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Preface 

The core of linear algebra is essential to every mathematician, and we not only treat 
this core, but add material that is essential to mathematicians in specific fields. This 
book is for advanced researchers. We presume you are already familiar with 
elementary linear algebra and that you know how to multiply matrices, solve linear 
systems, etc. We do not treat elementary material here, though we occasionally return 
to elementary material from a more advanced standpoint to show you what it really 
means. We have written a book that we hope will be broadly useful. In a few places 
we have succumbed to temptation and included material that is not quite so well 
known, but which, in our opinion, should be. We hope that you will be enlightened 
not only by the specific material in the book but also by its style of argument. We also 
hope this book will serve as a valuable reference throughout your mathematical 
career. 

Chapter 1 reviews the metric Hermitian 3-algebra, which has been playing important 
roles recently in sting theory. It is classified by using a correspondence to a class of the 
super Lie algebra. It also reviews the Lie and Hermitian 3-algebra models of M-theory. 
Chapter 2 deals with algebraic analysis of Appell polynomials. It presents the 
determinantal approaches of Appell polynomials and the related topics, where many 
classical and non-classical examples are presented. Chapter 3 reviews a universal 
relation between combinatorics and the matrix model, and discusses its relation to the 
gauge theory. Chapter 4 covers the nonnegative matrices that have been a source of 
interesting and challenging mathematical problems. They arise in many applications 
such as: communications systems, biological systems, economics, ecology, computer 
sciences, machine learning, and many other engineering systems. Chapter 5 presents 
the central theory behind realization-based system identication and connects the 
theory to many tools in linear algebra, including the QR-decomposition, the singular 
value decomposition, and linear least-squares problems. Chapter 6 presents a novel 
iterative-recursive algorithm for computing GI for block matrices in the context of 
wireless MIMO communication systems within RFC. Chapter 7 deals with the 
development of the theory of operator means. It setups basic notations and states some 
background about operator monotone functions which play important roles in the 
theory of operator means. Chapter 8 studies a general formulation of Jensen’s operator 
inequality for a continuous eld of self-adjoint operators and a eld of positive linear 



XII Preface

mappings. The aim of chapter 9 is to present a system of linear equation and 
inequalities in max-algebra. Max-algebra is an analogue of linear algebra developed on 
a pair of operations extended to matrices and vectors. Chapter 10 covers an efficient 
algorithm for the coarse to fine scale transition in multi-flexible-body systems with 
application to biomolecular systems that are modeled as articulated bodies and 
undergo discontinuous changes in the model definition. Finally, chapter 11 studies the 
structure of matrices dened over arbitrary elds whose elements are rational 
functions with no poles at innity and prescribed nite poles. Complete systems of 
invariants are provided for each one of these equivalence relations and the 
relationship between both systems of invariants is claried. This result can be seen as 
an extension of the classical theorem on pole assignment by Rosenbrock. 

Dr. Hassan Abid Yasser 
College of Science 

University of Thi-Qar, Thi-Qar 
Iraq 



 

 

 Chapter 0

3-Algebras in String Theory

Matsuo Sato

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/46480

1. Introduction
In this chapter, we review 3-algebras that appear as fundamental properties of string theory.
3-algebra is a generalization of Lie algebra; it is defined by a tri-linear bracket instead of
by a bi-linear bracket, and satisfies fundamental identity, which is a generalization of Jacobi
identity [1–3]. We consider 3-algebras equipped with invariant metrics in order to apply them
to physics.

It has been expected that there exists M-theory, which unifies string theories. In M-theory,
some structures of 3-algebras were found recently. First, it was found that by using u(N)⊕
u(N) Hermitian 3-algebra, we can describe a low energy effective action of N coincident
supermembranes [4–8], which are fundamental objects in M-theory.

With this as motivation, 3-algebras with invariant metrics were classified [9–22]. Lie 3-algebras
are defined in real vector spaces and tri-linear brackets of them are totally anti-symmetric in
all the three entries. Lie 3-algebras with invariant metrics are classified into A4 algebra, and
Lorentzian Lie 3-algebras, which have metrics with indefinite signatures. On the other hand,
Hermitian 3-algebras are defined in Hermitian vector spaces and their tri-linear brackets are
complex linear and anti-symmetric in the first two entries, whereas complex anti-linear in the
third entry. Hermitian 3-algebras with invariant metrics are classified into u(N)⊕ u(M) and
sp(2N)⊕ u(1) Hermitian 3-algebras.

Moreover, recent studies have indicated that there also exist structures of 3-algebras in
the Green-Schwartz supermembrane action, which defines full perturbative dynamics of a
supermembrane. It had not been clear whether the total supermembrane action including
fermions has structures of 3-algebras, whereas the bosonic part of the action can be described
by using a tri-linear bracket, called Nambu bracket [23, 24], which is a generalization of
Poisson bracket. If we fix to a light-cone gauge, the total action can be described by using
Poisson bracket, that is, only structures of Lie algebra are left in this gauge [25]. However, it
was shown under an approximation that the total action can be described by Nambu bracket
if we fix to a semi-light-cone gauge [26]. In this gauge, the eleven dimensional space-time
of M-theory is manifest in the supermembrane action, whereas only ten dimensional part is
manifest in the light-cone gauge.

©2012 Sato, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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The BFSS matrix theory is conjectured to describe an infinite momentum frame (IMF) limit
of M-theory [27] and many evidences were found. The action of the BFSS matrix theory can
be obtained by replacing Poisson bracket with a finite dimensional Lie algebra’s bracket in
the supermembrane action in the light-cone gauge. Because of this structure, only variables
that represent the ten dimensional part of the eleven-dimensional space-time are manifest in
the BFSS matrix theory. Recently, 3-algebra models of M-theory were proposed [26, 28, 29],
by replacing Nambu bracket with finite dimensional 3-algebras’ brackets in an action that is
shown, by using an approximation, to be equivalent to the semi-light-cone supermembrane
action. All the variables that represent the eleven dimensional space-time are manifest in these
models. It was shown that if the DLCQ limit of the 3-algebra models of M-theory is taken, they
reduce to the BFSS matrix theory [26, 28], as they should [30–35].

2. Definition and classification of metric Hermitian 3-algebra

In this section, we will define and classify the Hermitian 3-algebras equipped with invariant
metrics.

2.1. General structure of metric Hermitian 3-algebra

The metric Hermitian 3-algebra is a map V ×V ×V → V defined by (x, y, z) �→ [x, y; z], where
the 3-bracket is complex linear in the first two entries, whereas complex anti-linear in the last
entry, equipped with a metric < x, y >, satisfying the following properties:
the fundamental identity

[[x, y; z], v; w] = [[x, v; w], y; z] + [x, [y, v; w]; z]− [x, y; [z, w; v]] (1)

the metric invariance
< [x, v; w], y > − < x, [y, w; v] >= 0 (2)

and the anti-symmetry
[x, y; z] = −[y, x; z] (3)

for
x, y, z, v, w ∈ V (4)

The Hermitian 3-algebra generates a symmetry, whose generators D(x, y) are defined by

D(x, y)z := [z, x; y] (5)

From (1), one can show that D(x, y) form a Lie algebra,

[D(x, y), D(v, w)] = D(D(x, y)v, w)− D(v, D(y, x)w) (6)

There is an one-to-one correspondence between the metric Hermitian 3-algebra and a class of
metric complex super Lie algebras [19]. Such a class satisfies the following conditions among
complex super Lie algebras S = S0 ⊕ S1, where S0 and S1 are even and odd parts, respectively.
S1 is decomposed as S1 = V ⊕ V̄, where V is an unitary representation of S0: for a ∈ S0,
u, v ∈ V,

[a, u] ∈ V (7)

2 Linear Algebra – Theorems and Applications
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and
< [a, u], v > + < u, [a∗, v] >= 0 (8)

v̄ ∈ V̄ is defined by
v̄ =< , v > (9)

The super Lie bracket satisfies

[V, V] = 0, [V̄, V̄] = 0 (10)

From the metric Hermitian 3-algebra, we obtain the class of the metric complex super Lie
algebra in the following way. The elements in S0, V, and V̄ are defined by (5), (4), and (9),
respectively. The algebra is defined by (6) and

[D(x, y), z] := D(x, y)z = [z, x; y]
[D(x, y), z̄] := − ¯D(y, x)z = − ¯[z, y; x]
[x, ȳ] := D(x, y)
[x, y] := 0

[x̄, ȳ] := 0 (11)

One can show that this algebra satisfies the super Jacobi identity and (7)-(10) as in [19].

Inversely, from the class of the metric complex super Lie algebra, we obtain the metric
Hermitian 3-algebra by

[x, y; z] := α[[y, z̄], x] (12)

where α is an arbitrary constant. One can also show that this algebra satisfies (1)-(3) for (4) as
in [19].

2.2. Classification of metric Hermitian 3-algebra

The classical Lie super algebras satisfying (7)-(10) are A(m − 1, n − 1) and C(n + 1). The even
parts of A(m− 1, n− 1) and C(n+ 1) are u(m)⊕ u(n) and sp(2n)⊕ u(1), respectively. Because
the metric Hermitian 3-algebra one-to-one corresponds to this class of the super Lie algebra,
the metric Hermitian 3-algebras are classified into u(m)⊕ u(n) and sp(2n)⊕ u(1) Hermitian
3-algebras.

First, we will construct the u(m)⊕ u(n) Hermitian 3-algebra from A(m − 1, n − 1), according
to the relation in the previous subsection. A(m− 1, n− 1) is simple and is obtained by dividing
sl(m, n) by its ideal. That is, A(m − 1, n − 1) = sl(m, n) when m �= n and A(n − 1, n − 1) =
sl(n, n)/λ12n.

Real sl(m, n) is defined by (
h1 c
ic† h2

)
(13)

where h1 and h2 are m×m and n× n anti-Hermite matrices and c is an n×m arbitrary complex
matrix. Complex sl(m, n) is a complexification of real sl(m, n), given by

(
α β
γ δ

)
(14)

33-Algebras in String Theory
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where α, β, γ, and δ are m × m, n × m, m × n, and n × n complex matrices that satisfy

trα = trδ (15)

Complex A(m − 1, n − 1) is decomposed as A(m − 1, n − 1) = S0 ⊕ V ⊕ V̄, where
(

α 0
0 δ

)
∈ S0

(
0 β
0 0

)
∈ V

(
0 0
γ 0

)
∈ V̄ (16)

(9) is rewritten as V → V̄ defined by

B =

(
0 β
0 0

)
�→ B† =

(
0 0
β† 0

)
(17)

where B ∈ V and B† ∈ V̄. (12) is rewritten as

[X, Y; Z] = α[[Y, Z†], X] = α

(
0 yz†x − xz†y
0 0

)
(18)

for

X =

(
0 x
0 0

)
∈ V

Y =

(
0 y
0 0

)
∈ V

Z =

(
0 z
0 0

)
∈ V

(19)

As a result, we obtain the u(m)⊕ u(n) Hermitian 3-algebra,

[x, y; z] = α(yz†x − xz†y) (20)

where x, y, and z are arbitrary n × m complex matrices. This algebra was originally
constructed in [8].

Inversely, from (20), we can construct complex A(m − 1, n − 1). (5) is rewritten as

D(x, y) = (xy†, y†x) ∈ S0 (21)

(6) and (11) are rewritten as

[(xy†, y†x), (x�y�†, y�†x�)] = ([xy†, x�y�†], [y†x, y�†x�])
[(xy†, y†x), z] = xy†z − zy†x

[(xy†, y†x), w†] = y†xw† − w†xy†

[x, y†] = (xy†, y†x)
[x, y] = 0

[x†, y†] = 0 (22)

4 Linear Algebra – Theorems and Applications
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This algebra is summarized as
��

xy† z
w† y†x

�
,
�

x�y�† z�
w�† y�†x�

��
(23)

which forms complex A(m − 1, n − 1).

Next, we will construct the sp(2n)⊕ u(1) Hermitian 3-algebra from C(n + 1). Complex C(n +
1) is decomposed as C(n + 1) = S0 ⊕ V ⊕ V̄. The elements are given by

⎛
⎜⎜⎝

α 0 0 0
0 −α 0 0
0 0 a b
0 0 c −aT

⎞
⎟⎟⎠ ∈ S0

⎛
⎜⎜⎝

0 0 x1 x2
0 0 0 0
0 xT

2 0 0
0 −xT

1 0 0

⎞
⎟⎟⎠ ∈ V

⎛
⎜⎜⎝

0 0 0 0
0 0 y1 y2

yT
2 0 0 0

−yT
1 0 0 0

⎞
⎟⎟⎠ ∈ V̄ (24)

where α is a complex number, a is an arbitrary n× n complex matrix, b and c are n× n complex
symmetric matrices, and x1, x2, y1 and y2 are n× 1 complex matrices. (9) is rewritten as V → V̄
defined by B �→ B̄ = UB∗U−1, where B ∈ V, B̄ ∈ V̄ and

U =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ (25)

Explicitly,

B =

⎛
⎜⎜⎝

0 0 x1 x2
0 0 0 0
0 xT

2 0 0
0 −xT

1 0 0

⎞
⎟⎟⎠ �→ B̄ =

⎛
⎜⎜⎝

0 0 0 0
0 0 x∗2 −x∗1

−x†
1 0 0 0

−x†
2 0 0 0

⎞
⎟⎟⎠ (26)

(12) is rewritten as

[X, Y; Z] := α[[Y, Z̄], X]

= α

⎡
⎢⎢⎣

⎡
⎢⎢⎣

⎛
⎜⎜⎝

0 0 y1 y2
0 0 0 0
0 yT

2 0 0
0 −yT

1 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 0 0
0 0 z∗2 −z∗1

−z†
1 0 0 0

−z†
2 0 0 0

⎞
⎟⎟⎠

⎤
⎥⎥⎦ ,

⎛
⎜⎜⎝

0 0 x1 x2
0 0 0 0
0 xT

2 0 0
0 −xT

1 0 0

⎞
⎟⎟⎠

⎤
⎥⎥⎦

= α

⎛
⎜⎜⎝

0 0 w1 w2
0 0 0 0
0 wT

2 0 0
0 −wT

1 0 0

⎞
⎟⎟⎠ (27)

53-Algebras in String Theory



6 Will-be-set-by-IN-TECH

for

X =

⎛
⎜⎜⎝

0 0 x1 x2
0 0 0 0
0 xT

2 0 0
0 −xT

1 0 0

⎞
⎟⎟⎠ ∈ V

Y =

⎛
⎜⎜⎝

0 0 y1 y2
0 0 0 0
0 yT

2 0 0
0 −yT

1 0 0

⎞
⎟⎟⎠ ∈ V

Z =

⎛
⎜⎜⎝

0 0 z1 z2
0 0 0 0
0 zT

2 0 0
0 −zT

1 0 0

⎞
⎟⎟⎠ ∈ V (28)

where w1 and w2 are given by

(w1, w2) = −(y1z†
1 + y2z†

2)(x1, x2) + (x1z†
1 + x2z†

2)(y1, y2) + (x2yT
1 − x1yT

2 )(z
∗
2,−z∗1) (29)

As a result, we obtain the sp(2n)⊕ u(1) Hermitian 3-algebra,

[x, y; z] = α((y � z̃)x + (z̃ � x)y − (x � y)z̃) (30)

for x = (x1, x2), y = (y1, y2), z = (z1, z2), where x1, x2, y1, y2, z1, and z2 are n-vectors and

z̃ = (z∗2,−z∗1)
a � b = a1 · b2 − a2 · b1 (31)

3. 3-algebra model of M-theory

In this section, we review the fact that the supermembrane action in a semi-light-cone gauge
can be described by Nambu bracket, where structures of 3-algebra are manifest. The 3-algebra
Models of M-theory are defined based on the semi-light-cone supermembrane action. We also
review that the models reduce to the BFSS matrix theory in the DLCQ limit.

3.1. Supermembrane and 3-algebra model of M-theory

The fundamental degrees of freedom in M-theory are supermembranes. The action of the
covariant supermembrane action in M-theory [36] is given by

SM2 =
�

d3σ
�√−G +

i
4

�αβγΨ̄ΓMN∂αΨ(Π M
β Π N

γ +
i
2

Π M
β Ψ̄ΓN∂γΨ

− 1
12

Ψ̄ΓM∂βΨΨ̄ΓN∂γΨ)
�

(32)

where M, N = 0, · · · , 10, α, β, γ = 0, 1, 2, Gαβ = Π M
α ΠβM and Π M

α = ∂αXM − i
2 Ψ̄ΓM∂αΨ. Ψ

is a SO(1, 10) Majorana fermion.
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This action is invariant under dynamical supertransformations,

δΨ = �

δXM = −iΨ̄ΓM� (33)

These transformations form the N = 1 supersymmetry algebra in eleven dimensions,

[δ1, δ2]XM = −2i�1ΓM�2

[δ1, δ2]Ψ = 0 (34)

The action is also invariant under the κ-symmetry transformations,

δΨ = (1 + Γ)κ(σ)

δXM = iΨ̄ΓM(1 + Γ)κ(σ) (35)

where
Γ =

1
3!
√−G

�αβγΠL
α ΠM

β ΠN
γ ΓLMN (36)

If we fix the κ-symmetry (35) of the action by taking a semi-light-cone gauge [26]1

Γ012Ψ = −Ψ (37)

we obtain a semi-light-cone supermembrane action,

SM2 =
∫

d3σ
(√−G +

i
4

�αβγ
(
Ψ̄Γμν∂αΨ(Π μ

β Π ν
γ +

i
2

Π μ
β Ψ̄Γν∂γΨ − 1

12
Ψ̄Γμ∂βΨΨ̄Γν∂γΨ)

+Ψ̄ΓI J∂αΨ∂βXI∂γXJ)) (38)

where Gαβ = hαβ + Π μ
α Πβμ, Π μ

α = ∂αXμ − i
2 Ψ̄Γμ∂αΨ, and hαβ = ∂αXI∂βXI .

In [26], it is shown under an approximation up to the quadratic order in ∂αXμ and ∂αΨ but
exactly in XI , that this action is equivalent to the continuum action of the 3-algebra model of
M-theory,

Scl =
∫

d3σ
√−g

(
− 1

12
{XI , XJ , XK}2 − 1

2
(Aμab{ϕa, ϕb, XI})2

−1
3

Eμνλ Aμab Aνcd Aλe f {ϕa, ϕc, ϕd}{ϕb, ϕe, ϕ f }+ 1
2

Λ

− i
2

Ψ̄Γμ Aμab{ϕa, ϕb, Ψ}+ i
4

Ψ̄ΓI J{XI , XJ , Ψ}
)

(39)

where I, J, K = 3, · · · , 10 and {ϕa, ϕb, ϕc} = �αβγ∂α ϕa∂β ϕb∂γ ϕc is the Nambu-Poisson
bracket. An invariant symmetric bilinear form is defined by

∫
d3σ

√−gϕa ϕb for complete
basis ϕa in three dimensions. Thus, this action is manifestly VPD covariant even when the
world-volume metric is flat. XI is a scalar and Ψ is a SO(1, 2)× SO(8) Majorana-Weyl fermion

1 Advantages of a semi-light-cone gauges against a light-cone gauge are shown in [37–39]
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satisfying (37). Eμνλ is a Levi-Civita symbol in three dimensions and Λ is a cosmological
constant.

The continuum action of 3-algebra model of M-theory (39) is invariant under 16 dynamical
supersymmetry transformations,

δXI = i�̄ΓIΨ

δAμ(σ, σ�) = i
2

�̄ΓμΓI(XI(σ)Ψ(σ�)− XI(σ�)Ψ(σ)),

δΨ = −Aμab{ϕa, ϕb, XI}ΓμΓI� − 1
6
{XI , XJ , XK}ΓI JK� (40)

where Γ012� = −�. These supersymmetries close into gauge transformations on-shell,

[δ1, δ2]XI = Λcd{ϕc, ϕd, XI}
[δ1, δ2]Aμab{ϕa, ϕb, } = Λab{ϕa, ϕb, Aμcd{ϕc, ϕd, }}

−Aμab{ϕa, ϕb, Λcd{ϕc, ϕd, }}+ 2i�̄2Γν�1OA
μν

[δ1, δ2]Ψ = Λcd{ϕc, ϕd, Ψ}+ (i�̄2Γμ�1Γμ − i
4

�̄2ΓKL�1ΓKL)OΨ (41)

where gauge parameters are given by Λab = 2i�̄2Γμ�1 Aμab − i�̄2ΓJK�1XJ
aXK

b . OA
μν = 0 and

OΨ = 0 are equations of motions of Aμν and Ψ, respectively, where

OA
μν = Aμab{ϕa, ϕb, Aνcd{ϕc, ϕd, }} − Aνab{ϕa, ϕb, Aμcd{ϕc, ϕd, }}

+Eμνλ(−{XI , Aλ
ab{ϕa, ϕb, XI}, }+ i

2
{Ψ̄, ΓλΨ, })

OΨ = −Γμ Aμab{ϕa, ϕb, Ψ}+ 1
2

ΓI J{XI , XJ , Ψ} (42)

(41) implies that a commutation relation between the dynamical supersymmetry
transformations is

δ2δ1 − δ1δ2 = 0 (43)

up to the equations of motions and the gauge transformations.

This action is invariant under a translation,

δXI(σ) = η I , δAμ(σ, σ�) = ημ(σ)− ημ(σ�) (44)

where η I are constants.

The action is also invariant under 16 kinematical supersymmetry transformations

δ̃Ψ = �̃ (45)

and the other fields are not transformed. �̃ is a constant and satisfy Γ012�̃ = �̃. �̃ and �
should come from sixteen components of thirty-two N = 1 supersymmetry parameters in
eleven dimensions, corresponding to eigen values ±1 of Γ012, respectively. This N = 1
supersymmetry consists of remaining 16 target-space supersymmetries and transmuted 16
κ-symmetries in the semi-light-cone gauge [25, 26, 40].
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A commutation relation between the kinematical supersymmetry transformations is given by

δ̃2δ̃1 − δ̃1δ̃2 = 0 (46)

A commutator of dynamical supersymmetry transformations and kinematical ones acts as

(δ̃2δ1 − δ1δ̃2)XI(σ) = i�̄1ΓI �̃2 ≡ η I
0

(δ̃2δ1 − δ1δ̃2)Aμ(σ, σ�) = i
2

�̄1ΓμΓI(XI(σ)− XI(σ�))�̃2 ≡ η
μ
0 (σ)− η

μ
0 (σ

�) (47)

where the commutator that acts on the other fields vanishes. Thus, the commutation relation
is given by

δ̃2δ1 − δ1δ̃2 = δη (48)
where δη is a translation.

If we change a basis of the supersymmetry transformations as

δ� = δ + δ̃

δ̃� = i(δ − δ̃) (49)

we obtain

δ�2δ�1 − δ�1δ�2 = δη

δ̃�2δ̃�1 − δ̃�1δ̃�2 = δη

δ̃�2δ�1 − δ�1δ̃�2 = 0 (50)

These thirty-two supersymmetry transformations are summarised as Δ = (δ�, δ̃�) and (50)
implies the N = 1 supersymmetry algebra in eleven dimensions,

Δ2Δ1 − Δ1Δ2 = δη (51)

3.2. Lie 3-algebra models of M-theory

In this and next subsection, we perform the second quantization on the continuum action of
the 3-algebra model of M-theory: By replacing the Nambu-Poisson bracket in the action (39)
with brackets of finite-dimensional 3-algebras, Lie and Hermitian 3-algebras, we obtain the
Lie and Hermitian 3-algebra models of M-theory [26, 28], respectively. In this section, we
review the Lie 3-algebra model.

If we replace the Nambu-Poisson bracket in the action (39) with a completely antisymmetric
real 3-algebra’s bracket [21, 22],

∫
d3σ

√−g →
〈 〉

{ϕa, ϕb, ϕc} → [Ta, Tb, Tc] (52)

we obtain the Lie 3-algebra model of M-theory [26, 28],

S0 =
〈
− 1

12
[XI , XJ , XK ]2 − 1

2
(Aμab[T

a, Tb, XI ])2

−1
3

Eμνλ Aμab Aνcd Aλe f [T
a, Tc, Td][Tb, Te, T f ]

− i
2

Ψ̄Γμ Aμab[T
a, Tb, Ψ] +

i
4

Ψ̄ΓI J [XI , XJ , Ψ]
〉

(53)
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We have deleted the cosmological constant Λ, which corresponds to an operator ordering
ambiguity, as usual as in the case of other matrix models [27, 41].

This model can be obtained formally by a dimensional reduction of the N = 8 BLG model
[4–6],

SN=8BLG =
∫

d3x
〈
− 1

12
[XI , XJ , XK ]2 − 1

2
(DμXI)2 − Eμνλ

(1
2

Aμab∂ν AλcdTa[Tb, Tc, Td]

+
1
3

Aμab Aνcd Aλe f [T
a, Tc, Td][Tb, Te, T f ]

)

+
i
2

Ψ̄ΓμDμΨ +
i
4

Ψ̄ΓI J [XI , XJ , Ψ]
〉

(54)

The formal relations between the Lie (Hermitian) 3-algebra models of M-theory and the N = 8
(N = 6) BLG models are analogous to the relation among the N = 4 super Yang-Mills in four
dimensions, the BFSS matrix theory [27], and the IIB matrix model [41]. They are completely
different theories although they are related to each others by dimensional reductions. In the
same way, the 3-algebra models of M-theory and the BLG models are completely different
theories.

The fields in the action (53) are spanned by the Lie 3-algebra Ta as XI = XI
aTa, Ψ = ΨaTa

and Aμ = Aμ
abTa ⊗ Tb, where I = 3, · · · , 10 and μ = 0, 1, 2. <> represents a metric for the

3-algebra. Ψ is a Majorana spinor of SO(1,10) that satisfies Γ012Ψ = Ψ. Eμνλ is a Levi-Civita
symbol in three-dimensions.

Finite dimensional Lie 3-algebras with an invariant metric is classified into four-dimensional
Euclidean A4 algebra and the Lie 3-algebras with indefinite metrics in [9–11, 21, 22]. We do
not choose A4 algebra because its degrees of freedom are just four. We need an algebra with
arbitrary dimensions N, which is taken to infinity to define M-theory. Here we choose the
most simple indefinite metric Lie 3-algebra, so called the Lorentzian Lie 3-algebra associated
with u(N) Lie algebra,

[T−1, Ta, Tb] = 0

[T0, Ti, Tj] = [Ti, Tj] = f ij
kTk

[Ti, Tj, Tk] = f ijkT−1 (55)

where a = −1, 0, i (i = 1, · · · , N2). Ti are generators of u(N). A metric is defined by a
symmetric bilinear form,

< T−1, T0 > = −1 (56)

< Ti, Tj > = hij (57)

and the other components are 0. The action is decomposed as

S = Tr(−1
4
(xK

0 )
2[xI , xJ ]2 +

1
2
(xI

0[xI , xJ ])2 − 1
2
(xI

0bμ + [aμ, xI ])2 − 1
2

Eμνλbμ[aν, aλ]

+iψ̄0Γμbμψ − i
2

ψ̄Γμ[aμ, ψ] +
i
2

xI
0ψ̄ΓI J [xJ , ψ]− i

2
ψ̄0ΓI J [xI , xJ ]ψ) (58)
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where we have renamed XI
0 → xI

0, XI
i Ti → xI , Ψ0 → ψ0, ΨiTi → ψ, 2Aμ0iTi → aμ, and

Aμij[Ti, Tj] → bμ. aμ correspond to the target coordinate matrices Xμ, whereas bμ are auxiliary
fields.

In this action, T−1 mode; XI
−1, Ψ−1 or Aμ

−1a does not appear, that is they are unphysical
modes. Therefore, the indefinite part of the metric (56) does not exist in the action and the Lie
3-algebra model of M-theory is ghost-free like a model in [42]. This action can be obtained
by a dimensional reduction of the three-dimensional N = 8 BLG model [4–6] with the same
3-algebra. The BLG model possesses a ghost mode because of its kinetic terms with indefinite
signature. On the other hand, the Lie 3-algebra model of M-theory does not possess a kinetic
term because it is defined as a zero-dimensional field theory like the IIB matrix model [41].

This action is invariant under the translation

δxI = η I , δaμ = ημ (59)

where η I and ημ belong to u(1). This implies that eigen values of xI and aμ represent an
eleven-dimensional space-time.

The action is also invariant under 16 kinematical supersymmetry transformations

δ̃ψ = �̃ (60)

and the other fields are not transformed. �̃ belong to u(1) and satisfy Γ012�̃ = �̃. �̃ and �
should come from sixteen components of thirty-two N = 1 supersymmetry parameters in
eleven dimensions, corresponding to eigen values ±1 of Γ012, respectively, as in the previous
subsection.

A commutation relation between the kinematical supersymmetry transformations is given by

δ̃2δ̃1 − δ̃1δ̃2 = 0 (61)

The action is invariant under 16 dynamical supersymmetry transformations,

δXI = i�̄ΓIΨ

δAμab[T
a, Tb, ] = i�̄ΓμΓI [XI , Ψ, ]

δΨ = −Aμab[T
a, Tb, XI ]ΓμΓI� − 1

6
[XI , XJ , XK ]ΓI JK� (62)

where Γ012� = −�. These supersymmetries close into gauge transformations on-shell,

[δ1, δ2]XI = Λcd[T
c, Td, XI ]

[δ1, δ2]Aμab[T
a, Tb, ] = Λab[T

a, Tb, Aμcd[T
c, Td, ]]

−Aμab[T
a, Tb, Λcd[T

c, Td, ]] + 2i�̄2Γν�1OA
μν

[δ1, δ2]Ψ = Λcd[T
c, Td, Ψ] + (i�̄2Γμ�1Γμ − i

4
�̄2ΓKL�1ΓKL)OΨ (63)
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where gauge parameters are given by Λab = 2i�̄2Γμ�1 Aμab − i�̄2ΓJK�1XJ
aXK

b . OA
μν = 0 and

OΨ = 0 are equations of motions of Aμν and Ψ, respectively, where

OA
μν = Aμab[T

a, Tb, Aνcd[T
c, Td, ]]− Aνab[T

a, Tb, Aμcd[T
c, Td, ]]

+Eμνλ(−[XI , Aλ
ab[T

a, Tb, XI ], ] +
i
2
[Ψ̄, ΓλΨ, ])

OΨ = −Γμ Aμab[T
a, Tb, Ψ] +

1
2

ΓI J [XI , XJ , Ψ] (64)

(63) implies that a commutation relation between the dynamical supersymmetry
transformations is

δ2δ1 − δ1δ2 = 0 (65)

up to the equations of motions and the gauge transformations.

The 16 dynamical supersymmetry transformations (62) are decomposed as

δxI = i�̄ΓIψ

δxI
0 = i�̄ΓIψ0

δxI
−1 = i�̄ΓIψ−1

δψ = −(bμxI
0 + [aμ, xI ])ΓμΓI� − 1

2
xI

0[x
J , xK ]ΓI JK�

δψ0 = 0

δψ−1 = −Tr(bμxI)ΓμΓI� − 1
6

Tr([xI , xJ ]xK)ΓI JK�

δaμ = i�̄ΓμΓI(xI
0ψ − ψ0xI)

δbμ = i�̄ΓμΓI [xI , ψ]

δAμ−1i = i�̄ΓμΓI
1
2
(xI

−1ψi − ψ−1xI
i )

δAμ−10 = i�̄ΓμΓI
1
2
(xI

−1ψ0 − ψ−1xI
0) (66)

and thus a commutator of dynamical supersymmetry transformations and kinematical ones
acts as

(δ̃2δ1 − δ1δ̃2)xI = i�̄1ΓI �̃2 ≡ η I

(δ̃2δ1 − δ1δ̃2)aμ = i�̄1ΓμΓI xI
0�̃2 ≡ ημ

(δ̃2δ1 − δ1δ̃2)Aμ
−1iT

i =
1
2

i�̄1ΓμΓI xI
−1�̃2 (67)

where the commutator that acts on the other fields vanishes. Thus, the commutation relation
for physical modes is given by

δ̃2δ1 − δ1δ̃2 = δη (68)

where δη is a translation.

(61), (65), and (68) imply the N = 1 supersymmetry algebra in eleven dimensions as in the
previous subsection.
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3.3. Hermitian 3-algebra model of M-theory

In this subsection, we study the Hermitian 3-algebra models of M-theory [26]. Especially, we
study mostly the model with the u(N)⊕ u(N) Hermitian 3-algebra (20).

The continuum action (39) can be rewritten by using the triality of SO(8) and the SU(4)×U(1)
decomposition [8, 43, 44] as

Scl =
∫

d3σ
√−g

(
−V − Aμba{ZA, Ta, Tb}Aμ

dc{ZA, Tc, Td}

+
1
3

Eμνλ Aμba Aνdc Aλ f e{Ta, Tc, Td}{Tb, T f , Te}

+iψ̄AΓμ Aμba{ψA, Ta, Tb}+ i
2

EABCDψ̄A{ZC, ZD, ψB} − i
2

EABCDZD{ψ̄A, ψB, ZC}

−iψ̄A{ψA, ZB, ZB}+ 2iψ̄A{ψB, ZB, ZA}
)

(69)

where fields with a raised A index transform in the 4 of SU(4), whereas those with lowered
one transform in the 4̄. Aμba (μ = 0, 1, 2) is an anti-Hermitian gauge field, ZA and ZA are a
complex scalar field and its complex conjugate, respectively. ψA is a fermion field that satisfies

Γ012ψA = −ψA (70)

and ψA is its complex conjugate. Eμνλ and EABCD are Levi-Civita symbols in three dimensions
and four dimensions, respectively. The potential terms are given by

V =
2
3

ΥCD
B ΥB

CD

ΥCD
B = {ZC, ZD, ZB} − 1

2
δC

B{ZE, ZD, ZE}+ 1
2

δD
B {ZE, ZC, ZE} (71)

If we replace the Nambu-Poisson bracket with a Hermitian 3-algebra’s bracket [19, 20],
∫

d3σ
√−g →

〈 〉

{ϕa, ϕb, ϕc} → [Ta, Tb; T̄c̄] (72)

we obtain the Hermitian 3-algebra model of M-theory [26],

S =
〈
−V − Aμb̄a[Z

A, Ta; T̄b̄]Aμ

d̄c[ZA, Tc; T̄d̄] +
1
3

Eμνλ Aμb̄a Aνd̄c Aλ f̄ e[T
a, Tc; T̄d̄][Tb, T f ; T̄ē]

+iψ̄AΓμ Aμb̄a[ψA, Ta; T̄b̄] +
i
2

EABCDψ̄A[ZC, ZD; ψ̄B]− i
2

EABCDZ̄D[ψ̄A, ψB; Z̄C]

−iψ̄A[ψA, ZB; Z̄B] + 2iψ̄A[ψB, ZB; Z̄A]
〉

(73)

where the cosmological constant has been deleted for the same reason as before. The potential
terms are given by

V =
2
3

ΥCD
B ΥB

CD

ΥCD
B = [ZC, ZD; Z̄B]− 1

2
δC

B [Z
E, ZD; Z̄E] +

1
2

δD
B [ZE, ZC; Z̄E] (74)
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This matrix model can be obtained formally by a dimensional reduction of the N = 6 BLG
action [8], which is equivalent to ABJ(M) action [7, 45]2,

SN=6BLG =
∫

d3x
〈
−V − DμZADμZA + Eμνλ

(1
2

Aμc̄b∂ν Aλd̄a T̄d̄[Ta, Tb; T̄c̄]

+
1
3

Aμb̄a Aνd̄c Aλ f̄ e[T
a, Tc; T̄d̄][Tb, T f ; T̄ē]

)

−iψ̄AΓμDμψA +
i
2

EABCDψ̄A[ZC, ZD; ψB]− i
2

EABCDZ̄D[ψ̄A, ψB; Z̄C]

−iψ̄A[ψA, ZB; Z̄B] + 2iψ̄A[ψB, ZB; Z̄A]
〉

(75)

The Hermitian 3-algebra models of M-theory are classified into the models with u(m)⊕ u(n)
Hermitian 3-algebra (20) and sp(2n) ⊕ u(1) Hermitian 3-algebra (30). In the following,
we study the u(N) ⊕ u(N) Hermitian 3-algebra model. By substituting the u(N) ⊕ u(N)
Hermitian 3-algebra (20) to the action (73), we obtain

S = Tr
(
−(2π)2

k2 V−(ZA AR
μ −AL

μZA)(ZA ARμ−ALμZA)†− k
2π

i
3

Eμνλ(AR
μ AR

ν AR
λ − AL

μ AL
ν AL

λ)

−ψ̄AΓμ(ψA AR
μ − AL

μψA) +
2π

k
(iEABCDψ̄AZCψ†BZD − iEABCDZ†

Dψ̄†
AZ†

CψB

−iψ̄AψAZ†
BZB + iψ̄AZBZ†

BψA + 2iψ̄AψBZ†
AZB − 2iψ̄AZBZ†

AψB)
)

(76)

where AR
μ ≡ − k

2π iAμb̄aT†b̄Ta and AL
μ ≡ − k

2π iAμb̄aTaT†b̄ are N × N Hermitian matrices. In

the algebra, we have set α = 2π
k , where k is an integer representing the Chern-Simons level.

We choose k = 1 in order to obtain 16 dynamical supersymmetries. V is given by

V = +
1
3

Z†
AZAZ†

BZBZ†
CZC +

1
3

ZAZ†
AZBZ†

BZCZ†
C +

4
3

Z†
AZBZ†

CZAZ†
BZC

−Z†
AZAZ†

BZCZ†
CZB − ZAZ†

AZBZ†
CZCZ†

B (77)

By redefining fields as

ZA →
(

k
2π

) 1
3

ZA

Aμ →
(

2π

k

) 1
3

Aμ

ψA →
(

k
2π

) 1
6

ψA (78)

we obtain an action that is independent of Chern-Simons level:

S = Tr
(
−V − (ZA AR

μ − AL
μZA)(ZA ARμ − ALμZA)† − i

3
Eμνλ(AR

μ AR
ν AR

λ − AL
μ AL

ν AL
λ)

−ψ̄AΓμ(ψA AR
μ − AL

μψA) + iEABCDψ̄AZCψ†BZD − iEABCDZ†
Dψ̄†

AZ†
CψB

−iψ̄AψAZ†
BZB + iψ̄AZBZ†

BψA + 2iψ̄AψBZ†
AZB − 2iψ̄AZBZ†

AψB

)
(79)

2 The authors of [46–49] studied matrix models that can be obtained by a dimensional reduction of the ABJM and ABJ
gauge theories on S3. They showed that the models reproduce the original gauge theories on S3 in planar limits.
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as opposed to three-dimensional Chern-Simons actions.

If we rewrite the gauge fields in the action as AL
μ = Aμ + bμ and AR

μ = Aμ − bμ, we obtain

S = Tr
(
−V + ([Aμ, ZA] + {bμ, ZA})([Aμ, ZA]− {bμ, ZA}) + iEμνλ(

2
3

bμbνbλ + 2Aμ Aνbλ)

+ψ̄AΓμ([Aμ, ψA] + {bμ, ψA}) + iEABCDψ̄AZCψ†BZD − iEABCDZ†
Dψ̄†

AZ†
CψB

−iψ̄AψAZ†
BZB + iψ̄AZBZ†

BψA + 2iψ̄AψBZ†
AZB − 2iψ̄AZBZ†

AψB

)
(80)

where [ , ] and { , } are the ordinary commutator and anticommutator, respectively. The
u(1) parts of Aμ decouple because Aμ appear only in commutators in the action. bμ can be
regarded as auxiliary fields, and thus Aμ correspond to matrices Xμ that represents three
space-time coordinates in M-theory. Among N × N arbitrary complex matrices ZA, we need
to identify matrices XI (I = 3, · · · 10) representing the other space coordinates in M-theory,
because the model possesses not SO(8) but SU(4)× U(1) symmetry. Our identification is

ZA = iXA+2 − XA+6,

XI = X̂I − ixI1 (81)

where X̂I and xI are su(N) Hermitian matrices and real scalars, respectively. This is analogous
to the identification when we compactify ABJM action, which describes N M2 branes, and
obtain the action of N D2 branes [7, 50, 51]. We will see that this identification works also in our
case. We should note that while the su(N) part is Hermitian, the u(1) part is anti-Hermitian.
That is, an eigen-value distribution of Xμ, ZA, and not XI determine the spacetime in the
Hermitian model. In order to define light-cone coordinates, we need to perform Wick rotation:
a0 → −ia0. After the Wick rotation, we obtain

A0 = Â0 − ia01 (82)

where Â0 is a su(N) Hermitian matrix.

3.4. DLCQ Limit of 3-algebra model of M-theory

It was shown that M-theory in a DLCQ limit reduces to the BFSS matrix theory with matrices
of finite size [30–35]. This fact is a strong criterion for a model of M-theory. In [26, 28], it was
shown that the Lie and Hermitian 3-algebra models of M-theory reduce to the BFSS matrix
theory with matrices of finite size in the DLCQ limit. In this subsection, we show an outline
of the mechanism.

DLCQ limit of M-theory consists of a light-cone compactification, x− ≈ x− + 2πR, where
x± = 1√

2
(x10 ± x0), and Lorentz boost in x10 direction with an infinite momentum. After

appropriate scalings of fields [26, 28], we define light-cone coordinate matrices as

X0 =
1√
2
(X+ − X−)

X10 =
1√
2
(X+ + X−) (83)

We integrate out bμ by using their equations of motion.
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A matrix compactification [52] on a circle with a radius R imposes the following conditions on
X− and the other matrices Y:

X− − (2πR)1 = U†X−U
Y = U†YU (84)

where U is a unitary matrix. In order to obtain a solution to (84), we need to take N → ∞ and
consider matrices of infinite size [52]. A solution to (84) is given by X− = X̄− + X̃−, Y = Ỹ
and

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .
0 1 0

0 1
0 1

0 0
. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗ 1n×n ∈ U(N) (85)

Backgrounds X̄− are

X̄− = −T3 x̄−0 T0 − (2πR)diag(· · · , s − 1, s, s + 1, · · · )⊗ 1n×n (86)

in the Lie 3-algebra case, whereas

X̄− = −i(T3 x̄−)1 − i(2πR)diag(· · · , s − 1, s, s + 1, · · · )⊗ 1n×n (87)

in the Hermitian 3-algebra case. A fluctuation x̃ that represents u(N) parts of X̃− and Ỹ is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

. . . x̃(0) x̃(1) x̃(2)
. . .

. . . x̃(−1) x̃(0) x̃(1) x̃(2)
x̃(−2) x̃(−1) x̃(0) x̃(1) x̃(2)

x̃(−2) x̃(−1) x̃(0) x̃(1) x̃(2)

x̃(−2) x̃(−1) x̃(0) x̃(1)
. . .

. . . x̃(−2) x̃(−1) x̃(0)
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(88)

Each x̃(s) is a n × n matrix, where s is an integer. That is, the (s, t)-th block is given by
x̃s,t = x̃(s − t).

We make a Fourier transformation,

x̃(s) =
1

2πR̃

� 2πR̃

0
dτx(τ)eis τ

R̃ (89)
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where x(τ) is a n × n matrix in one-dimension and RR̃ = 2π. From (86)-(89), the following
identities hold:

∑
t

x̃s,t x̃�t,u =
1

2πR̃

∫ 2πR̃

0
dτ x(τ)x�(τ)ei(s−u) τ

R̃

tr(∑
s,t

x̃s,t x̃�t,s) = V
1

2πR̃

∫ 2πR̃

0
dτ tr(x(τ)x�(τ))

[x̄−, x̃]s,t =
1

2πR̃

∫ 2πR̃

0
dτ ∂τ x(τ)ei(s−t) τ

R̃ (90)

where tr is a trace over n × n matrices and V = ∑s 1.

Next, we boost the system in x10 direction:

X̃�+ =
1
T

X̃+

X̃�− = TX̃− (91)

The DLCQ limit is achieved when T → ∞, where the "novel Higgs mechanism" [51] is
realized. In T → ∞, the actions of the 3-algebra models of M-theory reduce to that of the
BFSS matrix theory [27] with matrices of finite size,

S =
1
g2

∫ ∞

−∞
dτtr(

1
2
(D0xP)2 − 1

4
[xP, xQ]2 +

1
2

ψ̄Γ0D0ψ − i
2

ψ̄ΓP[xP, ψ]) (92)

where P, Q = 1, 2, · · · , 9.

3.5. Supersymmetric deformation of Lie 3-algebra model of M-theory

A supersymmetric deformation of the Lie 3-algebra Model of M-theory was studied in [53]
(see also [54–56]). If we add mass terms and a flux term,

Sm =
〈
−1

2
μ2(XI)2 − i

2
μΨ̄Γ3456Ψ + HI JKL[XI , XJ , XK ]XL

〉
(93)

such that

HI JKL =
{− μ

6 �I JKL (I, J, K, L = 3, 4, 5, 6 or 7, 8, 9, 10)
0 (otherwise)

(94)

to the action (53), the total action S0 + Sm is invariant under dynamical 16 supersymmetries,

δXI = i�̄ΓIΨ

δAμab[T
a, Tb, ] = i�̄ΓμΓI [XI , Ψ, ]

δΨ = −1
6
[XI , XJ , XK ]ΓI JK� − Aμab[T

a, Tb, XI ]ΓμΓI� + μΓ3456XIΓI� (95)

From this action, we obtain various interesting solutions, including fuzzy sphere solutions
[53].
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4. Conclusion

The metric Hermitian 3-algebra corresponds to a class of the super Lie algebra. By using this
relation, the metric Hermitian 3-algebras are classified into u(m) ⊕ u(n) and sp(2n) ⊕ u(1)
Hermitian 3-algebras.

The Lie and Hermitian 3-algebra models of M-theory are obtained by second quantizations
of the supermembrane action in a semi-light-cone gauge. The Lie 3-algebra model possesses
manifest N = 1 supersymmetry in eleven dimensions. In the DLCQ limit, both the models
reduce to the BFSS matrix theory with matrices of finite size as they should.
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20 Linear Algebra – Theorems and Applications

1. Introduction

In 1880 P. E. Appell ([1]) introduced and widely studied sequences of n-degree polynomials

An (x) , n = 0, 1, ... (1)

satisfying the differential relation

DAn (x) = nAn−1(x), n = 1, 2, ... (2)

Sequences of polynomials, verifying the (2), nowadays called Appell polynomials, have
been well studied because of their remarkable applications not only in different branches
of mathematics ([2, 3]) but also in theoretical physics and chemistry ([4, 5]). In 1936 an
initial bibliography was provided by Davis ([6, p. 25]). In 1939 Sheffer ([7]) introduced a
new class of polynomials which extends the class of Appell polynomials; he called these
polynomials of type zero, but nowadays they are called Sheffer polynomials. Sheffer also
noticed the similarities between Appell polynomials and the umbral calculus, introduced
in the second half of the 19th century with the work of such mathematicians as Sylvester,
Cayley and Blissard (for examples, see [8]). The Sheffer theory is mainly based on formal
power series. In 1941 Steffensen ([9]) published a theory on Sheffer polynomials based on
formal power series too. However, these theories were not suitable as they did not provide
sufficient computational tools. Afterwards Mullin, Roman and Rota ([10–12]), using operators
method, gave a beautiful theory of umbral calculus, including Sheffer polynomials. Recently,
Di Bucchianico and Loeb ([13]) summarized and documented more than five hundred old and
new findings related to Appell polynomial sequences. In last years attention has centered on
finding a novel representation of Appell polynomials. For instance, Lehemer ([14]) illustrated
six different approaches to representing the sequence of Bernoulli polynomials, which is a
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special case of Appell polynomial sequences. Costabile ([15, 16]) also gave a new form of
Bernoulli polynomials, called determinantal form, and later these ideas have been extended
to Appell polynomial sequences. In fact, in 2010, Costabile and Longo ([17]) proposed an
algebraic and elementary approach to Appell polynomial sequences. At the same time, Yang
and Youn ([18]) also gave an algebraic approach, but with different methods. The approach
to Appell polynomial sequences via linear algebra is an easily comprehensible mathematical
tool, specially for non-specialists; that is very good because many polynomials arise in
physics, chemistry and engineering. The present work concerns with these topics and it is
organized as follows: in Section 2 we mention the Appell method ([1]); in Section 3 we provide
the determinantal approach ([17]) and prove the equivalence with other definitions; in Section
4 classical and non-classical examples are given; in Section 5, by using elementary tools of
linear algebra, general properties of Appell polynomials are provided; in Section 6 we mention
Appell polynomials of second kind ([19, 20]) and, in Section 7 two classical examples are given;
in Section 8 we provide an application to general linear interpolation problem([21]), giving, in
Section 9, some examples; in Section 10 the Yang and Youn approach ([18]) is sketched; finally,
in Section 11 conclusions close the work.

2. The Appell approach
Let {An(x)}n be a sequence of n-degree polynomials satisfying the differential relation (2).
Then we have

Remark 1. There is a one-to-one correspondence of the set of such sequences {An(x)}n and the set of
numerical sequences {αn}n , α0 �= 0 given by the explicit representation

An (x) = αn +

(
n
1

)
αn−1x +

(
n
2

)
αn−2x2 + · · ·+ α0xn, n = 0, 1, ... (3)

Equation (3), in particular, shows explicitly that for each n ≥ 1 the polynomial An (x) is
completely determined by An−1 (x) and by the choice of the constant of integration αn.

Remark 2. Given the formal power series

a (h) = α0 +
h
1!

α1 +
h2

2!
α2 + · · ·+ hn

n!
αn + · · · , α0 �= 0, (4)

with αi i = 0, 1, ... real coefficients, the sequence of polynomials, An(x), determined by the power series
expansion of the product a (h) ehx, i.e.

a (h) ehx = A0 (x) +
h
1!

A1 (x) +
h2

2!
A2 (x) + · · ·+ hn

n!
An (x) + · · · , (5)

satisfies (2).

The function a (h) is said, by Appell, ’generating function’ of the sequence {An(x)}n.

Appell also noticed various examples of sequences of polynomials verifying (2).

He also considered ([1]) an application of these polynomial sequences to linear differential
equations, which is out of this context.

22 Linear Algebra – Theorems and Applications



2 Will-be-set-by-IN-TECH

special case of Appell polynomial sequences. Costabile ([15, 16]) also gave a new form of
Bernoulli polynomials, called determinantal form, and later these ideas have been extended
to Appell polynomial sequences. In fact, in 2010, Costabile and Longo ([17]) proposed an
algebraic and elementary approach to Appell polynomial sequences. At the same time, Yang
and Youn ([18]) also gave an algebraic approach, but with different methods. The approach
to Appell polynomial sequences via linear algebra is an easily comprehensible mathematical
tool, specially for non-specialists; that is very good because many polynomials arise in
physics, chemistry and engineering. The present work concerns with these topics and it is
organized as follows: in Section 2 we mention the Appell method ([1]); in Section 3 we provide
the determinantal approach ([17]) and prove the equivalence with other definitions; in Section
4 classical and non-classical examples are given; in Section 5, by using elementary tools of
linear algebra, general properties of Appell polynomials are provided; in Section 6 we mention
Appell polynomials of second kind ([19, 20]) and, in Section 7 two classical examples are given;
in Section 8 we provide an application to general linear interpolation problem([21]), giving, in
Section 9, some examples; in Section 10 the Yang and Youn approach ([18]) is sketched; finally,
in Section 11 conclusions close the work.

2. The Appell approach
Let {An(x)}n be a sequence of n-degree polynomials satisfying the differential relation (2).
Then we have

Remark 1. There is a one-to-one correspondence of the set of such sequences {An(x)}n and the set of
numerical sequences {αn}n , α0 �= 0 given by the explicit representation

An (x) = αn +

(
n
1

)
αn−1x +

(
n
2

)
αn−2x2 + · · ·+ α0xn, n = 0, 1, ... (3)

Equation (3), in particular, shows explicitly that for each n ≥ 1 the polynomial An (x) is
completely determined by An−1 (x) and by the choice of the constant of integration αn.

Remark 2. Given the formal power series

a (h) = α0 +
h
1!

α1 +
h2

2!
α2 + · · ·+ hn

n!
αn + · · · , α0 �= 0, (4)

with αi i = 0, 1, ... real coefficients, the sequence of polynomials, An(x), determined by the power series
expansion of the product a (h) ehx, i.e.

a (h) ehx = A0 (x) +
h
1!

A1 (x) +
h2

2!
A2 (x) + · · ·+ hn

n!
An (x) + · · · , (5)

satisfies (2).

The function a (h) is said, by Appell, ’generating function’ of the sequence {An(x)}n.

Appell also noticed various examples of sequences of polynomials verifying (2).

He also considered ([1]) an application of these polynomial sequences to linear differential
equations, which is out of this context.

22 Linear Algebra – Theorems and Applications Algebraic Theory of Appell Polynomials with Application to General Linear Interpolation Problem 3

3. The determinantal approach

Let be βi ∈ R, i = 0, 1, ..., with β0 �= 0.

We give the following

Definition 1. The polynomial sequence defined by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0 (x) = 1
β0

,

An (x) = (−1)n

(β0)
n+1

�����������������

1 x x2 · · · · · · xn−1 xn

β0 β1 β2 · · · · · · βn−1 βn

0 β0 (2
1)β1 · · · · · · (n−1

1 )βn−2 (n
1)βn−1

0 0 β0 · · · · · · (n−1
2 )βn−3 (n

2)βn−2
...

. . .
...

...
...

. . .
...

...
0 · · · · · · · · · 0 β0 ( n

n−1)β1

�����������������

, n = 1, 2, ...
(6)

is called Appell polynomial sequence for βi.

Then we have

Theorem 1. If An (x) is the Appell polynomial sequence for βi the differential relation (2) holds.

Proof. Using the properties of linearity we can differentiate the determinant (6), expand the
resulting determinant with respect to the first column and recognize the factor An−1 (x) after
multiplication of the i-th row by i − 1, i = 2, ..., n and j-th column by 1

j , j = 1, ..., n.

Theorem 2. If An (x) is the Appell polynomial sequence for βi we have the equality (3) with

α0 =
1
β0

, (7)

αi =
(−1)i

(β0)
i+1

���������������������

β1 β2 · · · · · · βi−1 βi

β0 (2
1)β1 · · · · · · (i−1

1 )βi−2 ( i
1)βi−1

0 β0 · · · · · · (i−1
2 )βi−3 ( i

2)βi−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · 0 β0 ( i
i−1)β1

���������������������

=

= − 1
β0

i−1

∑
k=0

�
i
k

�
βi−kαk, i = 1, 2, ..., n. (8)
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Proof. From (6), by expanding the determinant An (x) with respect to the first row, we obtain
the (3) with αi given by (7) and the determinantal form in (8); this is a determinant of an upper
Hessenberg matrix of order i ([16]), then setting αi = (−1)i (β0)

i+1 αi for i = 1, 2, ..., n, we
have

αi =
i−1

∑
k=0

(−1)i−k−1 hk+1,iqk (i) αk, (9)

where:

hl,m =

⎧
⎨
⎩

βm for l = 1,
( m

l−1)βm−l+1 for 1 < l ≤ m + 1,
0 for l > m + 1,

l, m = 1, 2, ..., i, (10)

qk (i) =
i

∏
j=k+2

hj,j−1 = (β0)
i−k−1 , k = 0, 1, ..., i − 2, (11)

qi−1 (i) = 1. (12)

By virtue of the previous setting, (9) implies

αi =
i−2

∑
k=0

(−1)i−k−1
�

i
k

�
βi−k (β0)

i−k−1 αk +

�
i

i − 1

�
β1αi−1 =

= (−1)i (β0)
i+1

�
− 1

β0

i−1

∑
k=0

�
i
k

�
βi−kαk

�
,

and the proof is concluded.

Remark 3. We note that (7) and (8) are equivalent to

i

∑
k=0

�
i
k

�
βi−kαk =

�
1 i = 0
0 i > 0

(13)

and that for each sequence of Appell polynomials there exist two sequences of numbers αi and βi related
by (13).

Corollary 1. If An (x) is the Appell polynomial sequence for βi we have

An (x) =
n

∑
j=0

�
n
j

�
An−j (0) xj, n = 0, 1, ... (14)

Proof. Follows from Theorem 2 being

Ai (0) = αi, i = 0, 1, ..., n. (15)

Remark 4. For computation we can observe that αn is a n-order determinant of a particular upper
Hessenberg form and it’s known that the algorithm of Gaussian elimination without pivoting for
computing the determinant of an upper Hessenberg matrix is stable ([22, p. 27]).
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Theorem 3. If a(h) is the function defined in (4) and An (x) is the polynomial sequence defined by
(5), setting ⎧

⎪⎪⎨
⎪⎪⎩

β0 =
1
α0

,

βn = − 1
α0

�
n

∑
k=1

�
n
k

�
αkβn−k

�
, n = 1, 2, ...,

(16)

we have that An(x) satisfies the (6), i.e. An(x) is the Appell polynomial sequence for βi .

Proof. Let be

b(h) = β0 +
h
1!

β1 +
h2

2!
β2 + · · ·+ hn

n!
βn + · · · (17)

with βn as in (16). Then we have a (h) b (h) = 1, where the product is intended in the Cauchy
sense, i.e.:

a (h) b (h) =
∞

∑
n=0

n

∑
k=0

�
n
k

�
αkβn−k

hn

n!
.

Let us multiply both hand sides of equation

a(h)ehx =
∞

∑
n=0

An (x)
hn

n!
(18)

for
1

a (h)
and, in the same equation, replace functions ehx and

1
a (h)

by their Taylor series

expansion at the origin; then (18) becomes

∞

∑
n=0

xnhn

n!
=

∞

∑
n=0

An (x)
hn

n!

∞

∑
n=0

hn

n!
βn. (19)

By multiplying the series on the left hand side of (19) according to the Cauchy-product
rules, previous equality leads to the following system of infinite equations in the unknown
An (x) , n = 0, 1, ...

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0 (x) β0 = 1,

A0 (x) β1 + A1 (x) β0 = x,

A0 (x) β2 + (2
1)A1 (x) β1 + A2 (x) β0 = x2,

...

A0 (x) βn + (n
1)A1 (x) βn−1 + ... + An (x) β0 = xn,

...

(20)

From the first one of (20) we obtain the first one of (6). Moreover, the special form of the
previous system (lower triangular) allows us to work out the unknown An (x) operating with
the first n + 1 equations, only by applying the Cramer rule:
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An (x) = 1
(β0)

n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 0 0 · · · 0 1

β1 β0 0 · · · 0 x

β2 (2
1)β1 β0 · · · 0 x2

...
. . .

...

βn−1 (n−1
1 )βn−2 · · · · · · β0 xn−1

βn (n
1)βn−1 · · · · · · ( n

n−1)β1 xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By transposition of the previous, we have

An (x) =
1

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β1 β2 · · · βn−1 βn

0 β0 (2
1)β1 · · · (n−1

1 )βn−2 (n
1)βn−1

0 0 β0
...

...
. . .

...
0 0 0 · · · β0 ( n

n−1)β1
1 x x2 · · · xn−1 xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, ..., (21)

that is exactly the second one of (6) after n circular row exchanges: more precisely, the i-th row
moves to the (i + 1)-th position for i = 1, . . . , n − 1, the n-th row goes to the first position.

Definition 2. The function a (h) ehx, as in (4) and (5), is said ’generating function’ of the Appell
polynomial sequence An (x) for βi .

Theorems 1, 2, 3 concur to assert the validity of following

Theorem 4 (Circular). If An (x) is the Appell polynomial sequence for βi we have

(6) ⇒ (2) ⇒ (3) ⇒ (5) ⇒ (6).

Proof.

(6)⇒(2): Follows from Theorem 1.

(2)⇒(3): Follows from Theorem 2, or more simply by direct integration of the differential
equation (2).

(3 )⇒(5): Follows ordering the Cauchy product of the developments a(h) and ehx with
respect to the powers of h and recognizing polynomials An(x), expressed in form (3), as
coefficients of hn

n! .

(5)⇒(6): Follows from Theorem 3.

Remark 5. In virtue of the Theorem 4, any of the relations (2), (3), (5), (6) can be assumed as definition
of Appell polynomial sequences.
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4. Examples of Appell polynomial sequences

The following are classical examples of Appell polynomial sequences.

a) Bernoulli polynomials ([17, 23]):

βi =
1

i + 1
, i = 0, 1, ..., (22)

a(h) =
h

eh − 1
; (23)

b) Euler polynomials ([17, 23]):

β0 = 1, βi =
1
2

, i = 1, 2, ..., (24)

a(h) =
2

eh + 1
; (25)

c) Normalized Hermite polynomials ([17, 24]):

βi =
1√
π

∫ +∞

−∞
e−x2

xidx =

{
0 for i odd

(i−1)(i−3)·····3·1
2

i
2

for i even , i = 0, 1, ..., (26)

a(h) = e−
h2
4 ; (27)

d) Laguerre polynomials ([17, 24]):

βi =
∫ +∞

0
e−xxidx = Γ (i + 1) = i!, i = 0, 1, ..., (28)

a(h) = 1 − h; (29)

The following are non-classical examples of Appell polynomial sequences.

e) Generalized Bernoulli polynomials
• with Jacobi weight ([17]):

βi =
∫ 1

0
(1 − x)αxβxidx =

Γ (α + 1) Γ (β + i + 1)
Γ (α + β + i + 2)

, α, β > −1, i = 0, 1, ..., (30)

a(h) =
1∫ 1

0 (1 − x)αxβehxdx
; (31)

• of order k ([11]):

βi =

(
1

i + 1

)k
, k integer, i = 0, 1, ..., (32)

a(h) =
(

h
eh − 1

)k
; (33)

27Algebraic Theory of Appell Polynomials with Application to General Linear Interpolation Problem
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f) Central Bernoulli polynomials ([25]):

β2i =
1

i + 1
,

β2i+1 = 0, i = 0, 1, ..., (34)

a(h) =
h

sinh(h)
; (35)

g) Generalized Euler polynomials ([17]):

β0 = 1,

βi =
w1

w1 + w2
, w1, w2 > 0, i = 1, 2, ..., (36)

a(h) =
w1 + w2

w1eh + w2
; (37)

h) Generalized Hermite polynomials ([17]):

βi =
1√
π

∫ +∞

−∞
e−|x|α xidx

=

{
0 for i odd

2
α
√

π
Γ
(

i+1
α

)
for i even

,
i = 0, 1, ...,
α > 0,

(38)

a(h) =
√

π∫ ∞
−∞ e−|x|α ehxdx

; (39)

i) Generalized Laguerre polynomials ([17]):

βi =
∫ +∞

0
e−αxxidx

=
Γ (i + 1)

αi+1 =
i!

αi+1 , α > 0, i = 0, 1, ..., (40)

a(h) = α − h. (41)

5. General properties of Appell polynomials

By elementary tools of linear algebra we can prove the general properties of Appell
polynomials.

Let An (x), n = 0, 1, ..., be a polynomial sequence and βi ∈ R, i = 0, 1, ..., with β0 �= 0.

Theorem 5 (Recurrence). An (x) is the Appell polynomial sequence for βi if and only if

An(x) =
1
β0

(
xn −

n−1

∑
k=0

(
n
k

)
βn−k Ak (x)

)
, n = 1, 2, ... (42)

28 Linear Algebra – Theorems and Applications
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Proof. Follows observing that the following holds:

An (x) = (−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · · · · xn−1 xn

β0 β1 β2 · · · · · · βn−1 βn

0 β0 (2
1)β1 · · · · · · (n−1

1 )βn−2 (n
1)βn−1

0 0 β0 · · · · · · (n−1
2 )βn−3 (n

2)βn−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 β0 ( n
n−1)β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

=
1
β0

(
xn −

n−1

∑
k=0

(
n
k

)
βn−k Ak (x)

)
, n = 1, 2, ... (43)

In fact, if An (x) is the Appell polynomial sequence for βi, from (6), we can observe that An(x)
is a determinant of an upper Hessenberg matrix of order n + 1 ([16]) and, proceeding as in
Theorem 2, we can obtain the (43).

Corollary 2. If An (x) is the Appell polynomial sequence for βi then

xn =
n

∑
k=0

(
n
k

)
βn−k Ak (x) , n = 0, 1, ... (44)

Proof. Follows from (42).

Corollary 3. Let Pn be the space of polynomials of degree ≤ n and {An(x)}n be an Appell polynomial
sequence, then {An(x)}n is a basis for Pn.

Proof. If we have

Pn(x) =
n

∑
k=0

an,kxk, an,k ∈ R, (45)

then, by Corollary 2, we get

Pn(x) =
n

∑
k=0

an,k

k

∑
j=0

(
k
j

)
βk−j Aj (x) =

n

∑
k=0

cn,k Ak(x),

where

cn,k =
n−k

∑
j=0

(
k + j

k

)
ak+jβ j. (46)

Remark 6. An alternative recurrence relation can be determined from (5) after differentiation with
respect to h ([18, 26]).
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Let be βi, γi ∈ R, i = 0, 1, ..., with β0, γ0 �= 0.
Let us consider the Appell polynomial sequences An (x) and Bn (x) , n = 0, 1, ..., for βi and γi,
respectively, and indicate with (AB)n (x) the polynomial that is obtained replacing in An (x)
the powers x0, x1, ..., xn, respectively, with the polynomials B0 (x) , B1 (x) , ..., Bn (x) . Then we
have

Theorem 6. The sequences

i) λAn (x) + μBn (x) , λ, μ ∈ R,

ii) (AB)n (x)

are sequences of Appell polynomials again.

Proof. i) Follows from the property of linearity of determinant.

ii) Expanding the determinant (AB)n (x) with respect to the first row we obtain

(AB)n (x) =
(−1)n

(β0)
n+1

n

∑
j=0

(−1)j (β0)
j
(

n
j

)
αn−jBj (x) =

=
n

∑
j=0

(−1)n−j

(β0)
n−j+1

(
n
j

)
αn−jBj (x) , (47)

where

α0 = 1,

αi =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2 · · · · · · βi−1 βi
β0 (2

1)β1 · · · · · · (i−1
1 )βi−2 ( i

1)βi−1
0 β0 · · · · · · (i−1

2 )βi−3 ( i
2)βi−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · 0 β0 ( i
i−1)β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, i = 1, 2, ..., n.

We observe that

Ai (0) =
(−1)i

(β0)
i+1 αi, i = 1, 2, ..., n

and hence (47) becomes

(AB)n (x) =
n

∑
j=0

(
n
j

)
An−j (0) Bj (x) . (48)

Differentiating both hand sides of (48) and since Bj (x) is a sequence of Appell polynomials,
we deduce

((AB)n (x))� = n (AB)n−1 (x) . (49)
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Let us, now, introduce the Appell vector.

Definition 3. If An (x) is the Appell polynomial sequence for βi the vector of functions An (x) =
[A0(x), ..., An(x)]T is called Appell vector for βi .

Then we have

Theorem 7 (Matrix form). Let An (x) be a vector of polynomial functions. Then An (x) is the Appell
vector for βi if and only if, putting

(M)i,j =

{
(i

j)βi−j i ≥ j
0 otherwise

, i, j = 0, ..., n, (50)

and X(x) = [1, x, ..., xn]T the following relation holds

X(x) = MAn (x) (51)

or, equivalently,
An (x) =

(
M−1

)
X(x), (52)

being M−1 the inverse matrix of M.

Proof. If An (x) is the Appell vector for βi the result easily follows from Corollary 2.

Vice versa, observing that the matrix M defined by (50) is invertible, setting

(
M−1

)
i,j
=

{
(i

j)αi−j i ≥ j
0 otherwise

, i, j = 0, ..., n, (53)

we have the (52) and therefore the (3) and, being the coefficients αk and βk related by (13), we
have that An(x) is the Appell polynomial sequence for βi.

Theorem 8 (Connection constants). Let An(x) and Bn(x) be the Appell vectors for βi and γi ,
respectively. Then

An(x) = CBn(x), (54)

where

(C)i,j =

{
(i

j)ci−j i ≥ j
0 otherwise

, i, j = 0, ..., n. (55)

with

cn =
n

∑
k=0

(
n
k

)
αn−kγk. (56)

Proof. From Theorem 7 we have
X(x) = MAn (x)

with M as in (50) or, equivalently,

An (x) =
(

M−1
)

X(x),
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with M−1 as in (53).

Always from Theorem 7 we get
X(x) = NBn (x)

with

(N)i,j =

�
(i

j)γi−j i ≥ j
0 otherwise

, i, j = 0, ..., n.

Then
An (x) = M−1NBn (x) ,

from which, setting C = M−1N, we have the thesis.

Theorem 9 (Inverse relations). Let An (x) be the Appell polynomial sequence for βi then the
following are inverse relations:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

yn =
n

∑
k=0

�
n
k

�
βn−kxk

xn =
n

∑
k=0

�
n
k

�
An−k(0)yk.

(57)

Proof. Let us remember that
Ak(0) = αk,

where the coefficients αk and βk are related by (13).

Moreover, setting yn = [y0, ..., yn]T and xn = [x0, ..., xn]T , from (57) we have
�

yn = M1xn

xn = M2yn

with

(M1)i,j =

�
(i

j)βi−j i ≥ j
0 otherwise

, i, j = 0, ..., n, (58)

(M2)i,j =

�
(i

j)αi−j i ≥ j
0 otherwise

, i, j = 0, ..., n, (59)

and, from (13) we get
M1 M2 = In+1,

i.e. (57) are inverse relations.

Theorem 10 (Inverse relation between two Appell polynomial sequences). Let An(x) and
Bn(x) be the Appell vectors for βi and γi , respectively. Then the following are inverse relations:

�
An(x) = CBn(x)
Bn(x) = �CAn(x)

(60)
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with

(C)i,j =

{
(i

j)ci−j i ≥ j
0 otherwise

,
(

C̃
)

i,j
=

{
(i

j)c̃i−j i ≥ j
0 otherwise

, i, j = 0, ..., n, (61)

cn =
n

∑
k=0

(
n
k

)
An−k(0)γk, c̃n =

n

∑
k=0

(
n
k

)
Bn−k(0)βk. (62)

Proof. Follows from Theorem 8, after observing that

n

∑
k=0

(
n
k

)
cn−kc̃k =

{
1 n = 0
0 n > 0

(63)

and therefore
CC̃ = In+1.

Theorem 11 (Binomial identity). If An (x) is the Appell polynomial sequence for βi we have

An (x + y) =
n

∑
i=0

(
n
i

)
Ai (x) yn−i, n = 0, 1, ... (64)

Proof. Starting by the Definition 1 and using the identity

(x + y)i =
i

∑
k=0

(
i
k

)
ykxi−k, (65)

we infer

An (x + y) = (−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 (x + y)1 · · · (x + y)n−1 (x + y)n

β0 β1 · · · βn−1 βn

0
. . .

...
...

. . .
...

0 · · · · · · β0 β1(
n

n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

=
n

∑
i=0

yi (−1)n−i

(β0)
n−i+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i
i) (i+1

i )x1 (i+2
i )x2 · · · (n−1

i )xn−i−1 (n
i )xn−i

β0 β1(
i+1

i ) β2(
i+2

i ) · · · βn−i−1(
n−1

i ) βn−i(
n
i )

0 β0 β1(
i+2
i+1) · · · βn−i−2(

n−1
i+1) βn−i−1(

n
i+1)

... β0
...

...
. . .

...

0 · · · · · · 0 β0 β1(
n

n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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We divide, now, each j−th column, j = 2, ..., n − i + 1, for (i+j−1
i ) and multiply each h−th row,

h = 3, ..., n − i + 1, for (i+h−2
i ). Thus we finally obtain

An (x + y) =

=
n

∑
i=0

(i+1
i ) · · · (n

i )

(i+1
i ) · · · (n−1

i )
yi (−1)n−i

(β0)
n−i+1

���������������

1 x1 x2 · · · xn−i−1 xn−i

β0 β1 β2 · · · βn−i−1 βn−i
0 β0 β1(

2
1) · · · βn−i−2(

n−i−1
1 ) βn−i−1(

n−i
1 )

... β0
...

...
. . .

...
0 ... ... 0 β0 β1(

n−i
n−i−1)

���������������

=

=
n

∑
i=0

�
n
i

�
An−i (x) yi =

n

∑
i=0

�
n
i

�
Ai (x) yn−i.

Theorem 12 (Generalized Appell identity). Let An(x) and Bn(x) be the Appell polynomial
sequences for βi and γi, respectively. Then, if Cn(x) is the Appell polynomial sequence for δi with

⎧⎪⎨
⎪⎩

δ0 = 1
C0(0)

,

δi = − 1
C0(0)

i
∑

k=1
( i

k)δi−kCk(0), i = 1, ...,
(66)

and

Ci(0) =
i

∑
j=0

�
i
j

�
Bi−j(0)Aj(0), (67)

where Ai(0) and Bi(0) are related to βi and γi , respectively, by relations similar to (66), we have

Cn(y + z) =
n

∑
k=0

�
n
k

�
Ak(y)Bn−k(z). (68)

Proof. Starting from (3) we have

Cn(y + z) =
n

∑
k=0

�
n
k

�
Cn−k(0)(y + z)k. (69)

Then, applying (67) and the well-known classical binomial identity, after some calculation, we
obtain the thesis.

Theorem 13 (Combinatorial identities). Let An(x) and Bn(x) be the Appell polynomial sequences
for βi and γi, respectively. Then the following relations holds:
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n

∑
k=0

(
n
k

)
Ak(x)Bn−k(−x) =

n

∑
k=0

(
n
k

)
Ak(0)Bn−k(0), (70)

n

∑
k=0

(
n
k

)
Ak(x)Bn−k(z) =

n

∑
k=0

(
n
k

)
Ak(x + z)Bn−k(0). (71)

Proof. If Cn(x) is the Appell polynomial sequence for δi defined as in (66), from the
generalized Appell identity, we have

n

∑
k=0

(
n
k

)
Ak(x)Bn−k(−x) = Cn(0) =

n

∑
k=0

(
n
k

)
Ak(0)Bn−k(0)

and
n

∑
k=0

(
n
k

)
Ak(x)Bn−k(z) = Cn(x + z) =

n

∑
k=0

(
n
k

)
Ak(x + z)Bn−k(0).

Theorem 14 (Forward difference). If An (x) is the Appell polynomial sequence for βi we have

ΔAn (x) ≡ An (x + 1)− An (x) =
n−1

∑
i=0

(
n
i

)
Ai (x) , n = 0, 1, ... (72)

Proof. The desired result follows from (64) with y = 1.

Theorem 15 (Multiplication Theorem). Let An(x) be the Appell vector for βi .

The following identities hold:

An (mx) = B(x)An (x) n = 0, 1, ..., m = 1, 2, ..., (73)

An (mx) = M−1DX(x) n = 0, 1, ..., m = 1, 2, ..., (74)

where

(B(x))i,j =

{
(i

j)(m − 1)i−jxi−j i ≥ j
0 otherwise

, i, j = 0, ..., n, (75)

D = diag[1, m, ..., mn] and M−1 defined as in (53).

Proof. The (73) follows from (64) setting y = x (m − 1). In fact we get

An (mx) =
n

∑
i=0

(
n
i

)
Ai (x) (m − 1)n−i xn−i. (76)

The (74) follows from Theorem 7. In fact we get

An(mx) = M−1X(mx) = M−1DX(x), (77)
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and

An (mx) =
n

∑
i=0

(
n
i

)
αn−imixi. (78)

Theorem 16 (Differential equation). If An (x) is the Appell polynomial sequence for βi then An (x)
satisfies the linear differential equation:

βn

n!
y(n)(x) +

βn−1
(n − 1)!

y(n−1)(x) + ... +
β2
2!

y(2)(x) + β1y(1)(x) + β0y(x) = xn (79)

Proof. From Theorem 5 we have

An+1(x) =
1
β0

(
xn+1 −

n

∑
k=0

(
n + 1
k + 1

)
βk+1 An−k(x)

)
. (80)

From Theorem 1 we find that

A�
n+1(x) = (n + 1)An(x), and An−k(x) =

A(k)
n (x)

n(n − 1)...(n − k + 1)
, (81)

and replacing An−k(x) in the (80) we obtain

An+1(x) =
1
β0

(
xn+1 − (n + 1)

n

∑
k=0

βk+1
A(k)

n (x)
(k + 1)!

)
. (82)

Differentiating both hand sides of the last one and replacing A�
n+1(x) with (n + 1)An(x), after

some calculation we obtain the thesis.

Remark 7. An alternative differential equation for Appell polynomial sequences can be determined by
the recurrence relation referred to in Remark 6 ([18, 26]).

