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Preface

This is a multipurpose text. When taken in full, including the “starred” sec-
tions, it is a graduate course covering differentiation on normed spaces and
integration with respect to complex and vector-valued measures. The starred
sections may be omitted without loss of continuity, however, for a junior or
senior course. One also has the option of limiting all to En, or taking Riemann
integration before Lebesgue theory (we call it the “limited approach”). The
proofs and definitions are so chosen that they are as simple in the general case
as in the more special cases. In a nutshell, the basic ideas of measure theory
are given in Chapter 7, §§1 and 2. Not much more is needed for the “limited
approach.”

In Chapter 6 (Differentiation), we have endeavored to present a modern
theory, without losing contact with the classical terminology and notation.
(Otherwise, the student is unable to read classical texts after having been
taught the “elegant” modern theory.) This is why we prefer to define derivatives
as in classical analysis, i.e., as numbers or vectors, not as linear mappings. The
latter are used to define a modern version of differentials.

In Chapter 9, we single out those calculus topics (e.g., improper integrals)
that are best treated in the context of Lebesgue theory.

Our principle is to keep the exposition more general whenever the general
case can be handled as simply as the special ones (the degree of the desired
specialization is left to the instructor). Often this even simplifies matters—
for example, by considering normed spaces instead of En only, one avoids
cumbersome coordinate techniques. Doing so also makes the text more flexible.

Publisher’s Notes

Text passages in blue are hyperlinks to other parts of the text.

Several annotations are used throughout this book:
∗ This symbol marks material that can be omitted at first reading.

⇒ This symbol marks exercises that are of particular importance.
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Chapter 6

Differentiation on En and Other
Normed Linear Spaces

§1. Directional and Partial Derivatives

In Chapter 5 we considered functions f : E1 → E of one real variable.

Now we take up functions f : E′ → E where both E′ and E are normed
spaces.1

The scalar field of both is always assumed the same: E1 or C (the complex
field). The case E = E∗ is excluded here; thus all is assumed finite.

We mostly use arrowed letters ~p, ~q, . . . , ~x, ~y, ~z for vectors in the domain space
E′, and nonarrowed letters for those in E and for scalars.

As before, we adopt the convention that f is defined on all of E′, with
f(~x) = 0 if not defined otherwise.

Note that, if ~p ∈ E′, one can express any point ~x ∈ E′ as

~x = ~p + t~u,

with t ∈ E1 and ~u a unit vector. For if ~x 6= ~p, set

t = |~x − ~p | and ~u =
1

t
(~x − ~p);

and if ~x = ~p, set t = 0, and any ~u will do. We often use the notation

~t = ∆~x = ~x − ~p = t~u (t ∈ E1, ~t , ~u ∈ E′).

First of all, we generalize Definition 1 in Chapter 5, §1.
Definition 1.

Given f : E′ → E and ~p, ~u ∈ E′ (~u 6= ~0), we define the directional
derivative of f along ~u (or ~u-directed derivative of f) at ~p by

(1) D~uf(~p) = lim
t→0

1

t
[f(~p + t~u)− f(~p)],

1 We now presuppose §§9–12 of Chapter 3, including the “starred” parts.



2 Chapter 6. Differentiation on En and Other Normed Linear Spaces

if this limit exists in E (finite).

We also define the ~u-directed derived function,

D~uf : E
′ → E,

as follows. For any ~p ∈ E′,

D~uf(~p) =

{

lim
t→0

1

t
[f(~p + t~u)− f(~p)] if this limit exists,

0 otherwise.

Thus D~uf is always defined, but the name derivative is used only if the
limit (1) exists (finite). If it exists for each ~p in a set B ⊆ E′, we call D~uf (in
classical notation ∂f/∂~u) the ~u-directed derivative of f on B.

Note that, as t → 0, ~x tends to ~p over the line ~x = ~p + t~u . Thus D~uf(~p)
can be treated as a relative limit over that line. Observe that it depends on
both the direction and the length of ~u . Indeed, we have the following result.

Corollary 1. Given f : E′ → E, ~u 6= ~0, and a scalar s 6= 0, we have

Ds~uf = sD~uf.

Moreover , Ds~uf(~p) is a genuine derivative iff D~uf(~p) is.

Proof. Set t = sθ in (1) to get

sD~uf(~p) = lim
θ→0

1

θ
[f(~p + θs~u)− f(~p)] = Ds~uf(~p). �

In particular, taking s = 1/|~u|, we have

|s~u | = |~u ||~u | = 1 and D~uf =
1

s
Ds~uf.

Thus all reduces to the case D~vf , where ~v = s~u is a unit vector. This device,
called normalization, is often used, but actually it does not simplify matters.

If E′ = En (Cn), then f is a function of n scalar variables xk (k = 1, . . . , n)
and E′ has the n basic unit vectors ~ek. This example leads us to the following
definition.

Definition 2.

If in formula (1), E′ = En (Cn) and ~u = ~ek for a fixed k ≤ n, we call
D~uf the partially derived function for f , with respect to xk, denoted

Dkf or
∂f

∂xk
,

§1. Directional and Partial Derivatives 3

and the limit (1) is called the partial derivative of f at ~p, with respect to
xk, denoted

Dkf(~p), or
∂

∂xk
f(~p), or

∂f

∂xk

∣

∣

∣

~x=~p
.

If it exists for all ~p ∈ B, we call Dkf the partial derivative (briefly,
partial) of f on B, with respect to xk.

In any case, the derived functions Dkf (k = 1, . . . , n) are always de-
fined on all of En (Cn).

If E′ = E3 (C3), we often write x, y, z for x1, x2, x3, and

∂f

∂x
,
∂f

∂y
,
∂f

∂z
for Dkf (k = 1, 2, 3).2

Note 1. If E′ = E1, scalars are also “vectors,” and D1f coincides with f ′

as defined in Chapter 5, §1 (except where f ′ = ±∞). Explain!

Note 2. As we have observed, the ~u-directed derivative (1) is obtained by
keeping ~x on the line ~x = ~p + t~u .

If ~u = ~ek, the line is parallel to the kth axis; so all coordinates of ~x, except
xk, remain fixed (xi = pi, i 6= k), and f behaves like a function of one variable,
xk. Thus we can compute Dkf by the usual rules of differentiation, treating
all xi (i 6= k) as constants and xk as the only variable.

For example, let f(x, y) = x2y. Then

∂f

∂x
= D1f(x, y) = 2xy and

∂f

∂y
= D2f(x, y) = x2.

Note 3. More generally, given ~p and ~u 6= ~0, set

h(t) = f(~p + t~u), t ∈ E1.

Then h(0) = f(~p); so

D~uf(~p) = lim
t→0

1

t
[f(~p + t~u)− f(~p)]

= lim
t→0

h(t)− h(0)

t− 0

= h′(0)

if the limit exists. Thus all reduces to a function h of one real variable.

For functions f : E1 → E, the existence of a finite derivative (“differentia-
bility”) at p implies continuity at p (Theorem 1 of Chapter 5, §1). But in the

general case, f : E′ → E, this may fail even if D~uf(~p) exists for all ~u 6= ~0.

2 Similarly in the case E′ = E2 (C2).
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Examples.

(a) Define f : E2 → E1 by

f(x, y) =
x2y

x4 + y2
, f(0, 0) = 0.

Fix a unit vector ~u = (u1, u2) in E2. Let ~p = (0, 0). To find D~uf(p), use
the h of Note 3:

h(t) = f(~p + t~u) = f(t~u) = f(tu1, tu2) =
tu2

1u2

t2u4
1 + u2

2

if u2 6= 0,

and h = 0 if u2 = 0. Hence

D~uf(~p) = h′(0) =
u2
1

u2
if u2 6= 0,

and h′(0) = 0 if u2 = 0. Thus D~u(~0) exists for all ~u . Yet f is discontin-

uous at ~0 (see Problem 9 in Chapter 4, §3).
(b) Let

f(x, y) =

{

x+ y if xy = 0,

1 otherwise.

Then f(x, y) = x on the x-axis; so D1f(0, 0) = 1.

Similarly, D2f(0, 0) = 1. Thus both partials exist at ~0.

Yet f is discontinuous at ~0 (even relatively so) over any line y = ax
(a 6= 0). For on that line, f(x, y) = 1 if (x, y) 6= (0, 0); so f(x, y) → 1;
but f(0, 0) = 0 + 0 = 0.

Thus continuity at ~0 fails. (But see Theorem 1 below!)

Hence, if differentiability is to imply continuity, it must be defined in a
stronger manner. We do it in §3. For now, we prove only some theorems on
partial and directional derivatives, based on those of Chapter 5.

Theorem 1. If f : E′ → E has a ~u-directed derivative at ~p ∈ E′, then f is
relatively continuous at ~p over the line

~x = ~p + t~u (~0 6= ~u ∈ E′).

Proof. Set h(t) = f(~p + t~u), t ∈ E1.

By Note 3, our assumption implies that h (a function on E1) is differentiable
at 0.

By Theorem 1 in Chapter 5, §1, then, h is continuous at 0; so

lim
t→0

h(t) = h(0) = f(~p),

§1. Directional and Partial Derivatives 5

i.e.,

lim
t→0

f(~p + t~u) = f(~p).

But this means that f(~x) → f(~p) as ~x → ~p over the line ~x = ~p + t~u , for, on
that line, ~x = ~p + t~u .

Thus, indeed, f is relatively continuous at ~p , as stated. �

Note that we actually used the substitution ~x = ~p + t~u . This is admissi-
ble since the dependence between x and t is one-to-tone (Corollary 2(iii) of
Chapter 4, §2). Why?

Theorem 2. Let E′ ∋ ~u = ~q − ~p, ~u 6= ~0.

If f : E′ → E is relatively continuous on the segment I = L[~p, ~q ] and has a
~u-directed derivative on I −Q (Q countable), then

(2) |f(~q )− f(~p)| ≤ sup |D~uf(~x)|, ~x ∈ I −Q.

Proof. Set again h(t) = f(~p + t~u) and g(t) = ~p + t~u .

Then h = f ◦ g, and g is continuous on E1. (Why?)

As f is relatively continuous on I = L[~p, ~q ], so is h = f ◦ g on the interval
J = [0, 1] ⊂ E1 (cf. Chapter 4, §8, Example (1)).

Now fix t0 ∈ J . If ~x0 = ~p + t0~u ∈ I − Q, our assumptions imply the
existence of

D~uf(~x0) = lim
t→0

1

t
[f(~x0 + t~u)− f(~x0)]

= lim
t→0

1

t
[f(~p + t0~u + t~u)− f(~p + t0~u)]

= lim
t→0

1

t
[h(t0 + t)− h(t0)]

= h′(t0). (Explain!)

This can fail for at most a countable set Q′ of points t0 ∈ J (those for which
~x0 ∈ Q).

Thus h is differentiable on J −Q′; and so, by Corollary 1 in Chapter 5, §4,
|h(1)− h(0)| ≤ sup

t∈J−Q′

|h′(t)| = sup
~x∈I−Q

|D~uf(~x)|.

Now as h(1) = f(~p + ~u) = f(~q ) and h(~0) = f(~p), formula (2) follows. �

Theorem 3. If in Theorem 2, E = E1 and if f has a ~u-directed derivative at
least on the open line segment L(~p, ~q), then

(3) f(~q )− f(~p) = D~uf(~x0)

for some ~x0 ∈ L(~p, ~q).
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The proof is as in Theorem 2, based on Corollary 3 in Chapter 5, §2 (instead
of Corollary 1 in Chapter 5, §4).

Theorems 2 and 3 are often used in “normalized” form, as follows.

Corollary 2. If in Theorems 2 and 3, we set

r = |~u| = |~q − ~p| 6= 0 and ~v =
1

r
~u,

then formulas (2) and (3) can be written as

(2′) |f(~q)− f(~p)| ≤ |~q − ~p| sup |D~vf(~x)|, ~x ∈ I −Q,

and

(3′) f(~q )− f(~p) = |~q − ~p |D~vf(~x0)

for some ~x0 ∈ L(~p, ~q).

For by Corollary 1,

D~uf = rD~vf = |~q − ~p |D~vf ;

so (2′) and (3′) follow.

Problems on Directional and Partial Derivatives

1. Complete all missing details in the proof of Theorems 1 to 3 and Corol-
laries 1 and 2.

2. Complete all details in Examples (a) and (b). Find D1f(~p) and D2f(~p)
also for ~p 6= 0. Do Example (b) in two ways: (i) use Note 3; (ii) use
Definition 2 only.

3. In Examples (a) and (b) describe D~uf : E
2 → E1. Compute it for

~u = (1, 1) = ~p .

In (b), show that f has no directional derivatives D~uf(~p) except if
~u ‖ ~e1 or ~u ‖ ~e2. Give two proofs: (i) use Theorem 1; (ii) use definitions
only.

4. Prove that if f : En (Cn) → E has a zero partial derivative, Dkf = 0,
on a convex set A, then f(~x) does not depend on xk, for ~x ∈ A. (Use
Theorems 1 and 2.)

5. Describe D1f and D2f on the various parts of E2, and discuss the
relative continuity of f over lines through ~0, given that f(x, y) equals:

(i)
xy

x2 + y2
; (ii) the integral part of x+ y;

(iii)
xy

|x| + x sin
1

y
; (iv) xy

x2 − y2

x2 + y2
;

(v) sin(y cosx); (vi) xy.
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(Set f = 0 wherever the formula makes no sense.)

⇒6. Prove that if f : E′ → E1 has a local maximum or minimum at ~p ∈ E′,
then D~uf(~p) = 0 for every vector ~u 6= ~0 in E′.
[Hint: Use Note 3, then Corollary 1 in Chapter 5, §2.]

7. State and prove the Finite Increments Law (Theorem 1 of Chapter 5,
§4) for directional derivatives.
[Hint: Imitate Theorem 2 using two auxiliary functions, h and k.]

8. State and prove Theorems 4 and 5 of Chapter 5, §1, for directional
derivatives.

§2. Linear Maps and Functionals. Matrices

For an adequate definition of differentiability, we need the notion of a linear
map. Below, E′, E′′, and E denote normed spaces over the same scalar field,
E1 or C.

Definition 1.

A function f : E′ → E is a linear map if and only if for all ~x, ~y ∈ E′ and
scalars a, b

(1) f(a~x + b~y ) = af(~x) + bf(~y );

equivalently, iff for all such ~x , ~y , and a

f(~x + ~y ) = f(x) + f(y) and f(a~x) = af(~x). (Verify!)

If E = E′, such a map is also called a linear operator .

If the range space E is the scalar field of E′, (i.e., E1 or C,) the linear
map f is also called a (real or complex) linear functional on E′.

Note 1. Induction extends formula (1) to any “linear combinations”:

(2) f

( m
∑

i=1

ai~xi

)

=

m
∑

i=1

aif(~xi)

for all ~xi ∈ E′ and scalars ai.

Briefly: A linear map f preserves linear combinations.

Note 2. Taking a = b = 0 in (1), we obtain f(~0) = 0 if f is linear .

Examples.

(a) Let E′ = En (Cn). Fix a vector ~v = (v1, . . . , vn) in E′ and set

(∀ ~x ∈ E′) f(~x) = ~x · ~v
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(inner product ; see Chapter 3, §§1–3 and §9).
Then

f(a~x + b~y ) = (a~x) · ~v + (b~y ) · ~v
= a(~x · ~v ) + b(~y · ~v )
= af(~x) + bf(~y );

so f is linear . Note that if E′ = En, then by definition,

f(~x) = ~x · ~v =

n
∑

k=1

xkvk =

n
∑

k=1

vkxk.

If, however, E′ = Cn, then

f(~x) = ~x · ~v =

n
∑

k=1

xkv̄k =

n
∑

k=1

v̄kxk,

where v̄k is the conjugate of the complex number vk.

By Theorem 3 in Chapter 4, §3, f is continuous (a polynomial!).

Moreover, f(~x) = ~x · ~v is a scalar (in E1 or C). Thus the range of f
lies in the scalar field of E′; so f is a linear functional on E′.

(b) Let I = [0, 1]. Let E′ be the set of all functions u : I → E that are of
class CD∞ (Chapter 5, §6) on I, hence bounded there (Theorem 2 of
Chapter 4, §8).

As in Example (C) in Chapter 3, §10, E′ is a normed linear space, with
norm

‖u‖ = sup
x∈I
|u(x)|.

Here each function u ∈ E′ is treated as a single “point” in E′. The
distance between two such points, u and v, equals ‖u− v‖, by definition.

Now define a map D on E′ by setting D(u) = u′ (derivative of u on
I). As every u ∈ E′ is of class CD∞, so is u′.

Thus D(u) = u′ ∈ E′, and so D : E′ → E′ is a linear operator . (Its
linearity follows from Theorem 4 in Chapter 5, §1.)

(c) Let again I = [0, 1]. Let E′ be the set of all functions u : I → E that are
bounded and have antiderivatives (Chapter 5, §5) on I. With norm ‖u‖
as in Example (b), E′ is a normed linear space.

Now define φ : E′ → E by

φ(u) =

∫ 1

0

u,

with
∫

u as in Chapter 5, §5. (Recall that
∫ 1

0
u is an element of E if

u : I → E.) By Corollary 1 in Chapter 5, §5, φ is a linear map of E′ into

§2. Linear Maps and Functionals. Matrices 9

E. (Why?)

(d) The zero map f = 0 on E′ is always linear. (Why?)

Theorem 1. A linear map f : E′ → E is continuous (even uniformly so) on

all of E′ iff it is continuous at ~0; equivalently, iff there is a real c > 0 such that

(∀ ~x ∈ E′) |f(~x)| ≤ c|~x|.
(We call this property linear boundedness.)

Proof. Assume that f is continuous at ~0. Then, given ε > 0, there is δ > 0
such that

|f(~x)− f(~0)| = |f(~x)| ≤ ε

whenever |~x −~0| = |~x | < δ.

Now, for any ~x 6= ~0, we surely have
∣

∣

∣

∣

δ~x

2|~x|

∣

∣

∣

∣

=
δ

2
< δ.

Hence

(∀ ~x 6= ~0)

∣

∣

∣

∣

f

(

δ~x

2|~x|

)∣

∣

∣

∣

≤ ε,

or, by linearity,
δ

2|~x| |f(~x)| ≤ ε,

i.e.,

|f(~x)| ≤ 2ε

δ
|~x|.

By Note 2, this also holds if ~x = ~0.

Thus, taking c = 2ε/δ, we obtain

(3) (∀ ~x ∈ E′) f(~x) ≤ c|~x| (linear boundedness).

Now assume (3). Then

(∀ ~x, ~y ∈ E′) |f(~x − ~y )| ≤ c|~x − ~y |;
or, by linearity,

(4) (∀ ~x, ~y ∈ E′) |f(~x)− f(~y )| ≤ c|~x − ~y |.1

Hence f is uniformly continuous (given ε > 0, take δ = ε/c). This, in turn,

implies continuity at ~0; so all conditions are equivalent, as claimed. �

1 This is the so-called uniform Lipschitz condition.
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A linear map need not be continuous.2 But, for En and Cn, we have the
following result.

Theorem 2.

(i) Any linear map on En or Cn is uniformly continuous.

(ii) Every linear functional on En (Cn) has the form

f(~x) = ~x · ~v (dot product)

for some unique vector ~v ∈ En (Cn), dependent on f only .

Proof. Suppose f : En → E is linear; so f preserves linear combinations.

But every ~x ∈ En is such a combination,

~x =

n
∑

k=1

xk~ek (Theorem 2 in Chapter 3, §§1–3).

Thus, by Note 1,

f(~x) = f

( n
∑

k=1

xk~ek

)

=

n
∑

k=1

xkf(~ek).

Here the function values f(~ek) are fixed vectors in the range space E, say,

f(~ek) = vk ∈ E,

so that

(5) f(~x) =

n
∑

k=1

xkf(~ek) =

n
∑

k=1

xkvk, vk ∈ E.

Thus f is a polynomial in n real variables xk, hence continuous (even uniformly
so, by Theorem 1).

In particular, if E = E1 (i.e., f is a linear functional) then all vk in (5) are
real numbers; so they form a vector

~v = (v1, . . . , vk) in En,

and (5) can be written as

f(~x) = ~x · ~v .

The vector ~v is unique. For suppose there are two vectors, ~u and ~v , such that

(∀ ~x ∈ En) f(~x) = ~x · ~v = ~x · ~u.
Then

(∀ ~x ∈ En) ~x · (~v − ~u) = 0.

2 See Problem 2(ii) below.

§2. Linear Maps and Functionals. Matrices 11

By Problem 10 of Chapter 3, §§1–3, this yields ~v − ~u = ~0, or ~v = ~u . This
completes the proof for E = En.

It is analogous for Cn; only in (ii) the vk are complex and one has to replace
them by their conjugates v̄k when forming the vector ~v to obtain f(~x) = ~x ·~v .
Thus all is proved. �

Note 3. Formula (5) shows that a linear map f : En (Cn)→ E is uniquely
determined by the n function values vk = f(~ek).

If further E = Em (Cm), the vectors vk are m-tuples of scalars,

vk = (v1k, . . . , vmk).

We often write such vectors vertically , as the n “columns” in an array of m
“rows” and n “columns”:

(6)









v11 v12 . . . v1n
v21 v22 . . . v2n
...

...
. . .

...
vm1 vm2 . . . vmn









.

Formally, (6) is a double sequence of mn terms, called an m × n matrix . We
denote it by [f ] = (vik), where for k = 1, 2, . . . , n,

f(~ek) = vk = (v1k, . . . , vmk).

Thus linear maps f : En → Em (or f : Cn → Cm) correspond one-to-one to
their matrices [f ].

The easy proof of Corollaries 1 to 3 below is left to the reader.

Corollary 1. If f, g : E′ → E are linear , so is

h = af + bg

for any scalars a, b.

If further E′ = En (Cn) and E = Em (Cm), with [f ] = (vik) and [g] = (wik),
then

[h] = (avik + bwik).

Corollary 2. A map f : En (Cn)→ E is linear iff

f(~x) =

n
∑

k=1

vkxk,

where vk = f(~ek).

Hint: For the “if,” use Corollary 1. For the “only if,” use formula (5) above.
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Corollary 3. If f : E′ → E′′ and g : E′′ → E are linear , so is the composite
h = g ◦ f .

Our next theorem deals with the matrix of the composite linear map g ◦ f .
Theorem 3. Let f : E′ → E′′ and g : E′′ → E be linear , with

E′ = En (Cn), E′′ = Em (Cm), and E = Er (Cr).

If [f ] = (vik) and [g] = (wji), then

[h] = [g ◦ f ] = (zjk),

where

(7) zjk =

m
∑

i=1

wjivik, j = 1, 2, . . . , r, k = 1, 2, . . . , n.

Proof. Denote the basic unit vectors in E′ by

e′1, . . . , e
′
n,

those in E′′ by

e′′1 , . . . , e
′′
m,

and those in E by

e1, . . . , er.

Then for k = 1, 2, . . . , n,

f(e′k) = vk =

m
∑

i=1

vike
′′
i and h(e′k) =

r
∑

j=1

zjkej ,

and for i = 1, . . . m,

g(e′′i ) =

r
∑

j=1

wjiej .

Also,

h(e′k) = g(f(e′k)) = g

( m
∑

i=1

vike
′′
i

)

=
m
∑

i=1

vikg(e
′′
i ) =

m
∑

i=1

vik

( r
∑

j=1

wjiej

)

.

Thus

h(e′k) =

r
∑

j=1

zjkej =

r
∑

j=1

( m
∑

i=1

wjivik

)

ej .

But the representation in terms of the ej is unique (Theorem 2 in Chapter 3,
§§1–3), so, equating coefficients, we get (7). �
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Note 4. Observe that zjk is obtained, so to say, by “dot-multiplying” the
jth row of [g] (an r ×m matrix) by the kth column of [f ] (an m× n matrix).

It is natural to set
[g] [f ] = [g ◦ f ],

or
(wji)(vik) = (zjk),

with zjk as in (7).

Caution. Matrix multiplication, so defined, is not commutative.

Definition 2.

The set of all continuous linear maps f : E′ → E (for fixed E′ and E) is
denoted L(E′, E).

If E = E′, we write L(E) instead.

For each f in L(E′, E), we define its norm by

‖f‖ = sup
|~x |≤1

|f(~x)|.3

Note that ‖f‖ < +∞, by Theorem 1.

Theorem 4. L(E′, E) is a normed linear space under the norm defined above
and under the usual operations on functions, as in Corollary 1.

Proof. Corollary 1 easily implies that L(E′, E) is a vector space. We now
show that ‖ · ‖ is a genuine norm.

The triangle law,
‖f + g‖ ≤ ‖f‖+ ‖g‖,

follows exactly as in Example (C) of Chapter 3, §10. (Verify!)
Also, by Problem 5 in Chapter 2, §§8–9, sup |af(~x)| = |a| sup |f(~x)|. Hence

‖af‖ = |a|‖f‖ for any scalar a.

As noted above, 0 ≤ ‖f‖ < +∞.

It remains to show that ‖f‖ = 0 iff f is the zero map. If

‖f‖ = sup
|~x|≤1

|f(~x)| = 0,

then |f(~x)| = 0 when |~x| ≤ 1. Hence, if ~x 6= ~0,

f
( ~x

|~x|
)

=
1

|~x|f(~x) = 0.

As f(~0) = 0, we have f(~x) = 0 for all ~x ∈ E′.

Thus ‖f‖ = 0 implies f = 0, and the converse is clear. Thus all is proved. �

3 Equivalently, ‖f‖ = sup
~x 6=~0 |f(~x)|/|~x |; see Note 5 below.
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Note 5. A similar proof, via f
(

~x
|~x|

)

and properties of lub, shows that

‖f‖ = sup
~x 6=0

∣

∣

∣

f(~x)

|~x|
∣

∣

∣

and
(∀ ~x ∈ E′) |f(~x)| ≤ ‖f‖ |~x|.

It also follows that ‖f‖ is the least real c such that

(∀ ~x ∈ E′) |f(~x)| ≤ c|~x|.
Verify. (See Problem 3′.)

As in any normed space, we define distances in L(E′, E) by

ρ(f, g) = ‖f − g‖,
making it a metric space; so we may speak of convergence, limits, etc., in it.

Corollary 4. If f ∈ L(E′, E′′) and g ∈ L(E′′, E), then

‖g ◦ f‖ ≤ ‖g‖ ‖f‖.

Proof. By Note 5,

(∀ ~x ∈ E′) |g(f(~x))| ≤ ‖g‖ |f(~x)| ≤ ‖g‖ ‖f‖ |~x|.
Hence

(∀ ~x 6= ~0)
∣

∣

∣

(g ◦ f)(~x)
|~x |

∣

∣

∣ ≤ ‖g‖ ‖f‖,

and so

‖g‖ ‖f‖ ≥ sup
~x 6=~0

|(g ◦ f)(~x)|
|~x| = ‖g ◦ f‖. �

Problems on Linear Maps and Matrices

1. Verify Note 1 and the equivalence of the two statements in Definition 1.

2. In Examples (b) and (c) show that

fn → f (uniformly) on I iff ‖fn − f‖ → 0,

i.e., fn → f in E′.
[Hint: Use Theorem 1 in Chapter 4, §2.]
Hence deduce the following.

(i) If E is complete, then the map φ in Example (c) is continuous.
[Hint: Use Theorem 2 of Chapter 5, §9, and Theorem 1 in Chapter 4, §12.]

(ii) The map D of Example (b) is not continuous.
[Hint: Use Problem 3 in Chapter 5, §9.]
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3. Prove Corollaries 1 to 3.

3′. Show that

‖f‖ = sup
|~x |≤1

|f(~x)| = sup
|~x|=1

|f(~x)| = sup
~x 6=~0

|f(~x)|
|~x| .

[Hint: From linearity of f deduce that |f(~x)| ≥ |f(cx)| if |c| < 1. Hence one may
disregard vectors of length < 1 when computing sup |f(~x)|. Why?]

4. Find the matrices [f ], [g], [h], [k], and the defining formulas for the
linear maps f : E2 → E1, g : E3 → E4, h : E4 → E2, k : E1 → E3 if

(i) f(~e1) = 3, f(~e2) = −2;
(ii) g(~e1) = (1, 0,−2, 4), g(~e2) = (0, 2,−1, 1), g(~e3) = (0, 1, 0,−1);
(iii) h(~e1) = (2, 2), h(~e2) = (0,−2), h(~e3) = (1, 0), h(~e4) = (−1, 1);
(iv) k(1) = (0, 1,−1).

5. In Problem 4, use Note 4 to find the product matrices [k] [f ], [g] [k],
[f ] [h], and [h] [g]. Hence obtain the defining formulas for k ◦ f , g ◦ k,
f ◦ h, and h ◦ g.

6. For m× n matrices (with m and n fixed) define addition and multipli-
cation by scalars as follows:

a[f ] + b[g] = [af + bg] if f, g ∈ L(En, Em) (or L(Cn, Cm)).

Show that these matrices form a vector space over E1 (or C).

7. With matrix addition as in Problem 6, and multiplication as in Note 4,
show that all n × n matrices form a noncommutative ring with unity ,
i.e., satisfy the field axioms (Chapter 2, §§1–4) except the commutativity
of multiplication and existence of multiplicative inverses (give counterex-
amples!).

Which is the “unity” matrix?

8. Let f : E′ → E be linear. Prove the following statements.

(i) The derivative D~uf(~p) exists and equals f(~u) for every ~p, ~u ∈ E′

(~u 6= ~0);

(ii) f is relatively continuous on any line in E′ (use Theorem 1 in §1);
(iii) f carries any such line into a line in E.

9. Let g : E′′ → E be linear. Prove that if some f : E′ → E′′ has a ~u-
directed derivative at ~p ∈ E′, so has h = g◦f , andD~uh(~p) = g(D~uf(~p)).
[Hint: Use Problem 8.]
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10. A set A in a vector space V (A ⊆ V ) is said to be linear (or a linear
subspace of V ) iff a~x + b~y ∈ A for any ~x, ~y ∈ A and any scalars a, b.
Prove the following.

(i) Any such A is itself a vector space.

(ii) If f : E′ → E is a linear map and A is linear in E′ (respectively,
in E), so is f [A] in E (respectively, so is f−1[A] in E′).

11. A set A in a vector space V is called the span of a set B ⊆ A (A = sp(B))
iff A consists of all linear combinations of vectors from B. We then also
say that B spans A.

Prove the following:

(i) A = sp(B) is the smallest linear subspace of V that contains B.

(ii) If f : V → E is linear and A = sp(B), then f [A] = sp(f [B]) in E.

12. A set B = {~x1, ~x2, . . . , ~xn} in a vector space V is called a basis iff each
~v ∈ V has a unique representation as

~v =

n
∑

i=1

ai~xi

for some scalars ai. If so, the number n of the vectors in B is called the
dimension of V , and V is said to be n-dimensional . Examples of such
spaces are En and Cn (the ~ek form a basis!).

(i) Show that B is a basis iff it spans V (see Problem 11) and its
elements ~xi are linearly independent , i.e.,

n
∑

i=1

ai~xi = ~0 iff all ai vanish.

(ii) If E′ is finite-dimensional, all linear maps on E′ are uniformly
continuous. (See also Problems 3 and 4 of §6.)

13. Prove that if f : E1 → E is continuous and (∀x, y ∈ E1)

f(x+ y) = f(x) + f(y),

then f is linear; so, by Corollary 2, f(x) = vx where v = f(1).
[Hint: Show that f(ax) = af(x); first for a = 1, 2, . . . (note: nx = x + x + · · · + x,

n terms); then for rational a = m/n; then for a = 0 and a = −1. Any a ∈ E1 is a
limit of rationals; so use continuity and Theorem 1 in Chapter 4, §2.]

§3. Differentiable Functions

As we know, a function f : E1 → E (on E1) is differentiable at p ∈ E1 iff, with
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∆f = f(x)− f(p) and ∆x = x− p,

f ′(p) = lim
x→p

∆f

∆x
exists (finite).

Setting ∆x = x − p = t, ∆f = f(p + t) − f(p), and f ′(p) = v, we may write
this equation as

lim
t→0

∣

∣

∣

∆f

t
− v

∣

∣

∣ = 0,

or

(1) lim
t→0

1

|t| |f(p+ t)− f(p)− vt| = 0.

Now define a map φ : E1 → E by φ(t) = tv, v = f ′(p) ∈ E.

Then φ is linear and continuous, i.e., φ ∈ L(E1, E); so by Corollary 2 in §2,
we may express (1) as follows: there is a map φ ∈ L(E1, E) such that

lim
t→0

1

|t| |∆f − φ(t)| = 0.

We adopt this as a definition in the general case, f : E′ → E, as well.

Definition 1.

A function f : E′ → E (where E′ and E are normed spaces over the same
scalar field) is said to be differentiable at a point ~p ∈ E′ iff there is a map

φ ∈ L(E′, E)

such that

lim
~t →~0

1

|~t |
|∆f − φ(~t )| = 0;

that is,

(2) lim
~t →~0

1

|~t |
[f(~p + ~t )− f(~p)− φ(~t )] = 0.

As we show below, φ is unique (for a fixed ~p), if it exists.

We call φ the differential of f at ~p , briefly denoted df . As it depends
on ~p, we also write df(~p ;~t ) for df(~t ) and df(~p ; · ) for df .

Some authors write f ′(~p) for df(~p ; · ) and call it the derivative at ~p, but
we shall not do this (see Preface). Following M. Spivak, however, we shall use
“[f ′(~p)]” for its matrix , as follows.

Definition 2.

If E′ = En (Cn) and E = Em (Cm), and f : E′ → E is differentiable at
~p, we set

[f ′(~p)] = [df(~p ; · )]
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and call it the Jacobian matrix of f at ~p .

Note 1. In Chapter 5, §6, we did not define df as a mapping . However, if
E′ = E1, the function value

df(p; t) = vt = f ′(p)∆x

is as in Chapter 5, §6.
Also, [f ′(p)] is a 1×1 matrix with single term f ′(p). (Why?) This motivated

Definition 2.

Theorem 1 (uniqueness of df). If f : E′ → E is differentiable at ~p , then the
map φ described in Definition 1 is unique (dependent on f and ~p only).

Proof. Suppose there is another linear map g : E′ → E such that

(3) lim
~t →~0

1

|~t |
[f(~p + ~t )− f(~p)− g(~t )] = lim

~t →~0

1

|~t |
[∆f − g(~t )] = 0.

Let h = φ− g. By Corollary 1 in §2, h is linear.

Also, by the triangle law,

|h(~t )| = |φ(~t )− g(~t )| ≤ |∆f − φ(~t )|+ |∆f − g(~t )|.

Hence, dividing by |~t |,
∣

∣

∣

∣

h

(

~t

|~t |

)∣

∣

∣

∣

=
1

|~t |
|h(~t )| ≤ 1

|~t |
|∆f − φ(~t )|+ 1

|~t |
|∆f − g(~t )|.

By (3) and (2), the right side expressions tend to 0 as ~t → ~0. Thus

lim
~t →~0

h

(

~t

|~t |

)

= 0.

This remains valid also if ~t → ~0 over any line through ~0, so that ~t /|~t | remains

constant , say ~t /|~t | = ~u, where ~u is an arbitrary (but fixed) unit vector.

Then

h

(

~t

|~t |

)

= h(~u)

is constant; so it can tend to 0 only if it equals 0, so h(~u) = 0 for any unit
vector ~u .

Since any ~x ∈ E′ can be written as ~x = |~x| ~u , linearity yields

h(~x) = |~x|h(~u) = 0.

Thus h = φ − g = 0 on E′, and so φ = g after all, proving the uniqueness
of φ. �
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Theorem 2. If f is differentiable at ~p, then

(i) f is continuous at ~p;

(ii) for any ~u 6= ~0, f has the ~u-directed derivative

D~uf(~p) = df(~p ; ~u).

Proof. By assumption, formula (2) holds for φ = df(~p ; · ).
Thus, given ε > 0, there is δ > 0 such that, setting ∆f = f(~p + ~t ) − f(~p),

we have

(4)
1

|~t |
|∆f − φ(~t )| < ε whenever 0 < |~t | < δ;

or, by the triangle law,

(5) |∆f | ≤ |∆f − φ(~t )|+ |φ(~t )| ≤ ε|~t |+ |φ(~t )|, 0 < |~t | < δ.

Now, by Definition 1, φ is linear and continuous; so

lim
~t →~0
|φ(~t )| = |φ(~0)| = 0.

Thus, making ~t → ~0 in (5), with ε fixed, we get

lim
~t →~0
|∆f | = 0.

As ~t is just another notation for ∆~x = ~x − ~p, this proves assertion (i).

Next, fix any ~u 6= ~0 in E′, and substitute t~u for ~t in (4).

In other words, t is a real variable, 0 < t < δ/|~u|, so that ~t = t~u satisfies

0 < |~t | < δ.

Multiplying by |~u|, we use the linearity of φ to get

ε|~u | >
∣

∣

∣

∆f

t
− φ(t~u)

t

∣

∣

∣ =
∣

∣

∣

∆f

t
− φ(~u)

∣

∣

∣ =
∣

∣

∣

f(~p + t~u)− f(~p)

t
− φ(~u)

∣

∣

∣.

As ε is arbitrary, we have

φ(~u) = lim
t→0

1

t
[f(~p + t~u)− f(~p)].

But this is simply D~uf(~p), by Definition 1 in §1.
Thus D~uf(~p) = φ(~u) = df(~p ; ~u), proving (ii). �

Note 2. If E′ = En (Cn), Theorem 2(ii) shows that if f is differentiable at
~p, it has the n partials

Dkf(~p) = df(~p ;~ek), k = 1, . . . , n.
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But the converse fails: the existence of the Dkf(~p) does not even imply con-
tinuity, let alone differentiability (see §1). Moreover, we have the following
result.

Corollary 1. If E′ = En (Cn) and if f : E′ → E is differentiable at ~p, then

(6) df(~p ;~t ) =

n
∑

k=1

tkDkf(~p) =

n
∑

k=1

tk
∂

∂xk
f(~p),

where ~t = (t1, . . . , tn).

Proof. By definition, φ = df(~p; · ) is a linear map for a fixed ~p .

If E′ = En or Cn, we may use formula (3) of §2, replacing f and ~x by φ

and ~t , and get

φ(~t ) = df(~p ;~t ) =

n
∑

k=1

tkdf(~p ;~ek) =

n
∑

k=1

tkDkf(~p)

by Note 2. �

Note 3. In classical notation, one writes ∆xk or dxk for tk in (6). Thus,
omitting ~p and ~t , formula (6) is often written as

(6′) df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+

∂f

∂xn
dxn.

In particular, if n = 3, we write x, y, z for x1, x2, x3. This yields

(6′′) df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

(a familiar calculus formula).

Note 4. If the range space E in Corollary 1 is E1 (C), then the Dkf(~p)
form an n-tuple of scalars, i.e., a vector in En (Cn).

In case f : En → E1, we denote it by

∇f(~p) = (D1f(~p), . . . , Dnf(~p)) =

n
∑

k=1

~ekDkf(~p).

In case f : Cn → C, we replace the Dkf(~p) by their conjugates Dkf(~p) and set

∇f(~p) =
n
∑

k=1

~ekDkf(~p).

The vector ∇f(~p) is called the gradient of f (“grad f”) at ~p .
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From (6) we obtain

(7) df(~p ;~t ) =

n
∑

k=1

tkDkf(~p) = ~t · ∇f(~p)

(dot product of ~t by ∇f(~p)), provided f : En → E1 (or f : Cn → C) is differ-
entiable at ~p .

This leads us to the following result.

Corollary 2. A function f : En → E1 (or f : Cn → C) is differentiable at ~p
iff

(8) lim
~t →~0

1

|~t |
|f(~p + ~t )− f(~p)− ~t · ~v | = 0

for some ~v ∈ En (Cn).

In this case, necessarily ~v = ∇f(~p) and ~t · ~v = df(~p;~t ), ~t ∈ En (Cn).

Proof. If f is differentiable at ~p, we may set φ = df(~p ; · ) and ~v = ∇f(~p).
Then by (7),

φ(~t ) = df(~p ;~t ) = ~t · ~v ;
so by Definition 1, (8) results.

Conversely, if some ~v satisfies (8), set φ(~t ) = ~t · ~v . Then (8) implies (2),
and φ is linear and continuous.

Thus by definition, f is differentiable at ~p ; so (7) holds.

Also, φ is a linear functional on En (Cn). By Theorem 2(ii) in §2, the ~v in
φ(~t ) = ~t · ~v is unique, as is φ.

Thus by (7), ~v = ∇f(~p) necessarily. �

Corollary 3 (law of the mean). If f : En → E1 (real) is relatively continuous
on a closed segment L[~p, ~q ], ~p 6= ~q , and differentiable on L(~p, ~q), then

(9) f(~q)− f(~p) = (~q − ~p) · ∇f(~x0)

for some ~x0 ∈ L(~p, ~q).

Proof. Let

r = |~q − ~p |, ~v =
1

r
(~q − ~p), and r~v = (~q − ~p).

By (7) and Theorem 2(ii),

D~vf(~x) = df(~x ;~v) = ~v · ∇f(~x)
for ~x ∈ L(~p, ~q). Thus by formula (3′) of Corollary 2 in §1,

f(~q)− f(~p) = rD~vf(~x0) = r~v · ∇f(~x0) = (~q − ~p) · ∇f(~x0)

for some ~x0 ∈ L(~p, ~q). �
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As we know, the mere existence of partials does not imply differentiability.
But the existence of continuous partials does. Indeed, we have the following
theorem.

Theorem 3. Let E′ = En (Cn).

If f : E′ → E has the partial derivatives Dkf (k = 1, . . . , n) on all of an
open set A ⊆ E′, and if the Dkf are continuous at some ~p ∈ A, then f is
differentiable at ~p .

Proof. With ~p as above, let

φ(~t ) =

n
∑

k=1

tkDkf(~p) with ~t =

n
∑

k=1

tk~ek ∈ E′.

Then φ is continuous (a polynomial!) and linear (Corollary 2 in §2).
Thus by Definition 1, it remains to show that

lim
~t →~0

1

|~t |
|∆f − φ(~t )| = 0;

that is,

(10) lim
~t ∈~0

1

|~t |

∣

∣

∣

∣

f(~p + ~t )− f(~p)−
n
∑

k=1

tkDkf(~p)

∣

∣

∣

∣

= 0.

To do this, fix ε > 0. As A is open and the Dkf are continuous at ~p ∈ A,
there is a δ > 0 such that G~p (δ) ⊆ A and simultaneously (explain this!)

(∀ ~x ∈ G~p (δ)) |Dkf(~x)−Dkf(~p)| <
ε

n
, k = 1, . . . , n.

Hence for any set I ⊆ G~p (δ)

(11) sup
~x∈I
|Dkf(~x)−Dkf(~p)| ≤

ε

n
. (Why?)

Now fix any ~t ∈ E′, 0 < |~t | < δ, and let ~p0 = ~p ,

~pk = ~p +

k
∑

i=1

tiei, k = 1, . . . , n.

Then

~pn = ~p +

n
∑

i=1

ti~ei = ~p + ~t ,

|~pk − ~pk−1| = |tk|, and all ~pk lie in G~p (δ), for

|~pk − ~p | =
∣

∣

∣

∣

k
∑

i=1

tiei

∣

∣

∣

∣

=

√

√

√

√

k
∑

i=1

|ti|2 ≤

√

√

√

√

n
∑

i=1

|ti|2 = |~t | < δ,
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as required.

As Gp(δ) is convex (Chapter 4, §9), the segments Ik = L[~pk−1, ~pk] all lie in
G~p (δ) ⊆ A; and by assumption, f has all partials there.

Hence by Theorem 1 in §1, f is relatively continuous on all Ik.

All this also applies to the functions gk, defined by

(12) (∀ ~x ∈ E′) gk(~x) = f(~x)− xkDkf(~p), k = 1, . . . , n.

(Why?) Here

Dkgk(~x) = Dkf(~x)−Dkf(~p).

(Why?)

Thus by Corollary 2 in §1, and (11) above,

|gk(~pk)− gk(~pk−1)| ≤ |~pk − ~pk−1| sup
x∈Ik

|Dkf(~x)−Dkf(~p)|

≤ ε

n
|tk| ≤

ε

n
|~t |,

since

|~pk − ~pk−1| = |tk~ek| ≤ |~t |,
by construction.

Combine with (12), recalling that the kth coordinates xk, for ~pk and ~pk−1,
differ by tk; so we obtain

(13)
|gk(~pk)− gk(~pk−1)| = |f(~pk)− f(~pk−1)− tkDkf(~p)|

≤ ε

n
|~t |.

Also,

n
∑

k=1

[f(~pk)− f(~pk−1)] = f(~pn)− f(~p0)

= f(~p + ~t )− f(~p) = ∆f (see above).

Thus
∣

∣

∣

∣

∆f −
n
∑

k=1

tkDkf(~p)

∣

∣

∣

∣

=

∣

∣

∣

∣

n
∑

k=1

[f(~pk)− f(~pk−1)− tkDkf(~p)]

∣

∣

∣

∣

≤ n · ε
n
|~t | = ε|~t |.

As ε is arbitrary, (10) follows, and all is proved. �

Theorem 4. If f : En → Em (or f : Cn → Cm) is differentiable at ~p , with
f = (f1, . . . , fm), then [f ′(~p)] is an m× n matrix,

(14) [f ′(~p)] = [Dkfi(~p)], i = 1, . . . ,m, k = 1, . . . , n.
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Proof. By definition, [f ′(~p)] is the matrix of the linear map φ = df(~p ; · ),
φ = (φ1, . . . , φm). Here

φ(~t ) =

n
∑

k=1

tkDkf(~p)

by Corollary 1.

As f = (f1, . . . , fm), we can compute Dkf(~p) componentwise by Theorem 5
of Chapter 5, §1, and Note 2 in §1 to get

Dkf(~p) = (Dkf1(~p), . . . , Dkfm(~p))

=

m
∑

i=1

e′iDkfi(~p), k = 1, 2, . . . , n,

where the e′i are the basic vectors in Em (Cm). (Recall that the ~ek are the
basic vectors in En (Cn).)

Thus

φ(~t ) =

m
∑

i=1

e′iφi(~t ).

Also,

φ(~t ) =

n
∑

k=1

tk

m
∑

i=1

e′iDkfi(~p) =

m
∑

i=1

e′i

n
∑

k=1

tkDkfi(~p).

The uniqueness of the decomposition (Theorem 2 in Chapter 3, §§1–3) now
yields

φi(~t ) =

n
∑

k=1

tkDkfi(~p), i = 1, . . . ,m, ~t ∈ En (Cn).

If here ~t = ~ek, then tk = 1, while tj = 0 for j 6= k. Thus we obtain

φi(~ek) = Dkfi(~p), i = 1, . . . ,m, k = 1, . . . , n.

Hence
φ(~ek) = (v1k, v2k, . . . , vmk),

where
vik = φi(~ek) = Dkfi(~p).

But by Note 3 of §2, v1k, . . . , vmk (written vertically) is the kth column of
the m× n matrix [φ] = [f ′(~p)]. Thus formula (14) results indeed. �

In conclusion, let us stress again that while D~uf(~p) is a constant , for a fixed
~p , df(~p ; · ) is a mapping

φ ∈ L(E′, E),

especially “tailored” for ~p.
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The reader should carefully study at least the “arrowed” problems below.

Problems on Differentiable Functions

1. Complete the missing details in the proofs of this section.

2. Verify Note 1. Describe [f ′(~p)] for f : E1 → Em, too. Give examples.

⇒3. A map f : E′ → E is said to satisfy a Lipschitz condition (L) of order
α > 0 at ~p iff

(∃ δ > 0) (∃K ∈ E1) (∀ ~x ∈ G¬~p (δ)) |f(~x)− f(~p)| ≤ K|~x − ~p|α.
Prove the following.

(i) This implies continuity at ~p (but not conversely; see Problem 7 in
Chapter 5, §1).

(ii) L of order > 1 implies differentiability at ~p , with df(~p ; · ) = 0
on E′.

(iii) Differentiability at ~p implies L of order 1 (apply Theorem 1 in §2
to φ = df).

(iv) If f and g are differentiable at ~p, then

lim
~x→~p

1

|∆~x| |∆f | |∆g| = 0.

4. For the functions of Problem 5 in §1, find those ~p at which f is differ-
entiable. Find

∇f(~p), df(~p ; · ), and [f ′(~p)].

[Hint: Use Theorem 3 and Corollary 1.]

⇒5. Prove the following statements.

(i) If f : E′ → E is constant on an open globe G ⊂ E′, it is differen-
tiable at each ~p ∈ G, and df(~p, · ) = 0 on E′.

(ii) If the latter holds for each ~p ∈ G − Q (Q countable), then f is
constant on G (even on G) provided f is relatively continuous
there.
[Hint: Given ~p, ~q ∈ G, use Theorem 2 in §1 to get f(~p) = f(~q ).]

6. Do Problem 5 in case G is any open polygon-connected set in E′. (See
Chapter 4, §9.)

⇒7. Prove the following.

(i) If f, g : E′ → E are differentiable at ~p, so is

h = af + bg,
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for any scalars a, b (if f and g are scalar valued, a and b may be
vectors); moreover,

d(af + bg) = a df + b dg,

i.e.,

dh(~p ;~t ) = a df(~p ;~t ) + b dg(~p ;~t ), ~t ∈ E′.

(ii) In case f, g : Em → E1 or Cm → C, deduce also that

∇h(~p) = a∇f(~p) + b∇g(~p).

⇒8. Prove that if f, g : E′ → E1 (C) are differentiable at ~p, then so are

h = gf and k =
g

f
.

(the latter, if f(~p) 6= 0). Moreover, with a = f(~p) and b = g(~p), show
that

(i) dh = a dg + b df and

(ii) dk = (a dg − b df)/a2.

If further E′ = En (Cn), verify that

(iii) ∇h(~p) = a∇g(~p) + b∇f(~p) and
(iv) ∇k(~p) = (a∇g(~p)− b∇f(~p))/a2.
Prove (i) and (ii) for vector-valued g, too.
[Hints: (i) Set φ = a dg + b df , with a and b as above. Verify that

∆h− φ(~t ) = g(~p)(∆f − df(~t )) + f(~p)(∆g − dg(~t )) + (∆f)(∆g).

Use Problem 3(iv) and Definition 1.

(ii) Let F (~t ) = 1/f(~t ). Show that dF = −df/a2. Then apply (i) to gF .]

⇒9. Let f : E′ → Em (Cm), f = (f1, . . . , fm). Prove that

(i) f is linear iff all its m components fk are;

(ii) f is differentiable at ~p iff all fk are, and then df = (df1, . . . , dfm).
Hence if f is complex, df = dfre + i · dfim.

10. Prove the following statements.

(i) If f ∈ L(E′, E) then f is differentiable on E′, and df(~p ; · ) = f ,
~p ∈ E′.

(ii) Such is any first-degree monomial, hence any sum of such mono-
mials.

11. Any rational function is differentiable in its domain.
[Hint: Use Problems 10(ii), 7, and 8. Proceed as in Theorem 3 in Chapter 4, §3.]
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12. Do Problem 8(i) in case g is only continuous at ~p , and f(~p) = 0. Find
dh.

13. Do Problem 8(i) for dot products h = f · g of functions f, g : E′ →
Em (Cm).

14. Prove the following.

(i) If φ ∈ L(En, E1) or φ ∈ L(Cn, C), then ‖φ‖ = |~v |, with ~v as in §2,
Theorem 2(ii).

(ii) If f : En → E1 (f : Cn → C1) is differentiable at ~p , then

‖df(~p; · )‖ = |∇f(~p)|.
Moreover, in case f : En → E1,

|∇f(~p)| ≥ D~uf(~p) if |~u | = 1

and

|∇f(~p)| = D~uf(~p) when ~u =
∇f(~p)
|∇f(~p)| ;

thus
|∇f(~p)| = max

|~u|=1
D~uf(~p).

[Hints: Use the equality case in Theorem 4(c’) of Chapter 3, §§1–3. Use formula (7),
Corollary 2, and Theorem 2(ii).]

15. Show that Theorem 3 holds even if

(i) D1f is discontinuous at ~p , and

(ii) f has partials on A−Q only (Q countable, ~p 6∈ Q), provided f is
continuous on A in each of the last n− 1 variables.

[Hint: For k = 1, formula (13) still results by definition of D1f , if a suitable δ has

been chosen.]

∗16. Show that Theorem 3 and Problem 15 apply also to any f : E′ → E
where E′ is n-dimensional with basis {~u1, . . . , ~un} (see Problem 12 in
§2) if we write Dkf for D~uk

f .
[Hints: Assume |~uk| = 1, 1 ≤ k ≤ n (if not, replace ~uk by ~uk/|~uk|; show that this

yields another basis). Modify the proof so that the ~pk are still in G~p (δ). Caution:
The standard norm of En does not apply here.]

17. Let fk : E
1 → E1 be differentiable at pk (k = 1, . . . , n). For ~x =

(x1, . . . , xn) ∈ En, set

F (~x) =

n
∑

k=1

fk(xk) and G(~x) =

n
∏

k=1

fk(xk).

Show that F and G are differentiable at ~p = (p1, . . . , pn). Express
∇F (~p) and ∇G(~p) in terms of the f ′

k(pk).
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[Hint: In order to use Problems 7 and 8, replace the fk by suitable functions defined
on En. For ∇G(~p), “imitate” Problem 6 in Chapter 5, §1.]

§4. The Chain Rule. The Cauchy Invariant Rule

To generalize the chain rule (Chapter 5, §1), we consider the composite h = g◦f
of two functions, f : E′ → E′′ and g : E′′ → E, with E′, E′′, and E as before.

Theorem 1 (chain rule). If

f : E′ → E′′ and g : E′′ → E

are differentiable at ~p and ~q = f(~p), respectively , then

h = g ◦ f
is differentiable at ~p, and

(1) dh(~p ; · ) = dg(~q ; · ) ◦ df(~p ; · ).

Briefly: “The differential of the composite is the composite of differentials.”

Proof. Let U = df(~p ; · ), V = dg(~q ; · ), and φ = V ◦ U .

As U and V are linear continuous maps, so is φ. We must show that φ =
dh(~p ; · ).

Here it is more convenient to write ∆~x or ~x − ~p for the “~t ” of Definition 1
in §3. For brevity, we set (with ~q = f(~p))

w(~x) = ∆h− φ(∆~x) = h(~x)− h(~p)− φ(~x − ~p), ~x ∈ E′,(2)

u(~x) = ∆f − U(∆~x) = f(~x)− f(~p)− U(~x − ~p), ~x ∈ E′,(3)

v(~y ) = ∆g − V (∆~y ) = g(~y )− g(~q )− V (~y − ~q ), ~y ∈ E′′.(4)

Then what we have to prove (see Definition 1 in §3) reduces to

(5) lim
~x→~p

w(~x)

|~x − ~p| = 0,

while the assumed existence of df(~p ; · ) = U and dg(~q ; · ) = V can be ex-
pressed as

(5′) lim
~x→~p

u(~x)

|~x − ~p| = 0,

and

(5′′) lim
~y→~q

v(~y )

|~y − ~q | = 0, ~q = f(~p).
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From (2) and (3), recalling that h = g ◦ f and φ = V ◦ U , we obtain

(6)
w(~x) = g(f(~x))− g(~q )− V (U(~x − ~p))

= g(f(~x))− g(~q )− V (f(~x)− f(~p)− u(~x)).

Using (4), with ~y = f(~x), and the linearity of V , we rewrite (6) as

w(~x) = g(f(~x))− g(~q )− V (f(~x)− f(~p))− V (u(~x))

= v(f(~x)) + V (u(~x)).

(Verify!) Thus the desired formula (5) will be proved if we show that

(6′) lim
~x→~p

V (u(~x))

|~x − ~p | = 0

and

(6′′) lim
~x→~p

v(f(~x))

|~x − ~p| = 0.

Now, as V is linear and continuous, formula (5′) yields (6′). Indeed,

lim
~x→~p

V (u(~x))

|~x − ~p| = lim
~x→~p

V

(

u(~x)

|~x − ~p|

)

= V (0) = 0

by Corollary 2 in Chapter 4, §2. (Why?)

Similarly, (5′′) implies (6′′) by substituting ~y = f(~x), since

|f(~x)− f(~p)| ≤ K|~x − ~p |

by Problem 3(iii) in §3. (Explain!) Thus all is proved. �

Note 1 (Cauchy invariant rule). Under the same assumptions, we also have

(7) dh(~p;~t ) = dg(~q ;~s)

if ~s = df(~p ;~t ), ~t ∈ E′.

For with U and V as above,

dh(~p ; · ) = φ = V ◦ U.

Thus if

~s = df(~p ;~t ) = U(~t ),

we have

dh(~p;~t ) = φ(~t ) = V (U(~t )) = V (~s) = dg(~q ;~s),

proving (7).
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Note 2. If

E′ = En (Cn), E′′ = Em (Cm), and E = Er (Cr)

then by Theorem 3 of §2 and Definition 2 in §3, we can write (1) in matrix
form,

[h′(~p)] = [g′(~q)] [f ′(~p)],

resembling Theorem 3 in Chapter 5, §1 (with f and g interchanged). Moreover,
we have the following theorem.

Theorem 2. With all as in Theorem 1, let

E′ = En (Cn), E′′ = Em (Cm),

and

f = (f1, . . . , fm).

Then

Dkh(~p) =

m
∑

i=1

Dig(~q )Dkfi(~p);

or , in classical notation,

(8)
∂

∂xk
h(~p) =

m
∑

i=1

∂

∂yi
g(~q ) · ∂

∂xk
fi(~p), k = 1, 2, . . . , n.

Proof. Fix any basic vector ~ek in E′ and set

~s = df(~p ;~ek), ~s = (s1, . . . , sm) ∈ E′′.

As f is differentiable at ~p , so are its components fi (Problem 9 in §3), and

si = dfi(~p ;~ek) = Dkfi(~p)

by Theorem 2(ii) in §3. Using also Corollary 1 in §3, we get

dg(~q ;~s) =

m
∑

i=1

siDig(~q ) =

m
∑

i=1

Dkfi(~p)Dig(~q ).

But as ~s = df(~p ;~ek), formula (7) yields

dg(~q ;~s) = dh(~p;~ek) = Dkh(~p)

by Theorem 2(ii) in §3. Thus the result follows. �

Note 3. Theorem 2 is often called the chain rule for functions of several
variables. It yields Theorem 3 in Chapter 5, §1, if m = n = 1.
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In classical calculus one often speaks of derivatives and differentials of vari-
ables y = f(x1, . . . , xn) rather than those of mappings. Thus Theorem 2 is
stated as follows.

Let u = g(y1 , . . . , ym) be differentiable. If , in turn, each

yi = fi(x1, . . . , xn)

is differentiable for i = 1, . . . ,m, then u is also differentiable as a com-
posite function of the n variables xk, and (“simplifying” formula (8)) we
have

(8′)
∂u

∂xk
=

m
∑

i=1

∂u

∂yi

∂yi
∂xk

, k = 1, 2, . . . , n.

It is understood that the partials

∂u

∂xk
and

∂yi
∂xk

are taken at some ~p ∈ E′,

while the ∂u/∂yi are at ~q = f(~p), where f = (f1, . . . , fm). This “variable”
notation is convenient in computations, but may cause ambiguities (see the
next example).

Example.

Let u = g(x, y, z), where z depends on x and y:

z = f3(x, y).

Set f1(x, y) = x, f2(x, y) = y, f = (f1, f2, f3), and h = g ◦ f ; so

h(x, y) = g(x, y, z).

By (8′),

∂u

∂x
=

∂u

∂x

∂x

∂x
+

∂u

∂y

∂y

∂x
+

∂u

∂z

∂z

∂x
.

Here
∂x

∂x
=

∂f1
∂x

= 1 and
∂y

∂x
= 0,

for f2 does not depend on x. Thus we obtain

(9)
∂u

∂x
=

∂u

∂x
+

∂u

∂z

∂z

∂x
.

(Question: Is
(

∂u/∂z
) (

∂z/∂x
)

= 0?)

The trouble with (9) is that the variable u “poses” as both g and h.
On the left, it is h; on the right, it is g.
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To avoid this, our method is to differentiate well-defined mappings, not
“variables.” Thus in (9), we have the maps

g : E3 → E and f : E2 → E3,

with f1, f2, f3 as indicated. Then if h = g ◦ f , Theorem 2 states (9)
unambiguously as

D1h(~p) = D1g(~q ) +D3g(~q ) ·D1f(~p),

where ~p ∈ E2 and

~q = f(~p) = (p1, p2, f3(~p)).

(Why?) In classical notation,

∂h

∂x
=

∂g

∂x
+

∂g

∂z

∂f3
∂x

(avoiding the “paradox” of (9)).

Nonetheless, with due caution, one may use the “variable” notation where
convenient. The reader should practice both (see the Problems).

Note 4. The Cauchy rule (7), in “variable” notation, turns into

(10) du =

m
∑

i=1

∂u

∂yi
dyi =

n
∑

k=1

∂u

∂xk
dxk,

where dxk = tk and dyi = dfi(~p ;~t ).

Indeed, by Corollary 1 in §3,

dh(~p ;~t ) =
n
∑

k=1

Dkh(~p) · tk and dg(~q ;~s) =
m
∑

i=1

Dig(~q ) · si.

Now, in (7),

~s = (s1, . . . , sm) = df(~p ;~t );

so by Problem 9 in §3,
dfi(~p;~t ) = si, i = 1, . . . ,m.

Rewriting all in the “variable” notation, we obtain (10).

The “advantage” of (10) is that du has the same form, independently of
whether u is treated as a function of the xk or of the yi (hence the name
“invariant” rule). However, one must remember the meaning of dxk and dyi,
which are quite different.

The “invariance” also fails completely for differentials of higher order (§5).
The advantages of the “variable” notation vanish unless one is able to “trans-

late” it into precise formulas.
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Further Problems on Differentiable Functions

1. For E = Er (Cr) prove Theorem 2 directly .
[Hint: Find

Dkhj(~p), j = 1, . . . , r,

from Theorem 4 of §3, and Theorem 3 of §2. Verify that

Dkh(~p) =
r

∑

j=1

ejDkhj(~p) and Dig(~q ) =
r

∑

j=1

ejDigj(~q ),

where the ej are the basic unit vectors in Er . Proceed.]

2. Let g(x, y, z) = u, x = f1(r, θ), y = f2(r, θ), z = f3(r, θ), and

f = (f1, f2, f3) : E
2 → E3.

Assuming differentiability, verify (using “variables”) that

du =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz =

∂u

∂r
dr +

∂u

∂θ
dθ

by computing derivatives from (8′). Then do all in the mapping notation
for H = g ◦ f , dH(~p ;~t ).

3. For the specific functions f , g, h, and k of Problems 4 and 5 of §2, set
up and solve problems analogous to Problem 2, using

(a) k ◦ f ; (b) g ◦ k; (c) f ◦ h; (d) h ◦ g.

4. For the functions of Problem 5 in §1, find the formulas for df(~p ;~t ). At
which ~p does df(~p; · ) exist in each given case? Describe it for a chosen ~p.

5. From Theorem 2, with E = E1 (C), find

∇h(~p) =
n
∑

k=1

Dkg(~q )∇fk(~p).

6. Use Theorem 1 for a new solution of Problem 7 in §3 with E = E1 (C).
[Hint: Define F on E′ and G on E2 (C2) by

F (~x) = (f(~x), g(~x)) and G(~y ) = ay1 + by2.

Then h = af + bg = G ◦ F . (Why?) Use Problems 9 and 10(ii) of §3. Do all in

“variable” notation, too.]

7. Use Theorem 1 for a new proof of the “only if” in Problem 9 in §3.
[Hint: Set fi = g ◦ f , where g(~x) = xi (the ith “projection map”) is a monomial .
Verify!]

8. Do Problem 8(i) in §3 for the case E′ = E2 (C2), with

f(~x) = x1 and g(~x) = x2.
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(Simplify!) Then do the general case as in Problem 6 above, with

G(~y ) = y1y2.

9. Use Theorem 2 for a new proof of Theorem 4 in Chapter 5, §1. (Proceed
as in Problems 6 and 8, with E′ = E1, so that D1h = h′.) Do it in the
“variable” notation, too.

10. Under proper differentiability assumptions, use formula (8′) to express
the partials of u if

(i) u = g(x, y), x = f(r)h(θ), y = r + h(θ) + θf(r);

(ii) u = g(r, θ), r = f(x+ f(y)), θ = f(xf(y));

(iii) u = g(xy , yz, zx+y).

Then redo all in the “mapping” terminology, too.

11. Let the map g : E1 → E1 be differentiable on E1. Find |∇h(~p)| if
h = g ◦ f and

(i) f(~x) =

n
∑

k=1

xk, ~x ∈ En;

(ii) f(~x) = |~x|2, ~x ∈ En.

12. (Euler’s theorem.) A map f : En → E1 (or Cn → C) is called homoge-
neous of degree m on G iff

(∀ t ∈ E1 (C)) f(t~x) = tmf(~x)

when ~x, t~x ∈ G. Prove the following statements.

(i) If so, and f is differentiable at ~p ∈ G (an open globe), then

~p · ∇f(~p) = mf(~p).

∗(ii) Conversely, if the latter holds for all ~p ∈ G and if ~0 6∈ G, then f is
homogeneous of degree m on G.

(iii) What if ~0 ∈ G?

[Hints: (i) Let g(t) = f(t~p). Find g′(1). (iii) Take f(x, y) = x2y2 if x ≤ 0, f = 0 if

x > 0, G = G0(1).]

13. Try Problem 12 for f : E′ → E, replacing ~p · ∇f(~p) by df(~p ; ~p).

14. With all as in Theorem 1, prove the following.

(i) If E′ = E1 and ~s = f ′(p) 6= ~0, then h′(p) = D~sg(~q ).

(ii) If ~u and ~v are nonzero in E′ and a~u+ b~v 6= ~0 for some scalars a, b,
then

Da~u+b~vf(~p) = aD~uf(~p) + bD~vf(~p).
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(iii) If f is differentiable on a globe G~p , and ~u 6= ~0 in E′, then

D~uf(~p) = lim
~x→~u

D~x(~p).

[Hints: Use Theorem 2(ii) from §3 and Note 1.]

15. Use Theorem 2 to find the partially derived functions of f , if

(i) f(x, y, z) =
(

sin(xy/z)
)x
;

(ii) f(x, y) = logx
∣

∣tan(y/x)
∣

∣.

(Set f = 0 wherever undefined.)

§5. Repeated Differentiation. Taylor’s Theorem

In §1 we defined ~u-directed derived functions, D~uf for any f : E′ → E and any
~u 6= ~0 in E′.

Thus given a sequence {~ui} ⊆ E′ − {~0}, we can first form D~u1
f , then

D~u2
(D~u1

f) (the ~u2-directed derived function of D~u1
f), then the ~u3-directed

derived function of D~u2
(D~u1

f), and so on. We call all functions so formed the
higher-order directional derived functions of f .

If at each step the limit postulated in Definition 1 of §1 exists for all ~p in a
set B ⊆ E′, we call them the higher-order directional derivatives of f (on B).

If all ~ui are basic unit vectors in En (Cn), we say “partial” instead of “di-
rectional.”

We also define D1
~uf = D~uf and

(1) Dk
~u1~u2...~uk

f = D~uk
(Dk−1

~u1~u2...~uk−1
f), k = 2, 3, . . . ,

and call Dk
~u1~u2...~uk

f a directional derived function of order k. (Some authors

denote it by Dk
~uk~uk−1...~u1

f .)

If all ~ui equal ~u , we write Dk
~uf instead.

For partially derived functions, we simplify this notation, writing 1 2 . . . for
~e1~e2 . . . and omitting the “k” in Dk (except in classical notation):

D12f = D2
~e1~e2

f =
∂2f

∂x1 ∂x2
, D11f = D2

~e1~e1
f =

∂2f

∂x2
1

, etc.

We also set D0
~uf = f for any vector ~u .

Example.

(A) Define f : E2 → E1 by

f(0, 0) = 0, f(x, y) =
xy(x2 − y2)

x2 + y2
.
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Then
∂f

∂x
= D1f(x, y) =

y(x4 + 4x2y2 − y4)

(x2 + y2)2
,

whence D1f(0, y) = −y if y 6= 0; and also

D1f(0, 0) = lim
x→0

f(x, 0)− f(0, 0)

x
= 0. (Verify!)

Thus D1f(0, y) = −y always, and so D12f(0, y) = −1; D12f(0, 0) = −1.
Similarly,

D2f(x, y) =
x(x4 − 4x2y2 − y4)

(x2 + y2)2

if x 6= 0 and D2f(0, 0) = 0. Thus (∀x) D2f(x, 0) = x and so

D21f(x, 0) = 1 and D21f(0, 0) = 1 6= D12f(0, 0) = −1.

The previous example shows that we may well have D12f 6= D21f , or more
generally, D2

~u~vf 6= D2
~v~uf . However, we obtain the following theorem.

Theorem 1. Given nonzero vectors ~u and ~v in E′, suppose f : E′ → E has
the derivatives

D~uf , D~vf , and D2
~u~vf

on an open set A ⊆ E′.

If D2
~u~vf is continuous at some ~p ∈ A, then the derivative D2

~v~uf(~p) also
exists and equals D2

~u~vf(~p).

Proof. By Corollary 1 in §1, all reduces to the case |~u | = 1 = |~v |. (Why?)

Given ε > 0, fix δ > 0 so small that G = G~p (δ) ⊆ A and simultaneously

(2) sup
~x∈G
|D2

~u~vf(~x)−D2
~u~vf(~p)| ≤ ε

(by the continuity of D2
~u~vf at ~p).

Now (∀ s, t ∈ E1) define Ht : E
1 → E by

Ht(s) = D~uf(~p + t~u + s~v ).

Let

I =
(

−δ

2
,
δ

2

)

.

If s, t ∈ I, the point ~x = ~p + t~u + s~v is in G~p (δ) ⊆ A, since

|~x − ~p | = |t~u + s~v | < δ

2
+

δ

2
= δ.
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Thus by assumption, the derivative D2
~u~v f(~p) exists. Also,

H ′
t(s) = lim

∆s→0

1

∆s
[Ht(s+∆s)−Ht(s)]

= lim
∆s→0

1

∆s
[D~uf(~x +∆s · ~v )−D~uf(~x)].

But the last limit is D2
~u~vf(~x), by definition. Thus, setting

ht(s) = Ht(s)− sD2
~u~v f(~p),

we get

h′
t(s) = H ′

t(s)−D2
~u~vf(~p)

= D2
~u~vf(~x)−D2

~u~vf(~p).

We see that ht is differentiable on I, and by (2),

sup
s∈I
|h′

t(s)| ≤ sup
~x∈G
|D2

~u~vf(~x)−D2
~u~v f(~p)| ≤ ε

for all t ∈ I. Hence by Corollary 1 of Chapter 5, §4,
|ht(s)− ht(0) ≤ |s| sup

σ∈I
|h′

t(σ)| ≤ |s|ε.

But by definition,

ht(s) = D~uf(~p + t~u + s~v )− sD2
~u~vf(~p)

and

ht(0) = D~uf(~p + t~u).

Thus

(3) |D~uf(~p + t~u + s~v )−D~uf(~p + t~u)− sD2
~u~vf(~p)| ≤ |s|ε

for all s, t ∈ I.

Next, set

Gs(t) = f(~p + t~u + s~v )− f(~p + t~u)

and

gs(t) = Gs(t)− st ·D2
~u~vf(~p).

As before, one finds that (∀ s ∈ I) gs is differentiable on I and that

g′s(t) = D~uf(~p + t~u + s~v )−D~uf(~p + t~u)− sD2
~u~v f(~p)

for s, t ∈ I. (Verify!)

Hence by (3),

sup
t∈I
|g′s(t)| ≤ |s|ε.
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Again, by Corollary 1 of Chapter 5, §4,

|gs(t)− gs(0)| ≤ |st|ε,

or by the definition of gs (assuming s, t ∈ I − {0} and dividing by st),

∣

∣

∣

1

st
[f(~p + t~u + s~v )− f(~p + t~u)]−D2

~u~vf(~p)−
1

st
[f(~p + s~v )− f(~p)]

∣

∣

∣ ≤ ε.

(Verify!) Making s→ 0 (with t fixed), we get, by the definition of D~vf ,

∣

∣

∣

1

t
D~vf(~p + t~u)− 1

t
D~vf(~p)−D2

~u~vf(~p)
∣

∣

∣ ≤ ε

whenever 0 < |t| < δ/2.

As ε is arbitrary, we have

D2
~u~vf(~p) = lim

t→0

1

t
[Dvf(~p + t~u)−D~vf(~p)].

But by definition, this limit is the derivative D2
~v~uf(~p). Thus all is proved. �

Note 1. By induction, the theorem extends to derivatives of order > 2.
Thus the derivative Dk

~u1~u2...~uk
f is independent of the order in which the ~ui

follow each other if it exists and is continuous on an open set A ⊆ E′, along
with appropriate derivatives of order < k.

If E′ = En (Cn), this applies to partials as a special case.

For En and Cn only , we also formulate the following definition.

Definition 1.

Let E′ = En (Cn). We say that f : E′ → E is m times differentiable at
~p ∈ E′ iff f and all its partials of order < m are differentiable at ~p.

If this holds for all ~p in a set B ⊆ E′, we say that f is m times
differentiable on B.

If, in addition, all partials of order m are continuous at ~p (on B), we
say that f is of class CDm, or continuously differentiable m times there,
and write f ∈ CDm at ~p (on B).

Finally, if this holds for all natural m, we write f ∈ CD∞ at ~p (on B,
respectively).

Definition 2.

Given the space E′ = En (Cn), the function f : E′ → E, and a point
~p ∈ E′, we define the mappings

dmf(~p ; · ), m = 1, 2, . . . ,
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from E′ to E by setting for every ~t = (t1, . . . , tn)

(4)

d1f(~p ;~t ) =

n
∑

i=1

Dif(~p) · ti,

d2f(~p ;~t ) =

n
∑

j=1

n
∑

i=1

Dijf(~p) · titj ,

d3f(~p ;~t ) =

n
∑

k=1

n
∑

j=1

n
∑

i=1

Dijkf(~p) · titjtk, and so on.

We call dmf(~p ; · ) the mth differential (or differential of order m) of f at ~p.
By our conventions, it is always defined on En (Cn) as are the partially derived
functions involved.

If f is differentiable at ~p (but not otherwise), then d1f(~p ;~t ) = df(~p ;~t )
by Corollary 1 in §3; d1f(~p ; · ) is linear and continuous (why?) but need not
satisfy Definition 1 in §3.

In classical notation, we write dxi for ti; e.g.,

d2f =

n
∑

j=1

n
∑

i=1

∂2f

∂xi ∂xj
dxi dxj .

Note 2. Classical analysis tends to define differentials as above in terms of
partials. Formula (4) for dmf is often written symbolically :

(5) dmf =
( ∂

∂x1
dx1 +

∂

∂x2
dx2 + · · ·+

∂

∂xn
dxn

)m

f, m = 1, 2, . . .

Indeed, raising the bracketed expression to the mth “power” as in algebra
(removing brackets, without collecting “similar” terms) and then “multiplying”
by f , we obtain sums that agree with (4). (Of course, this is not genuine
multiplication but only a convenient memorizing device.)

Example.

(B) Define f : E2 → E1 by

f(x, y) = x sin y.

Take any ~p = (x, y) ∈ E2. Then

D1f(x, y) = sin y and D2f(x, y) = x cos y;

D12f(x, y) = D21f(x, y) = cos y,

D11f(x, y) = 0, and D22f(x, y) = −x sin y;
D111f(x, y) = D112f(x, y) = D121f(x, y) = D211f(x, y) = 0,

D221f(x, y) = D212f(x, y) = D122f(x, y) = − sin y, and



40 Chapter 6. Differentiation on En and Other Normed Linear Spaces

D222f(x, y) = −x cos y; etc.

As is easily seen, f has continuous partials of all orders; so f ∈ CD∞ on
all of E2. Also,

df(~p ;~t ) = t1D1f(~p) + t2D2f(~p)

= t1 sin y + t2x cos y.

In classical notation,

df = d1f =
∂f

∂x
dx+

∂f

∂y
dy

= sin y dx+ x cos y dy;

d2f =
∂2f

∂x2
dx2 + 2

∂2f

∂x ∂y
dx dy +

∂2f

∂y2
dy2

= 2 cos y dx dy − x sin y dy2;

d3f = −3 sin y dx dy2 − x cos y dy3;

and so on. (Verify!)

We can now extend Taylor’s theorem (Theorem 1 in Chapter 5, §6) to the
case E′ = En (Cn).

Theorem 2 (Taylor). Let ~u = ~x − ~p 6= ~0 in E′ = En (Cn).

If f : E′ → E is m+ 1 times differentiable on the line segment

I = L[~p, ~x] ⊂ E′

then

f(~x)− f(~p) =

m
∑

i=1

1

i!
dif(~p ; ~u) +Rm,

with

(6) |Rm| ≤
Km

(m+ 1)!
, Km ∈ E1,

and

(6′) 0 ≤ Km ≤ sup
~s∈I
|dm+1f(~s ; ~u)|.

Proof. Define g : E1 → E′ and h : E1 → E by g(t) = ~p + t~u and h = f ◦ g.
As E′ = En (Cn), we may consider the components of g,

gk(t) = pk + tuk, k ≤ n.

Clearly, gk is differentiable, g′k(t) = uk.
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By assumption, so is f on I = L[~p, ~x]. Thus, by the chain rule, h = f ◦ g is
differentiable on the interval J = [0, 1] ⊂ E1; for, by definition,

~p + t~u ∈ L[~p, ~x ] iff t ∈ [0, 1].

By Theorem 2 in §4,

(7) h′(t) =

n
∑

k=1

Dkf(~p + t~u) · uk = df(~p + t~u ; ~u), t ∈ J.

(Explain!)

By assumption (and Definition 1), the Dkf are differentiable on I. Hence,
by (7), h′ is differentiable on J . Reapplying Theorem 2 in §4, we obtain

h′′(t) =

n
∑

j=1

n
∑

k=1

Dkjf(~p + t~u) · ukuj

= d2f(~p + t~u ; ~u), t ∈ J.

By induction, h is m+ 1 times differentiable on J , and

(8) h(i)(t) = dif(~p + t~u ; ~u), t ∈ J, i = 1, 2, . . . ,m+ 1.

The differentiability of h(i) (i ≤ m) implies its continuity on J = [0, 1].

Thus h satisfies Theorem 1 of Chapter 5, §6 (with x = 1, p = 0, and Q = ∅);
hence

(9)

h(1)− h(0) =

m
∑

i=1

h(i)(0)

i!
+Rm,

|Rm| ≤
Km

(m+ 1)!
, Km ∈ E1,

Km ≤ sup
t∈J
|h(m+1)(t)|.

By construction,
h(t) = f(g(t)) = f(~p + t~u);

so
h(1) = f(~p + ~u) = f(~x) and h(0) = f(~p).

Thus using (8) also, we see that (9) implies (6), indeed. �

Note 3. Formula (3′) of Chapter 5, §6, combined with (8), also yields

Rm =
1

m!

∫ 1

0

h(m+1)(t) · (1− t)m dt

=
1

m!

∫ 1

0

dm+1f(~p + t~u ; ~u) · (1− t)m dt.
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Corollary 1 (the Lagrange form of Rm). If E = E1 in Theorem 2, then

(10) Rm =
1

(m+ 1)!
dm+1f(~s ; ~u)

for some ~s ∈ L(~p, ~x).

Proof. Here the function h defined in the proof of Theorem 2 is real ; so The-
orem 1′ and formula (3′) of Chapter 5, §6 apply. This yields (10). Explain! �

Corollary 2. If f : En (Cn) → E is m times differentiable at ~p and if ~u 6= ~0
(~p, ~u ∈ En (Cn)), then the derivative Dm

~u f(~p) exists and equals dmf(~p ; ~u).

This follows as in the proof of Theorem 2 (with t = 0). For by definition,

D~uf(~p) = lim
s→0

1

s
[f(~p + s~u)− f(~p)]

= lim
1

s
[h(s)− h(0)]

= h′(0) = df(~p ; ~u)

by (7). Induction yields

Dm
~u f(~p) = h(m)(0) = dm(~p ; ~u)

by (8). (See Problem 3.)

Example.

(C) Continuing Example (B), fix

~p = (1, 0);

thus replace (x, y) by (1, 0) there. Instead, write (x, y) for ~x in Theorem 2.
Then

~u = ~x − ~p = (x− 1, y);

so

u1 = x− 1 = dx and u2 = y = dy,

and we obtain

df(~p ; ~u) = D1f(1, 0) · (x− 1) +D2f(1, 0) · y
= (sin 0) · (x− 1) + (1 · cos 0) · y
= y;

d2f(~p ; ~u) = D11f(1, 0) · (x− 1)2 + 2D12f(1, 0) · (x− 1)y

+D22f(1, 0) · y2

= (0) · (x− 1)2 + 2 (cos 0) · (x− 1)y − (1 · sin 0) · y2

= 2(x− 1)y;
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and for all ~s = (s1, s2) ∈ I,

(10′)

d3f(~s ; ~u) = D111f(s1, s2) · (x− 1)3 + 3D112f(s1, s2) · (x− 1)2y

+ 3D122f(s1, s2) · (x− 1)y2 +D222f(s1, s2) · y3

= −3 sin s2 · (x− 1)y2 − s1 cos s2 · y3.

Hence by (6) and Corollary 1 (with m = 2), noting that f(~p) = f(1, 0) =
0, we get

(11)
f(x, y) = x · sin y

= y + (x− 1)y +R2,

where for some ~s ∈ I,

R2 =
1

3!
d3f(~s ; ~u) =

1

6

[

−3 sin s2 · (x− 1)y2 − s1 cos s2 · y3
]

.

As ~s ∈ L(~p, ~x), where ~p = (1, 0) and ~x = (x, y), s1 is between 1 and x;
so

|s1| ≤ max(|x|, 1) ≤ |x|+ 1.

Finally, since | sin s2| ≤ 1 and | cos s2| ≤ 1, we obtain

|R2| ≤
1

6

[

3 |x− 1|+ (|x|+ 1) |y|
]

y2.

This bounds the maximum error that arises if we use (11) to express x sin y
as a second-degree polynomial in (x− 1) and y. (See also Problem 4 and
Note 4 below.)

Note 4. Formula (6), briefly

∆f =

m
∑

i=1

dif

i!
+R2,

generalizes formula (2) in Chapter 5, §6.
As in Chapter 5, §6, we set

Pm(~x) = f(~p) +

m
∑

i=1

1

i!
dif(~p ; ~x − ~p)

and call Pm the mth Taylor polynomial for f about ~p, treating it as a function
of n variables xk, with ~x = (x1, . . . , xn).

When expanded as in Example (C), formula (6) expresses f(~x) in powers of

uk = xk − pk, k = 1, . . . , n,

plus the remainder term Rm.
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If f ∈ CD∞ on some G~p and if Rm → 0 as m→∞, we can express f(~x) as
a convergent power series

f(~x) = lim
m→∞

Pm(~x) = f(~p) +

∞
∑

i=1

1

i!
dif(~p ; ~x − ~p).

We then say that f admits a Taylor series about ~p , on G~p .

Problems on Repeated Differentiation and Taylor Expansions

1. Complete all details in the proof of Theorem 1. What is the motivation
for introducing the auxiliary functions ht and gs in this particular way?

2. Is symbolic “multiplication” in Note 2 always commutative? (See Ex-
ample (A).) Why was it possible to collect “similar” terms

∂2f

∂x ∂y
dx dy and

∂2f

∂y ∂x
dy dx

in Example (B)? Using (5), find the general formula for d3f . Expand it!

3. Carry out the induction in Theorem 2 and Corollary 2. (Use a suitable
notation for subscripts: k1k2 . . . instead of jk . . . .)

4. Do Example (C) with m = 3 (instead of m = 2) and with ~p = (0, 0).
Show that Rm → 0, i.e., f admits a Taylor series about ~p .

Do it in the following two ways.

(i) Use Theorem 2.

(ii) Expand sin y as in Problem 6(a) in Chapter 5, §6, and then mul-
tiply termwise by x.

Give an estimate for R3.

5. Use Theorem 2 to expand the following functions in powers of x−3 and
y + 2 exactly (choosing m so that Rm = 0).

(i) f(x, y) = 2xy2 − 3y3 + yx2 − x3;

(ii) f(x, y) = x4 − x3y2 + 2xy − 1;

(iii) f(x, y) = x5y − axy5 − x3.

6. For the functions of Problem 15 in §4, give their Taylor expansions up
to R2, with

~p =
(

1,
π

4
, 1
)

in case (i) and

~p =
(

e,
π

4
e
)

in (ii). Bound R2.
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7. (Generalized Taylor theorem.) Let ~u = ~x − ~p 6= ~0 in E′ (E′ need not
be En or Cn); let I = L[~p, ~x]. Prove the following statement:

If f : E′ → E and the derived functions Di
~uf (i ≤ m) are relatively

continuous on I and have ~u-directed derivatives on I−Q (Q countable),
then formula (6) and Note 3 hold, with dif(~p ; ~u) replaced by Di

~uf(~p).
[Hint: Proceed as in Theorem 2 without using the chain rule or any partials or

components. Instead of (8), prove that h(i)(t) = Di
~u
f(~p + t~u) on J − Q′, Q′ =

g−1[Q].]

8. (i) Modify Problem 7 by setting

~u =
~x − ~p

|~x − ~p | .
Thus expand f(~x) in powers of |~x − ~p |.

(ii) Deduce Theorem 2 from Problem 7, using Corollary 2.

9. Given f : E2 (C2) → E, f ∈ CDm on an open set A, and ~s ∈ A, prove
that (∀ ~u ∈ E2 (C2))

dif(~s; ~u) =

i
∑

j=0

(

i

j

)

uj
1u

i−j
2 Dk1...ki

f(~s), 1 ≤ i ≤ m,

where the
(

i
j

)

are binomial coefficients, and in the jth term,

k1 = k2 = · · · = kj = 2

and
kj+1 = · · · = ki = 1.

Then restate formula (6) for n = 2.
[Hint: Use induction, as in the binomial theorem.]

⇒10. Given ~p ∈ E′ = En (Cn) and f : E′ → E, prove that f ∈ CD1 at ~p iff
f is differentiable at ~p and

(∀ ε > 0) (∃ δ > 0) (∀ ~x ∈ G~p (δ)) ‖d1f(~p ; · )− d1f(~x ; · )‖ < ε,

with norm ‖ ‖ as in Definition 2 in §2. (Does it apply?)
[Hint: If f ∈ CD1, use Theorem 2 in §3. For the converse, verify that

ε ≥ |d1f(~p ;~t )− d1f(~x ;~t )| =
∣

∣

∣

∣

n
∑

k=1

[Dkf(~p)−Dkf(~x)]tk

∣

∣

∣

∣

if ~x ∈ G~p (δ) and |~t | ≤ 1. Take ~t = ~ek, to prove continuity of Dkf at ~p.]

11. Prove the following.

(i) If φ : En → Em is linear and [φ] = (vik), then

‖φ‖2 ≤
∑

i,k

|vik|2.
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(ii) If f : En → Em is differentiable at ~p, then

‖df(~p ; · )‖2 ≤
∑

i,k

|Dkfi(~p)|2.

(iii) Hence find a new converse proof in Problem 10 for f : En → Em.

Consider f : Cn → Cm, too.
[Hints: (i) By the Cauchy–Schwarz inequality, |φ(~x)|2 ≤ |~x|2 ∑i,k |vik|2. (Why?)

(ii) Use part (i) and Theorem 4 in §3.]

12. (i) Find d2u for the functions of Problem 10 in §4, in the “variable”
and “mapping” notations.

(ii) Do it also for

u = f(x, y, z) = (x2 + y2 + z2)−
1
2

and show that D11f +D22f +D33f = 0.

(iii) Does the latter hold for u = arctan
y

x
?

13. Let u = g(x, y), x = r cos θ, y = r sin θ (passage to polars).

Using “variables” and then the “mappings” notation, prove that if g
is differentiable, then

(i)
∂u

∂r
= cos θ

∂u

∂x
+ sin θ

∂u

∂y
and

(ii) |∇g(x, y)|2 =
(∂u

∂r

)2

+
(1

r

∂u

∂θ

)2

.

(iii) Assuming g ∈ CD2, express
∂2u

∂r ∂θ
,
∂2u

∂r2
, and

∂2u

∂θ2
as in (i).

14. Let f, g : E1 → E1 be of class CD2 on E1. Verify (in “variable” notation,
too) the following statements.

(i) D11h = a2D22h if a ∈ E1 (fixed) and

h(x, y) = f(ax+ y) + g(y − ax).

(ii) x2D11h(x, y) + 2xy D12h(x, y) + y2D22h(x, y) = 0 if

h(x, y) = xf
(y

x

)

+ g
(y

x

)

.

(iii) D1h ·D21h = D2h ·D11h if

h(x, y) = g(f(x) + y).

Find D12h, too.
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15. Assume E′ = En (Cn) and E′′ = Em (Cm). Let f : E′ → E′′ and
g : E′′ → E be twice differentiable at ~p ∈ E′ and ~q = f(~p) ∈ E′′,
respectively, and set h = g ◦ f.

Show that h is twice differentiable at ~p, and

d2h(~p;~t ) = d2g(~q ;~s) + dg(~q ;~v ),

where ~t ∈ E′, ~s = df(~p ;~t ), and ~v = (v1, . . . , vm) ∈ E′′ satisfies

vi = d2fi(~p ;~t ), i = 1, . . . ,m.

Thus the second differential is not invariant in the sense of Note 4 in §4.
[Hint: Show that

Dklh(~p) =

m
∑

j=1

m
∑

i=1

Dijg(~q )Dkfi(~p)Dlfj(~p) +

m
∑

i=1

Dig(~q )Dklfi(~p).

Proceed.]

16. Continuing Problem 15, prove the invariant rule:

drh(~p ;~t ) = drg(~q ;~s),

if f is a first-degree polynomial and g is r times differentiable at ~q .
[Hint: Here all higher-order partials of f vanish. Use induction.]

§6. Determinants. Jacobians. Bijective Linear Operators

We assume the reader to be familiar with elements of linear algebra. Thus we
only briefly recall some definitions and well-known rules.

Definition 1.

