], the FE material
model adopted an orthotropic bilinear elastic-plastic model. The material test data and FE
material model were shown in Figure 4, and the material properties are detailed in Table 2.
The cable has a diameter of 26 mm, and the material used is austenitic steel 06Cr17Ni12Mo2
(316 stainless steel), with an elastic modulus of 160,000 MPa and a design pre-tension value
of 40 kN.

 
Figure 2. Mesh convergence analysis.

  
(a) (b) 

Figure 3. FE model. (a) Overall structure; (b) timber beam’s stacking joint.
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(a) (b) 

Figure 4. Material properties. (a) Material test data (GL28h), reprinted with permission from Ref. [27].
2022, Shuizhong Jia; (b) bilinear material model of glued laminated timber [31].

Table 2. Material property of GL28h.

Ec,0 (MPa) Et,0 (MPa) Ec,90 (MPa) f c,0 (MPa) f t,0 (MPa) f c,90 (MPa)

13,901 7438 185 29.6 77.5 5.0

Based on the measured data of SHM, simple modifications were attempted on the
FE model. Initially, the acceleration signal during the early stage of structural service was
processed and analyzed. The time-domain data were then transformed into frequency-
domain data using Fourier transform. To eliminate high-frequency noise, a low-pass filter of
50 Hz was applied. The power spectral density (PSD) of the acceleration data was calculated,
and the dominant frequency with significant amplitude in the signal was extracted through
peak detection. This allowed for the determination of the natural frequency of the structure.

Subsequently, modifications were made to the FE model parameters. The elastic
modulus and density of the material were adjusted, along with the magnitude of the
additional constant load (converted into mass) on the roof, and the connection stiffness of
the joints. These modifications aimed to align the natural vibration characteristics of the FE
model with the analysis results obtained from the measured data.

4.1.2. Damage Conditions

When establishing a time series model, the first step is to determine the sampling time
interval Δt and the sample length L for the continuous signal. When sampling a continuous
signal, a reasonable sampling time interval is Δt < 1/(2 fmax), and a reasonable sample
length is L > 1/Δ fmin, where fmax is the highest frequency in the interested vibration
modes and Δ fmin is the minimum difference between adjacent frequencies [32].

Given the complex natural vibration characteristics of the lattice shell structure, a
100-order natural vibration modal analysis was conducted for the FE model. The results
of the modal analysis are presented in Figure 5 and Table 3. The analysis revealed that
the natural frequencies of the lower order modes are closely spaced, with a difference of
only 8.92 Hz between the first and 70th modes. By the 94th mode, 90% of the cumulative
participation mass of the vibration modes was reached, indicating that the first 94 modes
could capture the majority of the natural vibration characteristics of the structure. Therefore,
the appropriate sampling frequency and sample length were calculated based on the first
94 modes. The maximum frequency in the first 94 modes was approximately 49.85 Hz,
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and the minimum difference between adjacent frequencies was 0.0109 Hz. According to
the sampling theories [32], the sampling time interval of this structure should be less than
0.0101 s, and the sample length should be greater than 91.75 s. Therefore, a sampling
frequency of 100 Hz and a sample length of 120 s were adopted to establish a time series
model. According to the basic principle of time series analysis, the signal input needs to
meet the characteristics of stationary, normal, and zero-mean, and Gaussian white noise can
just meet the above characteristics. Thus, Gaussian white noise generated by MATLAB was
used as the environmental excitation to conduct the time history analysis on the FE model.

Figure 5. 100-order Z-axis modal analysis.

Table 3. Natural frequencies of the FE model.

Mode
Order

Frequency
(Hz)

Mode
Order

Frequency
(Hz)

Mode
Order

Frequency
(Hz)

Mode
Order

Frequency
(Hz)

1 3.3537 26 5.8696 51 8.2039 76 14.8373
2 3.5002 27 5.9719 52 8.3625 77 15.1701
3 3.5525 28 6.134 53 8.4575 78 15.8307
4 3.6825 29 6.2517 54 8.5635 79 16.6591
5 3.7451 30 6.2953 55 8.7213 80 17.2487
6 3.9603 31 6.3233 56 8.847 81 17.9974
7 4.0067 32 6.5079 57 9.0585 82 19.1284
8 4.1308 33 6.6175 58 9.1913 83 20.0353
9 4.2118 34 6.6899 59 9.3714 84 21.7652
10 4.431 35 6.7379 60 9.5392 85 22.4354
11 4.4916 36 6.9291 61 9.7873 86 24.1665
12 4.5736 37 6.9573 62 9.9823 87 26.2336
13 4.6526 38 6.9682 63 10.2407 88 29.05
14 4.6659 39 7.0649 64 10.5235 89 31.3453
15 4.9154 40 7.2344 65 10.6672 90 32.7382
16 5.0791 41 7.3614 66 10.9764 91 36.9209
17 5.1145 42 7.3811 67 11.3259 92 40.3238
18 5.1646 43 7.4171 68 11.5494 93 45.1509
19 5.2276 44 7.5568 69 12.0646 94 49.8536
20 5.3595 45 7.6886 70 12.2717 95 59.3389
21 5.4691 46 7.7193 71 12.6162 96 72.188
22 5.6584 47 7.7773 72 13.0992 97 88.9345
23 5.6804 48 7.8668 73 13.6149 98 121.4361
24 5.7494 49 7.9797 74 13.9864 99 180.6925
25 5.7668 50 8.1043 75 14.4609 100 349.0827
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In practical engineering, vibration sensors were used for SHM of the dome structure.
Specifically, nine vibration MPs were set up at the joint positions, taking into account the
shape and characteristics of the structure. From above, the MPs were distributed at the
central point of the dome and in the directions of east, west, south, and north. In the
vertical direction, the MPs were evenly distributed at the top, middle, and bottom of the
structure. During the time history analysis on the FE models, acceleration response data
were extracted from the nine MPs. The layout of the MPs was shown in Figure 6. In
the FE analysis process, stiffness reduction was applied to local timber beam and steel
cable elements to simulate damage or stiffness degradation of the components. This paper
developed five sets of DCs, including damage to single and multiple components. The five
simulated DCs are detailed in Table 4.

 
Figure 6. Distribution of MPs and damaged components.

