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1
What is Linear Algebra?

Many difficult problems can be handled easily once relevant information is
organized in a certain way. This text aims to teach you how to organize in-
formation in cases where certain mathematical structures are present. Linear
algebra is, in general, the study of those structures. Namely

Linear algebra is the study of vectors and linear functions.

In broad terms, vectors are things you can add and linear functions are
functions of vectors that respect vector addition. The goal of this text is to
teach you to organize information about vector spaces in a way that makes
problems involving linear functions of many variables easy. (Or at least
tractable.)

To get a feel for the general idea of organizing information, of vectors,
and of linear functions this chapter has brief sections on each. We start
here in hopes of putting students in the right mindset for the odyssey that
follows; the latter chapters cover the same material at a slower pace. Please
be prepared to change the way you think about some familiar mathematical
objects and keep a pencil and piece of paper handy!

1.1 Organizing Information

Functions of several variables are often presented in one line such as

f(x, y) = 3x+ 5y .

9



10 What is Linear Algebra?

But lets think carefully; what is the left hand side of this equation doing?
Functions and equations are different mathematical objects so why is the
equal sign necessary?

A Sophisticated Review of Functions

If someone says

“Consider the function of two variables 7β − 13b.”

we do not quite have all the information we need to determine the relationship
between inputs and outputs.

Example 1 (Of organizing and reorganizing information)
You own stock in 3 companies: Google, Netflix, and Apple. The value V of your

stock portfolio as a function of the number of shares you own sN , sG, sA of these
companies is

24sG + 80sA + 35sN .

Here is an ill posed question: what is V

1
2
3

?

The column of three numbers is ambiguous! Is it is meant to denote

• 1 share of G, 2 shares of N and 3 shares of A?

• 1 share of N , 2 shares of G and 3 shares of A?

Do we multiply the first number of the input by 24 or by 35? No one has specified an
order for the variables, so we do not know how to calculate an output associated with
a particular input.1

A different notation for V can clear this up; we can denote V itself as an ordered
triple of numbers that reminds us what to do to each number from the input.

1Of course we would know how to calculate an output if the input is described in
the tedious form such as “1 share of G, 2 shares of N and 3 shares of A”, but that is
unacceptably tedious! We want to use ordered triples of numbers to concisely describe
inputs.

10
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1.1 Organizing Information 11

Denote V by
(
24 80 35

)
and thus write V

1
2
3


B

=
(
24 80 35

)1
2
3


to remind us to calculate 24(1) + 80(2) + 35(3) = 334

because we chose the order
(
G A N

)
and named that order B

so that inputs are interpreted as

sGsA
sN

 .

If we change the order for the variables we should change the notation for V .

Denote V by
(
35 80 24

)
and thus write V

1
2
3


B′

=
(
35 80 24

)1
2
3


to remind us to calculate 35(1) + 80(2) + 24(3) = 264.

because we chose the order
(
N A G

)
and named that order B′

so that inputs are interpreted as

sNsA
sG

 .

The subscripts B and B′ on the columns of numbers are just symbols2 reminding us
of how to interpret the column of numbers. But the distinction is critical; as shown
above V assigns completely different numbers to the same columns of numbers with
different subscripts.

There are six different ways to order the three companies. Each way will give
different notation for the same function V , and a different way of assigning numbers
to columns of three numbers. Thus, it is critical to make clear which ordering is
used if the reader is to understand what is written. Doing so is a way of organizing
information.

2We were free to choose any symbol to denote these orders. We chose B and B′ because
we are hinting at a central idea in the course: choosing a basis.

11



12 What is Linear Algebra?

This example is a hint at a much bigger idea central to the text; our choice of
order is an example of choosing a basis3.

The main lesson of an introductory linear algebra course is this: you
have considerable freedom in how you organize information about certain
functions, and you can use that freedom to

1. uncover aspects of functions that don’t change with the choice (Ch 12)

2. make calculations maximally easy (Ch 13 and Ch 17)

3. approximate functions of several variables (Ch 17).

Unfortunately, because the subject (at least for those learning it) requires
seemingly arcane and tedious computations involving large arrays of numbers
known as matrices, the key concepts and the wide applicability of linear
algebra are easily missed. So we reiterate,

Linear algebra is the study of vectors and linear functions.

In broad terms, vectors are things you can add and linear functions are
functions of vectors that respect vector addition.

1.2 What are Vectors?

Here are some examples of things that can be added:

Example 2 (Vector Addition)

(A) Numbers: Both 3 and 5 are numbers and so is 3 + 5.

(B) 3-vectors:

1
1
0

+

0
1
1

 =

1
2
1

.

3 Please note that this is an example of choosing a basis, not a statement of the definition
of the technical term “basis”. You can no more learn the definition of “basis” from this
example than learn the definition of “bird” by seeing a penguin.

12



1.2 What are Vectors? 13

(C) Polynomials: If p(x) = 1 + x− 2x2 + 3x3 and q(x) = x+ 3x2 − 3x3 + x4 then

their sum p(x) + q(x) is the new polynomial 1 + 2x+ x2 + x4.

(D) Power series: If f(x) = 1+x+ 1
2!x

2+ 1
3!x

3+· · · and g(x) = 1−x+ 1
2!x

2− 1
3!x

3+· · ·
then f(x) + g(x) = 1 + 1

2!x
2 + 1

4!x
4 · · · is also a power series.

(E) Functions: If f(x) = ex and g(x) = e−x then their sum f(x) + g(x) is the new
function 2 coshx.

There are clearly different kinds of vectors. Stacks of numbers are not the
only things that are vectors, as examples C, D, and E show. Vectors of
different kinds can not be added; What possible meaning could the following
have? (

9
3

)
+ ex

In fact, you should think of all five kinds of vectors above as different
kinds, and that you should not add vectors that are not of the same kind.
On the other hand, any two things of the same kind “can be added”. This is
the reason you should now start thinking of all the above objects as vectors!

In Chapter 5 we will give the precise rules that vector addition must obey.
In the above examples, however, notice that the vector addition rule stems
from the rules for adding numbers.

When adding the same vector over and over, for example

x+ x , x+ x+ x , x+ x+ x+ x , . . . ,

we will write

2x , 3x , 4x , . . . ,

respectively. For example

4

1
1
0

 =

1
1
0

+

1
1
0

+

1
1
0

+

1
1
0

 =

4
4
0

 .

Defining 4x = x+x+x+x is fine for integer multiples, but does not help us
make sense of 1

3
x. For the different types of vectors above, you can probably

13



14 What is Linear Algebra?

guess how to multiply a vector by a scalar. For example

1

3

1

1

0

 =


1
3
1
3

0

 .

A very special vector can be produced from any vector of any kind by
scalar multiplying any vector by the number 0. This is called the zero vector
and is usually denoted simply 0. This gives five very different kinds of zero
from the 5 different kinds of vectors in examples A-E above.

(A) 0(3) = 0 (The zero number)

(B) 0

1
1
0

 =

0
0
0

 (The zero 3-vector)

(C) 0 (1 + x− 2x2 + 3x3) = 0 (The zero polynomial)

(D) 0
(
1 + x− 1

2!
x2+ 1

3!
x3+ · · ·

)
= 0+0x+0x2+0x3+· · · (The zero power series)

(E) 0 (ex) = 0 (The zero function)

In any given situation that you plan to describe using vectors, you need
to decide on a way to add and scalar multiply vectors. In summary:

Vectors are things you can add and scalar multiply.

Examples of kinds of vectors:

• numbers

• n-vectors

• 2nd order polynomials

• polynomials

• power series

• functions with a certain domain

14



1.3 What are Linear Functions? 15

1.3 What are Linear Functions?

In calculus classes, the main subject of investigation was the rates of change
of functions. In linear algebra, functions will again be the focus of your
attention, but functions of a very special type. In precalculus you were
perhaps encouraged to think of a function as a machine f into which one
may feed a real number. For each input x this machine outputs a single real
number f(x).

In linear algebra, the functions we study will have vectors (of some type)
as both inputs and outputs. We just saw that vectors are objects that can be
added or scalar multiplied—a very general notion—so the functions we are
going to study will look novel at first. So things don’t get too abstract, here
are five questions that can be rephrased in terms of functions of vectors.

Example 3 (Questions involving Functions of Vectors in Disguise)

(A) What number x satisfies 10x = 3?

(B) What 3-vector u satisfies4

1
1
0

× u =

0
1
1

?

(C) What polynomial p satisfies
∫ 1
−1 p(y)dy = 0 and

∫ 1
−1 yp(y)dy = 1?

(D) What power series f(x) satisfies x d
dxf(x)− 2f(x) = 0?

4 The cross product appears in this equation.

15



16 What is Linear Algebra?

(E) What number x satisfies 4x2 = 1?

All of these are of the form

(?) What vector X satisfies f(X) = B?

with a function5 f known, a vector B known, and a vector X unknown.

The machine needed for part (A) is as in the picture below.

x 10x

This is just like a function f from calculus that takes in a number x and
spits out the number 10x. (You might write f(x) = 10x to indicate this).
For part (B), we need something more sophisticated.

xy
z

  z
−z
y − x

 ,

The inputs and outputs are both 3-vectors. The output is the cross product
of the input with... how about you complete this sentence to make sure you
understand.

The machine needed for example (C) looks like it has just one input and
two outputs; we input a polynomial and get a 2-vector as output.

p

 ∫ 1

−1 p(y)dy∫ 1

−1 yp(y)dy

 .

This example is important because it displays an important feature; the
inputs for this function are functions.

5In math terminology, each question is asking for the level set of f corresponding to B.

16



1.3 What are Linear Functions? 17

While this sounds complicated, linear algebra is the study of simple func-
tions of vectors; its time to describe the essential characteristics of linear
functions.

Let’s use the letter L to denote an arbitrary linear function and think
again about vector addition and scalar multiplication. Also, suppose that v
and u are vectors and c is a number. Since L is a function from vectors to
vectors, if we input u into L, the output L(u) will also be some sort of vector.
The same goes for L(v). (And remember, our input and output vectors might
be something other than stacks of numbers!) Because vectors are things that
can be added and scalar multiplied, u + v and cu are also vectors, and so
they can be used as inputs. The essential characteristic of linear functions is
what can be said about L(u+ v) and L(cu) in terms of L(u) and L(v).

Before we tell you this essential characteristic, ruminate on this picture.

The “blob” on the left represents all the vectors that you are allowed to
input into the function L, the blob on the right denotes the possible outputs,
and the lines tell you which inputs are turned into which outputs.6 A full
pictorial description of the functions would require all inputs and outputs

6The domain, codomain, and rule of correspondence of the function are represented by
the left blog, right blob, and arrows, respectively.
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18 What is Linear Algebra?

and lines to be explicitly drawn, but we are being diagrammatic; we only
drew four of each.

Now think about adding L(u) and L(v) to get yet another vector L(u) +
L(v) or of multiplying L(u) by c to obtain the vector cL(u), and placing both
on the right blob of the picture above. But wait! Are you certain that these
are possible outputs!?

Here’s the answer

The key to the whole class, from which everything else follows:

1. Additivity:

L(u+ v) = L(u) + L(v) .

2. Homogeneity:

L(cu) = cL(u) .

Most functions of vectors do not obey this requirement.7 At its heart, linear
algebra is the study of functions that do.

Notice that the additivity requirement says that the function L respects
vector addition: it does not matter if you first add u and v and then input
their sum into L, or first input u and v into L separately and then add the
outputs. The same holds for scalar multiplication–try writing out the scalar
multiplication version of the italicized sentence. When a function of vectors
obeys the additivity and homogeneity properties we say that it is linear (this
is the “linear” of linear algebra). Together, additivity and homogeneity are
called linearity. Are there other, equivalent, names for linear functions? yes.

7E.g.: If f(x) = x2 then f(1 + 1) = 4 6= f(1) + f(1) = 2. Try any other function you
can think of!

18



1.3 What are Linear Functions? 19

Function = Transformation = Operator

And now for a hint at the power of linear algebra. The questions in
examples (A-D) can all be restated as

Lv = w

where v is an unknown, w a known vector, and L is a known linear transfor-
mation. To check that this is true, one needs to know the rules for adding
vectors (both inputs and outputs) and then check linearity of L. Solving the
equation Lv = w often amounts to solving systems of linear equations, the
skill you will learn in Chapter 2.

A great example is the derivative operator.

Example 4 (The derivative operator is linear)
For any two functions f(x), g(x) and any number c, in calculus you probably learnt
that the derivative operator satisfies

1. d
dx(cf) = c ddxf ,

2. d
dx(f + g) = d

dxf + d
dxg.

If we view functions as vectors with addition given by addition of functions and with
scalar multiplication given by multiplication of functions by constants, then these
familiar properties of derivatives are just the linearity property of linear maps.

Before introducing matrices, notice that for linear maps L we will often
write simply Lu instead of L(u). This is because the linearity property of a

19



20 What is Linear Algebra?

linear transformation L means that L(u) can be thought of as multiplying
the vector u by the linear operator L. For example, the linearity of L implies
that if u, v are vectors and c, d are numbers, then

L(cu+ dv) = cLu+ dLv ,

which feels a lot like the regular rules of algebra for numbers. Notice though,
that “uL” makes no sense here.

Remark A sum of multiples of vectors cu + dv is called a linear combination of
u and v.

1.4 So, What is a Matrix?

Matrices are linear functions of a certain kind. They appear almost ubiqui-
tously in linear algebra because– and this is the central lesson of introductory
linear algebra courses–

Matrices are the result of organizing information related to linear
functions.

This idea will take some time to develop, but we provided an elementary
example in Section 1.1. A good starting place to learn about matrices is by
studying systems of linear equations.

Example 5 A room contains x bags and y boxes of fruit.

20



1.4 So, What is a Matrix? 21

Each bag contains 2 apples and 4 bananas and each box contains 6 apples and 8
bananas. There are 20 apples and 28 bananas in the room. Find x and y.

The values are the numbers x and y that simultaneously make both of the following
equations true:

2x+ 6 y = 20

4x+ 8 y = 28 .

Here we have an example of a System of Linear Equations .8 It’s a collection
of equations in which variables are multiplied by constants and summed, and
no variables are multiplied together: There are no powers of variables (like x2

or y5), non-integer or negative powers of variables (like y1/7 or x−3), and no
places where variables are multiplied together (like xy).

Reading homework: problem 1

Information about the fruity contents of the room can be stored two ways:

(i) In terms of the number of apples and bananas.

(ii) In terms of the number of bags and boxes.

Intuitively, knowing the information in one form allows you to figure out the
information in the other form. Going from (ii) to (i) is easy: If you knew
there were 3 bags and 2 boxes it would be easy to calculate the number
of apples and bananas, and doing so would have the feel of multiplication
(containers times fruit per container). In the example above we are required
to go the other direction, from (i) to (ii). This feels like the opposite of
multiplication, i.e., division. Matrix notation will make clear what we are
“multiplying” and “dividing” by.

The goal of Chapter 2 is to efficiently solve systems of linear equations.
Partly, this is just a matter of finding a better notation, but one that hints
at a deeper underlying mathematical structure. For that, we need rules for
adding and scalar multiplying 2-vectors;

c

(
x
y

)
:=

(
cx
cy

)
and

(
x
y

)
+

(
x′

y′

)
:=

(
x+ x′

y + y′

)
.

8Perhaps you can see that both lines are of the form Lu = v with u =

(
x
y

)
an unknown,

v = 20 in the first line, v = 28 in the second line, and L different functions in each line?
We give the typical less sophisticated description in the text above.

21
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22 What is Linear Algebra?

Writing our fruity equations as an equality between 2-vectors and then using
these rules we have:

2x+ 6 y = 20
4x+ 8 y = 28

}
⇐⇒

(
2x+ 6y
4x+ 8y

)
=

(
20
28

)
⇐⇒ x

(
2
4

)
+y

(
6
8

)
=

(
20
28

)
.

Now we introduce a function which takes in 2-vectors9 and gives out 2-vectors.
We denote it by an array of numbers called a matrix .

The function

(
2 6
4 8

)
is defined by

(
2 6
4 8

)(
x
y

)
:= x

(
2
4

)
+ y

(
6
8

)
.

A similar definition applies to matrices with different numbers and sizes.

Example 6 (A bigger matrix)

 1 0 3 4
5 0 3 4
−1 6 2 5



x
y
z
w

 := x

 1
5
−1

+ y

0
0
6

+ z

3
3
2

+ w

4
4
5

 .

Viewed as a machine that inputs and outputs 2-vectors, our 2× 2 matrix
does the following:

(
x
y

) (
2x+ 6y
4x+ 8y

)
.

Our fruity problem is now rather concise.

Example 7 (This time in purely mathematical language):

What vector

(
x
y

)
satisfies

(
2 6
4 8

)(
x
y

)
=

(
20
28

)
?

9To be clear, we will use the term 2-vector to refer to stacks of two numbers such

as

(
7

11

)
. If we wanted to refer to the vectors x2 + 1 and x3 − 1 (recall that polynomials

are vectors) we would say “consider the two vectors x3 − 1 and x2 + 1”. We apologize
through giggles for the possibility of the phrase “two 2-vectors.”
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1.4 So, What is a Matrix? 23

This is of the same Lv = w form as our opening examples. The matrix
encodes fruit per container. The equation is roughly fruit per container
times number of containers equals fruit. To solve for number of containers
we want to somehow “divide” by the matrix.

Another way to think about the above example is to remember the rule
for multiplying a matrix times a vector. If you have forgotten this, you can
actually guess a good rule by making sure the matrix equation is the same
as the system of linear equations. This would require that(

2 6
4 8

)(
x
y

)
:=

(
2x+ 6y
4x+ 8y

)
Indeed this is an example of the general rule that you have probably seen
before (

p q
r s

)(
x
y

)
:=

(
px+ qy
rx+ sy

)
= x

(
p
r

)
+ y

(
q
s

)
.

Notice, that the second way of writing the output on the right hand side of
this equation is very useful because it tells us what all possible outputs a
matrix times a vector look like – they are just sums of the columns of the
matrix multiplied by scalars. The set of all possible outputs of a matrix
times a vector is called the column space (it is also the image of the linear
function defined by the matrix).

Reading homework: problem 2

Multiplication by a matrix is an example of a Linear Function, because it
takes one vector and turns it into another in a “linear” way. Of course, we
can have much larger matrices if our system has more variables.

Matrices in Space!

Thus matrices can be viewed as linear functions. The statement of this for
the matrix in our fruity example is as follows.

1.

(
2 6
4 8

)
λ

(
x
y

)
= λ

(
2 6
4 8

)(
x
y

)
and

23
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24 What is Linear Algebra?

2.

(
2 6
4 8

)[(
x
y

)
+

(
x′

y′

)]
=

(
2 6
4 8

)(
x
y

)
+

(
2 6
4 8

)(
x′

y′

)
.

These equalities can be verified using the rules we introduced so far.

Example 8 Verify that

(
2 6
4 8

)
is a linear operator.

The matrix-function is homogeneous if the expressions on the left hand side and right
hand side of the first equation are indeed equal.(

2 6
4 8

)[
λ

(
a
b

)]
=

(
2 6
4 8

)(
λa
λb

)
= λa

(
2
4

)
+ λb

(
6
8

)

=

(
2λa
4λa

)
+

(
6bc
8bc

)
=

(
2λa+ 6λb
4λa+ 8λb

)

while

λ

(
2 6
4 8

)(
a
b

)
= c

[
a

(
2
4

)
+ b

(
6
8

)]
= λ

[(
2a
4a

)
+

(
6b
8b

)]

= λ

(
2a+ 6b
4a+ 8b

)
=

(
2λa+ 6λb
4λa+ 8λb

)
.

The underlined expressions are identical, so the matrix is homogeneous.

The matrix-function is additive if the left and right side of the second equation are
indeed equal.

(
2 6
4 8

)[(
a
b

)
+

(
c
d

)]
=

(
2 6
4 8

)(
a+ c
b+ d

)
= (a+ c)

(
2
4

)
+ (b+ d)

(
6
8

)

=

(
2(a+ c)
4(a+ c)

)
+

(
6(b+ d)
8(b+ d)

)
=

(
2a+ 2c+ 6b+ 6d
4a+ 4c+ 8b+ 8d

)
which we need to compare to(

2 6
4 8

)(
a
b

)
+

(
2 6
4 8

)(
c
d

)
= a

(
2
4

)
+ b

(
6
8

)
+ c

(
2
4

)
+ d

(
6
8

)

=

(
2a
4a

)
+

(
6b
8b

)
+

(
2c
4c

)
+

(
6d
8d

)
=

(
2a+ 2c+ 6b+ 6d
4a+ 4c+ 8b+ 8d

)
.

Thus multiplication by a matrix is additive and homogeneous, and so it is, by definition,
linear.
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1.4 So, What is a Matrix? 25

We have come full circle; matrices are just examples of the kinds of linear
operators that appear in algebra problems like those in section 1.3. Any
equation of the form Mv = w with M a matrix, and v, w n-vectors is called
a matrix equation. Chapter 2 is about efficiently solving systems of linear
equations, or equivalently matrix equations.

1.4.1 Matrix Multiplication is Composition of Functions

What would happen if we placed two of our expensive machines end to end?

?

The output of the first machine would be fed into the second.

(
x
y

) (
2x+ 6y
4x+ 8y

) (
1.(2x+ 6y) + 2.(4x+ 8y)
0.(2x+ 6y) + 1.(4x+ 8y)

)
=

(
10x+ 22y

4x+ 8y

)
Notice that the same final result could be achieved with a single machine:

(
x
y

) (
10x+ 22y

4x+ 8y

)
.

There is a simple matrix notation for this called matrix multiplication(
1 2
0 1

)(
2 6
4 8

)
=

(
10 22
4 8

)
.

Try review problem 6 to learn more about matrix multiplication.
In the language10 of functions, if

f : U −→ V and g : V −→ W

10The notation h : A→ B means that h is a function with domain A and codomain B.
See the webwork background set3 if you are unfamiliar with this notation or these terms.
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26 What is Linear Algebra?

the new function obtained by plugging the outputs if f into g is called g ◦ f ,

g ◦ f : U −→ W

where
(g ◦ f)(u) = g(f(u)) .

This is called the composition of functions. Matrix multiplication is the tool
required for computing the composition of linear functions.

1.4.2 The Matrix Detour

Linear algebra is about linear functions, not matrices. The following presen-
tation is meant to get you thinking about this idea constantly throughout
the course.

Matrices only get involved in linear algebra when certain
notational choices are made.

To exemplify, lets look at the derivative operator again.

Example 9 of how matrices come into linear algebra.
Consider the equation (

d

dx
+ 2

)
f = x+ 1

where f is unknown (the place where solutions should go) and the linear differential
operator d

dx +2 is understood to take in quadratic functions (of the form ax2 +bx+c)
and give out other quadratic functions.

Let’s simplify the way we denote the quadratic functions; we will

denote ax2 + bx+ c as

ab
c


B

.

The subscript B serves to remind us of our particular notational convention; we will
compare to another notational convention later. With the convention B we can say

(
d

dx
+ 2

)ab
c


B

=

(
d

dx
+ 2

)
(ax2 + bx+ c)

26



1.4 So, What is a Matrix? 27

= (2ax+ b) + (2ax2 + 2bx+ 2c) = 2ax2 + (2a+ 2b)x+ (b+ 2c)

=

 2a
2a+ 2b
b+ 2c


B

=

2 0 0
2 2 0
0 1 2

ab
c


B

.

That is, our notational convention for quadratic functions has induced a notation for
the differential operator d

dx + 2 as a matrix. We can use this notation to change the
way that the following two equations say exactly the same thing.

(
d

dx
+ 2

)
f = x+ 1⇔

2 0 0
2 2 0
0 1 2

ab
c


B

=

0
1
1


B

.

Our notational convention has served as an organizing principle to yield the system of
equations

2a = 0
2a+ 2b = 1
b+ 2c = 1

with solution

0
1
2
1
4


B

, where the subscript B is used to remind us that this stack of

numbers encodes the vector 1
2x+ 1

4 , which is indeed the solution to our equation since,

substituting for f yields the true statement
(
d
dx + 2

)
(12x+ 1

4) = x+ 1.

It would be nice to have a systematic way to rewrite any linear equation
as an equivalent matrix equation. It will be a little while before we can learn
to organize information in a way generalizable to all linear equations, but
keep this example in mind throughout the course.

The general idea is presented in the picture below; sometimes a linear
equation is too hard to solve as is, but by organizing information and refor-
mulating the equation as a matrix equation the process of finding solutions
becomes tractable.
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28 What is Linear Algebra?

A simple example with the knowns (L and V are d
dx

and 3, respectively) is
shown below, although the detour is unnecessary in this case since you know
how to anti-differentiate.

To drive home the point that we are not studying matrices but rather lin-
ear functions, and that those linear functions can be represented as matrices
under certain notational conventions, consider how changeable the notational
conventions are.
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1.4 So, What is a Matrix? 29

Example 10 of how a different matrix comes into the same linear algebra problem.

Another possible notational convention is to

denote a+ bx+ cx2 as

ab
c


B′

.

With this alternative notation

(
d

dx
+ 2

)ab
c


B′

=

(
d

dx
+ 2

)
(a+ bx+ cx2)

= (b+ 2cx) + (2a+ 2bx+ 2cx2) = (2a+ b) + (2b+ 2c)x+ 2cx2

=

 2a+ b
2b+ 2c

2c


B′

=

2 1 0
0 2 2
0 0 2

ab
c


B′

.

Notice that we have obtained a different matrix for the same linear function. The
equation we started with

(
d

dx
+ 2

)
f = x+ 1⇔

2 1 0
0 2 2
0 0 2

ab
c


B′

=

1
1
0


B′

⇔
2a+ b = 1

2b+ 2c = 1
2c = 0

has the solution


1
4
1
2

0

. Notice that we have obtained a different 3-vector for the

same vector, since in the notational convention B′ this 3-vector represents 1
4 + 1

2x.

One linear function can be represented (denoted) by a huge variety of
matrices. The representation only depends on how vectors are denoted as
n-vectors.
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30 What is Linear Algebra?

1.5 Review Problems

You probably have already noticed that understanding sets, functions and
basic logical operations is a must to do well in linear algebra. Brush up on
these skills by trying these background webwork problems:

Logic 1
Sets 2

Functions 3
Equivalence Relations 4

Proofs 5

Each chapter also has reading and skills WeBWorK problems:

Webwork: Reading problems 1 , 2

Probably you will spend most of your time on the following review questions:

1. Problems A, B, and C of example 3 can all be written as Lv = w where

L : V −→ W ,

(read this as L maps the set of vectors V to the set of vectors W ). For
each case write down the sets V and W where the vectors v and w
come from.

2. Torque is a measure of “rotational force”. It is a vector whose direction
is the (preferred) axis of rotation. Upon applying a force F on an object
at point r the torque τ is the cross product r × F = τ :

30
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1.5 Review Problems 31

Remember that the cross product of two 3-vectors is given byxy
z

×
x′y′
z′

 :=

yz′ − zy′zx′ − xz′
xy′ − yx′

 .

Indeed, 3-vectors are special, usually vectors an only be added, not
multiplied.

Lets find the force F (a vector) one must apply to a wrench lying along

the vector r =

1
1
0

 ft, to produce a torque

0
0
1

ft lb:

(a) Find a solution by writing out this equation with F =

ab
c

.

(Hint: Guess and check that a solution with a = 0 exists).

(b) Add

1
1
0

 to your solution and check that the result is a solution.

(c) Give a physics explanation of why there can be two solutions, and
argue that there are, in fact, infinitely many solutions.

(d) Set up a system of three linear equations with the three compo-
nents of F as the variables which describes this situation. What
happens if you try to solve these equations by substitution?

3. The function P (t) gives gas prices (in units of dollars per gallon) as a
function of t the year (in A.D. or C.E.), and g(t) is the gas consumption
rate measured in gallons per year by a driver as a function of their age.
The function g is certainly different for different people. Assuming a
lifetime is 100 years, what function gives the total amount spent on gas
during the lifetime of an individual born in an arbitrary year t? Is the
operator that maps g to this function linear?

4. The differential equation (DE)

d

dt
f = 2f
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32 What is Linear Algebra?

says that the rate of change of f is proportional to f . It describes
exponential growth because the exponential function

f(t) = f(0)e2t

satisfies the DE for any number f(0). The number 2 in the DE is called
the constant of proportionality. A similar DE

d

dt
f =

2

t
f

has a time-dependent “constant of proportionality”.

(a) Do you think that the second DE describes exponential growth?

(b) Write both DEs in the form Df = 0 with D a linear operator.

5. Pablo is a nutritionist who knows that oranges always have twice as
much sugar as apples. When considering the sugar intake of schoolchil-
dren eating a barrel of fruit, he represents the barrel like so:

sugar

fruit

(s, f)

Find a linear operator relating Pablo’s representation to the “everyday”
representation in terms of the number of apples and number of oranges.
Write your answer as a matrix.

Hint: Let λ represent the amount of sugar in each apple.

Hint
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6. Matrix Multiplication: Let M and N be matrices

M =

(
a b
c d

)
and N =

(
e f
g h

)
,

and v the vector

v =

(
x
y

)
.

If we first apply N and then M to v we obtain the vector MNv.

(a) Show that the composition of matrices MN is also a linear oper-
ator.

(b) Write out the components of the matrix product MN in terms of
the components of M and the components of N . Hint: use the
general rule for multiplying a 2-vector by a 2×2 matrix.

(c) Try to answer the following common question, “Is there any sense
in which these rules for matrix multiplication are unavoidable, or
are they just a notation that could be replaced by some other
notation?”

(d) Generalize your multiplication rule to 3× 3 matrices.

7. Diagonal matrices: A matrix M can be thought of as an array of num-
bers mi

j, known as matrix entries, or matrix components, where i and j
index row and column numbers, respectively. Let

M =

(
1 2
3 4

)
=
(
mi
j

)
.

Compute m1
1, m

1
2, m

2
1 and m2

2.

The matrix entries mi
i whose row and column numbers are the same

are called the diagonal of M . Matrix entries mi
j with i 6= j are called

off-diagonal. How many diagonal entries does an n × n matrix have?
How many off-diagonal entries does an n× n matrix have?

If all the off-diagonal entries of a matrix vanish, we say that the matrix
is diagonal. Let

D =

(
λ 0
0 µ

)
and D′ =

(
λ′ 0
0 µ′

)
.
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34 What is Linear Algebra?

Are these matrices diagonal and why? Use the rule you found in prob-
lem 6 to compute the matrix products DD′ and D′D. What do you
observe? Do you think the same property holds for arbitrary matrices?
What about products where only one of the matrices is diagonal?

(p.s. Diagonal matrices play a special role in in the study of matrices
in linear algebra. Keep an eye out for this special role.)

8. Find the linear operator that takes in vectors from n-space and gives
out vectors from n-space in such a way that

(a) whatever you put in, you get exactly the same thing out as what
you put in. Show that it is unique. Can you write this operator
as a matrix?

(b) whatever you put in, you get exactly the same thing out as when
you put something else in. Show that it is unique. Can you write
this operator as a matrix?

Hint: To show something is unique, it is usually best to begin by pre-
tending that it isn’t, and then showing that this leads to a nonsensical
conclusion. In mathspeak–proof by contradiction.

9. Consider the set S = {∗, ?,#}. It contains just 3 elements, and has
no ordering; {∗, ?,#} = {#, ?, ∗} etc. (In fact the same is true for
{1, 2, 3} = {2, 3, 1} etc, although we could make this an ordered set
using 3 > 2 > 1.)

(i) Invent a function with domain {∗, ?,#} and codomain R. (Re-
member that the domain of a function is the set of all its allowed
inputs and the codomain (or target space) is the set where the
outputs can live. A function is specified by assigning exactly one
codomain element to each element of the domain.)

(ii) Choose an ordering on {∗, ?,#}, and then use it to write your
function from part (i) as a triple of numbers.

(iii) Choose a new ordering on {∗, ?,#} and then write your function
from part (i) as a triple of numbers.
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(iv) Your answers for parts (ii) and (iii) are different yet represent the
same function – explain!
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2
Systems of Linear Equations

2.1 Gaussian Elimination

Systems of linear equations can be written as matrix equations. Now you
will learn an efficient algorithm for (maximally) simplifying a system of linear
equations (or a matrix equation) – Gaussian elimination.

2.1.1 Augmented Matrix Notation

Efficiency demands a new notation, called an augmented matrix , which we
introduce via examples:

The linear system {
x + y = 27
2x− y = 0 ,

is denoted by the augmented matrix(
1 1 27
2 −1 0

)
.

This notation is simpler than the matrix one,(
1 1
2 −1

)(
x
y

)
=

(
27
0

)
,

although all three of the above denote the same thing.

37



38 Systems of Linear Equations

Augmented Matrix Notation

Another interesting rewriting is

x

(
1
2

)
+ y

(
1
−1

)
=

(
27
0

)
.

This tells us that we are trying to find the combination of the vectors

(
1
2

)
and(

1
−1

)
adds up to

(
27
0

)
; the answer is “clearly” 9

(
1
2

)
+ 18

(
1
−1

)
.

Here is a larger example. The system

1x+ 3y + 2z + 0w = 9

6x+ 2y + 0z − 2w = 0

−1x+ 0y + 1z + 1w = 3 ,

is denoted by the augmented matrix 1 3 2 0 9
6 2 0 −2 0
−1 0 1 1 3

 ,

which is equivalent to the matrix equation 1 3 2 0
6 2 0 −2
−1 0 1 1



x
y
z
w

 =

9
0
3

 .

Again, we are trying to find which combination of the columns of the matrix
adds up to the vector on the right hand side.

For the the general case of r linear equations in k unknowns, the number
of equations is the number of rows r in the augmented matrix, and the
number of columns k in the matrix left of the vertical line is the number of
unknowns, giving an augmented matrix of the form

a11 a12 · · · a1k b1

a21 a22 · · · a2k b2

...
...

...
...

ar1 ar2 · · · ark br

 .
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2.1 Gaussian Elimination 39

Entries left of the divide carry two indices; subscripts denote column number
and superscripts row number. We emphasize, the superscripts here do not
denote exponents. Make sure you can write out the system of equations and
the associated matrix equation for any augmented matrix.

Reading homework: problem 1

We now have three ways of writing the same question. Let’s put them
side by side as we solve the system by strategically adding and subtracting
equations. We will not tell you the motivation for this particular series of
steps yet, but let you develop some intuition first.

Example 11 (How matrix equations and augmented matrices change in elimination)

x + y = 27
2x − y = 0

}
⇔
(

1 1
2 −1

)(
x
y

)
=

(
27
0

)
⇔
(

1 1 27
2 −1 0

)
.

With the first equation replaced by the sum of the two equations this becomes

3x + 0 = 27
2x − y = 0

}
⇔
(

3 0
2 −1

)(
x
y

)
=

(
27
0

)
⇔
(

3 0 27
2 −1 0

)
.

Let the new first equation be the old first equation divided by 3:

x + 0 = 9
2x − y = 0

}
⇔
(

1 0
2 −1

)(
x
y

)
=

(
9
0

)
⇔
(

1 0 9
2 −1 0

)
.

Replace the second equation by the second equation minus two times the first equation:

x + 0 = 9
0 − y = −18

}
⇔
(

1 0
0 −1

)(
x
y

)
=

(
9

−18

)
⇔
(

1 0 9
0 −1 −18

)
.

Let the new second equation be the old second equation divided by -1:

x + 0 = 9
0 + y = 18

}
⇔
(

1 0
0 1

)(
x
y

)
=

(
9

18

)
⇔
(

1 0 9
0 1 18

)
.

Did you see what the strategy was? To eliminate y from the first equation
and then eliminate x from the second. The result was the solution to the
system.

Here is the big idea: Everywhere in the instructions above we can replace
the word “equation” with the word “row” and interpret them as telling us
what to do with the augmented matrix instead of the system of equations.
Performed systemically, the result is the Gaussian elimination algorithm.
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40 Systems of Linear Equations

2.1.2 Equivalence and the Act of Solving

We now introduce the symbol ∼ which is called “tilde” but should be read as
“is (row) equivalent to” because at each step the augmented matrix changes
by an operation on its rows but its solutions do not. For example, we found
above that (

1 1 27
2 −1 0

)
∼
(

1 0 9
2 −1 0

)
∼
(

1 0 9
0 1 18

)
.

The last of these augmented matrices is our favorite!

Equivalence Example

Setting up a string of equivalences like this is a means of solving a system
of linear equations. This is the main idea of section 2.1.3. This next example
hints at the main trick:

Example 12 (Using Gaussian elimination to solve a system of linear equations)

x+ y = 5
x+ 2y = 8

}
⇔
(

1 1 5
1 2 8

)
∼
(

1 1 5
0 1 3

)
∼
(

1 0 2
0 1 3

)
⇔
{
x+ 0 = 2
0 + y = 3

Note that in going from the first to second augmented matrix, we used the top left 1
to make the bottom left entry zero. For this reason we call the top left entry a pivot.
Similarly, to get from the second to third augmented matrix, the bottom right entry
(before the divide) was used to make the top right one vanish; so the bottom right
entry is also called a pivot.

This name pivot is used to indicate the matrix entry used to “zero out”
the other entries in its column; the pivot is the number used to eliminate
another number in its column.

2.1.3 Reduced Row Echelon Form

For a system of two linear equations, the goal of Gaussian elimination is to
convert the part of the augmented matrix left of the dividing line into the
matrix

I =

(
1 0
0 1

)
,
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2.1 Gaussian Elimination 41

called the Identity Matrix , since this would give the simple statement of a
solution x = a, y = b. The same goes for larger systems of equations for
which the identity matrix I has 1’s along its diagonal and all off-diagonal
entries vanish:

I =


1 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1



Reading homework: problem 2

For many systems, it is not possible to reach the identity in the augmented
matrix via Gaussian elimination. In any case, a certain version of the matrix
that has the maximum number of components eliminated is said to be the
Row Reduced Echelon Form (RREF).

Example 13 (Redundant equations)

x + y = 2

2x + 2y = 4

}
⇔

(
1 1 2

2 2 4

)
∼

(
1 1 2

0 0 0

)
⇔

{
x + y = 2

0 + 0 = 0

This example demonstrates if one equation is a multiple of the other the identity
matrix can not be a reached. This is because the first step in elimination will make
the second row a row of zeros. Notice that solutions still exists (1, 1) is a solution.
The last augmented matrix here is in RREF; no more than two components can be
eliminated.

Example 14 (Inconsistent equations)

x + y = 2

2x + 2y = 5

}
⇔

(
1 1 2

2 2 5

)
∼

(
1 1 2

0 0 1

)
⇔

{
x + y = 2

0 + 0 = 1

This system of equation has a solution if there exists two numbers x, and y such that
0 + 0 = 1. That is a tricky way of saying there are no solutions. The last form of the
augmented matrix here is the RREF.
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42 Systems of Linear Equations

Example 15 (Silly order of equations)
A robot might make this mistake:

0x + y = −2

x + y = 7

}
⇔

(
0 1 −2

1 1 7

)
∼ · · · ,

and then give up because the the upper left slot can not function as a pivot since the 0
that lives there can not be used to eliminate the zero below it. Of course, the right
thing to do is to change the order of the equations before starting

x + y = 7

0x + y = −2

}
⇔

(
1 1 7

0 1 −2

)
∼

(
1 0 9

0 1 −2

)
⇔

{
x + 0 = 9

0 + y = −2 .

The third augmented matrix above is the RREF of the first and second. That is to
say, you can swap rows on your way to RREF.

For larger systems of equations redundancy and inconsistency are the ob-
structions to obtaining the identity matrix, and hence to a simple statement
of a solution in the form x = a, y = b, . . . . What can we do to maximally
simplify a system of equations in general? We need to perform operations
that simplify our system without changing its solutions. Because, exchanging
the order of equations, multiplying one equation by a non-zero constant or
adding equations does not change the system’s solutions, we are lead to three
operations:

• (Row Swap) Exchange any two rows.

• (Scalar Multiplication) Multiply any row by a non-zero constant.

• (Row Addition) Add one row to another row.

These are called Elementary Row Operations , or EROs for short, and are
studied in detail in section 2.3. Suppose now we have a general augmented
matrix for which the first entry in the first row does not vanish. Then, using
just the three EROs, we could1 then perform the following.

1This is a “brute force” algorithm; there will often be more efficient ways to get to
RREF.
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Algorithm For Obtaining RREF:

• Make the leftmost nonzero entry in the top row 1 by multiplication.

• Then use that 1 as a pivot to eliminate everything below it.

• Then go to the next row and make the leftmost nonzero entry 1.

• Use that 1 as a pivot to eliminate everything below and above it!

• Go to the next row and make the leftmost nonzero entry 1... etc

In the case that the first entry of the first row is zero, we may first interchange
the first row with another row whose first entry is non-vanishing and then
perform the above algorithm. If the entire first column vanishes, we may still
apply the algorithm on the remaining columns.

Here is a video (with special effects!) of a hand performing the algorithm
by hand. When it is done, you should try doing what it does.

Beginner Elimination

This algorithm and its variations is known as Gaussian elimination. The
endpoint of the algorithm is an augmented matrix of the form

1 ∗ 0 ∗ 0 · · · 0 ∗ b1

0 0 1 ∗ 0 · · · 0 ∗ b2

0 0 0 0 1 · · · 0 ∗ b3

...
...

...
...

...
...

0 0 0 0 0 · · · 1 ∗ bk

0 0 0 0 0 · · · 0 0 bk+1

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 0 br


.

This is called Reduced Row Echelon Form (RREF). The asterisks denote
the possibility of arbitrary numbers (e.g., the second 1 in the top line of
example 13).

Learning to perform this algorithm by hand is the first step to learning
linear algebra; it will be the primary means of computation for this course.
You need to learn it well. So start practicing as soon as you can, and practice
often.
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44 Systems of Linear Equations

The following properties define RREF:

1. In every row the left most non-zero entry is 1 (and is called a pivot).

2. The pivot of any given row is always to the right of the pivot of the
row above it.

3. The pivot is the only non-zero entry in its column.

Example 16 (Augmented matrix in RREF)
1 0 7 0
0 1 3 0
0 0 0 1
0 0 0 0


Example 17 (Augmented matrix NOT in RREF)

1 0 3 0
0 0 2 0
0 1 0 1
0 0 0 1


Actually, this NON-example breaks all three of the rules!

The reason we need the asterisks in the general form of RREF is that
not every column need have a pivot, as demonstrated in examples 13 and 16.
Here is an example where multiple columns have no pivot:

Example 18 (Consecutive columns with no pivot in RREF)

x + y + z + 0w = 2
2x + 2y + 2z + 2w = 4

}
⇔

(
1 1 1 0 2
2 2 2 1 4

)
∼
(

1 1 1 0 2
0 0 0 1 0

)

⇔
{
x + y + z = 2

w = 0 .

Note that there was no hope of reaching the identity matrix, because of the shape of
the augmented matrix we started with.

With some practice, elimination can go quickly. Here is an expert showing
you some tricks. If you can’t follow him now then come back when you have
some more experience and watch again. You are going to need to get really
good at this!
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Advanced Elimination

It is important that you are able to convert RREF back into a system
of equations. The first thing you might notice is that if any of the numbers
bk+1, . . . , br in 2.1.3 are non-zero then the system of equations is inconsistent
and has no solutions. Our next task is to extract all possible solutions from
an RREF augmented matrix.

2.1.4 Solution Sets and RREF

RREF is a maximally simplified version of the original system of equations
in the following sense:

• As many coefficients of the variables as possible are 0.

• As many coefficients of the variables as possible are 1.

It is easier to read off solutions from the maximally simplified equations than
from the original equations, even when there are infinitely many solutions.

Example 19 (Standard approach from a system of equations to the solution set)

x + y + 5w = 1
y + 2w = 6

z + 4w = 8

⇔
1 1 0 5 1

0 1 0 2 6
0 0 1 4 8

 ∼
1 0 0 3 −5

0 1 0 2 6
0 0 1 4 8



⇔


x + 3w = −5

y + 2w = 6

z + 4w = 8

⇔


x = −5 − 3w

y = 6 − 2w

z = 8 − 4w

w = w



⇔


x

y

z

w

 =


−5

6

8

0

+ w


−3

−2

−4

1

 .

There is one solution for each value of w, so the solution set is

−5

6

8

0

+ α


−3

−2

−4

1

 : α ∈ R

 .
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46 Systems of Linear Equations

Here is a verbal description of the preceeding example of the standard ap-
proach. We say that x, y, and z are pivot variables because they appeared
with a pivot coefficient in RREF. Since w never appears with a pivot co-
efficient, it is not a pivot variable. In the second line we put all the pivot
variables on one side and all the non-pivot variables on the other side and
added the trivial equation w = w to obtain a system that allowed us to easily
read off solutions.

The Standard Approach To Solution Sets

1. Write the augmented matrix.

2. Perform EROs to reach RREF.

3. Express the pivot variables in terms of the non-pivot variables.

There are always exactly enough non-pivot variables to index your solutions.
In any approach, the variables which are not expressed in terms of the other
variables are called free variables. The standard approach is to use the non-
pivot variables as free variables.

Non-standard approach: solve for w in terms of z and substitute into the
other equations. You now have an expression for each component in terms
of z. But why pick z instead of y or x? (or x + y?) The standard approach
not only feels natural, but is canonical, meaning that everyone will get the
same RREF and hence choose the same variables to be free. However, it is
important to remember that so long as their set of solutions is the same, any
two choices of free variables is fine. (You might think of this as the difference
between using Google MapsTM or MapquestTM; although their maps may
look different, the place 〈home sic〉 they are describing is the same!)

When you see an RREF augmented matrix with two columns that have
no pivot, you know there will be two free variables.

Example 20 (Standard approach, multiple free variables)
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
1 0 7 0 4
0 1 3 4 1
0 0 0 0 0
0 0 0 0 0

⇔ {
x + 7z = 4

y + 3z+4w = 1

}

⇔


x = 4 − 7z
y = 1 − 3z − 4w
z = z
w = w

⇔

x
y
z
w

 =


4
1
0
0

+ z


−7
−3

1
0

+ w


0
−4

0
1


so the solution set is


4
1
0
0

+ z


−7
−3

1
0

+ w


0
−4

0
1

 : z, w ∈ R

 .

From RREF to a Solution Set

You can imagine having three, four, or fifty-six non-pivot columns and
the same number of free variables indexing your solutions set. In general a
solution set to a system of equations with n free variables will be of the form

{xP + µ1x
H
1 + µ2x

H
2 + · · ·+ µnx

H
n : µ1, . . . , µn ∈ R}.

The parts of these solutions play special roles in the associated matrix
equation. This will come up again and again long after we complete this
discussion of basic calculation methods, so we will use the general language
of linear algebra to give names to these parts now.

Definition: A homogeneous solution to a linear equation Lx = v, with
L and v known is a vector xH such that LxH = 0 where 0 is the zero vector.

If you have a particular solution xP to a linear equation and add
a sum of multiples of homogeneous solutions to it you obtain another
particular solution.
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48 Systems of Linear Equations

Particular and Homogeneous Solutions

Check now that the parts of the solutions with free variables as coefficients
from the previous examples are homogeneous solutions, and that by adding
a homogeneous solution to a particular solution one obtains a solution to the
matrix equation. This will come up over and over again. As an example
without matrices, consider the differential equation d2

dx2f = 3. A particular
solution is 3

2
x2 while x and 1 are homogeneous solutions. The solution set is

{3
2
x2 + ax + c1 : a, b ∈ R}. You can imagine similar differential equations

with more homogeneous solutions.

You need to become very adept at reading off solutions sets of linear
systems from the RREF of their augmented matrix; it is a basic skill for
linear algebra, and we will continue using it up to the last page of the book!

Worked examples of Gaussian elimination

2.2 Review Problems

Webwork:

Reading problems 1 , 2
Augmented matrix 6

2× 2 systems 7, 8, 9, 10, 11, 12
3× 2 systems 13, 14
3× 3 systems 15, 16, 17

1. State whether the following augmented matrices are in RREF and com-
pute their solution sets.

1 0 0 0 3 1
0 1 0 0 1 2
0 0 1 0 1 3
0 0 0 1 2 0

 ,


1 1 0 1 0 1 0
0 0 1 2 0 2 0
0 0 0 0 1 3 0
0 0 0 0 0 0 0

 ,
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
1 1 0 1 0 1 0 1
0 0 1 2 0 2 0 −1
0 0 0 0 1 3 0 1
0 0 0 0 0 2 0 −2
0 0 0 0 0 0 1 1

 .

2. Solve the following linear system:

2x1 + 5x2 − 8x3 + 2x4 + 2x5 = 0

6x1 + 2x2 −10x3 + 6x4 + 8x5 = 6

3x1 + 6x2 + 2x3 + 3x4 + 5x5 = 6

3x1 + 1x2 − 5x3 + 3x4 + 4x5 = 3

6x1 + 7x2 − 3x3 + 6x4 + 9x5 = 9

Be sure to set your work out carefully with equivalence signs ∼ between
each step, labeled by the row operations you performed.

3. Check that the following two matrices are row-equivalent:(
1 4 7 10
2 9 6 0

)
and

(
0 −1 8 20
4 18 12 0

)
.

Now remove the third column from each matrix, and show that the
resulting two matrices (shown below) are row-equivalent:(

1 4 10
2 9 0

)
and

(
0 −1 20
4 18 0

)
.

Now remove the fourth column from each of the original two matri-
ces, and show that the resulting two matrices, viewed as augmented
matrices (shown below) are row-equivalent:(

1 4 7
2 9 6

)
and

(
0 −1 8
4 18 12

)
.

Explain why row-equivalence is never affected by removing columns.

4. Check that the system of equations corresponding to the augmented
matrix 1 4 10

3 13 9
4 17 20


49
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has no solutions. If you remove one of the rows of this matrix, does
the new matrix have any solutions? In general, can row equivalence be
affected by removing rows? Explain why or why not.

5. Explain why the linear system has no solutions:1 0 3 1
0 1 2 4
0 0 0 6


For which values of k does the system below have a solution?

x − 3y = 6
x + 3z = − 3

2x + ky + (3− k)z = 1

Hint

6. Show that the RREF of a matrix is unique. (Hint: Consider what
happens if the same augmented matrix had two different RREFs. Try
to see what happens if you removed columns from these two RREF
augmented matrices.)

7. Another method for solving linear systems is to use row operations to
bring the augmented matrix to Row Echelon Form (REF as opposed to
RREF). In REF, the pivots are not necessarily set to one, and we only
require that all entries left of the pivots are zero, not necessarily entries
above a pivot. Provide a counterexample to show that row echelon form
is not unique.

Once a system is in row echelon form, it can be solved by “back substi-
tution.” Write the following row echelon matrix as a system of equa-
tions, then solve the system using back-substitution.2 3 1 6

0 1 1 2
0 0 3 3


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8. Show that this pair of augmented matrices are row equivalent, assuming
ad− bc 6= 0: (

a b e

c d f

)
∼

(
1 0 de−bf

ad−bc

0 1 af−ce
ad−bc

)
9. Consider the augmented matrix:(

2 −1 3
−6 3 1

)
.

Give a geometric reason why the associated system of equations has
no solution. (Hint, plot the three vectors given by the columns of this
augmented matrix in the plane.) Given a general augmented matrix(

a b e
c d f

)
,

can you find a condition on the numbers a, b, c and d that corresponds
to the geometric condition you found?

10. A relation ∼ on a set of objects U is an equivalence relation if the
following three properties are satisfied:

• Reflexive: For any x ∈ U , we have x ∼ x.

• Symmetric: For any x, y ∈ U , if x ∼ y then y ∼ x.

• Transitive: For any x, y and z ∈ U , if x ∼ y and y ∼ z then x ∼ z.

Show that row equivalence of matrices is an example of an equivalence
relation.

(For a discussion of equivalence relations, see Homework 0, Problem 4)

Hint

11. Equivalence of augmented matrices does not come from equality of their
solution sets. Rather, we define two matrices to be equivalent if one
can be obtained from the other by elementary row operations.

Find a pair of augmented matrices that are not row equivalent but do
have the same solution set.
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2.3 Elementary Row Operations

Elementary row operations are systems of linear equations relating the old
and new rows in Gaussian elimination:

Example 21 (Keeping track of EROs with equations between rows)
We refer to the new kth row as R′k and the old kth row as Rk.

0 1 1 7
2 0 0 4
0 0 1 4


R′1=0R1+ R2+0R3

R′2= R1+0R2+0R3

R′3=0R1+0R2+ R3

∼

2 0 0 4
0 1 1 7
0 0 1 4

 R′1R′2
R′3

 =

0 1 0
1 0 0
0 0 1

R1

R2

R3


R′1=

1
2
R1+0R2+0R3

R′2=0R1+ R2+0R3

R′3=0R1+0R2+ R3

∼

1 0 0 2
0 1 1 7
0 0 1 4

 R′1R′2
R′3

 =

1
2 0 0
0 1 0
0 0 1

R1

R2

R3


R′1= R1+0R2+0R3

R′2=0R1+ R2− R3

R′3=0R1+0R2+ R3

∼

1 0 0 2
0 1 0 3
0 0 1 4

 R′1R′2
R′3

 =

1 0 0
0 1 −1
0 0 1

R1

R2

R3



On the right, we have listed the relations between old and new rows in matrix notation.

Reading homework: problem 3

2.3.1 EROs and Matrices

Interestingly, the matrix that describes the relationship between old and new
rows performs the corresponding ERO on the augmented matrix.
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Example 22 (Performing EROs with Matrices)

0 1 0
1 0 0
0 0 1

0 1 1 7
2 0 0 4
0 0 1 4

 =

2 0 0 4
0 1 1 7
0 0 1 4



∼1
2 0 0
0 1 0
0 0 1

2 0 0 4
0 1 1 7
0 0 1 4

 =

1 0 0 2
0 1 1 7
0 0 1 4



∼1 0 0
0 1 −1
0 0 1

1 0 0 2
0 1 1 7
0 0 1 4

 =

1 0 0 2
0 1 0 3
0 0 1 4


Here we have multiplied the augmented matrix with the matrices that acted on rows
listed on the right of example 21.

Realizing EROs as matrices allows us to give a concrete notion of “di-
viding by a matrix”; we can now perform manipulations on both sides of an
equation in a familiar way:

Example 23 (Undoing A in Ax = b slowly, for A = 6 = 3 · 2)

6x = 12

⇔ 3−16x = 3−112

⇔ 2x = 4

⇔ 2−12x = 2−1 4

⇔ 1x = 2

The matrices corresponding to EROs undo a matrix step by step.
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54 Systems of Linear Equations

Example 24 (Undoing A in Ax = b slowly, for A = M = ...)0 1 1
2 0 0
0 0 1

xy
z

 =

7
4
4


⇔

0 1 0
1 0 0
0 0 1

0 1 1
2 0 0
0 0 1

xy
z

 =

0 1 0
1 0 0
0 0 1

 7
4
4


⇔

2 0 0
0 1 1
0 0 1

xy
z

 =

4
7
4


⇔

1
2 0 0
0 1 0
0 0 1

2 0 0
0 1 1
0 0 1

xy
z

 =

1
2 0 0
0 1 0
0 0 1

 4
7
4


⇔

1 0 0
0 1 1
0 0 1

xy
z

 =

2
7
4


⇔

1 0 0
0 1 −1
0 0 1

1 0 0
0 1 1
0 0 1

xy
z

 =

1 0 0
0 1 −1
0 0 1

2
7
4


⇔

1 0 0
0 1 0
0 0 1

xy
z

 =

2
3
4

 .

This is another way of thinking about Gaussian elimination which feels more
like elementary algebra in the sense that you “do something to both sides of
an equation” until you have a solution.

2.3.2 Recording EROs in (M |I )

Just as we put together 3−12−1 = 6−1 to get a single thing to apply to both
sides of 6x = 12 to undo 6, we should put together multiple EROs to get
a single thing that undoes our matrix. To do this, augment by the identity
matrix (not just a single column) and then perform Gaussian elimination.
There is no need to write the EROs as systems of equations or as matrices
while doing this.
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Example 25 (Collecting EROs that undo a matrix) 0 1 1 1 0 0
2 0 0 0 1 0
0 0 1 0 0 1

 ∼

 2 0 0 0 1 0
0 1 1 1 0 0
0 0 1 0 0 1



∼

 1 0 0 0 1
2 0

0 1 1 1 0 0
0 0 1 0 0 1

 ∼
 1 0 0 0 1

2 0
0 1 0 1 0 −1
0 0 1 0 0 1

 .

As we changed the left side from the matrix M to the identity matrix, the
right side changed from the identity matrix to the matrix which undoes M .

Example 26 (Checking that one matrix undoes another) 0 1
2 0

1 0 −1
0 0 1

 0 1 1
2 0 0
0 0 1

 =

 1 0 0
0 1 0
0 0 1

 .

If the matrices are composed in the opposite order, the result is the same. 0 1 1
2 0 0
0 0 1

 0 1
2 0

1 0 −1
0 0 1

 =

 1 0 0
0 1 0
0 0 1

 .

Whenever the product of two matrices MN = I, we say that N is the
inverse of M or N = M−1. Conversely M is the inverse of N ; M = N−1.

In abstract generality, let M be some matrix and, as always, let I stand
for the identity matrix. Imagine the process of performing elementary row
operations to bring M to the identity matrix:

(M |I) ∼ (E1M |E1) ∼ (E2E1M |E2E1) ∼ · · · ∼ (I| · · ·E2E1) .

The ellipses “· · · ” stand for additional EROs. The result is a product of
matrices that form a matrix which undoes M

· · ·E2E1M = I .

This is only true if the RREF of M is the identity matrix.

Definition: A matrix M is invertible if its RREF is an identity matrix.
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How to find M−1

(M |I) ∼ (I|M−1)

Much use is made of the fact that invertible matrices can be undone with
EROs. To begin with, since each elementary row operation has an inverse,

M = E−11 E−12 · · · ,

while the inverse of M is

M−1 = · · ·E2E1 .

This is symbolically verified by

M−1M = · · ·E2E1E
−1
1 E−12 · · · = · · ·E2E

−1
2 · · · = · · · = I .

Thus, if M is invertible, then M can be expressed as the product of EROs.
(The same is true for its inverse.) This has the feel of the fundamental
theorem of arithmetic (integers can be expressed as the product of primes)
or the fundamental theorem of algebra (polynomials can be expressed as the
product of [complex] first order polynomials); EROs are building blocks of
invertible matrices.

2.3.3 The Three Elementary Matrices

We now work toward concrete examples and applications. It is surprisingly
easy to translate between EROs and matrices that perform EROs. The
matrices corresponding to these kinds are close in form to the identity matrix:

• Row Swap: Identity matrix with two rows swapped.

• Scalar Multiplication: Identity matrix with one diagonal entry not 1.

• Row Sum: The identity matrix with one off-diagonal entry not 0.

Example 27 (Correspondences between EROs and their matrices)
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• The row swap matrix that swaps the 2nd and 4th row is the identity matrix with
the 2nd and 4th row swapped:

1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1

 .

• The scalar multiplication matrix that replaces the 3rd row with 7 times the 3rd
row is the identity matrix with 7 in the 3rd row instead of 1:

1 0 0 0
0 1 0 0
0 0 7 0
0 0 0 1

 .

• The row sum matrix that replaces the 4th row with the 4th row plus 9 times
the 2nd row is the identity matrix with a 9 in the 4th row, 2nd column:

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 9 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

We can write an explicit factorization of a matrix into EROs by keeping
track of the EROs used in getting to RREF.

Example 28 (Express M from Example 25 as a product of EROs)
Note that in the previous example one of each of the kinds of EROs is used, in the
order just given. Elimination looked like

M =

 0 1 1
2 0 0
0 0 1

 E1∼

 2 0 0
0 1 1
0 0 1

 E2∼

 1 0 0
0 1 1
0 0 1

 E3∼

 1 0 0
0 1 0
0 0 1

 = I ,

where the EROs matrices are

E1 =

 0 1 0
1 0 0
0 0 1

 , E2 =

 1
2 0 0
0 1 0
0 0 1

 , E3 =

 1 0 0
0 1 −1
0 0 1

 .
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The inverse of the ERO matrices (corresponding to the description of the reverse row
maniplulations)

E−11 =

 0 1 0
1 0 0
0 0 1

 , E−12 =

 2 0 0
0 1 0
0 0 1

 , E−13 =

 1 0 0
0 1 1
0 0 1

 .

Multiplying these gives

E−11 E−12 E−13 =

 0 1 0
1 0 0
0 0 1

 2 0 0
0 1 0
0 0 1

 1 0 0
0 1 1
0 0 1



=

 0 1 0
1 0 0
0 0 1

 2 0 0
0 1 1
0 0 1

 =

 0 1 1
2 0 0
0 0 1

 = M .

2.3.4 LU , LDU , and PLDU Factorizations

The process of elimination can be stopped halfway to obtain decompositions
frequently used in large computations in sciences and engineering. The first
half of the elimination process is to eliminate entries below the diagonal
leaving a matrix which is called upper triangular. The elementary matrices
which perform this part of the elimination are lower triangular, as are their
inverses. But putting together the upper triangular and lower triangular
parts one obtains the so-called LU factorization.

Example 29 (LU factorization)

M =


2 0 −3 1
0 1 2 2
−4 0 9 2

0 −1 1 −1

 E1∼


2 0 −3 1
0 1 2 2
0 0 3 4
0 −1 1 −1



E2∼


2 0 −3 1
0 1 2 2
0 0 3 4
0 0 3 1

 E3∼


2 0 −3 1
0 1 2 2
0 0 3 4
0 0 0 −3

 := U ,
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where the EROs and their inverses are

E1 =


1 0 0 0
0 1 0 0
2 0 1 0
0 0 0 1

 , E2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

 , E3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1



E−11 =


1 0 0 0
0 1 0 0
−2 0 1 0

0 0 0 1

 , E−12 =


1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1

 , E−13 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 .

Applying inverse elementary matrices to both sides of the equality U = E3E2E1M
gives M = E−11 E−12 E−13 U or

2 0 −3 1
0 1 2 2
−4 0 9 2

0 −1 1 −1

=


1 0 0 0
0 1 0 0
−2 0 1 0

0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1




2 0 −3 1
0 1 2 2
0 0 3 4
0 0 0 −3



=


1 0 0 0
0 1 0 0
−2 0 1 0

0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 −1 1 1




2 0 −3 1
0 1 2 2
0 0 3 4
0 0 0 −3



=


1 0 0 0
0 1 0 0
−2 0 1 0

0 −1 1 1




2 0 −3 1
0 1 2 2
0 0 3 4
0 0 0 −3

 .

This is a lower triangular matrix times an upper triangular matrix.
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What if we stop at a different point in elimination? We could multiply
rows so that the entries in the diagonal are 1 next. Note that the EROs that
do this are diagonal. This gives a slightly different factorization.

Example 30 (LDU factorization building from previous example)

M =


2 0 −3 1
0 1 2 2
−4 0 9 2

0 −1 1 −1

 E3E2E1∼


2 0 −3 1
0 1 2 2
0 0 3 4
0 0 0 −3

 E4∼


1 0 −3

2
1
2

0 1 2 2
0 0 3 4
0 0 0 −3



E5∼


1 0 −3

2
1
2

0 1 2 2
0 0 1 4

3
0 0 0 −3

 E6∼


1 0 −3

2
1
2

0 1 2 2
0 0 1 4

3
0 0 0 1

 =: U

The corresponding elementary matrices are

E4 =


1
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , E5 =


1 0 0 0
0 1 0 0
0 0 1

3 0
0 0 0 1

 , E6 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

3

 ,

E−14 =


2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , E−15 =


1 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1

 , E−16 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

 .

The equation U = E6E5E4E3E2E1M can be rearranged as

M = (E−11 E−12 E−13 )(E−14 E−15 E−16 )U.

We calculated the product of the first three factors in the previous example; it was
named L there, and we will reuse that name here. The product of the next three
factors is diagonal and we wil name it D. The last factor we named U (the name means
something different in this example than the last example.) The LDU factorization
of our matrix is

2 0 −3 1
0 1 2 2
−4 0 9 2

0 −1 1 −1

 =


1 0 0 0
0 1 0 0
−2 0 1 0

0 −1 1 1




2 0 0 0
0 1 0 0
0 0 3 0
0 0 0 −3




1 0 −3
2

1
2

0 1 2 2
0 0 1 4

3
0 0 0 1

 .
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The LDU factorization of a matrix is a factorization into blocks of EROs
of a various types: L is the product of the inverses of EROs which eliminate
below the diagonal by row addition, D the product of inverses of EROs which
set the diagonal elements to 1 by row multiplication, and U is the product
of inverses of EROs which eliminate above the diagonal by row addition.

You may notice that one of the three kinds of row operation is missing
from this story. Row exchange may be necessary to obtain RREF. Indeed, so
far in this chapter we have been working under the tacit assumption that M
can be brought to the identity by just row multiplication and row addition.
If row exchange is necessary, the resulting factorization is LDPU where P is
the product of inverses of EROs that perform row exchange.

Example 31 (LDPU factorization, building from previous examples)

M =


0 1 2 2
2 0 −3 1
−4 0 9 2

0 −1 1 −1

 P∼


2 0 −3 1
0 1 2 2
−4 0 9 2

0 −1 1 −1

 E6E5E4E3E2E1∼ L

P =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 = P−1

M = P (E−11 E−12 E−13 )(E−14 E−15 E−16 )(E−17 )U = PLDU


0 1 2 2
2 0 −3 1
−4 0 9 2

0 −1 1 −1

 =


1 0 0 0
0 1 0 0
−2 0 1 0

0 −1 1 1




2 0 0 0
0 1 0 0
0 0 3 0
0 0 1 −3




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1 0 −3
2

1
2

0 1 2 2
0 0 1 4

3
0 0 0 1



2.4 Review Problems

Webwork:
Reading problems 3
Matrix notation 18
LU 19
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1. While performing Gaussian elimination on these augmented matrices
write the full system of equations describing the new rows in terms of
the old rows above each equivalence symbol as in Example 21.(

2 2 10
1 2 8

)
,

 1 1 0 5
1 1 −1 11
−1 1 1 −5


2. Solve the vector equation by applying ERO matrices to each side of

the equation to perform elimination. Show each matrix explicitly as in
Example 24.

