
Discrete Mathematics

Andrew D. Ker

16 Lectures, Michaelmas Term 2010

Oxford University Computing Laboratory

ii

Contents

Introduction To The Lecture Notes vii

1 Sets 1

1.1 Defining Sets . 1

1.2 Comparing Sets and Writing Proofs 4

1.3 Unions, Intersections, and Algebraic Laws 5

1.4 Complements, Symmetric Difference, Laws 8

1.5 Products and Power Sets . 10

1.6 Cardinality . 12

1.7 Interesting Diversion: Bags 12

Practice Questions . 14

2 Functions 17

2.1 Intervals . 17

2.2 Definition of Functions . 18

2.3 Properties of Functions . 20

2.4 Contrapositive and Proof by Contradiction 21

2.5 Composition and Inverse . 24

2.6 Interesting Diversion: Binary Operators 26

Practice Questions . 28

iii

iv CONTENTS

3 Counting 31

3.1 Laws of Sum and Product . 32

3.2 The Technique of Double Counting 34

3.3 The Inclusion-Exclusion Principle 38

3.4 Ceiling and Floor Functions 40

3.5 Interesting Diversion: Multinomial Coefficients 41

Practice Questions . 43

4 Relations 45

4.1 Definition . 45

4.2 Properties of Relations . 46

4.3 Equivalence Relations . 48

4.4 Operations on Relations . 50

4.5 Drawing Relations . 52

4.6 Interesting Diversion: Counting Relations 53

Practice Questions . 55

5 Sequences 57

5.1 Definition . 57

5.2 Proof by Induction . 59

5.3 Sigma Notation and Sums of Sequences 61

5.4 Sequences Associated with Counting 62

5.5 Solving Linear Recurrence Relations 65

Practice Questions . 68

6 Modular Arithmetic 71

6.1 Definitions . 71

6.2 Exponentiation . 73

6.3 mod and div . 74

6.4 Euclid’s Algorithm and Multiplicative Inverses 75

CONTENTS v

6.5 The Pigeonhole Principle . 77

6.6 Modular Square Roots of -1 80

Practice Questions . 82

7 Asymptotic Notation 85

7.1 Big-O Notation . 85

7.2 Proving Sentences of the form ∃x.∀y.P 87

7.3 Tail Behaviour . 89

7.4 Asymptotics of n! . 89

7.5 Asymptotic Behaviour of Recurrence Relations 91

7.6 Recurrences of Divide-and-Conquer Type 92

Practice Questions . 95

8 Orders 97

8.1 Definitions . 97

8.2 Orders on Cartesian Products 99

8.3 Drawing Orders . 101

8.4 Upper and Lower Bounds . 103

8.5 Proving Sentences of the form ∀x.∃y.P 105

8.6 Interesting Diversion: Order Isomorphisms 107

Practice Questions . 109

Index 111

vi CONTENTS

Introduction To The Lecture

Notes

Course

The Discrete Mathematics course is compulsory for first-year undergrad-
uates in Computer Science. There are 16 lectures, supported by tutorials
arranged by college tutors.

Prerequisites

None.

Syllabus

Sets: union, intersection, difference, power set, algebraic laws. Functions:
injectivity & surjectivity, composition & inverse. Relations, equivalence re-
lations, and partitions; relational composition & converse, transitive closure;
orders, least upper and greatest lower bounds. Combinatorial algebra: per-
mutations, combinations, sums of finite sequences. Functions associated
with combinatorial problems: ceiling, floor, factorial, combinatorial coeffi-
cients. The inclusion-exclusion principle. Recurrence relations arising from
combinatorial problems. Modular arithmetic, Euclid’s algorithm, and ap-
plications.

vii

viii INTRODUCTION TO THE LECTURE NOTES

Outline of Lectures

The material is presented in eight sections, one per week. Each section is
concerned with one topic in discrete maths, and a technique for constructing
mathematical proofs.

Sets: Definition of sets, subsets, some standard sets; union, intersection, rel-
ative complement, symmetric difference, complement, cartesian prod-
ucts, power sets; algebraic laws; cardinality of finite sets. Writing
mathematical proofs, double inclusion proofs for set equality, proof by
cases. Extra topic: bags.

Functions: Intervals; functions, domain and codomain, partial functions,
restriction; 1-1, onto, and bijective functions; composition and inverse.
Proof of the contrapositive and proof by contradiction. Extra topic:
binary operators.

Counting: Counting laws of sum, subtract, product; permutations, factorial
function, combinations, binomial coefficients; inclusion-exclusion prin-
ciple, derangements; floor and ceiling functions. Proofs techniques for
counting, with many examples. Extra topic: multinomial coefficients.

Relations: Binary relations; properties of relations: reflexivity, irreflexivity,
symmetry, antisymmetry, transitivity, seriality; equivalence relations,
equivalence classes, and partitions; relational composition, converse,
and transitive closure; graphical representation of relations. Extra
topic: counting relations.

Sequences: Sequences and recurrence relations; sigma notation and partial
sums of sequences; recurrence relations arising from counting prob-
lems, including derangements and partitions. Proof by induction. Ex-
tra topic: solving linear recurrence relations.

Modular Arithmetic: Definition of modular arithmetic via an equivalence
relation; properties of addition, multiplication, and exponentation
(mod n); Euclid’s algorithm, binary mod and div functions, multi-
plicative inverses (mod p). The Pigeonhole Principle and many ex-
amples. Extra topic: modular square roots of −1.

ix

Asymptotic Notation: Big-O notation, tail behaviour of sequences, exam-
ples drawn from running times of common algorithms. Proofs of sen-
tences of the form ∃x.∀y.P , with examples of asymptotic behaviour
proofs including simplified Stirling’s formula. Choosing the right in-
ductive hypothesis for big-O proofs. Extra topic: solving recurrence
relations of divide-and-conquer type, up to asymptotic order.

Orders: Pre-orders, partial orders, and linear orders; chains; product and
lexicographic order on cartesian products; upper and lower bounds,
lub and glb. Proofs of sentences of the form ∀x.∃y.P , with examples
from interesting orders. Extra topic: order isomorphisms.

Reading Material

The lecture notes provide all the necessary definitions, some examples, and
some exercises. It would be a good idea, though, to buy or borrow a textbook
in order to supplement and round out the material (and particularly for
finding more practice exercises). The recommended text is

K. A. Ross and C. R. B. Wright, Discrete Mathematics (Fifth
Edition), Prentice Hall, 2003.

This book has much to commend it, including an enormous number of exam-
ples and exercises and a computer science oriented exposition. It is rather
expensive (about £50) but there are many copies in Oxford libraries.

Three other books, which are fairly useful, are:

R. P. Grimaldi, Discrete And Combinatorial Mathematics (Fifth
Edition), Addison Wesley, 2003.

A bit strange, with some very advanced topics alongside the standard mate-
rial. Its big advantage is comprehensive coverage of the course material and
lots of good practice exercises (some difficult). Probably not worth buying,
but a good book to borrow. The fifth edition is the most recent but earlier
editions are equally good.

A. Chetwynd and P. Diggle, Discrete Mathematics, Arnold, 1995.

The complete opposite, this book covers the basics well. It is easy to read
and worth consulting if you are struggling, but only covers the first half of
the material in this course. Cheap.

x INTRODUCTION TO THE LECTURE NOTES

P. Grossman, Discrete Mathematics for Computing (Third Edi-
tion), Palgrave MacMillan, 1995.

Moderate level with an emphasis on modern computer science applications.
Covers about three quarters of our material and includes other useful chap-
ters on logic (will appear in the Digital Hardware course) and graphs (will
appear in Design and Analysis of Algorithms). Cheap.

Practice Questions and Tutorial Exercises

At the end of each chapter are some practice questions: usually short
and fairly simple, they are to help you test your own understanding. Brief
answers are provided on the final page of the chapter. It is recommended
to try the practice questions soon after the relevant lectures, to help you
correct any misunderstanding quickly.

More substantial questions are set in the tutorial exercises, provided sep-
arately from the notes. There will be four regular tutorial sheets, plus one
additional sheet covering the last week’s lecture material along with general
revision suitable for vacation work (whether to set the vacation work, or in-
deed whether to follow these exercises at all, is a decision for college tutors).
Model answers are provided for tutors’ use only.

It is not expected that your tutors will want to discuss the practice questions
and so it is possible to get by without doing them. However, they have been
designed so that some of the tutorial exercises will be easier if the practice
questions have been attempted beforehand.

Course Website

Course material can be found at http://web.comlab.ox.ac.uk/teaching/

courses/discretemaths/. The lecture notes will be published about a week
after the corresponding lectures (if you want timely notes, you will have to
attend), and the tutorial exercise sheets will appear in weeks 1, 3, 5, 7 (and
8 for the vacation work).

Chapter 1

Sets

Reading: Ross & Wright: 1.3, 1.4;
Chetwynd & Diggle: 2.1–2.6;
Grimaldi: 3.1, 3.2;
Grossman: 5.1–5.3.

It is necessary to understand the concept of sets to express anything, be it
mathematics or the behaviour of computer systems, formally. Furthermore,
the notation of sets provides a concise way to express statements about
computers. Much of the material in this chapter is probably familiar, but it
is important to begin thoroughly, and sets are also a useful topic with which
to study the writing of mathematical proofs, something which will shadow
the discrete mathematics material throughout this course.

1.1 Defining Sets

Although the idea of a set as a collection of objects (in which neither order
nor duplication are significant) is simple enough, it is rather complicated
to give a formal definition from scratch. We will leave the complexities
to mathematical philosophers and adopt a simple working definition, but
you should know that the subject called axiomatic set theory is deep and
difficult.

Definition A set is an unordered collection of distinct objects. When x

1

2 CHAPTER 1. SETS

is in the set A we say that x is an element (or member) of A and write
x ∈ A. When x is not an element of A we write x /∈ A.

A set can be defined by its members, because two sets are called equal
(written A = B) if they have the same members. We can therefore specify
a set simply by listing its members, for example A = {1, 2, 3} which means
the set A which has members 1, 2, 3. We can say that 1 ∈ A and 4 /∈ A.
Notice the “curly brackets” (called braces) which are traditionally used to
define sets. Because neither duplicates nor order are significant, {3, 2, 1, 2}
represents the same set.

Sets can have infinitely many members, and it is not necessary to list them
all explicitly as long it is clear what is and what is not a member. For
example the description {1, 3, 5, 7, . . .} unambiguously defines the positive
odd integers. Another way to define a set is by a set comprehension:

{x | some condition on x}

which denotes the set whose members are all those meeting the condition.
For example,

{x | x ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} and x is divisible by 4}

is an over-complicated definition of the set {4, 8}. The symbol “|” is some-
times alternatively written as “:”; it is pronounced “such that”. (A note for
the formalist: axiomatic set theory has particular things to say about set
comprehensions – it is possible to misuse them to define things which are
not actually sets – but that will never be an issue for us in this course.)

There are two shorthands often used with set comprehensions. First, if
the condition includes membership of a set, that part of the condition is
sometimes written before the bar, for example

E = {n ∈ N | n/2 ∈ N}

as a definition of the even integers. Second, one sometimes writes a function
before the bar (functions are the subject of Chapter 2): all values of the
function, whose arguments satisfy the condition, define the set. In this way
the set E can be alternatively defined by

E = {2m | m ∈ N}.

1.1. DEFINING SETS 3

A note on alphabets. There is no fundamental distinction between “element”
and “set”; it is entirely possible for one set to be a member of another, for
example {{1, 2}, {2, 3}} is a set with two members {1, 2} and {2, 3}, each
of which is a set of numbers. (However, it is usually disallowed for any set
to be a member of itself; this is another philosophical question we intend
to avoid.) Many books adopt the practice of using lowercase Roman letters
like x and y for members of sets, and uppercase letters like A and B for
sets; then they sometimes use calligraphic letters like A and B for sets of
sets. However this distinction is artificial (take for example the set {1, {1}}:
it has one member which is a number, and another which is a set) and one
quickly runs out of different alphabets if there are sets of sets of sets of...

Definition Some standard sets are

(i) ∅ = {}, the empty set.

(ii) N = {0, 1, 2, . . .}, the natural numbers
(or nonnegative integers).

(iii) N+ = {1, 2, 3, . . .}, the positive integers.

(iv) Z = {. . . ,−2,−1, 0, 1, 2, . . .}, the integers.

(v) Zn = {0, 1, 2, . . . , n − 1}, the integers modulo n
(for n = 2, 3, 4, . . .).

(vi) Q, =
{

n
d

∣

∣ n ∈ Z and d ∈ N+

}

, the rational numbers.

(vii) R, the real numbers.

It is unambiguous to write Z+ instead of N+, but beware! Some people write
N for the set of positive integers and something like N0 for what we have
called N. And some write P for the set of positive integers, while others use
the same symbol for the set of prime numbers. It is truly unfortunate that
there is no agreement on such basic terminology. The definitions we use are
probably the most common but it is important to check which version is
being used whenever you consult a textbook.

Finally, note the distinction between {} and {{}}; the first is an empty set
with no elements, whereas the second is a set with one element (and this
element happens to be another set).

4 CHAPTER 1. SETS

1.2 Comparing Sets and Writing Proofs

There are ways to compare sets. We have already seen the first of the
following:

Definition When sets A and B have exactly the same members we write
A = B.

When all the elements of A are also members of B we say that A is a subset
of B, and write A ⊆ B. Two alternative ways of saying the same thing are
that A is included in B or that B is a superset of A, written B ⊇ A.

When A ⊆ B and A 6= B we say that A is a proper subset of B, written
A ⊂ B or B ⊃ A. (This means that all members of A are also members of
B, and further that some members of B are not members of A.)

Beware! Some people write A ⊂ B to mean that A is a subset of B, and use
the symbol A (B or A $ B for a proper subset.

For example, we have {2, 3} ⊂ {1, 2, 3}, N+ ⊂ N ⊂ Z, and both ∅ ⊆ A and
A ⊆ A for any set A.

These definitions are also important for what they tell us about proof. Meth-
ods for constructing proofs are an important part of this course. First, what
is a proof? Again this can be cast as a philosophical question, and for now
we will adopt a simplified definition. Whether implicitly or explicitly, prac-
tically all proofs are of statements of the form “if (some hypotheses) then (a
conclusion)”. A proof is a sequence of statements which begin with the hy-
potheses and end with the conclusion, and where each step in the sequence
follows logically from (some of) the previous steps.

The preceding definitions tell us what the form of proofs about sets should
be. If we want to prove “if (some hypotheses) then A ⊆ B” then we should
begin by assuming the hypotheses, suppose that x ∈ A for an arbitrary x,
and try to deduce that x ∈ B. If we want to prove “if (some hypotheses)
then A = B” then it is usual to prove both A ⊆ B and A ⊇ B. This is called
a double inclusion proof. Sometimes the two halves of a double inclusion
proof can be done in a single, reversible, proof. We will see examples of
these mathematical proofs about sets in the next section.

1.3. UNIONS, INTERSECTIONS, AND ALGEBRAIC LAWS 5

1.3 Unions, Intersections, and Algebraic Laws

Now we introduce the most basic operations for combining sets.

Definition The union of sets A and B, written A ∪ B, is the set whose
elements are in A or in B (or both, which normally goes without saying):

A ∪ B = {x | x ∈ A or x ∈ B}.
The intersection of sets A and B, written A∩B, is the set whose elements
are in both A and B:

A ∩ B = {x | x ∈ A and x ∈ B}.
When A ∩ B = ∅ we say that A and B are disjoint.

For example, if A = {0, 1, 2, 3} and E = {n ∈ N | n is even} then A ∪ E =
{0, 1, 2, 3, 4, 6, 8, . . .} and A ∩ E = {0, 2}. If O = {n ∈ N | n is odd} then
E ∪ O = N and E ∩ O = ∅ (E and O are disjoint).

There are many equations involving ∪ and ∩, which hold for all sets. Such
equations are called algebraic laws.

Claim 1.1 For any sets A, B and C, the following are true.
The idempotence laws for ∪ and ∩:

A ∪ A = A, A ∩ A = A.

The commutative laws:
A ∪ B = B ∪ A, A ∩ B = B ∩ A.

The associative laws:
(A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C).

The distributive laws:
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

The one and zero laws:
A ∪ ∅ = A A ∩ ∅ = ∅.

The symmetrical appearance of these laws is no coincidence (it also makes
them easier to remember). You might like to compare these laws with those
of arithmetic, if ∪ is replaced by +, ∩ by ×, and ∅ by 0 (which of the laws
do not hold under this analogy?).

Proof The laws are established by proving that they are correct. Looking

6 CHAPTER 1. SETS

at the definitions of union and intersection, we see that the idempotence
and commutativity laws are immediate and do not require a proof. We will
include here only proofs of one each of the associativity and distributivity
laws.

Let us prove A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). The implicit hypothesis
is simply that A, B and C are sets, so assume this. Recall that, to prove
equality of sets, we usually need a double inclusion proof.

First, suppose that x ∈ A ∪ (B ∩ C). This means that either x ∈ A or
x ∈ B∩C. Now we must do a proof by cases: we know that one of two things
is true, and we must show that either case leads to the desired conclusion.
The two cases are

(i) x ∈ A. Then x ∈ A∪B (by the definition of ∪) and x ∈ A∪C (ditto),
so x ∈ (A ∪ B) ∩ (A ∪ C).

(ii) x ∈ B ∩ C. By the definition of ∩, x ∈ B so x ∈ A ∪ B. But also
x ∈ C so x ∈ A ∪ C. Putting these together, x ∈ (A ∪ B) ∩ (A ∪ C).

So either way, x ∈ (A ∪ B) ∩ (A ∪ C). We have proved that A ∪ (B ∩ C) ⊆
(A ∪ B) ∩ (A ∪ C).

Second, suppose that x ∈ (A∪B)∩ (A∪C). Then we know x ∈ A∪B and
x ∈ A ∪ C. Now unfortunately there are two sets of two cases, making a
total of four possibilities:

(i) x ∈ A and x ∈ A. Then x ∈ A ∪ (B ∩ C).

(ii) x ∈ A and x ∈ C. Using just the former, x ∈ A ∪ (B ∩ C).

(iii) x ∈ B and x ∈ A. Using just the latter, x ∈ A ∪ (B ∩ C).

(iv) x ∈ B and x ∈ C. Together they tell us that x ∈ B ∩ C, so x ∈
A ∪ (B ∩ C).

So in any case x ∈ A ∪ (B ∩ C). We have proved that A ∪ (B ∩ C) ⊇
(A ∪ B) ∩ (A ∪ C).

Between these two halves, we have shown that A∪(B∩C) = (A∪B)∩(A∪C),
completing the proof of one of the distributive laws.

Now let us try to prove A∩ (B ∩C) = (A∩B)∩C. This time we can avoid
the longwinded double inclusion proof, but writing a proof which works both

1.3. UNIONS, INTERSECTIONS, AND ALGEBRAIC LAWS 7

ways:
x ∈ A ∩ (B ∩ C) ⇔ x ∈ A and x ∈ B ∩ C

⇔ x ∈ A and x ∈ B and x ∈ C
⇔ x ∈ A ∩ B and x ∈ C
⇔ x ∈ (A ∩ B) ∩ C

The symbol “⇔” means that one side is true if and only if the other is.
More practically, it means that each step follows from the previous step, but
also each step follows from the next step too. �

Once proved, the algebraic laws allow the possibility of shorter proofs, avoid-
ing having to re-prove everything from scratch. Sometimes a proof can be
carried out entirely using algebraic laws, moving from the LHS (left hand
side) of an equation and using laws to reach the RHS (right hand side) or
vice versa. For example,

(A ∪ B) ∩ (C ∪ D)
= ((A ∪ B) ∩ C) ∪ ((A ∪ B) ∩ D) {distributivity}
= (C ∩ (A ∪ B)) ∪ (D ∩ (A ∪ B)) {commutativity}
= ((C ∩ A) ∪ (C ∩ B)) ∪ ((D ∩ A) ∪ (D ∩ B)) {distributivity}
= (C ∩ A) ∪ (C ∩ B) ∪ (D ∩ A) ∪ (D ∩ B) {associativity}
= (A ∩ C) ∪ (B ∩ C) ∪ (A ∩ D) ∪ (B ∩ D) {commutativity}

while not exactly simple, is shorter than a formal proof from scratch of the
same statement.

The associative law is particularly useful. It tells us that we need not
include parentheses in A ∪ B ∪ C, because whether they are inserted as
(A ∪ B) ∪ C or A ∪ (B ∪ C) it gives the same set. Using the associative
law two or three times, the same is true for A ∪ B ∪ C ∪ D (we used this
implicitly in the preceding proof), and the same law also holds for ∩. This
allows us to use a shorthand for combining the elements of more than two
sets:

Definition The union of the collection of sets A1, A2, . . . , An is the set
whose elements are in any of the Ai:

n
⋃

i=1

Ai = {x | x ∈ Ai for some i}

8 CHAPTER 1. SETS

The intersection of the collection of sets A1, A2, . . . , An is the set whose
elements are in all of the Ai:

n
⋂

i=1

Ai = {x | x ∈ Ai for every i}

The same notation can apply to infinite sequences of sets: elements in any
of A1, A2, . . . make up

⋃∞
i=1 Ai and similarly for intersection. Because of the

commutative and idempotence laws, it does not matter what order the
Ai come in or whether there are repetitions. This allows us to generalise
further, to the intersection or union of a set of sets {Ai | i ∈ I} for some
indexing set I, written

⋃

i∈I Ai.

For example, if we set Mi = {i, 2i, 3i, . . .} (all positive multiples of i) then

4
⋂

i=1

Mi = {12, 24, 36, 48, . . .} = M12,

4
⋃

i=1

Mi = N+

4
⋃

i=2

Mi = {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, . . .},

but
⋂

i∈N+

Mi = ∅.

1.4 Complements, Symmetric Difference, Laws

There are other operations on sets, in addition to union and intersection.
They relate to differences between sets:

Definition The relative complement of B in A, written A \ B, is the
set whose elements are in A but not B:

A \ B = {x | x ∈ A and x /∈ B}.
The symmetric difference of A and B, written A ⊕ B, is the set whose
elements are in one, but not both, of A and B:

A ⊕ B = {x | (x ∈ A and x /∈ B) or (x ∈ B and x /∈ A)}.
In some books, the symmetric difference is written A ∆ B.

1.4. COMPLEMENTS, SYMMETRIC DIFFERENCE, LAWS 9

As a simple example, take A = {1, 3, 4} and B = {3, 5, 7}. Then

A ∪ B = {1, 3, 4, 5, 7} A ∩ B = {3}
A \ B = {1, 4} A ⊕ B = {1, 4, 5, 7}

There are very many algebraic laws relating ∪, ∩, \, and ⊕: too many to
list them all. Here are some of the most important:

Claim 1.2 For any sets A, B and C,
The cancellation laws:

A \ A = ∅, A \ ∅ = A.

The involution law:
A \ (A \ B) = A ∩ B.

De Morgan’s laws:
A \ (B ∪ C) = (A \ B) ∩ (A \ C), A \ (B ∩ C) = (A \ B) ∪ (A \ C).

The right-distributive laws:
(A ∪ B) \ C = (A \ C) ∪ (B \ C), (A ∩ B) \ C = (A \ C) ∩ (B \ C).

(You will investigate some algebraic laws for ⊕ in the tutorial exercises.)

Finally, there is a useful special case of the relative complement construction.
If all the sets we are interested in (for a particular problem, say) are subsets
of a set U then we call U a universe. For example, if we are considering
only positive numbers then U = N+ could be a choice of universe.

Definition If A ⊆ U then we write A for U \A. This is called the comple-
ment of A and is {x | x /∈ A} (under the assumption that all things under
consideration are members of the universe).

(Some books use A′ or Ac for the complement of A.)

The algebraic laws for complements can be derived from those for relative

complements in Claim 1.2. They include the involution law A = A and De
Morgan’s laws

A ∪ B = A ∩ B, A ∩ B = A ∪ B.

10 CHAPTER 1. SETS

1.5 Products and Power Sets

The set operations we have seen only form sets whose members are those
of previously defined sets. The members themselves are not altered, simply
included or excluded from the result. Two other operations – product and
power set – create sets with other members.

