
Handbook of Software Engineering Methods

Handbook of Software Engineering
Methods

LARA LETAW
OREGON STATE UNIVERSITY

CORVALLIS, OR

Handbook of Software Engineering Methods Copyright © 2024 by Lara Letaw is licensed under a
Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise
noted.

open.oregonstate.education/setextbook

https://creativecommons.org/licenses/by-nc/4.0/
https://open.oregonstate.education/setextbook

Contents

Introduction

What’s Software Engineering? 1

What’s the Purpose of Software Engineering? 2

What’s the Philosophy Behind This Book? 2

What’s This Book Like? 3

What’s New in the Second Edition? 4

Giving Feedback 5

Acknowledgements 5

Media Attributions 5

Reference 5

1

1. Agile

1.1 The Software Development Life Cycle 7

1.2 Agile, Scrum, and Agile Methods 10

1.3 Summary 13

References 13

7

2. Project Management and Teamwork

2.1 Why Learn about Project Management? 15

2.2 Triple Constraint 16

2.3 Managerial Skill Mix 17

2.4 Interpersonal Skills: Team Communication 18

2.5 Technical Skills: Project Definition 22

2.6 Summary 29

References 29

15

3. Requirements

3.1 Types of Requirements 31

3.2 Why Requirements Matter 32

3.3 What Makes a Good Requirement 33

3.4 Requirements Elicitation 33

3.5 Nonfunctional Requirements 35

3.6 Functional Requirements 37

3.7 Requirements Specification 43

3.8 Summary 44

References 44

31

4. Unified Modeling Language Class and Sequence Diagrams

4.1 How Diagrams Help 46

4.2 What Diagrams Must Do Well 47

4.3 What Is UML? 47

4.4 Why Use UML? 47

4.5 Why NOT Use UML? 48

4.6 Class Diagrams 49

4.7 Sequence Diagrams 53

4.8 Summary 57

References 58

46

5. Monolith versus Microservice Architectures

5.1 Monolith Architecture 60

5.2 Microservice Architecture 61

5.3 Monolith Compared to Microservices 64

5.4 Summary 65

5.5 Case Study: Microservice Architecture 66

References 67

60

6. Paper Prototyping

6.1 Showing Interaction 71

6.2 Showing Your Concept to Others 72

6.3 Summary 72

Reference 72

69

7. Inclusivity Heuristics

7.1 Background 74

7.2 Inclusivity Heuristics Personas 74

7.3 The Inclusivity Heuristics 75

7.4 Summary 83

References 83

73

8. Code Smells and Refactoring

8.1 Why Care about Code Smells? 86

8.2 Your Code Stinks—Now What? 86

8.3 Comments 87

8.4 Functions 89

8.5 Code 90

8.6 Summary 93

References 93

85

Conclusion 95

Glossary 96

References 103

Introduction

I won’t tell you how to be a software engineer; you’ll learn that over time by doing it.

Instead, this book is about software engineering methods—ways people achieve specific objectives in
software engineering—that can save your project. My hope is that after reading this book (or parts of it),
you’ll feel better equipped for software engineering.

What’s Software Engineering?

The definition of software engineering we will use is:

“Systematic application of scientific and technological knowledge, methods, and experience to the
design, implementation, testing, and documentation of software.” (International Organization for
Standardization et al., 2017)

The definition was agreed upon by the International Organization for Standardization (ISO), Interna-
tional Electrotechnical Commission (IEC), and the Institute of Electrical and Electronics Engineers
(IEEE) and published in their glossary of systems and software engineering vocabulary (International
Organization for Standardization, 2017). The 500+ page document is meant to be internationally applic-
able to the field of information technology.

Introduction | 1

https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter01.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter01.png

What’s the Purpose of Software Engineering?

Software engineering can help people create sustainable, extensible programs that solve problems people
care about. Sustainable means it’s feasible for the program to grow, exist, and be maintained. Extensible
means it’s feasible to add more features.

What’s the Philosophy Behind This Book?

My beliefs about software engineering influenced how I wrote this book. Some of my strongest beliefs
about software engineering are described below.

Software Engineering Is Not Black and White

Throughout the book, I explain how software engineering is a gray area of computer science. “Right”
answers can be hard to find and may not be reproducible in different contexts. Software engineering as
a field also keeps changing as research scientists gather new findings, engineers develop new technolo-
gies, visionaries define new methods, and the outside world changes (e.g., a pandemic happened while I
was writing the first edition of this book, and that changed how software engineering teams collaborate).
Whereas in programming you might ask, “Is this algorithm correct?” questions in software engineering
are more like, “How does my team know this software is ready to release?” or “People keep misinter-
preting my code; how do I shift it toward better understandability and maintainability?”

It’s Not Necessary to Study Every Detail of Software Engineering

I’m not going to tell you everything about software engineering because (1) what you need to know can
be drastically different depending on context; (2) if I tried to, this book would be thousands of pages and
possibly useless; and (3) many topics are best learned on the job. Instead, I’ll introduce a set of software
engineering methods that are known to be useful across multiple contexts, give guidance on when and
why to use them, and point to resources for when you want more information.

Agile Isn’t Perfect, But I Really Like It (and Other People Do, Too)

This book is geared toward Agile software development. That’s because Agile development environ-
ments have become extremely popular—and because I like Agile. It matches how I think and has been
appropriate for nearly all the projects I’ve worked on. But you’re not me, and Agile isn’t the be-all and
end-all, so I’m planning to incorporate more from other software process models in the future.

2 | Introduction

What’s This Book Like?

This book was written iteratively (“Do something. Do it again, but better”) and incrementally (“Do a
little more”). Lots of software is written the same way.

It has eight major topics:

1. Agile: Collaboration-oriented philosophy of creating software that values doing over comprehen-
sive planning and documentation.

2. Project Management and Teamwork: Working in an organized way—and with other people.

3. Requirements: Being clear about what’s expected of the software.

4. Unified Modeling Language Class and Sequence Diagrams: A couple types of diagrams useful
for communicating how your code works (or should work).

5. Monolith versus Microservice Architectures: Two contrasting high-level ways to organize code.

6. Paper Prototyping: Creating a good user interface design before coding it.

7. Inclusivity Heuristics: Guidelines for making software work well for people who are not like you.

8. Code Smells and Refactoring: Making your code nicer to work with.

This book is short and meant to be readable.

• Important concepts are bolded.

• Glossary terms are italicized on their first use.

• Relevant side notes are embedded throughout.

• References are listed at the end of each chapter in case you need more information.

My aim is to enable you to quickly (1) determine whether each topic or method is relevant to your situ-
ation and (2) get a basic understanding of the topic or method so you can discuss it with others or have a
starting point for exploring more.

Introduction | 3

What’s New in the Second Edition?

Summary of changes:

• The text has been converted from PDF/LaTeX to HTML/CSS to improve accessibility.

• Hosting has moved from GitHub to https://open.oregonstate.education/.

• Alternative text has been added to all images.

• References, figures, and tables now conform to APA style.

• More in-line citations have been incorporated throughout.

• Renamed “Additional Resources” sections to “References” for clarity; less relevant references have
been removed.

• Introduction: Added a section on changes to the new edition; adopted ISO/IEC/IEEE standard def-
inition of software engineering; added a section about the purpose of software engineering;
removed discussion of future additions because my ideas keep changing and I don’t like making
pseudo-promises; updated my contact information; updated acknowledgments.

• Chapter 2, “Project Management and Teamwork”: Added a project network diagram figure,
removed an unnecessary table to improve accessibility, and improved the summary.

• Chapter 3, “Requirements”: Added examples for INVEST; added more quality attributes and
explanations; added a “constraints” type of nonfunctional requirements; enhanced the user story,
given-when-then, and Definition of Done examples; linked to more use case examples; added
more information about what makes a good requirement; and improved the summary.

• Chapter 4, “Unified Modeling Language Class and Sequence Diagrams”: Linked to more real-
world diagram examples; increased the image size; removed an unnecessary table to improve
accessibility; and clarified “association.”

• Chapter 5, “Monolith versus Microservice Architectures”: Added a technical case study.

• Chapter 7, “Inclusivity Heuristics”: Updated name of the heuristics (previously called “Cognitive
Style Heuristics”); added a spectra chart for more clearly explaining persona cognitive styles;
added persona reactions to examples; reduced the number of examples; rewrote the whole chapter;
added more brains to the artwork.

• Chapter 8, “Code Smells and Refactoring”: Improved summary.

• Tweaked writing throughout.

4 | Introduction

https://open.oregonstate.education/

Giving Feedback

I welcome your content requests, suggestions, and other feedback. Please email me at setext-
book@lara.tech.

Acknowledgements

Thanks to Edward Isajanyan for helping make the second edition of this textbook screen-reader-friendly.
Thanks to Caius Brindescu, Raffaele De Amicis, Sèanar Letaw, and Tiffany Rockwell for their feedback,
advice, and support. Thanks to family and friends for their support. Thanks to the many software engi-
neering students and other individuals who gave feedback, including Richard Brinkley, Maximillian
Davensmith, Brian Doyle, Mark De Guzman, and Jack LaBarba. Thanks to Tom Weller and Scott Ash-
ford for their letters of support. Thanks to Ashleigh McKown, the editor of this text. Thanks to the Ore-
gon State University Open Educational Resources (OER) Unit, especially Stefanie Buck and Mark Lane,
for making the whole effort possible.

Media Attributions

Images © Lara Letaw are licensed under CC BY-NC 4.0. Figure 6.3 and Figures 7.1 through 7.9 contain
assets from thispersondoesnotexist.com and are in the public domain.

Reference

International Organization for Standardization, International Electrotechnical Commission, Institute of
Electrical and Electronics Engineers. (2017). Systems and software engineering—Vocabulary (ISO/
IEC/IEEE Standard No. 24765:2017). https://www.iso.org/standard/71952.html

Introduction | 5

mailto:setextbook@lara.tech
mailto:setextbook@lara.tech
https://creativecommons.org/licenses/by-nc/4.0/
https://thispersondoesnotexist.com/
https://www.iso.org/standard/71952.html

6 | Introduction

Chapter 1

Agile

This book is geared toward Agile, but there are other software process models. Each has a different way
of proceeding through the software development life cycle (SDLC). This chapter starts by describing
Scrum, the SDLC, Agile, and a contrasting software process model called Waterfall. That is followed by
a discussion of Scrum (an Agile framework) and notable Agile methods.

This chapter will give you the flavor of Agile and Scrum rather than being a comprehensive guide. For
more detailed information about topics introduced here, see the References section at the end of the chap-
ter.

1.1 The Software Development Life Cycle

The software development lifecycle (SDLC) is the progression of a software project through five SDLC
stages:

1. Requirements: Figuring out and writing down what the software must do, how well, and under
what limitations or constraints.

2. Design: Determining how the software’s code will be structured and how users will interact with

Agile | 7

https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter02.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter02.png

the software.

3. Implementation: Using the requirements and design to code the software.

4. Testing: Checking that the code was written without fault (verification) and that the software is
what the users or client wants (validation).

5. Maintenance: Improving software’s existing functionality and code.

There are different ways to travel through the SDLC stages. Patterns of traveling through the stages are
called software process models. Commonly, people compare the Agile software process model with the
Waterfall model.

Agile, guided by the Agile Manifesto (Beck et al., 2001), moves through the SDLC approximately like in
Figure 1.1.

Figure 1.1 How Agile Projects Move through SDLC
Stages

Note. The vertical lines represent development cycle boundaries. Planning (R,D) for the next develop-
ment cycle starts during the previous cycle. R, requirements; D, design; I, implementation; T, testing; M,
maintenance.

Agile development cycles are relatively short and numerous. Releases are frequent and incremental. Each
cycle, there’s a little more working functionality. There are multiple ways to go about developing and
managing software in an Agile way, such as by using the Scrum framework (Schwaber & Sutherland,
2020) or Extreme Programming (XP) (Beck & Andres, 2004; Wells, 2013).

Waterfall moves through the SDLC approximately like in Figure 1.2.

8 | Agile

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig02.01.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig02.01.png

Figure 1.2 How Waterfall Projects Move through SDLC
Stages

Movement is fairly linear and sequential. Each stage depends on the previous stage having been com-
pleted. Lots of documentation is produced.

Ironically, people often associate Waterfall with an article that describes Waterfall’s major flaws. The
second figure in Royce’s (1970) article depicts the Waterfall model with seven stages and downward
movement from one stage to the next, suggesting that movement to the previous stage is not
allowed—you can’t swim up a waterfall. Later in the article, Royce suggests modifications to the Water-
fall model, such as making and implementing a preliminary program design (then going back to the
requirements stage as needed).

Waterfall might not make sense for many software projects, but how about for building a bridge?

1.1.1 Why Care about Agile, Other Software Process Models, and
Software Engineering Methods?

The 2015 CHAOS report contains aggregate data about more than 25,000 software projects.

Some findings about software projects:

9% of Agile projects failed
29% of Waterfall projects failed
23% of large Agile projects failed
42% of large Waterfall projects failed
4% of small Agile projects failed
11% of small Waterfall projects failed

• So you can detect and/or understand what a software development team is doing. When
you’re new to a team, having a general understanding of different software process models can
help you ask good questions, identify what you see the team doing, and look competent in
front of your team and managers.

Agile | 9

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig02.02.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig02.02.png

• So you have ideas to choose from when you need to select a software process model or method for
a new project. You might need to choose or recommend how your team proceeds.

• So you have ideas to choose from when a project is in trouble. According to CHAOS Report from
the Standish Group International, Inc. (2015), during fiscal years 2011 to 2015, 17% to 22% of
software projects failed of the 25,000+ software projects in their database, with the likelihood of
project failure increasing drastically with project size. Sometimes, you can save a project if you
have the right methods.

Since this book is focused on Agile, the remainder of the chapter summarizes the Agile software process
model, one Agile framework (Scrum), and a few Agile methods.

1.2 Agile, Scrum, and Agile Methods

1.2.1 Agile

The Agile philosophy is summed up by the Agile Manifesto for Software Development (Beck et al.,
2001):

We are uncovering better ways of developing software by doing it and helping others do it. Through
this work we have come to value:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the left more.

Why does this book have a whole chapter about Agile and not one about Waterfall or any other software
process model? Because most organizations use Agile for software or IT projects.

For example, an HP survey of 601 respondents (Hewlett Packard Enterprise, 2017) found the following
distribution of what organizations use as their primary software process model:

• 51%: Leaning toward Agile

• 46%: Hybrid

10 | Agile

• 16%: Pure Agile

• 7%: Leaning toward Waterfall

• 2%: Pure Waterfall

Why do organizations choose Agile? According to HP, out of 403 organizations that have primarily
adopted Agile, the following percentage of respondents agreed with the following statements about Agile
development:

• 54%: Enhances collaboration between teams that don’t usually work together.

• 52%: Increases the level of software quality in organizations.

• 49%: Results in increased customer satisfaction.

• 43%: Shortens time to market.

• 42%: Reduces cost of development.

1.2.2 Scrum

Scrum is a well-known framework for software project management. It aligns with the Agile philosophy.
For example, the Scrum Guide (the ever-evolving manual for Scrum; Schwaber & Sutherland, 2020) says
that to reflect the “responding to change” value, a software project should be broken into development
Sprints that are usually two to four weeks long. Each Sprint has a Sprint Plan. Sprint Plans can be defined
shortly before the Sprint; Teams (and their customers) might only know what is happening with the pro-
ject’s development for a couple weeks at a time.

Scrum Teams fit their own methods into the Scrum framework, which the current version of the Scrum
Guide divides into three categories: the team, the events, and the artifacts. To give you a quick, conve-
nient introduction to Scrum, each element of the framework is listed below, by category.

The Team. The Scrum Team “consists of one Scrum Master, one Product Owner, and Developers.”

• Scrum Master: “accountable for establishing Scrum as defined in the Scrum Guide.”

• Product Owner: “accountable for maximizing the value of the product resulting from the work
of the Scrum Team.”

• Developers: “people in the Scrum Team that are committed to creating any aspect of a usable
Increment each Sprint.”

Agile | 11

The Scrum Master’s focus is process, the Product Owner’s focus is the product (software), and the
Developers’ focus is creating a product while following Scrum processes.

The Events. There are five Scrum events:

• The Sprint: fixed-length development periods of “one month or less . . . A new Sprint starts
immediately after the conclusion of the previous Sprint.”

• Sprint Planning: “initiates the Sprint by laying out the work to be performed.”

• Daily Scrum: “a 15-minute event for the Developers of the Scrum Team . . . focuses on progress
toward the Sprint Goal and produces an actionable plan for the next day of work.”

• Sprint Review: “to inspect the outcome of the Sprint and determine future adaptations. The
Scrum Team presents the results of their work to key stakeholders . . .”

• Sprint Retrospective: “to plan ways to increase quality and effectiveness . . . Scrum Team
inspects how the last Sprint went . . .”

A Sprint is a development period that occurs in a series of Sprints, which are each laid out during Sprint
Planning. Each day, the Developers have a 15-minute meeting about planning the next workday. Sprints
end with a Sprint Review (team and stakeholders) and a Sprint Retrospective (team only).

The Artifacts. There are three Scrum artifacts:

• Product Backlog: “an emergent, ordered list of what is needed to improve the product.”

• Sprint Backlog: “composed of the Sprint Goal (why), the set of Product Backlog items selected
for the Sprint (what), as well as an actionable plan for delivering the Increment (how).”

• Increment: “a concrete stepping stone toward the Product Goal.”

The Product Backlog contains a rough list of tasks the Scrum Team is planning to do some time, but
the tasks haven’t yet been scheduled and may not be defined in detail. The Sprint Backlog contains tasks
the team has decided to work on and has added details about completing the tasks. An Increment is an
achievement toward creating the product (e.g., finishing a feature implementation).

The Scrum Guide (Schwaber & Sutherland, 2020) describes the Scrum framework elements in more
detail and defines some of the terms that were unexplained here (e.g., Sprint Goal).

12 | Agile

1.2.3 Agile Methods

There are several notable Agile methods that can be used within Scrum (or other frameworks, or other
software process models). A few of them:

• Scrum board: A way to organize and visualize tasks or work as cards on a board. The board has
columns for different categories, and each card is placed within a column. A Scrum board could be
a physical bulletin board with sticky notes or index cards. It is also a common feature of task man-
agement software.

• Spike: A quick and to-the-point investigation for gathering information to help the team answer a
question or choose a development path.

• User story: A short description of a software feature from the perspective of fulfilling a user need
(e.g., using this format: As a <role> I can <capability>, so that <receive benefit>). Tasks, priori-
ties, time/cost estimates, and acceptance criteria may be associated with a user story.

1.3 Summary

“Agile” has associated values but no concrete meaning: it’s a philosophy, and there’s not just one way to
follow it. Agile frameworks such as Scrum give more concrete guidance on software development and
project management. Scrum is defined by the current version of the Scrum Guide (Schwaber & Suther-
land, 2020), which changes frequently.

References

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J.,
Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S., Schwaber, K.,
Sutherland, J., & Thomas, D. (2001). Manifesto for Agile software development. https://agilemani-
festo.org/

Beck, K., & Andres, C. (2004). Extreme programming explained: Embrace change (2nd ed.). Addison-
Wesley.

Hewlett Packard Enterprise (2017). Agile is the new normal: Adopting Agile project management.
https://softwaretestinggenius.com/docs/4aa5-7619.pdf

Agile | 13

https://agilemanifesto.org/
https://agilemanifesto.org/
https://softwaretestinggenius.com/docs/4aa5-7619.pdf

Royce, W. W. (1970). Managing the development of large software systems. Proceedings of IEEE
WESCON, 26, 1-9.

Schwaber, K., & Sutherland, J. (2020, November). The 2020 scrum guide. https://scrumguides.org/
scrum-guide.html

Standish Group International, Inc. (2015). CHAOS report 2015. https://standishgroup.com/sam-
ple_research_files/CHAOSReport2015-Final.pdf

Wells, D. (2013, October 13). Extreme programming: A gentle introduction. http://www.extremepro-
gramming.org/

14 | Agile

https://scrumguides.org/scrum-guide.html
https://scrumguides.org/scrum-guide.html
https://standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/

Chapter 2

Project Management and Teamwork

Project management is the process of planning and executing a project while balancing the time, cost,
and scope constraints. Time, cost, and scope are known as the triple constraint.

