
Gettysburg College Open Educational Resources

5-12-2014

Digital Circuit Projects: An Overview of Digital
Circuits Through Implementing Integrated Circuits
- Second Edition
Charles W. Kann
Gettysburg College

Follow this and additional works at: https://cupola.gettysburg.edu/oer

Part of the Digital Circuits Commons, and the Systems Architecture Commons

Share feedback about the accessibility of this item.

This open access book is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for inclusion by an
authorized administrator of The Cupola. For more information, please contact cupola@gettysburg.edu.

Kann, Charles W., "Digital Circuit Projects: An Overview of Digital Circuits Through Implementing Integrated Circuits - Second
Edition" (2014). Gettysburg College Open Educational Resources. 1.
https://cupola.gettysburg.edu/oer/1

http://cupola.gettysburg.edu/?utm_source=cupola.gettysburg.edu%2Foer%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cupola.gettysburg.edu/?utm_source=cupola.gettysburg.edu%2Foer%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cupola.gettysburg.edu/oer?utm_source=cupola.gettysburg.edu%2Foer%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cupola.gettysburg.edu/oer?utm_source=cupola.gettysburg.edu%2Foer%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/260?utm_source=cupola.gettysburg.edu%2Foer%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=cupola.gettysburg.edu%2Foer%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.google.com/a/bepress.com/forms/d/1h9eEcpBPj5POs5oO6Y5A0blXRmZqykoonyYiZUNyEq8/viewform
https://cupola.gettysburg.edu/oer/1?utm_source=cupola.gettysburg.edu%2Foer%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cupola@gettysburg.edu
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Implementing Integrated Circuits - Second Edition

Description
Digital circuits, often called Integrated Circuits or ICs, are the central building blocks of a Central Processing
Unit (CPU). To understand how a computer works, it is essential to understand the digital circuits which
make up the CPU. This text introduces the most important of these digital circuits; adders, decoders,
multiplexers, D flip-flops, and simple state machines.

What makes this textbook unique is that it puts the ability to understand these circuits into the hands of
anyone, from hobbyists to students studying Computer Science. This text is designed to teach digital circuits
using simple projects the reader can implement. But unlike most lab manuals used in classes in Digital Circuits
or Computer Organization classes, this textbook is designed to remove the barrier of a laboratory
infrastructure needed in a face-to-face environment at a college or university. This textbook is designed to be
used by the reader to create the circuits in their own homes. The textbook is free. The cost of the kits needed to
do the labs is reasonable. And the projects are well documented and can be implemented by even novices to
electronic projects.

This text allows professors to add laboratory projects in digital circuits to students in online classes in
Computer Organization. This enhances these classes with interesting and fun exercises that reinforce the
classroom topics.

This text can also be used by a hobbyist who wants to learn more about digital circuits and how computers
work. The material is presented at a level that someone with no experience in digital circuits and electronics
can successfully complete the projects, and gain an understanding of the circuits which go into making up a
computer.

The second edition of this includes a chapter on Boolean Algebra for professors who would like to include a
more formal background into digital circuits. It also changed the chapter designed to give a context for the
CPU to reference a relatively simple CPU developed by the author in Logisim.

For someone who is interested in digital circuits, this book is worth downloading.

Note: Often it is easier to use a MS Word file rather than a pdf file. If you would like the book as a Word
document and not a pdf, please contact the author at ckann(at)gettysburg.edu, and he will mail it to you. The
main reason for this is to get some sort of feedback on who is using the text.

Keywords
Digital Circuits, System Architecture, Computer Organization, Integrated Circuits, Computer Logic, Central
Processing Unit (CPU), Processor Architecture, Multiplexer, Decoder, Arithmetic Logic Unit, Register File,
Flip-Flop, Memory, Memory Latch, Adder, Full Adder, Half Adder, State Computer, State Machine, Mod 4
Counter, 7400 Series, Digital Circuit Lab Manual, Electronic Circuits, Electronic Projects, Digital Circuit
Projects, Computer Science Online, Online Laboratory Manual, Laboratory Manual

Disciplines
Digital Circuits | Systems Architecture

This book is available at The Cupola: Scholarship at Gettysburg College: https://cupola.gettysburg.edu/oer/1

https://cupola.gettysburg.edu/oer/1?utm_source=cupola.gettysburg.edu%2Foer%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages


Comments
Figures (including the Logisim circuits) are accessible at http://chuckkann.com/

For readers interested in the the first edition of this book can be found at http://chuckkann.com.

Please contact the author at ckann@gettysburg.edu if you adopt this book for a course - thanks!

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

This book is available at The Cupola: Scholarship at Gettysburg College: https://cupola.gettysburg.edu/oer/1

http://chuckkann.com/books/DigitalCircuitProjects/
http://chuckkann.com/
mailto:ckann@gettysburg.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://cupola.gettysburg.edu/oer/1?utm_source=cupola.gettysburg.edu%2Foer%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages


  

 

 

DIGITAL CIRCUIT 
PROJECTS 

Understanding Digital Circuits through Implementation     
Second Edition 

ABSTRACT 
This text explains some of the most basic digital 
circuits by implementing them on a breadboard.  
The use of the circuits in a CPU is then illustrated.   
This text is intended as a laboratory manual for a 
class is Computer Organization, or for use by a 
hobbyist who just wants to learn more about 
computer hardware. 

Charles W. Kann 
      

 



DIGITAL CIRCUIT PROJECTS 1 
 
 

©   Charles W. Kann III 
      277 E. Lincoln Ave. 
      Gettysburg, Pa 
 
All rights reserved. 
 

 
 
This book is licensed under the Creative  Commons Attribution 4.0  License  
 
This book is available for free download from http://cupola.gettysburg.edu/oer/1/.   
 
Supporting materials for this text book can be found at http://chuckkann.com.  

http://creativecommons.org/licenses/by/4.0/
http://cupola.gettysburg.edu/oer/1/
http://chuckkann.com/
http://creativecommons.org/licenses/by/4.0/


2 DIGITAL CIRCUIT PROJECTS 

 
Table of Contents 
Chapter 1 Before you start.......................................................................................................................... 13 

1.1 Introduction ...................................................................................................................................... 13 

1.2 Computers and magic ....................................................................................................................... 13 

1.3 Reading this text ............................................................................................................................... 14 

1.4 Materials Needed .............................................................................................................................. 14 

1.4.1 Logisim ....................................................................................................................................... 14 

1.4.2 Hardware ................................................................................................................................... 14 

1.5 Some notes ....................................................................................................................................... 16 

1.6 Conclusion ......................................................................................................................................... 17 

Chapter 2 Background Material .................................................................................................................. 19 

2.1 Introduction ...................................................................................................................................... 19 

2.2 A Universal Set of Boolean Operations ............................................................................................. 19 

2.3 Truth Tables ...................................................................................................................................... 20 

2.4 Disjunctive Normal Form(DNF) ......................................................................................................... 21 

2.4.1 Boolean Relationships ................................................................................................................ 22 

2.5 Karnaugh Maps (K-maps) .................................................................................................................. 23 

2.5.1 Gray Codes ................................................................................................................................. 23 

2.5.2 2-Variable Karnaugh Maps ......................................................................................................... 24 

2.5.3 3-Variable Karnaugh Maps ......................................................................................................... 25 

2.5.4 4-Variable Karnaugh Maps ......................................................................................................... 27 

2.5.5 Don’t care conditions ................................................................................................................. 30 

2.6 Conclusion ......................................................................................................................................... 31 

2.7 Exercises ............................................................................................................................................ 32 

Chapter 3 Getting started ........................................................................................................................... 35 

3.1 Introduction ...................................................................................................................................... 35 

3.2 Logisim circuit to turn on a light ....................................................................................................... 35 

3.3 Implementing the switch circuit to turn on a light ........................................................................... 36 

3.3.1 The breadboard.......................................................................................................................... 37 

3.3.2 Stripping wires ........................................................................................................................... 38 

3.3.3 Powering the Circuit ................................................................................................................... 40 

3.3.4 Installing the switch ................................................................................................................... 43 

3.3.5 Completing the Circuit ............................................................................................................... 44 

3.4 Debugging the circuit ........................................................................................................................ 45 

3.5 Exercises ............................................................................................................................................ 46 



DIGITAL CIRCUIT PROJECTS 3 
 

Chapter 4 Gates .......................................................................................................................................... 47 

4.1 Introduction ...................................................................................................................................... 47 

4.2 Boolean logic and binary values ........................................................................................................ 47 

4.3 Unary operations .............................................................................................................................. 47 

4.4 Binary Operations ............................................................................................................................. 48 

4.5 Implementing the AND gate circuit .................................................................................................. 49 

4.5.1 ICs and the 7408 chip ................................................................................................................. 49 

4.5.2 The datasheet ............................................................................................................................ 50 

4.5.3 Creating the AND circuit ............................................................................................................ 51 

4.6 Exercises ............................................................................................................................................ 52 

Chapter 5 Associative Boolean operators ................................................................................................... 55 

5.1 Introduction ...................................................................................................................................... 55 

5.2 Modeling associative operations in Logisim ..................................................................................... 55 

5.3 Implementing the circuit ................................................................................................................... 56 

5.3.1 Implementing the serial AND circuit .......................................................................................... 56 

5.3.2 Implementing the parallel AND circuit ...................................................................................... 58 

5.4 Conclusion ......................................................................................................................................... 58 

5.5 Exercises ............................................................................................................................................ 58 

Chapter 6 Adders ........................................................................................................................................ 61 

6.1 Introduction ...................................................................................................................................... 61 

6.2 Half adder .......................................................................................................................................... 61 

6.2.1 Adding binary numbers .................................................................................................................. 61 

6.2.2 Half adder circuit ........................................................................................................................ 62 

6.2.3 Half adder implementation ........................................................................................................ 63 

6.3 Full adder .......................................................................................................................................... 64 

6.3.1 Full adder circuit ........................................................................................................................ 65 

6.3.2 Full adder implementation ........................................................................................................ 66 

6.4 2-bit adder circuit .............................................................................................................................. 68 

6.5 Conclusion ......................................................................................................................................... 69 

6.6 Exercises ............................................................................................................................................ 69 

Chapter 7 Decoders .................................................................................................................................... 71 

7.1 Introduction ...................................................................................................................................... 71 

7.2 Decoder circuit .................................................................................................................................. 71 

7.3 2-to-4 decoder implementation ....................................................................................................... 72 

7.4 Implementing a decoder using a single chip ..................................................................................... 74 



4 DIGITAL CIRCUIT PROJECTS 

 
7.4.1 The 74139 chip ........................................................................................................................... 74 

7.4.2 Implementing one 2-to-4 decoder using the 74139 chip .......................................................... 76 

7.5 Conclusion ......................................................................................................................................... 77 

7.6 Exercises ............................................................................................................................................ 77 

Chapter 8 Multiplexers ............................................................................................................................... 79 

8.1 Introduction ...................................................................................................................................... 79 

8.2 Circuit Diagram for a MUX ................................................................................................................ 81 

8.3 Implementing a MUX ........................................................................................................................ 83 

8.4 74153 MUX chip ................................................................................................................................ 85 

8.5 74153 circuit diagram ....................................................................................................................... 85 

8.6 Implementing the 74153 circuit ........................................................................................................ 86 

8.7 Conclusion ......................................................................................................................................... 87 

8.8 Exercises ............................................................................................................................................ 87 

Chapter 9 Memory basics - flip-flops and latches ....................................................................................... 89 

9.1 Introduction ...................................................................................................................................... 89 

9.2 Background material ......................................................................................................................... 89 

9.2.1 State ........................................................................................................................................... 89 

9.2.2 Static and dynamic memory ...................................................................................................... 90 

9.2.3 Square Wave .............................................................................................................................. 90 

9.3 Latches .............................................................................................................................................. 90 

9.3.1 D latch ........................................................................................................................................ 91 

9.3.2 Circuit diagram for a D latch ...................................................................................................... 92 

9.3.3 Implementing the D latch .......................................................................................................... 93 

9.3.4 D latch as a single IC chip ........................................................................................................... 95 

9.3.5 Implementation of a D latch using a 7475 chip ......................................................................... 96 

9.3.6 Limitations of the D latch ........................................................................................................... 96 

9.4 Edge triggered flip-flop ..................................................................................................................... 98 

9.5 Conclusion ....................................................................................................................................... 100 

9.6 Exercises .......................................................................................................................................... 100 

Chapter 10 Sequential circuits .................................................................................................................. 101 

10.1 Introduction .................................................................................................................................. 101 

10.2 Debouncing ................................................................................................................................... 101 

10.3 Implementing a state machine ..................................................................................................... 102 

10.3.1 Mod 4 counter ....................................................................................................................... 102 

10.3.2 Implementation of a state transition diagram ....................................................................... 103 



DIGITAL CIRCUIT PROJECTS 5 
 

10.3.3 Hardware implementation of next state logic ....................................................................... 104 

10.3.4 Read Only Memory ................................................................................................................ 105 

10.3.5 Implementation of the Mod 4 counter .................................................................................. 106 

10.4 Conclusion ..................................................................................................................................... 109 

10.5 Exercises ........................................................................................................................................ 109 

Chapter 11 Use of these ICs in a CPU .................................................................................................... 111 

11.1 An overview of the CPU. ............................................................................................................... 111 

11.2 Flip Flops ....................................................................................................................................... 112 

11.3 Muxes ............................................................................................................................................ 112 

11.4 Adder ............................................................................................................................................. 112 

11.5 Decoder ......................................................................................................................................... 113 

11.6 Summary ....................................................................................................................................... 113 

 

  



6 DIGITAL CIRCUIT PROJECTS 

 
Table of Figures 

Figure 3-1: Logisim circuit to turn on light. ............................................................................................... 36 
Figure 3-2: Typical breadboard................................................................................................................... 37 
Figure 3-3: Breadboard layout .................................................................................................................... 38 
Figure 3-4: Wire strippers ........................................................................................................................... 39 
Figure 3-5: A stripped wire ......................................................................................................................... 40 
Figure 3-6: 7805 voltage regulator.............................................................................................................. 41 
Figure 3-7: Powering the breadboard .......................................................................................................... 41 
Figure 3-8: LED ............................................................................................................................................ 42 
Figure 3-9: Toggle switch ........................................................................................................................... 43 
Figure 3-10: Completed circuit ................................................................................................................... 44 
Figure 3-11: Debugging the circuit .............................................................................................................. 45 
Figure 4-1: Buffer and inverter gates .......................................................................................................... 48 
Figure 4-2: Buffer and inverter circuit in Logisim ....................................................................................... 48 
Figure 4-3 Truth table for AND and OR ..................................................................................................... 48 
Figure 4-4: AND, OR, and XOR gates ........................................................................................................... 49 
Figure 4-5: AND, OR, and XOR gate circuit ................................................................................................. 49 
Figure 4-6: 7408 chip, circle indicates top of chip. ..................................................................................... 50 
Figure 4-7: 7408 chip, notch indicates top of chip. .................................................................................... 50 
Figure 4-8: 7408 pin configuration diagram ............................................................................................... 51 
Figure 4-9: 7408 AND gate circuit ............................................................................................................... 52 
Figure 5-1: Serial AND circuit ...................................................................................................................... 55 
Figure 5-2: Parallel AND circuit ................................................................................................................... 56 
Figure 5-3: 7408 pin configuration diagram ............................................................................................... 57 
Figure 5-4: Serial AND implementation ...................................................................................................... 57 
Figure 5-5: Parallel AND implementation ................................................................................................... 58 
Figure 6-1: ALU ......................................................................................................................................... 61 
Figure 6-2: Half adder truth table ............................................................................................................... 62 
Figure 6-3: Half adder circuit ..................................................................................................................... 62 
Figure 6-4: 7486 pin configuration diagram ............................................................................................... 63 
Figure 6-5: Half adder implementation ....................................................................................................... 64 
Figure 6-6: Addition problem showing a carry bit...................................................................................... 65 
Figure 6-7: Full adder truth table ................................................................................................................ 65 
Figure 6-8: Full adder circuit ...................................................................................................................... 66 
Figure 6-9: Full adder implementation ....................................................................................................... 67 
Figure 6-10: 2 bit full adder circuit ............................................................................................................. 68 
Figure 7-1: Control lines for ALU .............................................................................................................. 71 
Figure 7-2: Decoder used to set ALU control lines .................................................................................... 71 
Figure 7-3: Decoder circuit ......................................................................................................................... 72 
Figure 7-4: 7404 pin configuration diagram ............................................................................................... 73 
Figure 7-5: Decoder circuit ......................................................................................................................... 74 
Figure 7-6: 74139 pin configuration diagram ............................................................................................. 75 
Figure 7-7: 74139 decoder circuit ............................................................................................................... 76 
Figure 8-1: Multiplexer as a memory selector ............................................................................................ 79 
Figure 8-2: Truth table for a MUX ............................................................................................................. 80 
Figure 8-3: 1-bit 4-to-1 MUX ..................................................................................................................... 80 
Figure 8-4: 4-to-2 MUX .............................................................................................................................. 80 



DIGITAL CIRCUIT PROJECTS 7 
 

Figure 8-5: Two 4-to-8 MUXes .................................................................................................................. 81 
Figure 8-6: Schematic of a MUX ................................................................................................................ 82 
Figure 8-7: Decoder used to implement a MUX ......................................................................................... 83 
Figure 8-8: 4-to-1 MUX .............................................................................................................................. 84 
Figure 8-9: 74153 circuit diagram .............................................................................................................. 85 
Figure 8-10: 74153 pin configuration diagram ........................................................................................... 86 
Figure 8-11: 74153 circuit .......................................................................................................................... 87 
Figure 9-1: Memory in a CPU .................................................................................................................... 89 
Figure 9-2: Square Wave ............................................................................................................................ 90 
Figure 9-3: D latch ...................................................................................................................................... 91 
Figure 9-4: Characteristic truth-table for a D latch ..................................................................................... 91 
Figure 9-5: D latch with enable bit ............................................................................................................. 92 
Figure 9-6: Truth-table for a D latch with enable bit .................................................................................. 92 
Figure 9-7: Circuit diagram for a D latch ................................................................................................... 92 
Figure 9-8: Implementation of a D latch ..................................................................................................... 93 
Figure 9-9: 7475 pin configuration ............................................................................................................. 94 
Figure 9-10: 7475 pin meanings ................................................................................................................. 95 
Figure 9-11: : D latch using a 7475 chip ..................................................................................................... 96 
Figure 9-12: State transition with multiply operation ................................................................................. 97 
Figure 9-13: State transition with add operation ......................................................................................... 97 
Figure 9-14: Two D latches to hold correct state ........................................................................................ 98 
Figure 9-15: Small time delay rising edge .................................................................................................. 98 
Figure 9-16: Edge trigger time in square wave ........................................................................................... 99 
Figure 9-17: Illustrative example of D flip-flop ......................................................................................... 99 
Figure 9-18: Actual implementation of a D flip-flop .................................................................................. 99 
Figure 10-1: State diagram for a mod 4 counter ....................................................................................... 102 
Figure 10-2: State transition table for a mod 4 counter ............................................................................ 103 
Figure 10-3: Circuit overview for a state machine.................................................................................... 103 
Figure 10-4: Hardware implementation for a mod 4 counter ................................................................... 104 
Figure 10-5: ROM implementation of a mod 4 counter ........................................................................... 105 
Figure 10-6: Mux implementation of next state logic for a mod 4 counter .............................................. 106 
Figure 10-7: 74153 pin layout diagram ..................................................................................................... 107 
Figure 10-8: 7474 pin layout ..................................................................................................................... 107 
Figure 10-9: Mod 4 counter ...................................................................................................................... 108 
Figure 10-10: ALU Implementation ........................................................................................................... 113 
Figure 10-11: Decoder used in the CU for a CPU ...................................................................................... 113 
 

  



8 DIGITAL CIRCUIT PROJECTS 

 
I  Forward 

This text is designed provide an overview of the basic digital integrated circuits (ICs) that make 
up the Central Processing Unit (CPU) of a computer.  The coverage of the material is at a 
sufficiently deep level that the text could be used as a supplemental text for a class in Computer 
Organization, but the material should be easily understandable by a hobbyist who wants a better 
understanding of how a computer works. 

I.1 Why this book? 

This book is designed to address three issues.  The first is that textbooks are far too expensive.  
As having completed my 4th book shows, I understand the large amount of effort that goes into 
writing, editing, producing, and distributing these books.  But the work involved no way justifies 
the exorbitant prices that are charged, and the resultant extravagant lengths people go to in order 
to avoid paying those prices.  It all plays into a hyper-materialistic capitalism that can only 
eventually fail as it pits consumers against producers, and ignores the overall societal good.  I 
hope by releasing free books (or books with nominal costs) that we can start to have a discussion 
about the relative merits of this type of unfettered capitalism, and perhaps come up with better, 
more sustainable market based economic models. 

The larger problem with high priced textbooks is the cost alone becomes an impediment to many 
people who wish to learn the material.  Social good is advanced when information can be easily 
disseminated, shared, and discussed.  I view providing this book for free as my contribution to 
those who want to learn this material.   