Definition We use the symbol (x, y) to mean the ordered pair of x and
y. (x, y) = (x′, y′) if and only if x = x′ and y = y′. Although this is not
a set, we still use the word element in the following context: x is the first
element of (x, y), and y is the second element. The word component is
also used in this way.

If A and B are sets then the cartesian product of A and B, written A×B,
is the set of pairs whose first element is from A and second is from B, in
any combination:

A × B = {(x, y) | x ∈ A and y ∈ B}.

An example of a simple cartesian product is {1, 3, 5} × {2, 4, 6} = {(1, 2),
(1, 4), (1, 6), (3, 2), (3, 4), (3, 6), (5, 2), (5, 4), (5, 6)}.
Cartesian products also obey some algebraic laws. The most important are
the distributive laws:

Claim 1.3
A × (B ∪ C) = (A × B) ∪ (A × C)
A × (B ∩ C) = (A × B) ∩ (A × C)

Proof We just prove the first one. A double inclusion proof is necessary.

First, suppose that (x, y) ∈ A × (B ∪ C). We know that only pairs can be
elements of a cartesian product, which is why we can write it as (x, y) right
from the start. By the definition of cartesian product, we must have x ∈ A
and y ∈ B ∪ C. Either

(i) y ∈ B, in which case (x, y) ∈ A × B and therefore (x, y) ∈ (A × B) ∪
(A × C), or

(ii) y ∈ C, in which case (x, y) ∈ A × C and therefore (x, y) ∈ (A × B) ∪
(A × C).

1.5. PRODUCTS AND POWER SETS 11

We have shown that A × (B ∪ C) ⊆ (A × B) ∪ (A × C).

Second, suppose that (x, y) ∈ (A × B) ∪ (A × C); again, only pairs can be
members of this set. Then either

(i) (x, y) ∈ A×B, in which case x ∈ A and y ∈ B and therefore y ∈ B∪C,
so (x, y) ∈ A × (B ∪ C), or

(ii) (x, y) ∈ A×C, in which case x ∈ A and y ∈ C and therefore y ∈ B∪C,
so (x, y) ∈ A × (B ∪ C).

We have shown that A×(B∪C) ⊇ (A×B)∪(A×C), completing the double
inclusion proof. �

(In practice we would not normally write out all the details of proofs like this.
When two cases are “symmetrical” – the same, with some letter or symbol
swapped for another, as in both of the proof-by-cases above – then it is
sensible to include only one and say that the other follows “by symmetry”.)

We can extend ordered pairs to ordered triples and more generally to ordered
n-tuples (x1, x2, . . . , xn). The cartesian product extends to finite products
�n

i=1 Ai. There are two minor differences between the multiple form of the
cartesian product and those of union and intersection we saw earlier. First,
we generally only allow finite products. Second, the standard cartesian
product is not associative because A × (B × C) contains elements of the
form (a, (b, c)) (where a ∈ A etc.) but (A×B)×C contains elements of the
form ((a, b), c). These are not equal elements, because their first and second
components are not the same, nor is either equal to the 3-tuple (a, b, c).
However there is a natural correspondence between all these elements and
so it is quite common to pretend that they are all the same.

Furthermore, the cartesian product is not commutative because the elements
of A×B are reversed compared with B×A. Even though there is a natural
correspondence between them, it is usual to keep these sets distinct.

It is convenient to write A2 for A × A, A3 for A × A × A, and so on.

Cartesian products occur particularly often in computer science specifica-
tions, combining multiple observations into one compound observation. Sup-
pose that a program involves two counters, which can only be positive inte-
gers, and an accumulator takes positive or negative integers. We might rep-
resent the state of the program at any instant by an element of N+×N+×Z,
with the first two elements representing the values of the counters and the
last element representing the accumulator.

12 CHAPTER 1. SETS

Finally, we have the power set:

Definition If A is a set then the power set of A, written P(A), is the set
of all subsets of A:

P(A) = {B | B ⊆ A}.

(Remember that this includes the case B = A).

Power sets rapidly become large and complex. For example, P(∅) = {∅},
P(P(∅)) = {∅, {∅}}, P(P(P(∅))) = {∅, {∅}, {{∅}}, {∅, {∅}}}, In gen-
eral, P({1, 2, . . . , n}) consists of 2n elements, in which each of 1, 2, . . . , n is
included or not included, in every combination.

1.6 Cardinality

The size of a set is called its cardinality, and it is common to write #A or
|A| for the cardinality of A. When A is a finite set this is simply the number
of elements: |∅| = 0 and |{1, 2, 4, 8, 16}| = 5. Quite a substantial part of
discrete mathematics is involved with counting the cardinality of finite sets,
and we will learn techniques for doing so in Chapter 3.

In the tutorial exercises you will be asked how the cardinality of combined
sets A∪B, A∩B, A\B, A⊕B, A×B, and P(A) depend on the cardinality
of A and B.

In this course we shall only consider the cardinality of finite sets. You should
know that cardinality can be extended to infinite sets, and not all infinite
sets have the same cardinality (some infinite sets are “bigger” than others).

1.7 Interesting Diversion: Bags

In computer science, it is often useful to consider unordered collections of
objects where duplicates are allowed. These are known as bags. Some au-
thors write bags in the same way as sets, but some use special bag-brackets.
For example H1, 2, 3, 3I defines a bag in which the elements 1 and 2 occur
once, and 3 occurs twice. It is identical to H3, 1, 2, 3I but not H1, 2, 3I.

Bags are not uniquely defined by knowing which elements are and are not
members: the number of occurrences also matters. The simplest way to

1.7. INTERESTING DIVERSION: BAGS 13

formalize bags is to use a function to count the number of occurrences of
each element (functions are the subject of the next chapter).

Most of the same operations can be defined for bags as for sets. The union
of two bags adds the number of occurrences of each element; the inter-
section takes the minimum number of occurrences of each. For example,
H1, 2, 3, 3I ∪ H2, 3, 4I = H1, 2, 2, 3, 3, 3, 4I while H1, 2, 3, 3I ∩ H2, 3, 4I = H2, 3I.
Bag difference subtracts elements (although, of course, there can never be a
negative number of occurrences of any element): H1, 2, 3, 3I\H2, 3, 4I = H1, 3I.

Some of the algebraic laws for sets also hold for bags: commutatively and as-
sociativity of union and intersection, for example. Others fail: idempotence
(H1I ∪ H1I = H1, 1I, not H1I), and (importantly) some of the distributivity
laws (H1I ∩ (H1I ∪ H1I) = H1I, not H1, 1I) are false.

Few mathematics books mention bags, but they are useful to computer
scientists and are particularly relevant to the theory of databases.

14 CHAPTER 1. SETS

Practice Questions

1.1 Which of the following statements are true?

(i) ∅ ∈ ∅, (ii) ∅ ⊂ ∅, (iii) ∅ ⊆ ∅,
(iv) ∅ ∈ {∅}, (v) ∅ ⊂ {∅}, (vi) ∅ ⊆ {∅},
(vii) ∅ ∈ {{∅}}, (viii) ∅ ⊂ {{∅}}, (ix) ∅ ⊆ {{∅}}.

1.2 Let A = {3, 2, 1} and B = {3, 4} and suppose that the universe U =
{1, 2, 3, 4, 5}. Compute

(i) A ∪ B, (ii) A ∩ B, (iii) A \ B,
(iv) B \ A, (v) A ⊕ B, (vi) A × B,

(vii) P(A). (viii) A, (ix) B,

(x) A ∪ B, (xi) A ∩ B.

Write down the cardinality of each of the above sets.

1.3 For each i ∈ N+, let Ai = {−i,−i+1, . . . ,−1, 0, 1, . . . , i− 1, i}. What
are

⋃∞
i=1 Ai and

⋂∞
i=1 Ai?

1.4 To prove that something is not true it is usually necessary to give
a counterexample: a concrete example which demonstrates the falsity
of a statement. The following statements are not, in general, true; find
counterexamples.

(i) A ∩ ∅ = A.

(ii) A \ B = B \ A.

(iii) A \ (B ∪ C) = (A \ B) ∪ (A \ C).

(iv) A ∩ (B ∪ C) = (A ∩ B) ∪ C.

(Quite often, false statements have very simple counterexamples so it makes
sense to look at small sets.)

1.5 Using only the algebraic laws in Claims 1.1 and 1.2, prove that

(A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B)

(This gives two equivalent formulae for A ⊕ B.)

1.6 Prove from scratch that A ⊆ B and B ⊆ C together imply A ⊆ C.

1.7 Prove that whenever A ⊆ B, P(A) ⊆ P(B).

1.8 The equation P(A ∪ B) = P(A) ∪ P(B) is not always true. Find a
counterexample.

PRACTICE QUESTIONS 15

16CHAPTER1.SETS
Answers to Chapter 1 Practice Questions

1.1 (iii), (iv), (v), (vi), (viii) and (ix) are true.

1.2 (i) {1, 2, 3, 4}, (ii) {3}, (iii) {1, 2}, (iv) {4}, (v) {1, 2, 4},
(vi) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)},
(vii) {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}},
(viii) {4, 5}, (ix) {1, 2, 5}, (x) {5}, (xi) {5}.
Their cardinalities are (in order): 4,1,2,1,3,6,8,2,3,1,1.

1.3 Z and {−1, 0, 1}.
1.4 There are many answers; the simplest, but perhaps not most informa-
tive, are (i) A = {1}; (ii) A = ∅, B = {1}; (iii) A = {1}, B = {1}, C = ∅;
(iv) A = ∅, B = ∅, C = {1}. In each case, the LHS of the statement equals
∅ and the RHS equals {1}.
1.5 Starting from the RHS, we have
(A ∪ B) \ (A ∩ B) = ((A ∪ B) \ A) ∪ ((A ∪ B) \ B)

= (A \ A ∪ B \ A) ∪ (A \ B ∪ B \ B)
= ∅ ∪ B \ A ∪ A \ B ∪ ∅
= A \ B ∪ B \ A

which equals the LHS. At each stage we used (sometimes more than one law
per step): De Morgan’s law; right-distributivity of \ over ∪; associativity of
∪ and cancellation of \; zero and commutativity of ∪.

1.6 Suppose that A ⊆ B and B ⊆ C; we must now show that x ∈ A
implies x ∈ C. Whenever x ∈ A, we must have x ∈ B (because of the first
assumption) and therefore x ∈ C (because of the second). This completes
the proof.

1.7 We must show that whenever C ∈ P(A), C ∈ P(B). So suppose that
C ∈ P(A); this means that C ⊆ A, and therefore C ⊆ B (by the previous
exercise), which is exactly what we needed.

1.8 In searching for a counterexample, you can rule out looking at cases
when the equation is known to be true. By the previous two exercises and
the algebraic laws for ∪, the given statement is true at least whenever A ⊆ B
or vice versa. So try A = {1} and B = {2}. P(A∪B) = {∅, {1}, {2}, {1, 2}}
but P(A) ∪ P(B) = {∅, {1}, {2}}; these two sets do not have all the same
elements so they are not equal.

Chapter 2

Functions

Reading: Ross & Wright: 1.5, 1.7;
Chetwynd & Diggle: 1.5, 3.5–3.8;
Grimaldi: 5.2, 5.3, 5.6;
Grossman: 6.1, 6.2.

Functions, and their more general counterparts relations (which we will meet
in Chapter 4), are ways of associating elements of one set with elements of
another. You are probably used to functions as “operations” on sets and we
will introduce them in the same style. We will also meet two (related) proof
techniques: proof of the contrapositive, and proof by contradiction.

2.1 Intervals

Before we introduce functions, though, it will be convenient to define some
new sets. They are subsets of R with the interval property:

Definition For I ⊆ R, I is an interval if, whenever x, z ∈ I with x < y < z
then y ∈ I.

This means that there are no “gaps” in the interval. It is important to note
that intervals are defined to be subsets of R (not Z or Q).

There are some useful shorthands associated with intervals.

17

18 CHAPTER 2. FUNCTIONS

Definition If a, b ∈ R and a < b we define the following sets:

(a, b) = {x ∈ R | a < x < b} [a, b] = {x ∈ R | a ≤ x ≤ b}
(a, b] = {x ∈ R | a < x ≤ b} [a, b) = {x ∈ R | a ≤ x < b}

(a,∞) = {x ∈ R | a < x} [a,∞) = {x ∈ R | a ≤ x}
(−∞, b) = {x ∈ R | x < b} (−∞, b] = {x ∈ R | x ≤ b}

The idea is that “round brackets” indicate that the endpoint is not included,
and “square brackets” that the endpoint is included. Remember that ∞ and
−∞ are not elements of R – they are not numbers at all – so they could
never be included in an interval. (−∞,∞) is another notation for the whole
set R, and [a, a] is the singleton set {a}. The notation (a, a) is not used, but
if it were then it would represent the empty set.

Intervals (a, b), (a,∞) or (−∞, b) are called open intervals. Those of the
form [a, b] are called closed intervals and those with mixed brackets are
called half-open intervals.

2.2 Definition of Functions

The traditional definition of function has a rather abstract formulation. We
will postpone that until you have seen relations in Chapter 4, and adopt a
simpler definition for now.

Definition A function consists of three parts:

(i) A set A called the domain,

(ii) A set B called the codomain,

(iii) A map which associates every element of A with exactly one element
of B.

We can define a function f by specifying the three components, and we
usually do this in the following notation. f : A → B deals with the first
two, specifying that f is to be a function whose domain is A and codomain
is B (when A = B we can say that f is a function on A). Then we write
either f : a 7→ b or f(a) = b, to say that f associates the element a ∈ A
with b ∈ B. Either we must give every such map, one for each element of
A, or write a formula for b in terms of a.

2.2. DEFINITION OF FUNCTIONS 19

Given a function f , we write Dom(f) for the domain of f .

Simple examples of functions include f : R → [0,∞), f : x 7→ x2 (which
defines the squaring function on the real numbers), g : N → N, g : n 7→ n+1
(the add-one function on the natural numbers), h : N+ → N+, h : n 7→
1·2·3 · · ·n (the factorial function, usually extended to N by setting h(0) = 1),
for any set A the function idA : A → A given by idA : x 7→ x (the so-called
identity function on A), and more complex mathematical functions such
as sin : R → R.

Two functions f and g are equal if all three of their components are
the same: the domain of f must match the domain of g, likewise for the
codomain, and we need f(a) = g(a) for every a ∈ Dom(f).

We can think of the elements of the domains as inputs to f , and those of
the codomain as the outputs. In practice, we often use functions with more
than one input. Formally, these are functions whose domain is a cartesian
product. For example the function which performs addition of real numbers
is + : R2 → R. There is a little more on functions with two inputs in
Section 2.6.

It is important that a function must associate every element of A with
exactly one element of B. It is not allowed for a function to be “multi-
valued” (although some mathematics books on complex analysis do consider
so-called multifunctions), neither is it allowed for a function to be undefined
at some points of A. So f : R → R, f : x 7→ log x is not a function because
it is not defined for negative numbers. Nonetheless, in computer science it
can be useful to discuss functions which are not defined everywhere on their
domain, so we introduce

Definition A partial function has a domain A and codomain B, and
associates every element of A with at most one element of B.

When it is important to stress that a function is not partial, i.e. it is defined
everywhere on the domain, we say that it is a total function.

An example often found in computing is the partial function which associates
the input of some particular program with its output (to do so we must
express the possible inputs and outputs as sets, but they do not have to be
sets of numbers). Because some programs fail to produce an output, this
function may well be partial.

20 CHAPTER 2. FUNCTIONS

2.3 Properties of Functions

It is not necessary for every element of B to be involved in the map f : A →
B. We can pick out those which are possible “outputs” of f :

Definition If f : A → B then the image of f , written Im(f), is the set
{b ∈ B | f(a) = b for some a ∈ A}.
(Another way of writing this is {f(a) | a ∈ A}.)

The image of f is also sometimes referred to as the image of A under f .
Some books use the word range instead of image.

Using the examples of the last section, f : R → [0,∞), f : x 7→ x2 has
Im(f) = [0,∞); g : N → N, g : n 7→ n + 1 has Im(g) = N+; h : N+ → N+,
h : n 7→ 1 · 2 · 3 · · ·n has Im(h) = {1, 2, 6, 24, 120, . . .}. The image of sin :
R → R is the interval [1, 1] = {x ∈ R | − 1 ≤ x ≤ 1}.
Now some properties which reflect how accurately the function f : A → B
matches up the sets A and B:

Definition Let f : A → B be a function.

We say that f is onto if every element of B is a possible output of f ;
formally, if for every b ∈ B there is some a ∈ A with f(a) = b. (This is
equivalent to saying: Im(f) = B.)

We say that f is 1-1 if no element of B is the output corresponding to two
or more distinct inputs; formally, if for every distinct pair a1, a2 ∈ A we
have f(a1) 6= f(a2).

We say that f is bijective if it is both onto and 1-1.

In some books the terminology is different:

• surjective is used instead of onto, and an onto function is a surjection.

• injective is used instead of 1-1, and a 1-1 function is an injection.

• A bijective function is called an bijection.

Although strictly speaking a bijection is a function from A to B, because
of the results of Section 2.5 it is common to say that a bijection is between

A and B. The phrase one-to-one map is also sometimes used to mean a
bijection, but this is too easily confused with “1-1”.

2.4. CONTRAPOSITIVE AND PROOF BY CONTRADICTION 21

Here are some examples. On any set A, the identity function f(x) = x is
both onto and 1-1 (so it is a bijection). The function g : N → N, g : n 7→ n+1
is 1-1 because n1 + 1 6= n2 + 1 if n1 6= n2, but it is not onto because there
is no n ∈ N with n + 1 = 0. On the other hand, the very similar function
g′ : Z → Z, g′ : n 7→ n + 1 is onto as well as 1-1, so it is bijective.

We see that the domain and codomain are very important to knowing
whether a function is 1-1, or onto, or both. The function h : R → R,
h : x 7→ x2 is neither 1-1 (because x and −x square to the same number)
nor onto (because no real number squares to a negative number) but the
similar function h′ : [0,∞) → [0,∞), h′ : x 7→ x2 is both 1-1 and onto. By
reducing the codomain to match the image, a function can always be made
onto; it is also possible, but usually not desirable, to cut down the domain
of a function to make it 1-1.

If f : A → B is a bijection, this tells us interesting things about the sets
A and B: their elements are paired up, so |A| = |B | (indeed, this is part
of the definition of cardinality for infinite sets). This fact can be helpful
in counting the number of members of a set A: sometimes it is easier to
count the members of a different set B and then match up the elements by
finding a bijection between A and B. Techniques for counting sets will be
considered in Chapter 3.

2.4 The Contrapositive and Proof by Contradic-

tion

Putting aside functions for a moment, we need to introduce a little bit of
logic. Most interesting statements are of the form “if A then B”, which we
also write A ⇒ B. The contrapositive statement is “if not B then not
A”, or ¬B ⇒ ¬A. It is important to know that these two statements are
equivalent.

It is a very common mistake to confuse A ⇒ B and B ⇒ A. They are not

the same. A simple example is the statement “if it is raining, then there
are clouds overhead” (let us say that this is true). This is not the same as
“if there are clouds overhead, then it is raining” (which we can agree is not
true). On the other hand, the contrapositive of the first statement is “if
there are no clouds overhead, it cannot be raining” (true).

22 CHAPTER 2. FUNCTIONS

Because A ⇒ B and the contrapositive ¬B ⇒ ¬A are equivalent, proving
one is sufficient to prove the other. Sometimes it is easier to prove the
contrapositive of the statement you want. This is particularly applicable to
proving that a function is 1-1: the definition says that a1 6= a2 ⇒ f(a1) 6=
f(a2), but it is often convenient to prove the contrapositive f(a1) = f(a2) ⇒
a1 = a2.

Related to the idea of contrapositive is a proof technique called proof by
contradiction. Suppose that, under some hypotheses, we want to prove a
statement S. We assume that S is false, and then continue proving things,
trying to find a contradiction (something which is clearly false). Once we
have got to the contradiction we deduce that the assumption that S was
false must have been wrong, and so S is true.

The classic example of a proof by contradiction is of
√

2 /∈ Q. Recall that
Q is the set of rational numbers (those which can be represented as a
fraction); numbers in R \ Q are called irrational.

Claim 2.1
√

2 is irrational.

Proof Let us suppose, for a contradiction, that
√

2 ∈ Q. Then
√

2 = m/n (2.1)

for some integers m and n, and furthermore we can suppose that the fraction
is in “lowest terms”, so m and n have no common factors. Multiplying the
equation (2.1) by n and squaring gives

2n2 = m2 (2.2)

so m2 must be even, which means that m must be even (proof of the contra-
positive: if m is odd then m2 is the product of odd numbers and therefore
odd). Let us write m = 2m′, and substitute into (2.2), giving

n2 = 2m′2

so n is also even, and this is now a contradiction because we shown that 2
is a common factor of m and n, yet m and n had no common factors. So
the assumption that

√
2 ∈ Q must be wrong: we have proved that

√
2 is

irrational. �

Now for a related proof by contradiction, which is relevant to the topic of
this chapter:

2.4. CONTRAPOSITIVE AND PROOF BY CONTRADICTION 23

Claim 2.2 The function f : Q → Q, f(x) = x5 + x3 is not onto.

Proof It is worth noting that f is well-defined because the output is
always rational when the input is rational (sums, products, and integer
powers of rational numbers are always rational).

To prove that f is not onto it is only necessary to find one example of a
rational number y such that f(x) 6= y for any x. f can take arbitrarily large
or small values, so we must look for a “gap” in the image (which is difficult
because there is no closed form for determining x from f(x)). y = 0 will not
do, because f(0) = 0; y = 2 will not do either, because f(1) = 2. We will
prove that y = 1 has the required property.

Suppose, then, for a contradiction that there is some x ∈ Q with f(x) = 1.
In other words,

(

m
n

)5
+

(

m
n

)3 − 1 = 0 (2.3)

for some m, n ∈ Z and we may assume, as before, that m and n have no
common factors. Multiplying through by n5 gives

m5 + m3n2 − n5 = 0. (2.4)

Now what is the parity of m and n? (The parity of a number is whether it
is even or odd). There are four cases:

(i) m and n are both odd. But then m5 is odd, m3n2 is odd, and n5 is
odd, so the left of (2.4) is odd. The right side is even, so this is a
contradiction.

(ii) m is odd and n is even. But then m5 is odd, m3n2 is even, and n5 is
even, and the same argument applies.

(iii) m is even and n is odd. But then m5 is even, m3n2 is even, and n5 is
odd, and the same argument applies.

(iv) m is even and n is even. But m and n are supposed to have no common
factors, so this is a contradiction.

In each case there is a contradiction. So the assumption that x ∈ Q must
be false. This completes the proof that f is not onto, because 1 is not in
the image of f . �

Proofs by contradiction can seem a bit strange, because we write down state-
ments which are false (normally we only write true statements in a proof).

24 CHAPTER 2. FUNCTIONS

One finds oneself writing down more and more bizarre-looking mathematics,
until the contradiction is so obvious that we can finish the proof.

The similarity between proof of the contrapositive and proof by contradic-
tion is that they both begin by assuming the falsity of the (conclusion of
the) statement we are trying to prove. Proof of the contrapositive tries to
deduce that the hypotheses of the statement are false; proof by contradiction
assumes that they are true, and tries to find a contradiction. As a result,
it is often harder to construct a proof by contradiction, because one does
not know “where to aim for”. There is a school of thought which says that
proofs by contradiction should be avoided unless there is no alternative.

2.5 Operations on Functions: Composition and

Inverse

Applying one function to the result of another is called a composition:

Definition If f : A → B and g : B → C then their composition is the
function g ◦ f : A → C given by (g ◦ f)(x) = g(f(x)).

g ◦ f can be pronounced “g after f”. In some fields of computer science
it might be written f ; g (“f then g”). It is important that the codomain
of f matches the domain of g exactly, otherwise the functions cannot be
composed.

For a simple example, consider f : R → R given by f(x) = 2x + 3 and g :
R → R given by g(x) = x2. Both compositions g◦f and f ◦g exist, and both
are functions on R. We have (g ◦ f)(x) = (2x+3)2 and (f ◦ g)(x) = 2x2 +3.

The example illustrates that g ◦ f and f ◦ g need not be equal (to make this
explicit we should give an element of R for which the values of the functions
g ◦ f and f ◦ g disagree: x = 0 will do). So the composition operation is
not necessarily commutative, although for some choices of f and g it is
possible for g ◦ f and f ◦ g to be equal functions.

