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Preface

A First Course in Linear Algebra presents an introduction to the fascinating subject of linear algebra

for students who have a reasonable understanding of basic algebra. Major topics of linear algebra are

presented in detail, with proofs of important theorems provided. Separate sections may be included in

which proofs are examined in further depth and in general these can be excluded without loss of continuity.

Where possible, applications of key concepts are explored. In an effort to assist those students who are

interested in continuing on in linear algebra connections to additional topics covered in advanced courses

are introduced.

Each chapter begins with a list of desired outcomes which a student should be able to achieve upon

completing the chapter. Throughout the text, examples and diagrams are given to reinforce ideas and

provide guidance on how to approach various problems. Students are encouraged to work through the

suggested exercises provided at the end of each section. Selected solutions to these exercises are given at

the end of the text.

As this is an open text, you are encouraged to interact with the textbook through annotating, revising,

and reusing to your advantage.

1





Chapter 1

Systems of Equations

1.1 Systems of Equations, Geometry

Outcomes

A. Relate the types of solution sets of a system of two (three) variables to the intersections of

lines in a plane (the intersection of planes in three space)

As you may remember, linear equations like 2x+3y = 6 can be graphed as straight lines in the coordi-

nate plane. We say that this equation is in two variables, in this case x and y. Suppose you have two such

equations, each of which can be graphed as a straight line, and consider the resulting graph of two lines.

What would it mean if there exists a point of intersection between the two lines? This point, which lies on

both graphs, gives x and y values for which both equations are true. In other words, this point gives the

ordered pair (x,y) that satisfy both equations. If the point (x,y) is a point of intersection, we say that (x,y)
is a solution to the two equations. In linear algebra, we often are concerned with finding the solution(s)

to a system of equations, if such solutions exist. First, we consider graphical representations of solutions

and later we will consider the algebraic methods for finding solutions.

When looking for the intersection of two lines in a graph, several situations may arise. The follow-

ing picture demonstrates the possible situations when considering two equations (two lines in the graph)

involving two variables.

x

y

One Solution

x

y

No Solutions

x

y

Infinitely Many Solutions

In the first diagram, there is a unique point of intersection, which means that there is only one (unique)

solution to the two equations. In the second, there are no points of intersection and no solution. When no

solution exists, this means that the two lines are parallel and they never intersect. The third situation which

can occur, as demonstrated in diagram three, is that the two lines are really the same line. For example,

x+ y = 1 and 2x+ 2y = 2 are equations which when graphed yield the same line. In this case there are

infinitely many points which are solutions of these two equations, as every ordered pair which is on the

graph of the line satisfies both equations. When considering linear systems of equations, there are always

three types of solutions possible; exactly one (unique) solution, infinitely many solutions, or no solution.

3



4 Systems of Equations

Example 1.1: A Graphical Solution

Use a graph to find the solution to the following system of equations

x+ y = 3

y− x = 5

Solution. Through graphing the above equations and identifying the point of intersection, we can find the

solution(s). Remember that we must have either one solution, infinitely many, or no solutions at all. The

following graph shows the two equations, as well as the intersection. Remember, the point of intersection

represents the solution of the two equations, or the (x,y) which satisfy both equations. In this case, there

is one point of intersection at (−1,4) which means we have one unique solution, x =−1,y = 4.

−4 −3 −2 −1 1

2

4

6

x

y

(x,y) = (−1,4)

♠

In the above example, we investigated the intersection point of two equations in two variables, x and

y. Now we will consider the graphical solutions of three equations in two variables.

Consider a system of three equations in two variables. Again, these equations can be graphed as

straight lines in the plane, so that the resulting graph contains three straight lines. Recall the three possible

types of solutions; no solution, one solution, and infinitely many solutions. There are now more complex

ways of achieving these situations, due to the presence of the third line. For example, you can imagine

the case of three intersecting lines having no common point of intersection. Perhaps you can also imagine

three intersecting lines which do intersect at a single point. These two situations are illustrated below.

x

y

No Solution

x

y

One Solution
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Consider the first picture above. While all three lines intersect with one another, there is no common

point of intersection where all three lines meet at one point. Hence, there is no solution to the three

equations. Remember, a solution is a point (x,y) which satisfies all three equations. In the case of the

second picture, the lines intersect at a common point. This means that there is one solution to the three

equations whose graphs are the given lines. You should take a moment now to draw the graph of a system

which results in three parallel lines. Next, try the graph of three identical lines. Which type of solution is

represented in each of these graphs?

We have now considered the graphical solutions of systems of two equations in two variables, as well

as three equations in two variables. However, there is no reason to limit our investigation to equations in

two variables. We will now consider equations in three variables.

You may recall that equations in three variables, such as 2x+ 4y− 5z = 8, form a plane. Above, we

were looking for intersections of lines in order to identify any possible solutions. When graphically solving

systems of equations in three variables, we look for intersections of planes. These points of intersection

give the (x,y,z) that satisfy all the equations in the system. What types of solutions are possible when

working with three variables? Consider the following picture involving two planes, which are given by

two equations in three variables.

Notice how these two planes intersect in a line. This means that the points (x,y,z) on this line satisfy

both equations in the system. Since the line contains infinitely many points, this system has infinitely

many solutions.

It could also happen that the two planes fail to intersect. However, is it possible to have two planes

intersect at a single point? Take a moment to attempt drawing this situation, and convince yourself that it

is not possible! This means that when we have only two equations in three variables, there is no way to

have a unique solution! Hence, the types of solutions possible for two equations in three variables are no

solution or infinitely many solutions.

Now imagine adding a third plane. In other words, consider three equations in three variables. What

types of solutions are now possible? Consider the following diagram.

✠
New Plane

In this diagram, there is no point which lies in all three planes. There is no intersection between all
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planes so there is no solution. The picture illustrates the situation in which the line of intersection of the

new plane with one of the original planes forms a line parallel to the line of intersection of the first two

planes. However, in three dimensions, it is possible for two lines to fail to intersect even though they are

not parallel. Such lines are called skew lines.

Recall that when working with two equations in three variables, it was not possible to have a unique

solution. Is it possible when considering three equations in three variables? In fact, it is possible, and we

demonstrate this situation in the following picture.

✠

New Plane

In this case, the three planes have a single point of intersection. Can you think of other types of

solutions possible? Another is that the three planes could intersect in a line, resulting in infinitely many

solutions, as in the following diagram.

We have now seen how three equations in three variables can have no solution, a unique solution, or

intersect in a line resulting in infinitely many solutions. It is also possible that the three equations graph

the same plane, which also leads to infinitely many solutions.

You can see that when working with equations in three variables, there are many more ways to achieve

the different types of solutions than when working with two variables. It may prove enlightening to spend

time imagining (and drawing) many possible scenarios, and you should take some time to try a few.

You should also take some time to imagine (and draw) graphs of systems in more than three variables.

Equations like x+y−2z+4w = 8 with more than three variables are often called hyper-planes. You may

soon realize that it is tricky to draw the graphs of hyper-planes! Through the tools of linear algebra, we

can algebraically examine these types of systems which are difficult to graph. In the following section, we

will consider these algebraic tools.
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Exercises

Exercise 1.1.1 Graphically, find the point (x1,y1) which lies on both lines, x+ 3y = 1 and 4x− y = 3.

That is, graph each line and see where they intersect.

Exercise 1.1.2 Graphically, find the point of intersection of the two lines 3x+ y = 3 and x+2y = 1. That

is, graph each line and see where they intersect.

Exercise 1.1.3 You have a system of k equations in two variables, k ≥ 2. Explain the geometric signifi-

cance of

(a) No solution.

(b) A unique solution.

(c) An infinite number of solutions.

1.2 Systems of Equations, Algebraic Procedures

Outcomes

A. Use elementary operations to find the solution to a linear system of equations.

B. Find the row-echelon form and reduced row-echelon form of a matrix.

C. Determine whether a system of linear equations has no solution, a unique solution or an

infinite number of solutions from its row-echelon form.

D. Solve a system of equations using Gaussian Elimination and Gauss-Jordan Elimination.

E. Model a physical system with linear equations and then solve.

We have taken an in depth look at graphical representations of systems of equations, as well as how to

find possible solutions graphically. Our attention now turns to working with systems algebraically.
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Definition 1.2: System of Linear Equations

A system of linear equations is a list of equations,

a11x1 +a12x2 + · · ·+a1nxn = b1

a21x1 +a22x2 + · · ·+a2nxn = b2
...

am1x1 +am2x2 + · · ·+amnxn = bm

where ai j and b j are real numbers. The above is a system of m equations in the n variables,

x1,x2 · · · ,xn. Written more simply in terms of summation notation, the above can be written in

the form
n

∑
j=1

ai jx j = bi, i = 1,2,3, · · · ,m

The relative size of m and n is not important here. Notice that we have allowed ai j and b j to be any

real number. We can also call these numbers scalars . We will use this term throughout the text, so keep

in mind that the term scalar just means that we are working with real numbers.

Now, suppose we have a system where bi = 0 for all i. In other words every equation equals 0. This is

a special type of system.

Definition 1.3: Homogeneous System of Equations

A system of equations is called homogeneous if each equation in the system is equal to 0. A

homogeneous system has the form

a11x1 +a12x2 + · · ·+a1nxn = 0

a21x1 +a22x2 + · · ·+a2nxn = 0
...

am1x1 +am2x2 + · · ·+amnxn = 0

where ai j are scalars and xi are variables.

Recall from the previous section that our goal when working with systems of linear equations was to

find the point of intersection of the equations when graphed. In other words, we looked for the solutions to

the system. We now wish to find these solutions algebraically. We want to find values for x1, · · · ,xn which

solve all of the equations. If such a set of values exists, we call (x1, · · · ,xn) the solution set.

Recall the above discussions about the types of solutions possible. We will see that systems of linear

equations will have one unique solution, infinitely many solutions, or no solution. Consider the following

definition.

Definition 1.4: Consistent and Inconsistent Systems

A system of linear equations is called consistent if there exists at least one solution. It is called

inconsistent if there is no solution.
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If you think of each equation as a condition which must be satisfied by the variables, consistent would

mean there is some choice of variables which can satisfy all the conditions. Inconsistent would mean there

is no choice of the variables which can satisfy all of the conditions.

The following sections provide methods for determining if a system is consistent or inconsistent, and

finding solutions if they exist.

1.2.1 Elementary Operations

We begin this section with an example.

Example 1.5: Verifying an Ordered Pair is a Solution

Algebraically verify that (x,y) = (−1,4) is a solution to the following system of equations.

x+ y = 3

y− x = 5

Solution. By graphing these two equations and identifying the point of intersection, we previously found

that (x,y) = (−1,4) is the unique solution.

We can verify algebraically by substituting these values into the original equations, and ensuring that

the equations hold. First, we substitute the values into the first equation and check that it equals 3.

x+ y = (−1)+(4) = 3

This equals 3 as needed, so we see that (−1,4) is a solution to the first equation. Substituting the values

into the second equation yields

y− x = (4)− (−1) = 4+1 = 5

which is true. For (x,y) = (−1,4) each equation is true and therefore, this is a solution to the system. ♠

Now, the interesting question is this: If you were not given these numbers to verify, how could you

algebraically determine the solution? Linear algebra gives us the tools needed to answer this question.

The following basic operations are important tools that we will utilize.

Definition 1.6: Elementary Operations

Elementary operations are those operations consisting of the following.

1. Interchange the order in which the equations are listed.

2. Multiply any equation by a nonzero number.

3. Replace any equation with itself added to a multiple of another equation.

It is important to note that none of these operations will change the set of solutions of the system of

equations. In fact, elementary operations are the key tool we use in linear algebra to find solutions to

systems of equations.
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Consider the following example.

Example 1.7: Effects of an Elementary Operation

Show that the system
x+ y = 7

2x− y = 8

has the same solution as the system
x+ y = 7

−3y =−6

Solution. Notice that the second system has been obtained by taking the second equation of the first system

and adding -2 times the first equation, as follows:

2x− y+(−2)(x+ y) = 8+(−2)(7)

By simplifying, we obtain

−3y =−6

which is the second equation in the second system. Now, from here we can solve for y and see that y = 2.

Next, we substitute this value into the first equation as follows

x+ y = x+2 = 7

Hence x = 5 and so (x,y) = (5,2) is a solution to the second system. We want to check if (5,2) is also a

solution to the first system. We check this by substituting (x,y) = (5,2) into the system and ensuring the

equations are true.

x+ y = (5)+(2) = 7

2x− y = 2(5)− (2) = 8

Hence, (5,2) is also a solution to the first system. ♠

This example illustrates how an elementary operation applied to a system of two equations in two

variables does not affect the solution set. However, a linear system may involve many equations and many

variables and there is no reason to limit our study to small systems. For any size of system in any number

of variables, the solution set is still the collection of solutions to the equations. In every case, the above

operations of Definition 1.6 do not change the set of solutions to the system of linear equations.

In the following theorem, we use the notation Ei to represent an expression, while bi denotes a constant.
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Theorem 1.8: Elementary Operations and Solutions

Suppose you have a system of two linear equations

E1 = b1

E2 = b2
(1.1)

Then the following systems have the same solution set as 1.1:

1.
E2 = b2

E1 = b1
(1.2)

2.
E1 = b1

kE2 = kb2
(1.3)

for any scalar k, provided k 6= 0.

3.
E1 = b1

E2 + kE1 = b2 + kb1
(1.4)

for any scalar k (including k = 0).

Before we proceed with the proof of Theorem 1.8, let us consider this theorem in context of Example

1.7. Then,
E1 = x+ y, b1 = 7

E2 = 2x− y, b2 = 8

Recall the elementary operations that we used to modify the system in the solution to the example. First,

we added (−2) times the first equation to the second equation. In terms of Theorem 1.8, this action is

given by

E2 +(−2)E1 = b2 +(−2)b1

or

2x− y+(−2)(x+ y) = 8+(−2)7

This gave us the second system in Example 1.7, given by

E1 = b1

E2 +(−2)E1 = b2 +(−2)b1

From this point, we were able to find the solution to the system. Theorem 1.8 tells us that the solution

we found is in fact a solution to the original system.

We will now prove Theorem 1.8.

Proof.

1. The proof that the systems 1.1 and 1.2 have the same solution set is as follows. Suppose that

(x1, · · · ,xn) is a solution to E1 = b1,E2 = b2. We want to show that this is a solution to the system

in 1.2 above. This is clear, because the system in 1.2 is the original system, but listed in a different

order. Changing the order does not effect the solution set, so (x1, · · · ,xn) is a solution to 1.2.



12 Systems of Equations

2. Next we want to prove that the systems 1.1 and 1.3 have the same solution set. That is E1 = b1,E2 =
b2 has the same solution set as the system E1 = b1,kE2 = kb2 provided k 6= 0. Let (x1, · · · ,xn) be a

solution of E1 = b1,E2 = b2,. We want to show that it is a solution to E1 = b1,kE2 = kb2. Notice that

the only difference between these two systems is that the second involves multiplying the equation,

E2 = b2 by the scalar k. Recall that when you multiply both sides of an equation by the same number,

the sides are still equal to each other. Hence if (x1, · · · ,xn) is a solution to E2 = b2, then it will also

be a solution to kE2 = kb2. Hence, (x1, · · · ,xn) is also a solution to 1.3.

Similarly, let (x1, · · · ,xn) be a solution of E1 = b1,kE2 = kb2. Then we can multiply the equation

kE2 = kb2 by the scalar 1/k, which is possible only because we have required that k 6= 0. Just as

above, this action preserves equality and we obtain the equation E2 = b2. Hence (x1, · · · ,xn) is also

a solution to E1 = b1,E2 = b2.

3. Finally, we will prove that the systems 1.1 and 1.4 have the same solution set. We will show that

any solution of E1 = b1,E2 = b2 is also a solution of 1.4. Then, we will show that any solution of

1.4 is also a solution of E1 = b1,E2 = b2. Let (x1, · · · ,xn) be a solution to E1 = b1,E2 = b2. Then

in particular it solves E1 = b1. Hence, it solves the first equation in 1.4. Similarly, it also solves

E2 = b2. By our proof of 1.3, it also solves kE1 = kb1. Notice that if we add E2 and kE1, this is equal

to b2+kb1. Therefore, if (x1, · · · ,xn) solves E1 = b1,E2 = b2 it must also solve E2+kE1 = b2+kb1.

Now suppose (x1, · · · ,xn) solves the system E1 = b1,E2 + kE1 = b2 + kb1. Then in particular it is a

solution of E1 = b1. Again by our proof of 1.3, it is also a solution to kE1 = kb1. Now if we subtract

these equal quantities from both sides of E2 + kE1 = b2 + kb1 we obtain E2 = b2, which shows that

the solution also satisfies E1 = b1,E2 = b2.

♠

Stated simply, the above theorem shows that the elementary operations do not change the solution set

of a system of equations.

We will now look at an example of a system of three equations and three variables. Similarly to the

previous examples, the goal is to find values for x,y,z such that each of the given equations are satisfied

when these values are substituted in.

Example 1.9: Solving a System of Equations with Elementary Operations

Find the solutions to the system,

x+3y+6z = 25

2x+7y+14z = 58

2y+5z = 19

(1.5)

Solution. We can relate this system to Theorem 1.8 above. In this case, we have

E1 = x+3y+6z, b1 = 25

E2 = 2x+7y+14z, b2 = 58

E3 = 2y+5z, b3 = 19

Theorem 1.8 claims that if we do elementary operations on this system, we will not change the solution

set. Therefore, we can solve this system using the elementary operations given in Definition 1.6. First,
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replace the second equation by (−2) times the first equation added to the second. This yields the system

x+3y+6z = 25

y+2z = 8

2y+5z = 19

(1.6)

Now, replace the third equation with (−2) times the second added to the third. This yields the system

x+3y+6z = 25

y+2z = 8

z = 3

(1.7)

At this point, we can easily find the solution. Simply take z = 3 and substitute this back into the previous

equation to solve for y, and similarly to solve for x.

x+3y+6(3) = x+3y+18 = 25

y+2(3) = y+6 = 8

z = 3

The second equation is now

y+6 = 8

You can see from this equation that y = 2. Therefore, we can substitute this value into the first equation as

follows:

x+3(2)+18 = 25

By simplifying this equation, we find that x = 1. Hence, the solution to this system is (x,y,z) = (1,2,3).
This process is called back substitution.

Alternatively, in 1.7 you could have continued as follows. Add (−2) times the third equation to the

second and then add (−6) times the second to the first. This yields

x+3y = 7

y = 2

z = 3

Now add (−3) times the second to the first. This yields

x = 1

y = 2

z = 3

a system which has the same solution set as the original system. This avoided back substitution and led

to the same solution set. It is your decision which you prefer to use, as both methods lead to the correct

solution, (x,y,z) = (1,2,3). ♠
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1.2.2 Gaussian Elimination

The work we did in the previous section will always find the solution to the system. In this section, we

will explore a less cumbersome way to find the solutions. First, we will represent a linear system with

an augmented matrix. A matrix is simply a rectangular array of numbers. The size or dimension of a

matrix is defined as m× n where m is the number of rows and n is the number of columns. In order to

construct an augmented matrix from a linear system, we create a coefficient matrix from the coefficients

of the variables in the system, as well as a constant matrix from the constants. The coefficients from one

equation of the system create one row of the augmented matrix.

For example, consider the linear system in Example 1.9

x+3y+6z = 25

2x+7y+14z = 58

2y+5z = 19

This system can be written as an augmented matrix, as follows




1 3 6 25

2 7 14 58

0 2 5 19




Notice that it has exactly the same information as the original system. Here it is understood that the

first column contains the coefficients from x in each equation, in order,




1

2

0


 . Similarly, we create a

column from the coefficients on y in each equation,




3

7

2


 and a column from the coefficients on z in each

equation,




6

14

5


 . For a system of more than three variables, we would continue in this way constructing

a column for each variable. Similarly, for a system of less than three variables, we simply construct a

column for each variable.

