
www.dbooks.org

https://www.dbooks.org/

Building iPhone Apps with HTML, CSS, and
JavaScript

www.dbooks.org

https://www.dbooks.org/

Building iPhone Apps with HTML,
CSS, and JavaScript

Jonathan Stark

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.dbooks.org

https://www.dbooks.org/

Building iPhone Apps with HTML, CSS, and JavaScript
by Jonathan Stark

Copyright © 2010 Jonathan Stark. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Brian Jepson
Production Editor: Sumita Mukherji
Copyeditor: Emily Quill
Proofreader: Sada Preisch

Indexer: Fred Brown
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
January 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Building iPhone Apps with HTML, CSS, and JavaScript, the image of a bluebird, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
United States License.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-80578-4

[M]

1262957633

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

To Erica—and that little jumping bean in her
tummy.

www.dbooks.org

https://www.dbooks.org/

Table of Contents

Preface . xi

1. Getting Started . 1
Web Apps Versus Native Apps 1

What Is a Web App? 1
What Is a Native App? 1
Pros and Cons 2
Which Approach Is Right for You? 2

Web Programming Crash Course 3
Intro to HTML 3
Intro to CSS 6
Intro to JavaScript 9

2. Basic iPhone Styling . 13
First Steps 14

Preparing a Separate iPhone Stylesheet 16
Controlling the Page Scaling 17

Adding the iPhone CSS 19
Adding the iPhone Look and Feel 21
Adding Basic Behavior with jQuery 23
What You’ve Learned 28

3. Advanced iPhone Styling . 29
Adding a Touch of Ajax 29
Traffic Cop 29
Simple Bells and Whistles 34
Roll Your Own Back Button 40
Adding an Icon to the Home Screen 46
Full Screen Mode 48

Changing the Status Bar 48
Providing a Custom Startup Graphic 49

vii

www.dbooks.org

https://www.dbooks.org/

What You’ve Learned 50

4. Animation . 51
With a Little Help from Our Friend 51
Sliding Home 51
Adding the Dates Panel 55
Adding the Date Panel 56
Adding the New Entry Panel 58
Adding the Settings Panel 60
Putting It All Together 62
Customizing jQTouch 64
What You’ve Learned 67

5. Client-Side Data Storage . 69
localStorage and sessionStorage 69

Saving User Settings to localStorage 70
Saving the Selected Date to sessionStorage 73

Client-Side Database 74
Creating a Database 75
Inserting Rows 78
Selecting Rows and Handling Result Sets 82
Deleting Rows 86

What You’ve Learned 89

6. Going Offline . 91
The Basics of the Offline Application Cache 91
Online Whitelist and Fallback Options 94
Creating a Dynamic Manifest File 98
Debugging 102

The JavaScript Console 103
The Application Cache Database 107

What You’ve Learned 113

7. Going Native . 115
Intro to PhoneGap 115

Using the Screen’s Full Height 121
Customizing the Title and Icon 123
Creating a Startup Screen 130

Installing Your App on the iPhone 131
Controlling the iPhone with JavaScript 136

Beep, Vibrate, and Alert 136
Geolocation 140
Accelerometer 146

viii | Table of Contents

What You’ve Learned 150

8. Submitting Your App to iTunes . 151
Creating an iPhone Distribution Provisioning Profile 151
Installing the iPhone Distribution Provisioning Profile 153
Renaming the Project 155
Prepare the Application Binary 156
Submit Your App 157
While You Wait 159
Further Reading 159

Index . 161

Table of Contents | ix

www.dbooks.org

https://www.dbooks.org/

Preface

Like millions of people, I fell in love with my iPhone immediately. Initially, web apps
were the only way to get a custom app on the device, which was fine by me because
I’m a web developer. Months later when the App Store was announced, I was jacked.
I ran out and bought every Objective-C book on the market. Some of my web apps
were already somewhat popular, and I figured I’d just rewrite them as native apps, put
them in the App Store, and ride off into the sunset on a big, galloping pile of money.

Disillusionment followed. I found it difficult to learn Objective-C, and I was turned off
by the fact that the language was of little use outside of Mac programming. Xcode and
Interface Builder were pretty slick, but they weren’t my normal authoring environment
and I found them hard to get accustomed to. I was infuriated by the hoops I had to
jump through just to set up my app and iPhone for testing. The process of getting the
app into the App Store was even more byzantine. After a week or two of struggling with
these variables, I found myself wondering why I was going to all the trouble. After all,
my web apps were already available worldwide—why did I care about being in the App
Store?

On top of all this, Apple can—and does—reject apps. This is certainly their prerogative,
and maybe they have good reasons. However, from the outside, it seems capricious and
arbitrary. Put yourself in these shoes (based on a true story, BTW): you spend about
100 hours learning Objective-C. You spend another 100 hours or so writing a native
iPhone app. Eventually, your app is ready for prime time and you successfully navigate
the gauntlet that is the App Store submission process. What happens next?

You wait. And wait. And wait some more. We are talking weeks, and sometimes
months. Finally you hear back! And...your app is rejected. Now what? You have noth-
ing to show for your effort. The bubble.

But wait, it can get worse. Let’s say you do get your app approved. Hundreds or maybe
thousands of people download your app. You haven’t received any money yet, but you
are on cloud nine. Then, the bug reports start coming in. You locate and fix the bug in
minutes, resubmit your app to iTunes, and wait for Apple to approve the revision. And
wait. And wait some more. Angry customers are giving you horrible reviews in the App
Store. Your sales are tanking. And still you wait. You consider offering a refund to the

xi

www.dbooks.org

https://www.dbooks.org/

angry customers, but there’s no way to do that through the App Store. So you are
basically forced to sit there watching your ratings crash even though the bug was fixed
days or weeks ago.

Sure, this story is based on the experience of one developer. Maybe it’s an edge case
and the actual data doesn’t bear out my thesis. But the problem remains: we developers
have no access to Apple’s data, or the real details of the App Store approval process.
Until that changes, building a native app with Objective-C is a risky proposition.

Fortunately, there is an alternative. You can build a web app using open source,
standards-based web technologies, release it as a web app, and debug and test it under
load with real users. Once you are ready to rock, you can use PhoneGap to convert
your web app to a native iPhone app and submit it to the App Store. If it’s ultimately
rejected, you aren’t dead in your tracks because you can still offer the web app. If it’s
approved, great! You can then start adding features that enhance your web app by
taking advantage of the unique hardware features available on the device. Sounds like
the best of both worlds, right?

Who Should Read This Book
I’m going to assume that you have some basic experience reading and writing HTML,
CSS, and JavaScript (jQuery in particular). I will be including some basic SQL code in
Chapters 5 and 6, so a passing familiarity with SQL syntax would be helpful but is not
required.

What You Need to Use This Book
This book is going to avoid the iPhone SDK wherever possible. All you’ll need to follow
along with the vast majority of examples is a text editor and the most recent version of
Safari (or better yet, WebKit, which is a more cutting-edge version of Safari that’s
available for both Mac and Windows at http://webkit.org). You do need a Mac for the
PhoneGap material in Chapter 7, where I explain how to convert your web app into a
native app that you can submit to the App Store.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

xii | Preface

http://webkit.org

Constant width bold
Shows commands or other text that should be typed literally by the user and for
emphasis within code listings.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Building iPhone Apps with
HTML, CSS, and JavaScript by Jonathan Stark. Copyright 2010 Jonathan Stark,
978-0-596-80578-4.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post

Preface | xiii

www.dbooks.org

mailto:permissions@oreilly.com
https://www.dbooks.org/

feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596805784/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments
Writing a book is a team effort. My heartfelt thanks go out to the following people for
their generous contributions.

Tim O’Reilly, Brian Jepson, and the rest of the gang at ORM for making the experience
of writing this book so rewarding and educational.

Jack Templin, Providence Geeks, and RI Nexus for introducing me to the thriving tech
scene in my own hometown. This book wouldn’t exist if it weren’t for Providence
Geeks.

David Kandeda for his wonderfully obsessive pursuit of beauty. Whether it’s a bit of
code, or a user interface animation, he can’t sleep until it’s perfect, and I love that.

Brian LeRoux, Brock Whitten, Rob Ellis, and the rest of the gang at Nitobi for creating
and continuing to support PhoneGap.

xiv | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9780596805784/
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Brian Fling for broadening my view of mobile beyond just the latest and greatest hard-
ware. Brian knows mobile from back in the day; he’s a wonderful writer, and on top
of that, a very generous guy.

PPK, John Gruber, John Allsopp, and John Resig for their contributions to and support
of the underlying technologies that made this book possible.

Garrett Murray, Brian LeRoux, and the swarm of folks who generously posted com-
ments and questions on the OFPS site for this book. Your feedback was very helpful
and much appreciated.

Kazu, Chuckie, Janice, Chris, and the rest of the gang at Haruki for being so accom-
modating while I endlessly typed away at the high top by the door.

My wonderful family, friends, and clients for being understanding and supportive while
I was chained to the keyboard.

And finally, Erica. You make everything possible. I love you!

Preface | xv

www.dbooks.org

https://www.dbooks.org/

CHAPTER 1

Getting Started

Before we dive in and start building applications for the iPhone, I’d like to quickly
establish the playing field. In this chapter, I’ll define key terms, compare the pros and
cons of the two most common development approaches, and present a crash course in
the three core web technologies that are used in this book.

Web Apps Versus Native Apps
First, I’ll define what I mean by “web app” and “native app” and consider the pros and
cons of each.

What Is a Web App?
To me, a web app is basically a website that is specifically optimized for the iPhone.
The site can be anything from a standard small-business brochure site to a mortgage
calculator to a daily calorie tracker—the content is irrelevant. The defining character-
istics of a web app are that the user interface is built with web-standard technologies,
it is available at a URL (public, private, or behind a login), and it is optimized for the
specifics of the iPhone. A web app is not installed on the phone, is not available in the
iTunes App Store, and is not written with Objective-C.

What Is a Native App?
In contrast, native apps are installed on the iPhone, have access to the hardware (speak-
ers, accelerometer, camera, etc.), and are written with Objective-C. The defining char-
acteristic of a native app, however, is that it’s available in the iTunes App Store—a
feature that has captured the imagination of hordes of software entrepreneurs world-
wide, myself included.

1

www.dbooks.org

https://www.dbooks.org/

Pros and Cons
Different applications have different requirements. Some apps are a better fit with web
technologies than others. Knowing the pros and cons of each approach will help you
make the right decision about which path is appropriate for your situation.

Here are the pros of native app development:

• Millions of registered credit card owners are one click away.

• Xcode, Interface Builder, and the Cocoa Touch framework constitute a pretty
sweet development environment.

• You can access all the cool hardware features of the device.

Here are the cons of native app development:

• You have to pay to become an Apple developer.

• You are at the mercy of the Apple approval process.

• You have to develop using Objective-C.

• You have to develop on a Mac.

• You can’t release bug fixes in a timely fashion.

• The development cycle is slow, and the testing cycle is constrained by the App
Store’s limitations.

Here are the pros of web app development:

• Web developers can use their current authoring tools.

• You can use your current web design and development skills.

• You are not limited to developing on the Mac OS.

• Your app will run on any device that has a web browser.

• You can fix bugs in real time.

• The development cycle is fast.

Here are the cons of web app development:

• You cannot access the all cool hardware features of the phone.

• You have to roll your own payment system if you want to charge for the app.

• It can be difficult to achieve sophisticated UI effects.

Which Approach Is Right for You?
Here’s where it gets exciting. The always-online nature of the iPhone creates an envi-
ronment in which the lines between a web app and a native app get blurry. There are
even some little-known features of the iPhone that allow you to take a web app offline
if you want (see Chapter 6). What’s more, several third-party projects—of which

2 | Chapter 1: Getting Started

v@v
Text Box
Download at WoweBook.com

PhoneGap is the most notable—are actively developing solutions that allow web de-
velopers to take a web app and package it as a native app for the iPhone and other
mobile platforms.

For me, this is the perfect blend. I can write in my native language, release a product
as a pure web app (for the iPhone and any other devices that have a modern browser)
without going through Apple’s approval process, and use the same codebase to create
an enhanced native version that can access the device hardware and potentially be sold
in the App Store. And if Apple rejects it? No big deal, because I still have my online
version. I can keep working on the native version while customers use the web app.

Web Programming Crash Course
The three main technologies we are going to use to build web apps are HTML, CSS,
and JavaScript. I’d like to quickly cover each to make sure we’re all on the same page
before plowing into the fancy stuff.

Intro to HTML
When you’re browsing the Web, the pages that you are viewing are just text documents
sitting on someone else’s computer. The text in a typical web page is wrapped in HTML
tags, which tell your browser about the structure of the document. With this informa-
tion, the browser can decide how to display the information in a way that makes sense.

Consider the web page snippet shown in Example 1-1. On the first line, the string Hi
there! is wrapped in a pair of h1 tags. (Notice that the open tag and the close tag are
slightly different: the close tag has a slash as the second character, while the open tag
does not.)

Wrapping some text in h1 tags tells the browser that the words enclosed are a heading,
which will cause it to be displayed in large bold text on its own line. There are also
h2, h3, h4, h5, and h6 heading tags. The lower the number, the more important the
header, so text wrapped in an h6 tag will be smaller (i.e., less important-looking) than
text wrapped in an h3 tag.

After the h1 tag in Example 1-1 are two lines wrapped in p tags. These are called para-
graph tags. Browsers will display each paragraph on its own line. If the paragraph is
long enough to exceed the width of the browser window, the text will bump down and
continue on the next line. In either case, a blank line will be inserted after the paragraph
to separate it from the next item on the page.

Example 1-1. HTML snippet

<h1>Hi there!</h1>
<p>Thanks for visiting my web page.</p>
<p>I hope you like it.</p>

Web Programming Crash Course | 3

www.dbooks.org

https://www.dbooks.org/

You can also put HTML tags inside of other HTML tags. Example 1-2 shows an un-
ordered list (ul) tag that contains three list items (li). In a browser, this would show
up as a bulleted list, with each item on its own line. When you have a tag or tags inside
of another tag, the inner tags are called child elements, or children, of the parent tag.
So in this example, the lis are children of the ul parent.

Example 1-2. Unordered list

 Pizza
 Beer
 Dogs

The tags I’ve covered so far are all block tags. The defining characteristic of a block tag
is that it is displayed on a line of its own, with no elements to its left or right. That is
why headings, paragraphs, and list items progress down the page instead of across it.
The opposite of a block tag is an inline tag, which, as the name implies, can appear in
a line. The emphasis tag (em) is an example of an inline tag, and it looks like this:

<p>I really hope you like it.</p>

The granddaddy of the inline tags—and arguably the coolest feature of HTML—is the
a tag. The a stands for anchor, but I’ll also refer to the tag as a link or hyperlink. Text
wrapped in an anchor tag becomes clickable, such that clicking on it causes your
browser to load a new HTML page.

In order to tell the browser what new page to load, we have to add what’s called an
attribute to the tag. Attributes are named values that are inserted into an open tag. In
an anchor tag, you use the href attribute to specify the location of the target page. Here’s
a link to Google’s home page:

Google

That might look like a bit of a jumble if you are not used to reading HTML, but you
should be able to pick out the URL for the Google home page. You’ll be seeing a lot of
a tags and hrefs throughout the book, so take a minute to get your head around this if
it doesn’t make sense at first glance.

There are a couple of things to keep in mind regarding attributes. Dif-
ferent HTML tags allow different attributes. You can add multiple at-
tributes to an open tag by separating them with spaces. You never add
attributes to a closing tag. There are hundreds of possible combinations
of attributes and tags, but don’t sweat it. We only have to worry about
a dozen or so in this book.

4 | Chapter 1: Getting Started

The HTML snippet that we’ve been looking at would normally reside in the body section
of a complete HTML document. An HTML document is made up of two sections: the
head and the body. The body is where you put all the content that you want users to
see. The head contains information about the page, most of which is invisible to the
user.

The body and head are always wrapped in an html element. Example 1-3 shows the
snippet in the context of a proper HTML document. For now the head section contains
a title element, which tells the browser what text to display in the title bar of the
window.

Example 1-3. A proper HTML document

<html>
 <head>
 <title>My Awesome Page</title>
 </head>
 <body>
 <h1>Hi there!</h1>
 <p>Thanks for visiting my web page.</p>
 <p>I hope you like it.</p>

 Pizza
 Beer
 Dogs

 </body>
</html>

Normally, when you are using your web browser you are viewing pages that are hosted
on the Internet. However, browsers are perfectly good at displaying HTML documents
that are on your local machine as well. To see what I mean, crack open a text editor
and type up Example 1-3. When you are done, save it to your desktop as test.html and
then open it with Safari by either dragging the file onto the Safari application icon or
opening Safari and selecting File→Open File. Double-clicking test.html might work as
well, but it could open in your text editor or another browser depending on your
settings.

Even if you aren’t running Mac OS X, you should use Safari when testing
your iPhone web apps on a desktop web browser, because Safari is the
closest desktop browser to the iPhone’s Mobile Safari. Safari for Win-
dows is available from http://www.apple.com/safari/.

Web Programming Crash Course | 5

www.dbooks.org

http://www.apple.com/safari/
https://www.dbooks.org/

Some text editors are bad for authoring HTML. In particular, you want
to avoid editors that support rich text editing, like Microsoft Word or
TextEdit. These types of editors can save their files in formats other than
plain text, which will break your HTML. If you are in the market for a
good text editor, my favorite by far on the Mac is TextMate (http://
macromates.com/), and I hear that there is a clone version for Windows
called E Text Editor (http://www.e-texteditor.com/). If free is your thing,
you can download Text Wrangler for Mac (http://www.barebones.com/
products/TextWrangler/) or use the built-in Notepad on Windows.

Intro to CSS
As you’ve seen, browsers render certain HTML elements with distinct styles (headings
are large and bold, paragraphs are followed by a blank line, etc.). These styles are very
basic and are primarily intended to help the reader understand the structure and mean-
ing of the document.

To go beyond this simple structure-based rendering, you can use Cascading Style Sheets
(CSS). CSS is a stylesheet language that is used to define the visual presentation of an
HTML document. You can use CSS to define simple things like the text color, size, and
style (bold, italic, etc.), or complex things like page layout, gradients, opacity, and much
more.

Example 1-4 shows a CSS rule that instructs the browser to display any text in the body
element using the color red. In this example, body is the selector (what is affected by the
rule) and the curly braces enclose the declaration (the rule itself). The declaration in-
cludes a set of properties and their values. In this example, color is the property, and
red is the value of the property.

Example 1-4. A simple CSS rule

body { color: red; }

Property names are predefined in the CSS specification, which means that you can’t
just make them up. Each property expects an appropriate value, and there can be lots
of appropriate values and value formats for a given property.

For example, you can specify colors with predefined keywords like red, or by using
HTML color code notation. This uses a hexadecimal notation: three pairs of hexadec-
imal digits (0–F) representing (from left to right) Red, Green, and Blue values. Proper-
ties that expect measurements can accept values like 10px, 75%, and 1em. Example 1-5
shows some common declarations. (The color code shown for background-color cor-
responds to the CSS “gray”.)

Example 1-5. Some common CSS declarations

body {
 color: red;
 background-color: #808080;

6 | Chapter 1: Getting Started

http://macromates.com/
http://macromates.com/
http://www.e-texteditor.com/
http://www.barebones.com/products/TextWrangler/
http://www.barebones.com/products/TextWrangler/

 font-size: 12px;
 font-style: italic;
 font-weight: bold;
 font-family: Arial;
}

Selectors come in a variety of flavors. If you wanted all of your hyperlinks (the a element)
to display in italics, you would add the following to your stylesheet:

a { font-style: italic; }

If you wanted to be more specific and only italicize the hyperlinks that were contained
somewhere within an h1 tag, you would add the following to your stylesheet:

h1 a { font-style: italic; }

You can also define your own custom selectors by adding id and/or class attributes to
your HTML tags. Consider the following HTML snippet:

<h1 class="loud">Hi there!</h1>
<p id="highlight">Thanks for visiting my web page.</p>
<p>I hope you like it.</p>

 <li class="loud">Pizza
 Beer
 Dogs

If I added .loud { font-style: italic; } to the CSS for this HTML, Hi there! and
Pizza would show up italicized because they both have the loud class. The dot in front
of the .loud selector is important. It’s how the CSS knows to look for HTML tags with
a class of loud. If you omit the dot, the CSS would look for a loud tag, which doesn’t
exist in this snippet (or in HTML at all, for that matter).

Applying CSS by id is similar. To add a yellow background fill to the highlight para-
graph tag, you’d use this rule:

#highlight { background-color: yellow; }

Here, the # symbol tells the CSS to look for an HTML tag with the id highlight.

To recap, you can opt to select elements by tag name (e.g., body, h1, p), by class name
(e.g., .loud, .subtle, .error), or by id (e.g., #highlight, #login, #promo). And you can
get more specific by chaining selectors together (e.g., h1 a, body ul .loud).

There are differences between class and id. class attributes should be
used when you have more than one item on the page with the same
class value. Conversely, id values have to be unique to a page.

When I first learned this, I figured I’d just always use class attributes
so I wouldn’t have to worry about whether I was duping an id value.
However, selecting elements by id is much faster than selecting them
by class, so you can hurt your performance by overusing class selectors.

Web Programming Crash Course | 7

www.dbooks.org

https://www.dbooks.org/

So now you understand the basics of CSS. But how do you apply a style sheet to an
HTML page? It’s actually quite simple. You just link to the stylesheet in the head of the
HTML document, as seen in Example 1-6. The href attribute in this example is a relative
path, meaning that it points to a text file named screen.css in the same directory as the
HTML page. You can also specify absolute links, such as:

http://example.com/screen.css

Example 1-6. Linking to a CSS stylesheet

<html>
 <head>
 <title>My Awesome Page</title>
 <link rel="stylesheet" href="screen.css" type="text/css" />
 </head>
 <body>
 <h1 class="loud">Hi there!</h1>
 <p id="highlight">Thanks for visiting my web page.</p>
 <p>I hope you like it.</p>

 <li class="loud">Pizza
 Beer
 Dogs

 </body>
</html>

Example 1-7 shows the contents of screen.css. You should save this file in the same
location as the HTML file.

Example 1-7. A simple stylesheet

body {
 font-size: 12px;
 font-weight: bold;
 font-family: Arial;
}

a { font-style: italic; }
h1 a { font-style: italic; }

.loud { font-style: italic; }
#highlight { background-color: yellow; }

It’s worth pointing out that it’s possible to link to stylesheets that are
hosted on domains other than the one hosting the HTML document.
However, it’s considered very rude to link to someone else’s stylesheets
without permission, so please only link to your own.

For a quick and thorough crash course in CSS, I highly recommend CSS Pocket
Reference by Eric Meyer (O’Reilly). Eric has the last word when it comes to CSS, and
this particular book is short enough to read during the typical morning carpool. Unless

8 | Chapter 1: Getting Started

http://oreilly.com/catalog/9780596515058/
http://oreilly.com/catalog/9780596515058/

you are the person driving, in which case it could take considerably longer (did I say
“crash” course?).

Intro to JavaScript
At this point you should know how to structure a document with HTML and how to
modify its visual presentation with CSS. Now we’ll add some JavaScript to make it do
stuff.

JavaScript is a scripting language that can be added to an HTML page to make it more
interactive and convenient for the user. For example, you can write some JavaScript
that will inspect the values typed in a form to make sure they are valid. Or you can have
JavaScript show or hide elements of a page depending on where the user clicks.
JavaScript can even contact the web server to execute database changes without re-
freshing the current web page.

Like any modern scripting language, JavaScript has variables, arrays, objects, and all
the typical control structures (if, while, for, and so on). Example 1-8 shows a snippet
of JavaScript that illustrates several core concepts of the language.

Example 1-8. Basic JavaScript syntax

var foods = ['Apples', 'Bananas', 'Oranges'];
for (var i in foods) {
 if (foods[i] == 'Apples') {
 alert(foods[i] + ' are my favorite!');
 } else {
 alert(foods[i] + ' are okay.');
 }
}

Here’s an explanation of what’s happening here:

Define an array named foods that contains three elements.

Open a for loop that defines a variable named i that will contain the index of each
element of the array during the loop.

A garden-variety if checks to see if the current element of the array is equal to Apples.

This is displayed if the current element of the array is equal to Apples.

This is displayed if the current element of the array is not equal to Apples.

Here are some points about JavaScript’s syntax that are worth noting:

• Statements are terminated with semicolons.

• Code blocks are enclosed in curly braces.

• Variables are declared using the var keyword.

• Array elements can be accessed with square bracket notation.

Web Programming Crash Course | 9

www.dbooks.org

https://www.dbooks.org/

• Array keys are assigned beginning at 0.

• The single equals sign is the assignment operator.

• The double equals sign is the equivalence logical operator.

• The plus sign is the string concatenation operator.

For our purposes, the most important feature of JavaScript is that it can interact with
the elements of an HTML page (the cool kids call this “manipulating the DOM”).
Example 1-9 shows a simple bit of JavaScript that changes some text on the page when
the user clicks on the h1.

DOM stands for Document Object Model, and in this context it repre-
sents the browser’s understanding of an HTML page. You can read more
about the Document Object Model here: http://en.wikipedia.org/wiki/
Document_Object_Model.

Example 1-9. Simple OnClick handler

<html>
 <head>
 <title>My Awesome Page</title>
 <script type="text/javascript" charset="utf-8">
 function sayHello() {
 document.getElementById('foo').innerHTML = 'Hi there!';
 }
 </script>
 </head>
 <body>
 <h1 id="foo" onclick ="sayHello()">Click me!</h1>
 </body>
</html>

Here’s an explanation:

I’ve added a script block to the head of the HTML document.

Inside the script block, I’ve defined a single JavaScript function named sayHello().

The sayHello() function contains a single statement, which tells the browser to “look
through the document for an element that has the id ‘foo’, and set its innerHTML
contents to ‘Hi there!.’” The effect of this in the browser is that the text “Click me!”
will be replaced with “Hi there!” when the user clicks on the h1 element.

End of the sayHello() function.

End of the script block.

The onclick attribute of the h1 element tells the browser to do something when the
user clicks on the h1, namely, to run the sayHello() function.

10 | Chapter 1: Getting Started

http://en.wikipedia.org/wiki/Document_Object_Model
http://en.wikipedia.org/wiki/Document_Object_Model

Back in the bad old days of web development, different browsers had different support
for JavaScript. This meant that your code might run in Safari 2 but not in Internet
Explorer 6. You had to take great pains to test each browser (and even different versions
of the same browser) in order to make sure your code would work for everyone. As the
number of browsers and browser versions grew, it became impossible to test and main-
tain your JavaScript code for every environment. At that time, web programming with
JavaScript was hell.

Enter jQuery. jQuery is a relatively small JavaScript library that allows you to write
your JavaScript code in a way that will work the same in a wide variety of browsers.
What’s more, it greatly simplifies a number of common web development tasks. For
these reasons, I use jQuery in most of my web development work, and I’ll be using it
for the JavaScript examples in this book. Example 1-10 is a jQuery rewrite of Exam-
ple 1-9.

Example 1-10. jQuery OnClick handler

<html>
 <head>
 <title>My Awesome Page</title>
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript" charset="utf-8">
 function sayHello() {
 $('#foo').text('Hi there!');
 }
 </script>
 </head>
 <body>
 <h1 id="foo" onclick="sayHello()">Click me!</h1>
 </body>
</html>

Here, I include the jquery.js library. I’ve used a relative path, meaning that the file
exists in the same directory as the page that is using it, but I could have included it
directly from a variety of places where it’s available.

Notice the reduction in the amount of code we need to write to replace the text in
the h1 element. This might not seem like a big deal in such a trivial example, but I
can assure you that it’s a lifesaver in complex solutions.

We’ll be seeing plenty of real-world jQuery examples later on, so I’m going to leave it
at that for the moment.

jQuery downloads, documentation, and tutorials are available at http:
//jquery.com. To use jQuery, you will need to download it from the
website, rename the file you downloaded (such as jquery-1.3.2.min.js)
to jquery.js, and put a copy of it in the same directory as your HTML
document.

Web Programming Crash Course | 11

www.dbooks.org

http://jquery.com
http://jquery.com
https://www.dbooks.org/

CHAPTER 2

Basic iPhone Styling

Ultimately, we are going to build a native iPhone app using HTML, CSS, and JavaScript.
The first step on this journey is to get comfortable styling HTML to look like an iPhone
app. In this chapter, I’ll show you how to apply CSS styles to a bunch of existing HTML
pages so that they are easily navigable on an iPhone. So, in addition to moving closer
to building a native app, you’ll be learning a practical (and valuable) skill that you can
use immediately.

Don’t Have a Website?
If you’ve been testing all your web pages locally on your personal computer, you won’t
be able to view them on your iPhone without setting up a server. You have a few choices:

• Host your web pages on a web server (your Internet Service Provider likely offers
a complimentary web hosting service) and connect to that server from your iPhone.