On the other hand,

Claim 2.3 Composition of functions is associative. That is, if f : A → B,
g : B → C, h : C → D then the compositions h ◦ (g ◦ f) and (h ◦ g) ◦ f both
exist, and are equal functions.

2.5. COMPOSITION AND INVERSE 25

Proof Because the domain of g matches the codomain of f , and the domain
of h matches the codomain of g, all the compositions exist. Furthermore,
h ◦ (g ◦ f) : A → D and (h ◦ g) ◦ f : A → D so it only remains to check that
h ◦ (g ◦ f) and (h ◦ g) ◦ f agree on any input.

Let a be any member of A. On one hand we have (h ◦ (g ◦ f))(a) = h((g ◦
f)(a)) = h(g(f(a))); on the other ((h◦g)◦f)(a) = (h◦g)(f(a)) = h(g(f(a))),
so the two functions are equal. �

If we think of a function as an “action”, “changing” elements of the domain
into elements of the codomain, then it becomes natural to ask whether the
effect of the action can be undone. That is, can we reverse the function?
When this is possible (it is not always) then we have an inverse function:

Definition If f : A → B and g : B → A satisfy g ◦f = idA and f ◦g = idB

then we say that g is the inverse function of f and write g = f−1.

(We have written “the” inverse because it is a consequence of the definition,
although we will not prove it, that there can only be at most one inverse for
f .)

That is, f−1(f(a)) = a and f(f−1(b)) = b for each a ∈ A and b ∈ B; it is
necessary for both equations to hold. Simple examples include f : Z → Z,
f : n 7→ n + 1 which has inverse f−1 : Z → Z, f : n 7→ n − 1; g : [0,∞) →
[0,∞), and g : x 7→ x2, which has inverse g−1 : x 7→ +√x.

To try to find an inverse for a function f it is usual to write y = f(x)
and attempt to rearrange the equation to the form x = g(y), in which
case g = f−1. For example, to find the inverse of f : (0, 1) → (1,∞),
f(x) = 1/(1 − x) we write y = 1/(1 − x), so 1/y = 1 − x, so x = 1 − 1/y.
This is well-defined on (1,∞) so g : (1,∞) → (0, 1), g(y) = 1 − 1/y is the
inverse of f .

However, not all functions have an inverse. First, f(f−1(b)) = b is impossible
if b /∈ Im(f), so we know that f cannot have an inverse if it is not onto. Sec-
ond, if f(a1) = f(a2) for a1 6= a2 then necessarily f−1(f(a1)) = f−1(f(a2))
so we cannot have both f−1(f(a1)) = a1 and f−1(f(a2)) = a2. Therefore f
cannot have an inverse if it is not 1-1. Put together, we have proved that a
function which has an inverse must be bijective. The converse is also true,
although we will not prove it now. So

26 CHAPTER 2. FUNCTIONS

A function f : A → B has an inverse if and only if f is bijective.

Finally, we introduce one other operation on functions, formalising the idea
of cutting down a domain but keeping all the relevant parts of the map.

Definition If f : A → B is a function and A′ ⊆ A then the restriction of
f to A′ is f↾A′ : A′ → B given by f ′(a) = f(a) for each a ∈ A′.

2.6 Interesting Diversion: Binary Operators

Functions of two inputs play a special role in both mathematics and com-
puter science. A function f : A×A → A, where the possible values of both
inputs matches that of the output, is called a binary operator on A. Ex-
amples include: addition and multiplication of numbers or matrices; union,
intersection, relative complement, and symmetric difference of sets (as long
as the sets are restricted to a particular universe); and concatenation of
strings.

(Why must sets be restricted to a particular universe? It is a technicality.
We may not define, for example, ∪ : S ×S → S as the full union “function”
because the domain and codomain of a function must be sets. S would have
to be the set of all sets and, it turns out, the collection of all sets is one of
those objects which cannot itself be a set. But if given a universe U we can
define union, intersection, and so on for subsets of U by taking S = P(U).)

It is quite common for binary operators to be written infix, meaning that
the name of the function comes in between its two arguments, instead of
in front of them (prefix). For example the addition operator on the real
numbers + : R×R → R is usually written x + y rather than +(x, y). There
are some particularly interesting properties which some binary operators
possess:

Definition We say that a binary operator · on A:

• is idempotent if x · x = x for all x ∈ A.

• is commutative if x · y = y · x for all x, y ∈ A.

• is associative if (x · y) · z = x · (y · z) for all x, y, z ∈ A.

• has an identity element e ∈ A if e · x = x · e = x for all x ∈ A.

2.6. INTERESTING DIVERSION: BINARY OPERATORS 27

For subsets of some universal set, the union binary operator has all these
properties (remember the algebraic laws for sets) with the identity element
being ∅. The intersection binary operator also has all the properties, with
the identity element being the universal set U . Addition and multiplication
of numbers is commutative, associative, and has an identity (zero in the case
of addition, one in the case of multiplication) but not idempotent. Multi-
plication of matrices is associative and has an identity (the identity matrix)
but not idempotent or commutative; the same is true of concatenation of
strings.

Binary operators are equally important to the most abstract of mathematics
as to computer science. Those which are associative and have an identity
element are called monoids, and they occur often in the theory of program-
ming.

28 CHAPTER 2. FUNCTIONS

Practice Questions

2.1 Which of the following are true?

(i) {0, 1} ⊆ (0, 1), (ii) {0, 1} ⊆ [0, 1],
(iii) (0, 1) ⊆ [0, 1), (iv) (0, 1) ⊆ Q,

(v) (0, 1) =
∞
⋃

i=1

(

0, n−1
n

)

, (vi) (0, 1) =
∞
⋂

i=1

(

− 1
n , n+1

n

)

.

2.2 Show that
(A \ B) ∩ (B \ A) = ∅

using a proof by contradiction.

2.3 Why does f : R → R, f : x 7→ 1/x not define a function?

2.4 Which of the following functions are 1-1, and which are onto? For
any which are bijective, compute the inverse function.

(i) f : R → R, f(x) = e−x.

(ii) f : R → (0,∞), f(x) = e−x2
.

(iii) f : R → [−1, 1], f(x) = cos x.

(iv) f : R → R, f(x) =

{

1/x, if x 6= 0,

0, if x = 0.

2.5 For exactly which sets A is the constant function f : A → N, f(x) = 0
injective? For which sets A is it surjective?

2.6 For which n ∈ N is the function f : R → R, f(x) = xn injective? For
which is it surjective?

2.7 Let f : A → B and g : B → C. Prove that if f and g are both onto,
then g ◦ f is onto.

2.8 Let f : R → R, f(x) = 3x + 1, g : R → R, g(x) = (x − 1)3. Compute

(i) g ◦ f, (ii) f−1, (iii) g−1,
(iv) (g ◦ f)−1, (v) f−1 ◦ g−1.

PRACTICE QUESTIONS 29

30CHAPTER2.FUNCTIONS
Answers to Chapter 2 Practice Questions

2.1 (ii), (iii) and (v) are true.

2.2 Suppose for a contradiction that x ∈ (A \ B) ∩ (B \ A). Therefore
x ∈ A \B and x ∈ B \A, so x ∈ A and x /∈ B and x /∈ A and x /∈ B. This is
a contradiction, so the supposition that there was any x in (A\B)∩ (B \A)
is false, so (A \ B) ∩ (B \ A) = ∅.
2.3 It does not define a value for f(0).

2.4 (i) 1-1 but not onto (does not produce negative values);
(ii) neither 1-1 nor onto (x and −x map to the same result, does not produce
values greater than 1);
(iii) onto but not 1-1 (x and 2kπ ± x, for k ∈ Z, map to the same result);
(iv) 1-1 and onto, and the function is its own inverse.

2.5 f(x) = 0 is not injective if f(a1) = f(a2) for distinct a1 and a2 in A;
since this equation is always true, f can only be injective if there are not a
distinct pair of elements of A. Therefore f is injective if and only if A = ∅
or A = {a}, a singleton set.
f can never be surjective.

2.6 It is both injective and surjective when n is odd, and neither when n
is even.

2.7 Assume that f and g are onto. (To show that g ◦ f is onto we must
show that, for any c ∈ C, there is some a ∈ A with g(f(a)) = c.) Because g
is onto, there is b ∈ B with g(b) = c, and because f is onto, there is a ∈ A
with f(a) = b. Then, for any c ∈ C, we have shown that there is an a
satisfying g(f(a)) = g(b) = c, as required.

2.8 All functions involved map R to R. (i) x 7→ 27x3, (ii) x 7→ (x − 1)/3,
(iii) x 7→ 3

√
x + 1, (iv) x 7→ 3

√
x/3, (v) x 7→ 3

√
x/3. (It is not a coincidence

that the last two are equal.)

Chapter 3

Counting

Reading: Ross & Wright: 5.1, 5.3, 5.4;
Chetwynd & Diggle: 4.1–4.6;
Grimaldi: 1.3, 1.4;
Grossman: 9.1–9.5.

Counting things is central to discrete mathematics, and has applications
throughout computer science: to compute how much memory a program
uses, or how long it takes to run, or indeed sometimes whether it will work
at all. Some textbooks use the phrase enumerative combinatorics as a
pretentious synonym for “counting”.

The things we count are objects in sets, and the number of objects is the set’s
cardinality. The set is defined as all the objects with a certain property.
Usually we begin by abstracting the problem into the familiar language of
discrete maths. For example, the problem of counting the number of ways to
distribute n identical coins amongst m people, such that each person gets at
least one coin, is cast formally by associating a distribution of coins with an
m-tuple indicating the number of coins given to each person. This effectively
establishes a bijection between the problem and a set which we hope to be
able to count (recall that bijections preserve cardinality). So in this example
we would need to find |{(a1, a2, . . . , am) ∈ Nm | ai ≥ 1 for all i, and a1 +
a2 + · · · + am = n}|.
This chapter is devoted to techniques to help answer such questions, in-
troduced by a series of examples. However, some simply-posed counting

31

32 CHAPTER 3. COUNTING

questions can be very difficult to answer. The techniques covered here are
sufficient to get started, and they only scratch the surface of a huge topic.

3.1 Laws of Sum and Product

In counting, as with so many other mathematical challenges, it is usually
helpful to break down the problem into smaller parts. Then to combine
the answers of counting subproblems we need some rules. There are three
common laws here, although they are sometimes considered so obvious that
they are not listed in textbooks. Since counting is about cardinality, it is not
surprising that the laws derive from equations relating cardinality of sets.

The first counting law derives from the following fact: if A and B are disjoint
finite sets then |A ∪ B | = |A| + |B |.
Law of Sum: Let P1 and P2 be properties of objects which are exclusive
(they cannot both be true of any object). The number of objects with either

property P1 or property P2 is the number with property P1 plus the number
with property P2.

This law extends to any number of properties as long as they are all pairwise
exclusive (no two can happen at once). We will meet a more substantial
generalisation, to non-exclusive properties, in Sect. 3.3.

Example 3.1 How many positive integers less than a million have an odd
number of digits?

Answer In the absence of any other instructions we should assume that
the numbers are written in normal decimal notation, without leading zeros
(i.e. 123 not 000123).

Positive integers less than a million have no more than 6 digits, so we need
to find the number of positive integers with 1, 3, or 5 digits. These are
exclusive properties because no integer has both m and n digits if m 6= n.

So how many positive integers have 1 digit? Clearly, the answer is 9.

How many have 3 digits? These are all the integers from 100 to 999, of
which there are 999− 100+1 = 900 (the number of integers between m and
n > m, inclusive, is n − m + 1; n − m is the number from m to n including
only one of the two endpoints).

3.1. LAWS OF SUM AND PRODUCT 33

How many have 5 digits? These are all the integers from 10000 to 99999, of
which there are 99999 − 10000 + 1 = 90000.

Finally, by the sum law, there must be 9 + 900 + 90000 = 90909 positive
integers less than a million with an odd number of digits. •

The second law, which is really just a rearrangement of the first, derives
from this fact about sets: if A and B are finite sets, with B ⊆ A, then
|A \ B | = |A| − |B |.
Law of Subtract: Let P1 and P2 be properties, such that P1 is true at
least whenever P2 is. Then the number of objects with property P1 but not

P2 is the number with property P1 subtract the number with property P2.

Finally, the most important law relates to independent properties and de-
rives from this fact: |A × B | = |A||B |.
Law of Product: Suppose that we are counting the number of ways of
making a sequence of choices, and the choices are independent in the sense
that the number available at each stage does not depend on the choices made
previously. Then the total number of ways of making the sequence of choices
is the product of the number of choices at each stage.

Here is an example for which the solution combines the laws of subtract and
product:

Example 3.2 How many 6-digit positive integers contain at least one
digit 7?

Answer There are 999999 − 100000 + 1 = 900000 6-digit numbers.

How many do not contain at least one digit 7? We use the product law:
the first digit can be any one of 8 possibilities (anything but 0 or 7); the
second through sixth digits can be any one of 9 (anything but 7). These
are independent: whether the first digit is 0 or 7 does not affect our options
for the second digit, and so on. So the product law applies and there are
8 · 95 = 472392 such integers.

Now apply the subtraction law: there are 900000 6-digit positive integers,
of which 472392 have no 7s, so there must be 900000 − 472392 = 427608
6-digit positive integers with at least one 7. •

A very important example is the following.

34 CHAPTER 3. COUNTING

Example 3.3 In how many different orders can we arrange n different
objects?

Answer In the absence of any other instruction an arrangement refers
to placing the objects in a sequence, without repetition.

There are n choices for which object goes first. Having allocated that object,
there are n−1 choices for which goes second, regardless of which object was
selected first. Thus these are independent in the sense of the product law.

Then there are n − 2 choices for which object goes third, and n − 3 for the
fourth. This pattern repeats until there are 2 choices for the penultimate
object and only 1 choice when we place the final remaining object in the final
place. Since the number of choices is in each case independent of previous
choices, the total number of arrangements is n(n − 1)(n − 2) · · · 2 · 1. •

This function is important enough to have its own name, which you are
probably familiar with.

Definition The factorial function (−)! is a function from N+ to N+
defined recursively by

1! = 1, (n + 1)! = (n + 1)(n!)

Unwinding the recursion, n! = n(n − 1)(n − 2) · · · 2 · 1. It is common to
extend the factorial function’s domain to N by setting 0! = 1.

(In fact, the factorial function can be generalised to all positive real numbers:
Γ(x) =

∫∞
0 tx−1e−t dt satisfies Γ(n) = (n − 1)! for n ∈ N+. This continuous

function, known as the Gamma function, is defined for all positive reals,
and indeed can be extended to almost every part of the complex plane. It is
a fascinating function, but not within our discrete mathematics syllabus.)

3.2 The Technique of Double Counting

It can be easier to count the elements in a set twice, and then divide by two:

Example 3.4 Each of n teams in a league plays every other team once
during a season. How many games must be played, in total, in a season?

Answer Let us number the teams 1, . . . , n. Fix a team i: they must play

3.2. THE TECHNIQUE OF DOUBLE COUNTING 35

each of n − 1 teams (they do not play against themselves!); this applies to
each of the n teams. So, by the product law, it seems that there are n(n−1)
games played in total. But we have double counted, because if team i plays
against j then it is not also necessary to count j against i. Exactly twice
too many games have been counted, so the correct answer is n(n−1)

2 . •

Quite often we count a set more than twice over, as in this very important
example:

Example 3.5 In how many different ways can we select k out of n distin-
guishable objects, disregarding the order of selection?

Answer First we answer the question: in how many different ways can be
select k out of n distinguishable objects, if the order of selection matters? We
have seen similar questions before: there are n choices for the first selection,
n − 1 for the second, and so on down to n − k + 1 for the k-th selection. In
total, n(n − 1) · · · (n − k + 1). This can be written compactly as n!

(n−k)! and
is known as the number of permutations of k objects from n.

Now return to the original question. We have counted each selection k!
times, because there are k! different ways to order the selection of k objects.
Therefore the number of combinations of k objects from n is n!

(n−k)!k! . •

For a concrete example, if we have to select 4 objects from 6, there are
6!
2! = 360 ways to select the objects when the order matters, and we have

over-counted by 4! = 24 if the order is irrelevant, so overall there are 6!
2!4! = 15

selections without regard to order.

The formula n!
(n−k)!k! is so important that it has a special shorthand.

Definition The combinatorial coefficients (or binomial coefficients)
(

n
k

)

are defined for all nonnegative integers n and k satisfying 0 ≤ k ≤ n by

(

n

k

)

=
n!

(n − k)!k!
.

Recall that, conventionally, 0! = 1, so that
(

n
0

)

=
(

n
n

)

= 1. You can think of
(·
·
)

as a partial function from N2 to N+. It is not defined for k > n.

The combinatorial coefficients make up Pascal’s triangle and they have
all sorts of interesting properties but we will not dwell on them here. One

36 CHAPTER 3. COUNTING

we will highlight is simply that
(

n
k

)

=
(

n
n−k

)

. This follows directly from the
definition, or alternatively by noting that the number of ways to select k
from n is exactly the same as the number of ways of not selecting n−k from
n.

In some books,
(

n
k

)

is written nCk, and the related quantity n!
(n−k)! written

nPk.

So far we have used discrete mathematics techniques to help with counting.
Here is an example of how counting can help develop results in discrete
mathematics.

Claim 3.6 For n ∈ N,

2n =

(

n

0

)

+

(

n

1

)

+

(

n

2

)

+ · · · +
(

n

n

)

.

Proof Consider the set P({1, 2, . . . , n}). Its members are all the subsets
of {1, . . . , n}, and we will count its cardinality in two different ways.

First, there are two choices for whether 1 occurs in a subset, two for whether
2 occurs, . . . , and two for whether n occurs. Everything is independent of
everything else, so the product law tells us that there are 2n different subsets.

Second, each subset of {1, . . . , n} has cardinality between 0 and n. How
many subsets of {1, . . . , n} have cardinality k? This is just the number of
ways of choosing k from n,

(

n
k

)

. No subset can have two different cardi-
nalities, so the sum law applies: the total number of subsets is the number
with zero elements plus the number with one element, and so on. This is
(

n
0

)

+
(

n
1

)

+
(

n
2

)

+ · · · +
(

n
n

)

. �

The same result can be proved in a large number of different ways, but it
illustrates the idea of counting the same object in two different ways in order
to relate combinatorial formulae. This is an attractive and powerful part of
discrete mathematics.

Now we have an example of a counting problem where a bit of thought is
required before we can apply our combinatorial techniques. The following
problem is about the distribution of indistinguishable objects into k groups,
but it turns out to be related to the problem we just studied, that of splitting
distinguishable objects into 2 groups (taken/not taken) of given size.

3.2. THE TECHNIQUE OF DOUBLE COUNTING 37

Example 3.7 How many ways can n (indistinguishable) objects be placed
in k (distinguishable) boxes?
Answer This “distribution” problem can be related to the selection prob-
lem as follows. Let us write O for an object, and | for the dividing lines
between the boxes. For example, one way to put 5 objects in 3 boxes is to
put three in the first, none in the second, and two in the last: write this
as “OOO | | OO”. Or putting all five objects in the middle box is written
“ | OOOOO | ”. With n objects and k boxes there must be n O’s and k− 1
|’s. Each different way to distribute n objects in k boxes corresponds to a
string of n O’s and k − 1 |’s (formally, we have found a bijection between
the different distributions and the strings).

How many such strings are there? There are n+k−1 positions in the string,
and we must decide which k− 1 are to be |’s (the others are O’s). There are
(

n+k−1
k−1

)

such choices. This is also equal to
(

n+k−1
n

)

. •

The result is important enough to be worth memorising. Here is a variation:

Example 3.8 How many ways can n (indistinguishable) objects be placed
in k boxes so that each box receives at least one object?
Answer If k > n then there are not enough objects to go around, so
the answer is zero. Otherwise the trick is to set aside k objects, one for
each box, and distribute the remaining n−k without restriction. According
to the formula derived in Example 3.7 there are

((n−k)+k−1
k−1

)

=
(

n−1
k−1

)

such
distributions. •

These answers can be applied to another problem, although the connection
is not immediately obvious.

Example 3.9 How many positive integers less than a million have their
digits sum to 9?
Answer By padding a number with leading zeros (e.g. 123 becomes
000123) we can imagine that they are all exactly 6 digits long. Each such
number with digits summing to 9 corresponds to a distribution of 9 objects
into 6 boxes: the number of objects in box i corresponding to digit i. So
the number of 6-digit integers with digits summing to 9 is the same as the
number of distributions of 9 indistinguishable objects into 6 boxes, which
we have already determined is

(

9+6−1
6−1

)

=
(

14
5

)

= 14·13·12·11·10
5·4·3·2 = 2002. •

Notice that the correspondence in the last example only works because there
are fewer than 10 objects to distribute; the same question distributing more

38 CHAPTER 3. COUNTING

than 9 objects is more difficult, because individual digits are not allowed to
be greater than 9.

3.3 The Inclusion-Exclusion Principle

The inclusion-exclusion principle applies to counting cardinality of unions in
the case when the sets are not disjoint (so that the sum law does not apply
directly). It is easier to stick to terminology of set cardinality rather than
talking about properties, because the combination of properties will become
rather complicated.

The simplest case applies to cardinality of the union of two sets:

Binary Inclusion-Exclusion: For finite sets A and B,

|A ∪ B | = |A| + |B | − |A ∩ B |.

Why is this true? When we add |A| and |B |, all the elements of A ∩ B are
counted twice, so correcting for the double-counting yields the formula.

Example 3.10 How many 6-digit positive integers contain both a digit 7
and a digit 9? (More than one occurrence of either or both is also allowed).

Answer We have already computed, in Example 3.2, that there are 427608
6-digit integers containing one or more 7’s; call the set of these integers A.
By symmetry, there are the same number containing one or more 9’s; call
the set of them B.

Rearranging the inclusion-exclusion principle, we have |A∩B | = |A|+ |B |−
|A∪B | and the questions asks for the value of the left hand side, so we need
to work out the number of 6 digit positive integers containing either a 7 and
a 9. As in Example 3.2, we count the number which contain neither a 7 nor
a 9: 7 · 85 = 229376 (7 choices for the first digit, 8 for the others). So there
must be 900000 − 229376 = 670624 with either a 7 or a 9.

Therefore there must be 427608+427608−670624 = 184592 6-digit numbers
with both a 7 and a 9. •

Now we present the fully-general version of the principle.

3.3. THE INCLUSION-EXCLUSION PRINCIPLE 39

The Inclusion-Exclusion Principle: For finite sets A1, . . . , An,

|A1 ∪ A2 ∪ · · · ∪ An | =
(

|A1 | + |A2 | + · · · + |An |
)

−
(

|A1 ∩ A2 | + |A1 ∩ A3 | + · · · + |An−1 ∩ An |
)

+
(

|A1 ∩ A2 ∩ A3 | + · · · + |An−2 ∩ An−1 ∩ An |
)

− · · ·
+ (−1)n−1|A1 ∩ A2 ∩ · · · ∩ An |

The second row contains intersections of all distinct pairs of the Ai, the
third all intersections of distinct triplets, and so on.

Why is this true? If we compute the sum |A1 | + |A2 | + · · · + |An | we have
double-counted all the members of the two or more Ai, but subtracting|A1∩
A2 |+ |A1∩A3 |+ · · ·+ |An−1∩An | has subtracted too much: all those which
are members of three or more Ai must be added back in, and so on. The
result can be proved using just the case n = 2, but we will not do so here.

Here is a classic application of the inclusion-exclusion principle.

Example 3.11 In how many ways can we rearrange n objects so that none
stays in the same place?

Answer Permutations where every object moves are called derange-
ments. (An equivalent formulation is to ask for permutations of {1, . . . , n}
where each number i is not in place i.) We will count the number of per-
mutations in which at least one object does stay in the same place and use
the subtraction law to complete the calculation.

Let us write Ai for the set of permutations of n objects where at least object
i is not moved. It is easy to see that, for any i, |Ai | = (n − 1)! because
object i is fixed in position i and the others permuted without restriction.
Similarly, |Ai ∩ Aj |, for i 6= j, can be computed by fixing objects i and j
and permuting the rest: (n− 2)! possibilities. And |Ai ∩Aj ∩Ak | = (n− 3)!
as long as i, j, and k are distinct. The pattern continues all the way to
|A1 ∩ · · · ∩ An | = (n − n)! = 1.

