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Preface

About This Book

[m0146]

Goals for this book. This book is intended to serve

as a primary textbook for a one-semester introductory

course in undergraduate engineering

electromagnetics, including the following topics:

electric and magnetic fields; electromagnetic

properties of materials; electromagnetic waves; and

devices that operate according to associated

electromagnetic principles including resistors,

capacitors, inductors, transformers, generators, and

transmission lines.

This book employs the “transmission lines first”

approach, in which transmission lines are introduced

using a lumped-element equivalent circuit model for a

differential length of transmission line, leading to

one-dimensional wave equations for voltage and

current.1 This is sufficient to address transmission

line concepts, including characteristic impedance,

input impedance of terminated transmission lines, and

impedance matching techniques. Attention then turns

to electrostatics, magnetostatics, time-varying fields,

and waves, in that order.

What’s new. This version of the book is the second

public release of this book. The first release, known

as “Volume 1 (Beta),” was released in January 2018.

Improvements from the beta version include the

following:

• Correction of errors identified in the beta version

errata and many minor improvements.

• Addition of an index.

1Are you an instructor who is not a fan of the “transmission

lines first” approach? Then see “What are those little numbers

in square brackets?” later in this section.

• Accessibility features: Figures now include “alt

text” suitable for screen reading software.

• Addition of a separate manual of examples and

solutions (see the web site).

• Addition of source files for the book (see the

web site).

Target audience. This book is intended for electrical

engineering students in the third year of a bachelor of

science degree program. It is assumed that readers are

familiar with the fundamentals of electric circuits and

linear systems, which are normally taught in the

second year of the degree program. It is also assumed

that readers have received training in basic

engineering mathematics, including complex

numbers, trigonometry, vectors, partial differential

equations, and multivariate calculus. Review of the

relevant principles is provided at various points in the

text. In a few cases (e.g., phasors, vectors) this review

consists of a separate stand-alone section.

Notation, examples, and highlights. Section 1.7

summarizes the mathematical notation used in this

book. Examples are set apart from the main text as

follows:

Example 0.1. This is an example.

“Highlight boxes” are used to identify key ideas as

follows:

This is a key idea.

What are those little numbers in square brackets?

This book is a product of the

Open Electromagnetics Project. This project provides

a large number of sections (“modules”) which are

Electromagnetics Vol 1. c© 2018 S.W. Ellingson CC BY SA 4.0. https://doi.org/10.21061/electromagnetics-vol-1
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assembled (“remixed”) to create new and different

versions of the book. The text “[m0146]” that you see at

the beginning of this section uniquely identifies the

module within the larger set of modules provided by

the project. This identification is provided because

different remixes of this book may exist, each

consisting of a different subset and arrangement of

these modules. Prospective authors can use this

identification as an aid in creating their own remixes.

Why do some sections of this book seem to repeat

material presented in previous sections? In some

remixes of this book, authors might choose to

eliminate or reorder modules. For this reason, the

modules are written to “stand alone” as much as

possible. As a result, there may be some redundancy

between sections that would not be present in a

traditional (non-remixable) textbook. While this may

seem awkward to some at first, there are clear

benefits: In particular, it never hurts to review relevant

past material before tackling a new concept. And,

since the electronic version of this book is being

offered at no cost, there is not much gained by

eliminating this useful redundancy.

Why cite Wikipedia pages as additional reading?

Many modules cite Wikipedia entries as sources of

additional information. Wikipedia represents both the

best and worst that the Internet has to offer. Most

authors of traditional textbooks would agree that

citing Wikipedia pages as primary sources is a bad

idea, since quality is variable and content is subject to

change over time. On the other hand, many Wikipedia

pages are excellent, and serve as useful sources of

relevant information that is not strictly within the

scope of the curriculum. Furthermore, students

benefit from seeing the same material presented

differently, in a broader context, and with additional

references cited by Wikipedia pages. We trust

instructors and students to realize the potential pitfalls

of this type of resource and to be alert for problems.

Acknowledgments. Here’s a list of talented and

helpful people who contributed to this book:

The staff of VT Publishing, University Libraries,

Virginia Tech:

Editor: Anita Walz

Advisors: Peter Potter, Corinne Guimont

Cover: Robert Browder, Anita Walz

Other VT contributors:

Assessment: Tiffany Shoop, Anita Walz

Accessibility: Christa Miller

Virginia Tech students:

Alt text writer: Stephanie Edwards

Figure designer: Michaela Goldammer

Figure designer: Kruthika Kikkeri

Figure designer: Youmin Qin

Copyediting:

Melissa Ashman, Kwantlen Polytechnic University

External reviewers:

Samir El-Ghazaly, University of Arkansas

Stephen Gedney, University of Colorado Denver

Randy Haupt, Colorado School of Mines

Karl Warnick, Brigham Young University

Also, thanks are due to the students of the Spring

2018 and Summer 2018 sections of ECE3105 at

Virginia Tech who used the beta version of this book

and provided useful feedback. Thanks also to Justin

Yonker, instructor of the Summer 2018 section.



xiv PREFACE

About the Open Electromagnetics

Project

[m0148]

The Open Electromagnetics Project was established

at Virginia Tech in 2017 with the goal of creating

no-cost openly-licensed textbooks for courses in

undergraduate engineering electromagnetics. While a

number of very fine traditional textbooks are available

on this topic, we feel that it has become unreasonable

to insist that students pay hundreds of dollars per

book when effective alternatives can be provided

using modern media at little or no cost to the student.

This project is equally motivated by the desire for the

freedom to adopt, modify, and improve educational

resources. This work is distributed under a Creative

Commons BY SA license which allows – and we

hope encourages – others to adopt, modify, improve,

and expand the scope of our work.

About the Author

[m0153]

Steven W. Ellingson (ellingson@vt.edu) is an

Associate Professor at Virginia Tech in Blacksburg,

Virginia in the United States. He received PhD and

MS degrees in Electrical Engineering from the Ohio

State University and a BS in Electrical & Computer

Engineering from Clarkson University. He was

employed by the US Army, Booz-Allen & Hamilton,

Raytheon, and the Ohio State University

ElectroScience Laboratory before joining the faculty

of Virginia Tech, where he teaches courses in

electromagnetics, radio frequency electronics,

wireless communications, and signal processing. His

research includes topics in wireless communications,

radio science, and radio frequency instrumentation.

Professor Ellingson serves as a consultant to industry

and government and is the author of Radio Systems

Engineering (Cambridge University Press, 2016).

mailto:ellingson@vt.edu


Chapter 1

Preliminary Concepts

1.1 What is Electromagnetics?

[m0037]

The topic of this book is applied engineering

electromagnetics. This topic is often described as “the

theory of electromagnetic fields and waves,” which is

both true and misleading. The truth is that electric

fields, magnetic fields, their sources, waves, and the

behavior these waves are all topics covered by this

book. The misleading part is that our principal aim

shall be to close the gap between basic electrical

circuit theory and the more general theory that is

required to address certain topics that are of broad and

common interest in the field of electrical engineering.

(For a preview of topics where these techniques are

required, see the list at the end of this section.)

In basic electrical circuit theory, the behavior of

devices and systems is abstracted in such a way that

the underlying electromagnetic principles do not need

to be considered. Every student of electrical

engineering encounters this, and is grateful since this

greatly simplifies analysis and design. For example, a

resistor is commonly defined as a device which

exhibits a particular voltage V = IR in response to a

current I , and the resistor is therefore completely

described by the value R. This is an example of a

“lumped element” abstraction of an electrical device.

Much can be accomplished knowing nothing else

about resistors; no particular knowledge of the

physical concepts of electrical potential, conduction

current, or resistance is required. However, this

simplification makes it impossible to answer some

frequently-encountered questions. Here are just a few:

• What determines R? How does one go about

designing a resistor to have a particular

resistance?

• Practical resistors are rated for power-handling

capability; e.g., discrete resistors are frequently

identified as “1/8-W,” “1/4-W,” and so on. How

does one determine this, and how can this be

adjusted in the design?

• Practical resistors exhibit significant reactance as

well as resistance. Why? How is this

determined? What can be done to mitigate this?

• Most things which are not resistors also exhibit

significant resistance and reactance – for

example, electrical pins and interconnects. Why?

How is this determined? What can be done to

mitigate this?

The answers to the these questions must involve

properties of materials and the geometry in which

those materials are arranged. These are precisely the

things that disappear in lumped element device

models, so it is not surprising that such models leave

us in the dark on these issues. It should also be

apparent that what is true for the resistor is also going

to be true for other devices of practical interest,

including capacitors (and devices unintentionally

exhibiting capacitance), inductors (and devices

unintentionally exhibiting inductance), transformers

(and devices unintentionally exhibiting mutual

impedance), and so on. From this perspective,

electromagnetics may be viewed as a generalization

of electrical circuit theory that addresses these

considerations. Conversely basic electric circuit

theory may be viewed a special case of

Electromagnetics Vol 1. c© 2018 S.W. Ellingson CC BY SA 4.0. https://doi.org/10.21061/electromagnetics-vol-1
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electromagnetic theory that applies when these

considerations are not important. Many instances of

this “electromagnetics as generalization” vs.

“lumped-element theory as special case” dichotomy

appear in the study of electromagnetics.

There is more to the topic, however. There are many

devices and applications in which electromagnetic

fields and waves are primary engineering

considerations that must be dealt with directly.

Examples include electrical generators and motors;

antennas; printed circuit board stackup and layout;

persistent storage of data (e.g., hard drives); fiber

optics; and systems for radio, radar, remote sensing,

and medical imaging. Considerations such as signal

integrity and electromagnetic compatibility (EMC)

similarly require explicit consideration of

electromagnetic principles.

Although electromagnetic considerations pertain to

all frequencies, these considerations become

increasingly difficult to avoid with increasing

frequency. This is because the wavelength of an

electromagnetic field decreases with increasing

frequency.1 When wavelength is large compared to

the size of the region of interest (e.g., a circuit), then

analysis and design is not much different from

zero-frequency (“DC”) analysis and design.

For example, the free space wavelength at 3 MHz is

about 100 m, so a planar circuit having dimensions

10 cm × 10 cm is just 0.1% of a wavelength across at

this frequency. Although an electromagnetic wave

may be present, it has about the same value over the

region of space occupied by the circuit. In contrast,

the free space wavelength at 3 GHz is about 10 cm, so

the same circuit is one full wavelength across at this

frequency. In this case, different parts of this circuit

observe the same signal with very different magnitude

and phase.

Some of the behaviors associated with non-negligible

dimensions are undesirable, especially if not taken

into account in the design process. However, these

behaviors can also be exploited to do some amazing

and useful things – for example, to launch an

electromagnetic wave (i.e., an antenna) or to create

1Most readers have encountered the concepts of frequency and

wavelength previously, but can refer to Section 1.3, if needed, for a

quick primer.

filters and impedance matching devices consisting

only of metallic shapes, free of discrete capacitors or

inductors.

Electromagnetic considerations become not only

unavoidable but central to analysis and design above a

few hundred MHz, and especially in the

millimeter-wave, infrared (IR), optical, and ultraviolet

(UV) bands.2 The discipline of electrical engineering

encompasses applications in these frequency ranges

even though – ironically – such applications may not

operate according to principles that can be considered

“electrical”! Nevertheless, electromagnetic theory

applies.

Another common way to answer the question “What

is electromagnetics?” is to identify the topics that are

commonly addressed within this discipline. Here’s a

list of topics – some of which have already been

mentioned – in which explicit consideration of

electromagnetic principles is either important or

essential:3

• Antennas

• Coaxial cable

• Design and characterization of common discrete

passive components including resistors,

capacitors, inductors, and diodes

• Distributed (e.g., microstrip) filters

• Electromagnetic compatibility (EMC)

• Fiber optics

• Generators

• Magnetic resonance imaging (MRI)

• Magnetic storage (of data)

• Microstrip transmission lines

• Modeling of non-ideal behaviors of discrete

components

• Motors

2See Section 1.2 for a quick primer on the electromagnetic spec-

trum and this terminology.
3Presented in alphabetical order so as to avoid the appearance of

any bias on the part of the author!
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• Non-contact sensors

• Photonics

• Printed circuit board stackup and layout

• Radar

• Radio wave propagation

• Radio frequency electronics

• Signal integrity

• Transformers

• Waveguides

In summary:

Applied engineering electromagnetics is the

study of those aspects of electrical engineering in

situations in which the electromagnetic proper-

ties of materials and the geometry in which those

materials are arranged is important. This re-

quires an understanding of electromagnetic fields

and waves, which are of primary interest in some

applications.

Finally, here are two broadly-defined learning

objectives that should now be apparent: (1) Learn the

techniques of engineering analysis and design that

apply when electromagnetic principles are important,

and (2) Better understand the physics underlying the

operation of electrical devices and systems, so that

when issues associated with these physical principles

emerge one is prepared to recognize and grapple with

them.

1.2 Electromagnetic Spectrum

[m0075]

Electromagnetic fields exist at frequencies from DC

(0 Hz) to at least 1020 Hz – that’s at least 20 orders of

magnitude!

At DC, electromagnetics consists of two distinct

disciplines: electrostatics, concerned with electric

fields; and magnetostatics, concerned with magnetic

fields.

At higher frequencies, electric and magnetic fields

interact to form propagating waves. Waves having

frequencies within certain ranges are given names

based on how they manifest as physical phenomena.

These names are (in order of increasing frequency):

radio, infrared (IR), optical (also known as “light”),

ultraviolet (UV), X-rays, and gamma rays (γ-rays).

See Table 1.1 and Figure 1.1 for frequency ranges and

associated wavelengths.

The term electromagnetic spectrum refers to the

various forms of electromagnetic phenomena that

exist over the continuum of frequencies.

The speed (properly known as “phase velocity”) at

which electromagnetic fields propagate in free space

is given the symbol c, and has the value
∼= 3.00× 108 m/s. This value is often referred to as

the “speed of light.” While it is certainly the speed of

light in free space, it is also speed of any

electromagnetic wave in free space. Given frequency

f , wavelength is given by the expression

λ =
c

f
in free space

Table 1.1 shows the free space wavelengths

associated with each of the regions of the

electromagnetic spectrum.

This book presents a version of electromagnetic

theory that is based on classical physics. This

approach works well for most practical problems.

However, at very high frequencies, wavelengths

become small enough that quantum mechanical

effects may be important. This is usually the case in

the X-ray band and above. In some applications, these
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Regime Frequency Range Wavelength Range

γ-Ray > 3× 1019 Hz < 0.01 nm

X-Ray 3× 1016 Hz – 3× 1019 Hz 10–0.01 nm

Ultraviolet (UV) 2.5× 1015 – 3× 1016 Hz 120–10 nm

Optical 4.3× 1014 – 2.5× 1015 Hz 700–120 nm

Infrared (IR) 300 GHz – 4.3× 1014 Hz 1 mm – 700 nm

Radio 3 kHz – 300 GHz 100 km – 1 mm

Table 1.1: The electromagnetic spectrum. Note that the indicated ranges are arbitrary but consistent with

common usage.

effects become important at frequencies as low as the

optical, IR, or radio bands. (A prime example is the

photoelectric effect; see “Additional References”

below.) Thus, caution is required when applying the

classical version of electromagnetic theory presented

here, especially at these higher frequencies.

Theory presented in this book is applicable to

DC, radio, IR, and optical waves, and to a lesser

extent to UV waves, X-rays, and γ-rays. Cer-

tain phenomena in these frequency ranges – in

particular quantum mechanical effects – are not

addressed in this book.

The radio portion of the electromagnetic spectrum

alone spans 12 orders of magnitude in frequency (and

wavelength), and so, not surprisingly, exhibits a broad

range of phenomena. This is shown in Figure 1.1. For

this reason, the radio spectrum is further subdivided

into bands as shown in Table 1.2. Also shown in

Table 1.2 are commonly-used band identification

acronyms and some typical applications.

Similarly, the optical band is partitioned into the

familiar “rainbow” of red through violet, as shown in

Figure 1.1 and Table 1.3. Other portions of the

spectrum are sometimes similarly subdivided in

certain applications.

Additional Reading:

• “Electromagnetic spectrum” on Wikipedia.

• “Photoelectric effect” on Wikipedia.
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Figure 1.1: Electromagnetic Spectrum.

https://en.wikipedia.org/wiki/Electromagnetic_spectrum
https://en.wikipedia.org/wiki/Photoelectric_effect
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Band Frequencies Wavelengths Typical Applications

EHF 30-300 GHz 10–1 mm 60 GHz WLAN, Point-to-point data links

SHF 3–30 GHz 10–1 cm Terrestrial & Satellite data links, Radar

UHF 300–3000 MHz 1–0.1 m TV broadcasting, Cellular, WLAN

VHF 30–300 MHz 10–1 m FM & TV broadcasting, LMR

HF 3–30 MHz 100–10 m Global terrestrial comm., CB Radio

MF 300–3000 kHz 1000–100 m AM broadcasting

LF 30–300 kHz 10–1 km Navigation, RFID

VLF 3–30 kHz 100–10 km Navigation

Table 1.2: The radio portion of the electromagnetic spectrum, according to a common scheme for naming ranges

of radio frequencies. WLAN: Wireless local area network, LMR: Land mobile radio, RFID: Radio frequency

identification.

Band Frequencies Wavelengths

Violet 668–789 THz 450–380 nm

Blue 606–668 THz 495–450 nm

Green 526–606 THz 570–495 nm

Yellow 508–526 THz 590–570 nm

Orange 484–508 THz 620–590 nm

Red 400–484 THz 750–620 nm

Table 1.3: The optical portion of the electromagnetic

spectrum.

1.3 Fundamentals of Waves

[m0074]

In this section, we formally introduce the concept of a

wave and explain some basic characteristics.

To begin, let us consider not electromagnetic waves,

but rather sound waves. To be clear, sound waves and

electromagnetic waves are completely distinct

phenomena. Sound waves are variations in pressure,

whereas electromagnetic waves are variations in

electric and magnetic fields. However, the

mathematics that govern sound waves and

electromagnetic waves are very similar, so the

analogy provides useful insight. Furthermore, sound

waves are intuitive for most people because they are

readily observed. So, here we go:

Imagine standing in an open field and that it is

completely quiet. In this case, the air pressure

everywhere is about 101 kPa (101,000 N/m2) at sea

level, and we refer to this as the quiescent air

pressure. Sound can be described as the differential

air pressure p(x, y, z, t), which we define as the

absolute air pressure at the spatial coordinates

(x, y, z) minus the quiescent air pressure. So, when

there is no sound, p(x, y, z, t) = 0. The function p as

an example of a scalar field.4

Let’s also say you are standing at x = y = z = 0 and

you have brought along a friend who is standing at

x = d; i.e., a distance d from you along the x axis.

Also, for simplicity, let us consider only what is

happening along the x axis; i.e., p(x, t).

At t = 0, you clap your hands once. This forces the

air between your hands to press outward, creating a

region of increased pressure (i.e., p > 0) that travels

outward. As the region of increased pressure moves

outward, it leaves behind a region of low pressure

where p < 0. Air molecules immediately move

toward this region of lower pressure, and so the air

pressure quickly returns to the quiescent value, p = 0.

The traveling disturbance in p(x, t) is the sound of the

clap. The disturbance continues to travel outward

until it reaches your friend, who then hears the clap.

At each point in time, you can make a plot of p(x, t)
versus x for the current value of t. This is shown in

Figure 1.2. At times t < 0, we have simply

p(x, t) = 0. A short time after t = 0, the peak

pressure is located at slightly to the right of x = 0.

The pressure is not a simple impulse because

interactions between air molecules constrain the

4Although it’s not important in this section, you can read about

the concept of a “field” in Section 2.1.
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p(x,t)

x

p(x,t)

x

c© Y. Qin CC BY 4.0

Figure 1.2: The differential pressure p(x, t) (top) a

short time after the clap and (bottom) a slightly longer

time after the clap.

pressure to be continuous over space. So instead, we

see a rounded pulse representing the rapid build-up

and similarly rapid decline in air pressure. A short

time later p(x, t) looks very similar, except the pulse

is now further away.

Now: What precisely is p(x, t)? Completely skipping

over the derivation, the answer is that p(x, t) is the

solution to the acoustic wave equation (see

“Additional References” at the end of this section):

∂2p

∂x2
− 1

c2s

∂2p

∂t2
= 0 (1.1)

where cs is the speed of sound, which is about

340 m/s at sea level. Just to emphasize the quality of

the analogy between sound waves and

electromagnetic waves, know that the acoustic wave

equation is mathematically identical to equations that

that govern electromagnetic waves.

Although “transient” phenomena – analogous to a

clap – are of interest in electromagnetics, an even

more common case of interest is the wave resulting

from a sinusoidally-varying source. We can

demonstrate this kind of wave in the context of sound

as well. Here we go:

In the previous scenario, you pick up a trumpet and

blow a perfect A note. The A note is 440 Hz, meaning

that the air pressure emerging from your trumpet is

varying sinusoidally at a frequency of 440 Hz. Let’s

say you can continue to blow this note long enough

for the entire field to be filled with the sound of your

trumpet. Now what does the pressure-versus-distance

curve look like? Two simple observations will settle

that question:

• p(x, t) at any constant position x is a sinusoid as

a function of x. This is because the acoustic

wave equation is linear and time invariant, so a

sinusoidal excitation (i.e., your trumpet) results

in a sinusoidal response at the same frequency

(i.e., the sound heard by your friend).

• p(x, t) at any constant time t is also a sinusoid as

a function of x. This is because the sound is

propagating away from the trumpet and toward

your friend, and anyone in between will also

hear the A note, but with a phase shift

determined by the difference in distances.

This is enough information to know that the solution

must have the form:

p(x, t) = Am cos (ωt− βx+ ψ) (1.2)

where ω = 2πf , f = 440 Hz, and Am, β, and ψ
remain to be determined.

You can readily verify that Equation 1.2 satisfies the

acoustic wave equation when

β =
ω

cs
(1.3)

In this problem, we find β ∼= 8.13 rad/m. This means

that at any given time, the difference in phase

measured between any two points separated by a

distance of 1 m is 8.13 rad. The parameter β goes by

at least three names: phase propagation constant,

wavenumber, and spatial frequency. The term “spatial

frequency” is particularly apt, since β plays precisely

the same role for distance (x) as ω plays for time (t) –

This is apparent from Equation 1.2. However,

“wavenumber” is probably the more commonly-used

term.

The wavenumber β (rad/m) is the rate at which

the phase of a sinusoidal wave progresses with

distance.

https://creativecommons.org/licenses/by/4.0/
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Note that Am and ψ are not determined by the wave

equation, but instead are properties of the source.

Specifically, Am is determined by how hard we blow,

and ψ is determined by the time at which we began to

blow and the location of the trumpet. For simplicity,

let us assume that we begin to blow at time t≪ 0;

i.e., in the distant past so that the sound pressure field

has achieved steady state by t = 0. Also, let us set

ψ = 0 and set Am = 1 in whatever units we choose to

express p(x, t). We then have:

p(x, t) = cos (ωt− βx) (1.4)

Now we have everything we need to make plots of

p(x) at various times.

Figure 1.3(a) shows p(x, t = 0). As expected,

p(x, t = 0) is periodic in x. The associated period is

referred to as the wavelength λ. Since λ is the

distance required for the phase of the wave to increase

by 2π rad, and because phase is increasing at a rate of

β rad/m, we find:

λ =
2π

β
(1.5)

In the present example, we find λ ∼= 77.3 cm.

Wavelength λ = 2π/β is the distance required

for the phase of a sinusoidal wave to increase

by one complete cycle (i.e., 2π rad) at any given

time.

Now let us consider the situation at t = +1/4f ,

which is t = 568 µs and ωt = π/2. We see in

Figure 1.3(b) that the waveform has shifted a distance

λ/4 to the right. It is in this sense that we say the

wave is propagating in the +x direction.

Furthermore, we can now compute a phase velocity

vp: We see that a point of constant phase has shifted a

distance λ/4 in time 1/4f , so

vp = λf (1.6)

In the present example, we find vp ∼= 340 m/s; i.e., we

have found that the phase velocity is equal to the

speed of sound cs. It is in this sense that we say that

the phase velocity is the speed at which the wave

propagates.5

5It is worth noting here is that “velocity” is technically a vector;

i.e., speed in a given direction. Nevertheless, this quantity is actually

just a speed, and this particular abuse of terminology is generally

accepted.

p(x,t)

x

λ

p(x,t)

x

p(x,t)

x

c© Y. Qin CC BY 4.0

Figure 1.3: The differential pressure p(x, t) for (a)

t = 0, (b) t = 1/4f for “−βx,” as indicated in Equa-

tion 1.4 (wave traveling to right); and (c) t = 1/4f for

“+βx” (wave traveling to left).

https://creativecommons.org/licenses/by/4.0/
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Phase velocity vp = λf is the speed at which a

point of constant phase in a sinusoidal waveform

travels.

Recall that in Equation 1.2 we declared that βx is

subtracted from the argument of the sinusoidal

function. To understand why, let’s change the sign of

βx and see if it still satisfies the wave equation – one

finds that it does. Next, we repeat the previous

experiment and see what happens. The result is shown

in Figure 1.3(c). Note that points of constant phase

have traveled an equal distance, but now in the −x
direction. In other words, this alternative choice of

sign for βx within the argument of the cosine function

represents a wave that is propagating in the opposite

direction. This leads us to the following realization:

If the phase of the wave is decreasing with βx,

then the wave is propagating in the +x direction.

If the phase of the wave is increasing with βx,

then the wave is propagating in the −x direction.

Since the prospect of sound traveling toward the

trumpet is clearly nonsense in the present situation,

we may neglect the latter possibility. However, what

happens if there is a wall located in the distance,

behind your friend? Then, we expect an echo from

the wall, which would be a second wave propagating

in the reverse direction and for which the argument of

the cosine function would contain the term “+βx.”

Finally, let us return to electromagnetics.

Electromagnetic waves satisfy precisely the same

wave equation (i.e., Equation 1.1) as do sound waves,

except that the phase velocity is much greater.

Interestingly, though, the frequencies of

electromagnetic waves are also much greater than

those of sound waves, so we can end up with

wavelengths having similar orders of magnitude. In

particular, an electromagnetic wave with λ = 77.3 cm

(the wavelength of the “A” note in the preceding

example) lies in the radio portion of the

electromagnetic spectrum.

An important difference between sound and

electromagnetic waves is that electromagnetic waves

are vectors; that is, they have direction as well as

magnitude. Furthermore, we often need to consider

multiple electromagnetic vector waves (in particular,

both the electric field and the magnetic field) in order

to completely understand the situation. Nevertheless

the concepts of wavenumber, wavelength, phase

velocity, and direction of propagation apply in

precisely the same manner to electromagnetic waves

as they do to sound waves.

Additional Reading:

• “Wave Equation” on Wikipedia.

• “Acoustic Wave Equation” on Wikipedia.

https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/Acoustic_wave_equation
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1.4 Guided and Unguided Waves

[m0040]

Broadly speaking, waves may be either guided or

unguided.

Unguided waves include those that are radiated by

antennas, as well as those that are unintentionally

radiated. Once initiated, these waves propagate in an

uncontrolled manner until they are redirected by

scattering or dissipated by losses associated with

materials.

Examples of guided waves are those that exist within

structures such as transmission lines, waveguides, and

optical fibers. We refer to these as guided because

they are constrained to follow the path defined by the

structure.

Antennas and unintentional radiators emit un-

guided waves. Transmission lines, waveguides,

and optical fibers carry guided waves.

1.5 Phasors

[m0033]

In many areas of engineering, signals are

well-modeled as sinusoids. Also, devices that process

these signals are often well-modeled as linear

time-invariant (LTI) systems. The response of an LTI

system to any linear combination of sinusoids is

another linear combination of sinusoids having the

same frequencies.6 In other words, (1) sinusoidal

signals processed by LTI systems remain sinusoids

and are not somehow transformed into square waves

or some other waveform; and (2) we may calculate

the response of the system for one sinusoid at a time,

and then add the results to find the response of the

system when multiple sinusoids are applied

simultaneously. This property of LTI systems is

known as superposition.

The analysis of systems that process sinusoidal

waveforms is greatly simplified when the sinusoids

are represented as phasors. Here is the key idea:

A phasor is a complex-valued number that repre-

sents a real-valued sinusoidal waveform. Specif-

ically, a phasor has the magnitude and phase of

the sinusoid it represents.

Figures 1.4 and 1.5 show some examples of phasors

and the associated sinusoids.

It is important to note that a phasor by itself is not the

signal. A phasor is merely a simplified mathematical

representation in which the actual, real-valued

physical signal is represented as a complex-valued

constant.

Here is a completely general form for a physical

(hence, real-valued) quantity varying sinusoidally

with angular frequency ω = 2πf :

A(t;ω) = Am(ω) cos (ωt+ ψ(ω)) (1.7)

where Am(ω) is magnitude at the specified frequency,

ψ(ω) is phase at the specified frequency, and t is time.

Also, we require ∂Am/∂t = 0; that is, that the time

6 A “linear combination” of functions fi(t) where i = 1, 2, 3, ...
is
∑

i aifi(t) where the ai’s are constants.
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Figure 1.4: Examples of phasors, displayed here as

points in the real-imaginary plane.

variation of A(t) is completely represented by the

cosine function alone. Now we can equivalently

express A(t;ω) as a phasor C(ω):

C(ω) = Am(ω)ejψ(ω) (1.8)

To convert this phasor back to the physical signal it

represents, we (1) restore the time dependence by

multiplying by ejωt, and then (2) take the real part of

the result. In mathematical notation:

A(t;ω) = Re
{
C(ω)ejωt

}
(1.9)

To see why this works, simply substitute the right

hand side of Equation 1.8 into Equation 1.9. Then:

A(t) = Re
{
Am(ω)ejψ(ω)ejωt

}

= Re
{
Am(ω)ej(ωt+ψ(ω))

}

= Re {Am(ω) [cos (ωt+ ψ(ω))

+j sin (ωt+ ψ(ω))]}
= Am(ω) cos (ωt+ ψ(ω))

as expected.

It is common to write Equation 1.8 as follows,

dropping the explicit indication of frequency

t

t

t

Am

Ame
jψ

Am-jBm

t

-jAm

note slightly larger amplitude

note now a sine function

Figure 1.5: Sinusoids corresponding to the phasors

shown in Figure 1.4.
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dependence:

C = Ame
jψ (1.10)

This does not normally cause any confusion since the

definition of a phasor requires that values of C and ψ
are those that apply at whatever frequency is

represented by the suppressed sinusoidal dependence

ejωt.

Table 1.4 shows mathematical representations of the

same phasors demonstrated in Figure 1.4 (and their

associated sinusoidal waveforms in Figure 1.5). It is a

good exercise is to confirm each row in the table,

transforming from left to right and vice-versa.

It is not necessary to use a phasor to represent a

sinusoidal signal. We choose to do so because phasor

representation leads to dramatic simplifications. For

example:

• Calculation of the peak value from data

representing A(t;ω) requires a time-domain

search over one period of the sinusoid. However,

if you know C, the peak value of A(t) is simply

|C|, and no search is required.

• Calculation of ψ from data representing A(t;ω)
requires correlation (essentially, integration)

over one period of the sinusoid. However, if you

know C, then ψ is simply the phase of C, and no

integration is required.

Furthermore, mathematical operations applied to

A(t;ω) can be equivalently performed as operations

on C, and the latter are typically much easier than the

former. To demonstrate this, we first make two

important claims and show that they are true.

Claim 1: Let C1 and C2 be two complex-valued

constants (independent of t). Also,

Re
{
C1e

jωt
}
= Re

{
C2e

jωt
}

for all t. Then,

C1 = C2.

Proof: Evaluating at t = 0 we find

Re {C1} = Re {C2}. Since C1 and C2 are constant

with respect to time, this must be true for all t. At

t = π/(2ω) we find

Re
{
C1e

jωt
}
= Re {C1 · j} = −Im {C1}

and similarly

Re
{
C2e

jωt
}
= Re {C2 · j} = −Im {C2}

therefore Im {C1} = Im {C2}. Once again: Since C1

and C2 are constant with respect to time, this must be

true for all t. Since the real and imaginary parts of C1

and C2 are equal, C1 = C2.

What does this mean? We have just shown that if two

phasors are equal, then the sinusoidal waveforms that

they represent are also equal.

Claim 2: For any real-valued linear operator T and

complex-valued quantity C,

T (Re {C}) = Re {T (C)}.

Proof: Let C = cr + jci where cr and ci are

real-valued quantities, and evaluate the right side of

the equation:

Re {T (C)} = Re {T (cr + jci)}
= Re {T (cr) + jT (ci)}
= T (cr)

= T (Re {C})

What does this mean? The operators that we have in

mind for T include addition, multiplication by a

constant, differentiation, integration, and so on.

Here’s an example with differentiation:

Re

{
∂

∂ω
C

}
= Re

{
∂

∂ω
(cr + jci)

}
=

∂

∂ω
cr

∂

∂ω
Re {C} =

∂

∂ω
Re {(cr + jci)} =

∂

∂ω
cr

In other words, differentiation of a sinusoidal signal

can be accomplished by differentiating the associated

phasor, so there is no need to transform a phasor back

into its associated real-valued signal in order to

perform this operation.
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A(t) C
Am cos (ωt) Am
Am cos (ωt+ ψ) Ame

jψ

Am sin (ωt) = Am cos
(
ωt− π

2

)
−jAm

Am cos (ωt) +Bm sin (ωt) = Am cos (ωt) +Bm cos
(
ωt− π

2

)
Am − jBm

Table 1.4: Some examples of physical (real-valued) sinusoidal signals and the corresponding phasors. Am and

Bm are real-valued and constant with respect to t.

Summarizing:

Claims 1 and 2 together entitle us to perform op-

erations on phasors as surrogates for the physi-

cal, real-valued, sinusoidal waveforms they rep-

resent. Once we are done, we can transform the

resulting phasor back into the physical waveform

it represents using Equation 1.9, if desired.

However, a final transformation back to the time

domain is usually not desired, since the phasor tells us

everything we can know about the corresponding

sinusoid.

A skeptical student might question the value of phasor

analysis on the basis that signals of practical interest

are sometimes not sinusoidally-varying, and therefore

phasor analysis seems not to apply generally. It is

certainly true that many signals of practical interest

are not sinusoidal, and many are far from it.

Nevertheless, phasor analysis is broadly applicable.

There are basically two reasons why this is so:

• Many signals, although not strictly sinusoidal,

are “narrowband” and therefore well-modeled as

sinusoidal. For example, a cellular

telecommunications signal might have a

bandwidth on the order of 10 MHz and a center

frequency of about 2 GHz. This means the

difference in frequency between the band edges

of this signal is just 0.5% of the center

frequency. The frequency response associated

with signal propagation or with hardware can

often be assumed to be constant over this range

of frequencies. With some caveats, doing phasor

analysis at the center frequency and assuming

the results apply equally well over the bandwidth

of interest is often a pretty good approximation.

• It turns out that phasor analysis is easily

extensible to any physical signal, regardless of

bandwidth. This is so because any physical

signal can be decomposed into a linear

combination of sinusoids – this is known as

Fourier analysis. The way to find this linear

combination of sinusoids is by computing the

Fourier series, if the signal is periodic, or the

Fourier Transform, otherwise. Phasor analysis

applies to each frequency independently, and

(invoking superposition) the results can be added

together to obtain the result for the complete

signal. The process of combining results after

phasor analysis results is nothing more than

integration over frequency; i.e.:

∫ +∞

−∞

A(t;ω)dω

Using Equation 1.9, this can be rewritten:

∫ +∞

−∞

Re
{
C(ω)ejωt

}
dω

We can go one step further using Claim 2:

Re

{∫ +∞

−∞

C(ω)ejωtdω

}

The quantity in the curly braces is simply the

Fourier transform of C(ω). Thus, we see that we

can analyze a signal of arbitrarily-large

bandwidth simply by keeping ω as an

independent variable while we are doing phasor

analysis, and if we ever need the physical signal,

we just take the real part of the Fourier transform

of the phasor. So not only is it possible to

analyze any time-domain signal using phasor

analysis, it is also often far easier than doing the

same analysis on the time-domain signal directly.
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Summarizing:

Phasor analysis does not limit us to sinusoidal

waveforms. Phasor analysis is not only applica-

ble to sinusoids and signals that are sufficiently

narrowband, but is also applicable to signals of

arbitrary bandwidth via Fourier analysis.

Additional Reading:

• “Phasor” on Wikipedia.

• “Fourier analysis” on Wikipedia.

1.6 Units

[m0072]

The term “unit” refers to the measure used to express

a physical quantity. For example, the mean radius of

the Earth is about 6,371,000 meters; in this case the

unit is the meter.

A number like “6,371,000” becomes a bit

cumbersome to write, so it is common to use a prefix

to modify the unit. For example, the radius of the

Earth is more commonly said to be 6371 kilometers,

where one kilometer is understood to mean

1000 meters. It is common practice to use prefixes,

such as “kilo-,” that yield values in the range 0.001 to

10, 000. A list of standard prefixes appears in

Table 1.5.

Writing out the names of units can also become

tedious. For this reason, it is common to use standard

abbreviations; e.g., “6731 km” as opposed to

“6371 kilometers,” where “k” is the standard

abbreviation for the prefix “kilo” and “m” is the

standard abbreviation for “meter.” A list of

commonly-used base units and their abbreviations are

shown in Table 1.6.

To avoid ambiguity, it is important to always indicate

the units of a quantity; e.g., writing “6371 km” as

opposed to “6371.” Failure to do so is a common

source of error and misunderstandings. An example is

Prefix Abbreviation Multiply by:

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18

Table 1.5: Prefixes used to modify units.

https://en.wikipedia.org/wiki/Phasor
https://en.wikipedia.org/wiki/Fourier_analysis
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Unit Abbreviation Quantifies:

ampere A electric current

coulomb C electric charge

farad F capacitance

henry H inductance

hertz Hz frequency

joule J energy

meter m distance

newton N force

ohm Ω resistance

second s time

tesla T magnetic flux density

volt V electric potential

watt W power

weber Wb magnetic flux

Table 1.6: Some units that are commonly used in elec-

tromagnetics.

the expression:

l = 3t

where l is length and t is time. It could be that l is in

meters and t is in seconds, in which case “3” really

means “3 m/s”. However, if it is intended that l is in

kilometers and t is in hours, then “3” really means

“3 km/h” and the equation is literally different. To

patch this up, one might write “l = 3t m/s”; however,

note that this does does not resolve the ambiguity we

just identified – i.e., we still don’t know the units of

the constant “3.” Alternatively, one might write

“l = 3t where l is in meters and t is in seconds,”

which is unambiguous but becomes quite awkward

for more complicated expressions. A better solution is

to write instead:

l = (3 m/s) t

or even better:

l = at where a = 3 m/s

since this separates this issue of units from the

perhaps more-important fact that l is proportional to t
and the constant of proportionality (a) is known.

The meter is the fundamental unit of length in the

International System of Units, known by its French

acronym “SI” and sometimes informally referred to

as the “metric system.”

In this work, we will use SI units exclusively.

Although SI is probably the most popular for

engineering use overall, other systems remain in

common use. For example, the English system, where

the radius of the Earth might alternatively be said to

be about 3959 miles, continues to be used in various

applications and to a lesser or greater extent in

various regions of the world. An alternative system in

common use in physics and material science

applications is the CGS (“centimeter-gram-second”)

system. The CGS system is similar to SI, but with

some significant differences. For example, the base

unit of energy is the CGS system is not the “joule”

but rather the “erg,” and the values of some physical

constants become unitless. Therefore – once again –

it is very important to include units whenever values

are stated.

SI defines seven fundamental units from which all

other units can be derived. These fundamental units

are distance in meters (m), time in seconds (s),

current in amperes (A), mass in kilograms (kg),

temperature in kelvin (K), particle count in moles

(mol), and luminosity in candela (cd). SI units for

electromagnetic quantities such as coulombs (C) for

charge and volts (V) for electric potential are derived

from these fundamental units.

A frequently-overlooked feature of units is their

ability to assist in error-checking mathematical

expressions. For example, the electric field intensity

may be specified in volts per meter (V/m), so an

expression for the electric field intensity that yields

units of V/m is said to be “dimensionally correct” (but

not necessarily correct), whereas an expression that

cannot be reduced to units of V/m cannot be correct.

Additional Reading:

• “International System of Units” on Wikipedia.

• “Centimetre-gram-second system of units” on

Wikipedia.

https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/Centimetre-gram-second_system_of_units
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1.7 Notation

[m0005]

The list below describes notation used in this book.

• Vectors: Boldface is used to indicate a vector;

e.g., the electric field intensity vector will

typically appear as E. Quantities not in boldface

are scalars. When writing by hand, it is common

to write “E” or “
−→
E ” in lieu of “E.”

• Unit vectors: A circumflex is used to indicate a

unit vector; i.e., a vector having magnitude equal

to one. For example, the unit vector pointing in

the +x direction will be indicated as x̂. In

discussion, the quantity “x̂” is typically spoken

“x hat.”

• Time: The symbol t is used to indicate time.

• Position: The symbols (x, y, z), (ρ, φ, z), and

(r, θ, φ) indicate positions using the Cartesian,

cylindrical, and polar coordinate systems,

respectively. It is sometimes convenient to

express position in a manner which is

independent of a coordinate system; in this case,

we typically use the symbol r. For example,

r = x̂x+ ŷy + ẑz in the Cartesian coordinate

system.

• Phasors: A tilde is used to indicate a phasor

quantity; e.g., a voltage phasor might be

indicated as Ṽ , and the phasor representation of

E will be indicated as Ẽ.

• Curves, surfaces, and volumes: These

geometrical entities will usually be indicated in

script; e.g., an open surface might be indicated

as S and the curve bounding this surface might

be indicated as C. Similarly, the volume enclosed

by a closed surface S may be indicated as V .

• Integrations over curves, surfaces, and volumes

will usually be indicated using a single integral

sign with the appropriate subscript. For example:

∫

C

· · · dl is an integral over the curve C
∫

S

· · · ds is an integral over the surface S

∫

V

· · · dv is an integral over the volume V .

• Integrations over closed curves and surfaces will

be indicated using a circle superimposed on the

integral sign. For example:

∮

C

· · · dl is an integral over the closed curve C

∮

S

··· ds is an integral over the closed surface S

A “closed curve” is one which forms an

unbroken loop; e.g., a circle. A “closed surface”

is one which encloses a volume with no

openings; e.g., a sphere.

• The symbol “∼=” means “approximately equal

to.” This symbol is used when equality exists,

but is not being expressed with exact numerical

precision. For example, the ratio of the

circumference of a circle to its diameter is π,

where π ∼= 3.14.

• The symbol “≈” also indicates “approximately

equal to,” but in this case the two quantities are

unequal even if expressed with exact numerical

precision. For example, ex = 1 + x+ x2/2 + ...
as a infinite series, but ex ≈ 1 + x for x≪ 1.

Using this approximation e0.1 ≈ 1.1, which is in

good agreement with the actual value

e0.1 ∼= 1.1052.

• The symbol “∼” indicates “on the order of,”

which is a relatively weak statement of equality

indicating that the indicated quantity is within a

factor of 10 or so the indicated value. For

example, µ ∼ 105 for a class of iron alloys, with

exact values being being larger or smaller by a

factor of 5 or so.

• The symbol “,” means “is defined as” or “is

equal as the result of a definition.”

• Complex numbers: j ,
√
−1.

• See Appendix C for notation used to identify

commonly-used physical constants.

[m0026]
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Chapter 2

Electric and Magnetic Fields

2.1 What is a Field?

[m0001]

A field is the continuum of values of a quantity

as a function of position and time.

The quantity that the field describes may be a scalar

or a vector, and the scalar part may be either real- or

complex-valued.

In electromagnetics, the electric field intensity E is a

real-valued vector field that may vary as a function of

position and time, and so might be indicated as

“E(x, y, z, t),” “E(r, t),” or simply “E.” When

expressed as a phasor, this quantity is complex-valued

but exhibits no time dependence, so we might say

instead “Ẽ(r)” or simply “Ẽ.”

An example of a scalar field in electromagnetics is the

electric potential, V ; i.e., V (r, t).

A wave is a time-varying field that continues to exist

in the absence of the source that created it and is

therefore able to transport energy.

2.2 Electric Field Intensity

[m0002]

Electric field intensity is a vector field we assign the

symbol E and has units of electrical potential per

distance; in SI units, volts per meter (V/m). Before

offering a formal definition, it is useful to consider the

broader concept of the electric field.

Imagine that the universe is empty except for a single

particle of positive charge. Next, imagine that a

second positively-charged particle appears; the

situation is now as shown in Figure 2.1. Since like

charges repel, the second particle will be repelled by

the first particle and vice versa. Specifically, the first

particle is exerting force on the second particle. If the

second particle is free to move, it will do so; this is an

expression of kinetic energy. If the second particle is

somehow held in place, we say the second particle

possesses an equal amount of potential energy. This

potential energy is no less “real,” since we can convert

it to kinetic energy simply by releasing the particle,

thereby allowing it to move.

Now let us revisit the original one particle scenario.

F

c© M. Goldammer CC BY SA 4.0

Figure 2.1: A positively-charged particle experiences

a repulsive force F in the presence of another particle

which is also positively-charged.

Electromagnetics Vol 1. c© 2018 S.W. Ellingson CC BY SA 4.0. https://doi.org/10.21061/electromagnetics-vol-1

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.21061/electromagnetics-vol-1
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F

c© M. Goldammer CC BY SA 4.0

Figure 2.2: A map of the force that would be expe-

rienced by a second particle having a positive charge.

Here, the magnitude and direction of the force is indi-

cated by the size and direction of the arrow.

In that scenario, we could make a map in which every

position in space is assigned a vector that describes

the force that a particle having a specified charge q
would experience if it were to appear there. The result

looks something like Figure 2.2. This map of force

vectors is essentially a description of the electric field

associated with the first particle.

There are many ways in which the electric field may

be quantified. Electric field intensity E is simply one

of these ways. We define E(r) to be the force F(r)
experienced by a test particle having charge q, divided

by q; i.e.,

E(r) , lim
q→0

F(r)

q
(2.1)

Note that it is required for the charge to become

vanishingly small (as indicated by taking the limit) in

order for this definition to work. This is because the

source of the electric field is charge, so the test

particle contributes to the total electric field. To

accurately measure the field of interest, the test charge

must be small enough not to significantly perturb the

field. This makes Equation 2.1 awkward from an

engineering perspective, and we’ll address that later

in this section.

According the definition of Equation 2.1, the units of

E are those of force divided by charge. The SI units

for force and charge are the newton (N) and coulomb

(C) respectively, so E has units of N/C. However, we

typically express E in units of V/m, not N/C. What’s

going on? The short answer is that 1 V/m = 1 N/C:

N

C
=

N · m

C · m
=

J

C · m
=

V

m

where we have used the fact that 1 N·m = 1 joule (J)

of energy and 1 J/C = 1 V.

Electric field intensity (E, N/C or V/m) is a vec-

tor field that quantifies the force experienced by

a charged particle due to the influence of charge

not associated with that particle.

The analysis of units doesn’t do much to answer the

question of why we should prefer to express E in V/m

as opposed to N/C. Let us now tackle that question.

Figure 2.3 shows a simple thought experiment that

demonstrates the concept of electric field intensity in

terms of an electric circuit. This circuit consists of a

parallel-plate capacitor in series with a 9 V battery.1

The effect of the battery, connected as shown, is to

force an accumulation of positive charge on the upper

plate, and an accumulation of negative charge on the

lower plate. If we consider the path from the position

labeled “A,” along the wire and through the battery to

the position labeled “B,” the change in electric

potential is +9 V. It must also be true that the change

in electric potential as we travel from B to A through

the capacitor is −9 V, since the sum of voltages over

any closed loop in a circuit is zero. Said differently,

the change in electric potential between the plates of

the capacitor, starting from node A and ending at

node B, is +9 V. Now, note that the spacing between

the plates in the capacitor is 1 mm. Thus, the rate of

change of the potential between the plates is 9 V

divided by 1 mm, which is 9000 V/m. This is literally

the electric field intensity between the plates. That is,

if one places a particle with an infinitesimally-small

charge between the plates (point “C”), and then

measures the ratio of force to charge, one finds it is

9000 N/C pointing toward A. We come to the

following remarkable conclusion:

1It is not necessary to know anything about capacitors to get to

the point, so no worries!

https://creativecommons.org/licenses/by-sa/4.0/
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A

B
+

-

9V

1mm

c© Y. Qin CC BY 3.0

Figure 2.3: A simple circuit used to describe the con-

cept of electric field intensity. In this example, E at

point C is 9000 V/m directed from B toward A.

E points in the direction in which electric poten-

tial is most rapidly decreasing, and the magnitude

of E is the rate of change in electric potential with

distance in this direction.

The reader may have noticed that we have defined the

electric field in terms of what it does. We have have

not directly addressed the question of what the

electric field is. This is the best we can do using

classical physics, and fortunately, this is completely

adequate for the most engineering applications.

However, a deeper understanding is possible using

quantum mechanics, where we find that the electric

field and the magnetic field are in fact manifestations

of the same fundamental force, aptly named the

electromagnetic force. (In fact, the electromagnetic

force is found to be one of just four fundamental

forces, the others being gravity, the strong nuclear

force, and the weak nuclear force.) Quantum

mechanics also facilitates greater insight into the

nature of electric charge and of the photon, which is

the fundamental constituent of electromagnetic

waves. For more information on this topic, an

excellent starting point is the video “Quantum

Invariance & The Origin of The Standard Model”

referenced at the end of this section.

Additional Reading:

• “Electric field” on Wikipedia.

• PBS Space Time video “Quantum Invariance &

The Origin of The Standard Model,” on

YouTube.

https://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/wiki/Electric_field
https://youtu.be/V5kgruUjVBs
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2.3 Permittivity

[m0008]

Permittivity describes the effect of material in

determining the electric field in response to electric

charge. For example, one can observe from laboratory

experiments that a particle having charge q gives rise

to the electric field

E = R̂ q
1

4πR2

1

ǫ
(2.2)

where R is distance from the charge, R̂ is a unit

vector pointing away from the charge, and ǫ is a

constant that depends on the material. Note that E

increases with q, which makes sense since electric

charge is the source of E. Also note that E is

inversely proportional to 4πR2, indicating that E

decreases in proportion to the area of a sphere

surrounding the charge – a principle commonly

known as the inverse square law. The remaining

factor 1/ǫ is the constant of proportionality, which

captures the effect of material. Given units of V/m for

E and C for Q, we find that ǫ must have units of

farads per meter (F/m). (To see this, note that 1 F =
1 C/V.)

Permittivity (ǫ, F/m) describes the effect of ma-

terial in determining the electric field intensity in

response to charge.

In free space (that is, a perfect vacuum), we find that

ǫ = ǫ0 where:

ǫ0 ∼= 8.854× 10−12 F/m (2.3)

The permittivity of air is only slightly greater, and

usually can be assumed to be equal to that of free

space. In most other materials, the permittivity is

significantly greater; that is, the same charge results

in a weaker electric field intensity.

It is common practice to describe the permittivity of

materials relative to the permittivity of free space.

This relative permittivity is given by:

ǫr ,
ǫ

ǫ0
(2.4)

Values of ǫr for a few representative materials is

given in Appendix A.1. Note that ǫr ranges from 1

(corresponding to a perfect vacuum) to about 60 or so

in common engineering applications. Also note that

relative permittivity is sometimes referred to as

dielectric constant. This term is a bit misleading,

however, since permittivity is a meaningful concept

for many materials that are not dielectrics.

Additional Reading:

• “Permittivity” on Wikipedia.

• Appendix A.1 (“Permittivity of Some Common

Materials”).

• “Inverse square law” on Wikipedia.

https://en.wikipedia.org/wiki/Permittivity
https://en.wikipedia.org/wiki/Inverse-square_law
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2.4 Electric Flux Density

[m0011]

Electric flux density, assigned the symbol D, is an

alternative to electric field intensity (E) as a way to

quantify an electric field. This alternative description

offers some actionable insight, as we shall point out at

the end of this section.

First, what is electric flux density? Recall that a

particle having charge q gives rise to the electric field

intensity

E = R̂ q
1

4πR2

1

ǫ
(2.5)

where R is distance from the charge and R̂ points

away from the charge. Note that E is inversely

proportional to 4πR2, indicating that E decreases in

proportion to the area of a sphere surrounding the

charge. Now integrate both sides of Equation 2.5 over

a sphere S of radius R:

∮

S

E(r) · ds =
∮

S

[
R̂ q

1

4πR2

1

ǫ

]
· ds (2.6)

Factoring out constants that do not vary with the

variables of integration, the right-hand side becomes:

q
1

4πR2

1

ǫ

∮

S

R̂ · ds

Note that ds = R̂ds in this case, and also that

R̂ · R̂ = 1. Thus, the right-hand side simplifies to:

q
1

4πR2

1

ǫ

∮

S

ds

The remaining integral is simply the area of S , which

is 4πR2. Thus, we find:

∮

S

E(r) · ds = q

ǫ
(2.7)

The integral of a vector field over a specified surface

is known as flux (see “Additional Reading” at the end

of this section). Thus, we have found that the flux of

E through the sphere S is equal to a constant, namely

q/ǫ. Furthermore, this constant is the same regardless

of the radius R of the sphere. Said differently, the flux

of E is constant with distance, and does not vary as E

itself does. Let us capitalize on this observation by

making the following small modification to

Equation 2.7: ∮

S

[ǫE] · ds = q (2.8)

In other words, the flux of the quantity ǫE is equal to

the enclosed charge, regardless of the radius of the

sphere over which we are doing the calculation. This

leads to the following definition:

The electric flux density D = ǫE, having units

of C/m2, is a description of the electric field in

terms of flux, as opposed to force or change in

electric potential.

It may appear that D is redundant information given

E and ǫ, but this is true only in homogeneous media.

The concept of electric flux density becomes

important – and decidedly not redundant – when we

encounter boundaries between media having different

permittivities. As we shall see in Section 5.18,

boundary conditions on D constrain the component

of the electric field that is perpendicular to the

boundary separating two regions. If one ignores the

“flux” character of the electric field represented by D

and instead considers only E, then only the tangential

component of the electric field is constrained. In fact,

when one of the two materials comprising the

boundary between two material regions is a perfect

conductor, then the electric field is completely

determined by the boundary condition on D. This

greatly simplifies the problem of finding the electric

field in a region bounded or partially bounded by

materials that can be modeled as perfect conductors,

including many metals. In particular, this principle

makes it easy to analyze capacitors.

We conclude this section with a warning. Even

though the SI units for D are C/m2, D describes an

electric field and not a surface charge density. It is

certainly true that one may describe the amount of

charge distributed over a surface using units of C/m2.

However, D is not necessarily a description of actual

charge, and there is no implication that the source of

the electric field is a distribution of surface charge.

On the other hand, it is true that D can be interpreted

as an equivalent surface charge density that would

give rise to the observed electric field, and in some

cases, this equivalent charge density turns out to be

the actual charge density.
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Additional Reading:

• “Flux” on Wikipedia.

2.5 Magnetic Flux Density

[m0003]

Magnetic flux density is a vector field which we

identify using the symbol B and which has SI units of

tesla (T). Before offering a formal definition, it is

useful to consider the broader concept of the magnetic

field.

Magnetic fields are an intrinsic property of some

materials, most notably permanent magnets. The

basic phenomenon is probably familiar, and is shown

in Figure 2.4. A bar magnet has “poles” identified as

“N” (“north”) and “S” (“south”). The N-end of one

magnet attracts the S-end of another magnet but

repels the N-end of the other magnet and so on. The

existence of a vector field is apparent since the

observed force acts at a distance and is asserted in a

specific direction. In the case of a permanent magnet,

the magnetic field arises from mechanisms occurring

at the scale of the atoms and electrons comprising the

material. These mechanisms require some additional

explanation which we shall defer for now.

Magnetic fields also appear in the presence of current.

For example, a coil of wire bearing a current is found

to influence permanent magnets (and vice versa) in

the same way that permanent magnets affect each

other. This is shown in Figure 2.5. From this, we infer

that the underlying mechanism is the same – i.e., the

vector field generated by a current-bearing coil is the

same phenomenon as the vector field associated with

a permanent magnet. Whatever the source, we are

S N

c© Y. Qin CC BY 3.0

Figure 2.4: Evidence of a vector field from observa-

tions of the force perceived by the bar magnets on the

right in the presence of the bar magnets on the left.

https://en.wikipedia.org/wiki/Flux
https://creativecommons.org/licenses/by/3.0/
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c© Y. Qin CC BY 4.0

Figure 2.5: Evidence that current can also create a

magnetic field.

now interested in quantifying its behavior.

To begin, let us consider the effect of a magnetic field

on a electrically-charged particle. First, imagine a

region of free space with no electric or magnetic

fields. Next, imagine that a charged particle appears.

This particle will experience no force. Next, a

magnetic field appears; perhaps this is due to a

permanent magnet or a current in the vicinity. This

situation is shown in Figure 2.6 (top). Still, no force is

applied to the particle. In fact, nothing happens until

the particle in set in motion. Figure 2.6 (bottom)

shows an example. Suddenly, the particle perceives a

force. We’ll get to the details about direction and

magnitude in a moment, but the main idea is now

evident. A magnetic field is something that applies a

force to a charged particle in motion, distinct from (in

fact, in addition to) the force associated with an

electric field.

Now, it is worth noting that a single charged particle

in motion is the simplest form of current. Remember

also that motion is required for the magnetic field to

influence the particle. Therefore, not only is current

the source of the magnetic field, the magnetic field

also exerts a force on current. Summarizing:

B

B

v>�

F

�=�

F��

c© Y. Qin CC BY 4.0

Figure 2.6: The force perceived by a charged particle

that is (top) motionless and (bottom) moving with ve-

locity v = ẑv, which is perpendicular to the plane of

this document and toward the reader.

The magnetic field describes the force exerted on

permanent magnets and currents in the presence

of other permanent magnets and currents.

So, how can we quantify a magnetic field? The

answer from classical physics involves another

experimentally-derived equation that predicts force as

a function of charge, velocity, and a vector field B

representing the magnetic field. Here it is: The force

applied to a particle bearing charge q is

F = qv ×B (2.9)

where v is the velocity of the particle and “×”

denotes the cross product. The cross product of two

vectors is in a direction perpendicular to each of the

two vectors, so the force exerted by the magnetic field

is perpendicular to both the direction of motion and

the direction in which the magnetic field points.

The reader would be well-justified in wondering why

the force exerted by the magnetic field should

perpendicular to B. For that matter, why should the

force depend on v? These are questions for which

classical physics provides no obvious answers.

Effective answers to these questions require concepts

from quantum mechanics, where we find that the

magnetic field is a manifestation of the fundamental

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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and aptly-named electromagnetic force. The

electromagnetic force also gives rises to the electric

field, and it is only limited intuition, grounded in

classical physics, that leads us to perceive the electric

and magnetic fields as distinct phenomena. For our

present purposes – and for most

commonly-encountered engineering applications –

we do not require these concepts. It is sufficient to

accept this apparent strangeness as fact and proceed

accordingly.

Dimensional analysis of Equation 2.9 reveals that B

has units of (N·s)/(C·m). In SI, this combination of

units is known as the tesla (T).

We refer to B as magnetic flux density, and therefore

tesla is a unit of magnetic flux density. A fair question

to ask at this point is: What makes this a flux density?

The short answer is that this terminology is somewhat

arbitrary, and in fact is not even uniformly accepted.

In engineering electromagnetics, the preference for

referring to B as a “flux density” is because we

frequently find ourselves integrating B over a

mathematical surface. Any quantity that is obtained

by integration over a surface is referred to as “flux,”

and so it becomes natural to think of B as a flux

density; i.e., as flux per unit area. The SI unit for

magnetic flux is the weber (Wb). Therefore, B may

alternatively be described as having units of Wb/m2,

and 1 Wb/m2 = 1 T.

Magnetic flux density (B, T or Wb/m2) is a de-

scription of the magnetic field that can be defined

as the solution to Equation 2.9.

When describing magnetic fields, we occasionally

refer to the concept of a field line, defined as follows:

A magnetic field line is the curve in space traced

out by following the direction in which the mag-

netic field vector points.

This concept is illustrated in Figure 2.7 for a

permanent bar magnet and Figure 2.8 for a

current-bearing coil.

Magnetic field lines are remarkable for the following

reason:

A magnetic field line always forms a closed loop.

c© Y. Qin CC BY 4.0

Figure 2.7: The magnetic field of a bar magnet, illus-

trating field lines.

c© Y. Qin CC BY 4.0

Figure 2.8: The magnetic field of a current-bearing

coil, illustrating field lines.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


2.6. PERMEABILITY 25

This is true in a sense even for field lines which seem

to form straight lines (for example, those along the

axis of the bar magnet and the coil in Figures 2.7 and

2.8), since a field line that travels to infinity in one

direction reemerges from infinity in the opposite

direction.

Additional Reading:

• “Magnetic Field” on Wikipedia.

2.6 Permeability

[m0009]

Permeability describes the effect of material in

determining the magnetic flux density. All else being

equal, magnetic flux density increases in proportion to

permeability.

To illustrate the concept, consider that a particle

bearing charge q moving at velocity v gives rise to a

magnetic flux density:

B(r) = µ
qv

4πR2
× R̂ (2.10)

where R̂ is the unit vector pointing from the charged

particle to the field point r, R is this distance, and

“×” is the cross product. Note that B increases with

charge and speed, which makes sense since moving

charge is the source of the magnetic field. Also note

that B is inversely proportional to 4πR2, indicating

that |B| decreases in proportion to the area of a

sphere surrounding the charge, also known as the

inverse square law. The remaining factor, µ, is the

constant of proportionality that captures the effect of

material. We refer to µ as the permeability of the

material. Since B can be expressed in units of Wb/m2

and the units of v are m/s, we see that µ must have

units of henries per meter (H/m). (To see this, note

that 1 H , 1 Wb/A.)

Permeability (µ, H/m) describes the effect of ma-

terial in determining the magnetic flux density.

In free space, we find that the permeability µ = µ0

where:

µ0 = 4π × 10−7 H/m (2.11)

It is common practice to describe the permeability of

materials in terms of their relative permeability:

µr ,
µ

µ0
(2.12)

which gives the permeability relative to the minimum

possible value; i.e., that of free space. Relative

permeability for a few representative materials is

given in Appendix A.2.

Note that µr is approximately 1 for all but a small

class of materials. These are known as magnetic

https://en.wikipedia.org/wiki/Magnetic_field
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materials, and may exhibit values of µr as large as

∼ 106. A commonly-encountered category of

magnetic materials is ferromagnetic material, of

which the best-known example is iron.

Additional Reading:

• “Permeability (electromagnetism)” on

Wikipedia.

• Section 7.16 (“Magnetic Materials”).

• Appendix A.2 (“Permeability of Some Common

Materials”).

2.7 Magnetic Field Intensity

[m0012]

Magnetic field intensity H is an alternative

description of the magnetic field in which the effect of

material is factored out. For example, the magnetic

flux density B (reminder: Section 2.5) due to a point

charge q moving at velocity v can be written in terms

of the Biot-Savart Law:

B = µ
qv

4πR2
× R̂ (2.13)

where R̂ is the unit vector pointing from the charged

particle to the field point r, R is this distance, “×” is

the cross product, and µ is the permeability of the

material. We can rewrite Equation 2.13 as:

B , µH (2.14)

with:

H =
qv

4πR2
× R̂ (2.15)

so H in homogeneous media does not depend on µ.

Dimensional analysis of Equation 2.15 reveals that

the units for H are amperes per meter (A/m).

However, H does not represent surface current

density,2 as the units might suggest. While it is

certainly true that a distribution of current (A) over

some linear cross-section (m) can be described as a

current density having units of A/m, H is associated

with the magnetic field and not a particular current

distribution. Said differently, H can be viewed as a

description of the magnetic field in terms of an

equivalent (but not actual) current.

The magnetic field intensity H (A/m), defined us-

ing Equation 2.14, is a description of the mag-

netic field independent from material properties.

It may appear that H is redundant information given

B and µ, but this is true only in homogeneous media.

The concept of magnetic field intensity becomes

important – and decidedly not redundant – when we

encounter boundaries between media having different

permeabilities. As we shall see in Section 7.11,

2The concept of current density is not essential to understand this

section; however, a primer can be found in Section 6.2.

https://en.wikipedia.org/wiki/Permeability_(electromagnetism)
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boundary conditions on H constrain the component

of the magnetic field which is tangent to the boundary

separating two otherwise-homogeneous regions. If

one ignores the characteristics of the magnetic field

represented by H and instead considers only B, then

only the perpendicular component of the magnetic

field is constrained.

The concept of magnetic field intensity also turns out

to be useful in a certain problems in which µ is not a

constant, but rather is a function of magnetic field

strength. In this case, the magnetic behavior of the

material is said to be nonlinear. For more on this, see

Section 7.16.

Additional Reading:

• “Magnetic field” on Wikipedia.

• “Biot-Savart law” on Wikipedia.

2.8 Electromagnetic Properties of

Materials

[m0007]

In electromagnetic analysis, one is principally

concerned with three properties of matter. These

properties are quantified in terms of constitutive

parameters, which describe the effect of material in

determining an electromagnetic quantity in response

to a source. Here are the three principal constitutive

parameters:

• Permittivity (ǫ, F/m) quantifies the effect of

matter in determining the electric field in

response to electric charge. Permittivity is

addressed in Section 2.3.

• Permeability (µ, H/m) quantifies the effect of

matter in determining the magnetic field in

response to current. Permeability is addressed in

Section 2.6.

• Conductivity (σ, S/m) quantifies the effect of

matter in determining the flow of current in

response to an electric field. Conductivity is

addressed in Section 6.3.

The electromagnetic properties of most common

materials in most common applications can be

quantified in terms of the constitutive parameters

ǫ, µ, and σ.