The second reason for this text is to provide a way to incorporate labs into classes in Computer 
Organization, particularly online classes.  As many colleges and universities moving more 
classes online, there is a need to translate beneficial methodologies from face-to-face 
environments to formats where they are useful in an online environment.  One such instructional 
methodology that is hard to translate is laboratory experiences.  A class in Computer 
Organization benefits immensely from labs that allow the students to create physical circuits.  
Labs provide reinforcement for the material covered in class, and the labs represent a fun and 
exciting way for students to interact with this material.  This text is meant to provide a way to 
incorporate labs into any class on Computer Organization, but especially online classes.   

Finally, this text book is written for hobbyists who want to better understand digital circuits and 
how they work.  It is designed for the complete novice, someone who has never seen a 
breadboard or IC chip.  In fact, it is hoped that people who are afraid they could never get a 
circuit to work, or understand what it does, will try the exercises in this book and find out just 
how much talent they have when it comes to understanding and creating circuits. 

I.2 Intended Audience 

The intended audience is central to what material is covered, the order in which it is covered, and 
how it is covered.  Thus understanding the intended audience will help the reader understand 
how the book is oriented and how to use it. 

This book is designed for two types of people.  The first is hobbyists who want to understand 
how a computer works, and would like to be able to build digital circuits using standard chips 



DIGITAL CIRCUIT PROJECTS 9 
 

they can easily buy online.  The book is designed to describe and implement the major ICs used 
in a CPU, and to give a rough idea of how they are used.   

The second audience for this text is students who are taking a class in Computer Organization, 
which is the study of how a CPU works, and the various issues in the design of computers.  The 
text is intended as a lab manual for a Computer Organization class, and in particular targeted at 
students who are taking this class in an online environment. 

Understanding the target audience for this book is important understand how it is written.  First 
the book is written to make understanding and implementing circuits as simple as possible for 
novices who have little support in implementing these labs.  The labs assume no institutional 
infrastructure or support.  No lab space or extra equipment should be needed, and students 
should be able to complete these labs at home with only the equipment listed in chapter 1. 

Second the book is written to address the interests and needs of both the hobbyist and CS 
students.  Both groups have similar but somewhat different levels of interests and the text 
attempts to address the needs of both groups.   

How the text supports these two groups is explained in the next two sections. 

I.3 Easy to understand circuit design and implementation 

One important characteristic of the target readers for this book is that they will have little or no 
face-2-face support when implementing the components.  Thus the book is written to help 
maximize the chance for success in implementing the circuits in each chapter.  To do this the 
book does the following: 

1) All parts that are needed for all circuits are listed, and can be easily obtained from a 
number of online sources.  There is no need to start a project and reach a point where 
some extra part is needed. 

2) An attempt was made to keep the kits as low cost as possible.  This text is free for 
download.  When the text was written, a complete lab kit (without tools) could be ordered 
as parts for $20-$25, with $5-$10 extra if wire strippers or pliers are not available. This is 
a reasonable cost considering many textbooks today can sell for $100 or more. 

3) Even simple steps, such as how to strip wires, are covered. 
4) An overview of each circuit is given, where the functioning of the circuit and how it is 

used is explained.  Detailed step-by-step instructions with photographs are included with 
each lab so that the actual wiring of the circuit can be examined. 

5) Extensive use is made of a powerful yet easy to use circuit design tool named Logisim.  
Logisim allows the reader to interact with the circuits and components presented in each 
chapter to understand how they work, and to modify these circuits to implement 
enhanced functionality for the component. 

I.4 Material covered in the text 

A hobbyist will be most interested in a general understand of what each digital component is, 
and how it is used in a CPU.  They are also interested in implementing successful projects which 
are fun, while gaining some understanding of the material. 
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Students using this text as a lab manual are more interested in understanding the details of digital 
circuits, in particular how to the circuits in their Computer Organization class, and often beyond.  
Since the students will often be online, success in the projects is also a major goal;  as is having 
fun.  Let's face it, actually implementing working, physical objects that turn light bulbs on should 
be, and is, fun.  There is no reason not to have fun while enhancing learning. 

This book is designed to engage both types of readers.  Chapters 2, 3 4, and 5 of the book are 
designed to give the reader some basic understanding of Boolean algebra, how a CPU works, and 
how to build a circuit on a breadboard.  The material on Boolean algebra is not rigorous, and a 
class in Computer Organization would need to supplement this material.  The description of a 
CPU needs to be greatly extended for a class in Computer Organization.   But the material in this 
text is sufficient for the reader to understand enough Boolean algebra to understand basic 
circuits, and how they are used in a CPU. 

Each subsequent chapter will cover one digital component.  The chapter will contain an 
overview of the component, and a brief description of how it can be used in a CPU.  For 
instructors who desire that students do more with the circuits than what is presented in the 
chapter, exercises (both in Logisim and with the breadboards) are given at the end of each 
chapter. 

II  Additional text materials 

This text can be downloaded from http://cupola.gettysburg.edu/oer/1.  Additional materials for 
the text, including a complete parts list from commercial suppliers with part numbers and prices 
can be found at http://chuckkann.com. 

III  About the second edition 

Other than numerous edits to fix errata in the first edition, the main reason for this new release of 
the text are two fold, and based on the feedback I have received from the first edition. 

1. Chapter 2 has been changed to provide a more theoretic background in Boolean algebra 
for the cases where this book is being used in a course on Computer Organization.  This 
chapter can safely skipped by a hobbyist only interested in how digital circuits work. 

2. The chapter 2 in the first edition was intended to give a context for the ICs developed in 
this text.  It seemed out of place and disjointed from the rest of the text.  The role of 
chapter 2 has been moved to chapter 11, which shows the ICs in the context of a working 
CPU developed by the author. 

IV  Using this book in a class on Computer Organization 

The central question for professors looking to use this book is how the book can be applied to 
their classes.  The following is an outline of how I use this text in a Computer Organization class. 

In a class on Computer Organization I generally do not get into CPU data path until the eighth 
week of the semester.  For the first seven weeks of the semester I cover background material.  
The first two weeks of the semester I cover a basic review of material that I find students often 

http://cupola.gettysburg.edu/oer/1
http://chuckkann.com/
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do not understand well.   Boolean Algebra, binary mathematics (2's complement addition, 
subtraction, multiplication, and division), and floating point number format.   

The next five weeks of the semester are spent covering assembly code.  I find this is important 
for two reasons.  First the students should know how their higher level programs are translated 
into programs which the computer can execute.   It allows the students to see all data in a 
computer as just a binary number, and to understand concepts such as variables and pointers 
to variables.  Second teaching assembly shows the translation by the assembler of the student's 
program into machine language, and the format of machine code.  Understanding how a 
program is presented to the hardware is important to the understanding of how the CPU 
executes the program. 

This leaves the last 5 weeks of a semester for actually studying the data path which defines the 
CPU.  

In this type of semester, I do not cover the digital components in this book as a single entity.  
Chapters 1, 2, and 3 are assigned the first week, and each subsequent chapter assigned each 
subsequent week.  A short overview of each circuit is provided in class, but the students are 
largely left on their own to do the problems associated with the circuit.  By the eighth week, all 
of the circuits have been covered and the students are ready to begin studying the data path of 
the CPU.  The digital circuits that have been covered in this text form the basis for the 
components in the CPU.   

A sample 15-week schedule follows.  Note that the assignments from this text are the second 
topic in each week.  The first assignment each week represent material used in covering 
Computer Organization using a MIPS programming text. 

 

 

Week Topic Circuit Assignment 

1 1. Review: Boolean Algebra, Binary Arithmetic  

2 1. Floating Point Numbers 
2. Basic circuits 

Due: Chapter 3: Exercise 1 

Chapter 4: Exercises 3, 4A, 5, 6 

3 1. Introduction to MIPS assembly: 
Hello World Program 

2. Associative operators 

Chapter 5: Exercises 1 & 2.  
Implement the circuit for one 
type of gate only (your choice) 

4 1. MIPS operators 
2. Adders 

Chapter 6: Exercises 2 & 3 

5 1. Non-reentrant subprograms, accessing 
memory 

Chapter 7: Exercise 1 



12 DIGITAL CIRCUIT PROJECTS 

 
2. Decoders 

6 1. Program Control Structures (branches and 
loops) 

2. Multiplexers 

Chapter 8: Exercises 1, 2, 3 & 4 

7 1. Reentrant subprograms and program stack 
2. Latches and flip-flops 

Chapter 9: Exercise 1 

8 1. Arrays 
2. State machines 

Chapter 10: Exercises 2, 3, &4 

9 1. Multiplication and Division circuits, Parallel 
Adders 

 

10 1. MIPS data path  

11 1. Pipelining  

12 1. Pipelining (continued)  

13 1. High performance memory or concurrency  

14 1. I/O or other topics  

15 Final  
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Chapter 1 Before you start 

1.1 Introduction 
This chapter provides an overview of the entire text, and what the reader can expect to learn.  It 
also provides a listing of all materials needed to implement the circuits covered in this text. 

1.2 Computers and magic 
While most would not admit it, people believe that computers actually obey the laws of magic.  
Computers do such wild and miraculous things that somehow we all believe computers are not 
really machines at all, but there is something very strange and magical which must go on inside 
of a computer.  Computers seem to do things which are beyond the physical laws of nature.  And 
the growth in the capability of the devices which we use every day, which are small and simple 
to use yet so amazing in what they can do, reinforces this idea that computers are indeed magic. 

In reality, we know computers are simply machines.  The first machine ever designed that had all 
the functionality of a modern computer, the analytical engine, was designed by Charles Babbage 
in 1838.   The analytical engine was to be purely mechanical and designed to run on steam.  
While it was never implemented, it is a perfectly workable design, and incorporates all the 
necessary functionality of a modern computer. 

The analytical engine shows that computers can be understood in purely mechanical terms.  To 
aid in understanding computers, this text will look at the heart of all computers, the Central 
Processing Unit (CPU).  The first step in understanding computer is to understand a CPU. 

A CPU is entirely made up of wires and logic components called gates.  These gates are very, 
very tiny, and very, very fast, but they are just electronic circuits which perform simple 
operations.  The only operations these gates need to provide are the Boolean AND, OR, and NOT 
operators, which will be explained in Chapter 4.  More surprisingly, AND, OR and NOT 
functions are more than what is needed.  All of the logic in a computer can be implemented using 
only one type of gate, the Not-AND, or NAND, gate.  Thus a computer is simply a collection of 
these wires and gates, and can be completely explained as a mechanical device using only one 
type of computational element, the NAND gate.  This really is almost as amazing as computers 
being made of magic, but much more useful. 

To simplify the CPU, collections of AND, OR and NOT gates are organized into digital 
components (called Integrated Circuits, or ICs) which are used to build the CPU.  These digital 
ICs are called multiplexors, decoders, flip-flops (registers) and Arithmetic Logic Units (ALUs).  
Some of these components, such as the ALU, are made up of  other digital components, such as 
adders, subtracters, comparators, and circuits to do other types of calculations.  This book will 
cover these digital ICs, explaining how they are used in a CPU, showing how these digital 
components are made using simple gates, and actually implementing the circuits on a breadboard 
using IC chips.   

Once completing this book, the reader should have a concept of what is a CPU, a good 
understanding of the parts which make up a CPU, and a rudimentary concept of how a CPU 
works to convert 1s and 0s into the amazing devices that are so central to our world.   
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1.3 Reading this text 
This textbook is intended for multiple audiences.  Chapter 2 of this text is an overview of 
Boolean algebra and included largely for when the text is use in classes covering digital circuit 
design.  Chapter 2 is not necessary to the understanding of the rest of the book, and can be safely 
skipped by someone using this text as a lab manual.   I would recommend that a hobbyist using 
this book for bread board project skip Chapter 2 altogether.   

Chapter 11 is an implementation of a  CPU in Logisim, and shows how a CPU can be designed 
using only wires, gates, and the ICs that are covered in this text.  The implementation is a real 
CPU which can be programmed, producing input and output.  However even this simple CPU is 
too complex to implement in a Breadboard.  

Chapters 3 to 10 are the chapters which implement the projects.  These chapters are the important 
chapters for someone interested in implementing the ICs used in a CPU. 

1.4 Materials Needed 
This section will outline the materials you will need for the rest of the book.  There are two types 
of materials you will need.  The first will be a software program called Logisim, and the second 
will be physical parts needed to implement the circuits on a breadboard. 

1.4.1 Logisim 
Logisim is a tool which is used to describe the circuits found in this book.  Logisim is free and 
easy to use, and can be found at http://ozark.hendrix.edu/~burch/logisim/.  There is a download 
link at that site, as well as tutorials and videos which can help you get started. 

All circuits in this book are implemented in Logisim, and can be found at 
http://www.chuckkann.com/  

1.4.2 Hardware 
The following is a complete list of hardware that is needed to implement the basic circuits in the 
text.  It is broken down into 3 sections; chips, tools, and miscellaneous parts.  For a complete list 
of parts with part numbers from various retailers, please go to http://www.chuckkann.com. 

When buying the hardware, users will often have some of the needed material already on hand.  
Things like wire stripper, needle-nose pliers, and a small flat-blade screw driver are common 
items that many people will have readily available.  Other items like wire or 9 volt batteries are 
often available from other uses.  If you already own some of the parts or equipment listed below, 
there is no need to buy them again. 

Chips 
Except for the 7805 voltage regulator, all of the chips are standard 7400 series chips.  For more 
information about 7400 series logic chips, see http://en.wikipedia.org/wiki/7400_series.  A 
complete list of 7400 series chips can be found at 
http://en.wikipedia.org/wiki/List_of_7400_series_integrated_circuits. 

The chips in this series represent most of the logic components and Integrated Circuits (ICs) that 
are needed to implement most digital logic applications.  The numbering on chips is as follows: 

http://ozark.hendrix.edu/~burch/logisim/
http://www.chuckkann.com/
http://www.chuckkann.com./
http://en.wikipedia.org/wiki/7400_series
http://en.wikipedia.org/wiki/List_of_7400_series_integrated_circuits
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74tttsssn 

where 

• 74:  indicates the chip is a 7400 series chip 
• ttt:  the type of logic used.  In this text, the following are valid: 

o blank - transitor-transitor logic (ttl) 
o HC - high speed CMOS 
o HCT - high speed CMOS, ttl compatible 

• sss:  The type of chip.  For example: 
o 7408 is a quad 2-input AND gate chip 
o 7432 is a quad 2-input OR gate chip 

• n: Indicates the packaging of the chip.  Only type n is used in this text. 

For most of the 7400 series chips below, ttl, HC, and HCT chips can be considered 
interchangeable in the circuits in this text1.  So for a 7408 quad 2-input AND gate chip, the 
following chips would all be valid: 

7408N, 74HC08N, 74HCT08N 

However the following chips could not be used: 

7408D - Any chip designated D is a surface mounted chip, and will not work with the 
breadboard.  Other types of packaging might be encountered, and should be assumed not 
to be compatible. 

74LS08N - There are numerous technologies used to implement 7400 components.  For 
this text, only ttl, HC, and HCT types of chips are recommended.  Some type of chips 
(ACT, BCT, FCT, etc) would probably work, and others (LS, ALVC, etc) will definitely 
not work.  For readers interested in a more detailed discussion of the chip technology, 
please refer to the Wikipedia page referenced above. 

To simplify the process of obtaining the correct chips, a web site is maintained at 
www.chuckkann.com/books/DigitalCircuits/kits.html.  It lists a number of retailers who sell 
these chips, and the retailers part numbers for each chip.  

A complete list of  follows. 

7805 5V voltage regulator     1 
7400  quad 2-input NAND gate    1 
7402 quad 2-input NOR gate      1 
7404 hex Inverter (NOT gate)    1 
7408  quad 2-input AND gate     2 
7414  hex Schmitt Trigger Inverter (NOT gate)  1 
7432  quad 2-input OR gate     1 
7474  dual D positive edge triggered flip-flop  1 
7486  quad 2-input XOR gate     1 

                                                           
1 The exception is the 7414 chip, which must use the ttl logic.  HC and HCT chips are not substitutable. 
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74139 dual 2-line to 4-line decoder    1 
74153 dual 4-to-1 Multiplexor    1 
 
Important Note:  In this text all chips will be referred to using their generic numbers.  So while 
the circuits in the text will generally use a 74HCT08N chip, the text will refer to the chip as a 
7408 chip. 

Tools 
A few tools are useful to implement the labs in this text.  The wire strippers are the only required 
tool, but needle nose pliers are very handy when doing wiring, and a flat blade screw driver 
makes it much easier to pry chips from the board safely.  These tools are often in toolboxes that 
the reader might already have.  If the reader does not have one or more of these tools, they 
should be obtained. 

wire stripper       1 
needle nose pliers      1 
small bladed screw driver     1 

Miscellaneous  
A number of miscellaneous parts are needed to implement the circuits in this text.  The number 
of type of these parts is limited specifically to keep the cost of the kits to a minimum.  For 
example, the labs in the text use 4 colors of wire for clarity: red, black, yellow, and green.  The 
kits below only include black wire.  The reader can obtain multiple colors of wire if they desire, 
but the circuits can be implemented using a single color wire. 

Be careful of substitutions.  For example, a 400 point solderless breadboard is cheaper than the 
830 point solderless breadboard which is recommended, and a thrifty reader might be tempted to 
substitute the smaller board since it looks very similar.  However several of the circuits in this 
text will not fit on the 400 point version. 

Wire, black       1 25 foot spool 
830 point solderless breadboard     1 
9V battery snap      1 
9V battery       1 
toggle switches      4 
red LED       3 
green LED       3 
1k resistor       1 package of 10 
0.1µf capacitor       1 package of 10 
0.22µf capacitor       1 
mini push button switch (tactile button switch)   1 
 

1.5 Some notes 
There is a wiring convention used in this book which the reader should be aware of.  This book 
uses 4 colors of wires: red, black, yellow, and green.  Red wires are wires which are always 
expected to carry a positive voltage.  Black wires are wires which are always expected to be 
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connected to ground.  Yellow wires are used for wires running from the battery towards the 
output LED.  Green wires are used for wires which recycle backwards towards the battery (the 
use of green wires will become clearer when the latch and counter circuits are implemented).  
The only reason these colors were chosen is to enhance the readability of the circuits for the text.  
The standard material for the lab kit only recommends purchasing black wire.  The color of the 
wire is inconsequential to the working of the circuit, though using only black wire means your 
circuits will appear slightly different from the ones in the text, and be harder to read. 
 
Be careful when doing the labs: The exercises in this book require the reader to strip wire and 
to use simple logic chips.  While a young person could do the exercises in this book, it is 
intended for an adult audience or at least adult supervision.  The parts are small, pointy and 
sharp, and care should be used when handling them.  Clipping and stripping wires can result in 
small pieces of plastic and metal becoming airborne.  The components used in these circuits can 
become very hot, especially if installed backwards.  While there is nothing inherently dangerous 
in working with the circuits, care should be used.  Safety glasses are recommended, and if any 
chip or part of the circuit become hot, quickly remove the power by disconnecting the battery.  
Do not touch any hot chips or other components, and wait for chips or other components to cool 
before handling them. 

1.6 Conclusion 
Computers are machines.  They are amazing machines, but they are still simply machines.  This 
book will start to demystify computers by defining the basic components which make up a 
computation machine.  It will do this by allowing the reader to develop the basic components 
which make up a computer, both virtually in software and physically in hardware.  
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Chapter 2 Background Material 

2.1 Introduction 
This chapter introduces the necessary Boolean algebra for understanding circuits.  It covers truth 
tables, Disjunctive Normal Form (DNF) for Boolean functions, Boolean relationships, how to 
use Boolean Algebra to manipulate and reduce Boolean functions, and how to use Karnaugh 
maps to minimize Boolean functions.   

While the material in this chapter can be understood by someone with a good understanding of 
algebra, it can be a bit esoteric and is not needed to understand the rest of the textbook.  This 
chapter can be safely skipped by someone using this book as a lab manual.  I would suggest that 
this chapter be skipped by hobbyists using this textbook for bread boarding projects. 

2.2 A Universal Set of Boolean Operations 
When thinking about Boolean algebra, it is important to realize that Boolean values are binary, 
so any Boolean variable is limited to two values.  Often these values will be True or False, but in 
reality any binary values can be used.  In this textbook, the value 0 will be used for False, and 1 
for True.  The reason for using 0 and 1 is that it is a more natural and useful way to represent 
these values in an engineering context, which will hopefully become apparent to the reader as 
they continue their study of computer organization. 
To be useful some minimum set of operations which can be used to manipulate those Boolean 
variables.  For Boolean algebra this minimum set of operations will include just 3 operations, 
they are AND, OR, and NOT.  The AND and OR operations are binary operations (operations 
that take two operands), and the NOT is a unary operation (operation that takes one operand).  
These operations will be defined formally using truth tables in the next section.  For now they 
will be defined informally as follows: 

• the AND operator is f(A,B), where f(A,B) is 1 (true) where A, B are both 1 (true) 
otherwise it is 0 (false). 

• the OR operator is f(A,B), where f(A,B) is 1 (true) is A or B or both A and B are 1(true), 
otherwise it is 0 (false). 

• the NOT operator is f(A), where f(A) is 1 (true) if A is 0 (false), and f(A) is 0 (false) if a 
is 1 (true).  