How does one minimize time and money spent on a project while delivering an adequate feature set?
Risk management is key. Risk is the estimated probability of a loss given a set of known and unknown
factors. Risk can be stated as high, medium, low, or numerically. Ways to mitigate risk include defining
and keeping track of your project, communicating with your project team, researching the implica-
tions of decisions, developing backup plans, and selecting suitable tools.

This chapter covers a variety of project management methods, including those related to teamwork. The
methods are not limited to one type of software development environment, but this chapter, like the rest
of this book, is geared toward Agile. There are many more methods that aren’t discussed here; this chap-
ter provides a starter set of well-known methods and highlights different areas of project management.

2.1 Why Learn about Project Management?

Why is there a chapter about project management if this book is intended for people who want to become
or are currently software engineers?

Project Management | 15

https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter03.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter03.png

• You might become a project manager (e.g., your employer asks you to fill the role, or you’re inter-
ested in a new position).

• You might have a project manager. Understanding some basics of project management can help
you understand what they’re doing (e.g., using a RACI matrix to define who on the team does
what) and what they’re trying to tell you about the project.

• You might need to self-manage (e.g., within an organization that has a flattened hierarchy or
within an Agile team).

2.2 Triple Constraint

Project management is partially about optimization: How can we use our limited financial and personnel
resources to complete our project by the deadline, without going over budget? These concerns are often
summarized as needing to balance three constraints.

Authors in other fields sometimes consider quality separate from scope. In software engineering,
requirements include quality.

• Time: duration of the project, intermediate deadlines

• Cost: monetary, personnel, and other project resources

• Scope: what the project is meant to accomplish and the requirements of the project, including
quality

This set of three is called the triple constraint.

It can be difficult to balance these three constraints. Common challenges:

• You’re meeting with a client who says, “Oh, I forgot to mention we want this feature. That won’t
be a big deal, right?”

• You realize late in the project that to implement feature A, you’ll need to implement B, C, and D
as well.

• Your team’s estimates were overly optimistic (the planning fallacy).

These situations are so common that you can assume they’re going to happen and come up with a mit-
igation plan even before the project starts. But many situations are more complicated (more factors with

16 | Project Management

more interrelationships), more unique to your context, and have factors that leak from your professional
life to your personal life. Here are some examples:

• You’re working on a project with a friend who is an excellent coder but only available for the next
three months (time). They also have their own ideas about where they want the project to go
(scope). You know your friend will be more enthusiastic about the project if they have more con-
trol, and that means quicker implementation and less work for you (cost). But that’d mean sacrific-
ing some of your own feature priorities (scope).

• You’re working with a five-person team. Your colleague needs help, but all hours must be billed to
a project, you’re getting pressured to stay close to the budget, and you bill at a higher rate than
your colleague (cost). If your colleague doesn’t get help, they might spend extra hours self-training
(cost), could switch to a different project, and there’s a small chance they’ll make the project take
longer (time). Scope is fixed: the product must satisfy all its requirements.

Making strategic project decisions involves adjusting project constraints. If you want to reduce time and
cost spent on a project or increase project scope, you’ll need a corresponding change in one or more
other constraints (van Wyngaard et al., 2012).

2.3 Managerial Skill Mix

What skills are required for managing a project? There are three broad categories comprising the man-
agerial skill mix (MSM) (Badawy, 1995).

• Interpersonal: Communicating effectively with anyone likely to affect the project (e.g., engineers
on your team, managers, clients, contractors, IT support, etc.).

• Technical: Using methods and equipment effectively (e.g., knowledge of appropriate processes,
understanding and writing code, etc.).

• Administrative and conceptual: Understanding the “big picture” vision (conceptual) and being
able to move macro-level pieces (e.g., teams, departments, divisions, etc.) toward that vision
(administrative).

High-level managers (e.g., CEOs) tend to need a different mix of skills than lower-level managers (e.g.,
project managers). For example, a project manager might need strong interpersonal and technical skills
while only occasionally considering the big picture of how a project fits into organization’s overall vision

Project Management | 17

(Badawy, 1995). Since this chapter is about project management, we will focus on interpersonal and
technical skills.

2.4 Interpersonal Skills: Team Communication

One way to reduce risk is to improve team communication, which can increase the likelihood of pro-
ject success.

As background for this section, consider Tuckman’s model of team development (Stuart, 2014; Tuckman,
1965; Tuckman & Jensen, 1977).

1. Forming: Team members become oriented through testing each other’s boundaries and establish-
ing dependency relationships with peers, leaders, and existing team standards.

2. Storming: Team members resist group influence, their peers, their peers’ ideas, and tasks.

3. Norming: Team develops cohesiveness, devises new standards and roles, and members express
personal opinions related to tasks.

4. Performing: Team roles become flexible; team dynamics and structure serve the function of the
team and task performance.

5. Adjourning: Team disbands.

The rest of this section discusses specific methods a team can use to improve communication. Consider
where each might fit in to these stages (there’s not just one answer).

2.4.1 Establishing Ground Rules

When deciding on ground rules, your team might choose to incorporate ground rules or standards
already established by others, such as the IEEE Code of Ethics (Institute of Electrical and Electronics
Engineers, 2020) or Agile Manifesto (Beck et al., 2001).

Team ground rules are a preemptive or reactive method for reducing team conflict and dysfunction.
Ground rules might already exist when a team forms, others might develop as the team becomes normal-
ized, and revisions might happen as the team proceeds with their work and identifies new team concerns
or opportunities. To be effective, the ground rules need buy-in from the whole team. What the ground
rules should cover or should be varies by team, but below are some questions that may help.

18 | Project Management

• What is our vision for what this team is or what we’re trying to accomplish together? (Clients
choose us because we’re honest and transparent.)

• What do we prioritize most? (Delivering a high-quality product ahead of the deadline, input from
all team members, honoring diverse end-users, making the big bucks.)

• What methods will we use for day-to-day communication? (No interrupting, no ’splaining, listen
to and acknowledge what other people are saying, ask people if they’re busy before starting a long
conversation).

• What methods will we use to communicate with each other during conflict? (We’ll use nonvio-
lent communication, we’ll focus on the solving the problem instead of who to blame.)

• What expectations do we have for work habits? (Tuesdays from 1:00 to 3:00 p.m. is silent time; be
five minutes early to meetings.)

• What expectations do we have for responsiveness? (Respond within two hours during regular
work hours; have the team Discord open during regular work hours.)

• What will we do when team members fail expectations? (We’ll discuss any team problems on Fri-
days at 3:00 p.m.)

• How will we get to know each other? (We’ll discuss each other’s cognitive styles; we’ll set up a
chat channel for socializing.)

The end product of answering questions like these could be a list of short statements that’s posted some-
where people will see it regularly.

The questions your team asks, and the answers, will vary depending on the individuals on the team and
on context (e.g., culture). Whatever those questions and answers are, ideally they will feel meaningful
and authentic. If your team gets the feeling the ground rules are silly, phony, too aspirational, too inflex-
ible, or too authoritative, that could invalidate your team’s efforts toward creating the ground rules.

2.4.2 Defining Roles and Responsibilities: RACI Matrix

A RACI matrix is a chart for defining who is responsible (R) and accountable (A) for a task or deliver-
able, and who should be consulted (C) or informed (I).

Example RACI Matrix. A RACI matrix is often formatted as a table, but it can also be written as a list,
as in the following example.

Project Management | 19

Project Phase: Minimum Viable Product (MVP)

• Focus groups

◦ Frontend Developers: C

◦ Frontend Designers: R

◦ Frontend Lead: R / A

◦ Backend Developers: C

◦ Backend Lead: C

◦ Team Lead: R / A

• Requirements specification

◦ Frontend Developers: R

◦ Frontend Designers: R

◦ Frontend Lead: A / I

◦ Backend Developers: R

◦ Backend Lead: A / I

◦ Team Lead: C / I

• Throwaway code design

◦ Frontend Lead: I

◦ Backend Developers: R

◦ Backend Lead: A

◦ Team Lead: I

• Implementation

◦ Frontend Developers: R

◦ Frontend Designers: C

◦ Frontend Lead: A

20 | Project Management

◦ Backend Developers: R

◦ Backend Lead: A

◦ Team Lead: C / I

• User acceptance testing

◦ Frontend Developers: R

◦ Frontend Designers: R

◦ Frontend Lead: R / A

◦ Backend Developers: R

◦ Backend Lead: C

◦ Team Lead: C / I

Interpreting a RACI Matrix. One person might have multiple roles. Task or deliverables can be organized
into phases.

• Responsible (R): Who will do the work.

• Accountable (A): Who will approve the work and make sure it gets done.

• Consulted (C): Who can discuss and offer advice about the work.

• Informed (I): Whom to keep up to date about the status of the work.

A RACI matrix is a method for reducing risk. If your team doesn’t know who needs to do what (or for-
gets, or can plausibly deny knowing), that can increase the probability of a negative events and outcomes
(e.g., shipping a broken product to customers because nobody was assigned to quality assurance).

2.4.3 Measuring and Building Consensus: Fist of Five Method

Meanings of single-finger hand gestures vary around the world. For example, in the United States,
putting your thumb up means “good job,” in Germany and Hungary it means “one,” in Japan it
means “five,” and in Australia, Greece, and the Middle East it means “up yours!” (Cotton, 2013).

Project Management | 21

Fist of five is a method for checking and building consensus within a group of people. One person (e.g.,
team leader) makes a statement or proposes an idea to a group, and each person communicates their
level or agreement or support by holding up a fist or up to five fingers. It has become associated with
Agile (Belling, 2020), but students of different ages use it, too (e.g., Fletcher, 2002; Hulshult & Krehbiel,
2019).

What each number of fingers means:

• None: Strong reject. Blocks consensus.

• One: Reject. Major issues need resolving now.

• Two: Weak reject. Minor issues need resolving now.

• Three: Weak accept. Minor issues can be resolved later.

• Four: Accept. No issues.

• Five: Strong accept. Willing to lead or champion.

If anyone suggests rejecting the statement or idea by holding up two or fewer fingers, the team can stop,
discuss, make changes, and vote again until there’s sufficient consensus. It’s up to the team or its leader
to decide how much consensus is needed.

The fist of five method can reduce risk by (1) bringing problems to light and (2) increasing team motiva-
tion, ownership, and investment.

2.5 Technical Skills: Project Definition

This section contains methods for helping with the technical side of defining a project, including defin-
ition of scope, prioritization, estimation, scheduling, and task management.

2.5.1 Project Scope

In an Agile software development environment, a project’s scope is implied through sets of tasks (e.g.,
release plan, Product Backlog, iteration plan, Sprint Backlog). Each iteration might have a goal (e.g., a
Sprint Goal) that summarizes what the set of tasks is meant to accomplish, which is also part of defining
scope for Agile projects. The scope is purposely flexible and emerges as the project proceeds.

In other environments, the project scope (a.k.a. statement of work) is a specific document stating the pro-
ject’s objective, deliverables (outputs), milestones, technical requirements, and limitations/exclusions.

22 | Project Management

2.5.2 Balancing Constraints: Project Priority Matrix

Above, we talked about the three major constraints of project management—time, cost, and scope—and
that balancing them isn’t always straightforward. What should the balance be? How do I know whether
I’m achieving balance? How does this fit into how the project is run? One method for more concretely
stating the desired balance is the project priority matrix. Table 2.1 shows a sample blank project priority
matrix.

Table 2.1 Blank Project Priority Matrix

Time Scope Cost

Constrain

Enhance

Accept

• Constrain: The constraint is fixed (can get better but must not get worse).

• Enhance: Try to improve (e.g., take less time, spend less, have more features).

• Accept: Can worsen (e.g., more time, more personnel, fewer features) if necessary.

Table 2.2 shows a sample completed project priority matrix. For this example, imagine you have a grant
from the National Institutes of Health (NIH) to write and test software for a medical device that automat-
ically regulates a person’s pain level.

Table 2.2 Completed Project Priority Matrix

Time Scope Cost

Constrain ✓ (cost)

Enhance ✓ (scope)

Accept ✓ (time)

Note. The text in parentheses is provided to make the table screen-reader-friendly.

Each checkmark in the filled example represents the following.

• Scope: Fixed. Your team must do what they said they’d do and cannot scrimp on quality. If the
device only partially works, that would be a disaster—you’ll be testing it on human subjects!

• Cost: Needs to be tightly controlled because the grant is for a fixed amount and funded by taxpay-

Project Management | 23

ers.

• Time: While the project hopefully stays on track and delivers as promised, if needed, your team
can submit intermediate results to the NIH and perhaps use those results to get another grant.

Ideally, the project priority matrix would be defined before the project starts (with the client) and refer-
enced throughout the project as needed. Developing and adhering to the matrix can reduce risk by help-
ing the team or project manager balance constraints in ways that are acceptable to the client.

2.5.3 Task Prioritization: Eisenhower Matrix

Individual tasks, too, need relative prioritization. In an Agile Scrum environment, this would be the
responsibility of the Product Owner and in Agile Extreme Programming (XP), it’s the customer.

But how are task priorities decided? One high-level method is called the Eisenhower matrix (Table 2.3).

Table 2.3 Eisenhower Matrix

Urgent Not Urgent

Important Do Decide

Not Important Delegate Delete

Each cell in the Eisenhower matrix means the following.

• Do (urgent, important): Needs to be done correctly and now. An example is documenting your
undocumented code so that a new hire can start contributing.

• Decide (not urgent, important): Needs to be done correctly but not immediately. An example is
refactoring your currently working code. Such a task needs to be done eventually and done
right—maybe the new hire can handle it in a couple months.

• Delegate (urgent, not important): Needs to be done now, but mistakes can be absorbed (e.g., toler-
ated, corrected later). An example is needing to initialize the task management system so the team
can begin defining tasks. If it’s not done right, that’s fine—the developers and managers will adjust
the setup as needed. The task would be a good learning task for the new hire, who doesn’t have
much to do right now.

• Delete (not urgent, not important): Doesn’t need to be done correctly or any time soon. Can be
eliminated. An example is implementing a loading screen that looks like a game of pong, but
you’re the only one on the team who thinks that’s a cool idea.

24 | Project Management

Doing a first-pass task prioritization using an Eisenhower matrix can reduce risk by both conserving
resources and using resources thoughtfully (including yourself). It can also help with getting out of the
mode of “putting out fires” (concentrating on the urgent tasks), which can result in important but nonur-
gent tasks getting eternally left at the end of the to-do list (perhaps resulting in project failure).

2.5.4 Finer-Grained Prioritization

What happens when there are multiple important tasks to complete that have the same level of
urgency? How does one decide which is more important? Here are some methods for deciding which
task has higher priority when they seem roughly equivalent.

• For implementation tasks (e.g., coding, architecture, other implementation choices, etc.), ask an
expert. They might know from experience which tasks have more unknowns, more risk, depen-
dencies, and so on.

• If it’s an implementation task and you’re meant to be an expert, you can do a focused research
effort called a spike to gather more information about the task, which in turn can help you priori-
tize it. To do a spike:

1. Come up with a question.

2. Try to figure out the answer by reading (e.g., documentation, other people’s opinions) and
experimenting (e.g., coding in a sandbox). You will probably get ideas for more questions in
the process.

3. Repeat until you have enough information.

A good way to do a spike is to start doing the task and see what obstacles you run into. Example:
You need to set up a local server for testing and then write a test suite. You have experience writing
test suites but have never set up a server. After doing a spike, you realize that some of the tests
you’re going to write rely on the local server having a static IP address, which you learned is not the
default. Based on your findings, you decide to prioritize the server setup because (1) the test suite
depends on it and (2) the server setup task still has many unknowns, and you’re not sure how long
it’ll take to eliminate those.

• Think about dependencies: Who’s waiting on you to complete the task? How many other tasks
depend on this task? Example: You estimate it’ll take 15 minutes to complete a task that two other
people are waiting on. You decide to do that before your four-hour task. Seems like the obvious
choice—but if you’re not aware of which tasks depend on yours or are deep into solo work mode,

Project Management | 25

you might make a suboptimal choice.

• If you’re deciding which feature to implement, you can ask the customer or users directly (e.g.,
through a phone call, focus group, survey) or indirectly (e.g., by looking at support tickets, asking
the marketing team, detecting an unmet need based on how people use other software).

• Other ways to select features include voting (e.g., within your team) or pairwise comparison (e.g.,
Is Feature A more valuable than Feature B? If so, is Feature C more valuable than Feature A?).

A natural side effect of prioritization is finding how long it’ll take to complete a task, what dependencies
exist, who the players are, and what the end user wants. All this knowledge contributes to risk mitigation.

2.5.5 Estimation: Story Points, Ideal Days, and Planning Poker

Intertwined with prioritization is estimation, or figuring out ahead of time how long a task is likely to
take. But what does “how long” mean, and how do we figure it out ?

According to the Agile community (Cohn, 2006), there are two methods for stating the size of a task.

1. Story points: Assign a number to a task representing its size relative to other tasks. For example, a
software installation and a virus scan might both be a 1 if they take roughly the same amount of
time and effort, have roughly the same amount of risk, and the like. Implementing a major feature
might, however, be an 8. Your team decides how far the scale goes.

2. Ideal days: Assign a number of days you think it’d take to complete the task if there were no other
tasks or distractions. For example, if it takes me 5 minutes to remove a single square foot of grass
from my lawn and I have 100 square feet to remove, that is 8 hours and 20 minutes total, so about
one ideal day (if your workdays are 8 or 9 hours).

Common scales for story points are 1 to 10, Fibonacci, and powers of 2. The latter two are meant to
help make sizing a task easier by putting more distance between the numbers in the scale; decid-
ing between a 4 and an 8 can be easier than deciding between a 4 and a 5.

Once story points or ideal days are assigned, a team can make statements like, “This month, we will
complete 50 story points,” “10 ideal days,” and so on. Work completed (in story points or ideal days)
is, in Agile teams, called the velocity. Teams can make initial estimates about velocity and then adjust
depending on how accurate those estimates end up being.

26 | Project Management

But how are estimates assigned to a task? Another Agile idea is planning poker (Cohn, 2006; Mahnič
& Hovelja, 2012). With this method, the team gets together to discuss a set of tasks, and each person gets
a set of cards with the different possible story points, ideal days, or other aspects a task can be assigned.
One person describes the task, the team asks questions as needed, and then each person privately decides
on an estimate by selecting a card (keeping it face down or hidden). Once everyone is ready, the cards
are revealed. Variations in estimates are expected, and part of the process: differences open a discussion.
Someone making a high estimate, for example, may think of good reasons why a task is likely to take a
long time. Someone making a low estimate may identify an efficient idea nobody else thought of. The
team discusses and, once ready, can repeat the process until estimates become sufficiently consistent.

2.5.6 Scheduling: Project Network Diagram

Once a set of tasks has been defined, prioritized, and estimated, those tasks can be scheduled. Scheduling
a task is placing it within the time line and context of a project. The context of a project includes other
tasks, personnel, and non-personnel resources (e.g., equipment), and milestones. One method for defin-
ing and visualizing a project’s schedule is using a project network diagram, which is a directed graph
showing a project’s tasks, the sequence in which they should be completed, and the dependency relation-
ships between the tasks. The nodes in the digraph represent tasks, and the lines with arrows represent
dependency or sequence relationships. A project network diagram moves left to right, where left is ear-
lier in time. Figure 2.1 shows an example.

Figure 2.1 Example Simple Project Network Diagram
(No Estimates)

Note. This format of project network diagram is called Activity-on-Node (AON) (Larson & Gray, 2018).

For a task to be represented as a node on a project network diagram, it needs to (at a minimum) be dis-
tinct from other tasks, and its dependent tasks (a.k.a. predecessors) must be known. A project network
diagram becomes more useful if estimates for the tasks are also known, however.

Constructing a project network diagram. A project network diagram can be created manually or auto-
matically generated by software. To automatically generate a project network using software (e.g., MS
Project, Lucidchart), you’d need to enter the project data in tabular form, such as in a spreadsheet. Table
2.4 shows an example.

Project Management | 27

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig03.01.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig03.01.png

Table 2.4 Project Scheduling Data

Task ID Task Predecessors Duration (hours)

4 Implement GUI 1,3 50

3 Test GUI with users 2 5

2 Prototype GUI 8

1 Select GUI framework 2

Note. These data could generate the project network diagram in Figure 2.1.