Given a linear operator φ : En → En (or φ : Cn → Cn), with matrix

[φ] = (vik), i, k = 1, . . . , n,

we define the determinant of [φ] by

(1)
det[φ] = det(vik) =

∣

∣

∣

∣

∣

∣

∣

∣

v11 v12 . . . v1n
v21 v22 . . . v2n
...

...
. . .

...
vn1 vn2 . . . vnn

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

(−1)λv1k1
v2k2

. . . vnkn
,
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where the sum is over all ordered n-tuples (k1, . . . , kn) of distinct integers
kj (1 ≤ kj ≤ n), and

λ =

{

0 if
∏

j<m(km − kj) > 0 and

1 if
∏

j<m(km − kj) < 0.

Recall (Problem 12 in §2) that a set B = {~v1, ~v2, . . . , ~vn} in a vector space
E is a basis iff

(i) B spans E, i.e., each ~v ∈ E has the form

~v =
n
∑

i=1

ai~v i

for some scalars ai, and

(ii) this representation is unique.

The latter is true iff the ~v i are independent , i.e.,

n
∑

i=1

ai~v i = ~0 ⇐⇒ ai = 0, i = 1, . . . , n.

If E has a basis of n vectors, we call E n-dimensional (e.g., En and Cn).

Determinants and bases satisfy the following rules.

(a) Multiplication rule. If φ, g : En → En (or Cn → Cn) are linear, then

det[g] · det[φ] = det([g] [φ]) = det[g ◦ φ]
(see §2, Theorem 3 and Note 4).

(b) If φ(~x) = ~x (identity map), then [φ] = (vik), where

vik =

{

0 if i 6= k and

1 if i = k;

hence det[φ] = 1. (Why?) See also the Problems.

(c) An n-dimensional space E is spanned by a set of n vectors iff they are
independent. If so, each basis consists of exactly n vectors.

Definition 2.

For any function f : En → En (or f : Cn → Cn), we define the f-induced
Jacobian map Jf : E

n → E1 (Jf : C
n → C) by setting

Jf (~x) = det(vik),

where vik = Dkfi(~x), ~x ∈ En (Cn), and f = (f1, . . . , fn).

The determinant

Jf (~p) = det(Dkfi(~p))
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is called the Jacobian of f at ~p .

By our conventions, it is always defined, as are the functions Dkfi.

Explicitly, Jf (~p) is the determinant of the right-side matrix in formula (14)
in §3. Briefly,

Jf = det(Dkfi).

By Definition 2 and Note 2 in §5,

Jf (~p) = det[d1f(~p ; · )].

If f is differentiable at ~p ,

Jf (~p) = det[f ′(~p)].

Note 1. More generally, given any functions vik : E
′ → E1 (C), we can

define a map f : E′ → E1 (C) by

f(~x) = det(vik(~x));

briefly f = det(vik), i, k = 1, . . . , n.

We then call f a functional determinant .

If E′ = En (Cn) then f is a function of n variables, since ~x = (x1, x2, . . . , xn).
If all vik are continuous or differentiable at some ~p ∈ E′, so is f ; for by (1), f
is a finite sum of functions of the form

(−1)λvik1
vik2

. . . vikn
,

and each of these is continuous or differentiable if the viki
are (see Problems 7

and 8 in §3).
Note 2. Hence the Jacobian map Jf is continuous or differentiable at ~p if

all the partially derived functions Dkfi (i, k ≤ n) are.

If, in addition, Jf (~p) 6= 0, then Jf 6= 0 on some globe about ~p. (Apply
Problem 7 in Chapter 4, §2, to |Jf |.)

In classical notation, one writes

∂(f1, . . . , fn)

∂(x1, . . . , xn)
or

∂(y1, . . . , yn)

∂(x1, . . . , xn)

for Jf (~x). Here (y1, . . . , yn) = f(x1, . . . , xn).

The remarks made in §4 apply to this “variable” notation too. The chain
rule easily yields the following corollary.

Corollary 1. If f : En → En and g : En → En (or f, g : Cn → Cn) are
differentiable at ~p and ~q = f(~p), respectively , and if

h = g ◦ f,
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then

(i) Jh(~p) = Jg(~q) · Jf (~p) = det(zik),

where

zik = Dkhi(~p), i, k = 1, . . . , n;

or , setting

(u1, . . . , un) = g(y1, . . . , yn) and

(y1, . . . , yn) = f(x1, . . . , xn) (“variables”),

we have

(ii)
∂(u1, . . . , un)

∂(x1, . . . , xn)
=

∂(u1, . . . , un)

∂(y1, . . . , yn)
· ∂(y1, . . . , yn)
∂(x1, . . . , xn)

= det(zik),

where

zik =
∂ui

∂xk
, i, k = 1, . . . , n.

Proof. By Note 2 in §4,

[h′(~p)] = [g′(~q )] · [f ′(~p)].

Thus by rule (a) above,

det[h′(~p)] = det[g′(~q )] · det[f ′(~p)],

i.e.,

Jh(~p) = Jg(~q) · Jf (~p).

Also, if [h′(~p)] = (zik), Definition 2 yields zik = Dkhi(~p).

This proves (i), hence (ii) also. �

In practice, Jacobians mostly occur when a change of variables is made.
For instance, in E2, we may pass from Cartesian coordinates (x, y) to another
system (u, v) such that

x = f1(u, v) and y = f2(u, v).

We then set f = (f1, f2) and obtain f : E2 → E2,

Jf = det(Dkfi), k, i = 1, 2.

Example (passage to polar coordinates).

Let x = f1(r, θ) = r cos θ and y = f2(r, θ) = r sin θ.
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Then using the “variable” notation, we obtain Jf (r, θ) as

∂(x, y)

∂(r, θ)
=

∣

∣

∣

∣

∣

∣

∣

∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

cos θ −r sin θ
sin θ r cos θ

∣

∣

∣

∣

= r cos2 θ + r sin2 θ = r.

Thus here Jf (r, θ) = r for all r, θ ∈ E1; Jf is independent of θ.

We now concentrate on one-to-one (invertible) functions.

Theorem 1. For a linear map φ : En → En (or φ : Cn → Cn), the following
are equivalent :

(i) φ is one-to-one;

(ii) the column vectors ~v1, . . . , ~vn of the matrix [φ] are independent ;

(iii) φ is onto En (Cn);

(iv) det[φ] 6= 0.

Proof. Assume (i) and let
n
∑

k=1

ck~vk = ~0 .

To deduce (ii), we must show that all ck vanish.

Now, by Note 3 in §2, ~vk = φ(~ek); so by linearity,

n
∑

k=1

ck~vk = ~0

implies

φ

( n
∑

k=1

ck~ek

)

= ~0.

As φ is one-to-one, it can vanish at ~0 only. Thus

n
∑

k=1

ck~ek = ~0.

Hence by Theorem 2 in Chapter 3, §§1–3, ck = 0, k = 1, . . . , n, and (ii) follows.

Next, assume (ii); so, by rule (c) above, {~v1, . . . , ~vn} is a basis.

Thus each ~y ∈ En (Cn) has the form

~y =

n
∑

k=1

ak~vk =

n
∑

k=1

akφ(~ek) = φ

( n
∑

k=1

ak~ek

)

= φ(~x),
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where

~x =

n
∑

k=1

ak~ek (uniquely).

Hence (ii) implies both (iii) and (i). (Why?)

Now assume (iii). Then each ~y ∈ En (Cn) has the form ~y = φ(~x), where

~x =

n
∑

k=1

xk~ek,

by Theorem 2 in Chapter 3, §§1–3. Hence again

~y =

n
∑

k=1

xkφ(~ek) =

n
∑

k=1

xk~vk;

so the ~vk span all of En (Cn). By rule (c) above, this implies (ii), hence (i),
too. Thus (i), (ii), and (iii) are equivalent.

Also, by rules (a) and (b), we have

det[φ] · det[φ−1] = det[φ ◦ φ−1] = 1

if φ is one-to-one (for φ◦φ−1 is the identity map). Hence det[φ] 6= 0 if (i) holds.

For the converse, suppose φ is not one-to-one. Then by (ii), the ~vk are not
independent. Thus one of them is a linear combination of the others, say,

~v1 =
n
∑

k=2

ak~vk.

But by linear algebra (Problem 13(iii)), det[φ] does not change if ~v1 is re-
placed by

~v1 −
n
∑

k=2

ak~vk = ~0.

Thus det[φ] = 0 (one column turning to ~0). This completes the proof. �

Note 3. Maps that are both onto and one-to-one are called bijective. Such
is φ in Theorem 1. This means that the equation

φ(~x) = ~y

has a unique solution

~x = φ−1(~y )

for each ~y . Componentwise, by Theorem 1, the equations

n
∑

k=1

xkvik = yi, i = 1, . . . , n,
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have a unique solution for the xk iff det(vik) 6= 0.

Corollary 2. If φ ∈ L(E′, E) is bijective, with E′ and E complete, then
φ−1 ∈ L(E,E′).

Proof for E = En (Cn).1 The notation φ ∈ L(E′, E) means that φ : E′ → E
is linear and continuous.

As φ is bijective, φ−1 : E → E′ is linear (Problem 12).

If E = En (Cn), it is continuous, too (Theorem 2 in §2).
Thus φ−1 ∈ L(E,E′). �

Note. The case E = En (Cn) suffices for an undergraduate course. (The
beginner is advised to omit the “starred” §8.) Corollary 2 and Theorem 2
below, however, are valid in the general case. So is Theorem 1 in §7.
Theorem 2. Let E, E′ and φ be as in Corollary 2. Set

‖φ−1‖ = 1

ε
.

Then any map θ ∈ L(E′, E) with ‖θ − φ‖ < ε is one-to-one, and θ−1 is
uniformly continuous.

Proof. By Corollary 2, φ−1 ∈ L(E,E′), so ‖φ−1‖ is defined and > 0 (for φ−1

is not the zero map, being one-to-one).

Thus we may set

ε =
1

‖φ−1‖ , ‖φ−1‖ = 1

ε
.

Clearly ~x = φ−1(~y ) if ~y = φ(~x). Also,

|φ−1(~y )| ≤ 1

ε
|~y |

by Note 5 in §2. Hence
|~y | ≥ ε|φ−1(~y )|,

i.e.,

(2) |φ(~x)| ≥ ε|~x|

for all ~x ∈ E′ and ~y ∈ E.

Now suppose φ ∈ L(E′, E) and ‖θ − φ‖ = σ < ε.

Obviously, θ = φ− (φ− θ), and by Note 5 in §2,

|(φ− θ)(~x)| ≤ ‖φ− θ‖ |~x| = σ|~x |.

1 See ∗§8 for the general case.



54 Chapter 6. Differentiation on En and Other Normed Linear Spaces

Thus for every ~x ∈ E′,

(3)

|θ(~x)| ≥ |φ(~x)| − |(φ− θ)(~x)|
≥ |φ(~x)| − σ|~x |
≥ (ε− σ)|~x |

by (2). Therefore, given ~p 6= ~r in E′ and setting ~x = ~p − ~r 6= ~0, we obtain

(4) |θ(~p)− θ(~r)| = |θ(~p − ~r)| = |θ(~x)| ≥ (ε− σ)|~x | > 0

(since σ < ε).

We see that ~p 6= ~r implies θ(~p) 6= θ(~r ); so θ is one-to-one, indeed.

Also, setting θ(~x) = ~z and ~x = θ−1(~z ) in (3), we get

|~z | ≥ (ε− σ)|θ−1(~z )|;
that is,

(5) |θ−1(~z )| ≤ (ε− σ)−1|~z |
for all ~z in the range of θ (domain of θ−1).

Thus θ−1 is linearly bounded (by Theorem 1 in §2), hence uniformly con-
tinuous, as claimed. �

Corollary 3. If E′ = E = En (Cn) in Theorem 2 above, then for given φ and
δ > 0, there always is δ′ > 0 such that

‖θ − φ‖ < δ′ implies ‖θ−1 − φ−1‖ < δ.

In other words, the transformation φ → φ−1 is continuous on L(E), E =
En (Cn).

Proof. First, since E′ = E = En (Cn), θ is bijective by Theorem 1(iii), so
θ−1 ∈ L(E).

As before, set ‖θ − φ‖ = σ < ε.

By Note 5 in §2, formula (5) above implies that

‖θ−1‖ ≤ 1

ε− σ
.

Also,

φ−1 ◦ (θ − φ) ◦ θ−1 = φ−1 − θ−1

(see Problem 11).

Hence by Corollary 4 in §2, recalling that ‖φ−1‖ = 1/ε, we get

‖θ−1 − φ−1‖ ≤ ‖φ−1‖ · ‖θ − φ‖ · ‖θ−1‖ ≤ σ

ε(ε− σ)
→ 0 as σ → 0. �
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Problems on Bijective Linear Maps and Jacobians

1. (i) Can a functional determinant f = det(vik) (see Note 1) be contin-
uous or differentiable even if the functions vik are not?

(ii) Must a Jacobian map Jf be continuous or differentiable if f is?

Give proofs or counterexamples.

⇒2. Prove rule (b) on determinants. More generally, show that if f(~x) = ~x
on an open set A ⊆ En (Cn), then Jf = 1 on A.

3. Let f : En → En (or Cn → Cn), f = (f1, . . . , fn).

Suppose each fk depends on xk only , i.e.,

fk(~x) = fk(~y ) if xk = yk,

regardless of the other coordinates xi, yi. Prove that Jf =
∏n

k=1Dkfk.
[Hint: Show that Dkfi = 0 if i 6= k.]

4. In Corollary 1, show that

Jh(~p) =

n
∏

k=1

Dkfk(~p) · Jg(~q)

if f also has the property specified in Problem 3. Then do all in “vari-
ables,” with yk = yk(xk) instead of fk.

5. Let E′ = E1 in Note 1. Prove that if all the vik are differentiable at p,
then f ′(p) is the sum of n determinants, each arising from det(vik), by
replacing the terms of one column by their derivatives.
[Hint: Use Problem 6 in Chapter 5, §1.]

6. Do Problem 5 for partials of f , with E′ = En (Cn), and for directionals
D~uf , in any normed space E′. (First, prove formulas analogous to
Problem 6 in Chapter 5, §1; use Note 3 in §1.) Finally, do it for the
differential , df(~p ; · ).

7. In Note 1 of §4, express the matrices in terms of partials (see Theorem 4
in §3). Invent a “variable” notation for such matrices, imitating Jaco-
bians (Corollary 3).

8. (i)

O Y

X

Z

A

P

Figure 27

Show that

∂(x, y, z)

∂(r, θ, α)
= −r2 sinα

if

x = r cos θ,

y = r sin θ sinα, and

z = r cosα
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(This transformation is passage to polars in E3; see Figure 27,
where r = OP , ∢XOA = θ, and ∢AOP = α.)

(ii) What if x = r cos θ, y = r sin θ, and z = z remains unchanged
(passage to cylindric coordinates)?

(iii) Same for x = er cos θ, y = er sin θ, and z = z.

9. Is f = (f1, f2) : E
2 → E2 one-to-one or bijective, and is Jf 6= 0, if

(i) f1(x, y) = ex cos y and f2(x, y) = ex sin y;

(ii) f1(x, y) = x2 − y2 and f2(x, y) = 2xy?

10. Define f : E3 → E3 (or C3 → C3) by

f(~x) =
~x

1 +
∑3

k=1 xk

on

A =

{

~x

∣

∣

∣

∣

3
∑

k=1

xk 6= −1
}

and f = ~0 on −A. Prove the following.

(i) f is one-to-one on A (find f−1!).

(ii) Jf (~x) =
1

(

1 +
∑3

k=1 xk

)4 .

(iii) Describe −A geometrically.

11. Given any sets A,B and maps f, g : A→ E′, h : E′ → E, and k : B → A,
prove that

(i) (f ± g) ◦ k = f ◦ k ± g ◦ k, and
(ii) h ◦ (f ± g) = h ◦ f ± h ◦ g if h is linear.

Use these distributive laws to verify that

φ−1 ◦ (θ − φ) ◦ θ−1 = φ−1 − θ−1

in Corollary 3.
[Hint: First verify the associativity of mapping composition.]

12. Prove that if φ : E′ → E is linear and one-to-one, so is φ−1 : E′′ → E′,
where E′′ = φ[E′].

13. Let ~v 1, . . . , ~vn be the column vectors in det[φ]. Prove that det[φ] turns
into

(i) c · det[φ] if one of the ~vk is multiplied by a scalar c;

(ii) − det[φ], if any two of the ~vk are interchanged (consider λ in for-
mula (1)).
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Furthermore, show that

(iii) det[φ] does not change if some ~vk is replaced by ~vk + c~v i (i 6= k);

(iv) det[φ] = 0 if some ~vk is ~0, or if two of the ~vk are the same.

§7. Inverse and Implicit Functions. Open and Closed Maps

I. “If f ∈ CD1 at ~p , then f resembles a linear map (namely df) at ~p .”
Pursuing this basic idea, we first make precise our notion of “f ∈ CD1 at ~p.”

Definition 1.

A map f : E′ → E is continuously differentiable, or of class CD1 (written
f ∈ CD1), at ~p iff the following statement is true:

Given any ε > 0, there is δ > 0 such that f is differentiable on the
globe G = G~p (δ), with

‖df(~x; · )− df(~p ; · )‖ < ε for all ~x ∈ G.1

By Problem 10 in §5, this definition agrees with Definition 1 of §5, but is no
longer limited to the case E′ = En (Cn). See also Problems 1 and 2 below.

We now obtain the following result.

Theorem 1. Let E′ and E be complete. If f : E′ → E is of class CD1 at ~p
and if df(~p ; · ) is bijective (§6), then f is one-to-one on some globe G = G~p (δ).

Thus f “locally” resembles df(~p ; · ) in this respect .

Proof. Set φ = df(~p ; · ) and
‖φ−1‖ = 1

ε

(cf. Theorem 2 of §6).
By Definition 1, fix δ > 0 so that for ~x ∈ G = G~p (δ).

‖df(~x ; · )− φ‖ < 1

2
ε.

Then by Note 5 in §2,

(1) (∀ ~x ∈ G) (∀ ~u ∈ E′) |df(~x; ~u)− φ(~u)| ≤ 1

2
ε|~u|.

Now fix any ~r,~s ∈ G, ~r 6= ~s , and set ~u = ~r − ~s 6= ~0. Again, by Note 5 in
§2,

|~u| = |φ−1(φ(~u))| ≤ ‖φ−1‖|φ(~u)| = 1

ε
|φ(~u)|;

1 We can always make G closed by reducing δ.
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so

(2) 0 < ε|~u| ≤ |φ(~u)|.

By convexity, G ⊇ I = L[~s, ~r ], so (1) holds for ~x ∈ I, ~x = ~s + t~u , 0 ≤ t ≤ 1.
Noting this, set

h(t) = f(~s + t~u)− tφ(~u), t ∈ E1.

Then for 0 ≤ t ≤ 1,

h′(t) = D~uf(~s + t~u)− φ(~u)

= df(~s + t~u ; ~u)− φ(~u).

(Verify!) Thus by (1) and (2),

sup
0≤t≤1

|h′(t)| = sup
0≤t≤1

|df(~s + t~u ; ~u)− φ(~u)|

≤ ε

2
|~u| ≤ 1

2
|φ(~u)|.

(Explain!) Now, by Corollary 1 in Chapter 5, §4,

|h(1)− h(0)| ≤ (1− 0) · sup
0≤t≤1

|h′(t)| ≤ 1

2
|φ(~u)|.

As h(0) = f(~s) and

h(1) = f(~s + ~u)− φ(~u) = f(~r)− φ(~u),

we obtain (even if ~r = ~s)

(3) |f(~r)− f(~s)− φ(~u)| ≤ 1

2
|φ(~u)| (~r,~s ∈ G, ~u = ~r − ~s).

But by the triangle law,

|φ(~u)| − |f(~r)− f(~s)| ≤ |f(~r)− f(~s)− φ(~u)|.

Thus

(4) |f(~r)− f(~s)| ≥ 1

2
|φ(~u)| ≥ 1

2
ε|~u | = 1

2
ε|~r − ~s|

by (2).

Hence f(~r ) 6= f(~s) whenever ~r 6= ~s in G; so f is one-to-one on G, as
claimed. �

Corollary 1. Under the assumptions of Theorem 1, the maps f and f−1 (the
inverse of f restricted to G) are uniformly continuous on G and f [G], respec-
tively.
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Proof. By (3),

|f(~r)− f(~s)| ≤ |φ(~u)|+ 1

2
|φ(~u)|

≤ |2φ(~u)|
≤ 2‖φ‖ |~u|
= 2‖φ‖ |~r − ~s| (~r,~s ∈ G).

This implies uniform continuity for f . (Why?)

Next, let g = f−1 on H = f [G].

If ~x, ~y ∈ H, let ~r = g(~x) and ~s = g(~y ); so ~r,~s ∈ G, with ~x = f(~r ) and
~y = f(~s). Hence by (4),

|~x − ~y | ≥ 1

2
ε|g(~x)− g(~y )|,

proving all for g, too. �

Again, f resembles φ which is uniformly continuous, along with φ−1.

II. We introduce the following definition.

Definition 2.

A map f : (S, ρ) → (T, ρ′) is closed (open) on D ⊆ S iff, for any X ⊆ D
the set f [X] is closed (open) in T whenever X is so in S.

Note that continuous maps have such a property for inverse images (Prob-
lem 15 in Chapter 4, §2).
Corollary 2. Under the assumptions of Theorem 1, f is closed on G, and so
the set f [G] is closed in E.

Similarly for the map f−1 on f [G].

Proof for E′ = E = En (Cn) (for the general case, see Problem 6). Given
any closed X ⊆ G, we must show that f [X] is closed in E.

Now, asG is closed and bounded, it is compact (Theorem 4 of Chapter 4, §6).
So also is X (Theorem 1 in Chapter 4, §6), and so is f [X] (Theorem 1 of

Chapter 4, §8).
By Theorem 2 in Chapter 4, §6, f [X] is closed, as required. �

For the rest of this section, we shall set E′ = E = En (Cn).

Theorem 2. If E′ = E = En (Cn) in Theorem 1, with other assumptions
unchanged , then f is open on the globe G = G~p (δ), with δ sufficiently small.2

We first prove the following lemma.

2 Thus formula (1) still holds for ε = 1/‖φ−1‖, φ = df(~p ; · ).
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Lemma. f [G] contains a globe G~q (α) where ~q = f(~p).

Proof. Indeed, let

α =
1

4
εδ,

where δ and ε are as in the proof of Theorem 1. (We continue the notation
and formulas of that proof.)

Fix any ~c ∈ G~q (α); so

|~c − ~q | < α =
1

4
εδ.

Set h = |f − ~c | on E′. As f is uniformly continuous on G, so is h.

Now, G is compact in En (Cn); so Theorem 2(ii) in Chapter 4, §8, yields a
point ~r ∈ G such that

(6) h(~r) = minh[G].

We claim that ~r is in G (the interior of G).

Otherwise, |~r − ~p | = δ; for by (4),

(7)

2α =
1

2
εδ =

1

2
ε|~r − ~p | ≤ |f(~r)− f(~p)|

≤ |f(~r)− ~c |+ |~c − f(~p)|
= h(~r ) + h(~p).

But

h(~p) = |~c − f(~p)| = |~c − ~q | < α;

and so (7) yields

h(~p) < α < h(~r ),

contrary to the minimality of h(~r) (see (6)). Thus |~r − ~p | cannot equal δ.
We obtain |~r − ~p | < δ, so ~r ∈ G~p (δ) = G and f(~r) ∈ f [G]. We shall now

show that ~c = f(~r ).

To this end, we set ~v = ~c − f(~r) and prove that ~v = ~0. Let

~u = φ−1(~v ),

where

φ = df(~p; · ),
as before. Then

~v = φ(~u) = df(~p ; ~u).

With ~r as above, fix some

~s = ~r + t~u (0 < t < 1)
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with t so small that ~s ∈ G also. Then by formula (3),

|f(~s)− f(~r )− φ(t~u)| ≤ 1

2
|t~v |;

also,
|f(~r)− ~c + φ(t~u)| = (1− t)|~v | = (1− t)h(~r )

by our choice of ~v , ~u and h. Hence by the triangle law,

h(~s) = |f(~s)− ~c | ≤
(

1− 1

2
t
)

h(~r ).

(Verify!)

As 0 < t < 1, this implies h(~r) = 0 (otherwise, h(~s) < h(~r ), violating (6)).

Thus, indeed,
|~v | = |f(~r)− ~c | = 0,

i.e.,
~c = f(~r ) ∈ f [G] for ~r ∈ G.

But ~c was an arbitrary point of G~q (α). Hence

G~q (α) ⊆ f [G],

proving the lemma. �

Proof of Theorem 2. The lemma shows that f(~p) is in the interior of f [G]
if ~p , f , df(~p; · ), and δ are as in Theorem 1.

But Definition 1 implies that here f ∈ CD1 on all of G (see Problem 1).

Also, df(~x ; · ) is bijective for any ~x ∈ G by our choice of G and Theorems 1
and 2 in §6.

Thus f maps all ~x ∈ G onto interior points of f [G]; i.e., f maps any open
set X ⊆ G onto an open f [X], as required. �

Note 1. A map
f : (S, ρ)←→

onto
(T, ρ′)

is both open and closed (“clopen”) iff f−1 is continuous—see Problem 15(iv)(v)
in Chapter 4, §2, interchanging f and f−1.

Thus φ = df(~p ; · ) in Theorem 1 is “clopen” on all of E′.

Again, f locally resembles df(~p ; · ).

III. The Inverse Function Theorem. We now further pursue these ideas.

Theorem 3 (inverse functions). Under the assumptions of Theorem 2, let g
be the inverse of fG (f restricted to G = G~p(δ)).

Then g ∈ CD1 on f [G] and dg(~y ; · ) is the inverse of df(~x ; · ) whenever
~x = g(~y ), ~x ∈ G.
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Briefly: “The differential of the inverse is the inverse of the differential .”

Proof. Fix any ~y ∈ f [G] and ~x = g(~y ); so ~y = f(~x) and ~x ∈ G. Let
U = df(~x ; · ).

As noted above, U is bijective for every ~x ∈ G by Theorems 1 and 2 in §6;
so we may set V = U−1. We must show that V = dg(~y ; · ).

To do this, give ~y an arbitrary (variable) increment ∆~y , so small that ~y+∆~y
stays in f [G] (an open set by Theorem 2).

As g and fG are one-to-one, ∆~y uniquely determines

∆~x = g(~y +∆~y)− g(~y ) = ~t ,

and vice versa:
∆~y = f(~x + ~t )− f(~x).

Here ∆~y and ~t are the mutually corresponding increments of ~y = f(~x) and

~x = g(~y ). By continuity, ~y → ~0 iff ~t → ~0.3

As U = df(~x ; · ),

lim
~t →~0

1

|~t |
|f(~x + ~t )− f(~t )− U(~t )| = 0,

or

(8) lim
~t →~0

1

|~t |
|F (~t )| = 0,

where

(9) F (~t ) = f(~x + ~t )− f(~t )− U(~t ).

As V = U−1, we have

V (U(~t )) = ~t = g(~y +∆~y )− g(~y ).

So from (9),

V (F (~t )) = V (∆~y )− ~t

= V (∆~y )− [g(~y +∆~y )− g(~y )];

that is,

(10)
1

|∆~y | |g(~y +∆~y)− g(~y )− V (∆~y )| = |V (F (~t ))|
|∆~y | , ∆~y 6= ~0.

Now, formula (4), with ~r = ~x, ~s = ~x + ~t , and ~u = ~t , shows that

|f(~x + ~t )− f(~x)| ≥ 1

2
ε|~t |;

3 This change of variables is admissible as the map ~t ←→ ∆~y is one-to-one (Corollary 2

in Chapter 4, §2).
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i.e., |∆~y | ≥ 1
2ε|~t |. Hence by (8),

|V (F (~t ))|
|∆~y | ≤ |V (F (~t )|

1
2ε|~t |

=
2

ε

∣

∣

∣

∣

V

(

1

|~t |
F (~t )

)∣

∣

∣

∣

≤ 2

ε
‖V ‖ 1

|~t |
|F (~t )| → 0 as ~t → ~0.

Since ~t → ~0 as ∆~y → ~0 (change of variables!), the expression (10) tends to

0 as ∆~y → ~0.

By definition, then, g is differentiable at ~y , with dg(~y ; · ) = V = U−1.

Moreover, Corollary 3 in §6, applies here. Thus
(∀ δ′ > 0) (∃ δ′′ > 0) ‖U −W‖ < δ′′ ⇒ ‖U−1 −W−1‖ < δ′.

Taking here U−1 = dg(~y ) and W−1 = dg(~y +∆~y), we see that g ∈ CD1 near
~y . This completes the proof. �

Note 2. If E′ = E = En (Cn), the bijectivity of φ = df(~p ; · ) is equiva-
lent to

det[φ] = det[f ′(~p)] 6= 0

(Theorem 1 of §6).
In this case, the fact that f is one-to-one onG = G~p (δ) means,componentwise

(see Note 3 in §6), that the system of n equations

fi(~x) = f(x1, . . . , xn) = yi, i = 1, . . . , n,

has a unique solution for the n unknowns xk as long as

(y1, . . . , yn) = ~y ∈ f [G].

Theorem 3 shows that this solution has the form

xk = gk(~y ), k = 1, . . . , n,

where the gk are of class CD1 on f [G] provided the fi are of class CD1 near ~p
and det [f ′(~p)] 6= 0. Here

det[f ′(~p)] = Jf (~p),

as in §6.
Thus again f “locally” resembles a linear map, φ = df(~p ; · ).

IV. The Implicit Function Theorem. Generalizing, we now ask, what
about solving n equations in n +m unknowns x1, . . . , xn, y1, . . . , ym? Say, we
want to solve

(11) fk(x1, . . . , xn, y1, . . . , ym) = 0, k = 1, 2, . . . , n,

for the first n unknowns (or variables) xk, thus expressing them as

xk = Hk(y1, . . . , ym), k = 1, . . . , n,
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with Hk : E
m → E1 or Hk : C

m → C.

Let us set ~x = (x1, . . . , xn), ~y = (y1, . . . , ym), and

(~x, ~y ) = (x1, . . . , xn, y1, . . . , ym)

so that (~x, ~y ) ∈ En+m (Cn+m).

Thus the system of equations (11) simplifies to

fk(~x, ~y) = 0, k = 1, . . . , n,

or
f(~x, ~y) = ~0,

where f = (f1, . . . , fn) is a map of En+m (Cn+m) into En (Cn); f is a function
of n+m variables, but it has n components fk; i.e.,

f(~x, ~y ) = f(x1, . . . , xn, y1, . . . , ym)

is a vector in En (Cn).

Theorem 4 (implicit functions). Let E′ = En+m (Cn+m), E = En (Cn), and
let f : E′ → E be of class CD1 near

(~p, ~q) = (p1, . . . , pn, q1, . . . , qm), ~p ∈ En (Cn), ~q ∈ Em (Cm).

Let [φ] be the n× n matrix

(Djfk(~p, ~q)), j, k = 1, . . . , n.

If det[φ] 6= 0 and if f(~p, ~q) = ~0, then there are open sets

P ⊆ En (Cn) and Q ⊆ Em (Cm),

with ~p ∈ P and ~q ∈ Q, for which there is a unique map

H : Q→ P

with
f(H(~y ), ~y ) = ~0

for all ~y ∈ Q; furthermore, H ∈ CD1 on Q.

Thus ~x = H(~y ) is a solution of (11) in vector form.

Proof. With the above notation, set

F (~x, ~y) = (f(~x, ~y), ~y ), F : E′ → E′.

Then
F (~p, ~q) = (f(~p, ~q), ~q) = (~0, ~q),

since f(~p, ~q) = ~0.

As f ∈ CD1 near (~p, ~q), so is F (verify componentwise via Problem 9(ii) in
§3 and Definition 1 of §5).
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By Theorem 4, §3, det[F ′(~p, ~q)] = det[φ] 6= 0 (explain!).

Thus Theorem 1 above shows that F is one-to-one on some globe G about
(~p, ~q).

Clearly G contains an open interval about (~p, ~q). We denote it by P × Q
where ~p ∈ P, ~q ∈ Q; P is open in En (Cn) and Q is open in Em (Cm).4

By Theorem 3, FP×Q (F restricted to P ×Q) has an inverse

g : A←→
onto

P ×Q,

where A = F [P × Q] is open in E′ (Theorem 2), and g ∈ CD1 on A. Let
the map u = (g1, . . . , gn) comprise the first n components of g (exactly as f
comprises the first n components of F ).

Then

g(~x, ~y ) = (u(~x, ~y), ~y )

exactly as F (~x, ~y) = (f(~x, ~y ), ~y). Also, u : A → P is of class CD1 on A, as g
is (explain!).

Now set

H(~y ) = u(~0, ~y );

here ~y ∈ Q, while

(~0, ~y ) ∈ A = F [P ×Q],

for F preserves ~y (the last m coordinates). Also set

α(~x, ~y) = ~x.

Then f = α ◦ F (why?), and

f(H(~y ), ~y) = f(u(~0, ~y), ~y ) = f(g(~0 , ~y)) = α(F (g(~0, ~y)) = α(~0, ~y ) = ~0

by our choice of α and g (inverse to F ). Thus

f(H(~y ), ~y) = ~0, ~y ∈ Q,

as desired.

Moreover, as H(~y ) = u(~0, ~y), we have

∂

∂yi
H(~y ) =

∂

∂yi
u(~0, ~y), ~y ∈ Q, i ≤ m.

As u ∈ CD1, all ∂u/∂yi are continuous (Definition 1 in §5); hence so are the
∂H/∂yi. Thus by Theorem 3 in §3, H ∈ CD1 on Q.

4 This can be made more precise using the theory of product spaces (Chapter 4, ∗§11).
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Finally, H is unique for the given P, Q; for

f(~x, ~y ) = ~0 =⇒ (f(~x, ~y ), ~y ) = (~0, ~y )

=⇒ F (~x, ~y) = (~0, ~y )

=⇒ g(F (~x, ~y)) = g(~0 , ~y)

=⇒ (~x, ~y ) = g(~0 , ~y) = (u(~0, ~y), ~y )

=⇒ ~x = u(~0, ~y ) = H(~y ).

Thus f(~x, ~y) = ~0 implies ~x = H(~y ); so H(~y ) is the only solution for ~x . �

Note 3. H is said to be implicitly defined by the equation f(~x, ~y ) = ~0. In

this sense we say that H(~y ) is an implicit function, given by f(~x, ~y) = ~0.

Similarly, under suitable assumptions, f(~x, ~y ) = ~0 defines ~y as a function
of ~x .

O

X

Y

Q

P

Q

P

Figure 28

Note 4. While H is unique for a given
neighborhood P×Q of (~p, ~q), another im-
plicit function may result if P×Q or (~p, ~q)
is changed .

For example, let

f(x, y) = x2 + y2 − 25

(a polynomial; hence f ∈ CD1 on all of
E2). Geometrically, x2 + y2 − 25 = 0 de-
scribes a circle.

Solving for x, we get x = ±
√

25− y2. Thus we have two functions:

H1(y) = +
√

25− y2

and

H2(y) = −
√

25− y2.

If P ×Q is in the upper part of the circle, the resulting function is H1. Other-
wise, it is H2. See Figure 28.

V. Implicit Differentiation. Theorem 4 only states the existence (and
uniqueness) of a solution, but does not show how to find it, in general.

The knowledge itself that H ∈ CD1 exists, however, enables us to use its
derivative or partials and compute it by implicit differentiation, known from
calculus.5

5 For more on implicit differentiation, see §10.
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Examples.

(a) Let f(x, y) = x2 + y2 − 25 = 0, as above.

This time treating y as an implicit function of x, y = H(x), and writing
y′ for H ′(x), we differentiate both sides of x2 + y2 − 25 = 0 with respect
to x, using the chain rule for the term y2 = [H(x)]2.

This yields 2x+ 2yy′ = 0, whence y′ = −x/y.
Actually (see Note 4), two functions are involved: y = ±

√
25− x2; but

both satisfy x2 + y2 − 25 = 0; so the result y′ = −x/y applies to both.

Of course, this method is possible only if the derivative y′ is known to
exist. This is why Theorem 4 is important.

(b) Let
f(x, y, z) = x2 + y2 + z2 − 1 = 0, x, y, z ∈ E1.

Again f satisfies Theorem 4 for suitable x, y, and z.

Setting z = H(x, y), differentiate the equation f(x, y, z) = 0 partially
with respect to x and y. From the resulting two equations, obtain ∂z

∂x

and ∂z
∂y .

Problems on Inverse and Implicit
Functions, Open and Closed Maps

1. Discuss: In Definition 1, G can equivalently be replaced by G = G~p (δ)
(an open globe).

2. Prove that if the set D is open (closed) in (S, ρ), then the map f : S → T
is open (closed, respectively) on D iff fD (f restricted to D) has this
property as a map of D into f [D].
[Hint: Use Theorem 4 in Chapter 3, §12.]

3. Complete the missing details in the proofs of Theorems 1–4.

3′ Verify footnotes 2 and 3.

4. Show that a map f : E′ → E may fail to be one-to-one on all of E′ even
if f satisfies Theorem 1 near every ~p ∈ E′. Nonetheless, show that this
cannot occur if E′ = E = E1.
[Hints: For the first part, take E′ = C, f(x+ iy) = ex(cos y+ i sin y). For the second,
use Theorem 1 in Chapter 5, §2.]

4′. (i) For maps f : E1 → E1, prove that the existence of a bijective
df(p; · ) is equivalent to f ′(p) 6= 0.

(ii) Let

f(x) = x+ x2 sin
1

x
, f(0) = 0.

Show that f ′(0) 6= 0, and f ∈ CD1 near any p 6= 0; yet f is not
one-to-one near 0. What is wrong?
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5. Show that a map f : En (Cn) → En (Cn), f ∈ CD1, may be bijective
even if det[f ′(~p)] = 0 at some ~p , but then f−1 cannot be differentiable
at ~q = f(~p).
[Hint: For the first clause, take f(x) = x3, p = 0; for the second, note that if f−1

is differentiable at ~q , then Note 2 in §4 implies that det[df(~p ; · )] · det[df−1(~q ; · )] =
1 6= 0, since f ◦ f−1 is the identity map.]

6. Prove Corollary 2 for the general case of complete E′ and E.
[Outline: Given a closed X ⊆ G, take any convergent sequence {~yn} ⊆ f [X]. By

Problem 8 in Chapter 4, §8, f−1(~yn) = ~xn is a Cauchy sequence in X (why?). By
the completeness of E′, (∃ ~x ∈ X) ~xn → ~x (Theorem 4 of Chapter 3, §16). Infer
that lim ~yn = f(~x) ∈ f [X], so f [X] is closed.]

7. Prove that “the composite of two open (closed) maps is open (closed).”
State the theorem precisely. Prove it also for the uniform Lipschitz
property.

8. Prove in detail that f : (S, ρ)→ (T, ρ′) is open on D ⊆ S iff f maps the
interior of D into that of f [D]; that is, f [D0] ⊆ (f [D])0.

9. Verify by examples that f may be:

(i) closed but not open;

(ii) open but not closed.

[Hints: (i) Consider f = constant. (ii) Define f : E2 → E1 by f(x, y) = x and let

D =
{

(x, y) ∈ E2
∣

∣

∣
y =

1

x
, x > 0

}

;

use Theorem 4(iii) in Chapter 3, §16 and continuity to show that D is closed in

E2, but f [D] = (0,+∞) is not closed in E1. However, f is open on all of E2 by
Problem 8. (Verify!)]

10. Continuing Problem 9(ii), define f : En → E1 (or Cn → C) by f(~x) =
xk for a fixed k ≤ n (the “kth projection map”). Show that f is open,
but not closed, on En (Cn).

11. (i) In Example (a), take (p, q) = (5, 0) or (−5, 0). Are the conditions
of Theorem 4 satisfied? Do the conclusions hold?

(ii) Verify Example (b).

12. (i) Treating z as a function of x and y, given implicitly by

f(x, y, z) = z3 + xz2 − yz = 0, f : E3 → E1,

discuss the choices of P and Q that satisfy Theorem 4. Find ∂z
∂x

and ∂z
∂y .

(ii) Do the same for f(x, y, z) = exyz − 1 = 0.

13. Given f : En (Cn) → Em (Cm), n > m, prove that if f ∈ CD1 on a
globe G, f cannot be one-to-one.
[Hint for f : E2 → E1: If, say, D1f 6= 0 on G, set F (x, y) = (f(x, y), y).]
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14. Suppose that f satisfies Theorem 1 for every ~p in an open set A ⊆ E′,
and is one-to-one on A (cf. Problem 4). Let g = f−1

A (restrict f to A
and take its inverse). Show that f and g are open and of class CD1 on
A and f [A], respectively.

15. Given ~v ∈ E and a scalar c 6= 0, define T~v : E → E (“translation by ~v”)
and Mc : E → E (“dilation by c”), by setting

T~v (~x) = ~x + ~v and Mc(~x) = c~x .

Prove the following.

(i) T~v and T−1
~v (= T−~v ) are bijective, continuous, and “clopen” on E;

so also are Mc and M−1
c (= M1/c).

(ii) Similarly for the Lipschitz property on E.

(iii) If G = G~q (δ) ⊂ E, then T~v [G] = G~q+~v (δ), and Mc[G] = Gc~q (|cδ|).
(iv) If f : E′ → E is linear, and ~v = f(~p) for some ~p ∈ E′, then

T~v ◦ f = f ◦ T ′
~p and Mc ◦ f = f ◦M ′

c, where T ′
~p and M ′

c are the

corresponding maps on E′. If, further, f is continuous at ~p, it is
continuous on all of E′.
[Hint for (iv): Fix any ~x ∈ E′. Set ~v = f(~x − ~p), g = T~v ◦ f ◦ T ′

~p−~x
. Verify

that g = f , T ′
~p−~x

(~x) = ~p , and g is continuous at ~x.]

16. Show that if f : E′ → E is linear and if f [G∗] is open in E for some
G∗ = G~p (δ) ⊆ E′, then

(i) f is open on all of E′;

(ii) f is onto E.

[Hints: (i) By Problem 8, it suffices to show that the set f [G] is open, for any globe

G (why?). First take G = G~0 (δ). Then use Problems 7 and 15(i)–(iv), with suitable

~v and c.

(ii) To prove E = f [E′], fix any ~y ∈ E. As f = G~0 (δ) is open, it contains a globe

G′ = G~0 (r). For small c, c~y ∈ G′ ⊆ f [E′]. Hence ~y ∈ f [E′] (Problem 10 in §2).]

17. Continuing Problem 16, show that if f is also one-to-one on G∗, then

f : E′ ←→
onto

E,

f ∈ L(E′, E), f−1 ∈ L(E,E′), f is clopen on E′, and f−1 is so on E.
[Hints: To prove that f is one-to-one on E′, let f(~x) = f(~x ′) = ~y for some ~x, ~x ′ ∈ E′.
Show that

(∃ c, ε > 0) c~y ∈ G~0 (ε) ⊆ f [G~0 (δ)] and f(c~x+~p) = f(c~x ′+~p) ∈ f [G~p (δ)] = f [G∗].

Deduce that c~x + ~p = c~x ′ + ~p and ~x = ~x ′. Then use Problem 15(v) in Chapter 4,
§2, and Note 1.]

18. A map
f : (S, ρ)←→

onto
(T, ρ′)
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is said to be bicontinuous, or a homeomorphism, (from S onto T ) iff
both f and f−1 are continuous. Assuming this, prove the following.

(i) xn → p in S iff f(xn)→ f(p) in T ;

(ii) A is closed (open, compact, perfect) in S iff f [A] is so in T ;

(iii) B = A in S iff f [B] = f [A] in T ;

(iv) B = A0 in S iff f [B] = (f [A])0 in T ;

(v) A is dense in B (i.e., A ⊆ B ⊆ A ⊆ S) in (S, ρ) iff f [A] is dense in
f [B] ⊆ (T, ρ′).

[Hint: Use Theorem 1 of Chapter 4, §2, and Theorem 4 in Chapter 3, §16, for closed
sets; see also Note 1.]

19. Given A,B ⊆ E, ~v ∈ E and a scalar c, set

A+ ~v = { ~x + ~v | ~x ∈ A } and cA = { c~x | ~x ∈ A }.
Assuming c 6= 0, prove that

(i) A is closed (open, compact, perfect) in E iff cA+ ~v is;

(ii) B = A iff cB + ~v = cA+ ~v ;

(iii) B = A0 iff cB + ~v = (cA+ ~v )0;

(iv) A is dense in B iff cA+ ~v is dense in cB + ~v .

[Hint: Apply Problem 18 to the maps T~v and Mc of Problem 15, noting that A+~v =

T~v [A] and cA = Mc[A].]

20. Prove Theorem 2, for a reduced δ, assuming that only one of E′ and E
is En (Cn), and the other is just complete.
[Hint: If, say, E = En (Cn), then f [G] is compact (being closed and bounded), and so

is G = f−1[f [G]]. (Why?) Thus the Lemma works out as before, i.e., f [G] ⊇ G~q (α).

Now use the continuity of f to obtain a globe G′ = G~p (δ
′) ⊆ G such that

f [G′] ⊆ G~q (α). Let g = f−1
G

, further restricted to G~q (α). Apply Problem 15(v) in

Chapter 4, §2, to g, with S = G~q (α), T = E′.]

∗§8. Baire Categories. More on Linear Maps

We pause to outline the theory of so-called sets of Category I or Category II,
as introduced by Baire. It is one of the most powerful tools in higher analysis.
Below, (S, ρ) is a metric space.

Definition 1.

A set A ⊆ (S, ρ) is said to be nowhere dense (in S) iff its closure A has
no interior points (i.e., contains no globes): (A)0 = ∅.

Equivalently, the set A is nowhere dense iff every open set G∗ 6= ∅ in
S contains a globe G disjoint from A. (Why?)

∗§8. Baire Categories. More on Linear Maps 71

Definition 2.

A set A ⊆ (S, ρ) is meagre, or of Category I (in S), iff

A =

∞
⋃

n=1

An,

for some sequence of nowhere dense sets An.

Otherwise, A is said to be nonmeagre or of Category II.

A is residual iff −A is meagre, but A is not.

Examples.

(a) ∅ is nowhere dense.

(b) Any finite set in a normed space E is nowhere dense.

(c) The set N of all naturals in E1 is nowhere dense.

(d) So also is Cantor’s set P (Problem 17 in Chapter 3, §14); indeed, P is
closed (P = P ) and has no interior points (verify!), so (P )0 = P 0 = ∅.

(e) The set R of all rationals in E1 is meagre; for it is countable (see Chap-
ter 1, §9), hence a countable union of nowhere dense singletons {rn},
rn ∈ R. But R is not nowhere dense; it is even dense in E1, since R = E1

(see Definition 2, in Chapter 3, §14). Thus a meagre set need not be
nowhere dense. (But all nowhere dense sets are meagre—why?)

Examples (c) and (d) show that a nowhere dense set may be infinite (even
uncountable). Yet, sometimes nowhere dense sets are treated as “small” or
“negligible,” in comparison with other sets. Most important is the following
theorem.

Theorem 1 (Baire). In a complete metric space (S, ρ), every open set G∗ 6= ∅
is nonmeagre. Hence the entire space S is residual .

Proof. Seeking a contradiction, suppose G∗ is meagre, i.e.,

G∗ =

∞
⋃

n=1

An

for some nowhere dense sets An. Now, as A1 is nowhere dense, G∗ contains a
closed globe

G1 = Gx1
(δ1) ⊆ −A1.

Again, as A2 is nowhere dense, G1 contains a globe

G2 = Gx2
(δ2) ⊆ −A2, with 0 < δ2 ≤

1

2
δ1.
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By induction, we obtain a contracting sequence of closed globes

Gn = Gxn
(δn), with 0 < δn ≤

1

2n
δ1 → 0.

As S is complete, so are the Gn (Theorem 5 in Chapter 3, §17). Thus, by
Cantor’s theorem (Theorem 5 of Chapter 4, §6), there is

p ∈
∞
⋂

n=1

Gn.

As G∗ ⊇ Gn, we have p ∈ G∗. But, as Gn ⊆ −An, we also have (∀n) p 6∈ An;
hence

p 6∈
∞
⋃

n=1

An = G∗

(the desired contradiction!). �

We shall need a lemma based on Problems 15 and 19 in §7. (Review them!)

Lemma. Let f ∈ L(E′, E), E′ complete. Let G = G~0 (1) be the unit globe in

E′. If f [G] (closure of f [G] in E) contains a globe G0 = G0(r) ⊂ E, then
G0 ⊆ f [G].

Note. Recall that we “arrow” only vectors from E′ (e.g., ~0), but not those
from E (e.g., 0).

Proof of lemma. Let A = f [G] ∩ G0 ⊆ G0. We claim that A is dense in

G0; i.e., G0 ⊆ A. Indeed, by assumption, any q ∈ G0 is in f [G]. Thus by
Theorem 3 in Chapter 3, §16, any Gq meets f [G] ∩G0 = A if q ∈ G0. Hence

(∀ q ∈ G0) q ∈ A,

i.e., G0 ⊆ A, as claimed.

Now fix any q0 ∈ G0 = G0(r) and a real c (0 < c < 1). As A is dense in G0,

A ∩Gq0(cr) 6= ∅;
so let q1 ∈ A ∩Gq0(cr) ⊆ f [G]. Then

|q1 − q0| < cr, q0 ∈ Gq1(cr).

As q1 ∈ f [G], we can fix some ~p1 ∈ G = G0(1), with f(~p1) = q1. Also, by
Problems 19(iv) and 15(iii) in §7, cA+ q1 is dense in cG0 + q1 = Gq1(cr). But
q0 ∈ Gq1(cr). Thus

Gq0(c
2r) ∩ (cA+ q1) 6= ∅;

so let q2 ∈ Gq0(c
2r) ∩ (cA+ q1), so q0 ∈ Gq2(c

2r), etc.

Inductively, we fix for each n > 1 some qn ∈ Gq0(c
nr), with

qn ∈ cn−1A+ qn−1,
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i.e.,

qn − qn−1 ∈ cn−1A.

As A ⊆ f [G0(1)], linearity yields

qn − qn−1 ∈ f [cn−1G0(1)] = f [G0(c
n−1)], n > 1.

Thus for each n > 1, there is ~pn ∈ G0(c
n−1), (i.e., |~pn| < cn−1) such that

f(~pn) = qn − qn−1. Now, as |~pn| < cn−1 and 0 < c < 1,

∞
∑

1

|~pn| < +∞;

so by the completeness of E′,
∑

~pn converges in E′ (Theorem 1 in Chapter 4,
§13). Let ~p =

∑∞
k=1 ~pk; then

f(~p) = f

(

lim
n→∞

n
∑

k=1

~pk

)

= lim
n→∞

f

( n
∑

k=1

~pk

)

= lim
n→∞

n
∑

k=1

f(~pk) for f ∈ L(E′, E).

But f(~pk) = qk − qk−1 (k > 1), and f(~p1) = q1; so

n
∑

k=1

f(~pk) = q1 +

n
∑

k=2

(qk − qk−1) = qn.

Thus

f(~p) = lim
n→∞

n
∑

k=1

f(~pk) = lim
n→∞

qn = q0.
1

Moreover, |~pk| < ck−1 (k ≥ 1). Thus

|~p| ≤
∞
∑

k=1

|~pk| <
∞
∑

k=1

ck−1 =
1

1− c
;

i.e.,

~p ∈ G~0

( 1

1− c

)

.

But q0 = f(~p); so

q0 ∈ f
[

G~0

( 1

1− c

)]

.

1 Note that qn → q0, since qn ∈ Gq0 (c
nr) implies |qn − q0| < cnr → 0, as 0 < c < 1.
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As q0 ∈ G0(r) was arbitrary , we have

G0(r) ⊆ f
[

G0

( 1

1− c

)]

,

or by linearity,

G0(r(1− c)) ⊆ f [G0(1)] = f [G].

This holds for any c ∈ (0, 1). Hence

f [G] ⊇
⋃

0<c<1

G0(r(1− c)) = G0(r). (Verify!)

Thus all is proved. �

We can now establish an important result due to S. Banach.

Theorem 2 (Banach). Let f ∈ L(E′, E), with E′ complete. Then f [E′] is
meagre in E or f [E′] = E, according to whether f [G~0 (1)] is or is not nowhere
dense.2

Proof. If f [G0(1)] is nowhere dense in E, so also is f [G0(n)], n > 0. (Verify
by Problems 15 and 19 in §7.) But then

f [E′] = f

[ ∞
⋃

n=1

G0(n)

]

=

∞
⋃

n=1

f [G~0 (n)]

is a countable union of nowhere dense sets, hence meagre, by definition.

Now suppose f [G~0 (1)] is not nowhere dense; so f [G~0 (1)] contains some
Gq(r) ⊆ E. We may assume q ∈ f [G~0 (1)] (if not, replace q by a close point
from f [G~0 (1)]). Then q = f(~p) for some ~p ∈ G~0 (1). The latter implies

| − ~p| = |~p| = ρ(~p,~0) < 1;

so

G−~p (1) ⊆ G~0 (2).

Also, as f [G~0 (1)] ⊇ Gq(r), translation by −q = f(−~p) yields

f [G~0 (1)] + f(−~p) ⊇ Gq(r)− q = G0(r),

i.e.,

G0(r) ⊆ f [G−~p (1)] ⊆ f [G~0 (2)].

Hence f [G~0 (1)] ⊇ G0(
1
2r) (why?); so, by the Lemma

(1) f [G~0 (1)] ⊇ G0

(1

2
r
)

in E.

2 Of course, if E is meagre, so is f [E′] in both cases.
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This implies f [G~0 (2n)] ⊇ G0(nr), and so

f [E′] ⊇
∞
⋃

n=1

G0(nr) = E,

i.e., f [E′] = E, as required. Thus the theorem is proved. �

Theorem 3 (Open map principle). Let f ∈ L(E′, E), with E′ and E complete.
Then the map f is open on E′ iff f [E′] = E, i .e., iff f is onto E.

Proof. If f [E′] = E, then by Theorem 1, f [E′] is nonmeagre in E, as is E
itself. Thus by Theorem 2, f [G~0 (1)] is not nowhere dense, and (1) follows as
before. Hence by Problems 15(iii) and 19 in §7, f [G~p ] ⊇ some Gq whenever
q = f(~p). (Why?) Therefore, G~p ⊆ A ⊆ E′ implies

Gf(~p) ⊆ f [G~p ] ⊆ f [A];

i.e., f maps any interior point ~p ∈ A into such a point of f [A]. By Problem 8
in §7, f is open on E′.

Conversely, if so, then f [E′] is an open set 6= ∅ in E, a complete space; so by
Theorems 1 and 2, f [E′] is nonmeagre and equals E. (See also Problem 16(ii)
in §7.) �

Note 1. Theorem 3 holds even if f is not one-to-one.

Note 2. If in Theorem 3, however, f is bijective, it is open on E′, and
so f−1 ∈ L(E,E′) by Note 1 in §7. (This is the promised general proof of
Corollary 2 in §6.)
Theorem 4 (Banach–Steinhaus uniform boundedness principle). Let E′ be
complete. Let N be a family of maps f ∈ L(E′, E) such that

(2) (∀x ∈ E′) (∃ k ∈ E1) (∀ f ∈ N ) |f(~x)| < k.

(“N is bounded at each ~x .”)

Then N is “norm-bounded ,” i .e.,

(∃K ∈ E1) (∀ f ∈ N ) ‖f‖ < K,

with ‖ ‖ as in §2.
Proof. It suffices to show that N is “uniformly” bounded on some globe,

(3) (∃ c ∈ E1) (∃G = G~p (r)) (∀ f ∈ N ) (∀ ~x ∈ G) |f(~x)| ≤ c.

For then |~x − ~p| ≤ r implies

2c > |f(~x)− f(~p)| = |f(~x − ~p)|,
or (setting ~x − ~p = r~y ) |~y | < 1 implies

(∀ f ∈ N ) |f(~y )| < 2c

r
(why?);
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so

(∀ f ∈ N ) ‖f‖ = sup
|~y |≤1

|f(~y )| < 2c

r
.

Thus, seeking a contradiction, suppose (3) fails and assume its negation:

(4) (∀ c ∈ E1) (∀G = G~p (r)) (∃ f ∈ N ) (∃ ~x ∈ G = G~p (r)) |f(~x)| > c.

Then for c = 1, we can fix some f1 ∈ N and G~x1
(r1) such that 0 < r1 < 1 and

|f1(~x1)| > 1.

By the continuity of the norm | |, we can choose r1 so small that

(∀ ~x ∈ G~x1
(r1)) |f(~x)| > 1.

Again by (4), we fix f2 ∈ N and ~x2 ∈ G~x1
(r1) such that |f2| > 2 on some globe

G~x2
(r2) ⊆ G~x1

(r1),

with 0 < r2 < 1/2. Inductively, we thus form a contracting sequence of closed
globes

G~xn
(rn), 0 < rn <

1

n
,

and a sequence {fn} ⊆ N , such that

(∀n) |fn| > n on G~xn
(rn) ⊆ E′.

As E′ is complete, so are the closed globes G~xn
(rn) ⊆ E′. Also, 0 < rn <

1/n→ 0. Thus by Cantor’s theorem (Theorem 5 of Chapter 4, §6), there is

~x0 ∈
∞
⋂

n=1

G~xn
(rn).

As ~x0 is in each G~xn
(rn), we have

(∀n) |fn(~x0)| > n;

so N is not bounded at ~x0, contrary to (2). This contradiction completes the
proof. �

Note 3. Complete normed spaces are also called Banach spaces.

Problems on Baire Categories and Linear Maps

1. Verify the equivalence of the various formulations in Definition 1. Dis-
cuss: A is nowhere dense iff it is not dense in any open set 6= ∅.

2. Verify Examples (a) to (e). Show that Cantor’s set P is uncountable.
[Hint: Each p ∈ P corresponds to a “ternary fraction,” p =

∑∞
n=1 xn/3n, also written

0.x1, x2, . . . , xn, . . . , where xn = 0 or xn = 2 according to whether p is to the left,
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or to the right, of the nearest “removed” open interval of length 1/3n. Imitate the
proof of Theorem 3 in Chapter 1, §9, for uncountability. See also Chapter 1, §9,
Problem 2(ii).]

3. Complete the missing details in the proof of Theorems 1 to 4.

4. Prove the following.

(i) If B ⊆ A and A is nowhere dense or meagre, so is B.

(ii) If B ⊆ A and B is nonmeagre, so is A.
[Hint: Assume A is meagre and use (i)).]

(iii) Any finite union of nowhere dense sets is nowhere dense. Disprove
it for infinite unions.

(iv) Any countable union of meagre sets is meagre.

5. Prove that in a discrete space (S, ρ), only ∅ is meagre.
[Hint: Use Problem 8 in Chapter 3, §17, Example 7 in Chapter 3, §12, and our

present Theorem 1.]

6. Use Theorem 1 to give a new proof for the existence of irrationals in E1.
[Hint: The rationals R are a meagre set, while E1 is not.]

7. What is wrong about this “proof” that every closed set F 6= ∅ in a
complete space (S, ρ) is residual: “By Theorem 5 of Chapter 3, §17, F
is complete as a subspace. Thus by Theorem 1, F is residual.” Give
counterexamples!

8. We call K a Gδ-set and write K ∈ Gδ iff K =
⋂∞

n=1 Gn for some open
sets Gn.

3

(i) Prove that if K is a Gδ-set, and if K is dense in a complete metric
space (S, ρ), i.e., K = S, then K is residual in S.
[Hint: Let Fn = −Gn. Verify that (∀n) Gn is dense in S, and Fn is nowhere

dense. Deduce that −K = −⋂

Gn =
⋃

Fn is meagre. Use Theorem 1.]

(ii) Infer that R (the rationals) is not a Gδ-set in E1 (cf. Example (c)).

9. Show that, in a complete metric space (S, ρ), a meagre set A cannot
have interior points.
[Hint: Otherwise, A would obtain a globe G. Use Theorem 1 and Problem 4(ii).]

10. (i) A singleton {p} ⊆ (S, ρ) is nowhere dense if S clusters at p; oth-
erwise, it is nonmeagre in S (being a globe, and not a union of
nowhere dense sets).

(ii) If A ⊆ S clusters at each p ∈ A, any countable set B ⊆ A is
meagre in S.

3 Such is any closed set A = A ⊆ (S, ρ) (see Problem 20 in Chapter 3, §16).
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11. (i) Show that if ∅ 6= A ∈ Gδ (see Problem 8) in a complete space (S, ρ),
and A clusters at each p ∈ A, then A is uncountable.

(ii) Prove that any nonempty perfect set (Chapter 3, §14) in a complete
space is uncountable.

(iii) How about R (the rationals) in E1 and in R as a subspace of E1?
What is wrong?

[Hints: (i) The subspace (A, ρ) is complete (why?); so A is nonmeagre in A, by
Problem 8. Use Problem 10(ii). (ii) Use Footnote 3.]

12. If G is open in (S, ρ), then G−G is nowhere dense in S.
[Hint: G−G = G ∩ (−G) is closed ; so

(G−G)0 = (G−G)0 = (G ∩ −G)0 = ∅

by Problem 15 in Chapter 3, §12 and Problem 15 in Chapter 3, §16.]

13. (“Simplified” uniform boundedness theorem.) Let fn : (S, ρ) → (T, ρ′)
be continuous for n = 1, 2, . . . , with S complete. If {fn(x)} is a bounded
sequence in T for each x ∈ S, then {fn} is uniformly bounded on some
open G 6= ∅:

(∀ p ∈ T ) (∃ k) (∀n) (∀x ∈ G) ρ′(p, fn(x)) ≤ k.

[Outline: Fix p ∈ T and (∀n) set

Fn = {x ∈ S | (∀m) n ≥ ρ′(p, fm(x))}.

Use the continuity of fm and of ρ′ to show that Fn is closed in S, and S =
⋃∞

n=1 Fn.

By Theorem 1, S is nonmeagre; so at least one Fn is not nowhere dense—call it F ,
so (F )0 = F 0 6= ∅. Set G = F 0 and show that G is as required.]

14. Let fn : (S, ρ) → (T, ρ′) be continuous for n = 1, 2, . . . Show that if
fn → f (pointwise) on S, then f is continuous on S−Q, with Q meagre
in S.
[Outline: (∀ k,m) let

Akm =
∞
⋃

m=n

{

x ∈ S
∣

∣

∣
ρ′(fn(x), fm(x)) >

1

k

}

.

By the continuity of ρ′, fn and fm, Akm is open in S. (Why?) So by Problem 12,
⋃∞

m=1(Akm −Akm) is meagre for k = 1, 2, . . . .

Also, as fn → f on S,
⋂∞

m=1 Akm = ∅. (Verify!) Thus

(∀ k)
∞
⋂

m=1

Akm ⊆
∞
⋃

m=1

(Akm −Akm).

(Why?) Hence the set Q =
⋃∞

k=1

⋂∞
m=1 Akm is meagre in S.

Moreover, S − Q =
⋂∞

k=1

⋃∞
m=1(−Akm)0 by Problem 16 in Chapter 3, §16.

Deduce that if p ∈ S −Q, then

(∀ ε > 0) (∃m0) (∃Gp) (∀n,m ≥ m0) (∀ x ∈ G0) ρ′(fm(x), fn(x)) < ε.
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Keeping m fixed, let n→∞ to get

(∀ ε > 0) (∃m0) (∃Gp) (∀m ≥ m0) (∀ x ∈ Gp) ρ′(fm(x), f(x)) ≤ ε.

Now modify the proof of Theorem 2 of Chapter 4, §12, to show that this implies the

continuity of f at each p ∈ S −Q.]

§9. Local Extrema. Maxima and Minima

We say that f : E′ → E1 has a local maximum (minimum) at ~p ∈ E′ iff f(~p)
is the largest (least) value of f on some globe G about ~p ; more precisely, iff

(∀ ~x ∈ G) ∆f = f(~x)− f(~p) < 0 (> 0).

We speak of an improper extremum if we only have ∆f ≤ 0 (≥ 0) on G. In
any case, all depends on the sign of ∆f .

From Problem 6 in §1, recall the following necessary condition.

Theorem 1. If f : E′ → E1 has a local extremum at ~p then D~uf(~p) = 0 for

all ~u 6= ~0 in E′.

In the case E′ = En (Cn), this means that d1f(~p ; · ) = 0 on E′.

(Recall that d1f(~p ;~t ) =
∑n

k=1Dkf(~p)tk. It vanishes if the Dkf(~p) do.)

Note 1. This condition is only necessary, not sufficient. For example, if
f(x, y) = xy, then d1f(~0; · ) = 0; yet f has no extremum at ~0. (Verify!)

Sufficient conditions were given in Theorem 2 of §5, for E′ = E1. We now
take up E′ = E2.

Theorem 2. Let f : E2 → E1 be of class CD2 on a globe G = G~p (δ). Suppose
d1f(~p ; · ) = 0 on E2. Set A = D11f(~p), B = D12f(~p), and C = D22f(~p).

Then the following statements are true.

(i) If AC > B2, f has a maximum or minimum at ~p , according to whether
A < 0 or A > 0.

(ii) If AC < B2, f has no extremum at ~p.

The case AC = B is unresolved.

Proof. Let ~x ∈ G and ~u = ~x − ~p 6= ~0.

As d1f(~p ; · ) = 0, Theorem 2 in §5, yields

∆f = f(~x)− f(~p) = R1 =
1

2
d2f(~s ; ~u),

with ~s ∈ L(~p, ~x) ⊆ G (see Corollary 1 of §5). As f ∈ CD2, we have D12f =
D21f on G (Theorem 1 in §5). Thus by formula (4) in §5,

(1) ∆f =
1

2
d2f(~s ; ~u) =

1

2
[D11f(~s)u

2
1 + 2D12f(~s)u1u2 +D22f(~s)u

2
2].
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Now, as the partials involved are continuous, we can choose G = G~p (δ) so
small that the sign of expression (1) will not change if ~s is replaced by ~p . Then
the crucial sign of ∆f on G coincides with that of

(2) D = Au2
1 + 2Bu1u2 + Cu2

2

(with A, B, and C as stated in the theorem).

From (2) we obtain, by elementary algebra,

AD = (Au1 +Bu2)
2 + (AC −B2)u2

2,(3)

CD = (Cu1 +Bu2)
2 + (AC −B2)u2

2.(3′)

Clearly, if AC > B2, the right-side expression in (3) is > 0; so AD > 0,
i.e., D has the same sign as A.

Hence if A < 0, we also have ∆f < 0 on G, and f has a maximum at ~p . If
A > 0, then ∆f > 0, and f has a minimum at ~p .

Now let AC < B2. We claim that no matter how small G = G~p (δ), ∆f
changes sign as ~x varies in G, and so f has no extremum at ~p .

Indeed, we have ~x = ~p + ~u , ~u = (u1, u2) 6= ~0. If u2 = 0, (3) shows that D
and ∆f have the same sign as A (A 6= 0).

But if u2 6= 0 and u1 = −Bu2/A (assuming A 6= 0), then D and ∆f have
the sign opposite to that of A; and ~x is still in G if u2 is small enough (how
small?).

One proceeds similarly if C 6= 0 (interchange A and C, and use (3′).

Finally, if A = C = 0, then by (2), D = 2Bu1u2 and B 6= 0 (since AC < B2).
Again D and ∆f change sign as u1u2 does; so f has no extremum at ~p. Thus
all is proved. �

Briefly, the proof utilizes the fact that the trinomial (2) is sign-changing iff

its discriminant B2 −AC is positive, i.e.,
∣

∣

A B

B C

∣

∣ < 0.

Note 2. Functions f : C → E1 (of one complex variable) are likewise cov-
ered by Theorem 2 if one treats them as functions on E2 (of two real variables).

Functions of n variables. Here we must rely on the algebraic theory of so-
called symmetric quadratic forms, i.e., polynomials P : En → E1 of the form

P (~u) =

n
∑

j=1

n
∑

i=1

aijuiuj ,

where ~u = (ui, . . . , un) ∈ En and aij = aji ∈ E1.

We take for granted a theorem due to J. J. Sylvester (see S. Perlis, Theory
of Matrices, 1952, p. 197), which may be stated as follows.
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Let P : En → E1 be a symmetric quadratic form,

P (~u) =

n
∑

j=1

n
∑

i=1

aijuiuj .

(i) P > 0 on all of En−{~0} iff the following n determinants Ak are positive:

(4) Ak =

∣

∣

∣

∣

∣

∣

∣

a11 a12 . . . a1k
a21 a22 . . . a2k
. . . . . . . . . . . . . . . . . .
ak1 ak2 . . . akk

∣

∣

∣

∣

∣

∣

∣

, k = 1, 2, . . . , n.

(ii) We have P < 0 on En − {~0} iff (−1)kAk > 0 for k = 1, 2, . . . , n.

Now we can extend Theorem 2 to the case f : En → E1. (This will also
cover f : Cn → E1, treated as f : E2n → E1.) The proof resembles that of
Theorem 2.

Theorem 3. Let f : En → E1 be of class CD2 on some G = G~p (δ). Suppose
df(~p ; · ) = 0 on En. Define the Ak as in (4), with aij = Dijf(~p), i, j, k ≤ n.
Then the following statements hold.

(i) f has a local minimum at ~p if Ak > 0 for k = 1, 2, . . . , n.

(ii) f has a local maximum at ~p if (−1)kAk > 0 for k = 1, . . . , n.

(iii) f has no extremum at ~p if the expression

P (~u) =

n
∑

j=1

n
∑

i=1

aijuiuj

is > 0 for some ~u ∈ En and < 0 for others (i .e., P changes sign on En).

Proof. Let again ~x ∈ G, ~u = ~x − ~p 6= ~0, and use Taylor’s theorem to obtain

(5) ∆f = f(~x)− f(~p) = R1 =
1

2
d2f(~s; ~u) =

n
∑

j=1

n
∑

i=1

Dijf(~s)uiuj ,

with ~s ∈ L(~x, ~p).

As f ∈ CD2, the partials Dijf are continuous on G. Thus we can make G so
small that the sign of the last double sum does not change if ~s is replaced by ~p.
Hence the sign of ∆f on G is the same as that of P (~u) =

∑n
j=1

∑n
i=1 aijuiuj ,

with the aij as stated in the theorem.

The quadratic form P is symmetric since aij = aji by Theorem 1 in §5.
Thus by Sylvester’s theorem stated above, one easily obtains our assertions (i)
and (ii). Indeed, they are immediate from clauses (i) and (ii) of that theorem.
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Now, for (iii), suppose P (~u) > 0 > P (~v ), i.e.,

n
∑

j=1

n
∑

i=1

aijuiuj > 0 >

n
∑

j=1

n
∑

i=1

aijvivj for some ~u,~v ∈ En − {~0}.

If here ~u and ~v are replaced by t~u and t~v (t 6= 0), then uiuj and vivj turn
into t2uiuj and t2vivj , respectively. Hence

P (t~u) = t2P (~u) > 0 > t2P (~v ) = P (t~v ).

Now, for any t ∈ (0, δ/|~u|), the point ~x = ~p + t~u lies on the ~u-directed line
through ~p , inside G = G~p (δ). (Why?) Similarly for the point ~x ′ = ~p + t~v .

Hence for such ~x and ~x ′, Taylor’s theorem again yields formulas analogous
to (5) for some ~s ∈ L(~p, ~x) and ~s ′ ∈ L(~p, ~x ′) lying on the same two lines. It
again follows that for small δ,

f(~x)− f(~p) > 0 > f(~x ′)− f(~p),

just as P (~u) > 0 > P (~v ).

Thus ∆f changes sign on G~p (δ), and (iii) is proved. �

Note 3. Still unresolved are cases in which P (~u) vanishes for some ~u 6= ~0,
without changing its sign; e.g., P (~u) = (u1 + u2 + u3)

2 = 0 for ~u = (1, 1,−2).
Then the answer depends on higher-order terms of the Taylor formula. In par-
ticular, if d1f(~p ; · ) = d2f(~p ; · ) = 0 on En, then ∆f = R2 = 1

6d
3f(~p ;~s), etc.

Note 4. The largest or least value of f on a set A (sometimes called the
absolute maximum or minimum) may occur at some noninterior (e.g., bound-
ary) point ~p ∈ A, and then fails to be among the local extrema (where, by
definition, a globe G~p ⊆ A is presupposed). Thus to find absolute extrema, one
must also explore the behaviour of f at noninterior points of A.

By Theorem 1, local extrema can occur only at so-called critical points ~p,
i.e., those at which all directional derivatives vanish (or fail to exist , in which
case D~uf(~p) = 0 by convention).

In practice, to find such points in En (Cn), one equates the partials Dkf
(k ≤ n) to 0. Then one uses Theorems 2 and 3 or other considerations to
determine whether an extremum really exists.

Examples.

(A) Find the largest value of

f(x, y) = sinx+ sin y − sin(x+ y)

on the set A ⊆ E2 bounded by the lines x = 0, y = 0 and x+ y = 2π.

We have

D1f(x, y) = cosx− cos(x+ y) and D2f(x, y) = cos y − cos(x+ y).
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Inside the triangle A, both partials vanish only at the point ( 2π3 , 2π
3 ) at

which f = 3
2

√
3. On the boundary of A (i.e., on the lines x = 0, y = 0

and x+y = 2π), f = 0. Thus even without using Theorem 2, it is evident
that f attains its largest value,

f
(2π

3
,
2π

3

)

=
3

2

√
3,

at this unique critical point.

(B) Find the largest and the least value of

f(x, y, z) = a2x2 + b2y2 + c2z2 − (ax2 + by2 + cz2)2,

on the condition that x2 + y2 + z2 = 1 and a > b > c > 0.

As z2 = 1− x2 − y2, we can eliminate z from f(x, y, z) and replace f
by F : E2 → E1:

F (x, y) = (a2 − c2)x2 + (b2 − c2)y2 + c2 − [(a− c)x2 + (b− c)y2 + c]2.

(Explain!) For F , we seek the extrema on the disc G = G0(1) ⊂ E2,
where x2 + y2 ≤ 1 (so as not to violate the condition x2 + y2 + z2 = 1).

Equating to 0 the two partials

D1F (x, y) = 2x(a− c){(a+ c)− 2[(a− c)x2 + (b− c)y2 + c]2} = 0,

D2F (x, y) = 2y(b− c){(b+ c) − 2[(a− c)x2 + (b− c)y2 + c]2} = 0

and solving this system of equations, we find these critical points in-
side G:

(1) x = y = 0 (F = 0);

(2) x = 0, y = ±2− 1
2 (F = 1

4 (b− c)2); and

(3) x = ±2− 1
2 , y = 0 (F = 1

4 (a− c)2).

(Verify!)

Now, for the boundary of G, i.e., the circle x2 + y2 = 1, repeat this
process: substitute y2 = 1− x2 in the formula for F (x, y), thus reducing
it to

h(x) = (a2 − b2)x2 + b2 + [(a− b)x2 + b]2, h : E1 → E1,

on the interval [−1, 1] ⊂ E1. In (−1, 1) the derivative

h′(x) = 2(a− b)x(1− 2x2)

vanishes only when

(4) x = 0 (h = 0), and

(5) x = ±2− 1
2 (h = 1

4 (a− b)2).
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Finally, at the endpoints of [−1, 1], we have

(6) x = ±1 (h = 0).

Comparing the resulting function values in all six cases, we conclude
that the least of them is 0, while the largest is 1

4 (a − c)2. These are the
desired least and largest values of f , subject to the conditions stated.
They are attained, respectively, at the points

(0, 0,±1), (0,±1, 0), (±1, 0, 0), and (±2− 1
2 , 0,±2− 1

2 ).

Again, the use of Theorems 2 and 3 was redundant.1 However, we
suggest as an exercise that the reader test the critical points of F by
using Theorem 2.

Caution. Theorems 1 to 3 apply to functions of independent variables only.
In Example (B), x, y, z were made interdependent by the imposed equation

x2 + y2 + z2 = 1

(which geometrically limits all to the surface of G~0 (1) in E3), so that one of
them, z, could be eliminated . Only then can Theorems 1 to 3 be used.

Problems on Maxima and Minima

1. Verify Note 1.

1′. Complete the missing details in the proof of Theorems 2 and 3.

2. Verify Examples (A) and (B). Supplement Example (A) by applying
Theorem 2.

3. Test f for extrema in E2 if f(x, y) is

(i)
x2

2p
+

y2

2q
(p > 0, q > 0);

(ii)
x2

2p
− y2

2q
(p > 0, q > 0);

(iii) y2 + x4;

(iv) y2 + x3.

4. (i) Find the maximum volume of an interval A ⊂ E3 (see Chapter 3,
§7) whose edge lengths x, y, z have a prescribed sum: x+y+z = a.

(ii) Do the same in E4 and in En; show that A is a cube.

1 Indeed, by Theorem 2(ii) in Chapter 4, §8, absolute extrema must exist here, as all is

limited to the compact sphere, x2 + y2 + z2 = 1.
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(iii) Hence deduce that

n
√
x1x2 · · ·xn ≤

1

n

n
∑

1

xk (xk ≥ 0),

i.e., the geometric mean of n nonnegative numbers is ≤ their arith-
metic mean.

5. Find the minimum value for the sum f(x, y, z, t) = x+ y+ z + t of four
positive numbers on the condition that xyzt = c4 (constant).
[Answer: x = y = z = t = c; fmax = 4c.]

6. Among all triangles inscribed in a circle of radius R, find the one of
maximum area.
[Hint: Connect the vertices with the center. Let x, y, z be the angles at the center.

Show that the area of the triangle = 1
2
R2(sin x+sin y+sin z), with z = 2π− (x+y).]

7. Among all intervals A ⊂ E3 inscribed in the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1

find the one of largest volume.
[Answer: the edge lengths are 2a√

3
, 2b√

3
, 2c√

3
.]

8. Let Pi = (ai.bi), i = 1, 2, 3, be 3 points in E2 forming a triangle in
which one angle (say, ∡P1) is ≥ 2π/3.

Find a point P = (x, y) for which the sum of the distances,

PP1 + PP2 + PP3 =

3
∑

i=1

√

(x− ai)2 + (y − bi)2,

is the least possible.
[Outline: Let f(x, y) =

∑3
i=1

√

(x− ai)2 + (y − bi)2.

Show that f has no partial derivatives at P1, P2, or P3 (and so P1, P2, and P3 are

critical points at which an extremum may occur), while at other points P , partials
do exist but never vanish simultaneously, so that there are no other critical points.

Indeed, prove that D1f(P ) = 0 = D2f(P ) would imply that

3
∑

i=1

cos θi = 0 =
3

∑

1

sin θi,

where θi is the angle between PPi and the x-axis; hence

sin(θ1 − θ2) = sin(θ2 − θ3) = sin(θ3 − θ1) (why?),

and so θ1 − θ2 = θ2 − θ3 = θ3 − θ1 = 2π/3, contrary to ∡P1 ≥ 2π/3. (Why?)

From geometric considerations, conclude that f has an absolute minimum at P1.

(This shows that one cannot disregard points at which f has no partials.)]
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9. Continuing Problem 8, show that if none of ∡P1, ∡P2, and ∡P3 is ≥
2π/3, then f attains its least value at some P (inside the triangle) such
that ∡P1PP2 = ∡P2PP3 = ∡P3PP1 = 2π/3.
[Hint: Verify that D1f = 0 = D2f at P .

Use the law of cosines to show that P1P2 > PP2+
1
2
PP1 and P1P3 > PP3+

1
2
PP1.

Adding, obtain P1P3 + P1P2 > PP1 + PP2 + PP3, i.e., f(P1) > f(P ). Similarly,

f(P2) > f(P ) and f(P3) > f(P ).

Combining with Problem 8, obtain the result.]

10. In a circle of radius R inscribe a polygon with n+ 1 sides of maximum
area.
[Outline: Let x1, x2, . . . , xn+1 be the central angles subtended by the sides of the

polygon. Then its area A is

1

2
R2

n+1
∑

k=1

sin xk,

with xn+1 = 2π −∑n
k=1 xk. (Why?) Thus all reduces to maximizing

f(x1, . . . , xn) =

n
∑

k=1

sin xk + sin

(

2π −
n
∑

k=1

xk

)

,

on the condition that 0 ≤ xk and
∑n

k=1 xk ≤ 2π. (Why?)

These inequalities define a bounded set D ⊂ En (called a simplex ). Equating all

partials of f to 0, show that the only critical point interior to D is ~x = (x1, . . . , xn),

with xk = 2π
n+1

, k ≤ n (implying that xn+1 = 2π
n+1

, too). For that ~x, we get

f(~x) = (n+ 1) sin[2π/(n+ 1)].

This value must be compared with the “boundary” values of f , on the “faces” of the
simplex D (see Note 4).

Do this by induction. For n = 2, Problem 6 shows that f(~x) is indeed the largest

when all xk equal 2π
n+1

. Now let Dn be the “face” of D, where xn = 0. On that face,

treat f as a function of only n− 1 variables, x1, . . . , xn−1.

By the inductive hypothesis, the largest value of f on Dn is n sin(2π/n). Similarly
for the other “faces.” As n sin(2π/n) < (n + 1) sin 2π/(n+ 1), the induction is

complete.

Thus, the area A is the largest when the polygon is regular , for which

A =
1

2
R2(n+ 1) sin

2π

n+ 1
.]

11. Among all triangles of a prescribed perimeter 2p, find the one of maxi-
mum area.
[Hint: Maximize p(p− x)(p− y)(p− z) on the condition that x+ y + z = 2p.]

12. Among all triangles of area A, find the one of smallest perimeter.

13. Find the shortest distance from a given point ~p ∈ En to a given plane
~u · ~x = c (Chapter 3, §§4–6). Answer:

±~u · ~p − c

|~u | .
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[Hint: First do it in E3, writing (x, y, z) for ~x.]

§10. More on Implicit Differentiation. Conditional Extrema

I. Implicit differentiation was sketched in §7. Under suitable assumptions
(Theorem 4 in §7), one can differentiate a given system of equations,

(1) gk(x1, . . . , xn, y1, . . . , ym) = 0, k = 1, 2, . . . , n,

treating the xj as implicit functions of the yi without seeking an explicit solu-
tion of the form

xj = Hj(y1, . . . , ym).

This yields a new system of equations from which the partials DiHj =
∂xj

∂yican be found directly.

We now supplement Theorem 4 in §7 (review it!) by showing that this new
system is linear in the partials involved and that its determinant is 6= 0. Thus
in general, it is simpler to solve than (1).

As in Part IV of §7, we set

(~x, ~y ) = (x1, . . . , xn, y1, . . . , ym) and g = (g1, . . . , gn),

replacing the f of §7 by g. Then equations (1) simplify to

(2) g(~x, ~y) = ~0 ,

where g : En+m → En (or g : Cn+m → Cn).

Theorem 1 (implicit differentiation). Adopt all assumptions of Theorem 4 in
§7, replacing f by g and setting H = (H1, . . . , Hn),

Djgk(~p, ~q) = ajk, j ≤ n+m, k ≤ n.

Then for each i = 1, . . . ,m, we have n linear equations,

(3)

n
∑

j=1

ajkDiHj(~q) = −an+i,k, k ≤ n,

with
det(ajk) 6= 0, (j, k ≤ n),

that uniquely determine the partials DiHj(~q ) for j = 1, 2, . . . , n.

Proof. As usual, extend the map H : Q→ P of Theorem 4 in §7 to H : Em →
En (or Cm → Cn) by setting H = ~0 on −Q.

Also, define σ : Em → En+m (Cm → Cn+m) by

(4) σ(~y ) = (H(~y ), ~y) = (H1(~y ), . . . , Hn(~y ), y1, . . . , ym), ~y ∈ Em(Cm).
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Then σ is differentiable at ~q ∈ Q, as are its n + m components. (Why?)
Since ~x = H(~y ) is a solution of (2), equations (1) and (2) become identities
when ~x is replaced by H(~y ). Also, σ(~q ) = (H(~q ), ~q) = (~p, ~q) since H(~q ) = ~p.
Moreover,

g(σ(~y )) = g(H(~y ), ~y ) = ~0 for ~y ∈ Q;

i.e., g ◦ σ = ~0 on Q.

Now, by assumption, g ∈ CD1 at (~p, ~q); so the chain rule (Theorem 2 in
§4) applies, with f , ~p, ~q , n, and m replaced by σ, ~q , (~p, ~q), m, and n + m,
respectively.

As h = g ◦ σ = ~0 on Q, an open set, the partials of h vanish on Q. So by
Theorem 2 of §4, writing σj for the jth component of σ,

(5) ~0 =

n+m
∑

j=1

Djg(~p, ~q) ·Diσj(~q ), i ≤ m.

By (4), σj = Hj if j ≤ n, and σj(~y ) = yi if j = n + i. Thus Diσj = DiHj ,
j ≤ n; but for j > n, we have Diσj = 1 if j = n+ i, and Diσj = 0 otherwise.
Hence by (5),

~0 =
n
∑

j=1

Djg(~p, ~q) ·DiHj(~q ) +Dn+ig(~p, ~q), i = 1, 2, . . . ,m.

As g = (g1, . . . , gn), each of these vector equations splits into n scalar ones:

(6) 0 =

n
∑

j=1

Djgk(~p, ~q) ·DiHj(~q ) +Dn+igk(~p, ~q), i ≤ m, k ≤ n.

With Djgk(~p, ~q) = ajk, this yields (3), where det(ajk) = det(Djgk(~p, ~q)) 6= 0,
by hypothesis (see Theorem 4 in §7).

Thus all is proved. �

Note 1. By continuity (Note 1 in §6), we have det(Djgk(~x, ~y )) 6= 0 for all
(~x, ~y) in a sufficiently small neighborhood of (~p, ~q). Thus Theorem 1 holds also
with (~p, ~q) replaced by such (~x, ~y ). In practice, one does not have to memorize
(3), but one obtains it by implicitly differentiating equations (1).

II. We shall now apply Theorem 1 to the theory of conditional extrema.

Definition 1.

We say that f : En+m → E1 has a local conditional maximum (minimum)
at ~p ∈ En+m, with constraints

g = (g1, . . . , gn) = ~0

§10. More on Implicit Differentiation. Conditional Extrema 89

(g : En+m → En) iff in some neighborhood G of ~p we have

∆f = f(~x)− f(~p) ≤ 0 (≥ 0, respectively)

for all ~x ∈ G for which g(~x) = ~0.

In §9 (Example (B) and Problems), we found such conditional extrema by

using the constraint equations g = ~0 to eliminate some variables and thus
reduce all to finding the unconditional extrema of a function of fewer (inde-
pendent) variables.

Often, however, such elimination is cumbersome since it involves solving a
system (1) of possibly nonlinear equations. It is here that implicit differentia-
tion (based on Theorem 1) is useful.

Lagrange invented a method (known as that of multipliers) for finding the
critical points at which such extrema may exist; to wit, we have the following:

Given f : En+m → E1, set

(7) F = f +
n
∑

k=1

ckgk,

where the constants ck are to be determined and gk are as above.

Then find the partials DjF (j ≤ n + m) and solve the system of 2n + m
equations

(8) DjF (~x) = 0, j ≤ n+m, and gk(~x) = 0, k ≤ n,

for the 2n+m “unknowns” xj (j ≤ n+m) and ck (k ≤ n), the ck originating
from (7).

Any ~x satisfying (8), with the ck so determined is a critical point (still to
be tested). The method is based on Theorem 2 below, where we again write
(~p, ~q) for ~p and (~x, ~y ) for ~x (we call it “double notation”).

Theorem 2 (Lagrange multipliers). Suppose f : En+m → E1 is differen-
tiable at

(~p, ~q) = (p1, . . . , pn, q1, . . . , qm)

and has a local extremum at (~p, ~q) subject to the constraints

g = (g1, . . . , gn) = ~0,

with g as in Theorem 1, g : En+m → En. Then

(9)
n
∑

k=1

ckDjgk(~p, ~q) = −Djf(~p, ~q), j = 1, 2, . . . , n+m,1

for certain multipliers ck (determined by the first n equations in (9)).

1 That is, DjF (~p, ~q) = 0, with F as in (7).
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Proof. These n equations admit a unique solution for the ck, as they are
linear , and

det(Djgk(~p, ~q)) 6= 0 (j, k ≤ n)

by hypothesis. With the ck so determined, (9) holds for j ≤ n. It remains to
prove (9) for n < j ≤ n+m.

Now, since f has a conditional extremum at (~p, ~q) as stated, we have

(10) f(~x, ~y )− f(~p, ~q) ≤ 0 (or ≥ 0)

for all (~x, ~y ) ∈ P × Q with g(~x, ~y ) = ~0, provided we make the neighborhood
P ×Q small enough.

Define H and σ as in the previous proof (see (4)); so ~x = H(~y ) is equivalent

to g(~x, ~y ) = ~0 for (~x, ~y) ∈ P ×Q.

Then, for all such (~x, ~y), with ~x = H(~y ), we surely have g(~x, ~y ) = ~0 and
also

f(~x, ~y) = f(H(~y ), ~y ) = f(σ(~y )).

Set h = f ◦ σ, h : Em → E1. Then (10) reduces to

h(~y )− h(~q) ≤ 0 (or ≥ 0) for all ~y ∈ Q.

This means that h has an unconditional extremum at ~q , an interior point of
Q. Thus, by Theorem 1 in §9,

Dih(~q ) = 0, i = 1, . . . ,m.

Hence, applying the chain rule (Theorem 2 of §4) to h = f ◦ σ, we get, much
as in the previous proof,

(11)

0 =

n+m
∑

j=1

Djf(~p, ~q)Diσj(~q)

=

n
∑

j=1

Djf(~p, ~q)DiHj(~q) +Dn+if(~p, ~q), i ≤ m.

(Verify!)

Next, as g by hypothesis satisfies Theorem 1, we get equations (3) or equiv-
alently (6). Multiplying (6) by ck, adding and combining with (11), we obtain

n
∑

j=1

[

Djf(~p, ~q) +

n
∑

k=1

ckDjgk(~p, ~q)
]

DiHj(~q )

+Dn+if(~p, ~q) +

n
∑

k=1

ckDn+igk(~p, ~q) = 0, i ≤ m.
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(Verify!) But the square-bracketed expression is 0; for we chose the ck so as to
satisfy (9) for j ≤ n. Thus all simplifies to

n
∑

k=1

ckDn+igk(~p, ~q) = −Dn+if(~p, ~q), i = 1, 2, . . . ,m.