Now, how many pairwise intersections Ai ∩ Aj are there? Because order of
i and j is irrelevant, and i 6= j, there are

(

n
2

)

such sets. How many triple
intersections Ai∩Aj ∩Ak? There must be

(

n
3

)

because we are choosing three
of the A’s out of n without repetition or regard to order. Again, the pattern
continues.

40 CHAPTER 3. COUNTING

Now we are in a position to apply the inclusion-exclusion principle.

|A1 ∪ · · · ∪ An |
= (|A1 | + · · · + |An |)

− (|A1 ∩ A2 | + · · · + |An−1 ∩ An |)
+ · · ·
+ (−1)n−1|A1 ∩ · · · ∩ An |

=
(

n
1

)

(n − 1)! −
(

n
2

)

(n − 2)! +
(

n
3

)

(n − 3)! − · · · + (−1)n−1
(

n
n

)

1

= n!
1! − n!

2! + n!
3! − · · · + (−1)n−1 n!

n!

This is the number of permutations which are not derangements. The total
number of permutations on n elements is n!, so the number of derangements
is n!

2! − n!
3! + · · · + (−1)n n!

n! . •

Another application of the inclusion-exclusion principle can be found in the
following section.

3.4 Ceiling and Floor Functions

We would now like to address this problem: how many positive integers,
less than or equal to n, are divisible by 3? The relevant multiples of 3 are
3, 5, 9, 12, . . . , 3k such that 3k is the largest multiple of 3 less or equal to than
n. Can we give a formula for k? If n is itself a multiple of three then the
answer is just n/3, but if n is not then we need to take n/3 and round down.
The operation of rounding down, or rounding up (which we sometimes also
need) are useful enough functions to have special symbols.

Definition The floor function ⌊−⌋ : R → Z is given by ⌊x⌋ = max{n ∈
Z | n ≤ x}; ⌊x⌋ is the greatest integer no bigger than x.

The ceiling function ⌈−⌉ : R → Z is given by ⌈x⌉ = min{n ∈ Z | n ≥ x};
⌊x⌋ is the least integer no smaller than x.

For example, ⌊1.2⌋ = ⌈0.8⌉ = 1, ⌊−1.2⌋ = ⌈−2.8⌉ = 2, and ⌊3⌋ = ⌈3⌉ = 3.
Note that in some mathematical books, ⌊−⌋ is written [−] and there is no
direct notation for the ceiling function.

Now we have a concise formula for the number of positive integers, less than
or equal to n, which are divisible by 3: ⌊n/3⌋. More generally, the number

3.5. INTERESTING DIVERSION: MULTINOMIAL COEFFICIENTS 41

divisible by k (where k ∈ N+) must be ⌊n/k⌋. To count the number of posi-
tive integers between m and n which are divisible by k, use the subtraction
law (see the practice questions).

Here is a final example.

Example 3.12 How many positive integers, (strictly) less than 1000, are
divisible by one or more of the first three prime numbers: 2, 3 or 5?
Answer Let us write Dk for the set of positive integers, less than 1000,
which are divisible by k. By the previous argument, |Dk | =

⌊

999
k

⌋

. We need
to find |D2 ∪ D3 ∪ D5 | and the inclusion-exclusion formula is applicable:

|D2 ∪ D3 ∪ D5 | =|D2 | + |D3 | + |D5 | − |D2 ∩ D3 | − |D2 ∩ D5 | − |D3 ∩ D5 |
+|D2 ∩ D3 ∩ D5 |

Next, observe that an integer is divisible by both 2 and 3 if and only if it is
divisible by 6, similarly for the other pairs, and an integer is divisible by all
of 2, 3, and 5 if and only if it is divisible by 30. So we have

|D2 ∪ D3 ∪ D5 |= |D2 | + |D3 | + |D5 | − |D6 | − |D10 | − |D15 | + |D30 |
=

⌊

999
2

⌋

+
⌊

999
3

⌋

+
⌊

999
5

⌋

−
⌊

999
6

⌋

−
⌊

999
10

⌋

−
⌊

999
15

⌋

+
⌊

999
30

⌋

= 499 + 333 + 199 − 166 − 99 − 66 + 33 = 733.

•

3.5 Interesting Diversion: Multinomial Coefficients

The binomial coefficients count the number of ways of selecting k objects
from n (distinguishable) objects. This can also be seen as the number of
ways of splitting n objects into two groups: one of size k and one of size
n−k. The multinomial coefficients count the number of ways of splitting
n objects into g ≥ 2 groups of specified size.

Claim 3.13 The number of ways in which n objects can be split into g
groups, with ni in the group i, is

n!

n1!n2! · · ·ng!

as long as n1 + n2 + · · · + ng = n.

Proof The condition n1 + n2 + · · ·+ ng = n simply ensures that the sizes

42 CHAPTER 3. COUNTING

of the groups adds up to the right total.

We use the product law. There are
(

n
n1

)

ways to choose n1 objects for the

first group, then we have n − n1 left so
(

n−n1

n2

)

ways to choose n2 for the

second group, then
(

n−n1−n2

n3

)

ways to choose n3 for the third group, and so

on down to
(

n−n1−n2−···−ng−1

ng

)

(which equals 1) for the final group. Writing
out the binomial coefficients we have

n!
n1!(n−n1)!

(n−n1)!
n2!(n−n1−n2)!

(n−n1−n2)!
n3!(n−n1−n2−n3)! · · · (n−n1−···−ng−1)!

ng !(n−n1−n2−···−ng)! .

Cancelling the fractions and noting that (n − n1 − n2 − · · · − ng)! = 0! = 1
we are left with n!

n1!n2!···ng ! . �

By analogy with binomial coefficients, the multinomial coefficient n!
n1!n2!···ng !

is written
(

n

n1n2 · · ·ng

)

.

Example 3.14 If the card game bridge, all 52 cards in a pack are dis-
tributed amongst four players in a deal, with each player given 13 cards.
How many different deals are there?

Answer We are asked how many ways there are to split 52 cards (all
different) into 4 groups of 13. By the preceding argument, the number is
(

52
13 13 13 13

)

= 52!
13!4

= 53, 644, 737, 765, 488, 792, 839, 237, 440, 000. •

PRACTICE QUESTIONS 43

Practice Questions

3.1 How many 6-digit positive integers have no repeated digits?

3.2 We computed, in Example 3.2, that there are 427608 6-digit integers
containing one or more d’s when d is the digit 7. For which digit d is the
answer different, and what is the answer in that case?

3.3 How many different arrangements are there of the letters in the word
ANAGRAM?

3.4 How many positive integers less than 1000 have their digits sum to 4?
What is the largest such integer?

3.5 How many positive integers less than 1000 have their digits sum to
10? Remember that individual digits can only be as large as 9.

3.6 In how many ways can 5 red balls and 5 black balls be distributed
into 5 boxes? There are no restrictions on the number or colour of balls in
each box, but distributions count as different if the colours of the balls in
any box are not the same.

3.7 Find a formula, in terms of m, n, and k, for the number of integers
strictly between m and n which are divisible by k.

3.8 How many positive integers less than 1000 are:

(i) divisible by 4?

(ii) divisible by 6?

(iii) divisible by both 4 and 6?

(iv) divisible by either 4 or 6 (or both)?

(v) divisible by either 4 or 6 but not both?

44CHAPTER3.COUNTING
Answers to Chapter 3 Practice Questions

3.1 9 · 9 · 8 · 7 · 6 · 5 = 136080.

3.2 It is not true for d = 0. In this case the answer is 900000−96 = 368559
(each digit can be anything except zero).

3.3 If the letter As were distinguishable there would simply be 7! arrange-
ments; because there are three As, this over-counts by a factor of 3!. There-
fore there are 840 different arrangements.

3.4 We are dealing with 3-digit integers and the number summing to 4 is,
as in Example 3.9, the same as the number of ways of distributing 4 objects
into 3 boxes:

(

4+3−1
3−1

)

=
(

6
2

)

= 15.
To find the largest 3-digit integer with a digit sum of 4, note that the “hun-
dreds” digit is most significant, so make it as large as possible: the answer
is 400.

3.5 We are dealing with 3-digit integers. For now, ignore the condition
that individual digits can only be as large as 9. The number of 3-tuples of
nonnegative numbers summing to 10 is, as in Example 3.9, the same as the
number of ways of distributing 10 objects into 3 boxes:

(

10+3−1
3−1

)

=
(

12
2

)

= 66.
Now exclude cases when a “digit” is equal to 10: there are exactly 3 such
cases, because if one “digit” equals 10 then the rest must be zero. So there
are 63 true 3-digit numbers whose digits sum to 10.

3.6 Imagine that the reds and blacks are distributed separately. According
to Example 3.7 there are

(

4+4−1
4−1

)

=
(

7
3

)

= 35 ways to distribute the reds.
By symmetry there are 35 ways to distribute the blacks. Because the distri-
bution of reds and blacks are independent there must be 352 = 1225 ways
in total.

3.7
⌊

n−1
k

⌋

−
⌊

m
k

⌋

.

3.8 (i)
⌊

999
4

⌋

= 249; (ii)
⌊

999
6

⌋

= 166; (iii)
⌊

999
12

⌋

= 83 (NB: this is equivalent
to divisibility by 12, not 24); (iv) 249+166− 83 = 332; (v) 249+166− 83−
83 = 249.

Chapter 4

Relations

Reading: Ross & Wright: 3.1, 3.4, parts of 11.4 & 11.5;
Chetwynd & Diggle: 3.1, 3.2, 3.4;
Grimaldi: parts of 5.1, 7.1, parts of 7.2, 7.4;
Grossman: 5.5.

Sets, functions and relations are mathematical concepts, but they also form
the building blocks for formal specifications of computing systems. Like
functions, relations associate elements of sets, but they do not have the
same strict conditions; they can be viewed as functions with potentially
multiple outputs, or no output at all, corresponding to each input. In the
case of computing systems depending on unobserved features, such as the
behaviour of networks, relations are necessary to model their behaviour.
The applications, though, are for another day. We will confine ourselves to
the mathematical presentation of relations, and their graphical description.

4.1 Definition

The definition of a relation is extremely straightforward.

Definition A relation R on a set A is a subset of A × A.

A simple example is R = {(n, n + 1) | n ∈ N}. This is a relation on N (it
is also a relation on any superset of N). Another example is, for any set

45

46 CHAPTER 4. RELATIONS

A, R = {(a, a) | a ∈ A}: this is a relation on the set A. A more random
example would be R = {(1, 1), (1, 3), (2, 1)}, a relation on {1, 2, 3}.
However, relations usually have a special infix notation. Instead of (a, b) ∈
R, we write a R b. And instead of (a, b) /∈ R, a R/ b. This makes a lot more
sense when you realise that familiar concepts like “≤” are relations on sets
of numbers. Other familiar relations over sets of numbers are “=” (elements
are only related to themselves), “6=” (elements are related to everything
except themselves), “<”, “>”, and so on.

Returning to the example R = {(n, n + 1) | n ∈ N}, which could also be
defined by saying n R n + 1 for each n ∈ N (thus unambiguously listing all
the pairs which are related, with the implication that all other pairs are not
related), we have 0R 1 and 3R 4, but 0R/ 0, 0R/ 2 and 4R/ 3.

A common computer science example is found in the modelling of a system’s
behaviour. Suppose that the state of a program (the values of all its memory
locations and variables) is encoded in a set S (very likely S is a big cartesian
product). The relation s1 R s2 might mean that it is possible for state s1 to
change, in one clock cycle, to s2.

An important note: some books, and indeed some computer science courses
given in Oxford, allow a relation to be “from a set A to a set B”, where B
is not necessarily the same set as A. Such a relation is a subset of A × B;
most of the concepts of this chapter can be transferred this setting. You
will notice that the functions from A to B can be considered relations from
A to B satisfying an additional condition: for each a ∈ A, there is exactly
one b ∈ B with a R b; in this sense, relations are a more general object then
functions. More generally still, relations can be defined between three or
more sets (for example a relation on A, B and C is a subset of A×B ×C).
In that case, our type of relation is called a binary relation, but we will
not use these extensions and we will not need to state that the relations are
binary.

4.2 Properties of Relations

The concept of relation is very general, allowing any subset of A×A. Usually
we are interested in relations with particular properties. Commonly-required
properties include:

4.2. PROPERTIES OF RELATIONS 47

Definition A relation R on a set A is

• reflexive if a R a for all a ∈ A;

• symmetric if a R b implies bR a, for all a, b ∈ A;

• antisymmetric if a R b and bR a together imply a = b, for all a, b ∈ A;

• transitive if a R b and bR c together imply a R c, for all a, b, c ∈ A.

Let us look at some familiar relations on N. “≤” is reflexive, because n ≤ n
for all n ∈ N. It is antisymmetric, because if m ≤ n and n ≤ m then
m = n. It is also transitive, because whenever m ≤ n and n ≤ p we know
that m ≤ p. But it is not symmetric: to demonstrate this we must give a
concrete counterexample of where the symmetry rule fails, and 1 ≤ 2 will
do since we do not also have 2 ≤ 1.

An important relation, usually defined on the set N+, is the divides relation

written | . We say m |n if n is a whole multiple of m: we have 2 | 4 and
3 | 9, 1 |n for any n ∈ N+, but 4 |/ 2 and 4 |/ 5. This relation is reflexive (every
number is a multiple of itself), antisymmetric (it requires some thought to
prove this), transitive (the heart of the proof is that n = km and p = ln
imply p = klm), but not symmetric (1 | 2 but 2 |/ 1). The divides relation
can be extended to Z, but care must be taken about the zero cases.

The relation “=”, defined on any nonempty set, has all of the four proper-
ties listed above. It has become common to use symmetrical symbols (=,
6=, ≈) for symmetric relations, and asymmetrical symbols (<, →) for rela-
tions which are not symmetric, although there are always some exceptions,
(including |).
Other properties of relations include:

Definition A relation R on a set A is

• irreflexive if a R a is not true for any a ∈ A;

• serial if for every a ∈ A there is a b ∈ A satisfying a R b.

Do not confuse the property of being irreflexive with being not reflexive. To
be irreflexive, a relation R must have a R/ a for every a ∈ A, but to be not
reflexive it only needs a R/ a for some a ∈ A.

Another common confusion is between being antisymmetric and being not
symmetric. If a and b are distinct elements of the domain, symmetry says

48 CHAPTER 4. RELATIONS

that none or both of a R b and bR a is true; antisymmetry says that none
or one of a R b and bR a is true. It is possible for a relation to be neither
symmetric nor antisymmetric (can you find an example?), or both symmetric
and antisymmetric (“=” is the most obvious example).

4.3 Equivalence Relations

Of particular importance are relations with the following property.

Definition A relation on A is called an equivalence relation if it is

• reflexive,

• symmetric, and

• transitive.

There are many examples: on any set the equality relation “=”; for a uni-
verse U the relation A ∼ B when |A| = |B |; on the set Z the relation m ≡ n
if m and n have the same parity (i.e. 2 | (m − n)). In computer science, we
might define a relation on programs (in some fixed language) by P1 ≈ P2

if the same inputs to the programs always produce the same outputs. This
is an important example which, when specified precisely, is called observa-
tional equivalence; it does not say that P1 and P2 have the same internal
working, or are equally efficient, though.

When we are given an equivalence relation on A we often want to know all
the elements of A which are related to some fixed a.

Definition If ∼ is an equivalence relation on A, and a ∈ A, we define

[a] = {a′ ∈ A | a′ ∼ a}.

The sets [a], for each a, are called the equivalence classes of ∼.

Sometimes, to avoid ambiguity, we might write [a]∼ if it is not clear what
equivalence relation is meant.

In the examples above: in the first, the equivalence class [n]= is just {n}; in
the second, the equivalence class [A]∼ is the set of all subsets of U with the
same cardinality as A; in the third, the equivalence class [n]≡ is the set of

4.3. EQUIVALENCE RELATIONS 49

all integers with the same parity of n, so [0] = {. . . ,−4,−2, 0, 2, 4, . . .} and
[1] = {. . . ,−3,−1, 1, 3, . . .}. You will notice that the equivalence classes do
not overlap unless they are equal.

Definition A partition of a set A is a collection of subsets {Bi | i ∈ I}
with all Bi ⊆ A, satisfying

(i)
⋃

i∈I Bi = A,

(ii) Bi ∩ Bj = ∅ for i 6= j (i.e. the subsets are pairwise disjoint), and

(iii) Bi 6= ∅, for each i ∈ I (although some definitions do not require this).

(I is some indexing set: it is almost equivalent to write a partition as
{B1, B2, . . .}).

In other words, a partition divides the set A into disjoint subsets. There is
a close connection between partitions of A and equivalence relations on A:
each equivalence relation determines a partition, and vice versa. Formally,

Claim 4.1 For any set A,

(i) The equivalence classes of any equivalence relation form a partition of
A;

(ii) Any partition of A defines an equivalence relation;

(iii) Different equivalence relations correspond to different partitions.

Proof (i) Let ∼ be an arbitrary equivalence relation on A. We need
to show that the union of the equivalence classes of ∼ are nonempty and
cover all of A (easy: a ∈ [a]) and that they are disjoint. Suppose that two
equivalence classes are not disjoint, say x ∈ [a] ∩ [b]. Then for any y ∈ [a]
we have

y ∼ a by definition of [a], given y ∈ [a]
x ∼ a by definition of [a], given x ∈ [a]
a ∼ x by symmetry, and previous step
y ∼ x by transitivity
x ∼ b by definition of [b], given x ∈ [b]
y ∼ b by transitivity

so y ∈ [b]. (Once familiar with the use of symmetry and transitivity, it is not
necessary to write out all the steps.) We have shown [a] ⊆ [b]. Repeating

50 CHAPTER 4. RELATIONS

the argument with a and b swapped, we have [b] ⊆ [a]. So if equivalence
classes [a] and [b] overlap at all, they must be equal.

(ii) Given a partition P = {Bi | i ∈ I}, define an equivalence relation by
a ∼ b if a and b are both members of any of the Bi. It is easy to see that
this relation is reflexive, symmetric, and transitive.

(iii) If ∼1 and ∼2 are different relations then there is a pair with a ∼1 b but
a 6∼2 b (or vice versa). Then the partition corresponding to ∼1 does have
a, b in the same component, but the partition corresponding to ∼2 does not.

�

We have established that there is a bijection between the set of equiva-
lence relations on A and the set of partitions of A, without constructing the
bijection explicitly.

4.4 Operations on Relations

There are operations on relations, analogous to the operations of inverse and
composition on functions.

Definition If R is a relation on A then the converse relation R−1 is
defined by

a R−1b if bR a.

If R and S are relations on A then the composition relation S◦R is defined
by

a (S ◦ R) b if there is some x ∈ A such that a R x and x S b.

Beware! The relational converse has many different notations. I have seen
Rc, R← and Ro all used for what we write R−1. It is also sometimes called
the inverse relation, but we reserve that word for functions. As with func-
tions, S ◦ R is sometimes written R; S.

Take, for example, the relation on N given by n R (n + 1). The converse
relation R−1 given by (n + 1)R−1n. Note that 0 is not related to anything
by the converse. The composition R◦R is given by n(R◦R)(n+2). Or take
the not-equal relation 6= (this example works on any set with more than
two elements): since it is symmetric, its converse relation is also 6=. The

4.4. OPERATIONS ON RELATIONS 51

composition 6= ◦ 6= relates all pairs because, given elements a and b, we can
choose any other element c: we have a 6= c and c 6= b therefore a(6= ◦ 6=)b.

Observe that the composition of a relation R with itself is like “doing R
twice”. We often want to reason about the iterated effect of a relation,
leading to the following definition.

Definition If R is a relation on A then the transitive closure R+ is
defined by

a R+ b if there is some x0, x1, . . . , xn ∈ A with n ≥ 1 such that
a = x0, x0 R x1, x1 R x2, . . . , xn−1 R xn, xn = b.

If R is a relation on A then the reflexive transitive closure R∗ is defined
by

a R∗ b if there is some x0, x1, . . . , xn ∈ A with n ≥ 0 such that
a = x0, x0 R x1, x1 R x2, . . . , xn−1 R xn, xn = b.

That is, there is a chain of elements of A, with each adjacent pair related
by R, from a to b: for a R+ b the chain must have at least R-step in it; for
a R∗ b there can be none (i.e. it includes the case a = b).

The transitive and reflexive transitive closure are so-called because they
have the following property: R+ is the smallest relation, containing R, that
is transitive, and R∗ is the smallest relation, containing R, that is reflexive
and transitive. Here “smallest” means with respect to inclusion: R+, as a set
of pairs, is a subset of every transitive relation containing R, etc. A relation
R which is already transitive satisfies R+ = R, and a reflexive transitive
relation R satisfies R∗ = R.

As an example, imagine the relation on N2 defined by (m, n + 1)R (m +
1, n) for m, n ∈ N. We have the chain (3, 0)R (2, 1)R (1, 2)R (0, 3), so
(3, 0)R+ (0, 3). We do not have (3, 0)R+ (3, 0), but we do have (3, 0)R∗ (3, 0).

Transitive closure is an important concept in computer science because, for
example, if R relates states before and after one step of computation, R∗

relates an initial state to any possible resulting state.

52 CHAPTER 4. RELATIONS

4.5 Drawing Relations

It is easy to define regular relations like “<” or n R (n + 1), but tedious to
define a nonstandard relation by listing all its pairs. It is difficult to un-
derstand a relation such as R = {(a, a), (a, c), (b, d), (c, d), (d, b)}, a relation
on {a, b, c, d}, and awkward to compute compositions or transitive closures
from the uninformative listing of its members. However it is attractive to
draw relations on small sets as a digraph.

Definition A directed graph (digraph) consists of a set of nodes N and
a set of edges E ⊆ N ×N . We say that there is an edge (or arrow) from n1

to n2 if (n1, n2) ∈ E. Digraphs are depicted by drawing the nodes, as labelled
points in the plane, and an arrow from n1 to n2 whenever (n1, n2) ∈ E.

You will notice that this is the same as the definition of a relation on N ,
but written in different terminology! (In computer science it often happens
that the same concept is given equivalent formulations by different names,
in different terminology, in various topics.) So this suggests a way to draw
relations on A, with a node for each element of A and an arrow from a to b
if a R b.

The relation R, defined above, can be described concisely by the following
picture.

a b

c d

The plus-1 relation n R (n + 1) can be drawn as

0 1 2 3 · · ·

and the “<” relation by

0 1 2 3 · · ·

4.6. INTERESTING DIVERSION: COUNTING RELATIONS 53

This representation is particularly intuitive when the relation concerned
relates something “before” to something “after”, for example when it de-
scribes possible next-step behaviour of a computer program. Furthermore,
it is easy to see, from the diagram, whether a relation is reflexive (all nodes
must have a loop: an edge directly to itself), symmetric (all arrows have a
partner going in the opposite direction) or antisymmetric (no arrow has a
partner going in the opposite direction). It is not so easy to see whether a
relation is transitive, however.

Indeed, common operations on relations also have nice versions expressed
graphically: taking the converse of a relation reverses the direction of all
arrows, and the transitive closure corresponds to multiple-step paths (i.e.
a R+ b if there is path through the diagram, starting at a and following
arrows to b). If R and S are relations on the same set we can draw them on
the same graph, labelling edges indicating R or S (such a structure is called
a labelled digraph). This can make it easy to see S ◦ R. For example, if
R = {(a, b), (b, a), (b, c)} and S = {(a, b), (b, d), (c, c), (c, d)} are relations on
{a, b, c, d} we draw them as

d c

a bR
R

S

R

S

S

S

and can easily compute S ◦ R = {(a, d), (b, b), (b, c), (b, d)}.
There is less need to draw equivalence relations: since we know that they
correspond to partitions of the set it is easier to draw or list the correspond-
ing partition rather than all the edges.

4.6 Interesting Diversion: Counting Relations

If |A| = n, how many different relations are there on A? How many are
reflexive/symmetric/transitive? How many are equivalence relations? Some

54 CHAPTER 4. RELATIONS

of these questions are quite simple, and some are difficult.