To keep electromagnetic theory from becoming too

complex, we usually require the constitutive

parameters to exhibit a few basic properties. These

properties are as follows:

• Homogeneity. A material that is homogeneous is

uniform over the space it occupies; that is, the

values of its constitutive parameters are constant

at all locations within the material. A

counter-example would be a material that is

composed of multiple chemically-distinct

compounds that are not thoroughly mixed, such

as soil.

https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Biot-Savart_law
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• Isotropy. A material that is isotropic behaves in

precisely the same way regardless of how it is

oriented with respect to sources and fields

occupying the same space. A counter-example is

quartz, whose atoms are arranged in a

uniformly-spaced crystalline lattice. As a result,

the electromagnetic properties of quartz can be

changed simply by rotating the material with

respect to the applied sources and fields.

• Linearity. A material is said to be linear if its

properties are constant and independent of the

magnitude of the sources and fields applied to

the material. For example, capacitors have

capacitance, which is determined in part by the

permittivity of the material separating the

terminals (Section 5.23). This material is

approximately linear when the applied voltage V
is below the rated working voltage; i.e., ǫ is

constant and so capacitance does not vary

significantly with respect to V . When V is

greater than the working voltage, the dependence

of ǫ on V becomes more pronounced, and then

capacitance becomes a function of V . In another

practical example, it turns out that µ for

ferromagnetic materials is nonlinear such that

the precise value of µ depends on the magnitude

of the magnetic field.

• Time-invariance. An example of a class of

materials that is not necessarily time-invariant is

piezoelectric materials, for which

electromagnetic properties vary significantly

depending on the mechanical forces applied to

them – a property which can be exploited to

make sensors and transducers.

Linearity and time-invariance (LTI) are particularly

important properties to consider because they are

requirements for superposition. For example, in a LTI

material, we may calculate the field E1 due to a point

charge q1 at r1 and calculate the field E2 due to a

point charge q2 at r2. Then, when both charges are

simultaneously present, the field is E1 +E2. The

same is not necessarily true for materials that are not

LTI. Devices that are nonlinear, and therefore not LTI,

do not necessarily follow the rules of elementary

circuit theory, which presume that superposition

applies. This condition makes analysis and design

much more difficult.

No practical material is truly homogeneous, isotropic,

linear, and time-invariant. However, for most

materials in most applications, the deviation from this

ideal condition is not large enough to significantly

affect engineering analysis and design. In other cases,

materials may be significantly non-ideal in one of

these respects, but may still be analyzed with

appropriate modifications to the theory.

[m0054]
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Chapter 3

Transmission Lines

3.1 Introduction to Transmission

Lines

[m0028]

A transmission line is a structure intended to

transport electromagnetic signals or power.

A rudimentary transmission line is simply a pair of

wires with one wire serving as a datum (i.e., a

reference; e.g., “ground”) and the other wire bearing

an electrical potential that is defined relative to that

datum. Transmission lines having random geometry,

such as the test leads shown in Figure 3.1, are useful

only at very low frequencies and when loss,

reactance, and immunity to electromagnetic

interference (EMI) are not a concern.

by Dmitry G

Figure 3.1: These leads used to connect test equip-

ment to circuits in a laboratory are a very rudimentary

form of transmission line, suitable only for very low

frequencies.

However, many circuits and systems operate at

frequencies where the length or cross-sectional

dimensions of the transmission line may be a

significant fraction of a wavelength. In this case, the

transmission line is no longer “transparent” to the

circuits at either end. Furthermore, loss, reactance,

and EMI are significant problems in many

applications. These concerns motivate the use of

particular types of transmission lines, and make it

necessary to understand how to properly connect the

transmission line to the rest of the system.

In electromagnetics, the term “transmission line”

refers to a structure which is intended to support a

guided wave. A guided wave is an electromagnetic

wave that is contained within or bound to the line, and

which does not radiate away from the line. This

condition is normally met if the length and

cross-sectional dimensions of the transmission line

are small relative to a wavelength – say λ/100 (i.e.,

1% of the wavelength). For example, two

randomly-arranged wires might serve well enough to

carry a signal at f = 10 MHz over a length l = 3 cm,

since l is only 0.1% of the wavelength

λ = c/f = 30 m. However, if l is increased to 3 m,

or if f is increased to 1 GHz, then l is now 10% of the

wavelength. In this case, one should consider using a

transmission line that forms a proper guided wave.

Preventing unintended radiation is not the only

concern. Once we have established a guided wave on

a transmission line, it is important that power applied

to the transmission line be delivered to the circuit or

device at the other end and not reflected back into the

source. For the random wire f = 10 MHz, l = 3 cm

example above, there is little need for concern, since

we expect a phase shift of roughly

Electromagnetics Vol 1. c© 2018 S.W. Ellingson CC BY SA 4.0. https://doi.org/10.21061/electromagnetics-vol-1
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0.001 · 360◦ = 0.36◦ over the length of the

transmission line, which is about 0.72◦ for a round

trip. So, to a good approximation, the entire

transmission line is at the same electrical potential

and thus transparent to the source and destination.

However, if l is increased to 3 m, or if f is increased

to 1 GHz, then the associated round-trip phase shift

becomes 72◦. In this case, a reflected signal traveling

in the opposite direction will add to create a total

electrical potential, which varies in both magnitude

and phase with position along the line. Thus, the

impedance looking toward the destination via the

transmission line will be different than the impedance

looking toward the destination directly. (Section 3.15

gives the details.) The modified impedance will

depend on the cross-sectional geometry, materials,

and length of the line.

Cross-sectional geometry and materials also

determine the loss and EMI immunity of the

transmission line.

Summarizing:

Transmission lines are designed to support

guided waves with controlled impedance, low

loss, and a degree of immunity from EMI.

3.2 Types of Transmission Lines

[m0144]

Two common types of transmission line are coaxial

line (Figure 3.2) and microstrip line (Figure 3.3).

Both are examples of transverse electromagnetic

(TEM) transmission lines. A TEM line employs a

single electromagnetic wave “mode” having electric

and magnetic field vectors in directions perpendicular

to the axis of the line, as shown in Figures 3.4 and

3.5. TEM transmission lines appear primarily in radio

frequency applications.

TEM transmission lines such as coaxial lines and

microstrip lines are designed to support a single

electromagnetic wave that propagates along the

length of the transmission line with electric and

magnetic field vectors perpendicular to the direc-

tion of propagation.

Not all transmission lines exhibit TEM field structure.

In non-TEM transmission lines, the electric and

magnetic field vectors that are not necessarily

perpendicular to the axis of the line, and the structure

of the fields is complex relative to the field structure

of TEM lines. An example of a transmission line that

exhibits non-TEM field structure is the waveguide

(see example in Figure 3.6). Waveguides are most

prevalent at radio frequencies, and tend to appear in

applications where it is important to achieve very low

loss or where power levels are very high. Another

example is common “multimode” optical fiber

(Figure 3.7). Optical fiber exhibits complex field

c© Tkgd2007 CC BY 3.0 (modified)

Figure 3.2: Structure of a coaxial transmission line.

https://creativecommons.org/licenses/by/3.0/
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g�ound plane

dielectric slab
metallic trace

c© SpinningSpark CC BY SA 3.0 (modified)

Figure 3.3: Structure of a microstrip transmission

line.

Figure 3.4: Structure of the electric and magnetic

fields within coaxial line. In this case, the wave is

propagating away from the viewer.

Figure 3.5: Structure of the electric and magnetic

fields within microstrip line. (The fields outside the

line are possibly significant, complicated, and not

shown.) In this case, the wave is propagating away

from the viewer.

c© Averse CC BY SA 2.0 Germany

Figure 3.6: A network of radio frequency waveguides

in an air traffic control radar.

structure because the wavelength of light is very small

compared to the cross-section of the fiber, making the

excitation and propagation of non-TEM waves

difficult to avoid. (This issue is overcome in a

different type of optical fiber, known as “single

mode” fiber, which is much more difficult and

expensive to manufacture.)

Higher-order transmission lines, including radio-

frequency waveguides and multimode optical

fiber, are designed to guide waves that have rela-

tively complex structure.

Additional Reading:

• “Coaxial cable” on Wikipedia.

• “Microstrip” on Wikipedia.

• “Waveguide (electromagnetism)” on Wikipedia.

• “Optical fiber” on Wikipedia.

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/2.0/de/deed.en
https://en.wikipedia.org/wiki/Coaxial_cable
https://en.wikipedia.org/wiki/Microstrip
https://en.wikipedia.org/wiki/Waveguide_(electromagnetism)
https://en.wikipedia.org/wiki/Optical_fiber
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c© BigRiz CC BY SA 3.0 Unported

Figure 3.7: Strands of optical fiber.

3.3 Transmission Lines as

Two-Port Devices

[m0077]

Figure 3.8 shows common ways to represent

transmission lines in circuit diagrams. In each case,

the source is represented using a Thévenin equivalent

circuit consisting of a voltage source VS in series with

an impedance ZS .1 In transmission line analysis, the

source may also be referred to as the generator. The

termination on the receiving end of the transmission

line is represented, without loss of generality, as an

impedance ZL. This termination is often referred to

as the load, although in practice it can be any circuit

that exhibits an input impedance of ZL.

The two-port representation of a transmission line is

completely described by its length l along with some

combination of the following parameters:

• Phase propagation constant β, having units of

rad/m. This parameter also represents the

wavelength in the line through the relationship

λ = 2π/β. (See Sections 1.3 and 3.8 for details.)

• Attenuation constant α, having units of 1/m.

1For a refresher on this concept, see “Additional Reading” at the

end of this section.

This parameter quantifies the effect of loss in the

line. (See Section 3.8 for details.)

• Characteristic impedance Z0, having units of Ω.

This is the ratio of potential (“voltage”) to

current when the line is perfectly

impedance-matched at both ends. (See

Section 3.7 for details.)

These parameters depend on the materials and

geometry of the line.

Note that a transmission line is typically not

transparent to the source and load. In particular, the

load impedance may be ZL, but the impedance

presented to the source may or may not be equal to

ZL. (See Section 3.15 for more on this concept.)

Similarly, the source impedance may be ZS , but the

impedance presented to the load may or may not be

equal to ZS . The effect of the transmission line on the

source and load impedances will depend on the

parameters identified above.

ZL

ZS

VS

VS

VS

ZS

ZS

ZL

ZL

l

l

c© Omegatron CC BY SA 3.0 Unported (modified)

Figure 3.8: Symbols representing transmission lines:

Top: As a generic two-conductor direct connection.

Middle: As a generic two-port “black box.” Bottom:

As a coaxial cable.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Additional Reading:

• “Thévenin’s theorem” on Wikipedia.

3.4 Lumped-Element Model

[m0029]

It is possible to ascertain the relevant behaviors of a

transmission line using elementary circuit theory

applied to a differential-length lumped-element model

of the transmission line. The concept is illustrated in

Figure 3.9, which shows a generic transmission line

aligned with its length along the z axis. The

transmission line is divided into segments having

small but finite length ∆z. Each segment is modeled

as an identical two-port having the equivalent circuit

representation shown in Figure 3.10. The equivalent

circuit consists of 4 components as follows:

• The resistance R′∆z represents the

series-combined ohmic resistance of the two

conductors. This should account for both

conductors since the current in the actual

transmission line must flow through both

conductors. The prime notation reminds us that

R′ is resistance per unit length; i.e., Ω/m, and it

is only after multiplying by length that we get a

resistance in Ω.

• The conductance G′∆z represents the leakage of

current directly from one conductor to the other.

When G′∆z > 0, the resistance between the

conductors is less than infinite, and therefore,

current may flow between the conductors. This

amounts to a loss of power separate from the loss

associated with R′ above. G′ has units of S/m.

Further note that G′ is not equal to 1/R′ as

defined above. G′ and R′ are describing entirely

different physical mechanisms (and in principle

either could be defined as either a resistance or a

conductance).

• The capacitance C ′∆z represents the

capacitance of the transmission line structure.

Capacitance is the tendency to store energy in

electric fields and depends on the cross-sectional

geometry and the media separating the

conductors. C ′ has units of F/m.

• The inductance L′∆z represents the inductance

of the transmission line structure. Inductance is

the tendency to store energy in magnetic fields,

and (like capacitance) depends on the

https://en.wikipedia.org/wiki/Thevenin's_theorem
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Figure 3.9: Interpretation of a transmission line as a

cascade of discrete series-connected two-ports.

R'Δz L'Δz

G'Δz C'Δz

c© Omegatron CC BY SA 3.0 Unported (modified)

Figure 3.10: Lumped-element equivalent circuit

model for each of the two-ports in Figure 3.9.

cross-sectional geometry and the media

separating the conductors. L′ has units of H/m.

In order to use the model, one must have values for

R′, G′, C ′, and L′. Methods for computing these

parameters are addressed elsewhere in this book.

3.5 Telegrapher’s Equations

[m0079]

In this section, we derive the equations that govern

the potential v(z, t) and current i(z, t) along a

transmission line that is oriented along the z axis. For

this, we will employ the lumped-element model

developed in Section 3.4.

To begin, we define voltages and currents as shown in

Figure 3.11. We assign the variables v(z, t) and

i(z, t) to represent the potential and current on the left

side of the segment, with reference polarity and

direction as shown in the figure. Similarly we assign

the variables v(z +∆z, t) and i(z +∆z, t) to

represent the potential and current on the right side of

the segment, again with reference polarity and

direction as shown in the figure. Applying Kirchoff’s

voltage law from the left port, through R′∆z and

L′∆z, and returning via the right port, we obtain:

v(z, t)− (R′∆z) i(z, t)− (L′∆z)
∂

∂t
i(z, t)

− v(z +∆z, t) = 0 (3.1)

Moving terms referring to current to the right side of

the equation and then dividing through by ∆z, we

obtain

− v(z +∆z, t)− v(z, t)

∆z
=

R′ i(z, t) + L′ ∂

∂t
i(z, t) (3.2)

Then taking the limit as ∆z → 0:

− ∂

∂z
v(z, t) = R′ i(z, t) + L′ ∂

∂t
i(z, t) (3.3)

R'Δz L'Δz

G'Δz
C'Δz

v(z,t) i(z+Δz,t)i(z,t)

+

_

+

_

v(z+Δz,t)

c© Omegatron CC BY SA 3.0 Unported (modified)

Figure 3.11: Lumped-element equivalent circuit

transmission line model, annotated with sign conven-

tions for potentials and currents.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Applying Kirchoff’s current law at the right port, we

obtain:

i(z, t)−(G′∆z) v(z+∆z, t)−(C ′∆z)
∂

∂t
v(z+∆z, t)

− i(z +∆z, t) = 0 (3.4)

Moving terms referring to potential to the right side of

the equation and then dividing through by ∆z, we

obtain

− i(z +∆z, t)− i(z, t)

∆z
=

G′ v(z +∆z, t) + C ′ ∂

∂t
v(z +∆z, t) (3.5)

Taking the limit as ∆z → 0:

− ∂

∂z
i(z, t) = G′ v(z, t) + C ′ ∂

∂t
v(z, t) (3.6)

Equations 3.3 and 3.6 are the telegrapher’s equa-

tions. These coupled (simultaneous) differential

equations can be solved for v(z, t) and i(z, t)
given R′, G′, L′, C ′ and suitable boundary con-

ditions.

The time-domain telegrapher’s equations are usually

more than we need or want. If we are only interested

in the response to a sinusoidal stimulus, then

considerable simplification is possible using phasor

representation.2 First we define phasors Ṽ (z) and

Ĩ(z) through the usual relationship:

v(z, t) = Re
{
Ṽ (z) ejωt

}
(3.7)

i(z, t) = Re
{
Ĩ(z) ejωt

}
(3.8)

Now we see:

∂

∂z
v(z, t) =

∂

∂z
Re
{
Ṽ (z) ejωt

}

= Re

{[
∂

∂z
Ṽ (z)

]
ejωt

}

2For a refresher on phasor analysis, see Section 1.5.

In other words, ∂v(z, t)/∂z expressed in phasor

representation is simply ∂Ṽ (z)/∂z; and

∂

∂t
i(z, t) =

∂

∂t
Re
{
Ĩ(z) ejωt

}

= Re

{
∂

∂t

[
Ĩ(z)ejωt

]}

= Re
{[
jωĨ(z)

]
ejωt

}

In other words, ∂i(z, t)/∂t expressed in phasor

representation is jωĨ(z). Therefore, Equation 3.3

expressed in phasor representation is:

− ∂

∂z
Ṽ (z) = [R′ + jωL′] Ĩ(z) (3.9)

Following the same procedure, Equation 3.6

expressed in phasor representation is found to be:

− ∂

∂z
Ĩ(z) = [G′ + jωC ′] Ṽ (z) (3.10)

Equations 3.9 and 3.10 are the telegrapher’s

equations in phasor representation.

The principal advantage of these equations over the

time-domain versions is that we no longer need to

contend with derivatives with respect to time – only

derivatives with respect to distance remain. This

considerably simplifies the equations.

Additional Reading:

• “Telegrapher’s equations” on Wikipedia.

• “Kirchhoff’s circuit laws” on Wikipedia.

https://en.wikipedia.org/wiki/Telegrapher's_equations
https://en.wikipedia.org/wiki/Kirchhoff's_circuit_laws
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3.6 Wave Equation for a TEM

Transmission Line

[m0027]

Consider a TEM transmission line aligned along the z
axis. The phasor form of the Telegrapher’s Equations

(Section 3.5) relate the potential phasor Ṽ (z) and the

current phasor Ĩ(z) to each other and to the

lumped-element model equivalent circuit parameters

R′, G′, C ′, and L′. These equations are

− ∂

∂z
Ṽ (z) = [R′ + jωL′] Ĩ(z) (3.11)

− ∂

∂z
Ĩ(z) = [G′ + jωC ′] Ṽ (z) (3.12)

An obstacle to using these equations is that we

require both equations to solve for either the potential

or the current. In this section, we reduce these

equations to a single equation – a wave equation –

that is more convenient to use and provides some

additional physical insight.

We begin by differentiating both sides of

Equation 3.11 with respect to z, yielding:

− ∂2

∂z2
Ṽ (z) = [R′ + jωL′]

∂

∂z
Ĩ(z) (3.13)

Then using Equation 3.12 to eliminate Ĩ(z), we obtain

− ∂2

∂z2
Ṽ (z) = − [R′ + jωL′] [G′ + jωC ′] Ṽ (z)

(3.14)

This equation is normally written as follows:

∂2

∂z2
Ṽ (z)− γ2 Ṽ (z) = 0 (3.15)

where we have made the substitution:

γ2 = (R′ + jωL′) (G′ + jωC ′) (3.16)

The principal square root of γ2 is known as the

propagation constant:

γ ,
√
(R′ + jωL′) (G′ + jωC ′) (3.17)

The propagation constant γ (units of m−1) cap-

tures the effect of materials, geometry, and fre-

quency in determining the variation in potential

and current with distance on a TEM transmission

line.

Following essentially the same procedure but

beginning with Equation 3.12, we obtain

∂2

∂z2
Ĩ(z)− γ2 Ĩ(z) = 0 (3.18)

Equations 3.15 and 3.18 are the wave equations

for Ṽ (z) and Ĩ(z), respectively.

Note that both Ṽ (z) and Ĩ(z) satisfy the same linear

homogeneous differential equation. This does not

mean that Ṽ (z) and Ĩ(z) are equal. Rather, it means

that Ṽ (z) and Ĩ(z) can differ by no more than a

multiplicative constant. Since Ṽ (z) is potential and

Ĩ(z) is current, that constant must be an impedance.

This impedance is known as the characteristic

impedance and is determined in Section 3.7.

The general solutions to Equations 3.15 and 3.18 are

Ṽ (z) = V +
0 e

−γz + V −
0 e

+γz (3.19)

Ĩ(z) = I+0 e
−γz + I−0 e

+γz (3.20)

where V +
0 , V −

0 , I+0 , and I−0 are complex-valued

constants. It is shown in Section 3.8 that

Equations 3.19 and 3.20 represent sinusoidal waves

propagating in the +z and −z directions along the

length of the line. The constants may represent

sources, loads, or simply discontinuities in the

materials and/or geometry of the line. The values of

the constants are determined by boundary conditions;

i.e., constraints on Ṽ (z) and Ĩ(z) at some position(s)

along the line.

The reader is encouraged to verify that the

Equations 3.19 and 3.20 are in fact solutions to

Equations 3.15 and 3.18, respectively, for any values

of the constants V +
0 , V −

0 , I+0 , and I−0 .
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3.7 Characteristic Impedance

[m0052]

Characteristic impedance is the ratio of voltage to

current for a wave that is propagating in single

direction on a transmission line. This is an important

parameter in the analysis and design of circuits and

systems using transmission lines. In this section, we

formally define this parameter and derive an

expression for this parameter in terms of the

equivalent circuit model introduced in Section 3.4.

Consider a transmission line aligned along the z axis.

Employing some results from Section 3.6, recall that

the phasor form of the wave equation in this case is

∂2

∂z2
Ṽ (z)− γ2 Ṽ (z) = 0 (3.21)

where

γ ,
√

(R′ + jωL′) (G′ + jωC ′) (3.22)

Equation 3.21 relates the potential phasor Ṽ (z) to the

equivalent circuit parameters R′, G′, C ′, and L′. An

equation of the same form relates the current phasor

Ĩ(z) to the equivalent circuit parameters:

∂2

∂z2
Ĩ(z)− γ2 Ĩ(z) = 0 (3.23)

Since both Ṽ (z) and Ĩ(z) satisfy the same linear

homogeneous differential equation, they may differ

by no more than a multiplicative constant. Since Ṽ (z)

is potential and Ĩ(z) is current, that constant can be

expressed in units of impedance. Specifically, this is

the characteristic impedance, so-named because it

depends only on the materials and cross-sectional

geometry of the transmission line – i.e., things which

determine γ – and not length, excitation, termination,

or position along the line.

To derive the characteristic impedance, first recall that

the general solutions to Equations 3.21 and 3.23 are

Ṽ (z) = V +
0 e

−γz + V −
0 e

+γz (3.24)

Ĩ(z) = I+0 e
−γz + I−0 e

+γz (3.25)

where V +
0 , V −

0 , I+0 , and I−0 are complex-valued

constants whose values are determined by boundary

conditions; i.e., constraints on Ṽ (z) and Ĩ(z) at some

position(s) along the line. Also, we will make use of

the telegrapher’s equations (Section 3.5):

− ∂

∂z
Ṽ (z) = [R′ + jωL′] Ĩ(z) (3.26)

− ∂

∂z
Ĩ(z) = [G′ + jωC ′] Ṽ (z) (3.27)

We begin by differentiating Equation 3.24 with

respect to z, which yields

∂

∂z
Ṽ (z) = −γ

[
V +
0 e

−γz − V −
0 e

+γz
]

(3.28)

Now we use this this to eliminate ∂Ṽ (z)/∂z in

Equation 3.26, yielding

γ
[
V +
0 e

−γz − V −
0 e

+γz
]
= [R′ + jωL′] Ĩ(z) (3.29)

Solving the above equation for Ĩ(z) yields:

Ĩ(z) =
γ

R′ + jωL′

[
V +
0 e

−γz − V −
0 e

+γz
]

(3.30)

Comparing this to Equation 3.25, we note

I+0 =
γ

R′ + jωL′
V +
0 (3.31)

I−0 =
−γ

R′ + jωL′
V −
0 (3.32)

We now make the substitution

Z0 =
R′ + jωL′

γ
(3.33)

and observe

V +
0

I+0
=

−V −
0

I−0
, Z0 (3.34)

As anticipated, we have found that coefficients in the

equations for potentials and currents are related by an

impedance, namely, Z0.

Characteristic impedance can be written entirely in

terms of the equivalent circuit parameters by

substituting Equation 3.22 into Equation 3.33,

yielding:

Z0 =

√
R′ + jωL′

G′ + jωC ′
(3.35)
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The characteristic impedance Z0 (Ω) is the ratio

of potential to current in a wave traveling in a

single direction along the transmission line.

Take care to note that Z0 is not the ratio of Ṽ (z) to

Ĩ(z) in general; rather, Z0 relates only the potential

and current waves traveling in the same direction.

Finally, note that transmission lines are normally

designed to have a characteristic impedance that is

completely real-valued – that is, with no imaginary

component. This is because the imaginary component

of an impedance represents energy storage (think of

capacitors and inductors), whereas the purpose of a

transmission line is energy transfer.

Additional Reading:

• “Characteristic impedance” on Wikipedia.

3.8 Wave Propagation on a TEM

Transmission Line

[m0080]

In Section 3.6, it is shown that expressions for the

phasor representations of the potential and current

along a transmission line are

Ṽ (z) = V +
0 e

−γz + V −
0 e

+γz (3.36)

Ĩ(z) = I+0 e
−γz + I−0 e

+γz (3.37)

where γ is the propagation constant and it assumed

that the transmission line is aligned along the z axis.

In this section, we demonstrate that these expressions

represent sinusoidal waves, and point out some

important features. Before attempting this section, the

reader should be familiar with the contents of

Sections 3.4, 3.6, and 3.7. A refresher on fundamental

wave concepts (Section 1.3) may also be helpful.

We first define real-valued quantities α and β to be

the real and imaginary components of γ; i.e.,

α , Re {γ} (3.38)

β , Im {γ} (3.39)

and subsequently

γ = α+ jβ (3.40)

Then we observe

e±γz = e±(α+jβ)z = e±αz e±jβz (3.41)

It may be easier to interpret this expression by

reverting to the time domain:

Re
{
e±γzejωt

}
= e±αz cos (ωt± βz) (3.42)

Thus, e−γz represents a damped sinusoidal wave

traveling in the +z direction, and e+γz represents a

damped sinusoidal wave traveling in the −z direction.

Let’s define Ṽ +(z) and Ĩ+(z) to be the potential and

current associated with a wave propagating in the +z
direction. Then:

Ṽ +(z) , V +
0 e

−γz (3.43)

https://en.wikipedia.org/wiki/Characteristic_impedance
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Figure 3.12: The potential v+(z, t) of the wave travel-

ing in the +z direction at t = 0 for ψ = 0.

or equivalently in the time domain:

v+(z, t) = Re
{
Ṽ +(z) ejωt

}

= Re
{
V +
0 e

−γzejωt
}

=
∣∣V +

0

∣∣ e−αz cos (ωt− βz + ψ) (3.44)

where ψ is the phase of V +
0 . Figure 3.12 shows

v+(z, t). From fundamental wave theory we

recognize

β , Im {γ} (rad/m) is the phase propaga-

tion constant, which is the rate at which phase

changes as a function of distance.

Subsequently the wavelength in the line is

λ =
2π

β
(3.45)

Also we recognize:

α , Re {γ} (1/m) is the attenuation constant,

which is the rate at which magnitude diminishes

as a function of distance.

Sometimes the units of α are indicated as “Np/m”

(“nepers” per meter), where the term “neper” is used

to indicate the units of the otherwise unitless

real-valued exponent of the constant e.

Note that α = 0 for a wave that does not diminish in

magnitude with increasing distance, in which case the

transmission line is said to be lossless. If α > 0 then

the line is said to be lossy (or possibly “low loss” if

the loss can be neglected), and in this case the rate at

which the magnitude decreases with distance

increases with α.

Next let us consider the speed of the wave. To answer

this question, we need to be a bit more specific about

what we mean by “speed.” At the moment, we mean

phase velocity; that is, the speed at which a point of

constant phase seems to move through space. In other

words, what distance ∆z does a point of constant

phase traverse in time ∆t? To answer this question,

we first note that the phase of v+(z, t) can be written

generally as

ωt− βz + φ

where φ is some constant. Similarly, the phase at

some time ∆t later and some point ∆z further along

can be written as

ω (t+∆t)− β (z +∆z) + φ

The phase velocity vp is ∆z/∆t when these two

phases are equal; i.e., when

ωt− βz + φ = ω (t+∆t)− β (z +∆z) + φ

Solving for vp = ∆z/∆t, we obtain:

vp =
ω

β
(3.46)

Having previously noted that β = 2π/λ, the above

expression also yields the expected result

vp = λf (3.47)

The phase velocity vp = ω/β = λf is the speed

at which a point of constant phase travels along

the line.

Returning now to consider the current associated with

the wave traveling in the +z direction:

Ĩ+(z) = I+0 e
−γz (3.48)

We can rewrite this expression in terms of the

characteristic impedance Z0, as follows:

Ĩ+(z) =
V +
0

Z0
e−γz (3.49)
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Similarly, we find that the current Ĩ−(z) associated

with Ṽ −(z) for the wave traveling in the −z direction

is

Ĩ−(z) =
−V −

0

Z0
e−γz (3.50)

The negative sign appearing in the above expression

emerges as a result of the sign conventions used for

potential and current in the derivation of the

telegrapher’s equations (Section 3.5). The physical

significance of this change of sign is that wherever the

potential of the wave traveling in the −z direction is

positive, then the current at the same point is flowing

in the −z direction.

It is frequently necessary to consider the possibility

that waves travel in both directions simultaneously. A

very important case where this arises is when there is

reflection from a discontinuity of some kind; e.g.,

from a termination which is not perfectly

impedance-matched. In this case, the total potential

Ṽ (z) and total current Ĩ(z) can be expressed as the

general solution to the wave equation; i.e., as the sum

of the “incident” (+z-traveling) wave and the

reflected (−z-traveling) waves:

Ṽ (z) = Ṽ +(z) + Ṽ −(z) (3.51)

Ĩ(z) = Ĩ+(z) + Ĩ−(z) (3.52)

The existence of waves propagating simultaneously in

both directions gives rise to a phenomenon known as

a standing wave. Standing waves and the calculation

of the coefficients V −
0 and I−0 due to reflection are

addressed in Sections 3.13 and 3.12 respectively.

3.9 Lossless and Low-Loss

Transmission Lines

[m0083]

Quite often the loss in a transmission line is small

enough that it may be neglected. In this case, several

aspects of transmission line theory may be simplified.

In this section, we present these simplifications.

First, recall that “loss” refers to the reduction of

magnitude as a wave propagates through space. In the

lumped-element equivalent circuit model

(Section 3.4), the parameters R′ and G′ of the

represent physical mechanisms associated with loss.

Specifically, R′ represents the resistance of

conductors, whereas G′ represents the undesirable

current induced between conductors through the

spacing material. Also recall that the propagation

constant γ is, in general, given by

γ ,
√
(R′ + jωL′) (G′ + jωC ′) (3.53)

With this in mind, we now define “low loss” as

meeting the conditions:

R′ ≪ ωL′ (3.54)

G′ ≪ ωC ′ (3.55)

When these conditions are met, the propagation

constant simplifies as follows:

γ ≈
√
(jωL′) (jωC ′)

=
√
−ω2L′C ′

= jω
√
L′C ′ (3.56)

and subsequently

α , Re {γ} ≈ 0 (low-loss approx.) (3.57)

β , Im {γ} ≈ ω
√
L′C ′ (low-loss approx.) (3.58)

vp = ω/β ≈ 1√
L′C ′

(low-loss approx.) (3.59)

Similarly:

Z0 =

√
R′ + jωL′

G′ + jωC ′
≈
√
L′

C ′
(low-loss approx.)

(3.60)
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Of course if the line is strictly lossless (i.e.,

R′ = G′ = 0) then these are not approximations, but

rather the exact expressions.

In practice, these approximations are quite commonly

used, since practical transmission lines typically meet

the conditions expressed in Inequalities 3.54 and 3.55

and the resulting expressions are much simpler. We

further observe that Z0 and vp are approximately

independent of frequency when these conditions hold.

However, also note that “low loss” does not mean “no

loss,” and it is common to apply these expressions

even when R′ and/or G′ is large enough to yield

significant loss. For example, a coaxial cable used to

connect an antenna on a tower to a radio near the

ground typically has loss that is important to consider

in the analysis and design process, but nevertheless

satisfies Equations 3.54 and 3.55. In this case, the

low-loss expression for β is used, but α might not be

approximated as zero.

�sσs

b

a

Figure 3.13: Cross-section of a coaxial transmission

line, indicating design parameters.

3.10 Coaxial Line

[m0143]

Coaxial transmission lines consists of metallic inner

and outer conductors separated by a spacer material

as shown in Figure 3.13. The spacer material is

typically a low-loss dielectric material having

permeability approximately equal to that of free space

(µ ≈ µ0) and permittivity ǫs that may range from

very near ǫ0 (e.g., air-filled line) to 2–3 times ǫ0. The

outer conductor is alternatively referred to as the

“shield,” since it typically provides a high degree of

isolation from nearby objects and electromagnetic

fields. Coaxial line is single-ended3 in the sense that

the conductor geometry is asymmetric and the shield

is normally attached to ground at both ends. These

characteristics make coaxial line attractive for

connecting single-ended circuits in widely-separated

locations and for connecting antennas to receivers and

transmitters.

Coaxial lines exhibit TEM field structure as shown in

Figure 3.14.

Expressions for the equivalent circuit parameters C ′

and L′ for coaxial lines can be obtained from basic

electromagnetic theory. It is shown in Section 5.24

that the capacitance per unit length is

C ′ =
2πǫs

ln (b/a)
(3.61)

where a and b are the radii of the inner and outer

conductors, respectively. Using analysis shown in

3The references in “Additional Reading” at the end of this section

may be helpful if you are not familiar with this concept.
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Figure 3.14: Structure of the electric and magnetic

fields within coaxial line. In this case, the wave is

propagating away from the viewer.

Section 7.14, the inductance per unit length is

L′ =
µ0

2π
ln

(
b

a

)
(3.62)

The loss conductance G′ depends on the conductance

σs of the spacer material, and is given by

G′ =
2πσs

ln (b/a)
(3.63)

This expression is derived in Section 6.5.

The resistance per unit length, R′, is relatively

difficult to quantify. One obstacle is that the inner and

outer conductors typically consist of different

materials or compositions of materials. The inner

conductor is not necessarily a single homogeneous

material; instead, the inner conductor may consist of a

variety of materials selected by trading-off between

conductivity, strength, weight, and cost. Similarly, the

outer conductor is not necessarily homogeneous; for a

variety of reasons, the outer conductor may instead be

a metal mesh, a braid, or a composite of materials.

Another complicating factor is that the resistance of

the conductor varies significantly with frequency,

whereas C ′, L′, and G′ exhibit relatively little

variation from their electro- and magnetostatic values.

These factors make it difficult to devise a single

expression for R′ that is both as simple as those

shown above for the other parameters and generally

applicable. Fortunately, it turns out that the low-loss

conditions R′ ≪ ωL′ and G′ ≪ ωC ′ are often

applicable,4 so that R′ and G′ are important only if it

is necessary to compute loss.

4See Section 3.9 for a reminder about this concept.

Since the low-loss conditions are often met, a

convenient expression for the characteristic

impedance is obtained from Equations 3.61 and 3.62

for L′ and C ′ respectively:

Z0 ≈
√
L′

C ′
(low-loss)

=
1

2π

√
µ0

ǫs
ln
b

a
(3.64)

The spacer permittivity can be expressed as ǫs = ǫrǫ0
where ǫr is the relative permittivity of the spacer

material. Since
√
µ0/ǫ0 is a constant, the above

expression is commonly written

Z0 ≈ 60 Ω√
ǫr

ln
b

a
(low-loss) (3.65)

Thus, it is possible to express Z0 directly in terms of

parameters describing the geometry (a and b) and

material (ǫr) used in the line, without the need to first

compute the values of components in the

lumped-element equivalent circuit model.

Similarly, the low-loss approximation makes it

possible to express the phase velocity νp directly in

terms the spacer permittivity:

νp ≈
1√
L′C ′

(low-loss)

=
c√
ǫr

(3.66)

since c , 1/
√
µ0ǫ0. In other words, the phase

velocity in a low-loss coaxial line is approximately

equal to the speed of electromagnetic propagation in

free space, divided by the square root of the relative

permittivity of the spacer material. Therefore, the

phase velocity in an air-filled coaxial line is

approximately equal to speed of propagation in free

space, but is reduced in a coaxial line using a

dielectric spacer.

Example 3.1. RG-59 Coaxial Cable.

RG-59 is a very common type of coaxial line.

Figure 3.15 shows a section of RG-59 cut away

so as to reveal its structure. The radii are

a ∼= 0.292 mm and b ≈ 1.855 mm (mean),

yielding L′ ≈ 370 nH/m. The spacer material is

polyethylene having ǫr ∼= 2.25, yielding
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C ′ ≈ 67.7 pF/m. The conductivity of

polyethylene is σs ∼= 5.9× 10−5 S/m, yielding

G′ ≈ 200 µS/m. Typical resistance per unit

length R′ is on the order of 0.1 Ω/m near DC,

increasing approximately in proportion to the

square root of frequency.

From the above values, we find that RG-59

satisfies the low-loss criteria R′ ≪ ωL′ for

f ≫ 43 kHz and G′ ≪ ωC ′ for f ≫ 470 kHz.

Under these conditions, we find

Z0 ≈
√
L′/C ′ ∼= 74 Ω. Thus, the ratio of the

potential to the current in a wave traveling in a

single direction on RG-59 is about 74 Ω.

The phase velocity of RG-59 is found to be

vp ≈ 1/
√
L′C ′ ∼= 2× 108 m/s, which is about

67% of c. In other words, a signal that takes 1 ns

to traverse a distance l in free space requires

about 1.5 ns to traverse a length-l section of

RG-59. Since vp = λf , a wavelength in RG-59

is 67% of a wavelength in free space.

Using the expression

γ =
√
(R′ + jωL′) (G′ + jωC ′) (3.67)

with R′ = 0.1 Ω/m, and then taking the real part

to obtain α, we find α ∼ 0.01 m−1. So, for

example, the magnitude of the potential or

current is decreased by about 50% by traveling a

distance of about 70 m. In other words,

e−αl = 0.5 for l ∼ 70 m at relatively low

frequencies, and increases with increasing

frequency.

Additional Reading:

• “Coaxial cable” on Wikipedia. Includes

descriptions and design parameters for a variety

of commonly-encountered coaxial cables.

• “Single-ended signaling” on Wikipedia.

• Sec. 8.7 (“Differential Circuits”) in

S.W. Ellingson, Radio Systems Engineering,

Cambridge Univ. Press, 2016.

c© Arj CC BY SA 3.0

Figure 3.15: RG-59 coaxial line. A: Insulating jacket.

B: Braided outer conductor. C: Dielectric spacer. D:

Inner conductor.

h
W

l

�r

t

�0
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Figure 3.16: Microstrip transmission line structure

and design parameters.

3.11 Microstrip Line

[m0082]

A microstrip transmission line consists of a narrow

metallic trace separated from a metallic ground plane

by a slab of dielectric material, as shown in

Figure 3.16. This is a natural way to implement a

transmission line on a printed circuit board, and so

accounts for an important and expansive range of

applications. The reader should be aware that

microstrip is distinct from stripline, which is a very

different type of transmission line; see “Additional

Reading” at the end of this section for disambiguation

of these terms.

A microstrip line is single-ended5 in the sense that the

5The reference in “Additional Reading” at the end of this section

may be helpful if you are not familiar with this concept.

https://en.wikipedia.org/wiki/Coaxial_cable
https://en.wikipedia.org/wiki/Single-ended_signaling
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
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conductor geometry is asymmetric and the one

conductor – namely, the ground plane – also normally

serves as ground for the source and load.

The spacer material is typically a low-loss dielectric

material having permeability approximately equal to

that of free space (µ ≈ µ0) and relative permittivity ǫr
in the range 2 to about 10 or so.

A microstrip line nominally exhibits TEM field

structure. This structure is shown in Figure 3.17.

Note that electric and magnetic fields exist both in the

dielectric and in the space above the dielectric, which

is typically (but not always) air. This complex field

structure makes it difficult to describe microstrip line

concisely in terms of the equivalent circuit parameters

of the lumped-element model. Instead, expressions

for Z0 directly in terms of h/W and ǫr are typically

used instead. A variety of these expressions are in

common use, representing different approximations

and simplifications. A widely-accepted and

broadly-applicable expression is:6

Z0 ≈ 42.4 Ω√
ǫr + 1

×

ln

[
1 +

4h

W ′

(
Φ+

√
Φ2 +

1 + 1/ǫr
2

π2

)]

(3.68)

where

Φ ,
14 + 8/ǫr

11

(
4h

W ′

)
(3.69)

and W ′ is W adjusted to account for the thickness t
of the microstrip line. Typically t≪W and t≪ h,

for which W ′ ≈W . Simpler approximations for Z0

are also commonly employed in the design and

analysis of microstrip lines. These expressions are

limited in the range of h/W for which they are valid,

and can usually be shown to be special cases or

approximations of Equation 3.68. Nevertheless, they

are sometimes useful for quick “back of the envelope”

calculations.

Accurate expressions for wavelength λ, phase

propagation constant β, and phase velocity vp are

similarly difficult to obtain for waves in microstrip

line. An approximate technique employs a result from

6This is from Wheeler 1977, cited in “Additional Reading” at the

end of this section.

h

W

Figure 3.17: Structure of the electric and magnetic

fields within microstrip line. (The fields outside the

line are possibly significant, complicated, and not

shown.) In this case, the wave is propagating away

from the viewer.

the theory of uniform plane waves in unbounded

media (Equation 9.38 from Section 9.2):

β = ω
√
µǫ (3.70)

It turns out that the electromagnetic field structure in

the space between the conductors is

well-approximated as that of a uniform plane wave in

unbounded media having the same permeability µ0

but a different relative permittivity, which we shall

assign the symbol ǫr,eff (for “effective relative

permittivity”). Then

β ≈ ω
√
µ0 ǫr,eff ǫ0 (low-loss microstrip)

= β0
√
ǫr,eff (3.71)

In other words, the phase propagation constant in a

microstrip line can be approximated as the free-space

phase propagation β0 , ω
√
µ0ǫ0 times a correction

factor
√
ǫr,eff . Then ǫr,eff may be crudely

approximated as follows:

ǫr,eff ≈ ǫr + 1

2
(3.72)

i.e., ǫr,eff is roughly the average of the relative

permittivity of the dielectric slab and the relative

permittivity of free space. The assumption employed

here is that ǫr,eff is approximately the average of

these values because some fraction of the power in

the guided wave is in the dielectric, and the rest is

above the dielectric. Various approximations are

available to improve on this approximation; however,

in practice variations in the value of ǫr for the

dielectric due to manufacturing processes typically

make a more precise estimate irrelevant.
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Using this concept, we obtain

λ =
2π

β
=

2π

β0
√
ǫr,eff

=
λ0√
ǫr,eff

(3.73)

where λ0 is the free-space wavelength c/f . Similarly

the phase velocity vp, can be estimated using the

relationship

vp =
ω

β
=

c
√
ǫr,eff

(3.74)

i.e., the phase velocity in microstrip is slower than c
by a factor of

√
ǫr,eff .

Example 3.2. 50 Ω Microstrip in FR4 Printed

Circuit Boards.

FR4 is a low-loss fiberglass epoxy dielectric that

is commonly used to make printed circuit boards

(see “Additional Reading” at the end of this

section). FR4 circuit board material is

commonly sold in a slab having thickness

h ∼= 1.575 mm with ǫr ∼= 4.5. Let us consider

how we might implement a microstrip line

having Z0 = 50 Ω using this material. Since h
and ǫr are fixed, the only parameter remaining to

set Z0 is W . A bit of experimentation with

Equation 3.68 reveals that h/W ≈ 1/2 yields

Z0 ≈ 50 Ω for ǫr = 4.5. Thus, W should be

about 3.15 mm. The effective relative

permittivity is

ǫr,eff ≈ (4.5 + 1)/2 = 2.75

so the phase velocity for the wave guided by this

line is about c/
√
2.75; i.e., 60% of c. Similarly,

the wavelength of this wave is about 60% of the

free space wavelength.

Additional Reading:

• “Microstrip” on Wikipedia.

• “Printed circuit board” on Wikipedia.

• “Stripline” on Wikipedia.

• “Single-ended signaling” on Wikipedia.

• Sec. 8.7 (“Differential Circuits”) in

S.W. Ellingson, Radio Systems Engineering,

Cambridge Univ. Press, 2016.

• H.A. Wheeler, “Transmission Line Properties of

a Strip on a Dielectric Sheet on a Plane,” IEEE

Trans. Microwave Theory & Techniques, Vol. 25,

No. 8, Aug 1977, pp. 631–47.

• “FR-4” on Wikipedia.

https://en.wikipedia.org/wiki/Microstrip
https://en.wikipedia.org/wiki/Printed_circuit_board
https://en.wikipedia.org/wiki/Stripline
https://en.wikipedia.org/wiki/Single-ended_signaling
https://en.wikipedia.org/wiki/FR-4
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3.12 Voltage Reflection

Coefficient

[m0084]

We now consider the scenario shown in Figure 3.18.

Here a wave arriving from the left along a lossless

transmission line having characteristic impedance Z0

arrives at a termination located at z = 0. The

impedance looking into the termination is ZL, which

may be real-, imaginary-, or complex-valued. The

questions are: Under what circumstances is a

reflection – i.e., a leftward traveling wave – expected,

and what precisely is that wave?

The potential and current of the incident wave are

related by the constant value of Z0. Similarly, the

potential and current of the reflected wave are related

by Z0. Therefore, it suffices to consider either

potential or current. Choosing potential, we may

express the incident wave as

Ṽ +(z) = V +
0 e

−jβz (3.75)

where V +
0 is determined by the source of the wave,

and so is effectively a “given.” Any reflected wave

must have the form

Ṽ −(z) = V −
0 e

+jβz (3.76)

Therefore, the problem is solved by determining the

value of V −
0 given V +

0 , Z0, and ZL.

Considering the situation at z = 0, note that by

Z
L

Z0

I

=0

V

�

+

�
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Figure 3.18: A wave arriving from the left incident on

a termination located at z = 0.

definition we have

ZL ,
ṼL

ĨL
(3.77)

where ṼL and ĨL are the potential across and current

through the termination, respectively. Also, the

potential and current on either side of the z = 0
interface must be equal. Thus,

Ṽ +(0) + Ṽ −(0) = ṼL (3.78)

Ĩ+(0) + Ĩ−(0) = ĨL (3.79)

where Ĩ+(z) and Ĩ−(z) are the currents associated

with Ṽ +(z) and Ṽ −(z), respectively. Since the

voltage and current are related by Z0, Equation 3.79

may be rewritten as follows:

Ṽ +(0)

Z0
− Ṽ −(0)

Z0
= ĨL (3.80)

Evaluating the left sides of Equations 3.78 and 3.80 at

z = 0, we find:

V +
0 + V −

0 = ṼL (3.81)

V +
0

Z0
− V −

0

Z0
= ĨL (3.82)

Substituting these expressions into Equation 3.77 we

obtain:

ZL =
V +
0 + V −

0

V +
0 /Z0 − V −

0 /Z0

(3.83)

Solving for V −
0 we obtain

V −
0 =

ZL − Z0

ZL + Z0
V +
0 (3.84)

Thus, the answer to the question posed earlier is that

V −
0 = ΓV +

0 , where (3.85)

Γ ,
ZL − Z0

ZL + Z0
(3.86)

The quantity Γ is known as the voltage reflection

coefficient. Note that when ZL = Z0, Γ = 0 and

therefore V −
0 = 0. In other words,
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If the terminating impedance is equal to the char-

acteristic impedance of the transmission line,

then there is no reflection.

If, on the other hand, ZL 6= Z0, then |Γ| > 0,

V −
0 = ΓV +

0 , and a leftward-traveling reflected wave

exists.

Since ZL may be real-, imaginary-, or

complex-valued, Γ too may be real-, imaginary-, or

complex-valued. Therefore, V −
0 may be different

from V +
0 in magnitude, sign, or phase.

Note also that Γ is not the ratio of I−0 to I+0 . The ratio

of the current coefficients is actually −Γ. It is quite

simple to show this with a simple modification to the

above procedure and is left as an exercise for the

student.

Summarizing:

The voltage reflection coefficient Γ, given by

Equation 3.86, determines the magnitude and

phase of the reflected wave given the incident

wave, the characteristic impedance of the trans-

mission line, and the terminating impedance.

[m0085]

We now consider values of Γ that arise for

commonly-encountered terminations.

Matched Load (ZL = Z0). In this case, the

termination may be a device with impedance Z0, or

the termination may be another transmission line

having the same characteristic impedance. When

ZL = Z0, Γ = 0 and there is no reflection.

Open Circuit. An “open circuit” is the absence of a

termination. This condition implies ZL → ∞, and

subsequently Γ → +1. Since the current reflection

coefficient is −Γ, the reflected current wave is 180◦

out of phase with the incident current wave, making

the total current at the open circuit equal to zero, as

expected.

Short Circuit. “Short circuit” means ZL = 0, and

subsequently Γ = −1. In this case, the phase of Γ is

180◦, and therefore, the potential of the reflected

wave cancels the potential of the incident wave at the

open circuit, making the total potential equal to zero,

as it must be. Since the current reflection coefficient

is −Γ = +1 in this case, the reflected current wave is

in phase with the incident current wave, and the

magnitude of the total current at the short circuit

non-zero as expected.

Purely Reactive Load. A purely reactive load,

including that presented by a capacitor or inductor,

has ZL = jX where X is reactance. In particular, an

inductor is represented by X > 0 and a capacitor is

represented by X < 0. We find

Γ =
−Z0 + jX

+Z0 + jX
(3.87)

The numerator and denominator have the same

magnitude, so |Γ| = 1. Let φ be the phase of the

denominator (+Z0 + jX). Then, the phase of the

numerator is π − φ. Subsequently, the phase of Γ is

(π − φ)− φ = π− 2φ. Thus, we see that the phase of

Γ is no longer limited to be 0◦ or 180◦, but can be any

value in between. The phase of reflected wave is

subsequently shifted by this amount.

Other Terminations. Any other termination,

including series and parallel combinations of any

number of devices, can be expressed as a value of ZL
which is, in general, complex-valued. The associated
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value of |Γ| is limited to the range 0 to 1. To see this,

note:

Γ =
ZL − Z0

ZL + Z0
=
ZL/Z0 − 1

ZL/Z0 + 1
(3.88)

Note that the smallest possible value of |Γ| occurs

when the numerator is zero; i.e., when ZL = Z0.

Therefore, the smallest value of |Γ| is zero. The

largest possible value of |Γ| occurs when

ZL/Z0 → ∞ (i.e., an open circuit) or when

ZL/Z0 = 0 (a short circuit); the result in either case

is |Γ| = 1. Thus,

0 ≤ |Γ| ≤ 1 (3.89)

3.13 Standing Waves

[m0086]

A standing wave consists of waves moving in op-

posite directions. These waves add to make a

distinct magnitude variation as a function of dis-

tance that does not vary in time.

To see how this can happen, first consider that an

incident wave V +
0 e

−jβz , which is traveling in the +z
axis along a lossless transmission line. Associated

with this wave is a reflected wave

V −
0 e

+jβz = ΓV +
0 e

+jβz , where Γ is the voltage

reflection coefficient. These waves add to make the

total potential

Ṽ (z) = V +
0 e

−jβz + ΓV +
0 e

+jβz

= V +
0

(
e−jβz + Γe+jβz

) (3.90)

The magnitude of Ṽ (z) is most easily found by first

finding |Ṽ (z)|2, which is:

Ṽ (z)Ṽ ∗(z)

=|V +
0 |2

(
e−jβz + Γe+jβz

) (
e−jβz + Γe+jβz

)∗

=|V +
0 |2

(
e−jβz + Γe+jβz

) (
e+jβz + Γ∗e−jβz

)

=|V +
0 |2

(
1 + |Γ|2 + Γe+j2βz + Γ∗e−j2βz

)
(3.91)

Let φ be the phase of Γ; i.e.,

Γ = |Γ| ejφ (3.92)

Then, continuing from the previous expression:

|V +
0 |2

(
1 + |Γ|2 + |Γ| e+j(2βz+φ) + |Γ| e−j(2βz+φ)

)

=|V +
0 |2

(
1 + |Γ|2 + |Γ|

[
e+j(2βz+φ) + e−j(2βz+φ)

])

(3.93)

The quantity in square brackets can be reduced to a

cosine function using the identity

cos θ =
1

2

[
ejθ + e−jθ

]

yielding:

|V +
0 |2

[
1 + |Γ|2 + 2 |Γ| cos (2βz + φ)

]
(3.94)

Recall that this is |Ṽ (z)|2. |Ṽ (z)| is therefore the

square root of the above expression:

∣∣∣Ṽ (z)
∣∣∣ = |V +

0 |
√
1 + |Γ|2 + 2 |Γ| cos (2βz + φ)

(3.95)

Thus, we have found that the magnitude of the

resulting total potential varies sinusoidally along the

line. This is referred to as a standing wave because

the variation of the magnitude of the phasor resulting

from the interference between the incident and

reflected waves does not vary with time.

We may perform a similar analysis of the current,

leading to:

∣∣∣Ĩ(z)
∣∣∣ =

|V +
0 |
Z0

√
1 + |Γ|2 − 2 |Γ| cos (2βz + φ)

(3.96)

Again we find the result is a standing wave.

Now let us consider the outcome for a few special

cases.

Matched load. When the impedance of the

termination of the transmission line, ZL, is equal to

the characteristic impedance of the transmission line,

Z0, Γ = 0 and there is no reflection. In this case, the

above expressions reduce to |Ṽ (z)| = |V +
0 | and

|Ĩ(z)| = |V +
0 |/Z0, as expected.

Open or Short-Circuit. In this case, Γ = ±1 and

we find:
∣∣∣Ṽ (z)

∣∣∣ = |V +
0 |
√

2 + 2 cos (2βz + φ) (3.97)
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Figure 3.19: Standing wave associated with an open-

circuit termination at z = 0 (incident wave arrives

from left).

∣∣∣Ĩ(z)
∣∣∣ =

|V +
0 |
Z0

√
2− 2 cos (2βz + φ) (3.98)

where φ = 0 for an open circuit and φ = π for a short

circuit. The result for an open circuit termination is

shown in Figure 3.19(a) (potential) and 3.19(b)

(current). The result for a short circuit termination is

identical except the roles of potential and current are

reversed. In either case, note that voltage maxima

correspond to current minima, and vice versa.

Also note:

The period of the standing wave is λ/2; i.e., one-

half of a wavelength.

This can be confirmed as follows. First, note that the

frequency argument of the cosine function of the

standing wave is 2βz. This can be rewritten as
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Figure 3.20: Standing waves associated with loads

exhibiting various reflection coefficients. In this figure

the incident wave arrives from the right.

2π (β/π) z, so the frequency of variation is β/π and

the period of the variation is π/β. Since β = 2π/λ,

we see that the period of the variation is λ/2.

Furthermore, this is true regardless of the value of Γ.

Mismatched loads. A common situation is that the

termination is neither perfectly-matched (Γ = 0) nor

an open/short circuit (|Γ| = 1). Examples of the

resulting standing waves are shown in Figure 3.20.

Additional Reading:

• “Standing Wave” on Wikipedia.

https://en.wikipedia.org/wiki/Standing_wave
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3.14 Standing Wave Ratio

[m0081]

Precise matching of transmission lines to terminations

is often not practical or possible. Whenever a

significant mismatch exists, a standing wave

(Section 3.13) is apparent. The quality of the match is

commonly expressed in terms of the standing wave

ratio (SWR) of this standing wave.

Standing wave ratio (SWR) is defined as the ratio

of the maximum magnitude of the standing wave

to minimum magnitude of the standing wave.

In terms of the potential:

SWR ,
maximum |Ṽ |
minimum |Ṽ |

(3.99)

SWR can be calculated using a simple expression,

which we shall now derive. In Section 3.13, we found

that:

∣∣∣Ṽ (z)
∣∣∣ = |V +

0 |
√

1 + |Γ|2 + 2 |Γ| cos (2βz + φ)

(3.100)

The maximum value occurs when the cosine factor is

equal to +1, yielding:

max

∣∣∣Ṽ
∣∣∣ = |V +

0 |
√

1 + |Γ|2 + 2 |Γ| (3.101)

Note that the argument of the square root operator is

equal to (1 + |Γ|)2; therefore:

max

∣∣∣Ṽ
∣∣∣ = |V +

0 | (1 + |Γ|) (3.102)

Similarly, the minimum value is achieved when the

cosine factor is equal to −1, yielding:

min

∣∣∣Ṽ
∣∣∣ = |V +

0 |
√
1 + |Γ|2 − 2 |Γ| (3.103)

So:

min

∣∣∣Ṽ
∣∣∣ = |V +

0 | (1− |Γ|) (3.104)

Therefore:

SWR =
1 + |Γ|
1− |Γ| (3.105)
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Figure 3.21: Relationship between SWR and |Γ|.

This relationship is shown graphically in Figure 3.21.

Note that SWR ranges from 1 for perfectly-matched

terminations (Γ = 0) to infinity for open- and

short-circuit terminations (|Γ| = 1).

It is sometimes of interest to find the magnitude of the

reflection coefficient given SWR. Solving

Equation 3.105 for |Γ| we find:

|Γ| = SWR − 1

SWR + 1
(3.106)

SWR is often referred to as the voltage standing wave

ratio (VSWR), although repeating the analysis above

for the current reveals that the current SWR is equal

to potential SWR, so the term “SWR” suffices.

SWR < 2 or so is usually considered a “good match,”

although some applications require SWR < 1.1 or

better, and other applications are tolerant to SWR of 3

or greater.

Example 3.3. Reflection coefficient for various

values of SWR.

What is the reflection coefficient for the

above-cited values of SWR? Using

Equation 3.106, we find:

• SWR = 1.1 corresponds to |Γ| = 0.0476.
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• SWR = 2.0 corresponds to |Γ| = 1/3.

• SWR = 3.0 corresponds to |Γ| = 1/2.

3.15 Input Impedance of a

Terminated Lossless

Transmission Line

[m0087]

Consider Figure 3.22, which shows a lossless

transmission line being driven from the left and which

is terminated by an impedance ZL on the right. If ZL
is equal to the characteristic impedance Z0 of the

transmission line, then the input impedance Zin will

be equal to ZL. Otherwise Zin depends on both ZL
and the characteristics of the transmission line. In this

section, we determine a general expression for Zin in

terms of ZL, Z0, the phase propagation constant β,

and the length l of the line.

Using the coordinate system indicated in Figure 3.22,

the interface between source and transmission line is

located at z = −l. Impedance is defined at the ratio of

potential to current, so:

Zin(l) ,
Ṽ (z = −l)
Ĩ(z = −l)

(3.107)

Now employing expressions for Ṽ (z) and Ĩ(z) from

Section 3.13 with z = −l, we find:

Zin(l) =
V +
0

(
e+jβl + Γe−jβl

)

V +
0 (e+jβl − Γe−jβl) /Z0

= Z0
e+jβl + Γe−jβl

e+jβl − Γe−jβl
(3.108)

Multiplying both numerator and denominator by

Z
L

Z0

=0

z

zC=  lz

l

Z
in

Figure 3.22: A transmission line driven by a source on

the left and terminated by an impedance ZL at z = 0
on the right.
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e−jβl:

Zin(l) = Z0
1 + Γe−j2βl

1− Γe−j2βl
(3.109)

Recall that Γ in the above expression is:

Γ =
ZL − Z0

ZL + Z0
(3.110)

Summarizing:

Equation 3.109 is the input impedance of a

lossless transmission line having characteristic

impedanceZ0 and which is terminated into a load

ZL. The result also depends on the length and

phase propagation constant of the line.

Note that Zin(l) is periodic in l. Since the argument

of the complex exponential factors is 2βl, the

frequency at which Zin(l) varies is β/π; and since

β = 2π/λ, the associated period is λ/2. This is very

useful to keep in mind because it means that all

possible values of Zin(l) are achieved by varying l
over λ/2. In other words, changing l by more than

λ/2 results in an impedance which could have been

obtained by a smaller change in l. Summarizing to

underscore this important idea:

The input impedance of a terminated lossless

transmission line is periodic in the length of the

transmission line, with period λ/2.

Not surprisingly, λ/2 is also the period of the

standing wave (Section 3.13). This is because – once

again – the variation with length is due to the

interference of incident and reflected waves.

Also worth noting is that Equation 3.109 can be

written entirely in terms of ZL and Z0, since Γ
depends only on these two parameters. Here’s that

version of the expression:

Zin(l) = Z0

[
ZL + jZ0 tanβl

Z0 + jZL tanβl

]
(3.111)

This expression can be derived by substituting

Equation 3.110 into Equation 3.109 and is left as an

exercise for the student.

Finally, note that the argument βl appearing

Equations 3.109 and 3.111 has units of radians and is

referred to as electrical length. Electrical length can

be interpreted as physical length expressed with

respect to wavelength and has the advantage that

analysis can be made independent of frequency.
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3.16 Input Impedance for Open-

and Short-Circuit

Terminations

[m0088]

Let us now consider the input impedance of a

transmission line that is terminated in an open- or

short-circuit. Such a transmission line is sometimes

referred to as a stub. First, why consider such a

thing? From a “lumped element” circuit theory

perspective, this would not seem to have any

particular application. However, the fact that this

structure exhibits an input impedance that depends on

length (Section 3.15) enables some very useful

applications.

First, let us consider the question at hand: What is the

input impedance when the transmission line is open-

or short-circuited? For a short circuit, ZL = 0,

Γ = −1, so we find

Zin(l) = Z0
1 + Γe−j2βl

1− Γe−j2βl

= Z0
1− e−j2βl

1 + e−j2βl
(3.112)

Multiplying numerator and denominator by e+jβl we

obtain

Zin(l) = Z0
e+jβl − e−jβl

e+jβl + e−jβl
(3.113)

Now we invoke the following trigonometric identities:

cos θ =
1

2

[
e+jθ + e−jθ

]
(3.114)

sin θ =
1

j2

[
e+jθ − e−jθ

]
(3.115)

Employing these identities, we obtain:

Zin(l) = Z0
j2 (sinβl)

2 (cosβl)
(3.116)

and finally:

Zin(l) = +jZ0 tanβl (3.117)

Figure 3.23(a) shows what’s going on. As expected,

Zin = 0 when l = 0, since this amounts to a short
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(a) Short-circuit termination (ZL = 0).
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(b) Open-circuit termination (ZL → ∞).

Figure 3.23: Input reactance (Im{Zin}) of a stub.

Re{Zin} is always zero.

circuit with no transmission line. Also, Zin varies

periodically with increasing length, with period λ/2.

This is precisely as expected from standing wave

theory (Section 3.13). What is of particular interest

now is that as l → λ/4, we see Zin → ∞.

Remarkably, the transmission line has essentially

transformed the short circuit termination into an open

circuit!

For an open circuit termination, ZL → ∞, Γ = +1,

and we find

Zin(l) = Z0
1 + Γe−j2βl

1− Γe−j2βl

= Z0
1 + e−j2βl

1− e−j2βl
(3.118)
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Following the same procedure detailed above for the

short-circuit case, we find

Zin(l) = −jZ0 cotβl (3.119)

Figure 3.23(b) shows the result for open-circuit

termination. As expected, Zin → ∞ for l = 0, and

the same λ/2 periodicity is observed. What is of

particular interest now is that at l = λ/4 we see

Zin = 0. In this case, the transmission line has

transformed the open circuit termination into a short

circuit.

Now taking stock of what we have determined:

The input impedance of a short- or open-

circuited lossless transmission line is com-

pletely imaginary-valued and is given by Equa-

tions 3.117 and 3.119, respectively.

The input impedance of a short- or open-circuited

lossless transmission line alternates between

open- (Zin → ∞) and short-circuit (Zin = 0)

conditions with each λ/4-increase in length.

Additional Reading:

• “Stub (electronics)” on Wikipedia.

3.17 Applications of Open- and

Short-Circuited

Transmission Line Stubs

[m0145]

The theory of open- and short-circuited transmission

lines – often referred to as stubs – was addressed in

Section 3.16. These structures have important and

wide-ranging applications.

In particular, these structures can be used to replace

discrete inductors and capacitors in certain

applications. To see this, consider the short-circuited

line (Figure 3.23(b) of Section 3.16). Note that each

value of l that is less than λ/4 corresponds to a

particular positive reactance; i.e., the transmission

line “looks” like an inductor. Also note that lengths

between λ/4 and λ/2 result in reactances that are

negative; i.e., the transmission line “looks” like a

capacitor. Thus, it is possible to replace an inductor or

capacitor with a short-circuited transmission line of

the appropriate length. The input impedance of such a

transmission line is identical to that of the inductor or

capacitor at the design frequency. The variation of

reactance with respect to frequency will not be

identical, which may or may not be a concern

depending on the bandwidth and frequency response

requirements of the application. Open-circuited lines

may be used in a similar way.

This property of open- and short-circuited

transmission lines makes it possible to implement

impedance matching circuits (see Section 3.23),

filters, and other devices entirely from transmission

lines, with fewer or no discrete inductors or capacitors

required. Transmission lines do not suffer the

performance limitations of discrete devices at high

frequencies and are less expensive. A drawback of

transmission line stubs in this application is that the

lines are typically much larger than the discrete

devices they are intended to replace.

Example 3.4. Emitter Induction Using

Short-Circuited Line.

In the design of low-noise amplifiers using

https://en.wikipedia.org/wiki/Stub_(electronics)
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bipolar transistors in common-emitter

configuration, it is often useful to introduce a

little inductance between the emitter and ground.

This is known as “inductive degeneration,”

“emitter induction,” or sometimes by other

names. It can be difficult to find suitable

inductors, especially for operation in the UHF

band and higher. However, a microstrip line can

be used to achieve the desired inductive

impedance. Determine the length of a stub that

implements a 2.2 nH inductance at 6 GHz using

microstrip line with characteristic impedance

50 Ω and phase velocity 0.6c.

Solution. At the design frequency, the

impedance looking into this section of line from

the emitter should be equal to that of a 2.2 nH

inductor, which is

+jωL = +j2πfL = +j82.9 Ω. The input

impedance of a short-circuited stub of length l
which is grounded (thus, short-circuited) at the

opposite end is +jZ0 tanβl (Section 3.16).