Table 4. Damage conditions.

Condition
No.

MP M MP N1
Beam Cable Beam Cable

1     
2     
3     
4     
5     

Note:  : in a healthy state;  : damaged by 40%;  : damaged by 80%.
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4.1.3. Establishment of ARMA Model

This study established time series models for all nine MPs under various DCs as
shown in Table 4. In this paper, the process of establishing a time series model was
demonstrated using the acceleration time history data of MP M, which is located at the top
of the dome structure.

Before establishing the ARMA model, it is necessary to standardize the sample dataset.
The normal distribution probability plot of the processed data, which was shown in Figure 7c,
indicated that the processed sample is a stationary, normal, and zero-mean time series,
satisfying the prerequisite for establishing a time series model. After preprocessing the data,
the ACF and PACF of the data sample were calculated, as shown in Figure 7a,b. The ACF
and PACF gradually decreased to within the 95% confidence interval, and both exhibited
tailing characteristics. According to Table 1, an ARMA model could be established for the
data sample.

 

(a) (b) 

 
(c) (d) 

Figure 7. ARMA order selection. (a) ACF; (b) PACF; (c) normal distribution probability; (d) AIC of
each order combination.

Subsequently, the AIC and LAR method were used to determine the order and estimate
the parameters of the model. Figure 7d shows the AIC results of the ARMA(2m,2m−1)
model for the first 30 orders. Based on the AIC results, an ARMA(20,19) model was
established for the MP M, and its estimated parameters are shown in Table 5.

431



Sensors 2023, 23, 6710

Table 5. Estimated ARMA model parameters.

Order AR Coef. MA Coef. Order AR Coef. MA Coef.

1 0.1956 0.9294 11 0.0487 −0.3235
2 −0.3641 0.1359 12 −0.0731 −0.1088
3 −0.0754 −0.3965 13 −0.0082 0.3625
4 −0.2056 −0.4014 14 −0.4730 0.8166
5 −0.1359 −0.0875 15 0.1008 0.4343
6 −0.1749 0.1776 16 −0.2690 −0.0291
7 0.2484 0.4023 17 −0.1583 −0.1125
8 −0.1414 0.1495 18 −0.3139 0.0210
9 0.0141 −0.2229 19 0.0208 0.1027
10 0.0242 −0.2021 20 0.0635 -

4.1.4. Damage Identification of FE Models

ARMA(p,q) models were established for the responses obtained from the FE models
under the five DCs shown in Table 4. To alleviate the computational burden arising from
the high AR order, dimensionality reduction could be achieved by conducting PCA on its
parameters. Based on the principle of PCA, the AR parameters of each MP were analyzed
for five distinct DCs.

Table 6 presents the eigenvalue and ACR obtained through PCA for the data of each
MP. The eigenvalue quantifies the extent to which each principal component explains the
variation in the data, while the ACR represents the proportion of total variance explained
by the first n principal components. An ACR exceeding 85% indicates that the primary
components already encompass most of the feature information [26]. Based on the PCA
results, the eigenvalues of the first and second order AR coefficients for each MP were
nearly 10 and 4, respectively. Furthermore, the ACRs for the first three orders at each MP
all exceeded 90%, surpassing the 85% threshold. In some cases, the ACR even reached
approximately 99%. Consequently, it can be inferred that employing the first three order
AR coefficients to construct DSF can yield sufficiently accurate outcomes in theory.

Table 6. PCA results.

Principal
Component

M E1 E2

Eigenvalue ACR Eigenvalue ACR Eigenvalue ACR

1 10.3245 51.62% 14.4691 72.35% 13.7320 68.66%
2 4.6304 74.77% 3.2225 88.46% 3.1710 84.52%
3 3.8133 93.84% 1.2549 94.73% 1.9219 94.12%
4 0.8551 98.12% 1.0002 99.73% 1.0343 99.30%
5 0.3768 100.00% 0.0532 100.00% 0.1407 100.00%

Principal
Component

W1 W2 S1

Eigenvalue ACR Eigenvalue ACR Eigenvalue ACR

1 15.0565 75.28% 10.4912 52.46% 12.8791 64.40%
2 4.0753 95.66% 6.4063 84.49% 4.0294 84.54%
3 0.7505 99.41% 1.8273 93.62% 2.8699 98.89%
4 0.1117 99.97% 1.0842 99.05% 0.2155 99.97%
5 0.0060 100.00% 0.1909 100.00% 0.0061 100.00%

Principal
Component

S2 N1 N2

Eigenvalue ACR Eigenvalue ACR Eigenvalue ACR

1 10.8759 54.38% 8.3965 41.98% 11.1385 55.69%
2 4.3566 76.16% 7.4009 78.99% 7.1796 91.59%
3 2.7723 90.02% 2.4547 91.26% 1.1040 97.11%
4 1.9425 99.74% 1.2340 97.43% 0.4086 99.15%
5 0.0527 100.00% 0.5139 100.00% 0.1693 100.00%
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The acceleration time series data from each MP under the healthy state (DC 1) was
subjected to windowing processing, resulting in two equally divided sections. The first
60 s of the resulting time series data, comprising 6000 sample data points, was utilized as
training sample data, while the last 60 s, also comprising 6000 sample data points, was used
as reference sample data. The remaining data obtained from other DCs were unknown-state
sample data. The first three order AR coefficients of the ARMA model were extracted
for each sample data. A principal component matrix was established and the MD was
calculated between the principal component matrices of a single MP under different DCs.
Corresponding DSF for damage identification was constructed according to Equation (14).
The DSF for each MP is presented in Figure 8.

 

(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 8. Damage identification results of FE models. (a) Results under DC 2; (b) results under DC 3;
(c) results under DC 4; (d) results under DC 5; (e) results of M and N1; (f) results of undamaged MPs.
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Based on the results of damage identification, the following observations could
be made:

(1) When the damage of the timber beam at MP M was 40% (DC 2), the DSF at M was
2.1799, which was significantly higher than the DSF at other MPs, not exceeding 1.15.
As the damage increased to 80% (DC 3), the DSF at M increased to 3.5720, while
the average DSF at other MPs was 1.1450. This represented a 63.9% increase in DSF
compared to the 40% damage level. When both the timber beam and steel cable at
M were damaged simultaneously (DC 4), the DSF further increased to 4.0281, which
was approximately 12.77% higher than the previous DC. The average DSF value at
other MPs was 1.1773. These results demonstrate that the DSF constructed using PCA
and MD is highly sensitive to component damage, capable of identifying and locating
damage to timber beams and steel cables, and positively correlates with the degree of
damage. Therefore, it could reflect the degree of damage to the damaged components
to a certain extent.

