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Preface 

This book is a collection of resources for students of natural resource science and management.1 

Many of you will be required to complete some mathematics and/or statistics courses during your 
undergraduate studies, and some of you will likely dread the prospect. 

However, if you’re reading this, you have probably been presented with an alternative means of 
satisfying at least some of your quantitative skills requirements. This is the origin of the course 
NREM 240 at Iowa State University, for which this book was originally prepared. NREM 240 
is a class about solving quantitative problems that non-mathematicians interested in biology and 
environmental sciences may find compelling. 

I use the word problem here in the same way that math education scholar Alan Schoenfeld 
does in the epigraph of this book — to describe an intellectual challenge that is quantitative 
in nature.2 A problem is distinct from an exercise in subtle, but crucial ways. An exercise is a 
prompt for which a student must select one or more of a small number of recently-demonstrated 
procedures or algorithms to reveal a clear and known3 result. Contrast that with the intellectual 
impasse of Schoenfeld. In this spirit, a problem is a deeper challenge that often contains a mixture 
of complexity, uncertainty, and ambiguity and requires some technical skill or knowledge. A 
problem also often requires creativity — or as Pólya says in the first epigraph quote4, “inventive 
faculties” – and the willingness to explore, to try and fail, to persist, and to learn from mistakes. 
This kind of task can be frustrating and uncomfortable for those of us not accustomed to it, 
particularly if we have no interest or investment in the problem being posed. 

But life rarely presents us with exercises. If we are confronted with exercises, we quickly become 

1. I interpret this broadly, so that we may include study of fisheries, wildlife, forestry, and water resources, among other things. 

2. Schoenfeld, A. H., 1985, Mathematical Problem Solving, Academic Press. 

3. at least to the instructor and the owner of a solutions manual. 

4. Excerpted from the preface of Pólya, G., 1945, How to Solve It, Princeton University Press. 



bored and uninspired by the idle redundancy.5 A completely different sense of achievement and 
satisfaction is realized when we solve problems because, by their very nature, they lead us to new 
ways of thinking and understanding, if we are willing. 

NREM 240 was initially conceived as a bridge to link the quantitative skills developed elsewhere 
with some common applications in the natural sciences. Experience has shown that once students 
know which techniques to apply to which given quantities, the computational task is rarely 
challenging. A greater challenge is the selection of appropriate techniques and assembly of 
relevant input quantities when neither are explicitly given. Since both of these processes are 
hallmarks of authentic problem solving, NREM 240 has evolved to embrace the problem-solving 
process as the central objective, calling upon quantitative concepts and techniques as needed to 
address particular problems. Therefore, applied problems and the strategies used to address them 
have become the focus of the course, and this text has evolved to support that focus. 

The philosophy of this text has been strongly influenced by John Harte’s fantastic books, 
Consider a Spherical Cow and Consider a Cylindrical Cow.6 Both books pose environmentally-
themed problems that are compelling and maddeningly open-ended. But Harte boldly 
demonstrates how idealizations, approximations, and analogies can be leveraged to make sense 
of complex problems. On a tip from a friend in grad school, I picked up a copy of each of these 
books and was amazed. I had always been an average or slightly-below-average student of math 
all the way through grade school and college, and had never enjoyed it. Harte’s problems hooked 
me because they offered a means to address problems I found compelling. I saw, perhaps for 
the first time, a way that math could help me gain insights into things I already wanted more 
insights into. I experienced an unfamiliar willingness to labor over unit conversion details, to 
really wrestle with what it meant to integrate a function, and to chase wild and risky ideas to see 
where they led. That feeling has stuck with me over the years, and I have sought to facilitate some 
semblance of that experience in the students I now teach. 

The methods or strategies that are highlighted here are drawn in large part from Pòlya’s problem-
solving framework and derivatives thereof. Excellent tutorials on problem-solving include 
Thinking Mathematically by Mason, Burton and Stacey,7 Crossing the River with Dogs by 

5. Mathematician Paul Lockhart has written an engaging, though scathing critique of current school math curriculum in a book called A 
Mathematician’s Lament. 

6. Harte, J., 1988, Consider a Spherical Cow: A Course in Environmental Problem Solving, Sausalito, CA, University Science Books; 
Harte, J., 2001, Consider a Cylindrical Cow: More Adventures in Environmental Problem Solving, Sausalito, CA, University Science 
Books. 

7. Mason, J., L. Burton, and K. Stacey, 2010, Thinking Mathematically, 2nd ed., Pearson Education Ltd. 
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Johnson, Herr, and Kysh,8 and Ants, Bikes, and Clocks by Briggs.9 Notwithstanding the odd titles 
of some of those books, all provide interesting perspectives and tips for problem-solving. Even 
so, many of the problems in these texts are of the sort that you might find on standardized tests: 
“Janet leaves on a train heading east at 42 miles per hour, while Mark…”. If there is truth to the 
idea that we embrace challenges when they address topics that we are already interested in, these 
approaches may still fail to engage students. With this in mind, the examples and exercises in this 
text are aimed at engaging the natural resource student in thinking about forest measurements, 
fisheries management, habitat conservation, and the like. 

You will find in the pages that follow an introduction to problem solving as a process. You’ll 
also find a review of some frequently-used mathematical concepts and procedures. For some of 
the more powerful concepts and techniques, exercises are provided to assist with reviewing (or 
exploring for the first time) by doing. The booklet is not intended to be a guide to be followed 
through a series of skills, but rather a resource to support the problem-solving process and help 
lower the conceptual and computational barriers along the way. 

Schoenfeld argues that what constitutes a problem to you depends strongly upon your experience 
and formal training. This relativity makes it challenging to keep a diverse group of students on 
the same page, and able to succeed at similar rates. With this in mind, in preparing the materials 
for this book and the course it supports, I have presumed 1) that you are sincerely interested in 
the natural sciences; and 2) that you have had a typical sequence of high school math courses, 
including a few years of algebra, some geometry, and perhaps trigonometry and statistics. It 
may also be true that you have found it challenging or even unpleasant when asked to recruit 
your quantitative skills to interpret information or address a question in the coursework in your 
discipline. If any of this describes you, you’re in the right place. Let’s go! 

Note to instructors 

I have written this book with my students and their needs in mind, but hope that others may find 
it useful. It may be worth taking a moment to clarify how I use this book. While I expect my 
students to read this text and work on the exercises in it, I build the course around a group of 
“focus problems” not contained here, but with an open-ended form and practical flavor like the 
sample problems in Chapter 3. As we work on the first focus problem, I guide students through 
the problem-solving process described in Chapter 2, making frequent reference to examples 

8. Johnson, K., T. Herr, and J. Kysh, 2012, Crossing the River with Dogs: Problem Solving for College Students, 2nd ed., Wiley. 

9. Briggs, W.L., 2005, Ants, Bikes and Clocks: Problem Solving for Undergraduates, Society for Industrial and Applied Mathematics. 
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contained in the book. Therefore, to appreciate the processes involved, I think it is wise to have 
students read the first three chapters early. The remainder of the book is organized more by 
problem type, and can be assigned or referred to as appropriate to support the focus problems, 
rather than proceeding linearly through each chapter. 

I have deliberately avoided discussing particular software tools or internet resources, partly in 
the interest of ensuring that this text does not rapidly become obsolete, but also to allow for 
flexibility. In online video tutorials and in-class exercises, I ask my students to work with data 
and create graphs using spreadsheets, but those seeking richer computing environments can just 
as easily use this text alongside instruction in R, Matlab, Mathematica, or others. 
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Introduction 

Some Philosophical Notes 

In a conventional math course, you might be confronted with a question like the following: 

Find the roots of  in the expression: 

You may be instructed or implicitly expected to apply an algorithm to this problem and provide 
the two possible roots. Most likely this would be an opportunity to use the trusty quadratic 
formula: 

If you weren’t already turned off, you might plug the values 4, -13, and 6 in for , , and  in the 
quadratic formula, perform some arithmetic and find the roots to be 0.56 and 2.69. Alternatively, 

Geogebra is a free, multi-platform 
software package that combines a CAS 
(computer algebra system) with a 
dynamic, interactive geometry and 
graphing interface. 

if you’re like me, you’d let a computer program 
like Geogebra apply this algorithm, since that is 
what computers are for. 

In any case, with these two roots in hand, you have 
an answer, isn’t that satisfying!? OK, maybe it is 
for some of you, but this has never been satisfying 
for me. No meaning was ever assigned to the 
variables or constants, nor was it claimed that the result had any context or significance. I don’t 
really know what to do with the answer, now that I have it. I’ve learned very little, except perhaps 
that I can enter the proper numbers into an algorithm. That is not to say that learning the algorithm 
is without value – indeed it is very valuable. But for most of us, the algorithm itself is not an end 
in itself, it is a means to an end. It is a useful tool that allows us a shortcut to a result when an 
equation presents itself in a quadratic form. 

https://iastate.pressbooks.pub/quantitativenaturalresources/format/www.geogebra.org


Though the problems in a conventional math class may look arbitrary, they are often designed 
to be “well-behaved”. You wouldn’t often see equations exactly like the example above, because 
the roots turn out to be icky decimal numbers rather than nice, clean integers. Furthermore, things 
get complex (literally!) if the numerical coefficients on the left-hand side of the equation are 
such that the term under the square-root in the quadratic formula turn out to be negative. Such 
a poorly-behaved case belongs to a completely different subject in the mathematics curriculum 
(complex analysis), and so cannot be imposed upon an unsuspecting algebra student. However, 
in the “real world”, there is no more reason to suspect a real result than a complex one, in those 
rare practical instances when one needs to find the roots of a second-order polynomial. Thus, in 
this approach we learn a very strict set of rules applicable only to an idealized subset of problems 
that may or may not have any significance outside of abstract trivia. 

The approach we use in this course is to encounter math and statistics in the process of finding 
solutions to real—or at least plausible—problems in the natural sciences. Sometimes these real 
problems are messier than those out of a textbook. Often they will be open-ended and will require 
multiple steps and a variety of techniques. We’ll need to decide for ourselves what tools and 
techniques to use, according to the needs of the problem. Being creative in math classes isn’t 
what we’ve been trained to do, and at times it may be uncomfortable. That’s OK, we’ll take our 
time. But no matter the problem, we’ll always have a reason to be doing math or statistics – every 
quantity in an equation will have real meaning or role, and we can apply our non-quantitative 
knowledge and experience with these entities to help us solve our problems. 

Let’s have a look at the kind of problem that a natural resource manager or ecologist might care 
more about, a problem that we’ll return to periodically in this course. Consider the Iowa DNR’s 
estimates of the statewide pheasant population shown in Figure 1.1. Now consider the question 
that is important to many hunters and game managers around the state: what should we expect 
pheasant populations to look like in 5 years? 
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Figure 1.1: Record 
of pheasant counts 
per 30 miles from 
the Iowa August 
Roadside Pheasant 
Count. Data from 
the Iowa DNR. 

Table 1.1. Some 
recent data from the 
roadside pheasant 

count. 

year count 

2013 6.5 

2014 16.3 

2015 23.2 

2016 20.4 

The black dots in the graph are annual results from roadside pheasants surveys, the dots are 
connected in chronological order with black lines,1 and a blue line traces the long-term trend. In 
the roadside survey, DNR biologists travel 30-mile segments of rural roads on dewy late-summer 
mornings, count the pheasants observed in each stretch, and compile the data across the whole 
state.2 The changes from year to year in this measure of pheasant population are similar to the 
changes in hunter harvest and are thought to be a good indication of the pheasant population as a 
whole. 

The rebound in the roadside counts from 2013 to 2014 was characterized 
in the DNR report as a 151% increase, and the change from 2014 to 2015 
was described as a 37% rise. The last few numerical value pairs plotted in 
the graph are also shown in Table 1.1 to the right. 

This example may seem straight forward at first glance, and in some ways 
it is. The trend appears to indicate an overall decline in pheasant numbers 
across the state, and perhaps we should be prepared to take a more hands-
on approach to managing pheasant numbers if we wish to sustain a viable 
game resource in the coming years. On the other hand, the year-to-year 

1. Note that connecting dots like this can imply continuity between data points, which may or may not be what we wish to indicate. 

2. For more information on the pheasant population trends and the roadside survey method, consult the IDNR small game website. 
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year count 

2017 14.4 

2018 20.2 

2019 17.0 

2020 20.0 

2021 19.7 

2022 19.6 

changes seem to be erratic, rising and falling in a way that seems to lack a 
pattern. Addressing the guiding question with any confidence, however, 
could be a bit challenging. If, for example, we were looking at the dataset 
at the end of 2011 following 6 straight years of steady decline, would we 
have been able to anticipate a rebound in 2014 or 2015? Probably not 
without a robust and reliable model of the factors that cause population 
changes and how those factors could change in subsequent years. These 
are advanced topics, but ones that wildlife managers have to incorporate 
into their management strategies in some situations. 

On an even deeper level, the roadside pheasant count itself is a strange 
quantity that doesn’t exactly represent what we wish to know (i.e., the pheasant population). 
Instead, it is an easy-to-estimate approximation of the real population. As such, it is a sample 
from the larger population, at least one step removed from the quantity we seek. How does such 
a sample relate to the larger quantity we are after? That’s a pretty simple question in theory (i.e., 
in stats class), but when we account for the sampling methodology, timing, and observer 
variability, and we consider that pheasant visibility may not always be directly linked to 
population, it isn’t so straight-forward after all. 

The observations we’ve made from this dataset are just some of the many complexities that we 
might uncover as we endeavor to solve problems in pheasant population or habitat management 
in Iowa. This example hints at the concepts of time series analysis, forecasting, and measurement 
uncertainty, as well as functional relationships between multiple variables and between samples 
and populations. Each of these concepts represents a quantitative tool that can be applied toward 
the larger problem-solving task. We’ll visit most of these concepts and many more en route 
to addressing practical problems and methods. But as we will see in the next chapter, the 
quantitative procedures that we employ in the problem-solving process are just a part of the 
arsenal necessary to solve practical problems. Furthermore, it should go without saying that some 
of the quantitative tools we do have at our disposal are not appropriate for some problems, and a 
key job of the problem-solver is to determine which tools those are. We’ll delve deeper into this 
issue a few pages ahead. 
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An ancient puzzler 

“In a lake the bud of a water-lily was observed, one span above the water, and when 
moved by the gentle breeze, it sunk in the water at two cubits’ distance. Required the 

depth of the water.” 
—Henry Wadsworth Longfellow 

The lines above are from a poem in which a Mr. Churchill playfully challenges his wife with 
mathematical puzzlers. The problem he describes actually dates back many centuries, to a 12th-
century Indian mathematician named Bhascara who posed the problem in verse in his book 
Lilavati.3 As we look forward to learning the process of problem-solving, let’s imagine a dialogue 
between a student (S) confronted with this problem and a patient instructor (I). This isn’t quite 
the sort of problem we’re interested in really diving into, but the dialogue serves to illustrate a 
few points that we’ll address in the next chapter. 

A problem-solving dialogue 

S: Hmm, so lemme see if I understand this. Wait, is a span an actual distance? And a cubit? 

I: Yes, they are old-fashioned and inexact measures of length. The cubit at least is about the 
length of a forearm, and people often take that to be about 18 inches. A span is from the tip of the 
thumb to the tip of your pinky if you stretch your hands out as far as possible, and that’s usually 
interpreted as 9 inches. 

S: OK, so a span is 9 inches, so the water lily was 9 inches above the water at first. Then when 

3. One translation that can be readily found online is an 1817 translation by H.T. Colebrooke: Algebra, with Arithmetic and 
Mensuration, Brahmegupta and Bhascara, London, John Murray. 

5  |  INTRODUCTION



the wind blows, the bud moves two cubits, so about 36 inches to one side until it is submerged. 
So we want to know how deep the water is. Umm… 

I: Good start. 

S: Well how am I supposed to… Hmmm… Alright, so would the depth just be 45 inches, I mean 
that’s 9 plus 36? No, that doesn’t make sense. Shoot… I’m not sure where to start? 

I: Do you have a picture in your head of the situation you’re thinking about? 

S: Yeah, sort of. 

I: Do you think you could draw it? 

S: Um, I guess so… Yeah… here’s the lily 
bud 9 inches above the water when it’s 
standing straight up… Now when the wind 
blows it stretches to the side and then the bud 
is over here, 36 inches away. Wait, is that 36 
inches to the right, or 36 inches from here to 
here [pointing from the upright bud to the bud 
at the waterline]? 

I: I think you can assume 36 inches to the 
right, but that’s a really good question, and an 
important one to get sorted out before you get 
too far along. Did drawing the picture bring 
that question to mind? 

S: Yeah, definitely. OK, so when the wind blows the lily over there, the stem is slanted like this… 
and … so we want the depth of the water, which is this distance [drawing a dimension line from 
the lake bottom to the waterline]… so this makes a triangle, is that what I’m supposed to do? 

I: There are no “supposed to’s” in this class. 

S: Oh, so how will I know when I’m doing it right? 

I: There’s more than one way to solve the problem, so there isn’t just one “right way”. If 
you’ve interpreted the problem correctly, chosen a solution procedure that doesn’t violate the 
fundamental principles of mathematics, and all your arithmetic is sound, you’ll get the correct 
answer and you’ll know it. 
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S: Oh. But… how do I know if I’ve got the right answer? You’re not going to tell me? 

I: Welcome to the real world. 

Exercises 

1. Make a list of the variables or factors that one might need to take into account when projecting future 
pheasant populations from historic data such as the Iowa Roadside Pheasant Survey. 

2. How do game wildlife managers benefit from making population estimates like the roadside survey? 

3. See if you can arrive at a solution for the Lilavati water lily problem. While you’re working on this, 
occasionally step back and think about what sorts of things you are doing to make progress. Are you 
trying to understand what the problem is about? Trying to appreciate the geometry? Trying to recall 
algorithms that relate different quantities in a geometric shape? If you feel stuck at any point, what do 
you think is preventing you from making progress? Record and annotate all of your thoughts and 
solution attempts, and try not to erase or scribble anything out. 
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Part I. PROBLEM SOLVING 

PART I. PROBLEM SOLVING  |  8



2. Problem Solving as a Process 

Problem Solving as a Process 

What is a problem? 

Let’s establish this right away: a problem is an intellectual challenge. Solving a problem is then 
a process of undertaking and overcoming the challenge. 

As we have indicated elsewhere, authentic problems are often poorly-structured and vague. 
They are not carefully-crafted to yield whole-number answers with a few minutes of symbolic 
manipulation, like those you typically encounter in school. Authentic problems could take hours, 
days, or even longer to solve, and you may not always know with confidence that you have 
succeeded because the answers aren’t in the back of the book. Problems don’t require only the 
application of a recently-learned method or algorithm; indeed, you may not know at the outset 
which methods are appropriate for solving the problem. You may not be given all the information 
needed to achieve a complete solution, or information you are given may be uncertain or 
incomplete. In short, authentic problems are hard, and that can be frustrating. 

But wait! Don’t close your book (or laptop) and walk away just yet! Having just explained the 
difficulties, consider the flip side of the problem-solving coin: problems that are authentic are 
also inherently interesting, particularly when they address contemporary issues or puzzles in your 
chosen area of study. Solutions and solution methods for such problems are therefore not just 
an academic dead-end, but can lend themselves to practical applications in the real world. The 
rewards of achieving a clever and well-justified solution to a practical and interesting problem 
should outweigh by far the moments of uncertainty, frustration, or disappointment encountered 
along the way. 

Most of the problems discussed in this book are designed to mimic authentic problems, and in 
many cases are drawn from or inspired by encounters with local researchers and practitioners. As 
we endeavor to address these problems, we’ll often find it helpful to explore simpler problems 
and exercises to help with sense-making. Thus, our time will be spent moving back and forth 



from focus problems to auxiliary problems and exercises. Read on through the end of this chapter 
to understand how this approach can lead to more successful problem-solving. 

Problem solving cannot be reduced to a simple recipe or fast and easy method, but in the past 
70 years, much has been learned about how successful construction of solutions differs from 
unsuccessful attempts. A key component is the use of heuristics, or habits of mind that are 
useful in solving problems. The modern idea of heuristics has its origin in the work of Hungarian 
mathematician George Pólya in the mid 20th century. Heuristics help guide us in decisions about 
how to approach a problem. With the help of heuristics and the benefit of experience, we may 
develop problem-solving strategies that lead to successful solutions. We’ll begin our study of 
problem-solving with a brief look at Pólya’s method and some of his heuristics and then consider 
how they might apply to problem-solving in the natural science and natural resource management 
contexts. 

UNDERSTAND. First we must 
know what we are trying to find 
out. 

Pólya’s method and beyond 

A credentialed mathematician and academic, Pólya was no stranger to the struggles of solving 
difficult problems. But he was also a teacher and concerned himself with the development of 
problem-solving skill and intuition in students. He studied his own problem-solving process and 
that of his professional colleagues and distilled his observations into four essential principles. 
These principles are general–that is, their use needn’t be limited to mathematical problem-
solving. The method can be summarized as follows: 
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Pólya’s Method, Condensed and Slightly Revised 

1. Understand the problem. What is the unknown or target quantity? Is there enough information to find 
a solution? How is the information that is available relevant to the unknown? 

2. Plan a solution strategy. How can you proceed from the information available to the unknown? What 
steps are necessary, and how will the given information be used? 

3. Execute the solution plan. If the solution plan is chosen well, the implementation of the plan should 
yield the sought-after result. If insurmountable difficulty arises, an alternative plan may need to be 
formulated. 

4. Check the result. Does the result satisfy the conditions stated in the problem? Is it consistent with 
expectations or within reasonable bounds? Can you arrive at the same result using a different approach? 

These principles may seem obvious, but when the time comes to actually solve a problem it is 
easy to overlook one or more of them or to lose track of what we are after. Employing this method 
as a general framework for approaching problem-solving will yield more consistent success and 
more reliable results. 

PLAN. How will we go about 
finding a solution? 

Consider the most common words out of a typical college student’s mouth when confronted 
with a novel problem: “I don’t know where to start”. Perhaps the student really means “you 
haven’t yet told me exactly what to do to get the answer”. But if the instructor were to point 
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the student toward a solution method every time she was confronted with a challenging problem, 
she would learn only two things: 1) how to implement algorithms and compute numerical results 
as instructed; and 2) to relinquish all control of choosing how to approach and solve a problem 
to somebody else. Sadly, this is often the best outcome of the standard school mathematics 
curriculum. The worst outcome is that students dismiss math as boring, difficult, or irrelevant. In 
some cases, a diligent student develops some facility1 with basic manipulations of mathematical 
symbols and numbers, but little or no ability to create the frame of mind and methodological 
structure needed to begin and confidently proceed trying solutions. 

For the challenge of getting started, Pólya’s framework offers Understand. What is the problem 
really asking, and what exactly do you want to end up with as a result? Take, for instance, the 
pheasant count problem that we introduced in the first chapter: what is the unknown in that 
problem? Essentially, the question we posed there was how many pheasants we should expect 
to be living in Iowa in the next few years. In some ways, this is a specific reinterpretation of 
the problem statement, but the simple act of making that re-interpretation not only helps us 
understand what we are looking for concretely, but our formal statement of it might clarify to 
colleagues or readers what our solution is driving at. 

EXECUTE. Implement the plan and solve 
the problem. 

Since Pólya’s framework was developed from the perspective of a mathematician, some of the 
questions and suggestions pertain mostly to abstract problems. The framework doesn’t take 
advantage of the fact that most of our problems are situated in real-world contexts and involve 
quantities whose properties can be used as an asset in identifying, constructing, and evaluating 
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solutions. If you’re not exactly clear on what I mean by that, go ahead and peek at the next chapter 
where we discuss the definition and properties of quantities. 

CHECK. How well does the solution address the 
problem? 

Below, I have expanded and elaborated upon Pólya’s framework and adapted some of the details 
for problem-solving in natural sciences. 

Solving Ill-structured Problems 

• Understand the problem 

◦ Do you understand the problem as it is stated? 

◦ Can you restate the problem in your own words? 

◦ What is the unknown or desired quantity or output (be specific)? Is it a number? A function? A procedure? 

◦ Can you make a drawing or diagram to illustrate how the unknown relates to any known quantities or to the 

broader problem-space? 

◦ Do you already know approximately what the value should be? Can you guess a ballpark or range of 

reasonable values? 

◦ How accurate does your solution need to be? What are the consequences of errors? 

◦ What information do you already have? 

◦ Is the information that you already have sufficient to solve the problem? 

◦ If appropriate, can you write the problem as an algebraic equation with suitable notation? 

• Plan a solution. Consider multiple approaches if possible. 

◦ Have you successfully solved a problem like this before? 
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◦ Has somebody else documented a solution method to this or a similar problem? 

◦ If the problem can be written explicitly as a mathematical statement, do you recognize an algorithm or 

heuristic that can yield the desired unknown? 

◦ If a solution method is apparent, can you assemble all the needed quantities? 

• If the problem is not immediately solvable, or a solution method not yet apparent… 

◦ Can you break the problem into smaller sub-problems that may be easier to solve? 

◦ Can you approximate uncertain or unknown quantities 

◦ Could you solve a related auxiliary problem to gain insight? 

◦ If data are given, what exploratory analyses could be done to spark ideas? 

• Execute the plan 

◦ At each step, check to see if the incremental result matches expectations. 

◦ Double-check all formulae and algebraic manipulations. 

◦ If appropriate, is unit/dimensional homogeneity satisfied? 

◦ If you encounter difficulties, revisit the plan and alternatives. 

• Check the solution 

◦ Is the result reasonable? 

◦ Is it consistent with ballpark estimates or benchmarks? 

◦ If appropriate, can you substitute the result into the original problem and satisfy the assumptions and 

conditions? 

◦ Double-check algebraic manipulations. 

◦ Double-check numerical computations. 

◦ Could you document your full solution with a concise but complete summary of steps, justification of 

assumptions and methods? 

◦ Could a colleague reproduce your approach and find the same solution? 

Pólya’s framework, and our elaboration of it for problems in the natural sciences, may help us be 
better organized, but when it comes to applying the quantitative skills we spent years developing 
in math and statistics classes, we still have little guidance. In Pólya’s How to Solve It, this is the 
point where the idea and utility of heuristics was introduced. In the next section, we will introduce 
and review some generic heuristics that can aid with understanding the problem and inspiring a 
solution plan. 

A Few Versatile Heuristics 

The heuristics we consider here are just a snapshot of the generic methods we might employ in 
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many problems, and some of these are further elaborated in subsequent chapters. These should 
be some of your most frequent go-to tools for the initial understanding and planning phases, 
and can be interpreted differently according to the constraints or conditions of each problem. In 
selecting optimal strategies, the field of options may be narrowed by examining the nature of 
the unknown. Think about the unknown and what it represents, not only for the focus problem 
but for any sub-problems or for any goals identified as necessary to solving the focus problem. 
Could the problem be stated in the form “how much…?”, “how many…?”, or “is…or not?”. 
If so, the problem might require arithmetic and/or algebraic reasoning. If data is available or 
supplied and the problem can be stated in the form “what relationship…?” or “how does…change 
as you vary…?”, graphical and statistical reasoning are probably appropriate. If the problem 
can be stated in the form “how big…?”, “what distance…?” or “where…?”, then geometric or 
spatial reasoning could be necessary2. There are certainly problems that won’t be easily stated in 
any of these terms, and all options should then remain open. Nevertheless, recognizing common 
properties in the nature of problems can sometimes narrow down your choices of strategies and 
make promising solution methods or approaches more apparent. 

• Break the problem into sub-problems. Complex problems often require multiple steps that can be 
divided into discrete sub-goals. For example, determining the value of an unknown quantity that is 
required to solve the focus problem can be considered distinct from solving the focus problem itself. 
Therefore mapping out the solution in terms of incremental sub-goals can clarify the pathway to a 
solution. 

• Express conditions algebraically. Assign symbols to relevant quantities and express the 
relationship, if known, as an equation relating the quantities. If relationships are not known 
beforehand, use dimensional analysis to suggest them. 

• Guess the correct answer or solution. Usually a guess or ball-park estimate is not sufficient if the 
issue is truly a problem, but estimates can still be used to help you recognize if you are on the right 
track in later computations. If you know approximately what the solution is or what range it should 
lie within, use this value to check your work. If the solution is not known beforehand but algebraic 
or practical constraints are available on related quantities, use those quantities to get a ballpark 
estimate. At this stage, back-of-the-envelope calculations in scientific notation can make quick work 
of it. 

• Try a few values. Where some values are unknown but are not the desired quantity, try to solve the 
problem with a few supposed numerical values. Sometimes the outcome of algebraic relationships is 
relatively insensitive to the precise value of the quantities included in the relationship. When the 
relationship is strongly sensitive to unknown or poorly-constrained quantities, identify those 
quantities as important intermediate goals or sub-problems. 