Setting this equal to +j82.9 Ω and noting that

Z0 = 50 Ω, we find that βl ∼= 1.028 rad. The

phase propagation constant is (Section 3.8):

β =
ω

vp
=

2πf

0.6c
∼= 209.4 rad/m (3.120)

Therefore, the length of the microstrip line is

l = (βl) /β ∼= 4.9 mm.

Additional Reading:

• “Stub (electronics)” on Wikipedia.

3.18 Measurement of

Transmission Line

Characteristics

[m0089]

This section presents a simple technique for

measuring the characteristic impedance Z0, electrical

length βl, and phase velocity vp of a lossless

transmission line. This technique requires two

measurements: the input impedance Zin when the

transmission line is short-circuited and Zin when the

transmission line is open-circuited.

In Section 3.16, it is shown that the input impedance

Zin of a short-circuited transmission line is

Z
(SC)
in = +jZ0 tanβl

and when a transmission line is terminated in an open

circuit, the input impedance is

Z
(OC)
in = −jZ0 cotβl

Observe what happens when we multiply these results

together:

Z
(SC)
in · Z(OC)

in = Z2
0

that is, the product of the measurements Z
(OC)
in and

Z
(SC)
in is simply the square of the characteristic

impedance. Therefore

Z0 =

√
Z

(SC)
in · Z(OC)

in (3.121)

If we instead divide these measurements, we find

Z
(SC)
in

Z
(OC)
in

= − tan2 βl

Therefore:

tanβl =

[
−Z

(SC)
in

Z
(OC)
in

]1/2
(3.122)

If l is known in advance to be less than λ/2, then the

electrical length βl can be determined by taking the

inverse tangent. If l is of unknown length and longer

than λ/2, one must take care to account for the

periodicity of tangent function; in this case, it may not

https://en.wikipedia.org/wiki/Stub_(electronics)
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be possible to unambiguously determine βl. Although

we shall not present the method here, it is possible to

resolve this ambiguity by making multiple

measurements over a range of frequencies.

Once βl is determined, it is simple to determine l
given β, β given l, and then vp. For example, the

phase velocity may be determined by first finding βl
for a known length using the above procedure,

calculating β = (βl) /l, and then vp = ω/β.

3.19 Quarter-Wavelength

Transmission Line

[m0091]

Quarter-wavelength sections of transmission line play

an important role in many systems at radio and optical

frequencies. The remarkable properties of open- and

short-circuited quarter-wave line are presented in

Section 3.16 and should be reviewed before reading

further. In this section, we perform a more general

analysis, considering not just open- and short-circuit

terminations but any terminating impedance, and then

we address some applications.

The general expression for the input impedance of a

lossless transmission line is (Section 3.15):

Zin(l) = Z0
1 + Γe−j2βl

1− Γe−j2βl
(3.123)

Note that when l = λ/4:

2βl = 2 · 2π
λ

· λ
4
= π

Subsequently:

Zin(λ/4) = Z0
1 + Γe−jπ

1− Γe−jπ

= Z0
1− Γ

1 + Γ

(3.124)

Recall that (Section 3.15):

Γ =
ZL − Z0

ZL + Z0
(3.125)

Substituting this expression and then multiplying

numerator and denominator by ZL + Z0, one obtains

Zin(λ/4) = Z0
(ZL + Z0)− (ZL − Z0)

(ZL + Z0) + (ZL − Z0)

= Z0
2Z0

2ZL

(3.126)

Thus,

Zin(λ/4) =
Z2
0

ZL
(3.127)

Note that the input impedance is inversely

proportional to the load impedance. For this reason, a
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l= /4

Figure 3.24: Impedance-matching using a quarter-

wavelength transmission line.

transmission line of length λ/4 is sometimes referred

to as a quarter-wave inverter or simply as a

impedance inverter.

Quarter-wave lines play a very important role in RF

engineering. As impedance inverters, they have the

useful attribute of transforming small impedances into

large impedances, and vice-versa – we’ll come back

to this idea later in this section. First, let’s consider

how quarter-wave lines are used for impedance

matching. Look what happens when we solve

Equation 3.127 for Z0:

Z0 =
√
Zin(λ/4) · ZL (3.128)

This equation indicates that we may match the load

ZL to a source impedance (represented by Zin(λ/4))
simply by making the characteristic impedance equal

to the value given by the above expression and setting

the length to λ/4. The scheme is shown in

Figure 3.24.

Example 3.5. 300-to-50 Ω match using an

quarter-wave section of line.

Design a transmission line segment that matches

300 Ω to 50 Ω at 10 GHz using a quarter-wave

match. Assume microstrip line for which

propagation occurs with wavelength 60% that of

free space.

Solution. The line is completely specified given

its characteristic impedance Z0 and length l. The

length should be one-quarter wavelength with

respect to the signal propagating in the line. The

free-space wavelength λ0 = c/f at 10 GHz is
∼= 3 cm. Therefore, the wavelength of the signal

in the line is λ = 0.6λ0 ∼= 1.8 cm, and the length

of the line should be l = λ/4 ∼= 4.5 mm.

The characteristic impedance is given by

Equation 3.128:

Z0 =
√
300 Ω · 50 Ω ∼= 122.5 Ω (3.129)

This value would be used to determine the width

of the microstrip line, as discussed in

Section 3.11.

It should be noted that for this scheme to yield a

real-valued characteristic impedance, the product of

the source and load impedances must be a real-valued

number. In particular, this method is not suitable if

ZL has a significant imaginary-valued component and

matching to a real-valued source impedance is

desired. One possible workaround in this case is the

two-stage strategy shown in Figure 3.25. In this

scheme, the load impedance is first transformed to a

real-valued impedance using a length l1 of

transmission line. This is accomplished using

Equation 3.123 (quite simple using a numerical

search) or using the Smith chart (see “Additional

Reading” at the end of this section). The characteristic

impedance Z01 of this transmission line is not critical

and can be selected for convenience. Normally, the

smallest value of l1 is desired. This value will always

be less than λ/4 since Zin(l1) is periodic in l1 with

period λ/2; i.e., there are two changes in the sign of

the imaginary component of Zin(l1) as l1 is increased

from zero to λ/2. After eliminating the imaginary

component of ZL in this manner, the real component

of the resulting impedance may then be transformed

using the quarter-wave matching technique described

earlier in this section.

Example 3.6. Matching a patch antenna to

50 Ω.

A particular patch antenna exhibits a source

impedance of ZA = 35 + j35 Ω. (See

“Microstrip antenna” in “Additional Reading” at

the end of this section for some optional reading

on patch antennas.) Interface this antenna to

50 Ω using the technique described above. For

the section of transmission line adjacent to the
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D/4

(completely

real-valued)

Figure 3.25: Impedance-matching a complex-valued

load impedance using quarter-wavelength transmis-

sion line.

patch antenna, use characteristic impedance

Z01 = 50 Ω. Determine the lengths l1 and l2 of

the two segments of transmission line, and the

characteristic impedance Z02 of the second

(quarter-wave) segment.

Solution. The length of the first section of the

transmission line (adjacent to the antenna) is

determined using Equation 3.123:

Z1(l1) = Z01
1 + Γe−j2β1l1

1− Γe−j2β1l1
(3.130)

where β1 is the phase propagation constant for

this section of transmission line and

Γ ,
ZA − Z01

ZA + Z01

∼= −0.0059 + j0.4142 (3.131)

We seek the value of smallest positive value of

β1l1 for which the imaginary part of Z1(l1) is

zero. This can determined using a Smith chart

(see “Additional Reading” at the end of this

section) or simply by a few iterations of

trial-and-error. Either way we find

Z1(β1l1 = 0.793 rad) ∼= 120.719− j0.111 Ω,

which we deem to be close enough to be

acceptable. Note that β1 = 2π/λ, where λ is the

wavelength of the signal in the transmission line.

Therefore

l1 =
β1l1
β1

=
β1l1
2π

λ ∼= 0.126λ (3.132)

The length of the second section of the

transmission line, being a quarter-wavelength

transformer, should be l2 = 0.25λ. Using

Equation 3.128, the characteristic impedance

Z02 of this section of line should be

Z02
∼=
√

(120.719 Ω) (50 Ω) ∼= 77.7 Ω
(3.133)

Discussion. The total length of the matching

structure is l1 + l2 ∼= 0.376λ. A patch antenna

would typically have sides of length about

λ/2 = 0.5λ, so the matching structure is nearly

as big as the antenna itself. At frequencies where

patch antennas are commonly used, and

especially at frequencies in the UHF

(300–3000 MHz) band, patch antennas are often

comparable to the size of the system, so it is not

attractive to have the matching structure also

require a similar amount of space. Thus, we

would be motivated to find a smaller matching

structure.

Although quarter-wave matching techniques are

generally effective and commonly used, they have one

important contraindication, noted above – They often

result in structures that are large. That is, any

structure which employs a quarter-wave match will be

at least λ/4 long, and λ/4 is typically large compared

to the associated electronics. Other transmission line

matching techniques – and in particular, single stub

matching (Section 3.23) – typically result in

structures which are significantly smaller.

The impedance inversion property of

quarter-wavelength lines has applications beyond

impedance matching. The following example

demonstrates one such application:

Example 3.7. RF/DC decoupling in transistor

amplifiers.

Transistor amplifiers for RF applications often

receive DC current at the same terminal which

delivers the amplified RF signal, as shown in

Figure 3.26. The power supply typically has a

low output impedance. If the power supply is

directly connected to the transistor, then the RF
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RF out
(moderate Z)

DC power in

(low E)

Figure 3.26: Use of an inductor to decouple the DC

input power from the RF output signal at the output of

a common-emitter RF amplifier.

will flow predominantly in the direction of the

power supply as opposed to following the

desired path, which exhibits a higher impedance.

This can be addressed using an inductor in series

with the power supply output. This works

because the inductor exhibits low impedance at

DC and high impedance at RF. Unfortunately,

discrete inductors are often not practical at high

RF frequencies. This is because practical

inductors also exhibit parallel capacitance,

which tends to decrease impedance.

A solution is to replace the inductor with a

transmission line having length λ/4 as shown in

Figure 3.27. A wavelength at DC is infinite, so

the transmission line is essentially transparent to

the power supply. At radio frequencies, the line

transforms the low impedance of the power

supply to an impedance that is very large relative

to the impedance of the desired RF path.

Furthermore, transmission lines on printed

circuit boards are much cheaper than discrete

inductors (and are always in stock!).

Additional Reading:

• “Quarter-wavelength impedance transformer” on

Wikipedia.

• “Smith chart” on Wikipedia.

• “Microstrip antenna” on Wikipedia.

RF out

(moderate F)

DC power in

(low G)

H/4

Figure 3.27: Decoupling of DC input power and

RF output signal at the output of a common-emitter

RF amplifier, using a quarter-wavelength transmission

line.

3.20 Power Flow on Transmission

Lines

[m0090]

It is often important to know the power associated

with a wave on a transmission line. The power of the

waves incident upon, reflected by, and absorbed by a

load are each of interest. In this section we shall work

out expressions for these powers and consider some

implications in terms of the voltage reflection

coefficient (Γ) and standing wave ratio (SWR).

Let’s begin by considering a lossless transmission line

that is oriented along the z axis. The time-average

power associated with a sinusoidal wave having

potential v(z, t) and current i(z, t) is

Pav(z) ,
1

T

∫ t0+T

t0

v(z, t) i(z, t) dt (3.134)

where T , 2π/f is one period of the wave and t0 is

the start time for the integration. Since the

time-average power of a sinusoidal signal does not

change with time, t0 may be set equal to zero without

loss of generality.

Let us now calculate the power of a wave incident

from z < 0 on a load impedance ZL at z = 0. We

may express the associated potential and current as

follows:

v+(z, t) =
∣∣V +

0

∣∣ cos (ωt− βz + φ) (3.135)

https://en.wikipedia.org/wiki/Quarter-wave_impedance_transformer
https://en.wikipedia.org/wiki/Smith_chart
https://en.wikipedia.org/wiki/Microstrip_antenna
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i+(z, t) =

∣∣V +
0

∣∣
Z0

cos (ωt− βz + φ) (3.136)

And so the associated time-average power is

P+
av(z) =

1

T

∫ T

0

v+(z, t) i+(z, t) dt

=

∣∣V +
0

∣∣2

Z0
· 1
T

∫ T

0

cos2 (ωt− βz + φ) dt

(3.137)

Employing a well-known trigonometric identity:

cos2 θ =
1

2
+

1

2
cos 2θ (3.138)

we may rewrite the integrand as follows

cos2 (ωt− βz + φ) =
1

2
+

1

2
cos (2 [ωt− βz + φ])

(3.139)

Then integrating over both sides of this quantity

∫ T

0

cos2 (ωt− βz + φ) dt =
T

2
+ 0 (3.140)

The second term of the integral is zero because it is

the integral of cosine over two complete periods.

Subsequently, we see that the position dependence

(here, the dependence on z) is eliminated. In other

words, the power associated with the incident wave is

the same for all z < 0, as expected. Substituting into

Equation 3.137 we obtain:

P+
av =

∣∣V +
0

∣∣2

2Z0
(3.141)

This is the time-average power associated with the

incident wave, measured at any point z < 0 along the

line.

Equation 3.141 gives the time-average power as-

sociated with a wave traveling in a single direc-

tion along a lossless transmission line.

Using precisely the same procedure, we find that the

power associated with the reflected wave is

P−
av =

∣∣ΓV +
0

∣∣2

2Z0
= |Γ|2

∣∣V +
0

∣∣2

2Z0
(3.142)

or simply

P−
av = |Γ|2 P+

av (3.143)

Equation 3.143 gives the time-average power

associated with the wave reflected from an

impedance mismatch.

Now, what is the power PL delivered to the load

impedance ZL? The simplest way to calculate this

power is to use the principle of conservation of

power. Applied to the present problem, this principle

asserts that the power incident on the load must equal

the power reflected plus the power absorbed; i.e.,

P+
av = P−

av + PL (3.144)

Applying the previous equations we obtain:

PL =
(
1− |Γ|2

)
P+
av (3.145)

Equations 3.145 gives the time-average power

transferred to a load impedance, and is equal to

the difference between the powers of the incident

and reflected waves.

Example 3.8. How important is it to match

50 Ω to 75 Ω?

Two impedances which commonly appear in

radio engineering are 50 Ω and 75 Ω. It is not

uncommon to find that it is necessary to connect

a transmission line having a 50 Ω characteristic

impedance to a device, circuit, or system having

a 75 Ω input impedance, or vice-versa. If no

attempt is made to match these impedances,

what fraction of the power will be delivered to

the termination, and what fraction of power will

be reflected? What is the SWR?

Solution. The voltage reflection coefficient

going from 50 Ω transmission line to a 75 Ω load

is

Γ =
75− 50

75 + 50
= +0.2

The fraction of power reflected is |Γ|2 = 0.04,

which is 4%. The fraction of power transmitted

is 1− |Γ|2, which is 96%. Going from a 50 Ω
transmission line to a 75 Ω termination changes

only the sign of Γ, and therefore, the fractions of

reflected and transmitted power remain 4% and
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96%, respectively. In either case (from

Section 3.14):

SWR =
1 + |Γ|
1− |Γ| = 1.5

This is often acceptable, but may not be good

enough in some particular applications. Suffice

it to say that it is not necessarily required to use

an impedance matching device to connect 50 Ω
to 75 Ω devices.

3.21 Impedance Matching:

General Considerations

[m0092]

“Impedance matching” refers to the problem of

transforming a particular impedance ZL into a

modified impedance Zin. The problem of impedance

matching arises because it is not convenient, practical,

or desirable to have all devices in a system operate at

the same input and output impedances. Here are just a

few of the issues:

• It is not convenient or practical to market coaxial

cables having characteristic impedance equal to

every terminating impedance that might be

encountered.

• Different types of antennas operate at different

impedances, and the impedance of most

antennas vary significantly with frequency.

• Different types of amplifiers operate most

effectively at different output impedances. For

example, amplifiers operating as current sources

operate most effectively with low output

impedance, whereas amplifiers operating as

voltage sources operate most effectively with

high output impedances.

• Independently of the above issue, techniques for

the design of transistor amplifiers rely on

intentionally mismatching impedances; i.e.,

matching to an impedance different than that

which maximizes power transfer or minimizes

reflection. In other words, various design goals

are met by applying particular impedances to the

input and output ports of the transistor.7

For all of these reasons, electrical engineers

frequently find themselves with the task of

transforming a particular impedance ZL into a

modified impedance Zin.

The reader is probably already familiar with many

approaches to the impedance matching problem that

7For a concise introduction to this concept, see Chapter 10 of

S.W. Ellingson, Radio Systems Engineering, Cambridge Univ. Press,

2016.
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employ discrete components and do not require

knowledge of electromagnetics.8 To list just a few of

these approaches: transformers, resistive (lossy)

matching, single-reactance matching, and

two-reactance (“L” network) matching. However, all

of these have limitations. Perhaps the most serious

limitations pertain to the performance of discrete

components at high frequencies. Here are just a few

of the most common problems:

• Practical resistors actually behave as ideal

resistors in series with ideal inductors

• Practical capacitors actually behave as ideal

capacitors in series with ideal resistors

• Practical inductors behave as ideal inductors in

parallel with ideal capacitors, and in series with

ideal resistors.

All of this makes the use of discrete components

increasingly difficult with increasing frequency.

One possible solution to these types of problems is to

more precisely model each component, and then to

account for the non-ideal behavior by incorporating

the appropriate models in the analysis and design

process. Alternatively, one may consider ways to

replace particular troublesome components – or, in

some cases, all discrete components – with

transmission line devices. The latter approach is

particularly convenient in circuits implemented on

printed circuit boards at frequencies in the UHF band

and higher, since the necessary transmission line

structures are easy to implement as microstrip lines

and are relatively compact since the wavelength is

relatively small. However, applications employing

transmission lines as components in impedance

matching devices can be found at lower frequencies

as well.

8For an overview, see Chapter 9 of S.W. Ellingson, Radio Sys-

tems Engineering, Cambridge Univ. Press, 2016.

3.22 Single-Reactance Matching

[m0093]

An impedance matching structure can be designed

using a section of transmission line combined with a

discrete reactance, such as a capacitor or an inductor.

In the strategy presented here, the transmission line is

used to transform the real part of the load impedance

or admittance to the desired value, and then the

reactance is used to modify the imaginary part to the

desired value. (Note the difference between this

approach and the quarter-wave technique described in

Section 3.19. In that approach, the first transmission

line is used to zero the imaginary part.) There are two

versions of this strategy, which we will now consider

separately.

The first version is shown in Figure 3.28. The purpose

of the transmission line is to transform the load

impedance ZL into a new impedance Z1 for which

Re{Z1} = Re{Zin}. This can be done by solving the

equation (from Section 3.15)

Re {Z1} = Re

{
Z0

1 + Γe−j2βl

1− Γe−j2βl

}
(3.146)

for l, using a numerical search, or using the Smith

chart.9 The characteristic impedance Z0 and phase

propagation constant β of the transmission line are

independent variables and can be selected for

convenience. Normally, the smallest value of l that

satisfies Equation 3.146 is desired. This value will be

≤ λ/4 because the real part of Z1 is periodic in l with

period λ/4.

After matching the real component of the impedance

in this manner, the imaginary component of Z1 may

then be transformed to the desired value (Im{Zin})

by attaching a reactance Xs in series with the

transmission line input, yielding Zin = Z1 + jXS .

Therefore, we choose

Xs = Im {Zin − Z1} (3.147)

The sign of Xs determines whether this reactance is a

capacitor (Xs < 0) or inductor (Xs > 0), and the

value of this component is determined from Xs and

the design frequency.

9For more about the Smith chart, see “Additional Reading” at the

end of this section.
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Z
L

Z1

Z0

I

jXS

Zin

Figure 3.28: Single-reactance matching with a series

reactance.

Example 3.9. Single reactance in series.

Design a match consisting of a transmission line

in series with a single capacitor or inductor that

matches a source impedance of 50Ω to a load

impedance of 33.9 + j17.6 Ω at 1.5 GHz. The

characteristic impedance and phase velocity of

the transmission line are 50Ω and 0.6c
respectively.

Solution. From the problem statement:

Zin , ZS = 50 Ω and ZL = 33.9 + j17.6 Ω are

the source and load impedances respectively at

f = 1.5 GHz. The characteristic impedance and

phase velocity of the transmission line are

Z0 = 50 Ω and vp = 0.6c respectively.

The reflection coefficient Γ (i.e., ZL with respect

to the characteristic impedance of the

transmission line) is

Γ ,
ZL − Z0

ZL + Z0

∼= −0.142 + j0.239 (3.148)

The length l of the primary line (that is, the one

that connects the two ports of the matching

structure) is determined using the equation:

Re {Z1} = Re

{
Z0

1 + Γe−j2βl

1− Γe−j2βl

}
(3.149)

where here Re {Z1} = Re {ZS} = 50 Ω. So a

more-specific form of the equation that can be

solved for βl (as a step toward finding l) is:

1 = Re

{
1 + Γe−j2βl

1− Γe−j2βl

}
(3.150)

By trial and error (or using the Smith chart if you

prefer) we find βl ∼= 0.408 rad for the primary

line, yielding Z1
∼= 50.0 + j29.0 Ω for the input

impedance after attaching the primary line.

We may now solve for l as follows: Since

vp = ω/β (Section 3.8), we find

β =
ω

vp
=

2πf

0.6c
∼= 52.360 rad/m (3.151)

Therefore l = (βl) /β ∼= 7.8 mm.

The impedance of the series reactance should be

jXs
∼= −j29.0 Ω to cancel the imaginary part of

Z1. Since the sign of this impedance is negative,

it must be a capacitor. The reactance of a

capacitor is −1/ωC, so it must be true that

− 1

2πfC
∼= −29.0 Ω (3.152)

Thus, we find the series reactance is a capacitor

of value C ∼= 3.7 pF.

The second version of the single-reactance strategy is

shown in Figure 3.29. The difference in this scheme

is that the reactance is attached in parallel. In this

case, it is easier to work the problem using admittance

(i.e., reciprocal impedance) as opposed to impedance;

this is because the admittance of parallel reactances is

simply the sum of the associated admittances; i.e.,

Yin = Y1 + jBp (3.153)

where Yin = 1/Zin, Y1 = 1/Z1, and Bp is the

discrete parallel susceptance; i.e., the imaginary part

of the discrete parallel admittance.

So, the procedure is as follows. The transmission line

is used to transform YL into a new admittance Y1 for

which Re{Y1} = Re{Yin}. First, we note that

Y1 ,
1

Z1
= Y0

1− Γe−j2βl

1 + Γe−j2βl
(3.154)

where Y0 , 1/Z0 is characteristic admittance.

Again, the characteristic impedance Z0 and phase
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Figure 3.29: Single-reactance matching with a parallel

reactance.

propagation constant β of the transmission line are

independent variables and can be selected for

convenience. In the present problem, we aim to solve

the equation

Re {Y1} = Re

{
Y0

1− Γe−j2βl

1 + Γe−j2βl

}
(3.155)

for the smallest value of l, using a numerical search or

using the Smith chart. After matching the real

component of the admittances in this manner, the

imaginary component of the resulting admittance may

then be transformed to the desired value by attaching

the susceptance Bp in parallel with the transmission

line input. Since we desire jBp in parallel with Y1 to

be Yin, the desired value is

Bp = Im {Yin − Y1} (3.156)

The sign of Bp determines whether this is a capacitor

(Bp > 0) or inductor (Bp < 0), and the value of this

component is determined from Bp and the design

frequency.

In the following example, we address the same

problem raised in Example 3.9, now using the parallel

reactance approach:

Example 3.10. Single reactance in parallel.

Design a match consisting of a transmission line

in parallel with a single capacitor or inductor

that matches a source impedance of 50Ω to a

load impedance of 33.9 + j17.6 Ω at 1.5 GHz.

The characteristic impedance and phase velocity

of the transmission line are 50Ω and 0.6c
respectively.

Solution. From the problem statement:

Zin , ZS = 50 Ω and ZL = 33.9 + j17.6 Ω are

the source and load impedances respectively at

f = 1.5 GHz. The characteristic impedance and

phase velocity of the transmission line are

Z0 = 50 Ω and vp = 0.6c respectively.

The reflection coefficient Γ (i.e., ZL with respect

to the characteristic impedance of the

transmission line) is

Γ ,
ZL − Z0

ZL + Z0

∼= −0.142 + j0.239 (3.157)

The length l of the primary line (that is, the one

that connects the two ports of the matching

structure) is the solution to:

Re {Y1} = Re

{
Y0

1− Γe−j2βl

1 + Γe−j2βl

}
(3.158)

where here Re {Y1} = Re {1/ZS} = 0.02 mho

and Y0 = 1/Z0 = 0.02 mho. So the equation to

be solved for βl (as a step toward finding l) is:

1 = Re

{
1− Γe−j2βl

1 + Γe−j2βl

}
(3.159)

By trial and error (or the Smith chart) we find

βl ∼= 0.126 rad for the primary line, yielding

Y1 ∼= 0.0200− j0.0116 mho for the input

admittance after attaching the primary line.

We may now solve for l as follows: Since

vp = ω/β (Section 3.8), we find

β =
ω

vp
=

2πf

0.6c
∼= 52.360 rad/m (3.160)

Therefore, l = (βl) /β ∼= 2.4 mm.

The admittance of the parallel reactance should

be jBp ∼= +j0.0116 mho to cancel the

imaginary part of Y1. The associated impedance

is 1/jBp ∼= −j86.3 Ω. Since the sign of this

impedance is negative, it must be a capacitor.

The reactance of a capacitor is −1/ωC, so it
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must be true that

− 1

2πfC
∼= −86.3 Ω (3.161)

Thus, we find the parallel reactance is a

capacitor of value C ∼= 1.2 pF.

Comparing this result to the result from the series

reactance method (Example 3.9), we see that the

necessary length of transmission line is much shorter,

which is normally a compelling advantage. The

tradeoff is that the parallel capacitance is much

smaller and an accurate value may be more difficult to

achieve.

Additional Reading:

• “Smith chart” on Wikipedia.

3.23 Single-Stub Matching

[m0094]

In Section 3.22, we considered impedance matching

schemes consisting of a transmission line combined

with a reactance which is placed either in series or in

parallel with the transmission line. In many problems,

the required discrete reactance is not practical

because it is not a standard value, or because of

non-ideal behavior at the desired frequency (see

Section 3.21 for more about this), or because one

might simply wish to avoid the cost and logistical

issues associated with an additional component.

Whatever the reason, a possible solution is to replace

the discrete reactance with a transmission line “stub”

– that is, a transmission line which has been open- or

short-circuited. Section 3.16 explains how a stub can

replace a discrete reactance. Figure 3.30 shows a

practical implementation of this idea implemented in

microstrip. This section explains the theory, and we’ll

return to this implementation at the end of the section.

Figure 3.31 shows the scheme. This scheme is usually

implemented using the parallel reactance approach, as

depicted in the figure. Although a series reactance

scheme is also possible in principle, it is usually not

as convenient. This is because most transmission

lines use one of their two conductors as a local datum;

e.g., the ground plane of a printed circuit board for

microstrip line is tied to ground, and the outer

conductor (“shield”) of a coaxial cable is usually tied

to ground. This is contrast to a discrete reactance

QRTUVWtor

X[\] ^_`a

bcde

Spinningspark CC BY SA 3.0

Figure 3.30: A practical implementation of a single-

stub impedance match using microstrip transmission

line. Here, the stub is open-circuited.

https://en.wikipedia.org/wiki/Smith_chart
https://creativecommons.org/licenses/by-sa/3.0/deed.en


3.23. SINGLE-STUB MATCHING 67

f
L

h1

i 01

k1

lmn

oin

stub characteristics: q 02 r2 2

stub may be open- or short-circuited

st
ub

Figure 3.31: Single-stub matching.

(such as a capacitor or inductor), which does not

require that either of its terminals be tied to ground.

This issue is avoided in the parallel-attached stub

because the parallel-attached stub and the

transmission line to which it is attached both have one

terminal at ground.

The single-stub matching procedure is essentially the

same as the single parallel reactance method, except

the parallel reactance is implemented using a short- or

open-circuited stub as opposed a discrete inductor or

capacitor. Since parallel reactance matching is most

easily done using admittances, it is useful to express

Equations 3.117 and 3.119 (input impedance of an

open- and short-circuited stub, respectively, from

Section 3.16) in terms of susceptance:

Bp = −Y02 cot (β2l2) short-circuited stub (3.162)

Bp = +Y02 tan (β2l2) open-circuited stub (3.163)

As in the main line, the characteristic impedance

Z02 = 1/Y02 is an independent variable and is chosen

for convenience.

A final question is when should you use a

short-circuited stub, and when should you use an

open-circuited stub? Given no other basis for

selection, the termination that yields the shortest stub

is chosen. An example of an “other basis for

selection” that frequently comes up is whether DC

might be present on the line. If DC is present with the

signal of interest, then a short circuit termination

without some kind of remediation to prevent a short

circuit for DC would certainly be a bad idea.

In the following example we address the same

problem raised in Section 3.22 (Examples 3.9 and

3.10), now using the single-stub approach:

Example 3.11. Single stub matching.

Design a single-stub match that matches a

source impedance of 50Ω to a load impedance of

33.9 + j17.6 Ω. Use transmission lines having

characteristic impedances of 50Ω throughout,

and leave your answer in terms of wavelengths.

Solution. From the problem statement:

Zin , ZS = 50 Ω and ZL = 33.9 + j17.6 Ω are

the source and load impedances respectively.

Z0 = 50 Ω is the characteristic impedance of the

transmission lines to be used. The reflection

coefficient Γ (i.e., ZL with respect to the

characteristic impedance of the transmission

line) is

Γ ,
ZL − Z0

ZL + Z0

∼= −0.142 + j0.239 (3.164)

The length l1 of the primary line (that is, the one

that connects the two ports of the matching

structure) is the solution to the equation (from

Section 3.22):

Re {Y1} = Re

{
Y01

1− Γe−j2β1l1

1 + Γe−j2β1l1

}
(3.165)

where here Re {Y1} = Re {1/ZS} = 0.02 mho

and Y01 = 1/Z0 = 0.02 mho. Also note

2β1l1 = 2

(
2π

λ

)
l1 = 4π

l1
λ

(3.166)

where λ is the wavelength in the transmission

line. So the equation to be solved for l1 is:

1 = Re

{
1− Γe−j4πl1/λ

1 + Γe−j4πl1/λ

}
(3.167)

By trial and error (or using the Smith chart; see

“Additional Reading” at the end of this section)

we find l1 ∼= 0.020λ for the primary line,
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yielding Y1 ∼= 0.0200− j0.0116 mho for the

input admittance after attaching the primary line.

We now seek the shortest stub having an input

admittance of ∼= +j0.0116 mho to cancel the

imaginary part of Y1. For an open-circuited stub,

we need

Bp = +Y0 tan 2πl2/λ ∼= +j0.0116 mho

(3.168)

The smallest value of l2 for which this is true is
∼= 0.084λ. For a short-circuited stub, we need

Bp = −Y0 cot 2πl2/λ ∼= +j0.0116 mho

(3.169)

The smallest positive value of l2 for which this is

true is ∼= 0.334λ; i.e., much longer. Therefore,

we choose the open-circuited stub with

l2 ∼= 0.084λ. Note the stub is attached in parallel

at the source end of the primary line.

Single-stub matching is a very common method for

impedance matching using microstrip lines at

frequences in the UHF band (300-3000 MHz) and

above. In Figure 3.30, the top (visible) traces

comprise one conductor, whereas the ground plane

(underneath, so not visible) comprises the other

conductor. The end of the stub is not connected to the

ground plane, so the termination is an open circuit. A

short circuit termination is accomplished by

connecting the end of the stub to the ground plane

using a via; that is, a plated-through that electrically

connects the top and bottom layers.

Additional Reading:

• “Stub (electronics)” on Wikipedia.

• “Smith chart” on Wikipedia.

• “Via (electronics)” on Wikipedia.

[m0151]

https://en.wikipedia.org/wiki/Stub_(electronics)
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Chapter 4

Vector Analysis

4.1 Vector Arithmetic

[m0006]

A vector is a mathematical object that has both a

scalar part (i.e., a magnitude and possibly a phase), as

well as a direction. Many physical quantities are best

described as vectors. For example, the rate of

movement through space can be described as speed;

i.e., as a scalar having SI base units of m/s. However,

this quantity is more completely described as velocity;

i.e., as a vector whose scalar part is speed and

direction indicates the direction of movement.

Similarly, force is a vector whose scalar part indicates

magnitude (SI base units of N), and direction

indicates the direction in which the force is applied.

Electric and magnetic fields are also best described as

vectors.

In mathematical notation, a real-valued vector A is

said to have a magnitude A = |A| and direction â

such that

A = Aâ (4.1)

where â is a unit vector (i.e., a real-valued vector

having magnitude equal to one) having the same

direction as A. If a vector is complex-valued, then A
is similarly complex-valued.

Cartesian Coordinate System. Fundamentals of

vector arithmetic are most easily grasped using the

Cartesian coordinate system. This system is shown in

Figure 4.1. Note carefully the relative orientation of

the x, y, and z axes. This orientation is important. For

example, there are two directions that are

perpendicular to the z = 0 plane (in which the x- and

y-axes lie), but the +z axis is specified to be one of

y

x

z

stuwx{

c© K. Kikkeri CC BY SA 4.0

Figure 4.1: Cartesian coordinate system.

these in particular.

Position-Fixed vs. Position-Free Vectors. It is often

convenient to describe a position in space as a vector

for which the magnitude is the distance from the

origin of the coordinate system and for which the

direction is measured from the origin toward the

position of interest. This is shown in Figure 4.2.

These position vectors are “position-fixed” in the

sense that they are defined with respect to a single

point in space, which in this case is the origin.

Position vectors can also be defined as vectors that are

defined with respect to some other point in space, in

which case they are considered position-fixed to that

position.

Position-free vectors, on the other hand, are not

defined with respect to a particular point in space. An

Electromagnetics Vol 1. c© 2018 S.W. Ellingson CC BY SA 4.0. https://doi.org/10.21061/electromagnetics-vol-1

https://creativecommons.org/licenses/by-sa/4.0/
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Figure 4.2: Position vectors. The vectors r1 and r1
are position-fixed and refer to particular locations.
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c© K. Kikkeri CC BY SA 4.0

Figure 4.3: Two particles exhibiting the same veloc-

ity. In this case, the velocity vectors v1 and v2 are

position-free and equal.

example is shown in Figure 4.3. Particles 1 m apart

may both be traveling at 2 m/s in the same direction.

In this case, the velocity of each particle can be

described using the same vector, even though the

particles are located at different points in space.

Position-free vectors are said to be equal if they have

the same magnitudes and directions. Position-fixed

vectors, on the other hand, must also be referenced to

the same position (e.g., the origin) to be considered

equal.

Basis Vectors. Each coordinate system is defined in

terms of three basis vectors which concisely describe

�

x

z
y

x

z

c© K. Kikkeri CC BY SA 4.0

Figure 4.4: Basis vectors in the Cartesian coordinate

system.

all possible ways to traverse three-dimensional space.

A basis vector is a position-free unit vector that is

perpendicular to all other basis vectors for that

coordinate system. The basis vectors x̂, ŷ, and ẑ of

the Cartesian coordinate system are shown in

Figure 4.4. In this notation, x̂ indicates the direction

in which x increases most rapidly, ŷ indicates the

direction in which y increases most rapidly, and ẑ

indicates the direction in which z increases most

rapidly. Alternatively, you might interpret x̂, ŷ, and ẑ

as unit vectors that are parallel to the x-, y-, and

z-axes and point in the direction in which values

along each axis increase.

Vectors in the Cartesian Coordinate System. In

Cartesian coordinates, we may describe any vector A

as follows:

A = x̂Ax + ŷAy + ẑAz (4.2)

where Ax, Ay , and Az are scalar quantities describing

the components of A in each of the associated

directions, as shown in Figure 4.5. This description

makes it clear that the magnitude of A is:

|A| =
√
A2
x +A2

y +A2
z (4.3)

and therefore, we can calculate the associated unit

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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Figure 4.5: Components of a vector A in the Carte-

sian coordinate system.

vector as

â =
A

|A| =
A√

A2
x +A2

y +A2
z

= x̂Ax
(
A2
x +A2

y +A2
z

)−1/2

+ ŷAy
(
A2
x +A2

y +A2
z

)−1/2

+ ẑAz
(
A2
x +A2

y +A2
z

)−1/2

(4.4)

Vector Addition and Subtraction. It is common to

add and subtract vectors. For example, vectors

describing two forces A and B applied to the same

point can be described as a single force vector C that

is the sum of A and B; i.e., C = A+B. This

addition is quite simple in the Cartesian coordinate

system:

C = A+B

= (x̂Ax + ŷAy + ẑAz) + (x̂Bx + ŷBy + ẑBz)

= x̂ (Ax +Bx) + ŷ (Ay +By) + ẑ (Az +Bz)

(4.5)

In other words, the x̂ component of C is the sum of

the x̂ components of A and B, and similarly for ŷ

and ẑ. From the above example, it is clear that vector

addition is commutative; i.e.,

A+B = B+A (4.6)

������

r�

r�

r ¡ r¢£r¤

c© K. Kikkeri CC BY SA 4.0

Figure 4.6: Relative position (distance and direction)

between locations identified by their position vectors.

In other words, vectors may be added in any order.

Vector subtraction is defined similarly:

D = A−B

= (x̂Ax + ŷAy + ẑAz)− (x̂Bx + ŷBy + ẑBz)

= x̂ (Ax −Bx) + ŷ (Ay −By) + ẑ (Az −Bz)

(4.7)

In other words, the x̂ component of D is the

difference of the x̂ components of A and B, and

similarly for ŷ and ẑ. Like scalar subtraction, vector

subtraction is not commutative.

Relative Positions and Distances. A common task in

vector analysis is to describe the position of one point

in space relative to a different point in space. Let us

identify those two points using the position vectors r1
and r2, as indicated in Figure 4.6. We may identify a

third vector r12 as the position of r2 relative to r1:

r12 , r2 − r1 (4.8)

Now |r12| is the distance between these points, and

r12/ |r12| is a unit vector indicating the direction to r2
from r1.

Example 4.1. Direction and distance between

positions.

Consider two positions, identified using the

position vectors r1 = 2x̂+ 3ŷ + 1ẑ and

r2 = 1x̂− 2ŷ + 3ẑ, both expressed in units of

meters. Find the direction vector that points

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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from r1 to r2, the distance between these points,

and the associated unit vector.

Solution. The vector that points from r1 to r2 is

R = r2 − r1

= (1− 2)x̂+ (−2− 3)ŷ + (3− 1)ẑ

= −x̂− 5ŷ + 2ẑ (4.9)

The distance between r1 and r2 is simply the

magnitude of this vector:

|R| =
√
(−1)

2
+ (−5)

2
+ (2)

2 ∼= 5.48 m

(4.10)

The unit vector R̂ is simply R normalized to

have unit magnitude:

R̂ = R/ |R|
∼= (−x̂− 5ŷ + 2ẑ) /5.48
∼= −0.182x̂− 0.913ŷ + 0.365ẑ (4.11)

Multiplication of a Vector by a Scalar. Let’s say a

particular force is specified by a vector F. What is the

new vector if this force is doubled? The answer is

simply 2F – that is, twice the magnitude applied in

the same direction. This is an example of scalar

multiplication of a vector. Generalizing, the product

of the scalar α and the vector A is simply αA.

Scalar (“Dot”) Product of Vectors. Another

common task in vector analysis is to determine the

similarity in the direction in which two vectors point.

In particular, it is useful to have a metric which, when

applied to the vectors A = âA and B = b̂B, has the

following properties (see Figure 4.7):

• If A is perpendicular to B, the result is zero.

• If A and B point in the same direction, the result

is AB.

• If A and B point in opposite directions, the

result is −AB.

• Results intermediate to these conditions depend

on the angle ψ between A and B, measured as if

A and B were arranged “tail-to-tail” as shown in

Figure 4.8.

c© K. Kikkeri CC BY SA 4.0

Figure 4.7: Special cases of the dot product.

In vector analysis, this operator is known as the scalar

product (not to be confused with scalar

multiplication) or the dot product. The dot product is

written A ·B and is given in general by the

expression:

A ·B = AB cosψ (4.12)

Note that this expression yields the special cases

previously identified, which are ψ = π/2, ψ = 0, and

ψ = π, respectively. The dot product is commutative;

i.e.,

A ·B = B ·A (4.13)

The dot product is also distributive; i.e.,

A · (B+C) = A ·B+A ·C (4.14)

The dot product has some other useful properties. For

example, note:

A ·A = (x̂Ax + ŷAy + ẑAz) · (x̂Ax + ŷAy + ẑAz)

= x̂ · x̂A2
x + x̂ · ŷAxAy + x̂ · ẑAxAz

+ ŷ · x̂AxAy + ŷ · ŷA2
y + ŷ · ẑAyAz

+ ẑ · x̂AxAz + ẑ · ŷAyAz + ẑ · ẑA2
z

(4.15)

which looks pretty bad until you realize that

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1 (4.16)

https://creativecommons.org/licenses/by-sa/4.0/
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c© K. Kikkeri CC BY SA 4.0

Figure 4.8: Calculation of the dot product.

and any other dot product of basis vectors is zero.

Thus, the whole mess simplifies to:

A ·A = A2
x +A2

y +A2
z (4.17)

This is the square of the magnitude of A, so we have

discovered that

A ·A = |A|2 = A2 (4.18)

Applying the same principles to the dot product of

potentially different vectors A and B, we find:

A ·B = (x̂Ax + ŷAy + ẑAz) · (x̂Bx + ŷBy + ẑBz)

= AxBx +AyBy +AzBz
(4.19)

This is a particularly easy way to calculate the dot

product, since it eliminates the problem of

determining the angle ψ. In fact, an easy way to

calculate ψ given A and B is to first calculate the dot

product using Equation 4.19 and then use the result to

solve Equation 4.12 for ψ.

Example 4.2. Angle between two vectors.

Consider the position vectors C = 2x̂+3ŷ+1ẑ
and D = 3x̂− 2ŷ + 2ẑ, both expressed in units

of meters. Find the angle between these vectors.

Solution. From Equation 4.12

C ·D = CD cosψ (4.20)

where C = |C|, D = |D|, and ψ is the angle we

seek. From Equation 4.19:

C ·D = CxDx + CyDy + CzDz (4.21)

= 2 · 3 + 3 · (−2) + 1 · 2 m2 (4.22)

= 2 m2 (4.23)

also

C =
√
C2
x + C2

y + C2
z
∼= 3.742 m (4.24)

D =
√
D2
x +D2

y +D2
z
∼= 4.123 m (4.25)

so

cosψ =
C ·D
CD

∼= 0.130 (4.26)

Taking the inverse cosine, we find ψ = 82.6◦.

Cross Product. The cross product is a form of vector

multiplication that results in a vector that is

perpendicular to both of the operands. The definition

is as follows:

A×B = n̂AB sinψAB (4.27)

As shown in Figure 4.9, the unit vector n̂ is

determined by the “right hand rule.” Using your right

hand, curl your fingers to traverse the angle ψAB
beginning at A and ending at B, and then n̂ points in

the direction of your fully-extended thumb.

It should be apparent that the cross product is not

commutative but rather is anticommutative; that is,

A×B = −B×A (4.28)

You can confirm this for yourself using either

Equation 4.27 or by applying the right-hand rule.

The cross product is distributive:

A× (B+C) = A×B+A×C (4.29)

There are two useful special cases of the cross

product that are worth memorizing. The first is the

cross product of a vector with itself, which is zero:

A×A = 0 (4.30)

The second is the cross product of vectors that are

perpendicular; i.e., for which ψAB = π/2. In this

https://creativecommons.org/licenses/by-sa/4.0/
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Figure 4.9: The cross product A×B.

x y

z

Figure 4.10: Cross products among basis vectors in

the Cartesian system. The cross product of any two

basis vectors is the third basis vector when the order

of operands is counter-clockwise, as shown in the dia-

gram, and is −1 times the third basis vector when the

order of operands is clockwise with respect to the ar-

rangement in the diagram.

case:

A×B = n̂AB (4.31)

Using these principles, note:

x̂× x̂ = ŷ × ŷ = ẑ× ẑ = 0 (4.32)

whereas

x̂× ŷ = ẑ (4.33)

ŷ × ẑ = x̂ (4.34)

ẑ× x̂ = ŷ (4.35)

A useful diagram that summarizes these relationships

is shown in Figure 4.10.

It is typically awkward to “manually” determine n̂ in

Equation 4.27. However, in Cartesian coordinates the

cross product may be calculated as:

A×B = x̂ (AyBz −AzBy)

+ ŷ (AzBx −AxBz)

+ ẑ (AxBy −AyBx)

(4.36)

This may be easier to remember as a matrix

determinant:

A×B =

∣∣∣∣∣∣

x̂ ŷ ẑ

Ax Ay Az
Bx By Bz

∣∣∣∣∣∣
(4.37)

Similar expressions are available for other coordinate

systems.

Vector analysis routinely requires expressions

involving both dot products and cross products in

different combinations. Often, these expressions may

be simplified, or otherwise made more convenient,

using the vector identities listed in Appendix B.3.

Additional Reading:

• “Vector field” on Wikipedia.

• “Vector algebra” on Wikipedia.

https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Vector_algebra
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4.2 Cartesian Coordinates

[m0004]

The Cartesian coordinate system is introduced in

Section 4.1. Concepts described in that section – i.e.,

the dot product and cross product – are described in

terms of the Cartesian system. In this section, we

identify some additional features of this system that

are useful in subsequent work and also set the stage

for alternative systems; namely the cylindrical and

spherical coordinate systems.

Integration Over Length. Consider a vector field

A = x̂A(r), where r is a position vector. What is the

integral of A over some curve C through space? To

answer this question, we first identify a

differential-length segment of the curve. Note that

this segment of the curve can be described as

dl = x̂dx+ ŷdy + ẑdz (4.38)

The contribution to the integral for that segment of

the curve is simply A · dl. We integrate to obtain the

result; i.e., ∫

C

A · dl (4.39)

For example, if A = x̂A0 (i.e., A(r) is a constant)

and if C is a straight line from x = x1 and x = x2
along some constant y and z, then dl = x̂dx,

A · dl = A0dx, and subsequently the above integral is

∫ x2

x1

A0dx = A0 (x2 − x1) (4.40)

In particular, notice that if A0 = 1, then this integral

gives the length of C. Although the formalism seems

unnecessary in this simple example, it becomes very

useful when integrating over paths that vary in more

than one direction and with more complicated

integrands.

Note that the Cartesian system was an appropriate

choice for preceding example because this allowed

two of the three basis directions (i.e., y and z) to be

immediately eliminated from the calculation. Said

differently, the preceding example is expressed with

the minimum number of varying coordinates in the

Cartesian system. Here’s a counter-example. If C had

been a circle in the z = 0 plane, then the problem

would have required two basis directions to be

considered – namely, both x and y. In this case,

another system – namely, cylindrical coordinates

(Section 4.3) – minimizes the number of varying

coordinates (to just one, which is φ).

Integration Over Area. Now we ask the question,

what is the integral of some vector field A over some

surface S? The answer is
∫

S

A · ds (4.41)

We refer to ds as the differential surface element,

which is a vector having magnitude equal to the

differential area ds, and is normal (perpendicular) to

each point on the surface. There are actually two such

directions. We’ll return to clear up the ambiguity in a

moment. Now, as an example, if A = ẑ and S is the

surface bounded by x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, then

ds = ẑ dx dy (4.42)

since dxdy is differential surface area in the z = 0
plane and ẑ is normal to the z = 0 plane. So

A · ds = dxdy, and subsequently the integral in

Equation 4.41 becomes

∫ x2

x1

∫ y2

y1

dx dy = (x2 − x1) (y2 − y1) (4.43)

Note that this has turned out to be a calculation of

area.

Once again, we see the Cartesian system was an

appropriate choice for this example because this

choice minimizes the number of varying coordinates;

in the above example, the surface of integration is

described by a constant value of z with variable

values of x and y. If the surface had instead been a

cylinder or a sphere, not only would all three basis

directions be variable, but also the surface normal

would be variable, making the problem dramatically

more complicated.

Now let’s return to the issue of the direction of ds.

We chose +ẑ, but why not choose −ẑ – also a normal

to the surface – as this direction? To answer simply,

the resulting area would be negative. “Negative area”

is the expected (“positive”) area, except with respect

to the opposite-facing normal vector. In the present

problem, the sign of the area is not important, but in
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some problems this sign becomes important. One

example of a class of problems for which the sign of

area is important is when the quantity of interest is a

flux. If A were a flux density, then the integration over

area that we just performed indicates the magnitude

and direction of flux, and so the direction chosen for

ds defines the direction of positive flux. Section 2.4

describes the electric field in terms of a flux (i.e., as

electric flux density D), in which case positive flux

flows away from a positively-charged source.

Integration Over Volume. Another common task in

vector analysis is integration of some quantity over a

volume. Since the procedure is the same for scalar or

vector quantities, we shall consider integration of a

scalar quantity A(r) for simplicity. First, we note that

the contribution from a differential volume element

dv = dx dy dz (4.44)

is A(r) dv, so the integral over the volume V is

∫

V

A(r) dv (4.45)

For example, if A(r) = 1 and V is a cube bounded by

x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, and z1 ≤ z ≤ z2, then

the above integral becomes

∫ x2

x1

∫ y2

y1

∫ z2

z1

dx dy dz = (x2 − x1) (y2 − y1) (z2 − z1)

(4.46)

i.e., this is a calculation of volume.

The Cartesian system was an appropriate choice for

this example because V is a cube, which is easy to

describe in Cartesian coordinates and relatively

difficult to describe in any other coordinate system.

Additional Reading:

• “Cartesian coordinate system” on Wikipedia.

4.3 Cylindrical Coordinates

[m0096]

Cartesian coordinates (Section 4.2) are not convenient

in certain cases. One of these is when the problem has

cylindrical symmetry. For example, in the Cartesian

coordinate system, the cross-section of a cylinder

concentric with the z-axis requires two coordinates to

describe: x and y. However, this cross section can be

described using a single parameter – namely the

radius – which is ρ in the cylindrical coordinate

system. This results in a dramatic simplification of

the mathematics in some applications.

The cylindrical system is defined with respect to the

Cartesian system in Figure 4.11. In lieu of x and y,

the cylindrical system uses ρ, the distance measured

from the closest point on the z axis,1 and φ, the angle

measured in a plane of constant z, beginning at the

+x axis (φ = 0) with φ increasing toward the +y
direction.

The basis vectors in the cylindrical system are ρ̂, φ̂,

and ẑ. As in the Cartesian system, the dot product of

like basis vectors is equal to one, and the dot product

of unlike basis vectors is equal to zero. The cross

1Note that some textbooks use “r” in lieu of ρ for this coordinate.
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Figure 4.11: Cylindrical coordinate system and asso-

ciated basis vectors.

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://creativecommons.org/licenses/by-sa/4.0/
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Figure 4.12: Cross products among basis vectors in the

cylindrical system. (See Figure 4.10 for instructions

on the use of this diagram.)

products of basis vectors are as follows:

ρ̂× φ̂ = ẑ (4.47)

φ̂× ẑ = ρ̂ (4.48)

ẑ× ρ̂ = φ̂ (4.49)

A useful diagram that summarizes these relationships

is shown in Figure 4.12.

The cylindrical system is usually less useful than the

Cartesian system for identifying absolute and relative

positions. This is because the basis directions depend

on position. For example, ρ̂ is directed radially

outward from the ẑ axis, so ρ̂ = x̂ for locations along

the x-axis but ρ̂ = ŷ for locations along the y axis.

Similarly, the direction φ̂ varies as a function of

position. To overcome this awkwardness, it is

common to set up a problem in cylindrical

coordinates in order to exploit cylindrical symmetry,

but at some point to convert to Cartesian coordinates.

Here are the conversions:

x = ρ cosφ (4.50)

y = ρ sinφ (4.51)

and z is identical in both systems. The conversion

from Cartesian to cylindrical is as follows:

ρ =
√
x2 + y2 (4.52)

φ = arctan (y, x) (4.53)

where arctan is the four-quadrant inverse tangent

function; i.e., arctan(y/x) in the first quadrant

(x > 0, y > 0), but possibly requiring an adjustment

· ρ̂ φ̂ ẑ

x̂ cosφ − sinφ 0

ŷ sinφ cosφ 0

ẑ 0 0 1

Table 4.1: Dot products between basis vectors in the

cylindrical and Cartesian coordinate systems.

for the other quadrants because the signs of both x
and y are individually significant.2

Similarly, it is often necessary to represent basis

vectors of the cylindrical system in terms of Cartesian

basis vectors and vice-versa. Conversion of basis

vectors is straightforward using dot products to

determine the components of the basis vectors in the

new system. For example, x̂ in terms of the basis

vectors of the cylindrical system is

x̂ = ρ̂ (ρ̂ · x̂) + φ̂
(
φ̂ · x̂

)
+ ẑ (ẑ · x̂) (4.54)

The last term is of course zero since ẑ · x̂ = 0.

Calculation of the remaining terms requires dot

products between basis vectors in the two systems,

which are summarized in Table 4.1. Using this table,

we find

x̂ = ρ̂ cosφ− φ̂ sinφ (4.55)

ŷ = ρ̂ sinφ+ φ̂ cosφ (4.56)

and of course ẑ requires no conversion. Going from

Cartesian to cylindrical, we find

ρ̂ = x̂ cosφ+ ŷ sinφ (4.57)

φ̂ = −x̂ sinφ+ ŷ cosφ (4.58)

Integration Over Length. A differential-length

segment of a curve in the cylindrical system is

described in general as

dl = ρ̂dρ+ φ̂ρdφ+ ẑ dz (4.59)

Note that the contribution of the φ coordinate to

differential length is ρdφ, not simply dφ. This is

because φ is an angle, not a distance. To see why the

associated distance is ρdφ, consider the following.

2Note that this function is available in MATLAB and Octave as

atan2(y,x).
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Figure 4.13: Example in cylindrical coordinates: The

circumference of a circle.

The circumference of a circle of radius ρ is 2πρ. If

only a fraction of the circumference is traversed, the

associated arclength is the circumference scaled by

φ/2π, where φ is the angle formed by the traversed

circumference. Therefore, the distance is

2πρ · φ/2π = ρφ, and the differential distance is ρdφ.

As always, the integral of a vector field A(r) over a

curve C is ∫

C

A · dl (4.60)

To demonstrate the cylindrical system, let us calculate

the integral of A(r) = φ̂ when C is a circle of radius

ρ0 in the z = 0 plane, as shown in Figure 4.13. In this

example, dl = φ̂ ρ0 dφ since ρ = ρ0 and z = 0 are

both constant along C. Subsequently, A · dl = ρ0dφ
and the above integral is

∫ 2π

0

ρ0 dφ = 2πρ0 (4.61)

i.e., this is a calculation of circumference.

Note that the cylindrical system is an appropriate

choice for the preceding example because the

problem can be expressed with the minimum number

of varying coordinates in the cylindrical system. If we

had attempted this problem in the Cartesian system,

we would find that both x and y vary over C, and in a

relatively complex way.3

3Nothing will drive this point home more firmly than trying it. It

can be done, but it’s a lot more work...
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Figure 4.14: Example in cylindrical coordinates: The

area of a circle.

Integration Over Area. Now we ask the question,

what is the integral of some vector field A over a

circular surface S in the z = 0 plane having radius

ρ0? This is shown in Figure 4.14. The differential

surface vector in this case is

ds = ẑ (dρ) (ρdφ) = ẑ ρ dρ dφ (4.62)

The quantities in parentheses are the radial and

angular dimensions, respectively. The direction of ds
indicates the direction of positive flux – see the

discussion in Section 4.2 for an explanation. In

general, the integral over a surface is
∫

S

A · ds (4.63)

To demonstrate, let’s consider A = ẑ; in this case

A · ds = ρ dρ dφ and the integral becomes

∫ ρ0

0

∫ 2π

0

ρ dρ dφ =

(∫ ρ0

0

ρ dρ

)(∫ 2π

0

dφ

)

=

(
1

2
ρ20

)
(2π)

= πρ20
(4.64)

which we recognize as the area of the circle, as

expected. The corresponding calculation in the

Cartesian system is quite difficult in comparison.

Whereas the previous example considered a planar

surface, we might consider instead a curved surface.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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Figure 4.15: Example in cylindrical coordinates: The

area of the curved surface of a cylinder.

Here we go. What is the integral of a vector field

A = ρ̂ over a cylindrical surface S concentric with

the z axis having radius ρ0 and extending from

z = z1 to z = z2? This is shown in Figure 4.15. The

differential surface vector in this case is

ds = ρ̂ (ρ0dφ) (dz) = ρ̂ρ0 dφ dz (4.65)

The integral is

∫

S

A · ds =
∫ 2π

0

∫ z2

z1

ρ0 dφdz

= ρ0

(∫ 2π

0

dφ

)(∫ z2

z1

dz

)

= 2πρ0 (z2 − z1)

(4.66)

which is the area of S , as expected. Once again, the

corresponding calculation in the Cartesian system is

quite difficult in comparison.

Integration Over Volume. The differential volume

element in the cylindrical system is

dv = dρ (ρdφ) dz = ρ dρ dφ dz (4.67)

For example, if A(r) = 1 and the volume V is a

cylinder bounded by ρ ≤ ρ0 and z1 ≤ z ≤ z2, then

∫

V

A(r) dv =

∫ ρ0

0

∫ 2π

0

∫ z2

z1

ρ dρ dφ dz

=

(∫ ρ0

0

ρ dρ

)(∫ 2π

0

dφ

)(∫ z2

z1

dz

)

= πρ20 (z2 − z1)

(4.68)

i.e., area times length, which is volume.

Once again, the procedure above is clearly more

complicated than is necessary if we are interested

only in computing volume. However, if the integrand

is not constant-valued then we are no longer simply

computing volume. In this case, the formalism is

appropriate and possibly necessary.

Additional Reading:

• “Cylindrical coordinate system” on Wikipedia.

https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Cylindrical_coordinate_system
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4.4 Spherical Coordinates

[m0097]

The spherical coordinate system is defined with

respect to the Cartesian system in Figure 4.16. The

spherical system uses r, the distance measured from

the origin;4 θ, the angle measured from the +z axis

toward the z = 0 plane; and φ, the angle measured in

a plane of constant z, identical to φ in the cylindrical

system.

Spherical coordinates are preferred over Cartesian

and cylindrical coordinates when the geometry of the

problem exhibits spherical symmetry. For example, in

the Cartesian coordinate system, the surface of a

sphere concentric with the origin requires all three

coordinates (x, y, and z) to describe. However, this

surface can be described using a single constant

parameter – the radius r – in the spherical coordinate

system. This leads to a dramatic simplification in the

mathematics in certain applications.

4Note that some textbooks use “R” in lieu of r for this coordi-

nate.
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Figure 4.16: Spherical coordinate system and associ-

ated basis vectors.
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Figure 4.17: Cross products among basis vectors in the

spherical system. (See Figure 4.10 for instructions on

the use of this diagram.)

The basis vectors in the spherical system are r̂, θ̂, and

φ̂. As always, the dot product of like basis vectors is

equal to one, and the dot product of unlike basis

vectors is equal to zero. For the cross-products, we

find:

r̂× θ̂ = φ̂ (4.69)

θ̂ × φ̂ = r̂ (4.70)

φ̂× r̂ = θ̂ (4.71)

A useful diagram that summarizes these relationships

is shown in Figure 4.17.

Like the cylindrical system, the spherical system is

often less useful than the Cartesian system for

identifying absolute and relative positions. The

reason is the same: Basis directions in the spherical

system depend on position. For example, r̂ is directed

radially outward from the origin, so r̂ = x̂ for

locations along the x-axis but r̂ = ŷ for locations

along the y axis and r̂ = ẑ for locations along the z
axis. Similarly, the directions of θ̂ and φ̂ vary as a

function of position. To overcome this awkwardness,

it is common to begin a problem in spherical

coordinates, and then to convert to Cartesian

coordinates at some later point in the analysis. Here

are the conversions:

x = r cosφ sin θ (4.72)

y = r sinφ sin θ (4.73)

z = r cos θ (4.74)

The conversion from Cartesian to spherical

https://creativecommons.org/licenses/by-sa/4.0/
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· r̂ θ̂ φ̂
x̂ sin θ cosφ cos θ cosφ − sinφ
ŷ sin θ sinφ cos θ sinφ cosφ
ẑ cos θ − sin θ 0

Table 4.2: Dot products between basis vectors in the

spherical and Cartesian coordinate systems.

coordinates is as follows:

r =
√
x2 + y2 + z2 (4.75)

θ = arccos (z/r) (4.76)

φ = arctan (y, x) (4.77)

(4.78)

where arctan is the four-quadrant inverse tangent

function.5

Dot products between basis vectors in the spherical

and Cartesian systems are summarized in Table 4.2.

This information can be used to convert between basis

vectors in the spherical and Cartesian systems, in the

same manner described in Section 4.3; e.g.

x̂ = r̂ (r̂ · x̂) + θ̂
(
θ̂ · x̂

)
+ φ̂

(
φ̂ · x̂

)
(4.79)

r̂ = x̂ (x̂ · r̂) + ŷ (ŷ · r̂) + ẑ (ẑ · r̂) (4.80)

and so on.

Example 4.3. Cartesian to spherical conversion.

A vector field G = x̂ xz/y. Develop an

expression for G in spherical coordinates.

Solution: Simply substitute expressions in terms

of spherical coordinates for expressions in terms

of Cartesian coordinates. Use Table 4.2 and

Equations 4.72–4.74. Making these substitutions

and applying a bit of mathematical clean-up

afterward, one obtains

G =
(
r̂ sin θ cotφ+ φ̂ cos θ cotφ− φ̂

)

· r cos θ cosφ (4.81)

5Note that this function is available in MATLAB and Octave as

atan2(y,x).
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Figure 4.18: Example in spherical coordinates: Pole-

to-pole distance on a sphere.

Integration Over Length. A differential-length

segment of a curve in the spherical system is

dl = r̂ dr + θ̂ r dθ + φ̂ r sin θ dφ (4.82)

Note that θ is an angle, as opposed to a distance. The

associated distance is r dθ in the θ direction. Note

also that in the φ direction, distance is r dφ in the

z = 0 plane and less by the factor sin θ for z <> 0.

As always, the integral of a vector field A(r) over a

curve C is ∫

C

A · dl (4.83)

To demonstrate line integration in the spherical

system, imagine a sphere of radius a centered at the

origin with “poles” at z = +a and z = −a. Let us

calculate the integral of A(r) = θ̂, where C is the arc

drawn directly from pole to pole along the surface of

the sphere, as shown in Figure 4.18. In this example,

dl = θ̂ a dθ since r = a and φ (which could be any

value) are both constant along C. Subsequently,

A · dl = a dθ and the above integral is

∫ π

0

a dθ = πa (4.84)

i.e., half the circumference of the sphere, as expected.

Note that the spherical system is an appropriate

choice for this example because the problem can be

https://creativecommons.org/licenses/by-sa/4.0/
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expressed with the minimum number of varying

coordinates in the spherical system. If we had

attempted this problem in the Cartesian system, we

would find that both z and either x or y (or all three)

vary over C and in a relatively complex way.

Integration Over Area. Now we ask the question,

what is the integral of some vector field A over the

surface S of a sphere of radius a centered on the

origin? This is shown in Figure 4.19. The differential

surface vector in this case is

ds = r̂ (r dθ) (r sin θ dφ) = r̂ r2 sin θ dθ dφ (4.85)

As always, the direction is normal to the surface and

in the direction associated with positive flux. The

quantities in parentheses are the distances associated

with varying θ and φ, respectively. In general, the

integral over a surface is

∫

S

A · ds (4.86)

In this case, let’s consider A = r̂; in this case

A · ds = a2 sin θ dθ dφ and the integral becomes

∫ π

0

∫ 2π

0

a2 sin θ dθ dφ = a2
(∫ π

0

sin θdθ

)(∫ 2π

0

dφ

)

= a2 (2) (2π)

= 4πa2

(4.87)

which we recognize as the area of the sphere, as

expected. The corresponding calculation in the

Cartesian or cylindrical systems is quite difficult in

comparison.

Integration Over Volume. The differential volume

element in the spherical system is

dv = dr (rdθ) (r sin θdφ) = r2dr sin θ dθ dφ
(4.88)

For example, if A(r) = 1 and the volume V is a

a

r sinθ
 dϕ
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r d
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Figure 4.19: Example in spherical coordinates: The

area of a sphere.

sphere of radius a centered on the origin, then

∫

V

A(r) dv =

∫ a

0

∫ π

0

∫ 2π

0

r2dr sin θ dθ dφ

=

(∫ a

0

r2dr

)(∫ π

0

sin θ dθ

)(∫ 2π

0

dφ

)

=

(
1

3
a3
)
(2) (2π)

=
4

3
πa3

(4.89)

which is the volume of a sphere.

Additional Reading:

• “Spherical coordinate system” on Wikipedia.

https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Spherical_coordinate_system
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4.5 Gradient

[m0098]

The gradient operator is an important and useful tool

in electromagnetic theory. Here’s the main idea:

The gradient of a scalar field is a vector that

points in the direction in which the field is most

rapidly increasing, with the scalar part equal to

the rate of change.

A particularly important application of the gradient is

that it relates the electric field intensity E(r) to the

electric potential field V (r). This is apparent from a

review of Section 2.2 (“Electric Field Intensity”); see

in particular, the battery-charged capacitor example.

In that example, it is demonstrated that:

• The direction of E(r) is the direction in which

V (r) decreases most quickly, and

• The scalar part of E(r) is the rate of change of

V (r) in that direction. Note that this is also

implied by the units, since V (r) has units of V

whereas E(r) has units of V/m.