Finally, we construct a column from the constants of the equations,




25

58

19


 .

The rows of the augmented matrix correspond to the equations in the system. For example, the top

row in the augmented matrix,
[

1 3 6 | 25
]

corresponds to the equation

x+3y+6z = 25.

Consider the following definition.
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Definition 1.10: Augmented Matrix of a Linear System

For a linear system of the form

a11x1 + · · ·+a1nxn = b1
...

am1x1 + · · ·+amnxn = bm

where the xi are variables and the ai j and bi are constants, the augmented matrix of this system is

given by 


a11 · · · a1n b1
...

...
...

am1 · · · amn bm




Now, consider elementary operations in the context of the augmented matrix. The elementary opera-

tions in Definition 1.6 can be used on the rows just as we used them on equations previously. Changes to

a system of equations as a result of an elementary operation are equivalent to changes in the augmented

matrix resulting from the corresponding row operation. Note that Theorem 1.8 implies that any elementary

row operations used on an augmented matrix will not change the solution to the corresponding system of

equations. We now formally define elementary row operations. These are the key tool we will use to find

solutions to systems of equations.

Definition 1.11: Elementary Row Operations

The elementary row operations (also known as row operations) consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by any multiple of another row added to it.

Recall how we solved Example 1.9. We can do the exact same steps as above, except now in the

context of an augmented matrix and using row operations. The augmented matrix of this system is




1 3 6 25

2 7 14 58

0 2 5 19




Thus the first step in solving the system given by 1.5 would be to take (−2) times the first row of the

augmented matrix and add it to the second row,




1 3 6 25

0 1 2 8

0 2 5 19



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Note how this corresponds to 1.6. Next take (−2) times the second row and add to the third,




1 3 6 25

0 1 2 8

0 0 1 3




This augmented matrix corresponds to the system

x+3y+6z = 25

y+2z = 8

z = 3

which is the same as 1.7. By back substitution you obtain the solution x = 1,y = 2, and z = 3.

Through a systematic procedure of row operations, we can simplify an augmented matrix and carry it

to row-echelon form or reduced row-echelon form, which we define next. These forms are used to find

the solutions of the system of equations corresponding to the augmented matrix.

In the following definitions, the term leading entry refers to the first nonzero entry of a row when

scanning the row from left to right.

Definition 1.12: Row-Echelon Form

An augmented matrix is in row-echelon form if

1. All nonzero rows are above any rows of zeros.

2. Each leading entry of a row is in a column to the right of the leading entries of any row above

it.

3. Each leading entry of a row is equal to 1.

We also consider another reduced form of the augmented matrix which has one further condition.

Definition 1.13: Reduced Row-Echelon Form

An augmented matrix is in reduced row-echelon form if

1. All nonzero rows are above any rows of zeros.

2. Each leading entry of a row is in a column to the right of the leading entries of any rows above

it.

3. Each leading entry of a row is equal to 1.

4. All entries in a column above and below a leading entry are zero.

Notice that the first three conditions on a reduced row-echelon form matrix are the same as those for

row-echelon form.

Hence, every reduced row-echelon form matrix is also in row-echelon form. The converse is not

necessarily true; we cannot assume that every matrix in row-echelon form is also in reduced row-echelon
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form. However, it often happens that the row-echelon form is sufficient to provide information about the

solution of a system.

The following examples describe matrices in these various forms. As an exercise, take the time to

carefully verify that they are in the specified form.

Example 1.14: Not in Row-Echelon Form

The following augmented matrices are not in row-echelon form (and therefore also not in reduced

row-echelon form).




0 0 0 0

1 2 3 3

0 1 0 2

0 0 0 1

0 0 0 0




,




1 2 3

2 4 −6

4 0 7


 ,




0 2 3 3

1 5 0 2

7 5 0 1

0 0 1 0




Example 1.15: Matrices in Row-Echelon Form

The following augmented matrices are in row-echelon form, but not in reduced row-echelon form.




1 0 6 5 8 2

0 0 1 2 7 3

0 0 0 0 1 1

0 0 0 0 0 0


 ,




1 3 5 4

0 1 0 7

0 0 1 0

0 0 0 1

0 0 0 0




,




1 0 6 0

0 1 4 0

0 0 1 0

0 0 0 0




Notice that we could apply further row operations to these matrices to carry them to reduced row-

echelon form. Take the time to try that on your own. Consider the following matrices, which are in

reduced row-echelon form.

Example 1.16: Matrices in Reduced Row-Echelon Form

The following augmented matrices are in reduced row-echelon form.




1 0 0 5 0 0

0 0 1 2 0 0

0 0 0 0 1 1

0 0 0 0 0 0


 ,




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




,




1 0 0 4

0 1 0 3

0 0 1 2




One way in which the row-echelon form of a matrix is useful is in identifying the pivot positions and

pivot columns of the matrix.
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Definition 1.17: Pivot Position and Pivot Column

A pivot position in a matrix is the location of a leading entry in the row-echelon form of a matrix.

A pivot column is a column that contains a pivot position.

For example consider the following.

Example 1.18: Pivot Position

Let

A =




1 2 3 4

3 2 1 6

4 4 4 10




Where are the pivot positions and pivot columns of the augmented matrix A?

Solution. The row-echelon form of this matrix is




1 2 3 4

0 1 2 3
2

0 0 0 0




This is all we need in this example, but note that this matrix is not in reduced row-echelon form.

In order to identify the pivot positions in the original matrix, we look for the leading entries in the

row-echelon form of the matrix. Here, the entry in the first row and first column, as well as the entry in

the second row and second column are the leading entries. Hence, these locations are the pivot positions.

We identify the pivot positions in the original matrix, as in the following:




1 2 3 4

3 2 1 6

4 4 4 10




Thus the pivot columns in the matrix are the first two columns. ♠

The following is an algorithm for carrying a matrix to row-echelon form and reduced row-echelon

form. You may wish to use this algorithm to carry the above matrix to row-echelon form or reduced

row-echelon form yourself for practice.
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Algorithm 1.19: Reduced Row-Echelon Form Algorithm

This algorithm provides a method for using row operations to take a matrix to its reduced row-

echelon form. We begin with the matrix in its original form.

1. Starting from the left, find the first nonzero column. This is the first pivot column, and the

position at the top of this column is the first pivot position. Switch rows if necessary to place

a nonzero number in the first pivot position.

2. Use row operations to make the entries below the first pivot position (in the first pivot column)

equal to zero.

3. Ignoring the row containing the first pivot position, repeat steps 1 and 2 with the remaining

rows. Repeat the process until there are no more rows to modify.

4. Divide each nonzero row by the value of the leading entry, so that the leading entry becomes

1. The matrix will then be in row-echelon form.

The following step will carry the matrix from row-echelon form to reduced row-echelon form.

5. Moving from right to left, use row operations to create zeros in the entries of the pivot columns

which are above the pivot positions. The result will be a matrix in reduced row-echelon form.

Most often we will apply this algorithm to an augmented matrix in order to find the solution to a system

of linear equations. However, we can use this algorithm to compute the reduced row-echelon form of any

matrix which could be useful in other applications.

Consider the following example of Algorithm 1.19.

Example 1.20: Finding Row-Echelon Form and

Reduced Row-Echelon Form of a Matrix

Let

A =




0 −5 −4

1 4 3

5 10 7




Find the row-echelon form of A. Then complete the process until A is in reduced row-echelon form.

Solution. In working through this example, we will use the steps outlined in Algorithm 1.19.

1. The first pivot column is the first column of the matrix, as this is the first nonzero column from the

left. Hence the first pivot position is the one in the first row and first column. Switch the first two

rows to obtain a nonzero entry in the first pivot position, outlined in a box below.




1 4 3

0 −5 −4

5 10 7



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2. Step two involves creating zeros in the entries below the first pivot position. The first entry of the

second row is already a zero. All we need to do is subtract 5 times the first row from the third row.

The resulting matrix is 


1 4 3

0 −5 −4

0 −10 −8




3. Now ignore the top row. Apply steps 1 and 2 to the smaller matrix

[
−5 −4

−10 −8

]

In this matrix, the first column is a pivot column, and −5 is in the first pivot position. Therefore, we

need to create a zero below it. To do this, add −2 times the first row (of this matrix) to the second.

The resulting matrix is [
−5 −4

0 0

]

Our original matrix now looks like 


1 4 3

0 −5 −4

0 0 0




We can see that there are no more rows to modify.

4. Now, we need to create leading 1s in each row. The first row already has a leading 1 so no work is

needed here. Divide the second row by −5 to create a leading 1. The resulting matrix is




1 4 3

0 1 4
5

0 0 0




This matrix is now in row-echelon form.

5. Now create zeros in the entries above pivot positions in each column, in order to carry this matrix

all the way to reduced row-echelon form. Notice that there is no pivot position in the third column

so we do not need to create any zeros in this column! The column in which we need to create zeros

is the second. To do so, subtract 4 times the second row from the first row. The resulting matrix is




1 0 −1
5

0 1 4
5

0 0 0




This matrix is now in reduced row-echelon form. ♠

The above algorithm gives you a simple way to obtain the row-echelon form and reduced row-echelon

form of a matrix. The main idea is to do row operations in such a way as to end up with a matrix in

row-echelon form or reduced row-echelon form. This process is important because the resulting matrix

will allow you to describe the solutions to the corresponding linear system of equations in a meaningful

way.
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In the next example, we look at how to solve a system of equations using the corresponding augmented

matrix.

Example 1.21: Finding the Solution to a System

Give the complete solution to the following system of equations

2x+4y−3z =−1

5x+10y−7z =−2

3x+6y+5z = 9

Solution. The augmented matrix for this system is




2 4 −3 −1

5 10 −7 −2

3 6 5 9




In order to find the solution to this system, we wish to carry the augmented matrix to reduced row-

echelon form. We will do so using Algorithm 1.19. Notice that the first column is nonzero, so this is our

first pivot column. The first entry in the first row, 2, is the first leading entry and it is in the first pivot

position. We will use row operations to create zeros in the entries below the 2. First, replace the second

row with −5 times the first row plus 2 times the second row. This yields




2 4 −3 −1

0 0 1 1

3 6 5 9




Now, replace the third row with −3 times the first row plus to 2 times the third row. This yields




2 4 −3 −1

0 0 1 1

0 0 1 21




Now the entries in the first column below the pivot position are zeros. We now look for the second pivot

column, which in this case is column three. Here, the 1 in the second row and third column is in the pivot

position. We need to do just one row operation to create a zero below the 1.

Taking −1 times the second row and adding it to the third row yields




2 4 −3 −1

0 0 1 1

0 0 0 20




We could proceed with the algorithm to carry this matrix to row-echelon form or reduced row-echelon

form. However, remember that we are looking for the solutions to the system of equations. Take another

look at the third row of the matrix. Notice that it corresponds to the equation

0x+0y+0z = 20
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There is no solution to this equation because for all x,y,z, the left side will equal 0 and 0 6= 20. This shows

there is no solution to the given system of equations. In other words, this system is inconsistent. ♠

The following is another example of how to find the solution to a system of equations by carrying the

corresponding augmented matrix to reduced row-echelon form.

Example 1.22: An Infinite Set of Solutions

Give the complete solution to the system of equations

3x− y−5z = 9

y−10z = 0

−2x+ y =−6

(1.8)

Solution. The augmented matrix of this system is




3 −1 −5 9

0 1 −10 0

−2 1 0 −6




In order to find the solution to this system, we will carry the augmented matrix to reduced row-echelon

form, using Algorithm 1.19. The first column is the first pivot column. We want to use row operations to

create zeros beneath the first entry in this column, which is in the first pivot position. Replace the third

row with 2 times the first row added to 3 times the third row. This gives




3 −1 −5 9

0 1 −10 0

0 1 −10 0




Now, we have created zeros beneath the 3 in the first column, so we move on to the second pivot column

(which is the second column) and repeat the procedure. Take −1 times the second row and add to the third

row. 


3 −1 −5 9

0 1 −10 0

0 0 0 0




The entry below the pivot position in the second column is now a zero. Notice that we have no more pivot

columns because we have only two leading entries.

At this stage, we also want the leading entries to be equal to one. To do so, divide the first row by 3.




1 −1
3

−5
3

3

0 1 −10 0

0 0 0 0




This matrix is now in row-echelon form.

Let’s continue with row operations until the matrix is in reduced row-echelon form. This involves

creating zeros above the pivot positions in each pivot column. This requires only one step, which is to add
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1
3

times the second row to the first row.




1 0 −5 3

0 1 −10 0

0 0 0 0




This is in reduced row-echelon form, which you should verify using Definition 1.13. The equations

corresponding to this reduced row-echelon form are

x−5z = 3

y−10z = 0

or
x = 3+5z

y = 10z

Observe that z is not restrained by any equation. In fact, z can equal any number. For example, we can

let z = t, where we can choose t to be any number. In this context t is called a parameter . Therefore, the

solution set of this system is

x = 3+5t

y = 10t

z = t

where t is arbitrary. The system has an infinite set of solutions which are given by these equations. For

any value of t we select, x,y, and z will be given by the above equations. For example, if we choose t = 4

then the corresponding solution would be

x = 3+5(4) = 23

y = 10(4) = 40

z = 4

♠

In Example 1.22 the solution involved one parameter. It may happen that the solution to a system

involves more than one parameter, as shown in the following example.

Example 1.23: A Two Parameter Set of Solutions

Find the solution to the system
x+2y− z+w = 3

x+ y− z+w = 1

x+3y− z+w = 5

Solution. The augmented matrix is 


1 2 −1 1 3

1 1 −1 1 1

1 3 −1 1 5




We wish to carry this matrix to row-echelon form. Here, we will outline the row operations used. However,

make sure that you understand the steps in terms of Algorithm 1.19.
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Take −1 times the first row and add to the second. Then take −1 times the first row and add to the

third. This yields 


1 2 −1 1 3

0 −1 0 0 −2

0 1 0 0 2




Now add the second row to the third row and divide the second row by −1.




1 2 −1 1 3

0 1 0 0 2

0 0 0 0 0


 (1.9)

This matrix is in row-echelon form and we can see that x and y correspond to pivot columns, while

z and w do not. Therefore, we will assign parameters to the variables z and w. Assign the parameter s

to z and the parameter t to w. Then the first row yields the equation x+2y− s+ t = 3, while the second

row yields the equation y = 2. Since y = 2, the first equation becomes x+4− s+ t = 3 showing that the

solution is given by

x =−1+ s− t

y = 2

z = s

w = t

It is customary to write this solution in the form




x

y

z

w


=




−1+ s− t

2

s

t


 (1.10)

♠

This example shows a system of equations with an infinite solution set which depends on two param-

eters. It can be less confusing in the case of an infinite solution set to first place the augmented matrix in

reduced row-echelon form rather than just row-echelon form before seeking to write down the description

of the solution.

In the above steps, this means we don’t stop with the row-echelon form in equation 1.9. Instead we

first place it in reduced row-echelon form as follows.




1 0 −1 1 −1

0 1 0 0 2

0 0 0 0 0




Then the solution is y = 2 from the second row and x = −1+ z−w from the first. Thus letting z = s and

w = t, the solution is given by 1.10.

You can see here that there are two paths to the correct answer, which both yield the same answer.

Hence, either approach may be used. The process which we first used in the above solution is called

Gaussian Elimination. This process involves carrying the matrix to row-echelon form, converting back

to equations, and using back substitution to find the solution. When you do row operations until you obtain

reduced row-echelon form, the process is called Gauss-Jordan Elimination.
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We have now found solutions for systems of equations with no solution and infinitely many solutions,

with one parameter as well as two parameters. Recall the three types of solution sets which we discussed

in the previous section; no solution, one solution, and infinitely many solutions. Each of these types of

solutions could be identified from the graph of the system. It turns out that we can also identify the type

of solution from the reduced row-echelon form of the augmented matrix.

• No Solution: In the case where the system of equations has no solution, the reduced row-echelon

form of the augmented matrix will have a row of the form

[
0 0 0 | 1

]

This row indicates that the system is inconsistent and has no solution.

• One Solution: In the case where the system of equations has one solution, every column of the

coefficient matrix is a pivot column. The following is an example of an augmented matrix in reduced

row-echelon form for a system of equations with one solution.




1 0 0 5

0 1 0 0

0 0 1 2




• Infinitely Many Solutions: In the case where the system of equations has infinitely many solutions,

the solution contains parameters. There will be columns of the coefficient matrix which are not

pivot columns. The following are examples of augmented matrices in reduced row-echelon form for

systems of equations with infinitely many solutions.




1 0 0 5

0 1 2 −3

0 0 0 0




or [
1 0 0 5

0 1 0 −3

]

1.2.3 Uniqueness of the Reduced Row-Echelon Form

As we have seen in earlier sections, we know that every matrix can be brought into reduced row-echelon

form by a sequence of elementary row operations. Here we will prove that the resulting matrix is unique;

in other words, the resulting matrix in reduced row-echelon form does not depend upon the particular

sequence of elementary row operations or the order in which they were performed.

Let A be the augmented matrix of a homogeneous system of linear equations in the variables x1,x2, · · · ,xn

which is also in reduced row-echelon form. The matrix A divides the set of variables in two different types.

We say that xi is a basic variable whenever A has a leading 1 in column number i, in other words, when

column i is a pivot column. Otherwise we say that xi is a free variable.

Recall Example 1.23.
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Example 1.24: Basic and Free Variables

Find the basic and free variables in the system

x+2y− z+w = 3

x+ y− z+w = 1

x+3y− z+w = 5

Solution. Recall from the solution of Example 1.23 that the row-echelon form of the augmented matrix of

this system is given by 


1 2 −1 1 3

0 1 0 0 2

0 0 0 0 0




You can see that columns 1 and 2 are pivot columns. These columns correspond to variables x and y,

making these the basic variables. Columns 3 and 4 are not pivot columns, which means that z and w are

free variables.

We can write the solution to this system as

x =−1+ s− t

y = 2

z = s

w = t

Here the free variables are written as parameters, and the basic variables are given by linear functions

of these parameters. ♠

In general, all solutions can be written in terms of the free variables. In such a description, the free

variables can take any values (they become parameters), while the basic variables become simple linear

functions of these parameters. Indeed, a basic variable xi is a linear function of only those free variables

x j with j > i. This leads to the following observation.

Proposition 1.25: Basic and Free Variables

If xi is a basic variable of a homogeneous system of linear equations, then any solution of the system

with x j = 0 for all those free variables x j with j > i must also have xi = 0.

Using this proposition, we prove a lemma which will be used in the proof of the main result of this

section below.

Lemma 1.26: Solutions and the Reduced Row-Echelon Form of a Matrix

Let A and B be two distinct augmented matrices for two homogeneous systems of m equations in n

variables, such that A and B are each in reduced row-echelon form. Then, the two systems do not

have exactly the same solutions.

Proof. With respect to the linear systems associated with the matrices A and B, there are two cases to

consider:
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• Case 1: the two systems have the same basic variables

• Case 2: the two systems do not have the same basic variables

In case 1, the two matrices will have exactly the same pivot positions. However, since A and B are not

identical, there is some row of A which is different from the corresponding row of B and yet the rows each

have a pivot in the same column position. Let i be the index of this column position. Since the matrices are

in reduced row-echelon form, the two rows must differ at some entry in a column j > i. Let these entries

be a in A and b in B, where a 6= b. Since A is in reduced row-echelon form, if x j were a basic variable

for its linear system, we would have a = 0. Similarly, if x j were a basic variable for the linear system of

the matrix B, we would have b = 0. Since a and b are unequal, they cannot both be equal to 0, and hence

x j cannot be a basic variable for both linear systems. However, since the systems have the same basic

variables, x j must then be a free variable for each system. We now look at the solutions of the systems in

which x j is set equal to 1 and all other free variables are set equal to 0. For this choice of parameters, the

solution of the system for matrix A has xi =−a, while the solution of the system for matrix B has xi =−b,

so that the two systems have different solutions.