Hence (9) holds for n < j ≤ n+m, too, and all is proved. �

Remarks. Lagrange’s method has the advantage that all variables (the xk

and yi) are treated equally , without singling out the dependent ones. Thus in
applications, one uses only F , i.e., f and g (not H).

One can also write ~x = (x1, . . . , xn+m) for (~x, ~y ) = (x1, . . . , xn, y1, . . . , ym)
(the “double” notation was good for the proof only).

On the other hand, one still must solve equations (8).

Theorem 2 yields only a necessary condition (9) for extrema with constraints.
There also are various sufficient conditions, but mostly one uses geometric and
other considerations instead (as we did in §9). Therefore, we limit ourselves to
one proposition (using “single” notation this time).

Theorem 3 (sufficient conditions). Let

F = f +

n
∑

k=1

ckgk,

with f : En+m → E1, g : En+m → En, and ck as in Theorem 2.

Then f has a maximum (minimum) at ~p = (p1, . . . , pn+m) (with constraints

g = (g1, . . . , gn) = ~0) whenever F does. (A fortiori , this is the case if F has
an unconditional extremum at ~p.)

Proof. Suppose F has a maximum at ~p , with constraints g = ~0. Then

0 ≥ F (~x)− F (~p) = f(~x)− f(~p) +

n
∑

k=1

ck [gk(~x)− gk(~p)]

for those ~x near ~p (including ~x = ~p) for which g(~x) = ~0.

But for such ~x , gk(~x) = gk(~p) = 0, ck [gk(~x)− gk(~p)] = 0, and so

0 ≥ F (~x)− F (~p) = f(~x)− f(~p).

Hence f has a maximum at ~p , with constraints as stated.

Similarly, ∆F = ∆f in case F has a conditional minimum at ~p . �

Example 1.

Find the local extrema of

f(x, y, z, t) = x+ y + z + t
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on the condition that

g(x, y, z, t) = xyzt− a4 = 0,

with a > 0 and x, y, z, t > 0. (Note that inequalities do not count as
“constraints” in the sense of Theorems 2 and 3.) Here one can simply
eliminate t = a4/(xyz), but it is still easier to use Lagrange’s method.

Set F (x, y, z, t) = x + y + z + t + cxyzt. (We drop a4 since it will
anyway disappear in differentiation.) Equations (8) then read

0 = 1 + cyzt = 1 + cxzt = 1 + cxyt = 1 + cxyz, xyzt− a4 = 0.

Solving for x, z, t and c, we get c = −a−3, x = y = z = t = a.

Thus F (x, y, z, t) = x+ y+ z+ t−xyzt/a3, and the only critical point
is ~p = (a, a, a, a). (Verify!)

By Theorem 3, one can now explore the sign of F (~x) − F (~p), where
~x = (x, y, z, t). For ~x near ~p , it agrees with the sign of d2F (~p ; · ). (See
proof of Theorem 2 in §9.) We shall do it below, using yet another device,
to be explained now.

Elimination of dependent differentials. If all partials of F vanish at ~p
(e.g., if ~p satisfies (9)), then d1F (~p ; · ) = 0 on En+m (briefly dF ≡ 0).

Conversely, if d1f(~p ; · ) = 0 on a globe G~p , for some function f on n inde-
pendent variables, then

Dkf(~p) = 0, k = 1, 2, . . . , n,

since d1f(~p ; · ) (a polynomial!) vanishes at infinitely many points if its coeffi-
cients Dkf(~p) vanish. (The latter fails, however, if the variables are interde-
pendent .)

Thus, instead of working with the partials, one can equate to 0 the differen-
tial dF or df . Using the “variable” notation and the invariance of df (Note 4
in §4), one then writes dx, dy, . . . for the “differentials” of dependent and inde-
pendent variables alike, and tries to eliminate the differentials of the dependent
variables. We now redo Example 1 using this method.

Example 2.

With f and g as in Example 1, we treat t as the dependent variable,
i.e., an implicit function of x, y, z,

t = a4/(xyz) = H(x, y, z),

and differentiate the identity xyzt − a4 = 0 to obtain

0 = yzt dx+ xzt dy + xyt dz + xyz dt;
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so

(12) dt = −t
(dx

x
+

dy

y
+

dz

z

)

.

Substituting this value of dt in df = dx+dy+dz+dt = 0 (the equation
for critical points), we eliminate dt and find:

(

1− t

x

)

dx+
(

1− t

y

)

dy +
(

1− t

z

)

dz ≡ 0.

As x, y, z are independent variables, this identity implies that the co-
efficients of dx, dy, and dz must vanish, as pointed out above. Thus

1− t

x
= 1− t

y
= 1− t

z
= 0.

Hence x = y = z = t = a. (Why?) Thus again, the only critical point is
~p = (a, a, a, a).

Now, returning to Lagrange’s method, we use formula (5) in §5 to
compute

(13) d2F = −2

a
(dx dy + dx dz + dz dt+ dx dt+ dy dz + dy dt).

(Verify!)

We shall show that this expression is sign-constant (if xyzt = a4), near
the critical point ~p . Indeed, setting x = y = z = t = a in (12), we get
dt = −(dx+ dy + dz), and (13) turns into

− 2

a

[

dx dy + dx dz + dy dz − (dx+ dy + dz)2
]

=
1

a

[

dx2 + dy2 + dz2 + (dx+ dy + dz)2
]

= d2F.

This expression is > 0 (for dx, dy, and dz are not all 0). Thus f has
a local conditional minimum at ~p = (a, a, a, a).

Caution; here we cannot infer that f(~p) is the least value of f under
the imposed conditions: x, y, z > 0 and xyzt = a4.

The simplification due to the Cauchy invariant rule (Note 4 in §4)
makes the use of the “variable” notation attractive, though caution is
mandatory.

Note 2. When using Theorem 2, it suffices to ascertain that some n equa-
tions from (9) admit a solution for the ck; for then, renumbering the equations,
one can achieve that these become the first n equations, as was assumed. This
means that the n × (n +m) matrix (Djgk(~p, ~q)) must be of rank n, i.e., con-
tains an n× n-submatrix (obtained by deleting some columns), with a nonzero
determinant .
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In the Problems we often use r, s, t, . . . for Lagrange multipliers.

Further Problems on Maxima and Minima

1. Fill in all details in Examples 1 and 2 and the proofs of all theorems in
this section.

2. Redo Example (B) in §9 by Lagrange’s method.
[Hint: Set F (x, y, z) = f(x, y, z) − r(x2 + y2 + z2), g(x, y, z) = x2 + y2 + z2 − 1.
Compare the values of f at all critical points.2]

3. An ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1

is cut by a plane ux + vy + wz = 0. Find the semiaxes of the section-
ellipse, i.e., the extrema of

ρ2 = [f(x, y, z)]2 = x2 + y2 + z2

under the constraints g = (g1, g2) = ~0, where

g1(x, y, z) = ux+ vy + wz and g2(x, y, z) =
x2

a2
+

y2

b2
+

z2

c2
− 1.

Assume that a > b > c > 0 and that not all u, v, w = 0.
[Outline: By Note 2, explore the rank of the matrix

(14)

(

x/a2 y/b2 z/c2

u v z

)

.

(Why this particular matrix?)

Seeking a contradiction, suppose all its 2× 2 determinants vanish at all points of
the section-ellipse. Then the upper and lower entries in (14) are proportional (why?);

so x2/a2 + y2/b2 + z2/c2 = 0 (a contradiction!).

Next, set

F (x, y, z) = x2 + y2 + z2 + r
(x2

a2
+

y2

b2
+

z2

c2

)

+ 2s(ux+ vy + wz).

Equate dF to 0:

(15) x+
rx

a2
+ su = 0, y +

ry

b2
+ sv = 0, z +

rz

c2
+ sw = 0.

Multiplying by x, y, z, respectively, adding, and combining with g = ~0, obtain r =
−ρ2; so, by (15), for a, b, c 6= ρ,

x =
−sua2
a2 − ρ2

, y =
−svb2
b2 − ρ2

, z =
−swc2

c2 − ρ2
.

Find s, x, y, z, then compare the ρ-values at critical points.]

2 This suffices here, since the equation g = ~0 defines a compact set S; see §9.
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4. Find the least and the largest values of the quadratic form

f(~x) =

n
∑

i,k=1

aikxixk (aik = aki)

on the condition that g(~x) = |~x|2 − 1 = 0 (f, g : En → E1).
[Outline: Let F (~x) = f(~x)− t

(

x2
1 + x2

2 + . . .+ x2
n

)

. Equating dF to 0, obtain

(16)

(a11 − t)x1 + a12 x2 + . . .+ a1n xn = 0,
a21 x1 + (a22 − t)x2 + . . .+ a2n xn = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1 x1 + an2 x2 + . . .+ (ann − t) xn = 0.

Using Theorem 1(iv) in §6, derive the so-called characteristic equation of f ,

(17)

∣

∣

∣

∣

∣

∣

∣

∣

a11 − t a12 . . . a1n
a21 a22 − t . . . a2n
. . . . . . . . . . . .
an1 a2n . . . ann − t

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

of degree n in t. If t is one of its n roots (known to be real3), then equations (16)

admit a nonzero solution for ~x = (x1, . . . , xn); by replacing ~x by ~x/|~x| if necessary,
~x satisfies also the constraint equation g(~x) = |~x|2 − 1 = 0. (Explain!) Thus each
root t of (17) yields a critical point ~xt = (x1, . . . , xn).

Now, to find f(~xt), multiply the kth equation in (16) by xk, k = 1, . . . , n, and

add to get

0 =

n
∑

i,k=1

aikxixk − t

n
∑

k=1

x2
k = f(~xt)− t.

Hence f(~xt) = t.

Thus the values of f at the critical points ~xt are simply the roots of (17). The
largest (smallest) root is also the largest (least) value of f on S = {~x ∈ En | |~x| = 1}.
(Explain!)]

5. Use the method of Problem 4 to find the semiaxes of

(i) the quadric curve in E2, centered at ~0, given by
∑2

i,k=1 aikxixk =
1; and

(ii) the quadric surface
∑3

i,k=1 aikxixk = 1 in E3, centered at ~0.

Assume aik = aki.
[Hint: Explore the extrema of f(~x) = |~x|2 on the condition that

g(~x) =
∑

i,k

aikxixk − 1 = 0.]

6. Using Lagrange’s method, redo Problems 4, 5, 6, 7, 11, 12, and 13 of §9.
7. In E2, find the shortest distance from ~0 to the parabola y2 = 2(x+ a).

3 See S. Perlis, Theory of Matrices, Reading, Mass., 1952, Theorem 9-25.
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8. In E3, find the shortest distance from ~0 to the intersection line of two
planes given by the formulas ~u · ~x = a and ~v · ~x = b with ~u and ~v
different from ~0. (Rewrite all in coordinate form!)

9. In En, find the largest value of |~a ·~x | if |~x | = 1. Use Lagrange’s method.

*10. (Hadamard’s theorem.) If A = det(xik) (i, k ≤ n), then

|A| ≤
n
∏

i=1

|~xi|,

where ~xi = (xi1, xi2, . . . , xin).
[Hints: Set ai = |~xi|. Treat A as a function of n2 variables. Using Lagrange’s
method, prove that, under the n constraints |~xi|2 − a2i = 0, A cannot have an

extremum unless A2 = det(yik), with yik = 0 (if i 6= k) and yii = a2i .]

Chapter 7

Volume and Measure

Our intuitive idea of “volume” is rather vague. We just tend to assume that
“bodies” in space (i.e., in E3) somehow have numerically expressed “volumes,”
but it remains unclear which sets in E3 are “bodies” and how volume is defined .

We also intuitively assume that volumes behave “additively.” That is, if a
body is split into disjoint parts, then the volume of the whole equals the sum of
the volumes of the parts. Similarly for “areas” in E2. In elementary calculus,
that is often just taken for granted.

The famous mathematician Henri Lebesgue (1875–1941) extended the idea
of “volume” to a large, strictly defined family of sets in En, called Lebesgue-
measurable sets, thus giving rise to what is called measure theory . Its basic idea
remains that of additivity, precisely formulated and proved . Modern theory has
still more generalized these ideas. In this text, we have so far defined “volumes”
for intervals in En only. Thus it is natural to take intervals as our starting point.
This will also lead to the important idea of a semiring of sets and its extension:
a ring of sets.

§1. More on Intervals in En. Semirings of Sets

I. As a prologue, we turn to intervals in En (Chapter 3, §7).
Theorem 1. If A and B are intervals in En, then

(i) A ∩B is an interval (∅ counts as an interval);

(ii) A−B is the union of finitely many disjoint intervals (but need not be an
interval itself ).

Proof. The easy proof for E1 is left to the reader.

An interval in E2 is the cross-product of two line intervals.

Let

A = X × Y and B = X ′ × Y ′,

where X, Y , X ′, and Y ′ are intervals in E1. Then (see Figure 29)

A ∩B = (X × Y ) ∩ (X ′ × Y ′) = (X ∩X ′)× (Y ∩ Y ′)
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and

A−B = [(X −X ′)× Y ] ∪ [(X ∩X ′)× (Y − Y ′)];

see Problem 8 in Chapter 1, §§1–3.

X −X′ X ∩X′

X

Y − Y ′

Y ∩ Y ′

Y

Y ′

X′

A ∩B

A

B

Figure 29

As the theorem holds in E1,

X ∩X ′ and Y ∩ Y ′

are intervals in E1, while

X − Y ′ and Y − Y ′

are finite unions of disjoint line intervals.
(In Figure 29 they are just intervals, but
in general they are not.)

It easily follows that A ∩ B is an interval in E2, while A − B splits into
finitely many such intervals. (Verify!) Thus the theorem holds in E2.

Finally, for En, use induction. An interval in En is the cross-product of an
interval in En−1 by a line interval. Thus if the theorem holds in En−1, the
same argument shows that it holds in En, too. (Verify!)

This completes the inductive proof. �

Actually, Theorem 1 applies to many other families of sets (not necessarily
intervals or sets in En). We now give such families a name.

Definition 1.

A family C of arbitrary sets is called a semiring iff

(i) ∅ ∈ C (∅ is a member), and

(ii) for any sets A and B from C, we have A∩B ∈ C, while A−B is the
union of finitely many disjoint sets from C.

Briefly: C is a semiring iff it satisfies Theorem 1.

Note that here C is not just a set, but a whole family of sets. Recall (Chap-
ter 1, §§1–3) that a set family (family of sets) is a set M whose members are
other sets. If A is a member ofM, we call A anM-set and write A ∈M (not
A ⊆M).

Sometimes we use index notation:

M = {Xi | i ∈ I},

briefly

M = {Xi},

where the Xi are M-sets distinguished from each other by the subscripts i
varying over some index set I.
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A set familyM = {Xi} and its union
⋃

i

Xi

are said to be disjoint iff

Xi ∩Xj = ∅ whenever i 6= j.

Notation:
⋃

Xi (disjoint).

In our case, A ∈ C means that A is a C-set (a member of the semiring C).
The formula

(∀A,B ∈ C) A ∩B ∈ C
means that the intersection of two C-sets in a C-set itself.

Henceforth, we will often speak of semirings C in general . In particular, this
will apply to the case C = {intervals}. Always keep this case in mind!

Note 1. By Theorem 1, the intervals in En form a semiring . So also do
the half-open and the half-closed intervals separately (same proof!), but not
the open (or closed) ones. (Why?)

Caution. The union and difference of two C-sets need not be a C-set. To
remedy this, we now enlarge C.
Definition 2.

We say that a set A (from C or not) is C-simple and write

A ∈ C′s
iff A is a finite union of disjoint C-sets (such as A−B in Theorem 1).

Thus C′s is the family of all C-simple sets.

Figure 30

Every C-set is also a C′s-set, i.e., a C-
simple one. (Why?) Briefly:

C ⊆ C′s.
If C is the set of all intervals, a C-simple
set may look as in Figure 30.

Theorem 2. If C is a semiring , and if A and B are C-simple, so also are

A ∩B, A−B, and A ∪B.

In symbols,

(∀A,B ∈ C′s) A ∩B ∈ C′s, A−B ∈ C′s, and A ∪B ∈ C′s.
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We give a proof outline and suggest the proof as an exercise. Before at-
tempting it, the reader should thoroughly review the laws and problems of
Chapter 1, §§1-3.
(1) To prove A ∩B ∈ C′s, let

A =

m
⋃

i=1

Ai (disjoint) and B =

n
⋃

k=1

Bk (disjoint),

with Ai, Bk ∈ C. Verify that

A ∩B =

n
⋃

k=1

m
⋃

i=1

(Ai ∩Bk) (disjoint),

and so A ∩B ∈ C′s.
(2) Next prove that A−B ∈ C′s if A ∈ C′s and B ∈ C.

Indeed, if

A =

m
⋃

i=1

Ai (disjoint),

then

A−B =

m
⋃

i=1

Ai −B =

m
⋃

i=1

(Ai −B) (disjoint).

Verify and use Definition 2.

(3) Prove that

(∀A,B ∈ C′s) A−B ∈ C′s;

we suggest the following argument.

Let

B =

n
⋃

k=1

Bk, Bk ∈ C.

Then

A−B = A−
n
⋃

k=1

Bk =

n
⋂

k=1

(A−Bk)

by duality laws. But A−Bk is C-simple by step (2). Hence so is

A−B =

m
⋂

k=1

(A−Bk)

by step (1) plus induction.
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(4) To prove A ∪B ∈ C′s, verify that

A ∪B = A ∪ (B −A),

where B −A ∈ C′s, by (3).

Note 2. By induction, Theorem 2 extends to any finite number of C′s-sets.
It is a kind of “closure law.”

We thus briefly say that C′s is closed under finite unions, intersections, and
set differences. Any (nonempty) set family with these properties is called a set
ring (see also §3).

Thus Theorem 2 states that if C is a semiring, then C′s is a ring .

Caution. An infinite union of C-simple sets need not be C-simple. Yet we
may consider such unions, as we do next.

In Corollary 1 below, C′s may be replaced by any set ringM.

Corollary 1. If {An} is a finite or infinite sequence of sets from a semiring
C (or from a ringM such as C′s), then there is a disjoint sequence of C-simple
sets (or M-sets) Bn ⊆ An such that

⋃

n

An =
⋃

n

Bn.

Proof. Let B1 = A1 and for n = 1, 2, . . . ,

Bn+1 = An+1 −
n
⋃

k=1

Ak, Ak ∈ C.

By Theorem 2, the Bn are C-simple (as are An+1 and
⋃n

k=1Ak). Show that
they are disjoint (assume the opposite and find a contradiction) and verify that
⋃

An =
⋃

Bn: If x ∈ ⋃

An, take the least n for which x ∈ An. Then n > 1
and

x ∈ An −
n−1
⋃

k=1

Ak = Bn,

or n = 1 and x ∈ A1 = B1. �

Note 3. In Corollary 1, Bn ∈ C′s, i.e., Bn =
⋃mn

i=1 Cni for some disjoint sets
Cni ∈ C. Thus

⋃

n

An =
⋃

n

mn
⋃

i=1

Cni

is also a countable disjoint union of C-sets.

II. Recall that the volume of intervals is additive (Problem 9 in Chapter 3,
§7). That is, if A ∈ C is split into finitely many disjoint subintervals, then vA
(the volume of A) equals the sum of the volumes of the parts.
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We shall need the following lemma.

Lemma 1. Let X1, X2, . . . , Xm ∈ C (intervals in En). If the Xi are mutually
disjoint , then

(i)

m
⋃

i=1

Xi ⊆ Y ∈ C implies

m
∑

i=1

vXi ≤ vY ; and

(ii)

m
⋃

i=1

Xi ⊆
p
⋃

k=1

Yk (with Yk ∈ C) implies

m
∑

i=1

vXi ≤
p

∑

k=1

vYk.

Proof. (i) By Theorem 2, the set

Y −
m
⋃

i=1

Xi

is C-simple; so

Y −
m
⋃

i=1

Xi =

q
⋃

j=1

Cj

for some disjoint intervals Cj . Hence

Y =
⋃

Xi ∪
⋃

Cj (all disjoint).

Thus by additivity,

vY =

m
∑

i=1

vXi +

q
∑

j=1

vCj ≥
m
∑

i=1

vXi,

as claimed.

(ii) By set theory (Problem 9 in Chapter 1, §§1–3),

Xi ⊆
p
⋃

k=1

Yk

implies

Xi = Xi ∩
p
⋃

k=1

Yk =

p
⋃

k=1

(Xi ∩ Yk).

If it happens that the Yk are mutually disjoint also, so certainly are the
smaller intervals Xi ∩ Yk; so by additivity,

vXi =

p
∑

k=1

v(Xi ∩ Yk).
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Hence
m
∑

i=1

vXi =

m
∑

i=1

p
∑

k=1

v(Xi ∩ Yk) =

p
∑

k=1

[ m
∑

i=1

v(Xi ∩ Yk)

]

.

But by (i),
m
∑

i=1

v(Xi ∩ Yk) ≤ vYk (why?);

so
m
∑

i=1

vXi ≤
p

∑

k=1

vYk,

as required.

If, however, the Yk are not disjoint, Corollary 1 yields
⋃

Yk =
⋃

Bk (disjoint),

with

Yk ⊇ Bk =

mk
⋃

j=1

Ckj (disjoint), Ckj ∈ C.

By (i),
mk
∑

j=1

vCkj ≤ vYk.

As
m
⋃

i=1

Xi ⊆
p
⋃

k=1

Yk =

p
⋃

k=1

Bk =

p
⋃

k=1

mk
⋃

j=1

Ckj (disjoint),

all reduces to the previous disjoint case. �

Corollary 2. Let A ∈ C′s (C = intervals in En). If

A =

m
⋃

i=1

Xi (disjoint) =

p
⋃

k=1

Yk (disjoint)

with Xi, Yk ∈ C, then
m
∑

i=1

vXi =

p
∑

k=1

vYk.

(Use part (ii) of the lemma twice.)

Thus we can (and do) unambiguously define vA to be either of these sums.
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Problems on Intervals and Semirings

1. Complete the proof of Theorem 1 and Note 1.

1′. Prove Theorem 2 in detail.

2. Fill in the details in the proof of Corollary 1.

2′. Prove Corollary 2.

3. Show that, in the definition of a semiring, the condition ∅ ∈ C is equiv-
alent to C 6= ∅.
[Hint: Consider ∅ = A−A =

⋃m
i=1 Ai (A,Ai ∈ C) to get ∅ = Ai ∈ C.]

4. Given a set S, show that the following are semirings or rings.

(a) C = { all subsets of S };
(b) C = { all finite subsets of S };
(c) C = { ∅ };
(d) C = { ∅ and all singletons in S }.

Disprove it for C = { ∅ and all two-point sets in S }, S = {1, 2, 3, . . .}.
In (a)–(c), show that C′s = C. Disprove it for (d).

5. Show that the cubes in En (n > 1) do not form a semiring.

6. Using Corollary 2 and the definition thereafter, show that volume is
additive for C-simple sets. That is,

if A =
m
⋃

i=1

Ai (disjoint) then vA =
m
∑

i=1

vAi (A,Ai ∈ C′s).

7. Prove the lemma for C-simple sets.
[Hint: Use Problem 6 and argue as before.]

8. Prove that if C is a semiring, then C′s (C-simple sets) = Cs, the family of
all finite unions of C-sets (disjoint or not).
[Hint: Use Theorem 2.]

§2. Cσ-Sets. Countable Additivity. Permutable Series

We now want to further extend the definition of volume by considering count-
able unions of intervals, called Cσ-sets (C being the semiring of all intervals
in En).

We also ask, if A is split into countably many such sets, does additivity still
hold? This is called countable additivity or σ-additivity (the σ is used whenever
countable unions are involved).

We need two lemmas in addition to that of §1.

§2. Cσ-Sets. Countable Additivity. Permutable Series 105

Lemma 1. If B is a nonempty interval in En, then given ε > 0, there is an
open interval C and a closed one A such that

A ⊆ B ⊆ C

and

vC − ε < vB < vA+ ε.

Proof. Let the endpoints of B be

ā = (a1, . . . , an) and b̄ = (b1, . . . , bn).

For each natural number i, consider the open interval Ci, with endpoints
(

a1 −
1

i
, a2 −

1

i
, . . . , an −

1

i

)

and
(

b1 +
1

i
, b2 +

1

i
, . . . , bn +

1

i

)

.

Then B ⊆ Ci and

vCi =

n
∏

k=1

[

bk +
1

i
−

(

ak −
1

i

)]

=

n
∏

k=1

(

bk − ak +
2

i

)

.

Making i→∞, we get

lim
i→∞

vCi =

n
∏

k=1

(bk − ak) = vB.

(Why?) Hence by the sequential limit definition, given ε > 0, there is a natural
i such that

vCi − vB < ε,

or

vCi − ε < vB.

As Ci is open and ⊇ B, it is the desired interval C.

Similarly, one finds the closed interval A ⊆ B. (Verify!) �

Lemma 2. Any open set G ⊆ En is a countable union of open cubes Ak and
also a disjoint countable union of half-open intervals.

(See also Problem 2 below.)

Proof. If G = ∅, take all Ak = ∅.
If G 6= ∅, every point p ∈ G has a cubic neighborhood

Cp ⊆ G,

centered at p (Problem 3 in Chapter 3, §12). By slightly shrinking this Cp,
one can make its endpoints rational , with p still in it (but not necessarily its
center), and make Cp open, half-open, or closed, as desired. (Explain!)
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Choose such a cube Cp for every p ∈ G; so

G ⊆
⋃

p∈G

Cp.

But by construction, G contains all Cp, so that

G =
⋃

p∈G

Cp.

Moreover, because the coordinates of the endpoints of all Cp are rational ,
the set of ordered pairs of endpoints of the Cp is countable, and thus, while the
set of all p ∈ G is uncountable, the set of distinct Cp is countable. Thus one
can put the family of all Cp in a sequence and rename it {Ak}:

G =

∞
⋃

k=1

Ak.

If, further, the Ak are half-open, we can use Corollary 1 and Note 3, both
from §1, to make the union disjoint (half-open intervals form a semiring!). �

Now let Cσ be the family of all possible countable unions of intervals in En,
such as G in Lemma 2 (we use Cs for all finite unions). Thus A ∈ Cσ means
that A is a Cσ-set, i.e.,

A =

∞
⋃

i=1

Ai

for some sequence of intervals {Ai}. Such are all open sets in En, but there
also are many other Cσ-sets.

We can always make the sequence {Ai} infinite (add null sets or repeat a
term!).

By Corollary 1 and Note 3 of §1, we can decompose any Cσ-set A into count-
ably many disjoint intervals. This can be done in many ways. However, we
have the following result.

Theorem 1. If

A =
∞
⋃

i=1

Ai (disjoint) =
∞
⋃

k=1

Bk (disjoint)

for some intervals Ai, Bk in En, then

∞
∑

i=1

vAi =

∞
∑

k=1

vBk.
1

1 Recall that a positive series always has a (possibly infinite) sum.
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Thus we can (and do) unambiguously define either of these sums to be the
volume vA of the Cσ-set A.
Proof. We shall use the Heine–Borel theorem (Problem 10 in Chapter 4, §6;
review it!).

Seeking a contradiction, let (say)

∞
∑

i=1

vAi >

∞
∑

k=1

vBk,

so, in particular,
∞
∑

k=1

vBk < +∞.

As
∞
∑

i=1

vAi = lim
m→∞

m
∑

i=1

vAi,

there is an integer m for which

m
∑

i=1

vAi >

∞
∑

k=1

vBk.

We fix that m and set

2ε =

m
∑

i=1

vAi −
∞
∑

k=1

vBk > 0.

Dropping “empties” (if any), we assume Ai 6= ∅ and Bk 6= ∅.
Then Lemma 1 yields open intervals Yk ⊇ Bk, with

vBk > vYk −
ε

2k
, k = 1, 2, . . . ,

and closed ones Xi ⊆ Ai, with

vXi +
ε

m
> vAi;

so

2ε =

m
∑

i=1

vAi −
∞
∑

k=1

vBk <

m
∑

i=1

(

vXi +
ε

m

)

−
∞
∑

k=1

(

vYk −
ε

2k

)

=
m
∑

i=1

vXi −
∞
∑

k=1

vYk + 2ε.

Thus

(1)

m
∑

i=1

vXi >

∞
∑

k=1

vYk.
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(Explain in detail!)

Now, as

Xi ⊆ Ai ⊆ A =

∞
⋃

k=1

Bk ⊆
∞
⋃

k=1

Yk,

each of the closed intervals Xi is covered by the open sets Yk.

By the Heine–Borel theorem,
⋃m

i=1 Xi is already covered by a finite number
of the Yk, say,

m
⋃

i=1

Xi ⊆
p
⋃

k=1

Yk.

The Xi are disjoint , for even the larger sets Ai are. Thus by Lemma 1(ii) in §1,
m
∑

i=1

vXi ≤
p

∑

k=1

vYk ≤
∞
∑

k=1

vYk,

contrary to (1). This contradiction completes the proof. �

Corollary 1. If

A =

∞
⋃

k=1

Bk (disjoint)

for some intervals Bk, then

vA =
∞
∑

k=1

vBk.

Indeed, this is simply the definition of vA contained in Theorem 1.

Note 1. In particular, Corollary 1 holds if A is an interval itself. We express
this by saying that the volume of intervals is σ-additive or countably additive.
This also shows that our previous definition of volume (for intervals) agrees
with the definition contained in Theorem 1 (for Cσ-sets).

Note 2. As all open sets are Cσ-sets (Lemma 2), volume is now defined for
any open set A ⊆ En (in particular, for A = En).

Corollary 2. If Ai, Bk are intervals in En, with

∞
⋃

i=1

Ai ⊆
∞
⋃

k=1

Bk,

then provided the Ai are mutually disjoint ,

(2)

∞
∑

i=1

vAi ≤
∞
∑

k=1

vBk.
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The proof is as in Theorem 1 (but the Bk need not be disjoint here).

Corollary 3 (“σ-subadditivity”2 of the volume). If

A ⊆
∞
⋃

k=1

Bk,

where A ∈ Cσ and the Bk are intervals in En, then

vA ≤
∞
∑

k=1

vBk.

Proof. Set

A =

∞
⋃

i=1

Ai (disjoint), Ai ∈ C,

and use Corollary 2. �

Corollary 4 (“monotonicity”2). If A,B ∈ Cσ, with
A ⊆ B,

then
vA ≤ vB.

(“Larger sets have larger volumes.”)

This is simply Corollary 3, with
⋃

k Bk = B.

Corollary 5. The volume of all of En is ∞ (we write ∞ for +∞).

Proof. We have A ⊆ En for any interval A.

Thus, by Corollary 4, vA ≤ vEn.

As vA can be chosen arbitrarily large, vEn must be infinite. �

Corollary 6. For any countable set A ⊂ En, vA = 0. In particular , v∅ = 0.

Proof. First let A = {ā} be a singleton. Then we may treat A as a degenerate
interval [ā, ā]. As all its edge lengths are 0, we have vA = 0.

Next, if A = {ā1, ā2, . . . } is a countable set, then

A =
⋃

k

{āk};

so

vA =
∑

k

v{āk} = 0

by Corollary 1.

2 This notion is treated in more detail in §5.
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Finally, ∅ is the degenerate open interval (ā, ā); so v∅ = 0. �

Note 3. Actually, all these propositions hold also if all sets involved are
Cσ-sets, not just intervals (split each Cσ-set into disjoint intervals!).

Permutable Series. Since σ-additivity involves countable sums, it appears
useful to generalize the notion of a series.

We say that a series of constants,
∑

an,

is permutable iff it has a definite (possibly infinite) sum obeying the general
commutative law :

Given any one–one map

u : N
onto←→ N

(N = the naturals), we have
∑

n

an =
∑

n

aun
,

where un = u(n).

(Such are all positive and all absolutely convergent series in a complete space
E; see Chapter 4, §13.) If the series is permutable, the sum does not depend
on the choice of the map u.

Thus, given any u : N
onto←→ J (where J is a countable index set) and a set

{ai | i ∈ J} ⊆ E

(where E is E∗ or a normed space), we can define

∑

i∈J

ai =
∞
∑

n=1

aun

if
∑

n aun
is permutable.

In particular, if

J = N ×N

(a countable set, by Theorem 1 in Chapter 1, §9), we call
∑

i∈J

ai

a double series, denoted by symbols like
∑

n,k

akn (k, n ∈ N).
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Note that
∑

i∈J

|ai|

is always defined (being a positive series).

If
∑

i∈J

|ai| <∞,

we say that
∑

i∈J ai converges absolutely .

For a positive series, we obtain the following result.

Theorem 2.

(i) All positive series in E∗ are permutable.

(ii) For positive double series in E∗, we have

(3)

∞
∑

n,k=1

ank =

∞
∑

n=1

( ∞
∑

k=1

ank

)

=

∞
∑

k=1

( ∞
∑

n=1

ank

)

.

Proof. (i) Let

s =

∞
∑

n=1

an and sm =

m
∑

n=1

an (an ≥ 0).

Then clearly

sm+1 = sm + am+1 ≥ sm;

i.e., {sm}↑, and so

s = lim
m→∞

sm = sup
m

sm

by Theorem 3 in Chapter 3, §15.
Hence s certainly does not exceed the lub of all possible sums of the form

∑

i∈I

ai,

where I is a finite subset of N (the partial sums sm are among them). Thus

(4) s ≤ sup
∑

i∈I

ai,

over all finite sets I ⊂ N .

On the other hand, every such
∑

i∈I ai is exceeded by, or equals, some sm.
Hence in (4), the reverse inequality holds, too, and so

s = sup
∑

i∈I

ai.



112 Chapter 7. Volume and Measure

But sup
∑

i∈I ai clearly does not depend on any arrangement of the ai.
Therefore, the series

∑

an is permutable, and assertion (i) is proved.

Assertion (ii) follows similarly by considering sums of the form
∑

i∈I ai,
where I is a finite subset of N × N , and showing that the lub of such sums
equals each of the three expressions in (3). We leave it to the reader. �

A similar formula holds for absolutely convergent series (see Problems).

Problems on Cσ-Sets, σ-Additivity, and Permutable Series

1. Fill in the missing details in the proofs of this section.

1′. Prove Note 3.

2. Show that every open set A 6= ∅ in En is a countable union of disjoint
half-open cubes.
[Outline: For each natural m, show that En is split into such cubes of edge length

2−m by the hyperplanes

xk =
i

2m
i = 0,±1,±2, . . . ; k = 1, 2, . . . , n,

and that the family Cm of such cubes is countable.

For m > 1, let Cm1, Cm2, . . . be the sequence of those cubes from Cm (if any)
that lie in A but not in any cube Csj with s < m.

As A is open, x ∈ A iff x ∈ some Cmj .]

3. Prove that any open set A ⊆ E1 is a countable union of disjoint (possibly
infinite) open intervals.
[Hint: By Lemma 2, A =

⋃

n(an, bn). If, say, (a1, b1) overlaps with some (am, bm),
replace both by their union. Continue inductively.]

4. Prove that Cσ is closed under finite intersections and countable unions.

5. (i) Find A,B ∈ Cσ such that A−B 6∈ Cσ.
(ii) Show that Cσ is not a semiring.

[Hint: Try A = E1, B = R (the rationals).]

Note. In the following problems, J is countably infinite, ai ∈ E (E complete).

6. Prove that
∑

i∈J

|ai| <∞

iff for every ε > 0, there is a finite set

F ⊂ J (F 6= ∅)
such that

∑

i∈I

|ai| < ε

for every finite I ⊂ J − F .
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[Outline: By Theorem 2, fix u : N
onto←→ J with

∑

i∈J

|ai| =
∞
∑

n=1

|aun
|.

By Cauchy’s criterion,
∞
∑

n=1

|aun
| <∞

iff

(∀ ε > 0) (∃ q) (∀n > m > q)
n
∑

k=m

|auk
| < ε.

Let F = {u1, . . . , uq}. If I is as above,

(∃n > m > q) {um, . . . , un} ⊇ I;

so
∑

i∈I

|ai| ≤
n
∑

k=m

|auk
| < ε.]

7. Prove that if
∑

i∈J

|ai| <∞,

then for every ε > 0, there is a finite F ⊂ J (F 6= ∅) such that
∣

∣

∣

∣

∑

i∈J

ai −
∑

i∈K

ai

∣

∣

∣

∣

< ε

for each finite K ⊃ F (K ⊂ J).
[Hint: Proceed as in Problem 6, with I = K − F and q so large that

∣

∣

∣

∣

∑

i∈J

ai −
∑

i∈F

ai

∣

∣

∣

∣

<
1

2
ε and

∣

∣

∣

∣

∑

i∈F

ai

∣

∣

∣

∣

<
1

2
ε.]

8. Show that if

J =
∞
⋃

n=1

In (disjoint),

then
∑

i∈J

|ai| =
∞
∑

n=1

bn, where bn =
∑

i∈In

|ai|.

(Use Problem 8′ below.)

8′. Show that
∑

i∈J

|ai| = sup
F

∑

i∈F

|ai|

over all finite sets F ⊂ J (F 6= ∅).
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[Hint: Argue as in Theorem 2.]

9. Show that if ∅ 6= I ⊆ J , then
∑

i∈I

|ai| ≤
∑

i∈J

|ai|.

[Hint: Use Problem 8′ and Corollary 2 of Chapter 2, §§8–9.]

10. Continuing Problem 8, prove that if

∑

i∈J

|ai| =
∞
∑

n=1

bn <∞,

then
∑

i∈J

ai =
∞
∑

n=1

cn with cn =
∑

i∈In

ai.

[Outline: By Problem 9,

(∀n)
∑

i∈In

|ai| <∞;

so

cn =
∑

i∈In

ai

and
∞
∑

n=1

cn

converge absolutely.

Fix ε and F as in Problem 7. Choose the largest q ∈ N with

F ∩ Iq 6= ∅

(why does it exist?), and fix any n > q. By Problem 7, (∀ k ≤ n)

(∀ k ≤ n) (∃ finite Fk | J ⊇ Fk ⊇ F ∩ Iq)

(∀ finite Hk | Ik ⊇ Hk ⊇ Fk)

∣

∣

∣

∣

∑

i∈Hk

ai −
n
∑

k=1

ck

∣

∣

∣

∣

<
1

2
ε.

(Explain!) Let

K =

n
⋃

k=1

Hk;

so
∣

∣

∣

∣

n
∑

k=1

ck −
∑

i∈J

ai

∣

∣

∣

∣

< ε

and K ⊃ F . By Problem 7,
∣

∣

∣

∣

∑

i∈K

ai −
∑

i∈J

ai

∣

∣

∣

∣

< ε.
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Deduce
∣

∣

∣

∣

n
∑

k=1

ck −
∑

i∈J

ai

∣

∣

∣

∣

< 2ε.

Let n→∞; then ε→ 0.]

11. (Double series.) Prove that if one of the expressions

∞
∑

n,k=1

|ank|,
∞
∑

n=1

( ∞
∑

k=1

|ank|
)

,

∞
∑

k=1

( ∞
∑

n=1

|ank|
)

is finite, so are the other two, and

∑

n,k

ank =
∑

n

(

∑

k

ank

)

=
∑

k

(

∑

n

ank

)

,

with all series involved absolutely convergent.
[Hint: Use Problems 8 and 10, with J = N ×N ,

In = {(n, k) ∈ J | k = 1, 2, . . . } for each n;

so

bn =
∞
∑

k=1

|ank | and cn =
∞
∑

k=1

ank.

Thus obtain
∑

n,k

ank =
∑

n

∑

k

ank.

Similarly,
∑

n,k

ank =
∑

k

∑

n

an,k.]

§3. More on Set Families1

Lebesgue extended his theory far beyond Cσ-sets. For a deeper insight, we shall
consider set families in more detail, starting with set rings. First, we rephrase
and supplement our former definition of that notion, given in §1.
Definition 1.

A familyM of subsets of a set S is a ring or set ring (in S) iff

(i) ∅ ∈ M, i.e., the empty set is a member; and

(ii) M is closed under finite unions and differences:

(∀X, Y ∈M) X ∪ Y ∈M and X − Y ∈ M.

1 For a limited approach (see the preface), this topic may be omitted.
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(For intersections, see Theorem 1 below.)

IfM is also closed under countable unions, we call it a σ-ring (in S).
Then

∞
⋃

i=1

Xi ∈ M

whenever

Xi ∈M for i = 1, 2, . . . .

If S itself is a member of a ring (σ-ring) M, we call M a set field
(σ-field), or a set algebra (σ-algebra), in S.

Note that S is only a member ofM, S ∈ M, not to be confused with
M itself.

The family of all subsets of S (the so-called power set of S) is denoted by
2S or P(S).
Examples.

(a) In any set S, 2S is a σ-field. (Why?)

(b) The family {∅}, consisting of ∅ alone, is a σ-ring; {∅, S} is a σ-field in S.
(Why?)

(c) The family of all finite (countable) subsets of S is a ring (σ-ring) in S.

(d) For any semiring C, C′s is a ring (Theorem 2 in §1). Not so for Cσ
(Problem 5 in §2).

Theorem 1. Any set ring is closed under finite intersections.

A σ-ring is closed under countable intersections.

Proof. LetM be a σ-ring (the proof for rings is similar).

Given a sequence {An} ⊆ M, we must show that
⋂

n An ∈M.

Let

U =
⋃

n

An.

By Definition 1,

U ∈ M and U −An ∈M,

asM is closed under these operations. Hence
⋃

n

(U − An) ∈M

and

U −
⋃

n

(U −An) ∈M,
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or, by duality,
⋂

n

[U − (U −An)] ∈M,

i.e.,
⋂

n

An ∈M. �

Corollary 1. Any set ring (field , σ-ring , σ-field) is also a semiring .

Indeed, by Theorem 1 and Definition 1, ifM is a ring, then ∅ ∈ M and

(∀A,B ∈M) A ∩B ∈M and A−B ∈M.

Here we may treat A−B as (A−B)∪∅, a union of two disjointM-sets. Thus
M has all properties of a semiring.

Similarly for σ-rings, fields, etc.

In §1 we saw that any semiring C can be enlarged to become a ring, C′s. More
generally, we obtain the following result.

Theorem 2. For any set familyM in a space S (M⊆ 2S), there is a unique
“smallest” set ring R such that

R ⊇M
(“smallest” in the sense that

R ⊆ R′

for any other ring R′ with R′ ⊇M).

TheR of Theorem 2 is called the ring generated byM. Similarly for σ-rings,
fields, and σ-fields in S.

Proof. We give the proof for σ-fields; it is similar in the other cases.

There surely are σ-fields in S that contain M; e.g., take 2S . Let {Ri} be
the family of all possible σ-fields in S such that Ri ⊇M. Let

R =
⋂

i

Ri.

We shall show that this R is the required “smallest” σ-field containingM.

Indeed, by assumption,

M⊆
⋂

i

Ri = R.

We now verify the σ-field properties for R.
(1) We have that

(∀ i) ∅ ∈ Ri and S ∈ Ri
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(for Ri is a σ-field, by assumption). Hence

∅ ∈
⋂

i

Ri = R.

Similarly, S ∈ R. Thus
∅, S ∈ R.

(2) Suppose

X, Y ∈ R =
⋂

i

Ri.

Then X, Y are in every Ri, and so is X − Y . Hence X − Y is in
⋂

i

Ri = R.

Thus R is closed under differences.

(3) Take any sequence

{An} ⊆ R =
⋂

i

Ri.

Then all An are in each Ri.
⋃

n An is in each Ri; so
⋃

n

An ∈ R.

Thus R is closed under countable unions.

We see that R is indeed a σ-field in S, withM⊆ R. As R is the intersection
of all Ri (i.e., all σ-fields ⊇M), we have

(∀ i) R ⊆ Ri;

so R is the smallest of such σ-fields.

It is unique; for if R′ is another such σ-field, then

R ⊆ R′ ⊆ R
(as both R and R′ are “smallest”); so

R = R′. �

Note 1. This proof also shows that the intersection of any family {Ri} of
σ-fields is a σ-field. Similarly for σ-rings, fields, and rings.

Corollary 2. The ring R generated by a semiring C coincides with

Cs = {all finite unions of C-sets}
and with

C′s = {disjoint finite unions of C-sets}.
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Proof. By Theorem 2 in §1, C′s is a ring ⊇ C; and
C′s ⊆ Cs ⊆ R

(for R is closed under finite unions, being a ring ⊇ C).
Moreover, as R is the smallest ring ⊇ C, we have

R ⊆ C′s ⊆ Cs ⊆ R.

Hence
R = C′s = Cs,

as claimed. �

It is much harder to characterize the σ-ring generated by a semiring. The
following characterization proves useful in theory and as an exercise.2

Theorem 3. The σ-ring R generated by a semiring C coincides with the small-
est set family D such that

(i) D ⊇ C;
(ii) D is closed under countable disjoint unions;

(iii) J −X ∈ D whenever X ∈ D, J ∈ C, and X ⊆ J .

Proof. We give a proof outline, leaving the details to the reader.

(1) The existence of a smallest such D follows as in Theorem 2. Verify!

(2) Writing briefly AB for A ∩B and A′ for −A, prove that

(A−B)C = A− (AC ′ ∪BC).

(3) For each I ∈ D, set
DI = {A ∈ D | AI ∈ D, A− I ∈ D}.

Then prove that if I ∈ C, the set family DI has the properties (i)–(iii) specified
in the theorem. (Use the set identity (2) for property (iii).)

Hence by the minimality of D, D ⊆ DI . Therefore,

(∀A ∈ D) (∀ I ∈ C) AI ∈ D and A− I ∈ D.

(4) Using this, show that DI satisfies (i)–(iii) for any I ∈ D.
Deduce

D ⊆ DI ;

so D is closed under finite intersections and differences.

Combining with property (ii), show that D is a σ-ring (see Problem 12
below).

2 It may be deferred until Chapter 8, §8, though.
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By its minimality, D is the smallest σ-ring ⊇ C (for any other such σ-ring
clearly satisfies (i)–(iii)).

Thus D = R, as claimed. �

Definition 2.

Given a set familyM, we define (following Hausdorff)

(a) Mσ = {all countable unions ofM-sets} (cf. Cσ in §2);
(b) Mδ = {all countable intersections ofM-sets}.

We use Ms and Md for similar notions, with “countable” replaced by
“finite.”

Clearly,
Mσ ⊇Ms ⊇M

and
Mδ ⊇Md ⊇M.

Why?

Note 2. Observe thatM is closed under finite (countable) unions iff

M =Ms (M =Mσ).

Verify! InterpretM =Md (M =Mσ) similarly.

In conclusion, we generalize Theorem 1 in §1.
Definition 3.

The product
M .×N

of two set familiesM and N is the family of all sets of the form

A×B,

with A ∈M and B ∈ N .

(The dot in
.× is to stress thatM .×N is not really a Cartesian product.)

Theorem 4. IfM and N are semirings, so is M .×N .

The proof runs along the same lines as that of Theorem 1 in §1, via the set
identities

(X × Y ) ∩ (X ′ × Y ′) = (X ∩X ′)× (Y ∩ Y ′)

and

(X × Y )− (X ′ × Y ′) = [(X −X ′)× Y ] ∪ [(X ∩X ′)× (Y − Y ′)].

The details are left to the reader.

Note 3. As every ring is a semiring (Corollary 1), the product of two rings
(fields, σ-rings, σ-fields) is a semiring . However, see Problem 6 below.
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Problems on Set Families

1. Verify Examples (a), (b), and (c).

1′. Prove Theorem 1 for rings.

2. Show that in Definition 1 “∅ ∈ M” may be replaced by “M 6= ∅.”
[Hint: ∅ = A−A.]

⇒3. Prove that M is a field (σ-field) iff M 6= ∅, M is closed under finite
(countable) unions, and

(∀A ∈M) − A ∈M.

[Hint: A−B = −(−A ∪B); S = −∅.]

4. Prove Theorem 2 for set fields.

∗4′. Does Note 1 apply to semirings?

5. Prove Note 2.

5′. Prove Theorem 3 in detail.

6. Prove Theorem 4 and show that the productM .×N of two rings need
not be a ring .
[Hint: Let S = E1 andM = N = 2S . Take A,B as in Theorem 1 of §1. Verify that
A−B 6∈ M .×N .]

⇒7. Let R,R′ be the rings (σ-rings, fields, σ-fields) generated byM and N ,
respectively. Prove the following.

(i) IfM⊆ N , then R ⊆ R′.

(ii) IfM⊆ N ⊆ R, then R = R′.

(iii) If
M = {open intervals in En}

and
N = {all open sets in En},

then R = R′.

[Hint: Use Lemma 2 in §2 for (iii). Use the minimality of R and R′.]

8. Is any of the following a semiring, ring, σ-ring, field, or σ-field? Why?

(a) All infinite intervals in E1.

(b) All open sets in a metric space (S, ρ).

(c) All closed sets in (S, ρ).

(d) All “clopen” sets in (S, ρ).

(e) {X ∈ 2S | −X finite}.
(f) {X ∈ 2S | −X countable}.
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⇒9. Prove that for any sequence {An} in a ring R, there is

(a) an expanding sequence {Bn} ⊆ R such that

(∀n) Bn ⊇ An

and
⋃

n

Bn =
⋃

n

An; and

(b) a contracting sequence Cn ⊆ An, with
⋂

n

Cn =
⋂

n

An.

(The latter holds in semirings, too.)

[Hint: Set Bn =
⋃n

1 Ak, Cn =
⋂n

1 Ak.]

⇒10. The symmetric difference, A△B, of two sets is defined

A△B = (A−B) ∪ (B − A).

Inductively, we also set
1

△
k=1

Ak = A1

and
n+1

△
k=1

Ak =

(

n

△
k=1

Ak

)

△An+1.

Show that symmetric differences

(i) are commutative,

(ii) are associative, and

(iii) satisfy the distributive law:

(A△B) ∩ C = (A ∩ C)△ (B ∩ C).

[Hint for (ii): Set A′ = −A, A−B = A∩B′. Expand (A△B)△C into an expression

symmetric with respect to A, B, and C.]

11. Prove thatM is a ring iff

(i) ∅ ∈ M;

(ii) (∀A,B ∈ M) A △ B ∈ M and A ∩ B ∈ M (see Problem 10);
equivalently,

(ii′) A△B ∈M and A ∪B ∈M.

[Hint: Verify that
A ∪B = (A△B)△ (A ∩B)

and

A−B = (A ∪B)△B,
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while

A ∩B = (A ∪B)△ (A△B).]

12. Show that a set familyM 6= ∅ is a σ-ring iff one of the following condi-
tions holds.

(a) M is closed under countable unions and proper differences (X−Y
with X ⊇ Y );

(b) M is closed under countable disjoint unions, proper differences,
and finite intersections; or

(c) M is closed under countable unions and symmetric differences (see
Problem 10).

[Hints: (a) X − Y = (X ∪ Y )− Y , a proper difference.

(b) X − Y = X − (X ∩ Y ) reduces any difference to a proper one; then

X ∪ Y = (X − Y ) ∪ (Y −X) ∪ (X ∩ Y )

shows thatM is closed under all finite unions; soM is a ring. Now use Corollary 1
in §1 for countable unions.

(c) Use Problem 11.]

13. From Problem 10, treating △ as addition and ∩ as multiplication, show
that any set ringM is an algebraic ring with unity , i.e., satisfies the six
field axioms (Chapter 2, §§1–4), except V(b) (existence of multiplicative
inverses).

14. A set family H is said to be hereditary iff

(∀X ∈ H) (∀Y ⊆ X) Y ∈ H.

Prove the following.

(a) For every family M ⊆ 2S , there is a “smallest” hereditary ring
H ⊇ M (H is said to be generated by M). Similarly for σ-rings,
fields, and σ-fields.

(b) The hereditary σ-ring generated byM consists of those sets which
can be covered by countably manyM-sets.

15. Prove that the field (σ-field) in S, generated by a ring (σ-ring) R, con-
sists exactly of all R-sets and their complements in S.

16. Show that the ring R generated by a set family C 6= ∅ consists of all sets
of the form

n

△
k=1

Ak

(see Problem 10), where each Ak ∈ Cd (finite intersection of C-sets).
[Outline: By Problem 11, R must contain the family (call itM) of all such△n

k=1 Ak.

(Why?) It remains to show thatM is a ring ⊇ C.
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Write A + B for A△ B and AB for A ∩ B; so each M-set is a “sum” of finitely
many “products”

A1A2 · · ·An.

By algebra, the “sum” and “product” of two such “polynomials” is such a polynomial
itself. Thus

(∀X, Y ∈M) X △ Y and X ∩ Y ∈M.

Now use Problem 11.]

17. Use Problem 16 to obtain a new proof of Theorem 2 in §1 and Corollary 2
in the present section.
[Hints: For semirings, C = Cd. (Why?) Thus in Problem 16, Ak ∈ C.

Also,

(∀A,B ∈ C) A△B = (A−B) ∪ (B −A)

where A−B and B −A are finite disjoint unions of C-sets. (Why?)

Deduce that A△B ∈ C′s and, by induction,

n

△
k=1

Ak ∈ C′s;

so R ⊆ C′s ⊆ R. (Why?)]

18. Given a set A and a set familyM, let

A .∩M
be the family of all sets A ∩X, with X ∈M; similarly,

N .∪ (M .− A) = {all sets Y ∪ (X −A), with Y ∈ N , X ∈M}, etc.

Show that ifM generates the ring R, then A .∩M generates the ring

R′ = A .∩R.
Similarly for σ-rings, fields, σ-fields.
[Hint for rings: Prove the following.

(i) A .∩R is a ring.

(ii)M⊆ R′ .∪ (R .−A), with R′ as above.

(iii) R .∪ (R .−A) is a ring (call it N ).

(iv) By (ii), R ⊆ N , so A .∩R ⊆ A .∩ N ⊆ R′.

(v) A .∩R ⊇ R′ (for A .∩R ⊇ A .∩M).

Hence R′ = A .∩R.]

§4. Set Functions. Additivity. Continuity

I. The letter “v” in vAmay be treated as a certain function symbol that assigns
a numerical value (called “volume”) to the set A. So far we have defined such
“volumes” for all intervals, then for C-simple sets, and even for Cσ-sets in En.
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Mathematically this means that the volume function v has been defined first
on C (the intervals), then on C′s (C-simple sets), and finally on Cσ.

Thus we have a function v which assigns values (“volumes”) not just to
single points, as ordinary “point functions” do, but to whole sets, each set
being treated as one thing.

In other words, the domain of the function v is not just a set of points, but
a set family (C, C′s, or Cσ).

The “volumes” assigned to such sets are the function values (for C and C′s-sets
they are real numbers; for Cσ-sets they may reach +∞). This is symbolized by

v : C → E1

or

v : Cσ → E∗;

more precisely,

v : Cσ → [0,∞],

since volume is nonnegative.

It is natural to call v a set function (as opposed to ordinary point functions).
As we shall see, there are many other set functions. The function values need
not be real; they may be complex numbers or vectors. This agrees with our
general definition of a function as a certain set of ordered pairs (Definition 3
in Chapter 1, §§4–7); e.g.,

v =

(

A B C · · ·
vA vB vC · · ·

)

.

Here the domain consists of certain sets A,B,C, . . . . This leads us to the
following definition.

Definition 1.

A set function is a mapping

s :M→ E

whose domain is a set family M.

The range space E is assumed to be E1, E∗, C (the complex field), En,
or another normed space. Thus s may be real, extended real, complex,
or vector valued.

To each set X ∈ M, the function s assigns a unique function value
denoted s(X) or sX (which is an element of the range space E).

We say that s is finite on a set family N ⊆M iff

(∀X ∈ N ) |sX| <∞;

briefly, |s| <∞ on N . (This is automatic if s is complex or vector valued.)



126 Chapter 7. Volume and Measure

We call s semifinite if at least one of ±∞ is excluded as function value,
e.g., if s ≥ 0 onM; i.e.,

s :M→ [0,∞].

(The symbol ∞ stands for +∞ throughout.)

Definition 2.

A set function
s :M→ E

is called additive (or finitely additive) on N ⊆M iff for any finite disjoint
union

⋃

k Ak, we have

∑

k

sAk = s

(

⋃

k

Ak

)

,

provided
⋃

k Ak and all the Ak are N -sets.

If this also holds for countable disjoint unions, s is called σ-additive
(or countably additive or completely additive) on N .

If N =M here, we simply say that s is additive (σ-additive, respec-
tively).

Note 1. As
⋃

Ak is independent of the order of the Ak, σ-additivity pre-
supposes and implies that the series

∑

sAk

is permutable (§2) for any disjoint sequence

{Ak} ⊆ N .

(The partial sums do exist, by our conventions (2∗) in Chapter 4, §4.)
The set functions in the examples below are additive; v is even σ-additive

(Corollary 1 in §2).
Examples (b)–(d) show that set functions may arise from ordinary “point

functions.”

Examples.

(a) The volume function v : C → E1 on C (= intervals in En), discussed
above, is called the Lebesgue premeasure (in En).

(b) LetM = {all finite intervals I ⊂ E1}.
Given f : E1 → E, set

(∀ I ∈M) sI = Vf [I],

the total variation of f on the closure of I (Chapter 5, §7).
Then s :M→ [0,∞] is additive by Theorem 1 of Chapter 5, §7.
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(c) LetM and f be as in Example (b).

Suppose f has an antiderivative (Chapter 5, §5) on E1. For each
interval X with endpoints a, b ∈ E1 (a ≤ b), set

sX =

∫ b

a

f.

This yields a set function s :M → E (real, complex, or vector valued),
additive by Corollary 6 in Chapter 5, §5.

(d) Let C = {all finite intervals in E1}.
Suppose

α : E1 → E1

has finite one-sided limits

α(p+) and α(p−)
at each p ∈ E1. The Lebesgue–Stieltjes (LS ) function

sα : C → E1

(important for Lebesgue–Stieltjes integration) is defined as follows.

Set sα∅ = 0. For nonvoid intervals, including [a, a] = {a}, set
sα[a, b] = α(b+)− α(a−),
sα(a, b] = α(b+)− α(a+),

sα[a, b) = α(b−)− α(a−), and

sα(a, b) = α(b−)− α(a+).

For the properties of sα see Problem 7ff., below.

(e) Let mX be the mass concentrated in the part X of the physical space S.
Then m is a nonnegative set function defined on

2S = {all subsets X ⊆ S} (§3).

If instead mX were the electric load of X, then m would be sign
changing .

II. The rest of this section is redundant for a “limited approach.”

Lemmas. Let s :M→ E be additive on N ⊆M. Let

A,B ∈ N , A ⊆ B.

Then we have the following.

(1) If |sA| <∞ and B −A ∈ N , then

s(B −A) = sB − sA (“subtractivity”).
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(2) If ∅ ∈ N , then s∅ = 0 provided |sX| <∞ for at least one X ∈ N .

(3) If N is a semiring , then sA = ±∞ implies |sB| =∞. Hence

|sB| <∞⇒ |sA| <∞.

If further s is semifinite then

sA = ±∞⇒ sB = ±∞
(same sign).

Proof.

(1) As B ⊇ A, we have

B = (B −A) ∪A (disjoint);

so by additivity,

sB = s(B − A) + sA.

If |sA| <∞, we may transpose to get

sB − sA = s(B −A),

as claimed.

(2) Hence

s∅ = s(X −X) = sX − sX = 0

if X, ∅ ∈ N , and |sX| <∞.

(3) If N is a semiring, then

B − A =

n
⋃

k=1

Ak (disjoint)

for some N -sets Ak; so

B = A ∪
n
⋃

k=1

Ak (disjoint).

By additivity,

sB = sA+

n
∑

k=1

sAk;

so by our conventions,

|sA| =∞⇒ |sB| =∞.

If, further, s is semifinite, one of ±∞ is excluded. Thus sA and sB, if
infinite, must have the same sign. This completes the proof. �
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In §§1 and 2, we showed how to extend the notion of volume from intervals
to a larger set family, preserving additivity . We now generalize this idea.

Theorem 1. If
s : C → E

is additive on C, an arbitrary semiring, there is a unique set function

s̄ : Cs → E,

additive on Cs, with s̄ = s on C, i .e.,
s̄X = sX for X ∈ C.

We call s̄ the additive extension of s to Cs = C′s (Corollary 2 in §3).
Proof. If s ≥ 0 (s : C → [0,∞]), proceed as in Lemma 1 and Corollary 2, all
of §1.

The general proof (which may be omitted or deferred) is as follows.

Each X ∈ C′s has the form

X =
m
⋃

i=1

Xi (disjoint), Xi ∈ C.

Thus if s̄ is to be additive, the only way to define it is to set

s̄X =

m
∑

i=1

sXi.

This already makes s̄ unique, provided we show that

m
∑

i=1

sXi

does not depend on the particular decomposition

X =

m
⋃

i=1

Xi

(otherwise, all is ambiguous).

Then take any other decomposition

X =

n
⋃

k=1

Yk (disjoint), Yk ∈ C.

Additivity implies

(∀ i, k) sXi =

n
∑

k=1

s(Xi ∩ Yk) and sYk =

m
∑

i=1

s(Xi ∩ Yk).
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(Verify!) Hence
m
∑

i=1

sXi =
∑

i,k

s(Xi ∩ Yk) =
n
∑

k=1

sYk.

Thus, indeed, it does not matter which particular decomposition we choose,
and our definition of s̄ is unambiguous.

If X ∈ C, we may choose (say)

X =
1
⋃

i=1

Xi, X1 = X;

so

s̄X = sX1 = sX;

i.e., s̄ = s on C, as required.
Finally, for the additivity of s̄, let

A =

m
⋃

k=1

Bk (disjoint), A,Bk ∈ C′s.

Here we may set

Bk =

nk
⋃

i=1

Cki (disjoint), Cki ∈ C.

Then

A =
⋃

k,i

Cki (disjoint);

so by our definition of s̄,

s̄A =
∑

k,i

sCki =

m
∑

k=1

( nk
∑

i=1

sCki

)

=

m
∑

k=1

s̄Bk,

as required. �

Continuity. We write Xn ր X to mean that

X =

∞
⋃

n=1

Xn

and {Xn}↑, i.e.,
Xn ⊆ Xn+1, n = 1, 2, . . . .

Similarly, Xn ց X iff

X =

∞
⋂

n=1

Xn
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and {Xn}↓, i.e.,
Xn ⊇ Xn+1, n = 1, 2, . . . .

In both cases, we set
X = lim

n→∞
Xn.

This suggests the following definition.

Definition 3.

A set function s :M→ E is said to be

(i) left continuous (onM) iff

sX = lim
n→∞

sXn

whenever Xn ր X and X,Xn ∈ M;

(ii) right continuous iff

sX = lim
n→∞

sXn

whenever Xn ց X, with X,Xn ∈M and |sXj | <∞.

Thus in case (i),

lim
n→∞

sXn = s
∞
⋃

n=1

Xn

if all Xn and
⋃∞

n=1Xn areM-sets.

In case (ii),

lim
n→∞

sXn = s
∞
⋂

n=1

Xn

if all Xn and
⋂∞

n=1Xn are inM, and |sX1| <∞.

Note 2. The last restriction applies to right continuity only. (We choose
simply to exclude from consideration sequences {Xn}↓, with |sX1| = ∞; see
Problem 4.)

Theorem 2. If s : C → E is σ-additive and semifinite on C, a semiring, then
s is both left and right continuous (briefly, continuous).

Proof. We sketch the proof for rings; for semirings, see Problem 1.

Left continuity. Let Xn ր X with Xn, X ∈ C and

X =

∞
⋃

n=1

Xn.

If sXn = ±∞ for some n, then (Lemma 3)

sX = sXm = ±∞ for m ≥ n,
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since X ⊇ Xm ⊇ Xn; so

lim sXm = ±∞ = sX,

as claimed.

Thus assume all sXn finite; so s∅ = 0, by Lemma 2.

Set X0 = ∅. As is easily seen,

X =
∞
⋃

n=1

Xn =
∞
⋃

n=1

(Xn −Xn−1) (disjoint),

and
(∀n) Xn −Xn−1 ∈ C (a ring).

Also,

(∀m ≥ n) Xm =

m
⋃

n=1

(Xn −Xn−1) (disjoint).

(Verify!) Thus by additivity,

sXm =
m
∑

n=1

s(Xn −Xn−1),

and by the assumed σ-additivity,

sX = s

∞
⋃

n=1

(Xn −Xn−1) =

∞
∑

n=1

s(Xn −Xn−1)

= lim
m→∞

m
∑

n=1

s(Xn −Xn−1) = lim
m→∞

sXm,

as claimed.

Right continuity. Let Xn ց X with X,Xn ∈ C,

X =

∞
⋂

n=1

Xn,

and
|sX1| <∞.

As X ⊆ Xn ⊆ X1, Lemma 3 yields that

(∀n) |sXn| <∞
and |sX| <∞.

As

X =

∞
⋂

k=1

Xk,
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we have

(∀n) Xn = X ∪
∞
⋃

k=n+1

(Xk−1 −Xk) (disjoint).

(Verify!) Thus by σ-additivity,

(∀n) sXn = sX +

∞
∑

k=n+1

s(Xk−1 −Xk),

with |sX| <∞, |sXn| <∞ (see above).

Hence the sum
∞
∑

k=n+1

s(Xk−1 −Xk) = sXn − sX

is finite. Therefore, it tends to 0 as n →∞ (being the “remainder term” of a
convergent series). Thus n→∞ yields

lim
n→∞

sXn = sX + lim

∞
∑

k=n+1

s(Xk−1 −Xk) = sX,

as claimed. �

Problems on Set Functions

1. Prove Theorem 2 in detail for semirings.
[Hint: We know that

Xn −Xn−1 =

mn
⋃

i=1

Yni (disjoint)

for some Yni ∈ C, so

s̄(Xn −Xn−1) =

mn
∑

i=1

sYni,

with s̄ as in Theorem 1.]

2. Let s be additive onM, a ring . Prove that s is also σ-additive provided
s is either

(i) left continuous, or

(ii) finite onM and right-continuous at ∅; i.e.,
lim
n→∞

sXn = 0

when Xn ց ∅ (Xn ∈M).

[Hint: Let

A =
⋃

n

An (disjoint), A,An ∈M.
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Set

Xn =

n
⋃

k=1

Ak, Yn = A−Xn.

Verify that Xn, Yn ∈M, Xn ր A, Yn ց ∅.
In case (i),

sA = lim sXn =

∞
∑

k=1

sAk.

(Why?)

For (ii), use the Yn.]

3. Let
M = {all intervals in the rational field R ⊂ E1}.

Let
sX = b− a

if a, b are the endpoints of X ∈M (a, b ∈ R, a ≤ b). Prove that

(i) M is a semiring;

(ii) s is continuous;

(iii) s is additive but not σ-additive; thus Problem 2 fails for semirings.

[Hint: R is countable. Thus each X ∈ M is a countable union of singletons {x} =
[x, x]; hence sX = 0 if s were σ-additive.]

3′. Let N = {naturals}. Let
M = {all finite subsets of N and their complements in N}.

If X ∈ M, let sX = 0 if X is finite, and sX =∞ otherwise. Show that

(i) M is a set field;

(ii) s is right continuous and additive, but not σ-additive.

Thus Problem 2(ii) fails if s is not finite.

4. Let
C = {finite and infinite intervals in E1}.

If a, b are the endpoints of an interval X (a, b ∈ E∗, a < b), set

sX =

{

b− a, a < b,

0, a = b.

Show that s is σ-additive on C, a semiring .

Let
Xn = (n,∞);

so sXn =∞− n =∞ and Xn ց ∅. (Verify!) Yet

lim sXn =∞ 6= s∅.
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Does this contradict Theorem 2?

5. Fill in the missing proof details in Theorem 1.

6. Let s be additive onM. Prove the following.

(i) IfM is a ring or semiring, so is

N = {X ∈ M | |sX| <∞}
if N 6= ∅.

(ii) If M is generated by a set family C, with |s| < ∞ on C, then
|s| <∞ onM.
[Hint: Use Problem 16 in §3.]

⇒7. (Lebesgue–Stieltjes set functions.) Let α and sα be as in Example (d).
Prove the following.

(i) sα ≥ 0 on C iff α↑ on E1 (see Theorem 2 in Chapter 4, §5).
(ii) sα{p} = sα[p, p] = 0 iff α is continuous at p.

(iii) sα is additive.
[Hint: If

A =
n
⋃

i=1

Ai (disjoint),

the intervals Ai−1, Ai must be adjacent . For two such intervals, consider all
cases like

(a, b] ∪ (b, c), [a, b) ∪ [b, c], etc.

Then use induction on n.]

(iv) If α is right continuous at a and b, then

sα(a, b] = α(b)− α(b).

If α is continuous at a and b, then

sα[a, b] = sα(a, b] = sα[a, b) = sα(a, b).

(v) If α↑ on E1, then sα satisfies Lemma 1 and Corollary 2 in §1
(same proof), as well as Lemma 1, Theorem 1, Corollaries 1–4,
and Note 3 in §2 (everything except Corollaries 5 and 6).
[Hint: Use (i) and (iii). For Lemma 1 in §2, take first a half-open B = (a, b]; use
the definition of a right-side limit along with Theorems 1 and 2 in Chapter 4,

§5, to prove

(∀ ε > 0) (∃ c > b) 0 ≤ α(c−)− α(b+) < ε;

then set C = (a, c). Similarly for B = [a, b), etc. and for the closed interval

A ⊆ B.]

(vi) If α(x) = x then sα = v, the volume (or length) function in E1.
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8. Construct LS set functions (Example (d)), with α↑ (see Problem 7(v)),
so that

(i) sα[0, 1] 6= sα[1, 2];

(ii) sαE
1 = 1 (after extending sα to Cσ-sets in E1);

(ii′) sαE
1 = c for a fixed c ∈ (0,∞);

(iii) sα{0} = 1 and sα[0, 1] > sα(0, 1].

Describe sα if α(x) = [x] (the integral part of x).
[Hint: See Figure 16 in Chapter 4, §1.]

9. For an arbitrary α : E1 → E1, define σα : C → E1 by

σα[a, b] = σα(a, b] = σσ[a, b) = σα(a, b) = α(b)− α(a)

(the original Stieltjes method). Prove that σα is additive but not σ-
additive unless α is continuous (for Theorem 2 fails).

§5. Nonnegative Set Functions. Premeasures. Outer Measures

We now concentrate on nonnegative set functions

m :M→ [0,∞]

(we mostly denote them by m or µ). Such functions have the advantage that

∞
∑

n=1

mXn

exists and is permutable (Theorem 2 in §2) for any sets Xn ∈M, since mXn ≥
0. Several important notions apply to such functions (only). They “mimic”
§§1 and 2.

Definition 1.

A set function

m :M→ [0,∞]

is said to be

(i) monotone (onM) iff

mX ≤ mY

whenever

X ⊆ Y and X, Y ∈M;
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(ii) (finitely) subadditive (onM) iff for any finite union

n
⋃

k=1

Yk,

we have

(1) mX ≤
m
∑

k=1

mYk

whenever X, Yk ∈M and

X ⊆
n
⋃

k=1

Yk (disjoint or not);

(iii) σ-subadditive (onM) iff (1) holds for countable unions, too.

Recall that {Yk} is called a covering of X iff

X ⊆
⋃

k

Yk.

We call it anM-covering ofX if all Yk areM-sets. We now obtain the following
corollary.

Corollary 1. Subadditivity implies monotonicity .

Take n = 1 in formula (1).

Corollary 2. If m : C → [0,∞] is additive (σ-additive) on C, a semiring, then
m is also subadditive (σ-subadditive, respectively), hence monotone, on C.

The proof is a mere repetition of the argument used in Lemma 1 in §1.
Taking n = 1 in formula (ii) there, we obtain finite subadditivity.

For σ-subadditivity, one only has to use countable unions instead of finite
ones.

Note 1. The converse fails: subadditivity does not imply additivity.

Note 2. Of course, Corollary 2 applies to rings, too (see Corollary 1 in §3).
Definition 2.

A premeasures is a set function

µ : C → [0,∞]

such that

∅ ∈ C and µ∅ = 0.

(C may, but need not , be a semiring.)



138 Chapter 7. Volume and Measure

A premeasure space is a triple

(S, C, µ),
where C is a family of subsets of S (briefly, C ⊆ 2S) and

µ : C → [0,∞]

is a premeasure. In this case, C-sets are also called basic sets.

If
A ⊆

⋃

n

Bn,

with Bn ∈ C, the sequence {Bn} is called a basic covering of A, and
∑

n

µBn

is a basic covering value of A; {Bn} may be finite or infinite.

Examples.

(a) The volume function v on C (= intervals in En) is a premeasure, as v ≥ 0
and v∅ = 0. (En, C, v) is the Lebesgue premeasure space.

(b) The LS set function sα is a premeasure if α↑ (see Problem 7 in §4). We
call it the α-induced Lebesgue–Stieltjes (LS ) premeasure in E1.

We now develop a method for constructing σ-subadditive premeasures. (This
is a first step toward achieving σ-additivity; see §4.)
Definition 3.

For any premeasure space (S, C, µ), we define the µ-induced outer measure
m∗ on 2S (= all subsets of S) by setting, for each A ⊆ S,

(2) m∗A = inf

{

∑

n

µBn

∣

∣

∣

∣

A ⊆
⋃

n

Bn, Bn ∈ C
}

,

i.e., m∗A (called the outer measure of A) is the glb of all basic covering
values of A.

If µ = v, m∗ is called the Lebesgue outer measure in En.

Note 3. If A has no basic coverings, we set m∗A =∞. More generally, we
make the convention that inf ∅ = +∞.

Note 4. By the properties of the glb, we have

(∀A ⊆ S) 0 ≤ m∗A.

If A ∈ C, then {A} is a basic covering; so

m∗A ≤ µA.
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In particular, m∗∅ = µ∅ = 0.

Theorem 1.1 The set function m∗ so defined is σ-subadditive on 2S.

Proof. Given

A ⊆
⋃

n

An ⊂ S,

we must show that

m∗A ≤
∑

n

m∗An.

This is trivial if m∗An =∞ for some n. Thus assume

(∀n) m∗An <∞
and fix ε > 0.

By Note 3, each An has a basic covering

{Bnk}, k = 1, 2, . . .

(otherwise, m∗An = ∞). By properties of the glb, we can choose the Bnk

so that

(∀n)
∑

k

µBnk < m∗An +
ε

2n
.

(Explain from (2)). The sets Bnk (for all n and all k) form a countable basic
covering of all An, hence of A. Thus by Definition 3,

m∗A ≤
∑

n

(

∑

k

µBnk

)

≤
∑

n

(

m∗An +
ε

2n

)

≤
n
∑

m∗An + ε.

As ε is arbitrary, we can let ε→ 0 to obtain the desired result. �

Note 5. In view of Theorem 1, we now generalize the notion of an outer
measure in S to mean any σ-subadditive premeasure defined on all of 2S .

By Note 4, m∗ ≤ µ on C, not m∗ = µ in general. However, we obtain the
following result.

Theorem 2. With m∗ as in Definition 3, we have m∗ = µ on C iff µ is
σ-subadditive on C. Hence, in this case, m∗ is an extension of µ.

Proof. Suppose µ is σ-subadditive and fix any A ∈ C. By Note 4,

m∗A ≤ µA.

We shall show that

µA ≤ m∗A,

1 Theorems 1–3 are redundant for a “limited approach” (see the preface). Pass to Chap-

ter 8, §1.
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too, and hence µA = m∗A.

Now, as A ∈ C, A surely has basic coverings, e.g., {A}. Take any basic
covering:

A ⊆
⋃

n

Bn, Bn ∈ C.

As µ is σ-subadditive,

µA ≤
∑

n

µBn.

Thus µA does not exceed any basic covering values of A; so it cannot exceed
their glb, m∗A. Hence µ = m∗, indeed.

Conversely, if µ = m∗ on C, then the σ-subadditivity of m∗ (Theorem 1)
implies that of µ (on C). Thus all is proved. �

Note 6. If, in (2), we allow only finite basic coverings, then the µ-induced
set function is called the µ-induced outer content , c∗. It is only finitely subad-
ditive, in general.

In particular, if µ = v (Lebesgue premeasure), we speak of the Jordan outer
content in En. (It is superseded by Lebesgue theory but still occurs in courses
on Riemann integration.)

We add two more definitions related to the notion of coverings.

Definition 4.

A set function s :M → E (M ⊆ 2S) is called σ-finite iff every X ∈ M
can be covered by a sequence ofM-sets Xn, with

|sXn| <∞ (∀n).

Any set A ⊆ S which can be so covered is said to be σ-finite with
respect to s (briefly, (s) σ-finite).

If the whole space S can be so covered, we say that s is totally σ-finite.

For example, the Lebesgue premeasure v on En is totally σ-finite.

Definition 5.

A set function s : M → E∗ is said to be regular with respect to a set
family A (briefly, A-regular) iff for each A ∈ M,

(3) sA = inf{sX | A ⊆ X, X ∈ A};

that is, sA is the glb of all sX, with A ⊆ X and X ∈ A.

These notions are important for our later work. At present, we prove only
one theorem involving Definitions 3 and 5.
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Theorem 3. For any premeasure space (S, C, µ), the µ-induced outer measure
m∗ is A-regular whenever

Cσ ⊆ A ⊆ 2S .

Thus in this case,

(4) (∀A ⊆ S) m∗A = inf{m∗X | A ⊆ X, X ∈ A}.

Proof. As m∗ is monotone, m∗A is surely a lower bound of

{m∗X | A ⊆ X, X ∈ A}.
We must show that there is no greater lower bound.

This is trivial if m∗A =∞.

Thus let m∗A < ∞; so A has basic coverings (Note 3). Now fix any ε > 0.
By formula (2), there is a basic covering {Bn} ⊆ C such that

A ⊆
⋃

n

Bn

and
m∗A+ ε >

∑

n

µBn ≥
∑

n

m∗Bn ≥ m∗
⋃

n

Bn.

(m∗ is σ-subadditive!)

Let
X =

⋃

n

Bn.

Then X is in Cσ, hence in A, and A ⊆ X. Also,

m∗A+ ε > m∗X.

Thus m∗A+ ε is not a lower bound of

{m∗X | A ⊆ X, X ∈ A}.
This proves (4). �

Problems on Premeasures and Related Topics

1. Fill in the missing details in the proofs, notes, and examples of this
section.

2. Describe m∗ on 2S induced by a premeasure µ : C → E∗ such that each
of the following hold.

(a) C = {S, ∅}, µS = 1.

(b) C = {S, ∅, and all singletons}; µS =∞, µ{x} = 1.

(c) C as in (b), with S uncountable; µS = 1, and µX = 0 otherwise.
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(d) C = {all proper subsets of S}; µX = 1 when ∅ ⊂ X ⊂ S; µ∅ = 0.

3. Show that the premeasures

v′ : C′ → [0,∞]

induce one and the same (Lebesgue) outer measure m∗ in En, with
v′ = v (volume, as in §2):
(a) C′ = {open intervals};
(b) C′ = {half-open intervals};
(c) C′ = {closed intervals};
(d) C′ = Cσ;
(e) C′ = {open sets};
(f) C′ = {half-open cubes}.

[Hints: (a) Let m′ be the v′-induced outer measure; let C = {all intervals}. As

C′ ⊆ C, m′A ≥ m∗A. (Why?) Also,

(∀ ε > 0) (∃ {Bk} ⊆ C) A ⊆
⋃

k

Bk and
∑

vBk ≤ m∗A+ ε.

(Why?) By Lemma 1 in §2,

(∃ {Ck} ⊆ C′) Bk ⊆ Ck and vBk +
ε

2k
> v′Ck.

Deduce that m∗A ≥ m′A, m∗ = m′. Similarly for (b) and (c). For (d), use
Corollary 1 and Note 3 in §1. For (e), use Lemma 2 in §2. For (f), use Problem 2

in §2.]

3′. Do Problem 3(a)–(c), with m∗ replaced by the Jordan outer content c∗

(Note 6).

4. Do Problem 3, with v and m∗ replaced by the LS premeasure and outer
measure. (Use Problem 7 in §4.)

5. Show that a set A ⊆ En is bounded iff its outer Jordan content is finite.

6. Find a set A ⊆ E1 such that

(i) its Lebesgue outer measure is 0 (m∗A = 0), while its Jordan outer
content c∗A =∞;

(ii) m∗A = 0, c∗A = 1 (see Corollary 6 in §2).

7. Let

µ1, µ2 : C → [0,∞]

be two premeasures in S and let m∗
1 and m∗

2 be the outer measures
induced by them.

Prove that if m∗
1 = m∗

2 on C, then m∗
1 = m∗

2 on all of 2S .
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8. With the notation of Definition 3 and Note 6, prove the following.

(i) If A ⊆ B ⊆ S and m∗B = 0, then m∗A = 0; similarly for c∗.
[Hint: Use monotonicity.]

(ii) The set family
{X ⊆ S | c∗A = 0}

is a hereditary set ring, i.e., a ring R such that

(∀B ∈ R) (∀A ⊆ B) A ∈ R.

(iii) The set family
{X ⊆ S | m∗X = 0}

is a hereditary σ-ring .

(iv) So also is

H = {those X ⊆ S that have basic coverings};
thus H is the hereditary σ-ring generated by C (see Problem 14
in §3).

9. Continuing Problem 8(iv), prove that if µ is σ-finite (Definition 4), so is
m∗ when restricted to H.

Show, moreover, that if C is a semiring, then each X ∈ H has a basic
covering {Yn}, with m∗Yn <∞ and with all Yn disjoint .
[Hint: Show that

X ⊆
∞
⋃

n=1

∞
⋃

k=1

Bnk

for some sets Bnk ∈ C, with µBnk < ∞. Then use Note 4 in §5 and Corollary 1
of §1.]

10. Show that if
s : C → E∗

is σ-finite and additive on C, a semiring , then the σ-ring R generated
by C equals the σ-ring R′ generated by

C′ = {X ∈ C | |sX| <∞}
(cf. Problem 6 in §4).
[Hint: By σ-finiteness,

(∀X ∈ C) (∃ {An} ⊆ C | |sAn| <∞) X ⊆
⋃

n

An;

so

X =
⋃

n

(X ∩An), X ∩An ∈ C′.

(Use Lemma 3 in §4.)
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Thus (∀X ∈ C) X is a countable union of C′-sets; so C ⊆ R′. Deduce R ⊆ R′.
Proceed.]

11. With all as in Theorem 3, prove that if A has basic coverings, then

(∃B ∈ Aδ) A ⊆ B and m∗A = m∗B.

[Hint: By formula (4),

(∀n ∈ N) (∃Xn ∈ A | A ⊆ Xn) m∗A ≤ mXn ≤ m∗A+
1

n
.

(Explain!) Set

B =

∞
⋂

n=1

Xn ∈ Aδ.

Proceed. For Aδ, see Definition 2(b) in §3.]

12. Let (S, C, µ) and m∗ be as in Definition 3. Show that if C is a σ-field in
S, then

(∀A ⊆ S) (∃B ∈ C) A ⊆ B and m∗A = µB.

[Hint: Use Problem 11 and Note 3.]

⇒∗13. Show that if

s : C → E

is σ-finite and σ-additive on C, a semiring, then s has at most one σ-
additive extension to the σ-ring R generated by C.

(Note that s is automatically σ-finite if it is finite, e.g., complex or
vector valued.)
[Outline: Let

s′, s′′ : R→ E

be two σ-additive extensions of s. By Problem 10, R is also generated by

C′ = {X ∈ C | |sX| <∞}.

Now set

R∗ = {X ∈ R | s′X = s′′X}.

Show that R∗ satisfies properties (i)–(iii) of Theorem 3 in §3, with C replaced by C′;
so R = R∗.]

14. Let m∗
n (n = 1, 2, . . . ) be outer measures in S such that

(∀X ⊆ S) (∀n) m∗
nX ≤ m∗

n+1X.

Set

µ∗ = lim
n→∞

m∗
n.

Show that µ∗ is an outer measure in S (see Note 5).
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15. An outer measure m∗ in a metric space (S, ρ) is said to have the
Carathéodory property (CP) iff

m∗(X ∪ Y ) ≥ m∗X +m∗Y

whenever ρ(X, Y ) > 0, where

ρ(X, Y ) = inf{ρ(x, y) | x ∈ X, y ∈ Y }.
For such m∗, prove that

m∗

(

⋃

k

Xk

)

=
∑

k

m∗Xk

if {Xk} ⊆ 2S and

ρ(Xi, Xk) > 0 (i 6= k).

[Hint: For finite unions, use the CP, subadditivity, and induction. Deduce that

(∀n)
n
∑

k=1

m∗Xk ≤ m∗
∞
⋃

k=1

Xk.

Let n→∞. Proceed.]

16. Let (S, C, µ) and m∗ be as in Definition 3, with ρ a metric for S. Let µn

be the restriction of µ to the family Cn of all X ∈ C of diameter

dX ≤ 1

n
.

Let m∗
n be the µn-induced outer measure in S.

Prove that

(i) {m∗
n}↑ as in Problem 14;

(ii) the outer measure

µ∗ = lim
n→∞

m∗
n

has the CP (see Problem 15), and

µ∗ ≥ m∗ on 2S .

[Outline: Let ρ(X, Y ) > ε > 0 (X, Y ⊆ S).

If for some n, X ∪ Y has no basic covering from Cn, then

µ∗(X ∪ Y ) ≥ m∗
n(X ∪ Y ) =∞ ≥ µ∗X + µ∗Y,

and the CP follows. (Explain!)

Thus assume

(

∀n >
1

ε

)

(∀ k) (∃Bnk ∈ Cn) X ∪ Y ⊆
∞
⋃

k=1

Bnk.
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One can choose the Bnk so that

∞
∑

k=1

µBnk ≤ m∗
n(X ∪ Y ) + ε.

(Why?) As

dBnk ≤
1

n
< ε,

some Bnk cover X only, others Y only. (Why?) Deduce that

(

∀n >
1

ε

)

m∗
nX +m∗

nY ≤
∞
∑

k=1

µnBnk ≤ m∗
n(X ∪ Y ) + ε.

Let ε→ 0 and then n→∞.

Also, m∗ ≤ m∗
n ≤ µ∗. (Why?)]

17. Continuing Problem 16, suppose that

(∀ ε > 0) (∀n, k) (∀B ∈ C) (∃Bnk ∈ Cn)

B ⊆
∞
⋃

k=1

Bnk and µB + ε ≥
∞
∑

k=1

µBnk.

Show that

m∗ = lim
n→∞

µ∗
n = µ∗,

so m∗ itself has the CP .
[Hints: It suffices to prove that m∗A ≥ µ∗A if m∗A <∞. (Why?)

Now, given ε > 0, A has a covering

{Bi} ⊆ C

such that

m∗A+ ε ≥
∑

µBi.

(Why?) By assumption,

(∀n) Bi ⊆
∞
⋃

k=1

Bi
nk ∈ Cn and µBi +

ε

2i
≥

∞
∑

k=1

µBi
nk.

Deduce that

m∗A+ ε >
∑

µBi ≥
∞
∑

i=1

( ∞
∑

k=1

µBi
nk −

ε

2i

)

=
∑

i,k

µBi
nk − ε ≥ m∗

nA− ε.

Let ε→ 0; then n→∞.]

18. Using Problem 17, show that the Lebesgue and Lebesgue–Stieltjes outer
measures have the CP.
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§6. Measure Spaces. More on Outer Measures1

I. In §5, we considered premeasure spaces, stressing mainly the idea of σ-
subadditivity (Note 5 in §5). Now we shall emphasize σ-additivity .

Definition 1.

A premeasure
m :M→ [0,∞]

is called a measure (in S) iff M is a σ-ring (in S), and m is σ-additive
onM.

If so, the system
(S,M,m)

is called a measure space; mX is called the measure of X ∈ M;M-sets
are called m-measurable sets.

Note that m is nonnegative and m∅ = 0, as m is a premeasure (Definition 2
in §5).
Corollary 1. Measures are σ-additive, σ-subadditive, monotone, and contin-
uous.

Proof. Use Corollary 2 in §5 and Theorem 2 in §4, noting that M is a σ-
ring . �

Corollary 2. In any measure space (S,M,m), the union and intersection of
any sequence of m-measurable sets is m-measurable itself . So also is X − Y if
X, Y ∈M.

This is obvious sinceM is a σ-ring .

As measures and other premeasures are understood to be ≥ 0, we often write

m :M→ E∗

for
m :M→ [0,∞].

We also briefly say “measurable” for “m-measurable.”

Note that ∅ ∈ M, but not always S ∈M.

Examples.

(a) The volume of intervals in En is a σ-additive premeasure, but not a
measure since its domain (the intervals) is not a σ-ring.

(b) LetM = 2S . Define

(∀X ⊆ S) mX = 0.

1 Sections 6–12 are not needed for a “limited approach.” (Pass to Chapter 8, §1.)
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Then m is trivially a measure (the zero-measure). Here each set X ⊆ S
is measurable, with mX = 0.

(c) Let again M = 2S . Let mX be the number of elements in X, if finite,
and mX =∞ otherwise.

Then m is a measure (“counting measure”). Verify!

(d) LetM = 2S . Fix some p ∈ S. Let

mX =

{

1 if p ∈ X,

0 otherwise.

Then m is a measure (it describes a “unit mass” concentrated at p).

(e) A probability space is a measure space (S,M,m), with

S ∈M and mS = 1.

In probability theory, measurable sets are called events; mX is called the
probability of X, often denoted by pX or similar symbols.

In Examples (b), (c), and (d),

M = 2S (all subsets of S).

More often, however,

M 6= 2S ,

i.e., there are nonmeasurable sets X ⊆ S for which mX is not defined.

Of special interest are sets X ∈ M, with mX = 0, and their subsets. We
call them m-null or null sets. One would like them to be measurable, but this
is not always the case for subsets of X.

This leads us to the following definition.

Definition 2.

A measure m :M→ E∗ is called complete iff all null sets (subsets of sets
of measure zero) are measurable.

We now develop a general method for constructing complete measures.

II. From §5 (Note 5) recall that an outer measure in S is a σ-subadditive
premeasure defined on all of 2S (even if it is not derived via Definition 3 in §5).2
In Examples (b), (c), and (d), m is both a measure and an outer measure.
(Why?)

An outer measure

m∗ : 2S → E∗

2 Some authors consider outer measures on smaller domains; we shall not do so.
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need not be additive; but consider this fact:

Any set A ⊆ S splits S into two parts: A itself and −A.

It also splits any other set X into X ∩A and X −A; indeed,

X = (X ∩A) ∪ (X −A) (disjoint).

We want to single out those sets A for which m∗ behaves “additively,” i.e.,
so that

m∗X = m∗(X ∩A) +m∗(X − A).