The gradient is the mathematical operation that

relates the vector field E(r) to the scalar field V (r)
and is indicated by the symbol “∇” as follows:

E(r) = −∇V (r) (4.90)

or, with the understanding that we are interested in the

gradient as a function of position r, simply

E = −∇V (4.91)

At this point we should note that the gradient is a very

general concept, and that we have merely identified

one application of the gradient above. In

electromagnetics there are many situations in which

we seek the gradient ∇f of some scalar field f(r).
Furthermore, we find that other differential operators

that are important in electromagnetics can be

interpreted in terms of the gradient operator ∇. These

include divergence (Section 4.6), curl (Section 4.8),

and the Laplacian (Section 4.10).

In the Cartesian system:

∇f = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z
(4.92)

Example 4.4. Gradient of a ramp function.

Find the gradient of f = ax (a “ramp” having

slope a along the x direction).

Solution. Here, ∂f/∂x = a and

∂f/∂y = ∂f/∂z = 0. Therefore ∇f = x̂a.

Note that ∇f points in the direction in which f
most rapidly increases, and has magnitude equal

to the slope of f in that direction.

The gradient operator in the cylindrical and spherical

systems is given in Appendix B.2.

Additional Reading:

• “Gradient” on Wikipedia.

https://en.wikipedia.org/wiki/Gradient
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4.6 Divergence

[m0044]

In this section, we present the divergence operator,

which provides a way to calculate the flux associated

with a point in space. First, let us review the concept

of flux.

The integral of a vector field over a surface is a scalar

quantity known as flux. Specifically, the flux F of a

vector field A(r) over a surface S is
∫

S

A · ds = F (4.93)

Note that A could be fairly described as a flux density;

i.e., a quantity having units equal to the units of F , but

divided by area (i.e., m2). Also worth noting is that

the flux of a vector field that has unit magnitude and

is normal to all points on S is simply the area of S .

It is quite useful to identify some electromagnetic

quantities as either fluxes or flux densities. Here are

two important examples:

• The electric flux density D, having units of

C/m2, is a description of the electric field as a

flux density. (See Section 2.4 for more about

electric flux density.) The integral of D over a

closed surface yields the enclosed charge Qencl,
having units of C. This relationship is known as

Gauss’ Law:
∮

S

D · ds = Qencl (4.94)

(See Section 5.5 for more about Gauss’ Law.)

• The magnetic flux density B, having units of

Wb/m2, is a description of the magnetic field as

a flux density. (See Section 2.5 for more about

magnetic flux density.) The integral of B over a

surface (open or closed) yields the magnetic flux

Φ, having units of Wb:
∫

S

B · ds = Φ (4.95)

This is important because, for example, the time

rate of change of Φ is proportional to electric

potential. (See Section 8.3 for more about this

principle, called Faraday’s Law.)

Summarizing:

Flux is the scalar quantity obtained by integrating

a vector field, interpreted in this case as a flux

density, over a specified surface.

The concept of flux applies to a surface of finite size.

However, what is frequently of interest is behavior at

a single point, as opposed to the sum or average over

a region of space. For example, returning to the idea

of electric flux density (D), perhaps we are not

concerned about the total charge (units of C) enclosed

by a surface, but rather the charge density (C/m3) at a

point. In this case, we could begin with Equation 4.94

and divide both sides of the equation by the volume V
enclosed by S:

∮
S
D · ds
V

=
Qencl
V

(4.96)

Now we let V shrink to zero, giving us an expression

that must be true at whatever point we decide to

converge upon. Taking the limit as V → 0:

lim
V→0

∮
S
D · ds
V

= lim
V→0

Qencl
V

(4.97)

The quantity on the right hand side is by definition the

volume charge density ρv (units of C/m3) at the point

at which we converge. The left hand side is the

divergence of D, sometimes abbreviated “div D.”

Thus, the above equation can be written

div D = ρv (4.98)

Summarizing:

Divergence is the flux per unit volume through an

infinitesimally-small closed surface surrounding

a point.

We will typically not actually want to integrate and

take a limit in order to calculate divergence.

Fortunately, we do not have to. It turns out that this

operation can be expressed as the dot product ∇ ·D;

where, for example,

∇ , x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(4.99)
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in the Cartesian coordinate system. This is the same

“∇” that appears in the definition of the gradient

operator (Section 4.5) and is same operator that often

arises when considering other differential operators.

If we expand D in terms of its Cartesian components:

D = x̂Dx + ŷDy + ẑDz (4.100)

Then

div D = ∇ ·D =
∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z
(4.101)

This seems to make sense for two reasons. First, it is

dimensionally correct. Taking the derivative of a

quantity having units of C/m2 with respect to distance

yields a quantity having units of C/m3. Second, it

makes sense that flux from a point should be related

to the sum of the rates of change of the flux density in

each basis direction. Summarizing:

The divergence of a vector field A is ∇ ·A.

Example 4.5. Divergence of a uniform field.

A field A that is constant with respect to

position is said to be uniform. A completely

general description of such a field is

A = x̂Ax + ŷAy + ẑAz where Ax, Ay , and Az
are all constants. We see immediately that the

divergence of such a field must be zero. That is,

∇ ·A = 0 because each component of A is

constant with respect to position. This also

makes sense from the perspective of the “flux

through an infinitesimally-small closed surface”

interpretation of divergence. If the flux is

uniform, the flux into the surface equals the flux

out of the surface resulting in a net flux of zero.

Example 4.6. Divergence of a

linearly-increasing field.

Consider a field A = x̂A0x where A0 is a

constant. The divergence of A is ∇ ·A = A0. If

we interpret A as a flux density, then we have

found that the net flux per unit volume is simply

the rate at which the flux density is increasing

with distance.

To compute divergence in other coordinate systems,

we merely need to know ∇ for those systems. In the

cylindrical system:

∇ = ρ̂
1

ρ

∂

∂ρ
ρ+ φ̂

1

ρ

∂

∂φ
ρ+ ẑ

∂

∂z
(4.102)

and in the spherical system:

∇ = r̂
1

r2
∂

∂r
r2 + θ̂

1

r sin θ

∂

∂θ
sin θ + φ̂

1

r sin θ

∂

∂φ
(4.103)

Alternatively, one may use the explicit expressions for

divergence given in Appendix B.2.

Example 4.7. Divergence of a

radially-decreasing field.

Consider a vector field that is directed radially

outward from a point and which decreases

linearly with distance; i.e., A = r̂A0/r where

A0 is a constant. In this case, the divergence is

most easily computed in the spherical coordinate

system since partial derivatives in all but one

direction (r) equal zero. Neglecting terms that

include these zero-valued partial derivatives, we

find:

∇ ·A =
1

r2
∂

∂r

(
r2
[
A0

r

])
=
A0

r2
(4.104)

In other words, if we interpret A as a flux

density, then the flux per unit volume is

decreasing with as the square of distance from

the origin.

It is useful to know that divergence, like ∇ itself, is a

linear operator; that is, for any constant scalars a and

b and vector fields A and B:

∇ · (aA+ bB) = a∇ ·A+ b∇ ·B (4.105)

Additional Reading:

• “Divergence” on Wikipedia.

https://en.wikipedia.org/wiki/Divergence
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4.7 Divergence Theorem

[m0046]

The Divergence Theorem relates an integral over a

volume to an integral over the surface bounding that

volume. This is useful in a number of situations that

arise in electromagnetic analysis. In this section, we

derive this theorem.

Consider a vector field A representing a flux density,

such as the electric flux density D or magnetic flux

density B. The divergence of A is

∇ ·A = f (4.106)

where is f(r) is the flux per unit volume through an

infinitesimally-small closed surface surrounding the

point at r. Since f is flux per unit volume, we can

obtain flux for any larger contiguous volume V by

integrating over V; i.e.,

flux through V =

∫

V

f dv (4.107)

In the Cartesian system, V can be interpreted as a

three-dimensional grid of infinitesimally-small cubes

having side lengths dx, dy, and dz, respectively. Note

that the flux out of any face of one of these cubes is

equal to the flux into the cube that is adjacent through

that face. That is, the portion of the total flux that

flows between cubes cancels when added together. In

fact, the only fluxes which do not cancel in the

integration over V are those corresponding to faces

which lie on the bounding surface S , since the

integration stops there. Stating this mathematically:
∫

V

f dv =

∮

S

A · ds (4.108)

Thus, we have converted a volume integral into a

surface integral.

To obtain the Divergence Theorem, we return to

Equation 4.106. Integrating both sides of that

equation over V , we obtain
∫

V

(∇ ·A) dv =

∫

V

f dv (4.109)

Now applying Equation 4.108 to the right hand side:

∫

V

(∇ ·A) dv =

∮

S

A · ds (4.110)

The Divergence Theorem (Equation 4.110) states

that the integral of the divergence of a vector field

over a volume is equal to the flux of that field

through the surface bounding that volume.

The principal utility of the Divergence Theorem is to

convert problems that are defined in terms of

quantities known throughout a volume into problems

that are defined in terms of quantities known over the

bounding surface and vice-versa.

Additional Reading:

• “Divergence theorem” on Wikipedia.

https://en.wikipedia.org/wiki/Divergence_theorem
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4.8 Curl

[m0048]

Curl is an operation, which when applied to a vector

field, quantifies the circulation of that field. The

concept of circulation has several applications in

electromagnetics. Two of these applications

correspond to directly to Maxwell’s Equations:

• The circulation of an electric field is proportional

to the rate of change of the magnetic field. This

is a statement of the Maxwell-Faraday Equation

(Section 8.8), which includes as a special case

Kirchoff’s Voltage Law for electrostatics

(Section 5.11).

• The circulation of a magnetic field is

proportional to the source current and the rate of

change of the electric field. This is a statement of

Ampere’s Law (Sections 7.9 and 8.9)

Thus, we are motivated to formally define circulation

and then to figure out how to most conveniently apply

the concept in mathematical analysis. The result is the

curl operator.

So, we begin with the concept of circulation:

“Circulation” is the integral of a vector field over

a closed path.

Specifically, the circulation of the vector field A(r)
over the closed path C is

∮

C

A · dl (4.111)

The circulation of a uniform vector field is zero for

any valid path. For example, the circulation of

A = x̂A0 is zero because non-zero contributions at

each point on C cancel out when summed over the

closed path. On the other hand, the circulation of

A = φ̂A0 over a circular path of constant ρ and z is a

non-zero constant, since the non-zero contributions to

the integral at each point on the curve are equal and

accumulate when summed over the path.

z

I

H

c© K. Kikkeri CC BY SA 4.0

Figure 4.20: Magnetic field intensity due to a current

flowing along the z axis.

Example 4.8. Circulation of the magnetic field

intensity surrounding a line current.

Consider a current I (units of A) flowing along

the z axis in the +z direction, as shown in

Figure 4.20. It is known that this current gives

rise to a magnetic field intensity H = φ̂H0/ρ,

where H0 is a constant having units of A since

the units of H are A/m. (Feel free to consult

Section 7.5 for the details; however, no

additional information is needed to follow the

example being presented here.) The circulation

of H along any circular path of radius a in a

plane of constant z is therefore

∮

C

H · dl =
∫ 2π

φ=0

(
φ̂
H0

a

)
·
(
φ̂ a dφ

)
= 2πH0

Note that the circulation of H in this case has

two remarkable features: (1) It is independent of

the radius of the path of integration; and (2) it

has units of A, which suggests a current. In fact,

it turns out that the circulation of H in this case

is equal to the enclosed source current I .

Furthermore, it turns out that the circulation of

H along any path enclosing the source current is

equal to the source current! These findings are

consequences of Ampere’s Law, as noted above.

Curl is, in part, an answer to the question of what the

circulation at a point in space is. In other words, what

https://creativecommons.org/licenses/by-sa/4.0/
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is the circulation as C shrinks to it’s smallest possible

size. The answer in one sense is zero, since the

arclength of C is zero in this limit – there is nothing to

integrate over. However, if we ask instead what is the

circulation per unit area in the limit, then the result

should be the non-trivial value of interest. To express

this mathematically, we constrain C to lie in a plane,

and define S to be the open surface bounded by C in

this case. Then, we define the scalar part of the curl of

A to be:

lim
∆s→0

∮
C
A · dl
∆s

(4.112)

where ∆s is the area of S , and (important!) we

require C and S to lie in the plane that maximizes the

above result.

Because S and it’s boundary C lie in a plane, it is

possible to assign a direction to the result. The chosen

direction is the normal n̂ to the plane in which C and

S lie. Because there are two normals at each point on

a plane, we specify the one that satisfies the right

hand rule. This rule, applied to the curl, states that the

correct normal is the one which points through the

plane in the same direction as the fingers of the right

hand when the thumb of your right hand is aligned

along C in the direction of integration. Why is this the

correct orientation of n̂? See Section 4.9 for the

answer to that question. For the purposes of this

section, it suffices to consider this to be simply an

arbitrary sign convention.

Now with the normal vector n̂ unambiguously

defined, we can now formally define the curl

operation as follows:

curl A , lim
∆s→0

n̂
∮
C
A · dl
∆s

(4.113)

where, once again, ∆s is the area of S , and we select

S to lie in the plane that maximizes the magnitude of

the above result. Summarizing:

The curl operator quantifies the circulation of a

vector field at a point.

The magnitude of the curl of a vector field is the

circulation, per unit area, at a point and such that

the closed path of integration shrinks to enclose

zero area while being constrained to lie in the

plane that maximizes the magnitude of the result.

The direction of the curl is determined by the

right-hand rule applied to the associated path of

integration.

Curl is a very important operator in electromagnetic

analysis. However, the definition (Equation 4.113) is

usually quite difficult to apply. Remarkably, however,

it turns out that the curl operation can be defined in

terms of the ∇ operator; that is, the same ∇ operator

associated with the gradient, divergence, and

Laplacian operators. Here is that definition:

curl A , ∇×A (4.114)

For example: In Cartesian coordinates,

∇ , x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(4.115)

and

A = x̂Ax + ŷAy + ẑAz (4.116)

so curl can be calculated as follows:

∇×A =

∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣
(4.117)

or, evaluating the determinant:

∇×A = x̂

(
∂Az
∂y

− ∂Ay
∂z

)

+ ŷ

(
∂Ax
∂z

− ∂Az
∂x

)

+ ẑ

(
∂Ay
∂x

− ∂Ax
∂y

)
(4.118)

Expressions for curl in each of the three major

coordinate systems is provided in Appendix B.2.

It is useful to know is that curl, like ∇ itself, is a

linear operator; that is, for any constant scalars a and

b and vector fields A and B:

∇× (aA+ bB) = a∇×A+ b∇×B (4.119)

Additional Reading:

• “Curl (mathematics)” on Wikipedia.

https://en.wikipedia.org/wiki/Curl_(mathematics)
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4.9 Stokes’ Theorem

[m0051]

Stokes’ Theorem relates an integral over an open

surface to an integral over the curve bounding that

surface. This relationship has a number of

applications in electromagnetic theory. Here is the

theorem:

∫

S

(∇×A) · ds =
∮

C

A · dl (4.120)

where S is the open surface bounded by the closed

path C. The direction of the surface normal ds = n̂ds
is related to the direction of integration along C by the

right-hand rule, illustrated in Figure 4.21. In this

case, the right-hand rule states that the correct normal

is the one that points through the surface in the same

direction as the fingers of the right hand when the

thumb of your right hand is aligned along C in the

direction of integration.

Stokes’ Theorem is a purely mathematical result and

not a principle of electromagnetics per se. The

relevance of the theorem to electromagnetic theory is

primarily as a tool in the associated mathematical

analysis. Usually the theorem is employed to

transform a problem expressed in terms of an

integration over a surface into an integration over a

closed path or vice-versa. For more information on

the theorem and its derivation, see “Additional

Reading” at the end of this section.

c© Cronholm144 (modified) CC BY SA 3.0

Figure 4.21: The relative orientations of the direc-

tion of integration C and surface normal n̂ in Stokes’

Theorem.

Additional Reading:

• “Stokes’ Theorem” on Wikipedia.

https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Stokes'_theorem
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4.10 The Laplacian Operator

[m0099]

The Laplacian ∇2f of a field f(r) is the divergence

of the gradient of that field:

∇2f , ∇ · (∇f) (4.121)

Note that the Laplacian is essentially a definition of

the second derivative with respect to the three spatial

dimensions. For example, in Cartesian coordinates,

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(4.122)

as can be readily verified by applying the definitions

of gradient and divergence in Cartesian coordinates to

Equation 4.121.

The Laplacian relates the electric potential (i.e., V ,

units of V) to electric charge density (i.e., ρv , units of

C/m3). This relationship is known as Poisson’s

Equation (Section 5.15):

∇2V = −ρv
ǫ

(4.123)

where ǫ is the permittivity of the medium. The fact

that V is related to ρv in this way should not be

surprising, since electric field intensity (E, units of

V/m) is proportional to the derivative of V with

respect to distance (via the gradient) and ρv is

proportional to the derivative of E with respect to

distance (via the divergence).

The Laplacian operator can also be applied to vector

fields; for example, Equation 4.122 is valid even if the

scalar field “f” is replaced with a vector field. In the

Cartesian coordinate system, the Laplacian of the

vector field A = x̂Ax + ŷAy + ẑAz is

∇2A = x̂∇2Ax + ŷ∇2Ay + ẑ∇2Az (4.124)

An important application of the Laplacian operator of

vector fields is the wave equation; e.g., the wave

equation for E in a lossless and source-free region is

(Section 9.2)

∇2E+ β2E = 0 (4.125)

where β is the phase propagation constant.

It is sometimes useful to know that the Laplacian of a

vector field can be expressed in terms of the gradient,

divergence, and curl as follows:

∇2A = ∇ (∇ ·A)−∇× (∇×A) (4.126)

The Laplacian operator in the cylindrical and

spherical coordinate systems is given in

Appendix B.2.

Additional Reading:

• “Laplace operator” on Wikipedia.

[m0043]

https://en.wikipedia.org/wiki/Laplace_operator
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Chapter 5

Electrostatics

[m0116]

Electrostatics is the theory of the electric field in

conditions in which its behavior is independent of

magnetic fields, including

• The electric field associated with fixed

distributions of electric charge

• Capacitance (the ability of a structure to store

energy in an electric field)

• The energy associated with the electrostatic field

• Steady current induced in a conducting material

in the presence of an electrostatic field

(essentially, Ohm’s Law)

The term “static” refers to the fact that these aspects

of electromagnetic theory can be developed by

assuming sources are time-invariant; we might say

that electrostatics is the study of the electric field at

DC. However, many aspects of electrostatics are

relevant to AC, radio frequency, and higher-frequency

applications as well.

Additional Reading:

• “Electrostatics” on Wikipedia.

5.1 Coulomb’s Law

[m0102]

Consider two charge-bearing particles in free space,

identified as “particle 1” and “particle 2” in

Figure 5.1. Let the charges borne by these particles be

q1 and q2, and let R be the distance between them. If

the particles bear charges of the same sign (i.e., if

q1q2 is positive), then the particles repel; otherwise,

they attract. This repulsion or attraction can be

quantified as a force experienced by each particle.

Physical observations reveal that the magnitude of the

force is proportional to q1q2, and inversely

proportional to R2. For particle 2 we find:

F = R̂F0
q1q2
R2

(5.1)

where R̂ is the unit vector pointing from the particle 1

to the particle 2, and F0 is a constant. The value of F0

must have units of inverse permittivity; i.e., (F/m)−1.

This is most easily seen by dimensional analysis of

the above relationship, including the suspected factor:

C · C

F/m · m2
=

C · C

F · m
=

C · C

C/V · m
=

C · V

m
=

J

m
= N

where we have used the facts that 1 F = 1 C/V, 1 V =
1 J/C, and 1 N = 1 J/m. This finding suggests that

F0 ∝ ǫ−1, where ǫ is the permittivity of the medium

in which the particles exist. Observations confirm that

the force is in fact inversely proportional to the

permittivity, with an additional factor of 1/4π
(unitless). Putting this all together we obtain what is

commonly known as Coulomb’s Law:

F = R̂
q1q2
4πǫR2

(5.2)

Electromagnetics Vol 1. c© 2018 S.W. Ellingson CC BY SA 4.0. https://doi.org/10.21061/electromagnetics-vol-1
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Figure 5.1: Coulomb’s Law describes the force per-

ceived by pairs of charged particles.

Subsequently, the force perceived by particle 2 is

equal and opposite; i.e., equal to −F.

Separately, it is known that F can be described in

terms of the electric field intensity E1 associated with

particle 1:

F = q2E1 (5.3)

This is essentially the definition of E1, as explained in

Section 2.2. Combining this result with Coulomb’s

Law, we obtain a means to directly calculate the field

associated with the first particle in the absence of the

second particle:

E1 = R̂
q1

4πǫR2
(5.4)

where now R̂R is the vector beginning at the

particle 1 and ending at the point to be evaluated.

The electric field intensity associated with a point

charge (Equation 5.4) is (1) directed away from

positive charge, (2) proportional to the magni-

tude of the charge, (3) inversely proportional to

the permittivity of the medium, and (3) inversely

proportional to distance squared.

We have described this result as originating from

Coulomb’s Law, which is based on physical

observations. However, the same result may be

obtained directly from Maxwell’s Equations using

Gauss’ Law (Section 5.5).

Example 5.1. Electric field of a point charge at

the origin.

A common starting point in electrostatic analysis

is the field associated with a particle bearing

charge q at the origin of the coordinate system.

Because the electric field is directed radially

away from a positively-charged source particle

in all directions, this field is most conveniently

described in the spherical coordinate system.

Thus, R̂ becomes r̂, R becomes r, and we have

E(r) = r̂
q

4πǫr2
(5.5)

Here’s a numerical example. What is the electric

field intensity at a distance 1 µm from a single

electron located at the origin, in free space? In

this case, q ∼= −1.60× 10−19 C (don’t forget

that minus sign!), ǫ = ǫ0, r = 1 µm, and we

find:

E(r) = −r̂ (1.44 kV/m) (5.6)

This is large relative to electric field strengths

commonly encountered in engineering

applications. The strong electric field of the

electron is not readily apparent because electrons

in common materials tend to be accompanied by

roughly equal amounts of positive charge, such

as the protons of atoms. Sometimes, however,

the effect of individual electrons does become

significant in practical electronics through a

phenomenon known as shot noise.

Additional Reading:

• “Coulomb’s Law” on Wikipedia.

• “Shot Noise” on Wikipedia.

https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Coulomb's_law
https://en.wikipedia.org/wiki/Shot_noise
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5.2 Electric Field Due to Point

Charges

[m0103]

The electric field intensity associated with a single

particle bearing charge q1, located at the origin, is

(Section 5.1)

E(r) = r̂
q1

4πǫr2
(5.7)

If this particle is instead located at some position r1,

then the above expression may be written as follows:

E(r; r1) =
r− r1

|r− r1|
q1

4πǫ |r− r1|2
(5.8)

or, combining like terms in the denominator:

E(r; r1) =
r− r1

|r− r1|3
q1
4πǫ

(5.9)

Now let us consider the field due to multiple such

particles. Under the usual assumptions about the

permittivity of the medium (reminder: Section 2.8),

the property of superposition applies. Using this

principle, we conclude:

The electric field resulting from a set of charged

particles is equal to the sum of the fields associ-

ated with the individual particles.

Stated mathematically:

E(r) =

N∑

n=1

E(r; rn) (5.10)

where N is the number of particles. Thus, we have

E(r) =
1

4πǫ

N∑

n=1

r− rn

|r− rn|3
qn (5.11)

5.3 Charge Distributions

[m0100]

In principle, the smallest unit of electric charge that

can be isolated is the charge of a single electron,

which is ∼= −1.60× 10−19 C. This is very small, and

we rarely deal with electrons one at a time, so it is

usually more convenient to describe charge as a

quantity that is continuous over some region of space.

In particular, it is convenient to describe charge as

being distributed in one of three ways: along a curve,

over a surface, or within a volume.

Line Charge Distribution. Imagine that charge is

distributed along a curve C through space. Let ∆q be

the total charge along a short segment of the curve,

and let ∆l be the length of this segment. The line

charge density ρl at any point along the curve is

defined as

ρl , lim
∆l→0

∆q

∆l
=
dq

dl
(5.12)

which has units of C/m. We may then define ρl to be

a function of position along the curve, parameterized

by l; e.g., ρl(l). Then, the total charge Q along the

curve is

Q =

∫

C

ρl(l) dl (5.13)

which has units of C. In other words, line charge

density integrated over length yields total charge.

Surface Charge Distribution. Imagine that charge is

distributed over a surface. Let ∆q be the total charge

on a small patch on this surface, and let ∆s be the

area of this patch. The surface charge density ρs at

any point on the surface is defined as

ρs , lim
∆s→0

∆q

∆s
=
dq

ds
(5.14)

which has units of C/m2. Let us define ρs to be a

function of position on this surface. Then the total

charge over a surface S is

Q =

∫

S

ρs ds (5.15)

In other words, surface charge density integrated over

a surface yields total charge.

Volume Charge Distribution. Imagine that charge is

distributed over a volume. Let ∆q be the total charge
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in a small cell within this volume, and let ∆v be the

volume of this cell. The volume charge density ρv at

any point in the volume is defined as

ρv , lim
∆v→0

∆q

∆v
=
dq

dv
(5.16)

which has units of C/m3. Since ρv is a function of

position within this volume, the total charge within a

volume V is

Q =

∫

V

ρv dv (5.17)

In other words, volume charge density integrated over

a volume yields total charge.

5.4 Electric Field Due to a

Continuous Distribution of

Charge

[m0104]

The electric field intensity associated with N charged

particles is (Section 5.2):

E(r) =
1

4πǫ

N∑

n=1

r− rn

|r− rn|3
qn (5.18)

where qn and rn are the charge and position of the

nth particle. However, it is common to have a

continuous distribution of charge as opposed to a

countable number of charged particles. In this

section, we extend Equation 5.18 using the concept of

continuous distribution of charge (Section 5.3) so that

we may address this more general class of problems.

Distribution of Charge Along a Curve. Consider a

continuous distribution of charge along a curve C.

The curve can be divided into short segments of

length ∆l. Then, the charge associated with the nth

segment, located at rn, is

qn = ρl(rn) ∆l (5.19)

where ρl is charge density (units of C/m) at rn.

Substituting this expression into Equation 5.18, we

obtain

E(r) =
1

4πǫ

N∑

n=1

r− rn

|r− rn|3
ρl(rn) ∆l (5.20)

Taking the limit as ∆l → 0 yields:

E(r) =
1

4πǫ

∫

C

r− r′

|r− r′|3
ρl(r

′) dl (5.21)

where r′ represents the varying position along C with

integration.

The simplest example of a curve is a straight line. It is

straightforward to use Equation 5.21 to determine the

electric field due to a distribution of charge along a

straight line. However, it is much easier to analyze

that particular distribution using Gauss’ Law, as
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shown in Section 5.6. The following example

addresses a charge distribution for which

Equation 5.21 is more appropriate.

Example 5.2. Electric field along the axis of a

ring of uniformly-distributed charge.

Consider a ring of radius a in the z = 0 plane,

centered on the origin, as shown in Figure 5.2.

Let the charge density along this ring be uniform

and equal to ρl (C/m). Find the electric field

along the z axis.

Solution. The source charge position is given in

cylindrical coordinates as

r′ = ρ̂a (5.22)

The position of a field point along the z axis is

simply

r = ẑz (5.23)

Thus,

r− r′ = −ρ̂a+ ẑz (5.24)

and

|r− r′| =
√
a2 + z2 (5.25)

Equation 5.21 becomes:

E(z) =
1

4πǫ

∫ 2π

0

−ρ̂a+ ẑz

[a2 + z2]
3/2

ρl (a dφ)

(5.26)

Pulling factors that do not vary with φ out of the

integral and factoring into separate integrals for

the φ̂ and ẑ components, we obtain:

ρl a

4πǫ [a2 + z2]
3/2

[
−a
∫ 2π

0

ρ̂ dφ+ ẑz

∫ 2π

0

dφ

]

(5.27)

The second integral is equal to 2π. The first

integral is equal to zero. To see this, note that the

integral is simply summing values of ρ̂ for all

possible values of φ. Since ρ̂(φ+ π) = −ρ̂(φ),
the integrand for any given value of φ is equal

and opposite the integrand π radians later. (This

is one example of a symmetry argument.) Thus,

y

x

z

ρa

ÈÉÊË

r - rÌ

point
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Figure 5.2: Calculating the electric field along the

axis of a ring of charge.

we obtain

E(z) = ẑ
ρl a

2ǫ

z

[a2 + z2]
3/2

(5.28)

It is a good exercise to confirm that this result is

dimensionally correct. It is also recommended to

confirm that when z ≫ a, the result is

approximately the same as that expected from a

particle having the same total charge as the ring.

Distribution of Charge Over a Surface. Consider a

continuous distribution of charge over a surface S .

The surface can be divided into small patches having

area ∆s. Then, the charge associated with the nth

patch, located at rn, is

qn = ρs(rn) ∆s (5.29)

where ρs is the surface charge density (units of C/m2)

at rn. Substituting this expression into Equation 5.18,

we obtain

E(r) =
1

4πǫ

N∑

n=1

r− rn

|r− rn|3
ρs(rn) ∆s (5.30)

Taking the limit as ∆s→ 0 yields:

E(r) =
1

4πǫ

∫

S

r− r′

|r− r′|3
ρs(r

′) ds (5.31)

https://creativecommons.org/licenses/by-sa/4.0/
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where r′ represents the varying position over S with

integration.

Example 5.3. Electric field along the axis of a

disk of uniformly-distributed charge.

Consider a circular disk of radius a in the z = 0
plane, centered on the origin, as shown in

Figure 5.3. Let the charge density over this disk

be uniform and equal to ρs (C/m2). Find the

electric field along the z axis.

Solution. The source charge position is given in

cylindrical coordinates as

r′ = ρ̂ρ (5.32)

The position of a field point along the z axis is

simply

r = ẑz (5.33)

Thus,

r− r′ = −ρ̂ρ+ ẑz (5.34)

and

|r− r′| =
√
ρ2 + z2 (5.35)

Equation 5.31 becomes:

E(z) =
1

4πǫ

∫ a

ρ=0

∫ 2π

φ=0

−ρ̂ρ+ ẑz

[ρ2 + z2]
3/2

ρs (ρ dρ dφ)

(5.36)

To solve this integral, first rearrange the double

integral into a single integral over φ followed by

integration over ρ:

ρs
4πǫ

∫ a

ρ=0

ρ

[ρ2 + z2]
3/2

[∫ 2π

φ=0

(−ρ̂ρ+ ẑz) dφ

]
dρ

(5.37)

Now we address the integration over φ shown in

the square brackets in the above expression:

∫ 2π

φ=0

(−ρ̂ρ+ ẑz) dφ = −ρ
∫ 2π

φ=0

ρ̂dφ+ẑz

∫ 2π

φ=0

dφ

(5.38)

The first integral on the right is zero for the

following reason. As the integral progresses in

φ, the vector ρ̂ rotates. Because the integration is

over a complete revolution (i.e., φ from 0 to 2π),

the contribution from each pointing of ρ̂ is

canceled out by another pointing of ρ̂ that is in

the opposite direction. Since there is an equal

number of these canceling pairs of pointings, the

result is zero. Thus:

∫ 2π

φ=0

(−ρ̂ρ+ ẑz) dφ = 0 + ẑz

∫ 2π

φ=0

dφ

= ẑ2πz (5.39)

Substituting this into Expression 5.37 we obtain:

ρs
4πǫ

∫ a

ρ=0

ρ

[ρ2 + z2]
3/2

[ẑ2πz] dρ

=ẑ
ρsz

2ǫ

∫ a

ρ=0

ρ dρ

[ρ2 + z2]
3/2

(5.40)

This integral can be solved using integration by

parts and trigonometric substitution. Since the

solution is tedious and there is no particular

principle of electromagnetics demonstrated by

this solution, we shall simply state the result:

∫ a

ρ=0

ρ dρ

[ρ2 + z2]
3/2

=
−1√
ρ2 + z2

∣∣∣∣∣

a

ρ=0

=
−1√
a2 + z2

+
1

|z| (5.41)

Substituting this result:

E(z) = ẑ
ρsz

2ǫ

( −1√
a2 + z2

+
1

|z|

)

= ẑ
ρs
2ǫ

( −z√
a2 + z2

+
z

|z|

)

= ẑ
ρs
2ǫ

( −z√
a2 + z2

+ sgn z

)
(5.42)

where “sgn” is the “signum” function; i.e.,

sgn z = +1 for z > 0 and sgn z = −1 for

z < 0. Summarizing:

E(z) = ẑ
ρs
2ǫ

(
sgn z − z√

a2 + z2

)
(5.43)

It is a good exercise to confirm that this result is

dimensionally correct and yields an electric field

vector that points in the expected direction and

with the expected dependence on a and z.
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Figure 5.3: Calculating the electric field along the

axis of a disk of charge.

A special case of the “disk of charge” scenario

considered in the preceding example is an infinite

sheet of charge. The electric field from an infinite

sheet of charge is a useful theoretical result. We get

the field in this case simply by letting a→ ∞ in

Equation 5.43, yielding:

E(r) = ẑ
ρs
2ǫ

sgn z (5.44)

Again, it is useful to confirm that this is

dimensionally correct: C/m2 divided by F/m yields

V/m. Also, note that Equation 5.44 is the electric field

at any point above or below the charge sheet – not just

on z axis. This follows from symmetry. From the

perspective of any point in space, the edges of the

sheet are the same distance (i.e., infinitely far) away.

Distribution of Charge In a Volume. Consider a

continuous distribution of charge within a volume V .

The volume can be divided into small cells (volume

elements) having volume ∆v. Then, the charge

associated with the nth cell, located at rn, is

qn = ρv(rn) ∆v (5.45)

where ρv is volume charge density (units of C/m3) at

rn. Substituting this expression into Equation 5.18,

we obtain

E(r) =
1

4πǫ

N∑

n=1

r− rn

|r− rn|3
ρv(rn) ∆v (5.46)

Taking the limit as ∆v → 0 yields:

E(r) =
1

4πǫ

∫

V

r− r′

|r− r′|3
ρv(r

′) dv (5.47)

where r′ represents the varying position over V with

integration.

https://creativecommons.org/licenses/by-sa/4.0/
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5.5 Gauss’ Law: Integral Form

[m0014]

Gauss’ Law is one of the four fundamental laws of

classical electromagnetics, collectively known as

Maxwell’s Equations. Before diving in, the reader is

strongly encouraged to review Section 2.4. In that

section, Gauss’ Law emerges from the interpretation

of the electric field as a flux density. Section 2.4 does

not actually identify Gauss’ Law, but here it is:

Gauss’ Law (Equation 5.48) states that the flux of

the electric field through a closed surface is equal

to the enclosed charge.

Gauss’ Law is expressed mathematically as follows:

∮

S

D · ds = Qencl (5.48)

where D is the electric flux density ǫE, S is a closed

surface with differential surface normal ds, and Qencl
is the enclosed charge. We can see the law is

dimensionally correct; D has units of C/m2, thus

integrating D over a surface gives a quantity with

units of C/m2 · m2 = C, which are the units of charge.

Gauss’ Law has a number of applications in

electromagnetic theory. One of them, as explored

below, is as a method to compute the electric field in

response to a distribution of electric charge. Note that

a method to do this, based on Coulomb’s Law, is

described in Sections 5.1, 5.2, and 5.4. Gauss’ Law

provides an alternative method that is easier or more

useful in certain applications.

Example 5.4. Electric field associated with a

charged particle, using Gauss’ Law.

In this example, we demonstrate the ability of

Gauss’ Law to predict the field associated with a

charge distribution. Let us do this for the

simplest possible charge distribution. A particle

of charge q located at the origin, for which we

already have the answer (Section 5.1).

Solution. Gauss’ Law applies to any surface that

encloses the charge, so for simplicity we chose a

sphere of radius r centered at the origin. Note

that Qencl on the right hand side is just q for any

surface having r > 0. Gauss’ Law in this case

becomes

∫ π

θ=0

∫ 2π

φ=0

D ·
(
r̂r2 sin θ dθ dφ

)
= q (5.49)

If we can solve for D, we can get E using

D = ǫE. The simplest way to solve for D is to

use a symmetry argument, which proceeds as

follows. In this problem, the magnitude of D

can depend only on r, and not θ or φ. This is

because the charge has no particular orientation,

and the sphere is centered on the charge.

Similarly, it is clear that D must point either

directly toward or directly away from the charge.

In other words, D = r̂D(r). Substituting this in

the above equation, we encounter the dot

product r̂ · r̂, which is simply 1. Since D(r) and

r2 are constants with respect to the integration,

we obtain:

r2D(r)

∫ π

θ=0

∫ 2π

φ=0

sin θ dθdφ = q (5.50)

The remaining integral is simply 4π, thus we

obtain:

D(r) =
q

4πr2
(5.51)

Bringing the known vector orientation of D

back into the equation, we obtain

D = r̂
q

4πr2
(5.52)

and finally using D = ǫE we obtain the

expected result

E = r̂
q

4πǫr2
(5.53)

Here’s the point you should take away from the above

example:

Gauss’ Law combined with a symmetry argu-

ment may be sufficient to determine the electric

field due to a charge distribution. Thus, Gauss’

Law may be an easier alternative to Coulomb’s

Law in some applications.
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Additional Reading:

• “Gauss’ Law” on Wikipedia.

5.6 Electric Field Due to an

Infinite Line Charge using

Gauss’ Law

[m0149]

Section 5.5 explains one application of Gauss’ Law,

which is to find the electric field due to a charged

particle. In this section, we present another

application – the electric field due to an infinite line of

charge. The result serves as a useful “building block”

in a number of other problems, including

determination of the capacitance of coaxial cable

(Section 5.24). Although this problem can be solved

using the “direct” approach described in Section 5.4

(and it is an excellent exercise to do so), the Gauss’

Law approach demonstrated here turns out to be

relatively simple.

Example 5.5. Electric field associated with an

infinite line charge, using Gauss’ Law.

Use Gauss’ Law to determine the electric field

intensity due to an infinite line of charge along

the z axis, having charge density ρl (units of

C/m), as shown in Figure 5.4.

Solution. Gauss’ Law requires integration over

a surface that encloses the charge. So, our first

problem is to determine a suitable surface. A

cylinder of radius a that is concentric with the z
axis, as shown in Figure 5.4, is maximally

symmetric with the charge distribution and so is

likely to yield the simplest possible analysis. At

first glance, it seems that we may have a

problem since the charge extends to infinity in

the +z and −z directions, so it’s not clear how

to enclose all of the charge. Let’s suppress that

concern for a moment and simply choose a

cylinder of finite length l. In principle, we can

solve the problem first for this cylinder of finite

size, which contains only a fraction of the

charge, and then later let l → ∞ to capture the

rest of the charge. (In fact, we’ll find when the

time comes it will not be necessary to do that,

but we shall prepare for it anyway.)

https://en.wikipedia.org/wiki/Gauss'_law
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Here’s Gauss’ Law:
∮

S

D · ds = Qencl (5.54)

where D is the electric flux density ǫE, S is a

closed surface with outward-facing differential

surface normal ds, and Qencl is the enclosed

charge.

The first order of business is to constrain the

form of D using a symmetry argument, as

follows. Consider the field of a point charge q at

the origin (Section 5.5):

D = r̂
q

4πr2
(5.55)

We can “assemble” an infinite line of charge by

adding particles in pairs. One pair is added at a

time, with one particle on the +z axis and the

other on the −z axis, with each located an equal

distance from the origin. We continue to add

particle pairs in this manner until the resulting

charge extends continuously to infinity in both

directions. The principle of superposition

indicates that the resulting field will be the sum

of the fields of the particles (Section 5.2). Thus,

we see that D cannot have any component in the

φ̂ direction because none of the fields of the

constituent particles have a component in that

direction. Similarly, we see that the magnitude

of D cannot depend on φ because none of the

fields of the constituent particles depends on φ
and because the charge distribution is identical

(“invariant”) with rotation in φ. Also, note that

for any choice of z the distribution of charge

above and below that plane of constant z is

identical; therefore, D cannot be a function of z
and D cannot have any component in the ẑ

direction. Therefore, the direction of D must be

radially outward; i.e., in the ρ̂ direction, as

follows:

D = ρ̂Dρ(ρ) (5.56)

Next, we observe that Qencl on the right hand

side of Equation 5.54 is equal to ρll. Thus, we

obtain ∮

S

[ρ̂Dρ(ρ)] · ds = ρll (5.57)

The cylinder S consists of a flat top, curved side,

and flat bottom. Expanding the above equation

to reflect this, we obtain

ρll =

∫

top

[ρ̂Dρ(ρ)] · (+ẑds)

+

∫

side

[ρ̂Dρ(ρ)] · (+ρ̂ds)

+

∫

bottom

[ρ̂Dρ(ρ)] · (−ẑds) (5.58)

Examination of the dot products indicates that

the integrals associated with the top and bottom

surfaces must be zero. In other words, the flux

through the top and bottom is zero because D is

perpendicular to these surfaces. We are left with

ρll =

∫

side

[Dρ(ρ)] ds (5.59)

The side surface is an open cylinder of radius

ρ = a, so Dρ(ρ) = Dρ(a), a constant over this

surface. Thus:

ρll =

∫

side

[Dρ(a)] ds = [Dρ(a)]

∫

side

ds

(5.60)

The remaining integral is simply the area of the

side surface, which is 2πa · l. Solving for Dρ(a)
we obtain

Dρ(a) =
ρll

2πal
=

ρl
2πa

(5.61)

Remarkably, we see Dρ(a) is independent of l,
So the concern raised in the beginning of this

solution – that we wouldn’t be able to enclose all

of the charge – doesn’t matter.

Completing the solution, we note the result must

be the same for any value of ρ (not just ρ = a),

so

D = ρ̂Dρ(ρ) = ρ̂
ρl
2πρ

(5.62)

and since D = ǫE:

E = ρ̂
ρl

2πǫρ
(5.63)

This completes the solution. We have found that

the electric field is directed radially away from
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Figure 5.4: Finding the electric field of an infinite line

of charge using Gauss’ Law.

the line charge, and decreases in magnitude in

inverse proportion to distance from the line

charge. Suggestion: Check to ensure that this

solution is dimensionally correct.

5.7 Gauss’ Law: Differential

Form

[m0045]

The integral form of Gauss’ Law (Section 5.5) is a

calculation of enclosed charge Qencl using the

surrounding density of electric flux:
∮

S

D · ds = Qencl (5.64)

where D is electric flux density and S is the enclosing

surface. It is also sometimes necessary to do the

inverse calculation (i.e., determine electric field

associated with a charge distribution). This is

sometimes possible using Equation 5.64 if the

symmetry of the problem permits; see examples in

Section 5.5 and 5.6. If the problem does not exhibit

the necessary symmetry, then it seems that one must

fall back to the family of techniques presented in

Section 5.4 requiring direct integration over the

charge, which is derived from Coulomb’s Law.

However, even the Coulomb’s Law / direct integration

approach has a limitation that is very important to

recognize: It does not account for the presence of

structures that may influence the electric field. For

example, the electric field due to a charge in free

space is different from the electric field due to the

same charge located near a perfectly-conducting

surface. In fact, these approaches do not account for

the possibility of any spatial variation in material

composition, which rules out their use in many

engineering applications.

To address this broader scope of problems, we require

an alternative form of Gauss’ Law that applies at

individual points in space. That is, we require Gauss’

Law expressed in the form of a differential equation,

as opposed to an integral equation. This facilitates the

use of Gauss’ Law even in problems that do not

exhibit sufficient symmetry and that involve material

boundaries and spatial variations in material

constitutive parameters. Given this differential

equation and the boundary conditions imposed by

structure and materials, we may then solve for the

electric field in these more complicated scenarios. In

this section, we derive the desired differential form of

Gauss’ Law. Elsewhere (in particular, in Section 5.15)

https://creativecommons.org/licenses/by-sa/4.0/
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we use this equation as a tool to find electric fields in

problems involving material boundaries.

There are in fact two methods to develop the desired

differential equation. One method is via the definition

of divergence, whereas the other is via the divergence

theorem. Both methods are presented below because

each provides a different bit of insight. Let’s explore

the first method:

Derivation via the definition of divergence. Let the

geometrical volume enclosed by S be V , which has

volume V (units of m3). Dividing both sides of

Equation 5.64 by V and taking the limit as V → 0:

lim
V→0

∮
S
D · ds
V

= lim
V→0

Qencl
V

(5.65)

The quantity on the right hand side is the volume

charge density ρv (units of C/m3) at the point at

which we converge after letting the volume go to

zero. The left hand side is, by definition, the

divergence of D, indicated in mathematical notation

as “∇ ·D” (see Section 4.6). Thus, we have Gauss’

Law in differential form:

∇ ·D = ρv (5.66)

To interpret this equation, recall that divergence is

simply the flux (in this case, electric flux) per unit

volume.

Gauss’ Law in differential form (Equation 5.66)

says that the electric flux per unit volume origi-

nating from a point in space is equal to the vol-

ume charge density at that point.

Derivation via the divergence theorem.

Equation 5.66 may also be obtained from

Equation 5.64 using the Divergence Theorem

(Section 4.7), which in the present case may be

written: ∫

V

(∇ ·D) dv =

∮

S

D · ds (5.67)

From Equation 5.64, we see that the right hand side of

the equation may be replaced with the enclosed

charge: ∫

V

(∇ ·D) dv = Qencl (5.68)

Furthermore, the enclosed charge can be expressed as

an integration of the volume charge density ρv over V:
∫

V

(∇ ·D) dv =

∫

V

ρvdv (5.69)

The above relationship must hold regardless of the

specific location or shape of V . The only way this is

possible is if the integrands are equal. Thus,

∇ ·D = ρv , and we have obtained Equation 5.66.

Example 5.6. Determining the charge density at

a point, given the associated electric field.

The electric field intensity in free space is

E(r) = x̂Ax2 + ŷBz + ẑCx2z

where A = 3 V/m3, B = 2 V/m2, and

C = 1 V/m4. What is the charge density at

r = x̂2− ŷ2 m?

Solution. First, we use D = ǫE to get D. Since

the problem is in free space, ǫ = ǫ0. Thus we

have that the volume charge density is

ρv = ∇ ·D
= ∇ · (ǫ0E) = ǫ0∇ ·E

= ǫ0

[
∂

∂x

(
Ax2

)
+

∂

∂y
(Bz) +

∂

∂z

(
Cx2z

)]

= ǫ0
[
2Ax+ 0 + Cx2

]

Now calculating the charge density at the

specified location r:

ǫ0
[
2(3 V/m3)(2 m) + 0 + (1 V/m4)(2 m)2

]

= ǫ0 (16 V/m)

= 142 pC/m3

To obtain the electric field from the charge

distribution in the presence of boundary conditions

imposed by materials and structure, we must enforce

the relevant boundary conditions. These boundary

conditions are presented in Sections 5.17 and 5.18.

Frequently, a simpler approach requiring only the

boundary conditions on the electric potential (V (r))
is possible; this is presented in Section 5.15.

Furthermore, the reader should note the following.

Gauss’ Law does not always necessarily fully
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constrain possible solutions for the electric field. For

that, we might also need Kirchoff’s Voltage Law; see

Section 5.11.

Before moving on, it is worth noting that

Equation 5.66 can be solved in the special case in

which there are no boundary conditions to satisfy;

i.e., for charge only, in a uniform and unbounded

medium. In fact, no additional electromagnetic theory

is required to do this. Here’s the solution:

D(r) =
1

4π

∫

V

r− r′

|r− r′|3
ρv(r

′) dv (5.70)

which we recognize as one of the results obtained in

Section 5.4 (after dividing both sides by ǫ to get E). It

is reasonable to conclude that Gauss’ Law (in either

integral or differential form) is fundamental, whereas

Coulomb’s Law is merely a consequence of Gauss’

Law.

Additional Reading:

• “Gauss’ Law” on Wikipedia.

• “Partial differential equation” on Wikipedia.

• “Boundary value problem” on Wikipedia.

5.8 Force, Energy, and Potential

Difference

[m0061]

The force Fe experienced by a particle at location r

bearing charge q in an electric field intensity E is (see

Sections 2.2 and/or Section 5.1)

Fe = qE(r) (5.71)

If left alone in free space, this particle would

immediately begin to move. The resulting

displacement represents a loss of potential energy.

This loss can quantified using the concept of work,

W . The incremental work ∆W done by moving the

particle a short distance ∆l, over which we assume

the change in Fe is negligible, is

∆W ≈ −Fe · l̂∆l (5.72)

where in this case l̂ is the unit vector in the direction

of the motion; i.e., the direction of Fe. The minus

sign indicates that potential energy of the system

consisting of the electric field and the particle is being

reduced. Like a spring that was previously

compressed and is now released, the system is

“relaxing.”

To confirm that work defined in this way is an

expression of energy, consider the units. The product

of force (units of N) and distance (units of m) has

units of N·m, and 1 N·m is 1 J of energy.

Now, what if the motion of the particle is due to

factors other than the force associated with the

electric field? For example, we might consider

“resetting” the system to it’s original condition by

applying an external force to overcome Fe.

Equation 5.72 still represents the change in potential

energy of the system, but now l̂ changes sign. The

same magnitude of work is done, but now this work is

positive. In other words, positive work requires the

application of an external force that opposes and

overcomes the force associated with the electric field,

thereby increasing the potential energy of the system.

With respect to the analogy of a mechanical spring

used above, positive work is achieved by compressing

the spring.

https://en.wikipedia.org/wiki/Gauss'_law
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Boundary_value_problem
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It is also worth noting that the purpose of the dot

product in Equation 5.72 is to ensure that only the

component of motion parallel to the direction of the

electric field is included in the energy tally. This is

simply because motion in any other direction cannot

be due to E, and therefore does not increase or

decrease the associated potential energy.

We can make the relationship between work and the

electric field explicit by substituting Equation 5.71

into Equation 5.72, yielding

∆W ≈ −qE(r) · l̂∆l (5.73)

Equation 5.73 gives the work only for a short distance

around r. Now let us try to generalize this result. If

we wish to know the work done over a larger

distance, then we must account for the possibility that

E varies along the path taken. To do this, we may

sum contributions from points along the path traced

out by the particle, i.e.,

W ≈
N∑

n=1

∆W (rn) (5.74)

where rn are positions defining the path. Substituting

Equation 5.73, we have

W ≈ −q
N∑

n=1

E(rn) · l̂(rn)∆l (5.75)

Taking the limit as ∆l → 0 we obtain

W = −q
∫

C

E(r) · l̂(r)dl (5.76)

where C is the path (previously, the sequence of rn’s)

followed. Now omitting the explicit dependence on r

in the integrand for clarity:

W = −q
∫

C

E · dl (5.77)

where dl = l̂dl as usual. Now, we are able to

determine the change in potential energy for a

charged particle moving along any path in space,

given the electric field.

At this point, it is convenient to formally define the

electric potential difference V21 between the start

point (1) and end point (2) of C. V21 is defined as the

work done by traversing C, per unit of charge:

V21 ,
W

q
(5.78)

This has units of J/C, which is volts (V). Substituting

Equation 5.77, we obtain:

V21 = −
∫

C

E · dl (5.79)

An advantage of analysis in terms of electrical

potential as opposed to energy is that we will no

longer have to explicitly state the value of the charge

involved.

The potential difference V21 between two points

in space, given by Equation 5.79, is the change

in potential energy of a charged particle divided

by the charge of the particle. Potential energy is

also commonly known as “voltage” and has units

of V.

Example 5.7. Potential difference in a uniform

electric field.

Consider an electric field E(r) = ẑE0, which is

constant in both magnitude and direction

throughout the domain of the problem. The path

of interest is a line beginning at ẑz1 and ending

at ẑz2. What is V21? (It’s worth noting that the

answer to this problem is a building block for a

vast number of problems in electromagnetic

analysis.)

Solution. From Equation 5.79 we have

V21 = −
∫ z2

z1

(ẑE0) · ẑdz = −E0(z2 − z1)

(5.80)

Note V21 is simply the electric field intensity

times the distance between the points. This may

seem familiar. For example, compare this to the

findings of the battery-charged capacitor

experiment described in Section 2.2. There too

we find that potential difference equals electric

field intensity times distance, and the signs

agree.
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The solution to the preceding example is simple

because the direct path between the two points is

parallel to the electric field. If the path between the

points had been perpendicular to E, then the solution

is even easier – V21 is simply zero. In all other cases,

V21 is proportional to the component of the direct

path between the start and end points that is parallel

to E, as determined by the dot product.

5.9 Independence of Path

[m0062]

In Section 5.8, we found that the potential difference

(“voltage”) associated with a path C in an electric

field intensity E is

V21 = −
∫

C

E · dl (5.81)

where the curve begins at point 1 and ends at point 2.

Let these points be identified using the position

vectors r1 and r2, respectively.1 Then:

V21 = −
∫

r2

r1, along C

E · dl (5.82)

The associated work done by a particle bearing

charge q is

W21 = qV21 (5.83)

This work represents the change in potential energy

of the system consisting of the electric field and the

charged particle. So, it must also be true that

W21 =W2 −W1 (5.84)

where W2 and W1 are the potential energies when the

particle is at r2 and r1, respectively. It is clear from

the above equation that W21 does not depend on C; it

depends only on the positions of the start and end

points and not on any of the intermediate points along

C. That is,

V21 = −
∫

r2

r1

E · dl , independent of C (5.85)

Since the result of the integration in Equation 5.85 is

independent of the path of integration, any path that

begins at r1 and ends at r2 yields the same value of

W21 and V21. We refer to this concept as

independence of path.

The integral of the electric field over a path be-

tween two points depends only on the locations

of the start and end points and is independent of

the path taken between those points.

1See Section 4.1 for a refresher on this concept.
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A practical application of this concept is that some

paths may be easier to use than others, so there may

be an advantage in computing the integral in

Equation 5.85 using some path other than the path

actually traversed.

5.10 Kirchoff’s Voltage Law for

Electrostatics: Integral

Form

[m0016]

As explained in Section 5.9, the electrical potential at

point r2 relative to r1 in an electric field E (V/m) is

V21 = −
∫

r2

r1

E · dl (5.86)

where the path of integration may be any path that

begins and ends at the specified points. Consider what

happens if the selected path through space begins and

ends at the same point; i.e., r2 = r1. In this case, the

path of integration is a closed loop. Since V21
depends only on the positions of the start and end

points and because the potential energy at those

points is the same, we conclude:

∮
E · dl = 0 (5.87)

This principle is known as Kirchoff’s Voltage Law for

Electrostatics.

Kirchoff’s Voltage Law for Electrostatics (Equa-

tion 5.87) states that the integral of the electric

field over a closed path is zero.

It is worth noting that this law is a generalization of a

principle of which the reader is likely already aware.

In electric circuit theory, the sum of voltages over any

closed loop in a circuit is zero. This is also known as

Kirchoff’s Voltage Law because it is precisely the

same principle. To obtain Equation 5.87 for an

electric circuit, simply partition the closed path into

branches, with each branch representing one

component. Then, the integral of E over each branch

is the branch voltage; i.e., units of V/m times units of

m yields units of V. Then, the sum of these branch

voltages over any closed loop is zero, as dictated by

Equation 5.87.

Finally, be advised that Equation 5.87 is specific to

electrostatics. In electrostatics, it is assumed that the

electric field is independent of the magnetic field.

This is true if the magnetic field is either zero or not
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time-varying. If the magnetic field is time-varying,

then Equation 5.87 must be modified to account for

the effect of the magnetic field, which is to make the

right hand size potentially different from zero. The

generalized version of this expression that correctly

accounts for that effect is known as the

Maxwell-Faraday Equation (Section 8.8).

Additional Reading:

• “Maxwell’s Equations” on Wikipedia.

• “Kirchoff’s Circuit Laws” on Wikipedia.

5.11 Kirchoff’s Voltage Law for

Electrostatics: Differential

Form

[m0152]

The integral form of Kirchoff’s Voltage Law for

electrostatics (KVL; Section 5.10) states that an

integral of the electric field along a closed path is

equal to zero: ∮

C

E · dl = 0 (5.88)

where E is electric field intensity and C is the closed

curve. In this section, we derive the differential form

of this equation. In some applications, this differential

equation, combined with boundary conditions

imposed by structure and materials (Sections 5.17 and

5.18), can be used to solve for the electric field in

arbitrarily complicated scenarios. A more immediate

reason for considering this differential equation is that

we gain a little more insight into the behavior of the

electric field, disclosed at the end of this section.

The equation we seek may be obtained using Stokes’

Theorem (Section 4.9), which in the present case may

be written:
∫

S

(∇×E) · ds =
∮

C

E · dl (5.89)

where S is any surface bounded by C, and ds is the

normal to that surface with direction determined by

right-hand rule. The integral form of KVL tells us that

the right hand side of the above equation is zero, so:
∫

S

(∇×E) · ds = 0 (5.90)

The above relationship must hold regardless of the

specific location or shape of S . The only way this is

possible for all possible surfaces is if the integrand is

zero at every point in space. Thus, we obtain the

desired expression:

∇×E = 0 (5.91)

Summarizing:

The differential form of Kirchoff’s Voltage Law

for electrostatics (Equation 5.91) states that the

curl of the electrostatic field is zero.

https://en.wikipedia.org/wiki/Maxwell's_equations
https://en.wikipedia.org/wiki/Kirchhoff's_circuit_laws
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Equation 5.91 is a partial differential equation. As

noted above, this equation, combined with the

appropriate boundary conditions, can be solved for

the electric field in arbitrarily-complicated scenarios.

Interestingly, it is not the only such equation available

for this purpose – Gauss’ Law (Section 5.7) also does

this. Thus, we see a system of partial differential

equations emerging, and one may correctly infer that

that the electric field is not necessarily fully

constrained by either equation alone.

Additional Reading:

• “Maxwell’s Equations” on Wikipedia.

• “Boundary value problem” on Wikipedia.

5.12 Electric Potential Field Due

to Point Charges

[m0064]

The electric field intensity due to a point charge q at

the origin is (see Section 5.1 or 5.5)

E = r̂
q

4πǫr2
(5.92)

In Sections 5.8 and 5.9, it was determined that the

potential difference measured from position r1 to

position r2 is

V21 = −
∫

r2

r1

E · dl (5.93)

This method for calculating potential difference is

often a bit awkward. To see why, consider an example

from circuit theory, shown in Figure 5.5. In this

example, consisting of a single resistor and a ground

node, we’ve identified four quantities:

• The resistance R

• The current I through the resistor

• The node voltage V1, which is the potential

difference measured from ground to the left side

of the resistor

• The node voltage V2, which is the potential

difference measured from ground to the right

side of the resistor

Let’s say we wish to calculate the potential difference

V21 across the resistor. There are two ways this can be

done:

• V21 = −IR

• V21 = V2 − V1

The advantage of the second method is that it is not

necessary to know I , R, or indeed anything about

what is happening between the nodes; it is only

necessary to know the node voltages. The point is that

it is often convenient to have a common datum – in

https://en.wikipedia.org/wiki/Maxwell's_equations
https://en.wikipedia.org/wiki/Boundary_value_problem
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Figure 5.5: A resistor in a larger circuit, used as an

example to demonstrate the concept of node voltages.

this example, ground – with respect to which the

potential differences at all other locations of interest

can be defined. When we have this, calculating

potential differences reduced to simply subtracting

predetermined node potentials.

So, can we establish a datum in general electrostatic

problems that works the same way? The answer is

yes. The datum is arbitrarily chosen to be a sphere

that encompasses the universe; i.e., a sphere with

radius → ∞. Employing this choice of datum, we can

use Equation 5.93 to define V (r), the potential at

point r, as follows:

V (r) , −
∫

r

∞

E · dl (5.94)

The electrical potential at a point, given by Equa-

tion 5.94, is defined as the potential difference

measured beginning at a sphere of infinite radius

and ending at the point r. The potential obtained

in this manner is with respect to the potential in-

finitely far away.

In the particular case where E is due to the point

charge at the origin:

V (r) = −
∫

r

∞

[
r̂

q

4πǫr2

]
· dl (5.95)

The principle of independence of path (Section 5.9)

asserts that the path of integration doesn’t matter as

long as the path begins at the datum at infinity and

ends at r. So, we should choose the easiest such path.

The radial symmetry of the problem indicates that the

easiest path will be a line of constant θ and φ, so we

choose dl = r̂dr. Continuing:

V (r) = −
∫ r

∞

[
r̂

q

4πǫr2

]
· [r̂dr] (5.96)

= − q

4πǫ

∫ r

∞

1

r2
dr (5.97)

= +
q

4πǫ

1

r

∣∣∣∣
r

∞

(5.98)

so

V (r) = +
q

4πǫr
(5.99)

(Suggestion: Confirm that Equation 5.99 is

dimensionally correct.) In the context of the circuit

theory example above, this is the “node voltage” at r

when the datum is defined to be the surface of a

sphere at infinity. Subsequently, we may calculate the

potential difference from any point r1 to any other

point r2 as

V21 = V (r2)− V (r1) (5.100)

and that will typically be a lot easier than using

Equation 5.93.

It is not often that one deals with systems consisting

of a single charged particle. So, for the above

technique to be truly useful, we need a

straightforward way to determine the potential field

V (r) for arbitrary distributions of charge. The first

step in developing a more general expression is to

determine the result for a particle located at a point r′

somewhere other than the origin. Since Equation 5.99

depends only on charge and the distance between the

field point r and r′, we have

V (r; r′) , +
q′

4πǫ |r− r′| (5.101)

where, for notational consistency, we use the symbol

q′ to indicate the charge. Now applying superposition,

the potential field due to N charges is

V (r) =

N∑

n=1

V (r; rn) (5.102)

Substituting Equation 5.101 we obtain:

V (r) =
1

4πǫ

N∑

n=1

qn
|r− rn|

(5.103)

https://creativecommons.org/licenses/by-sa/4.0/
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Equation 5.103 gives the electric potential at

a specified location due to a finite number of

charged particles.

The potential field due to continuous distributions of

charge is addressed in Section 5.13.

5.13 Electric Potential Field due

to a Continuous Distribution

of Charge

[m0065]

The electrostatic potential field at r associated with N
charged particles is

V (r) =
1

4πǫ

N∑

n=1

qn
|r− rn|

(5.104)

where qn and rn are the charge and position of the

nth particle. However, it is more common to have a

continuous distribution of charge as opposed to a

countable number of charged particles. We now

consider how to compute V (r) three types of these

commonly-encountered distributions. Before

beginning, it’s worth noting that the methods will be

essentially the same, from a mathematical viewpoint,

as those developed in Section 5.4; therefore, a review

of that section may be helpful before attempting this

section.

Continuous Distribution of Charge Along a Curve.

Consider a continuous distribution of charge along a

curve C. The curve can be divided into short segments

of length ∆l. Then, the charge associated with the

nth segment, located at rn, is

qn = ρl(rn) ∆l (5.105)

where ρl is the line charge density (units of C/m) at

rn. Substituting this expression into Equation 5.104,

we obtain

V(r) =
1

4πǫ

N∑

n=1

ρl(rn)

|r− rn|
∆l (5.106)

Taking the limit as ∆l → 0 yields:

V (r) =
1

4πǫ

∫

C

ρl(l)

|r− r′|dl (5.107)

where r′ represents the varying position along C with

integration along the length l.

Continuous Distribution of Charge Over a

Surface. Consider a continuous distribution of charge



5.14. ELECTRIC FIELD AS THE GRADIENT OF POTENTIAL 113

over a surface S . The surface can be divided into

small patches having area ∆s. Then, the charge

associated with the nth patch, located at rn, is

qn = ρs(rn) ∆s (5.108)

where ρs is surface charge density (units of C/m2) at

rn. Substituting this expression into Equation 5.104,

we obtain

V (r) =
1

4πǫ

N∑

n=1

ρs(rn)

|r− rn|
∆s (5.109)

Taking the limit as ∆s→ 0 yields:

V (r) =
1

4πǫ

∫

S

ρs(r
′)

|r− r′| ds (5.110)

where r′ represents the varying position over S with

integration.

Continuous Distribution of Charge in a Volume.

Consider a continuous distribution of charge within a

volume V . The volume can be divided into small cells

(volume elements) having area ∆v. Then, the charge

associated with the nth cell, located at rn, is

qn = ρv(rn) ∆v (5.111)

where ρv is the volume charge density (units of C/m3)

at rn. Substituting this expression into

Equation 5.104, we obtain

V (r) =
1

4πǫ

N∑

n=1

ρv(rn)

|r− rn|
∆v (5.112)

Taking the limit as ∆v → 0 yields:

V (r) =
1

4πǫ

∫

V

ρv(r
′)

|r− r′| dv (5.113)

where r′ represents the varying position over V with

integration.

5.14 Electric Field as the

Gradient of Potential

[m0063]

In Section 5.8, it was determined that the electrical

potential difference V21 measured over a path C is

given by

V21 = −
∫

C

E(r) · dl (5.114)

where E(r) is the electric field intensity at each point

r along C. In Section 5.12, we defined the scalar

electric potential field V (r) as the electric potential

difference at r relative to a datum at infinity. In this

section, we address the “inverse problem” – namely,

how to calculate E(r) given V (r). Specifically, we

are interested in a direct “point-wise” mathematical

transform from one to the other. Since Equation 5.114

is in the form of an integral, it should not come as a

surprise that the desired expression will be in the form

of a differential equation.