This leads to a question as to why these three, and only these three, operations are chosen.  The 
answer is that these three operations are universal Boolean operations.  In this context, universal 
means that any Boolean function can be reduced to combinations of these three operations.  
Therefore, there is never a need to define any other Boolean operations to calculate a Boolean 
function.  Other useful Boolean operations will be introduced in this textbook, but realize that 
these operations can be reduced to simply AND, OR, and NOT operations2.  The proof of this 
will be left to the exercises at the end of this chapter. 
                                                           
2 This result, and AND, OR, and NOT are Universal over Boolean functions is even more amazing when it is realized 
that any effectively computable function is computable using only Boolean functions.  This result, that any 
effectively computable function is computable with just the operations AND, OR, and NOT, was personally mind 
blowing when I first understood it. 
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In this textbook, the AND operation will be written using the multiplication sign, "*", and the 
result call a product; the OR operation will be written using the "+" sign, and will be called a 
sum; the NOT operation will be shown by following the variable with a single "'" mark, e.g. A' is 
NOT-A.  Note also that the "*" symbol can be dropped as in standard algebra, so "A*B" can also 
be written simply as "AB". 

2.3 Truth Tables 
Boolean functions are functions that perform operations on sets of Boolean variables.  For 
example, a Boolean function f, which takes 2 input values A and B, would produce an output 
value, f(A,B).  The input values A and B are binary, as is the output value f(A,B).  It is possible 
to completely characterize the function f(A,B) by enumerating all the possible input 
combinations and A and B (00, 01, 10, 11), and specifying the output f(A,B) for each input 
combination. 

A truth table is standard way to  represent a Boolean function which enumerates all the possible 
outputs of that function.  So assume f(A,B) is the AND operator.  The truth table for this 
operation is: 

Input Output 

A B AND 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
Table 2-1: AND truth table 

More than one function can be represented in a truth table.  A truth table that represents two 
functions, AND and OR, would be the following: 

 

Input Output 

A B AND OR 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 1 
Table 2-2: AND and OR truth table 

All Boolean functions can be represented using truth tables (the proof for this is left for the 
exercises at the end of this section), though the size could become quite large, or possibly 
infinite.  For example, consider two Boolean functions f1(A,B,C) and f2(A,B,C).  The truth table 
for these two functions would be written as follows: 
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Input Output 

A B C f1(A,B,C) f2(A,B,C) 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 1 1 

1 1 0 1 0 

1 1 1 1 1 
Table 2-3: Truth table for f1(A,B,C) and f2(A,B,C) 

2.4 Disjunctive Normal Form(DNF) 
Disjunctive Normal Form (DNF) is a standard way to write Boolean functions.  It can be 
described as a sum or products, and an OR and ANDS3.  To understand DNF, first the concept of 
a minterm will be covered. 

A minterm is a row in the truth table where the output function for that term is true. For example, 
in Table 2-3, the function f1(A,B,C) has a minterm when A=1, B=0, and C=0.  We can write this 
minterm a AB'C' (A and  not-B and not-C), since A is true, and B and C are both false.  Function 
f1(A,B,C) also has three other minterms, AB'C, ABC', and ABC.  So the DNF for the function 
f1(A,B,C) would be written as: 

f1(A,B,C) = AB'C' + AB'C + ABC' + ABC 

Note that these minterms are numbers 4, 5, 6, and 74 in the table so a short hand to write the 
DNF is the following: 

f1(A,B,C)= Σ(4,5,6,7) 

Likewise f2(A,B,C) can be written as: 
f2(A,B,C) = A'B'C + A'BC + AB'C + ABC  

=Σ(1, 3, 5, 7) 

Note that any Boolean function can be written in DNF, and DNF requires only 3 types of 
operations, the AND, OR, and NOT.  This is why AND, OR, and NOT are universal.  The proof 
of this is left for the exercises at the end of the chapter. 

                                                           
3 Another way to represent the function is Conjunctive Normal Form (CNF).  CNF can be described as a product of 
sums, or an AND or ORs.  The use of CNF is left to the problems at the end of the chapter. 
4 Note that the number starts at 0, not 1. 
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2.4.1 Boolean Relationships 
The next question to be asked is if any Boolean function can be written in DNF, should DNF be 
used to represent all Boolean functions?  The answer to this question comes from the engineering 
the circuit.  At some point, a computer has to implement the Boolean function as a circuit.  That 
circuit will need 1 gate for each operation.  And in engineering the circuit, the goal is to 
minimize the number of gates needed. 

Why should the number of gates be minimized?  When a gate is actually included in a circuit, it 
has 3 bad effects: 

• Every gate requires power to operate it.  The more gates in the circuit means that 
power will be needed to operate the computer. 

• Since gates require power, they produce heat as a result.  More gates mean more heat 
from the CPU. 

• There are always delays in propagating the signal across the gates.  The speed of light 
is very fast, but it is not infinite.  The further the electricity has to go to reach the end 
of the circuit, the longer it takes.  So the more gates in the circuit, the slower the CPU.  
And in modern computers, the speed of light is often the limiting factor in how fast 
the CPU can cycle, and thus in the speed of the CPU. 

Thus the goal in any circuit design is to limit the number of gates in the circuit.  For the function 
f1(A,B,C) in Table 2.3, the number of AND gates is 8, or gates is 3, and not gates is 4, or a total 
of 15 gates.  The question is whether or not the circuit can be implemented in less than 15 gates. 

Boolean algebra is the mechanism which is used to answer this question.  Boolean algebra is just 
like traditional algebra in that there are a set of relationships that can be applied to a function to 
transform it.  And those operations are generally somewhat analogous to the operations in 
traditional algebra, making the transition to Boolean algebra somewhat easier.  A list of these 
relationships is given in table 2.4. 

Relationship Rule 
No. 

Relationship Rule 
No. 

x + 0 = x 1 x * 0 = 0 2 
x + 1 = 1  3 x * 1 = x 4 
x + x  = x 5 x * x = x 6 
x + x’ = 1 7 x * x’ = 0 8 
x + y = y + x 9 xy = yx 10 
x + (y + z) = (x + y) + z 11 x(yz) = (xy)z 12 
x(y+z) = xy + yz 13 x + yz = (x+y) (x+z) 14 
 (x+y)’ = x’y’  15 (xy)’ = x’ + y’ 16 
 (x’)’ = x 17   

 

All of these relationships except for 15 and 16 should can be easily derived.  Relationships 15 
and 16 are known as DeMorgan's Laws, and should simply be memorized. 

Applying these relationships for f1(A,B,C), we find the following: 
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f1(A,B,C) = AB'C' + AB'C + ABC' + ABC 

          = AB'(C'+C) + AB(C'+C) (rule 13) 

          = AB'(1) + AB(1) (rule 7) 

          = AB' + AB (rule 4) 

          = A(B'+B) (rule 13) 

          = A(1) (rule 7) 

          = A (rule 4) 

This expression is obviously simpler than the original, and the number of gates needed for this 
circuit has been reduced from 15 to 0.  This reduction was obviously worth the effort. 

But how did we know to continue to reduce this expression after "AB' + AB"?  This was a 
significant reduction in itself, form 15 to 4 gates.  Since we have now shown that DNF does not 
necessarily (and often does not) result in a minimum expression, how can we know if a 
minimum expression has been reached?  That is the topic of the next section of this chapter. 

2.5 Karnaugh Maps (K-maps) 
Karnaugh Maps (K-maps) are a mechanism for creating minimum Boolean expressions from a 
truth table.  K-maps rely on Gray Codes to create the mapping space, so this chapter will first 
cover Gray Codes.  The chapter will continue with how to set up a K-map, how to solve a K-
map, and how to solve a K-map with don't care conditions. 

2.5.1 Gray Codes 
Gray codes are simply binary codes where the numbers adjacent numbers differ by a single digit. 
A single digit number only has a single digit, so it is trivial.  Now consider the Gray Code for a 
two  digit numbers.  It would be: 

00 
01 
11 
10 

Table 2-4: 2-digit Gray Codes 

In this Gray Code, each number differs from its neighbor by 1 digit.  00->01->11->10->00 (note 
that the Gray code is circular or wraps around from the bottom to the top).  A 3 digit Gray Code 
can be created by reflecting (like a mirror) the 2 digit Gray Code through a plane, and 
prepending a 0 to the numbers at the top of the table, and a 1 to the numbers at the bottom of the 
table. 

000 
001 
011 
010 
110 
111 
101 
100 
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Table 2-5: 3-digit Gray Codes 

Once again that all values in this table differ from the adjacent values by 1 digit, but in addition 
the table has been group into collections of 2-bit groupings.  For example, the rows 0 and 1 both 
contain 00x, rows 1 and 2 contain 0x1, rows 2 and 3 contain 10x, rows 3 and 4 contain x10, etc 
(where x is 0,1).  Note that once again the table wraps, so rows 7 and 0 both contain x00.  

Gray Codes are useful in partitioning a space to group like elements together, and this property 
will be used in the next section on K-maps. 

2.5.2 2-Variable Karnaugh Maps 
A Karnaugh map (or simply K-map) is a mapping of a truth table that partitions the truth table so 
that elements that have the same values are placed adjacent to each other.  It is then easier to see 
what terms are in common, and to reduce the Boolean expression.  For example a 2-variable K-
map for a function F(A,B) would be represented as follows, with the values of A in rows and the 
values of B in the columns.   

 

A/B 0 1 

0 A'B' A'B 

1 AB' AB 
Table 2-6: 2-Variable K-Map 

In this table, the rows correspond to A and not-A, and the columns correspond to B and not-B. 
 

 

Table 2-7: A/A' for 2-variable K-map 

 

Table 2-8: B/B' for a 2-variable K-map 
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Since the K-map has grouped the terms together, it is easier to find a minimum Boolean 
equation.  For example, consider the following truth table: 

Input Output 

A B AND 

0 0 1 

0 1 1 

1 0 1 

1 1 0 
Table 2-9: Truth Table for 2-variable K-map problem. 

This truth table maps to the following K-map.  In this K-map groups of 2n adjacent items are 
found, which for a 2-variable K-map can only be groups of 4, 2 and 1.   In this map there are 2 
groups of 2, as shown below.   

 
Table 2-10: Solving a 2-variable K-map 

The two grouping found correspond to A' and B', so the final equation for this K-map is A'+B'. 

Two variable K-maps are trivial, and so not very interesting.  The next two section will show 
how to solve the K-maps for more 3 and 4 variables. 

2.5.3 3-Variable Karnaugh Maps 
3-variable K-maps correspond to Boolean functions of the form f(A, B, C).  The K-maps again 
allow a truth table to be mapped so that rows that differ by 1 or 2 values are placed next to each 
other.  To do this, the Gray Codes that were introduced earlier are used.  Note how the values for 
variables B and C are numbered as Gray Codes in the 3-variable K-map table. 

A/BC 00 01 11 10 
0 A'B'C' A'B'C A'BC A'BC' 
1 AB'C' AB'C ABC A'BC' 

Table 2-11: 3 variable K-map 

 

 



26 DIGITAL CIRCUIT PROJECTS 

 
Note that once again this number has resulted in regions in the K-map where the variables differ 
by 1 digit, as shown below.  Note that the region C' wraps around the table. 

 
Table 2-12: A/A' region of a 3-variable K-map 

 
Table 2-13: B/B' region of a 3-variable K-map 

 
Table 2-14: C/C' region of a 3-variable K-map 

To use the K-map to solve 3 variable functions, once again groupings of 2n are found, which for 
a 3-variable K-map are 8, 4, 2, and 1.  The larger the grouping, the fewer the terms, so groupings 
of 8 are chosen over groupings of 4, groupings of 4 are chosen over groupings of 2, and 
groupings of 2 are chosen over groupings of 1.  

The following is an example of how to use a K-map to solve a Boolean expression.  Consider a 
function f(A,B,C) has the following truth table: 

Input f(A,B,C) 

A B C AND 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 
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1 1 0 1 

1 1 1 1 

 

This expression can be represented as the following sum of products. 

f(A,B,C) = Σ(0, 4, 5, 6, 7) 

The minimum function for this K-map consists of one group of 4 and one group of 2, and 
corresponds to the equation f(A,B,C) = A+B'C'.  Note the cell AB'C' is used in both equations, 
which is rule 5 from the Boolean relationship table, X+X = X, and means that any term in the 
summation can be used more than once in minimizing the circuit. 

 

To show that the final equation corresponds to the initial truth table, algebra will be used to 
reduce the expression from DNF to the final form. 

f(A,B,C) = Σ(0, 4, 5, 6, 7) 
         = A'B'C' + AB'C' + AB'C + ABC' + ABC 
         = A'B'C' + AB'C' + AB'C' + AB'C + ABC' + ABC (rule 5) 
         = (A+A') B'C' + (AB' + AB)(C+C') (rule 13)  
         = (1) (B'C') + (AB' + AB) (1) (rule 7) 
         = B'C' + AB'+ AB (rule 4) 
         = (B'C') + A(B'+B) (rule 13) 
         = (B'C') + A(1) (rule 7) 
         = (B'C') + A (rule 4) 

 

2.5.4 4-Variable Karnaugh Maps 
While K-maps larger than 4 variables exist, they require more than 2 dimensions and are thus 
hard to solve by hand, though there are algorithmic ways to do this and there are many programs 
online that can solve them.  This text is only interested in presenting the concept of K-maps and 
how they are solved, so it will end with presenting 4-Varable K-maps. 

4-Variable K-maps correspond to Boolean functions of the form f(A, B, C, D).  The K-maps 
again allow a truth table to be mapped so that rows and columns that differ by 1 or 2 values are 
placed next to each other.  To do this, the Gray Codes that were introduced earlier are used.  
Note how the values for variables A,B and C,D are numbered as Gray Codes in the 3-variable K-
map table. 
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AB/CD 00 01 11 10 
00 A'B'C'D’ A'B'C’D A'B’CD A'B’CD’ 
01 A’BC’D’ A’BC’D A’BCD A'BC'D’ 
11 ABC’D’ ABC’D ABCD ABCD’ 
10 AB’C’D’ AB’C’D AB’CD AB’CD’ 

 

Note that once again this number has resulted in regions in the K-map where the variables differ 
by 1 digit, as shown below.  Note that the regions B' and D’ wrap around the table. 

 

  

 
 

 

 

To use the K-map to solve 3 variable functions, once again groupings of 2n are found, which for 
a 4-Variable K-map are 16., 8, 4, 2, and 1.  The larger the grouping, the fewer the terms, so 
groupings of 16 are chosen over groupings of 8, groupings of 8 are chosen over groupings of 4, 
groupings of 4 are chosen over groupings of 2, and groupings of 2 are chosen over groupings of 
1.  

The following is an example of how to use a K-map to solve a Boolean expression.  Consider a 
function f(A,B,C) has the following truth table: 

Input f(A,B,C) 

A B C D AND 

0 0 0 0 1 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 0 
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0 1 0 0 1 

0 1 0 1 1 

0 1 1 0 1 

0 1 1 1 1 

1 0 0 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 0 

1 1 0 0 1 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 1 

 

This expression can be represented as the following sum of products. 

f(A,B,C) = Σ(0, 4, 5, 6, 7, 8, 12, 13, 14, 15) 

The minimum function for this K-map consists of one group of 8 and one group of 4, and 
corresponds to the equation f(A,B,C) = B + C’D’.  Note the cells A’BC'D’ and ABC’D’ are 
used in both equations, which is rule 5 from the Boolean relationship table, X+X = X, and means 
that any term in the summation can be used more than once in minimizing the circuit. 
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To show that the final equation corresponds to the initial truth table, Boolean algebra can be 
used.  The derivation of the final equation from the DNF is left as an exercise. 

 

2.5.5 Don’t care conditions 
Sometimes when specifying an equation there are a number of situations where the input is not 
used.  If the input is not used, then any value (0 or 1) can be used, and these are called don’t care 
conditions.  For example, consider a 7-segment display which is used for many time clocks for 
sporting events.  The display consists of 7 segments that are used to display the 10 decimal 
numbers 0..9.  A 7-segment display along with the names for each segment (A..G) is shown 
below. 

 

Each digit 0-9 will lights 1 or more segments to create the number.  For example the digit 0 
would light segments A,B,C,D,E,F; the number 1 would light segments B,C; the number 2 would 
light segments A,B,D,E,G; etc.  Therefore, there will be 7 Boolean functions, one for each 
segment. 

Next, knowing that 10 digits can be represented using a minimum of 4 bits, a truth table can be 
created where the input 4 digits represent the decimal number, and a truth table developed for 
each of the 7 segments making up the number.  When doing this, note that input values for the 
truth table must always be between 0-9, so there are 6 values (10-15) that are not used, so those 
rows in the table are never accessed.  The values for the segments for those rows are don’t cares 
because they are never used; the component does not use those values, so it does not care how 
they are set.  This gives the result for the 7-segment display truth table, where X=don’t care, 
which is shown below. 

 

Input  Output 
A B C D  A B C D E F G 
0 0 0 0  1 1 1 1 1 1 0 
0 0 0 1  0 1 1 0 0 0 0 
0 0 1 0  1 1 0 1 1 0 1 
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0 0 1 1  1 1 1 1 0 0 1 
0 1 0 0  0 1 1 0 0 1 1 
0 1 0 1  1 0 1 1 0 1 1 
0 1 1 0  1 0 1 1 1 1 1 
0 1 1 1  1 1 1 0 0 0 0 
1 0 0 0  1 1 1 1 1 1 1 
1 0 0 1  1 1 1 0 0 1 1 
1 0 1 0  X X X X X X X 
1 0 1 1  X X X X X X X 
1 1 0 0  X X X X X X X 
1 1 0 1  X X X X X X X 
1 1 1 0  X X X X X X X 
1 1 1 1  X X X X X X X 

 

The K-map for each segment now can be evaluated to give the corresponding minimum Boolean 
expression.  The don’t cares (Xs) in the map are important because we can assume they are 1 
when they help us minimize an expression, and assume they are 0 otherwise.  In short, we can 
use them to create larger groupings, but they do not have to be used. 

The K-map for segment A is the following: 

 
The result is two groups of 8 (in red and purple) corresponding to A and B, and two groups of 4, one (in 
black) corresponding to BD, and one (in yellow, crossing the 4 corners of the map) corresponding to B'C', 
resulting in the following equation for segment A,   

fA(A,B,C,D) = A + C + BD + B'D' 

2.6 Conclusion 
Boolean algebra, or functions where the values are binary or two digit values, is the basis for the 
circuits that will be presented in this text.  Boolean functions can always be represented in a truth 
table, and then translated directly into DNF.  Thus any Boolean function can be written using 
only AND, OR, and NOT operations. 

To instantiate these functions into hardware for a computer, circuits will be used.  For a number 
of reasons, including making the circuit faster and decreasing the amount of electricity used and 
the amount of heat generated, it is of interest to designers to make the circuits as small as 
possible, and to make the circuits contain the fewest gates possible.  DNF seldom represents the 
smallest possible circuit, and Boolean algebra is introduced as a way to simplify a circuit.  
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It is difficult to know if a circuit has been reduced to a minimum using just DNF, so the concept 
of a K-map was introduced which is a mechanical way to ensure minimum circuits. 

2.7 Exercises 
1. DeMorgan’s Law: 

a. Show that DeMorgan’s Law is correct for two variables, (A’B’)’ = A+B by using a 
truth table. 

b. Does DeMorgan’s Law hold for 3 variables?  What about 4 variables?   

2. Simplify the following Boolean expressions using Boolean algebra 
a. A + AB 
b. A + A’B 
c. AB’C’ + ABC’ 
d. AC + AC’ + A’B + A’B’ 

3. The operations AND, OR, and NOT are universal in that any Boolean function can be 
implemented using just these three gates.   

a. Prove by construction that the NAND gate is universal by creating AND, OR, and 
NOT gates using only the NAND gate. 

b. Prove by construction that the NOR gate is also universal. 
c. Why are the AND and OR gate not universal?  (e.g. what simple operation cannot be 

created with just an AND or OR gate?) 

4. For inputs A and B, show how to use an XOR gate to create a NOT gate if B is 1, and a 
buffer if B is 0. 

5. XOR is sometimes called an “odd” function because the result of an XOR is 1 if the number 
of 1’s the minterm is odd, the xor is 1, otherwise it is 0.  Show that this is true for 3 and 4 
variable XOR functions, e.g. A ⊕ B ⊕ C, and A ⊕ B ⊕ C ⊕ D. 
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6. For the following truth table: 

a. Give the DNF equation for the table. 
b. Minimize the equation using a K-map. 
c. Show that the DNF is equivalent to the minimum representation using Boolean 

algebra. 

A B C F(A,B,C) 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 0 

 

  

7. For the following truth table 

a. Give the DNF equation for the table. 
b. Minimize the equation using a K-map. 
c. Show that the DNF is equivalent to the minimum representation using Boolean 

algebra. 

A B C F(A,B,C) 

0 0 0 1 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 

 

8. For the following truth table 

a. Give the DNF equation for the table. 
b. Minimize the equation using a K-map. 
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c. Show that the DNF is equivalent to the minimum representation using Boolean 

algebra. 