This motivates our next definition.

Definition 3.

Given an outer measure m∗ : 2S → E∗ and a set A ⊆ S, we say that A is
m∗-measurable iff all sets X ⊆ S are split “additively” by A; that is,

(1) (∀X ⊆ S) m∗X = m∗(X ∩A) +m∗(X −A).

As is easily seen (see Problem 1), this is equivalent to

(2) (∀X ⊆ A) (∀Y ⊆ −A) m∗(X ∪ Y ) = m∗X +m∗Y.

The family of all m∗-measurable sets is usually denoted byM∗. The
system (S,M∗,m∗) is called an outer measure space.

Note 1. Definition 3 applies to outer measures only. For measures, “m-
measurable” means simply “member of the domain of m” (Definition 1).

Note 2. In (1) and (2), we may equivalently replace the equality sign (=)
by (≥). Indeed, X is covered by

{X ∩A,X −A},

and X ∪ Y is covered by {X, Y }; so the reverse inequality (≤) anyway holds,
by subadditivity .

Our main objective is to prove the following fundamental theorem.

Theorem 1. In any outer measure space

(S,M∗,m∗),

the family M∗ of all m∗-measurable sets is a σ-field in S, and m∗, when re-
stricted toM∗, is a complete measure (denoted by m and called the m∗-induced
measure; so m∗ = m on M∗).

We split the proof into several steps (lemmas).
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Lemma 1. M∗ is closed under complementation:

(∀A ∈M∗) −A ∈M∗.

Indeed, the measurability criterion (2) is same for A and −A alike.

Lemma 2. ∅ and S are M∗-sets. So are all sets of outer measure 0.

Proof. Let m∗A = 0. To prove A ∈ M∗, use (2) and Note 2.

Thus take any X ⊆ A and Y ⊆ −A. Then by monotonicity,

m∗X ≤ m∗A = 0

and
m∗Y ≤ m∗(X ∪ Y ).

Thus
m∗X +m∗Y = 0 +m∗Y ≤ m∗(X ∪ Y ),

as required.

In particular, as m∗∅ = 0, ∅ is m∗-measurable (∅ ∈ M∗).

So is S (the complement of ∅) by Lemma 1. �

Lemma 3. M∗ is closed under finite unions:

(∀A,B ∈M∗) A ∪B ∈ M∗.

Proof. This time we shall use formula (1). By Note 2, it suffices to show that

(∀X ⊆ S) m∗X ≥ m∗(X ∩ (A ∪B)) +m∗(X − (A ∪B)).

Fix any X ⊆ S; as A ∈M∗, we have

(3) m∗X = m∗(X ∩A) +m∗(X − A).

Similarly, as B ∈ M∗, we have (replacing X by X −A in (1))

(4)
m∗(X − A) = m∗((X −A) ∩B) +m∗(X −A−B)

= m∗(X ∩ −A ∩B) +m∗(X − (A ∪B)),

since
X −A = X ∩ −A

and
X −A−B = X − (A ∪B).

Combining (4) with (3), we get

(5) m∗X = m∗(X ∩A) +m∗(X ∩ −A ∩B) +m∗(X − (A ∪B)).

Now verify that

(X ∩A) ∪ (X ∩ −A ∩B) ⊇ X ∩ (A ∪B).
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As m is subadditive, this yields

m∗(X ∩A) +m∗(X ∩ −A ∩B) ≥ m∗(X ∩ (A ∪B)).

Combining with (5), we get

m∗X ≥ m∗(X ∩ (A ∪B)) +m∗(X − (A ∪B)),

so that A ∪B ∈M∗, indeed. �

Induction extends Lemma 3 to all finite unions ofM∗-sets.

Note that by Problem 3 in §3,M∗ is a set field , hence surely a ring. Thus
Corollary 1 in §1 applies to it. (We use it below.)

Lemma 4. Let

Xk ⊆ Ak ⊆ S, k = 0, 1, 2, . . . ,

with all Ak pairwise disjoint .

Let Ak ∈ M∗ for k ≥ 1. (A0 and the Xk need not be M∗-sets.) Then

(6) m∗

( ∞
⋃

k=0

Xk

)

=

∞
∑

k=0

m∗Xk.

Proof. We start with two sets, A0 and A1; so

A1 ∈M∗, A0 ∩A1 = ∅, X0 ⊆ A0, and X1 ⊆ A1.

As A0 ∩A1 = ∅, we have A0 ⊆ −A1; hence also X0 ⊆ −A1.

Since A1 ∈M∗, we use formula (2), with

X = X1 ⊆ A1 and Y = X0 ⊆ −A,
to obtain

m∗(X0 ∪X1) = m∗X0 +m∗X1.

Thus (6) holds for two sets.

Induction now easily yields

(∀n)
n
∑

k=0

m∗Xk = m∗

( n
⋃

k=0

Xk

)

≤ m∗

( ∞
⋃

k=0

Xk

)

by monotonicity of m∗. Now let n→∞ and pass to the limit to get

∞
∑

k=0

m∗Xk ≤ m∗

( ∞
⋃

k=0

Xk

)

.

As
⋃

Xk is covered by the Xk, the σ-subadditivity of m∗ yields the reverse
inequality as well. Thus (6) is proved. �
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Proof of Theorem 1. As we noted, M∗ is a field. To show that it is also
closed under countable unions (a σ-field), let

U =

∞
⋃

k=1

Ak, Ak ∈M∗.

We have to prove that U ∈M∗; or by (2) and Note 2,

(7) (∀X ⊆ U) (∀Y ⊆ −U) m∗(X ∪ Y ) ≥ m∗X +m∗Y.

We may safely assume that the Ak are disjoint . (If not, replace them by disjoint
sets Bk ∈M∗, as in Corollary 1 of §1.)

To prove (7), fix any X ⊆ U and Y ⊆ −U , and let

Xk = X ∩Ak ⊆ Ak,

A0 = −U , and X0 = Y , satisfying all assumptions of Lemma 4. Thus by (6),
writing the first term separately, we have

(8) m∗

(

Y ∪
∞
⋃

k=1

Xk

)

= m∗Y +

∞
∑

k=1

m∗Xk.

But
∞
⋃

k=1

Xk =

∞
⋃

k=1

(X ∩Ak) = X ∩
∞
⋃

k=1

Ak = X ∩ U = X

(as X ⊆ U). Also, by σ-subadditivity,
∑

m∗Xk ≥ m∗
⋃

Xk = m∗X.

Therefore, (8) implies (7); soM∗ is a σ-field .

Moreover, m∗ is σ-additive onM∗, as follows from Lemma 4 by taking

Xk = Ak ∈M∗, A0 = ∅.

Thus m∗ acts as a measure onM∗.

By Lemma 2, m∗ is complete; for if X is “null” (X ⊆ A and m∗A = 0), then
m∗X = 0; so X ∈M∗, as required.

Thus all is proved. �

We thus have a standard method for constructing measures: From a pre-
measure

µ : C → E∗

in S, we obtain the µ-induced outer measure

m∗ : 2S → E∗ (§5);

§6. Measure Spaces. More on Outer Measures 153

this, in turn, induces a complete measure

m :M∗ → E∗.

But we need more: We want m to be an extension of µ, i.e.,

m = µ on C,
with C ⊆ M∗ (meaning that all C-sets are m∗-measurable). We now explore
this question.

Lemma 5. Let (S, C, µ) and m∗ be as in Definition 3 of §5. Then for a set
A ⊆ S to be m∗-measurable, it suffices that

(9) m∗X ≥ m∗(X ∩A) +m∗(x−A) for all X ∈ C.

Proof. Assume (9). We must show that (9) holds for any X ⊆ S, even not a
C-set.

This is trivial if m∗X =∞. Thus assume m∗X <∞ and fix any ε > 0.

By Note 3 in §5, X must have a basic covering {Bn} ⊆ C so that

X ⊆
⋃

n

Bn

and

(10) m∗X + ε >
∑

µBn ≥
∑

m∗Bn.

(Explain!)

Now, as X ⊆ ⋃

Bn, we have

X ∩A ⊆
⋃

Bn ∩A =
⋃

(Bn ∩A).

Similarly,

X −A = X ∩ −A ⊆
⋃

(Bn −A).

Hence, as m∗ is σ-subadditive and monotone, we get

(11)
m∗(X ∩A) +m∗(X − A) ≤ m∗

(

⋃

(Bn ∩A)
)

+m∗
(

⋃

(Bn −A)
)

≤
∑

[m∗(Bn ∩A) +m∗(Bn − A)].

But by assumption, (9) holds for any C-set , hence for each Bn. Thus

m∗(Bn ∩A) +m∗(Bn − A) ≤ m∗Bn,

and (11) yields

m∗(X ∩A) +m∗(X − A) ≤
∑

[m∗(Bn ∩A) +m∗(Bn −A)] ≤
∑

m∗Bn.
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Therefore, by (10),

m∗(X ∩A) +m∗(X −A) ≤ m∗X + ε.

Making ε→ 0, we prove (10) for any X ⊆ S, so that A ∈M∗, as required. �

Theorem 2. Let the premeasure

µ : C → E∗

be σ-additive on C, a semiring in S. Let m∗ be the µ-induced outer measure,
and

m :M∗ → E∗

be the m∗-induced measure. Then

(i) C ⊆M∗ and

(ii) µ = m∗ = m on C.
Thus m is a σ-additive extension of µ (called its Lebesgue extension) toM∗.

Proof. By Corollary 2 in §5, µ is also σ-subadditive on the semiring C. Thus
by Theorem 2 in §5, µ = m∗ on C.

To prove that C ⊆ M∗, we fix A ∈ C and show that A satisfies (9), so that
A ∈M∗.

Thus take any X ∈ C. As C is a semiring, X ∩A ∈ C and

X − A =

n
⋃

k=1

Ak (disjoint)

for some sets Ak ∈ C. Hence

(12)

m∗(X ∩A) +m∗(X −A) = m∗(X ∩A) +m∗
n
⋃

k=1

Ak

≤ m∗(X ∩A) +

n
∑

k=1

m∗Ak.

As
X = (X ∩A) ∪ (X −A) = (X ∩A) ∪

⋃

Ak (disjoint),

the additivity of µ and the equality µ = m∗ on C yield

m∗X = m∗(X ∩A) +
n
∑

k=1

m∗Ak.

Hence by (12),
m∗X ≥ m∗(X ∩A) +m∗(X − A);

so by Lemma 5, A ∈M∗, as required.
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Also, by definition, m = m∗ onM∗, hence on C. Thus

µ = m∗ = m on C,
as claimed. �

Note 3. In particular, Theorem 2 applies if

µ :M→ E∗

is a measure (so that C =M is even a σ-ring).

Thus any such µ can be extended to a complete measure m (its Lebesgue
extension) on a σ-field

M∗ ⊇M

via the µ-induced outer measure (call it µ∗ this time), with

µ∗ = m = µ onM.

Moreover,

M∗ ⊇M ⊇Mσ

(see Note 2 in §3); so µ∗ isM-regular andM∗-regular (Theorem 3 of §5).
Note 4. A reapplication of this process to m does not change m (Prob-

lem 16).

Problems on Measures and Outer Measures

1. Show that formulas (1) and (2) are equivalent.
[Hints: (i) Assume (1) and let X ⊆ A, Y ⊆ −A.

As X in (1) is arbitrary, we may replace it by X ∪ Y . Simplifying, obtain (2) on
noting that X ∩A = X, X ∩ −A = ∅, Y ∩A = ∅, and Y ∩ −A = Y .

(ii) Assume (2). Take any X and substitute X∩A and X−A for X and Y in (2).]

2. Given an outer measure space (S,M∗,m∗) and A ⊆ S, set

A .∩M∗ = {A ∩X | X ∈M∗}

(all sets of the form A ∩X with X ∈M∗).

Prove that A .∩M∗ is a σ-field in A, and m∗ is σ-additive on it.
[Hint: Use Lemma 4, with Xk = A ∩Ak ∈ A .∩M∗.]

3. Prove Lemmas 1 and 2, using formula (1).

3′. Prove Corollary 1.

4. Verify Examples (b), (c), and (d). Why is m an outer measure as well?
[Hint: Use Corollary 2 in §5.]

5. Fill in all details (induction, etc.) in the proofs of this section.
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6. Verify that m∗ is an outer measure and describeM∗ under each of the
following conditions.

(a) m∗A = 1 if ∅ ⊂ A ⊆ S; m∗∅ = 0.

(b) m∗A = 1 if ∅ ⊂ A ⊂ S; m∗S = 2; m∗∅ = 0.

(c) m∗A = 0 if A ⊆ S is countable; m∗A = 1 otherwise (S is uncount-
able).

(d) S = N (naturals); m∗A = 1 if A is infinite; m∗A = n
n+1 if A has

n elements.

7. Prove the following.

(i) An outer measure m∗ isM∗-regular (Definition 5 in §5) iff
(∀A ⊆ S) (∃B ∈M∗) A ⊆ B and m∗A = mB.

B is called a measurable cover of A.
[Hint: If

m∗A = inf{mX | A ⊆ X ∈M∗},

then

(∀n) (∃Xn ∈M∗) A ⊆ Xn and mXn ≤ m∗A+
1

n
.

Set B =
⋂∞

n=1 Xn.]

(ii) If m∗ is as in Definition 3 of §5, with C ⊆ M∗, then m∗ is M∗-
regular.

8. Show that if m∗ isM∗-regular (Problem 7), it is left continuous.
[Hints: Let {An}↑; let Bn be a measurable cover of An; set

Cn =
∞
⋂

k=n

Bk.

Verify that {Cn}↑, Bn ⊇ Cn ⊇ An, and mCn = m∗An.

By the left continuity of m (Theorem 2 in §4),

limm∗An = limmCn = m

∞
⋃

n=1

Cn ≥ m∗
∞
⋃

n=1

An.

Prove the reverse inequality as well.]

9. Continuing Problems 6–8, verify the following.

(i) In 6(a), with S = N , m∗ isM∗-regular, but not right continuous.
Hint: Take An = {x ∈ N | x ≥ n}.

(ii) In 6(b), with S = N , m∗ is neitherM∗-regular nor left continuous.

(iii) In 6(d), m∗ is not M∗-regular; yet it is left continuous. (Thus
Problem 8 is not a necessary condition.)
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10. In Problem 2, let n∗ be the restriction of m∗ to 2A. Prove the following.

(a) n∗ is an outer measure in A.

(b) A .∩M∗ ⊆ N ∗ = {n∗-measurable sets}.
(c) A .∩M∗ = N ∗ if A ∈ M∗, or if m∗ isM∗-regular (see Problem 7)

and finite.

(d) n∗ is N ∗-regular if m∗ isM∗-regular.

11. Show that if m∗ is M∗-regular and finite, then A ⊆ S is m∗-
measurable iff

mS = m∗A+m∗(−A).
[Hint: Assume the latter. By Problem 7,

(∀X ⊆ S) (∃B ∈M∗, B ⊇ X) m∗X = mB;

so

m∗A = m∗(A ∩B) +m∗(A−B).

Similarly for −A. Deduce that

m∗(A ∩B) +m∗(A−B) +m∗(B −A) +m∗(−A−B) = mS = mB +m(−B);

hence

m∗X = mB ≥ m∗(B ∩A) +m∗(B −A) ≥ m∗(X ∩A) +m∗(X −A),

so A ∈M∗.]

12. Using Problem 15 in §5, prove that if m∗ has the CP then each open set
G ⊆ S is inM∗.
[Outline: Show that

(∀X ⊆ G) (∀Y ⊆ −G) m∗(X ∪ Y ) ≥ m∗X +m∗Y,

assuming m∗X <∞. (Why?) Set

D0 = {x ∈ X | ρ(x,−G) ≥ 1}

and

Dk =

{

x ∈ X

∣

∣

∣

∣

1

k + 1
≤ ρ(x,−G) <

1

k

}

, k ≥ 1.

Prove that

(i) X =

∞
⋃

k=0

Dk

and

(ii) ρ(Dk, Dk+2) > 0;

so by Problem 15 in §5,
∞
∑

n=0

m∗D2n = m∗
∞
⋃

n=0

D2n ≤ m∗
∞
⋃

n=0

Dn = m∗X <∞.
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Similarly,
∞
∑

n=0

m∗D2n+1 ≤ m∗X <∞.

Hence
∞
∑

n=0

m∗Dn <∞;

so

lim
n→∞

∞
∑

k=n

m∗Dk = 0.

(Why?) Thus

(∀ ε > 0) (∃n)
∞
∑

k=n

m∗Dk < ε.

Also,

X =
∞
⋃

k=0

Dk =

n−1
⋃

k=0

Dk ∪
∞
⋃

k=n

Dk;

so

m∗X ≤ m∗
n−1
⋃

k=0

Dk +
∞
∑

k=n

m∗Dk < m∗
n−1
⋃

k=0

Dk + ε.

Adding m∗Y on both sides, get

(iii) m∗X +m∗Y ≤ m∗
n−1
⋃

k=0

Dk +m∗Y + ε.

Moreover,

ρ

(n−1
⋃

k=0

Dk, Y

)

> 0,

for Y ⊆ −G and

ρ(Dk ,−G) ≥ 1

k + 1
.

Hence by the CP,

m∗Y +

n−1
∑

k=0

m∗Dk = m∗
(

Y ∪
n−1
⋃

k=0

Dk

)

< m∗(Y ∪X).

(Why?) Combining with (iii), obtain

m∗X +m∗Y ≤ m∗(X ∪ Y ) + ε.

Now let ε→ 0.]

⇒13. Show that if m :M→ E∗ is a measure, there is P ∈ M, with

mP = max{mX | X ∈M}.
[Hint: Let

k = sup{mX | X ∈M}
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in E∗. As k ≥ 0, there is a sequence rn ր k, rn < k. (If k = ∞, set rn = n; if

k <∞, rn = k − 1
n
.) By lub properties,

(∀n) (∃Xn ∈M) rn < mXn ≤ k,

with {Xn}↑ (Problem 9 in §3). Set

P =

∞
⋃

n=1

Xn.

Show that

mP = lim
n→∞

mXn = k.]

⇒∗14. Given a measure m :M→ E∗, let

M = {all sets of the form X ∪ Z where X ∈M and Z is m-null}.
Prove thatM is a σ-ring ⊇M.
[Hint: To prove that

(∀A,B ∈ M) A−B ∈M,

suppose first A ∈M and B is “null,” i.e., B ⊆ U ∈M, mU = 0.

Show that

A−B = X ∪ Z,

with X = A− U ∈M and Z = A ∩ U −B m-null (Z is shaded in Figure 31).

X

B

A

U

Figure 31

Next, if A,B ∈ M, let A = X ∪ Z,

B = X′ ∪ Z′, where X,X′ ∈ M and
Z,Z′ are m-null. Hence

A−B = (X ∪ Z)− B

= (X −B) ∪ (Z −B)

= (X −B) ∪ Z′′,

where

Z′′ = Z −B

is m-null. Also, B = X′ ∪ Z′ implies

X −B = (X −X′)− Z′ ∈M,

by the first part of the proof.

Deduce that

A−B = (X −B) ∪ Z′′ ∈M

(after checking closure under unions).]

⇒∗15. Continuing Problem 14, define m : M → E∗ by setting mA = mX
whenever A = X ∪Z, with X ∈M and Z m-null. (Show that mA does
not depend on the particular representation of A as X ∪ Z.)

Prove the following.

(i) m is a complete measure (called the completion of m), withm = m
onM.
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(ii) m is the least complete extension of m; that is, if n : N → E∗ is
another complete measure, withM ⊆ N and n = m onM, then
M⊆ N and n = m onM.

(iii) m = m iff m is complete.

∗16. Show that if m :M∗ → E∗ is induced by anM∗-regular outer measure
µ∗, then m equals its Lebesgue extension m′ and completion m (see
Problem 15).
[Hint: By Definition 3 in §5, m induces an outer measure m∗. By Theorem 3 in §5,

m∗A = inf{mX | A ⊆ X ∈M∗} = µ∗A

(for µ∗ isM∗-regular).

As m∗ = µ∗, we get m′ = m. Also, m = m, by Problem 15(iii).]

∗17. Prove that if a measure µ :M→ E∗ is σ-finite (Definition 4 in §5), with
S ∈M, then its Lebesgue extension m :M∗ → E∗ equals its completion
µ (see Problem 15).
[Outline: It suffices to proveM∗ ⊆M. (Why?)

To start with, let A ∈M∗, mA <∞. By Problem 12 in §5,

(∃B ∈M) A ⊆ B and m∗A = mA = mB <∞;

so

m(B −A) = mB −mA = 0.

Also,

(∃H ∈M) B −A ⊆ H and µH = m(B −A) = 0.

Thus B −A is µ-null ; so B −A ∈M. (Why?) Deduce that

A = B − (B −A) ∈ M.

ThusM contains any A ∈M∗ with mA <∞. Use the σ-finiteness of µ to show

(∀ x ∈M∗) (∃ {An} ⊆ M∗) mAn <∞ and X =
⋃

n

An ∈M.]

§7. Topologies. Borel Sets. Borel Measures

I. Our theory of set families leads quite naturally to a generalization of metric
spaces. As we know, in any such space (S, ρ), there is a family G of open sets,
and a family F of all closed sets. In Chapter 3, §12, we derived the following
two properties.

(i) G is closed under any (even uncountable) unions and under finite inter-
sections (Chapter 3, §12, Theorem 2). Moreover,

∅ ∈ G and S ∈ G.
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(ii) F has these properties, with “unions” and “intersections” interchanged
(Chapter 3, §12, Theorem 3). Moreover, by definition,

A ∈ F iff −A ∈ G.

Now, quite often, it is not so important to have distances (i.e., a metric)
defined in S, but rather to single out two set families, G and F , with proper-
ties (i) and (ii), in a suitable manner. For examples, see Problems 1 to 4 below.
Once G and F are given, one does not need a metric to define such notions as
continuity, limits, etc. (See Problems 2 and 3.) This leads us to the following
definition.

Definition 1.

A topology for a set S is any set family G ⊆ 2S , with properties (i).

The pair (S,G) then is called a topological space. If confusion is un-
likely, we simply write S for (S,G).
G–sets are called open sets; their complements form the family F

(called cotopology) of all closed sets in S; F satisfies (ii) (the proof is
as in Theorem 3 of Chapter 3, §12).

Any metric space may be treated as a topological one (with G defined as in
Chapter 3, §12), but the converse is not true. Thus (S,G) is more general .

Note 1. By Problem 15 in Chapter 4, §2, a map

f : (S, ρ)→ (T, ρ′)

is continuous iff f−1[B] is open in S whenever B is open in T .

We adopt this as a definition, for topological spaces S, T .

Many other notions (neighborhoods, limits, etc.) carry over from metric
spaces by simply treating Gp as “an open set containing p.” (See Problem 3.)

Note 2. By (i), G is surely closed under countable unions. Thus by Note 2
in §3,

G = Gσ.

Also, G = Gd and

Fδ = F = Fs,

but not

G = Gδ or F = Fσ

in general.

G and F need not be rings or σ-rings (closure fails for differences). But by
Theorem 2 in §3, G and F can be “embedded” in a smallest σ-ring. We name
it in the following definition.
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Definition 2.

The σ-ring B generated by a topology G in S is called the Borel field in
S. (It is a σ-field , as S ∈ G ⊆ B.)

Equivalently, B is the least σ-ring ⊇ F . (Why?)

B-sets are called Borel sets in (S,G).

As B is closed under countable unions and intersections, we have not only

B ⊇ G and B ⊇ F ,
but also

B ⊇ Gδ, B ⊇ Fσ, B ⊇ Gδσ [i.e., (Gδ)σ], B ⊇ Fσδ, etc.

Note that

Gδδ = Gδ, Fσσ = Fσ, etc. (Why?)

II. Special notions apply to measures in metric and topological spaces.

Definition 3.

A measure m :M→ E∗ in (S,G) is called topological iff G ⊆ M, i.e., all
open sets are measurable; m is a Borel measure iffM = B.

Note 3. If G ⊆ M (a σ-ring), then also B ⊆ M since B is, by definition,
the least σ-ring ⊇ G.

Thus m is topological iff B ⊆M (hence surely F ⊆M, Gδ ⊆M, Fσ ⊆M,
etc.).

It also follows that any topological measure can be restricted to B to obtain
a Borel measure, called its Borel restriction.

Definition 4.

A measure m :M → E∗ in (S,G) is called regular iff it is regular with
respect toM∩G, the measurable open sets; i.e.,

(∀A ∈M) mA = inf{mX | A ⊆ X ∈M∩ G}.
If m is topological (G ⊆M), this simplifies to

(1) mA = inf{mX | A ⊆ X ∈ G},
i.e., m is G-regular (Definition 5 in §5).

Definition 5.

A measure m is strongly regular iff for any A ∈M and ε > 0, there is an
open set G ∈M and a closed set F ∈M such that

(2) F ⊆ A ⊆ G, with m(A− F ) < ε and m(G−A) < ε;
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thus A can be “approximated” by open supersets and closed subsets, both
measurable. As is easily seen, this implies regularity.

A kind of converse is given by the following theorem.

Theorem 1. If a measure m :M→ E∗ in (S,G) is regular and σ-finite (see
Definition 4 in §5), with S ∈M, then m is also strongly regular .

Proof. Fix ε > 0 and let mA <∞.

By regularity,

mA = inf{mX | A ⊆ X ∈M∩ G};

so there is a set X ∈M∩ G (measurable and open), with

A ⊆ X and mX < mA+ ε.

Then

m(X −A) = mX −mA < ε,

and X is the open set G required in (2).

If, however, mA =∞, use σ-finiteness to obtain

A ⊆
∞
⋃

k=1

Xk

for some sets Xk ∈M, mXk <∞; so

A =
⋃

k

(A ∩Xk).

Put

Ak = A ∩Xk ∈M.

(Why?) Then

A =
⋃

k

Ak,

and

mAk ≤ mXk <∞.

Now, by what was proved above, for each Ak there is an open measurable
Gk ⊇ Ak, with

m(Gk −Ak) <
ε

2k
.

Set

G =

∞
⋃

k=1

Gk.
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Then G ∈M∩ G and G ⊇ A. Moreover,

G− A =
⋃

k

Gk −
⋃

k

Ak ⊆
⋃

k

(Gk −Ak).

(Verify!) Thus by σ-subadditivity,

m(G−A) ≤
∑

k

m(Gk −Ak) <

∞
∑

k=1

ε

2k
= ε,

as required.

To find also the closed set F , consider

−A = S −A ∈M.

As shown above, there is an open measurable set G′ ⊇ −A, with
ε > m(G′ − (−A)) = m(G′ ∩A) = m(A− (−G′)).

Then

F = −G′ ⊆ A

is the desired closed set, with m(A− F ) < ε. �

Theorem 2. If m :M→ E∗ is a strongly regular measure in (S,G), then for
any A ∈M, there are measurable sets H ∈ Fσ and K ∈ Gδ such that

(3) H ⊆ A ⊆ K and m(A−H) = 0 = m(K −A);

hence

mA = mH = mK.

Proof. Let A ∈ M. By strong regularity, given εn = 1/n, one finds measur-
able sets

Gn ∈ G and Fn ∈ F , n = 1, 2, . . . ,

such that

Fn ⊆ A ⊆ Gn

and

(4) m(A− Fn) <
1

n
and m(Gn −A) <

1

n
, n = 1, 2, . . . .

Let

H =

∞
⋃

n=1

Fn and K =

∞
⋂

n=1

Gn.

Then H,K ∈M, H ∈ Fσ, K ∈ Gδ, and
H ⊆ A ⊆ K.
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Also, Fn ⊆ H and Gn ⊇ K.

Hence

A−H ⊆ A− Fn and K −A ⊆ Gn −A;

so by (4),

m(A−H) <
1

n
→ 0 and m(K −A) <

1

n
→ 0.

Finally,

mA = m(A−H) +mH = mH,

and similarly mA = mK.

Thus all is proved. �

Problems on Topologies, Borel Sets, and Regular Measures

1. Show that G is a topology in S (in (a)–(c), describe B also), given

(a) G = 2S ;

(b) G = {∅, S};
(c) G = {∅ and all sets in S, containing a fixed point p}; or
(d) S = E∗; G consists of all possible unions of sets of the form (a, b),

(a,∞], and [−∞, b), with a, b ∈ E1.

2. (S, ρ) is called a pseudometric space (and ρ is a pseudometric) iff the
metric laws (i)–(iii) of Chapter 3, §11 hold, but (i′) is weakened to

ρ(x, x) = 0

(so that ρ(x, y) may be 0 even if x 6= y).

(a) Define “globes,” “interiors,” and “open sets” (i.e., G) as in Chap-
ter 3, §12; then show that G is a topology for S.

(b) Let S = E2 and

ρ(x̄, ȳ) = |x1 − y1|,
where x̄ = (x1, x2) and ȳ = (y1, y2). Show that ρ is a pseudometric
but not a metric (the Hausdorff properly fails!).

3. Define “neighborhood,” “interior,” “cluster point,” “closure,” and
“function limit” for topological spaces. Specify some notions (e.g., “di-
ameter,” “uniform continuity”) that do not carry over (they involve
distances).

4. In a topological space (S,G), define
G0 = G, G1 = Gδ, G2 = Gδσ, . . .
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and
F0 = F , F1 = Fσ, F2 = Fσδ, F3 = Fσδσ, etc.

(Give an inductive definition.) Then prove by induction that

(a) Gn ⊆ B, Fn ⊆ B;
(b) Gn−1 ⊆ Gn, Fn−1 ⊆ Fn;

(c) (∀X ⊆ S) X ∈ Fn iff −X ∈ Gn;
(d) (∀X, Y ∈ Fn) X ∩ Y ∈ Fn, X ∪ Y ∈ Fn; same for Gn;
(e) (∀X ∈ Gn) (∀Y ∈ Fn) X − Y ∈ Gn and Y −X ∈ Fn.

[Hint: X − Y = X ∩ −Y .]

5. For metric and pseudometric spaces (see Problem 2) prove that

Fn ⊆ Gn+1 and Gn ⊆ Fn+1

(cf. Problem 4).
[Hint for F ⊆ Gδ : Let F ∈ F . Set

Gn =
⋃

p∈F

Gp

( 1

n

)

;

so
(∀n) F ⊆ Gn ∈ G.

Hence

F ⊆
⋂

n

Gn ∈ Gδ .

Also,
⋂

n

Gn = F = F

by Theorem 3 in Chapter 3, §16. Hence deduce that

(∀F ∈ F) F ∈ Gδ,

so F ⊆ Gδ ; hence G ⊆ Fσ by Problem 4(c). Now use induction.]

6. If m is as in Definition 5, then prove the following.

(i) m is regular.

(ii) (∀A ∈M) mA = sup{mX | A ⊇ X ∈M∩F}.
(iii) The latter implies strong regularity if m <∞ and S ∈M.

7. Let µ : B → E∗ be a Borel measure in a metric space (S, ρ). Set

(∀A ⊆ S) n∗A = inf{µX | A ⊆ X ∈ G}.
Prove that

(i) n∗ is an outer measure in S;

(ii) n∗ = µ on G;
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(iii) the n∗-induced measure, n : N ∗ → E∗, is topological (so B ⊆ N ∗);

(iv) n ≥ µ on B;
(v) (∀A ⊆ S) (∃H ∈ Gδ) A ⊆ H and µH = n∗A.

[Hints: (iii) Using Problem 15 in §5 and Problem 12 in §6, let

ρ(X, Y ) > ε > 0, U =
⋃

x∈X

Gx

(1

2
ε
)

, V =
⋃

y∈Y

Gy

(1

2
ε
)

.

Verify that U, V ∈ G, U ⊇ X, V ⊇ Y , U ∩ V = ∅.
By the definition of n∗,

(∃G ∈ G) G ⊇ X ∪ Y and n∗G ≤ n∗(X ∪ Y ) + ε;

also, X ⊆ G ∩ U and Y ⊆ G ∩ V . Thus by (ii),

n∗X ≤ µ(G ∩ U) and n∗Y ≤ µ(G ∩ V ).

Hence

n∗X+n∗Y ≤ µ(G∩U)+µ(G∩V ) = µ((G∩U)∪(G∩V )) ≤ µG = n∗G ≤ n∗(X∪Y )+ε.

Let ε→ 0 to get the CP: n∗X + n∗Y ≤ n∗(X ∪ Y ).

(iv) We have (∀A ∈ B)

nA = n∗A = inf{µX | A ⊆ X ∈ G} ≥ inf{µX | A ⊆ X ∈ B} = µA.

(Why?)

(v) Use the hint to Problem 11 in §5.]

8. From Problem 7 with m = µ, prove that if

A ⊆ G ∈ G,

with mG <∞ and A ∈ B, then mA = nA.
[Hint: A, G, and (G − A) ∈ B. By Problem 7(iii), B ⊆ N∗ and n is additive on B;
so by Problem 7(ii)(iv),

nA = nG− n(G−A) ≤ mG−m(G−A) = mA ≤ nA.

Thus mA = nA. Explain all!]

9. Let m, n, and n∗ be as in Problems 7 and 8. Suppose

S =

∞
⋃

n=1

Gn,

with Gn ∈ G and mGn <∞ (this is called σ0-finiteness).

Prove that

(i) m = n on B, and
(ii) m and n are strongly regular.
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[Hints: Fix A ∈ B. Show that

A =
⋃

An (disjoint)

for some Borel sets An ⊆ Gn (use Corollary 1 in §1). By Problem 8, mAn = nAn

since

An ⊆ Gn ∈ G

and mGn <∞. Now use σ-additivity to find mA = nA.

(ii) Use G-regularity, part (i), and Theorem 1.]

10. Continuing Problems 8 and 9, show that n is the Lebesgue extension of
m (see Theorem 2 in §6 and Note 3 in §6).

Thus every σ0-finite Borel measure m in (S, ρ) and its Lebesgue ex-
tension are strongly regular .
[Hint: m induces an outer measure m∗, with m∗ = m on B. It suffices to show that
m∗ = n∗ on 2S . (Why?)

So let A ⊆ S. By Problem 7(v),

(∃H ∈ B) A ⊆ H and n∗A = mH = m∗H.

Also,

(∃K ∈ B) A ⊆ K and m∗A = mK

(Problem 12 in §5). Deduce that

n∗A ≤ n(H ∩K) = m(H ∩K) ≤ mH = n∗A

and

n∗A = m(H ∩K) = m∗A.]

§8. Lebesgue Measure

We shall now consider the most important example of a measure in En, due to
Lebesgue. This measure generalizes the notion of volume and assigns “volumes”
to a large set family, the “Lebesgue measurable” sets, so that “volume” becomes
a complete topological measure. For “bodies” in E3, this measure agrees with
our intuitive idea of “volume.”

We start with the volume function v : C → E1 (“Lebesgue premeasure”)
on the semiring C of all intervals in En (§1). As we saw in §§5 and 6, this
premeasure induces an outer measure m∗ on all subsets of En; and m∗, in
turn, induces a measure m on the σ-field M∗ of m∗-measurable sets. These
sets are, by definition, the Lebesgue-measurable (briefly L-measurable) sets; m∗

and m so defined are the (n-dimensional) Lebesgue outer measure and Lebesgue
measure.
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Theorem 1. Lebesgue premeasure v is σ-additive on C, the intervals in En.
Hence the latter are Lebesgue measurable (C ⊆ M∗), and the volume of each
interval equals its Lebesgue measure:

v = m∗ = m on C.

This follows by Corollary 1 in §2 and Theorem 2 of §6.
Note 1. AsM∗ is a σ-field (§6), it is closed under countable unions, count-

able intersections, and differences. Thus

C ⊆ M∗ implies Cσ ⊆M∗;

i.e., any countable union of intervals is L-measurable. Also, En ∈M∗.

Corollary 1. Any countable set A ⊂ En is L-measurable, with mA = 0.

The proof is as in Corollary 6 of §2.
Corollary 2. The Lebesgue measure of En is ∞.

Prove as in Corollary 5 of §2.
Examples.

(a) Let
R = {rationals in E1}.

Then R is countable (Corollary 3 of Chapter 1, §9); so mR = 0 by Corol-
lary 1. Similarly for Rn (rational points in En).

(b) The measure of an interval with endpoints a, b in E1 is its length, b − a.
Let

Ro = {all rationals in [a, b]};
so mRo = 0. As [a, b] and Ro are inM∗ (a σ-field), so is

[a, b]−Ro,

the irrationals in [a, b]. By Lemma 1 in §4, if b > a, then

m([a, b]−Ro) = m([a, b])−mRo = m([a, b]) = b− a > 0 = mRo.

This shows again that the irrationals form a “larger” set than the rationals
(cf. Theorem 3 of Chapter 1, §9).

(c) There are uncountable sets of measure zero (see Problems 8 and 10 below).

Theorem 2. Lebesgue measure in En is complete, topological , and totally σ-
finite. That is,

(i) all null sets (subsets of sets of measure zero) are L-measurable;

(ii) so are all open sets (M∗ ⊇ G), hence all Borel sets (M∗ ⊇ B); in partic-
ular, M∗ ⊇ F ,M∗ ⊇ Gδ,M∗ ⊇ Fσ,M∗ ⊇ Fσδ, etc.;
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(iii) each A ∈M∗ is a countable union of disjoint sets of finite measure.

Proof. (i) This follows by Theorem 1 in §6.
(ii) By Lemma 2 in §2, each open set is in Cσ, hence inM∗ (Note 1). Thus

M∗ ⊇ G. But by definition, the Borel field B is the least σ-ring ⊇ G. Hence
M∗ ⊇ B∗.

(iii) As En is open, it is a countable union of disjoint half-open intervals,

En =

∞
⋃

k=1

Ak (disjoint),

with mAk <∞ (Lemma 2 in §2). Hence

(∀A ⊆ En) A ⊆
⋃

Ak;

so
A =

⋃

k

(A ∩Ak) (disjoint).

If, further, A ∈M∗, then A ∩Ak ∈ M∗, and

m(A ∩Ak) ≤ mAk <∞. (Why?) �

Note 2. More generally, a σ-finite set A ∈M in a measure space (S,M, µ)
is a countable union of disjoint sets of finite measure (Corollary 1 of §1).

Note 3. Not all L-measurable sets are Borel sets. On the other hand, not
all sets in En are L-measurable (see Problems 6 and 9 below.)

Theorem 3.

(a) Lebesgue outer measure m∗ in En is G-regular ; that is,
(1) (∀A ⊆ En) m∗A = inf{mX | A ⊆ X ∈ G}

(G = open sets in En).

(b) Lebesgue measure m is strongly regular (Definition 5 and Theorems 1
and 2, all in §7).

Proof. By definition, m∗A is the glb of all basic covering values of A. Thus
given ε > 0, there is a basic covering {Bk} ⊆ C of nonempty sets Bk such that

(2) A ⊆
⋃

Bk and m∗A+
1

2
ε ≥

∑

k

vBk.

(Why? What if m∗A =∞?)

Now, by Lemma 1 in §2, fix for each Bk an open interval Ck ⊇ Bk such that

vCk −
ε

2k+1
< vBk.
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Then (2) yields

m∗A+
1

2
ε ≥

∑

k

(

vCk −
ε

2k+1

)

=
∑

k

vCk −
1

2
ε;

so by σ-subadditivity,

(3) m
⋃

k

Ck ≤
∑

k

mCk =
∑

k

vCk ≤ m∗A+ ε.

Let

X =
⋃

k

Ck.

Then X is open (as the Ck are). Also, A ⊆ X, and by (3),

mX ≤ m∗A+ ε.

Thus, indeed, m∗A is the glb of all mX, A ⊆ X ∈ G, proving (a).

In particular, if A ∈ M∗, (1) shows that m is regular (for m∗A = mA).
Also, by Theorem 2, m is σ-finite, and En ∈M∗; so (b) follows by Theorem 1
in §7. �

Definition.

Given A ⊆ En and p̄ ∈ En, let p̄+A or A+ p̄ denote the set of all points
of the form

x̄+ p̄, x̄ ∈ A.

We call A+ p̄ the translate of A by p̄.

Theorem 4. Lebesgue outer measure m∗ and Lebesgue measure m in En are
translation invariant . That is,

(i) (∀A ⊆ En) (∀ p̄ ∈ En) m∗A = m∗(A+ p̄);

(ii) if A is L-measurable, so is A+ p̄, and mA = m(A+ p̄).

See also Problem 7 in §10.
Proof. (i) If A is an interval with endpoints ā and b̄, then A+ p̄ is the interval
with endpoints ā+ p̄ and b̄+ p̄. (Verify!)

Hence the edge lengths of A and A+ p̄ are the same,

ℓk = bk − ak = (bk + pk)− (ak + pk), k = 1, 2, . . . , n.

Thus

mA = vA =

n
∏

k=1

ℓk = m(A+ p̄);

so the theorem holds for intervals.



172 Chapter 7. Volume and Measure

In the general case, m∗A is the glb of all basic covering values of A. But a
basic covering consists of intervals that, when translated by p̄, cover A+ p̄ and
retain the same volumes, as was shown above.

Hence any covering value for A is also one for A + p̄, and conversely (since
A, in turn, is a translate of A+ p̄ by −p̄).

Thus the basic covering values of A and of A+ p̄ are the same, with one and
the same glb. Hence

m∗A = m∗(A+ p̄),

as claimed.

(ii) Now let A ∈M∗. We must show that

A+ p̄ ∈M∗,

i.e., that

(∀X ⊆ A+ p̄) (∀Y ⊆ −(A+ p̄)) m∗X +m∗Y = m∗(X ∪ Y ).

Thus fix X ⊆ A+ p̄ and Y ⊆ −(A+ p̄).

As is easily seen, X − p̄ ⊆ A and Y − p̄ ⊆ −A (translate all by −p̄). Since
A ∈M∗, we get

m∗(X − p̄) +m∗(Y − p̄) = m∗((X ∪ Y )− p̄).

(Why?) But by (i), m∗X = m∗(X − p̄), m∗Y = m∗(Y − p̄), and

m∗(X ∪ Y ) = m∗((X ∪ Y )− p̄).

Hence

m∗X +m∗Y = m∗(X ∪ Y ),

and so A+ p̄ ∈ M∗.

Now, as m∗ = m onM∗, (i) yields mA = m(A+ p̄), proving (ii) also. �

Problems on Lebesgue Measure

1. Fill in all details in the proof of Theorems 3 and 4.

1′. Prove Note 2.

2. From Theorem 3 deduce that

(∀A ⊆ En) (∃B ∈ Gδ) A ⊆ B and m∗A = mB.

[Hint: See the hint to Problem 7 in §5.]

3. Review Problem 3 in §5.
4. Consider all translates

R+ p (p ∈ E1)
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of

R = {rationals in E1}.

Prove the following.

(i) Any two such translates are either disjoint or identical.

(ii) Each R+ p contains at least one element of [0, 1].

[Hint for (ii): Fix a rational y ∈ (−p, 1− p), so 0 < y + p < 1. Then y + p ∈ R+ p,
and y + p ∈ [0, 1].]

5. Continuing Problem 4, choose one element q ∈ [0, 1] from each R + p.
Let Q be the set of all q so chosen.

Call a translate of Q, Q + r, “good” iff r ∈ R and |r| < 1. Let U be
the union of all “good” translates of Q.

Prove the following.

(a) There are only countably many “good” Q+ r.

(b) All of them lie in [−1, 2].
(c) Any two of them are either disjoint or identical.

(d) [0, 1] ⊆ U ⊆ [−1, 2]; hence 1 ≤ m∗U ≤ 3.

[Hint for (c): Suppose

y ∈ (Q+ r) ∩ (Q+ r′).

Then

y = q + r = q′ + r′ (q, q′ ∈ Q, r, r′ ∈ R);

so q = q′ + (r′ − r), with (r′ − r) ∈ R.

Thus q ∈ R+ q′ and q′ = 0 + q′ ∈ R + q′. Deduce that q = q′ and r = r′; hence
Q+ r = Q+ r′.]

6. Show that Q in Problem 5 is not L-measurable.
[Hint: Otherwise, by Theorem 4, each Q+ r is L-measurable, with m(Q+ r) = mQ.
By 5(a)(c), U is a countable disjoint union of “good” translates.

Deduce that mU = 0 if mQ = 0, or mU =∞, contrary to 5(d).]

7. Show that if f : S → T is continuous, then f−1[X] is a Borel set in S
whenever X ∈ B in T .
[Hint: Using Note 1 in §7, show that

R = {X ⊆ T | f−1[X] ∈ B in S}

is a σ-ring in T . As B is the least σ-ring ⊇ G, R ⊇ B (the Borel field in T .]

8. Prove that every degenerate interval in En has Lebesgue measure 0,
even if it is uncountable. Give an example in E2. Prove uncountability.
[Hint: Take ā = (0, 0), b̄ = (0, 1). Define f : E1 → E2 by f(x) = (0, x). Show that f

is one-to-one and that [ā, b̄] is the f -image of [0, 1]. Use Problem 2 of Chapter 1, §9.]
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9. Show that not all L-measurable sets are Borel sets in En.
[Hint for E2: With [ā, b̄] and f as in Problem 8, show that f is continuous (use the
sequential criterion). As m[ā, b̄] = 0, all subsets of [ā, b̄] are in M∗ (Theorem 2(i)),

hence in B if we assumeM∗ = B. But then by Problem 7, the same would apply to
subsets of [0, 1], contrary to Problem 6.

Give a similar proof for En (n > 1).

Note: In E1, too, B 6=M∗, but a different proof is necessary. We omit it.]

10. Show that Cantor’s set P (Problem 17 in Chapter 3, §14) has Lebesgue
measure zero, even though it is uncountable.
[Outline: Let

U = [0, 1]− P ;

so U is the union of open intervals removed from [0, 1]. Show that

mU =
1

2

∞
∑

n=1

(2

3

)n
= 1

and use Lemma 1 in §4.]

11. Let µ : B → E∗ be the Borel restriction of Lebesgue measure m in En

(§7). Prove that

(i) µ in incomplete;

(ii) m is the Lebesgue extension (∗and completion, as in Problem 15
of §6) of µ.

[Hints: (i) By Problem 9, some µ-null sets are not in B. (ii) See the proof (end) of
Theorem 2 in §9 (the next section).]

12. Prove the following.

(i) All intervals in En are Borel sets.

(ii) The σ-ring generated by any one of the families C or C′ in
Problem 3 of §5 coincides with the Borel field in En.

[Hints: (i) Any interval arises from a closed one by dropping some “faces” (degenerate

closed intervals). (ii) Use Lemma 2 from §2 and Problem 7 of §3.]
∗13. Show that if a measure m′ :M′ → E∗ in En agrees on intervals with

Lebesgue measure m :M∗ → E∗, then the following are true.

(i) m′ = m on B, the Borel field in En.

(ii) If m′ is also complete, then m′ = m onM∗.

[Hint: (i) Use Problem 13 of §5 and Problem 12 above.]

14. Show that globes of equal radius have the same Lebesgue measure.
[Hint: Use Theorem 4.]

15. Let f : En → En, with

f(x̄) = cx̄ (0 < c <∞).
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Prove the following.

(i) (∀A ⊆ En) m∗f [A] = cnm∗A (m∗ = Lebesgue outer measure).

(ii) A ∈M∗ iff f [A] ∈M∗.

[Hint: If, say, A = (ā, b̄], then f [A] = (cā, cb̄]. (Why?) Proceed as in Theorem 4,

using f−1 also.]

16. From Problems 14 and 15 show that

(i) mGp̄(cr) = cn ·mGp̄(r);

(ii) mGp̄(r) = mGp̄(r);

(iii) mGp̄(r) = a ·mI, where I is the cube inscribed in Gp̄(r) and

a =
(1

2

√
n
)n

·mG0̄(1).

[Hints: (i) f [G0̄(r)] = G0̄(cr). (ii) Prove that

mGp̄ ≤ mGp̄ ≤ cnmGp̄

if c > 1. Let c→ 1.]

17. Given a < b in E1, let {rn} be the sequence of all rationals in A = [a, b].
Set (∀n)

δn =
b− a

2n+1

and

Gn = (an, bn) = (a, b) ∩
(

rn −
1

2
δn, rn +

1

2
δn

)

.

Let

P = A−
∞
⋃

n=1

Gn.

Prove the following.

(i)
∑∞

n=1 δn = 1
2 (b− a) = 1

2mA.

(ii) P is closed; P o = ∅, yet mP > 0.

(iii) The Gn can be made disjoint (see Problem 3 in §2), with mP still
> 0.

(iv) Construct such a P ⊆ A (P = P , P o = ∅) of prescribed measure
mP = ε > 0.

18. Find an open set G ⊂ E1, with mG < mG <∞.
[Hint: G =

⋃∞
n=1 Gn with Gn as in Problem 17.]

∗19. If A ⊆ En is open and convex , then mA = mA.
[Hint: Let first 0̄ ∈ A. Argue as in Problem 16.]
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§9. Lebesgue–Stieltjes Measures

Let

α : E1 → E1

be a nondecreasing function (α↑). Consider the Lebesgue–Stieltjes set function
sα (Example (d) in §4).

As we noted in Problem 7 of §4, sα ≥ 0 when α↑; for then

sα(a, b) = α(b−)− α(a+) ≥ 0.

Similarly for other intervals. Also, ∅ ∈ C and sα∅ = 0 by definition.

Thus sα is a premeasure on C (finite intervals in E1), called the α-induced
Lebesgue–Stieltjes (LS ) premeasure in E1.

The outer measure m∗
α induced by sα (§5) is called the α-induced LS outer

measure; its restriction to the familyM∗
α ofm∗

α-measurable (or LS-measurable)
sets is the α-induced LS measure on E1, denoted mα.

Recall that, by our definitions, premeasures, outer measures, and measures
are all nonnegative.

Note 1. No generality is lost by assuming that α is right continuous (if not,
replace it by the right-continuous function β↑, with β(x) = α(x+)). Similarly,
one achieves left continuity by setting β(x) = α(x−).

Note 2. If α is right continuous, one often restricts sα to the family C∗ of
all half-open intervals (for motivation, see Problem 7(iv) in §4). This does not
affect m∗

α or mα (Problem 3′ in §5), and simplifies the proof of additivity

sα(a, b] + sα(b, c] = α(b)− α(a) + α(c)− α(b) = α(c)− α(a) = sα(a, c].

Recall that both C and C∗ are semirings (Note 1 in §1).
Theorem 1. The LS premeasure sα is σ-additive on the semiring C of all
finite intervals in E1.

Hence (by Theorem 2 in §6) all such intervals are LS-measurable (C ⊆ M∗
α),

and

mαA = sαA

for any such interval A.

Proof. As is easily seen, sα is additive (Problem 7 of §4).
It also satisfies Lemma 1 of §1 and Lemma 1 in §2 (Problem 7(v) in §4).
The proof of σ-additivity is then quite analogous to that of Theorem 1 of §2;

we omit its repetition.

The rest is immediate by Theorem 2 of §6. �
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Similarly, the proofs of Theorems 2 and 3 (but not 4) of §8 carry over to
LS measures. Thus LS measures are complete, topological , totally σ-finite and
strongly regular .

As in §8, it follows that singletons and countable sets are measurable, but
their LS measure need not be 0 (Problem 8(iii) in §4).

Also, E1 ∈ M∗
α, but mαE

1 may be finite (Problem 8(ii)(ii′) in §4).
Since the proofs are the same as in §8, we omit them.

Note, however, the following facts.

(i) For singletons, mα{p} = 0 iff α is continuous at p (Problem 7(ii) in §4).
(ii) Hence

mα[a, b] = mα(a, b] = mα[a, b) = mα(a, b) = α(b)− α(a)

iff α is continuous at a and b (Problem 7(iv) in §4).
(iii) LS measures need not be translation invariant (Problem 8(i) of §4).
(iv) If α(x) = x on E1, then m∗

α = m∗ (= Lebesgue outer measure in E1).

Thus Lebesgue measure is a special case of LS measure.

The latter is a kind of “weighted length.” Imagine that mass is distributed
along the line, with α(x) equal to the mass of

(−∞, x].

For simplicity, assume that α is right-continuous (cf. Notes 1 and 2). Then the
mass of (a, b] is

α(b)− α(a),

and p is a “point mass” iff
mα{p} > 0.

Our next theorem shows that LS measures practically exhaust all topological
measures in E1 of any importance. We shall use Notes 1 and 2 above.

∗Theorem 2. Let m :M → E∗ be a topological measure in E1, finite on C∗
(half-open intervals). Then there is an LS measure mα such that

mα = m

on the Borel field B in E1.

If m is also complete, then mα = m on all ofM∗
α.

Proof. Define α as follows:

α(x) =

{

m(0, x] if x ≥ 0,

−m(x, 0] if x < 0.

Clearly, α↑ on E1. Also, the right continuity of m (Theorem 2 of §4) implies
that of α. (Verify!)
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Thus α induces an LS measure mα, with

mα(a, b] = sα(a, b] = α(b)− α(a)

(Problem 7(iv) in §4). We claim that mα = m on B.
First, consider any (a, b] ∈ C∗. If 0 ≤ a ≤ b, then

m(a, b] = m(0, b]−m(0, a] = α(b)− α(a) = mα(a, b].

Similarly in the cases a < 0 ≤ b and a ≤ b < 0. Thus

mα = m (finite) on C∗.

By Problem 13 in §5,
mα = m on B,

the σ-ring generated by C∗ (Problem 12 of §8). Thus m and mα have the same
restriction to B (call it µ).

Now, by Note 3 in §6, µ induces an outer measure µ∗.

As B ⊇ C∗σ, both µ∗ and m∗
α are B-regular , by Theorem 3 in §5. Thus

(∀A ⊆ E1) m∗
α(A) = inf{µX | A ⊆ X ∈ B} = µ∗A,

i.e., m∗
α = µ∗, and so mα is the restriction of both m∗

α and µ∗ to measurable
sets. Hence mα is the Lebesgue extension of µ, by definition.

By Problem 17 in §6, mα = µ is the “least” complete extension of µ. Thus
if m is complete, it is an extension of mα; so m = mα onM∗

α, as claimed. �

Problems on Lebesgue–Stieltjes Measures

1. Do Problems 7 and 8 in §4 and Problem 3′ in §5, if not done before.

2. Prove in detail Theorems 1 to 3 in §8 for LS measures and outer mea-
sures.

3. Do Problem 2 in §8 for LS-outer measures in E1.

4. Prove that f : E1 → (S, ρ) is right (left) continuous at p iff

lim
n→∞

f(xn) = f(p) as xn ց p (xn ր p).

[Hint: Modify the proof of Theorem 1 in Chapter 4, §2.]

5. Fill in all proof details in Theorem 2.
[Hint: Use Problem 4.]

6. In Problem 8(iv) of §4, describe m∗
α and M∗

α.

7. Show that if α = c (constant) on an open interval I ⊆ E1 then

(∀A ⊆ I) m∗
α(A) = 0.

Disprove it for nonopen intervals I (give a counterexample).
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8. Let m′ :M→ E∗ be a topological, translation-invariant measure in E1,
with m′(0, 1] = c <∞. Prove the following.

(i) m′ = cm on the Borel field B. (Here m :M∗ → E∗ is Lebesgue
measure in E1.)

∗(ii) If m′ is also complete, then m′ = cm onM∗.

(iii) If 0 < c <∞, some set Q ⊂ [0, 1] is not m′-measurable.

∗(iv) IfM′ = B, then cm is the completion of m′ (Problem 15 in §6).
[Outline: (i) By additivity and translation invariance,

m′(0, r] = cm(0, r]

for rational

r =
n

k
, n, k ∈ N

(first take r = n, then r = 1
k
, then r = n

k
).

By right continuity (Theorem 2 in §4), prove it for real r > 0 (take rationals
ri ց r).

By translation, m′ = cm on half-open intervals. Proceed as in Problem 13 of §8.
(iii) See Problems 4 to 6 in §8. Note that, by Theorem 2, one may assume

m′ = mα (a translation-invariant LS measure). As mα = cm on half-open intervals,

Lemma 2 in §2 yields mα = cm on G (open sets). Use G-regularity to prove m∗
α =

cm∗ andM∗
α =M∗.]

∗9. (LS measures in En.) Let

C∗ = {half-open intervals in En}.

For any map G : En → E1 and any (ā, b̄] ∈ C∗, set

∆kG(ā, b̄] = G(x1, . . . , xk−1, bk, xk+1, . . . , xn)

−G(x1, . . . , xk−1, ak, xk+1, . . . , xn), 1 ≤ k ≤ n.

Given α : En → E1, set

sα(ā, b̄] = ∆1(∆2(· · · (∆nα(ā, b̄]) · · · )).

For example, in E2,

sα(a, b] = α(b1, b2)− α(b1, a2)− [α(a1, b2)− α(a1, a2)].

Show that sα is additive on C∗. Check that the order in which the ∆k

are applied is immaterial. Set up a formula for sα in E3.
[Hint: First take two disjoint intervals

(ā, q̄] ∪ (p̄, b̄] = (ā, b̄],

as in Figure 2 in Chapter 3, §7. Then use induction, as in Problem 9 of Chapter 3, §7.]
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∗10. If sα in Problem 9 is nonnegative, and α is right continuous in each
variable xk separately , we call α a distribution function, and sα is called
the α-induced LS premeasure in En; the LS outer measure m∗

α and
measure

mα :M∗
α → E∗

in En (obtained from sα as shown in §§5 and 6) are said to be induced
by α.

For sα, m
∗
α, and mα so defined, redo Problems 1–3 above.

∗§10. Vitali Coverings

Lebesgue measure m leads to an interesting analogue of the Heine–Borel the-
orem. Below, m∗ is Lebesgue outer measure in En. We start with some
definitions.

Definition 1.

A sequence {Ik} of sets in a metric space (S, ρ) converges to a point p
(Ik → p) iff

p ∈
∞
⋂

k=1

Ik

and
lim
k→∞

dIk = 0,

where dIk = diameter of Ik.

Definition 2.

A family K of nonempty sets in (S, ρ) is a Vitali covering (V -covering)
of a set A ⊆ (S, ρ) iff for each p ∈ A there is a sequence {Ik} ⊆ K, with
Ik → p.

We then also say that K covers A in the Vitali sense (V -sense).

Theorem 1 (Vitali). If a set K of nondegenerate cubes (or globes) in En

covers A in the V -sense, then

m∗(A−
⋃

k

Ik) = 0

for some disjoint sequence {Ik} ⊆ K.
Proof. We give the proof for cubes (it is similar for globes).

First, suppose A ⊆ Io for some open cube Io. Then A is also covered in the
V -sense by the subfamily Ko ⊆ K of those cubes that lie in Io. (Why?) We also
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assume that A *
⋃

Ij for any disjoint finite sequence {Ij} ⊆ K (otherwise, all
is trivial). Finally , we assume that all cubes in K are closed ; for other kinds
of cubes, the theorem then easily follows (see Problem 3 below).

We claim that

(1) (∀ disjoint cubes I1, . . . , Ih ∈ Ko) (∃ I ∈ Ko) I ∩
h
⋃

j=1

Ij = ∅.

Indeed, as

A *
h
⋃

j=1

Ij ,

there is some

p̄ ∈ A−
h
⋃

j=1

Ij .

By assumption, all Ij are closed ; so

−
h
⋃

j=1

Ij

is open. Hence there is a globe

Gp̄(δ) ⊆ −
h
⋃

j=1

Ij .

As Ko is a V -covering, it contains a sequence Ii → p̄, dIi → 0; so there is
I = Ii ∈ Ko with p̄ ∈ I and dI < δ. Therefore,

I ⊆ Gp̄(δ) ⊆ −
h
⋃

j=1

Ij ;

so

I ∩
h
⋃

j=1

Ij = ∅,

as claimed.

Now, using induction, suppose we have already fixed k disjoint cubes Ij in
Ko. By (1), there are cubes I ∈ Ko with

I ∩
k
⋃

j=1

Ij = ∅.



182 Chapter 7. Volume and Measure

Let δk be the lub of their diameters. As all I ∈ Ko lie in Io,

δk = sup

{

dI

∣

∣

∣

∣

I ∈ Ko, I ⊆ −
k
⋃

j=1

Ij

}

≤ dIo <∞.

Hence by properties of the lub, we find a cube Ik+1 ∈ Ko such that

Ik ⊆ −
k
⋃

j=1

Ij

and dIk+1 >
1
2δk.

In this way, taking k = 1, 2, . . . , we select a disjoint sequence {Ik} ⊆ Ko

with dIk+1 > 1
2δk for all k. We shall show that

m∗

(

A−
∞
⋃

k=1

Ik

)

= 0

in four steps.

(I) Let ℓk be the edge length of Ik; so dIk = ℓk
√
n. (Why?)

9ℓk

4ℓk

ℓk

Ik x̄ ȳ

Jk

Figure 32

Enclose each Ik in a cube Jk with the
same center and with edge length

(4n+ 1) ℓk.

Then

(2)

(∀ x̄ ∈ Ik) (∀ ȳ 6∈ Jk)

ρ(x̄, ȳ) > 2n ℓk ≥ 2ℓk
√
n

= 2 dIk > δk−1.

(See Figure 32, where n = 2.) Also,

mJk = (4n+ 1)n mIk.

(II) As the Ik lie in Io, the σ-additivity of m yields

∞
∑

k=1

mJk = (4n+ 1)n
∞
∑

k=1

mIk

= (4n+ 1)n m

∞
⋃

k=1

Ik

≤ (4n+ 1)n mIo <∞.

Thus the series
∑

mJk converges; so its “remainder” tends to 0:

lim
r→∞

∞
∑

k=r

mJk = 0.
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Also, mJk → 0. But by definition,

δk < 2dIk+1 < 2dJk+1 = 2
√
n (mJk+1)

1/n (n fixed).

Hence lim
k→∞

δk = 0, too.

(III) Now, seeking a contradiction, suppose

m∗

(

A−
∞
⋃

k=1

Ik

)

> 0.

Then as

lim
r→∞

∞
∑

k=r

mJk = 0,

there is r such that

m
∞
⋃

k=r

Jk ≤
∞
∑

k=r

mJk < m∗

(

A−
∞
⋃

k=1

Ik

)

.

Hence

A−
∞
⋃

k=1

Ik *
∞
⋃

k=r

Jk.

(Why?) Thus there is

p̄ ∈ A−
∞
⋃

k=1

Ik

not in
∞
⋃

k=r

Jk,

so that

(3) (∀ k ≥ r) p̄ 6= Jk, p̄ ∈ A, and p̄ ∈ −
∞
⋃

k=1

Ik ⊆ −
∞
⋃

k=r

Ik.

As

−
r
⋃

k=1

Ik ∈ G,

we find (as before) a cube K ∈ Ko such that p̄ ∈ K and

K ∩
r
⋃

k=1

Ik = ∅.
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Also, as δk → 0, we have δk < dK for large k. But by our choice of the δk, this
implies

K ∩
k
⋃

j=1

Ij 6= ∅

for large k (why?), whereas

K ∩
r
⋃

j=1

Ij = ∅,

as shown above.

Thus there is a least k > r, call it q, such that

K ∩ Iq 6= ∅,
and δq < dK ≤ δq−1.

By (3), p̄ 6∈ Jq. As

K ∩ Iq 6= ∅,
let x̄ ∈ K ∩ Iq. Since x̄, p̄ ∈ K,

ρ(x̄, p̄) ≤ dK < δq−1.

But as x̄ ∈ Iq and p̄ 6∈ Jk, we have

ρ(x̄, p̄) > δq−1

by (2).

This contradiction proves the theorem for bounded sets A.

(IV) If A is not bounded, use Lemma 2 in §2 to find a sequence {Ki} of
disjoint half-open intervals with

⋃

Ki = En ⊇ A.

Let

Ai = A ∩Ko
i ,

where Ko
i is the open interval with the same endpoints; so mKi = mKo

i and
m(Ki −Ko

i ) = 0.

Set

Z =

∞
⋃

i=1

(Ki −Ko
i );

so mZ = 0 and
∞
⋃

i=1

Ko
i = En − Z.
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(Why?) As Ai = A ∩Ko
i , we have

(4)

∞
⋃

i=1

Ai = A ∩
∞
⋃

i=1

Ko
i = A ∩ (En − Z) = A− Z.

Clearly, each Ai is covered in the V -sense by those K-cubes that lie in Ko
i .

Thus as shown above,

(∀ i) m∗

(

A−
⋃

j

Iij

)

= 0

for disjoint cubes Iij ⊆ Ko
i . That is,

(∀ i)
⋃

j

Iij ∪ Zi ⊇ Ai,

where

Zi = Ai −
⋃

j

Iij

and mZi = 0. Hence by (4),

∞
⋃

i=1

⋃

j

Iij ∪
⋃

i

Zi ⊇
⋃

i

Ai = A− Z,

so that

m∗

(

A−
⋃

i,j

Iij

)

= 0.

Rearranging the Iij in a single sequence {Ik}, we complete the proof. �

Theorem 2. If m∗A <∞ in Theorem 1, then for every ε > 0 there is a finite
disjoint sequence {Ik} ⊆ K such that

m∗

(

A−
⋃

k

Ik

)

< ε.

Proof. Fix ε > 0. As m∗A < ∞, the G-regularity of m∗ (Theorem 3 of §8)
yields an open G ⊇ A such that

mG < m∗A+ ε.

Clearly, A is covered in the V -sense by the subfamily Ko of those K-sets that
lie in G. Thus by Theorem 1,

m∗
(

A−
⋃

Ik

)

= 0
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for a disjoint sequence {Ik} ⊆ Ko. Also,
⋃

Ik ⊆ G,

and so
∑

mIk = m
⋃

Ik ≤ mG <∞.

Thus
∑

mIk converges; so
∞
∑

k=r

mIk < ε

for large r.

On the other hand,

A−
r
⋃

k=1

Ik ⊆
(

A−
∞
⋃

k=1

Ik

)

∪
∞
⋃

k=r

Ik.

Hence

m∗

(

A−
r
⋃

k=1

Ik

)

≤ m∗

(

A−
∞
⋃

k=1

Ik

)

+m∗
∞
⋃

k=r

Ik ≤ 0 +

∞
∑

k=r

mIk < ε,

as required. �

As an application, we obtain the following important theorem.

Theorem 3 (Lebesgue). If f : E1 → E1 is monotone, it is differentiable al-
most everywhere (“a.e.”), i .e., on E1 − Z for some Z of Lebesgue measure
zero.

We sketch the proof in a few steps (lemmas). These lemmas anticipate a
more general approach to be taken in §12, with the notation in the following
definition.

Definition 3.

Let m = Lebesgue measure and

K = {all cubes I ⊂ En with mI > 0}.

Let

s :M′ → [0,∞], M′ ⊇ K,

be another measure in En, finite on K.
For any natural r > 0, and p̄ ∈ En, we set

gr(p̄) = inf

{

sI

mI

∣

∣

∣

∣

p̄ ∈ I ∈ K, dI <
1

r

}
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and

hr(p̄) = sup

{

sI

mI

∣

∣

∣

∣

p̄ ∈ I ∈ K, dI <
1

r

}

;

furthermore, we denote

Ds(p̄) = sup
r

gr(p̄) and Ds(p̄) = inf
r
hr(p̄).

Clearly, {gr}↑, {hr}↓, and

0 ≤ Ds = lim
r→∞

gr ≤ lim
r→∞

hr = Ds

at each p̄ ∈ En. (Why?)

We also write J(Ds > i) for

{x̄ ∈ J | Ds(x̄) > i},
J(Ds = a) for

{x̄ ∈ J | Ds(x̄) = a},
etc.

Lemma 1. With the above notation, 0 ≤ Ds ≤ Ds <∞ a.e. on En.

Proof Outline. Fix any open set J ⊂ En, withmJ <∞ and sJ <∞ (e.g., an
open cube in K).

For i = 1, 2, . . . set

Ai = J(Ds > i)

and

Ki =

{

I ∈ K
∣

∣

∣

∣

I ⊆ J,
sI

mI
> i

}

.

Verify that Ki is a V -covering of Ai; so there is a disjoint sequence {Ik} ⊆ Ki,
with

m∗
(

Ai −
⋃

Ik

)

= 0

and
⋃

Ik ⊆ J.

Hence (cf. Problem 3 below)

m∗Ai ≤ m
⋃

Ik =
∑

mIk ≤
1

i

∑

sIk =
1

i
s
⋃

Ik ≤
sJ

i
, i = 1, 2, . . . .

It follows that

m∗
∞
⋂

i=1

Ai = 0.
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(Why?) But
∞
⋂

i=1

Ai = J(Ds =∞).

(Why?) This implies that

m∗J(Ds =∞) = 0,

and so Ds <∞ on J , except for a null set .

But by Lemma 2 in §2, all of En is a countable union of such sets J (open
cubes). Thus Ds < ∞ on En − Z, where Z is a countable union of null sets:
mZ = 0.

As 0 ≤ Ds ≤ Ds on all of En, we have

0 ≤ Ds ≤ Ds <∞ a.e. on En,

as claimed. �

Lemma 2. With the same notation, Ds = Ds a.e. on En.

Proof Outline. With J as in the previous proof, let

H = J(Ds > Ds).

Then H is a countable union of sets

Huv = J(Ds > v > u > Ds)

over rational u, v. Thus it suffices to show that all such Huv are m-null.

Let Q be one of them; so Q ⊆ J and

m∗Q ≤ mJ <∞.

Hence given ε > 0, there is an open set G ⊆ J with G ⊇ Q and

mG < m∗Q+ ε.

(Why?) We fix this G and set

K =

{

I ∈ K
∣

∣

∣

∣

I ⊆ G,
sI

mI
< u

}

.

By the definition of Ds, K is a V -covering of Q (verify!); so by Problem 3,

m∗
(

Q ∩
⋃

Iok

)

= m∗Q

for a disjoint sequence

{Ik} ⊆ K,
⋃

Ik ⊆ G.
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Let

G′ =
∞
⋃

k=1

Iok

(an open set), and Qo = Q ∩G′; so

m∗Q = m∗Qo ≤ mG∗ ≤ mG < m∗Q+ ε.

(Explain!)

Next, let

K′ =

{

I ∈ K
∣

∣

∣

∣

I ⊆ G′,
sI

mI
> v

}

It is a V -covering of Qo (why?); so

m∗
(

Qo −
⋃

I ′k

)

= 0

for a disjoint sequence {I ′k} ⊆ K′. Verify that

u · (m∗Q+ ε) > u ·mG′ = u ·
∑

mIok

≥
∑

sIok = sG′

≥
∑

sI ′k

≥ v ·
∑

mI ′k = v ·m
⋃

I ′k

≥ v ·m∗
(

Qo ∩
⋃

I ′k

)

= v ·m∗Qo = v ·m∗Q.

Thus

(∀ ε > 0) u · (m∗Q+ ε) ≥ v ·m∗Q.

Making ε→ 0, we get

u ·m∗Q ≥ v ·m∗Q.

As u < v, m∗A must be 0. This is the desired result. �

Proof of Theorem 3. To fix ideas, let f↑.
Let s = mf be the f-induced LS measure in E1 (§9) so that

s[p, x] = f(x+)− f(p−).
By Lemmas 1 and 2, it suffices to show that f is differentiable at every p ∈ E1,
with

Ds(p) = Ds(p) 6=∞.

Fix any such p and set

q = Ds(p) = Ds(p) 6=∞.
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Then f is continuous at p; for otherwise,

f(p+)− f(p−) > 0,

whence

Ds(p) =∞.

(Why?) Also, by Definition 3, given ε > 0, there is a natural r such that

q − ε < gr(p) ≤ hr(p) < q + ε.

Let

x ∈ G¬p

(1

r

)

.

If x > p, then

∆x = x− p = m[p, x],

and by continuity,

∆f = f(x)− f(p) ≤ f(x+)− f(p)

= f(x+)− f(p−) = s[p, x]

≤ ∆x · hr(p) < ∆x(q + ε).

Also, if x > y > p, then

∆f ≥ f(y+) − f(p−) = s[p, y] ≥ ∆y · gr(p) > ∆y(q − ε),

where

∆y = y − p = m[p, y].

Making y ր x, with x fixed, we get

(q − ε)∆x ≤ ∆f < (q + ε)∆x.

Similarly in the case x < p.

Thus with ε→ 0, we obtain

f ′(p) = lim
x→p

∆f

∆x
= q 6=∞. �

Problems on Vitali Coverings

1. Prove Theorem 1 for globes, filling in all details.
[Hint: Use Problem 16 in §8.]

⇒2. Show that any (even uncountable) union of globes or nondegenerate
cubes Ji ⊂ En is L-measurable.
[Hint: Include in K each globe (cube) that lies in some Ji. Then Theorem 1 represents
⋃

Ji as a countable union plus a null set.]
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3. Supplement Theorem 1 by proving that

m∗
(

A−
⋃

Iok

)

= 0

and

m∗A = m∗
(

A ∩
⋃

Iok

)

;

here Io = interior of I.

4. Fill in all proof details in Lemmas 1 and 2. Do it also for K = {globes}.
5. Given mZ = 0 and ε > 0, prove that there are open globes

G∗
k ⊆ En,

with

Z ⊂
∞
⋃

k=1

G∗
k

and
∞
∑

k=1

mG∗
k < ε.

[Hint: Use Problem 3(f) in §5 and Problem 16(iii) from §8.]

6. Do Problem 3 in §5 for

(i) C′ = {open globes}, and
(ii) C′ = {all globes in En}.

[Hints for (i): Let m′ = outer measure induced by v′ : C′ → E1. From Problem 3(e)

in §5, show that

(∀A ⊆ En) m′A ≥ m∗A.

To prove m′A ≤ m∗A also, fix ε > 0 and an open set G ⊇ A with

m∗A+ ε ≥ mG (Theorem 3 of §8).

Globes inside G cover A in the V -sense (why?); so

A ⊆ Z ∪
⋃

Gk (disjoint)

for some globes Gk and null set Z. With G∗
k
as in Problem 5,

m′A ≤
∑

(mGk +mG∗
k) ≤ mG+ ε ≤ m∗A+ 2ε.]

7. Suppose f : En onto←→ En is an isometry , i.e., satisfies

|f(x̄)− f(ȳ)| = |x̄− ȳ| for x̄, ȳ ∈ En.

Prove that

(i) (∀A ⊆ En) m∗A = m∗f [A], and
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(ii) A ∈M∗ iff f [A] ∈M∗.

[Hints: If A is a globe of radius r, so is f [A] (verify!); thus Problems 14 and 16 in §8
apply. In the general case, argue as in Theorem 4 of §8, replacing intervals by globes

(see Problem 6). Note that f−1 is an isometry, too.]

7′. From Problem 7 infer that Lebesgue measure in En is rotation invariant .
(A rotation about p̄ is an isometry f such that f(p̄) = p̄.)

8. A V -covering K of A ⊆ En is called normal iff

(i) (∀ I ∈ K) 0 < mI = mIo, and

(ii) for every p̄ ∈ A, there is some c ∈ (0,∞) and a sequence

Ik → p̄ ({Ik} ⊆ K)
such that

(∀ k) (∃ cube Jk ⊇ Ik) c ·m∗Ik ≥ mJk.

(We then say that p̄ and {Ik} are normal ; specifically, c-normal .)

Prove Theorems 1 and 2 for any normal K.
[Hints: By Problem 21 of Chapter 3, §16, dI = dI.

First, suppose K is uniformly normal , i.e., all p̄ ∈ A are c-normal for the same c.

In the general case, let

Ai = {x̄ ∈ A | x̄ is i-normal}, i = 1, 2, . . . ;

so K is uniform for Ai. Verify that Ai ր A.

Then select, step by step, as in Theorem 1, a disjoint sequence {Ik} ⊆ K and
naturals n1 < n2 < · · · < ni < · · · such that

(∀ i) m∗
(

Ai −
ni
⋃

k=1

Ik

)

<
1

i
.

Let

U =

∞
⋃

k=1

Ik.

Then

(∀ i) m∗(Ai − U) <
1

i

and

Ai − U ր A− U.

(Why?) Thus by Problems 7 and 8 in §6,

m∗(A− U) ≤ lim
i→∞

1

i
= 0.]

9. A V -covering K∗
of En is called universal iff

(i) (∀ I ∈ K∗
) 0 < mI = mIo <∞, and
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(ii) whenever a subfamily K ⊆ K∗
covers a set A ⊆ En in the V -sense,

we have

m∗
(

A−
⋃

Ik

)

= 0

for a disjoint sequence

{Ik} ⊆ K.

Show the following.

(a) K∗ ⊆M∗.

(b) Lemmas 1 and 2 are true with K replaced by any universal K∗
. (In

this case, write D∗s and D
∗
s for the analogues of Ds and Ds.)

(c) Ds = D∗s = D
∗
s = Ds a.e.

[Hints: (a) By (i), I = I minus a null set Z ⊆ I − Io.

(c) Argue as in Lemma 2, but set

Q = J(D∗s > u > v > Ds)

and

K′ =

{

I ∈ K∗
∣

∣

∣

∣

I ⊆ G′,
sI

mI
> v

}

to prove a.e. that D∗s ≤ Ds; similarly for Ds ≤ D∗s.

Throughout assume that s :M′ → E∗ (M′ ⊇ K ∪K∗
) is a measure in En, finite

on K ∪ K∗
.]

10. Continuing Problems 8 and 9, verify that

(a) K = {nondegenerate cubes} is a normal and universal V -covering
of En;

(b) so also is Ko
= {all globes in En};

(c) C = {nondegenerate intervals} is normal.

Note that C is not universal.1

11. Continuing Definition 3, we call q a derivate of s, and write q ∼ Ds(p̄), iff

q = lim
k→∞

sIk
mIk

for some sequence Ik → p̄, with Ik ∈ K.
Set

Dp̄ = {q ∈ E∗ | q ∼ Ds(p̄)}
and prove that

Ds(p̄) = minDp̄ and Ds(p̄) = maxDp̄.

1 See M. E. Munroe, Measure and Integration, Addison–Wesley (1971), pp. 173–175.
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12. Let K∗ be a normal V -covering of En (see Problem 8). Given a measure
s in En, finite on K∗ ∪ K, write

q ∼ D∗s(p̄)

iff

q = lim
k→∞

sIk
mIk

for some normal sequence Ik → p̄, with Ik ∈ K∗.

Set

D∗
p̄ = {q ∈ E∗ | q ∼ D∗s(p̄)},

and then
D∗s(p̄) = infD∗

p̄ and D
∗
s(p̄) = supD∗

p̄.

Prove that
Ds = D∗s = D

∗
s = Ds a.e. on En.

[Hint: En =
⋃∞

i=1 Ei, where

Ei = {x̄ ∈ En | x̄ is i-normal}.

On each Ei, K∗ is uniformly normal. To prove Ds = D∗s a.e. on Ei, “imitate”

Problem 9(c). Proceed.]

∗§11. Generalized Measures. Absolute Continuity

I. We now return to general set functions s :M→ E, with E as in Definition 1
of §4.
Definition 1.

A set function s : M → E is a generalized measure in a set S, and
(S,M, s) is a generalized measure space, iff s is σ-additive and semifi-
nite (i.e., s 6= +∞ or s 6= −∞) onM, a σ-ring in S, and s∅ = 0.

We call s a signed measure iff E ⊆ E∗ (i.e., s is real or extended real);
if s ≥ 0 then s is a measure; s may also be complex (E = C) or vector
valued.

Definition 2.

Given a set function s :M→ E, we define its total variation

vs :M→ [0,∞]

by

(∀A ∈M) vsA = sup
∑

i

|sXi|,
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taking the sup over all countable disjoint subfamilies {Xi} ⊆ M with
⋃

i Xi ⊆ A.

Note 1. IfM is a σ-ring , we may equivalently require that
⋃

Xi = A

with {Xi} a disjoint sequence in M (add the term Xo = A −⋃

i Xi if neces-
sary).1

Corollary 1. If s and vs are as in Definition 2, then

(i) vs is monotone on M, and

(ii) |sA| ≤ vsA for every A ∈ M.

Proof. For (i), let A ⊆ B, A,B ∈M. Take any disjoint sequence {Xi} ⊆ M,
with

⋃

Xi ⊆ A ⊆ B.

By definition,
∑

i

|sXi| ≤ vsB.

Thus vsB is an upper bound of all such sums, with
⋃

Xi ⊆ A. Hence

vsA = lub
∑

|sXi| ≤ vsB,

proving (i).

To prove (ii), just let {Xi} consist of A alone. �

Theorem 1. If s : M → E is a generalized measure, then vs is a measure
on M.

Proof. By definition, vs ≥ 0 onM, a σ-ring, and vs∅ = 0. (Why?) It remains
to prove σ-additivity.

Thus let
A =

⋃

n

An (disjoint),

with A,An ∈M. To show that

vsA =
∑

n

vsAn,

take anyM-partition {Xi} of A. Then

(∀ i) Xi = Xi ∩A = Xi ∩
⋃

n

An =
⋃

n

(Xi ∩An) (disjoint).

1 Any such {Xi} is called anM-partition of A (Chapter 8, §1); it may consist of A alone.



196 Chapter 7. Volume and Measure

Similarly,

(∀n) An =
⋃

i

(An ∩Xi);

so by definition,

(∀n)
∑

i

|s(An ∩Xi)| ≤ vsAn.

Hence as
Xi =

⋃

n

(Xi ∩An),

we get

∑

i

|sXi| =
∑

i

∣

∣

∣

∣

s
⋃

n

(An ∩Xi)

∣

∣

∣

∣

=
∑

i

∣

∣

∣

∣

∑

n

s(An ∩Xi)

∣

∣

∣

∣

≤
∑

n,i

|s(An ∩Xi)| ≤
∑

n

vsAn.

As {Xi} was an arbitrary M-partition of A,

vsA = sup
∑

|sXi| ≤
∑

n

vsAn.

It remains to show that
∑

n

vsAn ≤ vsA.

This is trivial if vsA =∞.

Thus let vsA <∞. Then

(∀n) vsAn ≤ vsA <∞
by Corollary 1(i). Now fix ε > 0. By properties of lub, each An has an M-
partition,

An =
⋃

k

Xnk,

such that
vsAn −

ε

2n
<

∑

k

|sXnk|.

All Xnk combined (for all n and k) form anM-partition of A. Thus by defini-
tion,

vsA ≥
∑

n

∑

k

|sXnk| ≥
∑

n

(

vsAn −
ε

2n

)

≥
∑

n

vsAn − ε.

With ε→ 0, we get
∑

n

vsAn ≤ vsA,
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as required. �

Definition 3.

Given

s :M→ E and t :M′ → E′,2

we say that s is

(i) t-continuous (written s≪ t) iff

vtX = 0 =⇒ |sX| = 0 (X ∈M′);

(ii) absolutely t-continuous (or absolutely continuous with respect to
t) iff

vtX → 0 =⇒ sX → 0,

i.e.,

(∀ ε > 0) (∃ δ > 0) (∀X ∈M′) vtX < δ =⇒ |sX| < ε;

(iii) t-finite iff

vtX <∞ =⇒ |sX| <∞ (X ∈ M′).

Corollary 2. If two set functions s, u :M → E are t-continuous (absolutely
t-continuous) so are s± u, and so is ks for any k from the scalar field of E.3

The proof is left to the reader. (Use Definition 3(i)(ii), quantified formula.)

Theorem 2. Let s :M→ E and t :M′ → E′.

(i) If s≪ t, then vs ≪ t.

(ii) If, in addition, s and t are generalized measures and vs is t-finite, then
both vs and s are absolutely t-continuous.

(iii) vs ≪ t implies s≪ t (which is obvious).

Proof. Fix A ∈ M and any disjoint sequence Xi ∈M, with
⋃

Xi ⊆ A.

If vtA = 0, then (Corollary 1)

(∀ i) vtXi = 0;

2 For the rest of this section, we assume thatM andM′ satisfy X ∈M whenever X ∈M′

and vtX <∞.
3 If E = E∗, we assume k ∈ E1. If s is scalar valued, k may be a vector in E.
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so by the t-continuity of s, |sXi| = 0, and hence
∑ |sXi| = 0. As this holds for

any such sum, we also have

vsA = sup
∑

|sXi| = 0

whenever vtA = 0. This proves assertion (i).

Now, let s and t be as in (ii); so vs and vt are measures by Theorem 1.
Suppose vs is not absolutely t-continuous. Then

(∃ ε > 0) (∀ δ > 0) (∃X ∈M′) vtX < δ and vsX ≥ ε.

(Why?) Taking

δn = 2−n,

fix (∀n) a set Xn ∈M′, with

vtXn < 2−n and vsXn ≥ ε.

Let

Yn =

∞
⋃

k=n

Xk and Y =

∞
⋂

n=1

Yn;

so Y, Yn ∈M′, Yn ց Y , and

vtYn ≤
∞
∑

k=n

vtXk <

∞
∑

k=n

2−k ≤ 21−n.

Thus by Theorem 2 in §4 (right continuity),

vtY = lim
n→∞

vtYn ≤ lim
n→∞

21−n = 0.

Hence by the t-continuity of vs (see (i)),

vsY = 0 < ε.

On the other hand, as Yn ⊇ Xn, we have

vsYn ≥ vsXn ≥ ε.

Also, vtYn ≤ 21−n implies vsYn <∞ (vs is t-finite). Hence

vsY = lim
n→∞

vsYn ≥ ε,

a contradiction. Thus vs is absolutely t-continuous.

So is s; for by Corollary 1(ii), we have

(∀ ε > 0) (∃ δ > 0) (∀X ∈ M′) vtX < δ =⇒ |sX| ≤ vsX < ε,

proving (ii). �

∗§11. Generalized Measures. Absolute Continuity 199

Note 2. Absolute t-continuity always implies t-continuity.4

II. Special notions apply to signed measures. First of all, we have the following
definition.

Definition 4.

A set A ⊆ S in a signed measure space (S,M, s) is called positive (nega-
tive) iff sX ≥ 0 (sX ≤ 0, respectively) whenever

A ⊇ X, X ∈M.

We set
M+ = {X ∈M | X is positive}

and
M− = {X ∈ M | X is negative}.

The easy proof of Lemmas 1 and 2 is left to the reader.

Lemma 1. In any signed measure space, M+ andM− are σ-rings.

Lemma 2. If s, t are signed measures on M, then

(i) so is ks (k ∈ E1);

(ii) so also are s± t, provided s or t is finite on M.

Note 3. Lemma 2 applies to generalized measures s, t :M→ E as well.

Lemma 3. Let s :M→ E∗ be a signed measure. Let A ∈ M, 0 < sA < ∞.
Then A has a subset Q ∈M+ such that

0 < sA ≤ sQ <∞.

Proof. If A ∈M+, take Q = A.

Otherwise, A has subsets of negative measure. Let then n1 be the least
natural for which there is a set A1 ∈M, with

A1 ⊆ A and sA1 < − 1

n1
.

(why does such n1 exist?); then

s(A−A1) > sA > 0.

Now, if A−A1 ∈M+, take Q = A−A1. If not, let n2 be the least natural
for which there is A2 ∈M, with

A2 ⊆ A−A1 and sA2 < − 1

n2
.

4 For if vtX = 0, then vtX < δ for any δ > 0. Thus Definition 3(ii) implies (∀ ε > 0)

|sX| < ε; hence |sX| = 0.
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Again, if

A−
2
⋃

i=1

Ai

is positive, put

Q = A−
2
⋃

i=1

Ai.

If not, let n3 be the least natural for which there is A3 ∈M, with

A3 ⊆ A−
2
⋃

i=1

Ai

and

sA3 < − 1

n3
.

Continuing, we either find the desired Q at some step or obtain a sequence
{Ak} ⊆M such that

(1) (∀ k ∈ N) sAk < − 1

nk
and Ak+1 ⊆ A−

k
⋃

i=1

Ai

(so the Ak are disjoint). In the latter case, let

Q = A−
∞
⋃

k=1

Ak;

so

A = Q ∪
∞
⋃

k=1

Ak (disjoint),

and

sQ+
∑

k

sAk = sA.

As |sA| <∞ (by assumption),
∑

sAk converges. By (1), then,

∑

k

1

nk
≤

∑

k

(−sAk) <∞.

Therefore,

lim
k→∞

1

nk
= 0,

i.e.,

lim
k→∞

nk =∞.

∗§11. Generalized Measures. Absolute Continuity 201

Also, as sAk < 0 and sA > 0, we have

sQ = sA−
∑

sAk > sA > 0.

Now, given ε > 0, choose k so large that

ε >
1

nk − 1
.

As

Q ⊆ A−
k
⋃

i=1

Ai,

our definition of the nk implies that Q can have no subsets X ∈M, with

sX < −ε < − 1

nk − 1
.

(Why?) As ε is arbitrary, Q has no subsets of negative measure.

Thus Q ∈M+, Q ⊆ A, and

0 < sA ≤ sQ <∞,

as required. �

The following theorem is named after the mathematician Hans Hahn.

Theorem 3 (Hahn decomposition theorem). In any signed measure space
(S,M, s), there is a positive set P ⊆ S whose complement is negative. More-
over, P or −P can be chosen fromM, according to whether s 6=∞ or s 6= −∞
on M.

If S ∈M, both P and −P can be made s-measurable:

P ∈ M+ and −P ∈ M−.

Proof. By definition, s is semifinite; so s 6=∞ or s 6= −∞ onM; say, s 6= +∞.

AsM+ is a σ-ring (Lemma 1), the restriction of s toM+ is a measure, with

0 ≤ s <∞

onM+. Thus by Problem 13 in §6, we fix a set P ∈M+ such that

sP = max{sX | X ∈M+} <∞.

By Lemma 3, sP = max sX, even on all ofM.

It remains to show that −P is negative. Suppose it is not. Then −P has a
subset Y ∈M, with sY > 0; so

Y ∩ P = ∅ and Y ∪ P ∈M.
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By additivity,

s(Y ∪ P ) = sY + sP > sP,

contrary to the maximality of sP . This contradiction settles the case s 6= +∞.

In case s 6= −∞, consider −s, which by Lemma 2 is likewise a signed mea-
sure, with −s 6= +∞. By what was proved above, there is a set P ′ ∈ M that
is positive for −s (hence negative for s), and whose complement is positive for
s.

Finally, if S ∈M, then P ∈M implies

S − P = −P ∈M;

so both P and −P are inM. Thus all is proved. �

Note 4. The set P in Theorem 3 is not unique. However, if P ′ ∈ M+ is
another such set, then

s(P − P ′) = 0 = s(P ′ − P ),

i.e., any two such sets can differ by a set of measure 0 only . Indeed,

P − P ′ ⊆ P and P − P ′ ⊆ −P ′;

so s(P − P ′) is both ≥ 0 and ≤ 0. Thus s(P − P ′) = 0. Similarly for P ′ − P .