We begin by identifying the contribution of an

infinitesimal length of the integral to the total integral

in Equation 5.114. At point r, this is

dV = −E(r) · dl (5.115)

Although we can proceed using any coordinate

system, the following derivation is particularly simple

in Cartesian coordinates. In Cartesian coordinates,

dl = x̂dx+ ŷdy + ẑdz (5.116)

We also note that for any scalar function of position,

including V (r), it is true that

dV =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz (5.117)

Note the above relationship is not specific to

electromagnetics; it is simply mathematics. Also note

that dx = dl · x̂ and so on for dy and dz. Making

these substitutions into the above equation, we obtain:

dV =
∂V

∂x
(dl · x̂) + ∂V

∂y
(dl · ŷ) + ∂V

∂z
(dl · ẑ)

(5.118)

This equation may be rearranged as follows:

dV =

([
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

]
V

)
· dl (5.119)
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Comparing the above equation to Equation 5.115, we

find:

E(r) = −
[
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

]
V (5.120)

Note that the quantity in square brackets is the

gradient operator “∇” (Section 4.5). Thus, we may

write

E = −∇V (5.121)

which is the relationship we seek.

The electric field intensity at a point is the gra-

dient of the electric potential at that point after a

change of sign (Equation 5.121).

Using Equation 5.121, we can immediately find the

electric field at any point r if we can describe V as a

function of r. Furthermore, this relationship between

V and E has a useful physical interpretation. Recall

that the gradient of a scalar field is a vector that points

in the direction in which that field increases most

quickly. Therefore:

The electric field points in the direction in which

the electric potential most rapidly decreases.

This result should not come as a complete surprise;

for example, the reader should already be aware that

the electric field points away from regions of net

positive charge and toward regions of net negative

charge (Sections 2.2 and/or 5.1). What is new here is

that both the magnitude and direction of the electric

field may be determined given only the potential field,

without having to consider the charge that is the

physical source of the electrostatic field.

Example 5.8. Electric field of a charged

particle, beginning with the potential field.

In this example, we determine the electric field

of a particle bearing charge q located at the

origin. This may be done in a “direct” fashion

using Coulomb’s Law (Section 5.1). However,

here we have the opportunity to find the electric

field using a different method. In Section 5.12

we found the scalar potential for this source was:

V (r) =
q

4πǫr
(5.122)

So, we may obtain the electric field using

Equation 5.121:

E = −∇V = −∇
( q

4πǫr

)
(5.123)

Here V (r) is expressed in spherical coordinates,

so we have (Section B.2):

E = −
[
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

]( q

4πǫr

)

(5.124)

In this case, V (r) does not vary with φ or θ, so

the second and third terms of the gradient are

zero. This leaves

E = −r̂
∂

∂r

( q

4πǫr

)

= −r̂
q

4πǫ

∂

∂r

1

r

= −r̂
q

4πǫ

(
− 1

r2

)
(5.125)

So we find

E = +r̂
q

4πǫr2
(5.126)

as was determined in Section 5.1.
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5.15 Poisson’s and Laplace’s

Equations

[m0067]

The electric scalar potential field V (r), defined in

Section 5.12, is useful for a number of reasons

including the ability to conveniently compute

potential differences (i.e., V21 = V (r2)− V (r1)) and

the ability to conveniently determine the electric field

by taking the gradient (i.e., E = −∇V ). One way to

obtain V (r) is by integration over the source charge

distribution, as described in Section 5.13. This

method is awkward in the presence of material

interfaces, which impose boundary conditions on the

solutions that must be satisfied simultaneously. For

example, the electric potential on a perfectly

conducting surface is constant2 – a constraint which is

not taken into account in any of the expressions in

Section 5.13.

In this section, we develop an alternative approach to

calculating V (r) that accommodates these boundary

conditions, and thereby facilitates the analysis of the

scalar potential field in the vicinity of structures and

spatially-varying material properties. This alternative

approach is based on Poisson’s Equation, which we

now derive.

We begin with the differential form of Gauss’ Law

(Section 5.7):

∇ ·D = ρv (5.127)

Using the relationship D = ǫE (and keeping in mind

our standard assumptions about material properties,

summarized in Section 2.8) we obtain

∇ ·E =
ρv
ǫ

(5.128)

Next, we apply the relationship (Section 5.14):

E = −∇V (5.129)

yielding

∇ · ∇V = −ρv
ǫ

(5.130)

This is Poisson’s Equation, but it is not in the form in

which it is commonly employed. To obtain the

2This fact is probably already known to the reader from past

study of elementary circuit theory; however, this is established in

the context of electromagnetics in Section 5.19.

alternative form, consider the operator ∇ · ∇ in

Cartesian coordinates:

∇ · ∇ =

[
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ

]
·
[
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ

]

=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

= ∇2 (5.131)

i.e., the operator ∇ · ∇ is identically the Laplacian

operator ∇2 (Section 4.10). Furthermore, this is true

regardless of the coordinate system employed. Thus,

we obtain the following form of Poisson’s Equation:

∇2V = −ρv
ǫ

(5.132)

Poisson’s Equation (Equation 5.132) states that

the Laplacian of the electric potential field is

equal to the volume charge density divided by the

permittivity, with a change of sign.

Note that Poisson’s Equation is a partial differential

equation, and therefore can be solved using

well-known techniques already established for such

equations. In fact, Poisson’s Equation is an

inhomogeneous differential equation, with the

inhomogeneous part −ρv/ǫ representing the source of

the field. In the presence of material structure, we

identify the relevant boundary conditions at the

interfaces between materials, and the task of finding

V (r) is reduced to the purely mathematical task of

solving the associated boundary value problem (see

“Additional Reading” at the end of this section). This

approach is particularly effective when one of the

materials is a perfect conductor or can be modeled as

such a material. This is because – as noted at the

beginning of this section – the electric potential at all

points on the surface of a perfect conductor must be

equal, resulting in a particularly simple boundary

condition.

In many other applications, the charge responsible for

the electric field lies outside the domain of the

problem; i.e., we have non-zero electric field (hence,

potentially non-zero electric potential) in a region that

is free of charge. In this case, Poisson’s Equation

simplifies to Laplace’s Equation:

∇2V = 0 (source-free region) (5.133)
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Laplace’s Equation (Equation 5.133) states that

the Laplacian of the electric potential field is zero

in a source-free region.

Like Poisson’s Equation, Laplace’s Equation,

combined with the relevant boundary conditions, can

be used to solve for V (r), but only in regions that

contain no charge.

Additional Reading:

• “Poisson’s equation” on Wikipedia.

• “Boundary value problem” on Wikipedia.

• “Laplace’s equation” on Wikipedia.

5.16 Potential Field Within a

Parallel Plate Capacitor

[m0068]

This section presents a simple example that

demonstrates the use of Laplace’s Equation

(Section 5.15) to determine the potential field in a

source free region. The example, shown in Figure 5.6,

pertains to an important structure in electromagnetic

theory – the parallel plate capacitor. Here we are

concerned only with the potential field V (r) between

the plates of the capacitor; you do not need to be

familiar with capacitance or capacitors to follow this

section (although you’re welcome to look ahead to

Section 5.22 for a preview, if desired). What is

recommended before beginning is a review of the

battery-charged capacitor experiment discussed in

Section 2.2. In this section you’ll see a rigorous

derivation of what we figured out in an informal way

in that section.

The parallel-plate capacitor in Figure 5.6 consists of

two perfectly-conducting circular disks separated by a

distance d by a spacer material having permittivity ǫ.
There is no charge present in the spacer material, so

Laplace’s Equation applies. That equation is

(Section 5.15):

∇2V = 0 (source-free region) (5.134)

Let VC be the potential difference between the plates,

which would also be the potential difference across

the terminals of the capacitor. The radius a of the

plates is larger than d by enough that we may neglect

what is going on at at the edges of the plates – more

on this will be said as we work the problem. Under

this assumption, what is the electric potential field

V (r) between the plates?

This problem has cylindrical symmetry, so it makes

sense to continue to use cylindrical coordinates with

the z axis being perpendicular to the plates.

Equation 5.134 in cylindrical coordinates is:
[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2

]
V = 0 (5.135)

or perhaps a little more clearly written as follows:

1

ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+

1

ρ2
∂2V

∂φ2
+
∂2V

∂z2
= 0 (5.136)

https://en.wikipedia.org/wiki/Poisson's_equation
https://en.wikipedia.org/wiki/Boundary_value_problem
https://en.wikipedia.org/wiki/Laplace's_equation
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d

z

ρ

a

V-+VC

V-

Figure 5.6: A parallel plate capacitor, as a demonstra-

tion of the use of Laplace’s Equation.

Since the problem has radial symmetry, ∂V/∂φ = 0.

Since d≪ a, we expect the fields to be approximately

constant with ρ until we get close to the edge of the

plates. Therefore, we assume ∂V/∂ρ is negligible and

can be taken to be zero. Thus, we are left with

∂2V

∂z2
≈ 0 for ρ≪ a (5.137)

The general solution to Equation 5.137 is obtained

simply by integrating both sides twice, yielding

V (z) = c1z + c2 (5.138)

where c1 and c2 are constants that must be consistent

with the boundary conditions. Thus, we must develop

appropriate boundary conditions. Let the node

voltage at the negative (z = 0) terminal be V−. Then

the voltage at the positive (z = +d) terminal is

V− + VC . Therefore:

V (z = 0) = V− (5.139)

V (z = +d) = V− + VC (5.140)

These are the relevant boundary conditions.

Substituting V (z = 0) = V− into Equation 5.138

yields c2 = V−. Substituting V (z = +d) = V− + VC
into Equation 5.138 yields c1 = VC/d. Thus, the

answer to the problem is

V (z) ≈ VC
d
z + V− for ρ≪ a (5.141)

Note that the above result is dimensionally correct

and confirms that the potential deep inside a “thin”

parallel plate capacitor changes linearly with distance

between the plates.

Further, you should find that application of the

equation E = −∇V (Section 5.14) to the solution

above yields the expected result for the electric field

intensity: E ≈ −ẑVC/d. This is precisely the result

that we arrived at (without the aid of Laplace’s

Equation) in Section 2.2.

A reasonable question to ask at this point would be,

what about the potential field close to the edge of the

plates, or, for that matter, beyond the plates? The field

in this region is referred to as a fringing field. For the

fringing field, ∂V/∂ρ is no longer negligible and must

be taken into account. In addition, it is necessary to

modify the boundary conditions to account for the

outside surfaces of the plates (that is, the sides of the

plates that face away from the dielectric) and to

account for the effect of the boundary between the

spacer material and free space. These issues make the

problem much more difficult. When an accurate

calculation of a fringing field is necessary, it is

common to resort to a numerical solution of Laplace’s

Equation. Fortunately, accurate calculation of

fringing fields is usually not required in practical

engineering applications.
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5.17 Boundary Conditions on the

Electric Field Intensity (E)

[m0020]

In homogeneous media, electromagnetic quantities

vary smoothly and continuously. At an interface

between dissimilar media, however, it is possible for

electromagnetic quantities to be discontinuous. These

discontinuities can be described mathematically as

boundary conditions and used to to constrain

solutions for the associated electromagnetic

quantities. In this section, we derive boundary

conditions on the electric field intensity E.

To begin, consider a region consisting of only two

media that meet at an interface defined by the

mathematical surface S , as shown in Figure 5.7. If

either one of the materials is a perfect electrical

conductor (PEC), then S is an equipotential surface;

i.e., the electric potential V is constant everywhere on

S . Since E is proportional to the spatial rate of

change of potential (recall E = −∇V ; Section 5.14),

we find:

The component of E that is tangent to a perfectly-

conducting surface is zero.

This is sometimes expressed informally as follows:

Etan = 0 on PEC surface (5.142)

where “Etan” is understood to be the component of E

that is tangent to S . Since the tangential component

PEC

E

E E
E

(equipotential)

c© K. Kikkeri CC BY SA 4.0

Figure 5.7: At the surface of a perfectly-conducting

region, E may be perpendicular to the surface (two

leftmost possibilities), but may not exhibit a compo-

nent that is tangent to the surface (two rightmost pos-

sibilities).

B
A w

t

c© K. Kikkeri CC BY SA 4.0

Figure 5.8: Use of KVL to determine the boundary

condition on E.

of E on the surface of a perfect conductor is zero, the

electric field at the surface must be oriented entirely

in the direction perpendicular to the surface, as shown

in Figure 5.7.

The following equation expresses precisely the same

idea, but includes the calculation of the tangential

component as part of the statement:

E× n̂ = 0 (on PEC surface) (5.143)

where n̂ is either normal (i.e., unit vector

perpendicular to the surface) to each point on S . This

expression works because the cross product of any

two vectors is perpendicular to either vector

(Section 4.1), and any vector which is perpendicular

to n̂ is tangent to S .

We now determine a more general boundary

condition that applies even when neither of the media

bordering S is a perfect conductor. The desired

boundary condition can be obtained directly from

Kirchoff’s Voltage Law (KVL; Section 5.10):

∮

C

E · dl = 0 (5.144)

Let the closed path of integration take the form of a

rectangle centered on S , as shown in Figure 5.8. Let

the sides A, B, C, and D be perpendicular or parallel

to the surface, respectively. Let the length of the

perpendicular sides be w, and let the length of the

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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parallel sides be l. From KVL we have
∮

C

E · dl =
∫

A

E · dl

+

∫

B

E · dl

+

∫

C

E · dl

+

∫

D

E · dl = 0 (5.145)

Now, let us reduce w and l together while (1)

maintaining a constant ratio w/l ≪ 1 and (2) keeping

C centered on S . In this process, the contributions

from the B and D segments become equal in

magnitude but opposite in sign; i.e.,
∫

B

E · dl+
∫

D

E · dl → 0 (5.146)

This leaves
∮

C

E · dl →
∫

A

E · dl+
∫

C

E · dl → 0 (5.147)

Let us define the unit vector t̂ (“tangent”) as shown in

Figure 5.8. When the lengths of sides A and C
become sufficiently small, we can write the above

expression as follows:

E1 · t̂∆l −E2 · t̂∆l → 0 (5.148)

where E1 and E2 are the fields evaluated on the two

sides of the boundary and ∆l → 0 is the length of

sides A and C while this is happening. Note that the

only way Equation 5.148 can be true is if the

tangential components of E1 and E2 are equal. In

other words:

The tangential component of E must be continu-

ous across an interface between dissimilar media.

Note that this is a generalization of the result we

obtained earlier for the case in which one of the

media was a PEC – in that case, the tangent

component of E on the other side of the interface

must be zero because it is zero in the PEC medium.

As before, we can express this idea in compact

mathematical notation. Using the same idea used to

obtain Equation 5.143, we have found

E1 × n̂ = E2 × n̂ on S (5.149)

or, as it is more commonly written:

n̂× (E1 −E2) = 0 on S (5.150)

We conclude this section with a note about the

broader applicability of this boundary condition:

Equation 5.150 is the boundary condition that ap-

plies to E for both the electrostatic and the gen-

eral (time-varying) case.

Although a complete explanation is not possible

without the use of the Maxwell-Faraday Equation

(Section 8.8), the reason why this boundary condition

applies in the time-varying case can be disclosed here.

In the presence of time-varying magnetic fields, the

right-hand side of Equation 5.144 may become

non-zero and is proportional to the area defined by the

closed loop. However, the above derivation requires

the area of this loop to approach zero, in which case

the possible difference from Equation 5.144 also

converges to zero. Therefore, the boundary condition

expressed in Equation 5.150 applies generally.
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5.18 Boundary Conditions on the

Electric Flux Density (D)

[m0021]

In this section, we derive boundary conditions on the

electric flux density D. The considerations are quite

similar to those encountered in the development of

boundary conditions on the electric field intensity (E)

in Section 5.17, so the reader may find it useful to

review that section before attempting this section.

This section also assumes familiarity with the

concepts of electric flux, electric flux density, and

Gauss’ Law; for a refresher, Sections 2.4 and 5.5 are

suggested.

To begin, consider a region at which two

otherwise-homogeneous media meet at an interface

defined by the mathematical surface S , as shown in

Figure 5.9. Let one of these regions be a perfect

electrical conductor (PEC). In Section 5.17, we

established that the tangential component of the

electric field must be zero, and therefore, the electric

field is directed entirely in the direction perpendicular

to the surface. We further know that the electric field

within the conductor is identically zero. Therefore, D

at any point on S is entirely in the direction

perpendicular to the surface and pointing into the

non-conducting medium. However, it is also possible

to determine the magnitude of D. We shall

demonstrate in this section that

At the surface of a perfect conductor, the magni-

tude of D is equal to the surface charge density

ρs (units of C/m2) at that point.

PEC

D=nρs

c© K. Kikkeri CC BY SA 4.0

Figure 5.9: The component of D that is perpendicular

to a perfectly-conducting surface is equal to the charge

density on the surface.

region 1

region 2

n

a

h

h

c© K. Kikkeri CC BY SA 4.0

Figure 5.10: Use of Gauss’ Law to determine the

boundary condition on D.

The following equation expresses precisely the same

idea, but includes the calculation of the perpendicular

component as part of the statement:

D · n̂ = ρs (on PEC surface) (5.151)

where n̂ is the normal to S pointing into the

non-conducting region. (Note that the orientation of n̂

is now important; we have assumed n̂ points into

region 1, and we must now stick with this choice.)

Before proceeding with the derivation, it may be

useful to note that this result is not surprising. The

very definition of electric flux (Section 2.4) indicates

that D should correspond in the same way to a

surface charge density. However, we can show this

rigorously, and in the process we can generalize this

result to the more-general case in which neither of the

two materials are PEC.

The desired more-general boundary condition may be

obtained from the integral form of Gauss’ Law

(Section 5.5), as illustrated in Figure 5.10. Let the

surface of integration S ′ take the form of closed

cylinder centered at a point on the interface and for

which the flat ends are parallel to the surface and

perpendicular to n̂. Let the radius of this cylinder be

a, and let the length of the cylinder be 2h. From

Gauss’ Law we have
∮

S′

D · ds =
∫

top

D · ds

+

∫

side

D · ds

+

∫

bottom

D · ds = Qencl (5.152)

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


5.18. BOUNDARY CONDITIONS ON THE ELECTRIC FLUX DENSITY (D) 121

where the “top” and “bottom” are in Regions 1 and 2,

respectively, and Qencl is the charge enclosed by S ′.

Now let us reduce h and a together while (1)

maintaining a constant ratio h/a≪ 1 and (2) keeping

S ′ centered on S . Because h≪ a, the area of the side

can be made negligible relative to the area of the top

and bottom. Then as h→ 0 we are left with

∫

top

D · ds+
∫

bottom

D · ds → Qencl (5.153)

As the area of the top and bottom sides become

infinitesimal, the variation in D over these areas

becomes negligible. Now we have simply:

D1 · n̂∆A+D2 · (−n̂)∆A→ Qencl (5.154)

where D1 and D2 are the electric flux density vectors

in medium 1 and medium 2, respectively, and ∆A is

the area of the top and bottom sides. The above

expression can be rewritten

n̂ · (D1 −D2) →
Qencl
∆A

(5.155)

Note that the left side of the equation must represent a

actual, physical surface charge; this is apparent from

dimensional analysis and the fact that h is now

infinitesimally small. Therefore:

n̂ · (D1 −D2) = ρs (5.156)

where, as noted above, n̂ points into region 1.

Summarizing:

Any discontinuity in the normal component of

the electric flux density across the boundary be-

tween two material regions is equal to the surface

charge.

Now let us verify that this is consistent with our

preliminary finding, in which Region 2 was a PEC. In

that case D2 = 0, so we see that Equation 5.151 is

satisfied, as expected. If neither Region 1 nor

Region 2 is PEC and there is no surface charge on the

interface, then we find n̂ · (D1 −D2) = 0; i.e.,

In the absence of surface charge, the normal com-

ponent of the electric flux density must be contin-

uous across the boundary.

Finally, we note that since D = ǫE, Equation 5.156

implies the following boundary condition on E:

n̂ · (ǫ1E1 − ǫ2E2) = ρs (5.157)

where ǫ1 and ǫ2 are the permittivities in Regions 1

and 2, respectively. The above equation illustrates one

reason why we sometimes prefer the “flux”

interpretation of the electric field to the “field

intensity” interpretation of the electric field.
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5.19 Charge and Electric Field

for a Perfectly Conducting

Region

[m0025]

In this section, we consider the behavior of charge

and the electric field in the vicinity of a perfect

electrical conductor (PEC).

First, note that the electric field – both the electric

field intensity E and electric flux density D –

throughout a PEC region is zero. This is because the

electrical potential throughout a PEC region must be

constant. (This idea is explored further in

Section 6.3.) Recall that the electric field is

proportional to the spatial rate of change of electrical

potential (i.e., E = −∇V ; Section 5.14). Thus, the

electric field must be zero throughout a PEC region.

Second, the electric field is oriented directly away

from (i.e., perpendicular to) the PEC surface, and the

magnitude of D is equal to the surface charge density

ρs (C/m2) (Section 5.18).

Now we address the question of charge distribution;

i.e., the location and density of charge. Consider the

scenario shown in Figure 5.11. Here, a flat slab of

PEC material is embedded in dielectric material.3 The

3For the purposes of this section, it suffices to interpret “dielec-

tric” as a “nonconducting and well characterized entirely in terms of

c© K. Kikkeri CC BY SA 4.0

Figure 5.11: An infinite flat slab of PEC in the pres-

ence of an applied electric field.

thickness of the slab is finite, whereas the length and

width of the slab is infinite. The region above the slab

is defined as Region 1 and has permittivity ǫ1. The

region below the slab is defined as Region 2 and has

permittivity ǫ2. Electric fields E1 and E2 are present

in Regions 1 and 2, respectively, as shown in

Figure 5.11. To begin, let us assume that these fields

are the result of some external stimulus that results in

the direction of these fields being generally upward,

as shown in Figure 5.11.

Now, what do we know about E1 and E2? First, both

fields must satisfy the relevant boundary conditions.

That is, the component of E1 that is tangent to the

upper PEC surface is zero, so that E1 is directed

entirely in a direction perpendicular to the surface.

Similarly, the component of E2 that is tangent to the

lower PEC surface is zero, so that E2 is directed

entirely in a direction perpendicular to the surface. At

this point we have not determined the magnitudes or

signs of E1 and E2; we have established only that

there are no non-zero components tangential to (i.e.,

parallel to) the PEC surfaces.

Next, recall that the electric field must be zero within

the slab. This means that there must be zero net

charge within the slab, since any other distribution of

charge will result in a non-zero electric field, and

subsequently a potential difference between locations

within the slab. Therefore:

There can be no static charge within a PEC.

It follows that

Charge associated with a PEC lies entirely on the

surface.

Outside the slab, the boundary conditions on D1 and

D2 in the dielectric regions require these fields to be

non-zero when the surface charge density on the PEC

is non-zero. The surface charge supports the

discontinuity in the normal component of the electric

fields. Specifically, D1 and D2 have the same

magnitude |ρs| because the surface charge densities

on both sides of the slab have equal magnitude.

However, the electric field intensity E1 = D1/ǫ1,

whereas E2 = D2/ǫ2; i.e., these are different. That

its permittivity.” For more, see Section 5.20.

https://creativecommons.org/licenses/by-sa/4.0/
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Figure 5.12: Electric field lines due to a point charge

in the vicinity of PEC regions (shaded) of various

shapes.

is, the electric field intensities are unequal unless the

permittivities in each dielectric region are equal.

Finally, let us consider the structure of the electric

field in more general cases. Figure 5.12 shows field

lines in a homogeneous dielectric material in which a

point charge and PEC regions of various shapes are

embedded. Note that electric field lines now bend in

the dielectric so as to satisfy the requirement that the

tangential component of the electric field be zero on

PEC surfaces. Also note that the charge distribution

arranges itself on the PEC surfaces so as to maintain

zero electric field and constant potential within the

cube.

5.20 Dielectric Media

[m0107]

Dielectric is particular category of materials that

exhibit low conductivity4 because their constituent

molecules remain intact when exposed to an electric

field, as opposed to shedding electrons as is the case

in good conductors. Subsequently, dielectrics do not

effectively pass current, and are therefore considered

“good insulators” as well as “poor conductors.” An

important application of dielectrics in electrical

engineering is as a spacer material in printed circuit

boards (PCBs), coaxial cables, and capacitors.

Examples of dielectrics include air, glass, teflon, and

fiberglass epoxy (the material used in common “FR4”

printed circuit boards). These and other dielectrics are

listed along with values of their constitutive

parameters in Section A.1.

The electromagnetic properties of dielectric materials

are quantified primarily by relative permittivity ǫr
(Section 2.3), which ranges from very close to 1

upward to roughly 50, and is less than 6 or so for

most commonly-encountered materials having low

moisture content. The permeability of dielectric

materials is approximately equal to the free-space

value (i.e., µ ≈ µ0); therefore, these materials are said

to be “non-magnetic.”

Additional Reading:

• “Dielectric” on Wikipedia.

4See Section 2.8 for a refresher on parameters describing prop-

erties of materials.

https://en.wikipedia.org/wiki/Dielectric
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5.21 Dielectric Breakdown

[m0109]

The permittivity of an ideal dielectric is independent

of the magnitude of an applied electric field; the

material is said to be “linear.”5 However, all practical

dielectrics fail in this respect with sufficiently strong

electric field. Typically, the failure is abrupt and is

observed as a sudden, dramatic increase in

conductivity, signaling that electrons are being

successfully dislodged from their host molecules. The

threshold value of the electric field intensity at which

this occurs is known as the dielectric strength, and the

sudden change in behavior observed in the presence

of an electric field greater than this threshold value is

known as dielectric breakdown.

Dielectric strength varies from about 3 MV/m for air

to about 200 MV/m in mica (a dielectric commonly

used in capacitors).

Dielectric breakdown is typically accompanied by

“arcing,” which is a sudden flow of current associated

with the breakdown. A well known example of this

phenomenon is lightning, which occurs when charge

is exchanged between sky and ground when air (a

dielectric) exhibits breakdown. Dielectric breakdown

in solids typically damages the material.

Additional Reading:

• “Electrical Breakdown” on Wikipedia.

5See Section 2.8 for a review of this concept.

5.22 Capacitance

[m0112]

When separate regions of positive and negative charge

exist in proximity, Coulomb forces (Section 5.1) will

attempt to decrease the separation between the

charges. As noted in Section 5.8, this can be

interpreted as a tendency of a system to reduce its

potential energy. If the charges are fixed in place, then

the potential energy remains constant. This potential

energy is proportional to the Coulomb force.

Referring back to Section 5.1, the Coulomb force is:

• Proportional to quantity of positive charge

squared

• Inversely proportional to the separation between

the charges squared

• Inversely proportional to the permittivity of the

material separating the charges

Therefore, the potential energy of the system is

likewise dependent on charge, separation, and

permittivity. Furthermore, we see that the ability of a

system to store energy in this manner depends on the

geometry of the charge distribution and the

permittivity of the intervening material.

Now recall that the electric field intensity E is

essentially defined in terms of the Coulomb force;

i.e., F = qE (Section 2.2). So, rather than thinking of

the potential energy of the system as being associated

with the Coulomb force, it is equally valid to think of

the potential energy as being stored in the electric

field associated with the charge distribution. It

follows from the previous paragraph that the energy

stored in the electric field depends on the geometry of

the charge distribution and the permittivity of the

intervening media. This relationship is what we mean

by capacitance. We summarize as follows:

Capacitance is the ability of a structure to store

energy in an electric field.

and

https://en.wikipedia.org/wiki/Electrical_breakdown
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The capacitance of a structure depends on its ge-

ometry and the permittivity of the medium sepa-

rating regions of positive and negative charge.

Note that capacitance does not depend on charge,

which we view as either a stimulus or response from

this point of view. The corresponding response or

stimulus, respectively, is the potential associated with

this charge. This leads to the following definition:

C ,
Q+

V
(5.158)

where Q+ (units of C) is the total positive charge, V
(units of V) is the potential associated with this

charge (defined such that it is positive), and C (units

of F) is the associated capacitance. So:

In practice, capacitance is defined as the ratio

of charge present on one conductor of a two-

conductor system to the potential difference be-

tween the conductors (Equation 5.158).

In other words, a structure is said to have greater

capacitance if it stores more charge – and therefore

stores more energy – in response to a given potential

difference.

Figure 5.13 shows the relevant features of this

definition. Here, a battery imposes the potential

difference V between two regions of

perfectly-conducting material. Q+ is the total charge

on the surface of the PEC region attached to the

positive terminal of the battery. An equal amount of

negative charge appears on the surface of the PEC

region attached to the negative terminal of the battery

(Section 5.19). This charge distribution gives rise to

an electric field. Assuming the two PEC regions are

fixed in place, Q+ will increase linearly with

increasing V , at a rate determined by the capacitance

C of the structure.

A capacitor is a device that is designed to exhibit a

specified capacitance. We can now make the

connection to the concept of the capacitor as it

appears in elementary circuit theory. In circuit theory,

the behavior of devices is characterized in terms of

terminal voltage VT in response to terminal current

IT , and vice versa. First, note that current does not
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Figure 5.13: Electrostatic interpretation of capaci-

tance.

normally flow through a capacitor,6 so when we refer

to “terminal current” for a capacitor, what we really

mean is the flow of charge arriving or departing from

one of the conductors via the circuit, which is equal to

the flow of charge departing or arriving (respectively)

at the other conductor. This gives the appearance of

current flow through the capacitor when the current is

examined from outside the capacitor. With that

settled, we proceed as follows. Using Equation 5.158,

we express the voltage VT across the terminals of a

capacitor having capacitance C:

VT =
Q+

C
(5.159)

We seek a relationship between VT and IT . Current is

charge per unit time, so the charge on either

conductor is the integral of IT over time; i.e.:

Q+(t) =

∫ t

t0

IT (τ) dτ +Q+(t0) (5.160)

where t0 is an arbitrarily-selected start time. In other

words, amps integrated over time is charge. If we

define IT as being positive in the direction of the flow

of positive charge as is the usual convention, then we

have:

VT (t) =
1

C

∫ t

t0

IT (τ) dτ +
1

C
Q+(t0) (5.161)

Again applying Equation 5.158, we see that the

second term is simply VT (t0). This is the expected

relationship from elementary circuit theory.

6If it does, it’s probably experiencing dielectric breakdown; see

Section 5.21.



126 CHAPTER 5. ELECTROSTATICS

Finally, solving for IT we obtain the differential form

of this relationship:

IT (t) = C
d

dt
VT (t) (5.162)

Additional Reading:

• “Capacitance” on Wikipedia.

• “Capacitor” on Wikipedia.

5.23 The Thin Parallel Plate

Capacitor

[m0070]

Let us now determine the capacitance of a common

type of capacitor known as the thin parallel plate

capacitor, shown in Figure 5.14. This capacitor

consists of two flat plates, each having area A,

separated by distance d. To facilitate discussion, let us

place the origin of the coordinate system at the center

of the lower plate, with the +z axis directed toward

the upper plate such that the upper plate lies in the

z = +d plane.

Below we shall find the capacitance by assuming a

particular charge on one plate, using the boundary

condition on the electric flux density D to relate this

charge density to the internal electric field, and then

integrating over the electric field between the plates to

obtain the potential difference. Then, capacitance is

the ratio of the assumed charge to the resulting

potential difference.

The principal difficulty in this approach is finding the

electric field. To appreciate the problem, first consider

that if the area of the plates was infinite, then the

electric field would be very simple; it would begin at

the positively-charged plate and extend in a

perpendicular direction toward the negatively-charged

plate (Section 5.19). Furthermore, the field would be

constant everywhere between the plates. This much is

apparent from symmetry alone. However, when the

plate area is finite, then we expect a fringing field to

emerge. “Fringing field” is simply a term applied to

the non-uniform field that appears near the edge of

the plates. The field is non-uniform in this region

d

z

ρ

Figure 5.14: Thin parallel plate capacitor.

https://en.wikipedia.org/wiki/Capacitance
https://en.wikipedia.org/wiki/Capacitor
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because the boundary conditions on the outside

(outward-facing) surfaces of the plates have a

significant effect in this region. In the central region

of the capacitor, however, the field is not much

different from the field that exists in the case of

infinite plate area.

In any parallel plate capacitor having finite plate area,

some fraction of the energy will be stored by the

approximately uniform field of the central region, and

the rest will be stored in the fringing field. We can

make the latter negligible relative to the former by

making the capacitor very “thin,” in the sense that the

smallest identifiable dimension of the plate is much

greater than d. Under this condition, we may obtain a

good approximation of the capacitance by simply

neglecting the fringing field, since an insignificant

fraction of the energy is stored there.

Imposing the “thin” condition leads to three

additional simplifications. First, the surface charge

distribution may be assumed to be approximately

uniform over the plate, which greatly simplifies the

analysis. Second, the shape of the plates becomes

irrelevant; they might be circular, square, triangular,

etc. When computing capacitance in the “thin” case,

only the plate area A is important. Third, the

thickness of each of the plates becomes irrelevant.

We are now ready to determine the capacitance of the

thin parallel plate capacitor. Here are the steps:

1. Assume a total positive charge Q+ on the upper

plate.

2. Invoking the “thin” condition, we assume the

charge density on the plates is uniform. Thus,

the surface charge density on bottom side of the

upper plate is ρs,+ = Q+/A (C/m2).

3. From the boundary condition on the bottom

surface of the upper plate, D on this surface is

−ẑρs,+.

4. The total charge on the lower plate, Q−, must be

equal and opposite the total charge on the upper

plate; i.e, Q− = −Q+. Similarly, the surface

charge density on the upper surface of the lower

plate, ρs,−, must be −ρs,+.

5. From the boundary condition on the top surface

of the lower plate (Section 5.18), D on this

surface is +ẑρs,−. Since +ẑρs,− = −ẑρs,+, D

on the facing sides of the plates is equal.

6. Again invoking the “thin” condition, we assume

D between the plates has approximately the

same structure as we would see if the plate area

was infinite. Therefore, we are justified in

assuming D ≈ −ẑρs,+ everywhere between the

plates. (You might also see that this is

self-evident from the definition of D as the flux

density of electric charge (Section 2.4).)

7. With an expression for the electric field in hand,

we may now compute the potential difference V
between the plates as follows (Section 5.8):

V = −
∫

C

E · dl

= −
∫ d

0

(
1

ǫ
D

)
· (ẑdz)

= −
∫ d

0

(
−ẑ

ρs,+
ǫ

)
· (ẑdz)

= +
ρs,+ d

ǫ
(5.163)

8. Finally,

C =
Q+

V
=

ρs,+ A

ρs,+ d/ǫ
=
ǫA

d
(5.164)

Summarizing:

C ≈ ǫA

d
(5.165)

The capacitance of a parallel plate capacitor hav-

ing plate separation much less than the size of

the plate is given by Equation 5.165. This is an

approximation because the fringing field is ne-

glected.

It’s worth noting that this is dimensionally correct;

i.e., F/m times m2 divided by m yields F. It’s also

worth noting the effect of the various parameters:

Capacitance increases in proportion to permittiv-

ity and plate area and decreases in proportion to

distance between the plates.
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Example 5.9. Printed circuit board capacitance.

Printed circuit boards commonly include a

“ground plane,” which serves as the voltage

datum for the board, and at least one “power

plane,” which is used to distribute a DC supply

voltage (See “Additional Reading” at the end of

this section). These planes are separated by a

dielectric material, and the resulting structure

exhibits capacitance. This capacitance may be

viewed as an equivalent discrete capacitor in

parallel with the power supply. The value of this

equivalent capacitor may be either negligible,

significant and beneficial, or significant and

harmful. So, it is useful to know the value of this

equivalent capacitor.

For a common type of circuit board, the

dielectric thickness is about 1.6 mm and the

relative permittivity of the material is about 4.5.

If the area in common between the ground and

power planes is 25 cm2, what is the value of the

equivalent capacitor?

Solution. From the problem statement,

ǫ ∼= 4.5ǫ0, A ∼= 25 cm2 = 2.5 × 10−3 m2, and

d ∼= 1.6 mm. Using Equation 5.165, the value of

the equivalent capacitor is 62.3 pF.

Additional Reading:

• “Printed circuit board” on Wikipedia.

5.24 Capacitance of a Coaxial

Structure

[m0113]

Let us now determine the capacitance of

coaxially-arranged conductors, shown in Figure 5.15.

Among other applications, this information is useful

in the analysis of voltage and current waves on

coaxial transmission line, as addressed in Sections 3.4

and 3.10.

For our present purposes, we may model the structure

as consisting of two concentric perfectly-conducting

cylinders of radii a and b, separated by an ideal

dielectric having permittivity ǫs. We place the +z
axis along the common axis of the concentric

cylinders so that the cylinders may be described as

constant-coordinate surfaces ρ = a and ρ = b.

In this section, we shall find the capacitance by

assuming a total charge Q+ on the inner conductor

and integrating over the associated electric field to

obtain the voltage between the conductors. Then,

capacitance is computed as the ratio of the assumed

charge to the resulting potential difference. This

strategy is the same as that employed in Section 5.23

for the parallel plate capacitor, so it may be useful to

review that section before attempting this derivation.

The first step is to find the electric field inside the

structure. This is relatively simple if we assume that

b

-
+

az

�

l

V

c© K. Kikkeri CC BY SA 4.0

Figure 5.15: Determining the capacitance of a coaxial

structure.

https://en.wikipedia.org/wiki/Printed_circuit_board
https://creativecommons.org/licenses/by-sa/4.0/


5.24. CAPACITANCE OF A COAXIAL STRUCTURE 129

the structure has infinite length (i.e., l → ∞), since

then there are no fringing fields and the internal field

will be utterly constant with respect to z. In the

central region of a finite-length capacitor, however,

the field is not much different from the field that

exists in the case of infinite length, and if the energy

storage in fringing fields is negligible compared to the

energy storage in this central region then there is no

harm in assuming the internal field is constant with z.

Alternatively, we may think of the length l as

pertaining to one short section of a much longer

structure and thereby obtain the capacitance per

length as opposed to the total capacitance. Note that

the latter is exactly what we need for the transmission

line lumped-element equivalent circuit model

(Section 3.4).

To determine the capacitance, we invoke the

definition (Section 5.22):

C ,
Q+

V
(5.166)

where Q+ is the charge on the positively-charged

conductor and V is the potential measured from the

negative conductor to the positive conductor. The

charge on the inner conductor is uniformly-distributed

with density

ρl =
Q+

l
(5.167)

which has units of C/m. Now we will determine the

electric field intensity E, integrate E over a path

between conductors to get V , and then apply

Equation 5.166 to obtain the capacitance.

The electric field intensity for this scenario was

determined in Section 5.6, “Electric Field Due to an

Infinite Line Charge using Gauss’ Law,” where we

found

E = ρ̂
ρl

2πǫsρ
(5.168)

The reader should note that in that section we were

considering merely a line of charge; not a coaxial

structure. So, on what basis do we claim the field is

the same? This is a consequence of Gauss’ Law

(Section 5.5)

∮

S

D · ds = Qencl (5.169)

which we used in Section 5.6 to find the field. If in

this new problem we specify the same cylindrical

surface S with radius ρ < b, then the enclosed charge

is the same. Furthermore, the presence of the outer

conductor does not change the radial symmetry of the

problem, and nothing else remains that can change the

outcome. This is worth noting for future reference:

The electric field inside a coaxial structure com-

prised of concentric conductors and having uni-

form charge density on the inner conductor is

identical to the electric field of a line charge in

free space having the same charge density.

Next, we get V using (Section 5.8)

V = −
∫

C

E · dl (5.170)

where C is any path from the negatively-charged outer

conductor to the positively-charged inner conductor.

Since this can be any such path (Section 5.9), we may

as well choose the simplest one. This path is the one

that traverses a radial of constant φ and z. Thus:

V = −
∫ a

ρ=b

(
ρ̂

ρl
2πǫsρ

)
· (ρ̂dρ)

= − ρl
2πǫs

∫ a

ρ=b

dρ

ρ

= +
ρl

2πǫs

∫ b

ρ=a

dρ

ρ

= +
ρl

2πǫs
ln

(
b

a

)
(5.171)

Wrapping up:

C ,
Q+

V
=

ρll

(ρl/2πǫs) ln (b/a)
(5.172)

Note that factors of ρl in the numerator and

denominator cancel out, leaving:

C =
2πǫsl

ln (b/a)
(5.173)

Note that this expression is dimensionally correct,

having units of F. Also note that the expression

depends only on materials (through ǫs) and geometry

(through l, a, and b). The expression does not depend

on charge or voltage, which would imply non-linear

behavior.
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To make the connection back to lumped-element

transmission line model parameters (Sections 3.4 and

3.10), we simply divide by l to get the per-unit length

parameter:

C ′ =
2πǫs

ln (b/a)
(5.174)

Example 5.10. Capacitance of RG-59 coaxial

cable.

RG-59 coaxial cable consists of an inner

conductor having radius 0.292 mm, an outer

conductor having radius 1.855 mm, and a

polyethylene spacing material having relative

permittivity 2.25. Estimate the capacitance per

length of RG-59.

Solution. From the problem statement,

a = 0.292 mm, b = 1.855 mm, and ǫs = 2.25ǫ0.

Using Equation 5.174 we find C ′ = 67.7 pF/m.

5.25 Electrostatic Energy

[m0114]

Consider a structure consisting of two perfect

conductors, both fixed in position and separated by an

ideal dielectric. This could be a capacitor, or it could

be one of a variety of capacitive structures that are not

explicitly intended to be a capacitor – for example, a

printed circuit board. When a potential difference is

applied between the two conducting regions, a

positive charge Q+ will appear on the surface of the

conductor at the higher potential, and a negative

charge Q− = −Q+ will appear on the surface of the

conductor at the lower potential (Section 5.19).

Assuming the conductors are not free to move,

potential energy is stored in the electric field

associated with the surface charges (Section 5.22).

We now ask the question, what is the energy stored in

this field? The answer to this question has relevance

in several engineering applications. For example,

when capacitors are used as batteries, it is useful to

know to amount of energy that can be stored. Also,

any system that includes capacitors or has unintended

capacitance is using some fraction of the energy

delivered by the power supply to charge the

associated structures. In many electronic systems –

and in digital systems in particular – capacitances are

periodically charged and subsequently discharged at a

regular rate. Since power is energy per unit time, this

cyclic charging and discharging of capacitors

consumes power. Therefore, energy storage in

capacitors contributes to the power consumption of

modern electronic systems. We’ll delve into that topic

in more detail in Example 5.11.

Since capacitance C relates the charge Q+ to the

potential difference V between the conductors, this is

the natural place to start. From the definition of

capacitance (Section 5.22):

V =
Q+

C
(5.175)

From Section 5.8, electric potential is defined as the

work done (i.e., energy injected) by moving a charged

particle, per unit of charge; i.e.,

V =
We

q
(5.176)



5.25. ELECTROSTATIC ENERGY 131

where q is the charge borne by the particle and We

(units of J) is the work done by moving this particle

across the potential difference V . Since we are

dealing with charge distributions as opposed to

charged particles, it is useful to express this in terms

of the contribution ∆We made to We by a small

charge ∆q. Letting ∆q approach zero we have

dWe = V dq (5.177)

Now consider what must happen to transition the

system from having zero charge (q = 0) to the

fully-charged but static condition (q = Q+). This

requires moving the differential amount of charge dq
across the potential difference between conductors,

beginning with q = 0 and continuing until q = Q+.

Therefore, the total amount of work done in this

process is:

We =

∫ Q+

q=0

dWe

=

∫ Q+

0

V dq

=

∫ Q+

0

q

C
dq

=
1

2

Q2
+

C
(5.178)

Equation 5.178 can be expressed entirely in terms of

electrical potential by noting again that C = Q+/V ,

so

We =
1

2
CV 2 (5.179)

Since there are no other processes to account for the

injected energy, the energy stored in the electric field

is equal to We. Summarizing:

The energy stored in the electric field of a capac-

itor (or a capacitive structure) is given by Equa-

tion 5.179.

Example 5.11. Why multicore computing is

power-neutral.

Readers are likely aware that computers

increasingly use multicore processors as

opposed to single-core processors. For our

present purposes, a “core” is defined as the

smallest combination of circuitry that performs

independent computation. A multicore processor

consists of multiple identical cores that run in

parallel. Since a multicore processor consists of

N identical processors, you might expect power

consumption to increase by N relative to a

single-core processor. However, this is not the

case. To see why, first realize that the power

consumption of a modern computing core is

dominated by the energy required to

continuously charge and discharge the multitude

of capacitances within the core. From

Equation 5.179, the required energy is 1
2C0V

2
0

per clock cycle, where C0 is the sum capacitance

(remember, capacitors in parallel add) and V0 is

the supply voltage. Power is energy per unit

time, so the power consumption for a single core

is

P0 =
1

2
C0V

2
0 f0 (5.180)

where f0 is the clock frequency. In a N -core

processor, the sum capacitance is increased by

N . However, the frequency is decreased by N
since the same amount of computation is

(nominally) distributed among the N cores.

Therefore, the power consumed by an N -core

processor is

PN =
1

2
(NC0)V

2
0

(
f0
N

)
= P0 (5.181)

In other words, the increase in power associated

with replication of hardware is nominally offset

by the decrease in power enabled by reducing

the clock rate. In yet other words, the total

energy of the N -core processor is N times the

energy of the single core processor at any given

time; however, the multicore processor needs to

recharge capacitances 1/N times as often.

Before moving on, it should be noted that the

usual reason for pursuing a multicore design is

to increase the amount of computation that can

be done; i.e., to increase the product f0N .

Nevertheless, it is extremely helpful that power

consumption is proportional to f0 only, and is

independent of N .

The thin parallel plate capacitor (Section 5.23) is

representative of a large number of practical
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applications, so it is instructive to consider the

implications of Equation 5.179 for this structure in

particular. For the thin parallel plate capacitor,

C ≈ ǫA

d
(5.182)

where A is the plate area, d is the separation between

the plates, and ǫ is the permittivity of the material

between the plates. This is an approximation because

the fringing field is neglected; we shall proceed as if

this is an exact expression. Applying Equation 5.179:

We =
1

2

(
ǫA

d

)
(Ed)

2
(5.183)

where E is the magnitude of the electric field intensity

between the plates. Rearranging factors, we obtain:

We =
1

2
ǫE2 (Ad) (5.184)

Recall that the electric field intensity in the thin

parallel plate capacitor is approximately uniform.

Therefore, the density of energy stored in the

capacitor is also approximately uniform. Noting that

the product Ad is the volume of the capacitor, we find

that the energy density is

we =
We

Ad
=

1

2
ǫE2 (5.185)

which has units of energy per unit volume (J/m3).

The above expression provides an alternative method

to compute the total electrostatic energy. Within a

mathematical volume V , the total electrostatic energy

is simply the integral of the energy density over V;

i.e.,

We =

∫

V

we dv (5.186)

This works even if E and ǫ vary with position. So,

even though we arrived at this result using the

example of the thin parallel-plate capacitor, our

findings at this point apply generally. Substituting

Equation 5.185 we obtain:

We =
1

2

∫

V

ǫE2dv (5.187)

Summarizing:

The energy stored by the electric field present

within a volume is given by Equation 5.187.

It’s worth noting that this energy increases with the

permittivity of the medium, which makes sense since

capacitance is proportional to permittivity.

[m0034]
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Chapter 6

Steady Current and Conductivity

6.1 Convection and Conduction

Currents

[m0110]

In practice, we deal with two physical mechanisms

for current: convection and conduction. The

distinction between these types of current is important

in electromagnetic analysis.

Convection current consists of charged particles

moving in response to mechanical forces, as opposed

to being guided by the electric field (Sections 2.2

and/or 5.1). An example of a convection current is a

cloud bearing free electrons that moves through the

atmosphere driven by wind.

Conduction current consists of charged particles

moving in response to the electric field and not

merely being carried by motion of the surrounding

material. In some materials, the electric field is also

able to dislodge weakly-bound electrons from atoms,

which then subsequently travel some distance before

reassociating with other atoms. For this reason, the

individual electrons in a conduction current do not

necessarily travel the full distance over which the

current is perceived to exist.

The distinction between convection and conduction is

important because Ohm’s Law (Section 6.3) – which

specifies the relationship between electric field

intensity and current – applies only to conduction

current.

Additional Reading:

• “Electric current” on Wikipedia.

Electromagnetics Vol 1. c© 2018 S.W. Ellingson CC BY SA 4.0. https://doi.org/10.21061/electromagnetics-vol-1

https://en.wikipedia.org/wiki/Electric_current
https://doi.org/10.21061/electromagnetics-vol-1
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6.2 Current Distributions

[m0101]

In elementary electric circuit theory, current is the

rate at which electric charge passes a particular point

in a circuit. For example, 1 A is 1 C per second. In

this view current is a scalar quantity, and there are

only two possible directions because charge is

constrained to flow along defined channels. Direction

is identified by the sign of the current with respect to

a reference direction, which is in turn defined with

respect to a reference voltage polarity. The

convention in electrical engineering defines positive

current as the flow of positive charge into the positive

voltage terminal of a passive device such as a resistor,

capacitor, or inductor. For an active device such as a

battery, positive current corresponds to the flow of

positive charge out of the positive voltage terminal.

However, this kind of thinking only holds up when

the systems being considered are well-described as

“lumped” devices connected by infinitesimally thin,

filament-like connections representing wires and

circuit board traces. Many important problems in

electrical engineering concern situations in which the

flow of current is not limited in this way. Examples

include wire- and pin-type interconnects at radio

frequencies, circuit board and enclosure grounding,

and physical phenomena such as lightning. To

accommodate the more general class of problems, we

must define current as a vector quantity. Furthermore,

current in these problems can spread out over surfaces

and within volumes, so we must also consider spatial

distributions of current.

Line Current. As noted above, if a current I is

constrained to follow a particular path, then the only

other consideration is direction. Thus, a line current is

specified mathematically as l̂I , where the direction l̂

may vary with position along the path. For example,

in a straight wire l̂ is constant, whereas in a coil l̂

varies with position along the coil.

Surface Current Distribution. In some cases,

current may be distributed over a surface. For

example, the radio-frequency current on a wire of

radius a made from a metal with sufficiently high

conductivity can be modeled as a uniform surface

current existing on the wire surface. In this case, the

current is best described as a surface current density

Js, which is the total current I on the wire divided by

the circumference 2πa of the wire:

Js = û
I

2πa
(units of A/m) (6.1)

where û is the direction of current flow.

Volume Current Distribution. Imagine that current

is distributed within a volume. Let û∆i be the current

passing through a small open planar surface defined

within this volume, and let ∆s be the area of this

surface. The volume current density J at any point in

the volume is defined as

J , lim
∆s→0

û∆i

∆s
= û

di

ds
(units of A/m2) (6.2)

In general, J is a function of position within this

volume. Subsequently the total current passing

through a surface S is

I =

∫

S

J · ds (units of A) (6.3)

In other words, volume current density integrated over

a surface yields total current through that surface. You

might recognize this as a calculation of flux, and it is.1

Example 6.1. Current and current density in a

wire of circular cross-section.

Figure 6.1 shows a straight wire having

cross-sectional radius a = 3 mm. A battery is

connected across the two ends of the wire

resulting in a volume current density

J = ẑ8 A/m2, which is uniform throughout the

wire. Find the net current I through the wire.

Solution. The net current is

I =

∫

S

J · ds

We choose S to be the cross-section

perpendicular to the axis of the wire. Also, we

choose ds to point such that I is positive with

respect to the sign convention shown in

Figure 6.1 , which is the usual choice in electric

1However, it is not common to refer to net current as a flux; go

figure!
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Figure 6.1: Net current I and current density J in a

wire of circular cross-section.

circuit analysis. With these choices, we have

I =

∫ a

ρ=0

∫ 2π

φ=0

(
ẑ8 A/m2

)
· (ẑρ dρ dφ)

=
(
8 A/m2

) ∫ a

ρ=0

∫ 2π

φ=0

ρ dρ dφ

=
(
8 A/m2

)
·
(
πa2

)

= 226 µA

This answer is independent of the

cross-sectional surface S used to do the

calculation. For example, you could use an

alternative surface that is tilted 45◦ away from

the axis of the wire. In that case, the

cross-sectional area would increase, but the dot

product of J and ds would be proportionally less

and the outcome would be the same. Since the

choice of S is arbitrary – any surface with edges

at the perimeter of the wire will do – you should

make the choice that makes the problem as

simple as possible, as we have done above.

Additional Reading:

• “Electric current” on Wikipedia.

• “Current density” on Wikipedia.

6.3 Conductivity

[m0010]

Conductivity is one of the three primary “constitutive

parameters” that is commonly used to characterize the

electromagnetic properties of materials (Section 2.8).

The key idea is this:

Conductivity is a property of materials that deter-

mines conduction current density in response to

an applied electric field.

Recall that conduction current is the flow of charge in

response to an electric field (Section 6.1). Although

the associated force is straightforward to calculate

(e.g., Section 5.1), the result is merely the force

applied, not the speed at which charge moves in

response. The latter is determined by the mobility of

charge, which is in turn determined by the atomic and

molecular structure of the material. Conductivity

relates current density to the applied field directly,

without requiring one to grapple separately with the

issues of applied force and charge mobility.

In the absence of material – that is, in a true, perfect

vacuum – conductivity is zero because there is no

charge available to form current, and therefore the

current is zero no matter what electric field is applied.

At the other extreme, a good conductor is a material

that contains a supply of charge that is able to move

freely within the material. When an electric field is

applied to a good conductor, charge-bearing material

constituents move in the direction determined by the

electric field, creating current flow in that direction.

This relationship is summarized by Ohm’s Law for

Electromagnetics:

J = σE (6.4)

where E is electric field intensity (V/m); J is the

volume current density, a vector describing the

current flow, having units of A/m2 (see Section 6.2);

and σ is conductivity. Since E has units of V/m, we

see σ has units of Ω−1m−1, which is more commonly

expressed as S/m, where 1 S (“siemens”) is defined as

1 Ω−1. Section A.3 provides values of conductivity

for a representative set of materials.

https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Current_density
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Conductivity σ is expressed in units of S/m,

where 1 S = 1 Ω−1.

It is important to note that the current being addressed

here is conduction current, and not convection

current, displacement current, or some other form of

current – see Section 6.2 for elaboration.

Summarizing:

Ohm’s Law for Electromagnetics (Equation 6.4)

states that volume density of conduction current

(A/m2) equals conductivity (S/m) times electric

field intensity (V/m).

The reader is likely aware that there is also an “Ohm’s

Law” in electric circuit theory, which states that

current I (units of A) is voltage V (units of V)

divided by resistance R (units of Ω); i.e., I = V/R.

This is in fact a special case of Equation 6.4; see

Section 6.4 for more about this.

As mentioned above, σ depends on both the

availability and mobility of charge within the

material. At the two extremes, we have perfect

insulators, for which σ = 0, and perfect conductors,

for which σ → ∞. Some materials approach these

extremes, whereas others fall midway between these

conditions. Here are a few classes of materials that

are frequently encountered:

• A perfect vacuum – “free space” – contains no

charge and therefore is a perfect insulator with

σ = 0.

• Good insulators typically have conductivities

≪ 10−10 S/m, which is sufficiently low that the

resulting currents can usually be ignored. The

most important example is air, which has a

conductivity only slightly greater than that of

free space. An important class of good insulators

is lossless dielectrics,2 which are

well-characterized in terms of permittivity (ǫ)
alone, and for which µ = µ0 and σ = 0 may

usually be assumed.

• Poor insulators have conductivities that are low,

but nevertheless sufficiently high that the

2See Section 5.20 for a discussion of dielectric materials.

resulting currents cannot be ignored. For

example, the dielectric material that is used to

separate the conductors in a transmission line

must be considered a poor insulator as opposed

to a good (effectively lossless) insulator in order

to characterize loss per length along the

transmission line, which can be significant.3

These lossy dielectrics are well-characterized in

terms of ǫ and σ, and typically µ = µ0 can be

assumed.

• Semiconductors such as those materials used in

integrated circuits have intermediate

conductivities, typically in the range 10−4 to

10+1 S/m.

• Good conductors are materials with very high

conductivities, typically greater than 105 S/m.

An important category of good conductors

includes metals, with certain metals including

alloys of aluminum, copper, and gold reaching

conductivities on the order of 108 S/m. In such

materials, minuscule electric fields give rise to

large currents. There is no significant storage of

energy in such materials, and so the concept of

permittivity is not relevant for good conductors.

The reader should take care to note that terms such as

good conductor and poor insulator are qualitative and

subject to context. What may be considered a “good

insulator” in one application may be considered to be

a “poor insulator” in another.

One relevant category of material was not included in

the above list – namely, perfect conductors. A perfect

conductor is a material in which σ → ∞. It is

tempting to interpret this as meaning that any electric

field gives rise to infinite current density; however,

this is not plausible even in the ideal limit. Instead,

this condition is interpreted as meaning that

E = J/σ → 0 throughout the material; i.e., E is zero

independently of any current flow in the material. An

important consequence is that the potential field V is

equal to a constant value throughout the material.

(Recall E = −∇V (Section 5.14), so constant V
means E = 0.) We refer to the volume occupied by

such a material as an equipotential volume. This

concept is useful as an approximation of the behavior

3Review Sections 3.4, 3.9, and associated sections for a refresher

on this issue.
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of good conductors; for example, metals are often

modeled as perfectly-conducting equipotential

volumes in order to simplify analysis.

A perfect conductor is a material for which σ →
∞, E → 0, and subsequently V (the electric po-

tential) is constant.

One final note: It is important to remain aware of the

assumptions we have made about materials in this

book, which are summarized in Section 2.8. In

particular, we continue to assume that materials are

linear unless otherwise indicated. For example,

whereas air is normally considered to be a good

insulator and therefore a poor conductor, anyone who

has ever witnessed lightning has seen a demonstration

that under the right conditions – i.e., sufficiently large

potential difference between earth and sky – current

will readily flow through air. This particular situation

is known as dielectric breakdown (see Section 5.21).

The non-linearity of materials can become evident

before reaching the point of dielectric breakdown, so

one must be careful to consider this possibility when

dealing with strong electric fields.

Additional Reading:

• “Electrical Resistivity and Conductivity” on

Wikipedia.

• “Ohm’s Law” on Wikipedia.

6.4 Resistance

[m0071]

The concept of resistance is most likely familiar to

readers via Ohm’s Law for Devices; i.e., V = IR
where V is the potential difference associated with a

current I . This is correct, but it is not the whole story.

Let’s begin with a statement of intent:

Resistance R (Ω) is a characterization of the con-

ductivity of a device (as opposed to a material) in

terms of Ohms Law for Devices; i.e., V = IR.

Resistance is a property of devices such as resistors,

which are intended to provide resistance, as well as

being a property of most practical electronic devices,

whether it is desired or not.

Resistance is a manifestation of the conductivity of

the materials comprising the device, which

subsequently leads to the “V = IR” relationship.

This brings us to a very important point and a

common source of confusion. Resistance is not

necessarily the real part of impedance. Let’s take a

moment to elaborate. Impedance (Z) is defined as the

ratio of voltage to current; i.e., V/I; or equivalently in

the phasor domain as Ṽ /Ĩ . Most devices – not just

devices exhibiting resistance – can be characterized in

terms of this ratio. Consider for example the input

impedance of a terminated transmission line

(Section 3.15). This impedance may have a non-zero

real-valued component even when the transmission

line and the terminating load are comprised of perfect

conductors. Summarizing:

Resistance results in a real-valued impedance.

However, not all devices exhibiting a real-valued

impedance exhibit resistance. Furthermore, the

real component of a complex-valued impedance

does not necessarily represent resistance.

Restating the main point in yet other words:

Resistance pertains to limited conductivity, not simply

to voltage-current ratio.

Also important to realize is that whereas conductivity

σ (units of S/m) is a property of materials, resistance

depends on both conductivity and the geometry of the

https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity
https://en.wikipedia.org/wiki/Ohm's_law


6.4. RESISTANCE 139

E

I

a

z

- +
V

z=0 z=

σ

c© K. Kikkeri CC BY SA 4.0

Figure 6.2: Analysis of the resistance of straight wire

of circular cross-section.

device. In this section, we address the question of

how the resistance of a device can be is determined.

The following example serves this purpose.

Figure 6.2 shows a straight wire of length l centered

on the z axis, forming a cylinder of material having

conductivity σ and cross-sectional radius a. The ends

of the cylinder are covered by perfectly-conducting

plates to which the terminals are attached. A battery

is connected to the terminals, resulting in a uniform

internal electric field E between the plates.

To calculate R for this device, let us first calculate V ,

then I , and finally R = V/I . First, we compute the

potential difference using the following result from

Section 5.8:

V = −
∫

C

E · dl (6.5)

Here we can view V as a “given” (being the voltage

of the battery), but wish to evaluate the right hand

side so as to learn something about the effect of the

conductivity and geometry of the wire. The

appropriate choice of C begins at z = 0 and ends at

z = l, following the axis of the cylinder. (Remember:

C defines the reference direction for increasing

potential, so the resulting potential difference will be

the node voltage at the end point minus the node

voltage at the start point.) Thus, dl = ẑdz and we

have

V = −
∫ l

z=0

E · (ẑdz)

We do not yet know E; however, we know it is

constant throughout the device and points in the −ẑ

direction since this is the direction of current flow and

Ohm’s Law for Electromagnetics (Section 6.3)

requires the electric field to point in the same

direction. Thus, we may write E = −ẑEz where Ez
is a constant. We now find:

V = −
∫ l

z=0

(−ẑEz) · (ẑdz)

= +Ez

∫ l

z=0

dz

= +Ezl

The current I is given by (Section 6.2)

I =

∫

S

J · ds

We choose the surface S to be the cross-section

perpendicular to the axis of the wire. Also, we choose

ds to point such that I is positive with respect to the

sign convention shown in Figure 6.2. With these

choices, we have

I =

∫ a

ρ=0

∫ 2π

φ=0

J · (−ẑ ρ dρ dφ)

From Ohm’s Law for Electromagnetics, we have

J = σE = −ẑσEz (6.6)

So now

I =

∫ a

ρ=0

∫ 2π

φ=0

(−ẑσEz) · (−ẑρ dρ dφ)

= σEz

∫ a

ρ=0

∫ 2π

φ=0

ρ dρ dφ

= σEz
(
πa2

)

Finally:

R =
V

I
=

Ezl

σEz (πa2)
=

l

σ (πa2)

This is a good-enough answer for the problem posed,

but it is easily generalized a bit further. Noting that

πa2 in the denominator is the cross-sectional area A
of the wire, so we find:

R =
l

σA
(6.7)

https://creativecommons.org/licenses/by-sa/4.0/
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i.e., the resistance of a wire having cross-sectional

area A – regardless of the shape of the cross-section,

is given by the above equation.

The resistance of a right cylinder of material,

given by Equation 6.7, is proportional to length

and inversely proportional to cross-sectional area

and conductivity.

It is important to remember that Equation 6.7

presumes that the volume current density J is uniform

over the cross-section of the wire. This is an excellent

approximation for thin wires at “low” frequencies

including, of course, DC. At higher frequencies it

may not be a good assumption that J is

uniformly-distributed over the cross-section of the

wire, and at sufficiently high frequencies one finds

instead that the current is effectively limited to the

exterior surface of the wire. In the “high frequency”

case, A in Equation 6.7 is reduced from the physical

area to a smaller value corresponding to the reduced

area through which most of the current flows.

Therefore, R increases with increasing frequency. To

quantify the high frequency behavior of R (including

determination of what constitutes “high frequency” in

this context) one requires concepts beyond the theory

of electrostatics, so this is addressed elsewhere.

Example 6.2. Resistance of 22 AWG hookup

wire.

A common type of wire found in DC

applications is 22AWG (“American Wire

Gauge”; see “Additional Resources” at the end

of this section) copper solid-conductor hookup

wire. This type of wire has circular cross-section

with diameter 0.644 mm. What is the resistance

of 3 m of this wire? Assume copper conductivity

of 58 MS/m.

Solution. From the problem statement, the

diameter 2a = 0.644 mm, σ = 58× 106 S/m,

and l = 3 m. The cross-sectional area is

A = πa2 ∼= 3.26× 10−7 m2. Using

Equation 6.7 we obtain R = 159 mΩ.

Example 6.3. Resistance of steel pipe.

A pipe is 3 m long and has inner and outer radii

of 5 mm and 7 mm respectively. It is made from

steel having conductivity 4 MS/m. What is the

DC resistance of this pipe?

Solution. We can use Equation 6.7 if we can

determine the cross-sectional area A through

which the current flows. This area is simply the

area defined by the outer radius, πb2, minus the

area defined by the inner radius πa2. Thus,

A = πb2 − πa2 ∼= 7.54× 10−5 m2. From the

problem statement, we also determine that

σ = 4× 106 S/m and l = 3 m. Using

Equation 6.7 we obtain R ∼= 9.95 mΩ.

Additional Reading:

• “Resistor” on Wikipedia.

• “Ohm’s Law” on Wikipedia.

• “American wire gauge” on Wikipedia.

https://en.wikipedia.org/wiki/Resistor
https://en.wikipedia.org/wiki/Ohm's_law
https://en.wikipedia.org/wiki/American_wire_gauge
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6.5 Conductance

[m0105]

Conductance, like resistance (Section 6.4), is a

property of devices. Specifically:

Conductance G (Ω−1 or S) is the reciprocal of

resistance R.

Therefore, conductance depends on both the

conductivity of the materials used in the device, as

well as the geometry of the device.

A natural question to ask is, why do we require the

concept of conductance, if it simply the reciprocal of

resistance? The short answer is that the concept of

conductance is not required; or, rather, we need only

resistance or conductance and not both. Nevertheless,

the concept appears in engineering analysis for two

reasons:

• Conductance is sometimes considered to be a

more intuitive description of the underlying

physics in cases where the applied voltage is

considered to be the independent “stimulus” and

current is considered to be the response. This is

why conductance appears in the lumped element

model for transmission lines (Section 3.4), for

example.

• Characterization in terms of conductance may be

preferred when considering the behavior of

devices in parallel, since the conductance of a

parallel combination is simply the sum of the

conductances of the devices.

Example 6.4. Conductance of a coaxial

structure.

Let us now determine the conductance of a

structure consisting of coaxially-arranged

conductors separated by a lossy dielectric, as

shown in Figure 6.3. The conductance per unit

length G′ (i.e., S/m) of this structure is of

interest in determining the characteristic

impedance of coaxial transmission line, as

addressed in Sections 3.4 and 3.10.