Counting all the relations on A is straightforward: remember that any subset
of A×A is a relation, so the number of relations is |P(A×A)| = 2n2

. Another
way to prove the same fact is to imagine a relation as a table, one row and
column for each member of A, and a tick in the row for a and column for b
if a is related to b: there are n2 entries in the table, and each can be a tick
or a cross without restriction. Two choices repeated independently n2 times
gives 2n2

choices.

Let us count the number of symmetric relations on A. The symmetry con-
dition requires that, for a 6= b, either a R b and bR a, or a R/ b and bR/ a,
but it does not impose any condition on whether a R a. In our table of n2

ticks or crosses, then, there is no restriction on the diagonal elements, but
their must be reflectional symmetry about the leading diagonal. We have a
free choice of the n elements on the diagonal and the n(n − 1)/2 elements
below the diagonal, but then the elements above the diagonal are fixed by
the symmetry property. Therefore there are n(n+1)/2 independent choices

of tick or cross, giving 2
n(n+1)

2 symmetric relations in total.

Counting reflexive relations, or antisymmetric relations, is easy using same
techniques. Counting transitive relations is difficult: there is no closed
formula, although the number of transitive relations on small sets can be
counted by hand. The number of equivalence relations on A is, of course,
equal to the number of partitions, and we will find a way to count them in
the next chapter.

PRACTICE QUESTIONS 55

Practice Questions

4.1 For each of the following relations, determine whether they are (a)
reflexive, (b) symmetric, (c) anti-symmetric, (d) transitive, (e) irreflexive,
(f) serial.

(i) On N, a R b if a ≤ b.

(ii) On N, a R b if a > b.

(iii) On N, a R b if a + b is even.

(iv) On the set of words in the English language, w1 R w2 if at least one
letter occurs in both words w1 and w2.

4.2 Which of the following are equivalence relations?

(i) On N, a R b if a ≤ b.

(ii) On N, a R b if a 6= b.

(iii) On the set of words in the English language, w1 R w2 if w1 is an ana-
gram of w2 (including the case when w1 = w2).

4.3 Determine all the equivalence classes of the equivalence relation ∼ on
Z defined by a ∼ b if either 3|a and 3|b, or 3 |/ a and 3 |/ b.

4.4 List all the partitions of the set {1, 2, 3}.

4.5 Find a relation on N which is irreflexive, antisymmetric, and serial.
Then draw the graph of a relation on the set {a, b, c} with the same prop-
erties.

4.6 Let A = {a, b, c, d} and R be the relation {(a, b), (b, c), (c, d), (d, a)}.
Compute R ◦ R, R ◦ (R−1) and R+. (It is probably helpful to draw R.)

4.7 What familiar relations on Z are the converses of “<”, “≥”, and “=”?

4.8 If |A| = n, how many reflexive relations are there on A?

56CHAPTER4.RELATIONS
Answers to Chapter 4 Practice Questions

4.1 (i) reflexive, anti-symmetric, transitive, serial;
(ii) anti-symmetric (yes: the condition is vacuously true), transitive, irreflex-
ive;
(iii) reflexive, symmetric, transitive, serial;
(iv) reflexive, symmetric, serial.

4.2 Only (iii).

4.3 {. . . ,−6,−3, 0, 3, 6, . . .} and {. . . ,−5,−4,−2,−1, 1, 2, 4, 5, . . .}.
4.4 {{1, 2, 3}}, {{1, 2}, {3}}, {{2, 3}, {1}}, {{1, 3}, {2}}, {{1}, {2}, {3}}.
4.5 “<” will do. On {a, b, c}, one example is

a b

c

(there is only one other example, the converse of the depicted relation).

4.6 {(a, c), (c, a), (b, d), (d, b)}; {(a, a), (b, b), (c, c), (d, d)}; A × A.

4.7 “>”, “≤”, and “=”.

4.8 2n(n−1).

Chapter 5

Sequences

Reading: Ross & Wright: 4.2, 4.4, 4.5, 4.6;
Chetwynd & Diggle: not covered;
Grimaldi: 4.1, 4.2;
Grossman: 7.1–7.4.

Sequences, particularly sequences of numbers, occur in many computer sci-
ence disciplines. Often, the sequence is specified by a recursive formula, and
later “solved” to find a closed form for the n-th term of the sequence. In
this chapter we will explore some examples of sequences, and the important
proof technique called induction. Induction is often used to prove that a
closed form is the correct solution, but finding the closed form in the first
place can be harder.

5.1 Definition

Sequences are usually infinite, and we write them as (x1, x2, . . .), but they
are best formalized as functions:

Definition A sequence is a function whose domain is N (or N+). The
argument of the function is usually written as a subscript, e.g. fn instead
of f(n). The entire sequence is denoted (fn).

57

58 CHAPTER 5. SEQUENCES

Sequences often have letters like (xn) or (an); when the sequence refers to
the time complexity of a program (the number of steps it takes to run)
then it is usually (tn) or, abandoning the subscripted argument, T (n).

The obvious way to define a sequence is to give the function explicitly.
For example, xn = 2n defines the sequence (2, 4, 6, 8, . . .) or (0, 2, 4, 6, . . .)
(whether a sequence starts at 0 or 1, or even some other number, is a matter
of convenience). Or ai = i2 gives the sequence (0, 1, 4, 9, 16, . . .). But se-
quences are often defined recursively, by writing xn as a formula of some of
the previous xi and then giving enough of the first few values of the sequence
for the rest to be determined.

Recursively-defined sequences include x0 = 0, xn+1 = xn + 2 (this defines
the same sequence as xn = 2n) and f0 = 1, fn+1 = (n + 1)fn (this is the
sequence of factorials) but xn is allowed to depend on more than just the
immediately preceding sequence term. An important example is

Example 5.1 The Fibonacci sequence or (Fibonacci numbers) is the
sequence given by

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn.

The first few terms of the Fibonacci sequence are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Example 5.2 The sequence xn defined by x0 = 0, and xn = x⌊n
2⌋ + 1 for

n > 0, begins (0, 1, 2, 2, 3, 3, 3, 3, 4, . . .).

It is important to include cases to get the recursion started (they are called
boundary conditions): the sequences generated by yn+1 = 2yn, y0 = 0
and y′n+1 = 2y′n, y′0 = 1 are completely different, and the Fibonacci recur-
rence Fn+2 = Fn+1 + Fn does not define a sequence unless we specify the
first two terms.

A sequence defined recursively is also known as a recurrence relation. If
we want to find a nonrecursive formula for the n-th term of a recursively-
defined sequence, we speak of solving the recurrence relation.

In fact, it is possible to solve the preceding recurrence relations. The n-th
Fibonacci number Fn has the closed form

Fn = 1√
5

(

1+
√

5
2

)n − 1√
5

(

1−
√

5
2

)n

5.2. PROOF BY INDUCTION 59

and the sequence xn, above, has

xn = ⌊log2 n⌋ + 1

for n ≥ 1. You can probably see where the latter comes from, but the former
might seem rather mysterious (indeed it is not even obvious that the formula
gives a whole number!). Methods to solve recurrences of the Fibonacci type
are briefly covered in Section 5.5.

Note that the same sequence might be specified by any number of different
recurrences. For example, you can check that xn = n! is generated by either
x0 = 1, xn+1 = (n + 1)xn or by x0 = 1, x1 = 1, xn+2 = (n + 1)(xn+1 + xn).

5.2 Proof by Induction

In many areas of mathematics and computer science we are asked to prove
that some statement, which depends on a natural number n, is true for all n.
Sometimes we can do so directly, but sometimes the proof depends so much
on the value of n that we seem forced to perform infinitely many different
proofs, one for each n. In such a situation, the method of induction can be
helpful.

Principle of Induction: Let S(n) be a statement involving the natural
number n. If we prove S(0), and we prove that S(k + 1) is true whenever
S(k) is true, then this is sufficient to prove that S(n) for all n ∈ N.

When performing an induction we call the part which proves S(0) the base
case and the part which, assuming S(k), proves S(k + 1) the inductive
step. In the latter, the assumption that S(k) is true is known as the induc-
tive hypothesis (often abbreviated as IH). It should be easy to understand
why a proof by induction is correct: it shows that S(0) is true, so S(1) is
true, so S(2) is true, and eventually each S(n) is proved true. The principle
holds because 0 ∈ N, and k ∈ N implies k + 1 ∈ N is really the definition of
the set of natural numbers.

As an example of a proof by induction, we will prove a fact about a sequence.

Example 5.3 Recall the Fibonacci numbers: F0 = 0, F1 = 1, Fn+2 =
Fn+1 + Fn. We can prove that 2 |F3n for each n ∈ N by induction on n.

60 CHAPTER 5. SEQUENCES

First, the base case n = 0. We need to prove that 2 |F0: F0 = 0, and 0 is a
multiple of 2, so we are done.

Second, the inductive step. Suppose that we have already proved that 2 |F3k:
we need to prove that 2 |F3k+3. Using the recurrence relation which defined
Fn, we calculate

F3k+3 = F3k+2 + F3k+1

= 2F3k+1 + F3k

= 3F3k + 2F3k−1

But remember we have assumed that F3k is even, and 2F3k−1 is certainly
even, so we have proved that 2 |F3k+3. That completes the proof by induc-
tion. �

If we are to prove that something holds for n ≥ 1 (or more generally n ≥ m)
we merely modify the base case to be n = 1 (or n = m). In fact, other proofs
by induction are possible: if we prove S(0) and S(1), and that S(k) implies
S(k + 2), then we have covered all of N. More complex alternatives are
possible, but rare in practice when trying to prove a result for all n ∈ N. It
is also possible to use induction to prove that something is true for members
of other sets, and then the structure of the set determines the structure of the
inductive proof. We will not see examples of these “structural” inductions
in this course, but they are very common in Functional Programming.

One slightly modified type of induction we will need is sometimes called
strong induction.

Principle of Strong Induction: Let S(n) be a statement involving the
natural number n. If we prove S(0), and we prove that S(k + 1) is true
assuming that S(j) is true for all j ≤ k, then this is sufficient to prove that
S(n) for all n ∈ N.

An example of a strong induction is:

Claim 5.4 Every n ∈ N+ can be written as the sum of distinct Fibonacci
numbers.

Proof The base case is n = 1, which is just a single Fibonacci number
(F1); nothing to prove.

For the inductive step, we may assume that each of 1, 2, 3, . . . , k can all be
written as the sum of distinct Fibonacci numbers and we must prove that

5.3. SIGMA NOTATION AND SUMS OF SEQUENCES 61

the same is true of k + 1. If k + 1 is already a Fibonacci number, we are
finished. If not, k+1 lies between two consecutive Fibonacci numbers Fj and
Fj+1 (the Fibonacci sequence increases indefinitely), i.e. Fj < k +1 < Fj+1.

Write k + 1 = Fj + (k + 1 − Fj). Since k + 1 − Fj ≤ k, the inductive
hypothesis tells us that k + 1 − Fj can be written as the sum of distinct
Fibonacci numbers. Now remember that k + 1 < Fj+1 = Fj + Fj−1 (using
the Fibonacci recurrence) so k + 1 − Fj < Fj−1. This means that none of
the distinct Fibonacci numbers which sum to k + 1 − Fj could possibly be
Fj , or the sum would be too big. Thus we can write k + 1 as a sum of
distinct Fibonacci numbers: Fj plus all those which sum to k +1−Fj . This
completes the proof by induction. �

A proof technique closely related to induction is called the minimal coun-
terexample. It is a form of proof by contradiction. If we want to prove
that something is true for all n, we suppose (for a contradiction) that it
is not true. Then we examine the smallest n for which it is false, trying
to deduce that, in fact, it must be false for a smaller n as well. That is a
contradiction. This is best illustrated by a simple example

Claim 5.5 The recurrence x1 = 1, x2 = 3, xn+2 = 4xn+1 + 3xn generates
a sequence of odd numbers.

Proof This can easily be proved by induction, but even quicker is to use
the minimal counterexample technique. Suppose that xm is the first even
number in the sequence. m cannot be 1 or 2, so xm = 4xm−1 +3xm−2. This
implies that xm−2 is even, a contradiction with the assumption that xm was
the first even number in the sequence. Therefore there cannot be any even
numbers in the sequence. �

5.3 Sigma Notation and Sums of Sequences

First, some standard mathematical notation.

Definition If (an) is a sequence then we can write
∑n

i=m ai as a shorthand
for the sum of the segment am + am+1 + · · ·+ an. Analogously, the notation
∏n

i=m ai is the product am · am+1 · · · an.

62 CHAPTER 5. SEQUENCES

This notation can be extended to
∑∞

i=1 ai, which performs the infinite sum-
mation, but analysis of infinite sums or products (whose values are not
necessarily defined) is beyond the scope of this course.

For example, we have
∑4

i=1 i2 = 12 + 22 + 32 + 42 = 30, and
∏4

i=2(i + 1) =
3 · 4 · 5 = 60. Given a sequence ai, we can generate a new sequence called
the partial sums of ai defined by sn =

∑n
i=1 ai and, using induction, we

can sometimes give a simple formula for the partial sums of a sequence. For
example, the sum of the first n square integers:

Claim 5.6 For n ∈ N+,
∑n

i=1 i2 = n(n+1)(2n+1)
6 .

Proof (The result is also true for n = 0 if we adopt the standard convention
that a sum of no terms equals zero.)

This is a classic example of proof by induction. For the base case (n = 1)
the left side is 1 and the right side is 6/6.

For the inductive step, suppose the result is true for n = k and look at
n = k + 1:

∑k+1
i=1 i2 =

∑k
i=1 i2 + (k + 1)2 extracting the final term

= k(k+1)(2k+1)
6 + (k + 1)2 by the inductive hypothesis

= (k+1)(k(2k+1)+6(k+1))
6 rearranging

= (k+1)(k+2)(2k+3)
6 factorising

and this is exactly the statement for n = k + 1. That completes the proof
by induction. �

This demonstrates that proofs by induction often have the flavour of ver-
ifying a formula, rather than finding it: we could not have attempted the
proof without knowing, or guessing, the value of the sum.

5.4 Sequences Associated with Counting

Recurrence relations arise in counting problems, and sometimes it is possible
to use some ingenious reasoning to find a recursive formula for counting some
set when direct methods fail.

We have already met the derangements, in Chapter 3. Instead of the com-
binatorial formula derived there, the number of derangements of n objects
dn can be described by a recurrence relation.

5.4. SEQUENCES ASSOCIATED WITH COUNTING 63

Claim 5.7 The sequence dn satisfies

d1 = 0, d2 = 1, dn = (n − 1)(dn−1 + dn−2) for n ≥ 2.

Proof That d1 = 0 and d2 = 1 is immediate from the definition of the
derangements. We must then argue that dn = (n − 1)(dn−1 + dn−2).

Consider a derangement on objects {1, 2, . . . , n}, and suppose that object n
is found in place i: there are n − 1 possibilities for i (object n cannot be
in place n). Now if we swap object n and object i there are two exclusive
cases:

• After swapping n and i, the first n − 1 objects still form a derangement.

• After swapping n and i, the first n−1 objects do not form a derangement.

There are dn−1 ways in which the former can happen and in the latter,
because we supposed that we began with a derangement on all n objects,
the only way we can fail to have a derangement is if we now have object i
in place i leaving dn−2 derangements of the other elements. In total, then,
(n − 1)(dn−1 + dn−2) derangements of all n objects. �

It is interesting to note that the recurrence dn = (n − 1)(dn−1 + dn−2) is
also satisfied by the factorial function (which counts the total number of
permutations, whether derangements or not) if the boundary condition is
altered.

Another sequence associated with counting is

Definition The number of partitions of a set with cardinality n is written
Bn. The sequence B0, B1, . . . is known as the Bell numbers (after the sci-fi
author and mathematician Eric Temple Bell) and begins 1, 1, 2, 5, 13.

It is difficult to find a closed form for Bn, but we can give a recurrence
relation which enables the sequence to be computed step-by-step.

Claim 5.8 The Bell numbers are generated by: B0 = 1,

Bn+1 =
n

∑

i=0

(

n

i

)

Bi.

Proof There is only one set with zero cardinality (∅) and only one partition

64 CHAPTER 5. SEQUENCES

of it.

Now consider a set of cardinality n + 1, say A = {a1, . . . , an+1}. Consider
what happens to an+1 in a partition of A:

• an+1 could be a singleton set in the partition. In that case there are Bn

ways to partition the other n elements, to which {an+1} is added to make
a partition of A.

• an+1 could be in a set with exactly one other element ai, in the partition.
There are n =

(

n
1

)

choices for this other element, and for any such choice
there are Bn−1 ways to partition the other n− 1 elements of A, to which
{ai, an+1} is added to make a partition of A.

• an+1 could be in a set with exactly two other elements ai, aj , in the
partition. There are

(

n
2

)

choices for these other elements, and for any
such choice there are Bn−2 ways to partition the other n− 2 elements of
A, to which {ai, aj , an+1} is added to make a partition of A.

• ...

• an+1 could be in a set with exactly n− 1 other elements in the partition.
There are

(

n
n−1

)

choices for these elements, and for any such choice there
are B1 ways to partition the other element of A.

• an+1 could be in a set with all n other elements in the partition. There
is 1 =

(

n
n

)

choice.

These cases are disjoint, so we can add up all the choices giving
∑n

i=0

(

n
i

)

Bi

different partitions of A. (Here we used
(

n
k

)

=
(

n
n−k

)

.) �

The mathematician Dobinski proved, in the 1870s, that the Bell numbers
can be given by the infinite sum

Bn =
1

e

∞
∑

k=0

kn

k!
.

Even though an infinite sum seems a rather pointless “solution”, this for-
mula draws an interesting connection between Bell numbers and the Poisson
distribution found in probability.

You might be able to convince yourself that Dobinski’s formula is cor-
rect by substituting this formula into the right hand side of the recurrence

5.5. SOLVING LINEAR RECURRENCE RELATIONS 65

∑n
i=0

(

n
i

)

Bi and rearranging. If you use the binomial theorem

(a + b)n =
n

∑

i=0

(

n

i

)

aibn−i

you can reduce to 1
e

∑∞
k=0

kn+1

k! , suggesting that the Dobinski formula does
satisfy the required recurrence. But infinite sums cannot always be manipu-
lated in the same way as finite sums, and you need some more mathematics,
not covered in this course, to make the calculation into a proper proof.

5.5 Interesting Diversion:

Solving Linear Recurrence Relations

One class of recurrence relations is both common and reasonably easy to
solve. These are the constant-coefficient linear recurrence relations. There
now follows a quick primer on how to solve them; the reasoning behind the
method will not be included. You may find these methods useful in the
probability course.

First, the homogeneous constant-coefficient linear recurrences. They have
the form

λmxn + λm−1xn−1 + · · · + λ0xn−m = 0, (5.1)

where all the λi are real numbers, plus some boundary conditions (usually
m are required.) Examples include xn+1 = 3xn (which can be rewritten in
the form xn −3xn−1 = 0), xn −xn−1 −xn−2 = 0 (the Fibonacci recurrence),
and xn + 3xn−1 + 3xn−2 + xn−3 = 0.

To solve these recurrences, try a solution of the form xn = rn, where r is a
constant. Substituting into (5.1) and dividing through by rm−n we have

λmrm + λm−1r
m−1 + · · · + λ0 = 0. (5.2)

This is called the characteristic polynomial. Note that any value of r
satisfying (5.2) will give a solution of (5.1).

Find all the roots r1, r2, . . . , rm of the characteristic polynomial (including
complex roots, if there are any). As long as all these roots are distinct,
all solutions of (5.1) will be of the form xn = A1r

n
1 + A2r

n
2 + · · · + Amrn

m,

66 CHAPTER 5. SEQUENCES

where the A’s are constants. The boundary conditions of the recurrence will
determine the A’s. If some of the roots are repeated, add extra multiples
of n to the repeat factors until they are all distinct. For example, if the
characteristic polynomial factorizes as (r − 2)2(r − 3)3 then the solutions to
(5.1) will be of the form xn = A12

n + A2n2n + A33
n + A4n3n + A5n

23n.

Example 5.9 Consider the linear homogeneous recurrence

xn − 4xn−1 + 5xn−2 − 2xn−3 = 0, x0 = 0, x1 = 1, x2 = 2.

The characteristic polynomial is r3 − 4r2 + 5r − 2 = 0, which factorizes as
(r − 1)2(r − 2). Therefore the general solution of the recurrence, without
any boundary conditions, is

xn = A + Bn + C2n

(because 1 is a repeated root of the characteristic polynomial we need the
terms A1n and Bn1n). Now substitute into the boundary conditions: we
have 0 = A + C, 1 = A + B + 2C, 2 = A + 2B + 4C. Solving these three
simultaneous equations gives A = 0, B = 1, C = 0, so in fact the solution
to the original recurrence relation is just xn = n.

We might want to solve an inhomogeneous constant-coefficient linear re-
currence. This is of the form

λmxn + λm−1xn−1 + · · · + λ0xn−m = f(n), (5.3)

plus some boundary conditions (again usually m of them). Note that if yn

is a solution of the homogeneous recurrence (without the term f(n)) and zn

is a solution of the inhomogeneous recurrence, then xn +zn is also a solution
of the inhomogeneous recurrence.

We begin by “guessing” a solution to the inhomogeneous recurrence, without
regard to the boundary conditions. Experience shows that when f(n) is a
polynomial of degree n, we should guess a polynomial of degree n, and if
f(n) = an we should guess a multiple of an, and you can find other rules
of thumb in textbooks. Then solve the homogeneous recurrence, without
regard to boundary conditions. Finally, add together the two solutions, and
use the boundary conditions to determine any missing constants.

5.5. SOLVING LINEAR RECURRENCE RELATIONS 67

Example 5.10 Consider the linear inhomogeneous recurrence

xn − 2xn−1 = 3n + 5n, x0 = 0.

Because of the form of the inhomogeneity, we “guess” that xn = A3n +
Bn + C will find a solution. Substituting into the recurrence, we obtain the
equation

A3n + Bn + C − 2A3n−1 − 2B(n − 1) − 2C = 3n + 5n

and equating coefficients gives: (3n) A = 3, (n) B = −5, (1) C = −10, so we
have found the solution zn = 3n+1 − 5n − 10. But this does not yet satisfy
the boundary condition.

We solve the homogeneous recurrence yn − 2yn−1 = 0, which is straight-
forwardly given by yn = D2n for any D. Then we try xn = yn + zn =
D2n + 3n+1 − 5n − 10 against the boundary condition, finding that D = 7.
We have solved the original recurrence by

xn = 7 · 2n + 3n+1 − 5n − 10.

Finally, we mention in passing that there is another technique for solving
recurrences called generating functions. They are a powerful tool for
certain types of recurrence, including nonlinear recurrences where the above
techniques do not apply, but they do not appear in this course.

68 CHAPTER 5. SEQUENCES

Practice Questions

5.1 Find recurrence relations which generate the sequences

(i) (1, 4, 16, 64, 256, . . .);

(ii) (1, 4, 9, 16, 25, 36, 49, . . .);

(iii) xn = ⌊log3 n⌋ (for n ≥ 1).

5.2 Find, using the techniques of Section 5.5, or simply by guessing the
solution and proving by induction, the solution to the recurrence u0 = 0,
u1 = 1, un+2 = 2un+1 − un + 1.

5.3 Show, by induction on n, that xn = 2n − 1 solves the recurrence
x1 = 1, xn+1 = 2xn + 1.

5.4 Prove, by induction on n, that 1
1·4 + 1

4·7 + · · · + 1
(3n−2)(3n+1) = n

3n+1
for n ≥ 1.

5.5 Using the recurrence relation for the Bell numbers, compute B5.

5.6 If the recurrence relation for the number of derangements, dn = (n −
1)(dn−1 + dn−2), d1 = 0, d2 = 1, is to be extended to d0, what must be the
value of d0 for the recurrence still to hold? Does this make sense?

5.7 Find the solutions of

(i) x0 = 1, xn+1 = 3xn;

(ii) x1 = 1, x2 = 1, xn+2 = 3xn+1 − 2xn;

(iii) x0 = 0, x1 = 0, x2 = 0, xn+3 = 16xn+2 + 15xn+1 + 14xn.

(They do not require proof.)