Theorem 4 (Jordan decomposition). Every signed measure s : M → E∗ is
the difference of two measures,

s = s+ − s− (s+, s− ≥ 0),

with s+ or s− bounded on M.

Proof. Suppose s 6= +∞ onM. Then by Theorem 3, there is a set P ∈ M+

such that −P is negative and sP <∞. Now define, for all sets A ∈M,

(2) s+A = s(A ∩ P ) and s−A = −s(A− P ).

By additivity,

sA = s(A ∩ P ) + s(A− P ) = s+A− s−A;

so s = s+ − s− onM, as required. Moreover,

s+A = s(A ∩ P ) ≥ 0,

since A ∩ P ⊆ P and P is positive. Similarly,

s−A = −s(A− P ) ≥ 0,

since A− P ⊆ −P and −P is negative. Thus s+, s− ≥ 0 onM, a σ-ring.

The σ-additivity of s+ and s− easily follows from that of s (we leave the
proof to the reader). Thus s+ and s− are measures.
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Finally, by (2),
s+A = s(A ∩ P ) ≤ sP <∞

for all A ∈M (for
sP = max{sX | X ∈M};

see the proof of Theorem 3). Thus s+ is bounded, and all is proved.

The case s 6= −∞ is similar. �

Note 5. For any set X ⊆ A (X ∈M), we have

sX = s+X − s−X ≤ s+X ≤ s+A,

for s+ and s− are ≥ 0 and monotone. Thus s+A is an upper bound of

{sX | A ⊇ X ∈M}.
By (2), this bound is reached when X = A ∩ P ; so it is a maximum. Similarly
for s−; thus

(3) s+A = max{sX | A ⊇ X ∈M} and s−A = max{−sX | A ⊇ X ∈M}.

Note 6. The decomposition is not unique, for we also have

s = (s+ +m)− (s− +m)

for any finite measurem onM. However, it becomes unique if we add condition
(3). When so defined, s+ and s− are called the Jordan components of s.

Note 7. Formula (2) shows that

(−s)+ = s− and (−s)− = s+.

Corollary 3. With s, s+, and s− as in (3), we have the following .

(i) vs = s+ + s−; hence if s is a measure (s− = 0), then

s = vs = s+.

(ii) vs is finite (t-finite, t-continuous, absolutely t-continuous) iff s+ and s−

are, i .e., iff s is.

Proof. We give only an outline here.

(i) Take anyM-partition

A =
⋃

Xi (disjoint).

Setting
m = s+ + s−,

verify that
|sXi| ≤ mXi
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and
∑

|sXi| ≤
∑

mXi = m
⋃

Xi = mA.

Thus mA is an upper bound of sums
∑

|sXi|.

This bound is reached when X1 = A ∩ P , X2 = A− P (P as in (2)).

(ii) Use Theorem 2, Corollary 2, and Definition 3. Note that vs ≥ |s|, s+,
and s−. �

Corollary 4. A t-finite signed measure s is absolutely t-continuous iff it is
t-continuous.

In particular, this applies to finite measures.

Corollary 4 follows from Theorem 2 and Note 2, by Corollary 3.

III. If E = En (Cn), the function

s :M→ E

has n real (complex) components

s1, . . . , sn,

as defined in Chapter 4, §3. As in Theorem 2 of Chapter 4, §3, one easily
obtains the following.

Theorem 5. A set function s :M → En (Cn) is t-continuous (absolutely t-
continuous, additive, σ-additive) iff its n components are. Hence a complex
set function s is t-continuous (etc.) iff its real and imaginary parts are.

For σ-additivity, one can argue as follows. Let

A =

∞
⋃

i=1

Ai (disjoint),

with A,Ai ∈M. Use Theorem 2 in Chapter 3, §15, with p̄ = sA and

x̄m =

m
∑

i=1

sAi,

to get pk = skA, and

xmk =
m
∑

i=1

skAi, k = 1, . . . , n.
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Theorem 6. A generalized measure s :M→ En (Cn) is t-continuous iff it is
absolutely t-continuous. It is always bounded on M, as is vs.

Proof. As s : M → En is σ-additive, so is each of its components sk, by
Theorem 5. Thus each sk is a finite (real) signed measure, with

sk = s+k − s−k ,

as in Theorem 4. Here the measures s+k and s−k are both finite (as s is).

Thus by Problem 13 in §6, they are bounded , say, s+k ≤ K1 and s−k ≤ K2 on
M. Hence by Corollaries 1 and 3,

|sk| ≤ vsk = s+k + s−K ≤ K1 +K2;

that is, vsk is bounded onM (k = 1, 2, . . . , n). Hence so are s and vs, for

|s| ≤ vs ≤
∑

k

vsk

(see Problem 4(iii)).

Now, as vs is finite, it is certainly t-finite. Thus by Theorem 2 and Note 2,
s is t-continuous iff it is absolutely t-continuous.

This settles the case E = En, hence also E = C = E2. The case E = Cn is
analogous. �

IV. Completion of a Generalized Measure. From Problems 14 and 15 of §6,
recall that every measure m has a completion m. A similar construction, which
we now describe, applies to generalized measures s :M→ E.

Given such an s, letM be the family of all sets X ∪ Z, where X ∈ M and
Z is vs-null , i.e., Z ⊆ U for some U ∈ M, vsU = 0 (note that vs is a measure
here, by Theorem 2). That is,

M = {X ∪ Z | X ∈M, Z ⊆ U, U ∈M, vsU = 0}.

We now define s̄ :M→ E by setting

s̄A = sX

whenever A = X ∪ Z, with X and Z as above.

As in Problems 14 and 15 of §6, it follows that M is a σ-ring ⊇ M, and
that s̄ is a σ-additive extension of s, hence a generalized measure. We call s̄
the completion of s. It is complete in the sense thatM contains all vs-null sets
(but it may miss some subsets of X with sX = 0). If s ≥ 0 (a measure), then
s = vs; so our present definitions agree with Problem 15 in §6. We use these
ideas in the following part.
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V. Signed Lebesgue–Stieltjes (LS) Measures. Motived by Theorem 3 in
Chapter 5, §7, we shall say that a function

α : E1 → E1

is of bounded variation on E1 iff

α = g − h,

with g↑ and h↑ on all of E1.

Then g and h induce two LS measures mg and mh in E1.

Let µg and µh be their restrictions to the Borel field B in E1. Then

σ∗
α = µg − µh

is finite for sets X ∈ B inside any finite interval I ⊂ E1 (as µg and µh are finite
on intervals).

By Lemma 2, σ∗
α is a signed measure on the B-sets in I. Moreover, σ∗

α does
not depend on the particular choice of g↑ and h↑ (g − h = α) on I. For if also
α = u− v (u↑, v↑) on E1, set

σ′
α = µu − µv.

Then for any (x, y] ⊆ I,

σ′
α(x, y] = α(y+)− α(x+) = σ∗

α(x, y] (verify!);

so by Problem 13 in §5, σ′
α = σ∗

α on B-sets in I.

Thus σ∗
α is uniquely determined by α. Its completion

sα = σ∗
α

is the α-induced Lebesgue–Stieltjes (LS ) signed measure in I.

If further µg or µh is finite on all of B, the same process defines a signed LS
measure in all of E1.

Problems on Generalized Measures

1. Complete the proofs of Theorems 1, 4, and 5.

1′. Do it also for the lemmas and Corollary 3.

2. Verify the following.

(i) In Definition 2, one can equivalently replace “countable {Xi}” by
“finite {Xi}.”

(ii) IfM is a ring , Note 1 holds for finite sequences {Xi}.
(iii) If s :M→ E is additive onM, a semiring , so is vs.

[Hint: Use Theorem 1 from §4.]
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3. For any set functions s, t onM, prove that

(i) v|s| = vs, and

(ii) vst ≤ avt, provided st is defined and

a = sup{|sX| | X ∈M}.

4. Given s, t :M→ E, show that

(i) vs+t ≤ vs + vt;

(ii) vks = |k|vs (k as in Corollary 2); and

(iii) if E = En (Cn) and

s =
n
∑

k=1

skēk,

then

vsk ≤ vs ≤
n
∑

k=1

vsk.

[Hints: (i) If

A ⊇
⋃

Xi (disjoint),

with Ai, Xi ∈M, verify that

|(s+ t)Xi| ≤ |sXi|+ |tXi|,
∑

|(s+ t)Xi| ≤ vsA+ vtA, etc.;

(ii) is analogous.

(iii) Use (ii) and (i), with |ēk| = 1.]

5. If g↑, h↑, and α = g − h on E1, can one define the signed LS measure
sα by simply setting sα = mg −mh (assuming mh <∞)?
[Hint: the domains of mg and mh may be different . Give an example. How about

taking their intersection?]

6. Find an LS measure mα such that α is continuous and one-to-one, but
mα is not m-finite (m = Lebesgue measure).
[Hint: Take

α(x) =











x3

|x| , x 6= 0,

0, x = 0,

and

A =

∞
⋃

n=1

(

n, n+
1

n2

]

.]

7. Construct complex and vector-valued LS measures sα :M∗
α → En (Cn)

in E1.
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8. Show that if s :M → En (Cn) is additive and bounded on M, a ring ,
so is vs.
[Hint: By Problem 4(iii), reduce all to the real case.

Use Problem 2. Given a finite disjoint sequence {Xi} ⊆ M, let U+ (U−) be the
union of those Xi for which sXi ≥ 0 (sXi < 0, respectively). Show that

∑

sXi = sU+ − sU− ≤ 2 sup |s| <∞.]

9. For any s :M→ E∗ and A ∈M, set

s+A = sup{sX | A ⊇ X ∈M}
and

s−A = sup{−sX | A ⊇ X ∈M}.
Prove that if s is additive and bounded onM, a ring , so are s+ and s−;
furthermore,

s+ =
1

2
(vs + s) ≥ 0,

s− =
1

2
(vs − s) ≥ 0,

s = s+ − s−, and

vs = s+ + s−.

[Hints: Use Problem 8. Set

s′ =
1

2
(vs + s).

Then (∀X ∈M | X ⊆ A)

2sX = sA+ sX − s(A−X) ≤ sA+ (|sX| + |s(A−X)|)
≤ sA+ vsA = 2s′A.

Deduce that s+A ≤ s′A.

To prove also that s′A ≤ s+A, let ε > 0. By Problems 2 and 8, fix {Xi} ⊆ M,
with

A =
n
⋃

i=1

Xi (disjoint)

and

vsA− ε <
n
∑

i=1

|sXi|.

Show that

2s′A− ε = vsA+ sA− ε ≤ sU+ − sU− + s

n
⋃

i=1

Xi = 2sU+

and

2s+A ≥ 2sU+ ≥ 2s′A− ε.]
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10. Let

K = {compact sets in a topological space (S,G)}

(adopt Theorem 2 in Chapter 4, §7, as a definition). Given

s :M→ E, M⊆ 2S ,

we call s compact regular (CR) iff

(∀ ε > 0) (∀A ∈M) (∃F ∈ K) (∃G ∈ G)
F,G ∈M, F ⊆ A ⊆ G, and vsG− ε ≤ vsA ≤ vsF + ε.

Prove the following.

(i) If s, t :M→ E are CR, so are s± t and ks (k as in Corollary 2).

(ii) If s is additive and CR onM, a semiring, so is its extension to the
ringMs (Theorem 1 in §4 and Theorem 4 of §3).

(iii) If E = En (Cn) and vs < ∞ on M, a ring , then s is CR iff its
components sk are, or in the case E = E1, iff s+ and s− are
(see Problem 9).

[Hint for (iii): Use (i) and Problem 4(iii). Consider vs(G− F ).]

11. (Aleksandrov.) Show that if s :M → E is CR (see Problem 10) and
additive on M, a ring in a topological space S, and if vs < ∞ on M,
then vs and s are σ-additive, and vs has a unique σ-additive extension
v̄s to the σ-ring N generated byM.

The latter holds for s, too, if S ∈M and E = En (Cn).
[Proof outline: The σ-additivity of vs results as in Theorem 1 of §2 (first check

Lemma 1 in §1 for vs).

For the σ-additivity of s, let

A =
∞
⋃

i=1

Ai (disjoint), A,Ai ∈M;

then
∣

∣

∣

∣

sA−
r−1
∑

i=1

sAi

∣

∣

∣

∣

≤
∞
∑

i=r

vsAi → 0

as r →∞, for
∞
∑

i=1

vsAi = vs

∞
⋃

i=1

Ai <∞.

(Explain!) Now, Theorem 2 of §6 extends vs to a measure on a σ-field

M∗ ⊇ N ⊇M

(use the minimality of N ). Its restriction to N is the desired v̄s (unique by

Problem 15 in §6).
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A similar proof holds for s, too, if s :M → [0,∞). The case s :M → En (Cn)
results via Theorem 5 and Problem 10(iii) provided S ∈M; for then by Corollary 1,

vsS <∞ ensures the finiteness of vs, s+, and s− even on N .]

12. Do Problem 11 for semiringsM.
[Hint: Use Problem 10(ii).]

∗§12. Differentiation of Set Functions

In the proof of Theorem 3 in §10 and the lemmas of that section, we saw the
connection between quotients of the form

∆f

∆x
=

f(x)− f(p)

x− p

and those of the form
sI

mI
,

where m is Lebesgue measure and s is another suitable measure. With this in
mind, we now use quotients sI/mI for forming derivatives of set functions.

Below, m is Lebesgue measure in En;

K = {nondegenerate cubes}.

Definition 1.

Assume the set function

s :M′ → E (M′ ⊇ K)
in En and that q ∈ E.

(i) We say that q is the derivative of s at a point p̄ ∈ En iff

q = lim
k→∞

sIk
mIk

for all sequences {Ik} ⊆ K, with Ik → p̄ (see Definition 1 in §10),
Notation:

q = s′(p̄) =
d

dm
s(p̄).

If, in addition, |q| <∞, we say that s is differentiable at p̄.

If

q = lim
k→∞

sIk
mIk

for at least one such sequence Ik → p̄, we call q a derivate of s at p̄
and write

q ∼ Ds(p̄).
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If s′(p̄) exists, it is the unique derivate of s at p̄.

(ii) In case E is E∗ or E1, we admit infinite derivates and derivatives.

For any set function

s :M′ → E∗

(measure or not) with

M′ ⊇ K,
we also define

Ds(p̄) and Ds(p̄)

exactly as in Definition 3 of §10.
Equivalently, Ds(p̄) is the least and Ds(p̄) is the largest derivate

of s at p̄ (Problem 11 in §10). This shows that if E = E∗ or E = E1,
derivates exist at every p̄.

Note 1. Hence q = s′(p̄) in E∗ iff

q = Ds(p̄) = Ds(p̄).

Note 2. We treat Ds, Ds, and s′ as functions on points of En. Thus they
are point functions, even though s is a set function.

The easy proofs of Theorems 1 and 2 (with K and M′ ⊇ K as above) are
left to the reader.

Theorem 1. If s, t :M′ → E are differentiable at p̄, so are s ± t and ks for
any scalar k. (If s, t are scalar valued , k may be a vector .) Moreover ,

(s± t)′ = s′ ± t′ and (ks)′ = ks′ at p̄.

(See also Problem 7.)

Theorem 2. A set function s : M′ → Er (Cr) is differentiable at p̄ iff its
components s1, s2, . . . , sr are; and then

s′ = (s′1, . . . , s
′
r) =

r
∑

i=1

ēis
′
i at p̄.

In particular , for complex functions,

s′ = s′re + i · s′im at p̄.

The process described in Definition 1 will be called Lebesgue differentiation
or K-differentiation, as opposed to “Ω-differentiation,” defined next.1

1 We follow some ideas by E. Munroe here.
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Definition 2.

Let µ∗ be a G-regular (§5) outer measure in a metric space (S, ρ); re-
call that

G = {all open sets in S}.
Let µ :M→ E∗ be the µ∗-induced (§6) measure in S.

A countable (two-indexed) set family

Ω = {U i
n} ⊆ M (i, n = 1, 2, . . . )

is called a network in S (with respect to µ and ρ) iff

(i∗) the space

S =

∞
⋃

n=1

U i
n (disjoint), i = 1, 2, . . . ,

with

0 < µU i
n <∞, i, n = 1, 2, . . . ;2

(ii∗) each U i+1
n is a subset of some U i

r (the U i
n decrease as i increases);

(iii∗) for each p ∈ S, there is a sequence

{Ik} ⊆ Ω,

with Ik → p; that is,

p ∈
∞
⋂

k=1

Ik

and dIk → 0 (dIk = diameter of Ik in (S, ρ)).

Now, given any set function

s :M′ → E (M′ ⊇ Ω),

we define derivatives, derivates (also Ds and Ds if E ⊆ E∗), and differentia-
bility exactly as in Definition 1, replacing K by Ω, and Lebesgue measure m
by µ.

Note that these derivates and derivatives depend not only on µ and ρ but
also on the choice of Ω. To stress this, one might write s′µΩ

and DµΩ
s for s′ and

Ds, respectively. Mostly, however, no confusion is caused by simply writing s′

and Ds (and we shall do so).

A network for En is suggested in the “hint” to Problem 2 of §2. See also
Note 3.

2 Thus for each fixed i, the U i
n are disjoint . Also, µ is σ-finite, and S ∈M.
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Theorems 1 and 2 carry over to Ω-differentiation, with the same proofs. We
shall also need a substitute for the Vitali theorem (Theorem 1 of §10). It is
quite simple.

Definition 3.

Let Ω be as in Definition 2. A set family N ⊆ Ω is called an Ω-covering
of A ⊆ (S, ρ) iff

A ⊆
⋃

N ,

where
⋃N is defined to be

⋃

X∈N X.

Theorem 3. Let N be an Ω-covering of A ⊆ S. Then there is a disjoint
sequence

{Ik} ⊆ N
with

A ⊆
⋃

k

Ik

so that

µ∗

(

A−
⋃

k

Ik

)

= 0

and

µ∗A = µ∗

(

A ∩
⋃

k

Ik

)

.

Proof. As N ⊆ Ω, N consists of some of the U i
n. For each i, let

N i = {U i
n ∈ N | n = 1, . . . },

i.e., N i consists of all U i
n ∈ N with that particular index i.

Now, by Definition 2(i∗)(ii∗), any two U i
n are either disjoint, or one contains

the other. (Why?) Thus to construct {Ik}, start with all the (disjoint) N 1-sets
(if N 1 6= ∅). Then add those U2

n ∈ N 2 that are not subsets of any set from N 1

and hence are disjoint from such sets. Next, add those U3
n ∈ N 3 that are not

subsets of any set chosen from N 1 or N 2, and so on.

All U i
n so chosen form a disjoint subfamily K ⊆ N that covers all of A, as

A ⊆
⋃

N =
⋃

K.

(Why?)

K is countable (as Ω is); so we can put it in a sequence {Ik}, with

A ⊆
⋃

k

Ik (disjoint),

as required. �
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We can now prove our main result for K- and Ω-differentiation alike.

Theorem 4.

(i) If s :M′ → E∗ (Er, Cr) is a generalized measure in En, finite on K, then
s is differentiable a.e. on En (under Lebesgue measure m).

(ii) Similarly for Ω-differentiation in (S, ρ), provided s is finite on Ω and
regular.3

Proof. Via components and the Jordan decomposition (Theorem 4 of §11),
all reduces to the case where s is a measure (≥ 0). Then the proof for K-
differentiation is as in Lemmas 1 and 2 in §10. (Verify!)

For Ω-differentiation, the proof of Lemma 1 in §10 still works, with K-
coverings replaced by Ω-coverings.

In the proof of Lemma 2, after choosing rationals v > u, we choose Q,
G ⊇ Q, the Ω-covering

K =

{

I ∈ Ω

∣

∣

∣

∣

I ⊆ G,
sI

µI
< u

}

of Q, and the sequence {Ik} ⊆ K, as before. (In selecting G, we use the
G-regularity of µ∗; the Ik need not be cubes here, of course.)

Then, however, instead of forming the set Qo, we use the regularity of s to
select an open set G′ ∈M′ with

G′ ⊇
⋃

k

Ik ⊇ Q

and
sG′ − ε ≤ s

⋃

Ik ≤
∑

sIk.

The set family

K′ =

{

I ∈ Ω

∣

∣

∣

∣

I ⊆ G′,
sI

µI
> v

}

is then an Ω-covering of Q (why?); so we find a disjoint sequence {I ′k} ⊆ K′

with
Q ⊆

⋃

I ′k ⊆ G′ ⊆ G

and obtain

u · (µ∗Q+ ε) ≥ u · µG ≥ u ·
∑

k

µIk ≥
∑

k

sIk ≥ sG′ − ε ≥
∑

k

sI ′k − ε

≥ v ·
∑

k

µI ′k − ε = v · µ
⋃

I ′k − ε ≥ v · µ∗Q− ε.

3 A signed measure s is called regular iff s+ and s− are regular (Definition 4 in §7). A
complex measure s is regular iff sre and sim are. Finally, s :M′ → Er (Cr) is regular iff all

its components si are.
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Thus

(∀ ε > 0) u · (µ∗Q+ ε) ≥ v · µ∗Q− ε.

The rest is as in Lemma 2 of §10. �

Note 3. If µ∗ = m∗, K-derivatives equal Ω-derivatives a.e. for a regular s
(Problem 6). One may use Ω in En, thus avoiding Theorem 1 of §10 (Prob-
lem 13).

Problems on Differentiation of Set Functions

1. Complete the proofs of Theorems 1 to 4 in detail. Verify Note 1.

2. Verify that the hint for Problem 2 in §2 describes a network for En (see
Note 3).

3. Show that the measure µ in Definition 2 is necessarily topological.
[Hint: Any G ∈ G is a countable union of Ω-sets. Why?]

4. (i) Show that the derivates of s at p̄ form exactly the set D′
p̄ of all

cluster points of sequences sIk/mIk with Ik → p̄ and {Ik} ⊆ K.
Do the same considering sequences sIk/µIk with Ik → p̄ and
{Ik} ⊆ Ω.

(ii) Do Problem 11 in §10 for Ω-differentiation. Must s be regular
here?

5. Verify that if

(∀ I ∈ Ω) µI = µIo,

then Theorem 4 holds for Ω-differentiation even if s is not regular.
[Hint: The proof of Lemma 2 of §10 holds unchanged .]

6. Prove Note 3 assuming that (i) s is regular, or (ii) (∀ I ∈ Ω) µI = µIo

(see Problem 5).
[Hint: Imitate Problem 9(b) in §10 and the “Ω” part in the proof of Theorem 4.]

7. Prove for K- and Ω-differentiation that if

s = t± u (s, t, u :M′ → E∗)

and if u is differentiable at p, then Ds = Dt±u′ and Ds = Dt±u′ at p.

8. In Theorem 4 show that Ds = Ds a.e. even if s is not finite on all of
K (Ω).
[Hint: For s ≥ 0, Lemma 1 in §10, still holds. For signed measures, use Problem 7,
noting that s+ or s− is finite, hence differentiable a.e.]

9. Prove that if f and s = mf are as in the proof of Theorem 3 in §10,
then s and f are differentiable at the same points in E1, and s′ = f ′

there.
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[Hint: Use Note 1, Definition 1, and Chapter 5, §1, Problem 9, considering one-sided

derivatives, f ′
+ and f ′

−.]

10. Given a universal V -covering K∗
(see Problem 9 in §10), develop K∗

-

differentiation as in Definition 1, replacing K by K∗
and writing s′∗,

D∗s, . . . for s′, Ds, etc.

Extend Theorems 1–4 and Problem 7 to K∗
-differentiation. Under the

assumptions of Theorem 4, show that s′∗ = s′ a.e. on En (use Problem 9
in §10).

11. Given a normal V -covering K∗ of En (Problem 8 in §10), develop K∗-
differentiation along the lines of Problem 12 in §10 (admitting normal
sequences {Ik} only). Do the same questions as in Problem 10, for
K∗-differentiation.

12. Describe what changes if, in Problem 11, we drop the normality restric-
tion on sequences Ik → p̄ (call it strong K∗-differentiation; write D∗∗s,
s′∗∗, etc.).

Show that
D∗∗s ≤ D∗s ≤ D

∗
s ≤ D

∗∗
s

on En, and so the existence of s′∗∗ implies that of s′∗.

However the proof of Lemmas 1 and 2 in §10 fails for D∗∗s and D
∗∗
s

(at what step?). So does the proof of Theorem 4. What about Theo-
rems 1 and 2?

Chapter 8

Measurable Functions. Integration

§1. Elementary and Measurable Functions

From set functions, we now return to point functions

f : S → (T, ρ′)

whose domain Df consists of points of a set S. The range space T will mostly
be E, i.e., E1, E∗, C, En, or another normed space. We assume f(x) = 0
unless defined otherwise. (In a general metric space T , we may take some fixed
element q for 0.) Thus Df is all of S, always.

We also adopt a convenient notation for sets:

“A(P )” for “{x ∈ A | P (x)}.”
Thus

A(f 6= a) = {x ∈ A | f(x) 6= a},
A(f = g) = {x ∈ A | f(x) = g(x)},
A(f > g) = {x ∈ A | f(x) > g(x)}, etc.

Definition 1.

A measurable space is a set S 6= ∅ together with a set ringM of subsets
of S, denoted (S,M).

Henceforth, (S,M) is fixed.

Definition 2.

AnM-partition of a set A is a countable set family P = {Ai} such that

A =
⋃

i

Ai (disjoint),

with A,Ai ∈M.1

We briefly say “the partition A =
⋃

Ai.”

1 P may be finite; it may even consist of A alone.
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AnM-partition P ′ = {Bik} is a refinement of P = {Ai} (or P ′ refines
P, or P ′ is finer than P) iff

(∀ i) Ai =
⋃

k

Bik;

i.e., each Bik is contained in some Ai.

The intersection P ′ .∩ P ′′ of P ′ = {Ai} and P ′′ = {Bk} is understood
to be the family of all sets of the form

Ai ∩Bk, i, k = 1, 2, . . . .

It is an M-partition that refines both P ′ and P ′′.

Definition 3.

A map (function) f : S → T is elementary , or M-elementary , on a set
A ∈M iff there is anM-partition P = {Ai} of A such that f is constant
(f = ai) on each Ai.

If P = {A1, . . . , Aq} is finite, we say that f is simple, or M-simple,
on A.

If the Ai are intervals in En, we call f a step function; it is a simple
step function if P is finite.2

The function values ai are elements of T (possibly vectors). They may be
infinite if T = E∗. Any simple map is also elementary, of course.

Definition 4.

A map f : S → (T, ρ′) is said to be measurable (or M-measurable) on a
set A in (S,M) iff

f = lim
m→∞

fm (pointwise) on A

for some sequence of functions fm : S → T , all elementary on A. (See
Chapter 4, §12 for “pointwise.”)

Note 1. This implies A ∈M, as follows from Definitions 2 and 3. (Why?)

Corollary 1. If f : S → (T, ρ′) is elementary on A, it is measurable on A.

Proof. Set fm = f , m = 1, 2, . . . , in Definition 4. Then clearly fm → f
on A. �

Corollary 2. If f is simple, elementary , or measurable on A in (S,M), it
has the same property on any subset B ⊆ A with B ∈M.

2 Only simple step functions are needed for a “limited approach.” (One may proceed from

here to §4, treating m as an additive premeasure.)

§1. Elementary and Measurable Functions 219

Proof. Let f be simple on A; so f = ai on Ai, i = 1, 2, . . . , n, for some finite
M-partition, A =

⋃n
i=1 Ai.

If A ⊇ B ∈ M, then

{B ∩Ai}, i = 1, 2, . . . , n,

is a finiteM-partition of B (why?), and f = ai on B∩Ai; so f is simple on B.

For elementary maps, use countable partitions.

Now let f be measurable on A, i.e.,

f = lim
m→∞

fm

for some elementary maps fm on A. As shown above, the fm are elementary
on B, too, and fm → f on B; so f is measurable on B. �

Corollary 3. If f is elementary or measurable on each of the (countably
many) sets An in (S,M), it has the same property on their union A =

⋃

n An.

Proof. Let f be elementary on each An (so An ∈M by Note 1).

By Corollary 1 of Chapter 7, §1,

A =
⋃

An =
⋃

Bn

for some disjoint sets Bn ⊆ An (Bn ∈M).

By Corollary 2, f is elementary on each Bn; i.e., constant on sets of some
M-partition {Bni} of Bi.

All Bni combined (for all n and all i) form anM-partition of A,

A =
⋃

n

Bn =
⋃

n,i

Bni.

As f is constant on each Bni, it is elementary on A.

For measurable functions f , slightly modify the method used in Corol-
lary 2. �

Corollary 4. If f : S → (T, ρ′) is measurable on A in (S,M), so is the com-
posite map g ◦ f , provided g : T → (U, ρ′′) is relatively continuous on f [A].

Proof. By assumption,

f = lim
m→∞

fm (pointwise)

for some elementary maps fm on A.

Hence by the continuity of g,

g(fm(x))→ g(f(x)),

i.e., g ◦ fm → g ◦ f (pointwise) on A.
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Moreover, all g ◦ fm are elementary on A (for g ◦ fm is constant on any
partition set, if fm is).

Thus g ◦ f is measurable on A, as claimed. �

Theorem 1. If the maps f, g, h : S → E1 (C) are simple, elementary , or mea-
surable on A in (S,M), so are f ± g, fh, |f |a (for real a 6= 0) and f/h (if
h 6= 0 on A).

Similarly for vector-valued f and g and scalar-valued h.

Proof. First, let f and g be elementary on A. Then there are two M-
partitions,

A =
⋃

Ai =
⋃

Bk,

such that f = ai on Ai and g = bk on Bk, say.

The sets Ai∩Bk (for all i and k) then form a newM-partition of A (why?),
such that both f and g are constant on each Ai ∩Bk (why?); hence so is f ± g.

Thus f ± g is elementary on A. Similarly for simple functions.

Next, let f and g be measurable on A; so

f = lim fm and g = lim gm (pointwise) on A

for some elementary maps fm, gm.

By what was shown above, fm ± gm is elementary for each m. Also,

fm ± gm → f ± g (pointwise) on A.

Thus f ± g is measurable on A.

The rest of the theorem follows quite similarly. �

If the range space is En (or Cn), then f has n real (complex) components
f1, . . . , fn, as in Chapter 4, §3 (Part II). This yields the following theorem.

Theorem 2. A function f : S → En (Cn) is simple, elementary , or measur-
able on a set A in (S,M) iff all its n component functions f1, f2, . . . , fn are.

Proof. For simplicity, consider f : S → E2, f = (f1, f2).

If f1 and f2 are simple or elementary on A then (exactly as in Theorem 1),
one can achieve that both are constant on sets Ai ∩ Bk of one and the same
M-partition of A. Hence f = (f1, f2), too, is constant on each Ai ∩ Bk, as
required.

Conversely, let
f = c̄i = (ai, bi) on Ci

for someM-partition

A =
⋃

Ci.

Then by definition, f1 = ai and f2 = bi on Ci; so both are elementary (or
simple) on A.
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In the general case (En or Cn), the proof is analogous.

For measurable functions, the proof reduces to limits of elementary maps
(using Theorem 2 of Chapter 3, §15). The details are left to the reader. �

Note 2. As C = E2, a complex function f : S → C is simple, elementary ,
or measurable on A iff its real and imaginary parts are.

By Definition 4, a measurable function is a pointwise limit of elementary
maps. However, ifM is a σ-ring , one can make the limit uniform. Indeed, we
have the following theorem.

Theorem 3. IfM is a σ-ring , and f : S → (T, ρ′) isM-measurable on A, then

f = lim
m→∞

gm (uniformly) on A

for some finite elementary maps gm.

Thus given ε > 0, there is a finite elementary map g such that ρ′(f, g) < ε
on A.3,4

The proof will be given in §2 for T = E∗. The general case is sketched in
Problem 7 of §2. Meanwhile, we take the theorem for granted and use it below.

Theorem 4. IfM is a σ-ring in S, if

fm → f (pointwise) on A

(fm : S → (T, ρ′)), and if all fm are M-measurable on A, so also is f .4

Briefly: A pointwise limit of measurable maps is measurable (unlike contin-
uous maps; cf. Chapter 4, §12).
Proof. By the second clause of Theorem 3, each fm is uniformly approximated
by some elementary map gm on A, so that, taking ε = 1/m, m = 1, 2, . . . ,

(1) ρ′(fm(x), gm(x)) <
1

m
for all x ∈ A and all m.

Fixing such a gm for each m, we show that gm → f (pointwise) on A, as
required in Definition 4.

Indeed, fix any x ∈ A. By assumption, fm(x)→ f(x). Hence, given δ > 0,

(∃ k) (∀m > k) ρ′(f(x), fm(x)) < δ.

Take k so large that, in addition,

(∀m > k)
1

m
< δ.

3 We briefly write ρ′(f, g) for supx∈S ρ′(f(x), g(x)).
4 The theorem holds also for T = E∗, with ρ′ as in Problem 5 of Chapter 3, §11.
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Then by the triangle law and by (1), we obtain for m > k that

ρ′(f(x), gm(x)) ≤ ρ′(f(x), fm(x)) + ρ′(fm(x), gm(x))

< δ +
1

m
< 2δ.

As δ is arbitrary, this implies ρ′(f(x), gm(x)) → 0, i.e., gm(x) → f(x) for
any (fixed) x ∈ A, thus proving the measurability of f . �

Note 3. If

M = B (= Borel field in S),

we often say “Borel measurable” forM-measurable. If

M = {Lebesgue measurable sets in En},
we say “Lebesgue (L) measurable” instead. Similarly for “Lebesgue–Stieltjes
(LS) measurable.”

Problems on Measurable and
Elementary Functions in (S,M)

1. Fill in all proof details in Corollaries 2 and 3 and Theorems 1 and 2.

2. Show that P ′ .∩ P ′′ is as stated at the end of Definition 2.

3. Given A ⊆ S and f, fm : S → (T, ρ′), m = 1, 2, . . . , let

H = A(fm → f)

and

Amn = A
(

ρ′(fm, f) <
1

n

)

.

Prove that

(i) H =

∞
⋂

n=1

∞
⋃

k=1

∞
⋂

m=k

Amn;

(ii) H ∈M if all Amn are inM andM is a σ-ring .

[Hint: x ∈ H iff

(∀n) (∃ k) (∀m ≥ k) x ∈ Amn.

Why?]

3′. Do Problem 3 for T = E∗ and f = ±∞ on H.
[Hint: If f = +∞, Amn = A(fm > n).]

⇒4. Let f : S → T beM-elementary on A, withM a σ-ring in S. Show the
following.

(i) A(f = a) ∈M, A(f 6= a) ∈M.
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(ii) If T = E∗, then

A(f < a), A(f ≥ a), A(f > a), and A(f ≥ a)

are inM, too.

(iii) (∀B ⊆ T ) A ∩ f−1[B] ∈M.

[Hint: If

A =
∞
⋃

i=1

Ai

and f = ai on Ai, then A(f = a) is the countable union of those Ai for which ai = a.]

5. Do Problem 4(i) for measurable f .
[Hint: If f = lim fm for elementary maps fm, then

H = A(f = a) = A(fm → a).

Express H as in Problem 3, with

Amn = A
(

hm <
1

n

)

,

where hm = ρ′(fm, a) is elementary. (Why?) Then use Problems 4(ii) and 3(ii).]

⇒6. Given f, g : S → (T, ρ′), let h = ρ′(f, g), i.e.,

h(x) = ρ′(f(x), g(x)).

Prove that if f and g are elementary, simple, or measurable on A, so
is h.
[Hint: Argue as in Theorem 1. Use Theorem 4 in Chapter 3, §15.]

⇒7. A set B ⊆ (T, ρ′) is called separable (in T ) iff B ⊆ D (closure of D) for
a countable set D ⊆ T .

Prove that if f : S → T isM-measurable on A, then f [A] is separable
in T .
[Hint: f = lim fm for elementary maps fm; say,

fm = ami on Ami ∈M, i = 1, 2, . . . .

Let D consist of all ami (m, i = 1, 2, . . . ); so D is countable (why?) and D ⊆ T .

Verify that

(∀ y ∈ f [A]) (∃ x ∈ A) y = f(x) = lim fm(x),

with fm(x) ∈ D. Hence

(∀ y ∈ f [A]) y ∈ D,

by Theorem 3 of Chapter 3, §16.]

⇒8. Continuing Problem 7, prove that if B ⊆ D and D = {q1, q2, . . . }, then

(∀n) B ⊆
∞
⋃

i=1

Gqi

( 1

n

)

.
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[Hint: If p ∈ B ⊆ D, any Gp

(

1
n

)

contains some qi ∈ D; so

ρ′(p, qi) <
1

n
, or p ∈ Gqi

( 1

n

)

.

Thus

(∀ p ∈ B) p ∈
∞
⋃

i=1

Gqi

( 1

n

)

.]

9. Prove Corollaries 2 and 3 and Theorems 1 and 2, assuming thatM is a
semiring only.

10. Do Problem 4 forM-simple maps, assuming thatM is a ring only.

§2. Measurability of Extended-Real Functions

Henceforth we presuppose a measurable space (S,M), whereM is a σ-ring in
S. Our aim is to prove the following basic theorem, which is often used as a
definition, for extended-real functions f : S → E∗.

Theorem 1. A function f : S → E∗ is measurable on a set A ∈ M iff it
satisfies one of the following equivalent conditions (hence all of them):

(i∗) (∀ a ∈ E∗) A(f > a) ∈M; (ii∗) (∀ a ∈ E∗) A(f ≥ a) ∈M;

(iii∗) (∀ a ∈ E∗) A(f < a) ∈M; (iv∗) (∀ a ∈ E∗) A(f ≤ a) ∈M.

We first prove the equivalence of these conditions by showing that (i∗) ⇒
(ii∗)⇒ (iii∗)⇒ (iv∗)⇒ (i∗), closing the “circle.”

(i∗)⇒ (ii∗). Assume (i∗). If a = −∞,

A(f ≥ a) = A ∈M
by assumption. If a = +∞,

A(f ≥ a) = A(f =∞) =

∞
⋂

n=1

A(f > n) ∈M

by (i∗). And if a ∈ E1,

A(f ≥ a) =

∞
⋂

n=1

A
(

f > a− 1

n

)

.

(Verify!) By (i∗),

A
(

f > a− 1

n

)

∈M;

so A(f ≥ a) ∈M (a σ-ring!).
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(ii∗)⇒ (iii∗). For (ii∗) and A ∈M imply

A(f < a) = A−A(f ≥ a) ∈ M.

(iii∗)⇒ (iv∗). If a ∈ E1,

A(f ≤ a) =

∞
⋂

n=1

A
(

f < a+
1

n

)

∈ M.

What if a = ±∞?

(iv∗)⇒ (i∗). Indeed, (iv∗) and A ∈M imply

A(f > a) = A−A(f ≤ a) ∈ M.

Thus, indeed, each of (i∗) to (iv∗) implies the others. To finish, we need two
lemmas that are of interest in their own right.

Lemma 1. If the maps fm : S → E∗ (m = 1, 2, . . . ) satisfy conditions (i∗)–
(iv∗), so also do the functions

sup fm, inf fm, lim fm, and lim fm,

defined pointwise, i .e.,

(sup fm)(x) = sup fm(x),

and similarly for the others.

Proof. Let f = sup fm. Then

A(f ≤ a) =
∞
⋂

m=1

A(fm ≤ a). (Why?)

But by assumption,
A(fm ≤ a) ∈M

(fm satisfies (iv∗)). Hence A(f ≤ a) ∈M (forM is a σ-ring).

Thus sup fm satisfies (i∗)–(iv∗).

So does inf fm; for

A(inf fm ≥ a) =

∞
⋂

m=1

A(fm ≥ a) ∈M.

(Explain!)

So also do lim fm and lim fm; for by definition,

lim fm = sup
k

gk,

where
gk = inf

m≥k
fm
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satisfies (i∗)–(iv∗), as was shown above; hence so does sup gk = lim fm.

Similarly for lim fm. �

Lemma 2. If f satisfies (i∗)–(iv∗), then

f = lim
m→∞

fm (uniformly) on A

for some sequence of finite functions fm, all M-elementary on A.

Moreover, if f ≥ 0 on A, the fm can be made nonnegative, with {fm}↑ on A.

Proof. Let H = A(f = +∞), K = A(f = −∞), and

Amk = A
(k − 1

2m
≤ f <

k

2m

)

for m = 1, 2, . . . and k = 0,±1,±2, . . . ,±n, . . . .
By (i∗)–(iv∗),

H = A(f = +∞) = A(f ≥ +∞) ∈M,

K ∈M, and

Amk = A
(

f ≤ k − 1

2m

)

∩A
(

f <
k

2m

)

∈M.

Now define

(∀m) fm =
k − 1

2m
on Amk,

fm = m on H, and fm = −m on K. Then each fm is finite and elementary on
A since

(∀m) A = H ∪K ∪
∞
⋃

k=−∞

Amk (disjoint)

and fm is constant on H, K, and Amk.

We now show that fm → f (uniformly) on H,K, and

J =

∞
⋃

k=−∞

Amk,

hence on A.

Indeed, on H we have

lim fm = limm = +∞ = f,

and the limit is uniform since the fm are constant on H.

Similarly,

fm = −m→ −∞ = f on K.

Finally, on Amk we have

(k − 1) 2−m ≤ f < k 2−m
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and fm = (k − 1) 2−m; hence

|fm − f | < k 2−m − (k − 1) 2−m = 2−m.

Thus

|fm − f | < 2−m → 0

on each Amk, hence on

J =

∞
⋃

k=−∞

Amk.

By Theorem 1 of Chapter 4, §12, it follows that fm → f (uniformly) on J .
Thus, indeed, fm → f (uniformly) on A.

If, further, f ≥ 0 on A, then K = ∅ and Amk = ∅ for k ≤ 0. Moreover,
on passage from m to m + 1, each Amk (k > 0) splits into two sets. On one,
fm+1 = fm; on the other, fm+1 > fm. (Why?)

Thus 0 ≤ fm ր f (uniformly) on A, and all is proved. �

Proof of Theorem 1. If f is measurable on A, then by definition, f = lim fm
(pointwise) for some elementary maps fm on A.

By Problem 4(ii) in §1, all fm satisfy (i∗)–(iv∗). Thus so does f by Lemma 1,
for here f = lim fm = limfm.

The converse follows by Lemma 2. This completes the proof. �

Note 1. Lemmas 1 and 2 prove Theorems 3 and 4 of §1, for f : S → E∗.
By using also Theorem 2 in §1, one easily extends this to f : S → En (Cn).
Verify!

Corollary 1. If f : S → E∗ is measurable on A, then

(∀ a ∈ E∗) A(f = a) ∈M and A(f 6= a) ∈M.

Indeed,

A(f = a) = A(f ≥ a) ∩A(f ≤ a) ∈M

and

A(f 6= a) = A−A(f = a) ∈ M.

Corollary 2. If f : S → (T, ρ′) is measurable on A in (S,M), then

A ∩ f−1[G] ∈M

for every globe G = Gq(δ) in (T, ρ′).

Proof. Define h : S → E1 by

h(x) = ρ′(f(x), q).
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Then h is measurable on A by Problem 6 in §1. Thus by Theorem 1,

A(h < δ) ∈M.

But as is easily seen,

A(h < δ) = {x ∈ A | ρ′(f(x), q) < δ} = A ∩ f−1[Gq(δ)].

Hence the result. �

Definition.

Given f, g : S → E∗, we define the maps f ∨ g and f ∧ g on S by

(f ∨ g)(x) = max{f(x), g(x)}
and

(f ∧ g)(x) = min{f(x), g(x)};
similarly for f ∨ g ∨ h, f ∧ g ∧ h, etc.

We also set
f+ = f ∨ 0 and f− = −f ∨ 0.

Clearly, f+ ≥ 0 and f− ≥ 0 on S. Also, f = f+ − f− and |f | = f+ + f−.
(Why?) We now obtain the following theorem.

Theorem 2. If the functions f, g : S → E∗ are simple, elementary , or mea-
surable on A, so also are f ± g, fg, f ∨ g, f ∧ g, f+, f−, and |f |a (a 6= 0).

Proof. If f and g are finite, this follows by Theorem 1 of §1 on verifying that

f ∨ g =
1

2
(f + g + |f − g|)

and

f ∧ g =
1

2
(f + g − |f − g|)

on S. (Check it!)

Otherwise, consider

A(f = +∞), A(f = −∞), A(g = +∞), and A(g = −∞).

By Theorem 1, these areM-sets; hence so is their union U .

On each of them f ∨ g and f ∧ g equal f or g; so by Corollary 3 in §1, f ∨ g
and f ∧ g have the desired properties on U . So also have f+ = f ∨ 0 and
f− = −f ∨ 0 (take g = 0).

We claim that the maps f ± g and fg are simple (hence elementary and
measurable) on each of the four sets mentioned above, hence on U .

For example, on A(f = +∞),

f ± g = +∞ (constant)
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by our conventions (2∗) in Chapter 4, §4. For fg, split A(f = +∞) into three
sets A1, A2, A3 ∈ M, with g > 0 on A1, g < 0 on A2, and g = 0 on A3; so
fg = +∞ on A1, fg = −∞ on A2, and fg = 0 on A3. Hence fg is simple on
A(f = +∞).

For |f |a, use U = A(|f | =∞). Again, the theorem holds on U , and also on
A−U , since f and g are finite on A−U ∈M. Thus it holds on A = (A−U)∪U ,
by Corollary 3 in §1. �

Note 2. Induction extends Theorem 2 to any finite number of functions.

Note 3. Combining Theorem 2 with f = f+ − f−, we see that f : S → E∗

is simple (elementary, measurable) iff f+ and f− are. We also obtain the
following result.

Theorem 3. If the functions f, g : S → E∗ are measurable on A ∈ M, then
A(f ≥ g) ∈M, A(f < g) ∈ M, A(f = g) ∈M, and A(f 6= g) ∈M.

(See Problem 4 below.)

Further Problems on Measurable Functions in (S,M)

1. In Theorem 1, give the details in proving the equivalence of (i∗)–(iv∗).

2. Prove Note 1.

2′. Prove that f = f+ − f− and |f | = f+ + f−.

3. Complete the proof of Theorem 2, in detail.

⇒4. Prove Theorem 3.
[Hint: By our conventions, A(f ≥ g) = A(f − g ≥ 0) even if g or f is ±∞ for
some x ∈ A. (Verify all cases!) By Theorems 1 and 2, A(f − g ≥ 0) ∈ M; so
A(f ≥ g) ∈M, and A(f < g) = A−A(f ≥ g) ∈M. Proceed.]

5. Show that the measurability of |f | does not imply that of f .
[Hint: Let f = 1 on Q and f = −1 on A−Q for some Q /∈ M (Q ⊂ A); e.g., use Q
of Problem 6 in Chapter 7, §8.]

⇒6. Show that a function f ≥ 0 is measurable on A iff fm ր f (pointwise)
on A for some finite simple maps fm ≥ 0, {fm}↑.
[Hint: Modify the proof of Lemma 2, setting Hm = A(f ≥ m) and fm = m on Hm,

and defining the Amk for 1 ≤ k ≤ m2m only.]

⇒7. Prove Theorem 3 in §1.
[Outline: By Problems 7 and 8 in §1, there are qi ∈ T such that

(∀n) f [A] ⊆
∞
⋃

i=1

Gqi

( 1

n

)

.

Set

Ani = A ∩ f−1
[

Gqi

( 1

n

)]

∈M

by Corollary 2; so ρ′(f(x), qi) <
1
n

on Ani.
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By Corollary 1 in Chapter 7, §1,

A =
∞
⋃

i=1

Ani =
∞
⋃

i=1

Bni (disjoint)

for some sets Bni ∈M, Bni ⊆ Ani. Now define gn = qi on Bni; so ρ′(f, gn) < 1
n

on

each Bni, hence on A. By Theorem 1 in Chapter 4, §12, gn → f (uniformly) on A.]

⇒8. Prove that f : S → E1 is M-measurable on A iff A ∩ f−1[B] ∈ M for
every Borel set B (equivalently, for every open set B) in E1. (In the
case f : S → E∗, add: “and for B = {±∞}.”)
[Outline: Let

R = {X ⊆ E1 | A ∩ f−1[X] ∈M}.

Show that R is a σ-ring in E1.

Now, by Theorem 1, if f is measurable on A, R contains all open intervals; for

A ∩ f−1[(a, b)] = A(f > a) ∩A(f < b).

Then by Lemma 2 of Chapter 7, §2, R ⊇ G, hence R ⊇ B. (Why?)

Conversely, if so,

(a,∞) ∈ R ⇒ A ∩ f−1[(a,∞)] ∈M⇒ A(f > a) ∈M.]

⇒9. Do Problem 8 for f : S → En.
[Hint: If f = (f1, . . . , fn) and B = (ā, b̄) ⊂ En, with ā = (a1, . . . , an) and b̄ =
(b1, . . . , bn), show that

f−1[B] =
n
⋂

k=1

f−1
k

[(ak , bk)].

Apply Problem 8 to each fk : S → E1 and use Theorem 2 in §1. Proceed as in
Problem 8.]

10. Do Problem 8 for f : S → Cn, treating Cn as E2n.

11. Prove that f : S → (T, ρ′) is measurable on A in (S,M) iff

(i) A ∩ f−1[G] ∈M for every open globe G ⊆ T , and

(ii) f [A] is separable in T (Problem 7 in §1).
[Hint: If so, proceed as in Problem 7 (without assuming measurability of f) to show

that f = lim gn for some elementary maps gn on A. For the converse, use Problem 7
in §1 and Corollary 2 in §2.]

12. (i) Show that if all of T is separable (Problem 7 in §1), there is a
sequence of globes Gk ⊆ T such that each nonempty open set
B ⊆ T is the union of some of these Gk.

(ii) Show that En and Cn are separable.

[Hints: (i) Use the Gqi (
1
n
) of Problem 8 in §1, putting them in one sequence.

(ii) Take D = Rn ⊂ En in Problem 7 of §1.]
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13. Do Problem 11 with “globe G ⊆ T” replaced by “Borel set B ⊆ T .”
[Hints: Treat f as f : A→ T ′, T ′ = f [A], noting that

A ∩ f−1[B] = A ∩ f−1[B ∩ T ′].

By Problem 12, if B 6= ∅ is open in T , then B ∩ T ′ is a countable union of “globes”
Gq ∩ T ′ in (T ′, ρ′); see Theorem 4 in Chapter 3, §12. Proceed as in Problem 8,

replacing E1 by T .]

14. A map g : (T, ρ′) → (U, ρ′′) is said to be of Baire class 0 (g ∈ B0) on
D ⊆ T iff g is relatively continuous on D. Inductively, g is of Baire
class n (g ∈ Bn, n ≥ 1) iff g = lim gm (pointwise) on D for some maps
gm ∈ Bn−1. Show by induction that Corollary 4 in §1 holds also if
g ∈ Bn on f [A] for some n.

§3. Measurable Functions in (S,M,m)

I. Henceforth we shall presuppose not just a measurable space (§1) but a mea-
sure space (S,M,m), where m :M→ E∗ is a measure on a σ-ringM⊆ 2S .

We saw in Chapter 7 that one could often neglect sets of Lebesgue measure
zero on En—if a property held everywhere except on a set of Lebesgue measure
zero, we said it held “almost everywhere.” The following definition generalizes
this usage.

Definition 1.

We say that a property P (x) holds for almost all x ∈ A (with respect to
the measure m) or almost everywhere (a.e.(m)) on A iff it holds on A−Q
for some Q ∈ M with mQ = 0.

Thus we write

fn → f (a.e.) or f = lim fn (a.e.(m)) on A

iff fn → f (pointwise) on A − Q, mQ = 0. Of course, “pointwise” implies
“a.e.” (take Q = ∅), but the converse fails.

Definition 2.

We say that f : S → (T, ρ′) is almost measurable on A iff A ∈ M and f
isM-measurable on A−Q, mQ = 0.

We then also say that f is m-measurable (m being the measure in-
volved) as opposed toM-measurable.

Observe that we may assume Q ⊆ A here (replace Q by A ∩Q).

∗Note 1. If m is a generalized measure (Chapter 7, §11), replace mQ = 0
by vmQ = 0 (vm = total variation of m) in Definitions 1 and 2 and in the
following proofs.
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Corollary 1. If the functions

fn : S → (T, ρ′), n = 1, 2, . . . ,

are m-measurable on A, and if

fn → f (a.e.(m))

on A, then f is m-measurable on A.

Proof. By assumption, fn → f (pointwise) on A−Q0, mQ0 = 0. Also, fn is
M-measurable on

A−Qn, mQn = 0, n = 1, 2, . . . .

(The Qn need not be the same.)

Let

Q =
∞
⋃

n=0

Qn;

so

mQ ≤
∞
∑

n=0

mQn = 0.

By Corollary 2 in §1, all fn areM-measurable on A−Q (why?), and fn → f
(pointwise) on A−Q, as A−Q ⊆ A−Q0.

Thus by Theorem 4 in §1, f isM-measurable on A −Q. As mQ = 0, this
is the desired result. �

Corollary 2. If f = g (a.e. (m)) on A and f is m-measurable on A, so is g.

Proof. By assumption, f = g on A−Q1 and f isM-measurable on A−Q2,
with mQ1 = mQ2 = 0.

Let Q = Q1 ∪Q2. Then mQ = 0 and g = f on A−Q. (Why?)

By Corollary 2 of §1, f is M-measurable on A − Q. Hence so is g, as
claimed. �

Corollary 3. If f : S → (T, ρ′) is m-measurable on A, then

f = lim
n→∞

fn (uniformly) on A−Q (mQ = 0),

for some maps fn, all elementary on A−Q.

(Compare Corollary 3 with Theorem 3 in §1).
Quite similarly all other propositions of §1 carry over to almost measurable

(i.e., m-measurable) functions. Note, however, that the term “measurable” in
§§1 and 2 always meant “M-measurable.” This implies m-measurability (take
Q = ∅), but the converse fails. (See Note 2, however.)

We still obtain the following result.
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Corollary 4. If the functions

fn : S → E∗ (n = 1, 2, . . . )

are m-measurable on a set A, so also are

sup fn, inf fn, lim fn, and lim fn.

(Use Lemma 1 of §2).
Similarly, Theorem 2 in §2 carries over to m-measurable functions.

Note 2. Ifm is complete (such as Lebesgue measure and LS measures) then,
for f : S → E∗ (En, Cn), m- and M-measurability coincide (see Problem 3
below).

II. Measurability and Continuity. To study the connection between these
notions, we first state two lemmas, often treated as definitions.

Lemma 1. A map f : S → En (Cn) isM-measurable on A iff

A ∩ f−1[B] ∈M
for each Borel set (equivalently , open set) B in En (Cn).

See Problems 8–10 in §2 for a sketch of the proof.

Lemma 2. A map f : (S, ρ)→ (T, ρ′) is relatively continuous on A ⊆ S iff for
any open set B ⊆ (T, ρ′), the set A ∩ f−1[B] is open in (A, ρ) as a subspace of
(S, ρ).

(This holds also with “open” replaced by “closed .”)

Proof. By Chapter 4, §1, footnote 4, f is relatively continuous on A iff its
restriction to A (call it g : A→ T ) is continuous in the ordinary sense.

Now, by Problem 15(iv)(v) in Chapter 4, §2, with S replaced by A, this
means that g−1[B] is open (closed) in (A, ρ) when B is so in (T, ρ′). But

g−1[B] = {x ∈ A | f(x) ∈ B} = A ∩ f−1[B].

(Why?) Hence the result follows. �

Theorem 1. Let m :M → E∗ be a topological measure in (S, ρ). If f : S →
En (Cn) is relatively continuous on a set A ∈M, it is M-measurable on A.

Proof. Let B be open in En (Cn). By Lemma 2,

A ∩ f−1[B]

is open in (A, ρ). Hence by Theorem 4 of Chapter 3, §12,
A ∩ f−1[B] = A ∩ U

for some open set U in (S, ρ).
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Now, by assumption, A is in M. So is U , as M is topological (M ⊇ G).
Hence

A ∩ f−1[B] = A ∩ U ∈M
for any open B ⊆ En (Cn). The result follows by Lemma 1. �

Note 3. The converse fails. For example, the Dirichlet function (Exam-
ple (c) in Chapter 4, §1) is L-measurable (even simple) but discontinuous ev-
erywhere.

Note 4. Lemma 1 and Theorem 1 hold for a map f : S → (T, ρ′), too,
provided f [A] is separable, i.e.,

f [A] ⊆ D

for a countable set D ⊆ T (cf. Problem 11 in §2).

∗III. For strongly regular measures (Definition 5 in Chapter 7, §7), we obtain
the following theorem.

∗Theorem 2 (Luzin). Let m :M→ E∗ be a strongly regular measure in (S, ρ).
Let f : S → (T, ρ′) be m-measurable on A.

Then given ε > 0, there is a closed set F ⊆ A (F ∈M) such that

m(A− F ) < ε

and f is relatively continuous on F .

(Note that if T = E∗, ρ′ is as in Problem 5 of Chapter 3, §11.)
Proof.1 By assumption, f isM-measurable on a set

H = A−Q, mQ = 0;

so by Problem 7 in §1, f [H] is separable in T . We may safely assume that f is
M-measurable on S and that all of T is separable. (If not, replace S and T by
H and f [H], restricting f to H, and m toM-sets inside H; see also Problems 7
and 8 below.)

Then by Problem 12 of §2, we can fix globes G1, G2, . . . in T such that

(1) each open set B 6= ∅ in T is the union of a subsequence of {Gk}.

Now let ε > 0, and set

Sk = S ∩ f−1[Gk] = f−1[Gk], k = 1, 2, . . . .

By Corollary 2 in §2, Sk ∈ M. As m is strongly regular, we find for each Sk

an open set
Uk ⊇ Sk,

1 For a simpler proof, in the case mA <∞, see Problem 10 below.
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with Uk ∈ M and

m(Uk − Sk) <
ε

2k+1
.

Let Bk = Uk − Sk, D =
⋃

k Bk; so D ∈M and

(2) mD ≤
∑

k

mBk ≤
∑

k

ε

2k+1
≤ 1

2
ε

and

(2′) Uk −Bk = Sk = f−1[Gk].

As D =
⋃

Bk, we have

(∀ k) Bk −D = Bk ∩ (−D) = ∅.
Hence by (2′),

(∀ k) f−1[Gk] ∩ (−D) = (Uk −Bk) ∩ (−D)

= (Uk ∩ (−D))− (Bk ∩ (−D)) = Uk ∩ (−D).

Combining this with (1), we have, for each open set B =
⋃

i Gki
in T ,

(3) f−1[B] ∩ (−D) =
⋃

i

f−1[Gki
] ∩ (−D) =

⋃

i

Uki
∩ (−D).

Since the Uki
are open in S (by construction), the set (3) is open in S −D

as a subspace of S. By Lemma 2, then, f is relatively continuous on S−D, or
rather on

H −D = A−Q−D

(since we actually substituted S for H in the course of the proof). As mQ = 0
and mD < 1

2ε by (2),

m(H −D) < mA− 1

2
ε.

Finally, as m is strongly regular and H −D ∈M, there is a closedM-set

F ⊆ H −D ⊆ A

such that

m(H −D − F ) <
1

2
ε.

Since f is relatively continuous on H −D, it is surely so on F . Moreover,

A− F = (A− (H −D)) ∪ (H −D − F );

so

m(A− F ) ≤ m(A− (H −D)) +m(H −D − F ) <
1

2
ε+

1

2
ε = ε.
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This completes the proof. �

∗Lemma 3. Given [a, b] ⊂ E1 and disjoint closed sets A,B ⊆ (S, ρ), there
always is a continuous map g : S → [a, b] such that g = a on A and g = b
on B.

Proof. If A = ∅ or B = ∅, set g = b or g = a on all of S.

If, however, A and B are both nonempty, set

g(x) = a+
(b− a)ρ(x,A)

ρ(x,A) + ρ(x,B)
.

As A is closed, ρ(x,A) = 0 iff x ∈ A (Problem 15 in Chapter 3, §14); similarly
for B. Thus ρ(x,A) + ρ(x,B) 6= 0.

Also, g = a on A, g = b on B, and a ≤ g ≤ b on S.

For continuity, see Chapter 4, §8, Example (e). �

∗Lemma 4 (Tietze). If f : (S, ρ)→ E∗ is relatively continuous on a closed set
F ⊆ S, there is a function g : S → E∗ such that g = f on F ,

inf g[S] = inf f [F ], sup g[S] = sup f [F ],

and g is continuous on all of S.

(We assume E∗ metrized as in Problem 5 of Chapter 3, §11. If |f | <∞, the
standard metric in E1 may be used.)

Proof Outline. First, assume inf f [F ] = 0 and sup f [F ] = 1. Set

A = F
(

f ≤ 1

3

)

= F ∩ f−1

[

[

0,
1

3

]

]

and

B = F
(

f ≥ 2

3

)

= F ∩ f−1

[

[2

3
, 1
]

]

.

As F is closed in S, so are A and B by Lemma 2. (Why?)

As B∩A = ∅, Lemma 3 yields a continuous map g1 : S → [0, 13 ], with g1 = 0

on A, and g1 = 1
3 on B. Set f1 = f −g1 on F ; so |f1| ≤ 2

3 , and f1 is continuous
on F .

Applying the same steps to f1 (with suitable sets A1, B1 ⊆ F ), find a con-
tinuous map g2, with 0 ≤ g2 ≤ 2

3 · 13 on S. Then f2 = f1 − g2 is continuous,

and 0 ≤ f2 ≤ ( 23 )
2 on F .

Continuing, obtain two sequences {gn} and {fn} of real functions such that
each gn is continuous on S,

0 ≤ gn ≤
1

3

(2

3

)n−1

,
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and fn = fn−1 − gn is defined and continuous on F , with

0 ≤ fn ≤
(2

3

)n

there (f0 = f).

We claim that

g =

∞
∑

n=1

gn

is the desired map.

Indeed, the series converges uniformly on S (Theorem 3 of Chapter 4, §12).
As all gn are continuous, so is g (Theorem 2 in Chapter 4, §12). Also,

∣

∣

∣

∣

f −
n
∑

k=1

gk

∣

∣

∣

∣

≤
(2

3

)n

→ 0

on F (why?); so f = g on F . Moreover,

0 ≤ g1 ≤ g ≤
∞
∑

n=1

1

3

(2

3

)n

= 1 on S.

Hence inf g[S] = 0 and sup g[S] = 1, as required.

Now assume

inf f [F ] = a < sup f [F ] = b (a, b ∈ E1).

Set

h(x) =
f(x)− a

b− a

so that inf h[F ] = 0 and suph[F ] = 1. (Why?)

As shown above, there is a continuous map g0 on S, with

g0 = h =
f − a

b− a

on F , inf g0[S] = 0, and sup g0[S] = 1. Set

a+ (b− a)g0 = g.

Then g is the required function. (Verify!)

Finally, if a, b ∈ E∗ (a < b), all reduces to the bounded case by considering
H(x) = arctan f(x). �

∗Theorem 3 (Fréchet). Let m : M → E∗ be a strongly regular measure in
(S, ρ). If f : S → E∗ (En, Cn) is m-measurable on A, then

f = lim
i→∞

fi (a.e.(m)) on A
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for some sequence of maps fi continuous on S. (We assume E∗ to be metrized
as in Lemma 4.)

Proof. We consider f : S → E∗ (the other cases reduce to E1 via components).

Taking ε = 1
i (i = 1, 2, . . . ) in Theorem 2, we obtain for each i a closed

M-set Fi ⊆ A such that

m(A− Fi) <
1

i

and f is relatively continuous on each Fi. We may assume that Fi ⊆ Fi+1 (if

not, replace Fi by
⋃i

k=1 Fk).

Now, Lemma 4 yields for each i a continuous map fi : S → E∗ such that
fi = f on Fi. We complete the proof by showing that fi → f (pointwise) on
the set

B =

∞
⋃

i=1

Fi

and that m(A−B) = 0.

Indeed, fix any x ∈ B. Then x ∈ Fi for some i = i0, hence also for i > i0
(since {Fi}↑). As fi = f on Fi, we have

(∀ i > i0) fi(x) = f(x),

and so fi(x)→ f(x) for x ∈ B. As Fi ⊆ B, we get

m(A−B) ≤ m(A− Fi) <
1

i

for all i. Hence m(A−B) = 0, and all is proved. �

Problems on Measurable Functions in (S,M,m)

1. Fill in all proof details in Corollaries 1 to 4.

1′. Verify Notes 3 and 4.

2. Prove Theorems 1 and 2 in §1 and Theorem 2 in §2, for almost measur-
able functions.

3. Prove Note 2.
[Hint: If f : S → E∗ is M-measurable on B = A − Q (mQ = 0, Q ⊆ A), then

A = B ∪Q and

(∀ a ∈ E∗) A(f > a) = B(f > a) ∪Q(f > a).

Here B(f > a) ∈ M by Theorem 1 in §2, and Q(f > a) ∈ M if m is complete. For
f : S → En (Cn), use Theorem 2 of §1.]

∗4. Show that if m is complete and f : S → (T, ρ′) is m-measurable on A
with f [A] separable in T , then f isM-measurable on A.
[Hint: Use Problem 13 in §2.]
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∗5. Prove Theorem 1 for f : S → (T, ρ′), assuming that f [A] is separable
in T .

6. Given fn → f (a.e.) on A, prove that fn → g (a.e.) on A iff f = g (a.e.)
on A.

7. Given A ∈M in (S,M,m), let mA be the restriction of m to

MA = {X ∈M | X ⊆ A}.
Prove that

(i) (A,MA,mA) is a measure space (called a subspace of (S,M,m));

(ii) if m is complete, topological, σ-finite or (strongly) regular, so
is mA.

8. (i) Show that ifD ⊆ K ⊆ (T, ρ′), then the closure ofD in the subspace
(K, ρ′) is K ∩D, where D is the closure of D in (T, ρ′).
[Hint: Use Problem 11 in Chapter 3, §16.]

(ii) Prove that if B ⊆ K and if B is separable in (T, ρ′), it is so
in (K, ρ′).
[Hint: Use Problem 7 from §1.]

∗9. Fill in all proof details in Lemma 4.

10. Simplify the proof of Theorem 2 for the case mA <∞.
[Outline: (i) First, let f be elementary, with f = ai on Ai ∈ M, A =

⋃

i Ai

(disjoint),
∑

mAi = mA <∞.

Given ε > 0,

(∃n) mA−
n
∑

i=1

mAi <
1

2
ε.

Each Ai has a closed subset Fi ∈ M with m(Ai − Fi) < ε/2n. (Why?) Now use
Problem 17 in Chapter 4, §8, and set F =

⋃n
i=1 Fi.

(ii) If f is M-measurable on H = A − Q, mQ = 0, then by Theorem 3 in §1,
fn → f (uniformly) on H for some elementary maps fn. By (i), each fn is relatively
continuous on a closed M-set Fn ⊆ H, with mH − mFn < ε/2n; so all fn are

relatively continuous on F =
⋂∞

n=1 Fn. Show that F is the required set.]

11. Given fn : S → (T, ρ′), n = 1, 2, . . . , we say that

(i) fn → f almost uniformly on A ⊆ S iff

(∀ δ > 0) (∃D ∈M | mD < δ) fn → f (uniformly) on A−D;

(ii) fn → f in measure on A iff

(∀ δ, σ > 0) (∃ k) (∀n > k) (∃Dn ∈M | mDn < δ)

ρ′(f, fn) < σ on A−Dn.
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Prove the following.

(a) fn → f (uniformly) implies fn → f (almost uniformly), and the
latter implies both fn → f (in measure) and fn → f (a.e.).

(b) Given fn → f (almost uniformly), we have fn → g (almost uni-
formly) iff f = g (a.e.); similarly for convergence in measure.

(c) If f and fn areM-measurable on A, then fn → f in measure on
A iff

(∀σ > 0) lim
n→∞

mA(ρ′(f, fn) ≥ σ) = 0.

12. Assuming that fn : S → (T, ρ′) is m-measurable on A for n = 1, 2, . . . ,
that mA <∞, and that fn → f (a.e.) on A, prove the following.

(i) Lebesgue’s theorem: fn → f (in measure) on A (see Problem 11).

(ii) Egorov’s theorem: fn → f (almost uniformly) on A.

[Outline: (i) fn and f are M-measurable on H = A − Q, mQ = 0 (Corollary 1),

with fn → f (pointwise) on H. For all i, k, set

Hi(k) =
∞
⋂

n=i

H
(

ρ′(fn, f) <
1

k

)

∈M

by Problem 6 in §1. Show that (∀ k) Hi(k)ր H; hence

lim
i→∞

mHi(k) = mH = mA <∞;

so

(∀ δ > 0) (∀ k) (∃ ik) m(A −Hik (k)) <
δ

2k
,

proving (i), since

(∀n > ik) ρ′(fn, f) <
1

k
on Hik (k) = A− (A−Hik (k)).

(ii) Continuing, set (∀ k) Dk = Hik (k) and

D = A−
∞
⋂

k=1

Dk =
∞
⋃

k=1

(A−Dk).

Deduce that D ∈M and

mD ≤
∞
∑

k=1

m(A−Hik (k)) <
∞
∑

k=1

δ

2k
= δ.

Now, from the definition of the Hi(k), show that fn → f (uniformly) on A − D,

proving (ii).]

13. Disprove the converse to Problem 12(i).
[Outline: Assume that A = [0, 1); for all 0 ≤ k and all 0 ≤ i < 2k, set

gik(x) =

{

1 if i−1
2k
≤ x < i

2k
,

0 otherwise.
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Put the gik in a single sequence by

f2k+i = gik.

Show that fn → 0 in L measure on A, yet for no x ∈ A does fn(x) converge as
n→∞.]

14. Prove that if f : S → (T, ρ′) is m-measurable on A and g : T → (U, ρ′′) is
relatively continuous on f [A], then g ◦ f : S → (U, ρ′′) is m-measurable
on A.
[Hint: Use Corollary 4 in §1.]

§4. Integration of Elementary Functions

In Chapter 5, integration was treated as antidifferentiation. Now we adopt
another, measure-theoretical approach.

Lebesgue’s original theory was based on Lebesgue measure (Chapter 7, §8).
The more general modern treatment develops the integral for functions f : S →
E in an arbitrary measure space. Henceforth, (S,M,m) is fixed, and the range
space E is E1, E∗, C, En, or another complete normed space. Recall that
in such a space,

∑

i |ai| < ∞ implies that
∑

ai converges and is permutable
(Chapter 7, §2).

We start with elementary maps, including simple maps as a special case.1

Definition 1.

Let f : S → E be elementary on A ∈ M; so f = ai on Ai for some
M-partition

A =
⋃

i

Ai (disjoint).

(Note that there may be many such partitions.)

We say that f is integrable (with respect to m), or m-integrable, on
A iff

∑

|ai|mAi <∞.

(The notation “|ai|mAi” always makes sense by our conventions (2∗) in
Chapter 4, §4.) If m is Lebesgue measure, then we say that f is Lebesgue
integrable, or L-integrable.

We then define
∫

A
f , the m-integral of f on A, by

(1)

∫

A

f =

∫

A

f dm =
∑

i

ai mAi.

1 For a “limited approach,” use finite M-partitions and M-simple maps, treating m as

an additive premeasure onM, a ring.



242 Chapter 8. Measurable Functions. Integration

(The notation “dm” is used to specify the measure m.)

The “classical” notation for
∫

A
f dm is

∫

A
f(x) dm(x).

Note 1. The assumption
∑

|ai|mAi <∞

implies

(∀ i) |ai|mAi <∞;

so ai = 0 if mAi =∞, and mAi = 0 if |ai| =∞. Thus by our conventions, all
“bad” terms ai mAi vanish. Hence the sum in (1) makes sense and is finite.

Note 2. This sum is also independent of the particular choice of {Ai}. For
if {Bk} is anotherM-partition of A, with f = bk on Bk, say, then f = ai = bk
on Ai ∩Bk whenever Ai ∩Bk 6= ∅. Also,

(∀ i) Ai =
⋃

k

(Ai ∩Bk) (disjoint);

so

(∀ i) aimAi =
∑

k

ai m(Ai ∩Bk),

and hence (see Theorem 2 of Chapter 7, §2, and Problem 11 there)
∑

i

ai mAi =
∑

i

∑

k

ai m(Ai ∩Bk) =
∑

k

∑

i

bk m(Ai ∩Bk) =
∑

k

bk mBk.

(Explain!)

This makes our definition (1) unambiguous and allows us to choose any
M-partition {Ai}, with f constant on each Ai, when forming integrals (1).

Corollary 1. Let f : S → E be elementary and integrable on A ∈ M. Then
the following statements are true.

(i) |f | <∞ a.e. on A.2

(ii) f and |f | are elementary and integrable on any M-set B ⊆ A, and
∣

∣

∣

∣

∫

B

f

∣

∣

∣

∣

≤
∫

B

|f | ≤
∫

A

|f |.

(iii) The set B = A(f 6= 0) is σ-finite (Definition 4 in Chapter 7, §5), and
∫

A

f =

∫

B

f.

2 That is, on A−Q for some Q ∈M, with mQ = 0.
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(iv) If f = a (constant) on A,
∫

A

f = a ·mA.

(v)
∫

A
|f | = 0 iff f = 0 a.e. on A.

(vi) If mQ = 0, then
∫

A

f =

∫

A−Q

f

(so we may neglect sets of measure 0 in integrals).

(vii) For any k in the scalar field of E, kf is elementary and integrable, and
∫

A

kf = k

∫

A

f.

Note that if f is scalar valued, k may be a vector. If E = E∗, we assume
k ∈ E1.

Proof.

(i) By Note 1, |f | = |ai| =∞ only on those Ai with mAi = 0. Let Q be the
union of all such Ai. Then mQ = 0 and |f | <∞ on A−Q, proving (i).

(ii) If {Ai} is anM-partition of A, {B ∩Ai} is one for B. (Verify!) We have
f = ai and |f | = |ai| on B ∩Ai ⊆ Ai.

Also,
∑

|ai|m(B ∩Ai) ≤
∑

|ai|mAi <∞.

(Why?) Thus f and |f | are elementary and integrable on B, and (ii)
easily follows by formula (1).

(iii) By Note 1, f = 0 on Ai if mAi =∞. Thus f 6= 0 on Ai only if mAi <∞.
Let {Aik} be the subsequence of those Ai on which f 6= 0; so

(∀ k) mAik <∞.

Also,

B = A(f 6= 0) =
⋃

k

Aik ∈M (σ-finite!).

By (ii), f is elementary and integrable on B. Also,
∫

B

f =
∑

k

aik mAik ,

while
∫

A

f =
∑

i

ai mAi.
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These sums differ only by terms with ai = 0. Thus (iii) follows.

The proof of (iv)–(vii) is left to the reader. �

Note 3. If f : S → E∗ is elementary and sign-constant on A, we also al-
low that

∫

A

f =
∑

i

aimAi = ±∞.

Thus here
∫

A
f exists even if f is not integrable. Apart from claims of inte-

grability and σ-finiteness, Corollary 1(ii)–(vii) hold for such f , with the same
proofs.

Example.

Let m be Lebesgue measure in E1. Define f = 1 on R (rationals) and
f = 0 on E1 −R; see Chapter 4, §1, Example (c). Let A = [0, 1].

By Corollary 1 in Chapter 7, §8, A∩R ∈M∗ and m(A∩R) = 0. Also,
A−R ∈M∗.

Thus {A ∩ R,A − R} is an M∗-partition of A, with f = 1 on A ∩ R
and f = 0 on A−R.

Hence f is elementary and integrable on A, and
∫

A

f = 1 ·m(A ∩R) + 0 ·m(A−R) = 0.

Thus f is L-integrable (even though it is nowhere continuous).

Theorem 1 (additivity).

(i) If f : S → E is elementary and integrable or elementary and nonnegative
on A ∈M, then

(2)

∫

A

f =
∑

k

∫

Bk

f

for any M-partition {Bk} of A.
(ii) If f is elementary and integrable on each set Bk of a finiteM-partition

A =
⋃

k

Bk,

it is elementary and integrable on all of A, and (2) holds again.

Proof. (i) If f is elementary and integrable or elementary and nonnegative on
A =

⋃

k Bk, it is surely so on each Bk by Corollary 2 of §1 and Corollary 1(ii)
above.
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Thus for each k, we can fix an M-partition Bk =
⋃

i Aki, with f constant
(f = aki) on Aki, i = 1, 2, . . . . Then

A =
⋃

k

Bk =
⋃

k

⋃

i

Aki

is anM-partition of A into the disjoint sets Aki ∈M.

Now, by definition,
∫

Bk

f =
∑

i

akimAki

and
∫

A

f =
∑

k,i

akimAki =
∑

k

(

∑

i

akimAki

)

=
∑

k

∫

Bk

f

by rules for double series. This proves formula (2).

(ii) If f is elementary and integrable on Bk (k = 1, . . . , n), then with the
same notation, we have

∑

i

|aki|mAki <∞

(by integrability); hence

n
∑

k=1

∑

i

|aki|mAki <∞.

This means, however, that f is elementary and integrable on A, and so clause
(ii) follows. �

Caution. Clause (ii) fails if the partition {Bk} is infinite.
Theorem 2.

(i) If f, g : S → E∗ are elementary and nonnegative on A, then
∫

A

(f + g) =

∫

A

f +

∫

A

g.

(ii) If f, g : S → E are elementary and integrable on A, so is f ± g, and
∫

A

(f ± g) =

∫

A

f ±
∫

A

g.

Proof. Arguing as in the proof of Theorem 1 of §1, we can make f and g
constant on sets of one and the same M-partition of A, say, f = ai and g = bi
on Ai ∈M; so

f ± g = ai ± bi on Ai, i = 1, 2, . . . .
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In case (i), f, g ≥ 0; so integrability is irrelevant by Note 3, and formula (1)
yields

∫

A

(f + g) =
∑

i

(ai + bi)mAi =
∑

i

ai mAi +
∑

bi mAi =

∫

A

f +

∫

A

g.

In (ii), we similarly obtain
∑

i

|ai ± bi|mAi ≤
∑

|ai|mAi +
∑

i

|bi|mAi <∞.

(Why?) Thus f ± g is elementary and integrable on A. As before, we also get
∫

A

(f ± g) =

∫

A

f ±
∫

A

g,

simply by rules for addition of convergent series. (Verify!) �

Note 4. As we know, the characteristic function CB of a set B ⊆ S is
defined

CB(x) =

{

1, x ∈ B,

0, x ∈ S −B.

If g : S → E is elementary on A, so that

g = ai on Ai, 1, 2, . . . ,

for someM-partition

A =
⋃

Ai,

then

g =
∑

i

aiCAi
on A.

(This sum always exists for disjoint sets Ai. Why?) We shall often use this
notation.

y = f(x)

A1 A2 A3 Ai

X

Y

O
Figure 33

a b

If m is Lebesgue measure in E1,
the integral

∫

A

g =
∑

i

aimAi

has a simple geometric interpretation;
see Figure 33. Let A = [a, b] ⊂ E1;
let g be bounded and nonnegative on
E1. Each product ai mAi is the area
of a rectangle with base Ai and al-
titude ai. (We assume the Ai to be
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intervals here.) The total area,
∫

A

g =
∑

i

ai mAi,

can be treated as an approximation to the area under some curve y = f(x),
where f is approximated by g (Theorem 3 in §1). Integration historically arose
from such approximations.

Integration of elementary extended-real functions. Note 3 can be extended
to sign-changing functions as follows.

Definition 2.

If

f =
∑

i

aiCAi
(ai ∈ E∗)

on

A =
⋃

i

Ai (Ai ∈ M),

we set

(3)

∫

A

f =

∫

A

f+ −
∫

A

f−,

with

f+ = f ∨ 0 ≥ 0 and f− = (−f) ∨ 0 ≥ 0;

see §2.

By Theorem 2 in §2, f+ and f− are elementary and nonnegative on A; so
∫

A

f+ and

∫

A

f−

are defined by Note 3, and so is
∫

A

f =

∫

A

f+ −
∫

A

f−

by our conventions (2*) in Chapter 4, §4.
We shall have use for formula (3), even if

∫

A

f+ =

∫

A

f− =∞;

then we say that
∫

A
f is unorthodox and equate it to +∞, by convention;

cf. Chapter 4, §4. (Other integrals are called orthodox .) Thus for elementary
and (extended) real functions,

∫

A
f is always defined. (We further develop this

idea in §5.)



248 Chapter 8. Measurable Functions. Integration

Note 5. With f as above, we clearly have

f+ = a+i and f− = a−i on Ai,

where
a+i = max(ai, 0) and a−i = max(−ai, 0).

Thus
∫

A

f+ =
∑

a+i ·mAi and

∫

A

f− =
∑

a−i ·mAi,

so that

(4)

∫

A

f =

∫

A

f+ −
∫

A

f− =
∑

i

a+i ·mAi −
∑

i

a−i ·mAi.

If
∫

A
f+ < ∞ or

∫

A
f− < ∞, we can subtract the two series termwise

(Problem 14 of Chapter 4, §13) to obtain
∫

A

f =
∑

i

(a+i − a−i )mAi =
∑

i

ai mAi

for a+i −a−i = ai. Thus formulas (3) and (4) agree with our previous definitions.3

Problems on Integration of Elementary Functions

1. Verify Note 2.

1′. Prove Corollary 1(iv)–(vii).

2. Prove that
∫

A
f = 0 if mA = 0 or f = 0 on A. Disprove the converse

by examples.

3. Find a primitive F for f = CR in our example. Show that
∫

[0,1]

f dm = F (1)− F (0).

4. Fill in the proof details in Theorem 2.
[Hint: Use comparison test for series.]

⇒5. Show that if f and g are elementary and nonnegative with f ≥ g on
A, then

∫

A

f ≥
∫

A

g ≥ 0.

[Hint: As in Theorem 2, let

f =
∑

i

ai CAi
and g =

∑

i

bi CAi
.

Then f ≥ g ≥ 0 implies ai ≥ bi ≥ 0.]

3 For a “limited approach,” pass from here to §9.
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⇒6. Prove that if f and g are elementary and (extended) real on A, then
∫

A

(f ± g) =

∫

A

f ±
∫

A

g,

provided

(i)
∫

A
f or

∫

A
g is finite, or

(ii)
∫

A
f ,

∫

A
g, and

∫

A
f ±

∫

A
g are all orthodox .

[Outline: As in Theorem 2, let

f =
∑

i

aiCAi
and g =

∑

i

biCAi
,

so

f ± g = ai ± bi on Ai.

Now, if
∣

∣

∣

∣

∫

A

f

∣

∣

∣

∣

<∞,

then by Problem 14 in Chapter 4, §13, and formula (4),
∑

ai mAi converges ab-

solutely; so its termwise addition to any other series does not affect the absolute

convergence or divergence of the latter, i.e., the finiteness or infiniteness of its posi-
tive and negative parts. For example,

∑

i

(ai ± bi)
+ mAi =∞

iff
∑

b+i mAi =∞.

Thus if
∫

A

g = ±∞,

then
∫

A

(f ± g) =

∫

A

g = ±∞ =

∫

A

f ±
∫

A

g.

If both
∫

A

f ,

∫

A

g 6= ±∞,

Theorem 2(ii) applies. In the orthodox infinite case, a similar proof works on noting
that either the positive or the negative parts of both series are finite if

∫

A

f ±
∫

A

g

is orthodox, too. (Verify!)]

7. Show that if f is elementary and nonnegative on A and
∫

A

f > p ∈ E∗,
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then there is an elementary and nonnegative map g on A such that
∫

A

f ≥
∫

A

g > p,

g = 0 on A(f = 0), and

f > g on A−A(f = 0).

[Hints: Let

B = A(f =∞)

and

C = A−B;

so B,C ∈M (Corollary 2 in §2). For all n > 0, define

gn = n on B

and

gn =
(

1− 1

n

)

f on C;

so gn is elementary and nonnegative on A and

f > gn on A−A(f = 0). (Why?)

By Theorem 1 and Corollary 1(iv)(vii),

∫

A

gn =

∫

B

gn +

∫

C

gn =

∫

B

(n) +

∫

C

(

1− 1

n

)

f = n ·mB +
(

1− 1

n

)

∫

C

f.

Deduce that

lim
n→∞

∫

A

gn =

∫

B

f +

∫

C

f =

∫

A

f > p;

so

(∃n)
∫

A

gn > p.

Take g = gn for that n.]

8. Show that if E = E∗, Theorem 1(i) holds also if
∫

A
f is infinite but

orthodox .

9. (i) Prove that if f is elementary and integrable on A, so is −f , and
∫

A

(−f) = −
∫

A

f.

(ii) Show that this holds also if f is elementary and (extended) real
and

∫

A
f is orthodox .
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§5. Integration of Extended-Real Functions

We shall now define integrals for arbitrary functions f : S → E∗ in a measure
space (S,M,m).1 We start with the case f ≥ 0.

Definition 1.

Given f ≥ 0 on A ∈M, we define the upper and lower integrals,

∫

and

∫

,

of f on A (with respect to m) by

(1′)

∫

A

f =

∫

A

f dm = inf
h

∫

A

h

over all elementary maps h ≥ f on A, and

(1′′)

∫

A

f =

∫

A

f dm = sup
g

∫

A

g

over all elementary and nonnegative maps g ≤ f on A.

If f is not nonnegative, we use f+ = f ∨ 0 and f− = (−f) ∨ 0 (§2),
and set

(1)

∫

A

f =

∫

A

f dm =

∫

A

f+ −
∫

A

f− and

∫

A

f =

∫

A

f dm =

∫

A

f+ −
∫

A

f−.

By our conventions, these expressions are always defined. The integral
∫

A
f (or

∫

A
f) is called orthodox iff it does not have the form ∞−∞ in

(1), e.g., if f ≥ 0 (i.e., f− = 0), or if
∫

A
f < ∞. An unorthodox integral

equals +∞.

We often write
∫

for
∫

and call it simply the integral (of f), even if

∫

A

f 6=
∫

A

f.2

“Classical” notation is
∫

A
f(x) dm(x).

1 Those who wish to consider measurable maps only should take Theorem 3 earlier .
2 There is good reason for identifying “integral” with “upper integral .”



252 Chapter 8. Measurable Functions. Integration

Definition 2.

The function f is called integrable (orm-integrable, or Lebesgue integrable,
with respect to m) on A, iff

∫

A

f dm =

∫

A

f dm 6= ±∞.

The process described above is called (abstract) Lebesgue integration as op-
posed to Riemann integration (B. Riemann, 1826–1866). The latter deals with
bounded functions only and allows h and g in (1′) and (1′′) to be simple step
functions only (see §9). It is inferior to Lebesgue theory.

The values of
∫

A

f dm and

∫

A

f dm

depend on m. If m is Lebesgue measure, we speak of Lebesgue integrals, in the
stricter sense. If m is Lebesgue–Stieltjes measure, we speak of LS-integrals,
and so on.

Note 1. If f is elementary and (extended) real , our present definition of
∫

A

f

agrees with that of §4. For if f ≥ 0, f itself is the least of all elementary and
nonnegative functions

h ≥ f

and the greatest of all elementary and nonnegative functions

g ≤ f.

Thus by Problem 5 in §4,
∫

A

f = min
h≥f

∫

A

h = max
g≤f

∫

A

g,

i.e.,
∫

A

f =

∫

A

f =

∫

A

f.

If, however, f 6≥ 0, this follows by Definition 2 in §4. This also shows that for
elementary and (extended) real maps,

∫

A

f =

∫

A

f always.

(See also Theorem 3.)
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Note 2. By Definition 1,
∫

A

f ≤
∫

A

f always.

For if f ≥ 0, then for any elementary and nonnegative maps g, h with

g ≤ f ≤ h,

we have
∫

A

g ≤
∫

A

h

by Problem 5 in §4. Thus
∫

A

f = sup
g

∫

A

g

is a lower bound of all such
∫

A
h, and so

∫

A

f ≤ glb

∫

A

h =

∫

A

f.

In the general formula (1), too,
∫

A

f ≤
∫

A

f,

since
∫

A

f+ ≤
∫

A

f+ and

∫

A

f− ≤
∫

A

f−.

Theorem 1. For any functions f, g : S → E∗ and any set A ∈ M, we have
the following results.3

(a) If f = a (constant) on A, then
∫

A

f =

∫

A

f = a ·mA.

(b) If f = 0 on A or mA = 0, then
∫

A

f =

∫

A

f = 0.

(c) If f ≥ g on A, then
∫

A

f ≥
∫

A

g and

∫

A

f ≥
∫

A

g.

3 Note that integrability is redundant here and in Theorem 2.
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(d) If f ≥ 0 on A, then

∫

A

f ≥ 0 and

∫

A

f ≥ 0.

Similarly if f ≤ 0 on A.

(e) If 0 ≤ p <∞, then

∫

A

pf = p

∫

A

f and

∫

A

pf = p

∫

A

f .

(e′) We have

∫

A

(−f) = −
∫

A

f and

∫

A

(−f) = −
∫

A

f

if one of the integrals involved in each case is orthodox. Otherwise,

∫

A

(−f) =∞ =

∫

A

f and

∫

A

(−f) =∞ =

∫

A

f .

(f) If f ≥ 0 on A and

A ⊇ B, B ∈M,

then
∫

A

f ≥
∫

B

f and

∫

A

f ≥
∫

B

f .

(g) We have
∣

∣

∣

∣

∫

A

f

∣

∣

∣

∣

≤
∫

A

|f | and
∣

∣

∣

∣

∫

A

f

∣

∣

∣

∣

≤
∫

A

|f |

(but not
∣

∣

∣

∣

∫

A

f

∣

∣

∣

∣

≤
∫

A

|f |

in general).

(h) If f ≥ 0 on A and
∫

A
f = 0 (or f ≤ 0 and

∫

A
f = 0), then f = 0

a.e. on A.

Proof. We prove only some of the above, leaving the rest to the reader.

(a) This following by Corollary 1(iv) in §4.
(b) Use (a) and Corollary 1(v) in §4.
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(c) First, let

f ≥ g ≥ 0 on A.

Take any elementary and nonnegative map H ≥ f on A. Then H ≥ g as
well; so by definition,

∫

A

g = inf
h≥g

∫

A

h ≤
∫

A

H.

Thus
∫

A

f ≤
∫

A

H

for any such H. Hence also
∫

A

g ≤ inf
H≥f

∫

A

H =

∫

A

f.