A B C F(A,B,C) 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

 

9. Solve the 7-segment display problem for segments  b, d, and f. 
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Chapter 3 Getting started 

3.1 Introduction 
There is an old adage, “A journey of 1000 miles begins with the first step”.  The hardest part of 
any project is getting started. I had taught Computer Organization for years but had always used 
virtual circuits to describe the components presented in this text.  That meant using pictures, 
drawings, and eventually tools such as Logisim.  Though I knew the circuits in this book, I was 
afraid to actually touch the hardware.  From my conversations with others, this is not an 
uncommon feeling even among computer scientists.  Like so many people in so much of life, I 
was afraid of the beginning.   

The beginning, when all the fears about the project are apparent.  Do I really know enough to do 
the project?  Will it take a lot longer than I think?  What happens if I hit a problem that I cannot 
solve?  Too often these fears take over, and useful projects just fail to get started.  But once the 
project is started, the unknowns become known and can be dealt with. The complexity becomes 
manageable.  Incremental progress can be achieved, and each success builds on the last.  The 
trick is to start very simple, and to allow the complexity to evolve.  This is the approach of this 
text. 

This text starts as simply as possible.  To begin studying circuits, the first step is to understand 
that digital circuits take electricity into the circuit, and convert it to an output.  In our case, the 
input will always be a switch, and output will always a LED light.  So the first project is a circuit 
which has a switch which turns on a light. 

3.2 Logisim circuit to turn on a light 
In this text, all circuits are first created in Logisim to allow the reader to see the logic 
implemented by the circuit.  This is important for a number of reasons.  First, it is much easier to 
build the circuit in Logisim.  No wires need to be cut and stripped, and there are no physical 
problems like loose connections or other problems to debug.  The circuit is virtual and it always 
behaves as it is coded. 

Second, Logisim will represent the circuit as a series of logic gates, which closely represent the 
Boolean expressions used to create the circuit.  When the circuit is implemented using the 
breadboard and chips, and all the chips look the same so visualizing the circuit is difficult.  
Logisim makes it easier to understand the circuit, and then to translate it into hardware. 

Third, implementing the circuit requires as much concentration on the pin configurations on the 
chips as the actual gates that are used to implement the logic.  Using Logisim allows the reader 
to understand the logic of the circuit without worrying about extraneous implementation details. 

Fourth circuits in Logisim are easier to modify, so problems in implementing the circuit can be 
more quickly addressed and fixed.  Different types of designs for the circuits, inputs to the 
circuits, etc., can be tried in a much more forgiving environment. 

Finally, the circuits which are implemented are more easily saved and shared using Logisim.  
Most of the circuits in this book will have a Logisim implementation which can be downloaded 
from http://chuckkann.com/ 

For the first circuit, a Logisim implementation is shown below.  The first circuit implemented 

http://www.chuckkann.com./
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turns a light on/off. The following list is a step-by-step guide to creating this circuit in Logisim.  
If you are new to Logisim, you might want to start with the tutorials found at the Logisim site. 

 

 

Figure 3-1: Logisim circuit to turn on light. 

1. Make sure the arrow icon is selected.   
2. Select the input pin and place it on the board.   
3. Select an output pin, and place it on the board, 
4. Connect the right side of the input pin to the left side of the output pin by holding the right 

mouse button and drawing a line from the input pin to the output pin. 
5. The circuit is now complete.  Select the hand icon to run the circuit.   
6. Clicking on the input pin changes its value from 0 to 1 and back.  Since it is directly 

connected to the output pin, you will also change the output pin.   
 

This circuit will now be implemented in using a breadboard, resistor, 9-volt battery, switch, and 
led light. 

3.3 Implementing the switch circuit to turn on a light 
In this project you will connect the breadboard to the power supply, then wire the positive and 
negative side strips.  You will then put a switch on the board, and connect the switch to a led so 
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that the switch can turn the led on and off.  This will complete the project. 

3.3.1 The breadboard 
This section describes the breadboard in your lab kits.  For more information about breadboards 
please see the following link: 

http://en.wikipedia.org/wiki/Breadboard 

The following is a picture of a typical breadboard: 

 

 
Figure 3-2: Typical breadboard 

On the breadboard there are two long strips,  called rails, running along the side.  The red rail is 
normally connected to a positive (+5 volts) power supply, and the blue rail is normally connected 
to ground (0 volts).  Note that rails must be connected to a battery or other power source to 
power them.   

There are a number of 10 hole rows in the board, separated by a center empty column.  In a row, 
groups of 5 holes on each side of the empty column are connected.  There is no connection 
between the rows. 

This wiring of the breadboard is shown in the Figure 3-3.  For the positive and ground rails a 
wire runs the length of the board which connects the holes in the positive and negative rails.  
Note that the rails on opposite sides of the breadboard are not connected.  Powering one side of 
the rails does not power both sides, and the rails must be connected to fully power the board.  
This will be done as part of the circuit created in this chapter.   

  

http://en.wikipedia.org/wiki/Breadboard
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Figure 3-3: Breadboard layout 

This breadboard layout also shows that the groups of 5 holes in each row are also connected, 
though the top and bottom groups of 5 holes are not.  Normally the holes in these groups of 5 on 
the two sides of the board will be kept separate.  This will make sense when chips are installed 
and used.     

The groups of five holes are numbered 1 to 60 on each side of the breadboard.  Each group of 
five holes are wired together, so two wires which are placed in holes in the same group on a row 
are connected.  This will be used to wire the circuits. 

3.3.2 Stripping wires 
To make contact with the holes in the breadboard, the insulation must be removed from the ends 
of the wires.  To do this wire strippers will be used.  Typical wire strippers are shown in the 
following figure.  Wire strippers are sharp and can easily cut the wire we are using here by 
placing the wire in the lower part of the clippers (1), and closing them.  However, the notches in 
the wire strippers are places where there is a predetermined distance between the two blades 
which is just the size of the copper wire inside of our insulation.  By placing the wire in the notch 
labeled 22 AWG (or .60 mm) (2), the insulation is cut but the wire is not.  Then by simply pulling 
the wire from the strippers there is a clean end to the wire that no longer is insulated.  This is 
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what will be placed in the holes in the breadboard.  When stripping the wires, you should strip 
off about 1/4 to 1/2 an inch of insulation.  The holes in the breadboard will grab the wires when 
they are placed inside and make a good contact.  If you strip too little insulation off of the wire 
the connection to the breadboard will probably be poor, and your circuits will not work.  If you 
strip too much insulation off, the circuit will have the possibility of short circuiting.  So strip 
enough insulation so that the wires are grabbed in the hole, but not too much more. 

 

 
Figure 3-4: Wire strippers 

The end of the wire strippers (3) can be used as pliers, and is helpful to bend the end of the wire.  
This is useful if you implement the circuits so that the wires run flush along the board, as they 
will do in this book.  If you cut your wires very long and run them above the board, as many 
students do, you do not want to bend the end of the wire.  Running wires flush along the board 
makes the circuit neater and easier to read, but it makes the circuit harder to wire, and takes 
much more time to implement. 
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Figure 3-5: A stripped wire 

3.3.3 Powering the Circuit 
You are now ready to implement the circuit. The steps in creating the circuit will be as follows. 

1. Power will be provided to the breadboard. 

2. A switch will be inserted into the breadboard. 

3. The output from the switch will be sent to the LED, which will complete the circuit. 

The first step is to provide power to the  breadboard.  Pictures of how to power the breadboard 
are shown in the Figure 3-7and Figure 3-9.  These figures contains numbers corresponding to the 
step-by-step instructions below.  As was mentioned earlier, wires in this circuit that always carry 
a positive voltage are red, ground wires are black, and wires that can take on either value are 
yellow.   

1) Find the 7805 voltage regulator (shown in Figure 3.6).  The 7805 voltage regulator will take 
the input of 9 volts from the battery and convert it to 5 volts needed by the chips which will 
be used in the circuit5.  Place the 7805 voltage regulator so that it straddles rows 1, 2, and 3 
on the breadboard as shown in Figure 3-7.  The fit may be tight, so be careful to push it in 
gently so as to not bend the legs.   

2) The input to pin 1 (the pin in row 1 of the breadboard) of the 7805 is the positive 9 volts from 
the battery.  In the figure a red wire is used to indicate this is wire is always connected to 
positive input.  Connect a wire to any hole on the first row, leaving one end not connected to 
anything.  This will be connected to the positive lead of the battery when the breadboard is 
powered.  To test if this is correct, connect the long leg of an led to the positive output of the 
7805 regulator, and the short end to the ground, as shown in Figure 3-6.  Make sure the 
battery is new and strong, or you might now get power across the 7805 regulator. 

                                                           
5 Chips used in circuits generally use either 5 volts or 3.3 volts.  The chips used in this book will all work with 5 
volts, so the circuits will be powered at 5 volts. 
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Figure 3-6: 7805 voltage regulator 

 
Figure 3-7: Powering the breadboard 

 

3) The input to the 7805 pin 2 (the pin in row 2 of the breadboard) is now connected to the 
ground coming from the 9 volt battery.   In the figure a black wire is used to indicate this is 
wire is always connected to ground.  Connect a wire to any hole on the second row, leaving 
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one end not connected to anything.  This will be connected to the negative lead of the battery 
when the breadboard is powered 

4) Connect the ground rail of the breadboard to row 2. The ground rail is the blue column which 
runs down the side of the board. Note that row 2 has three connection, the input ground from 
the battery, the middle pin on the 7805 chip, and the output wire to the blue ground side rail. 

5) The 5 volt output from the 7805 is the pin in row 3.  To power the board, connect row 3 to 
the positive rail of the breadboard.  The positive rail is the red column which runs down the 
side of the board. 

6) The left half of the board is ready to be connected to the battery.  Put a 9 volt battery in the 
battery snap, and connect the leads from the battery to red and black wires from steps 3 and 
4.  (Be sure to connect positive wire to positive input, and negative wire to negative input!)  
The board should now have power.  This can be checked by placing an LED between the 
positive and negative rails on the board.  Note that the LED has two legs, and one is longer 
than the other, as shown in Figure 3-8.  Make sure to place the positive (long) leg in the 
positive (red) rail, and the short leg in the ground (blue) rail.  The light should come on.  If it 
does not, you have a debugging problem.  Here are some things to try: 

a) Make sure that the battery is connected correctly, positive to positive and negative to 
negative.  If it is not, your 7805 chip will quickly start to become hot.  If this happens, 
disconnect the battery and allow the chip to cool.  When the chip is cool, reconnect the 
battery correctly. 

b) Make sure the LED is properly oriented.  This simple mistakes often causes confusion, 
and so when using an LED always make sure to orient it correctly. 

c) Make sure the battery and the snap are ok by putting the LED directly into the 9 volt 
battery clip.  If the LED lights, move to step d. 

d) Make sure that current is getting to the board correctly.  Connect the battery to your 
positive and negative leads (to power the board) and place the LED between rows 1 and 2 
of the board to make sure that you have a good connection with the leads.  If the LED 
lights, move to step e. 

e) Make sure you have current coming from the 7805 by connecting the LED between rows 
3 and 2.  If the LED does not light, something is wrong with the 7805.  Check that you 
have installed it correctly (not backwards for instance).   

 
Figure 3-8: LED 
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7) The left half of the bread board should now have powered, but the right half is still not 
connected.  To connect the right half of the breadboard, go to the last row with the blue and 
red rails.  Run a wire from the left red rail (the outside left rail) to the right red rail (the inside 
right rail) as shown in Figure 3.7.  Do the same for the blue rail.  This should power the rails 
on the right side of the breadboard.  You can test that both rails are now powered by using the 
LED between the blue and red rails on the right side of the breadboard as in step 6 above. 

The breadboard is now powered.   

3.3.4 Installing the switch 
This purpose of this first circuit was to have a switch turn on/off a light.  This section will 
describe how to install the switch.  The instructions below refer to Figure 3-11. 

0. The switch to be installed is shown in Figure 3-10.  There are two nuts and two washers 
on the switch.  These will not be used in the circuits in this book, and make the switch 
harder to use.  Remove them.  You may want to save them in case you ever use this 
switch in a different circuit.   

1. To  install the switch, insert  it across 5 rows of the breadboard.  In this picture, the switch 
is placed across rows 9-13.  Only the 1st (row 9), 3rd (row 11), and 5th (row 13)  rows 
will be connected to the switch. 

 

 

Figure 3-9: Toggle switch 

2. The first pin is the positive input.  Connect the first pin (row 9) in the switch to the 
positive rail. 
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3. The third pin is the negative input.  Connect the third pin (row 13) in the switch to the 

negative rail. 

4. The second, or middle, pin is the output.  Connect the second or middle pin (row 11) to 
the final output LED by running a wire from the output (4a) of the switch to the LED (4b) 
at the bottom of the board.   

 

 
Figure 3-10: Completed circuit 

 

This type of switch always produces the output from the pin opposite the direction of the switch.  
When the switch is pointing towards the first (positive) input the output of the switch is negative, 
and when the switch is pointing towards the third (negative) pin the output is positive.  There is 
also a middle position of the switch.  The middle position always is an unknown state, so it could 
go to either positive or negative.  Never check a circuit with the switch in the middle position. 

The switch is now installed.  Again the switch can be tested to see if it is installed correctly 
connecting the switch output (pin 12) to the negative rail using the LED.  If the switch is 
installed correctly, the switch should turn the LED on and off. 

3.3.5 Completing the Circuit 
The circuit can now be completed.  The steps below refer to Figure 3.11. 

5. Place a resistor on the row after where you ran the wire in 4b.  The resistor is used to 
lower the current in the circuit so that the LED does not glow as bright, and will not burn 
out as fast. 

6. Place a LED on the board between the row for 4b and the resistor. Remember an LED is 
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directional, so you have to orient it correctly.  The longer leg should always connect to 
the positive voltage (4b), and the shorter one to the ground (5).  Orient the LED so that 
the longer leg is closer to the switch (positive), and have the LED cross two rows. 

The circuit should be complete.  If it is done correctly the switch should turn the LED on and off.  
Give yourself a pat on the back, you have completed the first circuit. 

3.4 Debugging the circuit 
Sometimes, despite our best efforts, things simply do not work.  If your circuit does not work at 
this point, it will have to be corrected, or debugged.  The easiest way to debug this circuit is 
using an LED.  At each step in the implementation, the voltage (positive and negative) for some 
points on the board will be known.  For example, once the power has been supplied to the 
breadboard, the red rail is positive and the blue rail is negative.  Placing a LED (correctly 
oriented) between these two should light that LED, as in Figure 3-12.  If the LED does not light, 
move backwards through the components in the board until you reach a point where the LED 
does light as you expect.  Alternatively, you can start with the battery snap, and move forward in 
the circuit until you find a point where the LED fails.  In this fashion you can determine to what 
point the circuit works.  The step between where the circuit is working and the circuit is not 
working is in error, and needs to be debugged.   

 
Figure 3-11: Debugging the circuit 



46 DIGITAL CIRCUIT PROJECTS 

 
Here is a tip I have learned from 30 years of debugging.  The simplest rule for debugging a 
circuit, program, or life is to allow what you are fixing to tell you what is actually true, not what 
you believe should be (or even must be) true.  Do not try to reason about what should be 
happening.  See what is actually happening, and then try to explain the observed results.  Just 
verbalizing the problem can help6.  When you get too upset, take a walk and get your mind off of 
the problem. 

But the key is to not assume you know what must be happening.  Allowing the situation to tell 
you the truth about what is happening is always more fruitful then trying to find faults in your 
logic, especially if you believe that your (what turns out to be errant) logic has to be correct. 

3.5 Exercises 
1. Implement the circuit in Figure 3-11. 

2. Modify the circuit in Figure 3-11 by adding a second input switch and LED to the right 
side of the breadboard. 

3. Identify the following parts of the circuit, and give a short reason why they are used: 

a. capacitor 
b. resistor 
c. LED 

4. What are the 3 positions of the toggle switch?  Which one cannot be used? 
5. Explain the configuration of a breadboard.  What holes are connected?  How is it 

powered?  
6. What components in the circuits implemented in this chapter are directional?  How can 

you determine if you have placed the component correctly? 

  

                                                           
6I  like to  tell the problem to a dog.  Unlike a person, he will listen intently and  not interrupt.  And he appreciates 
the attention. 
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Chapter 4 Gates 

4.1 Introduction 
This chapter will present a simple explanation of Boolean (or binary) logic.  The simple Boolean 
operations NOT, AND, and OR will be explained, and how they are implemented in a circuit 
diagram and in an IC chip will be explained. 

4.2 Boolean logic and binary values 
Now that we have a basic circuit to light an LED, we can start to implement Boolean logic in 
our circuits.  Boolean logic represents all data by two values, which is why it is sometimes 
called binary logic.  Often these two binary values are represented by the value true (t) or false 
(f).   However this is just one way to represent these values, and while it is the one 
mathematicians use, it is often not convenient.  For example, when we are talking about circuits 
we often want to say if the switch is on (t) or off (f) .  We will know if the switch is on because 
it produces a high voltage (t) or a low voltage (f) .  Finally, these circuits can be used to 
represent binary numbers, and in this case the values 1 (t) and 0 (f)  are greatly preferred.  
Depending on the context, each of these representation of binary values will be used at different 
times in this text.  However, realize that they are just different ways to represent the same 
information, and it is just convenience that will dictate which is used.   

4.3 Unary operations 
Boolean logic consists of a set of values (t and f) and the operations which can be performed on 
the binary values.  In this book, the three most important Boolean operations are AND, OR, and 
NOT.   

The operation of a Boolean operator is usually shown (or characterized) using truth-tables.  A 
truth-table is a table which gives the input value for the operation, and the output values for that 
operation.  For example, there are only two unary operations.  Unary operations are operations 
which take only one input, the NULL operator and the NOT operator.  An easy way to 
characterize these functions is in a table where the input values of 0 and 1 are input, and the 
output values from the function are given as 0 and 1.   

A truth table is normally shown with the input values for a function on the left, and the name of 
the function at the top of the column.  The following truth table characterizes the NULL and 
NOT operations.  It shows what the outputs of the NULL and NOT operator are for an input 
value of A. 

 

Input Output 

A NULL NOT  

0 0 1 

1 1 0 

 

As this table shows, if the input value A is 0, the NULL gate will produce an output value of 0, 
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and the NOT operator will produce a value of 1 (the inverse).  If the input value of A is 1, the 
NULL operator will produce a value of 1, and the NOT operator will produce an output value 
of 0.  The NOT operator in this text will be written as a quote ('), so NOT-A will be A'.   

Gates are the physical implementation of Boolean operators in a circuit.  Since the NOT 
operator always inverts the input value, the NOT gate is often referred to as an inverter, and is 
represented by the triangle with a circle symbol in Figure 9 below.  The NULL gate is usually 
either absent, or implemented as a buffer.  The symbol for the buffer is represented by the 
triangle symbol in Figure 4-1 below.   
 

 
Figure 4-1: Buffer and inverter gates 

Figure 4-2 shows a circuit with the buffer and inverter in Logisim. 

 

 
Figure 4-2: Buffer and inverter circuit in Logisim 

 

4.4 Binary Operations 
The other two important Boolean operators, AND and OR, are binary operators because they 
take two inputs.  The AND operator is true (1) it both of its inputs are true (1) (e.g. A and B are 
both true); if either of its inputs are false (0) then the operator is false(0).   

The OR operator is true  (1) if either or both of its inputs are true (1) (e.g. either A and B is true, 
or both are true); it is false (0) if both of its inputs are false (0).  The following truth table 
characterizes the output for the AND and OR functions behaves for the two inputs A and B. 

Input Output 

A B AND OR XOR 

0 0 0 0 0 

0 1 0 1 1 

1 0 0 1 1 

1 1 1 1 0 

Figure 4-3 Truth table for AND and OR 

In this text, the AND operator will be shown by the * symbol (A*B) , and the OR operator by 
the + symbol (A+B) .  The * is often dropped, as in algebra (e.g. A*B will be written AB).  
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Unless it makes sense to do otherwise, this text will include the * include the operator in 
expressions.   

One last Boolean function which is important for many of the circuits in this text is the 
exclusive-or (XOR).  An XOR function is important in that in can often reduce the size of many 
circuits.  The symbol for the XOR is ⊕, so A⊕B means A XOR B.  The XOR is often called an 
odd function, in that it is true (1) when there is an odd number of inputs to the function which are 
1, and false when there is an even number of inputs to the function which are 1.   

Symbols for the AND, OR, and XOR gates are shown in Figure 4-5. 

 

 
Figure 4-4: AND, OR, and XOR gates 

 

A circuit implementing the AND, OR, and XOR gates in Logisim is shown in Figure 4-5. 

 
Figure 4-5: AND, OR, and XOR gate circuit 

4.5 Implementing the AND gate circuit 
This section will cover how to implement the AND gate circuit.  This circuit will add a new 
component to the circuit, a 7408 (AND) chip to implement the AND gate.  A brief overview of 
the 7408 chip will be given here. 

4.5.1 ICs and the 7408 chip 
Figures 4-5 and 4-6 are pictures of 7408 chips.  There are a large number of manufactures of 
chips, and realtors will usually sell chips from several different manufactures.  While the chips 
themselves are standard in their implementation and packaging, details such as the labeling are 
not.  All chips are labeled on the top of the chip, though the labeling is not consistent.  Some 
labels are easy to read, but often the labels require the user to move the chip around under a 
bright light to see the labeling.  Other types of manufacturer specific information will be on the 
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chip, and this will vary from manufacturer to manufacturer.  But somewhere on the chip will be a 
designation of the chip type.  This designation will follow the format of 74tttsss, as explained in 
section 1.2 

Every chip some number of sharp legs, called pins, which are designed to be inserted into the 
breadboard.  Each pin has a specific use.  For the 7408 chip these pins will be explained in the 
next section.  Be careful when inserting and removing these chips, as these pins are delicate and 
easily bend and break. 