3 6 2
5 9 4
2 4 2

xy
z

 =

−3
1
0


3. Solve this vector equation by finding the inverse of the matrix through

(M |I) ∼ (I|M−1) and then applying M−1 to both sides of the equation.2 1 1
1 1 1
1 1 2

xy
z

 =

9
6
7


4. Follow the method of Examples 29 and 30 to find the LU and LDU

factorization of 3 3 6
3 5 2
6 2 5

 .

5. Multiple matrix equations with the same matrix can be solved simul-
taneously.

(a) Solve both systems by performing elimination on just one aug-
mented matrix. 2 −1 −1
−1 1 1

1 −1 0

xy
z

 =

0
1
0

 ,

 2 −1 −1
−1 1 1

1 −1 0

ab
c

 =

2
1
1


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(b) Give an interpretation of the columns of M−1 in (M |I) ∼ (I|M−1)
in terms of solutions to certain systems of linear equations.

6. How can you convince your fellow students to never make this mistake?

1 0 2 3
0 1 2 3
2 0 1 4


R′1=R1+R2

R′2=R1−R2

R′3=R1+2R2∼

1 1 4 6
1 −1 0 0
1 2 6 9


7. Is LU factorization of a matrix unique? Justify your answer.

∞. If you randomly create a matrix by picking numbers out of the blue,
it will probably be difficult to perform elimination or factorization;
fractions and large numbers will probably be involved. To invent simple
problems it is better to start with a simple answer:

(a) Start with any augmented matrix in RREF. Perform EROs to
make most of the components non-zero. Write the result on a
separate piece of paper and give it to your friend. Ask that friend
to find RREF of the augmented matrix you gave them. Make sure
they get the same augmented matrix you started with.

(b) Create an upper triangular matrix U and a lower triangular ma-
trix L with only 1s on the diagonal. Give the result to a friend to
factor into LU form.

(c) Do the same with an LDU factorization.

2.5 Solution Sets for Systems of Linear Equa-
tions

Algebraic equations problems can have multiple solutions. For example x(x−
1) = 0 has two solutions: 0 and 1. By contrast, equations of the form Ax = b
with A a linear operator (with scalars the real numbers) have the following
property:

If A is a linear operator and b is known, then Ax = b has either

1. One solution
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2. No solutions

3. Infinitely many solutions

2.5.1 The Geometry of Solution Sets: Hyperplanes

Consider the following algebra problems and their solutions.

1. 6x = 12 has one solution: 2.

2a. 0x = 12 has no solution.

2b. 0x = 0 has infinitely many solutions; its solution set is R.

In each case the linear operator is a 1× 1 matrix. In the first case, the linear
operator is invertible. In the other two cases it is not. In the first case, the
solution set is a point on the number line, in case 2b the solution set is the
whole number line.

Lets examine similar situations with larger matrices: 2× 2 matrices.

1.

(
6 0
0 2

)(
x
y

)
=

(
12
6

)
has one solution:

(
2
3

)
.

2a.

(
1 3
0 0

)(
x
y

)
=

(
4
1

)
has no solutions.

2bi.

(
1 3
0 0

)(
x
y

)
=

(
4
0

)
has solution set

{(
4
0

)
+ y

(
−3
1

)
: y ∈ R

}
.

2bii.

(
0 0
0 0

)(
x
y

)
=

(
0
0

)
has solution set

{(
x
y

)
: x, y ∈ R

}
.

Again, in the first case the linear operator is invertible while in the other
cases it is not. When a 2× 2 matrix from a matrix equation is not invertible
the solution set can be empty, a line in the plane, or the plane itself.

For a system of equations with r equations and k veriables, one can have a
number of different outcomes. For example, consider the case of r equations
in three variables. Each of these equations is the equation of a plane in three-
dimensional space. To find solutions to the system of equations, we look for
the common intersection of the planes (if an intersection exists). Here we
have five different possibilities:
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1. Unique Solution. The planes have a unique point of intersection.

2a. No solutions. Some of the equations are contradictory, so no solutions
exist.

2bi. Line. The planes intersect in a common line; any point on that line
then gives a solution to the system of equations.

2bii. Plane. Perhaps you only had one equation to begin with, or else all
of the equations coincide geometrically. In this case, you have a plane
of solutions, with two free parameters.

Planes

2biii. All of R3. If you start with no information, then any point in R3 is a
solution. There are three free parameters.

In general, for systems of equations with k unknowns, there are k + 2
possible outcomes, corresponding to the possible numbers (i.e., 0, 1, 2, . . . , k)
of free parameters in the solutions set, plus the possibility of no solutions.
These types of solution sets are hyperplanes, generalizations of planes that
behave like planes in R3 in many ways.

Reading homework: problem 4

Pictures and Explanation

2.5.2 Particular Solution + Homogeneous Solutions

Lets look at solution sets again, this time trying to get to their geometric
shape. In the standard approach, variables corresponding to columns that
do not contain a pivot (after going to reduced row echelon form) are free. It
is the number of free variables that determines the geometry of the solution
set.
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Example 32 (Non-pivot variables determine the gemometry of the solution set)

1 0 1 −1
0 1 −1 1
0 0 0 0



x1
x2
x3
x4

 =

1
1
0

⇔


1x1 + 0x2 + 1x3 − 1x4 = 1
0x1 + 1x2 − 1x3 + 1x4 = 1
0x1 + 0x2 + 0x3 + 0x4 = 0

Following the standard approach, express the pivot variables in terms of the non-pivot
variables and add “empty equations”. Here x3 and x4 are non-pivot variables.

x1 = 1− x3 + x4
x2 = 1 + x3 − x4
x3 = x3
x4 = x4

⇔

x1
x2
x3
x4

 =


1
1
0
0

+ x3


−1

1
1
0

+ x4


1
−1

0
1


The preferred way to write a solution set S is with set notation;

S =



x1
x2
x3
x4

 =


1
1
0
0

+ µ1


−1

1
1
0

+ µ2


1
−1

0
1

 : µ1, µ2 ∈ R

 .

Notice that the first two components of the second two terms come from the non-pivot
columns. Another way to write the solution set is

S =
{
xP + µ1x

H
1 + µ2x

H
2 : µ1, µ2 ∈ R

}
,

where

xP =


1
1
0
0

 , xH1 =


−1

1
1
0

 , xH2 =


1
−1

0
1

 .

Here xP is a particular solution while xH1 and xH2 are called homogeneous solutions.
The solution set forms a plane.

2.5.3 Solutions and Linearity

Motivated by example 32, we say that the matrix equation Mx = v has
solution set {xP +µ1x

H
1 +µ2x

H
2 |µ1, µ2 ∈ R}. Recall that matrices are linear

operators. Thus

M(xP + µ1x
H
1 + µ2x

H
2 ) = MxP + µ1MxH1 + µ2MxH2 = v ,
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for any µ1, µ2 ∈ R. Choosing µ1 = µ2 = 0, we obtain

MxP = v .

This is why xP is an example of a particular solution.
Setting µ1 = 1, µ2 = 0, and subtracting MxP = v we obtain

MxH1 = 0 .

Likewise, setting µ1 = 0, µ2 = 1, we obtain

MxH2 = 0 .

Here xH1 and xH2 are examples of what are called homogeneous solutions to
the system. They do not solve the original equation Mx = v, but instead its
associated homogeneous equation My = 0.

We have just learnt a fundamental lesson of linear algebra: the solution
set to Ax = b, where A is a linear operator, consists of a particular solution
plus homogeneous solutions.

{Solutions} = {Particular solution + Homogeneous solutions}

Example 33 Consider the matrix equation of example 32. It has solution set

S =




1
1
0
0

+ µ1


−1

1
1
0

+ µ2


1
−1

0
1

 : µ1, µ2 ∈ R

 .

Then MxP = v says that


1
1
0
0

 is a solution to the original matrix equation, which is

certainly true, but this is not the only solution.

MxH1 = 0 says that


−1

1
1
0

 is a solution to the homogeneous equation.
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68 Systems of Linear Equations

MxH2 = 0 says that


1
−1

0
1

 is a solution to the homogeneous equation.

Notice how adding any multiple of a homogeneous solution to the particular solution
yields another particular solution.

Reading homework: problem 4

2.6 Review Problems

Webwork:
Reading problems 4 , 5
Solution sets 20, 21, 22
Geometry of solutions 23, 24, 25, 26

1. Write down examples of augmented matrices corresponding to each
of the five types of solution sets for systems of equations with three
unknowns.

2. Invent a simple linear system that has multiple solutions. Use the stan-
dard approach for solving linear systems and a non-standard approach
to obtain different descriptions of the solution set. Is the solution set
different with different approaches?

3. Let

M =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
...

ar1 ar2 · · · ark

 and x =


x1

x2

...

xk

 .

Note: x2 does not denote the square of the column vector x. Instead
x1, x2, x3, etc..., denote different variables (the components of x);
the superscript is an index. Although confusing at first, this nota-
tion was invented by Albert Einstein who noticed that quantities like
a21x

1 + a22x
2 · · · + a2kx

k =:
∑k

j=1 a
2
jx

j, can be written unambiguously

as a2jx
j. This is called Einstein summation notation. The most im-

portant thing to remember is that the index j is a dummy variable,
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so that a2jx
j ≡ a2ix

i; this is called “relabeling dummy indices”. When
dealing with products of sums, you must remember to introduce a
new dummy for each term; i.e., aix

ibiy
i =

∑
i aix

ibiy
i does not equal

aix
ibjy

j =
(∑

i aix
i
)(∑

j bjy
j
)
.

Use Einstein summation notation to propose a rule for Mx so that
Mx = 0 is equivalent to the linear system

a11x
1 +a12x

2 · · ·+a1kxk = 0

a21x
1 +a22x

2 · · ·+a2kxk = 0
...

...
...

...

ar1x
1 +ar2x

2 · · ·+arkxk = 0

Show that your rule for multiplying a matrix by a vector obeys the
linearity property.

4. The standard basis vector ei is a column vector with a one in the ith
row, and zeroes everywhere else. Using the rule for multiplying a matrix
times a vector in problem 3, find a simple rule for multiplying Mei,
where M is the general matrix defined there.

5. If A is a non-linear operator, can the solutions to Ax = b still be written
as “general solution=particular solution + homogeneous solutions”?
Provide examples.

6. Find a system of equations whose solution set is the walls of a 1×1×1
cube. (Hint: You may need to restrict the ranges of the variables; could
your equations be linear?)
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3
The Simplex Method

In Chapter 2, you learned how to handle systems of linear equations. However
there are many situations in which inequalities appear instead of equalities.
In such cases we are often interested in an optimal solution extremizing a
particular quantity of interest. Questions like this are a focus of fields such as
mathematical optimization and operations research. For the case where the
functions involved are linear, these problems go under the title linear pro-
gramming. Originally these ideas were driven by military applications, but
by now are ubiquitous in science and industry. Gigantic computers are dedi-
cated to implementing linear programming methods such as George Dantzig’s
simplex algorithm–the topic of this chapter.

3.1 Pablo’s Problem

Let us begin with an example. Consider again Pablo the nutritionist of
problem 5, chapter 1. The Conundrum City school board has employed
Pablo to design their school lunch program. Unfortunately for Pablo, their
requirements are rather tricky:

Example 34 (Pablo’s problem)
The Conundrum City school board is heavily influenced by the local fruit grower’s
association. They have stipulated that children eat at least 7 oranges and 5 apples
per week. Parents and teachers have agreed that eating at least 15 pieces of fruit per
week is a good thing, but school janitors argue that too much fruit makes a terrible
mess, so that children should eat no more than 25 pieces of fruit per week.
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72 The Simplex Method

Finally Pablo knows that oranges have twice as much sugar as apples and that apples
have 5 grams of sugar each. Too much sugar is unhealthy, so Pablo wants to keep the
children’s sugar intake as low as possible. How many oranges and apples should Pablo
suggest that the school board put on the menu?

This is a rather gnarly word problem. Our first step is to restate it as
mathematics, stripping away all the extraneous information:

Example 35 (Pablo’s problem restated)
Let x be the number of apples and y be the number of oranges. These must obey

x ≥ 5 and y ≥ 7 ,

to fulfill the school board’s politically motivated wishes. The teacher’s and parent’s
fruit requirement means that

x+ y ≥ 15 ,

but to keep the canteen tidy
x+ y ≤ 25 .

Now let
s = 5x+ 10y .

This linear function of (x, y) represents the grams of sugar in x apples and y oranges.
The problem is asking us to minimize s subject to the four linear inequalities listed
above.
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3.2 Graphical Solutions 73

3.2 Graphical Solutions

Before giving a more general algorithm for handling this problem and prob-
lems like it, we note that when the number of variables is small (preferably 2),
a graphical technique can be used.

Inequalities, such as the four given in Pablo’s problem, are often called
constraints, and values of the variables that satisfy these constraints comprise
the so-called feasible region. Since there are only two variables, this is easy
to plot:

Example 36 (Constraints and feasible region) Pablo’s constraints are

x ≥ 5

y ≥ 7

15 ≤ x+ y ≤ 25 .

Plotted in the (x, y) plane, this gives:

You might be able to see the solution to Pablo’s problem already. Oranges
are very sugary, so they should be kept low, thus y = 7. Also, the less fruit
the better, so the answer had better lie on the line x + y = 15. Hence,
the answer must be at the vertex (8, 7). Actually this is a general feature
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74 The Simplex Method

of linear programming problems, the optimal answer must lie at a vertex of
the feasible region. Rather than prove this, lets look at a plot of the linear
function s(x, y) = 5x+ 10y.

Example 37 (The sugar function)
Plotting the sugar function requires three dimensions:

The plot of a linear function of two variables is a plane through the origin.
Restricting the variables to the feasible region gives some lamina in 3-space.
Since the function we want to optimize is linear (and assumedly non-zero), if
we pick a point in the middle of this lamina, we can always increase/decrease
the function by moving out to an edge and, in turn, along that edge to a
corner. Applying this to the above picture, we see that Pablo’s best option
is 110 grams of sugar a week, in the form of 8 apples and 7 oranges.

It is worthwhile to contrast the optimization problem for a linear function
with the non-linear case you may have seen in calculus courses:
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3.3 Dantzig’s Algorithm 75

Here we have plotted the curve f(x) = d in the case where the function f is
linear and non-linear. To optimize f in the interval [a, b], for the linear case
we just need to compute and compare the values f(a) and f(b). In contrast,
for non-linear functions it is necessary to also compute the derivative df/dx
to study whether there are extrema inside the interval.

3.3 Dantzig’s Algorithm

In simple situations a graphical method might suffice, but in many applica-
tions there may be thousands or even millions of variables and constraints.
Clearly an algorithm that can be implemented on a computer is needed. The
simplex algorithm (usually attributed to George Dantzig) provides exactly
that. It begins with a standard problem:

Problem 38 Maximize f(x1, . . . , xn) where f is linear, xi ≥ 0 (i = 1, . . . , n) sub-
ject to

Mx = v , x :=

 x1
...
xn

 ,

where the m× n matrix M and m× 1 column vector v are given.

This is solved by arranging the information in an augmented matrix and
then applying EROs. To see how this works lets try an example.
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76 The Simplex Method

Example 39 Maximize f(x, y, z, w) = 3x− 3y − z + 4w subject to constraints

c1 := x+ y + z + w = 5

c2 := x+ 2y + 3z + 2w = 6 ,

where x ≥ 0, y ≥ 0, z ≥ 0 and w ≥ 0.

The key observation is this: Suppose we are trying to maximize f(x1, . . . , xn)
subject to a constraint c(x1, . . . , xn) = k for some constant k (c and k would
be the entries of Mx and v, respectively, in the above). Then we can also
try to maximize

f(x1, . . . , xn) + αc(x1, . . . , xn)

because this is only a constant shift f → f + αk. Choosing α carefully can
lead to a simple form for the function we are extremizing.

Example 40 (Setting up an augmented matrix):

Since we are interested in the optimum value of f , we treat it as an additional
variable and add one further equation

−3x+ 3y + z − 4w + f = 0 .

We arrange this equation and the two constraints in an augmented matrix 1 1 1 1 0 5

1 2 3 2 0 6

−3 3 1 −4 1 0

 ⇔


c1 = 5

c2 = 6

f = 3x− 3y − z + 4w

.

Keep in mind that the first four columns correspond to the positive variables (x, y, z, w)
and that the last row has the information of the function f . The general case is depicted
in figure 3.1.

Now the system is written as an augmented matrix where the last row
encodes the objective function and the other rows the constraints. Clearly we
can perform row operations on the constraint rows since this will not change
the solutions to the constraints. Moreover, we can add any amount of the
constraint rows to the last row, since this just amounts to adding a constant
to the function we want to extremize.
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variables (incl. slack and artificial)︷ ︸︸ ︷ objective︷︸︸︷
 ← constraint equations

← objective equation
↑

objective value

Figure 3.1: Arranging the information of an optimization problem in an
augmented matrix.

Example 41 (Performing EROs)
We scan the last row, and notice the (most negative) coefficient −4. Näıvely you

might think that this is good because this multiplies the positive variable w and only
helps the objective function f = 4w + · · · . However, what this actually means is
that the variable w will be positive and thus determined by the constraints. Therefore
we want to remove it from the objective function. We can zero out this entry by
performing a row operation. For that, either of the first two rows could be used.
To decide which, we remember that we still have to solve solve the constraints for
variables that are positive. Hence we should try to keep the first two entries in the
last column positive. Hence we choose the row which will add the smallest constant
to f when we zero out the −4: Look at the last column (where the values of the
constraints are stored). We see that adding four times the first row to the last row
would zero out the −4 entry but add 20 to f , while adding two times the second row
to the last row would also zero out the −4 but only add 12 to f . (You can follow this
by watching what happens to the last entry in the last row.) So we perform the latter
row operation and obtain the following: 1 1 1 1 0 5

1 2 3 2 0 6

−1 7 7 0 1 12

 c1 = 5

c2 = 6
f = 12 + x− 7y − 7z .

We do not want to undo any of our good work when we perform further row operations,
so now we use the second row to zero out all other entries in the fourth column. This
is achieved by subtracting half the second row from the first:

1
2 0 −1

2 0 0 2

1 2 3 2 0 6

−1 7 7 0 1 12

 c1 − 1
2c2 = 2

c2 = 6
f = 12 + x− 7y − 7z .
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Precisely because we chose the second row to perform our row operations, all entries
in the last column remain positive. This allows us to continue the algorithm.

We now repeat the above procedure: There is a −1 in the first column of the last
row. We want to zero it out while adding as little to f as possible. This is achieved
by adding twice the first row to the last row:

1
2 0 −1

2 0 0 2

1 2 3 2 0 6

0 7 6 0 1 16

 c1 − 1
2c2 = 2

c2 = 6
f = 16− 7y − 6z .

The Dantzig algorithm terminates if all the coefficients in the last row (save perhaps
for the last entry which encodes the value of the objective) are positive. To see why
we are done, lets write out what our row operations have done in terms of the function
f and the constraints (c1, c2). First we have

f = 16− 7y − 6z

with both y and z positive. Hence to maximize f we should choose y = 0 = z. In
which case we obtain our optimum value

f = 16 .

Finally, we check that the constraints can be solved with y = 0 = z and positive
(x,w). Indeed, they can by taking x = 4, w = 1.

3.4 Pablo Meets Dantzig

Oftentimes, it takes a few tricks to bring a given problem into the standard
form of example 39. In Pablo’s case, this goes as follows.

Example 42 Pablo’s variables x and y do not obey xi ≥ 0. Therefore define new
variables

x1 = x− 5 , x2 = y − 7 .

The conditions on the fruit 15 ≤ x+ y ≤ 25 are inequalities,

x1 + x2 ≥ 3 , x1 + x2 ≤ 13 ,

so are not of the form Mx = v. To achieve this we introduce two new positive
variables x3 ≥ 0, x4 ≥ 4 and write

c1 := x1 + x2 − x3 = 3 , c2 := x1 + x2 + x4 = 13 .
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These are called slack variables because they take up the “slack” required to convert
inequality to equality. This pair of equations can now be written as Mx = v,

(
1 1 −1 0
1 1 0 1

)
x1
x2
x3
x4

 =

(
3

13

)
.

Finally, Pablo wants to minimize sugar s = 5x + 10y, but the standard problem
maximizes f . Thus the so-called objective function f = −s + 95 = −5x1 − 10x2.
(Notice that it makes no difference whether we maximize −s or −s + 95, we choose
the latter since it is a linear function of (x1, x2).) Now we can build an augmented
matrix whose last row reflects the objective function equation 5x1 + 10x2 + f = 0: 1 1 −1 0 0 3

1 1 0 1 0 13

5 10 0 0 1 0

 .

Here it seems that the simplex algorithm already terminates because the last row only
has positive coefficients, so that setting x1 = 0 = x2 would be optimal. However, this
does not solve the constraints (for positive values of the slack variables x3 and x4).
Thus one more (very dirty) trick is needed. We add two more, positive, (so-called)
artificial variables x5 and x6 to the problem which we use to shift each constraint

c1 → c1 − x5 , c2 → c2 − x6 .

The idea being that for large positive α, the modified objective function

f − αx5 − αx6

is only maximal when the artificial variables vanish so the underlying problem is un-
changed. Lets take α = 10 (our solution will not depend on this choice) so that our
augmented matrix reads  1 1 −1 0 1 0 0 3

1 1 0 1 0 1 0 13

5 10 0 0 10 10 1 0


R′3=R3−10R1−10R2∼

 1 1 −1 0 1 0 0 3
1 1 0 1 0 1 0 13

−15 −10 10 −10 0 0 1 −160

 .

Here we performed one row operation to zero out the coefficients of the artificial
variables. Now we are ready to run the simplex algorithm exactly as in section 3.3.
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The first row operation uses the 1 in the top of the first column to zero out the most
negative entry in the last row: 1 1 −1 0 1 0 0 3

1 1 0 1 0 1 0 13

0 5 −5 −10 15 0 1 −115


R′2=R2−R1∼

 1 1 1 0 1 0 0 3
0 0 1 1 −1 1 0 10

0 5 −5 −10 15 0 1 −115


R′3=R3+10R2∼

 1 1 1 0 1 0 0 3
0 0 1 1 −1 1 0 10

0 5 5 0 5 10 1 −15

 .

Now the variables (x2, x3, x5, x6) have zero coefficients so must be set to zero to
maximize f . The optimum value is f = −15 so s = −f + 95 = 110 exactly as before.
Finally, to solve the constraints x1 = 3 and x4 = 10 so that x = 8 and y = 7 which
also agrees with our previous result.

Clearly, performed by hand, the simplex algorithm was slow and complex
for Pablo’s problem. However, the key point is that it is an algorithm that
can be fed to a computer. For problems with many variables, this method is
much faster than simply checking all vertices as we did in section 3.2.

3.5 Review Problems

1. Maximize f(x, y) = 2x+ 3y subject to the constraints

x ≥ 0 , y ≥ 0 , x+ 2y ≤ 2 , 2x+ y ≤ 2 ,

by

(a) sketching the region in the xy-plane defined by the constraints
and then checking the values of f at its corners; and,

(b) the simplex algorithm (hint: introduce slack variables).

2. Conoil operates two wells (well A and well B) in southern Grease (a
small Mediterranean country). You have been employed to figure out
how many barrels of oil they should pump from each well to maximize
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their profit (all of which goes to shareholders, not operating costs). The
quality of oil from well A is better than from well B, so is worth 50%
more per barrel. The Greasy government cares about the environment
and will not allow Conoil to pump in total more than 6 million barrels
per year. Well A costs twice as much as well B to operate. Conoil’s
yearly operating budget is only sufficient to pump at most 10 million
barrels from well B per year. Using both a graphical method and then
(as a double check) Dantzig’s algorithm, determine how many barrels
Conoil should pump from each well to maximize their profits.

81



82 The Simplex Method

82



4
Vectors in Space, n-Vectors

To continue our linear algebra journey, we must discuss n-vectors with an
arbitrarily large number of components. The simplest way to think about
these is as ordered lists of numbers,

a =

 a1

...
an

 .

Do not be confused by our use of a superscript to label components of a vector.
Here a2 denotes the second component of the vector a, rather than the number
a squared!

We emphasize that order matters:

Example 43 (Order of Components Matters)
7
4
2
5

 6=


7
2
4
5

 .

The set of all n-vectors is denoted Rn. As an equation

Rn :=


a

1

...
an


∣∣∣∣∣∣∣ a1, . . . , an ∈ R

 .
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4.1 Addition and Scalar Multiplication in Rn

A simple but important property of n-vectors is that we can add two n-vectors
together and multiply one n-vector by a scalar:

Definition Given two n-vectors a and b whose components are given by

a =

 a1

...
an

 and b =

 b1

...
bn


their sum is

a+ b :=

 a1 + b1

...
an + bn

 .

Given a scalar λ, the scalar multiple

λa :=

 λa1

...
λan

 .

Example 44 Let

a =


1
2
3
4

 and b =


4
3
2
1

 .

Then, for example,

a+ b =


5
5
5
5

 and 3a− 2b =


−5

0
5

10

 .

A special vector is the zero vector . All of its components are zero:

0 =

 0
...
0

 =: 0n .

In Euclidean geometry—the study of Rn with lengths and angles defined
as in section 4.3 —n-vectors are used to label points P and the zero vector
labels the origin O. In this sense, the zero vector is the only one with zero
magnitude, and the only one which points in no particular direction.
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4.2 Hyperplanes

Vectors in Rn are impossible to visualize unless n is 1,2, or 3. However,
familiar objects like lines and planes still make sense for any value of n: The
line L along the direction defined by a vector v and through a point P labeled
by a vector u can be written as

L = {u+ tv | t ∈ R} .

Sometimes, since we know that a point P corresponds to a vector, we will
be lazy and just write L = {P + tv | t ∈ R}.

Example 45




1
2
3
4

+ t


1
0
0
0


t ∈ R

 describes a line in R4 parallel to the x1-axis.

Given two non-zero vectors u, v, they will usually determine a plane,

unless both vectors are in the same line, in which case, one of the vectors
is a scalar multiple of the other. The sum of u and v corresponds to laying
the two vectors head-to-tail and drawing the connecting vector. If u and v
determine a plane, then their sum lies in the plane determined by u and v.
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The plane determined by two vectors u and v can be written as

{P + su+ tv | s, t ∈ R} .

Example 46 (A plane in a higher dimensional space)



3
1
4
1
5
9

+ s



1
0
0
0
0
0

+ t



0
1
0
0
0
0




s, t ∈ R


describes a plane in 6-dimensional space parallel to the xy-plane.

Parametric Notation

We can generalize the notion of a plane with the following recursive def-
inition. (That is, infinitely many things are defined in the following line.)

Definition A set of k + 1 vectors P, v1, . . . , vk in Rn with k ≤ n determines
a k-dimensional hyperplane,{

P +
k∑
i=1

λivi |λi ∈ R

}
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unless any of the vectors vj lives in the (k − 1)-dimensional hyperplane de-
termined by the other k − 1 vectors{

0 +
k∑
i 6=j

λivi |λi ∈ R

}
.

Example 47 (3+1 vectors that do not specify a 3-dimensional hyperplane)

S :=





3
1
4
1
5
9

+ s



1
0
0
0
0
0

+ t



0
1
0
0
0
0

+ u



1
1
0
0
0
0




s, t, u ∈ R


is not a 3-dimensional hyperplane because

1
1
0
0
0
0

 = 1



1
0
0
0
0
0

+ 1



0
1
0
0
0
0

 ∈

s



1
0
0
0
0
0

+ t



0
1
0
0
0
0




s, t ∈ R


.

In fact, the set could be rewritten as

S =





3
1
4
1
5
9

+ (s+ u)



1
0
0
0
0
0

+ (t+ u)



0
1
0
0
0
0




s, t, u ∈ R



=





3
1
4
1
5
9

+ a



1
0
0
0
0
0

+ b



0
1
0
0
0
0




a, b ∈ R


and so is actually the same 2-dimensional hyperplane in R6 as in example 46.

87



88 Vectors in Space, n-Vectors

You might sometimes encounter the word “hyperplane” without the qual-
ifier “k-dimensional. When the dimension k is not specified, one usually as-
sumes that k = n− 1 for a hyperplane inside Rn. This is the kind of object
that is specified by one algebraic equation in n variables.

Example 48 (Specifying a plane with one linear algebraic equation.)
The solution set to

x1 + x2 + x3 + x4 + x5 = 1⇔


x1
x2
x3
x4
x5

 =


1− x2 − x3 − x4 − x5

x2
x3

x4
x5


is 


1
0
0
0
0

+ s2


−1

1
0
0
0

+ s3


−1

0
1
0
0

+ s4


−1

0
0
1
0

+ s5


−1

1
0
0
1



s2, s3, s4, s5 ∈ R

 ,

a 4-dimensional hyperplane in R5.

4.3 Directions and Magnitudes

Consider the Euclidean length of an n-vector:

‖v‖ :=
√

(v1)2 + (v2)2 + · · ·+ (vn)2 =

√√√√ n∑
i=1

(vi)2 .

Using the Law of Cosines, we can then figure out the angle between two
vectors. Given two vectors v and u that span a plane in Rn, we can then
connect the ends of v and u with the vector v − u.
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Then the Law of Cosines states that:

‖v − u‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖ ‖v‖ cos θ

Then isolate cos θ:

‖v − u‖2 − ‖u‖2 − ‖v‖2 = (v1 − u1)2 + · · ·+ (vn − un)2

−
(
(u1)2 + · · ·+ (un)2

)
−
(
(v1)2 + · · ·+ (vn)2

)
= −2u1v1 − · · · − 2unvn

Thus,

‖u‖ ‖v‖ cos θ = u1v1 + · · ·+ unvn .

Note that in the above discussion, we have assumed (correctly) that Eu-
clidean lengths in Rn give the usual notion of lengths of vectors for any plane
in Rn. This now motivates the definition of the dot product.

Definition The dot product of u =

 u1

...
un

 and v =

 v1

...
vn

 is

u v := u1v1 + · · ·+ unvn .
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Example 49 of the dot product of two vectors from R100.

1
2
3
4
...

100


·



1
1
1
1
...
1


= 1 + 2 + 3 + · · ·+ 100 =

1

2
.100.101 = 5050.

The sum above is the one Gauß, according to legend, could do in kindergarten.

Definition The length (or norm or magnitude) of an n-vector v is

‖v‖ :=
√
v v .

Example 50 of the norm of a vector from R101.∥∥∥∥∥∥∥∥∥∥∥∥∥



1
2
3
4
...

101



∥∥∥∥∥∥∥∥∥∥∥∥∥
=

√√√√ 101∑
i=1

i2 =
√

37, 961.

Definition The angle θ between two vectors is determined by the formula

u v = ‖u‖‖v‖ cos θ .

Example 51 of an angle between two vectors form R101.

The angle between



1
2
3
4
...

101


and



1
0
1
0
...
1


is arccos

(
10,201√

37,916
√
51

)
.

Definition Two vectors are orthogonal (or perpendicular) if their dot
product is zero.
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Example 52 of vectors from R101 that are orthogonal to each other.
1
1
1
...
1

 ·


1
−1

1
...
−1

 = 0.

Notice that the zero vector 0n from Rn is orthogonal to every vector in Rn;
0n · v = 0 for all v ∈ Rn.

The dot product has some important properties; it is

1. symmetric:

u v = v u ,

2. Distributive:

u (v + w) = u v + u w ,

3. Bilinear (which is to say, linear in both u and v):

u (cv + dw) = c u v + d u w ,

and

(cu+ dw) v = c u v + dw v .

4. Positive Definite:

u u ≥ 0 ,

and u u = 0 only when u itself is the 0-vector.

There are, in fact, many different useful ways to define lengths of vectors.
Notice in the definition above that we first defined the dot product, and then
defined everything else in terms of the dot product. So if we change our idea
of the dot product, we change our notion of length and angle as well. The
dot product determines the Euclidean length and angle between two vectors.

Other definitions of length and angle arise from inner products, which
have all of the properties listed above (except that in some contexts the
positive definite requirement is relaxed). Instead of writing for other inner
products, we usually write 〈u, v〉 to avoid confusion.

91



92 Vectors in Space, n-Vectors

Reading homework: problem 1

Example 53 Consider a four-dimensional space, with a special direction which we will
call “time”. The Lorentzian inner product on R4 is given by 〈u, v〉 = u1v1 + u2v2 +
u3v3 − u4v4. This is of central importance in Einstein’s theory of special relativity.
Note, in particular, that it is not positive definite. As a result, the “squared-length”
of a vector with coordinates x, y, z and t is ‖v‖2 = x2 + y2 + z2 − t2. Notice that
it is possible for ‖v‖2 ≤ 0 even with non-vanishing v! The physical interpretation of
this inner product depends on the sign of the inner product; two space time points
X1 := (x1, y1, z1, t1), X2 := (x2, y2, z2, t2) are

• separated by a distance
√
〈X1, X2〉 if 〈X1, X2〉 ≥ 0.

• separated by a time
√
−〈X1, X2〉 if 〈X1, X2〉 ≤ 0.

In particular, the difference in time coordinates t2 − t1 is not the time between the
two points! (Compare this to using polar coordinates for which the distance between
two points (r, θ1) and (r, θ2) is not θ2 − θ1; coordinate differences are not necessarily
distances.)

Theorem 4.3.1 (Cauchy-Schwarz Inequality). For any non-zero vectors u
and v with an inner-product 〈 , 〉

|〈u, v〉|
‖u‖ ‖v‖

≤ 1.

The easiest proof would use the definition of the angle between two vectors
and the fact that cos θ ≤ 1. However, strictly speaking speaking we did
not check our assumption that we could apply the Law of Cosines to the
Euclidean length in Rn. There is, however a simple algebraic proof.

Proof. Let α be any real number and consider the following positive, quadratic
polynomial in α

0 ≤ 〈u+ αv, u+ αv〉 = 〈u, u〉+ 2α〈u, v〉+ α2〈v, v〉 .

Since any quadratic aα2+2bα+c takes its minimal value c− b2

a
when α = − b

2a
,

and the inequality should hold for even this minimum value of the polynomial

0 ≤ 〈u, u〉 − 〈u, v〉
2

〈v, v〉
⇔ |〈u, v〉|
‖u‖ ‖v‖

≤ 1.
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Theorem 4.3.2 (Triangle Inequality). For any u, v ∈ Rn

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Proof.

‖u+ v‖2 = (u+ v) (u+ v)

= u u+ 2u v + v v

= ‖u‖2 + ‖v‖2 + 2 ‖u‖ ‖v‖ cos θ

= (‖u‖+ ‖v‖)2 + 2 ‖u‖ ‖v‖(cos θ − 1)

≤ (‖u‖+ ‖v‖)2 .

That is, the square of the left-hand side of the triangle inequality is ≤ the
square of the right-hand side. Since both the things being squared are posi-
tive, the inequality holds without the square;

‖u+ v‖ ≤ ‖u‖+ ‖v‖

The triangle inequality is also “self-evident” when examining a sketch of
u, v and u+ v.

Example 54 Let

a =


1
2
3
4

 and b =


4
3
2
1

 ,

so that
a a = b b = 1 + 22 + 32 + 42 = 30
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⇒ ‖a‖ =
√

30 = ‖b‖ and
(
‖a‖+ ‖b‖

)2
= (2
√

30)2 = 120 .

Since

a+ b =


5
5
5
5

 ,

we have

‖a+ b‖2 = 52 + 52 + 52 + 52 = 100 < 120 =
(
‖a‖+ ‖b‖

)2
as predicted by the triangle inequality.

Notice also that a b = 1.4 + 2.3 + 3.2 + 4.1 = 20 <
√

30.
√

30 = 30 = ‖a‖ ‖b‖ in
accordance with the Cauchy–Schwarz inequality.

Reading homework: problem 2

4.4 Vectors, Lists and Functions: RS

If you were going shopping you might make something like the following list.

We could represent this information mathematically as a set,

S = {apple, orange, onion,milk, carrot} .
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There is no information of ordering here and no information about how many
carrots you will buy. This set by itself is not a vector; how would we add
such sets to one another?

If you were a more careful shopper your list might look like the following.

What you have really done here is assign a number to each element of the
set S. In other words, the second list is a function

f : S −→ R .

Given two lists like the second one above, we could easily add them – if you
plan to buy 5 apples and I am buying 3 apples, together we will buy 8 apples!
In fact, the second list is really a 5-vector in disguise.

In general it is helpful to think of an n-vector as a function whose domain
is the set {1, . . . , n}. This is equivalent to thinking of an n-vector as an
ordered list of n numbers. These two ideas give us two equivalent notions for
the set of all n-vectors:

Rn :=


 a1

...
an


∣∣∣∣∣∣∣ a1, . . . , an ∈ R

 = {a : {1, . . . , n} → R} =: R{1,··· ,n}

The notation R{1,··· ,n} is used to denote the set of all functions from {1, . . . , n}
to R.

Similarly, for any set S the notation RS denotes the set of functions from
S to R:

RS := {f : S → R} .
When S is an ordered set like {1, . . . , n}, it is natural to write the components
in order. When the elements of S do not have a natural ordering, doing so
might cause confusion.
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Example 55 Consider the set S = {∗, ?,#} from chapter 1 review problem 9. A
particular element of RS is the function a explicitly defined by

a? = 3, a# = 5, a∗ = −2.

It is not natural to write

a =

 3
5
−2

 or a =

−2
3
5


because the elements of S do not have an ordering, since as sets {∗, ?,#} = {?,#, ∗}.

In this important way, RS seems different from R3. What is more evident
are the similarities; since we can add two functions, we can add two elements
of RS:

Example 56 Addition in R{∗,?,#}
If a, b ∈ R{∗,?,#} such that

a? = 3, a# = 5, a∗ = −2

and
b? = −2, b# = 4, b∗ = 13

then a+ b ∈ RS is the function such that

(a+ b)? = 3− 2 = 1, (a+ b)# = 5 + 4 = 9, (a+ b)∗ = −2 + 13 = 11 .

Also, since we can multiply functions by numbers, there is a notion of
scalar multiplication on RS.

Example 57 Scalar Multiplication in RS
If a ∈ R{∗,?,#} such that

a? = 3, a# = 5, a∗ = −2

then 3a ∈ R{∗,?,#} is the function such that

(3a)? = 3 · 3 = 9, (3a)# = 3 · 5 = 15, (3a)∗ = 3(−2) = −6 .

We visualize R2 and R3 in terms of axes. We have a more abstract picture
of R4, R5 and Rn for larger n while RS seems even more abstract. However,
when thought of as a simple “shopping list”, you can see that vectors in RS

in fact, can describe everyday objects. In chapter 5 we introduce the general
definition of a vector space that unifies all these different notions of a vector.
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4.5 Review Problems

Webwork:

Reading problems 1 , 2
Vector operations 3
Vectors and lines 4

Vectors and planes 5
Lines, planes and vectors 6,7

Equation of a plane 8,9
Angle between a line and plane 10

1. When he was young, Captain Conundrum mowed lawns on weekends to
help pay his college tuition bills. He charged his customers according to
the size of their lawns at a rate of 5¢ per square foot and meticulously
kept a record of the areas of their lawns in an ordered list:

A = (200, 300, 50, 50, 100, 100, 200, 500, 1000, 100) .

He also listed the number of times he mowed each lawn in a given year,
for the year 1988 that ordered list was

f = (20, 1, 2, 4, 1, 5, 2, 1, 10, 6) .

(a) Pretend that A and f are vectors and compute A f .

(b) What quantity does the dot product A f measure?

(c) How much did Captain Conundrum earn from mowing lawns in
1988? Write an expression for this amount in terms of the vectors
A and f .

(d) Suppose Captain Conundrum charged different customers differ-
ent rates. How could you modify the expression in part 1c to
compute the Captain’s earnings?

2. (2) Find the angle between the diagonal of the unit square in R2 and
one of the coordinate axes.

(3) Find the angle between the diagonal of the unit cube in R3 and
one of the coordinate axes.

(n) Find the angle between the diagonal of the unit (hyper)-cube in
Rn and one of the coordinate axes.
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(∞) What is the limit as n→∞ of the angle between the diagonal of
the unit (hyper)-cube in Rn and one of the coordinate axes?

3. Consider the matrix M =

(
cos θ sin θ
− sin θ cos θ

)
and the vector X =

(
x
y

)
.

(a) Sketch X and MX in R2 for several values of X and θ.

(b) Compute ||MX||
||X|| for arbitrary values of X and θ.

(c) Explain your result for (b) and describe the action of M geomet-
rically.

4. (Lorentzian Strangeness). For this problem, consider Rn with the
Lorentzian inner product defined in example 53 above.

(a) Find a non-zero vector in two-dimensional Lorentzian space-time
with zero length.

(b) Find and sketch the collection of all vectors in two-dimensional
Lorentzian space-time with zero length.

(c) Find and sketch the collection of all vectors in three-dimensional
Lorentzian space-time with zero length.

(d) Replace the word “zero” with the word “one” in the previous two
parts.

The Story of Your Life

5. Create a system of equations whose solution set is a 99 dimensional
hyperplane in R101.

6. Recall that a plane in R3 can be described by the equation

n ·

xy
z

 = n · p
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where the vector p labels a given point on the plane and n is a vector
normal to the plane. Let N and P be vectors in R101 and

X =


x1

x2

...
x101

 .

What kind of geometric object does N ·X = N · P describe?

7. Let

u =


1
1
1
...
1

 and v =


1
2
3
...

101


Find the projection of v onto u and the projection of u onto v. (Hint:
Remember that two vectors u and v define a plane, so first work out
how to project one vector onto another in a plane. The picture from
Section 14.4 could help.)

8. If the solution set to the equation A(x) = b is the set of vectors whose
tips lie on the paraboloid z = x2 + y2, then what can you say about
the function A?

9. Find a system of equations whose solution set is


1
1
2
0

+ c1


−1
−1

0
1

+ c2


0
0
−1
−3


∣∣∣∣∣∣∣∣ c1, c2 ∈ R

 .

Give a general procedure for going from a parametric description of a
hyperplane to a system of equations with that hyperplane as a solution
set.

10. If A is a linear operator and both v and cv (for any real number c) are
solutions to Ax = b, then what can you say about b?
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5
Vector Spaces

As suggested at the end of chapter 4, the vector spaces Rn are not the only
vector spaces. We now give a general definition that includes Rn for all
values of n, and RS for all sets S, and more. This mathematical structure is
applicable to a wide range of real-world problems and allows for tremendous
economy of thought; the idea of a basis for a vector space will drive home
the main idea of vector spaces; they are sets with very simple structure.

The two key properties of vectors are that they can be added together
and multiplied by scalars. Thus, before giving a rigorous definition of vector
spaces, we restate the main idea.

A vector space is a set that is closed under addition and
scalar multiplication.

Definition A vector space (V,+, . ,R) is a set V with two operations +
and · satisfying the following properties for all u, v ∈ V and c, d ∈ R:

(+i) (Additive Closure) u+ v ∈ V . Adding two vectors gives a vector.

(+ii) (Additive Commutativity) u + v = v + u. Order of addition does not
matter.

(+iii) (Additive Associativity) (u + v) + w = u + (v + w). Order of adding
many vectors does not matter.
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(+iv) (Zero) There is a special vector 0V ∈ V such that u+ 0V = u for all u
in V .

(+v) (Additive Inverse) For every u ∈ V there exists w ∈ V such that
u+ w = 0V .

(· i) (Multiplicative Closure) c · v ∈ V . Scalar times a vector is a vector.

(· ii) (Distributivity) (c+d) ·v = c ·v+d ·v. Scalar multiplication distributes
over addition of scalars.

(· iii) (Distributivity) c · (u+v) = c ·u+c ·v. Scalar multiplication distributes
over addition of vectors.

(· iv) (Associativity) (cd) · v = c · (d · v).

(· v) (Unity) 1 · v = v for all v ∈ V .

Examples of each rule

Remark Rather than writing (V,+, . ,R), we will often say “let V be a vector space
over R”. If it is obvious that the numbers used are real numbers, then “let V be a
vector space” suffices. Also, don’t confuse the scalar product · with the dot product .
The scalar product is a function that takes as its two inputs one number and one
vector and returns a vector as its output. This can be written

· : R× V → V .

Similarly

+ : V × V → V .

On the other hand, the dot product takes two vectors and returns a number. Suc-
cinctly: : V × V → R. Once the properties of a vector space have been verified,
we’ll just write scalar multiplication with juxtaposition cv = c · v, though, to keep our
notation efficient.

5.1 Examples of Vector Spaces

One can find many interesting vector spaces, such as the following:
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Example of a vector space

Example 58
RN = {f | f : N→ R}

Here the vector space is the set of functions that take in a natural number n and return
a real number. The addition is just addition of functions: (f1+f2)(n) = f1(n)+f2(n).
Scalar multiplication is just as simple: c · f(n) = cf(n).

We can think of these functions as infinitely large ordered lists of numbers: f(1) =
13 = 1 is the first component, f(2) = 23 = 8 is the second, and so on. Then for
example the function f(n) = n3 would look like this:

f =



1
8
27
...
n3

...


.

Thinking this way, RN is the space of all infinite sequences. Because we can not write
a list infinitely long (without infinite time and ink), one can not define an element of
this space explicitly; definitions that are implicit, as above, or algebraic as in f(n) = n3

(for all n ∈ N) suffice.
Let’s check some axioms.

(+i) (Additive Closure) (f1 + f2)(n) = f1(n) + f2(n) is indeed a function N → R,
since the sum of two real numbers is a real number.

(+iv) (Zero) We need to propose a zero vector. The constant zero function g(n) = 0
works because then f(n) + g(n) = f(n) + 0 = f(n).

The other axioms should also be checked. This can be done using properties of the
real numbers.

Reading homework: problem 1

Example 59 The space of functions of one real variable.

RR = {f | f : R→ R}
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The addition is point-wise

(f + g)(x) = f(x) + g(x) ,

as is scalar multiplication
c · f(x) = cf(x) .

To check that RR is a vector space use the properties of addition of functions and
scalar multiplication of functions as in the previous example.

We can not write out an explicit definition for one of these functions either, there
are not only infinitely many components, but even infinitely many components between
any two components! You are familiar with algebraic definitions like f(x) = ex

2−x+5.
However, most vectors in this vector space can not be defined algebraically. For
example, the nowhere continuous function

f(x) =

{
1 , x ∈ Q

0 , x /∈ Q
.

Example 60 R{∗,?,#} = {f : {∗, ?,#} → R}. Again, the properties of addition and
scalar multiplication of functions show that this is a vector space.

You can probably figure out how to show that RS is vector space for any
set S. This might lead you to guess that all vector spaces are of the form RS

for some set S. The following is a counterexample.

Example 61 Another very important example of a vector space is the space of all
differentiable functions: {

f : R→ R
∣∣∣ d
dx
f exists

}
.

From calculus, we know that the sum of any two differentiable functions is dif-
ferentiable, since the derivative distributes over addition. A scalar multiple of a func-
tion is also differentiable, since the derivative commutes with scalar multiplication
( d
dx(cf) = c ddxf). The zero function is just the function such that 0(x) = 0 for ev-

ery x. The rest of the vector space properties are inherited from addition and scalar
multiplication in R.

Similarly, the set of functions with at least k derivatives is always a vector
space, as is the space of functions with infinitely many derivatives. None of
these examples can be written as RS for some set S. Despite our emphasis on
such examples, it is also not true that all vector spaces consist of functions.
Examples are somewhat esoteric, so we omit them.

Another important class of examples is vector spaces that live inside Rn

but are not themselves Rn.
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Example 62 (Solution set to a homogeneous linear equation.)
Let

M =

1 1 1
2 2 2
3 3 3

 .

The solution set to the homogeneous equation Mx = 0 isc1
−1

1
0

+ c2

−1
0
1

∣∣∣∣∣∣c1, c2 ∈ R

 .

This set is not equal to R3 since it does not contain, for example,

1
0
0

. The sum of

any two solutions is a solution, for example2

−1
1
0

+ 3

−1
0
1

+

7

−1
1
0

+ 5

−1
0
1

 = 9

−1
1
0

+ 8

−1
0
1


and any scalar multiple of a solution is a solution

4

5

−1
1
0

− 3

−1
0
1

 = 20

−1
1
0

− 12

−1
0
1

 .

This example is called a subspace because it gives a vector space inside another vector
space. See chapter 9 for details. Indeed, because it is determined by the linear map
given by the matrix M , it is called kerM , or in words, the kernel of M , for this see
chapter 16.

Similarly, the solution set to any homogeneous linear equation is a vector
space: Additive and multiplicative closure follow from the following state-
ment, made using linearity of matrix multiplication:

If Mx1 = 0 and Mx2 = 0 then M(c1x1+c2x2) = c1Mx1+c2Mx2 = 0+0 = 0.

A powerful result, called the subspace theorem (see chapter 9) guarantees,
based on the closure properties alone, that homogeneous solution sets are
vector spaces.

More generally, if V is any vector space, then any hyperplane through
the origin of V is a vector space.
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Example 63 Consider the functions f(x) = ex and g(x) = e2x in RR. By taking
combinations of these two vectors we can form the plane {c1f + c2g|c1, c2 ∈ R} inside
of RR. This is a vector space; some examples of vectors in it are 4ex−31e2x, πe2x−4ex

and 1
2e

2x.

A hyperplane which does not contain the origin cannot be a vector space
because it fails condition (+iv).

It is also possible to build new vector spaces from old ones using the
product of sets. Remember that if V and W are sets, then their product is
the new set

V ×W = {(v, w)|v ∈ V,w ∈ W} ,

or in words, all ordered pairs of elements from V and W . In fact V ×W is a
vector space if V and W are. We have actually been using this fact already:

Example 64 The real numbers R form a vector space (over R). The new vector space

R× R = {(x, y)|x ∈ R, y ∈ R}

has addition and scalar multiplication defined by

(x, y) + (x′, y′) = (x+ x′, y + y′) and c.(x, y) = (cx, cy) .

Of course, this is just the vector space R2 = R{1,2}.

5.1.1 Non-Examples

The solution set to a linear non-homogeneous equation is not a vector space
because it does not contain the zero vector and therefore fails (iv).

Example 65 The solution set to(
1 1
0 0

)(
x
y

)
=

(
1
0

)

is

{(
1
0

)
+ c

(
−1

1

) ∣∣∣ c ∈ R
}

. The vector

(
0
0

)
is not in this set.

Do notice that if just one of the vector space rules is broken, the example is
not a vector space.

Most sets of n-vectors are not vector spaces.
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Example 66 P :=

{(
a
b

) ∣∣∣ a, b ≥ 0

}
is not a vector space because the set fails (·i)

since

(
1
1

)
∈ P but −2

(
1
1

)
=

(
−2
−2

)
/∈ P .

Sets of functions other than those of the form RS should be carefully
checked for compliance with the definition of a vector space.

Example 67 The set of all functions which are nowhere zero

{f : R→ R | f(x) 6= 0 for any x ∈ R} ,

does not form a vector space because it does not satisfy (+i). The functions f(x) =
x2+1 and g(x) = −5 are in the set, but their sum (f+g)(x) = x2−4 = (x+2)(x−2)
is not since (f + g)(2) = 0.

5.2 Other Fields

Above, we defined vector spaces over the real numbers. One can actually
define vector spaces over any field. This is referred to as choosing a different
base field. A field is a collection of “numbers” satisfying properties which are
listed in appendix B. An example of a field is the complex numbers,

C =
{
x+ iy | i2 = −1, x, y ∈ R

}
.

Example 68 In quantum physics, vector spaces over C describe all possible states a
physical system can have. For example,

V =

{(
λ
µ

)
| λ, µ ∈ C

}

is the set of possible states for an electron’s spin. The vectors

(
1
0

)
and

(
0
1

)
describe,

respectively, an electron with spin “up” and “down” along a given direction. Other

vectors, like

(
i
−i

)
are permissible, since the base field is the complex numbers. Such

states represent a mixture of spin up and spin down for the given direction (a rather
counterintuitive yet experimentally verifiable concept), but a given spin in some other
direction.
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Complex numbers are very useful because of a special property that they
enjoy: every polynomial over the complex numbers factors into a product of
linear polynomials. For example, the polynomial

x2 + 1

doesn’t factor over real numbers, but over complex numbers it factors into

(x+ i)(x− i) .

In other words, there are two solutions to

x2 = −1,

x = i and x = −i. This property has far-reaching consequences: often in
mathematics problems that are very difficult using only real numbers become
relatively simple when working over the complex numbers. This phenomenon
occurs when diagonalizing matrices, see chapter 13.

The rational numbers Q are also a field. This field is important in com-
puter algebra: a real number given by an infinite string of numbers after the
decimal point can’t be stored by a computer. So instead rational approxi-
mations are used. Since the rationals are a field, the mathematics of vector
spaces still apply to this special case.

Another very useful field is bits

B2 = Z2 = {0, 1} ,

with the addition and multiplication rules

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

These rules can be summarized by the relation 2 = 0. For bits, it follows
that −1 = 1!

The theory of fields is typically covered in a class on abstract algebra or
Galois theory.
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5.3 Review Problems

Webwork:
Reading problems 1

Addition and inverse 2

1. Check that

{(
x
y

)∣∣∣∣x, y ∈ R
}

= R2 (with the usual addition and scalar

multiplication) satisfies all of the parts in the definition of a vector
space.

2. (a) Check that the complex numbers C = {x+ iy | i2 = −1, x, y ∈ R},
satisfy all of the parts in the definition of a vector space over C.
Make sure you state carefully what your rules for vector addition
and scalar multiplication are.

(b) What would happen if you used R as the base field (try comparing
to problem 1).

3. (a) Consider the set of convergent sequences, with the same addi-
tion and scalar multiplication that we defined for the space of
sequences:

V =
{
f | f : N→ R, lim

n→∞
f(n) ∈ R

}
⊂ RN .

Is this still a vector space? Explain why or why not.

(b) Now consider the set of divergent sequences, with the same addi-
tion and scalar multiplication as before:

V =
{
f | f : N→ R, lim

n→∞
f(n) does not exist or is ±∞

}
⊂ RN .

Is this a vector space? Explain why or why not.

4. Consider the set of 2× 4 matrices:

V =

{(
a b c d
e f g h

)∣∣∣∣a, b, c, d, e, f, g, h ∈ C
}
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Propose definitions for addition and scalar multiplication in V . Identify
the zero vector in V , and check that every matrix in V has an additive
inverse.

5. Let PR
3 be the set of polynomials with real coefficients of degree three

or less.

(a) Propose a definition of addition and scalar multiplication to make
PR
3 a vector space.

(b) Identify the zero vector, and find the additive inverse for the vector
−3− 2x+ x2.

(c) Show that PR
3 is not a vector space over C. Propose a small

change to the definition of PR
3 to make it a vector space over C.

(Hint: Every little symbol in the the instructions for par (c) is
important!)

Hint

6. Let V = {x ∈ R|x > 0} =: R+. For x, y ∈ V and λ ∈ R, define

x⊕ y = xy , λ⊗ x = xλ .

Show that (V,⊕,⊗,R) is a vector space.

7. The component in the ith row and jth column of a matrix can be
labeled mi

j. In this sense a matrix is a function of a pair of integers.
For what set S is the set of 2 × 2 matrices the same as the set RS?
Generalize to other size matrices.

8. Show that any function in R{∗,?,#} can be written as a sum of multiples
of the functions e∗, e?, e# defined by

e∗(k) =


1 , k = ∗
0 , k = ?
0 , k = #

, e?(k) =


0 , k = ∗
1 , k = ?
0 , k = #

, e#(k) =


0 , k = ∗
0 , k = ?
1 , k = #

.

9. Let V be a vector space and S any set. Show that the set V S of all
functions S → V is a vector space. Hint: first decide upon a rule for
adding functions whose outputs are vectors.
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6
Linear Transformations

The main objects of study in any course in linear algebra are linear functions:

Definition A function L : V → W is linear if V and W are vector spaces
and

L(ru+ sv) = rL(u) + sL(v)

for all u, v ∈ V and r, s ∈ R.

Reading homework: problem 1

Remark We will often refer to linear functions by names like “linear map”, “linear
operator” or “linear transformation”. In some contexts you will also see the name
“homomorphism” which generally is applied to functions from one kind of set to the
same kind of set while respecting any structures on the sets; linear maps are from
vector spaces to vector spaces that respect scalar multiplication and addition, the two
structures on vector spaces. It is common to denote a linear function by capital L
as a reminder of its linearity, but sometimes we will use just f , after all we are just
studying very special functions.

The definition above coincides with the two part description in Chapter 1;
the case r = 1, s = 1 describes additivity, while s = 0 describes homogeneity.
We are now ready to learn the powerful consequences of linearity.
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6.1 The Consequence of Linearity

Now that we have a sufficiently general notion of vector space it is time to
talk about why linear operators are so special. Think about what is required
to fully specify a real function of one variable. One output must be specified
for each input. That is an infinite amount of information.

By contrast, even though a linear function can have infinitely many ele-
ments in its domain, it is specified by a very small amount of information.

Example 69 (One output specifies infinitely many)
If you know that the function L is linear and that

L

(
1
0

)
=

(
5
3

)
then you do not need any more information to figure out

L

(
2
0

)
, L

(
3
0

)
, L

(
4
0

)
, L

(
5
0

)
, etc . . . ,

because by homogeneity

L

(
5
0

)
= L

[
5

(
1
0

)]
= 5L

(
1
0

)
= 5

(
5
3

)
=

(
25
15

)
.

In this way an an infinite number of outputs is specified by just one.

Example 70 (Two outputs in R2 specifies all outputs)
Likewise, if you know that L is linear and that

L

(
1
0

)
=

(
5
3

)
and L

(
0
1

)
=

(
2
2

)
then you don’t need any more information to compute

L

(
1
1

)
because by additivity

L

(
1
1

)
= L

[(
1
0

)
+

(
0
1

)]
= L

(
1
0

)
+ L

(
0
1

)
=

(
5
3

)
+

(
2
2

)
=

(
7
5

)
.
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In fact, since every vector in R2 can be expressed as(
x
y

)
= x

(
1
0

)
+ y

(
0
1

)
,

we know how L acts on every vector from R2 by linearity based on just two pieces of
information;

L

(
x
y

)
= L

[
x

(
1
0

)
+ y

(
0
1

)]
= xL

(
1
0

)
+yL

(
0
1

)
= x

(
5
3

)
+y

(
2
2

)
=

(
5x+ 2y
3x+ 2y

)
.

Thus, the value of L at infinitely many inputs is completely specified by its value at
just two inputs. (We can see now that L acts in exactly the way the matrix(

5 2
3 2

)
acts on vectors from R2.)

Reading homework: problem 2

This is the reason that linear functions are so nice; they are secretly very
simple functions by virtue of two characteristics:

1. They act on vector spaces.

2. They act additively and homogeneously.

A linear transformation with domain R3 is completely specified by the
way it acts on the three vectors1

0
0

 ,

0
1
0

 ,

0
0
1

 .

Similarly, a linear transformation with domain Rn is completely specified
by its action on the n different n-vectors that have exactly one non-zero
component, and its matrix form can be read off this information. However,
not all linear functions have such nice domains.
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6.2 Linear Functions on Hyperplanes

It is not always so easy to write a linear operator as a matrix. Generally,
this will amount to solving a linear systems problem. Examining a linear
function whose domain is a hyperplane is instructive.

Example 71 Let

V =

c1
1

1
0

+ c2

0
1
1

∣∣∣∣∣∣c1, c2 ∈ R


and consider L : V → R3 be a linear function that obeys

L

1
1
0

 =

0
1
0

 , L

0
1
1

 =

0
1
0

 .

By linearity this specifies the action of L on any vector from V as

L

c1
1

1
0

+ c2

0
1
1

 = (c1 + c2)

0
1
0

 .

The domain of L is a plane and its range is the line through the origin in the x2
direction.

It is not clear how to formulate L as a matrix; since

L

 c1
c1 + c2
c2

 =

0 0 0
1 0 1
0 0 0

 c1
c1 + c2
c2

 = (c1 + c2)

0
1
0

 ,

or

L

 c1
c1 + c2
c2

 =

0 0 0
0 1 0
0 0 0

 c1
c1 + c2
c2

 = (c1 + c2)

0
1
0

 ,

you might suspect that L is equivalent to one of these 3 × 3 matrices. It is not. By
the natural domain convention, all 3 × 3 matrices have R3 as their domain, and the
domain of L is smaller than that. When we do realize this L as a matrix it will be as a
3×2 matrix. We can tell because the domain of L is 2 dimensional and the codomain
is 3 dimensional. (You probably already know that the plane has dimension 2, and a
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6.3 Linear Differential Operators 115

line is 1 dimensional, but the careful definition of “dimension” takes some work; this
is tackled in Chapter 11.) This leads us to write

L

c1
1

1
0

+ c2

0
1
1

 = c1

0
1
0

+ c2

0
1
0

 =

0 0
1 1
0 0

(c1
c2

)
.

This makes sense, but requires a warning: The matrix

0 0
1 1
0 0

 specifies L so long

as you also provide the information that you are labeling points in the plane V by the
two numbers (c1, c2).

6.3 Linear Differential Operators

Your calculus class became much easier when you stopped using the limit
definition of the derivative, learned the power rule, and started using linearity
of the derivative operator.

Example 72 Let V be the vector space of polynomials of degree 2 or less with standard
addition and scalar multiplication;

V := {a0 · 1 + a1x+ a2x
2 | a0, a1, a2 ∈ R}

Let d
dx : V → V be the derivative operator. The following three equations, along with

linearity of the derivative operator, allow one to take the derivative of any 2nd degree
polynomial:

d

dx
1 = 0,

d

dx
x = 1,

d

dx
x2 = 2x .

In particular

d

dx
(a01 + a1x+ a2x

2) = a0
d

dx
1 + a1

d

dx
x+ a2

d

dx
x2 = 0 + a1 + 2a2x.

Thus, the derivative acting any of the infinitely many second order polynomials is
determined by its action for just three inputs.

6.4 Bases (Take 1)

The central idea of linear algebra is to exploit the hidden simplicity of linear
functions. It ends up there is a lot of freedom in how to do this. That
freedom is what makes linear algebra powerful.
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116 Linear Transformations

You saw that a linear operator acting on R2 is completely specified by

how it acts on the pair of vectors

(
1
0

)
and

(
0
1

)
. In fact, any linear operator

acting on R2 is also completely specified by how it acts on the pair of vectors(
1
1

)
and

(
1
−1

)
.

Example 73 The linear operator L is a linear operator then it is completely specified
by the two equalities

L

(
1
1

)
=

(
2
4

)
, and L

(
1
−1

)
=

(
6
8

)
.

This is because any vector

(
x
y

)
in R2 is a sum of multiples of

(
1
1

)
and

(
1
−1

)
which

can be calculated via a linear systems problem as follows:

(
x
y

)
= a

(
1
1

)
+ b

(
1
−1

)
⇔

(
1 1
1 −1

)(
a
b

)
=

(
x
y

)
⇔

(
1 1 x
1 −1 y

)
∼
(

1 0 x+y
2

0 1 x−y
2

)
⇔

{
a = x+y

2

b = x−y
2 .

Thus (
x

y

)
=
x+ y

2

(
1

1

)
+
x− y

2

(
1

−1

)
.

We can then calculate how L acts on any vector by first expressing the vector as a
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sum of multiples and then applying linearity;

L

(
x
y

)
= L

[
x+ y

2

(
1
1

)
+
x− y

2

(
1
−1

)]
=

x+ y

2
L

(
1
1

)
+
x− y

2
L

(
1
−1

)

=
x+ y

2

(
2
4

)
+
x− y

2

(
6
8

)
=

(
x+ y

2(x+ y)

)
+

(
3(x− y)
4(x− y)

)
=

(
4x− 2y
6x− y

)
Thus L is completely specified by its value at just two inputs.

It should not surprise you to learn there are infinitely many pairs of
vectors from R2 with the property that any vector can be expressed as a
linear combination of them; any pair that when used as columns of a matrix
gives an invertible matrix works. Such a pair is called a basis for R2.

Similarly, there are infinitely many triples of vectors with the property
that any vector from R3 can be expressed as a linear combination of them:
these are the triples that used as columns of a matrix give an invertible
matrix. Such a triple is called a basis for R3.

In a similar spirit, there are infinitely many pairs of vectors with the
property that every vector in

V =

c1
1

1
0

+ c2

0
1
1

∣∣∣∣∣∣ c1, c2 ∈ R


can be expressed as a linear combination of them. Some examples are

V =

c1
1

1
0

+ c2

0
2
2

∣∣∣∣∣∣c1, c2 ∈ R

 =

c1
1

1
0

+ c2

1
3
2

∣∣∣∣∣∣c1, c2 ∈ R


Such a pair is a called a basis for V .

You probably have some intuitive notion of what dimension means (the
careful mathematical definition is given in chapter 11). Roughly speaking,
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118 Linear Transformations

dimension is the number of independent directions available. To figure out
the dimension of a vector space, I stand at the origin, and pick a direction.
If there are any vectors in my vector space that aren’t in that direction, then
I choose another direction that isn’t in the line determined by the direction I
chose. If there are any vectors in my vector space not in the plane determined
by the first two directions, then I choose one of them as my next direction. In
other words, I choose a collection of independent vectors in the vector space
(independent vectors are defined in Chapter 10). A minimal set of indepen-
dent vectors is called a basis (see Chapter 11 for the precise definition). The
number of vectors in my basis is the dimension of the vector space. Every
vector space has many bases, but all bases for a particular vector space have
the same number of vectors. Thus dimension is a well-defined concept.

The fact that every vector space (over R) has infinitely many bases is
actually very useful. Often a good choice of basis can reduce the time required
to run a calculation in dramatic ways!

In summary:

A basis is a set of vectors in terms of which it is possible to
uniquely express any other vector.