In case 2, there is a variable xi which is a basic variable for one matrix, let’s say A, and a free variable

for the other matrix B. The system for matrix B has a solution in which xi = 1 and x j = 0 for all other free

variables x j. However, by Proposition 1.25 this cannot be a solution of the system for the matrix A. This

completes the proof of case 2. ♠

Now, we say that the matrix B is equivalent to the matrix A provided that B can be obtained from A

by performing a sequence of elementary row operations beginning with A. The importance of this concept

lies in the following result.

Theorem 1.27: Equivalent Matrices

The two linear systems of equations corresponding to two equivalent augmented matrices have

exactly the same solutions.

The proof of this theorem is left as an exercise.

Now, we can use Lemma 1.26 and Theorem 1.27 to prove the main result of this section.

Theorem 1.28: Uniqueness of the Reduced Row-Echelon Form

Every matrix A is equivalent to a unique matrix in reduced row-echelon form.

Proof. Let A be an m×n matrix and let B and C be matrices in reduced row-echelon form, each equivalent

to A. It suffices to show that B =C.

Let A+ be the matrix A augmented with a new rightmost column consisting entirely of zeros. Similarly,

augment matrices B and C each with a rightmost column of zeros to obtain B+ and C+. Note that B+ and

C+ are matrices in reduced row-echelon form which are obtained from A+ by respectively applying the

same sequence of elementary row operations which were used to obtain B and C from A.

Now, A+, B+, and C+ can all be considered as augmented matrices of homogeneous linear systems

in the variables x1,x2, · · · ,xn. Because B+ and C+ are each equivalent to A+, Theorem 1.27 ensures that
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all three homogeneous linear systems have exactly the same solutions. By Lemma 1.26 we conclude that

B+ =C+. By construction, we must also have B =C. ♠

According to this theorem we can say that each matrix A has a unique reduced row-echelon form.

1.2.4 Rank and Homogeneous Systems

There is a special type of system which requires additional study. This type of system is called a homo-

geneous system of equations, which we defined above in Definition 1.3. Our focus in this section is to

consider what types of solutions are possible for a homogeneous system of equations.

Consider the following definition.

Definition 1.29: Trivial Solution

Consider the homogeneous system of equations given by

a11x1 +a12x2 + · · ·+a1nxn = 0

a21x1 +a22x2 + · · ·+a2nxn = 0
...

am1x1 +am2x2 + · · ·+amnxn = 0

Then, x1 = 0,x2 = 0, · · · ,xn = 0 is always a solution to this system. We call this the trivial solution.

If the system has a solution in which not all of the x1, · · · ,xn are equal to zero, then we call this solution

nontrivial . The trivial solution does not tell us much about the system, as it says that 0 = 0! Therefore,

when working with homogeneous systems of equations, we want to know when the system has a nontrivial

solution.

Suppose we have a homogeneous system of m equations, using n variables, and suppose that n > m.

In other words, there are more variables than equations. Then, it turns out that this system always has

a nontrivial solution. Not only will the system have a nontrivial solution, but it also will have infinitely

many solutions. It is also possible, but not required, to have a nontrivial solution if n = m and n < m.

Consider the following example.

Example 1.30: Solutions to a Homogeneous System of Equations

Find the nontrivial solutions to the following homogeneous system of equations

2x+ y− z = 0

x+2y−2z = 0

Solution. Notice that this system has m = 2 equations and n = 3 variables, so n > m. Therefore by our

previous discussion, we expect this system to have infinitely many solutions.

The process we use to find the solutions for a homogeneous system of equations is the same process
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we used in the previous section. First, we construct the augmented matrix, given by

[
2 1 −1 0

1 2 −2 0

]

Then, we carry this matrix to its reduced row-echelon form, given below.

[
1 0 0 0

0 1 −1 0

]

The corresponding system of equations is

x = 0

y− z = 0

Since z is not restrained by any equation, we know that this variable will become our parameter. Let z = t

where t is any number. Therefore, our solution has the form

x = 0

y = z = t

z = t

Hence this system has infinitely many solutions, with one parameter t. ♠

Suppose we were to write the solution to the previous example in another form. Specifically,

x = 0

y = 0+ t

z = 0+ t

can be written as 


x

y

z


=




0

0

0


+ t




0

1

1




Notice that we have constructed a column from the constants in the solution (all equal to 0), as well as a

column corresponding to the coefficients on t in each equation. While we will discuss this form of solution

more in further chapters, for now consider the column of coefficients of the parameter t. In this case, this

is the column




0

1

1


.

There is a special name for this column, which is basic solution. The basic solutions of a system are

columns constructed from the coefficients on parameters in the solution. We often denote basic solutions

by X1,X2 etc., depending on how many solutions occur. Therefore, Example 1.30 has the basic solution

X1 =




0

1

1


.

We explore this further in the following example.
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Example 1.31: Basic Solutions of a Homogeneous System

Consider the following homogeneous system of equations.

x+4y+3z = 0

3x+12y+9z = 0

Find the basic solutions to this system.

Solution. The augmented matrix of this system and the resulting reduced row-echelon form are

[
1 4 3 0

3 12 9 0

]
→ ·· · →

[
1 4 3 0

0 0 0 0

]

When written in equations, this system is given by

x+4y+3z = 0

Notice that only x corresponds to a pivot column. In this case, we will have two parameters, one for y and

one for z. Let y = s and z = t for any numbers s and t. Then, our solution becomes

x =−4s−3t

y = s

z = t

which can be written as 


x

y

z


=




0

0

0


+ s




−4

1

0


+ t




−3

0

1




You can see here that we have two columns of coefficients corresponding to parameters, specifically one

for s and one for t. Therefore, this system has two basic solutions! These are

X1 =




−4

1

0


 ,X2 =




−3

0

1




♠

We now present a new definition.

Definition 1.32: Linear Combination

Let X1, · · · ,Xn,V be column matrices. Then V is said to be a linear combination of the columns

X1, · · · ,Xn if there exist scalars, a1, · · · ,an such that

V = a1X1+ · · ·+anXn

A remarkable result of this section is that a linear combination of the basic solutions is again a solution

to the system. Even more remarkable is that every solution can be written as a linear combination of these
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solutions. Therefore, if we take a linear combination of the two solutions to Example 1.31, this would also

be a solution. For example, we could take the following linear combination

3




−4

1

0


+2




−3

0

1


=




−18

3

2




You should take a moment to verify that




x

y

z


=




−18

3

2




is in fact a solution to the system in Example 1.31.

Another way in which we can find out more information about the solutions of a homogeneous system

is to consider the rank of the associated coefficient matrix. We now define what is meant by the rank of a

matrix.

Definition 1.33: Rank of a Matrix

Let A be a matrix and consider any row-echelon form of A. Then, the number r of leading entries

of A does not depend on the row-echelon form you choose, and is called the rank of A. We denote

it by rank(A).

Similarly, we could count the number of pivot positions (or pivot columns) to determine the rank of A.

Example 1.34: Finding the Rank of a Matrix

Consider the matrix 


1 2 3

1 5 9

2 4 6




What is its rank?

Solution. First, we need to find the reduced row-echelon form of A. Through the usual algorithm, we find

that this is 


1 0 −1

0 1 2

0 0 0




Here we have two leading entries, or two pivot positions, shown above in boxes.The rank of A is r = 2.

♠

Notice that we would have achieved the same answer if we had found the row-echelon form of A

instead of the reduced row-echelon form.

Suppose we have a homogeneous system of m equations in n variables, and suppose that n > m. From

our above discussion, we know that this system will have infinitely many solutions. If we consider the
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rank of the coefficient matrix of this system, we can find out even more about the solution. Note that we

are looking at just the coefficient matrix, not the entire augmented matrix.

Theorem 1.35: Rank and Solutions to a Homogeneous System

Let A be the m× n coefficient matrix corresponding to a homogeneous system of equations, and

suppose A has rank r. Then, the solution to the corresponding system has n− r parameters.

Consider our above Example 1.31 in the context of this theorem. The system in this example has m = 2

equations in n = 3 variables. First, because n > m, we know that the system has a nontrivial solution, and

therefore infinitely many solutions. This tells us that the solution will contain at least one parameter. The

rank of the coefficient matrix can tell us even more about the solution! The rank of the coefficient matrix

of the system is 1, as it has one leading entry in row-echelon form. Theorem 1.35 tells us that the solution

will have n− r = 3−1 = 2 parameters. You can check that this is true in the solution to Example 1.31.

Notice that if n = m or n < m, it is possible to have either a unique solution (which will be the trivial

solution) or infinitely many solutions.

We are not limited to homogeneous systems of equations here. The rank of a matrix can be used to

learn about the solutions of any system of linear equations. In the previous section, we discussed that a

system of equations can have no solution, a unique solution, or infinitely many solutions. Suppose the

system is consistent, whether it is homogeneous or not. The following theorem tells us how we can use

the rank to learn about the type of solution we have.

Theorem 1.36: Rank and Solutions to a Consistent System of Equations

Let A be the m× (n+1) augmented matrix corresponding to a consistent system of equations in n

variables, and suppose A has rank r. Then

1. the system has a unique solution if r = n

2. the system has infinitely many solutions if r < n

We will not present a formal proof of this, but consider the following discussions.

1. No Solution The above theorem assumes that the system is consistent, that is, that it has a solution.

It turns out that it is possible for the augmented matrix of a system with no solution to have any

rank r as long as r > 1. Therefore, we must know that the system is consistent in order to use this

theorem!

2. Unique Solution Suppose r = n. Then, there is a pivot position in every column of the coefficient

matrix of A. Hence, there is a unique solution.

3. Infinitely Many Solutions Suppose r < n. Then there are infinitely many solutions. There are less

pivot positions (and hence less leading entries) than columns, meaning that not every column is a

pivot column. The columns which are not pivot columns correspond to parameters. In fact, in this

case we have n− r parameters.
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1.2.5 Balancing Chemical Reactions

The tools of linear algebra can also be used in the subject area of Chemistry, specifically for balancing

chemical reactions.

Consider the chemical reaction

SnO2 +H2 → Sn+H2O

Here the elements involved are tin (Sn), oxygen (O), and hydrogen (H). A chemical reaction occurs and

the result is a combination of tin (Sn) and water (H2O). When considering chemical reactions, we want

to investigate how much of each element we began with and how much of each element is involved in the

result.

An important theory we will use here is the mass balance theory. It tells us that we cannot create or

delete elements within a chemical reaction. For example, in the above expression, we must have the same

number of oxygen, tin, and hydrogen on both sides of the reaction. Notice that this is not currently the

case. For example, there are two oxygen atoms on the left and only one on the right. In order to fix this,

we want to find numbers x,y,z,w such that

xSnO2 + yH2 → zSn+wH2O

where both sides of the reaction have the same number of atoms of the various elements.

This is a familiar problem. We can solve it by setting up a system of equations in the variables x,y,z,w.

Thus you need

Sn : x = z

O : 2x = w

H : 2y = 2w

We can rewrite these equations as

Sn : x− z = 0

O : 2x−w = 0

H : 2y−2w = 0

The augmented matrix for this system of equations is given by




1 0 −1 0 0

2 0 0 −1 0

0 2 0 −2 0




The reduced row-echelon form of this matrix is




1 0 0 −1
2

0

0 1 0 −1 0

0 0 1 −1
2

0




The solution is given by

x− 1
2
w = 0

y−w = 0

z− 1
2
w = 0
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which we can write as
x = 1

2
t

y = t

z = 1
2
t

w = t

For example, let w = 2 and this would yield x = 1,y = 2, and z = 1. We can put these values back into

the expression for the reaction which yields

SnO2 +2H2 → Sn+2H2O

Observe that each side of the expression contains the same number of atoms of each element. This means

that it preserves the total number of atoms, as required, and so the chemical reaction is balanced.

Consider another example.

Example 1.37: Balancing a Chemical Reaction

Potassium is denoted by K, oxygen by O, phosphorus by P and hydrogen by H. Consider the

reaction given by

KOH +H3PO4 → K3PO4 +H2O

Balance this chemical reaction.

Solution. We will use the same procedure as above to solve this problem. We need to find values for

x,y,z,w such that

xKOH + yH3PO4 → zK3PO4 +wH2O

preserves the total number of atoms of each element.

Finding these values can be done by finding the solution to the following system of equations.

K : x = 3z

O : x+4y = 4z+w

H : x+3y = 2w

P : y = z

The augmented matrix for this system is




1 0 −3 0 0

1 4 −4 −1 0

1 3 0 −2 0

0 1 −1 0 0




and the reduced row-echelon form is




1 0 0 −1 0

0 1 0 −1
3

0

0 0 1 −1
3

0

0 0 0 0 0



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The solution is given by

x−w = 0

y− 1
3
w = 0

z− 1
3
w = 0

which can be written as
x = t

y = 1
3
t

z = 1
3
t

w = t

Choose a value for t, say 3. Then w = 3 and this yields x = 3,y = 1,z = 1. It follows that the balanced

reaction is given by

3KOH +1H3PO4 → 1K3PO4 +3H2O

Note that this results in the same number of atoms on both sides. ♠

Of course these numbers you are finding would typically be the number of moles of the molecules on

each side. Thus three moles of KOH added to one mole of H3PO4 yields one mole of K3PO4 and three

moles of H2O.

1.2.6 Dimensionless Variables

This section shows how solving systems of equations can be used to determine appropriate dimensionless

variables. It is only an introduction to this topic and considers a specific example of a simple airplane

wing shown below. We assume for simplicity that it is a flat plane at an angle to the wind which is blowing

against it with speed V as shown.

A
Bθ

V

The angle θ is called the angle of incidence, B is the span of the wing and A is called the chord.

Denote by l the lift. Then this should depend on various quantities like θ ,V ,B,A and so forth. Here is a

table which indicates various quantities on which it is reasonable to expect l to depend.

Variable Symbol Units

chord A m

span B m

angle incidence θ m0kg0 sec0

speed of wind V msec−1

speed of sound V0 msec−1

density of air ρ kgm−3

viscosity µ kgsec−1 m−1

lift l kgsec−2 m
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Here m denotes meters, sec refers to seconds and kg refers to kilograms. All of these are likely familiar

except for µ , which we will discuss in further detail now.

Viscosity is a measure of how much internal friction is experienced when the fluid moves. It is roughly

a measure of how “sticky" the fluid is. Consider a piece of area parallel to the direction of motion of the

fluid. To say that the viscosity is large is to say that the tangential force applied to this area must be large

in order to achieve a given change in speed of the fluid in a direction normal to the tangential force. Thus

µ (area)(velocity gradient) = tangential force

Hence

(units on µ)m2
( m

secm

)
= kgsec−2 m

Thus the units on µ are

kgsec−1 m−1

as claimed above.

Returning to our original discussion, you may think that we would want

l = f (A,B,θ ,V ,V0,ρ , µ)

This is very cumbersome because it depends on seven variables. Also, it is likely that without much care,

a change in the units such as going from meters to feet would result in an incorrect value for l. The way to

get around this problem is to look for l as a function of dimensionless variables multiplied by something

which has units of force. It is helpful because first of all, you will likely have fewer independent variables

and secondly, you could expect the formula to hold independent of the way of specifying length, mass and

so forth. One looks for

l = f (g1, · · · ,gk)ρV 2AB

where the units on ρV 2AB are
kg

m3

( m

sec

)2

m2 =
kg×m

sec2

which are the units of force. Each of these gi is of the form

Ax1Bx2θ x3V x4V
x5

0 ρx6 µx7 (1.11)

and each gi is independent of the dimensions. That is, this expression must not depend on meters, kilo-

grams, seconds, etc. Thus, placing in the units for each of these quantities, one needs

mx1mx2
(
mx4 sec−x4

)(
mx5 sec−x5

)(
kgm−3

)x6
(
kgsec−1 m−1

)x7 = m0kg0 sec0

Notice that there are no units on θ because it is just the radian measure of an angle. Hence its dimensions

consist of length divided by length, thus it is dimensionless. Then this leads to the following equations for

the xi.
m : x1 + x2 + x4 + x5 −3x6 − x7 = 0

sec : −x4 − x5 − x7 = 0

kg : x6 + x7 = 0

The augmented matrix for this system is



1 1 0 1 1 −3 −1 0

0 0 0 1 1 0 1 0

0 0 0 0 0 1 1 0



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The reduced row-echelon form is given by




1 1 0 0 0 0 1 0

0 0 0 1 1 0 1 0

0 0 0 0 0 1 1 0




and so the solutions are of the form

x1 = −x2 − x7

x3 = x3

x4 = −x5 − x7

x6 = −x7

Thus, in terms of vectors, the solution is




x1

x2

x3

x4

x5

x6

x7




=




−x2 − x7

x2

x3

−x5 − x7

x5

−x7

x7




Thus the free variables are x2,x3,x5,x7. By assigning values to these, we can obtain dimensionless variables

by placing the values obtained for the xi in the formula 1.11. For example, let x2 = 1 and all the rest of the

free variables are 0. This yields

x1 =−1,x2 = 1,x3 = 0,x4 = 0,x5 = 0,x6 = 0,x7 = 0

The dimensionless variable is then A−1B1. This is the ratio between the span and the chord. It is called

the aspect ratio, denoted as AR. Next let x3 = 1 and all others equal zero. This gives for a dimensionless

quantity the angle θ . Next let x5 = 1 and all others equal zero. This gives

x1 = 0,x2 = 0,x3 = 0,x4 =−1,x5 = 1,x6 = 0,x7 = 0

Then the dimensionless variable is V−1V 1
0 . However, it is written as V/V0. This is called the Mach number

M . Finally, let x7 = 1 and all the other free variables equal 0. Then

x1 =−1,x2 = 0,x3 = 0,x4 =−1,x5 = 0,x6 =−1,x7 = 1

then the dimensionless variable which results from this is A−1V−1ρ−1µ . It is customary to write it as

Re = (AVρ)/µ . This one is called the Reynold’s number. It is the one which involves viscosity. Thus we

would look for

l = f (Re,AR,θ ,M )kg×m/sec2

This is quite interesting because it is easy to vary Re by simply adjusting the velocity or A but it is hard to

vary things like µ or ρ . Note that all the quantities are easy to adjust. Now this could be used, along with

wind tunnel experiments to get a formula for the lift which would be reasonable. You could also consider

more variables and more complicated situations in the same way.
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1.2.7 An Application to Resistor Networks

The tools of linear algebra can be used to study the application of resistor networks. An example of an

electrical circuit is below.

18 volts

2Ω

4Ω

2Ω

	I1

The jagged lines ( ) denote resistors and the numbers next to them give their resistance in

ohms, written as Ω. The voltage source ( ) causes the current to flow in the direction from the shorter

of the two lines toward the longer (as indicated by the arrow). The current for a circuit is labelled Ik.

In the above figure, the current I1 has been labelled with an arrow in the counter clockwise direction.

This is an entirely arbitrary decision and we could have chosen to label the current in the clockwise

direction. With our choice of direction here, we define a positive current to flow in the counter clockwise

direction and a negative current to flow in the clockwise direction.

The goal of this section is to use the values of resistors and voltage sources in a circuit to determine

the current. An essential theorem for this application is Kirchhoff’s law.

Theorem 1.38: Kirchhoff’s Law

The sum of the resistance (R) times the amps (I) in the counter clockwise direction around a loop

equals the sum of the voltage sources (V ) in the same direction around the loop.