In Table 2.4, even though Task 2 must happen before Task 4, it’s not listed as a predecessor because it’s
not an immediate predecessor.

Depending on the software you choose for creating your project network diagram, you might have access
to more complex options like specific dates by which individual tasks must be completed.

2.5.7 Task Management Systems

A task management system can be used to organize tasks, task details (e.g., description, acceptance cri-
teria, assignee, status), and other relevant information (e.g., which iteration or phase the task belongs to).
They’re useful for organizing and storing information about tasks, but also for the satisfaction of marking
a task as done! Task management systems like Asana, Jira, and Trello are strongly oriented toward team
collaboration. Some of these systems are also Agile oriented in that they offer Agile-inspired features
(e.g., templates).

Common features of task management systems:

• Create, remove, update, and delete tasks.

• Enter task name, description, notes/comments, and add attachments.

• View tasks as a list, as cards on a board, or within a time line (e.g., Gantt chart).

• Organize tasks into projects.

• Assign tasks to different team members, with due dates.

• Enter task status (e.g., in progress, done).

• Get email notifications about tasks.

• Add tags, keywords, and categories.

28 | Project Management

Task management systems don’t have a universal way to generate project network diagrams. For that,
you might need a fully featured project management system (e.g., MS Project). But you may find that a
Gantt chart or road map feature meets your needs and is available within your task management system.

2.6 Summary

Project management and teamwork can reduce the risk of a project failing and make it possible to com-
plete larger projects. Part of good project management is balancing time, scope, and cost (the triple con-
straint).

Project management methods to help with team communication include establishing ground rules, defin-
ing roles and responsibilities in a RACI matrix, and measuring and building consensus using the fist of
five method.

Methods for defining a project include prioritizing tasks using a project priority matrix or an Eisenhower
matrix, estimating tasks using story points, ideal days, and planning poker, visualizing a project schedule
using a project network diagram, and using the features of a task management system.

References

Badawy, M. K. (1995). Developing managerial skills in engineers and scientists: Succeeding as a tech-
nical manager. Van Nostrand Reinhold.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J.,
Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S., Schwaber, K.,
Sutherland, J., & Thomas, D. (2001). Manifesto for Agile software development. https://agilemani-
festo.org/

Belling, S. (2020). Agile values and practices. In Succeeding with Agile Hybrids, 47–61. Springer.

Cohn, M. (2006). Agile estimating and planning. Prentice Hall Professional Technical Reference.

Cotton, G. (2013, August 13). Gestures to avoid in cross-cultural business: In other words, “keep your
fingers to yourself!” HuffPost. https://www.huffpost.com/entry/cross-cultural-gestures_b_3437653

Fletcher, A. (2002). Firestarter Youth Power Curriculum. Freechild Institute for Youth Engagement.
https://freechildinstitute.files.wordpress.com/2023/04/firestarter-participant-guidebook.pdf

Project Management | 29

https://agilemanifesto.org/
https://agilemanifesto.org/
https://www.huffpost.com/entry/cross-cultural-gestures_b_3437653
https://freechildinstitute.files.wordpress.com/2023/04/firestarter-participant-guidebook.pdf

Hulshult, A. R., & Krehbiel, T. C. (2019). Using eight agile practices in an online course to improve
student learning and Team Project Quality. Journal of Higher Education Theory and Practice, 19(3).
https://doi.org/10.33423/jhetp.v19i3.2116

Institute of Electrical and Electronics Engineers. (2020, June). IEEE code of Ethics. IEEE.
https://www.ieee.org/about/corporate/governance/p7-8.html

Larson, E. W., & Gray, C. F. (2018). Project management the managerial process. McGraw-Hill Educa-
tion.

Mahnič, V., & Hovelja, T. (2012). On using planning poker for estimating user stories. Journal of Sys-
tems and Software, 85(9), 2086–2095. https://doi.org/10.1016/j.jss.2012.04.005

Stuart, A. (2014). Ground rules for a high performing team. Paper presented at PMI Global Congress
2014—North America, Phoenix, AZ. Project Management Institute.

Tuckman, B. W. (1965). Developmental sequence in small groups. Psychological Bulletin, 63(6),
384–399. https://doi.org/10.1037/h0022100

Tuckman, B. W., & Jensen, M. A. (1977). Stages of small-group development revisited. Group and Orga-
nization Studies, 2(4), 419–427. https://doi.org/10.1177/105960117700200404

van Wyngaard, C. J., Pretorius, J. H., & Pretorius, L. (2012). Theory of the triple constraint—A concep-
tual review. Paper presented at the 2012 IEEE International Conference on Industrial Engineering and
Engineering Management, Hong Kong, China. https://doi.org/10.1109/ieem.2012.6838095

30 | Project Management

https://doi.org/10.33423/jhetp.v19i3.2116
https://www.ieee.org/about/corporate/governance/p7-8.html
https://doi.org/10.1016/j.jss.2012.04.005
https://doi.org/10.1037/h0022100
https://doi.org/10.1177/105960117700200404
https://doi.org/10.1109/ieem.2012.6838095

Chapter 3

Requirements

A software requirement is a rule the software must conform to: what it must do, how well, and within
what constraints or limits.

3.1 Types of Requirements

There are two main types of requirements:

1. Functional requirements are “A description of a behavior that a system will exhibit under specific
conditions” (Wiegers & Beatty, 2013, p. 599). For example, “If the user activates the ‘log in’ but-
ton, the login page will appear.” Functional requirements answer the question, “What must the
software do?”

2. Nonfunctional requirements are “A description of a property or characteristic that a system must
exhibit or a constraint that it must respect” (Wiegers & Beatty, 2013, p. 600). For example, “If the
user activates the ‘log in’ button, the login page will appear within 500 milliseconds.” This non-
functional requirement has a characteristic that the system must exhibit: responsiveness. Respon-
siveness is also called a quality attribute. An example of a nonfunctional requirement about

Requirements | 31

https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter04.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter04.png

respecting a constraint is, “The GUI toolkit must be able to display non-rectangular windows.”

Figure 3.1 shows a simple example of a design failing to reflect a nonfunctional requirement and a func-
tional requirement.

Figure 3.1 Two Failed
Requirements

Note. This rolling table fails the nonfunctional requirement of fitting through an average door and the
functional requirement of having four legs.

3.2 Why Requirements Matter

The design and implementation of software should, ideally, follow from the requirements. Here are some
ways requirements are helpful and reasons they are important:

• When developers aren’t given requirements, they might prioritize functionality they personally
think is important or fun to implement, but what developers want to implement might not make
the project successful.

• When multiple developers are working on the same code, requirements can help them stay in
sync and pursue the same goal. Without requirements, time, effort, and money can be wasted
implementing conflicting code.

• When requirements aren’t specified, it’s easier for project stakeholders (e.g., clients, partners,
investors, consultants, management) to influence the project toward satisfying their own (possi-
bly fleeting) wants or needs. This can result in the project drifting away from what it was origi-
nally intended to do—and can lead to project failure.

• Requirements are helpful for communicating about software with stakeholders, keeping track of
everything that needs to get done, and helping you and the client decide what really needs to get

32 | Requirements

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig04.01.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig04.01.png

done (clients sometimes don’t know what they really need).

3.3 What Makes a Good Requirement

Teams or organizations can choose their own standards for what makes a good requirement. Here is one
set of standards (Texas Department of Information Resources, 2008):

Requirements should be . . .

• Correct: What they say is right.

• Unambiguous: There is only one way to interpret them.

• Complete: They cover all that’s important.

• Consistent: They aren’t contradictory.

• Ranked for importance and/or stability.

• Verifiable or testable: There’s a way to figure out if they’re satisfied.

• Modifiable: They can be changed.

• Traceable: It’s possible to figure out where they came from.

Requirements should also be . . .

• Cross-referenced to earlier documents that relate.

• Uniquely identifiable.

• Organized for maximum readability.

3.4 Requirements Elicitation

The process of gathering requirements is called requirements elicitation. Requirements can come from
any stakeholder, including clients, managers, users, governments, developers of software to be integrated
with yours, the development team, and yourself. Requirements elicitation involves both detecting stake-
holders’ wants and needs and using your professional judgment to decide which requirements to focus
on.

Requirements | 33

To detect stakeholders’ wants and needs, communicate and observe. Some methods:

• Interviews: Structured (questions defined ahead of time), semi-structured (some questions prede-
fined, some generated during interview), or unstructured conversations.

• Focus groups: Small, group conversations in which the participants discuss topics among them-
selves, with moderator guidance.

• Lab studies: Participants perform tasks in a controlled setting (e.g., try to use an early prototype,
then give feedback).

• Exploratory research: Multiple methods of immersing oneself within the world of relevant peo-
ple and products, with the purpose of gaining knowledge and developing empathy for stakeholders.
For example, after doing a fly-on-the-wall observation, you realize that people can’t find Aisle 25
because it’s in an unexpected place. You decide to prioritize the Aisle Map feature in the store’s
app.

Depending on the software development environment, these methods might be the jurisdiction of spe-
cialist researchers in marketing or interaction design. Hanington and Martin (2019) describe these
specialist methods (and many other relevant methods) in more detail.

Developers can elicit requirements, too, by having conversations with stakeholders. There are factors
that can affect the success of that approach, however.

• Stakeholders might not have experience or expertise. Developers can help bridge the gap
between what the stakeholder wants and what is technically feasible and reasonable (e.g., given
time, cost, and scope, what is also known as the triple constraint).

• Stakeholders might not have good ideas. They might be incorrect about what they or other peo-
ple want or will use. Developers can sometimes provide guidance toward better ideas, but develop-
ers can also have bad ideas. Methods such as focus groups, usability testing, and releasing a
minimum viable product (MVP) can help with figuring out whether users will use (and pay for)
the software.

• Stakeholders might not know what they want. They may have a rough idea, or an idea that’s at
odds with their wants or needs.

• Stakeholders might want what’s bad for them or others. For example, users want apps that
make their face beautiful in photos, such features may promote unrealistic beauty standards.

• Stakeholders are humans. They communicate imperfectly.

34 | Requirements

With experience, you can learn how to effectively gather relevant information from stakeholders and
make your own judgments about how that information translates into requirements.

3.5 Nonfunctional Requirements

Nonfunctional requirements describe how well the software needs to perform or what constraints it must
respect.

Examples of nonfunctional requirements:

• Response time should be a few seconds or less in all operating environments.

• The front-end design must be evaluated using the Inclusivity Heuristics by at least two people each
Sprint.

• The software must be available 24 hours a day, seven days a week, and must have an uptime of
99.99%.

Notice that each nonfunctional requirement has a quantity. That helps make it testable (a criterion for
a good requirement).

3.5.1 Quality Attributes

There is a long list of quality attributes on Wikipedia’s “List of system quality attributes” page (Wiki-
media Foundation, 2023).

Quality attributes are words for describing “a service or performance characteristic of software”
(Wiegers & Beatty, 2013, p. 601). Some common quality attributes are as follows.

• Maintainability: Amount of effort needed for developers to update, refactor, or otherwise modify
the software’s code.

• Portability: Amount of effort needed to run the software on different platforms.

• Reliability: How often the software’s functions succeed or fail.

• Efficiency: Number of resources the software requires.

• Integrity: How frequently the software loses data.

Requirements | 35

https://en.wikipedia.org/wiki/List_of_system_quality_attributes

• Memorability: Amount of time users must spend relearning functionality.

• Flexibility: Number of different ways the software can be used.

• Interoperability: Ease with which the software can integrate with other software.

• Reusability: Extent to which the code can easily be used to solve other problems.

Each quality attribute can be converted to a scale. For example, the lowest value on a reliability scale
for a single could be “the function succeeds 0% of the time,” and 100% would of course be the opposite
pole. Given this scale, we can specify a nonfunctional requirement by defining a performance threshold:

• The function must have high reliability (succeeds >99% of the time).

When you select quality attributes for your software, you are prioritizing what qualities matter most to
you/your team/the project. Ideally, your team would keep these quality attributes (and the corresponding
nonfunctional requirements) in mind for the duration of the project. If the software is not meeting the
nonfunctional requirements, either the software or the threshold of acceptability needs to change.

3.5.2 Constraints

Some nonfunctional requirements are not about quality attributes and are instead about staying within
constraints. The following are example types of constraints (Wiegers & Beatty, 2013):

• Those limiting technology choices (programming languages, frameworks, databases, application
programming interface (API) types, etc.).

• Those limiting what platforms are targeted (e.g., mobile versus desktop, iOS versus Android).

• Those limiting what about the software can change (e.g., for backward compatibility).

• Those limiting how code can be written (e.g., following particular coding and documentation stan-
dards).

• Those limiting how data can be handled (e.g., must only be stored on US servers).

A conceptual difference between constraints and quality attributes is that constraints are often externally
mandated, while quality attributes can be chosen internally by the team.

36 | Requirements

3.6 Functional Requirements

Functional requirements described what the software must do.

Example functional requirements:

• When the “register” button is activated, the user’s information is added to the database and a
“thank you for registering” screen displays.

• As a wholesaler, I want to see the wholesale and retail prices when I go to “product view” so that I
know how much money I’m going to make.

• Given a user has performed at least one editing action, when they activate the “action history”
window, they see a list of editing actions they have taken.

Each of these functional requirements is formatted differently. There isn’t a name for the first format; it
simply states what should happen when a particular action is taken in the software. The second uses user
story format, which is common in Agile software development. This format emphasizes the user, what
the user is trying to do, and their motivations. The third requirement uses the given-when-then format
(see Agile Alliance for more information), which incorporates context. This format is commonly used to
write user story acceptance criteria: a set of statements that, when true, indicate that the user story has
been completed.

A more formal way to write functional requirements is the use case format, which follows a template.
Figure 3.2 contains an example use case using a simple template.

Requirements | 37

Name: Generate list of recovered patients

Actor: Clinician

Flow:

1. Clinician authenticates using smart card.

2. Software confirms user credentials and permissions for specific machine.

3. Software logs access.

4. Software displays patient search.

5. Clinician selects “Advanced Patient Search.”

6. Software confirms user access permissions for advanced search page.

7. Clinician selects ailment and patient status.

8. Clinician executes search using “Search” button.

9. Software returns results.

10. Software logs query.

Figure 3.2 Simple Use Case

3.6.1 User Stories

User stories are a method for specifying functional requirements. They describe a small piece of the
software’s functionality in a simple and easy-to-read sentence. They are written in plain English so that
nontechnical people (e.g., users, clients, other stakeholders) can understand them.

The body of a user story is commonly written using this format
As a <ROLE>, I want <SOME FUNCTIONALITY> so that I get <SOME BENEFIT>

User stories can be written on 3 × 5 index cards and then stuck on a wall or whiteboard. They can also
be typed into task and project management systems (e.g., Jira, Asana, and the like). Figure 3.3 provides a
few examples of user stories within the context of a project (they have priorities and other project-related
information attached to them).

38 | Requirements

US-023: Disabling Comments
Priority: Highest (8)
Sprint: 2
Assigned to: Emrah Tuukka

As an admin, I want to disable comments so that I can control spam and spread of disinformation.

US-034: Personalized Avatar Background
Priority: Lowest (1)
Sprint: 3
Assigned to: Ade Einarr

As a registered user, I want to change the background around my face on my avatar so that I can
personalize my experience.

US-012: App Purpose
Priority: Highest (8)
Sprint: 1
Assigned to: Randomira Philibert

As a new user, I want to read about what features the app provides so that I can decide whether to
use it.

Figure 3.3 User Story Functional Requirement Examples

Want more examples of user stories? Mountain Goat Software provides 200 example user stories [PDF]
(Cohn, 2004). They list only the “As a . . .” part of the user story requirement.

Anyone on the team—or any project stakeholder—might come up with user stories. Once the user stories
are initially defined, they can be used to start a conversation with the client and others on the team.
Clients can guide you on setting priorities for user stories. This conversation is also a good time to get
more details about the user stories, which should be added to the card.

Want examples of comically bad user stories? Check out the Shit User Story Twitter feed (@Shi-
tUserStory)

What makes a good user story? Besides the characteristics of good requirements listed earlier in this
chapter, the INVEST acronym (Wake, 2003) can help you remember characteristics of good user stories:

Requirements | 39

https://www.mountaingoatsoftware.com/uploads/documents/example-user-stories.pdf
https://twitter.com/shituserstory

• (I) Independent: Does not have unnecessary dependencies or overlap with other user stories.

◦ Two user stories that overlap:

▪ “As a new user, I want to register so that . . .”

▪ “As a new user, I want to register using my Google account so that . . .”

◦ Set of user stories that don’t overlap (but some user stories need to be completed before oth-
ers—that’s ok):

▪ “As a new user, I want to view the registration page so that . . .”

▪ “As a new user, I want to register using Facebook so that . . .”

▪ “As a new user, I want to register using Google so that . . .”

▪ “As a new user, I want my registration details to be stored so that . . .”

• (N) Negotiable: Encourages instead of discourages discussion and gives developers flexibility.

◦ Does not encourage discussion: “As a logged in user, I want to choose either black or white so
that . . .”

◦ Encourages discussion: “As a logged in user, I want to choose from multiple colors so that . .
.”

• (V) Valuable: Fulfills a user need.

◦ Does not fulfill a user need: “As an Enterprise user, I want to watch a little race car drive
around the screen so that I can do something fun while requesting API end points.”

◦ Fulfills a user need: “As an Enterprise user, I want to import my API end point requests so
that my requests take less time and are less tedious.”

• (E) Estimable: Can be given a time estimate.

◦ Difficult to give a time estimate: “As a new user, I want enough encouragement to register so
that I’ll register.”

◦ Easier to estimate: “As a new user, I want to compare plan pricing so that I can decide which
plan to choose.”

• (S) Small: Can fit into a single development period (e.g., a two-week Sprint)

◦ Probably too large for a Sprint: “As a user, I want to play chess on my phone so that I have

40 | Requirements

something to do while waiting at the pharmacy.”

◦ Smaller: “As a user, I want to move my pawn so that I can take my turn in chess.”

• (T) Testable: Possible to determine it’s done.

◦ Difficult to determine whether it’s done: “As a guest user, I want to be satisfied with my expe-
rience so that I will want to sign up.”

◦ Less difficult: “As a guest user, I want to try out the AI text generator without registering first
so that I can decide whether to subscribe.”

There is some overlap between INVEST and the general characteristics of good requirements mentioned
above (which is comforting), but you might find that INVEST is easier to remember.

How do you know when a user story is done? This is negotiated with the client and added to the user
story as acceptance criteria. Acceptance criteria say what must be true about the functionality specified
by the user story for the user story to be considered done (i.e., establishing the Definition of Done for the
user story). Figure 3.4 adds a DoD to one of the user stories from Figure 3.3. The DoD is composed of
acceptance criteria following the given-when-then format.

US-023: Disabling Comments
Priority: Highest (8)
Sprint: 2
Assigned to: Emrah Tuukka

As an admin, I want to disable comments so that I can control spam and the spread of disinforma-
tion.

Definition of Done

• Given the user is logged in as a user, when they navigate to “Settings,” then there is a “Disable
Comments” button.

• Given the user is on the “Settings” page, when they activate “Disable Comments,” then a sta-
tus message appears that indicates the action was successful. The message appears within 10
milliseconds.

• Given the user has activated “Disable Comments,” when they navigate to a “Post” page, then
“Comments disabled” appears in the “Comments” section, and no comments are showing.

Figure 3.4 User Story with Definitions of Done Example

Requirements | 41

Once each of the acceptance criteria are confirmed to be done, the user story can be considered “DONE-
done.”

Ideally, testing the acceptance criteria can be automated. Figure 3.5 provides example pseudocode for
testing an acceptance criterion.

1 def test_go_to_time():

2 # given

3 assert os.isWindows(),"Not Windows!"

4 player.open()

5 player.play_video('test.mkv')

6

7 # when

8 user.send_keyboard_shortcut("Ctrl-T")

9

10 # then

11 assert player.screen.is_showing(GOTOTIME)

Figure 3.5 Pseudocode for Testing an Example Acceptance Criterion

3.6.2 Use Cases

Use cases are a more formal method of specifying functional requirements. They are structured descrip-
tions of what a system is required to do when a user interacts. Figure 3.2 showed a simple use case exam-
ple, and additional examples can be found in the Digital.gov Usability Starter Kit PDF about use cases
and personas (US General Services Administration, 2014).