 
Figure 4-6: 7408 chip, circle indicates top of chip. 

 

Figure 4-7: 7408 chip, notch indicates top of chip. 

4.5.2 The datasheet 
Every IC chip comes with a datasheet which explains the setup of the chip.  The datasheet 
contains a lot of useful information to engineers looking to use these chips, much of it beyond 
the scope of this text.  One diagram that is always available in the datasheet is the pin 
configuration, and example for the 7408 chip shown in Figure 4-7 below.   

The pin configuration diagram contains several items. The first is the orientation of the chip.  At 
the top of every chip is a circle or notch, shown in Figures 4-6 and 4-7 respectively.  It is 
important to carefully note the top of the chip, as inserting the chip upside down is a common 
mistake.  When this happens, generally the VCC and GND wires are reversed, and the chip 
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becomes hot very quickly.  It is always a good idea to check the powering of the chip when it is 
place on the board to make sure it is not getting hot.   

Next the pin configuration diagram shows the input and output values for the pins on the chip.  
As shown in Figure 4-8, there are 4 AND gates on this chip.  Pins 1 and 2 are inputs to an AND 
gate which has output on pin 3.  Likewise pins 4 and 5 connect to pin 6, etc.   

 

 
Figure 4-8: 7408 pin configuration diagram 

There are two pins which are not connected to any gates, labeled VCC and GND.  All chips must 
be powered to work.  The VCC and GND are known as the power supply pins.  These are the 
pins which are connected to the positive and negative rails to provide power to the circuit.  As 
can be seen in Figure 4-9 the VCC (pin 14) is connected to the positive (red) rail using a red 
wire, and GND (pin 7) is connected to the ground (blue) rail using a black wire.  

We are now ready to implement the circuit to implement a single AND gate to turn on a LED. 

4.5.3 Creating the AND circuit 
This section covers how to implement a circuit using an AND chip.  The steps correspond to the 
picture in Figure 4-7. 

1. Insert a second switch on the right hand side of the breadboard, and wire it just like the 
switch installed in Chapter 3.  The right hand side of the breadboard should have been 
powered as part of the original circuit in Chapter 3. 

2. Carefully insert the 7408 (AND gate) chip onto the breadboard, being careful not to bend 
the pins on the chip.  The chip is placed so that it crosses the middle of the board.  Make 
sure that the circle or notch is at the top of the circuit, as in Figure 4-9. 

3. Provide power to the chip by connecting pin 14 to the positive rail. 
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4. Ground the chip by connecting pin 7 to the ground rail. 

5. Connect the input pins 1 and 2 to the inputs from the two switches. 

6. Connect the output pin 3 to the LED. 

If everything is connected correctly, the circuit will implement an AND gate with the input 
coming from the two switches.   

 
Figure 4-9: 7408 AND gate circuit 

4.6 Exercises 
1. Draw the symbols for the NAND, NOR, XOR, and XNOR gates.  What is the difference 

between the Buffer, AND, OR, XOR and the NOT, NAND, NOR, and XNOR gates? 

2. Implement the AND chip circuit show in Figure 4-9.  Show by various combinations of 
the switches that the circuit matches the AND gate truth-table. 

3.  Modify the circuit from question 2 to use a second AND gate on the chip.  You should 
use the same input switches on the circuit, so the resulting lighting of the LED should be 
the same. 

4. Remove the AND chip from the circuit in Exercise 3, and replace it with the OR chip.  
Show that the circuit matches the OR gate truth-table.  Try other chips (NAND, XOR, 
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etc) that you have from the lab kit. 

5. There are 16 possible combinations of output given 2 inputs.  These 16 combinations are 
given in  the following table.  Use Logisim to identify the NAND, NOR, XOR and 
XNOR operators.  See how many of the others you can name.  The AND and OR are 
entered in the table for you. 

 

Input Output 

A B  AND      OR         

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
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Chapter 5 Associative Boolean operators 

5.1 Introduction 
This chapter looks at which Boolean operators are associative.   Associative operations allow 
arbitrary groupings of the operations.  For example, addition is associative.  We can show this 
with the following two equations, which are equal: 

x = (2 + (3 + (4+5))) = 14 

x = (2 + 3) + (4 + 5) = 14 

Subtraction is not associate, as can be seen in the equations below: 
x = (2 - (3 - (4 - 5))) = -2 

x = ((2 - 3) - (4 - 5)) = 0 

These examples show that subtraction is not associative, and while they do not prove that 
addition is associative, they are illustrative that addition is associative at least for this example.  
The proof that addition is associative is not really of interest in this text, and can easily be found 
in an online search. 

Like arithmetic operators, Boolean operators can also be associative, commutative, and 
distributive.  This chapter will create circuits which will demonstrate the associative property for 
Boolean operators.  The exercises at the end of the chapter allow the reader to further explore 
these properties. 

5.2 Modeling associative operations in Logisim 
To demonstrate which Boolean operators are associative, the first step is to write equations for 
each operator which implement two associative ways to implement an expression, and see if the 
results are equivalent or not.  A first equation for the AND operation could be the following:     
(((A * B) * C)*D).  In this equation, the results of the output from each AND gate serially 
feeds the inputs to the AND next gate, where it is matched with the next input.  This is shown in 
Figure 5-1 below: 

 
Figure 5-1: Serial AND circuit 

A second equation, (A * B) * (C * D), does the first two AND operations in parallel, and then 
combines the results, as shown in Figure 5-2 below: 
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Figure 5-2: Parallel AND circuit 

 

These two circuits can be implemented in Logisim, and the results used to fill in the table for 
Exercise 1 in Section 5.5.  This will show that for these two equations, the AND operator is 
associative.  Changing the Boolean operator by inserting a different gate will give results for the 
rest of the table. 

5.3 Implementing the circuit 
The two expressions given above will now be implemented in a breadboard circuit to confirm 
that they are indeed associative.  This exercise also serves to show how to implement circuits 
which require cascading of outputs from one gate to another in a circuit, and to better see how 
the circuit diagrams from Logisim can be translated into circuits implementations. 

5.3.1 Implementing the serial AND circuit 
The serial AND circuit from Figure 5-1 is implemented in Figure 5-4 below.  Step by step 
instructions for implementing this circuit follow, and the numbers correspond to numbers in the 
picture of the circuit in Figure 5-4.  You should start with a circuit with the powered 7408 chip 
on the breadboard from Chapter 3 (pins 7 and 14 connected to ground and positive respectfully).  
The pin layout schematic from Figure 4-6 is repeated here as Figure 5-3 for ease of reference in 
the steps below. 

0. This circuit requires 4 inputs, labeled A, B, C, and D.  Install 4 switches just as in 
Chapter 3, and as shown in Figure 5-4.   

1. Install and power the 7408 chip (quad AND gate). 
2. The first two switches, A and B, form the inputs to the first AND gate (pins 1 and 2 ).  

The output is on pin 3 is the result of A*B. 
3. The output from the first AND gate (pin 3) is the input to the third AND gate (pins 13).  

This is done by connecting pin 3 to pin 13. 
4. Connect the switch C to the second input to the third AND gate (pin 12 ).  The output 

from this AND gate, on pin 11, is ((A*B)*C). 
5. Connect the output from the third AND gate, pin 11, to the fourth AND gate by 

connecting  pin 11 to pin 10.  Note that in the picture this connection is a bare wire, and 
might be hard to see. 

6. Connect the second input to the fourth AND gate by connecting switch D to pin 9.  The 
output of the third AND gate, pin 8, is (((A*B)*C)*D). 

7. The final output of the circuit is the output of  the fourth AND gate  on pin 8.  Connect 
pin 8 to the led.  When all 4 switches are turned on, the LED should light. 
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Figure 5-3: 7408 pin configuration diagram 

When this is completed, your circuit should light the LED only when all 4 switches are in the on 
position.   

 

Figure 5-4: Serial AND implementation 
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5.3.2 Implementing the parallel AND circuit 
The parallel AND circuit shown in Figure 5-2 is implemented in Figure 5-5.  This circuit is 
created from the serial circuit in Figure 5.4 by making the following modifications.   

1. Move switch D so that it is now input to the second AND gate, pin 13.  
2. Move the output from the first AND gate so that it is now input to third AND gate, pin 9.  

This circuit should produce the exact same output as the circuit in section 5.4.1, e.g. the LED 
should turn on when all of the switches are turned on. 
 

 

Figure 5-5: Parallel AND implementation 

5.4 Conclusion 
Like arithmetic operators, Boolean operators can be associative, commutative, and distributive.  
These properties affect the way that circuits are implemented, and the effects can be seen when 
building larger circuits. 

5.5 Exercises 
1. Implement the circuits in Figures 5-4 and 5-5. 
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2. Completing the following table by implementing circuits in Logisim for the operations 
AND, OR, XOR, NAND, and NOR.  Which operations appear to be associative?   

The output columns for the table below are defined as follows (the XOR operator is ^, 
and NOT is !, which is consistent with Java): 

 
As = (A*(B*(C*D))) Xs = (A^(B^(C^ D))) NOs = !(A+!(B+!(C+D)) 

Ap = (A*B)*(C*D) Xp = (A^B)^(C^D) NOp = !(!(A+B)+!(C+D)) 

Os = (A+(B+(C+D))) NAs = !(A*!(B*!(C*D))  

Op = (A+B)+(C+D) NAp  = !(!(A*B)*!(C*D))  

 

 

 

Input Output 

A B C D As Ap Os Op Xs Xp NAs NAp NOs NOp 

0 0 0 0           

0 0 0 1           

0 0 1 0           

0 0 1 1           

0 1 0 0           

0 1 0 1           

0 1 1 0           

0 1 1 1           

1 0 0 0           

1 0 0 1           

1 0 1 0           

1 0 1 1           

1 1 0 0           

1 1 0 1           

1 1 1 0           

1 1 1 1           

  

3. Implement circuits in Logisim that show whether or not the operations AND, OR, XOR, 
NAND, NOR, and XNOR are commutative.  This can be accomplished using circuits 
with only 3 inputs and 2 operations.  Create a table similar to the one in problem 2.  
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Which operations appear to be commutative?  

4. Implement two circuits showing the commutative property using your breadboard and 
chips. 

5. Implement circuits in Logisim that show whether or not the operations AND, OR, XOR, 
AND, NOR, and XNOR are distributive.  This can be accomplished using circuits with 
only 3 inputs, but one version requires 2 operations and the other 3 operations.  Create a 
table similar to the one in problem 1, except with only 3 inputs, and complete it.  Which 
operations appear to be distributive?    Implement the circuits using the breadboard. 

6. Implement two circuits showing the distributive property using your breadboard and 
chips. 

7. Show, by creating the circuit in Logisim, that a 32-way parallel AND operation can be 
implemented such that it only can be executed in 5*T time (where T is the time to do a 
single AND operation).  What does this exercise imply about the runtime growth of 
associative operations when run in parallel?  This question is for more advanced students, 
and assumes some background in data structures and algorithms, but illustrates an 
important point about parallelizing of associative operations. 
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Chapter 6 Adders 

6.1 Introduction 
The material covered up to this point was used to show how to implement circuits.  This chapter 
will cover a circuit that will be used as an IC, and this circuit forms a basic building block of a 
CPU. 

Addition is the central to all arithmetic operations, and all other arithmetic operations 
(subtraction, multiplication, and division) can be built using addition.  Therefore, addition is 
central to implementation of the Arithmetic Logic Unit (ALU) in a CPU shown in Figure 6-1.  
This chapter will show how addition of whole numbers using Boolean operations, and how it can 
be implemented in a circuit. 

 
Figure 6-1: ALU  

This chapter will first look at how two one-bit binary numbers can be added, which will be 
implemented using a circuit called the half adder.  The need for a carry bit will become apparent 
when trying to add numbers larger then a single bit, and this will be done using a circuit called a 
full adder.  Full adders will then be chained together to form an n-bit adder, which will be able to 
perform addition of whole numbers . 

6.2 Half adder 
The circuit presented in this section is called a half adder.  A half adder is an adder which adds 
two binary digits together, resulting in a sum and a carry.   

Why is it called a half adder?  Because this adder can only be used to add two binary digits, it 
cannot form a part of an adder circuit that can add two n-bit binary numbers.  The adder circuit 
which will be used to add n-bit binary numbers is called a full adder.  This adder is less than a 
full adder, and hence it is called a half adder. 

6.2.1 Adding binary numbers 
To understand binary addition, we must remember how we did addition when we first learned it.  
When executing decimal addition for any two digits, the result can have 2 digits.  For example 
7+6= 13.  The first digit (in this case 1) is called the carry (C), and the second digit is called the 
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sum (C).  The purpose of the carry is to be included in the addition of the next digit of the 
number.  For example, to calculate 17 + 26, first the 7+6 operation is performed, and the digit 3 
is moved to the answer.  The carry 1 is added to tens digits from 17 and 26 (1+1+2) to give the 
number  4, and the answer is combined to produce 43. 

Thus the carry digit is carried to the addition in the next digit.   So when adding two digits the 
output from the operation is a sum and a carry.  Remember that a carry always produced, even if 
it is 0.  To calculate 14+22, the 4 and 2 are added, resulting in a 6 with a carry of 0.   This is 
important to remember, every addition results in a sum and carry, though the carry can be 0.   

Binary addition for two binary numbers each containing one digit works the same way as 
decimal addition for two decimal one digit numbers, but is simpler because the two input values 
can only have 2 states (either 0 or 1).  So give two binary inputs to an addition (X and  Y) we can 
summarize the possible results of adding those bits in the following truth table.  Note that the 
added values produce two results, a sum and a carry, both of which are either 0 or 1. 

 

 

Input Output 

X Y S C 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

Figure 6-2: Half adder truth table 

6.2.2 Half adder circuit 
The truth table in Figure 6-2 shows that the outputs S and C are simply binary functions on X 
and Y.  Specifically the S output is the result of an XOR operation X⊕Y.  The C output is the 
result of an AND operation, X*Y.  This circuit can be designed and implemented in Logisim, as 
shown in Figure 6-3. 

 
Figure 6-3: Half adder circuit 

This simple circuit adds two inputs, I0 and I1, and produces a sum and carry.  This is the first 
circuit that we have implemented that has two outputs.  This is not a problem.  Any number of 
functions can be applied to a set of input data, and a single set of input data can result in any 
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number of outputs.  

6.2.3 Half adder implementation 
This section will show how to implement the half-added as a circuit on the breadboard.  The 
circuit has 2 inputs (X and Y), so it will require two switches.  The circuit has 2 outputs, thus it 
has 2 LEDs, one LED for the carry, and one LED for the sum.   

The circuit needs to use two chips since chips can contain multiple gates, but all of the gates on 
the chip are of the same type.  This circuit needs one chip for the XOR gate and one chip for the 
AND gate.  The 2 chips being used are the 7408 AND chip, and the 7486 XOR chip.  Both of 
these chips are quad (4) gate chips, but this circuit will only use one gate on each chip. 

The implementation of the half adder is shown in Figure 6-5, and the following steps refer to that 
figure.   

0. Place two switches, which will be the X and Y input, on the breadboard, and connect 
them as in previous labs.   

1. Place the 7486 (XOR gate) chip on the breadboard and power the chip as in previous 
projects by connecting pin 7 to the ground rail, and pin 14 to the positive rail.  The pin 
configuration for the 7486 chip is given in Figure 6-4. 

 

Figure 6-4: 7486 pin configuration diagram 

 

2. Place the 7408 (AND gate) chip on the breadboard and power the as in previous projects 
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by connecting pin 7 to the ground rail, and pin 14 the positive rail for both chips.   

3. Connect both switch X and Y to the input of the third XOR gate (pins 12 and 13) on the 
7486 chip.  Connect the output for the XOR gate (pin 11) to the input for the green, or 
sum, LED. 

 
Figure 6-5: Half adder implementation 

4. Connect both switch X and Y to the input of the first AND gate (pins 1 and 2) on the 
7408 chip.  Connect the output for the AND gate (pin 3) to the input for the red, or carry, 
LED. 

The circuit should now be dark if both switches are off, the green LED should light if only one 
switch is on, and the red LED should light if both switches are on. 

6.3 Full adder 
As was alluded to earlier, the problem with a half adder is that it does not consider the input 
carry bit, Cin.  To understand Cin, consider the addition problem for two binary numbers in Figure 
6-6.  In this problem, the result of adding the first digit of the two inputs values is a sum of 1 
with a carry of 1.  This carry of 1 must be considered when adding the next digit of the two input 
numbers.  So the carry from each preceding digit must be included in the calculation of the result 
when adding binary numbers, and in effect the carry ripples through the digits of the addition 
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(hence this type of adder is called a ripple-carry adder).  

 
Figure 6-6: Addition problem showing a carry bit 

The inclusion of the carry bit means that an adder for a single digit in a binary addition requires 3 
inputs, the binary digit from the X and Y values being added, and the carry-out (Cout) from the 
addition of the preceding digit, which is the carry-in (Cin)to this digit.  The circuit that 
implements this addition is called a full adder circuit.  The truth table which implements a full 
adder is given in the table below. 

Input Output 

X Y Cin S Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

Figure 6-7: Full adder truth table 

6.3.1 Full adder circuit 
The implementation details of the full adder are not as obvious as the half adder.  There are still 
two output functions, S and Cout, but how to implement these functions is more complex.  The 
first function, S, can be implemented by remembering that the XOR function is an odd function, 
that is the XOR result is 1 when an odd number of input bits is 1.  Thus  

S=X⊕Y⊕Cin. 
 is implemented with two cascading XOR gates. 

The Cout function can be implemented by realizing that it is true if both the X and Y values are 
true, or if either the X or Y value is true and the Cin is true, or  
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Cout = (X*Y) + ((X⊕Y)*Cin) 

 

Using these two functions for C and S, the circuit for the full adder can be represented in 
Logisim as the following diagram. 

 
Figure 6-8: Full adder circuit 

6.3.2 Full adder implementation 
The implementation of the full adder is by far the most complex circuit we have implemented up 
to this time.  So while neatness when implementing a circuit always counts, it is now important 
to be very careful to consider not only how the circuit is implemented, but what gates on the 
chips to use and how to make the connections.   A haphazard implementation of the circuit will 
become very messy and hard to understand, implement, and debug. 

1. Begin by installing and powering 3 switches.  The first two switches will be the X and Y 
values for the circuit, and the third switch will be the Cin value to the circuit.  Note the 
order of the switches is different than for the half adder.  This circuit is somewhat 
complex, and so the placement of the switches is designed to keep the rest of the circuit 
as simple as possible. 

2. This circuit requires 3 types of gates, so 3 chips must be used.  Install the 7486 (XOR)  
chip on the board, and power it as before.  

3. Install the 7408 (AND) chip on the board and power it. 

4. Install the 7432 (OR)   chip on the board and power it. It is suggested that these chips be 
placed on the board in this order, as this is the order they will be accessed in the circuit.  
Any other placement of the chips will require wires to be run both forward and backward 
in this circuit, which will eventually be confusing. 

5. Once the chips have been installed on the board, wire the XOR gates.  Wire the X and Y 
switches to pins 1 and 2 (first XOR gate) on the left side of the 7486 chip.  The output of 
the XOR gate will be on pin 3.   
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Note a couple of things about this gate.  First the X and Y input wires are connected to 
the input pins, but are also connected to wires which send their values on to the AND gate 
in step 7.   

Note also that the output on pin 3 is sent forward to two places: the input of the third 
XOR gate, and to the input of the second AND gate. 

Finally note that the circuit has been designed to attempt to keep the wires used in the S 
output on the right of the board, and the wires used in the C output on the left side of the 
board.   

 
Figure 6-9: Full adder implementation 

6. Wire the output from the first XOR gate (pin 3 on the 7486 chip) and the Cin switch to the 
third XOR gate on the right side of the board, using pins 12 and 13 on the 7486 chip.  The 
output from this XOR gate, pin 11 on the 7486 chip, will be the S output from the circuit, 
so connect this to the S LED.   

Note that the Cin input on pin 12 will be forwarded to an input on the second AND gate, 
similar to what was done in step 5. 
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7. Wire the X and Y inputs, forwarded from pins 1 and 2 on the 7486 XOR chip, to the first 

AND gate, pins 1 and 2, on the left side of the 7408 chip. The output of this AND gate 
will be on pin 3, and sent to the input for the first OR gate.  

8. Wire the output of the first XOR gate, pin 3 on the 7486, to the input of the second AND 
gate, pin 4, on the left side of the 7408 chip.  Wire the Cin , forwarded from pin 12 on the 
7486 chip, to the second input for this AND gate, pin 5 on the 7408 chip.  The output fro 
this AND gate will be on pin 6.  

9. Connect the output of the first AND gate, pin 3 on the 7408 chip, to the first input on the 
OR gate, pin 1, on the 7432 chip. Connect the output on the second AND gate, pin 6 on 
the 7408 chip, to the second input, pin 2, on the 7432 chip.  The output from the OR gate, 
pin 3 on the 7432, is the Cout output for the circuit.  Wire this output to the C LED. 