6. Appell polynomial sequences of second kind

Let f : I ⊂ R → R and Δ be the finite difference operator ([23]), i.e.:

Δ[ f ](x) = f (x + 1)− f (x), (83)

we define the finite difference operator of order i, with i ∈ N, as

Δi[ f ](x) = Δ(Δi−1[ f ](x)) =
i

∑
j=0

(−1)i−j
(

i
j

)
f (x + j), (84)

meaning Δ0 = I and Δ1 = Δ, where I is the identity operator.
Let the sequence of falling factorial defined by

{
(x)0 = 1,
(x)n = x (x − 1) (x − 2) · · · (x − n + 1) , n = 1, 2, ...,

(85)
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we give the following

Definition 4. Let ßi ∈ R, i = 0, 1, ..., with ß0 �= 0. The polynomial sequence
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0 (x) = 1
ß0

,

An (x) = (−1)n

(ß0)
n+1

�����������������

1 (x)1 (x)2 · · · · · · (x)n−1 (x)n
ß0 ß1 ß2 · · · · · · ßn−1 ßn
0 ß0 (2

1)ß1 · · · · · · (n−1
1 )ßn−2 (n

1)ßn−1
0 0 ß0 · · · · · · (n−1

2 )ßn−3 (n
2)ßn−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 ß0 ( n
n−1)ß1

�����������������

, n = 1, 2, ...
(86)

is called Appell polynomial sequence of second kind.

Then, we have

Theorem 17. For Appell polynomial sequences of second kind we get

ΔAn (x) = nAn−1 (x) n = 1, 2, ... (87)

Proof. By the well-known relation ([23])

Δ (x)n = n (x)n−1 , n = 1, 2, ..., (88)

applying the operator Δ to the definition (86) and using the properties of linearity of Δ we
have

ΔAn (x) =
(−1)n

(ß0)
n+1

����������������������

Δ1 Δ (x)1 Δ (x)2 · · · · · · Δ (x)n−1 Δ (x)n

ß0 ß1 ß2 · · · · · · ßn−1 ßn

0 ß0 (2
1)ß1 · · · · · · (n−1

1 )ßn−2 (n
1)ßn−1

0 0 ß0 · · · · · · (n−1
2 )ßn−3 (n

2)ßn−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 ß0 ( n
n−1)ß1

����������������������

, n = 1, 2, ... (89)

We can expand the determinant in (89) with respect to the first column and, after multiplying
the i-th row by i − 1, i = 2, ..., n and the j-th column by 1

j , j = 1, ..., n, we can recognize the
factor An−1 (x).

We can observe that the structure of the determinant in (86) is similar to that one of the
determinant in (6). In virtue of this it is possible to obtain a dual theory of Appell polynomials
of first kind, in the sense that similar properties can be proven ([19]).
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For example, the generating function is

H(x, h) = a(h)(1 + h)x, (90)

where a(h) is an invertible formal series of power.

7. Examples of Appell polynomial sequences of second kind

The following are classical examples of Appell polynomial sequences of second kind.

a) Bernoulli polynomials of second kind ([19, 23]):

ßi =
(−1)i

i + 1
i!, i = 0, 1, ..., (91)

H(x, h) =
h(1 + h)x

ln(1 + h)
; (92)

b) Boole polynomials ([19, 23]):

ßi =

⎧⎨
⎩

1, i = 0
1
2 , i = 1
0, i = 2, ...

(93)

H(x, h) =
2(1 + h)x

2 + h
. (94)

8. An application to general linear interpolation problem

Let X be the linear space of real functions defined in the interval [0, 1] continuous and with
continuous derivatives of all necessary orders. Let L be a linear functional on X such that
L(1) �= 0. If in (6) and respectively in (86) we set

βi = L(xi), ßi = L((x)i), i = 0, 1, ..., (95)

An(x) and An(x) will be said Appell polynomial sequences of first or of second kind related
to the functional L and denoted by AL,n(x) and AL,n(x), respectively.

Remark 8. The generating function of the sequence AL,n(x) is

G(x, h) =
exh

Lx(exh)
, (96)

and for AL,n(x) is

H(x, h) =
(1 + h)x

Lx((1 + h)x)
, (97)

where Lx means that the functional L is applied to the argument as a function of x.

Proof. For AL,n(x) if G(x, h) = a(h)exh with
1

a(h)
=

∞
∑

i=0
βi

hi

i! we have
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Proof. For AL,n(x) if G(x, h) = a(h)exh with
1

a(h)
=

∞
∑

i=0
βi

hi

i! we have
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G(x, t) =
exh

1
a(h)

=
exh

∞
∑

i=0
βi

hi

i!

=
exh

∞
∑

i=0
L(xi) hi

i!

=
exh

L
(

∞
∑

i=0
xi hi

i!

) =
exh

Lx(exh)
.

For AL,n(x), the proof similarly follows.

Then, we have

Theorem 18. Let ωi ∈ R, i = 0, ..., n, the polynomials

Pn(x) =
n

∑
i=0

ωi
i!

AL,i(x), (98)

P∗
n (x) =

n

∑
i=0

ωi
i!
AL,i(x) (99)

are the unique polynomials of degree less than or equal to n, such that

L(P(i)
n ) = i!ωi, i = 0, ..., n, (100)

L(ΔiP∗
n ) = i!ωi, i = 0, ..., n. (101)

Proof. The proof follows observing that, by the hypothesis on functional L there exists a
unique polynomial of degree ≤ n verifying (100) and , respectively, (101); moreover from
the properties of AL,i(x) and AL,i(x), we have

L(A(j)
L,i(x)) = i(i − 1)...(i − j + 1)L(AL,i−j(x)) = j!

(
i
j

)
δij, (102)

L(ΔiAL,i(x)) = i(i − 1)...(i − j + 1)L(AL,i−j(x)) = j!
(

i
j

)
δij, (103)

where δij is the Kronecker symbol.

From (102) and (103) it is easy to prove that the polynomials (98) and (99) verify (100) and
(101), respectively.

Remark 9. For every linear functional L on X, {AL,i(x)}, {AL,i(x)}, i = 0, ..., n, are basis for Pn
and, ∀Pn(x) ∈ Pn, we have

Pn(x) =
n

∑
i=0

L(P(i)
n )

i!
AL,i(x), (104)

Pn(x) =
n

∑
i=0

L(ΔiPn)

i!
AL,i(x). (105)

Let us consider a function f ∈ X. Then we have the following

39Algebraic Theory of Appell Polynomials with Application to General Linear Interpolation Problem



20 Will-be-set-by-IN-TECH

Theorem 19. The polynomials

PL,n[ f ](x) =
n

∑
i=0

L( f (i))
i!

AL,i(x), (106)

P∗
L,n[ f ](x) =

n

∑
i=0

L(Δi f )
i!

AL,i(x) (107)

are the unique polynomial of degree ≤ n such that

L(PL,n[ f ](i)) = L( f (i)), i = 0, ..., n,

L(ΔiP∗
L,n[ f ]) = L(Δi f ), i = 0, ..., n.

Proof. Setting ωi =
L( f (i))

i! , and respectively, ωi =
L(Δi f )

i! , i = 0, ..., n, the result follows from
Theorem 18.

Definition 5. The polynomials (106) and (107) are called Appell interpolation polynomial for f of first
and of second kind, respectively.

Now it is interesting to consider the estimation of the remainders

RL,n[ f ](x) = f (x)− PL,n[ f ](x), ∀x ∈ [0, 1], (108)

R∗
L,n[ f ](x) = f (x)− P∗

L,n[ f ](x), ∀x ∈ [0, 1]. (109)

Remark 10. For any f ∈ Pn

RL,n[ f ](x) = 0, RL,n[xn+1] �= 0, ∀x ∈ [0, 1], (110)

R∗
L,n[ f ](x) = 0, R∗

L,n[(x)n+1] �= 0, ∀x ∈ [0, 1], (111)

i. e. the polynomial operators (106) and (107) are exact on Pn.

For a fixed x we may consider the remainder RL,n[ f ](x) and R∗
L,n[ f ](x) as linear functionals

which act on f and annihilate all elements of Pn. From Peano’s Theorem ([27, p. 69]) if a linear
functional has this property, then it must also have a simple representation in terms of f (n+1).
Therefore we have

Theorem 20. Let f ∈ Cn+1 [a, b] , the following relations hold

RL,n( f , x) =
1
n!

∫ 1

0
Kn(x, t) f (n+1) (t) dt, ∀x ∈ [0, 1] , (112)

R∗
L,n( f , x) =

1
n!

∫ 1

0
K∗

n(x, t) f (n+1) (t) dt, ∀x ∈ [0, 1] , (113)

where

Kn(x, t) = RL,n
[
(x − t)n

+

]
= (x − t)n

+ −
n

∑
i=0

(
n
i

)
L
(
(x − t)n−i

+

)
AL,i(x), (114)
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K∗
n(x, t) = R∗

L,n
[
(x − t)n

+

]
= (x − t)n

+ −
n

∑
i=0

L
(

Δi(x − t)n
+

)

i!
AL,i(x). (115)

Proof. After some calculation, the results follow by Remark 10 and Peano’s Theorem.

Remark 11 (Bounds). If f (n+1) ∈ Lp[0, 1] and Kn(x, t), K∗
n(x, t) ∈ Lq[0, 1] with 1

p + 1
q = 1 then

we apply the Hölder’s inequality so that

|RL,n[ f ](x)| ≤ 1
n!

(∫ 1

0
|Kn(x, t)|q dt

) 1
q
(∫ 1

0

∣∣∣ f (n+1) (t)
∣∣∣p

dt
) 1

p

,

∣∣R∗
L,n[ f ](x)

∣∣ ≤ 1
n!

(∫ 1

0
|K∗

n(x, t)|q dt
) 1

q
(∫ 1

0

∣∣∣ f (n+1) (t)
∣∣∣p

dt
) 1

p

.

The two most important cases are p = q = 2 and q = 1, p = ∞ :

i) for p = q = 2 we have the estimates

|RL,n[ f ](x)| ≤ σn ||| f ||| ,
∣∣R∗

L,n[ f ](x)
∣∣ ≤ σ∗

n ||| f ||| , (116)

where

(σn)
2 =

(
1
n!

)2 ∫ 1

0
(Kn(x, t))2 dt, (σ∗

n )
2 =

(
1
n!

)2 ∫ 1

0
(K∗

n(x, t))2 dt, (117)

and

||| f |||2 =
∫ 1

0

(
f (n+1) (t)

)2
dt; (118)

ii) for q = 1, p = ∞ we have that

|RL,n[ f ](x)| ≤ 1
n!

Mn+1

∫ 1

0
|Kn(x, t)| dt,

∣∣R∗
L,n[ f ](x)

∣∣ ≤ 1
n!

Mn+1

∫ 1

0
|K∗

n(x, t)| dt, (119)

where
Mn+1 = sup

a≤x≤b

∣∣∣ f (n+1) (x)
∣∣∣ . (120)

A further polynomial operator can be determined as follows:
for any fixed z ∈ [0, 1] we consider the polynomial

PL,n[ f ](x) ≡ f (z) + PL,n[ f ](x)− PL,n[ f ](z) = f (z) +
n

∑
i=1

L( f (i))
i!

(
AL,i(x)− AL,i(z)

)
, (121)

and, respectively,

P∗
L,n[ f ](x) ≡ f (z) + P∗

L,n[ f ](x)− P∗
L,n[ f ](z) = f (z) +

n

∑
i=1

L(Δi f )
i!

(AL,i(x)−AL,i(z)
)

. (122)
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Then we have the following

Theorem 21. The polynomials PL,n[ f ](x), P∗
L,n[ f ](x) are approximating polynomials of degree n for

f (x), i.e.:
∀x ∈ [0, 1] , f (x) = PL,n[ f ](x) + RL,n[ f ](x), (123)

f (x) = P∗
L,n[ f ](x) + R∗

L,n[ f ](x), (124)

where
RL,n[ f ](x) = RL,n[ f ](x)− RL,n[ f ](z), (125)

R∗
L,n[ f ](x) = R∗

L,n[ f ](x)− R∗
L,n[ f ](z), (126)

with
RL,n[xi] = 0, i = 0, .., n, RL,n[xn+1] �= 0, (127)

R∗
L,n[(x)i] = 0, i = 0, .., n, R∗

L,n[(x)n+1] �= 0. (128)

Proof. ∀x ∈ [0, 1] and for any fixed z ∈ [0, 1], from (108), we have

f (x)− f (z) = PL,n[ f ](x)− PL,n[ f ](z) + RL,n[ f ](x)− RL,n[ f ](z),

from which we get (123) and (125). The exactness of the polynomial PL,n[ f ](x) follows from
the exactness of the polynomial PL,n[ f ](x).

Proceeding in the same manner we can prove the result for the polynomial P∗
L,n[ f ](x).

Remark 12. The polynomials PL,n[ f ](x), P∗
L,n[ f ](x) satisfy the interpolation conditions

PL,n[ f ](z) = f (z), L(P(i)
L,n[ f ]) = L( f (i)), i = 1, ..., n, (129)

P∗
L,n[ f ](z) = f (z), L(ΔiP∗

L,n[ f ]) = L(Δi f ), i = 1, ..., n. (130)

9. Examples of Appell interpolation polynomials

a) Taylor interpolation and classical interpolation on equidistant points:
Assuming

L( f ) = f (x0), x0 ∈ [0, 1], (131)

the polynomials PL,n[ f ](x) and P∗
L,n[ f ](x) are, respectively, the Taylor interpolation

polynomial and the classical interpolation polynomial on equidistant points;

b) Bernoulli interpolation of first and of second kind:
• Bernoulli interpolation of first kind ([15, 21]):

Assuming

L( f ) =
∫ 1

0
f (x)dx, (132)

the interpolation polynomials PL,n[ f ](x) and PL,n[ f ](x) become

PL,n[ f ](x) =
∫ 1

0
f (x)dx +

n

∑
i=1

f (i−1)(1)− f (i−1)(0)
i!

Bi (x) , (133)
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PL,n[ f ](x) = f (0) +
n

∑
i=1

f (i−1)(1)− f (i−1)(0)
i!

(Bi (x)− Bi (0)) , (134)

where Bi(x) are the classical Bernoulli polynomials ([17, 23]);
• Bernoulli interpolation of second kind ([19]):

Assuming

L( f ) =
[

DΔ−1 f
]

x=0
, (135)

where Δ−1 denote the indefinite summation operator and is defined as the linear
operator inverse of the finite difference operator Δ, the interpolation polynomials
P∗

L,n[ f ](x) and P∗
L,n[ f ](x) become

P∗
L,n[ f ](x) = [Δ−1D f ]x=0 +

n−1

∑
i=0

f �(i)B I I
n,i (x) , (136)

P∗
L,n[ f ](x) = f (0) +

n−1

∑
i=0

f �(i)
(
B I I

n,i (x)−B I I
n,i (0)

)
, (137)

where

B I I
n,i(x) =

n−1

∑
j=i

(
j
i

)
(−1)j−i

(j + 1)!
BII

j+1 (x) , (138)

and BII
j (x) are the Bernoulli polynomials of second kind ([19]);

c) Euler and Boole interpolation:
• Euler interpolation ([21]):

Assuming

L( f ) =
f (0) + f (1)

2
, (139)

the interpolation polynomials PL,n[ f ](x) and PL,n[ f ](x) become

PL,n[ f ](x) =
f (0) + f (1)

2
+

n

∑
i=1

f (i)(0) + f (i)(1)
2i!

Ei (x) , (140)

PL,n[ f ](x) = f (0) +
n

∑
i=1

f (i)(0) + f (i)(1)
2i!

(Ei (x)− Ei (0)) ; (141)

• Boole interpolation ([19]):
Assuming

L( f ) = [M f ]x=0 , (142)

where M f is defined by

M f (x) =
f (x) + f (x + 1)

2
, (143)

the interpolation polynomials P∗
L,n[ f ](x) and P∗

L,n[ f ](x) become

P∗
L,n[ f ](x) =

f (0) + f (1)
2

E I I
n,0(x) +

n

∑
i=1

f (i) + f (i + 1)
2

E I I
n,i(x), (144)
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P∗
L,n[ f ](x) = f (0) +

n

∑
i=1

f (i) + f (i + 1)
2

�
E I I

n,i(x)− E I I
n,i(0)

�
, (145)

where

E I I
n,i(x) =

n

∑
j=i

�
j
i

�
(−1)j−i

j!
EII

j (x), (146)

and EII
j (x) are the Boole polynomials ([19]).

10. The algebraic approach of Yang and Youn

Yang and Youn ([18]) also proposed an algebraic approach to Appell polynomial sequences
but with different methods. In fact, they referred the Appell sequence, sn(x), to an invertible
analytic function g(t):

sn(x) =
�

dn

dt

�
1

g(t)
ext

��

t=0
, (147)

and called Appell vector for g(t) the vector

Sn(x) = [s0(x), ..., sn(x)]T . (148)

Then, they proved that

Sn(x) = Pn

�
1

g(t)

�

t=0
Wn

�
ext�

t=0 = Wn

�
1

g(t)
ext

�

t=0
, (149)

being Wn [ f (t)] =
�

f (t), f �(t), ..., f (n)(t)
�T

and Pn[ f (t)] the generalized Pascal functional

matrix of f (t) ([28]) defined by

(Pn[ f (t)])i,j =

�
(i

j) f (i−j)(t) i ≥ j
0 otherwise

, i, j = 0, ..., n. (150)

Expressing the (149) in matrix form we have

Sn(x) = SX(x), (151)

with

S =

⎡
⎢⎢⎢⎢⎢⎣

s00 0 0 · · · 0
s10 s11 0 · · · 0
s20 s21 s22 · · · 0
...

...
...

. . .
...

sn0 sn1 sn2 · · · snn

⎤
⎥⎥⎥⎥⎥⎦

, X(x) = [1, x, ..., xn]T , (152)

where

si,j =

�
i
j

���
1

g(t)

�(i−j)
�

t=0

, i = 0, ..., n, j = 0, ..., i. (153)

It is easy to see that the matrix S coincides with the matrix M−1 introduced in Section 5,
Theorem 7.
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11. Conclusions

We have presented an elementary algebraic approach to the theory of Appell polynomials.
Given a sequence of real numbers βi, i = 0, 1, ..., β0 �= 0, a polynomial sequence on
determinantal form, called of Appell, has been built. The equivalence of this approach with
others existing was proven and, almost always using elementary tools of linear algebra,
most important properties od Appell polynomials were proven too. A dual theory referred
to the finite difference operator Δ has been proposed. This theory has provided a class of
polynomials called Appell polynomials of second kind. Finally, given a linear functional L,
with L(1) �= 0, and defined

L(xi) = βi, (L((x)i) = ßi) , (154)

the linear interpolation problem

L(P(i)
n ) = i!ωi,

(
L(ΔiPn) = i!ωi

)
, Pn ∈ Pn, ωi ∈ R, (155)

has been considered and its solution has been expressed by the basis of Appell polynomials
related to the functional L by (154). This problem can be extended to appropriate real
functions, providing a new approximating polynomial, the remainder of which can be
estimated too. This theory is susceptible of extension to the more general class of Sheffer
polynomials and to the bi-dimensional case.
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1. Introduction

Consider a linear time invariant system

ẋ(t) = Ax(t) + Bu(t) (1)

to be identified with the pair of matrices (A, B) where A ∈ Fn×n, B ∈ Fn×m and F = R

or C the fields of the real or complex numbers. If state-feedback u(t) = Fx(t) + v(t) is
applied to system (1), Rosenbrock’s Theorem on pole assignment (see [14]) characterizes for
the closed-loop system

ẋ(t) = (A + BF)x(t) + Bv(t), (2)

the invariant factors of its state-space matrix A + BF. This result can be seen as the solution
of an inverse problem; that of finding a non-singular polynomial matrix with prescribed
invariant factors and left Wiener–Hopf factorization indices at infinity. To see this we recall
that the invariant factors form a complete system of invariants for the finite equivalence of
polynomial matrices (this equivalence relation will be revisited in Section 2) and it will be seen
in Section 4 that any polynomial matrix is left Wiener–Hopf equivalent at infinity to a diagonal
matrix Diag(sk1 , . . . , skm ), where the non-negative integers k1, . . . , km (that can be assumed
in non-increasing order) form a complete system of invariants for the left Wiener–Hopf
equivalence at infinity. Consider now the transfer function matrix G(s) = (sI − (A+ BF))−1B
of (2). This is a rational matrix that can be written as an irreducible matrix fraction description
G(s) = N(s)P(s)−1, where N(s) and P(s) are right coprime polynomial matrices. In the
terminology of [18], P(s) is a polynomial matrix representation of (2), concept that is closely
related to that of polynomial model introduced by Fuhrmann (see for example [8] and the
references therein). It turns out that all polynomial matrix representations of a system are right
equivalent (see [8, 18]), that is, if P1(s) and P2(s) are polynomial matrix representations of the
same system there exists a unimodular matrix U(s) such that P2(s) = P1(s)U(s). Therefore
all polynomial matrix representations of (2) have the same invariant factors, which are the
invariant factors of sIn − (A + BF) except for some trivial ones. Furthermore, all polynomial
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matrix representations also have the same left Wiener– Hopf factorization indices at infinity,
which are equal to the controllability indices of (2) and (1), because the controllability indices
are invariant under feedback. With all this in mind it is not hard to see that Rosenbrock’s
Theorem on pole assignment is equivalent to finding necessary and sufficient conditions for
the existence of a non-singular polynomial matrix with prescribed invariant factors and left
Wiener–Hopf factorization indices at infinity. This result will be precisely stated in Section 5
once all the elements that appear are properly defined. In addition, there is a similar result to
Rosenbrock’s Theorem on pole assignment but involving the infinite structure (see [1]).

Our goal is to generalize both results (the finite and infinite versions of Rosenbrock’s Theorem)
for rational matrices defined on arbitrary fields via local rings. This will be done in Section 5
and an extension to arbitrary fields of the concept of Wiener–Hopf equivalence will be needed.
This concept is very well established for complex valued rational matrix functions (see for
example [6, 10]). Originally it requires a closed contour, γ, that divides the extended complex
plane (C ∪ {∞}) into two parts: the inner domain (Ω+) and the region outside γ (Ω−), which
contains the point at infinity. Then two non-singular m × m complex rational matrices T1(s)
and T2(s), with no poles and no zeros in γ, are said to be left Wiener–Hopf equivalent with
respect to γ if there are m×m matrices U−(s) and U+(s) with no poles and no zeros in Ω− ∪ γ
and Ω+ ∪ γ, respectively, such that

T2(s) = U−(s)T1(s)U+(s). (3)

It can be seen, then, that any non-singular m × m complex rational matrix T(s) is left
Wiener–Hopf equivalent with respect to γ to a diagonal matrix

Diag
(
(s − z0)

k1 , . . . , (s − z0)
km
)

(4)

where z0 is any complex number in Ω+ and k1 ≥ · · · ≥ km are integers uniquely determined
by T(s). They are called the left Wiener–Hopf factorization indices of T(s) with respect to
γ (see again [6, 10]). The generalization to arbitrary fields relies on the following idea: We
can identify Ω+ ∪ γ and (Ω− ∪ γ) \ {∞} with two sets M and M�, respectively, of maximal
ideals of C[s]. In fact, to each z0 ∈ C we associate the ideal generated by s − z0, which is
a maximal ideal of C[s]. Notice that s − z0 is also a prime polynomial of C[s] but M and
M�, as defined, cannot contain the zero ideal, which is prime. Thus we are led to consider
the set Specm(C[s]) of maximal ideals of C[s]. By using this identification we define the
left Wiener–Hopf equivalence of rational matrices over an arbitrary field F with respect to
a subset M of Specm(F[s]), the set of all maximal ideals of F[s]. In this study local rings
play a fundamental role. They will be introduced in Section 2. Localization techniques
have been used previously in the algebraic theory of linear systems (see, for example, [7]).
In Section 3 the algebraic structure of the rings of proper rational functions with prescribed
finite poles is studied (i.e., for a fixed M ⊆ Specm(F[s]) the ring of proper rational functions
p(s)
q(s) with gcd(g(s), π(s)) = 1 for all (π(s)) ∈ M). It will be shown that if there is an ideal
generated by a linear polynomial outside M then the set of proper rational functions with
no poles in M is an Euclidean domain and all rational matrices can be classified according
to their Smith–McMillan invariants. In this case, two types of invariants live together for
any non-singular rational matrix and any set M ⊆ Specm(F[s]): its Smith–McMillan and left
Wiener–Hopf invariants. In Section 5 we show that a Rosenbrock-like Theorem holds true that
completely characterizes the relationship between these two types of invariants.
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2. Preliminaries

In the sequel F[s] will denote the ring of polynomials with coefficients in an arbitrary field F

and Specm(F[s]) the set of all maximal ideals of F[s], that is,

Specm(F[s]) = {(π(s)) : π(s) ∈ F[s], irreducible, monic, different from 1} . (5)

Let π(s) ∈ F[s] be a monic irreducible non-constant polynomial. Let S = F[s] \ (π(s)) be the
multiplicative subset of F[s] whose elements are coprime with π(s). We denote by Fπ(s) the
quotient ring of F[s] by S; i.e., S−1F[s]:

Fπ(s) =
{

p(s)
q(s)

: p(s), q(s) ∈ F[s], gcd(q(s), π(s)) = 1
}

. (6)

This is the localization of F[s] at (π(s)) (see [5]). The units of Fπ(s) are the rational functions
u(s) = p(s)

q(s) such that gcd(p(s), π(s)) = 1 and gcd(q(s), π(s)) = 1. Consequentially,

Fπ(s) =
{

u(s)π(s)d : u(s) is a unit and d ≥ 0
}
∪ {0}. (7)

For any M ⊆ Specm(F[s]), let

FM(s) =
⋂
(π(s))∈M Fπ(s)

=
{

p(s)
q(s) : p(s), q(s) ∈ F[s], gcd(q(s), π(s)) = 1 ∀ (π(s)) ∈ M

}
.

(8)

This is a ring whose units are the rational functions u(s) = p(s)
q(s) such that for all ideals (π(s)) ∈

M, gcd(p(s), π(s)) = 1 and gcd(q(s), π(s)) = 1. Notice that, in particular, if M = Specm(F[s])
then FM(s) = F[s] and if M = ∅ then FM(s) = F(s), the field of rational functions.

Moreover, if α(s) ∈ F[s] is a non-constant polynomial whose prime factorization, α(s) =
kα1(s)d1 · · · αm(s)dm , satisfies the condition that (αi(s)) ∈ M for all i, we will say that α(s)
factorizes in M or α(s) has all its zeros in M. We will consider that the only polynomials that
factorize in M = ∅ are the constants. We say that a non-zero rational function factorizes in M
if both its numerator and denominator factorize in M. In this case we will say that the rational
function has all its zeros and poles in M. Similarly, we will say that p(s)

q(s) has no poles in M
if p(s) �= 0 and gcd(q(s), π(s)) = 1 for all ideals (π(s)) ∈ M. And it has no zeros in M if
gcd(p(s), π(s)) = 1 for all ideals (π(s)) ∈ M. In other words, it is equivalent that p(s)

q(s) has

no poles and no zeros in M and that p(s)
q(s) is a unit of FM(s). So, a non-zero rational function

factorizes in M if and only if it is a unit in FSpecm(F[s])\M(s).

Let FM(s)m×m denote the set of m×m matrices with elements in FM(s). A matrix is invertible
in FM(s)m×m if all its elements are in FM(s) and its determinant is a unit in FM(s). We denote
by Glm(FM(s)) the group of units of FM(s)m×m.

Remark 1. Let M1, M2 ⊆ Specm(F[s]). Notice that

1. If M1 ⊆ M2 then FM1 (s) ⊇ FM2 (s) and Glm(FM1 (s)) ⊇ Glm(FM2 (s)).

2. FM1∪M2 (s) = FM1 (s) ∩ FM2 (s) and Glm(FM1∪M2 (s)) = Glm(FM1 (s)) ∩ Glm(FM2 (s)).
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For any M ⊆ Specm(F[s]) the ring FM(s) is a principal ideal domain (see [3]) and its field
of fractions is F(s). Two matrices T1(s), T2(s) ∈ F(s)m×m are equivalent with respect to M if
there exist matrices U(s), V(s) ∈ Glm(FM(s)) such that T2(s) = U(s)T1(s)V(s). Since FM(s) is
a principal ideal domain, for all non-singular G(s) ∈ FM(s)m×m (see [13]) there exist matrices
U(s), V(s) ∈ Glm(FM(s)) such that

G(s) = U(s)Diag(α1(s), . . . , αm(s))V(s) (9)

with α1(s) | · · · | αm(s) (“|” stands for divisibility) monic polynomials factorizing in M,
unique up to multiplication by units of FM(s). The diagonal matrix is the Smith normal form
of G(s) with respect to M and α1(s), . . . , αm(s) are called the invariant factors of G(s) with
respect to M. Now we introduce the Smith–McMillan form with respect to M. Assume that
T(s) ∈ F(s)m×m is a non-singular rational matrix. Then T(s) = G(s)

d(s) with G(s) ∈ FM(s)m×m

and d(s) ∈ F[s] monic, factorizing in M. Let G(s) = U(s)Diag(α1(s), . . . , αm(s))V(s) be the
Smith normal form with respect to M of G(s), i.e., U(s), V(s) invertible in FM(s)m×m and
α1(s) | · · · | αm(s) monic polynomials factorizing in M. Then

T(s) = U(s)Diag
(

�1(s)
ψ1(s)

, . . . ,
�m(s)
ψm(s)

)
V(s) (10)

where �i(s)
ψi(s)

are irreducible rational functions, which are the result of dividing αi(s) by d(s)
and canceling the common factors. They satisfy that �1(s) | · · · | �m(s), ψm(s) | · · · | ψ1(s)
are monic polynomials factorizing in M. The diagonal matrix in (10) is the Smith–McMillan
form with respect to M. The rational functions �i(s)

ψi(s)
, i = 1, . . . , m, are called the invariant

rational functions of T(s) with respect to M and constitute a complete system of invariants of
the equivalence with respect to M for rational matrices.

In particular, if M = Specm(F[s]) then FSpecm(F[s])(s) = F[s], the matrices U(s), V(s) ∈
Glm(F[s]) are unimodular matrices, (10) is the global Smith–McMillan form of a rational
matrix (see [15] or [14] when F = R or C) and �i(s)

ψi(s)
are the global invariant rational functions

of T(s).

From now on rational matrices will be assumed to be non-singular unless the opposite is
specified. Given any M ⊆ Specm(F[s]) we say that an m × m non-singular rational matrix has
no zeros and no poles in M if its global invariant rational functions are units of FM(s). If its
global invariant rational functions factorize in M, the matrix has its global finite structure
localized in M and we say that the matrix has all zeros and poles in M. The former
means that T(s) ∈ Glm(FM(s)) and the latter that T(s) ∈ Glm(FSpecm(F[s])\M(s)) because

det T(s) = det U(s)det V(s) �1(s)···�m(s)
ψ1(s)···ψm(s)

and det U(s), det V(s) are non-zero constants. The
following result clarifies the relationship between the global finite structure of any rational
matrix and its local structure with respect to any M ⊆ Specm(F[s]).

Proposition 2. Let M ⊆ Specm(F[s]). Let T(s) ∈ F(s)m×m be non-singular with α1(s)
β1(s)

, . . . , αm(s)
βm(s)

its global invariant rational functions and let �1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

be irreducible rational functions such
that �1(s) | · · · | �m(s), ψm(s) | · · · | ψ1(s) are monic polynomials factorizing in M. The following
properties are equivalent:
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From now on rational matrices will be assumed to be non-singular unless the opposite is
specified. Given any M ⊆ Specm(F[s]) we say that an m × m non-singular rational matrix has
no zeros and no poles in M if its global invariant rational functions are units of FM(s). If its
global invariant rational functions factorize in M, the matrix has its global finite structure
localized in M and we say that the matrix has all zeros and poles in M. The former
means that T(s) ∈ Glm(FM(s)) and the latter that T(s) ∈ Glm(FSpecm(F[s])\M(s)) because

det T(s) = det U(s)det V(s) �1(s)···�m(s)
ψ1(s)···ψm(s)

and det U(s), det V(s) are non-zero constants. The
following result clarifies the relationship between the global finite structure of any rational
matrix and its local structure with respect to any M ⊆ Specm(F[s]).

Proposition 2. Let M ⊆ Specm(F[s]). Let T(s) ∈ F(s)m×m be non-singular with α1(s)
β1(s)

, . . . , αm(s)
βm(s)

its global invariant rational functions and let �1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

be irreducible rational functions such
that �1(s) | · · · | �m(s), ψm(s) | · · · | ψ1(s) are monic polynomials factorizing in M. The following
properties are equivalent:
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1. There exist TL(s), TR(s) ∈ F(s)m×m such that the global invariant rational functions of TL(s) are
�1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

, TR(s) ∈ Glm(FM(s)) and T(s) = TL(s)TR(s).

2. There exist matrices U1(s), U2(s) invertible in FM(s)m×m such that

T(s) = U1(s)Diag
(

�1(s)
ψ1(s)

, . . . ,
�m(s)
ψm(s)

)
U2(s), (11)

i.e., �1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

are the invariant rational functions of T(s) with respect to M.

3. αi(s) = �i(s)��i(s) and βi(s) = ψi(s)ψ�
i(s) with ��i(s), ψ�

i(s) ∈ F[s] units of FM(s), for i =
1, . . . , m.

Proof.- 1 ⇒ 2. Since the global invariant rational functions of TL(s) are �1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

,

there exist W1(s), W2(s) ∈ Glm(F[s]) such that TL(s) = W1(s)Diag
(

�1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

)
W2(s).

As FSpecm(F[s])(s) = F[s], by Remark 1.1, W1(s), W2(s) ∈ Glm(FM(s)). Therefore, putting
U1(s) = W1(s) and U2(s) = W2(s)TR(s) it follows that U1(s) and U2(s) are invertible in
FM(s)m×m and T(s) = U1(s)Diag

(
�1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

)
U2(s).

2 ⇒ 3. There exist unimodular matrices V1(s), V2(s) ∈ F[s]m×m such that

T(s) = V1(s)Diag
(

α1(s)
β1(s)

, . . . ,
αm(s)
βm(s)

)
V2(s) (12)

with αi(s)
βi(s)

irreducible rational functions such that α1(s) | · · · | αm(s) and βm(s) | · · · | β1(s) are

monic polynomials. Write αi(s)
βi(s)

=
pi(s)p�i(s)
qi(s)q�i(s)

such that pi(s), qi(s) factorize in M and p�i(s), q�i(s)
factorize in Specm(F[s]) \ M. Then

T(s) = V1(s)Diag
(

p1(s)
q1(s)

, . . . ,
pm(s)
qm(s)

)
Diag

(
p�1(s)
q�1(s)

, . . . ,
p�m(s)
q�m(s)

)
V2(s) (13)

with V1(s) and Diag
(

p�1(s)
q�1(s)

, . . . , p�m(s)
q�m(s)

)
V2(s) invertible in FM(s)m×m. Since the

Smith–McMillan form with respect to M is unique we get that pi(s)
qi(s)

= �i(s)
ψi(s)

.

3 ⇒ 1. Write (12) as

T(s) = V1(s)Diag
(

�1(s)
ψ1(s)

, . . . ,
�m(s)
ψm(s)

)
Diag

(
��1(s)
ψ�

1(s)
, . . . ,

��m(s)
ψ�

m(s)

)
V2(s). (14)

It follows that T(s) = TL(s)TR(s) with TL(s) = V1(s)Diag
(

�1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

)
and TR(s) =

Diag
(

��1(s)
ψ�

1(s)
, . . . , ��m(s)

ψ�
m(s)

)
V2(s) ∈ Glm(FM(s)).

Corollary 3. Let T(s) ∈ F(s)m×m be non-singular and M1, M2 ⊆ Specm(F[s]) such that M1 ∩
M2 = ∅. If �i

1(s)
ψi

1(s)
, . . . , �i

m(s)
ψi

m(s)
are the invariant rational functions of T(s) with respect to Mi, i = 1, 2,

then �1
1(s)�

2
1(s)

ψ1
1(s)ψ

2
1(s)

, . . . , �1
m(s)�2

m(s)
ψ1

m(s)ψ2
m(s)

are the invariant rational functions of T(s) with respect to M1 ∪ M2.
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Proof.- Let α1(s)
β1(s)

, . . . , αm(s)
βm(s)

be the global invariant rational functions of T(s). By Proposition 2,

αi(s) = �1
i (s)n

1
i (s), βi(s) = ψ1

i (s)d
1
i (s), with n1

i (s), d1
i (s) ∈ F[s] units of FM1 (s). On the other

hand αi(s) = �2
i (s)n

2
i (s), βi(s) = ψ2

i (s)d
2
i (s), with n2

i (s), d2
i (s) ∈ F[s] units of FM2 (s). So,

�1
i (s)n

1
i (s) = �2

i (s)n
2
i (s) or equivalently n1

i (s) =
�2

i (s)n
2
i (s)

�1
i (s)

, n2
i (s) =

�1
i (s)n

1
i (s)

�2
i (s)

. The polynomials

�1
i (s), �2

i (s) are coprime because �1
i (s) factorizes in M1, �2

i (s) factorizes in M2 and M1 ∩ M2 =

∅. In consequence �1
i (s) | n2

i (s) and �2
i (s) | n1

i (s). Therefore, there exist polynomials a(s),
unit of FM2 (s), and a�(s), unit of FM1 (s), such that n2

i (s) = �1
i (s)a(s), n1

i (s) = �2
i (s)a�(s).

Since αi(s) = �1
i (s)n

1
i (s) = �1

i (s)�
2
i (s)a�(s) and αi(s) = �2

i (s)n
2
i (s) = �2

i (s)�
1
i (s)a(s). This

implies that a(s) = a�(s) unit of FM1 (s) ∩ FM2 (s) = FM1∪M2 (s). Following the same ideas
we can prove that βi(s) = ψ1

i (s)ψ
2
i (s)b(s) with b(s) a unit of FM1∪M2 (s). By Proposition 2

�1
1(s)�

2
1(s)

ψ1
1(s)ψ

2
1(s)

, . . . , �1
m(s)�2

m(s)
ψ1

m(s)ψ2
m(s)

are the invariant rational functions of T(s) with respect to M1 ∪ M2.

Corollary 4. Let M1, M2 ⊆ Specm(F[s]). Two non-singular matrices are equivalent with respect to
M1 ∪ M2 if and only if they are equivalent with respect to M1 and with respect to M2.

Proof.- Notice that by Remark 1.2 two matrices T1(s), T2(s) ∈ F(s)m×m are equivalent with
respect to M1 ∪ M2 if and only if there exist U1(s), U2(s) invertible in FM1 (s)

m×m ∩FM2 (s)
m×m

such that T2(s) = U1(s)T1(s)U2(s). Since U1(s) and U2(s) are invertible in both FM1 (s)
m×m

and FM2 (s)
m×m then T1(s) and T2(s) are equivalent with respect to M1 and with respect to

M2.

Conversely, if T1(s) and T2(s) are equivalent with respect to M1 and with respect to M2 then,
by the necessity of this result, they are equivalent with respect to M1 \ (M1 ∩ M2), with respect

to M2 \ (M1 ∩ M2) and with respect to M1 ∩ M2. Let �1
1(s)

ψ1
1(s)

, . . . , �1
m(s)

ψ1
m(s)

be the invariant rational

functions of T1(s) and T2(s) with respect to M1 \ (M1 ∩ M2),
�2

1(s)
ψ2

1(s)
, . . . , �2

m(s)
ψ2

m(s)
be the invariant

rational functions of T1(s) and T2(s) with respect to M2 \ (M1 ∩ M2) and �3
1(s)

ψ3
1(s)

, . . . , �3
m(s)

ψ3
m(s)

be

the invariant rational functions of T1(s) and T2(s) with respect to M1 ∩ M2. By Corollary 3
�1

1(s)
ψ1

1(s)
�2

1(s)
ψ2

1(s)
�3

1(s)
ψ3

1(s)
, . . . , �1

m(s)
ψ1

m(s)
�2

m(s)
ψ2

m(s)
�3

m(s)
ψ3

m(s)
must be the invariant rational functions of T1(s) and T2(s)

with respect to M1 ∪ M2. Therefore, T1(s) and T2(s) are equivalent with respect to M1 ∪ M2.

Let Fpr(s) be the ring of proper rational functions, that is, rational functions with the degree
of the numerator at most the degree of the denominator. The units in this ring are the
rational functions whose numerators and denominators have the same degree. They are called
biproper rational functions. A matrix B(s) ∈ Fpr(s)m×m is said to be biproper if it is a unit in
Fpr(s)m×m or, what is the same, if its determinant is a biproper rational function.

Recall that a rational function t(s) has a pole (zero) at ∞ if t
(

1
s

)
has a pole (zero) at 0.

Following this idea, we can define the local ring at ∞ as the set of rational functions, t(s),
such that t

(
1
s

)
does not have 0 as a pole, that is, F∞(s) =

{
t(s) ∈ F(s) : t

(
1
s

)
∈ Fs(s)

}
. If

t(s) =
p(s)
q(s) with p(s) = atst + at+1st+1 + · · ·+ apsp, ap �= 0, q(s) = brsr + br+1sr+1 + · · ·+
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bqsq, bq �= 0, p = d(p(s)), q = d(q(s)), where d(·) stands for “degree of”, then

t
(

1
s

)
=

at
st +

at+1
st+1 + · · ·+ ap

sp

br
sr +

br+1
sr+1 + · · ·+ bq

sq

=
atsp−t + at+1sp−t−1 + · · ·+ ap

brsq−r + br+1sq−r−1 + · · ·+ bq
sq−p =

f (s)
g(s)

sq−p. (15)

As Fs(s) =
{

f (s)
g(s) sd : f (0) �= 0, g(0) �= 0 and d ≥ 0

}
∪ {0}, then

F∞(s) =
{

p(s)
q(s)

∈ F(s) : d(q(s)) ≥ d(p(s))
}

. (16)

Thus, this set is the ring of proper rational functions, Fpr(s).

Two rational matrices T1(s), T2(s) ∈ F(s)m×m are equivalent at infinity if there exist biproper
matrices B1(s), B2(s) ∈ Glm(Fpr(s)) such that T2(s) = B1(s)T1(s)B2(s). Given a non-singular
rational matrix T(s) ∈ F(s)m×m (see [15]) there always exist B1(s), B2(s) ∈ Glm(Fpr(s)) such
that

T(s) = B1(s)Diag(sq1 , . . . , sqm )B2(s) (17)

where q1 ≥ · · · ≥ qm are integers. They are called the invariant orders of T(s) at infinity and
the rational functions sq1 , . . . , sqm are called the invariant rational functions of T(s) at infinity.

3. Structure of the ring of proper rational functions with prescribed finite
poles

Let M� ⊆ Specm(F[s]). Any non-zero rational function t(s) can be uniquely written as t(s) =
n(s)
d(s)

n�(s)
d�(s) where n(s)

d(s) is an irreducible rational function factorizing in M� and n�(s)
d�(s) is a unit of

FM� (s). Define the following function over F(s) \ {0} (see [15], [16]):

δ : F(s) \ {0} → Z

t(s) �→ d(d�(s))− d(n�(s)). (18)

This mapping is not a discrete valuation of F(s) if M� �= ∅: Given two non-zero elements
t1(s), t2(s) ∈ F(s) it is clear that δ(t1(s)t2(s)) = δ(t1(s)) + δ(t2(s)); but it may not satisfy that
δ(t1(s) + t2(s)) ≥ min(δ(t1(s)), δ(t2(s))). For example, let M� = {(s− a) ∈ Specm(R[s]) : a /∈
[−2,−1]}. Put t1(s) = s+0.5

s+1.5 and t2(s) = s+2.5
s+1.5 . We have that δ(t1(s)) = d(s + 1.5)− d(1) = 1,

δ(t2(s)) = d(s + 1.5)− d(1) = 1 but δ(t1(s) + t2(s)) = δ(2) = 0.

However, if M� = ∅ and t(s) = n(s)
d(s) ∈ F(s) where n(s), d(s) ∈ F[s], d(s) �= 0, the map

δ∞ : F(s) → Z ∪ {+∞} (19)

defined via δ∞(t(s)) = d(d(s))− d(n(s)) if t(s) �= 0 and δ∞(t(s)) = +∞ if t(s) = 0 is a discrete
valuation of F(s).

Consider the subset of F(s), FM� (s) ∩ Fpr(s), consisting of all proper rational functions
with poles in Specm(F[s]) \ M�, that is, the elements of FM� (s) ∩ Fpr(s) are proper rational
functions whose denominators are coprime with all the polynomials π(s) such that (π(s)) ∈
M�. Notice that g(s) ∈ FM� (s) ∩ Fpr(s) if and only if g(s) = n(s) n�(s)

d�(s) where:
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(a) n(s) ∈ F[s] is a polynomial factorizing in M�,

(b) n�(s)
d�(s) is an irreducible rational function and a unit of FM� (s),

(c) δ(g(s))− d(n(s)) ≥ 0 or equivalently δ∞(g(s)) ≥ 0.

In particular (c) implies that n�(s)
d�(s) ∈ Fpr(s). The units in FM� (s) ∩ Fpr(s) are biproper rational

functions n�(s)
d�(s) , that is d(n�(s)) = d(d�(s)), with n�(s), d�(s) factorizing in Specm(F[s]) \ M�.

Furthermore, FM� (s) ∩ Fpr(s) is an integral domain whose field of fractions is F(s) provided
that M� �= Specm(F[s])(see, for example, [15, Prop.5.22]). Notice that for M� = Specm(F[s]),
FM� (s) ∩ Fpr(s) = F[s] ∩ Fpr(s) = F.

Assume that there are ideals in Specm(F[s]) \ M� generated by linear polynomials and let (s−
a) be any of them. The elements of FM� (s) ∩ Fpr(s) can be written as g(s) = n(s)u(s) 1

(s−a)d

where n(s) ∈ F[s] factorizes in M�, u(s) is a unit in FM� (s)∩Fpr(s) and d = δ(g(s)) ≥ d(n(s)).
If F is algebraically closed, for example F = C, and M� �= Specm(F[s]) the previous condition
is always fulfilled.

The divisibility in FM� (s) ∩ Fpr(s) is characterized in the following lemma.

Lemma 5. Let M� ⊆ Specm(F[s]). Let g1(s), g2(s) ∈ FM� (s) ∩ Fpr(s) be such that g1(s) =

n1(s)
n�

1(s)
d�1(s)

and g2(s) = n2(s)
n�

2(s)
d�2(s)

with n1(s), n2(s) ∈ F[s] factorizing in M� and n�
1(s)

d�1(s)
, n�

2(s)
d�2(s)

irreducible rational functions, units of FM� (s). Then g1(s) divides g2(s) in FM� (s) ∩ Fpr(s) if and
only if

n1(s) | n2(s) in F[s] (20)

δ(g1(s))− d(n1(s)) ≤ δ(g2(s))− d(n2(s)). (21)

Proof.- If g1(s) | g2(s) then there exists g(s) = n(s) n�(s)
d�(s) ∈ FM� (s) ∩ Fpr(s), with n(s) ∈ F[s]

factorizing in M� and n�(s), d�(s) ∈ F[s] coprime, factorizing in Specm(F[s]) \ M�, such

that g2(s) = g(s)g1(s). Equivalently, n2(s)
n�

2(s)
d�2(s)

= n(s) n�(s)
d�(s) n1(s)

n�
1(s)

d�1(s)
= n(s)n1(s)

n�(s)n�
1(s)

d�(s)d�1(s)
.

So n2(s) = n(s)n1(s) and δ(g2(s)) − d(n2(s)) = δ(g(s)) − d(n(s)) + δ(g1(s)) − d(n1(s)).
Moreover, as g(s) is a proper rational function, δ(g(s)) − d(n(s)) ≥ 0 and δ(g2(s)) −
d(n2(s)) ≥ δ(g1(s))− d(n1(s)).

Conversely, if n1(s) | n2(s) then there is n(s) ∈ F[s], factorizing in M�, such that n2(s) =

n(s)n1(s). Write g(s) = n(s) n�(s)
d�(s) where n�(s)

d�(s) is an irreducible fraction representation of
n�

2(s)d
�
1(s)

d�2(s)n
�
1(s)

, i.e., n�(s)
d�(s) =

n�
2(s)d

�
1(s)

d�2(s)n
�
1(s)

after canceling possible common factors. Thus n�
2(s)

d�2(s)
= n�(s)

d�(s)
n�

1(s)
d�1(s)

and

δ(g(s))− d(n(s)) = d(d�(s))− d(n�(s))− d(n(s))
= d(d�2(s)) + d(n�

1(s))− d(n�
2(s))− d(d�1(s))− d(n2(s)) + d(n1(s))

= δ(g2(s))− d(n2(s))− (δ(g1(s))− d(n1(s))) ≥ 0.
(22)

Then g(s) ∈ FM� (s) ∩ Fpr(s) and g2(s) = g(s)g1(s).
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Notice that condition (20) means that g1(s) | g2(s) in FM� (s) and condition (21) means that
g1(s) | g2(s) in Fpr(s). So, g1(s) | g2(s) in FM� (s) ∩ Fpr(s) if and only if g1(s) | g2(s)
simultaneously in FM� (s) and Fpr(s).

Lemma 6. Let M� ⊆ Specm(F[s]). Let g1(s), g2(s) ∈ FM� (s) ∩ Fpr(s) be such that g1(s) =

n1(s)
n�

1(s)
d�1(s)

and g2(s) = n2(s)
n�

2(s)
d�2(s)

as in Lemma 5. If n1(s) and n2(s) are coprime in F[s] and either

δ(g1(s)) = d(n1(s)) or δ(g2(s)) = d(n2(s)) then g1(s) and g2(s) are coprime in FM� (s) ∩ Fpr(s).

Proof.- Suppose that g1(s) and g2(s) are not coprime. Then there exists a non-unit g(s) =

n(s) n�(s)
d�(s) ∈ FM� (s) ∩ Fpr(s) such that g(s) | g1(s) and g(s) | g2(s). As g(s) is not a unit, n(s)

is not a constant or δ(g(s)) > 0. If n(s) is not a constant then n(s) | n1(s) and n(s) | n2(s)
which is impossible because n1(s) and n2(s) are coprime. Otherwise, if n(s) is a constant then
δ(g(s)) > 0 and we have that δ(g(s)) ≤ δ(g1(s))− d(n1(s)) and δ(g(s)) ≤ δ(g2(s))− d(n2(s)).
But this is again impossible.

It follows from this Lemma that if g1(s), g2(s) are coprime in both rings FM� (s) and Fpr(s) then
g1(s), g2(s) are coprime in FM� (s)∩Fpr(s). The following example shows that the converse is
not true in general.

Example 7. Suppose that F = R and M� = Specm(R[s]) \ {(s2 + 1)}. It is not difficult to
prove that g1(s) = s2

s2+1 and g2(s) = s
s2+1 are coprime elements in RM� (s) ∩ Rpr(s). Assume

that there exists a non-unit g(s) = n(s) n�(s)
d�(s) ∈ RM� (s) ∩ Rpr(s) such that g(s) | g1(s) and

g(s) | g2(s). Then n(s) | s2, n(s) | s and δ(g(s))− d(n(s)) = 0. Since g(s) is not a unit, n(s)
cannot be a constant. Hence, n(s) = cs, c �= 0, and δ(g(s)) = 1, but this is impossible because
d�(s) and n�(s) are powers of s2 + 1. Therefore g1(s) and g2(s) must be coprime. However
n1(s) = s2 and n2(s) = s are not coprime.

Now, we have the following property when there are ideals in Specm(F[s]) \ M�, M� ⊆
Specm(F[s]), generated by linear polynomials.

Lemma 8. Let M� ⊆ Specm(F[s]). Assume that there are ideals in Specm(F[s]) \ M� generated
by linear polynomials and let (s − a) be any of them. Let g1(s), g2(s) ∈ FM� (s) ∩ Fpr(s) be such
that g1(s) = n1(s)u1(s) 1

(s−a)d1
and g2(s) = n2(s)u2(s) 1

(s−a)d2
. If g1(s) and g2(s) are coprime in

FM� (s)∩Fpr(s) then n1(s) and n2(s) are coprime in F[s] and either d1 = d(n1(s)) or d2 = d(n2(s)).

Proof.- Suppose that n1(s) and n2(s) are not coprime in F[s]. Then there exists a non-constant
n(s) ∈ F[s] such that n(s) | n1(s) and n(s) | n2(s). Let d = d(n(s)). Then g(s) = n(s) 1

(s−a)d

is not a unit in FM� (s) ∩ Fpr(s) and divides g1(s) and g2(s) because 0 = d − d(n(s)) ≤ d1 −
d(n1(s)) and 0 = d − d(n(s)) ≤ d2 − d(n2(s)). This is impossible, so n1(s) and n2(s) must be
coprime.

Now suppose that d1 > d(n1(s)) and d2 > d(n2(s)). Let d = min{d1 − d(n1(s)), d2 −
d(n2(s))}. We have that d > 0. Thus g(s) = 1

(s−a)d is not a unit in FM� (s)∩Fpr(s) and divides

g1(s) and g2(s) because d ≤ d1 − d(n1(s)) and d ≤ d2 − d(n2(s)). This is again impossible
and either d1 = d(n1(s)) or d2 = d(n2(s)).
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The above lemmas yield a characterization of coprimeness of elements in FM� (s) ∩ Fpr(s)
when M� excludes at least one ideal generated by a linear polynomial.

Following the same steps as in [16, p. 11] and [15, p. 271] we get the following result.

Lemma 9. Let M� ⊆ Specm(F[s]) and assume that there is at least an ideal in Specm(F[s]) \ M�
generated by a linear polynomial. Then FM� (s) ∩ Fpr(s) is a Euclidean domain.

The following examples show that if all ideals generated by polynomials of degree one are in
M�, the ring FM� (s) ∩ Fpr(s) may not be a Bezout domain. Thus, it may not be a Euclidean
domain. Even more, it may not be a greatest common divisor domain.

Example 10. Let F = R and M� = Specm(R[s]) \ {(s2 + 1)}. Let g1(s) = s2

s2+1 , g2(s) = s
s2+1 ∈

RM� (s) ∩ Rpr(s). We have seen, in the previous example, that g1(s), g2(s) are coprime. We
show now that the Bezout identity is not fulfilled, that is, there are not a(s), b(s) ∈ RM� (s) ∩
Rpr(s) such that a(s)g1(s) + b(s)g2(s) = u(s), with u(s) a unit in RM� (s) ∩ Rpr(s). Elements

in RM� (s) ∩ Rpr(s) are of the form n(s)
(s2+1)d with n(s) relatively prime with s2 + 1 and 2d ≥

d(n(s)) and the units in RM� (s)∩Rpr(s) are non-zero constants. We will see that there are not

elements a(s) = n(s)
(s2+1)d , b(s) = n�(s)

(s2+1)d� with n(s) and n�(s) coprime with s2 + 1, 2d ≥ d(n(s))

and 2d� ≥ d(n�(s)) such that a(s)g1(s) + b(s)g2(s) = c, with c non-zero constant. Assume that
n(s)

(s2+1)d
s2

s2+1 + n�(s)
(s2+1)d�

s
s2+1 = c. We conclude that c(s2 + 1)d+1 or c(s2 + 1)d�+1 is a multiple of

s, which is impossible.

Example 11. Let F = R and M� = Specm(R[s]) \ {(s2 + 1)}. A fraction g(s) = n(s)
(s2+1)d ∈

RM� (s) ∩ Rpr(s) if and only if 2d − d(n(s)) ≥ 0. Let g1(s) = s2

(s2+1)3 , g2(s) = s(s+1)
(s2+1)4 ∈

RM� (s) ∩ Rpr(s). By Lemma 5:

• g(s) | g1(s) ⇔ n(s) | s2 and 0 ≤ 2d − d(n(s)) ≤ 6 − 2 = 4
• g(s) | g2(s) ⇔ n(s) | s(s + 1) and 0 ≤ 2d − d(n(s)) ≤ 8 − 2 = 6.

If n(s) | s2 and n(s) | s(s + 1) then n(s) = c or n(s) = cs with c a non-zero constant. Then
g(s) | g1(s) and g(s) | g2(s) if and only if n(s) = c and d ≤ 2 or n(s) = cs and 2d ≤ 5. So, the
list of common divisors of g1(s) and g2(s) is:

{
c,

c
s2 + 1

,
c

(s2 + 1)2 ,
cs

s2 + 1
,

cs
(s2 + 1)2 : c ∈ F, c �= 0

}
. (23)

If there would be a greatest common divisor, say n(s)
(s2+1)d , then n(s) = cs because n(s) must be

a multiple of c and cs. Thus such a greatest common divisor should be either cs
s2+1 or cs

(s2+1)2 ,
but c

(s2+1)2 does not divide neither of them because

4 = δ

(
c

(s2 + 1)2

)
− d(c) > max

{
δ

(
cs

s2 + 1

)
− d(cs), δ

(
cs

(s2 + 1)2

)
− d(cs)

}
= 3. (24)

Thus, g1(s) and g2(s) do not have greatest common divisor.
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3.1. Smith–McMillan form

A matrix U(s) is invertible in FM� (s)m×m ∩ Fpr(s)m×m if U(s) ∈ FM� (s)m×m ∩ Fpr(s)m×m and
its determinant is a unit in both rings, FM� (s) and Fpr(s), i.e., U(s) ∈ Glm(FM� (s) ∩ Fpr(s)) if
and only if U(s) ∈ Glm(FM� (s)) ∩ Glm(Fpr(s)).

Two matrices G1(s), G2(s) ∈ FM� (s)m×m ∩ Fpr(s)m×m are equivalent in FM� (s) ∩ Fpr(s) if
there exist U1(s), U2(s) invertible in FM� (s)m×m ∩ Fpr(s)m×m such that

G2(s) = U1(s)G1(s)U2(s). (25)

If there are ideals in Specm(F[s]) \ M� generated by linear polynomials then FM� (s) ∩ Fpr(s)
is an Euclidean ring and any matrix with elements in FM� (s) ∩ Fpr(s) admits a Smith normal
form (see [13], [15] or [16]). Bearing in mind the characterization of divisibility in FM� (s) ∩
Fpr(s) given in Lemma 5 we have

Theorem 12. (Smith normal form in FM� (s) ∩ Fpr(s)) Let M� ⊆ Specm(F[s]). Assume that
there are ideals in Specm(F[s]) \ M� generated by linear polynomials and let (s − a) be one of them.
Let G(s) ∈ FM� (s)m×m ∩ Fpr(s)m×m be non-singular. Then there exist U1(s), U2(s) invertible in
FM� (s)m×m ∩ Fpr(s)m×m such that

G(s) = U1(s)Diag
�

n1(s)
1

(s − a)d1
, . . . , nm(s)

1
(s − a)dm

�
U2(s) (26)

with n1(s)| · · · |nm(s) monic polynomials factorizing in M� and d1, . . . , dm integers such that 0 ≤
d1 − d(n1(s)) ≤ · · · ≤ dm − d(nm(s)).

Under the hypothesis of the last theorem n1(s) 1
(s−a)d1

, . . . , nm(s) 1
(s−a)dm form a complete

system of invariants for the equivalence in FM� (s)∩Fpr(s) and are called the invariant rational
functions of G(s) in FM� (s) ∩ Fpr(s). Notice that 0 ≤ d1 ≤ · · · ≤ dm because ni(s) divides
ni+1(s).

Recall that the field of fractions of FM� (s) ∩ Fpr(s) is F(s) when M� �= Specm(F[s]). Thus we
can talk about equivalence of matrix rational functions. Two rational matrices T1(s), T2(s) ∈
F(s)m×m are equivalent in FM� (s) ∩ Fpr(s) if there are U1(s), U2(s) invertible in FM� (s)m×m ∩
Fpr(s)m×m such that

T2(s) = U1(s)T1(s)U2(s). (27)

When all ideals generated by linear polynomials are not in M�, each rational matrix admits a
reduction to Smith–McMillan form with respect to FM� (s) ∩ Fpr(s).

Theorem 13. (Smith–McMillan form in FM� (s) ∩ Fpr(s)) Let M� ⊆ Specm(F[s]). Assume that
there are ideals in Specm(F[s]) \ M� generated by linear polynomials and let (s − a) be any of
them. Let T(s) ∈ F(s)m×m be a non-singular matrix. Then there exist U1(s), U2(s) invertible in
FM� (s)m×m ∩ Fpr(s)m×m such that

T(s) = U1(s)Diag

⎛
⎝

�1(s)
(s−a)n1

ψ1(s)
(s−a)d1

, . . . ,
�m(s)

(s−a)nm

ψm(s)
(s−a)dm

⎞
⎠U2(s) (28)
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with �i(s)
(s−a)ni , ψi(s)

(s−a)di
∈ FM� (s)∩Fpr(s) coprime for all i such that �i(s), ψi(s) are monic polynomials

factorizing in M�, �i(s)
(s−a)ni divides �i+1(s)

(s−a)ni+1 for i = 1, . . . , m − 1 while ψi(s)
(s−a)di

divides ψi−1(s)
(s−a)di−1

for

i = 2, . . . , m.

The elements
�i (s)

(s−a)ni
ψi (s)

(s−a)di

of the diagonal matrix, satisfying the conditions of the previous theorem,

constitute a complete system of invariant for the equivalence in FM� (s) ∩ Fpr(s) of rational
matrices. However, this system of invariants is not minimal. A smaller one can be obtained
by substituting each pair of positive integers (ni, di) by its difference li = ni − di.

Theorem 14. Under the conditions of Theorem 13, �i(s)
ψi(s)

1
(s−a)li

with �i(s), ψi(s) monic and coprime

polynomials factorizing in M�, �i(s) | �i+1(s) while ψi(s) | ψi−1(s) and l1, . . . , lm integers such that
l1 + d(ψ1(s))− d(�1(s)) ≤ · · · ≤ lm + d(ψm(s))− d(�m(s)) also constitute a complete system of
invariants for the equivalence in FM� (s) ∩ Fpr(s).

Proof.- We only have to show that from the system �i(s)
ψi(s)

1
(s−a)li

, i = 1, . . . , m, satisfying the

conditions of Theorem 14, the system
�i (s)

(s−a)ni
ψi (s)

(s−a)di

, i = 1, . . . , n, can be constructed satisfying the

conditions of Theorem 13.

Suppose that �i(s), ψi(s) are monic and coprime polynomials factorizing in M� such that
�i(s) | �i+1(s) and ψi(s) | ψi−1(s). And suppose also that l1, . . . , lm are integers such that
l1 + d(ψ1(s))− d(�1(s)) ≤ · · · ≤ lm + d(ψm(s))− d(�m(s)). If li + d(ψi(s))− d(�i(s)) ≤ 0 for
all i, we define non-negative integers ni = d(�i(s)) and di = d(�i(s))− li for i = 1, . . . , m. If
li + d(ψi(s))− d(�i(s)) > 0 for all i, we define ni = li + d(ψi(s)) and di = d(ψi(s)). Otherwise
there is an index k ∈ {2, . . . , m} such that

lk−1 + d(ψk−1(s))− d(�k−1(s)) ≤ 0 < lk + d(ψk(s))− d(�k(s)). (29)

Define now the non-negative integers ni, di as follows:

ni =

{
d(�i(s)) if i < k
li + d(ψi(s)) if i ≥ k di =

{
d(�i(s))− li if i < k
d(ψi(s)) if i ≥ k (30)

Notice that li = ni − di. Moreover,

ni − d(�i(s)) =
{

0 if i < k
li + d(ψi(s))− d(�i(s)) if i ≥ k (31)

di − d(ψi(s)) =
{−li − d(ψi(s)) + d(�i(s)) if i < k

0 if i ≥ k (32)

and using (29), (30)

n1 − d(�1(s)) = · · · = nk−1 − d(�k−1(s)) = 0 < nk − d(�k(s)) ≤ · · · ≤ nm − d(�m(s)) (33)

d1 − d(ψ1(s)) ≥ · · · ≥ dk−1 − d(ψk−1(s)) ≥ 0 = dk − d(ψk(s)) = · · · = dm − d(ψm(s)). (34)
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In any case �i(s)
(s−a)ni and ψi(s)

(s−a)di
are elements of FM� (s) ∩ Fpr(s). Now, on the one hand

�i(s), ψi(s) are coprime and ni − d(�i(s)) = 0 or di − d(ψi(s)) = 0. This means (Lemma 6) that
�i(s)

(s−a)ni , ψi(s)
(s−a)di

are coprime for all i. On the other hand �i(s) | �i+1(s) and 0 ≤ ni − d(�i(s)) ≤
ni+1 − d(�i+1(s)). Then (Lemma 5) �i(s)

(s−a)ni divides �i+1(s)
(s−a)ni+1 . Similarly, since ψi(s) | ψi−1(s)

and 0 ≤ di − d(ψi(s)) ≤ di−1 − d(ψi−1(s)), it follows that ψi(s)
(s−a)di

divides ψi−1(s)
(s−a)di−1

.

We call �i(s)
ψi(s)

1
(s−a)li

, i = 1, . . . , m, the invariant rational functions of T(s) in FM� (s) ∩ Fpr(s).

There is a particular case worth considering: If M� = ∅ then F∅(s) ∩ Fpr(s) = Fpr(s) and
(s) ∈ Specm(F[s]) \ M� = Specm(F[s]). In this case, we obtain the invariant rational functions
of T(s) at infinity (recall (17)).

4. Wiener–Hopf equivalence

The left Wiener–Hopf equivalence of rational matrices with respect to a closed contour in the
complex plane has been extensively studied ([6] or [10]). Now we present the generalization
to arbitrary fields ([4]).

Definition 15. Let M and M� be subsets of Specm(F[s]) such that M ∪ M� = Specm(F[s]). Let
T1(s), T2(s) ∈ F(s)m×m be two non-singular rational matrices with no zeros and no poles in M ∩ M�.
The matrices T1(s), T2(s) are said to be left Wiener–Hopf equivalent with respect to (M, M�) if there
exist both U1(s) invertible in FM� (s)m×m ∩Fpr(s)m×m and U2(s) invertible in FM(s)m×m such that

T2(s) = U1(s)T1(s)U2(s). (35)

This is, in fact, an equivalence relation as it is easily seen. It would be an equivalence relation
even if no condition about the union and intersection of M and M� were imposed. It will
be seen later on that these conditions are natural assumptions for the existence of unique
diagonal representatives in each class.

The right Wiener–Hopf equivalence with respect to (M, M�) is defined in a similar manner:
There are invertible matrices U1(s) in FM� (s)m×m ∩ Fpr(s)m×m and U2(s) in FM(s)m×m such
that

T2(s) = U2(s)T1(s)U1(s). (36)

In the following only the left Wiener–Hopf equivalence will be considered, but, by
transposition, all results hold for the right Wiener–Hopf equivalence as well.

The aim of this section is to obtain a complete system of invariants for the Wiener–Hopf
equivalence with respect to (M, M�) of rational matrices, and to obtain, if possible, a canonical
form.

There is a particular case that is worth-considering: If M = Specm(F[s]) and M� = ∅, the
invertible matrices in F∅(s)m×m ∩ Fpr(s)m×m are the biproper matrices and the invertible
matrices in FSpecm(F[s])(s)

m×m are the unimodular matrices. In this case, the left Wiener–Hopf
equivalence with respect to (M, M�) = (Specm(F[s]), ∅) is the so-called left Wiener–Hopf
equivalence at infinity (see [9]). It is known that any non-singular rational matrix is left
Wiener–Hopf equivalent at infinity to a diagonal matrix Diag(sg1 , . . . , sgm ) where g1, . . . , gm
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are integers, that is, for any non-singular T(s) ∈ F(s)m×m there exist both a biproper matrix
B(s) ∈ Glm(Fpr(s)) and a unimodular matrix U(s) ∈ Glm(F[s]) such that

T(s) = B(s)Diag(sg1 , . . . , sgm )U(s) (37)

where g1 ≥ · · · ≥ gm are integers uniquely determined by T(s). They are called the left
Wiener–Hopf factorization indices at infinity and form a complete system of invariants for
the left Wiener–Hopf equivalence at infinity. These are the basic objects that will produce the
complete system of invariants for the left Wiener–Hopf equivalence with respect to (M, M�).

For polynomial matrices, their left Wiener–Hopf factorization indices at infinity are the
column degrees of any right equivalent (by a unimodular matrix) column proper matrix.
Namely, a polynomial matrix is column proper if it can be written as Pc Diag(sg1 , . . . , sgm ) +
L(s) with Pc ∈ Fm×m non-singular, g1, . . . , gm non-negative integers and L(s) a polynomial
matrix such that the degree of the ith column of L(s) smaller than gi, 1 ≤ i ≤ m. Let P(s) ∈
F[s]m×m be non-singular polynomial. There exists a unimodular matrix V(s) ∈ F[s]m×m such
that P(s)V(s) is column proper. The column degrees of P(s)V(s) are uniquely determined
by P(s), although V(s) is not (see [9], [12, p. 388], [17]). Since P(s)V(s) is column proper, it
can be written as P(s)V(s) = PcD(s) + L(s) with Pc non-singular, D(s) = Diag(sg1 , . . . , sgm )
and the degree of the ith column of L(s) smaller than gi, 1 ≤ i ≤ m. Then P(s)V(s) =
(Pc + L(s)D(s)−1)D(s). Put B(s) = Pc + L(s)D(s)−1. Since Pc is non-singular and L(s)D(s)−1

is a strictly proper matrix, B(s) is biproper, and P(s) = B(s)D(s)U(s) where U(s) = V(s)−1.

The left Wiener–Hopf factorization indices at infinity can be used to associate a sequence of
integers with every non-singular rational matrix and every M ⊆ Specm(F[s]). This is done
as follows: If T(s) ∈ F(s)m×m then it can always be written as T(s) = TL(s)TR(s) such that
the global invariant rational functions of TL(s) factorize in M and TR(s) ∈ Glm(FM(s)) or,
equivalently, the global invariant rational functions of TR(s) factorize in Specm(F[s]) \ M
(see Proposition 2). There may be many factorizations of this type, but it turns out (see [1,
Proposition 3.2] for the polynomial case) that the left factors in all of them are right equivalent.
This means that if T(s) = TL1(s)TR1(s) = TL2(s)TR2(s) with the global invariant rational
functions of TL1(s) and TL2(s) factorizing in M and the global invariant rational functions of
TR1(s) and TR2(s) factorizing in Specm(F[s]) \ M then there is a unimodular matrix U(s) such
that TL1(s) = TL2(s)U(s). In particular, TL1(s) and TL2(s) have the same left Wiener–Hopf
factorization indices at infinity. Thus the following definition makes sense:

Definition 16. Let T(s) ∈ F(s)m×m be a non-singular rational matrix and M ⊆ Specm(F[s]). Let
TL(s), TR(s) ∈ F(s)m×m such that

i) T(s) = TL(s)TR(s),

ii) the global invariant rational functions of TL(s) factorize in M, and

iii) the global invariant rational functions of TR(s) factorize in Specm(F[s]) \ M.

Then the left Wiener–Hopf factorization indices of T(s) with respect to M are defined to be the left
Wiener–Hopf factorization indices of TL(s) at infinity.

In the particular case that M = Specm(F[s]), we can put TL(s) = T(s) and TR(s) = Im.
Therefore, the left Wiener–Hopf factorization indices of T(s) with respect to Specm(F[s]) are
the left Wiener–Hopf factorization indices of T(s) at infinity.
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We prove now that the left Wiener–Hopf equivalence with respect to (M, M�) can be
characterized through the left Wiener–Hopf factorization indices with respect to M.

Theorem 17. Let M, M� ⊆ Specm(F[s]) be such that M ∪ M� = Specm(F[s]). Let T1(s), T2(s) ∈
F(s)m×m be two non-singular rational matrices with no zeros and no poles in M ∩ M�. The matrices
T1(s) and T2(s) are left Wiener–Hopf equivalent with respect to (M, M�) if and only if T1(s) and
T2(s) have the same left Wiener–Hopf factorization indices with respect to M.

Proof.- By Proposition 2 we can write T1(s) = TL1(s)TR1(s), T2(s) = TL2(s)TR2(s) with the
global invariant rational functions of TL1(s) and of TL2(s) factorizing in M \ M� (recall that
T1(s) and T2(s) have no zeros and no poles in M ∩ M�) and the global invariant rational
functions of TR1(s) and of TR2(s) factorizing in M� \ M.

Assume that T1(s), T2(s) have the same left Wiener–Hopf factorization indices with respect
to M. By definition, T1(s) and T2(s) have the same left Wiener–Hopf factorization indices
with respect to M if TL1(s) and TL2(s) have the same left Wiener–Hopf factorization indices at
infinity. This means that there exist matrices B(s) ∈ Glm(Fpr(s)) and U(s) ∈ Glm(F[s]) such
that TL2(s) = B(s)TL1(s)U(s). We have that T2(s) = TL2(s)TR2(s) = B(s)TL1(s)U(s)TR2(s) =
B(s)T1(s)(TR1(s)−1U(s)TR2(s)). We aim to prove that B(s) = TL2(s)U(s)−1TL1(s)−1 is
invertible in FM� (s)m×m and TR1(s)−1U(s)TR2(s) ∈ Glm(FM(s)). Since the global invariant
rational functions of TL2(s) and TL1(s) factorize in M \ M�, TL2(s), TL1(s) ∈ FM� (s)m×m

and B(s) ∈ FM� (s)m×m. Moreover, det B(s) is a unit in FM� (s)m×m as desired. Now,
TR1(s)−1U(s)TR2(s) ∈ Glm(FM(s)) because TR1(s), TR2(s) ∈ FM(s)m×m and det TR1(s) and
det TR2(s) factorize in M� \ M. Therefore T1(s) and T2(s) are left Wiener–Hopf equivalent with
respect to (M, M�).

Conversely, let U1(s) ∈ Glm(FM� (s)) ∩ Glm(Fpr(s)) and U2(s) ∈ Glm(FM(s)) such that
T1(s) = U1(s)T2(s)U2(s). Hence, T1(s) = TL1(s)TR1(s) = U1(s)TL2(s)TR2(s)U2(s). Put
TL2(s) = U1(s)TL2(s) and TR2(s) = TR2(s)U2(s). Therefore,

(i) T1(s) = TL1(s)TR1(s) = TL2(s)TR2(s),
(ii) the global invariant rational functions of TL1(s) and of TL2(s) factorize in M, and
(iii)the global invariant rational functions of TR1(s) and of TR2(s) factorize in Specm(F[s]) \ M.

Then TL1(s) and TL2(s) are right equivalent (see the remark previous to Definition 16).
So, there exists U(s) ∈ Glm(F[s]) such that TL1(s) = TL2(s)U(s). Thus, TL1(s) =
U1(s)TL2(s)U(s). Since U1(s) is biproper and U(s) is unimodular TL1(s), TL2(s) have the
same left Wiener–Hopf factorization indices at infinity. Consequentially, T1(s) and T2(s) have
the same left Wiener–Hopf factorization indices with respect to M.

In conclusion, for non-singular rational matrices with no zeros and no poles in M ∩ M� the left
Wiener–Hopf factorization indices with respect to M form a complete system of invariants for
the left Wiener–Hopf equivalence with respect to (M, M�) with M ∪ M� = Specm(F[s]).

A straightforward consequence of the above theorem is the following Corollary

Corollary 18. Let M, M� ⊆ Specm(F[s]) be such that M ∪ M� = Specm(F[s]). Let T1(s),
T2(s) ∈ F(s)m×m be non-singular with no zeros and no poles in M ∩ M�. Then T1(s) and
T2(s) are left Wiener–Hopf equivalent with respect to (M, M�) if and only if for any factorizations
T1(s) = TL1(s)TR1(s) and T2(s) = TL2(s)TR2(s) satisfying the conditions (i)–(iii) of Definition 16,
TL1(s) and TL2(s) are left Wiener–Hopf equivalent at infinity.
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Next we deal with the problem of factorizing or reducing a rational matrix to diagonal form
by Wiener–Hopf equivalence. It will be shown that if there exists in M an ideal generated by
a monic irreducible polynomial of degree equal to 1 which is not in M�, then any non-singular
rational matrix, with no zeros and no poles in M ∩ M� admits a factorization with respect to
(M, M�). Afterwards, some examples will be given in which these conditions on M and M�
are removed and factorization fails to exist.

Theorem 19. Let M, M� ⊆ Specm(F[s]) be such that M ∪ M� = Specm(F[s]). Assume that there
are ideals in M \ M� generated by linear polynomials. Let (s− a) be any of them and T(s) ∈ F(s)m×m

a non-singular matrix with no zeros and no poles in M ∩ M�. There exist both U1(s) invertible in
FM� (s)m×m ∩ Fpr(s)m×m and U2(s) invertible in FM(s)m×m such that

T(s) = U1(s)Diag((s − a)k1 , . . . , (s − a)km )U2(s), (38)

where k1 ≥ · · · ≥ km are integers uniquely determined by T(s). Moreover, they are the left
Wiener–Hopf factorization indices of T(s) with respect to M.

Proof.- The matrix T(s) can be written (see Proposition 2) as T(s) = TL(s)TR(s) with the
global invariant rational functions of TL(s) factorizing in M \ M� and the global invariant
rational functions of TR(s) factorizing in Specm(F[s]) \ M = M� \ M. As k1, . . . , km are the left
Wiener–Hopf factorization indices of TL(s) at infinity, there exist matrices U(s) ∈ Glm(F[s])
and B(s) ∈ Glm(Fpr(s)) such that TL(s) = B(s)D1(s)U(s) with D1(s) = Diag(sk1 , . . . , skm ).