For our present purposes, we may model the

structure as two concentric perfectly-conducting

cylinders of radii a and b, separated by a lossy

dielectric having conductivity σs. We place the

+z axis along the common axis of the concentric

cylinders so that the cylinders may be described

as constant-coordinate surfaces ρ = a and ρ = b.

There are at least 2 ways to solve this problem.

One method is to follow the procedure that was

used to find the capacitance of this structure in

Section 5.24. Adapting that approach to the

present problem, one would assume a potential

difference V between the conductors, from that

determine the resulting electric field intensity E,

and then using Ohm’s Law for Electromagnetics

(Section 6.3) determine the density J = σsE of

the current that leaks directly between

conductors. From this, one is able to determine

the total leakage current I , and subsequently the

conductance G , I/V . Although highly

recommended as an exercise for the student, in

this section we take an alternative approach so as

to demonstrate that there are a variety of

approaches available for such problems.

The method we shall use below is as follows: (1)

Assume a leakage current I between the

conductors; (2) Determine the associated current

density J, which is possible using only

geometrical considerations; (3) Determine the

associated electric field intensity E using J/σs;
(4) Integrate E over a path between the

conductors to get V . Then, as before,

conductance G , I/V .

The current I is defined as shown in Figure 6.3,

with reference direction according to the

engineering convention that positive current

flows out of the positive terminal of a source.

The associated current density must flow in the

same direction, and the circular symmetry of the

problem therefore constrains J to have the form

J = ρ̂
I

A
(6.8)

where A is the area through which I flows. In

other words, current flows radially outward from

the inner conductor to the outer conductor, with
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density that diminishes inversely with the area

through which the total current flows. (It may be

helpful to view J as a flux density and I as a

flux, as noted in Section 6.2.) This area is simply

circumference 2πρ times length l, so

J = ρ̂
I

2πρl
(6.9)

which exhibits the correct units of A/m2.

Now from Ohm’s Law for Electromagnetics we

find the electric field within the structure is

E =
J

σs
= ρ̂

I

2πρlσs
(6.10)

Next we get V using (Section 5.8)

V = −
∫

C

E · dl (6.11)

where C is any path from the negatively-charged

outer conductor to the positively-charged inner

conductor. Since this can be any such path

(Section 5.9), we should choose the simplest

one. The simplest path is the one that traverses a

radial of constant φ and z. Thus:

V = −
∫ a

ρ=b

(
ρ̂

I

2πρlσs

)
· (ρ̂dρ)

= − I

2πlσs

∫ a

ρ=b

dρ

ρ

= +
I

2πlσs

∫ b

ρ=a

dρ

ρ

= +
I

2πlσs
ln

(
b

a

)
(6.12)

Wrapping up:

G ,
I

V
=

I

(I/2πlσs) ln (b/a)
(6.13)

Note that factors of I in the numerator and

denominator cancel out, leaving:

G =
2πlσs
ln (b/a)

(6.14)

b

a

z

ρ

l

I

�s

J

Figure 6.3: Determining the conductance of a struc-

ture consisting of coaxially-arranged conductors sepa-

rated by a lossy dielectric.

Note that Equation 6.14 is dimensionally

correct, having units of S = Ω−1. Also note that

this is expression depends only on materials

(through σs) and geometry (through l, a, and b).
Notably it does not depend on current or voltage,

which would imply non-linear behavior.

To make the connection back to lumped-element

transmission line model parameters

(Sections 3.4 and 3.10), we simply divide by l to

get the per-length parameter:

G′ =
2πσs

ln (b/a)
(6.15)

Example 6.5. Conductance of RG-59 coaxial

cable.

RG-59 coaxial cable consists of an inner

conductor having radius 0.292 mm, an outer

conductor having radius 1.855 mm, and a

polyethylene spacing material exhibiting

conductivity of about 5.9× 10−5 S/m. Estimate

the conductance per length of RG-59.

Solution. From the problem statement,

a = 0.292 mm, b = 1.855 mm, and

σs ∼= 5.9× 10−5 S/m. Using Equation 6.15, we

find G′ ∼= 200 µS/m.
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6.6 Power Dissipation in

Conducting Media

[m0106]

The displacement of charge in response to the force

exerted by an electric field constitutes a reduction in

the potential energy of the system (Section 5.8). If the

charge is part of a steady current, there must be an

associated loss of energy that occurs at a steady rate.

Since power is energy per unit time, the loss of energy

associated with current is expressible as power

dissipation. In this section, we address two questions:

(1) How much power is dissipated in this manner, and

(2) What happens to the lost energy?

First, recall that work is force times distance traversed

in response to that force (Section 5.8). Stated

mathematically:

∆W = +F ·∆l (6.16)

where the vector F is the force (units of N) exerted by

the electric field, the vector ∆l is the direction and

distance (units of m) traversed, and ∆W is the work

done (units of J) as a result. Note that a “+” has been

explicitly indicated; this is to emphasize the

distinction from the work being considered in

Section 5.8. In that section, the work “∆W ”

represented energy from an external source that was

being used to increase the potential energy of the

system by moving charge “upstream” relative to the

electric field. Now, ∆W represents this internal

energy as it is escaping from the system in the form of

kinetic energy; therefore, positive ∆W now means a

reduction in potential energy, hence the sign change.4

The associated power ∆P (units of W) is ∆W
divided by the time ∆t (units of s) required for the

distance ∆l to be traversed:

∆P =
∆W

∆t
= F · ∆l

∆t
(6.17)

Now we’d like to express force in terms of the electric

field exerting this force. Recall that the force exerted

by an electric field intensity E (units of V/m) on a

4It could be argued that it is bad form to use the same variable

to represent both tallies; nevertheless, it is common practice and so

we simply remind the reader that it is important to be aware of the

definitions of variables each time they are (re)introduced.

particle bearing charge q (units of C) is qE
(Section 2.2). However, we’d like to express this

force in terms of a current, as opposed to a charge. An

expression in terms of current can be constructed as

follows. First, note that the total charge in a small

volume “cell” is the volume charge density ρv (units

of C/m3) times the volume ∆v of the cell; i.e.,

q = ρv∆v (Section 5.3). Therefore:

F = qE = ρv ∆v E (6.18)

and subsequently

∆P = ρv ∆v E · ∆l

∆t
= E ·

(
ρv

∆l

∆t

)
∆v (6.19)

The quantity in parentheses has units of C/m3 · m ·
s−1, which is A/m2. Apparently this quantity is the

volume current density J, so we have

∆P = E · J ∆v (6.20)

In the limit as ∆v → 0 we have

dP = E · J dv (6.21)

and integrating over the volume V of interest we

obtain

P =

∫

V

dP =

∫

V

E · J dv (6.22)

The above expression is commonly known as Joule’s

Law. In our situation, it is convenient to use Ohm’s

Law for Electromagnetics (J = σE; Section 6.3) to

get everything in terms of materials properties (σ),

geometry (V), and the electric field:

P =

∫

V

E · (σE) dv (6.23)

which is simply

P =

∫

V

σ |E|2 dv (6.24)

Thus:

The power dissipation associated with current

is given by Equation 6.24. This power is pro-

portional to conductivity and proportional to the

electric field magnitude squared.
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This result facilitates the analysis of power dissipation

in materials exhibiting loss; i.e., having finite

conductivity. But what is the power dissipation in a

perfectly conducting material? For such a material,

σ → ∞ and E → 0 no matter how much current is

applied (Section 6.3). In this case, Equation 6.24 is

not very helpful. However, as we just noted, being a

perfect conductor means E → 0 no matter how much

current is applied, so from Equation 6.22 we have

found that:

No power is dissipated in a perfect conductor.

When conductivity is finite, Equation 6.24 serves as a

more-general version of a concept from elementary

circuit theory, as we shall now demonstrate. Let

E = ẑEz , so |E|2 = E2
z . Then Equation 6.24

becomes:

P =

∫

V

σE2
z dv = σE2

z

∫

V

dv (6.25)

The second integral in Equation 6.25 is a calculation

of volume. Let’s assume V is a cylinder aligned along

the z axis. The volume of this cylinder is the

cross-sectional area A times the length l. Then the

above equation becomes:

P = σE2
z A l (6.26)

For reasons that will become apparent very shortly,

let’s reorganize the above expression as follows:

P = (σEzA) (Ezl) (6.27)

Note that σEz is the current density in A/m2, which

when multiplied by A gives the total current.

Therefore, the quantity in the first set of parentheses

is simply the current I . Also note that Ezl is the

potential difference over the length l, which is simply

the node-to-node voltage V (Section 5.8). Therefore,

we have found:

P = IV (6.28)

as expected from elementary circuit theory.

Now, what happens to the energy associated with this

dissipation of power? The displacement of charge

carriers in the material is limited by the conductivity,

which itself is finite because, simply put, other

constituents of the material get in the way. If charge is

being displaced as described in this section, then

energy is being used to displace the charge-bearing

particles. The motion of constituent particles is

observed as heat – in fact, this is essentially the

definition of heat. Therefore:

The power dissipation associated with the flow of

current in any material that is not a perfect con-

ductor manifests as heat.

This phenomenon is known as joule heating, ohmic

heating, and by other names. This conversion of

electrical energy to heat is the method of operation for

toasters, electric space heaters, and many other

devices that generate heat. It is of course also the

reason that all practical electronic devices generate

heat.

Additional Reading:

• “Joule Heating” on Wikipedia.

[m0057]

https://en.wikipedia.org/wiki/Joule_heating
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Chapter 7

Magnetostatics

[m0117]

Magnetostatics is the theory of the magnetic field in

conditions in which its behavior is independent of

electric fields, including

• The magnetic field associated with various

spatial distributions of steady current

• The energy associated with the magnetic field

• Inductance, which is the ability of a structure to

store energy in a magnetic field

The word ending “-statics” refers to the fact that these

aspects of electromagnetic theory can be developed

by assuming that the sources of the magnetic field are

time-invariant; we might say that magnetostatics is

the study of the magnetic field at DC. However, many

aspects of magnetostatics are applicable at “AC” as

well.

7.1 Comparison of Electrostatics

and Magnetostatics

[m0115]

Students encountering magnetostatics for the first

time have usually been exposed to electrostatics

already. Electrostatics and magnetostatics exhibit

many similarities. These are summarized in Table 7.1.

The elements of magnetostatics presented in this table

are all formally introduced in other sections; the sole

purpose of this table is to point out the similarities.

The technical term for these similarities is duality.

Duality also exists between voltage and current in

electrical circuit theory. For more about the concept

of duality, see “Additional Reading” at the end of this

section.

Additional Reading:

• “Duality (electricity and magnetism)” on

Wikipedia.

• “Duality (electrical circuits)” on Wikipedia.

Electromagnetics Vol 1. c© 2018 S.W. Ellingson CC BY SA 4.0. https://doi.org/10.21061/electromagnetics-vol-1

https://en.wikipedia.org/wiki/Duality_(electricity_and_magnetism)
https://en.wikipedia.org/wiki/Duality_(electrical_circuits)
https://doi.org/10.21061/electromagnetics-vol-1
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electrostatics magnetostatics

Sources static charge steady current,

magnetizable material

Field intensity E (V/m) H (A/m)

Flux density D (C/m2) B (Wb/m2=T)

Material relations D = ǫE B = µH
J = σE

Force on charge q F = qE F = qv ×B

Maxwell’s Eqs.
∮
S
D · ds = Qencl

∮
S
B · ds = 0

(integral)
∮
C
E · dl = 0

∮
C
H · dl = Iencl

Maxwell’s Eqs. ∇ ·D = ρv ∇ ·B = 0
(differential) ∇×E = 0 ∇×H = J

Boundary Conditions n̂× [E1 −E2] = 0 n̂× [H1 −H2] = Js
n̂ · [D1 −D2] = ρs n̂ · [B1 −B2] = 0

Energy storage Capacitance Inductance

Energy density we =
1
2ǫE

2 wm = 1
2µH

2

Energy dissipation Resistance

Table 7.1: A summary of the duality between electrostatics and magnetostatics.

7.2 Gauss’ Law for Magnetic

Fields: Integral Form

[m0018]

Gauss’ Law for Magnetic Fields (GLM) is one of the

four fundamental laws of classical electromagnetics,

collectively known as Maxwell’s Equations. Before

diving in, the reader is strongly encouraged to review

Section 2.5. In that section, GLM emerges from the

“flux density” interpretation of the magnetic field.

GLM is not identified in that section, but now we are

ready for an explicit statement:

Gauss’ Law for Magnetic Fields (Equation 7.1)

states that the flux of the magnetic field through

a closed surface is zero.

This is expressed mathematically as follows:

∮

S

B · ds = 0 (7.1)

where B is magnetic flux density and S is a closed

surface with outward-pointing differential surface

normal ds. It may be useful to consider the units. B

has units of Wb/m2; therefore, integrating B over a

surface gives a quantity with units of Wb, which is

magnetic flux, as indicated above.

GLM can also be interpreted in terms of magnetic

field lines. For the magnetic flux through a closed

surface to be zero, every field line entering the

volume enclosed by S must also exit this volume –

field lines may not begin or end within the volume.

The only way this can be true for every possible

surface S is if magnetic field lines always form closed

loops. This is in fact what we find in practice, as

shown in Figure 7.1.

Following this argument one step further, GLM

implies there can be no particular particle or structure

that can be the source of the magnetic field (because

then that would be a start point for field lines). This is

one way in which the magnetic field is very different

from the electrostatic field, for which every field line

begins at a charged particle. So, when we say that

current (for example) is the source of the magnetic

field, we mean only that the field coexists with

current, and not that the magnetic field is somehow

attached to the current. Summarizing, there is no

“localizable” quantity, analogous to charge for

electric fields, associated with magnetic fields. This is

just another way in which magnetic fields are weird!
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c© Youming / K. Kikkeri CC BY SA 4.0

Figure 7.1: Gauss’ Law for Magnetostatics applied to

a two-dimensional bar magnet. For the surface S =
SA, every field line entering S also leaves S , so the

flux through S is zero. For the surface S = SB , every

field line within S remains in S , so the flux through S
is again zero.

Summarizing:

Gauss’ Law for Magnetic Fields requires that

magnetic field lines form closed loops. Further-

more, there is no particle that can be identified as

the source of the magnetic field.

Additional Reading:

• “Gauss’ Law for Magnetism” on Wikipedia.

• “Maxwell’s Equations” on Wikipedia.

7.3 Gauss’ Law for Magnetism:

Differential Form

[m0047]

The integral form of Gauss’ Law (Section 7.2) states

that the magnetic flux through a closed surface is

zero. In mathematical form:

∮

S

B · ds = 0 (7.2)

where B is magnetic flux density and S is the

enclosing surface. Just as Gauss’s Law for

electrostatics has both integral (Sections 5.5) and

differential (Section 5.7) forms, so too does Gauss’

Law for Magnetic Fields. Here we are interested in

the differential form for the same reason. Given a

differential equation and the boundary conditions

imposed by structure and materials, we may then

solve for the magnetic field in very complicated

scenarios.

The equation we seek may be obtained from

Equation 7.2 using the Divergence Theorem

(Section 4.7), which in the present case may be

written: ∫

V

(∇ ·B) dv =

∮

S

B · ds (7.3)

Where V is the mathematical volume bounded by the

closed surface S . From Equation 7.2 we see that the

right hand side of the equation is zero, leaving:

∫

V

(∇ ·B) dv = 0 (7.4)

The above relationship must hold regardless of the

specific location or shape of V . The only way this is

possible is if the integrand is everywhere equal to

zero. We conclude:

∇ ·B = 0 (7.5)

The differential (“point”) form of Gauss’ Law

for Magnetic Fields (Equation 7.5) states that the

flux per unit volume of the magnetic field is al-

ways zero.

https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Gauss'_law_for_magnetism
https://en.wikipedia.org/wiki/Maxwell's_equations
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This is another way of saying that there is no point in

space that can be considered to be the source of the

magnetic field, for if it were, then the total flux

through a bounding surface would be greater than

zero. Said yet another way, the source of the magnetic

field is not localizable.

Additional Reading:

• “Gauss’ Law for Magnetism” on Wikipedia.

7.4 Ampere’s Circuital Law

(Magnetostatics): Integral

Form

[m0019]

Ampere’s circuital law (ACL) relates current to the

magnetic field associated with the current. In the

magnetostatic regime, the law is (see also Figure 7.2):

∮

C

H · dl = Iencl (7.6)

That is, the integral of the magnetic field intensity H

over a closed path C is equal to the current enclosed

by that path, Iencl. Before proceeding to interpret this

law, it is useful to see that it is dimensionally correct.

That is, H (units of A/m) integrated over a distance

(units of m) yields a quantity with units of current

(i.e., A).

In general, Iencl may be either positive or negative.

The direction corresponding to positive current flow

must be correctly associated with C. The relationship

follows the right-hand rule of Stokes’ Theorem

(Section 4.9) summarized as follows. The direction of

positive Iencl is the direction in which the fingers of

the right hand intersect any surface S bordered by C
when the thumb of the right hand points in the

direction of integration. The connection to Stokes’

Theorem is not a coincidence. See Section 7.9 for

more about this.

Iencl

c© K. Kikkeri CC BY SA 4.0

Figure 7.2: Reference directions for Ampere’s Cir-

cuital Law (Equation 7.6).

https://en.wikipedia.org/wiki/Gauss'_law_for_magnetism
https://creativecommons.org/licenses/by-sa/4.0/
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Note that S can be any surface that is bounded by C –

not just the taut surface implied in Figure 7.2.

The integral form of Ampere’s Circuital Law for

magnetostatics (Equation 7.6) relates the mag-

netic field along a closed path to the total cur-

rent flowing through any surface bounded by that

path.

ACL plays a role in magnetostatics that is very

similar to the role played by the integral form of

Gauss’ Law in electrostatics (Section 5.5). That is,

ACL provides a means calculate the magnetic field

given the source current. ACL also has a similar

limitation. Generally, symmetry is required to

simplify the problem sufficiently so that the integral

equation may be solved. Fortunately, a number of

important problems fall in this category. Examples

include the problems addressed in Sections 7.5

(magnetic field of a line current), 7.6 (magnetic field

inside a straight coil), 7.7 (magnetic field of a toroidal

coil), 7.8 (magnetic field of a current sheet), and 7.11

(boundary conditions on the magnetic field intensity).

For problems in which the necessary symmetry is not

available, the differential form of ACL may be

required (Section 7.9).

Finally, be aware that the form of ACL addressed here

applies to magnetostatics only. In the presence of a

time-varying electric field, the right side of ACL

includes an additional term known as the

displacement current (Section 8.9).

Additional Reading:

• “Maxwell’s Equations” on Wikipedia.

• “Ampere’s Circuital Law” on Wikipedia.

7.5 Magnetic Field of an

Infinitely-Long Straight

Current-Bearing Wire

[m0119]

In this section, we use the magnetostatic form of

Ampere’s Circuital Law (ACL) (Section 7.4) to

determine the magnetic field due to a steady current I
(units of A) in an infinitely-long straight wire. The

problem is illustrated in Figure 7.3. The wire is an

electrically-conducting circular cylinder of radius a.

Since the wire is a cylinder, the problem is easiest to

work in cylindrical coordinates with the wire aligned

along the z axis.

Here’s the relevant form of ACL:

∮

C

H · dl = Iencl (7.7)

where Iencl is the current enclosed by the closed path

C. ACL works for any closed path, so to exploit the

z

y

x

a

I

ρ

c© K. Kikkeri CC BY SA 4.0

Figure 7.3: Determination of the magnetic field due

to steady current in an infinitely-long straight wire.

https://en.wikipedia.org/wiki/Maxwell's_equations
https://en.wikipedia.org/wiki/Ampere's_circuital_law
https://creativecommons.org/licenses/by-sa/4.0/
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symmetry of the cylindrical coordinate system we

choose a circular path of radius ρ in the z = 0 plane,

centered at the origin. With this choice we have

Iencl = I for ρ ≥ a (7.8)

For ρ < a, we see that Iencl < I . a steady (DC)

current will be distributed uniformly throughout the

wire (Section 6.4). Since the current is uniformly

distributed over the cross section, Iencl is less than the

total current I by the same factor that the area

enclosed by C is less than πa2, the cross-sectional

area of the wire. The area enclosed by C is simply

πρ2, so we have

Iencl = I
πρ2

πa2
= I

ρ2

a2
for ρ < a (7.9)

For the choice of C made above, Equation 7.7

becomes

∫ 2π

φ=0

H ·
(
φ̂ ρ dφ

)
= Iencl (7.10)

Note that we have chosen to integrate in the +φ
direction. Therefore, the right-hand rule specifies that

positive Iencl corresponds to current flowing in the

+z direction, which is consistent with the direction

indicated in Figure 7.3. (Here’s an excellent exercise

to test your understanding. Change the direction of

the path of integration and confirm that you get the

same result obtained at the end of this section.

Changing the direction of integration should not

change the magnetic field associated with the

current!)

The simplest way to solve for H from Equation 7.10

is to use a symmetry argument, which proceeds as

follows:

• Since the distribution of current is uniform and

infinite in the z-dimension, H can’t depend on z,

and so H · ẑ must be zero everywhere.

• The problem is identical after any amount of

rotation in φ; therefore, the magnitude of H

cannot depend on φ. This is a form of radial

symmetry. Since we determined above that H

can’t depend on z either, it must be that the

magnitude of H can depend only on ρ.

• The radial symmetry of the problem also

requires that H · ρ̂ be equal to zero. If this were

not the case, then the field would not be radially

symmetric. Since we determined above that H · ẑ
is also zero, H must be entirely ±φ̂-directed.

From the above considerations, the most general form

of the magnetic field intensity can be written

H = φ̂H(ρ). Substituting this into Equation 7.10, we

obtain

Iencl =

∫ 2π

φ=0

[
φ̂H(ρ)

]
·
(
φ̂ ρ dφ

)

= ρH(ρ)

∫ 2π

φ=0

dφ

= 2πρH(ρ) (7.11)

Therefore, H(ρ) = Iencl/2πρ. Reassociating the

known direction, we obtain:

H = φ̂
Iencl
2πρ

(7.12)

Therefore, the field outside of the wire is:

H = φ̂
I

2πρ
for ρ ≥ a (7.13)

whereas the field inside the wire is:

H = φ̂
Iρ

2πa2
for ρ < a (7.14)

(By the way, this is a good time for a units check.)

Note that as ρ increases from zero to a (i.e., inside the

wire), the magnetic field is proportional to ρ and

therefore increases. However, as ρ continues to

increase beyond a (i.e., outside the wire), the

magnetic field is proportional to ρ−1 and therefore

decreases.

If desired, the associated magnetic flux density can be

obtained using B = µH.

Summarizing:

The magnetic field due to current in an infinite

straight wire is given by Equations 7.13 (outside

the wire) and 7.14 (inside the wire). The mag-

netic field is +φ̂-directed for current flowing in

the +z direction, so the magnetic field lines form

concentric circles perpendicular to and centered

on the wire.
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I

H

c© Jfmelero CC BY SA 4.0 (modified)

Figure 7.4: Right-hand rule for the relationship be-

tween the direction of current and the direction of the

magnetic field.

Finally, we point out another “right-hand rule” that

emerges from this solution, shown in Figure 7.4 and

summarized below:

The magnetic field due to current in an infinite

straight wire points in the direction of the curled

fingers of the right hand when the thumb of the

right hand is aligned in the direction of current

flow.

This simple rule turns out to be handy in quickly

determining the relationship between the directions of

the magnetic field and current flow in many other

problems, and so is well worth committing to

memory.

7.6 Magnetic Field Inside a

Straight Coil

[m0120]

In this section, we use the magnetostatic integral form

of Ampere’s Circuital Law (ACL) (Section 7.4) to

determine the magnetic field inside a straight coil of

the type shown in Figure 7.5 in response to a steady

(i.e., DC) current. The result has a number of

applications, including the analysis and design of

inductors, solenoids (coils that are used as magnets,

typically as part of an actuator), and as a building

block and source of insight for more complex

problems.

The present problem is illustrated in Figure 7.6. The

coil is circular with radius a and length l, and consists

of N turns (“windings”) of wire wound with uniform

winding density. Since the coil forms a cylinder, the

problem is easiest to work in cylindrical coordinates

with the axis of the coil aligned along the z axis.

To begin, let’s take stock of what we already know

about the answer, which is actually quite a bit. The

magnetic field deep inside the coil is generally aligned

with axis of the coil as shown in Figure 7.7. This can

be explained using the result for the magnetic field

due to a straight line current (Section 7.5), in which

we found that the magnetic field follows a “right-hand

rule.” The magnetic field points in the direction of the

fingers of the right hand when the thumb of the right

hand is aligned in the direction of current flow. The

wire comprising the coil is obviously not straight, but

we can consider just one short segment of one turn

and then sum the results for all such segments. When

we consider this for a single turn of the coil, the

situation is as shown in Figure 7.8. Summing the

results for many loops, we see that the direction of the

magnetic field inside the coil must be generally in the

by Zureks (public domain)

Figure 7.5: A straight coil.

https://creativecommons.org/licenses/by-sa/4.0/
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Figure 7.6: Determination of the magnetic field due

to DC current in a coil.

c© Geek3 CC BY SA 3.0

Figure 7.7: Magnetic field lines inside a straight coil

with closely-spaced windings. (Dotted circles repre-

sent current flowing up/out from the page; crossed cir-

cles represent current flowing down/into the page.)

+ẑ direction when the current I is applied as shown

in Figures 7.6 and 7.7. However, there is one caveat.

The windings must be sufficiently closely-spaced that

the magnetic field lines can only pass through the

openings at the end of the coil and do not take any

“shortcuts” between individual windings.

Figure 7.7 also indicates that the magnetic field lines

near the ends of the coil diverge from the axis of the

coil. This is understandable since magnetic field lines

form closed loops. The relatively complex structure

of the magnetic fields near the ends of the coil (the

“fringing field”) and outside of the coil make them

relatively difficult to analyze. Therefore, here we

shall restrict our attention to the magnetic field deep

inside the coil. This restriction turns out to be of little

consequence as long as l ≫ a.

Also, it is apparent from the radial symmetry of the

coil that the magnitude of the magnetic field cannot

depend on φ. Putting these findings together, we find

I

c© Chetvorno CC0 1.0 (modified)

Figure 7.8: Magnetic field due to a single loop.

that the most general form for the magnetic field

intensity deep inside the coil is H ≈ ẑH(ρ). That is,

the direction of H is ±ẑ and the magnitude of H

depends, at most, on ρ. In fact, we will soon find with

the assistance of ACL that the magnitude of H

doesn’t depend on ρ either.

Here’s the relevant form of ACL:
∮

C

H · dl = Iencl (7.15)

where Iencl is the current enclosed by the closed path

C. ACL works for any closed path that encloses the

current of interest. Also, for simplicity, we prefer a

path that lies on a constant-coordinate surface. The

selected path is shown in Figure 7.9. The benefits of

this particular path will soon become apparent.

However, note for now that this particular choice is

consistent with the right-hand rule relating the

direction of C to the direction of positive I . That is,

when I is positive, the current in the turns of the coil

pass through the surface bounded by C in the same

direction as the fingers of the right hand when the

thumb is aligned in the indicated direction of C.

Let’s define N to be the number of windings in the

coil. Then, the winding density of the coil is N/l
(turns/m). Let the path length in the z direction be l′,
as indicated in Figure 7.9. Then the enclosed current

is

Iencl =
N

l
l′I (7.16)

That is, the number of turns per unit length times

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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c© K. Kikkeri CC BY SA 4.0

Figure 7.9: Selected path of integration.

length gives number of turns, and this quantity times

the current through the wire is the total amount of

current crossing the surface bounded by C.

For the choice of C made above, and taking our

approximation for the form of H as exact,

Equation 7.15 becomes
∮

C

[ẑH(ρ)] · dl = N

l
l′I (7.17)

The integral consists of segments A, B, C, and D, as

shown in Figure 7.9. Let us consider the result for

each of these segments individually:

• The integral over segments B and D is zero

because dl = ρ̂dρ for these segments, and so

H · dl = 0 for these segments.

• It is also possible to make the contribution from

Segment C go to zero simply by letting

ρ2 → ∞. The argument is as follows. The

magnitude of H outside the coil must decrease

with distance from the coil, so for ρ sufficiently

large, H(ρ) becomes negligible. If that’s the

case, then the integral over Segment C also

becomes negligible.

With ρ2 → ∞, only Segment A contributes

significantly to the integral over C and Equation 7.17

becomes:

N

l
l′I =

∫ z2

z1

[ẑH(ρ1)] · (ẑdz)

= H(ρ1)

∫ z2

z1

dz

= H(ρ1) [z2 − z1] (7.18)

Note z2 − z1 is simply l′. Also, we have found that

the result is independent of ρ1, as anticipated earlier.

Summarizing:

H ≈ ẑ
NI

l
inside coil (7.19)

Let’s take a moment to consider the implications of

this remarkably simple result.

• Note that it is dimensionally correct; that is,

current divided by length gives units of A/m,

which are the units of H.

• We have found that the magnetic field is simply

winding density (N/l) times current. To increase

the magnetic field, you can either use more turns

per unit length or increase the current.

• We have found that the magnetic field is uniform

inside the coil; that is, the magnetic field along

the axis is equal to the magnetic field close to the

cylinder wall formed by the coil. However, this

does not apply close to ends of the coil, since we

have neglected the fringing field.

These findings have useful applications in more

complicated and practical problems, so it is

worthwhile taking note of these now. Summarizing:

The magnetic field deep inside an ideal straight

coil (Equation 7.19) is uniform and proportional

to winding density and current.

Additional Reading:

• “Electromagnetic Coil” on Wikipedia.

• “Solenoid” on Wikipedia.

https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Electromagnetic_coil
https://en.wikipedia.org/wiki/Solenoid
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7.7 Magnetic Field of a Toroidal

Coil

[m0049]

A toroid is a cylinder in which the ends are joined to

form a closed loop. An example of a toroidal coil is

shown in Figure 7.10. Toroidal coils are commonly

used to form inductors and transformers. The

principal advantage of toroidal coils over straight

coils in these applications is magnetic field

containment – as we shall see in this section, the

magnetic field outside of a toroidal coil can be made

negligibly small. This reduces concern about

interactions between this field and other fields and

structures in the vicinity.

In this section, we use the magnetostatic form of

Ampere’s Circuital Law (ACL) (Section 7.4) to

determine the magnetic field due to a steady (DC)

current flowing through a toroidal coil. The problem

is illustrated in Figure 7.11. The toroid is circular

with inner and outer radii a and b, respectively. The

coil consists of N windings (turns) of wire wound

with uniform winding density. This problem is easiest

to work in cylindrical coordinates with the toroid

centered on the origin in z = 0 plane.

To begin, let’s take stock of what we already know

about the answer, which is actually quite a bit. First, a

review of Section 7.6 (“Magnetic Field Inside a

Straight Coil”) is recommended. There it is shown

that the magnetic field deep inside a straight coil is

aligned with axis of the coil. This can be explained

c© Slick CC0 1.0

Figure 7.10: A toroidal coil used as a large-value in-

ductor in the power supply of a wireless router.

x

y

a

b

I

H

Figure 7.11: Geometry of a toroidal coil.

using the result for the magnetic field due to a straight

line current (Section 7.5), in which we found that the

magnetic field follows a “right-hand rule” – The

magnetic field points in the direction of the curled

fingers of the right hand when the thumb of the right

hand is aligned in the direction of current flow. The

wire comprising the coil is obviously not straight, but

we can consider just one short segment of one turn

and then sum the results for all such segments. When

we do this, we see that the direction of the magnetic

field inside the coil must be in the +φ̂ direction when

the current I is applied as shown in Figure 7.11. Also,

because the problem is identical after any amount of

rotation around the z axis, the magnitude of the

magnetic field cannot depend on φ. Putting these

findings together, we find that the most general form

for the magnetic field intensity inside or outside the

coil is H = φ̂H(ρ, z).

Here’s the relevant form of ACL:

∮

C

H · dl = Iencl (7.20)

where Iencl is the current enclosed by the closed path

C. ACL works for any closed path, but we need one

that encloses some current so as to obtain a

relationship between I and H. Also, for simplicity,

we prefer a path that lies on a constant-coordinate

surface. The selected path is a circle of radius ρ

https://creativecommons.org/publicdomain/zero/1.0/deed.en
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x
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C

Figure 7.12: Selected path of integration.

centered on the origin in the z = z0 plane, as shown

in Figure 7.12. We further require C to lie entirely

inside the coil, which ensures that the enclosed

current includes the current of all the windings as they

pass through the hole at the center of the toroid. We

choose the direction of integration to be in the +φ
direction, which is consistent with the indicated

direction of positive I . That is, when I is positive, the

current in the windings of the coil pass through the

surface bounded by C in the same direction as the

curled fingers of the right hand when the thumb is

aligned in the indicated direction of C.

In terms of the variables we have defined, the

enclosed current is simply

Iencl = NI (7.21)

Equation 7.20 becomes

∮

C

[
φ̂H(ρ, z0)

]
· dl = NI (7.22)

Now evaluating the integral:

NI =

∫ 2π

0

[
φ̂H(ρ, z0)

]
·
(
φ̂ ρ dφ

)

= ρH(ρ, z0)

∫ 2π

0

dφ

= 2πρH(ρ, z0) (7.23)

It is now clear that the result is independent of z0.

Summarizing:

H = φ̂
NI

2πρ
inside coil (7.24)

Let’s take a moment to consider the implications of

this result.

• Note that it is dimensionally correct; that is,

current divided by the circumference of C (2πρ)

gives units of A/m, which are the units of H.

• We have found that the magnetic field is

proportional to winding density (i.e., number of

windings divided by circumference) times

current. To increase the magnetic field you can

either use more windings or increase the current.

• Remarkably, we have found that the magnitude

of the magnetic field inside the coil depends only

on ρ; i.e., the distance from the central (here, z)

axis. It is independent of z.

Summarizing:

The magnetic field inside a toroidal coil (Equa-

tion 7.24) depends only on distance from the cen-

tral axis and is proportional to winding density

and current.

Now let us consider what happens outside the coil.

For this, we consider any path of integration (C) that

lies completely outside the coil. Note that any such

path encloses no current and therefore Iencl = 0 for

any such path. In this case we have:

∮

C

H · dl = 0 (7.25)

There are two ways this could be true. Either H could

be zero everywhere along the path, or H could be

non-zero along the path in such a way that the integral

windings out to be zero. The radial symmetry of the

problem rules out the second possibility – if H is

radially symmetric and C is radially symmetric, then

the sign of H · dl should not change over C.

Therefore:
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The magnetic field everywhere outside an ideal

toroidal coil is zero.

Note the caveat signaled by the use of the adjective

“ideal.” In a practical toroidal coil, we expect there

will be some leakage of magnetic flux between the

windings. In practice, this leakage can be made

negligibly small by using a sufficiently high winding

density and winding the wire on material on a toroidal

form (a “core”) having sufficiently large permeability.

The use of a high-permeability core, as shown in

Figure 7.10, will dramatically improve the already

pretty-good containment. In fact, the use of such a

core allows the spacing between windings to become

quite large before leakage becomes significant.

One final observation about toroidal coils is that at no

point in the derivation of the magnetic field did we

need to consider the cross-sectional shape of the coil;

we merely needed to know whether C was inside or

outside the coil. Therefore:

The magnetic field inside an ideal toroidal coil

does not depend on the cross-sectional shape of

the coil.

Additional Reading:

• “Toroidal Inductors and Transformers” on

Wikipedia.

7.8 Magnetic Field of an Infinite

Current Sheet

[m0121]

We now consider the magnetic field due to an infinite

sheet of current, shown in Figure 7.13. The solution

to this problem is useful as a building block and

source of insight in more complex problems, as well

as being a useful approximation to some practical

problems involving current sheets of finite extent

including, for example, microstrip transmission line

and ground plane currents in printed circuit boards.

The current sheet in Figure 7.13 lies in the z = 0
plane and the current density is Js = x̂Js (units of

A/m); i.e., the current is uniformly distributed such

that the total current crossing any segment of width

∆y along the y direction is Js∆y.

To begin, let’s take stock of what we already know

about the answer, which is actually quite a bit. For

example, imagine the current sheet as a continuum of

thin strips parallel to the x axis and very thin in the y
dimension. Each of these strips individually behaves

like a straight line current I = Js∆y (units of A). The

magnetic field due to each of these strips is

determined by a “right-hand rule” – the magnetic field

points in the direction of the curled fingers of the right

hand when the thumb of the right hand is aligned in

the direction of current flow. (Section 7.5). It is

apparent from this much that H can have no ŷ

component, since the field of each individual strip has

z

C

JsLz

Ly

y

Figure 7.13: Analysis of the magnetic field due to an

infinite thin sheet of current.

https://en.wikipedia.org/wiki/Toroidal_inductors_and_transformers
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no ŷ component. When the magnetic field due to each

strip is added to that of all the other strips, the ẑ

component of the sum field must be zero due to

symmetry. It is also clear from symmetry

considerations that the magnitude of H cannot

depend on x or y. Summarizing, we have determined

that the most general form for H is ŷH(z), and

furthermore, the sign of H(z) must be positive for

z < 0 and negative for z > 0.

It’s possible to solve this problem by actually

summing over the continuum of thin current strips as

imagined above.1 However, it’s far easier to use

Ampere’s Circuital Law (ACL; Section 7.4). Here’s

the relevant form of ACL:
∮

C

H · dl = Iencl (7.26)

where Iencl is the current enclosed by a closed path C.

ACL works for any closed path, but we need one that

encloses some current so as to obtain a relationship

between Js and H. Also, for simplicity, we prefer a

path that lies on a constant-coordinate surface. A

convenient path in this problem is a rectangle lying in

the x = 0 plane and centered on the origin, as shown

in Figure 7.13. We choose the direction of integration

to be counter-clockwise from the perspective shown

in Figure 7.13, which is consistent with the indicated

direction of positive Js according to the applicable

right-hand rule from Stokes’ Theorem. That is, when

Js is positive (current flowing in the +x̂ direction),

the current passes through the surface bounded by C
in the same direction as the curled fingers of the right

hand when the thumb is aligned in the indicated

direction of C.

Let us define Ly to be the width of the rectangular

path of integration in the y dimension and Lz to be

the width in the z dimension. In terms of the variables

we have defined, the enclosed current is simply

Iencl = JsLy (7.27)

Equation 7.26 becomes
∮

C

[ŷH(z)] · dl = JsLy (7.28)

Note that H · dl = 0 for the vertical sides of the path,

since H is ŷ-directed and dl = ẑdz on those sides.

1In fact, this is pretty good thing to try, if for no other reason than

to see how much simpler it is to use ACL instead.

Therefore, only the horizontal sides contribute to the

integral and we have:

∫ +Ly/2

−Ly/2

[
ŷH

(
−Lz

2

)]
· (ŷdy)

+

∫ −Ly/2

+Ly/2

[
ŷH

(
+
Lz
2

)]
· (ŷdy) = JsLy (7.29)

Now evaluating the integrals:

H

(
−Lz

2

)
Ly −H

(
+
Lz
2

)
Ly = JsLy (7.30)

Note that all factors of Ly cancel in the above

equation. Furthermore, H(−Lz/2) = −H(+Lz/2)
due to (1) symmetry between the upper and lower

half-spaces and (2) the change in sign between these

half-spaces, noted earlier. We use this to eliminate

H(+Lz/2) and solve for H(−Lz/2) as follows:

2H(−Lz/2) = Js (7.31)

yielding

H(−Lz/2) = +
Js
2

(7.32)

and therefore

H(+Lz/2) = −Js
2

(7.33)

Furthermore, note that H is independent of Lz; for

example, the result we just found indicates the same

value of H(+Lz/2) regardless of the value of Lz .

Therefore, H is uniform throughout all space, except

for the change of sign corresponding for the field

above vs. below the sheet. Summarizing:

H = ±ŷ
Js
2

for z ≶ 0 (7.34)

The magnetic field intensity due to an infinite

sheet of current (Equation 7.34) is spatially uni-

form except for a change of sign corresponding

for the field above vs. below the sheet.
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7.9 Ampere’s Law

(Magnetostatics): Differential

Form

[m0118]

The integral form of Amperes’ Circuital Law (ACL;

Section 7.4) for magnetostatics relates the magnetic

field along a closed path to the total current flowing

through any surface bounded by that path. In

mathematical form:
∮

C

H · dl = Iencl (7.35)

where H is magnetic field intensity, C is the closed

curve, and Iencl is the total current flowing through

any surface bounded by C. In this section, we derive

the differential form of this equation. In some

applications, this differential equation, combined with

boundary conditions associated with discontinuities in

structure and materials, can be used to solve for the

magnetic field in arbitrarily complicated scenarios. A

more direct reason for seeking out this differential

equation is that we gain a little more insight into the

relationship between current and the magnetic field,

disclosed at the end of this section.

The equation we seek may be obtained using Stokes’

Theorem (Section 4.9), which in the present case may

be written:
∫

S

(∇×H) · ds =
∮

C

H · dl (7.36)

where S is any surface bounded by C, and ds is the

differential surface area combined with the unit vector

in the direction determined by the right-hand rule

from Stokes’ Theorem. ACL tells us that the right

side of the above equation is simply Iencl. We may

express Iencl as the integral of the volume current

density J (units of A/m2; Section 6.2) as follows:

Iencl =

∫

S

J · ds (7.37)

so we may rewrite Equation 7.36 as follows:
∫

S

(∇×H) · ds =
∫

S

J · ds (7.38)

The above relationship must hold regardless of the

specific location or shape of S . The only way this is

possible for all possible surfaces in all applicable

scenarios is if the integrands are equal. Thus, we

obtain the desired expression:

∇×H = J (7.39)

That is, the curl of the magnetic field intensity at a

point is equal to the volume current density at that

point. Recalling the properties of the curl operator

(Section 4.8) – in particular, that curl involves

derivatives with respect to direction – we conclude:

The differential form of Ampere’s Circuital Law

for magnetostatics (Equation 7.39) indicates that

the volume current density at any point in space

is proportional to the spatial rate of change of the

magnetic field and is perpendicular to the mag-

netic field at that point.

Additional Reading:

• “Ampere’s circuital law” on Wikipedia.

• “Boundary value problem” on Wikipedia.

https://en.wikipedia.org/wiki/Ampere's_circuital_law
https://en.wikipedia.org/wiki/Boundary_value_problem
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7.10 Boundary Conditions on the

Magnetic Flux Density (B)

[m0022]

In homogeneous media, electromagnetic quantities

vary smoothly and continuously. At an interface

between dissimilar media, however, it is possible for

electromagnetic quantities to be discontinuous.

Continuities and discontinuities in fields can be

described mathematically by boundary conditions and

used to constrain solutions for fields away from these

interfaces.

In this section, we derive the boundary condition on

the magnetic flux density B at a smooth interface

between two material regions, as shown in

Figure 7.14.2 The desired boundary condition may be

obtained from Gauss’ Law for Magnetic Fields

(GLM; Section 7.2):

∮

S

B · ds = 0 (7.40)

where S is any closed surface. Let S take the form of

cylinder centered at a point on the interface, and for

which the flat ends are parallel to the surface and

perpendicular to n̂, as shown in Figure 7.14. Let the

radius of this cylinder be a, and let the length of the

2It may be helpful to note the similarity (duality, in fact) between

this derivation and the derivation of the associated boundary condi-

tion on D presented in Section 5.18.

region 1

region 2

n

a

h

h

c© K. Kikkeri CC BY SA 4.0

Figure 7.14: Determination of the boundary condition

on B at the interface between material regions.

cylinder be 2h. From GLM, we have

∮

S

B · ds =
∫

top

B · ds

+

∫

side

B · ds

+

∫

bottom

B · ds = 0 (7.41)

Now let us reduce h and a together while (1)

maintaining a constant ratio h/a≪ 1 and (2) keeping

S centered on the interface. Because h≪ a, the area

of the side can be made negligible relative to the area

of the top and bottom. Then, as h→ 0, we are left

with
∫

top

B · ds+
∫

bottom

B · ds → 0 (7.42)

As the area of the top and bottom sides become

infinitesimal, the variation in B over these areas

becomes negligible. Now we have simply:

B1 · n̂∆A+B2 · (−n̂)∆A→ 0 (7.43)

where B1 and B2 are the magnetic flux densities at

the interface but in regions 1 and 2, respectively, and

∆A is the area of the top and bottom sides. Note that

the orientation of n̂ is important – we have assumed n̂

points into region 1, and we must now stick with this

choice. Thus, we obtain

n̂ · (B1 −B2) = 0 (7.44)

where, as noted above, n̂ points into region 1.

Summarizing:

The normal (perpendicular) component of B

across the boundary between two material re-

gions is continuous.

It is worth noting what this means for the magnetic

field intensity H. Since B = µH, it must be that

The normal (perpendicular) component of H

across the boundary between two material re-

gions is discontinuous if the permeabilities are

unequal.

https://creativecommons.org/licenses/by-sa/4.0/
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7.11 Boundary Conditions on the

Magnetic Field Intensity (H)

[m0023]

In homogeneous media, electromagnetic quantities

vary smoothly and continuously. At a boundary

between dissimilar media, however, it is possible for

electromagnetic quantities to be discontinuous.

Continuities and discontinuities in fields can be

described mathematically by boundary conditions and

used to constrain solutions for fields away from these

boundaries. In this section, we derive boundary

conditions on the magnetic field intensity H.

To begin, consider a region consisting of only two

media that meet at a smooth boundary as shown in

Figure 7.15. The desired boundary condition can be

obtained directly from Ampere’s Circuital Law (ACL;

Section 7.4): ∮

C

H · dl = Iencl (7.45)

where C is any closed path and Iencl is the current

that flows through the surface bounded by that path in

the direction specified by the “right-hand rule” of

Stokes’ theorem. Let C take the form of a rectangle

centered on a point on the boundary as shown in

Figure 7.15, perpendicular to the direction of current

flow at that location. Let the sides A, B, C, and D be

perpendicular and parallel to the boundary. Let the

length of the parallel sides be l, and let the length of

  

region 1 A
D

w

tn

Figure 7.15: Determining the boundary condition on

H at the smooth boundary between two material re-

gions.

the perpendicular sides be w. Now we apply ACL.

We must integrate in a counter-clockwise direction in

order to be consistent with the indicated reference

direction for Js. Thus:

∮
H · dl =

∫

A

H · dl

+

∫

B

H · dl

+

∫

C

H · dl

+

∫

D

H · dl = Iencl (7.46)

Now we let w and l become vanishingly small while

(1) maintaining the ratio l/w and (2) keeping C
centered on the boundary. In this process, the

contributions from the B and D segments become

equal in magnitude but opposite in sign; i.e.,

∫

B

H · dl+
∫

D

H · dl → 0 (7.47)

This leaves

∫

A

H · dl+
∫

C

H · dl → Iencl (7.48)

Let us define the unit vector t̂ (“tangent”) as shown in

Figure 7.15. Now we have simply:

H1 ·
(
−t̂∆l

)
+H2 ·

(
+t̂∆l

)
= Iencl (7.49)

where H1 and H2 are the fields evaluated on the two

sides of the boundary, and ∆l → 0 is the length of

sides A and C. As always, Iencl (units of A) may be

interpreted as the flux of the current density Js (units

of A/m) flowing past a line on the surface having

length ∆l (units of m) perpendicular to t̂× n̂, where

n̂ is the normal to the surface, pointing into Region 1.

Stated mathematically:

Iencl → Js ·
(
∆l t̂× n̂

)
(7.50)

Before proceeding, note this is true regardless of the

particular direction we selected for t̂; it is only

necessary that t̂ be tangent to the boundary. Thus,

t̂× n̂ need not necessarily be in the same direction as

Js. Now Equation 7.49 can be written:

H2 · t̂∆l −H1 · t̂∆l = Js ·
(
t̂× n̂

)
∆l (7.51)
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Eliminating the common factor of ∆l and arranging

terms on the left:

(H2 −H1) · t̂ = Js ·
(
t̂× n̂

)
(7.52)

The right side may be transformed using a vector

identity (Equation B.18 of Section B.3) to obtain:

(H2 −H1) · t̂ = t̂ · (n̂× Js) (7.53)

Equation 7.53 is the boundary condition we seek. We

have found that the component of H2 −H1 (the

difference between the magnetic field intensities at

the boundary) in any direction tangent to the

boundary is equal to the component of the current

density flowing in the perpendicular direction n̂× Js.

Said differently:

A discontinuity in the tangential component of

the magnetic field intensity at the boundary must

be supported by surface current flowing in a di-

rection perpendicular to this component of the

field.

An important consequence is that:

If there is no surface current, then the tangential

component of the magnetic field intensity is con-

tinuous across the boundary.

It is possible to obtain a mathematical form of the

boundary condition that is more concise and often

more useful than Equation 7.53. This form may be

obtained as follows. First, we note that the dot

product with respect to t̂ on both sides of

Equation 7.53 means simply “any component that is

tangent to the boundary.” We need merely to make

sure we are comparing the same tangential

component on each side of the equation. For example

n̂× (H2 −H1) is tangential to the boundary, since n̂

is perpendicular to the boundary and therefore any

cross product involving n̂ will be perpendicular to n̂.

The corresponding component of the current density

is n̂× (n̂× Js), so Equation 7.53 may be

equivalently written as follows:

n̂× (H2 −H1) = n̂× n̂× Js (7.54)

Applying a vector identity (Equation B.19 of

Section B.3) to the right side of Equation 7.54 we

obtain:

n̂× n̂× Js = n̂ (n̂ · Js)− Js (n̂ · n̂)
= n̂ (0)− Js (1)

= −Js (7.55)

Therefore:

n̂× (H2 −H1) = −Js (7.56)

The minus sign on the right can be eliminated by

swapping H2 and H1 on the left, yielding

n̂× (H1 −H2) = Js (7.57)

This is the form in which the boundary condition is

most commonly expressed.

It is worth noting what this means for the magnetic

field intensity B. Since B = µH:

In the absence of surface current, the tangential

component of B across the boundary between

two material regions is discontinuous if the per-

meabilities are unequal.
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7.12 Inductance

[m0123]

Current creates a magnetic field, which subsequently

exerts force on other current-bearing structures. For

example, the current in each winding of a coil exerts a

force on every other winding of the coil. If the

windings are fixed in place, then this force is unable

to do work (i.e., move the windings), so instead the

coil stores potential energy. This potential energy can

be released by turning off the external source. When

this happens, charge continues to flow, but is now

propelled by the magnetic force. The potential energy

that was stored in the coil is converted to kinetic

energy and subsequently used to redistribute the

charge until no current flows. At this point, the

inductor has expended its stored energy. To restore

energy, the external source must be turned back on,

restoring the flow of charge and thereby restoring the

magnetic field.

Now recall that the magnetic field is essentially

defined in terms of the force associated with this

potential energy; i.e., F = qv ×B where q is the

charge of a particle comprising the current, v is the

velocity of the particle, and B is magnetic flux density

(Section 2.5). So, rather than thinking of the potential

energy of the system as being associated with the

magnetic force applied to current, it is equally valid to

think of the potential energy as being stored in the

magnetic field associated with the current distribution.

The energy stored in the magnetic field depends on

the geometry of the current-bearing structure and the

permeability of the intervening material because the

magnetic field depends on these parameters.

The relationship between current applied to a

structure and the energy stored in the associated

magnetic field is what we mean by inductance. We

may fairly summarize this insight as follows:

Inductance is the ability of a structure to store en-

ergy in a magnetic field.

The inductance of a structure depends on the ge-

ometry of its current-bearing structures and the

permeability of the intervening medium.

Note that inductance does not depend on current,

which we view as either a stimulus or response from

this point of view. The corresponding response or

stimulus, respectively, is the magnetic flux associated

with this current. This leads to the following

definition:

L =
Φ

I
(single linkage) (7.58)

where Φ (units of Wb) is magnetic flux, I (units of

A) is the current responsible for this flux, and L (units

of H) is the associated inductance. (The “single

linkage” caveat will be explained below.) In other

words, a device with high inductance generates a

large magnetic flux in response to a given current, and

therefore stores more energy for a given current than a

device with lower inductance.

To use Equation 7.58 we must carefully define what

we mean by “magnetic flux” in this case. Generally,

magnetic flux is magnetic flux density (again, B, units

of Wb/m2) integrated over a specified surface S , so

Φ =

∫

S

B · ds (7.59)

where ds is the differential surface area vector, with

direction normal to S . However, this leaves

unanswered the following questions: Which S , and

which of the two possible normal directions of ds?

For a meaningful answer, S must uniquely associate

the magnetic flux to the associated current. Such an

association exists if we require the current to form a

closed loop. This is shown in Figure 7.16. Here C is

the closed loop along which the current flows, S is a

surface bounded by C, and the direction of ds is

defined according to the right-hand rule of Stokes’

Theorem (Section 4.9). Note that C can be a closed

loop of any shape; i.e., not just circular, and not

restricted to lying in a plane. Further note that S used

in the calculation of Φ can be any surface bounded by

C. This is because magnetic field lines form closed

loops such that any one magnetic field line intersects

any open surface bounded by C exactly once. Such an

intersection is sometimes called a “linkage.” So there

we have it – we require the current I to form a closed

loop, we measure the magnetic flux through this loop

using the sign convention of the right-hand rule, and

the ratio is the inductance.

Many structures consist of multiple such loops – the

coil is of course one of these. In a coil, each winding
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I

B

ds

c© K. Kikkeri CC BY SA 4.0

Figure 7.16: Association between a closed loop of

current and the associated magnetic flux.

carries the same current, and the magnetic fields of the

windings add to create a magnetic field, which grows

in proportion to the winding density (Section 7.6).

The magnetic flux density inside a coil is proportional

to the number of windings, N , so the flux Φ in

Equation 7.58 should properly be indicated as NΦ.

Another way to look at this is that we are counting the

number of times the same current is able to generate a

unique set of magnetic field lines that intersect S .

Summarizing, our complete definition for inductance

is

L =
NΦ

I
(identical linkages) (7.60)

An engineering definition of inductance is Equa-

tion 7.60, with the magnetic flux defined to be

that associated with a single closed loop of cur-

rent with sign convention as indicated in Fig-

ure 7.16, andN defined to be the number of times

the same current I is able to create that flux.

What happens if the loops have different shapes? For

example, what if the coil is not a cylinder, but rather

cone-shaped? (Yes, there is such a thing – see

“Additional Reading” at the end of this section.) In

this case, one needs a better way to determine the

factor NΦ since the flux associated with each loop of

current will be different. However, this is beyond the

scope of this section.

An inductor is a device that is designed to exhibit a

specified inductance. We can now make the

connection to the concept of the inductor as it appears

in elementary circuit theory. First, we rewrite

Equation 7.60 as follows:

I =
NΦ

L
(7.61)

Taking the derivative of both sides of this equation

with respect to time, we obtain:

d

dt
I =

N

L

d

dt
Φ (7.62)

Now we need to reach beyond the realm of

magnetostatics for just a moment. Section 8.3

(“Faraday’s Law”) shows that the change in Φ
associated with a change in current results in the

creation of an electrical potential equal to −NdΦ/dt
realized over the loop C. In other words, the terminal

voltage V is +NdΦ/dt, with the change of sign

intended to keep the result consistent with the sign

convention relating current and voltage in passive

devices. Therefore, dΦ/dt in Equation 7.62 is equal

to V/N . Making the substitution we find:

V = L
d

dt
I (7.63)

This is the expected relationship from elementary

circuit theory.

Another circuit theory concept related to inductance

is mutual inductance. Whereas inductance relates

changes in current to instantaneous voltage in the

same device (Equation 7.63), mutual inductance

relates changes in current in one device to

instantaneous voltage in a different device. This can

occur when the two devices are coupled (“linked”) by

the same magnetic field. For example, transformers

(Section 8.5) typically consist of separate coils that

are linked by the same magnetic field lines. The

voltage across one coil may be computed as the

time-derivative of current on the other coil times the

mutual inductance.

Let us conclude this section by taking a moment to

dispel a common misconception about inductance.

The misconception pertains to the following question.

If the current does not form a closed loop, what is the

inductance? For example, engineers sometimes refer

https://creativecommons.org/licenses/by-sa/4.0/
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to the inductance of a pin or lead of an electronic

component. A pin or lead is not a closed loop, so the

formal definition of inductance given above – ratio of

magnetic flux to current – does not apply. The

broader definition of inductance – the ability to store

energy in a magnetic field – does apply, but this is not

what is meant by “pin inductance” or “lead

inductance.” What is actually meant is the imaginary

part of the impedance of the pin or lead – i.e., the

reactance – expressed as an equivalent inductance. In

other words, the reactance of an inductive device is

positive, so any device that also exhibits a positive

reactance can be viewed from a circuit theory

perspective as an equivalent inductance. This is not

referring to the storage of energy in a magnetic field;

it merely means that the device can be modeled as an

inductor in a circuit diagram. In the case of “pin

inductance,” the culprit is not actually inductance, but

rather skin effect (see “Additional References” at the

end of this section). Summarizing:

Inductance implies positive reactance, but posi-

tive reactance does not imply the physical mech-

anism of inductance.

Additional Reading:

• “Inductance” on Wikipedia.

• “Inductor” on Wikipedia.

• T.A. Winslow,

“Conical Inductors for Broadband Applications,”

IEEE Microwave Mag., Vol. 6, No. 1, Mar 2005,

pp. 68–72.

• “Skin Effect” on Wikipedia.

7.13 Inductance of a Straight

Coil

[m0124]

In this section, we determine the inductance of a

straight coil, as shown in Figure 7.17. The coil is

circular with radius a and length l and consists of N
windings of wire wound with uniform winding

density. Also, we assume the winding density N/l is

large enough that magnetic field lines cannot enter or

exit between windings but rather must traverse the

entire length of the coil. Since the coil forms a

cylinder, the problem is easiest to work in cylindrical

coordinates with the axis of the coil aligned along the

z axis.

Inductance L in this case is given by (Section 7.12)

L =
NΦ

I
(7.64)

where I is current and Φ is the magnetic flux

associated with one winding of the coil. Magnetic

flux in this case is given by

Φ =

∫

S

B · ds (7.65)

where B is the magnetic flux density (units of T =

Wb/m2), S is the surface bounded by a single current

loop, and ds points in the direction determined by the

right hand rule with respect to the direction of

positive current flow.

First, let’s determine the magnetic field. The magnetic

Figure 7.17: Determination of the inductance of a

straight coil.

https://en.wikipedia.org/wiki/Inductance
https://en.wikipedia.org/wiki/Inductor
https://doi.org/10.1109/MMW.2005.1418000
https://en.wikipedia.org/wiki/Skin_effect
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flux density deep inside the coil is (Section 7.6):

B ≈ ẑ
µNI

l
(7.66)

Is it reasonable to use this approximation here? Since

inductance pertains to energy storage, the question is

really what fraction of the energy is stored in a field

that is well-described by this approximation, as

opposed to energy stored in the “fringing field” close

to the ends of the coil. If we make l sufficiently large

relative to a, then presumably energy storage in the

fringing field will be negligible in comparison. Since

the alternative leads to a much more complicated

problem, we shall assume that Equation 7.66 is valid

for the interior of the coil.

Next, we determine Φ. In this case, a natural choice

for S is the interior cross-section of the coil in a plane

perpendicular to the axis. The direction of ds must be

+ẑ since this is the direction in which the fingers of

the right hand point when the current flows in the

direction indicated in Figure 7.17. Thus, we have

Φ ≈
∫

S

(
ẑ
µNI

l

)
· (ẑds)

=
µNI

l

∫

S

ds

=
µNI

l
A (7.67)

where A is the cross-sectional area of the coil.

Finally from Equation 7.64 we obtain

L ≈ µN2A

l
(l ≫ a) (7.68)

Note that this is dimensionally correct; that is,

permeability (units of H/m) times area (units of m2)

divided by length (units of m) gives units of H, as

expected. Also, it is worth noting that inductance is

proportional to permeability and cross-sectional area,

and inversely proportional to length. Interestingly the

inductance is proportional to N2 as opposed to N ;

this is because field strength increases with N , and

independently there are N flux linkages. Finally, we

note that the inductance does not depend on the shape

of the coil cross-section, but only on the area of the

cross-section. Summarizing:

The inductance of a long straight coil is given ap-

proximately by Equation 7.68.

Again, this result is approximate because it neglects

the non-uniform fringing field near the ends of the

coil and the possibility that magnetic field lines

escape between windings due to inadequate winding

density. Nevertheless, this result facilitates useful

engineering analysis and design.

Additional Reading:

• “Inductance” on Wikipedia.

https://en.wikipedia.org/wiki/Inductance
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7.14 Inductance of a Coaxial

Structure

[m0125]

Let us now determine the inductance of coaxial

structure, shown in Figure 7.18. The inductance of

this structure is of interest for a number of reasons –

in particular, for determining the characteristic

impedance of coaxial transmission line, as addressed

in Section 3.10.

For our present purpose, we may model the structure

as shown in Figure 7.18. This model consists of two

concentric perfectly-conducting cylinders of radii a
and b, separated by a homogeneous material having

permeability µ. To facilitate analysis, let us place the

+z axis along the common axis of the concentric

cylinders, so that the cylinders may be described as

the surfaces ρ = a and ρ = b.

Below we shall find the inductance by assuming a

current I on the inner conductor and integrating over

the resulting magnetic field to obtain the magnetic

flux Φ between the conductors. Then, inductance can

be determined as the ratio of the response flux to the

source current.

Before we get started, note the derivation we are

about to do is similar to the derivation of the

capacitance of a coaxial structure, addressed in

Section 5.24. The reader may benefit from a review of

that section before attempting this derivation.

b

a

z

ρ

z=l

I

μ

z=0

H

Figure 7.18: Determining the inductance of coaxial

line.

The first step is to find the magnetic field inside the

structure. This is relatively simple if we may neglect

fringing fields, since then the internal field may be

assumed to be constant with respect to z. This

analysis will also apply to the case where the length l
pertains to one short section of a much longer

structure; in this case we will obtain the inductance

per length as opposed to the total inductance for the

structure. Note that the latter is exactly what we need

for the transmission line lumped-element equivalent

circuit model (Section 3.4).

To determine the inductance, we invoke the definition

(Section 7.12):

L ,
Φ

I
(7.69)

A current I flowing in the +z direction on the inner

conductor gives rise to a magnetic field inside the

coaxial structure. The magnetic field intensity for this

scenario was determined in Section 7.5 where we

found

H = φ̂
I

2πρ
, a ≤ ρ ≤ b (7.70)

The reader should note that in that section we were

considering merely a line of current; not a coaxial

structure. So, on what basis do we claim the field for

inside the coaxial structure is the same? This is a

consequence of Ampere’s Law (Section 7.4):
∮

C

H · dl = Iencl (7.71)

If in this new problem we specify the same circular

path C with radius greater than a and less than b, then

the enclosed current is simply I . The presence of the

outer conductor does not change the radial symmetry

of the problem, and nothing else remains that can

change the outcome. This is worth noting for future

reference:

The magnetic field inside a coaxial structure

comprised of concentric conductors bearing cur-

rent I is identical to the magnetic field of the line

current I in free space.

We’re going to need magnetic flux density (B) as

opposed to H in order to get the magnetic flux. This

is simple since they are related by the permeability of

the medium; i.e., B = µH. Thus:

B = φ̂
µI

2πρ
, a ≤ ρ ≤ b (7.72)
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Next, we get Φ by integrating over the magnetic flux

density

Φ =

∫

S

B · ds (7.73)

where S is any open surface through which all

magnetic field lines within the structure must pass.

Since this can be any such surface, we may as well

choose the simplest one. The simplest such surface is

a plane of constant φ, since such a plane is a

constant-coordinate surface and perpendicular to the

magnetic field lines. This surface is shown as the

shaded area in Figure 7.18. Using this surface we

find:

Φ =

∫ b

ρ=a

∫ l

z=0

(
φ̂
µI

2πρ

)
·
(
φ̂ dρ dz

)

=
µI

2π

(∫ l

z=0

dz

)(∫ b

ρ=a

dρ

ρ

)

=
µIl

2π
ln

(
b

a

)
(7.74)

Wrapping up:

L ,
Φ

I
=

(µIl/2π) ln (b/a)

I
(7.75)

Note that factors of I in the numerator and

denominator cancel out, leaving:

L =
µl

2π
ln

(
b

a

)
(7.76)

Note that this is dimensionally correct, having units of

H. Also note that this is expression depends only on

materials (through µ) and geometry (through l, a, and

b). Notably, it does not depend on current, which

would imply non-linear behavior.

To make the connection back to lumped-element

transmission line model parameters (Sections 3.4 and

3.10), we simply divide by l to get the per-unit length

parameter:

L′ =
µ

2π
ln

(
b

a

)
(7.77)

which has the expected units of H/m.

Example 7.1. Inductance of RG-59 coaxial

cable.

RG-59 coaxial cable consists of an inner

conductor having radius 0.292 mm, an outer

conductor having radius 1.855 mm, and

polyethylene (a non-magnetic dielectric) spacing

material. Estimate the inductance per length of

RG-59.

Solution. From the problem statement,

a = 0.292 mm, b = 1.855 mm, and µ ∼= µ0

since the spacing material is non-magnetic.

Using Equation 7.77, we find L′ ∼= 370 nH/m.
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7.15 Magnetic Energy

[m0127]

Consider a structure exhibiting inductance; i.e., one

that is able to store energy in a magnetic field in

response to an applied current. This structure could

be a coil, or it could be one of a variety of inductive

structures that are not explicitly intended to be an

inductor; for example, a coaxial transmission line.

When current is applied, the current-bearing elements

of the structure exert forces on each other. Since these

elements are not normally free to move, we may

interpret this force as potential energy stored in the

magnetic field associated with the current

(Section 7.12).