The circuit should implement the full adder behavior.  If all switches are off, the circuit will be 
dark; if two or more switches are on, the C output will be on; finally if an odd number of 
switches are on the S output will be on.  If all 3 switches are on, both the C and S LEDs will be 
on. 

6.4 2-bit adder circuit 
The full adder forms the basis for all arithmetic in a CPU.  To illustrate this, a 2-bit adder is 
represented in Logisim in the Figure 6.6.  This adder is implemented by using two instances of 
the 1-bit adder, and connecting the Cout from the first adder to the Cin of the second adder  The 
adder shown below is adding X=112 (310)  plus Y = 012(110), resulting in1002 (410), as expected.  
To create a n-bit adder (or example, a 32 bit adder used in many modern CPUs), 32 full adders 
can be wired together in a series, with the Cout of each bit being connected to the Cin of the next 
bit.  

 
Figure 6-10: 2 bit full adder circuit 
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6.5 Conclusion 
The adder forms the basis for all of the arithmetic functions in the ALU.  Subtraction, 
multiplication, and division all are implemented using algorithms which are based on the adder.  
The adder is therefore a stand in for all of the other types of functions performed by the ALU. 

Despite the appearance that addition is more complex, it can be implemented as a Boolean 
function consisting only of AND, OR, and XOR gates.  These simple Boolean functions are 
implemented in circuits called half adders and full adders.  It is when these functions are chained 
together so that the carry from each previous function is used in the next function that the adder 
can add larger numbers.  

The implementation of the full adder circuit is more complex than the other circuits which have 
been looked at so far.  It required 3 different chips, 2 outputs, and 5 gates that had to be 
connected.  This circuit required some degree of carefulness and forethought to implement and 
debug it. 

The adder was the first circuit implemented in this text that is a component, and it has been 
encapsulated as an IC.  The 7482 (2-bit binary full adder) and 7483 (4-bit binary full adder) IC 
chips are implementations of this circuit. 

6.6 Exercises 
1. Implement the half adder circuit on the breadboard. 

2. Implement the full adder circuit on the breadboard. 

3. Using the 2-bit adder presented in the chapter as a model, implement a 4-bit adder in 
Logisim.  Implement an 8 bit adder. 

  



70 DIGITAL CIRCUIT PROJECTS 
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Chapter 7 Decoders 

7.1 Introduction 
Decoders are circuits which break an n-bit input into 2n individual output lines.  For example, a 
decoder could break down 2 bit operations code into 4 separate operations.  The operation code 
tells the CPU which operations to run.  A 2 bit operation code is summarized in the following 
table.  Here the code 00 corresponds to the operation ADD, 01 corresponds, to SUB, etc. 

 

Code Operation 

00 ADD 

01 SUB 

10 MUL 

11 DIV 

Figure 7-1: Control lines for ALU  

The Control Unit (CU) of the CPU would break the binary number down so that each operation 
would match exactly one control line.  This is called a 2-to-4 decoder since 2 input bits are 
converted into 4 output lines. A schematic of the decoder to implement this CU is shown in the 
figure below. 

 
Figure 7-2: Decoder used to set ALU control lines 

Most CPUs support instruction sets that are much larger than simply ADD/SUB/MUL/DIV, and 
thus a 2-to-4 decoder is not that common, however the principals used to create a 2-to-4 decoder 
are the same even as the size of the decoder becomes larger.  This chapter will only look at the 2-
to-4 decoder.  Larger decoders will be considered in the exercises at the end of the chapter. 

7.2 Decoder circuit 
The implementation of a decoder is based on the idea that all possible combinations of output 
from a given set of inputs can be generated by using AND operations on combinations of the 
input and inverted input bits.  For example, for the two bits A and B all of the possible 
combinations of the bits are 00, 01, 10, and 11, or A'B', A'B, AB', and AB.     
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Consider the decoder in Figure 7-2, which has two inputs and 4 outputs.   The implementation of 
this decoder is given in Figure 7-3.  There are 2 inputs lines which are split into 4 lines, 2 normal 
and 2 inverted.  These 4 lines are sent to 4 AND gates, each AND gate producing an output for 
one and only one value from the 2 input lines.   

 
Figure 7-3: Decoder circuit 

This shows a decoder is a circuit which enumerates all the values from the input bits by splitting 
them into separate output lines.  A 3-to-8 decoder would have 3 input bits which would use AND 
and NOT gates to produce 8 output (000, 001, 010, 011, 100, 101, 110, and 111).  The 
implementation of a 3-to-8 decoder is left as an exercise. 

7.3  2-to-4 decoder implementation 
The 2-to-4 decoder will need to use two switches, four LEDs, a 7404 (inverter) chip and a 7408 
(AND) chip.  The input will come from two switches.  The following steps refer to Figure 7-5. 

0. Install switches A and B, as well as the output LEDs AB, AB', A'B, and A'B'.   

1. Install and power the 7404 (NOT) chip.  The pin configuration diagram for this chip is 
shown in Figure 7-4.  Note that the gates on these chips have only a single input for each 
output, so there are 6 NOT gates on the chip. 
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Figure 7-4: 7404 pin configuration diagram 

2. Install and power the 7408 (AND) chip. 

3. Connect a wire from switch A to the first NOT gate, pin 1, on the 7404 chip.  The output 
for this NOT gate is on pin 2 

4. Connect a wire from switch B to the third NOT gate, pin 5, on the 7404 chip.  The output 
for this NOT gate is on pin 6.  The third gate is used to make some separation for the 
wires.  The second NOT gate (pin 3 input and 4 output), or indeed any two NOT gates on 
the chip can be used.  Note that the input on pin 5 is also sent to step 8, and the output 
from pin 6 is sent to two separate gates in steps 6 and 7. 

5. Connect the two outputs from the NOT gates, pins 2 and 6 on the 7404 chip, to the third 
AND gate on the 7808 chip, pins 12 and 13.  Connect the output from this AND gate, pin 
11, to the A'B' LED.  Note that the input on pin 13 is forwarded and to step 6. 

6. Connect switch B and the A’ output (forwarded from pin 13 in step 5), to the fourth AND 
gate on the 7808 chip, pins 9 and 10.  Connect the output from this AND gate, pin 8, to 
the A'B LED.   

7. Connect switch A and the B' output, pin 6 on the 7404 chip, to the first AND gate on the 
7408 chip, pins 1 and 2.  Connect the output of this AND gate, pin 3, to the AB’ LED.  
Note that the A input is also connected forward to the next gate.  Note that the input on 
pin1 from switch A is also sent on to step 8. 

8. Connect switch A (from pin 1 in step 7) and switch B (from pin 5 in step 4) to the second 
AND gate, pins 4 and 5, on the 7408 chip.  Connect the output of this AND gate, pin 6, to 
the AB LED.  Note that the A switch input to the second AND gate is connected from the 
first AND gate.  
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Figure 7-5: Decoder circuit 

The decoder should now work.  One light should come on for each of the 4 combinations of 
switch positions.  Keep this circuit intact as it will be used in the multiplexer IC in Chapter 8. 

7.4 Implementing a decoder using a single chip 
A decoder circuit is a commonly used IC, and so it has been implemented in an IC chip.  This 
chip is easier to use than having to produce this entire circuit, so it will be used in chapter 9 to 
implement a multiplexor.   This next section will cover implementing the 74139 decoder chip in 
a circuit.   

7.4.1 The 74139 chip 
The 74139 chip implements two complete decoders implemented in a single chip.  The two 
decoders are basically on opposite sides of the chip.  The difference is that on the left side of the 
chip the bottom pin, pin 8, is connected to ground rail, and on the right side of the chip the top 
pin, pin 16, is connected to the positive rail. 

The 74139 chip has an idiosyncrasy that its output is the inverse of the decoder implemented in 
section 8.2.  This means that the selected output line is set to low, and the non-selected lines are 
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set to high7.  So to adjust for this in the implemented circuit the output will be sent to an inverter 
on a 7404 chip before being sent to the LEDs.  This will allow the output to be as it was in 
section 8.2.     

Figure 7-6 is the pin configuration diagram for the 74139 chip.    The two decoders on the chip 
are numbered 1 and 2.  The inputs to the first decoder are 1E', 1A0, and 1A1, and the inputs to the 
second decoder 2E', 2A0, and 2A1.  The values of A0 and A1 are the select lines for each decoder.  
The E' is an enable input low bit.  If E' is not enabled (E is positive or not connected), the circuit 
is basically disconnected, it is neither positive or ground and the results should not be used.  If E' 
is enabled (or connected to ground), the circuit is connected.  The use of enable bits is to allow 
power to be reduced in the circuit, and is an engineering concern, and not really of concern to the 
circuit. 

The outputs from the decoder are labeled 1Y[0-3] and 2Y[0-3].  They are also active low, and the 
output line which is low is the one which is selected.  In the circuit in this section, only the first 
decoder will be used, and the outputs will be sent to a 7404 inverted to convert the output to the 
more common positive output expected. 

 

 
Figure 7-6: 74139 pin configuration diagram 

                                                           
7 The reason the output is set low is that the output from a decoder is often ignored unless it is the selected 
output.  This means that positive wires can be ignored and not used.  Since the low state uses less electricity and 
produces less heat than the high state, using a low enable rather than a high enable is an engineering decision to 
save poser and heat. 
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7.4.2 Implementing one 2-to-4 decoder using the 74139 chip 
This section will outline how to implement a 2-to-4 decoder using the 74139 decoder chip.  To 
start, remember that the output from the 74139 is enable low, or true when the output is 0.  So the 
output from the chip will have to be sent to a 7404 (NOT), and the circuit will consist of 2 chips.  
To following list of steps implements the decoder circuit using the 74139 chip. 

 
Figure 7-7: 74139 decoder circuit 

0. Insert switches A and B, and the output LEDs A'B', A'B, AB', and AB. 

1. Insert and power the 74139 decoder chip. 

2. Insert and power the 7404 inverter chip. 

3. Enable output from the first decoder on the 74139 chip by connecting the enable low pin 
(pin 1) to ground. 

4. Connect the input switch A to pin 3 on the 74139 chip.  Connect the input switch B to pin 
2 on the 74139 chip. 

5. Connect each output 1I0 to 1I3 to an inverter input as follows: 

a. I0 (pin 3) on the 74139 chip is connected to the fifth inverter (pin 11) on the 7404 
inverter chip. 

b. I1 (pin4) on the 74139 chip is connected to the fourth inverter (pin 13) on the 7404 
inverter chip. 

c. I2 (pin 5) on the 74139 chip is connected to the first inverter (pin 1) on the 7404 
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inverter chip. 

d. I3 (pin 6) on the 74139 chip is connected to the second inverter (pin 3) on the 7404 
inverter chip. 

6. Connect the inverter outputs to the correct LEDs: 

a. Connect pin 10 on the 7404 inverter chip to the A'B' LED. 

b. Connect pin 12 on the 7404 inverter chip to the A'B LED. 

c. Connect pin 2 on the 7404 inverter chip to the AB' LED. 

d. Connect pin 4 on the 7404 inverter chip to the AB LED. 

This circuit should now behave like the circuit in section 7.3. 

7.5 Conclusion 
A decoder is an IC which splits an n-bit input value into 2n output lines.  A decoder has many 
uses, but the one presented here is translating a 2-bit input value into 4lines to allow the 4 
different operations of the CPU.  The decoder will also be used in the next chapter as part of the 
multiplexer. 

The decoder works by doing AND operations on all combinations of the input and inverted input 
values, and then selecting the output using an OR operation on all of the inputs.   

The decoder is a common circuit, so it has been encapsulated in a 74139 chip.  The 74139 
contains 2 decoders, and based on the binary input to each decoder, selects the correct output.  
The 74139 chip is different in the enable and all output values are enable low, or selected when 
the value is low.  Therefore to get the behavior we want from the chip, the values must be sent to 
an inverted (7404) chip to be used. 

7.6 Exercises 
1. Implement the 2-to-4 decoder using 7404 (NOT) an 7808 (AND) chips on your breadboard. 
2. Implement the 2-to-4 decoder circuit with a 74139 chip on your breadboard. 
3. Implement a 1-to-2 decoder in Logisim.  Implement this circuit on your breadboard. 
4. Implement a 3-to-8 decoder using NOT and  AND gates in Logisim.  Show that it is correct by 

showing it generates the same output as a 3-to-8 Decoder found in the Plexors menu of Logisim.  
5. In Logisim, implement a 3-to-8 decoder using two 2-to-4 decoders, and as many AND gates as 

you need.  Compare the total number of AND gates in the circuit to the number of AND gates 
used to implement the 3-to-8 decoder with 2-input AND gates in question 4.  Which circuit do 
you think is faster. 

6. Answer the following questions. 
a. How many output lines would a 4 input decoder have? 
b. How many output lines would a 5 input decoder have? 
c. For an N-to-X decoder, specify X as a function of N (e.g. specify the number of output 

lines as a function of the number of input lines for a decoder). 
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Chapter 8 Multiplexers 

8.1 Introduction 
A multiplexer (or MUX) is a selector circuit, having log(N) select lines to choose an output from 
N input values. In a CPU, multiplexers are used to select the correct memory location values to 
send to the ALU, as shown below.   

 
Figure 8-1: Multiplexer as a memory selector 

MUXes have two types of inputs.  The first type of input is the values to be selected from.  In 
Figure 9-1 this input is the value contained in each memory location.  Every memory location 
sends its value to both MUXes, the 4 values on the red line to Mux 1, and the 4 values on the 
green line to Mux 2.  Thus both MUXes have all of the values from all memory to select from. 

The second type of input is a set of selection bits which tells the MUX which of the inputs to 
choose. In Figure 9-1 this input is the two select lines coming from the CU.  The two bits on each 
select line tell each MUX which of the 4 input values to choose. 

The MUX in Figure 9-1 is selecting between n-bit values.  The size, in bits, of the data value is 
called the data width.  A data value which can contain the values 0..4 is represented by 2 bits, and 
so has a data width of 2;  a data value which can contain the values 0..16 has a data width of 4; a 
data value which con contain the values 0..256 has a data width of 8; etc. 

If the memory in Figure 9-1 had a data width of 8, it would select 8 bits from each of 4 inputs, 
and be called an 8 bit 4-to-1 multiplexer.  Thus a MUX has some number of inputs to choose 
from, and simply forwards one of these inputs to the output.    

The most basic type of MUX, the one on which all larger MUXes are built, is a 1 bit MUX.  As 
will be shown later in this section 8 bit 4-to-1 MUX is made up of eight 1 bit 4-to-1 MUX.  So to 
understand multiplexers a 1 bit 4-to-1 multiplexer will be examined. 

A 1 bit 4-to-1 multiplexer has four 1-bit data inputs values (I0-I3) to choose from.  Each bit value 
I0-I3 can either be 0 or 1.  For example, if I0 is selected, the output will be either the value in I0, 
and either 0 or 1, and the other values of I1, I2, and I3 are simply ignored.   The following truth 
table characterizes this MUX based on the selection bits (S0-S1) 
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: 

Input Output 

S1 S0 Y 

0 0 I0 

0 1 I1 

1 0 I2 

1 1 I3 

Figure 8-2: Truth table for a MUX 

Note that when a line is selected, either a 0 or a 1 will be passed through to Y.  The value of input 
bit is placed on the output value Y.  So in the figure below, if S1S0 are 00, Y is 0.  If S0S1 are 01, 
Y is 1, etc.. 

 
Figure 8-3: 1-bit 4-to-1 MUX 

To allow a MUX with a larger data width, multiple MUXes are used.  Figure 8-4 shows two 4-to-
1 MUXes linked together to choose one 2-bit output from four 2-bit inputs, thus creating a 2 bit 
4-to-1 MUX.   

 
Figure 8-4: 4-to-2 MUX 
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The concept of linking MUXex in this manner can be expanded to produce a MUX that can have 
any size data width needed.  If want to select an N bits of data (a data width of N), you need N 
MUXes.   

In a CPU the purpose of a MUX is to allow a circuit to select one input from a set of inputs.  For 
example, consider the follow circuit, which implements an adder to add two 8 bit numbers.  The 
first number to be added comes from Memory Set 1, and the second number from Memory Set 2.  
Each set contains four 8-bit values.  The MUXes in this circuit choose which item from each 
Memory Set to use in the addition.  For the first set the select bits are set to binary 01, and the 
second value, binary 00000010, is selected.  For the second set the select bits are set to binary 10 
and the third value, binary 01000000, is selected.  The two values are added together to produce 
the answer 01000010. 

 
Figure 8-5: Two 4-to-8 MUXes 

As this example shows, a MUX allows an input value of any fixed data width to be selected 
based on the value of select bits.  The number of inputs which can be chosen from is 2s, where s 
is the number of select bits. 

8.2 Circuit Diagram for a MUX 
The truth table in Figure 8-2 characterizes a 4-to-1 MUX. 

Using this truth table, the 4-to-1 MUX can be built using by realizing I0 is only selected when 
S1S0 are 00, I1 is only selected with S1S0 are 01, etc. So the I0 bit can be sent to an AND gate with 
the result of the inverted value of S1 and S0. This AND gate will always be 0 except when S1S0 
are 00, when it will be I0.  In this manner I1, I2, and I3 can be selected by an AND operation with 
01, 10, and 11 respectively. 

Note that only one input value can ever be selected for any value of S0S1.  The one input which is 
sent to an AND gate with 1 will be 0 or 1, based on its input.  The result of all of the AND gates 
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are sent to a 4-way OR gate.  Remembering 0 + X is always X, the result of the OR gate will 
represent the one input selected.  It can be 0 or 1, but it will be 0 or 1 based on the value of the 
selected input. 

The schematic of a MUX is given in the Figure 8-7. 

 

 

Figure 8-6: Schematic of a MUX 

An interesting thing about this circuit is that it a decoder is implemented as part of the 
multiplexer circuit, as shown in the outlined part of Figure 8-6.  This suggests another way to 
implement the MUX using a decoder to select which input line to select.  This is shown in Figure 
8-7.  We will make use of this in designing our implementation of a MUX. 
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Figure 8-7: Decoder used to implement a MUX 

8.3 Implementing a MUX 
Figure 8-8 shows how to implement a multiplexer circuit on a breadboard using only 7808 
(AND), 7804 (OR) and 7832 (OR) chips.  It begins by using the circuit which was implemented 
in Chapter 7.2. 

The input values to the MUX are "1 0 1 0", as shown in Figure 8-7.  These are hard coded 
values, and implemented in the circuits as direct connections to the positive and ground rails on 
the breadboard. 

1. Start with the decoder circuit which was implemented in Chapter 7.2 

2. Install a 7408 (AND) chip to the board and power it. 

3. Install a 7432 (OR) chip to the board and power it. 

4. Wire the output from the A'B' gate in the decoder circuit (pin 11 on the 7408 chip labeled 
1b) and wire it to the first input on the fourth AND gate (pin 13 on the7408 labeled 2).  
Connect the second input to the AND gate (pin 12 on chip labeled 2)) to a value of 1 by 
connecting it directly to the positive rail.  The output of this AND gate (pin 11 on chip 
labeled 2) is forwarded to the 7432 (OR) chip. 

5. Wire the output from the A'B gate in the decoder circuit (pin 8 on the 7408 labeled 1b) 
and wire it to the third AND gate (pin 10 on the7408 chip labeled 2). Connect the second 
input to the AND gate (pin 9 on chip labeled 2) to a value of 0 by connecting it directly to 
the ground rail.  The output of this AND gate (pin 8 on chip labeled 2) is forwarded to the 
7432 (OR) chip. 

6. Wire the output from the AB' gate in the decoder circuit (pin 3 on the 7408 chip labeled 
1b) and wire it to the first AND gate (pin 1 on the7408 labeled 2). Connect the second 
input to the AND gate (pin 2 on the chip labeled 2) to a value of 1 by connecting it 
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directly to the positive rail.  The output of this AND gate (pin 3 on chip labeled 2) is 
forwarded to the 7432 (OR) chip. 

 

Figure 8-8: 4-to-1 MUX 

7. Wire the output from the AB gate in the decoder circuit (pin 6 on the 7408 chip labeled 
1b) and wire it to the second AND gate (pin 4 on the7408 chip labeled 2). Connect the 
second input to the AND gate (pin 5 on chip labeled 2) to a value of 0 by connecting it 
directly to the ground rail.  The output of this AND gate (pin 6 on chip labeled 2) is 
forwarded to the 7432 (OR) chip. 

8. Forward two of the input values from the AND gate (pins 11 and 8 on the 7408 chip) by 
sending them to the fourth OR gate (pins 12 and 13 on the 7482 chip). 

9. Forward two of the input values from the AND gate (pins 3 and 6 on the 7408 chip) by 
sending them to the first OR gate (pins 1 and 2 on the 7482 chip). 
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10. Forward the final output for the MUX by connecting the output of the first and fourth OR 
gate (pins 3 and 11 on the 7432 chip) to the input of the third OR gate (pins 9 and 10 on 
the 7432 chip).  The output of the circuit is from the third OR gate (pin 8 of the 7432 
chip).  It is sent to the LED as the output from the MUX. 