Put D(s) = Diag((s − a)k1 , . . . , (s − a)km ) and U1(s) = B(s)Diag
(

sk1

(s−a)k1
, . . . , skm

(s−a)km

)
. Then

TL(s) = U1(s)D(s)U(s). If U2(s) = U(s)TR(s) then this matrix is invertible in FM(s)m×m

and T(s) = U1(s)Diag((s − a)k1 , . . . , (s − a)km )U2(s). We only have to prove that U1(s) is
invertible in FM� (s)m×m ∩ Fpr(s)m×m. It is clear that U1(s) is in Fpr(s)m×m and biproper.
Moreover, the global invariant rational functions of TL(s) U1(s) = TL(s)(D(s)U(s))−1

factorize in M \ M�. Therefore, U1(s) is invertible in FM� (s)m×m.

We prove now the uniqueness of the factorization. Assume that T(s) also factorizes as

T(s) = Ũ1(s)Diag((s − a)k̃1 , . . . , (s − a)k̃m )Ũ2(s), (39)

with k̃1 ≥ · · · ≥ k̃m integers. Then,

Diag((s − a)k̃1 , . . . , (s − a)k̃m ) = Ũ1(s)−1U1(s)Diag((s − a)k1 , . . . , (s − a)km )U2(s)Ũ2(s)−1.
(40)

The diagonal matrices have no zeros and no poles in M ∩ M� (because (s − a) ∈ M \ M�)
and they are left Wiener–Hopf equivalent with respect to (M, M�). By Theorem 17, they have
the same left Wiener–Hopf factorization indices with respect to M. Thus, k̃i = ki for all i =
1, . . . , m.

Following [6] we could call left Wiener–Hopf factorization indices with respect to (M, M�) the
exponents k1 ≥ · · · ≥ km appearing in the diagonal matrix of Theorem 19. They are, actually,
the left Wiener–Hopf factorization indices with respect to M.

Several examples follow that exhibit some remarkable features about the results that have
been proved so far. The first two examples show that if no assumption is made on the
intersection and/or union of M and M� then existence and/or uniqueness of diagonal
factorization may fail to exist.
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Example 20. If P(s) is a polynomial matrix with zeros in M ∩ M� then the existence of
invertible matrices U1(s) ∈ Glm(FM� (s)) ∩ Glm(Fpr(s)) and U2(s) ∈ Glm(FM(s)) such that
P(s) = U1(s)Diag((s − a)k1 , . . . , (s − a)km )U2(s) with (s − a) ∈ M \ M� may fail. In fact,
suppose that M = {(s), (s + 1)}, M� = Specm F[s] \ {(s)}. Therefore, M ∩ M� = {(s + 1)}
and (s) ∈ M \ M�. Consider p1(s) = s + 1. Assume that s + 1 = u1(s)sku2(s) with u1(s) a
unit in FM� (s) ∩ Fpr(s) and u2(s) a unit in FM(s). Thus, u1(s) = c a nonzero constant and
u2(s) = 1

c
s+1
sk which is not a unit in FM(s).

Example 21. If M ∪ M� �= Specm F[s] then the factorization indices with respect to (M, M�)
may be not unique. Suppose that (β(s)) /∈ M ∪ M�, (π(s)) ∈ M \ M� with d(π(s)) = 1 and
p(s) = u1(s)π(s)ku2(s), with u1(s) a unit in FM� (s) ∩ Fpr(s) and u2(s) a unit in FM(s). Then

p(s) can also be factorized as p(s) = ũ1(s)π(s)k−d(β(s))ũ2(s) with ũ1(s) = u1(s)
π(s)d(β(s))

β(s) a unit
in FM� (s) ∩ Fpr(s) and ũ2(s) = β(s)u2(s) a unit in FM(s).

The following example shows that if all ideals generated by polynomials of degree equal to
one are in M� \ M then a factorization as in Theorem 19 may not exist.

Example 22. Suppose that F = R. Consider M = {(s2 + 1)} ⊆ Specm(R[s]) and M� =
Specm(R[s]) \ {(s2 + 1)}. Let

P(s) =
[

s 0
−s2 (s2 + 1)2

]
. (41)

Notice that P(s) has no zeros and no poles in M ∩ M� = ∅. We will see that it is not possible
to find invertible matrices U1(s) ∈ RM� (s)2×2 ∩ Rpr(s)2×2 and U2(s) ∈ RM(s)2×2 such that

U1(s)P(s)U2(s) = Diag((p(s)/q(s))c1 , (p(s)/q(s))c2 ). (42)

We can write p(s)
q(s) = u(s)(s2 + 1)a with u(s) a unit in RM(s) and a ∈ Z. Therefore,

Diag((p(s)/q(s))c1 , (p(s)/q(s))c2 ) = Diag((s2 + 1)ac1 , (s2 + 1)ac2 )Diag(u(s)c1 , u(s)c2 ). (43)

Diag(u(s)c1 , u(s)c2 ) is invertible in RM(s)2×2 and P(s) is also left Wiener–Hopf equivalent
with respect to (M, M�) to the diagonal matrix Diag((s2 + 1)ac1 , (s2 + 1)ac2 ).

Assume that there exist invertible matrices U1(s) ∈ RM� (s)2×2 ∩ Rpr(s)2×2 and U2(s) ∈
RM(s)2×2 such that U1(s)P(s)U2(s) = Diag((s2 + 1)d1 , (s2 + 1)d2 ), with d1 ≥ d2 integers.
Notice first that det U1(s) is a nonzero constant and since det P(s) = s(s2 + 1)2 and det U2(s)
is a rational function with numerator and denominator relatively prime with s2 + 1, it follows
that cs(s2 + 1)2 det U2(s) = (s2 + 1)d1+d2 . Thus, d1 + d2 = 2. Let

U1(s)−1 =

[
b11(s) b12(s)
b21(s) b22(s)

]
, U2(s) =

[
u11(s) u12(s)
u21(s) u22(s)

]
. (44)

From P(s)U2(s) = U1(s)−1 Diag((s2 + 1)d1 , (s2 + 1)d2 ) we get

su11(s) = b11(s)(s2 + 1)d1 , (45)

− s2u11(s) + (s2 + 1)2u21(s) = b21(s)(s2 + 1)d1 , (46)
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su12(s) = b12(s)(s2 + 1)d2 , (47)

− s2u12(s) + (s2 + 1)2u22(s) = b22(s)(s2 + 1)d2 . (48)

As u11(s) ∈ RM(s) and b11(s) ∈ RM� (s) ∩ Rpr(s), we can write u11(s) =
f1(s)
g1(s)

and b11(s) =

h1(s)
(s2+1)q1 with f1(s), g1(s), h1(s) ∈ R[s], gcd(g1(s), s2 + 1) = 1 and d(h1(s)) ≤ 2q1. Therefore,

by (45), s f1(s)
g1(s)

= h1(s)
(s2+1)q1 (s

2 + 1)d1 . Hence, u11(s) = f1(s) or u11(s) =
f1(s)

s . In the same

way and using (47), u12(s) = f2(s) or u12(s) =
f2(s)

s with f2(s) a polynomial. Moreover, by
(47), d2 must be non-negative. Hence, d1 ≥ d2 ≥ 0. Using now (46) and (48) and bearing
in mind again that u21(s), u22(s) ∈ RM(s) and b21(s), b22(s) ∈ RM� (s) ∩ Rpr(s), we conclude
that u21(s) and u22(s) are polynomials.

We can distinguish two cases: d1 = 2, d2 = 0 and d1 = d2 = 1. If d1 = 2 and d2 = 0, by (47),
b12(s) is a polynomial and since b12(s) is proper, it is constant: b12(s) = c1. Thus u12(s) =

c1
s .

By (48), b22(s) = −c1s+ (s2 + 1)2u22(s). Since u22(s) is polynomial and b22(s) is proper, b22(s)
is also constant and then u22(s) = 0 and c1 = 0. Consequentially, b22(s) = 0, and b12(s) = 0.
This is impossible because U1(s) is invertible.

If d1 = d2 = 1 then , using (46),

b21(s) =
−s2u11(s)+(s2+1)2u21(s)

s2+1 =
−s2 b11(s)

s (s2+1)+(s2+1)2u21(s)
s2+1

= −sb11(s) + (s2 + 1)u21(s) = −s h1(s)
(s2+1)q1 + (s2 + 1)u21(s)

= −sh1(s)+(s2+1)q1+1u21(s)
(s2+1)q1 .

(49)

Notice that d(−sh1(s)) ≤ 1+ 2q1 and d((s2 + 1)q1+1u21(s)) = 2(q1 + 1) + d(u21(s)) ≥ 2q1 + 2
unless u21(s) = 0. Hence, if u21(s) �= 0, d(−sh1(s) + (s2 + 1)q1+1u21(s)) ≥ 2q1 + 2 which is
greater than d((s2 + 1)q1 ) = 2q1. This cannot happen because b21(s) is proper. Thus, u21(s) =
0. In the same way and reasoning with (48) we get that u22(s) is also zero. This is again
impossible because U2(s) is invertible. Therefore no left Wiener–Hopf factorization of P(s)
with respect to (M, M�) exits.

We end this section with an example where the left Wiener–Hopf factorization indices of the
matrix polynomial in the previous example are computed. Then an ideal generated by a
polynomial of degree 1 is added to M and the Wiener–Hopf factorization indices of the same
matrix are obtained in two different cases.

Example 23. Let F = R and M = {(s2 + 1)}. Consider the matrix

P(s) =
[

s 0
−s2 (s2 + 1)2

]
, (50)

which has a zero at 0. It can be written as P(s) = P1(s)P2(s) with

P1(s) =
[

1 0
−s (s2 + 1)2

]
, P2(s) =

[
s 0
0 1

]
, (51)

where the global invariant factors of P1(s) are powers of s2 + 1 and the global invariant
factors of P2(s) are relatively prime with s2 + 1. Moreover, the left Wiener–Hopf factorization
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indices of P1(s) at infinity are 3, 1 (add the first column multiplied by s3 + 2s to the second
column; the result is a column proper matrix with column degrees 1 and 3). Therefore, the left
Wiener–Hopf factorization indices of P(s) with respect to M are 3, 1.

Consider now M̃ = {(s2 + 1), (s)} and M̃� = Specm(R[s]) \ M̃. There is a unimodular matrix

U(s) =

[
1 s2 + 2
0 1

]
, invertible in RM̃(s)2×2, such that P(s)U(s) =

[
s s3 + 2s

−s2 1

]
is column

proper with column degrees 3 and 2. We can write

P(s)U(s) =
[

0 1
−1 0

] [
s2 0
0 s3

]
+

[
s 2s
0 1

]
= B(s)

[
s2 0
0 s3

]
, (52)

where B(s) is the following biproper matrix

B(s) =
[

0 1
−1 0

]
+

[
s 2s
0 1

] [
s−2 0
0 s−3

]
=

[
1
s

s2+2
s2

−1 1
s3

]
. (53)

Moreover, the denominators of its entries are powers of s and det B(s) = (s2+1)2

s4 . Therefore,
B(s) is invertible in RM̃� (s)2×2 ∩ Rpr(s)2×2. Since B(s)−1P(s)U(s) = Diag(s2, s3), the left
Wiener–Hopf factorization indices of P(s) with respect to M̃ are 3, 2.

If M̃ = {(s2 + 1), (s − 1)}, for example, a similar procedure shows that P(s) has 3, 1 as left
Wiener–Hopf factorization indices with respect to M̃; the same indices as with respect to M.
The reason is that s − 1 is not a divisor of det P(s) and so P(s) = P1(s)P2(s) with P1(s) and
P2(s) as in (51) and P1(s) factorizing in M̃.

Remark 24. It must be noticed that a procedure has been given to compute, at least
theoretically, the left Wiener–Hopf factorization indices of any rational matrix with respect
to any subset M of Specm(F[s]). In fact, given a rational matrix T(s) and M, write T(s) =
TL(s)TR(s) with the global invariant rational functions of TL(s) factorizing in M, and the
global invariant rational functions of TR(s) factorizing in Specm(F[s]) \ M (for example,
using the global Smith–McMillan form of T(s)). We need to compute the left Wiener–Hopf
factorization indices at infinity of the rational matrix TL(s). The idea is as follows: Let d(s) be
the monic least common denominator of all the elements of TL(s). The matrix TL(s) can be
written as TL(s) = P(s)

d(s) , with P(s) polynomial. The left Wiener–Hopf factorization indices
of P(s) at infinity are the column degrees of any column proper matrix right equivalent
to P(s). If k1, . . . , km are the left Wiener–Hopf factorization indices at infinity of P(s) then
k1 + d, . . . , km + d are the left Wiener–Hopf factorization indices of TL(s), where d = d(d(s))
(see [1]). Free and commercial software exists that compute such column degrees.

5. Rosenbrock’s Theorem via local rings

As said in the Introduction, Rosenbrock’s Theorem ([14]) on pole assignment by state feedback
provides, in its polynomial formulation, a complete characterization of the relationship
between the invariant factors and the left Wiener–Hopf factorization indices at infinity of any
non-singular matrix polynomial. The precise statement of this result is the following theorem:
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Theorem 25. Let g1 ≥ · · · ≥ gm and α1(s) | · · · | αm(s) be non-negative integers and
monic polynomials, respectively. Then there exists a non-singular matrix P(s) ∈ F[s]m×m with
α1(s), . . . , αm(s) as invariant factors and g1, . . . , gm as left Wiener–Hopf factorization indices at
infinity if and only if the following relation holds:

(g1, . . . , gm) ≺ (d(αm(s)), . . . , d(α1(s))). (54)

Symbol ≺ appearing in (54) is the majorization symbol (see [11]) and it is defined as follows: If
(a1, . . . , am) and (b1, . . . , bm) are two finite sequences of real numbers and a[1] ≥ · · · ≥ a[m] and
b[1] ≥ · · · ≥ b[m] are the given sequences arranged in non-increasing order then (a1, . . . , am) ≺
(b1, . . . , bm) if

j

∑
i=1

a[i] ≤
j

∑
i=1

b[i], 1 ≤ j ≤ m − 1 (55)

with equality for j = m.

The above Theorem 25 can be extended to cover rational matrix functions. Any rational matrix
T(s) can be written as N(s)

d(s) where d(s) is the monic least common denominator of all the
elements of T(s) and N(s) is polynomial. It turns out that the invariant rational functions of
T(s) are the invariant factors of N(s) divided by d(s) after canceling common factors. We also
have the following characterization of the left Wiener– Hopf factorization indices at infinity of
T(s): these are those of N(s) plus the degree of d(s) (see [1]). Bearing all this in mind one can
easily prove (see [1])

Theorem 26. Let g1 ≥ · · · ≥ gm be integers and α1(s)
β1(s)

, . . . , αm(s)
βm(s)

irreducible rational functions,
where αi(s), βi(s) ∈ F[s] are monic such that α1(s) | · · · | αm(s) while βm(s) | · · · | β1(s). Then
there exists a non-singular rational matrix T(s) ∈ F(s)m×m with g1, . . . , gm as left Wiener–Hopf
factorization indices at infinity and α1(s)

β1(s)
, . . . , αm(s)

βm(s)
as global invariant rational functions if and only

if
(g1, . . . , gm) ≺ (d(αm(s))− d(βm(s)), . . . , d(α1(s))− d(β1(s))). (56)

Recall that for M ⊆ Specm(F[s]) any rational matrix T(s) can be factorized into two matrices
(see Proposition 2) such that the global invariant rational functions and the left Wiener–Hopf
factorization indices at infinity of the left factor of T(s) give the invariant rational functions
and the left Wiener–Hopf factorization indices of T(s) with respect to M. Using Theorem 26
on the left factor of T(s) we get:

Theorem 27. Let M ⊆ Specm(F[s]). Let k1 ≥ · · · ≥ km be integers and �1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

be
irreducible rational functions such that �1(s) | · · · | �m(s), ψm(s) | · · · | ψ1(s) are monic polynomials
factorizing in M. Then there exists a non-singular matrix T(s) ∈ F(s)m×m with �1(s)

ψ1(s)
, . . . , �m(s)

ψm(s)
as

invariant rational functions with respect to M and k1, . . . , km as left Wiener–Hopf factorization indices
with respect to M if and only if

(k1, . . . , km) ≺ (d(�m(s))− d(ψm(s)), . . . , d(�1(s))− d(ψ1(s))). (57)
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α1(s), . . . , αm(s) as invariant factors and g1, . . . , gm as left Wiener–Hopf factorization indices at
infinity if and only if the following relation holds:

(g1, . . . , gm) ≺ (d(αm(s)), . . . , d(α1(s))). (54)

Symbol ≺ appearing in (54) is the majorization symbol (see [11]) and it is defined as follows: If
(a1, . . . , am) and (b1, . . . , bm) are two finite sequences of real numbers and a[1] ≥ · · · ≥ a[m] and
b[1] ≥ · · · ≥ b[m] are the given sequences arranged in non-increasing order then (a1, . . . , am) ≺
(b1, . . . , bm) if

j

∑
i=1

a[i] ≤
j

∑
i=1

b[i], 1 ≤ j ≤ m − 1 (55)

with equality for j = m.

The above Theorem 25 can be extended to cover rational matrix functions. Any rational matrix
T(s) can be written as N(s)

d(s) where d(s) is the monic least common denominator of all the
elements of T(s) and N(s) is polynomial. It turns out that the invariant rational functions of
T(s) are the invariant factors of N(s) divided by d(s) after canceling common factors. We also
have the following characterization of the left Wiener– Hopf factorization indices at infinity of
T(s): these are those of N(s) plus the degree of d(s) (see [1]). Bearing all this in mind one can
easily prove (see [1])

Theorem 26. Let g1 ≥ · · · ≥ gm be integers and α1(s)
β1(s)

, . . . , αm(s)
βm(s)

irreducible rational functions,
where αi(s), βi(s) ∈ F[s] are monic such that α1(s) | · · · | αm(s) while βm(s) | · · · | β1(s). Then
there exists a non-singular rational matrix T(s) ∈ F(s)m×m with g1, . . . , gm as left Wiener–Hopf
factorization indices at infinity and α1(s)

β1(s)
, . . . , αm(s)

βm(s)
as global invariant rational functions if and only

if
(g1, . . . , gm) ≺ (d(αm(s))− d(βm(s)), . . . , d(α1(s))− d(β1(s))). (56)

Recall that for M ⊆ Specm(F[s]) any rational matrix T(s) can be factorized into two matrices
(see Proposition 2) such that the global invariant rational functions and the left Wiener–Hopf
factorization indices at infinity of the left factor of T(s) give the invariant rational functions
and the left Wiener–Hopf factorization indices of T(s) with respect to M. Using Theorem 26
on the left factor of T(s) we get:

Theorem 27. Let M ⊆ Specm(F[s]). Let k1 ≥ · · · ≥ km be integers and �1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

be
irreducible rational functions such that �1(s) | · · · | �m(s), ψm(s) | · · · | ψ1(s) are monic polynomials
factorizing in M. Then there exists a non-singular matrix T(s) ∈ F(s)m×m with �1(s)

ψ1(s)
, . . . , �m(s)

ψm(s)
as

invariant rational functions with respect to M and k1, . . . , km as left Wiener–Hopf factorization indices
with respect to M if and only if

(k1, . . . , km) ≺ (d(�m(s))− d(ψm(s)), . . . , d(�1(s))− d(ψ1(s))). (57)
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Theorem 27 relates the left Wiener–Hopf factorization indices with respect to M and the finite
structure inside M. Our last result will relate the left Wiener–Hopf factorization indices with
respect to M and the structure outside M, including that at infinity. The next Theorem is an
extension of Rosenbrock’s Theorem to the point at infinity, which was proved in [1]:

Theorem 28. Let g1 ≥ · · · ≥ gm and q1 ≥ · · · ≥ qm be integers. Then there exists a non-singular
matrix T(s) ∈ F(s)m×m with g1, . . . , gm as left Wiener–Hopf factorization indices at infinity and
sq1 , . . . , sqm as invariant rational functions at infinity if and only if

(g1, . . . , gm) ≺ (q1, . . . , qm). (58)

Notice that Theorem 26 can be obtained from Theorem 27 when M = Specm(F[s]). In
the same way, taking into account that the equivalence at infinity is a particular case of the
equivalence in FM� (s) ∩ Fpr(s) when M� = ∅, we can give a more general result than that of
Theorem 28. Specifically, necessary and sufficient conditions can be provided for the existence
of a non-singular rational matrix with prescribed left Wiener–Hopf factorization indices with
respect to M and invariant rational functions in FM� (s) ∩ Fpr(s).

Theorem 29. Let M, M� ⊆ Specm(F[s]) be such that M ∪ M� = Specm(F[s]). Assume that
there are ideals in M \ M� generated by linear polynomials and let (s − a) be any of them. Let
k1 ≥ · · · ≥ km be integers, �1(s)

ψ1(s)
, . . . , �m(s)

ψm(s)
irreducible rational functions such that �1(s)| · · · |�m(s),

ψm(s)| · · · |ψ1(s) are monic polynomials factorizing in M� \ M and l1, . . . , lm integers such that
l1 + d(ψ1(s)) − d(�1(s)) ≤ · · · ≤ lm + d(ψm(s)) − d(�m(s)). Then there exists a non-singular
matrix T(s) ∈ F(s)m×m with no zeros and no poles in M ∩ M� with k1, . . . , km as left Wiener–Hopf
factorization indices with respect to M and �1(s)

ψ1(s)
1

(s−a)l1
, . . . , �m(s)

ψm(s)
1

(s−a)lm as invariant rational

functions in FM� (s) ∩ Fpr(s) if and only if the following condition holds:

(k1, . . . , km) ≺ (−l1, . . . ,−lm). (59)

The proof of this theorem will be given along the following two subsections. We will use
several auxiliary results that will be stated and proved when needed.

5.1. Necessity

We can give the following result for rational matrices using a similar result given in Lemma
4.2 in [2] for matrix polynomials.

Lemma 30. Let M, M� ⊆ Specm(F[s]) be such that M∪ M� = Specm(F[s]). Let T(s) ∈ F(s)m×m

be a non-singular matrix with no zeros and no poles in M ∩ M� with g1 ≥ · · · ≥ gm as left
Wiener–Hopf factorization indices at infinity and k1 ≥ · · · ≥ km as left Wiener–Hopf factorization
indices with respect to M. If �1(s)

ψ1(s)
, . . . , �m(s)

ψm(s)
are the invariant rational functions of T(s) with respect

to M� then

(g1 − k1, . . . , gm − km) ≺ (d(�m(s))− d(ψm(s)), . . . , d(�1(s))− d(ψ1(s))). (60)

It must be pointed out that (g1 − k1, . . . , gm − km) may be an unordered m-tuple.
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Proof.- By Proposition 2 there exist unimodular matrices U(s), V(s) ∈ F[s]m×m such that

T(s) = U(s)Diag
(

α1(s)
β1(s)

, . . . ,
αm(s)
βm(s)

)
Diag

(
�1(s)
ψ1(s)

, . . . ,
�m(s)
ψm(s)

)
V(s) (61)

with αi(s) | αi+1(s), βi(s) | βi−1(s), �i(s) | �i+1(s), ψi(s) | ψi−1(s), αi(s), βi(s) units in
FM�\M(s) and �i(s), ψi(s) factorizing in M� \ M because T(s) has no poles and no zeros in M ∩
M�. Therefore T(s) = TL(s)TR(s), where TL(s) = U(s)Diag

(
α1(s)
β1(s)

, . . . , αm(s)
βm(s)

)
has k1, . . . , km

as left Wiener–Hopf factorization indices at infinity and TR(s) = Diag
(

�1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

)
V(s)

has �1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

as global invariant rational functions. Let d(s) = β1(s)ψ1(s). Hence,

d(s)T(s) = U(s)Diag(α1(s), . . . , αm(s))Diag(�1(s), . . . , �m(s))V(s) (62)

with αi(s) = αi(s)
βi(s)

β1(s) units in FM�\M(s) and �i(s) = �i(s)
ψi(s)

ψ1(s) factorizing in M� \
M. Put P(s) = d(s)T(s). Its left Wiener–Hopf factorization indices at infinity are g1 +
d(d(s)), . . . , gm + d(d(s)) [1, Lemma 2.3]. The matrix P1(s) = U(s)Diag(α1(s), . . . , αm(s)) =
β1(s)TL(s) has k1 + d(β1(s)), . . . , km + d(β1(s)) as left Wiener–Hopf factorization indices at
infinity. Now if P2(s) = Diag(�1(s), . . . , �m(s))V(s) = ψ1(s)TR(s) then its invariant factors
are �1(s), . . . , �m(s), P(s) = P1(s)P2(s) and, by [2, Lemma 4.2],

(g1 + d(d(s))− k1 − d(β1(s)), . . . , gm + d(d(s))− km − d(β1(s))) ≺ (d(�m(s)), . . . , d(�1(s))).
(63)

Therefore, (60) follows.

5.1.1. Proof of Theorem 29: Necessity

If �1(s)
ψ1(s)

1
(s−a)l1

, . . . , �m(s)
ψm(s)

1
(s−a)lm are the invariant rational functions of T(s) in FM� (s) ∩ Fpr(s)

then there exist matrices U1(s), U2(s) invertible in FM� (s)m×m ∩ Fpr(s)m×m such that

T(s) = U1(s)Diag
(

�1(s)
ψ1(s)

1
(s − a)l1

, . . . ,
�m(s)
ψm(s)

1
(s − a)lm

)
U2(s). (64)

We analyze first the finite structure of T(s) with respect to M�. If D1(s) = Diag((s − a)−l1 ,
. . . , (s − a)−lm ) ∈ FM� (s)m×m, we can write T(s) as follows:

T(s) = U1(s)Diag
(

�1(s)
ψ1(s)

, . . . ,
�m(s)
ψm(s)

)
D1(s)U2(s), (65)

with U1(s) and D1(s)U2(s) invertible matrices in FM� (s)m×m. Thus �1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

are the

invariant rational functions of T(s) with respect to M�. Let g1 ≥ · · · ≥ gm be the left
Wiener–Hopf factorization indices of T(s) at infinity. By Lemma 30 we have

(g1 − k1, . . . , gm − km) ≺ (d(�m(s))− d(ψm(s)), . . . , d(�1(s))− d(ψ1(s))). (66)

As far as the structure of T(s) at infinity is concerned, let

D2(s) = Diag

(
�1(s)
ψ1(s)

sl1+d(ψ1(s))−d(�1(s))

(s − a)l1
, . . . ,

�m(s)
ψm(s)

slm+d(ψm(s))−d(�m(s))

(s − a)lm

)
. (67)
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D2(s) = Diag
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�1(s)
ψ1(s)

sl1+d(ψ1(s))−d(�1(s))
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, . . . ,

�m(s)
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(s − a)lm

)
. (67)
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Then D2(s) ∈ Gl(Fpr(s)) and

T(s) = U1(s)Diag
(

s−l1−d(ψ1(s))+d(�1(s)), . . . , s−lm−d(ψm(s))+d(�m(s))
)

D2(s)U2(s) (68)

where U1(s) ∈ Fpr(s)m×m and D2(s)U2(s) ∈ Fpr(s)m×m are biproper matrices. Therefore
s−l1−d(ψ1(s))+d(�1(s)), . . . , s−lm−d(ψm(s))+d(�m(s)) are the invariant rational functions of T(s) at
infinity. By Theorem 28

(g1, . . . , gm) ≺ (−l1 − d(ψ1(s)) + d(�1(s)), . . . ,−lm − d(ψm(s)) + d(�m(s))). (69)

Let σ ∈ Σm (the symmetric group of order m) be a permutation such that gσ(1) − kσ(1) ≥ · · · ≥
gσ(m) − kσ(m) and define ci = gσ(i) − kσ(i), i = 1, . . . , m. Using (66) and (69) we obtain

r
∑

j=1
kj +

r
∑

j=1
(d(�j(s))− d(ψj(s))) ≤

r
∑

j=1
kj +

m
∑

j=m−r+1
cj

≤ r
∑

j=1
kj +

r
∑

j=1
(gj − kj) =

r
∑

j=1
gj

≤ r
∑

j=1
−lj +

r
∑

j=1
(d(�j(s))− d(ψj(s)))

(70)

for r = 1, . . . , m − 1. When r = m the previous inequalities are all equalities and condition (59)
is satisfied.

Remark 31. It has been seen in the above proof that if a matrix has
�1(s)
ψ1(s)

1
(s−a)l1

, . . . , �m(s)
ψm(s)

1
(s−a)lm as invariant rational functions in FM� (s) ∩ Fpr(s) then

�1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

are its invariant rational functions with respect to M� and s−l1−d(ψ1(s))+d(�1(s)),

. . . , s−lm−d(ψm(s))+d(�m(s)) are its invariant rational functions at infinity.

5.2. Sufficiency

Let a, b ∈ F be arbitrary elements such that ab �= 1. Consider the changes of indeterminate

f (s) = a +
1

s − b
, f̃ (s) = b +

1
s − a

(71)

and notice that f ( f̃ (s)) = f̃ ( f (s)) = s. For α(s) ∈ F[s], let F[s] \ (α(s)) denote the
multiplicative subset of F[s] whose elements are coprime with α(s). For a, b ∈ F as above
define

ta,b : F[s] → F[s] \ (s − b)
π(s) �→ (s − b)d(π(s)) π

(
a + 1

s−b

)
= (s − b)d(π(s)) π( f (s)) . (72)

In words, if π(s) = pd(s − a)d + pd−1(s − a)d−1 + · · ·+ p1(s − a) + p0 (pd �= 0) then

ta,b(π(s)) = p0(s − b)d + p1(s − b)d−1 + · · ·+ pd−1(s − b) + pd. (73)

In general d(ta,b(π(s))) ≤ d(π(s)) with equality if and only if π(s) ∈ F[s] \ (s − a). This
shows that the restriction ha,b : F[s] \ (s − a) → F[s] \ (s − b) of ta,b to F[s] \ (s − a) is a
bijection. In addition h−1

a,b is the restriction of tb,a to F[s] \ (s − b); i.e.,

h−1
a,b : F[s] \ (s − b) → F[s] \ (s − a)

α(s) �→ (s − a)d(α(s)) α
(

b + 1
s−a

)
= (s − a)d(α(s)) α( f̃ (s))

(74)

69An Interpretation of Rosenbrock’s Theorem via Local Rings



24 Will-be-set-by-IN-TECH

or h−1
a,b = hb,a.

In what follows we will think of a, b as given elements of F and the subindices of ta,b, ha,b and
h−1

a,b will be removed. The following are properties of h (and h−1) that can be easily proved.

Lemma 32. Let π1(s), π2(s) ∈ F[s] \ (s − a). The following properties hold:

1. h(π1(s)π2(s)) = h(π1(s))h(π2(s)).

2. If π1(s) | π2(s) then h(π1(s)) | h(π2(s)).

3. If π1(s) is an irreducible polynomial then h(π1(s)) is an irreducible polynomial.

4. If π1(s), π2(s) are coprime polynomials then h(π1(s)), h(π2(s)) are coprime polynomials.

As a consequence the map

H : Specm (F[s]) \ {(s − a)} → Specm (F[s]) \ {(s − b)}
(π(s)) �→ ( 1

p0
h(π(s))) (75)

with p0 = π(a), is a bijection whose inverse is

H−1 : Specm (F[s]) \ {(s − b)} → Specm (F[s]) \ {(s − a)}
(α(s)) �→ ( 1

a0
h−1(α(s))) (76)

where a0 = α(b). In particular, if M� ⊆ Specm(F[s]) \ {(s− a)} and M̃ = Specm(F[s]) \ (M� ∪
{(s − a)}) (i.e. the complementary subset of M� in Specm (F[s]) \ {(s − a)}) then

H(M̃) = Specm
(
F[s]) \ (H(M�) ∪ {(s − b)

}
). (77)

In what follows and for notational simplicity we will assume b = 0.

Lemma 33. Let M� ⊆ Specm (F[s]) \ {(s − a)} where a ∈ F is an arbitrary element of F.

1. If π(s) ∈ F[s] factorizes in M� then h(π(s)) factorizes in H(M�).
2. If π(s) ∈ F[s] is a unit of FM� (s) then t(π(s)) is a unit of FH(M�)(s).

Proof.- 1. Let π(s) = cπ1(s)g1 · · ·πm(s)gm with c �= 0 constant, (πi(s)) ∈ M� and gi ≥ 1. Then
h(π(s)) = c(h(π1(s)))g1 · · · (h(πm(s)))gm . By Lemma 32 h(πi(s)) is an irreducible polynomial
(that may not be monic). If ci is the leading coefficient of h(πi(s)) then 1

ci
h(πi(s)) is monic,

irreducible and ( 1
ci

h(πi(s))) ∈ H(M�). Hence h(π(s)) factorizes in H(M�).

2. If π(s) ∈ F[s] is a unit of FM� (s) then it can be written as π(s) = (s − a)gπ1(s) where
g ≥ 0 and π1(s) is a unit of FM�∪{(s−a)}(s). Therefore π1(s) factorizes in Specm(F[s]) \ (M� ∪
{(s − a)}). Since t(π(s)) = h(π1(s)), it factorizes in (recall that we are assuming b = 0)
H(Specm(F[s]) \ (M� ∪ {(s − a)}) = Specm(F[s]) \ (H(M�) ∪ {(s)}). So, t(π(s)) is a unit of
FH(M�)(s).

Lemma 34. Let a ∈ F be an arbitrary element. Then

1. If M� ⊆ Specm (F[s]) \ {(s − a)} and U(s) ∈ Glm(FM� (s)) then U( f (s)) ∈ Glm(FH(M�)(s)).
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As a consequence the map

H : Specm (F[s]) \ {(s − a)} → Specm (F[s]) \ {(s − b)}
(π(s)) �→ ( 1

p0
h(π(s))) (75)

with p0 = π(a), is a bijection whose inverse is

H−1 : Specm (F[s]) \ {(s − b)} → Specm (F[s]) \ {(s − a)}
(α(s)) �→ ( 1

a0
h−1(α(s))) (76)

where a0 = α(b). In particular, if M� ⊆ Specm(F[s]) \ {(s− a)} and M̃ = Specm(F[s]) \ (M� ∪
{(s − a)}) (i.e. the complementary subset of M� in Specm (F[s]) \ {(s − a)}) then

H(M̃) = Specm
(
F[s]) \ (H(M�) ∪ {(s − b)

}
). (77)

In what follows and for notational simplicity we will assume b = 0.

Lemma 33. Let M� ⊆ Specm (F[s]) \ {(s − a)} where a ∈ F is an arbitrary element of F.

1. If π(s) ∈ F[s] factorizes in M� then h(π(s)) factorizes in H(M�).
2. If π(s) ∈ F[s] is a unit of FM� (s) then t(π(s)) is a unit of FH(M�)(s).

Proof.- 1. Let π(s) = cπ1(s)g1 · · ·πm(s)gm with c �= 0 constant, (πi(s)) ∈ M� and gi ≥ 1. Then
h(π(s)) = c(h(π1(s)))g1 · · · (h(πm(s)))gm . By Lemma 32 h(πi(s)) is an irreducible polynomial
(that may not be monic). If ci is the leading coefficient of h(πi(s)) then 1

ci
h(πi(s)) is monic,

irreducible and ( 1
ci

h(πi(s))) ∈ H(M�). Hence h(π(s)) factorizes in H(M�).

2. If π(s) ∈ F[s] is a unit of FM� (s) then it can be written as π(s) = (s − a)gπ1(s) where
g ≥ 0 and π1(s) is a unit of FM�∪{(s−a)}(s). Therefore π1(s) factorizes in Specm(F[s]) \ (M� ∪
{(s − a)}). Since t(π(s)) = h(π1(s)), it factorizes in (recall that we are assuming b = 0)
H(Specm(F[s]) \ (M� ∪ {(s − a)}) = Specm(F[s]) \ (H(M�) ∪ {(s)}). So, t(π(s)) is a unit of
FH(M�)(s).

Lemma 34. Let a ∈ F be an arbitrary element. Then

1. If M� ⊆ Specm (F[s]) \ {(s − a)} and U(s) ∈ Glm(FM� (s)) then U( f (s)) ∈ Glm(FH(M�)(s)).
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2. If U(s) ∈ Glm(Fs−a(s)) then U( f (s)) ∈ Glm(Fpr(s)).

3. If U(s) ∈ Glm(Fpr(s)) then U( f (s)) ∈ Glm(Fs(s)).

4. If (s − a) ∈ M� ⊆ Specm (F[s]) and U(s) ∈ Glm(FM� (s)) then the matrix U( f (s)) ∈
Glm(FH(M�\{(s−a)})(s)) ∩ Glm(Fpr(s))

Proof.- Let p(s)
q(s) with p(s), q(s) ∈ F[s].

p( f (s))
q( f (s))

=
sd(p(s))p( f (s))
sd(q(s))q( f (s))

sd(q(s))−d(p(s)) =
t(p(s))
t(q(s))

sd(q(s))−d(p(s)). (78)

1. Assume that U(s) ∈ Glm(FM� (s)) and let p(s)
q(s) be any element of U(s). Therefore q(s) is a

unit of FM� (s) and, by Lemma 33.2, t(q(s)) is a unit of FH(M�)(s). Moreover, s is also a unit of

FH(M�)(s). Hence, p( f (s))
q( f (s)) ∈ FH(M�)(s). Furthermore, if det U(s) = p̃(s)

q̃(s) , it is a unit of FM� (s)

and det U( f (s)) = p̃( f (s))
q̃( f (s)) is a unit of FH(M�)(s).

2. If p(s)
q(s) is any element of U(s) ∈ Glm(Fs−a(s)) then q(s) ∈ F[s] \ (s − a) and so

d(h(q(s))) = d(q(s)). Since s − a may divide p(s) we have that d(t(p(s))) ≤ d(p(s)). Hence,
d(h(q(s))) − d(q(s)) ≥ d(t(p(s)) − d(p(s)) and p( f (s))

q( f (s)) =
t(p(s))
h(q(s)) sd(q(s))−d(p(s)) ∈ Fpr(s).

Moreover if det U(s) =
p̃(s)
q̃(s) then p̃(s), q̃(s) ∈ F[s] \ (s − a), d(h( p̃(s))) = d( p̃(s)) and

d(h(q̃(s))) = d(q̃(s)). Thus, det U( f (s)) = h( p̃(s))
h(q̃(s)) sd(q̃(s))−d( p̃(s)) is a biproper rational function,

i.e., a unit of Fpr(s).

3. If U(s) ∈ Glm(Fpr(s)) and p(s)
q(s) is any element of U(s) then d(q(s)) ≥ d(p(s)). Since

p( f (s))
q( f (s)) =

t(p(s))
t(q(s)) sd(q(s))−d(p(s)) and t(p(s)), t(q(s)) ∈ F[s] \ (s) we obtain that U( f (s)) ∈

Fs(s)m×m. In addition, if det U(s) =
p̃(s)
q̃(s) , which is a unit of Fpr(s), then d(q̃(s)) = d( p̃(s))

and since t( p̃(s)), t(q̃(s)) ∈ F[s] \ (s) we conclude that det U( f (s)) = t( p̃(s))
t(q̃(s)) is a unit of Fs(s).

4. It is a consequence of 1., 2. and Remark 1.2.

Proposition 35. Let M ⊆ Specm(F[s]) and (s − a) ∈ M. If T(s) ∈ F(s)m×m is non-singular with
ni(s)
di(s)

= (s− a)gi �i(s)
ψi(s)

(�i(s), ψi(s) ∈ F[s] \ (s − a)) as invariant rational functions with respect to M

then T( f (s))T ∈ F(s)m×m is a non-singular matrix with 1
ci

h(�i(s))
h(ψi(s))

s−gi+d(ψi(s))−d(�i(s)) as invariant

rational functions in FH(M\{(s−a)})(s)m×m ∩ Fpr(s)m×m where ci =
�i(a)
ψi(a) .

Proof.- Since (s − a)gi �i(s)
ψ(s) are the invariant rational functions of T(s) with respect to M, there

are U1(s), U2(s) ∈ Glm(FM(s)) such that

T(s) = U1(s)Diag
(
(s − a)g1

�1(s)
ψ1(s)

, . . . , (s − a)gm
�m(s)
ψm(s)

)
U2(s). (79)
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Notice that ( f (s)− a)gi �i( f (s))
ψi( f (s)) = h(�i(s))

h(ψi(s))
s−gi+d(ψi(s))−d(�i(s)). Let ci = �i(a)

ψi(a) , which is a
non-zero constant, and put D = Diag (c1, . . . , cm). Hence,

T( f (s))T = U2( f (s))T DL(s)U1( f (s))T (80)

with

L(s) = Diag
(

1
c1

h(�1(s))
h(ψ1(s))

s−g1+d(ψ1(s))−d(�1(s)), . . . ,
1

cm

h(�m(s))
h(ψm(s))

s−gm+d(ψm(s))−d(�m(s))
)

.

(81)

By 4 of Lemma 34 matrices U1( f (s))T , U2( f (s))T ∈ Glm(FH(M\{(s−a)})(s))∩Glm(Fpr(s)) and
the Proposition follows.

Proposition 36. Let M, M� ⊆ Specm(F[s]) such that M ∪ M� = Specm(F[s]). Assume that
there are ideals in M \ M� generated by linear polynomials and let (s − a) be any of them. If T(s) ∈
F(s)m×m is a non-singular rational matrix with no poles and no zeros in M ∩ M� and k1, . . . , km as
left Wiener–Hopf factorization indices with respect to M then T( f (s))T ∈ F(s)m×m is a non-singular
rational matrix with no poles and no zeros in H(M ∩ M�) and −km, . . . ,−k1 as left Wiener–Hopf
factorization indices with respect to H(M�) ∪ {(s)}.

Proof.- By Theorem 19 there are matrices U1(s) invertible in FM� (s)m×m ∩ Fpr(s)m×m and

U2(s) invertible in FM(s)m×m such that T(s) = U1(s)Diag
(
(s − a)k1 , . . . , (s − a)km

)
U2(s).

By Lemma 34 U2( f (s))T is invertible in FH(M\{(s−a)})(s)m×m ∩ Fpr(s)m×m and U1( f (s))T is
invertible in FH(M�)(s)

m×m ∩Fs(s)m×m = FH(M�)∪{(s)}(s)m×m. Moreover, H(M \ {(s− a)})∪
H(M�)∪ {(s)} = Specm(F[s]) and H(M \ {(s − a)})∩ (H(M�)∪ {(s)}) = H(M ∩ M�). Thus,

T( f (s))T = U2( f (s))T Diag
(

s−k1 , . . . , s−km
)

U1( f (s))T has no poles and no zeros in H(M ∩
M�) and −km, . . . ,−k1 are its left Wiener–Hopf factorization indices with respect to H(M�) ∪
{(s)}.

5.2.1. Proof of Theorem 29: Sufficiency

Let k1 ≥ · · · ≥ km be integers, �1(s)
ψ1(s)

, . . . , �m(s)
ψm(s)

irreducible rational functions such that �1(s) |
· · · | �m(s), ψm(s) | · · · | ψ1(s) are monic polynomials factorizing in M� \ M and l1, . . . , lm
integers such that l1 + d(ψ1(s))− d(�1(s)) ≤ · · · ≤ lm + d(ψm(s))− d(�m(s)) and satisfying
(59).

Since �i(s) and ψi(s) are coprime polynomials that factorize in M� \ M and (s − a) ∈
M \ M�, by Lemmas 32 and 33, h(�1(s))

h(ψ1(s))
sl1+d(ψ1(s))−d(�1(s)), . . . , h(�m(s))

h(ψm(s))
slm+d(ψm(s))−d(�m(s)) are

irreducible rational functions with numerators and denominators polynomials factorizing in
H(M�)∪ {(s)} (actually, in H(M� \ M)∪ {(s)}) and such that each numerator divides the next
one and each denominator divides the previous one.

By (59) and Theorem 27 there is a matrix G(s) ∈ F(s)m×m with −km, . . . ,−k1
as left Wiener–Hopf factorization indices with respect to H(M�) ∪ {(s)} and
1
c1

h(�1(s))
h(ψ1(s))

sl1+d(ψ1(s))−d(�1(s)), . . . , 1
cm

h(�m(s))
h(ψm(s))

slm+d(ψm(s))−d(�m(s)) as invariant rational functions

with respect to H(M�) ∪ {(s)} where ci =
�i(a)
ψi(a) , i = 1, . . . , m. Notice that G(s) has no zeros
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and poles in H(M ∩ M�) because the numerator and denominator of each rational function
h(�i(s))
h(ψi(s))

sli+d(ψi(s))−d(�i(s)) factorizes in H(M� \ M) ∪ {(s)} and so it is a unit of FH(M∩M�)(s).

Put M̂ = H(M�)∪ {(s)} and M̂� = H(M \ {(s− a)}). As remarked in the proof of Proposition
36, M̂ ∪ M̂� = Specm(F[s]) and M̂ ∩ M̂� = H(M ∩ M�). Now (s) ∈ M̂ so that we can apply
Proposition 35 to G(s) with the change of indeterminate f̃ (s) = 1

s−a . Thus the invariant

rational functions of G( f̃ (s))T in FM� (s) ∩ Fpr(s) are �1(s)
ψ1(s)

1
(s−a)l1

, . . . , �m(s)
ψm(s)

1
(s−a)lm .

On the other hand M̂� = H(M \ {(s − a)}) ⊆ Specm(F[s]) \ {(s)} and so (s) ∈ M̂ \ M̂�.
Then we can apply Proposition 36 to G(s) with f̃ (s) = 1

s−a so that G( f̃ (s))T is a non-singular
matrix with no poles and no zeros in H−1(M̂ ∩ M̂�) = H−1(H(M ∩ M�)) = M ∩ M� and
k1, . . . , km as left Wiener–Hopf factorization indices with respect to H−1(M̂�) ∪ {(s − a)} =

(M \ {(s − a)}) ∪ {(s − a)} = M. The theorem follows by letting T(s) = G( f̃ (s))T .

Remark 37. Notice that when M� = ∅ and M = Specm(F[s]) in Theorem 29 we obtain
Theorem 28 (qi = −li).
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Gauge Theory, Combinatorics, and Matrix Models
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1. Introduction

Quantum field theory is the most universal method in physics, applied to all the area from
condensed-matter physics to high-energy physics. The standard tool to deal with quantum
field theory is the perturbation method, which is quite useful if we know the vacuum
of the system, namely the starting point of our analysis. On the other hand, sometimes
the vacuum itself is not obvious due to the quantum nature of the system. In that case,
since the perturbative method is not available any longer, we have to treat the theory in a
non-perturbative way.

Supersymmetric gauge theory plays an important role in study on the non-perturbative
aspects of quantum field theory. The milestone paper by Seiberg and Witten proposed a
solution to N = 2 supersymmetric gauge theory [48, 49], which completely describes the low
energy effective behavior of the theory. Their solution can be written down by an auxiliary
complex curve, called Seiberg-Witten curve, but its meaning was not yet clear and the origin
was still mysterious. Since the establishment of Seiberg-Witten theory, tremendous number of
works are devoted to understand the Seiberg-Witten’s solution, not only by physicists but also
mathematicians. In this sense the solution was not a solution at that time, but just a starting
point of the exploration.

One of the most remarkable progress in N = 2 theories referring to Seiberg-Witten theory
is then the exact derivation of the gauge theory partition function by performing the integral
over the instanton moduli space [43]. The partition function is written down by multiple
partitions, thus we can discuss it in a combinatorial way. It was mathematically proved
that the partition function correctly reproduces the Seiberg-Witten solution. This means
Seiberg-Witten theory was mathematically established at that time.

The recent progress on the four dimensional N = 2 supersymmetric gauge theory has
revealed a remarkable relation to the two dimensional conformal field theory [1]. This relation
provides the explicit interpretation for the partition function of the four dimensional gauge
theory as the conformal block of the two dimensional Liouville field theory. It is naturally
regarded as a consequence of the M-brane compactifications [23, 60], and also reproduces
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the results of Seiberg-Witten theory. It shows how Seiberg-Witten curve characterizes the
corresponding four dimensional gauge theory, and thus we can obtain a novel viewpoint of
Seiberg-Witten theory.

Based on the connection between the two and four dimensional theories, established results
on the two dimensional side can be reconsidered from the viewpoint of the four dimensional
theory, and vice versa. One of the useful applications is the matrix model description of the
supersymmetric gauge theory [12, 16, 17, 47]. This is based on the fact that the conformal block
on the sphere can be also regarded as the matrix integral, which is called Dotsenko-Fateev
integral representation [14, 15]. In this direction some extensions of the matrix model
description are performed by starting with the two dimensional conformal field theory.

Another type of the matrix model is also investigated so far [27, 28, 30, 52, 53]. This is
apparently different from the Dotsenko-Fateev type matrix models, but both of them correctly
reproduce the results of the four dimensional gauge theory, e.g. Seiberg-Witten curve. While
these studies mainly focus on rederiving the gauge theory results, the present author reveals
the new kind of Seiberg-Witten curve by studying the corresponding new matrix model
[27, 28]. Such a matrix models is directly derived from the combinatorial representation
of the partition function by considering its asymptotic behavior. This treatment is quite
analogous to the matrix integral representation of the combinatorial object, for example, the
longest increasing subsequences in random permutations [3], the non-equilibrium stochastic
model, so-called TASEP [26], and so on (see also [46]). Their remarkable connection to the
Tracy-Widom distribution [56] can be understood from the viewpoint of the random matrix
theory through the Robinson-Schensted-Knuth (RSK) correspondence (see e.g. [51]).

In this article we review such a universal relation between combinatorics and the matrix
model, and discuss its relation to the gauge theory. The gauge theory consequence can be
naturally extacted from such a matrix model description. Actually the spectral curve of the
matrix model can be interpreted as Seiberg-Witten curve for N = 2 supersymmetric gauge
theory. This identification suggests some aspects of the gauge theory are also described by the
significant universality of the matrix model.

This article is organized as follows. In section 2 we introduce statistical models defined in a
combinaorial manner. These models are based on the Plancherel measure on a combinatorial
object, and its origin from the gauge theory perspective is also discussed. In section 3 it is
shown that the matrix model is derived from the combinatorial model by considering its
asymptotic limit. There are various matrix integral representations, corresponding to some
deformations of the combinatorial model. In section 4 we investigate the large matrix size
limit of the matrix model. It is pointed out that the algebraic curve is quite useful to study
one-point function. Its relation to Seiberg-Witten theory is also discussed. Section 5 is devoted
to conclusion.

2. Combinatorial partition function

In this section we introduce several kinds of combinatorial models. Their partition functions
are defined as summation over partitions with a certain weight function, which is called
Plancherel measure. It is also shown that such a combinatorial partition function is obtained
by performing the path integral for supersymmetric gauge theories.
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Figure 1. Graphical representation of a partition λ = (5, 4, 3, 1, 1) and its transposed partition
λ̌ = (5, 3, 2, 2, 1) by the associated Young diagrams. There are 5 non-zero entries in both of them,
�(λ) = λ̌1 = 5 and �(λ̌) = λ1 = 5.

2.1. Random partition model

Let us first recall a partition of a positive integer n: it is a way of writing n as a sum of positive
integers

λ = (λ1, λ2, · · · , λ�(λ)) (1)

satisfying the following conditions,

n =
�(λ)

∑
i=1

λi ≡ |λ|, λ1 ≥ λ2 ≥ · · · λ�(λ) > 0 (2)

Here �(λ) is the number of non-zero entries in λ. Now it is convenient to define λi = 0 for
i > �(λ). Fig. 2 shows Young diagram, which graphically describes a partition λ = (5, 4, 2, 1, 1)
with �(λ) = 5.

It is known that the partition is quite usefull for representation theory. We can obtain an
irreducible representation of symmetric group Sn, which is in one-to-one correspondence
with a partition λ with |λ| = n. For such a finite group, one can define a natural measure,
which is called Plancherel measure,

μn(λ) =
(dim λ)2

n!
(3)

This measure is normalized as
∑

λ s.t. |λ|=n
μn(λ) = 1 (4)

It is also interpreted as Fourier transform of Haar measure on the group. This measure has
another useful representation, which is described in a combinatorial way,

μn(λ) = n! ∏
(i,j)∈λ

1
h(i, j)2 (5)

This h(i, j) is called hook length, which is defined with arm length and leg length,

h(i, j) = a(i, j) + l(i, j) + 1,

a(i, j) = λi − j,

l(i, j) = λ̌j − i

(6)

Here λ̌ stands for the transposed partition. Thus the height of a partition λ can be explicitly
written as �(λ) = λ̌1.
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Figure 2. Combinatorics of Young diagram. Definitions of hook, arm and leg lengths are shown in (6).
For the shaded box in this figure, a(2, 3) = 4, l(2, 3) = 3, and h(2, 3) = 8.

With this combinatorial measure, we now introduce the following partition function,

ZU(1) = ∑
λ

(
Λ
h̄

)2|λ|
∏

(i,j)∈λ

1
h(i, j)2 (7)

This model is often called random partition model. Here Λ is regarded as a parameter like a
chemical potential, or a fugacity, and h̄ stands for the size of boxes.

Note that a deformed model, which includes higher Casimir potentials, is also investigated in
detail [19],

Zhigher = ∑
λ

∏
(i,j)∈λ

1
h(i, j)2 ∏

k=1
e−gkCk(λ) (8)

In this case the chemical potential term is absorbed by the linear potential term. There is an
interesting interpretation of this deformation in terms of topological string, gauge theory and
so on [18, 38].

In order to compute the U(1) partition function it is useful to rewrite it in a “canonical form”
instead of the “grand canonical form” which is originally shown in (7),

ZU(1) = ∑
n=0

∑
λ s.t. |λ|=n

(
Λ
h̄

)2n

∏
(i,j)∈λ

1
h(i, j)2 (9)

Due to the normalization condition (4), this partition function can be computed as

ZU(1) = exp
(

Λ
h̄

)2
(10)

Although this is explicitly solvable, its universal property and explicit connections to
other models are not yet obvious. We will show, in section 3 and section 4, the matrix

78 Linear Algebra – Theorems and Applications



4 Linear Algebra

Figure 2. Combinatorics of Young diagram. Definitions of hook, arm and leg lengths are shown in (6).
For the shaded box in this figure, a(2, 3) = 4, l(2, 3) = 3, and h(2, 3) = 8.

With this combinatorial measure, we now introduce the following partition function,

ZU(1) = ∑
λ

(
Λ
h̄

)2|λ|
∏

(i,j)∈λ

1
h(i, j)2 (7)

This model is often called random partition model. Here Λ is regarded as a parameter like a
chemical potential, or a fugacity, and h̄ stands for the size of boxes.

Note that a deformed model, which includes higher Casimir potentials, is also investigated in
detail [19],

Zhigher = ∑
λ

∏
(i,j)∈λ

1
h(i, j)2 ∏

k=1
e−gkCk(λ) (8)

In this case the chemical potential term is absorbed by the linear potential term. There is an
interesting interpretation of this deformation in terms of topological string, gauge theory and
so on [18, 38].

In order to compute the U(1) partition function it is useful to rewrite it in a “canonical form”
instead of the “grand canonical form” which is originally shown in (7),

ZU(1) = ∑
n=0

∑
λ s.t. |λ|=n

(
Λ
h̄

)2n

∏
(i,j)∈λ

1
h(i, j)2 (9)

Due to the normalization condition (4), this partition function can be computed as

ZU(1) = exp
(

Λ
h̄

)2
(10)

Although this is explicitly solvable, its universal property and explicit connections to
other models are not yet obvious. We will show, in section 3 and section 4, the matrix

78 Linear Algebra – Theorems and Applications Gauge Theory, Combinatorics, and Matrix Models 5

model description plays an important role in discussing such an interesting aspect of the
combinatorial model.

Now let us remark one interesting observation, which is partially related to the
following discussion. The combinatorial partition function (7) has another field theoretical
representation using the free boson field [44]. We now consider the following coherent state,

|ψ� = exp
(

Λ
h̄

a−1

)
|0� (11)

Here we introduce Heisenberg algebra, satisfying the commutation relation, [an, am] =
nδn+m,0, and the vacuum |0� annihilated by any positive modes, an|0� = 0 for n > 0. Then it
is easy to show the norm of this state gives rise to the partition function,

ZU(1) = �ψ|ψ� (12)

Similar kinds of observation is also performed for generalized combinatorial models
introduced in section 2.2 [22, 44, 55].

Let us then introduce some generalizations of the U(1) model. First is what we call β-deformed
model including an arbitrary parameter β ∈ R,

Z(β)
U(1) = ∑

λ

(
Λ
h̄

)2|λ|
∏

(i,j)∈λ

1
hβ(i, j)hβ(i, j)

(13)

Here we involve the deformed hook lengths,

hβ(i, j) = a(i, j) + βl(i, j) + 1, hβ(i, j) = a(i, j) + βl(i, j) + β (14)

This generalized model corresponds to Jack polynomial, which is a kind of symmetric
polynomial obtained by introducing a free parameter to Schur polynomial [34]. This
Jack polynomial is applied to several physical theories: quantum integrable model called
Calogero-Sutherland model [10, 54], quantum Hall effect [4–6] and so on.

Second is a further generalized model involving two free parameters,

Z(q,t)
U(1) = ∑

λ

(
Λ
h̄

)2|λ|
∏

(i,j)∈λ

(1 − q)(1 − q−1)

(1 − qa(i,j)+1tl(i,j))(1 − q−a(i,j)t−l(i,j)−1)
(15)

This is just a q-analog of the previous combinatorial model. One can see this is reduced to
the β-deformed model (13) in the limit of q → 1 with fixing t = qβ. This generalization
is also related to the symmetric polynomial, which is called Macdonald polynomial [34]. This
symmetric polynomial is used to study Ruijsenaars-Schneider model [45], and the stochastic
process based on this function has been recently proposed [8].

Next is Zr-generalization of the model, which is defined as

Zorbifold,U(1) = ∑
λ

(
Λ
h̄

)2|λ|
∏

Γ-inv⊂λ

1
h(i, j)2 (16)
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Figure 3. Γ-invariant sector for U(1) theory with λ = (8, 5, 5, 4, 2, 2, 2, 1). Numbers in boxes stand for
their hook lengths h(i, j) = λi − j + λ̌j − i + 1. Shaded boxes are invariant under the action of Γ = Z3.

Here the product is taken only for the Γ-invariant sector as shown in Fig. 3,

h(i, j) = a(i, j) + l(i, j) + 1 ≡ 0 (mod r) (17)

This restriction is considered in order to study the four dimensional supersymmetric gauge
theory on orbifold R4/Zr ∼= C2/Zr [11, 20, 27], thus we call this orbifold partition function. This
also corresponds to a certain symmetric polynomial [57] (see also [32]), which is related to the
Calogero-Sutherland model involving spin degrees of freedom. We can further generalize this
model (16) to the β- or the q-deformed Zr-orbifold model, and the generic toric orbifold model
[28].

Let us comment on a relation between the orbifold partition function and the q-deformed
model. Taking the limit of q → 1, the latter is reduced to the U(1) model because the q-integer
is just replaced by the usual integer in such a limit,

[x]q ≡ 1 − q−x

1 − q−1 −→ x (18)

This can be easily shown by l’Hopital’s rule and so on. On the other hand, parametrizing
q → ωrq with ωr = exp(2πi/r) being the primitive r-th root of unity, we have

1 − (ωrq)−x

1 − (ωrq)−1
q→1−→

{
x (x ≡ 0, mod r)
1 (x �≡ 0, mod r) (19)

Therefore the orbifold partition function (16) is derived from the q-deformed one (15) by
taking this root of unity limit. This prescription is useful to study its asymptotic behavior.

2.2. Gauge theory partition function

The path integral in quantum field theory involves some kinds of divergence, which are due
to infinite degrees of freedom in the theory. On the other hand, we can exactly perform the
path integral for several highly supersymmetric theories. We now show that the gauge theory
partition function can be described in a combinatorial way, and yields some extended versions
of the model we have introduced in section 2.1.
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The main part of the gauge theory path integral is just evaluation of the moduli space volume
for a topological excitation, for example, a vortex in two dimensional theory and an instanton
in four dimensional theory. Here we concentrate on the four dimentional case. See [13, 21,
50] for the two dimensional vortex partition function. The most usuful method to deal with
the instanton is ADHM construction [2]. According to this, the instanton moduli space for
k-instanton in SU(n) gauge theory on R4, is written as a kind of hyper-Kähler quotient,

Mn,k = {(B1, B2, I, J)|μR = 0, μC = 0}/U(k) (20)

B1,2 ∈ Hom(Ck, Ck), I ∈ Hom(Cn, Ck), J ∈ Hom(Ck, Cn) (21)

μR = [B1, B†
1 ] + [B2, B†

2 ] + I I† − J† J, (22)

μC = [B1, B2] + I J (23)

The k× k matrix condition μR = μC = 0, and parameters (B1, B2, I, J) satisfying this condition
are called ADHM equation and ADHM data. Note that they are identified under the following
U(k) transformation,

(B1, B2, I, J) ∼ (gB1g−1, gB2g−1, gI, Jg−1), g ∈ U(k) (24)

Thus all we have to do is to estimate the volume of this parameter space. However it is well
known that there are some singularities in this moduli space, so that one has to regularize it in
order to obtain a meaningful result. Its regularized volume had been derived by applying the
localization formula to the moduli space integral [41], and it was then shown that the partition
function correctly reproduces Seiberg-Witten theory [43].

We then consider the action of isometries on C2 ∼= R4 for the ADHM data. If we assign
(z1, z2) → (ei�1 z1, ei�2 z2) for the spatial coordinate of C2, and U(1)n−1 rotation coming from
the gauge symmetry SU(n), ADHM data transform as

(B1, B2, I, J) −→
(

T1B1, T2B2, IT−1
a , T1T2Ta J

)
(25)

where we define the torus actions as Ta = diag(eia1 , · · · , eian ) ∈ U(1)n−1, Tα = ei�α ∈ U(1)2.
Note that these toric actions are based on the maximal torus of the gauge theory symmetry,
U(1)2 × U(1)n−1 ⊂ SO(4)× SU(n). We have to consider the fixed point of these isometries
up to gauge transformation g ∈ U(k) to perform the localization formula.

The localization formula in the instanton moduli space is based on the vector field ξ∗, which
is associated with ξ ∈ U(1)2 ×U(1)n−1. It generates the one-parameter flow etξ on the moduli
space M, corresponding to the isometries. The vector field is represented by the element of
the maximal torus of the gauge theory symmetry under the Ω-background deformation. The
gauge theory action is invariant under the deformed BRST transformation, whose generator
satisfies ξ∗ = {Q∗, Q∗}/2. Thus this generator can be interpreted as the equivariant derivative
dξ = d + iξ∗ where iξ∗ stands for the contraction with the vector field ξ∗. The localization
formula is given by ∫

M
α(ξ) = (−2π)n/2 ∑

x0

α0(ξ)(x0)

det1/2 Lx0

(26)
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where α(ξ) is an equivariant form, which is related to the gauge theory action. α0(ξ) is zero
degree part and Lx0 : Tx0M → Tx0M is the map generated by the vector field ξ∗ at the fixed
points x0. These fixed points are defined as ξ∗(x0) = 0 up to U(k) transformation of the
instanton moduli space.

Let us then study the fixed point in the moduli space. The fixed point condition for them are
obtained from the infinitesimal version of (24) and (25) as

(φi − φj + �α)Bα,ij = 0, (φi − al)Iil = 0, (−φi + al + �)Jli = 0 (27)

where the element of U(k) gauge transformation is diagonalized as eiφ = diag(eiφ1 , · · · , eiφk ) ∈
U(k) with � = �1 + �2. We can show that an eigenvalue of φ turns out to be

al + (j − 1)�1 + (i − 1)�2 (28)

and the corresponding eigenvector is given by

Bj−1
1 Bi−1

2 Il (29)

Since φ is a finite dimensional matrix, we can obtain kl independent vectors from (29) with
k1 + · · · + kn = k. This means that the solution of this condition can be characterized by
n-tuple Young diagrams, or partitions �λ = (λ(1), · · · , λ(n)) [42]. Thus the characters of the
vector spaces are yielding

V =
n

∑
l=1

∑
(i,j)∈λ(l)

Tal T
−j+1
1 T−i+1

2 , W =
n

∑
l=1

Tal (30)

and that of the tangent space at the fixed point under the isometries can be represented in
terms of the n-tuple partition as

χ�λ = −V∗V(1 − T1)(1 − T2) + W∗V + V∗WT1T2

=
n

∑
l,m

∑
(i,j)∈λ(l)

(
Taml T

−λ̌
(l)
j +i

1 Tλ
(m)
i −j+1

2 + Talm T
λ̌
(l)
j −i+1

1 T−λ
(m)
i +j

2

)
(31)

Here λ̌ is a conjugated partition. Therefore the instanton partition function is obtained by
reading the weight function from the character [43, 44],

ZSU(n) = ∑
�λ

Λ2n|�λ|Z�λ (32)

Z�λ =
n

∏
l,m

∏
(i,j)∈λ(l)

1

aml + �2(λ
(m)
i − j + 1)− �1(λ̌

(l)
j − i)

1

alm − �2(λ
(m)
i − j) + �1(λ̌

(l)
j − i + 1)

(33)

This is regarded as a generalized model of (7) or (13). Furthermore by lifting it to the five
dimensional theory on R4 × S1, one can obtain a generalized version of the q-deformed
partition function (15). Actually it is easy to see these SU(n) models are reduced to the U(1)
models in the case of n = 1. Note, if we take into account other matter contributions in
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addition to the vector multiplet, this partition function involves the associated combinatorial
factors. We can extract various properties of the gauge theory from these partition functions,
especially its asymptotic behavior.

3. Matrix model description

In this section we discuss the matrix model description of the combinatorial partition function.
The matrix integral representation can be treated in a standard manner, which is developed in
the random matrix theory [40].

3.1. Matrix integral

Let us consider the following N × N matrix integral,

Zmatrix =
∫

DX e−
1
h̄ Tr V(X) (34)

Here X is an hermitian matrix, and DX is the associated matrix measure. This matrix can be
diagonalized by a unitary transformation, gXg−1 = diag(x1, · · · , xN) with g ∈ U(N), and the
integrand is invariant under this transformation, Tr V(X) = Tr V(gXg−1) = ∑N

i=1 V(xi). On
the other hand, we have to take care of the matrix measure in (34): the non-trivial Jacobian is
arising from the matrix diagonalization (see, e.g. [40]),

DX = Dx DU Δ(x)2 (35)

The Jacobian part is called Vandermonde determinant, which is written as

Δ(x) =
N

∏
i<j

(xi − xj) (36)

and DU is the Haar measure, which is invariant under unitary transformation, D(gU) =
DU. The diagonal part is simply given by Dx ≡ ∏N

i=1 dxi. Therefore, by integrating out
the off-diagonal part, the matrix integral (34) is reduced to the integral over the matrix
eigenvalues,

Zmatrix =
∫

Dx Δ(x)2 e−
1
h̄ ∑N

i=1 V(xi) (37)

This expression is up to a constant factor, associated with the volume of the unitary group,
vol(U(N)), coming from the off-diagonal integral.

When we consider a real symmetric or a quaternionic self-dual matrix, it can be diagonalized
by orthogonal/symplectic transformation. In these cases, the Jacobian part is slightly
modified,

Zmatrix =
∫

Dx Δ(x)2β e−
1
h̄ ∑N

i=1 V(xi) (38)

The power of the Vandermonde determinant is given by β = 1
2 , 1, 2 for symmetric, hermitian

and self-dual, respcecively.1 They correspond to orthogonal, unitary, symplectic ensembles in
random matrix theory, and the model with a generic β ∈ R is called β-ensemble matrix model.

1 This notation is different from the standard one: 2β → β = 1, 2, 4 for symmetric, hermitian and self-dual matrices.
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Figure 4. Shape of Young diagram can be represented by introducing one-dimensional exclusive
particles. Positions of particles would be interpreted as eigenvalues of the matrix.

3.2. U(1) partition function

We would like to show an essential connection between the combinatorial partition function
and the matrix model. By considering the thermodynamical limit of the partition function, it
can be represented as a matrix integral discussed above.

Let us start with the most fundamental partition function (7). The main part of its partition
function is the product all over the boxes in the partition λ. After some calculations, we can
show this combinatorial factor is rewritten as

∏
(i,j)∈λ

1
h(i, j)

=
N

∏
i<j

(λi − λj + j − i)
N

∏
i=1

1
Γ(λi + N − i + 1)

(39)

where N is an arbitrary integer satisfying N > �(λ). This can be also represented in an infinite
product form,

∏
(i,j)∈λ

1
h(i, j)

=
∞

∏
i<j

λi − λj + j − i
j − i

(40)

These expressions correspond to an embedding of the finite dimensional symmetric group
SN into the infinite dimensional one S∞.

By introducing a new set of variables ξi = λi + N − i + 1, we have another representation of
the partition function,

ZU(1) = ∑
λ

(
Λ
h̄

)2 ∑N
i=1 ξi−N(N+1) N

∏
i<j

(ξi − ξ j)
2

N

∏
i=1

1
Γ(ξi)2 (41)

These new variables satisfy ξi > ξ2 > · · · > ξ�(λ) while the original ones satisfy λ1 ≥ λ2 ≥
· · · ≥ λ�(λ). This means {ξi} and {λi} are interpreted as fermionic and bosonic degrees
of freedom. Fig. 4 shows the correspondence between the bosinic and fermionic variables.
The bosonic excitation is regarded as density fluctuation of the fermionic particles around the
Fermi energy. This is just the bosonization method, which is often used to study quantum
one-dimensional systems (For example, see [24]). Especially we concentrate only on either of
the Fermi points. Thus it yields the chiral conformal field theory.
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We would like to show that the matrix integral form is obtained from the expression (41). First
we rewrite the summation over partitions as

∑
λ

= ∑
λ1≥···≥λN

= ∑
ξ1>···>ξN

=
1

N! ∑
ξ1,··· ,ξN

(42)

Then, introducing another variable defined as xi = h̄ξi, it can be regarded as a continuous
variable in the large N limit,

N −→ ∞, h̄ −→ 0, h̄N = O(1) (43)

This is called ’t Hooft limit. The measure for this variable is given by

dxi ≈ h̄ ∼ 1
N

(44)

Therefore the partition function (41) is rewritten as the following matrix integral,

ZU(1) ≈
∫

Dx Δ(x)2 e−
1
h̄ ∑N

i=1 V(xi) (45)

Here the matrix potential is derived from the asymptotic behavior of the Γ-function,

h̄ log Γ(x/h̄) −→ x log x − x, h̄ −→ 0 (46)

Since this variable can take a negative value, the potential term should be simply extended to
the region of x < 0. Thus, taking into account the fugacity parameter Λ, the matrix potential
is given by

V(x) = 2
[

x log
∣∣∣ x
Λ

∣∣∣− x
]

(47)

This is the simplest version of the CP1 matrix model [18]. If we start with the partition function
including the higher Casimir operators (8), the associated integral expression just yields the
CP1 matrix model.

Let us comment on other possibilities to obtain the matrix model. It is shown that the matrix
integral form can be derived without taking the large N limit [19]. Anyway one can see that it
is reduced to the model we discussed above in the large N limit. There is another kind of the
matrix model derived from the combinatorial partition function by poissonizing the probability
measure. In this case, only the linear potential is arising in the matrix potential term. Such a
matrix model is called Bessel-type matrix model, where its short range fluctuation is described
by the Bessel kernel.

Next we shall derive the matrix model corresponding to the β-deformed U(1) model (13). The
combinatorial part of the partition function is similarly given by

∏
(i,j)∈λ

1
hβ(i, j)hβ(i, j)

= Γ(β)N
N

∏
i<j

Γ(λi − λj + β(j − i) + β)

Γ(λi − λj + β(j − i))
Γ(λi − λj + β(j − i) + 1)

Γ(λi − λj + β(j − i) + 1 − β)

×
N

∏
i=1

1
Γ(λi + β(N − i) + β)

1
Γ(λi + β(N − i) + 1)

(48)
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In this case we shall introduce the following variables, ξ
(β)
i = λi + β(N − i) + 1 or ξ

(β)
i =

λi + β(N − i) + β, satisfying ξ
(β)
i − ξ

(β)
i+1 ≥ β. This means the parameter β characterizes how

they are exclusive. They satisfy the generalized fractional exclusive statistics for β �= 1 [25]
(see also [32]). They are reduced to fermions and bosons for β = 1 and β = 0, respectively.

Then, rescaling the variables, xi = h̄ξ
(β)
i , the combinatorial part (48) in the ’t Hooft limit yields

∏
(i,j)∈λ

1
hβ(i, j)hβ(i, j)

−→ Δ(x)2β e−
1
h̄ ∑N

i=1 V(xi) (49)

Here we use Γ(α + β)/Γ(α) ∼ αβ with α → ∞. The matrix potential obtained here is the same
as (47). Therefore the matrix model associated with the β-deformed partition function is given
by

Z(β)
U(1) ≈

∫
Dx Δ(x)2β e−

1
h̄ ∑N

i=1 V(xi) (50)

This is just the β-ensemble matrix model shown in (38).

We can consider the matrix model description of the (q, t)-deformed partition function. In this
case the combinatorial part of (15) is written as

∏
(i,j)∈λ

1 − q
1 − qa(i,j)+1tl(i,j)

= (1 − q)|λ|
N

∏
i<j

(qλi−λj+1tj−i−1; q)∞

(qλi−λj+1tj−i; q)∞

N

∏
i=1

(qλi+1tN−i; q)∞

(q; q)∞
(51)

∏
(i,j)∈λ

1 − q−1

1 − q−a(i,j)t−l(i,j)−1
= (1 − q−1)|λ|

N

∏
i<j

(q−λi+λj+1t−j+i−1; q)∞

(q−λi+λj+1t−j+i; q)∞

N

∏
i=1

(qt−1; q)∞

(q−λi+1t−N+i−1; q)∞

(52)

Here (x; q)n = ∏n−1
m=0(1 − xqm) is the q-Pochhammer symbol. When we parametrize q = e−h̄R

and t = qβ, a set of the variables {ξ
(β)
i } plays an important role in considering the large N

limit as well as the β-deformed model. Thus, rescaling these as xi = h̄ξ
(β)
i and taking the ’t

Hooft limit, we obtain the integral expression of the q-deformed partition function,

Z(q,t)
U(1) ≈

∫
Dx (ΔR(x))2β e−

1
h̄ ∑N

i=1 VR(xi) (53)

The matrix measure and potential are given by

ΔR(x) =
N

∏
i<j

2
R

sinh
R
2
(xi − xj) (54)

VR(x) = − 1
R

[
Li2

(
eRx

)
− Li2

(
e−Rx

)]
(55)

We will discuss how to obtain these expressions below. We can see they are reduced to the
standard ones in the limit of R → 0,

ΔR(x) −→ Δ(x), VR(x) −→ V(x) (56)

86 Linear Algebra – Theorems and Applications



12 Linear Algebra

In this case we shall introduce the following variables, ξ
(β)
i = λi + β(N − i) + 1 or ξ

(β)
i =

λi + β(N − i) + β, satisfying ξ
(β)
i − ξ

(β)
i+1 ≥ β. This means the parameter β characterizes how

they are exclusive. They satisfy the generalized fractional exclusive statistics for β �= 1 [25]
(see also [32]). They are reduced to fermions and bosons for β = 1 and β = 0, respectively.

Then, rescaling the variables, xi = h̄ξ
(β)
i , the combinatorial part (48) in the ’t Hooft limit yields

∏
(i,j)∈λ

1
hβ(i, j)hβ(i, j)

−→ Δ(x)2β e−
1
h̄ ∑N

i=1 V(xi) (49)

Here we use Γ(α + β)/Γ(α) ∼ αβ with α → ∞. The matrix potential obtained here is the same
as (47). Therefore the matrix model associated with the β-deformed partition function is given
by

Z(β)
U(1) ≈

∫
Dx Δ(x)2β e−

1
h̄ ∑N

i=1 V(xi) (50)

This is just the β-ensemble matrix model shown in (38).