Similarly,
∫

A

f ≥
∫

A

g

if f ≥ g ≥ 0.

In the general case, f ≥ g implies

f+ ≥ g+ and f− ≤ g−. (Why?)

Thus by what was proved above,
∫

A

f+ ≥
∫

A

g+ and

∫

A

f− ≤
∫

A

g−.

Hence
∫

A

f+ −
∫

A

f− ≥
∫

A

g+ −
∫

A

g−;

i.e.,
∫

A

f ≥
∫

A

g.

Similarly, one obtains
∫

A

f ≥
∫

A

g.

(d) It is clear that (c) implies (d).

(e) Let 0 ≤ p < ∞ and suppose f ≥ 0 on A. Take any elementary and
nonnegative map

h ≥ f on A.
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By Corollary 1(vii) and Note 3 of §4,
∫

A

ph = p

∫

A

h

for any such h. Hence

∫

A

pf = inf
h

∫

A

ph = inf
h

p

∫

A

h = p

∫

A

f.

Similarly,
∫

A

pf = p

∫

A

f.

The general case reduces to the case f ≥ 0 by formula (1).

(e′) Assertion (e′) follows from (1) since

(−f)+ = f−, (−f)− = f+,

and −(x− y) = y − x if x− y is orthodox . (Why?)

(f) Take any elementary and nonnegative map

h ≥ f ≥ 0 on A.

By Corollary 1(ii) and Note 3 of §4,
∫

B

h ≥
∫

A

h

for any such h. Hence

∫

B

f = inf
h

∫

B

h ≤ inf
h

∫

A

h =

∫

A

f.

Similarly for
∫

.

(g) This follows from (c) and (e′) since ±f ≤ |f | implies

∫

A

|f | ≥
∫

A

f ≥
∫

A

f

and
∫

A

|f | ≥
∫

A

(−f) ≥ −
∫

A

f ≥ −
∫

A

f. �

For (h) and later work, we need the following lemmas.
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Lemma 1. Let f : S → E∗ and A ∈M. Then the following are true.

(i) If
∫

A

f < q ∈ E∗,

there is an elementary and (extended) real map

h ≥ f on A,

with
∫

A

h < q.

(ii) If
∫

A

f > p ∈ E∗,

there is an elementary and (extended) real map

g ≤ f on A,

with
∫

A

g > p;

moreover , g can be made elementary and nonnegative if f ≥ 0 on A.

Proof. If f ≥ 0, this is immediate by Definition 1 and the properties of glb
and lub.

If, however, f � 0, and if

q >

∫

A

f =

∫

A

f+ −
∫

A

f−,

our conventions yield

∞ >

∫

A

f+. (Why?)

Thus there are u, v ∈ E∗ such that q = u+ v and

0 ≤
∫

A

f+ < u <∞

and

−
∫

A

f− < v.

To see why this is so, choose u so close to
∫

A
f+ that

q − u > −
∫

A

f−
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and set v = q − u.

As the lemma holds for positive functions, we find elementary and nonneg-
ative maps h′ and h′′, with

h′ ≥ f+, h′′ ≤ f−,
∫

A

h′ < u <∞ and

∫

A

h′′ > −v.

Let h = h′ − h′′. Then

h ≥ f+ − f− = f,

and by Problem 6 in §4,
∫

A

h =

∫

A

h′ −
∫

A

h′′

(

for

∫

A

h′ is finite!

)

.

Hence
∫

A

h > u+ v = q,

and clause (i) is proved in full.

Clause (ii) follows from (i) by Theorem 1(e′) if
∫

A

f <∞.

(Verify!) For the case
∫

A
f =∞, see Problem 3. �

Note 3. The preceding lemma shows that formulas (1′) and (1′′) hold (and
might be used as definitions) even for sign-changing f , g, and h.

Lemma 2. If f : S → E∗ and A ∈ M, there are M-measurable maps g and
h, with

g ≤ f ≤ h on A,

such that
∫

A

f =

∫

A

h and

∫

A

f =

∫

A

g.

We can take g, h ≥ 0 if f ≥ 0 on A.

Proof. If
∫

A

f =∞,

the constant map h =∞ satisfies the statement of the theorem.

If

−∞ <

∫

A

f <∞,
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let

qn =

∫

A

f +
1

n
, n = 1, 2, . . . ;

so

qn →
∫

A

f < qn.

By Lemma 1, for each n there is an elementary and (extended) real (hence
measurable) map hn ≥ f on A, with

qn ≥
∫

A

hn ≥
∫

A

f.

Let
h = inf

n
hn ≥ f.

By Lemma 1 in §2, h isM-measurable on A. Also,

(∀n) qn >

∫

A

hn ≥
∫

A

h ≥
∫

A

f

by Theorem 1(c). Hence
∫

A

f = lim
n→∞

qn ≥
∫

A

h ≥
∫

A

f,

so
∫

A

f =

∫

A

h,

as required.

Finally, if
∫

A

f = −∞,

the same proof works with qn = −n. (Verify!)
Similarly, one finds a measurable map g ≤ f , with

∫

A

f =

∫

A

g. �

Proof of Theorem 1(h). If f ≥ 0, choose h ≥ f as in Lemma 2. Let

D = A(h > 0) and An = A
(

h >
1

n

)

;

so

D =

∞
⋃

n=1

An (why?),
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and D, An ∈M by Theorem 1 of §2. Also,

0 =

∫

A

f =

∫

A

h ≥
∫

An

( 1

n

)

=
1

n
mAn ≥ 0.

Thus (∀n) mAn = 0. Hence

mD = m

∞
⋃

n=1

An = mA(h > 0) = 0;

so 0 ≤ f ≤ h ≤ 0 (i.e., f = 0) a.e. on A.

The case f ≤ 0 reduces to (−f) ≥ 0. �

Corollary 1. If
∫

A

|f | <∞,4

then |f | <∞ a.e. on A, and A(f 6= 0) is σ-finite.

Proof. By Lemma 1, fix an elementary and nonnegative h ≥ |f | with
∫

A

h <∞

(so h is elementary and integrable).

Now, by Corollary 1(i)–(iii) in §4, our assertions apply to h, hence certainly
to f . �

Theorem 2 (additivity). Given f : S → E∗ and an M-partition P = {Bn}
of A ∈M, we have

(2) (a)

∫

A

f =
∑

n

∫

Bn

f and (b)

∫

A

f =
∑

n

∫

Bn

f,

provided
∫

A

f

(
∫

A

f, respectively

)

is orthodox , or P is finite.

Hence if f is integrable on each of finitely many disjoint M-sets Bn, it is
so on

A =
⋃

n

Bn,

and formulas (2)(a)(b) apply.

4 It suffices that f be integrable on A (apply the same proof to f+ and f−).
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Proof. Assume first f ≥ 0 on A. Then by Theorem 1(f), if one of

∫

Bn

f =∞,

so is
∫

A
f , and all is trivial. Thus assume all

∫

Bn

f are finite.

Then for any ε > 0 and n ∈ N , there is an elementary and nonnegative map
hn ≥ f on Bn, with

∫

Bn

hn <

∫

Bn

f +
ε

2n
.

(Why?) Now define h : A→ E∗ by h = hn on Bn, n = 1, 2, . . . .

Clearly, h is elementary and nonnegative on eachBn, hence onA (Corollary 3
in §1), and h ≥ f on A. Thus by Theorem 1 of §4,

∫

A

f ≤
∫

A

h =
∑

n

∫

Bn

hn ≤
∑

n

(
∫

Bn

f +
ε

2n

)

≤
∑

n

∫

Bn

f + ε.

Making ε→ 0, we get
∫

A

f ≤
∑

n

∫

Bn

f.

To prove also
∫

A

f ≥
∑

n

∫

Bn

f,

take any elementary and nonnegative map H ≥ f on A. Then again,
∫

A

H =
∑

n

∫

Bn

H ≥
∑

n

∫

Bn

f.

As this holds for any such H, we also have
∫

A

f = inf
H

∫

A

H ≥
∑

n

∫

Bn

f.

This proves formula (a) for f ≥ 0. The proof of (b) is quite similar.

If f � 0, we have
∫

A

f =

∫

A

f+ −
∫

A

f−,

where by the first part of the proof,
∫

A

f+ =
∑

n

∫

Bn

f+ and

∫

A

f− =
∑

n

∫

Bn

f−.
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If
∫

A

f

is orthodox, one of these sums must be finite, and so their difference may be
rearranged to yield

∫

A

f =
∑

n

(∫

Bn

f+ −
∫

Bn

f−

)

=
∑

n

∫

Bn

f,

proving (a). Similarly for (b).

This rearrangement works also if P is finite (i.e., the sums have a finite
number of terms). For, then, all reduces to commutativity and associativity of
addition, and our conventions (2∗) of Chapter 4, §4. Thus all is proved. �

Corollary 2. If mQ = 0 (Q ∈M), then for A ∈M
∫

A−Q

f =

∫

A

f and

∫

A−Q

f =

∫

A

f .

For by Theorem 2,
∫

A

f =

∫

A−Q

f +

∫

A∩Q

f,

where
∫

A∩Q

f = 0

by Theorem 1(b).

Corollary 3. If
∫

A

f

(

or

∫

A

f

)

is orthodox , so is
∫

X

f

(∫

X

f

)

whenever A ⊇ X, X ∈M.

For if
∫

A

f+,

∫

A

f−,

∫

A

f+, or

∫

A

f− is finite,

it remains so also when A is reduced to X (see Theorem 1(f)). Hence orthodoxy
follows by formula (1).
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Note 4. Given f : S → E∗, we can define two additive (by Theorem 2) set
functions s and s by setting for X ∈M

sX =

∫

X

f and sX =

∫

X

f.

They are called, respectively, the upper and lower indefinite integrals of f , also
denoted by

∫

f and

∫

f

(or sf and sf ).

By Theorem 2 and Corollary 3, if
∫

A

f

is orthodox, then s is σ-additive (and semifinite) when restricted to M-sets
X ⊆ A. Also,

s∅ = s∅ = 0

by Theorem 1(b).

Such set functions are called signed measures (see Chapter 7, §11). In par-
ticular, if f ≥ 0 on S, s and s are σ-additive and nonnegative on all of M,
hence measures onM.

Theorem 3. If f : S → E∗ is m-measurable (Definition 2 in §3) on A, then
∫

A

f =

∫

A

f.

Proof. First, let f ≥ 0 on A. By Corollary 2, we may assume that f is
M-measurable on A (drop a set of measure zero). Now fix ε > 0.

Let A0 = A(f = 0), A∞ = A(f =∞), and

An = A
(

(1 + ε)n ≤ f < (1 + ε)n+1
)

, n = 0,±1,±2, . . . .
Clearly, these are disjointM-sets (Theorem 1 of §2), and

A = A0 ∪A∞ ∪
∞
⋃

n=−∞

An.

Thus, setting

g =











0 on A0,

∞ on A∞, and

(1 + ε)n on An (n = 0,±1,±2, . . . )
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and

h = (1 + ε) g on A,

we obtain two elementary and nonnegative maps, with

g ≤ f ≤ h on A. (Why?)

By Note 1,
∫

A

g =

∫

A

g.

Now, if
∫

A
g =∞, then

∫

A

f ≥
∫

A

f ≥
∫

A

g

yields
∫

A

f ≥
∫

A

f =∞.

If, however,
∫

A
g <∞, then

∫

A

h =

∫

A

(1 + ε)g = (1 + ε)

∫

A

g <∞;

so g and h are elementary and integrable on A. Thus by Theorem 2(ii) in §4,
∫

A

h−
∫

A

g =

∫

A

(h− g) =

∫

A

((1 + ε)g − g) = ε

∫

A

g.

Moreover, g ≤ f ≤ h implies

∫

A

g ≤
∫

A

f ≤
∫

A

f ≤
∫

A

h;

so
∣

∣

∣

∣

∫

A

f −
∫

A

f

∣

∣

∣

∣

≤
∫

A

h−
∫

A

g ≤ ε

∫

A

g.

As ε is arbitrary, all is proved for f ≥ 0.

The case f 6≥ 0 now follows by formula (1), since f+ and f− are M-
measurable (Theorem 2 in §2). �
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Problems on Integration of Extended-Real Functions

1. Using the formulas in (1) and our conventions, verify that

(i)
∫

A
f = +∞ iff

∫

A
f+ =∞;

(ii)
∫

A
f =∞ iff

∫

A
f+ =∞; and

(iii)
∫

A
f = −∞ iff

∫

A
f− =∞ and

∫

A
f+ <∞.

(iv) Derive a condition similar to (iii) for
∫

A
f = −∞.

(v) Review Problem 6 of Chapter 4, §4.

2. Fill in the missing proof details in Theorems 1 to 3 and Lemmas 1 and 2.

3. Prove that if
∫

A
f =∞, there is an elementary and (extended) real map

g ≤ f on A, with
∫

A
g =∞.

[Outline: By Problem 1, we have
∫

A

f+ =∞.

As Lemmas 1 and 2 surely hold for nonnegative functions, fix a measurable F ≤ f+

(F ≥ 0), with
∫

A

F =

∫

A

f+ =∞.

Arguing as in Theorem 3, find an elementary and nonnegative map g ≤ F , with

(1 + ε)

∫

A

g =

∫

A

F =∞;

so
∫

A
g =∞ and 0 ≤ g ≤ F ≤ f+ on A.

Let

A+ = A(F > 0) ∈M

and

A0 = A(F = 0) ∈M

(Theorem 1 in §2). On A+,

g ≤ F ≤ f+ = f (why?),

while on A0, g = F = 0; so
∫

A+

g =

∫

A

g =∞ (why?).

Now redefine g = −∞ on A0 (only). Show that g is then the required function.]

4. For any f : S → E∗, prove the following.

(a) If
∫

A
f <∞, then f <∞ a.e. on A.

(b) If
∫

A
f is orthodox and > −∞, then f > −∞ a.e. on A.
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[Hint: Use Problem 1 and apply Corollary 1 to f+; thus prove (a). Then for (b), use
Theorem 1(e′).]

⇒5. For any f, g : S → E∗, prove that

(i)
∫

A
f +

∫

A
g ≥

∫

A
(f + g), and

(ii)
∫

A
(f + g) ≥

∫

A
f +

∫

A
g if

∣

∣

∫

A
g
∣

∣ <∞.

[Hint: Suppose that
∫

A

f +

∫

A

g <

∫

A

(f + g).

Then there are numbers

u >

∫

A

f and v >

∫

A

g,

with

u+ v ≤
∫

A

(f + g).

(Why?) Thus Lemma 1 yields elementary and (extended) real maps F ≥ f and
G ≥ g such that

u >

∫

A

F and v >

∫

A

G.

As f + g ≤ F +G on A, Theorem 1(c) of §5 and Problem 6 of §4 show that

∫

A

(f + g) ≤
∫

A

(F +G) =

∫

A

F +

∫

A

G < u+ v,

contrary to

u+ v ≤
∫

A

(f + g).

Similarly prove clause (ii).]

6. Continuing Problem 5, prove that
∫

A

(f + g) ≥
∫

A

f +

∫

A

g ≥
∫

A

(f + g) ≥
∫

A

f +

∫

A

g,

provided
∣

∣

∫

A
g
∣

∣ <∞.

[Hint for the second inequality: We may assume that

∫

A

(f + g) <∞ and

∫

A

f > −∞.

(Why?) Apply Problems 5 and 4(a) to

∫

A

((f + g) + (−g)).

Use Theorem 1(e′).]

7. Prove the following.

(i)
∫

A
|f | <∞ iff −∞ <

∫

A
f ≤

∫

A
f <∞.
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(ii) If
∫

A
|f | <∞ and

∫

A
|g| <∞, then

∣

∣

∣

∣

∫

A

f −
∫

A

g

∣

∣

∣

∣

≤
∫

A

|f − g|

and
∣

∣

∣

∣

∫

A

f −
∫

A

g

∣

∣

∣

∣

≤
∫

A

|f − g|.

[Hint: Use Problems 5 and 6.]

8. Show that any signed measure sf (Note 4) is the difference of two mea-
sures: sf = sf+ − sf−.

§6. Integrable Functions. Convergence Theorems

I. Some important theorems apply to integrable functions.

Theorem 1 (linearity of the integral). If f, g : S → E∗ are integrable on a set
A ∈M in (S,M,m), so is

pf + qg

for any p, q ∈ E1, and
∫

A

(pf + qg) = p

∫

A

f + q

∫

A

g;

in particular ,
∫

A

(f ± g) =

∫

A

f ±
∫

A

g.

Proof. By Problem 5 in §5,
∫

A

f +

∫

A

g ≥
∫

A

(f + g) ≥
∫

A

(f + g) ≥
∫

A

f +

∫

A

g.

(Here
∫

A

f ,

∫

A

f ,

∫

A

g, and

∫

A

g

are finite by integrability; so all is orthodox.)

As
∫

A

f =

∫

A

f and

∫

A

g =

∫

A

g,
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the inequalities turn into equalities, so that
∫

A

f +

∫

A

g =

∫

A

(f + g) =

∫

A

(f + g).

Using also Theorem 1(e)(e′) from §5, we obtain the desired result for any
p, q ∈ E1. �

Theorem 2. A function f : S → E∗ is integrable on A in (S,M,m) iff

(i) it is m-measurable on A, and

(ii)
∫

A
f (equivalently

∫

A
|f |) is finite.

Proof. If these conditions hold, f is integrable on A by Theorem 3 of §5.
Conversely, let

∫

A

f =

∫

A

f 6= ±∞.

Using Lemma 2 in §5, fix measurable maps g and h (g ≤ f ≤ h) on A, with
∫

A

g =

∫

A

f =

∫

A

h 6= ±∞.

By Theorem 3 in §5, g and h are integrable on A; so by Theorem 1,
∫

A

(h− g) =

∫

A

h−
∫

A

g = 0.

As
h− g ≥ h− f ≥ 0,

we get
∫

A

(h− f) = 0,

and so by Theorem 1(h) of §5, h− f = 0 a.e. on A.

Hence f is almost measurable on A, and
∫

A

f 6= ±∞

by assumption. From formula (1), we then get
∫

A

f+ and

∫

A

f− <∞,

and hence
∫

A

|f | =
∫

A

(f+ + f−) =

∫

A

f+ +

∫

A

f− <∞

by Theorem 1 and by Theorem 2 of §2. Thus all is proved. �
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Simultaneously, we also obtain the following corollary.

Corollary 1. A function f : S → E∗ is integrable on A iff f+ and f− are.

Corollary 2. If f, g : S → E∗ are integrable on A, so also are

f ∨ g, f ∧ g, |f |, and kf for k ∈ E1,

with
∫

A

kf = k

∫

A

f.

Exercise!

For products fg, this holds if f or g is bounded . In fact, we have the following
theorem.

Theorem 3 (weighted law of the mean). Let f be m-measurable and bounded
on A. Set

p = inf f [A] and q = sup f [A].

Then if g is m-integrable on A, so is fg, and
∫

A

f |g| = c

∫

A

|g|

for some c ∈ [p, q].

If, further, f also has the Darboux property on A (Chapter 4, §9), then
c = f(x0) for some x0 ∈ A.

Proof. By assumption,

(∃ k ∈ E1) |f | ≤ k

on A. Hence if

∫

A

|g| = 0,
∣

∣

∣

∣

∫

A

f |g|
∣

∣

∣

∣

≤
∫

A

|fg| ≤ k

∫

A

|g| = 0;

so any c ∈ [p, q] yields
∫

A

f |g| = c

∫

A

|g| = 0.

If, however,
∫

A
|g| 6= 0, the number

c =

(∫

A

f |g|
)/∫

A

|g|

is the required constant.

Moreover, as f and g are m-measurable on A, so is fg; and as
∣

∣

∣

∣

∫

A

fg

∣

∣

∣

∣

≤ |c|
∫

A

|g| <∞,
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fg is integrable on A by Theorem 2.

Finally, if f has the Darboux property and if p < c < q (with p, q as above),
then

f(x) < c < f(y)

for some x, y ∈ A (why?); hence by the Darboux property, f(x0) = c for some
x0 ∈ A.

If, however,

c ≤ inf f [A] = p,

then

(f − c)|g| ≥ 0

and
∫

A

(f − c)|g| =
∫

A

f |g| − c

∫

A

|g| = 0 (why?);

so by Theorem 1(h) in §5, f − c = 0 a.e. on A. Then surely f(x0) = c for some
x0 ∈ A (except the trivial case mA = 0). This also implies c ∈ f [A] ∈ [p, q].

Proceed similarly in the case c ≥ q. �

Corollary 3. If f is integrable on A ∈M, it is so on any B ⊆ A (B ∈ M).

Proof. Apply Theorem 1(f) in §5, and Theorem 3 of §5, to f+ and f−. �

II. Convergence Theorems. If fn → f on A (pointwise, a.e., or uniformly),
does it follow that

∫

A

fn →
∫

A

f?

To give some answers, we need a lemma.

Lemma 1. If f ≥ 0 on A ∈M and if
∫

A

f > p ∈ E∗,

there is an elementary and nonnegative map g on A such that
∫

A

g > p,

and g < f on A except only at those x ∈ A (if any) at which

f(x) = g(x) = 0.

(We then briefly write g ⊂ f on A.)
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Proof. By Lemma 1 in §5, there is an elementary and nonnegative map G ≤ f
on A, with

∫

A

f ≥
∫

A

G > p.

For the rest, proceed as in Problem 7 of §4, replacing f by G there. �

Theorem 4 (monotone convergence). If 0 ≤ fn ր f (a.e.) on A ∈M, i .e.,

0 ≤ fn ≤ fn+1 (∀n),
and fn → f (a.e.) on A, then

∫

A

fn ր
∫

A

f.

Proof for M-measurable fn and f on A.1 By Corollary 2 in §5, we may
assume that fn ր f (pointwise) on A (otherwise, drop a null set).

By Theorem 1(c) of §5, 0 ≤ fn ր f implies

0 ≤
∫

A

fn ≤
∫

A

f,

and so

lim
n→∞

∫

A

fn ≤
∫

A

f.

The limit, call it p, exists in E∗, as {
∫

A
fn}↑. It remains to show that

p ≥
∫

A

f =

∫

A

f.

(We know that
∫

A

f =

∫

A

f,

by the assumed measurability of f ; see Theorem 3 in §5.)
Suppose

∫

A

f > p.

Then Lemma 1 yields an elementary and nonnegative map g ⊂ f on A, with

p <

∫

A

g.

Let
An = A(fn ≥ g), n = 1, 2, . . . .

1 For the general case, see Problem 5.
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Then An ∈M and

An ր A =
∞
⋃

n=1

An.

For if f(x) = 0, then x ∈ A1, and if f(x) > 0, then f(x) > g(x), so that
fn(x) > g(x) for large n; hence x ∈ An.

By Note 4 in §5, the set function s =
∫

g is a measure, hence continuous by
Theorem 2 in Chapter 7, §4. Thus

∫

A

g = sA = lim
n→∞

sAn = lim
n→∞

∫

An

g.

But as g ≤ fn on An, we have
∫

An

g ≤
∫

An

fn ≤
∫

A

fn.

Hence
∫

A

g = lim

∫

An

g ≤ lim

∫

A

fn = p,

contrary to p <
∫

A
g. This contradiction completes the proof. �

Lemma 2 (Fatou). If fn ≥ 0 on A ∈ M (n = 1, 2, . . . ), then

∫

A

lim fn ≤ lim

∫

A

fn.

Proof. Let

gn = inf
k≥n

fk, n = 1, 2, . . . ;

so fn ≥ gn ≥ 0 and {gn}↑ on A. Thus by Theorem 4,

∫

A

lim gn = lim

∫

A

gn = lim

∫

A

gn ≤ lim

∫

A

fn.

But

lim
n→∞

gn = sup
n

gn = sup
n

inf
k≥n

fk = lim fn.

Hence
∫

A

lim fn =

∫

A

lim gn ≤ lim

∫

A

fn,

as claimed. �
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Theorem 5 (dominated convergence). Let fn : S → E be m-measurable on
A ∈M (n = 1, 2, . . . ). Let

fn → f (a.e.) on A.

Then

lim
n→∞

∫

A

|fn − f | = 0,

provided that there is a map g : S → E1 such that

∫

A

g <∞

and

(∀n) |fn| ≤ g a.e. on A.

Proof. Neglecting null sets, we may assume that

|fn| ≤ g <∞

on A and fn → f (pointwise) on A; so |f | ≤ g and

|fn − f | ≤ |fn|+ |f | ≤ 2g

on A. As |f | <∞, we have

|fn − f | → 0

on A. Hence, setting

hn = 2g − |fn − f | ≥ 0,

we get

2g = lim
n→∞

hn = limhn.

We may also assume that g is measurable on A. (If not, replace it by a mea-
surable G ≥ g, with

∫

A

G =

∫

A

g <∞,

by Lemma 2 in §5.) Then all

hn = 2g − |fn − f |

are measurable (even integrable) on A.
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Thus by Lemma 2,
∫

A

2g =

∫

A

limhn ≤ lim

∫

A

(2g − |fn − f |)

= lim

(
∫

A

2g +

∫

A

(

−|fn − f |
)

)

=

∫

A

2g + lim

(

−
∫

A

|fn − f |
)

=

∫

A

2g − lim

∫

A

|fn − f |.

(See Problems 5 and 8 in Chapter 2, §13.)
Canceling

∫

A
2g (finite!), we have

0 ≤ − lim

∫

A

|fn − f |.

Hence

0 ≥ lim

∫

A

|fn − f | ≥ lim

∫

A

|fn − f | ≥ 0,

as |fn − f | ≥ 0. This yields

0 = lim

∫

A

|fn − f | = lim

∫

A

|fn − f | = lim

∫

A

|fn − f |,

as required. �

Note 1. Theorem 5 holds also for complex and vector-valued functions (for
|fn − f | is real).

In the extended-real case, Theorems 1(g) in §5 and Theorems 1 and 2 in §6
yield

∣

∣

∣

∣

∫

A

fn −
∫

A

f

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

A

(fn − f)

∣

∣

∣

∣

≤
∫

A

|fn − f | → 0,

i.e.,
∫

A

fn →
∫

A

f.

Moreover, f is integrable on A, being measurable (why?), with
∫

A

|f | ≤
∫

A

g <∞.

For complex and vector-valued functions, this will follow from §7. Observe that
Theorem 5, unlike Theorem 4, requires the m-measurability of the fn.

§6. Integrable Functions. Convergence Theorems 275

Note 2. Theorem 5 fails if there is no “dominating”

g ≥ |fn| with
∫

A

g <∞,

even if f and the fn are integrable.

Example.

Let m be Lebesgue measure in A = E1, f = 0, and

fn =

{

1 on [n, n+ 1],

0 elsewhere.

Then fn → f and
∫

A
fn = 1; so

lim
n→∞

∫

A

fn = 1 6= 0 =

∫

A

f.

The trouble is that any

g ≥ fn (n = 1, 2, . . . )

would have to be ≥ 1 on B = [1,∞); so
∫

A

g ≥
∫

B

g = 1 ·mB =∞,

instead of
∫

A
g <∞.

This example also shows that fn → f alone does not imply
∫

A

fn →
∫

A

f.

Theorem 6 (absolute continuity of the integral). Given f : S → E with

∫

A

|f | <∞

and ε > 0, there is δ > 0 such that
∫

X

|f | < ε

whenever

mX < δ (A ⊇ X, X ∈M).

Proof. By Lemma 2 in §5, fix h ≥ |f |, measurable on A, with

∫

A

h =

∫

A

|f | <∞.
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Neglecting a null set, we assume that |h| <∞ on A (Corollary 1 of §5). Now,
(∀n) set

gn(x) =

{

h(x), x ∈ An = A(h < n),

0, x ∈ −An.

Then gn ≤ n and gn is measurable on A. (Why?)

Also, gn ≥ 0 and gn → h (pointwise) on A.

For let ε > 0, fix x ∈ A, and find k > h(x). Then

(∀n ≥ k) h(x) ≤ n and gn(x) = h(x).

So

(∀n ≥ k) |gn(x)− h(x)| = 0 < ε.

Clearly, gn ≤ h. Hence by Theorem 5

lim
n→∞

∫

A

|h− gn| = 0.

Thus we can fix n so large that

∫

A

(h− gn) <
1

2
ε.

For that n, let

δ =
ε

2n

and take any X ⊆ A (X ∈ M), with mX < δ.

As gn ≤ n (see above), Theorem 1(c) in §5 yields

∫

X

gn ≤
∫

X

(n) = n ·mX < nδ =
1

2
ε.

Hence as |f | ≤ h and

∫

X

(h− gn) ≤
∫

A

(h− gn) <
1

2
ε

(Theorem 1(f) of §5), we obtain

∫

X

|f | ≤
∫

X

h =

∫

X

(h− gn) +

∫

X

gn <
1

2
ε+

1

2
ε = ε,

as required. �
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Problems on Integrability and Convergence Theorems

1. Fill in the missing details in the proofs of this section.

2. (i) Show that if f : S → E∗ is bounded and m-measurable on A, with
mA <∞, then f is m-integrable on A (Theorem 2) and

∫

A

f = c ·mA,

where inf f [A] ≤ c ≤ sup f [A].

(ii) Prove that if f also has the Darboux property on A, then

(∃x0 ∈ A) c = f(x0).

[Hint: Take g = 1 in Theorem 3.]

(iii) What results if A = [a, b] and m = Lebesgue measure?

3. Prove Theorem 4 assuming that the fn are measurable on A and that

(∃ k)
∫

A

fk > −∞

instead of fn ≥ 0.
[Hint: As {fn}↑, show that

(∀n ≥ k)

∫

A

fn > −∞.

If

(∃n)
∫

A

fn =∞,

then
∫

A

f = lim

∫

A

fn =∞.

Otherwise,

(∀n ≥ k)

∣

∣

∣

∣

∫

A

fn

∣

∣

∣

∣

<∞;

so fn is integrable. (Why?) By Corollary 1 in §5, assume |fn| <∞. (Why?) Apply

Theorem 4 to hn = fn − fk (n ≥ k), considering two cases:

∫

A

h <∞ and

∫

A

h =∞.]

4. Show that if fn ր f (pointwise) on A ∈ M, there are M-measurable
maps Fn ≥ fn and F ≥ f on A, with Fn ր F (pointwise) on A, such
that

∫

A

F =

∫

A

f and

∫

A

Fn =

∫

A

fn.
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[Hint: By Lemma 2 of §5, fix measurable maps h ≥ f and hn ≥ fn with the same

integrals. Let

Fn = inf
k≥n

(h ∧ hk), n = 1, 2, . . . ,

and F = supn Fn ≤ h. (Why?) Proceed.]

5. For A ∈ M and any (even nonmeasurable) functions f, fn : S → E∗,
prove the following.

(i) If fn ր f (a.e.) on A, then
∫

A

fn ր
∫

A

f,

provided

(∃n)
∫

A

fn > −∞.

(ii) If fn ց f (a.e.) on A, then
∫

A

fn ց
∫

A

f,

provided

(∃n)
∫

A

fn <∞.

[Hint: Replace f, fn by F, Fn as in Problem 4. Then apply Problem 3 to Fn; thus

obtain (i). For (ii), use (i) and Theorem 1(e′) in §5. (All is orthodox ; why?)]

6. Show by examples that

(i) the conditions
∫

A

fn > −∞ and

∫

A

fn <∞

in Problem 5 are essential ; and

(ii) Problem 5(i) fails for lower integrals. What about 5(ii)?

[Hints: (i) Let A = (0, 1) ⊂ E1, m = Lebesgue measure, fn = −∞ on (0, 1
n
), fn = 1

elsewhere.

(ii) Let M = {E1, ∅}, mE1 = 1, m∅ = 0, fn = 1 on (−n, n), fn = 0 elsewhere.
If f = 1 on A = E1, then fn → f , but not

∫

A

fn →
∫

A

f.

Explain!]

7. Given fn : S → E∗ and A ∈M, let

gn = inf
k≥n

fk and hn = sup
k≥n

fk (n = 1, 2, . . . ).
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Prove that

(i)
∫

A
lim fn ≤ lim

∫

A
fn provided (∃n)

∫

A
gn > −∞; and

(ii)
∫

A
lim fn ≤ lim

∫

A
fn provided (∃n)

∫

A
hn <∞.

[Hint: Apply Problem 5 to gn and hn.]

(iii) Give examples for which
∫

A

lim fn 6= lim

∫

A

fn and

∫

A

lim fn 6= lim

∫

A

fn.

(See Note 2).

8. Let fn ≥ 0 on A ∈ M and fn → f (a.e.) on A. Let A ⊇ X, X ∈ M.
Prove the following.

(i) If
∫

A

fn →
∫

A

f <∞,

then
∫

X

fn →
∫

X

f.

(ii) This fails for sign-changing fn.

[Hints: If (i) fails, then

lim

∫

X

fn <

∫

X

f or lim

∫

X

fn >

∫

X

f .

Find a subsequence of
{∫

X

fn

}

or

{∫

A−X

fn

}

contradicting Lemma 2.

(ii) Let m = Lebesgue measure; A = (0, 1), X = (0, 1
2
),

fn =

{

n on
(

0, 1
2n

]

,

−n on
(

1− 1
2n

, 1
)

.]

⇒9. (i) Show that if f and g arem-measurable and nonnegative on A, then

(∀ a, b ≥ 0)

∫

A

(af + bg) = a

∫

A

f + b

∫

A

g.

(ii) If, in addition,
∫

A
f < ∞ or

∫

A
g <∞, this formula holds for any

a, b ∈ E1.

[Hint: Proceed as in Theorem 1.]
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⇒10. If

f =

∞
∑

n=1

fn,

with all fn measurable and nonnegative on A, then

∫

A

f =

∞
∑

n=1

∫

A

fn.

[Hint: Apply Theorem 4 to the maps

gn =

n
∑

k=1

fk ր f.

Use Problem 9.]

11. If

q =

∞
∑

n=1

∫

A

|fn| <∞

and the fn are m-measurable on A, then

∞
∑

n=1

|fn| <∞ (a.e.) on A

and f =
∑∞

n=1 fn is m-integrable on A, with

∫

A

f =

∞
∑

n=1

∫

A

fn.

[Hint: Let g =
∑∞

n=1 |fn|. By Problem 10,

∫

A

g =

∞
∑

n=1

∫

A

|fn| = q <∞;

so g <∞ (a.e.) on A. (Why?) Apply Theorem 5 and Note 1 to the maps

gn =

n
∑

k=1

fk;

note that |gn| ≤ g.]

12. (Convergence in measure; see Problem 11(ii) of §3).
(i) Prove Riesz’ theorem: If fn → f in measure on A ⊆ S, there is a

subsequence {fnk
} such that fnk

→ f (almost uniformly), hence
(a.e.), on A.
[Outline: Taking

σk = δk = 2−k,
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pick, step by step, naturals

n1 < n2 < · · · < nk < · · ·

and sets Dk ∈M such that (∀ k)

mDk < 2−k

and

ρ′(fnk
, f) < 2−k

on A−Dk. (Explain!) Let

En =
∞
⋃

k=n

Dk,

mEn < 21−n. (Why?) Show that

(∀n) (∀ k > n) ρ′(fnk
, f) < 21−n

on A− En. Use Problem 11 in §3.]

(ii) For maps fn : S → E and g : S → E1 deduce that if

fn → f

in measure on A and

(∀n) |fn| ≤ g (a.e.) on A,

then

|f | ≤ g (a.e.) on A.

[Hint: fnk
→ f (a.e.) on A.]

13. Continuing Problem 12(ii), let

fn → f

in measure on A ∈M (fn : S → E) and

(∀n) |fn| ≤ g (a.e.) on A,

with
∫

A

g <∞.

Prove that

lim
n→∞

∫

A

|fn − f | = 0.

Does
∫

A

fn →
∫

A

f?
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[Outline: From Corollary 1 of §5, infer that g = 0 on A− C, where

C =
∞
⋃

k=1

Ck (disjoint),

mCk <∞. (We may assume g M-measurable on A. Why?) Also,

∞ >

∫

A

g =

∫

A−C

g +

∫

C

g = 0 +

∞
∑

k=1

∫

Ck

g;

so the series converges. Hence

(∀ ε > 0) (∃ p)
∫

A

g − ε <

p
∑

k=1

∫

Ck

g =

∫

H

g,

where

H =

p
⋃

k=1

Ck ∈M

and mH <∞. As |fn − f | ≤ 2g (a.e.), we get

(1)

∫

A

|fn − f | ≤
∫

A

|fn − f | ≤
∫

H

|fn − f |+
∫

A−H

2g <

∫

H

|fn − f |+ 2ε.

(Explain!)

As mH <∞, we can fix σ > 0 with

σ ·mH < ε.

Also, by Theorem 6, fix δ such that

2

∫

X

g < ε

whenever A ⊇ X, X ∈M and mX < δ.

As fn → f in measure on H, we findM-sets Dn ⊆ H such that

(∀n > n0) mDn < δ

and

|fn − f | < σ on An = H −Dn.

(We may use the standard metric, as |f | and |fn| < ∞ a.e. Why?) Thus from (1),

we get
∫

A

|fn − f | ≤
∫

H

|fn − f |+ 2ε

=

∫

An

|fn − f |+
∫

Dn

|fn − f |+ 2ε

<

∫

An

|fn − f |+ 3ε

≤ σ ·mH + 3ε < 4ε

for n > n0. (Explain!) Hence

lim

∫

A

|fn − f | = 0.
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See also Problem 7 in §5 and Note 1 of §6 (for measurable functions) as regards

lim

∫

A

fn.]

14. Do Problem 12 in §3 (Lebesgue–Egorov theorems) for T = E, assuming

(∀n) |fn| ≤ g (a.e.) on A,

with
∫

A

g <∞

(instead of mA <∞).
[Hint: With Hi(k) as before, it suffices that

lim
i→∞

m(A−Hi(k)) = 0.

(Why?) Verify that

(∀n) ρ′(fn, f) = |fn − f | ≤ 2g (a.e.) on A,

and

(∀ i, k) A−Hi(k) ⊆ A
(

2g ≥ 1

k

)

∪Q (mQ = 0).

Infer that

(∀ i, k) m(A−Hi(k)) <∞.

Now, as (∀ k) Hi(k)ց ∅ (why?), right continuity applies.]

§7. Integration of Complex and Vector-Valued Functions

I. First we consider functions f : S → En (Cn). For such functions, it is
natural (and easy) to define integration “componentwise” as follows.1

Definition 1.

A function f : S → En is said to be integrable on A ∈ M iff its n (real)
components, f1, . . . , fn, are. In this case, we define

(1)

∫

A

f =

∫

A

f dm =

(∫

A

f1,

∫

A

f2, . . . ,

∫

A

fn

)

=

n
∑

k=1

ēk ·
∫

A

fk,

where the ēk are basic unit vectors (as in Chapter 3, §§1–3, Theorem 2).

1 As before, we presuppose an arbitrary (but fixed) measure space (S,M,m).
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In particular, a complex function f is integrable on A iff its real and
imaginary parts (fre and fim) are. Then we also say that

∫

A
f exists.2

By (1), we have

(2)

∫

A

f =

(
∫

A

fre,

∫

A

fim

)

=

∫

A

fre + i

∫

A

fim.

If f : S → Cn, we use (1), with complex components fk.

With this definition, integration of functions f : S → En (Cn) reduces to
that of fk : S → E1 (C), and one easily obtains the same theorems as in §§4–6,
as far as they make sense for vectors.

Theorem 1. A function f : S → En (Cn) is integrable on A ∈ M iff it is
m-measurable on A and

∫

A
|f | <∞.

(Alternate definition!)

Proof. Assume the range space is En.

By our definition, if f is integrable on A, then its components fk are. Thus
by Theorem 2 and Corollary 1, both in §6, for k = 1, 2, . . . , n, the functions
f+
k and f−

k are m-measurable; furthermore,
∫

A

f+
k 6= ±∞ and

∫

A

f−
k 6= ±∞.

This implies

∞ >

∫

A

f+
k +

∫

A

f−
k =

∫

A

(

f+
k + f−

k

)

=

∫

A

|fk|, k = 1, 2, . . . , n.

Since |f | is m-measurable by Problem 14 in §3 (| · | is a continuous mapping
from En to E1), and

|f | =
∣

∣

∣

∣

n
∑

k=1

ēkfk

∣

∣

∣

∣

≤
n
∑

k=1

|ēk| |fk| =
n
∑

k=1

|fk|,

we get
∫

A

|f | ≤
∫

A

n
∑

1

|fk| =
n
∑

1

∫

A

|fk| <∞.

Conversely, if f satisfies
∫

A

|f | <∞

then

(∀ k)
∣

∣

∣

∣

∫

A

fk

∣

∣

∣

∣

<∞.

2 For vector-valued functions, too, this phrase means integrability.
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Also, the fk are m-measurable if f is (see Problem 2 in §3). Hence the fk are
integrable on A (by Theorem 2 of §6), and so is f .

The proof for Cn is analogous. �

Similarly for other theorems (see Problems 1 to 4 below). We have already
noted that Theorem 5 of §6 holds for complex and vector-valued functions. So
does Theorem 6 in §6. We prove another such proposition (Lemma 1) below.

II. Next we consider the general case, f : S → E (E complete). We now adopt
Theorem 1 as a definition. (It agrees with Definition 1 of §4. Verify!) Even
if E = E∗, we always assume |f | < ∞ a.e.; thus, dropping a null set, we can
make f finite and use the standard metric on E1.

First, we take up the case mA <∞.

Lemma 1. If fn → f (uniformly) on A (mA <∞), then
∫

A

|fn − f | → 0.

Proof. By assumption,

(∀ ε > 0) (∃ k) (∀n > k) |fn − f | < ε on A;

so

(∀n > k)

∫

A

|fn − f | ≤
∫

A

(ε) = ε ·mA <∞.

As ε is arbitrary, the result follows. �

Our goal is to prove results on linearity (Theorem 2) and additivity (Theo-
rem 3) for general E; for a “limited approach,” see Problem 2 for E = En (Cn).

∗Lemma 2. If
∫

A

|f | <∞ (mA <∞)

and
f = lim

n→∞
fn (uniformly) on A−Q (mQ = 0)

for some elementary maps fn on A, then all but finitely many fn are elementary
and integrable on A, and

lim
n→∞

∫

A

fn

exists in E; further, the latter limit does not depend on the sequence {fn}.
Proof. By Lemma 1,

(∀ ε > 0) (∃ q) (∀n, k > q)

∫

A

|fn − f | < ε and

∫

A

|fn − fk| < ε.
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(The latter can be achieved since

lim
k→∞

∫

A

|fn − fk| =
∫

A

|fn − f | < ε.3)

Now, as

|fn| ≤ |fn − f |+ |f |,
Problem 7 in §5 yields

(∀n > k)

∫

A

|fn| ≤
∫

A

|fn − f |+
∫

A

|f | < ε+

∫

A

|f | <∞.

Thus fn is elementary and integrable for n > k, as claimed. Also, by Theorem 2
and Corollary 1(ii), both in §4,

(∀n, k > q)

∣

∣

∣

∣

∫

A

fn −
∫

A

fk

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

A

(fn − fk)

∣

∣

∣

∣

≤
∫

A

|fn − fk| < ε.

Thus {
∫

A
fn} is a Cauchy sequence. As E is complete,

lim

∫

A

fn 6= ±∞

exists in E, as asserted.

Finally, suppose gn → f (uniformly) on A − Q for some other elementary
and integrable maps gn. By what was shown above, lim

∫

A
gn exists, and

∣

∣

∣

∣

lim

∫

A

gn − lim

∫

A

fn

∣

∣

∣

∣

=

∣

∣

∣

∣

lim

∫

A

(gn − fn)

∣

∣

∣

∣

≤ lim

∫

A

|gn − fn − 0| = 0

by Lemma 1, as gn − fn → 0 (uniformly) on A. Thus

lim

∫

A

gn = lim

∫

A

fn,

and all is proved. �

This leads us to the following definition.

∗Definition 2.

If f : S → E is integrable on A ∈M (mA <∞), we set
∫

A

f =

∫

A

f dm = lim
n→∞

∫

A

fn

for any elementary and integrable maps fn such that fn → f (uniformly)
on A−Q, mQ = 0.

3 Indeed, fn − fk → fn − f (uniformly) on A as k →∞; so Lemma 1 applies.
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Indeed, such maps exist by Theorem 3 of §1, and Lemma 2 excludes ambi-
guity.

∗Note 1. If f itself is elementary and integrable, Definition 2 agrees with
that of §4. For, choosing fn = f (n = 1, 2, . . . ), we get

∫

A

f =

∫

A

fn

(the latter as in §4).
∗Note 2. We may neglect sets on which f = 0, along with null sets. For

if f = 0 on A − B (A ⊇ B, B ∈ M), we may choose fn = 0 on A − B in
Definition 2. Then

∫

A

f = lim

∫

A

fn = lim

∫

B

fn =

∫

B

f.

Thus we now define
∫

A

f =

∫

B

f,

even if mA =∞, provided f = 0 on A−B, i.e.,

f = f CB on A

(CB = characteristic function of B), with A ⊇ B, B ∈ M, and mB <∞.

If such a B exists, we say that f has m-finite support in A.

∗Note 3. By Corollary 1 in §5,
∫

A

|f | <∞

implies that A(f 6= 0) is σ-finite. Neglecting A(f = 0), we may assume that

A =
⋃

Bn, mBn <∞, and {Bn}↑

(if not, replace Bn by
⋃n

k=1Bk); so Bn ր A.

∗Lemma 3. Let φ : S → E be integrable on A. Let Bn ր A, mBn < ∞,
and set

fn = φCBn
, n = 1, 2, . . . .

Then fn → φ (pointwise) on A, all fn are integrable on A, and

lim
n→∞

∫

A

fn

exists in E. Furthermore, this limit does not depend on the choice of {Bn}.
Proof. Fix any x ∈ A. As Bn ր A =

⋃

Bn,

(∃n0) (∀n > n0) x ∈ Bn.
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By assumption, fn = φ on Bn. Thus

(∀n > n0) fn(x) = φ(x);

so fn → φ (pointwise) on A.

Moreover, fn = φCBn
is m-measurable on A (as φ and CBn

are); and

|fn| = |φ|CBn

implies
∫

A

|fn| ≤
∫

A

|φ| <∞.

Thus all fn are integrable on A.

As fn = 0 on A−Bn (mB <∞),
∫

A

fn

is defined . Since fn → φ (pointwise) and |fn| ≤ |φ| on A, Theorem 5 in §6,
with g = |φ|, yields

∫

A

|fn − φ| → 0.

The rest is as in Lemma 2, with our present Theorem 2 below (assuming m-
finite support of f and g), replacing Theorem 2 of §4. Thus all is proved. �

∗Definition 3.

If φ : S → E is integrable on A ∈M, we set
∫

A

φ =

∫

A

φ dm = lim
n→∞

∫

A

fn,

with the fn as in Lemma 3 (even if φ has no m-finite support).

Theorem 2 (linearity). If f, g:S → E are integrable on A ∈M, so is

pf + qg

for any scalars p, q. Moreover ,
∫

A

(pf + qg) = p

∫

A

f + q

∫

A

g.

Furthermore if f and g are scalar valued , p and q may be vectors in E.

∗Proof. For the moment, f, g denotes mappings with m-finite support in A.

Integrability is clear since pf + qg is measurable on A (as f and g are), and

|pf + qg| ≤ |p| |f |+ |q| |g|
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yields
∫

A

|pf + qg| ≤ |g|
∫

A

|f |+ |q|
∫

A

|g| <∞.

Now, as noted above, assume that

f = f CB1
and g = g CB2

for some B1, B2 ⊆ A (mB1 +mB2 <∞). Let B = B1 ∪B2; so

f = g = pf + qg = 0 on A−B;

additionally,
∫

A

f =

∫

B

f,

∫

A

g =

∫

B

g, and

∫

A

(pf + qg) =

∫

B

(pf + qg).

Also, mB <∞; so by Definition 2,
∫

B

f = lim

∫

B

fn and

∫

B

g = lim

∫

B

gn

for some elementary and integrable maps

fn → f (uniformly) and gn → g (uniformly) on B −Q, mQ = 0.

Thus
pfn + qgn → pf + qg (uniformly) on B −Q.

But by Theorem 2 and Corollary 1(vii), both of §4 (for elementary and inte-
grable maps),

∫

B

(pfn + qgn) = p

∫

B

fn + q

∫

B

gn.

Hence
∫

A

(pf + qg) =

∫

B

(pf + qg) = lim

∫

B

(pfn + qgn)

= lim

(

p

∫

B

fn + q

∫

B

gn

)

= p

∫

B

f + q

∫

B

g = p

∫

A

f + q

∫

A

g.

This proves the statement of the theorem, provided f and g have m-finite
support in A. For the general case, we now resume the notation f, g, . . . for
any functions, and extend the result to any integrable functions.

Using Definition 3, we set

A =

∞
⋃

n=1

Bn, {Bn}↑, mBn <∞,

and

fn = f CBn
, gn = g CBn

, n = 1, 2, . . . .
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Then by definition,
∫

A

f = lim
n→∞

∫

A

fn and

∫

A

g = lim
n→∞

∫

A

gn,

and so

p

∫

A

f + q

∫

A

g = lim
n→∞

(

p

∫

A

fn + q

∫

A

gn

)

.

As fn, gn have m-finite supports, the first part of the proof yields

p

∫

A

fn + q

∫

A

gn =

∫

A

(pfn + qgn).

Thus as claimed,

p

∫

A

f + q

∫

A

g = lim

∫

A

(pfn + qgn) =

∫

A

(pf + qg). �

Similarly, one extends Corollary 1(ii)(iii)(v) of §4 first to maps with m-finite
support, and then to all integrable maps. The other parts of that corollary
need no new proof. (Why?)

Theorem 3 (additivity).

(i) If f : S → E is integrable on each of n disjoint M-sets Ak, it is so on
their union

A =

n
⋃

k=1

Ak,

and
∫

A

f =

n
∑

k=1

∫

Ak

f.

(ii) This holds for countable unions, too, if f is integrable on all of A.

∗Proof. Let f have m-finite support: f = f CB on A, mB <∞. Then
∫

A

f =

∫

B

f and

∫

Ak

f =

∫

Bk

f,

where

Bk = Ak ∩B, k = 1, 2, . . . , n.

By Definition 2, fix elementary and integrable maps fi (on A) and a set Q
(mQ = 0) such that fi → f (uniformly) on B−Q (hence also on Bk−Q), with

∫

A

f =

∫

B

f = lim
i→∞

∫

B

fi and

∫

Ak

f = lim
i→∞

∫

Bk

fi, k = 1, 2, . . . , n.
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As the fi are elementary and integrable, Theorem 1 in §4 yields

∫

A

fi =

∫

B

fi =
n
∑

k=1

∫

Bk

fi =
n
∑

k=1

∫

Ak

fi.

Hence
∫

A

f = lim
i→∞

∫

B

fi = lim
i→∞

n
∑

k=1

∫

Bk

fi =

n
∑

k=1

(

lim
i→∞

∫

Ak

fi

)

=

n
∑

k=1

∫

Ak

f.

Thus clause (i) holds for maps with m-finite support . For other functions,
(i) now follows quite similarly, from Definition 3. (Verify!)

As for (ii), let f be integrable on

A =

∞
⋃

k=1

Ak (disjoint), Ak ∈M.

In this case, set gn = f CBn
, where Bn =

⋃n
k=1Ak, n = 1, 2, . . . . By clause (i),

we have

(3)

∫

A

gn =

∫

Bn

gn =

n
∑

k=1

∫

Ak

gn =

n
∑

k=1

∫

Ak

f,

since gn = f on each Ak ⊆ Bn.

Also, as is easily seen, |gn| ≤ |f | on A and gn → f (pointwise) on A (proof
as in Lemma 3). Thus by Theorem 5 in §6,

∫

A

|gn − f | → 0.

As
∣

∣

∣

∣

∫

A

gn −
∫

A

f

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

A

(gn − f)

∣

∣

∣

∣

≤
∫

A

|gn − f |,

we obtain
∫

A

f = lim
n→∞

∫

A

gn,

and the result follows by (3). �

Problems on Integration of Complex
and Vector-Valued Functions

1. Prove Corollary 1(iii)–(vii) in §4 componentwise for integrable maps
f : S → En (Cn).

2. Prove Theorems 2 and 3 componentwise for E = En (Cn).

2′. Do it for Corollary 3 in §6.
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3. Prove Theorem 1 with
∫

A

|f | <∞

replaced by
∫

A

|fk| <∞, k = 1, . . . , n.

4. Prove that if f : S → En (Cn) is integrable on A, so is |f |. Disprove the
converse.

5. Disprove Lemma 1 for mA =∞.

∗6. Complete the proof of Lemma 3.

∗7. Complete the proof of Theorem 3.

∗8. Do Problem 1 and 2′ for f : S → E.

∗9. Prove formula (1) from definitions of Part II of this section.

⇒10. Show that
∣

∣

∣

∣

∫

A

f

∣

∣

∣

∣

≤
∫

A

|f |

for integrable maps f : S → E. See also Problem 14.
[Hint: If mA < ∞, use Corollary 1(ii) of §4 and Lemma 1. If mA = ∞, “imitate”
the proof of Lemma 3.]

11. Do Problem 11 in §6 for fn : S → E. Do it componentwise for E =
En (Cn).

12. Show that if f, g : S → E1 (C) are integrable on A, then4

∣

∣

∣

∣

∫

A

fg

∣

∣

∣

∣

2

≤
∫

A

|f |2 ·
∫

A

|g|2.

In what case does equality hold? Deduce Theorem 4(c′) in Chapter 3,
§§1–3, from this result.
[Hint: Argue as in that theorem. Consider the case

(∃ t ∈ E1)

∫

A

|f − tg| = 0.]

13. Show that if f : S → E1 (C) is integrable on A and
∣

∣

∣

∣

∫

A

f

∣

∣

∣

∣

=

∫

A

|f |,

then

(∃ c ∈ C) cf = |f | a.e. on A.

4 One may assume that
∫

A
|f |2 and

∫

A
|g|2 are finite (otherwise, all is trivial).
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[Hint: Let a =
∫

A
f . The case a = 0 is trivial. If a 6= 0, let

c =
|a|
a

; |c| = 1; ca = |a|.

Let r = (cf)re. Show that r ≤ |cf | = |f |,
∣

∣

∣

∣

∫

A

f

∣

∣

∣

∣

=

∫

A

cf =

∫

A

r ≤
∫

A

|f | =
∣

∣

∣

∣

∫

A

f

∣

∣

∣

∣

,

∫

A

|f | =
∫

A

r =

∫

A

(cf)re,

(cf)re = |cf | (a.e.), and cf = |cf | = |f | a.e. on A.]

14. Do Problem 10 for E = C using the method of Problem 13.

15. Show that if f : S → E is integrable on A, it is integrable on eachM-set
B ⊆ A. If, in addition,

∫

B

f = 0

for all such B, show that f = 0 a.e. on A. Prove it for E = En first.
[Hint for E = E∗: A = A(f > 0) ∪A(f ≤ 0). Use Theorems 1(h) and 2 from §5.]

16. In Problem 15, show that

s =

∫

f

is a σ-additive set function on

MA = {X ∈M | X ⊆ A}
(Note 4 in §5); s is called the indefinite integral of f in A.
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Let (X,M,m) and (Y,N , n) be measure spaces, with X ∈M and Y ∈ N . Let
C be the family of all “rectangles,” i.e., sets

A×B,

with A ∈M, B ∈ N , mA <∞, and nB <∞.

Define a premeasure s : C → E1 by

s(A×B) = mA · nB, A×B ∈ C.
Let p∗ be the s-induced outer measure in X × Y and

p : P∗ → E∗

the p∗-induced measure (“product measure,” p = m × n) on the σ-field P∗ of
all p∗-measurable sets in X × Y (Chapter 7, §§5–6).
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We consider functions f : X × Y → E∗ (extended-real).

I. We begin with some definitions.

Definitions.

(1) Given a function f : X → Y → E∗ (of two variables x, y), let fx or f(x, · )
denote the function on Y given by

fx(y) = f(x, y);

it arises from f by fixing x.

Similarly, fy or f(·, y) is given by fy(x) = f(x, y).

(2) Define g : X → E∗ by

g(x) =

∫

Y

f(x, · ) dn,

and set
∫

X

∫

Y

f dn dm =

∫

X

g dm,

also written
∫

X

dm(x)

∫

Y

f(x, y) dn(y).

This is called the iterated integral of f on Y and X, in this order .

Similarly,

h(y) =

∫

X

fy dm

and
∫

Y

∫

X

f dmdn =

∫

Y

h dn.

Note that by the rules of §5, these integrals are always defined.

(3) With f, g, h as above, we say that f is a Fubini map or has the Fubini
properties (after the mathematician Fubini) iff

(a) g is m-measurable on X and h is n-measurable on Y ;

(b) fx is n-measurable on Y for almost all x (i.e., for x ∈ X − Q,
mQ = 0); fy is m-measurable on X for y ∈ Y −Q′, nQ′ = 0; and

(c) the iterated integrals above satisfy
∫

X

∫

Y

f dn dm =

∫

Y

∫

X

f dmdn =

∫

X×Y

f dp

(the main point).
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For monotone sequences

fk : X × Y → E∗ (k = 1, 2, . . . ),

we now obtain the following lemma.

Lemma 1. If 0 ≤ fk ր f (pointwise) on X × Y and if each fk has Fubini
property (a), (b), or (c), then f has the same property.

Proof. For k = 1, 2, . . . , set

gk(x) =

∫

Y

fk(x, · ) dn

and

hk(y) =

∫

X

fk( · , y) dm.

By assumption,

0 ≤ fk(x, · )ր f(x, · )
pointwise on Y . Thus by Theorem 4 in §6,

∫

Y

fk(x, · )ր
∫

Y

f(x, · ) dn,

i.e., gk ր g (pointwise) on X, with g as in Definition 2.

Again, by Theorem 4 of §6,
∫

X

gk dmր
∫

X

g dm;

or by Definition 2,
∫

X

∫

Y

f dn dm = lim
k→∞

∫

X

∫

Y

fk dn dm.

Similarly for
∫

Y

∫

X

f dmdn

and
∫

X×Y

f dp.

Hence f satisfies (c) if all fk do.

Next, let fk have property (b); so (∀ k) fk(x, · ) is n-measurable on Y if
x ∈ X −Qk (mQk = 0). Let

Q =

∞
⋃

k=1

Qk;
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so mQ = 0, and all fk(x, · ) are n-measurable on Y , for x ∈ X − Q. Hence
so is

f(x, · ) = lim
k→∞

fk(x, · ).

Similarly for f( · , y). Thus f satisfies (b).

Property (a) follows from gk → g and hk → h. �

Using Problems 9 and 10 from §6, the reader will also easily verify the fol-
lowing lemma.

Lemma 2.

(i) If f1 and f2 are nonnegative, p-measurable Fubini maps, so is af1 + bf2
for a, b ≥ 0.

(ii) If, in addition,
∫

X×Y

f1 dp <∞ or

∫

X×Y

f2 dp <∞,

then f1 − f2 is a Fubini map, too.

Lemma 3. Let f =
∑∞

i=1 fi (pointwise), with fi ≥ 0 on X × Y .

(i) If all fi are p-measurable Fubini maps, so is f .

(ii) If the fi have Fubini properties (a) and (b), then

∫

X

∫

Y

f dn dm =

∞
∑

i=1

∫

X

∫

Y

fi dn dm

and
∫

Y

∫

X

f dmdn =

∞
∑

i=1

∫

Y

∫

X

fi dmdn.

II. By Theorem 4 of Chapter 7, §3, the family C (see above) is a semiring ,
being the product of two rings,

{A ∈M | mA <∞} and {B ∈ N | nB <∞}.

(Verify!) Thus using Theorem 2 in Chapter 7, §6, we now show that p is an
extension of s : C → E1.

Theorem 1. The product premeasure s is σ-additive on the semiring C. Hence
(i) C ⊆ P∗ and p = s <∞ on C, and
(ii) the characteristic function CD of any set D ∈ C is a Fubini map.
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Proof. Let D = A×B ∈ C; so

CD(x, y) = CA(x) · CB(y).

(Why?) Thus for a fixed x, CD(x, · ) is just a multiple of the N -simple map
CB , hence n-measurable on Y . Also,

g(x) =

∫

Y

CD(x, · ) dn = CA(x) ·
∫

Y

CB dn = CA(x) · nB;

so g = CA · nB isM-simple on X, with
∫

X

∫

Y

CD dn dm =

∫

X

g dm = nB

∫

X

CA dm = nB ·mA = sD.

Similarly for CD( · , y), and

h(y) =

∫

X

CD( · , y) dm.

Thus CD has Fubini properties (a) and (b), and for every D ∈ C

(1)

∫

X

∫

Y

CD dn dm =

∫

Y

∫

X

CD dmdn = sD.

To prove σ-additivity, let

D =

∞
⋃

i=1

Di (disjoint), Di ∈ C;

so

CD =

∞
∑

i=1

CDi
.

(Why?) As shown above, each CDi
has Fubini properties (a) and (b); so by (1)

and Lemma 3,

sD =

∫

X

∫

Y

CD dn dm =

∞
∑

i=1

∫

X

∫

Y

CDi
dn dm =

∞
∑

i=1

sDi,

as required.

Assertion (i) now follows by Theorem 2 in Chapter 7, §6. Hence

sD = pD =

∫

X×Y

CD dp;

so by formula (1), CD also has Fubini property (c), and all is proved. �

Next, let P be the σ-ring generated by the semiring C (so C ⊆ P ⊆ P∗).
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Lemma 4. P is the least set family R such that

(i) R ⊇ C;
(ii) R is closed under countable disjoint unions; and

(iii) H −D ∈ R if D ∈ R and D ⊆ H, H ∈ C.

This is simply Theorem 3 in Chapter 7, §3, with changed notation.

Lemma 5. If D ∈ P (σ-generated by C), then CD is a Fubini map.

Proof. Let R be the family of all D ∈ P such that CD is a Fubini map. We
shall show that R satisfies (i)–(iii) of Lemma 4, and so P ⊆ R.
(i) By Theorem 1, each CD (D ∈ C) is a Fubini map; so each D ∈ C is in R.
(ii) Let

D =

∞
⋃

i=1

Di (disjoint), Di ∈ R.

Then

CD =

∞
∑

i=1

CDi
,

and each CDi
is a Fubini map. Hence so is CD by Lemma 3. Thus D ∈ R,

proving (ii).

(iii) We must show that CH−D is a Fubini map if CD is and if D ⊆ H, H ∈ C.
Now, D ⊆ H implies

CH−D = CH − CD.

(Why?) Also, by Theorem 1, H ∈ C implies
∫

X×Y

CH dp = pH = sH <∞,

and CH is a Fubini map. So is CD by assumption. So also is

CH−D = CH − CD

by Lemma 2(ii). Thus H −D ∈ R, proving (iii).

By Lemma 4, then, P ⊆ R. Hence (∀D ∈ P) CD is a Fubini map. �

We can now establish one of the main theorems, due to Fubini.

Theorem 2 (Fubini I). Suppose f : X × Y → E∗ is P−measurable on X × Y
(P as above) rom. Then f is a Fubini map if either

(i) f ≥ 0 on X × Y , or
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(ii) one of
∫

X×Y

|f | dp,
∫

X

∫

Y

|f | dn dm, or

∫

Y

∫

X

|f | dmdn

is finite.1

In both cases,

(2)

∫

X

∫

Y

f dn dm =

∫

Y

∫

X

f dmdn =

∫

X×Y

f dp.

Proof. First, let

f =
∞
∑

i=1

aiCDi
(ai ≥ 0, Di ∈ P),

i.e., f is P-elementary , hence certainly p-measurable. (Why?) By Lemmas 5
and 2, each aiCDi

is a Fubini map. Hence so is f (Lemma 3). Formula (2) is
simply Fubini property (c).

Now take any P-measurable f ≥ 0. By Lemma 2 in §2,
f = lim

k→∞
fk on X × Y

for some sequence {fk}↑ of P-elementary maps, fk ≥ 0. As shown above, each
fk is a Fubini map. Hence so is f by Lemma 1. This settles case (i).

Next, assume (ii). As f is P-measurable, so are f+, f−, and |f | (Theorem 2
in §2). As they are nonnegative, they are Fubini maps by case (i).

So is f = f+ − f− by Lemma 2(ii), since f+ ≤ |f | implies
∫

X×Y

f+ dp <∞

by our assumption (ii). (The three integrals are equal , as |f | is a Fubini map.)

Thus all is proved. �

III. We now want to replace P by P∗ in Lemma 5 and Theorem 2. This works
only under certain σ-finiteness conditions, as shown below.

Lemma 6. Let D ∈ P∗ be σ-finite, i .e.,

D =

∞
⋃

i=1

Di (disjoint)

for some Di ∈ P∗, with pDi <∞ (i = 1, 2, . . . ).2

1 Note the use of absolute values; without them, Theorem 2 fails (see Problem 5′).
2 See Note 2 in Chapter 7, §8.
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Then there is a K ∈ P such that p(K −D) = 0 and D ⊆ K.

Proof. As P is a σ-ring containing C, it also contains Cσ. Thus by Theorem 3
of Chapter 7, §5, p∗ is P-regular .

For the rest, proceed as in Theorems 1 and 2 in Chapter 7, §7. �

Lemma 7. If D ∈ P∗ is σ-finite (Lemma 6), then CD is a Fubini map.

Proof. By Lemma 6,

(∃K ∈ P) p(K −D) = 0, D ⊆ K.

Let Q = K −D, so pQ = 0, and CQ = CK −CD; that is, CD = CK − CQ and
∫

X×Y

CQ dp = pQ = 0.

As K ∈ P, CK is a Fubini map. Thus by Lemma 2(ii), all reduces to proving
the same for CQ.

Now, as pQ = 0, Q is certainly σ-finite; so by Lemma 6,

(∃Z ∈ P) Q ⊆ Z, pZ = pQ = 0.

Again CZ is a Fubini map; so
∫

X

∫

Y

CZ dn dm =

∫

X×Y

CZ dp = pZ = 0.

As Q ⊆ Z, we have CQ ≤ CZ , and so

(3)

∫

X

∫

Y

CQ dn dm =

∫

X

[∫

Y

CQ(x, · ) dn
]

dm

≤
∫

X

[∫

Y

CZ(x, · ) dn
]

dm =

∫

X×Y

CZ dp = 0.

Similarly,

(4)

∫

Y

∫

X

CQ dmdn =

∫

Y

[∫

X

CQ( · , y) dm
]

dn = 0.

Thus setting

g(x) =

∫

Y

CQ(x, · ) dn and h(y) =

∫

X

CQ( · , y) dm,

we have
∫

X

g dm = 0 =

∫

Y

h dn.

Hence by Theorem 1(h) in §5, g = 0 a.e. on X, and h = 0 a.e. on Y . So g and h
are “almost” measurable (Definition 2 of §3); i.e., CQ has Fubini property (a).
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Similarly, one establishes (b), and (3) yields Fubini property (c), since
∫

X

∫

Y

CQ dn dm =

∫

Y

∫

X

CQ dmdn =

∫

X×Y

CQ dp = 0,

as required. �

Theorem 3 (Fubini II). Suppose f : X×Y → E∗ is P∗-measurable3 on X×Y
and satisfies condition (i) or (ii) of Theorem 2.

Then f is a Fubini map, provided f has σ-finite support, i .e., f vanishes
outside some σ-finite set H ⊆ X × Y .

Proof. First, let

f =
∞
∑

i=1

aiCDi
(ai > 0, Di ∈ P∗),

with f = 0 on −H (as above).

As f = ai 6= 0 on Ai, we must have Di ⊆ H; so all Di are σ-finite. (Why?)
Thus by Lemma 7, each CDi

is a Fubini map, and so is f . (Why?)

If f is P∗-measurable and nonnegative, and f = 0 on −H, we can proceed
as in Theorem 2, making all fk vanish on −H. Then the fk and f are Fubini
maps by what was shown above.

Finally, in case (ii), f = 0 on −H implies

f+ = f− = |f | = 0 on −H.

Thus f+, f−, and f are Fubini maps by part (i) and the argument of Theo-
rem 2. �

Note 1. The σ-finite support is automatic if f is p-integrable (Corollary 1
in §5), or if p or both m and n are σ-finite (see Problem 3). The condition is
also redundant if f is P-measurable (Theorem 2; see also Problem 4).

Note 2. By induction, our definitions and Theorems 2 and 3 extend to any
finite number q of measure spaces

(Xi,Mi,mi), i = 1, . . . , q.

One writes

p = m1 ×m2

if q = 2 and sets

m1 ×m2 × · · · ×mq+1 = (m1 × · · · ×mq)×mq+1.

3 Or, equivalently, p-measurable (Note 2 in §3), as p is complete (Theorem 1 of Chap-

ter 7, §6).
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Theorems 2 and 3 with similar assumptions then state that the order of inte-
grations is immaterial.

Note 3. Lebesgue measure in Eq can be treated as the product of q one-
dimensional measures. Similarly for LS product measures (but this method is
less general than that described in Problems 9 and 10 of Chapter 7, §9).

IV. Theorems 2(ii) and 3(ii) hold also for functions

f : X × Y → En (Cn)

if Definitions 2 and 3 are modified as follows (so that they make sense for such
maps): In Definition 2, set

g(x) =

∫

Y

fx dn

if fx is n-integrable on Y , and g(x) = 0 otherwise. Similarly for h(y). In
Definition 3, replace “measurable” by “integrable.”

For the proof of the theorems, apply Theorems 2(i) and 3(i) to |f |. This
yields

∫

Y

∫

X

|f | dmdn =

∫

X

∫

Y

|f | dn dm =

∫

X×Y

|f | dp.

Hence if one of these integrals is finite, f is p-integrable on X × Y , and so are
its q components. The result then follows on noting that f is a Fubini map
(in the modified sense) iff its components are. (Verify!) See also Problem 12
below.

V. In conclusion, note that integrals of the form
∫

D

f dp (D ∈ P∗)

reduce to
∫

X×Y

f · CD dp.

Thus it suffices to consider integrals over X × Y .

Problems on Product Measures and Fubini Theorems

1. Prove Lemmas 2 and 3.

1′. Show that {A ∈M | mA <∞} is a set ring .

2. Fill in all proof details in Theorems 1 to 3.

2′. Do the same for Lemmas 5 to 7.
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3. Prove that if m and n are σ-finite, so is p = m×n. Disprove the converse
by an example.
[Hint: (

⋃

i Ai)× (
⋃

j Bj) =
⋃

i,j(Ai ×Bj). Verify!]

4. Prove the following.

(i) Each D ∈ P (as in the text) is (p) σ-finite.

(ii) All P-measurable maps f : X × Y → E∗ have σ-finite support.

[Hints: (i) Use Problem 14(b) from Chapter 7, §3. (ii) Use (i) for P-elementary and

nonnegative maps first.]

5. (i) Find D ∈ P∗ and x ∈ X such that CD(x, · ) is not n-measurable
on Y . Does this contradict Lemma 7?
[Hint: Let m = n = Lebesgue measure in E1; D = {x} × Q, with Q non-

measurable.]

(ii) Which C-sets have nonzero measure if X = Y = E1, m∗ is as in
Problem 2(b) of Chapter 7, §5 (with S = X), and n is Lebesgue
measure?

5′. Let m = n = Lebesgue measure in [0, 1] = X = Y . Let

fk =







k(k + 1) on
( 1

k + 1
,
1

k

]

and

0 elsewhere.

Let

f(x, y) =

∞
∑

k=1

[fk(x)− fk+1(x)] fk(y);

the series converges. (Why?) Show that

(i) (∀ k)
∫

X
fk = 1;

(ii)
∫

X

∫

Y
f dn dm = 1 6= 0 =

∫

Y

∫

X
f dmdn.

What is wrong? Is f P-measurable?
[Hint: Explore

∫

X

∫

Y

|f | dn dm.]

6. Let X = Y = [0, 1], m as in Example (c) of Chapter 7, §6, (S = X) and
n = Lebesgue measure in Y .

(i) Show that p = m× n is a topological measure under the standard
metric in E2.

(ii) Prove that D = {(x, y) ∈ X × Y | x = y} ∈ P∗.

(iii) Describe C.
[Hints: (i) Any subinterval of X × Y is in P∗; (ii) D is closed . Verify!]
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7. Continuing Problem 6, let f = CD.

(i) Show that
∫

Y

∫

X

f dn dm = 0 6= 1 =

∫

Y

∫

X

f dmdn.

What is wrong?
[Hint: D is not σ-finite; for if

D =

∞
⋃

i=1

Di,

at least one Di is uncountable and has no finite basic covering values (why?),

so p∗Di =∞.]

(ii) Compute p∗{(x, 0) | x ∈ X} and p∗{(0, y) | y ∈ Y }.

8. Show that D ∈ P∗ is σ-finite iff

D ⊆
∞
⋃

i=1

Di (disjoint)

for some sets Di ∈ C.
[Hint: First let p∗D <∞. Use Corollary 1 from Chapter 7, §1.]

9.

X

Y

O

Da

a

D

Figure 34

Given D ∈ P, a ∈ X, and b ∈ Y , let

Da = {y ∈ Y | (a, y) ∈ D}
and

Db = {x ∈ X | (x, b) ∈ D}.
(See Figure 34 for X = Y = E1.)

Prove that

(i) Da ∈ N , Db ∈M;

(ii) CD(a, · ) = CDa
, nDa =

∫

Y

CD(a, · ) dn, mDb =

∫

X

CD( · , b) dm.

[Hint: Let

R = {Z ∈ P | Za ∈ N}.

Show that R is a σ-ring ⊇ C. Hence R ⊇ P; D ∈ R; Da ∈ N . Similarly for Db.]

⇒10. Let m = n = Lebesgue measure in E1 = X = Y . Let f : E1 → [0,∞)
be m-measurable on X. Let

H = {(x, y) ∈ E2 | 0 ≤ y < f(x)}
and

G = {(x, y) ∈ E2 | y = f(x, y)}
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(the “graph” of f). Prove that

(i) H ∈ P∗ and

pH =

∫

X

f dm

(= “the area under f”);

(ii) G ∈ P∗ and pG = 0.

[Hints: (i) First take f = CD, and elementary and nonnegative maps. Then use

Lemma 2 in §2 (last clause). Fix elementary and nonnegative maps fk ր f , assuming

fk < f (if not, replace fk by (1− 1
k
)fk). Let

Hk = {(x, y) | 0 ≤ y < fk(x)}.

Show that Hk ր H ∈ P∗.

(ii) Set

φ(x, y) = y − f(x).

Using Corollary 4 of §1, show that φ is p-measurable on E2; so G = E2(φ = 0) ∈ P∗.
Dropping a null set (Lemma 6), assume G ∈ P. By Problem 9(ii),

(∀ x ∈ E1)

∫

Y

CG(x, · ) dn = nGx = 0,

as Gx = {f(x)}, a singleton.]

11. Let

f(x, y) = φ1(x)φ2(y).

Prove that if φ1 is m-integrable on X and φ2 is n-integrable on Y , then
f is p-integrable on X × Y and

∫

X×Y

f dp =

∫

X

φ1 ·
∫

Y

φ2.

∗12. Prove Theorem 3(ii) for f : X × Y → E (E complete).
[Outline: If f is P∗-simple, use Lemma 7 above and Theorem 2 in §7.

If

f =
∞
∑

k=1

ak CDk
, Dk ∈ P∗,

let

Hk =

k
⋃

i=1

Di

and fk = fCHk
, so the fk are P∗-simple (hence Fubini maps), and fk → f (point-

wise) on X × Y , with |fk| ≤ |f | and
∫

X×Y

|f | dp <∞

(by assumption). Now use Theorem 5 from §6.
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Let now f be P∗-measurable; so

f = lim
k→∞

fk (uniformly)

for some P∗-elementary maps gk (Theorem 3 in §1). By assumption, f = fCH (H

σ-finite); so we may assume gk = gkCH . Then as shown above, all gk are Fubini
maps. So is f by Lemma 1 in §7 (verify!), provided H ⊆ D for some D ∈ C.

In the general case, by Problem 8,

H ⊆
⋃

i

Di (disjoint), Di ∈ C.

Let Hi = H ∩Di. By the previous step, each fCHi
is a Fubini map; so is

fk =

k
∑

i=1

fCHi

(why?), hence so is f = lim
k→∞

fk, by Theorem 5 of §6. (Verify!)]

13. Let m = Lebesgue measure in E1, p = Lebesgue measure in Es, X =
(0,∞), and

Y = {ȳ ∈ Es | |ȳ| = 1}.
Given x̄ ∈ Es − {0̄}, let

r = |x̄| and ū =
x̄

r
∈ Y .

Call r and ū the polar coordinates of x̄ 6= 0̄.

If D ⊆ Y , set

n∗D = s · p∗{rū | ū ∈ D, 0 < r ≤ 1}.
Show that n∗ is an outer measure in Y ; so it induces a measure n in Y .
Then prove that

∫

Es

f dp =

∫

X

rs−1 dm(r)

∫

Y

f(rū) dn(ū)

if f is p-measurable and nonnegative on Es.
[Hint: Start with f = CA,

A = {rū | ū ∈ H, a < r < b},

for some open set H ⊆ Y (subspace of Es). Next, let A ∈ B (Borel set in Y ); then
A ⊆ P∗. Then let f be p-elementary, and so on.]

§9. Riemann Integration. Stieltjes Integrals

I. In this section, C is the family of all intervals in En, and m is an additive
finite premeasure on C (or Cs), such as the volume function v (Chapter 7,
§§1–2).
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By a C-partition of A ∈ C (or A ∈ Cs), we mean a finite family

P = {Ai} ⊂ C
such that

A =
⋃

i

Ai (disjoint).

As we noted in §5, the Riemann integral ,

R

∫

A

f = R

∫

A

f dm,

of f : En → E1 can be defined as its Lebesgue counterpart,
∫

A

f,

with elementary maps replaced by simple step functions (“C-simple” maps.)
Equivalently, one can use the following construction, due to J. G. Darboux.

Definitions.

(a) Given f : En → E∗ and a C-partition
P = {A1, . . . , Aq}

of A, we define the lower and upper Darboux sums, S and S, of f over
P (with respect to m) by

(1) S(f,P) =
q

∑

i=1

mAi · inf f [Ai] and S(f,P) =
q

∑

i=1

mAi · sup f [Ai].
1

(b) The lower and upper Riemann integrals (“R-integrals”) of f on A (with
respect to m) are

(2)

R

∫

A

f = R

∫

A

f dm = sup
P

S(f,P) and

R

∫

A

f = R

∫

A

f dm = inf
P

S(f,P),2



















where the “inf” and “sup” are taken over all C-partitions P of A.

(c) We say that f is Riemann-integrable (“R-integrable”) with respect to m
on A iff f is bounded on A and

R

∫

A

f = R

∫

A

f.

1,2 These expressions exist in E∗ (Chapter 4, §4, (2∗)).
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We then set

R

∫

A

f = R

∫

A

f = R

∫

A

f dm = R

∫

A

f dm

and call it the Riemann integral (“R-integral”) of f on A. “Classical”
notation:

R

∫

A

f(x̄) dm(x̄).

If A = [a, b] ⊂ E1, we also write

R

∫ b

a

f = R

∫ b

a

f(x) dm(x)

instead.

If m is Lebesgue measure (or premeasure) in E1, we write “dx” for
“dm(x).”

For Lebesgue integrals, we replace “R” by “L,” or we simply omit “R.”

If f is R-integrable on A, we also say that

R

∫

A

f

exists (note that this implies the boundedness of f); note that

R

∫

A

f and R

∫

A

f

are always defined in E∗.

Below, we always restrict f to a fixed A ∈ C (or A ∈ Cs); P, P ′, P ′′, P∗,
and Pk denote C-partitions of A.

We now obtain the following result for any additive m : C → [0,∞).

Corollary 1. If P refines P ′ (§1), then

S(f,P ′) ≤ S(f,P) ≤ S(f,P) ≤ S(f,P ′).

Proof. Let P ′ = {Ai}, P = {Bik}, and

(∀ i) Ai =
⋃

k

Bik.

By additivity,

mAi =
∑

k

mBik.
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Also, Bik ⊆ Ai implies

f [Bik] ⊆ f [Ai];

sup f [Bik] ≤ sup f [Ai]; and

inf f [Bik] ≥ inf f [Ai].

So setting

ai = inf f [Ai] and bik = inf f [Bik],

we get

S(f,P ′) =
∑

i

aimAi =
∑

i

∑

k

aimBik

≤
∑

i,k

bikmBik = S(f,P).

Similarly,

S(f,P ′) ≤ S(f,P),

and

S(f,P) ≤ S(f,P)

is obvious from (1). �

Corollary 2. For any P ′ and P ′′,

S(f,P ′) ≤ S(f,P ′′).

Hence

R

∫

A

f ≤ R

∫

A

f.

Proof. Let P = P ′ ∩ P ′′ (see §1). As P refines both P ′ and P ′′, Corollary 1
yields

S(f,P ′) ≤ S(f,P) ≤ S(f,P) ≤ S(f,P ′′).

Thus, indeed, no lower sum S(f,P ′) exceeds any upper sum S(f,P ′′).

Hence also

sup
P′

S(f,P ′) ≤ inf
P′′

S(f,P ′′),

i.e.,

R

∫

A

f ≤ R

∫

A

f,

as claimed. �
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Lemma 1. A map f : A→ E1 is R-integrable iff f is bounded and , moreover ,

(3) (∀ ε > 0) (∃P) S(f,P)− S(f,P) < ε.

Proof. By formulas (1) and (2),

S(f,P) ≤ R

∫

A

f ≤ R

∫

A

f ≤ S(f,P).

Hence (3) implies
∣

∣

∣

∣

R

∫

A

f −R

∫

A

f

∣

∣

∣

∣

< ε.

As ε is arbitrary, we get

R

∫

A

f = R

∫

A

f ;

so f is R-integrable.

Conversely, if so, definitions (b) and (c) imply the existence of P ′ and P ′′

such that

S(f,P ′) > R

∫

A

f − 1

2
ε

and

S(f,P ′′) < R

∫

A

f +
1

2
ε.

Let P refine both P ′ and P ′′. Then by Corollary 1,

S(f,P)− S(f,P) ≤ S(f,P ′′)− S(f,P ′)

<

(

R

∫

A

f +
1

2
ε

)

−
(

R

∫

A

f − 1

2
ε

)

= ε,

as required. �

Lemma 2. Let f be C-simple; say , f = ai on Ai for some C-partition P∗ =
{Ai} of A (we then write

f =
∑

i

aiCAi

on A; see Note 4 of §4).
Then

(4) R

∫

A

f = R

∫

A

f = S(f,P∗) = S(f,P∗) =
∑

i

aimAi.

Hence any finite C-simple function is R-integrable, with R
∫

A
f as in (4).
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Proof. Given any C-partition P = {Bk} of A, consider
P∗ .∩ P = {Ai ∩Bk}.

As f = ai on Ai ∩Bk (even on all of Ai),

ai = inf f [Ai ∩Bk] = sup f [Ai ∩Bk].

Also,

A =
⋃

i,k

(Ai ∩Bk) (disjoint)

and
(∀ i) Ai =

⋃

k

(Ai ∩Bk);

so
mAi =

∑

k

m(Ai ∩Bk)

and
S(f,P) =

∑

i

∑

k

ai m(Ai ∩Bk) =
∑

i

ai mAi = S(f,P∗)

for any such P.
Hence also

∑

i

ai mAi = sup
P

S(f,P) = R

∫

A

f.

Similarly for R
∫

A
f . This proves (4).

If, further, f is finite, it is bounded (by max |ai|) since there are only finitely
many ai; so f is R-integrable on A, and all is proved. �

Note 1. Thus S and S are integrals of C-simple maps, and definition (b)
can be restated:

R

∫

A

f = sup
g

R

∫

A

g and R

∫

A

f = inf
h

R

∫

A

h,

taking the sup and inf over all C-simple maps g, h with

g ≤ f ≤ h on A.

(Verify by properties of glb and lub!)

Therefore, we can now develop R-integration as in §§4–5, replacing elemen-
tary maps by C-simple maps, with S = En. In particular, Problem 5 in §5
works out as before.

Hence linearity (Theorem 1 of §6) follows, with the same proof. One also
obtains additivity (limited to C-partitions). Moreover, the R-integrability of f
and g implies that of fg, f ∨ g, f ∧ g, and |f |. (See the Problems.)
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Theorem 1. If fi → f (uniformly) on A and if the fi are R-integrable on A,
so also is f . Moreover,

lim
i→∞

R

∫

A

|f − fi| = 0 and lim
i→∞

R

∫

A

fi = R

∫

A

f.

Proof. As all fi are bounded (definition (c)), so is f , by Problem 10 of Chap-
ter 4, §12.

Now, given ε > 0, fix k such that

(∀ i ≥ k) |f − fi| <
ε

mA
on A.

Verify that

(∀ i ≥ k) (∀P) |S(f − fi,P)| < ε and |S(f − fi,P)| < ε;

fix one such fi and choose a P such that

S(fi,P)− S(fi,P) < ε,

which one can do by Lemma 1. Then for this P,

S(f,P)− S(f,P) < 3ε.

(Why?) By Lemma 1, then, f is R-integrable on A.

Finally,
∣

∣

∣

∣

R

∫

A

f −R

∫

A

fi

∣

∣

∣

∣

≤ R

∫

A

|f − fi|

≤ R

∫

A

( ε

mA

)

= mA
( ε

mA

)

= ε

for all i ≥ k. Hence the second clause of our theorem follows, too. �

Corollary 3. If f : E1 → E1 is bounded and regulated (Chapter 5, §10) on
A = [a, b], then f is R-integrable on A.

In particular, this applies if f is monotone, or of bounded variation, or
relatively continuous, or a step function, on A.

Proof. By Lemma 2, this applies to C-simple maps.

Now, let f be regulated (e.g., of the kind specified above).

Then by Lemma 2 of Chapter 5, §10,

f = lim
i→∞

gi (uniformly)

for finite C-simple gi.

Thus f is R-integrable on A by Theorem 1. �
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II. Henceforth, we assume that m is a measure on a σ-ring M ⊇ C in En,
with m < ∞ on C. (For a reader who took the “limited approach,” it is now
time to consider §§4–6 in full.) The measure m may, but need not , be Lebesgue
measure in En.

Theorem 2. If f : En → E1 is R-integrable on A ∈ C, it is also Lebesgue
integrable (with respect to m as above) on A, and

L

∫

A

f = R

∫

A

f.

Proof. Given a C-partition P = {Ai} of A, define the C-simple maps

g =
∑

i

ai CAi
and h =

∑

i

bi CAi

with

ai = inf f [Ai] and bi = sup f [Ai].

Then g ≤ f ≤ h on A with

S(f,P) =
∑

i

aimAi = L

∫

A

g

and

S(f,P) =
∑

i

bi mAi = L

∫

A

h.

By Theorem 1(c) in §5,

S(f,P) = L

∫

A

g ≤ L

∫

A

f ≤ L

∫

A

f ≤ L

∫

A

h = S(f,P).

As this holds for any P, we get

(5) R

∫

A

f = sup
P

S(f,P) ≤ L

∫

A

f ≤ L

∫

A

f = inf
P

S(f,P) = R

∫

A

f.

But by assumption,

R

∫

A

f = R

∫

A

f.

Thus these inequalities become equations:

R

∫

A

f =

∫

A

f =

∫

A

f = R

∫

A

f.
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Also, by definition (c), f is bounded on A; so |f | < K <∞ on A. Hence
∣

∣

∣

∣

∫

A

f

∣

∣

∣

∣

≤
∫

A

|f | ≤ K ·mA <∞.3

Thus
∫

A

f =

∫

A

f 6= ±∞,

i.e., f is Lebesgue integrable, and

L

∫

A

f = R

∫

A

f,

as claimed. �

Note 2. The converse fails. For example, as shown in the example in §4,
f = CR (R = rationals) is L-integrable on A = [0, 1].

Yet f is not R-integrable.

For C-partitions involve intervals containing both rationals (on which f = 1)
and irrationals (on which f = 0). Thus for any P,

S(f,P) = 0 and S(f,P) = 1 ·mA = 1.

(Why?) So

R

∫

A

f = inf S(f,P) = 1,

while

R

∫

A

f = 0 6= R

∫

A

f.

Note 3. By Theorem 1, any R
∫

A
f is also a Lebesgue integral. Thus the

rules of §§5–6 apply to R-integrals, provided that the functions involved are
R-integrable. For a deeper study, we need a few more ideas.

Definitions (continued).

(d) The mesh |P| of a C-partition P = {A1, . . . , Aq} is the largest of the
diagonals dAi:

|P| = max{dA1, dA2, . . . , dAq}.

Note 4. For any A ∈ C, there is a sequence of C-partitions Pk such that

(i) each Pk+1 refines Pk and

(ii) limk→∞ |Pk| = 0.

3 This also shows that an R-integral, when one exists, is always finite.
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To construct such a sequence, bisect the edges of A so as to obtain 2n subinter-
vals of diagonal 1

2dA (Chapter 3, §7). Repeat this with each of the subintervals,
and so on. Then

|Pk| =
dA

2k
→ 0.

Lemma 3. Let f : A → E1 be bounded. Let {Pk} satisfy (i) of Note 4. If
Pk = {Ak

1 , . . . , A
k
qk
}, put

gk =

qk
∑

i=1

CAk

i

inf f [Ak
i ]

and

hk =

qk
∑

i=1

CAk

i

sup f [Ak
i ].

Then the functions

g = sup
k

gk and h = inf
k
hk

are Lebesgue integrable on A,4 and

(6)

∫

A

g = lim
k→∞

S(f,Pk) ≤ R

∫

A

f ≤ R

∫

A

f ≤ lim
k→∞

S(f,Pk) =

∫

A

h.

Proof. As in Theorem 2, we obtain gk ≤ f ≤ hk on A with
∫

A

gk = S(f,Pk)

and
∫

A

hk = S(f,Pk).

Since Pk+1 refines Pk, it also easily follows that

(7) gk ≤ gk+1 ≤ sup
k

gk = g ≤ f ≤ h = inf
k
hk ≤ hk+1 ≤ hk.

(Verify!)

Thus {gk}↑ and {hk}↓, and so

g = sup
k

gk = lim
k→∞

gk and h = inf
k
hk = lim

k→∞
hk.

Also, as f is bounded,

(∃K ∈ E1) |f | < K on A.