As use cases are less common in Agile, the remainder of this section will provide only a summary of
how use cases are structured.

Required Parts of a Use Case

Every use case has the following.

• Name: A short title for the use case that often starts with a verb (e.g., “Schedule weekly wellness
check”). The name briefly states the user objective the use case will describe.

• Actor(s): The user or users (human/nonhuman/computer) that are interacting with the software
(e.g., “Medical staff”).

• Flow of events: Sequence of actions describing the interaction between the actor and the software
(a.k.a. “basic course of action” or “success scenario”).

42 | Requirements

https://s3.amazonaws.com/digitalgov/_legacy-img/2014/01/Marsh-Personas.pdf
https://s3.amazonaws.com/digitalgov/_legacy-img/2014/01/Marsh-Personas.pdf

Sometimes, the actor is implied through the flow of events (e.g., “Shopper selects the calendar icon”).
Other times, the actor is stated separately from the flow of events (e.g., “Actor: Shopper”).

Additional Parts of a Use Case

The following are sometimes included in use cases.

• Identifier: A unique way of referring to the use case (e.g., UC-002).

• Preconditions: What must be true before the flow (e.g., “The shopper has added at least one prod-
uct to their shopping cart”).

• Postconditions: What must be true after the flow (e.g., “The shopper received an order confirma-
tion email”).

• Business relevance: Justification for why the use case exists.

• Dependencies: Other use cases the use case relies on. The unique identifier is handy for this part.

• Extensions: Contingencies, alternate routes, and branches to other use cases.

• Priorities: The importance of the use case.

• Nonfunctional requirements: How well the software must perform during the flow.

3.7 Requirements Specification

The process of writing down requirements is called requirements specification. Used as a noun, require-
ments specification refers to the document that contains the requirements. That document may also be a
software requirements specification (SRS). The best way to learn about SRSs is to look at some.

Another type of software document, which is sometimes confused with an SRS, is a software design
document (SDD). If the SRS is what the software should be, the SDD is what the software is. There is
often overlap between these two documents.

Freely available SRS examples (including some for open source software):

• SRS for apps and a data repository for distributing manufacturing data [PDF] (Hedberg et al.,
2017).

• SRS for data system that assesses conservation practices [PDF] (CEAP, 2006).

Requirements | 43

https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf
https://www.nrcs.usda.gov/publications/ceap-watershed-2006-stewards-design.pdf

• SRS for an app that splits and merges PDFs [PDF] (Spyridonos, 2010).

• SRS for software that processes electroencephalography data [PDF] (OpenVIBE, 2018).

• SRS for library software [PDF] (Eaker, 2006).

If any links are broken, try the Wayback Machine.

3.8 Summary

There are two main types of software requirements: functional and nonfunctional.

A functional requirement is “a description of a behavior that a system will exhibit under specific condi-
tions” (Wiegers & Beatty, 2013, p. 599). There are different formats for writing functional requirements
such as the given-when-then format, user stories, and use cases. User stories are used in Agile software
development. The given-when-then format is used for writing user story acceptance criteria. A set of
acceptance criteria is used to determine whether a user story has been completed (Definition of Done).

A nonfunctional requirement is “a description of a property or characteristic that a system must exhibit
or a constraint that it must respect” (Wiegers & Beatty, 2013, p. 600). Quality attributes are words for
describing “a service or performance characteristic of software” (Wiegers & Beatty, 2013, p. 601).

There are standards for what makes a good requirement, such as being correct, unambiguous, complete,
consistent, ranked for importance and/or stability, verifiable, modifiable, and traceable. INVEST is an
acronym for remembering standards for good user stories: independent, negotiable, valuable, estimable,
small, and testable.

An SRS can contain both nonfunctional and functional requirements.

References

Agile Alliance. (n.d.). What is “given – when – then”? https://www.agilealliance.org/glossary/gwt/

CEAP. Conservation Effects Assessment Project. (2006). System requirements specification for STEW-
ARDS. US Department of Agriculture, Agricultural Research Service. https://www.nrcs.usda.gov/
publications/ceap-watershed-2006-stewards-design.pdf

Cohn, M. (2004). Example user stories. Mountain Goat Software. https://www.mountaingoatsoft-
ware.com/uploads/documents/example-user-stories.pdf

44 | Requirements

http://selab.netlab.uky.edu/~ashlee/cs617/project2/PDFSam.pdf
http://openvibe.inria.fr/openvibe/wp-content/uploads/2018/04/CERT-Software-Requirement-Specification.pdf
https://vyasa.sourceforge.net/vyasa_software_requirements_specification.pdf
https://web.archive.org/
https://www.nrcs.usda.gov/publications/ceap-watershed-2006-stewards-design.pdf
https://www.nrcs.usda.gov/publications/ceap-watershed-2006-stewards-design.pdf
https://www.mountaingoatsoftware.com/uploads/documents/example-user-stories.pdf
https://www.mountaingoatsoftware.com/uploads/documents/example-user-stories.pdf

Eaker, F. (2006, November). Software requirements specification. Vyasa. https://vyasa.sourceforge.net/
vyasa_software_requirements_specification.pdf

Hanington, B. M., & Martin, B. (2019). Universal Methods of Design: 125 ways to research complex
problems, develop innovative ideas, and design effective solutions. Rockport Publishers.

Hedberg, T., Helu, M., & Newrock, M. (2017, December). Software requirements specification to dis-
tribute manufacturing data. NIST Advanced Manufacturing Series 300-2. National Institute of Stan-
dards and Technology. https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf

OpenVIBE. (2018, April). Inria Innovation Lab Certivibe v 1.0 software requirement specification.
http://openvibe.inria.fr/openvibe/wp-content/uploads/2018/04/CERT-Software-Requirement-Specifi-
cation.pdf

@ShitUserStory. (n.d.). Shit User Story. Twitter. https://twitter.com/shituserstory

Spyridonos, P. (2010, February 6). Software requirements specification for PDF split and merge require-
ments for version 2.1.0. University of Kentucky Software Verification and Validation Lab.
https://selab.netlab.uky.edu/~ashlee/cs617/project2/PDFSam.pdf

 Texas Department of Information Resources. (2008, January 14). Software requirements specification
instructions. https://dir.texas.gov/sites/default/files/Requirements%20Traceabil-
ity%20Matrix%20Instructions.pdf

US General Services Administration. (2014, January). USDA personas and use cases. https://s3.amazon-
aws.com/digitalgov/_legacy-img/2014/01/Marsh-Personas.pdf

Wake, B. (2003, August 17). Invest in good stories, and Smart Tasks. XP123 Exploring Extreme Pro-
gramming. https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

Wiegers, K., & Beatty, J. (2013). Software requirements (3rd ed.). Developer Best Practices Series.
Microsoft Press.

Wikimedia Foundation. (2023, March 23). List of system quality attributes. https://en.wikipedia.org/
wiki/List_of_system_quality_attributes

Requirements | 45

https://vyasa.sourceforge.net/vyasa_software_requirements_specification.pdf
https://vyasa.sourceforge.net/vyasa_software_requirements_specification.pdf
https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf
http://openvibe.inria.fr/openvibe/wp-content/uploads/2018/04/CERT-Software-Requirement-Specification.pdf
http://openvibe.inria.fr/openvibe/wp-content/uploads/2018/04/CERT-Software-Requirement-Specification.pdf
https://twitter.com/shituserstory
https://selab.netlab.uky.edu/~ashlee/cs617/project2/PDFSam.pdf
https://dir.texas.gov/sites/default/files/Requirements%20Traceability%20Matrix%20Instructions.pdf
https://dir.texas.gov/sites/default/files/Requirements%20Traceability%20Matrix%20Instructions.pdf
https://s3.amazonaws.com/digitalgov/_legacy-img/2014/01/Marsh-Personas.pdf
https://s3.amazonaws.com/digitalgov/_legacy-img/2014/01/Marsh-Personas.pdf
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://en.wikipedia.org/wiki/List_of_system_quality_attributes
https://en.wikipedia.org/wiki/List_of_system_quality_attributes

Chapter 4

Unified Modeling Language Class and
Sequence Diagrams

“Nobody, not even the creators of the UML, understand or use all of it.” (Fowler, 2004)

After a discussion of diagrams in general, this chapter covers two common Unified Modeling Language
(UML) diagram types: class diagrams and sequence diagrams.

4.1 How Diagrams Help

Diagrams can help in at least two major ways:

1. They can help you plan software you will create. Once you’ve created diagrams for planning your
software, you can use them to communicate to the development team what will/should be imple-
mented and decide (evaluate) whether your plans are any good (e.g., are clear, are logical, reflect
your project’s desired quality attributes, and so on).

2. They can help you describe software you’ve already created. If your software is already created,

46 | Unified Modeling Language

https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter05.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter05.png

diagrams are good for documentation and, as mentioned above, for evaluating how satisfactory
your software is. The purpose of including diagrams in documentation is to communicate some-
thing about your software to somebody. There are many different audiences you could be trying to
communicate with.

Example audiences for your diagrams include other developers on the project, your supervisor or man-
ager, developers who might be interested in joining the team, developers who want to integrate with your
system, curious end users, and students of software engineering. Depending on the integrated develop-
ment environment (IDE)/tools you’re using, diagrams can be automatically generated from your code,
which helps make documentation maintenance easier and more likely to happen.

4.2 What Diagrams Must Do Well

To be helpful, diagrams must communicate clearly and at an appropriate level of detail for your
intended audience. If your intended audience does not understand your diagram—or misunderstands
it—your diagram has failed.

4.3 What Is UML?

Unified Modeling Language is a family of graphical notations for describing and designing software
through diagrams. It is especially applicable to object-oriented software, but some parts of UML are
applicable to many types of software. Different UML notations are used for different types of UML dia-
grams, each of which has a specific purpose. UML was first published in 1994, became a standard of the
Object Management Group (OMG) in 1997, and became an ISO standard in 2005. UML is currently on
version 2.

4.4 Why Use UML?

There are multiple benefits of creating diagrams using UML:

• UML gives you (1) notation for designing software so that your implementation will be struc-
tured and (2) notation for describing the existing design of software so that you can evaluate
whether the design is any good.

• UML diagramming forces you to think about software design in a structured way. When people
try to design software in their minds, they can be sloppy about it—thinking about the aspects of

Unified Modeling Language | 47

the design they want to think about. UML can encourage you to face the trickier parts of software
design.

• UML diagramming gives you a view of the software at different levels of design (e.g., class level,
component level, package level).

• UML provides a common language between software professionals. Because UML is well
known, it gives developers and managers a way to communicate in detail about software. That
being said, expect to encounter variations in how UML notation is used—it can be difficult to
remember UML notation; developers will make mistakes or adapt the notation to their own way of
thinking. It can help to provide a legend or explanation of what your notation means.

• UML diagrams give you a way to tell people about your software’s structure without asking them
to look through code. This is nice, for example, when onboarding new developers or communi-
cating with managers.

4.5 Why NOT Use UML?

Some IDEs will automatically generate some types of UML diagrams from your code. This is nice
because it’s easy to regenerate your diagram when your code changes. The generated diagrams
can sometimes have more detail than you want, however, making them less good for communicat-
ing.

There are some drawbacks to UML diagramming:

• People tend to vary their UML notation, which can cause confusion. Some tips for avoiding that
problem include (1) keeping your notation basic and (2) explaining more complex notation.

• Getting UML notation right can take a lot of time. Remember that diagrams are for communicat-
ing. If creating the diagram takes longer than explaining the code a different way, the diagram isn’t
helping.

• UML diagrams can require a lot of maintenance. If your software design changes frequently, so
must your UML diagrams if you want them to be accurate. Fortunately, some IDEs can generate
some UML diagrams from your code.

48 | Unified Modeling Language

4.6 Class Diagrams

A class diagram describes a system’s classes and the static relationships that exist among them. Class
diagrams also show properties and operations of a class. Properties represent the structure of a class
(e.g., instance variables) and operations represent the functionality provided by the class (e.g., methods;
Fowler, 2004).

Figure 4.1 shows an example class diagram. In the diagram, there are relationships between three classes:
Customer, Order, and SharedOrder. An Order has one Customer—but the same Customer can be on
multiple Orders. A SharedOrder is a type of Order that can have multiple Customers. The classes have
attributes (e.g., id) and operations (e.g., getId()).

Figure 4.1 Simple Class Diagram

The next section explains each of the notational elements shown in the example.

4.6.1 UML Class Diagram Notation

This section contains some of the most common UML class diagram notation.

Figure 4.2 Note

Unified Modeling Language | 49

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.01.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.01.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.02.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.02.png

Note. Notes are for placing comments on class diagrams.

Figure 4.3 Class

Note. Attributes are properties that are listed within a class box and the operations are methods. The +
indicates a public method, – is private, and # is protected. The notation includes attribute types (e.g., int,
Token, etc.), method parameters and return types, and default values for attributes.

Figure 4.4 Association

Note. Association means that a class contains a reference to an object(s) of the other class in the form of
a property. In this example, we aren’t told whether Class1 references Class2 or vice versa.

Figure 4.5 Unidirectional Association

Note. The arrow indicates that Class1 has a Class2.

50 | Unified Modeling Language

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.03.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.03.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.04.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.04.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.05.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.05.png

Figure 4.6 Unidirectional Association with Property
Name

Note. Class1 has a property named instance1. It is an instance of Class2.

Figure 4.7 Unidirectional Association with Property
Name and Target Multiplicity

Note. Class1 has a property named instance1 containing zero or one instances of Class2.

Figure 4.8 Unidirectional Association with Property
Name, Target Multiplicity, and Source Multiplicity

Note. Zero or more instances of Class1 have properties named instance1 containing zero or one instance
of Class2.

Figure 4.9 Bidirectional Association and Target/Source
Multiplicity

Note. Class1 has zero or more instances of Class2. Class2 has exactly one instance of Class1.

Unified Modeling Language | 51

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.06.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.06.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.07.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.07.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.08.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.08.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.09.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.09.png

Figure 4.10 Inheritance

Note. Class2 is a subclass of Class1; Class2 is a Class1.

4.6.2 Real-World Class Diagram Examples

These PDFs contain class diagrams for actual software.

• EvoloPy: An open-source nature-inspired optimization framework in Python (Faris et al., 2016).

• Processing: A Python framework for the seamless integration of geoprocessing tools in QGIS
(Graser & Olaya, 2015).

• Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/med-
ical magnetic resonance spectroscopy signals (Naressi et al., 2001).

• RepoMiner: A language-agnostic Python framework to mine software repositories for defect pre-
diction [PDF] (Palma et al., 2021).

• pyfao56: FAO-56 evapotranspiration in Python [PDF] (Thorp, 2022).

If any links are broken, try the Wayback Machine.

52 | Unified Modeling Language

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.10.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.10.png
https://research-repository.griffith.edu.au/bitstream/handle/10072/401215/Estivill-Castro165057-Published.pdf?sequence=2
https://research-repository.griffith.edu.au/bitstream/handle/10072/401215/Estivill-Castro165057-Published.pdf?sequence=2
https://www.mdpi.com/2220-9964/4/4/2219/pdf
https://www.mdpi.com/2220-9964/4/4/2219/pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cdb5e5d28a9bd6a04f969d6465110f875e706e71
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cdb5e5d28a9bd6a04f969d6465110f875e706e71
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cdb5e5d28a9bd6a04f969d6465110f875e706e71
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cdb5e5d28a9bd6a04f969d6465110f875e706e71
https://arxiv.org/pdf/2111.11807.pdf
https://arxiv.org/pdf/2111.11807.pdf
https://arxiv.org/pdf/2111.11807.pdf
https://arxiv.org/pdf/2111.11807.pdf
https://www.ars.usda.gov/ARSUserFiles/40820/Thorp2022%20-%20pyfao56.pdf
https://www.ars.usda.gov/ARSUserFiles/40820/Thorp2022%20-%20pyfao56.pdf
https://www.ars.usda.gov/ARSUserFiles/40820/Thorp2022%20-%20pyfao56.pdf
https://web.archive.org/

4.7 Sequence Diagrams

When making any diagram, know your audience and what you’re trying to communicate. If your
audience is a human, they have limited capacity for absorbing tiny details (and probably limited
time). Focus on showing them what’s most important in a way they will understand.

A sequence diagram describes interactions between objects. Usually, the diagram shows a single use case
or scenario. Sequence diagrams are a type of interaction diagram and are not as good for showing object
implementation details.

This section provides an example sequence diagram and commonly used sequence diagram notation. For
more detailed information, see Fowler (2004).

In Figure 4.11, the example sequence diagram represents interactions between instances of the Manager,
Employee, and Order classes. Manager asks the Employee for a status update, Employee complies,
Employee creates an Order, Manager asks Employee to close the shop, Employee closes the Order.

In the example, the columns (called participants) are objects, but this is not always the case. For example,
a participant can be a user. Users, if they are human, are sometimes represented as stick figures (without
the box). Another possible non-object participant could be a database (although in some cases, a data-
base is considered an object). What’s most important when creating diagrams is not following the rules
or conventions but communicating with your audience.

Figure 4.11 Simple Sequence Diagram

Unified Modeling Language | 53

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.11.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.11.png

4.7.1 UML Sequence Diagram Notation

Figure 4.12 Participant

Note. The “columns” of a sequence diagram are each participants. Participants are often objects. The
name of the participant goes in the box.

Figure 4.13 Lifeline

Note. Vertical dashed line represents the life span of the participant. Top is beginning of life, and bottom
is the end. Life ends when the participant is deleted.

54 | Unified Modeling Language

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.12.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.12.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.13.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.13.png

Figure 4.14 Message

Note. Interaction from one participant to another is shown by the solid line with arrow. Often a method
call.

Figure 4.15 Activation Bar

Note. Box on lifeline indicates when the participant is active. Indicates method is on call stack.

Unified Modeling Language | 55

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.14.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.14.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.15.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.15.png

Figure 4.16 Return

Note. Dashed line with arrow indicates method return. Use only when it helps communicate something
important about the interaction.

Figure 4.17 Self-Call

Note. Method calling self. Solid line with arrow points back to participant’s own lifeline.

56 | Unified Modeling Language

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.16.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.16.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.17.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.17.png

Figure 4.18 Deletion

Note. End of participant’s life. Indicated by an X on the lifeline.

4.7.2 Real-World Sequence Diagram Examples

These PDFs contain sequence diagrams for actual software.

• Py4JFML: A Python wrapper for using the IEEE Std 1855-2016 through JFML [PDF] (Alcalá-
Fdez et al., 2019).

• COFFEE—An MPI-parallelized Python package for the numerical evolution of differential equa-
tions (Doulis et al., 2019).

• Teetool—A probabilistic trajectory analysis tool (Eerland et al., 2017).

• GEMS: A Python library for automation of multidisciplinary design optimization process genera-
tion [PDF] (Gallard et al., 2018).

If any links are broken, try the Wayback Machine.

4.8 Summary

UML diagrams can be helpful for communicating how your code works. Class diagrams and sequence
diagrams are two commonly used types of UML diagrams. Each type of diagram emphasizes some
part of the code design while leaving out other parts. UML diagrams are for communicating with
humans—not computers.