(2) When the timber beam and steel cable at MPs M and N1 were simultaneously dam-
aged by 80% (DC 5), the DSF of M and N1 were 4.1645 and 3.9983, respectively, which
were significantly higher than the DSF values of other MPs, ranging from 1.07 to
1.38. This demonstrates that the proposed damage identification model can effectively
identify conditions where multiple components are damaged simultaneously.

(3) As the damage at MP M intensified from DC 2 to 4, the DSF of M significantly
increased, while the DSF of adjacent MPs N1, E1, S1, and W1 also slightly increased,
with an average increase of approximately 0.19. However, the DSF of MPs N2, E2,
S2, and W2 did not increase significantly, with an average increase of no more than
0.1. Under DC 5, further damage occurred at MP N1. During this process, the DSF of
N2 and M, which were closest to N1, increased the most, with values of 0.2070 and
0.1364, respectively. However, the DSF of S2, W2, and E2, which were farthest from
N1, remained almost unchanged, with values of 0.049, 0.074, and 0.054, respectively.
This suggests that structural damage at a specific location can cause an increase in
the DSF of surrounding MPs, and the degree of increase is inversely proportional to
the distance. This phenomenon may be attributed to the changes in the local natural
vibration characteristics caused by component damage, which were not significantly
far from the damage location.

(4) Assuming that no MPs are set at M and N1, meaning that the DSF of M and N1 were
not taken into account, under DC 4, the DSF values of E1, W1, and S1 experienced a
significant increase, ranging from 1.25 to 1.35, while the DSF of the remaining MPs
showed no noticeable changes. This suggests that the damage occurred in areas near
E1, W1, and S1. It can be inferred that the damage may have occurred around M,
which aligns with the severe damage observed at M under DC 4. From DC 4 to 5, the
DSF of N2 increased significantly, while the DSF of the other MPs increased slightly
and to a similar extent. This implies that the damage may have occurred in a location
close to N2. As determined, N1 sustained damage during the transition from DC
4 to 5, which is consistent with this characteristic. The aforementioned statement
indicates that even if the damage does not occur at MPs, the approximate location
of the damage can be determined based on the DSF of the existing MPs, thereby
achieving the objective of damage monitoring. This is advantageous for optimizing
the number of MPs.

4.2. Damage Identification Based on SHM Data

This paper presented a damage identification study of the dome structure at Taiyuan
Botanical Garden, utilizing measured data from vibration sensors. The structure employed
glued laminated timber beam as its primary load-bearing component, and exhibited a
large span, complex natural vibration characteristics, and susceptibility to wind vibration,
earthquakes, and other impacts. To ensure the structure’s safety, long-term SHM has been
conducted since its service. Based on the structure’s characteristics and FE analysis results,
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nine vibration MPs shown in Figure 6 were selected to monitor the structure’s vibration
behavior. These MPs were equipped with the 2D001 magnetoelectric vibration sensors
produce by Donghua Testing Technology Co. Ltd. (Taizhou, China), with a maximum
sampling frequency of 100 Hz. The data acquisition device is shown in Figure 9, and the
technical parameters of the 2D001 sensor are shown in Table 7.

 
(a) (b) 

Figure 9. Data acquisition device. (a) Tri-dictional vibration monitoring module; (b) 2D001 magneto-
electric vibration sensor.

Table 7. Technical parameters of the 2D001 magnetoelectric vibration sensor.

Mode 0 1 2 3

Parameter Acceleration Low Velocity Medium Velocity High Velocity

Sensitivity 0.3 V/m·s−2 20 V/m·s−1 5 V/m·s−1 0.3 V/m·s−1

Capacity 20 m·s−2 0.125 m·s−1 0.3 m·s−1 0.6 m·s−1

Bandwidth
(−3–+1 dB) (0.25–100) Hz (1–100) Hz (0.5–100) Hz (0.17–80) Hz

Output
Impedance 50 kΩ

Working
Temperature (−20–80) ◦C

Dimensions 63 mm × 63 mm × 63 mm
Weight 0.6 kg

Under normal working conditions, the only dynamic load on this structure was wind
load. However, due to the fact that the dome is covered with glass, the structure was
exposed to sunlight radiation during the day, resulting in temperature gradients on the
surface that may have an uncertain impact on the sampling data and final analysis results.
Therefore, this study selected measured data at night as the sample data. Specifically,
acceleration data from the initial stage of structural service (October 2020) were chosen as
the healthy-state sample data, while data after two years of service (October 2022) were
selected as the unknown-state sample data, with a sample length of 120 s. Hence, ARMA
modeling was performed and the health status of the structure after two years of service
was evaluated. Figure 10 displays partial data for the initial stage and after two years
of service.

The results of the calculation indicated that the ACF and PACF of the model are
tailing, which satisfies the prerequisite for ARMA modeling. The AIC was employed to
determine the order of the ARMA(2m,2m−1) model for the measured data. The findings
reveal that the ARMA(28,27) model had the lowest AIC value of −1.4235 among the first
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30 orders, indicating that this order scheme can achieve a high degree of fitting. The
vertical acceleration data of nine vibration sensors at each MP were preprocessed, and
ARMA(28,27) models were established. PCA was performed on the AR parameters using a
set of measured data from each MP under both healthy and unknown states. The analysis
results showed that the first 5 order AR parameters of any ARMA model contained 90% of
the model’s damage characteristic values. Therefore, the first 5 order AR coefficients were
utilized to construct subsequent DSF.

 

Figure 10. Original SHM data (M and N1).

The acceleration time series of each MP in a healthy state was extracted and partitioned
into two equal segments by windowing. The first 60 seconds’ 6000 sample data points were
designated as training sample data, while the last 60 seconds’ 6000 sample data points were
designated as reference sample data. The remaining data were used as unknown-state
sample data. The MD was computed to generate DSF for damage identification.