5.8 Using the techniques in Section 5.5, find the solution of x1 = 1, x2 = 3,
xn+2 = 3xn+1 − 2xn

PRACTICE QUESTIONS 69

70CHAPTER5.SEQUENCES
Answers to Chapter 5 Practice Questions

5.1 There are many answers, but the simplest are (i) x0 = 1, xn+1 = 4xn;
(ii) x0 = 1, xn+1 = xn + 2n + 1; (iii) x1 = 0, x2 = 0, xn = x⌊n/3⌋ + 1 for
n ≥ 3.

5.2 un = n(n + 1)/2.

5.3 The base case is n = 1: 21 − 1 = 1 = x1. Suppose the result for
n = k. Then the right-hand side of the recurrence 2xk + 1, substituting the
IH, equals 2(2k − 1) + 1, which equals 2k+1 − 1 as required. That completes
the induction.

5.4 The base case is n = 1: the left hand side is 1
4 and the right

hand side is 1
3·1+1 . For the inductive step, suppose that 1

1·4 + 1
4·7 +

· · · + 1
(3k−2)(3k+1) = k

3k+1 . Now compute 1
1·4 + 1

4·7 + · · · + 1
(3k−2)(3k+1) +

1
(3k+1)(3k+4) = k

3k+1 + 1
(3k+1)(3k+4) . Simplifying, this equals k(3k+4)+1

(3k+1)(3k+4) =

3k2+4k+1
(3k+1)(3k+4) = (3k+1)(k+1)

(3k+1)(3k+4) = k+1
3(k+1)+1 . This is the required result for k + 1.

That completes the proof by induction.

5.5 B5 =
(

4
0

)

1 +
(

4
1

)

1 +
(

4
2

)

2 +
(

4
3

)

5 +
(

4
4

)

15 = 52.

5.6 d0 = 1. This makes sense because the only partition of the empty set
does not leave element i in place i (there is no element i to leave in place
i!).

5.7 (i) xn = 3n; (ii) xn = 1; (iii) xn = 0.

5.8 xn = 2n+1 − 1.

Chapter 6

Modular Arithmetic

Reading: Ross & Wright: 3.5, 4.7, 5.5;
Chetwynd & Diggle: only 3.9 (mostly not covered);
Grimaldi: 4.4, 5.5, 14.3;
Grossman: 12.1–12.4.

When arithmetic is performed on the remainder, after division by a fixed
number n, this is known as modular arithmetic, and n is called the mod-
ulus. This topic is usually considered part of pure mathematics (the branch
known as number theory) and this chapter is the most mathematical of the
course. But modular arithmetic has applications in computer science algo-
rithms, particularly for computing with very large numbers, testing whether
a number is prime (vital for encryption), and coding for reliable information
transmission over a noisy network.

6.1 Definitions

We begin with a relation on Z. Fix n ∈ N+, then write x ≡ y (mod n) if
n | (x−y). This is equivalent to saying that x and y have the same remainder
when divided by n. It is easy to see that this is an equivalence relation: x
certainly has the same remainder as x (reflexivity); if x and y have the same
remainder, so do y and x (symmetry); if x and y have the same remainder,
and so do y and z, then x and z have the same remainder (transitivity).

71

72 CHAPTER 6. MODULAR ARITHMETIC

The equivalence classes are easy to compute: any x is related to x−2n, x−n,
x, x + n, x + 2n, etc, so the n equivalence classes are [0], [1], . . . , [n − 1].

Now for some arithmetic.

Claim 6.1 If x1 ≡ x2 (mod n) and y1 ≡ y2 (mod n), then

(i) x1 + y1 ≡ x2 + y2 (mod n), and

(ii) x1y1 ≡ x2y2 (mod n).

Proof We have n | (x1 − x2) so x1 − x2 = kn for k ∈ Z, and n | (y1 − y2)
so y1 − y2 = ln for l ∈ Z.

(i) Adding, we deduce x1+y1−x2−y2 = (k+l)n, so n |
(

(x1+y1)−(x2+y2)
)

.

(ii) Multiplying by y1 and then again by x2, we have x1y1 − x2y2 = (x1 −
x2)y1 + x2(y1 − x2) = (ky1 + x2l)n so n | (x1y1 − x2y2). �

This allows us to define the operations of addition and multiplication mod-
ulo n, on the equivalence classes: [x] + [y] = [x + y] and [x] · [y] = [xy]. We
have proved that the answers do not depend on which members of [x] and
[y] are chosen to represent the class. Equivalently, we have defined addition
and multiplication binary operators on the set Zn.

This is modular arithmetic (mod n), in which multiples of n are discarded
and only the remainders kept. An example of a calculation in modular
arithmetic is

13 · 15 + 17 ≡ 4 · 6 + 8 ≡ 32 ≡ 5 (mod 9).

In modular arithmetic calculations we can replace any number by another
with the same remainder after division by the modulus. Usually we remove
all multiples of the modulus (this is called reduction (mod n)) but some-
times it is convenient reduce numbers to negative remainders. For example,
an equivalent calculation is

13 · 15 + 17 ≡ (4 · −3) − 1 ≡ −13 ≡ 5 (mod 9).

Negative numbers (and subtraction) do exist in modular arithmetic; because
n − x ≡ −x mod n, every number does have a negative (mathematicians
call −x an additive inverse). The situation is not so simple for division,
as we shall see later.

6.2. EXPONENTIATION 73

6.2 Exponentiation

Having seen that the result of addition and multiplication (mod n) require
only the remainders of the arguments, it is natural to assume that the same
applies to exponentiation. It does not, quite.

Claim 6.2 If x1 ≡ x2 (mod n) and y ∈ Z then

(i) xy
1 ≡ xy

2 (mod n), but

(ii) yx1 ≡ yx2 (mod n) need not hold.

Proof (i) By x1 ≡ x2 (mod n) and the rule for modular multiplication we
have x2

1 ≡ x2
2 (mod n), so x3

1 ≡ x3
2 (mod n), and so on. (It is also true for

x0
1 = 1 = x0

2). This proof can be formalised by induction.

(ii) The simplest counterexample is 00 = 1 and 02 = 0 with n = 2. (It is
correct that 00 = 1, but there are many other counterexamples if this one
looks like a technicality.) �

Therefore we can say that 1312 ≡ 312 (mod 10), but it is not true that
1312 ≡ 132 (mod 10) (check for yourself). In fact, there are different laws
for exponentiation, which are not very hard to prove but beyond the scope
of this course. When p is a prime number, we can guarantee yx1 ≡ yx2

(mod p) as long as x1 ≡ x2 (mod p − 1); it seems a bit strange that one
equation (mod p) is connected to another (mod p− 1), until you get used to
it! This law, and its extensions, are the heart of the well-known public key
encryption scheme RSA.

If we have to compute a large exponentiation, for example x600 (mod 11),
we can reduce x mod n, but would like to avoid computing the 600th power
to find the remainder. This is possible using the method of repeated
squaring, which amounts to the recurrence

xy =











1 if y = 0

x · (x2)
y−1
2 if y is odd

(x2)
y

2 if y > 0 is even

which is true for integers x and y ≥ 0. So to compute 2600 (mod 11), we
can apply the recurrence repeatedly and reduce the base of the exponent at

74 CHAPTER 6. MODULAR ARITHMETIC

each stage:

2600 ≡ (22)300 ≡ 4300 (mod 11)
≡ (42)150 ≡ 5150 (mod 11)
≡ (52)75 ≡ 375 (mod 11)
≡ 3 · (32)37 ≡ 3 · 937 (mod 11)
≡ 3 · 9 · (92)18 ≡ 5 · 418 (mod 11)
≡ 5 · (42)9 ≡ 510 (mod 11)
≡ (52)5 ≡ 35 (mod 11)
≡ 3 · (32)2 ≡ 3 · 92 (mod 11)
≡ 3 · 4 ≡ 1 (mod 11).

We end with a little observation about squares (mod 4). Since we know
that the remainder of x (mod 4) determines the remainder of x2 (mod 4),
consider all the possibilities:

02 ≡ 0 (mod 4), 12 ≡ 1 (mod 4), 22 ≡ 0 (mod 4), 32 ≡ 1 (mod 4).

So always x2 ≡ 0 or 1 (mod 4): a square number can never have remainder
2 or 3 when divided by 4.

6.3 mod and div

We briefly consider two binary operators on (positive) integers, which are
related to modular arithmetic.

Definition mod : N×N+ → N and div : N×N+ → N are written infix
and defined by:

m mod n = the remainder when m is divided by n
m div n = ⌊m/n⌋

More usefully, we have the equation m = n·(m div n)+m mod n, expressing
m uniquely as an integer multiple of n plus a remainder term.

We have introduced these functions because most programming languages
provide them as primitives (mod is often the symbol “%”). Many languages
attempt to extend the domains to Z2, but unfortunately it is not clear what

6.4. EUCLID’S ALGORITHM AND MULTIPLICATIVE INVERSES 75

the answers should be when the arguments are negative (particularly the
modulus): the meaning of 3 mod (−2) is not obvious. Different languages
may implement different functionality, so it is sensible to exercise caution
when using div and mod operators, whatever they are called in your pro-
gramming language of choice, on signed numbers.

6.4 Euclid’s Algorithm and Multiplicative Inverses

Recall the relation m |n (m divides n). Whether a number divides another
is at the heart of modular arithmetic, and it is often important to find the
largest integer which divides a set of numbers.

Definition For m, n ∈ N+ the greatest common divisor (gcd) of m
and n, written gcd(m, n), is the greatest integer g which satisfies both g |m
and g |n.

If gcd(m, n) = 1 then m and n are said to be coprime (in some books,
relatively prime).

The definition extends to any set of positive integers: gcd(m1, m2, . . . , mn)
is the greatest integer g for which g |mi for all i, and a set is called coprime
if its gcd is 1.

(An equivalent definition, sometimes more convenient, is that gcd(m, n) = g
if i) g |m, ii) g |n, and iii) l |m and l |n together imply l | g.)

For example, gcd(12, 10) = 2, gcd(9, 3) = 3, gcd(5, 14) = 1 (5 and 14 are
coprime).

A few notes about divisors. Recall that an integer p > 1 is called a prime
number if its only divisors are 1 and p (i.e. m | p implies m = 1 or m = p).
The number 1 is not considered to be a prime number. Now if n < p is
another positive integer, we must have gcd(n, p) = 1: n and p cannot have
any common divisors greater than 1 if p does not have any other divisors.

Let us consider how to compute the greatest common divisor of a pair of
integers. It is rather hard work to find all the divisors of m and n, and then
look for the greatest, if m and n are large numbers. And, when we want
to compute gcds in practice (e.g. for cryptography purposes), they often

76 CHAPTER 6. MODULAR ARITHMETIC

are very large numbers indeed. Thankfully there is a very efficient method,
which works because of the equation gcd(m, n) = gcd(m, n − m):

Euclid’s Algorithm for finding gcd(m, n). Set a = m, b = n. Write
a = qb + r, with 0 ≤ r < b (i.e. q = a div b and r = a mod b). If r = 0,
then gcd(m, n) = b. Otherwise set a = b and b = r, and repeat.

When using Euclid’s Algorithm in pen-and-paper calculations, it is sensible
(and often useful, see below) to write each line a = qb+r out in full. Here is
an example of Euclid’s Algorithm, to compute gcd(1029, 273). Initially we
have a = 1029, b = 273, then:

(1) 1029 = 3 · 273 + 210 (now a = 273 and b = 210)
(2) 273 = 1 · 210 + 63 (now a = 210 and b = 63)
(3) 210 = 3 · 63 + 21 (now a = 63 and b = 21)
(4) 63 = 3 · 21 + 0

Then we finish, having computed gcd(1029, 273) = 21.

Now Euclid’s Algorithm can be used for another purpose: by reversing the
calculations, we can always express gcd(m, n) as an integer multiple of m
plus an integer multiple of n. We do this by beginning at the second-last
line: (3) gives

21 = 1 · 210 − 3 · 63

then substitute (2) into this to get

21 = 1 · 210 − 3 · (273 − 210) = 4 · 210 − 3 · 273

then substitute (1) to get

21 = 4 · (1029 − 3 · 273) − 3 · 273 = 4 · 1029 − 15 · 273.

If asked to implement the above procedure on a computer, this can be done
attractively using matrices, but we will not consider the implementation
of Euclid’s algorithm in this course. The procedure ensures that we can
always express gcd(m, n) as a sum of integer multiples of m and n (this fact
is sometimes called Euclid’s Theorem). This has practical importance –
in cryptography we sometimes need to solve mx+ny = gcd(m, n) for integer
x and y – as well as theoretical consequences.

6.5. THE PIGEONHOLE PRINCIPLE 77

One of the latter is

Claim 6.3 If p is prime then for each nonzero x ∈ Zp there exists y ∈ Zp

such that xy ≡ 1 (mod p).

This follows because gcd(x, p) = 1 when 1 ≤ x < p. We have shown that
every nonzero number has a multiplicative inverse (mod p), as long as p
is prime. It is not true when the modulus is composite: try to solve 2x ≡ 1
(mod 6). When the modulus is fixed, the multiplicative inverse of x is often
written x−1.

6.5 The Pigeonhole Principle

The Pigeonhole Principle (also known by other names including the Box
Principle or the Drawer Principle) is a delightfully simple and surprisingly
powerful proof technique. When stated it seems almost trivial:

The Pigeonhole Principle You cannot put more than n pigeons into n
pigeonholes without having at least two pigeons in one hole.

In practice, we most often use the principle in the following way: we make a
set of n numbers (pigeons), we prove that they can take at most m different
values where m < n (pigeonholes), and then deduce that two numbers in
the set must be equal. As a simple example,

Claim 6.4 In any group of people there are at least two with the same
number of friends within the group.

Proof Suppose that the group is n people. The wording of the question
implies that n ≥ 2 and we may assume that friendship is a symmetric rela-
tion(!) and discount the possibility that someone is friends with themselves.
Let us write integers f1, f2, . . . fn for the number of friends of each person
within the group. We know that 0 ≤ fi ≤ n − 1, since each person has at
most n − 1 potential friends.

We cannot immediately apply the pigeonhole principle to {f1, . . . , fn}, be-
cause we have n numbers and they might have n different values. But it is
impossible to have both fi = 0 and fj = n−1 for some i and j, for j cannot
be friends with everybody if i is friends with nobody.

78 CHAPTER 6. MODULAR ARITHMETIC

For this reason, the n numbers {f1, . . . , fn} can take at most n− 1 different
values. By the pigeonhole principle at least two of the numbers must be
equal. �

When attempting a proof in which the idea is that something “does not fit”
inside something else, the pigeonhole principle is usually the key.

A computer science application of the pigeonhole principle now follows. A
“data compression algorithm” is a method for shrinking computer files, usu-
ally by looking for redundancy in the file; examples include gzip or rar.
Unless otherwise specified, the operation must be lossless, i.e. invertible:
there must be a way to decompress and recover the original exactly. We are
not considering so-called lossy compressors like jpg or mp3.

Claim 6.5 No (lossless) data compression algorithm can reduce the size
of any of its inputs, unless it increases the size of some of its inputs.

Proof Suppose, for a contradiction, that there is a data compression al-
gorithm which reduces the size of some inputs, and perhaps preserves the
size of some inputs, but never increases the input size. Let us measure input
and output sizes in bits, for convenience.

Let n be the length of the shortest input which compresses to a shorter
output; suppose that the corresponding output is m bits. Because m < n,
and under the supposition that n was the shortest input which was shrunk,
all the inputs of length m give outputs of length m.

But there are only 2m possible outputs of length m, and all the inputs of
length m (2m of them) plus at least one input of length n (the one which
shrunk) are assumed to give outputs of length m: a total of at least 2m + 1
inputs giving up to 2m different outputs. By the pigeonhole principle, at
least two different inputs must correspond to the same output. This is a
contradiction, because it is impossible to decompress that output to recover
the original (which original should be returned?). �

This is not a disaster for the science of data compression. It does not
matter if gzip compression slightly increases the size of very unusual files,
as long as it generally shrinks the sorts of files which are commonly stored
on computers. This is indeed the case.

Here is another application of the pigeonhole principle.

6.5. THE PIGEONHOLE PRINCIPLE 79

Claim 6.6 Take any set A of n + 1 distinct positive integers less than or
equal to 2n, where n ∈ N+. Then

(i) at least one element of A divides another, and

(ii) at least two elements of A are coprime.

Proof

Both use the pigeonhole principle, although for (ii) it is a slightly modified
version.

(i) Pick out the largest powers of 2 which divide each element of A; that is,
write the elements of A as 2a1b1, 2

a2b2, . . . , 2
anbn, where all the bi are odd

and all the ai ∈ N. All the bi are odd numbers less than 2n: there are only
n such odd numbers, and n + 1 elements of A, so we must have bi = bj for
some i, j. Of the corresponding elements of A, one is a power of 2 times the
other.

(ii) We need a modified pigeonhole principle: you cannot put more than n
pigeons into 2n different pigeonholes without having at least two pigeons in
consecutive holes.

Here, we have more than n distinct positive integers fitting into 2n slots, so
two must be consecutive, and these must be coprime because any common
divisor of a and b also divides their difference. �

Finally, a pure number theory result from the pigeonhole principle.

Claim 6.7 For any prime p there is a solution (in x and y) of x2+y2 ≡ −1
(mod p).

Proof Equivalently, we must prove that there is a solution of x2 +1 ≡ −y2

(mod p).

x2
1 ≡ x2

2 (mod p) if and only if p | (x1 −x2)(x1 +x2), if and only if x1 ≡ ±x2

(mod p). So there are exactly p+1
2 different values (mod p) for x2 + 1 and

exactly p+1
2 different values for −y2. There are only p different values (mod

p), and p+1 values of x2 +1 or −y2 so the pigeonhole principle tells us that
at least one pair must be equal. We already said that the p+1

2 values for
each of x2 + 1 were different, similarly for −y2, so one of the x2 + 1 must
equal one of the −y2. This proves that x2 + 1 ≡ −y2 (mod p) for some x
and y. �

80 CHAPTER 6. MODULAR ARITHMETIC

6.6 Interesting Diversion: Modular Square Roots

of -1

For a bonus, we prove a pure number theoretic result using the facts con-
necting equivalence relations and partitions.

Claim 6.8 If p is prime, then x2 ≡ −1 (mod p) has a solution if and only
if p = 2 or p ≡ 1 (mod 4).

Proof If p = 2 then x = 1 is a solution (in fact the only solution, up to
equality (mod 2)).

For odd p, we construct an equivalence relation on {1, 2, . . . , p − 1}:

y1 ∼ y2 if y1 ≡ ±y2 (mod p) or y1 ≡ ±y−1
2 (mod p).

It is easy to check that this does indeed define an equivalence relation. Each
equivalence class of ∼ can have up to four elements: {y,−y, y−1,−y−1}, but
it is possible that these are not four distinct numbers:

(i) It is impossible to have y ≡ −y (mod p) when p is odd.

(ii) y ≡ y−1 (mod p) and −y ≡ −y−1 (mod p) (one of these happens if
and only if the other does). These are equivalent to y2 ≡ 1 (mod p),
i.e. p | (y2 − 1) = (y − 1)(y + 1). This happens only when y ≡ ±1
(mod p), so there is always one equivalence class with exactly two
elements: {1,−1}.

(iii) y ≡ −y−1 (mod p) and −y ≡ y−1 (mod p) (again, each of these im-
plies the other). They are equivalent to y2 ≡ −1 (mod p). There
might be a solution to this equation or there might not, but there can
only be zero or two solutions to equations of this form (proof: y2 ≡ a
is equivalent to (y − b)(y + b) ≡ 0: y ≡ ±b are the only solutions, if
any such b exists at all), so there may be one further equivalence class
of size two {y,−y}, or there may be no further equivalence class of
size two.

So there are always one (if y2 ≡ −1 has no solution) or two (if y2 ≡ −1
has two solutions) equivalence classes of size 2, and all the other equivalence
classes must be of size 4.

Now remember that the equivalence classes partition the set on which the
equivalence relation is defined, here {1, 2, . . . , p−1}. The cardinality is p−1,

6.6. MODULAR SQUARE ROOTS OF -1 81

and so the cardinality of the equivalence classes adds up to p−1. If p−1 ≡ 0
(mod 4) then there must be two equivalence classes of size 2, so there is a
y satisfying y2 ≡ −1 (mod p). On the other hand, if p − 1 ≡ 2 (mod 4)
then there must be one equivalence class of size 2, so there is no solution of
y2 ≡ −1 (mod p). �

82 CHAPTER 6. MODULAR ARITHMETIC

Practice Questions

6.1 Compute the remainder when (34 · 45 · 57 + 89)2 is divided by 8.

6.2 Compute the remainder when 1317 is divided by 11.

6.3 Use Euclid’s Algorithm to find the gcd of 805 and 105.

6.4 Use Euclid’s Algorithm to find integers x and y satisfying 21x+99y =
3.

6.5 Show that gcd(Fn+1, Fn) = 1 (where Fn is the n-th Fibonacci num-
ber). Use proof by induction on n.

6.6 Show that 14 cannot be written as the sum of two squares. Write it
as the sum of three squares.

6.7 Consider an equilateral triangle which has sides of length 1 unit, and
five points placed in the triangle. Show that, no matter where the points
are placed, at least two of them must be no more than 1

2 units apart.

6.8 Suppose we are given a finite set S ⊂ N. If log2 n < |S |, show that
there exist two distinct subsets of S, S1 and S2, satisfying

∏

a∈S1

a =
∏

a∈S2

a (mod n).

(Recall that
∏

a∈S1
a means the product of all members of S1.)

PRACTICE QUESTIONS 83

84CHAPTER6.MODULARARITHMETIC
Answers to Chapter 6 Practice Questions

6.1 According to the laws for addition, multiplication, and exponentiation
(mod 8), we have 34 ≡ 2 (mod 8), 45 ≡ 5 (mod 8), 55 ≡ −1 (mod 8),
89 ≡ 1 (mod 8), so (34 ·45 ·55+89)2 ≡ (2 ·5 ·−1+1)2 ≡ (−9)2 ≡ (−1)2 ≡ 1
(mod 8).

6.2 Again, we have 1317 ≡ 217 (mod 11). But we cannot reduce the
exponent 17 to 6 modulo 11. Use the method of repeated squaring:
217 ≡ 2 · 216 ≡ 2 · 48 ≡ 2 · 164 ≡ 2 · 54 ≡ 2 · 252 ≡ 2 · 32 ≡ 18 ≡ 7
(mod 11).

6.3 35.

6.4 21 · (−14) + 99 · 3 = 3.

6.5 The base case is easy: gcd(F2, F1) = gcd(1, 1) = 1. For the inductive
step, use the fact that gcd(m, n) = gcd(m, n−m) (which is part of Euclid’s
Algorithm) and commutativity of gcd(−,−). We have gcd(Fn+1, Fn) =
gcd(Fn + Fn−1, Fn) = gcd(Fn, Fn−1). By the inductive hypothesis, this
equals 1.

6.6 The only squares less than 14 are 1, 4, and 9. No pair from this set
sums to 14, but all three do. So 14 = 12 + 22 + 32.

6.7 We need to turn this into a pigeonhole principle situation. Let us
divide up the triangle into four regions, equilateral of size 1

2 units:

With four regions and five points, at least two points must lie in the same
region. Those two points cannot be further apart than the vertices of the
small triangle, a maximum of 1

2 units.

6.8 If log2 n < |S | then n < |P(S)|. There are only n different values for
any function (mod n), so two different subsets of S must give rise to the
same product (mod n).

Chapter 7

Asymptotic Notation

Reading: Ross & Wright: 4.3;
Chetwynd & Diggle: not covered;
Grimaldi: 5.7, 5.8, 10.6;
Grossman: 13.4 (mostly not covered).

The asymptotic behaviour of a function indicates the rate at which it “grows”,
for “large” inputs. In many computer science applications, particularly when
counting the time taken or memory used by an algorithm, we are happy to
know the rate of growth of a function without knowing the function exactly.
This is partly because our measures of time are usually approximate anyway,
counting computational steps rather than something necessarily directly re-
lated to seconds. Moreover, quite often we cannot compute exact solutions
for the recurrence relations which give the time or space requirements of an
algorithm, but we can at least determine the rate of growth. This chap-
ter discusses one of the notations used for rates of growth, and explores its
properties as an interesting example of a particular type of mathematical
statement which needs a carefully-constructed proof.