We can consider the matrix model description of the (q, t)-deformed partition function. In this
case the combinatorial part of (15) is written as

∏
(i,j)∈λ

1 − q
1 − qa(i,j)+1tl(i,j)

= (1 − q)|λ|
N

∏
i<j

(qλi−λj+1tj−i−1; q)∞

(qλi−λj+1tj−i; q)∞

N

∏
i=1

(qλi+1tN−i; q)∞

(q; q)∞
(51)

∏
(i,j)∈λ

1 − q−1

1 − q−a(i,j)t−l(i,j)−1
= (1 − q−1)|λ|

N

∏
i<j

(q−λi+λj+1t−j+i−1; q)∞

(q−λi+λj+1t−j+i; q)∞

N

∏
i=1

(qt−1; q)∞

(q−λi+1t−N+i−1; q)∞

(52)

Here (x; q)n = ∏n−1
m=0(1 − xqm) is the q-Pochhammer symbol. When we parametrize q = e−h̄R

and t = qβ, a set of the variables {ξ
(β)
i } plays an important role in considering the large N

limit as well as the β-deformed model. Thus, rescaling these as xi = h̄ξ
(β)
i and taking the ’t

Hooft limit, we obtain the integral expression of the q-deformed partition function,

Z(q,t)
U(1) ≈

∫
Dx (ΔR(x))2β e−

1
h̄ ∑N

i=1 VR(xi) (53)

The matrix measure and potential are given by

ΔR(x) =
N

∏
i<j

2
R

sinh
R
2
(xi − xj) (54)

VR(x) = − 1
R

[
Li2

(
eRx

)
− Li2

(
e−Rx

)]
(55)

We will discuss how to obtain these expressions below. We can see they are reduced to the
standard ones in the limit of R → 0,

ΔR(x) −→ Δ(x), VR(x) −→ V(x) (56)

86 Linear Algebra – Theorems and Applications Gauge Theory, Combinatorics, and Matrix Models 13

Note that this hyperbolic-type matrix measure is also investigated in the Chern-Simons matrix
model [35], which is extensively involved with the recent progress on the three dimensional
supersymmetric gauge theory via the localization method [36].

Let us comment on useful formulas to derive the integral expression (53). The measure part is
relevant to the asymptotic form of the following function,

(x; q)∞

(tx; q)∞
−→ (x; q)∞

(tx; q)∞

∣∣∣∣∣
q→1

= (1 − x)β, x −→ ∞ (57)

This essentially corresponds to the q → 1 limit of the q-Vandermonde determinant2,

Δ2
q,t(x) =

N

∏
i �=j

(xi/xj; q)∞

(txi/xj; q)∞
(58)

Then, to investigate the matrix potential term, we now introduce the quantum dilogarithm
function,

g(x; q) =
∞

∏
n=1

(
1 − 1

x
qn
)

(59)

Its asymptotic expansion is given by (see, e.g. [19])

log g(x; q = e−h̄R) = − 1
h̄R

∞

∑
m=0

Li2−m

(
x−1

) Bm

m!
(h̄R)m (60)

where Bm is the m-th Bernouilli number, and Lim(x) = ∑∞
k=1 xk/km is the polylogarithm

function. The potential term is coming from the leading term of this expression.

3.3. SU(n) partition function

Generalizing the result shown in section 3.2, we deal with the combinatorial partition function
for SU(n) gauge theory (32). Its matrix model description is evolved in [30].

The combinatorial factor of the SU(n) partition function (33) can be represented as

Z�λ =
1

�
2n|�λ|
2

∏
(l,i) �=(m,j)

Γ(λ(l)
i − λ

(m)
j + β(j − i) + blm + β)

Γ(λ(l)
i − λ

(m)
j + β(j − i) + blm)

Γ(β(j − i) + blk)

Γ(β(j − i) + blk + β)
(61)

where we define parameters as β = −�1/�2, blm = alm/�2. This is an infinite product
expression of the partition function. Anyway in this case one can see it is useful to introduce
n kinds of fermionic variables, corresponding to the n-tupe partition,

ξ
(l)
i = λ

(l)
i + β(N − i) + 1 + bl (62)

2 This expression is up to logarithmic term, which can be regarded as the zero mode contribution of the free boson field.
See [28, 29] for details.
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Figure 5. The decomposition of the partition for Zr=3. First suppose the standard correspondence
between the one-dimensional particles and the original partition, and then rearrange them with respect
to mod r.

Then, assuming blm � 1, let us introduce a set of variables,

(ζ1, ζ2, · · · , ζnN) = (ξ
(n)
1 , · · · , ξ

(n)
N , ξ

(n−1)
1 , · · · · · · , ξ

(2)
N , ξ

(1)
1 , · · · , ξ

(1)
N ) (63)

satisfying ζ1 > ζ2 > · · · > ζnN . The combinatorial factor (61) is rewritten with these variables
as

Z�λ =
1

�
2n|�λ|
2

nN

∏
i<j

Γ(ζi − ζ j + β)

Γ(ζi − ζ j)

nN

∏
i=1

n

∏
l=1

Γ(−ζi + bl + 1)
Γ(ζi − bl − 1 + β)

(64)

From this expression we can obtain the matrix model description for SU(n) gauge theory
partition function, by rescaling xi = h̄ζi with reparametrizing h̄ = �2,

ZSU(n) ≈
∫

Dx Δ(x)2β e−
1
h̄ ∑nN

i=1 VSU(n)(xi) (65)

In this case the matrix potential is given by

VSU(n)(x) = 2
n

∑
l=1

[
(x − al) log

∣∣∣∣
x − al

Λ

∣∣∣∣− (x − al)

]
(66)

Note that this matrix model is regarded as the U(1) matrix model with external fields al . We
will discuss how to extract the gauge theory consequences from this matrix model in section 4.

3.4. Orbifold partition function

The matrix model description for the random partition model is also possible for the orbifold
theory. We would like to derive another kind of the matrix model from the combinatorial
orbifold partition function (16). We now concentrate on the U(1) orbifold partition function
for simplicity. See [27, 28] for details of the SU(n) theory.

88 Linear Algebra – Theorems and Applications



14 Linear Algebra

Figure 5. The decomposition of the partition for Zr=3. First suppose the standard correspondence
between the one-dimensional particles and the original partition, and then rearrange them with respect
to mod r.

Then, assuming blm � 1, let us introduce a set of variables,

(ζ1, ζ2, · · · , ζnN) = (ξ
(n)
1 , · · · , ξ

(n)
N , ξ

(n−1)
1 , · · · · · · , ξ

(2)
N , ξ

(1)
1 , · · · , ξ

(1)
N ) (63)

satisfying ζ1 > ζ2 > · · · > ζnN . The combinatorial factor (61) is rewritten with these variables
as

Z�λ =
1

�
2n|�λ|
2

nN

∏
i<j

Γ(ζi − ζ j + β)

Γ(ζi − ζ j)

nN

∏
i=1

n

∏
l=1

Γ(−ζi + bl + 1)
Γ(ζi − bl − 1 + β)

(64)

From this expression we can obtain the matrix model description for SU(n) gauge theory
partition function, by rescaling xi = h̄ζi with reparametrizing h̄ = �2,

ZSU(n) ≈
∫

Dx Δ(x)2β e−
1
h̄ ∑nN

i=1 VSU(n)(xi) (65)

In this case the matrix potential is given by

VSU(n)(x) = 2
n

∑
l=1

[
(x − al) log

∣∣∣∣
x − al

Λ

∣∣∣∣− (x − al)

]
(66)

Note that this matrix model is regarded as the U(1) matrix model with external fields al . We
will discuss how to extract the gauge theory consequences from this matrix model in section 4.

3.4. Orbifold partition function

The matrix model description for the random partition model is also possible for the orbifold
theory. We would like to derive another kind of the matrix model from the combinatorial
orbifold partition function (16). We now concentrate on the U(1) orbifold partition function
for simplicity. See [27, 28] for details of the SU(n) theory.

88 Linear Algebra – Theorems and Applications Gauge Theory, Combinatorics, and Matrix Models 15

To obtain the matrix integral representation of the combinatorial partition function, we have
to find the associated one-dimensional particle description of the combinatorial factor. In this
case, although the combinatorial weight itself is the same as the standard U(1) model, there
is restriction on its product region. Thus it is useful to introduce another basis obtained by
dividing the partition as follows,

{
r
(

λ
(u)
i + N(u) − i

)
+ u

∣∣∣i = 1, · · · , N(u), u = 0, · · · , r − 1
}
= {λi + N − i|i = 1, · · · , N}

(67)
Fig.5 shows the meaning of this procedure graphically. We now assume N(u) = N for all
u. With these one-dimensional particles, we now utilize the relation between the orbifold
partition function and the q-deformed model as discussed in section 2.1. Its calculation is
quite straightforward, but a little bit complicated. See [27, 28] for details.

After some computations, we finally obtain the matrix model for the β-deformed orbifold
partition function,

Z(β)
orbifold,U(1) ≈

∫
D�x

(
Δ(β)

orb(x)
)2

e−
1
h̄ ∑r−1

u=0 ∑N
i=1 V(x(u)

i ) (68)

In this case, we have a multi-matrix integral representation, since we introduce r kinds of
partitions from the original partition. The matrix measure and the matrix potential are given
as follows,

D�x =
r−1

∏
u=0

N

∏
i=1

dx(u)i (69)

(
Δ(β)

orb(x)
)2

=
r−1

∏
u=0

N

∏
i<j

(x(u)i − x(u)j )2(β−1)/r+2
r−1

∏
u<v

N

∏
i,j
(x(u)i − x(v)j )2(β−1)/r (70)

V(x) =
2
r

[
x log

∣∣∣ x
Λ

∣∣∣− x
]

(71)

The matrix measure consists of two parts, interaction between eigenvalues from the same
matrix and that between eigenvalues from different matrices. Note that in the case of β = 1,
because the interaction part in the matrix measure beteen different matrices is vanishing, this
multi-matrix model is simply reduced to the one-matrix model.

4. Large N analysis

One of the most important aspects of the matrix model is universality arising in the large N
limit. The universality class described by the matrix model covers huge kinds of the statistical
models, in particular its characteristic fluctuation rather than the eigenvalue density function.
In the large N limit, which is regarded as a justification to apply a kind of the mean field
approximation, anslysis of the matrix model is extremely reduced to the saddle point equation
and a simple fluctuation around it.

4.1. Saddle point equation and spectral curve

Let us first define the prepotential, which is also interpreted as the effective action for the
eigenvalues, from the matrix integral representation
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(37),

− 1
h̄2 F ({xi}) = − 1

h̄

N

∑
i=1

V(xi) + 2
N

∑
i<j

log(xi − xj) (72)

This is essentially the genus zero part of the prepotential. In the large N limit, in particular
’t Hooft limit (43) with Nh̄ ≡ t, we shall investigate the saddle point equation for the matrix
integral. We can obtain the condition for criticality by differentiating the prepotential,

V�(xi) = 2h̄
N

∑
j( �=i)

1
xj − xi

, for all i (73)

This is also given by the extremal condition of the effective potential defined as

Veff(xi) = V(xi)− 2h̄
N

∑
j( �=i)

log(xi − xj) (74)

This potential involves a logarithmic Coulomb repulsion between eigenvalues. If the ’t Hooft
coupling is small, the potential term dominates the Coulomb interaction and eigenvalues
concentrate on extrema of the potential V�(x) = 0. On the other hand, as the coupling gets
bigger, the eigenvalue distribution is extended.

To deal with such a situation, we now define the density of eigenvalues,

ρ(x) =
1
N

N

∑
i=1

δ(x − xi) (75)

where xi is the solution of the criticality condition (73). In the large N limit, it is natural to think
this eigenvalue distribution is smeared, and becomes a continuous function. Furthermore, we
assume the eigenvalues are distributed around the critical points of the potential V(x) as linear
segments. Thus we generically denote the l-th segment for ρ(x) as Cl , and the total number of
eigenvalues N splits into n integers for these segments,

N =
n

∑
l=1

Nl (76)

where Nl is the number of eigenvalues in the interval Cl . The density of eigenvalues ρ(x) takes
non-zero value only on the segment Cl , and is normalized as

∫

Cl

dx ρ(x) =
Nl
N

≡ νl (77)

where we call it filling fraction. According to these fractions, we can introduce the partial ’t
Hooft parameters, tl = Nlh̄. Note there are n ’t Hooft couplings and filling fractions, but only
n − 1 fractions are independent since they have to satisfy ∑n

l=1 νl = 1 while all the ’t Hooft
couplings are independent.

We then introduce the resolvent for this model as an auxiliary function, a kind of Green
function. By taking the large N limit, it can be given by the integral representation,
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(37),

− 1
h̄2 F ({xi}) = − 1

h̄

N

∑
i=1

V(xi) + 2
N

∑
i<j

log(xi − xj) (72)
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V�(xi) = 2h̄
N

∑
j( �=i)

1
xj − xi

, for all i (73)

This is also given by the extremal condition of the effective potential defined as

Veff(xi) = V(xi)− 2h̄
N

∑
j( �=i)

log(xi − xj) (74)
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bigger, the eigenvalue distribution is extended.

To deal with such a situation, we now define the density of eigenvalues,

ρ(x) =
1
N

N
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ω(x) = t
∫

dy
ρ(y)
x − y

(78)

This means that the density of states is regarded as the Hilbert transformation of this resolvent
function. Indeed the density of states is associated with the discontinuities of the resolvent,

ρ(x) = − 1
2πit

(ω(x + i�)− ω(x − i�)) (79)

Thus all we have to do is to determine the resolvent instead of the density of states with
satisfying the asymptotic behavior,

ω(x) −→ 1
x

, x −→ ∞ (80)

Writing down the prepotential with the density of states,

F ({xi}) = t
∫

dx ρ(x)V(x)− t2P
∫

dxdy ρ(x)ρ(y) log(x − y) (81)

the criticality condition is given by

1
2t

V�(x) = P
∫

dy
ρ(y)
x − y

(82)

Here P stands for the principal value. Thus this saddle point equation can be also written in
the following convenient form to discuss its analytic property,

V�(x) = ω(x + i�) + ω(x − i�) (83)

On the other hand, we have another convenient form to treat the saddle point equation, which
is called loop equation, given by

y2(x)− V�(x)2
+ R(x) = 0 (84)

where we denote
y(x) = V�(x)− 2ω(x) = −2ωsing(x) (85)

R(x) =
4t
N

N

∑
i=1

V�(x)− V�(xi)

x − xi
(86)

It is obtained from the saddle point equation by multiplying 1/(x − xi) and taking their
summation and the large N limit. This representation (84) is more appropriate to reveal its
geometric meaning. Indeed this algebraic curve is interpreted as the hyperelliptic curve which
is given by resolving the singular form,

y2(x)− V�(x)2
= 0 (87)

The genus of the Riemann surface is directly related to the number of cuts of the corresponding
resolvent. The filling fraction, or the partial ’t Hooft coupling, is simply given by the contour
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integral on the hyperelliptic curve

tl =
1

2πi

∮

Cl

dx ωsing(x) = − 1
4πi

∮

Cl

dx y(x) (88)

4.2. Relation to Seiberg-Witten theory

We now discuss the relation between Seiberg-Witten curve and the matrix model. In the first
place, the matrix model captures the asymptotic behavior of the combinatorial representation
of the partition function. The energy functional, which is derived from the asymptotics of the
partition function [44], in terms of the profile function

EΛ( f ) =
1
4

P
∫

y<x
dxdy f ��(x) f ��(y)(x − y)2

(
log

(
x − y

Λ

)
− 3

2

)
(89)

can be rewritten as

EΛ(�) = −P
∫

x �=y
dxdy

�(x)�(y)
(x − y)2 − 2

∫
dx �(x) log

N

∏
l=1

(
x − al

Λ

)
(90)

up to the perturbative contribution

1
2 ∑

l,m
(al − am)

2 log
(

al − am

Λ

)
(91)

by identifying

f (x)−
n

∑
l=1

|x − al | = �(x) (92)

Then integrating (90) by parts, we have

EΛ(�) = −P
∫

x �=y
dxdy ��(x)��(y) log(x− y)+ 2

∫
dx ��(x)

n

∑
l=1

[
(x − al) log

(
x − al

Λ

)
− (x − al)

]

(93)
This is just the matrix model discussed in section 3.3 if we identify ��(x) = ρ(x). Therefore
analysis of this matrix model is equivalent to that of [? ]. But in this section we reconsider the
result of the gauge theory from the viewpoint of the matrix model.

We can introduce a regular function on the complex plane, except at the infinity,

Pn(x) = Λn
(

ey/2 + e−y/2
)
≡ Λn

(
w +

1
w

)
(94)

It is because the saddle point equation (83) yields the following equation,

ey(x+i�)/2 + e−y(x+i�)/2 = ey(x−i�)/2 + e−y(x−i�)/2 (95)

This entire function turns out to be a monic polynomial Pn(x) = xn + · · · , because it is an
analytic function with the following asymptotic behavior,
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Λney/2 = Λne−ω(x)
n

∏
l=1

(
x − al

Λ

)
−→ xn, x −→ ∞ (96)

Here w should be the smaller root with the boundary condition as

w −→ Λn

xn , x −→ ∞ (97)

thus we now identify
w = e−y/2 (98)

Therefore from the hyperelliptic curve (94) we can relate Seiberg-Witten curve to the spectral
curve of the matrix model,

dS =
1

2πi
x

dw
w

= − 1
2πi

log w dx

=
1

4πi
y(x)dz

(99)

Note that it is shown in [37, 38] we have to take the vanishing fraction limit to obtain the
Coulomb moduli from the matrix model contour integral. This is the essential difference
between the profile function method and the matrix model description.

4.3. Eigenvalue distribution

We now demonstrate that the eigenvalue distribution function is indeed derived from the
spectral curve of the matrix model. The spectral curve (94) in the case of n = 1 with setting
Λ = 1 and Pn=1(x) = x is written as

x = w +
1
w

(100)

From this relation the singular part of the resolvent can be extracted as

ωsing(x) = arccosh
( x

2

)
(101)

This has a branch cut only on x ∈ [−2, 2], namely a one-cut solution. Thus the eigenvalue
distribution function is witten as follows at least on x ∈ [−2, 2],

ρ(x) =
1
π

arccos
( x

2

)
(102)

Note that this function has a non-zero value at the left boundary of the cut, ρ(−2) = 1, while at
the right boundary we have ρ(2) = 0. Equivalently we now choose the cut of arccos function
in this way. This seems a little bit strange because the eigenvalue density has to vanish except
for on the cut. On the other hand, recalling the meaning of the eigenvalues, i.e. positions of
one-dimensional particles, as shown in Fig. 4, this situation is quite reasonable. The region
below the Fermi level is filled of the particles, and thus the density has to be a non-zero
constant in such a region. This is just a property of the Fermi distribution function. (1/N
correction could be interpreted as a finite temperature effect.) Therefore the total eigenvalue
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Figure 6. The eigenvalue distribution function for the U(1) model.

distribution function is given by

ρ(x) =

⎧
⎨
⎩

1 x < −2
1
π arccos

� x
2
� |x| < 2

0 x > 2
(103)

Remark the eigenvalue density (103) is quite similar to the Wigner’s semi-circle distribution
function, especially its behavior around the edge,

ρcirc(x) =
1
π

�
1 −

� x
2

�2 −→ 1
π

√
2 − x, x −→ 2 (104)

The fluctuation at the spectral edge of the random matrix obeys Tracy-Widom distribution
[56], thus it is natural that the edge fluctuation of the combinatorial model is also described
by Tracy-Widom distribution. This remarkable fact was actually shown by [9]. Evolving such
a similarity to the gaussian random matrix theory, the kernel of this model is also given by the
following sine kernel,

K(x, y) =
sin ρ0π(x − y)

π(x − y)
(105)

where ρ0 is the averaged density of eigenvalues. This means the U(1) combinatorial model
belongs to the GUE random matrix universal class [40]. Then all the correlation functions can
be written as a determinant of this kernel,

ρ(x1, · · · , xk) = det
�
K(xi, xj)

�
1≤i,j,≤k

(106)

Let us then remark a relation to the profile function of the Young diagram. It was shown
that the shape of the Young diagram goes to the following form in the thermodynamical limit
[33, 58, 59],

Ω(x) =

�
2
π

�
x arcsin x

2 +
√

4 − x2
�

|x| < 2
|x| |x| > 2

(107)

Rather than this profile function itself, the derivative of this function is more relevant to our
study,

Ω�(x) =

⎧⎨
⎩

−1 x < −2
2
π arcsin

� x
2
� |x| < 2

1 x > 2
(108)
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One can see the eigenvalue density (103) is directly related to this derivative function (108) as

ρ(x) =
1 − Ω�(x)

2
(109)

This relation is easily obtained from the correspondence between the Young diagram and the
one-dimensional particle as shown in Fig. 4.

5. Conclusion

In this article we have investigated the combinatorial statistical model through its matrix
model description. Starting from the U(1) model, which is motivated by representation
theory, we have dealt with its β-deformation and q-deformation. We have shown that
its non-Abelian generalization, including external field parameters, is obtained as the four
dimensional supersymmetric gauge theory partition function. We have also referred to the
orbifold partition function, and its relation to the q-deformed model through the root of unity
limit.

We have then shown the matrix integral representation is derived from such a combinatorial
partition function by considering its asymptotic behavior in the large N limit. Due to variety of
the combinatorial model, we can obtain the β-ensemble matrix model, the hyperbolic matrix
model, and those with external fields. Furthermore from the orbifold partition function the
multi-matrix model is derived.

Based on the matrix model description, we have study the asymptotic behavior of the
combinatorial models in the large N limit. In this limit we can extract various important
properties of the matrix model by analysing the saddle point equation. Introducing the
resolvent as an auxiliary function, we have obtained the algebraic curve for the matrix model,
which is called the spectral curve. We have shown it can be interpreted as Seiberg-Witten
curve, and then the eigenvalue distribution function is also obtained from this algebraic curve.

Let us comment on some possibilities of generalization and perspective. As discussed in this
article we can obtain various interesting results from Macdonald polynomial by taking the
corresponding limit. It is interesting to research its matrix model consequence from the exotic
limit of Macdonald polynomial. For example, the q → 0 limit of Macdonald polynomial,
which is called Hall-Littlewood polynomial, is not investigated with respect to its connection
with the matrix model. We also would like to study properties of the BC-type polynomial
[31], which is associated with the corresponding root system. Recalling the meaning of the
q-deformation in terms of the gauge theory, namely lifting up to the five dimensional theory
R4 × S1 by taking into account all the Kaluza-Klein modes, it seems interesting to study the six
dimensional theory on R4 × T2. In this case it is natural to obtain the elliptic generalization
of the matrix model. It can not be interpreted as matrix integral representation any longer,
however the large N analysis could be anyway performed in the standard manner. We would
like to expect further develpopment beyond this work.
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1. Introduction

Nonnegative matrices have long been a sorce of interesting and challenging mathematical
problems. They are real matrices with all their entries being nonnegative and arise in a number
of important application areas: communications systems, biological systems, economics,
ecology, computer sciences, machine learning, and many other engineering systems. Inverse
eigenvalue problems constitute an important subclass of inverse problems that arise in the
context of mathematical modeling and parameter identification. A simple application of such
problems is the construction of Leontief models in economics [1]-[3].

The nonnegative inverse eigenvalue problem (NIEP) is the problem of characterizing those lists
Λ = {λ1, λ2, ..., λn} of complex numbers which can be the spectra of n × n entrywise
nonnegative matrices. If there exists a nonnegative matrix A with spectrum Λ we say that
Λ is realized by A and that A is the realizing matrix. A set K of conditions is said to be a
realizability criterion if any list Λ = {λ1, λ2, ..., λn}, real or complex, satisfying conditions K
is realizable. The NIEP is an open problem. A full solution is unlikely in the near future. The
problem has only been solved for n = 3 by Loewy and London ([4], 1978) and for n = 4
by Meehan ([5], 1998) and Torre-Mayo et al.([6], 2007). The case n = 5 has been solved for
matrices of trace zero in ([7], 1999). Other results, mostly in terms of sufficient conditions
for the problem to have a solution (in the case of a complex list Λ), have been obtained, in
chronological order, in [8]-[13].

Two main subproblems of the NIEP are of great interest: the real nonnegative inverse eigenvalue
problem (RNIEP), in which Λ is a list of real numbers, and the symmetric nonnegative inverse
eigenvalue problem (SNIEP), in which the realizing matrix must be symmetric. Both problems,
RNIEP and SNIEP are equivalent for n ≤ 4 (see [14]), but they are different otherwise (see
[15]). Moreover, both problems remains unsolved for n ≥ 5. The NIEP is also of interest
for nonnegative matrices with a particular structure, like stochastic and doubly stochastic,
circulant, persymmetric, centrosymmetric, Hermitian, Toeplitz, etc.

The first sufficient conditions for the existence of a nonnegative matrix with a given real
spectrum (RNIEP) were obtained by Suleimanova ([16], 1949) and Perfect ([17, 18], 1953 and
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1955). Other sufficient conditions have also been obtained, in chronological order in [19]-[26],
(see also [27, 28], and references therein for a comprehensive survey).

The first sufficient conditions for the SNIEP were obtained by Fiedler ([29], 1974). Other results
for symmetric realizability have been obtained in [8, 30] and [31]-[33]. Recently, new sufficient
conditions for the SNIEP have been given in [34]-[37].

1.1. Necessary conditions

Let A be a nonnegative matrix with spectrum Λ = {λ1, λ2, ..., λn}. Then, from the Perron
Frobenius theory we have the following basic necessary conditions

(1) Λ = {λ1, . . . , λn} = Λ
(2) maxj{

∣∣∣λj

∣∣∣} ∈ Λ
(3) sm(Λ) = ∑n

j=1 λm
j ≥ 0, m = 1, 2, . . . ,

(1)

where Λ = Λ means that Λ is closed under complex comjugation.

Moreover, we have

(4) (sk(Λ))m ≤ nm−1skm(Λ), k, m = 1, 2, . . .
(5) (s2(Λ))2 ≤ (n − 1)s4(Λ), n odd, tr(A) = 0.

(2)

Necessary condition (4) is due to Loewy and London [4]. Necessary condition (5), which
is a refinement of (4), is due to Laffey and Meehan [38]. The list Λ = {5, 4,−3,−3,−3} for
instance, satisfies all above necessary conditions, except condition (5). Therefore Λ is not a
realizable list. In [39] it was obtained a new necessary condition, which is independent of the
previous ones. This result is based on the Newton’s inequalities associated to the normalized
coefficients of the characteristic polynomial of an M-matrix or an inverse M-matrix.

The chapter is organized as follows: In section 2 we introduce two important matrix results,
due to Brauer and Rado, which have allowed to obtain many of the most general sufficient
conditions for the RNIEP, the SNIEP and the complex case. In section 3 we consider the real
case and we introduce, without proof (we indicate where the the proofs can be found), two
sufficient conditions with illustrative examples. We consider, in section 4, the symmetric case.
Here we introduce a symmetric version of the Rado result, Theorem 2, and we set, without
proof (see the appropriate references), three sufficient conditions, which are, as far as we know,
the most general sufficient conditions for the SNIEP. In section 5, we discuss the complex (non
real) case. Here we present several results with illustrative examples. Section 6 is devoted to
discuss some Fiedler results and Guo results, which are very related with the problem and
have been employed with success to derive sufficient conditions. Finally, in section 7, we
introduce some open questions.

2. Brauer and Rado Theorems

A real matrix A = (aij)
n
i=1 is said to have constant row sums if all its rows sum up to the same

constant, say, α, that is,
n

∑
j=1

aij = α, i = 1, . . . , n. The set of all real matrices with constant

row sums equal to α is denoted by CSα. It is clear that any matrix in CSα has eigenvector
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e = (1, 1, . . . , 1)T corresponding to the eigenvalue α. Denote by ek the n−dimensional vector
with one in the k − th position and zeros elsewhere.

It is well known that the problem of finding a nonnegative matrix with spectrum Λ =
{λ1, . . . , λn} is equivalent to the problem of finding a nonnegative matrix in CSλ1 with
spectrum Λ (see [40]). This will allow us to exploit the advantages of two important theorems,
Brauer Theorem and Rado Theorem, which will be introduced in this section.

The spectra of circulant nonnegative matrices have been characterized in [9], while in [10],
a simple complex generalization of Suleimanova result has been proved, and efficient and
general sufficient conditions for the realizability of partitioned spectra, with the partition
allowing some of its pieces to be nonrealizable, provided there are other pieces, which are
realizable and, in certain way, compensate the nonnrealizability of the former, have been
obtained. This is the procedure which we call negativity compensation. This strategy, based in
the use of the following two perturbation results, together with the properties of real matrices
with constant row sums, has proved to be successful.

Theorem 1. Brauer [41] Let A be an n × n arbitrary matrix with eigenvalues λ1, . . . , λn. Let
v = (v1, ..., vn)T an eigenvector of A associated with the eigenvalue λk and let q = (q1, ..., qn)T

be any n-dimensional vector. Then the matrix A + vqT has eigenvalues λ1, . . . , λk−1, λk +
vTq, λk+1, . . . , λn.

Proof. Let U be an n × n nonsingular matrix such that

U−1 AU =

⎡
⎢⎢⎢⎢⎣

λ1 ∗ · · · ∗
λ2

. . .
...

. . . ∗
λn

⎤
⎥⎥⎥⎥⎦

is an upper triangular matrix, where we choose the first column of U as v (U there exists from
a well known result of Schur). Then,

U−1(A + vqT)U = U−1 AU +

⎡
⎢⎢⎣

q1 q2 · · · qn
⎤
⎥⎥⎦U =

⎡
⎢⎢⎢⎢⎢⎣

λ1 + qTv ∗ · · · ∗
λ2

. . .
...

. . . ∗
λn

⎤
⎥⎥⎥⎥⎥⎦

.

and the result follows. This proof is due to Reams [42].

Theorem 2. Rado [18] Let A be an n × n arbitrary matrix with eigenvalues λ1, . . . , λn and let
Ω = diag{λ1, . . . , λr} for some r ≤ n. Let X be an n × r matrix with rank r such that its columns
x1, x2, . . . , xr satisfy Axi = λixi, i = 1, . . . , r. Let C be an r × n arbitrary matrix. Then the matrix
A + XC has eigenvalues μ1, . . . , μr, λr+1, . . . , λn, where μ1, . . . , μr are eigenvalues of the matrix Ω +
CX.

Proof. Let S = [X | Y] a nonsingular matrix with S−1 = [UV]. Then UX = Ir, VY = In−r and
VX = 0, UY = 0. Let C = [C1 | C2] , X = [X1

X2
], Y = [Y1

Y2
]. Then, since AX = XΩ,

S−1 AS =

�
U
V

�
[XΩ | AY] =

�
Ω UAY
0 VAY

�
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and

S−1XCS =

�
Ir

0

�
[C1 | C2] S =

�
C1 C2
0 0

� �
X1 Y1
X2 Y2

�
=

�
CX CY
0 0

�
.

Thus,

S−1(A + XC)S = S−1 AS + S−1XCS =

�
Ω + CX UAY + CY

0 VAY

�
,

and we have σ(A + XC) = σ(Ω + CX) + σ(A)− σ(Ω).

3. Real nonnegative inverse eigenvalue problem.

Regarding the RNIEP, by applying Brauer Theorem and Rado Theorem, efficient and general
sufficient conditions have been obtained in [18, 22, 24, 36].

Theorem 3. [24] Let Λ = {λ1, λ2, ..., λn} be a given list of real numbers. Suppose that:
i) There exists a partition Λ = Λ1 ∪ ... ∪ Λt, where

Λk = {λk1, λk2, . . . λkpk
}, λ11 = λ1, λk1 ≥ · · · ≥ λkpk

, λk1 ≥ 0,

k = 1, . . . , t, such that for each sublist Λk we associate a corresponding list

Γk = {ωk, λk2, ..., λkpk
}, 0 ≤ ωk ≤ λ1,

which is realizable by a nonnegative matrix Ak ∈ CSωk of order pk.
ii) There exists a nonnegative matrix B ∈ CSλ1 with eigenvalues λ1, λ21, ..., λt1 (the first elements of
the lists Λk) and diagonal entries ω1, ω2, . . . , ωt (the first elements of the lists Γk).
Then Λ is realizable by a nonnegative matrix A ∈ CSλ1 .

Perfect [18] gave conditions under which λ1, λ2, ..., λt and ω1, ω2, . . . , ωt are the eigenvalues
and the diagonal entries, respectively, of a t × t nonnegative matrix B ∈ CSλ1 . For t = 2 it is
necessary and sufficient that λ1 + λ2 = ω1 + ω2, with 0 ≤ ωi ≤ λ1. For t = 3 Perfect gave the
following result:

Theorem 4. [18] The real numbers λ1, λ2, λ3 and ω1, ω2, ω3 are the eigenvalues and the diagonal
entries, respectively, of a 3 × 3 nonnegative matrix B ∈ CSλ1 , if and only if:

i) 0 ≤ ωi ≤ λ1, i = 1, 2, 3
ii) λ1 + λ2 + λ3 = ω1 + ω2 + ω3
iii) λ1λ2 + λ1λ3 + λ2λ3 ≤ ω1ω2 + ω1ω3 + ω2ω3
iv) maxkωk ≥ λ2

(3)

Then, an appropriate 3 × 3 nonnegative matrix B is

B =

⎡
⎣

ω1 0 λ1 − ω1
λ1 − ω2 − p ω2 p

0 λ1 − ω3 ω3

⎤
⎦ , (4)

where
p =

1
λ1 − ω3

(ω1ω2 + ω1ω3 + ω2ω3 − λ1λ2 + λ1λ3 + λ2λ3).
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For t ≥ 4, we only have a sufficient condition:

i) 0 ≤ ωk ≤ λ1, k = 1, 2, . . . t,
ii) ω1 + ω2 · · ·+ ωt = λ1 + λ2 · · ·+ λt,
iii) ωk ≥ λk, ω1 ≥ λk, k = 2, 3, . . . , t,

(5)

with the following matrix B ∈ CSλ1 having eigenvalues and diagonal entries λ1, λ2, . . . , λt
and ω1, ω2, . . . , ωt, respectively:

B =

⎡
⎢⎢⎢⎣

ω1 ω2 − λ2 · · · ωr − λt
ω1 − λ2 ω2 · · · ωr − λt

...
...

. . .
...

ω1 − λt ω2 − λ2 · · · ωt

⎤
⎥⎥⎥⎦ . (6)

Example 1. Let us consider the list Λ = {6, 1, 1,−4,−4} with the partition

Λ1 = {6,−4}, Λ2 = {1,−4}, Λ3 = {1}
and the realizable associated lists

Γ1 = {4,−4}, Γ2 = {4,−4}, Γ3 = {0}.

From (4) we compute the 3 × 3 nonnegative matrix

B =

⎡
⎣

4 0 2
3
2 4 1

2
0 6 0

⎤
⎦

with eigenvalues 6, 1, 1, and diagonal entries 4, 4, 0. Then

A =

⎡
⎢⎢⎢⎢⎣

0 4 0 0 0
4 0 0 0 0
0 0 0 4 0
0 0 4 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎣

0 0 0 0 2
3
2 0 0 0 1

2
0 0 6 0 0

⎤
⎦

=

⎡
⎢⎢⎢⎢⎣

0 4 0 0 2
4 0 0 0 2
3
2 0 0 4 1

2
3
2 0 4 0 1

2
0 0 6 0 0

⎤
⎥⎥⎥⎥⎦

is nonnegative with spectrum Λ.

A map of sufficient conditions for the RNIEP it was constructed in [28], There, the sufficient
conditions were compared to establish inclusion or independence relations between them. It
is also shown in [28] that the criterion given by Theorem 3 contains all realizability criteria
for lists of real numbers studied therein. In [36], from a new special partition, Theorem 3
is extended. Now, the first element λk1 of the sublist Λk need not to be nonnegative and
the realizable auxiliar list Γk = {ωk, λk1, ..., λkpk

} contains one more element. Moreover, the
number of lists of the partition depend on the number of elements of the first list Λ1, and some
lists Λk can be empty.
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Theorem 5. [36] Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers and let the partition Λ =
Λ1 ∪ · · · ∪ Λp1+1 be such that

Λk = {λk1, λk2, . . . λkpk
}, λ11 = λ1, λk1 ≥ λk2 ≥ · · · ≥ λkpk

,

k = 1, . . . , p1 + 1, where p1 is the number of elements of the list Λ1 and some of the lists Λk can be
empty. Let ω2, . . . , ωp1+1 be real numbers satisfying 0 ≤ ωk ≤ λ1, k = 2, . . . , p1 + 1. Suppose that
the following conditions hold:
i) For each k = 2, . . . , p1 + 1, there exists a nonnegative matrix Ak ∈ CSωk with spectrum Γk =
{ωk, λk1, ..., λkpk

},
ii) There exists a p1 × p1 nonnegative matrix B ∈ CSλ1, with spectrum Λ1 and with diagonal entries
ω2, . . . , ωp1+1.
Then Λ is realizable by a nonnegative matrix A ∈ CSλ1 .

Example 2. With this extension, the authors show for instance, that the list

{5, 4, 0,−3,−3,−3}
is realizable, which can not be done from the criterion given by Theorem 3. In fact, let the partition

Λ1 = {5, 4, 0,−3}, Λ2 = {−3}, Λ3 = {−3} with
Γ2 = {3,−3}, Γ3 = {3,−3}, Γ4 = Γ5 = {0}.

The nonnegative matrix

B =

⎡
⎢⎢⎣

3 0 2 0
0 3 0 2
3 0 0 2
0 3 2 0

⎤
⎥⎥⎦

has spectrum Λ1 and diagonal entries 3, 3, 0, 0. It is clear that

A2 = A3 =

�
0 3
3 0

�
realizes Γ2 = Γ3.

Then

A =

⎡
⎢⎢⎣

A2
A3

0
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

0 0 0 0 2 0
0 0 0 0 0 2
3 0 0 0 0 2
0 0 3 0 2 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 3 0 0 2 0
3 0 0 0 2 0
0 0 0 3 0 2
0 0 3 0 0 2
3 0 0 0 0 2
0 0 3 0 2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

has the desired spectrum {5, 4, 0,−3,−3,−3}.

4. Symmetric nonnegative inverse eigenvalue problem
Several realizability criteria which were first obtained for the RNIEP have later been shown
to be symmetric realizability criteria as well. For example, Kellogg criterion [19] was showed
by Fiedler [29] to imply symmetric realizability. It was proved by Radwan [8] that Borobia’s
criterion [21] is also a symmetric realizability criterion, and it was proved in [33] that Soto’s
criterion for the RNIEP is also a criterion for the SNIEP. In this section we shall consider the
most general and efficient symmetric realizability criteria for the SNIEP (as far as we know
they are). We start by introducing a symmetric version of the Rado Theorem:.
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Theorem 5. [36] Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers and let the partition Λ =
Λ1 ∪ · · · ∪ Λp1+1 be such that

Λk = {λk1, λk2, . . . λkpk
}, λ11 = λ1, λk1 ≥ λk2 ≥ · · · ≥ λkpk

,

k = 1, . . . , p1 + 1, where p1 is the number of elements of the list Λ1 and some of the lists Λk can be
empty. Let ω2, . . . , ωp1+1 be real numbers satisfying 0 ≤ ωk ≤ λ1, k = 2, . . . , p1 + 1. Suppose that
the following conditions hold:
i) For each k = 2, . . . , p1 + 1, there exists a nonnegative matrix Ak ∈ CSωk with spectrum Γk =
{ωk, λk1, ..., λkpk

},
ii) There exists a p1 × p1 nonnegative matrix B ∈ CSλ1, with spectrum Λ1 and with diagonal entries
ω2, . . . , ωp1+1.
Then Λ is realizable by a nonnegative matrix A ∈ CSλ1 .

Example 2. With this extension, the authors show for instance, that the list

{5, 4, 0,−3,−3,−3}
is realizable, which can not be done from the criterion given by Theorem 3. In fact, let the partition

Λ1 = {5, 4, 0,−3}, Λ2 = {−3}, Λ3 = {−3} with
Γ2 = {3,−3}, Γ3 = {3,−3}, Γ4 = Γ5 = {0}.

The nonnegative matrix

B =

⎡
⎢⎢⎣

3 0 2 0
0 3 0 2
3 0 0 2
0 3 2 0

⎤
⎥⎥⎦

has spectrum Λ1 and diagonal entries 3, 3, 0, 0. It is clear that

A2 = A3 =

�
0 3
3 0

�
realizes Γ2 = Γ3.

Then

A =

⎡
⎢⎢⎣

A2
A3

0
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

0 0 0 0 2 0
0 0 0 0 0 2
3 0 0 0 0 2
0 0 3 0 2 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 3 0 0 2 0
3 0 0 0 2 0
0 0 0 3 0 2
0 0 3 0 0 2
3 0 0 0 0 2
0 0 3 0 2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

has the desired spectrum {5, 4, 0,−3,−3,−3}.

4. Symmetric nonnegative inverse eigenvalue problem
Several realizability criteria which were first obtained for the RNIEP have later been shown
to be symmetric realizability criteria as well. For example, Kellogg criterion [19] was showed
by Fiedler [29] to imply symmetric realizability. It was proved by Radwan [8] that Borobia’s
criterion [21] is also a symmetric realizability criterion, and it was proved in [33] that Soto’s
criterion for the RNIEP is also a criterion for the SNIEP. In this section we shall consider the
most general and efficient symmetric realizability criteria for the SNIEP (as far as we know
they are). We start by introducing a symmetric version of the Rado Theorem:.
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Theorem 6. [34] Let A be an n × n symmetric matrix with spectrum Λ = {λ1, λ2, . . . , λn} and for
some r ≤ n, let {x1, x2, . . . , xr} be an orthonormal set of eigenvectors of A spanning the invariant
subspace associated with λ1, λ2, . . . , λr. Let X be the n × r matrix with i − th column xi, let Ω =
diag{λ1, . . . , λr}, and let C be any r × r symmetric matrix. Then the symmetric matrix A + XCXT

has eigenvalues μ1, μ2, . . . , μr, λr+1, . . . , λn, where μ1, μ2, . . . , μr are the eigenvalues of the matrix
Ω + C.

Proof. Since the columns of X are an orthonormal set, we may complete X to an orthogonal
matrix W = [X Y], that is, XT X = Ir, YTY = In−r, XTY = 0, YT X = 0. Then

W−1 AW =

[
XT

YT

]
A [X Y] =

[
Ω XT AY
0 YT AY

]

W−1(XCXT)W =

[
Ir

0

]
C [Ir 0] =

[
C 0
0 0

]
.

Therefore,

W−1(A + XCXT)W =

[
Ω + C XT AY

0 YT AY

]

and A + XCXT is symmetric with eigenvalues μ1, . . . , μr, λr+1, . . . , λn.

By using Theorem 6, the following sufficient condition was proved in [34]:

Theorem 7. [34] Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers with λ1 ≥ λ2 ≥ · · · ≥ λn and,
for some t ≤ n, let ω1, . . . , ωt be real numbers satisfying 0 ≤ ωk ≤ λ1, k = 1, . . . , t. Suppose there
exists:
i) a partition Λ = Λ1 ∪ · · · ∪ Λt with

Λk = {λk1, λk2, . . . λkpk
}, λ11 = λ1, λk1 ≥ 0, λk1 ≥ λk2 ≥ · · · ≥ λkpk

,

such that for each k = 1, . . . , t, the list Γk = {ωk, λk2, ..., λkpk
} is realizable by a symmetric

nonnegative matrix Ak of order pk, and
ii) a t × t symmetric nonnegative matrix B with eigenvalues λ11, λ21, ..., λt1} and with diagonal
entries ω1, ω2, . . . , ωt.
Then Λ is realizable by a symmetric nonnegative matrix.

Proof. Since Ak is a pk × pk symmetric nonnegative matrix realizing Γk, then A =
diag{A1, A2, . . . , At} is symmetric nonnegative with spectrum Γ1 ∪ Γ2 ∪ · · · ∪ Γt. Let
{x1, . . . , xt} be an orthonormal set of eigenvectors of A associated with ω1, . . . , ωt,
respectively. Then the n × t matrix X with i − th column xi satisfies AX = XΩ for
Ω = dig{ω1, . . . , ωt}. Moreover, X is entrywise nonnegative, since each xi contains the
Perron eigenvector of Ai and zeros. Now, if we set C = B − Ω, the matrix C is symmetric
nonnegative and Ω + C has eigenvalues λ1, . . . , λt. Therefore, by Theorem 6 the symmetric
matrix A + XCXT has spectrum Λ. Besides, it is nonnegative since all the entries of A, X, and
C are nonnegative.

Theorem 7 not only ensures the existence of a realizing matrix, but it also allows to construct
the realizing matrix. Of course, the key is to know under which conditions does there exists
a t × t symmetrix nonnegative matrix B with eigenvalues λ1, . . . , λt and diagonal entries
ω1, . . . , ωt.
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The following conditions for the existence of a real symmetric matrix, not necessarily
nonnegative, with prescribed eigenvalues and diagonal entries are due to Horn [43]: There
exists a real symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λt and diagonal entries
ω1 ≥ ω2 ≥ · · · ≥ ωt if and only if

k

∑
i=1

λi ≥
k

∑
i=1

ωi, k = 1, . . . , t − 1

t

∑
i=1

λi =
t

∑
i=1

ωi

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(7)

For t = 2, the conditions (7) become

λ1 ≥ ω1, λ1 + λ2 = ω1 + ω2,

and they are also sufficient for the existence of a 2 × 2 symmetric nonnegative matrix B with
eigenvalues λ1 ≥ λ2 and diagonal entries ω1 ≥ ω2 ≥ 0, namely,

B =

�
ω1

�
(λ1 − ω1)(λ1 − ω2)�

(λ1 − ω1)(λ1 − ω2) ω2

�
.

For t = 3, we have the following conditions:

Lemma 1. [29] The conditions

λ1 ≥ ω1
λ1 + λ2 ≥ ω1 + ω2

λ1 + λ2 + λ3 = ω1 + ω2 + ω3
ω1 ≥ λ2

⎫⎪⎪⎬
⎪⎪⎭

(8)

are necessary and sufficient for the existence of a 3 × 3 symmetric nonnegative matrix B with
eigenvalues λ1 ≥ λ2 ≥ λ3 and diagonal entries ω1 ≥ ω2 ≥ ω3 ≥ 0.

In [34], the following symmetric nonnegative matrix B, satisfying conditions (8), it was
constructed:

B =

⎡
⎢⎢⎢⎣

ω1

�
μ−ω3

2μ−ω2−ω3
s

�
μ−ω2

2μ−ω2−ω3
s�

μ−ω3
2μ−ω2−ω3

s ω2
�
(μ − ω2)(μ − ω3)�

μ−ω2
2μ−ω2−ω3

s
�
(μ − ω2)(μ − ω3) ω3

⎤
⎥⎥⎥⎦ , (9)

where μ = λ1 + λ2 − ω1; s =
�
(λ1 − μ)(λ1 − ω1).

For t ≥ 4 we have only a sufficient condition:

Theorem 8. Fiedler [29] If λ1 ≥ · · · ≥ λt and ω1 ≥ · · · ≥ ωt satisfy

i)
s

∑
i=1

λi ≥
s

∑
i=1

ωi, s = 1, . . . , t − 1

ii)
t

∑
i=1

λi =
t

∑
i=1

ωi

iii) ωk−1 ≥ λk, k = 2, . . . , t − 1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (10)
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The following conditions for the existence of a real symmetric matrix, not necessarily
nonnegative, with prescribed eigenvalues and diagonal entries are due to Horn [43]: There
exists a real symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λt and diagonal entries
ω1 ≥ ω2 ≥ · · · ≥ ωt if and only if

k

∑
i=1

λi ≥
k

∑
i=1

ωi, k = 1, . . . , t − 1

t

∑
i=1

λi =
t

∑
i=1

ωi

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(7)

For t = 2, the conditions (7) become

λ1 ≥ ω1, λ1 + λ2 = ω1 + ω2,

and they are also sufficient for the existence of a 2 × 2 symmetric nonnegative matrix B with
eigenvalues λ1 ≥ λ2 and diagonal entries ω1 ≥ ω2 ≥ 0, namely,

B =

�
ω1

�
(λ1 − ω1)(λ1 − ω2)�

(λ1 − ω1)(λ1 − ω2) ω2

�
.

For t = 3, we have the following conditions:

Lemma 1. [29] The conditions

λ1 ≥ ω1
λ1 + λ2 ≥ ω1 + ω2

λ1 + λ2 + λ3 = ω1 + ω2 + ω3
ω1 ≥ λ2

⎫⎪⎪⎬
⎪⎪⎭

(8)

are necessary and sufficient for the existence of a 3 × 3 symmetric nonnegative matrix B with
eigenvalues λ1 ≥ λ2 ≥ λ3 and diagonal entries ω1 ≥ ω2 ≥ ω3 ≥ 0.

In [34], the following symmetric nonnegative matrix B, satisfying conditions (8), it was
constructed:

B =

⎡
⎢⎢⎢⎣

ω1

�
μ−ω3

2μ−ω2−ω3
s

�
μ−ω2

2μ−ω2−ω3
s�

μ−ω3
2μ−ω2−ω3

s ω2
�
(μ − ω2)(μ − ω3)�

μ−ω2
2μ−ω2−ω3

s
�
(μ − ω2)(μ − ω3) ω3

⎤
⎥⎥⎥⎦ , (9)

where μ = λ1 + λ2 − ω1; s =
�
(λ1 − μ)(λ1 − ω1).

For t ≥ 4 we have only a sufficient condition:

Theorem 8. Fiedler [29] If λ1 ≥ · · · ≥ λt and ω1 ≥ · · · ≥ ωt satisfy

i)
s

∑
i=1

λi ≥
s

∑
i=1

ωi, s = 1, . . . , t − 1

ii)
t

∑
i=1

λi =
t

∑
i=1

ωi

iii) ωk−1 ≥ λk, k = 2, . . . , t − 1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (10)
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then there exists a t× t symmetric nonnegative matrix with eigenvalues λ1, . . . , λt and diagonal entries
ω1, . . . , ωt.

Observe that

B =

⎡
⎢⎢⎣

5 2 1
2

1
2

2 5 1
2

1
2

1
2

1
2 5 2

1
2

1
2 2 5

⎤
⎥⎥⎦

has eigenvalues 8, 6, 3, 3, but λ2 = 6 > 5 = ω1.

Example 3. Let us consider the list Λ = {7, 5, 1,−3,−4,−6} with the partition

Λ1 = {7,−6}, Λ2 = {5,−4}, Λ3 = {1,−3} with
Γ1 = {6,−6}, Γ2 = {4,−4}, Γ3 = {3,−3}.

We look for a symmetric nonnegative matrix B with eigenvalues 7, 5, 1 and diagonal entries 6, 4, 3.
Then conditions (8) are satisfied and from (9) we compute

B =

⎡
⎢⎢⎢⎣

6
�

3
5

�
2
5�

3
5 4

√
6�

2
5

√
6 3

⎤
⎥⎥⎥⎦ and C = B − Ω,

where Ω = diag{6, 4, 3}. The symmetric matrices

A1 =

�
0 6
6 0

�
, A2 =

�
0 4
4 0

�
, A3 =

�
0 3
3 0

�

realize Γ1, Γ2, Γ3. Then

A =

⎡
⎣

A1
A2

A3

⎤
⎦+ XCXT , where X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2

2 0 0√
2

2 0 0
0

√
2

2 0
0

√
2

2 0
0 0

√
2

2
0 0

√
2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

is symmetric nonnegative with spectrum Λ.

In the same way as Theorem 3 was extended to Theorem 5 (in the real case), Theorem 7 was
also extended to the following result:

Theorem 9. [36] Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers and let the partition Λ =
Λ1 ∪ · · · ∪ Λp1+1 be such that

Λk = {λk1, λk2, . . . λkpk
}, λ11 = λ1, λk1 ≥ λk2 ≥ · · · ≥ λkpk

,

k = 1, . . . , p1 + 1, where Λ1 is symmetrically realizable, p1 is the number of elements of Λ1 and some
lists Λk can be empty. Let ω2, . . . , ωp1+1 be real numbers satisfying 0 ≤ ωk ≤ λ1, k = 2, . . . , p1 + 1.
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Suppose that the following conditions hold:
i) For each k = 2, . . . , p1 + 1, there exists a symmetric nonnegative matrix Ak with spectrum Γk =
{ωk, λk1, ..., λkpk

},
ii) There exists a p1 × p1 symmetric nonnegative matrix B with spectrum Λ1 and with diagonal entries
ω2, . . . , ωp1+1.
Then Λ is symmetrically realizable.

Example 4. Now, from Theorem 9, we can see that there exists a symmetric nonnegative matrix
with spectrum Λ = {5, 4, 0,−3,−3,−3}, which can not be seen from Theorem 7. Moreover, we can
compute a realizing matrix. In fact, let the partition

Λ1 = {5, 4, 0,−3}, Λ2 = {−3}, Λ3 = {−3} with
Γ2 = {3,−3}, Γ3 = {3,−3}, Γ4 = Γ5 = {0}.

The symmetric nonnegative matrix

B =

⎡
⎢⎢⎣

3 0
√

6 0
0 3 0

√
6√

6 0 0 2
0

√
6 2 0

⎤
⎥⎥⎦

has spectrum Λ1 and diagonal entries 3, 3, 0, 0. Let Ω = diag{3, 3, 0, 0} and

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2

2 0 0 0√
2

2 0 0 0
0

√
2

2 0 0
0

√
2

2 0 0
0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A2 = A3 =

�
0 3

3 0

�
, C = B − Ω.

Then, from Theorem 6 we obtain

A =

⎡
⎢⎢⎣

A2
A3

0
0

⎤
⎥⎥⎦+ XCXT ,

which is symmetric nonnegative with spectrum Λ.

The following result, although is not written in the fashion of a sufficient condition, is indeed
a very general and efficient sufficient condition for the SNIEP.

Theorem 10. [35] Let A be an n × n irreducible symmetric nonnegative matrix with spectrum
Λ = {λ1, λ2, . . . , λn}, Perron eigenvalue λ1 and a diagonal element c. Let B be an m × m symmetric
nonnegative matrix with spectrum Γ = {μ1, μ2, . . . , μm} and Perron eigenvalue μ1.
i) If μ1 ≤ c, then there exists a symmetric nonnegative matrix C, of order (n + m − 1), with spectrum
{λ1, . . . , λn, μ2, . . . , μm}.
ii) If μ1 ≥ c, then there exists a symmetric nonnegative matrix C, of order (n+m− 1), with spectrum
{λ1 + μ1 − c, λ2, . . . , λn, μ2, . . . , μm}.
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Suppose that the following conditions hold:
i) For each k = 2, . . . , p1 + 1, there exists a symmetric nonnegative matrix Ak with spectrum Γk =
{ωk, λk1, ..., λkpk

},
ii) There exists a p1 × p1 symmetric nonnegative matrix B with spectrum Λ1 and with diagonal entries
ω2, . . . , ωp1+1.
Then Λ is symmetrically realizable.

Example 4. Now, from Theorem 9, we can see that there exists a symmetric nonnegative matrix
with spectrum Λ = {5, 4, 0,−3,−3,−3}, which can not be seen from Theorem 7. Moreover, we can
compute a realizing matrix. In fact, let the partition

Λ1 = {5, 4, 0,−3}, Λ2 = {−3}, Λ3 = {−3} with
Γ2 = {3,−3}, Γ3 = {3,−3}, Γ4 = Γ5 = {0}.
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B =
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⎢⎢⎣

3 0
√

6 0
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0
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6 2 0
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has spectrum Λ1 and diagonal entries 3, 3, 0, 0. Let Ω = diag{3, 3, 0, 0} and
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√
2
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2
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0

√
2

2 0 0
0

√
2

2 0 0
0 0 1 0

0 0 0 1

⎤
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, A2 = A3 =

�
0 3

3 0

�
, C = B − Ω.

Then, from Theorem 6 we obtain

A =

⎡
⎢⎢⎣

A2
A3

0
0

⎤
⎥⎥⎦+ XCXT ,

which is symmetric nonnegative with spectrum Λ.

The following result, although is not written in the fashion of a sufficient condition, is indeed
a very general and efficient sufficient condition for the SNIEP.

Theorem 10. [35] Let A be an n × n irreducible symmetric nonnegative matrix with spectrum
Λ = {λ1, λ2, . . . , λn}, Perron eigenvalue λ1 and a diagonal element c. Let B be an m × m symmetric
nonnegative matrix with spectrum Γ = {μ1, μ2, . . . , μm} and Perron eigenvalue μ1.
i) If μ1 ≤ c, then there exists a symmetric nonnegative matrix C, of order (n + m − 1), with spectrum
{λ1, . . . , λn, μ2, . . . , μm}.
ii) If μ1 ≥ c, then there exists a symmetric nonnegative matrix C, of order (n+m− 1), with spectrum
{λ1 + μ1 − c, λ2, . . . , λn, μ2, . . . , μm}.
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Example 5. The following example, given in [35], shows that
{7, 5, 0,−4,−4,−4} with the partition

Λ = {7, 5, 0,−4}, Γ = {4,−4},

satisfies conditions of Theorem 10, where

A =

⎡
⎢⎢⎣

4 0 b 0
0 4 0 d
b 0 0

√
6

0 d
√

6 0

⎤
⎥⎥⎦ with b2 + d2 = 23, bd = 4

√
6,

is symmetric nonnegative with spectrum Λ. Then there exists a symmetric nonnegative matrix C
with spectrum {7, 5, 0,−4,−4} and a diagonal element 4. By applying again Theorem 10 to the lists
{7, 5, 0,−4,−4} and {4,−4}, we obtain the desired symmetric nonnegative matrix.

It is not hard to show that both results, Theorem 9 and Theorem 10, are equivalent (see [44]).
Thus, the list in the Example 4 is also realizable from Theorem 10, while the list in the example
5 is also realizable from Theorem 9.

5. List of complex numbers
In this section we consider lists of complex nonreal numbers. We start with a complex
generalization of a well known result of Suleimanova, usually considered as one of the
important results in the RNIEP (see [16]): The list λ1 > 0 > λ2 ≥ · · · ≥ λn is the spectrum of a
nonnegative matrix if and only if λ1 + λ2 + · · ·+ λn ≥ 0.

Theorem 11. [10] Let Λ = {λ0, λ1, . . . , λn} be a list of complex numbers closed under complex
conjugation, with

Λ� = {λ1, . . . , λn} ⊂ {z ∈ C : Re z ≤ 0; |Re z| ≥ |Im z|}.

Then Λ is realizable if and only if
n

∑
i=0

λi ≥ 0.

Proof. Suppose that the elements of Λ� are ordered in such a way that λ2p+1, . . . , λn are real
and λ1, . . . , λ2p are complex nonreal, with

xk = Re λ2k−1 = Re λ2k and yk = Im λ2k−1 = Im λ2k

for k = 1, . . . , p. Consider the matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 .
−x1 + y1 x1 −y1 .
−x1 − y1 y1 x1 .

...
...

...
. . .

−xp + yp 0 0 . xp −yp
−xp − yp 0 0 . yp xp
−λ2p+1 0 0 . λ2p+1

...
...

... .
. . .

−λn 0 . λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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It is clear that B ∈ CS0 with spectrum {0, λ1, . . . , λn} and all the entries on its first column are

nonnegative. Define q = (q0, q1, . . . , qn)T with q0 = λ0 +
n

∑
i=1

λi and

qk = −Re λk for k = 1, . . . , 2p and qk = −λk for k = 2p + 1, . . . , n.

Then, from the Brauer Theorem 1 A = B + eqT is nonnegative with spectrum Λ.

In the case when all numbers in the given list, except one (the Perron eigenvalue), have real
parts smaller than or equal to zero, remarkably simple necessary and sufficient conditions
were obtained in [11].

Theorem 12. [11] Let λ2, λ3, . . . , λn be nonzero complex numbers with real parts less than or equal to
zero and let λ1 be a positive real number. Then the list Λ = {λ1, λ2, . . . , λn} is the nonzero spectrum
of a nonnegative matrix if the following conditions are satisfied:

i) Λ = Λ

ii) s1 =
n

∑
i=1

λi ≥ 0

iii) s2 =
n

∑
i=1

λ2
i ≥ 0

(11)

The minimal number of zeros that need to be added to Λ to make it realizable is the smallest nonnegative
integer N for which the following inequality is satisfied:

s2
1 ≤ (n + N)s2.

Furthermore, the list {λ1, λ2, . . . , λn, 0, . . . , 0} can be realized by C + αI, where C is a nonnegative
companion matrix with trace zero, α is a nonnegative scalar and I is the n × n identity matrix.

Corollary 1. [11] Let λ2, λ3, . . . , λn be complex numbers with real parts less than or equal to zero and
let λ1 be a positive real number. Then the list Λ = {λ1, λ2, . . . , λn} is the spectrum of a nonnegative
matrix if and only if the following conditions are satisfied:

i) Λ = Λ

ii) s1 =
n

∑
i=1

λi ≥ 0

iii) s2 =
n

∑
i=1

λ2
i ≥ 0

iv) s2
1 ≤ ns2

(12)

Example 6. The list Λ = {8,−1 + 3i,−1 − 3i,−2 + 5i,−2 − 5i} satisfies conditions (12). Then Λ
is the spectrum of the nonnegative companion matrix

C =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2320 494 278 1 2

⎤
⎥⎥⎥⎥⎦

.
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⎥⎥⎥⎥⎦

.
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Observe that Theorem 11 gives no information about the realizability of Λ.
The list {19,−1 + 11i,−1 − 11i,−3 + 8i,−3 − 8i} was given in [11]. It does not satisfy conditions
(12): s1 = 11, s2 = 11 and s2

1 � ns2. The inequality 112 ≤ (5 + N)11 is satisfied for N ≥ 6. Then
we need to add 6 zeros to the list to make it realizable.

Theorem 3 (in section 3), can also be extended to the complex case:

Theorem 13. [13] Let Λ = {λ2, λ3, . . . , λn} be a list of complex numbers such that Λ = Λ, λ1 ≥
maxi |λi| , i = 2, . . . , n, and

n

∑
i=1

λi ≥ 0. Suppose that:

i) there exists a partition Λ = Λ1 ∪ · · · ∪ Λt with

Λk = {λk1, λk2, . . . λkpk
}, λ11 = λ1,

k = 1, . . . , t, such that Γk = {ωk, λk2, ..., λkpk
} is realizable by a nonnegative matrix Ak ∈ CSωk ,

and
ii) there exists a t × t nonnegative matrix B ∈ CSλ1 , with eigenvalues
λ1, λ21, . . . , λt1 (the first elements of the lists Λk) and with diagonal entries ω1, ω2, . . . , ωt (the Perron
eigenvalues of the lists Γk).
Then Λ is realizable.

Example 7. Let Λ = {7, 1,−2,−2,−2 + 4i,−2 − 4i}. Consider the partition

Λ1 = {7, 1,−2,−2}, Λ2 = {−2 + 4i}, Λ3 = {−2 − 4i} with
Γ1 = {3, 1,−2,−2}, Γ2 = {0}, Γ3 = {0}.

We look for a nonnegative matrix B ∈ CS7 with eigenvalues 7,−2 + 4i,−2 − 4i and diagonal entries
3, 0, 0, and a nonnegative matrix A1 realizing Γ1. They are

B =

⎡
⎣

3 0 4
41
7 0 8

7
0 7 0

⎤
⎦ and A1 =

⎡
⎢⎢⎣

0 2 0 1
2 0 0 1
0 1 0 2
0 1 2 0

⎤
⎥⎥⎦ .

Then

A =

⎡
⎣

A1
0

0

⎤
⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣

0 0 0 0 0 4
41
7 0 0 0 0 8

7
0 0 0 0 7 0

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2 0 1 0 4
2 0 0 1 0 4
0 1 0 2 0 4
0 1 2 0 0 4
41
7 0 0 0 0 8

7
0 0 0 0 7 0

⎤
⎥⎥⎥⎥⎥⎥⎦

has the spectrum Λ.

6. Fiedler and Guo results

One of the most important works about the SNIEP is due to Fiedler [29]. In [29] Fiedler
showed, as it was said before, that Kellogg sufficient conditions for the RNIEP are also
sufficient for the SNIEP. Three important and very useful results of Fiedler are:
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Lemma 2. [29] Let A be a symmetric m × m matrix with eigenvalues α1, . . . , αm, Au = α1u, �u� =
1. Let B be a symmetric n × n matrix with eigenvalues β1, . . . , βn, Bv = β1v, �v� = 1. Then for any
ρ, the matrix

C =

[
A ρuvT

ρvuT B

]

has eigenvalues α2, . . . , αm, β2, . . . , βn, γ1, γ2, where γ1, γ2 are eigenvalues of the matrix

C̃ =

[
α1 ρ
ρ β1

]
.

Lemma 3. [29] If {α1, . . . , αm} and {β1, . . . , βn} are lists symmetrically realizable and α1 ≥ β1,
then for any t ≥ 0, the list

{α1 + t, β1 − t, α2, . . . , αm, β2, . . . , βn}
is also symmetrically realizable.

Lemma 4. [29] If Λ = {λ1, λ2, . . . , λn} is symmetrically realizable by a nonnegative matrix and if
t > 0, then

Λt = {λ1 + t, λ2, . . . , λn}
is symmetrically realizable by a positive matrix.

Remark 1. It is not hard to see that Lemma 2 can be obtained from Theorem 6. In fact, it is enough to
consider

C =

[
A

B

]
+

[
u 0
0 v

] [
0 ρ
ρ 0

] [
uT 0T

0T vT

]

=

[
A ρuvT

ρvuT B

]
,

which is symmetric with eigenvalues γ1, γ2, α2, . . . , αm, β2, . . . , βn, where γ1, γ2 are eigenvalues of

B =

[
α1 ρ
ρ β1

]
.

Now we consider a relevant result due to Guo [45]:

Theorem 14. [45] If the list of complex numbers Λ = {λ1, λ2, . . . , λn} is realizable, where λ1 is the
Perron eigenvalue and λ2 ∈ R, then for any t ≥ 0 the list Λt = {λ1 + t, λ2 ± t, λ3, . . . , λn} is also
realizable.

Corollary 2. [45] If the list of real numbers Λ = {λ1, λ2, . . . , λn} is realizable and t1 =
n

∑
i=2

|ti| with

ti ∈ R, i = 2, . . . , n, then the list Λt = {λ1 + t1, λ2 + t2, . . . , λn + tn} is also realizable.

Example 8. Let Λ = {8, 6, 3, 3,−5,−5,−5,−5} be a given list. Since the lists Λ1 = Λ2 =
{7, 3,−5,−5} are both realizable (see [22] to apply a simple criterion, which shows the realizability
of Λ1 = Λ2), then

Λ1 ∪ Λ2 = {7, 7, 3, 3,−5,−5,−5,−5}
is also realizable. Now, from Theorem 14, with t = 1, Λ is realizable.

112 Linear Algebra – Theorems and Applications



14 Will-be-set-by-IN-TECH

Lemma 2. [29] Let A be a symmetric m × m matrix with eigenvalues α1, . . . , αm, Au = α1u, �u� =
1. Let B be a symmetric n × n matrix with eigenvalues β1, . . . , βn, Bv = β1v, �v� = 1. Then for any
ρ, the matrix

C =

[
A ρuvT

ρvuT B

]

has eigenvalues α2, . . . , αm, β2, . . . , βn, γ1, γ2, where γ1, γ2 are eigenvalues of the matrix

C̃ =

[
α1 ρ
ρ β1

]
.

Lemma 3. [29] If {α1, . . . , αm} and {β1, . . . , βn} are lists symmetrically realizable and α1 ≥ β1,
then for any t ≥ 0, the list

{α1 + t, β1 − t, α2, . . . , αm, β2, . . . , βn}
is also symmetrically realizable.

Lemma 4. [29] If Λ = {λ1, λ2, . . . , λn} is symmetrically realizable by a nonnegative matrix and if
t > 0, then

Λt = {λ1 + t, λ2, . . . , λn}
is symmetrically realizable by a positive matrix.

Remark 1. It is not hard to see that Lemma 2 can be obtained from Theorem 6. In fact, it is enough to
consider

C =

[
A

B

]
+

[
u 0
0 v

] [
0 ρ
ρ 0

] [
uT 0T

0T vT

]

=

[
A ρuvT

ρvuT B

]
,

which is symmetric with eigenvalues γ1, γ2, α2, . . . , αm, β2, . . . , βn, where γ1, γ2 are eigenvalues of

B =

[
α1 ρ
ρ β1

]
.

Now we consider a relevant result due to Guo [45]:

Theorem 14. [45] If the list of complex numbers Λ = {λ1, λ2, . . . , λn} is realizable, where λ1 is the
Perron eigenvalue and λ2 ∈ R, then for any t ≥ 0 the list Λt = {λ1 + t, λ2 ± t, λ3, . . . , λn} is also
realizable.

Corollary 2. [45] If the list of real numbers Λ = {λ1, λ2, . . . , λn} is realizable and t1 =
n

∑
i=2

|ti| with

ti ∈ R, i = 2, . . . , n, then the list Λt = {λ1 + t1, λ2 + t2, . . . , λn + tn} is also realizable.

Example 8. Let Λ = {8, 6, 3, 3,−5,−5,−5,−5} be a given list. Since the lists Λ1 = Λ2 =
{7, 3,−5,−5} are both realizable (see [22] to apply a simple criterion, which shows the realizability
of Λ1 = Λ2), then

Λ1 ∪ Λ2 = {7, 7, 3, 3,−5,−5,−5,−5}
is also realizable. Now, from Theorem 14, with t = 1, Λ is realizable.

112 Linear Algebra – Theorems and Applications Nonnegative Inverse Eigenvalue Problem 15

Guo also sets the following two questions:
Question 1: Do complex eigenvalues of nonnegative matrices have a property similar to
Theorem 14?
Question 2: If the list Λ = {λ1, λ2, . . . , λn} is symmetrically realizable, and t > 0, is the list
Λt = {λ1 + t, λ2 ± t, λ3, . . . , λn} symmetrically realizable?.

It was shown in [12] and also in [46] that Question 1 has an affirmative answer.

Theorem 15. [12] Let Λ = {λ1, a + bi, a − bi, λ4, . . . , λn} be a realizable list of complex numbers.
Then for all t ≥ 0, the perturbed list

Λt = {λ1 + 2t, a − t + bi, a − t − bi, λ4, . . . , λn}
is also realizable.

Question 2, however, remains open. An affirmative answer to Question 2, in the case that
the symmetric realizing matrix is a nonnegative circulant matrix or it is a nonnegative left
circulant matrix, it was given in [47]. The use of circulant matrices has been shown to be very
useful for the NIEP [9, 24]. In [24] it was given a necessary and sufficient condition for a list
of 5 real numbers, which corresponds to a even-conjugate vector, to be the spectrum of 5 × 5
symmetric nonnegative circulant matrix:

Lemma 5. [24] Let λ = (λ1, λ2, λ3, λ3, λ2)
T be a vector of real numbers (even-conjugate) such that

λ1 ≥
∣∣∣λj

∣∣∣ , j = 2, 3

λ1 ≥ λ2 ≥ λ3 (13)

λ1 + 2λ2 + 2λ3 ≥ 0

A necessary and sufficient condition for {λ1, λ2, λ3, λ3, λ2} to be the spectrum of a symmetric
nonnegative circulant matrix is

λ1 + (λ3 − λ2)

√
5 − 1
2

− λ2 ≥ 0. (14)

Example 9. From Lemma 5 we may know, for instance, that the list
{6, 1, 1,−4,−4} is the spectrum of a symmetric nonnegative circulant matrix.

7. Some open questions
We finish this chapter by setting two open questions:

Question 1: If the list of real numbers Λ = {λ1, λ2, . . . , λn} is symmetrically realizable, and t > 0,
is the list Λt = {λ1 + t, λ2 ± t, λ3, . . . , λn} also symmetrically realizable?

Some progress has been done about this question. In [47], it was given an affirmative answer
to Question 1, in the case that the realizing matrix is symmetric nonnegative circulant matrix
or it is nonnegative left circulant matrix. In [48] it was shown that if 1 > λ2 ≥ · · · ≥
λn ≥ 0, then Theorem 14 holds for positive stochastic, positive doubly stochastic and positive
symmetric matrices.

Question 2: How adding one or more zeros to a list can lead to its symmetric realizability by different
symmetric patterned matrices?
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The famous Boyle-Handelman Theorem [49] gives a nonconstructive proof of the fact that if
sk = λk

1 + λk
2 + · · · + λk

n > 0, for k = 1, 2, . . . , then there exists a nonnegative number N
for which the list {λ1, . . . , λn, 0, . . . , 0}, with N zeros added, is realizable. In [11] Laffey and
Šmigoc completely solve the NIEP for lists of complex numbers Λ = {λ1, . . . , λn}, closed
under conjugation, with λ2, . . . , λn having real parts smaller than or equal to zero. They show
the existence of N ≥ 0 for which Λ with N zeros added is realizable and show how to compute
the least such N. The situation for symmetrically realizable spectra is different and even less
is known.

8. Conclusion

The nonnegative inverse eigenvalue problem is an open and difficult problem. A full solution
is unlikely in the near future. A number of partial results are known in the literature about
the problem, most of them in terms of sufficient conditions. Some matrix results, like Brauer
Theorem (Theorem 1), Rado Theorem (Theorem 2), and its symmetric version (Theorem 6)
have been shown to be very useful to derive good sufficient conditions. This way, however,
seems to be quite narrow and may be other techniques should be explored and applied.
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1. Introduction
The realization of a discrete-time, linear, time-invariant (LTI) filter from its impulse response
provides insight into the role of linear algebra in the analysis of both dynamical systems and
rational functions. For an LTI filter, a sequence of output data measured over some finite
period of time may be expressed as the linear combination of the past input and the input
measured over that same period. For a finite-dimensional LTI filter, the mapping from past
input to future output is a finite-rank linear operator, and the effect of past input, that is, the
memory of the system, may be represented as a finite-dimensional vector. This vector is the
state of the system.

The central idea of realization theory is to first identify the mapping from past input to future
output and to then factor it into two parts: a map from the input to the state and another from
the state to the output. This factorization guarantees that the resulting system representation
is both casual and finite-dimensional; thus it can be physically constructed, or realized.

System identification is the science of constructing dynamic models from experimentally
measured data. Realization-based identification methods construct models by estimating the
mapping from past input to future output based on this measured data. The non-deterministic
nature of the estimation process causes this mapping to have an arbitrarily large rank, and so
a rank-reduction step is required to factor the mapping into a suitable state-space model. Both
these steps must be carefully considered to guarantee unbiased estimates of dynamic systems.

The foundations of realization theory are primarily due to Kalman and first appear in the
landmark paper of [1], though the problem is not defined explicitly until [2], which also coins
the term “realization” as being the a state-space model of a linear system constructed from an
experimentally measured impulse response. It was [3] that introduced the structured-matrix
approach now synonymous with the term “realization theory” by re-interpreting a theorem
originally due to [4] in a state-space LTI system framework.

Although Kalman’s original definition of “realization” implied an identification problem, it
was not until [5] proposed rank-reduction by means of the singular-value decomposition
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that Ho’s method became feasible for use with non-deterministic data sets. The combination
of Ho’s method and the singular-value decomposition was finally generalized to use with
experimentally measured data by Kung in [6].

With the arrival of Kung’s method came the birth of what is now known as the field of
subspace identification methods. These methods use structured matrices of arbitrary input
and output data to estimate a state-sequence from the system. The system is then identified
from the propagation of the state over time. While many subspace methods exist, the most
popular are the Multivariable Output-Error State Space (MOESP) family, due to [7], and the
Numerical Algorithms for Subspace State-Space System Identification (N4SID) family, due to
[8]. Related to subspace methods is the Eigensystem Realization Algorithm [9], which applies
Kung’s algorithm to impulse-response estimates, which are typically estimated through an
Observer/Kalman Filter Identification (OKID) algorithm [10].

This chapter presents the central theory behind realization-based system identification in a
chronological context, beginning with Kronecker’s theorem, proceeding through the work of
Kalman and Kung, and presenting a generalization of the procedure to arbitrary sets of data.
This journey provides an interesting perspective on the original role of linear algebra in the
analysis of rational functions and highlights the similarities of the different representations
of LTI filters. Realization theory is a diverse field that connects many tools of linear algebra,
including structured matrices, the QR-decomposition, the singular-value decomposition, and
linear least-squares problems.

2. Transfer-function representations

We begin by reviewing some properties of discrete-time linear filters, focusing on the role of
infinite series expansions in analyzing the properties of rational functions. The reconstruction
of a transfer function from an infinite impulse response is equivalent to the reconstruction of a
rational function from its Laurent series expansion. The reconstruction problem is introduced
and solved by forming structured matrices of impulse-response coefficients.

2.1. Difference equations and transfer functions

Discrete-time linear filters are most frequently encountered in the form of difference equations
that relate an input signal uk to an output signal yk. A simple example is an output yk
determined by a weighted sum of the inputs from uk to uk−m,

yk = bmuk + bm−1uk−1 + · · ·+ b0uk−m. (1)

More commonly, the output yk also contains a weighted sum of previous outputs, such as a
weighted sum of samples from yk−1 to yk−n,

yk = bmuk + bm−1uk−1 + · · ·+ b0uk−m − an−1yk−1 − an−2yk−2 − · · ·+ a0yk−n. (2)

The impulse response of a filter is the output sequence gk = yk generated from an input

uk =

{
1 k = 0,
0 k �= 0.

(3)
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The parameters gk are the impulse-response coefficients, and they completely describe the
behavior of an LTI filter through the convolution

yk =
∞

∑
j=0

gjuk−j. (4)

Filters of type (1) are called finite-impulse response (FIR) filters because gk is a finite-length
sequence that settles to 0 once k > m. Filters of type (2) are called infinite impulse response
(IIR) filters since generally the impulse response will never completely settle to 0.