Kirchhoff’s law allows us to set up a system of linear equations and solve for any unknown variables.

When setting up this system, it is important to trace the circuit in the counter clockwise direction. If a

resistor or voltage source is crossed against this direction, the related term must be given a negative sign.

We will explore this in the next example where we determine the value of the current in the initial

diagram.
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Example 1.39: Solving for Current

Applying Kirchhoff’s Law to the diagram below, determine the value for I1.

18 volts

2Ω

4Ω

2Ω

	I1

Solution. Begin in the bottom left corner, and trace the circuit in the counter clockwise direction. At the

first resistor, multiplying resistance and current gives 2I1. Continuing in this way through all three resistors

gives 2I1 +4I1 +2I1. This must equal the voltage source in the same direction. Notice that the direction

of the voltage source matches the counter clockwise direction specified, so the voltage is positive.

Therefore the equation and solution are given by

2I1 +4I1 +2I1 = 18

8I1 = 18

I1 =
9

4
A

Since the answer is positive, this confirms that the current flows counter clockwise. ♠

Example 1.40: Solving for Current

Applying Kirchhoff’s Law to the diagram below, determine the value for I1.

4Ω

27 volts
3Ω

1Ω

6Ω

	I1

Solution. Begin in the top left corner this time, and trace the circuit in the counter clockwise direction.

At the first resistor, multiplying resistance and current gives 4I1. Continuing in this way through the four
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resistors gives 4I1 +6I1 +1I1 +3I1. This must equal the voltage source in the same direction. Notice that

the direction of the voltage source is opposite to the counter clockwise direction, so the voltage is negative.

Therefore the equation and solution are given by

4I1 +6I1 +1I1 +3I1 = −27

14I1 = −27

I1 = −27

14
A

Since the answer is negative, this tells us that the current flows clockwise. ♠

A more complicated example follows. Two of the circuits below may be familiar; they were examined

in the examples above. However as they are now part of a larger system of circuits, the answers will differ.

Example 1.41: Unknown Currents

The diagram below consists of four circuits. The current (Ik) in the four circuits is denoted by

I1, I2, I3, I4. Using Kirchhoff’s Law, write an equation for each circuit and solve for each current.

Solution. The circuits are given in the following diagram.

18 volts

2Ω

4Ω

2Ω 27 volts
3Ω

1Ω

6Ω

2Ω

3Ω

1Ω

5Ω

23 volts

	I2 	I3

	I4	I1

Starting with the top left circuit, multiply the resistance by the amps and sum the resulting products.

Specifically, consider the resistor labelled 2Ω that is part of the circuits of I1 and I2. Notice that current I2

runs through this in a positive (counter clockwise) direction, and I1 runs through in the opposite (negative)

direction. The product of resistance and amps is then 2(I2− I1) = 2I2−2I1. Continue in this way for each

resistor, and set the sum of the products equal to the voltage source to write the equation:

2I2 −2I1 +4I2 −4I3 +2I2 = 18
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The above process is used on each of the other three circuits, and the resulting equations are:

Upper right circuit:

4I3 −4I2 +6I3 −6I4 + I3 +3I3 =−27

Lower right circuit:

3I4 +2I4 +6I4 −6I3 + I4 − I1 = 0

Lower left circuit:

5I1 + I1 − I4 +2I1 −2I2 =−23

Notice that the voltage for the upper right and lower left circuits are negative due to the clockwise

direction they indicate.

The resulting system of four equations in four unknowns is

2I2 −2I1 +4I2 −4I3 +2I2 = 18

4I3 −4I2 +6I3 −6I4 + I3 + I3 = −27

2I4 +3I4 +6I4 −6I3 + I4 − I1 = 0

5I1 + I1 − I4 +2I1 −2I2 = −23

Simplifying and rearranging with variables in order, we have:

−2I1 +8I2 −4I3 = 18

−4I2 +14I3 −6I4 = −27

−I1 −6I3 +12I4 = 0

8I1 −2I2 − I4 = −23

The augmented matrix is 


−2 8 −4 0 18

0 −4 14 −6 −27

−1 0 −6 12 0

8 −2 0 −1 −23




The solution to this matrix is

I1 = −3A

I2 =
1

4
A

I3 = −5

2
A

I4 = −3

2
A

This tells us that currents I1, I3, and I4 travel clockwise while I2 travels counter clockwise. ♠



42 Systems of Equations

Exercises

Exercise 1.2.1 Find the point (x1,y1) which lies on both lines, x+3y = 1 and 4x− y = 3.

Exercise 1.2.2 Find the point of intersection of the two lines 3x+ y = 3 and x+2y = 1.

Exercise 1.2.3 Do the three lines, x + 2y = 1,2x − y = 1, and 4x + 3y = 3 have a common point of

intersection? If so, find the point and if not, tell why they don’t have such a common point of intersection.

Exercise 1.2.4 Do the three planes, x+ y−3z = 2, 2x+ y+ z = 1, and 3x+2y−2z = 0 have a common

point of intersection? If so, find one and if not, tell why there is no such point.

Exercise 1.2.5 Four times the weight of Gaston is 150 pounds more than the weight of Ichabod. Four

times the weight of Ichabod is 660 pounds less than seventeen times the weight of Gaston. Four times the

weight of Gaston plus the weight of Siegfried equals 290 pounds. Brunhilde would balance all three of the

others. Find the weights of the four people.

Exercise 1.2.6 Consider the following augmented matrix in which ∗ denotes an arbitrary number and �

denotes a nonzero number. Determine whether the given augmented matrix is consistent. If consistent, is

the solution unique? 


� ∗ ∗ ∗ ∗ ∗
0 � ∗ ∗ 0 ∗
0 0 � ∗ ∗ ∗
0 0 0 0 � ∗




Exercise 1.2.7 Consider the following augmented matrix in which ∗ denotes an arbitrary number and �

denotes a nonzero number. Determine whether the given augmented matrix is consistent. If consistent, is

the solution unique? 


� ∗ ∗ ∗
0 � ∗ ∗
0 0 � ∗




Exercise 1.2.8 Consider the following augmented matrix in which ∗ denotes an arbitrary number and �

denotes a nonzero number. Determine whether the given augmented matrix is consistent. If consistent, is

the solution unique? 


� ∗ ∗ ∗ ∗ ∗
0 � 0 ∗ 0 ∗
0 0 0 � ∗ ∗
0 0 0 0 � ∗




Exercise 1.2.9 Consider the following augmented matrix in which ∗ denotes an arbitrary number and �

denotes a nonzero number. Determine whether the given augmented matrix is consistent. If consistent, is
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the solution unique? 


� ∗ ∗ ∗ ∗ ∗
0 � ∗ ∗ 0 ∗
0 0 0 0 � 0

0 0 0 0 ∗ �




Exercise 1.2.10 Suppose a system of equations has fewer equations than variables. Will such a system

necessarily be consistent? If so, explain why and if not, give an example which is not consistent.

Exercise 1.2.11 If a system of equations has more equations than variables, can it have a solution? If so,

give an example and if not, tell why not.

Exercise 1.2.12 Find h such that [
2 h 4

3 6 7

]

is the augmented matrix of an inconsistent system.

Exercise 1.2.13 Find h such that [
1 h 3

2 4 6

]

is the augmented matrix of a consistent system.

Exercise 1.2.14 Find h such that [
1 1 4

3 h 12

]

is the augmented matrix of a consistent system.

Exercise 1.2.15 Choose h and k such that the augmented matrix shown has each of the following:

(a) one solution

(b) no solution

(c) infinitely many solutions

[
1 h 2

2 4 k

]

Exercise 1.2.16 Choose h and k such that the augmented matrix shown has each of the following:

(a) one solution

(b) no solution

(c) infinitely many solutions
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[
1 2 2

2 h k

]

Exercise 1.2.17 Determine if the system is consistent. If so, is the solution unique?

x+2y+ z−w = 2

x− y+ z+w = 1

2x+ y− z = 1

4x+2y+ z = 5

Exercise 1.2.18 Determine if the system is consistent. If so, is the solution unique?

x+2y+ z−w = 2

x− y+ z+w = 0

2x+ y− z = 1

4x+2y+ z = 3

Exercise 1.2.19 Determine which matrices are in reduced row-echelon form.

(a)

[
1 2 0

0 1 7

]

(b)




1 0 0 0

0 0 1 2

0 0 0 0




(c)




1 1 0 0 0 5

0 0 1 2 0 4

0 0 0 0 1 3




Exercise 1.2.20 Row reduce the following matrix to obtain the row-echelon form. Then continue to obtain

the reduced row-echelon form. 


2 −1 3 −1

1 0 2 1

1 −1 1 −2




Exercise 1.2.21 Row reduce the following matrix to obtain the row-echelon form. Then continue to obtain

the reduced row-echelon form. 


0 0 −1 −1

1 1 1 0

1 1 0 −1



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Exercise 1.2.22 Row reduce the following matrix to obtain the row-echelon form. Then continue to obtain

the reduced row-echelon form. 


3 −6 −7 −8

1 −2 −2 −2

1 −2 −3 −4




Exercise 1.2.23 Row reduce the following matrix to obtain the row-echelon form. Then continue to obtain

the reduced row-echelon form. 


2 4 5 15

1 2 3 9

1 2 2 6




Exercise 1.2.24 Row reduce the following matrix to obtain the row-echelon form. Then continue to obtain

the reduced row-echelon form. 


4 −1 7 10

1 0 3 3

1 −1 −2 1




Exercise 1.2.25 Row reduce the following matrix to obtain the row-echelon form. Then continue to obtain

the reduced row-echelon form. 


3 5 −4 2

1 2 −1 1

1 1 −2 0




Exercise 1.2.26 Row reduce the following matrix to obtain the row-echelon form. Then continue to obtain

the reduced row-echelon form. 


−2 3 −8 7

1 −2 5 −5

1 −3 7 −8




Exercise 1.2.27 Find the solution of the system whose augmented matrix is




1 2 0 2

1 3 4 2

1 0 2 1




Exercise 1.2.28 Find the solution of the system whose augmented matrix is




1 2 0 2

2 0 1 1

3 2 1 3



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Exercise 1.2.29 Find the solution of the system whose augmented matrix is

[
1 1 0 1

1 0 4 2

]

Exercise 1.2.30 Find the solution of the system whose augmented matrix is




1 0 2 1 1 2

0 1 0 1 2 1

1 2 0 0 1 3

1 0 1 0 2 2




Exercise 1.2.31 Find the solution of the system whose augmented matrix is




1 0 2 1 1 2

0 1 0 1 2 1

0 2 0 0 1 3

1 −1 2 2 2 0




Exercise 1.2.32 Find the solution to the system of equations, 7x+14y+15z = 22, 2x+4y+3z = 5, and

3x+6y+10z = 13.

Exercise 1.2.33 Find the solution to the system of equations, 3x− y+4z = 6, y+8z = 0, and −2x+ y =
−4.

Exercise 1.2.34 Find the solution to the system of equations, 9x−2y+4z =−17, 13x−3y+6z = −25,

and −2x− z = 3.

Exercise 1.2.35 Find the solution to the system of equations, 65x+84y+16z = 546, 81x+105y+20z =
682, and 84x+110y+21z = 713.

Exercise 1.2.36 Find the solution to the system of equations, 8x+2y+3z = −3,8x+3y+3z = −1, and

4x+ y+3z =−9.

Exercise 1.2.37 Find the solution to the system of equations, −8x+ 2y+ 5z = 18,−8x+ 3y+ 5z = 13,

and −4x+ y+5z = 19.

Exercise 1.2.38 Find the solution to the system of equations, 3x− y−2z = 3, y−4z = 0, and −2x+ y =
−2.

Exercise 1.2.39 Find the solution to the system of equations, −9x+15y = 66,−11x+18y = 79, −x+y =
4, and z = 3.
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Exercise 1.2.40 Find the solution to the system of equations, −19x+ 8y = −108, −71x+ 30y = −404,

−2x+ y =−12, 4x+ z = 14.

Exercise 1.2.41 Suppose a system of equations has fewer equations than variables and you have found a

solution to this system of equations. Is it possible that your solution is the only one? Explain.

Exercise 1.2.42 Suppose a system of linear equations has a 2×4 augmented matrix and the last column

is a pivot column. Could the system of linear equations be consistent? Explain.

Exercise 1.2.43 Suppose the coefficient matrix of a system of n equations with n variables has the property

that every column is a pivot column. Does it follow that the system of equations must have a solution? If

so, must the solution be unique? Explain.

Exercise 1.2.44 Suppose there is a unique solution to a system of linear equations. What must be true of

the pivot columns in the augmented matrix?

Exercise 1.2.45 The steady state temperature, u, of a plate solves Laplace’s equation, ∆u = 0. One way

to approximate the solution is to divide the plate into a square mesh and require the temperature at each

node to equal the average of the temperature at the four adjacent nodes. In the following picture, the

numbers represent the observed temperature at the indicated nodes. Find the temperature at the interior

nodes, indicated by x,y,z, and w. One of the equations is z = 1
4
(10+0+w+ x).

1010

20

20 x

y

z

w

3030

0

0

Exercise 1.2.46 Find the rank of the following matrix.




4 −16 −1 −5

1 −4 0 −1

1 −4 −1 −2




Exercise 1.2.47 Find the rank of the following matrix.




3 6 5 12

1 2 2 5

1 2 1 2




Exercise 1.2.48 Find the rank of the following matrix.




0 0 −1 0 3

1 4 1 0 −8

1 4 0 1 2

−1 −4 0 −1 −2



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Exercise 1.2.49 Find the rank of the following matrix.



4 −4 3 −9

1 −1 1 −2

1 −1 0 −3




Exercise 1.2.50 Find the rank of the following matrix.



2 0 1 0 1

1 0 1 0 0

1 0 0 1 7

1 0 0 1 7




Exercise 1.2.51 Find the rank of the following matrix.



4 15 29

1 4 8

1 3 5

3 9 15




Exercise 1.2.52 Find the rank of the following matrix.



0 0 −1 0 1

1 2 3 −2 −18

1 2 2 −1 −11

−1 −2 −2 1 11




Exercise 1.2.53 Find the rank of the following matrix.



1 −2 0 3 11

1 −2 0 4 15

1 −2 0 3 11

0 0 0 0 0




Exercise 1.2.54 Find the rank of the following matrix.



−2 −3 −2

1 1 1

1 0 1

−3 0 −3




Exercise 1.2.55 Find the rank of the following matrix.



4 4 20 −1 17

1 1 5 0 5

1 1 5 −1 2

3 3 15 −3 6



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Exercise 1.2.56 Find the rank of the following matrix.




−1 3 4 −3 8

1 −3 −4 2 −5

1 −3 −4 1 −2

−2 6 8 −2 4




Exercise 1.2.57 Suppose A is an m× n matrix. Explain why the rank of A is always no larger than

min(m,n) .

Exercise 1.2.58 State whether each of the following sets of data are possible for the matrix equation

AX = B. If possible, describe the solution set. That is, tell whether there exists a unique solution, no

solution or infinitely many solutions. Here, [A|B] denotes the augmented matrix.

(a) A is a 5×6 matrix, rank(A) = 4 and rank [A|B] = 4.

(b) A is a 3×4 matrix, rank(A) = 3 and rank [A|B] = 2.

(c) A is a 4×2 matrix, rank(A) = 4 and rank [A|B] = 4.

(d) A is a 5×5 matrix, rank(A) = 4 and rank [A|B] = 5.

(e) A is a 4×2 matrix, rank(A) = 2 and rank [A|B] = 2.

Exercise 1.2.59 Consider the system −5x+2y− z = 0 and −5x−2y− z = 0. Both equations equal zero

and so −5x+ 2y− z = −5x− 2y− z which is equivalent to y = 0. Does it follow that x and z can equal

anything? Notice that when x = 1, z = −4, and y = 0 are plugged in to the equations, the equations do

not equal 0. Why?

Exercise 1.2.60 Balance the following chemical reactions.

(a) KNO3 +H2CO3 → K2CO3 +HNO3

(b) AgI +Na2S → Ag2S+NaI

(c) Ba3N2 +H2O → Ba(OH)2 +NH3

(d) CaCl2+Na3PO4 →Ca3 (PO4)2 +NaCl

Exercise 1.2.61 In the section on dimensionless variables it was observed that ρV 2AB has the units of

force. Describe a systematic way to obtain such combinations of the variables which will yield something

which has the units of force.

Exercise 1.2.62 Consider the following diagram of four circuits.
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5 volts

2Ω

5Ω

3Ω 20 volts
1Ω

1Ω

6Ω

3Ω

2Ω

1Ω

4Ω

10 volts

	I2 	I3

	I4	I1

The current in amps in the four circuits is denoted by I1, I2, I3, I4 and it is understood that the motion is

in the counter clockwise direction. If Ik ends up being negative, then it just means the current flows in the

clockwise direction.

In the above diagram, the top left circuit should give the equation

2I2 −2I1 +5I2 −5I3 +3I2 = 5

For the circuit on the lower left, you should have

4I1 + I1 − I4 +2I1 −2I2 =−10

Write equations for each of the other two circuits and then give a solution to the resulting system of

equations.
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Exercise 1.2.63 Consider the following diagram of three circuits.

10 volts

2Ω

5Ω

3Ω 12 volts
7Ω

3Ω

1Ω

4Ω

4Ω

2Ω

	I1 	I2

	I3

The current in amps in the four circuits is denoted by I1, I2, I3 and it is understood that the motion is

in the counter clockwise direction. If Ik ends up being negative, then it just means the current flows in the

clockwise direction.

Find I1, I2, I3.





Chapter 2

Matrices

2.1 Matrix Arithmetic

Outcomes

A. Perform the matrix operations of matrix addition, scalar multiplication, transposition and ma-

trix multiplication. Identify when these operations are not defined. Represent these operations

in terms of the entries of a matrix.

B. Prove algebraic properties for matrix addition, scalar multiplication, transposition, and ma-

trix multiplication. Apply these properties to manipulate an algebraic expression involving

matrices.

C. Compute the inverse of a matrix using row operations, and prove identities involving matrix

inverses.

E. Solve a linear system using matrix algebra.

F. Use multiplication by an elementary matrix to apply row operations.

G. Write a matrix as a product of elementary matrices.

You have now solved systems of equations by writing them in terms of an augmented matrix and

then doing row operations on this augmented matrix. It turns out that matrices are important not only for

systems of equations but also in many applications.

Recall that a matrix is a rectangular array of numbers. Several of them are referred to as matrices.

For example, here is a matrix. 


1 2 3 4

5 2 8 7

6 −9 1 2


 (2.1)

Recall that the size or dimension of a matrix is defined as m×n where m is the number of rows and n is

the number of columns. The above matrix is a 3×4 matrix because there are three rows and four columns.

You can remember the columns are like columns in a Greek temple. They stand upright while the rows

lay flat like rows made by a tractor in a plowed field.

When specifying the size of a matrix, you always list the number of rows before the number of

columns.You might remember that you always list the rows before the columns by using the phrase

Rowman Catholic.

53
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Consider the following definition.

Definition 2.1: Square Matrix

A matrix A which has size n×n is called a square matrix . In other words, A is a square matrix if

it has the same number of rows and columns.

There is some notation specific to matrices which we now introduce. We denote the columns of a

matrix A by A j as follows

A =
[

A1 A2 · · · An

]

Therefore, A j is the jth column of A, when counted from left to right.

The individual elements of the matrix are called entries or components of A. Elements of the matrix

are identified according to their position. The (i, j)-entry of a matrix is the entry in the ith row and jth

column. For example, in the matrix 2.1 above, 8 is in position (2,3) (and is called the (2,3)-entry) because

it is in the second row and the third column.