6.5 Review Problems

Webwork:

Reading problems 1 , 2
Linear? 3

Matrix × vector 4, 5
Linearity 6, 7

1. Show that the pair of conditions:{
L(u+ v) = L(u) + L(v)

L(cv) = cL(v)
(1)

(valid for all vectors u, v and any scalar c) is equivalent to the single
condition:

L(ru+ sv) = rL(u) + sL(v) , (2)

(for all vectors u, v and any scalars r and s). Your answer should have
two parts. Show that (1) ⇒ (2), and then show that (2) ⇒ (1).
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6.5 Review Problems 119

2. If f is a linear function of one variable, then how many points on the
graph of the function are needed to specify the function? Give an
explicit expression for f in terms of these points. (You might want
to look up the definition of a graph before you make any assumptions
about the function.)

3. (a) If p

(
1
2

)
= 1 and p

(
2
4

)
= 3 is it possible that p is a linear

function?

(b) If Q(x2) = x3 and Q(2x2) = x4 is it possible that Q is a linear
function from polynomials to polynomials?

4. If f is a linear function such that

f

(
1
2

)
= 0, and f

(
2
3

)
= 1 ,

then what is f

(
x
y

)
?

5. Let Pn be the space of polynomials of degree n or less in the variable t.
Suppose L is a linear transformation from P2 → P3 such that L(1) = 4,
L(t) = t3, and L(t2) = t− 1.

(a) Find L(1 + t+ 2t2).

(b) Find L(a+ bt+ ct2).

(c) Find all values a, b, c such that L(a+ bt+ ct2) = 1 + 3t+ 2t3.

Hint

6. Show that the operator I that maps f to the function If defined
by If(x) :=

∫ x
0
f(t)dt is a linear operator on the space of continuous

functions.

7. Let z ∈ C. Recall that z = x+iy for some x, y ∈ R, and we can form the
complex conjugate of z by taking z = x− iy. The function c : R2 → R2

which sends (x, y) 7→ (x,−y) agrees with complex conjugation.

(a) Show that c is a linear map over R (i.e. scalars in R).

(b) Show that z is not linear over C.
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7
Matrices

Matrices are a powerful tool for calculations involving linear transformations.
It is important to understand how to find the matrix of a linear transforma-
tion and the properties of matrices.

7.1 Linear Transformations and Matrices

Ordered, finite-dimensional, bases for vector spaces allows us to express linear
operators as matrices.

7.1.1 Basis Notation

A basis allows us to efficiently label arbitrary vectors in terms of column
vectors. Here is an example.

Example 74 Let

V =

{(
a b
c d

)∣∣∣∣ a, b, c, d ∈ R
}

be the vector space of 2 × 2 real matrices, with addition and scalar multiplication
defined componentwise. One choice of basis is the ordered set (or list) of matrices

B =

((
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

))
=: (e11, e

1
2, e

2
1, e

2
2) .
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122 Matrices

Given a particular vector and a basis, your job is to write that vector as a sum of
multiples of basis elements. Here an arbitrary vector v ∈ V is just a matrix, so we
write

v =

(
a b
c d

)
=

(
a 0
0 0

)
+

(
0 b
0 0

)
+

(
0 0
c 0

)
+

(
0 0
0 d

)
= a

(
1 0
0 0

)
+ b

(
0 1
0 0

)
+ c

(
0 0
1 0

)
+ d

(
0 0
0 1

)
= a e11 + b e12 + c e21 + d e22 .

The coefficients (a, b, c, d) of the basis vectors (e11, e
1
2, e

2
1, e

2
2) encode the information

of which matrix the vector v is. We store them in column vector by writing

v = a e11 + b e12 + c e21 + d e22 =: (e11, e
1
2, e

2
1, e

2
2)


a
b
c
d

 =:


a
b
c
d


B

.

The 4-vector


a
b
c
d

 ∈ R4 encodes the vector

(
a b
c d

)
∈ V but is NOT equal to it!

(After all, v is a matrix so could not equal a column vector.) Both notations on the
right hand side of the above equation really stand for the vector obtained by multiplying
the coefficients stored in the column vector by the corresponding basis element and
then summing over them.

Next, lets consider a tautological example showing how to label column
vectors in terms of column vectors:

Example 75 (Standard Basis of R2)
The vectors

e1 =

(
1
0

)
, e2 =

(
0
1

)
are called the standard basis vectors of R2 = R{1,2}. Their description as functions
of {1, 2} are

e1(k) =

{
1 if k = 1
0 if k = 2

, e2(k) =

{
0 if k = 1
1 if k = 2 .
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7.1 Linear Transformations and Matrices 123

It is natural to assign these the order: e1 is first and e2 is second. An arbitrary vector v
of R2 can be written as

v =

(
x
y

)
= xe1 + ye2.

To emphasize that we are using the standard basis we define the list (or ordered set)

E = (e1, e2) ,

and write (
x
y

)
E

:= (e1, e2)

(
x
y

)
:= xe1 + ye2 = v.

You should read this equation by saying:

“The column vector of the vector v in the basis E is

(
x
y

)
.”

Again, the first notation of a column vector with a subscript E refers to the vector
obtained by multiplying each basis vector by the corresponding scalar listed in the
column and then summing these, i.e. xe1 +ye2. The second notation denotes exactly
the same thing but we first list the basis elements and then the column vector; a
useful trick because this can be read in the same way as matrix multiplication of a row
vector times a column vector–except that the entries of the row vector are themselves
vectors!

You should already try to write down the standard basis vectors for Rn

for other values of n and express an arbitrary vector in Rn in terms of them.
The last example probably seems pedantic because column vectors are al-

ready just ordered lists of numbers and the basis notation has simply allowed
us to “re-express” these as lists of numbers. Of course, this objection does
not apply to more complicated vector spaces like our first matrix example.
Moreover, as we saw earlier, there are infinitely many other pairs of vectors
in R2 that form a basis.

Example 76 (A Non-Standard Basis of R2 = R{1,2})

b =

(
1
1

)
, β =

(
1
−1

)
.

As functions of {1, 2} they read

b(k) =

{
1 if k = 1
1 if k = 2

, β(k) =

{
1 if k = 1
−1 if k = 2 .
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Notice something important: there is no reason to say that β comes before b or
vice versa. That is, there is no a priori reason to give these basis elements one order
or the other. However, it will be necessary to give the basis elements an order if we
want to use them to encode other vectors. We choose one arbitrarily; let

B = (b, β)

be the ordered basis. Note that for an unordered set we use the {} parentheses while
for lists or ordered sets we use ().

As before we define (
x
y

)
B

:= (b, β)

(
x
y

)
:= xb+ yβ .

You might think that the numbers x and y denote exactly the same vector as in the
previous example. However, they do not. Inserting the actual vectors that b and β
represent we have

xb+ yβ = x

(
1
1

)
+ y

(
1
−1

)
=

(
x+ y
x− y

)
.

Thus, to contrast, we have(
x
y

)
B

=

(
x+ y
x− y

)
and

(
x
y

)
E

=

(
x
y

)
Only in the standard basis E does the column vector of v agree with the column vector
that v actually is!

Based on the above example, you might think that our aim would be to
find the “standard basis” for any problem. In fact, this is far from the truth.
Notice, for example that the vector

v =

(
1
1

)
= e1 + e2 = b

written in the standard basis E is just

v =

(
1
1

)
E

,

which was easy to calculate. But in the basis B we find

v =

(
1
0

)
B

,
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7.1 Linear Transformations and Matrices 125

which is actually a simpler column vector! The fact that there are many
bases for any given vector space allows us to choose a basis in which our
computation is easiest. In any case, the standard basis only makes sense
for Rn. Suppose your vector space was the set of solutions to a differential
equation–what would a standard basis then be?

Example 77 (A Basis For a Hyperplane)
Lets again consider the hyperplane

V =

c1
1

1
0

+ c2

0
1
1

∣∣∣∣∣∣c1, c2 ∈ R


One possible choice of ordered basis is

b1 =

1
1
0

 , b2 =

0
1
1

 , B = (b1, b2).

With this choice(
x
y

)
B

:= xb1 + yb2 = x

1
1
0

+ y

0
1
1

 =

 x
x+ y
y


E

.

With the other choice of order B′ = (b2, b1)(
x
y

)
B′

:= xb2 + yb1 = x

0
1
1

+ y

1
1
0

 =

 y
x+ y
x


E

.

We see that the order of basis elements matters.

Finding the column vector of a given vector in a given basis usually
amounts to a linear systems problem:

Example 78 (Pauli Matrices)
Let

V =

{(
z u
v −z

)∣∣∣∣z, u, v ∈ C
}

be the vector space of trace-free complex-valued matrices (over C) with basis

B = (σx, σy, σz) ,

125



126 Matrices

where

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

These three matrices are the famous Pauli matrices; they are used to describe electrons
in quantum theory, or qubits in quantum computation. Let

v =

(
−2 + i 1 + i

3− i 2− i

)
.

Find the column vector of v in the basis B.

For this we must solve the equation(
−2 + i 1 + i

3− i 2− i

)
= αx

(
0 1
1 0

)
+ αy

(
0 −i
i 0

)
+ αz

(
1 0
0 −1

)
.

This gives four equations, i.e. a linear systems problem, for the α’s
αx − iαy = 1 + i
αx + iαy = 3− i

αz = −2 + i
−αz = 2− i

with solution

αx = 2 , αy = 2− 2i , αz = −2 + i .

Thus

v =

(
−2 + i 1 + i

3− i 2− i

)
=

 2
2− i
−2 + i


B

.

To summarize, the column vector of a vector v in an ordered basis B =
(b1, b2, . . . , bn), 

α1

α2

...
αn

 ,

is defined by solving the linear systems problem

v = α1b1 + α2b2 + · · ·+ αnbn =
n∑
i=1

αibi .
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The numbers (α1, α2, . . . , αn) are called the components of the vector v. Two
useful shorthand notations for this are

v =


α1

α2

...
αn


B

= (b1, b2, . . . , bn)


α1

α2

...
αn

 .

7.1.2 From Linear Operators to Matrices

Chapter 6 showed that linear functions are very special kinds of functions;
they are fully specified by their values on any basis for their domain. A
matrix records how a linear operator maps an element of the basis to a sum
of multiples in the target space basis.

More carefully, if L is a linear operator from V to W then the matrix for L
in the ordered bases B = (b1, b2, . . . ) for V and B′ = (β1, β2, . . . ) for W , is
the array of numbers mj

i specified by

L(bi) = m1
iβ1 + · · ·+mj

iβj + · · ·
Remark To calculate the matrix of a linear transformation you must compute what
the linear transformation does to every input basis vector and then write the answers
in terms of the output basis vectors:(
L(b1), L(b2), . . . , L(bj), . . .

)

=
(

(β1, β2, . . . , βj , . . .)



m1
1

m2
2

...

mj
1

...

 , (β1, β2, . . . , βj , . . .)



m1
2

m2
2

...

mj
2

...

 , · · · , (β1, β2, . . . , βj , . . .)



m1
i

m2
i

...

mj
i

...

 , · · ·
)

= (β1, β2, . . . , βj , . . .)



m1
1 m1

2 · · · m1
i · · ·

m2
1 m2

2 · · · m2
i · · ·

...
...

...

mj
1 mj

2 · · · mj
i · · ·

...
...

...


Example 79 Consider L : V → R3 (as in example 71) defined by

L

1
1
0

 =

0
1
0

 , L

0
1
1

 =

0
1
0

 .
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By linearity this specifies the action of L on any vector from V as

L

c1
1

1
0

+ c2

0
1
1

 = (c1 + c2)

0
1
0

 .

We had trouble expressing this linear operator as a matrix. Lets take input basis

B =

1
1
0

 ,

0
1
1

 =: (b1, b2) ,

and output basis

E =

1
0
0

 ,

0
1
0

 ,

0
0
1

 .

Then

Lb1 = 0e1 + 1e2 + 0e3 ,

Lb2 = 0e1 + 1e2 + 0e3 ,

or

(
Lb1, Lb2) =

(
(e1, e2, e3)

0
1
0

 , (e1, e2, e3)

0
1
0

) = (e1, e2, e3)

0 0
1 1
0 0

 .

The matrix on the right is the matrix of L in these bases. More succinctly we could
write

L

(
x
y

)
B

= (x+ y)

0
1
0


E

and thus see that L acts like the matrix

0 0
1 1
0 0

.

Hence

L

(
x
y

)
B

=

0 0
1 1
0 0

(x
y

)
E

;

given input and output bases, the linear operator is now encoded by a matrix.

This is the general rule for this chapter:
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7.2 Review Problems 129

Linear operators become matrices when given
ordered input and output bases.

Reading homework: problem 1

Example 80 Lets compute a matrix for the derivative operator acting on the vector
space of polynomials of degree 2 or less:

V = {a01 + a1x+ a2x
2 | a0, a1, a2 ∈ R} .

In the ordered basis B = (1, x, x2) we writeab
c


B

= a · 1 + bx+ cx2

and

d

dx

ab
c


B

= b · 1 + 2cx+ 0x2 =

 b
2c
0


B

In the ordered basis B for both domain and range

d

dx

B7→

0 1 0
0 0 2
0 0 0


Notice this last line makes no sense without explaining which bases we are using!

7.2 Review Problems

Webwork:
Reading problem 1

Matrix of a Linear Transformation 9, 10, 11, 12, 13

1. A door factory can buy supplies in two kinds of packages, f and g. The
package f contains 3 slabs of wood, 4 fasteners, and 6 brackets. The
package g contains 5 fasteners, 3 brackets, and 7 slabs of wood.

(a) Explain how to view the packages f and g as functions and list
their inputs and outputs.
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http://webwork.math.ucdavis.edu/webwork2/LinearAlgebra/Matrices/1/
http://webwork.math.ucdavis.edu/webwork2/LinearAlgebra/Matrices/1
http://webwork.math.ucdavis.edu/webwork2/LinearAlgebra/Matrices/9
http://webwork.math.ucdavis.edu/webwork2/LinearAlgebra/Matrices/10
http://webwork.math.ucdavis.edu/webwork2/LinearAlgebra/Matrices/11
http://webwork.math.ucdavis.edu/webwork2/LinearAlgebra/Matrices/12
http://webwork.math.ucdavis.edu/webwork2/LinearAlgebra/Matrices/13
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(b) Choose an ordering for the 3 kinds of supplies and use this to
rewrite f and g as elements of R3.

(c) Let L be a manufacturing process that takes as inputs supply
packages and outputs two products (doors, and door frames). Ex-
plain how it can be viewed as a function mapping one vector space
into another.

(d) Assuming that L is linear and Lf is 1 door and 2 frames, and Lg
is 3 doors and 1 frame, find a matrix for L. Be sure to specify
the basis vectors you used, both for the input and output vector
space.

2. You are designing a simple keyboard synthesizer with two keys. If you
push the first key with intensity a then the speaker moves in time as
a sin(t). If you push the second key with intensity b then the speaker
moves in time as b sin(2t). If the keys are pressed simultaneously,

(a) describe the set of all sounds that come out of your synthesizer.
(Hint: Sounds can be “added”.)

(b) Graph the function

(
3
5

)
∈ R{1,2} .

(c) Let B = (sin(t), sin(2t)). Explain why

(
3
5

)
B

is not in R{1,2} but

is still a function.

(d) Graph the function

(
3
5

)
B

.

3. (a) Find the matrix for d
dx

acting on the vector space V of polynomi-
als of degree 2 or less in the ordered basis B = (x2, x, 1)

(b) Use the matrix from part (a) to rewrite the differential equation
d
dx
p(x) = x as a matrix equation. Find all solutions of the matrix

equation. Translate them into elements of V .
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(c) Find the matrix for d
dx

acting on the vector space V in the ordered
basis B′ = (x2 + x, x2 − x, 1).

(d) Use the matrix from part (c) to rewrite the differential equation
d
dx
p(x) = x as a matrix equation. Find all solutions of the matrix

equation. Translate them into elements of V .

(e) Compare and contrast your results from parts (b) and (d).

4. Find the “matrix” for d
dx

acting on the vector space of all power series
in the ordered basis (1, x, x2, x3, ...). Use this matrix to find all power
series solutions to the differential equation d

dx
f(x) = x. Hint: your

“matrix” may not have finite size.

5. Find the matrix for d2

dx2 acting on {c1 cos(x) + c2 sin(x) | c1, c2 ∈ R} in
the ordered basis (cos(x), sin(x)).

6. Find the matrix for d
dx

acting on {c1 cosh(x) + c2 sinh(x)|c1, c2 ∈ R} in
the ordered basis

(cosh(x), sinh(x))

and in the ordered basis

(cosh(x) + sinh(x), cosh(x)− sinh(x)).

7. Let B = (1, x, x2) be an ordered basis for

V = {a0 + a1x+ a2x
2 | a0, a1, a2 ∈ R} ,

and let B′ = (x3, x2, x, 1) be an ordered basis for

W = {a0 + a1x+ a2x
2 + a3x

3 | a0, a1, a2, a3 ∈ R} ,

Find the matrix for the operator I : V → W defined by

Ip(x) =

∫ x

1

p(t)dt

relative to these bases.

131



132 Matrices

8. This exercise is meant to show you a generalization of the procedure
you learned long ago for finding the function mx+b given two points on
its graph. It will also show you a way to think of matrices as members
of a much bigger class of arrays of numbers.

Find the

(a) constant function f : R→ R whose graph contains (2, 3).

(b) linear function h : R→ R whose graph contains (5, 4).

(c) first order polynomial function g : R → R whose graph contains
(1, 2) and (3, 3).

(d) second order polynomial function p : R→ R whose graph contains
(1, 0), (3, 0) and (5, 0).

(e) second order polynomial function q : R→ R whose graph contains
(1, 1), (3, 2) and (5, 7).

(f) second order homogeneous polynomial function r : R→ R whose
graph contains (3, 2).

(g) number of points required to specify a third order polynomial
R→ R.

(h) number of points required to specify a third order homogeneous
polynomial R→ R.

(i) number of points required to specify a n-th order polynomial R→
R.

(j) number of points required to specify a n-th order homogeneous
polynomial R→ R.

(k) first order polynomial function F : R2 → R whose graph contains((
0
0

)
, 1

)
,

((
0
1

)
, 2

)
,

((
1
0

)
, 3

)
, and

((
1
1

)
, 4

)
.

(l) homogeneous first order polynomial function H : R2 → R whose

graph contains

((
0
1

)
, 2

)
,

((
1
0

)
, 3

)
, and

((
1
1

)
, 4

)
.
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(m) second order polynomial function J : R2 → R whose graph con-

tains

((
0
0

)
, 0

)
,

((
0
1

)
, 2

)
,

((
0
2

)
, 5

)
,((

1
0

)
, 3

)
,

((
2
0

)
, 6

)
, and

((
1
1

)
, 4

)
.

(n) first order polynomial function K : R2 → R2 whose graph con-

tains

((
0
0

)
,

(
1
1

))
,

((
0
1

)
,

(
2
2

))
,((

1
0

)
,

(
3
3

))
, and

((
1
1

)
,

(
4
4

))
.

(o) How many points in the graph of a q-th order polynomial function
Rn → Rn would completely determine the function?

(p) In particular, how many points of the graph of linear function
Rn → Rn would completely determine the function? How does a
matrix (in the standard basis) encode this information?

(q) Propose a way to store the information required in 8g above in an
array of numbers.

(r) Propose a way to store the information required in 8o above in an
array of numbers.

7.3 Properties of Matrices

The objects of study in linear algebra are linear operators. We have seen that
linear operators can be represented as matrices through choices of ordered
bases, and that matrices provide a means of efficient computation.

We now begin an in depth study of matrices.

Definition An r × k matrix M = (mi
j) for i = 1, . . . , r; j = 1, . . . , k is a

rectangular array of real (or complex) numbers:

M =


m1

1 m1
2 · · · m1

k

m2
1 m2

2 · · · m2
k

...
...

...
mr

1 mr
2 · · · mr

k

 .
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The numbers mi
j are called entries. The superscript indexes the row of

the matrix and the subscript indexes the column of the matrix in which mi
j

appears.

An r × 1 matrix v = (vr1) = (vr) is called a column vector , written

v =


v1

v2

...
vr

 .

A 1× k matrix v = (v1k) = (vk) is called a row vector , written

v =
(
v1 v2 · · · vk

)
.

The transpose of a column vector is the corresponding row vector and vice
versa:

Example 81 Let

v =

1
2
3

 .

Then

vT =
(
1 2 3

)
,

and (vT )T = v. This is an example of an involution, namely an operation which when
performed twice does nothing.

A matrix is an efficient way to store information.

Example 82 In computer graphics, you may have encountered image files with a .gif
extension. These files are actually just matrices: at the start of the file the size of the
matrix is given, after which each number is a matrix entry indicating the color of a
particular pixel in the image.

This matrix then has its rows shuffled a bit: by listing, say, every eighth row, a web
browser downloading the file can start displaying an incomplete version of the picture
before the download is complete.

Finally, a compression algorithm is applied to the matrix to reduce the file size.
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Example 83 Graphs occur in many applications, ranging from telephone networks to
airline routes. In the subject of graph theory , a graph is just a collection of vertices
and some edges connecting vertices. A matrix can be used to indicate how many edges
attach one vertex to another.

For example, the graph pictured above would have the following matrix, where mi
j

indicates the number of edges between the vertices labeled i and j:

M =


1 2 1 1
2 0 1 0
1 1 0 1
1 0 1 3


This is an example of a symmetric matrix, since mi

j = mj
i .

Adjacency Matrix Example

The set of all r × k matrices

Mr
k := {(mi

j)|mi
j ∈ R; i ∈ {1, . . . , r}; j ∈ {1 . . . k}} ,

is itself a vector space with addition and scalar multiplication defined as
follows:

M +N = (mi
j) + (nij) = (mi

j + nij)

rM = r(mi
j) = (rmi

j)

135

http://math.ucdavis.edu/~linear/videos/matrices_example.mp4


136 Matrices

In other words, addition just adds corresponding entries in two matrices,
and scalar multiplication multiplies every entry. Notice that Mn

1 = Rn is just
the vector space of column vectors.

Recall that we can multiply an r× k matrix by a k× 1 column vector to
produce a r × 1 column vector using the rule

MV =
( k∑
j=1

mi
jv
j
)
.

This suggests the rule for multiplying an r × k matrix M by a k × s
matrix N : our k×s matrix N consists of s column vectors side-by-side, each
of dimension k × 1. We can multiply our r × k matrix M by each of these s
column vectors using the rule we already know, obtaining s column vectors
each of dimension r × 1. If we place these s column vectors side-by-side, we
obtain an r × s matrix MN.

That is, let

N =


n1
1 n1

2 · · · n1
s

n2
1 n2

2 · · · n2
s

...
...

...
nk1 nk2 · · · nks


and call the columns N1 through Ns:

N1 =


n1
1

n2
1
...
nk1

 , N2 =


n1
2

n2
2
...
nk2

 , . . . , Ns =


n1
s

n2
s
...
nks

 .

Then

MN = M

 | | |
N1 N2 · · · Ns

| | |

 =

 | | |
MN1 MN2 · · · MNs

| | |


Concisely: If M = (mi

j) for i = 1, . . . , r; j = 1, . . . , k and N = (nij) for
i = 1, . . . , k; j = 1, . . . , s, then MN = L where L = (`ij) for i = i, . . . , r; j =
1, . . . , s is given by

`ij =
k∑
p=1

mi
pn

p
j .
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This rule obeys linearity.
Notice that in order for the multiplication to make sense, the columns

and rows must match. For an r× k matrix M and an s×m matrix N , then
to make the product MN we must have k = s. Likewise, for the product
NM , it is required that m = r. A common shorthand for keeping track of
the sizes of the matrices involved in a given product is the following diagram.

(
r × k

)
times

(
k ×m

)
is
(
r ×m

)

Reading homework: problem 2

Example 84 Multiplying a (3×1) matrix and a (1×2) matrix yields a (3×2) matrix.1
3
2

(2 3
)

=

1 · 2 1 · 3
3 · 2 3 · 3
2 · 2 2 · 3

 =

2 3
6 9
4 6

 .

Another way to view matrix multiplication is in terms of dot products:

The entries of MN are made from the dot products of the rows of
M with the columns of N .

Example 85 Let

M =

1 3
3 5
2 6

 =:

 uT

vT

wT

 and N =

(
2 3 1
0 1 0

)
=:
(
a b c

)
where

u =

(
1
3

)
, v =

(
3
5

)
, w =

(
2
6

)
, a =

(
2
0

)
, b =

(
3
1

)
, c =

(
1
0

)
.

Then

MN =

 u · a u · b u · c
v · a v · b v · c
w · a w · b w · c

 =

2 6 1
6 14 3
4 12 2

 .

137

http://webwork.math.ucdavis.edu/webwork2/LinearAlgebra/Matrices/2/


138 Matrices

This fact has an obvious yet important consequence:

Theorem 7.3.1. Let M be a matrix and x a column vector. If

Mx = 0

then the vector x is orthogonal to the rows of M .

Remark Remember that the set of all vectors that can be obtained by adding up
scalar multiples of the columns of a matrix is called its column space . Similarly the
row space is the set of all row vectors obtained by adding up multiples of the rows
of a matrix. The above theorem says that if Mx = 0, then the vector x is orthogonal
to every vector in the row space of M .

We know that r× k matrices can be used to represent linear transforma-
tions Rk → Rr via

(MV )i =
k∑
j=1

mi
jv
j,

which is the same rule used when we multiply an r × k matrix by a k × 1
vector to produce an r × 1 vector.

Likewise, we can use a matrix N = (nij) to define a linear transformation
of a vector space of matrices. For example

L : M s
k

N−→M r
k ,

L(M) = (lik) where lik =
s∑
j=1

nijm
j
k.

This is the same as the rule we use to multiply matrices. In other words,
L(M) = NM is a linear transformation.

Matrix Terminology Let M = (mi
j) be a matrix. The entries mi

i are called
diagonal, and the set {m1

1, m
2
2, . . .} is called the diagonal of the matrix.

Any r × r matrix is called a square matrix. A square matrix that is
zero for all non-diagonal entries is called a diagonal matrix. An example
of a square diagonal matrix is 2 0 0

0 3 0
0 0 0

 .
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The r × r diagonal matrix with all diagonal entries equal to 1 is called
the identity matrix, Ir, or just I. An identity matrix looks like

I =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

The identity matrix is special because

IrM = MIk = M

for all M of size r × k.

Definition The transpose of an r×k matrix M = (mi
j) is the k×r matrix

MT = (m̂i
j)

with entries that satisfy m̂i
j = mj

i .

A matrix M is symmetric if M = MT .

Example 86 (
2 5 6
1 3 4

)T
=

2 1
5 3
6 4

 ,

and (
2 5 6
1 3 4

)(
2 5 6
1 3 4

)T
=

(
65 43
43 26

)
,

is symmetric.

Reading homework: problem 3

Observations

• Only square matrices can be symmetric.

• The transpose of a column vector is a row vector, and vice-versa.
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• Taking the transpose of a matrix twice does nothing. i.e., (MT )T = M .

Theorem 7.3.2 (Transpose and Multiplication). Let M,N be matrices such
that MN makes sense. Then

(MN)T = NTMT .

The proof of this theorem is left to Review Question 2.

7.3.1 Associativity and Non-Commutativity

Many properties of matrices following from the same property for real num-
bers. Here is an example.

Example 87 Associativity of matrix multiplication. We know for real numbers x, y
and z that

x(yz) = (xy)z ,

i.e., the order of multiplications does not matter. The same property holds for matrix
multiplication, let us show why. Suppose M =

(
mi
j

)
, N =

(
njk
)

and R =
(
rkl
)

are, respectively, m × n, n × r and r × t matrices. Then from the rule for matrix
multiplication we have

MN =
( n∑
j=1

mi
jn
j
k

)
and NR =

( r∑
k=1

njkr
k
l

)
.

So first we compute

(MN)R =
( r∑
k=1

[ n∑
j=1

mi
jn
j
k

]
rkl

)
=
( r∑
k=1

n∑
j=1

[
mi
jn
j
k

]
rkl

)
=
( r∑
k=1

n∑
j=1

mi
jn
j
kr
k
l

)
.

In the first step we just wrote out the definition for matrix multiplication, in the second
step we moved summation symbol outside the bracket (this is just the distributive
property x(y+z) = xy+xz for numbers) and in the last step we used the associativity
property for real numbers to remove the square brackets. Exactly the same reasoning
shows that

M(NR) =
( n∑
j=1

mi
j

[ r∑
k=1

njkr
k
l

])
=
( r∑
k=1

n∑
j=1

mi
j

[
njkr

k
l

])
=
( r∑
k=1

n∑
j=1

mi
jn
j
kr
k
l

)
.

This is the same as above so we are done. 1

1As a fun remark, note that Einstein would simply have written
(MN)R = (mi

jn
j
k)rkl = mi

jn
j
kr
k
l = mi

j(n
j
kr
k
l ) = M(NR).
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Sometimes matrices do not share the properties of regular numbers. In
particular, for generic n× n square matrices M and N ,

MN 6= NM .

Do Matrices Commute?

Example 88 (Matrix multiplication does not commute.)(
1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)
while, on the other hand, (

1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)
.

Since n × n matrices are linear transformations Rn → Rn, we can see that
the order of successive linear transformations matters.

Here is an example of matrices acting on objects in three dimensions that
also shows matrices not commuting.

Example 89 In Review Problem 3, you learned that the matrix

M =

(
cos θ sin θ
− sin θ cos θ

)
,

rotates vectors in the plane by an angle θ. We can generalize this, using block matrices,
to three dimensions. In fact the following matrices built from a 2× 2 rotation matrix,
a 1× 1 identity matrix and zeroes everywhere else

M =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 and N =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 ,

perform rotations by an angle θ in the xy and yz planes, respectively. Because, they
rotate single vectors, you can also use them to rotate objects built from a collection of
vectors like pretty colored blocks! Here is a picture of M and then N acting on such
a block, compared with the case of N followed by M . The special case of θ = 90◦ is
shown.
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Notice how the endproducts of MN and NM are different, so MN 6= NM here.

7.3.2 Block Matrices

It is often convenient to partition a matrix M into smaller matrices called
blocks . For example

M =


1 2 3 1
4 5 6 0
7 8 9 1
0 1 2 0

 =

(
A B
C D

)

Where A =

1 2 3
4 5 6
7 8 9

, B =

1
0
1

, C =
(
0 1 2

)
, D = (0).

• The blocks of a block matrix must fit together to form a rectangle. So(
B A
D C

)
makes sense, but

(
C B
D A

)
does not.

Reading homework: problem 4

• There are many ways to cut up an n × n matrix into blocks. Often
context or the entries of the matrix will suggest a useful way to divide
the matrix into blocks. For example, if there are large blocks of zeros
in a matrix, or blocks that look like an identity matrix, it can be useful
to partition the matrix accordingly.
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• Matrix operations on block matrices can be carried out by treating the
blocks as matrix entries. In the example above,

M2 =

(
A B
C D

)(
A B
C D

)
=

(
A2 +BC AB +BD
CA+DC CB +D2

)

Computing the individual blocks, we get:

A2 +BC =

 30 37 44
66 81 96

102 127 152


AB +BD =

 4
10
16


CA+DC =

(
4 10 16

)
CB +D2 = (2)

Assembling these pieces into a block matrix gives:
30 37 44 4
66 81 96 10
102 127 152 16
4 10 16 2


This is exactly M2.

7.3.3 The Algebra of Square Matrices

Not every pair of matrices can be multiplied. When multiplying two matrices,
the number of rows in the left matrix must equal the number of columns in
the right. For an r × k matrix M and an s × l matrix N , then we must
have k = s.

This is not a problem for square matrices of the same size, though.
Two n × n matrices can be multiplied in either order. For a single ma-
trix M ∈Mn

n, we can form M2 = MM , M3 = MMM , and so on. It is useful
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to define
M0 = I ,

the identity matrix, just like x0 = 1 for numbers.
As a result, any polynomial can be have square matrices in it’s domain.

Example 90 Let f(x) = x− 2x2 + 3x3 and

M =

(
1 t
0 1

)
.

Then

M2 =

(
1 2t
0 1

)
, M3 =

(
1 3t
0 1

)
, . . .

and so

f(M) =

(
1 t
0 1

)
− 2

(
1 2t
0 1

)
+ 3

(
1 3t
0 1

)
=

(
2 6t
0 2

)
.

Suppose f(x) is any function defined by a convergent Taylor Series:

f(x) = f(0) + f ′(0)x+
1

2!
f ′′(0)x2 + · · · .

Then we can define the matrix function by just plugging in M :

f(M) = f(0) + f ′(0)M +
1

2!
f ′′(0)M2 + · · · .

There are additional techniques to determine the convergence of Taylor Series
of matrices, based on the fact that the convergence problem is simple for
diagonal matrices. It also turns out that the matrix exponential

exp(M) = I +M +
1

2
M2 +

1

3!
M3 + · · · ,

always converges.

Matrix Exponential Example
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7.3.4 Trace

A large matrix contains a great deal of information, some of which often re-
flects the fact that you have not set up your problem efficiently. For example,
a clever choice of basis can often make the matrix of a linear transformation
very simple. Therefore, finding ways to extract the essential information of
a matrix is useful. Here we need to assume that n <∞ otherwise there are
subtleties with convergence that we’d have to address.

Definition The trace of a square matrix M = (mi
j) is the sum of its diag-

onal entries:

trM =
n∑
i=1

mi
i .

Example 91

tr

2 7 6
9 5 1
4 3 8

 = 2 + 5 + 8 = 15 .

While matrix multiplication does not commute, the trace of a product of
matrices does not depend on the order of multiplication:

tr(MN) = tr(
∑
l

M i
lN

l
j)

=
∑
i

∑
l

M i
lN

l
i

=
∑
l

∑
i

N l
iM

i
l

= tr(
∑
i

N l
iM

i
l )

= tr(NM).

Proof Explanation

Thus we have a Theorem:

Theorem 7.3.3. For any square matrices M and N

tr(MN) = tr(NM).
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Example 92 Continuing from the previous example,

M =

(
1 1
0 1

)
, N =

(
1 0
1 1

)
.

so

MN =

(
2 1
1 1

)
6= NM =

(
1 1
1 2

)
.

However, tr(MN) = 2 + 1 = 3 = 1 + 2 = tr(NM).

Another useful property of the trace is that:

trM = trMT

This is true because the trace only uses the diagonal entries, which are fixed
by the transpose. For example,

tr

(
1 1
2 3

)
= 4 = tr

(
1 2
1 3

)
= tr

(
1 2
1 3

)T
.

Finally, trace is a linear transformation from matrices to the real numbers.
This is easy to check.

7.4 Review Problems

Webwork: Reading Problems 2 , 3 , 4

1. Compute the following matrix products

1 2 1

4 5 2

7 8 2


−2 4

3
−1

3

2 −5
3

2
3

−1 2 −1

 ,
(
1 2 3 4 5

)


1

2

3

4

5

 ,


1

2

3

4

5


(
1 2 3 4 5

)
,

1 2 1

4 5 2

7 8 2


−2 4

3
−1

3

2 −5
3

2
3

−1 2 −1


1 2 1

4 5 2

7 8 2

 ,
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(
x y z

)2 1 1
1 2 1
1 1 2


xy
z

 ,


2 1 2 1 2

0 2 1 2 1

0 1 2 1 2

0 2 1 2 1

0 0 0 0 2




1 2 1 2 1

0 1 2 1 2

0 2 1 2 1

0 1 2 1 2

0 0 0 0 1

 ,

−2 4
3
−1

3

2 −5
3

2
3

−1 2 −1


 4 2

3
−2

3

6 5
3
−2

3

12 −16
3

10
3


1 2 1

4 5 2

7 8 2

 .

2. Let’s prove the theorem (MN)T = NTMT .

Note: the following is a common technique for proving matrix identities.

(a) Let M = (mi
j) and let N = (nij). Write out a few of the entries of

each matrix in the form given at the beginning of section 7.3.

(b) Multiply out MN and write out a few of its entries in the same
form as in part (a). In terms of the entries of M and the entries
of N , what is the entry in row i and column j of MN?

(c) Take the transpose (MN)T and write out a few of its entries in
the same form as in part (a). In terms of the entries of M and the
entries of N , what is the entry in row i and column j of (MN)T ?

(d) Take the transposes NT and MT and write out a few of their
entries in the same form as in part (a).

(e) Multiply out NTMT and write out a few of its entries in the same
form as in part a. In terms of the entries of M and the entries of
N , what is the entry in row i and column j of NTMT ?

(f) Show that the answers you got in parts (c) and (e) are the same.

3. (a) Let A =

(
1 2 0
3 −1 4

)
. Find AAT and ATA and their traces.

(b) Let M be any m × n matrix. Show that MTM and MMT are
symmetric. (Hint: use the result of the previous problem.) What
are their sizes? What is the relationship between their traces?
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4. Let x =

 x1
...
xn

 and y =

 y1
...
yn

 be column vectors. Show that the

dot product x y = xT I y.

Hint

5. Above, we showed that left multiplication by an r × s matrix N was

a linear transformation M s
k

N−→ M r
k . Show that right multiplication

by a k ×m matrix R is a linear transformation M s
k

R−→ M s
m. In other

words, show that right matrix multiplication obeys linearity.

Hint

6. Let the V be a vector space where B = (v1, v2) is an ordered basis.
Suppose

L : V
linear
−−−→ V

and
L(v1) = v1 + v2 , L(v2) = 2v1 + v2 .

Compute the matrix of L in the basis B and then compute the trace of
this matrix. Suppose that ad− bc 6= 0 and consider now the new basis

B′ = (av1 + bv2, cv1 + dv2) .

Compute the matrix of L in the basis B′. Compute the trace of this
matrix. What do you find? What do you conclude about the trace
of a matrix? Does it make sense to talk about the “trace of a linear
transformation” without reference to any bases?

7. Explain what happens to a matrix when:

(a) You multiply it on the left by a diagonal matrix.

(b) You multiply it on the right by a diagonal matrix.
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Give a few simple examples before you start explaining.

8. Compute exp(A) for the following matrices:

• A =

(
λ 0
0 λ

)
• A =

(
1 λ
0 1

)
• A =

(
0 λ
0 0

)

Hint

9. Let M =



1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 2 1 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 3 1
0 0 0 0 0 0 0 3


. Divide M into named blocks,

with one block the 4 × 4 identity matrix, and then multiply blocks to
compute M2.

10. A matrix A is called anti-symmetric (or skew-symmetric) if AT = −A.
Show that for every n× n matrix M , we can write M = A + S where
A is an anti-symmetric matrix and S is a symmetric matrix.

Hint: What kind of matrix is M +MT? How about M −MT?

11. An example of an operation which is not associative is the cross prod-
uct.

(a) Give a simple example of three vectors from 3-space u, v, w such
that u× (v × w) 6= (u× v)× w.
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(b) We saw in Chapter 1 that the operator B = u× (cross product
with a vector) is a linear operator. It can therefore be written as
a matrix (given an ordered basis such as the standard basis). How
is it that composing such linear operators is non-associative even
though matrix multiplication is associative?

7.5 Inverse Matrix

Definition A square matrix M is invertible (or nonsingular) if there
exists a matrix M−1 such that

M−1M = I = MM−1.

If M has no inverse, we say M is singular or non-invertible.

Inverse of a 2× 2 Matrix Let M and N be the matrices:

M =

(
a b
c d

)
, N =

(
d −b
−c a

)
Multiplying these matrices gives:

MN =

(
ad− bc 0

0 ad− bc

)
= (ad− bc)I .

Then M−1 = 1
ad−bc

(
d −b
−c a

)
, so long as ad− bc 6= 0.

7.5.1 Three Properties of the Inverse

1. If A is a square matrix and B is the inverse of A, then A is the inverse
of B, since AB = I = BA. So we have the identity

(A−1)−1 = A.

2. Notice that B−1A−1AB = B−1IB = I = ABB−1A−1 so

(AB)−1 = B−1A−1
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Figure 7.1: The formula for the inverse of a 2×2 matrix is worth memorizing!

Thus, much like the transpose, taking the inverse of a product reverses
the order of the product.

3. Finally, recall that (AB)T = BTAT . Since IT = I, then (A−1A)T =
AT (A−1)T = I. Similarly, (AA−1)T = (A−1)TAT = I. Then:

(A−1)T = (AT )−1

2× 2 Example

7.5.2 Finding Inverses (Redux)

Gaussian elimination can be used to find inverse matrices. This concept is
covered in chapter 2, section 2.3.2, but is presented here again as review in
more sophisticated terms.

Suppose M is a square invertible matrix and MX = V is a linear system.
The solution must be unique because it can be found by multiplying the
equation on both sides by M−1 yielding X = M−1V . Thus, the reduced row
echelon form of the linear system has an identity matrix on the left:(

M V
)
∼
(
I M−1V

)
Solving the linear system MX = V then tells us what M−1V is.
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To solve many linear systems with the same matrix at once,

MX = V1, MX = V2

we can consider augmented matrices with many columns on the right and
then apply Gaussian row reduction to the left side of the matrix. Once the
identity matrix is on the left side of the augmented matrix, then the solution
of each of the individual linear systems is on the right.(

M V1 V2
)
∼
(
I M−1V1 M−1V2

)
To compute M−1, we would like M−1, rather than M−1V to appear on

the right side of our augmented matrix. This is achieved by solving the
collection of systems MX = ek, where ek is the column vector of zeroes with
a 1 in the kth entry. I.e., the n×n identity matrix can be viewed as a bunch
of column vectors In = (e1 e2 · · · en). So, putting the ek’s together into an
identity matrix, we get:(

M I
)
∼
(
I M−1I

)
=
(
I M−1)

Example 93 Find

−1 2 −3
2 1 0
4 −2 5

−1.

We start by writing the augmented matrix, then apply row reduction to the left side.

−1 2 −3 1 0 0

2 1 0 0 1 0

4 −2 5 0 0 1

 ∼

1 −2 3 1 0 0

0 5 −6 2 1 0

0 6 −7 4 0 1



∼

1 0 3
5 −1

4
2
5 0

0 1 −6
5

2
5

1
5 0

0 0 1
5

4
5 −6

5 1



∼

1 0 0 −5 4 −3

0 1 0 10 −7 6

0 0 1 8 −6 5


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At this point, we know M−1 assuming we didn’t goof up. However, row reduction is a
lengthy and involved process with lots of room for arithmetic errors, so we should check
our answer, by confirming that MM−1 = I (or if you prefer M−1M = I):

MM−1 =

−1 2 −3
2 1 0
4 −2 5

−5 4 −3
10 −7 6
8 −6 5

 =

1 0 0
0 1 0
0 0 1


The product of the two matrices is indeed the identity matrix, so we’re done.

Reading homework: problem 5

7.5.3 Linear Systems and Inverses

If M−1 exists and is known, then we can immediately solve linear systems
associated to M .

Example 94 Consider the linear system:

−x+2y −3z = 1

2x + y = 2

4x−2y +5z = 0

The associated matrix equation is MX =

1
2
0

 , where M is the same as in the

previous section, so the system above is equivalent to the matrix equation

xy
z

 =

−1 2 −3
2 1 0
4 −2 5

−11
2
0

 =

−5 4 −3
10 −7 6
8 −6 5

1
2
0

 =

 3
−4
−4

 .

That is, the system is equivalent to the equation

xy
z

 =

 3
−4
−4

, and it is easy to

see what the solution(s) to this equation are.

In summary, when M−1 exists

Mx = v ⇔ x = M−1v .

Reading homework: problem 5
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7.5.4 Homogeneous Systems

Theorem 7.5.1. A square matrix M is invertible if and only if the homoge-
neous system

Mx = 0

has no non-zero solutions.

Proof. First, suppose that M−1 exists. Then Mx = 0 ⇒ x = M−10 = 0.
Thus, if M is invertible, then Mx = 0 has no non-zero solutions.

On the other hand, Mx = 0 always has the solution x = 0. If no other
solutions exist, then M can be put into reduced row echelon form with every
variable a pivot. In this case, M−1 can be computed using the process in the
previous section.

7.5.5 Bit Matrices

In computer science, information is recorded using binary strings of data.
For example, the following string contains an English word:

011011000110100101101110011001010110000101110010

A bit is the basic unit of information, keeping track of a single one or zero.
Computers can add and multiply individual bits very quickly.

In chapter 5, section 5.2 it is explained how to formulate vector spaces over
fields other than real numbers. In particular, al of the properties of a vector
space make sense with numbers Z2 = {0, 1} with addition and multiplication
given by the following tables.

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1
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Notice that −1 = 1, since 1+1 = 0. Therefore, we can apply all of the linear
algebra we have learned thus far to matrices with Z2 entries. A matrix with
entries in Z2 is sometimes called a bit matrix .

Example 95

1 0 1
0 1 1
1 1 1

 is an invertible matrix over Z2;

1 0 1
0 1 1
1 1 1

−1 =

0 1 1
1 0 1
1 1 1

 .

This can be easily verified by multiplying:1 0 1
0 1 1
1 1 1

0 1 1
1 0 1
1 1 1

 =

1 0 0
0 1 0
0 0 1


Application: Cryptography A very simple way to hide information is to use a sub-
stitution cipher, in which the alphabet is permuted and each letter in a message is
systematically exchanged for another. For example, the ROT-13 cypher just exchanges
a letter with the letter thirteen places before or after it in the alphabet. For example,
HELLO becomes URYYB. Applying the algorithm again decodes the message, turning
URYYB back into HELLO. Substitution ciphers are easy to break, but the basic idea
can be extended to create cryptographic systems that are practically uncrackable. For
example, a one-time pad is a system that uses a different substitution for each letter
in the message. So long as a particular set of substitutions is not used on more than
one message, the one-time pad is unbreakable.

English characters are often stored in computers in the ASCII format. In ASCII,
a single character is represented by a string of eight bits, which we can consider as a
vector in Z8

2 (which is like vectors in R8, where the entries are zeros and ones). One
way to create a substitution cipher, then, is to choose an 8 × 8 invertible bit matrix
M , and multiply each letter of the message by M . Then to decode the message, each
string of eight characters would be multiplied by M−1.

To make the message a bit tougher to decode, one could consider pairs (or longer
sequences) of letters as a single vector in Z16

2 (or a higher-dimensional space), and
then use an appropriately-sized invertible matrix. For more on cryptography, see “The
Code Book,” by Simon Singh (1999, Doubleday).

7.6 Review Problems

Webwork: Reading Problems 6 , 7
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1. Find formulas for the inverses of the following matrices, when they are
not singular:

(a)

1 a b
0 1 c
0 0 1


(b)

a b c
0 d e
0 0 f


When are these matrices singular?

2. Write down all 2×2 bit matrices and decide which of them are singular.
For those which are not singular, pair them with their inverse.

3. Let M be a square matrix. Explain why the following statements are
equivalent:

(a) MX = V has a unique solution for every column vector V .

(b) M is non-singular.

Hint: In general for problems like this, think about the key words:

First, suppose that there is some column vector V such that the equa-
tion MX = V has two distinct solutions. Show that M must be sin-
gular; that is, show that M can have no inverse.

Next, suppose that there is some column vector V such that the equa-
tion MX = V has no solutions. Show that M must be singular.

Finally, suppose that M is non-singular. Show that no matter what
the column vector V is, there is a unique solution to MX = V.

Hint

4. Left and Right Inverses: So far we have only talked about inverses of
square matrices. This problem will explore the notion of a left and
right inverse for a matrix that is not square. Let

A =

(
0 1 1
1 1 0

)
156

http://math.ucdavis.edu/~linear/videos/inverse_matrix_unique_solution.mp4


7.6 Review Problems 157

(a) Compute:

i. AAT ,

ii.
(
AAT

)−1
,

iii. B := AT
(
AAT

)−1
(b) Show that the matrix B above is a right inverse for A, i.e., verify

that

AB = I .

(c) Is BA defined? (Why or why not?)

(d) Let A be an n ×m matrix with n > m. Suggest a formula for a
left inverse C such that

CA = I

Hint: you may assume that ATA has an inverse.

(e) Test your proposal for a left inverse for the simple example

A =

(
1
2

)
,

(f) True or false: Left and right inverses are unique. If false give a
counterexample.

Hint

5. Show that if the range (remember that the range of a function is the
set of all its outputs, not the codomain) of a 3 × 3 matrix M (viewed
as a function R3 → R3) is a plane then one of the columns is a sum of
multiples of the other columns. Show that this relationship is preserved
under EROs. Show, further, that the solutions to Mx = 0 describe this
relationship between the columns.

6. If M and N are square matrices of the same size such that M−1 exists
and N−1 does not exist, does (MN)−1 exist?

7. If M is a square matrix which is not invertible, is eM invertible?
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8. Elementary Column Operations (ECOs) can be defined in the same 3
types as EROs. Describe the 3 kinds of ECOs. Show that if maximal
elimination using ECOs is performed on a square matrix and a column
of zeros is obtained then that matrix is not invertible.
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7.7 LU Redux

Certain matrices are easier to work with than others. In this section, we
will see how to write any square2 matrix M as the product of two simpler
matrices. We will write

M = LU ,

where:

• L is lower triangular . This means that all entries above the main
diagonal are zero. In notation, L = (lij) with lij = 0 for all j > i.

L =


l11 0 0 · · ·
l21 l22 0 · · ·
l31 l32 l33 · · ·
...

...
...

. . .


• U is upper triangular . This means that all entries below the main

diagonal are zero. In notation, U = (uij) with uij = 0 for all j < i.

U =


u11 u12 u13 · · ·
0 u22 u23 · · ·
0 0 u33 · · ·
...

...
...

. . .


M = LU is called an LU decomposition of M .

This is a useful trick for computational reasons; it is much easier to com-
pute the inverse of an upper or lower triangular matrix than general matrices.
Since inverses are useful for solving linear systems, this makes solving any lin-
ear system associated to the matrix much faster as well. The determinant—a
very important quantity associated with any square matrix—is very easy to
compute for triangular matrices.

Example 96 Linear systems associated to upper triangular matrices are very easy to
solve by back substitution.(

a b 1
0 c e

)
⇒ y =

e

c
, x =

1

a

(
1− be

c

)
2The case where M is not square is dealt with at the end of the section.

159



160 Matrices

1 0 0 d
a 1 0 e
b c 1 f

⇒


x = d
y = e− ax
z = f − bx− cy

⇒


x = d
y = e− ad
z = f − bd− c(e− ad)

.

For lower triangular matrices, forward substitution gives a quick solution; for upper
triangular matrices, back substitution gives the solution.

7.7.1 Using LU Decomposition to Solve Linear Systems

Suppose we have M = LU and want to solve the system

MX = LUX = V.

• Step 1: Set W =

 u
v
w

 = UX.

• Step 2: Solve the system LW = V . This should be simple by forward
substitution since L is lower triangular. Suppose the solution to LW =
V is W0.

• Step 3: Now solve the system UX = W0. This should be easy by
backward substitution, since U is upper triangular. The solution to
this system is the solution to the original system.

We can think of this as using the matrix L to perform row operations on the
matrix U in order to solve the system; this idea also appears in the study of
determinants.

Reading homework: problem 7

Example 97 Consider the linear system:

6x+ 18y + 3z = 3

2x+ 12y + z = 19

4x+ 15y + 3z = 0

An LU decomposition for the associated matrix M is6 18 3
2 12 1
4 15 3

 =

3 0 0
1 6 0
2 3 1

2 6 1
0 1 0
0 0 1

 .
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• Step 1: Set W =

u
v
w

 = UX.

• Step 2: Solve the system LW = V :

3 0 0
1 6 0
2 3 1

u
v
w

 =

 3
19
0


By substitution, we get u = 1, v = 3, and w = −11. Then

W0 =

 1
3

−11


• Step 3: Solve the system UX = W0.2 6 1

0 1 0
0 0 1

xy
z

 =

 1
3

−11


Back substitution gives z = −11, y = 3, and x = −3.

Then X =

 −3
3

−11

, and we’re done.

Using an LU decomposition
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7.7.2 Finding an LU Decomposition.

In chapter 2, section 2.3.4, Gaussian elimination was used to find LU matrix
decompositions. These ideas are presented here again as review.

For any given matrix, there are actually many different LU decomposi-
tions. However, there is a unique LU decomposition in which the L matrix
has ones on the diagonal. In that case L is called a lower unit triangular
matrix .

To find the LU decomposition, we’ll create two sequences of matrices
L1, L2, . . . and U1, U2, . . . such that at each step, LiUi = M . Each of the Li
will be lower triangular, but only the last Ui will be upper triangular. The
main trick for this calculation is captured by the following example:

Example 98 (An Elementary Matrix)
Consider

E =

(
1 0
λ 1

)
, M =

(
a b c · · ·
d e f · · ·

)
.

Lets compute EM

EM =

(
a b c · · ·

d+ λa e+ λb f + λc · · ·

)
.

Something neat happened here: multiplying M by E performed the row operation
R2 → R2 + λR1 on M . Another interesting fact:

E−1 :=

(
1 0
−λ 1

)
obeys (check this yourself...)

E−1E = 1 .

Hence M = E−1EM or, writing this out(
a b c · · ·
d e f · · ·

)
=

(
1 0
−λ 1

)(
a b c · · ·

d+ λa e+ λb f + λc · · ·

)
.

Here the matrix on the left is lower triangular, while the matrix on the right has had
a row operation performed on it.

We would like to use the first row of M to zero out the first entry of every
row below it. For our running example,

M =

6 18 3
2 12 1
4 15 3

 ,
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so we would like to perform the row operations

R2 → R2 −
1

3
R1 and R3 → R3 −

2

3
R1 .

If we perform these row operations on M to produce

U1 =

6 18 3
0 6 0
0 3 1

 ,

we need to multiply this on the left by a lower triangular matrix L1 so that
the product L1U1 = M still. The above example shows how to do this: Set
L1 to be the lower triangular matrix whose first column is filled with minus
the constants used to zero out the first column of M . Then

L1 =

1 0 0
1
3

1 0
2
3

0 1

 .

By construction L1U1 = M , but you should compute this yourself as a double
check.

Now repeat the process by zeroing the second column of U1 below the
diagonal using the second row of U1 using the row operation R3 → R3− 1

2
R2

to produce

U2 =

6 18 3
0 6 0
0 0 1

 .

The matrix that undoes this row operation is obtained in the same way we
found L1 above and is: 1 0 0

0 1 0
0 1

2
1

 .

Thus our answer for L2 is the product of this matrix with L1, namely

L2 =

1 0 0
1
3

1 0
2
3

0 1


1 0 0

0 1 0
0 1

2
1

 =

1 0 0
1
3

1 0
2
3

1
2

1

 .

Notice that it is lower triangular because
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The product of lower triangular matrices is always lower triangular!

Moreover it is obtained by recording minus the constants used for all our
row operations in the appropriate columns (this always works this way).
Moreover, U2 is upper triangular and M = L2U2, we are done! Putting this
all together we have

M =

6 18 3
2 12 1
4 15 3

 =

1 0 0
1
3

1 0
2
3

1
2

1


6 18 3

0 6 0

0 0 1

 .

If the matrix you’re working with has more than three rows, just continue
this process by zeroing out the next column below the diagonal, and repeat
until there’s nothing left to do.

Another LU decomposition example

The fractions in the L matrix are admittedly ugly. For two matrices
LU , we can multiply one entire column of L by a constant λ and divide the
corresponding row of U by the same constant without changing the product
of the two matrices. Then:

LU =

1 0 0
1
3

1 0
2
3

1
2

1

 I

6 18 3

0 6 0

0 0 1


=

1 0 0
1
3

1 0
2
3

1
2

1


3 0 0

0 6 0
0 0 1




1
3

0 0

0 1
6

0

0 0 1


6 18 3

0 6 0
0 0 1


=

3 0 0
1 6 0
2 3 1

2 6 1
0 1 0
0 0 1

 .

The resulting matrix looks nicer, but isn’t in standard (lower unit triangular
matrix) form.
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Reading homework: problem 7

For matrices that are not square, LU decomposition still makes sense.
Given an m × n matrix M , for example we could write M = LU with L
a square lower unit triangular matrix, and U a rectangular matrix. Then
L will be an m × m matrix, and U will be an m × n matrix (of the same
shape as M). From here, the process is exactly the same as for a square
matrix. We create a sequence of matrices Li and Ui that is eventually the
LU decomposition. Again, we start with L0 = I and U0 = M .

Example 99 Let’s find the LU decomposition of M = U0 =

(
−2 1 3
−4 4 1

)
. Since M

is a 2× 3 matrix, our decomposition will consist of a 2× 2 matrix and a 2× 3 matrix.

Then we start with L0 = I2 =

(
1 0
0 1

)
.

The next step is to zero-out the first column of M below the diagonal. There is
only one row to cancel, then, and it can be removed by subtracting 2 times the first
row of M to the second row of M . Then:

L1 =

(
1 0
2 1

)
, U1 =

(
−2 1 3

0 2 −5

)
Since U1 is upper triangular, we’re done. With a larger matrix, we would just continue
the process.

7.7.3 Block LDU Decomposition

Let M be a square block matrix with square blocks X, Y, Z,W such that X−1

exists. Then M can be decomposed as a block LDU decomposition, where
D is block diagonal, as follows:

M =

(
X Y
Z W

)
Then:

M =

(
I 0

ZX−1 I

)(
X 0

0 W − ZX−1Y

)(
I X−1Y

0 I

)
.
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This can be checked explicitly simply by block-multiplying these three ma-
trices.

Block LDU Explanation

Example 100 For a 2× 2 matrix, we can regard each entry as a 1× 1 block.(
1 2
3 4

)
=

(
1 0
3 1

)(
1 0
0 −2

)(
1 2
0 1

)
By multiplying the diagonal matrix by the upper triangular matrix, we get the standard
LU decomposition of the matrix.

You are now ready to attempt the first sample midterm.

7.8 Review Problems

Webwork:
Reading Problems 7 ,8
LU Decomposition 14

1. Consider the linear system:

x1 = v1

l21x
1 +x2 = v2

...
...

ln1x
1 +ln2x

2 + · · ·+ xn = vn

(i) Find x1.

(ii) Find x2.

(iii) Find x3.
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(k) Try to find a formula or recursive method for finding xk. Don’t
worry about simplifying your answer.

2. Let M =

(
X Y
Z W

)
be a square n× n block matrix with W invertible.

i. If W has r rows, what size are X, Y , and Z?

ii. Find a UDL decomposition for M . In other words, fill in the stars
in the following equation:(

X Y
Z W

)
=

(
I ∗
0 I

)(
∗ 0
0 ∗

)(
I 0
∗ I

)
3. Show that if M is a square matrix which is not invertible then either

the matrix matrix U or the matrix L in the LU-decomposition M = LU
has a zero on it’s diagonal.

4. Describe what upper and lower triangular matrices do to the unit hy-
percube in their domain.

5. In chapter 3 we saw that, since in general row exchange matrices are
necessary to achieve upper triangular form, LDPU factorization is the
complete decomposition of an invertible matrix into EROs of various
kinds. Suggest a procedure for using LDPU decompositions to solve
linear systems that generalizes the procedure above.

6. Is there a reason to prefer LU decomposition to UL decomposition, or
is the order just a convention?

7. If M is invertible then what are the LU, LDU, and LDPU decompo-
sitions of MT in terms of the decompositions for M? Can you do the
same for M−1?

8. Argue that if M is symmetric then L = UT in the LDU decomposition
of M .
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8
Determinants

Given a square matrix, is there an easy way to know when it is invertible?
Answering this fundamental question is the goal of this chapter.

8.1 The Determinant Formula

The determinant boils down a square matrix to a a single number. That
number determines whether the square matrix is invertible or not. Lets see
how this works for small matrices first.

8.1.1 Simple Examples

For small cases, we already know when a matrix is invertible. If M is a 1× 1
matrix, then M = (m)⇒M−1 = (1/m). Then M is invertible if and only if
m 6= 0.

For M a 2× 2 matrix, chapter 7 section 7.5 shows that if

M =

(
m1

1 m1
2

m2
1 m2

2

)
,

then

M−1 =
1

m1
1m

2
2 −m1

2m
2
1

(
m2

2 −m1
2

−m2
1 m1

1

)
.

Thus M is invertible if and only if
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Figure 8.1: Memorize the determinant formula for a 2×2 matrix!

m1
1m

2
2 −m1

2m
2
1 6= 0 .

For 2× 2 matrices, this quantity is called the determinant of M .

detM = det

(
m1

1 m1
2

m2
1 m2

2

)
= m1

1m
2
2 −m1

2m
2
1 .

Example 101 For a 3× 3 matrix,

M =

m
1
1 m1

2 m1
3

m2
1 m2

2 m2
3

m3
1 m3

2 m3
3

 ,

then—see review question 1—M is non-singular if and only if:

detM = m1
1m

2
2m

3
3 −m1

1m
2
3m

3
2 +m1

2m
2
3m

3
1 −m1

2m
2
1m

3
3 +m1

3m
2
1m

3
2 −m1

3m
2
2m

3
1 6= 0.

Notice that in the subscripts, each ordering of the numbers 1, 2, and 3 occurs exactly
once. Each of these is a permutation of the set {1, 2, 3}.

8.1.2 Permutations

Consider n objects labeled 1 through n and shuffle them. Each possible shuf-
fle is called a permutation. For example, here is an example of a permutation
of 1–5:

σ =

[
1 2 3 4 5
4 2 5 1 3

]
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We can consider a permutation σ as an invertible function from the set of
numbers [n] := {1, 2, . . . , n} to [n], so can write σ(3) = 5 in the above
example. In general we can write[

1 2 3 4 5

σ(1) σ(2) σ(3) σ(4) σ(5)

]
,

but since the top line of any permutation is always the same, we can omit it
and just write:

σ =
[
σ(1) σ(2) σ(3) σ(4) σ(5)

]
and so our example becomes simply σ = [4 2 5 1 3].

The mathematics of permutations is extensive; there are a few key prop-
erties of permutations that we’ll need:

• There are n! permutations of n distinct objects, since there are n choices
for the first object, n− 1 choices for the second once the first has been
chosen, and so on.

• Every permutation can be built up by successively swapping pairs of
objects. For example, to build up the permutation

[
3 1 2

]
from the

trivial permutation
[
1 2 3

]
, you can first swap 2 and 3, and then

swap 1 and 3.

• For any given permutation σ, there is some number of swaps it takes to
build up the permutation. (It’s simplest to use the minimum number of
swaps, but you don’t have to: it turns out that any way of building up
the permutation from swaps will have have the same parity of swaps,
either even or odd.) If this number happens to be even, then σ is
called an even permutation; if this number is odd, then σ is an odd
permutation. In fact, n! is even for all n ≥ 2, and exactly half of the
permutations are even and the other half are odd. It’s worth noting
that the trivial permutation (which sends i→ i for every i) is an even
permutation, since it uses zero swaps.

Definition The sign function is a function sgn that sends permutations
to the set {−1, 1} with rule of correspondence defined by

sgn(σ) =

{
1 if σ is even
−1 if σ is odd.
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Permutation Example

Reading homework: problem 1

We can use permutations to give a definition of the determinant.

Definition The determinant of n× n matrix M is

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) · · ·mn

σ(n).

The sum is over all permutations of n objects; a sum over the all elements
of {σ : {1, . . . , n} → {1, . . . , n}}. Each summand is a product of n entries
from the matrix with each factor from a different row. In different terms of
the sum the column numbers are shuffled by different permutations σ.

The last statement about the summands yields a nice property of the
determinant:

Theorem 8.1.1. If M = (mi
j) has a row consisting entirely of zeros, then

mi
σ(i) = 0 for every σ and some i. Moreover detM = 0.

Example 102 Because there are many permutations of n, writing the determinant
this way for a general matrix gives a very long sum. For n = 4, there are 24 = 4!
permutations, and for n = 5, there are already 120 = 5! permutations.

For a 4× 4 matrix, M =


m1

1 m1
2 m1

3 m1
4

m2
1 m2

2 m2
3 m2

4

m3
1 m3

2 m3
3 m3

4

m4
1 m4

2 m4
3 m4

4

, then detM is:

detM = m1
1m

2
2m

3
3m

4
4 −m1

1m
2
3m

3
2m

4
4 −m1

1m
2
2m

3
4m

4
3

− m1
2m

2
1m

3
3m

4
4 +m1

1m
2
3m

3
4m

4
2 +m1

1m
2
4m

3
2m

4
3

+ m1
2m

2
3m

3
1m

4
4 +m1

2m
2
1m

3
4m

4
3 ± 16 more terms.
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This is very cumbersome.
Luckily, it is very easy to compute the determinants of certain matrices.

For example, if M is diagonal, meaning that M i
j = 0 whenever i 6= j, then

all summands of the determinant involving off-diagonal entries vanish and

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) · · ·mn

σ(n) = m1
1m

2
2 · · ·mn

n.

The determinant of a diagonal matrix is
the product of its diagonal entries.

Since the identity matrix is diagonal with all diagonal entries equal to one,
we have

det I = 1.

We would like to use the determinant to decide whether a matrix is in-
vertible. Previously, we computed the inverse of a matrix by applying row
operations. Therefore we ask what happens to the determinant when row
operations are applied to a matrix.

Swapping rows Lets swap rows i and j of a matrix M and then compute its determi-
nant. For the permutation σ, let σ̂ be the permutation obtained by swapping positions
i and j. Clearly

sgn(σ̂) = −sgn(σ) .

Let M ′ be the matrix M with rows i and j swapped. Then (assuming i < j):

detM ′ =
∑
σ

sgn(σ)m1
σ(1) · · ·m

j
σ(i) · · ·m

i
σ(j) · · ·m

n
σ(n)

=
∑
σ

sgn(σ)m1
σ(1) · · ·m

i
σ(j) · · ·m

j
σ(i) · · ·m

n
σ(n)

=
∑
σ

(−sgn(σ̂))m1
σ̂(1) · · ·m

i
σ̂(i) · · ·m

j
σ̂(j) · · ·m

n
σ̂(n)

= −
∑
σ̂

sgn(σ̂)m1
σ̂(1) · · ·m

i
σ̂(i) · · ·m

j
σ̂(j) · · ·m

n
σ̂(n)

= −detM.