Unified Modeling Language | 57

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.18.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig05.18.png
https://ricerca.uniba.it/bitstream/11586/256332/9/PID5822281-PrePrint%28con-DOI%29.pdf
https://ricerca.uniba.it/bitstream/11586/256332/9/PID5822281-PrePrint%28con-DOI%29.pdf
https://www.sciencedirect.com/science/article/pii/S2352711019300950
https://www.sciencedirect.com/science/article/pii/S2352711019300950
https://www.sciencedirect.com/science/article/pii/S2352711019300950
https://www.sciencedirect.com/science/article/pii/S2352711019300950
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.163
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.163
https://hal.science/hal-02335530/file/DTIS19188.1570026732_preprint.pdf
https://hal.science/hal-02335530/file/DTIS19188.1570026732_preprint.pdf
https://hal.science/hal-02335530/file/DTIS19188.1570026732_preprint.pdf
https://hal.science/hal-02335530/file/DTIS19188.1570026732_preprint.pdf
https://web.archive.org/

References

Alcalá-Fdez, J., Alonso, J. M., Castiello, C., Mencar, C., & Soto-Hidalgo, J. M. (2019, June). Py4JFML:
A Python wrapper for using the IEEE Std 1855-2016 through JFML. Paper presented at the 2019
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA.
https://ricerca.uniba.it/bitstream/11586/256332/9/PID5822281-PrePrint%28con-DOI%29.pdf

Doulis, G., Frauendiener, J., Stevens, C., & Whale, B. (2019). COFFEE—An MPI-parallelized Python
package for the numerical evolution of differential equations. SoftwareX, 10, 100283. https://www.sci-
encedirect.com/science/article/pii/S2352711019300950

Eerland, W., Box, S., Fangohr, H., & Sóbester, A. (2017). Teetool—A probabilistic trajectory analysis
tool. Journal of Open Research Software, 5(1). https://openresearchsoftware.metajnl.com/articles/
10.5334/jors.163

Faris, H., Aljarah, I., Mirjalili, S., Castillo, P. A., & Guervós, J. J. M. (2016). EvoloPy: An open-source
nature-inspired optimization framework in python. In Proceedings of the 8th International Joint
Conference on Computational Intelligence (IJCCI): Evolutional Computational Theory and Applica-
tions (ECTA), 1, 171-177. https://research-repository.griffith.edu.au/bitstream/handle/10072/401215/
Estivill-Castro165057-Published.pdf?sequence=2

Fowler, M. (2004). UML distilled: A brief guide to the standard object modeling language. Addison-
Wesley Professional.

Gallard, F., Vanaret, C., Guénot, D., Gachelin, V., Lafage, R., Pauwels, B., Barjhoux, P.-J., & Gazaix,
A. (2018). GEMS: A Python library for automation of multidisciplinary design optimization process
generation. Paper presented at the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, Kissimmee, FL, USA.. https://hal.science/hal-02335530/file/
DTIS19188.1570026732_preprint.pdf

Graser, A., & Olaya, V. (2015). Processing: A python framework for the seamless integration of
geoprocessing tools in QGIS. ISPRS International Journal of Geo-Information, 4(4), 2219-2245.
https://www.mdpi.com/2220-9964/4/4/2219/pdf

Naressi, A., Couturier, C., Castang, I., De Beer, R., & Graveron-Demilly, D. (2001). Java-based graphical
user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance
spectroscopy signals. Computers in Biology and Medicine, 31(4), 269-286. https://cite-
seerx.ist.psu.edu/docu-
ment?repid=rep1&type=pdf&doi=cdb5e5d28a9bd6a04f969d6465110f875e706e71

58 | Unified Modeling Language

https://ricerca.uniba.it/bitstream/11586/256332/9/PID5822281-PrePrint%28con-DOI%29.pdf
https://www.sciencedirect.com/science/article/pii/S2352711019300950
https://www.sciencedirect.com/science/article/pii/S2352711019300950
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.163
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.163
https://research-repository.griffith.edu.au/bitstream/handle/10072/401215/Estivill-Castro165057-Published.pdf?sequence=2
https://research-repository.griffith.edu.au/bitstream/handle/10072/401215/Estivill-Castro165057-Published.pdf?sequence=2
https://hal.science/hal-02335530/file/DTIS19188.1570026732_preprint.pdf
https://hal.science/hal-02335530/file/DTIS19188.1570026732_preprint.pdf
https://www.mdpi.com/2220-9964/4/4/2219/pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cdb5e5d28a9bd6a04f969d6465110f875e706e71
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cdb5e5d28a9bd6a04f969d6465110f875e706e71
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cdb5e5d28a9bd6a04f969d6465110f875e706e71

Palma, S. D., Di Nucci, D., & Tamburri, D. (2021). RepoMiner: A language-agnostic Python framework
to mine software repositories for defect prediction. arXiv preprint arXiv:2111.11807. https://arxiv.org/
pdf/2111.11807.pdf

Thorp, K. R. (2022). pyfao56: FAO-56 evapotranspiration in Python. SoftwareX, 19, 101208.
https://www.ars.usda.gov/ARSUserFiles/40820/Thorp2022%20-%20pyfao56.pdf

Unified Modeling Language | 59

https://arxiv.org/pdf/2111.11807.pdf
https://arxiv.org/pdf/2111.11807.pdf
https://www.ars.usda.gov/ARSUserFiles/40820/Thorp2022%20-%20pyfao56.pdf

Chapter 5

Monolith versus Microservice
Architectures

High-level architecture is the software’s all-encompassing code design. When described with a diagram,
a high-level architecture usually looks like a few to dozens of interconnected shapes with short labels,
an abstraction that usually represents the entire codebase. In this chapter, we’ll use “architecture” inter-
changeably with “high-level architecture” (in other contexts, software architecture can refer to code
design at lower levels).

In this chapter, I won’t be covering every high-level architecture. Instead, I’ll concentrate on two dis-
tinct high-level architectures: monolith and microservices. Talking about the ways they’re different will
lead us through concepts applicable to high-level architecture in general.

5.1 Monolith Architecture

Monolith software is one interconnected codebase that cannot easily be divided into multiple indepen-
dent components that run separately and are individually useful.

60 | Architectures

https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter06.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter06.png

If you’re trying to think of an example of a monolith and nothing is coming to mind, that’s probably
because this architecture is so common that it can arise without having to plan. Your first computer pro-
gram was probably a small monolith. If you keep adding more code/files/classes/components, the soft-
ware becomes a bigger monolith—unless you change the architecture.

5.2 Microservice Architecture

Microservices are separate applications, each of which runs in a separate process and could be indi-
vidually useful. This section describes core characteristics of software that uses the microservice archi-
tecture. The subheadings are borrowed from Lewis & Fowler (2014). Martin Fowler’s Microservices
Guide (Fowler, 2019) provides additional discussion.

5.2.1 “Smart End Points and Dumb Pipes”

“Dumb pipes” does not imply simple message contents.

The communication pipe within a microservice architecture is simple, and the services themselves take
care of translating and otherwise processing messages. For example, microservices commonly commu-
nicate through a REST API, which allows these kinds of messages: GET, POST (create), PUT (update),
or DELETE. The contents of the messages can be complex, but it’s the job of the services to deal with
that.

5.2.2 “Componentization via Services”

Even though it provides a service, a library is not a service if you’re including its code in your code.

In a microservice architecture, components are services. The Lewis and Fowler (2014) definition of a
component is “a unit of software that is independently replaceable and upgradeable.” A service provides
functionality while running in its own process. A monolith typically has code with tight coupling and
components that run in the same process.

Architectures | 61

https://martinfowler.com/microservices/
https://martinfowler.com/microservices/

Advantages of splitting components into services:

• Independence: Each individual service can be updated, tested, launched, and stopped without
requiring the same from other components of the software. In contrast, with some monolithic soft-
ware, all tests must be run each time a developer commits to a change, which can make for a long
wait. If a service fails, any software depending on it will be without that service, but the rest of the
software needn’t be affected.

• Standardized component communication: Service communication pipes can be simple and the
same each time. This can make for less thinking, fewer mistakes, and less violation of encapsula-
tion when connecting two components—just use the pipe.

Disadvantages of splitting components into services:

• More expensive communication: Components in a monolith can communicate via direct calls
(fast, lightweight); in contrast, microservices often communicate over a network. Microservice
requests typically need to include request metadata, and because the pipes are “dumb,” responses
might contain extra data (slower, heavier).

• Potentially less secure communication: Communication over a network can be more prone to
interception and alteration.

5.2.3 “Organized around Business Capabilities”

You may have heard of the client-server architecture, in which multiple instances of client-side software
communicate with server-side software, which communicates with a database. That architecture is orga-
nized around technology. Another way to put that: someone unfamiliar with the differences between
client-side software, server-side software, and a database would not get much out of seeing a diagram of
this architecture.

In contrast, microservices are organized around business capabilities. This term has multiple definitions.
Michell’s (2011) integrated definition of a business capability fits what we’re talking about: “the poten-
tial of a business resource (or groups of resources) to produce customer value by acting on their environ-
ment via a process using other tangible and intangible resources.”

62 | Architectures

Examples of business capabilities:

• The manufacturer can slice a 20-foot by 40-foot rectangle of wheat dough into 0.5-cm strips in 1.2
seconds, which will later become packaged noodles someone can buy for lunch in a grocery store.

• A loan officer can lead a customer through the process of securing a loan, enabling the customer to
start a small business.

• A pet food distributor can regularly ship nutritionally balanced cat food to stores around the coun-
try.

• The software can make a video file compatible with mobile devices.

One implication of being focused on business capabilities is that each microservice can have its own tech
stack (including its own database).

5.2.4 “Decentralized Data Management”

In a microservice architecture, each service typically has its own database instead of sharing a central-
ized database. This is part of decoupling the software’s components, which has many benefits including
failure containment. A disadvantage is that if two microservices need to share data, the two copies of
that data can become inconsistent (e.g., because one database has not yet received the update). Microser-
vice databases are said to have eventual consistency, which means that, with time, each microservice will
have the most up-to-date information, but meanwhile, there could be a mismatch (perhaps one that will
annoy or mislead human users).

5.2.5 “Decentralized Governance”

Microservices need only be compatible at their interfaces (communication pipe), leaving flexibility in
how each is implemented. For example, each service can be written in a different language, reducing
the weight of tech stack decisions and decreasing the need to compromise on those decisions. For each
service, teams can choose the optimal programming language, framework, architecture, and more. The
technologies of each microservice can be independently changed. Conversely, in a monolith, teams might
only need to maintain a small set of technologies (e.g., if there’s only one framework, only one frame-
work will need updates installed) and might not need as broad of expertise (e.g., having working knowl-
edge of five programming languages). Also, when code is more or less part of the same codebase, it
might be easier to maintain the same standards across the code.

Architectures | 63

5.2.6 “Design for Failure”

When services run in different processes on different machines and were created by different teams using
different technologies and standards, that can change how developers think. Instead of keeping the
whole ship afloat, thinking can shift toward service-specific monitoring, logging, and design decisions
about what to do when a service fails—including what to tell the user. In contrast, with a monolith,
more thought might be put into how to revert quickly if a deployment fails (because failure might mean
no part of the monolith works). Monoliths can also be designed for failure, but that’s not as natural a
tendency as with microservices.

5.3 Monolith Compared to Microservices

This section recaps and expands upon differences between monolith and microservice architectures
(Fowler, 2015; Lewis & Fowler, 2014).

5.3.1 How Does Communication Happen within a Monolith
versus between Microservices?

In a monolith, communication (e.g., between classes and components) can happen in many ways, includ-
ing through direct calls and over a network. With microservices, communication typically happens over
a network such as through HTTP requests/responses, through “dumb,” standardized communication
pipes. While microservices communication pipes are less complex, that means the end points need to be
smarter. Also, communication over a network can be less reliable and less secure.

5.3.2 How Is a Monolith Deployed versus Microservices?

Monolithic software often needs to be deployed all at once. Microservices can be independently deployed
and can potentially be stopped without stopping connected services.

5.3.3 How Is a Monolith Scaled versus Microservices?

If your monolithic software needs more resources to be able to support how much it’s being used, it can
be copied onto multiple machines. Each machine must have enough space, memory, processing speed,
and the like to support the entire monolith.

64 | Architectures

If your microservices software needs more resources, you have more options. For example, the services
that are used more can be replicated more times.

5.3.4 How Is a Monolith Tested versus Microservices?

In microservice software, each service can be independently tested. In a monolith, the way you test is
influenced by dependencies within the code, which could reach broadly across the software (and make
for slow tests).

5.3.5 How Is a Monolith Upgraded versus Microservices?

Each microservice can be written in a different language (e.g., one in Python, another in Java, another
in C++, etc.) and can run in different contexts (e.g., machines with different operating systems, libraries,
versions of libraries, and so on). In theory, this means they can be independently upgraded.

With a monolith, upgrading may require more care. Each component must be compatible with the new
context (but this is also sometimes true with microservices).

5.3.6 How Is the Database Used in a Monolith versus
Microservices?

Monolithic software might have just one database, potentially a very large one. This can create a bot-
tleneck if multiple parts of the software need to access the database in parallel and can make for slow
database backups/restores, among other drawbacks. If you only have one database, however, that’s just
one place for managing database access accounts and one database to maintain/back up/restore/etcetera.
In contrast, each microservice typically has its own data storage.

5.4 Summary

Monolith and microservice architectures have different advantages and disadvantages. In a microservice
architecture, each service is its own application and can be independently managed. Communication
mechanisms between modules can be standardized. In a monolith, however, the codebase can be
deployed all at once and components can communicate directly, which can be more reliable, less expen-
sive, and provide better consistency than communicating between multiple applications over a network.

Architectures | 65

5.5 Case Study: Microservice Architecture

The Oregon State University (OSU) Center for Applied Systems and Software (CASS) is a nonprofit
that gives students real-world software development experience through its work with clients such as the
Oregon Department of Transportation (ODOT).

CASS and ODOT decided to convert ODOT’s statewide computer-aided dispatch software, Transporta-
tion Operation Center System (TOCS), from a monolith to microservices. TOCS helps dispatchers share
road emergency information with responders and the public. The part of TOCS that CASS started with
was the outdated home screen.

From a user perspective, the main problem with the TOCS home screen was inflexibility. Dispatcher cen-
ters in different parts of Oregon had different needs (e.g., some centers dealt with more icy roads, others
withs more fender-benders) but had to use the same home screen, which could not be easily configured.

From a developer perspective, the monolith had multiple technological drawbacks that made it difficult
to respond to TOCS users’ needs:

• It was difficult to keep software components decoupled, especially since many different devel-
opers worked on the software. They were building up technical debt, which meant that developers
might need to focus on clearing that debt instead of implementing new TOCS features.

• CASS could only deploy TOCS a few times a year because the software had to be tested and
deployed in its entirety (a long process) and it was essential for the software to remain stable, espe-
cially during times of year with more weather and road hazards. This meant dispatch centers had
to wait a long time for new features (e.g., individualized home screens).

• There was a lot of pressure on the database because the TOCS software at all the dispatch cen-
ters was transacting with the same database and causing performance issues.

• Technology choices were limited because every part of the software had to be compatible with
the .NET Framework. Even worse, their technology stack was becoming deprecated because
Microsoft stopped releasing updates to the .NET Framework after version 4.8. CASS chose the
microservice architecture as a solution to all these problems.

Figure 5.1 depicts the new architecture of the TOCS homepage, which integrates with the monolith. The
WinGui Gateway application is responsible for preparing data from the services so it can be used by
the New Home Screen UI. It uses the .NET 6 stack, which gives developers access to modern features.
The Message Broker (Apache ActiveMQ) application talks to the services and the Gateway. Because the

66 | Architectures

https://cass.oregonstate.edu/

Message Broker uses a standard protocol, AMQP, it would be feasible to change the Message Broker
technology in the future. Each service is also a separate application and has its own database. CASS
found that one advantage of a dedicated database was that they could use JSON for the Profile Service,
which was more appropriate than the relational database used within the monolith.

Figure 5.1 Microservice Architecture of ODOT’s TOCS
Home Screen

For more information about this project, see Fern (2022) for a video that describes it in detail.

References

Fern, A. (2022). Tech Talk Tuesday: Lessons in real-world software: going from monolith to microser-
vices. OSU MediaSpace. https://media.oregonstate.edu/media/t/1_ls3xsa6r

Fowler, M. (2015, July 1). Microservice trade-offs. martinfowler.com. https://martinfowler.com/articles/
microservice-trade-offs.html

Fowler, M. (2019, August 21). Microservices guide. martinfowler.com. https://martinfowler.com/
microservices/

Lewis, J., & Fowler, M. (2014, March 25). Microservices. martinfowler.com. https://martinfowler.com/
articles/microservices.html

Architectures | 67

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig06.01.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig06.01.png
https://media.oregonstate.edu/media/t/1_ls3xsa6r
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

Michell, V. (2011). A focused approach to business capability. In B. Shishkov (Ed.), Proceedings of
the First International Symposium on Business Modeling and Software Design, 105–113. Springer.
https://doi.org/10.5220/0004459101050113

68 | Architectures

https://doi.org/10.5220/0004459101050113

Chapter 6

Paper Prototyping

User interface (UI) design often involves prototyping: iteratively creating depictions of what you think
the UI should look like, and how users should interact with it, based on the software’s requirements. Pro-
totyping gives you a way to try out a UI design and find problems early. Changing a drawing (digital or
physical) is often easier and faster than changing its code implementation.

There are multiple levels—or “fidelities”—of UI design prototypes (low fidelity, medium fidelity, and
high fidelity). If you look around, you’ll find disagreement on the definitions (Snyder, 2011). I use the
following definitions:

• Low fidelity (Figure 6.1): A rough sketch that is often drawn by hand, drawn using an app and
stylus, or made using software specifically for creating low-fidelity prototypes. At this fidelity, you
can gather feedback on higher-level features and have the flexibility to make large, low-cost
changes.

Paper Prototyping | 69

https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter07.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter07.png

Figure 6.1 Low-Fidelity Prototype Example

• Medium fidelity (Figure 6.2): A detailed illustration often created using a professional drawing or
presentation tool (e.g., Visio, PowerPoint, and the like), or perhaps a careful and detailed hand
drawing. At this fidelity, to keep costs low, you can gather feedback on small changes to defined
and accepted features that you plan to keep but might change the look of.

Figure 6.2 Medium-Fidelity Prototype Example

70 | Paper Prototyping

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig07.01.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig07.01.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig07.02.jpg
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig07.02.jpg

• High fidelity (Figure 6.3): A polished, detailed illustration that looks like a finished UI. These
designs might be created in a full-featured graphics editor (such as Photoshop, Illustrator, etc.) or a
GUI builder. At this fidelity, to keep costs low, you can gather feedback about detailed tweaks to
specific features to make focused and incremental improvements.

Figure 6.3 High-Fidelity
Prototype Example

A quick and low-cost way to begin prototyping (and begin getting feedback on your UI design) is to cre-
ate a low-fidelity paper prototype.

A paper prototype is a hand-drawn sketch of a UI design that’s based on the software’s requirements.
It doesn’t need to be pretty or artistic. It can be simple and reduce the UI to only the most important
elements (i.e., it is often low fidelity).

6.1 Showing Interaction

A paper prototype needn’t be static or limited to one sheet of paper. With some craftiness and creativity,
paper prototypes can communicate elements of interaction design by indicating what users can interact
with (e.g., a slider), how they can interact (e.g., by dragging), and what happens when they interact (e.g.,
an overlay appears, showing the elevations of each mountain in the photo). To show interaction design

Paper Prototyping | 71

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig07.03.jpg
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig07.03.jpg

through a paper prototype, you can, for example, cut out small paper shapes you can easily move around
(e.g., a small rectangle showing the submenu items that appear when a user clicks), place arrows and
annotations on your prototype, and even add strings to show how UI elements may move. I’ve even seen
people use brass brads for spinnable elements. But keep in mind that if your client doesn’t like your
design, you might have saved time and communicated your concept just as well with a less elaborate
paper prototype.

6.2 Showing Your Concept to Others

Once you have a paper prototype, you can use it to harvest feedback. Here’s one way: if each of your
screen designs is on one piece of paper, give your user the entry screen drawing, then either give them a
task (e.g., submit data report) or let them explore on their own. Watch as they tap buttons or otherwise
interact. Be ready to quickly swap in other drawings to respond to their interactions (e.g., if they tap the
gear icon, give them a sketch of the settings screen). If you’re fast and brought extra supplies, you can
construct new designs on the fly or (if they’re interested) let your user participate.

You can ask your user to provide feedback about the design after they’re done using it or as they go,
using a think-aloud protocol. Ask your user to tell you what they’re doing, what they’re trying to do,
what questions they have at that moment, what they don’t like, and so on.

6.3 Summary

Paper prototyping can help reduce project costs by giving a way to detect user interface design flaws
before they are implemented. It can also help teams communicate about the software with each other,
clients, and users.

Reference

Snyder, C. (2011). Paper prototyping: The fast and easy way to design and refine user interfaces. Morgan
Kaufmann.