According to the analysis results, the MDs of each sample were not significantly
different, and the DSF of all MPs were close to 1.0, indicating that the structure was almost
not damaged after two years of service. The results of MD and DSF of each MP were shown
in Figure 11. In addition, it could be found that the DSF of MP S2 was 1.097, while the
maximum value of DSF of other MPs was 1.062, and the average value was 1.046, indicating
that the damage degree of the component at S2 was slightly higher than that of other MPs.
Figure 12 shows the static FE analysis results of the dome. Under the combined action
of dead load and roof live load, the stress level of the timber components around S2 was
higher than that in other areas. Moreover, real-time dynamic loads such as wind loads and
temperature effects might have adverse effects on local areas. These adverse effects might
be the potential factors leading to the increase of DSF at S2. Therefore, it is necessary to pay
attention to the SHM data of this dome structure, and focus on the acceleration data of MP
S2, so as to timely warn when the structure suffers serious damage.

 
(a) (b) 

Figure 11. Damage identification results. (a) MD results; (b) DSF results.
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Figure 12. High stress area exhibited in static FE analysis result.

5. Conclusions

Structural damage identification is a crucial analysis method in SHM, with significant
scientific and engineering applications. To address the challenges of incomplete modal
information, high modal density, and large degrees of freedom in large-span spatial lattice
structures, this paper proposed a structural damage identification method based on the
ARMA model and PCA method for structures of this kind. Based on the above research,
the following conclusions can be drawn:

(1) This article was based on a time series model and introduced PCA for extracting
principal components. In this study, only the first three AR coefficients were required
to achieve damage identification and it demonstrated high accuracy.

(2) The MD is advantageous compared to other distance methods in constructing DSF
because it considers the differences and correlations in the variability of variables for
each observation. Additionally, it can effectively calculate the influence of scale on
different measurement values.

(3) Verified by the FE model, the damage identification method proposed in this article
was found to be sensitive to structural damage. It could, to a certain extent, accurately
locate the site of structural damage and reflect the extent of the damage. Therefore, it
can be effectively utilized for practical structural damage identification.

(4) Based on SHM data, the paper identified the damage of the structure after two years of
service. The results indicated that the structure is in a relatively healthy state, but the
DSF of MP S2 is slightly higher than those of other MPs. In the future, it is necessary
to pay attention and give timely warnings if necessary.

However, there are still some shortcomings in this article. The next step should be
to conduct more in-depth research on the rationality of the number and distribution of
measurement points, as well as the refinement of the FE model correction.
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Abstract: To solve the problems of low accuracy and false counts of existing models in road damage
object detection and tracking, in this paper, we propose Road-TransTrack, a tracking model based on
transformer optimization. First, using the classification network based on YOLOv5, the collected road
damage images are classified into two categories, potholes and cracks, and made into a road damage
dataset. Then, the proposed tracking model is improved with a transformer and a self-attention
mechanism. Finally, the trained model is used to detect actual road videos to verify its effectiveness.
The proposed tracking network shows a good detection performance with an accuracy of 91.60%
and 98.59% for road cracks and potholes, respectively, and an F1 score of 0.9417 and 0.9847. The
experimental results show that Road-TransTrack outperforms current conventional convolutional
neural networks in terms of the detection accuracy and counting accuracy in road damage object
detection and tracking tasks.

Keywords: road damage detection; object tracking; self-attention mechanism; transformer

1. Introduction

For economic development and social benefits, the health of roads is crucial. In daily
life, repeated crushing by vehicles can cause damage to the structural layer of the road,
which in turn produces cracks, potholes and other damage. The road performance and load
carrying capacity will suffer as a result of pavement degradation [1,2]. If pavement damage
is not repaired in a timely manner, rain and snow, as well as vehicle loads, will deepen
the degree of pavement damage, which will seriously affect people’s travel and safety and
thus have an impact on social benefits. Therefore, regular maintenance of roads is very
important. For road maintenance, one of the main aspects lies in efficient and accurate
road damage detection. Currently, manual inspection and analysis is the main method of
detecting pavement damage in China; however, manual inspection is often tedious and
inefficient [3]. Although manual inspection has obvious operational advantages, when the
inspector is inexperienced, the assessment of the degree of damage can be inaccurate, thus
adversely affecting the pavement evaluation process [4–6]. The drawbacks of these manual
inspections mean that this method no longer meets the increasing requirements of modern
society for road damage detection.

1.1. Related Works
1.1.1. Conventional Methods

In addition to the above manual detection methods, conventional methods of road
damage detection include automatic detection and image processing techniques. With
the development of research and technological support, the usage of automatic road
damage detection is constantly expanding, with conventional equipment such as infrared
or sensor-equipped road inspection vehicles [7,8]. However, due to the complexity of
the actual environment in the road detection process, automated detection equipment is
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often unable to meet the actual needs in terms of recognition accuracy and speed, and
this type of equipment often incurs higher hardware costs, corresponding to an increase
in detection costs. For example, some vibration-based detection methods are suitable
for real-time assessment of pavement conditions [9], but they cannot measure pavement
damage in areas outside the vehicle wheel path or identify the size of pavement damage.
Laser-measurement-based inspection methods use special equipment, such as a laser
scanner, mounted on a separate inspection vehicle [10–13] to convert the pavement into
a three-dimensional object in a coordinate system, and this method allows for the direct
calculation of various metrics for an accurate evaluation of pavement condition. However,
real-time processing at high speeds is difficult and relatively expensive due to the increased
amount of computation required. Compared with the high cost of automatic detection,
the benefits of image processing technology include a great effectiveness and low cost.
As technology advances, its recognition accuracy also gradually improves. Therefore,
numerous researchers have chosen to use image processing methods for the detection of
pavement damage [14–16]. Traditional image processing methods use manually chosen
features, such as color, texture and geometric features, to first segment pavement faults,
and then machine learning algorithms are used to classify and match them for pavement
damage detection purposes. For instance, Fernaldez et al. [17] began by preprocessing
cracked photos of a road in order to highlight the major aspects of the cracks, and then
chose a decision tree heuristic algorithm and finally achieved classification of the images.
Rong G et al. [18] performed entropy and image dynamic threshold segmentation of
pavement crack pixels based on thresholds obtained from image histograms as a way to
classify cracked and non-cracked pixels. Bitelli G et al. [19] proposed another application of
image processing to crack recognition, focusing and obtaining additional noise-free images
of specific cracks. Li Q et al. [20] presented an image processing algorithm for accuracy
and efficiency, which was specifically used for fast evaluation of pavement surface cracks.
Song E P et al. [21] proposed an innovative optimized two-phase calculation method for
primary surface profiles to detect pavement crack damage. Traditional image processing
techniques cannot, however, meet the requirements of model generalization capability and
resilience in real-world engineering through manually planned feature extraction due to
the complexity of the road environment. For example, it is often impossible to segment an
image effectively when it contains conditions such as uneven illumination.