We now want to know how much energy is stored in

this field. The answer to this question has relevance in

several engineering applications. One issue is that any

system that includes inductance is using some

fraction of the energy delivered by the power supply

to energize this inductance. In many electronic

systems – in power systems in particular – inductors

are periodically energized and de-energized at a

regular rate. Since power is energy per unit time, this

consumes power. Therefore, energy storage in

inductors contributes to the power consumption of

electrical systems.

The stored energy is most easily determined using

circuit theory concepts. First, we note that the

electrical potential difference v(t) (units of V) across

an inductor is related to the current i(t) (units of A)

through the inductor as follows (Section 7.12):

v(t) = L
d

dt
i(t) (7.78)

where L (units of H) is the inductance. The

instantaneous power associated with the device is

p(t) = v(t)i(t) (7.79)

Energy (units of J) is power (units of J/s) integrated

over time. Let Wm be the energy stored in the

inductor. At some time t0 in the past, i(t0) = 0 and

Wm = 0. As current is applied, Wm increases

monotonically. At the present time t, i(t) = I . Thus,

the present value of the magnetic energy is:

Wm =

∫ t0+t

t0

p(τ)dτ (7.80)

Now evaluating this integral using the relationships

established above:

Wm =

∫ t+t0

t0

v(τ)i(τ)dτ

=

∫ t+t0

t0

[
L
d

dτ
i(τ)

]
i(τ)dτ

= L

∫ t+t0

t0

[
d

dτ
i(τ)

]
i(τ)dτ (7.81)

Changing the variable of integration from τ (and dτ )

to i (and di) we have

Wm = L

∫ t+t0

t0

di

dτ
i dτ

= L

∫ I

0

i di (7.82)

Evaluating the integral we obtain the desired

expression

Wm =
1

2
LI2 (7.83)

The energy stored in an inductor in response to

a steady current I is Equation 7.83. This energy

increases in proportion to inductance and in pro-

portion to the square of current.

The long straight coil (Section 7.13) is representative

of a large number of practical applications, so it is

useful to interpret the above findings in terms of this

structure in particular. For this structure we found

L =
µN2A

l
(7.84)

where µ is the permeability, N is the number of

windings, A is cross-sectional area, and l is length.

The magnetic field intensity inside this structure is

related to I by (Section 7.6):

H =
NI

l
(7.85)
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Substituting these expressions into Equation 7.83, we

obtain

Wm =
1

2

[
µN2A

l

] [
Hl

N

]2

=
1

2
µH2Al (7.86)

Recall that the magnetic field inside a long coil is

approximately uniform. Therefore, the density of

energy stored inside the coil is approximately

uniform. Noting that the product Al is the volume

inside the coil, we find that this energy density is

Wm/Al; thus:

wm =
1

2
µH2 (7.87)

which has the expected units of energy per unit

volume (J/m3).

The above expression provides an alternative method

to compute the total magnetostatic energy in any

structure. Within a mathematical volume V , the total

magnetostatic energy is simply the integral of the

energy density over V; i.e.,

Wm =

∫

V

wm dv (7.88)

This works even if the magnetic field and the

permeability vary with position. Substituting

Equation 7.87 we obtain:

Wm =
1

2

∫

V

µH2dv (7.89)

Summarizing:

The energy stored by the magnetic field present

within any defined volume is given by Equa-

tion 7.89.

It’s worth noting that this energy increases with the

permeability of the medium, which makes sense since

inductance is proportional to permeability.

Finally, we reiterate that although we arrived at this

result using the example of the long straight coil,

Equations 7.87 and 7.89 are completely general.

7.16 Magnetic Materials

[m0058]

As noted in Section 2.5, magnetic fields arise in the

presence of moving charge (i.e., current) and in the

presence of certain materials. In this section, we

address these “magnetic materials.”

A magnetic material may be defined as a substance

that exhibits permeability µ (Section 2.6) that is

significantly different from the permeability of free

space µ0. Since the magnetic flux density B is related

to the magnetic field intensity H via B = µH,

magnetic materials may exhibit magnetic flux density

in response to a given magnetic field intensity that is

significantly greater than that of other materials.

Magnetic materials are also said to be

“magnetizable,” meaning that the application of a

magnetic field causes the material itself to become a

source of the magnetic field.

Magnetic media are typically metals, semiconductors,

or heterogeneous media containing such materials.

An example is ferrite, which consists of iron particles

suspended in a ceramic. Magnetic media are

commonly classified according to the physical

mechanism responsible for their magnetizability.

These mechanisms include paramagnetism,

diamagnetism, and ferromagnetism. All three of these

mechanisms involve quantum mechanical processes

operating at the atomic and subatomic level, and are

not well-explained by classical physics. These

processes are beyond the scope of this book (but

information is available via “Additional References”

at the end of this section). However, it is possible to

identify some readily-observable differences between

these categories of magnetic media.

Paramagnetic and diamagnetic materials exhibit

permeability that is only very slightly different than

µ0 and typically by much less than 0.01%. These

materials exhibit very weak and temporary

magnetization. The principal distinction between

paramagnetic and diamagnetic media is in the

persistence and orientation of induced magnetic

fields. Paramagnetic materials – including aluminum,

magnesium, and platinum – exhibit a very weak

persistent magnetic field, and the magnetic field
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induced in the material is aligned in the same

direction as the impressed (external) magnetic field.

Diamagnetic materials – including copper, gold, and

silicon – do not exhibit a persistent magnetic field,

and the magnetic field induced in the material is

(counter to intuition!) aligned in the opposite

direction as the impressed magnetic field. The

magnetization of paramagnetic and diamagnetic

media is typically so weak that it is not often a

consideration in engineering analysis and design.

Paramagnetic and diamagnetic media exhibit per-

meability only very slightly different than that of

free space, with little or no magnetization.

Ferromagnetic materials, on the other hand, exhibit

permeability that can be many orders of magnitude

greater than µ0. (See Appendix A.2 for some example

values.) These materials can be readily and

indefinitely magnetized, thus, permanent magnets are

typically comprised of ferromagnetic materials.

Commonly-encountered ferromagnetic materials

include iron, nickel, and cobalt.

Ferromagnetic materials are significantly non-linear

(see definition in Section 2.8), exhibiting saturation

and hysteresis. This is illustrated in Figure 7.19. In

this plot, the origin represents a ferromagnetic

material that is unmagnetized and in a region free of

an external magnetic field. The external magnetic

field is quantified in terms of H, plotted along the

horizontal axis. As the external field is increased, so

to is B in the material, according to the relationship

B = µH. Right away we see the material is

non-linear, since the slope of the curve – and hence µ
– is not constant.

Once the external magnetizing field H exceeds a

certain value, the response field B no longer

significantly increases. This is saturation. Once

saturated, further increases in the external field result

do not significantly increase the magnetization of the

material, so there is no significant increase in B.

From this state of saturation, let us now reduce the

external field. We find that the rate of decrease in B

with respect to H is significantly less than the rate

that B originally increased with respect to H. In fact,

B is still greater than zero even when H has been

reduced to zero. At this point, the magnetization of

B

saturation

H

c© Ndthe (modified) CC BY SA 3.0

Figure 7.19: Non-linearity in a ferromagnetic material

manifesting as saturation and hysteresis.

the material is obvious, and a device comprised of this

material could be used as a magnet.

If we now apply an external field in the reverse

direction, we find that we are eventually able to zero

and then redirect the response field. As we continue

to decrease H (that is, increase the magnitude in the

reverse direction), we once again reach saturation.

The same behavior is observed when we once again

increase H. The material is eventually demagnetized,

remagnetized in the opposite direction and then

saturated in that direction. At this point, it is apparent

that a return to the start condition (H = B = 0; i.e.,

demagnetized when there is no external field) is not

possible.

Hysteresis is the name that we apply to this particular

form of non-linear behavior. Hysteresis has important

implications in engineering applications. First, as

identified above, it is an important consideration in

the analysis and design of magnets. In applications

where a ferromagnetic material is being used because

high permeability is desired – e.g., in inductors

(Section 7.12) and transformers (Section 8.5) –

hysteresis complicates the design and imposes limits

on the performance of the device.

Hysteresis may also be exploited as a form of

memory. This is apparent from Figure 7.19. If B > 0,

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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then recent values of H must have been relatively

large and positive. Similarly, If B < 0, then recent

values of H must have been relatively large and

negative. Furthermore, the most recent sign of H can

be inferred even if the present value of H is zero. In

this sense, the material “remembers” the past history

of its magnetization and thereby exhibits memory.

This is the enabling principle for a number of digital

data storage devices, including hard drives (see

“Additional Reading” at the end of this section).

Summarizing:

Ferromagnetic media exhibit permeability µ that

is orders of magnitude greater than that of free

space and are readily magnetizable. These mate-

rials are also nonlinear in µ, which manifests as

saturation and hysteresis.

Additional Reading:

• Section A.2 (“Permeability of Some Common

Materials”)

• “Magnetism” on Wikipedia.

• “Ferrite (magnet)” on Wikipedia.

• “Paramagnetism” on Wikipedia.

• “Diamagnetism” on Wikipedia.

• “Ferromagnetism” on Wikipedia.

• “Magnetic hysteresis” on Wikipedia.

• “Magnetic storage” on Wikipedia.

• “Hard disk drive” on Wikipedia.

[m0150]

https://en.wikipedia.org/wiki/Magnetism
https://en.wikipedia.org/wiki/Ferrite_(magnet)
https://en.wikipedia.org/wiki/Paramagnetism
https://en.wikipedia.org/wiki/Diamagnetism
https://en.wikipedia.org/wiki/Ferromagnetism
https://en.wikipedia.org/wiki/Magnetic_hysteresis
https://en.wikipedia.org/wiki/Magnetic_storage
https://en.wikipedia.org/wiki/Hard_disk_drive
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Chapter 8

Time-Varying Fields

8.1 Comparison of Static and

Time-Varying

Electromagnetics

[m0013]

Students encountering time-varying electromagnetic

fields for the first time have usually been exposed to

electrostatics and magnetostatics already. These

disciplines exhibit many similarities as summarized in

Table 8.1. The principles of time-varying

electromagnetics presented in this table are all

formally introduced in other sections; the sole

purpose of this table is to point out the differences.

We can summarize the differences as follows:

Maxwell’s Equations in the general (time-

varying) case include extra terms that do not ap-

pear in the equations describing electrostatics and

magnetostatics. These terms involve time deriva-

tives of fields and describe coupling between

electric and magnetic fields.

The coupling between electric and magnetic fields in

the time-varying case has one profound consequence

in particular. It becomes possible for fields to

continue to exist even after their sources – i.e.,

charges and currents – are turned off. What kind of

field can continue to exist in the absence of a source?

Such a field is commonly called a wave. Examples of

waves include signals in transmission lines and

signals propagating away from an antenna.

Additional Reading:

• “Maxwell’s Equations” on Wikipedia.

Electromagnetics Vol 1. c© 2018 S.W. Ellingson CC BY SA 4.0. https://doi.org/10.21061/electromagnetics-vol-1

https://en.wikipedia.org/wiki/Maxwell's_equations
https://doi.org/10.21061/electromagnetics-vol-1
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Electrostatics / Time-Varying

Magnetostatics (Dynamic)

Electric & magnetic independent possibly coupled

fields are...

Maxwell’s Eqns.
∮
S
D · ds = Qencl

∮
S
D · ds = Qencl

(integral)
∮
C
E · dl = 0

∮
C
E · dl = − ∂

∂t

∫
S
B · ds∮

S
B · ds = 0

∮
S
B · ds = 0∮

C
H · ds = Iencl

∮
C
H · dl = Iencl+

∫
S
∂
∂tD · ds

Maxwell’s Eqns. ∇ ·D = ρv ∇ ·D = ρv
(differential) ∇×E = 0 ∇×E = − ∂

∂tB

∇ ·B = 0 ∇ ·B = 0
∇×H = J ∇×H = J+ ∂

∂tD

Table 8.1: Comparison of principles governing static and time-varying electromagnetic fields. Differences in

the time-varying case relative to the static case are highlighted in blue.

8.2 Electromagnetic Induction

[m0129]

When an electrically-conducting structure is exposed

to a time-varying magnetic field, an electrical

potential difference is induced across the structure.

This phenomenon is known as electromagnetic

induction. A convenient introduction to

electromagnetic induction is provided by Lenz’s Law.

This section explains electromagnetic induction in the

context of Lenz’s Law and provides two examples.

Let us begin with the example depicted in Figure 8.1,

involving a cylindrical coil. Attached to the terminals

of the coil is a resistor for which we may identify an

electric potential difference V and current I . In this

particular case, the sign conventions indicated for V
and I are arbitrary, but it is important to be consistent

once they are established.

Now let us introduce a bar magnet as shown in

Figure 8.1. The magnet is centered along the axis of

coil, to the right of the coil, and with its north pole

facing toward the coil. The magnet is responsible for

the magnetic flux density Bimp. We refer to Bimp as

an impressed magnetic field because this field exists

independently of any response that may be induced

by interaction with the coil. Note that Bimp points to

the left inside the coil.

The experiment consists of three tests. We will find in

Y. Qin (modified) CC BY 4.0

Figure 8.1: An experiment demonstrating electro-

magnetic induction and Lenz’s Law.

two of these tests that current flows (i.e., |I| > 0), and

subsequently, there is an induced magnetic field Bind

due to this current. It is the direction of the current

and subsequently the direction of Bind inside the coil

that we wish to observe. The findings are summarized

below and in Table 8.2.

• When the magnet is motionless, we have the

unsurprising result that there is no current in the

coil. Therefore, no magnetic field is induced, and

the total magnetic field is simply equal to Bimp.

• When the magnet moves toward the coil, we

observe current that is positive with respect to

the reference direction indicated in Figure 8.1.

This current creates an induced magnetic field

Bind that points to the right, as predicted by

magnetostatic considerations from the right-hand

https://creativecommons.org/licenses/by/4.0/
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rule. Since Bimp points to the left, it appears

that the induced current is opposing the increase

in the magnitude of the total magnetic field.

• When the magnet moves away from the coil, we

observe current that is negative with respect to

the reference direction indicated in Figure 8.1.

This current yields Bind that points to the left.

Since Bimp points to the left, it appears that the

induced current is opposing the decrease in the

magnitude of the total magnetic field.

The first conclusion one may draw from this

experiment is that changes in the magnetic field can

induce current. This was the claim made in the first

paragraph of this section and is a consequence of

Faraday’s Law, which is tackled in detail in

Section 8.3. The second conclusion – also associated

with Faraday’s Law – is the point of this section: The

induced magnetic field – that is, the one due to the

current induced in the coil – always opposes the

change in the impressed magnetic field. Generalizing:

Lenz’s Law states that the current that is induced

by a change in an impressed magnetic field cre-

ates an induced magnetic field that opposes (acts

to reduce the effect of) the change in the total

magnetic field.

When the magnet moves, three things happen: (1) A

current is induced, (2) A magnetic field is induced

(which adds to the impressed magnetic field), and (3)

the value of V becomes non-zero. Lenz’s Law does

not address which of these are responding directly to

the change in the impressed magnetic field, and which

of these are simply responding to changes in the other

quantities. Lenz’s Law may leave you with the

incorrect impression that it is I that is induced, and

that Bind and V are simply responding to this current.

In truth, the quantity that is induced is actually V .

This can be verified in the above experiment by

replacing the resistor with a high-impedance

voltmeter, which will indicate that V is changing even

though there is negligible current flow. Current flow

is simply a response to the induced potential.

Nevertheless, it is common to say informally that “I
is induced,” even if it is only indirectly through V .

So, if Lenz’s Law is simply an observation and not an

explanation of the underlying physics, then what is it

good for? Lenz’s Law is often useful for quickly

determining the direction of current flow in practical

electromagnetic induction problems, without

resorting to the mathematics associated with

Faraday’s Law. Here’s an example:

Example 8.1. Electromagnetic induction

through a transformer.

Figure 8.2 shows a rudimentary circuit

consisting of a battery and a switch on the left, a

voltmeter on the right, and a transformer linking

the two. It is not necessary to be familiar with

transformers to follow this example; suffice it to

say, the transformer considered here consists of

two coils wound around a common toroidal

core, which serves to contain magnetic flux. In

this way, the flux generated by either coil is

delivered to the other coil with negligible loss.

The experiment begins with the switch on the

left in the open state. Thus, there is no current

and no magnetic field apparent in the coil on the

left. The voltmeter reads 0 V. When the switch is

closed, what happens?

Solution. Closing the switch creates a current in

the coil on the left. Given the indicated polarity

of the battery, this current flows

counter-clockwise through the circuit on the left,

with current arriving in the left coil through the

bottom terminal. Given the indicated direction

of the winding in the left coil, the impressed

magnetic field Bimp is oriented

counter-clockwise through the toroidal core. The

coil on the right “sees” Bimp increase from zero

to some larger value. Since the voltmeter

presumably has input high impedance,

negligible current flows. However, if current

were able to flow, Lenz’s Law dictates that it

would be induced to flow in a counter-clockwise

direction around the circuit on the right, since

the induced magnetic field Bind would then be

clockwise-directed so as to oppose the increase

in Bimp. Therefore, the potential measured at

the bottom of the right coil would be higher than

the potential at the top of the right coil. The
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Magnet is ... |Bimp| in coil is ... Circuit Response Bind inside coil

Motionless constant V = 0, I = 0 none

Moving toward coil increasing V > 0, I > 0 Pointing right

Moving away from coil decreasing V < 0, I < 0 Pointing left

Table 8.2: Results of the experiment associated with Figure 8.1.

+ -+ - +-

- +V

E. Bach CC0 1.0 (modified)

Figure 8.2: Electromagnetic induction through a

transformer.

figure indicates that the voltmeter measures the

potential at its right terminal relative to its left

terminal, so the needle will deflect to the right.

This deflection will be temporary, since the

current provided by the battery becomes

constant at a new non-zero value and Bind

responds only to the change in Bimp. The

voltmeter reading will remain at zero for as long

as the switch remains closed and the current

remains steady.

Here are some follow up exercises to test your

understanding of what is going on: (1) Now

open the switch. What happens? (2) Repeat the

original experiment, but before starting, swap

the terminals on the battery.

Finally, it is worth noting that Lenz’s law can also be

deduced from the principle of conservation of energy.

The argument is that if the induced magnetic field

reinforced the change in the impressed magnetic field,

then the sum magnetic field would increase. This

would result in a further increase in the induced

magnetic field, leading to a positive feedback

situation. However, positive feedback cannot be

supported without an external source of energy,

leading to a logical contradiction. In other words, the

principle of conservation of energy requires the

negative feedback described by Lenz’s law.

Additional Reading:

• “Electromagnetic Induction” on Wikipedia.

• “Lenz’s Law” on Wikipedia.

https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://en.wikipedia.org/wiki/Electromagnetic_induction
https://en.wikipedia.org/wiki/Lenz's_law
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8.3 Faraday’s Law

[m0055]

Faraday’s Law describes the generation of electric

potential by a time-varying magnetic flux. This is a

form of electromagnetic induction, as discussed in

Section 8.2.

To begin, consider the scenario shown in Figure 8.3.

A single loop of wire in the presence of an impressed

magnetic field B. For reasons explained later, we

introduce a small gap and define VT to be the

potential difference measured across the gap

according to the sign convention indicated. The

resistance R may be any value greater than zero,

including infinity; i.e., a literal gap.

As long as R is not infinite, we know from Lenz’s

Law (Section 8.2) to expect that a time-varying

magnetic field will cause a current to flow in the wire.

Lenz’s Law also tells us the direction in which the

current will flow. However, Lenz’s Law does not tell

us the magnitude of the current, and it sidesteps some

important physics that has profound implications for

the analysis and design of electrical devices,

including generators and transformers.

The more complete picture is given by Faraday’s Law.

In terms of the scenario of Figure 8.3, Faraday’s Law

relates the potential VT induced by the time variation

of B. VT then gives rise to the current identified in

Lenz’s Law. The magnitude of this current is simply

VT /R. Without further ado, here’s Faraday’s Law for

VT

+ -

R




B

Figure 8.3: A single loop of wire in the presence of

an impressed magnetic field.

this single loop scenario:

VT = − ∂

∂t
Φ (single loop) (8.1)

Here Φ is the magnetic flux (units of Wb) associated

with any open surface S bounded by the loop:

Φ =

∫

S

B · ds (8.2)

where B is magnetic flux density (units of T or

Wb/m2) and ds is the differential surface area vector.

To make headway with Faraday’s Law, one must be

clear about the meanings of S and ds. If the wire loop

in the present scenario lies in a plane, then a good

choice for S is the simply the planar area bounded by

the loop. However, any surface that is bounded by the

loop will work, including non-planar surfaces that

extend above and/or below the plane of the loop. All

that is required is that every magnetic field line that

passes through the loop also passes through S . This

happens automatically if the curve C defining the

edge of the open surface S corresponds to the loop.

Subsequently, the magnitude of ds is the differential

surface element ds and the direction of ds is the unit

vector n̂ perpendicular to each point on S , so

ds = n̂ds.

This leaves just one issue remaining – the orientation

of n̂. This is sorted out in Figure 8.4. There are two

possible ways for a vector to be perpendicular to a

surface, and the direction chosen for n̂ will affect the

sign of VT . Therefore, n̂ must be somehow related to

the polarity chosen for VT . Let’s consider this

relationship. Let C begin at the “−” terminal of VT
and follow the entire perimeter of the loop, ending at

the “+” terminal. Then, n̂ is determined by the

following “right-hand rule:” n̂ points in the direction

of the curled fingers of the right hand when the thumb

of the right hand is aligned in the direction of C. It’s

worth noting that this convention is precisely the

convention used to relate n̂ and C in Stokes’ Theorem

(Section 4.9).

Now let us recap how Faraday’s Law is applied to the

single loop scenario of Figure 8.3:

1. Assign “+” and “−” terminals to the gap voltage

VT .
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V�

+ -

�
S

n

C

Figure 8.4: Relationship between the polarity of VT
and orientations of C and n̂ in the planar single-loop

scenario.

2. The orientation of n̂ is determined by the right

hand rule, taking the direction of C to be the

perimeter of the loop beginning at “−” and

ending at “+”

3. B yields a magnetic flux Φ associated with the

loop according to Equation 8.2. S is any open

surface that intersects all the magnetic field lines

that pass through the loop (so you might as well

choose S in a way that results in the simplest

possible integration).

4. By Faraday’s Law (Equation 8.1), VT is the time

derivative of Φ with a change of sign.

5. The current I flowing in the loop is VT /R, with

the reference direction (i.e., direction of positive

current) being from “+” to “−” through the

resistor. Think of the loop as a voltage source,

and you’ll get the correct reference direction for

I .

At this point, let us reiterate that the electromagnetic

induction described by Faraday’s Law induces

potential (in this case, VT ) and not current. The

current in the loop is simply the induced voltage

divided by the resistance of the loop. This point is

easily lost, especially in light of Lenz’s Law, which

seems to imply that current, as opposed to potential,

is the thing being induced.

Wondering about the significance of the minus sign in

Equation 8.1? That is specifically Lenz’s Law: The

current I that ends up circulating in the loop generates

its own magnetic field (“Bind” in Section 8.2), which

is distinct from the impressed magnetic field B and

which tends to oppose change in B. Thus, we see that

Faraday’s Law subsumes Lenz’s Law.

Frequently one is interested in a structure that consists

of multiple identical loops. We have in mind here

something like a coil with N ≥ 1 windings tightly

packed together. In this case, Faraday’s Law is

VT = −N ∂

∂t
Φ (8.3)

Note that the difference is simply that the gap

potential VT is greater by N . In other words, each

winding of the coil contributes a potential given by

Equation 8.1, and these potentials add in series.

Faraday’s Law, given in general by Equation 8.3,

states that the potential induced in a coil is pro-

portional to the time derivative of the magnetic

flux through the coil.

The induced potential VT is often referred to as

“emf,” which is a contraction of the term

electromotive force – a misnomer to be sure, since no

actual force is implied, only potential. The term

“emf” is nevertheless frequently used in the context

of Faraday’s Law applications for historical reasons.

Previously in this section, we considered the

generation of emf by time variation of B. However,

Equation 8.1 indicates that what actually happens is

that the emf is the result of time variation of the

magnetic flux, Φ. Magnetic flux is magnetic flux

density integrated over area, so it appears that emf can

also be generated simply by varying S , independently

of any time variation of B. In other words, emf may

be generated even when B is constant, by instead

varying the shape or orientation of the coil. So, we

have a variety of schemes by which we can generate

emf. Here they are:

1. Time-varying B (as we considered previously in

this section). For example, B might be due to a

permanent magnet that is moved (e.g., translated

or rotated) in the vicinity of the coil, as described

in Section 8.2. Or, more commonly, B might be

due to a different coil that bears a time-varying

current. These mechanisms are collectively
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referred to as transformer emf. Transformer emf

is the underlying principle of operation of

transformers; for more on this see Section 8.5.

2. The perimeter C – and thus the surface S over

which Φ is determined – can be time-varying.

For example, a wire loop might be rotated or

changed in shape in the presence of a constant

magnetic field. This mechanism is referred to as

motional emf and is the underlying principle of

operation of generators (Section 8.7).

3. Transformer and motional emf can exist in

various combinations. From the perspective of

Faraday’s Law, transformer and motional emf

are the same in the sense in either case Φ is

time-varying, which is all that is required to

generate emf.

Finally, a comment on the generality of Faraday’s

Law. Above we have introduced Faraday’s Law as if

it were specific to loops and coils of wire. However,

the truth of the matter is that Faraday’s Law is

fundamental physics. If you can define a closed path

– current-bearing or not – then you can compute the

potential difference achieved by traversing that path

using Faraday’s Law. The value you compute is the

potential associated with electromagnetic induction,

and exists independently and in addition to the

potential difference associated with the static electric

field (e.g., Section 5.12). In other words:

Faraday’s Law indicates the contribution of elec-

tromagnetic induction (the generation of emf by

a time-varying magnetic flux) to the potential dif-

ference achieved by traversing a closed path.

In Section 8.8, this insight is used to transform the

static form of Kirchoff’s Voltage Law (Section 5.10)

– which gives the potential difference associated with

electric field only – into the Maxwell-Faraday

Equation (Section 8.8), which is a general statement

about the relationship between the instantaneous

value of the electric field and the time derivative of

the magnetic field.

Additional Reading:

• “Faraday’s law of induction” on Wikipedia.

8.4 Induction in a Motionless

Loop

[m0056]

In this section, we consider the problem depicted in

Figure 8.5, which is a single motionless loop of wire

in the presence of a spatially-uniform but

time-varying magnetic field. A small gap is

introduced in the loop, allowing us to measure the

induced potential VT . Additionally, a resistance R is

connected across VT in order to allow a current to

flow. This problem was considered in Section 8.3 as

an introduction to Faraday’s Law; in this section, we

shall actually work the problem and calculate some

values. This is intended to serve as an example of the

application of Faraday’s Law, a demonstration of

transformer emf, and will serve as a first step toward

an understanding of transformers as devices.

In the present problem, the loop is centered in the

z = 0 plane. The magnetic flux density is

B = b̂B(t); i.e., time-varying magnitude B(t) and a

constant direction b̂. Because this magnetic field is

spatially uniform (i.e., the same everywhere), we will

find that only the area of the loop is important, and

not it’s specific shape. For this reason, it will not be

necessary to specify the radius of the loop or even

require that it be a circular loop. Our task is to find

expressions for VT and I .

V
�

+ -

B

Figure 8.5: A single loop of wire in the presence of

an impressed spatially-uniform but time-varying mag-

netic field.

https://en.wikipedia.org/wiki/Faraday's_law_of_induction
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To begin, remember that Faraday’s Law is a

calculation of electric potential and not current. So,

the approach is to first find VT , and then find the

current I that flows through the gap resistance in

response.

The sign convention for VT is arbitrary; here, we have

selected “+” and “−” terminals as indicated in

Figure 8.5.1 Following the standard convention for

the reference direction of current through a passive

device, I should be directed as shown in Figure 8.5. It

is worth repeating that these conventions for the signs

of VT and I are merely references; for example, we

may well find that I is negative, which means that

current flows in a clockwise direction in the loop.

We now invoke Faraday’s Law:

VT = −N ∂

∂t
Φ (8.4)

The number of windings N in the loop is 1, and Φ is

the magnetic flux through the loop. Thus:

VT = − ∂

∂t

∫

S

B · ds (8.5)

where S is any open surface that intersects all of the

magnetic field lines that pass through the loop. The

simplest such surface is simply the planar surface

defined by the perimeter of the loop. Then ds = n̂ds,
where ds is the differential surface element and n̂ is

the normal to the plane of the loop. Which of the two

possible normals to the loop? This is determined by

the right-hand rule of Stokes’ Theorem. From the

“−” terminal, we point the thumb of the right hand in

the direction that leads to the “+” terminal by

traversing the perimeter of the loop. When we do this,

the curled fingers of the right hand intersect S in the

same direction as n̂. To maintain the generality of

results derived below, we shall not make the

substitution n̂ = +ẑ; nevertheless we see this is the

case for a loop parallel to the z = 0 plane with the

polarity of VT indicated in Figure 8.5.

Taking this all into account, we have

VT = − ∂

∂t

∫

S

(
b̂B(t)

)
· (n̂ds)

= −
(
b̂ · n̂

) ∂

∂t

∫

S

B(t) ds (8.6)

1A good exercise for the student is to repeat this problem with

the terminal polarity reversed; one should obtain the same answer.

Since the magnetic field is uniform, B(t) may be

extracted from the integral. Furthermore, the shape

and the orientation of the loop are time-invariant, so

the remaining integral may be extracted from the time

derivative operation. This leaves:

VT = −
(
b̂ · n̂

)( ∂

∂t
B(t)

)∫

S

ds (8.7)

The integral in this expression is simply the area of

the loop, which is a constant; let the symbol A
represent this area. We obtain

VT = −
(
b̂ · n̂A

) ∂

∂t
B(t) (8.8)

which is the expression we seek. Note that the

quantity b̂ · n̂A is the projected area of the loop. The

projected area is equal to A when the the magnetic

field lines are perpendicular to the loop (i.e., b̂ = n̂),

and decreases to zero as b̂ · n̂ → 0. Summarizing:

The magnitude of the transformer emf induced

by a spatially-uniform magnetic field is equal to

the projected area times the time rate of change of

the magnetic flux density, with a change of sign.

(Equation 8.8).

A few observations about this result:

• As promised earlier, we have found that the

shape of the loop is irrelevant; i.e., a square loop

having the same area and planar orientation

would result in the same VT . This is because the

magnetic field is spatially uniform, and because

it is the magnetic flux (Φ) and not the magnetic

field or shape of the loop alone that determines

the induced potential.

• The induced potential is proportional to A; i.e.,

VT can be increased by increasing the area of the

loop.

• The peak magnitude of the induced potential is

maximized when the plane of the loop is

perpendicular to the magnetic field lines.

• The induced potential goes to zero when the

plane of the loop is parallel to the magnetic field

lines. Said another way, there is no induction

unless magnetic field lines pass through the loop.
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• The induced potential is proportional to the rate

of change of B. If B is constant in time, then

there is no induction.

Finally, the current in the loop is simply

I =
VT
R

(8.9)

Again, electromagnetic induction induces potential,

and the current flows only in response to the induced

potential as determined by Ohm’s Law. In particular,

if the resistor is removed, then R→ ∞ and I → 0,

but VT is unchanged.

One final comment is that even though the current I is

not a direct result of electromagnetic induction, we

can use I as a check of the result using Lenz’s Law

(Section 8.2). We’ll demonstrate this in the example

below.

Example 8.2. Induction in a motionless circular

loop by a linearly-increasing magnetic field

Let the loop be planar in the z = 0 plane and

circular with radius a = 10 cm. Let the

magnetic field be ẑB(t) where

B(t) = 0 , t < 0

= B0t/t0 , 0 ≤ t ≤ t0

= B0 , t > t0 (8.10)

i.e., B(t) begins at zero and increases linearly to

B0 at time t0, after which it remains constant at

B0. Let B0 = 0.2 T, t0 = 3 s, and let the loop be

closed by a resistor R = 1 kΩ. What current I
flows in the loop?

Solution. Adopting the sign conventions of

Figure 8.5 we first note that n̂ = +ẑ; this is

determined by the right-hand rule with respect to

the indicated polarity of VT . Thus, Equation 8.8

becomes

VT = −
(
b̂ · ẑA

) ∂

∂t
B(t)

Note b̂ · ẑA = A since b̂ = ẑ; i.e., because the

plane of the loop is perpendicular to the

magnetic field lines. Since the loop is circular,

A = πa2. Also

∂

∂t
B(t) = 0 , t < 0

= B0/t0 , 0 ≤ t ≤ t0

= 0 , t > t0

Putting this all together:

VT = −πa2B0

t0
= −2.09 mV , 0 ≤ t ≤ t0

and VT = 0 before and after this time interval,

since B is constant during those times.

Subsequently the induced current is

I =
VT
R

= −2.09 µA , 0 ≤ t ≤ t0

and I = 0 before and after this time interval. We

have found that the induced current is a constant

clockwise flow that exists only while B is

increasing.

Finally, let’s see if the result is consistent with

Lenz’s Law. The current induced while B is

changing gives rise to an induced magnetic field

Bind. From the right-hand rule that relates the

direction of I to the direction of Bind

(Section 7.5), the direction of Bind is generally

−ẑ inside the loop. In other words, the magnetic

field associated with the induced current opposes

the increasing impressed magnetic field that

induced the current, in accordance with Lenz’s

Law.

Example 8.3. Induction in a motionless circular

loop by a sinusoidally-varying magnetic field.

Let us repeat the previous example, but now with

B(t) = B0 sin 2πf0t

with f0 = 1 kHz.

Solution. Now

∂

∂t
B(t) = 2πf0B0 cos 2πf0t
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So

VT = −2π2f0a
2B0 cos 2πf0t

Subsequently

I =
VT
R

= −2π2f0a
2B0

R
cos 2πf0t

Substituting values, we have:

I = −(39.5 mA) cos [(6.28 krad/s)t]

It should be no surprise that VT and I vary

sinusoidally, since the source (B) varies

sinusoidally. A bit of useful trivia here is that VT
and I are 90◦ out of phase with the source. It is

also worth noting what happens when B(t) = 0.

This occurs twice per period, at t = n/2f0
where n is any integer, including t = 0. At these

times B(t) is zero, but VT and hence IR are

decidedly non-zero; in fact, they are at their

maximum magnitude. Again, it is the change in

B that induces voltage and subsequently current,

not B itself.

8.5 Transformers: Principle of

Operation

[m0031]

A transformer is a device that connects two electrical

circuits through a shared magnetic field.

Transformers are used in impedance transformation,

voltage level conversion, circuit isolation, conversion

between single-ended and differential signal modes,

and other applications.2 The underlying

electromagnetic principle is Faraday’s Law

(Section 8.3) – in particular, transformer emf.

The essential features of a transformer can be derived

from the simple experiment shown in Figures 8.6 and

8.7. In this experiment, two coils are arranged along a

common axis. The winding pitch is small, so that all

magnetic field lines pass through the length of the

coil, and no lines pass between the windings. To

further contain the magnetic field, we assume both

coils are wound on the same core, consisting of some

material exhibiting high permeability. The upper coil

has N1 turns and the lower coil has N2 turns.

In Part I of this experiment (Figure 8.6), the upper

coil is connected to a sinusoidally-varying voltage

source V
(1)
1 in which the subscript refers to the coil

and the superscript refers to “Part I” of this

experiment. The voltage source creates a current in

the coil, which in turn creates a time-varying

magnetic field B in the core.

The lower coil has N2 turns wound in the opposite

direction and is open-circuited. Given the

closely-spaced windings and use of a

high-permeability core, we assume that the magnetic

field within the lower coil is equal to B generated in

the upper coil. The potential induced in the lower coil

is V
(1)
2 with reference polarity indicated in the figure.

From Faraday’s Law we have

V
(1)
2 = −N2

∂

∂t
Φ2 (8.11)

where Φ2 is the flux through a single turn of the lower

2See “Additional Reading” at the end of this section for more on

these applications.
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turnsV 1
(1)

+

−

V 2
(1)

+

−

N1

turnsN2

Figure 8.6: Part I of an experiment demonstrating the

linking of electric circuits using a transformer.

turnsV �
(2)

+

−

V 2
(2)

+

−

N1

turnsN2

Figure 8.7: Part II of an experiment demonstrating the

linking of electric circuits using a transformer.

coil. Thus:

V
(1)
2 = −N2

∂

∂t

∫

S

B · (−ẑds) (8.12)

Note that the direction of ds = −ẑds is determined

by the polarity we have chosen for V
(1)
2 .

In Part II of the experiment (Figure 8.7), we make

changes as follows. We apply a voltage V
(2)
2 to the

lower coil and open-circuit the upper coil. Further, we

adjust V
(2)
2 such that the induced magnetic flux

density is again B – that is, equal to the field in Part I

of the experiment. Now we have

V
(2)
1 = −N1

∂

∂t
Φ1 (8.13)

which is

V
(2)
1 = −N1

∂

∂t

∫

S

B · (+ẑds) (8.14)

For reasons that will become apparent in a moment,

let’s shift the leading minus sign into the integral. We

then have

V
(2)
1 = +N1

∂

∂t

∫

S

B · (−ẑds) (8.15)

Comparing this to Equations 8.11 and 8.12, we see

that we may rewrite this in terms of the flux in the

lower coil in Part I of the experiment:

V
(2)
1 = +N1

∂

∂t
Φ2 (8.16)

In fact, we can express this in terms of the potential in

Part I of the experiment:

V
(2)
1 =

(
−N1

N2

)(
−N2

∂

∂t
Φ2

)

=

(
−N1

N2

)
V

(1)
2 (8.17)

We have found that the potential in the upper coil in

Part II is related in a simple way to the potential in the

lower coil in Part I of the experiment. If we had done

Part II first, we would have obtained the same result

but with the superscripts swapped. Therefore, it must

be generally true – regardless of the arrangement of

terminations – that

V1 = −N1

N2
V2 (8.18)
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This expression should be familiar from elementary

circuit theory – except possibly for the minus sign.

The minus sign is a consequence of the fact that the

coils are wound in opposite directions. We can make

the above expression a little more general as follows:

V1
V2

= p
N1

N2
(8.19)

where p is defined to +1 when the coils are wound in

the same direction and −1 when coils are wound in

opposite directions. (It is an excellent exercise to

confirm that this is true by repeating the above

analysis with winding direction changed for either the

upper or lower coil, for which p will then turn out to

be +1.) This is the “transformer law” of basic electric

circuit theory, from which all other characteristics of

transformers as two-port circuit devices can be

obtained (See Section 8.6 for follow-up on that).

Summarizing:

The ratio of coil voltages in an ideal transformer

is equal to the ratio of turns with sign determined

by the relative directions of the windings, per

Equation 8.19.

A more familiar transformer design is shown in

Figure 8.8 – coils wound on a toroidal core as

opposed to a cylindrical core. Why do this? This

arrangement confines the magnetic field linking the

two coils to the core, as opposed to allowing field

lines to extend beyond the device. This confinement

is important in order to prevent fields originating

outside the transformer from interfering with the

magnetic field linking the coils, which would lead to

electromagnetic interference (EMI) and

electromagnetic compatibility (EMC) problems. The

principle of operation is in all other respects the same.

Additional Reading:

• “Transformer” on Wikipedia.

• “Balun” on Wikipedia.

V
1

V
2

N
1
turns

N
2
turns

Φ

Magnetic
Flux,

Transformer
Core

+

+

−

−

c© BillC (modified) CC BY SA 3.0

Figure 8.8: Transformer implemented as coils sharing

a toroidal core. Here p = +1.

8.6 Transformers as Two-Port

Devices

[m0032]

Section 8.5 explains the principle of operation of the

ideal transformer. The relationship governing the

terminal voltages V1 and V2 was found to be

V1
V2

= p
N1

N2
(8.20)

where N1 and N2 are the number of turns in the

associated coils and p is either +1 or −1 depending

on the relative orientation of the windings; i.e.,

whether the reference direction of the associated

fluxes is the same or opposite, respectively.

We shall now consider ratios of current and

impedance in ideal transformers, using the two-port

model shown in Figure 8.9. By virtue of the reference

current directions and polarities chosen in this figure,

the power delivered by the source V1 is V1I1, and the

power absorbed by the load Z2 is −V2I2. Assuming

the transformer windings have no resistance, and

assuming the magnetic flux is perfectly contained

within the core, the power absorbed by the load must

equal the power provided by the source; i.e.,

https://en.wikipedia.org/wiki/Transformer
https://en.wikipedia.org/wiki/Balun
https://creativecommons.org/licenses/by-sa/3.0/
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V1I1 = −V2I2. Thus, we have3

I1
I2

= −V2
V1

= −pN2

N1
(8.21)

We can develop an impedance relationship for ideal

transformers as follows. Let Z1 be the input

impedance of the transformer; that is, the impedance

looking into port 1 from the source. Thus, we have

Z1 ,
V1
I1

=
+p (N1/N2)V2
−p (N2/N1) I2

= −
(
N1

N2

)2(
V2
I2

)
(8.22)

In Figure 8.9, Z2 is the the output impedance of port

2; that is, the impedance looking out port 2 into the

load. Therefore, Z2 = −V2/I2 (once again the minus

sign is a result of our choice of sign conventions in

Figure 8.9). Substitution of this result into the above

equation yields

Z1 =

(
N1

N2

)2

Z2 (8.23)

and therefore

Z1

Z2
=

(
N1

N2

)2

(8.24)

3 The minus signs in this equation are a result of the reference

polarity and directions indicated in Figure 8.9. These are more-or-

less standard in electrical two-port theory (see “Additional Reading”

at the end of this section), but are certainly not the only reason-

able choice. If you see these expressions without the minus signs,

it probably means that a different combination of reference direc-

tions/polarities is in effect.

I2

V�

+

−

I1

V
1

+

−

+_ Z2

Z1

Figure 8.9: The transformer as a two-port circuit de-

vice.

Thus, we have demonstrated that a transformer scales

impedance in proportion to the square of the turns

ratio N1/N2. Remarkably, the impedance

transformation depends only on the turns ratio, and is

independent of the relative direction of the windings

(p).

The relationships developed above should be viewed

as AC expressions, and are not normally valid at DC.

This is because transformers exhibit a fundamental

limitation in their low-frequency performance. To see

this, first recall Faraday’s Law:

V = −N ∂

∂t
Φ (8.25)

If the magnetic flux Φ isn’t time-varying, then there is

no induced electric potential, and subsequently no

linking of the signals associated with the coils. At

very low but non-zero frequencies, we encounter

another problem that gets in the way – magnetic

saturation. To see this, note we can obtain an

expression for Φ from Faraday’s Law by integrating

with respect to time, yielding

Φ(t) = − 1

N

∫ t

t0

V (τ)dτ +Φ(t0) (8.26)

where t0 is some earlier time at which we know the

value of Φ(t0). Let us assume that V (t) is

sinusoidally-varying. Then the peak value of Φ after

t = t0 depends on the frequency of V (t). If the

frequency of V (t) is very low, then Φ can become

very large. Since the associated cross-sectional areas

of the coils are presumably constant, this means that

the magnetic field becomes very large. The problem

with that is that most practical high-permeability

materials suitable for use as transformer cores exhibit

magnetic saturation; that is, the rate at which the

magnetic field is able to increase decreases with

increasing magnetic field magnitude (see

Section 7.16). The result of all this is that a

transformer may work fine at (say) 1 MHz, but at

(say) 1 Hz the transformer may exhibit an apparent

loss associated with this saturation. Thus, practical

transformers exhibit highpass frequency response.

It should be noted that the highpass behavior of

practical transistors can be useful. For example, a

transformer can be used to isolate an undesired DC

offset and/or low-frequency noise in the circuit
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Differential
Single-
Ended

Single-
Ended

c© SpinningSpark CC BY SA 3.0 (modified)

Figure 8.10: Transformers used to convert a single-

ended (“unbalanced”) signal to a differential (bal-

anced) signal, and back.

attached to one coil from the circuit attached to the

other coil.

The DC-isolating behavior of a transformer also

allows the transformer to be used as a balun, as

illustrated in Figure 8.10. A balun is a two-port

device that transforms a single-ended (“unbalanced”)

signal – that is, one having an explicit connection to a

datum (e.g., ground) – into a differential (“balanced”)

signal, for which there is no explicit connection to a

datum. Differential signals have many benefits in

circuit design, whereas inputs and outputs to devices

must often be in single-ended form. Thus, a common

use of transformers is to effect the conversion

between single-ended and differential circuits.

Although a transformer is certainly not the only

device that can be used as a balun, it has one very big

advantage, namely bandwidth.

Additional Reading:

• “Transformer” on Wikipedia.

• “Two-port network” on Wikipedia.

• “Saturation (magnetic)” on Wikipedia.

• “Balun” on Wikipedia.

• S.W. Ellingson, “Differential Circuits” (Sec. 8.7)

in Radio Systems Engineering, Cambridge Univ.

Press, 2016.

8.7 The Electric Generator

[m0030]

A generator is a device that transforms mechanical

energy into electrical energy, typically by

electromagnetic induction via Faraday’s Law

(Section 8.3). For example, a generator might consist

of a gasoline engine that turns a crankshaft to which

is attached a system of coils and/or magnets. This

rotation changes the relative orientations of the coils

with respect to the magnetic field in a time-varying

manner, resulting in a time-varying magnetic flux and

subsequently induced electric potential. In this case,

the induced potential is said to be a form of motional

emf, as it is due entirely to changes in geometry as

opposed to changes in the magnitude of the magnetic

field. Coal- and steam-fired generators, hydroelectric

generators, wind turbines, and other energy

generation devices operate using essentially this

principle.

Figure 8.11 shows a rudimentary generator, which

serves as to illustrate the relevant points. This

generator consists of a planar loop that rotates around

the z axis; therefore, the rotation can be parameterized

in φ. In this case, the direction of rotation is specified

to be in the +φ direction. The frequency of rotation is

f0; that is, the time required for the loop to make one

complete revolution is 1/f0. We assume a

time-invariant and spatially-uniform magnetic flux

density B = b̂B0 where b̂ and B0 are both constants.

For illustration purposes, the loop is indicated to be

circular. However, because the magnetic field is

time-invariant and spatially-uniform, the specific

shape of the loop is not important, as we shall see in a

moment. Only the area of the loop will matter.

The induced potential is indicated as VT with

reference polarity as indicated in the figure. This

potential is given by Faraday’s Law:

VT = − ∂

∂t
Φ (8.27)

Here Φ is the magnetic flux associated with an open

surface S bounded by the loop:

Φ =

∫

S

B · ds (8.28)

As usual, S can be any surface that intersects all

https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Transformer
https://en.wikipedia.org/wiki/Two-port_network
https://en.wikipedia.org/wiki/Saturation_(magnetic)
https://en.wikipedia.org/wiki/Balun
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Figure 8.11: A rudimentary single-loop generator,

shown at time t = 0.

magnetic field lines passing through the loop, and

also as usual, the simplest choice is simply the planar

area bounded by the loop. The differential surface

element ds is n̂ds, where n̂ is determined by the

reference polarity of VT according to the “right hand

rule” convention from Stokes’ Theorem. Making

substitutions, we have

Φ =

∫

S

(
b̂B0

)
· (n̂ds)

=
[
b̂ · n̂

]
B0

∫

S

ds

=
[
b̂ · n̂A

]
B0 (8.29)

where A is the area of the loop.

To make headway, an expression for n̂ is needed. The

principal difficulty here is that n̂ is rotating with the

loop, so it is time-varying. To sort this out, first

consider the situation at time t = 0, which is the

moment illustrated in Figure 8.11. Beginning at the

“−” terminal, we point the thumb of our right hand in

the direction that leads to the “+” terminal by

traversing the loop; n̂ is then the direction

perpendicular to the plane of the loop in which the

fingers of our right hand pass through the loop. We

see that at t = 0, n̂ = +ŷ. A bit later, the loop will

have rotated by one-fourth of a complete rotation, and

at that time n̂ = −x̂. This occurs at t = 1/(4f0).
Later still, the loop will have rotated by one-half of a

compete rotation, and then n̂ = −ŷ. This occurs at

t = 1/(2f0). It is apparent that

n̂(t) = −x̂ sin 2πf0t+ ŷ cos 2πf0t (8.30)

as can be confirmed by checking the three special

cases identified above. Now applying Faraday’s Law,

we find

VT = − ∂

∂t
Φ

= − ∂

∂t

[
b̂ · n̂(t)

]
AB0

= −
[
b̂ · ∂

∂t
n̂(t)

]
AB0 (8.31)

For notational convenience we make the following

definition:

n̂′(t) , − 1

2πf0

∂

∂t
n̂(t) (8.32)

which is simply the time derivative of n̂ divided by

2πf0 so as to retain a unit vector. The reason for

including a change of sign will become apparent in a

moment. Applying this definition, we find

n̂′(t) = +x̂ cos 2πf0t+ ŷ sin 2πf0t (8.33)

Note that this is essentially the definition of the radial

basis vector ρ̂ from the cylindrical coordinate system

(which is why we applied the minus sign in

Equation 8.32). Recognizing this, we write

ρ̂(t) = +x̂ cos 2πf0t+ ŷ sin 2πf0t (8.34)

and finally

VT = +2πf0AB0b̂ · ρ̂(t) (8.35)

If the purpose of this device is to generate power, then

presumably we would choose the magnetic field to be

in a direction that maximizes the maximum value of

b̂ · ρ̂(t). Therefore, power is optimized for B

polarized entirely in some combination of x̂ and ŷ,

and with B · ẑ = 0. Under that constraint, we see that

VT varies sinusoidally with frequency f0 and exhibits

peak magnitude

max |VT (t)| = 2πf0AB0 (8.36)
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It’s worth noting that the maximum voltage

magnitude is achieved when the plane of the loop is

parallel to B; i.e., when b̂ · n̂(t) = 0 so that

Φ(t) = 0. Why is that? Because this is when Φ(t) is

most rapidly increasing or decreasing. Conversely,

when the plane of the loop is perpendicular to B (i.e.,

b̂ · n̂(t) = 1), |Φ(t)| is maximum but its

time-derivative is zero, so VT (t) = 0 at this instant.

Example 8.4. Rudimentary electric generator.

The generator in Figure 8.11 consists of a

circular loop of radius a = 1 cm rotating at 1000

revolutions per second in a static and

spatially-uniform magnetic flux density of 1 mT

in the +x̂ direction. What is the induced

potential?

Solution. From the problem statement,

f0 = 1 kHz, B0 = 1 mT, and b̂ = +x̂.

Therefore b̂ · ρ̂(t) = x̂ · ρ̂(t) = cos 2πf0t. The

area of the loop is A = πa2. From

Equation 8.35 we obtain

VT (t) ∼= (1.97 mV) cos [(6.28 krad/s) t]

Finally, we note that it is not really necessary for the

loop to rotate in the presence of a magnetic field with

constant b̂; it works equally well for the loop to be

stationary and for b̂ to rotate – in fact, this is

essentially the same problem. In some practical

generators, both the potential-generating coils and

fields (generated by some combination of magnets

and coils) rotate.

Additional Reading:

• “Electric Generator” on Wikipedia.

8.8 The Maxwell-Faraday

Equation

[m0050]

In this section, we generalize Kirchoff’s Voltage Law

(KVL), previously encountered as a principle of

electrostatics in Sections 5.10 and 5.11. KVL states

that in the absence of a time-varying magnetic flux,

the electric potential accumulated by traversing a

closed path C is zero. Here is that idea in

mathematical form:

V =

∮

C

E · dl = 0 (8.37)

Now recall Faraday’s Law (Section 8.3):

V = − ∂

∂t
Φ = − ∂

∂t

∫

S

B · ds (8.38)

Here, S is any open surface that intersects all

magnetic field lines passing through C, with the

relative orientations of C and ds determined in the

usual way by the Stokes’ Theorem convention

(Section 4.9). Note that Faraday’s Law agrees with

KVL in the magnetostatic case. If magnetic flux is

constant, then Faraday’s Law says V = 0. However,

Faraday’s Law is very clearly not consistent with

KVL if magnetic flux is time-varying. The correction

is simple enough; we can simply set these expressions

to be equal. Here we go:

∮

C

E · dl = − ∂

∂t

∫

S

B · ds (8.39)

This general form is known by a variety of names;

here we refer to it as the Maxwell-Faraday Equation

(MFE).

The integral form of the Maxwell-Faraday Equa-

tion (Equation 8.39) states that the electric poten-

tial associated with a closed path C is due entirely

to electromagnetic induction, via Faraday’s Law.

Despite the great significance of this expression as

one of Maxwell’s Equations, one might argue that all

we have done is simply to write Faraday’s Law in a

slightly more verbose way. This is true. The real

power of the MFE is unleashed when it is expressed

https://en.wikipedia.org/wiki/Electric_generator
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in differential, as opposed to integral form. Let us

now do this.

We can transform the left-hand side of Equation 8.39

into a integral over S using Stokes’ Theorem.

Applying Stokes’ theorem on the left, we obtain

∫

S

(∇×E) · ds = − ∂

∂t

∫

S

B · ds (8.40)

Now exchanging the order of integration and

differentiation on the right hand side:

∫

S

(∇×E) · ds =
∫

S

(
− ∂

∂t
B

)
· ds (8.41)

The surface S on both sides is the same, and we have

not constrained S in any way. S can be any

mathematically-valid open surface anywhere in space,

having any size and any orientation. The only way the

above expression can be universally true under these

conditions is if the integrands on each side are equal

at every point in space. Therefore,

∇×E = − ∂

∂t
B (8.42)

which is the MFE in differential form.

What does this mean? Recall that the curl of E is a

way to take a directive of E with respect to position

(Section 4.8). Therefore the MFE constrains spatial

derivatives of E to be simply related to the rate of

change of B. Said plainly:

The differential form of the Maxwell-Faraday

Equation (Equation 8.42) relates the change in

the electric field with position to the change in

the magnetic field with time.

Now that is arguably new and useful information. We

now see that electric and magnetic fields are coupled

not only for line integrals and fluxes, but also at each

point in space.

Additional Reading:

• “Faraday’s Law of Induction” on Wikipedia.

• “Maxwell’s Equations” on Wikipedia.

8.9 Displacement Current and

Ampere’s Law

[m0053]

In this section, we generalize Ampere’s Law,

previously encountered as a principle of

magnetostatics in Sections 7.4 and 7.9. Ampere’s

Law states that the current Iencl flowing through

closed path C is equal to the line integral of the

magnetic field intensity H along C. That is:

∮

C

H · dl = Iencl (8.43)

We shall now demonstrate that this equation is

unreliable if the current is not steady; i.e., not DC.

First, consider the situation shown in Figure 8.12.

Here, a current I flows in the wire, subsequently

generating a magnetic field H that circulates around

the wire (Section 7.5). When we perform the

integration in Ampere’s Law along any path C
enclosing the wire, the result is I , as expected. In this

case, Ampere’s Law is working even when I is

time-varying.

Now consider the situation shown in Figure 8.13, in

which we have introduced a parallel-plate capacitor.

In the DC case, this situation is simple. No current

flows, so there is no magnetic field and Ampere’s Law

is trivially true. In the AC case, the current I can be

non-zero, but we must be clear about the physical

origin of this current. What is happening is that for

one half of a period, a source elsewhere in the circuit

is moving positive charge to one side of the capacitor

and negative charge to the other side. For the other

half-period, the source is exchanging the charge, so

that negative charge appears on the previously

positively-charged side and vice-versa. Note that at

no point is current flowing directly from one side of

the capacitor to the other; instead, all current must

flow through the circuit in order to arrive at the other

plate. Even though there is no current between the

plates, there is current in the wire, and therefore there

is also a magnetic field associated with that current.

Now we are ready to shine a light on the problem.

Recall that from Stokes’ Theorem (Section 4.9), the

line integral over C is mathematically equivalent to an

https://en.wikipedia.org/wiki/Faraday's_law_of_induction
https://en.wikipedia.org/wiki/Maxwell's_equations
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I
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1

H
C

C. Burks (modified)

Figure 8.12: Ampere’s Law applied to a continuous

line of current.

E

I

I

S
1

H
C

C. Burks (modified)

Figure 8.13: Ampere’s Law applied to a parallel plate

capacitor.

integral over any open surface S that is bounded by C.

Two such surfaces are shown in Figure 8.12 and

Figure 8.13, indicated as S1 and S2. In the wire-only

scenario of Figure 8.12, the choice of S clearly

doesn’t matter; any valid surface intersects current

equal to I . Similarly in the scenario of Figure 8.13,

everything seems fine if we choose S = S1. If, on the

other hand, we select S2 in the parallel-plate capacitor

case, then we have a problem. There is no current

flowing through S2, so the right side of Equation 8.43

is zero even though the left side is potentially

non-zero. So, it appears that something necessary for

the time-varying case is missing from Equation 8.43.

To resolve the problem, we postulate an additional

term in Ampere’s Law that is non-zero in the above

scenario. Specifically, we propose:

∮

C

H · dl = Ic + Id (8.44)

where Ic is the enclosed current (formerly identified

as Iencl) and Id is the proposed new term. If we are to

accept this postulate, then here is a list of things we

know about Id:

• Id has units of current (A).

• Id = 0 in the DC case and is potentially

non-zero in the AC case. This implies that Id is

the time derivative of some other quantity.

• Id must be somehow related to the electric field.

How do we know Id must be related to the electric

field? This is because the Maxwell-Faraday Equation

(Section 8.8) tells us that spatial derivatives of E are

related to time derivatives of H; i.e., E and H are

coupled in the time-varying (here, AC) case. This

coupling between E and H must also be at work here,

but we have not yet seen E play a role. This is pretty

strong evidence that Id depends on the electric field.

Without further ado, here’s Id:

Id =

∫

S

∂D

∂t
· ds (8.45)

where D is the electric flux density (units of C/m2)

and is equal to ǫE as usual, and S is the same open

surface associated with C in Ampere’s Law. Note that
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this expression meets our expectations: It is

determined by the electric field, it is zero when the

electric field is constant (i.e., not time varying), and

has units of current.

The quantity Id is commonly known as displacement

current. It should be noted that this name is a bit

misleading, since Id is not a current in the

conventional sense. Certainly, it is not a conduction

current – conduction current is represented by Ic, and

there is no current conducted through an ideal

capacitor. It is not unreasonable to think of Id as

current in a more general sense, for the following

reason. At one instant, charge is distributed one way

and at another, it is distributed in another way. If you

define current as a time variation in the charge

distribution relative to S – regardless of the path taken

by the charge – then Id is a current. However, this

distinction is a bit philosophical, so it may be less

confusing to interpret “displacement current” instead

as a separate electromagnetic quantity that just

happens to have units of current.

Now we are able to write the general form of

Ampere’s Law that applies even when sources are

time-varying. Here it is:

∮

C

H · dl = Ic +

∫

S

∂D

∂t
· ds (8.46)

As is the case in the Maxwell-Faraday Equation, most

of the utility of Ampere’s Law is unleashed when

expressed in differential form. To obtain this form the

first step is to write Ic as an integral of over S; this is

simply (see Section 6.2):

Ic =

∫

S

J · ds (8.47)

where J is the volume current density (units of

A/m2). So now we have
∮

C

H · dl =
∫

S

J · ds+
∫

S

∂D

∂t
· ds

=

∫

S

(
J+

∂D

∂t

)
· ds (8.48)

We can transform the left side of the above equation

into a integral over S using Stokes’ Theorem

(Section 4.9). We obtain
∫

S

(∇×H) · ds =
∫

S

(
J+

∂D

∂t

)
· ds (8.49)

The surface S on both sides is the same, and we have

not constrained S in any way. S can be any

mathematically-valid open surface anywhere in space,

having any size and any orientation. The only way the

above expression can be universally true under these

conditions is if the integrands on each side are equal

at every point in space. Therefore:

∇×H = J+
∂

∂t
D (8.50)

which is Ampere’s Law in differential form.

What does Equation 8.50 mean? Recall that the curl

of H is a way to describe the direction and rate of

change of H with position. Therefore, this equation

constrains spatial derivatives of H to be simply

related to J and the time derivative of D

(displacement current). Said plainly:

The differential form of the general (time-

varying) form of Ampere’s Law (Equation 8.50)

relates the change in the magnetic field with po-

sition to the change in the electric field with time,

plus current.

As is the case in the Maxwell-Faraday Equation

(Section 8.8), we see that electric and magnetic fields

become coupled at each point in space when sources

are time-varying.

Additional Reading:

• “Displacement Current” on Wikipedia.

• “Ampere’s Circuital Law” on Wikipedia.

• “Maxwell’s Equations” on Wikipedia.

[m0126]

https://en.wikipedia.org/wiki/Displacement_current
https://en.wikipedia.org/wiki/Ampere's_circuital_law
https://en.wikipedia.org/wiki/Maxwell's_equations
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Chapter 9

Plane Waves in Lossless Media

9.1 Maxwell’s Equations in

Differential Phasor Form

[m0042]

In this section, we derive the phasor form of

Maxwell’s Equations from the general time-varying

form of these equations. Here we are interested

exclusively in the differential (“point”) form of these

equations. It is assumed that the reader is comfortable

with phasor representation and its benefits; if not, a

review of Section 1.5 is recommended before

attempting this section.

Maxwell’s Equations in differential time-domain

form are Gauss’ Law (Section 5.7):

∇ ·D = ρv (9.1)

the Maxwell-Faraday Equation (MFE; Section 8.8):

∇×E = − ∂

∂t
B (9.2)

Gauss’ Law for Magnetism (GSM; Section 7.3):

∇ ·B = 0 (9.3)

and Ampere’s Law (Section 8.9):

∇×H = J+
∂

∂t
D (9.4)

We begin with Gauss’s Law (Equation 9.1). We

define D̃ and ρ̃v as phasor quantities through the

usual relationship:

D = Re
{
D̃ejωt

}
(9.5)

and

ρv = Re
{
ρ̃ve

jωt
}

(9.6)

Substituting these expressions into Equation 9.1:

∇ ·
[
Re
{
D̃ejωt

}]
= Re

{
ρ̃ve

jωt
}

(9.7)

Divergence is a real-valued linear operator. Therefore,

we may exchange the order of the “Re” and “∇·”
operations (this is “Claim 2” from Section 1.5):

Re
{
∇ ·
[
D̃ejωt

]}
= Re

{
ρ̃ve

jωt
}

(9.8)

Next, we note that the differentiation associated with

the divergence operator is with respect to position and

not with respect to time, so the order of operations

may be further rearranged as follows:

Re
{[

∇ · D̃
]
ejωt

}
= Re

{
ρ̃ve

jωt
}

(9.9)

Finally, we note that the equality of the left and right

sides of the above equation implies the equality of the

associated phasors (this is “Claim 1” from

Section 1.5); thus,

∇ · D̃ = ρ̃v (9.10)

In other words, the differential form of Gauss’ Law

for phasors is identical to the differential form of

Gauss’ Law for physical time-domain quantities.

The same procedure applied to the MFE is only a

little more complicated. First, we establish the phasor

representations of the electric and magnetic fields:

E = Re
{
Ẽejωt

}
(9.11)

B = Re
{
B̃ejωt

}
(9.12)

Electromagnetics Vol 1. c© 2018 S.W. Ellingson CC BY SA 4.0. https://doi.org/10.21061/electromagnetics-vol-1
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After substitution into Equation 9.2:

∇×
[
Re
{
Ẽejωt

}]
= − ∂

∂t

[
Re
{
B̃ejωt

}]
(9.13)

Both curl and time-differentiation are real-valued

linear operations, so we are entitled to change the

order of operations as follows:

Re
{
∇×

[
Ẽejωt

]}
= −Re

{
∂

∂t

[
B̃ejωt

]}
(9.14)

On the left, we note that the time dependence ejωt can

be pulled out of the argument of the curl operator,

since it does not depend on position:

Re
{[

∇× Ẽ
]
ejωt

}
= −Re

{
∂

∂t

[
B̃ejωt

]}
(9.15)

On the right, we note that B̃ is constant with respect

to time (because it is a phasor), so:

Re
{[

∇× Ẽ
]
ejωt

}
= −Re

{
B̃
∂

∂t
ejωt

}

= −Re
{
B̃jωejωt

}

= Re
{[

−jωB̃
]
ejωt

}
(9.16)

And so we have found:

∇× Ẽ = −jωB̃ (9.17)

Let’s pause for a moment to consider the above result.

In the general time-domain version of the MFE, we

must take spatial derivatives of the electric field and

time derivatives of the magnetic field. In the phasor

version of the MFE, the time derivative operator has

been replaced with multiplication by jω. This is a

tremendous simplification since the equations now

involve differentiation over position only.

Furthermore, no information is lost in this

simplification – for a reminder of why that is, see the

discussion of Fourier Analysis at the end of

Section 1.5. Without this kind of simplification, much

of what is now considered “basic” engineering

electromagnetics would be intractable.

The procedure for conversion of the remaining two

equations is very similar, yielding:

∇ · B̃ = 0 (9.18)

∇× H̃ = J̃+ jωD̃ (9.19)

The details are left as an exercise for the reader.

The differential form of Maxwell’s Equations

(Equations 9.10, 9.17, 9.18, and 9.19) involve

operations on the phasor representations of the

physical quantities. These equations have the ad-

vantage that differentiation with respect to time

is replaced by multiplication by jω.
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9.2 Wave Equations for

Source-Free and Lossless

Regions

[m0036]

Electromagnetic waves are solutions to a set of

coupled differential simultaneous equations – namely,

Maxwell’s Equations. The general solution to these

equations includes constants whose values are

determined by the applicable electromagnetic

boundary conditions. However, this direct approach

can be difficult and is often not necessary. In

unbounded homogeneous regions that are “source

free” (containing no charges or currents), a simpler

approach is possible. In this section, we reduce

Maxwell’s Equations to wave equations that apply to

the electric and magnetic fields in this simpler

category of scenarios. Before reading further, the

reader should consider a review of Section 1.3 (noting

in particular Equation 1.1) and Section 3.6 (wave

equations for voltage and current on a transmission

line). This section seeks to develop the analogous

equations for electric and magnetic waves.