A system is stable if a bounded uk results in a bounded yk. Because the output of LTI filters
is a linear combination of the input and previous output, any input-output sequence can be
formed from a linear superposition of other input-output sequences. Hence proving that the
system has a bounded output for a single input sequence is necessary and sufficient to prove
the stability of an LTI filter. The simplest input to consider is an impulse, and so a suitable
definition of system stability is that the absolute sum of the impulse response is bounded,

∞

∑
k=0

|gk| < ∞. (5)

Though the impulse response completely describes the behavior of an LTI filter, it does so
with an infinite number of parameters. For this reason, discrete-time LTI filters are often
written as transfer functions of a complex variable z. This enables analysis of filter stability
and computation of the filter’s frequency response in a finite number of calculations, and it
simplifies convolution operations into basic polynomial algebra.

The transfer function is found by grouping output and input terms together and taking the
Z-transform of both signals. Let Y(z) = ∑∞

k=−∞ ykz−k be the Z-transform of yk and U(z) be
the Z-transform of uk. From the property

Z [yk−1] = Y(z)z−1

the relationship between Y(z) and U(z) may be expressed in polynomials of z as

a(z)Y(z) = b(z)U(z).

The ratio of these two polynomials is the filter’s transfer function

G(z) =
b(z)
a(z)

=
bmzm + bm−1zm−1 + · · ·+ b1z + b0

zn + an−1zn−1 + · · ·+ a1z + a0
. (6)

When n ≥ m, G(z) is proper. If the transfer function is not proper, then the difference
equations will have yk dependent on future input samples such as uk+1. Proper transfer
functions are required for causality, and thus all physical systems have proper transfer
function representations. When n > m, the system is strictly proper. Filters with strictly proper
transfer functions have no feed-through terms; the output yk does not depend on uk, only the
preceding input uk−1, uk−2, . . . . In this chapter, we assume all systems are causal and all
transfer functions proper.

If a(z) and b(z) have no common roots, then the rational function G(z) is coprime, and
the order n of G(z) cannot be reduced. Fractional representations are not limited to
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single-input-single-output systems. For vector-valued input signals uk ∈ Rnu and output
signals yk ∈ Rny , an LTI filter may be represented as an ny × nu matrix of rational functions
Gij(z), and the system will have matrix-valued impulse-response coefficients. For simplicity,
we will assume that transfer function representations are single-input-single-output, though
all results presented here generalize to the multi-input-multi-output case.

2.2. Stability of transfer function representations

Because the effect of b(z) is equivalent to a finite-impulse response filter, the only requirement
for b(z) to produce a stable system is that its coefficients be bounded, which we may safely
assume is always the case. Thus the stability of a transfer function G(z) is determined entirely
by a(z), or more precisely, the roots of a(z). To see this, suppose a(z) is factored into its roots,
which are the poles pi of G(z),

G(z) =
b(z)

∏n
i=1(z − pi)

. (7)

To guarantee a bounded yk, it is sufficient to study a single pole, which we will denote simply
as p. Thus we wish to determine necessary and sufficient conditions for stability of the system

G�(z) = 1
z − p

. (8)

Note that p may be complex. Assume that |z| > |p|. G�(z) then has the Laurent-series
expansion

G�(z) = z−1
(

1
1 − pz−1

)
= z−1

∞

∑
k=0

pkz−k =
∞

∑
k=1

pk−1z−k. (9)

From the time-shift property of the z-transform, it is immediately clear that the sequence

g�k =

{
0 k = 1,
pk−1 k > 1,

(10)

is the impulse response of G�(z). If we require that (9) is absolutely summable and let |z| = 1,
the result is the original stability requirement (5), which may be written in terms of p as

∞

∑
k=1

∣∣∣pk−1
∣∣∣ < ∞.

This is true if and only if |p| < 1, and thus G�(z) is stable if and only if |p| < 1. Finally, from (7)
we may deduce that a system is stable if and only if all the poles of G(z) satisfy the property
|pi| < 1.

2.3. Construction of transfer functions from impulse responses

Transfer functions are a convenient way of representing complex system dynamics in a finite
number of parameters, but the coefficients of a(z) and b(z) cannot be measured directly. The
impulse response of a system can be found experimentally by either direct measurement
or from other means such as taking the inverse Fourier transform of a measured frequency
response [11]. It cannot, however, be represented in a finite number of parameters. Thus the
conversion between transfer functions and impulse responses is an extremely useful tool.
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For a single-pole system such as (8), the expansion (9) provides an obvious means of
reconstructing a transfer function from a measured impulse response: given any 2 sequential
impulse-response coefficients gk and gk+1, the pole of G�(z) may be found from

p = g−1
k gk+1. (11)

Notice that this is true for any k, and the impulse response can be said to have a shift-invariant
property in this respect.

Less clear is the case when an impulse response is generated by a system with higher-order
a(z) and b(z). In fact, there is no guarantee that an arbitrary impulse response is the result
of a linear system of difference equations at all. For an LTI filter, however, the coefficients of
the impulse response exhibit a linear dependence which may be used to not only verify the
linearity of the system, but to construct a transfer function representation as well. The exact
nature of this linear dependence may be found by forming a structured matrix of impulse
response coefficients and examining its behavior when the indices of the coefficients are
shifted forward by a single increment, similar to the single-pole case in (11). The result is
stated in the following theorem, originally due to Kronecker [4] and adopted from the English
translation of [12].

Theorem 1 (Kronecker’s Theorem). Suppose G(z) : C → C is an infinite series of descending
powers of z, starting with z−1,

G(z) = g1z−1 + g2z−2 + g3z−3 + · · · =
∞

∑
k=1

gkz−k. (12)

Assume G(z) is analytic (the series converges) for all |z| > 1. Let H be an infinitely large matrix of the
form

H =

⎡
⎢⎢⎢⎣

g1 g2 g3 · · ·
g2 g3 g4 · · ·
g3 g4 g5 · · ·
...

...
...

⎤
⎥⎥⎥⎦ (13)

Then H has finite rank n if and only if G(z) is a strictly proper, coprime, rational function of degree n
with poles inside the unit circle. That is, G(z) has an alternative representation

G(z) =
b(z)
a(z)

=
bmzm + bm−1zm−1 + · · ·+ b1z + b0

zn + an−1zn−1 + · · ·+ a1z + a0
, (14)

in which m < n, all roots of a(z) satisfy |z| < 1, a(z) and b(z) have no common roots, and we have
assumed without loss of generality that a(z) is monic.

To prove Theorem 1, we first prove that for k > n, gk must be linearly dependent on the
previous n terms of the series for H to have finite rank.

Theorem 2. The infinitely large matrix H is of finite rank n if and only if there exists a finite sequence
α1, α2, · · · , αn such that for k ≥ n,

gk+1 =
n

∑
j=1

αjgk−j+1, (15)
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and n is the smallest number with this property.

Proof. Let hk be the row of H beginning with gk. If H has rank n, then the first n + 1 rows of
H are linearly dependent. This implies that for some 1 ≤ p ≤ n, hp+1 is a linear combination
of h1, . . . , hp, and thus there exists some sequence αk such that

hp+1 =
p

∑
j=1

αjhp−j+1. (16)

The structure and infinite size of H imply that such a relationship must hold for all following
rows of H, so that for q ≥ 0

hq+p+1 =
p

∑
j=1

αjhq+p−j+1.

Hence any row hk, k > p, can be expressed as a linear combination of the previous p rows.
Since H has at least n linearly independent rows, p = n, and since this applies element-wise,
rank(H) = n implies (15).

Alternatively, (15) implies a relationship of the form (16) exists, and hence rank(H) = p. Since
n is the smallest possible p, this implies rank(H) = n.

We now prove Theorem 1.

Proof. Suppose G(z) is a coprime rational function of the form (14) with series expansion
(12), which we know exists, since G(z) is analytic for |z| < 1. Without loss of generality, let
m = n − 1, since we may always let bk = 0 for some k. Hence

bn−1zn−1 + bn−2zn−2 + · · ·+ b1z + b0

zn + an−1zn−1 + · · ·+ a1z + a0
= g1z−1 + g2z−2 + g3z−3 + · · ·

Multiplying both sides by the denominator of the left,

bn−1zn−1 + bn−2zn−2 + · · ·+ b1z + b0

= g1zn−1 + (g2 + g1an−1)zn−2 + (g3 + g2an−1 + g1an−2)zn−3 + · · · ,

and equating powers of z, we find

bn−1 = g1

bn−2 = g2 + g1an−1

bn−3 = g3 + g2an−1 + g1an−2

...
b1 = gn−1 + gn−2an−1 + · · ·+ g1a2

b0 = gn + gn−1an−1 + · · ·+ g1a1

0 = gk+1 + gkan−1 + · · ·+ gk−n+1a0 k ≥ n.

(17)
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rows of H, so that for q ≥ 0

hq+p+1 =
p

∑
j=1

αjhq+p−j+1.

Hence any row hk, k > p, can be expressed as a linear combination of the previous p rows.
Since H has at least n linearly independent rows, p = n, and since this applies element-wise,
rank(H) = n implies (15).

Alternatively, (15) implies a relationship of the form (16) exists, and hence rank(H) = p. Since
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We now prove Theorem 1.

Proof. Suppose G(z) is a coprime rational function of the form (14) with series expansion
(12), which we know exists, since G(z) is analytic for |z| < 1. Without loss of generality, let
m = n − 1, since we may always let bk = 0 for some k. Hence

bn−1zn−1 + bn−2zn−2 + · · ·+ b1z + b0

zn + an−1zn−1 + · · ·+ a1z + a0
= g1z−1 + g2z−2 + g3z−3 + · · ·

Multiplying both sides by the denominator of the left,

bn−1zn−1 + bn−2zn−2 + · · ·+ b1z + b0

= g1zn−1 + (g2 + g1an−1)zn−2 + (g3 + g2an−1 + g1an−2)zn−3 + · · · ,

and equating powers of z, we find

bn−1 = g1

bn−2 = g2 + g1an−1

bn−3 = g3 + g2an−1 + g1an−2

...
b1 = gn−1 + gn−2an−1 + · · ·+ g1a2

b0 = gn + gn−1an−1 + · · ·+ g1a1

0 = gk+1 + gkan−1 + · · ·+ gk−n+1a0 k ≥ n.

(17)
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From this, we have, for k ≥ n,

gk+1 =
n

∑
j=1

−ajgk−j+1,

which not only shows that (15) holds, but also shows that αj = −aj. Hence by Theorem 2, H
must have finite rank.

Conversely, suppose H has finite rank. Then (15) holds, and we may construct a(z) from αk
and b(z) from (17) to create a rational function. This function must be coprime since its order
n is the smallest possible.

The construction in Theorem 1 is simple to extend to the case in which G(z) is only proper and
not strictly proper; the additional coefficient bn is simply the feed-through term in the impulse
response, that is, g0.

A result of Theorem 2 is that given finite-dimensional, full-rank matrices

Hk =

⎡
⎢⎢⎢⎣

gk gk+1 · · · gk+n−1
gk+1 gk+2 · · · gk+n

...
...

...
gk+n−1 gk+n · · · gk+2n−2

⎤
⎥⎥⎥⎦ (18)

and

Hk+1 =

⎡
⎢⎢⎢⎣

gk+1 gk+2 · · · gk+n
gk+2 gk+3 · · · gk+n+1

...
...

...
gk+n gk+n+1 · · · gk+2n−1

⎤
⎥⎥⎥⎦ , (19)

the coefficients of a(z) may be calculated as
⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1

⎤
⎥⎥⎥⎥⎥⎦
= H−1

k Hk+1. (20)

Notice that (11) is in fact a special case of (20). Thus we need only know the first 2n + 1
impulse-response coefficients to reconstruct the transfer function G(z): 2n to form the matrices
Hk and Hk+1 from (18) and (19), respectively, and possibly the initial coefficient g0 in case of
an nth-order b(z).

Matrices with the structure of H are useful enough to have a special name. A Hankel matrix
H is a matrix constructed from a sequence {hk} so that each element H(j,k) = hj+k. For the
Hankel matrix in (13), hk = gk−1. Hk also has an interesting property implied by (20): its row
space is invariant under shifting of the index k. Because its symmetric, this is also true for its
column space. Thus this matrix is also often referred to as being shift-invariant.

While (20) provides a potential method of identifying a system from a measured impulse
response, this is not a reliable method to use with measured impulse response coefficients that
are corrupted by noise. The exact linear dependence of the coefficients will not be identical
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for all k, and the structure of (20) will not be preserved. Inverting Hk will also invert any
noise on gk, potentially amplifying high-frequency noise content. Finally, the system order n
is required to be known beforehand, which is usually not the case if only an impulse response
is available. Fortunately, these difficulties may all be overcome by reinterpreting the results
Kronecker’s theorem in a state-space framework. First, however, we more carefully examine
the role of the Hankel matrix in the behavior of LTI filters.

2.4. Hankel and Toeplitz operators

The Hankel matrix of impulse response coefficients (13) is more than a tool for computing
the transfer function representation of a system from its impulse response. It also defines the
mapping of past input signals to future output signals. To define exactly what this means, we
write the convolution of (4) around sample k = 0 in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

y−3

y−2

y−1

y0

y1

y2
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . · · · 0

· · · g0
...

· · · g1 g0

· · · g2 g1 g0

· · · g3 g2 g1 g0

· · · g4 g3 g2 g1 g0

· · · g5 g4 g3 g2 g1 g0
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

u−3

u−2

u−1

u0

u1

u2
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the vectors and matrix have been partitioned into sections for k < 0 and k ≥ 0. The
output for k ≥ 0 may then be split into two parts:

⎡
⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2
...

⎤
⎥⎥⎥⎥⎥⎥⎦

� �� �
y f

=

⎡
⎢⎢⎢⎢⎢⎢⎣

g1 g2 g3 · · ·
g2 g3 g4 · · ·
g3 g4 g5 · · ·
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎦

� �� �
H

⎡
⎢⎢⎢⎢⎢⎢⎣

u−1

u−2

u−3
...

⎤
⎥⎥⎥⎥⎥⎥⎦

� �� �
up

+

⎡
⎢⎢⎢⎢⎢⎢⎣

g0 · · · 0

g1 g0
...

g2 g1 g0
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

� �� �
T

⎡
⎢⎢⎢⎢⎢⎢⎣

u0

u1

u2
...

⎤
⎥⎥⎥⎥⎥⎥⎦

� �� �
u f

, (21)

where the subscripts p and f denote “past” and “future,” respectively. The system Hankel
matrix H has returned to describe the effects of the past input up on the future output y f . Also
present is the matrix T, which represents the convolution of future input u f with the impulse
response. Matrices such as T with constant diagonals are called Toeplitz matrices.

From (21), it can be seen that H defines the effects of past input on future output. One
interpretation of this is that H represents the “memory” of the system. Because H is a linear
mapping from up to y f , the induced matrix 2-norm of H, ||H||2, can be considered a function
norm, and in a sense, ||H||2 is a measure of the “gain” of the system. ||H||2 is often called the
Hankel-norm of a system, and it plays an important role in model reduction and in the analysis
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present is the matrix T, which represents the convolution of future input u f with the impulse
response. Matrices such as T with constant diagonals are called Toeplitz matrices.

From (21), it can be seen that H defines the effects of past input on future output. One
interpretation of this is that H represents the “memory” of the system. Because H is a linear
mapping from up to y f , the induced matrix 2-norm of H, ||H||2, can be considered a function
norm, and in a sense, ||H||2 is a measure of the “gain” of the system. ||H||2 is often called the
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of anti-causal systems. More information on this aspect of linear systems can be found in the
literature of robust control, for instance, [13].

3. State-space representations
Although transfer functions define system behavior completely with a finite number
of parameters and simplify frequency-response calculations, they are cumbersome to
manipulate when the input or output is multi-dimensional or when initial conditions must
be considered. The other common representation of LTI filters is the state-space form

xk+1 = Axk + Buk

yk = Cxk + Duk,
(22)

in which xk ∈ Rn is the system state. The matrices A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, and
D ∈ Rny×nu completely parameterize the system. Only D uniquely defines the input-output
behavior; any nonsingular matrix T� may be used to change the state basis via the relationships

x� = T�x A� = T�AT�−1 B� = T�B C� = CT�−1.

The Z-transform may also be applied to the state-space equations (22) to find

Z [xk+1] = AZ [xk] + BZ [uk] ⇒ X(z)z = AX(z) + BU(z)
Z [yk] = CZ [xk] + DZ [uk] ⇒ Y(z) = CX(z) + DU(z)

Y(z)
U(z)

= G(z) G(z) = C (zI − A)−1 B + D, (23)

and thus, if (22) is the state-space representation of the single-variable system (6), then a(z) is
the characteristic polynomial of A, det(zI − A).

Besides clarifying the effect of initial conditions on the output, state-space representations are
inherently causal, and (23) will always result in a proper system (strictly proper if D = 0).
For this reason, state-space representations are often called realizable descriptions; while the
forward-time-shift of z is an inherently non-causal operation, state-space systems may always
be constructed in reality.

3.1. Stability, controllability, and observability of state-space representations

The system impulse response is simple to formulate in terms of the state-space parameters by
calculation of the output to a unit impulse with x0 = 0:

gk =

{
D k = 0,
CAk−1B k > 0

. (24)

Notice the similarity of (10) and (24). In fact, from the eigenvalue decomposition of A,

A = VΛV−1,

we find
∞

∑
k=1

|gk| =
∞

∑
k=1

∣∣∣CAk−1B
∣∣∣ =

∞

∑
k=1

|CV| (|Λk−1|)
∣∣∣V−1B

∣∣∣ .
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The term |Λk−1| will only converge if the largest eigenvalue of A is within the unit circle, and
thus the condition that all eigenvalues λi of A satisfy |λi| < 1 is a necessary and sufficient
condition for stability.

For state-space representations, there is the possibility that a combination of A and B will
result in a system for which xk cannot be entirely controlled by the input uk. Expressing xk in
a matrix-form similar to (21) as

xk = C

⎡
⎢⎢⎢⎣

uk−1
uk−2
uk−3

...

⎤
⎥⎥⎥⎦ , C =

�
B AB A2B · · ·� (25)

demonstrates that xk is in subspace Rn if and only if C has rank n. C is the controllability matrix
and the system is controllable if it has full row rank.

Similarly, the state xk may not uniquely determine the output for some combinations of A and
C. Expressing the evolution of the output as a function of the state in matrix-form as

⎡
⎢⎢⎢⎣

yk
yk+1
yk+2

...

⎤
⎥⎥⎥⎦ = Oxk, O =

⎡
⎢⎢⎢⎣

C
CA
CA2

...

⎤
⎥⎥⎥⎦

demonstrates that there is no nontrivial null space in the mapping from xk to yk if and only
if O has rank n. O is the observability matrix and the system is observable if it has full column
rank.

Systems that are both controllable and observable are called minimal, and for minimal systems,
the dimension n of the state variable cannot be reduced. In the next section we show that
minimal state-space system representations convert to coprime transfer functions that are
found through (23).

3.2. Construction of state-space representations from impulse responses

The fact that the denominator of G(z) is the characteristic polynomial of A not only allows
for the calculation of a transfer function from a state-space representation, but provides an
alternative version of Kronecker’s theorem for state-space systems, known as the Ho-Kalman
Algorithm [3]. From the Caley-Hamilton theorem, if a(z) is the characteristic polynomial of
A, then a(A) = 0, and

CAka(A)B = CAk
�

An + an−1 An−1 + · · ·+ a1 A + a0

�
B

= CAk+nB +
n−1

∑
j=0

ajCAk+jB,

which implies

CAk+nB = −
n−1

∑
j=0

ajCAk+jB. (26)
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Indeed, substitution of (24) into (26) and rearrangement of the indices leads to (15).
Additionally, substitution of (24) into the product of O and C shows that

OC =

⎡
⎢⎢⎢⎣

CB CAB CA2B · · ·
CAB CA2B CA3B · · ·
CA2B CA3B CA4B · · ·

...
...

...

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

g1 g2 g3 · · ·
g2 g3 g4 · · ·
g3 g4 g5 · · ·
...

...
...

⎤
⎥⎥⎥⎦ = H,

which confirms our previous statement that H effectively represents the memory of the
system. Because

rank(H) = min{rank(O), rank(C)},

we see that rank(H) = n implies the state-space system (22) is minimal.

If the entries of H are shifted forward by one index to form

H =

⎡
⎢⎢⎢⎣

g2 g3 g4 · · ·
g3 g4 g5 · · ·
g4 g5 g6 · · ·
...

...
...

⎤
⎥⎥⎥⎦ ,

then once again substituting (24) reveals

H = OAC. (27)

Thus the row space and column space of H are invariant under a forward-shift of the indices,
implying the same shift-invariant structure seen in (20).

The appearance of A in (27) hints at a method for constructing a state-space realization from
an impulse response. Suppose the impulse response is known exactly, and let Hr be a finite
slice of H with r block rows and L columns,

Hr =

⎡
⎢⎢⎢⎢⎢⎣

g1 g2 g3 · · · gL
g2 g3 g4 · · · gL+1
g3 g4 g5 · · · gL+2
...

...
...

...
gr−1 gr gr+1 · · · gr+L−1

⎤
⎥⎥⎥⎥⎥⎦

.

Then any appropriately dimensioned factorization

Hr = OrCL =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAr−1

⎤
⎥⎥⎥⎥⎥⎦
�

B AB A2B · · · AL−1B
�

(28)

may be used to find A for some arbitrary state basis as

A = (Or)
† Hr (CL)

† (29)
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where Hr is Hr with the indices shifted forward once and (·)† is the Moore-Penrose
pseudoinverse. C taken from the first block row of Or, B taken from the first block column of
CL, and D taken from g0 then provides a complete and minimal state-space realization from
an impulse response. Because Hr has rank n and det(zI − A) has degree n, we know from
Kronecker’s theorem that G(z) taken from (23) will be coprime.

However, as mentioned before, the impulse response of the system is rarely known exactly. In
this case only an estimate Ĥr with a non-deterministic error term is available:

Ĥr = Hr + E.

Because E is non-deterministic, Ĥ will always have full rank, regardless of the number of
rows r. Thus n cannot be determined from examining the rank of H, and even if n is known
beforehand, a factorization (28) for r > n will not exist. Thus we must find a way of reducing
the rank of Ĥr in order to find a state-space realization.

3.3. Rank-reduction of the Hankel matrix estimate

If Ĥr has full rank, or if n is unknown, its rank must be reduced prior to factorization.
The obvious tool for reducing the rank of matrices is the singular-value decomposition (SVD).
Assume for now that n is known. The SVD of Ĥr is

Ĥr = UΣVT

where U and VT are orthogonal matrices and Σ is a diagonal matrix containing the
nonnegative singular values σi ordered from largest to smallest. The SVD for a matrix is unique
and guaranteed to exist, and the number of nonzero singular values of a matrix is equal to its
rank [14].

Because U and VT are orthogonal, the SVD satisfies

Ĥr =
∣∣∣
∣∣∣UΣVT

∣∣∣
∣∣∣
2
= ||Σ||2 = σ1 (30)

where ||·||2 is the induced matrix 2-norm, and

Ĥr =
∣∣∣
∣∣∣UΣVT

∣∣∣
∣∣∣
F
= ||Σ||F =

(
l

∑
i

σ2
i

)1/2

(31)

where ||·||F is the Frobenius norm. Equation (30) also shows that the Hankel norm of a system
is the maximum singular value of Hr. From (30) and (31), we can directly see that if the SVD
of Hr is partitioned into

Ĥr =
[
Un Us

] [Σn 0
0 Σs

] [
VT

n
VT

s

]
,

where Un is the first n columns of U, Σn is the upper-left n × n block of Σ, and VT
n is the first

n rows of VT , the solution to the rank-reduction problem is [14]

Q = arg min
rank(Q)=n

∣∣∣∣Q − Ĥr
∣∣∣∣

2 = arg min
rank(Q)=n

∣∣∣∣Q − Ĥr
∣∣∣∣

F = UnΣnVT
n .

128 Linear Algebra – Theorems and Applications



12 Will-be-set-by-IN-TECH
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Additionally, the error resulting from the rank reduction is

e =
∣∣∣∣Q − Ĥr

∣∣∣∣
2 = σn+1,

which suggests that if the rank of Hr is not known beforehand, it can be determined
by examining the nonzero singular values in the deterministic case or by searching for a
significant drop-off in singular values if only a noise-corrupted estimate is available.

3.4. Identifying the state-space realization

From a rank-reduced Ĥr, any factorization

Ĥr = Ôr ĈL

can be used to estimate Or and CL. The error in the state-space realization, however, will
depend on the chosen state basis. Generally we would like to have a state variable with a
norm ||xk||2 in between ||uk||2 and ||yk||2. As first proposed in [5], choosing the factorization

Ôr = UnΣ1/2
n and ĈL = Σ1/2

n VT
n (32)

results in ∣∣∣∣Ôr
∣∣∣∣

2 =
∣∣∣∣ĈL

∣∣∣∣
2 =

√∣∣∣∣Ĥr
∣∣∣∣

2, (33)

and thus, from a functional perspective, the mappings from input to state and state to
output will have equal magnitudes, and each entry of the state vector xk will have similar
magnitudes. State-space realizations that satisfy (33) are sometimes called internally balanced
realizations [11]. (Alternative definitions of a “balanced” realization exist, however, and it is
generally wise to verify the definition in each context.)

Choosing the factorization (32) also simplifies computation of the estimate Â, since

Â =
(Ôr

)† Ĥr
(ĈL

)†

= Σ−1/2
n UT

n ĤrVnΣ−1/2
n .

By estimating B̂ as the first block column of ĈL, Ĉ as the first block row of ÔL, and D̂ as g0, a
complete state-space realization (Â, B̂, Ĉ, D̂) is identified from this method.

3.5. Pitfalls of direct realization from an impulse response

Even though the rank-reduction process allows for realization from a noise-corrupted estimate
of an impulse response, identification methods that generate a system estimate from a Hankel
matrix constructed from an estimated impulse response have numerous difficulties when
applied to noisy measurements. Measuring an impulse response directly is often infeasible;
high-frequency damping may result in a measurement that has a very brief response before
the signal-to-noise ratio becomes prohibitively small, and a unit pulse will often excite
high-frequency nonlinearities that degrade the quality of the resulting estimate.

Taking the inverse Fourier transform of the frequency response guarantees that the estimates
of the Markov parameters will converge as the dataset grows only so long as the input is
broadband. Generally input signals decay in magnitude at higher frequencies, and calculation
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of the frequency response by inversion of the input will amplify high-frequency noise. We
would prefer an identification method that is guaranteed to provide a system estimate that
converges to the true system as the amount of data measured increases and that avoids
inverting the input. Fortunately, the relationship between input and output data in (21) may
be used to formulate just such an identification procedure.

4. Realization from input-output data
To avoid the difficulties in constructing a system realization from an estimated impulse
response, we will form a realization-based identification procedure applicable to measured
input-output data. To sufficiently account for non-deterministic effects in measured data, we
add a noise term vk ∈ Rny to the output to form the noise-perturbed state-space equations

xk+1 = Axk + Buk

yk = Cxk + Duk + vk.
(34)

We assume that the noise signal vk is generated by a stationary stochastic process, which may
be either white or colored. This includes the case in which the state is disturbed by process
noise, so that the noise process may have the same poles as the deterministic system. (See [15]
for a thorough discussion of representations of noise in the identification context.)

4.1. Data-matrix equations

The goal is to construct a state-space realization using the relationships in (21), but doing
so requires a complete characterization of the row space of Hr. To this end, we expand a
finite-slice of the future output vector to form a block-Hankel matrix of output data with r
block rows,

Y =

⎡
⎢⎢⎢⎢⎢⎣

y0 y1 y2 · · · yL
y1 y2 y3 · · · yL+1
y2 y3 y4 · · · yL+2
...

...
...

...
yr−1 yr yr+1 · · · yr+L−1

⎤
⎥⎥⎥⎥⎥⎦

.

This matrix is related to a block-Hankel matrix of future input data

Uf =

⎡
⎢⎢⎢⎢⎢⎣

u0 u1 u2 · · · uL
u1 u2 u3 · · · uL+1
u2 u3 u4 · · · uL+2
...

...
...

...
ur−1 ur ur+1 · · · ur+L−1

⎤
⎥⎥⎥⎥⎥⎦

,

a block-Toeplitz matrix of past input data

Up =

⎡
⎢⎢⎢⎣

u−1 u0 u1 · · · uL−1
u−2 u−1 u0 · · · uL−2
u−3 u−2 u−1 · · · uL−3

...
...

...
...

⎤
⎥⎥⎥⎦ ,

130 Linear Algebra – Theorems and Applications



14 Will-be-set-by-IN-TECH

of the frequency response by inversion of the input will amplify high-frequency noise. We
would prefer an identification method that is guaranteed to provide a system estimate that
converges to the true system as the amount of data measured increases and that avoids
inverting the input. Fortunately, the relationship between input and output data in (21) may
be used to formulate just such an identification procedure.

4. Realization from input-output data
To avoid the difficulties in constructing a system realization from an estimated impulse
response, we will form a realization-based identification procedure applicable to measured
input-output data. To sufficiently account for non-deterministic effects in measured data, we
add a noise term vk ∈ Rny to the output to form the noise-perturbed state-space equations

xk+1 = Axk + Buk

yk = Cxk + Duk + vk.
(34)

We assume that the noise signal vk is generated by a stationary stochastic process, which may
be either white or colored. This includes the case in which the state is disturbed by process
noise, so that the noise process may have the same poles as the deterministic system. (See [15]
for a thorough discussion of representations of noise in the identification context.)

4.1. Data-matrix equations

The goal is to construct a state-space realization using the relationships in (21), but doing
so requires a complete characterization of the row space of Hr. To this end, we expand a
finite-slice of the future output vector to form a block-Hankel matrix of output data with r
block rows,

Y =

⎡
⎢⎢⎢⎢⎢⎣

y0 y1 y2 · · · yL
y1 y2 y3 · · · yL+1
y2 y3 y4 · · · yL+2
...

...
...

...
yr−1 yr yr+1 · · · yr+L−1

⎤
⎥⎥⎥⎥⎥⎦

.

This matrix is related to a block-Hankel matrix of future input data

Uf =

⎡
⎢⎢⎢⎢⎢⎣

u0 u1 u2 · · · uL
u1 u2 u3 · · · uL+1
u2 u3 u4 · · · uL+2
...

...
...

...
ur−1 ur ur+1 · · · ur+L−1

⎤
⎥⎥⎥⎥⎥⎦

,

a block-Toeplitz matrix of past input data

Up =

⎡
⎢⎢⎢⎣

u−1 u0 u1 · · · uL−1
u−2 u−1 u0 · · · uL−2
u−3 u−2 u−1 · · · uL−3

...
...

...
...

⎤
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a finite-dimensional block-Toeplitz matrix

T =

⎡
⎢⎢⎢⎢⎢⎣

g0 · · · 0
g1 g0

...
g2 g1 g0
...

...
...

. . .
gr−1 gr−2 gr−3 · · · g0

⎤
⎥⎥⎥⎥⎥⎦

,

the system Hankel matrix H, and a block-Hankel matrix V formed from noise data vk with
the same indices as Y by the equation

Y = HUp + TUf + V. (35)

If the entries of Yf are shifted forward by one index to form

Y =

⎡
⎢⎢⎢⎢⎢⎣

y1 y2 y3 · · · yL+1
y2 y3 y4 · · · yL+2
y3 y4 y5 · · · yL+3
...

...
...

...
yr yr+1 yr+2 · · · yr+L

⎤
⎥⎥⎥⎥⎥⎦

,

then Y f is related to the shifted system Hankel matrix H, the past input data Up, T with a
block column appended to the left, and Uf with a block row appended to the bottom,

T =

⎡
⎢⎢⎢⎢⎢⎣

g1
g2
g3 T
...

gr

⎤
⎥⎥⎥⎥⎥⎦

, U f =

�
Uf

ur ur+1 ur+2 · · · ur+L

�
,

and a block-Hankel matrix V of noise data vk with the same indices as Y by the equation

Y = HUp + T U f + V. (36)

From (25), the state is equal to the column vectors of Up multiplied by the entries of the
controllability matrix C, which we may represent as the block-matrix

X =
�
x0 x1 x2 · · · xL

�
= CUp,

which is an alternative means of representing the memory of the system at sample 0, 1, . . . .
The two data matrix equations (35) and (36) may then be written as

Y = OrX + TUf + V, (37)

Y = Or AX + T U f + V. (38)

Equation (37) is basis for the field of system identification methods known as subspace
methods. Subspace identification methods typically fall into one of two categories. First,
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because a shifted observability matrix

O =

⎡
⎢⎢⎢⎣

CA
CA2

CA3

...

⎤
⎥⎥⎥⎦ ,

satisfies
im(O) = im(O),

where im(·) of denotes the row space (often called the “image”), the row-space of O is
shift-invariant, and A may be identified from estimates Or and Or as

Â = Ô†
r Ôr.

Alternatively, because a forward-propagated sequence of states

X = AX

satisfies
im(XT) = im(XT

),

the column-space of X is shift-invariant, and A may be identified from estimates X̂ and X̂ as

Â = X̂X̂†.

In both instances, the system dynamics are estimated by propagating the indices forward by
one step and examining a propagation of linear dynamics, not unlike (20) from Kronecker’s
theorem. Details of these methods may be found in [16] and [17]. In the next section
we present a system identification method that constructs system estimates from the
shift-invariant structure of Y itself.

4.2. Identification from shift-invariance of output measurements

Equations (37) and (38) still contain the effects of the future input in U f . To remove these
effects from the output, we must first add some assumptions about U f . First, we assume that
U f has full row rank. This is true for any Uf with a smooth frequency response or if U f is
generated from some pseudo-random sequence. Next, we assume that the initial conditions
in X do not somehow cancel out the effects of future input. A sufficient condition for this is to
require

rank
��

X
U f

��
= n + rnu

to have full row rank. Although these assumptions might appear restrictive at first, since it is
impossible to verify without knowledge of X, it is generally true with the exception of some
pathological cases.

Next, we form the null-space projector matrix

Π = IL+1 − UT
f

�
U f UT

f

�−1
U f , (39)
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which has the property
U f Π = 0.

We know the inverse of (U f UT
f ) exists, since we assume U f has full row rank. Projector

matrices such as (39) have many interesting properties. Their eigenvalues are all 0 or 1, and if
they are symmetric, they separate the subspace of real vectors — in this case, vectors in RL+1

— into a subspace and its orthogonal complement. In fact, it is simple to verify that the null
space of U f contains the null space of Uf as a subspace, since

U f Π =

[
Uf

· · ·

]
Π = 0.

Thus multiplication of (37) and (38) on the right by Π results in

YΠ = OrXΠ + VΠ, (40)

YΠ = Or AXΠ + VΠ. (41)

It is also unnecessary to compute the projected products YΠ and YΠ directly, since from the
QR-decomposition [

UT YT
]
=

[
Q1 Q2

] [R11 R12
0 R22

]
,

we have
Y = RT

12QT
1 + RT

22QT
2 (42)

and U = RT
11QT

1 . Substitution into (39) reveals

Π = I − Q1QT
1 . (43)

Because the columns of Q1 and Q2 are orthogonal, multiplication of (42) on the right by (43)
results in

YΠ = RT
22QT

2 .

A similar result holds for YΠ. Taking the QR-decomposition of the data can alternatively be
thought of as using the principle of superposition to construct new sequences of input-output
data through a Gram-Schmidt-type orthogonalization process. A detailed discussion of this
interpretation can be found in [18].

Thus we have successfully removed the effects of future input on the output while retaining
the effects of the past, which is the foundation of the realization process. We still must account
for non-deterministic effects in V and V. To do so, we look for some matrix Z such that

VΠZT → 0,

VΠZT → 0.

This requires the content of Z to be statistically independent of the process that generates vk.
The input uk is just such a signal, so long as the filter output is not a function of the input —
that is, the data was measured in open-loop operation,. If we begin measuring input before
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k = 0 at some sample k = −ζ and construct Z as a block-Hankel matrix of past input data,

Z =
1
L

⎡
⎢⎢⎢⎢⎢⎣

u−ζ u−ζ+1 u−ζ+2 · · · u−ζ+L
u−ζ+1 u−ζ+2 u−ζ+3 · · · u−ζ+L+1
u−ζ+2 u−ζ+3 u−ζ+4 · · · u−ζ+L+2

...
...

...
...

u−1 u0 u1 · · · ur+L−2

⎤
⎥⎥⎥⎥⎥⎦

,

then multiplication of (40) and (41) on the right by ZT results in

YΠZT → OrXΠZT , (44)

YΠZT → Or AΠZT , (45)

as L → ∞. Note the term 1
L in Z is necessary to keep (44) and (45) bounded.

Finally we are able to perform our rank-reduction technique directly on measured data
without needing to first estimate the impulse response. From the SVD

YΠZT = UΣVT ,

we may estimate the order n by looking for a sudden decrease in singular values. From the
partitioning

YΠZT =
�
Un Us

� �Σn 0
0 Σs

� �
VT

n
VT

s

�
,

we may estimate Or and XΠZT from the factorization

Ôr = UnΣ1/2
n and X̂ΠZT = Σ1/2

n VT
n .

A may then be estimated as

Â =
�Ôr

�† YΠZT
�

X̂ΠZT
�†

= Σ−1/2
n UT

n YΠZTVnΣ−1/2
n

≈ (Or)
† �HUpΠ

� �CLUpΠ
�† ≈ (Or)

† H (CL)
† .

And so we have returned to our original relationship (29).

While C may be estimated from the top block row of Ôr, our projection has lost the column
space of Hr that we previously used to estimate B, and initial conditions in X prevent us from
estimating D directly. Fortunately, if A and C are known, then the remaining terms B, D, and
an initial condition x0 are linear in the input output data, and may be estimated by solving a
linear-least-squares problem.

4.3. Estimation of B, D, and x0

The input-to-state terms B and D may be estimated by examining the convolution with the
state-space form of the impulse response. Expanding (24) with the input and including an
initial condition x0 results in

yk = CAkx0 +
k−1

∑
j=0

CAk−j−1Buj + Duk + vk. (46)

134 Linear Algebra – Theorems and Applications



18 Will-be-set-by-IN-TECH

k = 0 at some sample k = −ζ and construct Z as a block-Hankel matrix of past input data,

Z =
1
L

⎡
⎢⎢⎢⎢⎢⎣

u−ζ u−ζ+1 u−ζ+2 · · · u−ζ+L
u−ζ+1 u−ζ+2 u−ζ+3 · · · u−ζ+L+1
u−ζ+2 u−ζ+3 u−ζ+4 · · · u−ζ+L+2

...
...

...
...

u−1 u0 u1 · · · ur+L−2

⎤
⎥⎥⎥⎥⎥⎦

,

then multiplication of (40) and (41) on the right by ZT results in

YΠZT → OrXΠZT , (44)

YΠZT → Or AΠZT , (45)

as L → ∞. Note the term 1
L in Z is necessary to keep (44) and (45) bounded.

Finally we are able to perform our rank-reduction technique directly on measured data
without needing to first estimate the impulse response. From the SVD

YΠZT = UΣVT ,

we may estimate the order n by looking for a sudden decrease in singular values. From the
partitioning

YΠZT =
�
Un Us

� �Σn 0
0 Σs

� �
VT

n
VT

s

�
,

we may estimate Or and XΠZT from the factorization
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Factoring out B and D on the right provides

yk = CAkx0 +

⎛
⎝k−1

∑
j=0

uT
k ⊗ CAk−j−1

⎞
⎠ vec(B) +

�
uT

k ⊗ Iny

�
vec(D) + vk,

in which vec(·) is the operation that stacks the columns of a matrix on one another, ⊗ is the
(coincidentally named) Kronecker product, and we have made use of the identity

vec(AXB) = (BT ⊗ A)vec(X).

Grouping the unknown terms together results in

yk =
�

CAk ∑k−1
j=0 uT

k ⊗ CAk−j−1 uT
k ⊗ Iny

�
⎡
⎣

x0
vec(B)
vec(D)

⎤
⎦+ vk.

Thus by forming the regressor

φk =
�

ĈÂk ∑k−1
j=0 uT

k ⊗ ĈÂk−j−1 uT
k ⊗ Iny

�

from the estimates Â and Ĉ, estimates of B and D may be found from the least-squares solution
of the linear system of N equations

⎡
⎢⎢⎢⎢⎢⎣

y0
y1
y2
...

yN

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

φ0
φ1
φ2
...

φN

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎣

x̂0
vec(B̂)
vec(D̂)

⎤
⎦ .

Note that N is arbitrary and does not need to be related in any way to the indices of the data
matrix equations. This can be useful, since for large-dimensional systems, the regressor φk
may become very computationally expensive to compute.

5. Conclusion
Beginning with the construction of a transfer function from an impulse response, we
have constructed a method for identification of state-space realizations of linear filters
from measured input-output data, introducing the fundamental concepts of realization
theory of linear systems along the way. Computing a state-space realization from
measured input-output data requires many tools of linear algebra: projections and the
QR-decomposition, rank reduction and the singular-value decomposition, and linear least
squares. The principles of realization theory provide insight into the different representations
of linear systems, as well as the role of rational functions and series expansions in linear
algebra.
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1. Introduction 

Partition-Matrix Theory and Generalized-Inverses are interesting topics explored in linear 
algebra and matrix computation. Partition-Matrix Theory is associated with the problem of 
properly partitioning a matrix into block matrices (i.e. an array of matrices), and is a matrix 
computation tool widely employed in several scientific-technological application areas. For 
instance, blockwise Toeplitz-based covariance matrices are used to model structural 
properties for space-time multivariate adaptive processing in radar applications [1], 
Jacobian response matrices are partitioned into several block-matrix instances in order to 
enhance medical images for Electrical-Impedance-Tomography [2], design of state-
regulators and partial-observers for non-controllable/non-observable linear continuous 
systems contemplates matrix blocks for controllable/non-controllable and observable/non-
observable eigenvalues [3]. The Generalized-Inverse is a common and natural problem 
found in a vast of applications. In control robotics, non-collocated partial linearization is 
applied to underactuated mechanical systems through inertia-decoupling regulators which 
employ a pseudoinverse as part of a modified input control law [4]. At sliding-mode control 
structures, a Right-Pseudoinverse is incorporated into a state-feedback control law in order 
to stabilize electromechanical non-linear systems [5]. Under the topic of system 
identification, definition of a Left-Pseudoinverse is present in auto-regressive moving-
average models (ARMA) for matching dynamical properties of unknown systems [6]. An 
interesting approach arises whenever Partition-Matrix Theory and Generalized-Inverse are 
combined together yielding attractive solutions for solving the problem of block matrix 
inversion [7-10]. Nevertheless, several assumptions and restrictions regarding numerical 
stability and structural properties are considered for these alternatives. For example, an 
attractive pivot-free block matrix inversion algorithm is proposed in [7], which 

© 2012 González et al., licensee InTech. This is a paper distributed under the terms of the Creative Commons
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unfortunately exhibits an overhead in matrix multiplications that are required in order to 
guarantee full-rank properties for particular blocks within it. For circumventing the expense 
in rank deficiency, [8] offers block-matrix completion strategies in order to find the 
Generalized-Inverse of any non-singular block matrix (irrespective of the singularity of their 
constituting sub-blocks). However, the existence of intermediate matrix inverses and 
pseudoinverses throughout this algorithm still rely on full-rank assumptions, as well as 
introducing more hardness to the problem. The proposals exposed in [9-10] avoid 
completion strategies and contemplate all possible scenarios for avoiding any rank 
deficiency among each matrix sub-block, yet demanding full-rank assumptions for each 
scenario. In this chapter, an iterative-recursive algorithm for computing a Left-
Pseudoinverse (LPI) of a MIMO channel matrix is developed by combining Partition-Matrix 
Theory and Generalized-Inverse concepts. For this approach, no matrix-operations’ 
overhead nor any particular block matrix full-rank assumptions are needed because of 
structural attributes of the MIMO channel matrix, which models dynamical properties of a 
Rayleigh fading channel (RFC) within wireless MIMO communication systems.       

The content of this work is outlined as follows. Section 2 provides a description of the 
MIMO communication link, pointing out its principal physical effects and the mathematical 
model considered for RFC-based environments. Section 3 defines formally the problem of 
computing the Left-Pseudoinverse as the Generalized-Inverse for the MIMO channel matrix 
applying Partition-Matrix Theory concepts. Section 4 presents linear algebra and matrix 
computation concepts and tools needed for tracking a solution for the aforementioned 
problem. Section 5 analyzes important properties of the MIMO channel matrix derived from 
a Rayleigh fading channel scenario. Section 6 explains the proposed novel algorithm. Section 
7 presents a brief analysis of VLSI (Very Large Scale of Integration) aspects towards 
implementation of arithmetic operations presented in this algorithm. Section 8 concludes the 
chapter. Due to the vast literature about MIMO systems, and to the best of the authors’ 
knowledge, this chapter provides a nice and strategic list of references in order to easily 
correlate essential concepts between matrix theory and MIMO systems. For instance, [11-16] 
describe and analyze information and system aspects about MIMO communication systems, 
as well as studying MIMO channel matrix behavior under RFC-based environments; [17-18] 
contain all useful linear algebra and matrix computation theoretical concepts around the 
mathematical background immersed in MIMO systems; [19-21] provide practical guidelines 
and examples for MIMO channel matrix realizations comprising RFC scenarios; [22] treats 
the formulation and development of the algorithm presented in this chapter; [23-27] detail a 
splendid survey on architectural aspects for implementing several arithmetic operations.  

2. MIMO systems 

In the context of wireless communication systems, MIMO (Multiple-Input Multiple-
Output) is an extension of the classical SISO (Single-Input Single-Output) communication 
paradigm, where instead of having a communication link composed of a single 
transmitter-end and a receiver-end element (or antenna), wireless MIMO communication 
systems (or just MIMO systems) consist of an array of multiple elements at both the 
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computation concepts and tools needed for tracking a solution for the aforementioned 
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a Rayleigh fading channel scenario. Section 6 explains the proposed novel algorithm. Section 
7 presents a brief analysis of VLSI (Very Large Scale of Integration) aspects towards 
implementation of arithmetic operations presented in this algorithm. Section 8 concludes the 
chapter. Due to the vast literature about MIMO systems, and to the best of the authors’ 
knowledge, this chapter provides a nice and strategic list of references in order to easily 
correlate essential concepts between matrix theory and MIMO systems. For instance, [11-16] 
describe and analyze information and system aspects about MIMO communication systems, 
as well as studying MIMO channel matrix behavior under RFC-based environments; [17-18] 
contain all useful linear algebra and matrix computation theoretical concepts around the 
mathematical background immersed in MIMO systems; [19-21] provide practical guidelines 
and examples for MIMO channel matrix realizations comprising RFC scenarios; [22] treats 
the formulation and development of the algorithm presented in this chapter; [23-27] detail a 
splendid survey on architectural aspects for implementing several arithmetic operations.  

2. MIMO systems 

In the context of wireless communication systems, MIMO (Multiple-Input Multiple-
Output) is an extension of the classical SISO (Single-Input Single-Output) communication 
paradigm, where instead of having a communication link composed of a single 
transmitter-end and a receiver-end element (or antenna), wireless MIMO communication 
systems (or just MIMO systems) consist of an array of multiple elements at both the 
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transmission and reception parts [11-16,19-21]. Generally speaking, the MIMO 
communication link contains Tn  transmitter-end and Rn  receiver-end antennas sending-
and-receiving information through a wireless channel. Extensive studies on MIMO 
systems and commercial devices already employing them reveal that these 
communication systems offer promising results in terms of: a) spectral efficiency and 
channel capacity enhancements (many user-end applications supporting high-data rates 
at limited available bandwidth); b) improvements on Bit-Error-Rate (BER) performance; 
and c) practical feasability already seen in several wireless communication standards. The 
conceptualization of this paradigm is illustrated in figure 1, where Tx is the transmitter-
end, Rx the receiver-end, and Chx the channel.  

 
Figure 1. The MIMO system: conceptualization for the MIMO communication paradigm. 

Notice that information sent from the trasnmission part (Tx label on figure 1) will suffer 
from several degradative and distorional effects inherent in the channel (Chx label on 
figure 1), forcing the reception part (Rx label on figure 1) to decode information properly. 
Information at Rx will suffer from degradations caused by time, frequency, and spatial 
characteristics of the MIMO communication link [11-12,14]. These issues are directly 
related to: i) the presence of physical obstacles obstructing the Line-of-Sight (LOS) between 
Tx and Rx (existance of non-LOS); ii) time delays between received and transmitted 
information signals due to Tx and Rx dynamical properties (time-selectivity of Chx); iii) 
frequency distortion and interference among signal carriers through Chx (frequency-
selectivity of Chx); iv) correlation of information between receiver-end elements. Fading 
(or fading mutlipath) and noise are the most common destructive phenomena that 
significantly affect information at Rx [11-16]. Fading is a combination of time-frequency 
replicas of the trasnmitted information as a consequence of the MIMO system phenomena 
i)-iv) exposed before, whereas noise affects information at every receiver-end element 
under an additve or multiplicative way. As a consequence, degradation of signal 
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information rests mainly upon magnitude attenuation and time-frequency shiftings. The 
simplest treatable MIMO communication link has a slow-flat quasi-static fading channel 
(proper of a non-LOS indoor environment). For this type of scenario, a well-known 
dynamical-stochastic model considers a Rayleigh fading channel (RFC) [13,15-16,19-21], 
which gives a quantitative clue of how information has been degradated by means of Chx. 
Moreover, this type of channels allows to: a) distiguish among each information block 
tranmitted from the Tn  elements at every Chx realization (i.e. the time during which the 
channel’s properties remain unvariant); and b) implement easily symbol decoding tasks 
related to channel equalization (CE) techniques. Likewise, noise is commonly assumed to 
have additive effects over Rx. Once again, all of these assumptions provide a treatable 
information-decoding problem (refered as MIMO demodulation [12]), and the 
mathematical model that suits the aforementioned MIMO communication link 
characteristics will be represented by     

 y Hx    (1) 

where: 1 1
[ ]

T T
n n
jx  

    is a complex-valued Tn  dimensional transmitted vector with 
entries drawn from a Gaussian-integer finite-lattice constellation (digital modulators, such 
as: q-QAM, QPSK); 1Rny   is a complex-valued Rn  dimensional received vector; 

1Rn   is a Rn  dimensional independent-identically-distributed  (idd) complex-
circularly-symmetric (ccs) Additive White Gaussian Noise (AWGN) vector; and 

R Tn nH  is the  R Tn n  dimensional MIMO channel matrix whose entries model: a) the 
RFC-based environment behavior according to a Gaussian probabilistic density function 
with zero-mean and 0.5-variance statistics; and b) the time-invariant transfer function 
(which measures the degradation of the signal information) between the i-th receiver-end 
and the j-th trasnmitter-end antennas [11-16,19-21]. Figure 2 gives a representation of (1). 
As shown therein, the MIMO communication link model stated in (1) can be also 
expressed as 
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 (2) 

Notice from (1-2) that an important requisite for CE purposes within RFC scenarios is that 
H is provided somehow to the Rx. This MIMO system requirement is classically known as 
Channel State Information (CSI) [11-16]. In the sequel of this work, symbol-decoding efforts 
will consider the problem of finding x  from y  regarding CSI at the Rx part within a slow-
flat quasi-static RFC-based environment as modeled in (1-2). In simpler words, Rx must find
x from degradated information y through calculating an inversion over H . Moreover, 

R Tn n  is commonly assumed for MIMO demodulation tasks [13-14] because it guarantees 
linear independency between row-entries of matrix H  in (2), yielding a nonhomogeneous 
overdetermined system of linear equations.          
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Figure 2. Representation for the MIMO communication link model according to y Hx   . Here, each 

dotted arrow represents an entry ijh  in H  which determines channel degradation between the j-th 

transmitter and the i-th receiver elements. AWGN appears additively in each receiver-end antenna. 

3. Problem definition 

Recall for the moment the mathematical model provided in (1). Consider r and i to be the 
real and imaginary parts of a complex-valued matrix (vector)  , that is, r ij     . Then, 
Equation (1) can be expanded as follows: 
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It can be noticed from Equation (3) that: r i 1, Tnx x  ; r i 1, Rny y  ; 1r i, Rn   ; and 
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CSI is still needed for MIMO demodulation purposes involving (4). Moreover, if 2r RN n  
and 2t TN n , then r tN N . Obviously, while seeking for a solution of signal vector X  from 
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(4), the reception part Rx will provide also the solution for signal vector x , and thus MIMO 
demodulation tasks will be fulfilled. This problem can be defined formally into the 
following manner:  

Definition 1. Given parameters 2r RN n   and 2t TN n   , and a block-matrix 

h r tN N , there exists an operator  1 1: r r t tN N N N       which solves the matrix-

block equation Y=hX+N  so that Y,h X    . ■       

From Definition 1, the following affirmations hold: i) CSI over h is a necessary condition as 
an input argument for the operator  ; and ii)  can be naïvely defined as a Generalized-
Inverse of the block-matrix h . In simpler terms, †X=h Y 1 is associated with Y,h    and 

†h t rN N  stands for the Generalized-Inverse of the block-matrix h , where  † T T
1

h h h h


  

[17-18]. Clearly, 1
    and T

    represent the inverse and transpose matrix operations over  

real-valued matrices. As a concluding remark, computing the Generalized-Inverse †h  can 

be separated into two operations: 1) a block-matrix inversion  T
1

h h


2; 2) a typical matrix 

multiplication  T T
1

h h h

 . For these tasks, Partition-Matrix Theory will be employed in 

order to find a novel algorithm for computing a Generalized-Inverse related to (4).             

4. Mathematical background 

4.1. Partition-matrix theory 

Partition-Matrix Theory embraces structures related to block matrices (or partition matrices: 
an array of matrices) [17-18]. Furthermore, a block-matrix L  with    n q m p    dimension 
can be constructed (or partitioned) consistently according to matrix sub-blocks A , B , C , 
and D  of n m , n p , q m , and q p  dimensions, respectively, yielding 

 
A B

L
C D
 

  
 

  (5) 

An interesting operation to be performed for these structures given in (5) is the inversion, 

i.e. a blockwise inversion 1L . For instance, let    n m n mL   
  be a full-rank real-valued 

block matrix (the subsequent treatment is also valid for complex-valued entities, i.e. 

                                                                 
1 In the context of MIMO systems, this matrix operation is commonly found in Babai estimators for symbol-decoding 
purposes at the Rx part [12,13]. For the reader’s interest, refer to [11-16] for other MIMO demodulation techniques. 

2 Notice that Th t rN N and  T
1

h h t tN N  .  
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(4), the reception part Rx will provide also the solution for signal vector x , and thus MIMO 
demodulation tasks will be fulfilled. This problem can be defined formally into the 
following manner:  

Definition 1. Given parameters 2r RN n   and 2t TN n   , and a block-matrix 

h r tN N , there exists an operator  1 1: r r t tN N N N       which solves the matrix-

block equation Y=hX+N  so that Y,h X    . ■       

From Definition 1, the following affirmations hold: i) CSI over h is a necessary condition as 
an input argument for the operator  ; and ii)  can be naïvely defined as a Generalized-
Inverse of the block-matrix h . In simpler terms, †X=h Y 1 is associated with Y,h    and 

†h t rN N  stands for the Generalized-Inverse of the block-matrix h , where  † T T
1

h h h h


  

[17-18]. Clearly, 1
    and T

    represent the inverse and transpose matrix operations over  

real-valued matrices. As a concluding remark, computing the Generalized-Inverse †h  can 

be separated into two operations: 1) a block-matrix inversion  T
1

h h


2; 2) a typical matrix 

multiplication  T T
1

h h h

 . For these tasks, Partition-Matrix Theory will be employed in 

order to find a novel algorithm for computing a Generalized-Inverse related to (4).             

4. Mathematical background 

4.1. Partition-matrix theory 

Partition-Matrix Theory embraces structures related to block matrices (or partition matrices: 
an array of matrices) [17-18]. Furthermore, a block-matrix L  with    n q m p    dimension 
can be constructed (or partitioned) consistently according to matrix sub-blocks A , B , C , 
and D  of n m , n p , q m , and q p  dimensions, respectively, yielding 

 
A B

L
C D
 

  
 

  (5) 

An interesting operation to be performed for these structures given in (5) is the inversion, 

i.e. a blockwise inversion 1L . For instance, let    n m n mL   
  be a full-rank real-valued 

block matrix (the subsequent treatment is also valid for complex-valued entities, i.e. 

                                                                 
1 In the context of MIMO systems, this matrix operation is commonly found in Babai estimators for symbol-decoding 
purposes at the Rx part [12,13]. For the reader’s interest, refer to [11-16] for other MIMO demodulation techniques. 

2 Notice that Th t rN N and  T
1

h h t tN N  .  

Partition-Matrix Theory Applied to the Computation of  
Generalized-Inverses for MIMO Systems in Rayleigh Fading Channels 143 

   n m n mL   
 ). An alternative partition can be performed with n nA  , n mB  , 

m nC  , and m mD  . Assume also A  and D  to be full-rank matrices. Then,  

    
   

1 11 1 1

1
1 11 1 1

L
A BD C A BD C BD

D CA B CA D CA B

   



   

  


  

 
 
 
  

 (6) 

This strategy (to be proved in the next part) requires additonally and mandatorily full-rank 

over matrices 1A BD C  and 1D CA B . The simple case is defined for L
a b
c d


 
 
 

(indistinctly for 2 2  or 2 2 ). Once again, assuming  det 0L  , 0a  , and 0d  (related to 

full-rank restictions within block-matrix L ):   

   
   

1 1

1 1
1

1 1

1 1 1

1

a bd a bd d
L

d ca b d ca

c c b

ca b

 

 



 

  



  


  

 
 
 
  

1 ,
d b
c aad bc

 
    

 

where evidently   0ad bc  , ( ) ( )n m n m    1 0a bd c  , and  1 0d ca b  . 

4.2. Matrix Inversion Lemma  

The Matrix Inversion Lemma is an indirect consequence of inverting non-singular block 
matrices [17-18], either real-valued or complex-valued, e.g., under certain restrictions 3. 
Lemma 1 states this result.    

Lemma 1. Let r r  , r s  , s s , and s r  be real-valued or complex-
valued matrices. Assume these matrices to be non-singular:  ,  ,     , and 
 1 1     . Then,   

     11 1 1 1 1 1                   (7) 

Proof. The validation of (7) must satisfy 

i.     11 1 1 1 1
rI

                 
 

, and 

   
11 1 1 1 1

rI
                 

 
., where rI  represents the r r  identity 

matrix. Notice the existance of matrices 1 , 1 ,   1
    and   11 1      . 

Manipulating i) shows: 

                                                                 
3 Refer to [3,7-10,17,18] to review lemmata exposed for these issues and related results. 
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    11 1 1 1 1                 
 

 

   1 11 1 1 1 1 1 1 1
rI

                           

   11 1 1 1 1 1
rI

                    

1 1 .r rI I        

Likewise for ii):       

   
11 1 1 1 1                 

 
 

  

   1 11 1 1 1 1 1 1 1
rI

                              

   11 1 1 1 1 1
rI

                      

1 1 .r rI I         ■ 

Now it is pertinent to demonstrate (6) with the aid of Lemma 1. It must be verified that both 
1LL  and 1L L  must be equal to the    n m n m    identity block matrix 

( )
0

0
n n m

m n m
n m

I
I

I 




 
  
 

, with consistent-dimensional identity and zero sub-blocks: nI , mI ; 

0n m , 0m n , respectively. We start by calulating 

    
   

1 11 1 1

1 11 1 1

1
A BD C A BD C BD

D CA B CA D CA B

A B
LL

C D

   

   


  

  

 
       
    

 (8)  

and 

    
   

1 11 1 1

1 11 1 1

1
A BD C A BD C BD

D CA B CA D CA B

A B
L L

C D

   

   


  

  

 
     
   

 (9) 

by applying (7) in Lemma 1 to both matrices   11 n nA BD C
    and 

  11 m mD CA B
   , which are present in (8) and (9), and recalling full-rank conditions 

not only over those matrices but also for A  and D , yields the relations 



 
Linear Algebra – Theorems and Applications 144 

    11 1 1 1 1                 
 

 

   1 11 1 1 1 1 1 1 1
rI

                           

   11 1 1 1 1 1
rI

                    

1 1 .r rI I        

Likewise for ii):       

   
11 1 1 1 1                 

 
 

  

   1 11 1 1 1 1 1 1 1
rI

                              

   11 1 1 1 1 1
rI

                      

1 1 .r rI I         ■ 

Now it is pertinent to demonstrate (6) with the aid of Lemma 1. It must be verified that both 
1LL  and 1L L  must be equal to the    n m n m    identity block matrix 

( )
0

0
n n m

m n m
n m

I
I

I 




 
  
 

, with consistent-dimensional identity and zero sub-blocks: nI , mI ; 

0n m , 0m n , respectively. We start by calulating 

    
   

1 11 1 1

1 11 1 1

1
A BD C A BD C BD

D CA B CA D CA B

A B
LL

C D

   

   


  

  

 
       
    

 (8)  

and 

    
   

1 11 1 1

1 11 1 1

1
A BD C A BD C BD

D CA B CA D CA B

A B
L L

C D

   

   


  

  

 
     
   

 (9) 

by applying (7) in Lemma 1 to both matrices   11 n nA BD C
    and 

  11 m mD CA B
   , which are present in (8) and (9), and recalling full-rank conditions 

not only over those matrices but also for A  and D , yields the relations 
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    1 11 1 1 1 1A BD C A A B D CA B CA
          (10) 

    1 11 1 1 1 1D CA B D D C A BD C BD
          (11) 

Using (10-11) in (8-9), the following results arise:  

a. for operations involved in sub-blocks of 1LL :  

   1 11 1 1A A BD C B D CA B CA
       

   1 11 1 1 1 1 1A A A B D CA B CA B D CA B CA
         

    
 

   1 11 1 1 1
n nB D CA B CA B D CA B CAI I

         ; 

   1 11 1 1A A BD C BD B D CA B
        

   1 11 1 1 1 1 1A A A B D CA B CA BD B D CA B
            

  
 

   1 11 1 1 11BD B D CA B CA BD B D CA B
           

   11 1 11 0n mBD B D CA B CA B D D
  

       ; 

   1 11 1 1C A BD C D D CA B CA
       

   1 11 1 1 1 1 1C A BD C D D D C A BD C BD CA
          

 
  

 

   1 11 1 1 1 1C A BD C CA C A BD C BD CA
           

  11 1 11 0 ;m nC A BD C A CAA BD C


  
    

   

   1 11 1 1C A BD C BD D D CA B
        

   1 11 1 1 1 1 1C A BD C BD D D D C A BD C BD
           

 
  
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   1 11 1 1 1 ;m mC A BD C BD C A BD C BDI I
            

thus, 1
( )n mLL I
 . 

b. for operations involved in sub-blocks of 1L L : 

   1 11 1 1A BD C A A BD C BD C
       

  11 1 ;nA BD C A BD C I
     
 

 

   1 11 1 1 0 ;n mA BD C B A BD C BD D
   

     

   1 11 1 1 0 ;m nD CA B CA A D CA B C
   

      

   1 11 1 1D CA B CA B D CA B D
        

  11 1 ;mD CA B CA B D I
       
   

thus, 1
( )n mL L I
 .    

4.3. Generalized-Inverse 

The concept of Generalized-Inverse is an extension of a matrix inversion operations applied 
to non-singular rectangular matrices [17-18]. For notation purposes and without loss of 
generalization,  G  and G T  denote the rank of a rectangular matrix Mm nG  , and HG GT  
is the transpose-conjugate of G  (when M= m nG    ) or TG GT  is the transpose of G  
(when M= m nG    ), respectively. 

Definition 2. Let Mm nG   and    0 min ,G m n  . Then, there exists a matrix † Mn mG   
(identified as the Generalized-Inverse), such that it satisfies several conditions for the 
following cases: 

case i: if m n  and      0 min , GG m n n    , then there exists a unique matrix 
† Mn mG G   (identified as Left-Pseudoinverse: LPI) such that nG G I  , satisfying: a) 

GG G G  , and b) G GG G   . Therefore, the LPI matrix is proposed as   1
G G G G

  T T .      

case ii: if m n  and    det 0G G n   , then there exists a unique matrix † 1 Mn nG G   
(identified as Inverse) such that 1 1

nG G GG I   .      

case iii: if m n  and      0 min , GG m n m    , then there exists a unique  
matrix † Mn mG G   (identified as Right-Pseudoinverse: RPI) such that mGG I  , 
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   1 11 1 1 1 ;m mC A BD C BD C A BD C BDI I
            

thus, 1
( )n mLL I
 . 
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   1 11 1 1A BD C A A BD C BD C
       

  11 1 ;nA BD C A BD C I
     
 

 

   1 11 1 1 0 ;n mA BD C B A BD C BD D
   

     

   1 11 1 1 0 ;m nD CA B CA A D CA B C
   
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satisfying: a) GG G G  , and b) G GG G   . Therefore, the RPI matrix is proposed as 
  1

G G GG
  T T . ■ 

Given the mathematical structure for †G  provided in Definition 2, it can be easily validated 
that: 1) For a LPI matrix stipulated in case i, †GG G G  and † † †G GG G  with   1†G G G G


 T T ; 

2) For a RPI matrix stipulated in case iii, †GG G G  and † † †G GG G  with   1†G G GG


 T T ; iii) 
For the Inverse in case ii,    1 1

G G G G G GG G
    T T T T . For a uniqueness test for all cases, 

assume the existance of matrices †
1 Mn mG   and †

2 Mn mG   such that †
1 nG G I  and †

2 nG G I  
(for case i), and †

1 mGG I  and †
2 mGG I  (for case iii). Notice immediately,  † †

1 2 0nG G G   (for 
case i) and  † †

1 2 0mG G G  (for case iii), which obligates † †
1 2G G  for both cases, because of 

full-rank properties over G . Clearly, case ii is a particular consequence of cases i and iii.  

5. The MIMO channel matrix 

The MIMO channel matrix is the mathematical representation for modeling the degradation 
phenomena presented in the RFC scenario presented in (2). The elements ijh  in  R Tn nH   
represent a time-invariant transfer function (possesing spectral information about 
magnitude and phase profiles) between a j-th transmitter and an i-th receiver antenna. Once 
again, dynamical properties of physical phenomena 4 such as path-loss, shadowing, 
multipath, Doppler spreading, coherence time, absorption, reflection, scattering, diffraction, 
basestation-user motion, antenna’s physical properties-dimensions, information correlation, 
associated with a slow-flat quasi-static RFC scenario (proper of a non-LOS indoor wireless 
environments) are highlighted into a statistical model represented by matrix H . For †H  
purposes, CSI is a necessary feature required at the reception part in (2), as well as the 

R Tn n  condition. Table 1 provides several R Tn n  MIMO channel matrix realizations for 
RFC-based environments [19-21]. On table 1: a)  MIMO ,R Tn n : refers to the MIMO 
communication link configuration, i.e. amount of receiver-end and transmitter-end 
elements; b) mH : refers to a MIMO channel matrix realization; c) mH : refers to the 
corresponding LPI, computed as   1H H

m m m
†
mH H H H


 ; d) h : blockwise matrix version for 

mH ; e) +h : refers to the corresponding LPI, computed as   1† T Th h h h


 . As an additional 
point of analysis, full-rank properties over H  and h  (and thus the existance of matrices H  ,

1H , +h , and 1h ) are validated and corroborated through a MATLAB simulation-driven 
model regarding frequency-selective and time-invariant properties for several RFC-based 
scenarios at different MIMO configurations. Experimental data were generated upon 610  
MIMO channel matrix realizations. As illustrated in figure 3, a common pattern is found 
regarding the statistical evolution for full-rank properties of H  and h  with R Tn n  at 
several typical MIMO configurations, for instance,  MIMO 2, 2 ,  MIMO 4, 2 , and  MIMO 4, 4 . It 
is plotted therein REAL(H,h) against IMAG(H,h), where each axis label denote respectively 
the real and imaginary parts of: a) det( )H  and det(h)  when R Tn n , and b)  Hdet H H  and 

 Tdet h h  when . Blue crosses indicate the behavior of ( )H  related to det( )H  and  Hdet H H  
                                                                 
4 We suggest the reader consulting references [11-16] for a detail and clear explanation on these narrowband and 
wideband physical phenomena presented in wireless MIMO communication systems.  
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(det(H) legend on top-left margin), while red crosses indicate the behavior of (h)  related to 
det(h)  and  Tdet h h  (det(h) legend on top-left margin). The black-circled zone intersected 
with black-dotted lines locates the 0 0j  value. As depicted on figures (4)-(5), a closer glance 
at this statistical behavior reveals a prevalence on full-rank properties of H and h , meaning 
that non of the determinants det( )H , det(h) ,  Hdet H H  and  Tdet h h  is equal to zero (behavior 
enclosed by the light-blue region and delimited by blue/red-dotted lines).           

 

 

 

 

 

 

 

 
 

Figure 3. MIMO channel matrix rank-determinant behavior for several realizations for H  and h . This 
statistical evolution is a common pattern found for several MIMO configurations involving slow-flat 
quasi-static RFC-based environments with R Tn n . 
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Table 1. MIMO channel matrix realizations for several MIMO communication link configurations at 
slow-flat quasi-static RFC scenarios. 
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Figure 4. MIMO channel matrix rank-determinant behavior for several realizations for H . Full-rank 
properties for H  and 

H
H H  preveal for RFC-based environments (light-blue region delimited by blue-

dotted lines).  

 
Figure 5. MIMO channel matrix rank-determinant behavior for several realizations for h . Full-rank 
properties for h and T

h h  preveal for RFC-based environments (light-blue region delimited by red-
dotted line). 
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6. Proposed algorithm 

The proposal for a novel algorithm for computing a LPI matrix 2 2+h T Rn n  (with R Tn n ) 
is based on the block-matrix structure of h  as exhibited in (4). This idea is an extension of 
the approach presented in [22]. The existence for this Generalized-Inverse matrix is 
supported on the statistical properties of the slow-flat quasi-static RFC scenario which 
impact directly on the singularity of H  at every MIMO channel matrix realization. Keeping 
in mind that other approaches attempting to solve the block-matrix inversion problem [7-10] 
requires several constraints and conditions, the subsequent proposal does not require any 
restriction at all mainly due to the aforementioned properties of H . From (4), it is suggested 

that 
r

i

x

x

 
 
  

 is somehow related to
   
   

Y
H H

H H

 

 

 

 

 
  
 
 

; hence, calculating +h will lead to this 

solution. Let  rA H  and iB H . It is kwon a priori that   TA jB n   . Then h
A B

B A



 
 
 

 

with  h 2 T tn N   . Define the matrix   as Th h t tN N    , where 
M L

L M


 

 
 
 

  with 

T T T Tn nM A A B B    ,  TT T T Tn nL A B A B    , and   tN    as a direct consequence 

from 2 2R T r tn n N N   . It can be seen that 

 1 T+h h t rN N 
    (12) 

For simplicity, matrix operations involved in (12) require classic multiply-and-accumulate 
operations between row-entries of 1 t tN N 

   and column-entries of Th t rN N . Notice 
immediately that the critical and essential task of computing +h  relies on finding the block 
matrix inverse 1  5. The strategy to be followed in order to solve 1  in (12) will consist of 
the following steps: 1) the proposition of partitioning   without any restriction on rank-
defficiency over inner matrix sub-blocks; 2) the definition of iterative multiply-and-
accumulate operations within sub-blocks comprised in  ; 3) the recursive definition for 
compacting the overall blockwise matrix inversion. Keep in mind that matrix   can be also 

viewed as 
1,1 1,

,1 ,

t

t t t

N

N N N

 

 

 

 
 
 
 
 

 

   
 

. The symmetry presented in 
M L

L M


 

 
 
 

  will motivate 

the development for the pertinent LPI-based algorithm. From (12) and by the use of Lemma 

1 it can be concluded that 1 Q P

P Q
 



 
 
 

 , where   11 T Tn nQ M LM L
    , T Tn nP QX   , 

                                                                 
5 Notice that      + 1 T T

A jB M jL A jB


    . Moreover,   1
M jL



   T T
n nj  

  , where 
   1 1

1 1 1M LM L L ML M ML
 

  
     and    1 1

1 11M L M LM L L ML M
 

 
      .     
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and 1 T Tn nX LM   . Interesting enough, full-rank is identified at each matrix sub-block in 
the main diagonal of   (besides   TQ n  ). This structural behavior serves as the leitmotiv 

for the construction of an algorithm for computing the blockwise inverse 1 . Basically 
speaking and concerning step 1) of this strategy, the matrix partition procedure obeys the 
assignments (13-16) defined as:  

 
     

 

2 1 , 2 1 2 1 , 2 2 2

2 , 22 , 2 1

t t t t

t tt t

N k N k N k N k
k

N k N kN k N k
W

 

 
       

   

 
  
 
 

 


   (13) 

 
     

 

2 1 , 2 1 2 1 , 2 2

2 ,2 , 2 1

t t t t

t tt t

N k N k N k N k
k

N k NN k N k
X

 

 
      

  

 
  
 
 

 


 
 (14) 

 
     

 

2 1 , 2 1 2 1 , 2
2 2

, 2, 2 1

t t t t

t tt t

N k N k N k N k
k

k

N N kN N k

Y

 

 

      


 

 
 

  
 
  

 

  
 

 (15) 

 1, 1 1, 2 2
0

, 1 ,

t t T t

t t t t

N N N N

N N N N
Z

 

 
   



 
  
  

 


 
 (16) 

The matrix partition over   obeys the index  1 : 1 : 2 1 tk N  . Because of the even-

rectangular dimensions of  , matirx   owns exactly an amount of 2t TN n  sub-block 
matrices of 2 2  dimension along its main diagonal. Interesting enough, due to RFC-based 
environment characteristics studied in (1) and (4), it is found that: 

    0 2kW Z    (17) 

After performing these structural characteristics for  , and with the use of (13-16), step 2)  
of the strategy consists of the following iterative operations also indexed by 

 1 : 1 : 2 1 tk N  , in the sense of performing: 

 1
1k k k k kW X Z Y 

   (18) 

 1 1
1k k k kX Z  

  (19) 

 1 1
1 1k k k k kZ Z Y  

    (20) 

Here: 1 2 2
1

k k
kZ 
  , 2 2

k
 , 2 2k

k
 , and 2 2k k

k
 . Steps stated in (18-20) help to 

construct intermediate sub-blocks as  
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environment characteristics studied in (1) and (4), it is found that: 

    0 2kW Z    (17) 

After performing these structural characteristics for  , and with the use of (13-16), step 2)  
of the strategy consists of the following iterative operations also indexed by 

 1 : 1 : 2 1 tk N  , in the sense of performing: 

 1
1k k k k kW X Z Y 

   (18) 

 1 1
1k k k kX Z  

  (19) 

 1 1
1 1k k k k kZ Z Y  

    (20) 

Here: 1 2 2
1

k k
kZ 
  , 2 2

k
 , 2 2k

k
 , and 2 2k k

k
 . Steps stated in (18-20) help to 

construct intermediate sub-blocks as  
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 

 


 



1

2 2 2 212 2 2 2
1

12( 1) 2( 1) 2( 1) 2( 1)
2 2 2 2 2 22 2

k kk k
kk

k k
k k k k k kk k k k

k k k k kk

W X

Y Z Y W

 

 



  


     
  

  
  
      
  
     

 


 (21)  

The dimensions of each real-valued sub-block in (21) are indicated consistently 6. For step 3) of 
the strategy, a recursion step 1 1

1( )k kZ Z 
  is provided in terms of the assignment 

1 1 2( 1) 2( 1)k k
k kZ        . Clearly, only inversions of kW , 0Z , and k  (which are 2 2  

matrices, yielding correspondingly 1
kW  , 1

0Z , and 1
k
 ) are required to be performed 

throughout this iterative-recursive process, unlike the operation linked to 1
1kZ

 , which comes 
from a previous updating step associated with the recursion belonging to 1

kZ . Although 
  tN    assures the existance of 1 , full-rank requirements outlined in (17) and non-zero 

determinants for (18) are strongly needed for this iterative-recursive algorithm to work 
accordingly. Also, full-rank is expected for every recursive outcome related to 1 1

1( )k kZ Z 
 . 

Again, thank to the characteristics of the slow-flat quasi-static RFC-based environment in 
which these operations are involved among every MIMO channel matrix realization, 
conditions in (17) and full-rank of (18) are always satisfied. These issues are corroborated with 
the aid of the same MATLAB-based simulation framework used to validate full-rank 
properties over H  and h . The statistical evolution for the determinants for kW , 0Z , and k , 
and the behavior of singularity within the 1 1

1( )k kZ Z 
  recursion are respectively illustrated in 

figures (6)-(8).  MIMO 2, 2 ,  MIMO 4, 2 , and  MIMO 4, 4  were the MIMO communication link 
configurations considered for these tests. These simulation-driven outcomes provide 
supportive evidence for the proper functionality of the proposed iterative-recursive algorithm 
for computing 1  involving matrix sub-block inversions. On each figure, the statistical 
evolution for the determinants associated with 0Z , kW , k , and 1 1

1( )k kZ Z 
  are respectively 

indicated by labels det(Zo), det(Wk), det(Fik), and det(iZk,iZkm1), while the light-blue zone at 
bottom delimited by a red-dotted line exhibits the gap which marks the avoidance in rank-
deficincy over the involved matrices. The zero-determinant value is marked with a black circle. 