72 | Paper Prototyping

Chapter 7

Inclusivity Heuristics

The Inclusivity Heuristics are guidelines for designing technology to work well for a diversity of
users. Using the heuristics to build inclusive technology is a way to practice inclusive design: it is “a
methodology . . . that enables and draws on the full range of human diversity. Most importantly, this
means including and learning from people with a range of perspectives” (Microsoft).

The Inclusivity Heuristics, in their current form, give advice for how to support five cognitive facets
involved in how people interact with technology for the first time (Burnett et al., 2016).

The full definitions of these facets are available in GenderMag Project et al. (2021).

1. Attitude toward risk (risk-averse to risk-tolerant).

2. Computer self-efficacy (low to high).

3. Information processing style (comprehensive to selective).

4. Learning style (process-oriented to mindful tinkering to tinkering).

5. Motivations (task-motivated to motivated by tech interest).

Inclusivity Heuristics | 73

https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter08.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter08.png

A cognitive style is a cognitive facet value. For example, my cognitive styles are medium attitude toward
risk, high computer self-efficacy, selective information processing style, a highly variable learning style,
and task motivation.

The Inclusivity Heuristics help software practitioners support the full range of cognitive styles for each
cognitive facet.

7.1 Background

The Inclusivity Heuristics, also called the Cognitive Style Heuristics or the GenderMag Heuristics (Bur-
nett et al., 2021), were developed by human-computer interaction researchers at Oregon State University
as part of the GenderMag Project. The research behind the heuristics is more than 40 publications about
gender differences in how people use technology. In the future, the heuristics will potentially expand to
include research about other diversity dimensions, such socioeconomic diversity (Hu et al., 2021) and
age diversity (McIntosh et al., 2021).

Heuristics, such as the Inclusivity Heuristics and Nielsen’s Heuristics (Nielsen, 1994), are meant to be
used within a usability inspection method called heuristic evaluation (Nielsen & Molich, 1990). In a
heuristic evaluation, multiple evaluators independently check whether a technology design follows the
heuristics. They make note of any issues and compare results. The output is a combined set of usability
issues.

7.2 Inclusivity Heuristics Personas

You can find the full versions of the Abi, Pat, and Tim personas and the GenderMag Method at Gen-
derMag.org.

A unique characteristic of the Inclusivity Heuristics is they are framed from the perspective of supporting
three personas: Abi, Pat, and Tim. A persona is a representation of a user or a group of users. Abi, Pat,
and Tim each have different cognitive styles. Figure 7.1 lists each persona’s cognitive styles.

74 | Inclusivity Heuristics

https://gendermag.org/

Figure 7.1 Cognitive Styles of Abi, Pat, and Tim

Note. The personas can have any gender and picture.

7.3 The Inclusivity Heuristics

Each of the eight heuristics are listed and described below, with examples.

7.3.1 Heuristic #1 (of 8)

Explain (to Users) the Benefits of Using New and Existing
Features

Abi and Pat have a pragmatic approach toward technology, using it only when necessary for their specific
tasks. They have limited spare time and prefer to stick to familiar features, enabling them to maintain
focus on the task at hand. Unless they can clearly understand how certain features will help them com-
plete their tasks, they might not use them.

Abi is risk-averse toward technology. Abi tends to avoid features with unknown time costs and other
risks.

Similarly, Pat is also cautious about using new features, but open to trying out features to determine
whether they’re relevant to completing their task.

Inclusivity Heuristics | 75

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.01.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.01.png

In contrast, Tim is enthusiastic about discovering and exploring new, cutting-edge features. Moreover,
Tim is willing to take risks and may use features without prior knowledge of their costs or even their
exact functionality.

Figure 7.2 provides an example design that reflects this heuristic and how Abi, Pat, and Tim might react
to it.

To support the personas’ motivations and risk tolerance, make it easy for Abi and Pat to quickly see
the benefits of features and decide if they want to use them, and give Tim the ability to quickly fig-
ure out what new and unique features do, so these users can explore those features if they’re inter-
ested.

Figure 7.2 Inclusivity Heuristic #1 Design Example

Note. The designs help Abi, Pat, and Tim decide whether they want to use the features. Abi and Pat seek
features that help them with their task. Tim seeks features that are interesting.

7.3.2 Heuristic #2 (of 8)

Explain (to Users) the Costs of Using New and Existing Features

Abi and Pat prefer to reduce risk by avoiding features that might require significant time and effort.

Tim is more open to taking risks and may be willing to invest additional time and effort into using fea-
tures, even if they aren’t directly related to the current task.

Figure 7.3 provides an example design that reflects this heuristic and how Abi, Pat, and Tim might react
to it.

76 | Inclusivity Heuristics

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.02.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.02.png

To support the personas’ attitudes toward risk, give them the ability to assess whether a feature
might require excessive time and effort so that Abi and Pat can avoid it or proceed with caution,
and so Tim understands the relative amount of risk a feature comes with.

Figure 7.3 Inclusivity Heuristic #2 Design Example

Note. Indicating that “cor launcher” is required helps Abi and Pat decide whether they want to proceed
or quit, and helps Tim understand what other technical configuration might be required.

7.3.3 Heuristic #3 (of 8)

Let Users Gather as Much Information as They Want, and No
More Than They Want

Abi and Pat approach decision-making by diligently gathering and thoroughly reviewing relevant infor-
mation before acting.

Tim prefers to dive right into the first option that catches their interest and pursue it. They will backtrack
if necessary.

Figure 7.4 provides an example design that reflects this heuristic and how Abi, Pat, and Tim might react
to it.

Inclusivity Heuristics | 77

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.03.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.03.png

To support the personas’ information processing styles, make it easy for Abi and Pat to gather as
much information as they want, and give Tim the ability to quickly gather the useful information
they need without having to process a lot of information they don’t care about.

Figure 7.4 Inclusivity Heuristic #3 Design Example

Note. The design allows users to access documentation, and keep it open, while coding. This helps Abi
and Pat fully understand the syntax before using it. Tim can choose to close the documentation.

7.3.4 Heuristic #4 (of 8)

Keep Familiar Features Available

Abi, who has lower computer self-efficacy and is more risk-averse than Tim, tends toward self-blame and
will stop using unfamiliar features if problems arise. Abi prefers to avoid potentially wasting time trying
to make unfamiliar features work.

Pat, with moderate technological self-efficacy, adopts a different approach. When faced with problems
while using unfamiliar features, Pat will attempt alternative methods to succeed for a while. Being risk-
averse, however, Pat prefers to rely on familiar features, which are more predictable in terms of expected
outcomes and time required.

In contrast, Tim has higher computer self-efficacy and is more risk-tolerant compared to Abi. If problems
arise with unfamiliar features, Tim tends to blame the technology itself and may invest considerable extra
time exploring various workarounds to overcome the problem.

Figure 7.5 provides an example design that reflects this heuristic and how Abi, Pat, and Tim might react
to it.

78 | Inclusivity Heuristics

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.04.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.04.png

To support the personas’ computer self-efficacies and attitudes toward risk while also promoting
continued use of the technology without unnecessary time wastage, allow Abi, Pat, and Tim to
engage with familiar features that they have previously used.

Figure 7.5 Inclusivity Heuristic #4 Design Example

Note. The design update is minimal, keeping most features the same. This helps Abi and Pat detect the
familiar features with which they’re comfortable, and helps Tim detect which features they have already
explored.

7.3.5 Heuristic #5 (of 8)

Make Undo/Redo and Backtracking Available

Abi and Pat, being risk-averse, tend to avoid taking actions in technology that may be difficult to undo
or reverse. In contrast, Tim, who is risk-tolerant, is willing to take actions in technology that might be
incorrect or require reversal.

Figure 7.6 provides an example design that reflects this heuristic and how Abi, Pat, and Tim might react
to it.

To support the personas’ attitudes toward risk, offer Abi and Pat the option to undo/redo actions
and backtrack, ensuring they feel at ease when taking actions that have uncertain consequences.
This way, they can be confident knowing they can easily reverse these actions if needed. In addi-
tion, these features allow Tim to recover from mistakes.

Inclusivity Heuristics | 79

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.05.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.05.png

Figure 7.6 Inclusivity Heuristic #5 Design Example

Note. The design allows users to undo or redo their last action. This helps Abi and Pat feel assured that
using the functionality is safe, and helps Tim backtrack in case they make a mistake.

7.3.6 Heuristic #6 (of 8)

Provide an Explicit Path through the Task

Abi, as a process-oriented learner, prefers to approach tasks in a systematic and step-by-step way.

Tim and Pat, however, who are more inclined toward tinkering as their learning style, prefer not to be
confined by strict and predetermined processes. They thrive when they have the freedom to explore and
experiment without rigid constraints.

Figure 7.7 provides an example design that reflects this heuristic and how Abi, Pat, and Tim might react
to it.

To support the personas’ learning styles, offer Abi a well-defined and explicit task process that pro-
vides clarity and structure. For Tim and Pat, provide them with the flexibility to bypass step-by-step
processes and tutorials that are not necessary for learning the technology. This allows them to
explore and learn in a way that suits their preferred approach.

80 | Inclusivity Heuristics

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.06.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.06.png

Figure 7.7 Inclusivity Heuristic #6 Design Example

Note. The design gives users a clear choice between three paths. A structured process helps Abi feel
comfortable. Pat and Tim can select “custom” if they’d like to tinker.

7.3.7 Heuristic #7 (of 8)

Provide Ways to Try Out Different Approaches

Abi, with lower computer self-efficacy compared to Tim, tends toward self-blame when problems arise
in technology. As a result, Abi may stop using the tech altogether.

Pat, with moderate self-efficacy in technology, takes a different approach. When faced with problems
while using technology, Pat will attempt alternative methods to succeed for a period.

In contrast, Tim, with higher computer self-efficacy than Abi, tends to blame the technology itself if a
problem arises. Abi will then explore numerous workarounds in order to overcome the issue.

Figure 7.8 provides an example design that reflects this heuristic and how Abi, Pat, and Tim might react
to it.

Inclusivity Heuristics | 81

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.07.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.07.png

To support the personas’ computer self-efficacies, provide Abi with alternative approaches when
difficulties with the current approach arise. This will also encourage Tim and Pat to explore multiple
strategies to solve problems.

Figure 7.8 Inclusivity Heuristic #7 Design Example

Note. The design allows users to chat with a person in case they can’t find their question on the list. This
helps Abi and Pat because they know they have a backup plan. It also helps Tim, who might want to
report the problem.

7.3.8 Heuristic #8 (of 8)

Encourage Tinkerers to Tinker Mindfully

Tim’s learning style revolves around tinkering, but at times Tim becomes excessively engrossed in tin-
kering, leading to long distractions.

Pat, in contrast, embraces a learning approach that involves actively experimenting with new features.
Pat does so mindfully, however, taking the time to reflect on each step taken during the learning process.

Figure 7.9 provides an example design that reflects this heuristic and how Tim might react to it.

To support Tim’s learning style, encourage Tim to avoid excessive tinkering, such as by adding an
extra click. This helps minimize mistakes, allows for better absorption of important information, and
helps Tim stay focused on the task at hand.

82 | Inclusivity Heuristics

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.08.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.08.png

Figure 7.9 Inclusivity Heuristic #8
Design Example

Note. The design helps Tim avoid making mistakes while tinkering.

7.4 Summary

The Inclusivity Heuristics are a set of eight software usability heuristics for evaluating and improving
the usability of UIs across users with different cognitive styles.

1. Explain (to Users) the Benefits of Using New and Existing Features

2. Explain (to Users) the Costs of Using New and Existing Features

3. Let Users Gather as Much Information as They Want, and No More Than They Want

4. Keep Familiar Features Available

5. Make Undo/Redo and Backtracking Available

6. Provide an Explicit Path through the Task

7. Provide Ways to Try Out Different Approaches

8. Encourage Tinkerers to Tinker Mindfully

References

Burnett, M., Stumpf, S., Macbeth, J., Makri, S., Beckwith, L., Kwan, I., Peters, A., & Jernigan, W.
(2016). GenderMag: A method for evaluating software’s gender inclusiveness. Interacting with Com-
puters, 28(6), 760–787. https://doi.org/10.1093/iwc/iwv046

Inclusivity Heuristics | 83

https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.09.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig08.09.png
https://doi.org/10.1093/iwc/iwv046

Burnett, M., Sarma, A., Hilderbrand, C., Steine-Hanson, Z., Mendez, C., Perdriau, C., Garcia, R., Hu,
C., Letaw, L., Vellanki, A., & Garcia, H. (2021, March). Cognitive style heuristics (from the Gen-
derMag Project). GenderMag.org. https://gendermag.org/Docs/Cognitive-Style-Heuristics-from-the-
GenderMag-Project-2021-03-07-1537.pdf

GenderMag Project, Di, E., Noe-Guevara, G. J., Letaw, L., Alzugaray, M. J., Madsen, S., & Doddala,
S. (2021, June). GenderMag facet and facet value definitions (cognitive styles). OERCommons.org.
https://www.oercommons.org/courses/handout-gendermag-facet-and-facet-value-definitions-cogni-
tive-styles

Hu, C., Perdriau, C., Mendez, C., Gao, C., Fallatah, A., & Burnett, M. (2021). Toward a socioeconomic-
aware HCI: Five facets. arXiv preprint arXiv:2108.13477.

McIntosh, J., Du, X., Wu, Z., Truong, G., Ly, Q., How, R., Viswanathan, S., & Kanij, T. (2021). Evaluat-
ing age bias in e-commerce. Paper presented at the 2021 IEEE/ACM 13th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE), Madrid, Spain. https://doi.org/
10.1109/chase52884.2021.00012

Microsoft. (n.d.). Microsoft inclusive design. https://inclusive.microsoft.design/

Nielsen, J. (1994). Heuristic evaluation. In Usability inspection methods. John Wiley & Sons.

Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems Empowering People—CHI ’90. Association for
Computing Machinery. https://doi.org/10.1145/97243.97281

84 | Inclusivity Heuristics

https://gendermag.org/Docs/Cognitive-Style-Heuristics-from-the-GenderMag-Project-2021-03-07-1537.pdf
https://gendermag.org/Docs/Cognitive-Style-Heuristics-from-the-GenderMag-Project-2021-03-07-1537.pdf
https://www.oercommons.org/courses/handout-gendermag-facet-and-facet-value-definitions-cognitive-styles
https://www.oercommons.org/courses/handout-gendermag-facet-and-facet-value-definitions-cognitive-styles
https://doi.org/10.1109/chase52884.2021.00012
https://doi.org/10.1109/chase52884.2021.00012
https://inclusive.microsoft.design/
https://doi.org/10.1145/97243.97281

Chapter 8

Code Smells and Refactoring

If you want to learn more about any of the code smells and refactorings described in this chapter or
want to know additional ways your code can smell, Martin (2009), Shvets, and Fowler and Beck
(2019) are good resources.

Code smells are indications that the code needs to be reorganized—a sign your software is undergoing
code decay. Your code might need attention if you’re having thoughts like these:

• “I would never show this code during an interview.”

• “I’m going to start over and rewrite this code from scratch.”

• “Every time I look at this code, I have to re-figure-out what it does.”

• “These comments don’t match the code . . .”

• “Why is this code repeated in three different places?”

• “I want to switch out this component, but that’ll break X, Y, and Z in this other place, and I don’t
want to deal with that.”

Code Smells | 85

https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter09.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter09.png

Types of codes smells we’ll cover (including how to fix them):

• Code smells about comments.

• Code smells about functions.

• General code smells (e.g., about the code within functions).

8.1 Why Care about Code Smells?

Reasons to pay attention to and fix code smells:

• Smelly code can be harder for you and others to maintain because the code is unclear. When
code is hard to maintain, developers tend to work around it or re-create the same functionality
elsewhere.

• Smelly code leads to smellier code. When you let your code become disorganized, you are giving
yourself and others the message that smelly code is acceptable. Disorganized code also tends to
give us an excuse to be lazy coders. A web development example: if you’ve used CSS, you may
have encountered frustrating situations where the style you’re trying to apply is not work-
ing—somewhere in the code (e.g., other CSS, HTML, or JS), your style is being overridden.
Instead of tracking down the competing code or markup, you use the “!important” property, which
forces the style to be applied. The codebase is a mess anyway, so who cares? Your future self.

• Smelly code builds up technical debt. If the code is working, there’s never a reason to change it,
right? Wrong. Each time you write sloppy code, you are contributing to your project’s technical
debt. Maybe it works now, but as sloppy software grows, it will get more difficult to deal with.
That can mean your company needing to hire more developers to keep productivity up. Instead,
productivity can go down because now the old developers are struggling to teach the new develop-
ers, and everyone is continuing to write sloppy code (Martin, 2009). Ultimately, the software may
have to be redeveloped entirely (which doesn’t always solve the problem). Or the project could fail.

8.2 Your Code Stinks—Now What?

If you can (e.g., your manager allows it), strongly consider refactoring. Refactoring is when you improve
your code without changing what the code does. Refactoring is a way to pay down technical debt.

The remainder of this chapter is about code smells and how to clean them up. This is not an exhaustive
list. You can find more advice in the references at the end of the chapter.

86 | Code Smells

8.3 Comments

When we first learned to code, many of us didn’t write comments: solving problems and coding is fun;
no time for boring comments! Then, we got more experience, started coding with others, were formally
trained to code, or attempted to continue an old project, and we saw why comments are useful—and then
some of us jumped to the other extreme: too many comments. We explained functions with paragraphs
of prose, or even commented each line. It’s tedious, but it’s the right thing to do, right? Unfortunately
(and fortunately), too many comments can be as bad as none.

8.3.1 Drawbacks of Having Many Comments

Don’t fall into the trap of adding excessive comments to your code before an interview! Some
prospective employers specifically look for over-commented code (or can’t help but see it) as an
indicator of poor programming habits.

• Comments get out of date quickly. If we update the code, then procrastinate on the comments,
what we leave can be misleading (to others and our future selves). Also, more comments mean
greater likelihood some will be ignored, giving us the smelly situation of some accurate and some
inaccurate comments. In that case, why would we trust any of the comments?

• Writing comments for straightforward code can distract from the important comments. If the
code was difficult to write, is long, is unique, is complex, or has a “gotcha,” comments can help
call attention to idiosyncrasies of the code.

• Writing lots of comments could indicate the code needs to be simplified. Ideally, most of the
code you write will be self-explanatory, so frequent comments are not needed.

Code Smells | 87

8.3.2 Code Smells about Comments

Below is a concise list of common code smells about comments and what to do about them (how to
refactor).

• Obsolete Comment (no longer describes the code). Remove or update.
1 # SMELLY

2 """

3 Uses the TwoFish block cipher with 256 bit key size

4 """

5 ThreeFish(512,data)

• Commented-Out Code (somebody thought they’d need that code later, but the commented-out
block is now getting out of date and in the way). Remove. If you’re feeling risk-averse, save a
backup or use a version-control system.

Commenting out code often comes with poor assumptions (e.g., you’ll need the code later,
others will understand why you commented it out, the surrounding code will continue having
the same purpose, and so on).

1 # SMELLY

2 def updateWorldState():

3 """

4 updateTime() # might need later

5 updatePlayers()

6 updatePoints()

7 """

8 for p in players:

9 p.updateState()

• Redundant Comment (states what would already be immediately apparent to a programmer of
any level). Remove. Less is more.

1 # SMELLY

2 getLength() # gets the length

• Long Comment (multiple sentences, complicated, goes into a lot of detail). Simplify the code to
make it more self-explanatory; shorten or remove comment.

1 # SMELLY

2 """

3 This is the first function I made in this module, and it
takes the user’s Unicode text input, converts it to
ASCII, then that creates a visualization of a type-

88 | Code Smells

writer typing the input. Problem is, as you might
imagine, sometimes there’s no good conversion to
ASCII, so some meaning is lost.

4 """

8.4 Functions

If you’re only writing a short program, does coding style matter? Treating code as disposable is a
self-fulfilling prophecy.

A natural way to code is to start writing a function and then, as the program gets more complicated,
keep adding to it. For example, if your program’s GUI only has a start and a stop button, the function
for populating the screen with UI elements only needs to draw those two buttons. Then, when you add a
menu and a settings button, you could update the function to draw those elements, too. You then add user
accounts and decide that function is a fine place to check if the user is logged in, their level of inactivity,
show a pop-up about cool new features . . . and your function balloons. Understanding the small details
of how the function works can even make one feel proud—until the code becomes unmaintainable and
bug-ridden.