• Host your web pages on a web server running on your computer, and connect to
that web server from your iPhone. This only works when your iPhone and your
computer are on the same WiFi network.

• If you don’t have an iPhone, you can simulate one using Safari. In Safari’s advanced
preferences, enable the Develop menu, then select Develop→User Agent and
choose the version of Mobile Safari you want to simulate.

This chapter is set up so that you can try the examples as you read through it. So no
matter which option you choose for viewing the web pages, try reloading them in a
browser (preferably the iPhone browser) each time you add something new, and save
one of the sample files.

13

www.dbooks.org

https://www.dbooks.org/

First Steps
Theory is great, but I’m a “show me, don’t tell me” kinda guy. So let’s dive in.

Imagine that you have a website that you want to iPhone-ize (Figure 2-1). In this sce-
nario, there are a number of easy things you can do to optimize a site for the iPhone.
I’ll go over your options in this chapter.

Figure 2-1. The desktop version of a typical web page looks fine in Safari on a computer

Figure 2-2 shows what the same web page looks like on the iPhone. It’s usable, but far
from optimized for the iPhone.

Figure 2-2. The same web page looks OK on an iPhone, but we can do much better

14 | Chapter 2: Basic iPhone Styling

Example 2-1 shows an abbreviated version of the HTML for the web page shown in
Figure 2-1. This is the HTML you’ll be working with in this chapter. You can download
it from the book’s website (see “How to Contact Us” on page xiv) if you’d like to try
styling it as you go through the chapter. The desktop stylesheet (screen.css) is not
shown, as it is not essential, but you can use the stylesheet from the previous chapter
if you’d like to have something to play with.

Example 2-1. The HTML document we’ll be styling

<html>
<head>
 <link rel="stylesheet" href="screen.css" type="text/css" />
 <title>Jonathan Stark</title>
</head>
<body>
<div id="container">
 <div id="header">
 <h1>Jonathan Stark</h1>
 <div id="utility">

 About
 Blog

 </div>
 <div id="nav">

 Consulting Clinic
 On Call
 Development

 </div>
 </div>
 <div id="content">
 <h2>About</h2>
 <p>Jonathan Stark is a web developer, speaker, and author. His
 consulting firm, Jonathan Stark Consulting, Inc., has attracted
 clients such as Staples, Turner Broadcasting, and the PGA Tour.
 ...
 </p>
 </div>
 <div id="sidebar">
 <img alt="Manga Portrait of Jonathan Stark"
 src="images/manga.png"
 <p>Jonathan Stark is a mobile and web application developer who the
 Wall Street Journal has called an expert on publishing desktop
 data to the web.</p>
 </div>
 <div id="footer">

 Services
 About
 Blog

 <p class="subtle">Jonathan Stark Consulting, Inc.</p>

First Steps | 15

www.dbooks.org

https://www.dbooks.org/

 </div>
</div>
</body>
</html>

For years, web developers used tables to lay out elements in a grid. Ad-
vances in CSS and HTML have rendered that approach not only obso-
lete, but undesirable. Today, we primarily use the div element (along
with a variety of attributes) to accomplish the same thing, but with more
control. Although a complete explanation of div-based layouts is well
beyond the scope of this book, you’ll see plenty of examples of it as you
read through the chapters. To learn more, check out Designing with Web
Standards by Jeffrey Zeldman (New Riders Press), which covers the issue
in greater detail.

Preparing a Separate iPhone Stylesheet
I’m as DRY as the next guy, but in the real world you’re better off making a clean break
between your desktop browser stylesheet and your iPhone stylesheet. Take my word
for it and make two completely independent files—you’ll sleep better. The alternative
would be to wedge all of your CSS rules into a single stylesheet, which ends up being
a bad idea for a number of reasons; the most obvious is that you’d be sending a bunch
of irrelevant desktop style rules to the phone, which is a waste of precious bandwidth
and memory.

DRY stands for “Don’t Repeat Yourself,” and is a software development
principle stating that “Every piece of knowledge must have a single,
unambiguous, authoritative representation within a system.” The term
was coined by Andrew Hunt and David Thomas in their book The
Pragmatic Programmer (Addison-Wesley).

To specify a stylesheet for the iPhone, replace the stylesheet link tag in the sample
HTML document with ones that use the following expressions:

<link rel="stylesheet" type="text/css"
 href="iphone.css" media="only screen and (max-width: 480px)" />
<link rel="stylesheet" type="text/css"
 href="desktop.css" media="screen and (min-width: 481px)" />

Here, desktop.css refers to whatever your existing desktop stylesheet is, and
iphone.css is a new file that we’ll be discussing in detail in a bit.

16 | Chapter 2: Basic iPhone Styling

If you’re following along using the sample HTML document shown
earlier, you’ll now need to rename screen.css to desktop.css; however,
since we’re focused on the iPhone stylesheet, you can ignore the desktop
stylesheet completely. If it fails to load, your browser won’t get too
upset.

Regrettably, Internet Explorer will not understand the previous expressions, so we have
to add a conditional comment (shown in bold) that links to an IE-specific version of
the CSS:

<link rel="stylesheet" type="text/css"
 href="iphone.css" media="only screen and (max-width: 480px)" />
<link rel="stylesheet" type="text/css"
 href="desktop.css" media="screen and (min-width: 481px)" />
<!--[if IE]>
<link rel="stylesheet" type="text/css" href="explorer.css" media="all" />
<![endif]-->

So now it’s time to edit the HTML document: delete the existing link to the
screen.css file and replace it with the lines just shown. This way, you will have a clean
slate for the iPhone-specific CSS that I’ll show you in this chapter.

Controlling the Page Scaling
Unless you tell it otherwise, Safari on the iPhone is going to assume that your page is
980px wide (Figure 2-3). In the majority of cases, this works great. However, you are
going to format our content specifically for the smaller dimensions of the iPhone, so
you must let Mobile Safari know about it by adding a viewport meta tag to the head
element of the HTML document:

<meta name="viewport" content="user-scalable=no, width=device-width" />

If you don’t set the viewport width, the page will be zoomed way out when it first loads.

The viewport meta tag will be ignored by browsers other than Mobile
Safari, so you can include it without worrying about the desktop version
of your site.

Merely by suppressing the desktop stylesheet and configuring your viewport, you are
already giving your iPhone users an enhanced experience (Figure 2-4). To really impress
them, let’s start building the iphone.css stylesheet.

First Steps | 17

www.dbooks.org

https://www.dbooks.org/

Figure 2-3. The iPhone assumes a normal web page is 980px wide

Figure 2-4. Setting the viewport to the width of the device makes your pages a lot more readable

18 | Chapter 2: Basic iPhone Styling

Adding the iPhone CSS
There are a number of user interface (UI) conventions that make an iPhone app look
like an iPhone app. In the next section, I’ll add the distinctive title bar, lists with rounded
corners, finger-friendly links that look like glossy buttons, and so on. Using your text
editor, create a file named iphone.css, add the code in Example 2-2, and save the file in
the same directory as your HTML document.

Example 2-2. Setting some general site-wide styles on the HTML body element

body {
 background-color: #ddd; /* Background color */
 color: #222; /* Foreground color used for text */
 font-family: Helvetica;
 font-size: 14px;
 margin: 0; /* Amount of negative space around the outside of the body */
 padding: 0; /* Amount of negative space around the inside of the body */
}

Note that I have set the overall font for the document to Helvetica, which
is the font used by most of the applications on the iPhone. If you are
trying to achieve a professional look, you should probably stick with
Helvetica unless you have a specific reason not to.

Now I’ll attack the header div that contains the main home link (i.e., the logo link) and
the primary and secondary site navigation. The first step is to format the logo link as a
clickable title bar. Add the following to the iphone.css file:

#header h1 {
 margin: 0;
 padding: 0;
}
#header h1 a {
 background-color: #ccc;
 border-bottom: 1px solid #666;
 color: #222;
 display: block;
 font-size: 20px;
 font-weight: bold;
 padding: 10px 0;
 text-align: center;
 text-decoration: none;
}

Adding the iPhone CSS | 19

www.dbooks.org

https://www.dbooks.org/

I’m going to format the primary and secondary navigation ul blocks identically, so I
can just use the generic tag selectors (i.e., #header ul) as opposed to the tag ids (i.e.,
#header ul#utility, #header ul#nav):

#header ul {
 list-style: none;
 margin: 10px;
 padding: 0;
}
#header ul li a {
 background-color: #FFFFFF;
 border: 1px solid #999999;
 color: #222222;
 display: block;
 font-size: 17px;
 font-weight: bold;
 margin-bottom: -1px;
 padding: 12px 10px;
 text-decoration: none;
}

Pretty simple so far, right? With this little bit of CSS, we have already made a big
improvement on the iPhone page design (Figure 2-5). Next, add some padding to the
content and sidebar divs to indent the text from the edge of the screen a bit (Figure 2-6):

#content, #sidebar {
 padding: 10px;
}

Figure 2-5. A little bit of CSS can go a long way toward enhancing the usability of your iPhone app

20 | Chapter 2: Basic iPhone Styling

You might be wondering why I added padding to the content and side-
bar elements instead of setting it globally on the body element itself. The
reason is that it’s very common to have elements that you want to have
displayed edge to edge (as with the header in this example). Because of
this, padding applied to the body or some other global wrapper element
can become more trouble than it’s worth.

The content in the footer of this page is basically a rehash of the navigation element at
the top of the page (the ul element with the id nav), so you can remove the footer from
the iPhone version of the page by setting the display to none:

#footer {
 display: none;
}

Adding the iPhone Look and Feel
Now it’s time to get a little fancier. Starting from the top of the page, add a 1-pixel white
drop shadow to the logo link text, and a CSS gradient to the background:

#header h1 a {
 text-shadow: 0px 1px 0px #fff;
 background-image: -webkit-gradient(linear, left top, left bottom,
 from(#ccc), to(#999));
}

In the text-shadow declaration, the parameters from left to right are horizontal offset,
vertical offset, blur, and color. Most of the time, you’ll be applying the exact values

Figure 2-6. Indenting text from the edges

Adding the iPhone Look and Feel | 21

www.dbooks.org

https://www.dbooks.org/

shown here to your text because that’s what usually looks good on the iPhone, but it
is fun to experiment with text-shadow because it can add a subtle but sophisticated
touch to your design.

The -webkit-gradient line deserves special attention. It’s an instruction to the browser
to generate a gradient image on the fly. Therefore, a CSS gradient can be used anywhere
you would normally specify a url() (e.g., background image, list style image). The
parameters from left to right are as follows: the gradient type (can be linear or radial),
the starting point of the gradient (can be left top, left bottom, right top, or right bottom),
the end point of the gradient, the starting color, and the ending color.

Note that you cannot reverse the horizontal and vertical portions of the
four gradient start and stop point constants (i.e., left top, left bottom,
right top, and right bottom). In other words, top left, bottom left, top
right, and bottom right are invalid values.

The next step is to add the traditional rounded corners to the navigation menus:

#header ul li:first-child a {
 -webkit-border-top-left-radius: 8px;
 -webkit-border-top-right-radius: 8px;
}
#header ul li:last-child a {
 -webkit-border-bottom-left-radius: 8px;
 -webkit-border-bottom-right-radius: 8px;
}

As you can see, I’m using corner-specific versions of the -webkit-border-radius prop-
erty to apply an 8-pixel radius to both the top two corners of the first list item, and the
bottom two corners of the last list item (Figure 2-7).

Figure 2-7. Gradients, text shadows, and rounded corners start to transform your web page into a
native-looking iPhone app

22 | Chapter 2: Basic iPhone Styling

It would be cool if you could just apply the border radius to the enclosing ul, but it
doesn’t work. If you try it, you’ll see that the square corners of the child list items will
overflow the rounded corners of the ul, thereby negating the effect.

Technically, I could achieve the rounded list effect by applying the ra-
dius corners to the ul if I set the background color of the ul to white and
the background of its child elements to transparent. However, when you
click the first or last item in the list, the tap highlight will show up
squared off and it looks terrible. Your best bet is to apply the rounding
to the tags themselves as I’ve demonstrated here.

Adding Basic Behavior with jQuery
One of my favorite things about building web apps for the iPhone is that I can be
reasonably sure that JavaScript is enabled. Regrettably, this is not the situation when
building websites for desktop browsers. My next step is to add some JavaScript to my
page to support some basic dynamic behavior. In particular, I want to allow users to
show and hide the big honking navigation section in the header so that they only see
it when they want to. In order to make this work, I’m going to write some new CSS,
and use some JavaScript to apply the new CSS to the existing HTML.

First, let’s take a look at the new CSS. Step one is to hide the ul elements in the header
so they don’t show up when the user first loads the page. If you are following along at
home, open your iphone.css file and add the following:

#header ul.hide {
 display: none;
}

Next, I’ll define the styles for the button that will show and hide the menu. Note that
the button does not exist in the HTML yet; for your information, the HTML for the
button is going to look like this:

<div class="leftButton" onclick="toggleMenu()">Menu</div>

I’ll describe the button HTML in detail in a moment (“Adding Basic Behavior with
jQuery” on page 25), so don’t bother adding the preceding line of code to your HTML
file yet. The important thing to note is that it’s a div with the class leftButton and it’s
going to be in the header.

Here is the CSS style for the button (you can go ahead and add this to the iphone.css file):

#header div.leftButton {
 position: absolute;
 top: 7px;
 left: 6px;
 height: 30px;
 font-weight: bold;
 text-align: center;
 color: white;

Adding Basic Behavior with jQuery | 23

www.dbooks.org

https://www.dbooks.org/

 text-shadow: rgba(0,0,0,0.6) 0px -1px 0px;
 line-height: 28px;
 border-width: 0 8px 0 8px;
 -webkit-border-image: url(images/button.png) 0 8 0 8;
}

For the graphics used in this chapter, you can download jQTouch from
http://jqtouch.com/ and copy the graphics from the themes/jqt/img di-
rectory. Put these copies into an images subdirectory beneath the direc-
tory that contains your HTML document (you’ll probably need to create
the images directory). We’ll be talking about jQTouch in detail in
Chapter 4.

Taking it from the top, I set the position to absolute to remove the div from the
document flow, which allows me to set its top and left pixel coordinates.

Here, I set the height to 30px so it’s big enough to tap easily.

Next, I style the text bold, white with a slight drop shadow, and centered in the box.

In CSS, the rgb function is an alternative to the familiar hex notation typically used
to specify colors (e.g., #FFFFFF). rgb(255, 255, 255) and rgb(100%, 100%, 100%)
are both the same as #FFFFFF. More recently, the rgba() function has been intro-
duced, which allows you to specify a fourth parameter that defines the alpha value
(i.e., opacity) of the color. The range of allowable values is 0 to 1, where 0 is fully
transparent and 1 is fully opaque; decimal values between 0 and 1 will be rendered
translucent.

The line-height declaration moves the text down vertically in the box so it’s not
flush up against the top border.

The border-width and -webkit-border-image lines require a bit of explanation. These
two properties together allow you to assign portions of a single image to the border
area of an element. This means no more nonsemantic nested divs or slicing images
into topLeftCorner.png, topRightCorner.png, etc. If the box resizes because the text
increases or decreases, the border image will stretch to accommodate it. It’s really a
great thing; having fewer images means less work, less bandwidth, and shorter load
times.

With the border-width line, I’m telling the browser to apply a 0 border to the top,
an 8px border to the right, a 0-width border to the bottom, and an 8px-width border
to the left (i.e., the four parameters start at the top of the box and work their way
around clockwise). Note that I don’t need to specify a color or style for the border.

With the border widths in place, I can apply the border image. The five parameters
from left to right are the url of the image, the top width, the right width, the bottom
width, and the left width (again, clockwise from top). The url can be absolute (http://

24 | Chapter 2: Basic iPhone Styling

http://jqtouch.com/

example.com/myBorderImage.png) or relative. Relative paths are based on the loca-
tion of the stylesheet, not the HTML page that includes the stylesheet.

When I first encountered the border image property, I found it odd
that I had to specify the border widths when I had already done so
with the border-width property. After some painful trial and error, I
discovered that the widths in the border-image property are not bor-
der widths; they are the widths to slice from the image. Taking the
right border as an example, I’m telling the browser to take the left 8
pixels of the image and apply them to the right border, which also
happens to have an 8px width.

It is possible to do something irrational, such as applying the right 4
pixels of an image to a border that is 20px wide. To make this work
properly, you have to use the optional parameters of webkit-border-
image that tell the image what to do with the slice in the available
border space (repeat, stretch, round, etc.). In three years of trying, I
have failed to come up with any sane reason to do this, so I won’t
waste space here describing this confusing and impractical option of
an otherwise killer feature.

OK, time for some JavaScript. In preparation for the JavaScript you’re about to write,
you need to update your HTML document to include jquery.js and iphone.js. Add these
lines to the head section of your HTML document:

<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="iphone.js"></script>

jQuery downloads, documentation, and tutorials are available at http:
//jquery.com. To use jQuery, you will need to download it from the
website, rename the file you downloaded (such as jquery-1.3.2.min.js)
to jquery.js, and put a copy of it in the same directory as your HTML
document.

The primary duty of the JavaScript we need to write is to allow the user to show and
hide the navigation menus. Copy the following JavaScript into a file called iphone.js
and save it in the same folder as the HTML file:

if (window.innerWidth && window.innerWidth <= 480) {
 $(document).ready(function(){
 $('#header ul').addClass('hide');
 $('#header').append('<div class="leftButton"
 onclick="toggleMenu()">Menu</div>');
 });
 function toggleMenu() {
 $('#header ul').toggleClass('hide');
 $('#header .leftButton').toggleClass('pressed');
 }
}

Adding Basic Behavior with jQuery | 25

www.dbooks.org

http://jquery.com
http://jquery.com
https://www.dbooks.org/

The entire page is wrapped in an if statement that checks to make sure the
innerWidth property of the window object exists (it doesn’t exist in some versions of
Internet Explorer) and that the width is less than or equal to 480 (the max width for
the iPhone). By adding this line, we ensure that the code only executes when the
user is browsing the page with an iPhone or some other similarly sized device.

If you are testing your iPhone web pages using the desktop version
of Safari as described in “Don’t Have a Website?” on page 13, the
if statement here will fail if your browser’s window width is too
large. As a workaround, enter the following line of JavaScript into
Safari’s location bar to resize your browser to more iPhone-esque
dimensions:

javascript:window.scrollTo(0,0);resizeTo(320,480);

You can even increase the height measurement to make a tall skinny
view which is sometimes helpful if you are working with a lot of
content (Figure 2-10, shown later).

Here we have the so-called “document ready” function. If you are new to jQuery,
this can be a bit intimidating, and I admit that it took me a while to memorize the
syntax. However, it’s worth taking the time to commit it to memory because you’ll
be using it a lot. The document ready function basically says, “When the document
is ready, run this code.” More on why this is important in a sec.

This is typical jQuery code that begins by selecting the uls in the header and adding
the “hide” CSS class to them. Remember, hide is the selector we used in the previous
CSS. The net effect of executing this line is to “hide” the header ul elements. Take
special note: had we not wrapped this line in the document ready function, it would
have most likely executed before the uls were even finished loading. This means that
the JavaScript would load, this line would fail because the uls wouldn’t exist yet,
the page would continue loading, the uls would appear, and you’d be scratching
your head (or smashing your keyboard) wondering why the JavaScript wasn’t
working.

Here is where I append a button to the header that will allow the user to show and
hide the menu (Figure 2-8). It has a class that corresponds to the CSS we wrote
previously for .leftButton, and it has an onclick handler that calls the function
toggleMenu(), which comes next.

The toggleMenu() function uses jQuery’s toggleClass() function to add or remove
the specified class to the selected object. On this line, I’m toggling the hide class on
the header uls.

Here, I’m toggling the pressed class on the header leftButton.

26 | Chapter 2: Basic iPhone Styling

v@v
Text Box
Download at WoweBook.com

Figure 2-8. The Menu button has been added to the toolbar dynamically using jQuery

We haven’t written the CSS for the pressed class yet, so let’s do so now. Go back to
iphone.css and insert the following:

#header div.pressed {
 -webkit-border-image: url(images/button_clicked.png) 0 8 0 8;
}

As you can see, I’m simply specifying a different image for the button border (it happens
to be slightly darker). This will add a two-state effect to the button that should make
it evident to the user that the button can both show and hide the menu (Figure 2-9).

Figure 2-9. The Menu button displays darker when it has been pressed to display the menu options

Adding Basic Behavior with jQuery | 27

www.dbooks.org

https://www.dbooks.org/

What You’ve Learned
In this chapter, I covered the basics of converting an existing web page to a more iPhone-
friendly format. I even used a bit of dynamic HTML to show and hide the navigation
panels. In the next chapter, I’ll build on these examples while introducing some more
advanced JavaScript concepts—in particular, some yummy Ajax goodness.

Figure 2-10. A tall view of the completed basic iPhone CSS

28 | Chapter 2: Basic iPhone Styling

CHAPTER 3

Advanced iPhone Styling

In our quest to build an iPhone app without Objective-C, we’ve so far learned how to
use CSS to style a collection of HTML pages to look like an iPhone app. In this chapter,
we’ll lay the groundwork to make those same pages behave like an iPhone app. Spe-
cifically, we’ll discuss using Ajax to turn a full website into a single-page app, how to
create a back button with history using JavaScript, and how to take advantage of the
Web Clip icon and full screen mode features of the iPhone to launch your app without
Mobile Safari intruding upon the user experience.

Adding a Touch of Ajax
The term Ajax has become such a buzzword that I’m not even sure I know what it
means anymore. For the purposes of this book, I’m going to use Ajax to refer to the
technique of using JavaScript to send requests to a web server without reloading the
current page (e.g., to retrieve some HTML, submit a form, and so on). This approach
makes for a very smooth user experience, but does require that you reinvent a lot of
wheels.

For example, if you are loading external pages dynamically, the browser will not give
any indication of progress or errors to the users. Furthermore, the back button will not
work as expected unless you take pains to support it. In other words, you have to do a
lot of work to make a sweet Ajax app. Even so, there are some very good reasons to go
to the trouble. In particular, it opens the door to creating iPhone apps that can run full-
screen (“Full Screen Mode” on page 48) and even offline (Chapter 6).

Traffic Cop
For my next series of examples, I’m going to write a single page called iphone.html that
will sit in front of all of the site’s other pages and will handle requests, sort of like a
traffic cop. Here’s how it works. On first load, iphone.html will present the user with
a nicely formatted version of the site navigation. I’ll then use jQuery to “hijack” the

29

www.dbooks.org

https://www.dbooks.org/

onclick actions of the nav links so that when the user clicks on one, the browser page
will not navigate to the target link. Rather, jQuery will load a portion of the HTML
from the remote page and deliver the data to the user by updating the current page. I’ll
start with the most basic functional version of the code and improve it as we go along.

The HTML for the iphone.html wrapper page is extremely simple (see Example 3-1).
In the head section, I set the title and viewport options, and include links to a stylesheet
(iphone.css) and two JavaScript files: jquery.js and a custom JavaScript file named
iphone.js.

For more information on where to get jquery.js and what to do with it,
see “Intro to JavaScript” on page 9.

The body just has two div containers: a header with the initial title in an h1 tag, and an
empty div container, which will end up holding HTML snippets retrieved from other
pages.

Example 3-1. This simple HTML wrapper markup will sit in front of all the site’s other pages

<html>
<head>
 <title>Jonathan Stark</title>
 <meta name="viewport" content="user-scalable=no, width=device-width" />
 <link rel="stylesheet" href="iphone.css" type="text/css" media="screen" />
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript" src="iphone.js"></script>
</head>
<body>
 <div id="header"><h1>Jonathan Stark</h1></div>
 <div id="container"></div>
</body>
</html>

Moving on to the iphone.css file, you can see in Example 3-2 that I’ve reshuffled some
of the properties from previous examples (e.g., some of the #header h1 properties have
been moved up to #header). Overall, though, everything should look familiar (if not,
please review Chapter 2).

Example 3-2. The base CSS for the page is just a slightly reshuffled version of previous examples

body {
 background-color: #ddd;
 color: #222;
 font-family: Helvetica;
 font-size: 14px;
 margin: 0;
 padding: 0;
}
#header {

30 | Chapter 3: Advanced iPhone Styling

 background-color: #ccc;
 background-image: -webkit-gradient(linear, left top, left bottom, from(#ccc), to(#999));
 border-color: #666;
 border-style: solid;
 border-width: 0 0 1px 0;
}
#header h1 {
 color: #222;
 font-size: 20px;
 font-weight: bold;
 margin: 0 auto;
 padding: 10px 0;
 text-align: center;
 text-shadow: 0px 1px 0px #fff;
}
ul {
 list-style: none;
 margin: 10px;
 padding: 0;
}
ul li a {
 background-color: #FFF;
 border: 1px solid #999;
 color: #222;
 display: block;
 font-size: 17px;
 font-weight: bold;
 margin-bottom: -1px;
 padding: 12px 10px;
 text-decoration: none;
}
ul li:first-child a {
 -webkit-border-top-left-radius: 8px;
 -webkit-border-top-right-radius: 8px;
}
ul li:last-child a {
 -webkit-border-bottom-left-radius: 8px;
 -webkit-border-bottom-right-radius: 8px;
}
ul li a:active,ul li a:hover {
 background-color:blue;
 color:white;
}
#content {
 padding: 10px;
 text-shadow: 0px 1px 0px #fff;
}
#content a {
 color: blue;
}

The JavaScript in iphone.js is where all the magic happens in this example. Please refer
to Example 3-3 as I go through it line by line.

Traffic Cop | 31

www.dbooks.org

https://www.dbooks.org/

This JavaScript loads a document called index.html, and will not work
without it. You should reuse the HTML file from Chapter 2, being sure
to save it as index.html in the same directory as the iphone.html you
created earlier in this chapter. However, none of the links in it will work
unless the targets of the links actually exist. You can create these files
yourself or download the example code from the book’s website. Cre-
ating about.html, blog.html, and consulting-clinic.html will give you a
few links to play with. To do so, just duplicate index.html a few times
and change the filename of each copy to match the related link. For
added effect, you can change the content of the h2 tag in each file to
match the filename. For example, the h2 in blog.html would be
<h2>Blog</h2>.

Example 3-3. This bit of JavaScript in iphone.js converts the links on the page to Ajax requests

$(document).ready(function(){
 loadPage();
});
function loadPage(url) {
 if (url == undefined) {
 $('#container').load('index.html #header ul', hijackLinks);
 } else {
 $('#container').load(url + ' #content', hijackLinks);
 }
}
function hijackLinks() {
 $('#container a').click(function(e){
 e.preventDefault();
 loadPage(e.target.href);
 });
}

Here I’m using jQuery’s document ready function to have the browser run the
loadPage() function when the DOM is complete.

The loadPage() function accepts a single parameter called url, and then checks (on
the next line) whether a value has been sent.

If a value is not sent into the function, url will be undefined and this line will execute.
This line and the following are examples of jQuery’s load() function. The load()
function is excellent for adding quick and dirty Ajax functionality to a page. If this
line were translated into English, it would read: “Get all of the ul elements from the
#header element of index.html and insert them into the #container element of the
current page. When you’re done, run the hijackLinks() function.” Note that
index.html refers to the home page of the site. If your home page is named differently,
you’d use that filename here instead.

32 | Chapter 3: Advanced iPhone Styling

http://www.oreilly.com/catalog/9780596805784/

This line is executed if the url parameter has a value. It says, in effect: “Get the
#content element from the url that was passed into the loadPages() function and
insert it into the #container element of the current page. When you’re done, run the
hijackLinks() function.”

Once the load() function has completed, the #container element of the current page
will contain the HTML snippet that was retrieved. Then, load() will run the
hijackLinks() function.

On this line, hijackLinks() finds all of the links that are in the new HTML, and
binds a click handler to them using the lines of code that follow. Click handlers are
automatically passed an event object, which I’m capturing as the function parameter
e. The event object of a clicked link contains the URL of the remote page in
e.target.href.

Normally, a web browser will navigate to a new page when a link is clicked. This
navigation response is called the “default behavior” of the link. Since we are handling
clicks and loading pages manually, we need to prevent this default behavior. On this
line, I’ve done so by calling the built-in preventDefault() method of the event object.
If I had left that line out, the browser would have dutifully left the current page and
navigated to the URL of the clicked link.

When the user clicks, I pass the URL of the remote page to the loadPage() function
and the cycle starts all over again.

One of my favorite things about JavaScript is that you can pass a func-
tion as a parameter to another function. Although this looks weird at
first, it’s extremely powerful and allows you to make your code modular
and reusable. If you’d like to learn more, you should check out
JavaScript: The Good Parts by Douglas Crockford (O’Reilly). In fact, if
you are working with JavaScript, you should check out everything by
Douglas Crockford; you’ll be glad you did.

Click handlers do not run when the page first loads; they run when the user has read
some stuff on the page and decides to click a link. Assigning click handlers is like setting
booby traps; you do some initial setup work for something that may or may not be
triggered later.