• Draw a picture or diagram. When the problem is inherently spatial, such as in the case of habitat or 
landscape ecology problems, make a map or schematic drawing of the geometric or spatial 
relationships between known and unknown quantities. To the extent that it is possible, scale 
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distances or spatial dimensions accurately. 
• List all possible cases. If you’re confronted with a logic or simple probabilistic puzzle, make a list 

or matrix containing possible permutations or combinations. 
• Work backwards. Where the desired ending condition is known or can be approximated but the 

steps to reach it are not known, use the end result to help “back out” the steps. 
• Visualize the data. If data or input values are given and a relationship or summary-statistic is 

desired, make a graph or diagram from the data. In some cases, visual representation of the data can 
suggest or substantiate approximate values for the unknowns or can illustrate the form of functional 
relationships. 

• Solve a simpler problem. Sometimes a condition or relationship is too complex to solve easily in its 
full form. In these cases, it may be possible and helpful to simplify the condition to make the 
problem tractable. You can do this by assuming that an unknown value is known (as in Try a few 
values), by eliminating one or more terms in sums and differences, or by using a simpler statement 
of the original condition. 

The heuristics above are by no means a recipe for success in every situation, but they should 
be available to you in your repertoire of things to consider. In the chapters that follow, we will 
elaborate on some of these strategies and add more context-specific tools that can be applied in 
practical problems. 

Stepping back 

Before we set you loose on solving problems, it is important to address the mind-set of problem 
solving. If you have ever uttered the words “I suck at math” or something similar, this section is 
particularly for you. But as far as I’m concerned, realizing how the mind constructs knowledge 
and understanding in a problem-solving task is an empowering notion. Alan Schoenfeld, 
mathematician and math-education specialist, has identified four aspects of the mental process of 
problem-solving that are essential: Resources, Heuristics, Control, and Belief. Each is necessary 
and problem-solving cannot or will not proceed without them. First, let’s look at what each 
means, and then we’ll consider how they contribute to our problem-solving success. 

Resources 

These are the things you know or understand about the problem domain, constraints on quantities 
and their representation in the problem domain, and the skills you possess in performing algorithmic 
procedures. 

Heuristics 

The decision-making tools used to make sense of challenging problems that allow you to make 
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progress or develop insight. Most of the chapters of this booklet are devoted to developing strategies 
useful in natural science or resource management domains. 

Control 

Control is the management and self-awareness of the problem-solving process. It includes planning, 
execution and evaluation decisions and and the selection of resources and heuristics for the problem. 

Belief 

Belief includes the set of notions one has about the problem domain as well as one’s own abilities or 
challenges in applying math and statistics to the problem domain; this also includes preconceptions 
and (mis)understandings that could lead to the use of (in)correct resources and heuristics in a given 
problem. 

Your mathematics and statistics education up to this point has almost certainly stressed resources. 
Thus, the quantitative resources you bring to a problem consist of all the algorithms and methods 
you know how to use and your understanding of what they do or mean. Unless you’ve followed a 
curriculum through school and college that has deliberately made use of these resources, you’ve 
probably forgotten many of them, but re-learning them may not be as challenging as learning 
them naively. Control and belief are gained from experience, and can build from any foundation 
of resources and heuristics. The heuristics and strategies themselves can be a bit of a problem 
though. 

You may have been instructed some in the development solution strategies in school, but there’s 
an important distinction between learning what to use and learning when to use it. Some people 
may argue that it is not a mathematician’s prerogative to instruct students in their service courses 
in more than resources, since heuristics vary from one discipline to another and control and 
belief grow with experience. This argument is fair, but as non-mathematicians we’re left with 
training in how to implement algorithms, but little idea about how to use those algorithms unless 
presented with problems that aren’t really problems but exercises. 

As a result, when the going gets tough,…we get stuck. That’s where this course comes in 
(hopefully to the rescue??). This is your opportunity to work with resources you already have 
at your disposal, perhaps learn a few more, and to be introduced to strategies for using them in 
problems that you might encounter in other natural resource courses, in internships, or in your 
career. By working through these problems in a systematic manner, you’ll learn how to control 
your problem-solving process while building your experience base. I sincerely hope that your 
belief system evolves in such a way that you become confident that you can solve quantitative 
problems too! 
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Exercises 

1. Think of a challenging problem that you needed help to solve in one of your high school or college 
courses. It could be a mathematical problem, but doesn’t have to be. Describe the problem and reflect 
on what assistance you needed to arrive at a solution. Were you unable to get started? Did you need 
help with recognizing and implementing the appropriate algorithms? What was the nature of the 
assistance that helped you solve the problem? Was it satisfying to arrive at the correct solution? 

2. Now reflect on a challenging problem that you were able to solve correctly without assistance. Why 
were you successful? Were you able to overcome any difficulties or hurdles along the way? Was it 
more or less satisfying to solve this problem on your own than to solve a problem with help? Why? 

3. What resources do you think a person needs to be able to make good predictions of pheasant 
population over the coming 5 years? 
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3. A Solved Problem 

3.1 Problem background: the tilted tape 

Students completing a stream physical habitat survey measure geometry and record 
characteristics of wadeable stream channels and the adjacent banks and floodplains. Among 
the common measurements included in these surveys is a stream cross-section. A stream cross-
section often includes topography, vegetation cover, water depth, and particle size 
characterization, observed at regular increments from the top of one bank to the top of the other. 
Topography is sometimes measured with cloth measuring tapes, optical levels and stadial rods, 
high-end GPS receivers, or total stations. In remote settings or when precision instrumentation is 
not available, a single cloth tape and a telescoping stadial rod can achieve results that are usually 
very adequate. 

Figure 3.1. Set-up for the rod-and-tape method for quickly 
measuring stream cross-sections. 

A common procedure for rod-and-tape cross-section measurements, illustrated in Figure 3.1, is 
as follows: 

1. Secure the ‘0’ end of the tape to a stable fixed point (e.g., a tree trunk or fence post) on the 
floodplain or hillside above the left bank (facing downstream), ensuring that the tape is secured at a 
height that is greater than any points to be measured in the cross-section. 

2. Stretch the tape across the stream so that it is perpendicular to streamflow. 
3. Secure the reel side of the tape to a stable fixed point on the floodplain above the right bank. Take 



care to make the tape as taut and level as possible, so that the elevation of both ends of the tape is 
equal and the tape does not sag. Use a carpenter’s level or handheld clinometer if available. 

4. At regular intervals along the tape (typically every 0.5 or 1 meter, depending on stream size) stand 
the stadial rod vertically on the ground or streambed and record the height on the stadial rod where 
the tape crosses. In addition, make measurements at key points along the way, such as the top of the 
streambank, edge of water, and the deepest place in the channel. 

5. At each station, note the landform or feature at that station, record vegetation type and density, soil 
texture or properties, water depth, habitat features, and sediment size, as appropriate. 

6. Back in the office or classroom, convert the rod-height readings to elevations by subtracting the rod 
readings from a known or arbitrary elevation datum. 

Table 3.1. Cross-section data. 

sta. (m) elev. (m) feature 

0.5 329.48 

1.05 328.59 Left BF 

1.15 328.16 

1.74 327.94 Left EOW 

2.0 327. 87 

2.5 327.9 

3.0 327.94 

3.5 327.86 thalweg 

4.0 328.0 

4.5 327.99 

5.0 328.01 

5.5 328.0 

6.0 328.07 

6.17 328.09 Right EOW 

6.58 328.60 Right BF 

7.0 328.97 

8.0 329.51 

8.48 330.0 

This low-tech method can produce very accurate data, but it can also be susceptible to errors. One 
commonly-encountered problem is that the tape is not perfectly level when stretched across the 
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stream. This problem is not often recognized until after the data is collected. Indeed, it is often 
only noticed when the rod-heights from the left and right edge of water appear to be significantly 
different. Table 3.1 shows a dataset in which this If observations from the channel indicate that 
channel features (such as a gravel bar) caused real water elevation to be higher on one bank than 
the other, this may not be an error. In most cases, however, this indicates that the tape was not 
precisely level. Can we still use this topographic data, or does it need to be discarded? 

Problem statement 

Take the optimistic view that the topographic cross-section data can still be used. Devise a 
strategy for correcting the error that causes the left and right edge-of-water (EOW) heights to be 
unequal. Use your strategy to correct for tape tilt in the data from Table 3.1. 

3.2 Elements of a solution 

Our first task is always to make sure we understand the problem, and even if this appears at first 
to be trivial. Consulting our problem solving tips from Chapter 2, we should begin by addressing 
some of the questions under “Understand”. Do we understand the problem as stated? A good test 
of this is to attempt to restate it in our own words. Let’s try: 

We have data from a tape-and-rod stream cross-section survey where the elevation of the 
left and right waterlines isn’t equal. We assume that within a single cross-section the 
water surface is flat, so we infer that the tape that was used to read elevation from the rod 
was not quite horizontal. We need to figure out if there is a simple way to correct the data 
after the survey is complete. 

How have we done? Is this roughly how you interpret the problem? If not, rephrase it as you 
understand it. Just because your instructor describes it one way, that doesn’t mean that’s how it 
will best make sense to you. 

Continuing with “Understand”, what should we be looking for in a solution? Well, the problem 
statement specifically asks for corrected data from Table 3.1, so this means we’re looking to 
adjust the data in the “elevation” column. The statement also calls for a strategy or procedure, 
so we need to think about not just getting the numbers adjusted, but also formally documenting 
the procedure. Since stream ecologists and geomorphologists make cross-section measurements 
frequently, developing a re-usable procedure could greatly streamline the processing and quality 
control of the data. 

This problem is one for which a drawing could be really helpful, particularly as a way to visualize 
how the tilted tape could cause issues with the data. A drawing in this case could also be a useful 
way to organize information visually. But even here, we have some consequential decision to 
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make. Do we want to try to make a drawing that accurately reflects the numbers in the problem, 
or do we want our drawing to serve as more of a sketch where we can distort things so it’s easier 
to “see” important features of the problem? Our heuristic from the last chapter suggested that we 
should make the drawing as accurate as possible. In this case, however, an accurate representation 
might actually be difficult to sketch in a way that is useful for visualizing problem information. 
Compare the two sketches in Figure 3.2. Which one is more accurate? Which one is more useful 
for organizing information? 

 

Figure 3.2. Compare scaled (sketch 1) and schematic (sketch 2) sketches as 
aids in problem understanding. 

While sketch 1 may be perhaps more accurate, it is harder to see and play with the issues 
involved. For the purpose of understanding the problem, sketch 2 may therefore be more useful. 
Perhaps once we’ve wrapped our minds around what we’re doing and why, a more accurate 
sketch can be useful for communicating. Heck, unless we’re short on paper there’s no particular 
reason to restrict ourselves to just one drawing, so let’s plan to make several. 

So sketch 2 with exaggerated dimensions allows us to organize information that may be helpful 
in addressing relevant questions remaining in “Understand”. Do we know what reasonable values 
should be for the corrected elevations? Sort of. A quick look at the edge of water (EOW) 
elevations in Table 3.1 makes clear that the mis-match between left and right edge elevations is 
328.09 m – 327.94 m, or 0.15 m (15 cm). So our correction should change some elevations by 
something like 15 cm, probably not way more than a meter and probably not much less than 1 cm. 
This ballpark range also gives us a sense for how accurate we need to be. If we’re concerned 
about mismatches in elevation of 15 cm, then we probably care about elevations at least down to 
the nearest 1 cm. Anyhow, minnows, crayfish and shorebirds probably care about differences in 
water depth of a centimeter! 
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Suppose we add some of this information to an updated version of our sketch. Here we may 
need to be creative and maybe even forge ahead toward a preliminary solution plan. Since the 
left EOW appears to be lower than the right EOW in the uncorrected data, one reasonable goal 
could be to try to figure out a solution procedure that lowers the right EOW by 15 cm. OK, 
but wait! Why not instead raise the left edge by 15 cm, you say? Indeed, why not? Here we 
encounter that uncomfortable feeling of uncertainty. We may be tempted at times like this to turn 
to the instructor with a question like “Are we supposed to…?”. But as we’ve already established, 
there are often no “supposed to’s” in real problem solving. That leaves us with a need to assume 
more control, and in some cases that is an unpleasant and stressful feeling. But why shouldn’t 
we view this as liberating instead? We finally have an opportunity to dictate what the correct 
procedure is. It will be a correct procedure as long as we can verify that it yields an accurate and 
reproducible solution to the problem, the computations follow the rules and logic of mathematics, 
and provided that we clearly articulate any assumptions or conventions our procedure relies on. 

Let’s take stock of where we are now. We have restated the problem in our own words, defined 
the outcomes we seek, made some sketches that help us organize the information we have, and 
identified a need to make some decisions about how we will incorporate given information into a 
plan and solution. 

Before we jump into planning, let’s establish some criteria that we can use to decide whether 
a solution that we arrive at satisfies the statement of the problem. Here we’re setting up a 
framework for “Check” that we can come back to later and adjust if necessary, but it can be a 
helpful reminder of what we’re after and a test of whether we’re on the right track. A satisfactory 
solution should: 

• correct elevations in Table 3.1 so that the left EOW and right EOW elevations are equal. 
• be self-consistent and reproducible. 
• be generalizable so that the same procedure can be applied to other cross-section data sets. 

Now that we have our ducks in a row, we can work toward a solution plan. Our latest sketch hints 
at an idea: if we assume that the left end of the tape is at the “correct” elevation and the right end 
was fixed a bit too high, can we rotate all of the elevations around the zero point on the tape until 
the left and right EOW elevations are equal? How do we rotate a bunch of data points though, and 
how much rotation is necessary? Well, these are really important questions, and here’s where we 
can’t just reason our way through a solution without recruiting some resources. By resources, we 
mean some recollection of how to mathematically describe angles and rotation. You may have 
encountered some of these concepts in earlier classes, but if not you’ll see them later in this book. 

For now, let’s use the most straight-forward resources that we think might be relevant to this 
problem. Let’s interpret the tilted tape as a line in the cross-section plane that has a slope different 
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from the horizontal. Recall that we can define slope as “rise over run”. In this context, we can 
interpret rise over run as a change in elevation with distance from a reference point. But how do 
we use that with the information we know? Let’s imagine that the reference point is at the left 
EOW point in the cross-section (Figure 3.3). We know that the right EOW is 0.15 m higher than 
the left, so let’s interpret that as the rise. The distance between the left and right EOW on the 
tape is 6.17 m – 1.74 m = 4.43 m, so that’s the run. The slope, then, is 0.15 m/4.43 m = 0.03386. 
Notice that I didn’t put units on the 0.03386; that was deliberate, because the units of our rise-
over-run quotient cancel out. 

Figure 3.3. A rotated cross-section 

What have we just done? We haven’t solved the whole problem, right? We haven’t satisfied any 
of our solution criteria yet, right? But we have taken a step in that direction along a potential 
solution pathway. We could say that one thing we’ve done is to find an important quantity (the 
amount of tilt, measured in terms of slope) that might help us advance. This is effectively a sub-
problem within the larger problem, and that’s one of our general heuristics. But thus far we may 
have done this blindly. That’s OK, if we’re stumped on a plan it’s OK to try a few things and 
see what happens. But if we aren’t stumped, we might want to step back and think about how 
this little exercise serves the overall goal of solving the problem. How will we use the “slope” 
quantity? 

Consider this: since slope is rise over run, if we decide to choose a fixed value for slope, the ratio 
rise over run is also fixed, even if we vary the rise and run. But rise and run need to vary in such 
a way that their ratio is always equal to that same fixed slope value, in this case 0.03386. If we 
imagine a run of 1 meter, the rise over that distance that makes for a slope of 0.03386 is just 
0.03386 m, or around 3.39 cm. Stated as an equation, if we define  as slope,  as run, and  as 
rise: 

. 
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If we rearrange this so that we solve for z and substitute our fixed slope value : 

. 

We’ve just done some fairly abstract thinking and a bit of algebra, so let’s take a minute to absorb 
it. 

Making the leap from defining slope as rise over run to writing an equation in terms of , , 
and  is a way of thinking that might not come naturally to some people. We had to temporarily 
let go of the concrete idea that rise, run, and slope are particular characteristics of a tilted cross-
section with particular associated numbers that come from our dataset, and instead treat them 
more abstractly as symbols. In doing this, we have generalized from the specifics of our real 
problem to an abstraction that may appear unrelated. Why? Because abstraction, or in this case 
generalization, of the relationship allows us to write a formula that can be re-used to convert 
any  value (station on the tape) to a corresponding  value for the sloped tape! If we choose a 

 value that is half of the width of the wetted channel (2.215 m), then the corresponding  from 
our slope formula should be half of 0.15 m, so 0.075 m, right? 

Hang on! Let’s think back to what  meant before we generalized. This was the amount that one 
water’s-edge point appeared to be higher than the other. What if we just subtract  from all the 
elevations in our dataset, using the station as ? Let’s try it! But how? There are 18 numbers in 
the elevation column of our data table. It would be possible, but tedious, to do this all by hand 
with a pocket calculator. If we can use a spreadsheet, that would be more efficient. 

Copying the data from the table above into a spreadsheet is tedious too, but once we’ve got the 
structure set up and provided that we know some shortcuts, it’s not so bad. With a simple cell 
formula and a fill command, we’ve got a result (Table 3.2). 

Table 3.2. Corrected topographic cross-section data. 

station (m) elev. (m) corrected elev. (m) feature 

0.5 329.48 329.48 

1.05 328.59 328.57 Left BF 

1.15 328.16 328.14 

1.74 327.94 327.90 Left EOW 

2.0 327. 87 327.82 

2.5 327.9 327.83 

3.0 327.94 327.86 

3.5 327.86 327.76 thalweg 
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station (m) elev. (m) corrected elev. (m) feature 

4.0 328.0 327.88 

4.5 327.99 327.85 

5.0 328.01 327.86 

5.5 328.0 327.83 

6.0 328.07 327.88 

6.17 328.09 327.90 Right EOW 

6.58 328.60 328.59 Right BF 

7.0 328.97 328.75 

8.0 329.51 329.26 

8.48 330.0 329.73 

Great, we’re done right? Well no. While it may be tempting to just get a result, submit it and 
leave, we still need to check our result. The first step is probably to look at the spreadsheet 
and ensure that our data entry was correct, the formulas are correct, and that our numbers are 
reasonable. Next, recall that we laid out three criteria for a satisfactory solution. This gives us a 
clear set of expectations: 

• Do our corrected numbers make the left EOW and right EOW elevations equal? YES. 
• Is our solution self-consistent? YES, provided that a double-checking of the numbers yields no 

errors. Is it reproducible? YES, because we implemented it in a spreadsheet and kept breadcrumbs 
from our steps. 

• Is it generalizable? PERHAPS. If we use the definition of slope to identify the tilt in another setting 
and a version of our elevation correction equation modified for the appropriate , this could be 
generalized into a versatile sequence of clear steps. This is left as an exercise for you to do. 

So it looks as though we’ve done pretty well! 

A final step in problem solving in many cases is to report the solution to those who need to see or 
use it. We’ll look into some of the issues involved in reporting quantitative information later in 
this book, but a few things should be highlighted here. Most importantly, there is sometimes room 
for slightly or significantly different interpretation of the problem to begin with. In the process of 
understanding the problem, we made some assumptions or inferences and proceeded as though 
they were true. In problems that invite alternative interpretations of the data or the context, this 
can lead different people to very different solutions. How are we to know who is correct or whose 
solution is more reliable then? By scrutinizing the assumptions made in finding a solution, we 
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can select the solution with fewer or better assumptions! If the assumptions are not articulated as 
part of the solution statement, we may have a hard time trusting the solution. 

 

Exercises 

1. There is at least one error among the corrected elevations in Table 3.2. Identify which entry or entries 
have errors and provide a corrected value. 

 

2. Using a word processor and its built-in equation typesetting tool, write down a generalized set of 
steps for performing these corrections that can be used as a standard protocol for data quality 
assurance for students making and reporting stream cross-section measurements. 

 

3. As with most authentic problems, there is more than one way to obtain a solution. Instead of using the 
slope strategy that we demonstrated above, can you suggest an alternative approach to making 
corrections? 

 

4. We have envisioned our solution in terms of an imagined “rotation” of the tape around the zero point. 
Do you think that the algebraic statement we used to make corrections provides an accurate 
correction? Hint: Suppose that the tape was actually tilted at a much greater angle, say 25º. Does the 
distance reading y on the tape really correspond to the horizontal distance across the channel? If not, 
by how much is it off in our analysis above? Is this error acceptable? 
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Figure 4.1: Two adjacent 
sections, each 
approximately 1 square 
mile, with different 
number and size 
distribution of wetlands. 

4. Some Teaser Problems 

To illustrate some of the ways that we can employ a deliberate problem solving process, apply 
general heuristics, and look toward development of solution strategies, I offer some teaser 
problems. We’ll revisit these problems throughout the text where they serve as fodder for 
more targeted discussions of solution strategies. These problems vary in complexity and are in 
most cases fairly open-ended. As we’ve already discussed, these are features of real problems 
and though we may feel a bit of anxiety about that, we should also realize that this presents 
opportunities for creativity and ingenuity. 

4.1 Waterfowl easements 

To have the greatest benefit to migratory waterfowl, is it better to 
secure easements containing many small wetlands or fewer, larger 
wetlands? 

One of the greatest threats to waterfowl populations is loss of habitat. 
Organizations like Ducks Unlimited and The Nature Conservancy 
have advocated for preservation and restoration of wetlands in key 
migration corridors and breeding areas. Among the strategies that 
organizations like this have used is acquisition of conservation 
easements, wherein a private land owner agrees to limit development 
on land containing quality habitat in exchange for benefits like 
management assistance and tax deductions. In practice, these 
organizations cannot accept all easement donations but need to 
prioritize those that will have the greatest long-term benefits to 
waterfowl. Thus the question: if all else is equal, is it better to 
prioritize a parcel with many small wetlands, or a parcel of the same 
size with fewer, large wetlands (Figure 4.1)? 
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4.2 Herbicide purchase 

How much herbicide is needed to kill and suppress regrowth of invasive woody shrubs in a 
wooded urban park? 

A common management problem in urban woodlands is the control of invasive or unwanted 
understory vegetation. In the midwestern USA, bush honeysuckles (genus Lonicera) and 
European buckthorn (genus Rhamnus) are particularly challenging to manage, and the most 
effective means of control is usually with herbicide. The simplest approach for many of these 
woody invasives is to cut all the stems and paint stumps with a general herbicide like glyphosate. 
So what must we know and determine to decide upon the quantity of glyphosate required? 

4.3 Deer-automobile collisions 

How likely are collisions between automobiles and whitetail deer in your county, and how 
might they be influenced by changes in deer population management? 

If you live in an urban environment without open spaces and wildlife corridors, the answer to 
this may be easy: zero likelihood. But in many areas both periurban and rural, deer are a familiar 
sight. In these settings, deer-automobile collisions may unfortunately be all too common. We 
might infer that the frequency of collisions would be greater where both deer and drivers are more 
numerous, but can we quantify this? 

4.4 Prairie dog plague 

Is it possible to prevent the spread of Sylvatic plague through prairie dog 
colonies? 

Yersinia pestis is a flea-borne bacterium that causes Sylvatic plague, an often 
fatal disease that primarily affects rodents. The black-tailed prairie dog 
(Cynomys ludivicianus), already threatened by land-use change and hunting/
poisoning within it’s native range in the North American Great Plains, 
periodically experiences plague epidemics that can decimate colonies. In 
addition to harming prairie dogs directly, however, plague can be transmitted 
both directly and through fleas from prairie dogs to their predators, including 
the endangered black-footed ferret. In isolated populations of prairie dogs, monitoring and active 
management can potentially be used to reduce the spread of plague, but designing such a strategy 
requires that we first understand the dynamics of disease transmission within colonies. 
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Figure 4.2: Total cost C of management increases 
with suppression and pre-suppression effort.  With 
little suppression effort however,  the risk of high 
losses or net change in value, NVC, is high, 
declining with suppression effort. This view of 
management incentives indicates that overall cost 
is C + NVC. 

4.5 Forest fire losses 

How much fuel management is optimal to minimize risk of fire damage in a forest managed 
for timber production? 

In many western forests managed for timber 
production, historical fire exclusion has led to a 
buildup of fuel wood, leading to heightened risk 
of destructive fire. When fires do occur in these 
settings, high fuel density can lead to 
destructive crown fires that greatly diminish the 
value of the timber and can damage or destroy 
surrounding infrastructure. To combat this, 
forest managers can undertake fuel reduction 
treatments such as thinning and prescribed 
burning, and emergency managers can 
aggressively fight fires when they do start. 
However, such suppression and pre-suppression 
efforts can be costly and can have diminishing 
returns in terms of cost and resources (Figure 
4.2). Is there an optimal amount of fuel 
reduction and suppression that provides some protection from risk while containing costs? 

4.6 Maximized effluent 

How much of phosphorus (P) can be discharged from point sources into an urban stream 
without exceeding total maximum daily loads (TMDLs)?1 

The U.S. Clean Water Act of 1972 establishes criteria for identifying polluted water bodies 
and designing plans to reduce pollutant loads and improve water quality. One of the measures 
available to water resource managers is the establishment of Total Maximum Daily Loads 
(TMDLs), which typically limit the permissible concentration of a pollutant in an impaired water 
body. If the goal in this case is to limit the amount of P delivered to downstream water bodies, 
we need to determine how much P constitutes the maximum allowable concentration. 

1. Inspired by Litwack et al., 2006, Journal of Environmental Engineering, 132(4): 538-546. 
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Figure 4.3: A pathway between problems and 
solutions in practical natural resource management, 
including various quantitative approaches. 

4.7 Brook trout recruitment 

Given data from four consecutive electrofishing passes in an isolated stream reach, what is 
the stream’s age-0 brook trout population? 

One method of estimating fish populations in streams is to isolate a stream reach with barriers 
upstream and downstream of and performing an electrofishing transit of the reach, collecting and 
measuring each fish retrieved. When extra detail is needed or fish are elusive, multiple passes 
through the reach may be required, and retrieved fish are removed to a live well or adjacent reach. 
Through this method, the change in catch between consecutive passes can be used to estimate the 
actual population within the reach. To isolate the population of age-00 (young of the year) fish, 
age must be assessed from each fish either directly or indirectly from the length distributions in 
the catch in each pass.2 

The problems above deal with a variety of 
practical issues that could be addressed by a 
natural resource professional. None of them are 
expressed explicitly as math problems, but 
quantitative methods could be instrumental in 
solving each of them. Indeed, this is 
characteristic of many real science and 
management problems. Before they become 
quantitative problems, they must be interpreted 
and carefully re-framed (Figure 3.3). This is not 
only an important part of the process, but in 
many cases is the most challenging and pivotal 
step. In practice, this must be part of the process 
of understanding the problem and perhaps even 
planning a solution strategy. In most cases, not 
enough information is given up front and the 
expectations for the kind of solution desired are 
vague. In this sense, they are ill-structured 

problems, requiring some digestion and careful re-phrasing before they can be understood as 
solvable quantitative problems. 

Gathering the information deemed necessary to arrive at the solution is, of course, an essential 

2. A nonlethal age estimate can be obtained by collecting and observing fish scales under a microscope. 
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step in the process. When possible, we should strive to include this step as part of the coursework. 
However the design of experiments and logistics of making novel field measurements can and 
should be addressed in their own courses, and we cannot hope to do justice to those concerns 
here. As a consequence, where the teaser problems are addressed here and in the chapters that 
follow, we’ll either work with hypothetical data or engage real data from the literature or from 
government documents and web resources. 

Importantly, these problems also vary in the degree to which we could ever hope to know that we 
have the “right” answer. For example, It may indeed be possible to know exactly the maximum 
P load delivered in Problem 4.6 or the herbicide volume needed in Problem 4.2, provided that 
we had perfect information on stream discharge and stem basal area, respectively. However, for 
most of the other problems, confidence that we have a good solution must come from confidence 
that we have made well-reasoned interpretations and assumptions and used technically-correct 
manipulations and analysis. Thus, part of the burden of solving such a problem is articulating 
how the problem is interpreted and how chosen solution strategy follows from that interpretation. 

Each of these problems provides hints or implicit cues to what kinds of strategies are appropriate 
to assemble a solution. For example, there are clear spatial elements to Problem 4.1 and Problem 
4.2, but there may also be subtler spatial components in others. By spatial, I mean that we 
need to incorporate information about how big or how long something is into our solution. 
Addressing these elements of problems requires some tools from geometry and trigonometry, 
as well as perhaps the language and conventions of geography or cartography. Therefore, this 
book contains several chapters exploring the aspects of spatial reasoning that arise frequently in 
natural resources. 