4 Integrability is with respect to the measure m mentioned above.
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The definition of gk and hk then implies

(∀ k) |gk| ≤ K and |hk| ≤ K (why?),

with
∫

A

(K) = K ·mA <∞.

The gk and hk are measurable (even simple) on A, with gk → g and hk → h.

Thus by Theorem 5 and Note 1, both from §6, g and h are Lebesgue inte-
grable,5 with

∫

A

g = lim
k→∞

∫

A

gk and

∫

A

h = lim
k→∞

∫

A

hk.

As
∫

A

gk = S(f,Pk) ≤ R

∫

A

f

and
∫

A

hk = S(f,Pk) ≥ R

∫

A

f,

passage to the limit in equalities yields (6). Thus the lemma is proved. �

Lemma 4. With all as in Lemma 3, let B be the union of the boundaries of
all intervals from all Pk. Let |Pk| → 0. Then we have the following.

(i) If f is continuous at p ∈ A, then h(p) = g(p).

(ii) The converse holds if p ∈ A−B.

Proof. For each k, p is in one of the intervals in Pk; call it Akp.

If p ∈ A−B, p is an interior point of Akp; so there is a globe

Gp(δk) ⊆ Akp.

Also, by the definition of gk and hk,

gk(p) = inf f [Akp] and hk = sup f [Akp].

(Why?)

Now fix ε > 0. If g(p) = h(p), then

0 = h(p)− g(p) = lim
k→∞

[hk(p)− gk(p)];

so
(∃ k) |hk(p)− gk(p)| = sup f [Akp]− inf f [Akp] < ε.

As Gp(δk) ⊆ Akp, we get

(∀x ∈ Gp(δk)) |f(x)− f(p)| ≤ sup f [Akp]− inf f [Akp] < ε,

5 Integrability is with respect to the measure m mentioned above.
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proving continuity (clause (ii)).

For (i), given ε > 0, choose δ > 0 so that

(∀x, y ∈ A ∩Gp(δ)) |f(x)− f(y)| < ε.

Because

(∀ δ > 0) (∃ k0) (∀ k > k0) |Pk| < δ

for k > k0, Akp ⊆ Gp(δ). Deduce that

(∀ k > k0) |hk(p)− gk(p)| ≤ ε. �

Note 5. The Lebesgue measure of B in Lemma 4 is zero; for B consists of
countably many “faces” (degenerate intervals), each of measure zero.

Theorem 3. A map f : A → E1 is R-integrable on A (with m = Lebesgue
measure) iff f is bounded on A and continuous on A − Q for some Q with
mQ = 0.

Note that relative continuity on A − Q is not enough—take f = CR of
Note 2.

Proof. If these conditions hold, choose {Pk} as in Lemma 4.

Then by the assumed continuity, g = h on A−Q, mQ = 0.

Thus
∫

A

g =

∫

A

h

(Corollary 2 in §5).
Hence by formula (6), f is R-integrable on A.

Conversely, if so, use Lemma 1 with

ε = 1,
1

2
, . . . ,

1

k
, . . .

to get for each k some Pk such that

S(f,Pk)− S(f,Pk) <
1

k
→ 0.

By Corollary 1, this will still hold if we refine each Pk, step by step, so as to
achieve properties (i) and (ii) of Note 4 as well. Then Lemmas 3 and 4 apply.

As

S(f,Pk)− S(f,Pk)→ 0,

formula (6) shows that
∫

A

g = lim
k→∞

S(f,Pk) = lim
k→∞

S(f,Pk) =

∫

A

h.
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As h and g are integrable on A,
∫

A

(h− g) =

∫

A

h−
∫

A

g = 0.

Also h − g ≥ 0; so by Theorem 1(h) in §5, h = g on A − Q′, mQ′ = 0 (under
Lebesgue measure). Hence by Lemma 4, f is continuous on

A−Q′ −B,

with mB = 0 (Note 5).

Let Q = Q′ ∪B. Then mQ = 0 and

A−Q = A−Q′ −B;

so f is continuous on A−Q. This completes the proof. �

Note 6. The first part of the proof does not involve B and thus works even
if m is not the Lebesgue measure. The second part requires that mB = 0.

Theorem 3 shows that R-integrals are limited to a.e. continuous functions
and hence are less flexible than L-integrals: Fewer functions are R-integrable,
and convergence theorems (§6, Theorems 4 and 5) fail unless R

∫

A
f exists.

III. Functions f : En → Es (Cs). For such functions, R-integrals are defined
componentwise (see §7). Thus f = (f1, . . . , fs) is R-integrable on A iff all fk
(k ≤ s) are, and then

R

∫

A

f =

s
∑

k=1

ēk R

∫

A

fk.

A complex function f is R-integrable iff fre and fim are, and then

R

∫

A

f = R

∫

A

fre + iR

∫

A

fim.

Via components, Theorems 1 to 3, Corollaries 3 and 4, additivity, linearity,
etc., apply.

IV. Stieltjes Integrals. Riemann used Lebesgue premeasure v only. But as we
saw, his method admits other premeasures, too.

Thus in E1, we may let m be the LS premeasure sα or the LS measure mα,
where α↑ (Chapter 7, §5, Example (b), and Chapter 7, §9).

Then

R

∫

A

f dm

is called the Riemann–Stieltjes (RS) integral of f with respect to α, also written

R

∫

A

f dα or R

∫ b

a

f(x) dα(x)
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(the latter if A = [a, b]); f and α are called the integrand and integrator ,
respectively.

If α(x) = x, mα becomes the Lebesgue measure, and

R

∫

f(x) dα(x)

turns into

R

∫

f(x) dx.

Our theory still remains valid; only Theorem 3 now reads as follows.

Corollary 4. If f is bounded and a.e. continuous on A = [a, b] (under an
LS measure mα) then

R

∫ b

a

fdα

exists. The converse holds if α is continuous on A.

For by Notes 5 and 6, the “only if” in Theorem 3 holds if mαB = 0. Here
B consists of countably many endpoints of partition subintervals. But (see
Chapter 7, §9) mα{p} = 0 if α is continuous at p. Thus the later implies
mαB = 0.

RS-integration has been used in many fields (e.g., probability theory, physics,
etc.), but it is superseded by LS-integration, i.e., Lebesgue integration with
respect to mα, which is fully covered by the general theory of §§1–8.

Actually, Stieltjes himself used somewhat different definitions (see Prob-
lems 10–13), which amount to applying the set function σα of Problem 9 in
Chapter 7, §4, instead of sα or mα. We reserve the name “Stieltjes integrals,”
denoted

S

∫ b

a

f dα,

for such integrals, and “RS-integrals” for those based on mα or sα (this termi-
nology is not standard).

Observe that σα need not be ≥ 0. Thus for the first time, we encounter
integration with respect to sign-changing set functions. A much more general
theory is presented in §10 (see Problem 10 there).

Problems on Riemann and Stieltjes Integrals

1. Replacing “M” by “C,” and “elementary and integrable” or “elemen-
tary and nonnegative” by “C-simple,” prove Corollary 1(ii)(iv)(vii) and
Theorems 1(i) and 2(ii), all in §4, and do Problem 5–7 in §4, for R-
integrals.

2. Verify Note 1.
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2′. Do Problems 5–7 in §5 for R-integrals.

3. Do the following for R-integrals.

(i) Prove Theorems 1(a)–(g) and 2, both in §5 (C-partitions only).
(ii) Prove Theorem 1 and Corollaries 1 and 2, all in §6.
(iii) Show that definition (b) can be replaced by formulas analogous to

formulas (1′), (1′′), and (1) of Definition 1 in §5.
[Hint: Use Problems 1 and 2′.]

4. Fill in all details in the proof of Theorem 1, Lemmas 3 and 4, and
Corollary 4.

5. For f, g : En → Es (Cs), via components, prove the following.

(i) Theorems 1–3 and

(ii) additivity and linearity of R-integrals.

Do also Problem 13 in §7 for R-integrals.

6. Prove that if f : A→ Es (Cs) is bounded and a.e. continuous on A, then

R

∫

A

|f | ≥
∣

∣

∣

∣

R

∫

A

f

∣

∣

∣

∣

.

For m = Lebesgue measure, do it assuming R-integrability only.

7. Prove that if f, g : A→ E1 are R-integrable, then

(i) so is f2, and

(ii) so is fg.

[Hints: (i) Use Lemma 1. Let h = |f | ≤ K <∞ on A. Verify that

(inf h[Ai])
2 = inf f2[Ai] and (suph[Ai])

2 = sup f2[Ai];

so
sup f2[Ai]− inf f2[Ai] = (suph[Ai] + inf h[Ai]) (suph[Ai]− inf h[Ai])

≤ (suph[Ai]− inf h[Ai]) 2K.

(ii) Use

fg =
1

4
[(f + g)2 − (f − g)2].

(iii) For m = Lebesgue measure, do it using Theorem 3.]

8. Prove that if m = the volume function v (or LS function sα for a contin-
uous α), then in formulas (1) and (2), one may replace Ai by Ai (closure
of Ai).
[Hint: Show that here mA = mA,

R

∫

A

f = R

∫

A

f,

and additivity works even if the Ai have some common “faces” (only their interiors

being disjoint).]
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9. (Riemann sums.) Instead of S and S, Riemann used sums

S(f,P) =
∑

i

f(xi) dmAi,

where m = v (see Problem 8) and xi is arbitrarily chosen from Ai.

For a bounded f , prove that

r = R

∫

A

f dm

exists on A = [a, b] iff for every ε > 0, there is Pε such that

|S(f,P)− r| < ε

for every refinement

P = {Ai}
of Pε and any choice of xi ∈ Ai.
[Hint: Show that by Problem 8, this is equivalent to formula (3).]

10. Replacing m by the σα of Problem 9 of Chapter 7, §4, write S(f,P, α)
for S(f,P) in Problem 9, treating Problem 9 as a definition of the
Stieltjes integral ,

S

∫ b

a

f dα

(

or S

∫ b

a

f dσα

)

.

Here f, α : E1 → E1 (monotone or not; even f, α : E1 → C will do).

Prove that if α : E1 → E1 is continuous and α↑, then

S

∫ b

a

f dα = R

∫ b

a

f dα,

the RS -integral.

11. (Integration by parts.) Continuing Problem 10, prove that

S

∫ b

a

f dα

exists iff

S

∫ b

a

αdf

does, and then

S

∫ b

a

f dα+ S

∫ b

a

αdf = K,

where

K = f(b)α(b)− f(a)α(a).
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[Hints: Take any C-partition P = {Ai} of [a, b], with

Ai = [yi−1, yi],

say. For any xi ∈ Ai, verify that

S(f,P, α) =
∑

f(xi) [α(yi)− α(yi−1)] =
∑

f(xi)α(yi)−
∑

f(xi)α(yi−1)

and

K =
∑

f(xi)α(yi)−
∑

f(xi−1)α(yi−1).

Deduce that

K−S(f,P, α) = S(α,P ′, f) =
∑

α(xi) [f(xi)−f(yi)]−
∑

α(xi−1) [f(yi)−f(xi−1)];

here P ′ results by combining the partition points xi and yi, so it refines P.
Now, if S

∫ b
a
αdf exists, fix Pε as in Problem 9 and show that

∣

∣

∣

∣

K − S(f,P, α)− S

∫ b

a

αdf

∣

∣

∣

∣

< ε

whenever P refines Pε.]

12. If α : E1 → E1 is of class CD1 on [a, b] and if

S

∫ b

a

f dα

exists (see Problem 10), it equals

R

∫ b

a

f(x)α′(x) dx.

[Hints: Set φ = f α′, P = {Ai}, Ai = [ai−1, ai]. Then

S(φ,P) =
∑

f(xi)α
′(xi) (ai − ai−1), xi ∈ Ai,

and (Corollary 3 in Chapter 5, §2)

S(f,P, α) =
∑

f(xi) [α(ai)− α(ai−1)] =
∑

f(xi)α
′(qi), qi ∈ Ai.

As f is bounded and α′ is uniformly continuous on [a, b] (why?), deduce that

(∀ ε > 0) (∃Pε) (∀P refining Pε)

|S(φ,P)− S(f,P, α)| < 1

2
ε and

∣

∣

∣

∣

S(f,P, α)− S

∫ b

a

f dα

∣

∣

∣

∣

<
1

2
ε.

Proceed. Use Problem 9.]

13. (Laws of the mean.) Let f, g, α : E1 → E1; p ≤ f ≤ q on A = [a, b];
p, q ∈ E1. Prove the following.

(i) If α↑ and if

S

∫ b

a

f dα
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exists, then (∃ c ∈ [p, q]) such that

S

∫ b

a

f dα = c [α(b)− α(a)].

Similarly, if

R

∫ b

a

f dα

exists, then (∃ c ∈ [p, q]) such that

R

∫ b

a

f dα = c [α(b+)− α(a−)].

(i′) If f also has the Darboux property on A, then c = f(x0) for some
x0 ∈ A.

(ii) If α is continuous, and f↑ on A, then

S

∫ b

a

f dα = [f(b)α(b)− f(a)α(a)]− S

∫ b

a

αdf

exists, and (∃ z ∈ A) such that

S

∫ b

a

f dα = f(a)S

∫ z

a

dα+ f(b)S

∫ b

z

dα

= f(a) [α(z)− α(a)] + f(b) [α(b)− α(z)].

(ii′) If g is continuous and f↑ on A, then (∃ z ∈ A) such that

R

∫ b

a

f(x) g(x) dx = p ·R
∫ z

a

g(x) dx+ q ·R
∫ b

z

g(x) dx.

If f↓, replace f by −f . (See also Corollary 5 in Chapter 9, §1.)
[Hints: (i) As α↑, we get

p [α(b)− α(a)] ≤ S

∫ b

a

f dα ≤ q [α(b)− α(a)].

(Why?) Now argue as in §6, Theorem 3 and Problem 2.

(ii) Use Problem 11, and apply (i) to
∫

αdf .

(ii′) By Theorem 2 of Chapter 5, §10, g has a primitive β ∈ CD1. Apply Prob-

lem 12 to S
∫ b

a
f dβ.]

§10. Integration in Generalized Measure Spaces

Let (S,M, s) be a generalized measure space. By Note 1 in §3, a map f is
s-measurable iff it is vs-measurable. This naturally leads us to the following
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definition.

Definition 1.

A map f : S → E is s-integrable on a set A iff it is vs-integrable on A.
(Recall that vs, the total variation of s, is a measure.)

Note 1. Here the range spaces of f and s are assumed complete and such
that f(x) sA is defined for x ∈ S and A ∈ M. Thus if s is vector valued, f
must be scalar valued, and vice versa. Later, if a factor p occurs, it must be
such that p f(x) sA is defined, i.e., at least two of p, f(x), and sA are scalars.

Note 2. If s is ameasure (≥ 0), then vs = s+ = s (Corollary 3 in Chapter 7,
§11); so our present definition agrees with the previous ones (as in Theorem 1
of §7).
Lemma 1. If m′ and m′′ are measures, with m′ ≥ m′′ on M, then

∫

A

|f | dm′ ≥
∫

A

|f | dm′′

for all A ∈M and any f : S → E.

Proof. First, take any elementary and nonnegative map g ≥ |f |,

g =
∑

i

CAi
ai on A.

Then (§4)
∫

A

g dm′ =
∑

aim
′Ai ≥

∑

ai m
′′Ai =

∫

A

g dm′′.

Hence by Definition 1 in §5,
∫

A

|f | dm′ = inf
g≥|f |

∫

A

g dm′ ≥ inf
g≥|f |

∫

A

g dm′′ =

∫

A

|f | dm′′,

as claimed. �

Lemma 2.

(i) If s : M → En (Cn) with s = (s1, . . . , sn), and if f is s-integrable on
A ∈M, then f is sk-integrable on A for k = 1, 2, . . . , n.

(ii) If s is a signed measure and f is s-integrable on A, then f is integrable
on A with respect to both s+ and s− (with s+ and s− as in formula (3)
in Chapter 7, §11).

Note 3. The converse statements hold if f isM-measurable on A.

Proof.

(i) If s = (s1, . . . , sn), then (Problem 4 of Chapter 7, §11)
vs ≥ vsk , k = 1, . . . , n.
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Hence by Definition 1 and Lemma 1, the s-integrability of f implies

∞ >

∫

A

|f | dvs ≥
∫

A

|f | dvsk .

Also, f is vs-measurable, i.e.,M-measurable on A−Q, with

0 = vsQ ≥ vskQ ≥ 0.

Thus f is sk-integrable on A, k = 1, . . . , n, as claimed.

(ii) If s = s+ − s−, then by Theorem 4 in Chapter 7, §11, and Corollary 3
there, s+ and s− are measures (≥ 0) and vs = s+ + s−, so that both

vs ≥ s+ = vs+ and vs ≥ s− = vs− .

Thus the desired result follows exactly as in part (i) of the proof. �

We leave Note 3 as an exercise.

Definition 2.

If f is s-integrable on A ∈M, we set

(i) in the case s :M→ E∗,
∫

A

f ds =

∫

A

f ds+ −
∫

A

f ds−,

with s+ and s− as in formula (3) of Chapter 7, §11;1

(ii) in the case s :M→ En (Cn),

∫

A

f ds =
n
∑

k=1

~ek

∫

A

f dsk,

with ~ek as in Theorem 2 of Chapter 3, §§1–3;
(iii) if s :M→ C,

∫

A

f ds =

∫

A

f dsre + i ·
∫

A

f dsim.

(See also Problems 2 and 3.)

Note 4. If s is a measure, then

s = s+ = sre = s1

and

0 = s− = sim = s2;

1 By choosing s+ and s− as in formula (3) of Chapter 7, §11, we avoid ambiguity.
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so Definition 2 agrees with our previous definitions. Similarly for s : M →
En (Cn).

Below, s, t, and u are generalized measures onM as in Definition 2, while
f, g : S → E are functions, with E a complete normed space, as in Note 1.

Theorem 1. The linearity, additivity, and σ-additivity properties (as in §7,
Theorems 2 and 3) also apply to integrals

∫

A

f ds,

with s as in Definition 2.

Proof. (i) Linearity : Let f, g : S → E be s-integrable on A ∈ M. Let p, q be
suitable constants (see Note 1).

If s is a signed measure, then by Lemma 2(ii) and Definitions 1 and 2, f is
integrable with respect to vs, s

+, and s−. As these are measures, Theorem 2
in §7 shows that pf + qg is integrable with respect to vs, s

+, and s−, and by
Definition 2,

∫

A

(pf + qg) ds =

∫

A

(pf + qg) ds+ −
∫

A

(pf + qg) ds−

= p

∫

A

f ds+ + q

∫

A

g ds+ − p

∫

A

f ds− − q

∫

A

g ds−

= p

∫

A

f ds+ q

∫

A

g ds.

Thus linearity holds for signed measures. Via components, it now follows
for s :M→ En (Cn) as well. Verify!

(ii) Additivity and σ-additivity follow in a similar manner. �

Corollary 1. Assume f is s-integrable on A, with s as in Definition 2.

(i) If f is constant (f = c) on A, we have
∫

A

f ds = c · sA.

(ii) If

f =
∑

i

ai CAi

for an M-partition {Ai} of A, then
∫

A

f ds =
∑

i

ai sAi and

∫

A

|f | ds =
∑

i

|ai| sAi

(both series absolutely convergent).
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(iii) |f | <∞ a.e. on A.2

(iv)
∫

A
|f | dvs = 0 iff f = 0 a.e. on A.

(v) The set A(f 6= 0) is (vs) σ-finite (Definition 4 in Chapter 7, §5).
(vi)

∫

A
f ds =

∫

A−Q
f ds if vsQ = 0 or f = 0 on Q (Q ∈M).

(vii) f is s-integrable on any M-set B ⊆ A.

Proof.

(i) If s = s+ − s− is a signed measure, we have by Definition 2 that
∫

A

f ds =

∫

A

f ds+ −
∫

A

f ds− = c (s+A− s−A) = c · sA,

as required.

For s :M→ En (Cn), the result now follows via components. (Verify!)

(ii) As f = ai on Ai, clause (i) yields
∫

Ai

f ds = ai sAi, i = 1, 2, . . . .

Hence by σ-additivity,
∫

A

f ds =
∑

i

∫

Ai

f ds =
∑

i

ai sAi,

as claimed.

Clauses (iii), (iv), and (v) follow by Corollary 1 in §5 and Theorem 1(b)(h)
there, as vs is a measure; (vi) is proved as §5, Corollary 2. We leave (vii) as an
exercise. �

Theorem 2 (dominated convergence). If

f = lim
i→∞

fi (pointwise)

on A−Q (vsQ = 0) and if each fi is s-integrable on A, so is f , and
∫

A

f ds = lim
i→∞

∫

A

fi ds,

all provided that
(∀ i) |fi| ≤ g

for some map g with
∫

A
g dvs <∞.

Proof. If s is a measure, this follows by Theorem 5 in §6. Thus as vs is a
measure, f is vs-integrable (hence s-integrable) on A, as asserted.

2 That is, on A−Q, vsQ = 0.
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Next, if s = s+ − s− is a signed measure, Lemma 2 shows that f and the fi
are s+ and s−-integrable as well, with

∫

A

|fi| ds+ ≤
∫

A

|fi| dvs ≤
∫

A

g dvs <∞;

similarly for
∫

A

|fi| ds−.

As s+ and s− are measures, Theorem 5 of §6 yields
∫

A

f ds =

∫

A

f ds+ −
∫

A

f ds− = lim

(∫

A

fi ds
+ −

∫

A

fi ds
−

)

= lim

∫

A

fi ds.

Thus all is proved for signed measures.

In the case s : M → En (Cn), the result now easily follows by Defini-
tion 2(ii)(iii) via components. �

Theorem 3 (uniform convergence). If fi → f (uniformly) on A −Q (vsA <
∞, vsQ = 0), and if each fi is s-integrable on A, so is f , and

∫

A

f ds = lim
i→∞

∫

A

fi ds.

Proof. Argue as in Theorem 2, replacing §6, Theorem 5, by §7, Lemma 1. �

Our next theorem shows that integrals behave linearly with respect to mea-
sures.

Theorem 4. Let t, u :M→ E∗ (En, Cn), with vt <∞ onM,3 and let

s = pt+ qu

for finite constants p and q. Then the following statements are true.

(a) If t and u are generalized measures, so is s.

(b) If, further, f isM-measurable on a set A and is both t- and u-integrable
on A, it is also s-integrable on A, and

∫

A

f ds = p

∫

A

f dt+ q

∫

A

f du.

Proof. We consider only assertion (b) for s = t+ u; the rest is easy.

First, let f beM-elementary on A. By Corollary 1(ii), we set
∫

A

f dt =
∑

i

ai tAi and

∫

A

f du =
∑

i

ai uAi.

3 Or |t| < ∞; see Theorem 6 in Chapter 7, §11. The restriction is redundant if t :M →
En (Cn).
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Also, by integrability,

∞ >

∫

A

|f | dvt =
∑

|ai| vtAi and ∞ >

∫

A

|f | dvu =
∑

i

|ai| vuAi.

Now, by Problem 4 in Chapter 7, §11,

vs = vt+u ≤ vt + vu;

so
∫

A

|f | dvs =
∑

i

|ai| vsAi

≤
∑

i

|ai| (vtAi + vuAi) =

∫

A

|f | dvt +
∫

A

|f | dvu <∞.

As f is alsoM-measurable (even elementary), it is s-integrable on A (by Def-
inition 1), and

∫

A

f ds =
∑

i

ai sAi =
∑

i

ai (tAi + uAi) =

∫

A

f dt+

∫

A

f du,

as claimed.

Next, suppose f is M-measurable on A and vuA < ∞. By assumption,
vtA <∞, too; so

vsA ≤ vtA+ vuA <∞.

Now, by Theorem 3 in §1,

f = lim
i→∞

fi (uniformly)

for someM-elementary maps fi on A. By Lemma 2 in §7, for large i, the fi
are integrable with respect to both vt and vu on A. By what was shown above,
they are also s-integrable, with

∫

A

fids =

∫

A

fidt+

∫

A

fi du.

With i→∞, Theorem 3 yields the result.

Finally, let vuA = ∞. By Corollary 1(v), we may assume (as in Lemma 3
of §7) that Ai ր A, with vuAi < ∞, and vtAi < ∞ (since vt < ∞, by
assumption). Set

fi = f CAi
→ f (pointwise)

on A, with |fi| ≤ |f |. (Why?)

As fi = f on Ai and fi = 0 on A−Ai, all fi are both t- and u-integrable on
A (for f is). Since vtAi < ∞ and vuAi < ∞, the fi are also s-integrable (as
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shown above), with
∫

A

fi ds =

∫

Ai

fi ds =

∫

Ai

fi dt+

∫

Ai

fi du =

∫

A

fi dt+

∫

A

fi du.

With i→∞, Theorem 2 now yields the result.

To complete the proof of (b), it suffices to consider, along similar lines, the
case s = pt (or s = qu). We leave this to the reader.

For (a), see Chapter 7, §11. �

Theorem 5. If f is s-integrable on A, so is |f |, and
∣

∣

∣

∣

∫

A

f ds

∣

∣

∣

∣

≤
∫

A

|f | dvs.

Proof. By Definition 1, and Theorem 1 of §1, f and |f | areM-measurable on
A−Q, vsQ = 0, and

∫

A

|f | dvs <∞;

so |f | is s-integrable on A.

The desired inequality is immediate by Corollary 1(ii) if f is elementary.

Next, exactly as in Theorem 4, one obtains it for the case vsA < ∞, and
then for vsA =∞. We omit the details. �

Definition 3.

We write

“ds = g dt in A”

or

“s =

∫

g dt in A”

iff g is t-integrable on A, and

sX =

∫

X

g dt

for A ⊇ X, X ∈M.

We then call s the indefinite integral of g in A. (
∫

X
g dt may be

interpreted as in Problems 2–4 below.)

Lemma 3. If A ∈ M and

ds = g dt in A,

then

dvs = |g| dvt in A.
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Proof. By assumption, g and |g| are vt-integrable on X, and

sX =

∫

X

g dt

for A ⊇ X, X ∈M. We must show that

vsX =

∫

X

|g| dvt

for such X.

This is easy if g = c (constant) on X. For by definition,

vsX = sup
P

∑

i

|sXi|,

over allM-partitions P = {Xi} of X. As

sXi =

∫

Xi

g dt = c · tXi,

we have

vsX = sup
P

∑

i

|c| |tXi| = |c| sup
P

∑

i

|tXi| = |c| vtX;

so

vsX =

∫

X

|g| dvt.

Thus all is proved for constant g.

Hence by σ-additivity, the lemma holds forM-elementary maps g. (Why?)

In the general case, g is t-integrable on X, hence M-measurable and finite
on X−Q, vtQ = 0. By Corollary 1(iii), we may assume g finite and measurable
on X; so

g = lim
k→∞

gk (uniformly)

on X for someM-elementary maps gk, all integrable on X, with respect to vt
(and t).

Let

sk =

∫

gk dt

in X. By what we just proved for elementary and integrable maps,

vskX =

∫

X

|gk| dvt, k = 1, 2, . . . .

Now, if vtX <∞, Theorem 3 yields
∫

X

|g| dvt = lim
k→∞

∫

X

|gk| dvt = lim
k→∞

vskX = vsX
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(see Problem 6). Thus all is proved if vtX <∞.

If, however, vtX =∞, argue as in Theorem 4 (the last step), using the left
continuity of vs and of

∫

|g| dvt.

Verify! �

Theorem 6 (change of measure). If f is s-integrable on A ∈M, with

ds = g dt in A,

then (subject to Note 1) fg is t-integrable on A and
∫

A

f ds =

∫

A

fg dt.

(Note the formal substitution of “g dt” for “ds.”)

Proof. The proof is easy if f is constant or elementary on A (use Corol-
lary 1(ii)). We leave this case to the reader, and next we assume g is bounded
and vtA <∞.

By s-integrability, f isM-measurable and finite on A−Q, with

0 = vsQ =

∫

Q

|g| dvt

by Lemma 3. Hence 0 = g = fg on Q− Z, vtZ = 0. Therefore,
∫

Q

fg dt = 0 =

∫

Q

f ds

for vsQ = 0. Thus we may neglect Q and assume that f is finite and M-
measurable on A.

As ds = g dt, Definition 3 and Lemma 3 yield

vsA =

∫

A

|g| dvt <∞.

Also (Theorem 3 in Chapter 8, §1),

f = lim
k→∞

fk (uniformly)

for elementary maps fk, all vs-integrable on A (Lemma 2 in §7). As g is
bounded , we get on A

fg = lim
k→∞

fkg (uniformly).
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Moreover, as the theorem holds for elementary and integrable maps, fkg is
t-integrable on A, and

∫

A

fk ds =

∫

A

fkg dt, k = 1, 2, . . . .

Since vsA < ∞ and vtA < ∞, Theorem 3 shows that fg is t-integrable on
A, and

∫

A

f ds = lim
k→∞

∫

A

fk ds = lim
k→∞

∫

A

fkg dt =

∫

A

fg dt.

Thus all is proved if vtA <∞ and g is bounded on A.

In the general case, we again drop a null set to make f and g finite and
M-measurable on A. By Corollary 1(v), we may again assume Ai ր A, with
vtAi <∞ (∀ i).

Now for i = 1, 2, . . . set

gi =

{

g on Ai(|g| ≤ i),

0 elsewhere.

Then each gi is bounded ,

gi → g (pointwise),

and

|gi| ≤ |g|
on A. We also set fi = f CAi

; so fi → f (pointwise) and |fi| ≤ |f | on A. Then
∫

A

fi ds =

∫

Ai

fi ds =

∫

Ai

figi dt =

∫

A

figi dt.

(Why?) Since |figi| ≤ |fg| and figi → fg, the result follows by Theorem 2. �

Problems on Generalized Integration

Recall that in this section E is assumed to be a complete normed space.

1. Fill in the missing details in the proofs of this section. Prove Note 3.

2. Treat Corollary 1(ii) as a definition of
∫

A

fds

for s:M → E and elementary and integrable f , even if E 6= En (Cn).
Hence deduce Corollary 1(i)(vi) for this more general case.

3. Using Lemma 2 in §7, with m = vs, s :M→ E, construct
∫

A

f ds
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as in Definition 2 of §7 for the case vsA 6= ∞. Show that this agrees
with Problem 2 if f is elementary and integrable. Then prove linearity
for functions with vs-finite support as in §7.

4. Define
∫

A

f ds (s :M→ E)

also for vsA =∞.
[Hint: Set m = vs in Lemma 3 of §7.]

5. Prove Theorems 1 to 3 for the general case, s :M→ E (see Problem 4).
[Hint: Argue as in §7.]

5′. From Problems 2–4, deduce Definition 2 as a theorem in the case E =
En (Cn).

6. Let s, sk :M→ E (k = 1, 2, . . . ) be any set functions. Let A ∈ M and

MA = {X ∈M | X ⊆ A}.
Prove that if

(∀X ∈MA) lim
k→∞

skX = sX,

then

lim
k→∞

vskA = vsA,

provided lim
k→∞

vsk exists.

[Hint: Using Problem 2 in Chapter 7, §11, fix a finite disjoint sequence {Xi} ⊆ MA.
Then

∑

i

|sXi| =
∑

i

lim
k→∞

|skXi| = lim
k→∞

∑

i

|skXi| ≤ lim
k→∞

vskA.

Infer that

vsA ≤ lim
k→∞

vskA.

Also,

(∀ ε > 0) (∃ k0) (∀ k > k0)
∑

i

|skXi| ≤
∑

i

|sXi|+ ε ≤ vsA+ ε.

Proceed.]

7. Let (X,M,m) and (Y,N , n) be two generalized measure spaces (X ∈
M, Y ∈ N ) such that mn is defined (Note 1). Set

C = {A×B | A ∈M, B ∈ N , vmA <∞, vnB <∞}
and s(A×B) = mA · nB for A×B ∈ C.

Define a Fubini map as in §8, Part IV, dropping, however,
∫

X×Y
f dp

from Fubini property (c) temporarily.
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Then prove Theorem 1 in §8, including formula (1), for Fubini maps
so modified.
[Hint: For σ-additivity, use our present Theorem 2 twice. Omit P∗.]

8. Continuing Problem 7, let P be the σ-ring generated by C in X × Y .
Prove that (∀D ∈ P) CD is a Fubini map (as modified).
[Outline: Proceed as in Lemma 5 of §8. For step (ii), use Theorem 2 in §10 twice.]

9. Further continuing Problems 7 and 8, define

(∀D ∈ P) pD =

∫

X

∫

Y

CD dn dm.

Show that p is a generalized measure, with p = s on C, and that

(∀D ∈ P) pD =

∫

X×Y

CD dp,

with the following convention: If X × Y 6∈ P, we set
∫

X×Y

f dp =

∫

H

f dp

whenever H ∈ P, f is p-integrable on H, and f = 0 on −H.

Verify that this is unambiguous, i.e.,
∫

X×Y

f dp

so defined is independent of the choice of H.

Finally, let p be the completion of p (Chapter 7, §6, Problem 15); let
P∗ be its domain.

Develop the rest of Fubini theory “imitating” Problem 12 in §8.
10. Signed Lebesgue–Stieltjes (LS ) measures in E1 are defined as shown in

Chapter 7, §11, Part V. Using the notation of that section, prove the
following:

(i) Given a Borel–Stieltjes measure σ∗
α in an interval I ⊆ E1 (or an

LS measure sα = σ∗
α in I), there are two monotone functions g↑

and h↑ (α = g − h) such that

mg = s+α and mh = s−α ,

both satisfying formula (3) of Chapter 7, §11, inside I.

(ii) If f is sα-integrable on A ⊆ I, then
∫

A

f dsα =

∫

A

f dmg −
∫

A

f dmh

for any g↑ and h↑ (finite) such that α = g − h.
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[Hints: (i) Define s+α and s−α by formula (3) of Chapter 7, §11. Then arguing as in

Theorem 2 in Chapter 7, §9, find g↑ and h↑ with mg = s+α and mh = s−α .

(ii) First let A = (a, b] ⊆ I, then A ∈ B. Proceed.]

∗§11. The Radon–Nikodym Theorem. Lebesgue Decomposition

I. As you know, the indefinite integral
∫

f dm

is a generalized measure. We now seek conditions under which a given gener-
alized measure µ can be represented as

µ =

∫

f dm

for some f (to be found). We start with two lemmas.

Lemma 1. Let m,µ :M→ [0,∞) be finite measures in S. Suppose S ∈ M,
µS > 0 (i.e., µ 6≡ 0) and µ is m-continuous (Chapter 7, §11).

Then there is δ > 0 and a set P ∈ M such that mP > 0 and

(∀X ∈M) µX ≥ δ ·m(X ∩ P ).

Proof. As m <∞ and µS > 0, there is δ > 0 such that

µS − δ ·mS > 0.

Fix such a δ and define a signed measure (Lemma 2 of Chapter 7, §11)
Φ = µ− δm,

so that

(1) (∀Y ∈ M) ΦY = µY − δ ·mY ;

hence

ΦS = µS − δ ·mS > 0.

By Theorem 3 in Chapter 7, §11 (Hahn decomposition), there is a Φ-positive
set P ∈ M with a Φ-negative complement −P = S − P ∈M.

Clearly, mP > 0; for if mP = 0, the m-continuity of µ would imply µP = 0,
hence

ΦP = µP − δ ·mP = 0,

contrary to ΦP ≥ ΦS > 0.
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Also, P ⊇ Y and Y ∈M implies ΦY ≥ 0; so by (1),

0 ≤ µY − δ ·mY.

Taking Y = X ∩ P , we get

δ ·m(X ∩ P ) ≤ µ(X ∩ P ) ≤ µX,

as required. �

Lemma 2. With m, µ, and S as in Lemma 1, let H be the set of all maps
g : S → E∗,M-measurable and nonnegative on S, such that

∫

X

g dm ≤ µX

for every set X from M.

Then there is f ∈ H with
∫

S

f dm = max
g∈H

∫

S

g dm.

Proof. H is not empty; e.g., g = 0 is in H. We now show that

(2) (∀ g, h ∈ H) g ∨ h = max(g, h) ∈ H.

Indeed, g ∨ h is ≥ 0 andM-measurable on S, as g and h are.

Now, given X ∈ M, let Y = X(g > h) and Z = X(g ≤ h). Dropping “dm”
for brevity, we have

∫

X

(g ∨ h) =

∫

Y

(g ∨ h) +

∫

Z

(g ∨ h) =

∫

Y

g +

∫

Z

h ≤ µY + µZ = µX,

proving (2).

Let

k = sup
g∈H

∫

S

g dm ∈ E∗.

Proceeding as in Problem 13 of Chapter 7, §6, and using (2), one easily finds
a sequence {gn}↑, gn ∈ H, such that

lim
n→∞

∫

S

gn dm = k.

(Verify!) Set

f = lim
n→∞

gn.

(It exists since {gn}↑.) By Theorem 4 in §6,

k = lim
n→∞

∫

S

gn =

∫

S

f.
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Also, f isM-measurable and ≥ 0 on S, as all gn are; and if X ∈M, then

(∀n)
∫

X

gn ≤ µX;

hence
∫

X

f = lim
n→∞

∫

X

gn ≤ µX.

Thus f ∈ H and
∫

S

f = k = sup
g∈H

∫

S

g,

i.e.,
∫

S

f = max
g∈H

∫

S

g ≤ µS <∞.

This completes the proof. �

Note 1. As µ <∞ and f ≥ 0, Corollary 1 in §5 shows that f can be made
finite on all of S. Also, f is m-integrable on S.

Theorem 1 (Radon–Nikodym). If (S,M,m) is a σ-finite measure space, if
S ∈M, and if

µ :M→ En (Cn)

is a generalized m-continuous measure, then

µ =

∫

f dm on M

for at least one map

f : S → En (Cn),

M-measurable on S.

Moreover , if h is another such map, then mS(f 6= h) = 0

The last part of Theorem 1 means that f is “essentially unique.” We call f
the Radon–Nikodym (RN ) derivative of µ, with respect to m.

Proof. Via components (Theorem 5 in Chapter 7, §11), all reduces to the case

µ :M→ E1.

Then Theorem 4 (Jordan decomposition) in Chapter 7, §11, yields
µ = µ+ − µ−,

where µ+ and µ− are finite measures (≥ 0), both m-continuous (Corollary 3
from Chapter 7, §11). Therefore, all reduces to the case 0 ≤ µ <∞.

Suppose first that m, too, is finite. Then if µ = 0, just take f = 0.
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If, however, µS > 0, take f ∈ H as in Lemma 2 and Note 1; f is nonnegative,
bounded, andM-measurable on S,

∫

f ≤ µ <∞,

and
∫

S

f dm = k = sup
g∈H

∫

S

g dm.

We claim that f is the required map.

Indeed, let

ν = µ−
∫

f dm;

so ν is a finite m-continuous measure (≥ 0) on M. (Why?) We must show
that ν = 0.

Seeking a contradiction, suppose νS > 0. Then by Lemma 1, there are
P ∈M and δ > 0 such that mP > 0 and

(∀X ∈M) νX ≥ δ ·m(X ∩ P ).

Now let

g = f + δ · CP ;

so g isM-measurable and ≥ 0. Also,

(∀X ∈M)

∫

X

g =

∫

X

f + δ

∫

X

CP =

∫

X

f + δ ·m(X ∩ P )

≤
∫

X

f + ν(X ∩ P )

≤
∫

X

f + νX = µX

by our choice of δ and ν. Thus g ∈ H. On the other hand,
∫

S

g =

∫

S

f + δ

∫

S

CP = k + δ mP > k,

contrary to

k = sup
g∈H

∫

S

g.

This proves that
∫

f = µ, indeed.

Now suppose there is another map h ∈ H with

µ =

∫

h dm =

∫

f dm 6=∞;
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so
∫

(f − h) dm = 0.

(Why?) Let
Y = S(f ≥ h) and Z = S(f < h);

so Y, Z ∈ M (Theorem 3 of §2) and f − h is sign-constant on Y and Z. Also,
by construction,

∫

Y

(f − h) dm = 0 =

∫

Z

(f − h) dm.

Thus by Theorem 1(h) in §5, f−h = 0 a.e. on Y , on Z, and hence on S = Y ∪Z;
that is,

mS(f 6= h) = 0.

Thus all is proved for the case mS <∞.

Next, let m be σ-finite:

S =

∞
⋃

k=1

Sk (disjoint)

for some sets Sk ∈M with mSk <∞.

By what was shown above, on each Sk there is anM-measurable map fk ≥ 0
such that

∫

X

fk dm = µX

for allM-sets X ⊆ Sk. Fixing such an fk for each k, define f : S → E1 by

f = fk on Sk, k = 1, 2, . . . .

Then (Corollary 3 in §1) f isM-measurable and ≥ 0 on S.

Taking any X ∈M, set Xk = X ∩ Sk. Then

X =

∞
⋃

k=1

Xk (disjoint)

and Xk ∈ M. Also,

(∀ k)
∫

Xk

f dm =

∫

Xk

fk dm = µXk.

Thus by σ-additivity (Theorem 2 in §5),
∫

X

f dm =

∞
∑

k=1

∫

Xk

f dm =
∑

k

µXk = µX <∞ (µ is finite!).

Thus f is as required, and its “uniqueness” follows as before. �
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Note 2. By Definition 3 in §10, we may write

“dµ = f dm”

for

“

∫

f dm = µ.”

Note 3. Using Definition 2 in §10 and an easy “componentwise” proof, one
shows that Theorem 1 holds also with m replaced by a generalized measure s.
The formulas

µ =

∫

f dm and mS(f 6= h) = 0

then are replaced by

µ =

∫

f ds and vsS(f 6= h) = 0.

II. Theorem 1 requires µ to be m-continuous (µ≪ m). We want to generalize
Theorem 1 so as to lift this restriction. First, we introduce a new concept.

Definition.

Given two set functions s, t : M → E (M ⊆ 2S), we say that s is t-
singular (s ⊥ t) iff there is a set P ∈ M such that vtP = 0 and

(3) (∀X ∈M | X ⊆ −P ) sX = 0.

(We then briefly say “s resides in P .”)

For generalized measures, this means that

(∀X ∈M) sX = s(X ∩ P ).

Why?

Corollary 1. If the generalized measures s, u :M → E are t-singular , so is
ks for any scalar k (if s is scalar valued , k may be a vector).

So also are s± u, provided t is additive.

(Exercise! See Problem 3 below.)

Corollary 2. If a generalized measure s :M→ E is t-continuous (s≪ t) and
also t-singular (s ⊥ t), then s = 0 on M.

Proof. As s ⊥ t, formula (3) holds for some P ∈ M, vtP = 0. Hence for all
X ∈M,

s(X − P ) = 0 (for X − P ⊆ −P )

and

vt(X ∩ P ) = 0 (for X ∩ P ⊆ P ).
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As s≪ t, we also have s(X∩P ) = 0 by Definition 3(i) in Chapter 7, §11. Thus
by additivity,

sX = s(X ∩ P ) + s(X − P ) = 0,

as claimed. �

Theorem 2 (Lebesgue decomposition). Let s, t :M→ E be generalized mea-
sures.

If vs is t-finite (Definition 3(iii) in Chapter 7, §11), there are generalized
measures s′, s′′ :M→ E such that

s′ ≪ t and s′′ ⊥ t

and

s = s′ + s′′.

Proof. Let v0 be the restriction of vs to

Mo = {X ∈M | vtX = 0}.
As vs is a measure (Theorem 1 of Chapter 7, §11), so is v0 (forM0 is a σ-ring;
verify!).

Thus by Problem 13 in Chapter 7, §6, we fix P ∈M0, with

vsP = v0P = max{vsX | X ∈M0}.
As P ∈M0, we have vtP = 0; hence

|sP | ≤ vsP <∞
(for vs is t-finite).

Now define s′, s′′, v′, and v′′ by setting, for each X ∈M,

s′X = s(X − P );(4)

s′′X = s(X ∩ P );(5)

v′X = vs(X − P );(6)

v′′X = vs(X ∩ P ).(7)

As s and vs are σ-additive, so are s′, s′′, v′, and v′′. (Verify!) Thus
s′, s′′ :M→ E are generalized measures, while v′ and v′′ are measures (≥ 0).

We have

(∀X ∈ M) sX = s(X − P ) + s(X ∩ P ) = s′X + s′′X;

i.e.,

s = s′ + s′′.

Similarly one obtains vs = v′ + v′′.
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Also, by (5), since X ∩ P = ∅,
−P ⊇ X and X ∈M =⇒ s′′X = 0,

while vtP = 0 (see above). Thus s′′ is t-singular , residing in P .

To prove s′ ≪ t, it suffices to show that v′ ≪ t (for by (4) and (6), v′X = 0
implies |s′X| = 0).

Assume the opposite. Then

(∃Y ∈M) vtY = 0

(i.e., Y ∈M0), but
0 < v′Y = vs(Y − P ).

So by additivity,

vs(Y ∪ P ) = vsP + vs(Y − P ) > vsP,

with Y ∪ P ∈M0, contrary to

vsP = max{vsX | X ∈M0}.
This contradiction completes the proof. �

Note 4. The set function s′′ in Theorem 2 is bounded onM. Indeed, s′′ ⊥ t
yields a set P ∈M such that

(∀X ∈M) s′′(X − P ) = 0;

and vtP = 0 implies vsP <∞. (Why?) Hence

s′′X = s′′(X ∩ P ) + s′′(X − P ) = s′′(X ∩ P ).

As s = s′ + s′′, we have

|s′′| ≤ |s|+ |s′| ≤ vs + vs′ ;

so
|s′′X| = |s′′(X ∩ P )| ≤ vsP + vs′P.

But vs′P = 0 by t-continuity (Theorem 2 of Chapter 7, §11). Thus |s′′| ≤
vsP <∞ onM.

Note 5. The Lebesgue decomposition s = s′ + s′′ in Theorem 2 is unique.
For if also

u′ ≪ t and u′′ ⊥ t

and
u′ + u′′ = s = s′ + s′′,

then with P as in Problem 3, (∀X ∈ M)

(8) s′(X ∩ P ) + s′′(X ∩ P ) = u′(X ∩ P ) + u′′(X ∩ P )
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and vt(X ∩ P ) = 0. But

s′(X ∩ P ) = 0 = u′(X ∩ P )

by t-continuity; so (8) reduces to

s′′(X ∩ P ) = u′′(X ∩ P ),

or s′′X = u′′X (for s′′ and u′′ reside in P ). Thus s′′ = u′′ onM.

By Note 4, we may cancel s′′ and u′′ in

s′ + s′′ = u′ + u′′

to obtain s′ = u′ also.

Note 6. If E = En (Cn), the t-finiteness of vs in Theorem 2 is redundant,
for vs is even bounded (Theorem 6 in Chapter 7, §11).

We now obtain the desired generalization of Theorem 1.

Corollary 3. If (S,M,m) is a σ-finite measure space (S ∈ M), then for any
generalized measure

µ :M→ En (Cn),

there is a unique m-singular generalized measure

s′′ :M→ En (Cn)

and a (“essentially” unique) map

f : S → En (Cn),

M-measurable and m-integrable on S, with

µ =

∫

f dm+ s′′.

(Note 3 applies here.)

Proof. By Theorem 2 and Note 5, µ = s′ + s′′ for some (unique) generalized
measures s′, s′′ :M→ En (Cn), with s′ ≪ m and s′′ ⊥ m.

Now use Theorem 1 to represent s′ as
∫

f dm, with f as stated. This yields
the result. �

Problems on Radon–Nikodym
Derivatives and Lebesgue Decomposition

1. Fill in all proof details in Lemma 2 and Theorem 1.

2. Verify the statement following formula (3). Also prove the following:

(i) If P ∈M along with −P ∈ M, then s ⊥ t implies t ⊥ s;

(ii) s ⊥ t iff vs ⊥ t.
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3. Prove Corollary 1.
[Hints: HereM is a σ-ring. Suppose s and u reside in P ′ and P ′′, respectively, and
vtP ′ = 0 = vtP ′′. Let P = P ′ ∪ P ′′ ∈ M. Verify that vtP = 0 (use Problem 8 in

Chapter 7, §11). Then show that both s and u reside in P .]

4. Show that if s :M→ E∗ is a signed measure in S ∈ M, then s+ ⊥ s−

and s− ⊥ s+.

5. Fill in all details in the proof of Theorem 2. Also prove the following:

(i) s′ and vs′ are absolutely t-continuous.
[Hint: Use Theorem 2 in Chapter 7, §11.]

(ii) vs = vs′ + vs′′ , vs′′ ⊥ t.

(iii) If s is a measure (≥ 0), so are s′ and s′′.

6. Verify Note 3 for Theorem 1 and Corollary 3. State and prove both
generalized propositions precisely.

∗§12. Integration and Differentiation

I. We shall now link RN-derivatives (§11) to those of Chapter 7, §12.
Below, we use the notation of Definition 3 in Chapter 7, §10 and Definition 1

of Chapter 7, §12. (Review them!) In particular,

m :M∗ → E∗

is Lebesgue measure in En (presupposed in such terms as “a.e.,” etc.); s is an
arbitrary set function. For convenience, we set

s′(p̄) = 0

and
∫

X

f dm = 0,

unless defined otherwise; thus s′ and
∫

X
f exist always.

We start with several lemmas that go back to Lebesgue.

Lemma 1. With the notation of Definition 3 of Chapter 7, §10, the functions

Ds, Ds, and s′

are Lebesgue measurable on En for any set function

s :M′ → E∗ (M′ ⊇ K).

Proof. By definition,
Ds(p̄) = inf

r
hr(p̄),
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where

hr(p̄) = sup

{

sI

mI

∣

∣

∣ I ∈ Kr
p̄

}

and

Kr
p̄ =

{

I ∈ K
∣

∣

∣
p̄ ∈ I, dI <

1

r

}

, r = 1, 2, . . . .

As is easily seen (verify!),

(1) En(hr > a) =
⋃

{

I ∈ K
∣

∣

∣ a <
sI

mI
, dI <

1

r

}

, a ∈ E∗.

The right-side union is Lebesgue measurable by Problem 2 in Chapter 7, §10.
Thus by Theorem 1 of §2, the function hr is measurable on En for r = 1, 2, . . . ,
and so is

Ds = inf
r
hr

by Lemma 1 of §2 and Definition 3 in Chapter 7, §10. Similarly for Ds.

Hence by Corollary 1 in §2, the set

A = En(Ds = Ds)

is measurable. As s′ = Ds on A, s′ is measurable on A and also on −A (by
convention, s′ = 0 on −A), hence on all of En. �

Lemma 2. With the same notation, let s :M′ → E∗ (M′ ⊇ K) be a regular
measure in En. Let A ∈M∗ and B ∈M′ with A ⊆ B, and a ∈ E1.

If

Ds > a on A,

then

a ·mA ≤ sB.

Proof. Fix ε > 0. By regularity (Definition 4 in Chapter 7, §7), there is an
open set G ⊇ B, with

sB + ε ≥ sG.

Now let

Kε =
{

I ∈ K
∣

∣ I ⊆ G, sI ≥ (a− ε)mI
}

.

As Ds > a, the definition of Ds implies that Kε is a Vitali covering of A.
(Verify!)

Thus Theorem 1 in Chapter 7, §10, yields a disjoint sequence {Ik} ⊆ Kε,
with

m
(

A−
⋃

k

Ik

)

= 0
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and

mA ≤ m
(

A−
⋃

Ik
)

+m
⋃

Ik = 0 +m
⋃

Ik =
∑

k

mIk.

As
⋃

Ik ⊆ G and sB + ε ≥ sG

(by our choice of Kε and G), we obtain

sB + ε ≥ s
⋃

k

Ik =
∑

k

sIk ≥ (a− ε)
∑

k

mIk ≥ (a− ε)mA.

Thus

(a− ε)mA ≤ sB + ε.

Making ε→ 0, we obtain the result. �

Lemma 3. If

t = s± u,

with s, t, u :M′ → E∗ andM′ ⊇ K, and if u is differentiable at a point p̄ ∈ En,
then

Dt = Ds± u′ and Dt = Ds± u′ at p̄.

The proof, from definitions, is left to the reader (Chapter 7, §12, Problem 7).

Lemma 4. Any m-continuous measure s :M∗ → E1 is strongly regular.

Proof. By Corollary 3 of Chapter 7, §11, vs = s <∞ (s is finite!). Thus vs is
certainly m-finite.

Hence by Theorem 2 in Chapter 7, §11, s is absolutely m-continuous. So
given ε > 0, there is δ > 0 such that

(∀X ∈M∗ | mX < δ) sX < ε.

Now, let A ∈M∗. By the strong regularity of Lebesgue measure m (Chap-
ter 7, §8, Theorem 3(b)), there is an open set G ⊇ A and a closed F ⊆ A such
that

m(A− F ) < δ and m(G− A) < δ.

Thus by our choice of δ,

s(A− F ) < ε and s(G−A) < ε,

as required. �
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Lemma 5. Let s, sk (k = 1, 2, . . . ) be finite m-continuous measures, with
sk ր s or sk ց s on M∗.

If the sk are a.e. differentiable, then

Ds = Ds = lim
k→∞

s′k a.e.

Proof. Let first sk ր s. Set

tk = s− sk.

By Corollary 2 in Chapter 7, §11, all tk are m-continuous, hence strongly reg-
ular (Lemma 4). Also, tk ց 0 (since sk ր s). Hence

tkI ≥ tk+1I ≥ 0

for each cube I; and the definition of Dtk implies that

Dtk ≥ Dtk+1 ≥ Dtk+1 ≥ 0.

As {Dtk}↓, lim
k→∞

Dtk exists (pointwise). Now set

Ar = En
(

lim
k→∞

Dtk ≥
1

r

)

, r = 1, 2, . . . .

By Lemma 1 (and Lemma 1 in §2), Ar ∈M∗. Since

Dtk ≥ lim
i→∞

Dti ≥
1

r

on Ar, Lemma 2 yields
1

r
mAr ≤ tkAr.

As tk ց 0, we have
1

r
mAr ≤ lim

k→∞
tkAr = 0.

Thus
mAr = 0, r = 1, 2, . . . .

Also, as is easily seen,

En
(

lim
k→∞

Dtk > 0
)

=

∞
⋃

r=1

En
(

lim
k→∞

Dtk ≥
1

r

)

=

∞
⋃

r=1

Ar

and

m

∞
⋃

r=1

Ar = 0.

Hence
lim
k→∞

Dtk ≤ 0 a.e.
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As

Dtk ≥ Dtk ≥ 0

(see above), we get

lim
k→∞

Dtk = 0 = lim
k→∞

Dtk a.e. on En.

Now, as tk = s− sk and as the sk are differentiable, Lemma 3 yields

Dtk = Ds− s′k and Dtk = Ds− s′k a.e.

Thus

lim
k→∞

(Ds− s′k) = 0 = lim(Ds− s′k),

i.e.,

Ds = lim
k→∞

s′k = Ds a.e.

This settles the case sk ր s.

In the case sk ց s, one only has to set tk = sk − s and proceed as before.
(Verify!) �

Lemma 6. Given A ∈M∗, mA <∞, let

s =

∫

CA dm

on M∗. Then s is a.e. differentiable, and

s′ = CA a.e. on En.

(CA = characteristic function of A.)

Proof.1 First, let A be open and let p̄ ∈ A.

Then A contains some Gp̄(δ) and hence also all cubes I ∈ K with dI < δ
and p̄ ∈ I.

Thus for such I ∈ K,

sI =

∫

I

CA dm =

∫

I

(1) dm = mI;

i.e.,
sI

mI
= 1 = CA(p̄), p̄ ∈ A.

Hence by Definition 1 of Chapter 7, §12,
s′(p̄) = 1 = CA(p̄)

if p̄ ∈ A; i.e., s′ = CA on A.

1 Differentiability follows by Theorem 4 of Chapter 7, §12, but we obtain it anyway.
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We claim that
Ds = s′ = 0 a.e. on −A.

To prove it, note that

s =

∫

CA dm

is a finite (why?) m-continuous measure on M∗. By Lemma 4, s is strongly
regular. Also, as sI ≥ 0 for any I ∈ K, we certainly have

Ds ≥ Ds ≥ 0.

(Why?) Now let

(2) B = En(Ds > 0) =

∞
⋃

r=1

Br,

where

(3) Br = En
(

Ds ≥ 1

r

)

, r = 1, 2, . . . .

We have to show that m(B −A) = 0.

Suppose
m(B − A) > 0.

Then by (2), we must have m(Br −A) > 0 for at least one Br; we fix this Br.
Also, by (3),

Ds ≥ 1

r
on Br − A

(even on all of Br). Thus by Lemma 2,

(4) 0 <
1

r
m(Br −A) ≤ s(Br −A) =

∫

Br−A

CA dm.

But this is impossible. Indeed, as CA = 0 on −A (hence on Br − A), the
integral in (4) cannot be > 0. This refutes the assumption m(B − A) > 0; so
by (2),

m(En(Ds > 0)−A) = 0;

i.e.,
Ds = 0 = Ds a.e. on −A.

We see that
s′ = 0 = CA a.e. on −A,

and
s′ = 1 = CA on A,

proving the lemma for open sets A.
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Now take any A ∈ M∗, mA < ∞. As Lebesgue measure is regular (Chap-
ter 7, §8, Theorem 3(b)), we find for each k ∈ N an open set Gk ⊇ A, with

m(Gk −A) <
1

k
and Gk ⊇ Gk+1.

Let

sk =

∫

CGk
dm.

Then sk ց s onM∗ (see Problem 5(ii) in §6). Also, by what was shown above,
the sk are differentiable, with s′k = CGk

a.e.

Hence by Lemma 5,

Ds = Ds = lim
k→∞

CGk
= CA (a.e.).

The lemma is proved. �

Theorem 1. Let f : En → E∗ (Er, Cr) be m-integrable, at least on each cube
in En. Then the set function

s =

∫

f dm

is differentiable, with s′ = f , a.e. on En.2

Thus s′ is the RN-derivative of s with respect to Lebesgue measure m
(Theorem 1 in §11).
Proof. As En is a countable union of cubes (Lemma 2 in Chapter 7, §2), it
suffices to show that s′ = f a.e. on each open cube J , with s differentiable
a.e. on J .

Thus fix such a J 6= ∅ and restrict s and m to

M0 = {X ∈M∗ | X ⊆ J}.

This does not affect s′ on J ; for as J is open, any sequence of cubes

Ik → p̄ ∈ J

terminates inside J anyway.

When so restricted,

s =

∫

f

is a generalized measure in J ; forM0 is a σ-ring (verify!), and f is integrable
on J . Also, m is strongly regular, and s is m-continuous.

2 Recall that
∫

f is always defined by our convention.
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First, suppose f isM0-simple on J , say,

f =

q
∑

i=1

aiCAi
,

say, with 0 < ai <∞, Ai ∈M∗, and

J =

q
⋃

i=1

Ai (disjoint).

Then

s =

∫

f =

q
∑

i=1

ai

∫

CAi
.

Hence by Lemma 6 above and by Theorem 1 in Chapter 7, §12, s is differen-
tiable a.e. (as each

∫

CAi
is), and

s′ =

q
∑

i=1

ai

(∫

CAi

)′

=

q
∑

i=1

aiCAi
= f (a.e.),

as required.

The general case reduces (via components and the formula f = f+− f−) to
the case f ≥ 0, with f measurable (even integrable) on J .

By Problem 6 in §2, then, we have fk ր f for some simple maps fk ≥ 0. Let

sk =

∫

fk on M0, k = 1, 2, . . . .

Then all sk and s =
∫

f are finite measures and sk ր s, by Theorem 4 in §6.
Also, by what was shown above, each sk is differentiable a.e. on J , with s′k = fk
(a.e.). Thus as in Lemma 5,

Ds = Ds = s′ = lim
k→∞

s′k = lim fk = f (a.e.) on J ,

with s′ = f 6= ±∞ (a.e.), as f is integrable on J . Thus all is proved. �

II. So far we have considered Lebesgue (K) differentiation. However, our re-
sults easily extend to Ω-differentiation (Definition 2 in Chapter 7, §12).

The proof is even simpler. Thus in Lemma 1, the union in formula (1)
is countable (as K is replaced by the countable set family Ω); hence it is
µ-measurable. In Lemma 2, the use of the Vitali theorem is replaced by
Theorem 3 in Chapter 7, §12. Otherwise, one only has to replace Lebesgue
measure m by µ onM. Once the lemmas are established (reread the proofs!),
we obtain the following.
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Theorem 2. Let S, ρ, Ω, and µ :M → E∗ be as in Definition 2 of Chapter
7, §12. Let f : S → E∗ (Er, Cr) be µ-integrable on each A ∈M with µA <∞.

Then the set function

s =

∫

f dµ

is Ω-differentiable, with s′ = f , (a.e.) on S.

Proof. Recall that S is a countable union of sets U i
n ∈ Ω with 0 < µU i

n <∞.
As µ∗ is G-regular, each U i

n lies in an open set J i
n ∈M with

µJ i
n < µU i

n + εin <∞.

Also, f is µ-measurable (even integrable) on J i
n. Dropping a null set, assume

that f isM-measurable on J = J i
n.

From here, proceed exactly as in Theorem 1, replacing m by µ. �

Both theorems combined yield the following result.

Corollary 1. If s :M′ → E∗ (Er, Cr) is an m-continuous and m-finite gen-
eralized measure in En, then s is K-differentiable a.e. on En, and ds = s′ dm
(see Definition 3 in §10) in any A ∈ M∗ (mA <∞).3

Similarly for Ω-differentiation.

Proof. Given A ∈ M∗ (mA <∞), there is an open set J ⊇ A such that

mJ < mA+ ε <∞.

As before, restrict s and m to

M0 = {X ∈M∗ | X ⊆ J}.

Then by assumption, s is finite and m-continuous on M0 (a σ-ring); so by
Theorem 1 in §11,

s =

∫

f dm

onM0 for some m-integrable map f on J .

Hence by our present Theorem 1, s is differentiable, with s′ = f a.e. on J ,
and so

s =

∫

f =

∫

s′ onM0.

This implies ds = s′ dm in A.

For Ω-differentiation, use Theorem 2. �

3 The restriction mA <∞ is redundant if s is finite.
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Corollary 2 (change of measure). Let s be as in Corollary 1. Subject to Note 1
in §10, if f is s-integrable on A ∈ M∗ (mA < ∞),4 then fs′ is m-integrable
on A and

∫

A

f ds =

∫

A

fs′ dm.

Similarly for Ω-derivatives, with m replaced by µ.

Proof. By Corollary 1, ds = s′ dm in A. Thus Theorem 6 of §10 yields the
result. �

Note 1. In particular, Corollary 2 applies to m-continuous signed LS mea-
sures s = sα in E1 (see end of §11). If A = [a, b], then sα is surely finite on
sα-measurable subsets of A; so Corollaries 1 and 2 show that

∫

A

f dsα =

∫

A

fs′α dm =

∫

A

fα′ dm,

since s′α = α′. (See Problem 9 in Chapter 7, §12.)
Note 2. Moreover, s = sα (see Note 1) is absolutely m-continuous iff α is

absolutely continuous in the stronger sense (Problem 2 in Chapter 4, §8).
Indeed, assuming the latter, fix ε > 0 and choose δ as in Definition 3 of

Chapter 7, §11. Then if mX < δ, we have

X ⊆
⋃

Ik (disjoint)

for some intervals Ik = (ak, bk], with

δ >
∑

mIk =
∑

(bk − ak).

Hence
|sX| ≤

∑

|sIk| < ε.

(Why?) Similarly for the converse.5

Problems on Differentiation and Related Topics

1. Fill in all proof details in this section. Verify footnote 4 and Note 2.

2. Given a measure s :M′ → E∗ (M′ ⊇ K), prove that

(i) s is topological;

(ii) its Borel restriction σ is strongly regular; and

(iii) Ds, Ds, and s′ do not change if s or m are restricted to the
Borel field B in En; neither does this affect the propositions on
K-differentiation proved here.

4 The restriction mA <∞ is redundant if s is finite.
5 Note that s{a} = 0 if s is m-continuous.
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[Hints: (i) Use Lemma 2 of Chapter 7, §2. (ii) Use also Problem 10 in Chapter 7,

§7. (iii) All depends on K.]

3. What analogues to 2(i)–(iii) apply to Ω-differentiation in En? In (S, ρ)?

4. (i) Show that any m-singular measure s in En, finite on K, has a zero
derivative (a.e.).

(ii) For Ω-derivatives, prove that this holds if s is also regular .

[Hint for (i): By Problem 2, we may assume s regular (if not, replace it by σ).

Suppose
mEn(Ds > 0) > a > 0

and find a contradiction to Lemma 2.]

5. Give another proof for Theorem 4 in Chapter 7, §12.
[Hint: Fix an open cube J ∈ K. By Problem 2(iii), restrict s and m to

M0 = {X ∈ B | X ⊆ J}

to make them finite. Apply Corollary 2 in §11 to s. Then use Problem 4, Theorem 1
of the present section, and Theorem 1 of Chapter 7, §12.

For Ω-differentiation, assume s regular ; argue as in Corollary 1, using Corollary 2

of §11.]

6. Prove that if

F (x) = L

∫ x

a

f dm (a ≤ x ≤ b),6

with f : E1 → E∗ (En, Cn) m-integrable on A = [a, b], then F is differ-
entiable, with F ′ = f , a.e. on A.
[Hint: Via components, reduce all to the case f ≥ 0, F↑ on A.

Let

s =

∫

f dm

onM∗. Let t = mF be the F -induced LS measure. Show that s = t on intervals in

A; so s′ = t′ = F ′ a.e. on A (Problem 9 in Chapter 7, §11). Use Theorem 1.]

6 Here L
∫ x
a
f dm =

∫

[a,x] f dm; m =Lebesgue measure.



Chapter 9

Calculus Using Lebesgue Theory

§1. L-Integrals and Antiderivatives

I. Lebesgue theory makes it possible to strengthen many calculus theorems.
We shall start with functions on E1, f : E1 → E. (A reader who has omit-
ted the “starred” part of Chapter 8, §7, will have to set E = E∗ (En, Cn)
throughout.)

By L-integrals of such functions, we mean integrals with respect to Lebesgue
measure m in E1. Notation:

L

∫ b

a

f = L

∫ b

a

f(x) dx = L

∫

[a,b]

f

and

L

∫ a

b

f = −L
∫ b

a

f.

For Riemann integrals, we replace “L” by “R.” We compare such integrals
with antiderivatives (Chapter 5, §5), denoted

∫ b

a

f,

without the “L” or “R.” Note that

L

∫

[a,b]

f = L

∫

(a,b)

f,

etc., since m{a} = m{b} = 0 here.

Theorem 1. Let f : E1 → E be L-integrable on A = [a, b]. Set

H(x) = L

∫ x

a

f, x ∈ A.
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Then the following are true.

(i) The function f is the derivative of H at any p ∈ A at which f is finite
and continuous. (At a and b, continuity and derivatives may be one-sided
from within.)

(ii) The function H is absolutely continuous on A;1 hence VH [A] <∞.2,3

Proof. (i) Let p ∈ (a, b], q = f(p) 6= ±∞. Let f be left continuous at p; so,
given ε > 0, we can fix c ∈ (a, p) such that

|f(x)− q| < ε for x ∈ (c, p).

Then

(∀x ∈ (c, p))

∣

∣

∣

∣

L

∫ p

x

(f − q)

∣

∣

∣

∣

≤ L

∫ p

x

|f − q|

≤ L

∫ p

x

(ε) = ε ·m[x, p] = ε (p− x).

But

L

∫ p

x

(f − q) = L

∫ p

x

f − L

∫ p

x

q,

L

∫ p

x

q = q (p− x), and

L

∫ p

x

f = L

∫ p

a

f − L

∫ x

a

f

= H(p)−H(x).

Thus

|H(p)−H(x)− q(p− x)| ≤ ε (p− x);

i.e.,
∣

∣

∣

H(p)−H(x)

p− x
− q

∣

∣

∣ ≤ ε (c < x < p).

Hence

f(p) = q = lim
x→p−

∆H

∆x
= H ′

−(p).

If f is right continuous at p ∈ [a, b), a similar formula results for H ′
+(p). This

proves clause (i).

1 This is true even in the stronger sense, as in Problem 2 of Chapter 5, §8, or in §2 (next

to this).
2 Recall that VH [A] is the total variation of H on A (Chapter 5, §§7–8).
3 Part (ii) is true even if f is not L-integrable, only L

∫ b

a
|f | <∞ is needed.
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(ii) Let ε > 0 be given. Then Theorem 6 in Chapter 8, §6, yields a δ > 0
such that

(1)

∣

∣

∣

∣

L

∫

X

f

∣

∣

∣

∣

≤ L

∫

X

|f | < ε

whenever
mX < δ and A ⊇ X, X ∈M.

Here we may set

X =

r
⋃

i=1

Ai (disjoint)

for some intervals
Ai = (ai, bi) ⊆ A

so that
mX =

∑

i

mAi =
∑

i

(bi − ai) < δ.

Then (1) implies that

ε > L

∫

X

|f | =
∑

i

L

∫

Ai

|f | ≥
∑

i

∣

∣

∣

∣

L

∫ bi

ai

f

∣

∣

∣

∣

=
∑

i

|H(bi)−H(ai)|.

Thus
∑

i

|H(bi)−H(ai)| < ε

whenever
∑

i

(bi − ai) < δ

and
A ⊇

⋃

i

(ai, bi) (disjoint).

(This is what we call “absolute continuity in the stronger sense.”) By Problem 2
in Chapter 5, §8, this implies “absolute continuity” in the sense of Chapter 5,
§8, hence VH [A] <∞. �

Note 1. The converse to (i) fails: the differentiability of H at p does not
imply the continuity of its derivative f at p (Problem 6 in Chapter 5, §2).

Note 2. If f is continuous on A−Q (Q countable), Theorem 1 shows that
H is a primitive (antiderivative): H =

∫

f on A.4 Recall that “Q countable”
implies mQ = 0, but not conversely. Observe that we may always assume
a, b ∈ Q.

4 See Definition 1 in Chapter 5, §5.
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We can now prove a generalized version of the so-called fundamental theorem
of calculus, widely used for computing integrals via antiderivatives.

Theorem 2. If f : E1 → E has a primitive F on A = [a, b], and if f is bounded
on A− P for some P with mP = 0, then f is L-integrable on A, and

(2) L

∫ x

a

f = F (x)− F (a) for all x ∈ A.

Proof. By Definition 1 of Chapter 5, §5, F is relatively continuous and finite
on A = [a, b], hence bounded on A (Theorem 2 in Chapter 4, §8).

It is also differentiable, with F ′ = f , on A − Q for a countable set Q ⊆ A,
with a, b ∈ Q. We fix this Q along with P .

As we deal with A only, we surely may redefine F and f on −A:

F (x) =

{

F (a) if x < a,

F (b) if x > b,

and f = 0 on −A. Then f is bounded on −P , while F is bounded and
continuous on E1, and F ′ = f on −Q; so F =

∫

f on E1.5

Also, for n = 1, 2, . . . and t ∈ E1, set

(3) fn(t) = n
[

F
(

t+
1

n

)

− F (t)
]

=
F (t+ 1/n)− F (t)

1/n
.

Then

fn → F ′ = f on −Q;

i.e., fn → f (a.e.) on E1 (as mQ = 0).

By (3), each fn is bounded and continuous (as F is). Thus by Theorem 1
of Chapter 8, §3, F and all fn are m-measurable on A (even on E1). So is f
by Corollary 1 of Chapter 8, §3.

Moreover, by boundedness, F and fn are L-integrable on finite intervals. So
is f . For example, let

|f | ≤ K <∞ on A− P ;

as mP = 0,
∫

A

|f | ≤
∫

A

(K) = K ·mA <∞,

proving integrability. Now, as

F =

∫

f on any interval
[

t, t+
1

n

]

,

5 See Definition 1 from Chapter 5, §5.
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Corollary 1 in Chapter 5, §4 yields

(∀ t ∈ E1)
∣

∣

∣F
(

t+
1

n

)

− F (t)
∣

∣

∣ ≤ sup
t∈−Q

|F ′(t)| 1
n
≤ K

n
.

Hence

|fn(t)| = n
∣

∣

∣F
(

t+
1

n

)

− F (t)
∣

∣

∣ ≤ K;

i.e., |fn| ≤ K for all n.

Thus f and fn satisfy Theorem 5 of Chapter 8, §6, with g = K. By Note 1
there,

lim
n→∞

L

∫ x

a

fn = L

∫ x

a

f.

In the next lemma, we show that also

lim
n→∞

L

∫ x

a

fn = F (x)− F (a),

which will complete the proof. �

Lemma 1. Given a finite continuous F : E1 → E and given fn as in (3),
we have

(4) lim
n→∞

L

∫ x

a

fn = F (x)− F (a) for all x ∈ E1.

Proof. As before, F and fn are bounded, continuous, and L-integrable on any
[a, x] or [x, a]. Fixing a, let

H(x) = L

∫ x

a

F, x ∈ E1.

By Theorem 1 and Note 2, H =
∫

F also in the sense of Chapter 5, §5, with
F = H ′ (derivative of H) on E1.

Hence by Definition 2 the same section,
∫ x

a

F = H(x)−H(a) = H(x)− 0 = L

∫ x

a

F ;

i.e.,

L

∫ x

a

F =

∫ x

a

F,

and so

L

∫ x

a

fn(t) dt = n

∫ x

a

F
(

t+
1

n

)

dt− n

∫ x

a

F (t) dt

= n

∫ b+1/n

a+1/n

F (t) dt− n

∫ x

a

F (t) dt.
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(We computed
∫

F (t+ 1/n) dt

by Theorem 2 in Chapter 5, §5, with g(t) = t+ 1/n.) Thus by additivity,

(5) L

∫ x

a

fn = n

∫ x+1/n

a+1/n

F − n

∫ x

a

F = n

∫ x+1/n

x

F − n

∫ a+1/n

a

F.

But

n

∫ x+1/n

x

F =
H(x+ 1

n )−H(x)
1
n

→ H ′(x) = F (x).

Similarly,

lim
n→∞

n

∫ a+1/n

a

F = F (a).

This combined with (5) proves (4), and hence Theorem 2, too. �

We also have the following corollary.

Corollary 1. If f : E1 → E∗ (En, Cn) is R-integrable on A = [a, b], then

(6) (∀x ∈ A) R

∫ x

a

f = L

∫ b

a

f = F (x)− F (a),

provided F is primitive to f on A.6

This follows from Theorem 2 by Definition (c) and Theorem 2 of Chap-
ter 8, §9.

Caution. Formulas (2) and (6) may fail if f is unbounded, or if F is not
a primitive in the sense of Definition 1 of Chapter 5, §5: We need F ′ = f
on A−Q, Q countable (mQ = 0 is not enough!). Even R-integrability (which
makes f bounded and a.e. continuous) does not suffice if

F 6=
∫

f.

For examples, see Problems 2–5.

Corollary 2. If f is relatively continuous and finite on A = [a, b] and has a
bounded derivative on A−Q (Q countable), then f ′ is L-integrable on A and

(7) L

∫ x

a

f ′ = f(x)− f(a) for x ∈ A.

This is simply Theorem 2 with F, f, P replaced by f, f ′, Q, respectively.

6 We assumed that E = E∗ (En, Cn) since R-integrals were defined for that case only.
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Corollary 3. If in Theorem 2 the primitive

F =

∫

f

is exact on some B ⊆ A, then

(8) f(x) =
d

dx
L

∫ x

a

f, x ∈ B.

(Recall that d
dx F (x) is classical notation for F ′(x).)

Proof. By (2), this holds on B ⊆ A if F ′ = f there. �

II. Note that under the assumptions of Theorem 2,

L

∫ x

a

f = F (x)− F (a) =

∫ x

a

f.

Thus all laws governing the primitive
∫

f apply to L
∫

f . For example, Theo-
rem 2 of Chapter 5, §5, yields the following corollary.

Corollary 4 (change of variable). Let g : E1 → E1 be relatively continuous on
A = [a, b] and have a bounded derivative on A−Q (Q countable).

Suppose that f : E1 → E (real or not) has a primitive on g[A], exact on
g[A−Q], and that f is bounded on g[A−Q].

Then f is L-integrable on g[A], the function

(f ◦ g) g′

is L-integrable on A, and

(9) L

∫ b

a

f(g(x)) g′(x) dx = L

∫ q

p

f(y) dy,

where p = g(a) and q = g(b).

For this and other applications of primitives, see Problem 9. However, often
a direct approach is stronger (though not simpler), as we illustrate next.

Lemma 2 (Bonnet). Suppose f : E1 → E1 is ≥ 0 and monotonically decreas-
ing on A = [a, b]. Then, if g : E1 → E1 is L-integrable on A, so also is fg,
and

(10) L

∫ b

a

fg = f(a) · L
∫ c

a

g for some c ∈ A.

Proof. The L-integrability of fg follows by Theorem 3 in Chapter 8, §6, as f is
monotone and bounded, hence even R-integrable (Corollary 3 in Chapter 8, §9).
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Using this and Lemma 1 of the same section, fix for each n a C-partition
Pn = {Ani} (i = 1, 2, . . . , qn)

of A so that

(11) (∀n) 1

n
> S(f,Pn)− S(f,Pn) =

qn
∑

i=1

wnimAni,

where we have set
wni = sup f [Ani]− inf f [Ani].

Consider any such P = {Ai}, i = 1, . . . , q (we drop the “n” for brevity). If
Ai = [ai−1, ai], then since f↓,

wi = f(ai−1)− f(ai) ≥ |f(x)− f(ai−1)|, x ∈ Ai.

Under Lebesgue measure (Problem 8 of Chapter 8, §9), we may set

Ai = [ai−1, ai] (∀ i)
and still get

(12)

L

∫

A

fg =

q
∑

i=1

f(ai−1)L

∫

Ai

g(x) dx

+

q
∑

i=1

L

∫

Ai

[f(x)− f(ai−1)] g(x) dx.

(Verify!) Here a0 = a and aq = b.

Now, set
G(x) = L

∫ x

a

g

and rewrite the first sum (call it r or rn) as

r =

q
∑

i=1

f(ai−1) [G(ai)−G(ai−1)]

=

q−1
∑

i=1

G(ai) [f(ai−1)− f(ai)] +G(b) f(aq−1),

or

(13) r =

q−1
∑

i=1

G(ai)wi +G(b) f(aq−1),

because f(ai−1)− f(ai) = wi and G(a) = 0.

Now, by Theorem 1 (with H, f replaced by G, g), G is continuous on A =
[a, b]; so G attains a largest value K and a least value k on A.
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As f↓ and f ≥ 0 on A, we have

wi ≥ 0 and f(aq−1) ≥ 0.

Thus, replacing G(b) and G(ai) by K (or k) in (13) and noting that

q−1
∑

i=1

wi = f(a)− f(aq−1),

we obtain
kf(a) ≤ r ≤ Kf(a);

more fully, with k = minG[A] and K = maxG[A],

(14) (∀n) kf(a) ≤ rn ≤ Kf(a).

Next, let s (or rather sn) be the second sum in (12). Noting that

wi ≥ |f(x)− f(ai−1)|,
suppose first that |g| ≤ B (bounded) on A.

Then for all n,

|sn| ≤
qn
∑

i=1

L

∫

Ani

(wni B) = B

qn
∑

i=1

wni mAni <
B

n
→ 0 (by (11)).

But by (12),

L

∫

A

fg = rn + sn (∀n).

As sn → 0,

L

∫

A

fg = lim
n→∞

rn,

and so by (14),

kf(a) ≤ L

∫

A

fg ≤ Kf(a).

By continuity, f(a)G(x) takes on the intermediate value L
∫

A
fg at some

c ∈ A; so

L

∫

A

fg = f(a)G(c) = f(a)L

∫ c

a

g,

since

G(x) = L

∫ x

a

f.

Thus all is proved for a bounded g.

The passage to an unbounded g is achieved by the so-called truncation
method described in Problems 12 and 13. (Verify!) �
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Corollary 5 (second law of the mean). Let f : E1 → E1 be monotone on
A = [a, b]. Then if g : E1 → E1 is L-integrable on A, so also is fg, and

(15) L

∫ b

a

fg = f(a)L

∫ c

a

g + f(b)L

∫ b

c

g for some c ∈ A.

Proof. If, say, f↓ on A, set

h(x) = f(x)− f(b).

Then h ≥ 0 and h↓ on A; so by Lemma 2,
∫ b

a

gh = h(a)L

∫ c

a

g for some c ∈ A.

As

h(a) = f(a)− f(b),

this easily implies (15).

If f↑, apply this result to −f to obtain (15) again. �

Note 3. We may restate (15) as

(∃ c ∈ A) L

∫ b

a

fg = pL

∫ c

a

g + q L

∫ b

c

g,

provided either

(i) f↑ and p ≤ f(a+) ≤ f(b−) ≤ q, or

(ii) f↓ and p ≥ f(a+) ≥ f(b−) ≥ q.

This statement slightly strengthens (15).

To prove clause (i), redefine

f(a) = p and f(b) = q.

Then still f↑; so (15) applies and yields the desired result. Similarly for (ii).
For a continuous g, see also Problem 13(ii′) in Chapter 8, §9, based on Stieltjes
theory.

III. We now give a useful analogue to the notion of a primitive.

Definition.

A map F : E1 → E is called an L-primitive or an indefinite L-integral of
f : E1 → E, on A = [a, b] iff f is L-integrable on A and

(16) F (x) = c+ L

∫ x

a

f

for all x ∈ A and some fixed finite c ∈ E.

§1. L-Integrals and Antiderivatives 367

Notation:

F = L

∫

f

(

not F =

∫

f

)

or

F (x) = L

∫

f(x) dx on A.

By (16), all L-primitives of f on A differ by finite constants only .

If E = E∗ (En, Cn), one can use this concept to lift the boundedness re-
striction on f in Theorem 2 and the corollaries of this section. The proof will
be given in §2. However, for comparison, we state the main theorems already
now.

∗Theorem 3. Let

F = L

∫

f on A = [a, b]

for some f : E1 → E∗ (En, Cn).

Then F is differentiable, with

F ′ = f a.e. on A.

In classical notation,

(17) f(x) =
d

dx
L

∫ x

a

f(t) dt for almost all x ∈ A.

A proof was sketched in Problem 6 of Chapter 8, §12. (It is brief but requires
more “starred” material than used in §2.)
∗Theorem 4. Let F : E1 → En (Cn) be differentiable on A = [a, b] (at a and
b differentiability may be one sided). Let F ′ = f be L-integrable on A.

Then

(18) L

∫ x

a

f = F (x)− F (a) for all x ∈ A.

Problems on L-Integrals and Antiderivatives

1. Fill in proof details in Theorems 1 and 2, Lemma 1, and Corollaries 1–3.

1′. Verify Note 2.

2. Let F be Cantor’s function (Problem 6 in Chapter 4, §5). Let

G =
⋃

k,i

Gki

(Gki as in that problem). So [0, 1] − G = P (Cantor’s set); mP = 0
(Problem 10 in Chapter 7, §8).



368 Chapter 9. Calculus Using Lebesgue Theory

Show that F is differentiable (F ′ = 0) on G. By Theorems 2 and 3
of Chapter 8, §9,

R

∫ 1

0

F ′ = L

∫ 1

0

F ′ = L

∫

G

F ′ = 0

exists, yet F (1)− F (0) = 1− 0 6= 0.

Does this contradict Corollary 1? Is F a genuine antiderivative of f?
If not, find one.

3. Let

F =

{

0 on [0, 12 ), and

1 on [ 12 , 1].

Show that

R

∫ 1

0

F ′ = 0

exists, yet

F (1)− F (0) = 1− 0 = 1.

What is wrong?
[Hint: A genuine primitive of F ′ (call it φ) has to be relatively continuous on [0, 1];
find φ and show that φ(1)− φ(0) = 0.]

4. What is wrong with the following computations?

(i) L

∫ 1
2

−1

dx

x2
= − 1

x

∣

∣

∣

1
2

−1
= −1.

(ii) L

∫ 1

−1

dx

x
= ln |x|

∣

∣

∣

1

−1
= 0. Is there a primitive on the whole

interval?
[Hint: See hint to Problem 3.]

(iii) How about L

∫ 1

−1

|x|
x

dx (cf. examples (a) and (b) of Chap-

ter 5, §5)?

5. Let

F (x) = x2 cos
π

x2
, F (0) = 1.

Prove the following:

(i) F is differentiable on A = [0, 1].

(ii) f = F ′ is bounded on any [a, b] ⊂ (0, 1), but not on A.
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(iii) Let

an =

√

2

4n+ 1
and bn =

1√
2n

for n = 1, 2, . . . .

Show that

A ⊇
∞
⋃

n=1

[an, bn] (disjoint)

and

L

∫ bn

an

f =
1

2n
;

so

L

∫ b

a

f ≥ L

∫

⋃
∞

n=1
[an,bn]

f ≥
∞
∑

n=1

1

2n
=∞,

and f = F ′ is not L-integrable on A.

What is wrong? Is there a contradiction to Theorem 2?

6. Consider both

(a) f(x) =
sinx

x
, f(0) = 1, and

(b) f(x) =
1− e−x

x
, f(0) = 1.

In each case, show that f is continuous on A = [0, 1] and

R

∫

A

f ≤ 1

exists, yet it does not “work out” via primitives. What is wrong? Does
a primitive exist?

To use Corollary 1, first expand sinx and e−x in a Taylor series and
find the series for

∫

f

by Theorem 3 of Chapter 5, §9.
Find

R

∫

A

f

approximately , to within 1/10, using the remainder term of the series to
estimate accuracy.
[Hint: Primitives exist , by Theorem 2 of Chapter 5, §11, even though they are none

of the known “calculus functions.”]
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7. Take A, Gn = (an, bn), and P (mP > 0) as in Problem 17(iii) of Chap-
ter 7, §8.

Define F = 0 on P and

F (x) = (x− an)
2(x− bn)

2 sin
1

(bn − an)(x− an)(x− bn)
if x 6∈ P .

Prove that F has a bounded derivative f , yet f is not R-integrable on
A; so Theorem 2 applies, but Corollary 1 does not.
[Hints: If p 6∈ P , compute F ′(p) as in calculus.

If p ∈ P and x→ p+ over A− P , then x is always in some (an, bn), p ≤ an < x.
(Why?) Deduce that ∆x = x− p > x− an and

∣

∣

∣

∣

∆F

∆x

∣

∣

∣

∣

≤ (x− an)(b− a)2 ≤ |∆x|(b− a)2;

so F ′
+(p) = 0. (What if x→ p+ over P ?) Similarly, show that F ′

− = 0 on P .

Prove however that F ′(x) oscillates from 1 to −1 as x→ an+ or x→ bn−, hence
also as x → p ∈ P (why?); so F ′ is discontinuous on all of P , with mP > 0. Now

use Theorem 3 in Chapter 8, §9.]

⇒8. If

Q ⊆ A = [a, b]

and mQ = 0, find a continuous map g : A→ E1, g ≥ 0, g↑, with
g′ = +∞ on Q.

[Hints: By Theorem 2 of Chapter 7, §8, fix (∀n) an open Gn ⊇ Q, with

mGn < 2−n.

Set

gn(x) = m(Gn ∩ [a, x])

and

g =
∞
∑

n=1

gn

on A;
∑

gn converges uniformly on A. (Why?)

By Problem 4 in Chapter 7, §9, and Theorem 2 of Chapter 7, §4, each gn (hence
g) is continuous. (Why?) If [p, x] ⊆ Gn, show that

gn(x) = gn(p) + (x− p),

so
∆gn

∆x
= 1

and

∆g

∆x
=

∞
∑

n=1

∆gn

∆x
→∞.]
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9. (i) Prove Corollary 4.

(ii) State and prove earlier analogues for Corollary 5 of Chapter 5, §5,
and Theorems 3 and 4 from Chapter 5, §10.

[Hint for (i): For primitives, this is Problem 3 in Chapter 5, §5. As g[Q] is countable
(Problem 2 in Chapter 1, §9) and f is bounded on

g[A]− g[Q] ⊆ g[A−Q],

f satisfies Theorem 2 on g[A], with P = g[Q], while (f ◦ g) g′ satisfies it on A.]

⇒10. Show that if h : E1 → E∗ is L-integrable on A = [a, b], and

(∀x ∈ A) L

∫ x

a

h = 0,

then h = 0 a.e. on A.
[Hints: Let K = A(h > 0) and H = A−K, with, say, mK = ε > 0.

Then by Corollary 1 in Chapter 7, §1 and Definition 2 of Chapter 7, §5,

H ⊆
⋃

n

Bn (disjoint)

for some intervals Bn ⊆ A, with

∑

n

mBn < mH + ε = mH +mK = mA.

(Why?) Set B =
⋃

n Bn; so

∫

B

h =
∑

n

∫

Bn

h = 0

(for L
∫

h = 0 on intervals Bn). Thus

∫

A−B

h =

∫

A

h−
∫

B

h = 0.

But B ⊇ H; so

A−B ⊆ A−H = K,

where h > 0, even though m(A−B) > 0. (Why?)

Hence find a contradiction to Theorem 1(h) of Chapter 8, §5. Similarly, disprove

that mA(h < 0) = ε > 0.]

⇒11. Let F↑ on A = [a, b], |F | < ∞, with derived function F ′ = f . Taking
Theorem 3 from Chapter 7, §10, for granted, prove that

L

∫ x

a

f ≤ F (x)− F (a), x ∈ A.

[Hints: With fn as in (3), F and fn are bounded on A and measurable by Theorem 1
of Chapter 8, §2. (Why?) Deduce that fn → f (a.e.) on A. Argue as in Lemma 1

using Fatou’s lemma (Chapter 8, §6, Lemma 2).]
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12. (“Truncation.”) Prove that if g : S → E is m-integrable on A ∈ M
in a measure space (S,M,m), then for any ε > 0, there is a bounded ,
M-measurable and integrable on A map g0 : S → E such that

∫

A

|g − g0| dm < ε.

[Outline: Redefine g = 0 on a null set, to make g M-measurable on A. Then for
n = 1, 2, . . . set

gn =

{

g on A(|g| < n), and

0 elsewhere.

(The function gn is called the nth truncate of g.)

Each gn is bounded andM-measurable on A (why?), and

∫

A

|g| dm <∞

by integrability. Also, |gn| ≤ |g| and gn → g (pointwise) on A. (Why?)

Now use Theorem 5 from Chapter 8, §6, to show that one of the gn may serve as

the desired go.]

13. Fill in all proof details in Lemma 2. Prove it for unbounded g.
[Hints: By Problem 12, fix a bounded go (|go| ≤ B), with

L

∫

A

|g − go| <
1

2

ε

f(a)− f(b)
.