1.1.2. Deep Learning Methods

The issues with the aforementioned conventional methods can be successfully re-
solved thanks to the recent rapid advancements in artificial intelligence and deep learn-
ing technology. Deep learning has advantages over the aforementioned techniques, in-
cluding the absence of manual feature extraction and good noise robustness. With their
strong feature extraction capabilities, deep-learning-based models are used more and
more, for example, convolutional neural networks [22] are commonly employed in image
classification [23], object detection [24] and semantic segmentation [25]. Nu et al. [26]
proposed a unique method for detecting tunneling defects based on a masked region convo-
lutional neural network (RCNN) and optimized the network with a path-enhanced feature
pyramid network (PAFPN) and an edge detection branch to increase the detection accuracy.
Wang et al. [27] used an improved network model based on Faster RCNN to detect and
classify damaged roads, and used data augmentation techniques before training to ad-
dress the imbalance in the number of different damage datasets to achieve better network
training results. In the same vein, for crack detection, Kaige Zhang et al. [28] suggested
a depth-generating adversarial network (GAN), which successfully addressed the issue
of data imbalance, thus achieving a better training effect and a higher detection accuracy.
Yi-zhou Lin et al. [29] suggested a cross-domain structural damage detection method
based on transfer learning, which enhanced the performance of damage identification.
Wang Zifeng et al. [30] used DeepLabV3 + model to achieve precise segmentation of certain
building site objects and three-dimensional object reconstruction. With the help of fully

441



Sensors 2023, 23, 7395

convolutional networks (FCN), Yang et al. [31] were able to successfully identify cracks
at the pixel level in pavement and wall images, but there was still a shortcoming of poor
detection of small cracks. Jeong et al. [32] improved a model based on You Only Look Once
(YOLO)v5x with Test-Time Augmentation (TTA), which could generate new images for
data enhancement then combine the original photographs with the improved images in the
trained u-YOLO. Although this method achieved a high detection accuracy, the detection
speed was not good. Many other researchers have worked to test lightweight models.
Shim et al. [33] developed a semantic segmentation network with a small volume. They
improved the network’s parameters, but at the same time affected the detection speed of
the model. Sheta et al. [34] developed a lightweight convolutional neural network model,
which had a good crack detection effect. However, this model still had the problem of
a single application scenario and could not deal with multiple road damage detection.
Guo et al. [35] improved the model based on YOLOv5s to achieve the purpose of detecting
a variety of road damage, and achieved a high accuracy in damage detection. However,
the improved model was somewhat higher in weight, and meeting the criteria of embed-
ded devices proved difficult. In addition, Ma D. et al. [36] proposed an algorithm called
YOLO-MF that combines an acceleration algorithm and median flow for intelligent recogni-
tion of pavement cracks, achieving high recognition accuracy and a good PR curve. All of
the above researchers have made reasonable contributions to road damage detection, but
there are some deficiencies. For example, the models only detect crack damage, they cannot
find a reasonable balance between detection efficiency and accuracy, they cannot effectively
detect damage in road videos, etc. These are problems that still need to be studied and
solved.

YOLOv5 is a single-stage target detection algorithm. Four versions of the YOLOv5
single-stage target detection model exist: YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x.
For this study, the fastest and smallest model, YOLOv5s, with parameters of 7.0 M and
weights of 13.7 M, was selected. YOLOv5 makes the following improvements compared to
YOLOv4: For input side, the model training phase makes use of mosaic data augmentation,
adaptive anchor frame computation and adaptive picture scaling. The benchmark network
makes use of the FOCUS structure and the Cross Stage Partial (CSP) structure. In the Neck
network, between the Backbone and the final Head output layer, the Feature Pyramid
Network (FPN)_Path Aggregation Network (PAN) structure is added. The loss function
named Generalized Intersection over Union Loss (GIOU_Loss) is added to the Head output
layer during training and predicts the Distance-IOU_nns of the screening frame.

As shown in Figure 1, the algorithm framework is split into three major sections:
the backbone network (Backbone), the bottleneck network (Neck) and the detection layer
(Output). The Backbone consists of a focus module (focus), a standard convolution module
(Conv), a C3 module and a spatial pyramid pooling module (SPP). In YOLOv5, the network
architecture is the same for all four versions, and two variables determine the network
structure’s size: depth_multiple and width_multiple. For instance, the C3 operation of
YOLOv5s is performed just once, while YOLOv5l is three times as deep as v5s and three
C3 surgeries will therefore be carried out. Since the one-stage network YOLOv5s technique
leverages multilayer feature map prediction, it produces improved outcomes in terms of
detecting speed and accuracy.

1.1.3. Aircraft-Based Evaluation Methods

Manual and automated detection methods are ground-based evaluation methods.
Another method of assessing the pavement surface is through aerial observation. Aircraft-
based evaluation methods are more efficient, cost-effective and safer than labor-intensive
evaluation methods. Su Zhang et al. [37] explored the utility of the aerial triangulation
(AT) technique and HSR-AP acquired from a low-altitude and low-cost small-unmanned
aircraft system (S-UAS), and the results revealed that S-UAS-based hyper-spatial resolution
imaging and AT techniques can provide detailed and reliable primary observations suitable
for characterizing detailed pavement surface distress conditions. Susan M. Bogus et al. [38]
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evaluated the potential of using HSR multispectral digital aerial photographs to estimate
overall pavement deterioration using principal component analysis and linear least squares
regression models. The images obtained from aerial photography can also be used to train
models for pavement damage recognition. Ahmet Bahaddin Ersoz et al. [39] processed
a UAV-based pavement crack recognition system by processing UAV-based images for
support vector machine (SVM) model training. Ammar Alzarrad et al. [40] demonstrated
the effectiveness of combining AI and UAVs by combining high-resolution imagery with
deep learning to detect disease on roofs. Long Ngo Hoang, T et al. [41] presented a
methodology based on the mask regions with a convolutional neural network model,
which was coupled with the new object detection framework Detectron2 to train a model
that utilizes roadway imagery acquired from an unmanned aerial system (UAS).