Not surprisingly, several of these problems point to issues of how many, particularly Problem 
4.3 and Problem 4.7. In these and other problems, we may wish to characterize individuals 
or populations in terms of a representative value or distribution of values, or we may need to 
compare values or proportions. These tasks engage our experience with arithmetic, descriptive 
statistics, and probability, but in many cases also require that we are careful with units and that 
we can work efficiently with the extremely large or small numbers sometimes encountered in the 
sciences. For these issues, we have several chapters devoted to numerical reasoning. 

Aspects of most of our problems can be expressed in terms of the relationship between multiple 
variables, or relationships between cause and effect. For example, in Problem 4.5 we may need a 
way to represent the relationship between how much effort is made in fire-suppression activities 
and their cost. Since we don’t necessarily have an idea ahead of time about how much effort is 
appropriate, an algebraic expression relating the variable CC (cost of suppression efforts) to the 
amount of suppression effort itself (call it SS) could stand in and allow us to employ algebraic 
reasoning as a means to a solution. 
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Finally, several of these problems imply that we seek an assessment or prediction of future, 
hypothetical, or unobservable quantities or events. For example, Problem 4.4 seems to ask 
whether something is even possible, even though we don’t know what that something is. In these 
cases, finding a useful solution may require modeling. As indicated in Chapter 1, a model is 
simplified representation of real systems and is constructed for the purpose of exploring cause 
and effect or functional relationships between variables as system conditions are changed. To 
model the spread of plague among prairie dogs, then, we may need a way to characterize the 
transfer of fleas between an infected individual and an uninfected, but susceptible individual. 
This type of reasoning will often require algebraic constructs and simplifying assumptions, and 
may therefore require competency in algebraic reasoning. Even so, however, some insights can 
be gained from model construction even if the detailed relationships between variables aren’t 
formally articulated with equations. 

The Parts and Chapters that follow are elaborations and demonstrations of problem-solving 
strategies employing each of these types of reasoning. Not all will be applicable to every problem, 
and there isn’t necessarily a sequence of interdependence. Therefore, I hope that rather than 
reading the text in order, that you will consult it as the need for ideas and insight arises in 
problems you are presented with. I don’t provide complete solutions to any of the teaser problems 
above, but do use parts of them to illustrate concepts and strategies as they arise. 

 

Exercises 

1. Which of the teaser problems outlined above do you find most interesting or compelling and why? 

 

2. Using the table on solving ill-structured problems in Chapter 2 as a guide, attempt to Understand a 
teaser problem of your choice from the list above. Write your response to each of the questions under 
the Understand prompt, or write “n/a” if not applicable. 

 

3. Try to write one or part of one of the teaser problems as a more conventional math problem, with only 
equations and no words. What is challenging about doing this? 

 

4. Write a problem of your own in a format similar to the teaser problems above: a short title, a boldface 
question, and a short paragraph elaborating on the context or significance of the question. Choose a 
natural resource topic that interests you. 
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5. Quantities in the Real World 

In this course, we seek to solve practical problems in natural resource management and ecology, 
but we focus on the use of quantitative tools in service of this objective. Before diving too deeply 
into problem-solving, we should ensure that we know what is meant by quantities, quantitative 
tools, and quantitative reasoning. We will also establish a few conventions for how quantities are 
represented in science and how quantitative information can be most effectively communicated. 

5.1 Quantities in Natural Resources 

If we can assess the presence or absence of something, count its number, measure some property 
that it has, or compare it to another object, it can be quantified. That quantified thing is then 
represented by a quantity that is itself now a property of the quantified thing. If that sounds 
confusing, read on to some of the examples below. A fully-defined quantity has five components: 

Properties of quantities 

• Name: what we call it. 
• Procedural statement: how it is measured or computed. 
• Number: numerical value(s) corresponding to magnitude or multitude. 
• Units: how it is scaled. 
• Symbol: a character that stands for the quantity in equations. 

Defining a quantity might seem somewhat pedantic, but it has important implications for what 
we can and cannot do with it. This contrasts fundamentally with the abstract variables we 
encountered in high school math. In that setting, there is rarely any reason to question whether it 
is OK and meaningful to add 3x and 8y, we just do what we’re asked. But in the world of real 
quantities, if x stands for “milligrams of sodium chloride” and y stands for the number of eggs in 
a Northern Cardinal’s nest, it’s not so clear that we can perform that addition. Even if we do, it is 
not so clear what the result means. 



In the introductory chapter, we pondered the Iowa DNR’s roadside pheasant survey and what 
it means for pheasant populations across the state. The pheasant count yields a single number 
each year, for example 23.9 individuals per 30 miles in 2015. We discovered what this quantity 
means and how it is measured in the Introduction, so we already have most of the ingredients of 
a fully-defined quantity. We only need a symbol. This is a pretty trivial step in simple problems, 
where the primary constraint is to make the symbol unambiguous and suggestive of the quantity it 
represents. Perhaps we should then choose PP for our symbol. If we were to prepare a document 
describing the DNR roadside pheasant survey, once we establish each of the five properties1 

of our quantity, we can thereafter use PP with confidence that the information conveyed by 
that symbol is clearly established: within the context of our document, PP would refer to the 
series of annual estimates of pheasant density according to the method established by the DNR. 
This formality thereby provides a shorthand name and eliminates any ambiguity in discussion of 
quantities. Note that this is different than P, which we used previously as the chemical symbol for 
the element Phosphorus. If we happened to be working on a problem involving both pheasants 
and Phosphorus, we might select our symbol differently to avoid ambiguity. 

As we indicated above, there are many types of quantities that we encounter in science. We can 
treat presence/absence information as a quantity, measured with a nominal scale.2 Was there a 
black-capped chickadee on the bird feeder at 3:30 PM? Is there a beetle in the pit-trap we set up 
in a field? An ordinal scaled quantitiy is one in which individual measurements or components 
are ranked or ordered. In what order did different birds arrive at and depart from the bird feeder?3 

In the above cases, distinctions between the scales are clear and obvious, but in others they can 
be more subtle. Consider the expression of the quantity temperature. We have several scales we 
can choose from for measuring and expressing temperature. Most important and familiar are the 
Fahrenheit, Celsius (Centigrade), and Kelvin (absolute) scales. The Celsius scale, for example, 
is defined according to the freezing and boiling points of water, and the temperatures that those 
phenomena corresponded to were defined to have values of 0°C and 100°C, respectively. A 
degree of Celsius is therefore defined on an interval scale,4 where a unit of temperature change 
is 1/100th of the difference between the boiling point and freezing point of water. In contrast, 
Kelvin is a measure of the absolute thermal energy contained in a substance, in reference to a 

1. Name, procedural statement, number, units, and symbol. 

2. Nominal-scaled quantities take the form of categories; a few pairs of categories that fit this definition might be present or absent; 
infected or not infected. 

3. Ordinal-scaled quantities have values according to their rank among the population or data. 

4. Interval-scaled quantities may take negative values. 
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theoretical state of zero energy.5 Kelvins are a ratio scale,6 with a natural zero point and a unit 
magnitude that represents the value on a scale relative to that zero point. It can be confusing 
to distinguish between interval and ratio scaled quantities, but the following example might 
help illuminate the difference. Imagine that you measured a lake’s surface water temperature at 
one moment in mid March to be 1°C. Now suppose you returned a week later to find that the 
temperature has increased to 2°C. Wow, the temperature doubled, since 2 is twice as large as 1! 
Well, no it didn’t. Because Celsius is an interval scale, chosen arbitrarily to have a value of zero 
at the freezing temperature of water, we cannot say it doubled. The issue with this might be even 
more clear if our first measurement had been -0.1°C (supercooled!) instead of 1°C. Then if we 
apply the same logic as before to characterizing the change to 2°C, we would have to say that the 
temperature is -20 times the initial value, which is ridiculous. It’s ridiculous because our scale 
does not have a natural zero point, and instead describes interval differences between a measured 
temperature and a standardized reference point. In contrast, a temperature of 300 K is actually 
twice as hot as a temperature of 150 K, since this is a ratio scale.7 

It might seem a bit esoteric to define quantities and their unit scales in so much detail, but 
hopefully you can now see how different scales might entail different rules for what 
manipulations are or are not meaningful. 

5.2 What Quantitative Reasoning Is 

Using, manipulating, and interpreting quantitative information are the prerogative of professional 
scientists and natural resource managers. The term quantitative reasoning is often used to 
describe the processes of constructing and making sense of contextualized quantitative 
information.8 When we look for patterns in water quality data, interpret pheasant population 
trends, or estimate the number of person-hours required for removal of invasive shrubs in a forest, 
we are applying quantitative reasoning. An individual’s aptitude for quantitative reasoning is 
sometimes referred to as quantitative literacy. 

5. The Kelvin scale, named for Lord Kelvin (William Thomson), is considered an absolute temperature scale, measuring the absolute 
thermal energy in a substance. 

6. Ratio-scaled quantities cannot have negative values; a non-positive value indicates an absence of the quantity. 

7. For additional topical perspective on quantities and scaling in ecology, consult a resource like Schneider, D.C., 2009, Quantitative 
Ecology, 2nd ed., London, UK, Academic Press, 415 p. 

8. One researcher describes quantitative reasoning as “sophisticated reasoning with elementary mathematics, rather than elementary 
reasoning with sophisticated mathematics.” (Steen, L., 2004, Achieving Quantitative Literacy: An Urgent Challenge for Higher 
Education, Washington, DC, MAA.) 
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A guiding premise of this book is that the lifetime value of strong quantitative literacy is greater 
than that of pure mathematics for natural resource professionals. To be sure, basic mathematical 
skills are fundamentally essential for quantitative reasoning. But for most professionals outside of 
engineering and the physical sciences, these skills are mostly learned in secondary school math. 
What often isn’t learned is how to use those skills to make sense of things in the world around us. 

5.3 Units & Dimensions 

Quantities with practical meaning to us will often have units.9 Consider a few random examples: 

• 71 foot tall tree 
• 16.4 grams of soil 
• 42 snow geese 
• 39 breaths per minute 
• 385 ppm carbon dioxide 

Each of these examples would lose much of their meaning if we only stated the number and not 
what the number corresponded to: 71, 16.4, 42, 39, 385. We can certainly plug these numbers 
into equations and work with them in a purely mathematical sense, but they probably no longer 
have a meaning that we care about. Thus, we need to keep track of units. Units can be any 
standard template or scale according to which we measure a quantity. A foot, for example, though 
originally loosely defined by the length of a Greek or Roman man’s foot, is now defined with 
reference to a meter, which in turn is defined according to the distance light travels in a vacuum 
during a pre-defined time period. Likewise, grams and minutes are units of mass and time defined 
according to internationally standardized references. 

Dimensions are sometimes conflated with units, but the term is distinct and more broad. In casual 
usage, the term “dimensions” often implies that we wish to know how large something is – in 
other words, its length, area or volume. In the physical sciences, dimensions are a way to group 
different types of units that can be simply scaled with one another. Inches and centimeters are 
both lengths. No matter what object you measure – perhaps a young brook trout’s total length 
– if it is an inch long, it is by simple unit conversion also 2.54 centimeters long. Both are units 
of length. But just because I find that the fish is 1 inch or 2.54 centimeters long, that does not 
necessarily tell me how heavy it is. So mass is a different fundamental dimension than length, 
and whether I measure mass in grams or slugs, it has dimensions of mass. In fact, most of the 

9. Paying attention to units and dimensions is not mere formality. In the scaled quantities we use in science, units and dimensions 
constrain what mathematical operations are permissible. 
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quantities that scientists deal with are composites of only three fundamental dimensions: mass, 
length, and time. Sometimes we use the symbols [M], [L], and [T] in square brackets to denote 
when we are talking about dimensions. We can also have dimensionless quantities which we can 
(for reasons that we’ll see below) denote with [1], and which we’ll often encounter when we are 
dealing with nominal, ordinal, or multitude scales. 

A quantity made up of any combination of the fundamental dimensions can be called a derived 
quantity. Speed is an example of a derived quantity because it implicitly contains two quantities, 
a distance or length traveled during a period of time, [L T −1]. Note that we haven’t said whether 
we are measuring length in meters or feet or whatever, nor have we said that time is in seconds 
or hours or millennia. Dimensions are more like categories of units, and we can convert from one 
set of units to another within each category by performing multiplication or division. Energy is 
also a derived quantity, and can be expressed in units of Joules or Calories. But regardless of the 
units employed, any quantity of energy has dimensions of [ML2 T −2]. We just need to be careful 
if we are working with equations that we don’t mix units, or we’ll be left with gobbledygook. 

5.4 Comparing apples and oranges 

We all learn in junior high or high school science to pay attention to units, and for good reason. 
Keeping track of units and making sure that our units are consistent in any computation we 
do with physical quantities can prevent costly mistakes. I’m not terribly pleased about it, but I 
probably spend a few hours a month painstakingly performing unit conversions in my research 
– indeed it may be the most frequent type of computation I do, but I do it because I know it is 
important. 

Let’s consider a simple contrived example: suppose you are told that the soil in your back yard 
has 15.84 ounces of lead per metric ton of soil. Should you worry? Well, according to EPA 
guidelines (pdf), remediation is recommended if lead concentrations in residential yards exceed 
400 parts per million. Parts per million is a dimensionless unit similar to a percent but much 
smaller and it can correspond to a mass (or volume) of one substance contained in a mass (or 
volume) of some mixture of substances. Our measurements are already both masses, so 15.84 
ounces/1 ton is [MM −1], and is already dimensionless, but our units are not consistent. We could 
fix this in several different ways, but one simple one might be to convert tons of soil to ounces, 
so that we have ounces over ounces, yielding consistent units. We could spend lots of time (not 
wisely, I would argue) setting up fractions on paper to figure this out (how many ounces in a 
pound, how many pounds in a kilogram, how many kilograms in a ton…), but as long as we 
have access to a computer we might as well use it. Plenty of apps and websites will do basic unit 
conversions for you, including Google itself. Employing one of these, we see that there are 35274 
ounces in a metric ton, and now we can express our measured concentration as 15.84 ounces 

5. QUANTITIES IN THE REAL WORLD  |  40

http://www.epa.gov/region1/leadsafe/pdf/chapter3.pdf
http://www.epa.gov/region1/leadsafe/pdf/chapter3.pdf


/ 35274 ounces, or about 0.00045. To convert from this decimal value to parts per million, we 
just need to multiply by one million or 10610^6 (much like you would multiply by 100 to get 
a percent), giving us roughly 450 ppm lead. So at 450 ppm, the lead concentration in our soil 
exceeds the threshold that the EPA has deemed safe, but is not cause for great alarm. 

5.5 Problem solving without numbers 

Dimensions are so useful in science and engineering that there are entire subdisciplines devoted 
to dimensional analysis. While these folks are usually using dimensional analysis as a technique 
for extracting relationships between variables in complex equations that cannot be solved 
directly, we can also use dimensions to help solve simpler problems and catch errors or 
inconsistencies. This is because physically-meaningful equations that describe relationships 
between quantities must be dimensionally homogeneous.10 That is, the dimensions on one side 
of the equation must be the same as those on the other side. If we know the units of every 
quantity in a mathematical relationship and can figure out the corresponding dimensions, we can 
compare dimensions on either side of the equation to verify that it is dimensionally homogeneous. 
This can feel alot like solving an algebraic equation without actually using any numbers, just 
combinations of [M], [L] and [T]. Doing this after making some algebraic manipulations on 
an equation is a handy way of checking for mistakes! Similarly, if we are uncertain of the 
dimensions of a constant or variable in an equation, we can solve for that constant on one side 
of the equation and the dimensional grouping on the other side, through the requirement of 
dimensional homogeneity, will apply to the unknown. 

Heuristic: Dimensional Homogeneity 

In constructing or manipulating algebraic relationships, enforcing and verifying dimensional 
homogeneity can yield insights and catch errors. 

Rules for algebraic manipulation of dimensions are straightforward. Multiplying, dividing, or 
raising to a power any quantities of any dimensions is permissible, and the resulting quantity 
has dimensions that are the appropriate product, quotient, or power of the original dimensions. 
Adding and subtracting may only be done between quantities with identical dimensions (and 
you should verify that the units are also identical). Let’s consider an example where we wish to 

10. Dimensional homogeneity requires equations, if expressed only in terms of the units representing each quantity, to remain equal. 
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Figure 5.1: Ways of communicating 
and 
understanding quantitative 
information. 

find the dimensions of the entities in a simple equation describing the accumulation over time of 
insects (measured in mass) in a pit trap: 

where we know mm is mass and so has dimensions [M] and t is time and so has dimensions 
[T]. What are the dimensions of the other two variables? Well, assuming the equation is 
dimensionally homogeneous and knowing that the left-hand side has dimensions [M], the right-
hand side must work out to have dimensions of [M] as well. Furthermore, since added quantities 
must have identical dimensions, we know that each of the two terms added together on the right 
hand side must have dimensions of [M]. So m0m_0 is a mass, and k must be something that, 
when multiplied by a time with dimensions [T], gives a mass. Therefore, k must have dimensions 
of [MT −1], or mass per time. 

5.6 Communicating Quantitative Information 

We all construct our understanding of quantitative 
information a little bit differently. I personally grasp 
quantitative patterns or relationships best if I see it in a 
graph. Others might have an easier time reading or listening 
to a verbal description of patterns and relationships. Still 
others will be more moved by equations or lists of numbers. 
We can understand and communicate quantitative 
information in all of these ways – and maybe more (we can 
encode quantitative information in sound, right?)! But to be 
well-rounded scientists and managers, we must be able to 
create and interpret each form. The diagram in Figure 5.1 
illustrates these four ways of communicating quantitative 
information. 

Here’s what each of the nodes of the triangle mean: 

• Graphs, images, figures: any visual display of quantities or relationships between them. Single-
variable statistical charts (e.g., histograms) and two-dimensional graphs (i.e., x-y scatter-plots) will 
be the most frequently encountered, but maps are another example. Often the most efficient way to 
demonstrate patterns or large volumes of data. 

• Numbers, in lists or tables: for numerical information, the most direct, precise, and unambiguous 
way of communicating quantities that aren’t too numerous (i.e., a short list). 

• Equations, inequalities, or proportionalities: a formal and precise way to state hypothesized, 
derived, or observed relationships between quantities. 

5. QUANTITIES IN THE REAL WORLD  |  42

https://iastate.pressbooks.pub/app/uploads/sites/63/2022/02/Figure-5.1.png
https://iastate.pressbooks.pub/app/uploads/sites/63/2022/02/Figure-5.1.png


Table 5.1: Brook trout removal from four 
electrofishing passes in one stream reach, 

including information about the number of 
minutes (effort) elapsed during each pass. 

pass # trout 
removed effort 

pass 1 86 35 min 

pass 2 51 29 min 

pass 3 32 28 min 

pass 4 9 31 min 

Figure 5.2: Bar chart showing the 
number of brook trout removed from a 
stream reach during each of four 
consecutive electrofishing passes. 

• Words, concepts: descriptions and interpretations, either standing alone or to accompany another 
form of expression. 

In technical reports, it is good practice to employ at least two or three forms of quantitative 
expression, where one form will always be words. Words are in the center of the triangle because 
they must be used to link the other forms conceptually, and without them we cannot claim 
to be understanding and communicating effectively. Furthermore, as professionals, we cannot 
simply provide charts or tables of data and expect them to speak for themselves. Part of the 
role of scientists and managers is to interpret quantitative information and make decisions or 
recommendations based on our interpretations. 

5.6.1 Example: brook trout recruitment (teaser Problem) 

The data from electrofishing studies of fish population 
and age-structure can be quite : simple. A typical set-up 
would begin with blocking the channel upstream and 
downstream with fences or nets to prevent fish from 
entering or leaving the study reach. Then fisheries 
technicians would slowly traverse the study reach with 
one person applying the electrodes through the water and 
a second collecting the stunned fish into a bucket or live 
well. Captured fish are then measured, weighed, aged (if 
desired) and returned to the water. In depletion surveys, 
the fish are returned upstream or downstream of the 
blocking nets, so as to avoid immediate re-capture. 
Subsequent passes would operate similarly, and the 
presumption is that with each removal, the number of 
fish remaining in the study reach is diminished. Figure 
5.2 and Table 5.1 both show data from four consecutive 
passes through a small trout stream. 

The bar graph (Figure 5.2) provides a very simple visual 
indication of the change in the number of fish captured 
in each pass. Graphs like this can be extremely valuable 
for efficiently conveying trends or relationships between 
quantities. However, they often don’t allow readers or 
viewers to know precisely what the values of the shown 
quantities are. Furthermore, graphs with too many 
different variables can become overly complex. If we wish to communicate precise values of 
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quantities, particularly where there are multiple different kinds of variables, data tables like 
Table 5.1 are perhaps the best option. 

Given only the information presented already about the brook trout electrofishing catch, 
communicating through equations is probably unwarranted. However, a textual narrative is 
essential for communicating the nature and meaning of the data presented in this example. 
Suppose you were unfamiliar with electrofishing and depletion methods for fish population 
assessment, would the bars in Figure 5.2 and the numbers in Table5.1 tell a clear story? The 
figure captions and the paragraphs above are essential for drawing meaning from the figure and 
table. This is why words are at the center of the triangle in Figure 5.1. And this is also why it 
quantitative problem solving is a writing-intensive endeavor. If we are unable to communicate 
clearly about our ideas, strategies, results, and conclusions, most of the effort is for naught. 

 

Exercises 

1. From our bulleted list of examples at the beginning of section 5.3, what are the units and dimensions 
for each quantity? Write them with square-bracket notation. 

 

2. In population studies, it is recognized that the number of individuals captured depends strongly upon 
how much time (effort) is spent in active pursuit. As a result, a better variable to quote than the 
number of trout caught is the number of trout per unit effort, or catch-per-unit-effort (CPUE). If one 
minute is defined as the basic unit of effort for the data in Table 5.1, convert the data to a new 
variable, catch (trout removed) per unit effort (minute). Plot the result in a bar graph similar to Figure 
5.2, and create a table with this additional variable alongside the other three. 

 

3. What are the dimensions of the new variable created in #2? 

 

4. What kind of quantity is shown on the horizontal axis of Figure 5.2? How do you think this constrains 
appropriate ways to visualize these data graphically? 
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6. Working with Numbers 

Among the most fundamental operations we do with quantities is arithmetic. We can encounter 
the need for arithmetic in any phase of problem solving, from making a ballpark estimate in the 
Understand phase to computing and double-checking a final result in the Execute and Check 
phases. Once we have a solid grasp of the operations that are allowable and those that aren’t – for 
example, is it OK to add or subtract quantities expressed in different units or on different scales? 
– we may get down to business with performing basic operations. 

Most of us probably feel comfortable with most of these operations, at least when they concern 
simple numbers. However, it becomes easy to make errors or overlook important steps when 
we’re dealing with extremely large or small numbers, or when unit conversions become 
necessary. One setting in which we often encounter such difficulties is in working with 
proportions, including concentrations, ratios, and percentages. Though quantities like these are 
often conceptually simple, working with them and converting among ways of expressing them 
can be challenging. This chapter highlights some concepts and techniques for working with these 
sorts of unwieldy numbers so that we can work confidently, avoid simple mistakes, and even 
catch more complex ones. 

We begin with a method for doing arithmetic that can be used to simplify computations, or to 
approximate solutions when a back-of-the-envelope computation is all you need. The method is 
particularly powerful when computations involve very large or very small numbers. As such, it 
can be useful for making ballpark estimates in the early stages of problem-solving. Our method 
makes strategic use of scientific notation, which you’ve probably encountered in secondary 
science classes. The philosophical basis of scientific notation also leads to the notion of order of 
magnitude, a concept that can be useful for comparing quantities as well as for judging the the 
appropriateness of estimates. Along the way, we’ll compare some ways of expressing normalized 
quantities like concentrations and proportions, and review the rules for arithmetic with exponents. 

6.1 Scientific Notation 

In high school chemistry, we learn that there are more than 602 sextillion molecules in a mole of 



a chemical substance.1 But we don’t normally see Avogadro’s constant written as some number 
of sextillions, nor do we see it elaborated with all of the 24 digits necessary to write it in integer 
form: it is difficult to keep track of all those digits when writing them, and even more difficult 
to keep track when you’re reading or comparing different numbers. Instead of writing the entire 
number out, we use the shorthand of scientific notation, where Avogadro’s constant looks more 
like 6.022×1023. In general, scientific notation has the form: 

where a and b are sometimes called the mantissa and power, respectively. So Avogadro’s 
constant has a mantissa of about 6.022 and a power of 23, which is equivalent to saying that the 
complete quantity has 23 digits after the mantissa.2 Obviously this is a very large number. We 
can just as easily express very small numbers with scientific notation. An e. coli bacterium is 
roughly 2 μm (micrometers) long, which is 2×10−6m. Here, the power of −6 indicates not that it’s 
a negative number (it would be absurd to say something has a negative length, because length is a 
ratio scale!), but that it is smaller than 1 and that there should be 6 digits to the right of a decimal 
point if we wished to express it as a decimal number. So we could express this equivalently in a 
few ways: 

Note that these equalities both amount to unit conversions, but the second equality is specifically 
a conversion to scientific notation. 

Negative exponents indicate numbers smaller than 1, and there are occasions where it can be 
helpful at times to write these as fractions. When we have a quantity expressed in scientific 
notation with a negative exponent 10−b, that is equivalent to the same quantity divided by 10b. 
Therefore, another way to express the length of e. coli is: 

So dividing by 106 is the same as multiplying by 10−6. Notice here that the order of operations 
is important. By convention, exponents take precedence over multiplication, division, addition 

1. 602 sextillion, or  is Avogadro’s constant, the number of molecules in one mole of a chemical substance. 

2. A related issue is that of significant digits. Scientific notation allows us to clearly specify how precise we are claiming to be through 
the number of digits included in the mantissa: in this case, 4. 
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and subtraction. So we don’t divide by the mantissa* when we express this quantity in fractional 

*In the standard order of operations, 
parentheses take precedence, then 
exponents, then multiplication or division, 
and finally addition and subtraction. 

terms because the only thing that is raised to the 
exponent is the base, in this case 10. We could, 
however, move the mantissa to the denominator 
with its 106 by taking its reciprocal, right? That’s 
another way of invoking the old grade-school rule: 
dividing by a number is the same as multiplying 
by it’s reciprocal. In this case, we’d end up with 
an equivalent value for the length of e. coli that looks like 

Notice that in the last step we’ve borrowed a “ten” from the power to make the mantissa greater 
than 1: this is by convention.3 A general rule for expressing a quantity in scientific notation is to 
have one nonzero digit before the decimal point in the mantissa, and as many significant figures 
as appropriate for the problem to the right of the decimal. So we could express the e. coli length as 
0.2×10−5m or 200×10−8m, but in most cases, that is bad form. We shall see below, however, there 
are times when doing arithmetic by hand can be simplified by temporarily expressing quantities 
in such an unconventional way. 

A useful concept in working with really large or really small numbers is the order of magnitude 
of a quantity. In obtaining a ballpark estimate of a quantity or in computing something using 
only very rough approximations for the input values, it may be unnecessary or inappropriate to 
worry about being off by a factor of 2 or so. We might be satisfied knowing that the result is 
“a few thousand” or “a couple hundredths”. If we’re using scientific notation, this is equivalent 
to ignoring the mantissa and just citing the base and power. So instead of saying that an e. coli 
is 2×10−6m, we can say it is on the order of 10−6m long. This kind of reasoning is particularly 
useful in comparing multiple quantities. A grain of coarse sand, for example, is on the order of 
10−3m in diameter, so it is three orders of magnitude larger (-3 is three more than -6) than an 
e. coli bacterium. Once we wrap our minds around what that means (three orders of magnitude 
is a factor of 103, or a thousand!), comparisons can be enlightening in assigning quantitative 
“importance” to different variables in an equation. 

The fact is, in normal communication about the length of e. coli, we’d probably stick with 2μm 
as a clear way to express it in written text. Most of the alternative ways above are more clumsy 

3. Quantities expressed in scientific notation should have one nonzero digit to the left of the decimal point. 
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in writing, and certainly the last few equivalent expressions above are not intuitive (we only went 
there to demonstrate the technique!). However, in comparisons with other quantities or when 
performing computations with other quantities that are expressed in different units, it is usually 
smart to convert all quantities to a uniform system of units, like the systeme internationale, or SI. 