It’s worth taking a few minutes to read up on the properties of the event
object that JavaScript creates in response to user actions in the browser.
A good reference is located at http://www.w3schools.com/htmldom/dom
_obj_event.asp.

Traffic Cop | 33

www.dbooks.org

http://oreilly.com/catalog/9780596517748/
http://www.w3schools.com/htmldom/dom_obj_event.asp
http://www.w3schools.com/htmldom/dom_obj_event.asp
https://www.dbooks.org/

Simple Bells and Whistles
With this tiny bit of HTML, CSS, and JavaScript, we have essentially turned an entire
website into a single-page application. However, it still leaves quite a bit to be desired.
Let’s slick things up a bit.

Since we are not allowing the browser to navigate from page to page, the user will not
see any indication of progress while data is loading. We need to provide some feedback
to let users know that something is, in fact, happening. Without this feedback, users
will wonder if they actually clicked the link or missed it, and will often start clicking all
over the place in frustration. This can lead to increased server load and application
instability (i.e., crashing).

If you are testing this web application on a local network, the network
speeds will be so fast you won’t ever see the progress indicator. If you
are using Mac OS X, you can slow all incoming web traffic by typing a
couple of ipfw commands at the terminal. For example, these com-
mands will slow all web traffic to 4 kilobytes per second:

sudo ipfw pipe 1 config bw 4KByte/s
sudo ipfw add 100 pipe 1 tcp from any to me 80

If you are using the Safari desktop browser to view the pages, you’ll need
to use your Mac’s hostname or external IP address in the URL (for ex-
ample, mymac.local rather than localhost). When you’re done testing,
delete the rule with sudo ipfw delete 100 (you can delete all custom
rules with ipfw flush).

Thanks to jQuery, providing this sort of feedback only takes two lines of code. We’ll
just append a loading div to the body when loadPage() starts, and remove the loading
div when hijackLinks() is done. Example 3-4 shows a modified version of Exam-
ple 3-3. The lines you need to add to iphone.js are shown in bold.

Example 3-4. Adding a simple progress indicator to the page

$(document).ready(function(){
 loadPage();
});
function loadPage(url) {
 $('body').append('<div id="progress">Loading...</div>');
 if (url == undefined) {
 $('#container').load('index.html #header ul', hijackLinks);
 } else {
 $('#container').load(url + ' #content', hijackLinks);
 }
}
function hijackLinks() {
 $('#container a').click(function(e){
 e.preventDefault();
 loadPage(e.target.href);

34 | Chapter 3: Advanced iPhone Styling

 });
 $('#progress').remove();
}

See Example 3-5 for the CSS that needs to be added to iphone.css to style the progress
div. The result can be seen in Figure 3-1.

Figure 3-1. Without a progress indicator of some kind, your app will seem unresponsive and your
users will get frustrated

Example 3-5. CSS added to iphone.css used to style the progress indicator

#progress {
 -webkit-border-radius: 10px;
 background-color: rgba(0,0,0,.7);
 color: white;
 font-size: 18px;
 font-weight: bold;
 height: 80px;
 left: 60px;
 line-height: 80px;
 margin: 0 auto;
 position: absolute;
 text-align: center;
 top: 120px;
 width: 200px;
}

My site happens to have a single h2 at the beginning of each page that would make a
nice page title (see Figure 3-2). You can see this in the HTML source shown in Chap-
ter 2. To be more iPhone-esque, I’m going to pull that title out of the content and put
it in the header (see Figure 3-3). Again, jQuery to the rescue: you can just add three

Simple Bells and Whistles | 35

www.dbooks.org

https://www.dbooks.org/

lines to the hijackLinks() function to make it happen. Example 3-6 shows the
hijackLinks function with these changes.

Example 3-6. Using the h2 from the target page as the toolbar title

function hijackLinks() {
 $('#container a').click(function(e){
 e.preventDefault();

Figure 3-2. Before moving the page heading to the toolbar...

Figure 3-3. ...and after moving the page heading to the toolbar

36 | Chapter 3: Advanced iPhone Styling

 loadPage(e.target.href);
 });
 var title = $('h2').html() || 'Hello!';
 $('h1').html(title);
 $('h2').remove();
 $('#progress').remove();
}

Note that I added the title lines before the line that removes the progress
indicator. I like to remove the progress indicator as the very last action
because I think it makes the application feel more responsive.

The double pipe (||) in the first line of inserted code (shown in bold) is the JavaScript
logical operator OR. Translated into English, that line would read: “Set the title variable
to the HTML contents of the h2 element, or to the string ‘Hello!’ if there is no h2
element.” This is important because the first page load won’t contain an h2, as we are
just grabbing the nav uls.

This point probably needs some clarification. When users first load the
iphone.html URL, they are only going to see the overall site navigation
elements, as opposed to any site content. They won’t see any site content
until they tap a link on this initial navigation page.

A few pages on my site have titles that are longer than can fit in the header bar (Fig-
ure 3-4). I could just let the text break onto more than one line, but that would not be
very iPhone-ish. Rather, I’ve updated the #header h1 styles such that long text will be
truncated with a trailing ellipsis (see Figure 3-5 and Example 3-7). This might be my
favorite little-known CSS trick.

Example 3-7. Adding an ellipsis to text that is too long for its container

#header h1 {
 color: #222;
 font-size: 20px;
 font-weight: bold;
 margin: 0 auto;
 padding: 10px 0;
 text-align: center;
 text-shadow: 0px 1px 0px #fff;
 max-width: 160px;
 overflow: hidden;
 white-space: nowrap;
 text-overflow: ellipsis;
}

Simple Bells and Whistles | 37

www.dbooks.org

https://www.dbooks.org/

Here’s the rundown: max-width: 160px instructs the browser not to allow the h1 element
to grow wider than 160px. Then, overflow: hidden instructs the browser to chop off
any content that extends outside of the element borders. Next, white-space: nowrap
prevents the browser from breaking the line into two. Without this line, the h1 would
just get taller to accommodate the text at the defined width. Finally, text-overflow:
ellipsis appends three dots to the end of any chopped-off text to indicate to users that
they are not seeing the entire string.

Figure 3-4. Text wrapping in the toolbar is not very iPhone-ish...

Figure 3-5. ...but we can beautify it with a CSS ellipsis

38 | Chapter 3: Advanced iPhone Styling

Let’s say you have an About page that is longer than the viewable area on the iPhone.
The user visits the page, scrolls down to the bottom, and clicks on a link to your Contact
page. If you have more than a screenful of text on your Contact page, the new data will
appear with the window still scrolled all the way to the bottom.

Technically, this makes sense because we are not actually leaving the current (scrolled)
page, but it’s certainly confusing for the user. To rectify the situation, I have added a
scrollTo() command to the loadPage() function (see Example 3-8).

Now whenever a user clicks a link, the page will first jump to the top. This has the
added benefit of ensuring that the loading graphic is visible if the user clicks a link at
the bottom of a long page.

Example 3-8. It’s a good idea to scroll back to the top when a user navigates to a new page

function loadPage(url) {
 $('body').append('<div id="progress">Loading...</div>');
 scrollTo(0,0);
 if (url == undefined) {
 $('#container').load('index.html #header ul', hijackLinks);
 } else {
 $('#container').load(url + ' #content', hijackLinks);
 }
}

Like most sites, mine has links to external pages (i.e., pages hosted on other domains).
I don’t want to hijack these external links because it wouldn’t make sense to inject their
HTML into my iPhone-specific layout. In Example 3-9, I have added a conditional that
checks the URL for the existence of my domain name. If it’s found, the link is hijacked
and the content is loaded into the current page; that is, Ajax is in effect. If not, the
browser will navigate to the URL normally.

You must change jonathanstark.com to the appropriate domain or host-
name for your website, or the links to pages on your website will no
longer be hijacked.

Example 3-9. You can allow external pages to load normally by checking the domain name of the URL

function hijackLinks() {
 $('#container a').click(function(e){
 var url = e.target.href;
 if (url.match(/jonathanstark.com/)) {
 e.preventDefault();
 loadPage(url);
 }
 });
 var title = $('h2').html() || 'Hello!';
 $('h1').html(title);
 $('h2').remove();
 $('#progress').remove();
}

Simple Bells and Whistles | 39

www.dbooks.org

https://www.dbooks.org/

The url.match function uses a language, regular expressions, that is of-
ten embedded within other programming languages such as JavaScript,
PHP, and Perl. Although this regular expression is simple, more com-
plex expressions can be a bit intimidating, but are well worth becoming
familiar with. My favorite regex page is located at http://www.regular
-expressions.info/javascriptexample.html.

Roll Your Own Back Button
The elephant in the room at this point is that the user has no way to navigate back to
previous pages (remember that we’ve hijacked all the links, so the Safari page history
won’t work). Let’s address that by adding a back button to the top-left corner of the
screen. First, I’ll update the JavaScript, and then I’ll do the CSS.

Adding a standard iPhone-ized back button to the app means keeping track of the user’s
click history. To do this, we’ll have to A) store the URL of the previous page so we
know where to go back to, and B) store the title of the previous page so we know what
label to put on the back button.

Adding this feature touches on most of the JavaScript we’ve written so far in this chap-
ter, so I’ll go over the entire new version of iphone.js line by line (see Example 3-10).
The result will look like Figure 3-6.

Figure 3-6. It wouldn’t be an iPhone app without a glossy, left-arrow back button

Example 3-10. Expanding the existing JavaScript example to include support for a back button

 var hist = [];
 var startUrl = 'index.html';

40 | Chapter 3: Advanced iPhone Styling

http://www.regular-expressions.info/javascriptexample.html
http://www.regular-expressions.info/javascriptexample.html

 $(document).ready(function(){
 loadPage(startUrl);
 });
 function loadPage(url) {
 $('body').append('<div id="progress">Loading...</div>');
 scrollTo(0,0);
 if (url == startUrl) {
 var element = ' #header ul';
 } else {
 var element = ' #content';
 }
 $('#container').load(url + element, function(){
 var title = $('h2').html() || 'Hello!';
 $('h1').html(title);
 $('h2').remove();
 $('.leftButton').remove();
 hist.unshift({'url':url, 'title':title});
 if (hist.length > 1) {
 $('#header').append('<div class="leftButton">'+hist[1].title+'</div>');
 $('#header .leftButton').click(function(){
 var thisPage = hist.shift();
 var previousPage = hist.shift();
 loadPage(previousPage.url);
 });
 }
 $('#container a').click(function(e){
 var url = e.target.href;
 if (url.match(/jonathanstark.com/)) {
 e.preventDefault();
 loadPage(url);
 }
 });
 $('#progress').remove();
 });
}

On this line, I’m initializing a variable named hist as an empty array. Since I’ve
defined it outside of any functions, it exists in the global scope and will be available
everywhere in the page. Note that I didn’t use the full word history as my variable
name because that is a predefined object property in JavaScript and should be
avoided in your own code.

Here I’m defining the relative URL of the remote page to load when the user first
visits iphone.html. You might recall from earlier examples that I just checked for url
== undefined to handle the first page load, but in this example we are going to use
the start page in a few places. Therefore, it makes sense to define it globally.

This line and the next make up the document ready function definition. Note that
unlike previous examples, I’m passing the start page to the loadPage() function.

On to the loadPage() function. This line and the next are verbatim from previous
examples.

Roll Your Own Back Button | 41

www.dbooks.org

https://www.dbooks.org/

This if...else statement determines which elements to load from the remote page.
For example, if we want the start page, we grab the uls from the header; otherwise,
we grab the content div.

On this line, the URL parameter and the appropriate source element are concaten-
ated as the first parameter passed to the load function. As for the second parameter,
I’m passing an anonymous function (an unnamed function that is defined inline)
directly. As we go through the anonymous function, you’ll notice a strong resem-
blance to the hijackLinks() function, which this anonymous function has replaced.
For example, the following three lines are identical to previous examples.

On this line, I’m removing the .leftButton object from the page. (This might seem
weird because I haven’t yet added it to the page; we’ll be adding it a couple steps
down.)

Here I’m using the built-in unshift method of the JavaScript array to add an object
to the beginning of the hist array. The object I’m adding has two properties, url
and title, which are the two pieces of information we need to support the back
button display and behavior.

On this line, I’m using the built-in length method of the JavaScript array to find out
how many objects are in the history array. If there is only one object in the history
array, it means that the user is on the first page, and therefore we don’t need to
display a back button. However, if there is more than one object in the hist array,
we need to add a button to the header.

Next, I’m adding that .leftButton I mentioned earlier. The text of the button will
be the same as the title of the page before the current page, which is what I’m ac-
cessing with the hist[1].title code. JavaScript arrays are zero-based, so the first
item in the array (the current page) has an index of 0. In other words, index 0 is the
current page, index 1 is the previous page, index 2 is the page before that, and so on.

In this block of code, I’m binding an anonymous function to the click handler of the
back button. Remember, click handler code executes when the user clicks, not when
the page loads. So, after the page loads and the user clicks to go back, the code inside
this function will run.

This line and the next use the built-in shift method of the array to remove the first
two items from the hist array, and the last line in the function sends the URL of the
previous page to the loadPage() function.

The remaining lines were copied exactly from previous examples, so I won’t rehash
them here.

This is the URL matching code introduced earlier in this chapter. Remember to
replace jonathanstark.com with part of your website’s domain or hostname, or none
of the local links will be hijacked and loaded into the page.

42 | Chapter 3: Advanced iPhone Styling

Please visit http://www.hunlock.com/blogs/Mastering_Javascript_Ar
rays for a full listing of JavaScript array functions with descriptions and
examples.

Now that we have our back button, all that remains is to purty it up with some CSS
(see Example 3-11). I start off by styling the text with font-weight, text-align, line-
height, color, and text-shadow. I continue by placing the div precisely where I want it
on the page with position, top, and left. Then, I make sure that long text on the button
label will truncate with an ellipsis using max-width, white-space, overflow, and text-
overflow. Finally, I apply a graphic with border-width and -webkit-border-image. Un-
like my earlier border image example, this image has a different width for the left and
right borders, because the image is made asymmetrical by the arrowhead on the left
side.

Don’t forget that you’ll need an image for this button. You’ll need to
save it as back_button.png in the images folder underneath the folder
that holds your HTML file. See “Adding Basic Behavior with
jQuery” on page 24 for tips on finding or creating your own button
images.

Example 3-11. Add the following to iphone.css to beautify the back button with a border image

#header div.leftButton {
 font-weight: bold;
 text-align: center;
 line-height: 28px;
 color: white;
 text-shadow: rgba(0,0,0,0.6) 0px -1px 0px;
 position: absolute;
 top: 7px;
 left: 6px;
 max-width: 50px;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 border-width: 0 8px 0 14px;
 -webkit-border-image: url(images/back_button.png) 0 8 0 14;
}

By default, Mobile Safari briefly displays a translucent gray box over clickable objects
that have been tapped (Figure 3-7). Since our back button is not rectangular, this effect
looks a little lame, but removing it is easy and makes the app look much better. Mobile
Safari supports a property called -webkit-tap-highlight-color that allows you to
change the default to whatever color you like. I want to remove the highlight com-
pletely, which I’ve done here by setting the tap highlight to a fully transparent color
(see Example 3-12).

Roll Your Own Back Button | 43

www.dbooks.org

http://www.hunlock.com/blogs/Mastering_Javascript_Arrays
http://www.hunlock.com/blogs/Mastering_Javascript_Arrays
https://www.dbooks.org/

Example 3-12. Add the following to iphone.css to remove the default tap highlight from Mobile Safari

#header div.leftButton {
 font-weight: bold;
 text-align: center;
 line-height: 28px;
 color: white;
 text-shadow: rgba(0,0,0,0.6) 0px -1px 0px;
 position: absolute;
 top: 7px;
 left: 6px;
 max-width: 50px;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 border-width: 0 8px 0 14px;
 -webkit-border-image: url(images/back_button.png) 0 8 0 14;
 -webkit-tap-highlight-color: rgba(0,0,0,0);
}

In the case of the back button, there can be at least a second or two of delay before the
content from the previous page appears. To avoid frustration, I want the button to look
clicked the instant it’s tapped. In a desktop browser, this would be a simple process;
you’d just add a declaration to your CSS using the :active pseudoclass to specify an
alternate style for the object that was clicked. I don’t know whether it’s a bug or a
feature, but this approach does not work on the iPhone; the :active style is ignored.

I toyed around with combinations of :active and :hover, which brought me some
success with non-Ajax apps. However, with an Ajax app like the one we are using here,

Figure 3-7. By default, Mobile Safari displays a translucent gray box over clickable objects that have
been tapped

44 | Chapter 3: Advanced iPhone Styling

the :hover style is sticky (i.e., the button appears to remain “clicked” even after the
finger is removed).

Fortunately, the fix is pretty simple. I use jQuery to add the class clicked to the button
when the user taps it. I’ve opted to apply a darker version of the button image to the
button in the example (see Figure 3-8 and Example 3-13). You’ll need to make sure
you have a button image called back_button_clicked.png in the images subfolder. See
“Adding Basic Behavior with jQuery” on page 24 for tips on finding or creating your
own button images.

Figure 3-8. It’s a subtle difference, but the clicked back button is a bit darker than the default state

Example 3-13. Add the following to iphone.css to make the back button look clicked the moment the
user taps it

#header div.leftButton.clicked {
 -webkit-border-image: url(images/back_button_clicked.png) 0 8 0 14;
}

Since I’m using an image for the clicked style, it would be smart to pre-
load the image. Otherwise, the unclicked button graphic will disappear
the first time it’s tapped while the clicked graphic downloads. I’ll cover
image preloading in the next chapter.

With the CSS in place, I can now update the portion of iphone.js that assigns the click
handler to the back button. First, I add a variable, e, to the anonymous function in
order to capture the incoming click event. Then, I wrap the event target in a jQuery
selector and call jQuery’s addClass() function to assign my clicked CSS class to the
button:

Roll Your Own Back Button | 45

www.dbooks.org

https://www.dbooks.org/

$('#header .leftButton').click(function(e){
 $(e.target).addClass('clicked');
 var thisPage = hist.shift();
 var previousPage = hist.shift();
 loadPage(previousPage.url);
});

A special note to any CSS gurus in the crowd: the CSS Sprite technique—
popularized by A List Apart—is not an option in this case because it
requires setting offsets for the image. Image offsets are not supported
by the -webkit-border-image property.

Adding an Icon to the Home Screen
Hopefully users will want to add an icon for your web app (called a “Web Clip icon”)
to their home screens. They do this by tapping the plus button at the bottom of the
Safari window (Figure 3-9), tapping Add to Home Screen (Figure 3-10), and clicking
the Add button (Figure 3-11). By default, the iPhone will create this icon by thumb-
nailing the current page (including position and zoom) and applying rounded corners
and a glossy effect (Figure 3-12).

Figure 3-9. Adding a Web Clip icon to your home screen, Step 1: click the plus button at the bottom
of the Safari window

46 | Chapter 3: Advanced iPhone Styling

Figure 3-10. Step 2: click the “Add to Home Screen” button in the dialog

Figure 3-11. Step 3: click the “Add” button in the “Add to Home” panel

Figure 3-12. Step 4: a 57 × 57 pixel image will show up on the home screen

Adding an Icon to the Home Screen | 47

www.dbooks.org

https://www.dbooks.org/

To customize the home screen image, the cool kids provide a custom Web Clip icon.
The simplest way to do this is to specify a single icon for your entire site by uploading
a file named apple-touch-icon.png to your web root. The file should be 57 pixels square,
and without gloss or rounded corners because the iPhone will add these automatically.
If you don’t want the iPhone to add effects to your Web Clip icon, change the name of
the file to apple-touch-icon-precomposed.png.

In some cases, you may want to provide a Web Clip icon for a page that is different
from the rest of your site. You can do this by adding one of the following lines to the
head section of the “traffic cop” HTML document, iphone.html (replacing
myCustomIcon.png with the absolute or relative path to the image):

<link rel="apple-touch-icon" href="myCustomIcon.png" />

<link rel="apple-touch-icon-precomposed" href="myCustomIcon.png" />

If you are going to use precomposed images, make the corner radius 10
pixels or more; otherwise, the iPhone will round the corners to 10 pixels.
In either case, using precomposed images does suppress the addition of
the glossy effect.

Full Screen Mode
Feel like reclaiming a quarter of the available vertical space from Mobile Safari (104
pixels, to be precise)? Add the following line to the head section of the “traffic cop”
HTML document, iphone.html, and your web app will display in full screen mode when
launched from the Web Clip icon:

<meta name="apple-mobile-web-app-capable" content="yes" />

I would’ve told you about this feature earlier, but it’s only useful once you have hijacked
all of your hyperlinks with Ajax. As soon as a user clicks on a nonhijacked link—one
that actually navigates to a new page—Mobile Safari will launch and load the page
normally. This behavior is perfect for the example we’ve been working with because
external links (Amazon, Twitter, Facebook, etc.) will open in Safari.

Changing the Status Bar
Once you’ve added the apple-mobile-web-app-capable meta tag, you have the option
to control the background color of the 20-pixel status bar at the top of the screen using
the apple-mobile-web-app-status-bar-style meta tag. The normal gray Safari status
bar is the default, or you can change it to black (see Figure 3-13). You can also set it to
black-translucent, which makes it partially transparent and additionally removes it
from the document flow. In other words, your content will be shifted up by 20 pixels
and behind the status bar when the page first loads, so you might have to position your
header a little lower to compensate:

48 | Chapter 3: Advanced iPhone Styling

<meta name="apple-mobile-web-app-status-bar-style" content="black" />

Changes to the status bar style will only take effect when the app is
launched in full screen mode.

Figure 3-13. Full screen mode gives you about 25% more screen real estate and allows you to customize
the appearance of the status bar

Providing a Custom Startup Graphic
When an app is launched in full screen mode, the user is presented with a screenshot
of the app while the first page is loading. I’m not a fan of this because it looks like the
app is ready to be interacted with, when in reality tapping a link will do nothing. Fur-
thermore, the screenshot is based on the last page from the user’s previous visit, scrolled
to wherever he left off—not very attractive.

Fortunately, Mobile Safari allows us to define a startup graphic that will be displayed
while the page is loading. To add a custom startup graphic, create a 320px × 460px
PNG file and place it in the same directory with iphone.html. Next, add the following
line to the head section of iphone.html (you’d replace myCustomStartupGraphic.png with
the absolute or relative path to your image):

<link rel="apple-touch-startup-image" href="myCustomStartupGraphic.png" />

The next time we launch our app from the Web Clip icon, the default loading behavior
will take place while the new custom graphic is downloaded. On the subsequent launch,
the custom startup graphic will be displayed (Figure 3-14).

Full Screen Mode | 49

www.dbooks.org

https://www.dbooks.org/

What You’ve Learned
In this chapter, you’ve learned how to convert a normal website into a full-screen Ajax
application, complete with progress indicators, a native-looking back button, and a
custom Web Clip icon. In the next chapter, you’ll learn how to make your app come
alive by adding native user interface animations. That’s right; here comes the fun stuff!

Figure 3-14. Providing a custom startup graphic for an app launched in full screen mode

50 | Chapter 3: Advanced iPhone Styling

CHAPTER 4

Animation

iPhone apps have a number of distinctive animation characteristics that add context
and meaning for the user. For example, pages slide left as you drill down through links,
and slide right as you navigate back. In this chapter, you’ll learn how to add charac-
teristic behaviors like sliding, page flip, and more to your web app. These changes, in
combination with Ajax and full screen mode, will make your web app almost indistin-
guishable from a native application.

With a Little Help from Our Friend
I’ll be honest: making a web page animate like a typical native iPhone app is hard.
Fortunately, an enterprising young lad from Philly named David Kaneda has written a
JavaScript library called jQTouch that makes mobile web development a whole lot
easier. jQTouch is an open source jQuery plug-in that handles virtually everything we
learned in the previous chapter, as well as a boatload of much more complex stuff that
would be truly painful to write from scratch.

You can download the latest version of jQTouch from http://jqtouch
.com/.

Sliding Home
We are going to build a simple calorie-tracking application called Kilo that allows the
user to add and delete food entries for a given date. All told, there will be five panels:
Home, Settings, Dates, Date, and New Entry. We’ll start off with two panels and work
our way up as we go.

51

www.dbooks.org

http://jqtouch.com/
http://jqtouch.com/
https://www.dbooks.org/

I’ll be assigning CSS classes to some of the HTML elements (toolbar,
edgetoedge, arrow, button, back, etc.). In every case, these classes corre-
spond to predefined CSS class selectors that exist in the default jQTouch
theme. Bear in mind that you can create and use your own classes by
modifying existing jQTouch themes or building your own from scratch;
I’m just using the defaults.

To begin, let’s create a file named index.html and add the HTML shown in Exam-
ple 4-1 for the Home and About panels.

Figure 4-1. Kilo before jQTouch...

Example 4-1. HTML for the Home and About panels in index.html

<html>
 <head>
 <title>Kilo</title>
 </head>
 <body>
 <div id="home">
 <div class="toolbar">
 <h1>Kilo</h1>
 </div>
 <ul class="edgetoedge">
 <li class="arrow">About

 </div>
 <div id="about">
 <div class="toolbar">
 <h1>About</h1>
 Back

52 | Chapter 4: Animation

 </div>
 <div>
 <p>Kilo gives you easy access to your food diary.</p>
 </div>
 </div>
 </body>
</html>

The HTML here basically amounts to a head with a title, and a body with two children,
both divs:

This div (as well as the about div that appears a few lines down) will become a panel
in the application by virtue of the fact that it is a direct descendant of the body.

Inside each panel div, there is a div with a class of toolbar. This toolbar class is
specifically predefined in the jQTouch themes to style an element like a traditional
iPhone toolbar.

This unordered list tag has the class edgetoedge. The edgetoedge class tells jQTouch
to stretch the list all the way from left to right in the viewable area.

On this line there is an li that contains a link with its href pointing at the About
panel. Including the arrow class to the li is optional; doing so will add a chevron to
the right side of the item in the list.

The toolbar elements each contain a single h1 element that will become the panel
title. On this line, there is a link with the classes button and back, which tell jQTouch
to make the button look and act like a back button.

Note that the href on the back button is set to #. Normally, this would
tell the browser to return to the top of the current document. But when
using jQTouch, it navigates back to the previous panel instead. In more
advanced scenarios, you might want to use a specific anchor, such as
#home, which would instruct the back button to navigate to a particular
panel regardless of what the previous panel was.

With the basic HTML in place, it’s time to add jQTouch to the party. Once you’ve
downloaded jQTouch and unzipped it in the same directory as the HTML document,
you just add a few lines of code to the head of your page (Example 4-2).

For this and other examples in this book, you will need to download
jQTouch from http://jqtouch.com, unzip it, and move the jqtouch and
themes directories into the same directory as your HTML document.
You will also need to go into the jqtouch directory and rename the
jQuery JavaScript file (such as jquery.1.3.2.min.js) to jquery.js.

Sliding Home | 53

www.dbooks.org

http://jqtouch.com
v@v
Text Box
Download at WoweBook.com

https://www.dbooks.org/

Example 4-2. Adding these lines to the head of your document will activate jQTouch

<link type="text/css" rel="stylesheet" media="screen" href="jqtouch/jqtouch.css">
<link type="text/css" rel="stylesheet" media="screen" href="themes/jqt/theme.css">
<script type="text/javascript" src="jqtouch/jquery.js"></script>
<script type="text/javascript" src="jqtouch/jqtouch.js"></script>
<script type="text/javascript">
 var jQT = $.jQTouch({
 icon: 'kilo.png',
 statusBar: 'black'
 });
</script>

I’m including the jqtouch.css file. This file defines some hardcore structural design
rules that are very specific to handling animations, orientation, and other iPhone-
specific minutiae. This file is required and there should be no reason for you to edit
it.

I’m including the CSS for my selected theme, in this case, the “jqt” theme, which
comes with jQTouch. The classes that I’ve been using in the HTML correspond to
CSS selectors in this document. jQTouch comes with two themes available by de-
fault. You can also make your own by duplicating a default theme and making
changes to it, or writing a new one from scratch.

jQTouch requires jQuery, so I include that here. jQTouch comes with its own copy
of jQuery, but you can link to another copy if you prefer.

This is where I include jQTouch itself. Note that you have to include jQTouch after
jQuery, or nothing’s going to work.

This brings us to the script block where I initialize the jQTouch object and send in
two property values: icon and statusBar.

jQTouch exposes several properties that allow you to customize the behavior and
appearance of your app. You’ll see several throughout the course of this book, and
they are all optional. However, you’ll pretty much always be using at least a few of
them.

In this case, icon tells jQTouch where to look for the custom Web Clip icon, and
statusBar controls the color of the 20px strip at the top of the app in full screen mode.

By the way, jQTouch assumes that you want the app to run in full screen
mode because, hey...that’s how you roll. If you’d prefer to disallow full
screen mode, you can add fullScreen: false to the property list.