The step replacing
∑

σ by
∑

σ̂ often causes confusion; it holds since we sum over all
permutations (see review problem 3). Thus we see that swapping rows changes the
sign of the determinant. I.e.,

detM ′ = −detM .
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Figure 8.2: Remember what row swap does to determinants!

Reading homework: problem 8.2

Applying this result to M = I (the identity matrix) yields

detEij = −1 ,

where the matrix Eij is the identity matrix with rows i and j swapped. It is a row swap
elementary matrix.

This implies another nice property of the determinant. If two rows of the matrix
are identical, then swapping the rows changes the sign of the matrix, but leaves the
matrix unchanged. Then we see the following:

Theorem 8.1.2. If M has two identical rows, then detM = 0.

8.2 Elementary Matrices and Determinants

In chapter 2 we found the matrices that perform the row operations involved
in Gaussian elimination; we called them elementary matrices.

As a reminder, for any matrix M , and a matrix M ′ equal to M after a
row operation, multiplying by an elementary matrix E gave M ′ = EM .

Elementary Matrices

We now examine what the elementary matrices to do determinants.
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8.2.1 Row Swap

Our first elementary matrix swaps rows i and j when it is applied to a matrix
M . Explicitly, let R1 through Rn denote the rows of M , and let M ′ be the
matrix M with rows i and j swapped. Then M and M ′ can be regarded as
a block matrices (where the blocks are rows);

M =



...
Ri

...
Rj

...

 and M ′ =



...
Rj

...
Ri

...

 .

Then notice that

M ′ =



...
Rj

...
Ri

...


=



1
. . .

0 1
. . .

1 0
. . .

1





...
Ri

...
Rj

...


.

The matrix 

1
. . .

0 1
. . .

1 0
. . .

1


=: Ei

j

is just the identity matrix with rows i and j swapped. The matrix Ei
j is an

elementary matrix and
M ′ = Ei

jM .

Because det I = 1 and swapping a pair of rows changes the sign of the
determinant, we have found that

detEi
j = −1 .
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Now we know that swapping a pair of rows flips the sign of the determi-
nant so detM ′ = −detM . But detEi

j = −1 and M ′ = Ei
jM so

detEi
jM = detEi

j detM .

This result hints at a general rule for determinants of products of matrices.

8.2.2 Row Multiplication

The next row operation is multiplying a row by a scalar. Consider

M =

 R1

...
Rn

 ,

where Ri are row vectors. Let Ri(λ) be the identity matrix, with the ith
diagonal entry replaced by λ, not to be confused with the row vectors. I.e.,

Ri(λ) =


1

. . .

λ
. . .

1

 .

Then:

M ′ = Ri(λ)M =


R1

...
λRi

...
Rn

 ,

equals M with one row multiplied by λ.
What effect does multiplication by the elementary matrix Ri(λ) have on

the determinant?

detM ′ =
∑
σ

sgn(σ)m1
σ(1) · · ·λmi

σ(i) · · ·mn
σ(n)

= λ
∑
σ

sgn(σ)m1
σ(1) · · ·mi

σ(i) · · ·mn
σ(n)

= λ detM

176



8.2 Elementary Matrices and Determinants 177

Figure 8.3: Rescaling a row rescales the determinant.

Thus, multiplying a row by λ multiplies the determinant by λ. I.e.,

detRi(λ)M = λ detM .

Since Ri(λ) is just the identity matrix with a single row multiplied by λ,
then by the above rule, the determinant of Ri(λ) is λ. Thus

detRi(λ) = det


1

. . .

λ
. . .

1

 = λ ,

and once again we have a product of determinants formula

det
(
Ri(λ)M

)
= det

(
Ri(λ)

)
detM.

8.2.3 Row Addition

The final row operation is adding µRj to Ri. This is done with the elementary
matrix Sij(µ), which is an identity matrix but with an additional µ in the i, j
position;
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Sij(µ) =



1
. . .

1 µ
. . .

1
. . .

1


.

Then multiplying M by Sij(µ) performs a row addition;

1
. . .

1 µ
. . .

1
. . .

1





...
Ri

...
Rj

...


=



...
Ri + µRj

...
Rj

...


.

What is the effect of multiplying by Sij(µ) on the determinant? Let M ′ =
Sij(µ)M , and let M ′′ be the matrix M but with Ri replaced by Rj Then

detM ′ =
∑
σ

sgn(σ)m1
σ(1) · · · (mi

σ(i) + µmj
σ(i)) · · ·m

n
σ(n)

=
∑
σ

sgn(σ)m1
σ(1) · · ·mi

σ(i) · · ·mn
σ(n)

+
∑
σ

sgn(σ)m1
σ(1) · · ·µm

j
σ(j) · · ·m

j
σ(j) · · ·m

n
σ(n)

= detM + µ detM ′′

Since M ′′ has two identical rows, its determinant is 0 so

detM ′ = detM,

when M ′ is obtained from M by adding µ times row j to row i.

Reading homework: problem 3
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Figure 8.4: Adding one row to another leaves the determinant unchanged.

We also have learnt that

det
(
Sij(µ)M

)
= detM .

Notice that if M is the identity matrix, then we have

detSij(µ) = det(Sij(µ)I) = det I = 1 .

8.2.4 Determinant of Products

In summary, the elementary matrices for each of the row operations obey

Ei
j = I with rows i, j swapped; detEi

j = −1

Ri(λ) = I with λ in position i, i; detRi(λ) = λ

Sij(µ) = I with µ in position i, j; detSij(µ) = 1

Elementary Determinants

Moreover we found a useful formula for determinants of products:

Theorem 8.2.1. If E is any of the elementary matrices Ei
j, R

i(λ), Sij(µ),
then det(EM) = detE detM .
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We have seen that any matrixM can be put into reduced row echelon form
via a sequence of row operations, and we have seen that any row operation can
be achieved via left matrix multiplication by an elementary matrix. Suppose
that RREF(M) is the reduced row echelon form of M . Then

RREF(M) = E1E2 · · ·EkM ,

where each Ei is an elementary matrix. We know how to compute determi-
nants of elementary matrices and products thereof, so we ask:

What is the determinant of a square matrix in reduced row echelon form?

The answer has two cases:

1. If M is not invertible, then some row of RREF(M) contains only zeros.
Then we can multiply the zero row by any constant λ without chang-
ing M ; by our previous observation, this scales the determinant of M
by λ. Thus, if M is not invertible, det RREF(M) = λ det RREF(M),
and so det RREF(M) = 0.

2. Otherwise, every row of RREF(M) has a pivot on the diagonal; since
M is square, this means that RREF(M) is the identity matrix. So if
M is invertible, det RREF(M) = 1.

Notice that because det RREF(M) = det(E1E2 · · ·EkM), by the theorem
above,

det RREF(M) = det(E1) · · · det(Ek) detM .

Since each Ei has non-zero determinant, then det RREF(M) = 0 if and only
if detM = 0. This establishes an important theorem:

Theorem 8.2.2. For any square matrix M , detM 6= 0 if and only if M is
invertible.

Since we know the determinants of the elementary matrices, we can im-
mediately obtain the following:

Determinants and Inverses
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Figure 8.5: Determinants measure if a matrix is invertible.

Corollary 8.2.3. Any elementary matrix Ei
j, R

i(λ), Sij(µ) is invertible, ex-
cept for Ri(0). In fact, the inverse of an elementary matrix is another ele-
mentary matrix.

To obtain one last important result, suppose that M and N are square
n × n matrices, with reduced row echelon forms such that, for elementary
matrices Ei and Fi,

M = E1E2 · · ·Ek RREF(M) ,

and

N = F1F2 · · ·Fl RREF(N) .

If RREF(M) is the identity matrix (i.e., M is invertible), then:

det(MN) = det(E1E2 · · ·Ek RREF(M)F1F2 · · ·Fl RREF(N))

= det(E1E2 · · ·EkIF1F2 · · ·Fl RREF(N))

= det(E1) · · · det(Ek) det(I) det(F1) · · · det(Fl) det RREF(N)

= det(M) det(N)

Otherwise, M is not invertible, and detM = 0 = det RREF(M). Then there
exists a row of zeros in RREF(M), so Rn(λ) RREF(M) = RREF(M) for
any λ. Then:

det(MN) = det(E1E2 · · ·Ek RREF(M)N)

= det(E1) · · · det(Ek) det(RREF(M)N)

= det(E1) · · · det(Ek) det(Rn(λ) RREF(M)N)

= det(E1) · · · det(Ek)λ det(RREF(M)N)

= λ det(MN)
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182 Determinants

Figure 8.6: “The determinant of a product is the product of determinants.”

Which implies that det(MN) = 0 = detM detN .
Thus we have shown that for any matrices M and N ,

det(MN) = detM detN

This result is extremely important; do not forget it!

Alternative proof

Reading homework: problem 4

8.3 Review Problems

Webwork:
Reading Problems 1 , 2 , 3 , 4
2× 2 Determinant 7

Determinants and invertibility 8, 9, 10, 11

1. Let

M =

m
1
1 m1

2 m1
3

m2
1 m2

2 m2
3

m3
1 m3

2 m3
3

 .
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Use row operations to put M into row echelon form. For simplicity,
assume that m1

1 6= 0 6= m1
1m

2
2 −m2

1m
1
2.

Prove that M is non-singular if and only if:

m1
1m

2
2m

3
3−m1

1m
2
3m

3
2 +m1

2m
2
3m

3
1−m1

2m
2
1m

3
3 +m1

3m
2
1m

3
2−m1

3m
2
2m

3
1 6= 0

2. (a) What does the matrix E1
2 =

(
0 1
1 0

)
do to M =

(
a b
d c

)
under

left multiplication? What about right multiplication?

(b) Find elementary matrices R1(λ) and R2(λ) that respectively mul-
tiply rows 1 and 2 of M by λ but otherwise leave M the same
under left multiplication.

(c) Find a matrix S1
2(λ) that adds a multiple λ of row 2 to row 1

under left multiplication.

3. Let σ̂ denote the permutation obtained from σ by transposing the first
two outputs, i.e. σ̂(1) = σ(2) and σ̂(2) = σ(1). Suppose the function
f : {1, 2, 3, 4} → R. Write out explicitly the following two sums:∑

σ

f
(
σ(s)

)
and

∑
σ

f
(
σ̂(s)

)
.

What do you observe? Now write a brief explanation why the following
equality holds ∑

σ

F (σ) =
∑
σ

F (σ̂) ,

where the domain of the function F is the set of all permutations of n
objects and σ̂ is related to σ by swapping a given pair of objects.

4. Let M be a matrix and SijM the same matrix with rows i and j
switched. Explain every line of the series of equations proving that
detM = − det(SijM).

5. Let M ′ be the matrix obtained from M by swapping two columns i
and j. Show that detM ′ = − detM .

6. The scalar triple product of three vectors u, v, w from R3 is u · (v×w).
Show that this product is the same as the determinant of the matrix
whose columns are u, v, w (in that order). What happens to the scalar
triple product when the factors are permuted?
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7. Show that if M is a 3× 3 matrix whose third row is a sum of multiples
of the other rows (R3 = aR2 + bR1) then detM = 0. Show that the
same is true if one of the columns is a sum of multiples of the others.

8. Calculate the determinant below by factoring the matrix into elemen-
tary matrices times simpler matrices and using the trick

det(M) = det(E−1EM) = det(E−1) det(EM) .

Explicitly show each ERO matrix.

det

2 1 0
4 3 1
2 2 2



9. Let M =

(
a b
c d

)
and N =

(
x y
z w

)
. Compute the following:

(a) detM .

(b) detN .

(c) det(MN).

(d) detM detN .

(e) det(M−1) assuming ad− bc 6= 0.

(f) det(MT )

(g) det(M +N)− (detM + detN). Is the determinant a linear trans-
formation from square matrices to real numbers? Explain.

10. Suppose M =

(
a b
c d

)
is invertible. Write M as a product of elemen-

tary row matrices times RREF(M).

11. Find the inverses of each of the elementary matrices, Ei
j, R

i(λ), Sij(λ).
Make sure to show that the elementary matrix times its inverse is ac-
tually the identity.

12. Let eij denote the matrix with a 1 in the i-th row and j-th column
and 0’s everywhere else, and let A be an arbitrary 2× 2 matrix. Com-
pute det(A+ tI2). What is the first order term (the t1 term)? Can you
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express your results in terms of tr(A)? What about the first order term
in det(A+ tIn) for any arbitrary n× n matrix A in terms of tr(A)?

Note that the result of det(A + tI2) is a polynomial in the variable t
known as the characteristic polynomial.

13. (Directional) Derivative of the determinant:
Notice that det : Mn

n → R (where Mn
n is the vector space of all n × n

matrices) det is a function of n2 variables so we can take directional
derivatives of det.

Let A be an arbitrary n × n matrix, and for all i and j compute the
following:

(a)

lim
t→0

det(I2 + teij)− det(I2)

t

(b)

lim
t→0

det(I3 + teij)− det(I3)

t

(c)

lim
t→0

det(In + teij)− det(In)

t

(d)

lim
t→0

det(In + At)− det(In)

t

Note, these are the directional derivative in the eij and A directions.

14. How many functions are in the set

{f : {1, . . . , n} → {1, . . . , n}|f−1 exists} ?

What about the set
{1, . . . , n}{1,...,n} ?

Which of these two sets correspond to the set of all permutations of n
objects?
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186 Determinants

8.4 Properties of the Determinant

We now know that the determinant of a matrix is non-zero if and only if that
matrix is invertible. We also know that the determinant is a multiplicative
function, in the sense that det(MN) = detM detN . Now we will devise
some methods for calculating the determinant.

Recall that:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) · · ·mn

σ(n).

A minor of an n× n matrix M is the determinant of any square matrix
obtained from M by deleting one row and one column. In particular, any
entry mi

j of a square matrix M is associated to a minor obtained by deleting
the ith row and jth column of M .

It is possible to write the determinant of a matrix in terms of its minors
as follows:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) · · ·mn

σ(n)

= m1
1

∑
/σ1

sgn(/σ1)m2
/σ1(2)
· · ·mn

/σ1(n)

+ m1
2

∑
/σ2

sgn(/σ2)m2
/σ2(1)

m3
/σ2(3)
· · ·mn

/σ2(n)

+ m1
3

∑
/σ3

sgn(/σ3)m2
/σ3(1)

m3
/σ3(2)

m4
/σ3(4)
· · ·mn

/σ3(n)

+ · · ·

Here the symbols /σk refers to the permutation σ with the input k removed.
The summand on the j’th line of the above formula looks like the determinant
of the minor obtained by removing the first and j’th column of M . However
we still need to replace sum of /σj by a sum over permutations of column
numbers of the matrix entries of this minor. This costs a minus sign whenever
j−1 is odd. In other words, to expand by minors we pick an entry m1

j of the
first row, then add (−1)j−1 times the determinant of the matrix with row i
and column j deleted. An example will probably help:
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Example 103 Let’s compute the determinant of

M =

1 2 3
4 5 6
7 8 9


using expansion by minors:

detM = 1 det

(
5 6
8 9

)
− 2 det

(
4 6
7 9

)
+ 3 det

(
4 5
7 8

)
= 1(5 · 9− 8 · 6)− 2(4 · 9− 7 · 6) + 3(4 · 8− 7 · 5)

= 0

Here, M−1 does not exist because1 detM = 0.

Example 104 Sometimes the entries of a matrix allow us to simplify the calculation

of the determinant. Take N =

1 2 3
4 0 0
7 8 9

. Notice that the second row has many

zeros; then we can switch the first and second rows of N before expanding in minors
to get:

det

1 2 3
4 0 0
7 8 9

 = −det

4 0 0
1 2 3
7 8 9


= −4 det

(
2 3
8 9

)
= 24

Example

Since we know how the determinant of a matrix changes when you perform
row operations, it is often very beneficial to perform row operations before
computing the determinant by brute force.

1A fun exercise is to compute the determinant of a 4 × 4 matrix filled in order, from
left to right, with the numbers 1, 2, 3, . . . , 16. What do you observe? Try the same for a
5× 5 matrix with 1, 2, 3, . . . , 25. Is there a pattern? Can you explain it?
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Example 105

det

1 2 3
4 5 6
7 8 9

 = det

1 2 3
3 3 3
6 6 6

 = det

1 2 3
3 3 3
0 0 0

 = 0 .

Try to determine which row operations we made at each step of this computation.

You might suspect that determinants have similar properties with respect
to columns as what applies to rows:

If M is a square matrix then detMT = detM .

Proof. By definition,

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) · · ·mn

σ(n).

For any permutation σ, there is a unique inverse permutation σ−1 that
undoes σ. If σ sends i → j, then σ−1 sends j → i. In the two-line notation
for a permutation, this corresponds to just flipping the permutation over. For

example, if σ =

[
1 2 3
2 3 1

]
, then we can find σ−1 by flipping the permutation

and then putting the columns in order:

σ−1 =

[
2 3 1
1 2 3

]
=

[
1 2 3
3 1 2

]
.

Since any permutation can be built up by transpositions, one can also find
the inverse of a permutation σ by undoing each of the transpositions used to
build up σ; this shows that one can use the same number of transpositions
to build σ and σ−1. In particular, sgnσ = sgnσ−1.

Reading homework: problem 5
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Figure 8.7: Transposes leave the determinant unchanged.

Then we can write out the above in formulas as follows:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) · · ·mn

σ(n)

=
∑
σ

sgn(σ)m
σ−1(1)
1 m

σ−1(2)
2 · · ·mσ−1(n)

n

=
∑
σ

sgn(σ−1)m
σ−1(1)
1 m

σ−1(2)
2 · · ·mσ−1(n)

n

=
∑
σ

sgn(σ)m
σ(1)
1 m

σ(2)
2 · · ·mσ(n)

n

= detMT .

The second-to-last equality is due to the existence of a unique inverse permu-
tation: summing over permutations is the same as summing over all inverses
of permutations (see review problem 3). The final equality is by the definition
of the transpose.

Example 106 Because of this, we see that expansion by minors also works over
columns. Let

M =

1 2 3
0 5 6
0 8 9

 .

Then

detM = detMT = 1 det

(
5 8
6 9

)
= −3 .

189



190 Determinants

8.4.1 Determinant of the Inverse

Let M and N be n× n matrices. We previously showed that

det(MN) = detM detN , and det I = 1.

Then 1 = det I = det(MM−1) = detM detM−1. As such we have:

Theorem 8.4.1.

detM−1 =
1

detM

8.4.2 Adjoint of a Matrix

Recall that for a 2× 2 matrix(
d −b
−c a

)(
a b
c d

)
= det

(
a b
c d

)
I .

Or in a more careful notation: if

M =

(
m1

1 m1
2

m2
1 m2

2

)
,

then

M−1 =
1

m1
1m

2
2 −m1

2m
2
1

(
m2

2 −m1
2

−m2
1 m1

1

)
,

so long as detM = m1
1m

2
2 − m1

2m
2
1 6= 0. The matrix

(
m2

2 −m1
2

−m2
1 m1

1

)
that

appears above is a special matrix, called the adjoint of M . Let’s define the
adjoint for an n× n matrix.

The cofactor of M corresponding to the entry mi
j of M is the product

of the minor associated to mi
j and (−1)i+j. This is written cofactor(mi

j).
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Definition For M = (mi
j) a square matrix, the adjoint matrix adjM is

given by
adjM = (cofactor(mi

j))
T .

Example 107

adj

3 −1 −1
1 2 0
0 1 1

 =



det

(
2 0
1 1

)
−det

(
1 0
0 1

)
det

(
1 2
0 1

)
−det

(
−1 −1

1 1

)
det

(
3 −1
0 1

)
−det

(
3 −1
0 1

)
det

(
−1 −1

2 0

)
−det

(
3 −1
1 0

)
det

(
3 −1
1 2

)



T

Reading homework: problem 6

Let’s compute the product M adjM . For any matrix N , the i, j entry
of MN is given by taking the dot product of the ith row of M and the jth
column of N . Notice that the dot product of the ith row of M and the ith
column of adjM is just the expansion by minors of detM in the ith row.
Further, notice that the dot product of the ith row of M and the jth column
of adjM with j 6= i is the same as expanding M by minors, but with the
jth row replaced by the ith row. Since the determinant of any matrix with
a row repeated is zero, then these dot products are zero as well.

We know that the i, j entry of the product of two matrices is the dot
product of the ith row of the first by the jth column of the second. Then:

M adjM = (detM)I

Thus, when detM 6= 0, the adjoint gives an explicit formula for M−1.

Theorem 8.4.2. For M a square matrix with detM 6= 0 (equivalently, if M
is invertible), then

M−1 =
1

detM
adjM

The Adjoint Matrix

191

http://webwork.math.ucdavis.edu/webwork2/LinearAlgebra/Determinants/6/
http://math.ucdavis.edu/~linear/videos/properties_of_determinant_adjoint.mp4


192 Determinants

Example 108 Continuing with the previous example,

adj

3 −1 −1
1 2 0
0 1 1

 =

 2 0 2
−1 3 −1

1 −3 7

 .

Now, multiply:

3 −1 −1
1 2 0
0 1 1

 2 0 2
−1 3 −1

1 −3 7

 =

6 0 0
0 6 0
0 0 6



⇒

3 −1 −1
1 2 0
0 1 1

−1 =
1

6

 2 0 2
−1 3 −1

1 −3 7


This process for finding the inverse matrix is sometimes called Cramer’s Rule .

8.4.3 Application: Volume of a Parallelepiped

Given three vectors u, v, w in R3, the parallelepiped determined by the three
vectors is the “squished” box whose edges are parallel to u, v, and w as
depicted in Figure 8.8.

You probably learnt in a calculus course that the volume of this object is
|u (v × w)|. This is the same as expansion by minors of the matrix whose
columns are u, v, w. Then:

Volume =
∣∣ det

(
u v w

) ∣∣
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Figure 8.8: A parallelepiped.

8.5 Review Problems

Webwork:

Reading Problems 5 ,6
Row of zeros 12

3× 3 determinant 13
Triangular determinants 14,15,16,17
Expanding in a column 18
Minors and cofactors 19

1. Find the determinant via expanding by minors.
2 1 3 7
6 1 4 4
2 1 8 0
1 0 2 0


2. Even if M is not a square matrix, both MMT and MTM are square. Is

it true that det(MMT ) = det(MTM) for all matrices M? How about
tr(MMT ) = tr(MTM)?
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3. Let σ−1 denote the inverse permutation of σ. Suppose the function
f : {1, 2, 3, 4} → R. Write out explicitly the following two sums:∑

σ

f
(
σ(s)

)
and

∑
σ

f
(
σ−1(s)

)
.

What do you observe? Now write a brief explanation why the following
equality holds ∑

σ

F (σ) =
∑
σ

F (σ−1) ,

where the domain of the function F is the set of all permutations of n
objects.

4. Suppose M = LU is an LU decomposition. Explain how you would
efficiently compute detM in this case. How does this decomposition
allow you to easily see if M is invertible?

5. In computer science, the complexity of an algorithm is (roughly) com-
puted by counting the number of times a given operation is performed.
Suppose adding or subtracting any two numbers takes a seconds, and
multiplying two numbers takes m seconds. Then, for example, com-
puting 2 · 6− 5 would take a+m seconds.

(a) How many additions and multiplications does it take to compute
the determinant of a general 2× 2 matrix?

(b) Write a formula for the number of additions and multiplications it
takes to compute the determinant of a general n×n matrix using
the definition of the determinant as a sum over permutations.
Assume that finding and multiplying by the sign of a permutation
is free.

(c) How many additions and multiplications does it take to compute
the determinant of a general 3 × 3 matrix using expansion by
minors? Assuming m = 2a, is this faster than computing the
determinant from the definition?

Hint
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9
Subspaces and Spanning Sets

It is time to study vector spaces more carefully and return to some funda-
mental questions:

1. Subspaces : When is a subset of a vector space itself a vector space?
(This is the notion of a subspace.)

2. Linear Independence: Given a collection of vectors, is there a way to
tell whether they are independent, or if one is a “linear combination”
of the others?

3. Dimension: Is there a consistent definition of how “big” a vector space
is?

4. Basis : How do we label vectors? Can we write any vector as a sum of
some basic set of vectors? How do we change our point of view from
vectors labeled one way to vectors labeled in another way?

Let’s start at the top!

9.1 Subspaces

Definition We say that a subset U of a vector space V is a subspace of V
if U is a vector space under the inherited addition and scalar multiplication
operations of V .
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196 Subspaces and Spanning Sets

Example 109 Consider a plane P in R3 through the origin:

ax+ by + cz = 0.

This equation can be expressed as the homogeneous system
(
a b c

)xy
z

 = 0, or

MX = 0 with M the matrix
(
a b c

)
. If X1 and X2 are both solutions to MX = 0,

then, by linearity of matrix multiplication, so is µX1 + νX2:

M(µX1 + νX2) = µMX1 + νMX2 = 0.

So P is closed under addition and scalar multiplication. Additionally, P contains the
origin (which can be derived from the above by setting µ = ν = 0). All other vector
space requirements hold for P because they hold for all vectors in R3.

Theorem 9.1.1 (Subspace Theorem). Let U be a non-empty subset of a
vector space V . Then U is a subspace if and only if µu1 + νu2 ∈ U for
arbitrary u1, u2 in U , and arbitrary constants µ, ν.

Proof. One direction of this proof is easy: if U is a subspace, then it is a vector
space, and so by the additive closure and multiplicative closure properties of
vector spaces, it has to be true that µu1 + νu2 ∈ U for all u1, u2 in U and all
constants constants µ, ν.

The other direction is almost as easy: we need to show that if µu1+νu2 ∈
U for all u1, u2 in U and all constants µ, ν, then U is a vector space. That
is, we need to show that the ten properties of vector spaces are satisfied. We
already know that the additive closure and multiplicative closure properties
are satisfied. Further, U has all of the other eight properties because V has
them.
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9.2 Building Subspaces 197

Note that the requirements of the subspace theorem are often referred to as
“closure”.

We can use this theorem to check if a set is a vector space. That is, if we
have some set U of vectors that come from some bigger vector space V , to
check if U itself forms a smaller vector space we need check only two things:

1. If we add any two vectors in U , do we end up with a vector in U?

2. If we multiply any vector in U by any constant, do we end up with a
vector in U?

If the answer to both of these questions is yes, then U is a vector space. If
not, U is not a vector space.

Reading homework: problem 1

9.2 Building Subspaces

Consider the set

U =


1

0
0

 ,

0
1
0

 ⊂ R3.

Because U consists of only two vectors, it clear that U is not a vector space,
since any constant multiple of these vectors should also be in U . For example,
the 0-vector is not in U , nor is U closed under vector addition.

But we know that any two vectors define a plane:
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198 Subspaces and Spanning Sets

In this case, the vectors in U define the xy-plane in R3. We can view the
xy-plane as the set of all vectors that arise as a linear combination of the two
vectors in U . We call this set of all linear combinations the span of U :

span(U) =

x
1

0
0

+ y

0
1
0

∣∣∣∣∣∣x, y ∈ R

 .

Notice that any vector in the xy-plane is of the formxy
0

 = x

1
0
0

+ y

0
1
0

 ∈ span(U).

Definition Let V be a vector space and S = {s1, s2, . . .} ⊂ V a subset of V .
Then the span of S, denoted span(S), is the set

span(S) := {r1s1 + r2s2 + · · ·+ rNsN | ri ∈ R, N ∈ N}.

That is, the span of S is the set of all finite linear combinations1 of
elements of S. Any finite sum of the form “a constant times s1 plus a constant
times s2 plus a constant times s3 and so on” is in the span of S.2.

Example 110 Let V = R3 and X ⊂ V be the x-axis. Let P =

0
1
0

, and set

S = X ∪ {P} .

The vector

2
3
0

 is in span(S), because

2
3
0

 =

2
0
0

+ 3

0
1
0

 . Similarly, the vector−12
17.5

0

 is in span(S), because

−12
17.5

0

 =

−12
0
0

+17.5

0
1
0

 . Similarly, any vector

1Usually our vector spaces are defined over R, but in general we can have vector spaces
defined over different base fields such as C or Z2. The coefficients ri should come from
whatever our base field is (usually R).

2It is important that we only allow finitely many terms in our linear combinations; in
the definition above, N must be a finite number. It can be any finite number, but it must
be finite. We can relax the requirement that S = {s1, s2, . . .} and just let S be any set of
vectors. Then we shall write span(S) := {r1s1+r2s2+· · ·+rNsN | ri ∈ R, si ∈ S,N ∈ N, }
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9.2 Building Subspaces 199

of the form x0
0

+ y

0
1
0

 =

xy
0


is in span(S). On the other hand, any vector in span(S) must have a zero in the
z-coordinate. (Why?) So span(S) is the xy-plane, which is a vector space. (Try
drawing a picture to verify this!)

Reading homework: problem 2

Lemma 9.2.1. For any subset S ⊂ V , span(S) is a subspace of V .

Proof. We need to show that span(S) is a vector space.
It suffices to show that span(S) is closed under linear combinations. Let

u, v ∈ span(S) and λ, µ be constants. By the definition of span(S), there are
constants ci and di (some of which could be zero) such that:

u = c1s1 + c2s2 + · · ·
v = d1s1 + d2s2 + · · ·

⇒ λu+ µv = λ(c1s1 + c2s2 + · · · ) + µ(d1s1 + d2s2 + · · · )
= (λc1 + µd1)s1 + (λc2 + µd2)s2 + · · ·

This last sum is a linear combination of elements of S, and is thus in span(S).
Then span(S) is closed under linear combinations, and is thus a subspace
of V .

Note that this proof, like many proofs, consisted of little more than just
writing out the definitions.

Example 111 For which values of a does

span


1

0
a

 ,

 1
2
−3

 ,

a1
0

 = R3?

Given an arbitrary vector

xy
z

 in R3, we need to find constants r1, r2, r3 such that
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r1

1
0
a

+ r2

 1
2
−3

+ r3

a1
0

 =

xy
z

 .

We can write this as a linear system in the unknowns r1, r2, r3 as follows:1 1 a
0 2 1
a −3 0

r1r2
r3

 =

xy
z

 .

If the matrix M =

1 1 a
0 2 1
a −3 0

 is invertible, then we can find a solution

M−1

xy
z

 =

r1r2
r3



for any vector

xy
z

 ∈ R3.

Therefore we should choose a so that M is invertible:

i.e., 0 6= detM = −2a2 + 3 + a = −(2a− 3)(a+ 1).

Then the span is R3 if and only if a 6= −1, 32 .

Linear systems as spanning sets

Some other very important ways of building subspaces are given in the
following examples.

Example 112 (The kernel of a linear map).

Suppose L : U → V is a linear map between vector spaces. Then if

L(u) = 0 = L(u′) ,

linearity tells us that

L(αu+ βu′) = αL(u) + βL(u′) = α0 + β0 = 0 .
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Hence, thanks to the subspace theorem, the set of all vectors in U that are mapped
to the zero vector is a subspace of V . It is called the kernel of L:

kerL := {u ∈ U |L(u) = 0} ⊂ U.

Note that finding a kernel means finding a solution to a homogeneous linear equation.

Example 113 (The image of a linear map).

Suppose L : U → V is a linear map between vector spaces. Then if

v = L(u) and v′ = L(u′) ,

linearity tells us that

αv + βv′ = αL(u) + βL(u′) = L(αu+ βu′) .

Hence, calling once again on the subspace theorem, the set of all vectors in V that
are obtained as outputs of the map L is a subspace. It is called the image of L:

imL := {L(u) | u ∈ U} ⊂ V.

Example 114 (An eigenspace of a linear map).

Suppose L : V → V is a linear map and V is a vector space. Then if

L(u) = λu and L(v) = λv ,

linearity tells us that

L(αu+ βv) = αL(u) + βL(v) = αL(u) + βL(v) = αλu+ βλv = λ(αu+ βv) .

Hence, again by subspace theorem, the set of all vectors in V that obey the eigenvector
equation L(v) = λv is a subspace of V . It is called an eigenspace

Vλ := {v ∈ V |L(v) = λv}.

For most scalars λ, the only solution to L(v) = λv will be v = 0, which yields the
trivial subspace {0}. When there are nontrivial solutions to L(v) = λv, the number λ
is called an eigenvalue, and carries essential information about the map L.

Kernels, images and eigenspaces are discussed in great depth in chap-
ters 16 and 12.
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9.3 Review Problems

Webwork:
Reading Problems 1 , 2

Subspaces 3, 4, 5, 6
Spans 7, 8

1. Determine if x− x3 ∈ span{x2, 2x+ x2, x+ x3}.

2. Let U and W be subspaces of V . Are:

(a) U ∪W
(b) U ∩W

also subspaces? Explain why or why not. Draw examples in R3.

Hint

3. Let L : R3 → R3 where

L(x, y, z) = (x+ 2y + z, 2x+ y + z, 0) .

Find kerL, imL and the eigenspaces R3
−1, R3

3. Your answers should be
subsets of R3. Express them using span notation.
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10
Linear Independence

Consider a plane P that includes the origin in R3 and non-zero vectors
{u, v, w} in P .

If no two of u, v and w are parallel, then P = span{u, v, w}. But any two
vectors determines a plane, so we should be able to span the plane using
only two of the vectors u, v, w. Then we could choose two of the vectors in
{u, v, w} whose span is P , and express the other as a linear combination of
those two. Suppose u and v span P . Then there exist constants d1, d2 (not
both zero) such that w = d1u+ d2v. Since w can be expressed in terms of u
and v we say that it is not independent. More generally, the relationship

c1u+ c2v + c3w = 0 ci ∈ R, some ci 6= 0

expresses the fact that u, v, w are not all independent.
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Definition We say that the vectors v1, v2, . . . , vn are linearly dependent
if there exist constants1 c1, c2, . . . , cn not all zero such that

c1v1 + c2v2 + · · ·+ cnvn = 0.

Otherwise, the vectors v1, v2, . . . , vn are linearly independent.

Remark The zero vector 0V can never be on a list of independent vectors because
α0V = 0V for any scalar α.

Example 115 Consider the following vectors in R3:

v1 =

 4
−1

3

 , v2 =

−3
7
4

 , v3 =

 5
12
17

 , v4 =

−1
1
0

 .

Are these vectors linearly independent?
No, since 3v1 + 2v2 − v3 + v4 = 0, the vectors are linearly dependent.

Worked Example

10.1 Showing Linear Dependence

In the above example we were given the linear combination 3v1+2v2−v3+v4
seemingly by magic. The next example shows how to find such a linear
combination, if it exists.

Example 116 Consider the following vectors in R3:

v1 =

0
0
1

 , v2 =

1
2
1

 , v3 =

1
2
3

 .

Are they linearly independent?
We need to see whether the system

c1v1 + c2v2 + c3v3 = 0

1Usually our vector spaces are defined over R, but in general we can have vector spaces
defined over different base fields such as C or Z2. The coefficients ci should come from
whatever our base field is (usually R).
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has any solutions for c1, c2, c3. We can rewrite this as a homogeneous system by
building a matrix whose columns are the vectors v1, v2 and v3:

(
v1 v2 v3

)c1c2
c3

 = 0.

This system has solutions if and only if the matrix M =
(
v1 v2 v3

)
is singular, so

we should find the determinant of M :

detM = det

0 1 1
0 2 2
1 1 3

 = det

(
1 1
2 2

)
= 0.

Therefore nontrivial solutions exist. At this point we know that the vectors are
linearly dependent. If we need to, we can find coefficients that demonstrate linear
dependence by solving0 1 1 0

0 2 2 0
1 1 3 0

 ∼
1 1 3 0

0 1 1 0
0 0 0 0

 ∼
1 0 2 0

0 1 1 0
0 0 0 0

 .

The solution set {µ(−2,−1, 1) | µ ∈ R} encodes the linear combinations equal to zero;
any choice of µ will produce coefficients c1, c2, c3 that satisfy the linear homogeneous
equation. In particular, µ = 1 corresponds to the equation

c1v1 + c2v2 + c3v3 = 0⇒ −2v1 − v2 + v3 = 0.

Reading homework: problem 1

Definition Any sum of vectors v1, . . . , vk multiplied by scalars c1, . . . , ck,
namely

c1v1 + · · ·+ ckvk ,

is called a linear combination of v1, . . . , vk.

Theorem 10.1.1 (Linear Dependence). An ordered set of non-zero vectors
(v1, . . . , vn) is linearly dependent if and only if one of the vectors vk is ex-
pressible as a linear combination of the preceding vectors.

Proof. The theorem is an if and only if statement, so there are two things to
show.
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i. First, we show that if vk = c1v1 + · · · ck−1vk−1 then the set is linearly
dependent.

This is easy. We just rewrite the assumption:

c1v1 + · · ·+ ck−1vk−1 − vk + 0vk+1 + · · ·+ 0vn = 0.

This is a vanishing linear combination of the vectors {v1, . . . , vn} with
not all coefficients equal to zero, so {v1, . . . , vn} is a linearly dependent
set.

ii. Now we show that linear dependence implies that there exists k for
which vk is a linear combination of the vectors {v1, . . . , vk−1}.

The assumption says that

c1v1 + c2v2 + · · ·+ cnvn = 0.

Take k to be the largest number for which ck is not equal to zero. So:

c1v1 + c2v2 + · · ·+ ck−1vk−1 + ckvk = 0.

(Note that k > 1, since otherwise we would have c1v1 = 0 ⇒ v1 = 0,
contradicting the assumption that none of the vi are the zero vector.)

So we can rearrange the equation:

c1v1 + c2v2 + · · ·+ ck−1vk−1 = −ckvk

⇒ −c
1

ck
v1 −

c2

ck
v2 − · · · −

ck−1

ck
vk−1 = vk.

Therefore we have expressed vk as a linear combination of the previous
vectors, and we are done.

Worked proof
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Example 117 Consider the vector space P2(t) of polynomials of degree less than or
equal to 2. Set:

v1 = 1 + t

v2 = 1 + t2

v3 = t+ t2

v4 = 2 + t+ t2

v5 = 1 + t+ t2.

The set {v1, . . . , v5} is linearly dependent, because v4 = v1 + v2.

10.2 Showing Linear Independence

We have seen two different ways to show a set of vectors is linearly dependent:
we can either find a linear combination of the vectors which is equal to
zero, or we can express one of the vectors as a linear combination of the
other vectors. On the other hand, to check that a set of vectors is linearly
independent, we must check that every linear combination of our vectors
with non-vanishing coefficients gives something other than the zero vector.
Equivalently, to show that the set v1, v2, . . . , vn is linearly independent, we
must show that the equation c1v1 + c2v2 + · · · + cnvn = 0 has no solutions
other than c1 = c2 = · · · = cn = 0.

Example 118 Consider the following vectors in R3:

v1 =

0
0
2

 , v2 =

2
2
1

 , v3 =

1
4
3

 .

Are they linearly independent?
We need to see whether the system

c1v1 + c2v2 + c3v3 = 0

has any solutions for c1, c2, c3. We can rewrite this as a homogeneous system:

(
v1 v2 v3

)c1c2
c3

 = 0.
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208 Linear Independence

This system has solutions if and only if the matrix M =
(
v1 v2 v3

)
is singular, so

we should find the determinant of M :

detM = det

0 2 1
0 2 4
2 1 3

 = 2 det

(
2 1
2 4

)
= 12.

Since the matrix M has non-zero determinant, the only solution to the system of
equations (

v1 v2 v3
)c1c2

c3

 = 0

is c1 = c2 = c3 = 0. So the vectors v1, v2, v3 are linearly independent.

Here is another example with bits:

Example 119 Let Z3
2 be the space of 3×1 bit-valued matrices (i.e., column vectors).

Is the following subset linearly independent?
1

1
0

 ,

1
0
1

 ,

0
1
1


If the set is linearly dependent, then we can find non-zero solutions to the system:

c1

1
1
0

+ c2

1
0
1

+ c3

0
1
1

 = 0,

which becomes the linear system1 1 0
1 0 1
0 1 1

c1c2
c3

 = 0.

Solutions exist if and only if the determinant of the matrix is non-zero. But:

det

1 1 0
1 0 1
0 1 1

 = 1 det

(
0 1
1 1

)
− 1 det

(
1 1
0 1

)
= −1− 1 = 1 + 1 = 0

Therefore non-trivial solutions exist, and the set is not linearly independent.

Reading homework: problem 2
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10.3 From Dependent Independent

Now suppose vectors v1, . . . , vn are linearly dependent,

c1v1 + c2v2 + · · ·+ cnvn = 0

with c1 6= 0. Then:

span{v1, . . . , vn} = span{v2, . . . , vn}

because any x ∈ span{v1, . . . , vn} is given by

x = a1v1 + · · ·+ anvn

= a1
(
−c

2

c1
v2 − · · · −

cn

c1
vn

)
+ a2v2 + · · ·+ anvn

=

(
a2 − a1 c

2

c1

)
v2 + · · ·+

(
an − a1 c

n

c1

)
vn.

Then x is in span{v2, . . . , vn}.
When we write a vector space as the span of a list of vectors, we would like

that list to be as short as possible (this idea is explored further in chapter 11).
This can be achieved by iterating the above procedure.

Example 120 In the above example, we found that v4 = v1 + v2. In this case,
any expression for a vector as a linear combination involving v4 can be turned into a
combination without v4 by making the substitution v4 = v1 + v2.

Then:

S = span{1 + t, 1 + t2, t+ t2, 2 + t+ t2, 1 + t+ t2}
= span{1 + t, 1 + t2, t+ t2, 1 + t+ t2}.

Now we notice that 1 + t + t2 = 1
2(1 + t) + 1

2(1 + t2) + 1
2(t + t2). So the vector

1 + t+ t2 = v5 is also extraneous, since it can be expressed as a linear combination of
the remaining three vectors, v1, v2, v3. Therefore

S = span{1 + t, 1 + t2, t+ t2}.

In fact, you can check that there are no (non-zero) solutions to the linear system

c1(1 + t) + c2(1 + t2) + c3(t+ t2) = 0.

Therefore the remaining vectors {1 + t, 1 + t2, t + t2} are linearly independent, and
span the vector space S. Then these vectors are a minimal spanning set, in the sense
that no more vectors can be removed since the vectors are linearly independent. Such
a set is called a basis for S.
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210 Linear Independence

10.4 Review Problems

Webwork:

Reading Problems 1 ,2
Testing for linear independence 3, 4

Gaussian elimination 5
Spanning and linear independence 6

1. Let Bn be the space of n× 1 bit-valued matrices (i.e., column vectors)
over the field Z2. Remember that this means that the coefficients in
any linear combination can be only 0 or 1, with rules for adding and
multiplying coefficients given here.

(a) How many different vectors are there in Bn?

(b) Find a collection S of vectors that span B3 and are linearly inde-
pendent. In other words, find a basis of B3.

(c) Write each other vector inB3 as a linear combination of the vectors
in the set S that you chose.

(d) Would it be possible to span B3 with only two vectors?

Hint

2. Let ei be the vector in Rn with a 1 in the ith position and 0’s in every
other position. Let v be an arbitrary vector in Rn.

(a) Show that the collection {e1, . . . , en} is linearly independent.

(b) Demonstrate that v =
∑n

i=1(v ei)ei.

(c) The span{e1, . . . , en} is the same as what vector space?

3. Consider the ordered set of vectors from R31
2
3

 ,

2
4
6

 ,

1
0
1

 ,

1
4
5


(a) Determine if the set is linearly independent by using the vectors

as the columns of a matrix M and finding RREF(M).
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10.4 Review Problems 211

(b) If possible, write each vector as a linear combination of the pre-
ceding ones.

(c) Remove the vectors which can be expressed as linear combinations
of the preceding vectors to form a linearly independent ordered set.
(Every vector in your set set should be from the given set.)

4. Gaussian elimination is a useful tool to figure out whether a set of
vectors spans a vector space and if they are linearly independent.
Consider a matrix M made from an ordered set of column vectors
(v1, v2, . . . , vm) ⊂ Rn and the three cases listed below:

(a) RREF(M) is the identity matrix.

(b) RREF(M) has a row of zeros.

(c) Neither case (a) or (b) apply.

First give an explicit example for each case, state whether the col-
umn vectors you use are linearly independent or spanning in each case.
Then, in general, determine whether (v1, v2, . . . , vm) are linearly inde-
pendent and/or spanning Rn in each of the three cases. If they are
linearly dependent, does RREF(M) tell you which vectors could be
removed to yield an independent set of vectors?
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11
Basis and Dimension

In chapter 10, the notions of a linearly independent set of vectors in a vector
space V , and of a set of vectors that span V were established; any set of
vectors that span V can be reduced to some minimal collection of linearly
independent vectors; such a minimal set is called a basis of the subspace V .

Definition Let V be a vector space. Then a set S is a basis for V if S is
linearly independent and V = spanS.

If S is a basis of V and S has only finitely many elements, then we say
that V is finite-dimensional. The number of vectors in S is the dimension
of V .

Suppose V is a finite-dimensional vector space, and S and T are two dif-
ferent bases for V . One might worry that S and T have a different number of
vectors; then we would have to talk about the dimension of V in terms of the
basis S or in terms of the basis T . Luckily this isn’t what happens. Later in
this chapter, we will show that S and T must have the same number of vec-
tors. This means that the dimension of a vector space is basis-independent.
In fact, dimension is a very important characteristic of a vector space.

Example 121 Pn(t) (polynomials in t of degree n or less) has a basis {1, t, . . . , tn},
since every vector in this space is a sum

a0 1 + a1 t+ · · ·+ an tn, ai ∈ R ,

so Pn(t) = span{1, t, . . . , tn}. This set of vectors is linearly independent; If the
polynomial p(t) = c01 + c1t+ · · ·+ cntn = 0, then c0 = c1 = · · · = cn = 0, so p(t) is
the zero polynomial. Thus Pn(t) is finite dimensional, and dimPn(t) = n+ 1.
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214 Basis and Dimension

Theorem 11.0.1. Let S = {v1, . . . , vn} be a basis for a vector space V .
Then every vector w ∈ V can be written uniquely as a linear combination of
vectors in the basis S:

w = c1v1 + · · ·+ cnvn.

Proof. Since S is a basis for V , then spanS = V , and so there exist con-
stants ci such that w = c1v1 + · · ·+ cnvn.

Suppose there exists a second set of constants di such that

w = d1v1 + · · ·+ dnvn .

Then

0V = w − w
= c1v1 + · · ·+ cnvn − d1v1 − · · · − dnvn
= (c1 − d1)v1 + · · ·+ (cn − dn)vn.

If it occurs exactly once that ci 6= di, then the equation reduces to 0 =
(ci − di)vi, which is a contradiction since the vectors vi are assumed to be
non-zero.

If we have more than one i for which ci 6= di, we can use this last equation
to write one of the vectors in S as a linear combination of other vectors in S,
which contradicts the assumption that S is linearly independent. Then for
every i, ci = di.

Proof Explanation

Remark This theorem is the one that makes bases so useful–they allow us to convert
abstract vectors into column vectors. By ordering the set S we obtain B = (v1, . . . , vn)
and can write

w = (v1, . . . , vn)

 c1

...
cn

 =

 c1

...
cn


B

.

Remember that in general it makes no sense to drop the subscript B on the column
vector on the right–most vector spaces are not made from columns of numbers!
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Worked Example

Next, we would like to establish a method for determining whether a
collection of vectors forms a basis for Rn. But first, we need to show that
any two bases for a finite-dimensional vector space has the same number of
vectors.

Lemma 11.0.2. If S = {v1, . . . , vn} is a basis for a vector space V and
T = {w1, . . . , wm} is a linearly independent set of vectors in V , then m ≤ n.

The idea of the proof is to start with the set S and replace vectors in S
one at a time with vectors from T , such that after each replacement we still
have a basis for V .

Reading homework: problem 1

Proof. Since S spans V , then the set {w1, v1, . . . , vn} is linearly dependent.
Then we can write w1 as a linear combination of the vi; using that equation,
we can express one of the vi in terms of w1 and the remaining vj with j 6=
i. Then we can discard one of the vi from this set to obtain a linearly
independent set that still spans V . Now we need to prove that S1 is a basis;
we must show that S1 is linearly independent and that S1 spans V .

The set S1 = {w1, v1, . . . , vi−1, vi+1, . . . , vn} is linearly independent: By
the previous theorem, there was a unique way to express w1 in terms of
the set S. Now, to obtain a contradiction, suppose there is some k and
constants ci such that

vk = c0w1 + c1v1 + · · ·+ ci−1vi−1 + ci+1vi+1 + · · ·+ cnvn.

Then replacing w1 with its expression in terms of the collection S gives a way
to express the vector vk as a linear combination of the vectors in S, which
contradicts the linear independence of S. On the other hand, we cannot
express w1 as a linear combination of the vectors in {vj|j 6= i}, since the
expression of w1 in terms of S was unique, and had a non-zero coefficient for
the vector vi. Then no vector in S1 can be expressed as a combination of
other vectors in S1, which demonstrates that S1 is linearly independent.

The set S1 spans V : For any u ∈ V , we can express u as a linear com-
bination of vectors in S. But we can express vi as a linear combination of
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216 Basis and Dimension

vectors in the collection S1; rewriting vi as such allows us to express u as
a linear combination of the vectors in S1. Thus S1 is a basis of V with n
vectors.

We can now iterate this process, replacing one of the vi in S1 with w2,
and so on. If m ≤ n, this process ends with the set Sm = {w1, . . . , wm,
vi1 , . . . , vin−m}, which is fine.

Otherwise, we have m > n, and the set Sn = {w1, . . . , wn} is a basis
for V . But we still have some vector wn+1 in T that is not in Sn. Since Sn
is a basis, we can write wn+1 as a combination of the vectors in Sn, which
contradicts the linear independence of the set T . Then it must be the case
that m ≤ n, as desired.

Worked Example

Corollary 11.0.3. For a finite-dimensional vector space V , any two bases
for V have the same number of vectors.

Proof. Let S and T be two bases for V . Then both are linearly independent
sets that span V . Suppose S has n vectors and T has m vectors. Then by
the previous lemma, we have that m ≤ n. But (exchanging the roles of S
and T in application of the lemma) we also see that n ≤ m. Then m = n,
as desired.

Reading homework: problem 2

11.1 Bases in Rn.

In review question 2, chapter 10 you checked that

Rn = span




1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1


 ,

and that this set of vectors is linearly independent. (If you didn’t do that
problem, check this before reading any further!) So this set of vectors is
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11.1 Bases in Rn. 217

a basis for Rn, and dimRn = n. This basis is often called the standard
or canonical basis for Rn. The vector with a one in the ith position and
zeros everywhere else is written ei. (You could also view it as the function
{1, 2, . . . , n} → R where ei(j) = 1 if i = j and 0 if i 6= j.) It points in the
direction of the ith coordinate axis, and has unit length. In multivariable
calculus classes, this basis is often written {̂i, ĵ, k̂} for R3.

Note that it is often convenient to order basis elements, so rather than
writing a set of vectors, we would write a list. This is called an ordered
basis. For example, the canonical ordered basis for Rn is (e1, e2, . . . , en). The
possibility to reorder basis vectors is not the only way in which bases are
non-unique.

Bases are not unique. While there exists a unique way to express a vector in terms
of any particular basis, bases themselves are far from unique. For example, both of
the sets {(

1
0

)
,

(
0
1

)}
and

{(
1
1

)
,

(
1
−1

)}
are bases for R2. Rescaling any vector in one of these sets is already enough to show
that R2 has infinitely many bases. But even if we require that all of the basis vectors
have unit length, it turns out that there are still infinitely many bases for R2 (see
review question 3).

To see whether a set of vectors S = {v1, . . . , vm} is a basis for Rn, we have
to check that the elements are linearly independent and that they span Rn.
From the previous discussion, we also know that m must equal n, so lets
assume S has n vectors. If S is linearly independent, then there is no non-
trivial solution of the equation

0 = x1v1 + · · ·+ xnvn.

Let M be a matrix whose columns are the vectors vi and X the column
vector with entries xi. Then the above equation is equivalent to requiring
that there is a unique solution to

MX = 0 .

To see if S spans Rn, we take an arbitrary vector w and solve the linear
system

w = x1v1 + · · ·+ xnvn
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in the unknowns xi. For this, we need to find a unique solution for the linear
system MX = w.

Thus, we need to show that M−1 exists, so that

X = M−1w

is the unique solution we desire. Then we see that S is a basis for Rn if and
only if detM 6= 0.

Theorem 11.1.1. Let S = {v1, . . . , vm} be a collection of vectors in Rn.
Let M be the matrix whose columns are the vectors in S. Then S is a basis
for V if and only if m is the dimension of V and

detM 6= 0.

Remark Also observe that S is a basis if and only if RREF(M) = I.

Example 122 Let

S =

{(
1
0

)
,

(
0
1

)}
and T =

{(
1
1

)
,

(
1
−1

)}
.

Then set MS =

(
1 0
0 1

)
. Since detMS = 1 6= 0, then S is a basis for R2.

Likewise, set MT =

(
1 1
1 −1

)
. Since detMT = −2 6= 0, then T is a basis for R2.

11.2 Matrix of a Linear Transformation (Redux)

Not only do bases allow us to describe arbitrary vectors as column vectors,
they also permit linear transformations to be expressed as matrices. This
is a very powerful tool for computations, which is covered in chapter 7 and
reviewed again here.

Suppose we have a linear transformation L : V → W and ordered input
and output bases E = (e1, . . . , en) and F = (f1, . . . , fm) for V and W re-
spectively (of course, these need not be the standard basis–in all likelihood
V is not Rn). Since for each ej, L(ej) is a vector in W , there exist unique
numbers mi

j such that

L(ej) = f1m
1
j + · · ·+ fmm

m
j = (f1, . . . , fm)

 m1
j

...
mm
j

 .
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11.2 Matrix of a Linear Transformation (Redux) 219

The number mi
j is the ith component of L(ej) in the basis F , while the fi

are vectors (note that if α is a scalar, and v a vector, αv = vα, we have
used the latter—rather uncommon—notation in the above formula). The
numbers mi

j naturally form a matrix whose jth column is the column vector
displayed above. Indeed, if

v = e1v
1 + · · ·+ env

n ,

Then

L(v) = L(v1e1 + v2e2 + · · ·+ vnen)

= v1L(e1) + v2L(e2) + · · ·+ vnL(en) =
m∑
j=1

L(ej)v
j

=
m∑
j=1

(f1m
1
j + · · ·+ fmm

m
j )vj =

n∑
i=1

fi

[
m∑
j=1

M i
jv
j

]

=
(
f1 f2 · · · fm

)

m1

1 m1
2 · · · m1

n

m2
1 m2

2
...

. . .
...

mm
1 · · · mm

n



v1

v2

...
vn


In the column vector-basis notation this equality looks familiar:

L

 v1

...
vn


E

=


 m1

1 . . . m1
n

...
...

mm
1 . . . mm

n


 v1

...
vn



F

.

The array of numbers M = (mi
j) is called the matrix of L in the input and

output bases E and F for V and W , respectively. This matrix will change
if we change either of the bases. Also observe that the columns of M are
computed by examining L acting on each basis vector in V expanded in the
basis vectors of W .

Example 123 Let L : P1(t) 7→ P1(t), such that L(a + bt) = (a + b)t. Since V =
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220 Basis and Dimension

P1(t) = W , let’s choose the same ordered basis B = (1− t, 1 + t) for V and W .

L(1− t) = (1− 1)t = 0 = (1− t) · 0 + (1 + t) · 0 =
(
1− t, 1 + t

)(0
0

)

L(1 + t) = (1 + 1)t = 2t = (1− t) · −1 + (1 + t) · 1 =
(
1− t, 1 + t

)(−1
1

)

⇒ L

(
a
b

)
B

=

((
0 −1
0 1

)(
a
b

))
B

.

When the vector space is Rn and the standard basis is used, the problem
of finding the matrix of a linear transformation will seem almost trivial. It
is worthwhile working through it once in the above language though.

Example 124 Any vector in Rn can be written as a linear combination of the standard
(ordered) basis (e1, . . . en). The vector ei has a one in the ith position, and zeros
everywhere else. I.e.

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

 .

Then to find the matrix of any linear transformation L : Rn → Rn, it suffices to know
what L(ei) is for every i.

For any matrix M , observe that Mei is equal to the ith column of M . Then if the
ith column of M equals L(ei) for every i, then Mv = L(v) for every v ∈ Rn. Then
the matrix representing L in the standard basis is just the matrix whose ith column
is L(ei).

For example, if

L

1
0
0

 =

1
4
7

 , L

0
1
0

 =

2
5
8

 , L

0
0
1

 =

3
6
9

 ,

then the matrix of L in the standard basis is simply1 2 3
4 5 6
7 8 9

 .
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Alternatively, this information would often be presented as

L

xy
z

 =

 x+ 2y + 3z
4x+ 5y + 6z
7x+ 8y + 9z

 .

You could either rewrite this as

L

xy
z

 =

1 2 3
4 5 6
7 8 9

xy
z

 ,

to immediately learn the matrix of L, or taking a more circuitous route:

L

xy
z

 = L

x
1

0
0

+ y

0
0
1

+ z

0
0
1



= x

1
4
7

+ y

2
5
8

+ z

3
6
9

 =

1 2 3
4 5 6
7 8 9

xy
z

 .

11.3 Review Problems

Webwork:
Reading Problems 1 ,2

Basis checks 3,4
Computing column vectors 5,6

1. (a) Draw the collection of all unit vectors in R2.

(b) Let Sx =

{(
1
0

)
, x

}
, where x is a unit vector in R2. For which x

is Sx a basis of R2?

(c) Sketch all unit vectors in R3.

(d) For which x ∈ R3 is Sx =


1

0
0

 ,

0
1
0

 , x

 a basis for R3.

(e) Discuss the generalization of the above to Rn.

2. Let Bn be the vector space of column vectors with bit entries 0, 1. Write
down every basis for B1 and B2. How many bases are there for B3?
B4? Can you make a conjecture for the number of bases for Bn?
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222 Basis and Dimension

(Hint: You can build up a basis for Bn by choosing one vector at a
time, such that the vector you choose is not in the span of the previous
vectors you’ve chosen. How many vectors are in the span of any one
vector? Any two vectors? How many vectors are in the span of any k
vectors, for k ≤ n?)

Hint

3. Suppose that V is an n-dimensional vector space.

(a) Show that any n linearly independent vectors in V form a basis.

(Hint: Let {w1, . . . , wm} be a collection of n linearly independent
vectors in V , and let {v1, . . . , vn} be a basis for V . Apply the
method of Lemma 11.0.2 to these two sets of vectors.)

(b) Show that any set of n vectors in V which span V forms a basis
for V .

(Hint: Suppose that you have a set of n vectors which span V but
do not form a basis. What must be true about them? How could
you get a basis from this set? Use Corollary 11.0.3 to derive a
contradiction.)

4. Let S = {v1, . . . , vn} be a subset of a vector space V . Show that if every
vector w in V can be expressed uniquely as a linear combination of vec-
tors in S, then S is a basis of V . In other words: suppose that for every
vector w in V , there is exactly one set of constants c1, . . . , cn so that
c1v1 + · · ·+ cnvn = w. Show that this means that the set S is linearly
independent and spans V . (This is the converse to theorem 11.0.1.)

5. Vectors are objects that you can add together; show that the set of all
linear transformations mapping R3 → R is itself a vector space. Find a
basis for this vector space. Do you think your proof could be modified
to work for linear transformations Rn → R? For RN → Rm? For RR?

Hint: Represent R3 as column vectors, and argue that a linear trans-
formation T : R3 → R is just a row vector.
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6. Let Sn denote the vector space of all n× n symmetric matrices;

Sn := {M : Rn → Rn | M = MT}.

Let An denote the vector space of all n× n anti-symmetric matrices;

An = {M : Rn → Rn | M = −MT}.

(a) Find a basis for S3.

(b) Find a basis for A3.

(c) Can you find a basis for Sn? For An?

Hint: Describe it in terms of combinations of the matrices F i
j

which have a 1 in the i-th row and the j-th column and 0 every-
where else. Note that {F i

j | 1 ≤ i ≤ r, 1 ≤ j ≤ k} is a basis for
M r

k .

7. Give the matrix of the linear transformation L with respect to the input
and output bases B and B′ listed below:

(a) L : V → W where B = (v1, . . . , vn) is a basis for V and B′ =
(L(v1), . . . , L(vn)) is a basis for W .

(b) L : V → V where B = B′ = (v1, . . . , vn) and L(vi) = λivi for
all 1 ≤ i ≤ n.
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12
Eigenvalues and Eigenvectors

In a vector space with no structure other than the vector space rules, no
vector other than the zero vector is any more important than any other.
Once one also has a linear transformation the situation changes dramatically.
We begin with a fun example, of a type bound to reappear in your future
scientific studies:

String Theory Consider a vibrating string, whose displacement at point x at time t
is given by a function y(x, t):

The set of all displacement functions for the string can be modeled by a vector space

V =

{
y : R2 → R

∣∣∣∣all partial derivatives
∂k+my(x, t)

∂xk∂tm
exist

}
.

The concavity and the acceleration of the string at the point (x, t) are ∂2y
∂x2 (x, t) and

∂2y
∂t2

(x, t) respectively. Since quantities must exist at each point on the string for the
wave equation to make sense, we required that all partial derivatives of y(x, t) exist.
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226 Eigenvalues and Eigenvectors

Note also that the function y(x, t) = 0 —drawn in grey—is the only special vector in
the vector space V .

We now add some extra information. The string’s behavior in time and space can
be modeled by a wave equation

∂2y

∂t2
=
∂2y

∂x2
,

which says that the acceleration of a point on the string is equal its concavity at that
point. For example, if the string were made of stretched rubber, it would prefer to be
in a straight line, so this equation makes good intuitive sense. Not all of the functions
in V are solutions to the wave equation; not all of the functions in the vector space V
describe the way a string would really vibrate. The ways a string would really vibrate
are (at least approximately) solutions to the wave equation above, which can rewritten
as a linear function

Wy = 0

where

W =

(
− ∂2

∂t2
+

∂2

∂x2

)
: V → V .

Some examples of solutions are

y1(x, t) = sin(t) sin(x) y2(x, t) = 3 sin(2t) sin(2x)

and
y3(x, t) = sin(t) sin(x) + 3 sin(2t) sin(2x) .

Since Wy = 0 is a homogeneous linear equation, linear combinations of solutions are
solutions; in other words the kernel ker(w) is a vector space. Given the linear function
W , some vectors are now more special than others.

We can use musical intuition to do more! If the ends of the string were held
fixed, we suspect that it would prefer to vibrate at certain frequencies corresponding
to musical notes. This is modeled by looking at solutions of the form

y(x, t) = sin(ωt)v(x) .

Here the periodic sine function accounts for the string’s vibratory motion, while the
function v(x) gives the shape of the string at any fixed instant of time. Observe that

W
(

sin(ωt)v(x)
)

= sin(ωt)
(d2f
dx2

+ ω2f
)
.

This suggests we introduce a new vector space

U =

{
v : R→ R

∣∣∣∣ all derivatives
dkf

dxk
exist

}
,
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12.1 Invariant Directions 227

as well as a new linear function

L :=
d2

dx2
: U −→ U .

The number ω is called an angular frequency in many contexts, lets call its square λ :=
−ω2 to match notations we will use later (notice that for this particular problem λ must
then be negative). Then, because we want W (y) = 0, which implies d2f/dx2 = ω2f ,
it follows that the vector v(x) ∈ U determining the vibrating string’s shape obeys

L(v) = λv .

This is perhaps one of the most important equations in all of linear algebra! It is
the eigenvalue-eigenvector equation. In this problem we have to solve it both for λ,
to determine which frequencies (or musical notes) our string likes to sing, and the
vector v determining the string’s shape. The vector v is called an eigenvector and λ
its corresponding eigenvalue. The solution sets for each λ are called Vλ. For any λ the
set Vk is a vector space since elements of this set are solutions to the homogeneous
equation (L− λ)v = 0.

We began this chapter by stating “In a vector space, with no other struc-
ture, no vector is more important than any other.” Our aim is to show you
that when a linear operator L acts on a vector space, vectors that solve the
equation L(v) = λv play a central role.

12.1 Invariant Directions

Have a look at the linear transformation L depicted below:
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228 Eigenvalues and Eigenvectors

It was picked at random by choosing a pair of vectors L(e1) and L(e2) as
the outputs of L acting on the canonical basis vectors. Notice how the unit
square with a corner at the origin is mapped to a parallelogram. The second
line of the picture shows these superimposed on one another. Now look at the
second picture on that line. There, two vectors f1 and f2 have been carefully
chosen such that if the inputs into L are in the parallelogram spanned by f1
and f2, the outputs also form a parallelogram with edges lying along the same
two directions. Clearly this is a very special situation that should correspond
to interesting properties of L.

Now lets try an explicit example to see if we can achieve the last picture:

Example 126 Consider the linear transformation L such that

L

(
1
0

)
=

(
−4
−10

)
and L

(
0
1

)
=

(
3
7

)
,

so that the matrix of L in the standard basis is(
−4 3
−10 7

)
.

Recall that a vector is a direction and a magnitude; L applied to

(
1
0

)
or

(
0
1

)
changes

both the direction and the magnitude of the vectors given to it.
Notice that

L

(
3
5

)
=

(
−4 · 3 + 3 · 5
−10 · 3 + 7 · 5

)
=

(
3
5

)
.
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12.1 Invariant Directions 229

Figure 12.1: The eigenvalue–eigenvector equation is probably the most im-
portant one in linear algebra.

Then L fixes the direction (and actually also the magnitude) of the vector v1 =

(
3
5

)
.

Reading homework: problem 1

Now, notice that any vector with the same direction as v1 can be written as cv1
for some constant c. Then L(cv1) = cL(v1) = cv1, so L fixes every vector pointing
in the same direction as v1.