6.2 Normalized quantities 

In the sciences, normalization of quantities often refers to the process of dividing some scaled 
quantity by a standard, total, or reference value of the same quantity. Consider some schemes 
form normalization that you are already very familiar with. A percentage is a normalized 
quantity, determined by dividing some number that represents a subset of a larger collection 
by the total number in the collection and then multiplying by 100%. For example, suppose we 
have tested 360 white-tail deer carcasses (from road-kill and hunter harvest) for chronic wasting 
disease (CWD) and find that 83 are positive. Given this data, we can all agree that the percent of 
the sampled population infected with CWD is: 

En route to computing this, we created the ratio 83 to 360, which is around 0.23 if you simplify 
it with your calculator. As with many such ratios, we can choose from a variety of different but 
equivalent ways of expressing this quantity. We could just express it as the ratio of two whole 
numbers like 83:3604, or as the fraction: 

Or as we’ve already seen, it is simple to write it as a decimal number (0.2306). But since we 
encounter percentages frequently, we may more readily appreciate it expressed as a percentage. 
For the present purposes, we could describe a percentage as “parts per hundred”, since it is 
just the same ratio scaled to an arbitrary reference value of 100. In other words, for every 
hundred deer in the sample, about 23 have CWD. Expressing a quantity in “per mil” is closely 
analogous, except instead of multiplying by the factor 100% we’d multiply by 1000 (that’s the 
per mil symbol).5 In this case, we’d end up saying that about  (or 
231 per thousand deer) are infected. To make this even more absurd, we could express the same 

4. This is the way we usually express a map scale, like 1:24,000. See Part III of this book for more on that issue. 

5. Although not common in many disciplines, isotope concentrations are often computed as rational deviations about a standard and 
expressed in per mil, where the reference value is the isotopic ratio of a standard substance. 

6. WORKING WITH NUMBERS  |  48



information just as easily as parts per million (ppm) or parts per billion (ppb) following a similar 
tactic. Each of these ways of expressing a normalized quantity is arithmetically equivalent, but 
implies a different realm of precision about the quantity of interest and the scope of its possible 
values. We’d likely never talk about deer in parts per million, but we might talk about lead 
concentrations that way! 

Other types of normalized quantities in science include frequencies, concentrations, and 
probabilities, to name a few. The quantities may be expressed somewhat differently, but in most 
cases there is a comparison being made between values of the same dimensions (and often the 
same units!). Indeed this is sometimes a simplifying strategy: when you normalize a quantity to a 
standard of the same units, details about the specific units by which the quantities were measured 
can be discarded. Often this is a good thing. For example, when we use a map that is scaled at, for 
example, 1:24,000, we are not told what units that ratio was constructed with, because it doesn’t 
matter! If you use a ruler to find that the map distance between two features on the map is 2 
inches, that distance in the real world is equal to 2×24,000=48,000 in. It doesn’t matter whether 
your ruler is ruled in inches, centimeters, furlongs or rods, the quantity you measure on the map 
only needs to be multiplied by the scale factor (24,000) to find the true distance! As we’ve seen, 
however, neglecting the specific units used to derive a normalized quantity can also be the cause 
of some confusion (is the concentration of one substance mixed with another computed on the 
basis of their masses, volumes, or something else?). It becomes a good thing if the procedural 
statement for the quantity is either made clear or is known by convention. 

How do we use a normalized quantity to our advantage? Suppose I extrapolate from our sample 
of CWD in deer carcasses to predict that 23% of the deer in the entire county are infected with 
CWD. If we take for granted that my science is good, all we need to know to find out the number 
of CWD-infected deer in the county is the total number of deer in the county, Ndeer. Once we 
recognize that the ratio of infected deer to total deer is 0.23 (23% of the total population of 
100%), we need only perform a simple multiplication: 

Thus, the benefit of expressing the number of infected deer as a normalized quantity (assuming 
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our 23% assertion is accurate) is its generality. We can write a simple relationship like Equation 
6.4 and, as long as the relationship remains valid, apply it on any relevant scale.6 

The process of re-scaling a ratio (or other normalized quantity) is sometimes called proportional 
reasoning, and is one of the key strategic processes in probability, and as we’ll see in the next 
chapter, it is the foundation of much of trigonometry. The construction of abstract triangles in the 
service of problem-solving is usually a means of comparing the ratios of two lengths or distances. 

There are some oddball normalized quantities in science that are frequently expressed in 
inhomogeneous units, either as a consequence of their very high or low intrinsic magnitudes or 
due to the procedure used to measure them. One example is slope in the context of river channels 
or footpaths, which are often less than 1%. Because typical channel slopes are so small, it is 
common to see slopes expressed in units of “feet per mile” or “meters per kilometer”. They 
are still normalized quantities, but the inhomogeneous units must be stated explicitly. Similarly, 
concentrations of solutes or suspensions are sometimes expressed in units like mg/l (milligrams 
per liter), where the dimensions are a weight per volume. This is convenient because of the 
relative simplicity of weighing a solid component added to (or isolated from) a volume of liquid. 
On the other hand, concentrations of substances like dilute hydrochloric acid (HCl; often used in 
soil chemistry) are are often described as percentages: 5% HCl usually means a mixture in which 
5% of the total volume is pure HCl and the remaining (100-5)% = 95% is pure water. Again, this 
makes sense because when mixed, both components are liquids and their volumes are simple to 
measure. 

6.2.1 Example: maximized effluent, (Problem 4.6) 

Phosphorus (P) is a limiting nutrient in many freshwater ecosystems.7 That means that primary 
productivity is limited by the availability of P, and that excessive loads of P from fertilizer runoff 
or municipal and industrial wastes can promote excessive productivity and eutrophication. Thus, 
we are often seeking ways to reduce the inputs of P into surface waters. 

P concentrations in water are often expressed in mg/l, so they are among those normalized 
quantities that are not dimensionless. A given concentration in mg/l can be visualized as the mass 
of solute that could be hypothetically extracted from a volume of water, if we somehow had a 

6. Recognizing how far one can safely scale up from a representative sample is a rich, but complex issue. 

7. A great review of nutrients in terrestrial ecosystems can be found in Weather, K.C., D.L. Strayer, and G.E. Likens, 2013. 
Fundamentals of Ecosystem Science, Academic Press, Elsevier Inc. 
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perfect P-filter. No such filter exists, so not only do we need a different way of measuring P,8 we 
need more clever ways to extract P from water if it does get in there. 

The TMDL selected for P in surface water bodies depends on the designated uses (drinking 
water? swimming?) of the water bodies in question, but are often on the order of 0.1 mg/l. It’s 
worth remembering that this means that for every one liter of water, we should have no more 
than 0.1 mg of P. So if we happen to take a two-liter sample of water in a water body under 
this TMDL, we should find no more than 0.2 mg P in that sample, as that corresponds to a 
concentration of 0.1 mg/l (0.2 mg divided by 2l). 

6.3 Tricks with scientific notation 

As we’ve already discussed, simple order-of-magnitude computations can be very informative, 
particularly in the early phases of problem-solving. This is an occasion when scientific notation 
can really be useful! To deftly manipulate expressions with scientific notation, it is helpful to 
remember some key rules for working with exponents. 

Rules for Manipulating Exponents 

When confronted with problems where multiplication or division of very large or very small 
numbers might be involved, we can set the problem up in scientific notation to make things 

8. In practice, measuring dissolved P is most efficiently done using a “colorimetric” method wherein a reagent is introduced to a dilute 
P solution, resulting in the development of a blue color in proportion to the P concentration. 
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Numerical benchmarks: Volume 

1ml = 1cm3 

1m3 = 1000 l 

simpler. Consider the simple example of 
determining how many milliliters (ml) are in a 
cubic meter of water. One thing that is useful to 
know is that a ml is the equivalent of a cubic 
centimeter (cm3). And we also know that there are 
100 (=102) cm in a linear meter (m). So how do 
we determine the number of cm3 in a m3? Recall from earlier that if we are converting between, 
for example, one set of squared units to another set of squared units, we need to square the 
conversion factor for the linear units too! So for this problem, since there are 102 cm in every m: 

Using one of the above rules for exponents to modify the right-hand side of this relationship, we 
can find that: 

and we have our result. There are 106 cm3, and therefore 106ml in a cubic meter! It would be 
just as easy to look up the conversion online, but the same basic approach can be readily applied 
to more complex problems with murkier solutions. In the next section we’ll consider a more 
challenging and engaging example that can be worked out with a similar strategy. 

6.3.1 Example: Mercury in fish 

The RAFT program (Regional Ambient Fish Tissue) is an EPA effort to monitor concentrations 
of several harmful toxic substances in fish in the state of Iowa.9 This problem concerns the 
(slightly idealized and modified) values of mercury (chemical symbol Hg) detected in 
smallmounth bass sampled from two locations in Iowa. Samples of fish tissue were obtained as 
“plugs”, taken from live fish in a manner similar to a biopsy. Typical plug samples weigh 50 mg. 
The criteria for issuing fish consumption advisories are shown in the table below. 

9. Find more information about the EPA RAFT program by searching EPA raft on the web. 
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Table 6.1 

Hg concentration advisory 

<0.3<0.3~ppm no restrictions 

>0.3>0.3 to <1.0<1.0~ppm 1 meal/week 

≥1.0\geq1.0~ppm do not eat 

Plugs from smallmouth bass in Lake Wapello, IA 
contained on average 0.06 μ\mug of Hg, while 
plugs from smallies in the Maquoketa River 
contained 0.01 μ\mug Hg. Should there be 
consumption advisories for either waterbody? 

A simple solution method 

A useful first step is to identify the desired result. We’d like to find a Hg concentration in 
each fish in the same units that the advisory guidelines use: parts per million or ppm. This is 
a normalized and dimensionless, derived quantity. A second helpful step is therefore to express 
the key data in uniform units so that we can normalize them in dimensionless form. Our Hg 
measurements are in μg, which is 10−6g, while our plug mass is in mg, which is 10−3g. It 
doesn’t really matter whether we convert everything to grams or something else, but grams is 
straightforward. So now me construct the ratio that expresses how much mercury there is, by 
mass, in our fish tissue sample (using Lake Wapello values as an example): 

Simplify this by cancelling units and expressing each quantity in proper scientific notation: 

Using rules for division in exponents with a common base, we can simplify this: 

The exponent therefore becomes -6, which you recall is the base for a “parts per million” ratio. 
We can simplify the fraction 6/5 either directly on a calculator, in our heads,10 or by multiplying 
both numerator and denominator by two (=12/10) and dividing out to get 1.2: 

So the result for Wapello is 1.2 ppm, which exceeds safe limits for consumption. For the 

10. One great benefit of using scientific notation is that computations can be approximated easily by hand! 
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Maquoketa River, the Hg concentraion is only 0.2, so it is safe to eat and no advisory need be 
issued. 

6.3.2 Example: forest fire losses (Problem 4.5) 

Let’s use some of the above techniques and strategies to make some ballpark estimates about the 
value of timber that could potentially be lost in a forest fire, following the teaser problem in 
Section 4.5. This could give us at least a starting point for imagining where the curve NVC starts 
from on the left-hand side of Figure 4.2. Since no specific information is given about the size of 
the property, we need to make and explicitly state an assumption. Let’s suppose for now that the 
property has an area of 1000 hectares, since that number is both reasonable for a single-ownership 
land parcel (this would be a bit less than 4 square miles) and is easily scaled. Let’s also assume 

Heuristic: 

Not enough information given? Make and 
state explicitly a reasonable and 
potentially-scalable assumption. If 
appropriate, choose values that can easily 
be scaled, like 1 or 10. 

that this forest in the absence of any fuel reduction 
effort is overstocked, with perhaps  of 
basal area.11 Using timber cruising charts, this 
basal area would yield about 30,000 board feet per 
hectare.12 

To get a ballpark estimate of the value of this 
timber then, we need to find the going price per 
board-foot of our timber and then scale this up 
with the timber volume and property area. A reasonable guess for the price for softwood saw-logs 
would be 0.20 US dollars (USD) per board foot.13 So our computation becomes 

We can do this computation relatively quickly in a calculator, but there is a risk of typing in the 
wrong number of zeros and making an important error. However, if we convert these quantities 
to scientific notation and rewrite the equation we can do the math in our heads. The parcel area is 
1×1031× 103 hectares, the wood volume is 3×1043 × 104 board feet per hectare, and the value is 
2×10−12 × 10-1 USD per board foot. So we may re-write the computation as 

11. Basal area, usually given in ft2 ac-1 (square feet per acre) or m2 ha-1 (square meters per hectare), provides a quick glimpse of the 
amount of standing timber on an area of land. 

12. One board-foot is equal to about 0.00236 m3 of wood. 

13. A web search for “sawlog prices” can give you some idea of how this varies by place and time. 
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Since all these quantities are multiplied together, we can rearrange (by the commutative principle 
for multiplication) and group the mantissas together, put the powers together, and put the units 
together. 

Multiplying the mantissas through we get 6, and using the rules for manipulating exponents (see 
above) the exponents are added together (3 + 4 + -1) = 6. Canceling units, we see that USD is the 
only remaining unit. So our ballpark solution is that the value of the standing timber in this 1000 
ha parcel is 6×106 USD, or about $6 million. 

 

Exercises 

1. The Hg concentrations measured in the RAFT program problem were taken from “keeper” size 
smallmouth bass, roughly 35 cm long. A few scattered measurements from larger and smaller bass 
indicated that there was some systematic relationship between Hg concentrations and fish size at each 
site, but not across sites. What systematic relationships would you predict to be present in fish of 
different sizes? What quantities might be relevant to this problem? Formulate a testable hypothesis for 
expected systematic variation in smallmouth bass tissue Hg concentration as a function of fish size. 

 

2. Leucism is partial albinism, manifested in penguins as a lack of (or substantial reduction in) pigment 
in plumage.14 A study of three species of penguin (Adélie, Gentoo and Chinstrap) in the Antarcic 
peninsula sought to identify the prevalence of leucism in these different species. The paper cited in 
the margin provides the information in Table 6.2 derived from detailed counts of penguin breeding 
colonies made during the years 1994-1997: 

14. Based on the article ”Prevalence of leucism in Pygocelid penguins of the Antarctic Peninsula” by Forrest and Naveen, Waterbirds 
23(2): 283-285, 2000. 
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Table 6.2 

species prevalence count 

Adélie 1:114,000 1,144,000 

Chinstrap 1:146,000 293,800 

Gentoo 1:20,000 41,550 

Perform the following manipulations of the prevalence 
data for each species: 

a. Express the prevalence as a fraction (a ratio of whole 
numbers). 

b. Convert the prevalence to a decimal number. 
c. Convert the decimal number to scientific notation. 
d. Express the prevalence as a percentage of the 

population. 
e. Express the prevalence in parts per million (ppm). 
f. Determine the number of leucistic penguins in each count. 

 

3. From our discussion of standing timber values (Section 6.3.2), how would the result be different if we 
learned that the land parcel was 385 hectares instead of 1000? 
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Figure 6.1: Cobbles on the bed of 
the Cub River, Idaho. 

7. Reasoning with Data 

This chapter summarizes some of the key concepts and relationships of single-variable statistics 
that we might find useful for characterizing measurements, particularly when we have measured 
a quantity at multiple times, or we’ve measured many individual members of a population or 
collection. This is not intended to be an exhaustive introduction to statistics, and does not in any 
way substitute for a proper statistics course. It does, however, point to some connections that we 
can make between the measurement and characterization of data and the scientific description of 
nature that we sometimes seek. 

7.1 Measurement and Sampling 

In the natural sciences we often need to estimate or measure a quantity or set of quantities that is 
too large, too numerous, or too complex to characterize completely in an efficient way. We can 
instead characterize it approximately with a representative sample. A representative sample is a 
small subset of the whole that is measured in order to characterize the whole. 

Consider an example. In small headwater streams, many aspects 
of biotic health are linked with the size of the substrate – the 
sand, pebbles or boulders that compose the streambed. But it is 
impractical to measure all the gajillions of particles scattered 
over the entire bed. Instead, we attempt to get a smaller but 
representative sample of the bed material. This may be done in 
a number of different ways, but two common methods are: 1) to 
take one or more buckets full of sediment from the streambed 
and do a detailed particle-size analysis in a laboratory; and 2) 
measure the size of 100 randomly selected particles from the 
bed. Both methods obtain a sample, but each may represent the 
true streambed in a different way. The bucket method requires 
us to choose sample sites on the streambed. Our choices might 
be biased toward those places where sampling might be easier, 
the bed more visible, or the water shallower. In this case, our 
results might not be representative of the streambed as a whole. 



The “pebble count” method, on the other hand, is intended to produce a more random sample of 
the streambed.1 A person wading in the stream steps diagonally across the channel, and at each 
step places her index finger on the streambed immediately in front of the toe of her boot. The 
diameter of the particle that her finger touches first is measured, and then she repeats the process, 
zig-zagging across the channel until she has measured 100 (or some larger predetermined 
number) particles. In principle, this random sample is more representative of the streambed, 
particularly as the number of particles in the sample is increased. Of course, increasing the 
number of particles in the sample increases the time and effort used, but with diminishing returns 
for improving the accuracy of the sample. 

Hypothetically-speaking, an alternative pebble-count method could be to stretch a tape measure 
across the stream and measure the particle size at regular intervals, say every half meter. We 
can call this strategy the “point count” method. This alternative is appealing since it ensures that 
samples are distributed evenly across the channel and that samples are not clustered in space. 
However, it is conceivable that such systematic sampling could lead to a systematic bias.2 If for 
example the streambed had clusters or patterns of particles in it that had a wavelength of 0.5 m, 
you could be inadvertently sampling only a certain part of the top of each dune, which might skew 
your results toward particle sizes that are concentrated on dune crests. Thus, a random sample is 
usually preferable as it is less susceptible to this kind of systematic bias. 

Quantities derived from a random sample are unrelated to one another in the same way that the 
size of one grain measured during a pebble count has no influence on the size of the next one. 
Part of our sequence of data might look like this: 

12, 2, 5, 26, 4, 28, 19, 29, 3, 15, 31, 19, 24, 27, 7, 22, 28, 33, 21, 28, 13, 15, 25, 10, 14, 13, 16, 
18, 33, 5 

The random nature of this set of data allows us to use some of the familiar ways of describing 
our data, while boosting our confidence that we are also properly characterizing the larger system 
that we are sampling. 

1. This method is sometimes called the “Wolman pebble count” method for Reds Wolman, the scientist who first described and 
popularized it. 

2. Systematic sampling is sometimes an easier, more straight-forward approach to sampling. However, if the setting within which 
sampling is taking place might have some systematic structure, systematic sampling could inadvertently bias the sample. 
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7.1.1 Example: mark-recapture 

A frequent concern of the wildlife biologist is the abundance and health of a particular species 
of interest. Ideally, we could count and assess the health of every individual in a population, 
but that is usually not practical – heck, we have a tough enough time counting and assessing 
the health of all the humans in a small town! Instead of trying to track down every individual 
though, we can do a decent job by simply taking a random sample from the population and 
performing the desired analysis on that random sample. As we have seen, if we are sufficiently 
careful about avoiding bias in our sampling, we can be reasonably confident that our sample will 
tell us something useful (and not misleading) about the larger population that the sample came 
from. 

If our concern is mainly with the population of a target species in a certain area, we can use a 
method called mark-recapture, or capture-recapture. The basic premise is simple: we capture 
some number of individuals in a population at one time, band, tag or mark them in such a way 
that they can be recognized later as individuals that were previously captured, then release them. 
Some time later, after these individuals have dispersed into the population as a whole, we capture 
another set. The proportion of the individuals in the second capture who are marked should, in 
theory, be the same as the proportion of the whole population that we marked to begin with. If the 
number of individuals we marked the first time around is N1, the number we captured the second 
time around is N2, and the number in the second group that bore marks from the first capture is 
M, the population P may be estimated most simply as: 

This comes from the assumption that our sample each time is random, and that the marked 
individuals have exactly the same likelihood of being in the second capture as they did in the 
first. Therefore, if we sampled and marked a fraction N1/P the first time around and sample N2 
the second time around, then we should expect a fraction M/N2 of them to be marked. 

Of course this whole plan can be foiled if some key assumptions are not met. For example, we 
need the population to be “closed” – that is, individuals do not enter and leave the population 
such that our sample is not coming from the same set of individuals each time. Problems could 
also ensue if our “random” sample isn’t random, if somehow the process of marking individuals 
either harmed them or made their likelihood of re-capture more or less likely, or if the time we 
allowed for them to re-mix with their population was not appropriate. On the last point, you can 
imagine that if we recapture tortoises 10 minutes after releasing them from their first capture, our 
second sample will not be very random. On the other hand, if we recapture marked fish 20 years 
after they were first marked, many of them may have died and been replaced by their offspring, 
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and thus our assumption of a “closed” population is violated. So in planning a mark-recapture 
study, space and timescales need to be taken into account. 

It is worth noting that the method described here is about the most stripped down version of 
mark-recapture. There are many modifications to the method and the equation used to compute 
population that either account for immigration/emigration, multiple recaptures, some possible re-
recaptures, etc. There are also related methods using tagging and marking that can be used to 
explore the dispersal of individuals, migration routes and a lot more! 

7.2 Describing measurements 

Measurements, or “data”, can inform and influence much of a resource manager’s work 
objectives, since they convey information about the systems of interest. Sometimes the data speak 
for themselves: raw numbers are sufficiently clear and compelling that nothing more needs to 
be done to let the data speak. More commonly, however, the data need to be summarized and 
characterized through one or more processes of data processing and data reduction. Processing 
might simply refer to a routine set of algorithms applied to raw data to make it satisfy the 
objectives of the project or problem. Data reduction usually summarizes a large set of data with a 
smaller set of descriptive statistics. For a set of measurements of a simple quantity, for example, 
we might wish to know: 

Things we often want to know about our data 

1. what is a typical observation? 
2. how diverse are the data? 
3. how should these properties of the data be characterized for different types of quantities? 

The first point suggests the use of our measures of central tendency: mean, median and mode. 
The second goal relates to measures of spread or dispersion in the data. For example, how close 
are most values in the data set to the mean? 

7.3 Central tendency 

The central tendency of a data set is a characteristic central value that may be the mean, median, 
or mode. Which of these measures of central tendency best characterizes the data set depends on 
the nature of the data and what we wish to characterize about it. 

Most of us are already familiar with the concept of a mean, or average value of a set of numbers. 
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We normally just add together all of the observed values and divide by the number of values 
to get the mean. Actually, this is the arithmetic mean, and there are many alternative ways of 
computing different kinds of means that are useful in particular circumstances, but we won’t 
worry about these now. For our purposes, the arithmetic mean is the mean we mean when we say 
mean or average. It would be mean to say otherwise. 

Before continuing, lets briefly discuss the different kinds of notation what we might use when 
talking about data. To define something like the mean with an equation, we’d like to make the 
definition as general as possible, i.e., applicable to all cases rather than just one. So we need 
notation that, for example, does not specify the number of data points in the data set but allows 
that to vary. If we want to find the mean (call it ) of a set of 6 data points (x1,x2, and so on), one 
correct formula might look like this: 

and of course this is correct. But we can’t use the same formula for a dataset that has 7 or 8 
values, or anything other than 6 values. Furthermore, it is not very convenient to have to write 
out each term in the numerator if the data set is really large. So we need a shorthand that is both 
brief and not specific to a certain number of data points. One approach is to write: 

where we understand that n is the number of observations in the data set. The ellipsis in the 
numerator denotes all the missing values between x2x_2 and xnx_n, the last value to be included 
in the average. Using this type of equation to define the mean is much more general than the first 
example, and is more compact as long as there are 4 or more values to be averaged. 

One additional way you might see the mean defined is using so-called “Sigma notation,”3 where 
it looks like this: 

where the big  is the summation symbol. If you’ve never encountered this before, here’s how 

3. This symbol is a handy shorthand for the process of adding a bunch of quantities together, but also serves the purpose of scaring many 
poor students away. Once you realize that it’s just an abbreviation for listing all the the terms to be added (x1 + x2 + …) and some of 
the rules for doing so, it becomes a tad less fearsome. 
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Table 7.1: A decent days’ 
catch on the lake 

species weight (lbs.) 

crappie 0.5 

crappie 0.5 

crappie 0.5 

crappie 0.5 

crappie 0.5 

walleye 0.75 

smallmouth 1.0 

smallmouth 1.0 

smallmouth 1.0 

smallmouth 1.0 

muskie 16 

mean 2.1 

median 0.75 

to interpret it: the “summand”, the stuff after the , is to be interpreted as a list of values (in this 
case xi) that need to be added together, and i starts at 1 and increases until you get to n. You 
can see the rules for what i means by looking at the text below and above the . Below, where 
it says i=1, that means that i begins with a value of 1 and increases with each added term until 
i=n, which is the last term. So in the end, you can interpret this to have a meaning identical to the 
equivalent expressions above, but in some cases this notation can be more compact and explicit. 
It also looks fancier and more intimidating, so people will sometimes use this notation to scare 
you off, even though it gives you the same result as the second equation above. 

7.3.1 Mean versus Median 

For some data sets, the mean can be a misleading way to describe the 
central tendency. If your creel after a day of fishing includes 5 half-
pound crappies, a 3/4-pound walleye, 4 one-pound smallmouths and 
one 16-pound muskie (Table 7.1), it would be correct but misleading 
to say that the average size of the fish you caught was 2.1 pounds. The 
distribution of weights includes one distant outlier, the muskie, that 
greatly distorts the mean, but all of the other fish you caught weighed 
one pound or less. We might say in this case that the mean is sensitive 
to outliers. 

The median is an alternative measure of central tendency that is not 
sensitive to outliers. It is simply the value for which half the 
observations are greater and half are smaller. From your fishing catch, 
the 0.75 pound walleye represents the median value, since 5 fish (the 
crappies) were smaller and 5 fish (the smallies and the muskie) were 
larger. The median may also be thought of as the middle value in a 
sorted list of values, although there is really only a distinct middle 
value when you have an odd number of observations. In the event that 
you’ve got an even number of observations, the median is halfway 
between the two middle observations. 

 

7.3.2 Mode 

The mode is the value or range of values that occurs most frequently in a data set. Since you 
caught 5 half-pound fish and fewer of every other weight value in the dataset, the mode of this 
distribution is 0.5 pounds. Now if the weights we’ve reported above are actually rounded from 
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Figure 7.2: In this histogram, the 
height of each bar corresponds to 
the number of fish in each of the 
weight bins along the horizontal 
axis. Values are crunched to the 
edges because the large dispersion 
of data. 

true measured weights that differ slightly, this definition becomes less satisfactory. For example, 
suppose the half-pound crappies actually weighed 0.46, 0.49, 0.5, 0.55 and 0.61 pounds. None 
of these are actually the same value, so can we say that this is still a mode? Indeed we can if 
we choose to discretize or bin these data. We might say that our fish weights fall into bins that 
range from 0.375 to 0.625, 0.625 to 0.875, 0.875 to 1.125, and so on. In this case, since all of our 
crappies fall in the range 0.375 to 0.625 (which is 5±1/8 lbs), this size range remains the mode of 
the data set. We can see this visually in a histogram, which is just a bar-chart showing how often 
measurements fall within each bin in a range (Figure 7.2). 

It is permissible to identify multiple modes in a data set if it 
improves the description. The first mode is the data bin that 
appears most frequently, but second and third and additional 
modes can be used as well. A second mode in our fish sample 
is in the 1-pound bin, which included 4 smallmouth bass. It is 
particularly useful in the case of multimodal data sets to report 
the modes because the multimodal nature of the data set cannot 
be represented by the mean or the median.4 In fact, if you were 
only presented with the list of weights, you might still have a 
hunch that there were multiple species or multiple age-classes 
present in the creel due to the multimodal weights. 

In practice, reporting all of these measures of central tendency 
may deliver the most complete picture of data, but as we’ve 
seen each is particularly useful in some cases and can be 
misleading in others. That said, we can actually infer 
additional properties of the dataset by noting, for example, the difference between the mean and 
median. 

7.4 Spread 

As mentioned previously, one way to quantify dispersion of a data set is to find the difference 
between any given observation and the expected value or sample mean. If we write this: 

4. In some cases, multi-modal data can be suggestive of a mixed sample; that is, there is more than just one type of thing or from more 
than just one source in the sample. 
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we can call each such difference a residual. A residual could be used to describe the relationship 
between individual data points and the sample mean, but doesn’t by itself characterize the spread 
of the entire data set. But what if we add together all of these residuals and divide by the number 
of data points? Well, this should just give us zero, according to the definition of the mean! But 
suppose instead that we squared the residuals before adding them together. The formula would 
look like: 

This expression is defined as the variance and is strangely denoted by , but you’ll see why in 
a minute. Squaring the residuals made most of them larger and made negative residuals positive. 
It also accentuated those outlier data points that were farther from the mean. Now if we take the 
square root of the variance, we’re left with a finite positive value that very well represents how 
far data typically are from the mean: the standard deviation of the sample, or .5 The formal 
definition of standard deviation looks like this: 

The gives us a good sense for how far from the mean a typical measurement lies. We can now 
characterize a sample as having a mean value of  and standard deviation of , or saying that 
typical values are . But in reality, if we computed  and , the bounds set by  and 

 only contain about 68% of the data points. If we want to include more of the data, we 
could use two standard deviations above and below the mean, in which case we’ve bounded more 
than 95% of the data. 