Verify that

|sn| ≤
qn
∑

i=1

∫

Ani

wni|g| ≤
∑

i

∫

Ani

wni|go|+
∑

i

∫

Ani

wni|g − go|

≤ B
∑

i

wni mAni +
∑

i

∫

Ani

[f(a)− f(b)] |g − go|

<
1

n
+

∫

A

[f(a)− f(b)] |g − go| <
1

n
+

1

2
ε.

For all n > 2/ε, we get |sn| < 1
2
ε + 1

2
ε = ε. Hence sn → 0. Now finish as in the

text.]

14. Show that Theorem 4 fails if F is not differentiable at some p ∈ A.
[Hint: See Problems 2 and 3.]

§2. More on L-Integrals and Absolute Continuity

I. In this section, we presuppose the “starred” §10 in Chapter 7. First, how-
ever, we add some new ideas that do not require any starred material. The
notation is as in §1.
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Definition 1.

Given F : E1 → E, p ∈ E1, and q ∈ E, we write

q ∼ DF (p)

and call q an F -derivate at p iff

q = lim
k→∞

F (xk)− F (p)

xk − p

for at least one sequence xk → p (xk 6= p).1

If F has a derivative at p, it is the only F -derivate at p; otherwise,
there may be many derivates at p (finite or not).

Such derivates must exist if E = E1 (E∗). Indeed, given any p ∈ E1, let

xk = p+
1

k
→ p;

let

yk =
F (xk)− F (p)

xk − p
, k = 1, 2, . . .

By the compactness of E∗ (Chapter 4, §6, example (d)), {yk} must have a
subsequence {yki

} with a limit q ∈ E∗ (e.g., take q = lim yk), and so q ∼ DF (p).

We also obtain the following lemma.

Lemma 1. If F : E1 → E∗ has no negative derivates on A − Q, where A =
[a, b] and mQ = 0, and if no derivate of F on A equals −∞, then F↑ on A.

Proof. First, suppose F has no negative derivates on A at all. Fix ε > 0
and set

G(x) = F (x) + εx.

Seeking a contradiction, suppose a ≤ p < q ≤ b, yet G(q) < G(p). Then if

r =
1

2
(p+ q),

one of the intervals [p, r] and [r, q] (call it [p1, q1]) satisfies G(q1) < G(p1).

Let

r1 =
1

2
(p1 + q1).

Again, one of [p1, r1] and [r1, q1] (call it [p2, q2]) satisfies G(q2) < G(p2). Let

r2 =
1

2
(p2 + q2),

and so on.

1 “DF (p)” stands for “an F -derivate at p.”
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Thus obtain contracting intervals [pn, qn], with

G(qn) < G(pn), n = 1, 2, . . . .

Now, by Theorem 5 of Chapter 4, §6, let

po ∈
∞
⋂

n=1

[pn, qn].

Then set xn = qn if G(qn) < G(po), and xn = pn otherwise. Then

G(xn)−G(po)

xn − po
< 0

and xn → po. By the compactness of E∗, fix a subsequence

G(xnk
)−G(po)

xnk
− po

→ c ∈ E∗,

say. Then c ≤ 0 is a G-derivate at po ∈ A.

But this is impossible; for by our choice of G and our assumption, all
derivates of G are > 0. (Why?)

This contradiction shows that a ≤ p < q ≤ b implies G(p) ≤ G(q), i.e.,

F (p) + εp ≤ F (q) + εq.

Making ε→ 0, we obtain F (p) ≤ F (q) when a ≤ p < q ≤ b, i.e., F↑ on A.

Now, for the general case, let Q be the set of all p ∈ A that have at least
one DF (p) < 0; so mQ = 0.

Let g be as in Problem 8 of §1; so g′ =∞ on Q. Given ε > 0, set

G = F + εg.

As g↑, we have

(∀x, p ∈ A)
G(x) −G(p)

x− p
≥ F (x)− F (p)

x− p
.

Hence DG(p) ≥ 0 if p 6∈ Q.

If, however, p ∈ Q, then g′(p) = ∞ implies DG(p) ≥ 0. (Why?) Thus all
DG(p) are ≥ 0; so by what was proved above, G↑ on A. It follows, as before,
that F↑ on A, also. The lemma is proved. �

We now proceed to prove Theorems 3 and 4 of §1. To do this, we shall need
only one “starred” theorem (Theorem 3 of Chapter 7, §10).
Proof of Theorem 3 of §1. (1) First, let f be bounded :

|f | ≤ K on A.
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Via components and by Corollary 1 of Chapter 8, §6, all reduces to the real
positive case f ≥ 0 on A. (Explain!)

Then (Theorem 1(f) of Chapter 8, §5) a ≤ x < y ≤ b implies

L

∫ x

a

f ≤ L

∫ y

a

f,

i.e., F (x) ≤ F (y); so F↑ and F ′ ≥ 0 on A.

Now, by Theorem 3 of Chapter 7, §10, F is a.e. differentiable on A. Thus
exactly as in Theorem 2 in §1, we set

fn(t) =
F (t+ 1

n )− F (t)
1
n

→ F ′(t) a.e.

Since all fn are m-measurable on A (why?), so is F ′. Moreover, as |f | ≤ K,
we obtain (as in Lemma 1 of §1)

|fn(x)| = n

(

L

∫ x+1/n

x

f

)

≤ n · K
n

= K.

Thus by Theorem 5 from Chapter 8, §6 (with g = K),

L

∫ x

a

F ′ = lim
n→∞

L

∫ x

a

fn = L

∫ x

a

f

(Lemma 1 of §1). Hence

L

∫ x

a

(F ′ − f) = 0, x ∈ A,

and so (Problem 10 in §1) F ′ = f (a.e.) as claimed.

(2) If f is not bounded, we still can reduce all to the case f ≥ 0, f : E1 → E∗,
so that F↑ and F ′ ≥ 0 on A.

If so, we use “truncation”: For n = 1, 2, . . . , set

gn =

{

f on A(f ≤ n), and

0 elsewhere.

Then (see Problem 12 in §1) the gn are L-measurable and bounded , hence L-
integrable on A, with gn → f and

0 ≤ gn ≤ f

on A. By the first part of the proof, then,

d

dx
L

∫ x

a

gn = gn a.e. on A, n = 1, 2, . . . .
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Also, set (∀n)
Fn(x) = L

∫ x

a

(f − gn) ≥ 0;

so Fn is monotone (↑) on A. (Why?)

Thus by Theorem 3 in Chapter 7, §10, each Fn has a derivative at almost
every x ∈ A,

F ′
n(x) =

d

dx

(

L

∫ x

a

f − L

∫ x

a

gn

)

= F ′(x)− gn(x) ≥ 0 a.e. on A.

Making n→∞ and recalling that gn → f on A, we obtain

F ′(x)− f(x) ≥ 0 a.e. on A.

Thus

L

∫ x

a

(F ′ − f) ≥ 0.

But as F↑ (see above), Problem 11 of §1 yields

L

∫ x

a

F ′ ≤ F (x)− F (a) = L

∫ x

a

f ;

so

L

∫ x

a

(F ′ − f) = L

∫ x

a

F ′ − L

∫ x

a

f ≤ 0.

Combining, we get

(∀x ∈ A) L

∫ x

a

(F ′ − f) = 0;

so by Problem 10 of §1, F ′ = f a.e. on A, as required. �

Proof of Theorem 4 of §1. Via components, all again reduces to a real f .2

Let (∀n)
gn =

{

f on A(f ≤ n),

0 on A(f > n);

so gn → f (pointwise), gn ≤ f , gn ≤ n, and |gn| ≤ |f |.
This makes each gn L-integrable on A. Thus as before, by Theorem 5 of

Chapter 8, §6,

(1) lim
n→∞

L

∫ x

a

gn = L

∫ x

a

f, x ∈ A.

Now, set

Fn(x) = F (x)− L

∫ x

a

gn.

2 Not f ≥ 0, though, since Corollary 1 in Chapter 8, §6, does not apply to differentiation.
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Then by Theorem 3 of §1 (already proved),

F ′
n(x) = F ′(x)− d

dx
L

∫ x

a

gn = f(x)− gn(x) ≥ 0 a.e. on A

(since gn ≤ f).

Thus Fn has solely nonnegative derivates on A − Q (mQ = 0). Also, as
gn ≤ n, we get

1

x− p
L

∫ x

a

gn ≤ n,

even if x < p. (Why?) Hence

∆Fn

∆x
≥ ∆F

∆x
− n,

as

Fn(x) = F (x)− L

∫ x

a

gn.

Thus none of the Fn-derivates on A can be −∞.

By Lemma 1, then, Fn is monotone (↑) on A; so Fn(x) ≥ Fn(a), i.e.,

F (x)− L

∫ x

a

gn ≥ F (a)− L

∫ a

a

gn = F (a),

or

F (x)− F (a) ≥ L

∫ x

a

gn, x ∈ A, n = 1, 2, . . . .

Hence by (1),

F (x)− F (a) ≥ L

∫ x

a

f, x ∈ A.

For the reverse inequality, apply the same formula to −f . Thus we obtain the
desired result:

(2) F (x) = F (a) + L

∫ x

a

f for x ∈ A. �

Note 1. Formula (2) is equivalent to F = L
∫

f on A (see the last part of
§1). For if (2) holds, then

F (x) = c+ L

∫ x

a

f,

with c = F (a); so F = L
∫

f by definition.

Conversely, if

F (x) = c+ L

∫ x

a

f,

set x = a to find c = F (a).
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II. Absolute continuity redefined.

Definition 2.

A map f : E1 → E is absolutely continuous on an interval I ⊆ E1 iff for
every ε > 0, there is δ > 0 such that

r
∑

i=1

(bi − ai) < δ implies
r

∑

i=1

|f(bi)− f(ai)| < ε

for any disjoint intervals (ai, bi), with ai, bi ∈ I.

From now on, this replaces the “weaker” definition given in Chapter 5, §8.
The reader will easily verify the next three “routine” propositions.

Theorem 1. If f, g, h : E1 → E∗ (C) are absolutely continuous on A = [a, b],
so are

f ± g, hf , and |f |.
So also is f/h if

(∃ ε > 0) |h| ≥ ε on A.

All this also holds if f, g : E1 → E are vector valued and h is scalar valued.

Finally, if E ⊆ E∗, then

f ∨ g, f ∧ g, f+, and f−

are absolutely continuous along with f and g.

Corollary 1. A function F : E1 → En (Cn) is absolutely continuous on A =
[a, b] iff all its components F1, . . . , Fn are.

Hence a complex function F : E1 → C is absolutely continuous iff its real
and imaginary parts, Fre and Fim, are.

Corollary 2. If f : E1 → E is absolutely continuous on A = [a, b], it is
bounded , is uniformly continuous, and has bounded variation, Vf [a, b] < ∞,
all on A.

Lemma 2. If F : E1 → En (Cn) is of bounded variation on A = [a, b], then

(i) F is a.e. differentiable on A, and

(ii) F ′ is L-integrable on A.

Proof. Via components (Theorem 4 of Chapter 5, §7), all reduces to the real
case, F : E1 → E1.

Then since VF [A] <∞, we have

F = g − h

for some nondecreasing g and h (Theorem 3 in Chapter 5, §7).
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Now, by Theorem 3 from Chapter 7, §10, g and h are a.e. differentiable on
A. Hence so is

g − h = F.

Moreover, g′ ≥ 0 and h′ ≥ 0 since g↑ and h↑.
Thus for the L-integrability of F ′, proceed as in Problem 11 in §1, i.e., show

that F ′ is measurable on A and that

L

∫ b

a

F ′ = L

∫ b

a

g′ − L

∫ b

a

h′

is finite. This yields the result. �

Theorem 2 (Lebesgue). If F : E1 → En (Cn) is absolutely continuous on
A = [a, b], then the following are true:

(i∗) F is a.e. differentiable, and F ′ is L-integrable, on A.

(ii∗) If , in addition, F ′ = 0 a.e. on A, then F is constant on A.

Proof. Assertion (i∗) is immediate from Lemma 2, since any absolutely con-
tinuous function is of bounded variation by Corollary 2.

(ii∗) Now let F ′ = 0 a.e. on A. Fix any

B = [a, c] ⊆ A

and let Z consist of all p ∈ B at which the derivative F ′ = 0.

Given ε > 0, let K be the set of all closed intervals [p, x], p < x, such that

∣

∣

∣

∆F

∆x

∣

∣

∣
=

∣

∣

∣

F (x)− F (p)

x− p

∣

∣

∣
< ε.

By assumption,

lim
x→p

∆F

∆x
= 0 (p ∈ Z),

and m(B−Z) = 0; B = [a, c] ∈M∗. If p ∈ Z, and x− p is small enough, then

∣

∣

∣

∆F

∆x

∣

∣

∣ < ε,

i.e., [p, x] ∈ K.
It easily follows that K covers Z in the Vitali sense (verify!); so for any

δ > 0, Theorem 2 of Chapter 7, §10 yields disjoint intervals

Ik = [pk, xk] ∈ K, Ik ⊆ B,

with

m∗

(

Z −
q
⋃

k=1

Ik

)

< δ,
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hence also

m

(

B −
q
⋃

k=1

Ik

)

< δ

(for m(B − Z) = 0). But

B −
q
⋃

k=1

Ik = [a, c]−
q−1
⋃

k=1

[pk, xk]

= [a, p1) ∪
q−1
⋃

k=1

[xk, pk+1) ∪ [xq, c] (if xk < pk < xk+1);

so

(3) m

(

B −
q
⋃

k=1

Ik

)

= (p1 − a) +

q−1
∑

k=1

(pk+1 − xk) + (c− xq) < δ.

Now, as F is absolutely continuous, we can choose δ > 0 so that (3) implies

(4) |F (p1)− F (a)|+
q−1
∑

k=1

|F (pk+1)− F (xk)|+ |F (c)− F (xq)| < ε.

But Ik ∈ K also implies

|F (xk)− F (pk)| < ε(xk − pk) = ε ·mIk.

Hence
∣

∣

∣

∣

q
∑

k=1

[F (xk)− F (pk)]

∣

∣

∣

∣

< ε

q
∑

k=1

mIk ≤ ε ·mB = ε(c− p).

Combining with (4), we get

|F (c)− F (a)| ≤ ε(1 + c− a)→ 0 as ε→ 0;

so F (c) = F (a). As c ∈ A was arbitrary , F is constant on A, as claimed. �

Note 2. This shows that Cantor’s function (Problem 6 of Chapter 4, §5) is
not absolutely continuous, even though it is continuous and monotone, hence
of bounded variation on [0, 1]. Indeed (see Problem 2 in §1), it has a zero
derivative a.e. on [0, 1] but is not constant there. Thus absolute continuity, as
now defined, differs from its “weak” counterpart (Chapter 5, §8).
Theorem 3. A map F : E1 → E1 (Cn) is absolutely continuous on A =
[a, b] iff

F = L

∫

f on A
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for some function f ;3 and then

F (x) = F (a) + L

∫ x

a

f, x ∈ A.

Briefly: Absolutely continuous maps are exactly all L-primitives.

Proof. If F = L
∫

f , then by Theorem 1 of §1, F is absolutely continuous on
A, and by Note 1,

F (x) = F (a) + L

∫ x

a

f, x ∈ A.

Conversely, if F is absolutely continuous, then by Theorem 2, it is a.e. dif-
ferentiable and F ′ = f is L-integrable (all on A). Let

H(x) = L

∫ x

a

f, x ∈ A.

Then H, too, is absolutely continuous and so is F − H. Also, by Theorem 3
of §1,

H ′ = f = F ′,

and so

(F −H)′ = 0 a.e. on A.

By Theorem 2, F −H = c; i.e.,

F (x) = c+H(x) = c+ L

∫ x

a

f,

and so F = L
∫

f on A, as claimed. �

Corollary 3. If f, F : E1 → E∗ (En, Cn), we have

F = L

∫

f

on an interval I ⊆ E1 iff F is absolutely continuous on I and F ′ = f a.e. on I.

(Use Problem 3 in §1 and Theorem 3.)

Note 3. This (or Theorem 3) could serve as a definition. Comparing ordi-
nary primitives

F =

∫

f

with L-primitives

F = L

∫

f,

3 Such as F ′, the derived function of F .



382 Chapter 9. Calculus Using Lebesgue Theory

we see that the former require F to be just relatively continuous but allow only
a countable “exceptional” set Q, while the latter require absolute continuity
but allow Q to even be uncountable, provided mQ = 0.

The simplest and “strongest” kind of absolutely continuous functions are
so-called Lipschitz maps (see Problem 6). See also Problems 7 and 10.

III. We conclude with another important idea, due to Lebesgue.

Definition 3.

We call p ∈ E1 a Lebesgue point (“L-point”) of f : E1 → E iff

(i) f is L-integrable on some Gp(δ);

(ii) q = f(p) is finite; and

(iii) lim
x→p

1

x− p
L

∫ x

p

|f − q| = 0.

The Lebesgue set of f consists of all such p.

Corollary 4. Let

F = L

∫

f on A = [a, b].

If p ∈ A is an L-point of f , then f(p) is the derivative of F at p (but the
converse fails).

Proof. By assumption,

F (x) = c+ L

∫ x

p

f, x ∈ Gp(δ),

and
1

|∆x|

∣

∣

∣

∣

L

∫ x

p

(f − q)

∣

∣

∣

∣

≤ 1

|∆x| L
∫ x

p

|f − q| → 0

as x→ p. (Here q = f(p) and ∆x = x− p.)

Thus with x→ p, we get

∣

∣

∣

F (x)− F (p)

x− p
− q

∣

∣

∣ =
1

|x− p|

∣

∣

∣

∣

L

∫ x

p

f − (x− p)q

∣

∣

∣

∣

=
1

|x− p|

∣

∣

∣

∣

L

∫ x

p

f − L

∫ x

p

(q)

∣

∣

∣

∣

→ 0,

as required. �

Corollary 5. Let f : E1 → En (Cn). Then p is an L-point of f iff it is an
L-point for each of the n components, f1, . . . , fn, of f .

(Exercise!)
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Theorem 4. If f : E1 → E∗ (En, Cn) is L-integrable on A = [a, b], then
almost all p ∈ A are Lebesgue points of f .

Note that this strengthens Theorem 3 of §1.
Proof. By Corollary 5, we need only consider the case f : E1 → E∗.

For any r ∈ E1, |f − r| is L-integrable on A; so by Theorem 3 of §1, setting

Fr(x) = L

∫ x

a

|f − r|,

we get

(5) F ′
r(p) = lim

x→p

1

|x− p| L
∫ x

p

|f − r| = |f(p)− r|

for almost all p ∈ A.

Now, for each r, let Ar be the set of those p ∈ A for which (5) fails; so
mAr = 0. Let {rk} be the sequence of all rationals in E1. Let

Q =

∞
⋃

k=1

Ark ∪ {a, b} ∪A∞,

where

A∞ = A(|f | =∞);

so mQ = 0. (Why?)

To finish, we show that all p ∈ A − Q are L-points of f . Indeed, fix any
p ∈ A−Q and any ε > 0. Let q = f(p). Fix a rational r such that

|q − r| < ε

3
.

Then
∣

∣|f − r| − |f − q|
∣

∣ ≤
∣

∣(f − r)− (f − q)
∣

∣ = |q − r| < ε

3
on A− A∞.

Hence as mA∞ = 0, we have

(6)

∣

∣

∣

∣

L

∫ x

p

|f − r| − L

∫ x

p

|f − q|
∣

∣

∣

∣

≤ L

∫ x

p

(ε

3

)

=
ε

3
|x− p|.

Since

p 6∈ Q ⊇
⋃

k

Ark ,

formula (5) applies. So there is δ > 0 such that |x− p| < δ implies
∣

∣

∣

∣

(

1

|x− p| L
∫ x

p

|f − r|
)

− |f(p)− r|
∣

∣

∣

∣

<
ε

3
.
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As

|f(p)− r| = |q − r| < ε

3
,

we get

1

|x− p| L
∫ x

p

|f − r| ≤
∣

∣

∣

∣

(

1

|x− p| L
∫ x

p

|f − r|
)

− |q − r|
∣

∣

∣

∣

+ |q − r|

<
ε

3
+

ε

3
=

2ε

3
.

Hence

L

∫ x

p

|f − r| < 2ε

3
|x− p|.

Combining with (6), we have

1

|x− p| L
∫ x

p

|f − q| < ε

3
+

2ε

3
= ε

whenever |x− p| < δ. Thus

lim
x→p

1

|x− p| L
∫ x

p

|f − q| = 0,

as required. �

Problems on L-Integrals and Absolute Continuity

1. Fill in all details in the proof of Lemma 1 and of Theorems 3 and 4
from §1.

2. Prove Theorem 1 and Corollaries 1, 2, and 5.

2′. Disprove the converse to Corollary 4. (Give an example!)

⇒3. Show that if F : E1 → E is L-integrable on A = [a, b] and continuous at
p ∈ A, then p is an L-point of F .
[Hint: Use the ε, δ definition of continuity.]

4. Complete all proof details for Lemma 2, Theorems 3 and 4, and Corol-
lary 3.

5. Let F = 1 on R (= rationals) and F = 0 on E1−R (Dirichlet function).

Show that F has exactly three derivates (0, +∞, and −∞) at every
p ∈ E1.

⇒6. We say that F is a Lipschitz map, or has the uniform Lipschitz property
on A, iff

(∃K ∈ E1) (∀x, y ∈ A) |F (x)− F (y)| ≤ K|x− y|.
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Prove the following:

(i) Any such F is absolutely continuous on A = [a, b].

(ii) If all derivates of f satisfy

|Df(x)| ≤ k <∞, x ∈ A = [a, b],

then f is a Lipschitz map on A.

⇒7. Let g : E1 → E1 and f : E1 → E (real or not) be absolutely continuous
on A = [a, b] and g[A], respectively.

Prove that h = f ◦ g is absolutely continuous on A, provided that
either f is as in Problem 6, or g is strictly monotone on A.

8. Prove that if F : E1 → E1 is absolutely continuous on A = [a, b], if
Q ⊆ A, and if mQ = 0, then m∗F [Q] = 0 (m = Lebesgue measure).
[Outline: We may assume Q ⊆ (a, b). (Why?)

Fix ε > 0 and take δ as in Definition 2. As m is regular, there is an open G,

Q ⊆ G ⊆ (a, b),

with mG < δ. By Lemma 2 of Chapter 7, §2,

G =
∞
⋃

k=1

Ik (disjoint)

for some Ik = (ak, bk].

Let uk = inf F [Ik], vk = supF [Ik]; so

F [Ik] ⊆ [uk, vk]

and

m∗F [Ik] ≤ vk − uk.

Also,
∑

(bk − ak) =
∑

mIk = mG < δ.

From Definition 2, show that

∞
∑

k=1

(vk − uk) ≤ ε

(first consider partial sums). As

F [Q] ⊆ F [G] ⊆
⋃

k

F [Ik],

get

m∗F [Q] ≤
∑

k

m∗F [Ik] =
∑

k

(vk − uk) ≤ ε→ 0.]
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9. Show that if F is as in Problem 8 and if

A = [a, b] ⊇ B, B ∈M∗

(L-measurable sets), then

F [B] ∈M∗.

(“F preservesM∗-sets.”)
[Outline: (i) If B is closed, it is compact, and so is F [B] (Theorems 1 and 4 of

Chapter 4, §6).
(ii) If B ∈ Fσ , then

B =
⋃

i

Bi, Bi ∈ F ;

so by (i),

F [B] =
⋃

i

F [Bi] ∈ Fσ ⊆M∗.

(iii) If B ∈M∗, then by Theorem 2 of Chapter 7, §8,

(∃K ∈ Fσ) K ⊆ B, m(B −K) = 0.

Now use Problem 8, with Q = B −K.]

⇒10. (Change of variable.) Suppose g : E1 → E1 is absolutely continuous and
one-to-one on A = [a, b], while f : E1 → E∗ (En, Cn) is L-integrable
on g[A].

Prove that (f ◦ g) g′ is L-integrable on A and

L

∫ b

a

(f ◦ g) g′ = L

∫ q

p

f,

where p = g(a) and q = g(b).
[Hints: Let F = L

∫

f and H = F ◦ g on A.

By Theorems 2 and 3 and Problem 7 (end), F and H are absolutely continuous

on g[A] and A, respectively; and H′ is L-integrable on A. So by Theorem 3,

H = L

∫

H′ = L

∫

(f ◦ g)g′,

as H′ = (f ◦ g) g′ a.e. on A.]

11. Setting f(x) = 0 if not defined otherwise, find the intervals (if any) on
which f is absolutely continuous if f(x) is defined by

(a) sinx;

(b) cos 2x;

(c) 1/x;

(d) tanx;

(e) xx;
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(f) x sin(1/x);

(g) x2 sinx−2 (Problem 5 in §1);
(h)
√
x3 · sin(1/x) (verify that |f ′(x)| ≤ 3

2 + x− 1
2 ).

[Hint: Use Problems 6 and 7.]

§3. Improper (Cauchy) Integrals

Cauchy extended R-integration to unbounded sets and functions as follows.

Given f : E1 → E and assuming that the right-hand side R-integrals and
limits exist, define (first for unbounded sets, then for unbounded functions)

(i)

∫ ∞

a

f =

∫

[a,∞)

f = lim
x→∞

R

∫ x

a

f ;

(ii)

∫ a

−∞

f =

∫

(−∞,a]

f = lim
x→−∞

R

∫ a

x

f .

If both
∫ ∞

0

f and

∫ 0

−∞

f

exist, define
∫ ∞

−∞

f =

∫

(−∞,0)

f +

∫

[0,∞)

f.

Now, suppose f is unbounded near some p ∈ A = [a, b], i.e., unbounded on

A ∩G¬p

for every deleted globe G¬p about p (such points p are called singularities).
Then (again assuming existence of the R-integrals and limits), we define

(1) in case of a singularity p = a,

∫ b

a+

f =

∫

(a,b]

f = lim
x→a+

R

∫ b

x

f ;

(2) if p = b, then

∫ b−

a

f =

∫

[a,b)

f = lim
x→b−

R

∫ x

a

f ;

(3) if a < p < b and if
∫ p−

a

f and

∫ b

p+

f
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exist, then
∫ b

a

f =

∫ p−

a

f +

∫ p

p

f +

∫ b

p+

f.

The term
∫ p

p

f =

∫

[p,p]

f

is necessary if RS- or LS-integrals are used.1

Finally, if A contains several singularities, it must be split into subintervals,

each with at most one endpoint singularity; and
∫ b

a
f is split accordingly.2

We call all such integrals improper or Cauchy (C) integrals. A C-integral is
said to converge iff it exists and is finite.

This theory is greatly enriched if in the above definitions, one replaces R-
integrals by Lebesgue integrals, using Lebesgue or LS measure in E1. (This
makes sense even when a Lebesgue integral (proper) does exist; see Theorem 1.)
Below, m shall denote such a measure unless stated otherwise.

C-integrals with respect to m will be denoted by

C

∫ ∞

a

f dm, C

∫

[a,b)

f, etc.

“Classical” notation:

C

∫

f(x) dm(x) or C

∫

f(x) dx

(the latter if m is Lebesgue measure). We omit the “C” if confusion with proper
integrals

∫ x

a
f is unlikely.

Note 1. C-integrals are limits of integrals, not integrals proper. Yet they
may equal the latter (Theorem 1 below) and then may be used to compute
them.

Caution. “Singularities” in [a, b] may affect the primitive used in compu-

tations (cf. Problem 4 in §1). Then [a, b] must be split (see above), and C
∫ b

a
f

splits accordingly. (Additivity applies to C-integrals; see Problem 9, below.)

Examples.

(A) The integral

L

∫ 1/2

−1

dx

x2

1 For RS- and LS-integrals, we may well have
∫ p

p
f 6= 0,

∫

[a,b] f 6=
∫

(a,b) f , etc.
2 This also applies if an infinite interval has an inside singularity.
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has a singularity at 0. By Theorem 1 below,3 we get

L

∫ 1/2

−1

dx

x2
=

∫ 0−

−1

dx

x2
+

∫ 1/2

0+

dx

x2

= lim
x→0−

(

− 1

x
− 1

)

+ lim
x→0+

(

−2 + 1

x

)

=∞+∞ =∞.

(B) We have

C

∫ ∞

1/2

dx

x2
= lim

x→∞

(

− 1

x
+ 2

)

= 2.

Hence

C

∫ ∞

−1

dx

x2
= C

∫ 1/2

−1

dx

x2
+ C

∫ ∞

1/2

dx

x2
=∞+ 2 =∞.

(C) The integral

L

∫ 1

−1

|x|
x
dx

has no singularities (consider deleted globes about 0). The primitive
F (x) = |x| exists (example (b) in Chapter 5, §5); so

L

∫ 1

−1

|x|
x
dx = |x|

∣

∣

∣

1

−1
= 0.

In the rest of this section, we state our theorems mainly for

C

∫ ∞

a

f,

but they apply, with similar proofs, to

C

∫ ∞

−∞

f, C

∫ b−

a

f, etc.

The measure m is as explained above.

Theorem 1. Let A = [a,∞), f : E1 → E (E complete).

(i) If f ≥ 0 on A, then

C

∫ ∞

a

f dm

exists (≤ ∞) and equals
∫

A

f dm.4

3 It applies to finite intervals A, too.
4 That is, the proper integral.
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(ii) The map f is m-integrable on A iff

C

∫ ∞

a

|f | <∞

and f is m-measurable on A; then again,

C

∫ ∞

a

f dm =

∫

A

f dm.

Proof. (i) Let f ≥ 0 on A. By the rules of Chapter 8, §5,
∫

A
f is always

defined for such f ; so we may set

F (x) =

∫ x

a

f dm, x ≥ a.

Then by Theorem 1(f) in Chapter 8, §5, F↑ on A; for a ≤ x ≤ y implies

F (x) =

∫ x

a

f ≤
∫ y

a

f = F (y).

Now, by the properties of monotone limits,

lim
x→∞

F (x) = lim
x→∞

∫ x

a

f = C

∫ ∞

a

f

exists in E∗; so by Theorem 1 of Chapter 4, §2, it can be found by making x
run over some sequence xk →∞, say, xk = k.

Thus set

Ak = [a, k], k = 1, 2, . . . .

Then {Ak}↑ and
⋃

Ak = A = [a,∞),

i.e., Ak ր A.

Moreover, by Note 4 in Chapter 8, §5, the set function s =
∫

f is σ-additive
and semifinite (≥ 0). Thus by Theorem 2 of Chapter 7, §4 (left continuity)

(1)

∫

A

f dm = lim
k→∞

∫

Ak

f = lim
k→∞

∫ k

a

f = C

∫ ∞

a

f,

proving (i).

(ii) By clause (i),

C

∫ ∞

a

|f | =
∫

A

|f | dm

exists, as |f | ≥ 0. Hence

C

∫ ∞

a

|f | <∞
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plus measurability amounts to integrability (Theorem 2 of Chapter 8, §6).
Moreover,

C

∫ ∞

a

|f | <∞

implies the convergence of C
∫∞

a
f (see Corollary 1 below). Thus as

lim
x→∞

∫ x

a

f

exists, we proceed exactly as before (here s =
∫

f is finite), proving (ii) also. �

Note 2. If E ⊆ E∗, formula (1) results even if f is not m-measurable.5

Note 3. While f cannot be integrable unless |f | is (Corollary 2 of Chapter 8,
§6), it can happen that

C

∫

f

converges even if

C

∫

|f | =∞

(this is called conditional convergence). A case in point is

C

∫ ∞

0

sinx

x
dx;

see Problem 8.

Thus C-integrals may be finite where proper integrals are∞ or fail to exist (a
great advantage!). Yet they are deficient in other respects (see Problem 9(c)).

For our next theorem, we need the previously “starred” Theorem 2 in Chap-
ter 4, §2. (Review it!) As we shall see, C-integrals resemble infinite series.

Theorem 2 (Cauchy criterion). Let A = [a,∞), f : E1 → E, E complete.
Suppose

∫ x

a

f dm

exists for each x ∈ A. (This is automatic if E ⊆ E∗; see Chapter 8, §5.)
Then

C

∫ ∞

a

f

converges iff for every ε > 0, there is b ∈ A such that

(2)

∣

∣

∣

∣

∫ x

v

f dm

∣

∣

∣

∣

< ε whenever b ≤ v ≤ x <∞,6

5 This is true provided
∫

A
f dm is finite or orthodox , so that s =

∫

f is semifinite.
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and

(2′)

∣

∣

∣

∣

∫ b

a

f dm

∣

∣

∣

∣

<∞.

Proof. By additivity (Chapter 8, §5, Theorem 2; Chapter 8, §7, Theorem 3),
∫ x

a

f =

∫ v

a

f +

∫ x

v

f

if a ≤ v ≤ x < ∞. (In case E ⊆ E∗, this holds even if f is not integrable; see
Theorem 2, of Chapter 8, §5.)

Now, if

C

∫ ∞

a

f

converges, let

r = lim
x→∞

∫ x

a

f dm 6= ±∞.

Then for any ε > 0, there is some

b ∈ [a,∞) = A

such that
∣

∣

∣

∣

∫ x

a

f dm− r

∣

∣

∣

∣

<
1

2
ε for x ≥ b.

(Why may we use the standard metric here?)

Taking x = b, we get (2′). Also, if a ≤ b ≤ v ≤ x, we have
∣

∣

∣

∣

∫ x

a

f dm− r

∣

∣

∣

∣

<
1

2
ε

and
∣

∣

∣

∣

r −
∫ ν

a

f dm

∣

∣

∣

∣

<
1

2
ε.

Hence by the triangle law, (2) follows also. Thus this b satisfies (2).

Conversely, suppose such a b exists for every given ε > 0. Fixing b, we thus
have (2) and (2′). Now, with A = [a,∞), define F : A→ E by

F (x) =

∫ x

a

f dm,

so

C

∫ ∞

a

f = lim
x→∞

F (x)

6 Here and later, for LS integrals, replace
∫ x
v

by
∫

(v,x] and
∫ x
b

by
∫

(b,x].
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if this limit exists. By (2),

|F (x)| =
∣

∣

∣

∣

∫ x

a

f dm

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ b

a

f dm

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ x

b

f dm

∣

∣

∣

∣

<

∣

∣

∣

∣

∫ b

a

f dm

∣

∣

∣

∣

+ ε

if x ≥ b. Thus F is finite on [b,∞), and so we may again use the standard
metric

ρ(F (x), F (v)) = |F (x)− F (v)| =
∣

∣

∣

∣

∫ x

a

f dm−
∫ v

a

f dm

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ x

v

f dm

∣

∣

∣

∣

< ε

if x, v ≥ b. The existence of

C

∫ ∞

a

f dm = lim
x→∞

F (x) 6= ±∞

now follows by Theorem 2 of Chapter 4, §2. (We shall henceforth presuppose
this “starred” theorem.)

Thus all is proved. �

Corollary 1. Under the same assumptions as in Theorem 2, the conver-
gence of

C

∫ ∞

a

|f | dm

implies that of

C

∫ ∞

a

f dm.

Indeed,
∣

∣

∣

∣

∫ x

v

f

∣

∣

∣

∣

≤
∫ x

v

|f |

(Theorem 1(g) of Chapter 8, §5, and Problem 10 in Chapter 8, §7).
Note 4. We say that C

∫

f converges absolutely iff C
∫

|f | converges.
Corollary 2 (comparison test). If |f | ≤ |g| a.e. on A = [a,∞) for some
f, g : E1 → E, then

C

∫ ∞

a

|f | ≤ C

∫ ∞

a

|g|;

so the convergence of

C

∫ ∞

a

|g|

implies that of

C

∫ ∞

a

|f |.

For as |f |, |g| ≥ 0, Theorem 1 reduces all to Theorem 1(c) of Chapter 8, §5.
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Note 5. As we see, absolutely convergent C-integrals coincide with proper
(finite) Lebesgue integrals of nonnegative or m-measurable maps. For condi-
tional (i.e., nonabsolute) convergence, see Problems 6–9, 13, and 14.

Iterated C-Integrals. Let the product space X × Y of Chapter 8, §8 be

E1 ×E1 = E2,

and let p = m × n, where m and n are Lebesgue measure or LS measures in
E1. Let

A = [a, b], B = [c, d], and D = A×B.

Then the integral
∫

B

∫

A

f dmdn =

∫

Y

∫

X

f CD dmdn

is also written
∫ d

c

∫ b

a

f dmdn

or
∫ d

c

∫ b

a

f(x, y) dm(x) dn(y).

As usual, we write “dx” for “dm(x)” if m is Lebesgue measure in E1; similarly
for n.

We now define

(3)

C

∫ ∞

a

∫ ∞

c

f dn dm = lim
b→∞

∫ b

a

(

lim
d→∞

∫ d

c

f(x, y) dn(y)

)

dm(x)

= C

∫ ∞

a

∫ ∞

c

f(x, y) dn(y) dm(x),

provided the limits and integrals involved exist.

If the integral (3) is finite, we say that it converges. Again, convergence
is absolute if it holds also with f replaced by |f |, and conditional otherwise.
Similar definitions apply to

C

∫ ∞

c

∫ ∞

a

f dmdn, C

∫ b

−∞

∫ ∞

c

f dn dm, etc.

Theorem 3. Let f : E2 → E∗ be p-measurable on E2 (p,m, n as above). Then
we have the following.

(i∗) The Cauchy integrals

C

∫ ∞

−∞

∫ ∞

−∞

|f | dn dm and C

∫ ∞

−∞

∫ ∞

−∞

|f | dmdn
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exist (≤ ∞), and both equal
∫

E2

|f | dp.

(ii∗) If one of these three integrals is finite, then

C

∫ ∞

−∞

∫ ∞

−∞

f dn dm and C

∫ ∞

−∞

∫ ∞

−∞

f dmdn

converge, and both equal
∫

E2

f dp.

(Similarly for C
∫∞

a

∫ b

−∞ f dn dm, etc.)

Proof. As m and n are σ-finite (finite on intervals!), f surely has σ-finite
support.

As |f | ≥ 0, clause (i∗) easily follows from our present Theorem 1(i) and
Theorem 3(i) of Chapter 8, §8.

Similarly, clause (ii∗) follows from Theorem 3(ii) of the same section. �

Theorem 4 (passage to polars). Let p = Lebesgue measure in E2. Suppose
f : E2 → E∗ is p-measurable on E2. Set

F (r, θ) = f(r cos θ, r sin θ), r > 0.

Then

(a) C

∫ ∞

−∞

∫ ∞

−∞

f dx dy = C

∫ ∞

0

r dr

∫ 2π

0

F dθ, and

(b) C

∫ ∞

0

∫ ∞

0

f dx dy = C

∫ ∞

0

r dr

∫ π/2

0

F dθ,

provided f is nonnegative or p-integrable on E2 (for (a)) or on (0,∞)× (0,∞)
(for (b)).7

Proof Outline. First let f = CD, with D a “curved rectangle”

{(r, θ) | r1 < r ≤ r2, θ1 < θ ≤ θ2}
for some r1 < r2 in X = (0,∞) and θ1 < θ2 in Y = [0, 2π). By elementary
geometry (or calculus), the area

pD =
1

2
(r22 − r21)(θ2 − θ1)

(the difference between two circular sectors).

7 Hence the integrals in (a) and (b) can also be treated as proper integrals.
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For f = CD, formulas (a) and (b) easily follow from

pD = L

∫

E2

CD dp.

(Verify!) Now, curved rectangles behave like half-open intervals

(r1, r2]× (θ1, θ2]

in E2, since Theorem 1 in Chapter 7, §1, and Lemma 2 of Chapter 7, §2, apply
with the same proof. Thus they form a semiring generating the Borel field
in E2.

Hence show (as in Chapter 8, §8) that Theorem 4 holds for f = CD (D ∈ B).
Then take D ∈ M∗. Next let f be elementary and nonnegative, and so on, as
in Theorems 2 and 3 in Chapter 8, §8. �

Examples (continued).

(D) Let

J = L

∫ ∞

0

e−x2

dx;

so

J2 =

(

C

∫ ∞

0

e−x2

dx

)(

C

∫ ∞

0

e−y2

dy

)

= C

∫ ∞

0

∫ ∞

0

e−(x2+y2) dx dy. (Why?)

Set

f(x, y) = e−(x2+y2)

in Theorem 4(b). Then F (r, θ) = e−r2 ; hence

J2 = C

∫ ∞

0

r dr

(
∫ π

2

0

e−r2 dθ

)

= C

∫ ∞

0

re−r2 dr · π
2
= −1

4
πe−t

∣

∣

∣

∞

0
=

1

4
π.

(Here we computed
∫

re−r2 dr

by substituting r2 = t.) Thus

(4) C

∫ ∞

0

e−x2

dx = L

∫ ∞

0

e−x2

dx =

√

1

4
π =

1

2

√
π.

§3. Improper (Cauchy) Integrals 397

Problems on Cauchy Integrals

1. Fill in all proof details in Theorems 1–3. Verify also at least some of the
cases other than

∫∞

a
f . Check the validity for LS-integrals (footnote 6).

2. Prove Theorem 4 in detail.

2′. Verify Notes 2 and 3 and examples (A)–(D).

3. Assuming a > 0, verify the following:

(i)

∫ ∞

1

1

t
e−t dt ≤

∫ ∞

1

e−t dt =
1

e
.

[Hint: Use Corollary 2.]

(ii)

∫ ∞

1

e−at dt =
e−a

a
.

(iii)

∫ ∞

0

e−at dt =
1

a
.

(iv)

∫ ∞

0

e−at sin bt dt =
b

a2 + b2
.

4. Verify the following:

(i)

∫ ∞

1

∫ ∞

1

e−xy dy dx =

∫ ∞

1

1

x
e−x dx ≤ 1

e
(converges, by 3(i)).

(ii)

∫ ∞

0

∫ ∞

0

e−xy dy dx ≥
∫ ∞

1

∫ ∞

0

e−xy dy dx =

∫ ∞

1

1

x
(1−e−x) dx ≥

∫ ∞

1

( 1

x
− e−x

)

dx =∞.

Does this contradict formula (4) in the text, or Problem 5, which follows?

5. Let f(x, y) = e−xy and

g(x) = L

∫ 1

0

e−xy dy;

so g(0) = 1. (Why?)

(i) Is g R-integrable on A = [0, 1]? Is f so on A× A?

(ii) Find g(x) using Corollary 1 in §1.
(iii) Find the value of

R

∫ 1

0

∫ 1

0

e−xy dy dx = R

∫ 1

0

g

to within 1/10.
[Hint: Reduce it to Problem 6(b) in §1.]
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⇒6. Let f, g : E1 → E∗ be m-measurable on A = [a, b), b ≤ ∞. Prove the
following:

(i) If

C

∫ b−

a

f+ <∞ or C

∫ b−

a

f− <∞,

then C
∫ b−

a
f exists and equals

C

∫ b−

a

f+ − C

∫ b−

a

f− =

∫

A

f dm (proper).

(ii) If
∫ b−

a
f converges conditionally only, then

∫ b−

a

f+ =

∫ b−

a

f− = +∞.

(iii) In case C
∫ b−

a
|f | <∞, we have

C

∫ b−

a

|f ± g| =∞

iff C
∫ b−

a
|g| =∞; also,

C

∫ b−

a

(f ± g) = C

∫ b−

a

f ± C

∫ b−

a

g

if C
∫ b−

a
g exists (finite or not).

⇒7. Suppose f : E1 → E∗ is m-integrable and sign-constant on each

An = [an, an+1), n = 1, 2, . . . ,

but changes sign from An to An+1, with

∞
⋃

n=1

An = [a,∞)

and {an}↑ fixed.
Prove that if

∣

∣

∣

∣

∫

An

f dm

∣

∣

∣

∣

ց 0

as n→∞, then

C

∫ ∞

a

f

converges.
[Hint: Use Problem 10 in Chapter 4, §13.]
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⇒8. Let

f(x) =
sinx

x
, f(0) = 1.

Prove that

C

∫ ∞

0

f(x) dx

converges conditionally only.
[Hints: Use Problem 7. Show that

C

∫ ∞

0
|f | = L

∫

(0,∞)
|f | = L

∫ ∞

0
f+ = L

∫ ∞

0
f− =∞.]

⇒9. (Additivity.) Given f : E1 → E (E complete) and a < b < c ≤ ∞,
suppose that

∫ x

a

f dm 6= ±∞

(proper) exists for each x ∈ [a, c). Prove the following:

(a) C
∫ b−

a
f and C

∫ b

a+
f converge.

(b) If

C

∫ c−

b

f

converges, so does

C

∫ c−

a

f = C

∫ b−

a

f + C

∫ c−

b

f.

(c) Countable additivity does not necessarily hold for C-integrals.
[Hint: Use Problem 8 suitably splitting [0,∞).]

10. (Refined comparison test.) Given f, g : E1 → E (E complete) and b ≤
∞, prove the following:

(i) If for some a < b and k ∈ E1,

|f | ≤ |kg| on [a, b)

then
∫ b−

a

|g| <∞ implies

∫ b−

a

|f | <∞.

(ii) Such a, k ∈ E1 do exist if

lim
t→b−

|f(t)|
|g(t)| <∞

exists.
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(iii) If this limit is not zero, then

∫ b−

a

|g| <∞ iff

∫ b−

a

|f | <∞.

(Similarly in the case of
∫ b

a+
with a ≥ −∞.)

11. Prove that

(i)

∫ ∞

1

tp dt <∞ iff p < −1;

(ii)

∫ 1

0+

tp dt <∞ iff p > −1;

(iii)

∫ ∞

0+

tp dt =∞.

12. Use Problems 10 and 11 to test for convergence of the following:

(a)

∫ ∞

0

t3/2 dt

1 + t2
;

(b)

∫ ∞

1

dt

t
√
1 + t2

;

(c)

∫ ∞

a

P (t)

Q(t)
dt

(Q,P polynomials of degree s and r, s > r; Q 6= 0 for t ≥ a);

(d)

∫ 1−

0

dt√
1− t4

;

(e)

∫ 1

0+

tp ln t dt;

(f)

∫ 1−

0

dt

ln t
;

(g)

∫ π
2
−

0+

tanp t dt.

⇒13. (The Abel–Dirichlet test.) Given f, g : E1 → E1, suppose that

(a) f↓, with lim
t→∞

f(t) = 0;

(b) g is L-measurable on A = [a,∞);8 and

(c) (∃K ∈ E1) (∀x ∈ A)
∣

∣L
∫ x

a
g
∣

∣ < K.

8 And hence L-integrable on each [u, v] ⊂ A, by (c).
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Then C
∫∞

a
f(x) g(x) dx converges.

[Outline: Set

G(x) =

∫ x

a

g;

so |G| < K on A. By Lemma 2 of §1, fg is L-integrable on each [u, v] ⊂ A, and
(∃ c ∈ [u, v]) such that

∣

∣

∣

∣

L

∫ v

u

fg

∣

∣

∣

∣

=

∣

∣

∣

∣

f(u)

∫ c

u

g

∣

∣

∣

∣

=
∣

∣f(u) [G(c)−G(u)]
∣

∣ < 2Kf(u).

Now, by (a),

(∀ ε > 0) (∃ k ∈ A) (∀ u ≥ k) |f(u)| < ε

2K
;

so

(∀ v ≥ u ≥ k)

∣

∣

∣

∣

L

∫ v

u

fg

∣

∣

∣

∣

< ε.

Now use Theorem 2.

Now extend this to g : E1 → En (Cn).]

⇒14. Do Problem 13, replacing assumptions (a) and (c) by

(a′) f is monotone and bounded on [a,∞) = A, and

(c′) C
∫∞

a
g(x) dx converges.

[Hint: If f↑, say, set q = lim
t→∞

f(t) and F = q − f ; so

fg = qg − Fg.

Apply Problem 13 to

C

∫ ∞

a

F (x) g(x) dx.]

15. Use Problems 13 and 14 to test the convergence of the following:

(a)

∫ ∞

0

tp sin t dt.

[Hint: The integral converges iff p < 0.]

(b)

∫ ∞

0+

cos t√
t
dt.

[Hint: Integrate

∫ v

u

cos t√
t

dt by parts; then let u→ 0 and v →∞.]

(c)

∫ ∞

1

cos t

tp
dt.

(d)

∫ ∞

0

sin t2 dt.

[Hint: Substitute t2 = u; then use (a).]



402 Chapter 9. Calculus Using Lebesgue Theory

16. The Cauchy principal value (CPV) of C
∫∞

−∞ f(t) dt is defined by

(CPV)

∫ ∞

−∞

f = lim
x→∞

∫ x

−x

f(t) dt

(if it exists). Prove the following:

(i) If C
∫

f(t) dt exists, so does (CPV)
∫

f , and the two are equal.
Disprove the converse.
[Hint: Take f(t) = sign(t)/

√

|t|.]

(ii) Do the same for

(CPV)

∫ b

a

f = lim
δ→0+

(∫ p−δ

a

f +

∫ b

p+δ

f

)

,

p being the only singularity in (a, b).
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I. We now consider C-integrals of the form

C

∫

f(t, u) dm(t),

where m is Lebesgue or LS measure in E1. Here the variable u, called a param-
eter , remains fixed in the process of integration; but the end result depends on
u, of course.

We assume f : E2 → E (E complete) even if not stated explicitly. As before,
we give our definitions and theorems for the case

C

∫ ∞

a

.

The other cases (C
∫ a

−∞, C
∫ b−

a
, etc.) are analogous; they are treated in Prob-

lems 2 and 3. We assume

a, b, c, x, t, u, v ∈ E1

throughout, and write “dt” for “dm(t)” iff m is Lebesgue measure.

If

C

∫ ∞

a

f(t, u) dm(t)
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converges for each u in a set B ⊆ E1,1 we can define a map F : B → E by

F (u) = C

∫ ∞

a

f(t, u) dm(t) = lim
x→∞

∫ x

a

f(t, u) dm(t).

This means that

(1) (∀u ∈ B) (∀ ε > 0) (∃ b > a) (∀x ≥ b)

∣

∣

∣

∣

∫ x

a

f(t, u) dm(t)− F (u)

∣

∣

∣

∣

< ε,

so |F | <∞ on B.

Here b depends on both ε and u (convergence is “pointwise”). However, it
may occur that one and the same b fits all u ∈ B, so that b depends on ε alone.
We then say that

C

∫ ∞

a

f(t, u) dm(t)

converges uniformly on B (i.e., for u ∈ B), and write

F (u) = C

∫ ∞

a

f(t, u) dm(t) (uniformly) on B.

Explicitly, this means that

(2) (∀ ε > 0) (∃ b > a) (∀u ∈ B) (∀x ≥ b)

∣

∣

∣

∣

∫ x

a

f(t, u) dm(t)− F (u)

∣

∣

∣

∣

< ε.

Clearly, this implies (1), but not conversely. We now obtain the following.

Theorem 1 (Cauchy criterion). Suppose
∫ x

a

f(t, u) dm(t)

exists for x ≥ a and u ∈ B ⊆ E1. (This is automatic if E ⊆ E∗; see Chapter 8,
§5.)

Then

C

∫ ∞

a

f(t, u) dm(t)

converges uniformly on B iff for every ε > 0, there is b > a such that

(3) (∀ v, x ∈ [b,∞)) (∀u ∈ B)

∣

∣

∣

∣

∫ x

v

f(t, u) dm(t)

∣

∣

∣

∣

< ε,2

and
∣

∣

∣

∣

∫ b

a

f(t, u) dm(t)

∣

∣

∣

∣

<∞.

1 This statement shall imply that
∫ x

a
f(t, u) dm(t) 6= ±∞ exists for x ≥ a, u ∈ B.

2 For LS -integrals, replace
∫ x
v

by
∫

(x,v] here and in the proof below.
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Proof. The necessity of (3) follows as in Theorem 2 of §3. (Verify!)
To prove sufficiency , suppose the desired b exists for every ε > 0. Then for

each (fixed) u ∈ B,

C

∫ ∞

a

f(t, u) dm(t)

satisfies Theorem 2 of §3. Hence

(4) F (u) = lim
x→∞

∫ x

a

f(t, u) dm(t) 6= ±∞

exists for every u ∈ B (pointwise). Now, from (3), writing briefly
∫

f for
∫

f(t, u) dm(t), we obtain
∣

∣

∣

∣

∫ x

v

f

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

a

f −
∫ v

a

f

∣

∣

∣

∣

< ε

for all u ∈ B and all x > v ≥ b.

Making x→∞ (with u and v temporarily fixed), we have by (4) that

(5)

∣

∣

∣

∣

F (u)−
∫ v

a

f

∣

∣

∣

∣

≤ ε

whenever v ≥ b.

But by our assumption, b depends on ε alone (not on u). Thus unfixing u,
we see that (5) establishes the uniform convergence of

∫ ∞

a

f,

as required.3 �

Corollary 1. Under the assumptions of Theorem 1,

C

∫ ∞

a

f(t, u) dm(t)

converges uniformly on B if

C

∫ ∞

a

|f(t, u)| dm(t)

does.

Indeed,
∣

∣

∣

∣

∫ x

v

f

∣

∣

∣

∣

≤
∫ x

v

|f | < ε.

3 Note that Theorem 1 essentially depends on the assumed completeness of E.
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Corollary 2 (comparison test). Let f : E2 → E and M : E2 → E∗ satisfy

|f(t, u)| ≤M(t, u)

for u ∈ B ⊆ E1 and t ≥ a.

Then

C

∫ ∞

a

|f(t, u)| dm(t)

converges uniformly on B if

C

∫ ∞

a

M(t, u) dm(t)

does.

Indeed, Theorem 1 applies, with
∣

∣

∣

∣

∫ x

v

f

∣

∣

∣

∣

≤
∫ x

v

M < ε.

Hence we have the following corollary.

Corollary 3 (“M -test”). Let f : E2 → E and M : E1 → E∗ satisfy

|f(t, u)| ≤M(t)

for u ∈ B ⊆ E1 and t ≥ a. Suppose

C

∫ ∞

a

M(t) dm(t)

converges. Then

C

∫ ∞

a

|f(t, u)| dm(t)

converges (uniformly) on B. So does

C

∫ ∞

a

f(t, u) dm(t)

by Corollary 1.

Proof. Set

h(t, u) = M(t) ≥ |f(t, u)|.
Then Corollary 2 applies (with M replaced by h there). Indeed, the conver-
gence of

C

∫

h = C

∫

M

is trivially “uniform” for u ∈ B, since M does not depend on u at all. �
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Note 1. Observe also that, if h(t, u) does not depend on u, then the (point-
wise) and (uniform) convergence of C

∫

h are trivially equivalent.

We also have the following result.

Corollary 4. Suppose

C

∫ ∞

a

f(t, u) dm(t)

converges (pointwise) on B ⊆ E1. Then this convergence is uniform iff

lim
ν→∞

C

∫ ∞

v

f(t, u) dm(t) = 0 (uniformly) on B,

i .e., iff

(∀ ε > 0) (∃ b > a) (∀u ∈ B) (∀ v ≥ b)

∣

∣

∣

∣

C

∫ ∞

v

f(t, u) dm(t)

∣

∣

∣

∣

< ε.

The proof (based on Theorem 1) is left to the reader, along with that of the
following corollary.

Corollary 5. Suppose
∫ b

a

f(t, u) dm(t) 6= ±∞

exists for each u ∈ B ⊆ E1.

Then

C

∫ ∞

a

f(t, u) dm(t)

converges (uniformly) on B iff

C

∫ ∞

b

f(t, u) dm(t)

does.

II. The Abel–Dirichlet tests for uniform convergence of series (Problems 9
and 11 in Chapter 4, §13) have various analogues for C-integrals. We give two
of them, using the second law of the mean (Corollary 5 in §1).

First, however, we generalize our definitions, “unstarring” some ideas of
Chapter 4, §11. Specifically, given

H : E2 → E (E complete),

we say that H(x, y) converges to F (y), uniformly on B, as x → q (q ∈ E∗),
and write

lim
x→q

H(x, y) = F (y) (uniformly) on B
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iff we have

(6) (∀ ε > 0) (∃G¬q) (∀ y ∈ B) (∀x ∈ G¬q) |H(x, y)− F (y)| < ε;

hence |F | <∞ on B.

If here q =∞, the deleted globe G¬q has the form (b,∞). Thus if

H(x, u) =

∫ x

a

f(t, u) dt,

(6) turns into (2) as a special case. If (6) holds with “(∃G¬q)” and “(∀ y ∈ B)”
interchanged , as in (1), convergence is pointwise only.

As in Chapter 8, §8, we denote by f( · , y), or fy, the function of x alone
(on E1) given by

fy(x) = f(x, y).

Similarly,

fx(y) = f(x, y).

Of course, we may replace f(x, y) by f(t, u) or H(t, u), etc.

We use Lebesgue measure in Theorems 2 and 3 below.

Theorem 2. Assume f, g : E2 → E1 satisfy

(i) C
∫∞

a
g(t, u) dt converges (uniformly) on B;

(ii) each gu (u ∈ B) is L-measurable on A = [a,∞);

(iii) each fu (u ∈ B) is monotone (↓ or ↑) on A;4 and

(iv) |f | < K ∈ E1 (bounded) on A×B.

Then

C

∫ ∞

a

f(t, u) g(t, u) dt

converges uniformly on B.

Proof. Given ε > 0, use assumption (i) and Theorem 1 to choose b > a so that

(7)

∣

∣

∣

∣

L

∫ x

v

g(t, u) dt

∣

∣

∣

∣

<
ε

2K
,

written briefly as
∣

∣

∣

∣

L

∫ x

v

gu
∣

∣

∣

∣

<
ε

2K
,

for all u ∈ B and x > v ≥ b, with K as in (iv).

4 Briefly: “f(t, u) is monotone in t, and g(t, u) is measurable in t (t ∈ A).” It should be

well noted that all fu and gu are functions of t on E1.
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Hence by (ii), each gu (u ∈ B) is L-integrable on any interval [v, x] ⊂ A,
with x > v ≥ b. Thus given such u and [v, x], we can use (iii) and Corollary 5
from §1 to find that

L

∫ x

v

fugu = fu(v)L

∫ c

v

gu + fu(x)L

∫ x

c

gu

for some c ∈ [v, x].

Combining with (7) and using (iv), we easily obtain
∣

∣

∣

∣

L

∫ x

v

f(t, u) g(t, u) dt

∣

∣

∣

∣

< ε

whenever u ∈ B and x > v ≥ b. (Verify!)

Our assertion now follows by Theorem 1. �

Theorem 3 (Abel–Dirichlet test). Let f, g : E2 → E∗ satisfy

(a) lim
t→∞

f(t, u) = 0 (uniformly) for u ∈ B;

(b) each fu (u ∈ B) is nonincreasing (↓) on A = [0,∞);

(c) each gu (u ∈ B) is L-measurable on A; and

(d) (∃K ∈ E1) (∀x ∈ A) (∀u ∈ B)
∣

∣L
∫ x

a
g(t, u) dt

∣

∣ < K.

Then

C

∫ ∞

a

f(t, u) g(t, u) dt

converges uniformly on B.

Proof Outline. Argue as in Problem 13 of §3, replacing Theorem 2 in §3 by
Theorem 1 of the present section.

By Lemma 2 in §1, obtain
∣

∣

∣

∣

L

∫ x

v

fugu
∣

∣

∣

∣

=

∣

∣

∣

∣

fu(v)L

∫ x

a

gu
∣

∣

∣

∣

≤ K f(v, u)

for u ∈ B and x > v ≥ a.

Then use assumption (a) to fix k so that

|f(t, u)| < ε

2K

for t > k and u ∈ B. �

Note 2. Via components, Theorems 2 and 3 extend to the case g : E2 →
En (Cn).

Note 3. While Corollaries 2 and 3 apply to absolute convergence only,
Theorems 2 and 3 cover conditional convergence, too (a great advantage!). The
theorems also apply if f or g is independent of u (see Note 1). This supersedes
Problems 13 and 14 in §3.
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Examples.

(A) The integral
∫ ∞

0

sin tu

t
dt

converges uniformly on Bδ = [δ,∞) if δ > 0, and pointwise on B = [0,∞).

Indeed, we can use Theorem 3, with

g(t, u) = sin tu

and

f(t, u) =
1

t
, f(0, u) = 1,

say. Then the limit

lim
t→∞

1

t
= 0

is trivially uniform for u ∈ Bδ, as f is independent of u. Thus assumption
(a) is satisfied. So is (d) because

∣

∣

∣

∣

∫ x

0

sin tu dt

∣

∣

∣

∣

=

∣

∣

∣

∣

1

u

∫ xu

0

sin θ dθ

∣

∣

∣

∣

≤ 1

δ
· 2.

(Explain!) The rest is easy.

Note that Theorem 2 fails here since assumption (i) is not satisfied.

(B) The integral
∫ ∞

0

1

t
e−tu sin at dt

converges uniformly on B = [0,∞). It does so absolutely on Bδ = [δ,∞),
if δ > 0.

Here we shall use Theorem 2 (though Theorem 3 works, too). Set

f(t, u) = e−tu

and

g(t, u) =
sin at

t
, g(0, u) = a.

Then
∫ ∞

0

g(t, u) dt

converges (substitute x = at in Problem 8 or 15 in §3). Convergence is
trivially uniform, by Note 1. Thus assumption (i) holds, and so do the
other assumptions. Hence the result.

For absolute convergence on Bδ, use Corollary 3 with

M(t) = e−δt,
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so M ≥ |fg|.
Note that, quite similarly, one treats C-integrals of the form

∫ ∞

a

e−tug(t) dt,

∫ ∞

a

e−t2ug(t) dt, etc.,

provided
∫ ∞

a

g(t) dt

converges (a ≥ 0).

In fact, Theorem 2 states (roughly) that the uniform convergence of
C
∫

g implies that of C
∫

fg, provided f is monotone (in t) and bounded.

III. We conclude with some theorems on uniform convergence of functions
H : E2 → E (see (6)). In Theorem 4, m is again an LS (or Lebesgue) measure
in E1; the deleted globe G∗

¬q is fixed.

Theorem 4. Suppose

lim
x→q

H(x, y) = F (y) (uniformly)5

for y ∈ B ⊆ E1. Then we have the following :

(i) If all Hx (x ∈ G∗
¬q) are continuous6 or m-measurable on B, so also is F .

(ii) The same applies to m-integrability on B, provided mB <∞; and then

(8) lim
x→q

∫

B

|Hx − F | = 0;

hence

(8′) lim
x→q

∫

B

Hx =

∫

B

F =

∫

B

(

lim
x→q

Hx

)

.

Formula (8′) is known as the rule of passage to the limit under the integral
sign.

Proof. (i) Fix a sequence xk → q (xk in the deleted globe G∗
¬q), and set

Hk = Hxk
(k = 1, 2, . . . ).

The uniform convergence

H(x, y)→ F (y)

5 Pointwise or a.e. convergence suffices for m-measurability in clause (i).
6 Here and in Theorem 5, as functions of y : Hx(y) = H(x, y). Continuity may be relative

or uniform.
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is preserved as x runs over that sequence (see Problem 4). Hence if all Hk are
continuous or measurable, so is F (Theorem 2 in Chapter 4, §12 and Theorem 4
in Chapter 8, §1). Thus clause (i) is proved.

(ii) Now let all Hx be m-integrable on B; let

mB <∞.

Then the Hk are m-measurable on B, and so is F , by (i). Also, by (6),

(∀ ε > 0) (∃G¬q) (∀x ∈ G¬q)

∫

B

|Hx − F | ≤
∫

B

(ε) = εmB <∞,

proving (8). Moreover, as
∫

B

|Hx − F | <∞,

Hx − F is m-integrable on B, and so is

F = Hx − (Hx − F ).

Hence
∣

∣

∣

∣

∫

B

Hx −
∫

B

F

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

B

(Hx − F )

∣

∣

∣

∣

≤
∫

B

|Hx − F | → 0,

as x→ q, by (8). Thus (8′) is proved, too. �

Quite similarly (keeping E complete and using sequences), we obtain the
following result.

Theorem 5. Suppose that

(i) all Hx (x ∈ G∗
¬q) are continuous and finite on a finite interval B ⊂ E1,

and differentiable on B −Q, for a fixed countable set Q;

(ii) lim
x→q

H(x, y0) 6= ±∞ exists for some y0 ∈ B; and

(iii) lim
x→q

D2H(x, y) = f(y) (uniformly) exists on B −Q.

Then f , so defined , has a primitive F on B, exact on B − Q (so F ′ = f on
B −Q); moreover ,

F (y) = lim
x→y

H(x, y) (uniformly) for y ∈ B.

Outline of proof. Note that

D2H(x, y) =
d

dy
Hx(y).

Use Theorem 1 of Chapter 5, §9, with Fn = Hxn
, xn → q. �

Note 4. If x → q over a path P (clustering at q), one must replace G¬q

and G∗
¬q by P ∩G¬q and P ∩G∗

¬q in (6) and in Theorems 4 and 5.
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Problems on Uniform Convergence
of Functions and C-Integrals

1. Fill in all proof details in Theorems 1–5, Corollaries 4 and 5, and exam-
ples (A) and (B).

1′. Using (6), prove that

lim
x→q

H(x, y) (uniformly)

exists on B ⊆ E1 iff

(∀ ε > 0) (∃G¬q) (∀ y ∈ B) (∀x, x′ ∈ G¬q) |H(x, y)−H(x′, y)| < ε.

Assume E complete and |H| <∞ on G¬q ×B.
[Hint: “Imitate” the proof of Theorem 1, using Theorem 2 of Chapter 4, §2.]

2. State formulas analogous to (1) and (2) for
∫ a

−∞,
∫ b−

a
, and

∫ b

a+
.

3. State and prove Theorems 1 to 3 and Corollaries 1 to 3 for
∫ a

−∞

,

∫ b−

a

, and

∫ b

a+

.

In Theorems 2 and 3 explore absolute convergence for
∫ b−

a

and

∫ b

a+

.

Do at least some of the cases involved.
[Hint: Use Theorem 1 of §3 and Problem 1′, if already solved.]

4. Prove that
lim
x→q

H(x, y) = F (y) (uniformly)

on B iff
lim

n→∞
H(xn, · ) = F (uniformly)

on B for all sequences xn → q (xn 6= q).
[Hint: “Imitate” Theorem 1 in Chapter 4, §2. Use Definition 1 of Chapter 4, §12.]

5. Prove that if
lim
x→q

H(x, y) = F (y) (uniformly)

on A and on B, then this convergence holds on A ∪ B. Hence deduce
similar propositions on C-integrals.

6. Show that the integrals listed below violate Corollary 4 and hence do not
converge uniformly on P = (0, δ)7 though proper L-integrals exist for

7 Here and below, δ > 0 is arbitrarily small.
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each u ∈ P . Thus show that Theorem 1(ii) does not apply to uniform
convergence.

(a)

∫ 1

0+

u dt

t2 − u2
;

(b)

∫ 1

0+

u2 − t2

(t2 + u2)2
dt;

(c)

∫ 1

0+

tu(t2 − u2)

(t2 + u2)2
dt.

[Hint for (b): To disprove uniform convergence, fix any ε, v > 0. Then

∫ v

0

u2 − t2

(t2 + u2)2
dt =

v

v2 + u2
→ 1

v

as u→ 0. Thus if v < 1
2ε

,

(∃u ∈ P )

∫ v

0

u2 − t2

(t2 + u2)2
dt >

1

2v
> ε.]

7. Using Corollaries 3 to 5, show that the following integrals converge (uni-
formly) on U (as listed) but only pointwise on P (for the latter, proceed
as in Problem 6). Specify P and M(t) in each case where they are not
given.

(a)

∫ ∞

0

e−ut2 dt; U = [δ,∞); P = (0, δ).

[Hint: Set M(t) = e−δt for t ≥ 1 (Corollaries 3 and 5).]

(b)

∫ ∞

0

e−ut ta cos t dt (a ≥ 0); U = [δ,∞).

(c)

∫ 1

0+

tu−1 dt; U = [δ,∞).

(c′)

∫ 1

0+

tu−1(ln t)n dt; U = [δ,∞).

(d)

∫ 1

0+

t−u sin t dt; U = [0, δ], 0 < δ < 2; P = [δ, 2); M(t) = t1−δ.

[Hint: Fix v so small that

(∀ t ∈ (0, v))
sin t

t
>

1

2
.

Then, if u→ 2,
∫ v

0
t−u sin t dt ≥ 1

2

∫ v

0

dt

tu−1
→∞.]
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8. In example (A), disprove uniform convergence on P = (0,∞).
[Hint: Proceed as in Problem 6.]

9. Do example (B) using Theorem 3 and Corollary 5. Disprove uniform
convergence on B.

10. Show that
∫ ∞

0+

sin tu

t
cos t dt

converges uniformly on any closed interval U , with ±1 6∈ U .
[Hint: Transform into

1

2

∫ ∞

0+

1

t

{

sin[(u+ 1)t] + sin[(u− 1)t]
}

dt.]

11. Show that
∫ ∞

0

t sin t3 sin tu dt

converges (uniformly) on any finite interval U .
[Hint: Integrate

∫ y

x

t sin t3 sin tu dt

by parts twice. Then let y →∞ and x→ 0.]

12. Show that
∫ ∞

0+

e−tu cos t

ta
dt (0 < a < 1)

converges (uniformly) for u ≥ 0.
[Hints: For t→ 0+, use M(t) = t−a. For t→∞, use example (B) and Theorem 2.]

13. Prove that
∫ ∞

0+

cos tu

ta
dt (0 < a < 1)

converges (uniformly) for u ≥ δ > 0, but (pointwise) for u > 0.
[Hint: Use Theorem 3 with g(t, u) = cos tu and

∣

∣

∣

∣

∫ x

0
g

∣

∣

∣

∣

=
∣

∣

∣

sin xu

u

∣

∣

∣
≤ 1

δ
.

For u > 0,
∫ ∞

v

cos tu

ta
dt = ua−1

∫ ∞

vu

cos z

z
dz →∞

if v = 1/u and u→ 0. Use Corollary 4.]

⇒14. Given A,B ⊆ E1 (mA <∞) and f : E2 → E, suppose that

(i) each f(x, · ) = fx (x ∈ A) is relatively (or uniformly) continuous
on B; and

(ii) each f( · , y) = fy (y ∈ B) is m-integrable on A.

§4. Convergence of Parametrized Integrals and Functions 415

Set

F (y) =

∫

A

f(x, y) dm(x), y ∈ B.

Then show that F is relatively (or uniformly) continuous on B.
[Hint: We have

(∀ x ∈ A) (∀ ε > 0) (∀ y0 ∈ B) (∃ δ > 0) (∀ y ∈ B ∩Gy0 (δ))

|F (y)− F (y0)| ≤
∫

A

|f(x, y)− f(x, y0)| dm(x) ≤
∫

A

( ε

mA

)

dm = ε.

Similarly for uniform continuity.]

⇒15. Suppose that

(a) C
∫∞

a
f(t, y) dm(t) = F (y) (uniformly) on B = [b, d] ⊆ E1;

(b) each f(x, · ) = fx (x ≥ a) is relatively continuous on B; and

(c) each f( · , y) = fy (y ∈ B) is m-integrable on every [a, x] ⊂ E1,
x ≥ a.

Then show that F is relatively continuous, hence integrable, on B and
that

∫

B

F = lim
x→∞

∫

B

Hx,

where

H(x, y) =

∫ x

a

f(t, y) dm(t).

(Passage to the limit under the
∫

-sign.)
[Hint: Use Problem 14 and Theorem 4; note that

C

∫ ∞

0
f(t, y) dm(t) = lim

x→∞
H(x, y) (uniformly).]
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Abel–Dirichlet test
for convergence of improper integrals,

400
for uniform convergence of parametrized

C-integrals, 408

Absolute
extrema, 82
maxima, 82

minima, 82

Absolute continuity of the integral, 275

Absolute convergence of improper inte-

grals, 393

Absolutely continuous functions on E1,
378

and L-integrals, 380

Absolutely continuous with respect to a set

function t, 197

Additive extensions of set functions, 129

Additive set functions, 126, 126

Additivity of the integral, 260, 290

Additivity of volume
countable, 104

of intervals, 101
σ-additivity, 104

Almost everywhere (a.e.), 231
convergence of functions, 231

Almost measurable functions, 231, 231

Almost uniform convergence of functions,
239

Egorov’s theorem, 240, 283

Antiderivatives, 357
and L-integrals, 357
and R-integrals, 362

change of variable in, 363
primitives, 359

Baire categories (of sets), 70

sets of Category I, 71
sets of Category II, 71

Baire’s theorem, 71

Banach spaces, 76

integration of functions with values in,
285–291, 305

open map principle, 75
uniform boundedness principle, 75

Banach-Steinhaus uniform boundedness
principle, 75

Basic covering of a set, 138

Basic covering value of a set, 138

Basis of a vector space, 16

Bicontinuous maps, 70

Bijective

functions, 52
linear maps, 53

Borel
fields, 162
measurable functions, 222

measures, 162
restrictions of measures, 162

sets, 162

Boundedness, linear, 9

Cσ-sets, 104
volume of, 107

C-simple sets, 99
C′s, family of C-simple sets, 99

C-integrals, see Improper integrals

parametrized, 402; see also Parametrized
C-integrals

Cantor’s set, 76

Carathéodory property (CP), 145, 146, 157

Cauchy criterion
for convergence of improper integrals,

391
for uniform convergence of parametrized

C-integrals, 403

Cauchy integrals (C-integrals), see Im-

proper integrals
parametrized, 402; see also Parametrized

C-integrals

Cauchy principal value (CPV), 402
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Chain rule
classical notation for, 31

for differentiable functions, 28
on En and Cn, 30

Change of measure in generalized integrals,

332

Change of variable
in antiderivatives, 363

in Lebesgue integration, 386

Characteristic functions, 246

Clopen maps, 61

Closed maps, 59

Closed sets in topologies, 161

Compact regular (CR) set functions on
topological spaces, 209

Comparison test

for improper integrals, 393, 399
for uniform convergence of parametrized

C-integrals,405

Complete measures, 148

Complete normed spaces, see Banach
spaces

Completions of measures, 159

completions of generalized measures, 205

Completely additive set functions, see σ-
additive set functions

Continuous

functions between topological spaces,
161

linear map, 13

set functions, 131, 147
with respect to a set function t (t-

continuous), 197

Continuously differentiable functions, 38,
57

Convergence of functions

almost everywhere, 231
almost uniform, 239

Egorov’s theorem, 240, 283
in measure, 239, 280
Lebesgue’s theorem, 240, 283

Riesz’ theorem, 280

Convergence of improper integrals, 388
absolute, 393

Cauchy criterion for, 391
comparison test for, 393, 399

conditional, 391
Abel–Dirichlet test for, 400

Convergent sequences of sets, 180

Countably-additive set functions, see σ-

additive set functions

Coverings of sets, 137
basic, 138

M-coverings of a set, 137
Ω-coverings of a set, 213

Vitali, 180; see also Vitali coverings

CP, the Carathéodory property, 145

Critical points, 82

Darboux sums (upper and lower), 307

Decompositions

Lebesgue, 342
of generalized measures, 344

Derivates

of point functions, 373
of set functions (D(p̄), D(p̄)), 187

Derivatives
directional, see Directional derivatives

of set functions, 210
Radon–Nikodym, 338, 351

partial, see Partial derivatives

Determinants
functional, 49

of matrices, 47, 96

Differentiable functions, 17

and directional derivatives, 19
chain rule for, 28
continuously, 38, 57

differentials of, 17
and partial derivatives, 19, 22

in a normed space, 17
m times differentiable, 38

Differentiable set functions, 210

Differentials, 17
chain rule for, 28

of functions in a normed space, 17
of order m, 39

Differentiation of set functions, 210–216
K-differentiation, 211
Lebesgue differentiation, 211, 351
Ω-differentiation, 211, 353

Directional derivatives, 1

differentiable functions and, 19
Finite Increments Law for, 7

higher order, 35
of linear maps, 15

Discriminant of a quadratic polynomial, 80

Disjoint set families, 99

Dominated convergence theorem, 273, 327

Dot products, linear functionals on En and
Cn as, 10

Double series, 110, 115

Index 419

En

intervals in, 97

volume of open sets in, 108

Elementary functions, 218

integrable, 241
integrals of, 241

integration of, 241–250

Euler’s theorem for homogeneous func-
tions, 34

Extended-real functions
integration of, 251–267; see also Integra-

tion of extended-real functions
integrable, 252

lower integrals of, 251
upper integrals of, 251

Extremum, extrema

absolute, 82
conditional, 88

local, 79, 89

Fatou’s lemma, 272

Fields of sets, 116

generated by a set family, 117

Finite Increments Law for directional

derivatives 7

Finite set functions, 125

Finite with respect to a set function t (t-
finite), 197

Finitely additive set functions, 126, 126

Fréchet’s theorem, 237

Fubini

map, 294
theorem, 298, 301, 305, 334

Functional determinants, 49

Functionals, linear, see Linear functionals

Functions. See also Maps

bijective, 52
continuous, 161
differentiable, see Differentiable func-

tions
homeomorphisms, 70

homogeneous, 34
implicit function theorem, 64

inverse function theorem, 61
partially derived, 2

Fundamental theorem of calculus, 360

Generalized integration, 323ff.
change of measure, 332

dominated convergence theorem, 327
Fubini property in, 334

indefinite integrals in, 330

Generalized measure spaces, 194
integration in, 323ff.

Generalized measures, 194
completion of, 205

decomposition of, 344
signed measures, 194, 199

Gradient of a function, 20

Hadamard’s theorem, 96

Hahn decomposition theorem, 201

Hereditary set families, 123

Homeomorphisms, 70

Homogeneous functions, 34
Euler’s theorem for, 34

Implicit

differentiation, 66, 87
function theorem, 64

Improper integrals, 388

absolute convergence of, 393
Cauchy criterion for, 391

Cauchy principal value (CPV) of, 402
comparison test for, 393, 399

conditional convergence of, 391
Abel–Dirichelet test for convergence of,

400

iterated, 394
convergence of, 388

singularities of, 387

Indefinite integrals, 263, 293, 330

indefinite L-integrals, 366

Independence, linear, 16

Inner products representing linear func-

tionals on En and Cn, 10

Integrable functions

elementary, 241
extended-real, 252

with values in complete normed spaces,
285

Riemann, 307, 317

Integrals
Cauchy (C-integrals), 388; see also Im-

proper integrals
in generalized measure spaces, 323ff.

indefinite, 263, 293, 330
improper, 388; see also Improper inte-

grals

iterated, 294
Lebesgue, 357

Lebesgue integrals and Riemann inte-
grals, 313

lower, 251
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of elementary functions, 241
orthodox, 247

parametrized C-integrals, 402; see also

Parametrized C-integrals

Riemann (R-integrals), 308ff.; see also

Riemann integrals

Riemann–Stieltjes, 318
Stieltjes, 319, 321ff.
unorthodox, 247

upper, 251
with respect to Lebesgue measure (L-

integrals), 357

Integration

absolute continuity of the integral, 275
additivity of the integral, 260, 290

by parts, 321
dominated convergence theorem, 273,

327

Fatou’s lemma, 272
in generalized measure spaces, 323ff.

of elementary functions, 241–250
of extended-real functions, 251–267

of functions with values in Banach
spaces, 285–291, 305

linearity of the integral, 267, 288

monotone convergence theorem, 271
weighted law of the mean, 269

Intervals in En, 97
additivity of volume of, 101

simple step functions on, 218
step functions on, 218

Inverse function theorem, 61

Iterated integrals, 294
iterated improper integrals, 394

Fubini map, 294
Fubini theorem, 298, 301, 305, 334

Jacobian matrix, 18

Jacobians, 49

Jordan components, 203

Jordan decompositions, 202

Jordan components, 203

Jordan outer content, 140

K (the set of all cubes in En), 186, 210

L-measurable, see Lebesgue-measurable.

L-integrable, see Lebesgue-integrable.

L-integrals, 357

and absolutely continuous functions, 380
indefinite, 366

L-primitive, 366

Lagrange form of the remainder in Taylor’s
Theorem, 42

Lagrange multipliers, 89

Lebesgue

decompositions, 342
extensions, 154, 168
Lebesgue-integrable functions, 241

Lebesgue-measurable functions, 222
Lebesgue-measurable sets, 168

measure, 168–175
outer measure, 138

nonmeasurable sets under Lebesgue
measure, 173

points of functions, 382
premeasure, 126, 138, 168
premeasure space, 138

sets of functions, 382

Lebesgue–Stieltjes
measurable functions, 222

measures, 176
measures in En, 179
outer measures, 146, 176

premeasures, 176
set functions, 127, 135, 176

signed Lebesgue–Stieltjes measures, 206,
335

Left-continuous set functions, 131

Linear boundedness, 9

Linear functionals, 7
on En and Cn as dot products, 10

Linear independence, 16

Linear maps, 7
as a normed linear space, 13

bijective, 53
bounded, 9

continuous, 9, 13
directional derivatives of, 15
matrix representation of composite, 12

matrix representation of, 11
norm of, 13

uniformly continuous on En or Cn, 10

Linear operator, 7

Linear subspaces of a vector space, 16

Linearity of the integral

of extended-real functions, 267
of functions with values in Banach

spaces, 288

Lipschitz condition, 25, 384

uniform, 9

Local
extremum, extrema, 79, 89

maximum, maxima, 79

Index 421

minimum, minimima, 79

Lower

Darboux sums, 307
integrals, 251
Riemann integrals, 308

LS, see Lebesgue–Stieltjes.

Luzin’s theorem, 234

M -test for uniform convergence of param-

etrized C-integrals, 405

Maps. See also Functions
bicontinuous, 70

clopen, 61
closed, 59
linear, see Linear maps

open, 59
open map principle, 75

Matrix, matrices

as elements of a vector space, 15
determinants of, 47, 96

Jacobian, 18
n×n matrices as a noncommutative ring

with identity, 15
of composite linear maps, 12
representation of a linear map, 11

Maximum, maxima
absolute, 82
conditional, 88

local, 79

Meagre sets, 71

Measurable covers of sets, 156

Measurable functions

almost, 231
Borel, 222

Fréchet’s theorem, 237
Lebesgue (L), 222
Lebesgue–Stieltjes (LS), 222

Luzin’s theorem, 234
M-measurable functions, 218

m-measurable functions, 231
Tietze’s theorem, 236

Measurable sets, 147

nonmeasurable sets under Lebesgue
measure, 173

outer, 149

Measurable spaces, 217

Measure spaces, 147
almost measurable functions on sets in,

231
probability spaces as, 148

topological, 162

Measures, 147, 194. See also Set functions

Borel restrictions of, 162
as extensions of premeasures, 154

Borel, 162
complete, 148

completions of, 159
constructed from outer measures, 152

generalized, 194
Lebesgue, 168–175
Lebesgue extensions, 154

Lebesgue–Stieltjes, 176
Lebesgue–Stieltjes measures in En, 179

outer, 138, 139; see also Outer measures
product, 293

regular, 162
rotation-invariant, 192

signed, 194, 199
signed Lebesgue-Stieltjes, 206, 335
strongly regular, 162

totally σ-finite, 169
translation-invariant, 171

Metric spaces
as topological spaces, 161

networks of sets in, 212

Minimum, minima
absolute, 82
conditional, 88

local, 79

Monotone convergence theorem, 271

Monotone set functions, 136, 117

Networks of sets in metric spaces, 212

Nonmeasurable sets under Lebesgue mea-
sure, 173

Norm of a linear map, 13

Normal Vitali coverings, 192

Nowhere-dense sets, 70

Ω-coverings of a set, 213

Ω-differentiation, 211
and Radon–Nikodym derivative, 353

Open map principle, 75

Open maps, 59

Open sets

in topologies, 161
volume of, 108

Operator, linear, 7

Orthodox integrals, 247

Outer content, 140
Jordan, 140

Outer measurable sets, 149

Outer measure spaces, 149
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Outer measures, 138, 139
Carathéodory property (CP), 145

constructing measures from, 152
Lebesgue outer measure, 138, 146, 176

Lebesgue–Stieltjes, 146
outer measurable sets, 149

regular, 155, 156

P(S), the power set of S, 116

Parametrized C-integrals, 402
Abel–Dirichlet test for uniform conver-

gence of, 408
Cauchy criterion for uniform conver-

gence of, 403
comparison test for uniform convergence

of, 405
M -test for uniform convergence of, 405

Partial derivatives, 3
differentiable functions and, 19, 22

higher order, 35

Partially derived function, 2

Partitions of sets, 195, 217

elementary functions on, 218
refinements of, 218, 308
simple functions on, 218

Permutable series, 110

Polar coordinates, 46, 50, 55, 306, 395

Positive series, 111

Power set P(S), 116
Premeasures, 137, 147

measures as extensions of, 154
induced outer measures from, 138
Lebesgue, 126, 138, 168

Lebesgue–Stieltjes, 176

Premeasure spaces, 138
Lebesgue, 138

Primitives, see Antiderivatives

Probability spaces, 148

Product measures, 293

Products of set families, 120

Pseudometric spaces, 165

Pseudometrics, 165

Quadratic forms, symmetric, 80

R-integrals, see Riemann integrals

Radon–Nikodym derivatives, 338

and Lebesgue differentiation, 351
and Ω-differentiation, 353

Radon–Nikodym theorem, 338

Refinements of partitions of sets, 218, 308

Regular measures, 162

Regular set functions, 140
compact, 209

outer measures as, 155, 156

Regulated functions, 312

Residual sets, 71

Riemann-integrable functions, 307, 317

Riemann integrals, 308ff.

Darboux sums (lower and upper), 307
Lebesgue integrals and, 313

lower, 307
regulated functions, 312
Riemann sums, 321

upper, 307

Riemann sums, 321

Riemann–Stieltjes integrals, 318

Right-continuous set functions, 131

Ring

n×n matrices as a noncommutative ring
with identity, 15

Rings of sets, 101, 115

generated by a set family, 117

Rotation-invariant measures, 192

σ-additive set functions, 126, 147

σ-additivity of volume, 104

σ-algebras of sets, 116. See also σ-field

σ-fields of sets, 116
Borel fields, 162

generated by a set familyM, 117

σ-finite set functions, 140

totally, 140, 169

σ-rings of sets, 116, 147
Borel fields, 162

generated by a semiring, 119
generated by a set family, 117

σ-subadditive set functions, 137, 147

σ0-finiteness, 167

Semifinite set functions, 126

Semirings of sets, 98

Separable sets, 223

Series

double, 110, 115
permutable, 110

positive, 111

Sets

Borel, 162
Cσ , 104
C-simple, 99
Cantor’s set, 76

convergent sequences of, 180

Index 423

families of, see Set families
Lebesgue-measurable, 168

meagre, 71
measurable, 147

nonmeagre, 71
nowhere dense, 70

of Category I, 71
of Category II, 71
outer measurable, 149

partitions of, 195
residual, 71

rings of, 101, 115
σ-algebras of, 116

σ-fields of, 116
σ-rings of, 116

semirings of, 98
separable, 223
symmetric difference of, 122

Vitali coverings of, 180
volume of, see Volume

Set algebras, 116. See also Set fields.

Set families, 98

set algebras, 116
C-simple sets C′s, 99
disjoint, 99

fields, 116
hereditary, 123

products of, 120
rings, 101, 115

σ-algebras, 116
σ-fields, 116

σ-rings, 116
semirings, 98

Set fields, 116
generated by a set family, 117

Set functions, 125

absolutely continuous with respect
to a set function t (absolutely t-

continuous), 197
additive, 126, 137
additive extension of, 129

compact regular (CR) set functions on
topological spaces, 209

continuous, 131, 147
continuous with respect to a set function

t (t-continuous), 197

derivates of (D(p̄), D(p̄)), 187
derivatives of, 210

differentiable, 210
finite, 125

finite with respect to a set function t (t-
finite), 197

finitely additive, 126, 126

generalized measures, 194
Lebesgue premeasure, 126

Lebesgue–Stieltjes, 127, 135, 176
left-continuous, 131

monotone, 136, 147
outer measures, 138; see also Outer mea-

sures
premeasures, 137
regular, 140, 155

right-continuous, 131
rotation-invariant, 192

σ-additive, 126
σ-finite, 140

σ-subadditive, 137
semifinite, 126

signed measures, 194, 199
signed Lebesgue–Stieltjes measures, 206,

335

singular with respect to a set function t
(t-singular), 341

total variation of, 194
totally σ-finite, 140, 169

translation-invariant, 171
volume of sets, see Volume

Set rings, 101, 115

generated by a set family, 117

Signed Lebesgue–Stieltjes measure spaces,

206
induced by a function of bounded varia-

tion, 206
integration in, 335

Signed measure spaces, 194, 199

Hahn decomposition theorem, 201
Jordan components, 203

Jordan decompositions, 202
negative sets in, 199

positive sets in, 199

Simple functions, 218
simple step functions, 218

Singular with respect to a set function t
(t-singular), 341

Singularities of improper integrals, 387

Span of vectors in a vector space, 16

Step functions, 218

simple, 218

Stieltjes integrals, 319, 321ff.

integration by parts, 321
laws of the mean, 322

Strongly regular measures, 162, 234, 237,

347

Sylvester’s theorem, 80

Symmetric difference of sets, 122
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Symmetric quadratic forms, 80
Sylvester’s theorem, 80

Taylor polynomial, 43

Taylor’s Theorem, 40
generalized, 45

Lagrange form of remainder, 42
Taylor polynomial, 43

Tietze’s theorem, 236

Topological measure spaces, 162

Topological spaces, 161
compact regular (CR) set functions on,

209
continuous functions between, 161

metric spaces as, 161
pseudometric spaces as, 165

Topologies, 161

closed sets in, 161
open sets in, 161

Total variation of set functions, 194

Totally σ-finite set functions, 140, 169

Translation-invariant set functions, 171

Uniform boundedness principle of Banach

and Steinhaus, 75

Uniformly normal Vitali coverings, 192

Universal Vitali coverings, 192

Unorthodox integrals, 247

Upper

Darboux sums, 307
integrals, 251

Riemann integrals, 307

V -coverings, see Vitali coverings

Vectors

span of a set of, 16

Vector spaces
basis of, 16
dimension of, 16

linear subspaces of, 16
matrices as elements of, 15

span of vectors in, 16

Vitali coverings, 180
normal, 192

uniformly normal, 192
universal, 192

Volume
additivity of volume of intervals, 101

monotinicity of, 109
of Cσ-sets in En, 107

of open sets in En, 108

of sets, 125
σ-subadditivity of, 109

Weighted law of the mean, 269
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