The difference between the application before jQTouch (Figure 4-1) and after (Fig-
ure 4-2) is dramatic, but the truly astonishing thing is that you’ve just added gorgeous
left/right sliding to your app with 10 lines of code. What’s more, you’ve also enabled

54 | Chapter 4: Animation

full screen mode, defined a custom status bar color, and linked to your Web Clip icon.
jQTouch is completely sick, and we’re just getting started.

Adding the Dates Panel
Let’s now add the Dates panel. The Dates panel will have a list of relative dates begin-
ning with Today and going back to 5 days ago (Figure 4-3). Add the HTML for the
Dates panel (shown in Example 4-3) right after the About panel, just before the closing
</body>.

Example 4-3. The HTML for the Dates panel

<div id="dates">
 <div class="toolbar">
 <h1>Dates</h1>
 Back
 </div>
 <ul class="edgetoedge">
 <li class="arrow">Today
 <li class="arrow">Yesterday
 <li class="arrow">2 Days Ago
 <li class="arrow">3 Days Ago
 <li class="arrow">4 Days Ago
 <li class="arrow">5 Days Ago

</div>

Figure 4-2. ...and Kilo after jQTouch

Adding the Dates Panel | 55

www.dbooks.org

https://www.dbooks.org/

Like the About panel, the Dates panel has a toolbar with a title and back button. After
the toolbar, there is an unordered edgetoedge list of links. Notice that all of the links
have unique ids (0 through 5) but the same href (#date)—more on that in a bit.

Next, you have to update the Home panel with a link to the Dates panel. Add the
following line to the Home panel in index.html:

<div id="home">
 <div class="toolbar">
 <h1>Kilo</h1>
 </div>
 <ul class="edgetoedge">
 <li class="arrow">Dates
 <li class="arrow">About

</div>

And just like that, we’ve added a new panel to the app (see Figure 4-4). Clicking on an
item on the Dates panel doesn’t do anything yet. Let’s rectify that situation by adding
the Date panel.

Adding the Date Panel
The Date panel looks a lot like the previous panels, with a couple of exceptions (refer
to Example 4-4). Add the HTML for the Date panel right after the Dates panel, just
before the closing </body>.

Figure 4-3. The Dates panel consists of a toolbar with a back button and a clickable list of relative dates

56 | Chapter 4: Animation

Example 4-4. The HTML for the Date panel

<div id="date">
 <div class="toolbar">
 <h1>Date</h1>
 Back
 +
 </div>
 <ul class="edgetoedge">
 <li id="entryTemplate" class="entry" style="display:none">
 Label
 000
 Delete

</div>

The Date panel toolbar has an additional button. When clicked, this button will
display the New Entry panel (which we have not yet built). I’ve given the link a class
of slideup, which tells jQTouch that we want the target panel to slide up from the
bottom of the screen, rather than horizontally like typical navigation.

The other unusual aspect of this panel is that I’ve defined a list item with the style
set to display:none, effectively making it invisible.

As you’ll see in a bit, I’m going to use this invisible list item as a template to display
entries once they are created. At this point, there are no entries, so the panel will be
empty aside from the toolbar.

Figure 4-4. The Home panel now has a link to the Dates panel

Adding the Date Panel | 57

www.dbooks.org

https://www.dbooks.org/

Now that you’ve added the Date panel, clicking any item on the Dates panel will slide
the empty Date panel (Figure 4-5) into view.

Figure 4-5. Apart from the toolbar, the Date panel is empty to begin with

Adding the New Entry Panel
Example 4-5 shows the source code for the New Entry panel. Add this code to the end
of index.html, just before the closing </body>.

Example 4-5. The HTML for the New Entry panel

<div id="createEntry">
 <div class="toolbar">
 <h1>New Entry</h1>
 Cancel
 </div>
 <form method="post">

 <input type="text" placeholder="Food" name="food" id="food"
 autocapitalize="off" autocorrect="off" autocomplete="off" />
 <input type="text" placeholder="Calories" name="calories" id="calories"
 autocapitalize="off" autocorrect="off" autocomplete="off" />
 <input type="submit" class="submit" name="action"
 value="Save Entry" />

 </form>
</div>

The first thing to point out about the New Entry panel is that instead of having a
back button, it has a cancel button.

58 | Chapter 4: Animation

Cancel buttons in jQTouch behave just like back buttons, in that
they remove the current page from view using the reverse animation
of the way it came into view. However, unlike back buttons, cancel
buttons are not shaped like a left arrow.

I used a cancel button for the New Entry panel because it slides up
on the way in and will therefore slide down on the way out. It would
be counterintuitive to click a left-pointing back button and then have
the panel slide down.

This HTML form contains an unordered list of three items: two text fields and a
submit button. Embedding form controls in an li allows the jqt theme to style the
form as shown in Figure 4-6.

Each of the text inputs has quite a few defined attributes:

type
Defines the form control to be a single-line text entry field.

placeholder
A string of text to display in the form input when the input is empty.

name
The name that will be associated with the value provided by the user when the
form is submitted.

id
A unique identifier for the element in the context of the entire page.

autocapitalize
A Mobile Safari–specific setting that allows you to turn off the default autoca-
pitalization feature.

autocorrect
A Mobile Safari–specific setting that allows you to turn off the default spellcheck
feature.

autocomplete
Setting that allows you to turn off the autocomplete feature of Mobile Safari.

The class attribute of the submit input button needs explanation. The iPhone will
display a keyboard whenever your cursor is in a field. The keyboard has a Go button
in the bottom-right corner that submits the form when clicked. When you are hi-
jacking the submit function as we are doing here, submitting from the Go button
on the keyboard does not remove the cursor from the active field, and therefore the
keyboard does not slide out of view. To remedy this, jQTouch offers a convenience
method that automatically removes the cursor from the active field when a form is
submitted. To take advantage of this feature, you just add the submit class to the
submit element of the form.

Figure 4-7 shows the New Entry form in action. At this point, I’ve done nothing to
actually save the entry when the user clicks Save Entry. We’ll cover that in Chapter 5.

Adding the New Entry Panel | 59

www.dbooks.org

https://www.dbooks.org/

Adding the Settings Panel
We haven’t yet created a button that will allow users to navigate to the Settings panel,
so let’s add one to the toolbar on the Home panel (see Figure 4-8). All it takes is a single
line of HTML, shown in bold:

Figure 4-6. The jqt theme does a nice job styling form elements

Figure 4-7. Keyboard data entry with the New Entry form

60 | Chapter 4: Animation

<div id="home">
 <div class="toolbar">
 <h1>Kilo</h1>
 Settings
 </div>
 <ul class="edgetoedge">
 <li class="arrow">Dates
 <li class="arrow">About

</div>

This is the line of HTML that adds the button. Notice that I’ve assigned the flip
class to the link. The flip class instructs jQTouch to transition from the Home panel
to the Settings panel by rotating the page on its vertical axis. To add an extra di-
mension to the process, the page actually zooms out a bit during the animation,
similar to the default Weather app on the iPhone. Fancy, no?

Figure 4-8. The Settings button added to the toolbar on the Home panel

In comparison with the New Entry panel, the HTML for the Settings panel is going to
look pretty familiar (Example 4-6). There is one more text input and some of the at-
tributes have been omitted or have different values, but conceptually they are identical.
Add this to your HTML document just as you’ve done for the other panels. When
you’re done, the Settings panel should look like Figure 4-9.

As with the New Entry form, the Settings form does not currently save any of the
information associated with it. Its submission handler will be described in the next
chapter.

Adding the Settings Panel | 61

www.dbooks.org

https://www.dbooks.org/

Example 4-6. The HTML for the Settings panel

<div id="settings">
 <div class="toolbar">
 <h1>Settings</h1>
 Cancel
 </div>
 <form method="post">

 <input placeholder="Age" type="text" name="age" id="age" />
 <input placeholder="Weight" type="text" name="weight" id="weight" />
 <input placeholder="Budget" type="text" name="budget" id="budget" />
 <input type="submit" class="submit" name="action"
 value="Save Changes" />

 </form>
</div>

Putting It All Together
So there you have it. With fewer than 100 lines of code, we’ve created an iPhone-esque
UI for a five-panel application, complete with three different page transition anima-
tions. Not too shabby, right? See Example 4-7 for a complete listing of the final HTML.

Example 4-7. The complete HTML listing for the five-panel UI

<html>
 <head>
 <title>Kilo</title>
 <link type="text/css" rel="stylesheet" media="screen" href="jqtouch/jqtouch.css">

Figure 4-9. The Settings panel

62 | Chapter 4: Animation

 <link type="text/css" rel="stylesheet" media="screen"
 href="themes/jqt/theme.css">
 <script type="text/javascript" src="jqtouch/jquery.js"></script>
 <script type="text/javascript" src="jqtouch/jqtouch.js"></script>
 <script type="text/javascript">
 var jQT = $.jQTouch({
 icon: 'kilo.png',
 statusBar: 'black'
 });
 </script>
 </head>
 <body>
 <div id="home">
 <div class="toolbar">
 <h1>Kilo</h1>
 Settings
 </div>
 <ul class="edgetoedge">
 <li class="arrow">Dates
 <li class="arrow">About

 </div>
 <div id="about">
 <div class="toolbar">
 <h1>About</h1>
 Back
 </div>
 <div>
 <p>Kilo gives you easy access to your food diary.</p>
 </div>
 </div>
 <div id="dates">
 <div class="toolbar">
 <h1>Dates</h1>
 Back
 </div>
 <ul class="edgetoedge">
 <li class="arrow">Today
 <li class="arrow">Yesterday
 <li class="arrow">2 Days Ago
 <li class="arrow">3 Days Ago
 <li class="arrow">4 Days Ago
 <li class="arrow">5 Days Ago

 </div>
 <div id="date">
 <div class="toolbar">
 <h1>Date</h1>
 Back
 +
 </div>
 <ul class="edgetoedge">
 <li id="entryTemplate" class="entry" style="display:none">
 Label
 000

Putting It All Together | 63

www.dbooks.org

https://www.dbooks.org/

 Delete

 </div>
 <div id="createEntry">
 <div class="toolbar">
 <h1>New Entry</h1>
 Cancel
 </div>
 <form method="post">

 <input type="text" placeholder="Food"
 name="food" id="food" autocapitalize="off"
 autocorrect="off" autocomplete="off" />
 <input type="text" placeholder="Calories"
 name="calories" id="calories" autocapitalize="off"
 autocorrect="off" autocomplete="off" />
 <input type="submit" class="submit" name="action"
 value="Save Entry" />

 </form>
 </div>
 <div id="settings">
 <div class="toolbar">
 <h1>Settings</h1>
 Cancel
 </div>
 <form method="post">

 <input placeholder="Age" type="text" name="age" id="age" />
 <input placeholder="Weight" type="text" name="weight"
 id="weight" />
 <input placeholder="Budget" type="text" name="budget"
 id="budget" />
 <input type="submit" class="submit" name="action"
 value="Save Changes" />

 </form>
 </div>
 </body>
</html>

Customizing jQTouch
jQTouch allows you to customize its default behavior by sending a variety of property
settings into the constructor. We’ve seen this previously with icon and statusBar, but
there are many others that you should be aware of. See Table 4-1.

Table 4-1. jQTouch customization options

Property Default Expects Notes

addGlossToIcon true true or
false

If set to true, allow iPhone to add gloss
to your Web Clip icon.

64 | Chapter 4: Animation

Property Default Expects Notes

backSelector '.back, .cancel, .goback' Any valid CSS
selector; sepa-
rate multiple
values with a
comma

Defines elements that will trigger the
“back” behavior of jQTouch when tap-
ped. When the back behavior is invoked,
the current panel moves off screen with
a reverse animation and is removed from
history.

cacheGetRequests true true or
false

If set to true, automatically caches GET
requests, so subsequent clicks reference
the already loaded data.

cubeSelector '.cube' Any valid CSS
selector; sepa-
rate multiple
values with a
comma

Defines elements that will trigger a cube
animation from the current panel to the
target panel.

dissolveSelector '.dissolve' Any valid CSS
selector; sepa-
rate multiple
values with a
comma

Defines elements that will trigger a dis-
solve animation from the current panel
to the target panel.

fadeSelector '.fade' Any valid CSS
selector; sepa-
rate multiple
values with a
comma

Defines elements that will trigger a fade
animation from the current panel to the
target panel.

fixedViewport true true or
false

If set to true, prevents users from being
able to zoom in or out on the page.

flipSelector '.flip' Any valid CSS
selector; sepa-
rate multiple
values with a
comma

Defines elements that will trigger a flip
animation from the current panel to the
target panel.

formSelector 'form' Any valid CSS
selector; sepa-
rate multiple
values with a
comma

Defines elements that should be styled
as a form by the CSS theme.

fullScreen true true or
false

When set to true, your app will open in
full screen mode when launched from
the user’s home screen. Has no effect on
the display if the app is running in
Mobile Safari.

fullScreenClass 'fullscreen' String Class name that will be applied to the
body when the app is launched in full
screen mode. Allows you to write custom

Customizing jQTouch | 65

www.dbooks.org

https://www.dbooks.org/

Property Default Expects Notes
CSS that only executes in full screen
mode.

icon null null or a rela-
tive or absolute
path to a 57 ×
57 px png im-
age file

The Web Clip icon for your app. This is the
image that will be displayed when a user
saves your app to her home screen.

popSelector '.pop' Any valid CSS
selector; sepa-
rate multiple
values with a
comma

Defines elements that will trigger a pop
animation from the current panel to the
target panel.

preloadImages false An array of im-
age paths to
load before
page loads

Ex: ['images/link_over.png',
'images/link_select.png'].

slideInSelector 'ul li a' Any valid CSS
selector; sepa-
rate multiple
values with a
comma

Defines elements that will trigger a slide
left animation from the current panel to
the target panel.

slideupSelector '.slideup' Any valid CSS
selector; sepa-
rate multiple
values with a
comma

Defines elements that will cause the tar-
get panel to slide up into view in front of
the current panel.

startupScreen null null or a rela-
tive or absolute
path to an im-
age file

Pass a relative or absolute path to a 320px
× 460px startup screen for full-screen
apps. Use a 320px × 480px image
if you set statusBar to
black-translucent.

statusBar 'default' default,
black-
translu
cent, black

Defines the appearance of the 20-pixel
status bar at the top of the window in an
app launched in full screen mode.

submitSelector '.submit' Any valid CSS
selector; sepa-
rate multiple
values with a
comma

Selector that, when clicked, will submit
its parent form (and close keyboard if
open).

swapSelector '.swap' Any valid CSS
selector; sepa-
rate multiple

Defines elements that will cause the tar-
get panel to swap into view in front of
the current panel.

66 | Chapter 4: Animation

Property Default Expects Notes
values with a
comma

useAnimations true true or
false

Set to false to disable all animations.

What You’ve Learned
In this chapter, you’ve learned how to add native-looking animations to a web app
using jQTouch. In the next chapter, you’ll learn how to use the new local storage and
client-side database features of HTML5 to add persistent data storage to your app.

What You’ve Learned | 67

www.dbooks.org

https://www.dbooks.org/

CHAPTER 5

Client-Side Data Storage

Most software applications need to store data in some sort of persistent fashion in order
to be useful. When it comes to web apps, this task has traditionally been handled either
with a server-side database or cookies set in the browser. With the advent of HTML5,
web developers now have a few more options: localStorage, sessionStorage, and client-
side databases.

localStorage and sessionStorage
localStorage and sessionStorage (collectively referred to as key/value storage) are very
similar to cookies in that they allow you to use JavaScript to set name/value pairs that
you can then retrieve across multiple page reloads.

Unlike cookies, however, localStorage and sessionStorage data is not sent across the
wire with the browser request—it lives entirely in the client. Therefore, it’s feasible to
store much more data than you would want to with cookies.

At the time of this writing, browser size limits for localStorage and
sessionStorage are still in flux.

Functionally, localStorage and sessionStorage are the same. They differ only in terms
of persistence and scope:

localStorage
Data is saved even after the window is closed and is available to all windows (or
tabs) that are loaded from the same source (must be the same domain name, pro-
tocol, and port). This is useful for things like application preferences.

69

www.dbooks.org

https://www.dbooks.org/

sessionStorage
Data is stored with the window object. Other windows/tabs are not aware of the
values, and the data is discarded when the window/tab is closed. Useful for
window-specific state like active tab highlight, or the sort order of a table.

In any of the following examples, you can substitute sessionStorage
anywhere you see localStorage.

Setting a value is as simple as:

localStorage.setItem('age', 40);

Accessing a stored value is equally simple:

var age = localStorage.getItem('age');

You can delete a specific key/value pair from storage with:

localStorage.removeItem('age');

Or, you can delete all key/value pairs like so:

localStorage.clear();

Assuming that your keys are valid JavaScript tokens (no spaces, no punctuation other
than underscores, etc.), you can use this alternate syntax:

localStorage.age = 40 // Set the value of age
var age = localStorage.age; // Get the value of age
delete localStorage.age; // Remove age from storage

The localStorage and sessionStorage keys are stored separately. If you
use the same key name in each, they will not conflict with each other.

Saving User Settings to localStorage
On to a practical example. Let’s update the Settings panel of the example app we started
working on in Chapter 4 to store the form values in localStorage.

We are going to be writing a fair amount of JavaScript in this chapter, and I don’t want
to jam it all in the head section of our HTML document. To keep our code organized,
I’m going to create a file called kilo.js and update the head of my HTML document with
a reference to it:

<head>
 <title>Kilo</title>
 <link type="text/css" rel="stylesheet" media="screen" href="jqtouch/jqtouch.css">
 <link type="text/css" rel="stylesheet" media="screen"

70 | Chapter 5: Client-Side Data Storage

 href="themes/jqt/theme.css">
 <script type="text/javascript" src="jqtouch/jquery.js"></script>
 <script type="text/javascript" src="jqtouch/jqtouch.js"></script>
 <script type="text/javascript" src="kilo.js"></script>
</head>

Alert readers will notice that I’ve also removed the jQTouch constructor from the head
of the HTML document. It’s not gone, though; I just moved it into kilo.js. So be sure
you’ve removed that from your main HTML file, create the kilo.js file in the same
directory with the following contents, and then reload the main HTML document in
your browser to make sure it’s still working:

var jQT = $.jQTouch({
 icon: 'kilo.png',
 statusBar: 'black'
});

I need to override the submit action of the Settings form and replace it with a custom
function called saveSettings(). Thanks to jQuery, I can accomplish this with a single
line of code, which I’ll place in the document ready function. Add the following to
kilo.js:

$(document).ready(function(){
 $('#settings form').submit(saveSettings);
});

The net result of this is that when the user submits the Settings form, the
saveSettings() function will run instead of the form actually getting submitted.

When the saveSettings() function is called, it grabs the values from the three form
inputs using jQuery’s val() function and saves each in a localStorage variable of the
same name. Add this function to kilo.js:

function saveSettings() {
 localStorage.age = $('#age').val();
 localStorage.budget = $('#budget').val();
 localStorage.weight = $('#weight').val();
 jQT.goBack();
 return false;
}

Once the values are stored, I use the jQuery goBack() function (on the second to last
line) to dismiss the panel and return to the previous page. I then return false to prevent
the default action of the submit event that triggers this function. Had I omitted this
line, the current page would reload, which is not what we want.

At this point, a user can launch the app, navigate to the Settings panel, enter her settings,
and submit the form to save her settings to localStorage.

Since we are not clearing the fields when the form is submitted, the values that the user
enters will still be there when she navigates back to the Settings panel. However, this
is not because the values have been saved to localStorage; it’s just because they are still
just sitting there after having been typed in. Therefore, the next time the user launches

localStorage and sessionStorage | 71

www.dbooks.org

https://www.dbooks.org/

that app and navigates to the Settings panel, the fields will be empty even though they
have been saved.

To remedy this, we need to load the settings using the loadSettings() function, so add
the following function to kilo.js:

function loadSettings() {
 $('#age').val(localStorage.age);
 $('#budget').val(localStorage.budget);
 $('#weight').val(localStorage.weight);
}

The loadSettings() function is the opposite of the saveSettings() function; i.e., it uses
jQuery’s val() function to set the three fields of the Settings form to the corresponding
values saved in localStorage.

Now that we have a loadSettings() function, we need to trigger it. The most obvious
time is probably when the app launches. To make this happen, I simply add a line to
the document ready function in kilo.js:

$(document).ready(function(){
 $('#settings form').submit(saveSettings);
 loadSettings();
});

Unfortunately, loading the settings only at startup leaves a loophole that occurs if the
user navigates to the Settings panel, changes some values, and taps the cancel button
without submitting the form.

In this case, the newly changed values will still be sitting there the next time the user
visits the Settings panel, even though the values were not saved. If the user closed and
reopened the app, the displayed values would revert to the saved values because the
loadSettings() function would refresh them at startup.

There are several ways that we could rectify this situation, but I think the most appro-
priate is to refresh the displayed values whenever the Settings panel begins to move,
either into or out of view.

Thanks to jQTouch, this is a simple matter of binding the loadSettings() function to
the pageAnimationStart event of the Settings panel. Replace the line you just added with
the code shown in bold instead:

$(document).ready(function(){
 $('#settings form').submit(saveSettings);
 $('#settings').bind('pageAnimationStart', loadSettings);
});

The JavaScript contained in the kilo.js file now provides persistent data support for the
Settings panel. When you view the code we’ve written to make this happen, there’s
really not much to it. Here is everything in kilo.js so far:

var jQT = $.jQTouch({
 icon: 'kilo.png',
 statusBar: 'black'

72 | Chapter 5: Client-Side Data Storage

});
$(document).ready(function(){
 $('#settings form').submit(saveSettings);
 $('#settings').bind('pageAnimationStart', loadSettings);
});
function loadSettings() {
 $('#age').val(localStorage.age);
 $('#budget').val(localStorage.budget);
 $('#weight').val(localStorage.weight);
}
function saveSettings() {
 localStorage.age = $('#age').val();
 localStorage.budget = $('#budget').val();
 localStorage.weight = $('#weight').val();
 jQT.goBack();
 return false;
}

Saving the Selected Date to sessionStorage
Ultimately, what I want to do is set up the Date panel such that when it’s displayed, it
will check the database for any records entered for that date, and display them as an
edge-to-edge list. This requires that the Date panel know what date was tapped on the
Dates panel.

I also want to allow the user to add and delete entries from the database, so I’ll have to
add support for the + button that already exists on the Date panel, and the Delete
button in the Date panel entry template (more on this later).

The first step is to let the Date panel know what item was clicked in order to navigate
to it from the Dates panel. With this piece of information, I can calculate the appropriate
date context. To do this, I add some lines to the document ready function in kilo.js:

$(document).ready(function(){
 $('#settings form').submit(saveSettings);
 $('#settings').bind('pageAnimationStart', loadSettings);
 $('#dates li a').click(function(){
 var dayOffset = this.id;
 var date = new Date();
 date.setDate(date.getDate() - dayOffset);
 sessionStorage.currentDate = date.getMonth() + 1 + '/' +
 date.getDate() + '/' +
 date.getFullYear();
 refreshEntries();
 });
});

On this line, I’m using jQuery’s click() function to bind my own code to the click
event of the links on the Dates panel.

Here, I’m grabbing the id of the clicked object and storing it in the dayOffset variable.
If you recall, the links on the Dates panel have ids ranging from 0 to 5, so the id of
the clicked link will correspond to the number of days needed to calculate the clicked

localStorage and sessionStorage | 73

www.dbooks.org

https://www.dbooks.org/

date (0 days in the past equals today, 1 day in the past equals yesterday, 2 days in
the past equals the day before yesterday, etc.).

In this context, the this keyword will contain a reference to the object
that was the target of the click event.

On this line, I create a new JavaScript date object and store it in a variable named
date. Initially, this date will be pointed at the particular moment in time that it was
created, so on the next line, I subtract the dayOffset from the result of the
getDate() function, and then use setDate() to repoint the date.

Here, I build a MM/DD/YYYY-formatted date string and save it to sessionStorage
as currentDate.

The getMonth() method of the date object returns values from 0–11,
January being 0. Therefore, I have to add 1 to it to generate the correct
value for the formatted string.

Finally, I call the refreshEntries() function. The job of the refreshEntries() func-
tion is to update the incoming Date panel appropriately based on the date that was
tapped on the Dates panel. For now, I’ll just set it up to update the toolbar title of
the Dates panel with the selected date, so you can see it’s working. Without it,
you’d just see the word “Date” as shown in Figure 5-1. Figure 5-2 shows the
refreshEntries() function in action.

Here’s the code for the refreshEntries() function:

function refreshEntries() {
 var currentDate = sessionStorage.currentDate;
 $('#date h1').text(currentDate);
}

Next, we’ll move on to a more powerful and complex client-side data storage method
that we’ll use to store the user’s food entries on the Date panel.

Client-Side Database
Of all the exciting features of HTML5, the one that rocks my world the most is client-
side database support. It allows developers to use a simple but powerful JavaScript
database API to store persistent data in a relational format.

Developers can use standard SQL statements to create tables; to insert, update, select,
and delete rows; and so on. The JavaScript database API even supports transactions.

74 | Chapter 5: Client-Side Data Storage

We’re talking about SQL here, so there is an inherent complexity. Regardless, this is a
game-changing feature, so time spent getting your head around it will be well rewarded.

Creating a Database
Now that our Date panel knows what date the user has selected, we have all the info
we need to allow users to create entries. Before we can write the createEntry function,

Figure 5-1. Before the refreshEntries() function, the title just says “Date”

Figure 5-2. After the refreshEntries() function, the title reflects the selected date

Client-Side Database | 75

www.dbooks.org

https://www.dbooks.org/

we need to set up a database table to store the submitted data. I’ll add some lines to
kilo.js to do so:

var db;
$(document).ready(function(){
 $('#settings form').submit(saveSettings);
 $('#settings').bind('pageAnimationStart', loadSettings);
 $('#dates li a').click(function(){
 var dayOffset = this.id;
 var date = new Date();
 date.setDate(date.getDate() - dayOffset);
 sessionStorage.currentDate = date.getMonth() + 1 + '/' +
 date.getDate() + '/' +
 date.getFullYear();
 refreshEntries();
 });
 var shortName = 'Kilo';
 var version = '1.0';
 var displayName = 'Kilo';
 var maxSize = 65536;
 db = openDatabase(shortName, version, displayName, maxSize);
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'CREATE TABLE IF NOT EXISTS entries ' +
 ' (id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, ' +
 ' date DATE NOT NULL, food TEXT NOT NULL, ' +
 ' calories INTEGER NOT NULL);'
);
 }
);
});

The first thing to note is that I’ve added a variable named db to the global scope of
the application. This variable will be used to hold a reference to the database con-
nection once we’ve established it. I defined it in the global scope because we’re going
to have to refer to it all over the place.

On these four lines, I’m defining some vars for the openDatabase call:

shortName
A string that will be used to refer to the database file on disk.

version
A number that you can use to manage upgrades and backward compatibility
when you need to change your database schema.

displayName
A string that will be presented to the user in the interface. For example, the
display name appears in the Settings application on the iPhone in the Set-
tings→Safari→Databases panel.

maxSize
The maximum number of kilobytes to which you think your database will grow.

76 | Chapter 5: Client-Side Data Storage

Database size limits are still being implemented by browser vendors at
this time, so some trial and error while testing your application is in
order. The current default on the iPhone is 5 MB. If your database grows
beyond this limit, the user will automatically be asked to allow or deny
the size increase. If he allows the increase, the database size limit will be
upped to 10 MB. If he denies the increase, a QUOTA_ERR error will be
returned. See Table 5-1 for a list of database error codes.

With my parameters set, I call openDatabase on this line and store the connection in
the db variable. If the database doesn’t already exist, it will be created.

Now that we have a database connection, we need to create an entries table if one
doesn’t already exist.

All database queries must take place in the context of a transaction, so I begin one
here by calling the transaction method of the db object. The remaining lines com-
prise a function that is sent to the transaction as the sole parameter.

Here, I begin an anonymous function and pass the transaction into it. To be perfectly
honest, passing the transaction into its own callback function makes no sense to me,
but that’s what you have to do.

Once inside the function, I call the executeSql method of the transaction object to
execute a standard CREATE TABLE query.

If you were to launch the app as is, it would create a database named Kilo on your
iPhone. You can see this by navigating to Settings→Safari→Databases→Kilo on the
iPhone. Figure 5-3 shows the database settings.

Figure 5-3. The database panel on the iPhone

Client-Side Database | 77

www.dbooks.org

https://www.dbooks.org/

In the desktop version of Safari, you can actually view and interact with your client-
side databases by navigating to Develop→Show Web Inspector, then clicking the Da-
tabases tab. (If the Develop menu is not available, go into Safari’s Preferences and enable
the Develop menu on the Advanced preferences page.)

The Databases tab is named Storage in WebKit. I think Storage is a more
accurate name, so I wouldn’t be surprised if this change eventually
shows up in Safari.

The Web Inspector included in desktop Safari is extremely helpful when debugging.
By default, it appears as a pane of your current browser window. If you click the undock
icon (hover over the icons at the bottom left to see what they do), Web Inspector will
appear in a separate window as shown in Figure 5-4. The interface even allows you to
send arbitrary SQL queries to the database by clicking on the database name (see
Figure 5-5).