In order to remember which matrix we are speaking of, we will denote the entry in the ith row and

the jth column of matrix A by ai j. Then, we can write A in terms of its entries, as A =
[
ai j

]
. Using this

notation on the matrix in 2.1, a23 = 8,a32 =−9,a12 = 2, etc.

There are various operations which are done on matrices of appropriate sizes. Matrices can be added

to and subtracted from other matrices, multiplied by a scalar, and multiplied by other matrices. We will

never divide a matrix by another matrix, but we will see later how matrix inverses play a similar role.

In doing arithmetic with matrices, we often define the action by what happens in terms of the entries

(or components) of the matrices. Before looking at these operations in depth, consider a few general

definitions.

Definition 2.2: The Zero Matrix

The m×n zero matrix is the m×n matrix having every entry equal to zero. It is denoted by 0.

One possible zero matrix is shown in the following example.

Example 2.3: The Zero Matrix

The 2×3 zero matrix is 0 =

[
0 0 0

0 0 0

]
.

Note there is a 2×3 zero matrix, a 3×4 zero matrix, etc. In fact there is a zero matrix for every size!

Definition 2.4: Equality of Matrices

Let A and B be two m×n matrices. Then A = B means that for A =
[
ai j

]
and B =

[
bi j

]
, ai j = bi j

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
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In other words, two matrices are equal exactly when they are the same size and the corresponding

entries are identical. Thus 


0 0

0 0

0 0


 6=

[
0 0

0 0

]

because they are different sizes. Also,
[

0 1

3 2

]
6=
[

1 0

2 3

]

because, although they are the same size, their corresponding entries are not identical.

In the following section, we explore addition of matrices.

2.1.1 Addition of Matrices

When adding matrices, all matrices in the sum need have the same size. For example,



1 2

3 4

5 2




and [
−1 4 8

2 8 5

]

cannot be added, as one has size 3×2 while the other has size 2×3.

However, the addition 


4 6 3

5 0 4

11 −2 3


+




0 5 0

4 −4 14

1 2 6




is possible.

The formal definition is as follows.

Definition 2.5: Addition of Matrices

Let A =
[
ai j

]
and B =

[
bi j

]
be two m× n matrices. Then A+B = C where C is the m× n matrix

C =
[
ci j

]
defined by

ci j = ai j +bi j

This definition tells us that when adding matrices, we simply add corresponding entries of the matrices.

This is demonstrated in the next example.

Example 2.6: Addition of Matrices of Same Size

Add the following matrices, if possible.

A =

[
1 2 3

1 0 4

]
,B =

[
5 2 3

−6 2 1

]
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Solution. Notice that both A and B are of size 2×3. Since A and B are of the same size, the addition is

possible. Using Definition 2.5, the addition is done as follows.

A+B =

[
1 2 3

1 0 4

]
+

[
5 2 3

−6 2 1

]
=

[
1+5 2+2 3+3

1+−6 0+2 4+1

]
=

[
6 4 6

−5 2 5

]

♠

Addition of matrices obeys very much the same properties as normal addition with numbers. Note that

when we write for example A+B then we assume that both matrices are of equal size so that the operation

is indeed possible.

Proposition 2.7: Properties of Matrix Addition

Let A,B and C be matrices. Then, the following properties hold.

• Commutative Law of Addition

A+B = B+A (2.2)

• Associative Law of Addition

(A+B)+C = A+(B+C) (2.3)

• Existence of an Additive Identity

There exists a zero matrix 0 such that

A+0 = A
(2.4)

• Existence of an Additive Inverse

There exists a matrix −A such that

A+(−A) = 0
(2.5)

Proof. Consider the Commutative Law of Addition given in 2.2. Let A,B,C, and D be matrices such that

A+B = C and B+A = D. We want to show that D = C. To do so, we will use the definition of matrix

addition given in Definition 2.5. Now,

ci j = ai j +bi j = bi j +ai j = di j

Therefore, C = D because the i jth entries are the same for all i and j. Note that the conclusion follows

from the commutative law of addition of numbers, which says that if a and b are two numbers, then

a+b = b+a. The proof of the other results are similar, and are left as an exercise. ♠

We call the zero matrix in 2.4 the additive identity. Similarly, we call the matrix −A in 2.5 the

additive inverse. −A is defined to equal (−1)A = [−ai j]. In other words, every entry of A is multiplied

by −1. In the next section we will study scalar multiplication in more depth to understand what is meant

by (−1)A.
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2.1.2 Scalar Multiplication of Matrices

Recall that we use the word scalar when referring to numbers. Therefore, scalar multiplication of a matrix

is the multiplication of a matrix by a number. To illustrate this concept, consider the following example in

which a matrix is multiplied by the scalar 3.

3




1 2 3 4

5 2 8 7

6 −9 1 2


=




3 6 9 12

15 6 24 21

18 −27 3 6




The new matrix is obtained by multiplying every entry of the original matrix by the given scalar.

The formal definition of scalar multiplication is as follows.

Definition 2.8: Scalar Multiplication of Matrices

If A =
[
ai j

]
and k is a scalar, then kA =

[
kai j

]
.

Consider the following example.

Example 2.9: Effect of Multiplication by a Scalar

Find the result of multiplying the following matrix A by 7.

A =

[
2 0

1 −4

]

Solution. By Definition 2.8, we multiply each element of A by 7. Therefore,

7A = 7

[
2 0

1 −4

]
=

[
7(2) 7(0)
7(1) 7(−4)

]
=

[
14 0

7 −28

]

♠

Similarly to addition of matrices, there are several properties of scalar multiplication which hold.
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Proposition 2.10: Properties of Scalar Multiplication

Let A,B be matrices, and k, p be scalars. Then, the following properties hold.

• Distributive Law over Matrix Addition

k (A+B) = kA+ kB

• Distributive Law over Scalar Addition

(k+ p)A = kA+ pA

• Associative Law for Scalar Multiplication

k (pA) = (kp)A

• Rule for Multiplication by 1

1A = A

The proof of this proposition is similar to the proof of Proposition 2.7 and is left an exercise to the

reader.

2.1.3 Multiplication of Matrices

The next important matrix operation we will explore is multiplication of matrices. The operation of matrix

multiplication is one of the most important and useful of the matrix operations. Throughout this section,

we will also demonstrate how matrix multiplication relates to linear systems of equations.

First, we provide a formal definition of row and column vectors.

Definition 2.11: Row and Column Vectors

Matrices of size n×1 or 1×n are called vectors. If X is such a matrix, then we write xi to denote

the entry of X in the ith row of a column matrix, or the ith column of a row matrix.

The n×1 matrix

X =




x1
...

xn




is called a column vector. The 1×n matrix

X =
[

x1 · · · xn

]

is called a row vector.

We may simply use the term vector throughout this text to refer to either a column or row vector. If

we do so, the context will make it clear which we are referring to.



2.1. Matrix Arithmetic 59

In this chapter, we will again use the notion of linear combination of vectors as in Definition 9.12. In

this context, a linear combination is a sum consisting of vectors multiplied by scalars. For example,

[
50

122

]
= 7

[
1

4

]
+8

[
2

5

]
+9

[
3

6

]

is a linear combination of three vectors.

It turns out that we can express any system of linear equations as a linear combination of vectors. In

fact, the vectors that we will use are just the columns of the corresponding augmented matrix!

Definition 2.12: The Vector Form of a System of Linear Equations

Suppose we have a system of equations given by

a11x1 + · · ·+a1nxn = b1
...

am1x1 + · · ·+amnxn = bm

We can express this system in vector form which is as follows:

x1




a11

a21
...

am1


+ x2




a12

a22
...

am2


+ · · ·+ xn




a1n

a2n
...

amn


=




b1

b2
...

bm




Notice that each vector used here is one column from the corresponding augmented matrix. There is

one vector for each variable in the system, along with the constant vector.

The first important form of matrix multiplication is multiplying a matrix by a vector. Consider the

product given by
[

1 2 3

4 5 6

]


7

8

9




We will soon see that this equals

7

[
1

4

]
+8

[
2

5

]
+9

[
3

6

]
=

[
50

122

]

In general terms,

[
a11 a12 a13

a21 a22 a23

]


x1

x2

x3


 = x1

[
a11

a21

]
+ x2

[
a12

a22

]
+ x3

[
a13

a23

]

=

[
a11x1 +a12x2 +a13x3

a21x1 +a22x2 +a23x3

]

Thus you take x1 times the first column, add to x2 times the second column, and finally x3 times the third

column. The above sum is a linear combination of the columns of the matrix. When you multiply a matrix
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on the left by a vector on the right, the numbers making up the vector are just the scalars to be used in the

linear combination of the columns as illustrated above.

Here is the formal definition of how to multiply an m×n matrix by an n×1 column vector.

Definition 2.13: Multiplication of Vector by Matrix

Let A =
[
ai j

]
be an m×n matrix and let X be an n×1 matrix given by

A = [A1 · · ·An] ,X =




x1
...

xn




Then the product AX is the m×1 column vector which equals the following linear combination of

the columns of A:

x1A1 + x2A2 + · · ·+ xnAn =
n

∑
j=1

x jA j

If we write the columns of A in terms of their entries, they are of the form

A j =




a1 j

a2 j
...

am j




Then, we can write the product AX as

AX = x1




a11

a21
...

am1


+ x2




a12

a22
...

am2


+ · · ·+ xn




a1n

a2n
...

amn




Note that multiplication of an m×n matrix and an n×1 vector produces an m×1 vector.

Here is an example.

Example 2.14: A Vector Multiplied by a Matrix

Compute the product AX for

A =




1 2 1 3

0 2 1 −2

2 1 4 1


 ,X =




1

2

0

1




Solution. We will use Definition 2.13 to compute the product. Therefore, we compute the product AX as
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follows.

1




1

0

2


+2




2

2

1


+0




1

1

4


+1




3

−2

1




=




1

0

2


+




4

4

2


+




0

0

0


+




3

−2

1




=




8

2

5




♠

Using the above operation, we can also write a system of linear equations in matrix form. In this

form, we express the system as a matrix multiplied by a vector. Consider the following definition.

Definition 2.15: The Matrix Form of a System of Linear Equations

Suppose we have a system of equations given by

a11x1 + · · ·+a1nxn = b1

a21x1 + · · ·+a2nxn = b2
...

am1x1 + · · ·+amnxn = bm

Then we can express this system in matrix form as follows.




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn







x1

x2
...

xn


=




b1

b2
...

bm




The expression AX = B is also known as the Matrix Form of the corresponding system of linear

equations. The matrix A is simply the coefficient matrix of the system, the vector X is the column vector

constructed from the variables of the system, and finally the vector B is the column vector constructed

from the constants of the system. It is important to note that any system of linear equations can be written

in this form.

Notice that if we write a homogeneous system of equations in matrix form, it would have the form

AX = 0, for the zero vector 0.

You can see from this definition that a vector

X =




x1

x2
...

xn



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will satisfy the equation AX = B only when the entries x1,x2, · · · ,xn of the vector X are solutions to the

original system.

Now that we have examined how to multiply a matrix by a vector, we wish to consider the case where

we multiply two matrices of more general sizes, although these sizes still need to be appropriate as we will

see. For example, in Example 2.14, we multiplied a 3×4 matrix by a 4×1 vector. We want to investigate

how to multiply other sizes of matrices.

We have not yet given any conditions on when matrix multiplication is possible! For matrices A and

B, in order to form the product AB, the number of columns of A must equal the number of rows of B.

Consider a product AB where A has size m×n and B has size n× p. Then, the product in terms of size of

matrices is given by

(m×
these must match!

n̂) (n× p ) = m× p

Note the two outside numbers give the size of the product. One of the most important rules regarding

matrix multiplication is the following. If the two middle numbers don’t match, you can’t multiply the

matrices!

When the number of columns of A equals the number of rows of B the two matrices are said to be

conformable and the product AB is obtained as follows.

Definition 2.16: Multiplication of Two Matrices

Let A be an m×n matrix and let B be an n× p matrix of the form

B = [B1 · · ·Bp]

where B1, ...,Bp are the n×1 columns of B. Then the m× p matrix AB is defined as follows:

AB = A [B1 · · ·Bp] = [(AB)1 · · ·(AB)p]

where (AB)k is an m×1 matrix or column vector which gives the kth column of AB.

Consider the following example.

Example 2.17: Multiplying Two Matrices

Find AB if possible.

A =

[
1 2 1

0 2 1

]
,B =




1 2 0

0 3 1

−2 1 1




Solution. The first thing you need to verify when calculating a product is whether the multiplication is

possible. The first matrix has size 2× 3 and the second matrix has size 3× 3. The inside numbers are

equal, so A and B are conformable matrices. According to the above discussion AB will be a 2×3 matrix.
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Definition 2.16 gives us a way to calculate each column of AB, as follows.



First column︷ ︸︸ ︷
[

1 2 1

0 2 1

]


1

0

−2


,

Second column︷ ︸︸ ︷
[

1 2 1

0 2 1

]


2

3

1


,

Third column︷ ︸︸ ︷
[

1 2 1

0 2 1

]


0

1

1







You know how to multiply a matrix times a vector, using Definition 2.13 for each of the three columns.

Thus [
1 2 1

0 2 1

]


1 2 0

0 3 1

−2 1 1


=

[
−1 9 3

−2 7 3

]

♠

Since vectors are simply n×1 or 1×m matrices, we can also multiply a vector by another vector.

Example 2.18: Vector Times Vector Multiplication

Multiply if possible




1

2

1


[ 1 2 1 0

]
.

Solution. In this case we are multiplying a matrix of size 3× 1 by a matrix of size 1× 4. The inside

numbers match so the product is defined. Note that the product will be a matrix of size 3× 4. Using

Definition 2.16, we can compute this product as follows




1

2

1


[ 1 2 1 0

]
=




First column︷ ︸︸ ︷


1

2

1


[ 1

]
,

Second column︷ ︸︸ ︷


1

2

1


[ 2

]
,

Third column︷ ︸︸ ︷


1

2

1


[ 1

]
,

Fourth column︷ ︸︸ ︷


1

2

1


[ 0

]




You can use Definition 2.13 to verify that this product is



1 2 1 0

2 4 2 0

1 2 1 0




♠

Example 2.19: A Multiplication Which is Not Defined

Find BA if possible.

B =




1 2 0

0 3 1

−2 1 1


 ,A =

[
1 2 1

0 2 1

]
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Solution. First check if it is possible. This product is of the form (3×3)(2×3) . The inside numbers do

not match and so you can’t do this multiplication. ♠

In this case, we say that the multiplication is not defined. Notice that these are the same matrices which

we used in Example 2.17. In this example, we tried to calculate BA instead of AB. This demonstrates

another property of matrix multiplication. While the product AB maybe be defined, we cannot assume

that the product BA will be possible. Therefore, it is important to always check that the product is defined

before carrying out any calculations.

Earlier, we defined the zero matrix 0 to be the matrix (of appropriate size) containing zeros in all

entries. Consider the following example for multiplication by the zero matrix.

Example 2.20: Multiplication by the Zero Matrix

Compute the product A0 for the matrix

A =

[
1 2

3 4

]

and the 2×2 zero matrix given by

0 =

[
0 0

0 0

]

Solution. In this product, we compute

[
1 2

3 4

][
0 0

0 0

]
=

[
0 0

0 0

]

Hence, A0 = 0. ♠

Notice that we could also multiply A by the 2×1 zero vector given by

[
0

0

]
. The result would be the

2× 1 zero vector. Therefore, it is always the case that A0 = 0, for an appropriately sized zero matrix or

vector.

2.1.4 The i jth Entry of a Product

In previous sections, we used the entries of a matrix to describe the action of matrix addition and scalar

multiplication. We can also study matrix multiplication using the entries of matrices.

What is the i jth entry of AB? It is the entry in the ith row and the jth column of the product AB.

Now if A is m×n and B is n× p, then we know that the product AB has the form




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn







b11 b12 · · · b1 j · · · b1p

b21 b22 · · · b2 j · · · b2p
...

...
. . .

...
. . .

...

bn1 bn2 · · · bn j · · · bnp



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The jth column of AB is of the form



a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn







b1 j

b2 j
...

bn j




which is an m×1 column vector. It is calculated by

b1 j




a11

a21
...

am1


+b2 j




a12

a22
...

am2


+ · · ·+bn j




a1n

a2n
...

amn




Therefore, the i jth entry is the entry in row i of this vector. This is computed by

ai1b1 j +ai2b2 j + · · ·+ainbn j =
n

∑
k=1

aikbk j

The following is the formal definition for the i jth entry of a product of matrices.

Definition 2.21: The i jth Entry of a Product

Let A =
[
ai j

]
be an m×n matrix and let B =

[
bi j

]
be an n× p matrix. Then AB is an m× p matrix

and the (i, j)-entry of AB is defined as

(AB)i j =
n

∑
k=1

aikbk j

Another way to write this is

(AB)i j =
[

ai1 ai2 · · · ain

]




b1 j

b2 j
...

bn j


= ai1b1 j +ai2b2 j + · · ·+ainbn j

In other words, to find the (i, j)-entry of the product AB, or (AB)i j, you multiply the ith row of A, on

the left by the jth column of B. To express AB in terms of its entries, we write AB =
[
(AB)i j

]
.

Consider the following example.

Example 2.22: The Entries of a Product

Compute AB if possible. If it is, find the (3,2)-entry of AB using Definition 2.21.

A =




1 2

3 1

2 6


 ,B =

[
2 3 1

7 6 2

]
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Solution. First check if the product is possible. It is of the form (3×2)(2×3) and since the inside

numbers match, it is possible to do the multiplication. The result should be a 3× 3 matrix. We can first

compute AB: 




1 2

3 1

2 6



[

2

7

]
,




1 2

3 1

2 6



[

3

6

]
,




1 2

3 1

2 6



[

1

2

]


where the commas separate the columns in the resulting product. Thus the above product equals




16 15 5

13 15 5

46 42 14




which is a 3×3 matrix as desired. Thus, the (3,2)-entry equals 42.

Now using Definition 2.21, we can find that the (3,2)-entry equals

2

∑
k=1

a3kbk2 = a31b12 +a32b22

= 2×3+6×6 = 42

Consulting our result for AB above, this is correct!

You may wish to use this method to verify that the rest of the entries in AB are correct. ♠

Here is another example.

Example 2.23: Finding the Entries of a Product

Determine if the product AB is defined. If it is, find the (2,1)-entry of the product.

A =




2 3 1

7 6 2

0 0 0


 ,B =




1 2

3 1

2 6




Solution. This product is of the form (3×3)(3×2). The middle numbers match so the matrices are

conformable and it is possible to compute the product.

We want to find the (2,1)-entry of AB, that is, the entry in the second row and first column of the

product. We will use Definition 2.21, which states

(AB)i j =
n

∑
k=1

aikbk j

In this case, n = 3, i = 2 and j = 1. Hence the (2,1)-entry is found by computing

(AB)21 =
3

∑
k=1

a2kbk1 =
[

a21 a22 a23

]



b11

b21

b31



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Substituting in the appropriate values, this product becomes

[
a21 a22 a23

]



b11

b21

b31


=

[
7 6 2

]



1

3

2


= 1×7+3×6+2×2 = 29

Hence, (AB)21 = 29.

You should take a moment to find a few other entries of AB. You can multiply the matrices to check

that your answers are correct. The product AB is given by

AB =




13 13

29 32

0 0




♠

2.1.5 Properties of Matrix Multiplication

As pointed out above, it is sometimes possible to multiply matrices in one order but not in the other order.

However, even if both AB and BA are defined, they may not be equal.

Example 2.24: Matrix Multiplication is Not Commutative

Compare the products AB and BA, for matrices A =

[
1 2

3 4

]
,B =

[
0 1

1 0

]

Solution. First, notice that A and B are both of size 2×2. Therefore, both products AB and BA are defined.