Also notice that

L

(
1
2

)
=

(
−4 · 1 + 3 · 2
−10 · 1 + 7 · 2

)
=

(
2
4

)
= 2

(
1
2

)
,

so L fixes the direction of the vector v2 =

(
1
2

)
but stretches v2 by a factor of 2.

Now notice that for any constant c, L(cv2) = cL(v2) = 2cv2. Then L stretches every
vector pointing in the same direction as v2 by a factor of 2.

In short, given a linear transformation L it is sometimes possible to find a
vector v 6= 0 and constant λ 6= 0 such that Lv = λv. We call the direction of
the vector v an invariant direction. In fact, any vector pointing in the same
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230 Eigenvalues and Eigenvectors

direction also satisfies this equation because L(cv) = cL(v) = λcv. More
generally, any non-zero vector v that solves

L(v) = λv

is called an eigenvector of L, and λ (which now need not be zero) is an
eigenvalue. Since the direction is all we really care about here, then any other
vector cv (so long as c 6= 0) is an equally good choice of eigenvector. Notice
that the relation “u and v point in the same direction” is an equivalence
relation.

In our example of the linear transformation L with matrix(
−4 3
−10 7

)
,

we have seen that L enjoys the property of having two invariant directions,
represented by eigenvectors v1 and v2 with eigenvalues 1 and 2, respectively.

It would be very convenient if we could write any vector w as a linear
combination of v1 and v2. Suppose w = rv1 +sv2 for some constants r and s.
Then

L(w) = L(rv1 + sv2) = rL(v1) + sL(v2) = rv1 + 2sv2.

Now L just multiplies the number r by 1 and the number s by 2. If we could
write this as a matrix, it would look like:(

1 0
0 2

)(
s
t

)
which is much slicker than the usual scenario

L

(
x
y

)
=

(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
.

Here, s and t give the coordinates of w in terms of the vectors v1 and v2. In
the previous example, we multiplied the vector by the matrix L and came up
with a complicated expression. In these coordinates, we see that L has a very
simple diagonal matrix, whose diagonal entries are exactly the eigenvalues
of L.

This process is called diagonalization. It makes complicated linear sys-
tems much easier to analyze.
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12.1 Invariant Directions 231

Reading homework: problem 2

Now that we’ve seen what eigenvalues and eigenvectors are, there are a
number of questions that need to be answered.

• How do we find eigenvectors and their eigenvalues?

• How many eigenvalues and (independent) eigenvectors does a given
linear transformation have?

• When can a linear transformation be diagonalized?

We will start by trying to find the eigenvectors for a linear transformation.

2× 2 Example

Example 127 Let L : R2 → R2 such that L(x, y) = (2x + 2y, 16x + 6y). First, we
find the matrix of L, this is quickest in the standard basis:(

x
y

)
L7−→
(

2 2
16 6

)(
x
y

)
.

We want to find an invariant direction v =

(
x
y

)
such that

Lv = λv

or, in matrix notation, (
2 2

16 6

)(
x
y

)
= λ

(
x
y

)

⇔
(

2 2
16 6

)(
x
y

)
=

(
λ 0
0 λ

)(
x
y

)

⇔
(

2− λ 2
16 6− λ

)(
x
y

)
=

(
0
0

)
.
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232 Eigenvalues and Eigenvectors

This is a homogeneous system, so it only has solutions when the matrix

(
2− λ 2

16 6− λ

)
is singular. In other words,

det

(
2− λ 2

16 6− λ

)
= 0

⇔ (2− λ)(6− λ)− 32 = 0

⇔ λ2 − 8λ− 20 = 0

⇔ (λ− 10)(λ+ 2) = 0

For any square n× n matrix M , the polynomial in λ given by

PM (λ) = det(λI −M) = (−1)n det(M − λI)

is called the characteristic polynomial of M , and its roots are the eigenvalues of M .
In this case, we see that L has two eigenvalues, λ1 = 10 and λ2 = −2. To find the

eigenvectors, we need to deal with these two cases separately. To do so, we solve the

linear system

(
2− λ 2

16 6− λ

)(
x
y

)
=

(
0
0

)
with the particular eigenvalue λ plugged

in to the matrix.

λ = 10: We solve the linear system(
−8 2
16 −4

)(
x
y

)
=

(
0
0

)
.

Both equations say that y = 4x, so any vector

(
x

4x

)
will do. Since we only

need the direction of the eigenvector, we can pick a value for x. Setting x = 1

is convenient, and gives the eigenvector v1 =

(
1
4

)
.

λ = −2: We solve the linear system (
4 2

16 8

)(
x
y

)
=

(
0
0

)
.

Here again both equations agree, because we chose λ to make the system

singular. We see that y = −2x works, so we can choose v2 =

(
1
−2

)
.

Our process was the following:

232



12.2 The Eigenvalue–Eigenvector Equation 233

1. Find the characteristic polynomial of the matrix M for L, given by1 det(λI−M).

2. Find the roots of the characteristic polynomial; these are the eigenvalues of L.

3. For each eigenvalue λi, solve the linear system (M − λiI)v = 0 to obtain an
eigenvector v associated to λi.

Jordan block example

12.2 The Eigenvalue–Eigenvector Equation

In section 12, we developed the idea of eigenvalues and eigenvectors in the
case of linear transformations R2 → R2. In this section, we will develop the
idea more generally.

Eigenvalues

Definition If L : V → V is linear and for some scalar λ and v 6= 0V

Lv = λv.

then λ is an eigenvalue of L with eigenvector v.

This equation says that the direction of v is invariant (unchanged) under L.
Let’s try to understand this equation better in terms of matrices. Let V

be a finite-dimensional vector space and let L : V → V . If we have a basis
for V we can represent L by a square matrix M and find eigenvalues λ and
associated eigenvectors v by solving the homogeneous system

(M − λI)v = 0.

This system has non-zero solutions if and only if the matrix

M − λI

is singular, and so we require that

1To save writing many minus signs compute det(M − λI); which is equivalent if you
only need the roots.
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234 Eigenvalues and Eigenvectors

Figure 12.2: Don’t forget the characteristic polynomial; you will need it to
compute eigenvalues.

det(λI −M) = 0.

The left hand side of this equation is a polynomial in the variable λ
called the characteristic polynomial PM(λ) of M . For an n × n matrix,
the characteristic polynomial has degree n. Then

PM(λ) = λn + c1λ
n−1 + · · ·+ cn.

Notice that PM(0) = det(−M) = (−1)n detM .

Now recall the following.

Theorem 12.2.1. (The Fundamental Theorem of Algebra) Any polynomial
can be factored into a product of first order polynomials over C.

This theorem implies that there exists a collection of n complex num-
bers λi (possibly with repetition) such that

PM(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn) =⇒ PM(λi) = 0.

The eigenvalues λi of M are exactly the roots of PM(λ). These eigenvalues
could be real or complex or zero, and they need not all be different. The
number of times that any given root λi appears in the collection of eigenvalues
is called its multiplicity .
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12.2 The Eigenvalue–Eigenvector Equation 235

Example 128 Let L be the linear transformation L : R3 → R3 given by

L

xy
z

 =

 2x+ y − z
x+ 2y − z
−x− y + 2z

 .

In the standard basis the matrix M representing L has columns Lei for each i, so:xy
z

 L7−→

 2 1 −1
1 2 −1
−1 −1 2

xy
z

 .

Then the characteristic polynomial of L is2

PM (λ) = det

λ− 2 −1 1
−1 λ− 2 1
1 1 λ− 2


= (λ− 2)[(λ− 2)2 − 1] + [−(λ− 2)− 1] + [−(λ− 2)− 1]

= (λ− 1)2(λ− 4) .

So L has eigenvalues λ1 = 1 (with multiplicity 2), and λ2 = 4 (with multiplicity 1).

To find the eigenvectors associated to each eigenvalue, we solve the homogeneous
system (M − λiI)X = 0 for each i.

λ = 4: We set up the augmented matrix for the linear system:−2 1 −1 0
1 −2 −1 0
−1 −1 −2 0

 ∼

1 −2 −1 0
0 −3 −3 0
0 −3 −3 0


∼

1 0 1 0
0 1 1 0
0 0 0 0

 .

Any vector of the form t

−1
−1

1

 is then an eigenvector with eigenvalue 4; thus L

leaves a line through the origin invariant.

2It is often easier (and equivalent) to solve det(M − λI) = 0.
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236 Eigenvalues and Eigenvectors

λ = 1: Again we set up an augmented matrix and find the solution set: 1 1 −1 0
1 1 −1 0
−1 −1 1 0

 ∼

1 1 −1 0
0 0 0 0
0 0 0 0

 .

Then the solution set has two free parameters, s and t, such that z = z =: t,
y = y =: s, and x = −s+ t. Thus L leaves invariant the set:s

−1
1
0

+ t

1
0
1

∣∣∣∣∣∣s, t ∈ R

 .

This set is a plane through the origin. So the multiplicity two eigenvalue has

two independent eigenvectors,

−1
1
0

 and

1
0
1

 that determine an invariant

plane.

Example 129 Let V be the vector space of smooth (i.e. infinitely differentiable)
functions f : R→ R. Then the derivative is a linear operator d

dx : V → V . What are
the eigenvectors of the derivative? In this case, we don’t have a matrix to work with,
so we have to make do.

A function f is an eigenvector of d
dx if there exists some number λ such that

d

dx
f = λf .

An obvious candidate is the exponential function, eλx; indeed, d
dxe

λx = λeλx. The

operator d
dx has an eigenvector eλx for every λ ∈ R.

12.3 Eigenspaces

In the previous example, we found two eigenvectors−1
1
0

 and

1
0
1


for L, both with eigenvalue 1. Notice that−1

1
0

+

1
0
1

 =

0
1
1


236
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is also an eigenvector of L with eigenvalue 1. In fact, any linear combination

r

−1
1
0

+ s

1
0
1


of these two eigenvectors will be another eigenvector with the same eigen-
value.

More generally, let {v1, v2, . . .} be eigenvectors of some linear transforma-
tion L with the same eigenvalue λ. A linear combination of the vi is given
by c1v1 + c2v2 + · · · for some constants c1, c2, . . .. Then

L(c1v1 + c2v2 + · · · ) = c1Lv1 + c2Lv2 + · · · by linearity of L

= c1λv1 + c2λv2 + · · · since Lvi = λvi

= λ(c1v1 + c2v2 + · · · ).

So every linear combination of the vi is an eigenvector of L with the same
eigenvalue λ. In simple terms, any sum of eigenvectors is again an eigenvector
if they share the same eigenvalue.

The space of all vectors with eigenvalue λ is called an eigenspace. It
is, in fact, a vector space contained within the larger vector space V . It
contains 0V , since L0V = 0V = λ0V , and is closed under addition and scalar
multiplication by the above calculation. All other vector space properties are
inherited from the fact that V itself is a vector space. In other words, the
subspace theorem (9.1.1, chapter 9) ensures that Vλ := {v ∈ V |Lv = 0} is a
subspace of V .

Eigenspaces

Reading homework: problem 3

You can now attempt the second sample midterm.
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12.4 Review Problems

Webwork:

Reading Problems 1 , 2 , 3
Characteristic polynomial 4, 5, 6

Eigenvalues 7, 8
Eigenspaces 9, 10
Eigenvectors 11, 12, 13, 14

Complex eigenvalues 15

1. Try to find more solutions to the vibrating string problem ∂2y/∂t2 =
∂2y/∂x2 using the ansatz

y(x, t) = sin(ωt)f(x) .

What equation must f(x) obey? Can you write this as an eigenvector
equation? Suppose that the string has length L and f(0) = f(L) = 0.
Can you find any solutions for f(x)?

2. Let M =

(
2 1
0 2

)
. Find all eigenvalues of M . Does M have two linearly

independent eigenvectors? Is there a basis in which the matrix of M is
diagonal? (I.e., can M be diagonalized?)

3. Consider L : R2 → R2 with

L

(
x
y

)
=

(
x cos θ + y sin θ
−x sin θ + y cos θ

)
.

(a) Write the matrix of L in the basis

(
1
0

)
,

(
0
1

)
.

(b) When θ 6= 0, explain how L acts on the plane. Draw a picture.

(c) Do you expect L to have invariant directions? (Consider also
special values of θ.)

(d) Try to find real eigenvalues for L by solving the equation

L(v) = λv.

(e) Are there complex eigenvalues for L, assuming that i =
√
−1

exists?
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4. Let L be the linear transformation L : R3 → R3 given by

L

xy
z

 =

x+ y
x+ z
y + z

 .

Let ei be the vector with a one in the ith position and zeros in all other
positions.

(a) Find Lei for each i = 1, 2, 3.

(b) Given a matrix M =

m1
1 m1

2 m1
3

m2
1 m2

2 m2
3

m3
1 m3

2 m3
3

, what can you say about

Mei for each i?

(c) Find a 3× 3 matrix M representing L.

(d) Find the eigenvectors and eigenvalues of M.

5. Let A be a matrix with eigenvector v with eigenvalue λ. Show that v is
also an eigenvector for A2 and find the corresponding eigenvalue. How
about for An where n ∈ N? Suppose that A is invertible. Show that v
is also an eigenvector for A−1.

6. A projection is a linear operator P such that P 2 = P . Let v be an
eigenvector with eigenvalue λ for a projection P , what are all possible
values of λ? Show that every projection P has at least one eigenvector.

Note that every complex matrix has at least 1 eigenvector, but you
need to prove the above for any field.

7. Explain why the characteristic polynomial of an n× n matrix has de-
gree n. Make your explanation easy to read by starting with some
simple examples, and then use properties of the determinant to give a
general explanation.

8. Compute the characteristic polynomial PM(λ) of the matrix

M =

(
a b
c d

)
.

Now, since we can evaluate polynomials on square matrices, we can
plug M into its characteristic polynomial and find the matrix PM(M).

239



240 Eigenvalues and Eigenvectors

What do you find from this computation? Does something similar hold
for 3× 3 matrices? (Try assuming that the matrix of M is diagonal to
answer this.)

9. Discrete dynamical system. Let M be the matrix given by

M =

(
3 2
2 3

)
.

Given any vector v(0) =

(
x(0)
y(0)

)
, we can create an infinite sequence of

vectors v(1), v(2), v(3), and so on using the rule:

v(t+ 1) = Mv(t) for all natural numbers t.

(This is known as a discrete dynamical system whose initial condition
is v(0).)

(a) Find all eigenvectors and eigenvalues of M.

(b) Find all vectors v(0) such that

v(0) = v(1) = v(2) = v(3) = · · ·

(Such a vector is known as a fixed point of the dynamical system.)

(c) Find all vectors v(0) such that v(0), v(1), v(2), v(3), . . . all point in
the same direction. (Any such vector describes an invariant curve
of the dynamical system.)

Hint
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13
Diagonalization

Given a linear transformation, it is highly desirable to write its matrix with
respect to a basis of eigenvectors.

13.1 Diagonalizability

Suppose we are lucky, and we have L : V → V , and the ordered basis B =
(v1, . . . , vn) is a set of eigenvectors for L, with eigenvalues λ1, . . . , λn. Then:

L(v1) = λ1v1

L(v2) = λ2v2
...

L(vn) = λnvn

As a result, the matrix of L in the basis of eigenvectors B is diagonal:

L


x1

x2

...
xn


B

=



λ1

λ2
. . .

λn



x1

x2

...
xn



B

,

where all entries off the diagonal are zero.
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Suppose that V is any n-dimensional vector space. We call a linear trans-
formation L : V 7→ V diagonalizable if there exists a collection of n linearly
independent eigenvectors for L. In other words, L is diagonalizable if there
exists a basis for V of eigenvectors for L.

In a basis of eigenvectors, the matrix of a linear transformation is diag-
onal. On the other hand, if an n × n matrix is diagonal, then the standard
basis vectors ei must already be a set of n linearly independent eigenvectors.
We have shown:

Theorem 13.1.1. Given an ordered basis B for a vector space V and a
linear transformation L : V → V , then the matrix for L in the basis B is
diagonal if and only if B consists of eigenvectors for L.

Non-diagonalizable example

Reading homework: problem 1

Typically, however, we do not begin a problem with a basis of eigenvec-
tors, but rather have to compute these. Hence we need to know how to
change from one basis to another:

13.2 Change of Basis

Suppose we have two ordered bases S = (v1, . . . , vn) and S ′ = (v′1, . . . , v
′
n)

for a vector space V . (Here vi and v′i are vectors, not components of vectors
in a basis!) Then we may write each v′k uniquely as

v′k =
∑
i

vip
i
k ,

this is v′k as a linear combination of the vi. In matrix notation

(
v′1, v

′
2, · · · , v′n

)
=
(
v1, v2, · · · , vn

)

p11 p12 · · · p1n
p21 p22
...

...
pn1 · · · pnn

 .
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13.2 Change of Basis 243

Here, the pik are constants, which we can regard as entries of a square ma-
trix P = (pik). The matrix P must have an inverse since we can also write
each vj uniquely as a linear combination of the v′k;

vj =
∑
k

v′kq
k
j .

Then we can write

vj =
∑
k

∑
i

vip
i
kq
k
j .

But
∑

k p
i
kq
k
j is the k, j entry of the product matrix PQ. Since the expression

for vj in the basis S is vj itself, then PQ maps each vj to itself. As a result,
each vj is an eigenvector for PQ with eigenvalue 1, so PQ is the identity, i.e.

PQ = I ⇔ Q = P−1 .

The matrix P is called a change of basis matrix. There is a quick and
dirty trick to obtain it; look at the formula above relating the new basis
vectors v′1, v

′
2, . . . v

′
n to the old ones v1, v2, . . . , vn. In particular focus on v′1

for which

v′1 =
(
v1, v2, · · · , vn

)

p11
p21
...
pn1

 .

This says that the first column of the change of basis matrix P is really just
the components of the vector v′1 in the basis v1, v2, . . . , vn.

The columns of the change of basis matrix are the components
of the new basis vectors in terms of the old basis vectors.

Example 130 Suppose S′ = (v′1, v
′
2) is an ordered basis for a vector space V and that

with respect to some other ordered basis S = (v1, v2) for V

v′1 =

(
1√
2
1√
2

)
S

and v′2 =

(
1√
3

− 1√
3

)
S

.
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244 Diagonalization

This means

v′1 =
(
v1, v2

)( 1√
2
1√
2

)
=
v1 + v2√

2
and v′2 =

(
v1, v2

)( 1√
3

− 1√
3

)
=
v1 − v2√

3
.

The change of basis matrix has as its columns just the components of v′1 and v′2;

P =

(
1√
2

1√
3

1√
2
− 1√

3

)
.

Changing basis changes the matrix of a linear transformation. However,
as a map between vector spaces, the linear transformation is the same
no matter which basis we use. Linear transformations are the actual
objects of study of this book, not matrices; matrices are merely a convenient
way of doing computations.

Change of Basis Example

Lets now calculate how the matrix of a linear transformation changes
when changing basis. To wit, let L : V −→ W with matrix M = (mi

j) in the
ordered input and output bases S = (v1, . . . , vn) and T = (w1, . . . , wm) so

L(vi) =
∑
k

wkm
k
i .

Now, suppose S ′ = (v′1, . . . , v
′
n) and T ′ = (w′1, . . . , w

′
m) are new ordered input

and out bases with matrix M ′ = (m′ki ). Then

L(v′i) =
∑
k

wkm
′k
i .

Let P = (pij) be the change of basis matrix from input basis S to the basis

S ′ and Q = (qjk) be the change of basis matrix from output basis T to the
basis T ′. Then:

L(v′j) = L

(∑
i

vip
i
j

)
=
∑
i

L(vi)p
i
j =

∑
i

∑
k

wkm
k
i p
i
j.
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Meanwhile, we have:

L(v′i) =
∑
k

vkm
′k
i =

∑
k

∑
j

vjq
j
km

k
i .

Since the expression for a vector in a basis is unique, then we see that the
entries of MP are the same as the entries of QM ′. In other words, we see
that

MP = QM ′ or M ′ = Q−1MP.

Example 131 Let V be the space of polynomials in t and degree 2 or less and
L : V → R2 where

L(1) =

(
1
2

)
L(t) =

(
2
1

)
, L(t2) =

(
3
3

)
.

From this information we can immediately read off the matrix M of L in the bases
S = (1, t, t2) and T = (e1, e2), the standard basis for R2, because(

L(1), L(t), L(t2)
)

= (e1 + 2e2, 2e1 + e2, 3e1 + 3e2)

= (e1, e2)

(
1 2 3
2 1 3

)
⇒ M =

(
1 2 3
2 1 3

)
.

Now suppose we are more interested in the bases

S′ = (1 + t, t+ t2, 1 + t2) , T ′ =

((
1
2

)
,

(
2
1

))
=: (w′1, w

′
2) .

To compute the new matrix M ′ of L we could simply calculate what L does the the
new input basis vectors in terms of the new output basis vectors:(
L(1 + t), L(t+ t2), L(1 + t2)) =

((
1
2

)
+

(
2
1

)
,

(
2
1

)
+

(
3
3

)
,

(
1
2

)
+

(
3
3

))
= (w′1 + w′2, w

′
1 + 2w′2, 2w

′
1 + w′2)

= (w′1, w
′
2)

(
1 1 2
1 2 1

)
⇒ M ′ =

(
1 1 2
1 2 1

)
.

Alternatively we could calculate the change of basis matrices P and Q by noting that

(1 + t, t+ t2, 1 + t2) = (1, t, t2)

1 0 1
1 1 0
0 1 1

 ⇒ P =

1 0 1
1 1 0
0 1 1


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and

(w′1, w
′
2) = (e1 + 2e2, 2e1 + e2) = (e1, e1)

(
1 2
2 1

)
⇒ Q =

(
1 2
2 1

)
.

Hence

M ′ = Q−1MP = −1

3

(
1 −2
−2 1

)(
1 2 3
2 1 3

)1 0 1
1 1 0
0 1 1

 =

(
1 1 2
1 2 1

)
.

Notice that the change of basis matrices P and Q are both square and invertible.
Also, since we really wanted Q−1, it is more efficient to try and write (e1, e2) in
terms of (w′1, w

′
2) which would yield directly Q−1. Alternatively, one can check that

MP = QM ′.

13.3 Changing to a Basis of Eigenvectors

If we are changing to a basis of eigenvectors, then there are various simplifi-
cations:

• Since L : V → V , most likely you already know the matrix M of L
using the same input basis as output basis S = (u1, . . . , un) (say).

• In the new basis of eigenvectors S ′(v1, . . . , vn), the matrix D of L is
diagonal because Lvi = λivi and so

(
L(v1), L(v2), . . . , L(vn)

)
= (v1, v2, . . . , vn)


λ1 0 · · · 0
0 λ2 0
...

. . .
...

0 0 · · · λn

 .

• If P is the change of basis matrix from S to S ′, the diagonal matrix of
eigenvalues D and the original matrix are related by

D = P−1MP

This motivates the following definition:
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Definition A matrix M is diagonalizable if there exists an invertible ma-
trix P and a diagonal matrix D such that

D = P−1MP.

We can summarize as follows.

• Change of basis rearranges the components of a vector by the change
of basis matrix P , to give components in the new basis.

• To get the matrix of a linear transformation in the new basis, we con-
jugate the matrix of L by the change of basis matrix: M 7→ P−1MP .

If for two matrices N and M there exists a matrix P such that M =
P−1NP , then we say that M and N are similar. Then the above discussion
shows that diagonalizable matrices are similar to diagonal matrices.

Corollary 13.3.1. A square matrix M is diagonalizable if and only if there
exists a basis of eigenvectors for M . Moreover, these eigenvectors are the
columns of a change of basis matrix P which diagonalizes M .

Reading homework: problem 2

Example 132 Let’s try to diagonalize the matrix

M =

−14 −28 −44
−7 −14 −23

9 18 29

 .

The eigenvalues of M are determined by

det(M − λI) = −λ3 + λ2 + 2λ = 0.

So the eigenvalues of M are −1, 0, and 2, and associated eigenvectors turn out to be

v1 =

−8
−1

3

 , v2 =

−2
1
0

 , and v3 =

−1
−1

1

 .

In order for M to be diagonalizable, we need the vectors v1, v2, v3 to be linearly
independent. Notice that the matrix

P =
(
v1 v2 v3

)
=

−8 −2 −1
−1 1 −1

3 0 1


247
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Figure 13.1: This theorem answers the question: “What is diagonalization?”

is invertible because its determinant is −1. Therefore, the eigenvectors of M form a
basis of R, and so M is diagonalizable. Moreover, because the columns of P are the
components of eigenvectors,

MP =
(
Mv1 Mv2 Mv3

)
=
(
−1.v1 0.v2 2.v3

)
=
(
v1 v2 v3

)−1 0 0
0 0 0
0 0 2

 .

Hence, the matrix P of eigenvectors is a change of basis matrix that diagonalizes M ;

P−1MP =

−1 0 0
0 0 0
0 0 2

 .

2× 2 Example

13.4 Review Problems

Webwork:
Reading Problems 1 , 2
No real eigenvalues 3

Diagonalization 4, 5, 6, 7

1. Let Pn(t) be the vector space of polynomials of degree n or less, and
d
dt

: Pn(t) → Pn(t) be the derivative operator. Find the matrix of
d
dt

in the ordered bases E = (1, t, . . . , tn) for the domain and F =
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(tn, . . . , , t, 1) for the codomain. Determine if this derivative operator
is diagonalizable.

Recall from Chapter 6 that the derivative operator is linear .

2. When writing a matrix for a linear transformation, we have seen that
the choice of basis matters. In fact, even the order of the basis matters!

(a) Write all possible reorderings of the standard basis (e1, e2, e3)
for R3.

(b) Write each change of basis matrix between the standard basis
and each of its reorderings. Make as many observations as you
can about these matrices. what are their entries? Do you notice
anything about how many of each type of entry appears in each
row and column? What are their determinants? (Note: These
matrices are known as permutation matrices .)

(c) Given L : R3 → R3 is linear and

L

xy
z

 =

 2y − z
3x

2z + x+ y


write the matrix M for L in the standard basis, and two reorder-
ings of the standard basis. How are these matrices related?

3. Let
X = {♥,♣,♠} , Y = {∗, ?} .

Write down two different ordered bases, S, S ′ and T, T ′ respectively,
for each of the vector spaces RX and RY . Find the change of basis
matrices P and Q that map these bases to one another. Now consider
the map

` : Y → X ,

where `(∗) = ♥ and `(?) = ♠. Show that ` can be used to define a
linear transformation L : RX → RY . Compute the matrices M and
M ′ of L in the bases S, T and then S ′, T ′. Use your change of basis
matrices P and Q to check that M ′ = Q−1MP .

4. Recall that trMN = trNM . Use this fact to show that the trace of a
square matrix M does not depend on the basis you used to compute M .
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250 Diagonalization

5. When is the 2× 2 matrix

(
a b
c d

)
diagonalizable? Include examples in

your answer.

6. Show that similarity of matrices is an equivalence relation. (The defi-
nition of an equivalence relation is given in the background WeBWorK
set.)

7. Jordan form

• Can the matrix

(
λ 1
0 λ

)
be diagonalized? Either diagonalize it or

explain why this is impossible.

• Can the matrix

λ 1 0
0 λ 1
0 0 λ

 be diagonalized? Either diagonalize

it or explain why this is impossible.

• Can the n × n matrix



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 · · · 0 λ


be diagonalized?

Either diagonalize it or explain why this is impossible.

Note: It turns out that every matrix is similar to a block ma-
trix whose diagonal blocks look like diagonal matrices or the ones
above and whose off-diagonal blocks are all zero. This is called
the Jordan form of the matrix and a (maximal) block that looks
like 

λ 1 0 · · · 0
0 λ 1 0
...

. . . . . .

λ 1
0 0 0 λ


is called a Jordan n-cell or a Jordan block where n is the size of
the block.

8. Let A and B be commuting matrices (i.e., AB = BA) and suppose
that A has an eigenvector v with eigenvalue λ.
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(a) Show that Bv is also an eigenvector of A with eigenvalue λ.

(b) Additionally suppose that A is diagonalizable with distinct eigen-
values. What is the dimension of each eigenspace of A?

(c) Show that v is also an eigenvector of B.

(d) Explain why this shows that A and B can be simultaneously diago-
nalized (i.e. there is an ordered basis in which both their matrices
are diagonal).

251



252 Diagonalization

252



14
Orthonormal Bases and Complements

You may have noticed that we have only rarely used the dot product. That
is because many of the results we have obtained do not require a preferred
notion of lengths of vectors. Once a dot or inner product is available, lengths
of and angles between vectors can be measured–very powerful machinery and
results are available in this case.

14.1 Properties of the Standard Basis

The standard notion of the length of a vector x = (x1, x2, . . . , xn) ∈ Rn is

||x|| =
√
x x =

√
(x1)2 + (x2)2 + · · · (xn)2 .

The canonical/standard basis in Rn

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

 ,

has many useful properties with respect to the dot product and lengths.

• Each of the standard basis vectors has unit length;

‖ei‖ =
√
ei ei =

√
eTi ei = 1 .
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• The standard basis vectors are orthogonal (in other words, at right
angles or perpendicular);

ei ej = eTi ej = 0 when i 6= j

This is summarized by

eTi ej = δij =

{
1 i = j
0 i 6= j

,

where δij is the Kronecker delta. Notice that the Kronecker delta gives the
entries of the identity matrix.

Given column vectors v and w, we have seen that the dot product v w is
the same as the matrix multiplication vTw. This is an inner product on Rn.
We can also form the outer product vwT , which gives a square matrix. The
outer product on the standard basis vectors is interesting. Set

Π1 = e1e
T
1

=


1
0
...
0

(1 0 · · · 0
)

=


1 0 · · · 0
0 0 · · · 0
...

...
0 0 · · · 0


...

Πn = ene
T
n

=


0
0
...
1

(0 0 · · · 1
)

=


0 0 · · · 0
0 0 · · · 0
...

...
0 0 · · · 1


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In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position
and zeros everywhere else1.

Notice that ΠiΠj = eie
T
i eje

T
j = eiδije

T
j . Then:

ΠiΠj =

{
Πi i = j
0 i 6= j

.

Moreover, for a diagonal matrix D with diagonal entries λ1, . . . , λn, we can
write

D = λ1Π1 + · · ·+ λnΠn.

14.2 Orthogonal and Orthonormal Bases

There are many other bases that behave in the same way as the standard
basis. As such, we will study:

• Orthogonal bases {v1, . . . , vn}:

vi vj = 0 if i 6= j .

In other words, all vectors in the basis are perpendicular.

• Orthonormal bases {u1, . . . , un}:

ui uj = δij.

In addition to being orthogonal, each vector has unit length.

Suppose T = {u1, . . . , un} is an orthonormal basis for Rn. Because T is
a basis, we can write any vector v uniquely as a linear combination of the
vectors in T ;

v = c1u1 + · · · cnun.

Since T is orthonormal, there is a very easy way to find the coefficients of this
linear combination. By taking the dot product of v with any of the vectors

1This is reminiscent of an older notation, where vectors are written in juxtaposition.
This is called a “dyadic tensor”, and is still used in some applications.
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in T , we get

v ui = c1u1 ui + · · ·+ ciui ui + · · ·+ cnun ui

= c1 · 0 + · · ·+ ci · 1 + · · ·+ cn · 0
= ci,

⇒ ci = v ui

⇒ v = (v u1)u1 + · · ·+ (v un)un

=
∑
i

(v ui)ui .

This proves the following theorem.

Theorem 14.2.1. For an orthonormal basis {u1, . . . , un}, any vector v can
be expressed as

v =
∑
i

(v ui)ui.

Reading homework: problem 1

All orthonormal bases for R2

14.2.1 Orthonormal Bases and Dot Products

To calculate lengths of, and angles between vectors in Rn we most commonly
use the dot product:v

1

...
vn

 ·
w

1

...
wn

 := v1w1 + · · ·+ vnwn .

When dealing with more general vector spaces the dot product makes no
sense, and one must instead choose an appropriate inner product. By “ap-
propriate”, we mean an inner product well-suited to the problem one is try-
ing to solve. If the vector space V under study has an orthonormal basis
O = (u1, . . . , un) meaning

〈ui, uj〉 = δij ,
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where 〈·, ·〉 is the inner product, you might ask whether this can be related
to a dot product? The answer to this question is yes and rather easy to
understand:

Given an orthonormal basis, the information of two vectors v and v′ in V
can be encoded in column vectors

v = 〈v, u1〉u1 + · · ·+ 〈v, un〉un = (u1, . . . , un)

〈v, u1〉...
〈v, un〉

 =

〈v, u1〉...
〈v, un〉


O

,

v′ = 〈v′, u1〉u1 + · · ·+ 〈v′, un〉un = (u1, . . . , un)

〈v
′, u1〉
...

〈v′, un〉

 =

〈v
′, u1〉
...

〈v′, un〉


O

.

The dot product of these two column vectors is〈v, u1〉...
〈v, un〉

 ·
〈v

′, u1〉
...

〈v′, un〉

 = 〈v, u1〉〈v′, u1〉+ · · ·+ 〈v, un〉〈v,′ un〉 .

This agrees exactly with the inner product of v and v′ because

〈v, v′〉 =
〈
〈v, u1〉u1 + · · ·+ 〈v, un〉un, 〈v′, u1〉u1 + · · ·+ 〈v′, un〉un

〉
= 〈v, u1〉〈v′, u1〉〈u1, u1〉+ 〈v, u2〉〈v′, u1〉〈u2, u1〉+ · · ·
· · ·+ 〈v, un−1〉〈v′, un〉〈un−1, un〉+ 〈v, un〉〈v′, un〉〈un, un〉

= 〈v, u1〉〈v′, u1〉+ · · ·+ 〈v, un〉〈v′, un〉 .

The above computation looks a little daunting, but only the linearity prop-
erty of inner products and the fact that 〈ui, uj〉 can equal either zero or
one was used. Because inner products become dot products once one uses
an orthonormal basis, we will quite often use the dot product notation in
situations where one really should write an inner product. Conversely, dot
product computations can always be rewritten in terms of an inner product,
if needed.

Example 133 Consider the space of polynomials given by V = span{1, x} with inner
product 〈p, p′〉 =

∫ 1
0 p(x)p′(x)dx. An obvious basis to use is B = (1, x) but it is not

hard to check that this is not orthonormal, instead we take

O =
(

1, 2
√

3
(
x− 1

2

))
.
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258 Orthonormal Bases and Complements

This is an orthonormal basis since,for example:〈
2
√

3
(
x− 1

2

)
, 1
〉

= 2
√

3

∫ 1

0

(
x− 1

2

)
dx = 0 ,

and 〈
x− 1

2
, x− 1

2

〉
=

∫ 1

0

(
x− 1

2

)2
dx =

1

12
=
( 1

2
√

3

)2
.

An arbitrary vector v = a+ bx is given in terms of the orthonormal basis O by

v = (a+
b

2
).1 + b

(
x− 1

2

)
=
(

1, 2
√

3
(
x− 1

2

))(a+ b
2

b
2
√
3

)
=

(
a+ b

2

b
2
√
3

)
O

.

Hence we can predict the inner product of a+ bx and a′ + b′x using the dot product:(
a+ b

2

b
2
√
3

)
·

a′ + b′

2

b′

2
√
3

 =
(
a+

b

2

)(
a′ +

b′

2

)
+
bb′

12
= aa′ +

1

2
(ab′ + a′b) +

1

3
bb′ .

Indeed

〈a+ bx, a′ + b′x〉 =

∫ 1

0
(a+ bx)(a′ + b′x)dx = aa′ +

1

2
(ab′ + a′b) +

1

3
bb′ .

14.3 Relating Orthonormal Bases

Suppose T = {u1, . . . , un} and R = {w1, . . . , wn} are two orthonormal bases
for Rn. Then

w1 = (w1 u1)u1 + · · ·+ (w1 un)un
...

wn = (wn u1)u1 + · · ·+ (wn un)un

⇒ wi =
∑
j

uj(uj wi)

Thus the matrix for the change of basis from T to R is given by

P = (pji ) = (uj wi).
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14.3 Relating Orthonormal Bases 259

We would like to calculate the product PP T . For that, we first develop a
dirty trick for products of dot products:

(u v)(w z) = (uTv)(wT z) = uT (vwT )z .

The object vwT is the square matrix made from the outer product of v and w.
Now we are ready to compute the components of the matrix product PP T .∑

i

(uj wi)(wi uk) =
∑
i

(uTj wi)(w
T
i uk)

= uTj

[∑
i

(wiw
T
i )

]
uk

(∗)
= uTj Inuk

= uTj uk = δjk.

The equality (∗) is explained below. Assuming (∗) holds, we have shown that
PP T = In, which implies that

P T = P−1.

The equality in the line (∗) says that
∑

iwiw
T
i = In. To see this, we

examine
(∑

iwiw
T
i

)
v for an arbitrary vector v. We can find constants cj

such that v =
∑

j c
jwj, so that(∑

i

wiw
T
i

)
v =

(∑
i

wiw
T
i

)(∑
j

cjwj

)
=

∑
j

cj
∑
i

wiw
T
i wj

=
∑
j

cj
∑
i

wiδij

=
∑
j

cjwj since all terms with i 6= j vanish

= v.

Thus, as a linear transformation,
∑

iwiw
T
i = In fixes every vector, and thus

must be the identity In.
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260 Orthonormal Bases and Complements

Definition A matrix P is orthogonal if P−1 = P T .

Then to summarize,

Theorem 14.3.1. A change of basis matrix P relating two orthonormal bases
is an orthogonal matrix. I.e.,

P−1 = P T .

Reading homework: problem 2

Example 134 Consider R3 with the ordered orthonormal basis

S = (u1, u2, u3) =




2√
6
1√
6
−1√
6

 ,

 0
1√
2
1√
2

 ,


1√
3
−1√
3
1√
3


 .

Let E be the standard basis (e1, e2, e3). Since we are changing from the standard
basis to a new basis, then the columns of the change of basis matrix are exactly the
new basis vectors. Then the change of basis matrix from E to S is given by

P = (P ji ) = (ej · ui) =

e1 u1 e1 u2 e1 u3
e2 u1 e2 u2 e2 u3
e3 u1 e3 u2 e3 u3



=
(
u1 u2 u3

)
=


2√
6

0 1√
3

1√
6

1√
2
−1√
3

−1√
6

1√
2

1√
3

 .

From our theorem, we observe that

P−1 = P T =

uT1uT2
uT3



=


2√
6

1√
6
−1√
6

0 1√
2

1√
2

1√
3
−1√
3

1√
3

 .
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We can check that P TP = I by a lengthy computation, or more simply, notice
that

(P TP ) =

uT1uT2
uT3

(u1 u2 u3
)

=

1 0 0
0 1 0
0 0 1

 .

Above we are using orthonormality of the ui and the fact that matrix multiplication
amounts to taking dot products between rows and columns. It is also very important
to realize that the columns of an orthogonal matrix are made from an orthonormal
set of vectors.

Orthonormal Change of Basis and Diagonal Matrices. Suppose D is a diagonal
matrix and we are able to use an orthogonal matrix P to change to a new basis. Then
the matrix M of D in the new basis is:

M = PDP−1 = PDP T .

Now we calculate the transpose of M .

MT = (PDP T )T

= (P T )TDTP T

= PDP T

= M

The matrix M = PDP T is symmetric!

14.4 Gram-Schmidt & Orthogonal Complements

Given a vector v and some other vector u not in span {v} we can construct
the new vector

v⊥ := v − u · v
u · u u .
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262 Orthonormal Bases and Complements

v
u

v⊥

u·v
u·u u = v‖

This new vector v⊥ is orthogonal to u because

u v⊥ = u v − u · v
u · u

u u = 0.

Hence, {u, v⊥} is an orthogonal basis for span{u, v}. When v is not par-

allel to u, v⊥ 6= 0, and normalizing these vectors we obtain
{

u
|u| ,

v⊥

|v⊥|

}
, an

orthonormal basis for the vector space span {u, v}.
Sometimes we write v = v⊥ + v‖ where:

v⊥ = v − u · v
u · u

u

v‖ =
u · v
u · u

u.

This is called an orthogonal decomposition because we have decomposed
v into a sum of orthogonal vectors. This decomposition depends on u; if we
change the direction of u we change v⊥ and v‖.

If u, v are linearly independent vectors in R3, then the set {u, v⊥, u×v⊥}
would be an orthogonal basis for R3. This set could then be normalized by
dividing each vector by its length to obtain an orthonormal basis.

However, it often occurs that we are interested in vector spaces with di-
mension greater than 3, and must resort to craftier means than cross products
to obtain an orthogonal basis2.

2Actually, given a set T of (n − 1) independent vectors in n-space, one can define an
analogue of the cross product that will produce a vector orthogonal to the span of T , using
a method exactly analogous to the usual computation for calculating the cross product
of two vectors in R3. This only gets us the “last” orthogonal vector, though; the Gram–
Schmidt process described in this section gives a way to get a full orthogonal basis.
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14.4 Gram-Schmidt & Orthogonal Complements 263

Given a third vector w, we should first check that w does not lie in the
span{u, v}, i.e., check that u, v and w are linearly independent. If it does
not, we then can define

w⊥ := w − u w

u u
u− v⊥ w

v⊥ v⊥
v⊥.

We can check that u w⊥ and v⊥ w⊥ are both zero:

u w⊥ = u

(
w − u w

u u
u− v⊥ w

v⊥ v⊥
v⊥
)

= u w − u w

u u
u u− v⊥ w

v⊥ v⊥
u v⊥

= u w − u w − v⊥ w

v⊥ v⊥
u v⊥ = 0

since u is orthogonal to v⊥, and

v⊥ w⊥ = v⊥
(
w − u w

u u
u− v⊥ w

v⊥ v⊥
v⊥
)

= v⊥ w − u w

u u
v⊥ u− v⊥ w

v⊥ v⊥
v⊥ v⊥

= v⊥ w − u w

u u
v⊥ u− v⊥ w = 0

because u is orthogonal to v⊥. Since w⊥ is orthogonal to both u and v⊥, we
have that {u, v⊥, w⊥} is an orthogonal basis for span{u, v, w}.
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264 Orthonormal Bases and Complements

14.4.1 The Gram-Schmidt Procedure

In fact, given an ordered set (v1, v2, . . .) of linearly independent vectors, we
can define an orthogonal basis for span{v1, v2, . . .} consisting of the vectors

v⊥1 := v1

v⊥2 := v2 −
v⊥1 · v2
v⊥1 · v⊥1

v⊥1

v⊥3 := v3 −
v⊥1 · v3
v⊥1 · v⊥1

v⊥1 −
v⊥2 · v3
v⊥2 · v⊥2

v⊥2

...

v⊥i := vi −
v⊥1 · vi
v⊥1 · v⊥1

v⊥1 −
v⊥2 · vi
v⊥2 · v⊥2

v⊥2 − · · · −
v⊥i−1 · vi
v⊥i−1 · v⊥i−1

v⊥i−1

...

Notice that each v⊥i here depends on v⊥j for every j < i. This allows us to
inductively/algorithmically build up a linearly independent, orthogonal set
of vectors {v⊥1 , v⊥2 , . . .} such that span{v⊥1 , v⊥2 , . . .} = span{v1, v2, . . .}. That
is, an orthogonal basis for the latter vector space.

Note that the set of vectors you start out with needs to be ordered to
uniquely specify the algorithm; changing the order of the vectors will give a
different orthogonal basis. You might need to be the one to put an order on
the initial set of vectors.

This algorithm is called the Gram–Schmidt orthogonalization pro-
cedure–Gram worked at a Danish insurance company over one hundred years
ago, Schmidt was a student of Hilbert (the famous German mathmatician).

Example 135 We’ll obtain an orthogonal basis for R3 by appling Gram-Schmidt to

the linearly independent set


1

1
1

 ,

1
1
0

 ,

3
1
1

.

Because he Gram-Schmidt algorithm uses the first vector from the ordered set the
largest number of times, we will choose the vector with the most zeros to be the first
in hopes of simplifying computations; we choose to order the set as

(v1, v2, v3) :=

1
1
0

 ,

1
1
1

 ,

3
1
1

 .
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14.5 QR Decomposition 265

First, we set v⊥1 := v1. Then

v⊥2 :=

1
1
1

− 2

2

1
1
0

 =

0
0
1



v⊥3 :=

3
1
1

− 4

2

1
1
0

− 1

1

0
0
1

 =

 1
−1

0

 .

Then the set 
1

1
0

 ,

0
0
1

 ,

 1
−1

0


is an orthogonal basis for R3. To obtain an orthonormal basis we simply divide each
of these vectors by its length, yielding


1√
2
1√
2

0

 ,

0

0

1

 ,


1√
2
−1√
2

0


 .

A 4× 4 Gram--Schmidt Example

14.5 QR Decomposition

In Chapter 7, Section 7.7 teaches you how to solve linear systems by decom-
posing a matrix M into a product of lower and upper triangular matrices

M = LU .

The Gram–Schmidt procedure suggests another matrix decomposition,

M = QR ,

where Q is an orthogonal matrix and R is an upper triangular matrix. So-
called QR-decompositions are useful for solving linear systems, eigenvalue
problems and least squares approximations. You can easily get the idea
behind the QR decomposition by working through a simple example.
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Example 136 Find the QR decomposition of

M =

2 −1 1
1 3 −2
0 1 −2

 .

What we will do is to think of the columns of M as three 3-vectors and use Gram–
Schmidt to build an orthonormal basis from these that will become the columns of
the orthogonal matrix Q. We will use the matrix R to record the steps of the Gram–
Schmidt procedure in such a way that the product QR equals M .

To begin with we write

M =

2 −7
5 1

1 14
5 −2

0 1 −2


1 1

5 0

0 1 0

0 0 1

 .

In the first matrix the first two columns are orthogonal because we simply replaced the
second column of M by the vector that the Gram–Schmidt procedure produces from
the first two columns of M , namely−

7
5

14
5

1

 =

−1

3

1

− 1

5

2

1

0

 .

The matrix on the right is almost the identity matrix, save the +1
5 in the second entry

of the first row, whose effect upon multiplying the two matrices precisely undoes what
we we did to the second column of the first matrix.

For the third column of M we use Gram–Schmidt to deduce the third orthogonal
vector −

1
6
1
3

−7
6

 =

 1

−2

−2

− 0

2

1

0

− −9
54
5

−
7
5

14
5

1

 ,

and therefore, using exactly the same procedure write

M =

2 −7
5 −1

6

1 14
5

1
3

0 1 −7
6


1 1

5 0

0 1 −5
6

0 0 1

 .

This is not quite the answer because the first matrix is now made of mutually orthog-
onal column vectors, but a bona fide orthogonal matrix is comprised of orthonormal
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vectors. To achieve that we divide each column of the first matrix by its length and
multiply the corresponding row of the second matrix by the same amount:

M =


2
√
5

5 −7
√
30

90 −
√
6

18
√
5
5

7
√
30

45

√
6
9

0
√
30
18 −7

√
6

18



√

5
√
5
5 0

0 3
√
30
5 −

√
30
2

0 0
√
6
2

 = QR .

Geometrically what has happened here is easy to see. We started with three vectors
given by the columns of M and rotated them such that the first lies along the x-
axis, the second in the xy-plane and the third in some other generic direction (here it
happens to be in the yz-plane).

A nice check of the above result is to verify that entry (i, j) of the matrix R equals
the dot product of the i-th column of Q with the j-th column of M . (Some people
memorize this fact and use it as a recipe for computing QR decompositions.) A good
test of your own understanding is to work out why this is true!

Another QR decomposition example

14.6 Orthogonal Complements

Let U and V be subspaces of a vector space W . In Review Exercise 2,
Chapter 9, you are asked to show that U ∩ V is a subspace of W , and that
U ∪ V is not a subspace. However, span(U ∪ V ) is certainly a subspace,
since the span of any subset of a vector space is a subspace. Notice that all
elements of span(U ∪ V ) take the form u+ v with u ∈ U and v ∈ V . We call
the subspace

U + V := span(U ∪ V ) = {u+ v | u ∈ U, v ∈ V }

the sum of U and V . Here, we are not adding vectors, but vector spaces to
produce a new vector space.

Example 137

span




1
1
0
0

 ,


0
1
1
0


+ span




0
1
1
0

 ,


0
0
1
1


 = span




1
1
0
0

 ,


0
1
1
0

 ,


0
0
1
1


 .
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Notice that the addends have elements in common;


0
1
1
0

 is in both addends. Even

though both of the addends are 2-dimensional their sum is not 4-dimensional.

In the special case that U and V do not have any non-zero vectors in
common, their sum is a vector space with dimension dimU + dimV .

Definition If U and V are subspaces of a vector spaceW such that U ∩ V = {0W}
then the vector space

U ⊕ V := span(U ∪ V ) = {u+ v | u ∈ U, v ∈ V }

is the direct sum of U and V .

Remark

• When U ∩ V = {0W }, U + V = U ⊕ V.

• When U ∩ V 6= {0W }, U + V 6= U ⊕ V .

This distinction is important because the direct sum has a very nice property:

Theorem 14.6.1. If w ∈ U ⊕ V then there is only one way to write w as
the sum of a vector in U and a vector in V .

Proof. Suppose that u+ v = u′ + v′, with u, u′ ∈ U , and v, v′ ∈ V . Then we
could express 0 = (u − u′) + (v − v′). Then (u − u′) = −(v − v′). Since U
and V are subspaces, we have (u − u′) ∈ U and −(v − v′) ∈ V . But since
these elements are equal, we also have (u−u′) ∈ V . Since U ∩V = {0}, then
(u − u′) = 0. Similarly, (v − v′) = 0. Therefore u = u′ and v = v′, proving
the theorem.

Reading homework: problem 3

Here is a sophisticated algebra question:

Given a subspace U in W , what are the solutions to

U ⊕ V = W.

That is, how can we write W as the direct sum of U and some-
thing?
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There is not a unique answer to this question as can be seen from the following
picture of subspaces in W = R3.

However, using the inner product, there is a natural candidate U⊥ for this
second subspace as shown below.

Definition If U is a subspace of the vector space W then the vector space

U⊥ :=
{
w ∈ W

∣∣w u = 0 for all u ∈ U
}

is the orthogonal complement of U in W .

Remark The symbols “U⊥” are often read as “U -perp”. This is the set of all vectors
in W orthogonal to every vector in U . Notice also that in the above definition we
have implicitly assumed that the inner product is the dot product. For a general inner
product, the above definition would read U⊥ :=

{
w ∈W

∣∣ 〈w, u〉 = 0 for all u ∈ U
}

.
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Possibly by now you are feeling overwhelmed, it may help to watch this quick
overview video.

Overview

Example 138 Consider any plane P through the origin in R3. Then P is a subspace,
and P⊥ is the line through the origin orthogonal to P . For example, if P is the
xy-plane, then

R3 = P ⊕ P⊥ = {(x, y, 0)|x, y ∈ R} ⊕ {(0, 0, z)|z ∈ R}.

Theorem 14.6.2. Let U be a subspace of a finite-dimensional vector space W .
Then the set U⊥ is a subspace of W , and W = U ⊕ U⊥.

Proof. First, to see that U⊥ is a subspace, we only need to check closure,
which requires a simple check: Suppose v, w ∈ U⊥, then we know

v u = 0 = w u (∀u ∈ U) .

Hence
⇒ u (αv + βw) = αu v + βu w = 0 (∀u ∈ U) ,

and so αv + βw ∈ U⊥.
Next, to form a direct sum between U and U⊥ we need to show that

U ∩ U⊥ = {0}. This holds because if u ∈ U and u ∈ U⊥ it follows that

u u = 0⇔ u = 0.

Finally, we show that any vector w ∈ W is in U ⊕ U⊥. (This is where
we use the assumption that W is finite-dimensional.) Let e1, . . . , en be an
orthonormal basis for U . Set:

u = (w e1)e1 + · · ·+ (w en)en ∈ U ,
u⊥ = w − u .

It is easy to check that u⊥ ∈ U⊥ (see the Gram-Schmidt procedure). Then
w = u+ u⊥, so w ∈ U ⊕ U⊥, and we are done.

Reading homework: problem 4
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Example 139 Consider any line L through the origin in R4. Then L is a subspace,
and L⊥ is a 3-dimensional subspace orthogonal to L. For example, let

L = span




1
1
1
1




be a line in R4. Then

L⊥ =



x
y
z
w

 ∈ R4

∣∣∣∣∣∣∣∣ (x, y, z, w) (1, 1, 1, 1) = 0


=



x
y
z
w

 ∈ R4

∣∣∣∣∣∣∣∣ x+ y + z + w = 0

 .

Using the Gram-Schmidt procedure one may find an orthogonal basis for L⊥. The set


1
−1

0
0

 ,


1
0
−1

0

 ,


1
0
0
−1




forms a basis for L⊥ so, first, we order the basis as

(v1, v2, v2) =




1
−1

0
0

 ,


1
0
−1

0

 ,


1
0
0
−1


 .

Next, we set v⊥1 = v1. Then

v⊥2 =


1
0
−1

0

− 1

2


1
−1

0
0

 =


1
2
1
2
−1

0

 ,

v⊥3 =


1
0
0
−1

− 1

2


1
−1

0
0

− 1/2

3/2


1
2
1
2
−1

0

 =


1
3
1
3
1
3
−1

 .

271



272 Orthonormal Bases and Complements

So the set 


1
−1

0
0

 ,


1
2
1
2
−1

0

 ,


1
3
1
3
1
3
−1




is an orthogonal basis for L⊥. Dividing each basis vector by its length yields


1√
2

− 1√
2

0

0

 ,


1√
6
1√
6

− 2√
6

0

 ,


√
3
6√
3
6√
3
6

−
√
3
2


 ,

and orthonormal basis for L⊥. Moreover, we have

R4 = L⊕ L⊥ =



c
c
c
c


∣∣∣∣∣∣∣∣c ∈ R

⊕


x
y
z
w

 ∈ R4

∣∣∣∣∣∣∣∣x+ y + z + w = 0

 ,

a decomposition of R4 into a line and its three dimensional orthogonal complement.

Notice that for any subspace U , the subspace (U⊥)⊥ is just U again. As
such, ⊥ is an involution on the set of subspaces of a vector space. (An invo-
lution is any mathematical operation which performed twice does nothing.)

14.7 Review Problems

Webwork:

Reading Problems 1 , 2 , 3 , 4
Gram–Schmidt 5

Orthogonal eigenbasis 6, 7
Orthogonal complement 8

1. Let D =

(
λ1 0
0 λ2

)
.

(a) Write D in terms of the vectors e1 and e2, and their transposes.

(b) Suppose P =

(
a b
c d

)
is invertible. Show that D is similar to

M =
1

ad− bc

(
λ1ad− λ2bc −(λ1 − λ2)ab
(λ1 − λ2)cd −λ1bc+ λ2ad

)
.
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(c) Suppose the vectors
(
a, b
)

and
(
c, d
)

are orthogonal. What can
you say about M in this case? (Hint: think about what MT is
equal to.)

2. Suppose S = {v1, . . . , vn} is an orthogonal (not orthonormal) basis
for Rn. Then we can write any vector v as v =

∑
i c
ivi for some

constants ci. Find a formula for the constants ci in terms of v and the
vectors in S.

Hint

3. Let u, v be linearly independent vectors in R3, and P = span{u, v} be
the plane spanned by u and v.

(a) Is the vector v⊥ := v − u·v
u·uu in the plane P?

(b) What is the (cosine of the) angle between v⊥ and u?

(c) How can you find a third vector perpendicular to both u and v⊥?

(d) Construct an orthonormal basis for R3 from u and v.

(e) Test your abstract formulæ starting with

u =
(
1, 2, 0

)
and v =

(
0, 1, 1

)
.

Hint

4. Find an orthonormal basis for R4 which includes (1, 1, 1, 1) using the
following procedure:

(a) Pick a vector perpendicular to the vector

v1 =


1
1
1
1


273

http://math.ucdavis.edu/~linear/videos/orthonormal_bases_hint.mp4
http://math.ucdavis.edu/~linear/videos/orthonormal_bases_hint3.mp4


274 Orthonormal Bases and Complements

from the solution set of the matrix equation

vT1 x = 0 .

Pick the vector v2 obtained from the standard Gaussian elimina-
tion procedure which is the coefficient of x2.

(b) Pick a vector perpendicular to both v1 and v2 from the solutions
set of the matrix equation(

vT1
vT2

)
x = 0 .

Pick the vector v3 obtained from the standard Gaussian elimina-
tion procedure with x3 as the coefficient.

(c) Pick a vector perpendicular to v1, v2, and v3 from the solution set
of the matrix equation v

T
1

vT2
vT3

x = 0 .

Pick the vector v4 obtained from the standard Gaussian elimina-
tion procedure with x3 as the coefficient.

(d) Normalize the four vectors obtained above.

5. Use the inner product

f · g :=

∫ 1

0

f(x)g(x)dx

on the vector space V = span{1, x, x2, x3} to perform the Gram-Schmidt
procedure on the set of vectors {1, x, x2, x3}.

6. Use the inner product

f · g :=

∫ 2π

0

f(x)g(x)dx

on the vector space V = span{sin(x), sin(2x), sin(3x)} to perform the
Gram-Schmidt procedure on the set of vectors {sin(x), sin(2x), sin(3x)}.
Try to build an orthonormal basis for the vector space

span{sin(nx) | n ∈ N} .
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7. (a) Show that if Q is an orthogonal n× n matrix, then

u v = (Qu) (Qv) ,

for any u, v ∈ Rn. That is, Q preserves the inner product.

(b) Does Q preserve the outer product?

(c) If the set of vectors {u1, . . . , un} is orthonormal and {λ1, · · · , λn}
is a set of numbers, then what are the eigenvalues and eigenvectors
of the matrix M =

∑n
i=1 λiuiu

T
i ?

(d) How would the eigenvectors and eigenvalues of this matrix change
if we replaced {u1, . . . , un} by {Qu1, . . . , Qun}?

8. Carefully write out the Gram-Schmidt procedure for the set of vectors
1

1
1

 ,

 1
−1

1

 ,

 1
1
−1

 .

Is it possible to rescale the second vector obtained in the procedure to
a vector with integer components?

9. (a) Suppose u and v are linearly independent. Show that u and v⊥

are also linearly independent. Explain why {u, v⊥} is a basis for
span{u, v}.

Hint

(b) Repeat the previous problem, but with three independent vectors
u, v, w where v⊥ and w⊥ are as defined by the Gram-Schmidt
procedure.

10. Find the QR factorization of

M =

 1 0 2
−1 2 0
−1 −2 2

 .

11. Given any three vectors u, v, w, when do v⊥ or w⊥ of the Gram–Schmidt
procedure vanish?
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12. For U a subspace of W , use the subspace theorem to check that U⊥ is
a subspace of W .

13. Let Sn and An define the space of n×n symmetric and anti-symmetric
matrices, respectively. These are subspaces of the vector space Mn

n of
all n × n matrices. What is dimMn

n , dimSn, and dimAn? Show that
Mn

n = Sn + An. Define an inner product on square matrices

M ·N = trMN .

Is A⊥n = Sn? Is Mn
n = Sn ⊕ An?

14. The vector space V = span{sin(t), sin(2t), sin(3t), sin(3t)} has an inner
product:

f · g :=

∫ 2π

0

f(t)g(t)dt .

Find the orthogonal compliment to U = span{sin(t) + sin(2t)} in V .
Express sin(t)− sin(2t) as the sum of vectors from U and U⊥.
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15
Diagonalizing Symmetric Matrices

Symmetric matrices have many applications. For example, if we consider the
shortest distance between pairs of important cities, we might get a table like
the following.

Davis Seattle San Francisco
Davis 0 2000 80

Seattle 2000 0 2010
San Francisco 80 2010 0

Encoded as a matrix, we obtain

M =

 0 2000 80
2000 0 2010
80 2010 0

 = MT .

Definition A matrix M is symmetric if MT = M.

One very nice property of symmetric matrices is that they always have
real eigenvalues. Review exercise 1 guides you through the general proof, but
below is an example for 2× 2 matrices.
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Example 140 For a general symmetric 2× 2 matrix, we have:

Pλ

(
a b
b d

)
= det

(
λ− a −b
−b λ− d

)
= (λ− a)(λ− d)− b2

= λ2 − (a+ d)λ− b2 + ad

⇒ λ =
a+ d

2
±

√
b2 +

(
a− d

2

)2

.

Notice that the discriminant 4b2 + (a− d)2 is always positive, so that the eigenvalues
must be real.

Now, suppose a symmetric matrix M has two distinct eigenvalues λ 6= µ
and eigenvectors x and y;

Mx = λx, My = µy.

Consider the dot product x y = xTy = yTx and calculate

xTMy = xTµy = µx y, and

xTMy = (yTMx)T (by transposing a 1× 1 matrix)

= (yTλx)T

= (λx y)T

= λx y.

Subtracting these two results tells us that:

0 = xTMy − xTMy = (µ− λ)x y.

Since µ and λ were assumed to be distinct eigenvalues, λ − µ is non-zero,
and so x y = 0. We have proved the following theorem.

Theorem 15.0.1. Eigenvectors of a symmetric matrix with distinct eigen-
values are orthogonal.

Reading homework: problem 1
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Example 141 The matrix M =

(
2 1
1 2

)
has eigenvalues determined by

det(M − λI) = (2− λ)2 − 1 = 0.

So the eigenvalues of M are 3 and 1, and the associated eigenvectors turn out to be(
1
1

)
and

(
1
−1

)
. It is easily seen that these eigenvectors are orthogonal;

(
1
1

) (
1
−1

)
= 0.

In chapter 14 we saw that the matrix P built from any orthonormal basis
(v1, . . . , vn) for Rn as its columns,

P =
(
v1 · · · vn

)
,

was an orthogonal matrix. This means that

P−1 = P T , or PP T = I = P TP.

Moreover, given any (unit) vector x1, one can always find vectors x2, . . . , xn
such that (x1, . . . , xn) is an orthonormal basis. (Such a basis can be obtained
using the Gram-Schmidt procedure.)

Now suppose M is a symmetric n × n matrix and λ1 is an eigenvalue
with eigenvector x1 (this is always the case because every matrix has at
least one eigenvalue–see Review Problem 3). Let P be the square matrix of
orthonormal column vectors

P =
(
x1 x2 · · · xn

)
,

While x1 is an eigenvector for M , the others are not necessarily eigenvectors
for M . Then

MP =
(
λ1x1 Mx2 · · · Mxn

)
.
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But P is an orthogonal matrix, so P−1 = P T . Then:

P−1 = P T =

 xT1
...
xTn



⇒ P TMP =


xT1 λ1x1 ∗ · · · ∗
xT2 λ1x1 ∗ · · · ∗

...
...

xTnλ1x1 ∗ · · · ∗



=


λ1 ∗ · · · ∗
0 ∗ · · · ∗
... ∗ ...
0 ∗ · · · ∗



=


λ1 0 · · · 0
0
... M̂
0

 .

The last equality follows since P TMP is symmetric. The asterisks in the
matrix are where “stuff” happens; this extra information is denoted by M̂
in the final expression. We know nothing about M̂ except that it is an
(n − 1) × (n − 1) matrix and that it is symmetric. But then, by finding an
(unit) eigenvector for M̂ , we could repeat this procedure successively. The
end result would be a diagonal matrix with eigenvalues of M on the diagonal.
Again, we have proved a theorem:

Theorem 15.0.2. Every symmetric matrix is similar to a diagonal matrix
of its eigenvalues. In other words,

M = MT ⇔M = PDP T

where P is an orthogonal matrix and D is a diagonal matrix whose entries
are the eigenvalues of M .

Reading homework: problem 2
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To diagonalize a real symmetric matrix, begin by building an orthogonal
matrix from an orthonormal basis of eigenvectors, as in the example below.

Example 142 The symmetric matrix

M =

(
2 1
1 2

)
,

has eigenvalues 3 and 1 with eigenvectors

(
1
1

)
and

(
1
−1

)
respectively. After normal-

izing these eigenvectors, we build the orthogonal matrix:

P =

( 1√
2

1√
2

1√
2
−1√
2

)
.

Notice that P TP = I. Then:

MP =

( 3√
2

1√
2

3√
2
−1√
2

)
=

( 1√
2

1√
2

1√
2
−1√
2

)(
3 0

0 1

)
.

In short, MP = PD, so D = P TMP . Then D is the diagonalized form of M
and P the associated change-of-basis matrix from the standard basis to the basis of
eigenvectors.

3× 3 Example

15.1 Review Problems

Webwork:
Reading Problems 1 , 2 ,

Diagonalizing a symmetric matrix 3, 4

1. (On Reality of Eigenvalues)

(a) Suppose z = x + iy where x, y ∈ R, i =
√
−1, and z = x − iy.

Compute zz and zz in terms of x and y. What kind of numbers
are zz and zz? (The complex number z is called the complex
conjugate of z).

(b) Suppose that λ = x+ iy is a complex number with x, y ∈ R, and
that λ = λ. Does this determine the value of x or y? What kind
of number must λ be?
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(c) Let x =

z
1

...
zn

 ∈ Cn. Let x† =
(
z1 · · · zn

)
∈ Cn (a 1 × n

complex matrix or a row vector). Compute x†x. Using the result
of part 1a, what can you say about the number x†x? (E.g., is it
real, imaginary, positive, negative, etc.)

(d) Suppose M = MT is an n×n symmetric matrix with real entries.
Let λ be an eigenvalue of M with eigenvector x, so Mx = λx.
Compute:

x†Mx

x†x

(e) Suppose Λ is a 1× 1 matrix. What is ΛT ?

(f) What is the size of the matrix x†Mx?

(g) For any matrix (or vector) N , we can compute N by applying
complex conjugation to each entry of N . Compute (x†)T . Then
compute (x†Mx)T . Note that for matrices AB + C = AB + C.

(h) Show that λ = λ. Using the result of a previous part of this
problem, what does this say about λ?

Hint

2. Let

x1 =

ab
c

 ,

where a2 + b2 + c2 = 1. Find vectors x2 and x3 such that {x1, x2, x3}
is an orthonormal basis for R3. What can you say about the matrix P
whose columns are the vectors x1, x2 and x3 that you found?