7.1 Big-O Notation

When we say that one function grows asymptotically no faster than another,
we do not mean that it must always be smaller. Asymptotic growth is

85

86 CHAPTER 7. ASYMPTOTIC NOTATION

measured only: a) without regard to constant multiples, and b) only for
sufficiently large values of the domain. Formally,

Definition If f, g : N → R, we write f(n) = O(g(n)) if there are constants
c ∈ R and N ∈ N satisfying

|f(n)| ≤ c|g(n)| for all n ≥ N. (7.1)

Recall that |x| denotes the absolute value of x, |x| = x if x ≥ 0 and
|x| = −x if x < 0. In computer science the definition is most commonly
used when f and g are guaranteed to give positive values (because they
represent time or memory), in which case the modulus signs |−| can be
dropped. The same definition works for sequences – read fn instead of f(n)
– and also functions with domains such as R or [0,∞) (in which case N is a
member of the same set). Sometimes, when the functions involved already
have names, we elide the function argument n, writing f = O(g) instead.

This is called big-O notation or Landau’s notation (after the mathe-
matician who popularized its use). We also say that f is asymptotically
bounded or asymptotically dominated by g.

For an example, n2 + n = O(n2). This is true because n2 + n ≤ 2n2 for
n ≥ 1, which is true because n2 ≥ n for n ≥ 1. Everything is positive so we
can forget about the |−| signs.

We also have 100n2+10000n = O(n2). In this case we need a larger constant
c (10100 will do). You can see that multiplying a function by a constant, no
matter how large, does not affect its “big-O” behaviour.

For another example, n3 +n2 +log n = O(n3). This is true because n3 ≥ n2

for n ≥ 1 and n3 ≥ log n for all n > 0 (how could you prove the latter?).
Combining these facts, n3 + n2 + log n ≤ 3n3 for n ≥ 1 (again, everything is
positive so the |−| signs are irrelevant).

We have n5 = O(nn), because n5 ≤ 1 ·nn for n ≥ 5. It does not matter that
the inequality fails for smaller values of n; only the behaviour for large n
matters. We also have n! = O(nn): this is true because n! = 1·2 · · · (n−1)·n,
a product of n terms each ≤ n. Therefore it is less than nn. We have proved
n! < 1·nn for all n ≥ 1. But this is not a tight upper bound: in the same way
that n2 ≤ n4 is true but not tight as, and less informative than, n2 ≤ n2.
In Sect. 7.4 we will find a tighter bound for the asymptotic behaviour of n!.

7.2. PROVING SENTENCES OF THE FORM ∃X.∀Y.P 87

For a final example, 3log n = O(n2). This is true because

3log n = e(log n)(log 3) = nlog 3.

Now log 3 < 2, so nlog 3 ≤ n2 for all n ≥ 1, completing the proof.

Now one tricky aspect of big-O notation is that f(n) = O(g(n)) is not an
equality, even though it uses the equals sign. In fact it works more like
“≤”. If we know that f1(n) = O(g(n)) and f2(n) = O(g(n)), we cannot

conclude that f1 = f2: the preceding examples demonstrate this. Neither
can we switch between the two sides: n = O(n2) but n2 6= O(n). But
if f = O(g(n)) and g = O(h(n)) then f = O(h(n)) (this is an exercise).
Some books write f(n) ∈ O(g(n)), so that O(g(n)) represents the set of all
functions f which satisfy the equation (7.1). That notation avoids confusion
with equality, but we will not use it here.

To decide whether given f and g satisfy f(n) = O(g(n)), it is often useful
to examine the quotient f(n)/g(n). If this quantity can be bounded (its
absolute value is always less than some value c), for sufficiently large n, then
f(n) = O(g(n)) is established. If it cannot be bounded then f(n) 6= O(g(n)).
It is also helpful to establish some algebraic laws for big-O notation, and
some of these are explored in the practice questions and tutorial exercises.

One other technique, sometimes useful for showing f(n) = O(g(n)), is to
take logs of the quotient: assuming that everything in sight is positive,
f(n)/g(n) is bounded if and only if log(f(n)/g(n)) < k for some k. This
can simplify big-O problems involving exponentials. We will see an example
of this in the next section.

7.2 Proving Sentences of the form ∃x.∀y.P

The statement f(n) = O(g(n)) is of a form commonly found in mathematics
and computer science. Using logical notation, we can write it ∃x.∀y.P . In
this case, there exists a pair of numbers c and N , such that for all n,
whenever n ≥ N then |f(n)| ≤ c|g(n)|. How do we prove such a statement?

The easiest form of proof is to work out (somehow) what the numbers c and
N must be, and then prove that n ≥ N implies |f(n)| ≤ c|g(n)| using the
usual techniques. For example, to prove that (n+1)3 = O(n3) we might see

88 CHAPTER 7. ASYMPTOTIC NOTATION

straightaway that c = 8 and N = 1 will work, then construct the following
proof:

Suppose n ≥ 1. Then 2n ≥ n + 1, so 8|n3| ≥ |(n + 1)3|. End of proof.

But, in practice, we often cannot find the right values of c and N imme-
diately. In that case, it is better to work some calculations into the proof,
beginning with as-yet undetermined values of c and N and hoping to derive
them as the proof progresses. In that case, take care that the logic is cor-
rect: the proof is being constructed backwards, and probably the steps in
the proof are ⇐ or ⇔ (not ⇒). For example,

Claim 7.1 n2 = O(2n).

Proof Everything in sight is positive, so the claim is true if (and only if),
for some N and c, whenever n ≥ N we have n2 ≤ c2n. Then calculate:

n2 ≤ c2n ⇔ n2

2n ≤ c
⇔ 2 log n − n log 2 ≤ log c

We can see that we need to find a bound on 2 log n − n log 2. There are a
number of ways, but we will use a simple method involving some continuous
mathematics.

Consider the function f : (0,∞) → R, f(x) = 2 log x − x log 2. We compute
f ′(x) = 2/x− log 2 and f ′′(x) = −2/x2. Therefore f has one turning point,
a maximum, at x = 2/ log 2. It is enough to notice that 2/ log 2 < 4, and
f(4) = 2 log 4 − 4 log 2 = 0, so at the very least we have f(x) < 0 for x ≥ 4.

Now we have found N and c: if we take N = 4 and c = 1, we have just
shown that 2 log n − n log 2 ≤ log c for n ≥ N . Following the calculation
backwards completes the proof. �

The same techniques apply to proofs of other sentences of the form ∃x.∀y.P :
although one can sometimes write down x straight away, it is often necessary
to begin the proof with x undetermined, and later deduce the value which
will make the proof work.

(We might sometimes need to prove f(n) 6= O(g(n)), and that is a mathe-
matical statement of a different shape. These will be examined in the final
chapter, but for now we need only note that it is sufficient to show that
|f(n)/g(n)| is not bounded.)

7.3. TAIL BEHAVIOUR 89

7.3 Tail Behaviour

Now we prove a result about big-O notation. It is an example of how to
construct proofs involving sentences of the form ∃x.∀y.P , and also shows us
a slightly simpler equivalent definition for f = O(g).

Claim 7.2 As long as the domain and f and g is N, and g(n) is always
nonzero, f(n) = O(g(n)) if and only if there is a constant c ∈ R satisfying

|f(n)| ≤ c|g(n)| for all n ∈ Dom(f).

Proof The direction (⇐) is trivial: if there is a c satisfying |f(n)| ≤ c|g(n)|
for all n, then just take N = 0 (or any N ∈ Dom(f)); we already have the
same inequality for n ≥ N .

For (⇒), suppose that there exist c and N such that |f(n)| ≤ c|g(n)| for
all n ≥ N . We will need to find a c′ such that |f(n)| ≤ c′|g(n)| for all n,
regardless of whether n ≥ N or n < N . We can write down such a number:

c′ = max{|f(0)/g(0)|, |f(1)/g(1)|, |f(2)/g(2)|, . . . , |f(N − 1)/g(N − 1)|, c}

Let us prove that c′ has the required property. Because c′ ≥ |f(n)/g(n)| for
n < N , we have |f(n)| ≤ c′|g(n)| for n < N . And because c′ ≥ c, we have
|f(n)| ≤ c′|g(n)| for n ≥ N too. That completes the proof. �

A similar result extends to functions f and g whose domain is [0,∞), but
the proof is more difficult. We must ensure that |f(n)/g(n)| has a maximum
on [0, N). This is guaranteed as long as f and g are continuous functions,
but that takes us well away from discrete mathematics.

7.4 Example: Asymptotics of n!

Now let us look at an advanced example. We have already commented that
n! = O(nn), but this is not a very good bound: only one of the products in
n! is as big as n, so it seems that nn significantly overestimates n!. To give
a more precise description of the asymptotic behaviour of n!, we must delve
into continuous mathematics.

First, a simple lemma. (A lemma is a mathematical statement which is
proved as a preliminary step towards the proof of a bigger claim.)

90 CHAPTER 7. ASYMPTOTIC NOTATION

Lemma 7.3 For all x > 0, (1
2 + 1

x) log(1 + x) > 1.

Proof The result is equivalent to log(1+x) > x
1
2
x+1

. Consider the function

f : [0,∞) → R, f(x) = log(1 + x) − x
1
2
x+1

. Differentiating, we have

f ′(x) =
1

1 + x
−

1
2x + 1 − 1

2x
(

1
2x + 1

)2 =
1

1 + x
− 1

1 + x + 1
4x2

> 0

for x > 0, the last inequality because 1 + x + 1
4x2 > 1 + x. Therefore f is

strictly increasing, and we know that f(0) = 0, so f(x) > 0 for all x > 0.
This is precisely the result we want. �

Now we can state and prove a tight asymptotic bound for the factorial
function.

Claim 7.4
n! = O(nn+ 1

2 exp(−n)).

Proof First, define an = n!

nn+1
2 exp(−n)

; we need to find a constant c such

that an ≤ c, at least for sufficiently large n.

Now consider an

an+1
. We have

an

an+1
=

n!(n + 1)n+1+ 1
2 exp(−n − 1)

(n + 1)!nn+ 1
2 exp(−n)

=
1

e

(

1 +
1

n

)n+ 1
2

so log
(

an

an+1

)

= (1
2 + n) log(1 + 1

n) − 1. According to the previous lemma,
this is positive at least for n ≥ 1. Therefore

an

an+1
> 1

or an+1 < an for n ≥ 1. We have shown that (an) is a decreasing sequence,
so an+1 < a1, so c = a1 (which happens to equal e) satisfies an ≤ c for all
n ≥ 1. �

It turns out that this asymptotic bound is as good as possible: in fact,
n!

nn+1
2 exp(−n)

tends to a finite value (
√

2π) as n → ∞. That is known as

7.5. ASYMPTOTIC BEHAVIOUR OF RECURRENCE RELATIONS 91

Stirling’s formula, but its proof requires more continuous mathematics
than we want to see in this course. Stirling’s formula gives the following
approximation to n!, for large n: n! ∼

√
2πn

(

n
e

)n
.

This sort of proof, manipulating properties of continuous functions to obtain
a bound, is typical of the methods used to obtain asymptotic behaviour of
complicated functions or sequences.

7.5 Example: Asymptotic Behaviour of Recurrence

Relations

We already know that recurrence relations, especially those which are non-
linear, can be difficult to solve. But often, such as for recurrences describing
the running time of an algorithm, we are content to bound the asymptotic
growth of the solution rather than finding the solution itself. This is some-
times an easier task.

For example, consider the recurrence

x1 = 0, xn = 2x⌊n
2⌋ + n for n ≥ 2

The sequence it generates begins (0, 2, 3, 8, 9, 12, 13, 24, 25, 28, . . .) and we
might well have difficulty finding a closed formula for the n-th term. But
we can prove

xn = O(n log2 n)

using induction, although the induction is a bit strange because when we
start it we do not know exactly what we are going to prove1.

The base case, at least, will be automatic: x1 = 0 is less than any multiple
of n log2 n.

Now consider the inductive step. We want to prove that xn ≤ cn log2 n, for
some value c, but we don’t yet know the value of c. Nonetheless, we will
attempt a proof by induction with c as an arbitrary value, and aim to fill it
in later.

1Because big-O notation is insensitive to constant multiples, and because logb n =
(logb a)(loga n), we do not actually need to specify the base of the logarithms in situations
like this.

92 CHAPTER 7. ASYMPTOTIC NOTATION

Using the recurrence, if n ≥ 2 we have

xn = 2x⌊n
2⌋ + n

≤ 2c
⌊

n
2

⌋

log2

⌊

n
2

⌋

+ n (IH)

≤ cn log2(n/2) + n

= cn(log2 n − 1) + n

= cn log2 n + n(1 − c)

now as long as c ≥ 1, this final formula is less than cn log2 n, which completes
the inductive step. So it the proof by induction, of the statement xn ≤
cn log2 n, works for any c ≥ 1.

We should comment that things are more difficult if the initial condition is
modified to x1 = 1. Then it is still true that xn = O(n log2 n). But the base
case cannot possibly be n = 1, because c ·1 log2 1 = 0, not a number at least
1. Of course, for asymptotic behaviour we only need prove that xn ≤ n log2 n
for sufficiently large n, so we can move the base case to n = 2. This requires
us to use a larger value of c, but (looking carefully at the structure of the
induction) also another base case n = 3. If you can understand why, you
will have grasped the finer details of proof by induction.

7.6 Interesting Diversion: Solving Recurrences of

the Divide-and-Conquer Type

Recurrences of the form

tn = at⌊n
b⌋ + f(n),

for constants a ≥ 1 and b ≥ 1, and a function f(n), occur often in the
analysis of algorithms (when a problem of size n is split into a smaller
problems, each size n/b), and they can be difficult to solve exactly. However
the asymptotic behaviour of the solution can often be deduced immediately
(and usually regardless of the initial conditions, in fact). There are standard
answers in many cases, and we will present them here without proof.

First, we need to extend big-O notation. Recall that f = O(g) is somewhat
akin to “f ≤ g”. The converse, akin to “f ≥ g”, and something similar to
equality, are also defined:

7.6. RECURRENCES OF DIVIDE-AND-CONQUER TYPE 93

Definition We write
f(n) = Ω(g(n))

if g(n) = O(f(n)), and
f(n) = Θ(g(n))

if both f(n) = O(g(n)) and g(n) = O(f(n)).

We will not study so-called big-Omega and big-Theta notation in this course,
but note that f(n) = Θ(g(n)) gives the most precise description of the
asymptotic behaviour of f(n): it is bounded above and below by constant
multiples of g(n), for sufficiently large n.

We now state a theorem which allows us to write down solutions to recur-
rences of the type we described. Along with a proof, it can be found in the
standard algorithms textbook

T. H. Cormen, C. E. Leiserson, R. L Rivest. Introduction to Algorithms,
MIT Press 1990.

where it is called the “master theorem”.

Theorem 7.5 Consider the recurrence

tn = atn
b

+ f(n)

where tn
b

can mean either t⌊n
b⌋ or t⌈n

b⌉, and the boundary conditions can be

anything as long as they ensure that tn is positive (at least for sufficiently
large n). Then

(i) If f(n) = O(nk) with k < logb a, then tn = Θ(nlogb a).

(ii) If f(n) = Θ(nk) with k = logb a, then tn = Θ(nlogb a log n).

(iii) If f(n) = Ω(nk) with k > logb a, then tn = Θ(f(n)).

The theorem tells us whether the recurrence part atn
b

is most important
to the behaviour of the sequence, or the part f(n), or whether both con-
tribute (the middle case). For example, we can now say that the asymptotic
behaviour of the three recurrence relations

sn = 3s⌊n
2⌋ + n, tn = 4t⌊n

2⌋ + n2, un = 5u⌊n
2⌋ + n3,

94 CHAPTER 7. ASYMPTOTIC NOTATION

(whatever their initial conditions, as long as they are enough to make the
resulting sequences positive) are

sn = Θ(nlog2 3), tn = Θ(n2 log n), un = Θ(n3).

PRACTICE QUESTIONS 95

Practice Questions

7.1 Which of the following statements are true? There is no need to
include proofs.

(i) n2 = O(n3),

(ii) 10n + 5 = O(n),

(iii) n2 + 1 = O(n),

(iv)
√

n4 + n2 = O(n2),

(v) 100000 + log n = O(1).

7.2 Give a sketch proof that:

(i)
(

n
2

)

= O(n2) (the domain here must be {n ∈ N | n ≥ 2}),
(ii)

(

n
3

)

= O(n3) (the domain here must be {n ∈ N | n ≥ 3}).

7.3 Which of the following statements are true? Explain why.

(i) n2n = O(2n),

(ii) n2n = O(3n),

(iii) n3 = O(3n),

(iv) 3n = O(n3).

7.4 Show that, for any a ∈ R and b ∈ [0,∞), (n + a)b = O(nb).

What is the best power of n asymptotic bound for (n + a)b if a 6= 0 and
b < 0?

7.5 Define two functions f, g : N+ → N+ by

f(n) =

{

n, for n odd

1, for n even
g(n) =

{

1, for n odd

n, for n even

Prove that f 6= O(g) and g 6= O(f).

7.6 Prove that f = O(g) and g = O(h) together imply f = O(h).

7.7 Prove that, if f1 = O(g1) and f2 = O(g2), and the functions f1, f2,

g1, g2 are nonnegative, then f1 + f2 = O(g1 + g2).

7.8 Consider the recurrence xn = 2x⌊n
2⌋ + n2, x1 = 1. Without using the

theorem in Sect. 7.6, prove that xn = O(n2).

96CHAPTER7.ASYMPTOTICNOTATION
Answers to Chapter 7 Practice Questions

7.1 (i), (ii), and (iv) are true.

7.2
(

n
2

)

= n(n−1)
2 ≤ n2 and

(

n
3

)

= n(n−1)(n−2)
6 ≤ n3.

7.3 (i) false: the quotient n2n/2n = n is not bounded.
(ii) true: take the log of the quotient: log(n2n/3n) = log n − n log(3/2),
differentiate to find that it has a maximum.
(iii) true: take the log of the quotient: log(n3/3n) = 3 log n− n log 3, differ-
entiate to find that it has a maximum.
(iv) false: take the log of the quotient: log(3n/n3) = n log 3 − 3 log n, its
derivative log 3 − 3/n is positive and increasing for n ≥ 1, so the quotient
must grow without bound.

7.4 The key is: for n ≥ a, (n + a)b ≤ (n + n)b = 2bnb. If b < 0 and a 6= 0,
the best we can say is (n + a)b = O(1).

7.5 f(n)/g(n) =

{

n, for n odd

1/n, for n even
and g(n)/f(n) =

{

1/n, for n odd

n, for n even
.

No matter what value we pick for c or N , there is always an odd integer n
bigger than both so f(n)/g(n) is not bounded by any multiple of n; similarly
for g(n)/f(n).

7.6 By the hypotheses, there exist c1, c2, N1, N2 such that |f(n)/g(n)| ≤ c1

for n ≥ N1 and |g(n)/h(n)| ≤ c2 for n ≥ N2. Set N = max{N1, N2}:
then for n ≥ N we have both inequalities, and multiplying them gives
|f(n)/h(n)| ≤ c1c2. So, taking c = c1c2, we have shown that f = O(h).

7.7 Since everything is positive, we can drop the |−| signs. Because f1 =
O(g1), there exist c1 and N1 such that f1(n)/g1(n) ≤ c1 for n ≥ N1. And
because f2 = O(g2), there exist c2 and N2 such that f2(n)/g2(n) ≤ c2 for
n ≥ N2. Then

f1(n) + f2(n)

g1(n) + g2(n)
=

f1(n)

g1(n) + g2(n)
+

f2(n)

g1(n) + g2(n)
≤ f1(n)

g1(n)
+

f2(n)

g2(n)
≤ c1 + c2

as long as n ≥ max{N1, N2}. Therefore c = c1 + c2 and N = max{N1, N2}
prove f1 + f2 = O(g1 + g2).

7.8 Try to prove, by induction, that xn ≤ cn2 (for some c yet to be deter-

mined). For the inductive step, we have xn ≤ 2c
⌊

n
2

⌋2
+n2 ≤ n2(c

2 +1) ≤ cn2

as long as c ≥ c
2 + 1. c = 2 will do. The base case is easy to check.

Chapter 8

Orders

Reading: Ross & Wright: 11.1, 11.2;
Chetwynd & Diggle: 3.3 (barely covered);
Grimaldi: 7.3;
Grossman: 5.5 (mostly not covered).

Orders are particular types of relation with a simple intuitive interpretation,
formalizing the idea of elements being “greater than” or “after” others. But
orders need not be as simple as ≤ on R, and even with this familiar order
there are some quite subtle concepts related to the idea of maximum: these
will illustrate our final proof topic.

Although they might seem a little dry at first sight, orders are of great
importance to computer scientists: orders, and some related concepts, are
pervasive in theoretical computer science, so it is worthwhile to meet them
here.

8.1 Definitions

There are three commonly-used types of order, all of them relations with
certain properties.

Definition A preorder is a reflexive, transitive relation.

A partial order is a reflexive, antisymmetric, transitive relation.

97

98 CHAPTER 8. ORDERS

A linear order is an antisymmetric, transitive relation with the additional
property of totality: for every x, y (in the domain) either x R y or y R x (or
both).

A set together with a partial order on that set is sometimes called a partially
ordered set (also called poset), similarly for a totally ordered set. Some
books use the terminology total order instead of linear order, and chain
instead of totally ordered set. But, as we shall see shortly, the word chain
also has other (similar) meanings. We tend to use the generic term order
to mean a set that has a preorder, partial order, or linear order.

Note that the totality condition for linear orders also implies reflexivity, so
the linear orders are a subset of the partial orders, which are a subset of the
preorders.

Some familiar examples: on any subset of R, ≤ is a linear order (hence a
partial order and a preorder); on N+, | is a partial order and a preorder but
not a linear order (neither 2 | 3 nor 3 | 2); for any fixed set A there is an order
on P(A) given by ⊆ (again a partial order but, if A has at least two elements,
not a linear order); there is an alternative order on P(A) given by B ≤ C
if |B | ≤ |C | but this is only a preorder since it is not antisymmetric. We
could order sequences of letters by “dictionary order” (the technical term is
lexicographic order, of which more later) to make a linear order on English
words. Another order on English words is given by prefix: w1 � w2 if w1 is
an initial segment of w2 (e.g. “line” � “linear”); this is a partial order but
not a linear order.

It is easy to see that the converse of a preorder (partial order, linear order)
is still a preorder (partial order, linear order), so all of the preceding orders
can also be reversed. We have to be careful with orders which are not linear:
if x 6= y, and � the converse of �, it is tempting to confuse x 6� y with x � y.
Unless � is a linear order, they are not always the same: we have 2 |/ 3 but
we cannot conclude 3 | 2.

Definition Suppose that � is an order on a set A. If either x � y or y � x
then we say that x and y are comparable, otherwise they are incompa-
rable.

When � is a partial order on A, we say that S ⊆ A is a chain if all pairs in S
are comparable, and S ⊆ A is an antichain if no pairs in S are comparable.

8.2. ORDERS ON CARTESIAN PRODUCTS 99

(To further confuse matters, sometimes the word chain means a finite or
infinite sequence x1, x2, . . . of elements of A with x1 � x2 � · · · , but we will
not use that terminology here.)

The totality condition of a linear order means that all elements are compa-
rable, making these definitions uninteresting. But we can find some inter-
esting examples using the partial order | on N: with respect to this order,
both {1, 3, 9, 27, 81} and {1, 2, 4, 12, 84, 168} are examples of chains and both
{2, 3, 5, 7} and {7, 8, 9, 10, 11, 12, 13} are examples of antichains.

8.2 Orders on Cartesian Products

Suppose that we have an order on A; can we construct an order on A × A?
There are a number of alternatives. First, some useful terminology. We will
write x ≺ y to mean that x � y and x 6= y: this irreflexive so-called strict
order can be created from any preorder, partial order, or linear order.

The two commonest product orders are

Definition If � is an order on A then the lexicographic order on A×A
is defined by

(x, y) �L (x′, y′) ⇔ x ≺ x′ or (x = x′ and y � y′).

If � is an order on A then the product order on A × A is defined by

(x, y) �P (x′, y′) ⇔ x � x′ and y � y′.

The product order is more strict, in the sense that (x, y) �P (x′, y′) implies
(x, y) �L (x′, y′) but not vice versa. The lexicographic order is the same
as “dictionary order” on words of fixed length. The properties of the lexi-
cographic construction match those of the order to which it is applied, but
this is not always true of the product order.