The first product, AB is

AB =

[
1 2

3 4

][
0 1

1 0

]
=

[
2 1

4 3

]

The second product, BA is [
0 1

1 0

][
1 2

3 4

]
=

[
3 4

1 2

]

Therefore, AB 6= BA. ♠

This example illustrates that you cannot assume AB = BA even when multiplication is defined in both

orders. If for some matrices A and B it is true that AB = BA, then we say that A and B commute. This is

one important property of matrix multiplication.

The following are other important properties of matrix multiplication. Notice that these properties hold

only when the size of matrices are such that the products are defined.
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Proposition 2.25: Properties of Matrix Multiplication

The following hold for matrices A,B, and C and for scalars r and s,

A(rB+ sC) = r (AB)+ s(AC) (2.6)

(B+C)A = BA+CA (2.7)

A(BC) = (AB)C (2.8)

Proof. First we will prove 2.6. We will use Definition 2.21 and prove this statement using the i jth entries

of a matrix. Therefore,

(A(rB+ sC))i j = ∑
k

aik (rB+ sC)k j = ∑
k

aik

(
rbk j + sck j

)

= r∑
k

aikbk j + s∑
k

aikck j = r (AB)i j + s(AC)i j

= (r (AB)+ s(AC))i j

Thus A(rB+ sC) = r(AB)+ s(AC) as claimed.

The proof of 2.7 follows the same pattern and is left as an exercise.

Statement 2.8 is the associative law of multiplication. Using Definition 2.21,

(A(BC))i j = ∑
k

aik (BC)k j = ∑
k

aik ∑
l

bklcl j

= ∑
l

(AB)il cl j = ((AB)C)i j .

This proves 2.8. ♠

2.1.6 The Transpose

Another important operation on matrices is that of taking the transpose. For a matrix A, we denote the

transpose of A by AT . Before formally defining the transpose, we explore this operation on the following

matrix. 


1 4

3 1

2 6




T

=

[
1 3 2

4 1 6

]

What happened? The first column became the first row and the second column became the second row.

Thus the 3×2 matrix became a 2×3 matrix. The number 4 was in the first row and the second column

and it ended up in the second row and first column.

The definition of the transpose is as follows.
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Definition 2.26: The Transpose of a Matrix

Let A be an m×n matrix. Then AT , the transpose of A, denotes the n×m matrix given by

AT =
[
ai j

]T
=
[
a ji

]

The (i, j)-entry of A becomes the ( j, i)-entry of AT .

Consider the following example.

Example 2.27: The Transpose of a Matrix

Calculate AT for the following matrix

A =

[
1 2 −6

3 5 4

]

Solution. By Definition 2.26, we know that for A =
[
ai j

]
, AT =

[
a ji

]
. In other words, we switch the row

and column location of each entry. The (1,2)-entry becomes the (2,1)-entry.

Thus,

AT =




1 3

2 5

−6 4




Notice that A is a 2×3 matrix, while AT is a 3×2 matrix. ♠

The transpose of a matrix has the following important properties .

Lemma 2.28: Properties of the Transpose of a Matrix

Let A be an m×n matrix, B an n× p matrix, and r and s scalars. Then

1.
(
AT
)T

= A

2. (AB)T = BT AT

3. (rA+ sB)T = rAT + sBT

Proof. First we prove 2. From Definition 2.26,

(AB)T =
[
(AB)i j

]T
=
[
(AB) ji

]
= ∑

k

a jkbki = ∑
k

bkia jk

= ∑
k

[bik]
T
[
ak j

]T
=
[
bi j

]T [
ai j

]T
= BT AT

The proof of Formula 3 is left as an exercise. ♠

The transpose of a matrix is related to other important topics. Consider the following definition.
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Definition 2.29: Symmetric and Skew Symmetric Matrices

An n×n matrix A is said to be symmetric if A = AT . It is said to be skew symmetric if A =−AT .

We will explore these definitions in the following examples.

Example 2.30: Symmetric Matrices

Let

A =




2 1 3

1 5 −3

3 −3 7




Use Definition 2.29 to show that A is symmetric.

Solution. By Definition 2.29, we need to show that A = AT . Now, using Definition 2.26,

AT =




2 1 3

1 5 −3

3 −3 7




Hence, A = AT , so A is symmetric. ♠

Example 2.31: A Skew Symmetric Matrix

Let

A =




0 1 3

−1 0 2

−3 −2 0




Show that A is skew symmetric.

Solution. By Definition 2.29,

AT =




0 −1 −3

1 0 −2

3 2 0




You can see that each entry of AT is equal to −1 times the same entry of A. Hence, AT = −A and so

by Definition 2.29, A is skew symmetric. ♠
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2.1.7 The Identity and Inverses

There is a special matrix, denoted I, which is called to as the identity matrix. The identity matrix is

always a square matrix, and it has the property that there are ones down the main diagonal and zeroes

elsewhere. Here are some identity matrices of various sizes.

[1] ,

[
1 0

0 1

]
,




1 0 0

0 1 0

0 0 1


 ,




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




The first is the 1×1 identity matrix, the second is the 2×2 identity matrix, and so on. By extension, you

can likely see what the n×n identity matrix would be. When it is necessary to distinguish which size of

identity matrix is being discussed, we will use the notation In for the n×n identity matrix.

The identity matrix is so important that there is a special symbol to denote the i jth entry of the identity

matrix. This symbol is given by Ii j = δi j where δi j is the Kronecker symbol defined by

δi j =

{
1 if i = j

0 if i 6= j

In is called the identity matrix because it is a multiplicative identity in the following sense.

Lemma 2.32: Multiplication by the Identity Matrix

Suppose A is an m×n matrix and In is the n×n identity matrix. Then AIn = A. If Im is the m×m

identity matrix, it also follows that ImA = A.

Proof. The (i, j)-entry of AIn is given by:

∑
k

aikδk j = ai j

and so AIn = A. The other case is left as an exercise for you. ♠

We now define the matrix operation which in some ways plays the role of division.

Definition 2.33: The Inverse of a Matrix

A square n×n matrix A is said to have an inverse A−1 if and only if

AA−1 = A−1A = In

In this case, the matrix A is called invertible.

Such a matrix A−1 will have the same size as the matrix A. It is very important to observe that the

inverse of a matrix, if it exists, is unique. Another way to think of this is that if it acts like the inverse, then

it is the inverse.
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Theorem 2.34: Uniqueness of Inverse

Suppose A is an n× n matrix such that an inverse A−1 exists. Then there is only one such inverse

matrix. That is, given any matrix B such that AB = BA = I, B = A−1.

Proof. In this proof, it is assumed that I is the n×n identity matrix. Let A,B be n×n matrices such that

A−1 exists and AB = BA = I. We want to show that A−1 = B. Now using properties we have seen, we get:

A−1 = A−1I = A−1 (AB) =
(
A−1A

)
B = IB = B

Hence, A−1 = B which tells us that the inverse is unique. ♠

The next example demonstrates how to check the inverse of a matrix.

Example 2.35: Verifying the Inverse of a Matrix

Let A =

[
1 1

1 2

]
. Show

[
2 −1

−1 1

]
is the inverse of A.

Solution. To check this, multiply

[
1 1

1 2

][
2 −1

−1 1

]
=

[
1 0

0 1

]
= I

and [
2 −1

−1 1

][
1 1

1 2

]
=

[
1 0

0 1

]
= I

showing that this matrix is indeed the inverse of A. ♠

Unlike ordinary multiplication of numbers, it can happen that A 6= 0 but A may fail to have an inverse.

This is illustrated in the following example.

Example 2.36: A Nonzero Matrix With No Inverse

Let A =

[
1 1

1 1

]
. Show that A does not have an inverse.

Solution. One might think A would have an inverse because it does not equal zero. However, note that

[
1 1

1 1

][
−1

1

]
=

[
0

0

]

If A−1 existed, we would have the following

[
0

0

]
= A−1

([
0

0

])
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= A−1

(
A

[
−1

1

])

=
(
A−1A

)[ −1

1

]

= I

[
−1

1

]

=

[
−1

1

]

This says that [
0

0

]
=

[
−1

1

]

which is impossible! Therefore, A does not have an inverse. ♠

In the next section, we will explore how to find the inverse of a matrix, if it exists.

2.1.8 Finding the Inverse of a Matrix

In Example 2.35, we were given A−1 and asked to verify that this matrix was in fact the inverse of A. In

this section, we explore how to find A−1.

Let

A =

[
1 1

1 2

]

as in Example 2.35. In order to find A−1, we need to find a matrix

[
x z

y w

]
such that

[
1 1

1 2

][
x z

y w

]
=

[
1 0

0 1

]

We can multiply these two matrices, and see that in order for this equation to be true, we must find the

solution to the systems of equations,

x+ y = 1

x+2y = 0

and
z+w = 0

z+2w = 1

Writing the augmented matrix for these two systems gives

[
1 1 1

1 2 0

]

for the first system and [
1 1 0

1 2 1

]
(2.9)

for the second.
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Let’s solve the first system. Take −1 times the first row and add to the second to get
[

1 1 1

0 1 −1

]

Now take −1 times the second row and add to the first to get
[

1 0 2

0 1 −1

]

Writing in terms of variables, this says x = 2 and y =−1.

Now solve the second system, 2.9 to find z and w. You will find that z =−1 and w = 1.

If we take the values found for x,y,z, and w and put them into our inverse matrix, we see that the

inverse is

A−1 =

[
x z

y w

]
=

[
2 −1

−1 1

]

After taking the time to solve the second system, you may have noticed that exactly the same row

operations were used to solve both systems. In each case, the end result was something of the form [I|X ]
where I is the identity and X gave a column of the inverse. In the above,

[
x

y

]

the first column of the inverse was obtained by solving the first system and then the second column
[

z

w

]

To simplify this procedure, we could have solved both systems at once! To do so, we could have

written [
1 1 1 0

1 2 0 1

]

and row reduced until we obtained [
1 0 2 −1

0 1 −1 1

]

and read off the inverse as the 2×2 matrix on the right side.

This exploration motivates the following important algorithm.

Algorithm 2.37: Matrix Inverse Algorithm

Suppose A is an n×n matrix. To find A−1 if it exists, form the augmented n×2n matrix

[A|I]

If possible do row operations until you obtain an n×2n matrix of the form

[I|B]

When this has been done, B = A−1. In this case, we say that A is invertible. If it is impossible to

row reduce to a matrix of the form [I|B] , then A has no inverse.
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This algorithm shows how to find the inverse if it exists. It will also tell you if A does not have an

inverse.

Consider the following example.

Example 2.38: Finding the Inverse

Let A =




1 2 2

1 0 2

3 1 −1


. Find A−1 if it exists.

Solution. Set up the augmented matrix

[A|I] =




1 2 2 1 0 0

1 0 2 0 1 0

3 1 −1 0 0 1




Now we row reduce, with the goal of obtaining the 3×3 identity matrix on the left hand side. First,

take −1 times the first row and add to the second followed by −3 times the first row added to the third

row. This yields 


1 2 2 1 0 0

0 −2 0 −1 1 0

0 −5 −7 −3 0 1




Then take 5 times the second row and add to -2 times the third row.



1 2 2 1 0 0

0 −10 0 −5 5 0

0 0 14 1 5 −2




Next take the third row and add to −7 times the first row. This yields




−7 −14 0 −6 5 −2

0 −10 0 −5 5 0

0 0 14 1 5 −2




Now take −7
5

times the second row and add to the first row.




−7 0 0 1 −2 −2

0 −10 0 −5 5 0

0 0 14 1 5 −2




Finally divide the first row by -7, the second row by -10 and the third row by 14 which yields




1 0 0 −1
7

2
7

2
7

0 1 0 1
2

−1
2

0

0 0 1 1
14

5
14

−1
7



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Notice that the left hand side of this matrix is now the 3×3 identity matrix I3. Therefore, the inverse is

the 3×3 matrix on the right hand side, given by




−1
7

2
7

2
7

1
2

−1
2

0

1
14

5
14

−1
7




♠

It may happen that through this algorithm, you discover that the left hand side cannot be row reduced

to the identity matrix. Consider the following example of this situation.

Example 2.39: A Matrix Which Has No Inverse

Let A =




1 2 2

1 0 2

2 2 4


. Find A−1 if it exists.

Solution. Write the augmented matrix [A|I]



1 2 2 1 0 0

1 0 2 0 1 0

2 2 4 0 0 1




and proceed to do row operations attempting to obtain
[
I|A−1

]
. Take −1 times the first row and add to the

second. Then take −2 times the first row and add to the third row.



1 2 2 1 0 0

0 −2 0 −1 1 0

0 −2 0 −2 0 1




Next add −1 times the second row to the third row.



1 2 2 1 0 0

0 −2 0 −1 1 0

0 0 0 −1 −1 1




At this point, you can see there will be no way to obtain I on the left side of this augmented matrix. Hence,

there is no way to complete this algorithm, and therefore the inverse of A does not exist. In this case, we

say that A is not invertible. ♠

If the algorithm provides an inverse for the original matrix, it is always possible to check your answer.

To do so, use the method demonstrated in Example 2.35. Check that the products AA−1 and A−1A both

equal the identity matrix. Through this method, you can always be sure that you have calculated A−1

properly!

One way in which the inverse of a matrix is useful is to find the solution of a system of linear equations.

Recall from Definition 2.15 that we can write a system of equations in matrix form, which is of the form



2.1. Matrix Arithmetic 77

AX = B. Suppose you find the inverse of the matrix A−1. Then you could multiply both sides of this

equation on the left by A−1 and simplify to obtain

(
A−1

)
AX = A−1B(

A−1A
)

X = A−1B

IX = A−1B

X = A−1B

Therefore we can find X , the solution to the system, by computing X = A−1B. Note that once you have

found A−1, you can easily get the solution for different right hand sides (different B). It is always just

A−1B.

We will explore this method of finding the solution to a system in the following example.

Example 2.40: Using the Inverse to Solve a System of Equations

Consider the following system of equations. Use the inverse of a suitable matrix to give the solutions

to this system.
x+ z = 1

x− y+ z = 3

x+ y− z = 2

Solution. First, we can write the system of equations in matrix form

AX =




1 0 1

1 −1 1

1 1 −1






x

y

z


=




1

3

2


= B (2.10)

The inverse of the matrix

A =




1 0 1

1 −1 1

1 1 −1




is

A−1 =




0 1
2

1
2

1 −1 0

1 −1
2

−1
2




Verifying this inverse is left as an exercise.

From here, the solution to the given system 2.10 is found by




x

y

z


= A−1B =




0 1
2

1
2

1 −1 0

1 −1
2

−1
2







1

3

2


=




5
2

−2

−3
2




♠
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What if the right side, B, of 2.10 had been




0

1

3


? In other words, what would be the solution to




1 0 1

1 −1 1

1 1 −1






x

y

z


=




0

1

3


?

By the above discussion, the solution is given by




x

y

z


= A−1B =




0 1
2

1
2

1 −1 0

1 −1
2

−1
2







0

1

3


=




2

−1

−2




This illustrates that for a system AX = B where A−1 exists, it is easy to find the solution when the vector

B is changed.

We conclude this section with some important properties of the inverse.

Theorem 2.41: Inverses of Transposes and Products

Let A,B, and Ai for i = 1, ...,k be n×n matrices.

1. If A is an invertible matrix, then (AT )−1 = (A−1)T

2. If A and B are invertible matrices, then AB is invertible and (AB)−1 = B−1A−1

3. If A1,A2, ...,Ak are invertible, then the product A1A2 · · ·Ak is invertible, and (A1A2 · · ·Ak)
−1 =

A−1
k A−1

k−1 · · ·A−1
2 A−1

1

Consider the following theorem.

Theorem 2.42: Properties of the Inverse

Let A be an n×n matrix and I the usual identity matrix.

1. I is invertible and I−1 = I

2. If A is invertible then so is A−1, and (A−1)−1 = A

3. If A is invertible then so is Ak, and (Ak)−1 = (A−1)k

4. If A is invertible and p is a nonzero real number, then pA is invertible and (pA)−1 = 1
p
A−1
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2.1.9 Elementary Matrices

We now turn our attention to a special type of matrix called an elementary matrix. An elementary matrix

is always a square matrix. Recall the row operations given in Definition 1.11. Any elementary matrix,

which we often denote by E, is obtained from applying one row operation to the identity matrix of the

same size.

For example, the matrix

E =

[
0 1

1 0

]

is the elementary matrix obtained from switching the two rows. The matrix

E =




1 0 0

0 3 0

0 0 1




is the elementary matrix obtained from multiplying the second row of the 3×3 identity matrix by 3. The

matrix

E =

[
1 0

−3 1

]

is the elementary matrix obtained from adding −3 times the first row to the third row.

You may construct an elementary matrix from any row operation, but remember that you can only

apply one operation.

Consider the following definition.

Definition 2.43: Elementary Matrices and Row Operations

Let E be an n× n matrix. Then E is an elementary matrix if it is the result of applying one row

operation to the n×n identity matrix In.

Those which involve switching rows of the identity matrix are called permutation matrices.

Therefore, E constructed above by switching the two rows of I2 is called a permutation matrix.

Elementary matrices can be used in place of row operations and therefore are very useful. It turns out

that multiplying (on the left hand side) by an elementary matrix E will have the same effect as doing the

row operation used to obtain E.

The following theorem is an important result which we will use throughout this text.

Theorem 2.44: Multiplication by an Elementary Matrix and Row Operations

To perform any of the three row operations on a matrix A it suffices to take the product EA, where

E is the elementary matrix obtained by using the desired row operation on the identity matrix.

Therefore, instead of performing row operations on a matrix A, we can row reduce through matrix

multiplication with the appropriate elementary matrix. We will examine this theorem in detail for each of

the three row operations given in Definition 1.11.
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First, consider the following lemma.

Lemma 2.45: Action of Permutation Matrix

Let Pi j denote the elementary matrix which involves switching the ith and the jth rows. Then Pi j is

a permutation matrix and

Pi jA = B

where B is obtained from A by switching the ith and the jth rows.

We will explore this idea more in the following example.

Example 2.46: Switching Rows with an Elementary Matrix

Let

P12 =




0 1 0

1 0 0

0 0 1


 ,A =




a b

c d

e f




Find B where B = P12A.

Solution. You can see that the matrix P12 is obtained by switching the first and second rows of the 3×3

identity matrix I.

Using our usual procedure, compute the product P12A = B. The result is given by

B =




c d

a b

e f




Notice that B is the matrix obtained by switching rows 1 and 2 of A. Therefore by multiplying A by P12,

the row operation which was applied to I to obtain P12 is applied to A to obtain B. ♠

Theorem 2.44 applies to all three row operations, and we now look at the row operation of multiplying

a row by a scalar. Consider the following lemma.

Lemma 2.47: Multiplication by a Scalar and Elementary Matrices

Let E (k, i) denote the elementary matrix corresponding to the row operation in which the ith row is

multiplied by the nonzero scalar, k. Then

E (k, i)A = B

where B is obtained from A by multiplying the ith row of A by k.

We will explore this lemma further in the following example.
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Example 2.48: Multiplication of a Row by 5 Using Elementary Matrix

Let

E (5,2) =




1 0 0

0 5 0

0 0 1


 ,A =




a b

c d

e f




Find the matrix B where B = E (5,2)A

Solution. You can see that E (5,2) is obtained by multiplying the second row of the identity matrix by 5.

Using our usual procedure for multiplication of matrices, we can compute the product E (5,2)A. The

resulting matrix is given by

B =




a b

5c 5d

e f




Notice that B is obtained by multiplying the second row of A by the scalar 5. ♠

There is one last row operation to consider. The following lemma discusses the final operation of

adding a multiple of a row to another row.