The next point of analysis for the behavior of the +h  LPI-based iterative-recursive algorithm 
is complexity, which in essence will consist of a demand in matrix partitions (amount of 
matrix sub-blocks: PART) and arithmetic operations (amount of additions-subtractions: 
ADD-SUB; multiplications: MULT; and divisions: DIV). Let PART-mtx and ARITH-ops be 
the nomenclature for complexity cost related to matrix partitions and arithmetic operations, 
respectively. Without loss of generalization, define  C   as the complexity in terms of the 

                                                                 
6 Matrix structure given in (21) is directly derived from applying Equation (6), and by the use of Lemma 1 as 

   1 11 1 1 1 1
1 1 1 1 1k k k k k k k k k k k k kZ Y W X Z Z Y W X Z Y X Z

 
    

    
    . See that this expansion is preferable instead of 

   1 11 1 1 1 1
1 1k k k k k k k k k k k k kW X Z Y W W X Z Y W X Y W

 
    

 
    , which is undesirable due to an unnecessary matrix 

operation overhead related to computing 1kZ


, e.g. inverting 1
1kZ 


, which comes preferably from the 1 1

1( )k kZ Z 


 

recursion.       
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costs PART-mtx and ARITH-ops belonging to operations involved in  . Henceforth, 
1 1 Th hC C C          

     
    denotes the cost of computing +h  as the sum of the costs of 

inverting   and multiplying 1  by Th . It is evident that: a) 1 ThC  
 
   implies PART=0 

and ARITH-ops itemized into MULT= 28 R Tn n , ADD-SUB=  4 2 1R T Tn n n  , and DIV=0; b) 
1 T T -1h h (h h)C C C       

     
  . Clearly, Th hC  

   demands no partitions at all, but with a 

ARITH-ops cost of MULT= 28 R Tn n , and ADD-SUB=   24 2 1R Tn n . However, the principal 

complexity relies critically on T -1(h h)C  
  , which is the backbone for +h , as presented in [22]. 

Table 2 summerizes these complexity results. For this treatment, T -1(h h)C  
   consists of 

3 2Tn   partitions, MULT = 
1

1

6
Tn

I
k

k

C




 , ADD-SUB = 
1

1

1
Tn

II
k

k

C




 , and DIV = 
1

1

1
Tn

III
k

k

C




 . The 

ARITH-ops cost depends on I
kC , II

kC , and III
kC ; the constant factors for each one of these 

items are proper of the complexity presented in 1
0C Z 

  . The remain of the complexities, i.e. 

I
kC , II

kC , and III
kC , are calculated according to the iterative stpes defined in (18-20) and (21), 

particularly expressed in terms of                                   

 1 1
k k k k k kC C C Y W C                      (22) 

It can be checked out that: a) no PART-mtx cost is required; b) the ARITH-ops cost employs 
(22) for each item, yielding: 240 24 12I

kC k k   (for MULT), 240 2II
kC k  (for ADD_SUB), 

and 2III
kC  (for DIV). 

An illustrative application example is given next. It considers a MIMO channel matrix 
realization obeying statistical behavior according to (1) and a  MIMO 4, 4  configuration:  

0.3059 0.7543 0.8107 0.2082 0.2314 0.4892 0.416 1.0189

1.1777 0.0419 0.8421 0.9448 0.1235 0.6067 1.5437 0.4039

0.0886 0.0676 0.8409 0.5051 0.132 0.8867 0.0964 0.2828

0.2034 0.5886 0.0266 1.1

j j j j

j j j j
H

j j j j

j j

      

    


     

  

4 4

48 0.5132 1.1269 0.0806 0.4879j j



 

 
 
 
 
 
 

 with   4H  . As a 

consequence,  

2.4516 1.2671 0.1362 2.7028 0 1.9448 0.6022 0.2002

1.2671 4.5832 1.7292 1.3776 1.9448 0 1.229 2.4168

0.1362 1.7292 3.0132 0.0913 0.6022 1.229 0 0.862

2.7028 1.3776 0.0913 4.0913 0.2002 2.4168 0.862 0

0 1.9448 0.6022 0.2

   

   

 

 
 




002 2.4516 1.2671 0.1362 2.7028

1.9448 0 1.229 2.4168 1.2671 4.5832 1.7292 1.3776

0.6022 1.229 0 0.862 0.1362 1.7292 3.0132 0.0913

0.2002 2.4168 0.862 0 2.7028 1.3776 0.0913 4.0913

 

  

  

  

 
 
 
 
 
 
 
 
 
 
 
  

8 8   with   8   .  
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costs PART-mtx and ARITH-ops belonging to operations involved in  . Henceforth, 
1 1 Th hC C C          

     
    denotes the cost of computing +h  as the sum of the costs of 

inverting   and multiplying 1  by Th . It is evident that: a) 1 ThC  
 
   implies PART=0 

and ARITH-ops itemized into MULT= 28 R Tn n , ADD-SUB=  4 2 1R T Tn n n  , and DIV=0; b) 
1 T T -1h h (h h)C C C       

     
  . Clearly, Th hC  

   demands no partitions at all, but with a 

ARITH-ops cost of MULT= 28 R Tn n , and ADD-SUB=   24 2 1R Tn n . However, the principal 

complexity relies critically on T -1(h h)C  
  , which is the backbone for +h , as presented in [22]. 

Table 2 summerizes these complexity results. For this treatment, T -1(h h)C  
   consists of 

3 2Tn   partitions, MULT = 
1

1

6
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I
k
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


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 , and DIV = 
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III
k
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

 . The 

ARITH-ops cost depends on I
kC , II

kC , and III
kC ; the constant factors for each one of these 

items are proper of the complexity presented in 1
0C Z 

  . The remain of the complexities, i.e. 

I
kC , II

kC , and III
kC , are calculated according to the iterative stpes defined in (18-20) and (21), 

particularly expressed in terms of                                   

 1 1
k k k k k kC C C Y W C                      (22) 

It can be checked out that: a) no PART-mtx cost is required; b) the ARITH-ops cost employs 
(22) for each item, yielding: 240 24 12I

kC k k   (for MULT), 240 2II
kC k  (for ADD_SUB), 

and 2III
kC  (for DIV). 

An illustrative application example is given next. It considers a MIMO channel matrix 
realization obeying statistical behavior according to (1) and a  MIMO 4, 4  configuration:  

0.3059 0.7543 0.8107 0.2082 0.2314 0.4892 0.416 1.0189

1.1777 0.0419 0.8421 0.9448 0.1235 0.6067 1.5437 0.4039

0.0886 0.0676 0.8409 0.5051 0.132 0.8867 0.0964 0.2828

0.2034 0.5886 0.0266 1.1

j j j j
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 
 
 
 
 

 with   4H  . As a 

consequence,  

2.4516 1.2671 0.1362 2.7028 0 1.9448 0.6022 0.2002

1.2671 4.5832 1.7292 1.3776 1.9448 0 1.229 2.4168

0.1362 1.7292 3.0132 0.0913 0.6022 1.229 0 0.862

2.7028 1.3776 0.0913 4.0913 0.2002 2.4168 0.862 0

0 1.9448 0.6022 0.2

   

   

 

 
 




002 2.4516 1.2671 0.1362 2.7028

1.9448 0 1.229 2.4168 1.2671 4.5832 1.7292 1.3776

0.6022 1.229 0 0.862 0.1362 1.7292 3.0132 0.0913

0.2002 2.4168 0.862 0 2.7028 1.3776 0.0913 4.0913

 

  

  

  

 
 
 
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 
 
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 
 
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 
  

8 8   with   8   .  
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Figure 6. Statistical evolution of the rank-determinant behaviour concerning 0Z , kW , k , and 1 1
1( )k kZ Z 

  
for a  MIMO 2 , 2  configuration.  
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Figure 7. Statistical evolution of the rank-determinant behaviour concerning 0Z , kW , k , and 1 1
1( )k kZ Z 

  
for a  MIMO 4 , 2  configuration. 
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Figure 7. Statistical evolution of the rank-determinant behaviour concerning 0Z , kW , k , and 1 1
1( )k kZ Z 

  
for a  MIMO 4 , 2  configuration. 
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Figure 8. Statistical evolution of the rank-determinant behaviour concerning 0Z , kW , k , and 1 1
1( )k kZ Z 

  
for a  MIMO 4 , 4  configuration. 
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Table 2. Complexity cost results of the LPI-based iterative-recursive algorithm for +h . 

Applying partition criteria (13-16) and given 1 : 1 : 3k  , the following matrix sub-blocks are 
generated:    

1

2.4516 1.2671

1.2671 4.5832
,W






 
 
 

 

1

0.1362 2.7028

1.7292 1.3776
,X





 
   1

0.1362 1.7292

2.7028 1.3776
,Y






 
 
 

0

3.0132 0.0913

0.0913 4.0913
,Z 

 
  

 

2

3.0132 0.0913

0.0913 4.0913
W 

 
 
 

, 

2

0.6022 1.2290 0 0.862

0.2002 2.4168 0.862 0
,X





 
   2

0.6022 0.2002

1.229 2.4168

0 0.862

0.862 0

,Y






 
 
 
 
 
 
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Table 2. Complexity cost results of the LPI-based iterative-recursive algorithm for +h . 

Applying partition criteria (13-16) and given 1 : 1 : 3k  , the following matrix sub-blocks are 
generated:    

1

2.4516 1.2671

1.2671 4.5832
,W






 
 
 

 

1

0.1362 2.7028

1.7292 1.3776
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



 
   1

0.1362 1.7292

2.7028 1.3776
,Y






 
 
 

0

3.0132 0.0913

0.0913 4.0913
,Z 

 
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2

3.0132 0.0913

0.0913 4.0913
W 

 
 
 

, 

2

0.6022 1.2290 0 0.862

0.2002 2.4168 0.862 0
,X





 
   2

0.6022 0.2002

1.229 2.4168

0 0.862

0.862 0
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




 
 
 
 
 
 
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3

2.4516 1.2671

1.2671 4.5832
,W






 
 
 

3

0.1362 2.7028 0 1.9448 0.6022 0.2002

1.7292 1.3776 1.9448 0 1.229 2.4168
,X

  

  

 
  

 

and 
3

0.1362 1.7292

2.7028 1.3776

0 1.9448

1.9448 0

0.6022 1.229

0.2002 2.4168

Y









 



 
 
 
 
 
 
 
 
 

. Suggested by (18-20), iterative operations (23-25) are computed as: 

 1
1 1 1 0 1 ,W X Z Y   1 1

1 1 1 0 ,X Z   1 1
1 0 0 1 1Z Z Y                                 (23) 

 1
2 2 2 1 2 ,W X Z Y   1 1

2 2 2 1 ,X Z   1 1
2 1 1 2 2Z Z Y                              (24) 

 1
3 3 3 2 3 ,W X Z Y   1 1

3 3 3 2 ,X Z   1 1
3 2 2 3 3Z Z Y                               (25) 

From (21), the matrix assignments related to recursion 1 1
1( )k kZ Z 

  produces the following 
intermediate blockwise matrix results:  

 
1

1 1 1 1 1
1 0 1 1

1 1 1 1

1.5765 0.1235 0.0307 1.0005

0.1235 0.3332 0.1867 0.0348

0.0307 0.1867 0.4432 0.093

1.0005 0.0348 0.093 0.9191

,Z Z
Y W

 

 


  








 

 


  



 
  
  
     
 



 
1

1 1 1 2 2
2 1 2 1

2 2 2 2

Z Z
Y W

 

 


  




  



 
 
  

  
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. This last recursive outcome 

from 1 1
1( )k kZ Z 

  corresponds to 1 , and is further used for calculating 1 T+ 8 8h h    . 
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Moreover, notice that full-rank properties are always presented in matrices 0Z , 1W , 2W , 3W ,

1 , 2 , 3 , 1
1Z , 1

2Z , and 1
3Z .  

7. VLSI implementation aspects  

The arithmetic operations presented in the algorithm for computing +h  can be 
implemented under a modular-iterative fashion towards a VLSI (Very Large Scale of 
Integration) design. The partition strategy comprised in (13-16) provides modularity, while 
(18-20) is naturally associated with iterativeness; recursion is just used for constructing 
matrix-blocks in (21). Several well-studied aspects aid to implement a further VLSI 
architecture [23-27] given the nature of the mathematical structure of the algorithm. For 
instance, systolic arrays [25-27] are a suitable choice for efficient, parallel-processing 
architectures concerning matrix multiplications-additions. Bidimensional processing arrays 
are typical architectural outcomes, whose design consist basically in interconnecting 
processing elements (PE) among different array layers. The configuration of each PE comes 
from projection or linear mapping techniques [25-27] derived from multiplications and 
additions presented in (18-20). Also, systolic arrays tend to concurrently perform arithmetic 
operations dealing with the matrix concatenated multiplications 1

1k k kX Z Y
 , 1 1

1k k kX Z 
 ,

1
1k k kZ Y 

 , and 1
k k kY W   presented in (18-20). Consecutive additions inside every PE can be 

favourably implemented via Carry-Save-Adder (CSA) architectures [23-24], while 
multiplications may recur to Booth multipliers [23-24] in order to reduce latencies caused by 
adding acummulated partial products. Divisions presented in 1

kW  , 1
0Z , and 1

k
  can be 

built through regular shift-and-subtract modules or classic serial-parallel subtractors [23-24]; 
in fact, CORDIC (Coordinate Rotate Digital Computer) processors [23] are also employed 
and configured in order to solve numerical divisions. The aforementioned architectural 
aspects offer an attractive and alternative framework for consolidating an ultimate VLSI 
design for implementing the +h algorithm without compromising the overall system data 
throughput (intrinsicly related to operation frequencies) for it. 

8. Conclusions 

This chapter presented the development of a novel iterative-recursive algorithm for 
computing a Left-Pseudoinverse (LPI) as a Generalized-Inverse for a MIMO channel matrix 
within a Rayleigh fading channel (RFC). The formulation of this algorithm consisted in the 
following step: i) first, structural properties for the MIMO channel matrix acquired 
permanent full-rank due to statistical properties of the RFC scenario; ii) second, Partition-
Matrix Theory was applied allowing the generation of a block-matrix version of the MIMO 
channel matrix; iii) third, iterative addition-multiplication operations were applied at these 
matrix sub-blocks in order to construct blockwise sub-matrix inverses, and recursively 
reusing them for obtaining the LPI. For accomplishing this purpose, required mathematical 
background and MIMO systems concepts were provided for consolidating a solid scientific 
framework to understand the context of the problem this algorithm was attempting to solve. 



 
Linear Algebra – Theorems and Applications 160 

Moreover, notice that full-rank properties are always presented in matrices 0Z , 1W , 2W , 3W ,

1 , 2 , 3 , 1
1Z , 1

2Z , and 1
3Z .  

7. VLSI implementation aspects  

The arithmetic operations presented in the algorithm for computing +h  can be 
implemented under a modular-iterative fashion towards a VLSI (Very Large Scale of 
Integration) design. The partition strategy comprised in (13-16) provides modularity, while 
(18-20) is naturally associated with iterativeness; recursion is just used for constructing 
matrix-blocks in (21). Several well-studied aspects aid to implement a further VLSI 
architecture [23-27] given the nature of the mathematical structure of the algorithm. For 
instance, systolic arrays [25-27] are a suitable choice for efficient, parallel-processing 
architectures concerning matrix multiplications-additions. Bidimensional processing arrays 
are typical architectural outcomes, whose design consist basically in interconnecting 
processing elements (PE) among different array layers. The configuration of each PE comes 
from projection or linear mapping techniques [25-27] derived from multiplications and 
additions presented in (18-20). Also, systolic arrays tend to concurrently perform arithmetic 
operations dealing with the matrix concatenated multiplications 1

1k k kX Z Y
 , 1 1

1k k kX Z 
 ,

1
1k k kZ Y 

 , and 1
k k kY W   presented in (18-20). Consecutive additions inside every PE can be 

favourably implemented via Carry-Save-Adder (CSA) architectures [23-24], while 
multiplications may recur to Booth multipliers [23-24] in order to reduce latencies caused by 
adding acummulated partial products. Divisions presented in 1

kW  , 1
0Z , and 1

k
  can be 

built through regular shift-and-subtract modules or classic serial-parallel subtractors [23-24]; 
in fact, CORDIC (Coordinate Rotate Digital Computer) processors [23] are also employed 
and configured in order to solve numerical divisions. The aforementioned architectural 
aspects offer an attractive and alternative framework for consolidating an ultimate VLSI 
design for implementing the +h algorithm without compromising the overall system data 
throughput (intrinsicly related to operation frequencies) for it. 

8. Conclusions 

This chapter presented the development of a novel iterative-recursive algorithm for 
computing a Left-Pseudoinverse (LPI) as a Generalized-Inverse for a MIMO channel matrix 
within a Rayleigh fading channel (RFC). The formulation of this algorithm consisted in the 
following step: i) first, structural properties for the MIMO channel matrix acquired 
permanent full-rank due to statistical properties of the RFC scenario; ii) second, Partition-
Matrix Theory was applied allowing the generation of a block-matrix version of the MIMO 
channel matrix; iii) third, iterative addition-multiplication operations were applied at these 
matrix sub-blocks in order to construct blockwise sub-matrix inverses, and recursively 
reusing them for obtaining the LPI. For accomplishing this purpose, required mathematical 
background and MIMO systems concepts were provided for consolidating a solid scientific 
framework to understand the context of the problem this algorithm was attempting to solve. 

Partition-Matrix Theory Applied to the Computation of  
Generalized-Inverses for MIMO Systems in Rayleigh Fading Channels 161 

Proper functionality for this approach was validated through simulation-driven 
experiments, as well as providing an example of this operation. As an additional remark, 
some VLSI aspects and architectures were outlined for basically implementing arithmetic 
operations within the proposed LPI-based algorithm. 
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1. Introduction
The theory of scalar means was developed since the ancient Greek by the Pythagoreans until
the last century by many famous mathematicians. See the development of this subject in
a survey article [24]. In Pythagorean school, various means are defined via the method
of proportions (in fact, they are solutions of certain algebraic equations). The theory of
matrix and operator means started from the presence of the notion of parallel sum as a tool
for analyzing multi-port electrical networks in engineering; see [1]. Three classical means,
namely, arithmetic mean, harmonic mean and geometric mean for matrices and operators are
then considered, e.g., in [3, 4, 11, 12, 23]. These means play crucial roles in matrix and operator
theory as tools for studying monotonicity and concavity of many interesting maps between
algebras of operators; see the original idea in [3]. Another important mean in mathematics,
namely the power mean, is considered in [6]. The parallel sum is characterized by certain
properties in [22]. The parallel sum and these means share some common properties. This
leads naturally to the definitions of the so-called connection and mean in a seminal paper [17].
This class of means cover many in-practice operator means. A major result of Kubo-Ando
states that there are one-to-one correspondences between connections, operator monotone
functions on the non-negative reals and finite Borel measures on the extended half-line. The
mean theoretic approach has many applications in operator inequalities (see more information
in Section 8), matrix and operator equations (see e.g. [2, 19]) and operator entropy. The concept
of operator entropy plays an important role in mathematical physics. The relative operator
entropy is defined in [13] for invertible positive operators A, B by

S(A|B) = A1/2 log(A−1/2BA−1/2)A1/2. (1)

In fact, this formula comes from the Kubo-Ando theory–S(·|·) is the connection corresponds
to the operator monotone function t �→ log t. See more information in [7, Chapter IV] and its
references.

In this chapter, we treat the theory of operator means by weakening the original definition of
connection in such a way that the same theory is obtained. Moreover, there is a one-to-one
correspondence between connections and finite Borel measures on the unit interval. Each
connection can be regarded as a weighed series of weighed harmonic means. Hence, every
mean in Kubo-Ando’s sense corresponds to a probability Borel measure on the unit interval.

©2012 Chansangiam, licensee InTech. This is an open access chapter distributed under the terms of the
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2 Will-be-set-by-IN-TECH

Various characterizations of means are obtained; one of them is a usual property of scalar
mean, namely, the betweenness property. We provide some new properties of abstract
operator connections, involving operator monotonicity and concavity, which include specific
operator means as special cases.

For benefits of readers, we provide the development of the theory of operator means. In
Section 2, we setup basic notations and state some background about operator monotone
functions which play important roles in the theory of operator means. In Section 3, we
consider the parallel sum together with its physical interpretation in electrical circuits.
The arithmetic mean, the geometric mean and the harmonic mean of positive operators
are investigated and characterized in Section 4. The original definition of connection is
improved in Section 5 in such a way that the same theory is obtained. In Section 6, several
characterizations and examples of Kubo-Ando means are given. We provide some new
properties of general operator connections, related to operator monotonicity and concavity, in
Section 7. Many operator versions of classical inequalities are obtained via the mean-theoretic
approach in Section 8.

2. Preliminaries

Throughout, let B(H) be the von Neumann algebra of bounded linear operators acting on a
Hilbert space H. Let B(H)sa be the real vector space of self-adjoint operators on H. Equip
B(H) with a natural partial order as follows. For A, B ∈ B(H)sa, we write A � B if B − A is a
positive operator. The notation T ∈ B(H)+ or T � 0 means that T is a positive operator. The
case that T � 0 and T is invertible is denoted by T > 0 or T ∈ B(H)++. Unless otherwise
stated, every limit in B(H) is taken in the strong-operator topology. Write An → A to indicate
that An converges strongly to A. If An is a sequence in B(H)sa, the expression An ↓ A means
that An is a decreasing sequence and An → A. Similarly, An ↑ A tells us that An is increasing
and An → A. We always reserve A, B, C, D for positive operators. The set of non-negative
real numbers is denoted by R+.

Remark 0.1. It is important to note that if An is a decreasing sequence in B(H)sa such that
An � A, then An → A if and only if �Anx, x� → �Ax, x� for all x ∈ H. Note first that this
sequence is convergent by the order completeness of B(H). For the sufficiency, if x ∈ H, then

�(An − A)1/2x�2 = �(An − A)1/2x, (An − A)1/2x� = �(An − A)x, x� → 0

and hence �(An − A)x� → 0.

The spectrum of T ∈ B(H) is defined by

Sp(T) = {λ ∈ C : T − λI is not invertible}.

Then Sp(T) is a nonempty compact Hausdorff space. Denote by C(Sp(T)) the C∗-algebra of
continuous functions from Sp(T) to C. Let T ∈ B(H) be a normal operator and z : Sp(T) → C

the inclusion. Then there exists a unique unital ∗-homomorphism φ : C(Sp(T)) → B(H) such
that φ(z) = T, i.e.,

• φ is linear

• φ( f g) = φ( f )φ(g) for all f , g ∈ C(Sp(T))
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• φ( f̄ ) = (φ( f ))∗ for all f ∈ C(Sp(T))

• φ(1) = I.

Moreover, φ is isometric. We call the unique isometric ∗-homomorphism which sends f ∈
C(Sp(T)) to φ( f ) ∈ B(H) the continuous functional calculus of T. We write f (T) for φ( f ).

Example 0.2. 1. If f (t) = a0 + a1t + · · ·+ antn, then f (T) = a0 I + a1T + · · ·+ anTn.

2. If f (t) = t̄, then f (T) = φ( f ) = φ(z̄) = φ(z)∗ = T∗

3. If f (t) = t1/2 for t ∈ R+ and T � 0, then we define T1/2 = f (T). Equivalently, T1/2 is the
unique positive square root of T.

4. If f (t) = t−1/2 for t > 0 and T > 0, then we define T−1/2 = f (T). Equivalently, T−1/2 =

(T1/2)−1 = (T−1)1/2.

A continuous real-valued function f on an interval I is called an operator monotone function if
one of the following equivalent conditions holds:

(i) A � B =⇒ f (A) � f (B) for all Hermitian matrices A, B of all orders whose spectrums
are contained in I;

(ii) A � B =⇒ f (A) � f (B) for all Hermitian operators A, B ∈ B(H) whose spectrums are
contained in I and for an infinite dimensional Hilbert space H;

(iii) A � B =⇒ f (A) � f (B) for all Hermitian operators A, B ∈ B(H) whose spectrums are
contained in I and for all Hilbert spaces H.

This concept is introduced in [20]; see also [7, 10, 15, 16]. Every operator monotone function is
always continuously differentiable and monotone increasing. Here are examples of operator
monotone functions:

1) t �→ αt + β on R, for α � 0 and β ∈ R,

2) t �→ −t−1 on (0, ∞),

3) t �→ (c − t)−1 on (a, b), for c /∈ (a, b),

4) t �→ log t on (0, ∞),

5) t �→ (t − 1)/ log t on R+, where 0 �→ 0 and 1 �→ 1.

The next result is called the Löwner-Heinz’s inequality [20].

Theorem 0.3. For A, B ∈ B(H)+ and r ∈ [0, 1], if A � B, then Ar � Br. That is the map t �→ tr is
an operator monotone function on R+ for any r ∈ [0, 1].

A key result about operator monotone functions is that there is a one-to-one correspondence
between nonnegative operator monotone functions on R+ and finite Borel measures on [0, ∞]
via integral representations. We give a variation of this result in the next proposition.

Proposition 0.4. A continuous function f : R+ → R+ is operator monotone if and only if there
exists a finite Borel measure μ on [0, 1] such that

f (x) =
∫

[0,1]
1 !t x dμ(t), x ∈ R+. (2)
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Here, the weighed harmonic mean !t is defined for a, b > 0 by

a !t b = [(1 − t)a−1 + tb−1]−1 (3)

and extended to a, b � 0 by continuity. Moreover, the measure μ is unique. Hence, there is a
one-to-one correspondence between operator monotone functions on the non-negative reals and finite
Borel measures on the unit interval.

Proof. Recall that a continuous function f : R+ → R+ is operator monotone if and only if
there exists a unique finite Borel measure ν on [0, ∞] such that

f (x) =
∫

[0,∞]
φx(λ) dν(λ), x ∈ R+

where

φx(λ) =
x(λ + 1)

x + λ
for λ > 0, φx(0) = 1, φx(∞) = x.

Consider the Borel measurable function ψ : [0, 1] → [0, ∞], t �→ t
1−t . Then, for each x ∈ R+,

∫

[0,∞]
φx(λ) dν(λ) =

∫

[0,1]
φx ◦ ψ(t) dνψ(t)

=
∫

[0,1]

x
x − xt + t

dνψ(t)

=
∫

[0,1]
1 !t x dνψ(t).

Now, set μ = νψ. Since ψ is bijective, there is a one-to-one corresponsence between the finite
Borel measures on [0, ∞] of the form ν and the finite Borel measures on [0, 1] of the form νψ.
The map f �→ μ is clearly well-defined and bijective.

3. Parallel sum: A notion from electrical networks
In connections with electrical engineering, Anderson and Duffin [1] defined the parallel sum of
two positive definite matrices A and B by

A : B = (A−1 + B−1)−1. (4)

The impedance of an electrical network can be represented by a positive (semi)definite
matrix. If A and B are impedance matrices of multi-port networks, then the parallel sum
A : B indicates the total impedance of two electrical networks connected in parallel. This
notion plays a crucial role for analyzing multi-port electrical networks because many physical
interpretations of electrical circuits can be viewed in a form involving parallel sums. This is
a starting point of the study of matrix and operator means. This notion can be extended to
invertible positive operators by the same formula.

Lemma 0.5. Let A, B, C, D, An, Bn ∈ B(H)++ for all n ∈ N.

(1) If An ↓ A, then A−1
n ↑ A−1. If An ↑ A, then A−1

n ↓ A−1.
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(2) If A � C and B � D, then A : B � C : D.

(3) If An ↓ A and Bn ↓ B, then An : Bn ↓ A : B.

(4) If An ↓ A and Bn ↓ B, then lim An : Bn exists and does not depend on the choices of An, Bn.

Proof. (1) Assume An ↓ A. Then A−1
n is increasing and, for each x ∈ H,

�(A−1
n − A−1)x, x� = �(A − An)A−1x, A−1

n x� � �(A − An)A−1x��A−1
n ��x� → 0.

(2) Follow from (1).

(3) Let An, Bn ∈ B(H)++ be such that An ↓ A and Bn ↓ A where A, B > 0. Then A−1
n ↑ A−1

and B−1
n ↑ B−1. So, A−1

n + B−1
n is an increasing sequence in B(H)+ such that

A−1
n + B−1

n → A−1 + B−1,

i.e. A−1
n + B−1

n ↑ A−1 + B−1. By (1), we thus have (A−1
n + B−1

n )−1 ↓ (A−1 + B−1)−1.

(4) Let An, Bn ∈ B(H)++ be such that An ↓ A and Bn ↓ B. Then, by (2), An : Bn is a decreasing
sequence of positive operators. The order completeness of B(H) guaruntees the existence of
the strong limit of An : Bn. Let A�

n and B�
n be another sequences such that A�

n ↓ A and B�
n ↓ B.

Note that for each n, m ∈ N, we have An � An + A�
m − A and Bn � Bn + B�

m − B. Then

An : Bn � (An + A�
m − A) : (Bn + B�

m − B).

Note that as n → ∞, An + A�
m − A → A�

m and Bn + B�
m − B → B�

m. We have that as n → ∞,

(An + A�
m − A) : (Bn + B�

m − B) → A�
m : B�

m.

Hence, limn→∞ An : Bn � A�
m : B�

m and limn→∞ An : Bn � limm→∞ A�
m : B�

m. By symmetry,
limn→∞ An : Bn � limm→∞ A�

m : B�
m.

We define the parallel sum of A, B � 0 to be

A : B = lim
ε↓0

(A + εI) : (B + εI) (5)

where the limit is taken in the strong-operator topology.

Lemma 0.6. For each x ∈ H,

�(A : B)x, x� = inf{�Ay, y�+ �Bz, z� : y, z ∈ H, y + z = x}. (6)

Proof. First, assume that A, B are invertible. Then for all x, y ∈ H,

�Ay, y�+ �B(x − y), x − y� − �(A : B)x, x�
= �Ay, y�+ �Bx, x� − 2Re�Bx, y�+ �By, y� − �(B − B(A + B)−1B)x, x�
= �(A + B)y, y� − 2Re�Bx, y�+ �(A + B)−1Bx, Bx�
= �(A + B)1/2y�2 − 2Re�Bx, y�+ �(A + B)−1/2Bx�2

� 0.
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With y = (A + B)−1Bx, we have

�Ay, y�+ �B(x − y), x − y� − �(A : B)x, x� = 0.

Hence, we have the claim for A, B > 0. For A, B � 0, consider A + εI and B + εI where
ε ↓ 0.

Remark 0.7. This lemma has a physical interpretation, called the Maxwell’s minimum power
principle. Recall that a positive operator represents the impedance of a electrical network while
the power dissipation of network with impedance A and current x is the inner product �Ax, x�.
Consider two electrical networks connected in parallel. For a given current input x, the current
will divide x = y+ z, where y and z are currents of each network, in such a way that the power
dissipation is minimum.

Theorem 0.8. The parallel sum satisfies

(1) monotonicity: A1 � A2, B1 � B2 ⇒ A1 : B1 � A2 : B2.

(2) transformer inequality: S∗(A : B)S � (S∗AS) : (S∗BS) for every S ∈ B(H).

(3) continuity from above: if An ↓ A and Bn ↓ B, then An : Bn ↓ A : B.

Proof. (1) The monotonicity follows from the formula (5) and Lemma 0.5(2).

(2) For each x, y, z ∈ H such that x = y + z, by the previous lemma,

�S∗(A : B)Sx, x� = �(A : B)Sx, Sx�
� �ASy, Sy�+ �S∗BSz, z�
= �S∗ASy, y�+ �S∗BSz, z�.

Again, the previous lemma assures S∗(A : B)S � (S∗AS) : (S∗BS).

(3) Let An and Bn be decreasing sequences in B(H)+ such that An ↓ A and Bn ↓ B. Then
An : Bn is decreasing and A : B � An : Bn for all n ∈ N. We have that, by the joint
monotonicity of parallel sum, for all ε > 0

An : Bn � (An + εI) : (Bn + εI).

Since An + εI ↓ A + εI and Bn + εI ↓ B + εI, by Lemma 3.1.4(3) we have An : Bn ↓ A : B.

Remark 0.9. The positive operator S∗AS represents the impedance of a network connected
to a transformer. The transformer inequality means that the impedance of parallel connection
with transformer first is greater than that with transformer last.

Proposition 0.10. The set of positive operators on H is a partially ordered commutative semigroup
with respect to the parallel sum.

Proof. For A, B, C > 0, we have (A : B) : C = A : (B : C) and A : B = B : A. The continuity
from above in Theorem 0.8 implies that (A : B) : C = A : (B : C) and A : B = B : A for all
A, B, C � 0. The monotonicity of the parallel sum means that the positive operators form a
partially ordered semigroup.
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Theorem 0.11. For A, B, C, D � 0, we have the series-parallel inequality

(A + B) : (C + D) � A : C + B : D. (7)

In other words, the parallel sum is concave.

Proof. For each x, y, z ∈ H such that x = y + z, we have by the previous lemma that

�(A : C + B : D)x, x� = �(A : C)x, x�+ �(B : D)x, x�
� �Ay, y�+ �Cz, z�+ �By, y�+ �Dz, z�
= �(A + B)y, y�+ �(C + D)z, z�.

Applying the previous lemma yields (A + B) : (C + D) � A : C + B : D.

Remark 0.12. The ordinary sum of operators represents the total impedance of two networks
with series connection while the parallel sum indicates the total impedance of two networks
with parallel connection. So, the series-parallel inequality means that the impedance of a
series-parallel connection is greater than that of a parallel-series connection.

4. Classical means: arithmetic, harmonic and geometric means

Some desired properties of any object that is called a “mean” M on B(H)+ should have are
given here.

(A1). positivity: A, B � 0 ⇒ M(A, B) � 0;

(A2). monotonicity: A � A�, B � B� ⇒ M(A, B) � M(A�, B�);
(A3). positive homogeneity: M(kA, kB) = kM(A, B) for k ∈ R+;

(A4). transformer inequality: X∗M(A, B)X � M(X∗AX, X∗BX) for X ∈ B(H);

(A5). congruence invariance: X∗M(A, B)X = M(X∗AX, X∗BX) for invertible X ∈ B(H);

(A6). concavity: M(tA+(1− t)B, tA� +(1− t)B�) � tM(A, A�)+ (1− t)M(B, B�) for t ∈ [0, 1];

(A7). continuity from above: if An ↓ A and Bn ↓ B, then M(An, Bn) ↓ M(A, B);

(A8). betweenness: if A � B, then A � M(A, B) � B;

(A9). fixed point property: M(A, A) = A.

In order to study matrix or operator means in general, the first step is to consider three classical
means in mathematics, namely, arithmetic, geometric and harmonic means.

The arithmetic mean of A, B ∈ B(H)+ is defined by

A� B =
1
2
(A + B). (8)

Then the arithmetic mean satisfies the properties (A1)–(A9). In fact, the properties (A5) and
(A6) can be replaced by a stronger condition:

X∗M(A, B)X = M(X∗AX, X∗BX) for all X ∈ B(H).
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Moreover, the arithmetic mean satisfies

affinity: M(kA + C, kB + C) = kM(A, B) + C for k ∈ R+.

Define the harmonic mean of positive operators A, B ∈ B(H)+ by

A ! B = 2(A : B) = lim
ε↓0

2(A−1
ε + B−1

ε )−1 (9)

where Aε ≡ A + εI and Bε ≡ B + εI. Then the harmonic mean satisfies the properties
(A1)–(A9).

The geometric mean of matrices is defined in [23] and studied in details in [3]. A usage
of congruence transformations for treating geometric means is given in [18]. For a given
invertible operator C ∈ B(H), define

ΓC : B(H)sa → B(H)sa, A �→ C∗AC.

Then each ΓC is a linear isomorphism with inverse ΓC−1 and is called a congruence
transformation. The set of congruence transformations is a group under multiplication. Each
congruence transformation preserves positivity, invertibility and, hence, strictly positivity. In
fact, ΓC maps B(H)+ and B(H)++ onto themselves. Note also that ΓC is order-preserving.

Define the geometric mean of A, B > 0 by

A # B = A1/2(A−1/2BA−1/2)1/2 A1/2 = ΓA1/2 ◦ Γ1/2
A−1/2 (B). (10)

Then A # B > 0 for A, B > 0. This formula comes from two natural requirements: This
definition should coincide with the usual geometric mean in R+: A # B = (AB)1/2 provided
that AB = BA. The second condition is that, for any invertible T ∈ B(H),

T∗(A # B)T = (T∗AT) # (T∗BT). (11)

The next theorem characterizes the geometric mean of A and B in term of the solution of a
certain operator equation.

Theorem 0.13. For each A, B > 0, the Riccati equation ΓX(A−1) := XA−1X = B has a unique
positive solution, namely, X = A # B.

Proof. The direct computation shows that (A # B)A−1(A # B) = B. Suppose there is another
positive solution Y � 0. Then

(A−1/2XA−1/2)2 = A−1/2XA−1XA−1/2 = A−1/2YA−1YA−1/2 = (A−1/2YA−1/2)2.

The uniqueness of positive square roots implies that A−1/2XA−1/2 = A−1/2YA−1/2, i.e.,
X = Y.

Theorem 0.14 (Maximum property of geometric mean). For A, B > 0,

A # B = max{X � 0 : XA−1X � B} (12)

where the maximum is taken with respect to the positive semidefinite ordering.
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Proof. If XA−1X � B, then

(A−1/2XA−1/2)2 = A−1/2XA−1XA−1/2 � A−1/2BA−1/2

and A−1/2XA−1/2 � (A−1/2BA−1/2)1/2 i.e. X � A # B by Theorem 0.3.

Recall the fact that if f : [a, b] → C is continuous and An → A with Sp(An) ⊆ [a, b] for all
n ∈ N, then Sp(A) ⊆ [a, b] and f (An) → f (A).

Lemma 0.15. Let A, B, C, D, An, Bn ∈ B(H)++ for all n ∈ N.

(1) If A � C and B � D, then A # B � C # D.

(2) If An ↓ A and Bn ↓ B, then An # Bn ↓ A # B.

(3) If An ↓ A and Bn ↓ B, then lim An # Bn exists and does not depend on the choices of An, Bn.

Proof. (1) The extremal characterization allows us to prove only that (A # B)C−1(A # B) � D.
Indeed,

(A # B)C−1(A # B) = A1/2(A−1/2BA−1/2)1/2 A1/2C−1 A1/2(A−1/2BA−1/2)1/2 A1/2

� A1/2(A−1/2BA−1/2)1/2 A1/2 A−1 A1/2(A−1/2BA−1/2)1/2 A1/2

= B

� D.

(2) Assume An ↓ A and Bn ↓ B. Then An # Bn is a decreasing sequence of strictly positive
operators which is bounded below by 0. The order completeness of B(H) implies that this
sequence converges strongly to a positive operator. Since A−1

n � A−1, the Löwner-Heinz’s
inequality assures that A−1/2

n � A−1/2 and hence �A−1/2
n � � �A−1/2� for all n ∈ N. Note

also that �Bn� � �B1� for all n ∈ N. Recall that the multiplication is jointly continuous
in the strong-operator topology if the first variable is bounded in norm. So, A−1/2

n Bn A−1/2
n

converges strongly to A−1/2BA−1/2. It follows that

(A−1/2
n Bn A−1/2

n )1/2 → (A−1/2BA−1/2)1/2.

Since A1/2
n is norm-bounded by �A1/2� by Löwner-Heinz’s inequality, we conclude that

A1/2
n (A−1/2

n Bn A−1/2
n )1/2 A1/2

n → A1/2(A−1/2BA−1/2)1/2 A1/2.

The proof of (3) is just the same as the case of harmonic mean.

We define the geometric mean of A, B � 0 by

A # B = lim
ε↓0

(A + εI) # (B + εI). (13)

Then A # B � 0 for any A, B � 0.
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Theorem 0.16. The geometric mean enjoys the following properties

(1) monotonicity: A1 � A2, B1 � B2 ⇒ A1 # B1 � A2 # B2.
(2) continuity from above: An ↓ A, Bn ↓ B ⇒ An # Bn ↓ A # B.
(3) fixed point property: A # A = A.
(4) self-duality: (A # B)−1 = A−1 # B−1.
(5) symmetry: A # B = B # A.
(6) congruence invariance: ΓC(A) # ΓC(B) = ΓC(A # B) for all invertible C.

Proof. (1) Use the formula (13) and Lemma 0.15 (1).

(2) Follows from Lemma 0.15 and the definition of the geometric mean.

(3) The unique positive solution to the equation XA−1X = A is X = A.

(4) The unique positive solution to the equation X−1 A−1X−1 = B is X−1 = A # B. But this
equstion is equivalent to XAX = B−1. So, A−1 # B−1 = X = (A # B)−1.

(5) The equation XA−1X = B has the same solution to the equation XB−1X = A by taking
inverse in both sides.

(6) We have

ΓC(A # B)(ΓC(A))−1ΓC(A # B) = ΓC(A # B)ΓC−1 (A−1)ΓC(A # B)

= ΓC((A # B)A−1(A # B))
= ΓC(B).

Then apply Theorem 0.13.

The congruence invariance asserts that ΓC is an isomorphism on B(H)++ with respect to the
operation of taking the geometric mean.

Lemma 0.17. For A > 0 and B � 0, the operator
(

A C
C∗ B

)

is positive if and only if B − C∗A−1C is positive, i.e., B � C∗A−1C.

Proof. By setting

X =

(
I −A−1C
0 I

)
,

we compute

ΓX

(
A C
C∗ B

)
=

(
I 0

−C∗A−1 I

)(
A C
C∗ B

)(
I −A−1C
0 I

)

=

(
A 0
0 B − C∗A−1C

)
.

Since ΓG preserves positivity, we obtain the desired result.
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Theorem 0.18. The geometric mean A # B of A, B ∈ B(H)+ is the largest operator X ∈ B(H)sa for
which the operator (

A X
X∗ B

)
(14)

is positive.

Proof. By continuity argumeny, we may assume that A, B > 0. If X = A # B, then the operator
(14) is positive by Lemma 0.17. Let X ∈ B(H)sa be such that the operator (14) is positive. Then
Lemma 0.17 again implies that XA−1X � B and

(A−1/2XA−1/2)2 = A−1/2XA−1XA−1/2 � A−1/2BA−1/2.

The Löwner-Heinz’s inequality forces A−1/2XA−1/2 � (A−1/2BA−1/2)1/2. Now, applying
ΓA1/2 yields X � A # B.

Remark 0.19. The arithmetric mean and the harmonic mean can be easily defined for
multivariable positive operators. The case of geometric mean is not easy, even for the
case of matrices. Many authors tried to defined geometric means for multivariable positive
semidefinite matrices but there is no satisfactory definition until 2004 in [5].

5. Operator connections
We see that the arithmetic, harmonic and geometric means share the properties (A1)–(A9) in
common. A mean in general should have algebraic, order and topological properties. Kubo
and Ando [17] proposed the following definition:

Definition 0.20. A connection on B(H)+ is a binary operation σ on B(H)+ satisfying the
following axioms for all A, A�, B, B�, C ∈ B(H)+:

(M1) monotonicity: A � A�, B � B� =⇒ A σ B � A� σ B�

(M2) transformer inequality: C(A σ B)C � (CAC) σ (CBC)

(M3) joint continuity from above: if An, Bn ∈ B(H)+ satisfy An ↓ A and Bn ↓ B, then An σ Bn ↓
A σ B.

The term “connection" comes from the study of electrical network connections.

Example 0.21. The following are examples of connections:

1. the left trivial mean (A, B) �→ A and the right trivial mean (A, B) �→ B

2. the sum (A, B) �→ A + B

3. the parallel sum

4. arithmetic, geometric and harmonic means

5. the weighed arithmetic mean with weight α ∈ [0, 1] which is defined for each A, B � 0 by
A�α B = (1 − α)A + αB

6. the weighed harmonic mean with weight α ∈ [0, 1] which is defined for each A, B > 0 by
A !α B = [(1 − α)A−1 + αB−1]−1 and extended to the case A, B � 0 by continuity.
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From now on, assume dimH = ∞. Consider the following property:

(M3’) separate continuity from above: if An, Bn ∈ B(H)+ satisfy An ↓ A and Bn ↓ B, then
An σ B ↓ A σ B and A σ Bn ↓ A σ B.

The condition (M3’) is clearly weaker than (M3). The next theorem asserts that we can improve
the definition of Kubo-Ando by replacing (M3) with (M3’) and still get the same theory. This
theorem also provides an easier way for checking a binary opertion to be a connection.

Theorem 0.22. If a binary operation σ on B(H)+ satisfies (M1), (M2) and (M3’), then σ satisfies
(M3), that is, σ is a connection.

Denote by OM(R+) the set of operator monotone functions from R+ to R+. If a binary
operation σ has a property (A), we write σ ∈ BO(A). The following properties for a binary
operation σ and a function f : R+ → R+ play important roles:

(P) : If a projection P ∈ B(H)+ commutes with A, B ∈ B(H)+, then

P(A σ B) = (PA) σ (PB) = (A σ B)P;

(F) : f (t)I = I σ (tI) for any t ∈ R+.

Proposition 0.23. The transformer inequality (M2) implies

• Congruence invariance: For A, B � 0 and C > 0, C(AσB)C = (CAC) σ (CBC);

• Positive homogeneity: For A, B � 0 and α ∈ (0, ∞), α(A σ B) = (αA) σ (αB).

Proof. For A, B � 0 and C > 0, we have

C−1[(CAC) σ (CBC)]C−1 � (C−1CACC−1) σ (C−1CBCC−1) = A σ B

and hence (CAC) σ (CBC) � C(A σ B)C. The positive homogeneity comes from the
congruence invariance by setting C =

√
αI.

Lemma 0.24. Let f : R+ → R+ be an increasing function. If σ satisfies the positive homogeneity,
(M3’) and (F), then f is continuous.

Proof. To show that f is right continuous at each t ∈ R+, consider a sequence tn in R+ such
that tn ↓ t. Then by (M3’)

f (tn)I = I σ tn I ↓ I σ tI = f (t)I,

i.e. f (tn) ↓ f (t). To show that f is left continuous at each t > 0, consider a sequence tn > 0
such that tn ↑ t. Then t−1

n ↓ t−1 and

lim t−1
n f (tn)I = lim t−1

n (I σ tn I) = lim(t−1
n I) σ I = (t−1 I) σ I

= t−1(I σ tI) = t−1 f (t)I

Since f is increasing, t−1
n f (tn) is decreasing. So, t �→ t−1 f (t) and f are left continuous.
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Lemma 0.25. Let σ be a binary operation on B(H)+ satisfying (M3’) and (P). If f : R+ → R+ is an
increasing continuous function such that σ and f satisfy (F), then f (A) = I σ A for any A ∈ B(H)+.

Proof. First consider A ∈ B(H)+ in the form ∑m
i=1 λiPi where {Pi}m

i=1 is an orthogonal family
of projections with sum I and λi > 0 for all i = 1, . . . , m. Since each Pi commutes with A, we
have by the property (P) that

I σ A = ∑ Pi(I σ A) = ∑ Pi σ Pi A = ∑ Pi σ λiPi

= ∑ Pi(I σ λi I) = ∑ f (λi)Pi = f (A).

Now, consider A ∈ B(H)+. Then there is a sequence An of strictly positive operators in the
above form such that An ↓ A. Then I σ An ↓ I σ A and f (An) converges strongly to f (A).
Hence, I σ A = lim I σ An = lim f (An) = f (A).

Proof of Theorem 0.22: Let σ ∈ BO(M1, M2, M3�). As in [17], the conditions (M1) and (M2)
imply that σ satisfies (P) and there is a function f : R+ → R+ subject to (F). If 0 � t1 � t2,
then by (M1)

f (t1)I = I σ (t1 I) � I σ (t2 I) = f (t2)I,

i.e. f (t1) � f (t2). The assumption (M3’) is enough to guarantee that f is continuous by
Lemma 0.24. Then Lemma 0.25 results in f (A) = IσA for all A � 0. Now, (M1) and the fact
that dimH = ∞ yield that f is operator monotone. If there is another g ∈ OM(R+) satisfying
(F), then f (t)I = I σ tI = g(t)I for each t � 0, i.e. f = g. Thus, we establish a well-defined
map σ ∈ BO(M1, M2, M3�) �→ f ∈ OM(R+) such that σ and f satisfy (F).

Now, given f ∈ OM(R+), we construct σ from the integral representation (2) in Proposition
0.4. Define a binary operation σ : B(H)+ × B(H)+ → B(H)+ by

A σ B =
∫

[0,1]
A !t B dμ(t) (15)

where the integral is taken in the sense of Bochner. Consider A, B ∈ B(H)+ and set Ft = A !t B
for each t ∈ [0, 1]. Since A � �A�I and B � �B�I, we get

A !t B � �A�I !t �B�I =
�A��B�

t�A�+ (1 − t)�B� I.

By Banach-Steinhaus’ theorem, there is an M > 0 such that �Ft� � M for all t ∈ [0, 1]. Hence,
∫

[0,1]
�Ft� dμ(t) �

∫

[0,1]
M dμ(t) < ∞.

So, Ft is Bochner integrable. Since Ft � 0 for all t ∈ [0, 1],
∫
[0,1] Ft dμ(t) � 0. Thus, A σ B is a

well-defined element in B(H)+. The monotonicity (M1) and the transformer inequality (M2)
come from passing the monotonicity and the transformer inequality of the weighed harmonic
mean through the Bochner integral. To show (M3’), let An ↓ A and Bn ↓ B. Then An !t B ↓
A !t B for t ∈ [0, 1] by the monotonicity and the separate continuity from above of the weighed
harmonic mean. Let ξ ∈ H. Define a bounded linear map Φ : B(H) → C by Φ(T) = �Tξ, ξ�.
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For each n ∈ N, set Tn(t) = An !t B and put T∞(t) = A !t B. Then for each n ∈ N ∪ {∞},
Φ ◦ Tn is Bochner integrable and

�
∫

Tn(t) dμ(t)ξ, ξ� = Φ(
∫

Tn(t) dμ(t)) =
∫

Φ ◦ Tn(t) dμ(t).

Since Tn(t) ↓ T∞(t), we have that �Tn(t)ξ, ξ� → �T∞(t)ξ, ξ� as n → ∞ for each t ∈ [0, 1]. We
obtain from the dominated convergence theorem that

lim
n→∞

�(An σ B)ξ, ξ� = lim
n→∞

�
∫

Tn(t) dμ(t)ξ, ξ�

= lim
n→∞

∫
�Tn(t)ξ, ξ� dμ(t)

=
∫
�T∞(t)ξ, ξ� dμ(t)

= �
∫

T∞(t)dμ(t)ξ, ξ�

= �(A σ B)ξ, ξ�.
So, An σ B ↓ A σ B. Similarly, A σ Bn ↓ A σ B. Thus, σ satisfies (M3’). It is easy to see that
f (t)I = I σ (tI) for t � 0. This shows that the map σ �→ f is surjective.

To show the injectivity of this map, let σ1, σ2 ∈ BO(M1, M2, M3�) be such that σi �→ f where,
for each t � 0, I σi (tI) = f (t)I, i = 1, 2. Since σi satisfies the property (P), we have I σi A =
f (A) for A � 0 by Lemma 0.25. Since σi satisfies the congruence invariance, we have that for
A > 0 and B � 0,

A σi B = A1/2(I σi A−1/2BA−1/2)A1/2 = A1/2 f (A−1/2BA−1/2)A1/2, i = 1, 2.

For each A, B � 0, we obtain by (M3’) that

A σ1 B = lim
�↓0

A� σ1 B

= lim
�↓0

A1/2
� (I σ1 A−1/2

� BA−1/2
� )A1/2

�

= lim
�↓0

A1/2
� f (A−1/2

� BA−1/2
� )A1/2

�

= lim
�↓0

A1/2
� (I σ2 A−1/2

� BA−1/2
� )A1/2

�

= lim
�↓0

A� σ2 B

= A σ2 B,

where A� ≡ A + �I. That is σ1 = σ2. Therefore, there is a bijection between OM(R+) and
BO(M1, M2, M3�). Every element in BO(M1, M2, M3�) admits an integral representation (15).
Since the weighed harmonic mean possesses the joint continuity (M3), so is any element in
BO(M1, M2, M3�). �
The next theorem is a fundamental result of [17].
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Theorem 0.26. There is a one-to-one correspondence between connections σ and operator monotone
functions f on the non-negative reals satisfying

f (t)I = I σ (tI), t ∈ R+. (16)

There is a one-to-one correspondence between connections σ and finite Borel measures ν on [0, ∞]
satisfying

A σ B =
∫

[0,∞]

t + 1
t

(tA : B) dν(t), A, B � 0. (17)

Moreover, the map σ �→ f is an affine order-isomorphism between connections and non-negative
operator monotone functions on R+. Here, the order-isomorphism means that when σ i �→ fi for
i = 1, 2, A σ 1B � A σ 2B for all A, B ∈ B(H)+ if and only if f1 � f2.

Each connection σ on B(H)+ produces a unique scalar function on R+, denoted by the same
notation, satisfying

(s σ t)I = (sI) σ (tI), s, t ∈ R+. (18)

Let s, t ∈ R+. If s > 0, then s σ t = s f (t/s). If t > 0, then s σ t = t f (s/t).

Theorem 0.27. There is a one-to-one correspondence between connections and finite Borel measures
on the unit interval. In fact, every connection takes the form

A σ B =
∫

[0,1]
A !t B dμ(t), A, B � 0 (19)

for some finite Borel measure μ on [0, 1]. Moreover, the map μ �→ σ is affine and order-preserving.
Here, the order-presering means that when μi �→ σi (i=1,2), if μ1(E) � μ2(E) for all Borel sets E in
[0, 1], then A σ1 B � A σ2 B for all A, B ∈ B(H)+.

Proof. The proof of the first part is contained in the proof of Theorem 0.22. This map is affine
because of the linearity of the map μ �→ ∫

f dμ on the set of finite positive measures and the
bijective correspondence between connections and Borel measures. It is straight forward to
show that this map is order-preserving.

Remark 0.28. Let us consider operator connections from electrical circuit viewpoint. A
general connection represents a formulation of making a new impedance from two given
impedances. The integral representation (19) shows that such a formulation can be described
as a weighed series connection of (infinite) weighed harmonic means. From this point of
view, the theory of operator connections can be regarded as a mathematical theory of electrical
circuits.

Definition 0.29. Let σ be a connection. The operator monotone function f in (16) is called the
representing function of σ. If μ is the measure corresponds to σ in Theorem 0.27, the measure
μψ−1 that takes a Borel set E in [0, ∞] to μ(ψ−1(E)) is called the representing measure of σ in the
Kubo-Ando’s theory. Here, ψ : [0, 1] → [0, ∞] is a homeomorphism t �→ t/(1 − t).

Since every connection σ has an integral representation (19), properties of weighed harmonic
means reflect properties of a general connection. Hence, every connection σ satisfies the
following properties for all A, B � 0, T ∈ B(H) and invertible X ∈ B(H):
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• transformer inequality: T∗(A σ B)T � (T∗AT) σ (T∗BT);
• congruence invariance: X∗(A σ B)X = (X∗AX) σ (X∗BX);
• concavity: (tA + (1 − t)B) σ (tA� + (1 − t)B�) � t(A σ A�) + (1 − t)(B σ B�) for t ∈ [0, 1].

Moreover, if A, B > 0,

A σ B = A1/2 f (A−1/2BA−1/2)A1/2 (20)

and, in general, for each A, B � 0,

A σ B = lim
�↓0

A� σ B� (21)

where A� ≡ A + �I and B� ≡ B + �I. These properties are useful tools for deriving operator
inequalities involving connections. The formulas (20) and (21) give a way for computing the
formula of connection from its representing function.

Example 0.30. 1. The left- and the right-trivial means have representing functions given by
t �→ 1 and t �→ t, respectively. The representing measures of the left- and the right-trivial
means are given respectively by δ0 and δ∞ where δx is the Dirac measure at x. So, the
α-weighed arithmetic mean has the representing function t �→ (1 − α) + αt and it has
(1 − α)δ0 + αδ∞ as the representing measure.

2. The geometric mean has the representing function t �→ t1/2.
3. The harmonic mean has the representing function t �→ 2t/(1 + t) while t �→ t/(1 + t)

corrsponds to the parallel sum.

Remark 0.31. The map σ �→ μ, where μ is the representing measure of σ, is not
order-preserving in general. Indeed, the representing measure of � is given by μ = (δ0 +
δ∞)/2 while the representing measure of ! is given by δ1. We have ! � � but δ1 � μ.

6. Operator means

According to [24], a (scalar) mean is a binary operation M on (0, ∞) such that M(s, t) lies
between s and t for any s, t > 0. For a connection, this property is equivalent to various
properties in the next theorem.

Theorem 0.32. The following are equivalent for a connection σ on B(H)+:

(i) σ satisfies the betweenness property, i.e. A � B ⇒ A � A σ B � B.
(ii) σ satisfies the fixed point property, i.e. A σ A = A for all A ∈ B(H)+.
(iii) σ is normalized, i.e. I σ I = I.
(iv) the representing function f of σ is normalized, i.e. f (1) = 1.
(v) the representing measure μ of σ is normalized, i.e. μ is a probability measure.

Proof. Clearly, (i) ⇒ (iii) ⇒ (iv). The implication (iii) ⇒ (ii) follows from the congruence
invariance and the continuity from above of σ. The monotonicity of σ is used to prove (ii) ⇒
(i). Since

I σ I =
∫

[0,1]
I !t I dμ(t) = μ([0, 1])I,
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we obtain that (iv) ⇒ (v) ⇒ (iii).

Definition 0.33. A mean is a connection satisfying one, and thus all, of the properties in the
previous theorem.

Hence, every mean in Kubo-Ando’s sense satisfies the desired properties (A1)–(A9) in Section
3. As a consequence of Theorem 0.32, a convex combination of means is a mean.

Theorem 0.34. Given a Hilbert space H, there exist affine bijections between any pair of the following
objects:

(i) the means on B(H)+,

(ii) the operator monotone functions f : R+ → R+ such that f (1) = 1,

(iii) the probability Borel measures on [0, 1].

Moreover, these correspondences between (i) and (ii) are order isomorphic. Hence, there exists an affine
order isomorphism between the means on the positive operators acting on different Hilbert spaces.

Proof. Follow from Theorems 0.27 and 0.32.

Example 0.35. The left- and right-trivial means, weighed arithmetic means, the geometric
mean and the harmonic mean are means. The parallel sum is not a mean since its representing
function is not normalized.

Example 0.36. The function t �→ tα is an operator monotone function on R+ for each α ∈ [0, 1]
by the Löwner-Heinz’s inequality. So it produces a mean, denoted by #α, on B(H)+. By the
direct computation,

s #α t = s1−αtα, (22)

i.e. #α is the α-weighed geometric mean on R+. So the α-weighed geometric mean on R+ is
really a Kubo-Ando mean. The α-weighed geometric mean on B(H)+ is defined to be the mean
corresponding to that mean on R+. Since tα has an integral expression

tα =
sin απ

π

∫ ∞

0

tλα−1

t + λ
dm(λ) (23)

(see [7]) where m denotes the Lebesgue measure, the representing measure of #α is given by

dμ(λ) =
sin απ

π

λα−1

λ + 1
dm(λ). (24)

Example 0.37. Consider the operator monotone function

t �→ t
(1 − α)t + α

, t � 0, α ∈ [0, 1].

The direct computation shows that

s !α t =
{
((1 − α)s−1 + αt−1)−1, s, t > 0;
0, otherwise,

(25)
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which is the α-weighed harmonic mean. We define the α-weighed harmonic mean on B(H)+ to
be the mean corresponding to this operator monotone function.

Example 0.38. Consider the operator monotone function f (t) = (t − 1)/ log t for t > 0, t �= 1,
f (0) ≡ 0 and f (1) ≡ 1. Then it gives rise to a mean, denoted by λ, on B(H)+. By the direct
computation,

s λ t =

⎧
⎨
⎩

s−t
log s−log t , s > 0, t > 0, s �= t;
s, s = t
0, otherwise,

(26)

i.e. λ is the logarithmic mean on R+. So the logarithmic mean on R+ is really a mean in
Kubo-Ando’s sense. The logarithmic mean on B(H)+ is defined to be the mean corresponding
to this operator monotone function.

Example 0.39. The map t �→ (tr + t1−r)/2 is operator monotone for any r ∈ [0, 1]. This
function produces a mean on B(H)+. The computation shows that

(s, t) �→ srt1−r + s1−rtr

2
.

However, the corresponding mean on B(H)+ is not given by the formula

(A, B) �→ ArB1−r + A1−rBr

2
(27)

since it is not a binary operation on B(H)+. In fact, the formula (27) is considered in [8], called
the Heinz mean of A and B.

Example 0.40. For each p ∈ [−1, 1] and α ∈ [0, 1], the map

t �→ [(1 − α) + αtp]1/p

is an operator monotone function on R+. Here, the case p = 0 is understood that we take
limit as p → 0. Then

s #p,α t = [(1 − α)sp + αtp]1/p. (28)

The corresponding mean on B(H)+ is called the quasi-arithmetic power mean with parameter
(p, α), defined for A > 0 and B � 0 by

A #p,α B = A1/2[(1 − α)I + α(A−1/2BA−1/2)p]1/p A1/2. (29)

The class of quasi-arithmetic power means contain many kinds of means: The mean #1,α is the
α-weighed arithmetic mean. The case #0,α is the α-weighed geometric mean. The case #−1,α is
the α-weighed harmonic mean. The mean #p,1/2 is the power mean or binomial mean of order p.
These means satisfy the property that

A #p,α B = B #p,1−α A. (30)

Moreover, they are interpolated in the sense that for all p, q, α ∈ [0, 1],

(A #r,p B) #r,α (A #r,q B) = A #r,(1−α)p+αq B. (31)
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Example 0.41. If σ1, σ2 are means such that σ1 � σ2, then there is a family of means that
interpolates between σ1 and σ2, namely, (1 − α)σ1 + ασ2 for all α ∈ [0, 1]. Note that the map
α �→ (1 − α)σ1 + ασ2 is increasing. For instance, the Heron mean with weight α ∈ [0, 1] is
defined to be hα = (1 − α) # + α�. This family is the linear interpolations between the
geometric mean and the arithmetic mean. The representing function of hα is given by

t �→ (1 − α)t1/2 +
α

2
(1 + t).

The case α = 2/3 is called the Heronian mean in the literature.

7. Applications to operator monotonicity and concavity
In this section, we generalize the matrix and operator monotonicity and concavity in the
literature (see e.g. [3, 9]) in such a way that the geometric mean, the harmonic mean or specific
operator means are replaced by general connections. Recall the following terminology. A
continuous function f : I → R is called an operator concave function if

f (tA + (1 − t)B) � t f (A) + (1 − t) f (B)

for any t ∈ [0, 1] and Hermitian operators A, B ∈ B(H) whose spectrums are contained in
the interval I and for all Hilbert spaces H. A well-known result is that a continuous function
f : R+ → R+ is operator monotone if and only if it is operator concave. Hence, the maps
t �→ tr and t �→ log t are operator concave for r ∈ [0, 1]. Let H and K be Hilbert spaces. A
map Φ : B(H) → B(K) is said to be positive if Φ(A) � 0 whenever A � 0. It is called unital if
Φ(I) = I. We say that a positive map Φ is strictly positive if Φ(A) > 0 when A > 0. A map Ψ
from a convex subset C of B(H)sa to B(K)sa is called concave if for each A, B ∈ C and t ∈ [0, 1],

Ψ(tA + (1 − t)B) � tΨ(A) + (1 − t)Ψ(B).

A map Ψ : B(H)sa → B(K)sa is called monotone if A � B assures Ψ(A) � Ψ(B). So, in
particular, the map A �→ Ar is monotone and concave on B(H)+ for each r ∈ [0, 1]. The map
A �→ log A is monotone and concave on B(H)++.

Note first that, from the previous section, the quasi-arithmetic power mean (A, B) �→ A #p,α B
is monotone and concave for any p ∈ [−1, 1] and α ∈ [0, 1]. In particular, the following are
monotone and concave:

(i) any weighed arithmetic mean,

(ii) any weighed geometric mean,

(iii) any weighed harmonic mean,

(iv) the logarithmic mean,

(v) any weighed power mean of order p ∈ [−1, 1].

Recall the following lemma from [9].

Lemma 0.42 (Choi’s inequality). If Φ : B(H) → B(K) is linear, strictly positive and unital, then
for every A > 0, Φ(A)−1 � Φ(A−1).
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Proposition 0.43. If Φ : B(H) → B(K) is linear and strictly positive, then for any A, B > 0

Φ(A)Φ(B)−1Φ(A) � Φ(AB−1 A). (32)

Proof. For each X ∈ B(H), set Ψ(X) = Φ(A)−1/2Φ(A1/2XA1/2)Φ(A)−1/2. Then Ψ is a unital
strictly positive linear map. So, by Choi’s inequality, Ψ(A)−1 � Ψ(A−1) for all A > 0. For
each A, B > 0, we have by Lemma 0.42 that

Φ(A)1/2Φ(B)−1Φ(A)1/2 = Ψ(A−1/2BA−1/2)−1

� Ψ
(
(A−1/2BA−1/2)−1

)

= Φ(A)−1/2Φ(AB−1 A)Φ(A)−1/2.

So, we have the claim.

Theorem 0.44. If Φ : B(H) → B(K) is a positive linear map which is norm-continuous, then for
any connection σ on B(K)+ and for each A, B > 0,

Φ(A σ B) � Φ(A) σ Φ(B). (33)

If, addition, Φ is strongly continuous, then (33) holds for any A, B � 0.

Proof. First, consider A, B > 0. Assume that Φ is strictly positive. For each X ∈ B(H), set

Ψ(X) = Φ(B)−1/2Φ(B1/2XB1/2)Φ(B)−1/2.

Then Ψ is a unital strictly positive linear map. So, by Choi’s inequality, Ψ(C)−1 � Ψ(C−1) for
all C > 0. For each t ∈ [0, 1], put Xt = B−1/2(A !t B)B−1/2 > 0. We obtain from the previous
proposition that

Φ(A !t B) = Φ(B)1/2Ψ(Xt)Φ(B)1/2

� Φ(B)1/2[Ψ(X−1
t )]−1Φ(B)1/2

= Φ(B)[Φ(B((1 − t)A−1 + tB−1)B)]−1Φ(B)

= Φ(B)[(1 − t)Φ(BA−1B) + tΦ(B)]−1Φ(B)

� Φ(B)[(1 − t)Φ(B)Φ(A)−1Φ(B) + tΦ(B)]−1Φ(B)

= Φ(A) !t Φ(B).

For general case of Φ, consider the family Φ�(A) = Φ(A) + �I where � > 0. Since the map
(A, B) �→ A !t B = [(1 − t)A−1 + tB−1]−1 is norm-continuous, we arrive at

Φ(A !t B) � Φ(A) !t Φ(B).
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For each connection σ, since Φ is a bounded linear operator, we have

Φ(A σ B) = Φ(
∫

[0,1]
A !t B dμ(t)) =

∫

[0,1]
Φ(A !t B) dμ(t)

�
∫

[0,1]
Φ(A) !t Φ(B) dμ(t) = Φ(A) σ Φ(B).

Suppose further that Φ is strongly continuous. Then, for each A, B � 0,

Φ(A σ B) = Φ(lim
�↓0

(A + �I) σ (B + �I)) = lim
�↓0

Φ((A + �I) σ (B + �I))

� lim
�↓0

Φ(A + �I) σ Φ(B + �I) = Φ(A) σ Φ(B).

The proof is complete.

As a special case, if Φ : Mn(C) → Mn(C) is a positive linear map, then for any connection σ
and for any positive semidefinite matrices A, B ∈ Mn(C), we have

Φ(AσB) � Φ(A) σ Φ(B).

In particular, Φ(A) #p,α Φ(B) � Φ(A) #p,α Φ(B) for any p ∈ [−1, 1] and α ∈ [0, 1].

Theorem 0.45. If Φ1, Φ2 : B(H)+ → B(K)+ are concave, then the map

(A1, A2) �→ Φ1(A1) σ Φ2(A2) (34)

is concave for any connection σ on B(K)+.

Proof. Let A1, A�
1, A2, A�

2 � 0 and t ∈ [0, 1]. The concavity of Φ1 and Φ2 means that for i = 1, 2

Φi(tAi + (1 − t)A�
i) � tΦi(Ai) + (1 − t)Φi(A�

i).

It follows from the monotonicity and concavity of σ that

Φ1(tA1 + (1 − t)A�
1) σ Φ2(tA2 + (1 − t)A�

2)

� [tΦ1(A1) + (1 − t)Φ1(A�
1)] σ [tΦ2(A2) + (1 − t)Φ2(A�

2)]

� t[Φ1(A1) σ Φ2(A2)] + (1 − t)[Φ1(A1) σ Φ2(A2)].

This shows the concavity of the map (A1, A2) �→ Φ1(A1) σ Φ2(A2) .

In particular, if Φ1 and Φ2 are concave, then so is (A, B) �→ Φ1(A) #p,αΦ2(B) for p ∈ [−1, 1]
and α ∈ [0, 1].

Corollary 0.46. Let σ be a connection. Then, for any operator monotone functions f , g : R+ → R+,
the map (A, B) �→ f (A) σ g(B) is concave. In particular,

(1) the map (A, B) �→ Ar σ Bs is concave on B(H)+ for any r, s ∈ [0, 1],

(2) the map (A, B) �→ (log A) σ (log B) is concave on B(H)++.
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Theorem 0.47. If Φ1, Φ2 : B(H)+ → B(K)+ are monotone, then the map

(A1, A2) �→ Φ1(A1) σ Φ2(A2) (35)

is monotone for any connection σ on B(K)+.

Proof. Let A1 � A�
1 and A2 � A�

2. Then Φ1(A1) � Φ1(A�
1) and Φ2(A2) � Φ2(A�

2) by
the monotonicity of Φ1 and Φ2. Now, the monotonicity of σ forces Φ1(A1) σ Φ2(A2) �
Φ1(A�

1) σ Φ2(A�
2).

In particular, if Φ1 and Φ2 are monotone, then so is (A, B) �→ Φ1(A) #p,αΦ2(B) for p ∈ [−1, 1]
and α ∈ [0, 1].

Corollary 0.48. Let σ be a connection. Then, for any operator monotone functions f , g : R+ → R+,
the map (A, B) �→ f (A) σ g(B) is monotone. In particular,

(1) the map (A, B) �→ Ar σ Bs is monotone on B(H)+ for any r, s ∈ [0, 1],

(2) the map (A, B) �→ (log A) σ (log B) is monotone on B(H)++.

Corollary 0.49. Let σ be a connection on B(H)+. If Φ1, Φ2 : B(H)+ → B(H)+ is monotone and
strongly continuous, then the map

(A, B) �→ Φ1(A) σ Φ2(B) (36)

is a connection on B(H)+. Hence, the map

(A, B) �→ f (A) σ g(B) (37)

is a connection for any operator monotone functions f , g : R+ → R+.

Proof. The monotonicity of this map follows from the previous result. It is easy to see that this
map satisfies the transformer inequality. Since Φ1 and Φ2 strongly continuous, this binary
operation satisfies the (separate or joint) continuity from above. The last statement follows
from the fact that if An ↓ A, then Sp(An) ⊆ [0, �A1�] for all n and hence f (An) → f (A).

8. Applications to operator inequalities
In this section, we apply Kubo-Ando’s theory in order to get simple proofs of many classical
inequalities in the context of operators.

Theorem 0.50 (AM-LM-GM-HM inequalities). For A, B � 0, we have

A ! B � A # B � A λ B � A� B. (38)

Proof. It is easy to see that, for each t > 0, t �= 1,

2t
1 + t

� t1/2 � t − 1
log t

� 1 + t
2

.

Now, we apply the order isomorphism which converts inequalities of operator monotone
functions to inequalities of the associated operator connections.
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Theorem 0.47. If Φ1, Φ2 : B(H)+ → B(K)+ are monotone, then the map

(A1, A2) �→ Φ1(A1) σ Φ2(A2) (35)

is monotone for any connection σ on B(K)+.

Proof. Let A1 � A�
1 and A2 � A�

2. Then Φ1(A1) � Φ1(A�
1) and Φ2(A2) � Φ2(A�

2) by
the monotonicity of Φ1 and Φ2. Now, the monotonicity of σ forces Φ1(A1) σ Φ2(A2) �
Φ1(A�

1) σ Φ2(A�
2).
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Theorem 0.51 (Weighed AM-GM-HM inequalities). For A, B � 0 and α ∈ [0, 1], we have

A !α B � A #α B � A�α B. (39)

Proof. Apply the order isomorphism to the following inequalities:

t
(1 − α)t + α

� tα � 1 − α + αt, t � 0.

The next two theorems are given in [21].

Theorem 0.52. For each i = 1, · · · , n, let Ai, Bi ∈ B(H)+. Then for each connection σ

n

∑
i=1

(Ai σ Bi) �
n

∑
i=1

Ai σ
n

∑
i=1

Bi. (40)

Proof. Use the concavity of σ together with the induction.

By replacing σ with appropriate connections, we get some interesting inequalities.

(1) Cauchy-Schwarz’s inequality: For Ai, Bi ∈ B(H)sa,

n

∑
i=1

A2
i # B2

i �
n

∑
i=1

A2
i #

n

∑
i=1

B2
i . (41)

(2) Hölder’s inequality: For Ai, Bi ∈ B(H)+ and p, q > 0 such that 1/p + 1/q = 1,

n

∑
i=1

Ap
i #1/p Bq

i �
n

∑
i=1

Ap
i #1/p

n

∑
i=1

Bq
i . (42)

(3) Minkowski’s inequality: For Ai, Bi ∈ B(H)++,

(
n

∑
i=1

(Ai + Bi)
−1

)−1

�
(

n

∑
i=1

A−1
i

)−1

+

(
n

∑
i=1

B−1
i

)−1

. (43)

Theorem 0.53. Let Ai, Bi ∈ B(H)+, i = 1, · · · , n, be such that

A1 − A2 − · · · − An � 0 and B1 − B2 − · · · − Bn � 0.

Then

A1 σ B1 −
n

∑
i=2

Ai σ Bi �
(

A1 −
n

∑
i=2

Ai

)
σ

(
B1 −

n

∑
i=2

Bi

)
. (44)

Proof. Substitute A1 to A1 − A2 − · · · − An and B1 to B1 − B2 − · · · − Bn in (40).
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Here are consequences.

(1) Aczél’s inequality: For Ai, Bi ∈ B(H)sa, if

A2
1 − A2

2 − · · · − A2
n � 0 and B2

1 − B2
2 − · · · − B2

n � 0,

then

A2
1 # B2

1 −
n

∑
i=2

A2
i # B2

i �
(

A2
1 −

n

∑
i=2

A2
i

)
#

(
B2

1 −
n

∑
i=2

B2
i

)
. (45)

(2) Popoviciu’s inequality: For Ai, Bi ∈ B(H)+ and p, q > 0 such that 1/p + 1/q = 1, if
p, q > 0 are such that 1/p + 1/q = 1 and

Ap
1 − Ap

2 − · · · − Ap
n � 0 and Bq

1 − Bq
2 − · · · − Bq

n � 0,

then

Ap
1 #1/p Bq

1 −
n

∑
i=2

Ap
i #1/p Bq

i �
(

Ap
1 −

n

∑
i=2

Ap
i

)
#1/p

(
Bq

1 −
n

∑
i=2

Bq
i

)
. (46)

(3) Bellman’s inequality: For Ai, Bi ∈ B(H)++, if

A−1
1 − A−1

2 − · · · − A−1
n > 0 and B−1

1 − B−1
2 − · · · − B−1

n > 0,

then
[
(A−1

1 + B−1
1 )−

n

∑
i=2

(Ai + Bi)
−1

]−1

�
(

A−1
1 −

n

∑
i=2

A−1
i

)−1

+

(
B−1

1 −
n

∑
i=2

B−1
i

)−1

. (47)

The mean-theoretic approach can be used to prove the famous Furuta’s inequality as follows.
We cite [14] for the proof.

Theorem 0.54 (Furuta’s inequality). For A � B � 0, we have

(Br ApBr)1/q � B(p+2r)/q (48)

A(p+2r)/q � (ArBp Ar)1/q (49)

where r � 0, p � 0, q � 1 and (1 + 2r)q � p + 2r.