8.4.1 Code Smells about Functions

Software made of three to four line functions is amazing to behold!

Follow these refactoring suggestions to increase code readability, maintainability, and modularity.

• Long Function (more than 10 lines or so). Break into multiple functions. Aim for five lines or
fewer.

• Function with Many Jobs (doing more than what its name suggests, doing things that aren’t
closely related, doing many things). Break into multiple functions.

1 # BEFORE

2 def updateGUI():

3 updateTime()

4 updateTimeDisplay()

5 updateScores()

6 updateScoreDisplay()

7 refreshWindow()

Code Smells | 89

8

9 # AFTER

10 def updateState() :

11 updateTime()

12 updateScores()

13

14 def updateGUI():

15 updateTimeDisplay()

16 updateScoreDisplay()

17 refreshWindow()

• Function with Many Parameters (more than four, some say more than three). As appropriate,
pass an object that combines the parameters, make calls within the function to get the parameter
data, break into multiple functions, or find another way of reducing the number of parameters.

Zero function parameters is even better than four!

1 # BEFORE

2 initOutdoorPlace(floraList, faunaList, temperature, wind-
Speed, cloudiness, rockiness, birdNoises,
grassLength)

3

4 # AFTER

5 initOutdoorPlace(world1data)

8.5 Code

Code gets messy fast if you’re not paying attention. One reason is because many of us weren’t trained
to be neat with code when we first learned it. To write tidy code, you may have to frequently stop and
think about its design or be strict with yourself about refactoring regularly. Over time, you might adopt
better habits.

90 | Code Smells

8.5.1 Code Smells about Code in General

• Duplicate Code (same code in multiple places). Consolidate into one place, but watch out for cre-
ating unwanted dependencies.

1 # BEFORE

2 def updateLevelOfAlarm(npc):

3 if (npc.isWalking() && npc.isAlive() &&
npc.isFriendly())

4 setLevelOfAlarm(0)

5 else

6 setLevelOfAlarm(500)

7 react(npc)

8

9 def react(npc):

10 if (npc.isWalking() && npc.isAlive() &&
npc.isFriendly())

11 keepWalking()

12 else

13 runAway()

14

15 # AFTER

16 def react(npc):

17 if (npc.isHarmless())

18 setLevelOfAlarm(0)

19 keepWalking()

20 else

21 setLevelOfAlarm(500)

22 runAway()

23

24 def setLevelOfAlarm(level):

25 alarmLevel = level

26

27 def isHarmless(npc):

28 return (npc.isWalking() && npc.isAlive() &&
npc.isFriendly())

• Long Lines (more than 100 characters or so). Shorten by breaking into multiple lines, converting
to a function call, defining new variables, and so on.

Thresholds like “100 characters” or “five lines” are arbitrary. Generally, shorter is better, but not
even that rule can be applied everywhere. For example, “syntactic sugar” is the term for con-
cise and elegant code syntax, usually built into the programming language. It can make your
code shorter, but what’s the point if nobody can understand it!

Code Smells | 91

1 # BEFORE

2 if (rectangle.coordinate[1][0] - rectangle.coordinate
[2][0] > 500 && rectangle.coordinate[2][1] - rectan-
gle.coordinate[3][1] > 500 && rectangle.isSquare()):

3

4 # AFTER

5 if (rectangle.isSquare() && rectangle.width > 500):

• Inconsistent Conventions (formatting code differently in different places, or untidily). Follow
whatever style conventions the code is already using. If it’s a new project, plan to be self-consistent
or follow accepted conventions for the language you’re using.

When adding to another person’s code, it’s best to follow their coding style conventions even if
you prefer a different way. If their code style is sloppy and inconsistent, however, consider
whether there’s a polite way to fix the problem.

1 # BEFORE

2 if (whale.isSinging) {

3 activateAudioRecordingDevice();

4 } else {

5 recording_device_off_confirmation_check();

6 }

7

8 if (starfish.blockingCamera)

9 {

10 AirCannon.Spray(camera.coordinates);

11 }

12

13 # AFTER

14 if (Whale.isSinging) {

15 activateAudioRecordingDevice();

16 } else {

17 confirmRecordingDeviceOff();

18 }

19

20 if (Starfish.isBlockingCamera) {

21 AirCannon.spray(Camera.coordinates);

22 }

• Vague Naming (does not communicate what the function, variable, etc. is for). Rename it, even if
the name is long. Long names can sometimes replace comments.

Wouldn’t it be nice if code read like a book?

92 | Code Smells

1 # BEFORE

2 a = 100

3 b = 2

4

5 # AFTER

6 retail_price = 100

7 wholesale_multiplier = 2

8.6 Summary

Cleaning up your code can help make your software sustainable and extensible and can make your team-
mates happier, too.

• Obsolete comment? Remove or update.

• Commented-out code? Remove.

• Long comment? Simplify, shorten, or remove.

• Long function (more than ~10 lines)? Split.

• Function with many jobs? Split.

• Function with many parameters? Pass an object, make calls to get the parameter data, or split.

• Duplicate code? Consolidate.

• Long lines (more than ~100 characters)? Shorten, convert to function, or define new variables.

• Inconsistent conventions? Follow existing conventions.

• Vague naming? Rename.

References

Fowler, M., & Beck, K. (2019). Refactoring: Improving the design of existing code. Addison-Wesley.

Martin, R. C. (2009). Clean code: A handbook of Agile Software craftsmanship. Prentice Hall.

Shvets, A. (n.d.). Refactoring and Design Patterns. https://refactoring.guru/

Code Smells | 93

https://refactoring.guru/

94 | Code Smells

Conclusion

I hope you’re now better equipped for your next software project.

The Reader Becoming Better Equipped

Conclusion | 95

https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter10.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/CoverChapter10.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig10.01.png
https://open.oregonstate.education/app/uploads/sites/174/2023/09/Fig10.01.png

Glossary

acceptance criteria
Statements about functionality that, when satisfied, mean
the functionality has been satisfactorily implemented.

Agile
A software process model and philosophy for managing and
developing software projects. Agile values include individ-
uals and interactions, working software, customer collabo-
ration, and responding to change.

attitude toward risk
(Cognitive facet.) How willing a person is to take chances
while using technology (risk-tolerant vs. risk-averse).

business capability
The capacity of a business resource or a combination of
resources to generate value for customers by leveraging
their environment through a process that involves both tan-
gible and intangible resources. Source: Michell, V. (2011).
A focused approach to business capability. In Proceedings
of the First International Symposium on Business Modeling
and Software Design, 105–113. University of Read-
ing. https://doi.org/10.5220/0004459101050113

class diagrams
In Unified Modeling Language (UML), a visualization of
how classes are built in relation to other classes in object-
oriented software. Includes properties and methods of indi-
vidual classes and “has a” and “is a” relationships between
classes.

client-server architecture
High-level architecture characterized by one component
(the server) responding to requests and providing resources
while other components (clients) request those resources.

clients
One or more people or organizations who are requesting
the software be made and have decision-making authority
about the software (e.g., because they are paying for it or
otherwise providing resources).

code decay
Reduction of code quality over time. Can result in
decreased maintainability, more bugs, and irretrievable fail-
ure.

code smell
Aspect of code indicating the code is of poor quality (e.g.,
has detriments to readability and maintainability).

cognitive facet value
A position on the spectrum of a cognitive facet. Also called
a “cognitive style.”

cognitive facets
Five aspects of users that affect how they solve problems in
software: motivations, information processing style, com-
puter self-efficacy, attitude toward risk, learning style.

cognitive style
A person’s preferred way of processing (perceiving, orga-
nizing and analyzing) information using cognitive mech-
anisms and structures. They are assumed to be relatively
stable. Whilst cognitive styles can influence a person’s
behavior, depending on task demands, other processing
strategies may at times be employed – this is because they
are only preferences. Source: Armstrong, S.J., Peterson,
E.R., & Rayner, S. G. (2012). Understanding and defining
cognitive style and learning style: A Delphi study in the
context of educational psychology. Educational Studies, 4,
449-455. https://doi.org/10.1080/03055698.2011.643110

communication pipe
Technology and/or approach used for sending and receiving
messages between processes.

component
Within a codebase, a unit of the code containing related
functionality. Ideally, a component is both replaceable and
reusable.

computer self-efficacy
(Cognitive facet.) A person’s confidence in their ability to
use technology (low vs. medium vs. high).

constraint
A restriction; what must be done or not done.

contingency
A future event or circumstance that may occur but depends

96 | Glossary

https://doi.org/10.5220/0004459101050113
https://doi.org/10.1080/03055698.2011.643110

on known and unknown factors. Can be difficult to predict
far ahead of time.

coupling
The degree to which one unit of code is dependent on
another.

Daily Scrum
In Agile Scrum, a 15-minute meeting during which devel-
opers discuss what has been done since the last Daily
Scrum, what will be done before the next Daily Scrum, and
whether there are any blockers.

Definition of Done (DoD)
A set of acceptance criteria that, once satisfied, means a
user story has been satisfactorily implemented.

Eisenhower matrix
A grid for helping decide whether to do, delegate, schedule,
or eliminate a task based on its urgency and importance.

encapsulation
In object-oriented programming, (1) combining data and
the methods that act upon those data into one unit of code
or (2) preventing external direct access to data within a unit
of code.

estimation
Figuring out ahead of time how long a task is likely to take.

eventual consistency
Characteristic of software systems where different parts of
the system can have less up-to-date information (e.g., state,
data) than other parts, but the inconsistencies are tempo-
rary.

extensibility
Degree to which software supports adding functionality
later.

Extreme Programming (XP)
Agile methodology that prioritizes customer satisfaction
and communication, short development cycles, iteration,
frequent releases, code review, teamwork, pair program-
ming, required unit testing, and implementing only the
functionality that’s needed.

fist of five
A method for gauging and building group consensus that
uses a six-level voting system (zero to five fingers).

focus groups
A structured conversation facilitated by a researcher with a
small group of prospective users (typically 6-12 individu-
als). The aim of this session is to gather insights about the
participants’ attitudes, opinions, motivations, concerns, and
challenges concerning a specific product or topic.

functional requirement
Description of what functionality the software needs to
have.

Gantt chart
Horizontal bar chart showing start and end times of activi-
ties within a project schedule, along a time line.

GenderMag Method
A method that involves utilizing a specialized cognitive
walkthrough and customizable personas (Abi, Pat, and Tim)
to identify and address gender-inclusivity issues in soft-
ware, thus improving its overall gender inclusiveness.

given-when-then
A format for writing an acceptance criterion: Given <con-
text>, when <action>, then <result>. Source: Agile
Alliance. (n.d.). What is “given – when –
then”? https://www.agilealliance.org/glossary/gwt/

graphical user interface (GUI)
A user interface with interactive graphics, in contrast to a
text-based user interface.

ground rules
A set of statements about the team, agreed to by each team
member, for avoiding team conflict and dysfunction.

heuristic evaluation
A usability inspection method in which evaluators indepen-
dently examine a design to ensure it aligns with a prede-
termined set of heuristics, and then compare their findings.
Source: Nielsen, J., & Molich, R. (1990). Heuristic eval-
uation of user interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
Empowering People—CHI ’90. Association for Computing
Machinery. https://doi.org/10.1145/97243.97281

Glossary | 97

https://www.agilealliance.org/glossary/gwt/
https://doi.org/10.1145/97243.97281

high-fidelity prototype
A polished illustration that looks like a finished, publish-
able user interface design (especially a GUI). Almost
always digital.

high-level architecture
Abstract representation of overall code design; covers all
parts of the software.

ideal days
The number of days it would take to complete the work if
the work could be 100% focused on.

implementation
(Software development life cycle phase.) Using the require-
ments and design to code the software.

inclusive design
Designing with the goal of increasing usability for tradi-
tionally underserved user populations while also increasing
usability for mainstream users.

Inclusivity Heuristics
Guidelines for making software inclusive to diverse users.

Increment
In Agile Scrum, a measurable increase in functionality
toward completing the Product Goal.

information processing style
(Cognitive facet.) How a person gathers data in relation to
acting on those data (comprehensive vs. selective).

inspection method
Any approach in which an evaluator examines a user inter-
face.

integrated development environment (IDE)
Software for developing software.

interaction design
A method of designing technology that focuses on aiding
users in comprehending the operations and events occur-
ring within the technology, as well as guiding them on the
available actions they can take.

interaction diagram
Visualization of collaboration between different parts of
software.

INVEST
Characteristics of good user stories (independent, nego-
tiable, valuable, estimable, small, testable). Source: Wake,
B. (2003, August 17). Invest in good stories, and Smart
Tasks. XP123 Exploring Extreme Program-
ming. https://xp123.com/articles/invest-in-good-stories-
and-smart-tasks/

iteration
Verb: Revision. Noun (in Agile): A time-boxed software
development cycle.

iteration plan
In Agile, establishing what will be done during a develop-
ment cycle.

JavaScript Object Notation (JSON)
A lightweight data-interchange format that is easy for
humans to read and write. Source: JSON.org. (n.d.). Intro-
ducing JSON. https://www.json.org/json-en.html

learning style
(Cognitive facet.) How a person prefers to move through
software (by tinkering vs. by mindful tinkering vs. by
process).

low-fidelity prototype
A rough sketch of a user interface design (especially a
GUI). Can be hand-drawn or digital.

maintenance
Development activities that improve software but that are
unrelated to implementing new features (e.g., correcting
bugs, improving organization of code, and the like).

managerial skill mix (MSM)
Three categories of skills used by managers: (1) interper-
sonal, (2) technical, (3) administrative/conceptual. Source:
Badawy, M. K. (1995). Developing managerial skills in
engineers and scientists: Succeeding as a technical man-
ager. Van Nostrand Reinhold.

medium-fidelity prototype
A careful and detailed illustration of a user interface design

98 | Glossary

https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://www.json.org/json-en.html

(especially a GUI). Can be hand-drawn, but digital is more
common.

method
A preestablished way of achieving a specific outcome.

microservices architecture
High-level architecture characterized by multiple indepen-
dent components that each run in their own process and
communicate between one another without direct access.

minimum viable product (MVP)
A cost-effective and efficient approach that allows for
improved evaluation of potential user interest in a product
before it is fully developed. Source: Olsen, D. (2015). The
lean product playbook: How to innovate with minimum
viable products and rapid customer feedback. Wiley.

mitigation plan
What will be done if a contingency happens.

monolith architecture
High-level architecture characterized by being in one or few
pieces; cannot be easily divided into components that run
separately and are independently useful.

motivations
(Cognitive facet.) What keeps someone using technology
(task completion vs. tech interest).

nonfunctional requirement
Description of how well software is expected to perform or
what constraints or limitations it must respect.

pairwise comparison
A process in which entities are compared in order to deter-
mine which is preferred.

paper prototype
A manually created drawing utilized to convey a prospec-
tive user interface design that is intended for implemen-
tation, particularly a design focused on graphical user
interface.

participant
In a Unified Modeling Language sequence diagram, the
columns. They can represent objects, users, or other entities
involved in a program’s execution.

persona
Fictitious character created to represent specific user sub-
sets within a target audience. They are commonly used in
marketing and user interface design to aid in the concentra-
tion on particular groups of users and customers.

planning fallacy
An optimism bias in which predictions regarding the time
required to complete a future task tend to underestimate the
actual time needed.

planning poker
In Agile, a consensus-based method of assigning estimates
to a task that involves individuals on a team each making
their own estimate privately, then sharing with the team,
discussing, and re-estimating as needed.

prioritization
Deciding which units of work to complete before others.

Product Backlog
In Agile Scrum, an ordered list of all that is known to be
needed to improve a product.

Product Owner
In Agile Scrum, the person who is responsible for guiding
the Scrum Team on making the most valuable software pos-
sible.

project management
The process of planning and executing a project while bal-
ancing the time, cost, and scope constraints.

project management system
Software for planning, organizing, and otherwise carrying
out a project.

project network diagram
Graph showing the order in which a project’s activities are
to be completed.

project priority matrix
A 3 × 3 grid for documenting how to respond when there
are potential changes to a project’s time, cost, or scope.
Options include allowing only positive change (constrain),
allowing negative change (accept), or seeking positive
change (enhance).

Glossary | 99

pseudocode
Fake code. Pseudocode looks like code but doesn’t follow
the rules of a particular programming language. Used to
communicate programming concepts.

quality attribute
A characteristic of software used to describe how good it is.

RACI matrix
In project management, a chart for defining which roles are
responsible (R) and accountable (A) for a task or deliver-
able, and which roles should be consulted (C) or informed
(I) about the status of the task or deliverable.

refactoring
Improving code design without changing what the code
does.

release plan
What will be completed for a specific software release and
when the release will occur.

requirement
A rule the software must conform to, including what the
software must do, how well it must do what it does, or the
software’s limitations or constraints.

requirements elicitation
The process of gathering requirements from project stake-
holders.

requirements specification
Converting stakeholder requests into written requirements.

risk
Estimated probability of a negative contingency given
known and unknown factors.

risk mitigation
An action taken in order to avoid a contingency.

scheduling
Deciding when project activities are to be completed, how
long they will take, and what resources are needed to com-
plete them.

scope
The boundaries and deliverables of a project.

Scrum
An Agile framework designed for the development and
maintenance of complex software.

Scrum board
A way to organize and visualize tasks or work as cards on
a board. The board has columns for different categories,
and each card is placed within a column. A Scrum board
could be a physical bulletin board with sticky notes or index
cards. It is also a common feature of task management soft-
ware.

Scrum Master
In Agile Scrum, the person who is responsible for making
sure the Scrum Team is following Scrum.

sequence diagram
In Unified Modeling Language, an interaction diagram
showing how different participants (e.g., users, software
components, classes, etc.) collaborate during a single use
case.

service
A unit of software that receives and fulfills requests.

software architecture
Code design. Can be shown at different levels of abstraction
and detail.

software development life cycle (SDLC)
Phases through which a software’s development proceeds:
requirements, design, implementation, testing, mainte-
nance.

software engineering
Systematic application of scientific and technological
knowledge, methods, and experience to the design, imple-
mentation, testing, and documentation of software. Source:
International Organization for Standardization, Interna-
tional Electrotechnical Commission, Institute of Electrical
and Electronics Engineers. (2017). Systems and software
engineering — Vocabulary (ISO/IEC/IEEE Standard No.
24765:2017). https://www.iso.org/standard/71952.html

software process model
A philosophy and/or set of approaches for software devel-
opment and/or software project management.

100 | Glossary

https://www.iso.org/standard/71952.html

software requirements specification (SRS)
A document that contains software requirements.

spike
A quick and to-the-point investigation for gathering infor-
mation to help the team answer a question or choose a
development path.

Sprint
In Agile Scrum, a development period (a month or less).

Sprint Backlog
In Agile Scrum, the set of activities to be completed during
a Sprint (from Product Backlog), the associated Sprint
Goal, and a plan for completing the activities.

Sprint Goal
In Agile Scrum, the overall objective of the Sprint.

Sprint Planning
In Agile Scrum, the activity of decided what work will be
done during the Sprint.

Sprint Retrospective
In Agile Scrum, a meeting during which the Scrum Team
discusses how the last Sprint went in terms of individuals,
interactions, processes, tools, and the Sprint Definition of
Done.

Sprint Review
In Agile Scrum, a meeting during which the Scrum Team
and other stakeholders discuss what happened during the
Sprint and what to do during future Sprints.

stakeholders
Anyone who is or will be affected by the software or its
development (e.g., clients, companies, users, developers,
managers, politicians, and so on).

story points
A method for estimating an activity based on its size rela-
tive to other activities. Scale established by team.

sustainability
Degree to which software can continue to function over
time (e.g., measured in time and how well the software is
functioning).

task management
The collection, assignment, sharing, tracking, and sched-
uling of tasks. Source: Gil, Y., Groth, P., & Ratnakar, V.
(2009). Leveraging social networking sites to acquire rich
task structure. In Proceedings of the Workshop on User-
Contributed Knowledge and Artificial Intelligence: An
Evolving Synergy (WikiAI).

task management system
Software for planning and organizing project activities.

tech stack
The set of programming languages, frameworks, and other
technologies chosen or needed for implementing a piece of
software.

technical debt
Time and resources you (or someone else) will need to
spend on modifying your software in the future because of
the poor decisions you’re making in the present.

think-aloud protocol
A feedback-gathering method to assess the usability of a
design, wherein a test user verbalizes their thoughts and
impressions while interacting with the design.

triple constraint
In project management, the three limiting factors that gov-
ern project execution: time, cost, and scope. Scope includes
quality. Cost includes spending money and resources.