7.5 Error & Uncertainty 

One piece of information we have thus far omitted from our list of properties that fully define a 
quantity’s value is uncertainty. This is particularly important when we are quantifying something 
that has been measured directly or derived from measurements. Thus, to even more completely 
define the value of a measured quantity, we should include some estimate of the uncertainty 
associated with the number assigned to it. This will often look like: 

5. If you keep track of the units of these different measures of spread, you’ll notice that the standard deviation should have the same 
units that the original data, xi does. 
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The preferred value xbest for a 
quantity of interest will often be the 
mean of repeated measurements of 
that quantity. 

where x is the thing we are trying to quantify, xbest is our best guess of its value, and  is our 
estimate of the uncertainty. 

Though it will depend on the quantity in question, our 
best estimate will often be the result of a single 
measurement or—better yet—the mean of a number of 
repeated measurements. 

7.5.1 Uncertainty in measured quantities 

All measurements are subject to some degree of uncertainty, arising from the limited resolution 
of the instrument or scale used to make the measurement, or from random or systematic errors 
resulting from the method or circumstances of measurement. Let’s consider an example: 

Suppose two fisheries biologists each measured the lengths of ten of the brook trout captured 
during the electrofishing traverse from Problem 4.7. Both used boards with identical scales 
printed on them, graduated to half of a centimeter. They then plan to put their measurements 
together to get a data set of 20 fish. One of them was trained to pinch together the tail fins to 
make this measurement, while the other was not. In addition, because they wished not to harm 
the fish, they made their measurements quickly, even if the fish flopped and wiggled during 
the measurement. What are the potential sources of error and how big are they relative to one 
another? 

For starters, implicit in the graduations on this board is that the user cannot confidently read any 
better than half-centimeters off the scale. He or she can, however, visually interpolate between 
two adjacent graduations to improve precision (see below). However, this step is inherently 
subjective and limits the certainty of the measurement. We might call this instrumental error 
because its magnitude is set by the instrument or device use to make the measurement. One way 
to reduce this source of error is to use a more finely-graduated scale. 

A second source of error arises from the hasty measurements and the fact that the fish were not 
necessarily cooperative. Perhaps the mouth was sometimes not pressed up all the way against the 
stop, or the fish wasn’t well aligned with the scale. Some lengths may have been too large or 
small as a result, yielding a source of error that was essentially random. Indeed, we can call this 
random error since its sign and magnitude are largely unrelated from one measurement to the 
next. 
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Random measurement errors may be 
mitigated by repeating 
measurements. 

Reducing this source of error in this case would require 
either more careful and deliberate effort at aligning and 
immobilizing the fish, or making multiple measurements 
of the same fish. Both of these solutions could endanger 
the fish and may therefore not be desirable. 

A third source of error is associated with the difference 
in the way the two scientists dealt with the tail fin. Length measurements made with the fins 
pinched together will usually be longer than those without. Had they measured the same group of 
ten fish, one set of measurements would have yielded lengths consistently smaller than the other. 
This is a systematic error, and can often be troublesome and difficult to detect. This highlights 
the need for a procedural statement that establishes clear guidelines for measurements wherever 
such sources of systematic error can arise. 

Each of these types of error can affect the results of the measurements, and should be quantified 
and included in the description of the best estimate of fish length. But errors can affect the best 
estimate in different ways. Instrumental error, as described above, can itself either be random 
or systematic. The printed scale on one of the fish measurement boards could be stretched by a 
factor of 3% compared to the other, resulting in a systematic error. Likewise, one board might 
be made from plastic that is more slippery than the other and thus more difficult to align the fish 
on. This could result in additional random error associated with that device. But what are the 
relationships between these types of errors and the best estimate that we are seeking? 

Error or variation? Questions to ask yourself 

1. What were possible sources of error in your measurements? Are they random or systematic? 
2. How can you tell the difference between error in measurement and natural variability? 

7.5.2 Real variability 

Not all deviations from the mean are errors. For real quantities in nature, there is no good reason 
to assume that, for example, all age-0 brook trout will be the same length. Indeed we expect that 
there are real variations among fish of a single age cohort due to differences in genetics, feeding 
patterns, and other real factors. If we’re measuring a group of age-0 fish to get a handle on how 
those fish vary in size, then at least some of the variation in our data reflects real variation in the 
length of those fish. How do we tease out the variation that is due to errors from the variation that 
is due to real variability? 
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Often a good approach is to try to independently estimate the magnitude of the measurement 
errors. If those measurement errors are about the same magnitude as the variations (residuals) 
within the data, then it may not be possible to identify real variability. However, in the more 
likely event that our measurements are reasonably accurate and have small measurement errors 
compared to their spread about the mean, then the indicated variations probably reflect true 
variability. 

This observation returns us to our earlier question: when we seek to characterize some quantity 
how should we identify our best estimate and our degree of uncertainty in that estimate. If we 
wish to characterize a single quantity and our certainty that our best estimate is close to or equal 
to the true value, we should use the mean of repeated measurements of this value and the standard 
error of those measurements. The standard error can be readily estimated by dividing the standard 
deviation of the repeated measures by the number of measurements n: 

This should be equivalent to the standard deviation of a number of estimates of the mean 
, if several samples were taken from the full population of measurements. Like the standard 
deviation, we can be about about 68% confident that the range xbest+SE to xbest – SE includes the 
true value we wish to characterize, but if we use 1.96 SE instead, we can have 95% confidence.6 

A complete statement, then, of our best estimate with 95% certainty in this context is to say: 

If instead we desire a characterization of a typical value and range for something that has real 
variability among individuals in a population, we will usually describe it with the mean and 
standard deviation. 

7.6 Distributions 

The kind of data we’ve been talking about thus far is univariate: a single quantity with variable 
values like the diameter of a stream-bed particle, or the length of a fish. As we know, not all age-0 
brook trout are the same size. In a first-pass capture of 50 fish, for example, we should expect 
some variability in length that might reflect age, genetics, social structure, or any other factor that 

6. Note that we are currently assuming that our measurements are normally distributed. 
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Figure 7.3: A histogram showing the 
distribution of simulated (random) 
measurements of the length of 100 
snakes. 

Figure 7.4: Sum of the values of five 
dice, rolled 100 times each. 

might influence development. The variation may be visualized graphically in a number of ways. 
We’ll start with a histogram. 

A histogram shows the distribution of a set of discrete 
measurements – that is the range of values and the number of 
data points falling into each of a number of bins, which are 
just ranges of values (112.5 to 117.5 is one bin, 117.5 to 122.5 
another…). This can be called a frequency distribution, and a 
histogram is one of the best ways to visualize a frequency 
distribution (Figure 7.3). 

But what if we had uniformly distributed data? A uniform 
distribution means that it is equally likely that we’ll find an 
individual with a length on the low end (97.5-102.5 mm) of 
the range as any other. That would look quite different – there 
would be no hump in the middle of the histogram, but rather 
a similar number of measurements of each possible length. 
The uniform distribution is great: in fact, we count on uniformity sometimes. If you are at the 
casino and rolling the dice, you probably assume (unless you’re dishonest) that there is an equal 
probability that you’ll roll a 6 as there is that you’ll roll a 1 on any given die. We can call that a 
uniform probability distribution for a single roll of a die. But What if the game you are playing 
counts the sum of the numbers on 5 dice? Is there still a uniform probability of getting any total 
value from 5 to 30? 

We could actually simulate that pretty easily by randomly 
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choosing (with a computer program like R7 or Excel) five integers between 1 and 6 and adding 
them together. Figure 7.4 shows the plot that comes out. Looks sorta like a bell curve, right? 
Well, how likely is it that you’ll get five 1’s or five 6’s? Not very, right? You’re no more likely 
to get one each of 1,2,3,4 and 5 either, right? However, there are multiple ways to get a 1,2,3,4 
and 5 with different dice showing each of the possible numbers, whereas there is only one way 
to get all sixes and one way to get all ones. So there are better chances that you’ll get a random 
assortment of numbers, some higher and some lower, and their sum will tend toward a central 
value, the mean of the possible values. So, since your collection of rolls of the dice represent a 
random sample from a uniform distribution, the sum of several rolls will be normally distributed. 

What’s it got to do with fish? If we sample brook trout randomly from one stream reach and 
measure their lengths, we might expect them to be normally distributed. Describing such a 
normal distribution with quantities like the mean and standard deviation gives us the power to 
compare different populations, or to decide whether some individuals are outliers. The nuts and 
bolts of those comparisons depend on how the type of distribution represented by the population. 
An ideal normal distribution is defined by this equation: 

and it’s graph, in the context of our original hypothetical distribution of fish lengths, looks like 
the red line in Figure7.5. 

7. R is a top choice software for general-purpose data analysis and modeling. It is free software, works on most computer platforms, and 
has nearly infinite capabilities due to the user-contributed package repository. Learn more about R at https://cran.r-project.org/ 
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Figure 7.5: Superimposed discrete 
distribution density (bars), 
interpolated continuous density from 
the discrete distribution (blue line), 
and an ideal continuous distribution 
function with the same mean and 
standard deviation. 

In order to compare the continuous and discrete 
distributions, we’ve divided the counts in each bin by the 
total number in the sample (50), to yield a density 
distribution. The blue line is just a smoothed interpolation of 
the top centers of each bar in the discrete distribution, so it 
generally reflects the density of data within each bin. As you 
can see, the discrete distribution density and the continuous 
normal distribution functions are similar, but there are some 
bumps in the discrete distribution that don’t quite match the 
continuous curve. As you can imagine though, that 
difference would become less pronounced as your dataset 
grows larger. Related to this, then, is the idea that your 
confidence in the central tendency and spread derived from 
your dataset should get better with more data. 
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Exercises 

1. Download the data from Derek Ogle’s InchLake2 dataset from the fishR data website. Using either a 
spreadsheet or data analysis package, isolate the bluegill from the dataset and identify the following: 

a. Mean bluegill length. 
b. Standard deviation of bluegill length. 
c. Mean bluegill weight. 
d. Standard deviation of bluegill weight. 

 

2. The graph and data table below and right show measurements of brook trout lengths from pass #1 of 
the electrofishing campaign described in Problem 4.7. Use these resources to answer the following 
questions: 

a. Judging from the histogram in Figure 7.6, does the dataset contain just one mode or more than 
one? What might be the reason for this? 

b. What is the mean and standard-deviation for the (presumed) age-0 portion of this sample? 

Figure 7.6: A complete frequency distribution of brook trout lengths from 
electrofishing pass #1 from Problem 4.7. 

• Download the Brook trout length data [XLS] (all lengths in mm) 
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8. Interlude: Collecting and 
Managing Data 

Data is information. Data is the result of somebody’s efforts to record and store information, often 
to provide an opportunity for insight. It can be used to discover patterns, test hypotheses, and 
support arguments, among other things. But the numbers themselves often cannot convey much 
meaning—it is through manipulation and interpretation of the data that those uses can be realized. 
We therefore need to be conscious about how data are structured and managed, so that they can 
be manipulated and interpreted to reveal insights. If data are badly structured and managed, the 
risks can be great. Optimistically, we risk wasting lots of time trying to restructure data to allow 
the kind of analysis we wish to perform; worse yet, we risk compromising the integrity of or, 
heaven-forbid, the complete loss of data through poor structuring and mismanagement. 

First, lets be clear about what is meant by data structure and data management: 

• Data structure refers to the organization and layout of data as it is stored. Whether it is handwritten 
in notebooks or stored in spreadsheets or text files, data usually has an architecture that reflects the 
intentions (or ignorance) of the data manager or sometimes the protocols of his/her organization or 
institution. 

• Data management is the set of practices aimed at preserving the quality, integrity, and accessibility 
of the data. This can include all phases of data usage from collection and manipulation to storage, 
sharing, and archiving. 

There are some great resources for data management out there in various forms, including some 
geared toward biologists. A few include: 

• Data Carpentry (www.datacarpentry.org) 
• Wickham, H., 2014, Tidy Data. Journal of Statistical Software 59(10). 
• Saltz, J.H. and J.M. Stanton, 2017, Introduction to Data Science, Sage publ. 

https://datacarpentry.org/


Figure 8.1: A 
typical workflow 
for data. After 
Grolemund and 
Wickham, 2017, R 
for Data Science, 
O’Reilly. 

Who is data for? 

Unless you work with highly classified or proprietary information and are required to protect 
and encode your data, you likely need data to be readily understood and usable, not just to 
you but to others you work with or the broader public.1 But we also need to realize that the 
humans who need to make sense of the data will be using tools like computers to facilitate this 
approach. Therefore the data structure needs to also accommodate the demands of the computer 
hardware and software that it is used on as well as the humans. Thus, data should be organized 
in a logical, self-consistent way and it should be accompanied by documentation that helps to 
explain the content and context of the data. Similarly, accessible data archiving, in principle, 
allows colleagues and competitors to test, verify, reproduce, and/or compare results with their 
own, ensuring that scientific advances that you make with the help of your data can also lead to 
advancement of science and management more broadly. 

Consider the schematic workflow illustrated in Figure 8.1. Once collected, data must be 
organized and formatted in a way that facilitates their analysis on a computer. A popular term 
for data that are formatted to simplify computer manipulation is tidy data (more on this below). 
When this process is complete, the data may be analyzed as needed to address the problem or 
hypothesis at hand. This process of making sense of the data may then produce a result that needs 
to be communicated back to humans. When data is presented for comsumption by the human 
eye and brain, the organization and structure should reflect the expectations and attention span 
of the humans. Unless the data set is small, the raw or transformed data may not be appropriate 
to display. Instead, summary data are more appropriate, either in narrative, table, or graphical 
format. 

1. Many government funding agencies require that researchers develop a data management plan that includes strategies for structuring, 
archiving and indexing data in publicly-accessible repositories. 
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If there are multiple datasets derived 

Tidy data 

To understand the significance of tidyness, it is perhaps helpful to consider untidy or kludgy data. 
Below is a portion of a data table containing the weights and lengths of small fish captured during 
a population survey of Inch Lake, Wisconsin.2 

Table 8.1: A portion of an untidy dataset. 

number bluegill (2008) bluegill (2007) Iowa Darter (2007) 

1 L:1.5 W:0.7 L:1.9 W:1.3 L:2.1 W:0.9 

2 L:1.0 W:0.7 L:1.6 W:1.3 L:2.0 W:1.3 

3 L:2.6 W:1.5 L:2.4 W:1.7 L:1.7 W:0.7 

4 L:1.1 W:0.6 

Let’s unpack this data set. There are two different fish species listed, one observed both in 2007 
and 2008, and one only in 2007. Lengths and widths are provided for all fish measured, but there 
are different numbers of fish in each column. There is also an index value in the first column that 
facilitates counting the number of fish of each species captured in each year. This is reasonably 
straight-forward for a human to interpret, particularly if we are told that L corresponds to a length 
in inches and W corresponds to weight in grams. However a larger dataset organized like this 
table would be miserable to analyze for a variety of reasons, including: 

• columns don’t have the same number of values 
• the same species has data across multiple columns 
• two variables (length and width) are listed together within each column, with numbers and letters 

mixed 

One instructive question to ask is how many variables there are here. We notice that data span 
multiple years, so year could be a variable. There are also multiple species here, so species could 
be viewed as a variable. Then length and width should each be variables. Finally, if we wish to 
have an index or ID number for each fish, that might be a fifth variable. 

In general, tidy data is organized in a rectangular array 
in which each column represents a variable and each 
row an observation. In most cases, the first row contains 

2. This is a deliberately disorganized snippet based on a dataset from Derek Ogle’s neat website http://www.derekogle.com/fishR/data 
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from the same group of fish, 
assigning a fish ID number would be 
a simple way to connect these 
datasets using database methods. 

descriptive but simple column headers. This simple 
prescription seems unthreatening, but it is often 
surprising how pervasive untidy data is. 

So with five variables, how many observations do we 
have? Each fish represents an observation, with a unique 
ID number, year of capture, species, weight and length. 
From Table 8.1, there appear to be ten fish listed among 
the three columns. So since each fish is an observation, following the principles of tidy data there 
should be ten rows of data with values in each of the five columns. Below is a tidy representation 
of this dataset. 

Table 8.2: The data from Table 8.1 transformed to a tidy dataset. 

fishID year species weight (g) length (in) 

1 2008 bluegill 1.5 0.7 

2 2007 bluegill 1.9 1.3 

3 2007 Iowa darter 2.1 0.9 

4 2008 bluegill 1.0 0.7 

5 2007 bluegill 1.6 1.3 

6 2007 Iowa darter 2.0 1.3 

7 2008 bluegill 2.6 1.5 

8 2007 bluegill 2.4 1.7 

9 2007 Iowa darter 1.7 0.7 

10 2007 bluegill 1.1 0.6 

This table is now organized in a way that can easily be sorted, filtered, and summarized in 
common statistics and computational software packages. 

Data management 

Because data is often the hard-won result of costly and time-consuming observations and 
measurements, its management should be deliberate and careful. Well-managed data can be 
stored, retrieved, analyzed, and used to develop insights or aid in management decisions without 
compromising the data itself, and without spending unnecessary time and energy in decoding and 
interpreting the raw data. Thus, proper management entails not only careful structure as described 
above, but also well-organized storage and full documentation. 
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First, important raw data should be stored redundantly. If it’s only in hard-copy (e.g., in field 
notebooks), consider scanning or transcribing the hard-copy data to preserve a digital version 
that can be backed-up regularly. When the data results from original research that can be shared 
publically, it can be uploaded to data repositories.3 A complete set of data should be archived and 
never modified, while data reduction and analysis are done on copies of the formatted raw data. 

When analysis or reduction occurs much later than the time of collection and storage, or 
is done by a different person or group than the researcher who collected the data, adequate 
documentation or metadata is essential. Metadata can include narrative descriptions of where 
the data was collected, when and how it was collected, and should include references or links 
to any published or publicly-available research or information stemming from the data. The 
metadata should always include a data dictionary, fully describing the quantities represented by 
each of the variables collected (i.e., variable name, symbol, units, and procedural statement). 
These guidelines ensure that data remain safe, useful, and accessible. 

3. Data repositories like the LTER Data Portal require formatted data and metadata to ensure long-term accessibility and adequate 
documentation. 
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9. Geometry and Geography 

One of the fundamental types of quantities that we use as natural resource scientists and 
professionals is a measure of distance or size. Whether we’re describing the board-feet of 
merchantable lumber in a ponderosa pine, the fork length of a trout, the size of a whitetail deer’s 
home range, or the storage capacity of a flood-control reservoir, we are concerned with spatial 
quantities that ultimately manifest from linear measurements in space. Much of this may feel 
familiar to you, but there are important messages to take home from working with both simple 
and compound spatial quantities that will serve you well in working with maps, photos, design 
plans, and other tools that professionals use. 

9.1 Length, Area, and Volume 

Consider the wetland shown in the map below (Figure 9.1). How might we characterize its size? 
Perhaps the answer depends on the context of the question. Are we interested in how far it is 
to cross it in a canoe? How long the shoreline habitat is for waterfowl? The number of acres 
it occupies? What about the amount of water it holds? In turn these questions point to linear 
distance, curvilinear distance, area and volume, respectively. Each of these types of quantities 
can be expressed in a variety of ways according to the setting, the application, or the purpose of 
communication.1 

The distinctions between length, area, and volume are more than just trivia. They clearly reflect 
not only different ways of estimating size, but different numbers of spatial dimensions. In 
common parlance, length is one-dimensional or 1D, area is two-dimensional or 2D, and volume 
is three-dimensional or 3D. The units can be a clue to how many dimensions are indicated 
in a spatial description. From Chapter 4, recall that we can generalize units in terms of the 
fundamental dimensions they entail. From this perspective then, a 1D length has dimensions of 
[L], a 2D area [L2], and a 3D volume [L3]. 

1. For example, we can express all the quantities in terms of SI units of m, m2, and m3, or we can use more traditional U.S. agricultural 
units like feet, acres, and acre-feet. 



Figure 9.1: Map of 
a wetland in Iowa. 
The blue polygon 
shows the extent 
of seasonal open 
water overlain on 
shaded relief. 

 

This is true regardless of the specific units used to describe the quantity of interest, though 
sometimes the dimensionality can be obscured by the use of compound units. For example, if 
we’re told that a woodlot is 820,000 ft2, that is a straight-forward 2D measure of area. If that 
same woodlot is described as 126,000 board feet,2 now we’re talking about a volume of wood 
expressed in a unit that is not particularly transparent to outsiders, though it is customary among 
foresters. If we need to do computations involving quantities of this sort we need to be certain 
that we understand what makes sense and what doesn’t make sense to do; what’s permissible and 
what isn’t. 

Note that some of our commonly-used spatial units are compound by definition. An acre, for 
example, is a unit of area even though it is not expressed in a squared-length form. Originally 
defined as the area of land that could be plowed with oxen in a day, an acre is 43,560 ft2 or 
roughly 4,047 m2. If you measured out a square 208.7 ft on a side, that would be approximately 

2. One board-foot is equivalent to 144 cubic inches of merchantable timber; can be visualized as a 12 inch long and 12 inch wide board 
that is 1 inch thick. 
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an acre. The acre’s cousin in SI units, the hectare, is also a unit of area with a simpler definition: 
an area of land 100 m wide and 100 m long, or 10,000 m2.3 

We’re also familiar with several alternative ways of expressing volume with derived units, 
particularly when talking about liquids. It’s not unheard-of to talk about fluid volumes in 
cubic meters or cubic feet (particularly if we’re referring to volume per unit time as we do 
when describing river flows in cubic feet per second or cfs), but it is more common to hear 
fluid volumes expressed in gallons, millileters or liters. These are all legitimate expressions 
of fluid (gas or liquid) volumes and some have relatively straight-forward relationships to 
length-cubed volumes: for example, 1 ml is the same as 1 cm3 or cc. However, if we wish to 
perform computations more complex than addition or subtraction on such quantities, it can be 
advantageous to convert them into more fundamental units like cubic meters. One interesting 
unit of volume mentioned above is the acre-foot, which (as you might guess) is the volume 
corresponding to a one acre area of something that is one foot deep. This means its dimensions 
are an area [L2] times a depth [L], therefore it is a volume [L3]. We encounter this unit of volume 
sometimes in descriptions of ponds or stormwater-basins because it may be easier to visualize, 
but this can also make it more difficult to perform computations. 

9.1.1 Unit conversions in space 

Here’s an common exercise that American students often need to perform in earth science, 
geography or natural resource courses: measure a rectangular land area on a USGS map with a 
scale in feet and miles, and convert it to square meters or square kilometers.4 

Figure 9.2: A generic map scalebar showing map distances 
in feet and miles. 

This exercise will typically begin with each student begrudgingly making tickmarks on the edge 
of a sheet of paper that is lined up with the map scale. For purposes of illustration, we’ll follow 
the hypothetical (but not uncommon) path of a student who is prone to making some common 

3. Neither the acre nor the hectare need be any particular shape, nor do they necessarily need to be contiguous, though they usually are. 

4. Perhaps this exercise is going the way of the paper map itself as people increasingly interact with only digital maps these days! 
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Common Mistake #1: 

leaving the units out of computations 
can lead to errors in unit assignment 
for solutions. 

Common Mistake #2: 

using length conversion factor for 
area conversion. 

mistakes. Our student uses the marked paper to estimate the length of each side of the rectangular 
land area using the scaled map units.5 Perhaps the values are 6.2 miles and 2.1 miles. He then 
proceeds to multiply them together, because he’s aware that the area of a rectangle is the product 
of its sides. So he punches  into his calculator and gets 13.02. When asked to supply 
units for his answer, he reasons that since the units he was measuring distances in were miles, the 
answer is also in miles. 

His instructor points out that miles are a unit of length 
not area, and that he should write the equation out 
complete with units to ensure that his result comes out in 
units of area. So he writes: 

and the instructor nods approval but says, “and now we need the area in square kilometers”. Our 
downtrodden student proceeds to look up the conversion factor between miles and kilometers: 

Great. The calculator buttons click away until the student, exasperated, inquires “so the area in 
square km is , which equals about 20.95 right?” 

The ever-patient instructor shakes her head: “there are 
1.609 km in a mile, but how many square km in a square 
mile?”. Our student stares at the map and feigns interest 
in the question. On a whim, he asks “do I need to square 
the 1.609 too?” The instructor pats him on the shoulder 
and remarks “yep, write it all out, and don’t forget the 
units” as she walks away. Our student, relieved at having guessed correctly, writes: 

To see why we need to square the conversion factor like our student ultimately did, let’s write 

5. See the next section for more on scaling. 
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out the conversion equation the way he did it at first, but using only the units (this is a variation 
of the dimensional homogeneity heuristic from Chapter 5): 

If we cancel common units, we should be able to show that the units of the left-hand side are 
equal to the units on the right-hand side, but here we can only cancel miles in the numerator from 
miles in the denominator on the left-hand side, leaving a meaningless unit equation: mi km=km2. 
That can’t be true. 

If instead we reason that our conversion factor needs to allow us to cancel through to make the 
units equivalent on both sides, we square the conversion factor and its units to yield: 

This approach can be generalized for other types of spatial unit conversions as well, provided that 
our original and desired units are not compound. Suppose we are measuring the size of something 
in units based on the length unit  and we need to convert it into units based on the length 
unit . If the conversion factor between and  is , the conversion equation can be 
written: 

In this equation, dd is the spatial dimensionality of the quantity, so its 1 for lengths, 2 for areas, 
and 3 for volumes. It’s important to note that the conversion factor  should correspond to 
the number of unit 2’s per unit 1, as we did for the map area conversion above. 

Note that unit conversion factors between compound units like acres and hectares are not subject 
to these concerns. There is no such thing as a square acre because an acre is already a unit of area, 
so nothing needs to be done to the conversion factor if you are converting from, for example, 
acres to hectares: there are 0.4047 hectares in an acre, period. In this way these compound units 
can make life easier, but if you are simultaneously working with other quantities in meters, this 
convenience comes at a price. 

It might have occurred to you to approach the map problem in a slightly different way. Suppose 
that instead of computing the area in square miles immediately after measuring the sides of the 
rectangle, our student had converted the sides from miles to kilometers first. Does this make any 
difference? 
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Recall that benchmarking is a 
process of conceptualizing the size of 
a quantity by comparing it with a 
known reference quantity. 

In this case, the map distances are  and . 
Their product is 33.71km2, which is the same result as before. That should come as no surprise, 
since the only difference is that the unit conversions from miles to km occurred before finding 
the area rather than after. Indeed this is one way to make the problem a bit simpler to think about, 
but thanks to the commutative property of multiplication there is no real difference between the 
approaches. 

9.1.2 Scales and Scaling 

The map scalebar in Figure 9.2 shows not only a graphical scale that can be used to directly 
measure real-world distances from the (scaled) map representation, but also indicates a ratio: 
1:31,680. What does this scale mean? Does it have units? 

Map scales are like most other dimensionless proportions, as we discussed in Chapter 5. The 
beauty of many dimensionless proportions is that we can use any units we want in them provided 
that both parts of the scale ratio or proportion have the same units. So for the map scale, we can 
say that 1 inch on the map is equal to 31,680 inches in the world that the map represents.6 If we 
measure out a path on the map that is  inch long, the distance we would cover walking along that 
path in the real world is  inches. That’s not a very easy distance to envision because 
there aren’t any very familiar benchmarks near that quantity of inches, but we could convert the 
latter to feet or miles to make it simpler, and then we can re-express the scale in as a dimensional 
ratio: 

31680 in. × 1ft./12in. = 2640 ft. We can go one step 
further still: 2640ft. × 1mi. / 5280ft. = 0.5mi. That works 
out pretty nicely, and it often does so by design! So we 
can restate the map scale as 1 inch = 0.5 miles, or 
equivalently 2 inches per mile. This means the same 
thing as the scale ratio 1:31,680 but is more specific 
because we have already chosen the units that we wish 
to measure with. Note that we cannot say that the map scale is 2:1 or 1:0.5 because in converting 
the second number from inches to miles we’ve made the scale statement unit-specific. 

Maps aren’t the only thing that we encounter that are scaled representations of reality. When 

6. For better or worse, the US still persists with using inches, feet, and miles as conventional measures of distance in official maps and 
documents. Even though most scientists adopted the metric system long ago, we retain imperial units here to recognize the persistence 
of legacy units in our maps. 
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Figure 9.3: In rural farm country, roads are 
often arranged in an almost-regular grid 
with spacing of 1 mile. In these settings, we 
can estimate the “road density” by 
imagining a square-mile box centered on a 
road intersection. Within the box shown 
above, there are 2 miles of road, suggesting 
a road density of 2 miles per square mile. 

we are learning about microscopic properties of molecules or cells, we often look at diagrams 
or physical models of things that are too small to see. When looking through a microscope, 
we perceive a much enlarged version of the object of study. In each case, we are seeing 
representations of reality scaled to size that is easier for us to grasp. Importantly, we are also 
(usually) seeing things scaled isometrically, meaning that all dimensions are enlarged or shrunk 
by the same constant factor. We’ll see in later chapters some interesting problems associated with 
scaling that is not isometric. 