Claim 8.1

(i) If � is a preorder on A then �L is a preorder on A × A.

(ii) If � is a partial order on A then �L is a partial order on A × A.

(iii) If � is a linear order on A then �L is a linear order on A × A.

100 CHAPTER 8. ORDERS

(iv) If � is a preorder on A then �P is a preorder on A × A.

(v) If � is a partial order on A then �P is a partial order on A × A.

(vi) If � is a linear order on A then �P might not be a linear order on
A × A.

Proof We need to show that whenever � is reflexive (respectively tran-
sitive, antisymmetric) the same is true for �L and �P . Also, if � is total
then so is �L.

Let us show that both constructions preserve reflexivity. Suppose that �
is reflexive on A, and consider any pair (x, y) ∈ A2. Since x � x and
y � y, we have (x, y) �P (x, y). For the lexicographic order we have a
similar argument: at the final stage, we know that x = x and y � y, thus
(x, y) �L (x, y).

Now consider antisymmetry. Suppose that (x, y) �P (x′, y′) �P (x, y). Then
we must have x � x′ � x and y � y′ � y, which by antisymmetry of � force
x = x′ and y = y′. For the lexicographic order it is a bit more tricky: if we
have (x, y) �L (x′, y′) �L (x, y) then either

(i) x ≺ x′ ≺ x (impossible by antisymmetry of � and definition of ≺),

(ii) x = x′, y � y′, and x′ ≺ x (impossible by definition of ≺),

(iii) x ≺ x′, x′ = x, and y′ � y (impossible by definition of ≺),

(iv) x = x′, y � y′, x′ = x, y′ � y, which force x = x′ and y = y′.

In the only possible case, we have (x, y) = (x′, y′), showing that �L is
antisymmetric.

The other parts of this proof are left for exercises. �

The same constructions extend to any product An, in the obvious way:

(x1, . . . , xn) �L (y1, . . . , yn) ⇔ x1 ≺ y1 or
(x1 = y1 and x2 ≺ y2) or
(x1 = y1 and x2 = y2 and x3 ≺ y3) or
· · · or
(x1 = y1 and x2 = y2 and · · ·xn � yn)

(x1, . . . , xn) �P (y1, . . . , yn) ⇔ x1 � y1 and x2 � y2 and · · · and xn � yn

8.3. DRAWING ORDERS 101

The lexicographic order can also apply to finite words (words are ordered
lists of variable length) in which case it still corresponds to “dictionary
order”, but finite words are not within our syllabus.

Finally, the same constructions can be applied to any cartesian product
A × B, even if A and B have different orders �A and �B. In that case, for
example, (a, b) �L (a′, b′) when a ≺A a′, or a = a′ and b �B b′.

8.3 Drawing Orders

Since an order is an example of a relation, we can draw it as a directed
graph, just like in Section 4.5. But there is a more concise and attractive
way to draw partial orders and linear orders, in which the reflexivity and
transitivity of the order are implicit. A Hasse diagram for a partial order
� on a set A is a graph, drawn in the plane, with vertices corresponding to
the elements of A and an edge going up from a to b if a ≺ b (so excluding
a = b) and there is no element x with a ≺ x ≺ b.

Because of the particular orientation requirement, edges do not need arrows
(they always “point” upwards). The definition specifically excludes loop
edges because reflexivity is automatic for all partial orders, and unnecessary
edges which can be deduced from transitivity. As a result, a Hasse diagram
of a partial order is much easier to read than the full digraph containing all
the edges. (In general, the relation which results from deleting loops, and
edges redundant under transitivity, is called the cover relation.)

If A is an infinite set, the complete Hasse diagram cannot, of course, be
drawn. But when the order relation follows a pattern, drawing an indicative
part of the Hasse diagram can be helpful.

The simplest Hasse diagrams are of linear orders: they are simply ascending
sequences of nodes. Here are two examples of diagrams of partial orders. On
the left, the set {1, 2, 3, 4, 5, 6} ordered by divisibility. Note that the edge
1 | 6, and all n |n, are not drawn. On the right, P({1, 2, 3}) ordered by ⊆:

102 CHAPTER 8. ORDERS

the diagram reflects the symmetrical nature of this partial order.

6

2 3 4 5

1

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

∅

Let us use Hasse diagrams to illustrate the distinction between lexicographic
and product order. Take the set {a, b, c}, with order

b c

a

That is, a � b and a � c, but b and c are incomparable. Then the corre-
sponding lexicographic and product orders on {a, b, c}2 are given by:

(b,b) (b,c) (c,b) (c,c)

(b,a) (c,a)

(a,b) (a,c)

(a,a)

and

(b,b) (c,b) (b,c) (c,c)

(a,b) (b,a) (c,a) (a,c)

(a,a)

8.4. UPPER AND LOWER BOUNDS 103

There are often many different ways to place the nodes in a Hasse diagram,
and some layouts are more informative than others in that they reflect under-
lying symmetries in the order, while trying to reduce confusing line-crossing.
Finding good layouts is something of an art and it is difficult to automate.

8.4 Upper and Lower Bounds

In a partial or linear order it makes sense to consider some elements to be
greater than others (it does not really make sense to do so for a preorder
which is not antisymmetric).

Definition Suppose that � is a partial order on A and S ⊆ A.

Then we say that m is an upper bound for S if x � m for all x ∈ S. m is
a lower bound for S if m � x for all x ∈ S.

We say that m is a maximum of S if x � m for all x ∈ S, and also m ∈ S.
Similarly, m is a minimum of S is m � x for all x ∈ S, and also m ∈ S.

Another way to say that m is an upper bound for S is to say that S is
bounded above by m; in some circumstances we might say that S is
dominated by m.

Consider the linear order ≤ on R. Then 1 is an upper bound for (0, 1) but it
is not a maximum because it is not a member of the set. Also, 2 is an upper
bound for (0, 1): upper (and lower) bounds are not necessarily unique. On
the other hand, if a set has a maximum, it is unique (proof: exercise). Or
consider the partial order | on N+; the upper bounds for the set {3, 4, 5}
are the numbers divisible by all of 3, 4 and 5 (so for example 60 is an upper
bound) and the lower bounds are the numbers which divide into all of 3, 4
and 5 (the only such number is 1).

It is possible to get very confused if the order itself is counterintuitive. For
example, with respect to the order ≥ on R, 0 is an upper bound and the
maximum for [0, 1], and 1 is a lower bound and the minimum...

Note that sets need not have an upper or lower bound. For example, [0,∞)
in the linear order ≤ has lower bounds, but no upper bound. Or consider
the set of English words ordered by prefix: there is no lower or upper bound

104 CHAPTER 8. ORDERS

(no English word is a prefix of every other, nor begins with every other as a
prefix).

Also, a set might have an upper bound (or more than one) but no maximum.
This is true of (0, 1), which has upper bounds (anything ≥ 1) and lower
bounds (anything ≤ 0) but no maximum or minimum: anything greater
than (or less than) every member of (0, 1) cannot itself be a member of
(0, 1). But 0 and 1 are the tightest possible lower and upper bounds: that
leads to the following definition.

Definition Suppose that � is a partial order on A and S ⊆ A.

Then we say that m is a least upper bound for S if m ∈ A is an upper
bound for S, and any other upper bound for S, m′, satisfies m � m′. We
write this m = lubS.

We say that m is a greatest lower bound for S if m ∈ A is a lower bound
for S, and any other lower bound for S, m′, satisfies m′ � m. We write this
m = glbS.

Mathematicians often refer to least upper bound as supremum and greatest
lower bound as infimum. In lattice theory (the wider study of orders) they
are sometimes called join and meet. We will stick with the abbreviations
lub and glb.

So 0 and 1 are the glb and lub of (0, 1) with respect to the ≤ order. If we
consider the order | on N+, lub{2, 3} is 6. This is because all upper bounds
of {2, 3} must be divisible by both 2 and 3, so the set of upper bounds is
{6, 12, 18, . . .} and 6 is the least upper bound. Remember that least, here,
is still with respect to the | order.

Be careful! If a set has a lub it must be unique (similarly for glb) because
if m and m′ are both lubs for S then m ≤ m′ and m′ ≤ m, and (remember
we are only defining lubs and glbs for partial orders) antisymmetry forces
m = m′. But not every subset has a lub or glb. For a start, a set with no
upper bound cannot have a least upper bound (e.g. (0,∞) as a subset of
the linear order ≤ on R). But, for a more serious example, take the order
≤ on Q, and consider the subset Q∩ (0,

√
2). The upper bounds for this set

are rationals q >
√

2, and we will show in the next section that there is no
least upper bound:

√
2 itself can’t be a least upper bound, because

√
2 /∈ Q.

8.5. PROVING SENTENCES OF THE FORM ∀X.∃Y.P 105

Remember that lubS has to be a member of the order in which it lives, even
if it is not a member of S.

When every pair of elements of A has a lub and glb, we say that the order
is a lattice; then the lub and glb operations become binary operators, and
they are often written infix as x ⊔ y and x ⊓ y respectively. When every
subset of A has a lub and glb, we say that the order is a complete lattice,
but this takes us beyond the syllabus. It is notable that Q, ordered by ≤,
is not a complete lattice but R, ordered by ≤, is a complete lattice. This is
the fundamental distinction between Q and R.

It can be awkward to prove that m is the least upper bound of S, because
we have to reason about every possible upper bound for S. When A is a
linear order, there is an alternative definition which is sometimes more
convenient:

Claim 8.2 Let � be a linear order on a set A and S ⊆ A. Then m = lubS
if and only if

(i) x � m for all x ∈ S, and

(ii) for all a ∈ A, if a ≺ m then there exists an element x ∈ S with a ≺ x.

Note that this is only equivalent for linear orders: it is equivalent because
a ≺ m ⇒ ∃x.a ≺ x is the contrapositive of the statement ∀x.x � a ⇒ m � a,
when we can interchange x 6� x′ with x′ ≺ x. The alternative definition of
glb is symmetrical.

This definition makes it easier to prove that, for example, 1 is the lub of
(0, 1) with respect to the linear order ≤: all x ∈ (0, 1) satisfy x ≤ 1, and if
a < 1 then max(1

2 , 1+a
2) is an element of (0, 1) greater than a.

8.5 Proving Sentences of the form ∀x.∃y.P

The statement “S has an upper bound” is of the form ∃x.∀y.P : there exists
an x (the upper bound) such that, for all y ∈ S, y � x. We saw how to
construct proofs of these statements in Chapter 7.

The statement “S has no upper bound” can be written in the form ∀x.∃y.P :
for all x ∈ A, there exists some y ∈ S with x 6� y. The second part of alter-
native definition of m = lubS for linear orders is also of this form. The same

106 CHAPTER 8. ORDERS

pattern is found in “f is onto” (for all members x of the codomain, there
exists a member of the domain which maps to x), or “f(n) 6= O(g(n))” (for
all N and c, there exists n ≥ N with |f(n)| > c|g(n)|).
We now briefly consider how to prove statements of this form. We must
imagine that we are given a value of x, over which we have no control, and
are required to find a value of y so that P becomes true: the value of y
will probably depend on the x we are given. In effect, we are constructing
a function which produces a good value of y (to make P true) out of any
value of x, although we do not need to give an explicit formula for the
function. (These two concepts – seeing quantifiers as “give” and “take”,
and converting ∀x.∃y.P into the existence of a function – are interesting
topics in the theory of logic, but are not part of the discrete mathematics
course.)

First, a very simple example.

Claim 8.3 The set N, ordered by | , has no upper bound.

Proof Intuitively, it seems obvious. Formally, we must show that any
n ∈ N is not an upper bound: for any n ∈ N, there exists n′ ∈ N with n′ |/ n.
(Imagine that we are given n, we need to find a corresponding value of n′

with that property.)

Given any n ∈ N, we can choose n′ = n + 1. Then, as we hoped, n′ |/ n. �

Now let us prove something we mentioned in the previous section.

Claim 8.4 The set S = Q∩ (0,
√

2), as a subset of the order Q ordered by
≤, has no least upper bound.

Proof This is a proof by contradiction: we suppose that m = lubS exists
and derive a contradiction by showing that there is a rational m′ < m which
is also an upper bound for S (it is a contradiction because, by definition, m
is supposed to be the least upper bound). Again, this is of the form: given

a supposed lub m, we must find an upper bound which is less.

Remember that m = lubS means m ∈ Q: the lub has to be a member of
the ordered set. So let us write m = p/q, for integers p and q. To complete
the contradiction we need to find a rational m′ which satisfies

√
2 ≤ m′ < m

8.6. INTERESTING DIVERSION: ORDER ISOMORPHISMS 107

(the first inequality tell us that m′ is an upper bound for S, and the second
that it is less than m). Since m is an upper bound for S, and

√
2 /∈ Q, we

know that m −
√

2 is positive. So let us write r = ⌈1/(m −
√

2)⌉; we know
r ∈ N+ so the following m′ will do:

m′ =
⌈r
√

2⌉
r

.

Why does this m′ work? First, since ⌈x⌉ ≥ x, we have m′ ≥
√

2. Second,
because ⌈x⌉ < x + 1, we have m′ <

√
2 + 1/r ≤

√
2 + m −

√
2 = m. �

In this proof, we had to take care to construct the right value of m′. We
used the fact that any rational approximation to an irrational (here m as an
upper bound for

√
2) can always be made closer if we use a rational with a

large enough denominator.

8.6 Interesting Diversion: Order Isomorphisms

Let A and B be sets, and suppose that f : A → B is a bijection. If A and
B have order relations �A and �B, respectively, it makes sense to compare
the statements a �A a′ and f(a) �B f(a′). When they are the same, f is
called an order isomorphism.

Definition If A and B have order relations �A and �B, an order iso-
morphism between A and B is a bijection f : A → B such that

a �A a′ ⇔ f(a) �B f(a′).

Let us write (A,�A) so to identify concisely both a set an the order re-
lation on it. There is an order isomorphism between (R,≤) and (R,≥)
given by f : x 7→ −x; this is a very simple example. An order isomor-
phism between (N,≤) and ({1, 2, 4, 8, 16, . . .}, |) is given by x 7→ 2x. If
we order English words by prefix, there is an order isomorphism between
{“ox”, “oxford”, “oxfordshire”, “oxen”} and ({1, 2, 3, 4}, |): identify 1 with
“ox”, 2 with “oxford”, 3 with “oxen”, and 4 with “oxfordshire”. Perhaps
even more obscurely, if we take the vertices of a cube, label one vertex the
origin O and say that vertex A is less than vertex B if a shortest path from
O to B includes A, we create a partial order on the 8 vertices. It can be seen

108 CHAPTER 8. ORDERS

that there is an order isomorphism between this order and (P({1, 2, 3}),⊆).
The best way to see this is to draw Hasse diagrams of both orders.

Just as the existence of a bijection between A and B forces them to have to
same cardinality, so the existence of an order isomorphism between (A,�A)
and (B,�B) forces them to have some of the same attributes: if one is a
partial order, so is the other, similarly linear order, lattice, etc.

PRACTICE QUESTIONS 109

Practice Questions

8.1 Consider the order ⊆ on the set P(Z10). Which of the following sets
are chains, and which are antichains?

(i) ∅,
(ii) {{1}, {1, 3, 5}, {1, 3}, {1, 3, 5, 9}},
(iii) {{1, 2}, {2, 3}, {3, 4}},
(iv) {{3, 1}, {4}, {1, 5, 9}, {2, 6, 4, 5}}.

8.2 Give an example of a linear order � on a set A such that the product
order �P on A × A is not a linear order.

8.3 Let A be a partial order. Prove that if S ⊆ A has a maximum then
it is unique.

8.4 With respect to the partial order | on the set N+, find

(i) lub{4, 6},
(ii) lub{3, 4, 5, 6},
(iii) glb{12, 16, 18, 24},
(iv) glb{737, 2345}.

8.5 Consider the set A = {B ⊆ {1, 2, 3, 4} | |B | 6= 2}, ordered by ⊆. Draw
the Hasse diagram of this order, and find one pair of elements with no lub,
and one pair of elements with no glb.

8.6 Consider the set N2, with the lexicographic order formed from ≤.
Define S = lub{(0, n) | n ∈ N}. Show that S has no maximum, and find
lubS.

8.7 Let A ⊆ B be subsets of some set, which has a partial order ≤. Prove
that, if lubA and lubB both exist, then lubA ≤ lubB.

8.8 Find an order isomorphism between the set of positive integer divisors
of 385, ordered by | , and P({a, b, c}), ordered by inclusion.

110CHAPTER8.ORDERS
Answers to Chapter 8 Practice Questions

8.1 (i) vacuously, both a chain and an antichain; (ii) a chain; (iii) an
antichain; (iv) neither chain nor antichain.

8.2 There are many examples, including ≤ on N.

8.3 Let m and m′ be maxima for S. Since m ∈ S we must have m � m′;
since m′ ∈ S we must have m′ � m. Since we are working in a partial order
(antisymmetric) we have m = m′.

8.4 (i) The upper bounds divide 4 and 6, i.e. they divide 12. The least, with
respect to the divides order, is 12. (ii) Similarly, lub{3, 4, 5, 6} is the least
common multiple 60. (iii) The lower bounds are those which are divisors of
12, 16, 18, and 24 i.e. {1, 2}, so the glb is 2. (iv) Similarly, glb{737, 2345}
is the greatest common divisor 67 (use Euclid’s algorithm).

8.5
{1,2,3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1} {2} {3} {4}

∅

Pairs such as {1} and {2} have no lub and pairs such as {1, 2, 3} and {1, 2, 4}
have no glb.

8.6 The only possibilities for a maximum are (0, n) with n ∈ N. But none
of these can be an upper bound, because (0, n + 1) is always greater (with
respect to the lexicographic order). lubS = (1, 0).

8.7 For any a ∈ A, we have a ∈ B; then a ≤ lubB because lub B is an
upper bound for B. We have proved that lubB is an upper bound for A.
But lubA is the least upper bound for A, so lubA ≤ lubB.

8.8 It might be helpful to draw a picture. There are 6 different (symmet-
rical) order isomorphisms, including ∅ ↔ 1, {a} ↔ 5, {b} ↔ 7, {c} ↔ 11,
{a, b} ↔ 35, {b, c} ↔ 77, {a, c} ↔ 55, {a, b, c} ↔ 385.

Index

| (“divides” relation), 47
|−| (absolute value), 86
Ω(-) (asymptotic lower bound), 93
Θ(-) (asymptotic upper and

lower bound), 93
O(-) (asymptotic upper bound), 86
(:) (binomial coefficients), 36
nCk (binomial coefficients), 36
|A| (cardinality), 12
�

(cartesian product), 11
× (cartesian product), 10
⌈−⌉ (ceiling function), 40
[a, b] (closed interval), 17
A (complement), 9
◦ (composition of functions), 24
◦ (composition of relations), 50
R−1 (converse relation), 50
∅ (empty set), 3
≡ (equality in modular

arithmetic), 71
[a] (equivalence class), 48
(−)! (factorial function), 34
⌊−⌋ (floor function), 40
∩ (intersection), 5
∈ (is an element of), 2
/∈ (is not an element of), 2
⊔ (join), 105
⊓ (meet), 105

(fn) (notation for a whole sequence),
57

(a, b) (open interval), 17
⊂ (proper subset), 4
R∗ (reflexive transitive closure), 51
nPk (related to binomial coefficients),

36
\ (relative complement), 8
Z (set of integers), 3
Zn (set of integers modulo n), 3
N (set of natural numbers), 3
N+ (set of positive integers), 3
Q (set of rational numbers), 3
R (set of real numbers), 3
≺ (strict order), 99
⊆ (subset), 4
∆ (symmetric difference), 8
⊕ (symmetric difference), 8
R+ (transitive closure), 51
∪ (union), 5, 8
∑n

i=m ai (sum of sequence
segment), 61

f : A → B (function domain
and codomain), 18

f : a 7→ b (function map), 18

1-1, 20

absolute value, 86
additive inverse, 72

111

112 INDEX

algebraic laws, 5
antichain, 98
antisymmetric, 47
arrangement, 34
arrow, 52
associative, 24, 26
associativity, 5

bag, 12
base case, 59
Bell numbers, 63
big-O notation, 86
big-Omega notation, 93
big-Theta notation, 93
bijection, 20
bijective, 20
binary operator, 26
binomial coefficients, 35
binomial theorem, 65
boundary condition, 58
bounded, 87
bounded above, 103
braces, 2

cancellation, 9
cardinality, 12
cartesian product, 10
ceiling, 40
chain, 98, 99
characteristic polynomial, 65
closed interval, 18
codomain, 18
combination, 35
combinatorial coefficients, 35
commutative, 24, 26
commutativity, 5
comparable, 98
complement, 9

complete lattice, 105
component, 10
composition (of functions), 24
composition (of relations), 50
contrapositive, 21
converse relation, 50
coprime, 75
counterexample, 14
cover relation, 101

data compression, 78
De Morgan’s laws, 9
derangement, 39, 62
digraph, 52
directed graph, 52
disjoint, 5
distributivity, 5, 10
div, 74
divides relation, 47
Dobinski’s formula, 64
domain, 18
dominated, 103
double inclusion proof, 4

edge, 52
element, 2, 10
empty set, 3
enumerative combinatorics, 31
equality (of functions), 19
equality (of sets), 4
equivalence class, 48
equivalence relation, 48
Euclid’s algorithm, 76
Euclid’s theorem, 76
exclusive, 32

factorial, 34, 89
Fibonacci sequence, 58

INDEX 113

floor, 40
function, 18
function on A, 18

generating function, 67
glb, 104
greatest common divisor (gcd), 75
greatest lower bound, 104

half-open interval, 18
Hasse diagram, 101
homogeneous, 65

idempotence, 5
idempotent, 26
identity element, 26
identity function, 19
if and only if, 7
image, 20
inclusion-exclusion principle, 38, 39
incomparable, 98
independent, 33
indexing set, 8
induction, 59
inductive hypothesis, 59
inductive step, 59
infimum, 104
infix, 26, 46
inhomogeneous, 66
injection, 20
injective, 20
integers, 3
integers modulo n, 3, 71
intersection, 5, 8
interval, 17
interval property, 17
inverse, 50
inverse function, 25

involution, 9
irrational, 22
irreflexive, 47

join, 104

labelled digraph, 53
Landau’s notation, 86
lattice, 105
law of product, 33
law of subtract, 33
law of sum, 32
least upper bound, 104
lemma, 89
lexicographic order, 99, 102
linear order, 98
lossless, 78
lower bound, 103
lub, 104

maximum, 103
meet, 104
member, 2
method of repeated squaring, 73
minimal counterexample, 61
minimum, 103
mod, 74
modular arithmetic, 72
modulo n, 72
modulus, 71
monoid, 27
multinomial coefficients, 41
multiplicative inverse, 77

natural numbers, 3
node, 52

observational equivalence, 48
one, 5

114 INDEX

one-to-one map, 20
onto, 20
open interval, 18
order, 98
order isomorphism, 107
ordered pair, 10

parity, 23
partial function, 19
partial order, 97
partial sums, 62
partially ordered set, 98
partition, 49, 63
Pascal’s triangle, 35
permutation, 35
pigeonhole principle, 77
poset, 98
positive integers, 3
power set, 12
prefix, 26, 98
preorder, 97
prime number, 75
principle of induction, 59
principle of strong induction, 60
product order, 99, 102
proof, 4
proof by contradiction, 22
proper subset, 4
property, 31

range, 20
rational numbers, 3, 22
real numbers, 3
recurrence relation, 58
recursive, 58
reduction, 72
reflexive, 47
reflexive transitive closure, 51

relation, 45
relative complement, 8
relatively prime, 75
restriction, 26
right-distributivity, 9
RSA, 73

sequence, 57
serial, 47
set, 1
set comprehension, 2
set membership, 2
Stirling’s formula, 91
strict order, 99
strong induction, 60
subset, 4
superset, 4
supremum, 104
surjection, 20
surjective, 20
symmetric, 47
symmetric difference, 8

time complexity, 58
total, 98
total function, 19
total order, 98
totality, 98
totally ordered set, 98
transitive, 47
transitive closure, 51
tuple, 11

union, 5, 7
universe, 9
upper bound, 103

well-defined, 23
words, 101

INDEX 115

zero, 5