Tuckman’s model of team development
A five-stage model of how a team develops over time: (1)
forming, (2) storming, (3) norming, (4) performing, (5)
adjourning.

Unified Modeling Language (UML)
A set of notation and methods for describing and designing
software.

usability testing
The act of observing individuals as they attempt to interact
with your software.

use case
A formal agreement outlining the expected behavior of a
system.

Glossary | 101

user acceptance testing (UAT)
Formally testing software with end users to check not only
whether it performs as expected but also whether end users
will use it. Typically performed before the software is
released.

user interface (UI)
What a user interacts with to operate a system (e.g., a
graphical user interface, a command-line interface, a virtual
or augmented reality interface, and the like).

user story
A concise and straightforward explanation of a feature pre-
sented from the viewpoint of the individual seeking the new
functionality, typically a user or customer of the system.

validation
Confirming that software meets users’ needs (“Did we build
the right software?”).

velocity
In Agile, a measure of how much work is being completed.

verification
Confirming that software satisfied its requirements (“Did
we build the software right?”).

Waterfall
Way of going about software development and management
that is characterized by extensive planning, comprehensive
documentation, and moving linearly through stages of the
software development life cycle (SDLC).

102 | Glossary

References

@ShitUserStory. (n.d.). Shit User Story. Twitter. https://twitter.com/shituserstory

Agile Alliance. (n.d.). What is “given – when – then”? https://www.agilealliance.org/glossary/gwt/

Alcalá-Fdez, J., Alonso, J. M., Castiello, C., Mencar, C., & Soto-Hidalgo, J. M. (2019, June). Py4JFML: A Python

wrapper for using the IEEE Std 1855-2016 through JFML. Paper presented at the 2019 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA. https://ricerca.uniba.it/bitstream/11586/

256332/9/PID5822281-PrePrint%28con-DOI%29.pdf

Badawy, M. K. (1995). Developing managerial skills in engineers and scientists: Succeeding as a technical man-

ager. Van Nostrand Reinhold.

Beck, K., & Andres, C. (2004). Extreme programming explained: Embrace change (2nd ed.). Addison-Wesley.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,

Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., & Thomas,

D. (2001). Manifesto for Agile software development. https://agilemanifesto.org/

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,

Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., & Thomas,

D. (2001). Manifesto for Agile software development. https://agilemanifesto.org/

Belling, S. (2020). Agile values and practices. In Succeeding with Agile Hybrids, 47–61. Springer.

Burnett, M., Sarma, A., Hilderbrand, C., Steine-Hanson, Z., Mendez, C., Perdriau, C., Garcia, R., Hu, C., Letaw,

L., Vellanki, A., & Garcia, H. (2021, March). Cognitive style heuristics (from the GenderMag Project).

GenderMag.org. https://gendermag.org/Docs/Cognitive-Style-Heuristics-from-the-GenderMag-Pro-

ject-2021-03-07-1537.pdf

Burnett, M., Stumpf, S., Macbeth, J., Makri, S., Beckwith, L., Kwan, I., Peters, A., & Jernigan, W. (2016). Gender-

Mag: A method for evaluating software’s gender inclusiveness. Interacting with Computers, 28(6), 760–787.

https://doi.org/10.1093/iwc/iwv046

CEAP. Conservation Effects Assessment Project. (2006). System requirements specification for STEWARDS. US

Department of Agriculture, Agricultural Research Service. https://www.nrcs.usda.gov/publications/ceap-

watershed-2006-stewards-design.pdf

References | 103

https://twitter.com/shituserstory
https://ricerca.uniba.it/bitstream/11586/256332/9/PID5822281-PrePrint%28con-DOI%29.pdf
https://ricerca.uniba.it/bitstream/11586/256332/9/PID5822281-PrePrint%28con-DOI%29.pdf
https://agilemanifesto.org/
https://agilemanifesto.org/
https://gendermag.org/Docs/Cognitive-Style-Heuristics-from-the-GenderMag-Project-2021-03-07-1537.pdf
https://gendermag.org/Docs/Cognitive-Style-Heuristics-from-the-GenderMag-Project-2021-03-07-1537.pdf
https://doi.org/10.1093/iwc/iwv046
https://www.nrcs.usda.gov/publications/ceap-watershed-2006-stewards-design.pdf
https://www.nrcs.usda.gov/publications/ceap-watershed-2006-stewards-design.pdf

Cohn, M. (2004). Example user stories. Mountain Goat Software. https://www.mountaingoatsoftware.com/uploads/

documents/example-user-stories.pdf

Cohn, M. (2006). Agile estimating and planning. Prentice Hall Professional Technical Reference.

Cotton, G. (2013, August 13). Gestures to avoid in cross-cultural business: In other words, “keep your fingers to

yourself!” HuffPost. https://www.huffpost.com/entry/cross-cultural-gestures_b_3437653

Doulis, G., Frauendiener, J., Stevens, C., & Whale, B. (2019). COFFEE—An MPI-parallelized Python package for

the numerical evolution of differential equations. SoftwareX, 10, 100283. https://www.sciencedirect.com/sci-

ence/article/pii/S2352711019300950

Eaker, F. (2006, November). Software requirements specification. Vyasa. https://vyasa.sourceforge.net/vyasa_soft-

ware_requirements_specification.pdf

Eerland, W., Box, S., Fangohr, H., & Sóbester, A. (2017). Teetool—A probabilistic trajectory analysis tool. Journal

of Open Research Software, 5(1). https://openresearchsoftware.metajnl.com/articles/10.5334/jors.163

Faris, H., Aljarah, I., Mirjalili, S., Castillo, P. A., & Guervós, J. J. M. (2016). EvoloPy: An open-source nature-

inspired optimization framework in python. In Proceedings of the 8th International Joint Conference on Com-

putational Intelligence (IJCCI): Evolutional Computational Theory and Applications (ECTA), 1, 171-177.

https://research-repository.griffith.edu.au/bitstream/handle/10072/401215/Estivill-Castro165057-Pub-

lished.pdf?sequence=2

Fern, A. (2022). Tech Talk Tuesday: Lessons in real-world software: going from monolith to microservices. OSU

MediaSpace. https://media.oregonstate.edu/media/t/1_ls3xsa6r

Fletcher, A. (2002). Firestarter Youth Power Curriculum. Freechild Institute for Youth Engagement.

https://freechildinstitute.files.wordpress.com/2023/04/firestarter-participant-guidebook.pdf

Fowler, M. (2004). UML distilled: A brief guide to the standard object modeling language. Addison-Wesley Profes-

sional.

Fowler, M. (2015, July 1). Microservice trade-offs. martinfowler.com. https://martinfowler.com/articles/microser-

vice-trade-offs.html

Fowler, M. (2019, August 21). Microservices guide. martinfowler.com. https://martinfowler.com/microservices/

Fowler, M., & Beck, K. (2019). Refactoring: Improving the design of existing code. Addison-Wesley.

Gallard, F., Vanaret, C., Guénot, D., Gachelin, V., Lafage, R., Pauwels, B., Barjhoux, P.-J., & Gazaix, A. (2018).

GEMS: A Python library for automation of multidisciplinary design optimization process generation. Paper

104 | References

https://www.mountaingoatsoftware.com/uploads/documents/example-user-stories.pdf
https://www.mountaingoatsoftware.com/uploads/documents/example-user-stories.pdf
https://www.huffpost.com/entry/cross-cultural-gestures_b_3437653
https://www.sciencedirect.com/science/article/pii/S2352711019300950
https://www.sciencedirect.com/science/article/pii/S2352711019300950
https://vyasa.sourceforge.net/vyasa_software_requirements_specification.pdf
https://vyasa.sourceforge.net/vyasa_software_requirements_specification.pdf
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.163
https://research-repository.griffith.edu.au/bitstream/handle/10072/401215/Estivill-Castro165057-Published.pdf?sequence=2
https://research-repository.griffith.edu.au/bitstream/handle/10072/401215/Estivill-Castro165057-Published.pdf?sequence=2
https://media.oregonstate.edu/media/t/1_ls3xsa6r
https://freechildinstitute.files.wordpress.com/2023/04/firestarter-participant-guidebook.pdf
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/microservices/

presented at the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,

Kissimmee, FL, USA.. https://hal.science/hal-02335530/file/DTIS19188.1570026732_preprint.pdf

GenderMag Project, Di, E., Noe-Guevara, G. J., Letaw, L., Alzugaray, M. J., Madsen, S., & Doddala, S. (2021,

June). GenderMag facet and facet value definitions (cognitive styles). OERCommons.org. https://www.oercom-

mons.org/courses/handout-gendermag-facet-and-facet-value-definitions-cognitive-styles

Graser, A., & Olaya, V. (2015). Processing: A python framework for the seamless integration of geoprocessing

tools in QGIS. ISPRS International Journal of Geo-Information, 4(4), 2219-2245. https://www.mdpi.com/

2220-9964/4/4/2219/pdf

Hanington, B. M., & Martin, B. (2019). Universal Methods of Design: 125 ways to research complex problems,

develop innovative ideas, and design effective solutions. Rockport Publishers.

Hedberg, T., Helu, M., & Newrock, M. (2017, December). Software requirements specification to distribute manu-

facturing data. NIST Advanced Manufacturing Series 300-2. National Institute of Standards and Technology.

https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf

Hewlett Packard Enterprise (2017). Agile is the new normal: Adopting Agile project management. https://soft-

waretestinggenius.com/docs/4aa5-7619.pdf

Hu, C., Perdriau, C., Mendez, C., Gao, C., Fallatah, A., & Burnett, M. (2021). Toward a socioeconomic-aware HCI:

Five facets. arXiv preprint arXiv:2108.13477.

Hulshult, A. R., & Krehbiel, T. C. (2019). Using eight agile practices in an online course to improve student learning

and Team Project Quality. Journal of Higher Education Theory and Practice, 19(3). https://doi.org/10.33423/

jhetp.v19i3.2116

Institute of Electrical and Electronics Engineers. (2020, June). IEEE code of Ethics. IEEE. https://www.ieee.org/

about/corporate/governance/p7-8.html

International Organization for Standardization, International Electrotechnical Commission, Institute of Electrical

and Electronics Engineers. (2017). Systems and software engineering—Vocabulary (ISO/IEC/IEEE Standard

No. 24765:2017). https://www.iso.org/standard/71952.html

Larson, E. W., & Gray, C. F. (2018). Project management the managerial process. McGraw-Hill Education.

Lewis, J., & Fowler, M. (2014, March 25). Microservices. martinfowler.com. https://martinfowler.com/articles/

microservices.html

Mahnič, V., & Hovelja, T. (2012). On using planning poker for estimating user stories. Journal of Systems and Soft-

ware, 85(9), 2086–2095. https://doi.org/10.1016/j.jss.2012.04.005

References | 105

https://hal.science/hal-02335530/file/DTIS19188.1570026732_preprint.pdf
https://www.oercommons.org/courses/handout-gendermag-facet-and-facet-value-definitions-cognitive-styles
https://www.oercommons.org/courses/handout-gendermag-facet-and-facet-value-definitions-cognitive-styles
https://www.mdpi.com/2220-9964/4/4/2219/pdf
https://www.mdpi.com/2220-9964/4/4/2219/pdf
https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf
https://softwaretestinggenius.com/docs/4aa5-7619.pdf
https://softwaretestinggenius.com/docs/4aa5-7619.pdf
https://doi.org/10.33423/jhetp.v19i3.2116
https://doi.org/10.33423/jhetp.v19i3.2116
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.iso.org/standard/71952.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1016/j.jss.2012.04.005

Martin, R. C. (2009). Clean code: A handbook of Agile Software craftsmanship. Prentice Hall.

McIntosh, J., Du, X., Wu, Z., Truong, G., Ly, Q., How, R., Viswanathan, S., & Kanij, T. (2021). Evaluating age

bias in e-commerce. Paper presented at the 2021 IEEE/ACM 13th International Workshop on Cooperative

and Human Aspects of Software Engineering (CHASE), Madrid, Spain. https://doi.org/10.1109/

chase52884.2021.00012

Michell, V. (2011). A focused approach to business capability. In B. Shishkov (Ed.), Proceedings of the First Inter-

national Symposium on Business Modeling and Software Design, 105–113. Springer. https://doi.org/10.5220/

0004459101050113

Microsoft. (n.d.). Microsoft inclusive design. https://inclusive.microsoft.design/

Naressi, A., Couturier, C., Castang, I., De Beer, R., & Graveron-Demilly, D. (2001). Java-based graphical user

interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy

signals. Computers in Biology and Medicine, 31(4), 269-286. https://citeseerx.ist.psu.edu/docu-

ment?repid=rep1&type=pdf&doi=cdb5e5d28a9bd6a04f969d6465110f875e706e71

Nielsen, J. (1994). Heuristic evaluation. In Usability inspection methods. John Wiley & Sons.

Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems Empowering People—CHI ’90. Association for Computing Machin-

ery. https://doi.org/10.1145/97243.97281

OpenVIBE. (2018, April). Inria Innovation Lab Certivibe v 1.0 software requirement specification. http://open-

vibe.inria.fr/openvibe/wp-content/uploads/2018/04/CERT-Software-Requirement-Specification.pdf

Palma, S. D., Di Nucci, D., & Tamburri, D. (2021). RepoMiner: A language-agnostic Python framework to

mine software repositories for defect prediction. arXiv preprint arXiv:2111.11807. https://arxiv.org/pdf/

2111.11807.pdf

Royce, W. W. (1970). Managing the development of large software systems. Proceedings of IEEE WESCON, 26,

1-9.

Schwaber, K., & Sutherland, J. (2020, November). The 2020 scrum guide. https://scrumguides.org/scrum-guide.html

Shvets, A. (n.d.). Refactoring and Design Patterns. https://refactoring.guru/

Snyder, C. (2011). Paper prototyping: The fast and easy way to design and refine user interfaces. Morgan Kaufmann.

106 | References

https://doi.org/10.1109/chase52884.2021.00012
https://doi.org/10.1109/chase52884.2021.00012
https://doi.org/10.5220/0004459101050113
https://doi.org/10.5220/0004459101050113
https://inclusive.microsoft.design/
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cdb5e5d28a9bd6a04f969d6465110f875e706e71
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cdb5e5d28a9bd6a04f969d6465110f875e706e71
https://doi.org/10.1145/97243.97281
http://openvibe.inria.fr/openvibe/wp-content/uploads/2018/04/CERT-Software-Requirement-Specification.pdf
http://openvibe.inria.fr/openvibe/wp-content/uploads/2018/04/CERT-Software-Requirement-Specification.pdf
https://arxiv.org/pdf/2111.11807.pdf
https://arxiv.org/pdf/2111.11807.pdf
https://scrumguides.org/scrum-guide.html
https://refactoring.guru/

Spyridonos, P. (2010, February 6). Software requirements specification for PDF split and merge requirements

for version 2.1.0. University of Kentucky Software Verification and Validation Lab. https://selab.net-

lab.uky.edu/~ashlee/cs617/project2/PDFSam.pdf

Standish Group International, Inc. (2015). CHAOS report 2015. https://standishgroup.com/sample_research_files/

CHAOSReport2015-Final.pdf

Stuart, A. (2014). Ground rules for a high performing team. Paper presented at PMI Global Congress 2014—North

America, Phoenix, AZ. Project Management Institute.

Texas Department of Information Resources. (2008, January 14). Software requirements specification instructions.

https://dir.texas.gov/sites/default/files/Requirements%20Traceability%20Matrix%20Instructions.pdf

Thorp, K. R. (2022). pyfao56: FAO-56 evapotranspiration in Python. SoftwareX, 19, 101208.

https://www.ars.usda.gov/ARSUserFiles/40820/Thorp2022%20-%20pyfao56.pdf

Tuckman, B. W. (1965). Developmental sequence in small groups. Psychological Bulletin, 63(6), 384–399.

https://doi.org/10.1037/h0022100

Tuckman, B. W., & Jensen, M. A. (1977). Stages of small-group development revisited. Group and Organization

Studies, 2(4), 419–427. https://doi.org/10.1177/105960117700200404

US General Services Administration. (2014, January). USDA personas and use cases. https://s3.amazonaws.com/

digitalgov/_legacy-img/2014/01/Marsh-Personas.pdf

van Wyngaard, C. J., Pretorius, J. H., & Pretorius, L. (2012). Theory of the triple constraint—A conceptual review.

Paper presented at the 2012 IEEE International Conference on Industrial Engineering and Engineering Man-

agement, Hong Kong, China. https://doi.org/10.1109/ieem.2012.6838095

Wake, B. (2003, August 17). Invest in good stories, and Smart Tasks. XP123 Exploring Extreme Programming.

https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

Wells, D. (2013, October 13). Extreme programming: A gentle introduction. http://www.extremeprogramming.org/

Wiegers, K., & Beatty, J. (2013). Software requirements (3rd ed.). Developer Best Practices Series. Microsoft Press.

Wikimedia Foundation. (2023, March 23). List of system quality attributes. https://en.wikipedia.org/wiki/

List_of_system_quality_attributes

References | 107

https://selab.netlab.uky.edu/~ashlee/cs617/project2/PDFSam.pdf
https://selab.netlab.uky.edu/~ashlee/cs617/project2/PDFSam.pdf
https://standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://dir.texas.gov/sites/default/files/Requirements%20Traceability%20Matrix%20Instructions.pdf
https://www.ars.usda.gov/ARSUserFiles/40820/Thorp2022%20-%20pyfao56.pdf
https://doi.org/10.1037/h0022100
https://doi.org/10.1177/105960117700200404
https://s3.amazonaws.com/digitalgov/_legacy-img/2014/01/Marsh-Personas.pdf
https://s3.amazonaws.com/digitalgov/_legacy-img/2014/01/Marsh-Personas.pdf
https://doi.org/10.1109/ieem.2012.6838095
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://www.extremeprogramming.org/
https://en.wikipedia.org/wiki/List_of_system_quality_attributes
https://en.wikipedia.org/wiki/List_of_system_quality_attributes

	Contents
	What’s Software Engineering?
	What’s the Purpose of Software Engineering?
	What’s the Philosophy Behind This Book?
	What’s This Book Like?
	What’s New in the Second Edition?
	Giving Feedback
	Acknowledgements
	Media Attributions
	Reference
	1.1 The Software Development Life Cycle
	1.2 Agile, Scrum, and Agile Methods
	1.3 Summary
	References
	2.1 Why Learn about Project Management?
	2.2 Triple Constraint
	2.3 Managerial Skill Mix
	2.4 Interpersonal Skills: Team Communication
	2.5 Technical Skills: Project Definition
	2.6 Summary
	References
	3.1 Types of Requirements
	3.2 Why Requirements Matter
	3.3 What Makes a Good Requirement
	3.4 Requirements Elicitation
	3.5 Nonfunctional Requirements
	3.6 Functional Requirements
	3.7 Requirements Specification
	3.8 Summary
	References
	4.1 How Diagrams Help
	4.2 What Diagrams Must Do Well
	4.3 What Is UML?
	4.4 Why Use UML?
	4.5 Why NOT Use UML?
	4.6 Class Diagrams
	4.7 Sequence Diagrams
	4.8 Summary
	References
	5.1 Monolith Architecture
	5.2 Microservice Architecture
	5.3 Monolith Compared to Microservices
	5.4 Summary
	5.5 Case Study: Microservice Architecture
	References
	6.1 Showing Interaction
	6.2 Showing Your Concept to Others
	6.3 Summary
	Reference
	7.1 Background
	7.2 Inclusivity Heuristics Personas
	7.3 The Inclusivity Heuristics
	7.4 Summary
	References
	8.1 Why Care about Code Smells?
	8.2 Your Code Stinks—Now What?
	8.3 Comments
	8.4 Functions
	8.5 Code
	8.6 Summary
	References