Lemma 2.49: Adding Multiples of Rows and Elementary Matrices

Let E (k× i+ j) denote the elementary matrix obtained from I by adding k times the ith row to the

jth. Then

E (k× i+ j)A = B

where B is obtained from A by adding k times the ith row to the jth row of A.

Consider the following example.

Example 2.50: Adding Two Times the First Row to the Last

Let

E (2×1+3) =




1 0 0

0 1 0

2 0 1


 ,A =




a b

c d

e f




Find B where B = E (2×1+3)A.

Solution. You can see that the matrix E (2×1+3) was obtained by adding 2 times the first row of I to the

third row of I.

Using our usual procedure, we can compute the product E (2×1+3)A. The resulting matrix B is

given by

B =




a b

c d

2a+ e 2b+ f



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You can see that B is the matrix obtained by adding 2 times the first row of A to the third row. ♠

Suppose we have applied a row operation to a matrix A. Consider the row operation required to return

A to its original form, to undo the row operation. It turns out that this action is how we find the inverse of

an elementary matrix E.

Consider the following theorem.

Theorem 2.51: Elementary Matrices and Inverses

Every elementary matrix is invertible and its inverse is also an elementary matrix.

In fact, the inverse of an elementary matrix is constructed by doing the reverse row operation on I.

E−1 will be obtained by performing the row operation which would carry E back to I.

• If E is obtained by switching rows i and j, then E−1 is also obtained by switching rows i and j.

• If E is obtained by multiplying row i by the scalar k, then E−1 is obtained by multiplying row i by

the scalar 1
k
.

• If E is obtained by adding k times row i to row j, then E−1 is obtained by subtracting k times row i

from row j.

Consider the following example.

Example 2.52: Inverse of an Elementary Matrix

Let

E =

[
1 0

0 2

]

Find E−1.

Solution. Consider the elementary matrix E given by

E =

[
1 0

0 2

]

Here, E is obtained from the 2×2 identity matrix by multiplying the second row by 2. In order to carry E

back to the identity, we need to multiply the second row of E by 1
2
. Hence, E−1 is given by

E−1 =

[
1 0

0 1
2

]

We can verify that EE−1 = I. Take the product EE−1, given by

EE−1 =

[
1 0

0 2

][
1 0

0 1
2

]
=

[
1 0

0 1

]
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This equals I so we know that we have computed E−1 properly. ♠

Suppose an m× n matrix A is row reduced to its reduced row-echelon form. By tracking each row

operation completed, this row reduction can be completed through multiplication by elementary matrices.

Consider the following definition.

Definition 2.53: The Form B =UA

Let A be an m× n matrix and let B be the reduced row-echelon form of A. Then we can write

B =UA where U is the product of all elementary matrices representing the row operations done to

A to obtain B.

Consider the following example.

Example 2.54: The Form B =UA

Let A =




0 1

1 0

2 0


. Find B, the reduced row-echelon form of A and write it in the form B =UA.

Solution. To find B, row reduce A. For each step, we will record the appropriate elementary matrix. First,

switch rows 1 and 2. 


0 1

1 0

2 0


→




1 0

0 1

2 0




The resulting matrix is equivalent to finding the product of P12 =




0 1 0

1 0 0

0 0 1


 and A.

Next, add (−2) times row 1 to row 3.



1 0

0 1

2 0


→




1 0

0 1

0 0




This is equivalent to multiplying by the matrix E(−2 × 1+ 3) =




1 0 0

0 1 0

−2 0 1


. Notice that the

resulting matrix is B, the required reduced row-echelon form of A.

We can then write

B = E(−2×1+2)
(
P12A

)

=
(
E(−2×1+2)P12

)
A

= UA

It remains to find the matrix U .

U = E(−2×1+2)P12
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=




1 0 0

0 1 0

−2 0 1






0 1 0

1 0 0

0 0 1




=




0 1 0

1 0 0

0 −2 1




We can verify that B =UA holds for this matrix U :

UA =




0 1 0

1 0 0

0 −2 1






0 1

1 0

2 0




=




1 0

0 1

0 0




= B

♠

While the process used in the above example is reliable and simple when only a few row operations

are used, it becomes cumbersome in a case where many row operations are needed to carry A to B. The

following theorem provides an alternate way to find the matrix U .

Theorem 2.55: Finding the Matrix U

Let A be an m×n matrix and let B be its reduced row-echelon form. Then B =UA where U is an

invertible m×m matrix found by forming the matrix [A|Im] and row reducing to [B|U ].

Let’s revisit the above example using the process outlined in Theorem 2.55.

Example 2.56: The Form B =UA, Revisited

Let A =




0 1

1 0

2 0


. Using the process outlined in Theorem 2.55, find U such that B =UA.

Solution. First, set up the matrix [A|Im].



0 1 1 0 0

1 0 0 1 0

2 0 0 0 1




Now, row reduce this matrix until the left side equals the reduced row-echelon form of A.




0 1 1 0 0

1 0 0 1 0

2 0 0 0 1


 →




1 0 0 1 0

0 1 1 0 0

2 0 0 0 1



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→




1 0 0 1 0

0 1 1 0 0

0 0 0 −2 1




The left side of this matrix is B, and the right side is U . Comparing this to the matrix U found above

in Example 2.54, you can see that the same matrix is obtained regardless of which process is used. ♠

Recall from Algorithm 2.37 that an n× n matrix A is invertible if and only if A can be carried to the

n×n identity matrix using the usual row operations. This leads to an important consequence related to the

above discussion.

Suppose A is an n×n invertible matrix. Then, set up the matrix [A|In] as done above, and row reduce

until it is of the form [B|U ]. In this case, B = In because A is invertible.

B = UA

In = UA

U−1 = A

Now suppose that U = E1E2 · · ·Ek where each Ei is an elementary matrix representing a row operation

used to carry A to I. Then,

U−1 = (E1E2 · · ·Ek)
−1 = E−1

k · · ·E−1
2 E−1

1

Remember that if Ei is an elementary matrix, so too is E−1
i . It follows that

A = U−1

= E−1
k · · ·E−1

2 E−1
1

and A can be written as a product of elementary matrices.

Theorem 2.57: Product of Elementary Matrices

Let A be an n× n matrix. Then A is invertible if and only if it can be written as a product of

elementary matrices.

Consider the following example.

Example 2.58: Product of Elementary Matrices

Let A =




0 1 0

1 1 0

0 −2 1


. Write A as a product of elementary matrices.

Solution. We will use the process outlined in Theorem 2.55 to write A as a product of elementary matrices.

We will set up the matrix [A|I] and row reduce, recording each row operation as an elementary matrix.
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First: 


0 1 0 1 0 0

1 1 0 0 1 0

0 −2 1 0 0 1


→




1 1 0 0 1 0

0 1 0 1 0 0

0 −2 1 0 0 1




represented by the elementary matrix E1 =




0 1 0

1 0 0

0 0 1


.

Secondly: 


1 1 0 0 1 0

0 1 0 1 0 0

0 −2 1 0 0 1


→




1 0 0 −1 1 0

0 1 0 1 0 0

0 −2 1 0 0 1




represented by the elementary matrix E2 =




1 −1 0

0 1 0

0 0 1


.

Finally: 


1 0 0 −1 1 0

0 1 0 1 0 0

0 −2 1 0 0 1


→




1 0 0 −1 1 0

0 1 0 1 0 0

0 0 1 2 0 1




represented by the elementary matrix E3 =




1 0 0

0 1 0

0 2 1


.

Notice that the reduced row-echelon form of A is I. Hence I = UA where U is the product of the

above elementary matrices. It follows that A =U−1. Since we want to write A as a product of elementary

matrices, we wish to express U−1 as a product of elementary matrices.

U−1 = (E3E2E1)
−1

= E−1
1 E−1

2 E−1
3

=




0 1 0

1 0 0

0 0 1






1 1 0

0 1 0

0 0 1






1 0 0

0 1 0

0 −2 1




= A

This gives A written as a product of elementary matrices. By Theorem 2.57 it follows that A is invert-

ible. ♠
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2.1.10 More on Matrix Inverses

In this section, we will prove three theorems which will clarify the concept of matrix inverses. In order to

do this, first recall some important properties of elementary matrices.

Recall that an elementary matrix is a square matrix obtained by performing an elementary operation

on an identity matrix. Each elementary matrix is invertible, and its inverse is also an elementary matrix. If

E is an m×m elementary matrix and A is an m×n matrix, then the product EA is the result of applying to

A the same elementary row operation that was applied to the m×m identity matrix in order to obtain E.

Let R be the reduced row-echelon form of an m× n matrix A. R is obtained by iteratively applying

a sequence of elementary row operations to A. Denote by E1,E2, · · · ,Ek the elementary matrices asso-

ciated with the elementary row operations which were applied, in order, to the matrix A to obtain the

resulting R. We then have that R = (Ek · · ·(E2 (E1A))) = Ek · · ·E2E1A. Let E denote the product matrix

Ek · · ·E2E1 so that we can write R = EA where E is an invertible matrix whose inverse is the product

(E1)
−1(E2)

−1 · · ·(Ek)
−1.

Now, we will consider some preliminary lemmas.

Lemma 2.59: Invertible Matrix and Zeros

Suppose that A and B are matrices such that the product AB is an identity matrix. Then the reduced

row-echelon form of A does not have a row of zeros.

Proof. Let R be the reduced row-echelon form of A. Then R = EA for some invertible square matrix E as

described above. By hypothesis AB = I where I is an identity matrix, so we have a chain of equalities

R(BE−1) = (EA)(BE−1) = E(AB)E−1 = EIE−1 = EE−1 = I

If R would have a row of zeros, then so would the product R(BE−1). But since the identity matrix I does

not have a row of zeros, neither can R have one. ♠

We now consider a second important lemma.

Lemma 2.60: Size of Invertible Matrix

Suppose that A and B are matrices such that the product AB is an identity matrix. Then A has at

least as many columns as it has rows.

Proof. Let R be the reduced row-echelon form of A. By Lemma 2.59, we know that R does not have a row

of zeros, and therefore each row of R has a leading 1. Since each column of R contains at most one of

these leading 1s, R must have at least as many columns as it has rows. ♠

An important theorem follows from this lemma.

Theorem 2.61: Invertible Matrices are Square

Only square matrices can be invertible.
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Proof. Suppose that A and B are matrices such that both products AB and BA are identity matrices. We will

show that A and B must be square matrices of the same size. Let the matrix A have m rows and n columns,

so that A is an m×n matrix. Since the product AB exists, B must have n rows, and since the product BA

exists, B must have m columns so that B is an n×m matrix. To finish the proof, we need only verify that

m = n.

We first apply Lemma 2.60 with A and B, to obtain the inequality m ≤ n. We then apply Lemma 2.60

again (switching the order of the matrices), to obtain the inequality n ≤ m. It follows that m = n, as we

wanted. ♠

Of course, not all square matrices are invertible. In particular, zero matrices are not invertible, along

with many other square matrices.

The following proposition will be useful in proving the next theorem.

Proposition 2.62: Reduced Row-Echelon Form of a Square Matrix

If R is the reduced row-echelon form of a square matrix, then either R has a row of zeros or R is an

identity matrix.

The proof of this proposition is left as an exercise to the reader. We now consider the second important

theorem of this section.

Theorem 2.63: Unique Inverse of a Matrix

Suppose A and B are square matrices such that AB = I where I is an identity matrix. Then it follows

that BA = I. Further, both A and B are invertible and B = A−1 and A = B−1.

Proof. Let R be the reduced row-echelon form of a square matrix A. Then, R= EA where E is an invertible

matrix. Since AB = I, Lemma 2.59 gives us that R does not have a row of zeros. By noting that R is a

square matrix and applying Proposition 2.62, we see that R = I. Hence, EA = I.

Using both that EA = I and AB = I, we can finish the proof with a chain of equalities as given by

BA = IBIA = (EA)B(E−1E)A

= E(AB)E−1(EA)

= EIE−1I

= EE−1 = I

It follows from the definition of the inverse of a matrix that B = A−1 and A = B−1. ♠

This theorem is very useful, since with it we need only test one of the products AB or BA in order to

check that B is the inverse of A. The hypothesis that A and B are square matrices is very important, and

without this the theorem does not hold.

We will now consider an example.
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Example 2.64: Non Square Matrices

Let

A =




1 0

0 1

0 0


 ,

Show that AT A = I but AAT 6= I.

Solution. Consider the product AT A given by

[
1 0 0

0 1 0

]


1 0

0 1

0 0


=

[
1 0

0 1

]

Therefore, AT A = I2, where I2 is the 2×2 identity matrix. However, the product AAT is




1 0

0 1

0 0



[

1 0 0

0 1 0

]
=




1 0 0

0 1 0

0 0 0




Hence AAT is not the 3× 3 identity matrix. This shows that for Theorem 2.63, it is essential that both

matrices be square and of the same size. ♠

Is it possible to have matrices A and B such that AB = I, while BA = 0? This question is left to the

reader to answer, and you should take a moment to consider the answer.

We conclude this section with an important theorem.

Theorem 2.65: The Reduced Row-Echelon Form of an Invertible Matrix

For any matrix A the following conditions are equivalent:

• A is invertible

• The reduced row-echelon form of A is an identity matrix

Proof. In order to prove this, we show that for any given matrix A, each condition implies the other. We

first show that if A is invertible, then its reduced row-echelon form is an identity matrix, then we show that

if the reduced row-echelon form of A is an identity matrix, then A is invertible.

If A is invertible, there is some matrix B such that AB= I. By Lemma 2.59, we get that the reduced row-

echelon form of A does not have a row of zeros. Then by Theorem 2.61, it follows that A and the reduced

row-echelon form of A are square matrices. Finally, by Proposition 2.62, this reduced row-echelon form of

A must be an identity matrix. This proves the first implication.

Now suppose the reduced row-echelon form of A is an identity matrix I. Then I =EA for some product

E of elementary matrices. By Theorem 2.63, we can conclude that A is invertible. ♠

Theorem 2.65 corresponds to Algorithm 2.37, which claims that A−1 is found by row reducing the

augmented matrix [A|I] to the form
[
I|A−1

]
. This will be a matrix product E [A|I] where E is a product of

elementary matrices. By the rules of matrix multiplication, we have that E [A|I] = [EA|EI] = [EA|E].
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It follows that the reduced row-echelon form of [A|I] is [EA|E], where EA gives the reduced row-

echelon form of A. By Theorem 2.65, if EA 6= I, then A is not invertible, and if EA = I, A is invertible. If

EA = I, then by Theorem 2.63, E = A−1. This proves that Algorithm 2.37 does in fact find A−1.

Exercises

Exercise 2.1.1 For the following pairs of matrices, determine if the sum A+B is defined. If so, find the

sum.

(a) A =

[
1 0

0 1

]
,B =

[
0 1

1 0

]

(b) A =

[
2 1 2

1 1 0

]
,B =

[
−1 0 3

0 1 4

]

(c) A =




1 0

−2 3

4 2


 ,B =

[
2 7 −1

0 3 4

]

Exercise 2.1.2 For each matrix A, find the matrix −A such that A+(−A) = 0.

(a) A =

[
1 2

2 1

]

(b) A =

[
−2 3

0 2

]

(c) A =




0 1 2

1 −1 3

4 2 0




Exercise 2.1.3 In the context of Proposition 2.7, describe −A and 0.

Exercise 2.1.4 For each matrix A, find the product (−2)A,0A, and 3A.

(a) A =

[
1 2

2 1

]

(b) A =

[
−2 3

0 2

]

(c) A =




0 1 2

1 −1 3

4 2 0



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Exercise 2.1.5 Using only the properties given in Proposition 2.7 and Proposition 2.10, show −A is

unique.

Exercise 2.1.6 Using only the properties given in Proposition 2.7 and Proposition 2.10 show 0 is unique.

Exercise 2.1.7 Using only the properties given in Proposition 2.7 and Proposition 2.10 show 0A = 0.

Here the 0 on the left is the scalar 0 and the 0 on the right is the zero matrix of appropriate size.

Exercise 2.1.8 Using only the properties given in Proposition 2.7 and Proposition 2.10, as well as previ-

ous problems show (−1)A =−A.

Exercise 2.1.9 Consider the matrices A =

[
1 2 3

2 1 7

]
,B =

[
3 −1 2

−3 2 1

]
,C =

[
1 2

3 1

]
,

D =

[
−1 2

2 −3

]
,E =

[
2

3

]
.

Find the following if possible. If it is not possible explain why.

(a) −3A

(b) 3B−A

(c) AC

(d) CB

(e) AE

(f) EA

Exercise 2.1.10 Consider the matrices A =




1 2

3 2

1 −1


 ,B =

[
2 −5 2

−3 2 1

]
,C =

[
1 2

5 0

]
,

D =

[
−1 1

4 −3

]
,E =

[
1

3

]

Find the following if possible. If it is not possible explain why.

(a) −3A

(b) 3B−A

(c) AC

(d) CA

(e) AE

(f) EA

(g) BE
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(h) DE

Exercise 2.1.11 Let A =




1 1

−2 −1

1 2


, B =

[
1 −1 −2

2 1 −2

]
, and C =




1 1 −3

−1 2 0

−3 −1 0


 . Find the

following if possible.

(a) AB

(b) BA

(c) AC

(d) CA

(e) CB

(f) BC

Exercise 2.1.12 Let A =

[
−1 −1

3 3

]
. Find all 2×2 matrices, B such that AB = 0.

Exercise 2.1.13 Let X =
[
−1 −1 1

]
and Y =

[
0 1 2

]
. Find XTY and XY T if possible.

Exercise 2.1.14 Let A =

[
1 2

3 4

]
,B =

[
1 2

3 k

]
. Is it possible to choose k such that AB = BA? If so,

what should k equal?

Exercise 2.1.15 Let A =

[
1 2

3 4

]
,B =

[
1 2

1 k

]
. Is it possible to choose k such that AB = BA? If so,

what should k equal?

Exercise 2.1.16 Find 2×2 matrices, A, B, and C such that A 6= 0,C 6= B, but AC = AB.

Exercise 2.1.17 Give an example of matrices (of any size), A,B,C such that B 6=C, A 6= 0, and yet AB =
AC.

Exercise 2.1.18 Find 2×2 matrices A and B such that A 6= 0 and B 6= 0 but AB = 0.

Exercise 2.1.19 Give an example of matrices (of any size), A,B such that A 6= 0 and B 6= 0 but AB = 0.

Exercise 2.1.20 Find 2×2 matrices A and B such that A 6= 0 and B 6= 0 with AB 6= BA.

Exercise 2.1.21 Write the system

x1 − x2 +2x3

2x3 + x1

3x3

3x4 +3x2 + x1
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in the form A




x1

x2

x3

x4


 where A is an appropriate matrix.

Exercise 2.1.22 Write the system

x1 +3x2 +2x3

2x3 + x1

6x3

x4 +3x2 + x1

in the form A




x1

x2

x3

x4


 where A is an appropriate matrix.

Exercise 2.1.23 Write the system

x1 + x2 + x3

2x3 + x1 + x2

x3 − x1

3x4 + x1

in the form A




x1

x2

x3

x4


 where A is an appropriate matrix.

Exercise 2.1.24 A matrix A is called idempotent if A2 = A. Let

A =




2 0 2

1 1 2

−1 0 −1




and show that A is idempotent .

Exercise 2.1.25 For each pair of matrices, find the (1,2)-entry and (2,3)-entry of the product AB.