 
The MUX should now light when the switches A and B are in positions A'B' and AB'.  The 
implementation of the MUX can be further tested by changing the input to the MUX by 
switching the inputs to the MUX, e.g. changing the rail to which pins 2, 5, 9, and 12 are 
connected. 

8.4 74153 MUX chip 
The MUX is a common circuit, and has been encapsulated into a single chip, the 74153 dual 4-
to-1 data selector/multiplexer.  This chip implements two multiplexers which share the two select 
lines.  This section will use the 74153 chip to implement a circuit to mirror the input on/off 
switches.  This circuit could easily be implemented by simply connecting the switches directly to 
the LED, as in Figure 3-11 for one switch and LED.  The output is the same as in exercise 3-2.  
The reason this circuit is more interesting than the ones in Chapter 3 is that it shows how a MUX 
can be used to store and retrieve data values, and how those data values can represent a program.   

8.5 74153 circuit diagram 
The diagram for the 74153 input mirroring circuit is shown in Figure 8-10.  In this circuit, the 
LED outputs will match the two input switches. 

 

Figure 8-9: 74153 circuit diagram 

In this circuit there are two 1 bit 4-to-1 MUXes used.  Each MUX has 4 inputs which are addressed by the 
two select bits at the bottom of the diagram.  The select bits retrieve one output bit from each MUX, 
which are sent to the LEDs.  Note that the output from this circuit will exactly follow the input switches, 
to show which input switch is on.  In a real sense, the hard wired input to the two MUXes represent a 
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type of sequential logic which is applied to the input to produce the output.  We will use this method of 
implementing logic using a MUX in Chapter 10. 

8.6 Implementing the 74153 circuit 
Figure 8-12 shows the final implementation of the 74153 input mirroring circuit, as well as 
indicating the steps to be followed in implementing the circuit.  These steps correspond to the 
numbers in the following list. 

0. Install 2 switches and 2 LEDs. 

1. Install and power the 74153 chip.  Figure 8-10 is the 74153pin configuration diagram.  
Most of the pins will be hardwired to values, which will be explained in the following 
list.  Pins which are wired to other components in the circuit are explained in subsequent 
steps. 

 
Figure 8-10: 74153 pin configuration diagram 

a. Pins 1 (1E') and 15 (2E') are enable low pins.  Enable both multiplexers by 
connecting these pins to ground. 

b. Pins 3..6 and 10..14 are the input values to the MUX.  These are to be 
programmed as in Figure 8-10.  Pins 3..6 are values 0011, and pins 10..14 are 
0101.  0 values are connected to the ground rail, 1 values are connected to the 
positive rail. 

2. Connect the switches to the input select values for the MUXes. Connect Switch 1 to S1 
(pin 2), and Switch 2 to S2 (pin 15). 

3. Connect the output Y values to the LEDs. 
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Figure 8-11: 74153 circuit 

The circuit should now mirror the input switches. 

8.7 Conclusion 
A multiplexer, or MUX, is a circuit that selects a single output from multiple inputs.  It has 
multiple uses.  The main use of a MUX is to select between input values, such as input values to 
the ALU in a CPU.  But it can also be used to implement logic where the select lines are the 
inputs to a function, and the outputs to the function are hardwired to input values for the MUX. 

A MUX is an interesting circuit as it actually contains a decoder circuit as part of its 
implementation.  This allows the MUX to be more easily built using a decoder, and shows a 
valid use for a decoder. 

8.8 Exercises 
1. Implement the 1 bit 4-to-1 MUX in Figure 8-9. 

2. Implement a 1 bit 4-to-1 MUX using the 74139 decoder chip introduced in section 7.4.  
This will require both the 74139 decoder and 7404 inverter chip. 

3. Implement the 1 bit 4-to-1 MUX using the 74139 decoder chip introduced in section7.4, 
but do not use an inverter on the 74139 output.  Instead use the enable low outputs from 
the 74139 chip directly.  This allows the circuit to be implemented using only 3 chips, a 
74139, a 7402, and a 7432 chip.   

HINT:  Remember deMorgan's Law, AB = (A'+B')'. 
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4. Implement a 1 bit 4-to-1 MUX using the 74153 chip, as in section 8.3. 

5. Explain how a 1 bit 4-to-1 MUX can calculate any binary Boolean function.   Because 
the MUX can calculate the result of any Boolean function, we call the MUX a univeral 
operation. 

6. In Logism implement an 8 bit 4-to-1 MUX using 8 4-to-1 MUXes. 

7. In Logisim implement an 8-to-1 MUX using 2 4-to-1 MUXes and a 2-to-1 MUX. 

8. In Logisim implement an 8-to-1 MUX using 4 2-to-1 MUXes and a 4-to-1 MUX.  

9. In Logisim implement a circuit similar to the one in figure 8-10, but which produces 
output which is the opposite of the input switch (e.g. the LEDs are 0 when the switch is 1, 
and 1 when the switch is 0).  Change the program in the breadboard to match this new 
logic. 
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Chapter 9 Memory basics - flip-flops and latches 

9.1 Introduction 
This chapter introduces the last IC needed for a CPU, memory.  For example 4 memory cells, or 
registers, on a CPU may be labeled R1..R4.  In this chapter how these memory locations stored 
data will be explained.  

 

Figure 9-1: Memory in a CPU 

Up to this point this text all of the circuits are simple, or non-sequential, circuits.  These circuits 
are called simple because the current is applied and the circuit takes on a set of values specified 
by the Boolean function for the circuit.  The circuits have no state, or memory, of what previous 
values the circuit had.  In order to do interesting things, like running programs, a computer must 
have state. 

The state of a circuit is the values of all memory which is stored.  State is maintained in memory, 
and memory is just a place to store the values that make up the state.  Circuits that contain state 
elements (memory) are called sequential circuits.  This chapter will show how memory is 
implemented in hardware. 

9.2 Background material 
Memory is perhaps the hardest concept that is covered up to this time in the text.  Therefore there 
is a lot basic material and background concepts which need to be covered before moving into 
how memory works directly.  The concepts which will be covered in this section are: 

• State 

• Static and dynamic memory 

• Square wave oscillation  

9.2.1 State 
It is easy to confuse state and memory, and this is often a problem for programmers at all levels 
of experience.  The two are very different, and it is important to understand this difference to 
understand how a computer works.  Memory is a place to store values; state is the value of all 
memory.   

For example a 2-bit counter would have 2 bits of memory which would be used to store the 
current value in the counter (002..112) in the 2-bits.  In a large computer state is the value of all 
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memory accessible in that computer.  State is important because in hardware computers are most 
easily seen as simply machines that transition from one state to another using large black-boxes 
of circuits (called combinational logic) to determine the computer's next state.   

To apply this to a computer, consider two numbers are to be added together.   These numbers 
would be stored in two memory locations.  These two memory locations would be used as input 
to a combinational circuit (an adder), and stored back to (possibly the same) memory location.  
Hence the operation can be thought of as a state transition where the initial state of the computer 
(S0, the two memory values) are added in a black block (combination logic implementing an 
adder), and the result is a new state (S1, with the value of a memory location changed). 

9.2.2 Static and dynamic memory 
The second important memory concept is the difference between the static and dynamic 
memory8.  Dynamic memory, called DRAM,is implemented using a capacitor and a transistor, 
and so is simple and cheap.  However, the capacitor leaks current, so it is necessary to recharge it 
every other clock cycle, making dynamic memory slow.  Static memory, called SRAM, does not 
have to be recharged, so it is faster, but requires at least 5 gates to implement.  This makes static 
memory both faster and more expensive.  Both types of memory exist in a computer, but for now 
we will discuss memory in the CPU, so speed is the most important requirement and only static 
memory will be used.  Dynamic memory will not be covered. 

9.2.3 Square Wave  
Contained in every computer is a system clock, which regulates how fast the computer 
executes instructions.  This is often called the clock speed or clock rate of the computer.  One of 
the functions of the system clock is to generate a signal called a square wave.  A square wave is a pulse 
of current which alternates over time from a low voltage (0) to a high voltage (1).  This is illustrated in 
Figure 9-2.  In this figure the voltage is low from time t0 to t1, t2 to t3, t4 to t5, etc.  The voltage is high 
from time t1 to t2, t3 to t4, etc.  This oscillation of voltage can be used to send a 0 or 1 value into a circuit, 
and be used to control the changing of the state in the circuit.  A square wave will be used to implement 
state, and will be illustrated in the next section. 

 

Figure 9-2: Square Wave 

9.3 Latches 
A latch is a way to implement a circuit which maintains a data value of high(1) or low (0) so long 
as current is maintained in the circuit.  Latches implement static memory that is used to maintain 

                                                           
8 Computer science often reuses terms with very different meanings in different contexts.  This happens here 
where static and dynamic memory mean how memory is allocated at a programming level, and how memory is 
implemented at a hardware level.  Realize that there is no connection between the terms at the different levels of 
implementation (programming and hardware).  Static and dynamic programming memory can exist in static or 
dynamic hardware memory. 
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the state of the CPU.   

9.3.1 D latch 
There are many types of latches, including the R-S latch, T latch, and D latch.  The only latch 
needed in this text is the D latch, shown in Figure 9-3, so it will be the only one covered.  A D 
latch is a circuit that is set using an input value named D and a clock pulse.  When the clock 
pulse is high (or 1), the value of the D latch changes to the input value of D.  When the clock 
cycle is low ( or 0) the value of latch will maintain the last D value it received when a clock a 
cycle was high.  The value which is saved in the D latch is named Q, and both Q and its 
complement Q' are output from the circuit.   

 

 

Figure 9-3: D latch 

The truth-table in Figure 9-4 gives the characteristics of the D latch. While the value of clock is 
0, the D latch does not change value, and thus Qnew = Qcurrent.   When the clock is 1, the D latch is 
set to the input value of D,  and Qnew takes on the value of D.  

Input Output 

D Clock Qnew Comment 

x 0 Qcurrent State does not change 

0 1 0  

1 1 1  

Figure 9-4: Characteristic truth-table for a D latch 

To create multi-byte memory cells, multiple D latches are combined.   

While the version of the D latch described above is sufficient for storing data values, to be useful 
in a CPU the D latch needs to have an addition input called an enable bit.  The enable bit allows 
the D latch to be set in only specific situations, not simply every time the clock is high.  The D 
latch with an enable bit is shown in the Figure 9-5. 
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Figure 9-5: D latch with enable bit 

The truth-table which characterizes this D latch is shown in Figure 9-6.  The implementation of 
this version D latch is left as an exercise at the end of the chapter.  Note that an X in a column is 
a don't care condition, e.g. it does not matter what value is used as this input is not used. 

 

Input Output 

D Enable Clock Qnew Comment 

x X 0 Qcurrent State does not change 

x 0 X Qcurrent State does not change 

0 1 1 0  

1 1 1 1  

Figure 9-6: Truth-table for a D latch with enable bit 

9.3.2 Circuit diagram for a D latch 
The circuit diagram for a D latch is shown in Figure 9-7.  This latch circuit will be explained in 
two steps.  The first step will explain why the latch maintains its current state (Qnew = Qcurrent) 
if the clock is low.  The second step will explain why the latch changes state (Qnew = D) if the 
clock is high. 

In the first step, note that the lines InputA and InputB must always be high (1) if the Clock input 
is low (0).  Therefore the area which is circled in the diagram below can be analyzed without 
considering any other part of the circuit. 

 

 

Figure 9-7: Circuit diagram for a D latch 

Remember that a NAND of 1 with any value (e.g. Q) is simply its complement (e.g. Q').  So 
once the circuit is set, so that the outputs are Q and Q', it is easy to see that the output of the top 
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NAND gate is Q (e.g. (Q'*1)' = Q), and the output of the bottom NAND gate is Q' (e.g. (Q*1)' = 
Q').  Thus if Q and Q' are loaded into the circuit and the clock is 0, the circuit will maintain the 
values of Q and Q', and the latch keeps its current value. 

Next the question is if the Clock line becomes high (1), how does it force the value of D into the 
latch.  To see this, note that if the Clock become 1, the InputA = D' and InputB = D must be true.  
Thus one of the lines must be 0.  Again consider the part of the circuit which has been circled.  
The line which is 0 will force its output to be 1 (e.g. if Input-A = 1, Q = 1, or if Input-B = 0, Q' = 
1).  This will eventually force the output of the other NAND gate to 0, though it might take some 
time to settle to this value. So long as the time needed for the circuit to settle is less than the 
clock speed (the length of the clock pulse), the circuit will become stable with Q = D and Q'=D'.  
So the result of the clock being high is that the latch will store in its state the value of Q = D and 
Q' = D'.   

Before the first clock pulse, the state of the latch is simply invalid, and the value of the latch 
cannot be used until after it is set with the first clock pulse. 

9.3.3 Implementing the D latch 
Implementing the D latch will require 2 switches, one NOT gate (7404 chip) and 4 NAND gates 
(7400 chip), and 2 LEDs for Q and Q'.  In this lab a clock is not used, and instead is simulated by 
the second switch.  Also in this diagram the two lines running from the output of the NAND 
gates backwards to the input of the other NAND gate use green wire. 

 
Figure 9-8: Implementation of a D latch 
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The following steps describe the implementation of the D latch, and correspond to the circuit in 
Figure 9-8. 

0. Install and power two switches (D and Clock), and the two output LEDs (Q and Q'). 

1. Install and power the 7404 (NOT gate) chip. 

2. Install and power the 7400 (NAND  gate) chip. 

3. Connect the D switch to the first NOT gate (pin 1 on the 7404 chip).  The output from 
this NOT gate, D’, is on pin 2. 

4.  Connect the CLK switch and the D' output (pin 2 and on the 7404 chip) to the first 
NAND gate, pins 1 and 2 on the 7400 chip.  The output from this NAND gate will be on 
pin 3 of the 7400 chip, and used in step 5 (pin 3 on the 7400 chip). 

5. Connect the output from step 4 (pin 3 on the 7400 chip) to the second NAND gate (pin 4 
on the 7400 chip).  Connect the output from step 7 (pin 8 on the 7400 chip) to the second 
input (pin 5 on the 7400 chip). The output from this NAND gate (pin 6 on the 7400 chip) 
will be sent to Q' and used in step 7 (pin 10 on the 7400 chip). 

6. Connect the D and Clock switches to the third input NAND gate (pins 12 and 13 on the 
7400 chip).  The output of this NAND gate will be on pin 11 of the 7400 chips, and used 
in step 7 (pin 9 on the 7400 chip). 

7. Connect the output from steps 5 and 6 (pins 6 and 11 on the 7400 chip) to the inputs of 
the fourth NAND gate (pins 9 and 10 of the 7400 chip).  The output from this NAND 
gate (pin 8 on the 7400 chip) will be sent to the input of step 4 (pin 4 on the 7400 chip), 
and to Q'. 

When implemented correctly, the output Q and Q' lights will follow the D switch if the CLK 
switch is set to 1, or the on position.  If the CLK is set to 0, or the off position, the lights will not 
change. 

 
Figure 9-9: 7475 pin configuration 
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9.3.4 D latch as a single IC chip 
The D latch is a common IC, and it has been implemented as a single chip, the 7475 chip.  The 
7475 chip is called 4-bit bistable latch because each chip has four 1-bit D latches.  A D latch is 
bistable  because it has 2 stable states, 0 or 1.The circuit implemented here will use only one of 
the D latches available on the 7475 chip. 

The layout of the 7475 chip is somewhat complex.  The pin configuration is given in Figure 9-9 
and a table for the meaning of each pin in Figure 9-10.  The implementation of the circuit in this 
section will only use pins 1, 2, 5, 12, 13 and 16.  The other pins will simply be left open, and not 
discussed further. 
 

Symbol Pin Description               

1Q' 1 complementary latch output 1 

1D 2 data input 1 

2D 3 data input 2 

LE34 4 latch enable input for latches 3 and 4 (active high) 

Vcc 5 positive supply voltage 

3D 6 data input 3 

4D 7 7 data input 4 

4Q' 8 complementary latch output 4 

4Q 9 latch output 4 

3Q 10 latch output 3 

3Q' 11 complementary latch output 3 

GND 12 Ground 

LE12 13 latch enable input for latches 1 and 2 (active high) 

2Q' 14 complementary latch output 2 

2Q 15 15 latch output 2 

1Q 16 15 latch output 1 

Figure 9-10: 7475 pin meanings 
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9.3.5 Implementation of a D latch using a 7475 chip 
Figure 9-11 implements the same circuit as in Figure 9-8, but now the 7475 chip is used.  The following 
steps outline how to implement this circuit, and the meaning of each connection. 

0. Insert the switches for the inputs CLK and D, and the LEDs for the outputs Q and Q'. 
1. Insert and power the 7475 chip.  Note that the power is very different from any other chip that 

has been used up to this point.  The positive and ground wires are on opposite sides of the chip, 
and they are on pins 5 and 12.  Make sure you install the power correctly, and check the chip 
after powering it to see if it is hot.  If it is hot, you have wired it incorrectly. 

2. Connect the D input to pin 2 on the 7475 chip. 
3. Connect the CLK to pin 13 on the 7475 chip.  This is labeled LE12, or latch enabled input for 

latches 1 and 2, enabled high.  Enabled high means connected to the positive rail or set to the 
value of 1, and enabled low means connected to the ground rail or set to the value of 0.  So this 
chip enables latch 1, the one we are using, when the CLK switch is set to high. 

4. Connect the Q output on pin 16 to the right LED. 
5. Connect the Q' output on pin 1 to the left LED. 

 

Figure 9-11: : D latch using a 7475 chip 

This circuit should behave exactly like the circuit in Figure 9-8. 

9.3.6 Limitations of the D latch 
The D latch does store state, but it is inefficient when implemented in a sequential circuit.  To 
understand why it is inefficient, consider the Figure 9-12, which implements a circuit where the 
D latch provides some part of the state, and a black box containing some combinational logic to 
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determine the next state.  In this circuit, the result of that black box uses the current D input to 
determine the new state and set the D latch.   

Consider the case where the black box takes longer than a half of the clock pulse, as shown in 
Figure 9-12.  The D latch retains its value until the combinational logic is completed, which 
occurs when the CLK is low.  Thus the value of the D is not changed until the next clock pulse, 
and the circuit is fine.   

 
Figure 9-12: State transition with multiply operation 

However, it is unreasonable to expect all instances of combinational logic to take the same 
amount of time.  For example, the time to do addition is very much smaller than the time it takes 
to do multiplication.  This situation is shown in Figure 9-13.  Here the black box can execute 
faster than the clock can pulse.  In this case the latch is changed in the middle of a state 
transition, and the new value will cause the combinational logic to continue to process the new 
value while the clock pulse is low.  Therefore, the value the D latch will be set to when the clock 
pulses high again will be incorrect. 

 

 
Figure 9-13: State transition with add operation 

One way to handle this situation is to put two D latches in the circuit, one which is set when the 
clock is high and the other when the clock is low, as shown in the Figure 9-14.  This allows the 
circuit to obtain a value from the second D latch while updating the first. 
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Figure 9-14: Two D latches to hold correct state 

While this solves the problem of maintaining the proper state of the latch, it should be obvious 
that it is a problem because it more than doubles the size of the circuit needed.  This is twice as 
expensive, uses twice as much power, and produces twice as much heat.  A better solution is 
needed, and one that was developed is called an edge triggered flip-flop.   

9.4 Edge triggered flip-flop 
An edge triggered flip-flop (or just flip-flop in this text) is a modification to the latch which 
allows the state to only change during a small period of time when the clock pulse is changing 
from 0 to 1.  It is said to trigger on the edge of the clock pulse, and thus is called an edge-
triggered flip-flop.  The flip-flop can be triggered by a raising edge (0->1, or positive edge 
trigger) or falling edge (1->0, or negative edge trigger).  All flip-flops in this text will be positive 
edge trigger. 

The concept behind a flip-flop is that current flowing within a circuit is not instantaneous, but 
always has a short delay depending on the size of the circuit, the gates that it must traverse, 
etc.  This is illustrated in Figure 9-15.  In this diagram, it would appear that the Boolean 
equation (true^false) is always false, so this circuit should always produce a 0 output.  However 
since there is a small but present lag in the current going over the NOT gate, there is a small but 
finite period of time when the two inputs to the AND gate would both be 1 (when the clock is 
transitioning from 0 to 1), and the output of the circuit would be 1.   

 

Figure 9-15: Small time delay rising edge 

This amount of time, Δt, is shown on the square wave diagram in Figure 9-16.  This time is called a 
raising edge trigger, and it is during this time interval that the above circuit would be 1. 
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Figure 9-16: Edge trigger time in square wave 

This short delay can be used to change the circuit such that it will only change during this brief 
edge trigger.  Because Δt is smaller than any combinational logic, this removes the need to 
create a second latch to maintain a valid state.  A circuit which implements this concept is 
shown in Figure 9-17. 

 

Figure 9-17: Illustrative example of D flip-flop 

The problem with the circuit in Figure 9-17 is that it cannot guarantee that the time delay caused by the 
edge trigger is sufficient to allow the latch logic to obtain the correct state.  The circuit in Figure 9-18 is a 
true implementation of a flip-flop.  While it appears much more complex than the implementation in the 
Figure 9-17, it is left as an exercise to show that it contains exactly the same number of gates as the 
example above. 