3. Let V 3 v 6= 0 be a vector space, dimV = n and L : V
linear
−−−→ V .

(a) Explain why the list of vectors (v, Lv, L2v, . . . , Lnv) is linearly
dependent.
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(b) Explain why there exist scalars αi not all zero such that

α0v + α1Lv + α2L
2v + · · ·+ αnL

nv = 0 .

(c) Let m be the largest integer such that αm 6= 0 and

p(z) = α0 + α1z + α2z
2 + · · ·+ αmz

n .

Explain why the polynomial p(z) can be written as

p(z) = αm(z − λ1)(z − λ2) . . . (z − λm) .

[Note that some of the roots λi could be complex.]

(d) Why does the following equation hold

(L− λ1)(L− λ2) . . . (L− λm)v = 0 ?

(e) Explain why one of the numbers λi (1 ≤ i ≤ m) must be an
eigenvalue of L.

4. (Dimensions of Eigenspaces)

(a) Let

A =

4 0 0
0 2 −2
0 −2 2

 .

Find all eigenvalues of A.

(b) Find a basis for each eigenspace of A. What is the sum of the
dimensions of the eigenspaces of A?

(c) Based on your answer to the previous part, guess a formula for the
sum of the dimensions of the eigenspaces of a real n×n symmetric
matrix. Explain why your formula must work for any real n × n
symmetric matrix.

5. If M is not square then it can not be symmetric. However, MMT and
MTM are symmetric, and therefore diagonalizable.

(a) Is it the case that all of the eigenvalues of MMT must also be
eigenvalues of MTM?
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(b) Given an eigenvector of MMT how can you obtain an eigenvector
of MTM?

(c) Let

M =

1 2
3 3
2 1

 .

Compute an orthonormal basis of eigenvectors for both MMT

and MTM . If any of the eigenvalues for these two matrices agree,
choose an order for them and use it to help order your orthonor-
mal bases. Finally, change the input and output bases for the
matrix M to these ordered orthonormal bases. Comment on what
you find. (Hint: The result is called the Singular Value Decompo-
sition Theorem.)
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Given a linear transformation

L : V → W ,

we often want to know if it has an inverse, i.e., if there exists a linear trans-
formation

M : W → V

such that for any vector v ∈ V , we have

MLv = v ,

and for any vector w ∈ W , we have

LMw = w .

A linear transformation is a special kind of function from one vector space to
another. So before we discuss which linear transformations have inverses, let
us first discuss inverses of arbitrary functions. When we later specialize to
linear transformations, we’ll also find some nice ways of creating subspaces.

Let f : S → T be a function from a set S to a set T . Recall that S is
called the domain of f , T is called the codomain or target of f . We now
formally introduce a term that should be familar to you from many previous
courses.
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16.1 Range

Definition The range of a function f : S → T is the set

ran(f) := {f(s)|s ∈ S} ⊂ T .

It is the subset of the codomain consisting of elements to which the function
f maps, i.e., the things in T which you can get to by starting in S and
applying f .

The range of a matrix is very easy to find; the range of a matrix is the
span of its columns. Thus, calculation of the range of a matrix is very easy
until the last step: simplification. One aught to end by the calculation by
writing the vector space as the span of a linearly independent set.

Example 143 of calculating the range of a matrix.

ran

1 2 0 1
1 2 1 2
0 0 1 1

 :=


1 2 0 1

1 2 1 2
0 0 1 1



x
y
z
w

 |

x
y
z
w

 ∈ R4


=

x
1

1
0

+ y

2
2
0

+ z

0
1
1

+ w

1
2
1

∣∣∣∣∣∣x, y, z, w ∈ R

 .

That is

ran

1 2 0 1
1 2 1 2
0 0 1 1

 = span


1

1
0

 ,

2
2
0

 ,

0
1
1

 ,

1
2
1


but since

RREF

1 2 0 1
1 2 1 2
0 0 1 1

 =

1 2 0 1
0 0 1 1
0 0 0 0


the second and fourth columns (which are the non-pivot columns), can be expressed
as linear combinations of columns to their left. They can then be removed from the
set in the span to obtain

ran

1 2 0 1
1 2 1 2
0 0 1 1

 = span


1

1
0

 ,

0
1
1

 .
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It might occur to you that the range of the 3 × 4 matrix from the last
example can be expressed as the range of a 3× 2 matrix;

ran

1 2 0 1
1 2 1 2
0 0 1 1

 = ran

1 0
1 1
0 1

 .

Indeed, because the span of a set of vectors does not change when we replace
the vectors with another set through an invertible process, we can calculate
ranges through strings of equalities of ranges of matrices that differer by
Elementary Column Operations, ECOs, ending with the range of a matrix
in Column Reduced Echelon Form, CREF, with its zero columns deleted.

Example 144 Calculating a range with ECOs

ran

0 1 1
1 3 1
1 2 0

 c1↔c3= ran

1 1 0
1 3 1
0 2 1

 c′2=c2−c1= ran

1 0 0
1 2 1
0 2 1

 c′2=
1
2
c2

= ran

1 0 0
1 1 1
0 1 1


c′3=c3−c2= ran

1 0 0
1 1 0
0 1 0

 = ran

1 0
1 1
0 1

 .

This is an efficient way to compute and encode the range of a matrix.

16.2 Image

Definition For any subset U of the domain S of a function f : S → T the
image of U is

f(U) = ImU := {f(x)|x ∈ U} .

Example 145 The image of the cube

U =

a
1

0
0

+ b

0
1
0

+ c

0
0
1

∣∣∣∣∣∣a, b, c ∈ [0, 1]


under multiplication by the matrix

M =

1 0 0
1 1 1
0 0 1


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is the parallelepiped

ImgU =

a
1

1
0

+ b

0
1
0

+ c

0
1
1

∣∣∣∣∣∣a, b, c ∈ [0, 1]

 .

Note that for most subsets U of the domain S of a function f the image of
U is not a vector space. The range of a function is the particular case of the
image where the subset of the domain is the entire domain; ranf = ImgS.
For this reason, the range of f is also sometimes called the image of f and is
sometimes denoted im(f) or f(S). We have seen that the range of a matrix
is always a span of vectors, and hence a vector space.

Note that we prefer the phrase “range of f” to the phrase “image of f”
because we wish to avoid confusion between homophones; the word “image”
is also used to describe a single element of the codomain assigned to a single
element of the domain. For example, one might say of the function A : R→ R
with rule of correspondence A(x =) = 2x− 1 for all x in R that the image of
2 is 3 with this second meaning of the word “image” in mind. By contrast,
one would never say that the range of 2 is 3 since the former is not a function
and the latter is not a set.

For thinking about inverses of function we want to think in the oposite
direction in a sense.

Definition The pre-image of any subset U ⊂ T is

f−1(U) := {s ∈ S|f(s) ∈ U} ⊂ S.

The pre-image of a set U is the set of all elements of S which map to U .

Example 146 The pre-image of the set U =

a
2

1
1

∣∣∣∣∣∣a ∈ [0, 1]

 (a line segment)

under the matrix

M =

1 0 1
0 1 1
0 1 1

 : R3 → R3

is the set

M−1U = {x|Mx = v for some v ∈ U}

=


xy
z

∣∣∣∣∣∣
1 0 1

0 1 1
0 1 1

xy
z

 = a

2
1
1

 for some a ∈ [0, 1]

 .
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Figure 16.1: For the function f : S → T , S is the domain, T is the tar-
get/codomain, f(S) is the range and f−1(U) is the pre-image of U ⊂ T .

Since

RREF

1 0 1 2a
0 1 1 a
0 1 1 a

 =

1 0 1 2a
0 1 1 a
0 0 0 0


we have

M−1U =

a
2

1
0

+ b

−1
−1

1

∣∣∣∣∣∣ a ∈ [0, 1], b ∈ R

 ,

a strip from a plane in R3.

16.2.1 One-to-one and Onto

The function f is one-to-one (sometimes denoted 1:1) if different elements
in S always map to different elements in T . That is, f is one-to-one if for
any elements x 6= y ∈ S, we have that f(x) 6= f(y), as pictured below.
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One-to-one functions are also called injective functions (and sometimes
called monomorphisms.) Notice that injectivity is a condition on the pre-
images of f .

The function f is onto if every element of T is mapped to by some element
of S. That is, f is onto if for any t ∈ T , there exists some s ∈ S such that
f(s) = t. Onto functions are also called surjective functions (and sometimes
epimorphisms.) Notice that surjectivity is a condition on the range of f .

If f is both injective and surjective, it is bijective (or an isomorphism.)
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Theorem 16.2.1. A function f : S → T has an inverse function g : T → S
if and only if f is bijective.

Proof. This is an “if and only if” statement so the proof has two parts.

1. (Existence of an inverse ⇒ bijective.)

Suppose that f has an inverse function g. We need to show f is bijec-
tive, which we break down into injective and surjective.

• The function f is injective: Suppose that we have s, s′ ∈ S such
that f(s) = f(s′). We must have that g(f(s)) = s for any s ∈ S, so
in particular g(f(s)) = s and g(f(s′)) = s′. But since f(s) = f(s′),
we have g(f(s)) = g(f(s′)) so s = s′. Therefore, f is injective.

• The function f is surjective: Let t be any element of T . We must
have that f(g(t)) = t. Thus, g(t) is an element of S which maps
to t. So f is surjective.

2. (Bijectivity ⇒ existence of an inverse.) Suppose that f is bijective.
Hence f is surjective, so every element t ∈ T has at least one pre-
image. Being bijective, f is also injective, so every t has no more than
one pre-image. Therefore, to construct an inverse function g, we simply
define g(t) to be the unique pre-image f−1(t) of t.

Now let us specialize to functions f that are linear maps between two
vector spaces. Everything we said above for arbitrary functions is exactly
the same for linear functions. However, the structure of vector spaces lets
us say much more about one-to-one and onto functions whose domains are
vector spaces than we can say about functions on general sets. For example,
we know that a linear function always sends 0V to 0W , i.e.,

f(0V ) = 0W

In Review Exercise 2, you will show that a linear transformation is one-to-one
if and only if 0V is the only vector that is sent to 0W . Linear functions are
unlike arbitrary functions between sets in that, by looking at just one (very
special) vector, we can figure out whether f is one-to-one!
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16.2.2 Kernel

Let L : V → W be a linear transformation. Suppose L is not injective. Then
we can find v1 6= v2 such that Lv1 = Lv2. So v1 − v2 6= 0, but

L(v1 − v2) = 0.

Definition If L : V → W is a linear function then the set

kerL = {v ∈ V | Lv = 0W} ⊂ V

is called the kernel of L.

Notice that if L has matrix M in some basis, then finding the kernel of L
is equivalent to solving the homogeneous system

MX = 0.

Example 147 Let L(x, y) = (x+ y, x+ 2y, y). Is L one-to-one?
To find out, we can solve the linear system:1 1 0

1 2 0
0 1 0

 ∼
1 0 0

0 1 0
0 0 0

 .

Then all solutions of MX = 0 are of the form x = y = 0. In other words, kerL = {0},
and so L is injective.

Reading homework: problem 1

Notice that in the above example we found

ker

1 1
1 2
0 1

 = ker

1 0
0 1
0 0

 .

In general, an efficient way to get the kernel of a matrix is to write a string
of equalities between kernels of matrices which differ by row operations and,
once RREF is reached, note that the linear relationships between the columns
for a basis for the nullspace.
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Example 148 of calculating the kernel of a matrix.

ker

1 2 0 1
1 2 1 2
0 0 1 1

 = ker

1 2 0 1
0 0 1 1
0 0 1 1

 = ker

1 2 0 1
0 0 1 1
0 0 0 0



= span



−2

1
0
0

 ,


−1

0
−1

1


 .

The two column vectors in this last line describe linear relations between the columns
c1, c2, c3, c4. In particular −2c1 + 1c2 = 0 and −c1 − c3 + c4 = 0.

In general, a description of the kernel of a matrix should be of the form
span{v1, v2, . . . , vn} with one vector vi for each non-pivot column. To agree
with the standard procedure, think about how to describe each non-pivot
column in terms of columns to its left; this will yield an expression of the
form wherein each vector has a 1 as its last non-zero entry. (Think of Column
Reduced Echelon Form, CREF.)

Thinking again of augmented matrices, if a matrix has more than one
element in its kernel then it is not invertible since the existence of multiple
solutions to Mx = 0 implies that RREFM 6= I. However just because
the kernel of a linear function is trivial does not mean that the function is
invertible.

Example 149 ker

1 0
1 1
0 1

 =

{(
0
0

)}
since the matrix has no non-pivot columns.

However,

1 0
1 1
0 1

 : R2 → R3 is not invertible because there are many things in its

codomain that are not in its range, such as

1
0
0

.

A trivial kernel only gives us half of what is needed for invertibility.

Theorem 16.2.2. A linear transformation L : V → W is injective iff

kerL = {0V } .
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Proof. The proof of this theorem is Review Exercise 2.

Theorem 16.2.3. If L : V
linear
−−−→ W then kerL is a subspace of V .

Proof. Notice that if L(v) = 0 and L(u) = 0, then for any constants c, d,
L(cu+dv) = 0. Then by the subspace theorem, the kernel of L is a subspace
of V .

Example 150 Let L : R3 → R be the linear transformation defined by L(x, y, z) =
(x+ y+ z). Then kerL consists of all vectors (x, y, z) ∈ R3 such that x+ y+ z = 0.
Therefore, the set

V = {(x, y, z) ∈ R3 | x+ y + z = 0}

is a subspace of R3.

When L : V → V , the above theorem has an interpretation in terms of
the eigenspaces of L. Suppose L has a zero eigenvalue. Then the associated
eigenspace consists of all vectors v such that Lv = 0v = 0; the 0-eigenspace
of L is exactly the kernel of L.

In the example where L(x, y) = (x + y, x + 2y, y), the map L is clearly
not surjective, since L maps R2 to a plane through the origin in R3. But any
plane through the origin is a subspace. In general notice that if w = L(v)
and w′ = L(v′), then for any constants c, d, linearity of L ensures that

cw + dw′ = L(cv + dv′) .

Now the subspace theorem strikes again, and we have the following theorem:

Theorem 16.2.4. If L : V → W is linear then the range L(V ) is a subspace
of W .

Example 151 Let L(x, y) = (x + y, x + 2y, y). The range of L is a plane through
the origin and thus a subspace of R3. Indeed the matrix of L in the standard basis is1 1

1 2
0 1

 .

The columns of this matrix encode the possible outputs of the function L because

L(x, y) =

1 1
1 2
0 1

(x
y

)
= x

1
1
0

+ y

1
2
1

 .
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Thus

L(R2) = span


1

1
0

 ,

1
2
1


Hence, when bases and a linear transformation is are given, people often refer to its
range as the column space of the corresponding matrix.

To find a basis of the range of L, we can start with a basis S = {v1, . . . , vn}
for V . Then the most general input for L is of the form α1v1 + · · · + αnvn.
In turn, its most general output looks like

L
(
α1v1 + · · ·+ αnvn

)
= α1Lv1 + · · ·+ αnLvn ∈ span{Lv1, . . . Lvn} .

Thus

L(V ) = spanL(S) = span{Lv1, . . . , Lvn} .

However, the set {Lv1, . . . , Lvn} may not be linearly independent; we must
solve

c1Lv1 + · · ·+ cnLvn = 0 ,

to determine whether it is. By finding relations amongst the elements of
L(S) = {Lv1, . . . , Lvn}, we can discard vectors until a basis is arrived at.
The size of this basis is the dimension of the range of L, which is known as
the rank of L.

Definition The rank of a linear transformation L is the dimension of its
range. The nullity of a linear transformation is the dimension of the kernel.

The notation for these numbers is

nullL := dim kerL,

rankL := dimL(V ) = dim ranL.
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Theorem 16.2.5 (Dimension Formula). Let L : V → W be a linear trans-
formation, with V a finite-dimensional vector space1. Then:

dimV = dim kerV + dimL(V )

= nullL+ rankL.

Proof. Pick a basis for V :

{v1, . . . , vp, u1, . . . , uq},

where v1, . . . , vp is also a basis for kerL. This can always be done, for exam-
ple, by finding a basis for the kernel of L and then extending to a basis for V .
Then p = nullL and p+ q = dimV . Then we need to show that q = rankL.
To accomplish this, we show that {L(u1), . . . , L(uq)} is a basis for L(V ).

To see that {L(u1), . . . , L(uq)} spans L(V ), consider any vector w in L(V ).
Then we can find constants ci, dj such that:

w = L(c1v1 + · · ·+ cpvp + d1u1 + · · ·+ dquq)

= c1L(v1) + · · ·+ cpL(vp) + d1L(u1) + · · ·+ dqL(uq)

= d1L(u1) + · · ·+ dqL(uq) since L(vi) = 0,

⇒ L(V ) = span{L(u1), . . . , L(uq)}.

Now we show that {L(u1), . . . , L(uq)} is linearly independent. We argue
by contradiction. Suppose there exist constants dj (not all zero) such that

0 = d1L(u1) + · · ·+ dqL(uq)

= L(d1u1 + · · ·+ dquq).

But since the uj are linearly independent, then d1u1 + · · · + dquq 6= 0, and
so d1u1 + · · · + dquq is in the kernel of L. But then d1u1 + · · · + dquq must
be in the span of {v1, . . . , vp}, since this was a basis for the kernel. This
contradicts the assumption that {v1, . . . , vp, u1, . . . , uq} was a basis for V , so
we are done.

1The formula still makes sense for infinite dimensional vector spaces, such as the space
of all polynomials, but the notion of a basis for an infinite dimensional space is more
sticky than in the finite-dimensional case. Furthermore, the dimension formula for infinite
dimensional vector spaces isn’t useful for computing the rank of a linear transformation,
since an equation like ∞ = ∞ + x cannot be solved for x. As such, the proof presented
assumes a finite basis for V .
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Reading homework: problem 2

Example 152 (Row rank equals column rank)
Suppose M is an m × n matrix. The matrix M itself is a linear transformation
M : Rn → Rm but it must also be the matrix of some linear transformation

L : V
linear−→ W .

Here we only know that dimV = n and dimW = m. The rank of the map L is
the dimension of its image and also the number of linearly independent columns of
M . Hence, this is sometimes called the column rank of M . The dimension formula
predicts the dimension of the kernel, i.e. the nullity: nullL = dimV − rankL = n−r.

To compute the kernel we would study the linear system

Mx = 0 ,

which gives m equations for the n-vector x. The row rank of a matrix is the number
of linearly independent rows (viewed as vectors). Each linearly independent row of M
gives an independent equation satisfied by the n-vector x. Every independent equation
on x reduces the size of the kernel by one, so if the row rank is s, then nullL+ s = n.
Thus we have two equations:

nullL+ s = n and nullL = n− r .

From these we conclude the r = s. In other words, the row rank of M equals its
column rank.

16.3 Summary

We have seen that a linear transformation has an inverse if and only if it is
bijective (i.e., one-to-one and onto). We also know that linear transforma-
tions can be represented by matrices, and we have seen many ways to tell
whether a matrix is invertible. Here is a list of them:

Theorem 16.3.1 (Invertibility). Let V be an n-dimensional vector space and
suppose L : V → V is a linear transformation with matrix M in some basis.
Then M is an n× n matrix, and the following statements are equivalent:
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1. If v is any vector in Rn, then the system Mx = v has exactly one
solution.

2. The matrix M is row-equivalent to the identity matrix.

3. If v is any vector in V , then L(x) = v has exactly one solution.

4. The matrix M is invertible.

5. The homogeneous system Mx = 0 has no non-zero solutions.

6. The determinant of M is not equal to 0.

7. The transpose matrix MT is invertible.

8. The matrix M does not have 0 as an eigenvalue.

9. The linear transformation L does not have 0 as an eigenvalue.

10. The characteristic polynomial det(λI −M) does not have 0 as a root.

11. The columns (or rows) of M span Rn.

12. The columns (or rows) of M are linearly independent.

13. The columns (or rows) of M are a basis for Rn.

14. The linear transformation L is injective.

15. The linear transformation L is surjective.

16. The linear transformation L is bijective.

Note: it is important that M be an n × n matrix! If M is not square,
then it can’t be invertible, and many of the statements above are no longer
equivalent to each other.

Proof. Many of these equivalences were proved earlier in other chapters.
Some were left as review questions or sample final questions. The rest are
left as exercises for the reader.

Invertibility Conditions
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16.4 Review Problems

Webwork:

Reading Problems 1 , 2 ,
Elements of kernel 3

Basis for column space 4
Basis for kernel 5

Basis for kernel and range 6
Orthonomal range basis 7
Orthonomal kernel basis 8

Orthonomal kernel and range bases 9
Orthonomal kernel, range and row space bases 10

Rank 11

1. Consider an arbitrary matrix M : Rm → Rn.

(a) Argue that Mx = 0 if only if x is perpendicular to all columns
of MT .

(b) Argue that Mx = 0 if only if x is perpendicular to all of the linear
combinations of the columns of MT .

(c) Argue that kerM is perpendicular to ranMT .

(d) Argue further Rm = kerM ⊕ ranMT .

(e) Argue analogously that Rn = kerMT ⊕ ranM .

The equations in the last two parts describe how a linear transforma-
tion M : Rm → Rn determines orthogonal decompositions of both it’s
domain and target. This result sometimes goes by the humble name
The Fundamental Theorem of Linear Algebra.

2. Let L : V → W be a linear transformation. Show that kerL = {0V } if
and only if L is one-to-one:

(a) (Trivial kernel ⇒ injective.) Suppose that kerL = {0V }. Show
that L is one-to-one. Think about methods of proof–does a proof
by contradiction, a proof by induction, or a direct proof seem most
appropriate?

(b) (Injective ⇒ trivial kernel.) Now suppose that L is one-to-one.
Show that kerL = {0V }. That is, show that 0V is in kerL, and
then show that there are no other vectors in kerL.
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Hint

3. Let {v1, . . . , vn} be a basis for V and L : V → W is a linear function.
Carefully explain why

L(V ) = span{Lv1, . . . , Lvn} .

4. Suppose L : R4 → R3 whose matrix M in the standard basis is row
equivalent to the following matrix:1 0 0 −1

0 1 0 1
0 0 1 1

 = RREF(M) ∼M.

(a) Explain why the first three columns of the original matrix M form
a basis for L(R4).

(b) Find and describe an algorithm (i.e., a general procedure) for
computing a basis for L(Rn) when L : Rn → Rm.

(c) Use your algorithm to find a basis for L(R4) when L : R4 → R3 is
the linear transformation whose matrix M in the standard basis
is 2 1 1 4

0 1 0 5
4 1 1 6

 .

5. Claim:

If {v1, . . . , vn} is a basis for kerL, where L : V → W , then it
is always possible to extend this set to a basis for V .

Choose some simple yet non-trivial linear transformations with non-
trivial kernels and verify the above claim for those transformations.

6. Let Pn(x) be the space of polynomials in x of degree less than or equal
to n, and consider the derivative operator

d

dx
: Pn(x)→ Pn(x) .

300

http://math.ucdavis.edu/~linear/videos/kernel_range_nullity_rank_hint.mp4


16.4 Review Problems 301

Find the dimension of the kernel and image of this operator. What
happens if the target space is changed to Pn−1(x) or Pn+1(x)?

Now consider P2(x, y), the space of polynomials of degree two or less
in x and y. (Recall how degree is counted; xy is degree two, y is degree
one and x2y is degree three, for example.) Let

L :=
∂

∂x
+

∂

∂y
: P2(x, y)→ P2(x, y).

(For example, L(xy) = ∂
∂x

(xy) + ∂
∂y

(xy) = y + x.) Find a basis for the
kernel of L. Verify the dimension formula in this case.

7. Lets demonstrate some ways the dimension formula can break down if
a vector space is infinite dimensional.

(a) Let R[x] be the vector space of all polynomials in the variable x
with real coefficients. Let D = d

dx
be the usual derivative operator.

Show that the range of D is R[x]. What is kerD?

Hint: Use the basis {xn | n ∈ N}.

(b) Let L : R[x]→ R[x] be the linear map

L(p(x)) = xp(x) .

What is the kernel and range of M?

(c) Let V be an infinite dimensional vector space and L : V → V be a
linear operator. Suppose that dim kerL <∞, show that dimL(V )
is infinite. Also show that when dimL(V ) < ∞ that dim kerL is
infinite.

8. This question will answer the question, “If I choose a bit vector at
random, what is the probability that it lies in the span of some other
vectors?”

i. Given a collection S of k bit vectors in B3, consider the bit ma-
trix M whose columns are the vectors in S. Show that S is linearly
independent if and only if the kernel of M is trivial, namely the
set kerM = {v ∈ B3|Mv = 0} contains only the zero vector.
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ii. Give some method for choosing a random bit vector v in B3. Sup-
pose S is a collection of 2 linearly independent bit vectors in B3.
How can we tell whether S ∪{v} is linearly independent? Do you
think it is likely or unlikely that S ∪ {v} is linearly independent?
Explain your reasoning.

iii. If P is the characteristic polynomial of a 3 × 3 bit matrix, what
must the degree of P be? Given that each coefficient must be
either 0 or 1, how many possibilities are there for P? How many
of these possible characteristic polynomials have 0 as a root? If M
is a 3×3 bit matrix chosen at random, what is the probability that
it has 0 as an eigenvalue? (Assume that you are choosing a random
matrix M in such a way as to make each characteristic polynomial
equally likely.) What is the probability that the columns of M
form a basis for B3? (Hint: what is the relationship between the
kernel of M and its eigenvalues?)

Note: We could ask the same question for real vectors: If I choose a real
vector at random, what is the probability that it lies in the span
of some other vectors? In fact, once we write down a reasonable
way of choosing a random real vector, if I choose a real vector in
Rn at random, the probability that it lies in the span of n − 1
other real vectors is zero!
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17
Least squares and Singular Values

Consider the linear algebraic equation L(x) = v, where L : U
linear
−−−→ W and

v ∈ W are known while x is unknown. As we have seen, this system may
have one solution, no solutions, or infinitely many solutions. But if v is not
in the range of L there will never be any solutions for L(x) = v.

However, for many applications we do not need an exact solution of the
system; instead, we may only need the best approximation possible.

“My work always tried to unite the Truth with the Beautiful,
but when I had to choose one or the other, I usually chose the
Beautiful.”

– Hermann Weyl.
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If the vector space W has a notion of lengths of vectors, we can try to
find x that minimizes ||L(x)− v||.

This method has many applications, such as when trying to fit a (perhaps
linear) function to a “noisy” set of observations. For example, suppose we
measured the position of a bicycle on a racetrack once every five seconds.
Our observations won’t be exact, but so long as the observations are right on
average, we can figure out a best-possible linear function of position of the
bicycle in terms of time.

Suppose M is the matrix for the linear function L : U → W in some
bases for U and W . The vectors v and x are represented by column vectors
V and X in these bases. Then we need to approximate

MX − V ≈ 0 .

Note that if dimU = n and dimW = m then M can be represented by
an m × n matrix and x and v as vectors in Rn and Rm, respectively. Thus,
we can write W = L(U)⊕ L(U)⊥. Then we can uniquely write v = v‖ + v⊥,
with v‖ ∈ L(U) and v⊥ ∈ L(U)⊥.

Thus we should solve L(u) = v‖. In components, v⊥ is just V −MX, and
is the part we will eventually wish to minimize.

In terms of M , recall that L(V ) is spanned by the columns of M . (In
the standard basis, the columns of M are Me1, . . ., Men.) Then v⊥ must be
perpendicular to the columns of M . i.e., MT (V −MX) = 0, or

MTMX = MTV.

Solutions of MTMX = MTV for X are called least squares solutions to
MX = V . Notice that any solution X to MX = V is a least squares solution.
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However, the converse is often false. In fact, the equation MX = V may have
no solutions at all, but still have least squares solutions to MTMX = MTV .

Observe that since M is an m× n matrix, then MT is an n×m matrix.
Then MTM is an n× n matrix, and is symmetric, since (MTM)T = MTM .
Then, for any vector X, we can evaluate XTMTMX to obtain a num-
ber. This is a very nice number, though! It is just the length |MX|2 =
(MX)T (MX) = XTMTMX.

Reading homework: problem 1

Now suppose that kerL = {0}, so that the only solution to MX = 0 is
X = 0. (This need not mean that M is invertible because M is an n × m
matrix, so not necessarily square.) However the square matrix MTM is
invertible. To see this, suppose there was a vector X such that MTMX = 0.
Then it would follow that XTMTMX = |MX|2 = 0. In other words the
vector MX would have zero length, so could only be the zero vector. But we
are assuming that kerL = {0} so MX = 0 implies X = 0. Thus the kernel
of MTM is {0} so this matrix is invertible. So, in this case, the least squares
solution (the X that solves MTMX = MV ) is unique, and is equal to

X = (MTM)−1MTV.

In a nutshell, this is the least squares method:

• Compute MTM and MTV .

• Solve (MTM)X = MTV by Gaussian elimination.

Example 153 Captain Conundrum falls off of the leaning tower of Pisa and makes
three (rather shaky) measurements of his velocity at three different times.

t s v m/s

1 11
2 19
3 31

Having taken some calculus1, he believes that his data are best approximated by
a straight line

v = at+ b.

1In fact, he is a Calculus Superhero.
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Then he should find a and b to best fit the data.

11 = a · 1 + b

19 = a · 2 + b

31 = a · 3 + b.

As a system of linear equations, this becomes:1 1
2 1
3 1

(a
b

)
?
=

11
19
31

 .

There is likely no actual straight line solution, so instead solve MTMX = MTV .

(
1 2 3
1 1 1

)1 1
2 1
3 1

(a
b

)
=

(
1 2 3
1 1 1

)11
19
31

 .

This simplifies to (
14 6 142
6 3 61

)
∼
(

1 0 10
0 1 1

3

)
.

Thus, the least-squares fit is the line

v = 10 t+
1

3
.

Notice that this equation implies that Captain Conundrum accelerates towards Italian
soil at 10 m/s2 (which is an excellent approximation to reality) and that he started at
a downward velocity of 1

3 m/s (perhaps somebody gave him a shove...)!

17.1 Projection Matrices

We have seen that even if MX = V has no solutions MTMX = MTV does
have solutions. One way to think about this is, since the codomain of M is
the direct sum

codom M = ranM ⊕ kerMT

there is a unique way to write V = Vr+Vk with Vk ∈ kerMT and Vr ∈ ran M ,
and it is clear that Mx = V only has a solution of V ∈ ranM ⇔ Vk = 0.
If not, then the closest thing to a solution of MX = V is a solution to
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17.1 Projection Matrices 307

MX = Vr. We learned to find solutions to this in the previous subsection of
this book.

But here is another question, how can we determine what Vr is given M
and V ? The answer is simple; suppose X is a solution to MX = Vr. Then

MX = Vr =⇒ MTMx = MTVr =⇒ MTMx = MT (Vr + 0)

=⇒ MTMx = MT (Vr+Vk) =⇒ MTMx = MTV =⇒ X = (MTM)−1MTV

if indeed MTM is invertible. Since, by assumption, X is a solution

M(MTM)−1MT V = Vr.

That is, the matrix which projects V onto its ranM part is M(MTM)−1MT .

Example 154 To project

1
1
1

 onto span


1

1
0

 ,

 1
−1

0

 = ran

1 1
1 −1
0 0

 multi-

ply by the matrix1 1
1 −1
0 0

(1 1 0
1 −1 0

)1 1
1 −1
0 0

−1(1 1 0
1 −1 0

)

=

1 1
1 −1
0 0

(2 0
0 2

)−1(
1 1 0
1 −1 0

)

=
1

2

1 1
1 −1
0 0

(1 1 0
1 −1 0

)
=

1

2

2 0 0
0 2 0
0 0 0

 .

This gives

1

2

2 0 0
0 2 0
0 0 0

1
1
1

 =

1
1
0

 .
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17.2 Singular Value Decomposition

Suppose

L : V
linear
−−−→W .

It is unlikely that dimV =: n = m := dimW so a m × n matrix M of L
in bases for V and W will not be square. Therefore there is no eigenvalue
problem we can use to uncover a preferred basis. However, if the vector
spaces V and W both have inner products, there does exist an analog of the
eigenvalue problem, namely the singular values of L.

Before giving the details of the powerful technique known as the singular
value decomposition, we note that it is an excellent example of what Eugene
Wigner called the “Unreasonable Effectiveness of Mathematics”:

There is a story about two friends who were classmates in high school, talking about
their jobs. One of them became a statistician and was working on population trends. He
showed a reprint to his former classmate. The reprint started, as usual with the Gaussian
distribution and the statistician explained to his former classmate the meaning of the
symbols for the actual population and so on. His classmate was a bit incredulous and was
not quite sure whether the statistician was pulling his leg. “How can you know that?”
was his query. “And what is this symbol here?” “Oh,” said the statistician, this is “π.”
“And what is that?” “The ratio of the circumference of the circle to its diameter.” “Well,
now you are pushing your joke too far,” said the classmate, “surely the population has
nothing to do with the circumference of the circle.”

Eugene Wigner, Commun. Pure and Appl. Math. XIII, 1 (1960).

Whenever we mathematically model a system, any “canonical quantities”
(those that do not depend on any choices we make for calculating them) will
correspond to important features of the system. For examples, the eigenval-
ues of the eigenvector equation you found in review question 1, chapter 12
encode the notes and harmonics that a guitar string can play!

Singular values appear in many linear algebra applications, especially
those involving very large data sets such as statistics and signal processing.

Let us focus on the m×n matrix M of a linear transformation L : V → W
written in orthonormal bases for the input and outputs of L (notice, the
existence of these othonormal bases is predicated on having inner products for
V andW ). Even though the matrixM is not square, both the matricesMMT

and MTM are square and symmetric! In terms of linear transformations MT

is the matrix of a linear transformation

L∗ : W
linear
−−−→V .
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Thus LL∗ : W → W and L∗L : V → V and both have eigenvalue problems.
Moreover, as is shown in Chapter 15, both L∗L and LL∗ have orthonormal
bases of eigenvectors, and both MMT and MTM can be diagonalized.

Next, let us make a simplifying assumption, namely kerL = {0}. This
is not necessary, but will make some of our computations simpler. Now
suppose we have found an orthonormal basis (u1, . . . , un) for V composed of
eigenvectors for L∗L. That is

L∗Lui = λiui .

Then multiplying by L gives

LL∗Lui = λiLui .

I.e., Lui is an eigenvector of LL∗. The vectors (Lu1, . . . , Lun) are linearly
independent, because kerL = {0} (this is where we use our simplifying as-
sumption, but you can try and extend our analysis to the case where it no
longer holds).

Lets compute the angles between and lengths of these vectors. For that
we express the vectors ui in the bases used to compute the matrix M of L.
Denoting these column vectors by Ui we then compute

(MUi) · (MUj) = UT
i M

TMUj = λj U
T
i Uj = λj Ui · Uj = λjδij .

We see that vectors (Lu1, . . . , Lun) are orthogonal but not orthonormal.
Moreover, the length of Lui is

√
λi. Normalizing gives the orthonormal and

linearly independent ordered set(
Lu1√
λ1
, . . . ,

Lun√
λn

)
.

In general, this cannot be a basis for W since kerL = {0}, dimL(V ) =
dimV, and in turn dimV ≤ dimW , so n ≤ m.

However, it is a subset of the eigenvectors of LL∗ so there is an orthonor-
mal basis of eigenvectors of LL∗ of the form

O′ =

(
Lu1√
λ1
, . . . ,

Lun√
λn
, vn+1, . . . , vm

)
=: (v1, . . . , vm) .

Now lets compute the matrix of L with respect to the orthonormal basis
O = (u1, . . . , un) for V and the orthonormal basis O′ = (v1, . . . , vm) for W .
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As usual, our starting point is the computation of L acting on the input basis
vectors;

LO =
(
Lu1, . . . , Lun

)
=

(√
λ1 v1, . . . ,

√
λn vn

)

=
(
v1, . . . , vm

)


√
λ1 0 · · · 0

0
√
λ2 · · · 0

...
...

. . .
...

0 0 · · ·
√
λn

0 0 · · · 0
...

...
...

0 0 · · · 0


.

The result is very close to diagonalization; the numbers
√
λi along the leading

diagonal are called the singular values of L.

Example 155 Let the matrix of a linear transformation be

M =


1
2

1
2

−1 1

−1
2 −1

2

 .

Clearly kerM = {0} while

MTM =

(
3
2 −1

2

−1
2

3
2

)
which has eigenvalues and eigenvectors

λ = 1 , u1 :=

( 1√
2
1√
2

)
; λ = 2 , u2 :=

( 1√
2

− 1√
2

)
.

so our orthonormal input basis is

O =

(( 1√
2
1√
2

)
,

( 1√
2

− 1√
2

))
.

These are called the right singular vectors of M . The vectors

Mu1 =


1√
2

0
− 1√

2

 and Mu2 =

 0

−
√

2

0


310
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are eigenvectors of

MMT =

 1
2 0 −1

2
0 2 0
−1

2 0 1
2


with eigenvalues 1 and 2, respectively. The third eigenvector (with eigenvalue 0) of
MMT is

v3 =


1√
2

0
1√
2

 .

The eigenvectors Mu1 and Mu2 are necessarily orthogonal, dividing them by their
lengths we obtain the left singular vectors and in turn our orthonormal output basis

O′ =




1√
2

0
− 1√

2

 ,

 0

−1

0

 ,


1√
2

0
1√
2


 .

The new matrix M ′ of the linear transformation given by M with respect to the bases
O and O′ is

M ′ =

1 0

0
√

2
0 0

 ,

so the singular values are 1,
√

2.

Finally note that arranging the column vectors of O and O′ into change of basis
matrices

P =

( 1√
2

1√
2

1√
2
− 1√

2

)
, Q =


1√
2

0 1√
2

0 −1 0

− 1√
2

0 1√
2

 ,

we have, as usual,

M ′ = Q−1MP .

Singular vectors and values have a very nice geometric interpretation;
they provide an orthonormal bases for the domain and range of L and give
the factors by which L stretches the orthonormal input basis vectors. This
is depicted below for the example we just computed.
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Congratulations, you have reached the end of the book!

Now test your skills on the sample final exam.

17.3 Review Problems

Webwork: Reading Problem 1 ,

1. Let L : U → V be a linear transformation. Suppose v ∈ L(U) and you
have found a vector ups that obeys L(ups) = v.

Explain why you need to compute kerL to describe the solution set of
the linear system L(u) = v.

Hint

2. Suppose that M is an m× n matrix with trivial kernel. Show that for
any vectors u and v in Rm:

• uTMTMv = vTMTMu.
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• vTMTMv ≥ 0. In case you are concerned (you don’t need to be)
and for future reference, the notation v ≥ 0 means each component
vi ≥ 0.

• If vTMTMv = 0, then v = 0.

(Hint: Think about the dot product in Rn.)

Hint

3. Rewrite the Gram-Schmidt algorithm in terms of projection matrices.

4. Show that if v1, . . . , vk are linearly independent that the matrix M =
(v1 · · · vk) is not necessarily invertible but the matrix MTM is invert-
ible.

5. Write out the singular value decomposition theorem of a 3× 1, a 3× 2,
and a 3×3 symmetric matrix. Make it so that none of the components
of your matrices are zero but your computations are simple. Explain
why you choose the matrices you choose.

6. Find the best polynomial approximation to a solution to the differential
equation d

dx
f = x + x2 by considering the derivative to have domain

and codomain span {1, x, x2}.
(Hint: Begin by defining bases for the domain and codomain.)

313

http://math.ucdavis.edu/~linear/videos/least_squares_hint2.mp4


314 Least squares and Singular Values

314



A
List of Symbols

∈ “Is an element of”.

∼ “Is equivalent to”, see equivalence relations.
Also, “is row equivalent to” for matrices.

R The real numbers.

In The n× n identity matrix.

P F
n The vector space of polynomials of degree at most n with

coefficients in the field F.

Mr
k The vector space of r × k matrices.
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B
Fields

Definition A field F is a set with two operations + and ·, such that for all
a, b, c ∈ F the following axioms are satisfied:

A1. Addition is associative (a+ b) + c = a+ (b+ c).

A2. There exists an additive identity 0.

A3. Addition is commutative a+ b = b+ a.

A4. There exists an additive inverse −a.

M1. Multiplication is associative (a · b) · c = a · (b · c).

M2. There exists a multiplicative identity 1.

M3. Multiplication is commutative a · b = b · a.

M4. There exists a multiplicative inverse a−1 if a 6= 0.

D. The distributive law holds a · (b+ c) = ab+ ac.

Roughly, all of the above mean that you have notions of +, −, × and ÷ just
as for regular real numbers.

Fields are a very beautiful structure; some examples are rational num-
bers Q, real numbers R, and complex numbers C. These examples are in-
finite, however this does not necessarily have to be the case. The smallest
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example of a field has just two elements, Z2 = {0, 1} or bits. The rules for
addition and multiplication are the usual ones save that

1 + 1 = 0 .
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C
Online Resources

Here are some internet places to get linear algebra help:

• Strang’s MIT Linear Algebra Course. Videos of lectures and more:

http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/

• Beezer’s online Linear Algebra Course

http://linear.ups.edu/version3.html

• The Khan Academy has thousands of free videos on a multitude of
topics including linear algebra:

http://www.khanacademy.org/

• The Linear Algebra toolkit:

http://www.math.odu.edu/∼bogacki/lat/

• Carter, Tapia and Papakonstantinou’s online linear algebra resource

http://ceee.rice.edu/Books/LA/index.html

• S.O.S. Mathematics Matrix Algebra primer:

http://www.sosmath.com/matrix/matrix.html

• The Numerical Methods Guy on Youtube. Lots of worked examples:
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320 Online Resources

http://www.youtube.com/user/numericalmethodsguy

• Interactive Mathematics. Lots of useful math lessons on many topics:

http://www.intmath.com/

• Stat Trek. A quick matrix tutorial for statistics students:

http://stattrek.com/matrix-algebra/matrix.aspx

• Wolfram’s Mathworld. An online mathematics encyclopædia:

http://mathworld.wolfram.com/

• Paul Dawkin’s online math notes:

http://tutorial.math.lamar.edu/

• Math Doctor Bob:

http://www.youtube.com/user/MathDoctorBob?feature=watch

• Some pictures of how to rotate objects with matrices:

http://people.cornellcollege.edu/dsherman/visualize-matrix.html

• xkcd. Geek jokes:

http://xkcd.com/184/

• See the bridge actually fall down:

http://anothermathgeek.hubpages.com/hub/What-the-Heck-are-Eigenvalues-and-Eigenvectors
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D
Sample First Midterm

Here are some worked problems typical for what you might expect on a first
midterm examination.

1. Solve the following linear system. Write the solution set in vector form.
Check your solution. Write one particular solution and one homogeneous
solution, if they exist. What does the solution set look like geometrically?

x + 3y = 4

x − 2y + z = 1

2x + y + z = 5

2. Consider the system of equations

x − z + 2w = −1

x + y + z − w = 2

− y − 2z + 3w = −3

5x + 2y − z + 4w = 1

(a) Write an augmented matrix for this system.

(b) Use elementary row operations to find its reduced row echelon form.

(c) Write the solution set for the system in the form

S = {X0 +
∑
i

µiYi : µi ∈ R}.
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322 Sample First Midterm

(d) What are the vectors X0 and Yi called and which matrix equations do
they solve?

(e) Check separately that X0 and each Yi solve the matrix systems you
claimed they solved in part (d).

3. Use row operations to invert the matrix
1 2 3 4
2 4 7 11
3 7 14 25
4 11 25 50



4. Let M =

(
2 1
3 −1

)
. Calculate MTM−1. Is M symmetric? What is the

trace of the transpose of f(M), where f(x) = x2 − 1?

5. In this problem M is the matrix

M =

(
cos θ sin θ
− sin θ cos θ

)
and X is the vector

X =

(
x
y

)
.

Calculate all possible dot products between the vectors X and MX. Com-
pute the lengths of X and MX. What is the angle between the vectors MX
and X. Draw a picture of these vectors in the plane. For what values of θ
do you expect equality in the triangle and Cauchy–Schwartz inequalities?

6. Let M be the matrix 

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Find a formula for Mk for any positive integer power k. Try some simple
examples like k = 2, 3 if confused.

7. What does it mean for a function to be linear? Check that integration is a
linear function from V to V , where V = {f : R → R | f is integrable} is a
vector space over R with usual addition and scalar multiplication.
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8. What are the four main things we need to define for a vector space? Which
of the following is a vector space over R? For those that are not vector
spaces, modify one part of the definition to make it into a vector space.

(a) V = { 2× 2 matrices with entries in R}, usual matrix addition, and

k ·
(
a b
c d

)
=

(
ka b
kc d

)
for k ∈ R.

(b) V = {polynomials with complex coefficients of degree ≤ 3}, with usual
addition and scalar multiplication of polynomials.

(c) V = {vectors in R3 with at least one entry containing a 1}, with usual
addition and scalar multiplication.

9. Subspaces: If V is a vector space, we say that U is a subspace of V when the
set U is also a vector space, using the vector addition and scalar multiplica-
tion rules of the vector space V . (Remember that U ⊂ V says that “U is a
subset of V ”, i.e., all elements of U are also elements of V . The symbol ∀
means “for all” and ∈ means “is an element of”.)

Explain why additive closure (u + w ∈ U ∀ u, v ∈ U) and multiplicative
closure (r.u ∈ U ∀ r ∈ R, u ∈ V ) ensure that (i) the zero vector 0 ∈ U and
(ii) every u ∈ U has an additive inverse.

In fact it suffices to check closure under addition and scalar multiplication
to verify that U is a vector space. Check whether the following choices of U
are vector spaces:

(a) U =


xy

0

 : x, y ∈ R


(b) U =


1

0
z

 : z ∈ R


10. Find an LU decomposition for the matrix

1 1 −1 2
1 3 2 2
−1 −3 −4 6

0 4 7 −2


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Use your result to solve the system
x + y − z + 2w = 7

x + 3y + 2z + 2w = 6

−x − 3y − 4z + 6w = 12

4y + 7z − 2w = −7

Solutions

1. As an additional exercise, write out the row operations above the ∼ signs
below. 1 3 0 4

1 −2 1 1

2 1 1 5

 ∼
 1 3 0 4

0 −5 1 −3

0 −5 1 −3

 ∼
 1 0 3

5
11
5

0 1 −1
5

3
5

0 0 0 0

 .

Solution set is 
xy
z

 =

11
5
3
5
0

+ µ

−3
5
1
5
1

 : µ ∈ R

 .

Geometrically this represents a line in R3 through the point

11
5
3
5
0

 running

parallel to the vector

−
3
5
1
5

1

.

The vector

 11
5
3
5
0

 is a particular solution and

−3
5
1
5
1

 is a homogeneous

solution.

As a double check note that 1 3 0
1 −2 1
2 1 1

 11
5
3
5
0

 =

4
1
5

 and

 1 3 0
1 −2 1
2 1 1

 −3
5
1
5
1

 =

0
0
0

 .
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2. (a) The augmented matrix
1 0 −1 2 −1

1 1 1 −1 2

0 −1 −2 3 −3

5 2 −1 4 1


encodes the system of equations.

(b) Again, write out the row operations as an additional exercise.
The above augmented matrix is row equivalent to

1 0 −1 2 −1

0 1 2 −3 3

0 −1 −2 3 −3

0 2 4 −6 6

 ∼


1 0 −1 2 −1

0 1 2 −3 3

0 0 0 0 0

0 0 0 0 0


which is in reduced row echelon form.

(c) Solution set isX =


−1

3
0
0

+ µ1


1
−2

1
0

+ µ2


−2

3
0
1

 : µ1, µ2 ∈ R

 .

(d) The vector X0 =


−1

3
0
0

 is a particular solution and the vectors

Y1 =


1
−2

1
0

 and Y2 =


−2

3
0
1


are homogeneous solutions. They obey

MX = V , MY1 = 0 = MY2 .

where

M =


1 0 −1 2
1 1 1 −1
0 −1 −2 3
5 2 −1 4

 and V =


−1

2
−3

1

 .
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(e) This amounts to explicitly performing the matrix manipulations

MX − V, MY1, and MY2

to verify that they are all zero vectors.

3. As usual, be sure to write out the row operations above the ∼’s so your work
can be easily checked. 

1 2 3 4 1 0 0 0
2 4 7 11 0 1 0 0
3 7 14 25 0 0 1 0
4 11 25 50 0 0 0 1



∼


1 2 3 4 1 0 0 0
0 0 1 3 −2 1 0 0
0 1 5 13 −3 0 1 0
0 3 13 34 −4 0 0 1



∼


1 0 −7 −22 7 0 −2 0
0 1 5 13 −3 0 1 0
0 0 1 3 −2 1 0 0
0 0 −2 −5 5 0 −3 1



∼


1 0 0 −1 −7 7 −2 0
0 1 0 −2 7 −5 1 0
0 0 1 3 −2 1 0 0
0 0 0 1 1 2 −3 1



∼


1 0 0 0 −6 9 −5 1
0 1 0 0 9 −1 −5 2
0 0 1 0 −5 −5 9 −3
0 0 0 1 1 2 −3 1

 .

Check 
1 2 3 4
2 4 7 11
3 7 14 25
4 11 25 50



−6 9 −5 1

9 −1 −5 2
−5 −5 9 −3

1 2 −3 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

4.

MTM−1 =

(
2 3
1 −1

)(1
5

1
5

3
5 −2

5

)
=

(
11
5 −4

5
−2

5
3
5

)
.
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Since MTM−1 6= I, it follows MT 6= M so M is not symmetric. Finally

trf(M)T = trf(M) = tr(M2 − I) = tr

(
2 1
3 −1

)(
2 1
3 −1

)
− trI

= (2 · 2 + 1 · 3) + (3 · 1 + (−1) · (−1))− 2 = 9 .

5. First

X (MX) = XTMX =
(
x y

)( cos θ sin θ
− sin θ cos θ

)(
x
y

)
=
(
x y

)( x cos θ + y sin θ
−x sin θ + y cos θ

)
= (x2 + y2) cos θ .

Now ||X|| =
√
X X =

√
x2 + y2 and (MX) (MX) = XMTMX. But

MTM =

(
cos θ − sin θ
sin θ cos θ

)(
cos θ sin θ
− sin θ cos θ

)

=

(
cos2 θ + sin2 θ 0

0 cos2 θ + sin2 θ

)
= I .

Hence ||MX|| = ||X|| =
√
x2 + y2. Thus the cosine of the angle between X

and MX is given by

X (MX)

||X|| ||MX||
=

(x2 + y2) cos θ√
x2 + y2

√
x2 + y2

= cos θ .

In other words, the angle is θ OR −θ. You should draw two pictures, one
where the angle between X and MX is θ, the other where it is −θ.
For Cauchy–Schwartz, |X (MX)|

||X|| ||MX|| = | cos θ| = 1 when θ = 0, π. For the

triangle equality MX = X achieves ||X + MX|| = ||X|| + ||MX||, which
requires θ = 0.

6. This is a block matrix problem. Notice the that matrix M is really just

M =

(
I I
0 I

)
, where I and 0 are the 3×3 identity zero matrices, respectively.

But

M2 =

(
I I
0 I

)(
I I
0 I

)
=

(
I 2I
0 I

)
and

M3 =

(
I I
0 I

)(
I 2I
0 I

)
=

(
I 3I
0 I

)
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so, Mk =

(
I kI
0 I

)
, or explicitly

Mk =



1 0 0 k 0 0
0 1 0 0 k 0
0 0 1 0 0 k
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

7. We can call a function f : V −→ W linear if the sets V and W are vector
spaces and f obeys

f(αu+ βv) = αf(u) + βf(v) ,

for all u, v ∈ V and α, β ∈ R.

Now, integration is a linear transformation from the space V of all inte-
grable functions (don’t be confused between the definition of a linear func-
tion above, and integrable functions f(x) which here are the vectors in V )
to the real numbers R, because

∫∞
−∞(αf(x) + βg(x))dx = α

∫∞
−∞ f(x)dx +

β
∫∞
−∞ g(x)dx.

8. The four main ingredients are (i) a set V of vectors, (ii) a number field K
(usually K = R), (iii) a rule for adding vectors (vector addition) and (iv)
a way to multiply vectors by a number to produce a new vector (scalar
multiplication). There are, of course, ten rules that these four ingredients
must obey.

(a) This is not a vector space. Notice that distributivity of scalar multi-
plication requires 2u = (1 + 1)u = u+ u for any vector u but

2 ·
(
a b
c d

)
=

(
2a b
2c d

)
which does not equal(

a b
c d

)
+

(
a b
c d

)
=

(
2a 2b
2c 2d

)
.

This could be repaired by taking

k ·
(
a b
c d

)
=

(
ka kb
kc kd

)
.
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(b) This is a vector space. Although, the question does not ask you to, it is
a useful exercise to verify that all ten vector space rules are satisfied.

(c) This is not a vector space for many reasons. An easy one is that
(1,−1, 0) and (−1, 1, 0) are both in the space, but their sum (0, 0, 0) is
not (i.e., additive closure fails). The easiest way to repair this would
be to drop the requirement that there be at least one entry equaling 1.

9. (i) Thanks to multiplicative closure, if u ∈ U , so is (−1)·u. But (−1)·u+u =
(−1) ·u+1 ·u = (−1+1) ·u = 0.u = 0 (at each step in this chain of equalities
we have used the fact that V is a vector space and therefore can use its vector
space rules). In particular, this means that the zero vector of V is in U and
is its zero vector also. (ii) Also, in V , for each u there is an element −u
such that u+ (−u) = 0. But by additive close, (−u) must also be in U , thus
every u ∈ U has an additive inverse.

(a) This is a vector space. First we check additive closure: let

xy
0

 and z
w
0

 be arbitrary vectors in U . But since

xy
0

+

 z
w
0

 =

 x+ z
y + w

0

,

so is their sum (because vectors in U are those whose third component

vanishes). Multiplicative closure is similar: for any α ∈ R, α

xy
0

 =αxαy
0

, which also has no third component, so is in U .

(b) This is not a vector space for various reasons. A simple one is that

u =

1
0
z

 is in U but the vector u+ u =

 2
0

2z

 is not in U (it has a 2

in the first component, but vectors in U always have a 1 there).

10. 
1 1 −1 2
1 3 2 2
−1 −3 −4 6

0 4 7 −2

 =


1 0 0 0
1 1 0 0
−1 0 1 0

0 0 0 1




1 1 −1 2
0 2 3 0
0 −2 −5 8
0 4 7 −2


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=


1 0 0 0
1 1 0 0
−1 −1 1 0

0 2 0 1




1 1 −1 2
0 2 3 0
0 0 −2 8
0 0 1 −2



=


1 0 0 0
1 1 0 0
−1 −1 1 0

0 2 −1
2 1




1 1 −1 2
0 2 3 0
0 0 −2 8
0 0 0 2

 .

To solve MX = V using M = LU we first solve LW = V whose augmented
matrix reads

1 0 0 0 7
1 1 0 0 6
−1 −1 1 0 12
0 2 −1

2 1 −7

 ∼


1 0 0 0 7
0 1 0 0 −1
0 0 1 0 18
0 2 −1

2 1 −7



∼


1 0 0 0 7
0 1 0 0 −1
0 0 1 0 18
0 0 0 1 4

 ,

from which we can read off W . Now we compute X by solving UX = W
with the augmented matrix

1 1 −1 2 7
0 2 3 0 −1
0 0 −2 8 18
0 0 0 2 4

 ∼


1 1 −1 2 7
0 2 3 0 −1
0 0 −2 0 2
0 0 0 1 2



∼


1 1 −1 2 7
0 2 0 0 2
0 0 1 0 −1
0 0 0 1 2

 ∼


1 0 0 0 1
0 1 0 0 1
0 0 1 0 −1
0 0 0 1 2

 .

So x = 1, y = 1, z = −1 and w = 2.
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Here are some worked problems typical for what you might expect on a second
midterm examination.

1. Determinants: The determinant detM of a 2 × 2 matrix M =

(
a b
c d

)
is

defined by

detM = ad− bc .

(a) For which values of detM does M have an inverse?

(b) Write down all 2×2 bit matrices with determinant 1. (Remember bits
are either 0 or 1 and 1 + 1 = 0.)

(c) Write down all 2× 2 bit matrices with determinant 0.

(d) Use one of the above examples to show why the following statement is
FALSE.

Square matrices with the same determinant are always row
equivalent.

2. Let

A =


1 1 1

2 2 3

4 5 6

 .

Compute detA. Find all solutions to (i) AX = 0 and (ii) AX =

 1
2
3

 for
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the vector X ∈ R3. Find, but do not solve, the characteristic polynomial of
A.

3. Let M be any 2× 2 matrix. Show

detM = −1

2
trM2 +

1

2
(trM)2 .

4. The permanent: Let M = (M i
j) be an n×n matrix. An operation producing

a single number from M similar to the determinant is the “permanent”

permM =
∑
σ

M1
σ(1)M

2
σ(2) · · ·M

n
σ(n) .

For example

perm

(
a b
c d

)
= ad+ bc .

Calculate

perm

1 2 3
4 5 6
7 8 9

 .

What do you think would happen to the permanent of an n× n matrix M
if (include a brief explanation with each answer):

(a) You multiplied M by a number λ.

(b) You multiplied a row of M by a number λ.

(c) You took the transpose of M .

(d) You swapped two rows of M .

5. Let X be an n× 1 matrix subject to

XTX = (1) ,

and define

H = I − 2XXT ,

(where I is the n× n identity matrix). Show

H = HT = H−1.
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6. Suppose λ is an eigenvalue of the matrix M with associated eigenvector v.
Is v an eigenvector of Mk (where k is any positive integer)? If so, what
would the associated eigenvalue be?

Now suppose that the matrix N is nilpotent, i.e.

Nk = 0

for some integer k ≥ 2. Show that 0 is the only eigenvalue of N .

7. Let M =

(
3 −5

1 −3

)
. Compute M12. (Hint: 212 = 4096.)

8. The Cayley Hamilton Theorem: Calculate the characteristic polynomial

PM (λ) of the matrix M =

(
a b
c d

)
. Now compute the matrix polynomial

PM (M). What do you observe? Now suppose the n×n matrix A is “similar”
to a diagonal matrix D, in other words

A = P−1DP

for some invertible matrix P and D is a matrix with values λ1, λ2, . . . λn
along its diagonal. Show that the two matrix polynomials PA(A) and PA(D)
are similar (i.e. PA(A) = P−1PA(D)P ). Finally, compute PA(D), what can
you say about PA(A)?

9. Define what it means for a set U to be a subspace of a vector space V .
Now let U and W be non-trivial subspaces of V . Are the following also
subspaces? (Remember that ∪ means “union” and ∩ means “intersection”.)

(a) U ∪W
(b) U ∩W

In each case draw examples in R3 that justify your answers. If you answered
“yes” to either part also give a general explanation why this is the case.

10. Define what it means for a set of vectors {v1, v2, . . . , vn} to (i) be linearly
independent, (ii) span a vector space V and (iii) be a basis for a vector
space V .

Consider the following vectors in R3

u =

−1
−4

3

 , v =

4
5
0

 , w =

 10
7

h+ 3

 .

For which values of h is {u, v, w} a basis for R3?
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Solutions

1. (a) Whenever detM = ad− bc 6= 0.

(b) Unit determinant bit matrices:(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)
.

(c) Bit matrices with vanishing determinant:(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
1 1
0 0

)
,

(
0 0
1 1

)
,

(
1 0
1 0

)
,

(
0 1
0 1

)
,

(
1 1
1 1

)
.

As a check, count that the total number of 2×2 bit matrices is 2(number of entries) =
24 = 16.

(d) To disprove this statement, we just need to find a single counterexam-
ple. All the unit determinant examples above are actually row equiva-
lent to the identity matrix, so focus on the bit matrices with vanishing
determinant. Then notice (for example), that(

1 1
0 0

)
∼/
(

0 0
0 0

)
.

So we have found a pair of matrices that are not row equivalent but
do have the same determinant. It follows that the statement is false.

2.

detA = 1.(2.6− 3.5)− 1.(2.6− 3.4) + 1.(2.5− 2.4) = −1 .

(i) Since detA 6= 0, the homogeneous system AX = 0 only has the solution
X = 0. (ii) It is efficient to compute the adjoint

adj A =

−3 0 2
−1 2 −1

1 −1 0

T =

−3 −1 1
0 2 −1
2 −1 0


Hence

A−1 =

 3 1 −1
0 −2 1
−2 1 0

 .
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Thus

X =

 3 1 −1
0 −2 1
−2 1 0

1
2
3

 =

 2
−1

0

 .

Finally,

PA(λ) = −det

1− λ 1 1
2 2− λ 3
4 5 6− λ


= −

[
(1− λ)[(2− λ)(6− λ)− 15]− [2.(6− λ)− 12] + [10− 4.(2− λ)]

]
= λ3 − 9λ2 − λ+ 1 .

3. Call M =

(
a b
c d

)
. Then detM = ad− bc, yet

−1

2
trM2 +

1

2
(trM)2 = −1

2
tr

(
a2 + bc ∗

∗ bc+ d2

)
− 1

2
(a+ d)2

= −1

2
(a2 + 2bc+ d2) +

1

2
(a2 + 2ad+ d2) = ad− bc ,

which is what we were asked to show.

4.

perm

1 2 3
4 5 6
7 8 9

 = 1 · (5 · 9 + 6 · 8) + 2 · (4 · 9 + 6 · 7) + 3 · (4 · 8 + 5 · 7) = 450 .

(a) Multiplying M by λ replaces every matrix element M i
σ(j) in the formula

for the permanent by λM i
σ(j), and therefore produces an overall factor

λn.

(b) Multiplying the ith row by λ replaces M i
σ(j) in the formula for the

permanent by λM i
σ(j). Therefore the permanent is multiplied by an

overall factor λ.

(c) The permanent of a matrix transposed equals the permanent of the
original matrix, because in the formula for the permanent this amounts
to summing over permutations of rows rather than columns. But we

could then sort the product M
σ(1)
1 M

σ(2)
2 . . .M

σ(n)
n back into its original

order using the inverse permutation σ−1. But summing over permuta-
tions is equivalent to summing over inverse permutations, and therefore
the permanent is unchanged.
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(d) Swapping two rows also leaves the permanent unchanged. The argu-
ment is almost the same as in the previous part, except that we need
only reshuffle two matrix elements M j

σ(i) and M i
σ(j) (in the case where

rows i and j were swapped). Then we use the fact that summing over
all permutations σ or over all permutations σ̃ obtained by swapping a
pair in σ are equivalent operations.

5. Firstly, lets call (1) = 1 (the 1× 1 identity matrix). Then we calculate

HT = (I−2XXT )T = IT −2(XXT )T = I−2(XT )TXT = I−2XXT = H ,

which demonstrates the first equality. Now we compute

H2 = (I − 2XXT )(I − 2XXT ) = I − 4XXT + 4XXTXXT

= I − 4XXT + 4X(XTX)XT = I − 4XXT + 4X.1.XT = I .

So, since HH = I, we have H−1 = H.

6. We know Mv = λv. Hence

M2v = MMv = Mλv = λMv = λ2v ,

and similarly

Mkv = λMk−1v = . . . = λkv .

So v is an eigenvector of Mk with eigenvalue λk.

Now let us assume v is an eigenvector of the nilpotent matrix N with eigen-
value λ. Then from above

Nkv = λkv

but by nilpotence, we also have

Nkv = 0.

Hence λkv = 0 and v (being an eigenvector) cannot vanish. Thus λk = 0
and in turn λ = 0.

7. Let us think about the eigenvalue problem Mv = λv. This has solutions
when

0 = det

(
3− λ −5

1 −3− λ

)
= λ2 − 4⇒ λ = ±2 .
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The associated eigenvalues solve the homogeneous systems (in augmented
matrix form)(

1 −5 0
1 −5 0

)
∼
(

1 −5 0
0 0 0

)
and

(
5 −5 0
1 −1 0

)
∼
(

1 −1 0
0 0 0

)
,

respectively, so are v2 =

(
5
1

)
and v−2 =

(
1
1

)
. Hence M12v2 = 212v2 and

M12v−2 = (−2)12v−2. Now,

(
x
y

)
= x−y

4

(
5
1

)
− x−5y

4

(
1
1

)
(this was obtained

by solving the linear system av2 + bv−2 = for a and b). Thus

M

(
x
y

)
=
x− y

4
Mv2 −

x− 5y

4
Mv−2

= 212
(x− y

4
v2 −

x− 5y

4
v−2

)
= 212

(
x
y

)
.

Thus

M12 =

(
4096 0

0 4096

)
.

If you understand the above explanation, then you have a good understanding

of diagonalization. A quicker route is simply to observe that M2 =

(
4 0
0 4

)
.

8.

PM (λ) = (−1)2det

(
a− λ b
c d− λ

)
= (λ− a)(λ− d)− bc .

Thus
PM (M) = (M − aI)(M − dI)− bcI

=

((
a b
c d

)
−
(
a 0
0 a

))((
a b
c d

)
−
(
d 0
0 d

))
−
(
bc 0
0 bc

)
=

(
0 b
c d− a

)(
a− d b
c 0

)
−
(
bc 0
0 bc

)
= 0 .

Observe that any 2× 2 matrix is a zero of its own characteristic polynomial
(in fact this holds for square matrices of any size).

Now if A = P−1DP then A2 = P−1DPP−1DP = P−1D2P . Similarly
Ak = P−1DkP . So for any matrix polynomial we have

An + c1A
n−1 + · · · cn−1A+ cnI

= P−1DnP + c1P
−1Dn−1P + · · · cn−1P−1DP + cnP

−1P

= P−1(Dn + c1D
n−1 + · · · cn−1D + cnI)P .
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Thus we may conclude PA(A) = P−1PA(D)P .

Now suppose D =


λ1 0 · · · 0
0 λ2 0
...

. . .
...

0 · · · λn

. Then

PA(λ) = det(λI −A) = det(λP−1IP − P−1DP ) = detP.det(λI −D).detP

= det(λI −D) = det


λ− λ1 0 · · · 0

0 λ− λ2 0
...