9.1.3 Example: the area of roads in a county (Problem 4.3) 

One reasonable sub-problem to address in the issue of 
deer-car collisions is how widespread are roads in the 
area of interest? As with several of the other teaser 
problems in this book, no specific county is cited, so 
as a first approximation I’ll just estimate numbers for 
my own home county: Story County, Iowa. According 
to Wikipedia, Story County has an area of 574 mi2. 
The extent of roads in Story County or elsewhere in 
the US is something that could be readily assessed 
with a GIS system, and that would certainly be among 
the most accurate and efficient ways to obtain this 
value for specific counties. However, for the sake of a 
first approximation let’s try something easier. 
Literature about road systems in the US suggests that 
there is about 1.2 miles of road per square mile of land, 
on average.7 Clearly this is an underestimate in urban 
areas, and perhaps an overestimate in remote, rural 
areas. In the not-so-remote gridded farmscape of 
central Iowa (Figure 9.3), a road density closer to 2 
mi./mi.2 is perhaps more appropriate. By this estimate, 
my county would have approximately 2×574=1148 
miles of roads. 

Road density is informative, but it only gets us partway to the notion of area. What we need to 
know now, given that we have road length, is the average width of a road. Let’s assume this is 

7. This number comes from: Transportation Research Board and National Research Council, 2005. Assessing and Managing the 
Ecological Impacts of Paved Roads. Washington, DC: The National Academies Press. https://doi.org/10.17226/11535. 
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20 feet. To be a meaningful area, we either need to decide to convert length to feet or width to 
miles.8 Since the county area was estimated in miles, it would be wise for comparison purposes to 
convert road width into miles as well. Thus, the average road is about 20/5280=0.003788 miles 
wide. Multiplying that road width (in miles) by the total road length (in miles) yields about 4.35 
square miles. That’s about  of the county area! 

9.2 Geometric Idealization or Approximation 

Some problems require spatial measurements or computations that are complex, time-consuming, 
or difficult to visualize. In some of these cases, a rough estimate may be adequate for the type of 
solutions we seek; in other cases, we may wish to establish quick ballpark estimates before we 
dig too deeply into the complex computations, much like we just finished doing in the previous 
section. For these spatial problems, it can be helpful to idealize the spatial information we have 
in terms of simple geometric figures that we know something about. For example, suppose 
we wish to estimate roughly how much an 40cm-long snake might weigh, and we have no 
prior information or experience upon which to base this estimate. If we are able to estimate its 
diameter, we may make some progress by idealizing the snake as a long cylinder. Consulting the 
table below, we find that a cylinder’s volume is expressed as: 

where r is half of the diameter and h is the length of the snake. If the largest r is around 1cm and 
h is 40cm, a first guess for the total volume is about 126 cm3. Now if this radius corresponds to 
the largest part of the snake, this volume might be an upper bound. Since the snake’s body tapers 
a bit, perhaps a mean radius is better – say 0.7cm. Now the volume is 61.6 cm3. 

Next, given that many non-avian animals have densities close to that of water,9 we can estimate 
the mass of the snake using density and volume. To see how we should do that, we might use 
a strategy described in an earlier chapter: write out the problem with just dimensions. We’re 
looking for how much it weighs, but really what we want is a mass. If we list the dimensions of 
the variables we have and want, they look like this: 

8. This is a seemingly-trivial but still significant decision. In Schoenfeld’s framework for problem-solving, making this kind of decision 
deliberately with the broader goals and practical issues in mind is an example of control. 

9. In so-called cgs units, the density of water is 1.0 g/cm3. 
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we see that the mass we are looking to solve for appears in the density term. The volume term 
appears as a negative 3rd power in the density term and a positive 3rd power in the volume 
itself, so when multiplied together, volume (V) and density (ρ) should yield dimensions of mass: 

. If we remind ourselves that the definition of density is indeed , this makes 
sense as a simple algebraic modification of that definition. Thus, our estimated mass for the snake 
would be: 

Is this close enough? Perhaps, but that depends on the nature of the problem: why do we wish to 
know how much the snake weighs, and what will we do with that information? 

9.2.1 Example: herbicide purchase (Problem 4.2) 

We can use a similar approach to get a start with the herbicide volume needed to eliminate woody 
shrubs from our city greenspace. A reasonable assumption is that, when cut with a saw or lopper, 
the exposed stem cross-section of a woody plant is approximately circular. If the goal is to cover 
the stumps completely with a coating of herbicide, each stump will have a volume (from Equation 
9.2) equal to its cross-sectional area  times the thickness h of the herbicide coating applied to 
the stump. 

9.3 Measuring polygon area 

Not all spatial bodies of interest to us are easily measured using the simple idealized shapes 
reviewed above. Alternatively, geometric idealizations introduce too much error for certain 
applications. Non-ideal shapes can, however, be approximated by irregular polygons in some 
settings. Here, we describe a method for computing the area of an arbitray two-dimensional 
polygon using a clever trick that is frequently built into CAD, GIS, and other geospatial software 
packages. 
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Figure 9.4: A trapezoid (in gray) with 
dashed line indicating the rectangle 
with the same area. 

The trapezoidal algorithm primary requirement we must 
meet to use this method is to have coordinate pairs for each 
vertex in the polygon in a Cartesian (i.e., a plane with two 
orthogonal, linear axes; a.k.a. an x-y plane) coordinate 
system. This algorithm may be implemented easily enough 
by hand, but finding the area of a more complex shape is 
better left up to a computer. Let’s have a look at how this 
algorithm works. 

First, recall that a trapezoid is a four-sided shape in which 
only two sides are parallel, as in Figure 9.4. At first glance, it 
might seem that the area of the trapezoid would be 
challenging to estimate, but when we realize that it should be 
the same as the area of a rectangle that’s as tall as the average 
“height” of two vertical sizes of the trapezoid, we may see 
some hope.10 We know that the area of a rectangle is just its 

height times its width: . For a trapezoid whose vertical sides have heights  and 
for left side height and right side height, respectively, we can restate the formula for area in terms 
of the average of those heights: 

Now suppose that instead of defining heights and widths in terms of  and , we have the 
vertices of our trapezoid in Cartesian coordinates.11 Each point at a vertex (corner) of the 
trapezoid therefore has an  coordinate, where  refers to the horizontal coordinate direction 
and  is vertical. In this system, note that the width of the trapezoid will be defined by the 
difference in two  coordinates. So if we take the upper left corner in Figure 9.4 to have an 
coordinate of  and the upper right corner to be at , the width of the trapezoid is 

10. In Figure 9.4 you can imagine snipping the top of the trapezoid on the dashed line, flipping it over and filling the void in the upper 
right. Alternatively, we could imagine splitting the trapezoid into a shorter rectangle and a full-width triangle and compute the area 
as the sum of those two areas. With a bit of algebra, we find that the result is the same. 

11. Cartesian just means that we are specifying the location of points in a two-dimensional coordinate system where the coordinate 
directions are perpendicular to one another. Note that the UTM coordinate system for maps is Cartesian, whereas latitude and 
longitude are not. 
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Figure 9.5: An arbitrary polygon. Using the 
trapezoidal algorithm, areas for individual 
trapezoids are computed one-by-one in 
clockwise order. In the lower part of the 
polygon (where trapezoid fill is darker gray), 
the computed areas are negative, trimming 
the unwanted trapezoid area from below the 
polygon. 

. Similarly, if our trapezoid height extends to zero12 in the  coordinate direction, the “average” 
height of our trapezoid can be re-written by substituting  and  for  and . If we make 
these changes to the area formula above, any given trapezoid in our coordinate system has an 
area: 

Now consider the polygon depicted in Figure 9.4. Each pair of adjacent vertices can be viewed as 
the upper corners of a trapezoid. If we apply the formula above to each pair of adjacent vertices 
and add the areas together, what do we get? 

Here,  is the number of vertices and the ellipsis 
“…” means that we’ve left out some number of 
terms in the equation, though in this case we’ve only 
got five vertices so we’ve only left out two terms. 
Notice that if we systematically label the vertices in 
our polygon in a clockwise manner, about half of the 
trapezoids will have negative areas and half will 
have positive areas, though the negative areas will be 
somewhat smaller. This is because as we come 
around the bottom of the polygon as we march 
clockwise from one pair of vertices to the next pair, 
our  coordinates are becoming smaller as we go 
from right to left. This is good! The result is that the 
width value (and consequently the area) computes as 
negative, and as a result this lower trapezoid is 
subtracted from the total area of the polygon, which 
is exactly what we want! If we order the vertices 
counterclockwise we’d get the opposite result, but 
the resulting (negative) area would still be correct. 

As mentioned earlier, this algorithm is readily 

12. In fact, we could show that it needn’t go all the way to zero provided that all of the  values in the trapezoid collection are positive 
all are negative, but this is left as an exercise. 

9. GEOMETRY AND GEOGRAPHY  |  88

https://iastate.pressbooks.pub/app/uploads/sites/63/2022/03/Figure-9.5.png
https://iastate.pressbooks.pub/app/uploads/sites/63/2022/03/Figure-9.5.png


implemented on a computer, using either spreadsheet software like Excel, or computational/
statistical software like R. Likewise, this method is built into other software tools that natural 
resource students and professionals use, including most GIS packages. 

9.3.1 Example: open-water waterfowl habitat (Problem 4.1) 

One important variable that influences waterfowl abundance is the presence of different types 
of habitat. Most waterfowl feed extensively in open water, so the area of open wetland is a key 
habitat variable. In Section 9.3 we identified the trapezoidal algorithm as a tool for estimating 
the area of arbitrary shapes. We also acknowledged that, while it is possible to do the required 
computations by hand, automating the algorithm improves computational efficiency by orders 
of magnitude. The algorithm can be implemented as a formula in a spreadsheet containing the 
coordinates of the polygon but, as we’ve discussed, this operation is common enough that it is 
incorporated in most GIS software. Therefore, comparing watershed areas between the parcels 
described in Problem 4.1 is a geospatial problem. We nevertheless provide an opportunity in the 
chapter Exercises below to work with this algorithm directly. 

 

Exercises 

1. What is the longest distance across the wetland in Figure 9.1? 

 

2. Estimate the dimensionless map scale ratio from the scalebar in Figure 9.1. 

 

3. Would the map scale be the same or different if you made an enlarged photocopy of a map? 

 

4. Use geometric approximation to estimate the area of the wetland in Figure 9.1. 

 

5. Use the trapezoidal algorithm to make a more precise estimate of the wetland area. The data below 
contains UTM coordinates of the wetland perimeter. 

◦ Download the UTM coordinates data (XLS) 
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Figure 10.1: A simple triangle. Note 
that the corners (or vertices) are 
labeled with capital letters, and that 
the sides opposite those vertices are 
labeled with the lower-case version 
of the same letter. This is partly by 
convention, and to facilitate some of 
the techniques we’ll review below. 

10. Triangles 

10.1 Measuring with Triangles 

It is fair to ask why we should bother learning about triangles, since their relevance to ecology 
and natural resources isn’t immediately apparent. Indeed, natural materials tend to approximate 
more tabular or rounded shapes, and true triangles are harder to find in nature by comparison. But 
the real power of triangles is not in where we can see them, but where we can imagine them. 

Believe it or not, imaginary triangles can help us measure 
properties of a landscape or organism, and that fact is firmly 
incorporated into many of the tools and technologies that 
researchers and professionals use. In particular, the ratios 
between the lengths of triangle sides is one of their key 
assets. In this chapter, we’ll review some of the properties of 
triangles and see how these properties can be leveraged to 
measure things we care about. 

10.2 Trigonometry primer 

Trigonometry is the study of triangles, specifically the 
relationships between the lengths of their sides and the 
angles between them. At first glance, that might not seem 
like it is very relevant to the natural sciences, but a few 
examples might convince you otherwise: 

• Determining the distance “as the crow flies” between two geographic points is often most easily 
done with the help of triangles. 

• Measuring the height of a tree or a mountain can employ triangles. 
• Telemetry often uses triangulation to determine the geographic location of collared animals. 

If you’ve had a trigonometry class, you might associate the discipline with manipulating 
equations with  and . Outside of math class, did you ever find yourself 
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Wolfram|Alpha is a web-based tool 
developed by mathematician and 
entrepreneur Stephen Wolfram. It is 
based on the same underlying 
computational engine as the math 
software Mathematica, but can be 
used (for free with slightly-limited 
functionality) from any web browser. 
In addition to performing 
computation and algebraic 
simplification, it can attempt to 
comprehend simple written questions 
and can retrieve data from a few 
established databases, concerning for 
example weather, fincance, and 
sports. 

needing to find the secant of an angle? Not likely. But it isn’t too uncommon to encounter the 
likes of sine and cosine, which are often written sin\sin and cos\cos, respectively. That’s because 
they are really, really useful.1 And it turns out, nearly all the other trig functions you may have 
learned about are readily defined using sines and cosines! For example, the tangent of an angle 
can be defined as the ratio of the angle’s sine to its cosine, but it is so useful that we should 
recognize it as well. 

As far as I’m concerned, on the off chance that you ever need to manipulate an equation 
containing the hyperbolic cosine (cosh\cosh) of something, you can look it up or type it into an 
internet tool like Wolfram|Alpha. 

If this is your first experience with trigonometry, have no 
fear, we’ll take it slow! 

Similarity 

Similarity is a concept that may not boast enough 
sophistication to warrant its inclusion in a trigonometry 
class. However, it is an intuitively easy idea to grasp and 
its utility can be great. And fortunately for modern 
scientists, the formal application of similarity allows us 
to design tools for measuring things efficiently in the 
field. 

The principle of geometric similarity2 is straight-
forward. If we have a given shape with known side 
lengths and/or known angles formed between the sides, 
we can say that another shape is similar if it has the same 
number of sides and a relationship between those sides 
and angles that is the same as our reference shape. The two shapes can still be similar even if they 
are not the same size or orientation. If any combination of translation (moving the shape), 
rotation, reflection (a mirror image), or isometric scaling could allow you to overlay one shape 
on the other to find them to be identical, the shapes are similar. 

For triangles, the qualifying criteria for similarity are simple, since there are only three sides and 

1. At this point you may just need to take my word for it, but I hope that you’ll appreciate this fact by the time you finish this chapter. 

2. In some fields this concept is endowed with a more sophisticated sounding name: geometric similitude. 
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Figure 10.2: A right triangle. 

one internal angle at each of the three vertices. For shorthand, when two triangles have one angle 
that is identical, we’ll call that A. When two triangles have all three angles equal, we’ll refer 
to that is AAA. Likewise, if the side-length of one side of two triangles is equal, we’ll describe 
that with S. With these definitions, we’ll make the following claims, as yet unproven, about the 
criteria for determining similarity: 

Triangle Similarity 

Two triangles are similar if any one of the following can be established: 

• AAA. The angles of one triangle are equal to the angles of the second. 
• SSS. The side-lengths of one triangle are equal to those of the second. Side lengths may be scaled by a 

constant CC if that constant is the same for each side. 
• SAS. Two side-lengths and one angle of one triangle are equal to those of the second. Side lengths may 

be scaled by a constant CC if that constant is the same for each side. 

When you’ve reached the end of this chapter, you should be able to show how each of these 
criteria for similarity could be derived from one of the others. That is left as an exercise for you 
to work on, one that can build your intuition for using triangle properties for problem solving. 

10.2.1 The right triangle and sohcahtoa 

The mnemonic SOHCAHTOA is one of a small number 
of things that most trig students remember years after 
taking the class. Indeed this is really helpful way to 
remember the algorithms relating the basic trig functions 
to ratios between the sides of a right triangle. But it 
reveals nothing about the ways that triangles can be 
employed for practical purposes. So before we deal with 
these functions, let’s revisit what a right triangle is, where 
we might encounter one, and a few terms and rules 
regarding these beasts. Figure 10.2 shows a nice, well-
behaved one. 

Notice that each vertex (a corner point) joins two of the three sides and doesn’t touch the side 
that is opposite it. For reasons that might be apparent in a moment, we choose names for the 
sides and vertices that imply a relationship between a vertex and the side opposite it. So for 
example, side a is opposite vertex A (meaning the vertex A is not one of the endpoints of side a). 
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Figure 10.3: A right triangle, labeled. 

It probably satisfies your intuition that the size of the angle at a vertex might have some simple 
relationships to the length of its opposite side – at least there is a more intuitive relationship 
there than between vertex A and one of the other two sides. Imagine keeping vertices A and C 
stationary, but allowing the angle at A to grow. It is plain to see that if the angle  increases, the 
vertex B must move up and the length of side a increases accordingly. This thought experiment 
produces similar results for the other opposing side/angle pairs as well, and we’ll use it to our 
advantage shortly in dealing with triangulation. 

One of the most fundamental properties of all triangles is 
that the three vertex angles sum to 180°: 

. 

For the special case of a right triangle, the right angle by 
definition is 90°, so the other two angles must be smaller 
than 90°. This seems obvious, but it has an important 
consequence: the longest side of a triangle is the one that 
is opposite the largest angle. Therefore, since the right 

angle is the largest angle in a right triangle, the longest side (which we call the hypotenuse) is 
across from the right angle (Figure 10.3). 

In addition to the rule that angles must sum to 180°, one of the most powerful properties of right 
triangles is their adherence to the Pythagorean theorem: 

This is always true provided that cc is the hypotenuse of a right triangle. It turns out that there is 
a simple modification that can be made to this if we are dealing with any arbitrary triangle. But 
before we go much farther, consider an example setting where a right triangle can be a useful aid 
to measurement. 

Example: overland distances 

If you are visiting GPS waypoints stored as UTM coordinates, the distance on-the-ground 
between two points might not be obvious from the coordinate sets. For example, what is the 
distance between (452632452632,46602144660214) and (452991452991,46605804660580), the 
marked locations of two observed dickcissel nests? Once we recognize these ordered pairs 
as the geographical equivalent of (x,y) pairs, it is pretty easy to see that the second nest is 
452991−452632=359 m east and 4660580−4660214=366 m north of the first. 

But neither a dickcissel nor an ornithologist would likely go from one nest to another by first 
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Figure 10.4: Dickcissel nest 
distances. 
North is toward the top of the 
page. 

going 366 m north and then 359 m east. Both would be more likely to go in an approximately 
straight line. Since east and north are perpendicular, we can construct a triangle like Figure 
10.4, with a 359 m long easting side and a 366 m long northing side to represent the coordinate 
distances. The as-the-crow-flies distance is the hypotenuse of the triangle since it is opposite the 
right angle. Therefore we can use the Pythagorean theorem to find that distance, which we can 
call dd: 

Knowing that the second nest is about 513 m away from the first is 
great. But if you were to give instructions to a field assistant to 
walk 513 m from the first nest to find the second nest, that alone is 
insufficient information to get to the correct place. Which direction 
does she have to go? You could, of course, simply have her walk 
north 366 m and then east 359 m, but that wouldn’t be terribly 
efficient. What is missing is obviously the direction. If she’s 
carrying a compass, you could give her a bearing or compass 
direction to follow, but what is that bearing, and do we have 
enough information to determine it? 

10.2.3 Angles and azimuths 

At this point, we need to draw more important distinctions regarding coordinate systems and 
conventions. When we need to be more accurate than simply saying “northeast”, compass 
bearings are often given as angles in degrees. Some people prefer to use quadrant bearings, 
where directions are given with respect to deviations from north or south. For example, due 
northeast might be expressed as “north 45 east”, or equivalently N45°E. That can be interpreted 
as 45° east of due north. Similarly, southeast could be S45°E and southwest is S45°W. This can 
sometimes be easier to understand in conversation, but bearings expressed in azimuth are less 
prone to misinterpretation. Azimuth is the compass direction in degrees clockwise from north, 
increasing continuously from 0° to 360°. In this system, north is both 0° and 360°, east is 90°, 
south is 180° and west is 270° (Figure 10.5). 
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Figure 10.5: The azimuth 
coordinate system in a 
compass. Graphic modified 
from D. Orescanin. 

Figure 10.6: Right triangle 
inscribed 
inside the unit circle. 

In the world of mathematics, angles are usually measured 
counterclockwise from the x-axis.3 Not only does this mean that 
the starting point (0°) is in a different place, but it increases in a 
different direction. We will occasionally employ this convention, 
since it is so prevalent in quantitative topics unrelated to 
geography. But for the current problem, we’ll stick with azimuth. 

Returning to the problem of finding the dickcissel nest, how can 
we decide what bearing to give to the field assistant? Since the 
easting and northing distances are similar, we can be fairly 
confident that it will be near 45º (NE), but probably not exactly 
that. But how do you determine the unknown angles in a triangle 
when you only know one angle (the right angle) and all of the side 
lengths? Aha! sine and cosine to the rescue!! 

10.3 Angles, circles and sines 

Before we proceed with finding the azimuth, let’s more formally 
define a few trigonometric quantities. We’ll do this initially in a 
mathematics framework, using an x-y coordinate system with 
angles increasing counterclockwise from the x-axis. Figure 10.6 
shows what we might call the “unit circle”, a circle centered on 
the point (0,0) (also called the “origin”) with a radius of 1 unit. If 
we choose any point on the circle, call it p, it lies a distance of 1 
unit from the origin. But its coordinates are not immediately 
obvious. As with the case of the dickcissel nests, however, we can 
break the path from the origin to p into a component in the x 
direction and a component in the y direction. Connecting each of 
those component paths with the direct path (the radius line), we 

end up with a right triangle , as illustrated in yellow in Figure 10.6. 

Since we have a right triangle, we could use the Pythagorean theorem again to find an unknown 
side length, provided that we know two of the sides. But in this case, we do not know two sides. 

3. In math and physics, angles are also frequently measured in radians rather than degrees. Note also that many computer programs that 
are able to do trigonometric computations assume that your argument (or desired result) will be in radians. Radians make alot of sense 
for geometry because, by definition a radian is the angle traversed when you traverse a length along the perimeter of the circle that is 
equal to the radius of the circle. But for practical use in the field, degrees are easier to work with. So here’s a quick rule of thumb in 
case you need to convert: once around a circle is 360° and 2π radians. 
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Instead we know the angle  between the x-axis and the line connecting the origin with point p. 
We also know that this line, call it H for hypotenuse, has length 1 by definition. The other two 
sides, O and A for opposite and adjacent, are unknown but can be found from the fundamental 
trigonometric functions. 

Trigonometric Ratios 

• The sine of an angle is the ratio of the length of the opposite side (OO) to the length of the hypotenuse 
side (HH). 

• The cosine of an angle is the ratio of the length of the adjacent side (AA) to the length of the 
hypotenuse side (HH). 

• The tangent of an angle is the ratio of the length of the opposite side (OO) to the length of the adjacent 
side (AA). 

The tangent is identical to the ratio of the sine to cosine of an angle, which you can see is 
equivalent to the above definition if you cancel the hypotenuse terms in the ratio of ratios. These 
are loaded definitions, so let’s take a few moments to ponder what we’ve just seen. 

• The trig functions are functions in the formal sense: they convert an input (angle) to a unique output 
(ratio of side lengths). 

• The opposite and adjacent sides are defined relative to the angle that is the argument of the trig 
function. 

• The output of each trig function is a dimensionless quantity that represents the ratio of two side 
lengths. 

• If we know one angle (other than the right angle) and one side length, we can find the two remaining 
side lengths using the trigonometric functions. 

In equations, we don’t spell the full name of these functions, but instead use sin, cos, and tan 
as shorthand. With this shorthand and the definitions above, we can construct a few simple 
equations that can help us find the unknown side lengths O and A in Figure 10.6: 

Since we know  and H on the unit circle, we can rearrange these equations to solve for the 
unknowns. Multiplying both sides of each equation by H, we get: 
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Now the reason we have done this in the unit circle is that H=1, so we essentially end with the 
definitions  and . An important thing to realize, then, is that we can scale 
up to any arbitrary side lengths. Suppose we were interested in not a triangle with hypotenuse 1 
unit, but one with hypotenuse 55 meters. Defining f=55 and isometrically scaling all the triangle 
sides by that factor, we can see for example that: 

Of course the f’s simply lengthen H and O by the same common factor, and could be easily 
canceled. But this illustrates the fact that sine and other trig functions describe dimensionless 
side-length ratios, and that those ratios can scale proportionally without changing the sine, cosine, 
and tangent of the angles! An obvious implication is that if one vertex of a right triangle has the 
same cosine and sine as another triangle, the triangles can be shown to be similar. 

Actually, we already knew that, since by knowing one angle other than the right angle in a right 
triangle we can easily find the third. Recall, then, that one of the criteria for identifying similarity 
in triangles is AAA, or equality of all three angles regardless of side length. For any pair of 
similar right triangles, the only difference in side lengths is a constant scaling factor f. Thus, any 
right triangle can be scaled down to a similar one on the unit circle by dividing all side lengths 
by the length of the hypotenuse, so that H/f = 1! 

In addition to simplifying triangle scaling, the unit circle also allows us to imagine moving point 
pp along the perimeter and observing how the lengths of A and O change accordingly. In fact, the 
software Geogebra is perfectly suited for doing this, and I highly recommend playing around with 
it to boost your intuition. The key thing to notice is that the denominator of the side ratios defined 
as the sine and cosine is the hypotenuse, or 1 on the unit circle. So the lengths of the opposite 
(sine) and adjacent (cosine) sides are the output of those respective functions. For angles between 
0° and 90°, both functions range from 0 to 1. If you allow x and y to take on negative values as 
point p goes down or to the left of the origin, you’ll see that both functions remain between -1 
and 1, inclusive. 

But tangent is a different story. Recall that one definition for the tangent of an angle is O/A. You 
can see that for a small angle , O is quite small and A is pretty close to 1, so the ratio of the 
two will be nearly 0. O and A are equal and  when  is 45°, and as  approaches 90°, 
A approaches 0 and O approaches infinity, so  approaches infinity as well. What do you 
suppose happens as  gets larger than 90°? 
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Figure 10.7: Clinometry measurement of 
tree height. 

10.3.1 Example: tree clinometry 

One of the most common ways to measure the height of 
a tree is with a clinometer. This is a small handheld 
device with a sighting lens and crosshair and one of a 
variety of different mechanisms for measuring the 
inclination angle (either positive or negative) of the 
sight-line from horizontal. Figure 10.7 illustrates the 
hypothetical triangles constructed with vertices at the 
observer’s eye, and the base and crown of the target tree. 
Obtaining the height distribution of merchantable timber 
in our forest parcel in Problem 4.5 could include a set of 
representative height measurements with a clinometer. 

In measuring the height of a tree, two readings are often taken with the clinometer: one to the 
crown  and one to the base or stump . The observation point E is a pre-determined distance 
D from the tree itself. From this information, what is the height of the tree? 

We identify H as the quantity of interest, and observe that . As a first step, we 
must therefore determine  and . We assume the geometry of the problem allows us to 
construct two imaginary right triangles as illustrated and that our clinometer gives us angles 
in degrees from the horizontal. Since we know the horizontal distance to the tree D and have 
measured the angles to the top ( ) and bottom ( ) of the tree, we know the adjacent side length 
(D) and an angle for both triangles. The target unknowns are the opposite sides of each triangle, 
and from sohcahtoa we know that we can use  to find the opposite sides when we know the 
adjacent sides. Thus: 

and 

and since 
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Figure 10.8: Triangulation in telemetry. B 
is a target radio-collared animal and A and 
C are directional antennae. 

Thus, we can use an elementary trigonometric function (tan) and a bit of algebra to produce a 
formula that relates clinometer angle measurements to tree height. 

10.4 Arbitrary triangles 

While some problems may be approached profitably 
with imaginary right triangles, others present triangles 
without right angles. We’ll call these arbitrary or 
general triangles. Triangulation is a typical task in 
which ecologists or wildlife managers might encounter 
arbitrary triangles. When radio-tracking a collared 
animal, for example, one method for determining the 
animal’s location at a given time is by triangulation 
from multiple directional antennae. Figure 10.8 is the 
same as Figure 10.1, except that now we are 
considering the vertices to be radio transmitters 
(animals) and receivers (ecologists). 

Thus far, we only have two tools that are safe to use with triangles that lack a right angle: the rule 
that all the interior angles sum to 180° (for which we may use the shorthand ( ) and the 
general criteria for and implications of similar triangles. These might be of limited use if our goal 
is to determine the distance to or location of a collared animal. But if we know the length of one 
side (say side b in Figure 10.8), and a few angles, we can make some progress. 