Figure 5-4. The Databases tab in Safari’s Web Inspector with some test records displayed

Inserting Rows
Now that we have a database set up to receive some entries, we can start building the
createEntry() function. First, you have to override the submit event of the
#createEntry form. You can do so by binding the createEntry() function to the submit
event in the document ready function in kilo.js (here I just show the first few lines, with
the added line of code in bold):

$(document).ready(function(){
 $('#createEntry form').submit(createEntry);
 $('#settings form').submit(saveSettings);

78 | Chapter 5: Client-Side Data Storage

 $('#settings').bind('pageAnimationStart', loadSettings);
 ...

Figure 5-5. The Databases tab in Safari’s Web Inspector allows you to execute arbitrary SQL
statements against your database

Now when a user submits the #createEntry form, the createEntry() function will be
called. Next, add the following to kilo.js to create the record in the database:

function createEntry() {
 var date = sessionStorage.currentDate;
 var calories = $('#calories').val();
 var food = $('#food').val();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'INSERT INTO entries (date, calories, food) VALUES (?, ?, ?);',
 [date, calories, food],
 function(){
 refreshEntries();
 jQT.goBack();
 },
 errorHandler
);
 }
);
 return false;
}

I’m setting some variables that I’m going to use in the SQL query. If you recall,
the date that the user tapped on the Dates panel will be stored in
sessionStorage.currentDate. The other two values (calories and food) are pulled
out of the data entry form using the same approach that we saw earlier with the
Settings form.

Then, I open a database transaction and run an executeSql() call. Here I am passing
four parameters to the executeSql() method:

Client-Side Database | 79

www.dbooks.org

https://www.dbooks.org/

'INSERT INTO entries (date, calories, food) VALUES (?, ?, ?);'
This is the statement that will be executed. The question marks are data
placeholders.

[date, calories, food]
This is an array of the values being sent to the database. They correspond by
position with the data placeholder question marks in the SQL statement.

function(){refreshEntries();jQT.goBack();}
This anonymous function will execute if the SQL query is successful.

errorHandler
This is the name of the function that will execute if the SQL query fails.

Error handling

Assuming the insert is successful, the anonymous function passed as the third param-
eter will be executed. It calls the refreshEntries() function (which at the moment only
updates the title of the Date panel, but will soon cause the entries you create to appear
in the list there), and it calls jQTouch’s goBack() function to dismiss the New Entry
panel and return to the Date panel.

If the insert is not successful, the errorHandler() function will run. Add the following
to the kilo.js file:

function errorHandler(transaction, error) {
 alert('Oops. Error was '+error.message+' (Code '+error.code+')');
 return true;
}

The error handler is passed two parameters: the transaction object and the error object.
Here, I’m using the error object to alert the user to the message and error code that
were thrown.

Error handlers must return true or false. When an error handler returns true (i.e., “Yes,
this is a fatal error”), execution is halted and the entire transaction is rolled back. When
an error handler returns false (i.e., “No, this is not a fatal error”), execution will
continue.

In some cases, you might want to branch based on the type of error to decide whether
you should return true or false. Table 5-1 shows the current possible error codes ac-
cording to the W3C Web Database working draft specification.

Table 5-1. Web database error codes

Constant Code Situation

UNKNOWN_ERR 0 The transaction failed for reasons unrelated to the database itself and not covered by any
other error code.

DATABASE_ERR 1 The statement failed for database reasons not covered by any other error code.

80 | Chapter 5: Client-Side Data Storage

Constant Code Situation

VERSION_ERR 2 The operation failed because the actual database version was not what it should be. For
example, a statement found that the actual database version no longer matched the expected
version of the Database or DatabaseSync object, or the Database.changeVer
sion() or DatabaseSync.changeVersion() method was passed a version that
doesn’t match the actual database version.

TOO_LARGE_ERR 3 The statement failed because the data returned from the database was too large. The SQL
LIMIT modifier might be useful to reduce the size of the result set.

QUOTA_ERR 4 The statement failed because there was not enough remaining storage space, or the storage
quota was reached and the user declined to give more space to the database.

SYNTAX_ERR 5 The statement failed because of a syntax error, or the number of arguments did not match
the number of ? placeholders in the statement, or the statement tried to use a statement
that is not allowed, such as BEGIN, COMMIT, or ROLLBACK, or the statement tried to use a
verb that could modify the database but the transaction was read-only.

CONSTRAINT_ERR 6 An INSERT, UPDATE, or REPLACE statement failed due to a constraint failure. For example,
a row was being inserted and the value given for the primary key column duplicated the value
of an existing row.

TIMEOUT_ERR 7 A lock for the transaction could not be obtained in a reasonable time.

You may have noticed that the error handler function accepts a transaction object in
addition to the error object. It’s conceivable that in some cases you might want to
execute a SQL statement inside of the error handler, perhaps to log the error or record
some metadata for debugging or crash reporting purposes. The transaction object pa-
rameter allows you to make more executeSql() calls from inside the error handler, like
so:

function errorHandler(transaction, error) {
 alert('Oops. Error was '+error.message+' (Code '+error.code+')');
 transaction.executeSql('INSERT INTO errors (code, message) VALUES (?, ?);',
 [error.code, error.message]);
 return false;
}

Please take special note of the fact that I have to return false from the error handler if
I want my executeSql() statement to run. If I return true (or nothing at all), the entire
transaction—including this SQL statement—will be rolled back, thereby preventing
the desired result.

Transaction Callback Handlers
Although I won’t be doing so in my examples, you should know that you can also
specify success and error handlers on the transaction method itself. This gives you a
convenient location to execute code after a long series of executeSql() statements have
been completed.

Client-Side Database | 81

www.dbooks.org

https://www.dbooks.org/

Oddly, the parameter order for the transaction method’s callbacks is defined to be
error, then success (the reverse of the order for executeSql()). Here’s a version of the
createEntry() function with transaction callbacks added toward the end:

function createEntry() {
 var date = sessionStorage.currentDate;
 var calories = $('#calories').val();
 var food = $('#food').val();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'INSERT INTO entries (date, calories, food) VALUES (?, ?, ?);',
 [date, calories, food],
 function(){
 refreshEntries();
 jQT.goBack();
 },
 errorHandler
);
 },
 transactionErrorHandler,
 transactionSuccessHandler
);
 return false;
}

Selecting Rows and Handling Result Sets
The next step is to expand the refreshEntries() function to do more than just set the
title bar to the selected date. Specifically, I’m going to query the database for entries on
the selected date, and then append them to the #date ul element using the hidden
entryTemplate HTML for structure. It’s been a while since we looked at that code, so
here’s the Date panel again:

<div id="date">
 <div class="toolbar">
 <h1>Date</h1>
 Back
 +
 </div>
 <ul class="edgetoedge">
 <li id="entryTemplate" class="entry" style="display:none">
 Label
 000
 Delete

</div>

Recall that I had set the style attribute of the li to display: none, which causes it
not to show up on the page. I did this so I could use that HTML snippet as a template
for the database rows.

82 | Chapter 5: Client-Side Data Storage

Here’s the complete refreshEntries() function, which you must use to replace the
existing refreshEntries() function:

function refreshEntries() {
 var currentDate = sessionStorage.currentDate;
 $('#date h1').text(currentDate);
 $('#date ul li:gt(0)').remove();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'SELECT * FROM entries WHERE date = ? ORDER BY food;',
 [currentDate],
 function (transaction, result) {
 for (var i=0; i < result.rows.length; i++) {
 var row = result.rows.item(i);
 var newEntryRow = $('#entryTemplate').clone();
 newEntryRow.removeAttr('id');
 newEntryRow.removeAttr('style');
 newEntryRow.data('entryId', row.id);
 newEntryRow.appendTo('#date ul');
 newEntryRow.find('.label').text(row.food);
 newEntryRow.find('.calories').text(row.calories);
 }
 },
 errorHandler
);
 }
);
}

These two lines set the toolbar title of the Date panel to the contents of the
currentDate value saved in sessionStorage.

On this line I’m using jQuery’s gt() function (gt stands for “greater than”) to select
and remove any li elements with an index greater than 0. The first time through,
this will do nothing because the only li will be the one with the id of
entryTemplate, which has an index of 0. However, on subsequent visits to the page
we need to remove any additional lis before appending rows from the database
again. Otherwise, items would end up appearing multiple times in the list.

On these three lines, I’m setting up a database transaction and the executeSql
statement.

This line contains the first parameter for the executeSql statement. It’s a simple
SELECT statement with a question mark acting as a data placeholder.

This is a single-element array that contains the currently selected date. This will
replace the question mark in the SQL query. Note that quotes around the ? are not
necessary—escaping and quoting of data is handled automatically.

This anonymous function will be called in the event of a successful query. It accepts
two parameters: transaction and result.

Client-Side Database | 83

www.dbooks.org

https://www.dbooks.org/

The transaction object can be used within the success handler to send new queries
to the database, as we saw with the error handler previously. However, there is no
need to do that in this case, so we won’t be using it.

The result object is what we are most interested in here. It has three read-only
properties: rowsAffected, which you can use to determine the number of rows af-
fected by an insert, update, or delete query; insertId, which returns the primary key
of the last row created in an insert operation; and rows, which has the found records.

The rows object will contain 0 or more row objects, and also has a length property
that I use in the for loop on the next line.

On this line, I use the item() method of the rows object to set the row variable to the
contents of the current row.

On this line, I clone() the template li and remove its id and style attributes on the
next two lines. Removing the style will make the row visible, and removing the id
is important because otherwise we would end up with multiple items on the page
with the same id.

On this line, I store the value of the row’s id property as data on the li itself (we’ll
need that later if the user decides to delete the entry).

This is where I append the li element to the parent ul. On the next two lines, I
update the label and calories span child elements of the li with the corresponding
data from the row object.

With all this out of the way, our Date panel will display an li for each row in the
database that corresponds to the selected date. Each row will have a label, calories, and
a Delete button. Once we create a few rows, you can see that we need to add a bit of
CSS to style things up nicely (Figure 5-6).

Save the following CSS into a file named kilo.css:

#date ul li {
 position: relative;
}
#date ul li span {
 color: #FFFFFF;
 text-shadow: rgba(0,0,0,.7) 0 1px 2px;
}
#date ul li .delete {
 position: absolute;
 top: 5px;
 right: 6px;
 font-size: 12px;
 line-height: 30px;
 padding: 0 3px;
 border-width: 0 5px;
 -webkit-border-image: url(themes/jqt/img/button.png) 0 5 0 5;
}

84 | Chapter 5: Client-Side Data Storage

Now, link to kilo.css by adding the following line to the head section of index.html:

<link type="text/css" rel="stylesheet" media="screen" href="kilo.css">

Figure 5-6. The entries are showing up now, but they need to be fancied up with some CSS

Although the Delete buttons now look like buttons, they won’t do anything when
tapped at this point (see Figure 5-7). This is because I set them up using the span tag,
which is not an interactive element in an HTML page.

Figure 5-7. The entries with CSS applied

Client-Side Database | 85

www.dbooks.org

https://www.dbooks.org/

Deleting Rows
To make my Delete buttons do something when clicked, I need to bind a click event
handler to them with jQuery. I did the same sort of thing earlier with the items on the
Date panel using jQuery’s click() method.

Unfortunately, that approach won’t work in this case. Unlike the items on the Dates
panel, the entries on the Date panel are not static—they are added and removed
throughout the course of the user’s session. In fact, when the application launches,
there are no entries visible on the Date panel at all. Therefore, we have nothing to bind
the click to at launch.

The solution is to bind click events to the Delete buttons as they are created by the
refreshEntries() function. To do so, add the following to the end of the for loop:

newEntryRow.find('.delete').click(function(){
 var clickedEntry = $(this).parent();
 var clickedEntryId = clickedEntry.data('entryId');
 deleteEntryById(clickedEntryId);
 clickedEntry.slideUp();
});

The function begins by specifying that we are looking for any elements that match
the #date .delete selector, and calling the click() method on those elements. The
click() method accepts the anonymous function that will be used to handle the
event as its only parameter.

When the click handler is triggered, the parent of the Delete button (i.e., the li) is
located and stored in the clickedEntry variable.

On this line, I’m setting the clickedEntryId variable to the value of the entryId I
stored on the li element when it was created by the refreshEntries() function.

On this line, I pass the clicked id into the deleteEntryById() function, and then on
the next line, I use jQuery’s slideUp() method to gracefully remove the li from the
page.

JavaScript gurus in the crowd might wonder why I didn’t use jQuery’s
live() function to bind the delete handler to the Delete buttons. Un-
fortunately, the live() function doesn’t work with click on the iPhone
because click isn’t the event that bubbles up the DOM. For more in-
formation on jQuery’s live() function, please visit http://docs.jquery
.com/Events/live#typefn.

Add the following deleteEntryById() function to kilo.js to remove the entry from the
database:

function deleteEntryById(id) {
 db.transaction(
 function(transaction) {

86 | Chapter 5: Client-Side Data Storage

http://docs.jquery.com/Events/live#typefn
http://docs.jquery.com/Events/live#typefn

 transaction.executeSql('DELETE FROM entries WHERE id=?;',
 [id], null, errorHandler);
 }
);
}

As we’ve seen in previous examples, I open a transaction, pass it a callback function
with the transaction object as the parameter, and call the executeSql() method. I’m
passing in the SQL query and the id of the clicked record as the first two arguments.
The third argument is where the success handler would go, but I don’t need one, so I
just specify null. As the fourth argument, I specify the same default error handler that
we’ve been using all along.

And there you have it. It may have taken a lot of description to get to this point, but in
reality we haven’t had to write all that much code. In fact, the completed kilo.js file
(Example 5-1) only contains 108 lines of JavaScript.

Example 5-1. The complete JavaScript listing for Kilo database interaction

var jQT = $.jQTouch({
 icon: 'kilo.png',
 statusBar: 'black'
});
var db;
$(document).ready(function(){
 $('#createEntry form').submit(createEntry);
 $('#settings form').submit(saveSettings);
 $('#settings').bind('pageAnimationStart', loadSettings);
 $('#dates li a').click(function(){
 var dayOffset = this.id;
 var date = new Date();
 date.setDate(date.getDate() - dayOffset);
 sessionStorage.currentDate = date.getMonth() + 1 + '/' +
 date.getDate() + '/' +
 date.getFullYear();
 refreshEntries();
 });
 var shortName = 'Kilo';
 var version = '1.0';
 var displayName = 'Kilo';
 var maxSize = 65536;
 db = openDatabase(shortName, version, displayName, maxSize);
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'CREATE TABLE IF NOT EXISTS entries ' +
 ' (id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, ' +
 ' date DATE NOT NULL, food TEXT NOT NULL, ' +
 ' calories INTEGER NOT NULL);'
);
 }
);
});
function loadSettings() {

Client-Side Database | 87

www.dbooks.org

v@v
Text Box
Download at WoweBook.com

https://www.dbooks.org/

 $('#age').val(localStorage.age);
 $('#budget').val(localStorage.budget);
 $('#weight').val(localStorage.weight);
}
function saveSettings() {
 localStorage.age = $('#age').val();
 localStorage.budget = $('#budget').val();
 localStorage.weight = $('#weight').val();
 jQT.goBack();
 return false;
}
function createEntry() {
 var date = sessionStorage.currentDate;
 var calories = $('#calories').val();
 var food = $('#food').val();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'INSERT INTO entries (date, calories, food) VALUES (?, ?, ?);',
 [date, calories, food],
 function(){
 refreshEntries();
 jQT.goBack();
 },
 errorHandler
);
 }
);
 return false;
}
function refreshEntries() {
 var currentDate = sessionStorage.currentDate;
 $('#date h1').text(currentDate);
 $('#date ul li:gt(0)').remove();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'SELECT * FROM entries WHERE date = ? ORDER BY food;',
 [currentDate],
 function (transaction, result) {
 for (var i=0; i < result.rows.length; i++) {
 var row = result.rows.item(i);
 var newEntryRow = $('#entryTemplate').clone();
 newEntryRow.removeAttr('id');
 newEntryRow.removeAttr('style');
 newEntryRow.data('entryId', row.id);
 newEntryRow.appendTo('#date ul');
 newEntryRow.find('.label').text(row.food);
 newEntryRow.find('.calories').text(row.calories);
 newEntryRow.find('.delete').click(function(){
 var clickedEntry = $(this).parent();
 var clickedEntryId = clickedEntry.data('entryId');
 deleteEntryById(clickedEntryId);
 clickedEntry.slideUp();
 });

88 | Chapter 5: Client-Side Data Storage

 }
 },
 errorHandler
);
 }
);
}
function deleteEntryById(id) {
 db.transaction(
 function(transaction) {
 transaction.executeSql('DELETE FROM entries WHERE id=?;',
 [id], null, errorHandler);
 }
);
}
function errorHandler(transaction, error) {
 alert('Oops. Error was '+error.message+' (Code '+error.code+')');
 return true;
}

What You’ve Learned
In this chapter, you learned two ways to store user data on the client: key/value storage,
and the client-side SQL database. The client-side database in particular opens up a
world of possibilities for web-based application developers.

The only thing stopping us from running this example application in offline mode is
that we have to initially connect to the web server each time the app is launched to
download the HTML and related resources. Wouldn’t it be schweet if we could just
cache all that stuff locally on the device?

Yeah, it would. On to the next chapter!

What You’ve Learned | 89

www.dbooks.org

https://www.dbooks.org/

CHAPTER 6

Going Offline

There’s a feature of HTML5 called the offline application cache that allows users to run
web apps even when they are not connected to the Internet. It works like this: when a
user navigates to your web app, the browser downloads and stores all the files it needs
to display the page (HTML, CSS, JavaScript, images, etc.). The next time the user
navigates to your web app, the browser will recognize the URL and serve the files out
of the local application cache instead of pulling them across the network.

The Basics of the Offline Application Cache
The main component of the offline application cache is a cache manifest file that you
host on your web server. I’m going to use a simple example to explain the concepts
involved, and then I’ll show you how to apply what you’ve learned to the Kilo example
we’ve been working on.

A manifest file is just a simple text document that lives on your web server and is sent
to the user’s device with a content type of cache-manifest. The manifest contains a list
of files that a user’s device must download and save in order to function. Consider a
web directory containing the following files:

index.html
logo.jpg
scripts/demo.js
styles/screen.css

In this case, index.html is the page that will load into the browser when users visit your
application. The other files are referenced from within index.html. To make everything
available offline, create a file named demo.manifest in the directory with index.html.
Here’s a directory listing showing the added file:

demo.manifest
index.html
logo.jpg
scripts/demo.js
styles/screen.css

91

www.dbooks.org

https://www.dbooks.org/

Next, add the following lines to demo.manifest:

CACHE MANIFEST
index.html
logo.jpg
scripts/demo.js
styles/screen.css

The paths in the manifest are relative to the location of the manifest file. You can also
use absolute URLs, like so:

CACHE MANIFEST
http://www.example.com/index.html
http://www.example.com/logo.jpg
http://www.example.com/scripts/demo.js
http://www.example.com/styles/screen.css

Now that the manifest file is created, you need to link to it by adding a manifest attribute
to the HTML tag inside index.html:

<html manifest="demo.manifest">

You must serve the manifest file with the text/cache-manifest content type or the
browser will not recognize it. If you are using the Apache web server or a compatible
web server, you can accomplish this by adding an .htaccess file to your web directory
with the following line:

AddType text/cache-manifest .manifest

If the .htaccess file doesn’t work for you, refer to the portion of your web
server documentation that pertains to MIME types. You must
associate the file extension .manifest with the MIME type of
text/cache-manifest. If your website is hosted by a web hosting pro-
vider, your provider may have a control panel for your website where
you can add the appropriate MIME type. I’ll also show you an example
that uses a PHP script in place of the .htaccess file a little later on in this
chapter.

Mac OS X and the .htaccess File
If you are serving up web pages on your local network using the Apache web server
that’s included with Mac OS X, it will ignore any .htaccess file in your personal web
folder (the Sites folder that’s in your home directory). However, you can enable support
for .htaccess by opening Applications→Utilities→Terminal and typing these commands
(you’ll need to type your password when prompted):

cd /etc/apache2/users
sudo pico $USER.conf

This loads your personal Apache configuration file into the Pico editor. (You can see a
list of editor commands at the bottom of the screen; the ̂ symbol indicates the Control
key.) Use the arrow keys to move down to the line AllowOverride None, and replace the

92 | Chapter 6: Going Offline

word None with the word All. Then press Control-X to exit, answer Y to save changes,
and press Return to save the file. Then, start System Preferences, go to Sharing, and, if
needed, click the lock icon labeled “Click the lock to make changes” and type your
password when prompted. Finally, clear the checkbox next to Web Sharing and then
check it again (this restarts Web Sharing). The web server on your Mac should now
respect the settings in any .htaccess files you put in your Sites directory or its
subdirectories.

Our offline application cache is now in working order. The next time a user browses
to http://example.com/index.html, the page and its resources will load normally over the
network. In the background, all the files listed in the manifest will be downloaded to
the user’s local disk (or her iPhone’s flash memory). Once the download completes and
the user refreshes the page, she’ll be accessing the local files only. She can now discon-
nect from the Internet and continue to access the web app.

So now that the user is accessing our files locally on her device, we have a new problem:
how does she get updates when changes are made to the website?

When the user does have access to the Internet and navigates to the URL of our web
app, her browser checks the manifest file on our site to see if it still matches the local
copy. If the remote manifest has changed, the browser downloads all the files listed in
it. It downloads these in the background to a temporary cache.

The comparison between the local manifest and the remote manifest is
a byte-by-byte comparison of the file contents (including comments and
blank lines). The file modification timestamp and changes to any of the
resources themselves are irrelevant when determining whether or not
changes have been made.

If something goes wrong during the download (e.g., the user loses her Internet con-
nection), then the partially downloaded cache is automatically discarded and the pre-
vious one remains in effect. If the download is successful, the new local files will be
used the next time the user launches the app.

Application Cache Download Behavior
Remember that when a manifest is updated, the download of the new files takes place
in the background after the initial launch of the app. This means that even after the
download completes, the user will still be working with the old files. In other words,
the currently loaded page and all of its related files don’t automagically reload when
the download completes. The new files that were downloaded in the background will
not become visible until the user relaunches the app.

The Basics of the Offline Application Cache | 93

www.dbooks.org

https://www.dbooks.org/

This is very similar to standard desktop app update behavior. You launch an app; it
tells you that updates are available; you click to download updates; the download
completes; and you are prompted to relaunch the app for the updates to take effect.

Online Whitelist and Fallback Options
It is possible to force the browser to always access certain resources over the network.
This means that the browser will not cache those resources locally, and that they will
not be available when the user is offline. To specify a resource as online only, you use
the NETWORK: keyword (the trailing : is essential) in the manifest file like so:

CACHE MANIFEST
index.html
scripts/demo.js
styles/screen.css

NETWORK:
logo.jpg

Here, I’ve whitelisted logo.jpg by moving it into the NETWORK section of the manifest file.
When the user is offline, the image will show up as a broken image link (Figure 6-1).
When he is online, it will appear normally (Figure 6-2).

Figure 6-1. Whitelisted images will show up as broken links when the user is offline

94 | Chapter 6: Going Offline

If you don’t want offline users to see the broken image, you can use the FALLBACK key-
word to specify a fallback resource like so:

CACHE MANIFEST
index.html
scripts/demo.js
styles/screen.css

FALLBACK:
logo.jpg offline.jpg

Figure 6-2. Whitelisted images will show up normally when the user is online

Now, when the user is offline, he’ll see offline.jpg (Figure 6-3), and when he’s online
he’ll see logo.jpg (Figure 6-4).

This becomes even more useful when you consider that you can specify a single fallback
image for multiple resources by using a partial path. Let’s say I add an images directory
to my website and put some files in it:

/demo.manifest
/index.html
/images/logo.jpg
/images/logo2.jpg
/images/offline.jpg
/scripts/demo.js
/styles/screen.css

Online Whitelist and Fallback Options | 95

www.dbooks.org

https://www.dbooks.org/

Figure 6-3. Fallback images will show up when the user is offline

Figure 6-4. Hosted images will show up normally when the user is online

96 | Chapter 6: Going Offline

I can now tell the browser to fall back to offline.jpg for anything contained in the
images directory like so:

CACHE MANIFEST
index.html
scripts/demo.js
styles/screen.css

FALLBACK:
images/ images/offline.jpg

Now, when the user is offline, he’ll see offline.jpg (Figure 6-5), and when he’s online
he’ll see logo.jpg and logo2.jpg (Figure 6-6).

Figure 6-5. The same fallback image will show up in place of multiple images when the user is offline

Whether you should add resources to the NETWORK or FALLBACK section of the manifest
file depends on the nature of your application. Keep in mind that the offline application
cache is primarily intended to store apps locally on a device. It’s not really meant to be
used to decrease server load, increase performance, and so on.

In most cases you should be listing all of the files required to run your app in the manifest
file. If you have a lot of dynamic content and you are not sure how to reference it in the
manifest, your app is probably not a good fit for the offline application cache and you
might want to consider a different approach (a client-side database, perhaps).

Online Whitelist and Fallback Options | 97

www.dbooks.org

https://www.dbooks.org/

Creating a Dynamic Manifest File
Now that we’re comfortable with how the offline app cache works, let’s apply it to the
Kilo example we’ve been working on. Kilo consists of quite a few files, and manually
listing them all in a manifest file would be a pain. Moreover, a single typo would inva-
lidate the entire manifest file and prevent the application from working offline.

Running PHP Scripts on Your Web Server
PHP is a versatile web scripting language and is supported by most web hosting pro-
viders. This means that on most web servers, you can create a file whose name ends
with the extension .php, add some PHP code to it, visit it in your web browser, and it
will just work. If you’ve been using a web server on your personal computer to serve
up pages to your iPhone, you’ll need to get set up to run PHP scripts. If you’re running
a web server on Windows, see http://php.net/manual/en/install.windows.php for down-
loads and information. PHP is easy to install on Linux (for example, Ubuntu users can
simply type sudo aptitude install apache2 php5 at a shell prompt).

Macs come with PHP installed, but you need to take a step to enable it. Similar to
what you did in “Mac OS X and the .htaccess File” on page 92, open
Applications→Utilities→Terminal and type these commands (you’ll need to type your
password when prompted):

cd /etc/apache2
sudo pico httpd.conf

Figure 6-6. Hosted images will show up normally when the user is online

98 | Chapter 6: Going Offline

http://php.net/manual/en/install.windows.php

Next, press Control-W. This brings up the option to search the file. Type “php5” and
then press Return. This brings you to a line that should look like this:

#LoadModule php5_module libexec/apache2/libphp5.so

Using the arrow keys, move to the beginning of the line and delete the # comment
character, which is preventing this line from having any effect. Then press Control-X
to exit, answer Y to save changes, and then press Return to save the file. Next, start
System Preferences, go to Sharing, and, if needed, click the lock icon labeled “Click the
lock to make changes” and type your password when prompted. Then, clear the check-
box next to Web Sharing and check it again. Now PHP should be enabled on your
Mac’s web server.

Next, create a file in the Sites subdirectory of your home folder named test.php with
these contents:

<?php
 phpinfo();
?>

Finally, visit the following URL in your browser: http://localhost/~YOURUSERNAME/
test.php. Replace YOURUSERNAME with your username, but don’t delete the ~. (You can
find out your username at the Terminal by typing echo $USER and pressing Return.) If
PHP is working, you’ll see a table displaying your PHP version number and a lot of
other information about your PHP installation. If it is not working, you’ll see nothing
but a blank page. Visit http://www.php.net/support.php for links to sources of docu-
mentation and help with using PHP.

To address this issue, we’re going to write a little PHP file that reads the contents of
the application directory (and its subdirectories) and creates the file list for us. Create
a new file in your Kilo directory named manifest.php and add the following code:

<?php
 header('Content-Type: text/cache-manifest');
 echo "CACHE MANIFEST\n";

 $dir = new RecursiveDirectoryIterator(".");
 foreach(new RecursiveIteratorIterator($dir) as $file) {
 if ($file->IsFile() &&
 $file != "./manifest.php" &&
 substr($file->getFilename(), 0, 1) != ".")
 {
 echo $file . "\n";
 }
 }
?>

I’m using the PHP header function to output this file with the cache-manifest content
type. Doing this is an alternative to using an .htaccess file to specify the content type
for the manifest file. In fact, you can remove the .htaccess file you created in “The
Basics of the Offline Application Cache” on page 92, if you are not using it for any
other purpose.

Creating a Dynamic Manifest File | 99

www.dbooks.org

http://www.php.net/support.php
https://www.dbooks.org/

As you saw earlier in this chapter, the first line of a cache manifest file must be CACHE
MANIFEST. As far as the browser is concerned, this is the first line of the document;
the PHP file runs on the web server, and the browser only sees the output of com-
mands that emit text, such as echo.