. . .
...

0 0 · · · λ− λn


= (λ− λ1)(λ− λ2) . . . (λ− λn) .

Thus we see that λ1, λ2, . . . , λn are the eigenvalues ofM . Finally we compute

PA(D) = (D − λ1)(D − λ2) . . . (D − λn)

=


0 0 · · · 0
0 λ2 0
...

. . .
...

0 0 · · · λn



λ1 0 · · · 0
0 0 0
...

. . .
...

0 0 · · · λn

 . . .


λ1 0 · · · 0
0 λ2 0
...

. . .
...

0 0 · · · 0

 = 0 .

We conclude the PM (M) = 0.

9. A subset of a vector space is called a subspace if it itself is a vector space,
using the rules for vector addition and scalar multiplication inherited from
the original vector space.

(a) So long as U 6= U ∪W 6= W the answer is no. Take, for example, U
to be the x-axis in R2 and W to be the y-axis. Then

(
1, 0
)
∈ U and(

0, 1
)
∈ W , but

(
1, 0
)

+
(
0, 1
)

=
(
1, 1
)
/∈ U ∪W . So U ∪W is not

additively closed and is not a vector space (and thus not a subspace).
It is easy to draw the example described.

(b) Here the answer is always yes. The proof is not difficult. Take a vector
u and w such that u ∈ U ∩W 3 w. This means that both u and w
are in both U and W . But, since U is a vector space, αu + βw is also
in U . Similarly, αu + βw ∈ W . Hence αu + βw ∈ U ∩W . So closure
holds in U ∩W and this set is a subspace by the subspace theorem.
Here, a good picture to draw is two planes through the origin in R3

intersecting at a line (also through the origin).
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10. (i) We say that the vectors {v1, v2, . . . vn} are linearly independent if there
exist no constants c1, c2, . . . cn (not all vanishing) such that c1v1 + c2v2 +
· · · + cnvn = 0. Alternatively, we can require that there is no non-trivial
solution for scalars c1, c2, . . . , cn to the linear system c1v1 + c2v2 + · · · +
cnvn = 0. (ii) We say that these vectors span a vector space V if the set
span{v1, v2, . . . vn} = {c1v1 + c2v2 + · · ·+ cnvn : c1, c2, . . . cn ∈ R} = V . (iii)
We call {v1, v2, . . . vn} a basis for V if {v1, v2, . . . vn} are linearly independent
and span{v1, v2, . . . vn} = V .

For u, v, w to be a basis for R3, we firstly need (the spanning requirement)

that any vector

xy
z

 can be written as a linear combination of u, v and w

c1

−1
−4

3

+ c2

4
5
0

+ c3

 10
7

h+ 3

 =

xy
z

 .

The linear independence requirement implies that when x = y = z = 0, the
only solution to the above system is c1 = c2 = c3 = 0. But the above system
in matrix language reads−1 4 10

−4 5 7
3 0 h+ 3

c1c2
c3

 =

xy
z

 .

Both requirements mean that the matrix on the left hand side must be
invertible, so we examine its determinant

det

−1 4 10
−4 5 7

3 0 h+ 3

 = −4 · (−4 · (h+ 3)− 7 · 3) + 5 · (−1 · (h+ 3)− 10 · 3)

= 11(h− 3) ·

Hence we obtain a basis whenever h 6= 3.
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F
Sample Final Exam

Here are some worked problems typical for what you might expect on a final
examination.

1. Define the following terms:

(a) An orthogonal matrix.

(b) A basis for a vector space.

(c) The span of a set of vectors.

(d) The dimension of a vector space.

(e) An eigenvector.

(f) A subspace of a vector space.

(g) The kernel of a linear transformation.

(h) The nullity of a linear transformation.

(i) The image of a linear transformation.

(j) The rank of a linear transformation.

(k) The characteristic polynomial of a square matrix.

(l) An equivalence relation.

(m) A homogeneous solution to a linear system of equations.

(n) A particular solution to a linear system of equations.

(o) The general solution to a linear system of equations.

(p) The direct sum of a pair of subspaces of a vector space.
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(q) The orthogonal complement to a subspace of a vector space.

2. Kirchoff’s laws: Electrical circuits are easy to analyze using systems of equa-
tions. The change in voltage (measured in Volts) around any loop due to
batteries |

∣∣ and resistors /\/\/\/\ (given by the product of the current mea-
sured in Amps and resistance measured in Ohms) equals zero. Also, the sum
of currents entering any junction vanishes. Consider the circuit

J Amps

3 Ohms

60 Volts

1 Ohm 2 Ohms

80 Volts

3 Ohms

V Volts

13 AmpsI Amps

Find all possible equations for the unknowns I, J and V and then solve for
I, J and V . Give your answers with correct units.

3. Suppose M is the matrix of a linear transformation

L : U → V

and the vector spaces U and V have dimensions

dimU = n , dimV = m,

and
m 6= n .

Also assume
kerL = {0U} .

(a) How many rows does M have?

(b) How many columns does M have?

(c) Are the columns of M linearly independent?

(d) What size matrix is MTM?

(e) What size matrix is MMT ?

(f) Is MTM invertible?

(g) is MTM symmetric?
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(h) Is MTM diagonalizable?

(i) Does MTM have a zero eigenvalue?

(j) Suppose U = V and kerL 6= {0U}. Find an eigenvalue of M .

(k) Suppose U = V and kerL 6= {0U}. Find detM .

4. Consider the system of equations

x + y + z + w = 1
x + 2y + 2z + 2w = 1
x + 2y + 3z + 3w = 1

Express this system as a matrix equationMX = V and then find the solution
set by computing an LU decomposition for the matrix M (be sure to use
back and forward substitution).

5. Compute the following determinants

det

(
1 2
3 4

)
, det

1 2 3
4 5 6
7 8 9

 , det


1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

 ,

det


1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

 .

Now test your skills on

det


1 2 3 · · · n

n+ 1 n+ 2 n+ 3 · · · 2n
2n+ 1 2n+ 2 2n+ 3 3n

...
. . .

...
n2 − n+ 1 n2 − n+ 2 n2 − n+ 3 · · · n2

 .

Make sure to jot down a few brief notes explaining any clever tricks you use.

6. For which values of a does

U = span


1

0
1

 ,

 1
2
−3

 ,

a1
0

 = R3 ?

343



344 Sample Final Exam

For any special values of a at which U 6= R3, express the subspace U as the
span of the least number of vectors possible. Give the dimension of U for
these cases and draw a picture showing U inside R3.

7. Vandermonde determinant: Calculate the following determinants

det

(
1 x
1 y

)
, det

1 x x2

1 y y2

1 z z2

 , det


1 x x2 x3

1 y y2 y3

1 z z2 z3

1 w w2 w3

 .

Be sure to factorize you answers, if possible.

Challenging: Compute the determinant

det


1 x1 (x1)

2 · · · (x1)
n−1

1 x2 (x2)
2 · · · (x2)

n−1

1 x3 (x3)
2 · · · (x3)

n−1

...
...

...
. . .

...
1 xn (xn)2 · · · (xn)n−1

 .

8. (a) Do the vectors


1

2
3

 ,

3
2
1

 ,

1
0
0

 ,

0
1
0

 ,

0
0
1

 form a basis for R3?

Be sure to justify your answer.

(b) Find a basis for R4 that includes the vectors


1
2
3
4

 and


4
3
2
1

.

(c) Explain in words how to generalize your computation in part (b) to
obtain a basis for Rn that includes a given pair of (linearly independent)
vectors u and v.

9. Elite NASA engineers determine that if a satellite is placed in orbit starting
at a point O, it will return exactly to that same point after one orbit of the
earth. Unfortunately, if there is a small mistake in the original location of
the satellite, which the engineers label by a vector X in R3 with origin1 at O,

1This is a spy satellite. The exact location of O, the orientation of the coordinate axes
in R3 and the unit system employed by the engineers are CIA secrets.
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after one orbit the satellite will instead return to some other point Y ∈ R3.
The engineer’s computations show that Y is related to X by a matrix

Y =


0 1

2 1

1
2

1
2

1
2

1 1
2 0

X .

(a) Find all eigenvalues of the above matrix.

(b) Determine all possible eigenvectors associated with each eigenvalue.

Let us assume that the rule found by the engineers applies to all subsequent
orbits. Discuss case by case, what will happen to the satellite if the initial
mistake in its location is in a direction given by an eigenvector.

10. In this problem the scalars in the vector spaces are bits (0, 1 with 1+1 = 0).
The space Bk is the vector space of bit-valued, k-component column vectors.

(a) Find a basis for B3.

(b) Your answer to part (a) should be a list of vectors v1, v2, . . . vn. What
number did you find for n?

(c) How many elements are there in the set B3.

(d) What is the dimension of the vector space B3.

(e) Suppose L : B3 → B = {0, 1} is a linear transformation. Explain why
specifying L(v1), L(v2), . . . , L(vn) completely determines L.

(f) Use the notation of part (e) to list all linear transformations

L : B3 → B .

How many different linear transformations did you find? Compare your
answer to part (c).

(g) Suppose L1 : B3 → B and L2 : B3 → B are linear transformations,
and α and β are bits. Define a new map (αL1 + βL2) : B3 → B by

(αL1 + βL2)(v) = αL1(v) + βL2(v).

Is this map a linear transformation? Explain.

(h) Do you think the set of all linear transformations from B3 to B is a
vector space using the addition rule above? If you answer yes, give a
basis for this vector space and state its dimension.
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11. A team of distinguished, post-doctoral engineers analyzes the design for a
bridge across the English channel. They notice that the force on the center

of the bridge when it is displaced by an amount X =

xy
z

 is given by

F =

 −x− y
−x− 2y − z
−y − z

 .

Moreover, having read Newton’s Principiæ, they know that force is propor-
tional to acceleration so that2

F =
d2X

dt2
.

Since the engineers are worried the bridge might start swaying in the heavy
channel winds, they search for an oscillatory solution to this equation of the
form3

X = cos(ωt)

ab
c

 .

(a) By plugging their proposed solution in the above equations the engi-
neers find an eigenvalue problem

M

ab
c

 = −ω2

ab
c

 .

Here M is a 3 × 3 matrix. Which 3 × 3 matrix M did the engineers
find? Justify your answer.

(b) Find the eigenvalues and eigenvectors of the matrix M .

(c) The number |ω| is often called a characteristic frequency. What char-
acteristic frequencies do you find for the proposed bridge?

(d) Find an orthogonal matrix P such that MP = PD where D is a
diagonal matrix. Be sure to also state your result for D.

2The bridge is intended for French and English military vehicles, so the exact units,
coordinate system and constant of proportionality are state secrets.

3Here, a, b, c and ω are constants which we aim to calculate.
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(e) Is there a direction in which displacing the bridge yields no force? If
so give a vector in that direction. Briefly evaluate the quality of this
bridge design.

12. Conic Sections: The equation for the most general conic section is given by

ax2 + 2bxy + dy2 + 2cx+ 2ey + f = 0 .

Our aim is to analyze the solutions to this equation using matrices.

(a) Rewrite the above quadratic equation as one of the form

XTMX +XTC + CTX + f = 0

relating an unknown column vector X =

(
x
y

)
, its transpose XT , a

2× 2 matrix M , a constant column vector C and the constant f .

(b) Does your matrix M obey any special properties? Find its eigenvalues.
You may call your answers λ and µ for the rest of the problem to save
writing.

For the rest of this problem we will focus on central conics for
which the matrix M is invertible.

(c) Your equation in part (a) above should be be quadratic in X. Recall
that if m 6= 0, the quadratic equation mx2 + 2cx + f = 0 can be
rewritten by completing the square

m
(
x+

c

m

)2
=
c2

m
− f .

Being very careful that you are now dealing with matrices, use the
same trick to rewrite your answer to part (a) in the form

Y TMY = g.

Make sure you give formulas for the new unknown column vector Y
and constant g in terms of X, M , C and f . You need not multiply out
any of the matrix expressions you find.

If all has gone well, you have found a way to shift coordinates
for the original conic equation to a new coordinate system
with its origin at the center of symmetry. Our next aim is
to rotate the coordinate axes to produce a readily recognizable
equation.
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(d) Why is the angle between vectors V and W is not changed when you
replace them by PV and PW for P any orthogonal matrix?

(e) Explain how to choose an orthogonal matrix P such that MP = PD
where D is a diagonal matrix.

(f) For the choice of P above, define our final unknown vector Z by Y =
PZ. Find an expression for Y TMY in terms of Z and the eigenvalues
of M .

(g) Call Z =

(
z
w

)
. What equation do z and w obey? (Hint, write your

answer using λ, µ and g.)

(h) Central conics are circles, ellipses, hyperbolae or a pair of straight lines.
Give examples of values of (λ, µ, g) which produce each of these cases.

13. Let L : V →W be a linear transformation between finite-dimensional vector
spaces V and W , and let M be a matrix for L (with respect to some basis
for V and some basis for W ). We know that L has an inverse if and only if
it is bijective, and we know a lot of ways to tell whether M has an inverse.
In fact, L has an inverse if and only if M has an inverse:

(a) Suppose that L is bijective (i.e., one-to-one and onto).

i. Show that dimV = rankL = dimW .

ii. Show that 0 is not an eigenvalue of M .

iii. Show that M is an invertible matrix.

(b) Now, suppose that M is an invertible matrix.

i. Show that 0 is not an eigenvalue of M .

ii. Show that L is injective.

iii. Show that L is surjective.

14. Captain Conundrum gives Queen Quandary a pair of newborn doves, male
and female for her birthday. After one year, this pair of doves breed and
produce a pair of dove eggs. One year later these eggs hatch yielding a new
pair of doves while the original pair of doves breed again and an additional
pair of eggs are laid. Captain Conundrum is very happy because now he will
never need to buy the Queen a present ever again!

Let us say that in year zero, the Queen has no doves. In year one she has
one pair of doves, in year two she has two pairs of doves etc... Call Fn the
number of pairs of doves in years n. For example, F0 = 0, F1 = 1 and
F2 = 1. Assume no doves die and that the same breeding pattern continues

348



349

well into the future. Then F3 = 2 because the eggs laid by the first pair of
doves in year two hatch. Notice also that in year three, two pairs of eggs are
laid (by the first and second pair of doves). Thus F4 = 3.

(a) Compute F5 and F6.

(b) Explain why (for any n ≥ 2) the following recursion relation holds

Fn = Fn−1 + Fn−2 .

(c) Let us introduce a column vector Xn =

(
Fn
Fn−1

)
. Compute X1 and X2.

Verify that these vectors obey the relationship

X2 = MX1 where M =

(
1 1
1 0

)
.

(d) Show that Xn+1 = MXn.

(e) Diagonalize M . (I.e., write M as a product M = PDP−1 where D is
diagonal.)

(f) Find a simple expression for Mn in terms of P , D and P−1.

(g) Show that Xn+1 = MnX1.

(h) The number

ϕ =
1 +
√

5

2

is called the golden ratio. Write the eigenvalues of M in terms of ϕ.

(i) Put your results from parts (c), (f) and (g) together (along with a short
matrix computation) to find the formula for the number of doves Fn
in year n expressed in terms of ϕ, 1− ϕ and n.

15. Use Gram–Schmidt to find an orthonormal basis for

span




1
1
1
1

 ,


1
0
1
1

 ,


0
0
1
2


 .

16. Let M be the matrix of a linear transformation L : V → W in given bases
for V and W . Fill in the blanks below with one of the following six vector

spaces: V , W , kerL,
(
kerL

)⊥
, imL,

(
imL

)⊥
.
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(a) The columns of M span in the basis given for .

(b) The rows of M span in the basis given for .

Suppose

M =


1 2 1 3
2 1 −1 2
1 0 0 −1
4 1 −1 0


is the matrix of L in the bases {v1, v2, v3, v4} for V and {w1, w2, w3, w4}
for W . Find bases for kerL and imL. Use the dimension formula to check
your result.

17. Captain Conundrum collects the following data set

y x

5 −2
2 −1
0 1
3 2

which he believes to be well-approximated by a parabola

y = ax2 + bx+ c .

(a) Write down a system of four linear equations for the unknown coeffi-
cients a, b and c.

(b) Write the augmented matrix for this system of equations.

(c) Find the reduced row echelon form for this augmented matrix.

(d) Are there any solutions to this system?

(e) Find the least squares solution to the system.

(f) What value does Captain Conundrum predict for y when x = 2?

18. Suppose you have collected the following data for an experiment

x y

x1 y1
x2 y2
x3 y3

and believe that the result is well modeled by a straight line

y = mx+ b .
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(a) Write down a linear system of equations you could use to find the slope
m and constant term b.

(b) Arrange the unknowns (m, b) in a column vector X and write your
answer to (a) as a matrix equation

MX = V .

Be sure to give explicit expressions for the matrix M and column vector
V .

(c) For a generic data set, would you expect your system of equations to
have a solution? Briefly explain your answer.

(d) Calculate MTM and (MTM)−1 (for the latter computation, state the
condition required for the inverse to exist).

(e) Compute the least squares solution for m and b.

(f) The least squares method determines a vector X that minimizes the
length of the vector V −MX. Draw a rough sketch of the three data
points in the (x, y)-plane as well as their least squares fit. Indicate how
the components of V −MX could be obtained from your picture.

Solutions

1. You can find the definitions for all these terms by consulting the index of
this book.

2. Both junctions give the same equation for the currents

I + J + 13 = 0 .

There are three voltage loops (one on the left, one on the right and one going
around the outside of the circuit). Respectively, they give the equations

60− I − 80− 3I = 0

80 + 2J − V + 3J = 0

60− I + 2J − V + 3J − 3I = 0 . (F.1)

The above equations are easily solved (either using an augmented matrix
and row reducing, or by substitution). The result is I = −5 Amps, J = −8
Amps, V = 40 Volts.

3. (a) m.
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(b) n.

(c) Yes.

(d) n× n.

(e) m×m.

(f) Yes. This relies on kerM = 0 because if MTM had a non-trivial kernel,
then there would be a non-zero solution X to MTMX = 0. But then
by multiplying on the left by XT we see that ||MX|| = 0. This in turn
implies MX = 0 which contradicts the triviality of the kernel of M .

(g) Yes because
(
MTM

)T
= MT (MT )T = MTM .

(h) Yes, all symmetric matrices have a basis of eigenvectors.

(i) No, because otherwise it would not be invertible.

(j) Since the kernel of L is non-trivial, M must have 0 as an eigenvalue.

(k) Since M has a zero eigenvalue in this case, its determinant must vanish.
I.e., detM = 0.

4. To begin with the system becomes

1 1 1 1

1 2 2 2

1 2 3 3



x

y

z

w

 =

1

1

1


Then

M =

1 1 1 1

1 2 2 2

1 2 3 3

 =

1 0 0

1 1 0

1 0 1


1 1 1 1

0 1 1 1

0 1 2 2



=

1 0 0

1 1 0

1 1 1


1 1 1 1

0 1 1 1

0 0 1 1

 = LU

So now MX = V becomes LW = V where W = UX =

ab
c

 (say). Thus

we solve LW = V by forward substitution

a = 1, a+ b = 1, a+ b+ c = 1⇒ a = 1, b = 0, c = 0 .
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Now solve UX = W by back substitution

x+ y + z + w = 1, y + z + w = 0, z + w = 0

⇒ w = µ (arbitrary), z = −µ, y = 0, x = 1 .

The solution set is



x
y
z
y

 =


1
0
−µ
µ

 : µ ∈ R


5. First

det

(
1 2
3 4

)
= −2 .

All the other determinants vanish because the first three rows of each matrix
are not independent. Indeed, 2R2 − R1 = R3 in each case, so we can make
row operations to get a row of zeros and thus a zero determinant.

6. If U spans R3, then we must be able to express any vector X =

xy
z

 ∈ R3

as

X = c1

1
0
1

+ c2

 1
2
−3

+ c3

a1
0

 =

1 1 a
0 2 1
1 −3 0

c1c2
c3

 ,

for some coefficients c1, c2 and c3. This is a linear system. We could solve
for c1, c2 and c3 using an augmented matrix and row operations. However,
since we know that dimR3 = 3, if U spans R3, it will also be a basis. Then
the solution for c1, c2 and c3 would be unique. Hence, the 3×3 matrix above
must be invertible, so we examine its determinant

det

1 1 a
0 2 1
1 −3 0

 = 1.(2.0− 1.(−3)) + 1.(1.1− a.2) = 4− 2a .

Thus U spans R3 whenever a 6= 2. When a = 2 we can write the third vector
in U in terms of the preceding ones as2

1
0

 =
3

2

1
0
1

+
1

2

 1
2
−3

 .

(You can obtain this result, or an equivalent one by studying the above linear
system with X = 0, i.e., the associated homogeneous system.) The two
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vectors

 1
2
−3

 and

2
1
0

 are clearly linearly independent, so this is the

least number of vectors spanning U for this value of a. Also we see that
dimU = 2 in this case. Your picture should be a plane in R3 though the

origin containing the vectors

 1
2
−3

 and

2
1
0

.

7.

det

(
1 x
1 y

)
= y − x ,

det

1 x x2

1 y y2

1 z z2

 = det

1 x x2

0 y − x y2 − x2
0 z − x z2 − x2


= (y − x)(z2 − x2)− (y2 − x2)(z − x) = (y − x)(z − x)(z − y) .

det


1 x x2 x3

1 y y2 y3

1 z z2 z3

1 w w2 w3

 = det


1 x x2 x3

0 y − x y2 − x2 y3 − x3
0 z − x z2 − x2 z3 − x3
0 w − x w2 − x2 w3 − x3



= det


1 0 0 0
0 y − x y(y − x) y2(y − x)
0 z − x z(z − x) z2(z − x)
0 w − x w(w − x) w2(w − x)



= (y − x)(z − x)(w − x) det


1 0 0 0
0 1 y y2

0 1 z z2

0 1 w w2



= (y − x)(z − x)(w − x) det

1 y y2

1 z z2

1 w w2


= (y − x)(z − x)(w − x)(z − y)(w − y)(w − z) .

From the 4× 4 case above, you can see all the tricks required for a general
Vandermonde matrix. First zero out the first column by subtracting the
first row from all other rows (which leaves the determinant unchanged).
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Now zero out the top row by subtracting x1 times the first column from the
second column, x1 times the second column from the third column et cetra.
Again these column operations do not change the determinant. Now factor
out x2 − x1 from the second row, x3 − x1 from the third row, etc. This
does change the determinant so we write these factors outside the remaining
determinant, which is just the same problem but for the (n − 1) × (n − 1)
case. Iterating the same procedure gives the result

det


1 x1 (x1)

2 · · · (x1)
n−1

1 x2 (x2)
2 · · · (x2)

n−1

1 x3 (x3)
2 · · · (x3)

n−1

...
...

...
. . .

...
1 xn (xn)2 · · · (xn)n−1

 =
∏
i>j

(xi − xj) .

(Here
∏

stands for a multiple product, just like Σ stands for a multiple
sum.)

8. (a) No, a basis for R3 must have exactly three vectors.

(b) We first extend the original vectors by the standard basis for R4 and
then try to eliminate two of them by considering

α


1
2
3
4

+ β


4
3
2
1

+ γ


1
0
0
0

+ δ


0
1
0
0

+ ε


0
0
1
0

+ η


0
0
0
1

 = 0 .

So we study
1 4 1 0 0 0
2 3 0 1 0 0
3 2 0 0 1 0
4 1 0 0 0 1

 ∼


1 4 1 0 0 0
0 −5 −2 1 0 0
0 −10 −3 0 1 0
0 −15 −4 0 0 1



∼


1 0 −3

5 −4 0 0
0 1 2

5
1
5 0 0

0 0 1 10 1 0
0 0 2 15 0 1

 ∼


1 0 0 2 3
5 0

0 1 0 −19
5 −2

5 0

0 0 1 10 1 0
0 0 0 −5

2 −10 1
2


From here we can keep row reducing to achieve RREF, but we can
already see that the non-pivot variables will be ε and η. Hence we can
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eject the last two vectors and obtain as our basis


1
2
3
4

 ,


4
3
2
1

 ,


1
0
0
0

 ,


0
1
0
0


 .

Of course, this answer is far from unique!

(c) The method is the same as above. Add the standard basis to {u, v}
to obtain the linearly dependent set {u, v, e1, . . . , en}. Then put these
vectors as the columns of a matrix and row reduce. The standard
basis vectors in columns corresponding to the non-pivot variables can
be removed.

9. (a)

det


λ −1

2 −1

−1
2 λ− 1

2 −1
2

−1 −1
2 λ

 = λ
(

(λ− 1

2

)
λ− 1

4
)+

1

2

(
− λ

2
− 1

2

)
−
(
− 1

4
+λ
)

= λ3 − 1

2
λ2 − 3

2
λ = λ(λ+ 1)(λ− 3

2
) .

Hence the eigenvalues are 0,−1, 32 .

(b) When λ = 0 we must solve the homogenous system 0 1
2 1 0

1
2

1
2

1
2 0

1 1
2 0 0

 ∼
 1 1

2 0 0

0 1
4

1
2 0

0 1
2 1 0

 ∼
 1 0 −1 0

0 1 2 0

0 0 0 0

 .

So we find the eigenvector

 s
−2s
s

 where s 6= 0 is arbitrary.

For λ = −1  1 1
2 1 0

1
2

3
2

1
2 0

1 1
2 1 0

 ∼
 1 0 1 0

0 1 0 0

0 0 0 0

 .

So we find the eigenvector

−s0
s

 where s 6= 0 is arbitrary.
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Finally, for λ = 3
2 −

3
2

1
2 1 0

1
2 −1 1

2 0

1 1
2 −3

2 0

 ∼
 1 1

2 −3
2 0

0 −5
4

5
4 0

0 5
4 −5

4 0

 ∼
 1 0 −1 0

0 1 −1 0

0 0 0 0

 .

So we find the eigenvector

ss
s

 where s 6= 0 is arbitrary.

If the mistake X is in the direction of the eigenvector

 1
−2

1

, then Y = 0.

I.e., the satellite returns to the origin O. For all subsequent orbits it will
again return to the origin. NASA would be very pleased in this case.

If the mistake X is in the direction

−1
0
1

, then Y = −X. Hence the

satellite will move to the point opposite to X. After next orbit will move
back to X. It will continue this wobbling motion indefinitely. Since this is a
stable situation, again, the elite engineers will pat themselves on the back.

Finally, if the mistake X is in the direction

1
1
1

 , the satellite will move to a

point Y = 3
2X which is further away from the origin. The same will happen

for all subsequent orbits, with the satellite moving a factor 3/2 further away
from O each orbit (in reality, after several orbits, the approximations used
by the engineers in their calculations probably fail and a new computation
will be needed). In this case, the satellite will be lost in outer space and the
engineers will likely lose their jobs!

10. (a) A basis for B3 is


1

0
0

 ,

0
1
0

 ,

0
0
1


(b) 3.

(c) 23 = 8.

(d) dimB3 = 3.

(e) Because the vectors {v1, v2, v3} are a basis any element v ∈ B3 can be

written uniquely as v = b1v1+b2v2+b3v3 for some triplet of bits

b1b2
b3

.
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Hence, to compute L(v) we use linearity of L

L(v) = L(b1v1 + b2v2 + b3v3) = b1L(v1) + b2L(v2) + b3L(v3)

=
(
L(v1) L(v2) L(v3)

)b1b2
b3

 .

(f) From the notation of the previous part, we see that we can list linear
transformations L : B3 → B by writing out all possible bit-valued row
vectors (

0 0 0
)
,(

1 0 0
)
,(

0 1 0
)
,(

0 0 1
)
,(

1 1 0
)
,(

1 0 1
)
,(

0 1 1
)
,(

1 1 1
)
.

There are 23 = 8 different linear transformations L : B3 → B, exactly
the same as the number of elements in B3.

(g) Yes, essentially just because L1 and L2 are linear transformations. In
detail for any bits (a, b) and vectors (u, v) in B3 it is easy to check the
linearity property for (αL1 + βL2)

(αL1 + βL2)(au+ bv) = αL1(au+ bv) + βL2(au+ bv)

= αaL1(u) + αbL1(v) + βaL1(u) + βbL1(v)

= a(αL1(u) + βL2(v)) + b(αL1(u) + βL2(v))

= a(αL1 + βL2)(u) + b(αL1 + βL2)(v) .

Here the first line used the definition of (αL1 + βL2), the second line
depended on the linearity of L1 and L2, the third line was just algebra
and the fourth used the definition of (αL1 + βL2) again.

(h) Yes. The easiest way to see this is the identification above of these
maps with bit-valued column vectors. In that notation, a basis is{(

1 0 0
)
,
(
0 1 0

)
,
(
0 0 1

)}
.
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Since this (spanning) set has three (linearly independent) elements,
the vector space of linear maps B3 → B has dimension 3. This is an
example of a general notion called the dual vector space.

11. (a) d2X
dt2

= d2 cos(ωt)
dt2

ab
c

 = −ω2 cos(ωt)

ab
c

 .

Hence

F = cos(ωt)

 −a− b
−a− 2b− c
−b− c

 = cos(ωt)

−1 −1 0
−1 −2 −1

0 −1 −1

ab
c


= −ω2 cos(ωt)

ab
c

 ,

so

M =

−1 −1 0
−1 −2 −1

0 −1 −1

 .

(b)

det

λ+ 1 1 0
1 λ+ 2 1
0 1 λ+ 1

 = (λ+ 1)
(
(λ+ 2)(λ+ 1)− 1

)
− (λ+ 1)

= (λ+ 1)
(
(λ+ 2)(λ+ 1)− 2

)
= (λ+ 1)

(
λ2 + 3λ) = λ(λ+ 1)(λ+ 3)

so the eigenvalues are λ = 0,−1,−3.

For the eigenvectors, when λ = 0 we study:

M − 0.I =

−1 −1 0
−1 −2 −1

0 −1 −1

 ∼
1 1 0

0 −1 −1
0 −1 −1

 ∼
1 0 −1

0 1 1
0 0 0

 ,

so

 1
−1

1

 is an eigenvector.

For λ = −1

M − (−1).I =

 0 −1 0
−1 −1 −1

0 −1 0

 ∼
1 0 1

0 1 0
0 0 0

 ,
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so

−1
0
1

 is an eigenvector.

For λ = −3

M − (−3).I =

 2 −1 0
−1 1 −1

0 −1 2

 ∼
1 −1 1

0 1 −2
0 −1 2

 ∼
1 0 −1

0 1 −2
0 0 0

 ,

so

1
2
1

 is an eigenvector.

(c) The characteristic frequencies are 0, 1,
√

3.

(d) The orthogonal change of basis matrix

P =


1√
3
− 1√

2
1√
6

− 1√
3

0 2√
6

1√
3

1√
2

1√
6


It obeys MP = PD where

D =

0 0 0
0 −1 0
0 0 −3

 .

(e) Yes, the direction given by the eigenvector

 1
−1

1

 because its eigen-

value is zero. This is probably a bad design for a bridge because it can
be displaced in this direction with no force!

12. (a) If we call M =

(
a b
b d

)
, then XTMX = ax2 + 2bxy + dy2. Similarly

putting C =

(
c
e

)
yields XTC + CTX = 2X C = 2cx+ 2ey. Thus

0 = ax2 + 2bxy + dy2 + 2cx+ 2ey + f

=
(
x y

)(a b
b d

)(
x
y

)
+
(
x y

)(c
e

)
+
(
c e

)(x
y

)
+ f .
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(b) Yes, the matrix M is symmetric, so it will have a basis of eigenvectors
and is similar to a diagonal matrix of real eigenvalues.

To find the eigenvalues notice that det

(
a− λ b

b d− λ

)
= (a− λ)(d−

λ)− b2 =
(
λ− a+d

2

)2 − b2 − (a−d2 )2. So the eigenvalues are

λ =
a+ d

2
+

√
b2 +

(a− d
2

)2
and µ =

a+ d

2
−
√
b2 +

(a− d
2

)2
.

(c) The trick is to write

XTMX+CTX+XTC = (XT +CTM−1)M(X+M−1C)−CTM−1C ,

so that

(XT + CTM−1)M(X +M−1C) = CTMC − f .

Hence Y = X +M−1C and g = CTMC − f .

(d) The cosine of the angle between vectors V and W is given by

V W√
V V W W

=
V TW√

V TV W TW
.

So replacing V → PV and W → PW will always give a factor P TP
inside all the products, but P TP = I for orthogonal matrices. Hence
none of the dot products in the above formula changes, so neither does
the angle between V and W .

(e) If we take the eigenvectors of M , normalize them (i.e. divide them
by their lengths), and put them in a matrix P (as columns) then P
will be an orthogonal matrix. (If it happens that λ = µ, then we
also need to make sure the eigenvectors spanning the two dimensional
eigenspace corresponding to λ are orthogonal.) Then, since M times
the eigenvectors yields just the eigenvectors back again multiplied by
their eigenvalues, it follows that MP = PD where D is the diagonal
matrix made from eigenvalues.

(f) If Y = PZ, then Y TMY = ZTP TMPZ = ZTP TPDZ = ZTDZ

where D =

(
λ 0
0 µ

)
.

(g) Using part (f) and (c) we have

λz2 + µw2 = g .
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(h) When λ = µ and g/λ = R2, we get the equation for a circle radius R in
the (z, w)-plane. When λ, µ and g are postive, we have the equation for
an ellipse. Vanishing g along with λ and µ of opposite signs gives a pair
of straight lines. When g is non-vanishing, but λ and µ have opposite
signs, the result is a pair of hyperbolæ. These shapes all come from
cutting a cone with a plane, and are therefore called conic sections.

13. We show that L is bijective if and only if M is invertible.

(a) We suppose that L is bijective.

i. Since L is injective, its kernel consists of the zero vector alone.
Hence

L = dim kerL = 0.

So by the Dimension Formula,

dimV = L+ rankL = rankL.

Since L is surjective, L(V ) = W. Thus

rankL = dimL(V ) = dimW.

Thereby
dimV = rankL = dimW.

ii. Since dimV = dimW , the matrix M is square so we can talk
about its eigenvalues. Since L is injective, its kernel is the zero
vector alone. That is, the only solution to LX = 0 is X = 0V .
But LX is the same as MX, so the only solution to MX = 0 is
X = 0V . So M does not have zero as an eigenvalue.

iii. Since MX = 0 has no non-zero solutions, the matrix M is invert-
ible.

(b) Now we suppose that M is an invertible matrix.

i. Since M is invertible, the system MX = 0 has no non-zero solu-
tions. But LX is the same as MX, so the only solution to LX = 0
is X = 0V . So L does not have zero as an eigenvalue.

ii. Since LX = 0 has no non-zero solutions, the kernel of L is the
zero vector alone. So L is injective.

iii. Since M is invertible, we must have that dimV = dimW . By the
Dimension Formula, we have

dimV = L+ rankL
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and since kerL = {0V } we have L = dim kerL = 0, so

dimW = dimV = rankL = dimL(V ).

Since L(V ) is a subspace of W with the same dimension as W , it
must be equal to W . To see why, pick a basis B of L(V ). Each
element of B is a vector in W , so the elements of B form a linearly
independent set in W . Therefore B is a basis of W , since the size
of B is equal to dimW . So L(V ) = spanB = W. So L is surjective.

14. (a) F4 = F2 + F3 = 2 + 3 = 5.

(b) The number of pairs of doves in any given year equals the number of
the previous years plus those that hatch and there are as many of them
as pairs of doves in the year before the previous year.

(c) X1 =

(
F1

F0

)
=

(
1
0

)
and X2 =

(
F2

F1

)
=

(
1
1

)
.

MX1 =

(
1 1
1 0

)(
1
0

)
=

(
1
1

)
= X2 .

(d) We just need to use the recursion relationship of part (b) in the top
slot of Xn+1:

Xn+1 =

(
Fn+1

Fn

)
=

(
Fn + Fn−1

Fn

)
=

(
1 1
1 0

)(
Fn
Fn−1

)
= MXn .

(e) Notice M is symmetric so this is guaranteed to work.

det

(
1− λ 1

1 −λ

)
= λ(λ− 1)− 1 =

(
λ− 1

2

)2 − 5

4
,

so the eigenvalues are 1±
√
5

2 . Hence the eigenvectors are

(
1±
√
5

2
1

)
,

respectively (notice that 1+
√
5

2 + 1 = 1+
√
5

2 .1+
√
5

2 and 1−
√
5

2 + 1 =
1−
√
5

2 .1−
√
5

2 ). Thus M = PDP−1 with

D =

(
1+
√
5

2 0

0 1−
√
5

2

)
and P =

(
1+
√
5

2
1−
√
5

2

1 1

)
.

(f) Mn = (PDP−1)n = PDP−1PDP−1 . . . PDP−1 = PDnP−1.
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(g) Just use the matrix recursion relation of part (d) repeatedly:

Xn+1 = MXn = M2Xn−1 = · · · = MnX1 .

(h) The eigenvalues are ϕ = 1+
√
5

2 and 1− ϕ = 1−
√
5

2 .

(i)

Xn+1 =

(
Fn+1

Fn

)
= MnXn = PDnP−1X1

= P

(
ϕ 0
0 1− ϕ

)n( 1√
5

?

− 1√
5

?

)(
1
0

)
= P

(
ϕn 0
0 (1− ϕ)n

)( 1√
5

− 1√
5

)

=

(
1+
√
5

2
1−
√
5

2

1 1

)( ϕn
√
5

− (1−ϕ)n√
5

)
=

(
?

ϕn−(1−ϕ)n√
5

)
.

Hence

Fn =
ϕn − (1− ϕ)n√

5
.

These are the famous Fibonacci numbers.

15. Call the three vectors u, v and w, respectively. Then

v⊥ = v − u v

u u
u = v − 3

4
u =


1
4

−3
4
1
4
1
4

 ,

and

w⊥ = w − u w

u u
u− v⊥ w

v⊥ v⊥
v⊥ = w − 3

4
u−

3
4
3
4

v⊥ =


−1

0
0
1


Dividing by lengths, an orthonormal basis for span{u, v, w} is


1
2

1
2

1
2

1
2

 ,



√
3
6

−
√
3
2√
3
6√
3
6

 ,


−
√
2
2

0

0
√
2
2



.

16. (a) The columns of M span imL in the basis given for W .

364



365

(b) The rows of M span (kerL)⊥

(c) First we put M in RREF:

M =


1 2 1 3
2 1 −1 2
1 0 0 −1
4 1 −1 0

 ∼


1 2 1 3
0 −3 −3 −4
0 −2 −1 −4
0 −7 −5 −12



∼


1 0 −1 1

3

0 1 1 4
3

0 0 1 −4
3

0 0 2 −8
3

 ∼


1 0 0 −1

0 1 0 8
3

0 0 1 −4
3

0 0 0 0

 .

Hence

kerL = span{v1 −
8

3
v2 +

4

3
v3 + v4}

and

imL = span{v1 + 2v2 + v3 + 4v4, 2v1 + v2 + v4, v1 − v2 − v4} .

Thus dim kerL = 1 and dim imL = 3 so

dim kerL+ dim imL = 1 + 3 = 4 = dimV .

17. (a) 
5 = 4a− 2b+ c
2 = a− b+ c
0 = a+ b+ c
3 = 4a+ 2b+ c .

(b,c,d) 
4 −2 1 5
1 −1 1 2
1 1 1 0
4 2 1 3

 ∼


1 1 1 0
0 −6 −3 5
0 −2 0 2
0 −2 −3 3

 ∼


1 0 1 −1
0 1 0 1
0 0 −3 11
0 0 −3 3


The system has no solutions because c = −1 and c = −11

3 is impossible.

(e) Let

M =


4 −2 1
1 −1 1
1 1 1
4 2 1

 and V =


5
2
0
3

 .
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Then

MTM =

34 0 10
0 10 0

10 0 4

 and MTV =

 34
−6
10

 .

So34 0 10 34
0 10 0 −6

10 0 4 10

 ∼

1 0 2
5 1

0 10 0 −6
0 0 −18

5 0

 ∼

1 0 0 1
0 1 0 −3

5
0 0 1 0


The least squares solution is a = 1, b = −3

5 and c = 0.

(b) The Captain predicts y(2) = 1.22 − 3
5 .2 + 0 = 14

5 .

18.
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G.1 What is Linear Algebra?

Hint for Review Problem 5
Looking at the problem statement we find some important information, first

that oranges always have twice as much sugar as apples, and second that the

information about the barrel is recorded as (s, f), where s = units of sugar in

the barrel and f = number of pieces of fruit in the barrel.

We are asked to find a linear transformation relating this new representation

to the one in the lecture, where in the lecture x = the number of apples and

y = the number of oranges. This means we must create a system of equations

relating the variable x and y to the variables s and f in matrix form. Your

answer should be the matrix that transforms one set of variables into the

other.

Hint: Let λ represent the amount of sugar in each apple.

1. To find the first equation relate f to the variables x and y.

2. To find the second equation, use the hint to figure out how much sugar

is in x apples, and y oranges in terms of λ. Then write an equation for s
using x, y and λ.

G.2 Systems of Linear Equations

Augmented Matrix Notation
Why is the augmented matrix (

1 1 27
2 −1 0

)
,
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equivalent to the system of equations

x+ y = 27

2x− y = 0 ?

Well the augmented matrix is just a new notation for the matrix equation(
1 1
2 −1

)(
x
y

)
=

(
27
0

)
and if you review your matrix multiplication remember that(

1 1
2 −1

)(
x
y

)
=

(
x+ y

2x− y

)
This means that (

x+ y
2x− y

)
=

(
27
0

)
,

which is our original equation.

Equivalence of Augmented Matrices

Lets think about what it means for the two augmented matrices(
1 1 27
2 −1 0

)
and

(
1 0 9
0 1 18

)
to be equivalent: They are certainly not equal, because they don’t match in

each component, but since these augmented matrices represent a system, we

might want to introduce a new kind of equivalence relation.

Well we could look at the system of linear equations this represents

x+ y = 27

2x− y = 0

and notice that the solution is x = 9 and y = 18. The other augmented matrix

represents the system

x + 0 · y = 9

0 · x + y = 18

This clearly has the same solution. The first and second system are related

in the sense that their solutions are the same. Notice that it is really

nice to have the augmented matrix in the second form, because the matrix

multiplication can be done in your head.
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Hints for Review Question 10
This question looks harder than it actually is:

Row equivalence of matrices is an example of an equivalence

relation. Recall that a relation ∼ on a set of objects U
is an equivalence relation if the following three properties

are satisfied:

• Reflexive: For any x ∈ U, we have x ∼ x.
• Symmetric: For any x, y ∈ U, if x ∼ y then y ∼ x.
• Transitive: For any x, y and z ∈ U, if x ∼ y and y ∼ z

then x ∼ z.

(For a more complete discussion of equivalence relations, see

Webwork Homework 0, Problem 4)

Show that row equivalence of augmented matrices is an equivalence
relation.

Firstly remember that an equivalence relation is just a more general ver-

sion of ‘‘equals’’. Here we defined row equivalence for augmented matrices

whose linear systems have solutions by the property that their solutions are

the same.

So this question is really about the word same. Lets do a silly example:

Lets replace the set of augmented matrices by the set of people who have hair.

We will call two people equivalent if they have the same hair color. There are

three properties to check:

• Reflexive: This just requires that you have the same hair color as

yourself so obviously holds.

• Symmetric: If the first person, Bob (say) has the same hair color as a

second person Betty(say), then Bob has the same hair color as Betty, so

this holds too.
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• Transitive: If Bob has the same hair color as Betty (say) and Betty has

the same color as Brenda (say), then it follows that Bob and Brenda have

the same hair color, so the transitive property holds too and we are

done.

370



G.2 Systems of Linear Equations 371

Solution set in set notation

Here is an augmented matrix, let’s think about what the solution set looks

like (
1 0 3 2
0 1 0 1

)
This looks like the system

1 · x1 + 3x3 = 2

1 · x2 = 1

Notice that when the system is written this way the copy of the 2× 2 identity

matrix

(
1 0
0 1

)
makes it easy to write a solution in terms of the variables

x1 and x2. We will call x1 and x2 the pivot variables. The third column

(
3
0

)
does not look like part of an identity matrix, and there is no 3 × 3 identity

in the augmented matrix. Notice there are more variables than equations and

that this means we will have to write the solutions for the system in terms of

the variable x3. We’ll call x3 the free variable.

Let x3 = µ. (We could also just add a ‘‘dummy’’ equation x3 = x3.) Then we

can rewrite the first equation in our system

x1 + 3x3 = 2

x1 + 3µ = 2

x1 = 2− 3µ.

Then since the second equation doesn’t depend on µ we can keep the equation

x2 = 1,

and for a third equation we can write

x3 = µ

so that we get the system x1x2
x3

 =

2− 3µ
1
µ


=

2
1
0

+

−3µ
0
µ


=

2
1
0

+ µ

−3
0
1

 .
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Any value of µ will give a solution of the system, and any system can be written

in this form for some value of µ. Since there are multiple solutions, we can

also express them as a set:
x1x2
x3

 =

2
1
0

+ µ

−3
0
1

 µ ∈ R

 .

Worked Examples of Gaussian Elimination
Let us consider that we are given two systems of equations that give rise to

the following two (augmented) matrices:2 5 2 0 2
1 1 1 0 1
1 4 1 0 1

 5 2 9
0 5 10
0 3 6


and we want to find the solution to those systems. We will do so by doing

Gaussian elimination.

For the first matrix we have2 5 2 0 2
1 1 1 0 1
1 4 1 0 1

 R1↔R2∼

1 1 1 0 1
2 5 2 0 2
1 4 1 0 1


R2−2R1;R3−R1∼

1 1 1 0 1
0 3 0 0 0
0 3 0 0 0


1
3R2∼

1 1 1 0 1
0 1 0 0 0
0 3 0 0 0


R1−R2;R3−3R2∼

1 0 1 0 1
0 1 0 0 0
0 0 0 0 0


1. We begin by interchanging the first two rows in order to get a 1 in the

upper-left hand corner and avoiding dealing with fractions.

2. Next we subtract row 1 from row 3 and twice from row 2 to get zeros in the

left-most column.

3. Then we scale row 2 to have a 1 in the eventual pivot.

4. Finally we subtract row 2 from row 1 and three times from row 2 to get it

into Reduced Row Echelon Form.

Therefore we can write x = 1− λ, y = 0, z = λ and w = µ, or in vector form
x
y
z
w

 =


1
0
0
0

+ λ


−1

0
1
0

+ µ


0
0
0
1

 .
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Now for the second system we have5 2 9
0 5 10
0 3 6

 1
5R2∼

5 2 9
0 1 2
0 3 6


R3−3R2∼

5 2 9
0 1 2
0 0 0


R1−2R2∼

5 0 5
0 1 2
0 0 0


1
5R1∼

1 0 1
0 1 2
0 0 0


We scale the second and third rows appropriately in order to avoid fractions,

then subtract the corresponding rows as before. Finally scale the first row

and hence we have x = 1 and y = 2 as a unique solution.

Hints for Review Question 10
This question looks harder than it actually is:

Row equivalence of matrices is an example of an equivalence

relation. Recall that a relation ∼ on a set of objects U
is an equivalence relation if the following three properties

are satisfied:

• Reflexive: For any x ∈ U, we have x ∼ x.
• Symmetric: For any x, y ∈ U, if x ∼ y then y ∼ x.
• Transitive: For any x, y and z ∈ U, if x ∼ y and y ∼ z

then x ∼ z.

(For a more complete discussion of equivalence relations, see

Webwork Homework 0, Problem 4)

Show that row equivalence of augmented matrices is an equivalence
relation.

Firstly remember that an equivalence relation is just a more general ver-

sion of ‘‘equals’’. Here we defined row equivalence for augmented matrices

whose linear systems have solutions by the property that their solutions are

the same.

So this question is really about the word same. Lets do a silly example:

Lets replace the set of augmented matrices by the set of people who have hair.
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We will call two people equivalent if they have the same hair color. There are

three properties to check:

• Reflexive: This just requires that you have the same hair color as

yourself so obviously holds.

• Symmetric: If the first person, Bob (say) has the same hair color as a

second person Betty(say), then Bob has the same hair color as Betty, so

this holds too.

• Transitive: If Bob has the same hair color as Betty (say) and Betty has

the same color as Brenda (say), then it follows that Bob and Brenda have

the same hair color, so the transitive property holds too and we are

done.
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Hint for Review Question 5
The first part for Review Question 5 is simple--just write out the associated

linear system and you will find the equation 0 = 6 which is inconsistent.

Therefore we learn that we must avoid a row of zeros preceding a non-vanishing

entry after the vertical bar.

Turning to the system of equations, we first write out the augmented matrix

and then perform two row operations 1 −3 0 6
1 0 3 −3
2 k 3− k 1


R2−R1;R3−2R1∼

 1 −3 0 6
0 3 3 −9
0 k + 6 3− k −11

 .

Next we would like to subtract some amount of R2 from R3 to achieve a zero in

the third entry of the second column. But if

k + 6 = 3− k ⇒ k = −3

2
,

this would produce zeros in the third row before the vertical line. You should

also check that this does not make the whole third line zero. You now have

enough information to write a complete solution.

Planes
Here we want to describe the mathematics of planes in space. The video is

summarised by the following picture:

A plane is often called R2 because it is spanned by two coordinates, and space

is called R3 and has three coordinates, usually called (x, y, z). The equation

for a plane is

ax+ by + cz = d .
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Lets simplify this by calling V = (x, y, z) the vector of unknowns and N =
(a, b, c). Using the dot product in R3 we have

N V = d .

Remember that when vectors are perpendicular their dot products vanish. I.e.
U V = 0⇔ U ⊥ V . This means that if a vector V0 solves our equation N V = d,
then so too does V0 + C whenever C is perpendicular to N. This is because

N (V0 + C) = N V0 +N C = d+ 0 = d .

But C is ANY vector perpendicular to N, so all the possibilities for C span

a plane whose normal vector is N. Hence we have shown that solutions to the

equation ax+ by + cz = 0 are a plane with normal vector N = (a, b, c).

Pictures and Explanation

This video considers solutions sets for linear systems with three unknowns.

These are often called (x, y, z) and label points in R3. Lets work case by case:

• If you have no equations at all, then any (x, y, z) is a solution, so the

solution set is all of R3. The picture looks a little silly:

• For a single equation, the solution is a plane. This is explained in

this video or the accompanying script. The picture looks like this:

• For two equations, we must look at two planes. These usually intersect

along a line, so the solution set will also (usually) be a line:
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• For three equations, most often their intersection will be a single

point so the solution will then be unique:

• Of course stuff can go wrong. Two different looking equations could

determine the same plane, or worse equations could be inconsistent. If

the equations are inconsistent, there will be no solutions at all. For

example, if you had four equations determining four parallel planes the

solution set would be empty. This looks like this:

G.3 Vectors in Space n-Vectors

Review of Parametric Notation
The equation for a plane in three variables x, y and z looks like

ax+ by + cz = d

where a, b, c, and d are constants. Lets look at the example

x+ 2y + 5z = 3 .
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In fact this is a system of linear equations whose solutions form a plane with

normal vector (1, 2, 5). As an augmented matrix the system is simply(
1 2 5

∣∣∣ 3
)
.

This is actually RREF! So we can let x be our pivot variable and y, z be

represented by free parameters λ1 and λ2:

x = λ1 , y = λ2 .

Thus we write the solution as

x = −2λ1 −5λ2 +3
y = λ1
z = λ2

or in vector notationxy
z

 =

3
0
0

+ λ1

−2
1
0

+ λ2

−5
0
1

 .

This describes a plane parametric equation. Planes are ‘‘two-dimensional’’

because they are described by two free variables. Here’s a picture of the

resulting plane:

The Story of Your Life
This video talks about the weird notion of a ‘‘length-squared’’ for a vector

v = (x, t) given by ||v||2 = x2 − t2 used in Einstein’s theory of relativity. The
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idea is to plot the story of your life on a plane with coordinates (x, t). The

coordinate x encodes where an event happened (for real life situations, we

must replace x → (x, y, z) ∈ R3). The coordinate t says when events happened.

Therefore you can plot your life history as a worldline as shown:

Each point on the worldline corresponds to a place and time of an event in your

life. The slope of the worldline has to do with your speed. Or to be precise,

the inverse slope is your velocity. Einstein realized that the maximum speed

possible was that of light, often called c. In the diagram above c = 1 and

corresponds to the lines x = ±t ⇒ x2 − t2 = 0. This should get you started in

your search for vectors with zero length.

G.4 Vector Spaces

Examples of Each Rule
Lets show that R2 is a vector space. To do this (unless we invent some clever

tricks) we will have to check all parts of the definition. Its worth doing

this once, so here we go:

Before we start, remember that for R2 we define vector addition and scalar

multiplication component-wise.

(+i) Additive closure: We need to make sure that when we add

(
x1
x2

)
and

(
y1
y2

)
that we do not get something outside the original vector space R2. This

just relies on the underlying structure of real numbers whose sums are

again real numbers so, using our component-wise addition law we have(
x1
x2

)
+

(
y1
y2

)
:=

(
x1 + x2
y1 + y2

)
∈ R2 .

(+ii) Additive commutativity: We want to check that when we add any two vectors

we can do so in either order, i.e.(
x1
x2

)
+

(
y1
y2

)
?
=

(
y1
y2

)
+

(
x1
x2

)
.
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This again relies on the underlying real numbers which for any x, y ∈ R
obey

x+ y = y + x .

This fact underlies the middle step of the following computation(
x1
x2

)
+

(
y1
y2

)
=

(
x1 + y1
x2 + y2

)
=

(
y1 + x1
y2 + x2

)
=

(
y1
y2

)
+

(
x1
x2

)
,

which demonstrates what we wished to show.

(+iii) Additive Associativity: This shows that we needn’t specify with paren-

theses which order we intend to add triples of vectors because their

sums will agree for either choice. What we have to check is((
x1
x2

)
+

(
y1
y2

))
+

(
z1
z2

)
?
=

(
x1
x2

)
+

((
y1
y2

)
+

(
z1
z2

))
.

Again this relies on the underlying associativity of real numbers:

(x+ y) + z = x+ (y + z) .

The computation required is((
x1
x2

)
+

(
y1
y2

))
+

(
z1
z2

)
=

(
x1 + y1
x2 + y2

)
+

(
z1
z2

)
=

(
(x1 + y1) + z1
(x2 + y2) + z2

)

=

(
x1 + (y1 + z1)
x2 + (y2 + z2)

)
=

(
x1
y1

)
+

(
y1 + z1
y2 + z2

)
=

(
x1
x2

)
+

((
y1
y2

)
+

(
z1
z2

))
.

(iv) Zero: There needs to exist a vector ~0 that works the way we would expect

zero to behave, i.e. (
x1
y1

)
+~0 =

(
x1
y1

)
.

It is easy to find, the answer is

~0 =

(
0
0

)
.

You can easily check that when this vector is added to any vector, the

result is unchanged.

(+v) Additive Inverse: We need to check that when we have

(
x1
x2

)
, there is

another vector that can be added to it so the sum is ~0. (Note that it

is important to first figure out what ~0 is here!) The answer for the

additive inverse of

(
x1
x2

)
is

(
−x1
−x2

)
because

(
x1
x2

)
+

(
−x1
−x2

)
=

(
x1 − x1
x2 − x2

)
=

(
0
0

)
= ~0 .
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We are half-way done, now we need to consider the rules for scalar multipli-

cation. Notice, that we multiply vectors by scalars (i.e. numbers) but do NOT

multiply a vectors by vectors.

(·i) Multiplicative closure: Again, we are checking that an operation does

not produce vectors outside the vector space. For a scalar a ∈ R, we

require that a

(
x1
x2

)
lies in R2. First we compute using our component-

wise rule for scalars times vectors:

a

(
x1
x2

)
=

(
ax1
ax2

)
.

Since products of real numbers ax1 and ax2 are again real numbers we see

this is indeed inside R2.

(·ii) Multiplicative distributivity: The equation we need to check is

(a+ b)

(
x1
x2

)
?
= a

(
x1
x2

)
+ b

(
x1
x2

)
.

Once again this is a simple LHS=RHS proof using properties of the real

numbers. Starting on the left we have

(a+ b)

(
x1
x2

)
=

(
(a+ b)x1
(a+ b)x2

)
=

(
ax1 + bx1
ax2 + bx2

)

=

(
ax1
ax2

)
+

(
bx1
bx2

)
= a

(
x1
x2

)
+ b

(
x1
x2

)
,

as required.

(·iii) Additive distributivity: This time we need to check the equation The

equation we need to check is

a

((
x1
x2

)
+

(
y1
y2

))
?
= a

(
x1
x2

)
+ a

(
y1
y2

)
,

i.e., one scalar but two different vectors. The method is by now becoming

familiar

a

((
x1
x2

)
+

(
y1
y2

))
= a

((
x1 + y1
x2 + y2

))
=

(
a(x1 + y1)
a(x2 + y2)

)

=

(
ax1 + ay1
ax2 + ay2

)
=

(
ax1
ax2

)
+

(
ay1
ay2

)
= a

(
x1
x2

)
+ a

(
y1
y2

)
,

again as required.
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(·iv) Multiplicative associativity. Just as for addition, this is the re-

quirement that the order of bracketing does not matter. We need to

establish whether

(a.b) ·
(
x1
x2

)
?
= a ·

(
b ·
(
x1
x2

))
.

This clearly holds for real numbers a.(b.x) = (a.b).x. The computation is

(a.b) ·
(
x1
x2

)
=

(
(a.b).x1
(a.b).x2

)
=

(
a.(b.x1)
a.(b.x2)

)
= a.

(
(b.x1)
(b.x2)

)
= a ·

(
b ·
(
x1
x2

))
,

which is what we want.

(·v) Unity: We need to find a special scalar acts the way we would expect

‘‘1’’ to behave. I.e.

‘‘1’’ ·
(
x1
x2

)
=

(
x1
x2

)
.

There is an obvious choice for this special scalar---just the real number

1 itself. Indeed, to be pedantic lets calculate

1 ·
(
x1
x2

)
=

(
1.x1
1.x2

)
=

(
x1
x2

)
.

Now we are done---we have really proven the R2 is a vector space so lets write

a little square � to celebrate.

Example of a Vector Space

This video talks about the definition of a vector space. Even though the

defintion looks long, complicated and abstract, it is actually designed to

model a very wide range of real life situations. As an example, consider the

vector space

V = {all possible ways to hit a hockey puck} .

The different ways of hitting a hockey puck can all be considered as vectors.

You can think about adding vectors by having two players hitting the puck at

the same time. This picture shows vectors N and J corresponding to the ways

Nicole Darwitz and Jenny Potter hit a hockey puck, plus the vector obtained

when they hit the puck together.
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You can also model the new vector 2J obtained by scalar multiplication by

2 by thinking about Jenny hitting the puck twice (or a world with two Jenny

Potters....). Now ask yourself questions like whether the multiplicative

distributive law

2J + 2N = 2(J +N)

make sense in this context.

Hint for Review Question 5
Lets worry about the last part of the problem. The problem can be solved

by considering a non-zero simple polynomial, such as a degree 0 polynomial,

and multiplying by i ∈ C. That is to say we take a vector p ∈ PR
3 and then

considering i·p. This will violate one of the vector space rules about scalars,

and you should take from this that the scalar field matters.

As a second hint, consider Q (the field of rational numbers). This is not

a vector space over R since
√

2 · 1 =
√

2 /∈ Q, so it is not closed under scalar

multiplication, but it is clearly a vector space over Q.

G.5 Linear Transformations

Hint for Review Question 5
The first thing we see in the problem is a definition of this new space Pn.
Elements of Pn are polynomials that look like

a0 + a1t+ a2t
2 + . . .+ ant

n

where the ai’s are constants. So this means if L is a linear transformation

from P2 → P3 that the inputs of L are degree two polynomials which look like

a0 + a1t+ a2t
2

and the output will have degree three and look like

b0 + b1t+ b2t
2 + b3t

3

We also know that L is a linear transformation, so what does that mean in

this case? Well, by linearity we know that we can separate out the sum, and

pull out the constants so we get

L(a0 + a1t+ a2t
2) = a0L(1) + a1L(t) + a2L(t2)

Just this should be really helpful for the first two parts of the problem. The

third part of the problem is asking us to think about this as a linear algebra

problem, so lets think about how we could write this in the vector notation we

use in the class. We could write
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a0 + a1t+ a2t
2 as

a0a1
a2


And think for a second about how you add polynomials, you match up terms of

the same degree and add the constants component-wise. So it makes some sense

to think about polynomials this way, since vector addition is also component-

wise.

We could also write the output

b0 + b1t+ b2t
2 + b3t

3 as

b0b1
b2

 b3

Then lets look at the information given in the problem and think about it

in terms of column vectors

• L(1) = 4 but we can think of the input 1 = 1 + 0t + 0t2 and the output

4 = 4 + 0t+ 0t20t3 and write this as L(

1
0
0

) =


4
0
0
0



• L(t) = t3 This can be written as L(

0
1
0

) =


0
0
0
1


• L(t2) = t − 1 It might be a little trickier to figure out how to write

t− 1 but if we write the polynomial out with the terms in order and with

zeroes next to the terms that do not appear, we can see that

t− 1 = −1 + t+ 0t2 + 0t3 corresponds to


−1

1
0
0



So this can be written as L(

0
0
1

) =


−1

1
0
0


Now to think about how you would write the linear transformation L as

a matrix, first think about what the dimensions of the matrix would be.

Then look at the first two parts of this problem to help you figure out

what the entries should be.
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G.6 Matrices

Adjacency Matrix Example
Lets think about a graph as a mini-facebook. In this tiny facebook there are

only four people, Alice, Bob, Carl, and David.

Suppose we have the following relationships

• Alice and Bob are friends.

• Alice and Carl are friends.

• Carl and Bob are friends.

• David and Bob are friends.

Now draw a picture where each person is a dot, and then draw a line between

the dots of people who are friends. This is an example of a graph if you think

of the people as nodes, and the friendships as edges.

Now lets make a 4 × 4 matrix, which is an adjacency matrix for the graph.

Make a column and a row for each of the four people. It will look a lot like a

table. When two people are friends put a 1 the the row of one and the column

of the other. For example Alice and Carl are friends so we can label the table

below.

A B C D

A 1

B

C 1

D

We can continue to label the entries for each friendship. Here lets assume

that people are friends with themselves, so the diagonal will be all ones.
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A B C D

A 1 1 1 0

B 1 1 1 1

C 1 1 1 0

D 0 1 0 1

Then take the entries of this table as a matrix
1 1 1 0
1 1 1 1
1 1 1 0
0 1 0 1


Notice that this table is symmetric across the diagonal, the same way a

multiplication table would be symmetric. This is because on facebook friend-

ship is symmetric in the sense that you can’t be friends with someone if they

aren’t friends with you too. This is an example of a symmetric matrix.

You could think about what you would have to do differently to draw a graph

for something like twitter where you don’t have to follow everyone who follows

you. The adjacency matrix might not be symmetric then.

Do Matrices Commute?
This video shows you a funny property of matrices. Some matrix properties

look just like those for numbers. For example numbers obey

a(bc) = (ab)c

and so do matrices:

A(BC) = (AB)C.

This says the order of bracketing does not matter and is called associativity.

Now we ask ourselves whether the basic property of numbers

ab = ba ,

holds for matrices

AB
?
= BA .

For this, firstly note that we need to work with square matrices even for both

orderings to even make sense. Lets take a simple 2× 2 example, let

A =

(
1 a
0 1

)
, B =

(
1 b
0 1

)
, C =

(
1 0
a 1

)
.

In fact, computing AB and BA we get the same result

AB = BA =

(
1 a+ b
0 1

)
,
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so this pair of matrices do commute. Lets try A and C:

AC =

(
1 + a2 a

a 1

)
, and CA =

(
1 a
a 1 + a2

)
so

AC 6= CA

and this pair of matrices does not commute. Generally, matrices usually do not

commute, and the problem of finding those that do is a very interesting one.

Matrix Exponential Example
This video shows you how to compute

exp

(
0 θ
−θ 0

)
.

For this we need to remember that the matrix exponential is defined by its

power series

expM := I +M +
1

2!
M2 +

1

3!
M3 + · · · .

Now lets call (
0 θ
−θ 0

)
= iθ

where the matrix

i :=

(
0 1
−1 0

)
and by matrix multiplication is seen to obey

i2 = −I , i3 = −i , i4 = I .

Using these facts we compute by organizing terms according to whether they

have an i or not:

exp iθ = I +
1

2!
θ2(−I) +

1

4!
(+I) + · · ·

+ iθ +
1

3!
θ3(−i) +

1

5!
i+ · · ·

= I(1− 1

2!
θ2 +

1

4!
θ4 + · · · )

+ i(θ − 1

3!
θ3 +

1

5!
θ5 + · · · )

= I cos θ + i sin θ

=

(
cos θ sin θ
− sin θ cos θ

)
.

Here we used the familiar Taylor series for the cosine and sine functions. A

fun thing to think about is how the above matrix acts on vector in the plane.
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Proof Explanation
In this video we will talk through the steps required to prove

trMN = trNM .

There are some useful things to remember, first we can write

M = (mi
j) and N = (nij)

where the upper index labels rows and the lower one columns. Then

MN =
(∑

l

mi
ln
l
j

)
,

where the ‘‘open’’ indices i and j label rows and columns, but the index l is
a ‘‘dummy’’ index because it is summed over. (We could have given it any name

we liked!).

Finally the trace is the sum over diagonal entries for which the row and

column numbers must coincide

trM =
∑
i

mi
i .

Hence starting from the left of the statement we want to prove, we have

LHS = trMN =
∑
i

∑
l

mi
ln
l
i .

Next we do something obvious, just change the order of the entries mi
l and nli

(they are just numbers) so∑
i

∑
l

mi
ln
l
i =

∑
i

∑
l

nlim
i
l .

Equally obvious, we now rename i→ l and l→ i so∑
i

∑
l

mi
ln
l
i =

∑
l

∑
i

nilm
l
i .