We can get the job done using the differential “point”

phasor form of Maxwell’s Equations, developed in

Section 9.1. Here they are:

∇ · D̃ = ρ̃v (9.20)

∇× Ẽ = −jωB̃ (9.21)

∇ · B̃ = 0 (9.22)

∇× H̃ = J̃+ jωD̃ (9.23)

In a source-free region, there is no net charge and no

current, hence ρ̃v = 0 and J̃ = 0 in the present

analysis. The above equations become

∇ · D̃ = 0 (9.24)

∇× Ẽ = −jωB̃ (9.25)

∇ · B̃ = 0 (9.26)

∇× H̃ = +jωD̃ (9.27)

Next, we recall that D̃ = ǫẼ and that ǫ is a

real-valued constant for a medium that is

homogeneous, isotropic, and linear (Section 2.8).

Similarly, B̃ = µH̃ and µ is a real-valued constant.

Thus, under these conditions, it is sufficient to

consider either D̃ or Ẽ and either B̃ or H̃. The

choice is arbitrary, but in engineering applications it is

customary to use Ẽ and H̃. Eliminating the

now-redundant quantities D̃ and B̃, the above

equations become

∇ · Ẽ = 0 (9.28)

∇× Ẽ = −jωµH̃ (9.29)

∇ · H̃ = 0 (9.30)

∇× H̃ = +jωǫẼ (9.31)

It is important to note that requiring the region of

interest to be source-free precludes the possibility of

loss in the medium. To see this, let’s first be clear

about what we mean by “loss.” For an

electromagnetic wave, loss is observed as a reduction

in the magnitude of the electric and magnetic field

with increasing distance. This reduction is due to the

dissipation of power in the medium. This occurs

when the conductivity σ is greater than zero because

Ohm’s Law for Electromagnetics (J̃ = σẼ;

Section 6.3) requires that power in the electric field be

transferred into conduction current, and is thereby lost

to the wave (Section 6.6). When we required J to be

zero above, we precluded this possibility; that is, we

implicitly specified σ = 0. The fact that the

constitutive parameters µ and ǫ appear in

Equations 9.28–9.31, but σ does not, is further

evidence of this.

Equations 9.28–9.31 are Maxwell’s Equations for

a region comprised of isotropic, homogeneous,

and source-free material. Because there can be no

conduction current in a source-free region, these

equations apply only to material that is lossless

(i.e., having negligible σ).

Before moving on, one additional disclosure is

appropriate. It turns out that there actually is a way to

use Equations 9.28–9.31 for regions in which loss is

significant. This requires a redefinition of ǫ as a

complex-valued quantity. We shall not consider this

technique in this section. We mention this simply

because one should be aware that if permittivity
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appears as a complex-valued quantity, then the

imaginary part represents loss.

To derive the wave equations we begin with the MFE,

Equation 9.29. Taking the curl of both sides of the

equation we obtain

∇×
(
∇× Ẽ

)
= ∇×

(
−jωµH̃

)

= −jωµ
(
∇× H̃

)
(9.32)

On the right we can eliminate ∇× H̃ using

Equation 9.31:

−jωµ
(
∇× H̃

)
= −jωµ

(
+jωǫẼ

)

= +ω2µǫẼ (9.33)

On the left side of Equation 9.32, we apply the vector

identity

∇×∇×A = ∇ (∇ ·A)−∇2A (9.34)

which in this case is

∇×∇× Ẽ = ∇
(
∇ · Ẽ

)
−∇2Ẽ (9.35)

We may eliminate the first term on the right using

Equation 9.28, yielding

∇×∇× Ẽ = −∇2Ẽ (9.36)

Substituting these results back into Equation 9.32 and

rearranging terms we have

∇2Ẽ+ ω2µǫẼ = 0 (9.37)

This is the wave equation for Ẽ. Note that it is a

homogeneous (in the mathematical sense of the word)

differential equation, which is expected since we have

derived it for a source-free region.

It is common to make the following definition

β , ω
√
µǫ (9.38)

so that Equation 9.37 may be written

∇2Ẽ+ β2Ẽ = 0 (9.39)

Why go the the trouble of defining β? One reason is

that β conveniently captures the contribution of the

frequency, permittivity, and permeability all in one

constant. Another reason is to emphasize the

connection to the parameter β appearing in

transmission line theory (see Section 3.8 for a

reminder). It should be clear that β is a phase

propagation constant, having units of 1/m (or rad/m,

if you prefer), and indicates the rate at which the

phase of the propagating wave progresses with

distance.

The wave equation for H̃ is obtained using essentially

the same procedure, which is left as an exercise for

the reader. It should be clear from the duality

apparent in Equations 9.28-9.31 that the result will be

very similar. One finds:

∇2H̃+ β2H̃ = 0 (9.40)

Equations 9.39 and 9.40 are the wave equations

for Ẽ and H̃, respectively, for a region comprised

of isotropic, homogeneous, lossless, and source-

free material.

Looking ahead, note that Ẽ and H̃ are solutions to the

same homogeneous differential equation.

Consequently, Ẽ and H̃ cannot be different by more

than a constant factor and a direction. In fact, we can

also determine something about the factor simply by

examining the units involved: Since Ẽ has units of

V/m and H̃ has units of A/m, this factor will be

expressible in units of the ratio of V/m to A/m, which

is Ω. This indicates that the factor will be an

impedance. This factor is known as the wave

impedance and will be addressed in Section 9.5. This

impedance is analogous the characteristic impedance

of a transmission line (Section 3.7).

Additional Reading:

• “Wave Equation” on Wikipedia.

• “Electromagnetic Wave Equation” on Wikipedia.

https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/Electromagnetic_wave_equation
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9.3 Types of Waves

[m0142]

Solutions to the electromagnetic wave equations

(Section 9.2) exist in a variety of forms, representing

different types of waves. It is useful to identify three

particular geometries for unguided waves. Each of

these geometries is defined by the shape formed by

surfaces of constant phase, which we refer to as

phasefronts. (Keep in mind the analogy between

electromagnetic waves and sound waves (described in

Section 1.3), and note that sound waves also exhibit

these geometries.)

A spherical wave has phasefronts that form

concentric spheres, as shown in Figure 9.1. Waves are

well-modeled as spherical when the dimensions of the

source of the wave are small relative to the scale at

which the wave is observed. For example, the wave

radiated by an antenna having dimensions of 10 cm,

when observed in free space over a scale of 10 km,

appears to have phasefronts that are very nearly

spherical. Note that the magnitude of the field on a

phasefront of a spherical wave may vary significantly,

but it is the shape of phasefronts that make it a

spherical wave.

A cylindrical wave exhibits phasefronts that form

concentric cylinders, as shown in Figure 9.2. Said

differently, the phasefronts of a cylindrical wave are

circular in one dimension, and planar in the

perpendicular direction. A cylindrical wave is often a

good description of the wave that emerges from a

line-shaped source.

A plane wave exhibits phasefronts that are planar,

with planes that are parallel to each other as shown in

Figure 9.3. There are two conditions in which waves

are well-modeled as plane waves. First, some

structures give rise to waves that appear to have

planar phasefronts over a limited area; a good

example is the wave radiated by a parabolic reflector,

as shown in Figure 9.4. Second, all waves are

well-modeled as plane waves when observed over a

small region located sufficiently far from the source.

In particular, spherical waves are “locally planar” in

the sense that they are well-modeled as planar when

observed over a small portion of the spherical

c© Y. Qin CC BY 4.0

Figure 9.1: The phasefronts of a spherical wave form

concentric spheres.

c© Y. Qin CC BY 4.0

Figure 9.2: The phasefronts of a cylindrical wave

form concentric cylinders.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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c© Y. Qin CC BY 4.0

Figure 9.3: The phasefronts of a plane wave form

parallel planes.

feed

reflector

planar p������onts

c© Y. Qin CC BY 4.0

Figure 9.4: Plane waves formed in the region in front

of a parabolic reflector antenna.

phasefront, as shown in Figure 9.5. An analogy is that

the Earth seems “locally flat” to an observer on the

ground, even though it is clearly spherical to an

observer in orbit. The “locally planar” approximation

is often employed because it is broadly applicable and

simplifies analysis.

Most waves are well-modeled as spherical, cylin-

drical, or plane waves.

Plane waves (having planar phasefronts) are of

particular importance due to wide applicability of

the “locally planar” approximation.

"locally-planar" phasefronts

spherical phasefront

c© Y. Qin CC BY 4.0

Figure 9.5: “Locally planar” approximation of a

spherical wave over a limited area.

9.4 Uniform Plane Waves:

Derivation

[m0038]

Section 9.2 showed how Maxwell’s Equations could

be reduced to a pair of phasor-domain “wave

equations,” namely:

∇2Ẽ+ β2Ẽ = 0 (9.41)

∇2H̃+ β2H̃ = 0 (9.42)

where β = ω
√
µǫ, assuming unbounded

homogeneous, isotropic, lossless, and source-free

media. In this section, we solve these equations for

the special case of a uniform plane wave. A uniform

plane wave is one for which both Ẽ and H̃ have

constant magnitude and phase in a specified plane.

Despite being a special case, the solution turns out to

be broadly applicable, appearing as a common

building block in many practical and theoretical

problems in unguided propagation (as explained in

Section 9.3), as well as in more than a few

transmission line and waveguide problems.

To begin, let us assume that the plane over which Ẽ

and H̃ have constant magnitude and phase is a plane

of constant z. First, note that we may make this

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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assumption with no loss of generality. For example,

we could alternatively select a plane of constant y,

solve the problem, and then simply exchange

variables to get a solution for planes of constant z (or

x).1 Furthermore, the solution for any planar

orientation not corresponding to a plane of constant x,

y, or z may be similarly obtained by a rotation of

coordinates, since the physics of the problem does not

depend on the orientation of this plane – if it does,

then the medium is not isotropic!

We may express the constraint that the magnitude and

phase of Ẽ and H̃ are constant over a plane that is

perpendicular to the z axis as follows:

∂

∂x
Ẽ =

∂

∂y
Ẽ =

∂

∂x
H̃ =

∂

∂y
H̃ = 0 (9.43)

Let us identify the Cartesian components of each of

these fields as follows:

Ẽ = x̂Ẽx + ŷẼy + ẑẼz , and (9.44)

H̃ = x̂H̃x + ŷH̃y + ẑH̃z (9.45)

Now Equation 9.43 may be interpreted in detail for Ẽ

as follows:

∂

∂x
Ẽx =

∂

∂x
Ẽy =

∂

∂x
Ẽz = 0 (9.46)

∂

∂y
Ẽx =

∂

∂y
Ẽy =

∂

∂y
Ẽz = 0 (9.47)

and for H̃ as follows:

∂

∂x
H̃x =

∂

∂x
H̃y =

∂

∂x
H̃z = 0 (9.48)

∂

∂y
H̃x =

∂

∂y
H̃y =

∂

∂y
H̃z = 0 (9.49)

The wave equation for Ẽ (Equation 9.41) written

explicitly in Cartesian coordinates is

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

](
x̂Ẽx + ŷẼy + ẑẼz

)

+β2
(
x̂Ẽx + ŷẼy + ẑẼz

)
= 0

(9.50)

1By the way, this is a highly-recommended exercise for the stu-

dent.

Decomposing this equation into separate equations

for each of the three coordinates, we obtain the

following:

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
Ẽx + β2Ẽx = 0 (9.51)

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
Ẽy + β2Ẽy = 0 (9.52)

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
Ẽz + β2Ẽz = 0 (9.53)

Applying the constraints of Equations 9.46 and 9.47,

we note that many of the terms in

Equations 9.51–9.53 are zero. We are left with:

∂2

∂z2
Ẽx + β2Ẽx = 0 (9.54)

∂2

∂z2
Ẽy + β2Ẽy = 0 (9.55)

∂2

∂z2
Ẽz + β2Ẽz = 0 (9.56)

Now we will show that Equation 9.43 also implies

that Ẽz must be zero. To show this, we use Ampere’s

Law for a source-free region (Section 9.2):

∇× H̃ = +jωǫẼ (9.57)

and take the dot product with ẑ on both sides:

ẑ ·
(
∇× H̃

)
= +jωǫẼz

∂

∂y
H̃x −

∂

∂x
H̃y = +jωǫẼz (9.58)

Again applying the constraints of Equation 9.43, the

left side of Equation 9.58 must be zero; therefore,

Ẽz = 0. The exact same procedure applied to H̃

(using the Maxwell-Faraday Equation; also given in

Section 9.2) reveals that H̃z is also zero.2 Here is

what we have found:

If a wave is uniform over a plane, then the electric

and magnetic field vectors must lie in this plane.

This conclusion is a direct consequence of the fact

that Maxwell’s Equations require the electric field to

2Showing this is a highly-recommended exercise for the reader.
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be proportional to the curl of the magnetic field and

vice-versa.

The general solution to Equation 9.54 is:

Ẽx = E+
x0e

−jβz + E−
x0e

+jβz (9.59)

where E+
x0 and E−

x0 are complex-valued constants.

The values of these constants are determined by

boundary conditions – possibly sources – outside the

region of interest. Since in this section we are limiting

our scope to source-free and homogeneous regions,

we may for the moment consider the values of E+
x0

and E−
x0 to be arbitrary, since any values will satisfy

the associated wave equation.3

Similarly we have for Ẽy:

Ẽy = E+
y0e

−jβz + E−
y0e

+jβz (9.60)

where E+
y0 and E−

y0 are again arbitrary constants.

Summarizing, we have found

Ẽ = x̂Ẽx + ŷẼy (9.61)

where Ẽx and Ẽy are given by Equations 9.59 and

9.60, respectively.

Note that Equations 9.59 and 9.60 are essentially the

same equations encountered in the study of waves in

lossless transmission lines; for a reminder, see

Section 3.6. Specifically, factors containing e−jβz

describe propagation in the +z direction, whereas

factors containing e+jβz describe propagation in the

−z direction. We conclude:

If a wave is uniform over a plane, then possible

directions of propagation are the two directions

perpendicular to the plane.

Since we previously established that the electric and

magnetic field vectors must lie in the plane, we also

conclude:

The direction of propagation is perpendicular to

the electric and magnetic field vectors.

This conclusion turns out to be generally true; i.e., it

is not limited to uniform plane waves. Although we

3The reader is encouraged to confirm that these are solutions by

substitution into the associated wave equation.

will not provide a rigorous proof of this, one way to

see that this is true is to imagine that any type of wave

can be interpreted as the sum (formally, a linear

combination) of uniform plane waves, so

perpendicular orientation of the field vectors with

respect to the direction of propagation is inescapable.

The same procedure yields the uniform plane wave

solution to the wave equation for H̃, which is

H̃ = x̂H̃x + ŷH̃y (9.62)

where

H̃x = H+
x0e

−jβz +H−
x0e

+jβz (9.63)

H̃y = H+
y0e

−jβz +H−
y0e

+jβz (9.64)

and where H+
x0, H−

x0, H+
y0 and H−

y0 are arbitrary

constants. Note that the solution is essentially the

same as that for Ẽ, with the sole difference being that

the arbitrary constants may apparently have different

values.

To this point, we have seen no particular relationship

between the electric and magnetic fields, and it may

appear that the electric and magnetic fields are

independent of each other. However, Maxwell’s

Equations – specifically, the two curl equations –

make it clear that there must be a relationship

between these fields. Subsequently the arbitrary

constants in the solutions for Ẽ and H̃ must also be

related. In fact, there are two considerations here:

• The magnitude and phase of Ẽ must be related to

the magnitude and phase of H̃. Since both fields

are solutions to the same differential (wave)

equation, they may differ by no more than a

multiplicative constant. Since the units of Ẽ and

H̃ are V/m and A/m respectively, this constant

must be expressible in units of V/m divided by

A/m; i.e., in units of Ω, an impedance.

• The direction of Ẽ must be related to direction

of H̃.

Let us now address these considerations. Consider an

electric field that points in one of the cardinal

directions – let’s say +x̂ – and make the definition

E0 , E+
x0 for notational convenience. Then the

electric field intensity may be written as follows:

Ẽ = x̂E0e
−jβz (9.65)
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Again, there is no loss of generality here since the

coordinate system could be rotated in such a way that

any uniform plane could be described in this way.

We may now determine H̃ from Ẽ using the

Maxwell-Faraday Equation (Section 9.2):

∇× Ẽ = −jωµH̃ (9.66)

Solving this equation for H̃, we find:

H̃ =
∇× Ẽ

−jωµ =
∇×

[
x̂E0e

−jβz
]

−jωµ (9.67)

Now let us apply the curl operator. The complete

expression for the curl operator in Cartesian

coordinates is given in Section B.2. Here let us

consider one component at a time, starting with the x̂

component:

x̂ ·
(
∇× Ẽ

)
=
∂Ẽz
∂y

− ∂Ẽy
∂z

(9.68)

Since Ẽy = Ẽz = 0, the above expression is zero and

subsequently H̃x = 0. Next, the ŷ component:

ŷ ·
(
∇× Ẽ

)
=
∂Ẽx
∂z

− ∂Ẽz
∂x

(9.69)

Here Ẽz = 0, so we have simply

ŷ ·
(
∇× Ẽ

)
=
∂Ẽx
∂z

(9.70)

It is not necessary to repeat this procedure for H̃z ,

since we know in advance that H̃ must be

perpendicular to the direction of propagation and

subsequently H̃z = 0. Returning to Equation 9.67,

we obtain:

H̃ = ŷ
1

−jωµ
∂

∂z
Ẽx

= ŷ
1

−jωµ
∂

∂z

(
E0e

−jβz
)

= ŷ
1

−jωµ
(
−jβE0e

−jβz
)

= ŷ
β

ωµ
E0e

−jβz (9.71)

Note that H̃ points in the +ŷ direction. So, as

expected, both Ẽ and H̃ are perpendicular to the

H

E

E x  

direction of pro������!"

Figure 9.6: Relationship between the electric field di-

rection, magnetic field direction, and direction of prop-

agation.

direction of propagation. However, we have now

found a more specific relationship: Ẽ and H̃ are

perpendicular to each other. Just as x̂× ŷ = ẑ, we

see that Ẽ× H̃ points in the direction of propagation.

This is illustrated in Figure 9.6. Summarizing:

Ẽ, H̃, and the direction of propagation Ẽ×H̃ are

mutually perpendicular.

Now let us resolve the question of the factor relating

Ẽ and H̃. The factor is now seen to be β/ωµ in

Equation 9.71, which can be simplified as follows:

β

ωµ
=
ω
√
µǫ

ωµ
=

1√
µ/ǫ

(9.72)

The factor
√
µ/ǫ appearing above has units of Ω is

known variously as the wave impedance or the

intrinsic impedance of the medium. Assigning this

quantity the symbol “η,” we have:

η ,
Ẽx

H̃y

=

√
µ

ǫ
(9.73)

The ratio of the electric field intensity to the

magnetic field intensity is the wave impedance η
(Equation 9.73; units of Ω). In lossless media, η
is determined by the ratio of permeability of the

medium to the permittivity of the medium.
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The wave impedance in free space, assigned the

symbol η0, is

η0 ,

√
µ0

ǫ0
∼= 377 Ω. (9.74)

Wrapping up our solution, we find that if Ẽ is as

given by Equation 9.65, then

H̃ = ŷ
E0

η
e−jβz (9.75)

9.5 Uniform Plane Waves:

Characteristics

[m0039]

In Section 9.4, expressions for the electric and

magnetic fields are determined for a uniform plane

wave in lossless media. If the planar phasefront is

perpendicular to the z axis, then waves may propagate

in either the +ẑ direction of the −ẑ direction. If we

consider only the former, and select Ẽ to point in the

+x̂ direction, then we find

Ẽ = +x̂E0e
−jβz (9.76)

H̃ = +ŷ
E0

η
e−jβz (9.77)

where β = ω
√
µǫ is the phase propagation constant,

η =
√
µ/ǫ is the wave impedance, and E0 is a

complex-valued constant associated with the

magnitude and phase of the source. This result is in

fact completely general for uniform plane waves,

since any other possibility may be obtained by simply

rotating coordinates. In fact, this is pretty easy

because (as determined in Section 9.4) Ẽ, H̃, and the

direction of propagation are mutually perpendicular,

with the direction of propagation pointing in the same

direction as Ẽ× H̃.

In this section, we identify some important

characteristics of uniform plane waves, including

wavelength and phase velocity. Chances are that

much of what appears here will be familiar to the

reader; if not, a quick review of Sections 1.3

(“Fundamentals of Waves”) and 3.8 (“Wave

Propagation on a Transmission Line”) are

recommended.

First, recall that Ẽ and H̃ are phasors representing

physical (real-valued) fields and are not the field

values themselves. The actual, physical electric field

intensity is

E = Re
{
Ẽejωt

}
(9.78)

= Re
{
x̂E0e

−jβzejωt
}

= x̂ |E0| cos (ωt− βz + ψ)

where ψ is the phase of E0. Similarly:

H = ŷ
|E0|
η

cos (ωt− βz + ψ) (9.79)
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Figure 9.7: Relationship between the electric field di-

rection, magnetic field direction, and direction of prop-

agation (here, +ẑ).

This result is illustrated in Figure 9.7. Note that both

E and H (as well as their phasor representations)

have the same phase and have the same frequency and

position dependence cos (ωt− βz + ψ). Since β is a

real-valued constant for lossless media, only the

phase, and not the magnitude, varies with z. If ω → 0,

then β → 0 and the fields no longer depend on z; in

this case, the field is not propagating. For ω > 0,

cos (ωt− βz + ψ) is periodic in z; specifically, it has

the same value each time z increases or decreases by

2π/β. This is, by definition, the wavelength λ:

λ ,
2π

β
(9.80)

If we observe this wave at some fixed point (i.e., hold

z constant), we find that the electric and magnetic

fields are also periodic in time; specifically, they have

the same value each time t increases by 2π/ω. We

may characterize the speed at which the wave travels

by comparing the distance required to experience 2π
of phase rotation at a fixed time, which is 1/β; to the

time it takes to experience 2π of phase rotation at a

fixed location, which is 1/ω. This is known as the

phase velocity4 vp:

vp ,
1/β

1/ω
=
ω

β
(9.81)

Note that vp has the units expected from its definition,

namely (rad/s)/(rad/m) = m/s. If we make the

4We acknowledge that this is a misnomer, since velocity is prop-

erly defined as speed in a specified direction, and vp by itself does

not specify direction. In fact, the phase velocity in this case is prop-

erly said to be +ẑvp. Nevertheless, we adopt the prevailing termi-

nology.

substitution β = ω
√
µǫ, we find

vp =
ω

ω
√
µǫ

=
1√
µǫ

(9.82)

Note that vp, like the wave impedance η, depends

only on material properties. For example, the phase

velocity of an electromagnetic wave in free space,

given the special symbol c, is

c , vp|µ=µ0,ǫ=ǫ0
=

1√
µ0ǫ0

∼= 3.00× 108 m/s

(9.83)

This constant is commonly referred to as the speed of

light, but in fact it is the phase velocity of an

electromagnetic field at any frequency (not just

optical frequencies) in free space. Since the

permittivity ǫ and permeability µ of any material is

greater than that of a vacuum, vp in any material is

less than the phase velocity in free space.

Summarizing:

Phase velocity is the speed at which any point of

constant phase appears to travel along the direc-

tion of propagation.

Phase velocity is maximum (= c) in free space,

and slower by a factor of 1/
√
µrǫr in any other

lossless medium.

Finally, we note the following relationship between

frequency f , wavelength, and phase velocity:

λ =
2π

β
=

2π

ω/vp
=

2π

2πf/vp
=
vp
f

(9.84)

Thus, given any two of the parameters f , λ, and vp,

we may solve for the remaining quantity. Also note

that as a consequence of the inverse-proportional

relationship between λ and vp, we find:

At a given frequency, the wavelength in any ma-

terial is shorter than the wavelength in free space.

Example 9.1. Wave propagation in a lossless

dielectric.

Polyethylene is a low-loss dielectric having

ǫr ∼= 2.3. What is the phase velocity in

polyethylene? What is wavelength in

https://creativecommons.org/licenses/by-sa/3.0/
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polyethylene? The frequency of interest is

1 GHz.

Solution. Low-loss dielectrics exhibit µr ∼= 1
and σ ≈ 0. Therefore the phase velocity is

vp =
1√

µ0ǫrǫ0
=

c√
ǫr

∼= 1.98× 108 m/s

(9.85)

i.e., very nearly two-thirds of the speed of light

in free space. The wavelength at 1 GHz is

λ =
vp
f

∼= 19.8 cm (9.86)

Again, about two-thirds of a wavelength at the

same frequency in free space.

Returning to polarization and magnitude, it is useful

to note that Equation 9.79 could be written in terms of

E as follows:

H =
1

η
ẑ×E (9.87)

i.e., H is perpendicular to both the direction of

propagation (here, +ẑ) and E, with magnitude that is

different from E by the wave impedance η. This

simple expression is very useful for quickly

determining H given E when the direction of

propagation is known. In fact, it is so useful that it

commonly explicitly generalized as follows:

H =
1

η
k̂×E (9.88)

where k̂ (here, +ẑ) is the direction of propagation.

Similarly, given H, k̂, and η, we may find E using

E = −ηk̂×H (9.89)

These spatial relationships can be readily verified

using Figure 9.7.

Equations 9.88 and 9.89 are known as the plane

wave relationships.

The plane wave relationships apply equally well to

the phasor representations of E and H; i.e.,

Ẽ = −ηk̂× H̃ (9.90)

H̃ =
1

η
k̂× Ẽ (9.91)

These equations can be readily verified by applying

the definition of the associated phasors (e.g.,

Equation 9.78). It also turns out that these

relationships apply at each point in space, even if the

waves are not planar, uniform, or in lossless media.

Example 9.2. Analysis of a radially-directed

plane wave.

Consider the scenario illustrated in Figure 9.8.

Here a uniform plane wave having frequency

f = 3 GHz is propagating along a path of

constant φ, where is φ is known but not

specified. The phase of the electric field is

π/2 radians at ρ = 0 (the origin) and t = 0. The

material is an effectively unbounded region of

free space. The electric field is oriented in the

+ẑ direction and has peak magnitude of

1 mV/m. Find (a) the electric field intensity in

phasor representation, (b) the magnetic field

intensity in phasor representation, and (c) the

actual, physical electric field along the radial

path.

Solution: First, realize that this

“radially-directed” plane wave is in fact a plane

wave, and not a cylindrical wave. It may well we

be that if we “zoom out” far enough, we are able

to perceive a cylindrical wave (for more on this

idea, see Section 9.3), or it might simply be that

wave is exactly planar, and cylindrical

coordinates just happen to be a convenient

coordinate system for this application. In either

case, the direction of propagation k̂ = +ρ̂ and

the solution to this example will be the same.

Here’s the phasor representation for the electric

field intensity of a uniform plane wave in a

lossless medium, analogous to Equation 9.76:

Ẽ = +ẑE0e
−jβρ (9.92)

From the problem statement, |E0| = 1 mV/m.

Also from the problem statement, the phase of

E0 is π/2 radians; in fact, we could just write

E0 = +j |E0|. Thus, the answer to (a) is

Ẽ = +ẑj |E0| e−jβρ (9.93)
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where the propagation constant

β = ω
√
µǫ = 2πf

√
µ0ǫ0 ∼= 62.9 rad/m.

The answer to (b) is easiest to obtain from the

plane wave relationship:

H̃ =
1

η
k̂×E

=
1

η
ρ̂×

(
+ẑj |E0| e−jβρ

)

= −φ̂ j |E0|
η

e−jβρ (9.94)

where η here is
√
µ0/ǫ0 ∼= 377 Ω. Thus, the

answer to part (b) is

H̃ = −φ̂jH0e
−jβρ (9.95)

where H0
∼= 2.65 µA/m. At this point you

should check vector directions: Ẽ× H̃ should

point in the direction of propagation +ρ̂. Here

we find ẑ×
(
−φ̂
)
= +ρ̂, as expected.

The answer to (c) is obtained by applying the

defining relationship for phasors to the answer to

part (a):

E = Re
{
Ẽejωt

}

= Re
{(

+ẑj |E0| e−jβρ
)
ejωt

}

= +ẑ |E0|Re
{
ejπ/2e−jβρejωt

}

= +ẑ |E0| cos
(
ωt− βρ+

π

2

)
(9.96)

Additional Reading:

• “Electromagnetic radiation” on Wikipedia.

y

x

E

ϕ

Figure 9.8: A radially-directed plane wave.

9.6 Wave Polarization

[m0131]

Polarization refers to the orientation of the electric

field vector. For waves, the term “polarization” refers

specifically to the orientation of this vector with

increasing distance along the direction of propagation,

or, equivalently, the orientation of this vector with

increasing time at a fixed point in space. The relevant

concepts are readily demonstrated for uniform plane

waves, as shown in this section. A review of

Section 9.5 (“Uniform Plane Waves: Characteristics”)

is recommended before reading further.

To begin, consider the following uniform plane wave,

described in terms of the phasor representation of its

electric field intensity:

Ẽx = x̂Exe
−jβz (9.97)

Here Ex is a complex-valued constant representing

the magnitude and phase of the wave, and β is the

positive real-valued propagation constant. Therefore,

this wave is propagating in the +ẑ direction in

lossless media. This wave is said to exhibit linear

polarization (and “linearly polarized”) because the

electric field always points in the same direction,

namely +x̂. Now consider the wave

Ẽy = ŷEye
−jβz (9.98)

Note that Ẽy is identical to Ẽx except that the electric

field vector now points in the +ŷ direction and has

magnitude and phase that is different by the factor

https://en.wikipedia.org/wiki/Electromagnetic_radiation
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x

z

by RJB1 (Modified)

Figure 9.9: Linear polarization. Here Ex is shown in

blue, Ey is shown in green, and E is shown in red with

black vector symbols. In this example the phases of

Ex and Ey are zero and φ = −π/4.

Ey/Ex. This wave too is said to exhibit linear

polarization, because, again, the direction of the

electric field is constant with both time and position.

In fact, all linearly-polarized uniform plane waves

propagating in the +ẑ direction in lossless media can

be described as follows:

Ẽ = ρ̂Eρe
−jβz (9.99)

This is so because ρ̂ could be x̂, ŷ, or any other

direction that is perpendicular to ẑ. If one is

determined to use Cartesian coordinates, the above

expression may be rewritten using (Section 4.3)

ρ̂ = x̂ cosφ+ ŷ cosφ (9.100)

yielding

Ẽ = (x̂ cosφ+ ŷ cosφ)Eρe
−jβz (9.101)

When written in this form, φ = 0 corresponds to

Ẽ = Ẽx, φ = π/2 corresponds to Ẽ = Ẽy , and any

other value of φ corresponds to some other constant

orientation of the electric field vector; see Figure 9.9

for an example.

A wave is said to exhibit linear polarization if the

direction of the electric field vector does not vary

with either time or position.

Linear polarization arises when the source of the wave

is linearly polarized. A common example is the wave

radiated by a straight wire antenna, such as a dipole

or a monopole. Linear polarization may also be

created by passing a plane wave through a polarizer;

this is particularly common at optical frequencies (see

“Additional Reading” at the end of this section).

A commonly-encountered alternative to linear

polarization is circular polarization. For an

explanation, let us return to the linearly-polarized

plane waves Ẽx and Ẽy defined earlier. If both of

these waves exist simultaneously, then the total

electric field intensity is simply the sum:

Ẽ = Ẽx + Ẽy

= (x̂Ex + ŷEy) e
−jβz (9.102)

If the phase of Ex and Ey is the same, then

Ex = Eρ cosφ, Ey = Eρ sinφ, and the above

expression is essentially the same as Equation 9.101.

In this case, Ẽ is linearly polarized. But what if the

phases of Ex and Ey are different? In particular, let’s

consider the following case. Let Ex = E0, some

complex-valued constant, and let Ey = +jE0, which

is E0 phase-shifted by +π/2 radians. With no further

math, it is apparent that Ẽx and Ẽy are different only

in that one is phase-shifted by π/2 radians relative to

the other. For the physical (real-valued) fields, this

means that Ex has maximum magnitude when Ey is

zero and vice versa. As a result, the direction of

E = Ex +Ey will rotate in the x− y plane, as shown

in Figure 9.10

The rotation of the electric field vector can also be

identified mathematically. When Ex = E0 and

Ey = +jE0, Equation 9.102 can be written:

Ẽ = (x̂+ jŷ)E0e
−jβz (9.103)

Now reverting from phasor notation to the physical

field:

E = Re
{
Ẽejωt

}

= Re
{
(x̂+ jŷ)E0e

−jβzejωt
}

= x̂ |E0| cos (ωt− βz) + ŷ |E0| cos
(
ωt− βz +

π

2

)

(9.104)

As anticipated, we see that both Ex and Ey vary

sinusoidally, but are π/2 radians out of phase
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by Dave3457

Figure 9.10: A circularly-polarized wave (in red, with

black vector symbols) resulting from the addition of

orthogonal linearly-polarized waves (shown in green

and blue) that are phase-shifted by π/2 radians.

resulting in rotation in the plane perpendicular to the

direction of propagation.

In the example above, the electric field vector rotates

either clockwise or counter-clockwise relative to the

direction of propagation. The direction of this

rotation can be identified by pointing the thumb of the

left hand in the direction of propagation; in this case,

the fingers of the left hand curl in the direction of

rotation. For this reason, this particular form of

circular polarization is known as left circular (or

”left-hand” circular) polarization (LCP). If we instead

had chosen Ey = −jE0 = −jEx, then the direction

of E rotates in the opposite direction, giving rise to

right circular (or “right-hand” circular) polarization

(RCP). These two conditions are illustrated in

Figure 9.11.

A wave is said to exhibit circular polarization

if the electric field vector rotates with constant

magnitude. Left- and right-circular polarizations

may be identified by the direction of rotation with

respect to the direction of propagation.

In engineering applications, circular polarization is

useful when the relative orientations of transmit and

receive equipment is variable and/or when the

medium is able rotate the electric field vector. For

example, radio communications involving satellites in

by Dave3457

Figure 9.11: Left-circular polarization (LCP; top) and

right-circular polarization (RCP; bottom).
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non-geosynchronous orbits typically employ circular

polarization. In particular, satellites of the U.S.

Global Positioning System (GPS) transmit circular

polarization because of the variable geometry of the

space-to-earth radio link and the tendency of the

Earth’s ionosphere to rotate the electric field vector

through a mechanism known Faraday rotation

(sometimes called the “Faraday effect”). If GPS were

instead to transmit using a linear polarization, then a

receiver would need to continuously adjust the

orientation of its antenna in order to optimally receive

the signal. Circularly-polarized radio waves can be

generated (or received) using pairs of

perpendicularly-oriented dipoles that are fed the same

signal but with a 90◦ phase shift, or alternatively by

using an antenna that is intrinsically

circularly-polarized, such as a helical antenna (see

“Additional Reading” at the end of this section).

Linear and circular polarization are certainly not the

only possibilities. Elliptical polarization results when

Ex and Ey do not have equal magnitude. Elliptical

polarization is typically not an intended condition, but

rather is most commonly observed as a degradation in

a system that is nominally linearly- or

circularly-polarized. For example, most antennas that

are said to be “circularly polarized” instead produce

circular polarization only in one direction and various

degrees of elliptical polarization in all other

directions.

Additional Reading:

• “Polarization (waves)” on Wikipedia.

• “Dipole antenna” on Wikipedia.

• “Polarizer” on Wikipedia.

• “Faraday effect” on Wikipedia.

• “Helical antenna” on Wikipedia.

9.7 Wave Power in a Lossless

Medium

[m0041]

In many applications involving electromagnetic

waves, one is less concerned with the instantaneous

values of the electric and magnetic fields than the

power associated with the wave. In this section, we

address the issue of how much power is conveyed by

an electromagnetic wave in a lossless medium. The

relevant concepts are readily demonstrated in the

context of uniform plane waves, as shown in this

section. A review of Section 9.5 (“Uniform Plane

Waves: Characteristics”) is recommended before

reading further.

Consider the following uniform plane wave,

described in terms of the phasor representation of its

electric field intensity:

Ẽ = x̂E0e
−jβz (9.105)

Here E0 is a complex-valued constant associated with

the source of the wave, and β is the positive

real-valued propagation constant. Therefore, the wave

is propagating in the +ẑ direction in lossless media.

The first thing that should be apparent is that the

amount of power conveyed by this wave is infinite.

The reason is as follows. If the power passing through

any finite area is greater than zero, then the total

power must be infinite because, for a uniform plane

wave, the electric and magnetic field intensities are

constant over a plane of infinite area. In practice, we

never encounter this situation because all practical

plane waves are only “locally planar” (see Section 9.3

for a refresher on this idea). Nevertheless, we seek

some way to express the power associated with such

waves.

The solution is not to seek total power, but rather

power per unit area. This quantity is known as the

spatial power density, or simply “power density,” and

has units of W/m2.5 Then, if we are interested in total

power passing through some finite area, then we may

5Be careful: The quantities power spectral density (W/Hz) and

power flux density (W/(m2·Hz)) are also sometimes referred to as

“power density.” In this section, we will limit the scope to spatial

power density (W/m2).

https://en.wikipedia.org/wiki/Polarization_(waves)
https://en.wikipedia.org/wiki/Dipole_antenna
https://en.wikipedia.org/wiki/Polarizer
https://en.wikipedia.org/wiki/Faraday_effect
https://en.wikipedia.org/wiki/Helical_antenna
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simply integrate the power density over this area.

Let’s skip to the answer, and then consider where this

answer comes from. It turns out that the

instantaneous power density of a uniform plane wave

is the magnitude of the Poynting vector

S , E×H (9.106)

Note that this equation is dimensionally correct; i.e.

the units of E (V/m) times the units of H (A/m) yield

the units of spatial power density (V·A/m2, which is

W/m2). Also, the direction of E×H is in the

direction of propagation (reminder: Section 9.5),

which is the direction in which the power is expected

to flow. Thus, we have some compelling evidence that

|S| is the power density we seek. However, this is not

proof – for that, we require the Poynting Theorem,

which is a bit outside the scope of the present section,

but is addressed in the “Additional Reading” at the

end of this section.

A bit later we’re going to need to know S for a

uniform plane wave, so let’s work that out now. From

the plane wave relationships (Section 9.5) we find that

the magnetic field intensity associated with the

electric field in Equation 9.105 is

H̃ = ŷ
E0

η
e−jβz (9.107)

where η =
√
µ/ǫ is the real-valued impedance of the

medium. Let ψ be the phase of E0; i.e.,

E0 = |E0|ejψ . Then

E = Re
{
Ẽejωt

}

= x̂ |E0| cos (ωt− βz + ψ) (9.108)

and

H = Re
{
H̃ejωt

}

= ŷ
|E0|
η

cos (ωt− βz + ψ) (9.109)

Now applying Equation 9.106,

S = ẑ
|E0|2
η

cos2 (ωt− βz + ψ) (9.110)

As noted earlier, |S| is only the instantaneous power

density, which is still not quite what we are looking

for. What we are actually looking for is the

time-average power density Save – that is, the average

value of |S| over one period T of the wave. This may

be calculated as follows:

Save =
1

T

∫ t0+T

t=t0

|S|dt

=
|E0|2
η

1

T

∫ t0+T

t=t0

cos2 (ωt− ks+ ψ) dt

(9.111)

Since ω = 2πf = 2π/T , the definite integral equals

T/2. We obtain

Save =
|E0|2
2η

(9.112)

It is useful to check units again at this point. Note

(V/m)2 divided by Ω is W/m2, as expected.

Equation 9.112 is the time-average power density

(units of W/m2) associated with a sinusoidally-

varying uniform plane wave in lossless media.

Note that Equation 9.112 is analogous to a

well-known result from electric circuit theory. Recall

the time-average power Pave (units of W) associated

with a voltage phasor Ṽ across a resistance R is

Pave =
|Ṽ |2
2R

(9.113)

which closely resembles Equation 9.112. The result is

also analogous to the result for a voltage wave on a

transmission line (Section 3.20), for which:

Pave =
|V +

0 |2
2Z0

(9.114)

where V +
0 is a complex-valued constant representing

the magnitude and phase of the voltage wave, and Z0

is the characteristic impedance of the transmission

line.

Here is a good point at which to identify a common

pitfall. |E0| and |Ṽ | are the peak magnitudes of the

associated real-valued physical quantities. However,

these quantities are also routinely given as root mean

square (“rms”) quantities. Peak magnitudes are

greater by a factor of
√
2, so Equation 9.112
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expressed in terms of the rms quantity lacks the factor

of 1/2.

Example 9.3. Power density of a typical radio

wave.

A radio wave transmitted from a distant location

may be perceived locally as a uniform plane

wave if there is no nearby structure to scatter the

wave; a good example of this is the wave

arriving at the user of a cellular telephone in a

rural area with no significant terrain scattering.

The range of possible signal strengths varies

widely, but a typical value of the electric field

intensity arriving at the user’s location is

10 µV/m rms. What is the corresponding power

density?

Solution: From the problem statement,

|E0| = 10 µV/m rms. We assume propagation

occurs in air, which is indistinguishable from

free space at cellular frequencies. If we use

Equation 9.112, then we must first convert |E0|
from rms to peak magnitude, which is done by

multiplying by
√
2. Thus:

Save =
|E0|2
2η

∼=
(√

2 · 10× 10−6 V/m
)2

2 · 377 Ω
∼= 2.65× 10−13 W/m2

Alternatively, we can just use a version of

Equation 9.112, which is appropriate for rms

units:

Save =
|E0,rms|2

η
∼=
(
10× 10−6 V/m

)2

377 Ω
∼= 2.65× 10−13 W/m2

Either way, we obtain the correct answer,

0.265 pW/m2 (that’s picowatts per square

meter).

Considering the prevalence of phasor representation,

it is useful to have an alternative form of the Poynting

vector which yields time-average power by operating

directly on field quantities in phasor form. This is

Save, defined as:

Save ,
1

2
Re
{
Ẽ× H̃∗

}
(9.115)

(Note that the magnetic field intensity phasor is

conjugated.) The above expression gives the expected

result for a uniform plane wave. Using

Equations 9.105 and 9.107, we find

Save =
1

2
Re

{(
x̂E0e

−jβz
)
×
(
ŷ
E0

η
e−jβz

)∗}

(9.116)

which yields

Save = ẑ
|E0|2
2η

(9.117)

as expected.

Additional Reading:

• “Poynting vector” on Wikipedia.

• “Poynting’s Theorem” on Wikipedia.

[m0035]

https://en.wikipedia.org/wiki/Poynting_vector
https://en.wikipedia.org/wiki/Poynting's_theorem
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Appendix A

Constitutive Parameters of Some

Common Materials

A.1 Permittivity of Some

Common Materials

[m0135]

The values below are relative permittivity ǫr , ǫ/ǫ0
for a few materials that are commonly encountered in

electrical engineering applications, and for which

permittivity emerges as a consideration. Note that

“relative permittivity” is sometimes referred to as

dielectric constant.

Here we consider only the physical (real-valued)

permittivity, which is the real part of the complex

permittivity (typically indicated as ǫ′ or ǫ′r) for

materials exhibiting significant loss.

Permittivity varies significantly as a function of

frequency. The values below are representative of

frequencies from a few kHz to about 1 GHz. The

values given are also representative of optical

frequencies for materials such as silica that are used

in optical applications. Permittivity also varies as a

function of temperature. In applications where

precision better than about 10% is required, primary

references accounting for frequency and temperature

should be consulted. The values presented here are

gathered from a variety of references, including those

indicated in “Additional References.”

Free Space (vacuum): ǫr , 1

Solid Dielectrics:
Material ǫr Common uses

Styrofoam1 1.1

Teflon2 2.1

Polyethylene 2.3 coaxial cable

Polypropylene 2.3

Silica 2.4 optical fiber3

Polystyrene 2.6

Polycarbonate 2.8

Rogers RO3003 3.0 PCB substrate

FR4 (glass epoxy laminate) 4.5 PCB substrate

1 Properly known as extruded polystyrene foam

(XPS).
2 Properly known as polytetrafluoroethylene (PTFE).
3 Typically doped with small amounts of other

materials to slightly raise or lower the index of

refraction (=
√
ǫr).

Non-conducting spacing materials used in discrete

capacitors exhibit ǫr ranging from about 5 to 50.

Semiconductors commonly appearing in electronics

– including carbon, silicon, geranium, indium

phosphide, and so on – typically exhibit ǫr in the

range 5–15.

Glass exhibits ǫr in the range 4–10, depending on

composition.

Gasses, including air, typically exhibit ǫr ∼= 1 to

within a tiny fraction of a percent.

Liquid water typically exhibits ǫr in the range

72–81. Distilled water exhibits ǫr ≈ 81 at room

temperature, whereas sea water tends to be at the

Electromagnetics Vol 1. c© 2018 S.W. Ellingson CC BY SA 4.0. https://doi.org/10.21061/electromagnetics-vol-1

https://doi.org/10.21061/electromagnetics-vol-1
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lower end of the range.

Other liquids typically exhibit ǫr in the range 10–90,

with considerable variation as a function of

temperature and frequency. Animal flesh and blood

consists primarily of liquid matter and so also exhibits

permittivity in this range.

Soil typically exhibits ǫr in the range 2.5–3.5 when

dry and higher when wet. The permittivity of soil

varies considerably depending on composition.

Additional Reading:

• CRC Handbook of Chemistry and Physics.

• “Relative permittivity” on Wikipedia.

• “Miscellaneous Dielectric Constants” on

microwaves101.com.

A.2 Permeability of Some

Common Materials

[m0136]

The values below are relative permeability

µr , µ/µ0 for a few materials that are commonly

encountered in electrical engineering applications,

and for which µr is significantly different from 1.

These materials are predominantly ferromagnetic

metals and (in the case of ferrites) materials

containing significant ferromagnetic metal content.

Nearly all other materials exhibit µr that is not

significantly different from that of free space.

The values presented here are gathered from a variety

of references, including those indicated in “Additional

References” at the end of this section. Be aware that

permeability may vary significantly with frequency;

values given here are applicable to the frequency

ranges for applications in which these materials are

typically used. Also be aware that materials

exhibiting high permeability are also typically

non-linear; that is, permeability depends on the

magnitude of the magnetic field. Again, values

reported here are those applicable to applications in

which these materials are typically used.

Free Space (vacuum): µr , 1.

Iron (also referred to by the chemical notation “Fe”)

appears as a principal ingredient in many materials

and alloys employed in electrical structures and

devices. Iron exhibits µr that is very high, but which

decreases with decreasing purity. 99.95% pure iron

exhibits µr ∼ 200, 000. This decreases to ∼ 5000 at

99.8% purity and is typically below 100 for purity

less than 99%.

Steel is an iron alloy that comes in many forms, with

a correspondingly broad range of permeabilites.

Electrical steel, commonly used in electrical

machinery and transformers when high permeability

is desired, exhibits µr ∼ 4000. Stainless steel,

encompassing a broad range of alloys used in

mechanical applications, exhibits µr in the range

750–1800. Carbon steel, including a broad class of

alloys commonly used in structural applications,

exhibits µr on the order of 100.

http://hbcponline.com
https://en.wikipedia.org/wiki/Relative_permittivity
http://www.microwaves101.com/encyclopedias/miscellaneous-dielectric-constants
http://www.microwaves101.com
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Ferrites include a broad range of ceramic materials

that are combined with iron and various combinations

of other metals and are used as magnets and magnetic

devices in various electrical systems. Common

ferrites exhibit µr in the range 16–640.

Additional Reading:

• Section 7.16 (“Magnetic Materials”)

• CRC Handbook of Chemistry and Physics.

• “Magnetic Materials” on microwaves101.com.

• “Permeability (electromagnetism)” on

Wikipedia.

• “Iron” on Wikipedia.

• “Electrical steel” on Wikipedia.

• “Ferrite (magnet)” on Wikipedia.

A.3 Conductivity of Some

Common Materials

[m0137]

The values below are conductivity σ for a few

materials that are commonly encountered in electrical

engineering applications, and for which conductivity

emerges as a consideration.

Note that materials in some applications are described

instead in terms of resistivity, which is simply the

reciprocal of conductivity.

Conductivity may vary significantly as a function of

frequency. The values below are representative of

frequencies from a few kHz to a few GHz.

Conductivity also varies as a function of temperature.

In applications where precise values are required,

primary references accounting for frequency and

temperature should be consulted. The values

presented here are gathered from a variety of

references, including those indicated in “Additional

References” at the end of this section.

Free Space (vacuum): σ , 0.

Commonly encountered elements:

Material σ (S/m)

Copper 5.8× 107

Gold 4.4× 107

Aluminum 3.7× 107

Iron 1.0× 107

Platinum 0.9× 107

Carbon 1.3× 105

Silicon 4.4× 10−4

Water exhibits σ ranging from about 6 µS/m for

highly distilled water (thus, a very poor conductor) to

about 5 S/m for seawater (thus, a relatively good

conductor), varying also with temperature and

pressure. Tap water is typically in the range

5–50 mS/m, depending on the level of impurities

present.

Soil typically exhibits σ in the range 10−4 S/m for

dry soil to about 10−1 S/m for wet soil, varying also

due to chemical composition.

http://hbcponline.com
https://www.microwaves101.com/encyclopedias/magnetic-materials
http://www.microwaves101.com
https://en.wikipedia.org/wiki/Permeability_(electromagnetism)
https://en.wikipedia.org/wiki/Iron
https://en.wikipedia.org/wiki/Electrical_steel
https://en.wikipedia.org/wiki/Ferrite_(magnet)
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Non-conductors. Most other materials that are not

well-described as conductors or semiconductors and

are dry exhibit σ < 10−12 S/m. Most materials that

are considered to be insulators, including air and

common dielectrics, exhibit σ < 10−15 S/m, often by

several orders of magnitude.

Additional Reading:

• CRC Handbook of Chemistry and Physics.

• “Conductivity (electrolytic)” on Wikipedia.

• “Electrical resistivity and conductivity” on

Wikipedia.

• “Soil resistivity” on Wikipedia.

http://hbcponline.com
https://en.wikipedia.org/wiki/Conductivity_(electrolytic)
https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity
https://en.wikipedia.org/wiki/Soil_resistivity
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Mathematical Formulas

B.1 Trigonometry

[m0138]

ejθ = cos θ + j sin θ (B.1)

cos θ =
1

2

(
ejθ + e−jθ

)
(B.2)

sin θ =
1

j2

(
ejθ − e−jθ

)
(B.3)

cos2 θ =
1

2
+

1

2
cos 2θ (B.4)

sin2 θ =
1

2
− 1

2
cos 2θ (B.5)

B.2 Vector Operators

[m0139]

This section contains a summary of vector operators

expressed in each of the three major coordinate

systems:

• Cartesian (x,y,z)

• cylindrical (ρ,φ,z)

• spherical (r,θ,φ)

Associated basis vectors are identified using a caret (̂ )

over the symbol. The vector operand A is expressed

in terms of components in the basis directions as

follows:

• Cartesian: A = x̂Ax + ŷAy + ẑAz

• cylindrical: A = ρ̂Aρ + φ̂Aφ + ẑAz

• spherical: A = r̂Ar + θ̂Aθ + φ̂Aφ

Gradient

Gradient in Cartesian coordinates:

∇f = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z
(B.6)

Gradient in cylindrical coordinates:

∇f = ρ̂
∂f

∂ρ
+ φ̂

1

ρ

∂f

∂φ
+ ẑ

∂f

∂z
(B.7)
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Gradient in spherical coordinates:

∇f = r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ
+ φ̂

1

r sin θ

∂f

∂φ
(B.8)

Divergence

Divergence in Cartesian coordinates:

∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

(B.9)

Divergence in cylindrical coordinates:

∇ ·A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aφ
∂φ

+
∂Az
∂z

(B.10)

Divergence in spherical coordinates:

∇ ·A =
1

r2
∂

∂r

(
r2Ar

)

+
1

r sin θ

∂

∂θ
(Aθ sin θ)

+
1

r sin θ

∂Aφ
∂φ

(B.11)

Curl

Curl in Cartesian coordinates:

∇×A = x̂

(
∂Az
∂y

− ∂Ay
∂z

)

+ ŷ

(
∂Ax
∂z

− ∂Az
∂x

)

+ ẑ

(
∂Ay
∂x

− ∂Ax
∂y

)
(B.12)

Curl in cylindrical coordinates:

∇×A = ρ̂

(
1

ρ

∂Az
∂φ

− ∂Aφ
∂z

)

+ φ̂

(
∂Aρ
∂z

− ∂Az
∂ρ

)

+ ẑ
1

ρ

[
∂

∂ρ
(ρAφ)−

∂Aρ
∂φ

]
(B.13)

Curl in spherical coordinates:

∇×A = r̂
1

r sin θ

[
∂

∂θ
(Aφ sin θ)−

∂Aθ
∂φ

]

+ θ̂
1

r

[
1

sin θ

∂Ar
∂φ

− ∂

∂r
(rAφ)

]

+ φ̂
1

r

[
∂

∂r
(rAθ)−

∂Ar
∂θ

]
(B.14)

Laplacian

Laplacian in Cartesian coordinates:

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(B.15)

Laplacian in cylindrical coordinates:

∇2f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2
∂2f

∂φ2
+
∂2f

∂z2
(B.16)

Laplacian in spherical coordinates:

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)

+
1

r2 sin θ

∂

∂θ

(
∂f

∂θ
sin θ

)

+
1

r2 sin2 θ

∂2f

∂φ2
(B.17)
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B.3 Vector Identities

[m0140]

Algebraic Identities

A · (B×C) = B · (C×A) = C · (A×B)
(B.18)

A× (B×C) = B (A ·C)−C (A ·B) (B.19)

Identities Involving Differential Operators

∇ · (∇×A) = 0 (B.20)

∇× (∇f) = 0 (B.21)

∇× (fA) = f (∇×A) + (∇f)×A (B.22)

∇ · (A×B) = B · (∇×A)−A · (∇×B)
(B.23)

∇ · (∇f) = ∇2f (B.24)

∇×∇×A = ∇ (∇ ·A)−∇2A (B.25)

∇2A = ∇ (∇ ·A)−∇× (∇×A) (B.26)

Divergence Theorem: Given a closed surface S
enclosing a contiguous volume V ,

∫

V

(∇ ·A) dv =

∮

S

A · ds (B.27)

where the surface normal ds is pointing out of the

volume.

Stokes’ Theorem: Given a closed curve C bounding

a contiguous surface S ,

∫

S

(∇×A) · ds =
∮

C

A · dl (B.28)

where the direction of the surface normal ds is related

to the direction of integration along C by the “right

hand rule.”



Appendix C

Physical Constants

[m0141]

The speed of light in free space (c), which is the

phase velocity of any electromagnetic radiation in

free space, is ∼= 2.9979× 108 m/s. This is commonly

rounded up to 3× 108 m/s. This rounding incurs error

of ∼= 0.07%, which is usually much less than other

errors present in electrical engineering calculations.

The charge of an electron is ∼= −1.602× 10−19 C.

The constant e , +1.602176634× 10−19 C is known

as the “elementary charge,” so the charge of the

electron is said to be −e.

The permittivity of free space (ǫ0) is
∼= 8.854× 10−12 F/m.

The permeability of free space (µ0) is

4π × 10−7 H/m.

The wave impedance of free space (η0) is the ratio

of the magnitude of the electric field intensity to that

of the magnetic field intensity in free space and is√
µ0/ǫ0 ∼= 376.7 Ω. This is also sometimes referred

to as the intrinsic impedance of free space.

Electromagnetics Vol 1. c© 2018 S.W. Ellingson CC BY SA 4.0. https://doi.org/10.21061/electromagnetics-vol-1
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acoustic wave equation, see wave equation, acoustic

admittance, 64–66

characteristic, see characteristic admittance

air, 123, 124

aluminum, 170, 215

Ampere’s law

general form, 190–192

magnetostatics, 88, 149–150, 152, 155, 158, 159,

167

amplifier, 59, 62

antenna, 207

dipole, 207

helical, 209

impedance matching, 58, 62

monopole, 207

patch, 58

arcing, 124

attenuation constant, see propagation constant

balun, 187

Biot-Savart Law, 26

boundary conditions, 118, 120, 160, 161

capacitance, 34, 124–126

definition, 124

capacitor, 125–126

energy storage, 130

parallel plate, 18, 116–117, 126–128

carbon, 215

Cartesian coordinate system, 70, 76–77

ceramic, 170

CGS (system of units), 14

characteristic admittance, 64

characteristic impedance, 33, 37–40, 48, 63, 210

coaxial cable, 43

definition, 39

measurement, 56

charge density

line, 95, 96, 101, 112

surface, 95, 97, 112

volume, 85, 95, 99, 113

charge mobility, 136

circulation, 88

coax, see transmission line

cobalt, 171

coil, 152–154, 163, 165

toroidal, see toroidal coil

conductance, 34, 141–142

definition, 141

conductivity, 27, 136–138

definition, 136

of common materials, 215–216

conductor

good, 136, 137

perfect, 21, 118, 120, 122, 137, 144

perfect (definition), 138

poor, 123

constitutive parameters, 27

copper, 171, 215

Coulomb’s law, 93–94, 100, 103, 105

cross product, 74–75

curl, 88–89, 218

definition, 89

current, 22

conduction, 134

convection, 134

displacement, see displacement current

current density, 135–136

line, 135

surface, 135, 157

volume, 135

cylindrical coordinate system, 77–80

datum, 110

diamagnetic material, 170

dielectric (material), 42, 45, 123, 204

examples, 213

lossless, 137

lossy, 137

dielectric breakdown, 124, 138

dielectric constant, 20, 213

dielectric strength, 124

221
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dipole, see antenna

displacement current, 150, 192

divergence, 85–86, 218

definition, 85

divergence theorem, 87, 104, 148, 219

dot product, 73–74

duality, 146, 197

electric field, see field, electric

electric field intensity, 17–19, 94, 124

boundary conditions, 118

definition, 18

related to current, 136

electric flux density, 21–22, 85

boundary conditions, 120

definition, 21

electrical length, 53

measurement, 56

electromagnetic compatibility (EMC), 185

electromagnetic force, 19, 24

electromagnetic interference (EMI), 30, 185

electromagnetic spectrum, see spectrum

electromotive force, see emf

electron, 220

electrostatics (description), 93

emf, 179

motional, 180, 187

transformer, 180–183

emitter induction, 55

energy

electrostatic, 130–132

kinetic, 17

magnetostatic, 169–170

potential, 17, 105–107, 130

English system of units, 14

Faraday rotation, 209

Faraday’s law, 85, 176, 178–181, 189

ferrite, 170, 215

ferromagnetic material, 171

field

definition, 17

electric, 17–19, 21–22

magnetic, 22–27

scalar, 5, 17

vector, 17

field intensity, magnetic, see magnetic field intensity

field line (magnetic), 24

filter, 55

flux, 21, 24, 77, 79, 83, 85, 135, 161

definition, 85

magnetic, 163, 178

flux density, electric, see electric flux density

flux density, magnetic, see magnetic flux density

flux linkage

seelinkage, 163

force, 18, 23, 70, 105, 124

electromotive, see emf

Fourier series, 12

Fourier transform, 12

FR4, 46, 123, 213

fringing (field), 117, 126, 153, 166, 167

gamma ray, 3

Gauss’ law

electric field, 85, 100–101, 103

magnetic field, 147–148

generator, 33, 180, 187–189

geranium, 213

glass, 123, 213

Global Positioning System (GPS), 209

gold, 171, 215

gradient, 84, 114, 217

ground, 111

ground plane, 128

heat, 144

homogeneity, 27

homogeneous (media), 21, 26, 27, 196

hysteresis, 171

impedance

characteristic, see characteristic impedance

matching, 55, 62–68

of resistance, 138

wave, see wave impedance

impedance inverter, 58

independence of path, 107–108

index of refraction, 213

indium phosphide, 213

inductance, 34, 163–165

definition, 163, 164

induction, 175–178, 180

inductor, 152, 164

coaxial, 167–168

hysteresis, 171

straight coil, 165–166

infrared, 3

insulator

good, 123
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perfect, 137

poor, 137

inverse square law, 20, 25

iron, 171, 214, 215

isotropic (media), 28, 196

isotropy, 28

joule heating, 144

Joule’s law, 143

kinetic energy, see energy, kinetic

Kirchoff’s voltage law

electrostatics, 88, 105, 108–110, 118, 180, 189

Laplace’s equation, 115, 116

Laplacian (operator), 91, 218

Lenz’s law, 175, 178, 182

lightning, 124, 138

linear (media), 28, 124, 196

linear and time-invariant (LTI), 28

linearity, 28

linkage, 163

load

matched, 48

reactive, 48

lumped-element model, see transmission line

magnesium, 170

magnetic field intensity, 26–27

definition, 26

magnetic flux, see flux, magnetic

magnetic flux density, 22–25, 85

definition, 24

magnetostatics (description), 146

materials (properties), 27–28, 170–172

materials, magnetic, 170–172

Maxwell’s equations, 175, 196

differential phasor form, 194–196

source-free lossless region, 196

Maxwell-Faraday equation, 88, 180, 189–191, 202

metric system, 14

mica, 124

microstrip, 31, 44–46, 56, 63

mode, 31

monopole, see antenna

motional emf, see emf

mutual inductance, 164

neper, 40

nickel, 171

non-magnetic (material), 123

nonlinear (media), 27

notation, 15

Ohm’s law, 134, 136, 143, 196

ohmic heating, 144

open circuit, 48, 49, 54

optical (frequency), 3

optical fiber

multimode, 31

single mode, 32

paramagnetic material, 170

patch antenna, see antenna

perfect conductor, see conductor, perfect

permanent magnet, 22

permeability, 25–27, 123, 170

of common materials, 214–215

relative, 25, 214

permittivity, 20, 27, 124, 137

complex-valued, 197

effective, 45

of common materials, 213–214

relative, 20, 123, 213

phase velocity, 3, 8, 40, 204

coaxial cable, 43

in microstrip, 46

measurement, 57

phasefront, 198, 203

phasor, 9–13, 194, 203, 207

phasor (definition), 9

photoelectric effect, 4

photon, 19

pipe, 140

plane wave relationships, 205

platinum, 170, 215

Poisson’s equation, 91, 115–116

polarization, 206

circular, 207

elliptical, 209

linear, 206

polarizer, 207

polycarbonate, 213

polyethylene, 213

polypropylene, 213

polystyrene, 213

polytetrafluoroethylene, 213

potential difference, 106

potential energy, see energy, potential

power density, see waves
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power dissipation, 143–144

Poynting theorem, 210

Poynting vector, 210

printed circuit board (PCB), 44, 46, 123

capacitance, 127–128

material, 213

propagation constant, 37

attenuation, 33, 40

phase, 6, 33, 40, 197

quantum mechanics, 19, 23

quarter-wave inverter, 58

radio (frequency), 3

reactance, 165

reflection coefficient, 47–48

definition, 48

relative permeability, see permeability, relative

relative permittivity, see permittivity, relative

resistance, 34, 138–140

definition, 138

of wire (DC), 139–140

resistivity, 215

resistor, 1

RG-59, 43, 130, 142

right-hand rule

cross product, 74

magnetic field of a wire, 152, 155, 157, 182

Stokes’ theorem, 90, 151, 158, 159, 161, 163,

178, 181, 219

saturation (magnetic), 171, 186

scalar field, see field, scalar

scalar product, see dot product

semiconductor (material), 137, 213

shield, 42

short circuit, 48, 49, 54

shot noise, 94

SI (system of units), 14

signum (sgn) function, 98

silica, 213

silicon, 171, 213, 215

single-stub matching, 66–68

skin effect, 165

soil, 214, 215

solenoid, 152

sound (waves), 5

spatial frequency, 6

spectrum, 3

speed of light, 3, 204, 220

spherical coordinate system, 81–83

standing wave, 41, 49–50

definition, 49

standing wave ratio (SWR), 51–52

definition, 51

steel, 140, 214

Stokes’ theorem, 90, 109, 163, 178, 181, 189, 190,

219

stripline, 44

stub

applications, 55, 66–68

definition, 54

open circuit, 54

short circuit, 54

styrofoam, 213

superposition, 9, 28

susceptance, 64, 67

symmetry, 100, 102, 151

teflon, 123, 213

telegrapher’s equations, 35–37

TEM line, see transmission line

Thévenin equivalent circuit, 33

time-invariance (media), 28

toroid, 155

toroidal coil, 155–157

transformer, 164, 183–187

emf, see emf

hysteresis, 171

induction, 176

transmission line

coaxial, 31, 42–44, 62, 130, 141–142

definition, 30

input impedance, 52–55

lossless, 40

low loss, 40, 41, 43

lumped-element model, 34–35, 41

microstrip, see microstrip

quarter-wavelength, 57–60

stripline, 44

stub, see stub

time-average power, 61

transverse electromagnetic (TEM), 31, 37, 42, 45

two-port representation, 33–34

wave equations, 37

two-port, 33

ultraviolet, 3

unit vector, 70

units, 13–14
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vector

arithmetic, 70–75, 219

definition, 70

identity, 219

position-fixed, 70

position-free, 70

unit, 70

velocity, 70

voltage reflection coefficient, see reflection coefficient

voltage standing wave ratio (VSWR), 51

water, 213, 215

wave equation

acoustic, 6

electromagnetic, 91

source-free lossless region, 196–197

TEM transmission line, 37

wave impedance, 197, 202, 220

waveguide, 31

wavelength, 2, 3, 7, 204

in microstrip, 46

wavenumber, 6

waves

cylindrical, 198

definition, 17

fundamentals, 5–8

guided, 9, 30

plane, 198–206, 209

polarization, 206–209

power density, 209–211

spherical, 198

standing, see standing wave

transmission line analogy, 210

unguided, 9

wire

DC resistance of, 139–140

work, 105

X-ray, 3
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