This line creates an object called $dir, which enumerates all the files in the current
directory. It does so recursively, which means that if you have any files in subdirec-
tories, it will find them, too.

Each time the program passes through this loop, it sets the variable $file to an object
that represents one of the files in the current directory. In English, this line would
read: “Each time through, set the file variable to the next file found in the current
directory or its subdirectories.”

The if statement here checks to make sure that the file is actually a file (and not a
directory or symbolic link). It also ignores files named manifest.php or any file that
starts with a . (such as .htaccess).

The leading ./ is part of the file’s full path; the . refers to the current
directory and the / separates elements of the file’s path. So there’s always
a ./ that appears before the filename in the output. However, when I
check for a leading . in the filename I use the getFilename function,
which returns the filename without the leading path. This way, I can
detect files beginning with . even if they are buried in a subdirectory.

Here’s where I display each file’s name.

To the browser, manifest.php will look like this:

CACHE MANIFEST
./index.html
./jqtouch/jqtouch.css
./jqtouch/jqtouch.js
./jqtouch/jqtouch.transitions.js
./jqtouch/jquery.js
./kilo.css
./kilo.js
./themes/apple/img/backButton.png
./themes/apple/img/blueButton.png
./themes/apple/img/cancel.png
./themes/apple/img/chevron.png
./themes/apple/img/grayButton.png
./themes/apple/img/listArrowSel.png
./themes/apple/img/listGroup.png
./themes/apple/img/loading.gif
./themes/apple/img/on_off.png
./themes/apple/img/pinstripes.png
./themes/apple/img/selection.png
./themes/apple/img/thumb.png
./themes/apple/img/toggle.png
./themes/apple/img/toggleOn.png

100 | Chapter 6: Going Offline

./themes/apple/img/toolbar.png

./themes/apple/img/toolButton.png

./themes/apple/img/whiteButton.png

./themes/apple/theme.css

./themes/jqt/img/back_button.png

./themes/jqt/img/back_button_clicked.png

./themes/jqt/img/button.png

./themes/jqt/img/button_clicked.png

./themes/jqt/img/chevron.png

./themes/jqt/img/chevron_circle.png

./themes/jqt/img/grayButton.png

./themes/jqt/img/loading.gif

./themes/jqt/img/on_off.png

./themes/jqt/img/rowhead.png

./themes/jqt/img/toggle.png

./themes/jqt/img/toggleOn.png

./themes/jqt/img/toolbar.png

./themes/jqt/img/whiteButton.png

./themes/jqt/theme.css

Try loading the page yourself in a browser (be sure to load it with an
HTTP URL such as http://localhost/~YOURUSERNAME/manifest.php). If
you see a lot more files in your listing, you may have some extraneous
files from the jQTouch distribution. The files LICENSE.txt,
README.txt, and sample.htaccess are safe to delete, as are the directo-
ries demos and extensions. If you see a number of directories
named .svn, you may also safely delete them, though they will not be
visible in the Mac OS X Finder (you can work with them from within
the Terminal, however).

Now open index.html and add a reference manifest.php like so:

<html manifest="manifest.php">

Now that the manifest is generated dynamically, let’s modify it so that its contents
change when any of the files in the directory change (remember that the client will
redownload the application only if the manifest’s contents have changed). Here is the
modified manifest.php:

<?php
 header('Content-Type: text/cache-manifest');
 echo "CACHE MANIFEST\n";

 $hashes = "";

 $dir = new RecursiveDirectoryIterator(".");
 foreach(new RecursiveIteratorIterator($dir) as $file) {
 if ($file->IsFile() &&
 $file != "./manifest.php" &&
 substr($file->getFilename(), 0, 1) != ".")
 {
 echo $file . "\n";

Creating a Dynamic Manifest File | 101

www.dbooks.org

https://www.dbooks.org/

 $hashes .= md5_file($file);
 }
 }
 echo "# Hash: " . md5($hashes) . "\n";
?>

Here, I’m initializing a string that will hold the hashed values of the files.

On this line I’m computing the hash of each file using PHP’s md5_file
function (Message-Digest algorithm 5), and appending it to the end of the $hashes
string. Any change to the file, however small, will also change the results of
the md5_file function. The hash is a 32-character string, such as
“4ac3c9c004cac7785fa6b132b4f18efc”.

Here’s where I take the big string of hashes (all of the 32-character strings for each
file concatenated together), and compute an MD5 hash of the string itself. This gives
us a short (32 characters, instead of 32 multiplied by the number of files) string that’s
printed out as a comment (beginning with the comment symbol #).

From the viewpoint of the client browser, there’s nothing special about this line. It’s
a comment, and the client browser ignores it. However, if one of the files is modified,
this line will change, which means the manifest has changed.

Here’s an example of what the manifest looks like with this change (some of the lines
have been truncated for brevity):

 CACHE MANIFEST
./index.html
./jqtouch/jqtouch.css
./jqtouch/jqtouch.js
...
./themes/jqt/img/toolbar.png
./themes/jqt/img/whiteButton.png
./themes/jqt/theme.css
Hash: ddaf5ebda18991c4a9da16c10f4e474a

The net result of all of this business is that changing a single character inside of any file
in the entire directory tree will insert a new hash string into the manifest. This means
that any edits we do to any Kilo files will essentially modify the manifest file, which in
turn will trigger a download the next time a user launches the app. Pretty nifty, eh?

Debugging
It can be tough to debug apps that use the offline application cache because there’s very
little visibility into what is going on. You find yourself constantly wondering if your
files have downloaded, or if you are viewing remote or local resources. Plus, switching
your device between online and offline modes is not the snappiest procedure and can
really slow down the develop, test, debug cycle.

102 | Chapter 6: Going Offline

There are two things you can do to help determine what’s going on when things aren’t
playing nice: set up some console logging in JavaScript, and browse the application
cache database.

If you want to see what’s happening from the web server’s perspective,
you can monitor its logfiles. For example, if you are running a web server
on a Mac computer, you can open a Terminal window
(Applications→Utilities→Terminal) and run these commands (the $ is
the Terminal shell prompt and should not be typed):

$ cd /var/log/apache2/
$ tail -f access_log

This will display the web server’s log entries, showing information such
as the date and time a document was accessed, as well as the name of
the document. When you are done, press Control-C to stop following
the log.

The JavaScript Console
Adding the following JavaScript to your web apps during development will make your
life a lot easier, and can actually help you internalize the process of what is going on.
The following script will send feedback to the console and free you from having to
constantly refresh the browser window (you can store the script in a .js file that your
HTML document references via the script element’s src attribute):

// Convenience array of status values
var cacheStatusValues = [];
cacheStatusValues[0] = 'uncached';
cacheStatusValues[1] = 'idle';
cacheStatusValues[2] = 'checking';
cacheStatusValues[3] = 'downloading';
cacheStatusValues[4] = 'updateready';
cacheStatusValues[5] = 'obsolete';

// Listeners for all possible events
var cache = window.applicationCache;
cache.addEventListener('cached', logEvent, false);
cache.addEventListener('checking', logEvent, false);
cache.addEventListener('downloading', logEvent, false);
cache.addEventListener('error', logEvent, false);
cache.addEventListener('noupdate', logEvent, false);
cache.addEventListener('obsolete', logEvent, false);
cache.addEventListener('progress', logEvent, false);
cache.addEventListener('updateready', logEvent, false);

// Log every event to the console
function logEvent(e) {
 var online, status, type, message;
 online = (navigator.onLine) ? 'yes' : 'no';
 status = cacheStatusValues[cache.status];
 type = e.type;

Debugging | 103

www.dbooks.org

https://www.dbooks.org/

 message = 'online: ' + online;
 message+= ', event: ' + type;
 message+= ', status: ' + status;
 if (type == 'error' && navigator.onLine) {
 message+= ' (prolly a syntax error in manifest)';
 }
 console.log(message);
}

// Swap in newly downloaded files when update is ready
window.applicationCache.addEventListener(
 'updateready',
 function(){
 window.applicationCache.swapCache();
 console.log('swap cache has been called');
 },
 false
);

// Check for manifest changes every 10 seconds
setInterval(function(){cache.update()}, 10000);

This might look like a lot of code, but there really isn’t that much going on here:

The first seven lines are just me setting up an array of status values for the application
cache object. There are six possible values defined by the HTML5 spec, and here
I’m mapping their integer values to a short description (e.g., status 3 means “down-
loading”). I’ve included them to make the logging more descriptive down in the
logEvent function.

In the next chunk of code, I’m setting up an event listener for every possible event
defined by the spec. Each one calls the logEvent function.

The logEvent function takes the event as input and makes a few simple calculations
in order to compose a descriptive log message. Note that if the event type is error
and the user is online, there is probably a syntax error in the remote manifest. Syntax
errors are extremely easy to make in the manifest because all of the paths have to be
valid. If you rename or move a file but forget to update the manifest, future updates
will fail.

Once I have my message composed, I send it to the console.

You can view the console messages in desktop Safari by selecting Develop→Show Error
Console. You can view the console messages in the iPhone Simulator by going to
Settings→Safari→Developer and turning the Debug Console on. When debugging is
turned on, Mobile Safari displays a header above the location bar (Figure 6-7) that
allows you to navigate to the debugging console (Figure 6-8).

104 | Chapter 6: Going Offline

Figure 6-7. Mobile Safari with debugging turned on

Figure 6-8. Mobile Safari debugging console

Debugging | 105

www.dbooks.org

https://www.dbooks.org/

If you don’t see the Develop menu in the Safari menu bar, open your
Safari application preferences, click the Advanced tab, and make sure
that “Show Develop menu in menu bar” is checked.

If you load the web page in your browser and then open the console, you’ll see new
messages appear every 10 seconds (Figure 6-9). If you don’t see anything, update the
version number in demo.manifest and reload the page in your browser twice. I strongly
encourage you to play around with this until you really have a feel for what’s going on.
You can tinker around with the manifest (change the contents and save it, rename it,
move it to another directory, etc.) and watch the results of your actions pop into the
console like magic.

Figure 6-9. The console.log() function can be used to send debugging messages to the JavaScript console

106 | Chapter 6: Going Offline

The Application Cache Database
If you are having serious trouble debugging your offline web app, there is a way to get
under the hood and see what’s going on. If you load your app in the iPhone Simulator,
it stores the cached resources in a SQLite database that you can peruse with the sqlite3
command-line interface. Of course, having some knowledge of SQL would help here,
but you can get pretty far by mimicking the examples in this section.

You will need to install the iPhone SDK from Apple in order to get the
simulator. You can get the SDK by registering as an Apple developer at
http://developer.apple.com/iphone/. Registration costs nothing, but you
will need to enroll in an iPhone developer program (note that an Apple
developer is different from an iPhone developer) if you want to submit
your apps to the App Store.

On my machine, the iPhone Simulator app cache database is located here:

/Users/jstark/Library/Application Support/iPhone
Simulator/User/Library/Caches/com.apple.WebAppCache/ApplicationCache.db

The com.apple.WebAppCache directory and ApplicationCache.db data-
base will not exist unless you have loaded the web application on the
iPhone Simulator at least once.

Using the sqlite3 command-line interface, you can poke around in the database to get
an idea of what’s going on. First, you have to connect to the database. Open the Ter-
minal (Applications→Utilities→Terminal) and type the commands that follow. (The $
is the Terminal prompt and should not be typed.)

$ cd "$HOME/Library/Application Support/iPhone Simulator"
$ cd User/Library/Caches/com.apple.WebAppCache/
$ sqlite3 ApplicationCache.db

On the Mac, desktop Safari’s application cache can be found in a di-
rectory adjacent to your temporary directory. You can get to it in the
terminal with:

$ cd $TMPDIR/../-Caches-/com.apple.Safari/
$ sqlite3 ApplicationCache.db

Once connected, you’ll see something like:

SQLite version 3.6.17
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite>

Debugging | 107

www.dbooks.org

http://developer.apple.com/iphone/
https://www.dbooks.org/

Now you can type SQLite control statements and arbitrary SQL commands at the
sqlite> prompt. To see a list of SQLite control statements, type .help at the prompt.
You’ll see a long list of commands, of which these are the most important for our
purposes:

.exit Exit this program

.header(s) ON|OFF Turn display of headers on or off

.help Show this message

.mode MODE ?TABLE? Set output mode where MODE is one of:
 csv Comma-separated values
 column Left-aligned columns. (See .width)
 html HTML <table> code
 insert SQL insert statements for TABLE
 line One value per line
 list Values delimited by .separator string
 tabs Tab-separated values
 tcl TCL list elements
.quit Exit this program
.tables ?PATTERN? List names of tables matching a LIKE pattern

To retrieve a list of tables used in the cache manifest database, use the .tables
command:

sqlite> .tables
CacheEntries CacheResourceData CacheWhitelistURLs FallbackURLs
CacheGroups CacheResources Caches

Before I start querying the tables, I’m going to set .headers to ON, which will add field
names to the output, and set .mode to line to make things easier to read. Type the
commands shown in bold (sqlite> is the SQLite prompt):

sqlite> .headers on
sqlite> .mode line

CacheGroups is the top level of the data model. It contains a row for each version of the
manifest. Type the command shown in bold (don’t forget the ;):

sqlite> select * from CacheGroups;
 id = 1
manifestHostHash = 2669513278
 manifestURL = http://jonathanstark.com/labs/kilo10/kilo.manifest
 newestCache = 7

 id = 2
manifestHostHash = 2669513278
 manifestURL = http://jonathanstark.com/labs/cache-manifest-bug/test.manifest
 newestCache = 6

 id = 5
manifestHostHash = 2669513278
 manifestURL = http://jonathanstark.com/labs/kilo11/kilo.manifest
 newestCache = 13

 id = 6
manifestHostHash = 2669513278

108 | Chapter 6: Going Offline

 manifestURL = http://jonathanstark.com/labs/app-cache-3/demo.manifest
 newestCache = 14

As you can see, I have four cache groups on my machine. You probably only have one
at this point. The fields break down like this:

id
A unique autoincrement serial number assigned to the row. Every time Mobile
Safari inserts a row into this table, this number is incremented. If, for some reason,
Mobile Safari needs to delete a row, you will see gaps in the sequence.

manifestHostHash
Used with manifestURL to uniquely identify the cache.

manifestURL
The location of the remote manifest file.

newestCache
This is a Caches row ID (i.e., a foreign key to the Caches table) that indicates which
cache to use.

A column in a database table is considered a key when it identifies
something. For example, a unique key identifies a row in the table un-
ambiguously. A primary key is a unique key that has been designated as
the key you use to identify a row. For example, two columns are poten-
tial unique keys because there is only one row in the CacheGroups table
for any given value of these columns: id and manifestURL. However,
id is a simple numeric key, and it’s very fast to make comparisons to it
(and it requires less storage for other tables to refer to it). So, id is both
a unique key and the primary key for the CacheGroups table.

A foreign key is a link from one table to another. The cacheGroup column
in the Caches table (discussed next) identifies a row in the CacheGroups
table, establishing a link from a row in one table to the other.

Now, switch to column mode and select all rows from the Caches table:

sqlite> .mode column
sqlite> select * from Caches;
id cacheGroup
---------- ----------
6 2
7 1
13 5
14 6

The Caches table has just two fields: id (primary key for the Caches row), and
cacheGroup (foreign key that links a Caches id to a row in the CacheGroups table). If
Safari were in the process of downloading a new cache, there would be two Cache rows
for the CacheGroup (one current, one temporary). In all other cases, there is only one
Cache row per CacheGroup.

Debugging | 109

www.dbooks.org

https://www.dbooks.org/

Next, let’s select all of the rows from the CacheEntries table:

sqlite> select * from CacheEntries;
cache type resource
---------- ---------- ----------
6 1 67
6 4 68
6 2 69
7 4 70
7 4 71
7 4 72
7 4 73
7 2 74
7 4 75
7 4 76
7 4 77
7 1 78
7 4 79
13 4 160
13 4 161
13 4 162
13 4 163
13 2 164
13 4 165
13 4 166
13 4 167
13 4 168
13 1 169
13 4 170
13 4 171
13 4 172
13 4 173
13 4 174
13 4 175
14 4 176
14 16 177
14 4 178
14 1 179
14 4 180
14 2 181

Not much to look at here. Just two foreign keys (cache, which is a foreign key to the
Caches.id column, and resource, which is a foreign key to CacheResources.id) and a
type field. I’ll redo that query with a join to the CacheResources table so you can see
how the type corresponds to the actual files. Notice that first I set the column widths
so the URLs don’t get cut off (the ...> prompt indicates that I pressed Return before
finishing the statement with the ; terminator):

sqlite> .width 5 4 8 24 80
sqlite> select cache, type, resource, mimetype, url
 ...> from CacheEntries,CacheResources where resource=id order by type;
-- -- --- ----------- --
6 1 67 text/htm... http://jonathanstark.com/labs/cache-manifest-bug/
7 1 78 text/htm... http://jonathanstark.com/labs/kilo10/#home
13 1 169 text/htm... http://jonathanstark.com/labs/kilo11/#home

110 | Chapter 6: Going Offline

14 1 179 text/htm... http://jonathanstark.com/labs/app-cache-3/
6 2 69 text/cac... http://jonathanstark.com/labs/cache-manifest-bug/test.manifest
7 2 74 text/cac... http://jonathanstark.com/labs/kilo10/kilo.manifest
13 2 164 text/cac... http://jonathanstark.com/labs/kilo11/kilo.manifest
14 2 181 text/cac... http://jonathanstark.com/labs/app-cache-3/demo.manifest
6 4 68 image/pn... http://jonathanstark.com/labs/kilo10/icon.png
7 4 70 text/css... http://jonathanstark.com/labs/kilo10/jqtouch/jqtouch.css
7 4 71 image/pn... http://jonathanstark.com/labs/kilo10/icon.png
7 4 72 text/css... http://jonathanstark.com/labs/kilo10/themes/jqt/theme.css
7 4 73 image/pn... http://jonathanstark.com/labs/kilo10/startupScreen.png
7 4 75 applicat... http://jonathanstark.com/labs/kilo10/jqtouch/jqtouch.js
7 4 76 applicat... http://jonathanstark.com/labs/kilo10/kilo.js
7 4 77 applicat... http://jonathanstark.com/labs/kilo10/jqtouch/jquery.js
7 4 79 image/x-... http://jonathanstark.com/favicon.ico
13 4 160 applicat... http://jonathanstark.com/labs/kilo11/kilo.js
13 4 161 text/css... http://jonathanstark.com/labs/kilo11/jqtouch/jqtouch.css
13 4 162 image/pn... http://jonathanstark.com/labs/kilo11/icon.png
13 4 163 image/x-... http://jonathanstark.com/favicon.ico
13 4 165 image/pn... http://jonathanstark.com/labs/kilo11/themes/jqt/img/button.png
13 4 166 image/pn... http://jonathanstark.com/labs/kilo11/themes/jqt/
img/chevron.png
13 4 167 text/css... http://jonathanstark.com/labs/kilo11/themes/jqt/theme.css
13 4 168 applicat... http://jonathanstark.com/labs/kilo11/jqtouch/jquery.js
13 4 170 applicat... http://jonathanstark.com/labs/kilo11/jqtouch/jqtouch.js
13 4 171 image/pn... http://jonathanstark.com/labs/kilo11/themes/jqt/
img/back_button.png
13 4 172 image/pn... http://jonathanstark.com/labs/kilo11/themes/jqt/img/toolbar.png
13 4 173 image/pn... http://jonathanstark.com/labs/kilo11/startupScreen.png
13 4 174 image/pn... http://jonathanstark.com/labs/kilo11/themes/jqt/
img/back_button_clicked.png
13 4 175 image/pn... http://jonathanstark.com/labs/kilo11/themes/jqt/
img/button_clicked.png
14 4 176 text/htm... http://jonathanstark.com/labs/app-cache-3/index.html
14 4 178 applicat... http://jonathanstark.com/labs/app-cache-3/scripts/demo.js
14 4 180 text/css... http://jonathanstark.com/labs/app-cache-3/styles/screen.css
14 16 177 image/jp... http://jonathanstark.com/labs/app-cache-3/images/offline.jpg

Reviewing this list reveals that type 1 indicates a host file, type 2 is a manifest file, type
4 is any normal static resource, and type 16 is a fallback resource.

Let’s switch back to line mode and pull some data from the CacheResources table to see
what is going on in there. Here’s resource row 73 (if you’re trying this out yourself,
replace 73 with a valid id value from the results you got in the previous query of the
CacheResources table):

sqlite> .mode line
sqlite> select * from CacheResources where id=73;
 id = 73
 url = http://jonathanstark.com/labs/kilo10/startupScreen.png
 statusCode = 200
 responseURL = http://jonathanstark.com/labs/kilo10/startupScreen.png
 mimeType = image/png
textEncodingName =
 headers = Date:Thu, 24 Sep 2009 19:16:09 GMT
X-Pad:avoid browser bug

Debugging | 111

www.dbooks.org

https://www.dbooks.org/

Connection:close
Content-Length:12303
Last-Modified:Fri, 18 Sep 2009 05:02:26 GMT
Server:Apache/2.2.8 (Fedora)
Etag:"52c88b-300f-473d309c45c80"
Content-Type:image/png
Accept-Ranges:bytes

 data = 73

If you are familiar with the way HTTP requests work, you’ll recognize that this is exactly
the data that you’d need to fake a network response. Here Mobile Safari has all the info
needed to serve up a PNG file to the browser (or in this case, to itself; it is storing the
information needed to reproduce the behavior of the web server that originally provided
the file).

Well, in fact it has all of the info except for the actual image data. The image data is
stored in a blob field in CacheResourceData. I’d include it here, but it’s binary and not
much to look at. It’s interesting to note that even text datafiles (HTML, CSS, JavaScript,
etc.) and the like are stored as binary data in the blob field in CacheResourceData.

Let’s take a look at the CacheWhitelistURLs table, which contains all the elements iden-
tified in the NETWORK: section of the manifest:

sqlite> .width 80 5
sqlite> .mode column
sqlite> select * from CacheWhitelistURLs;
url cache
-- ------
http://jonathanstark.com/labs/kilo10/themes/jqt/img/back_button.png 7
http://jonathanstark.com/labs/kilo10/themes/jqt/img/back_button_clicked.png 7
http://jonathanstark.com/labs/kilo10/themes/jqt/img/button.png 7
http://jonathanstark.com/labs/kilo10/themes/jqt/img/button_clicked.png 7
http://jonathanstark.com/labs/kilo10/themes/jqt/img/chevron.png 7
http://jonathanstark.com/labs/kilo10/themes/jqt/img/toolbar.png 7

Here we just have the cache id and the URL to the online resource. If cache id 7 is
requested by the browser, these six images will be retrieved from their remote location
if the user is online. If the user is offline, they will show up as broken links because they
are not stored locally. It’s worth noting that the URLs have been fully expanded to
absolute URLs, even though they were listed in the manifest as relative URLs.

And finally, let’s take a look at the FallbackURLs table (everything from the FALLBACK:
section of the manifest):

sqlite> .mode line
sqlite> select * from FallbackURLs;
 namespace = http://jonathanstark.com/labs/app-cache-3/images/
fallbackURL = http://jonathanstark.com/labs/app-cache-3/images/offline.jpg
 cache = 14

112 | Chapter 6: Going Offline

As you can see, I currently have only one row in the FallbackURLs table. If cache id 14
is requested by the browser, and any URLs that begin with http://jonathanstark.com/
labs/app-cache-3/images/ fail for whatever reason (the user is offline, images are miss-
ing, etc.), the fallbackURL will be used instead.

I apologize if this section is a bit complex, but at this point it’s all we’ve got. Maybe
browser vendors will implement some sort of user interface that will allow us to browse
the application cache—similar to those for the local storage and client-side database—
but until that time comes, this is our only option for prowling around in the depths of
client-side storage.

What You’ve Learned
In this chapter, you’ve learned how to give users access to a web app, even when they
have no connection to the Internet. This offline mode applies whether the app is loaded
in Mobile Safari, or launched in full screen mode from a Web Clip icon on the desktop.
With this new addition to your programming toolbox, you now have the ability to
create a full-screen, offline app that is virtually indistinguishable from a native appli-
cation downloaded from the App Store.

Of course, a pure web app such as this is still limited by the security constraints that
exist for all web apps. For example, a web app can’t access the Address Book, the
camera, the accelerometer, or vibration on the iPhone. In the next chapter, I’ll address
these issues and more with the assistance of an open source project called PhoneGap.

What You’ve Learned | 113

www.dbooks.org

v@v
Text Box
Download at WoweBook.com

https://www.dbooks.org/

CHAPTER 7

Going Native

Our web app can now do many of the things that a native app can do: launch from the
home screen, run in full screen mode, store data locally on the iPhone, and operate in
offline mode. We’ve formatted it nicely for the device and set up native-looking ani-
mations to provide feedback and context to the user.

However, there are still two things that our app cannot do: it can’t access the device
features and hardware (e.g., geolocation, accelerometer, sound, and vibration), and it
can’t be submitted to the iTunes App Store. In this chapter, you will learn how to use
PhoneGap to bridge this, um...gap on your, ah...phone. Clever name, that!

Intro to PhoneGap
PhoneGap is an open source development tool created by Nitobi (http://www.nitobi
.com/) to act as a bridge between web applications and mobile devices. iPhone, Google
Android, and BlackBerry operating systems are currently supported, and Nokia and
Windows Mobile are in development.

In spite of its high profile, the iPhone is not even close to being the most widely used
mobile device. The mobile landscape is littered with devices, platforms, and operating
systems. If you are a web developer, you might be familiar with the pain of testing 10
or so browser versions across 10 or so operating system versions. Multiply that by 100,
and you have mobile. There is simply no cost-effective way to develop and test across
all of the possible combinations.

115

www.dbooks.org

http://www.nitobi.com/
http://www.nitobi.com/
https://www.dbooks.org/

Thanks to Apple, it’s now clear that there is a market for devices that offer a full-featured
web browsing experience. As more vendors include high-quality browsers on their
phones, the work that we’ve done here becomes more valuable. By building a web app,
we have effectively skirted much of the complexity of mobile development. We can
have one codebase deployed to multiple devices and platforms.

Of course, different devices have different features. Maybe a particular phone doesn’t
support multitouch, or doesn’t have an accelerometer. Even when devices do have the
same features, each has its own way of exposing these features to the developer.

PhoneGap abstracts the APIs for the most widely available mobile phone features so
mobile application developers can use the same code everywhere. You still need to
deploy your app manually using the SDK provided by the vendor, but you don’t need
to change your application code.

There are other projects and products available that serve the same basic
purpose as PhoneGap, such as RhoMobile (http://rhomobile.com/) and
Titanium Mobile (http://www.appcelerator.com/). I’m not familiar
enough with them to compare and contrast, but you might want to
check them out in case one suits your needs better than PhoneGap.

Since this is an iPhone book, I’m going to focus on the iPhone portion of PhoneGap.
Just be aware that you can also potentially deploy your app to Android, BlackBerry,
and Windows Mobile devices with little or no modification.

In the case of the iPhone, this SDK requirement means that you are going
to need a Mac with Xcode installed, and you are going to have to pay
money to join the iPhone Developer Program. Sorry about that. You can
get the SDK by registering as an Apple developer at http://developer.ap
ple.com/iphone/. Registration costs nothing, but you will need to enroll
in an iPhone developer program if you want to submit your apps to the
App Store or even run them on your own phone. You can, however, use
the free SDK to test your apps in the iPhone Simulator, which is included
with the iPhone SDK. After you’ve registered as an iPhone developer,
return to http://developer.apple.com/iphone/, log in, and download the
iPhone SDK. The iPhone SDK includes Xcode, which is the development
environment that you’ll use to test your apps in the simulator, run them
on your own iPhone, and submit them to the App Store.

To get started with PhoneGap, you first need to download it. You can do so by visiting
http://github.com/phonegap/phonegap and clicking the download button (Figure 7-1).
Assuming you’re on a Mac, you’ll probably want to download the ZIP version. When
the download completes, unarchive it to your desktop (Figure 7-2).

116 | Chapter 7: Going Native

http://rhomobile.com/
http://www.appcelerator.com/
http://developer.apple.com/iphone/
http://developer.apple.com/iphone/
http://developer.apple.com/iphone/
http://github.com/phonegap/phonegap

Figure 7-1. Download the latest version of PhoneGap from GitHub

Figure 7-2. Unzip the PhoneGap archive to your desktop

Intro to PhoneGap | 117

www.dbooks.org

https://www.dbooks.org/

PhoneGap download contains a bunch of device-specific directories (e.g., android,
iphone, blackberry, windows mobile), and some library and utility files and directories
(Figure 7-3). The only one we’ll be looking at is the iphone directory.

Figure 7-3. The top-level PhoneGap directory contains subdirectories for various mobile platforms

The iphone directory contains the starter files for an Xcode project (Figure 7-4). There
is nothing magical about these files, other than the fact that they were written for you
rather than by you; they’re just the kind of garden-variety source files that you’d find
in any Xcode project.