10.4.1 Law of sines 

The law of sines is valid for general triangles, including right triangles. If we are careful to define 
our sides and vertices as we have (with vertex angle A opposite side a and so on), we can state 
the law of sines as follows: 

Law of Sines 

Note that this equation is strange in that there are two equals signs. Don’t get worried, this is just 
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a shorthand that allows us to say on one line that each ratio between the sine of an angle and the 
length of its opposite side is equal to the other corresponding sine/side ratios. If we wrote each 
equation with a single ‘=’, there would be three of them and it would simply take more space. 
But in actual implementation you can use any of the implied equalities in Equation 10.16, such 
as: 

The key concept here is that there is a simple and consistent relationship between the sine of each 
angle and the length of its opposite side, and that this applies to all triangles, no matter what 
size or shape. That makes plenty of sense right? If you imagine taking a triangle formed by three 
knotted rubber bands and lengthening one side (without changing the length of the other sides), 
what happens to the angle opposite that stretched side? It grows right? But to accommodate the 
growth of that angle, the other two angles must get smaller. The law of sines is especially helpful 
if you know two sides and one angle (SSA) or two angles and one side (AAS). 

10.4.2 Law of cosines 

Another tool that is useful for general triangles is called the “Law of cosines”. In many ways, 
it provides the same information that you can easily find from other tools we have already 
discussed, so we won’t derive it or discuss it in great detail. But mathematician Paul Lockhart 
makes the case that the law of cosines might be a misleading name, and that the relationship 
might be better described as a modified version of the Pythagorean theorem that is good for all 
general triangles. Check it out: 

As you can see, it is identical to the Pythagorean theorem except that there is a correction 
factor  that is subtracted to account for deviations from a right triangle. As with the 
Pythagorean theorem, the law of cosines gives you the third side length if you know the other 
two, but you also need to know the angle between the known sides (SSA). As such, it’s function 
overlaps that of the law of sines. 

10.5 Triangle tools: A summary 

Trigonometry is a large subdiscipline of mathematics, and can and does fill more than a semester 
in math classes. Our treatment here has focused on the tools that are most commonly encountered 
in practical field settings in the natural sciences. Many additional functions, relationships and 
skills can become important in specific, more technical applications, but most of these can be 
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derived from the basic functions discussed here. These functions and properties are summarized 
in the table that follows. 

 

Rule name Relationship right general use for 

Angle sum X X AA known, want A 

Pythagorean theorem X SS known, want S 

Similarity X X C known, want X (A,S or other) 

sine X AS(O or H) known, want S(H or O) 

cosine X AS(A or H) known, want S(H or A) 

tangent X AS(O or A) known, want S(A or O) 

Law of sines X X AAS or SSA known, want S 

Law of cosines X X SSA known, want S 

Example: shoreline waterfowl habitat (Problem 4.1) 

Some dabbling duck species like Mallards seem to prefer very shallow water. This means that 
small, shallow wetlands can fit the bill, but even the shallow shoreline areas of larger and deeper 
wetlands may be adequate. Shorelines are also the interface between feeding and nesting areas 
for many species, and often support diverse flora and fauna across the ecotone. 

One way we could estimate the extent of shoreline habitat is to find the length of wetland 
perimeters, or outlines. If, as described in the last chapter, we have digitized (or obtained existing 
data for) the outlines of wetlands in our candidate parcels, we should have easting and northing 
coordinates for these outlines. As with polygon area, most GIS software will automatically 
compute the perimeter of any shape. However, it is instructive to see how this follows from our 
earlier discussion of triangle-assisted spatial reasoning. 

Recall that when we were traversing between dickcissel nests, we used an implementation of the 
Pythagorean theorem to find the straight-line distance from the coordinates of both end points. 
We can write this relationship in an x, y coordinate system as follows: 
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where  is the length of the straight-line distance from point 1 (with coordinates x1, y1) and 
point 2. Notice that the result is always a real, non-negative number because the differences 
are squared. If we have a series of n points describing the wetland outlines, the sum of all n 
of the lengths forming a closed polygon approximate the perimeter P of the polygon.4 We can 
generalize this as follows: 

As with the trapezoidal area formula, this can be implemented by hand, in a spreadsheet, or with 
GIS software. 

 

Exercises 

1. Use Figure 10.8 and the right triangles formed by dropping the perpendicular h, to derive the law of 
sines from the trig functions you already know. 

 

2. Explain how you could find the telemetered location of B if you know the locations of A and C and 
their internal angles. 

 

3. What happens if you try to apply the law of sines to a right triangle? 

 

4. What happens if you use the law of cosines on a right triangle? Assume angle C is the right angle. 

 

5. Triangles can be used to measure distant objects, even if we can’t get to them. This can be used to 
estimate the height of an object (e.g., a mountain peak or tree) where we cannot access the base, and 
therefore cannot measure the full horizontal distance that separates us from the object we wish to 

4. How good is this sort of approximation of the perimeter? This is a simple question with a not-so-simple answer. For our purposes 
here, the more points we have, the better – particularly if we’ve got an automated way to do the computations. However, in a more 
philosophical sense this is the crux of the coastline paradox, first popularized by mathematician Benoit Mandelbrot. 
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measure. 

Figure 10.9: Triangle abstraction of the mountain problem. 

The general premise of the remote method is illustrated in Figure 10.9. If we can use a 
clinometer (a device for determining the angle between horizontal and a sight-line to an 
object of interest) to determine the sight-line angles to the object of interest p from two 
different places b1 and b2, and we know the distance between those places l, we can use 
trigonometry and algebra to determine the desired height H. 

Devise a strategy for measuring H from the information gathered at b1 and b2. Derive and 
justify a formula that can be used for this task. 
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Part IV. ALGEBRAIC 
REASONING 
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Heuristic: Express variable 
quantities needed for solving a 
problem as symbolic variables and 
manipulate them according to the 
rules of algebra to yield general 
relationships. 

11. Generalizing Relationships 

We have encountered many instances in this book where solving a problem numerically required 
numbers that we didn’t have. We often don’t know all the numbers needed to solve real problems. 
In some cases, the simplest way to overcome this issue is to estimate or guess a value. However, 
in many other cases, the value of an important quantity isn’t constant in space or time – our lack 
of knowledge is not a reflection of uncertainty in measurement. Instead, there is a systematic 
variation in the real value of a quantity and we need to allow for those changes. Under these 
circumstances we need to treat these quantities as variables that have unknown numerical values. 
Perhaps we have some idea of how large or small the numerical values can get,1 but within these 
limits, the variable can take on any value. 

In this new world of uncertainty, we have the tools of algebra at our disposal. At least in parts 
of the problem-solving process, this can be disorienting as we have to carry symbols rather than 
reducible values through any operations that we find necessary. However as we’ll see shortly, 
performing symbolic manipulations as a means to solving problems can lead to versatile and 
reusable solutions. What we have done prior to now can be called specializing, where we seek 
particular numerical values in every calculation when possible. The alternative, which you’ll 
recognize as a stepping-stone for algebra, is to generalize. 

Writing algebraic relationships can seem to be hocus 
pocus at first. However, the mystique fades a bit when 
we remind ourselves that mathematical relationships are 
little more than formal logical statements. By carefully 
assembling what we know about quantities of interest, 
striving to sustain generality, and following a few tips, 
we can begin to use algebraic reasoning as a powerful 
tool for creativity and sense-making. 

1. For example, if we’ve used ballpark estimates and deliberately chosen high-end estimates of some of the parameters, this could 
provide us with an approximate upper limit on the value of the variable of interest. 



Writing algebraic expressions 

• Identify the relevant variables and constants 
• Introduce descriptive notation for each quantity 
• List what is already known about each variable, using expressions with symbolic notation when 

possible 
• Look for ways to set expressions equal to one another based on what you know; are there two ways to 

define the same quantity using the variables of interest? 
• Guess or infer unknown relationships 
• Write and simplify equated expressions as a symbolic equation 
• Check for dimensional or unit consistency 

When we express and manipulate equations with symbolic variables, we are doing algebra. When 
we state systematic relationships between symbolic variables, we’re using functions. Functions 
can describe derived, hypothetical, or observed relationships, depending upon how we arrive at 
them. 

11.1 Families of Functions 

In the natural and environmental sciences, a few families of functions can be used to describe 
relationships between key variables of interest. We will explore the most prevalent of these kinds 
of functions, examining their algebraic composition and the characteristics of their graphs. In the 
chapters that follow, we will see how functions can be used to describe relationships between 
measured variables and how they can be used to devise mathematical models. 
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Figure 11.1: Various linear functions. 

Linear functions 

The simplest relationship between two variables—let’s 
call them x and y—is perhaps something like y=x. This 
relationship is indeed a linear relationship, stating only that 
y is equal to x without any modification, or that any change 
in the variable x results in an identical change in y. In 
reality, we will rarely encounter any relationships like this 
that are worth describing in an equation. Instead we may 
often find that the variables of interest are related through 
a constant of proportionality, call it m (might as well stick 
with the notation we may have seen elsewhere!). 

In this case, y=mx is still a linear relationship, but now for 
any change in x, we expect a change in y that is m times as 
large as the change in x. That is what this function does for us: it converts any proposed value of 
x into a corresponding y according to the definition of the function. Indeed, the definition of a 
function in mathematics is an operation that takes a value of an explanatory or independent 
variable as input and produces a value for a unique response or dependent variable as output. 

Here’s an example: an elephant’s tusks grow continuously with age, beginning a bit less than a 
year after birth. Although there is likely some variability within the population, this relationship 
allows biologists to estimate elephant age. Thus, a mathematical description of this relationship 
can be written as a linear equation: 

where we are calling tusk length l and age a. Notice that this way of writing the relationship 
implies that we are treating a as an independent variable (that is, we can think of it as sort of a 
cause) and l is the dependent variable (an effect that depends on the cause). Depending on the 
circumstances, these roles could be switched. Indeed, it is easier to measure tusk length than age 
for a given elephant, so we might wish to use measurements of tusks to help determine the age 
distribution in a wild elephant population. 

Also important to remember is that when we are doing science instead of just math, the variables 
usually have units and dimensions, which we discussed previously. If we expect our equation 
to be meaningful, the dimensions on the left- and right-hand sides of the equation need to be 
consistent (i.e. equal). So in the elephant tusk example  is a growth rate, must have 
dimensions of length per time, or [  ] (see how we get that? would that be the same if we 
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swapped our independent and dependent variables?). If we have been measuring length in inches 
and age in years, our value for rr should be in inches per year. 

Great! But as we said above, we might wish instead to know the age as a function of tusk length. 
So we need to rearrange things a bit. Let’s now define m as the number of years of age per 
inch of tusk length, which is just the reciprocal of r. In other words, , which also means 

. Since we’ve just taken a reciprocal here, the dimensions of m are just the reciprocal of 
the dimensions of r, [  ]. 

Now we can re-state our new linear relationship as , or . In this form, we have 
the dependent variable (age) on the left-hand side of the equation and the independent variable 
(tusk length) on the right hand side, as is convention. But at this point, what is implied about 
an elephant’s age if it’s tusk length is zero (l=0)? Regardless of the value of mm, plugging zero 
into this equation yields a=0. Of course, as mentioned above, adult tusks do not begin to develop 
until several months after birth. So our equation is probably not very good at representing reality 
(particularly for young elephants), and is therefore not yet useful. But suppose we were to change 
what we mean by “age” on the left-hand side. It makes sense that what we’re measuring is growth 
from the age when the tusks first appeared, so let’s call that age a0, which is close to 0.5 years. 
So the elephant age that we wish to determine is more than we would have predicted before by 
the an amount corresponding to the age when the tusks first appeared, a0. So our new equation, 
modified to account for this correction, reads: 

In the abstract but precise terms of mathematics, we say that a is a linear function of l with a slope 
of m and offset (or y-intercept) of a0. Although it seems obvious in the context of this example, 
the offset a0 must have dimensions of time for this equation to be meaningful. 
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Figure 11.2: Plot of tusk length l as a function of age a. 

Note that the value of the growth rate, or slope m, can be determined algebraically by solving the 
linear equation above for m: 

which we might recognize as the “rise” of the function,  divided by the “run” . 

In some cases it is unnecessary, but in others we may need to specify something about the 
domain (a set of upper and lower constraints on the values of the independent variable) over 
which a proposed relationship is valid. For example, it doesn’t make sense for an elephant to have 
a negative age any more than it does to have a negative tusk length. There is probably an upper 
limit to tusk length as well, though it is hard to be confident what that might be. To be complete 
but conservative, we may specify that the domain of the function as 0 <  < 160 inches. The 
range for our linear function is the spread of minimum to maximum values of a corresponding 
to the minimum and maximum values in the domain. Note that this last comment applies to 
linear functions (though sometimes the signs are reversed), but for some non-linear functions 
of interest, maximum and minimum values in the range may not correspond to maximum and 
minimum values bounding the domain. We’ll see examples of this later. 

Functional relationships that are approximately linear are very common in the sciences. Indeed, 
a routine procedure in the analysis of multivariate data is linear regression, wherein the 
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Figure 11.3: Schematic illustration of a 
hypothetical linear relationship between 
the cost of fire suppression and the 
number of person hours of suppression 
effort. 

coefficients (slope and intercept) of a linear function that best fits the data are sought. Linear 
functions—or nonlinear ones for that matter, as we’ll see below—can also be postulated 
hypothetically in the construction of mathematical models. 

Example: fire suppression costs (Problem 4.5) 

The issue of how much suppression effort to use is at the 
heart of this problem, so it’s clear that suppression effort 
should be considered a variable. As is routine with 
variable quantities, we should assign a symbol to the 
variable and decide, at least for now, what units it will be 
quantified with. A single symbol is preferable (though 
subscripts are permissible if necessary) to prevent any 
ambiguity. Therefore, let’s choose the symbol E for 
effort, and provisionally assign the units of person-hours. 
A person hour has dimensions of [1 T]. Like acre-feet and 
other similar units, person hours is compound unit that 
we should understand as the number of hours worked per 
person multiplied by the number of people. For example, 
if two people work 8 hours each, that effort represents 16 
person hours. 

Now we need to deal with the other variable that is implied in this part of the problem: cost. First, 
suppose we define C as the symbol we’ll use, and US dollars as the unit of cost. Relating the cost 
of suppression to the effort requires some way of assigning a cost per unit of effort. Recalling 
our choice of units, this cost-per-unit-effort will have units of dollars per person hour, which sure 
sounds like an hourly wage. In fact, that’s exactly what it is! So let’s call it w. We can now state 
the algebraic equivalent of the sentence “suppression cost equals the number of person hours of 
effort times the hourly wage”. In symbols: 

This equation is illustrated in Figure 11.3 as a straight line increasing from left to right. The slope 
of the line, analogous to mm in our abstract concept of the prototypical linear function, is w, and 
the y-intercept is zero. This latter observation simply articulates the (hopefully obvious) notion 
that the cost of zero person hours of labor should be $0. 

Polynomial functions 

A polynomial function is one in which the dependent variable also depends on the independent 
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Figure 10.4: Polynomial functions. 

variable raised to an exponent. Polynomials are among those functions that can have multiple ups 
and downs in the dependent variable over the domain of the function. To refresh your memory, 
let’s write an abstract polynomial equation for starters: 

Here we have a function in which the quantities added together on the right-hand side have 
dependence on increasing powers of x, and the way we’ve written it we imply that the equation 
could go on indefinitely, incorporating ever-growing powers of x as we go. One way to describe 
a polynomial is by its order, which is nothing more than the integer values of the exponents of 
x included. If we take away the “…” from the equation above and just stop the equation after 
kx3, this would be a third-order polynomial, since 3 is the highest exponent of the independent 
variable x. Sometimes you will see the term cubic for third-order polynomials, while the term 
quadratic is used for second-order polynomials. To be complete, we can even pretend that the 
first term on the right-hand side b is really bx0, representing a “zeroth order” term. 

Suppose that we got rid of the l and k terms in the equation 
above, which we could simply do by saying that l=k=0. 
What’s left is just the linear function we had above, and we 
see now that the linear function is really a special case of a 
polynomial function, a “first-order polynomial”. Likewise, if 
b=m=k=0, we’re left with just y=lx2, a second order or 
quadratic polynomial. It is still a second-order polynomial if 
mm and b are nonzero. So you see that writing the equation 
as we did above allows us to imagine a polynomial of any 
order that we choose, and keeping or discarding any terms we 
wish by adjusting the lettered coefficients. 

So how do these polynomial functions differ from linear functions? Take as an example the 
formula for the surface area of a sphere, perhaps representing a raindrop:  A simple 
linear function as described above has a single independent variable and the values of the 
dependent variable depend only on the first power of the independent variable and a constant of 
proportionality. We can write the surface area equation as , and now it looks like we 
only have the first power of r. Great, but now our constant of proportionality contains r, so it is 
not a constant at all but a variable itself. So nonlinear functions are those that cannot be written 
as a relationship between the dependent variable and the first power of the independent variable 
times a constant constant of proportionality. 

Before we waste too much more time talking about polynomials, I need to be clear on one 
thing: When we encounter polynomials in most undergraduate mathematics classes, we are only 
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considering functions where the powers of the independent variable are whole integers. With 
this in mind, it is worth thinking about whether they are really useful for us. What relationships 
depend on integer powers of the independent variable? One area where these polynomials are 
useful in natural science is spatial measurement. you probably remember that the areas of squares 
and circles each depend on the second power of a characteristic length (side or radius). Likewise, 
volumes of spheres and cubes depend on the 3rd power (coincidence?). While we may never 
encounter perfect spheres and cubes in the natural world, we may find occasion to idealize the 
size and shape of something (like a sand grain, egg or raindrop as a sphere, a tree root or snake 
as a cylinder, etc.) in a simple model so that we can better understand something about it. 

Likewise, some physical phenomena can be described with equations that depend on a whole 
number power (often 2) of time or position. In more complicated problems in the real world, it 
can also be advantageous to approximate an unruly function using a so-called series expansion 
of the function, which often amounts to a polynomial. 

These examples notwithstanding, true polynomial functions do not arise as commonly in the 
natural sciences as linear and some other non-linear functions do.2 An important exception, which 
we’ll grapple with quite a bit later this term, is the so-called logistic or density-dependent growth 
function. In ecology, this function describes the theoretical growth of populations constrained by 
limited space or resources. We can write the basic relationship as: 

where the dependent variable G is the population growth rate [  ], the independent variable 
N is the number of individuals, r is a growth constant and K is the carrying capacity. This function 
is quadratic because N2 is the highest power term. 

Power functions 

In addition to linear and polynomial functions, it is relatively common to encounter at least 
four other classes of functions in the natural sciences. Power functions arise commonly in 
ecology and geography, especially in scaling properties of organisms and habitats in space. 
Power functions may include any function in which the independent variable is raised to an 
arbitrary exponent, of the form: 

2. But as we’ll see below, there are certainly relationships in the natural sciences where the relationships between variables are best 
described with functions that have non-integer exponents. 
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The power function differs from a polynomial in that the exponent on the independent variable 
is not constrained to be an integer. Figure 11.5 compares the appearance of power functions with 
exponents greater than and smaller than 1. 

Figure 11.5: Examples of power functions. 

In the biological subdiscipline of island biogeography, a relationship between island area Ai and 
species diversity S has often been described with a power law: 

where c is a fitting parameter and z is an exponent that is usually less than 1. 

Another example of a power function appears in the description of what hydrologists call a 
stream’s “hydraulic geometry”, which describes how the width, depth and average velocity of a 
river change in time and space.3 Channel width w, for example, typically increases downstream 
in a way that can be described as , where Q, the water discharge, is our independent 

3. One of the scientists who developed and popularized this concept was Luna Leopold (1915-2006), the second son of Aldo Leopold. 
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variable and a and b are empirical constants. Channel depth and velocity are described with 
analogous relationships. 

Exponential functions 

Exponential functions are different from power functions in that the independent variable appears 
as part of the exponent, rather than the base. A generic exponential function might look 
something like this: 

The base may often be e, which is an important (but irrational like ) number close to 2.718, but 
needn’t be. 

Figure 11.6: Examples of simple exponential functions. 

Exponential functions describe ever-increasing or ever-decreasing change, and appear in contexts 
like the decay of radioactive substances or unrestrained growth of populations. The radioactive 
decay equation might look a bit like this: 

A similar form describes the extinction (attenuation) of sunlight with depth in a water column or 
forest canopy according to the Beer-Lambert law: 
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where d is the independent variable. In addition to natural growth and decay phenomena, 
exponential functions appear extensively in economic analysis. 

A somewhat more complicated form of exponential function is sometimes used to describe 
growth of individuals (fish, trees, etc.) over time. The Von Bertalanffy growth function (VBGF) 
can be written: 

In general, when the exponential argument is a negative number, these functions describe decay 
or asymptotic approach toward a limiting value. However, when the argument is positive, 
exponential functions describe explosive growth. 

Example: fire suppression benefits (Problem 4.5) 

How does a person hour of suppression effort affect the net change in timber value should fire 
occur? That question hasn’t been clearly answered in most settings, so there is clearly room 
for research on this question. But to make some headway on our problem, we may propose a 
relationship that makes at least some qualitative sense. If no suppression takes place, there is a 
risk that all the timber value is lost in the event of a fire, and that would be bad. We can also 
imagine that most pre-fire fuel treatments and during-fire suppression activities could reduce 
some of those losses, right? For example, periodic prescribed burning could reduce low fuels 
(forest litter, dead wood, shrubs, small trees) with only minimal of effort and little or no loss of 
valuable timber, resulting in perhaps a very large reduction in risk of loss to the merchantable 
timber. Manual thinning of the stand – again perhaps focused on the young trees and shrubs 
that have little timber value and introduce the greatest risk of intensifying fire—is another pre-
suppression option with perhaps more effort per increment of risk reduction. At some point, 
however, we might imagine that additional effort has diminishing returns. While it could in 
theory be helpful to prune the lowest branches of dominant canopy trees to further reduce risk of 
intensifying fire, this would be even more costly per increment of risk reduction. 

What we have described—a pattern of diminishing returns for increasing effort—could be 
reasonably well described with an exponential decay function, at least until we have better 
information. Suppose we posit then that the benefits of fire suppression effort, measured in terms 
of the net value change NVC, decrease as: . Here, NV0 is the expected net 
value loss from a fire with no pre-fire treatments or active fire suppression efforts, and k is 
some constant. If NV0 has units of US dollars, the exponential term that it multiplies must have 
no dimensions for the equation to be homogeneous. We know from above that E has units of 
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person hours [1 T], so k needs to have the inverse of those units to achieve homogeneity. We can 
interpret this constant to be a scale that defines how much returns diminish per person hour of 
suppression effort. 

Logarithmic functions 

Closely related to exponential functions are logarithmic functions. The natural logarithm, 
sometimes written ln\textrm{ln}, is the inverse function of e, meaning that . The 
base-10 logarithm, written log10 or simply log, behaves in a similar way but for exponential 
functions with base 10. So . Both types of logs, and logarithms with any other 
base, are functions that increase rapidly for low values of the independent variable, but increase 
ever slower thereafter. We will find logarithms especially useful in transforming data that we 
suspect might be a power or exponential function, and must therefore have a basic command 
of the algebraic rules that apply to them. Outside of transformations and inverting exponentials, 
however, we won’t encounter logarithms extensively. 

 

Exercises 

1. Given the description of species-area relationships given in Section on Power functions and the notion 
that the exponent z in Equation 11.8 is less than 1, describe what this means conceptually. How does 
the species diversity change with island area, and how does an increment of area change affect small 
islands differently than larger islands? 

 

2. Using only symbolic variables and constants, write an expression that defines that time necessary for 
95% of a radioactive isotope to decay. Hint: interpret this to mean that we seek an expression for t 
when N/N0 = 0.05. 

 

3. Review the description of Problem 4.2. Write a hypothetical, but well-justified, algebraic equation 
relating the volume of herbicide needed to eliminate woody shrubs, and the basal area per unit land 
area of those shrubs. Consider all quantities to be variables, so use symbols rather than numbers for 
this. 

 

4. Review the description of Problem 4.1. Using reasonable geometric idealizations (not computer 
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algorithms), can you write a simple algebraic equation that relates the length of a wetland’s perimeter 
habitat to the wetland’s area? 
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Figure 12.1: Correlation between the 
maximum lifespan and gestation period 
of various mammals, r = 0.73. 

Figure 12.2: Correlation between the 
number of litters per year and the litter 
size of various mammals, r = 0.36. 

12. Relationships Between Variables 

In the previous chapter, our discussion of variables and 
functions largely assumed that relationships were known 
or developed independent of any measurement or data. 
However, functional relationships between variables can 
also be derived from data. Here, we explore two 
concepts that help us understand the strength and nature 
of systematic relationships between variables. 

12.1 Correlation 

In common parlance, the word correlation suggests that 
two events or observations are linked with one another. 
In the analysis of data, the definition is much the same, 
but we can even be more specific about the manner in 
which events or observations are linked. The most 
straight-forward measure of correlation is the linear 
correlation coefficient, which is usually written r (and is, 
indeed, related to the r2 that we cite in assessing the fit 
of a regression equation). The value of r may range from 
-1 to 1, and the closer it is to the ends of this range (i.e., 

), the stronger the correlation. We may say that 
two variables are positively correlated if r is close to +1, 
and negatively correlated if r is close to -1. Poorly 
correlated or uncorrelated variables will have r closer to 
0. 

To the right are two plots comparing life-history and 
reproductive traits of various mammals. In the first one, 
Figure 12.1, the arrangement of points in a band from 
lower left to upper right on the graph is relatively strong, 
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corresponding to a relatively high r of 0.73. In contrast, the correlation between litter number per 
year and litter size in Figure 12.2 is (surprisingly?) weak, producing more of a shotgun pattern 
and r a modest 0.36. 

In the abstract, the mathematical formula for the correlation between two variables, x and y, can 
be written: 

where the subscript i corresponds to the ith observation, the overbar indicates mean values, and 
 and  are standard deviations. The specifics of this formula are not of great interest to 

us. The important thing to understand is that when positive changes in one variable are clearly 
linked with positive changes in a second variable, this indicates a good, positive correlation, r 
> 0. The same is true if negative changes in one variable correspond to negative changes in the 
other. However, positive changes in one variable corresponding to negative changes in another 
indicate negative correlation, r < 0. It is also important to note that this is a good measure of 
correlation only for linear relationships, and even if two variables are closely interdependent, if 
their functional dependence is not linear, the r value will not be particularly helpful. 

Nevertheless, correlation can still help us identify key relationships when we first encounter a 
dataset. Consider the changes in weather variables measured at a meteorological station as a 
function of time. Weather data can be very overwhelming due to the number of variables and the 
sheer volume of data. One handy way to isolate some of the strongest interdependencies among 
variables of interest is to look for correlations. A correlation matrix plot is essentially a grid of 
plots where each variable is plotted against all the other variables in a square array of panels. 
Relationships with strong positive or negative correlations immediately jump out, suggesting 
which relationships we might wish to investigate further. For example, let’s look at a month-long 
weather dataset downloaded from www.wunderground.com (Figure 12.3). 
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Figure 12.3: Correlation plots for weather data from Ames, IA, April 2014. 

There is a lot of information in these plots, so let’s look at them piece by piece. Notice that 
the panels on the diagonal from upper left to lower right would be a variable plotted against 
itself (r = 1), and they are therefore replaced by a density distribution for each variable. Also 
notice that since the upper right half would be a mirror image of the lower left, there is just 
a number in each of those panels rather than a plot. In any case, here we have just selected 
four variables of potential interest, and you can immediately see that there is a strong positive 
correlation between mean temperature and mean dew point, with r = 0.962. The strength of the 
correlations from these plots (the six in the lower left) is indicated by the correlation coefficient 
in the (mirrored) corresponding panel in the upper right. There are also relatively strong negative 
correlations between temperature and pressure, and dew point and pressure. In contrast, we see 
weak correlations between humidity and temperature and humidity and pressure, as indicated by 
the low r values. 

The important thing to remember from all of this is what the correlation coefficient can tell 
us: a high, positive correlation between two variables indicates that when one goes up, so does 
the other. A high negative correlation indicates that as one goes up, the other goes down. Low 
correlation coefficients indicate that a consistent linear relationship cannot be established. If 
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Figure 12.4: Schematic 
representation of the quantities 
involved in finding best-fit 
functions by least-squares 
regression. 

Table 12.1 

cumulative catch catch/effort 

86 2.46 

137 1.76 

169 1.14 

178 0.29 

correlation is established, however, this analysis doesn’t yet provide details about the functional 
relationships present. 