 

Figure 1. The detail of the network of YOLOv5s.

1.2. Contribution

Aiming at the problem of repeated missed detections due to a low detection accuracy
during video detection of pavement damage, the paper’s primary contribution is to propose
and train a tracking and counting model named Road-TransTrack and improve the tracking
model by using a transformer and a self-attention mechanism, which increases the detection
precision of pavement damage when the model is tracking and achieves accurate counting
of damage without damaging the detection speed, making it more appropriate for work
detecting pavement damage.

2. Methodology

2.1. Transformer and Self-Attention

The transformer model is an attention-based neural network architecture that learns
interdependencies between sequences through the self-attention mechanism. In a one-
dimensional signal classification task, the signal can be considered as a sequence, and the
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transformer model can be employed to study the interdependence of various points in
the sequence. Then, the signal is classified based on the learned information. As shown
in Figure 2, based on the correlation between the input samples, a self-attention network
is built. Initially, the input sequence x, as shown in Formulas (1)–(3), is multiplied by the
weight matrices (Wk, Wv, Wq) to obtain the key vector ki, the value vector vi and the query
vector qi, respectively.

ki = Wkxi (1)

vi = Wvxi (2)

qi = Wqxi (3)

Figure 2. The self-attention mechanism’s structural diagram.

Secondly, the key vector is multiplied by the query vector, as shown in Formula (4),
and the weight vector ai can be obtained under the softmax function processing. The
weight vector represents the correlation of xi with the sequence of [x1, x2, . . ., xn] of the
sequence, i.e., the degree of attention of xi.

ai = So f tmax
([

kT
1 , kT

2 , kT
3 , · · · , kT

n

]
qi

)
(4)

After that, as demonstrated by Formula (5), the product of the value vector and the
weight vector is the semantic vector ci, where the value vector represents the value of each
input xi.

ci =
[
vT

1 , vT
21, vT

3 , · · · , vT
n

]
ai (5)

In the end, the distribution of probabilities can be obtained by softtmax function
processing and the corresponding output can be obtained by label coding.
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The transformer is a pile of self-attention networks, which, in contrast to typical
models, uses only self-attention mechanisms as a way to reduce computational effort and
not corrupt the final experimental results [42]. As shown in Figure 3, the transformer
model has two main parts: an encoder and a decoder. The input patches are fed into
the multi-headed self-attention network, which is a type of self-attention network. The
multi-headed self-attention network divides the result into eight subspaces and more
relevant information can be learned in different subspaces [43]. To improve the deep
network, residual connectivity and layer normalization are employed in the full network.
As demonstrated by Formula (6), the multilayer perceptron (MLP) consists of two fully
connected layers and a nonlinear activation function.

MLP(x) = max(0, xW1 + b1)W2 + b2 (6)

 

Figure 3. The structure diagram of the transformer.

2.2. Road-TransTrack Detection and Tracking Model

Traditional deep-learning-based pavement damage detection algorithms are often
effective in obtaining the class and location of damage. However, for sequences of con-
secutive frames, conventional detection algorithms cannot effectively identify the same
impairment and cannot accurately count multiple impairments. In this study, the proposed
detection tracking model called Road-TransTrack can solve the above problem. Detection is
a static task that generally finds regions of interest based on a priori knowledge or salient
features. Tracking, however, is a fluid job, finding the same thing in a series of successive
frames by means of characteristics carried over from the earlier frame. The tracking task
checks the picture similarity of the previous and current frames to find the best matching
position to find the target’s dynamic path.
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As illustrated in Figure 4, successive frames of the pavement video are first fed into
the model, defects are detected when they first appear in frame Ft and the amount of
defects is increased by one. The frames Ft and Ft+1 are then fed into the tracking model.
This damage continues to be tracked till it vanishes from the video, and IOU (Intersection
over Union) matching is performed between the tracked and detected frames to obtain
the tracking result. The detection and counting of the next damage continue. Finally, the
overall number of discovered defects is determined. Meanwhile, the network is improved
with the transformer to enhance the performance of the network.

 

Figure 4. The detailed network of Road-TransTrack.

3. Dataset Construction

3.1. Data Collection

Like the deep convolutional neural network model, the transformer-improved net-
work model also necessitates a lot of image data as the dataset. Images in today’s road
damage datasets have problems like erratic resolution, inconsistent picture data capturing
equipment and extrinsic influences such as lighting and shadows. These have a significant
impact on the criteria for the datasets used to train the models. Therefore, this study used a
pavement damage dataset that was collected and produced by us. The initial image acqui-
sition device is an integrated vehicle used for pavement detection, as shown in Figure 5.
The parameters of the on-board camera are shown in Table 1. Combined with the actual
acquisition needs, the shooting height was set between 40 and 80 cm to ensure the right
size of damage in the images. Images were captured under normal lighting for several
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asphalt as well as concrete roads, and then images with high clarity and a balanced amount
of damage were manually retained for the next step of processing.

Figure 5. Integrated vehicle used for pavement detection.

Table 1. Camera parameters.