Figure 7-4. PhoneGap’s iPhone subdirectory contains starter files for an Xcode project

118 | Chapter 7: Going Native

Inside the iphone directory, there is a directory named www. You can think of this as
the web root of the application. By default, it contains two sample files named
index.html and master.css. These are used as the demo PhoneGap application. We don’t
need them, so you can delete them both (Figure 7-5).

Figure 7-5. Delete the two default files from the www directory

Next, copy all of the files from the Kilo app that we’ve been working on into the
www directory (on the Mac, hold down Option while dragging files to make a copy).
Don’t change your folder structure or naming; just drop everything in there as is
(Figure 7-6).

If you have added a manifest link to the html tag in index.html as de-
scribed in Chapter 6, you must remove it. It’s unnecessary when using
PhoneGap and may cause performance problems.

Next, go into your index.html file, add the following line to the <head> section, and save
the file:

<script type="text/javascript" src="phonegap.js" charset="utf-8"></script>

You don’t need to copy the phonegap.js file into your www directory. When you build
your app, Xcode takes care of this for you.

Intro to PhoneGap | 119

www.dbooks.org

https://www.dbooks.org/

Make sure the main page for your app is named index.html; otherwise,
PhoneGap won’t know what file to launch.

Unbelievably, we’re almost ready to test our app. Open the project in Xcode by double-
clicking the PhoneGap.xcodeproj file in the Finder. Once the project window is open,
make sure you have the most recent version of the iPhone Simulator (3.1.2 as of this
writing) selected as your active SDK and then click the Build and Run button (Fig-
ure 7-7). After about 10 seconds, the iPhone Simulator should appear and launch your
app.

Figure 7-6. Copy your entire web app into the www directory

120 | Chapter 7: Going Native

If the simulator does not launch, it means there is an error in your
project. Look for a red number in the bottom right corner of the Xcode
window; this is the number of errors encountered. Click the number for
details about the error, and then review these steps to figure out where
things went wrong. If you run into a problem you can’t resolve, visit the
PhoneGap community resources at http://phonegap.com/community.
Search through the wiki and Google Group for answers to your problem
before posting a question. If you do post a question, include as much
information as possible about the error.

Your app should now be running in the iPhone Simulator as a native app. This may
seem like no big deal, because the app will look and feel just like the full-screen web
app that we had running in Chapter 6. However, there is a profound difference: namely,
that we can now start accessing device features that were previously unavailable. Before
we get to that, though, we need to do a bit of cleanup.

Using the Screen’s Full Height
You’ll notice that there is a 40px gap at the bottom of the window (Figure 7-8). This
occurs because jQTouch does not realize that we are running in full screen mode, so
it’s allowing room for the Safari toolbar. This makes sense from jQTouch’s perspective,
because the app technically isn’t running as a full-screen web app. But it is running as

Figure 7-7. Select iPhone Simulator 3.1.2 as your active SDK

Intro to PhoneGap | 121

www.dbooks.org

http://phonegap.com/community
https://www.dbooks.org/

a native app, and therefore has access to the whole screen. Fortunately, the fix is easy.
Just open kilo.js and add the following code to the document ready function:

if (typeof(PhoneGap) != 'undefined') {
 $('body > *').css({minHeight: '460px !important'});
}

Now that you’ve opened your PhoneGap project in Xcode, you might
want to give Xcode’s built-in editor a try. To edit the kilo.js file in Xcode,
make sure the PhoneGap group is open in the Groups & Files panel on
the left side of the Xcode window. Expand the www folder and click
kilo.js to open it in Xcode’s editor.

This code uses the typeof operator to make sure the PhoneGap object has been defined.
If the code is running inside of PhoneGap, this conditional will evaluate to true. If the
code is launched as a web app, the PhoneGap object will be undefined and the conditional
will evaluate to false.

When the app is launched with PhoneGap, the immediate children of the HTML body
element will be given a minimum height of 460px. To make sure that the declaration
takes effect, I’ve added the !important directive to override any conflicting instructions
elsewhere in the stylesheets. Now the app will completely fill the window when
launched (Figure 7-9).

Figure 7-8. You’ll notice a 40px gap at the bottom of the screen

122 | Chapter 7: Going Native

Customizing the Title and Icon
Next, we need to change the default name and icon for the app. By default, PhoneGap
apps are called “PhoneGap” and have a blue icon with a ladder on it (Figure 7-10).

Figure 7-10. The default name and icon for our app

Figure 7-9. After the body height is changed from 420px to 460px, the app takes up the whole screen

Intro to PhoneGap | 123

www.dbooks.org

https://www.dbooks.org/

To change the app name on the home screen, open the project in Xcode by double-
clicking the PhoneGap.xcodeproj file in the Finder. Once it’s open, go to
PhoneGap→Config→Info.plist in the Groups & Files panel. The Info.plist file should be
displayed in the bottom-right panel of the window.

You should see that the bundle display name is set to PhoneGap (Figure 7-11). Double-
click PhoneGap and change it to Kilo (Figure 7-12). Then save the file, clean the project
(by clicking Build→Clean), and click the Build and Run button. The iPhone Simulator
should open and launch the app. Click the home button in the simulator to return to
the home screen and note that the app name has been updated from PhoneGap to Kilo
(Figure 7-13).

Figure 7-11. The bundle display name in Xcode is PhoneGap

Next, we need to change the home screen icon from the PhoneGap default (the ladder,
pictured in Figure 7-10) to our custom icon. The file format for both the app icon and
the Web Clip icon is a 57px × 57px PNG, so you can use the exact same web app icon
that you created for the home screen icon in “Adding an Icon to the Home
Screen” on page 46.

124 | Chapter 7: Going Native

Figure 7-12. The bundle display name is now set to the name of our app (Kilo)

Figure 7-13. The new bundle display name now appears on the iPhone home screen

Intro to PhoneGap | 125

www.dbooks.org

https://www.dbooks.org/

The only difference is that with the Web Clip icon, we can prevent the iPhone from
adding gloss to the graphic by toggling the addGlossToIcon setting in jQTouch; this
setting will have no effect in PhoneGap. To prevent adding gloss to your icon in
PhoneGap, select Config/Info.plist in the Groups & Files panel of the main Xcode win-
dow and check the box next to UIPrerenderedIcon in Info.plist (you may need to add
this to Info.plist; see “Adding Settings to Info.plist” next for instructions).

Adding Settings to Info.plist
If you don’t see the UIPrerenderedIcon option in Info.plist, you can add it by following
these steps:

1. Select Config/Info.plist in the Groups & Files panel of the main Xcode window
(Figure 7-14).

2. Control-click or right-click the last item in Info.plist to display the contextual
menu.

3. Select Add Row from the contextual menu (Figure 7-15).

4. Type UIPrerenderedIcon in the key field (Figure 7-16).

5. Press the Enter key to save your entry. The row should become highlighted (Fig-
ure 7-17).

6. Control-click or right-click the highlighted row to display the contextual menu
again, and select Boolean from the Value Type submenu (Figure 7-18). A checkbox
should appear in the value column.

7. Check the checkbox to tell Xcode not to add gloss to your icon (Figure 7-19).

Clean your project (by clicking Build→Clean), and when you build and run it, your icon
will appear without the gloss effect added.

Figure 7-14. Select Config/Info.plist in the Groups & Files panel of the main Xcode window

126 | Chapter 7: Going Native

The default PhoneGap home screen icon is named icon.png and is located in
PhoneGap’s iphone directory (Figure 7-20). Replace the default icon file with your cus-
tom file (Figures 7-21 and 7-22), clean the project (click Build→Clean), and click the
Build and Run button. The iPhone Simulator should open and launch the app. Click
the home button in the simulator to return to the home screen, and note that the app
icon has been updated to a chocolate frosted donut with jimmies on a pink background
(Figure 7-23).

Figure 7-15. Select Add Row from the contextual menu

Figure 7-16. Type UIPrerenderedIcon in the key field

Intro to PhoneGap | 127

www.dbooks.org

https://www.dbooks.org/

Figure 7-17. Press the Enter key to save your entry in the key field

Figure 7-18. Select Boolean from the Value Type submenu

Figure 7-19. Check the checkbox to tell Xcode not to add gloss to your icon

128 | Chapter 7: Going Native

Figure 7-20. The default home screen icon is a white ladder on a blue background

Figure 7-21. The custom home screen icon is a chocolate frosted donut with jimmies on a pink
background

Figure 7-22. Replace icon.png in iphone directory with your own custom 57px × 57px png graphic

Intro to PhoneGap | 129

www.dbooks.org

https://www.dbooks.org/

Creating a Startup Screen
Next we need to change the startup screen from the PhoneGap default
(Figure 7-24) to our custom startup screen. Back in “Providing a Custom Startup
Graphic” on page 49, you created a PNG file to serve as the startup screen when the
web app is launched in full screen mode from a Web Clip icon on the home screen.

Figure 7-24. We need to change the default startup graphic for the app

Figure 7-23. Our custom app icon now appears on the iPhone home screen

130 | Chapter 7: Going Native

For full-screen web apps that use a gray or black status bar, this graphic needs to be
320px × 460px, and for apps that use a black-translucent status bar, it must be 320px
× 480px (20 pixels taller).

With PhoneGap, the startup screen has to be 320px × 480px regardless of what type
of status bar is used. So if you created a 320px × 460px full-screen graphic, add 20px
to the height.

The default PhoneGap startup graphic is named Default.png and is located in
PhoneGap’s iphone directory (Figure 7-25). Replace the default startup graphic with
your custom graphic (as shown in Figures 7-26 and 7-27) as shown in Figure 7-27, clean
the project, and click the Build and Run button. The iPhone Simulator should open
and launch the app, and you should see the custom graphic displayed (Figure 7-28).

Figure 7-25. The default launch graphic says PhoneGap in gray text on a white background

Installing Your App on the iPhone
In the next section, we’ll add sound, vibration, alerts, and more to the Kilo example
application. Some of these features can’t be tested in the iPhone Simulator, so you need
to get Kilo installed on an actual iPhone before you can test any of this.

Installing Your App on the iPhone | 131

www.dbooks.org

https://www.dbooks.org/

Figure 7-26. The custom launch graphic says Kilo in gray text on a black background

Figure 7-27. Replace Default.png in the iphone directory with the custom 320px × 480px PNG graphic

Figure 7-28. Our custom startup graphic now appears when the app is launched

132 | Chapter 7: Going Native

To install an app on the iPhone, Apple requires that the app, the phone, and the de-
veloper (you) all be uniquely identified. These three pieces of data are combined in a
file called a “provisioning profile” that you will add to Xcode.

In order to generate a provisioning profile, you must first be a member of the iPhone
Developer Program. You then run the Development Provisioning Assistant (DPA)
found in the iPhone Developer Program Portal section of the iPhone developer site
(http://developer.apple.com/iphone/). You’ll be making a couple of trips into the Key-
chain Access application (located in /Applications/Utilities) to create certificate signing
requests and to install signed certificates that you download from the portal into your
own keychain. The DPA does an excellent job walking you through the steps needed
to create and install your provisioning profile, so I won’t rehash the instructions here.
However, I will give you some pointers:

• When I first started with iPhone app development, I made a few test App IDs in
the Program Portal, assuming that I could later edit or delete them once I figured
out how things worked. Well, I was wrong; you can’t edit or delete App IDs. This
means that two years later, I’m still staring at “JSC Temp App ID” when I log in
to the developer portal. If you are anything like me, this will drive you crazy, so
don’t make the same mistake!

• Keep your input brief but descriptive in the DPA. If your descriptors are too vague,
you’ll get confused as you add more items. If descriptors are too long, they’ll be
truncated in the online interface. Try to keep things to a max of about 20 characters.

• When prompted for an App ID description, just use the name of your app (and
possibly a version number, if you are planning on having multiple versions active
in the App Store at the same time—e.g., Kilo2).

• When prompted for a device description, include the type of device (iPhone, iPod
touch, etc.) and the hardware version (1G, 2G, 3G, 3GS, etc.). Don’t include the
OS version, because this can change without invalidating the provisioning profile.
Bear in mind that if you end up making beta versions of the app available to testers,
you’ll also want to include an owner identifier (for example, you could use initials:
ELS iPhone 3GS, JSC iPhone 2G, JSC iPhone 3G, JSC Touch 1G, etc.).

• When prompted for a profile description, combine the name of the app with the
target device (e.g., Kilo2 on JSC iPhone 3GS).

Once you’ve created your provisioning profile, you must download it and drag it onto
Xcode’s dock icon to make it available to your device. This brings up the organizer
window. If you have multiple apps, multiple devices, or both, you’ll have one provi-
sioning profile for each combination displayed in Xcode (Figure 7-29).

Now that your provisioning profile is available in Xcode, you need to update the bundle
identifier for your app. Select the appropriate provisioning profile in the Xcode organ-
izer window and copy the app identifier (Figure 7-30).

Installing Your App on the iPhone | 133

www.dbooks.org

http://developer.apple.com/iphone/
https://www.dbooks.org/

Then, click PhoneGap→Config→Info.plist in the Groups & Files panel of the main
Xcode window, and paste the app identifier into the bundle identifier field. If your app
identifier ends with an asterisk, replace the asterisk with a reverse domain-name–style
string such as com.jonathanstark.kilo (Figure 7-31).

Figure 7-29. Multiple provisioning profiles loaded in Xcode

Figure 7-30. Select the provisioning profile for your app/device combination in the Xcode organizer
window to locate your app identifier

134 | Chapter 7: Going Native

v@v
Text Box
Download at WoweBook.com

Now, plug your iPhone into your computer and select the iPhone device option as your
active SDK (Figure 7-32). Make sure to choose the iPhone device version that matches
the version of iPhone OS you are running on your iPhone (the most recent is 3.1.2 as
of this writing). Save the Info.plist file, clean the project (click Build→Clean), and click
the Build and Run button. After about 20 seconds, the app should launch on your
iPhone. The first time you launch it, you’ll be prompted to allow the codesign applica-
tion access to your keychain, and you’ll also be prompted to install the provisioning
profile on your iPhone. If you get any errors, restart Xcode and try again.

Now that the app is running on an actual iPhone, we can add some device-specific
features.

Figure 7-31. Paste your app identifier into the bundle identifier field, replacing the asterisk with a
reverse domain-name–style string

Installing Your App on the iPhone | 135

www.dbooks.org

https://www.dbooks.org/

Controlling the iPhone with JavaScript
The stage is now set for us to start enhancing our application with calls to the native
device features. PhoneGap makes this possible by exposing certain functionality via
JavaScript. This means that all you have to do to make the phone vibrate is add a bit
of JavaScript to your code. For example:

navigator.notification.vibrate();

Pretty simple, right?

Beep, Vibrate, and Alert
PhoneGap makes beep, vibrate, and alert functions so simple that I’m going to lump
them together into one example. Specifically, we’ll set up the app to beep, vibrate, and
display a custom alert when the user creates an entry that puts her over her daily calorie
budget. To do this, add the following function to the end of kilo.js:

function checkBudget() {
 var currentDate = sessionStorage.currentDate;
 var dailyBudget = localStorage.budget;
 db.transaction(
 function(transaction) {
 transaction.executeSql(

Figure 7-32. Select Device 3.1.2 as your active SDK, and click Build and Run to install and launch
your app on your iPhone

136 | Chapter 7: Going Native

 'SELECT SUM(calories) AS currentTotal FROM entries WHERE date = ?;',
 [currentDate],
 function (transaction, result) {
 var currentTotal = result.rows.item(0).currentTotal;
 if (currentTotal > dailyBudget) {
 var overage = currentTotal - dailyBudget;
 var message = 'You are '+overage
 + ' calories over your daily budget.
 + ' Better start jogging!';
 try {
 navigator.notification.beep();
 navigator.notification.vibrate();
 } catch(e){
 // No equivalent in web app
 }
 try {
 navigator.notification.alert(message,
 'Over Budget', 'Dang!');
 } catch(e) {
 alert(message);
 }
 }
 },
 errorHandler
);
 }
);
}

Here’s the blow-by-blow description:

Open the checkBudget() function. Initialize the currentDate variable to the value
stored in sessionStorage (i.e., the value entered by the user in the Settings panel),
and the dailyBudget variable to the value stored in localStorage (i.e., the date tapped
on the Dates panel).

Start a database transaction in preparation for calculating the total calories for the
current date.

Run the executeSql() method of the transaction object.

Let’s break down the four parameters of the executeSql() method:

The first parameter is a prepared SQL statement that uses the SUM function to add
up all the values in the calories column for the entries that match the current date.

The second parameter is a single-value array that will replace the question mark in
the prepared statement on the previous line.

The third parameter is an anonymous function that will be called if the SQL query
completes successfully (we’ll look at this in detail momentarily).

And here is what’s going on in the anonymous function that was passed in as the third
parameter:

Controlling the iPhone with JavaScript | 137

www.dbooks.org

https://www.dbooks.org/

It starts off by grabbing the current total from the first row of the result. Since we
are just asking for the sum of a column, the database is only going to return one row
(i.e., this query will always return one row). Remember that the records of the result
set are accessed with the item() method of the rows property of the result object,
and that the rows are 0 based (meaning that the first row is 0).

Check to see if the current calorie total for the day is greater than the daily budget
specified on the Settings panel. If so, the block that follows will be executed.

Calculate how far the user is over her calorie budget.

Compose a message to display to the user.

This is a try/catch block that attempts to call the beep() and vibrate() methods of
the navigator notification object. These methods only exist in PhoneGap, so if the
user is running the app in a browser, the methods will fail and execution will jump
to the catch block. Since there is no browser-based equivalent to beep or vibrate,
the catch block has been left empty.

The PhoneGap beep() method plays a .wav file when called. The file is named
beep.wav and lives in the iphone directory (Figure 7-33). The default file sounds sort
of like a cricket and is probably fine for most situations. If you’d prefer your own
beep sound, just create a .wav file named beep.wav and replace the default file in the
iphone directory.

This is a try/catch block that attempts to call the alert() method of the navigator
notification object. This method only exists in PhoneGap, so if the user is running
the app in a browser, the method will fail and execution will jump to the catch block.
The browser-based equivalent to the PhoneGap alert is a standard JavaScript alert,
which is called as a fallback.

There are a couple of differences between the PhoneGap alert and the native
JavaScript alert. For example, the PhoneGap alert allows you to control the title and
the button name (Figure 7-34); the JavaScript alert does not (Figure 7-35).

There is also a more subtle difference between the two alerts: the native JavaScript
alert is modal and the PhoneGap alert is not. In other words, script execution will
pause at the point at which you call a native alert, whereas execution will continue
with the PhoneGap version. This may or may not be a big deal depending on the
nature of your application, so keep this distinction in mind.

The fourth parameter is the name of the generic SQL error handler that will be called
in the event of a SQL error.

With our checkBudget() function complete, we can now call it by adding a single line
to the success callback of our createEntry() function:

138 | Chapter 7: Going Native

function createEntry() {
 var date = sessionStorage.currentDate;
 var calories = $('#calories').val();
 var food = $('#food').val();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'INSERT INTO entries (date, calories, food) VALUES (?, ?, ?);',
 [date, calories, food],
 function(){
 refreshEntries();
 checkBudget();
 jQT.goBack();
 },
 errorHandler
);
 }
);
 return false;
}

After you’ve made these changes, save the kilo.js file, clean the project (Build→Clean),
and click Build and Run.

Figure 7-33. The PhoneGap beep() method plays the beep.wav file from the iphone directory

Controlling the iPhone with JavaScript | 139

www.dbooks.org

https://www.dbooks.org/

Geolocation
Let’s update Kilo to save the location where entries are created. Once we have that
information, we’ll add a “Map Location” button that will open the built-in Maps ap-
plication and drop a pin at the point where the entry was created.

The first step is to add latitude and longitude columns to the database to store the
information. To do so, replace the CREATE TABLE statement in kilo.js with the following:

Figure 7-34. The PhoneGap alert allows you to specify the title and button label

Figure 7-35. A native JavaScript alert does not allow you to specify the title and button label

140 | Chapter 7: Going Native

db.transaction(
 function(transaction) {
 transaction.executeSql(
 'CREATE TABLE IF NOT EXISTS entries ' +
 ' (id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, ' +
 ' date DATE NOT NULL, food TEXT NOT NULL, ' +
 ' calories INTEGER NOT NULL, ' +
 ' longitude TEXT NOT NULL, latitude TEXT NOT NULL);'
);
 }
);

Next, we’ll rewrite the createEntry() function that we first saw in “Inserting
Rows” on page 79 to use the geolocation feature of the phone to determine the current
latitude and longitude. Replace the existing createEntry() function in kilo.js with this:

function createEntry() {
 try {
 navigator.geolocation.getCurrentPosition(
 function(position){
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 insertEntry(latitude, longitude);
 },
 function(){
 insertEntry();
 }
);
 } catch(e) {
 insertEntry();
 }
 return false;
}

Begin the createEntry() function.

Open a try block, because the navigator.geolocation call will fail if this code is run
outside of PhoneGap.

Call the getCurrentPosition() function of the geolocation object and pass it two
callback functions: one for success and one for errors.

This is the beginning of the success callback. Notice that it accepts a single parameter
(position).

These two lines grab the latitude and longitude coordinates out of the position
object.

Pass the latitude and longitude coordinates into a function called insertEntry(),
which we’ll look at momentarily.

This is the beginning of the error callback.

Controlling the iPhone with JavaScript | 141

www.dbooks.org

https://www.dbooks.org/

Because we’re in the error callback, this will only be called if geolocation failed
(perhaps the user did not allow the application to access his location when
prompted), so call the insertEntry() function without parameters.

Begin the catch block.

Because we’re in the catch block, this means that the navigator.geolocation call
failed, so call the insertEntry() function without parameters.

Return false to prevent the default navigation behavior of clicking the form’s submit
button.

Wondering where the SQL INSERT statement got to? Let’s take a look at the
insertEntry() function. This new function is what creates the entry in the database.
Add the following to kilo.js:

function insertEntry(latitude, longitude) {
 var date = sessionStorage.currentDate;
 var calories = $('#calories').val();
 var food = $('#food').val();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'INSERT INTO entries (date, calories, food, latitude, longitude) ' +
 'VALUES (?, ?, ?, ?, ?);',
 [date, calories, food, latitude, longitude],
 function(){
 refreshEntries();
 checkBudget();
 jQT.goBack();
 },
 errorHandler
);
 }
);
}

The beginning of the insertEntry() function, allowing for latitude and longitude
values to be passed in. Although there is no way to explicitly mark a parameter as
optional in JavaScript, these values will simply be undefined if they are not passed in.

Get the currentDate out of sessionStorage. Remember that the value will be set when
the user taps an item on the Dates panel to navigate to the Date panel. When he taps
the + button to reveal the New Entry panel, this value will still be set to the currently
selected Date panel item.

Get the calories value out of the createEntry form.

Get the food value out of the createEntry form.

Begin a database transaction.

Pass a callback function into the transaction, with the transaction object as its sole
parameter.

142 | Chapter 7: Going Native

Call the executeSql() method of the transaction object.

Define the SQL prepared statement with question marks as data placeholders.

Pass an array of values for the placeholders. If latitude and longitude were not
passed into the insertEntry() function, they will be undefined.

Define the success callback function.

Define the error callback function.

In order to confirm that Kilo is actually saving these location values, we’ll want to
display them somewhere in the interface. Let’s add an Inspect Entry panel to display
the stored values. We’ll include a Map Location button on the panel that will display
where the entry was created. Add the following to index.html, right before the closing
body tag (</body>):

<div id="inspectEntry">
 <div class="toolbar">
 <h1>Inspect Entry</h1>
 Cancel
 </div>
 <form method="post">
 <ul class="rounded">
 <input type="text" placeholder="Food" name="food" value="" />
 <input type="tel" placeholder="Calories" name="calories"
 value="" />
 <input type="submit" value="Save Changes" />

 <ul class="rounded">
 <input type="text" name="latitude" value="" />
 <input type="text" name="longitude" value="" />
 <p class="whiteButton" id="mapLocation">Map Location</p>

 </form>
</div>

This should look very similar to the New Entry panel that we first saw in Exam-
ple 4-5, so I’ll just call out a couple of things.

The input type has been set to tel to call the telephone keyboard when the cursor
is placed in the field. This is a bit of a hack, but I think it’s worth it because that
keyboard is much more appropriate for this field.

The latitude and longitude fields are editable and contained within the form, which
means that the user is able to edit them. This probably would not make sense in the
final application, but it makes it a lot easier to test during development because you
can enter location values manually to test the mapping button.

This Map Location button won’t do anything when clicked at this point; we’ll add
a click handler to it momentarily.

Controlling the iPhone with JavaScript | 143

www.dbooks.org

https://www.dbooks.org/

Now we need to give the user a way to navigate to this Inspect Entry panel, so we’ll
modify the behavior of the Date panel such that when the user taps an entry in the list,
the Inspect Entry panel will slide up from the bottom of the screen.

The first step is to wire up the click event handler (which we’ll create next), and also
to modify the way clicks on the Delete button are processed. Add the three highlighted
changes below to the refreshEntries() function in kilo.js:

function refreshEntries() {
 var currentDate = sessionStorage.currentDate;
 $('#date h1').text(currentDate);
 $('#date ul li:gt(0)').remove();
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'SELECT * FROM entries WHERE date = ? ORDER BY food;',
 [currentDate],
 function (transaction, result) {
 for (var i=0; i < result.rows.length; i++) {
 var row = result.rows.item(i);
 var newEntryRow = $('#entryTemplate').clone();
 newEntryRow.removeAttr('id');
 newEntryRow.removeAttr('style');
 newEntryRow.data('entryId', row.id);
 newEntryRow.appendTo('#date ul');
 newEntryRow.find('.label').text(row.food);
 newEntryRow.find('.calories').text(row.calories);
 newEntryRow.find('.delete').click(function(e){
 var clickedEntry = $(this).parent();
 var clickedEntryId = clickedEntry.data('entryId');
 deleteEntryById(clickedEntryId);
 clickedEntry.slideUp();
 e.stopPropagation();
 });
 newEntryRow.click(entryClickHandler);
 }
 },
 errorHandler
);
 }
);
}

Note that we have to add the e parameter (the event) to the function call in order to
have access to the stopPropagation() method of the event, used shortly. If we didn’t
add the e parameter, e.stopPropagation() would be undefined.

The e.stopPropagation(); added to the Delete button click handler tells the browser
not to let the click event bubble up the DOM (Document Object Model) to parent
elements. This is important because we’ve now added a click handler to the row
itself, and the entry row is the parent of the Delete button. If we didn’t call
stopPropagation(), both the Delete button handler and the entryClickHandler
would fire when the user tapped the Delete button.

144 | Chapter 7: Going Native

The newEntryRow.click(entryClickHandler); tells the browser to call the
entryClickHandler function when the entry is tapped.

Now let’s add the entryClickHandler() function to kilo.js:

function entryClickHandler(e){
 sessionStorage.entryId = $(this).data('entryId');
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 'SELECT * FROM entries WHERE id = ?;',
 [sessionStorage.entryId],
 function (transaction, result) {
 var row = result.rows.item(0);
 var food = row.food;
 var calories = row.calories;
 var latitude = row.latitude;
 var longitude = row.longitude;
 $('#inspectEntry input[name="food"]').val(food);
 $('#inspectEntry input[name="calories"]').val(calories);
 $('#inspectEntry input[name="latitude"]').val(latitude);
 $('#inspectEntry input[name="longitude"]').val(longitude);
 $('#mapLocation').click(function(){
 window.location = 'http://maps.google.com/maps?z=15&q='+
 food+'@'+latitude+','+longitude;
 });
 jQT.goTo('#inspectEntry', 'slideup');
 },
 errorHandler
);
 }
);
}

Get the entryId from the entry that the user tapped and store it in session storage.

Begin a database transaction.

Pass a callback function into the transaction, with the transaction object as its sole
parameter.

Call the executeSql() method of the transaction object.

Define the SQL prepared statement with a question mark as data placeholder.

Pass a single-element array for the placeholder.

Begin the success callback function.

Get the first (and only, since we’re just querying for one entry) row of the result.

Set some variables based on the values from the row.

Set values of the form fields based on the variables.

Attach a click handler to the #mapLocation button. The function sets the window
location to a standard Google Maps URL. If the Maps application is available, it will

Controlling the iPhone with JavaScript | 145

www.dbooks.org

https://www.dbooks.org/

launch. Otherwise, the URL will load in a browser. The z value sets the initial zoom
level; the string before the @ symbol will be used as the label for the pin that is dropped
at the location. Note that the latitude and longitude values must appear in the order
shown here, separated by a comma.

Call the goTo() method of the jQTouch object to make the Inspect Entry panel slide
up into view.

Define the error callback function.

Before you try running the app, be sure to delete it from the phone (or the simulator).
That’s because the database won’t be created if it already exists, and an easy way to
remove the database is to remove the app. To remove the app, tap and hold on its home
screen icon until the icons start wobbling, then click the X to remove it. Press the home
button to stop the wobbling. Then, clean the project (Build→Clean) and click “Build
and Run” to try it out.