Proof. By the continuity argument, assume that A, B > 0. Note that (48) and (49) are
equivalent. Indeed, if (48) holds, then (49) comes from applying (48) to A−1 � B−1 and
taking inverse on both sides. To prove (48), first consider the case 0 � p � 1. We have
Bp+2r = BrBpBr � Br ApBr and the Löwner-Heinz’s inequality (LH) implies the desired result.
Now, consider the case p � 1 and q = (p + 2r)/(1 + 2r), since (48) for q > (p + 2r)/(1 + 2r)
can be obtained by (LH). Let f (t) = t1/q and let σ be the associated connection (in fact,
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σ = #1/q). Must show that, for any r � 0,

B−2r σ Ap � B. (50)

For 0 � r � 1
2 , we have by (LH) that A2r � B2r and

B−2r σ Ap � A−2r σ Ap = A−2r(1−1/q)Ap/q = A � B = B−2r σ Bp.

Now, set s = 2r + 1
2 and q1 = (p + 2s)/(1 + 2s) � 1. Let f1(t) = t1/q1 and consider the

associated connection σ1. The previous step, the monotonicity and the congruence invariance
of connections imply that

B−2s σ1 Ap = B−r[B−(2r+1) σ1 (Br ApBr)]B−r

� B−r[(Br ApBr)−1/q1 σ1 (Br ApBr)]B−r

= B−r(Br ApBr)1/qB−r

� B−rB1+2rB−r

= B.

Note that the above result holds for A, B � 0 via the continuity of a connection. The desired
equation (50) holds for all r � 0 by repeating this process.
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1. Introduction
The self-adjoint operators on Hilbert spaces with their numerous applications play an
important part in the operator theory. The bounds research for self-adjoint operators is a very
useful area of this theory. There is no better inequality in bounds examination than Jensen’s
inequality. It is an extensively used inequality in various fields of mathematics.

Let I be a real interval of any type. A continuous function f : I → R is said to be operator
convex if

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) (1)

holds for each λ ∈ [0, 1] and every pair of self-adjoint operators x and y (acting) on an infinite
dimensional Hilbert space H with spectra in I (the ordering is defined by setting x ≤ y if y− x
is positive semi-definite).

Let f be an operator convex function defined on an interval I. Ch. Davis [1] proved1 a Schwarz
inequality

f (φ(x)) ≤ φ ( f (x)) (2)

where φ : A → B(K) is a unital completely positive linear mapping from a C∗-algebra A to
linear operators on a Hilbert space K, and x is a self-adjoint element in A with spectrum in I.
Subsequently M. D. Choi [2] noted that it is enough to assume that φ is unital and positive.
In fact, the restriction of φ to the commutative C∗-algebra generated by x is automatically
completely positive by a theorem of Stinespring.

F. Hansen and G. K. Pedersen [3] proved a Jensen type inequality

f

(
n

∑
i=1

a∗i xiai

)
≤

n

∑
i=1

a∗i f (xi)ai (3)

1 There is small typo in the proof. Davis states that φ by Stinespring’s theorem can be written on the form φ(x) = Pρ(x)P
where ρ is a ∗-homomorphism to B(H) and P is a projection on H. In fact, H may be embedded in a Hilbert space K on
which ρ and P acts. The theorem then follows by the calculation f (φ(x)) = f (Pρ(x)P) ≤ P f (ρ(x))P = Pρ( f (x)P =
φ( f (x)), where the pinching inequality, proved by Davis in the same paper, is applied.

©2012 Mićić and Pečarić, licensee InTech. This is an open access chapter distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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for operator convex functions f defined on an interval I = [0, α) (with α ≤ ∞ and f (0) ≤
0) and self-adjoint operators x1, . . . , xn with spectra in I assuming that ∑n

i=1 a∗i ai = 1. The
restriction on the interval and the requirement f (0) ≤ 0 was subsequently removed by B.
Mond and J. Pečarić in [4], cf. also [5].

The inequality (3) is in fact just a reformulation of (2) although this was not noticed at the
time. It is nevertheless important to note that the proof given in [3] and thus the statement
of the theorem, when restricted to n × n matrices, holds for the much richer class of 2n ×
2n matrix convex functions. Hansen and Pedersen used (3) to obtain elementary operations
on functions, which leave invariant the class of operator monotone functions. These results
then served as the basis for a new proof of Löwner’s theorem applying convexity theory and
Krein-Milman’s theorem.

B. Mond and J. Pečarić [6] proved the inequality

f

(
n

∑
i=1

wiφi(xi)

)
≤

n

∑
i=1

wiφi( f (xi)) (4)

for operator convex functions f defined on an interval I, where φi : B(H) → B(K) are unital
positive linear mappings, x1, . . . , xn are self-adjoint operators with spectra in I and w1, . . . , wn
are are non-negative real numbers with sum one.

Also, B. Mond, J. Pečarić, T. Furuta et al. [6–11] observed conversed of some special case
of Jensen’s inequality. So in [10] presented the following generalized converse of a Schwarz
inequality (2)

F [φ ( f (A)) , g (φ(A))] ≤ max
m≤t≤M

F
[

f (m) +
f (M)− f (m)

M − m
(t − m), g(t)

]
1ñ (5)

for convex functions f defined on an interval [m, M], m < M, where g is a real valued
continuous function on [m, M], F(u, v) is a real valued function defined on U × V, matrix
non-decreasing in u, U ⊃ f [m, M], V ⊃ g[m, M], φ : Hn → Hñ is a unital positive linear
mapping and A is a Hermitian matrix with spectrum contained in [m, M].

There are a lot of new research on the classical Jensen inequality (4) and its reverse inequalities.
For example, J.I. Fujii et all. in [12, 13] expressed these inequalities by externally dividing
points.

2. Classic results

In this section we present a form of Jensen’s inequality which contains (2), (3) and (4) as special
cases. Since the inequality in (4) was the motivating step for obtaining converses of Jensen’s
inequality using the so-called Mond-Pečarić method, we also give some results pertaining to
converse inequalities in the new formulation.

We recall some definitions. Let T be a locally compact Hausdorff space and let A be a
C∗-algebra of operators on some Hilbert space H. We say that a field (xt)t∈T of operators
in A is continuous if the function t �→ xt is norm continuous on T. If in addition μ is a Radon
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non-decreasing in u, U ⊃ f [m, M], V ⊃ g[m, M], φ : Hn → Hñ is a unital positive linear
mapping and A is a Hermitian matrix with spectrum contained in [m, M].

There are a lot of new research on the classical Jensen inequality (4) and its reverse inequalities.
For example, J.I. Fujii et all. in [12, 13] expressed these inequalities by externally dividing
points.

2. Classic results

In this section we present a form of Jensen’s inequality which contains (2), (3) and (4) as special
cases. Since the inequality in (4) was the motivating step for obtaining converses of Jensen’s
inequality using the so-called Mond-Pečarić method, we also give some results pertaining to
converse inequalities in the new formulation.

We recall some definitions. Let T be a locally compact Hausdorff space and let A be a
C∗-algebra of operators on some Hilbert space H. We say that a field (xt)t∈T of operators
in A is continuous if the function t �→ xt is norm continuous on T. If in addition μ is a Radon
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measure on T and the function t �→ �xt� is integrable, then we can form the Bochner integral∫
T xt dμ(t), which is the unique element in A such that

ϕ

(∫

T
xt dμ(t)

)
=

∫

T
ϕ(xt) dμ(t)

for every linear functional ϕ in the norm dual A∗.

Assume furthermore that there is a field (φt)t∈T of positive linear mappings φt : A → B
from A to another C∗-algebra B of operators on a Hilbert space K. We recall that a linear
mapping φt : A → B is said to be a positive mapping if φt(xt) ≥ 0 for all xt ≥ 0. We say
that such a field is continuous if the function t �→ φt(x) is continuous for every x ∈ A. Let
the C∗-algebras include the identity operators and the function t �→ φt(1H) be integrable with∫

T φt(1H) dμ(t) = k1K for some positive scalar k. Specially, if
∫

T φt(1H) dμ(t) = 1K , we say
that a field (φt)t∈T is unital.

Let B(H) be the C∗-algebra of all bounded linear operators on a Hilbert space H. We define
bounds of an operator x ∈ B(H) by

mx = inf
�ξ�=1

�xξ, ξ� and Mx = sup
�ξ�=1

�xξ, ξ� (6)

for ξ ∈ H. If Sp(x) denotes the spectrum of x, then Sp(x) ⊆ [mx, Mx].

For an operator x ∈ B(H) we define operators |x|, x+, x− by

|x| = (x∗x)1/2, x+ = (|x|+ x)/2, x− = (|x| − x)/2

Obviously, if x is self-adjoint, then |x| = (x2)1/2 and x+, x− ≥ 0 (called positive and negative
parts of x = x+ − x−).

2.1. Jensen’s inequality with operator convexity

Firstly, we give a general formulation of Jensen’s operator inequality for a unital field of
positive linear mappings (see [14]).

Theorem 1. Let f : I → R be an operator convex function defined on an interval I and let A and
B be unital C∗-algebras acting on a Hilbert space H and K respectively. If (φt)t∈T is a unital field of
positive linear mappings φt : A → B defined on a locally compact Hausdorff space T with a bounded
Radon measure μ, then the inequality

f
(∫

T
φt(xt) dμ(t)

)
≤

∫

T
φt( f (xt)) dμ(t) (7)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra contained
in I.

Proof. We first note that the function t �→ φt(xt) ∈ B is continuous and bounded, hence
integrable with respect to the bounded Radon measure μ. Furthermore, the integral is an
element in the multiplier algebra M(B) acting on K. We may organize the set CB(T,A) of
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bounded continuous functions on T with values in A as a normed involutive algebra by
applying the point-wise operations and setting

�(yt)t∈T� = sup
t∈T

�yt� (yt)t∈T ∈ CB(T,A)

and it is not difficult to verify that the norm is already complete and satisfy the C∗-identity.
In fact, this is a standard construction in C∗-algebra theory. It follows that f ((xt)t∈T) =
( f (xt))t∈T . We then consider the mapping

π : CB(T,A) → M(B) ⊆ B(K)

defined by setting

π ((xt)t∈T) =
∫

T
φt(xt) dμ(t)

and note that it is a unital positive linear map. Setting x = (xt)t∈T ∈ CB(T,A), we use
inequality (2) to obtain

f (π ((xt)t∈T)) = f (π(x)) ≤ π( f (x)) = π
(

f
(
(xt)t∈T

))
= π

((
f (xt)

)
t∈T

)

but this is just the statement of the theorem.

2.2. Converses of Jensen’s inequality

In the present context we may obtain results of the Li-Mathias type cf. [15, Chapter 3] and
[16, 17].

Theorem 2. Let T be a locally compact Hausdorff space equipped with a bounded Radon measure
μ. Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a unital C∗-algebra A with
spectra in [m, M], m < M. Furthermore, let (φt)t∈T be a field of positive linear mappings φt : A →
B from A to another unital C∗−algebra B, such that the function t �→ φt(1H) is integrable with∫

T φt(1H) dμ(t) = k1K for some positive scalar k. Let mx and Mx, mx ≤ Mx, be the bounds of the
self-adjoint operator x =

∫
T φt(xt) dμ(t) and f : [m, M] → R, g : [mx, Mx] → R, F : U × V → R

be functions such that (k f ) ([m, M]) ⊂ U, g ([mx, Mx]) ⊂ V and F is bounded. If F is operator
monotone in the first variable, then

inf
mx≤z≤Mx

F
[

k · h1

(
1
k

z
)

, g(z)
]

1K ≤ F
[∫

T
φt ( f (xt)) dμ(t), g

(∫

T
φt(xt)dμ(t)

)]

≤ sup
mx≤z≤Mx

F
[

k · h2

(
1
k

z
)

, g(z)
]

1K

(8)

holds for every operator convex function h1 on [m, M] such that h1 ≤ f and for every operator concave
function h2 on [m, M] such that h2 ≥ f .

Proof. We prove only RHS of (8). Let h2 be operator concave function on [m, M] such that
f (z) ≤ h2(z) for every z ∈ [m, M]. By using the functional calculus, it follows that f (xt) ≤
h2(xt) for every t ∈ T. Applying the positive linear mappings φt and integrating, we obtain

∫

T
φt ( f (xt)) dμ(t) ≤

∫

T
φt (h2(xt)) dμ(t)
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Furthermore, replacing φt by 1
k φt in Theorem 1, we obtain

1
k

∫

T
φt (h2(xt)) dμ(t) ≤

h2

(
1
k

∫

T
φt(xt) dμ(t)

)
, which gives

∫

T
φt ( f (xt)) dμ(t) ≤ k · h2

(
1
k

∫

T
φt(xt) dμ(t)

)
. Since

mx 1K ≤ ∫
T φt(xt)dμ(t) ≤ Mx 1K , then using operator monotonicity of F(·, v) we obtain

F
[∫

T
φt ( f (xt)) dμ(t), g

(∫

T
φt(xt)dμ(t)

)]
(9)

≤ F
[

k · h2

(
1
k

∫

T
φt(xt) dμ(t)

)
, g

(∫

T
φt(xt)dμ(t)

)]
≤ sup

mx≤z≤Mx

F
[

k · h2

(
1
k

z
)

, g(z)
]

1K

Applying RHS of (8) for a convex function f (or LHS of (8) for a concave function f ) we obtain
the following generalization of (5).

Theorem 3. Let (xt)t∈T, mx, Mx and (φt)t∈T be as in Theorem 2. Let f : [m, M] → R, g :
[mx, Mx] → R, F : U × V → R be functions such that (k f ) ([m, M]) ⊂ U, g ([mx, Mx]) ⊂ V and
F is bounded. If F is operator monotone in the first variable and f is convex on the interval [m, M],
then

F
[∫

T
φt ( f (xt)) dμ(t), g

(∫

T
φt(xt)dμ(t)

)]

≤ sup
mx≤z≤Mx

F
[

Mk − z
M − m

f (m) +
z − km
M − m

f (M), g(z)
]

1K

(10)

In the dual case (when f is concave) the opposite inequalities hold in (10) with inf instead of sup.

Proof. We prove only the convex case. For convex f the inequality f (z) ≤ M−z
M−m f (m) +

z−m
M−m f (M) holds for every z ∈ [m, M]. Thus, by putting h2(z) = M−z

M−m f (m) + z−m
M−m f (M)

in (9) we obtain (10).

Numerous applications of the previous theorem can be given (see [15]). Applying Theorem 3
for the function F(u, v) = u − αv and k = 1, we obtain the following generalization of [15,
Theorem 2.4].

Corollary 4. Let (xt)t∈T, mx, Mx be as in Theorem 2 and (φt)t∈T be a unital field of positive linear
mappings φt : A → B. If f : [m, M] → R is convex on the interval [m, M], m < M, and g :
[m, M] → R, then for any α ∈ R

∫

T
φt ( f (xt)) dμ(t) ≤ α g

(∫

T
φt(xt)dμ(t)

)
+ C1K (11)

where

C = max
mx≤z≤Mx

{
M − z
M − m

f (m) +
z − m
M − m

f (M)− αg(z)
}

≤ max
m≤z≤M

{
M − z
M − m

f (m) +
z − m
M − m

f (M)− αg(z)
}
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If furthermore αg is strictly convex differentiable, then the constant C ≡ C(m, M, f , g, α) can be
written more precisely as

C =
M − z0
M − m

f (m) +
z0 − m
M − m

f (M)− αg(z0)

where

z0 =

⎧
⎪⎪⎨
⎪⎪⎩

g�−1
�

f (M)− f (m)
α(M−m)

�
if αg�(mx) ≤ f (M)− f (m)

M−m ≤ αg�(Mx)

mx if αg�(mx) ≥ f (M)− f (m)
M−m

Mx if αg�(Mx) ≤ f (M)− f (m)
M−m

In the dual case (when f is concave and αg is strictly concave differentiable) the opposite inequalities
hold in (11) with min instead of max with the opposite condition while determining z0.

3. Inequalities with conditions on spectra
In this section we present Jensens’s operator inequality for real valued continuous convex
functions with conditions on the spectra of the operators. A discrete version of this result is
given in [18]. Also, we obtain generalized converses of Jensen’s inequality under the same
conditions.

Operator convexity plays an essential role in (2). In fact, the inequality (2) will be false if
we replace an operator convex function by a general convex function. For example, M.D.
Choi in [2, Remark 2.6] considered the function f (t) = t4 which is convex but not operator
convex. He demonstrated that it is sufficient to put dimH = 3, so we have the matrix case as
follows. Let Φ : M3(C) → M2(C) be the contraction mapping Φ((aij)1≤i,j≤3) = (aij)1≤i,j≤2. If

A =

⎛
⎝

1 0 1
0 0 1
1 1 1

⎞
⎠ , then Φ(A)4 =

�
1 0
0 0

�
�≤

�
9 5
5 3

�
= Φ(A4) and no relation between Φ(A)4 and

Φ(A4) under the operator order.

Example 5. It appears that the inequality (7) will be false if we replace the operator convex function
by a general convex function. We give a small example for the matrix cases and T = {1, 2}. We
define mappings Φ1, Φ2 : M3(C) → M2(C) by Φ1((aij)1≤i,j≤3) =

1
2 (aij)1≤i,j≤2, Φ2 = Φ1. Then

Φ1(I3) + Φ2(I3) = I2.

I) If

X1 = 2

⎛
⎝

1 0 1
0 0 1
1 1 1

⎞
⎠ and X2 = 2

⎛
⎝

1 0 0
0 0 0
0 0 0

⎞
⎠

then

(Φ1(X1) + Φ2(X2))
4 =

�
16 0
0 0

�
�≤

�
80 40
40 24

�
= Φ1

�
X4

1

�
+ Φ2

�
X4

2

�

Given the above, there is no relation between (Φ1(X1) + Φ2(X2))
4 and Φ1

�
X4

1
�
+ Φ2

�
X4

2
�

under the operator order. We observe that in the above case the following stands X = Φ1(X1) +

Φ2(X2) =

�
2 0
0 0

�
and [mx, Mx] = [0, 2], [m1, M1] ⊂ [−1.60388, 4.49396], [m2, M2] = [0, 2],

i.e.
(mx, Mx) ⊂ [m1, M1] ∪ [m2, M2]
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(see Fig. 1.a).

Figure 1. Spectral conditions for a convex function f

II) If

X1 =

⎛
⎝
−14 0 1

0 −2 −1
1 −1 −1

⎞
⎠ and X2 =

⎛
⎝

15 0 0
0 2 0
0 0 15

⎞
⎠

then

(Φ1(X1) + Φ2(X2))
4 =

� 1
16 0
0 0

�
<

�
89660 −247
−247 51

�
= Φ1

�
X4

1

�
+ Φ2

�
X4

2

�

So we have that an inequality of type (7) now is valid. In the above case the following stands

X = Φ1(X1) + Φ2(X2) =

� 1
2 0
0 0

�
and [mx, Mx] = [0, 0.5], [m1, M1] ⊂ [−14.077,−0.328566],

[m2, M2] = [2, 15], i.e.

(mx, Mx) ∩ [m1, M1] = ∅ and (mx, Mx) ∩ [m2, M2] = ∅

(see Fig. 1.b).

3.1. Jensen’s inequality without operator convexity

It is no coincidence that the inequality (7) is valid in Example 18-II). In the following theorem
we prove a general result when Jensen’s operator inequality (7) holds for convex functions.

Theorem 6. Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a unital C∗-algebra
A defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ. Let mt
and Mt, mt ≤ Mt, be the bounds of xt, t ∈ T. Let (φt)t∈T be a unital field of positive linear mappings
φt : A → B from A to another unital C∗−algebra B. If

(mx, Mx) ∩ [mt, Mt] = ∅, t ∈ T

where mx and Mx, mx ≤ Mx, are the bounds of the self-adjoint operator x =
�

T φt(xt) dμ(t), then

f
��

T
φt(xt) dμ(t)

�
≤

�

T
φt( f (xt)) dμ(t) (12)

holds for every continuous convex function f : I → R provided that the interval I contains all mt, Mt.

If f : I → R is concave, then the reverse inequality is valid in (12).
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Proof. We prove only the case when f is a convex function. If we denote m = inf
t∈T

{mt}
and M = sup

t∈T
{Mt}, then [m, M] ⊆ I and m1H ≤ At ≤ M1H , t ∈ T. It follows

m1K ≤ ∫
T φt(xt) dμ(t) ≤ M1K . Therefore [mx, Mx] ⊆ [m, M] ⊆ I.

a) Let mx < Mx. Since f is convex on [mx, Mx], then

f (z) ≤ Mx − z
Mx − mx

f (mx) +
z − mx

Mx − mx
f (Mx), z ∈ [mx, Mx] (13)

but since f is convex on [mt, Mt] and since (mx, Mx) ∩ [mt, Mt] = ∅, then

f (z) ≥ Mx − z
Mx − mx

f (mx) +
z − mx

Mx − mx
f (Mx), z ∈ [mt, Mt], t ∈ T (14)

Since mx1K ≤ ∫
T φt(xt) dμ(t) ≤ Mx1K , then by using functional calculus, it follows from (13)

f
(∫

T
φt(xt) dμ(t)

)
≤ Mx1K − ∫

T φt(xt) dμ(t)
Mx − mx

f (mx) +

∫
T φt(xt) dμ(t)− mx1K

Mx − mx
f (Mx) (15)

On the other hand, since mt1H ≤ xt ≤ Mt1H , t ∈ T, then by using functional calculus, it
follows from (14)

f (xt) ≥ Mx1H − xt
Mx − mx

f (mx) +
xt − mx1H
Mx − mx

f (Mx), t ∈ T

Applying a positive linear mapping φt and summing, we obtain

∫

T
φt ( f (xt)) dμ(t) ≥ Mx1K − ∫

T φt(xt) dμ(t)
Mx − mx

f (mx) +

∫
T φt(xt) dμ(t)− mx1K

Mx − mx
f (Mx) (16)

since
∫

T φt(1H) dμ(t) = 1K . Combining the two inequalities (15) and (16), we have the desired
inequality (12).

b) Let mx = Mx. Since f is convex on [m, M], we have

f (z) ≥ f (mx) + l(mx)(z − mx) for every z ∈ [m, M] (17)

where l is the subdifferential of f . Since m1H ≤ xt ≤ M1H , t ∈ T, then by using functional
calculus, applying a positive linear mapping φt and summing, we obtain from (17)

∫

T
φt ( f (xt)) dμ(t) ≥ f (mx)1K + l(mx)

(∫

T
φt(xt) dμ(t)− mx1K

)

Since mx1K =
∫

T φt(xt) dμ(t), it follows
∫

T
φt ( f (xt)) dμ(t) ≥ f (mx)1K = f

(∫

T
φt(xt) dμ(t)

)

which is the desired inequality (12).

Putting φt(y) = aty for every y ∈ A, where at ≥ 0 is a real number, we obtain the following
obvious corollary of Theorem 6.
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Corollary 7. Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a unital C∗-algebra
A defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ. Let mt
and Mt, mt ≤ Mt, be the bounds of xt, t ∈ T. Let (at)t∈T be a continuous field of nonnegative real
numbers such that

∫
T at dμ(t) = 1. If

(mx, Mx) ∩ [mt, Mt] = ∅, t ∈ T

where mx and Mx, mx ≤ Mx, are the bounds of the self-adjoint operator x =
∫

T atxt dμ(t), then

f
(∫

T
atxt dμ(t)

)
≤

∫

T
at f (xt) dμ(t) (18)

holds for every continuous convex function f : I → R provided that the interval I contains all mt, Mt.

3.2. Converses of Jensen’s inequality with conditions on spectra

Using the condition on spectra we obtain the following extension of Theorem 3.

Theorem 8. Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a unital C∗-algebra
A defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ.
Furthermore, let (φt)t∈T be a field of positive linear mappings φt : A → B from A to another unital
C∗−algebra B, such that the function t �→ φt(1H) is integrable with

∫
T φt(1H) dμ(t) = k1K for some

positive scalar k. Let mt and Mt, mt ≤ Mt, be the bounds of xt, t ∈ T, m = inf
t∈T

{mt}, M = sup
t∈T

{Mt},

and mx and Mx, mx < Mx, be the bounds of x =
∫

T φt(xt) dμ(t). If

(mx, Mx) ∩ [mt, Mt] = ∅, t ∈ T

and f : [m, M] → R, g : [mx, Mx] → R, F : U × V → R are functions such that (k f ) ([m, M]) ⊂
U, g ([mx, Mx]) ⊂ V, f is convex, F is bounded and operator monotone in the first variable, then

inf
mx≤z≤Mx

F
[

Mxk − z
Mx − mx

f (mx) +
z − kmx

Mx − mx
f (Mx), g(z)

]
1K

F
[∫

T
φt ( f (xt)) dμ(t), g

(∫

T
φt(xt)dμ(t)

)]

≤ sup
mx≤z≤Mx

F
[

Mk − z
M − m

f (m) +
z − km
M − m

f (M), g(z)
]

1K

(19)

In the dual case (when f is concave) the opposite inequalities hold in (19) by replacing inf and sup with
sup and inf, respectively.

Proof. We prove only LHS of (19). It follows from (14) (compare it to (16))
∫

T
φt ( f (xt)) dμ(t) ≥ Mxk1K − ∫

T φt(xt) dμ(t)
Mx − mx

f (mx) +

∫
T φt(xt) dμ(t)− mxk1K

Mx − mx
f (Mx)

since
∫

T φt(1H) dμ(t) = k1K . By using operator monotonicity of F(·, v) we obtain

F
[∫

T
φt ( f (xt)) dμ(t), g

(∫

T
φt(xt) dμ(t)

)]

≥ F
[

Mxk1K−
∫

T φt(xt) dμ(t)
Mx−mx

f (mx) +
∫

T φt(xt) dμ(t)−mxk1K
Mx−mx

f (Mx), g
(∫

T φt(xt) dμ(t)
)]

≥ inf
mx≤z≤Mx

F
[

Mxk − z
Mx − mx

f (mx) +
z − kmx

Mx − mx
f (Mx), g(z)

]
1K
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Putting F(u, v) = u − αv or F(u, v) = v−1/2uv−1/2 in Theorem 8, we obtain the next corollary.

Corollary 9. Let (xt)t∈T, mt, Mt, mx, Mx, m, M, (φt)t∈T be as in Theorem 8 and f : [m, M] → R,
g : [mx, Mx] → R be continuous functions. If

(mx, Mx) ∩ [mt, Mt] = ∅, t ∈ T

and f is convex, then for any α ∈ R

min
mx≤z≤Mx

{
Mxk − z
Mx − mx

f (mx) +
z − kmx

Mx − mx
f (Mx)− g(z)

}
1K + αg

(∫

T
φt(xt)dμ(t)

)

≤
∫

T
φt ( f (xt)) dμ(t)

≤ αg
(∫

T
φt(xt)dμ(t)

)
+ max

mx≤z≤Mx

{
Mk − z
M − m

f (m) +
z − km
M − m

f (M)− g(z)
}

1K

(20)

If additionally g > 0 on [mx, Mx], then

min
mx≤z≤Mx

{ Mxk−z
Mx−mx

f (mx) +
z−kmx
Mx−mx

f (Mx)

g(z)

}
g
(∫

T
φt(xt)dμ(t)

)

≤
∫

T
φt ( f (xt)) dμ(t) ≤ max

mx≤z≤Mx

{
Mk−z
M−m f (m) + z−km

M−m f (M)

g(z)

}
g
(∫

T
φt(xt)dμ(t)

) (21)

In the dual case (when f is concave) the opposite inequalities hold in (20) by replacing min and max
with max and min, respectively. If additionally g > 0 on [mx, Mx], then the opposite inequalities also
hold in (21) by replacing min and max with max and min, respectively.

4. Refined Jensen’s inequality

In this section we present a refinement of Jensen’s inequality for real valued continuous
convex functions given in Theorem 6. A discrete version of this result is given in [19].

To obtain our result we need the following two lemmas.

Lemma 10. Let f be a convex function on an interval I, m, M ∈ I and p1, p2 ∈ [0, 1] such that
p1 + p2 = 1. Then

min{p1, p2}
[

f (m) + f (M)− 2 f
(

m + M
2

)]
≤ p1 f (m) + p2 f (M)− f (p1m + p2 M) (22)

Proof. These results follows from [20, Theorem 1, p. 717].

Lemma 11. Let x be a bounded self-adjoint elements in a unital C∗-algebra A of operators on some
Hilbert space H. If the spectrum of x is in [m, M], for some scalars m < M, then

f (x) ≤ M1H − x
M − m

f (m) +
x − m1H
M − m

f (M)− δ f x̃ (23)

(resp. f (x) ≥ M1H − x
M − m

f (m) +
x − m1H
M − m

f (M) + δ f x̃ )
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holds for every continuous convex (resp. concave) function f : [m, M] → R, where

δ f = f (m) + f (M)− 2 f
(

m+M
2

)
(resp. δ f = 2 f

(
m+M

2

)
− f (m)− f (M))

and x̃ = 1
2 1H − 1

M−m

∣∣∣x − m+M
2 1H

∣∣∣

Proof. We prove only the convex case. It follows from (22) that

f (p1m + p2 M) ≤ p1 f (m) + p2 f (M)

− min{p1, p2}
(

f (m) + f (M)− 2 f
(

m+M
2

)) (24)

for every p1, p2 ∈ [0, 1] such that p1 + p2 = 1 . For any z ∈ [m, M] we can write

f (z) = f
(

M − z
M − m

m +
z − m
M − m

M
)

Then by using (24) for p1 = M−z
M−m and p2 = z−m

M−m we obtain

f (z) ≤ M − z
M − m

f (m) +
z − m
M − m

f (M)

−
(

1
2
− 1

M − m

∣∣∣∣z −
m + M

2

∣∣∣∣
) (

f (m) + f (M)− 2 f
(

m + M
2

)) (25)

since

min
{

M − z
M − m

,
z − m
M − m

}
=

1
2
− 1

M − m

∣∣∣∣z −
m + M

2

∣∣∣∣
Finally we use the continuous functional calculus for a self-adjoint operator x: f , g ∈
C(I), Sp(x) ⊆ I and f ≤ g on I implies f (x) ≤ g(x); and h(z) = |z| implies h(x) = |x|.
Then by using (25) we obtain the desired inequality (23).

Theorem 12. Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a unital C∗-algebra
A defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ. Let mt
and Mt, mt ≤ Mt, be the bounds of xt, t ∈ T. Let (φt)t∈T be a unital field of positive linear mappings
φt : A → B from A to another unital C∗−algebra B. Let

(mx, Mx) ∩ [mt, Mt] = ∅, t ∈ T, and m < M

where mx and Mx, mx ≤ Mx, be the bounds of the operator x =
∫

T φt(xt) dμ(t) and

m = sup {Mt : Mt ≤ mx, t ∈ T} , M = inf {mt : mt ≥ Mx, t ∈ T}

If f : I → R is a continuous convex (resp. concave) function provided that the interval I contains all
mt, Mt, then

f
(∫

T
φt(xt) dμ(t)

)
≤

∫

T
φt( f (xt)) dμ(t)− δ f x̃ ≤

∫

T
φt( f (xt)) dμ(t) (26)
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(
resp.

f
(∫

T
φt(xt) dμ(t)

)
≥

∫

T
φt( f (xt)) dμ(t)− δ f x̃ ≥

∫

T
φt( f (xt)) dμ(t)

)
(27)

holds, where
δ f ≡ δ f (m̄, M̄) = f (m̄) + f (M̄)− 2 f

(
m̄+M̄

2

)

(resp. δ f ≡ δ f (m̄, M̄) = 2 f
(

m̄+M̄
2

)
− f (m̄)− f (M̄) )

x̃ ≡ x̃x(m̄, M̄) = 1
2 1K − 1

M̄−m̄

∣∣∣x − m̄+M̄
2 1K

∣∣∣

(28)

and m̄ ∈ [m, mA], M̄ ∈ [MA, M], m̄ < M̄, are arbitrary numbers.

Proof. We prove only the convex case. Since x =
∫

T φt(xt) dμ(t) ∈ B is the self-adjoint
elements such that m̄1K ≤ mx1K ≤ ∫

T φt(xt) dμ(t) ≤ Mx1K ≤ M̄1K and f is convex on
[m̄, M̄] ⊆ I, then by Lemma 11 we obtain

f
(∫

T
φt(xt) dμ(t)

)
≤ M̄1K − ∫

T φt(xt) dμ(t)
M̄ − m̄

f (m̄)+

∫
T φt(xt) dμ(t)− m̄1K

M̄ − m̄
f (M̄)− δ f x̃ (29)

where δ f and x̃ are defined by (28).

But since f is convex on [mt, Mt] and (mx, Mx) ∩ [mt, Mt] = ∅ implies (m̄, M̄) ∩ [mt, Mt] = ∅,
then

f (xt) ≥ M̄1H − xt

M̄ − m̄
f (m̄) +

xt − m̄1H
M̄ − m̄

f (M̄), t ∈ T

Applying a positive linear mapping φt, integrating and adding −δ f x̃, we obtain

∫

T
φt ( f (xt)) dμ(t)− δ f x̃ ≥ M̄1K − ∫

T φt(xt) dμ(t)
M̄ − m̄

f (m̄) +

∫
T φt(xt) dμ(t)− m̄1K

M̄ − m̄
f (M̄)− δ f x̃

(30)
since

∫
T φt(1H) dμ(t) = 1K . Combining the two inequalities (29) and (30), we have LHS of

(26). Since δ f ≥ 0 and x̃ ≥ 0, then we have RHS of (26).

If m < M and mx = Mx, then the inequality (26) holds, but δ f (mx, Mx) x̃(mx, Mx) is not
defined (see Example 13 I) and II)).

Example 13. We give examples for the matrix cases and T = {1, 2}. Then we have refined inequalities
given in Fig. 2. We put f (t) = t4 which is convex but not operator convex in (26). Also, we define
mappings Φ1, Φ2 : M3(C) → M2(C) as follows: Φ1((aij)1≤i,j≤3) =

1
2 (aij)1≤i,j≤2, Φ2 = Φ1 (then

Φ1(I3) + Φ2(I3) = I2).

I) First, we observe an example when δ f X̃ is equal to the difference RHS and LHS of Jensen’s
inequality. If X1 = −3I3 and X2 = 2I3, then X = Φ1(X1) + Φ2(X2) = −0.5I2, so m = −3,
M = 2. We also put m̄ = −3 and M̄ = 2. We obtain

(Φ1(X1) + Φ2(X2))
4 = 0.0625I2 < 48.5I2 = Φ1

(
X4

1

)
+ Φ2

(
X4

2

)
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Figure 2. Refinement for two operators and a convex function f

and its improvement

(Φ1(X1) + Φ2(X2))
4 = 0.0625I2 = Φ1

�
X4

1

�
+ Φ2

�
X4

2

�
− 48.4375I2

since δ f = 96.875, �X = 0.5I2. We remark that in this case mx = Mx = −1/2 and �X(mx, Mx) is not
defined.

II) Next, we observe an example when δ f �X is not equal to the difference RHS and LHS of Jensen’s
inequality and mx = Mx. If

X1 =

⎛
⎜⎝
−1 0 0

0 −2 0

0 0 −1

⎞
⎟⎠ , X2 =

⎛
⎜⎝

2 0 0

0 3 0

0 0 4

⎞
⎟⎠ , then X =

1
2

�
1 0

0 1

�
and m = −1, M = 2

In this case �x(mx, Mx) is not defined, since mx = Mx = 1/2. We have

(Φ1(X1) + Φ2(X2))
4 =

1
16

�
1 0
0 1

�
<

� 17
2 0
0 97

2

�
= Φ1

�
X4

1

�
+ Φ2

�
X4

2

�

and putting m̄ = −1, M̄ = 2 we obtain δ f = 135/8, �X = I2/2 which give the following improvement

(Φ1(X1) + Φ2(X2))
4 =

1
16

�
1 0
0 1

�
<

1
16

�
1 0
0 641

�
= Φ1

�
X4

1

�
+ Φ2

�
X4

2

�
− 135

16

�
1 0
0 1

�

III) Next, we observe an example with matrices that are not special. If

X1 =

⎛
⎝
−4 1 1
1 −2 −1
1 −1 −1

⎞
⎠ and X2 =

⎛
⎝

5 −1 −1
−1 2 1
−1 1 3

⎞
⎠ , then X =

1
2

�
1 0
0 0

�

so m1 = −4.8662, M1 = −0.3446, m2 = 1.3446, M2 = 5.8662, m = −0.3446, M = 1.3446 and
we put m̄ = m, M̄ = M (rounded to four decimal places). We have

(Φ1(X1) + Φ2(X2))
4 =

1
16

�
1 0
0 0

�
<

� 1283
2 −255

−255 237
2

�
= Φ1

�
X4

1

�
+ Φ2

�
X4

2

�
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and its improvement

(Φ1(X1) + Φ2(X2))
4 =

1
16

(
1 0
0 0

)

<

(
639.9213 −255
−255 117.8559

)
= Φ1

(
X4

1

)
+ Φ2

(
X4

2

)
−

(
1.5787 0

0 0.6441

)

(rounded to four decimal places), since δ f = 3.1574, X̃ =

(
0.5 0
0 0.2040

)
. But, if we put m̄ = mx = 0,

M̄ = Mx = 0.5, then X̃ = 0, so we do not have an improvement of Jensen’s inequality. Also, if we put

m̄ = 0, M̄ = 1, then X̃ = 0.5
(

1 0
0 1

)
, δ f = 7/8 and δ f X̃ = 0.4375

(
1 0
0 1

)
, which is worse than the

above improvement.

Putting Φt(y) = aty for every y ∈ A, where at ≥ 0 is a real number, we obtain the following
obvious corollary of Theorem 12.

Corollary 14. Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a unital C∗-algebra
A defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ. Let mt
and Mt, mt ≤ Mt, be the bounds of xt, t ∈ T. Let (at)t∈T be a continuous field of nonnegative real
numbers such that

∫
T at dμ(t) = 1. Let

(mx, Mx) ∩ [mt, Mt] = ∅, t ∈ T, and m < M

where mx and Mx, mx ≤ Mx, are the bounds of the operator x =
∫

T φt(xt) dμ(t) and

m = sup {Mt : Mt ≤ mx, t ∈ T} , M = inf {mt : mt ≥ Mx, t ∈ T}
If f : I → R is a continuous convex (resp. concave) function provided that the interval I contains all
mt, Mt, then

f
(∫

T
atxt dμ(t)

)
≤ ∫

T at f (xt) dμ(t)− δ f ˜̃x ≤ ∫
T at f (xt) dμ(t)

(resp. f
(∫

T
atxt dμ(t)

)
≥ ∫

T at f (xt) dμ(t) + δ f ˜̃x ≥ ∫
T at f (xt) dμ(t) )

holds, where δ f is defined by (28), ˜̃x = 1
2 1H − 1

M̄−m̄

∣∣∣∫T atxt dμ(t)− m̄+M̄
2 1H

∣∣∣ and m̄ ∈ [m, mA],

M̄ ∈ [MA, M], m̄ < M̄, are arbitrary numbers.

5. Extension Jensen’s inequality

In this section we present an extension of Jensen’s operator inequality for n−tuples of
self-adjoint operators, unital n−tuples of positive linear mappings and real valued continuous
convex functions with conditions on the spectra of the operators.
In a discrete version of Theorem 6 we prove that Jensen’s operator inequality holds for every
continuous convex function and for every n−tuple of self-adjoint operators (A1, . . . , An),
for every n−tuple of positive linear mappings (Φ1, . . . , Φn) in the case when the interval
with bounds of the operator A = ∑n

i=1 Φi(Ai) has no intersection points with the interval
with bounds of the operator Ai for each i = 1, . . . , n, i.e. when (mA, MA) ∩ [mi, Mi] = ∅
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for i = 1, . . . , n, where mA and MA, mA ≤ MA, are the bounds of A, and mi and Mi,
mi ≤ Mi, are the bounds of Ai, i = 1, . . . , n. It is interesting to consider the case when
(mA, MA) ∩ [mi, Mi] = ∅ is valid for several i ∈ {1, . . . , n}, but not for all i = 1, . . . , n. We
study it in the following theorem (see [21]).

Theorem 15. Let (A1, . . . , An) be an n−tuple of self-adjoint operators Ai ∈ B(H) with the bounds
mi and Mi, mi ≤ Mi, i = 1, . . . , n. Let (Φ1, . . . , Φn) be an n−tuple of positive linear mappings Φi :
B(H) → B(K), such that ∑n

i=1 Φi(1H) = 1K. For 1 ≤ n1 < n, we denote m = min{m1, . . . , mn1},
M = max{M1, . . . , Mn1} and ∑n1

i=1 Φi(1H) = α 1K, ∑n
i=n1+1 Φi(1H) = β 1K, where α, β > 0,

α + β = 1. If
(m, M) ∩ [mi, Mi] = ∅, i = n1 + 1, . . . , n

and one of two equalities

1
α

n1

∑
i=1

Φi(Ai) =
1
β

n

∑
i=n1+1

Φi(Ai) =
n

∑
i=1

Φi(Ai)

is valid, then
1
α

n1

∑
i=1

Φi( f (Ai)) ≤
n

∑
i=1

Φi( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai)) (31)

holds for every continuous convex function f : I → R provided that the interval I contains all mi, Mi,
i = 1, . . . , n. If f : I → R is concave, then the reverse inequality is valid in (31).

Proof. We prove only the case when f is a convex function. Let us denote

A =
1
α

n1

∑
i=1

Φi(Ai), B =
1
β

n

∑
i=n1+1

Φi(Ai), C =
n

∑
i=1

Φi(Ai)

It is easy to verify that A = B or B = C or A = C implies A = B = C.
a) Let m < M. Since f is convex on [m, M] and [mi, Mi] ⊆ [m, M] for i = 1, . . . , n1, then

f (z) ≤ M − z
M − m

f (m) +
z − m
M − m

f (M), z ∈ [mi, Mi] for i = 1, . . . , n1 (32)

but since f is convex on all [mi, Mi] and (m, M) ∩ [mi, Mi] = ∅ for i = n1 + 1, . . . , n, then

f (z) ≥ M − z
M − m

f (m) +
z − m
M − m

f (M), z ∈ [mi, Mi] for i = n1 + 1, . . . , n (33)

Since mi1H ≤ Ai ≤ Mi1H , i = 1, . . . , n1, it follows from (32)

f (Ai) ≤ M1H − Ai
M − m

f (m) +
Ai − m1H

M − m
f (M), i = 1, . . . , n1

Applying a positive linear mapping Φi and summing, we obtain

n1

∑
i=1

Φi ( f (Ai)) ≤
Mα1K − ∑n1

i=1 Φi(Ai)

M − m
f (m) +

∑n1
i=1 Φi(Ai)− mα1K

M − m
f (M)
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since ∑n1
i=1 Φi(1H) = α1K . It follows

1
α

n1

∑
i=1

Φi ( f (Ai)) ≤ M1K − A
M − m

f (m) +
A − m1K
M − m

f (M) (34)

Similarly to (34) in the case mi1H ≤ Ai ≤ Mi1H , i = n1 + 1, . . . , n, it follows from (33)

1
β

n

∑
i=n1+1

Φi ( f (Ai)) ≥ M1K − B
M − m

f (m) +
B − m1K
M − m

f (M) (35)

Combining (34) and (35) and taking into account that A = B, we obtain

1
α

n1

∑
i=1

Φi ( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi ( f (Ai)) (36)

It follows

1
α

n1

∑
i=1

Φi( f (Ai)) =
n1

∑
i=1

Φi( f (Ai)) +
β

α

n1

∑
i=1

Φi( f (Ai)) (by α + β = 1)

≤
n1

∑
i=1

Φi( f (Ai)) +
n

∑
i=n1+1

Φi( f (Ai)) (by (36))

=
n

∑
i=1

Φi( f (Ai))

≤ α

β

n

∑
i=n1+1

Φi( f (Ai)) +
n

∑
i=n1+1

Φi( f (Ai)) (by (36))

=
1
β

n

∑
i=n1+1

Φi( f (Ai)) (by α + β = 1)

which gives the desired double inequality (31).
b) Let m = M. Since [mi, Mi] ⊆ [m, M] for i = 1, . . . , n1, then Ai = m1H and f (Ai) = f (m)1H
for i = 1, . . . , n1. It follows

1
α

n1

∑
i=1

Φi(Ai) = m1K and
1
α

n1

∑
i=1

Φi ( f (Ai)) = f (m)1K (37)

On the other hand, since f is convex on I, we have

f (z) ≥ f (m) + l(m)(z − m) for every z ∈ I (38)

where l is the subdifferential of f . Replacing z by Ai for i = n1 + 1, . . . , n, applying Φi and
summing, we obtain from (38) and (37)

1
β

n

∑
i=n1+1

Φi ( f (Ai)) ≥ f (m)1K + l(m)

(
1
β

n

∑
i=n1+1

Φi(Ai)− m1K

)

= f (m)1K =
1
α

n1

∑
i=1

Φi ( f (Ai))

So (36) holds again. The remaining part of the proof is the same as in the case a).
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Remark 16. We obtain the equivalent inequality to the one in Theorem 15 in the case when
∑n

i=1 Φi(1H) = γ 1K, for some positive scalar γ. If α + β = γ and one of two equalities

1
α

n1

∑
i=1

Φi(Ai) =
1
β

n

∑
i=n1+1

Φi(Ai) =
1
γ

n

∑
i=1

Φi(Ai)

is valid, then
1
α

n1

∑
i=1

Φi( f (Ai)) ≤ 1
γ

n

∑
i=1

Φi( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai))

holds for every continuous convex function f .

Remark 17. Let the assumptions of Theorem 15 be valid.
1. We observe that the following inequality

f

�
1
β

n

∑
i=n1+1

Φi(Ai)

�
≤ 1

β

n

∑
i=n1+1

Φi( f (Ai))

holds for every continuous convex function f : I → R.

Indeed, by the assumptions of Theorem 15 we have

mα1H ≤
n1

∑
i=1

Φi( f (Ai)) ≤ Mα1H and
1
α

n1

∑
i=1

Φi(Ai) =
1
β

n

∑
i=n1+1

Φi(Ai)

which implies

m1H ≤
n

∑
i=n1+1

1
β

Φi( f (Ai)) ≤ M1H

Also (m, M) ∩ [mi, Mi] = ∅ for i = n1 + 1, . . . , n and ∑n
i=n1+1

1
β Φi(1H) = 1K hold. So we can

apply Theorem 6 on operators An1+1, . . . , An and mappings 1
β Φi and obtain the desired inequality.

2. We denote by mC and MC the bounds of C = ∑n
i=1 Φi(Ai). If (mC, MC) ∩ [mi, Mi] = ∅,

i = 1, . . . , n1 or f is an operator convex function on [m, M], then the double inequality (31) can be
extended from the left side if we use Jensen’s operator inequality (see [16, Theorem 2.1])

f

�
n

∑
i=1

Φi(Ai)

�
= f

�
1
α

n1

∑
i=1

Φi(Ai)

�

≤ 1
α

n1

∑
i=1

Φi( f (Ai)) ≤
n

∑
i=1

Φi( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai))

Example 18. If neither assumptions (mC, MC) ∩ [mi, Mi] = ∅, i = 1, . . . , n1, nor f is operator
convex in Remark 17 - 2. is satisfied and if 1 < n1 < n, then (31) can not be extended by Jensen’s
operator inequality, since it is not valid. Indeed, for n1 = 2 we define mappings Φ1, Φ2 : M3(C) →
M2(C) by Φ1((aij)1≤i,j≤3) =

α
2 (aij)1≤i,j≤2, Φ2 = Φ1. Then Φ1(I3) + Φ2(I3) = αI2. If

A1 = 2

⎛
⎝

1 0 1
0 0 1
1 1 1

⎞
⎠ and A2 = 2

⎛
⎝

1 0 0
0 0 0
0 0 0

⎞
⎠
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then
(

1
α

Φ1(A1) +
1
α

Φ2(A2)

)4
=

1
α4

(
16 0
0 0

)
�≤ 1

α

(
80 40
40 24

)
=

1
α

Φ1

(
A4

1

)
+

1
α

Φ2

(
A4

2

)

for every α ∈ (0, 1). We observe that f (t) = t4 is not operator convex and (mC, MC) ∩ [mi, Mi] �=
∅, since C = A = 1

α Φ1(A1) +
1
α Φ2(A2) = 1

α

(
2 0
0 0

)
, [mC, MC] = [0, 2/α], [m1, M1] ⊂

[−1.60388, 4.49396] and [m2, M2] = [0, 2].

With respect to Remark 16, we obtain the following obvious corollary of Theorem 15.

Corollary 19. Let (A1, . . . , An) be an n−tuple of self-adjoint operators Ai ∈ B(H) with the bounds
mi and Mi, mi ≤ Mi, i = 1, . . . , n. For some 1 ≤ n1 < n, we denote m = min{m1, . . . , mn1},
M = max{M1, . . . , Mn1}. Let (p1, . . . , pn) be an n−tuple of non-negative numbers, such that 0 <
∑n1

i=1 pi = pn1 < pn = ∑n
i=1 pi. If

(m, M) ∩ [mi, Mi] = ∅, i = n1 + 1, . . . , n

and one of two equalities

1
pn1

n1

∑
i=1

pi Ai =
1

pn

n

∑
i=1

pi Ai =
1

pn − pn1

n

∑
i=n1+1

pi Ai

is valid, then
1

pn1

n1

∑
i=1

pi f (Ai) ≤ 1
pn

n

∑
i=1

pi f (Ai) ≤ 1
pn − pn1

n

∑
i=n1+1

pi f (Ai) (39)

holds for every continuous convex function f : I → R provided that the interval I contains all mi, Mi,
i = 1, . . . , n.

If f : I → R is concave, then the reverse inequality is valid in (39).

As a special case of Corollary 19 we can obtain a discrete version of Corollary 7 as follows.

Corollary 20 (Discrete version of Corollary 7). Let (A1, . . . , An) be an n−tuple of self-adjoint
operators Ai ∈ B(H) with the bounds mi and Mi, mi ≤ Mi, i = 1, . . . , n. Let (α1, . . . , αn) be an
n−tuple of nonnegative real numbers such that ∑n

i=1 αi = 1. If

(mA, MA) ∩ [mi, Mi] = ∅, i = 1, . . . , n (40)

where mA and MA, mA ≤ MA, are the bounds of A = ∑n
i=1 αi Ai, then

f

(
n

∑
i=1

αi Ai

)
≤

n

∑
i=1

αi f (Ai) (41)

holds for every continuous convex function f : I → R provided that the interval I contains all mi, Mi.
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∅, since C = A = 1

α Φ1(A1) +
1
α Φ2(A2) = 1

α

(
2 0
0 0

)
, [mC, MC] = [0, 2/α], [m1, M1] ⊂

[−1.60388, 4.49396] and [m2, M2] = [0, 2].

With respect to Remark 16, we obtain the following obvious corollary of Theorem 15.

Corollary 19. Let (A1, . . . , An) be an n−tuple of self-adjoint operators Ai ∈ B(H) with the bounds
mi and Mi, mi ≤ Mi, i = 1, . . . , n. For some 1 ≤ n1 < n, we denote m = min{m1, . . . , mn1},
M = max{M1, . . . , Mn1}. Let (p1, . . . , pn) be an n−tuple of non-negative numbers, such that 0 <
∑n1

i=1 pi = pn1 < pn = ∑n
i=1 pi. If

(m, M) ∩ [mi, Mi] = ∅, i = n1 + 1, . . . , n

and one of two equalities

1
pn1

n1

∑
i=1

pi Ai =
1

pn

n

∑
i=1

pi Ai =
1

pn − pn1

n

∑
i=n1+1

pi Ai

is valid, then
1

pn1

n1

∑
i=1

pi f (Ai) ≤ 1
pn

n

∑
i=1

pi f (Ai) ≤ 1
pn − pn1

n

∑
i=n1+1

pi f (Ai) (39)

holds for every continuous convex function f : I → R provided that the interval I contains all mi, Mi,
i = 1, . . . , n.

If f : I → R is concave, then the reverse inequality is valid in (39).

As a special case of Corollary 19 we can obtain a discrete version of Corollary 7 as follows.

Corollary 20 (Discrete version of Corollary 7). Let (A1, . . . , An) be an n−tuple of self-adjoint
operators Ai ∈ B(H) with the bounds mi and Mi, mi ≤ Mi, i = 1, . . . , n. Let (α1, . . . , αn) be an
n−tuple of nonnegative real numbers such that ∑n

i=1 αi = 1. If

(mA, MA) ∩ [mi, Mi] = ∅, i = 1, . . . , n (40)

where mA and MA, mA ≤ MA, are the bounds of A = ∑n
i=1 αi Ai, then

f

(
n

∑
i=1

αi Ai

)
≤

n

∑
i=1

αi f (Ai) (41)

holds for every continuous convex function f : I → R provided that the interval I contains all mi, Mi.
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Proof. We prove only the convex case. We define (n + 1)−tuple of operators (B1, . . . , Bn+1),
Bi ∈ B(H), by B1 = A = ∑n

i=1 αi Ai and Bi = Ai−1, i = 2, . . . , n + 1. Then mB1 = mA,
MB1 = MA are the bounds of B1 and mBi = mi−1, MBi = Mi−1 are the ones of Bi, i =
2, . . . , n + 1. Also, we define (n + 1)−tuple of non-negative numbers (p1, . . . , pn+1) by p1 = 1
and pi = αi−1, i = 2, . . . , n + 1. Then ∑n+1

i=1 pi = 2 and by using (40) we have

(mB1 , MB1 ) ∩ [mBi , MBi ] = ∅, i = 2, . . . , n + 1 (42)

Since
n+1

∑
i=1

piBi = B1 +
n+1

∑
i=2

piBi =
n

∑
i=1

αi Ai +
n

∑
i=1

αi Ai = 2B1

then

p1B1 =
1
2

n+1

∑
i=1

piBi =
n+1

∑
i=2

piBi (43)

Taking into account (42) and (43), we can apply Corollary 19 for n1 = 1 and Bi, pi as above,
and we get

p1 f (B1) ≤ 1
2

n+1

∑
i=1

pi f (Bi) ≤
n+1

∑
i=2

pi f (Bi)

which gives the desired inequality (41).

6. Extension of the refined Jensen’s inequality
There is an extensive literature devoted to Jensen’s inequality concerning different refinements
and extensive results, see, for example [22–29].

In this section we present an extension of the refined Jensen’s inequality obtained in Section 4
and a refinement of the same inequality obtained in Section 5.

Theorem 21. Let (A1, . . . , An) be an n−tuple of self-adjoint operators Ai ∈ B(H) with the bounds
mi and Mi, mi ≤ Mi, i = 1, . . . , n. Let (Φ1, . . . , Φn) be an n−tuple of positive linear mappings
Φi : B(H) → B(K), such that ∑n1

i=1 Φi(1H) = α 1K, ∑n
i=n1+1 Φi(1H) = β 1K, where 1 ≤ n1 < n,

α, β > 0 and α + β = 1. Let mL = min{m1, . . . , mn1}, MR = max{M1, . . . , Mn1} and

m = max {Mi : Mi ≤ mL, i ∈ {n1 + 1, . . . , n}}
M = min {mi : mi ≥ MR, i ∈ {n1 + 1, . . . , n}}

If
(mL, MR) ∩ [mi, Mi] = ∅, i = n1 + 1, . . . , n, and m < M

and one of two equalities

1
α

n1

∑
i=1

Φi(Ai) =
n

∑
i=1

Φi(Ai) =
1
β

n

∑
i=n1+1

Φi(Ai)

is valid, then

1
α

n1

∑
i=1

Φi( f (Ai)) ≤ 1
α

n1

∑
i=1

Φi( f (Ai)) + βδ f Ã ≤
n

∑
i=1

Φi( f (Ai))

≤ 1
β

n

∑
i=n1+1

Φi( f (Ai))− αδ f Ã ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai)) (44)
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holds for every continuous convex function f : I → R provided that the interval I contains all mi, Mi,
i = 1, . . . , n, where

δ f ≡ δ f (m̄, M̄) = f (m̄) + f (M̄)− 2 f
(

m̄ + M̄
2

)

Ã ≡ ÃA,Φ,n1,α(m̄, M̄) =
1
2

1K − 1
α(M̄ − m̄)

n1

∑
i=1

Φi

(∣∣∣∣Ai − m̄ + M̄
2

1H

∣∣∣∣
) (45)

and m̄ ∈ [m, mL], M̄ ∈ [MR, M], m̄ < M̄, are arbitrary numbers. If f : I → R is concave, then the
reverse inequality is valid in (44).

Proof. We prove only the convex case. Let us denote

A =
1
α

n1

∑
i=1

Φi(Ai), B =
1
β

n

∑
i=n1+1

Φi(Ai), C =
n

∑
i=1

Φi(Ai)

It is easy to verify that A = B or B = C or A = C implies A = B = C.
Since f is convex on [m̄, M̄] and Sp(Ai) ⊆ [mi, Mi] ⊆ [m̄, M̄] for i = 1, . . . , n1, it follows from
Lemma 11 that

f (Ai) ≤ M̄1H − Ai
M̄ − m̄

f (m̄) +
Ai − m̄1H

M̄ − m̄
f (M̄)− δ f Ãi, i = 1, . . . , n1

holds, where δ f = f (m̄) + f (M̄) − 2 f
(

m̄+M̄
2

)
and Ãi = 1

2 1H − 1
M̄−m̄

∣∣∣Ai − m̄+M̄
2 1H

∣∣∣.
Applying a positive linear mapping Φi and summing, we obtain

∑n1
i=1 Φi ( f (Ai)) ≤

M̄α1K − ∑n1
i=1 Φi(Ai)

M̄ − m̄
f (m̄) +

∑n1
i=1 Φi(Ai)− m̄α1K

M̄ − m̄
f (M̄)

− δ f

(
α

2
1K − 1

M̄ − m̄

n1

∑
i=1

Φi

(∣∣∣∣Ai − m̄ + M̄
2

1H

∣∣∣∣
))

since ∑n1
i=1 Φi(1H) = α1K . It follows that

1
α

n1

∑
i=1

Φi ( f (Ai)) ≤ M̄1K − A
M̄ − m̄

f (m̄) +
A − m̄1K
M̄ − m̄

f (M̄)− δ f Ã (46)

where Ã = 1
2 1K − 1

α(M̄−m̄) ∑n1
i=1 Φi

(∣∣∣Ai − m̄+M̄
2 1H

∣∣∣
)

.

Additionally, since f is convex on all [mi, Mi] and (m̄, M̄) ∩ [mi, Mi] = ∅, i = n1 + 1, . . . , n,
then

f (Ai) ≥ M̄1H − Ai
M̄ − m̄

f (m̄) +
Ai − m̄1H

M̄ − m̄
f (M̄), i = n1 + 1, . . . , n

It follows

1
β

n

∑
i=n1+1

Φi ( f (Ai))− δ f Ã ≥ M̄1K − B
M̄ − m̄

f (m̄) +
B − m̄1K
M̄ − m̄

f (M̄)− δ f Ã (47)
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α

2
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n1
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(∣∣∣∣Ai − m̄ + M̄
2

1H
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1
α

n1

∑
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Φi ( f (Ai)) ≤ M̄1K − A
M̄ − m̄

f (m̄) +
A − m̄1K
M̄ − m̄

f (M̄)− δ f Ã (46)

where Ã = 1
2 1K − 1

α(M̄−m̄) ∑n1
i=1 Φi

(∣∣∣Ai − m̄+M̄
2 1H

∣∣∣
)

.

Additionally, since f is convex on all [mi, Mi] and (m̄, M̄) ∩ [mi, Mi] = ∅, i = n1 + 1, . . . , n,
then

f (Ai) ≥ M̄1H − Ai
M̄ − m̄

f (m̄) +
Ai − m̄1H

M̄ − m̄
f (M̄), i = n1 + 1, . . . , n

It follows

1
β

n

∑
i=n1+1

Φi ( f (Ai))− δ f Ã ≥ M̄1K − B
M̄ − m̄

f (m̄) +
B − m̄1K
M̄ − m̄

f (M̄)− δ f Ã (47)
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Combining (46) and (47) and taking into account that A = B, we obtain

1
α

n1

∑
i=1

Φi ( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi ( f (Ai))− δ f Ã (48)

Next, we obtain

1
α

n1

∑
i=1

Φi( f (Ai))

=
n1

∑
i=1

Φi( f (Ai)) +
β

α

n1

∑
i=1

Φi( f (Ai)) (by α + β = 1)

≤
n1

∑
i=1

Φi( f (Ai)) +
n

∑
i=n1+1

Φi( f (Ai))− βδ f Ã (by (48))

≤ α

β

n

∑
i=n1+1

Φi( f (Ai))− αδ f Ã +
n

∑
i=n1+1

Φi( f (Ai))− βδ f Ã (by (48))

=
1
β

n

∑
i=n1+1

Φi( f (Ai))− δ f Ã (by α + β = 1)

which gives the following double inequality

1
α

n1

∑
i=1

Φi( f (Ai)) ≤
n

∑
i=1

Φi( f (Ai))− βδ f Ã ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai))− δ f Ã

Adding βδ f Ã in the above inequalities, we get

1
α

n1

∑
i=1

Φi( f (Ai)) + βδ f Ã ≤
n

∑
i=1

Φi( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai))− αδ f Ã (49)

Now, we remark that δ f ≥ 0 and Ã ≥ 0. (Indeed, since f is convex, then f ((m̄ + M̄)/2) ≤
( f (m̄) + f (M̄))/2, which implies that δ f ≥ 0. Also, since

Sp(Ai) ⊆ [m̄, M̄] ⇒
∣∣∣∣Ai − M̄ + m̄

2
1H

∣∣∣∣ ≤
M̄ − m̄

2
1H , i = 1, . . . , n1

then
n1

∑
i=1

Φi

(∣∣∣∣Ai − M̄ + m̄
2

1H

∣∣∣∣
)
≤ M̄ − m̄

2
α1K

which gives

0 ≤ 1
2

1K − 1
α(M̄ − m̄)

n1

∑
i=1

Φi

(∣∣∣∣Ai − M̄ + m̄
2

1H

∣∣∣∣
)
= Ã )
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Consequently, the following inequalities

1
α

n1

∑
i=1

Φi( f (Ai)) ≤ 1
α

n1

∑
i=1

Φi( f (Ai)) + βδ f �A

1
β

n

∑
i=n1+1

Φi( f (Ai))− αδ f �A ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai))

hold, which with (49) proves the desired series inequalities (44).

Example 22. We observe the matrix case of Theorem 21 for f (t) = t4, which is the convex function
but not operator convex, n = 4, n1 = 2 and the bounds of matrices as in Fig. 3. We show an example

Figure 3. An example a convex function and the bounds of four operators

such that

1
α

�
Φ1(A4

1) + Φ2(A4
2)
�
< 1

α

�
Φ1(A4

1) + Φ2(A4
2)
�
+ βδ f �A

< Φ1(A4
1) + Φ2(A4

2) + Φ3(A4
3) + Φ4(A4

4) (50)

< 1
β

�
Φ3(A4

3) + Φ4(A4
4)
�− αδ f �A < 1

β

�
Φ3(A4

3) + Φ4(A4
4)
�

holds, where δ f = M̄4 + m̄4 − (M̄ + m̄)4/8 and

�A =
1
2

I2 − 1
α(M̄ − m̄)

�
Φ1

�
|A1 − M̄ + m̄

2
Ih|

�
+ Φ2

�
|A2 − M̄ + m̄

2
I3|

��

We define mappings Φi : M3(C) → M2(C) as follows: Φi((ajk)1≤j,k≤3) = 1
4 (ajk)1≤j,k≤2, i =

1, . . . , 4. Then ∑4
i=1 Φi(I3) = I2 and α = β = 1

2 .

Let

A1 = 2

⎛
⎝

2 9/8 1
9/8 2 0

1 0 3

⎞
⎠ , A2 = 3

⎛
⎝

2 9/8 0
9/8 1 0

0 0 2

⎞
⎠ , A3 = −3

⎛
⎝

4 1/2 1
1/2 4 0

1 0 2

⎞
⎠ , A4 = 12

⎛
⎝

5/3 1/2 0
1/2 3/2 0

0 0 3

⎞
⎠

Then m1 = 1.28607, M1 = 7.70771, m2 = 0.53777, M2 = 5.46221, m3 = −14.15050, M3 =
−4.71071, m4 = 12.91724, M4 = 36., so mL = m2, MR = M1, m = M3 and M = m4 (rounded to
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five decimal places). Also,

1
α
(Φ1(A1) + Φ2(A2)) =

1
β
(Φ3(A3) + Φ4(A4)) =

(
4 9/4

9/4 3

)

and

A f ≡ 1
α

(
Φ1(A4

1) + Φ2(A4
2)
)
=

(
989.00391 663.46875
663.46875 526.12891

)

Cf ≡ Φ1(A4
1) + Φ2(A4

2) + Φ3(A4
3) + Φ4(A4

4) =

(
68093.14258 48477.98437
48477.98437 51335.39258

)

Bf ≡ 1
β

(
Φ3(A4

3) + Φ4(A4
4)
)
=

(
135197.28125 96292.5

96292.5 102144.65625

)

Then
A f < Cf < Bf (51)

holds (which is consistent with (31)).

We will choose three pairs of numbers (m̄, M̄), m̄ ∈ [−4.71071, 0.53777], M̄ ∈ [7.70771, 12.91724]
as follows

i) m̄ = mL = 0.53777, M̄ = MR = 7.70771, then

Δ̃1 = βδ f Ã = 0.5 · 2951.69249 ·
(

0.15678 0.09030
0.09030 0.15943

)
=

(
231.38908 133.26139
133.26139 235.29515

)

ii) m̄ = m = −4.71071, M̄ = M = 12.91724, then

Δ̃2 = βδ f Ã = 0.5 · 27766.07963 ·
(

0.36022 0.03573
0.03573 0.36155

)
=

(
5000.89860 496.04498
496.04498 5019.50711

)

iii) m̄ = −1, M̄ = 10, then

Δ̃3 = βδ f Ã = 0.5 · 9180.875 ·
(

0.28203 0.08975
0.08975 0.27557

)
=

(
1294.66 411.999
411.999 1265.

)

New, we obtain the following improvement of (51) (see (50))

i) A f < A f + Δ̃1 =

(
1220.39299 796.73014
796.73014 761.42406

)

< Cf <

(
134965.89217 96159.23861
96159.23861 101909.36110

)
= Bf − Δ̃1 < Bf

ii) A f < A f + Δ̃2 =

(
5989.90251 1159.51373
1159.51373 5545.63601

)

< Cf <

(
130196.38265 95796.45502
95796.45502 97125.14914

)
= Bf − Δ̃2 < Bf

iii) A f < A f + Δ̃3 =

(
2283.66362 1075.46746
1075.46746 1791.12874

)

< Cf <

(
133902.62153 95880.50129
95880.50129 100879.65641

)
= Bf − Δ̃3 < Bf
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Using Theorem 21 we get the following result.

Corollary 23. Let the assumptions of Theorem 21 hold. Then

1
α

n1

∑
i=1

Φi( f (Ai)) ≤ 1
α

n1

∑
i=1

Φi( f (Ai)) + γ1δ f Ã ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai)) (52)

and
1
α

n1

∑
i=1

Φi( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai))− γ2δ f Ã ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai)) (53)

holds for every γ1, γ2 in the close interval joining α and β, where δ f and Ã are defined by (45).

Proof. Adding αδ f Ã in (44) and noticing δ f Ã ≥ 0, we obtain

1
α

n1

∑
i=1

Φi( f (Ai)) ≤ 1
α

n1

∑
i=1

Φi( f (Ai)) + αδ f Ã ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai))

Taking into account the above inequality and the left hand side of (44) we obtain (52).

Similarly, subtracting βδ f Ã in (44) we obtain (53).

Remark 24. We can obtain extensions of inequalities which are given in Remark 16 and 17. Also, we
can obtain a special case of Theorem 21 with the convex combination of operators Ai putting Φi(B) =
αiB, for i = 1, . . . , n, similarly as in Corollary 19. Finally, applying this result, we can give another
proof of Corollary 14. The interested reader can see the details in [30].
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Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5,
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β

n

∑
i=n1+1

Φi( f (Ai)) (52)

and
1
α

n1

∑
i=1

Φi( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai))− γ2δ f Ã ≤ 1
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method in Operator Inequalities. Zagreb: Element. 320 p. In print.

[12] Fujii J.I (2011) An external version of the Jensen operator inequality. Sci. Math. Japon.
Online e-2011: 59-62.
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A Linear System of Both Equations
and Inequalities in Max-Algebra

Abdulhadi Aminu

Additional information is available at the end of the chapter
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1. Introduction
The aim of this chapter is to present a system of linear equation and inequalities in
max-algebra. Max-algebra is an analogue of linear algebra developed on the pair of operations
(⊕,⊗) extended to matrices and vectors, where a ⊕ b = max(a, b) and a ⊗ b = a + b for
a, b ∈ R. The system of equations A⊗ x = c and inequalities B⊗ x ≤ d have each been studied
in the literature. We will present necessary and sufficient conditions for the solvability of a
system consisting of these two systems and also develop a polynomial algorithm for solving
max-linear program whose constraints are max-linear equations and inequalities. Moreover,
some solvability concepts of an inteval system of linear equations and inequalities will also be
presented.

Max-algebraic linear systems were investigated in the first publications which deal with
the introduction of algebraic structures called (max,+) algebras. Systems of equations with
variables only on one side were considered in these publications [1, 2] and [3]. Other systems
with a special structure were investigated in the context of solving eigenvalue problems in
correspondence with algebraic structures or synchronisation of discrete event systems, see [4]
and also [1] for additional information. Given a matrix A, a vector b of an appropriate size,
using the notation ⊕ = max, ⊗ = plus, the studied systems had one of the following forms:
A ⊗ x = b, A ⊗ x = x or A ⊗ x = x ⊕ b. An infinite dimensional generalisation can be found
in [5].

In [1] Cuninghame-Green showed that the problem A⊗ x = b can be solved using residuation
[6]. That is the equality in A ⊗ x = b be relaxed so that the set of its sub-solutions is studied.
It was shown that the greatest solution of A ⊗ x ≤ b is given by x̄ where

x̄j = min
i∈M

(bi ⊗ a−1
ij ) for all j ∈ N

The equation A⊗ x = b is also solved using the above result as follows: The equation A⊗ x =
b has solution if and only if A ⊗ x̄ = b. Also, Gaubert [7] proposed a method for solving the
one-sided system x = A ⊗ x ⊕ b using rational calculus.
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use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Zimmermann [3] developed a method for solving A ⊗ x = b by set covering and also
presented an algorithm for solving max-linear programs with one sided constraints. This
method is proved to has a computational complexity of O(mn), where m, n are the number
of rows and columns of input matrices respectively. Akian, Gaubert and Kolokoltsov [5]
extended Zimmermann’s solution method by set covering to the case of functional Galois
connections.

Butkovic [8] developed a max-algebraic method for finding all solutions to a system of
inequalities xi − xj > bij, i, j = 1, ..., n using n generators. Using this method Butkovic
[8] developed a pseudopolynomial algorithm which either finds a bounded mixed-integer
solution, or decides that no such solution exists. Summary of these results can be found in [9]
and [10]

Cechlárova and Diko [11] proposed a method for resolving infeasibility of the system A ⊗ x =
b . The techniques presented in this method are to modify the right-hand side as little as
possible or to omit some equations. It was shown that the problem of finding the minimum
number of those equations is NP-complete.

2. Max-algebra and some basic definitions

In this section we introduce max-algebra, give the essential definitions and show how the
operations of max-algebra can be extended to matrices and vectors.

In max-algebra, we replace addition and multiplication, the binary operations in conventional
linear algebra, by maximum and addition respectively. For any problem that involves adding
numbers together and taking the maximum of numbers, it may be possible to describe it
in max-algebra. A problem that is nonlinear when described in conventional terms may be
converted to a max-algebraic problem that is linear with respect to (⊕,⊗) = (max,+).

Definition 1. The max-plus semiring R is the set R ∪ {−∞}, equipped with the addition
(a, b) �→ max(a, b) and multiplication (a, b) �→ a + b denoted by ⊕ and ⊗ respectively. That
is a ⊕ b = max(a, b) and a ⊗ b = a + b. The identity element for the addition (or zero) is −∞,
and the identity element for the multiplication (or unit) is 0.

Definition 2. The min-plus semiring Rmin is the set R ∪ {+∞}, equipped with the addition
(a, b) �→ min(a, b) and multiplication (a, b) �→ a + b denoted by ⊕�

and ⊗�
respectively. The

zero is +∞, and the unit is 0. The name tropical semiring is also used as a synonym of min-plus
when the ground set is N.

The completed max-plus semiring Rmax is the set R ∪ {±∞}, equipped with the addition
(a, b) �→ max(a, b) and multiplication (a, b) �→ a + b, with the convention that −∞ + (+∞) =
+∞ + (−∞) = −∞. The completed min-plus semiring Rmin is defined in the dual way.

Proposition 1. The following properties hold for all a, b, c ∈ R:

a ⊕ b = b ⊕ a
a ⊗ b = b ⊗ a

a ⊕ (b ⊕ c) = (a ⊕ b)⊕ c
a ⊗ (b ⊗ c) = (a ⊗ b)⊗ c
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a ⊗ (b ⊕ c) = a ⊗ b ⊕ a ⊗ c

a ⊕ (−∞) = −∞ = (−∞)⊕ a

a ⊗ 0 = a = 0 ⊗ a

a ⊗ a−1 = 0, a, a−1 ∈ R

Proof.
The statements follow from the definitions.

Proposition 2. For all a, b, c ∈ R the following properties hold:

a ≤ b =⇒ a ⊕ c ≤ b ⊕ c

a ≤ b ⇐⇒ a ⊗ c ≤ b ⊗ c, c ∈ R

a ≤ b ⇐⇒ a ⊕ b = b

a > b ⇐⇒ a ⊗ c > b ⊗ c, −∞ < c < +∞

Proof. The statements follow from definitions.

The pair of operations (⊕,⊗) is extended to matrices and vectors as in the conventional linear
algebra as follows: For A = (aij), B = (bij) of compatible sizes and α ∈ R we have:

A ⊕ B = (aij ⊕ bij)

A ⊗ B =

�
∑
k

⊕aik ⊗ bkj

�

α ⊗ A = (α ⊗ aij)

Example 1.
�

3 1 5
2 1 5

�
⊕

�−1 0 2
6 −5 4

�
=

�
3 1 5
6 1 5

�

Example 2.

�−4 1 −5
3 0 8

�
⊗

⎛
⎝

−1 2
1 7
3 1

⎞
⎠

=

�
(−4 + (−1))⊕ (1 + 1)⊕ (−5 + 3) (−4 + 2)⊕ (1 + 7)⊕ (−5 + 1)
(3 + (−1))⊕ (0 + 1)⊕ (8 + 3) (3 + 2)⊕ (0 + 7)⊕ (8 + 1)

�
=

�
2 8
11 9

�

Example 3.

10 ⊗
�

7 −3 2
6 1 0

�
=

�
17 7 12
16 11 10

�
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Proposition 3.
For A, B, C ∈ R

m×n of compatible sizes, the following properties hold:

A ⊕ B = B ⊕ A
A ⊕ (B ⊕ C) = (A ⊕ B)⊕ C
A ⊗ (B ⊗ C) = (A ⊗ B)⊗ C
A ⊗ (B ⊕ C) = A ⊗ B ⊕ A ⊗ C
(A ⊕ B)⊗ C = A ⊗ C ⊕ B ⊗ C

Proof.
The statements follow from the definitions.

Proposition 4.
The following hold for A, B, C, a, b, c, x, y of compatible sizes and α, β ∈ R:

A ⊗ (α ⊗ B) = α ⊗ (A ⊗ B)
α ⊗ (A ⊕ B) = α ⊗ A ⊕ α ⊗ B
(α ⊕ β)⊗ A = α ⊗ A ⊕ β ⊗ B

xT ⊗ α ⊗ y = α ⊗ xT ⊗ y

a ≤ b =⇒ cT ⊗ a ≤ cT ⊗ b
A ≤ B =⇒ A ⊕ C ≤ B ⊕ C
A ≤ B =⇒ A ⊗ C ≤ B ⊗ C
A ≤ B ⇐⇒ A ⊕ B = B

Proof. The statements follow from the definition of the pair of operations (⊕,⊗).

Definition 3. Given real numbers a, b, c, . . . , a max-algebraic diagonal matrix is defined as:

diag(a, b, c, . . . ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a
b −∞

c

−∞
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

Given a vector d = (d1, d2, . . . , dn), the diagonal of the vector d is denoted as diag(d) =
diag(d1, d2, . . . , dn).

Definition 4. Max-algebraic identity matrix is a diagonal matrix with all diagonal entries zero.
We denote by I an identity matrix. Therefore, identity matrix I = diag(0, 0, 0, . . . ).

It is obvious that A ⊗ I = I ⊗ A for any matrices A and I of compatible sizes.

Definition 5. Any matrix that can be obtained from the identity matrix, I, by permuting its
rows and or columns is called a permutation matrix. A matrix arising as a product of a diagonal
matrix and a permutation matrix is called a generalised permutation matrix [12].
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Definition 6. A matrix A ∈ R
n×n is invertible if there exists a matrix B ∈ R

n×n, such that
A ⊗ B = B ⊗ A = I. The matrix B is unique and will be called the inverse of A. We will
henceforth denote B by A−1.