Sensor Pictures Equipment Parameters HIKVISION U68

Highest resolution 4 K

Highest resolution video output 3840 × 2160
30/25 FPS

Maximum Field of View 83◦ × 91◦
Digital zoom fourfold

Autofocus support
TOF Sensing support

3.2. Data Processing
YOLOv5-Based Classification Network

Since this study focuses on the two most common types of road damage, potholes and
cracks, the original data images collected need to be extracted and classified, i.e., two types
of images with pothole and crack damage were selected to build the dataset. In order to
achieve efficient and high accuracy classification, we adopted the YOLOv5 network with
better performance for image classification. Four versions of the YOLOv5 model exist:
YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x. After testing the four models, the smallest
and quickest model, YOLOv5s, was used in this study under the condition of guaranteed
accuracy. The acquired images were normalized and scaled down to 640 × 640 size prior
to model training to ensure that the YOLO model performs optimally for training. After
standardization, the data were manually annotated using annotation according to different
types of road damage, where the annotation file format was txt. For data preparation, a total
of 1000 images of potholes and fractures were prepared. During training, the learning rate
was 0.01 and the mini-batch number and momentum coefficient were set to 2 and 0.937.

For the classification model, the true and predicted classification permutations are
as follows: True Positives (TP): the number of true positive classes predicted as positive
classes; False Positives (FP): the number of true negative classes predicted as positive
classes; False Negatives (FN): the number of true positive classes predicted as negative
classes; and True Negatives (TN): the number of true negative classes predicted as neg-
ative classes. The following indicators can be defined based on the values of the above
four categories.

Accuracy is calculated as:

Accuracy =
TP + TN

TP + FP + TN + FN
(7)
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Precision is calculated as:

Precision =
TP

TP + FP
(8)

Recall is calculated as:
Recall =

TP
TP + FN

(9)

When the number of classification targets is unbalanced, the F1 score is used as the
numerical evaluation index, and the F1 score is calculated as in Formula (10):

F1score =
2 × Precision × Recall

Precision + Recall
(10)

After the training of the model, in the testing phase, the IOU threshold was set to 0.5
and the confidence threshold was set to 0.4. The final results were calculated according to
the above formula and shown in Table 2. The classification accuracy of cracks and potholes
reached 85.10% and 92.47%, and the F1 scores were 0.8512 and 0.9259, respectively. Most of
the images of cracks and potholes can be correctly selected.

Table 2. The output of the classification network based on YOLOV5.

Class Accuracy Precision Recall F1 Score

Crack 0.8510 0.8407 0.862 0.8512
Pothole 0.9247 0.9076 0.945 0.9259

The images of potholes and cracks filtered by the classification network are shown in
Figure 6. Data annotation was performed on these images to construct the dataset required
for training. In total, there are 310 potholes and 300 cracks in the training set, 104 potholes
and 101 cracks in the validation set and 103 potholes and 100 cracks in the test set.

Figure 6. Damage images obtained from classification networks.

4. Road-TransTrack-Based Road Damage Detection and Tracking

4.1. Model Initialization

Computer vision algorithms based on deep learning require an abundance of labeled
images as datasets. Similarly, the transformer relies on a large amount of data. Studies and
tests have shown that as the size of the dataset increases, the CNN model is eventually
surpassed by the transformer model in terms of detection performance [44]. Thus, in order
to improve the performance of the model, migration learning can be used to improve the
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model detection performance before training with the prepared dataset. Transfer learning
is a way of improving learning effectiveness by transferring the knowledge structure of a
related domain to the target domain [45]. In this study, a model that has been trained on the
Microsoft COCO dataset was chosen for the transformer-based detection network setup.

4.2. Hyperparameter Tuning

In the case of deep learning networks, the model parameters include common pa-
rameters and hyperparameters. The common parameters are the weight parameters of
each network layer. Back propagation and ongoing training can be used to find the best
public parameters. Unlike public parameters, the values of the hyperparameters, which
are generally set artificially through experience, were set before the start of training. In
general, to enhance learning performance and effectiveness, manually optimizing the
hyperparameters and selecting an ideal set of hyperparameters is required for model
training. The hyperparameters that have an important effect on the model performance
primarily comprise the learning rate, the weight decay coefficient and the mini-batch size.
In this experiment, the learning rate and weight decay coefficients were adjusted, and
six combinations were trained; the outcomes are shown in Table 3.

Table 3. Hyperparameter tuning.

Case Learning Rate Weight Decay Accuracy

1 10−5 5 × 10−4 90.73%
2 10−5 10−5 89.38%
3 10−5 10−3 89.75%
4 5 × 10−5 10−4 90.88%
5 2 × 10−4 10−4 91.59%
6 10−4 10−4 89.06%

As shown in Table 3, the model obtained the highest accuracy when the learning rate
was 2 × 10−4 and the weight decay coefficient was 10−4. As shown in Figure 7, the loss of
the model gradually decreases as the training proceeds. As shown in Figure 8, the model
accuracy gradually increases as the training proceeds. After 68 epochs of training, the
model reached a maximum accuracy of 91.59% and the loss curve became flat. This model
was saved and the hyperparameters set during the training of this model were selected for
the next step of the study.

Figure 7. The decline curve of loss.
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Figure 8. The upcurve of accuracy (a) with different weight decays; (b) with different learning rates.

4.3. Transformer-Based Detection and Tracking Network

Some traditional CNN-based networks have achieved good performance in pavement
image damage detection. However, for the same damage present in consecutive frames
of video, these networks often either fail to detect it or perform duplicate counts without
achieving good detection results. To address the above issues, the improved detection
tracking network with a transformer was trained and tested on the dataset. Since the
data are static images, adjacent frames are simulated during training by randomly scal-
ing and transforming the static images. The optimal combination of hyperparameters
derived in the above model initialization was selected for model training. As shown in
Figures 9 and 10, as the epoch increases, the loss value decreases, the accuracy increases
and the optimal model is saved.

Figure 9. The decline curve of loss: (a) cracks; (b) potholes.

The upgraded tracking network was put to the test using the test set. Table 4 demon-
strates the tracking network results; for the detection of pavement damage, the average
accuracy score was 95.09% and the average F1 score value was 0.9646. As shown in
Figure 11, the PR curve is close to the upper right corner of the coordinate system. This
implies that the trained network performs well for tracking pavement diseases.

Table 4. The results of the transformer-based tracking network.

Class Accuracy Precision Recall F1 Score

Crack 91.60% 91.6% 96.9% 0.9417
Pothole 98.59% 98.6% 98.9% 0.9874
Mean 95.095 95.1% 97.9% 0.9646
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Figure 10. The upcurve of accuracy: (a) cracks; (b) potholes.