Accelerometer
Next, let’s set up Kilo to duplicate the last entry in the list by shaking the phone. Add
the following function to the end of kilo.js:

function dupeEntryById(entryId) {
 if (entryId == undefined) {
 alert('You have to have at least one entry in the list to shake a dupe.');
 } else {
 db.transaction(
 function(transaction) {
 transaction.executeSql(
 ' INSERT INTO entries (date, food, calories, latitude, longitude)'
 + ' SELECT date, food, calories, latitude, longitude'
 + ' FROM entries WHERE id = ?;',
 [entryId],
 function() {
 refreshEntries();
 },
 errorHandler
);
 }
);
 }
}

This line makes sure that an entryId was passed to the function. If not, the user is
notified.

Begin the usual database transaction steps.

Define an INSERT statement that copies the values from the specified entryId. This
is a type of query you haven’t seen before. Instead of using a list of values for the
INSERT, this takes the values from a SELECT query for the specified entryId.

146 | Chapter 7: Going Native

Pass the entryId into the prepared statement, replacing the ? in the SELECT query
with the value of the entryId.

On success, call refreshEntries(), which will display the newly copied entry.

On error, call the standard SQL error handler.

Now we need to tell the application when to start and stop watching the accelerometer.
We’ll set it up to start watching when the Date panel finishes sliding into view, and to
stop when it starts sliding out. To do this, we just need to add the following lines to
the document ready function in kilo.js:

$('#date').bind('pageAnimationEnd', function(e, info){
 if (info.direction == 'in') {
 startWatchingShake();
 }
});
$('#date').bind('pageAnimationStart', function(e, info){
 if (info.direction == 'out') {
 stopWatchingShake();
 }
});

Bind an anonymous handler to the pageAnimationEnd event of the #date panel. Pass
the event and the additional info in as parameters.

Check to see if the direction property of the info object equals in. If it does, call the
startWatchingShake() function, which we’ll look at shortly.

Bind an anonymous handler to the pageAnimationBegin event of the #date panel. Pass
the event and the additional info in as parameters.

Check to see if the direction property of the info object equals out. If it does, call
the stopWatchingShake() function, which we’ll look at shortly.

Technically, we could have bound to just one of the page animation
events, like so:

$('#date').bind('pageAnimationEnd', function(e, info){
 if (info.direction == 'in') {
 startWatchingShake();
 } else {
 stopWatchingShake();
 }
});

The reason I didn’t do this is that stopWatchingShake() would not get
called until after the page animation was complete. Therefore, the ac-
celerometer would be actively watched during the page transition,
which can sometimes result in choppy animation.

All that’s left for us to do is write the startWatchingShake() and stopWatchingShake()
functions. Add the following functions to the end of kilo.js:

Controlling the iPhone with JavaScript | 147

www.dbooks.org

https://www.dbooks.org/

function startWatchingShake() {
 var success = function(coords){
 var max = 2;
 if (Math.abs(coords.x) > max
 || Math.abs(coords.y) > max
 || Math.abs(coords.z) > max) {
 var entryId = $('#date ul li:last').data('entryId');
 dupeEntryById(entryId);
 }
 };
 var error = function(){};
 var options = {};
 options.frequency = 100;
 sessionStorage.watchId = navigator.accelerometer.watchAcceleration(success,
 error, options);
}
function stopWatchingShake() {
 navigator.accelerometer.clearWatch(sessionStorage.watchId);
}

Begin the startWatchingShake() function. This function will be called when the
#date panel finishes animating into view.

Begin defining the success handler. Note that it accepts a coordinates object as its
sole parameter.

Define the threshold for the shake. The higher the number, the harder the user will
have to shake.

Check to see if any of the coordinates has exceeded the threshold.

Get the entryId of the last entry on the #date panel.

Call the dupeEntryById() function.

Define an empty error handler.

Define an options object to pass into the watchAcceleration() method of the
accelerometer object.

The frequency property of the options object allows you to specify (in milliseconds)
how often you want your app to check the accelerometer.

Call the watchAcceleration() method of the accelerometer object, passing in the
success handler, the error handler, and the options object as parameters. Store the
result in sessionStorage.watchId, which we’ll need for the stopWatchingShake()
function.

Begin the stopWatchingShake() function. This function will be called when the
#date panel starts animating out of view.

Call the clearWatch() method of the accelerometer object, passing it the watchId
from session storage.

148 | Chapter 7: Going Native

And with that, we are ready to test. Save all your files, clean all targets, and build and
run Kilo on your device. Navigate to the Date panel, add an entry if none exists, and
shake the phone. You should see the page reload with an additional entry. Unfortu-
nately, you’ll probably also see an Undo confirmation dialog (Figure 7-36). To disable
the undo manager so we can watch the accelerometer without being interrupted, we
need to add a setting to Info.plist. Follow the steps described in “Adding Settings to
Info.plist” on page 126 to add a setting for UIApplicationSupportsShakeToEdit, and set
it to false (Figure 7-37).

Figure 7-36. We need to deactivate the undo manager to watch the accelerometer in peace

Figure 7-37. Add the UIApplicationSupportsShakeToEdit setting to Info.plist and leave it unchecked
to disable “shake to undo” in your app

Controlling the iPhone with JavaScript | 149

www.dbooks.org

https://www.dbooks.org/

What You’ve Learned
In this chapter, you’ve learned how to load your web app into PhoneGap, how to install
your app on your iPhone, and how to access five device features that are unavailable
to browser-based web apps (beep, alert, vibrate, geolocation, and accelerometer).

In the next chapter, you’ll learn how to package your app as an executable and submit
it to the iTunes App Store.

150 | Chapter 7: Going Native

CHAPTER 8

Submitting Your App to iTunes

Finally, the moment you’ve been waiting for: submitting your completed app to iTunes.
There are several steps to the process, and you’ll want to have all your ducks in a row
before you get started. At a minimum, you’ll need the following to complete the App
Store submission process:

• A plain-text description for the application (4,000 characters max).

• A URL where people can learn more about your app.

• A support URL and email address so people can contact you with issues pertaining
to your app.

• If your app requires a login, full access credentials for a demo account so reviewers
can test your app.

• A 512 × 512 pixel icon.

• A 320 × 480 pixel screenshot of your app.

• A distribution provisioning profile for the app.

• A zipped version of the application binary.

Everything you need for submission is fairly straightforward except for the last two
items: the distribution profile for the app, and the application binary. We’ll cover those
in detail in the following sections.

Wherever I refer to Kilo in this chapter, please substitute the name you
are going to use for your app.

Creating an iPhone Distribution Provisioning Profile
In Chapter 7, you created a development provisioning profile that allowed you to test
your app on an actual iPhone. Now, you need to create a distribution provisioning
profile in order to submit the app to iTunes.

151

www.dbooks.org

https://www.dbooks.org/

1. Navigate to the iPhone developer site (http://developer.apple.com/iphone/) and log
in.

2. Click iPhone Developer Program Portal in the right sidebar.

3. Click on Provisioning in the left sidebar.

4. Click on the Distribution tab.

5. Click the New Profile button.

6. Choose App Store as your distribution method.

7. Enter a profile name (e.g., Kilo Distribution Provisioning Profile).

8. If you have not created a distribution certificate, you should do so before proceed-
ing. If you see a link on this page labeled “Please create a Distribution Certificate,”
click it and carefully follow the instructions. You’ll be making a couple of trips into
the Keychain Access application (located in /Applications/Utilities) to create certif-
icate signing requests and to install signed certificates that you download from the
portal into your own keychain.

9. Select the appropriate App ID (Figure 8-1).

10. Click the Submit button (you’ll be returned to the Distribution Provisioning Profile
list view).

11. Refresh the page until the Download button appears (Figure 8-2).

12. Click the Download button to save the profile to your local download directory
(usually the Downloads folder in your Home folder).

13. Drag the downloaded profile onto the Xcode icon in the dock.

Figure 8-1. Create a distribution provisioning profile in the iPhone developer portal

152 | Chapter 8: Submitting Your App to iTunes

http://developer.apple.com/iphone/

Installing the iPhone Distribution Provisioning Profile
Now that the profile is in Xcode, you need to configure the project to use it.

1. Open Kilo in Xcode if it’s not already open.

2. Select Edit Project Settings from the Project menu (the project settings window will
appear).

3. Click the Build tab if it’s not already active.

4. Select Distribution from the Configuration pop up.

5. Select “Settings Defined at This Level” from the Show pop up.

6. Locate Code Signing→Code Signing Identity→Any iPhone OS Device in the main
area of the window.

7. Click the pop-up list to the right of Any iPhone OS Device to display a list of profile
options (Figure 8-3).

8. Locate your distribution provisioning profile in the list and select the distribution
identity directly beneath it (Figure 8-4).

9. Close the Project Info window.

Figure 8-2. Refresh the distribution profile list until the Download button appears

Installing the iPhone Distribution Provisioning Profile | 153

www.dbooks.org

v@v
Text Box
Download at WoweBook.com

https://www.dbooks.org/

Figure 8-3. Click the pop-up list next to Any iPhone OS Device

Figure 8-4. The distribution identity is located directly beneath the distribution profile

154 | Chapter 8: Submitting Your App to iTunes

Renaming the Project
Before you submit your app, you need to rename it from PhoneGap to Kilo. To do so:

1. Open the project in Xcode.

2. Select Rename from the Project menu (Figure 8-5).

3. Type Kilo in the “Rename project to” field (Figure 8-6).

4. You can leave “Take Snapshot before renaming” checked if you want to save the
state of the project prior to making the change, but it will significantly increase the
amount of time it takes to process the request.

5. Click the Rename button.

Figure 8-5. Select Rename from the Project menu

You will see a series of green circles with white checkmarks in them that indicate that
the changes have taken effect (Figure 8-7).

Renaming the Project | 155

www.dbooks.org

https://www.dbooks.org/

Figure 8-6. Type Kilo in the “Rename project to” field

Figure 8-7. The green circles with white checkmarks in them indicate that the renaming process
succeeded

Prepare the Application Binary
Next, we need to build the application executable and prepare it to be uploaded.

1. Select iPhone Device - 3.1.2 (or the current version of the iPhone OS) from the
Active SDK pop up, then select it again and pick Distribution. This should set the
target to something like “Device - 3.1.2 | Distribution.”

2. Select Clean All Targets from the Build menu.

156 | Chapter 8: Submitting Your App to iTunes

3. Select Build from the Build menu. You may be prompted to allow the application
codesign to access your keychain. Allow it to do this so it can sign the app.

4. Make sure that you didn’t get any errors.

5. Reveal the app in the Finder (Figure 8-8).

6. Compress the app into a ZIP archive (Figure 8-9).

Figure 8-8. Reveal the application in the Finder

Submit Your App
Now that you have everything you need:

1. Log in to iTunes Connect (https://itunesconnect.apple.com/).

Submit Your App | 157

www.dbooks.org

https://itunesconnect.apple.com/
https://www.dbooks.org/

2. Click on Manage Your Applications.

3. Click on the Add New Application button.

4. Follow the onscreen instructions to proceed with the submission process.

5. Hurry up and wait.

If all goes well, you should see your app listed as In Review (Figure 8-10).

Figure 8-9. The application must be compressed as a ZIP archive to be uploaded

Figure 8-10. The uploaded app will appear in your list with a status of In Review

158 | Chapter 8: Submitting Your App to iTunes

While You Wait
Congratulations! You’ve officially submitted your first app to the iTunes App Store!
Now what? You’ll probably have to wait a week or two to hear back from Apple. Here
are some things you can do in the meantime to keep yourself busy:

• Set up a nice-looking web page for your app that is located at the URL that you
submitted to Apple. Be sure to include the following elements:

— A video of your app in action. Loren Brichter (http://twitter.com/atebits) has
posted a great tutorial on making beautiful iPhone screencasts at http://blog
.atebits.com/2009/03/not-your-average-iphone-screencast/.

— A brief description of your app. Just a paragraph or two and 5–10 bullet points.

— An iTunes link to purchase your app.

— A few testimonials, with a link to more if you have them.

— A support email address. You could opt to set up a support forum instead, but
you’ll learn more about your customers via email.

• Send personal email messages to bloggers who you think would be interested in
your app. Target blogs that are relevant to the market for your app, and blogs that
are about the iPhone in general.

• Clean out your inbox. You’ll probably get about 5–20 email messages per 100 sales,
so if your app is popular, you’re going to be getting a lot of email. Start with a clean
slate!

• Start working on your first upgrade. The more popular apps seem to upgrade about
twice a month, which causes a steady buzz and lots of customer goodwill.

Further Reading
If you find yourself in a jam, here are some helpful resources:

• jQTouch Issue Tracker: http://code.google.com/p/jqtouch/issues/list

• jQTouch on Twitter: http://twitter.com/jqtouch

• jQTouch Wiki: http://code.google.com/p/jqtouch/w/list

• PhoneGap Google Group: http://groups.google.com/group/phonegap

• PhoneGap on Twitter: http://twitter.com/phonegap

• PhoneGap Wiki: http://phonegap.pbworks.com/

• jQuery Documentation: http://docs.jquery.com/

• W3C Spec for Offline Applications: http://dev.w3.org/html5/spec/Overview.html
#offline

Further Reading | 159

www.dbooks.org

http://twitter.com/atebits
http://blog.atebits.com/2009/03/not-your-average-iphone-screencast/
http://blog.atebits.com/2009/03/not-your-average-iphone-screencast/
http://code.google.com/p/jqtouch/issues/list
http://twitter.com/jqtouch
http://code.google.com/p/jqtouch/w/list
http://groups.google.com/group/phonegap
http://twitter.com/phonegap
http://phonegap.pbworks.com/
http://docs.jquery.com/
http://dev.w3.org/html5/spec/Overview.html#offline
http://dev.w3.org/html5/spec/Overview.html#offline
https://www.dbooks.org/

Index

Symbols
-webkit-border-image property, 46
-webkit-border-radius property, 22
-webkit-gradient, 22
./ in path name, 100
.htaccess file, 92

A
accelerometer, native apps, 146–149
addGlossToIcon property, 64
Ajax, iPhone styling, 29
alert functions, native apps, 136–139
alert() method, 138
animation, 51–67
Apache web server, manifest files, 92
APIs, JavaScript database API, 74
apple-mobile-web-app-capable meta tag, 48
apple-mobile-web-app-status-bar-style meta

tag, 48
apple-touch-icon meta tag, 48
apple-touch-icon-precomposed meta tag, 48
apple-touch-startup-image meta tag, 49
application cache database, debugging offline

web apps, 107–113
ApplicationCache.db database, 107
apps

submitting to iTunes, xi, 151–159
web apps versus native apps, 1

Apps Store (see iTunes App Store)
attributes

id versus class attributes, 7
text inputs, 59

autocapitalize attribute, 59
autocomplete attribute, 59

autocorrect attribute, 59

B
back button example, 40–46
back buttons, href, 53
backSelector property, 65
bars, changing the status bar, 48
beep() method, 138
beeps, native apps, 136–139
binaries, application binaries, 156
block tags, 3
border image property, 25
borders

-webkit-border-image property, 46
-webkit-border-radius property, 22

buttons
back button example, 40–46
cancel buttons, 59
submit input button, 59

C
cache (see offline application cache)
cache manifest database, 108
cache manifest file, 91, 94, 95, 100
cacheGetRequests property, 65
CacheGroups data model, 108
CacheResources tableCaches table, 111
Caches table, 109
CacheWhitelistURLs table, 112
calorie-tracking example, 51–64
cancel buttons, 59
Cascading Style Sheets (see CSS)
class attributes

submit input button, 59

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

161

www.dbooks.org

https://www.dbooks.org/

versus id attributes, 7
classes, assigning CSS classes to HTML

elements, 52
click handlers, 145
client-side data storage, 69–89

databases, 74–89
localStorage, 69–74
sessionStorage, 69–74

com.apple.WebAppCache directory, 107
consoles, JavaScript console, 103–106
CONSTRAINT_ERR error code, 81
conventions, UI, 19
CSS (Cascading Style Sheets)

about, 6–9
assigning CSS classes to HTML elements,

52
iPhone CSS, 19
versus iPhone stylesheets, 16

CSS Sprite technique, 46
cubeSelector property, 65

D
database size limits, 77
databases, 69

(see also client-side data storage)
adding latitude and longitude columns,

140
error codes, 80
iPhone Simulator app cache database, 107
Safari desktop browser, 78
size limits, 77
SQL support, 74

DATABASE_ERR error code, 80
Dates panel

about, 55–58
saving dates to sessionStorage, 73

debugging
offline application cache, 102–113
web apps using web inspector in Safari

desktop browser, 78
declaration, CSS, 6
defaults

jQTouch properties, 64
Mobile Safari, 43
PhoneGap home screen icon, 127
PhoneGap startup graphic, 131

deleting rows, 86–89
directories

com.apple.WebAppCache directory, 107

iphone directory, 118
dissolveSelector property, 65
DOM (Document Object Model), using

JavaScript to interact with HTML
pages, 10

DRY principle, 16
dynamic manifest files, 98–102

E
editors

selecting text editors, 6
Xcode editor, 122

error handling, inserting rows in client-side
databases, 80

executeSql() method, 137

F
fadeSelector property, 65
FallbackURLs table, 112
fixedViewport property, 65
flipSelector property, 65
fonts, 19
foreign keys, defined, 109
full screen mode, iPhone styling, 48
fullScreen property, 65
fullScreenClass property, 65
functions, passing functions as parameters, 33

G
geolocation

native apps, 140–146
using in a function, 141

gradients, -webkit-gradient, 22
graphics (see images)

H
handlers

success handlers, 81
transaction callback handlers, 81

home screen, adding icons to, 46
hosting web apps, 13
href tag, 53
.htaccess file, 92
HTML, 13

(see also iPhone styling)
about, 3–6
assigning CSS classes to HTML elements,

52

162 | Index

DOM and JavaScript, 10
hyperlinks, CSS, 7

I
icon property, 66
icons

adding to home screen, 46
customizing with PhoneGap, 123–127

id attributes, versus class attributes, 7
id field, 109
images

borders, 25
buttons, 43
jQTouch, 24
offsets, 46
PhoneGap startup graphic, 131
precomposed, 48
startup graphics, 49

index.html file, 119
inline tags, 4
inserting rows in client-side databases, 78
installing

iPhone distribution provisioning profiles,
153

native apps, 131
PHP, 98

Internet Explorer, desktop version of CSS, 17
iPhone Developer Program, 116
iPhone distribution provisioning profile, 151
iPhone SDK, 107
iPhone Simulator

app cache database, 107
using, 120

iPhone styling, 13–28, 29–50
adding icons to home screen, 46
Ajax, 29
back button example, 40–46
full screen mode, 48
getting started, 14
iPhone CSS, 19
iPhone look and feel, 21
jQuery JavaScript library, 23–27
look and feel, 21
simple bells and whistles example, 34–40
traffic cop example, 29–33

iTunes App Store
experiences with, xi
submitting apps to, xi, 151–159

J
JavaScript, 136–149

(see also jQTouch; jQuery)
about, 9–11
accelerometer, 146–149
beep, vibrate and alert, 136–139
geolocation, 140–146
JavaScript alerts compared to PhoneGap

alerts, 138
passing functions as parameters, 33
persistent data support, 72
SQL support, 74

JavaScript console
debugging the offline application cache,

103–106
logging, 103

jQTouch
images, 24
screen height, 121

jQTouch JavaScript library
about, 51
cancel buttons, 59
customizing, 64
submit input button, 59

jQuery JavaScript library
about, 11
iPhone styling, 23–27, 34
jQTouch JavaScript library, 51

K
keys, defined, 109
keywords

CSS, 6
NETWORK: keyword, 94
this keyword, 74

Kilo calorie-tracking example, 51–64

L
launching web apps, 49
libraries (see jQTouch; jQuery)
linux, installing PHP, 98
local manifest, comparing to remote manifest,

93
localStorage, 69–74
logging, console logging, 103
look and feel, iPhone, 21

Index | 163

www.dbooks.org

https://www.dbooks.org/

M
Mac OS X

.htaccess file, 92
installing and enabling PHP, 98

manifest files, 91, 99
manifest links, in index.html file, 119
manifestHostHash field, 109
manifestURL field, 109
meta tags

apple-mobile-web-app-capable meta tag,
48

apple-mobile-web-app-status-bar-style
meta tag, 48

apple-touch-icon meta tag, 48
apple-touch-icon-precomposed meta tag,

48
apple-touch-startup-image meta tag, 49
viewport meta tag, 17

Mobile Safari web browser
back buttons, 43
full screen mode, 48
page scaling, 17

modes, full screen mode, 48

N
name attribute, 59
native apps, 115–150

installing, 131
JavaScript, 136–149
PhoneGap, 115–131
simulating web apps as, 121
versus web apps, xii, 1

navigation menus, rounded corners, 22
NETWORK: keyword, 94
New Entry panel, 58
newestCache field, 109

O
Objective-C, xi
offline application cache, 91–113

about, 91–94
debugging, 102–113
dynamic manifest files, 98–102
online whitelist and fallback options, 94

offsets, images, 46
online whitelist, 94

P
padding, content and sidebar elements, 21
page scaling, 17
panels

Dates panel, 55–58
New Entry panel, 58
Settings panel, 60

path names, ./ in, 100
persistent data support, 72
PhoneGap, 115–131

PhoneGap alerts compared to JavaScript
alerts, 138

screen height, 121
startup screens, 130
titles and icons, 123–127

PHP, scripts, 98
placeholder attribute, 59
popSelector property, 66
precomposed images, 48
preloadImages property, 66
primary keys, defined, 109
properties

-webkit-border-image property, 46
-webkit-border-radius property, 22
border image property, 25
CSS, 6
exposed by jQTouch JavaScript library, 54

provisioning profiles, 133

Q
QUOTA_ERR error code, 81

R
remote manifests, comparing to local manifests,

93
renaming apps, 155
rounded corners, navigation menus, 22
rows in client-side databases, 78–89

deleting, 86–89
inserting, 78
selecting, 82

S
Safari desktop browser, 5

(see also Mobile Safari web browser)
client-side databases, 78
page scaling, 17

164 | Index

testing web apps, 5, 26, 34
saving

dates to sessionStorage, 73
user settings to localStorage, 70–72

scaling, page scaling, 17
screen height

jQTouch, 121
PhoneGap, 121

screens
adding icons to home screen, 46
full screen mode, 48
startup screens in native apps, 130

scripts, PHP, 98
SDKs

iPhone SDK, 107
requirements, 116

selecting rows in client-side databases, 82
selectors, CSS, 6, 7
servers (see web servers)
sessionStorage, 69–74
Settings panel, 60
settings, saving user settings to localStorage,

70–72
simple bells and whistles example, 34–40
simulators (see iPhone Simulator)
slideInSelector property, 66
slideupSelector property, 66
SQL

executeSql() method, 137
handling errors, 81
support for, 74

SQLite control statements, 108
startup graphics, 49
startup screens, native apps, 130
startupScreen property, 66
status bar, changing, 48
statusBar property, 66
storage (see client-side storage; databases)
styling (see CSS; iPhone styling)
submit input button, class attribute, 59
submitSelector property, 66
submitting apps to iTunes, 151–159

application binaries, 156
iPhone distribution provisioning profile,

151
real life experiences, xi
renaming apps, 155

success handlers, 81
swapSelector property, 66

SYNTAX_ERR error code, 81

T
tables

cache manifest database, 108
Caches table, 109, 111
CacheWhitelistURLs table, 112
FallbackURLs table, 112

tags (see HTML)
testing web apps

about, 120
on local networks, 34
using Safari, 5, 26

text editors, selecting, 6
text inputs, attributes, 59
text-shadow declaration, 21
themes, jQTouch JavaScript library, 52
this keyword, 74
TIMEOUT_ERR error code, 81
titles, customizing with PhoneGap, 123–127
TOO_LARGE_ERR error code, 81
traffic cop example, 29–33
transaction callback handlers, 81
transaction method, 81
type attribute, 59

U
UI (user interface)

conventions, 19
iPhone look and feel, 21

ul elements, 23
unique keys, defined, 109
UNKNOWN_ERR error code, 80
useAnimations property, 67
user settings, saving to localStorage, 70–72

V
values, CSS, 6
vibrate() method, 138
vibrate, native apps, 136–139
viewport meta tag, Mobile Safari web browser,

17

W
W3C Web Database error codes, 80
web apps, xii

(see also animation; iPhone styling; testing
web apps)

Index | 165

www.dbooks.org

https://www.dbooks.org/

hosting, 13
launching, 49
versus native apps, xii, 1

Web Clip icons, 46
web programming (see CSS; HTML;

JavaScript)
web servers

hosting web apps on, 13
manifest files, 92
PHP scripts, 98

-webkit-border-image property, 46
-webkit-border-radius property, 22
-webkit-gradient, 22
whitelist, online, 94

X
Xcode editor, 122

166 | Index

About the Author
Jonathan Stark is a mobile and web application consultant who the Wall Street
Journal has called an expert on publishing desktop data to the Web. He has written
two books on web application programming, is a tech editor for php|architect and
Advisor magazines, and has been quoted in the media on Internet and mobile lifestyle
trends.

Colophon
The animal on the cover of Building iPhone Apps with HTML, CSS, and JavaScript is a
bluebird (genus Sialia, family Turdidae). Although they are predominantly blue in
color, bluebirds can have vivid shades of red dispersed throughout their plumage.
Unlike other species of birds, no discernible difference exists in the color patterns of
male and female bluebirds.

The birds are territorial by nature and favor open grasslands with scattered trees. Males
will identify nest sites among the trees and will try to attract prospective mates by
singing, flapping their wings, and then depositing some material within the cavities of
those trees. If a female accepts the male’s entreaties and one of the nesting sites, she
alone will build the nest for the home.

Bluebirds are unique to North America, and bird lovers often attract them to their
backyards with feeders full of darkling beetles and mealworms. Bluebirds are also fond
of eating raisins soaked in water and bathing in heated birdbaths.

The bird is popularly thought of as a symbol of optimism, although occasionally this
symbolism goes into shadowier terrain.

Some dream interpreters say the image of a dead bluebird represents disillusionment,
a loss of innocence, and a transition from a younger, more naïve self to a wiser one,
while the image of a live bluebird represents spiritual joy and contentedness, or a long-
ing for such a state. Judy Garland’s character Dorothy in The Wizard of Oz perhaps
exemplifies this longing when she sings about happy little bluebirds in the song
“Somewhere over the Rainbow.”

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

www.dbooks.org

https://www.dbooks.org/

v@v
Text Box
Download at WoweBook.com

	Table of Contents
	Preface
	Who Should Read This Book
	What You Need to Use This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Started
	Web Apps Versus Native Apps
	What Is a Web App?
	What Is a Native App?
	Pros and Cons
	Which Approach Is Right for You?

	Web Programming Crash Course
	Intro to HTML
	Intro to CSS
	Intro to JavaScript

	Chapter 2. Basic iPhone Styling
	First Steps
	Preparing a Separate iPhone Stylesheet
	Controlling the Page Scaling

	Adding the iPhone CSS
	Adding the iPhone Look and Feel
	Adding Basic Behavior with jQuery
	What You’ve Learned

	Chapter 3. Advanced iPhone Styling
	Adding a Touch of Ajax
	Traffic Cop
	Simple Bells and Whistles
	Roll Your Own Back Button
	Adding an Icon to the Home Screen
	Full Screen Mode
	Changing the Status Bar
	Providing a Custom Startup Graphic

	What You’ve Learned

	Chapter 4. Animation
	With a Little Help from Our Friend
	Sliding Home
	Adding the Dates Panel
	Adding the Date Panel
	Adding the New Entry Panel
	Adding the Settings Panel
	Putting It All Together
	Customizing jQTouch
	What You’ve Learned

	Chapter 5. Client-Side Data Storage
	localStorage and sessionStorage
	Saving User Settings to localStorage
	Saving the Selected Date to sessionStorage

	Client-Side Database
	Creating a Database
	Inserting Rows
	Error handling

	Selecting Rows and Handling Result Sets
	Deleting Rows

	What You’ve Learned

	Chapter 6. Going Offline
	The Basics of the Offline Application Cache
	Online Whitelist and Fallback Options
	Creating a Dynamic Manifest File
	Debugging
	The JavaScript Console
	The Application Cache Database

	What You’ve Learned

	Chapter 7. Going Native
	Intro to PhoneGap
	Using the Screen’s Full Height
	Customizing the Title and Icon
	Creating a Startup Screen

	Installing Your App on the iPhone
	Controlling the iPhone with JavaScript
	Beep, Vibrate, and Alert
	Geolocation
	Accelerometer

	What You’ve Learned

	Chapter 8. Submitting Your App to iTunes
	Creating an iPhone Distribution Provisioning Profile
	Installing the iPhone Distribution Provisioning Profile
	Renaming the Project
	Prepare the Application Binary
	Submit Your App
	While You Wait
	Further Reading

	Index