 
Figure 9-18: Actual implementation of a D flip-flop 
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Due to a problem known as debouncing, it is hard to illustrate a flip-flop in isolation as a circuit.  
So this chapter will not implement a flip-flop.  However, a flip-flop will be used as part of the 
circuits in chapter 10. 

9.5 Conclusion 
Circuits which have memory and can maintain a state are called sequential circuits.  Simple, or 
non-sequential, circuits are circuits which do not maintain a state using memory.  Simple circuits 
can calculate results based on inputs, but to compute a useful result a circuit must be able to 
maintain a state.   

This chapter introduced the concept of SRAM, and how it is implemented using only NAND and 
NOT gates.  SRAM maintains its state so long as current is supplied to the circuit, and does not 
require a refresh cycle, making it faster than DRAM.  But SRAM is also more complex than 
DRAM, so SRAM is more expensive than DRAM. 

SRAM was implemented using a D latch circuit.  The problem with using a latch in a circuit, that 
it requires two latches to be effective, was illustrated.  The D flip-flop was then introduced to 
solve the problem with a D latch. 

9.6 Exercises 
1. Implement the D latch from Figure 9-8 using a breadboard. 

2. Implement the D latch to include an enable line using Logisim.   The enable line will be 
used to control when the D latch is set, so it is only set if the clock and enable line are 
high. 

3. Implement the circuit from problem 2 using a breadboard. 

4. Implement the D latch to include a synchronous clear line using Logisim.   A clear line 
will set the value of the D latch to 0 on the next clock pulse.   

5. Implement the circuit from problem 4 using a breadboard. 

6. Implement a D flip-flop using the 7475 chip, as in figure 9-11.   

7. Show that the circuits in Figure 9-17 and 9-18 have exactly the same number of gates. 
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Chapter 10 Sequential circuits  

10.1 Introduction 
Now that memory has been introduced it is possible to produce machines that change state.  The 
ability to change the state of the computer forms the basis to do calculations. 

In this chapter a state machine will be presented.   This machine will use memory, implemented 
as latches or flip-flops, to define states.  Events will be generated, in this case the pushing of a 
button to simulate a clock pulse, which will allow the state machine to transition to a new state.  
The relationship between the previous and successor states will be represented in a state 
transition table, and the table used to encode a simple program into a multiplexer.  The program 
to be implemented is a simple mod 4, or 2-bit, up counter, which will count from 0..3. 

10.2 Debouncing 
Before beginning the discussion of sequential circuits, there is a problem which occurs when 
trying to simulate the rising edge of a clock in the circuit.  In all of the labs up to this point the 
toggle switches appear to turn on and off cleanly.  This is because the switches are used to 
represent a constant input to the circuit.  The only state of interest is if the switch is 0 or 1.  How 
quickly or cleanly the switch changed from 0 to 1 or 1 to 0 did not matter. 

In reality no switch ever makes a clean transition between 0 and 1.  Switches cannot turn on/off 
cleanly.  All mechanical switches, when turned on or off, exhibit a period of time where the 
switch oscillates between on/off before it settles into a steady value.  This oscillation is generally 
too fast for a human to notice, but the oscillations produce multiple square waves, and thus 
multiple edge triggers.  These edge triggers are slow enough for a latch or flip-flop to see 
multiple phantom state changes instead of a single clean state change.   

The lab in this chapter will demonstrate how a circuit can transition between defined states.  This 
requires that each time the switch is thrown only a single edge is ever seen as being produced.  
The multiple edges being generated by the switch cause the circuit to behave incorrectly.  So 
something must be done to get only a single state change when a switch is thrown. 

To handle these multiple phantom state changes, the circuits need to be debounced.  A simple 
way to think about debouncing is to realize that if multiple on/off signals are processed in a small 
amount of time, they are in reality just noise coming from the switch, and the edges should be 
combined into a single event. 

Every type of switch, including the keys on the keyboard you type on, must be debounced.  This 
debouncing is generally handled in software which is designed to filter out the noise of the 
switch.  However the circuits we are looking at in this text do not implement a processor, so a 
software solution is not possible. 

To debounce the circuits in this chapter a hardware approach is used.  This hardware approach 
requires three parts be implemented in our circuit.  

1. A small push button switch is substituted for our toggle switch.  The push button 
provides a much cleaner input than the toggle switch, and so it is easier to get a single 
clean edge from the pressing of the button.  The button does introduce a problem, and 
that is that it has only one input.  Unless the button is pushed, it is neither positive or 
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ground.  This is called an open state.  All of the chips that have been used in circuits up 
to the time have been of the HC or HCT variety, largely because of their lower cost.  But 
HC and HCT chips do not handle open states, so this lab requires the chip used to be the 
ttl version of the 7414 chip. 

2.  An extra capacitor  be connected to the output of the push button switch.  This capacitor 
helps to further clean up the edge.  

3. A Schmitt inverter, which is a 7414 chip, is inserted into the circuit.  A Schmitt inverted 
is a circuit implemented with hysteresis.  Hysteresis means the output of a circuit is 
dependant not only on the current state, but on the history of its past inputs.  So the 
Schmitt inverter again is used to help clean up the edges from the switch. 

The implementation of the debouncing in the circuit will be presented with the circuits used 
in this chapter.  How the debouncing circuit works is not a topic of this text, and so it is 
presented without further comment. 

10.3 Implementing a state machine 

10.3.1 Mod 4 counter 
A mod (or modulus) 4 counter is a circuit that counts from 0..3.  It is also called a 2-bit counter 
because the numbers from 0..3 can be represented using 2-bits (e.g. 00, 01, 10, 11)9.  The state of 
the counter is represented in 2-bits, and so is stored in 2 flip-flops (or latches).  Because the two 
flip-flops combine to make a single value, they are often called a 2-bit register.   

The state transitions of this machine, as a counter, are 00->01->10->11->00.  The machine just 
counts from 0 to 3 and starts over.  This is represented in the following state diagram. 

 
Figure 10-1: State diagram for a mod 4 counter 

This state diagram can be written as a state transition table, as shown below. 
                                                           
9 The name mod 4 counter is more accurate because the 2-bit counter could be used to implement a mod 3 or mod 
4 counter.  This is more a problem with a 4-bit counter because it is often used as a decade (mod 10) counter or a 
hex (mod 16) counter.   
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Input Output 

Q1old Q0old Clock Q1new Q0new 

X x 0 Q1old Q0old 

0 0 ↑ 0 1 

0 1 ↑ 1 0 

1 0 ↑ 1 1 

1 1 ↑ 0 0 

Figure 10-2: State transition table for a mod 4 counter 

This table says that if the clock does not pulse, Q1 and Q0 retain their old values.  When the clock 
generates an rising edge (↑),  the values of Q1 and Q0 transition to the next value in the counter, or their 
next state. 

10.3.2 Implementation of a state transition diagram 
The following is a generic implementation of a state machines.  There are two components.  The 
first is a n-bit register, which is a collection of n 1-bit D flip-flops or D latches.  These n 1-bit 
data values store the current state of the machine, and can store up to 2n states.  The register 
changes state when the clock generates a positive edge trigger, causing the flip-flops to take on a 
new value. 

The register will output some set of values, and at the same time recycle its state back into a set 
of gates which will determine how to change the register to the next state.  This set of gates will 
be called the next state logic.  The output of the next state logic will be connected to the input to 
the registers so that when the clock pulses (or ticks), the register is loaded with the new values.  
This logic is represented in the following figure. 

 

Figure 10-3: Circuit overview for a state machine 
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As this diagram shows that the input to the next state logic comes from the previous state.  The 
next state logic uses the previous state to calculate the next state to store into the register.  The 
clock tick then causes the register to store new state, which is feed back into the next state logic 
to calculate a new next state.  

This overview explains how a state machine works, but has left open the question of how to 
implement the next state logic?  There are two basic ways to implement this logic, either through 
hardware or using a micro program.  A hardware implementation uses gates to calculate the new 
state.  A micro program is implemented in using Read Only Memory (or ROM), and the next 
state is retrieved from an address given by the current state.  These will be explained in the next 
two sections. 

10.3.3 Hardware implementation of next state logic 
The next state logic must take as input the current state and convert it to the next state.  The state 
transition diagram in Figure 10-2 is very similar to a truth table, where Q0old and Q1old are the 
inputs to the circuit, and Q0new and Q1new are the outputs.   From the state transition diagram, it is 
simple to solve for the Boolean expressions, which are Q0new = (Q0old' * Q1old') + (Q0old' * Q1old)), 
and Q1new = (Q0old XOR Q1old).  The circuit diagram for this next state logic is shown in the 
following figure. 

 

Figure 10-4: Hardware implementation for a mod 4 counter 

In this figure, the next state logic is implemented using NOT, AND, OR, and XOR gates. is 
actually a type of micro program which is implemented in hardware.  This is called hard wired 
because the actual circuit to calculate the next state is wired into the circuit.   



DIGITAL CIRCUIT PROJECTS 105 
 

The problem with hard wired programs is that they cannot be easily changed.  Modern computers 
generally do not implement the micro programs by hard wiring them, but use some type of read 
only memory. 

10.3.4 Read Only Memory   
Read Only Memory (ROM) is memory that is never written after it is first programmed10.  It can 
be used to store programs that are used to initially boot a computer, or to store static data 
tables or micro programs used to specify how the internal hardware of the CPU works.  The 
following is an example of the Mod 4 Counter shown using a ROM chip to implement the next 
state logic as a micro program. 

 

Figure 10-5: ROM implementation of a mod 4 counter 

The ROM chip contains the micro program which implements the Mod 4 Counter.  The next 
state for the mod 4 counter (1, 2, 3, and 0, or 002, 012, 102, 112) is stored at an address 
corresponding to the current state of the mod 4 counter.  Thus at address 0 the ROM program 
stores 1, to state that the next state from 0 is 1.   

The address is the current state of the counter, which is the value currently stored in the registers.    
At address 0, the value 1 is stored, which says that when Q0 and Q1 are 002, the ROM will read 
the value 012 from memory.  Each time the clock ticks, the ROM chip sends the next value to the 
registers, which transitions to the next state in the counter. 

ROM chips are a very good way to implement state transition tables, but require special 
hardware to create and program the ROM chips.  So a simple trick will be used to implement 
ROM for our circuits, as was done in the switch mirroring circuit in section 8-6.  This trick is to 
use a multiplexer with hard wired input for the micro program, and the select bits used to specify 
the address.  This design is shown in Figure 10-6. 

                                                           
10 ROM and PROM chips are never changed once they are written.  Some types of chips similar to ROM chips, such 
as EPROM or EEPROM, can be written in order to store a new program.  But even these types of ROM chips are 
written to infrequently, and not meant to store transient data. 
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To understand this circuit, realize that each MUX chooses 1-bit for each of the 4 states.  So when 
the state is 002, the bottom MUX will choose the 0 bit and the top MUX will select a 1 bit, which 
gives a new state of 012. 

This circuit using the two MUXes to implement the micro program will be shown in the next 
section. 

 

Figure 10-6: Mux implementation of next state logic for a mod 4 counter 

10.3.5 Implementation of the Mod 4 counter 
Figure 10-9 implements the Mod 4 counter.  Steps 1 and 2 are needed to implement the 
debouncing for the circuit, and are presented with no explanation of how they work.  This 
circuit generally works well if the button is pressed sharply and cleanly, but multiple signals will 
at times still be generated by the push button. 

1. Place the push button switch on the board.  The switch does have direction, so it must 
be inserted properly to work.  The easiest way to get the direction correct is to put the 
switch across the center cut out in the breadboard.  Because the legs on the button are 
hooked, there is only one direction to insert the push button, and that is the correct 
direction. 
Connect the input of the chip to the negative rail.  The output of the push button switch  
should be connected to the  input of the 7414 Schmitt inverter in step 2.  The output of 
the switch must also be connected to the negative rail by a 0.1µf capacitor.  This 
capacitor is absolutely necessary for the circuit to work properly.  

2. Place the 7414 Schmitt inverter chip on the board, and power it.  The output from the 
7414 chip is the two clock inputs for the 7474 chip in step 7. 

3. Place the 74153 multiplexor chip on the board, and power it.  The pin layout for the 
74153 multiplexor is shown in Figure 10-7.  Step 7 will discuss how to wire the chip to 
connect it to the circuit.  The steps below discuss how to wire it. 
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a. Power the chip with GND on pin 8 and Vcc on pin 16, as usual. 
b. Pins 1 and 15 are enable low.  These enable the output from each MUX.  We 

always want the output from the MUXes, so enable them by connecting these pins 
to low. 

 

Figure 10-7: 74153 pin layout diagram 

c. Pins 3...7 and pins 10...14 are the inputs to each MUX.  These pins are set to 
implement the program.  Note: the pins are set from I0...I3 in an upward direction, 
not a downward direction.  Implement the program in Figure 10-6 using 1I values 
of 0110 and 2I values of 1010. 
 

 
Figure 10-8: 7474 pin layout 



108 DIGITAL CIRCUIT PROJECTS 

 
4. Place the 7474 2-bit D flip-flop chip on the board and power it.  The pin layout of the 

7474 chip is in Figure 10-8.   Step 8 will discuss how to wire the chip to connect it to the 
circuit.  The steps below discuss how to wire it. 

a. Power the chip with GND on pin 7 and Vcc on pin 8, as usual. 
b. Pins 1, 4, 10, and 13 are for asynchronous set and reset.  They are enabled low, so 

connect these pins to the positive rail to disable them. 
5. Connect the push button switch to the input to a gate (pin 1) on the 7414 Schmitt 

inverter.  The output of this gate (pin 2) will be used to both clocks on the 7474 2-bit D 
flip-flop chip. 

6. Connect the 74153 chip (step 3) into the circuit.  The inputs S1 and S0 (pins 2 and 14) are 
the outputs from the previous state, stored in the D flip-flops in step 4.  These inputs 
use green wires to show that they are recycled from the output of a chip further down 
in the circuit.  The outputs of the 74153 chip (pins 7 and 9) are the D input for the next 
state to the registers. 

7. Connect the D inputs for the 7474 2-bit D flip-flop to pins 2 and 12.  The clock inputs 
from step 2 are connected to pins 3 and 11. The outputs are the current state on 1Q and 
2Q, pins 6 and 9.  These output are used as inputs to the next state logic implemented 
in the MUX (step 6, the green wire), and to show the current state represented in the 
output LEDs. 

 
Figure 10-9: Mod 4 counter 
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When the push button switch is pressed, the LED lights should cycle through the states for 00-
>01->10->11->00. 

10.4 Conclusion 
State machines are simple calculation machines which use a state and next state logic to 
implement simple algorithms such as counters.  State machines are also a part of any larger 
calculation machine such as a computer. 

State machines can be implemented in hardware using some sort of memory to store a state, and 
next state logic which allows the machine to advance from one state to another.  The memory 
used to store the state in this chapter was D flop-flops. 

The next state logic was implemented in two ways in this chapter.  The first was by a circuit 
which implemented combinational logic to calculate the next state of the circuit.  The second 
way next state logic was implemented was using a ROM chip where the current state was used as 
an address to the memory in the ROM chip which contained a value for the next state.  Using a 
ROM chip in this way was called micro-programming. 

The chapter then continue by showing how a ROM chip could be simulated using a MUX with 
hard wired values as inputs, and the select lines as addresses to the values to choose. 

10.5 Exercises 
1. Implement a Mod 4 up counter using the 74153 chip to implement the next state logic as 

shown in section 10.3. 
2. Implement the Mod 4 up counter using combinational logic to implement the next state 

logic, as shown in Figure 10.4 
3. Implement a Mod 4 down counter, or a counter which counts 11->10->01->00->11.  

This counter will require that you modify the state diagram, state transition table, and 
your program.  For this problem submit the state diagram, state transition table, Logisim 
diagram, and implemented circuit. 

4. Implement the following up counters in Logisim: 
a. Mod 6 counter 
b. Mod 8 counter 
c. Mod 10 (decade) counter. 
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Chapter 11 Use of these ICs in a CPU 
The IC’s presented in this text are not useful in themselves, but are quite powerful building 
blocks in implementing larger integrated circuits.  This chapter will examine a useful IC, a 
Central Processing Unit (CPU), where these circuits provide the backbone of how the CPU is 
implemented.  The CPU that is presented can be downloaded from the free text Implementing a 
One Address CPU in Logisim.   

This chapter will not attempt to describe the CPU in detail, nor will it attempt to explain how to 
implement or use programs on this CPU.  These details are covered in the referenced text.  This 
chapter will instead break down the CPU components to highlight how the ICs are used in the 
CPU, to show how important the ICs covered in this text are. 

11.1 An overview of the CPU. 
The following figure is of the entire CPU that will be covered in this text.  There are 3 Logisim 
sub circuits that are part of this CPU, two of which will be broken down to show how the ICs 
from this book.  They are the Arithmetic Logic Unit (ALU), and the Control Unit (CU).  These 
two units will be explained in terms of the entire CPU, and then shown as sub circuits to expose 
the decoder and adder circuits. 

 
 

This CPU is an example of an accumulator or one-address architecture CPU.  In all CPU designs, 
two operands are feed to the ALU, where the two operands are used to perform some operation 
and produce a result.  In an Accumulator CPU, one of these operands is called the $pc, which is 
memory on the CPU chip (called a register), and the other comes from either the instruction itself 
or memory.  So a simple program to add two numbers, the value of variable A and the number 2, 
would look as follows: 

clac        # set the $ac (accumulator register) to 0 
add A       # add the value of A to the accumulator 
addi 5      # add the number 5 to the value in the accumulator 
stor B      # stor the accumulator value to memory variable B 

http://cupola.gettysburg.edu/oer/3/
http://cupola.gettysburg.edu/oer/3/
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The CPU keeps track of the statement to process using the Program Counter ($pc) register.  The 
$pc contains the address of the next instruction to execute.  The CU takes the instruction, which 
is a 4-bit binary number, and breaks it down into control wires which specify how each 
component of the CPU (muxes, decoders, ALU, and memory) should behave for that instruction.  
The ALU does the actual operation that is requested (e.g. an add, subtract, etc.)   

So for example the add A instruction.  The CU would specify: 

1. That the mux in front of the $pc select the input 0, which is the next instruction in the 
program (e.g. do not branch). 

2. That the mux in front of the $ac select input 0, which is the result of the ALU, to store in 
the $ac. 

3. That the mux in front of the ALU select a value from memory, not the instruction. 
4. That the ALU execution an addition operation. 
5. That the value of the $ac not be stored back to memory. 

The rest of this chapter will show how the IC’s from this text are used in this design. 

11.2 Flip Flops 
All memory cells located in the CPU are called registered, and are implemented as D flip flops.  
These flip flops are also called static ram, or SRAM.  In this CPU, the values of the $ac and $pc, 
which store the current state of the CPU, are implemented as a group of 16 flip flops.  These 
components are circled in red in Figure 11.1.  Without flip flops, it would be impossible to 
maintain the state of the CPU, and the CPU could not do any useful work. 

The number of registers in a CPU varies widely between the types of CPU, and even within a 
CPU itself.  A more normal Accumulator CPU would have several more registers, such as a 
Memory Access Register ($mar), and a temporary register ($temp). 

11.3 Muxes 
When designing a CPU, muxes seem to pop up everywhere.  They are the most used building 
block in a CPU, and most larger ICs.  In the CPU presented in Figure 11.1, each mux is circled in 
blue, the following muxes are used. 

1. There is a mux before the $pc register to select if the next sequential instruction in the 
memory is to be used, or if the program should branch to a non-adjacent instruction. 

2. There is a mux before the ALU to select if the ALU operand will be retrieved from 
memory, or if the operand should be taken from the instruction itself. 

3. There is a mux before the $ac register that determines if the instruction is to set the value 
of the $ac to 0, or if the value to be stored in the $ac comes from the ALU. 

11.4 Adder 
The ALU is the part of the CPU that implements operations, such as add, subtract, multiply, 
divide, OR, AND, shift, etc.  The adder in this text was presented as an exemplar of an operation 
which would be done in the ALU.  In this ALU, there is an ALUOpt control bus that consists of 4 
wires, which can specify up to 16 operations.  Only 4 operations are implemented in this ALU, 
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integer add, sub, multiply, and divide.  All 4 operations are calculated all the time, but only one 
result is ever returned, and that result is selected by an ever ubiquitous mux. 

 

 
Figure 10-10: ALU Implementation 

11.5 Decoder 
Other than the fact that a decoder is present in a mux, the decoder is only present in this CPU in 
the CU.  In the CU the decoder is used to break down the 4 bit input into the actual operations 
that the CPU is to perform.  These operations are then combined to set the correct control wires 
for the CPU to perform this operation. 

 
Figure 10-11: Decoder used in the CU for a CPU 

11.6 Summary 
This text was written to help students and hobbyists to understand what an IC is, and to give 
them some of the most basic ICs and shown how they can be implemented using only AND, OR, 
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NOT, NAD, and XOR gates.  By actually implementing the ICs using a bread board and chips, 
the circuits were more concrete ideas rather than fuzzy concepts. 

However up until this last chapter, the usefulness of these gates in larger ICs was not covered.  
This chapter showed how to use these simple building blocks could create an IC which has 
potential to implement useful hardware. 
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