Figure 11. The PR curves of tracking network: (a) cracks; (b) potholes.

During the whole tracking process, the frame sequence is first detected. If the detection
network detects the presence of damage in frame Ft, the frame image is fed to the tracking
network and the number of damages is increased by 1. Next, defects are detected in the
next frame based on the features in frame Ft+1 and are tracked based on the features in
frame Ft. Finally, IOU (Intersection over Union) matching is performed between the tracked
and detected frames to obtain the tracking results.

To visualize the effects of model training more intuitively, two videos of pavement
damage were selected to test the trained network.

As shown in Figure 12, two crack damages appear sequentially in the first video. The
figure shows the tracking process from the appearance of the first crack to the appearance
of the second crack and the simultaneous presence of both cracks, with the serial numbers
of the two cracks in the upper left corner of the detection box in that order. The detection
and counting results are consistent with the results of manual identification in the field.

As shown in Figure 13, three pothole damages appear in sequence in the second video.
The diagram shows the tracking process from the appearance to disappearance of the first
damage, the appearance to disappearance of the second damage, the coexistence of the
first two damages and the appearance of the third damage, with the serial numbers of the
three damages in the upper left corner of the detection box in that order. The detection and
counting results are the same as those of manual identification in the field.

Both the above illustrations and results show that the trained model has good results
for the detection tracking and counting of pavement potholes and crack damage and can
basically meet the actual detection requirements.
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Figure 12. Tracking results for video 1.

 

Figure 13. Tracking results for video 2.
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5. Results and Discussion

In this study, the trained models were tested on a test set. To validate the performance
of the model, the improved algorithm was compared with the CNN-based algorithm
using evaluation metrics such as accuracy, precision, recall and F1 score. The algorithms
YOLOv3, Single Shot MultiBox Detector (SSD) and Faster RCNN, which are commonly
used for pavement damage detection, were selected for comparison [46,47]. For detection
algorithms, the PR curve is an intuitive comparison graph; the closer the curve is to the
upper right, the better the performance of the algorithm. As shown in Table 5, the classical
CNN-based network was used to test the pavement damage dataset and the results were
obtained. As shown in Table 6, compared with the classical CNN network, the F1 score of
the detection network optimized by a transformer is the best, at 96.64, and the accuracy
is 95.10%, which are 12.49% and 2.74% higher than the optimal CNN model, respectively.
As illustrated in Figure 14a, for the class of cracks, when compared to various CNN
models, the PR curve of the transformer optimized detection network is closest to the upper
right corner. As illustrated in Figure 14b, for the class of potholes, the red curve of our
network encloses the curves of YOLOv3, SSD and Faster RCNN. These comparative results
effectively demonstrate that the transformer has a superior performance over CNN-based
networks for the classification and detection of pavement damage.

Table 5. The results of the classical CNN-based detection network.

Class Accuracy Precision Recall F1 Score

(YOLOv3)
Crack 75.26% 75.06% 80.60% 77.73

Pothole 90.74% 89.56% 91.60% 90.57

(SSD)
Crack 92.72% 91.49% 71.67% 80.37

Pothole 92.00% 80.39% 91.11% 85.41

(Faster RCNN)
Crack 87.29% 35.37% 95.08% 51.55

Pothole 93.46% 75.00% 95.33% 83.95

Table 6. A comparison of different detection networks.

Network Mean Precision Mean Recall Mean F1 Score Mean Accuracy

Our Network 95.09% 97.90% 96.46 95.10%
YOLOv3 82.31% 86.10% 84.15 83.00%

SSD 85.94% 81.39% 82.98 92.36%
Faster RCNN 55.18% 95.21% 67.75 90.38%

Figure 14. A comparison of PR curves: (a) cracks; (b) potholes.
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In order to show the comparison results more intuitively, the same frame was de-
tected with our network and the traditional CNN network, respectively, and the results
were compared. As shown in Figure 15, for crack images, (a) the set of detection images
demonstrates that the four networks detect approximately the same effect when there is
only one crack in the figure and (b) the group detection images show that when multiple
cracks appear in the figure, our network shows a better detection effect, without missing or
wrong detections, and counts are carried out. For potholes, (a) the set of detection images
shows that each network can accurately detect the two potholes present in the figure when
the pothole size feature is obvious, and also our network counts the potholes and (b) the
group detection images show that our network detects a pothole, while all other networks
produce false detections, i.e., parts of the ground that are similar in shape to potholes are
detected as potholes.

 

Figure 15. Comparison of different network detection results: (a1) comparison of individual crack
detection results; (a2) comparison of multiple crack detection results; (b1) comparison of individual
pothole detection results; (b2) comparison of multiple pothole detection results.

The above comparative tests show that the proposed model has good performance
in terms of detection accuracy and accuracy of damage statistics. However, the detection
speed of the current model does not meet the requirement of real-time execution. From
the establishment of the dataset to the subsequent part of model testing, the current study
uses pavement images and videos taken on the ground, so the generalization degree of the
model needs to be further investigated. For example, the collection of pavement damage
images can be carried out using the UAS technique to enrich the dataset required for model
training; the model can then be used for the detection of images and videos captured by
the UAS for better and efficient assessment of pavement damage.
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6. Conclusions

For pavement damage video inspections, the detection accuracy is not high, resulting
in the problem of repeated counting of missed detections. The main contribution of
this study is the proposed tracking counting network called Road-TransTrack. When
damage first appears in a video, it is detected and tracked until the defect disappears and
the number of damages increases by 1. The tracking and counting model is improved
with a transformer and a self-attention mechanism to improve the accuracy of damage
detection and counting in road videos. Compared to the classic CNN network, the F1
score of the transformer-optimized detection network is 96.64, with an average accuracy
of 95.10%, which are 12.49% and 2.74% higher than the optimal CNN model, respectively.
A comparison of actual frame image detections shows that compared to other classical
CNN networks, the model does not have the phenomena of missing and wrong detections.
Additionally, the detection results of two road videos show that the model can track and
count potholes and cracks correctly. All the above results indicate that the model in this
study possesses better performance in video detection and tracking of road damage. In the
future, we will consider training and testing models for more types of road damage.
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