12.2 Regression 

Regression is the process of fitting a mathematical function to 
a set of data points using some criterion for judging “goodness-
of-fit”. The resulting “best-fit” function may then be used to 
predict unknown values, to forecast future values, or to 
evaluate the dependence of one variable upon another. 
Goodness-of-fit can be determined by one of many statistical 
techniques that determine how well a function describes the 
variations in the data used to generate it. The most common 
criterion for goodness-of-fit is called “least-squares”, so you 
might sometimes see the whole process called least-squares 
regression. Least squares means what it sounds like, sort of. 
When a function (let’s write it y=f(x)) is tested for goodness-
of-fit, the difference between the y-values predicted by the test 
function, each of which we can call , at a given xi, and the 
yi-values in the data set are found, squared, and added together for the entire dataset. The best-fit 
line is then the one for which the sum of the squares of the residuals are minimized (least). This 
is very commonly done for linear equations, but we can use the same techniques for nonlinear 
equations as well. 

Some data sets that we may encounter just don’t appear to 
have linear trends though. In these cases, we can try 
transforming one or both variables1 or we can attempt to 
perform nonlinear regression. As with many of the 
statistical and spatial methods discussed in this book, the 
heavy lifting for most of these options can—and probably 
should—be done with computer software. However, we 
should still be aware of what is happening in our data. 

1. Some common data transformations include logarithmic, exponential, and reciprocal. In these transformations, a modified variable is 
created by performing the selected operation on the original variable values. 
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Figure 12.5: Catch per unit effort as a 
function of total catch for age-0 brook 
trout, from Table 12.1. 

Example: brook trout electrofishing (Problem 4.7) 

Having isolated the age-0 brook trout from each 
electrofishing traverse and computed the catch per unit 
effort  of that subset, we may now employ the Leslie 
method to estimate the total population of age-0 brook 
trout in the study reach. In this method, we create a 
dependent variable  corresponding to the cumulative 
number of fish removed in each pass, the “cumulative 
catch”. We then plot and perform a linear regression of the 
catch per unit effort as a function of cumulative catch, as 
illustrated in Figure 12.5. 

By the Leslie method if we extrapolate the best-fit line to a 
vertical-axis value , the cumulative catch value 
where that occurs is the estimated total population. This 
value can be estimated from the graph itself, but the result 
is better if we solve the for the value directly from the best-fit line. The equation of the best-fit 
line for this regression is: 

Note that the slope of this line (-0.0208), consistent with intuition, is a negative number. The y-
intercept 4.38 corresponds to the hypothetical initial catch per unit effort at the very start of the 
first traverse. Rearranging and solving for  gives 

and we find that the estimated total population is 210. 
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Exercises 

1. Discuss in a paragraph the benefits and drawbacks of deciding, prior to any data analysis, what type 
of function to seek best-fit parameters for. 

 

2. In Section 12.2.1, we skipped several steps in the algebraic manipulation that allowed solution for 

. Carry out all the intermediate steps, showing your work completely, and determine whether 
the solution cited above is acceptable. 

 

3. Find a dataset that interests you within a public ecological or natural resource data repository2, 
identify variables within a dataset that may be related, and perform a regression to see the nature of 
that relationship. 

2. For example, browse the Global Registry of Biodiversity Repositories. 
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Heuristic: 

Mathematical models are only as 
useful as the conceptual models on 
which they are based. 

13. Modeling 

What is a model? 

A model is a representation of reality that allows us to understand something better. There are 
many types of models, including conceptual, mathematical, and physical models. A physical 
model is a physical object or set of objects intended to represent something else that is too 
large, small, complex or otherwise inaccessible for direct investigation. A conceptual model 
is a collection of hypothesized relationships between different objects or variables, and is 
usually described in narrative. From an early age, we learn how to construct both physical and 
conceptual models. Children create conceptual models to help them understand cause and effect 
relationships that lead to either desirable or unwanted outcomes (‘if I jump down one or two 
steps, it’s fun, but if I jump down three or more steps it hurts my legs: jumping farther hurts 
more’). When my grade-school son builds a spaceship from Lego, he is creating a physical model 
of a spaceship he has seen in a movie or book. These are not particularly sophisticated models, 
but they are nevertheless ways of representing some aspect of reality (or imagined reality). 

As with Lego, mathematical models can serve mostly a desire for creative play. Like Lego 
models, it is perfectly possible to create a mathematical model that represents reality poorly, and 
is therefore not very useful. 

Perhaps we claim to have created a model of a car, but if 
we’ve only stacked rectangular bricks together and 
failed to add wheels, it is not a particularly good or 
useful model of a car. Thus, model construction and use 
should be done with the broader problem context in 
mind. 

In this book, we are interested in mathematical and conceptual models and the connections 
between them. Ultimately, our goal isn’t necessarily to become mathematical modelers, but 
rather to be able to construct, use, and understand models that can assist with problem-solving. 
Indeed, many mathematical models originate from a desire to quantify the relationships in a 
conceptual model devised to address a problem. Several possible approaches to quantification 



lead to a handful of varieties of mathematical models. We’ll focus our discussion on three distinct 
but related types of mathematical models that differ in their origins and implementation. The first 
two are grounded in theory, while the third often arises from statistical data analysis. 

• Analytical models are usually developed from theory based on fundamental physical, chemical or 
biological principles. A hypothesis that a tree’s height should scale with it’s trunk diameter raised to 
the 2/3 power in order to retain structural integrity is such a model. These models are often the most 
general and abstract, and can sometimes be solved with paper and pencil. However, they can become 
hopelessly complex and unsolvable when one tries to incorporate realistic details and context. The 
idealizations necessary to make an analytical model solvable can also sometimes limit its utility. 

• Numerical models may be created and motivated in the same manner as analytical models, but 
employ techniques for mathematical approximation that permit relaxation of analytical idealizations 
and introduction of detail without making the equations too difficult to solve. Numerical models can 
be solved by hand for very small systems, but are more appropriately implemented in computer 
programs. 

• Empirical models may have analytical or numerical components, but contain parameters that must 
be quantified by experiment or systematic observation. Data must be incorporated and usually 
analyzed statistically in order to define parameter values. In some cases, regression is used to 
constrain the functional relationships between variables or to identify the value of coefficients. Thus, 
a fully empirical model is data-driven or data-calibrated. 

We have already seen or worked with a few examples of models. The logistic population growth 
model that we discussed briefly in Chapter 11 is a theoretical model that can be implemented 
either in numerical or analytical form. Even that model, however, has empirical components, 
since it’s use in practical problem-solving requires some observational constraints on r and K. 
When we solved for total brook trout population in Chapter 12, we employed an empirical model 
known as the Leslie method, which is based on a conceptual model of the change in catch 
probability under declining population. 

Example: The Universal Soil Loss Equation (USLE) 

The widely-used Universal Soil Loss Equation (USLE) is an example of an empirical model. The 
master equation for USLE is: 

where A is the soil loss (usually in tons/acre/year), R is a rainfall-erosivity factor, K is a soil 
erodibility factor, L and S are the slope length and angle factors, C is a ground-cover factor and 
P is a parameter that accounts for soil conservation practices or structures. 
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The factors in USLE are quantities whose values cannot be measured directly. Instead, the 
numerical values are each derived from a combination of carefully-designed field experiments 
where all but one factor is held constant. The factor values are then derived from measured 
differences in soil loss. 

The great value of the USLE and it’s kin is that it is sufficiently easy to use that farmers with 
little formal training in math or computing can easily get satisfactory results. Most factor values 
can either be looked up in tables or measured on the ground or from maps. 

The ease of use comes at a cost, however. Because factor values are derived from experiments, 
they are strictly valid only within the range of conditions considered within the experiments. In 
other words, if applied in settings where – for example – rainfall intensity is twice as large as the 
largest observed in experiments, the reliability of results is uncertain. Fully empirical models can 
therefore sometimes be unreliable in conditions outside the range of the conditions under which 
factor values were determined. 

Example: probability of deer-automobile encounters (Problem 4.3) 

As we have already seen, simple theoretical models can sometimes be sufficient to explore a 
range of system behaviors, even when functional relationships are uncertain. These models will 
inevitably be limited in power by the simplifying assumptions or idealizations used, but when the 
science or management problem permit a solution with substantial uncertainty, this approach is 
still warranted. 

Let’s assume that deer in our county are randomly distributed in space, and that they have no 
particular reason to either avoid or seek out roads. Call the total area of the county  and the 
proportion of the area occupied by roads f, so that the area of roads . Let’s assume 
that there are  deer in the county. It follows that – if the deer are randomly distributed – there 
will be approximately  deer on the road at any moment. What is that number according 
to the numbers we produced earlier for Story County, IA? The value of f was estimated to be 
approximately 0.0076, so if there are say 1000 deer in the county, we should expect either 7 or 
8 of them on the road at any given time. That seems reasonable, but that isn’t what we’re after. 
We’d like to know about how likely collisions are between deer and automobiles. So we need 
to work in something about the number and distance of car trips through the road system, right? 
This is left as an exercise for the student, as there are many possible ways to approach this. 

Dealing with higher mathematics 

Many powerful mathematical models have been devised to explore and describe phenomena in 
nature. Some of the most powerful are those that allow predictions of unobserved or future events 
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or patterns. These can directly inform management decisions provided that managers trust and 
understand their results. Unfortunately, many of these powerful models employ mathematical 
concepts and methods that are beyond the typical undergraduate training in math. Does that 
mean that most people are doomed to never understand or use these models? Absolutely not! 
There isn’t any inherent reason that students need to take calculus, linear algebra, or differential 
equations courses before they can comprehend the gist of a model constructed with those skills. 
It certainly helps to have at least a conceptual grasp of some key concepts in calculus, but that 
doesn’t translate to a prerequisite. 

Example: Prairie dog plague (Problem 4.4) 

Since this problem deals with hypothetical future events, it may not be possible to glean 
the answer directly from past work or from observation. Instead, we can construct a simple 
model of the prairie dog community with random, probabilistic interactions among well-mixed 
individuals. 

A common way to model disease transmission is with a compartment model often called 
SIR. We consider individuals in a population to be in one of three (or four) states: Susceptible 
(S), Infected (I), and Removed (R) or Recovered. Individuals move from compartment S to 
compartment I by disease transmission. Infected individuals in compartment I then either recover 
and move to compartment R, or are removed from the population by death or isolation. These 
transfers between compartments are often described with a system of differential equations: 

These differential equations are not easily solved in most cases, but we can use them as a basis 
for a numerical simulation of disease dynamics if we are able to estimate the parameters  and 
. A numerical representation of the first equation might look something like this, for example: 

This says that in a given time increment, susceptible individuals are moved from the S 
compartment to the I (infected) compartment at a rate that is proportional to the product of the 
numbers of individuals in each compartment and the transmission rate constant . You can see 
in the first and second equations above that when a number of individuals infected according to 
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Figure 13.1: Plot of some 
hypothetical measurements of 
animal mass and volume. 

the  term in lost from the S compartment (because it is negative), it is gained (positive) in 
the I compartment. All individuals are accounted for in moving into or out of the I compartment. 
Similarly, individuals move from the I compartment to the R compartment at a rate governed by 
the rate constant . Selection of these rate constants to a large extent governs the behavior of 
the model, and thus the predicted fate of the prairie dog colony. But implementing management 
options informed by positive model outputs is where the biggest challenge arises. 

Power-Law Scaling 

Consider the seemingly innocuous question: are larger animals heavier than smaller animals? 

You: Hmmm, well, yeah I think so?! An adult bear weights more than a snowshoe hare, 
for instance. 

OK, great, but how would we know if this is true more generally? 
And what exactly do we mean by larger? Does that mean taller? 
Larger volume? This brings up a few issues that become important 
when we’re talking about real quantities rather than abstract 
variables. Unambiguously defining quantities can be an important 
first step in communicating quantitative information. In the next 
section we’ll be specific about what information is required to fully 
define a quantity. For now let’s agree that we’re satisfied with 
relating the mass of an animal to its volume. Do animals that take 
up more space (i.e., have greater volume) also weigh more? Maybe 
we can say it another way: is the weight or mass of an animal 
proportional to its body size? We could write this in symbols: 

The symbol ‘ ’ between M (body mass) and V (volume) means “proportional to”. So this isn’t 
an equation yet because we’re not sure anything is equal. And of course it’s nonsense that an 
animal’s weight is equal to its volume. There must be some other parameter that transforms an 
animal’s volume into a mass. Let’s call it cc, and try it out in an equation: 

But what is c? As we said above, we’d prefer to have some meaning for the symbols we throw 
around in equations. Let’s use one of our old algebraic tools for manipulating equations and 
“solve the equation for c”. By that we mean get cc onto one side of the equation all by itself. To 
get there, we just need to divide both sides of the equation by V, yielding: 
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Now recall that the definition of density is mass per unit volume. That’s exactly what we have 
on the left-hand side of the equation! So our equation now says that c, the parameter we used to 
transform volume into mass, is the same as density! So for an individual animal, the parameter 
that relates mass to volume is density. As we have done previously, let’s assume that most 
animals have a density close to that of water so this proportionality parameter c doesn’t vary 
significantly among species. So to the extent that it is correct to say that most animal’s body 
density is close to that of water, we can argue that larger animals do indeed weigh more, in 
general. 

This is probably not a very profound revelation to you.1 But with only a few more small leaps in 
logic, we can get somewhere considerably more interesting. For more than a century, biologists 
have been intrigued by a remarkable relationship between the basal metabolic rate and body mass 
for animals of a wide range of sizes and shapes. Amazingly, if one assembles a large set of data 
and plots it on a graph with a logarithmic scale, mice, humans and elephants and most of the rest 
fall along a straight line! An equation that describes this relationship and the line on the graph 
looks like this: 

where B is the basal metabolic rate, M is body mass as before, and  and b are constants 
(we’ll see what they mean later!). This equation is yet another power law or power function, 
and equations with this form pop up surprisingly often in ecology once you start looking. At this 
stage, some important points should be made: 

• The argument that there should be a proportionality between body mass and metabolic rate was 
originally conceived theoretically on the basis that energy given off by an animal to its surroundings 
might depend mostly on the animal’s surface area, while its mass scales with volume. 

• Measurements by many researchers over more than a century have been compared against this 
theoretical prediction, with varying degrees of success. In most cases however, the power-law 
relationship holds. 

• By comparing theoretical predictions with real data, one can discover truly novel and interesting 
things about physiological similarities or differences between different organisms – insights we 
might not have ever developed without the quantitative analyses. 

1. An entertaining and well-composed article on some not-so-obvious consequences of size differences in animals is On Being the Right 
Size, byt J.B.S. Haldane, published in Harper’s Magazine, March 1926. 
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Figure 14.1: The typical 
ever-changing growth and 
decay of the exponential 
function. 

14. Models of Growth and Decay 

Some of the most well-known applications of quantitative analysis in the life sciences relate to 
describing changes in processes or ecosystem properties with time. Among the most important 
examples is population change, where the number of individuals N in a population is expressed as 
a function of the independent variable : . In this chapter we will explore two types of 
exponential functions and a polynomial function that form the basis for describing and predicting 
population change and a lot more. 

Exponential functions & population models 

An exponential function is one in which the independent variable 
appears in the exponent, or power, of some other quantity. The 
equation  is an example of a simple exponential function if 
x is the independent variable and y is the dependent variable. In 
this case, the constant a can be called the base, since it is the 
quantity that is raised to a power. From our high school math 
classes, we learned about exponential and logarithmic (the inverse 
of exponential) functions mostly with bases of 10 and e, where e is 
Euler’s number ( ) and is sometimes written 
exp(something). But we can have an exponential function with 
any arbitrary base. 

Exponential functions arise frequently in economics, physics, and 
in some contexts in ecology. Imagine, for example, a population of 
marbled murrelets in a coastal bay in the Pacific Northwest.1 At some time, suppose their 
population was 100 individuals. With time, this can change as individuals die or reproduce. If we 

1. Why murrelets you might ask? As you’ll see shortly, it is convenient to begin with “simple” populations, where the causes of 
population changes estimated from visual surveys are limited. This problem is borrows loosely from example 1.35 in Matthiopoulos, 
J., 2011, How to be a Quantitative Ecologist, John Wiley & Sons. 
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assume no murrelets emigrate or immigrate (are added to or subtracted from the population), 
changes in population with time are controlled only by birth and death rates, and we can say the 
population N after one year is: 

In this equation, we take  to be a constant, initial population. The birth and death rates may 
scale with the population, such that they can be represented like this: 

where bb and dd are birth and death rates per individual. So, for example, if the birth rate is 
approximately 0.15 individuals per murrelet per year,2 and death rate is 0.05 individuals per 
murrelet per year, we can write our equation for population as: 

If we simplify the right-hand side of this, we have N after one year as a simple function of : 

If you plug in 100 for N0, this gives us an unsurprising result that population is 110 murrelets. 
This makes sense, since we get 0.15 × 100=15 births and 0.05 × 100=5 deaths during that year. 

Now if we project into future years (where t is the number of years after our initial measurement 
of population N0) with the same relationship, we’ll see that after another year of births and deaths, 
we’ll get: 

where the quantity in parentheses is the population after one year, now incremented by another 
series of births and deaths. We can rearrange that equation slightly to yield: 

After another year, we’ll get: 

2. Note that this birth rate is given per individual. Obviously males cannot give birth to offspring, so a better way to express fertility or 
fecundity is in terms of birth rates per female; however the per individual or per capita birth rate is easier to work with. 
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And by now you probably see the pattern. If t is the number of years after an initial population 
census N0, our projection of population is: 

Interpreted as N as a function of t, this is an exponential function with a base of 1.1 and a 
constant N0. Note that a very similar function could describe compounding interest on a loan, 
savings account or credit card balance, if the principal (the amount saved or borrowed) remains 
unchanged over time. 

We could have written our equation above a bit differently. Instead of keeping a constant 
reference to N0, we could have said that population next year depends only on the population this 
year and the birth and death rates this year. This alteration would give us: 

where  can be defined as the population’s intrinsic growth rate. There is no 
difference in the result of this equation if we apply the same assumptions and constraints as we 
did in the first version, but this form of the equation is a bit more versatile. It will also become 
useful to us in a few days. We can call it a discrete difference equation. 

Before we move on, notice a few things about our population model. First, population is 
unrestrained. The only factors influencing the growth rate are birth and death rate, and these are 
considered constants. In reality, these might not be constant as individuals compete for limited 
resources. Alterations to this model to account for this fact will be introduced next time. Also, 
notice that the intrinsic growth rate r is positive because we have said that the birth rate is 
higher than the death rate. It is, of course, possible for the reverse to be true: death rate could be 
larger than the birth rate, and the resulting r would be negative. As you can see from the above 
equations, a negative r would result in an exponential decrease in population with time. 

When r = 0, we may say that the growth rate is zero and births balance deaths. The birth rate that 
balances death rate is sometimes called “replacement”, since it replaces each death with a birth. 

More exponentials 

One place where exponential functions appear in the natural sciences is in animal physiology, 
particularly where processes are regulated by temperature. The “surface area” theory for 
metabolic scaling discussed above suggests that basal metabolic rate scales allometrically with 
the mass of the animal. As we hinted at above, this hypothesis stems from the postulate that 
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metabolic rate scales with the surface area (through which heat can be lost), which is in turn a 
function of [L2], where [L] is a characteristic length of the animal. Mass, however, scales with the 
volume of the animal, which is a function of [L3]. If we combine the two relationships to express 
metabolic rate as a function of mass, we get the allometric relationship: 

where B is metabolic rate, M is body mass, and b is the scaling exponent, which is equal to 2/3 
according to the surface area theory. We briefly acknowledged that several studies in the 20th 
century suggest that the 2/3-power scaling is not correct, and that a 3/4-power scaling might be 
more appropriate. Nevertheless, the general form of the relationship is reasonable. To transform 
this proportionality into an equation, we could introduce a constant B0, so that we have 

If we interpret B as the dependent variable and M as the independent variable, this is clearly a 
power function because M is the base. Contrast this type of equation with the population equation 
above, where the independent variable t was the exponent. 

The simple power-law equation for metabolic rate has some simple applications for which it is 
useful, but it fails to describe many important phenomena that are seen by animal physiologists. 
One is the fact that metabolic rate is also very sensitive to temperature. A modification to the 
simple power law was proposed not too long ago by Gillooly et al.3 The modification supposes 
that metabolic rate depends on the kinetics of biochemical reactions on a cellular scale, which 
are in turn temperature dependent. In chemistry, the temperature dependence of reactions is often 
expressed as an exponential function of temperature through the Arrhenius relationship: 

where R is a reaction rate constant and E/k is an energy-related constant for a given reaction, 
and T is temperature. While this looks a bit ugly, it is an incredibly important relationship for 
chemistry, physics, and now biology, because it does a surprisingly good job of describing how 
temperature affects physical and chemical processes. 

Let’s look for a moment at the general form of this equation by imagining a similar function 

3. Gillooly, James F., et al. “Effects of size and temperature on metabolic rate.” Science 293.5538 (2001): 2248-2251. 
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where we consider temperature T to be the independent variable. As you can see, as temperature 
increases, the exponent becomes smaller and approaches zero. Since  for all x, this 
function approaches 1 as temperature increases, but becomes very small for small T. Of course, 
we cannot compute 1/T for T=0, and for that reason the Arrhenius equation is written for T in 
Kelvin rather than Celsius. 

In any case, a much improved relationship for the basal metabolic rate of animals that includes 
both a dependence on body mass and temperature can be written: 

This is a more complex function because it contains two independent variables (mass and 
temperature), but can be visualized by treating one of them as a constant while the other varies. 
If we imagine how metabolic rate changes for a single ectothermic organism of a given mass as 
body temperature changes, it might have a pattern that looks similar to the plot above, but that 
approaches a value of B0 with increasing temperature.4 

Adding complexity 

Our first population growth model was a simple exponential one. We assumed unrestrained 
growth with a constant per-capita (per individual) rate parameter , where b and d are 
per capita birth and death rates. Our year-to-year prediction of population N with this growth 
model is 

Given an initial population N0, the population after t years was 

While we arrived at this result with just some reason and algebra, a more general solution can be 
found using calculus. We won’t worry too much with how this solution is obtained, nor will you 
be expected to reproduce it, but it is always nice to see how more advanced topics can help us 
with the problem at hand. So here is a quick summary of how the calculus version works: 

If we re-write our first incremental population change equation above 

4. If you’re interested in more on this topic, revisit Martinez del Rio & Karasov(2010) written for the Nature Education Project, and the 
references therein, or check out the summary from Brown (2001) that examined this function. 
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Notice that the left-hand side is now just the population change over one year. One of the 
strategies of calculus that allows elegant solution of complex problems is to imagine “smooth” 
changes, where the increment over which those changes are measured in vanishingly small. 
While this is obviously an oversimplification of population dynamics (i.e., many animals have 
discrete breeding seasons so that births are clustered during a relatively small period of time, and 
no births occur during the remainder of the year), but in many cases we don’t need to worry too 
much about this. We express these vanishingly-small change increments with derivatives, where 
the derivative of N with respect to t can be translated as the instantaneous rate of population 
change as a function of time, i.e., the population growth rate. With this strategy, the above 
equation is written: 

Applying some second semester calculus, we’d come up with the following solution, which 
works at all t: 

Compare this equation with the one above, , which we developed with discrete 
differences. Graph both functions and see if they match reasonably well. They should be close, 
but not exactly the same. The discrete model is, in fact, subtly different, and is often called the 
geometric model for population growth, while the exponential version is the classical Malthusian 
model. 

Calculus aside, the above unrestrained population models are useful as a starting point, but they 
neglect any mechanisms of slowing population growth. In most settings, resource limitation 
slows or reverses growth rates as population increases. If you’re not familiar with the story of 
St. Matthews Island reindeer, it is an interesting illustration of this effect taken to an extreme. 

A fairly simple way to account for resource limitation, and to thereby restrain population growth 
according to some carrying capacity K, is to include an “interaction” term for our growth rate. 
Using the same notation as above, an increment of growth in this new population model is: 

14. MODELS OF GROWTH AND DECAY  |  136

https://www.gi.alaska.edu/alaska-science-forum/when-reindeer-paradise-turned-purgatory-0


This looks a bit clunky, but we can clean it up with a little bit of algebra and by making the same 
kinds of calculus-oriented modifications that we made above: 

As above, the derivative term on the left hand side is the rate of population change as a function 
of time, or the population growth rate. If we write the equation with GG for growth rate on the 
left-hand side, it looks a bit more manageable: 

As you can see, the growth rate is just a second-order polynomial equation. As such, it’s graph 
might be a bit familar to us: it is a downward-opening parabola that crosses the x-axis at x=0 and 
x=K. This is the logistic population growth model, perhaps the simplest way of incorporating 
density dependence and carrying capacity into the description of population changes in a place 
with finite resources. 

Solving this differential equation is not particularly easy, but fortunately for us, smart people 
have found useful solutions. The most straight-forward solution for N as a function of tt is: 

Here is an example of a case where we can defer to the experts who came before us and simply 
borrow their result for our own use. The fact is, even with the above solution, there is plenty of 
complexity in the logistic population model since we must define, for any particular scenario, 
several of the parameters before we can use it to any avail: K, N0, and r. 

Example: minimizing suppression and loss costs (Problem 4.5) 

The hypothetical functions we have proposed for the suppression cost CC and net value change 
VncV_{nc} were simple idealizations and would need to be modified according to better 
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understandings of cost-effort relationships.5 Nevertheless, our cost-plus-net-value-change 
function can still allow an instructive optimization. Our function reads: 

where the first term on the right-hand side is the cost of suppression activities, while the second 
term is the net value change in case of fire. The lowest-cost state is clearly the bottom of the 
dip in Figure 4.2, but can we identify that point algebraically? If we use a little calculus, we can 
indeed. 

In first-semester calculus, we learn that the maxima and minima of functions can be found by 
setting the derivative equal to zero. In this case: 

For our purposes here, I won’t explain how we arrive at this, but suffice it to say that when we 
solve the right-hand equality for E, we retrieve the effort corresponding to the minimum total 

. We’ll follow the algebraic manipulations through here: 

This result isn’t necessarily pretty, but it provides a robust analytical solution that depends only 
on the coefficients we assigned to the trial functions, and that can be easily modified for different 
coefficient values. 

 

5. Note: we have changed the notation a bit from earlier chapters. This is because we wish to eliminate any ambiguity in notation, for 
example that NVC represents the product of three variables, N, V, and C. 

14. MODELS OF GROWTH AND DECAY  |  138



Exercises 

1. Review the section on minimizing suppression and loss costs. In the equation for cost plus net value 
change, there is a constant k. What are its units? 

 

2. Propose some reasonable values for the constants and coefficients for the fire-suppression problem in 
the section on minimizing losses and determine the optimal effort and its cost. 

 

3. Review the example problem on deer-automobile encounters in Chapter 13 and ensure that you are 
comfortable with the analysis presented there – or that you have developed and justified your own 
approach to achieving an analogous solution. Propose and execute a strategy for incorporating car 
trips through the county road network in order to estimate the probable number of collisions in a 
given span of time. 

 

4. Review example problem on prairie dog plague in Chapter 13. Construct and evaluate a spreadsheet 
model to solve the numerical approximation of the SIR system of equations. 
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Key Terms 

Algebraic reasoning 

Algebraic reasoning is the use of generalized variables and formal relationships between them, 
rather than numbers, as a means of constraining solutions. 

Arithmetic 

Arithmetic according to Wikipedia: a branch of mathematics that consists of the study of 
numbers, especially the properties of the traditional operations on them – addition, subtraction, 
multiplication and division. 

Instrumental error 

Instrumental error is fixed by the resolution of the device used to make a measurement, and 
can usually only be reduced by using a more precise instrument. 

Isometric 

In our context, the word isometric means that any change in one spatial dimension of a shape 
(e.g., length) is matched by a proportional change in all other dimensions. 

Model 

A model in this context means an approximate mathematical representation of the real system 
from which predictions about the behavior of the real system may be made and tested. 

Modeling 

Modeling in this book refers to the construction of a simplified representation of real or 
hypothesized systems, often described with one or more equations relating variables to one 
another and to system properties, and used to explore complex or unobservable phenomena or 
relationships. 



Numerical reasoning 

Numerical reasoning, as used in this book, is the manipulation, characterization, comparison, 
and interpretation of numerical values (such as data) in the service of problem solving. 

Order of magnitude 

The order of magnitude of a quantity is essentially the value of the exponent when expressed 
in scientific notation. 

Right triangle 

A right triangle is defined as a triangle with one right, or 90° angle. 

Spatial reasoning 

Spatial reasoning is the use of spatial information or relationships, like lengths, areas, volumes, 
or directions, in the solution of problems. 

Systematic error 

Systematic errors result in data that deviate systematically from the true values. These errors 
may often be more difficult to detect and correct, and data collection efforts should make great 
pains to eliminate any sources of systematic error. 
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