Finally, since we have finite sums it is legal to change the order of summa-

tions ∑
l

∑
i

nilm
l
i =

∑
i

∑
l

nilm
l
i .

This expression is the same as the one on the line above where we started

except the m and n have been swapped so∑
i

∑
l

mi
ln
l
i = trNM = RHS .

This completes the proof. �
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Hint for Review Question 4

This problem just amounts to remembering that the dot product of x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) is

x1y1 + x2y2 + · · ·+ xnyn .

Then try multiplying the above row vector times yT and compare.

Hint for Review Question 5

The majority of the problem comes down to showing that matrices are right

distributive. Let Mk is all n × k matrices for any n, and define the map

fR : Mk → Mm by fR(M) = MR where R is some k × m matrix. It should be

clear that fR(α ·M) = (αM)R = α(MR) = αfR(M) for any scalar α. Now all

that needs to be proved is that

fR(M +N) = (M +N)R = MR+NR = fR(M) + fR(N),

and you can show this by looking at each entry.

We can actually generalize the concept of this problem. Let V be some

vector space and M be some collection of matrices, and we say that M is a

left-action on V if

(M ·N) ◦ v = M ◦ (N ◦ v)

for all M,N ∈ N and v ∈ V where · denoted multiplication in M (i.e. standard

matrix multiplication) and ◦ denotes the matrix is a linear map on a vector

(i.e. M(v)). There is a corresponding notion of a right action where

v ◦ (M ·N) = (v ◦M) ◦N

where we treat v ◦ M as M(v) as before, and note the order in which the

matrices are applied. People will often omit the left or right because they

are essentially the same, and just say that M acts on V .

Hint for Review Question 8

This is a hint for computing exponents of matrices. So what is eA if A is a

matrix? We remember that the Taylor series for

ex =

∞∑
n=0

xn

n!
.

So as matrices we can think about

eA =

∞∑
n=0

An

n!
.
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This means we are going to have an idea of what An looks like for any n. Lets

look at the example of one of the matrices in the problem. Let

A =

(
1 λ
0 1

)
.

Lets compute An for the first few n.

A0 =

(
1 0
0 1

)
A1 =

(
1 λ
0 1

)
A2 = A ·A =

(
1 2λ
0 1

)
A3 = A2 ·A =

(
1 3λ
0 1

)
.

There is a pattern here which is that

An =

(
1 nλ
0 1

)
,

then we can think about the first few terms of the sequence

eA =

∞∑
n=0

An

n!
= A0 +A+

1

2!
A2 +

1

3!
A3 + . . . .

Looking at the entries when we add this we get that the upper left-most entry

looks like this:

1 + 1 +
1

2
+

1

3!
+ . . . =

∞∑
n=0

1

n!
= e1.

Continue this process with each of the entries using what you know about Taylor

series expansions to find the sum of each entry.

2× 2 Example

Lets go though and show how this 2×2 example satisfies all of these properties.

Lets look at

M =

(
7 3
11 5

)
We have a rule to compute the inverse(

a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)
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So this means that

M−1 =
1

35− 33

(
5 −3
−11 7

)
Lets check that M−1M = I = MM−1.

M−1M =
1

35− 33

(
5 −3
−11 7

)(
7 3
11 5

)
=

1

2

(
2 0
0 2

)
= I

You can compute MM−1, this should work the other way too.

Now lets think about products of matrices

Let A =

(
1 3
1 5

)
and B =

(
1 0
2 1

)
Notice that M = AB. We have a rule which says that (AB)−1 = B−1A−1.

Lets check to see if this works

A−1 =
1

2

(
5 −3
−1 1

)
and B−1 =

(
1 0
−2 1

)
and

B−1A−1 =

(
1 0
−2 1

)(
5 −3
−1 1

)
=

1

2

(
2 0
0 2

)

Hint for Review Problem 3

Firstnote that (b) implies (a) is the easy direction: just think about what it

means for M to be non-singular and for a linear function to be well-defined.

Therefore we assume that M is singular which implies that there exists a non-

zero vector X0 such that MX0 = 0. Now assume there exists some vector XV

such that MXV = V , and look at what happens to XV + c ·X0 for any c in your

field. Lastly don’t forget to address what happens if XV does not exist.

Hint for Review Question 4

In the text, only inverses for square matrices were discussed, but there is a

notion of left and right inverses for matrices that are not square. It helps

to look at an example with bits to see why. To start with we look at vector

spaces

Z3
2 = {(x, y, z)|x, y, z = 0, 1} and Z2

2 = {(x, y)|x, y = 0, 1} .

These have 8 and 4 vectors, respectively, that can be depicted as corners of

a cube or square:
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Z3
2 or Z2

2

Now lets consider a linear transformation

L : Z3
2 −→ Z2

2 .

This must be represented by a matrix, and lets take the example

L

xy
z

 =

(
0 1 1
1 1 0

)xy
z

 := AX .

Since we have bits, we can work out what L does to every vector, this is listed

below

(0, 0, 0)
L7→ (0, 0)

(0, 0, 1)
L7→ (1, 0)

(1, 1, 0)
L7→ (1, 0)

(1, 0, 0)
L7→ (0, 1)

(0, 1, 1)
L7→ (0, 1)

(0, 1, 0)
L7→ (1, 1)

(1, 0, 1)
L7→ (1, 1)

(1, 1, 1)
L7→ (1, 1)

Now lets think about left and right inverses. A left inverse B to the matrix

A would obey

BA = I

and since the identity matrix is square, B must be 2 × 3. It would have to

undo the action of A and return vectors in Z3
2 to where they started from. But

above, we see that different vectors in Z3
2 are mapped to the same vector in Z2

2

by the linear transformation L with matrix A. So B cannot exist. However a

right inverse C obeying

AC = I

can. It would be 2×2. Its job is to take a vector in Z2
2 back to one in Z3

2 in a

way that gets undone by the action of A. This can be done, but not uniquely.
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Using an LU Decomposition
Lets go through how to use a LU decomposition to speed up solving a system of

equations. Suppose you want to solve for x in the equation Mx = b 1 0 −5
3 −1 −14
1 0 −3

x =

 6
19
4


where you are given the decomposition of M into the product of L and U which

are lower and upper and lower triangular matrices respectively.

M =

 1 0 −5
3 −1 −14
1 0 −3

 =

 1 0 0
3 1 0
1 0 2

 1 0 −5
0 −1 1
0 0 1

 = LU

First you should solve L(Ux) = b for Ux. The augmented matrix you would use

looks like this  1 0 0 6
3 1 0 19
1 0 2 4


This is an easy augmented matrix to solve because it is upper triangular. If

you were to write out the three equations using variables, you would find that

the first equation has already been solved, and is ready to be plugged into

the second equation. This backward substitution makes solving the system much

faster. Try it and in a few steps you should be able to get 1 0 0 6
0 1 0 1
0 0 1 −1



This tells us that Ux =

 6
1
−1

. Now the second part of the problem is to solve

for x. The augmented matrix you get is 1 0 −5 6
0 −1 1 1
0 0 1 −1


It should take only a few step to transform it into 1 0 0 1

0 1 0 −2
0 0 1 −1

 ,

which gives us the answer x =

 1
−2
−1

.
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Another LU Decomposition Example
Here we will perform an LU decomposition on the matrix

M =

 1 7 2
−3 −21 4

1 6 3


following the procedure outlined in Section 7.7.2. So initially we have L1 =
I3 and U1 = M, and hence

L2 =

 1 0 0
−3 1 0

1 0 1

 U2 =

1 7 2
0 0 10
0 −1 −1

 .

However we now have a problem since 0 · c = 0 for any value of c since we are

working over a field, but we can quickly remedy this by swapping the second and

third rows of U2 to get U ′2 and note that we just interchange the corresponding

rows all columns left of and including the column we added values to in L2 to

get L′2. Yet this gives us a small problem as L′2U
′
2 6= M; in fact it gives us

the similar matrix M ′ with the second and third rows swapped. In our original

problem MX = V , we also need to make the corresponding swap on our vector

V to get a V ′ since all of this amounts to changing the order of our two

equations, and note that this clearly does not change the solution. Back to

our example, we have

L′2 =

 1 0 0
1 1 0
−3 0 1

 U ′2 =

1 7 2
0 −1 −1
0 0 10

 ,

and note that U ′2 is upper triangular. Finally you can easily see that

L′2U
′
2 =

 1 7 2
1 6 3
−3 −21 4

 = M ′

which solves the problem of L′2U
′
2X = M ′X = V ′. (We note that as augmented

matrices (M ′|V ′) ∼ (M |V ).)

Block LDU Explanation
This video explains how to do a block LDU decomposition. Firstly remember

some key facts about block matrices: It is important that the blocks fit

together properly. For example, if we have matrices

matrix shape

X r × r
Y r × t
Z t× r
W t× t

394



G.7 Determinants 395

we could fit these together as a (r + t)× (r + t) square block matrix

M =

(
X Y
Z W

)
.

Matrix multiplication works for blocks just as for matrix entries:

M2 =

(
X Y
Z W

)(
X Y
Z W

)
=

(
X2 + Y Z XY + YW
ZX +WZ ZY +W 2

)
.

Now lets specialize to the case where the square matrix X has an inverse.

Then we can multiply out the following triple product of a lower triangular,

a block diagonal and an upper triangular matrix:(
I 0

ZX−1 I

)(
X 0
0 W − ZX−1Y

)(
I X−1Y
0 I

)

=

(
X 0
Z W − ZX−1Y

)(
I X−1Y
0 I

)
=

(
X Y

ZX−1Y + Z W − ZX−1Y

)
=

(
X Y
Z W

)
= M .

This shows that the LDU decomposition given in Section 7.7 is correct.

G.7 Determinants

Permutation Example

Lets try to get the hang of permutations. A permutation is a function which

scrambles things. Suppose we had

This looks like a function σ that has values

σ(1) = 3, σ(2) = 2, σ(3) = 4, σ(4) = 1 .
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Then we could write this as[
1 2 3 4

σ(1) σ(2) σ(3) σ(4)

]
=

[
1 2 3 4
3 2 4 1

]
We could write this permutation in two steps by saying that first we swap 3

and 4, and then we swap 1 and 3. The order here is important.

This is an even permutation, since the number of swaps we used is two (an even

number).

Elementary Matrices
This video will explain some of the ideas behind elementary matrices. First

think back to linear systems, for example n equations in n unknowns:

a11x
1 + a12x

2 + · · ·+ a1nx
n = v1

a21x
1 + a22x

2 + · · ·+ a2nx
n = v2

...

an1x
1 + an2x

2 + · · ·+ annx
n = vn .

We know it is helpful to store the above information with matrices and vectors

M :=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 , X :=


x1

x2

...

xn

 , V :=


v1

v2

...

vn

 .

Here we will focus on the case the M is square because we are interested in

its inverse M−1 (if it exists) and its determinant (whose job it will be to

determine the existence of M−1).
We know at least three ways of handling this linear system problem:

1. As an augmented matrix (
M V

)
.

Here our plan would be to perform row operations until the system looks

like (
I M−1V

)
,

(assuming that M−1 exists).
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2. As a matrix equation

MX = V ,

which we would solve by finding M−1 (again, if it exists), so that

X = M−1V .

3. As a linear transformation

L : Rn −→ Rn

via

Rn 3 X 7−→MX ∈ Rn .

In this case we have to study the equation L(X) = V because V ∈ Rn.

Lets focus on the first two methods. In particular we want to think about

how the augmented matrix method can give information about finding M−1. In

particular, how it can be used for handling determinants.

The main idea is that the row operations changed the augmented matrices,

but we also know how to change a matrix M by multiplying it by some other

matrix E, so that M → EM. In particular can we find ‘‘elementary matrices’’

the perform row operations?

Once we find these elementary matrices is is very important to ask how they

effect the determinant, but you can think about that for your own self right

now.

Lets tabulate our names for the matrices that perform the various row

operations:

Row operation Elementary Matrix

Ri ↔ Rj Eij
Ri → λRi Ri(λ)

Ri → Ri + λRj Sij(λ)

To finish off the video, here is how all these elementary matrices work

for a 2× 2 example. Lets take

M =

(
a b
c d

)
.

A good thing to think about is what happens to detM = ad − bc under the

operations below.

• Row swap:

E1
2 =

(
0 1
1 0

)
, E1

2M =

(
0 1
1 0

)(
a b
c d

)
=

(
c d
a b

)
.
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• Scalar multiplying:

R1(λ) =

(
λ 0
0 1

)
, E1

2M =

(
λ 0
0 1

)(
a b
c d

)
=

(
λa λb
c d

)
.

• Row sum:

S1
2(λ) =

(
1 λ
0 1

)
, S1

2(λ)M =

(
1 λ
0 1

)(
a b
c d

)
=

(
a+ λc b+ λd

c d

)
.

Elementary Determinants
This video will show you how to calculate determinants of elementary matrices.

First remember that the job of an elementary row matrix is to perform row

operations, so that if E is an elementary row matrix and M some given matrix,

EM

is the matrix M with a row operation performed on it.

The next thing to remember is that the determinant of the identity is 1.
Moreover, we also know what row operations do to determinants:

• Row swap Eij: flips the sign of the determinant.

• Scalar multiplication Ri(λ): multiplying a row by λ multiplies the de-

terminant by λ.

• Row addition Sij(λ): adding some amount of one row to another does not

change the determinant.

The corresponding elementary matrices are obtained by performing exactly

these operations on the identity:

Eij =



1
...

0 1
...

1 0
...

1


,

Ri(λ) =



1
...

λ
...

1

 ,
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Sij(λ) =



1
...

1 λ
...

1
...

1


So to calculate their determinants, we just have to apply the above list

of what happens to the determinant of a matrix under row operations to the

determinant of the identity. This yields

detEij = −1 , detRi(λ) = λ , detSij(λ) = 1 .

Determinants and Inverses

Lets figure out the relationship between determinants and invertibility. If

we have a system of equations Mx = b and we have the inverse M−1 then if we

multiply on both sides we get x = M−1Mx = M−1b. If the inverse exists we

can solve for x and get a solution that looks like a point.

So what could go wrong when we want solve a system of equations and get a

solution that looks like a point? Something would go wrong if we didn’t have

enough equations for example if we were just given

x+ y = 1

or maybe, to make this a square matrix M we could write this as

x+ y = 1

0 = 0

The matrix for this would be M =

[
1 1
0 0

]
and det(M) = 0. When we compute the

determinant, this row of all zeros gets multiplied in every term. If instead

we were given redundant equations

x+ y = 1

2x+ 2y = 2

The matrix for this would be M =

[
1 1
2 2

]
and det(M) = 0. But we know that

with an elementary row operation, we could replace the second row with a row
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of all zeros. Somehow the determinant is able to detect that there is only one

equation here. Even if we had a set of contradictory set of equations such as

x+ y = 1

2x+ 2y = 0,

where it is not possible for both of these equations to be true, the matrix M
is still the same, and still has a determinant zero.

Lets look at a three by three example, where the third equation is the sum

of the first two equations.

x+ y + z = 1

y + z = 1

x+ 2y + 2z = 2

and the matrix for this is

M =

1 1 1
0 1 1
1 2 2


If we were trying to find the inverse to this matrix using elementary

matrices  1 1 1 1 0 0
0 1 1 0 1 0
1 2 2 0 0 1

 =

 1 1 1 1 0 0
0 1 1 0 1 0
0 0 0 −1 −1 1


And we would be stuck here. The last row of all zeros cannot be converted

into the bottom row of a 3 × 3 identity matrix. this matrix has no inverse,

and the row of all zeros ensures that the determinant will be zero. It can

be difficult to see when one of the rows of a matrix is a linear combination

of the others, and what makes the determinant a useful tool is that with this

reasonably simple computation we can find out if the matrix is invertible, and

if the system will have a solution of a single point or column vector.

Alternative Proof
Here we will prove more directly that the determinant of a product of matrices

is the product of their determinants. First we reference that for a matrix

M with rows ri, if M ′ is the matrix with rows r′j = rj + λri for j 6= i and

r′i = ri, then det(M) = det(M ′) Essentially we have M ′ as M multiplied by the

elementary row sum matrices Sij(λ). Hence we can create an upper-triangular

matrix U such that det(M) = det(U) by first using the first row to set m1
i 7→ 0

for all i > 1, then iteratively (increasing k by 1 each time) for fixed k using

the k-th row to set mk
i 7→ 0 for all i > k.
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Now note that for two upper-triangular matrices U = (uji ) and U ′ = (u′ji ),

by matrix multiplication we have X = UU ′ = (xji ) is upper-triangular and

xii = uiiu
′i
i . Also since every permutation would contain a lower diagonal entry

(which is 0) have det(U) =
∏
i u

i
i. Let A and A′ have corresponding upper-

triangular matrices U and U ′ respectively (i.e. det(A) = det(U)), we note

that AA′ has a corresponding upper-triangular matrix UU ′, and hence we have

det(AA′) = det(UU ′) =
∏
i

uiiu
′i
i

=

(∏
i

uii

)(∏
i

u′ii

)
= det(U) det(U ′) = det(A) det(A′).

Practice taking Determinants

Lets practice taking determinants of 2× 2 and 3× 3 matrices.

For 2× 2 matrices we have a formula

det

(
a b
c d

)
= ad− bc .

This formula might be easier to remember if you think about this picture.

Now we can look at three by three matrices and see a few ways to compute

the determinant. We have a similar pattern for 3 × 3 matrices. Consider the

example

det

1 2 3
3 1 2
0 0 1

 = ((1 · 1 · 1) + (2 · 2 · 0) + (3 · 3 · 0))− ((3 · 1 · 0) + (1 · 2 · 0) + (3 · 2 · 1)) = −5

We can draw a picture with similar diagonals to find the terms that will be

positive and the terms that will be negative.
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Another way to compute the determinant of a matrix is to use this recursive

formula. Here I take the coefficients of the first row and multiply them by

the determinant of the minors and the cofactor. Then we can use the formula

for a two by two determinant to compute the determinant of the minors

det

1 2 3
3 1 2
0 0 1

 = 1

∣∣∣∣1 2
0 1

∣∣∣∣− 2

∣∣∣∣3 2
0 1

∣∣∣∣+ 3

∣∣∣∣3 1
0 0

∣∣∣∣ = 1(1− 0)− 2(3− 0) + 3(0− 0) = −5

Decide which way you prefer and get good at taking determinants, you’ll need

to compute them in a lot of problems.

Hint for Review Problem 5
For an arbitrary 3× 3 matrix A = (aij), we have

det(A) = a11a
2
2a

3
3 + a12a

2
3a

3
1 + a13a

2
1a

3
2 − a11a23a32 − a12a21a33 − a13a22a31

and so the complexity is 5a + 12m. Now note that in general, the complexity

cn of the expansion minors formula of an arbitrary n× n matrix should be

cn = (n− 1)a+ ncn−1m

since det(A) =
∑n
i=1(−1)ia1i cofactor(a1i ) and cofactor(a1i ) is an (n − 1) × (n − 1)

matrix. This is one way to prove part (c).
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G.8 Subspaces and Spanning Sets

Linear systems as spanning sets

Suppose that we were given a set of linear equations lj(x1, x2, . . . , xn) and we

want to find out if lj(X) = vj for all j for some vector V = (vj). We know that

we can express this as the matrix equation

∑
i

ljix
i = vj

where lji is the coefficient of the variable xi in the equation lj. However, this

is also stating that V is in the span of the vectors {Li}i where Li = (lji )j. For

example, consider the set of equations

2x+ 3y − z = 5

−x+ 3y + z = 1

x+ y − 2z = 3

which corresponds to the matrix equation

 2 3 −1
−1 3 1

1 1 −2

xy
z

 =

5
1
3

 .

We can thus express this problem as determining if the vector

V =

5
1
3


lies in the span of 

 2
−1

1

 ,

3
3
1

 ,

−1
1
−2

 .

Hint for Review Problem 2

For the first part, try drawing an example in R3:
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Here we have taken the subspace W to be a plane through the origin and U to

be a line through the origin. The hint now is to think about what happens when

you add a vector u ∈ U to a vector w ∈W. Does this live in the union U ∪W?

For the second part, we take a more theoretical approach. Lets suppose

that v ∈ U ∩W and v′ ∈ U ∩W. This implies

v ∈ U and v′ ∈ U .

So, since U is a subspace and all subspaces are vector spaces, we know that

the linear combination

αv + βv′ ∈ U .

Now repeat the same logic for W and you will be nearly done.

G.9 Linear Independence

Worked Example
This video gives some more details behind the example for the following four

vectors in R3 Consider the following vectors in R3:

v1 =

 4
−1

3

 , v2 =

−3
7
4

 , v3 =

 5
12
17

 , v4 =

−1
1
0

 .

The example asks whether they are linearly independent, and the answer is

immediate: NO, four vectors can never be linearly independent in R3. This

vector space is simply not big enough for that, but you need to understand the
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notion of the dimension of a vector space to see why. So we think the vectors

v1, v2, v3 and v4 are linearly dependent, which means we need to show that there

is a solution to

α1v1 + α2v2 + α3v3 + α4v4 = 0

for the numbers α1, α2, α3 and α4 not all vanishing.

To find this solution we need to set up a linear system. Writing out the

above linear combination gives

4α1 −3α2 +5α3 −α4 = 0 ,
−α1 +7α2 +12α3 +α4 = 0 ,
3α1 +4α2 +17α3 = 0 .

This can be easily handled using an augmented matrix whose columns are just

the vectors we started with 4 −3 5 −1 0 ,
−1 7 12 1 0 ,
3 4 17 0 0 .

 .

Since there are only zeros on the right hand column, we can drop it. Now we

perform row operations to achieve RREF 4 −3 5 −1
−1 7 12 1

3 4 17 0

 ∼
1 0 71

25 − 4
25

0 1 53
25

3
25

0 0 0 0

 .

This says that α3 and α4 are not pivot variable so are arbitrary, we set them

to µ and ν, respectively. Thus

α1 =
(
− 71

25
µ+

4

25
ν
)
, α2 =

(
− 53

25
µ− 3

25
ν
)
, α3 = µ , α4 = ν .

Thus we have found a relationship among our four vectors(
− 71

25
µ+

4

25
ν
)
v1 +

(
− 53

25
µ− 3

25
ν
)
v2 + µ v3 + µ4 v4 = 0 .

In fact this is not just one relation, but infinitely many, for any choice of

µ, ν. The relationship quoted in the notes is just one of those choices.

Finally, since the vectors v1, v2, v3 and v4 are linearly dependent, we

can try to eliminate some of them. The pattern here is to keep the vectors

that correspond to columns with pivots. For example, setting µ = −1 (say) and

ν = 0 in the above allows us to solve for v3 while µ = 0 and ν = −1 (say) gives

v4, explicitly we get

v3 =
71

25
v1 +

53

25
v2 , v4 = − 4

25
v3 +

3

25
v4 .

This eliminates v3 and v4 and leaves a pair of linearly independent vectors v1
and v2.
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Worked Proof

Here we will work through a quick version of the proof of Theorem 10.1.1. Let

{vi} denote a set of linearly dependent vectors, so
∑
i c
ivi = 0 where there

exists some ck 6= 0. Now without loss of generality we order our vectors such

that c1 6= 0, and we can do so since addition is commutative (i.e. a+ b = b+a).
Therefore we have

c1v1 = −
n∑
i=2

civi

v1 = −
n∑
i=2

ci

c1
vi

and we note that this argument is completely reversible since every ci 6= 0 is

invertible and 0/ci = 0.

Hint for Review Problem 1

Lets first remember how Z2 works. The only two elements are 1 and 0. Which

means when you add 1 + 1 you get 0. It also means when you have a vector ~v ∈ Bn
and you want to multiply it by a scalar, your only choices are 1 and 0. This

is kind of neat because it means that the possibilities are finite, so we can

look at an entire vector space.

Now lets think about B3 there is choice you have to make for each co-

ordinate, you can either put a 1 or a 0, there are three places where you

have to make a decision between two things. This means that you have 23 = 8
possibilities for vectors in B3.

When you want to think about finding a set S that will span B3 and is

linearly independent, you want to think about how many vectors you need. You

will need you have enough so that you can make every vector in B3 using linear

combinations of elements in S but you don’t want too many so that some of

them are linear combinations of each other. I suggest trying something really

simple perhaps something that looks like the columns of the identity matrix

For part (c) you have to show that you can write every one of the elements

as a linear combination of the elements in S, this will check to make sure S
actually spans B3.

For part (d) if you have two vectors that you think will span the space,

you can prove that they do by repeating what you did in part (c), check that

every vector can be written using only copies of of these two vectors. If you

don’t think it will work you should show why, perhaps using an argument that

counts the number of possible vectors in the span of two vectors.
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G.10 Basis and Dimension

Proof Explanation

Lets walk through the proof of theorem 11.0.1. We want to show that for

S = {v1, . . . , vn} a basis for a vector space V , then every vector w ∈ V can be

written uniquely as a linear combination of vectors in the basis S:

w = c1v1 + · · ·+ cnvn.

We should remember that since S is a basis for V , we know two things

• V = spanS

• v1, . . . , vn are linearly independent, which means that whenever we have

a1v1 + . . .+ anvn = 0 this implies that ai = 0 for all i = 1, . . . , n.

This first fact makes it easy to say that there exist constants ci such that

w = c1v1 + · · ·+ cnvn. What we don’t yet know is that these c1, . . . cn are unique.

In order to show that these are unique, we will suppose that they are not,

and show that this causes a contradiction. So suppose there exists a second

set of constants di such that

w = d1v1 + · · ·+ dnvn .

For this to be a contradiction we need to have ci 6= di for some i. Then look

what happens when we take the difference of these two versions of w:

0V = w − w
= (c1v1 + · · ·+ cnvn)− (d1v1 + · · ·+ dnvn)

= (c1 − d1)v1 + · · ·+ (cn − dn)vn.

Since the vi’s are linearly independent this implies that ci − di = 0 for all i,
this means that we cannot have ci 6= di, which is a contradiction.

Worked Example

In this video we will work through an example of how to extend a set of linearly

independent vectors to a basis. For fun, we will take the vector space

V = {(x, y, z, w)|x, y, z, w ∈ Z5} .

This is like four dimensional space R4 except that the numbers can only be

{0, 1, 2, 3, 4}. This is like bits, but now the rule is

0 = 5 .
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Thus, for example, 1
4 = 4 because 4 = 16 = 1 + 3× 5 = 1. Don’t get too caught up

on this aspect, its a choice of base field designed to make computations go

quicker!

Now, here’s the problem we will solve:

Find a basis for V that includes the vectors


1
2
3
4

 and


0
3
2
1

.

The way to proceed is to add a known (and preferably simple) basis to the

vectors given, thus we consider

v1 =


1
2
3
4

 , v2 =


0
3
2
1

 , e1 =


1
0
0
0

 , e2 =


0
1
0
0

 , e3 =


0
0
1
0

 , e4 =


0
0
0
1

 .

The last four vectors are clearly a basis (make sure you understand this....)

and are called the canonical basis. We want to keep v1 and v2 but find a way to

turf out two of the vectors in the canonical basis leaving us a basis of four

vectors. To do that, we have to study linear independence, or in other words

a linear system problem defined by

0 = α1e1 + α2e2 + α3v1 + α4v2 + α5e3 + α6e4 .

We want to find solutions for the α′s which allow us to determine two of the

e′s. For that we use an augmented matrix
1 0 1 0 0 0 0
2 3 0 1 0 0 0
3 2 0 0 1 0 0
4 1 0 0 0 1 0

 .

Next comes a bunch of row operations. Note that we have dropped the last column

of zeros since it has no information--you can fill in the row operations used

above the ∼’s as an exercise:
1 0 1 0 0 0
2 3 0 1 0 0
3 2 0 0 1 0
4 1 0 0 0 1

 ∼


1 0 1 0 0 0
0 3 3 1 0 0
0 2 2 0 1 0
0 1 1 0 0 1



∼


1 0 1 0 0 0
0 1 1 2 0 0
0 2 2 0 1 0
0 1 1 0 0 1

 ∼


1 0 1 0 0 0
0 1 1 2 0 0
0 0 0 1 1 0
0 0 0 3 0 1


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∼


1 0 1 0 0 0
0 1 1 0 3 0
0 0 0 1 1 0
0 0 0 0 2 1

 ∼


1 0 1 0 0 0
0 1 1 0 3 0
0 0 0 1 1 0
0 0 0 0 1 3



∼


1 0 1 0 0 0
0 1 1 0 0 1
0 0 0 1 0 2
0 0 0 0 1 3


The pivots are underlined. The columns corresponding to non-pivot variables

are the ones that can be eliminated--their coefficients (the α’s) will be

arbitrary, so set them all to zero save for the one next to the vector you are

solving for which can be taken to be unity. Thus that vector can certainly be

expressed in terms of previous ones. Hence, altogether, our basis is


1
2
3
4

 ,


0
3
2
1

 ,


0
1
0
0

 ,


0
0
1
0


 .

Finally, as a check, note that e1 = v1 + v2 which explains why we had to throw

it away.

Hint for Review Problem 2

Since there are two possible values for each entry, we have |Bn| = 2n. We note

that dimBn = n as well. Explicitly we have B1 = {(0), (1)} so there is only 1

basis for B1. Similarly we have

B2 =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1
1

)}
and so choosing any two non-zero vectors will form a basis. Now in general we

note that we can build up a basis {ei} by arbitrarily (independently) choosing

the first i−1 entries, then setting the i-th entry to 1 and all higher entries

to 0.

G.11 Eigenvalues and Eigenvectors

2× 2 Example

Here is an example of how to find the eigenvalues and eigenvectors of a 2 × 2
matrix.

M =

(
4 2
1 3

)
.
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Remember that an eigenvector v with eigenvalue λ for M will be a vector such

that Mv = λv i.e. M(v) − λI(v) = ~0. When we are talking about a nonzero v
then this means that det(M −λI) = 0. We will start by finding the eigenvalues

that make this statement true. First we compute

det(M − λI) = det

((
4 2
1 3

)
−
(
λ 0
0 λ

))
= det

(
4− λ 2

1 3− λ

)
so det(M − λI) = (4− λ)(3− λ)− 2 · 1. We set this equal to zero to find values

of λ that make this true:

(4− λ)(3− λ)− 2 · 1 = 10− 7λ+ λ2 = (2− λ)(5− λ) = 0 .

This means that λ = 2 and λ = 5 are solutions. Now if we want to find the

eigenvectors that correspond to these values we look at vectors v such that(
4− λ 2

1 3− λ

)
v = ~0 .

For λ = 5 (
4− 5 2

1 3− 5

)(
x
y

)
=

(
−1 2

1 −2

)(
x
y

)
= ~0 .

This gives us the equalities −x+ 2y = 0 and x−2y = 0 which both give the line

y = 1
2x. Any point on this line, so for example

(
2
1

)
, is an eigenvector with

eigenvalue λ = 5.
Now lets find the eigenvector for λ = 2(

4− 2 2
1 3− 2

)(
x
y

)
=

(
2 2
1 1

)(
x
y

)
= ~0,

which gives the equalities 2x+ 2y = 0 and x+ y = 0. (Notice that these equa-

tions are not independent of one another, so our eigenvalue must be correct.)

This means any vector v =

(
x
y

)
where y = −x , such as

(
1
−1

)
, or any scalar

multiple of this vector , i.e. any vector on the line y = −x is an eigenvector

with eigenvalue 2. This solution could be written neatly as

λ1 = 5, v1 =

(
2
1

)
and λ2 = 2, v2 =

(
1
−1

)
.

Jordan Block Example

Consider the matrix

J2 =

(
λ 1
0 λ

)
,
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and we note that we can just read off the eigenvector e1 with eigenvalue λ.
However the characteristic polynomial of J2 is PJ2(µ) = (µ − λ)2 so the only

possible eigenvalue is λ, but we claim it does not have a second eigenvector

v. To see this, we require that

λv1 + v2 = λv1

λv2 = λv2

which clearly implies that v2 = 0. This is known as a Jordan 2-cell, and in

general, a Jordan n-cell with eigenvalue λ is (similar to) the n× n matrix

Jn =



λ 1 0 · · · 0

0 λ 1
... 0

...
...

...
...

...

0 · · · 0 λ 1
0 · · · 0 0 λ


which has a single eigenvector e1.

Now consider the following matrix

M =

3 1 0
0 3 1
0 0 2


and we see that PM (λ) = (λ− 3)2(λ− 2). Therefore for λ = 3 we need to find the

solutions to (M − 3I3)v = 0 or in equation form:

v2 = 0

v3 = 0

−v3 = 0,

and we immediately see that we must have V = e1. Next for λ = 2, we need to

solve (M − 2I3)v = 0 or

v1 + v2 = 0

v2 + v3 = 0

0 = 0,

and thus we choose v1 = 1, which implies v2 = −1 and v3 = 1. Hence this is the

only other eigenvector for M.

This is a specific case of Problem 13.7.

Eigenvalues
Eigenvalues and eigenvectors are extremely important. In this video we review

the theory of eigenvalues. Consider a linear transformation

L : V −→ V
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where dimV = n <∞. Since V is finite dimensional, we can represent L by a

square matrix M by choosing a basis for V .
So the eigenvalue equation

Lv = λv

becomes

Mv = λv,

where v is a column vector and M is an n×n matrix (both expressed in whatever

basis we chose for V ). The scalar λ is called an eigenvalue of M and the job

of this video is to show you how to find all the eigenvalues of M.

The first step is to put all terms on the left hand side of the equation,

this gives

(M − λI)v = 0 .

Notice how we used the identity matrix I in order to get a matrix times v
equaling zero. Now here comes a VERY important fact

Nu = 0 and u 6= 0 ⇐⇒ detN = 0.

I.e., a square matrix can have an eigenvector with vanishing eigenvalue if and only if its
determinant vanishes! Hence

det(M − λI) = 0.

The quantity on the left (up to a possible minus sign) equals the so-called

characteristic polynomial

PM (λ) := det(λI −M) .

It is a polynomial of degree n in the variable λ. To see why, try a simple

2× 2 example

det

((
a b
c d

)
−
(
λ 0
0 λ

))
= det

(
a− λ b

c d− λ

)
= (a− λ)(d− λ)− bc ,

which is clearly a polynomial of order 2 in λ. For the n× n case, the order n
term comes from the product of diagonal matrix elements also.

There is an amazing fact about polynomials called the fundamental theorem
of algebra: they can always be factored over complex numbers. This means that
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degree n polynomials have n complex roots (counted with multiplicity). The

word can does not mean that explicit formulas for this are known (in fact

explicit formulas can only be give for degree four or less). The necessity

for complex numbers is easily seems from a polynomial like

z2 + 1

whose roots would require us to solve z2 = −1 which is impossible for real

number z. However, introducing the imaginary unit i with

i2 = −1 ,

we have

z2 + 1 = (z − i)(z + i) .

Returning to our characteristic polynomial, we call on the fundamental theorem

of algebra to write

PM (λ) = (λ− λ1)(λ− λ2) · · · (λ− λn) .

The roots λ1, λ2,...,λn are the eigenvalues of M (or its underlying linear

transformation L).

Eigenspaces
Consider the linear map

L =

−4 6 6
0 2 0
−3 3 5

 .

Direct computation will show that we have

L = Q

−1 0 0
0 2 0
0 0 2

Q−1

where

Q =

2 1 1
0 0 1
1 1 0

 .

Therefore the vectors

v
(2)
1 =

1
0
1

 v
(2)
2 =

1
1
0


span the eigenspace E(2) of the eigenvalue 2, and for an explicit example, if

we take

v = 2v
(2)
1 − v

(2)
2 =

 1
−1

2


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we have

Lv =

 2
−2

4

 = 2v

so v ∈ E(2). In general, we note the linearly independent vectors v
(λ)
i with the

same eigenvalue λ span an eigenspace since for any v =
∑
i c
iv

(λ)
i , we have

Lv =
∑
i

ciLv
(λ)
i =

∑
i

ciλv
(λ)
i = λ

∑
i

civ
(λ)
i = λv.

Hint for Review Problem 9

We are looking at the matrix M, and a sequence of vectors starting with

v(0) =

(
x(0)
y(0)

)
and defined recursively so that

v(1) =

(
x(1)
y(1)

)
= M

(
x(0)
y(0)

)
.

We first examine the eigenvectors and eigenvalues of

M =

(
3 2
2 3

)
.

We can find the eigenvalues and vectors by solving

det(M − λI) = 0

for λ.

det

(
3− λ 2

2 3− λ

)
= 0

By computing the determinant and solving for λ we can find the eigenvalues λ =
1 and 5, and the corresponding eigenvectors. You should do the computations

to find these for yourself.

When we think about the question in part (b) which asks to find a vector

v(0) such that v(0) = v(1) = v(2) . . ., we must look for a vector that satisfies

v = Mv. What eigenvalue does this correspond to? If you found a v(0) with

this property would cv(0) for a scalar c also work? Remember that eigenvectors

have to be nonzero, so what if c = 0?

For part (c) if we tried an eigenvector would we have restrictions on what

the eigenvalue should be? Think about what it means to be pointed in the same

direction.
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G.12 Diagonalization

Non Diagonalizable Example

First recall that the derivative operator is linear and that we can write it

as the matrix

d

dx
=


0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
...

...
...

...
...

 .

We note that this transforms into an infinite Jordan cell with eigenvalue 0

or 
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
...


which is in the basis {n−1xn}n (where for n = 0, we just have 1). Therefore

we note that 1 (constant polynomials) is the only eigenvector with eigenvalue

0 for polynomials since they have finite degree, and so the derivative is

not diagonalizable. Note that we are ignoring infinite cases for simplicity,

but if you want to consider infinite terms such as convergent series or all

formal power series where there is no conditions on convergence, there are

many eigenvectors. Can you find some? This is an example of how things can

change in infinite dimensional spaces.

For a more finite example, consider the space PC
3 of complex polynomials of

degree at most 3, and recall that the derivative D can be written as

D =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

You can easily check that the only eigenvector is 1 with eigenvalue 0 since D
always lowers the degree of a polynomial by 1 each time it is applied. Note

that this is a nilpotent matrix since D4 = 0, but the only nilpotent matrix

that is ‘‘diagonalizable’’ is the 0 matrix.

Change of Basis Example

This video returns to the example of a barrel filled with fruit
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as a demonstration of changing basis.

Since this was a linear systems problem, we can try to represent what’s in

the barrel using a vector space. The first representation was the one where

(x, y) = (apples, oranges):

Apples

Oranges

(x, y)

Calling the basis vectors ~e1 := (1, 0) and ~e2 := (0, 1), this representation would

label what’s in the barrel by a vector

~x := x~e1 + y~e2 =
(
~e1 ~e2

)(x
y

)
.

Since this is the method ordinary people would use, we will call this the

‘‘engineer’s’’ method!

But this is not the approach nutritionists would use. They would note the

amount of sugar and total number of fruit (s, f):
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sugar

fruit

(s, f)

WARNING: To make sense of what comes next you need to allow for the possibity

of a negative amount of fruit or sugar. This would be just like a bank, where

if money is owed to somebody else, we can use a minus sign.

The vector ~x says what is in the barrel and does not depend which mathe-

matical description is employed. The way nutritionists label ~x is in terms of

a pair of basis vectors ~f1 and ~f2:

~x = s~f1 + f ~f2 =
(
~f1 ~f2

)(s
f

)
.

Thus our vector space now has a bunch of interesting vectors:

The vector ~x labels generally the contents of the barrel. The vector ~e1 corre-

sponds to one apple and one orange. The vector ~e2 is one orange and no apples.

The vector ~f1 means one unit of sugar and zero total fruit (to achieve this

you could lend out some apples and keep a few oranges). Finally the vector ~f2
represents a total of one piece of fruit and no sugar.

You might remember that the amount of sugar in an apple is called λ while

oranges have twice as much sugar as apples. Thus{
s = λ (x+ 2y)
f = x+ y .

417



418 Movie Scripts

Essentially, this is already our change of basis formula, but lets play around

and put it in our notations. First we can write this as a matrix(
s
f

)
=

(
λ 2λ
1 1

)(
x
y

)
.

We can easily invert this to get(
x
y

)
=

(
− 1
λ 2
1
λ −1

)(
s
f

)
.

Putting this in the engineer’s formula for ~x gives

~x =
(
~e1 ~e2

)(− 1
λ 2
1
λ −1

)(
s
f

)
=
(
− 1
λ

(
~e1 − ~e2

)
2~e1 − 2~e2

)(s
f

)
.

Comparing to the nutritionist’s formula for the same object ~x we learn that

~f1 = − 1

λ

(
~e1 − ~e2

)
and ~f2 = 2~e1 − 2~e2 .

Rearranging these equation we find the change of base matrix P from the engi-

neer’s basis to the nutritionist’s basis:(
~f1 ~f2

)
=
(
~e1 ~e2

)(− 1
λ 2
1
λ −1

)
=:
(
~e1 ~e2

)
P .

We can also go the other direction, changing from the nutritionist’s basis to

the engineer’s basis

(
~e1 ~e2

)
=
(
~f1 ~f2

)(λ 2λ
1 1

)
=:
(
~f1 ~f2

)
Q .

Of course, we must have

Q = P−1 ,

(which is in fact how we constructed P in the first place).

Finally, lets consider the very first linear systems problem, where you

were given that there were 27 pieces of fruit in total and twice as many oranges

as apples. In equations this says just

x+ y = 27 and 2x− y = 0 .

But we can also write this as a matrix system

MX = V

where

M :=

(
1 1
2 −1

)
, X :=

(
x
y

)
V :=

(
0

27

)
.
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Note that

~x =
(
~e1 ~e2

)
X .

Also lets call

~v :=
(
~e1 ~e2

)
V .

Now the matrix M is the matrix of some linear transformation L in the basis

of the engineers. Lets convert it to the basis of the nutritionists:

L~x = L
(
~f1 ~f2

)(
s
f

)
= L

(
~e1 ~e2

)
P

(
s
f

)
=

(
~e1
~e2

)
MP

(
s
f

)
.

Note here that the linear transformation on acts on vectors -- these are the

objects we have written with a~ sign on top of them. It does not act on columns

of numbers!

We can easily compute MP and find

MP =

(
1 1
2 −1

)(
− 1
λ 2
1
λ −1

)
=

(
0 1
− 3
λ 5

)
.

Note that P−1MP is the matrix of L in the nutritionists basis, but we don’t

need this quantity right now.

Thus the last task is to solve the system, lets solve for sugar and fruit.

We need to solve

MP

(
s
f

)
=

(
0 1
− 3
λ 5

)(
s
f

)
=

(
27
0

)
.

This is solved immediately by forward substitution (the nutritionists basis

is nice since it directly gives f):

f = 27 and s = 45λ .

2× 2 Example
Lets diagonalize the matrix M from a previous example

Eigenvalues and Eigenvectors: 2× 2 Example

M =

(
4 2
1 3

)
We found the eigenvalues and eigenvectors of M, our solution was

λ1 = 5, v1 =

(
2
1

)
and λ2 = 2, v2 =

(
1
−1

)
.
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So we can diagonalize this matrix using the formula D = P−1MP where P =
(v1,v2). This means

P =

(
2 1
1 −1

)
and P−1 = −1

3

(
−1 −1
−1 2

)
The inverse comes from the formula for inverses of 2× 2 matrices:(

a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)
, so long as ad− bc 6= 0.

So we get:

D = −1

3

(
−1 −1
−1 2

)(
4 2
1 3

)(
2 1
1 −1

)
=

(
5 0
0 2

)
But this does not really give any intuition into why this happens. Let look

at what happens when we apply this matrix D = P−1MP to a vector v =

(
x
y

)
.

Notice that applying P translates v =

(
x
y

)
into xv1 + yv2.

P−1MP

(
x
y

)
= P−1M

(
2x+ y
x− y

)
= P−1M

[(
2x
x

)
+

(
y
−y

)]
= P−1

[
xM

(
2
1

)
+ yM

(
1
−1

)]
= P−1 [xMv1 + yMv2]

Remember that we know what M does to v1 and v2, so we get

P−1[xMv1 + yMv2] = P−1[xλ1 v1 + yλ2 v2]

= 5xP−1v1 + 2y P−1v2

= 5x

(
1
0

)
+ 2y

(
0
1

)
=

(
5x
2y

)

Notice that multiplying by P−1 converts v1 and v2 back in to

(
1
0

)
and

(
0
1

)
respectively. This shows us why D = P−1MP should be the diagonal matrix:

D =

(
λ1 0
0 λ2

)
=

(
5 0
0 2

)
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G.13 Orthonormal Bases and Complements

All Orthonormal Bases for R2

We wish to find all orthonormal bases for the space R2, and they are {eθ1, eθ2}
up to reordering where

eθ1 =

(
cos θ
sin θ

)
, eθ2 =

(
− sin θ

cos θ

)
,

for some θ ∈ [0, 2π). Now first we need to show that for a fixed θ that the pair

is orthogonal:

eθ1 eθ2 = − sin θ cos θ + cos θ sin θ = 0.

Also we have

‖eθ1‖2 = ‖eθ2‖2 = sin2 θ + cos2 θ = 1,

and hence {eθ1, eθ2} is an orthonormal basis. To show that every orthonormal

basis of R2 is {eθ1, eθ2} for some θ, consider an orthonormal basis {b1, b2} and

note that b1 forms an angle φ with the vector e1 (which is e01). Thus b1 = eφ1 and

if b2 = eφ2, we are done, otherwise b2 = −eφ2 and it is the reflected version.

However we can do the same thing except starting with b2 and get b2 = eψ1 and

b1 = eψ2 since we have just interchanged two basis vectors which corresponds to

a reflection which picks up a minus sign as in the determinant.

cos θ
sin θ

θ

cos θ
-sin θ
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A 4× 4 Gram Schmidt Example

Lets do an example of how to "Gram-Schmidt" some vectors in R4. Given the

following vectors

v1 =


o
1
0
0

 , v2 =


0
1
1
0

 , v3 =


3
0
1
0

 , and v4 =


1
1
0
2

 ,

we start with v1

v⊥1 = v1 =


0
1
0
0

 .

Now the work begins

v⊥2 = v2 −
(v⊥1 · v2)

‖v⊥1 ‖2
v⊥1

=


0
1
1
0

− 1

1


0
1
0
0



=


0
0
1
0



This gets a little longer with every step.

v⊥3 = v3 −
(v⊥1 · v3)

‖v⊥1 ‖2
v⊥1 −

(v⊥2 · v3)

‖v⊥2 ‖2
v⊥2

=


3
0
1
0

− 0

1


0
1
0
0

− 1

1


0
0
1
0

 =


3
0
0
0



This last step requires subtracting off the term of the form u·v
u·uu for each of

the previously defined basis vectors.

422



G.13 Orthonormal Bases and Complements 423

v⊥4 = v4 −
(v⊥1 · v4)

‖v⊥1 ‖2
v⊥1 −

(v⊥2 · v4)

‖v⊥2 ‖2
v⊥2 −

(v⊥3 · v4)

‖v⊥3 ‖2
v⊥3

=


1
1
0
2

− 1

1


0
1
0
0

− 0

1


0
0
1
0

− 3

9


3
0
0
0



=


0
0
0
2


Now v⊥1 , v⊥2 , v⊥3 , and v⊥4 are an orthogonal basis. Notice that even with very,

very nice looking vectors we end up having to do quite a bit of arithmetic.

This a good reason to use programs like matlab to check your work.

Another QR Decomposition Example
We can alternatively think of the QR decomposition as performing the Gram-

Schmidt procedure on the column space, the vector space of the column vectors

of the matrix, of the matrix M. The resulting orthonormal basis will be

stored in Q and the negative of the coefficients will be recorded in R. Note

that R is upper triangular by how Gram-Schmidt works. Here we will explicitly

do an example with the matrix

M =

m1 m2 m3

 =

 1 1 −1
0 1 2
−1 1 1

 .

First we normalize m1 to get m′1 = m1

‖m1‖ where ‖m1‖ = r11 =
√

2 which gives the

decomposition

Q1 =

 1√
2

1 −1

0 1 2
− 1√

2
1 1

 , R1 =

√2 0 0
0 1 0
0 0 1

 .

Next we find

t2 = m2 − (m′1 m2)m′1 = m2 − r12m′1 = m2 − 0m′1

noting that

m′1 m′1 = ‖m′1‖2 = 1

and ‖t2‖ = r22 =
√

3, and so we get m′2 = t2
‖t2‖ with the decomposition

Q2 =


1√
2

1√
3
−1

0 1√
3

2

− 1√
2

1√
3

1

 , R2 =

√2 0 0

0
√

3 0
0 0 1

 .
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Finally we calculate

t3 = m3 − (m′1 m3)m′1 − (m′2 m3)m′2

= m3 − r13m′1 − r23m′2 = m3 +
√

2m′1 −
2√
3
m′2,

again noting m′2 m′2 = ‖m′2‖ = 1, and let m′3 = t3
‖t3‖ where ‖t3‖ = r33 = 2

√
2
3. Thus

we get our final M = QR decomposition as

Q =


1√
2

1√
3
− 1√

2

0 1√
3

√
2
3

− 1√
2

1
3 − 1√

6

 , R =


√

2 0 −
√

2

0
√

3 2√
3

0 0 2
√

2
3

 .

Overview
This video depicts the ideas of a subspace sum, a direct sum and an orthogonal

complement in R3. Firstly, lets start with the subspace sum. Remember that

even if U and V are subspaces, their union U ∪ V is usually not a subspace.

However, the span of their union certainly is and is called the subspace sum

U + V = span(U ∪ V ) .

You need to be aware that this is a sum of vector spaces (not vectors). A

picture of this is a pair of planes in R3:

Here U + V = R3.

Next lets consider a direct sum. This is just the subspace sum for the

case when U ∩ V = {0}. For that we can keep the plane U but must replace V by

a line:
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Taking a direct sum we again get the whole space, U ⊕ V = R3.

Now we come to an orthogonal complement. There is not really a notion of

subtraction for subspaces but the orthogonal complement comes close. Given U
it provides a space U⊥ such that the direct sum returns the whole space:

U ⊕ U⊥ = R3 .

The orthogonal complement U⊥ is the subspace made from all vectors perpen-

dicular to any vector in U. Here, we need to just tilt the line V above until

it hits U at a right angle:

Notice, we can apply the same operation to U⊥ and just get U back again, i.e.(
U⊥
)⊥

= U .

Hint for Review Question 2
You are asked to consider an orthogonal basis {v1, v2, . . . vn}. Because this is a

basis any v ∈ V can be uniquely expressed as

v = c1v1 + c2v2 + · · ·+ vncn ,

and the number n = dimV . Since this is an orthogonal basis

vi vj = 0 , i 6= j .

So different vectors in the basis are orthogonal:
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However, the basis is not orthonormal so we know nothing about the lengths of

the basis vectors (save that they cannot vanish).

To complete the hint, lets use the dot product to compute a formula for c1

in terms of the basis vectors and v. Consider

v1 v = c1v1 v1 + c2v1 v2 + · · ·+ cnv1 vn = c1v1 v1 .

Solving for c1 (remembering that v1 v1 6= 0) gives

c1 =
v1 v

v1 v1
.

This should get you started on this problem.

Hint for Review Problem 3

Lets work part by part:

(a) Is the vector v⊥ = v − u·v
u·uu in the plane P?

Remember that the dot product gives you a scalar not a vector, so if you

think about this formula u·v
u·u is a scalar, so this is a linear combination

of v and u. Do you think it is in the span?

(b) What is the angle between v⊥ and u?

This part will make more sense if you think back to the dot product for-

mulas you probably first saw in multivariable calculus. Remember that

u · v = ‖u‖‖v‖ cos(θ),

and in particular if they are perpendicular θ = π
2 and cos(π2 ) = 0 you will

get u · v = 0.

Now try to compute the dot product of u and v⊥ to find ‖u‖‖v⊥‖ cos(θ)

u · v⊥ = u ·
(
v − u · v

u · u
u
)

= u · v − u ·
(u · v
u · u

)
u

= u · v −
(u · v
u · u

)
u · u

Now you finish simplifying and see if you can figure out what θ has to be.

(c) Given your solution to the above, how can you find a third vector perpen-

dicular to both u and v⊥?

Remember what other things you learned in multivariable calculus? This

might be a good time to remind your self what the cross product does.
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(d) Construct an orthonormal basis for R3 from u and v.

If you did part (c) you can probably find 3 orthogonal vectors to make

a orthogonal basis. All you need to do to turn this into an orthonormal

basis is make these into unit vectors.

(e) Test your abstract formulae starting with

u =
(
1 2 0

)
and v =

(
0 1 1

)
.

Try it out, and if you get stuck try drawing a sketch of the vectors you

have.

Hint for Review Problem 10

This video shows you a way to solve problem 10 that’s different to the method

described in the Lecture. The first thing is to think of

M =

 1 0 2
−1 2 0
−1 2 2


as a set of 3 vectors

v1 =

 0
−1
−1

 , v2 =

 0
2
−2

 , v3 =

2
0
2

 .

Then you need to remember that we are searching for a decomposition

M = QR

where Q is an orthogonal matrix. Thus the upper triangular matrix R = QTM
and QTQ = I. Moreover, orthogonal matrices perform rotations. To see this

compare the inner product u v = uT v of vectors u and v with that of Qu and

Qv:

(Qu) (Qv) = (Qu)T (Qv) = uTQTQv = uT v = u v .

Since the dot product doesn’t change, we learn that Q does not change angles

or lengths of vectors.

Now, here’s an interesting procedure: rotate v1, v2 and v3 such that v1 is

along the x-axis, v2 is in the xy-plane. Then if you put these in a matrix you

get something of the form a b c
0 d e
0 0 f


which is exactly what we want for R!
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Moreover, the vector a0
0


is the rotated v1 so must have length ||v1|| =

√
3. Thus a =

√
3.

The rotated v2 is bd
0


and must have length ||v2|| = 2

√
2. Also the dot product betweena0

0

 and

bd
0


is ab and must equal v1 v2 = 0. (That v1 and v2 were orthogonal is just a

coincidence here... .) Thus b = 0. So now we know most of the matrix R

R =

√3 0 c

0 2
√

2 e
0 0 f

 .

You can work out the last column using the same ideas. Thus it only remains to

compute Q from

Q = MR−1 .

G.14 Diagonalizing Symmetric Matrices

3× 3 Example

Lets diagonalize the matrix

M =

1 2 0
2 1 0
0 0 5


If we want to diagonalize this matrix, we should be happy to see that it

is symmetric, since this means we will have real eigenvalues, which means

factoring won’t be too hard. As an added bonus if we have three distinct

eigenvalues the eigenvectors we find will automatically be orthogonal, which

means that the inverse of the matrix P will be easy to compute. We can start
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by finding the eigenvalues of this

det

1− λ 2 0
2 1− λ 0
0 0 5− λ

 = (1− λ)

∣∣∣∣1− λ 0
0 5− λ

∣∣∣∣
− (2)

∣∣∣∣2 0
0 5− λ

∣∣∣∣+ 0

∣∣∣∣2 1− λ
0 0

∣∣∣∣
= (1− λ)(1− λ)(5− λ) + (−2)(2)(5− λ) + 0

= (1− 2λ+ λ2)(5− λ) + (−2)(2)(5− λ)

= ((1− 4)− 2λ+ λ2)(5− λ)

= (−3− 2λ+ λ2)(5− λ)

= (1 + λ)(3− λ)(5− λ)

So we get λ = −1, 3, 5 as eigenvectors. First find v1 for λ1 = −1

(M + I)

xy
z

 =

2 2 0
2 2 0
0 0 6

xy
z

 =

0
0
0

 ,

implies that 2x + 2y = 0 and 6z = 0,which means any multiple of v1 =

 1
−1

0

 is

an eigenvector with eigenvalue λ1 = −1. Now for v2 with λ2 = 3

(M − 3I)

xy
z

 =

−2 2 0
2 −2 0
0 0 4

xy
z

 =

0
0
0

 ,

and we can find that that v2 =

1
1
0

 would satisfy −2x+ 2y = 0, 2x− 2y = 0 and

4z = 0.
Now for v3 with λ3 = 5

(M − 5I)

xy
z

 =

−4 2 0
2 −4 0
0 0 0

xy
z

 =

0
0
0

 ,

Now we want v3 to satisfy −4x + 2y = 0 and 2x − 4y = 0, which imply x = y = 0,

but since there are no restrictions on the z coordinate we have v3 =

0
0
1

.

Notice that the eigenvectors form an orthogonal basis. We can create an

orthonormal basis by rescaling to make them unit vectors. This will help us
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because if P = [v1, v2, v3] is created from orthonormal vectors then P−1 = PT ,
which means computing P−1 should be easy. So lets say

v1 =

 1√
2

− 1√
2

0

 , v2 =

 1√
2
1√
2

0

 , and v3 =

0
0
1


so we get

P =

 1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1

 and P−1 =

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1


So when we compute D = P−1MP we’ll get 1√

2
− 1√

2
0

1√
2

1√
2

0

0 0 1

1 2 0
2 5 0
0 0 5

 1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1

 =

−1 0 0
0 3 0
0 0 5



Hint for Review Problem 1

For part (a), we can consider any complex number z as being a vector in R2 where

complex conjugation corresponds to the matrix

(
1 0
0 −1

)
. Can you describe zz̄

in terms of ‖z‖? For part (b), think about what values a ∈ R can take if

a = −a? Part (c), just compute it and look back at part (a).

For part (d), note that x†x is just a number, so we can divide by it.

Parts (e) and (f) follow right from definitions. For part (g), first notice

that every row vector is the (unique) transpose of a column vector, and also

think about why (AAT )T = AAT for any matrix A. Additionally you should see

that xT = x† and mention this. Finally for part (h), show that

x†Mx

x†x
=

(
x†Mx

x†x

)T
and reduce each side separately to get λ = λ.

G.15 Kernel, Range, Nullity, Rank

Invertibility Conditions

Here I am going to discuss some of the conditions on the invertibility of a

matrix stated in Theorem 16.3.1. Condition 1 states that X = M−1V uniquely,

which is clearly equivalent to 4. Similarly, every square matrix M uniquely
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corresponds to a linear transformation L : Rn → Rn, so condition 3 is equiva-

lent to condition 1.

Condition 6 implies 4 by the adjoint construct the inverse, but the con-

verse is not so obvious. For the converse (4 implying 6), we refer back the

proofs in Chapter 18 and 19. Note that if detM = 0, there exists an eigen-

value of M equal to 0, which implies M is not invertible. Thus condition 8

is equivalent to conditions 4, 5, 9, and 10.

The map M is injective if it does not have a null space by definition,

however eigenvectors with eigenvalue 0 form a basis for the null space. Hence

conditions 8 and 14 are equivalent, and 14, 15, and 16 are equivalent by the

Dimension Formula (also known as the Rank-Nullity Theorem).

Now conditions 11, 12, and 13 are all equivalent by the definition of a

basis. Finally if a matrix M is not row-equivalent to the identity matrix,

then detM = 0, so conditions 2 and 8 are equivalent.

Hint for Review Problem 2

Lets work through this problem.

Let L : V → W be a linear transformation. Show that kerL = {0V } if and

only if L is one-to-one:

1. First, suppose that kerL = {0V }. Show that L is one-to-one.

Remember what one-one means, it means whenever L(x) = L(y) we can be

certain that x = y. While this might seem like a weird thing to require

this statement really means that each vector in the range gets mapped to

a unique vector in the range.

We know we have the one-one property, but we also don’t want to forget

some of the more basic properties of linear transformations namely that

they are linear, which means L(ax+ by) = aL(x) + bL(y) for scalars a and

b.

What if we rephrase the one-one property to say whenever L(x)− L(y) = 0
implies that x− y = 0? Can we connect that to the statement that kerL =
{0V }? Remember that if L(v) = 0 then v ∈ kerL = {0V }.

2. Now, suppose that L is one-to-one. Show that kerL = {0V }. That is, show

that 0V is in kerL, and then show that there are no other vectors in

kerL.

What would happen if we had a nonzero kernel? If we had some vector v
with L(v) = 0 and v 6= 0, we could try to show that this would contradict

the given that L is one-one. If we found x and y with L(x) = L(y), then

we know x = y. But if L(v) = 0 then L(x) + L(v) = L(y). Does this cause a

problem?
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G.16 Least Squares and Singular Values

Least Squares: Hint for Review Problem 1
Lets work through this problem. Let L : U → V be a linear transformation.

Suppose v ∈ L(U) and you have found a vector ups that obeys L(ups) = v.
Explain why you need to compute kerL to describe the solution space of the

linear system L(u) = v.
Remember the property of linearity that comes along with any linear trans-

formation: L(ax + by) = aL(x) + bL(y) for scalars a and b. This allows us to

break apart and recombine terms inside the transformation.

Now suppose we have a solution x where L(x) = v. If we have an vector

y ∈ kerL then we know L(y) = 0. If we add the equations together L(x) + L(y) =
L(x + y) = v + 0 we get another solution for free. Now we have two solutions,

is that all?

Hint for Review Problem 2
For the first part, what is the transpose of a 1× 1 matrix? For the other two

parts, note that v v = vT v. Can you express this in terms of ‖v‖? Also you

need the trivial kernel only for the last part and just think about the null

space of M. It might help to substitute w = Mx.
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Action, 389
Angle between vectors, 90
Anti-symmetric matrix, 149

Back substitution, 160
Base field, 107
Basis, 213

concept of, 195
example of, 209

basis, 117, 118
Bit matrices, 154
Bit Matrix, 155
Block matrix, 142

Calculus Superhero, 305
Canonical basis, see also Standard ba-

sis, 408
Captain Conundrum, 97, 305
Cauchy–Schwarz inequality, 92
Change of basis, 242
Change of basis matrix, 243
Characteristic polynomial, 185, 232,

234
Closure, 197

additive, 101
multiplicative, 102

Codomain, 34, 289
Cofactor, 190
Column Space

concept of, 23, 138
Column space, 295
Column vector, 134

of a vector, 126
Components of a vector, 127
Composition of functions, 26
Conic sections, 347
Conjugation, 247
Cramer’s rule, 192
Cross product, 31

Determinant, 172
2× 2 matrix, 170
3× 3 matrix, 170

Diagonal matrix, 138
Diagonalizable, 242
Diagonalization, 241

concept of, 230
Dimension, 213
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concept of, 117
notion of, 195

Dimension formula, 295
Direct sum, 268
Domain, 34, 289
Dot product, 89
Dual vector space, 359
Dyad, 255

Eigenspace, 237
Eigenvalue, 230, 233

multiplicity of, 234
Eigenvector, 230, 233
Einstein, Albert, 68
Elementary matrix, 174

swapping rows, 175
Elite NASA engineers, 344
Equivalence relation, 250
EROs, 42
Euclidean length, 88
Even permutation, 171
Expansion by minors, 186

Fibonacci numbers, 364
Field, 317
Forward substitution, 160
free variables, 46
Fundamental theorem of algebra, 234
Fundamental Theorem of Linear Al-

gebra, 299

Galois, 108
Gaussian elimination, 39
Golden ratio, 349
Goofing up, 153
Gram–Schmidt orthogonalization pro-

cedure, 264
Graph theory, 135

homogeneous equation, 67
Homogeneous solution

an example, 67
Homomorphism, 111
Hyperplane, 65, 86

Identity matrix, 139
2× 2, 41

Inner product, 91, 254
Invariant direction, 229
Inverse Matrix, 55
Invertible, 150
invertiblech3, 55
Involution, 134, 272

Jordan cell, 250, 411

Kernel, 292
Kindergarten, 90
Kirchoff’s laws, 342
Kronecker delta, 254

Law of Cosines, 88
Least squares, 303

solutions, 304
Left singular vectors, 311
Length of a vector, 90
Linear combination, 20, 205, 237
Linear dependence theorem, 205
Linear independence

concept of, 195
Linear Map, 111
Linear Operator, 111
linear programming, 71
Linear System

concept of, 21
Linear Transformation, 111

concept of, 23
Linearly dependent, 204
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Linearly independent, 204
lower triangular, 58
Lower triangular matrix, 159
Lower unit triangular matrix, 162
LU decomposition, 159

Magnitude, see also Length of a vec-
tor

Matrix, 133
diagonal of, 138
entries of, 134

Matrix equation, 25
Matrix exponential, 144
Matrix multiplication, 25, 33
Matrix of a linear transformation, 218
Minimal spanning set, 209
Minor, 186
Multiplicative function, 186

Newton’s Principiæ, 346
Non-invertible, 150
Non-pivot variables, 46
Nonsingular, 150
Norm, see also Length of a vector
Nullity, 295

Odd permutation, 171
Orthogonal, 90, 254
Orthogonal basis, 255
Orthogonal complement, 269
Orthogonal decomposition, 262
Orthogonal matrix, 260
Orthonormal basis, 255
Outer product, 254

Parallelepiped, 192
Particular solution

an example, 67
Pauli Matrices, 126

Permutation, 170
Permutation matrices, 249
“Perp”, 270
Pivot variables, 46
Pre-image, 288
Projection, 239

QR decomposition, 265
Queen Quandary, 348

Random, 301
Rank, 295

column rank, 297
row rank, 297

Recursion relation, 349
Reduced row echelon form, 43
Right singular vector, 310
Row echelon form, 50
Row Space, 138
Row vector, 134

Scalar multiplication
n-vectors, 84

Sign function, 171
Similar matrices, 247
singular, 150
Singular values, 284
Skew-symmetric matrix, see Anti-symmetric

matrix
Solution set, 65

set notation, 66
Span, 198
Square matrices, 143
Square matrix, 138
Standard basis, 217, 220

for R2, 122
Subspace, 195

notion of, 195
Subspace theorem, 196
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Sum of vectors spaces, 267
Symmetric matrix, 139, 277

Target, see Codomain
Target Space, see also Codomain
Trace, 145
Transpose, 139

of a column vector, 134
Triangle inequality, 93

Upper triangular matrix, 58, 159

Vandermonde determinant, 344
Vector addition

n-vectors, 84
Vector space, 101

finite dimensional, 213

Wave equation, 226

Zero vector, 14
n-vectors, 84
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