It has been shown in [1] that a matrix is invertible if and only if it is a generalised permutation
matrix. If x = (x1, . . . , xn) we will denote x−1 = (x−1

1 , . . . , x−1
n ), that is x−1 = −x, in

conventional notation.

Example 4.
Consider the following matrices

A =

⎛
⎝

−∞ −∞ 3
5 −∞ −∞

−∞ 8 −∞

⎞
⎠ and B =

⎛
⎝

−∞ −5 −∞
−∞ −∞ −8
−3 −∞ −∞

⎞
⎠

The matrix B is an inverse of A because,

A ⊗ B =

⎛
⎝

−∞ −∞ 3
5 −∞ −∞

−∞ 8 −∞

⎞
⎠⊗

⎛
⎝

−∞ −5 −∞
−∞ −∞ −8

3 −∞ −∞

⎞
⎠ =

⎛
⎝

0 −∞ −∞
−∞ 0 −∞
−∞ −∞ 0

⎞
⎠

Given a matrix A = (aij) ∈ R, the transpose of A will be denoted by AT , that is AT = (aji).
Structures of discrete-event dynamic systems may be represented by square matrices A over
the semiring:

R = ({−∞} ∪ R,⊕,⊗) = ({−∞} ∪ R, max,+)
The system � is embeddable in the self-dual system:

R = ({−∞} ∪ R{+∞},⊕,⊗,⊕�
,⊗�

) = ({−∞} ∪ R{+∞}, max,+, min,+)

Basic algebraic properties for ⊕�
and ⊗�

are similar to those of ⊕ and ⊗ described earlier.
These are obtained by swapping ≤ and ≥ . Extension of the pair (⊕�

, ⊗�
) to matrices and

vectors is as follows:
Given A, B of compatible sizes and α ∈ R, we define the following:

A ⊕�
B = (aij ⊕

�
bij)

A ⊗�
B =

�
∑
k

⊕�
aik ⊗

�
bkj

�
= min

k
(aik + bkj)

α ⊗�
A = (α ⊗�

aij)

Also, properties of matrices for the pair (⊕�
, ⊗�

) are similar to those of (⊕, ⊗), just swap
≤ and ≥. For any matrix A = [aij] over R, the conjugate matrix is A∗ = [−aji] obtained by
negation and transposition, that is A = −AT .

Proposition 5. The following relations hold for any matrices U, V, W over R .

(U ⊗�
V)⊗ W ≤ U ⊗�

(V ⊗ W) (1)

U ⊗ (U∗ ⊗�
W) ≤ W (2)

U ⊗ (U∗ ⊗�
(U ⊗ W)) = U ⊗ W (3)

Proof. Follows from the definitions.
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3. The Multiprocessor Interactive System (MPIS): A practical application

Linear equations and inequalities in max-algebra have a considerable number of applications,
the model we present here is called the multiprocessor interactive system (MPIS) which is
formulated as follows:

Products P1, . . . , Pm are prepared using n processors, every processor contributing to the
completion of each product by producing a partial product. It is assumed that every processor
can work on all products simultaneously and that all these actions on a processor start as soon
as the processor is ready to work. Let aij be the duration of the work of the jth processor
needed to complete the partial product for Pi (i = 1, . . . , m; j = 1, . . . , n). Let us denote
by xj the starting time of the jth processor (j = 1, . . . , n). Then, all partial products for Pi
(i = 1, . . . , m; j = 1, . . . , n) will be ready at time max(ai1 + x1, . . . , ain + xn). If the completion
times b1, . . . , bm are given for each product then the starting times have to satisfy the following
system of equations:

max(ai1 + x1, . . . , ain + xn) = bi for all i ∈ M

Using the notation a ⊕ b = max(a, b) and a ⊗ b = a + b for a, b ∈ R extended to matrices and
vectors in the same way as in linear algebra, then this system can be written as

A ⊗ x = b (4)

Any system of the form (4) is called ’one-sided max-linear system’. Also, if the requirement
is that each product is to be produced on or before the completion times b1, . . . , bm, then the
starting times have to satisfy

max(ai1 + x1, . . . , ain + xn) ≤ bi for all i ∈ M

which can also be written as
A ⊗ x ≤ b (5)

The system of inequalities (5) is called ’one-sided max-linear system of inequalities’.

4. Linear equations and inequalities in max-algebra

In this section we will present a system of linear equation and inequalities in max-algebra.
Solvability conditions for linear system and inequalities will each be presented. A system
consisting of max-linear equations and inequalities will also be discussed and necessary and
sufficient conditions for the solvability of this system will be presented.

4.1. System of equations

In this section we present a solution method for the system A ⊗ x = b as given in [1, 3, 13]
and also in the monograph [10]. Results concerning the existence and uniqueness of solution
to the system will also be presented.

Given A = (aij) ∈ R
m×n and b = (b1, . . . , bm)T ∈ R

m, a system of the form

A ⊗ x = b (6)
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is called a one-sided max-linear system, some times we may omit ’max-linear’ and say one-sided
system. This system can be written using the conventional notation as follows

max
j=1,...,n

(aij + xj) = bi, i ∈ M (7)

The system in (7) can be written after subtracting the right-hand sides constants as

max
j=1,...,n

(aij ⊗ b−1
i + xj) = 0, i ∈ M

A one-sided max-linear system whose all right hand side constants are zero is called normalised
max-linear system or just normalised and the process of subtracting the right-hand side constants
is called normalisation. Equivalently, normalisation is the process of multiplying the system (6)
by the matrix B

�
from the left. That is

B
� ⊗ A ⊗ x = B

� ⊗ b = 0

where,
B

�
= diag(b−1

1 , b−1
2 , . . . , b−1

m ) = diag(b−1)

For instance, consider the following one-sided system:
⎛
⎝

−2 1 3
3 0 2
1 2 1

⎞
⎠⊗

⎛
⎝

x1
x2
x3

⎞
⎠ =

⎛
⎝

5
6
3

⎞
⎠ (8)

After normalisation, this system is equivalent to
⎛
⎝

−7 −4 −2
−3 −6 −4
−2 −1 −2

⎞
⎠⊗

⎛
⎝

x1
x2
x3

⎞
⎠ =

⎛
⎝

0
0
0

⎞
⎠

That is after multiplying the system (8) by
⎛
⎝

−5 −∞ −∞
−∞ −6 −∞
−∞ −∞ −3

⎞
⎠

Consider the first equation of the normalised system above, that is max(x1 − 7, x2 − 4, x3 −
2) = 0. This means that if (x1, x2, x3)

T is a solution to this system then x1 ≤ 7,x2 ≤ 4,
x3 ≤ 2 and at least one of these inequalities will be satisfied with equality. From the other
equations of the system, we have for x1 ≤ 3, x1 ≤ 2, hence we have x1 ≤ min(7, 3, 2) =
−max(−7,−3,−2) = −x̄1 where −x̄1 is the column 1 maximum. It is clear that for all j then
xj ≤ x̄j, where −x̄j is the column j maximum. At the same time equality must be attained in
some of these inequalities so that in every row there is at least one column maximum which
is attained by xj. This observation was made in [3].

Definition 7. A matrix A is called doubly R-astic [14, 15], if it has at least one finite element on
each row and on each column.
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We introduce the following notations

S(A, b) = {x ∈ R
n; A ⊗ x = b}

Mj = {k ∈ M; bk ⊗ a−1
kj = max

i
(bi ⊗ a−1

ij )} for all j ∈ N

x̄(A, b)j = min
i∈M

(bi ⊗ a−1
ij ) for all j ∈ N

We now consider the cases when A = −∞ and/or b = −∞. Suppose that b = −∞. Then
S(A, b) can simply be written as

S(A, b) = {x ∈ R
n; xj = −∞, if Aj �= −∞, j ∈ N}

Therefore if A = −∞ we have S(A, b) = R
n . Now, if A = −∞ and b �= −∞ then S(A, b) = ∅.

Thus, we may assume in this section that A = −∞ and b �= −∞. If bk = −∞ for some
k ∈ M then for any x ∈ S(A, b) we have xj = −∞ if akj �= −∞, j ∈ N, as a result the kth

equation could be removed from the system together with every column j in the matrix A
where akj �= −∞ (if any), and set the corresponding xj = −∞. Consequently, we may assume
without loss of generality that b ∈ Rm.

Moreover, if b ∈ Rm and A has an −∞ row then S(A, b) = ∅. If there is an −∞ column j in A
then xj may take on any value in a solution x. Thus, in what follows we assume without loss
of generality that A is doubly R − astic and b ∈ Rm.

Theorem 1. Let A = (aij) ∈ R
m×n be doubly R − astic and b ∈ Rm. Then x ∈ S(A, b) if and

only if

i) x ≤ x̄(A, b) and

ii)
⋃

j∈Nx

Mj = M where Nx = {j ∈ N; xj = x̄(A, b)j}

Proof. Suppose x ∈ S(A, b). Thus we have,

A ⊗ x = b
⇐⇒ max

j
(aij + xj) = bi for all i ∈ M

⇐⇒ aij + xj = bi for some j ∈ N

⇐⇒ xj ≤ bi ⊗ a−1
ij for all i ∈ M

⇐⇒ xj ≤ min
i∈M

(bi ⊗ a−1
ij ) for all j ∈ N

Hence, x ≤ x̄ .

Now that x ∈ S(A, b). Since Mj ⊆ M we only need to show that M ⊆ ⋃
j∈Nx

Mj. Let k ∈ M.
Since bk = akj ⊗ xj > −∞ for some j ∈ N and x−1

j ≥ x̄−1
j ≥ aij ⊗ b−1

i for every i ∈ M we have

x−1
j = akj ⊗ b−1

k = maxi∈M aij ⊗ b−1
i . Hence k ∈ Mj and xj = x̄j.

Suppose that x ≤ x̄ and
⋃

j∈Nx
Mj = M. Let k ∈ M, j ∈ N. Then akj ⊗ xj ≤ bk if akj = −∞. If

akj �= −∞ then
akj ⊗ xj ≤ akj ⊗ x̄j ≤ akj ⊗ bk ⊗ a−1

kj = bk (9)
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Therefore A ⊗ x ≤ b. At the same time k ∈ Mj for some j ∈ N satisfying xj = x̄j. For this j
both inequalities in (9) are equalities and thus A ⊗ x = b.

The following is a summary of prerequisites proved in [1] and [12]:

Theorem 2. Let A = (aij) ∈ R
m×n be doubly R − astic and b ∈ Rm. The system A ⊗ x = b

has a solution if and only if x̄(A, b) is a solution.

Proof.
Follows from Theorem 1.

Since x̄(A, b) has played an important role in the solution of A ⊗ x = b. This vector x̄ is called
the principal solution to A ⊗ x = b [1], and we will call it likewise. The principal solution
will also be used when studying the systems A ⊗ x ≤ b and also when solving the one-sided
system containing both equations and inequalities. The one-sided systems containing both
equations and inequalities have been studied in [16] and the result will be presented later in
this chapter.

Note that the principal solution may not be a solution to the system A⊗ x = b. More precisely,
the following are observed in [12]:

Corollary 1. Let A = (aij) ∈ R
m×n be doubly R − astic and b ∈ Rm. Then the following three

statements are equivalent:

i) S(A, b) �= ∅

ii) x̄(A, b) ∈ S(A, b)

iii)
⋃

j∈N
Mj = M

Proof.
The statements follow from Theorems 1 and 2.

For the existence of a unique solution to the max-linear system A ⊗ x = b we have the
following corollary:

Corollary 2. Let A = (aij) ∈ R
m×n be doubly R− astic and b ∈ Rm. Then S(A, b) = {x̄(A, b)}

if and only if

i)
⋃

j∈N
Mj = M and

ii)
⋃

j∈N
Mj �= M for any N� ⊆ N, N� �= N

Proof.
Follows from Theorem 1.

The question of solvability and unique solvability of the system A ⊗ x = b was linked to the
set covering and minimal set covering problem of combinatorics in [12].
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4.2. System of inequalities

In this section we show how a solution to the one-sided system of inequalities can be obtained.
Let A = (aij) ∈ Rm×n and b = (b1, . . . , bm)T ∈ R. A system of the form:

A ⊗ x ≤ b (10)

is called one-sided max-linear system of inequalities or just one-sided system of inequalities. The
one-sided system of inequalities has received some attention in the past, see [1, 3] and [17] for
more information. Here, we will only present a result which shows that the principal solution,
x̄(A, b) is the greatest solution to (10). That is if (10) has a solution then x̄(A, b) is the greatest
of all the solutions. We denote the solution set of (10) by S(A, b,≤). That is

S(A, b,≤) = {x ∈ Rn; A ⊗ x ≤ b}

Theorem 3. x ∈ S(A, b,≤) if and only if x ≤ x̄(A, b).

Proof. Suppose x ∈ S(A, b,≤). Then we have

A ⊗ x ≤ b

⇐⇒ max
j

(aij + xj) ≤ bi for all i

⇐⇒ aij + xj ≤ bi for all i, j

⇐⇒ xj ≤ bi ⊗ a−1
ij for all i, j

⇐⇒ xj ≤ min
i
(bi ⊗ a−1

ij ) for all j

⇐⇒ x ≤ x̄(A, b)

and the proof is now complete.

The system of inequalities

A ⊗ x ≤ b
C ⊗ x ≥ d

(11)

was discussed in [18] where the following result was presented.

Lemma 1. A system of inequalities (11) has a solution if and only if C ⊗ x̄(A, b) ≥ d

4.3. A system containing of both equations and inequalities

In this section a system containing both equations and inequalities will be presented, the
results were taken from [16]. Let A = (aij) ∈ Rk×n, C = (cij) ∈ Rr×n, b = (b1, . . . , bk)

T ∈ Rk

and d = (d1, . . . , dr)T ∈ Rr. A one-sided max-linear system with both equations and inequalities is
of the form:
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A ⊗ x = b

C ⊗ x ≤ d
(12)

We shall use the following notation throughout this paper

R = {1, 2, ..., r}
S(A, C, b, d) = {x ∈ Rn; A ⊗ x = b and C ⊗ x ≤ d}

S(C, d,≤) = {x ∈ Rn; C ⊗ x ≤ d}

x̄j(C, d) = min
i∈R

(di ⊗ c−1
ij ) for all j ∈ N

K = {1, . . . , k}

Kj =

{
k ∈ K; bk ⊗ a−1

kj = min
i∈K

(
bi ⊗ a−1

ij

)}
for all j ∈ N

x̄j(A, b) = min
i∈K

(bi ⊗ a−1
ij ) for all j ∈ N

x̄ = (x̄1, ..., x̄n)
T

J = {j ∈ N; x̄j(C, d) ≥ x̄j(A, b)} and

L = N \ J

We also define the vector x̂ = (x̂1, x̂2, ..., x̂n)T , where

x̂j(A, C, b, d) ≡
{

x̄j(A, b) if j ∈ J
x̄j(C, d) if j ∈ L

(13)

and Nx̂ = {j ∈ N; x̂j = x̄j}.

Theorem 4. Let A = (aij) ∈ Rk×n, C = (cij) ∈ Rr×n, b = (b1, . . . , bk)
T ∈ Rk and d =

(d1, . . . , dr)T ∈ Rr. Then the following three statements are equivalent:

(i) S(A, C, b, d) �= ∅

(ii) x̂(A, C, b, d) ∈ S(A, C, b, d)

(iii)
⋃

j∈J
Kj = K

Proof. (i) =⇒ (ii). Let x ∈ S(A, C, b, d), therefore x ∈ S(A, b) and x ∈ S(C, d,≤). Since
x ∈ S(C, d,≤), it follows from Theorem 3 that x ≤ x̄(C, d). Now that x ∈ S(A, b) and also
x ∈ S(C, d,≤), we need to show that x̄j(C, d) ≥ x̄j(A, b) for all j ∈ Nx (that is Nx ⊆ J).
Let j ∈ Nx then xj = x̄j(A, b). Since x ∈ S(C, d,≤) we have x ≤ x̄(C, d) and therefore
x̄j(A, b) ≤ x̄j(C, d) thus j ∈ J. Hence, Nx ⊆ J and by Theorem 1

⋃
j∈J Kj = K. This also proves
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(i) =⇒ (iii)
(iii) =⇒ (i). Suppose

⋃
j∈J Kj = K. Since x̂(A, C, b, d) ≤ x̄(C, d) we have x̂(A, C, b, d) ∈

S(C, d,≤). Also x̂(A, C, b, d) ≤ x̄(A, b) and Nx̂ ⊇ J gives
⋃

j∈Nx̂(A,C,b,d)
Kj ⊇

⋃
j∈J Kj = K. Hence⋃

j∈Nx̂(A,C,b,d)
Kj = K, therefore x̂(A, C, b, d) ∈ S(A, b) and x̂(A, C, b, d) ∈ S(C, d,≤). Hence

x̂(A, C, b, d) ∈ S(A, C, b, d) (that is S(A, C, b, d) �= ∅) and this also proves (iii) =⇒ (ii).

Theorem 5. Let A = (aij) ∈ Rk×n, C = (cij) ∈ Rr×n, b = (b1, . . . , bk)
T ∈ Rk and d =

(d1, . . . , dr)T ∈ Rr. Then x ∈ S(A, C, b, d) if and only if

(i) x ≤ x̂(A, C, b, d) and

(ii)
⋃

j∈Nx

Kj = K where Nx = {j ∈ N ; xj = x̄j(A, b)}

Proof. (=⇒) Let x ∈ S(A, C, b, d), then x ≤ x̄(A, b) and x ≤ x̄(C, d). Since x̂(A, C, b, d) =
x̄(A, b)⊕�

x̄(C, d) we have x ≤ x̂(A, C, b, d). Also, x ∈ S(A, C, b, d) implies that x ∈ S(C, d,≤).
It follows from Theorem 1 that

⋃
j∈Nx

Kj = K.
(⇐=) Suppose that x ≤ x̂(A, C, b, d) = x̄(A, b)⊕�

x̄(C, d) and
⋃

j∈Nx
Kj = K. It follows from

Theorem 1 that x ∈ S(A, b), also by Theorem 3 x ∈ S(C, d,≤). Thus x ∈ S(A, b) ∩ S(C, d,≤) =
S(A, C, b, d).

We introduce the symbol |X| which stands for the number of elements of the set X.

Lemma 2. Let A = (aij) ∈ Rk×n, C = (cij) ∈ Rr×n, b = (b1, . . . , bk)
T ∈ Rk and d =

(d1, . . . , dr)T ∈ Rr. If |S(A, C, b, d)| = 1 then |S(A, b)| = 1.

Proof. Suppose |S(A, C, b, d)| = 1, that is S(A, C, b, d) = {x} for an x ∈ Rn. Since
S(A, C, b, d) = {x} we have x ∈ S(A, b) and thus S(A, b) �= ∅. For contradiction, suppose
|S(A, b)| > 1. We need to check the following two cases: (i) L �= ∅ and (ii) L = ∅ where
L = N \ J, and show in each case that |S(A, C, b, d)| > 1.

Proof of Case (i), that is L �= ∅: Suppose that L contains only one element say n ∈ N i.e
L = {n}. Since x ∈ S(A, C, b, d) it follows from Theorem 4that x̂(A, C, b, d) ∈ S(A, C, b, d).
That is x = x̂(A, C, b, d) =
(x̄1(A, b), x̄2(A, b), . . . , x̄n−1(A, b), x̄n(C, d)) ∈ S(A, C, b, d). It can also be seen that, x̄(C, d)n <
x̄n(A, b) and any vector of the form z =
(x̄1(A, b), x̄2(A, b), . . . , x̄n−1(A, b), α) ∈ S(A, C, b, d), where α ≤ x̄n(C, d). Hence
|S(A, C, b, d)| > 1. If L contains more than one element, then the proof is done in a similar
way.

Proof of Case (ii), that is L = ∅ (J = N): Suppose that J = N. Then we have x̂(A, C, b, d) =
x̄(A, b) ≤ x̄(C, d). Suppose without loss of generality that x, x

� ∈ S(A, b) such that x �=
x
�
. Then x ≤ x̄(A, b) ≤ x̄(C, d) and also x

� ≤ x̄(A, b) ≤ x̄(C, d). Thus, x, x
� ∈ S(C, d,≤).

Consequently, x, x
� ∈ S(A, C, b, d) and x �= x

�
. Hence |S(A, C, b, d)| > 1.

Theorem 6. Let A = (aij) ∈ Rk×n, C = (cij) ∈ Rr×n, b = (b1, . . . , bk)
T ∈ Rk and d =

(d1, . . . , dr)T ∈ Rr. If |S(A, C, b, d)| = 1 then J = N.
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Proof. Suppose |S(A, C, b, d)| = 1. It follows from Theorem 4 that
⋃

j∈J Kj = K. Also,
|S(A, C, b, d)| = 1 implies that |S(A, b)| = 1 (Lemma 2). Moreover, |S(A, b)| = 1 implies that⋃

j∈N Kj = K and
⋃

j∈N� Kj �= K, N
� ⊆ N, N

� �= N (Theorem 2). Since J ⊆ N and
⋃

j∈J Kj = K,
we have J = N.

Corollary 3. Let A = (aij) ∈ Rk×n, C = (cij) ∈ Rr×n, b = (b1, . . . , bk)
T ∈ Rk and d =

(d1, . . . , dr)T ∈ Rr. If |S(A, C, b, d)| = 1 then S(A, C, b, d) = {x̄(A, b)}.

Proof. The statement follows from Theorem 6 and Lemma 2.

Corollary 4. Let A = (aij) ∈ Rk×n, C = (cij) ∈ Rr×n, b = (b1, . . . , bk)
T ∈ Rk and d =

(d1, . . . , dr)T ∈ Rk. Then, the following three statements are equivalent:

(i) |S(A, C, b, d)| = 1

(ii) |S(A, b)| = 1 and J = N

(iii)
⋃

j∈J
Kj = Kand

⋃

j∈J�
Kj �= K, for every J

� ⊆ J, J
� �= J, and J = N

Proof. (i) =⇒ (ii) Follows from Lemma 2 and Theorem 6.
(ii) =⇒ (i) Let J = N, therefore x̄ ≤ x̄(C, d) and thus S(A, b) ⊆ S(C, d,≤). Therefore we
have S(A, C, b, d) = S(A, b) ∩ S(C, d,≤) = S(A, b). Hence |S(A, C, b, d)| = 1.
(ii) =⇒ (iii) Suppose that S(A, b) = {x} and J = N. It follows from Theorem 2 that⋃

j∈N Kj = K and
⋃

j∈N� Kj �= K, N
� ⊆ N, N

� �= N. Since J = N the statement now follows
from Theorem 2.
(iii) =⇒ (ii) It is immediate that J = N and the statement now follows from Theorem 2.

Theorem 7. Let A = (aij) ∈ Rk×n, C = (cij) ∈ Rr×n, b = (b1, . . . , bk)
T ∈ Rk and d =

(d1, . . . , dr)T ∈ Rk. If |S(A, C, b, d)| > 1 then |S(A, C, b, d)| is infinite .

Proof. Suppose |S(A, C, b, d)| > 1. By Corollary 4 we have
⋃

j∈J Kj = K, for some J ⊆ N,
J �= N(that is ∃j ∈ N such that x̄j(A, b) > x̄j(C, d)). Now J ⊆ N and

⋃
j∈J Kj = K, Theorem 5

implies that any vector x = (x1, x2, ..., xn)T of the form

xj ≡
{

x̄j(A, b) if j ∈ J
y ≤ x̄j(C, d) if j ∈ L

is in S(A, C, b, d), and the statement follows.

Remark 1. From Theorem 7 we can say that the number of solutions to the one-sided system
containing both equations and inequalities can only be 0, 1, or ∞.

The vector x̂(A, C, b, d) plays an important role in the solution of the one-sided system
containing both equations and inequalities. This role is the same as that of the principal
solution x̄(A, b) to the one-sided max-linear system A ⊗ x = b, see [19] for more details.
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5. Max-linear program with equation and inequality constraints

Suppose that the vector f = ( f1, f2, ..., fn)T ∈ Rn is given. The task of minimizing
[maximizing]the function f (x) = f T ⊗ x = max( f1 + x1, f1 + x2..., fn + xn) subject to (12)
is called max-linear program with one-sided equations and inequalities and will be denoted
by MLPmin≤ and [MLPmax≤ ]. We denote the sets of optimal solutions by Smin(A, C, b, d) and
Smax(A, C, b, d), respectively.

Lemma 3. Suppose f ∈ Rn and let f (x) = f T ⊗ x be defined on Rn. Then,
(i) f (x) is max-linear, i.e. f (λ ⊗ x ⊕ μ ⊗ y) = λ ⊗ f (x)⊕ μ ⊗ f (y) for every x, y ∈ Rn.
(ii) f (x) is isotone, i.e. f (x) ≤ f (y) for every x, y ∈ Rn, x ≤ y.

Proof.
(i) Let α ∈ R. Then we have

f (λ ⊗ x ⊕ μ ⊗ y) = f T ⊗ λ ⊗ x ⊕ f T ⊗ μ ⊗ y

= λ ⊗ f T ⊗ x ⊕ μ ⊗ f T ⊗ y

= λ ⊗ f (x)⊕ μ ⊗ f (y)

and the statement now follows.

(ii) Let x, y ∈ Rn such that x ≤ y. Since x ≤ y, we have

max(x) ≤ max(y)

⇐⇒ f T ⊗ x ≤ f T ⊗ y, for any, f ∈ Rn

⇐⇒ f (x) ≤ f (y).

Note that it would be possible to convert equations to inequalities and conversely but this
would result in an increase of the number of constraints or variables and thus increasing the
computational complexity. The method we present here does not require any new constraint
or variable.

We denote by
(A ⊗ x)i = max

j∈N
(aij + xj)

A variable xj will be called active if xj = f (x), for some j ∈ N. Also, a variable will be called
active on the constraint equation if the value (A ⊗ x)i is attained at the term xj respectively. It
follows from Theorem 5 and Lemma 3 that x̂(A, C, b, d) ∈ Smax(A, C, b, d). We now present a
polynomial algorithm which finds x ∈ Smin(A, C, b, d) or recognizes that Smin(A, B, c, d) = ∅.
Due to Theorem 4 either x̂(A, C, b, d) ∈ S(A, C, b, d) or S(A, C, b, d) = ∅. Therefore, we assume
in the following algorithm that S(A, C, b, d) �= ∅ and also Smin(A, C, b, d) �= ∅.

Theorem 8. The algorithm ONEMLP-EI is correct and its computational complexity is O((k +
r)n2).
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Algorithm 1 ONEMLP-EI(Max-linear program with one-sided equations and inequalities)

Input: f = ( f1, f2, ..., fn)T ∈ Rn, b = (b1, b2, ...bk)
T ∈ Rk, d = (d1, d2, ...dr)T ∈ Rr, A = (aij) ∈

Rk×n and C = (cij) ∈ Rr×n.
Output: x ∈ Smin(A, C, b, d).

1. Find x̄(A, b), x̄(C, d), x̂(A, C, b, d) and Kj, j ∈ J;J = {j ∈ N; x̄j(C, d) ≥ x̄j(A, b)}
2. x := x̂(A, C, b, d)

3. H(x) := {j ∈ N; f j + xj = f (x)}
4. J := J \ H(x)

5. If �

j∈J
Kj �= K

then stop (x ∈ Smin(A, C, b, d))

6. Set xj small enough (so that it is not active on any equation or inequality) for every
j ∈ H(x)

7. Go to 3

Proof. The correctness follows from Theorem 5 and the computational complexity is
computed as follows. In Step 1 x̄(A, b) is O(kn), while x̄(C, d), x̂(A, C, b, d) and Kj can be
determined in O(rn), O(k + r)n and O(kn) respectively. The loop 3-7 can be repeated at most
n − 1 times, since the number of elements in J is at most n and in Step 4 at least one element
will be removed at a time. Step 3 is O(n), Step 6 is O(kn) and Step 7 is O(n). Hence loop 3-7
is O(kn2).

5.1. An example

Consider the following system max-linear program in which f = (5, 6, 1, 4,−1)T ,

A =

⎛
⎝

3 8 4 0 1
0 6 2 2 1
0 1 −2 4 8

⎞
⎠ , b =

⎛
⎝

7
5
7

⎞
⎠ ,

C =

⎛
⎝

−1 2 −3 0 6
3 4 −2 2 1
1 3 −2 3 4

⎞
⎠ and d =

⎛
⎝

5
5
6

⎞
⎠ .

We now make a record run of Algorithm ONEMLP-EI. x̄(A, b) = (5,−1, 3, 3,−1)T , x̄(C, d) =
(2, 1, 7, 3,−1)T , x̂(A, C, b, d) = (2,−1, 3, 3,−1)T , J = {2, 3, 4, 5} and K2 = {1, 2}, K3 = {1, 2},
K4 = {2, 3} and K5 = {3}. x := x̂(A, C, b, d) = (2,−1, 3, 3,−1)T and H(x) = {1, 4} and
J �⊆ H(x). We also have J := J \ H(x) = {2, 3, 5} and K2 ∪ K3 ∪ K5 = K. Then set x1 = x4 =
10−4 (say) and x = (10−4,−1, 3, 10−4,−1)T . Now H(x) = {2} and J := J \ H(x) = {3, 5}.
Since K3 ∪ K5 = K set x2 = 10−4(say) and we have x = (10−4, 10−4, 3, 10−4,−1)T . Now
H(x) = {3} and J := J \ H(x) = {5}. Since K5 �= K then we stop and an optimal solution is
x = (10−4, 10−4, 3, 10−4,−1)T and f min = 4.
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6. A special case of max-linear program with two-sided constraints

Suppose c = (c1, c2, ..., cm)T , d = (d1, d2, ..., dm)T ∈ Rm, A = (aij) and B = (bij) ∈ Rm×n are
given matrices and vectors. The system

A ⊗ x ⊕ c = B ⊗ x ⊕ d (14)

is called non-homogeneous two-sided max-linear system and the set of solutions of this
system will be denoted by S. Two-sided max-linear systems have been studied in [20], [21],
[22] and [23].

Optimization problems whose objective function is max-linear and constraint (14) are called
max-linear programs (MLP). Max-linear programs are studied in [24] and solution methods
for both minimization and maximization problems were developed. The methods are proved
to be pseudopolynomial if all entries are integer. Also non-linear programs with max-linear
constraints were dealt with in [25], where heuristic methods were develeoped and tested for
a number of instances.

Consider max-linear programs with two-sided constraints (minimization), MLPmin

f (x) = f T ⊗ x −→ min

subject to

A ⊗ x ⊕ c = B ⊗ x ⊕ d

(15)

where f = ( f1, . . . , fn)T ∈ Rn, c = (c1, . . . , cm)T , d = (d1, . . . , dm)T ∈ Rm, A = (aij) and
B = (bij) ∈ Rm×n are given matrices and vectors. We introduce the following:

y = ( f1 ⊗ x1, f2 ⊗ x2, . . . , fn ⊗ xn)

= diag( f )⊗ x
(16)

diag( f ) means a diagonal matrix whose diagonal elements are f1, f2, ..., fn and off diagonal
elements are −∞. It therefore follows from (16) that

f T ⊗ x = 0T ⊗ y

⇐⇒ x = ( f−1
1 ⊗ y1, f−1

2 ⊗ y2, . . . , f−1
n ⊗ yn)

= (diag( f ))−1 ⊗ y

(17)

Hence, by substituting (16) and (17) into (15) we have

0T ⊗ y −→ min

subject to

A
� ⊗ y ⊕ c = B

� ⊗ y ⊕ d,

(18)

where 0T is transpose of the zero vector, A
�
= A ⊗ (diag( f ))−1 and B

�
= B ⊗ (diag( f ))−1

Therefore we assume without loss of generality that f = 0 and hence (15) is equivalent to

f (x) = ∑
j=1,...,n

⊕xj −→ min

subject to

A ⊗ x ⊕ c = B ⊗ x ⊕ d

(19)
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6. A special case of max-linear program with two-sided constraints
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given matrices and vectors. The system

A ⊗ x ⊕ c = B ⊗ x ⊕ d (14)

is called non-homogeneous two-sided max-linear system and the set of solutions of this
system will be denoted by S. Two-sided max-linear systems have been studied in [20], [21],
[22] and [23].

Optimization problems whose objective function is max-linear and constraint (14) are called
max-linear programs (MLP). Max-linear programs are studied in [24] and solution methods
for both minimization and maximization problems were developed. The methods are proved
to be pseudopolynomial if all entries are integer. Also non-linear programs with max-linear
constraints were dealt with in [25], where heuristic methods were develeoped and tested for
a number of instances.

Consider max-linear programs with two-sided constraints (minimization), MLPmin

f (x) = f T ⊗ x −→ min

subject to

A ⊗ x ⊕ c = B ⊗ x ⊕ d

(15)

where f = ( f1, . . . , fn)T ∈ Rn, c = (c1, . . . , cm)T , d = (d1, . . . , dm)T ∈ Rm, A = (aij) and
B = (bij) ∈ Rm×n are given matrices and vectors. We introduce the following:

y = ( f1 ⊗ x1, f2 ⊗ x2, . . . , fn ⊗ xn)

= diag( f )⊗ x
(16)

diag( f ) means a diagonal matrix whose diagonal elements are f1, f2, ..., fn and off diagonal
elements are −∞. It therefore follows from (16) that

f T ⊗ x = 0T ⊗ y

⇐⇒ x = ( f−1
1 ⊗ y1, f−1

2 ⊗ y2, . . . , f−1
n ⊗ yn)

= (diag( f ))−1 ⊗ y

(17)

Hence, by substituting (16) and (17) into (15) we have

0T ⊗ y −→ min

subject to

A
� ⊗ y ⊕ c = B

� ⊗ y ⊕ d,

(18)

where 0T is transpose of the zero vector, A
�
= A ⊗ (diag( f ))−1 and B

�
= B ⊗ (diag( f ))−1

Therefore we assume without loss of generality that f = 0 and hence (15) is equivalent to

f (x) = ∑
j=1,...,n

⊕xj −→ min

subject to

A ⊗ x ⊕ c = B ⊗ x ⊕ d

(19)
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The set of feasible solutions for (19) will be denoted by S and the set of optimal solutions
by Smin. A vector is called constant if all its components are equal. That is a vector x ∈ Rn is
constant if x1 = x2 = · · · = xn. For any x ∈ S we define the set Q(x) = {i ∈ M; (A⊗ x)i > ci}.
We introduce the following notation of matrices. Let A = (aij) ∈ Rm×n, 1 ≤ i1 < i2 < · · · <
iq ≤ m and 1 ≤ j1 < j2 < · · · < jr ≤ n. Then,

A
�

i1, i2, . . . , iq
j1, j2, . . . , jr

�
=

⎛
⎜⎜⎝

ai1 j1 ai1 j2 . . . ai1 jr
ai2 j1 ai2 j2 . . . ai2 jr

. . .
aiq j1 aiq j2 . . . aiq jr

⎞
⎟⎟⎠ = A(Q, R)

where, Q = {i1, . . . , iq}, R = {j1, . . . , jr}. Similar notation is used for vectors c(i1, . . . , ir) =

(ci1 . . . cir )
T = c(R). Given MLPmin with c ≥ d, we define the following sets

M= = {i ∈ M; ci = di} and

M> = {i ∈ M; ci > di}
We also define the following matrices:

A= = A(M=, N), A> = A(M>, N)

B= = B(M=, N), B> = B(M>, N)

c= = c(M=), c> = c(M>)

(20)

An easily solvable case arises when there is a constant vector x ∈ S such that the set Q(x) = ∅.
This constant vector x satisfies the following equations and inequalities

A= ⊗ x ≤ c=
A> ⊗ x ≤ c>
B= ⊗ x ≤ c=
B> ⊗ x = c>

(21)

where A=, A>, B=, B>, c= and c> are defined in (20). The one-sided system of equation and
inequalities (21) can be written as

G ⊗ x = p
H ⊗ x ≤ q

(22)

where,

G = (B>), H =

⎛
⎝

A=

A>

B=

⎞
⎠

p = c> and q =

⎛
⎝

c=
c>
c=

⎞
⎠

(23)

Recall that S(G, H, p, q) is the set of solutions for (22).
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Theorem 9. Let Q(x) = ∅ for some constant vector x = (α, . . . , α)T ∈ S. If z ∈ Smin then
z ∈ S(G, H, p, q).

Proof. Let x = (α, . . . , α)T ∈ S. Suppose Q(z) = ∅ and z ∈ Smin. This implies that f (z) ≤
f (x) = α. Therefore we have, ∀j ∈ N, z ≤ α. Consequently, z ≤ x and (A ⊗ z)i ≤ (A ⊗ x)i
for all i ∈ M. Since, Q(z) = ∅ and z ∈ S(G, H, p, q).

Corollary 5. If Q(x) = ∅ for some constant vector x ∈ S then Smin ⊆ Smin(G, H, p, q).

Proof. The statement follows from Theorem 9.

7. Some solvability concepts of a linear system containing of both
equations and inequalities

System of max-separable linear equations and inequalities arise frequently in several branches
of Applied Mathematics: for instance in the description of discrete-event dynamic system
[1, 4] and machine scheduling [10]. However, choosing unsuitable values for the matrix entries
and right-handside vectors may lead to unsolvable systems. Therefore, methods for restoring
solvability suggested in the literature could be employed. These methods include modifying
the input data [11, 26] or dropping some equations [11]. Another possibility is to replace each
entry by an interval of possible values. In doing so, our question will be shifted to asking
about weak solvability, strong solvability and control solvability.

Interval mathematics was championed by Moore [27] as a tool for bounding errors in
computer programs. The area has now been developed in to a general methodology for
investigating numerical uncertainty in several problems. System of interval equations and
inequalities in max-algebra have each been studied in the literature. In [26] weak and strong
solvability of interval equations were discussed, control sovability, weak control solvability
and universal solvability have been dealt with in [28]. In [29] a system of linear inequality
with interval coefficients was discussed. In this section we consider a system consisting of
interval linear equations and inequalities and present solvability concepts for such system.

An algebraic structure (B,⊕,⊗) with two binary operations ⊕ and ⊗ is called max-plus
algebra if

B = R ∪ {−∞}, a ⊕ b = max{a, b}, a ⊗ b = a + b

for any a, b ∈ R.
Let m, n, r be given positive integers and a ∈ R, we use throughout the paper the notation
M = {1, 2, ..., m}, N = {1, 2, ..., n}, R = {1, 2, ..., r} and a−1 = −a. The set of all m × n, r × n
matrices over B is denoted by B(m, n) and B(r, n) respectively. The set of all n-dimensional
vectors is denoted by B(n). Then for each matrix A ∈ B(n, m) and vector x ∈ B(n) the product
A ⊗ x is define as

(A ⊗ x) = max
j∈N

(
aij + xj

)

For a given matrix interval A = [A, A] with A, A ∈ B(k, n), A ≤ A and given vector interval
b = [b, b] with b, b ∈ B(n), b ≤ b the notation

A ⊗ x = b (24)
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represents an interval system of linear max-separable equations of the form

A ⊗ x = b (25)

Similarly, for a given matrix interval C = [A, A] with C, C ∈ B(r, n), C ≤ C and given vector
interval d = [d, d] with d, d ∈ B(n), b ≤ b the notation

C ⊗ x ≤ d (26)

represents an interval system of linear max-separable inequalities of the form

C ⊗ x ≤ d (27)

Interval system of linear max-separable equations and inequalities have each been studied in
the literature, for more information the reader is reffered to . The following notation

A ⊗ x = b

C ⊗ x ≤ d
(28)

represents an interval system of linear max-separable equations and inequalities of the form

A ⊗ x = b
C ⊗ x ≤ d

(29)

where A ∈ A, C ∈ C, b ∈ b and d ∈ d.

The aim of this section is to consider a system consisting of max-separable linear equations and
inequalities and presents some solvability conditions of such system. Note that it is possible
to convert equations to inequalities and conversely, but this would result in an increase in
the number of equations and inequalities or an increase in the number of unknowns thus
increasing the computational complexity when testing the solvability conditions. Each system
of the form (29) is said to be a subsystem of (28). An interval system (29) has constant matrices
if A = A and C = C. Similarly, an interval system has constant right hand side if b = b and
d = d. In what follows we will consider A ∈ R(k, n) and C ∈ R(r, n).

7.1. Weak solvability

Definition 8. A vector y is a weak solution to an interval system (29) if there exists A ∈ A, C ∈
C, b ∈ b and d ∈ d such that

A ⊗ y = b
C ⊗ y ≤ d

(30)

Theorem 10. A vector x ∈ Rn is a weak solution of (29) if and only if

x = x̄
(

A b
C d

)

and

A ⊗ x̄
(

A b
C d

)
≥ b
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Proof. Let i = {1, ..., m} be an arbitrary chosen index and x = (x1, x2, ..., xn)T ∈ Rn fixed. If
A ∈ A then (A ⊗ x)i is isotone and we have

(A ⊗ x)i ∈ [(A ⊗ x)i, (A ⊗ x)i] ⊆ R

Hence, x is a weak solution if and only if

[(A ⊗ x)i, (A ⊗ x)i] ∩ [bi, bi] (31)

Similarly, if C ⊗ x ≤ d then x is obviously a weak solution to

A ⊗ x ≤ b

C ⊗ x ≤ d
(32)

That is

x = x̄
(

A b
C d

)

Also from (31) x is a weak solution if and only if

[(A ⊗ x)i, (A ⊗ x)i] ∩ [bi, bi] �= ∅, ∀i = 1, 2, ..., m

That is

A ⊗ x̄
(

A b
C d

)
≥ b

Definition 9. An interval system (29) is weakly solvable if there exists A ∈ A, C ∈ C, b ∈ b
and d ∈ d such that (29) is solvable.

Theorem 11. An interval system (29) with constant matrix A = A = A, C = C = C is weakly
solvable if and only if

A ⊗ x̄
(

A b
C d

)
≥ b

Proof. The (if) part follows from the definition. Conversely, Let

A ⊗ x̄
(

A b
C d

)
= b

be solvable subsystem for b ∈ [bi, bi]. Then we have

A ⊗ x̄
(

A b
C d

)
≥ A ⊗ x̄

(
A b
C d

)
= b ≥ b

234 Linear Algebra – Theorems and Applications



20 Will-be-set-by-IN-TECH

Proof. Let i = {1, ..., m} be an arbitrary chosen index and x = (x1, x2, ..., xn)T ∈ Rn fixed. If
A ∈ A then (A ⊗ x)i is isotone and we have

(A ⊗ x)i ∈ [(A ⊗ x)i, (A ⊗ x)i] ⊆ R

Hence, x is a weak solution if and only if

[(A ⊗ x)i, (A ⊗ x)i] ∩ [bi, bi] (31)

Similarly, if C ⊗ x ≤ d then x is obviously a weak solution to

A ⊗ x ≤ b

C ⊗ x ≤ d
(32)

That is

x = x̄
(

A b
C d

)

Also from (31) x is a weak solution if and only if

[(A ⊗ x)i, (A ⊗ x)i] ∩ [bi, bi] �= ∅, ∀i = 1, 2, ..., m

That is

A ⊗ x̄
(

A b
C d

)
≥ b

Definition 9. An interval system (29) is weakly solvable if there exists A ∈ A, C ∈ C, b ∈ b
and d ∈ d such that (29) is solvable.

Theorem 11. An interval system (29) with constant matrix A = A = A, C = C = C is weakly
solvable if and only if

A ⊗ x̄
(

A b
C d

)
≥ b

Proof. The (if) part follows from the definition. Conversely, Let

A ⊗ x̄
(

A b
C d

)
= b

be solvable subsystem for b ∈ [bi, bi]. Then we have

A ⊗ x̄
(

A b
C d

)
≥ A ⊗ x̄

(
A b
C d

)
= b ≥ b

234 Linear Algebra – Theorems and Applications A Linear System of Both Equations and Inequalities in Max-Algebra 21

7.2. Strong solvability

Definition 10. A vector x is a strong solution to an interval system (29) if for each A ∈ A, C ∈ C
and each b ∈ b, d ∈ d there is an x ∈ R such that (29) holds.

Theorem 12. a vector x is a strong solution to (29) if and only if it is a solution to

E ⊗ x = f

C ⊗ x ≤ d

where

E =

(
A
A

)
, f =

(
b
b

)
(33)

Proof. If x is a strong solution of (29), it obviously satisfies (33). Conversely, suppose x satisfies
(33) and let Ã ∈ A, C̃ ∈ C, b̃ ∈ b, d̃ ∈ d such that Ã ⊗ x �= b̃ and C̃ ⊗ x > d̃. Then ∃i ∈
(1, 2, ..., m) such that either (Ã ⊗ x)i < b̃i or (Ã ⊗ x)i > b̃i and (C̃ ⊗ x)i > d̃i. Therefore,
(A ⊗ x)i < (Ã ⊗ x)i < bi, (A ⊗ x)i ≥ (Ã ⊗ x)i > bi and (C ⊗ x)i > (C̃ ⊗ x)i > di and the
theorem statement follows.
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[26] R.A Cuninghame-Green, K. Cechlárová Residuationin fuzzy algebra and some appplications,
Fuzzy Sets and Systems 71 (1995) 227-239.

[27] R.E Moore Methods and application of interval analysis, SIAM, (1979).
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1. Introduction
Multibody dynamics methods are being used extensively to model biomolecular systems
to study important physical phenomena occurring at different spatial and temporal scales
[10, 13]. These systems may contain thousands or even millions of degrees of freedom,
whereas, the size of the time step involved during the simulation is on the order of femto
seconds. Examples of such problems may include proteins, DNAs, and RNAs. These highly
complex physical systems are often studied at resolutions ranging from a fully atomistic
model to coarse-grained molecules, up to a continuum level system [4, 19, 20]. In studying
these problems, it is often desirable to change the system definition during the course of the
simulation in order to achieve an optimal combination of accuracy and speed. For example,
in order to study the overall conformational motion of a bimolecular system, a model based
on super-atoms (beads) [18, 22] or articulated multi-rigid and/or flexible body [21, 23] can be
used. Whereas, localized behavior has to be studied using fully atomistic models. In such
cases, the need for the transition from a fine-scale to a coarse model and vice versa arises.
Illustrations of a fully atomistic model of a molecule, and its coarse-grained model are shown
in Fig. (1-a) and Fig. (1-b).

Given the complexity and nonlinearity of challenging bimolecular systems, it is expected that
different physical parameters such as dynamic boundary conditions and applied forces will
have a significant affect on the behavior of the system. It is shown in [16] that time-invariant
coarse models may provide inadequate or poor results and as such, an adaptive framework
to model these systems should be considered [14]. Transitions between different system
models can be achieved by intelligently removing or adding certain degrees of freedom
(do f ). This change occurs instantaneously and as such, may be viewed as model changes
as a result of impulsively applied constraints. For multi-rigid and flexible body systems, the
transition from a higher fidelity (fine-scale) model to a lower fidelity model (coarse-scale)
using divide-and-conquer algorithm (DCA) has been studied previously in [8, 12]. DCA
efficiently provides the unique states of the system after this transition. In this chapter, we
focus on the transition from a coarse model to a fine-scale model. When the system is modeled
in an articulated multi-flexible-body framework, such transitions may be achieved by two
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(a) Fully atomistic model

(b) Mixed type multibody model

Figure 1. Illustration of a biomolecular system. a) Fully atomistic model. b) Coarse grain model with
different rigid and flexible sub-domains connected to each other via kinematic joints.

different means. In the first, a fine-scale model is generated by adding flexible do f . This type of
fine scaling may be necessary in order to capture higher frequency modes. For instance, when
two molecules bind together, due to the impact, the higher frequency modes of the system
are excited. The second type of fine scaling transition may be achieved through releasing the
connecting joints in the multi-flexible-body system. In other words, certain constraints on
joints are removed to introduce new do f in the model.

In contrast to those types of dynamic systems in which the model definition is persistent, and
the total energy of the system is conserved, the class of problems discussed here experiences
discontinuous changes in the model definition and hence, the energy of the system must
also change (nominally increase) in a discontinuous fashion. During the coarse graining
process, based on a predefined metric, one may conclude that naturally existing higher
modes are less relevant and can be ignored. As such, the kinetic energy associated with
those modes must be estimated and properly accounted for, when transitioning back to the
fine-scale model. Moreover, any change in the system model definition is assumed to occur
as a result of impulsively applied constraints, without the influence of external loads. As
such, the generalized momentum of the system must also be conserved [6]. In other words,
the momentum of each differential element projected onto the space of admissible motions
permitted by the more restrictive model (whether pre- or post-transition) when integrated
over the entire system must be conserved across the model transition. If the generalized
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momentum is not conserved during the transition, the results are non-physical, and the new
initial conditions for the rest of the simulation of the system are invalid.

In the next section, a brief overview of the DCA and analytical preliminaries necessary to the
algorithm development are presented. The optimization problem associated with the coarse
to fine scale transitioning is discussed next. Then the impulse-momentum formulation for
transitioning from coarse models to fine-scale models in the articulated flexible-body scheme
is presented. Finally conclusions are made.

2. Theoretical background
In this section, a brief introduction of the basic divide-and-conquer algorithm is presented.
The DCA scheme has been developed for the simulation of general multi-rigid and
multi-flexible-body systems [5, 8, 9], and systems with discontinuous changes [11, 12]. The
basic algorithm described here is independent of the type of problem and is presented so that
the chapter might be more self contained. In other words, it can be used to study the behavior
of any rigid- and flexible-body system, even if the system undergoes a discontinuous change.
Some mathematical preliminaries are also presented in this section which are important to the
development of the algorithm.

2.1. Basic divide-and-conquer algorithm

The basic DCA scheme presented in this chapter works in a similar manner described in detail
in [5, 9]. Consider two representative flexible bodies k and k + 1 connected to each other by a
joint Jk as shown in Fig. (2-a). The two points of interest, Hk

1 and Hk
2, on body k are termed

handles. A handle is any selected point through which a body interacts with the environment.
In this chapter, we will limit our attention to each body having two handles, and each handle
coincides with the joint location on the body, i.e. joint locations Jk−1 and Jk in case of body
k. Similarly, for body k + 1, the points Hk+1

1 and Hk+1
2 are located at the joint locations Jk

and Jk+1, respectively. Furthermore, large rotations and translations in the flexible bodies are
modeled as rigid body do f . Elastic deformations in the flexible bodies are modeled through
the use of modal coordinates and admissible shape functions.

DCA is implemented using two main processes, hierarchic assembly and disassembly. The
goal of the assembly process is to find the equations describing the dynamics of each body
in the hierarchy at its two handles. This process begins at the level of individual bodies and
adjacent bodies are assembled in a binary tree configuration. Using recursive formulations,
this process couples the two-handle equations of successive bodies to find the two-handle
equations of the resulting assembly. For example, body k and body k + 1 are coupled together
to form the assembly shown in Fig. (2-b). At the end of the assembly process, the two-handle
equations of the entire system are obtained.

The hierarchic disassembly process begins with the solution of the two-handle equations
associated with the primary node of the binary tree. The process works from this node to the
individual sub-domain nodes of the binary tree to solve for the two-handle equations of the
constituent subassemblies. This process is repeated until all unknowns (e.g., spatial constraint
forces, spatial constraint impulses, spatial accelerations, jumps in the spatial velocities) of the
bodies at the individual sub-domain level of the binary tree are known. The assembly and
disassembly processes are illustrated in Fig. (3).
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(a) Consecutive bodies

(b) Assembly k : k + 1

Figure 2. Assembling of the two bodies to form a subassembly. a) Consecutive bodies k and k + 1. b) A
fictitious subassembly formed by coupling bodies k and k + 1.

Figure 3. The hierarchic assembly-disassembly process in DCA.

2.2. Analytical preliminaries

For convenience, the superscript c shows that a quantity of interest is associated with the
coarse model, while f denotes that it is associated with the fine model. For example, the
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column matrix
�

v1
q̇1

�c
represents the velocity of handle-1 in the coarse model, and

�
v1
q̇1

� f

represents the velocity of the same handle in the fine-scale model. In these matrices, v1 and
q̇1 are the spatial velocity vector of handle-1 and the associated generalized modal speeds,
respectively.

As discussed previously, the change in the system model definition may occur by changing
the number of flexible modes used to describe the behavior of flexible bodies, and/or the
number of do f of the connecting joints. To implement these changes in the system model
mathematically, the joint free-motion map is defined as follows.

The joint free-motion map PJk

R can be interpreted as the 6 × νk matrix of the free-modes of

motion permitted by the νk degree-of-freedom joint, Jk. In other words, PJk

R maps νk × 1
generalized speeds associated with relative free motion permitted by the joint into a 6 × 1
spatial relative velocity vector which may occur across the joint, Jk [5]. For instance, consider
a transition in which a spherical joint in the system is altered, where only one do f is locked
about the first axis. The joint free-motion maps of the fine and coarse models in this case are
shown in the following:

PJk f
R =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, PJkc
R =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
1 0
0 1
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

We define the orthogonal complement of the joint free-motion map, Dk
R. As such, by definition

one arises at the following

(Dk
R)

T PJk

R = 0 (2)

3. Optimization problem
Any violation in the conservation of the generalized momentum of the system in the transition
between different models leads to non-physical results since the instantaneous switch in the
system model definition is incurred without the influence of any external load. In other words,
the momentum of each differential element projected onto the space of the admissible motions
permitted by the more restrictive model (whether pre- or post-transition) when integrated
over the entire system must be conserved across the model transition [6]. Jumps in the system
partial velocities due to the sudden change in the model resolution result in the jumps in the
generalized speeds corresponding to the new set of degrees of freedom. Since the model is
instantaneously swapped, the position of the system does not change. Hence, the position
dependent forces acting on the system do not change, and do not affect the generalized
speeds. Any change in the applied loads (e.g., damping terms) which might occur due
to the change in the model definition and the associated velocity jumps do not contribute
to the impulse-momentum equations which describe the model transition. This is because
these changes in the applied loads are bounded, and integrated over the infinitesimally short
transition time.

Consider a fine-scale model with n do f . Let the do f of the model reduce to n − m after
the imposition of certain instantaneous constraints. In this case, the conservation of the
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generalized momentum of the system is expressed as

Lc/c = L f /c (3)

In the above equation, Lc/c and L f /c represent the momenta of the coarse and fine models,
respectively, projected on to the space of partial velocity vectors of the coarse model. Equation
(3) provides a set of n − m equations which are linear in the generalized speeds of the coarse
model and solvable for the unique and physically meaningful states of the system after the
transition to the coarser model.

Now consider the case in which, the coarse model is transitioned back to the fine-scale model.
Equation (3) is still valid, and provides n − m equations with n unknown generalized speeds
of the finer model. Furthermore, during the coarsening process, the level of the kinetic
energy also drops because we chose to ignore certain modes of the system. However, in
actual biomolecular systems such a decrease in energy does not happen. Consequently, it is
important to realize the proper kinetic energy when transitioning back to the fine-scale model.
Therefore, the following equation must be satisfied

KE f =
1
2
(u f )TMu f (4)

In the above equation u f is the n × 1 column matrix containing the generalized speeds of the
fine model, and M represents the generalized inertia matrix of the fine model. It is clear that
Eqs. (3) and (4) provide n−m+ 1 equations with n unknowns. This indicates that the problem
is under-determined when multiple do f of the system are released. We may arrive at a unique
or finite number of solutions, solving the following optimization problem

Optimize J(u f , t) (5)

Subjected to Θi(u f , t) = 0, i = 1, · · · , k (6)

In the above equation, J is the physics- or knowledge- or mathematics-based objective
function to be optimized (nominally minimized) subjected to the constraint equations Θi. In
[1, 15], different objective functions are proposed for coarse to fine-scale transition problems.
For instance, in order to prevent the generalized speeds of the new fine-scale model from
deviating greatly from those of the coarse scale model, we may minimize the L2 norm of the
difference between the generalized speeds of the coarse and fine scale models as follows

J = (u f − uc)T(u f − uc) (7)

As indicated previously, (n − m) constraint equations governing the optimization problem
are obtained from the conservation of the generalized momentum of the system within the
transition. The rest of the constraint equations are obtained from other information about the
system, such as the specific value of kinetic energy or the temperature of the system.

The generalized momenta balance equations from Eq. (3) are expressed as

Au f = b (8)

where A and b are (n − m)× n and n known matrices, respectively, and u f is an n × 1 column
matrix of the generalized speeds of the fine-scale system model. As a part of the optimization
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problem, one must solve this linear system for n − m dependent generalized speeds in terms
of m independent generalized speeds. Therefore, the optimization is performed on a much
smaller number (m) variables, with a cost of O(m3). For a complex molecular system, n could
be very large, and n >> m, hence a significant reduction is achieved in the overall cost
of optimization as compared to other traditional techniques, such as Lagrange multipliers
[3]. However, the computations required to find the relations between dependent and
independent generalized speeds can impose a significant burden on these simulations. It is
shown in [2] that if traditional methods such as Gaussian elimination or LU factorization are
used to find these relations, this cost tends to be O(n(n − m)2). The DCA scheme provided
here finds these relations at the end of the hierarchic disassembly process with computational
complexity of almost O(n) in serial implementation. In other words, in this strategy, DCA
formulates the impulse-momentum equations of the system which is followed by providing
the relations between dependent and independent generalized speeds of the system in a
timely manner. As such, this significantly reduces the costs associated with forming and
solving the optimization problem in the transitions to the finer models.

4. DCA-based momenta balance for multi-flexible bodies

In this section, two-handle impulse-momentum equations of flexible bodies are derived.
Mathematical modeling of the transition from a coarse model to a fine-scale model is
discussed. For the fine-scale to coarse-scale model transition in multi-flexible-body system the
reader is referred to [7, 17]. We will now derive the two-handle impulse-momentum equations
when flexible degrees of freedom of a flexible body or the joints in the system are released.
Then, the assembly of two consecutive bodies for which the connecting joint is unlocked is
discussed. Finally, the hierarchic assembly-disassembly process for the multi-flexible-body
system is presented.

4.1. Two-handle impulse-momentum equations in coarse to fine transitions

Now, we develop the two-handle impulse-momentum equations for consecutive flexible
bodies in the transition from a coarse model to a fine-scale model. It is desired to develop the
handle equations which express the spatial velocity vectors of the handles after the transition
to the finer model as explicit functions of only newly introduced modal generalized speeds
of the fine model. For this purpose, we start from the impulse-momentum equation of the
flexible body as

Γ f v f
1 − Γcvc

1 =

[
γR
γF

]c

1

∫ t f

tc

F1cdt +
[

γR
γF

]c

2

∫ t f

tc

F2cdt (9)

where Γ f and Γc are the inertia matrices associated with the fine-scale and coarse models,
respectively. Also, tc and t f represent the time right before and right after the transition. The

quantities
∫ t f

tc
F1cdt and

∫ t f
tc

F2cdt are the spatial impulsive constraint forces on handle-1 and

handle-2 of the flexible body. The matrices
[

γR
γF

]c

1
and

[
γR
γF

]c

2
are the coefficients resulting

from the generalized constraint force contribution at handle-1 and handle-2, respectively.
Moreover, in Eq. (9), the impulses due to the applied loads are not considered since they
represent a bounded loads integrated over an infinitesimal time interval. For detailed
derivation of these quantities the reader is referred to [8]. It is desired to develop the handle
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equations which provide the spatial velocity vectors of the handles right after the transition to
the fine-scale model in terms of newly added modal generalized speeds. Therefore, in Eq. (9),
the inertia matrix of the flexible body is represented by its components corresponding to rigid
and flexible modes, as well as the coupling terms

�
ΓRR ΓRF
ΓFR ΓFF

� f � v1
q̇

� f
=

�
γR
γF

�c

1

� t f

tc

F1cdt +
�

γR
γF

�c

2

� t f

tc

F2cdt

+

�
ΓRR ΓRF
ΓFR ΓFF

�c � v1
q̇

�c
(10)

which is decomposed to the following relations

Γ f
FFq̇ f = γc

F1

� t f

tc

F1cdt + γc
F2

� t f

tc

F2cdt + Γc
FRvc

1 + Γc
FFq̇c − Γ f

FRv f
1 (11)

Γ f
RRv f

1 = γc
R1

� t f

tc

F1cdt + γc
R2

� t f

tc

F2cdt + Γc
RRvc

1 + Γc
RFq̇c − Γ f

RFq̇ f (12)

Since the generalized momentum equations are calculated based on the projection onto the
space of the coarser model, the matrix Γ f is not a square matrix and thus Γ f

FF is not invertible.
However, we can partition Eq. (11) in terms of dependent (those associated with the coarser
model) and independent (newly introduced) generalized speeds as

�
Γ fd

FF

... Γ fi
FF

�⎡
⎣

q̇ fd

· · ·
q̇ fi

⎤
⎦ = γc

F1

� t f

tc

F1cdt + γc
F2

� t f

tc

F2cdt

+ Γc
FRvc

1 + Γc
FFq̇c − Γ f

FRv f
1 (13)

Using the above relation, the expression for the dependent generalized modal speeds is
written as

q̇ fd = (Γ fd
FF)

−1[γc
F1

� t f

tc

F1cdt + γc
F2

� t f

tc

F2cdt + Γc
FRvc

1

+ Γc
FFq̇c − Γ f

FRv f
1 − Γ fi

FFq̇ fi ] (14)

Defining

Γ f
RF =

�
Γ fd

RF

... Γ fi
RF

�
(15)

Λ = [Γ f
RR − Γ fd

RF(Γ
fd
FF)

−1Γ f
FR]

−1 (16)

ζ1 = [γc
R1 − Γ fd

RF(Γ
fd
FF)

−1γc
F1] (17)

ζ2 = [γc
R2 − Γ fd

RF(Γ
fd
FF)

−1γc
F2] (18)

ζ3 = [Γc
RR − Γ fd

RF(Γ
fd
FF)

−1Γc
FR]v

c
1 + [Γc

RF − Γ fd
RF(Γ

fd
FF)

−1Γc
FF]q̇

c (19)

ζ4 = [Γ fd
RF(Γ

fd
FF)

−1Γ fi
FF − Γ fi

RF] (20)

λ1i = Λζi, (i = 1, 2, 3, 4) (21)

244 Linear Algebra – Theorems and Applications



8 Will-be-set-by-IN-TECH

equations which provide the spatial velocity vectors of the handles right after the transition to
the fine-scale model in terms of newly added modal generalized speeds. Therefore, in Eq. (9),
the inertia matrix of the flexible body is represented by its components corresponding to rigid
and flexible modes, as well as the coupling terms

�
ΓRR ΓRF
ΓFR ΓFF

� f � v1
q̇

� f
=

�
γR
γF

�c

1

� t f

tc

F1cdt +
�

γR
γF

�c

2

� t f

tc

F2cdt

+

�
ΓRR ΓRF
ΓFR ΓFF

�c � v1
q̇

�c
(10)

which is decomposed to the following relations

Γ f
FFq̇ f = γc

F1

� t f

tc

F1cdt + γc
F2

� t f

tc

F2cdt + Γc
FRvc

1 + Γc
FFq̇c − Γ f

FRv f
1 (11)

Γ f
RRv f

1 = γc
R1

� t f

tc

F1cdt + γc
R2

� t f

tc

F2cdt + Γc
RRvc

1 + Γc
RFq̇c − Γ f

RFq̇ f (12)

Since the generalized momentum equations are calculated based on the projection onto the
space of the coarser model, the matrix Γ f is not a square matrix and thus Γ f

FF is not invertible.
However, we can partition Eq. (11) in terms of dependent (those associated with the coarser
model) and independent (newly introduced) generalized speeds as

�
Γ fd

FF

... Γ fi
FF

�⎡
⎣

q̇ fd

· · ·
q̇ fi

⎤
⎦ = γc

F1

� t f

tc

F1cdt + γc
F2

� t f

tc

F2cdt

+ Γc
FRvc

1 + Γc
FFq̇c − Γ f

FRv f
1 (13)

Using the above relation, the expression for the dependent generalized modal speeds is
written as

q̇ fd = (Γ fd
FF)

−1[γc
F1

� t f

tc

F1cdt + γc
F2

� t f

tc

F2cdt + Γc
FRvc

1

+ Γc
FFq̇c − Γ f

FRv f
1 − Γ fi

FFq̇ fi ] (14)

Defining

Γ f
RF =

�
Γ fd

RF

... Γ fi
RF

�
(15)

Λ = [Γ f
RR − Γ fd

RF(Γ
fd
FF)

−1Γ f
FR]

−1 (16)

ζ1 = [γc
R1 − Γ fd

RF(Γ
fd
FF)

−1γc
F1] (17)

ζ2 = [γc
R2 − Γ fd

RF(Γ
fd
FF)

−1γc
F2] (18)

ζ3 = [Γc
RR − Γ fd

RF(Γ
fd
FF)

−1Γc
FR]v

c
1 + [Γc

RF − Γ fd
RF(Γ

fd
FF)

−1Γc
FF]q̇

c (19)

ζ4 = [Γ fd
RF(Γ

fd
FF)

−1Γ fi
FF − Γ fi

RF] (20)

λ1i = Λζi, (i = 1, 2, 3, 4) (21)
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and using Eqs. (12) and (14), the spatial velocity vector of handle-1 can be written in terms of
the independent modal speeds

v f
1 = λ11

� t f

tc

F1cdt + λ12

� t f

tc

F2cdt + λ13 + λ14q̇ fi (22)

As such, the spatial velocity vector of handle-2 becomes

v f
2 = (Sk1k2)Tv f

1 + φ
f
2 q̇ f (23)

Employing the same partitioning technique, Eqs. (23) can be written as

v f
2 = (Sk1k2)Tv f

1 +

�
φ

fd
2

... φ
fi
2

�⎡
⎣

q̇ fd

· · ·
q̇ fi

⎤
⎦ (24)

⇒ v f
2 = (Sk1k2)Tv f

1 + φ
fd
2 q̇ fd + φ

fi
2 q̇ fi (25)

Using

λ21 = [(Sk1k2)Tλ11 + φ
fd
2 (Γ fd

FF)
−1γc

F1 − φ
fd
2 (Γ fd

FF)
−1Γ f

FRλ11] (26)

λ22 = [(Sk1k2)Tλ12 + φ
fd
2 (Γ fd

FF)
−1γc

F2 − φ
fd
2 (Γ fd

FF)
−1Γ f

FRλ12] (27)

λ23 = [Sk1k2)Tλ13 + φ
fd
2 (Γ fd

FF)
−1Γc

FRvc
1 + φ

fd
2 (Γ fd

FF)
−1Γc

FFq̇c

− φ
fd
2 (Γ fd

FF)
−1Γ f

FRλ13] (28)

λ24 = [Sk1k2)Tλ14 + φ
fi
2 − φ

fd
2 (Γ fd

FF)
−1Γ fi

FF − φ
fd
2 (Γ fd

FF)
−1Γ f

FRλ14] (29)

and Eq. (25), the spatial velocity vector of handle-2 can be written as

v f
2 = λ21

� t f

tc

F1cdt + λ22

� t f

tc

F2cdt + λ23 + λ24q̇ fi (30)

Equations (22) and (30) are now in two-handle impulse-momentum form and along with
Eq. (14), give the new velocities associated with each handle after the transition. These
equations express the spatial velocity vectors of the handles of the body as well as the modal
generalized speeds which have not changed within the transition in terms of the newly added
modal generalized speeds. This important property will be used in the optimization problem
to provide the states of the system after the transition to the finer models.

As such, the two-handle equations describing the impulse-momentum of two consecutive
bodies, body k and body k + 1 are expressed as

v(k) f
1 = λ

(k)
11

� t f

tc

F(k)
1c dt + λ

(k)
12

� t f

tc

F(k)
2c dt + λ

(k)
13 + λ

(k)
14 q̇(k) fi (31)

v(k) f
2 = λ

(k)
21

� t f

tc

F(k)
1c dt + λ

(k)
22

� t f

tc

F(k)
2c dt + λ

(k)
23 + λ

(k)
24 q̇(k) fi (32)

v(k+1) f
1 = λ

(k+1)
11

� t f

tc

F(k+1)
1c dt + λ

(k+1)
12

� t f

tc

F(k+1)
2c dt + λ

(k+1)
13 + λ

(k+1)
14 q̇(k+1) fi (33)

v(k+1) f
2 = λ

(k+1)
21

� t f

tc

F(k+1)
1c dt + λ

(k+1)
22

� t f

tc

F(k+1)
2c dt + λ

(k+1)
23 + λ

(k+1)
24 q̇(k+1) fi (34)
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4.2. Assembly process and releasing the joint between two consecutive bodies

In this section, a method to combine the two-handle equations of individual flexible bodies
to form the equations of the resulting assembly is presented. Herein, the assembly process
of the consecutive bodies is discussed only within the transition from a coarse model to
a finer model. This transition is achieved by releasing the joint between two consecutive

bodies. Clearly, this would mean a change in the joint free-motion map PJk

R and its orthogonal

complement DJk

R . It will become evident that the assembly process of the consecutive bodies
for the fine to coarse transition is similar, and the associated equations can be easily derived
by following the given procedure.

From the definition of joint free-motion map, the relative spatial velocity vector at the joint
between two consecutive bodies is expressed by the following kinematic constraint

v(k+1) f
1 − v(k) f

2 = PJk f
R u(k/k+1) f (35)

In the above equation, u(k/k+1) f is the relative generalized speed defined at the joint of the
fine model. From Newton’s third law of motion, the impulses at the intermediate joint are
related by ∫ t f

tc

F(k)
2c dt = −

∫ t f

tc

F(k+1)
1c dt (36)

Substituting Eqs. (32), (33) and (36) into Eq. (35) results in

(λ
(k+1)
11 + λ

(k)
22 )

∫ t f

tc

F(k+1)
1c dt = λ

(k)
21

∫ t f

tc

F(k)
1c dt − λ

(k+1)
12

∫ t f

tc

F(k+1)
2c dt

+ λ
(k)
23 − λ

(k+1)
13 + λ

(k)
24 q̇(k) fi − λ

(k+1)
14 q̇(k+1) fi + PJk f

R u(k/k+1) f (37)

Using the definition of the joint free-motion map, the spatial constraint impulses lie exactly
in the space spanned by the orthogonal complement of joint free-motion map of the coarser
model. These constraint impulses can be expressed as

∫ t f

tc

F(k+1)
1c dt = DJkc

R

∫ t f

tc

F(k+1)
1c dt (38)

In the above equation,
∫ t f

tc
F(k+1)

1c dt is an ordered measure number of the impulsive constraint

torques and forces. Pre-multiplying Eq. (37) by (DJkc
R )T , one arrives at the expression for∫ t f

tc
F(k+1)

1c dt as

∫ t f

tc

F(k+1)
1c dt = Xλ

(k)
21

∫ t f

tc

F(k)
1c dt − Xλ

(k+1)
12

∫ t f

tc

F(k+1)
2c dt

+ XY + Xλ
(k)
24 q̇(k) fi − Xλ

(k+1)
14 q̇(k+1) fi + XPJk f

R u(k/k+1) f (39)

where

X = DJkc
R [(DJkc

R )T(λ
(k+1)
11 + λ

(k)
22 )DJkc

R ]−1(DJkc
R )T (40)

Y = λ
(k)
23 − λ

(k+1)
13 (41)
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Using Eqs. (31), (34), and (39), we write the two-handle equations for the assembly k : k + 1

v(k:k+1) f
1 = Ψ(k:k+1)

11

∫ t f

tc

F(k)
1c dt + Ψ(k:k+1)

12

∫ t f

tc

F(k+1)
2c dt

+ Ψ(k:k+1)
13 + Ψ(k:k+1)

14 q̇(k) fi + Ψ(k:k+1)
15 q̇(k+1) fi + Ψ(k:k+1)

16 u(k/k+1) f (42)

v(k:k+1) f
2 = Ψ(k:k+1)

21

∫ t f

tc

F(k)
1c dt + Ψ(k:k+1)

22

∫ t f

tc

F(k+1)
2c dt

+ Ψ(k:k+1)
23 + Ψ(k:k+1)

24 q̇(k) fi + Ψ(k:k+1)
25 q̇(k+1) fi + Ψ(k:k+1)

26 u(k/k+1) f (43)

where:

Ψ(k:k+1)
11 = λ

(k)
11 − λ

(k)
12 Xλ

(k)
21 (44)

Ψ(k:k+1)
12 = λ

(k)
12 Xλ

(k+1)
12 (45)

Ψ(k:k+1)
13 = λ

(k)
13 − λ

(k)
12 XY (46)

Ψ(k:k+1)
14 = λ

(k)
14 − λ

(k)
12 Xλ

(k)
24 (47)

Ψ(k:k+1)
15 = λ

(k)
12 Xλ

(k+1)
14 (48)

Ψ(k:k+1)
16 = −λ

(k)
12 XPJk f

R (49)

Ψ(k:k+1)
21 = λ

(k+1)
21 Xλ

(k)
21 (50)

Ψ(k:k+1)
22 = λ

(k+1)
22 − λ

(k+1)
21 Xλ

(k+1)
12 (51)

Ψ(k:k+1)
23 = λ

(k+1)
21 XY + λ

(k+1)
23 (52)

Ψ(k:k+1)
24 = λ

(k+1)
21 Xλ

(k)
24 (53)

Ψ(k:k+1)
25 = λ

(k+1)
24 − λ

(k+1)
21 Xλ

(k+1)
14 (54)

Ψ(k:k+1)
26 = λ

(k+1)
21 XPJk f

R (55)

The two-handle equations of the resultant assembly express the spatial velocity vectors of
the terminal handles of the assembly in terms of the spatial constraint impulses on the same
handles, as well as the newly added modal generalized speeds of each constituent flexible
body, and the newly introduced do f at the connecting joint. These are the equations which
address the dynamics of the assembly when both types of transitions occur simultaneously. In
other words, they are applicable when new flexible modes are added to the flexible constituent
subassemblies and new degrees of freedom are released at the connecting joint. If there is
no change in the joint free-motion map, the spatial partial velocity vector associated with
u(k/k+1) f does not appear in the handle equations of the resulting assembly.

5. Hierarchic assembly-disassembly

The DCA is implemented in two main passes: assembly and disassembly [8, 9]. As mentioned
previously, two consecutive bodies can be combined together to recursively form the handle
equations of the resulting assembly. As such, the assembly process starts at the individual
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sub-domain level of the binary tree to combine the adjacent bodies and form the equations
of motion of the resulting assembly. This process is recursively implemented as that of the
binary tree to find the impulse-momentum equations of the new assemblies. In this process,
the spatial velocity vector (after transition) and impulsive load of the handles at the common
joint of the consecutive bodies are eliminated. The handle equations of the resulting assembly
are expressed in terms of the constraint impulses and spatial velocities of the terminal handles,
as well as the newly introduce modal generalized speeds and generalized speeds associated
with the newly added degrees of freedom at the connecting joints. This process stops at the
top level of the binary tree in which the impulse-momentum equations of the entire system
are expressed by the following two-handle equations

v1 f
1 = Ψ(1:n)

11

∫ t f

tc

F1
1cdt + Ψ(1:n)

12

∫ t f

tc

Fn
2cdt + Ψ(1:n)

13

+ Ψ(1:n)
14 q̇(1:n) fi + Ψ(1:n)

15 u(1:n) f (56)

vn f
2 = Ψ(1:n)

21

∫ t f

tc

F1
1cdt + Ψ(1:n)

22

∫ t f

tc

Fn
2cdt + Ψ(1:n)

23

+ Ψ(1:n)
24 q̇(1:n) fi + Ψ(1:n)

25 u(1:n) f (57)

Note that through the partial velocity vectors Ψ(1:n)
ij , (i = 1, 2 and j = 4, 5), these equations

are linear in terms of the newly added generalized modal speeds as well as the generalized
speeds associated with the released do f at the joints of the system.

The two-handle equations for the assembly at the primary node is solvable by imposing
appropriate boundary conditions. Solving for the unknowns of the terminal handles initiates
the disassembly process [1, 11]. In this process, the known quantities of the terminal handles
of each assembly are used to solve for the spatial velocities and the impulsive loads at the
common joint of the constituent subassemblies using the handle equations of each individual
subassembly. This process is repeated in a hierarchic disassembly of the binary tree where
the known boundary conditions are used to solve the impulse-momentum equations of the
subassemblies, until the spatial velocities of the fine model and impulses on all bodies in the
system are determined as a known linear function of the newly introduced generalized speeds
of the fine model.

6. Conclusion

The method presented in this chapter is able to efficiently simulate discontinuous changes in
the model definitions for articulated multi-flexible-body systems. The impulse-momentum
equations govern the dynamics of the transitions when the number of deformable modes
changes and the joints in the system are locked or released. The method is implemented
in a divide-and-conquer scheme which provides linear and logarithmic complexity when
implemented in serial and parallel, respectively. Moreover, the transition from a coarse-scale
to a fine-scale model is treated as an optimization problem to arrive at a finite number of
solutions or even a unique one. The divide-and-conquer algorithm is able to efficiently
produce equations to express the generalized speeds of the system after the transition to the
finer models in terms of the newly added generalized speeds. This allows the reduction in
computational expenses associated with forming and solving the optimization problem.
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