(a) A =




1 2 −1

3 4 0

2 5 1


 ,B =




4 6 −2

7 2 1

−1 0 0




(b) A =




1 3 1

0 2 4

1 0 5


 ,B =




2 3 0

−4 16 1

0 2 2




Exercise 2.1.26 Suppose A and B are square matrices of the same size. Which of the following are

necessarily true?
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(a) (A−B)2 = A2 −2AB+B2

(b) (AB)2 = A2B2

(c) (A+B)2 = A2 +2AB+B2

(d) (A+B)2 = A2 +AB+BA+B2

(e) A2B2 = A(AB)B

(f) (A+B)3 = A3 +3A2B+3AB2 +B3

(g) (A+B)(A−B) = A2 −B2

Exercise 2.1.27 Consider the matrices A =




1 2

3 2

1 −1


 ,B =

[
2 −5 2

−3 2 1

]
,C =

[
1 2

5 0

]
,

D =

[
−1 1

4 −3

]
,E =

[
1

3

]

Find the following if possible. If it is not possible explain why.

(a) −3AT

(b) 3B−AT

(c) ET B

(d) EET

(e) BT B

(f) CAT

(g) DT BE

Exercise 2.1.28 Let A be an n×n matrix. Show A equals the sum of a symmetric and a skew symmetric

matrix. Hint: Show that 1
2

(
AT +A

)
is symmetric and then consider using this as one of the matrices.

Exercise 2.1.29 Show that the main diagonal of every skew symmetric matrix consists of only zeros.

Recall that the main diagonal consists of every entry of the matrix which is of the form aii.

Exercise 2.1.30 Prove 3. That is, show that for an m×n matrix A, an n× p matrix B, and scalars r,s, the

following holds:

(rA+ sB)T = rAT + sBT

Exercise 2.1.31 Prove that ImA = A where A is an m×n matrix.
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Exercise 2.1.32 Suppose AB = AC and A is an invertible n×n matrix. Does it follow that B =C? Explain

why or why not.

Exercise 2.1.33 Suppose AB = AC and A is a non invertible n× n matrix. Does it follow that B = C?

Explain why or why not.

Exercise 2.1.34 Give an example of a matrix A such that A2 = I and yet A 6= I and A 6=−I.

Exercise 2.1.35 Let

A =

[
2 1

−1 3

]

Find A−1 if possible. If A−1 does not exist, explain why.

Exercise 2.1.36 Let

A =

[
0 1

5 3

]

Find A−1 if possible. If A−1 does not exist, explain why.

Exercise 2.1.37 Let

A =

[
2 1

3 0

]

Find A−1 if possible. If A−1 does not exist, explain why.

Exercise 2.1.38 Let

A =

[
2 1

4 2

]

Find A−1 if possible. If A−1 does not exist, explain why.

Exercise 2.1.39 Let A be a 2×2 invertible matrix, with A =

[
a b

c d

]
. Find a formula for A−1 in terms of

a,b,c,d.

Exercise 2.1.40 Let

A =




1 2 3

2 1 4

1 0 2




Find A−1 if possible. If A−1 does not exist, explain why.

Exercise 2.1.41 Let

A =




1 0 3

2 3 4

1 0 2




Find A−1 if possible. If A−1 does not exist, explain why.
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Exercise 2.1.42 Let

A =




1 2 3

2 1 4

4 5 10




Find A−1 if possible. If A−1 does not exist, explain why.

Exercise 2.1.43 Let

A =




1 2 0 2

1 1 2 0

2 1 −3 2

1 2 1 2




Find A−1 if possible. If A−1 does not exist, explain why.

Exercise 2.1.44 Using the inverse of the matrix, find the solution to the systems:

(a) [
2 4

1 1

][
x

y

]
=

[
1

2

]

(b) [
2 4

1 1

][
x

y

]
=

[
2

0

]

Now give the solution in terms of a and b to

[
2 4

1 1

][
x

y

]
=

[
a

b

]

Exercise 2.1.45 Using the inverse of the matrix, find the solution to the systems:

(a) 


1 0 3

2 3 4

1 0 2






x

y

z


=




1

0

1




(b) 


1 0 3

2 3 4

1 0 2






x

y

z


=




3

−1

−2




Now give the solution in terms of a,b, and c to the following:




1 0 3

2 3 4

1 0 2






x

y

z


=




a

b

c



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Exercise 2.1.46 Show that if A is an n×n invertible matrix and X is a n×1 matrix such that AX = B for

B an n×1 matrix, then X = A−1B.

Exercise 2.1.47 Prove that if A−1 exists and AX = 0 then X = 0.

Exercise 2.1.48 Show that if A−1 exists for an n×n matrix, then it is unique. That is, if BA = I and AB = I,

then B = A−1.

Exercise 2.1.49 Show that if A is an invertible n×n matrix, then so is AT and
(
AT
)−1

=
(
A−1

)T
.

Exercise 2.1.50 Show (AB)−1 = B−1A−1 by verifying that

AB
(
B−1A−1

)
= I

and

B−1A−1 (AB) = I

Hint: Use Problem 2.1.48.

Exercise 2.1.51 Show that (ABC)−1 =C−1B−1A−1 by verifying that

(ABC)
(
C−1B−1A−1

)
= I

and (
C−1B−1A−1

)
(ABC) = I

Hint: Use Problem 2.1.48.

Exercise 2.1.52 If A is invertible, show
(
A2
)−1

=
(
A−1

)2
. Hint: Use Problem 2.1.48.

Exercise 2.1.53 If A is invertible, show
(
A−1

)−1
= A. Hint: Use Problem 2.1.48.

Exercise 2.1.54 Let A=

[
2 3

1 2

]
. Suppose a row operation is applied to A and the result is B=

[
1 2

2 3

]
.

Find the elementary matrix E that represents this row operation.

Exercise 2.1.55 Let A=

[
4 0

2 1

]
. Suppose a row operation is applied to A and the result is B=

[
8 0

2 1

]
.

Find the elementary matrix E that represents this row operation.

Exercise 2.1.56 Let A =

[
1 −3

0 5

]
. Suppose a row operation is applied to A and the result is B =

[
1 −3

2 −1

]
. Find the elementary matrix E that represents this row operation.

Exercise 2.1.57 Let A =




1 2 1

0 5 1

2 −1 4


. Suppose a row operation is applied to A and the result is

B =




1 2 1

2 −1 4

0 5 1


.
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(a) Find the elementary matrix E such that EA = B.

(b) Find the inverse of E, E−1, such that E−1B = A.

Exercise 2.1.58 Let A =




1 2 1

0 5 1

2 −1 4


. Suppose a row operation is applied to A and the result is

B =




1 2 1

0 10 2

2 −1 4


.

(a) Find the elementary matrix E such that EA = B.

(b) Find the inverse of E, E−1, such that E−1B = A.

Exercise 2.1.59 Let A =




1 2 1

0 5 1

2 −1 4


. Suppose a row operation is applied to A and the result is

B =




1 2 1

0 5 1

1 −1
2

2


.

(a) Find the elementary matrix E such that EA = B.

(b) Find the inverse of E, E−1, such that E−1B = A.

Exercise 2.1.60 Let A =




1 2 1

0 5 1

2 −1 4


. Suppose a row operation is applied to A and the result is

B =




1 2 1

2 4 5

2 −1 4


.

(a) Find the elementary matrix E such that EA = B.

(b) Find the inverse of E, E−1, such that E−1B = A.
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2.2 LU Factorization

An LU factorization of a matrix involves writing the given matrix as the product of a lower triangular

matrix L which has the main diagonal consisting entirely of ones, and an upper triangular matrix U in the

indicated order. This is the version discussed here but it is sometimes the case that the L has numbers

other than 1 down the main diagonal. It is still a useful concept. The L goes with “lower” and the U with

“upper”.

It turns out many matrices can be written in this way and when this is possible, people get excited

about slick ways of solving the system of equations, AX = B. It is for this reason that you want to study

the LU factorization. It allows you to work only with triangular matrices. It turns out that it takes about

half as many operations to obtain an LU factorization as it does to find the row reduced echelon form.

First it should be noted not all matrices have an LU factorization and so we will emphasize the tech-

niques for achieving it rather than formal proofs.

Example 2.66: A Matrix with NO LU factorization

Can you write

[
0 1

1 0

]
in the form LU as just described?

Solution. To do so you would need

[
1 0

x 1

][
a b

0 c

]
=

[
a b

xa xb+ c

]
=

[
0 1

1 0

]
.

Therefore, b = 1 and a = 0. Also, from the bottom rows, xa = 1 which can’t happen and have a = 0.

Therefore, you can’t write this matrix in the form LU . It has no LU factorization. This is what we mean

above by saying the method lacks generality.

Nevertheless the method is often extremely useful, and we will describe below one the many methods

used to produce an LU factorization when possible. ♠

2.2.1 Finding An LU Factorization By Inspection

Which matrices have an LU factorization? It turns out it is those whose row-echelon form can be achieved

without switching rows. In other words matrices which only involve using row operations of type 2 or 3

to obtain the row-echelon form.

Example 2.67: An LU factorization

Find an LU factorization of A =




1 2 0 2

1 3 2 1

2 3 4 0


 .



100 Matrices

One way to find the LU factorization is to simply look for it directly. You need



1 2 0 2

1 3 2 1

2 3 4 0


=




1 0 0

x 1 0

y z 1






a d h j

0 b e i

0 0 c f


 .

Then multiplying these you get



a d h j

xa xd +b xh+ e x j+ i

ya yd + zb yh+ ze+ c y j+ iz+ f




and so you can now tell what the various quantities equal. From the first column, you need a = 1,x =
1,y = 2. Now go to the second column. You need d = 2,xd+b = 3 so b = 1,yd+ zb = 3 so z =−1. From

the third column, h = 0,e = 2,c = 6. Now from the fourth column, j = 2, i = −1, f = −5. Therefore, an

LU factorization is 


1 0 0

1 1 0

2 −1 1






1 2 0 2

0 1 2 −1

0 0 6 −5


 .

You can check whether you got it right by simply multiplying these two.

2.2.2 LU Factorization, Multiplier Method

Remember that for a matrix A to be written in the form A = LU , you must be able to reduce it to its

row-echelon form without interchanging rows. The following method gives a process for calculating the

LU factorization of such a matrix A.

Example 2.68: LU factorization

Find an LU factorization for 


1 2 3

2 3 1

−2 3 −2




Solution.

Write the matrix as the following product.



1 0 0

0 1 0

0 0 1






1 2 3

2 3 1

−2 3 −2




In the matrix on the right, begin with the left row and zero out the entries below the top using the row

operation which involves adding a multiple of a row to another row. You do this and also update the matrix

on the left so that the product will be unchanged. Here is the first step. Take −2 times the top row and add

to the second. Then take 2 times the top row and add to the second in the matrix on the left.



1 0 0

2 1 0

0 0 1






1 2 3

0 −1 −5

−2 3 −2



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The next step is to take 2 times the top row and add to the bottom in the matrix on the right. To ensure that

the product is unchanged, you place a −2 in the bottom left in the matrix on the left. Thus the next step

yields 


1 0 0

2 1 0

−2 0 1






1 2 3

0 −1 −5

0 7 4




Next take 7 times the middle row on right and add to bottom row. Updating the matrix on the left in a

similar manner to what was done earlier,




1 0 0

2 1 0

−2 −7 1






1 2 3

0 −1 −5

0 0 −31




At this point, stop. You are done. ♠

The method just described is called the multiplier method.

2.2.3 Solving Systems using LU Factorization

One reason people care about the LU factorization is it allows the quick solution of systems of equations.

Here is an example.

Example 2.69: LU factorization to Solve Equations

Suppose you want to find the solutions to




1 2 3 2

4 3 1 1

1 2 3 0







x

y

z

w


=




1

2

3


 .

Solution.

Of course one way is to write the augmented matrix and grind away. However, this involves more row

operations than the computation of the LU factorization and it turns out that the LU factorization can give

the solution quickly. Here is how. The following is an LU factorization for the matrix.




1 2 3 2

4 3 1 1

1 2 3 0


=




1 0 0

4 1 0

1 0 1






1 2 3 2

0 −5 −11 −7

0 0 0 −2


 .

Let UX =Y and consider LY = B where in this case, B = [1,2,3]T . Thus




1 0 0

4 1 0

1 0 1






y1

y2

y3


=




1

2

3



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which yields very quickly that Y =




1

−2

2


 .

Now you can find X by solving UX = Y . Thus in this case,




1 2 3 2

0 −5 −11 −7

0 0 0 −2







x

y

z

w


=




1

−2

2




which yields

X =




−3
5
+ 7

5
t

9
5
− 11

5
t

t

−1




, t ∈ R.

♠

2.2.4 Justification for the Multiplier Method

Why does the multiplier method work for finding the LU factorization? Suppose A is a matrix which has

the property that the row-echelon form for A may be achieved without switching rows. Thus every row

which is replaced using this row operation in obtaining the row-echelon form may be modified by using

a row which is above it.

Lemma 2.70: Multiplier Method and Triangular Matrices

Let L be a lower (upper) triangular matrix m×m which has ones down the main diagonal. Then

L−1 also is a lower (upper) triangular matrix which has ones down the main diagonal. In the case

that L is of the form

L =




1

a1 1
...

. . .

an 1


 (2.11)

where all entries are zero except for the left column and main diagonal, it is also the case that L−1

is obtained from L by simply multiplying each entry below the main diagonal in L with −1. The

same is true if the single nonzero column is in another position.

Proof. Consider the usual setup for finding the inverse
[

L I
]

. Then each row operation done to L to

reduce to row reduced echelon form results in changing only the entries in I below the main diagonal. In

the special case of L given in 2.11 or the single nonzero column is in another position, multiplication by

−1 as described in the lemma clearly results in L−1. ♠
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For a simple illustration of the last claim,



1 0 0 1 0 0

0 1 0 0 1 0

0 a 1 0 0 1


→




1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 −a 1




Now let A be an m×n matrix, say

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn




and assume A can be row reduced to an upper triangular form using only row operation 3. Thus, in

particular, a11 6= 0. Multiply on the left by E1 =



1 0 · · · 0

−a21
a11

1 · · · 0
...

...
. . .

...

−am1

a11
0 · · · 1




This is the product of elementary matrices which make modifications in the first column only. It is equiv-

alent to taking −a21/a11 times the first row and adding to the second. Then taking −a31/a11 times the

first row and adding to the third and so forth. The quotients in the first column of the above matrix are the

multipliers. Thus the result is of the form

E1A =




a11 a12 · · · a′1n

0 a′22 · · · a′2n
...

...
...

0 a′m2 · · · a′mn




By assumption, a′22 6= 0 and so it is possible to use this entry to zero out all the entries below it in the matrix

on the right by multiplication by a matrix of the form E2 =

[
1 0

0 E

]
where E is an [m−1]× [m−1] matrix

of the form

E =




1 0 · · · 0

−a′32

a′22
1 · · · 0

...
...

. . .
...

−a′m2

a′22
0 · · · 1




Again, the entries in the first column below the 1 are the multipliers. Continuing this way, zeroing out the

entries below the diagonal entries, finally leads to

Em−1En−2 · · ·E1A =U

where U is upper triangular. Each E j has all ones down the main diagonal and is lower triangular. Now

multiply both sides by the inverses of the E j in the reverse order. This yields

A = E−1
1 E−1

2 · · ·E−1
m−1U
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By Lemma 2.70, this implies that the product of those E−1
j is a lower triangular matrix having all ones

down the main diagonal.

The above discussion and lemma gives the justification for the multiplier method. The expressions

−a21

a11
,
−a31

a11
, · · · ,

−am1

a11

denoted respectively by M21, · · · ,Mm1 to save notation which were obtained in building E1 are the multi-

pliers. Then according to the lemma, to find E−1
1 you simply write




1 0 · · · 0

−M21 1 · · · 0
...

...
. . .

...

−Mm1 0 · · · 1




Similar considerations apply to the other E−1
j . Thus L is a product of the form




1 0 · · · 0

−M21 1 · · · 0
...

...
. . .

...

−Mm1 0 · · · 1


 · · ·




1 0 · · · 0

0 1 · · · 0
... 0

. . .
...

0 · · · −Mm[m−1] 1




each factor having at most one nonzero column, the position of which moves from left to right in scan-

ning the above product of matrices from left to right. It follows from what we know about the effect of

multiplying on the left by an elementary matrix that the above product is of the form




1 0 · · · 0 0

−M21 1 · · · 0 0
... −M32

. . .
...

...

−M[M−1]1
... · · · 1 0

−MM1 −MM2 · · · −MMM−1 1




In words, beginning at the left column and moving toward the right, you simply insert, into the corre-

sponding position in the identity matrix, −1 times the multiplier which was used to zero out an entry in

that position below the main diagonal in A, while retaining the main diagonal which consists entirely of

ones. This is L.

Exercises

Exercise 2.2.1 Find an LU factorization of




1 2 0

2 1 3

1 2 3


 .

Exercise 2.2.2 Find an LU factorization of




1 2 3 2

1 3 2 1

5 0 1 3


 .
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Exercise 2.2.3 Find an LU factorization of the matrix




1 −2 −5 0

−2 5 11 3

3 −6 −15 1


 .

Exercise 2.2.4 Find an LU factorization of the matrix




1 −1 −3 −1

−1 2 4 3

2 −3 −7 −3


 .

Exercise 2.2.5 Find an LU factorization of the matrix




1 −3 −4 −3

−3 10 10 10

1 −6 2 −5


 .

Exercise 2.2.6 Find an LU factorization of the matrix




1 3 1 −1

3 10 8 −1

2 5 −3 −3


 .

Exercise 2.2.7 Find an LU factorization of the matrix




3 −2 1

9 −8 6

−6 2 2

3 2 −7


 .

Exercise 2.2.8 Find an LU factorization of the matrix




−3 −1 3

9 9 −12

3 19 −16

12 40 −26


 .

Exercise 2.2.9 Find an LU factorization of the matrix




−1 −3 −1

1 3 0

3 9 0

4 12 16


 .

Exercise 2.2.10 Find the LU factorization of the coefficient matrix using Dolittle’s method and use it to

solve the system of equations.

x+2y = 5

2x+3y = 6

Exercise 2.2.11 Find the LU factorization of the coefficient matrix using Dolittle’s method and use it to

solve the system of equations.

x+2y+ z = 1

y+3z = 2

2x+3y = 6
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Exercise 2.2.12 Find the LU factorization of the coefficient matrix using Dolittle’s method and use it to

solve the system of equations.

x+2y+3z = 5

2x+3y+ z = 6

x− y+ z = 2

Exercise 2.2.13 Find the LU factorization of the coefficient matrix using Dolittle’s method and use it to

solve the system of equations.

x+2y+3z = 5

2x+3y+ z = 6

3x+5y+4z = 11

Exercise 2.2.14 Is there only one LU factorization for a given matrix? Hint: Consider the equation

[
0 1

0 1

]
=

[
1 0

1 1

][
0 1

0 0

]
.

Look for all possible LU factorizations.



Chapter 3

Determinants

3.1 Basic Techniques and Properties

Outcomes

A. Evaluate the determinant of a square matrix using either Laplace Expansion or row operations.

B. Demonstrate the effects that row operations have on determinants.

C. Verify the following:

(a) The determinant of a product of matrices is the product of the determinants.

(b) The determinant of a matrix is equal to the determinant of its transpose.

3.1.1 Cofactors and 2×2 Determinants

Let A be an n×n matrix. That is, let A be a square matrix. The determinant of A, denoted by det(A) is a

very important number which we will explore throughout this section.

If A is a 2×2 matrix, the determinant is given by the following formula.

Definition 3.1: Determinant of a Two By Two Matrix

Let A =

[
a b

c d

]
. Then

det(A) = ad − cb

The determinant is also often denoted by enclosing the matrix with two vertical lines. Thus

det

[
a b

c d

]
=

∣∣∣∣
a b

c d

∣∣∣∣= ad−bc

The following is an example of finding the determinant of a 2×2 matrix.

Example 3.2: A Two by Two Determinant

Find det(A) for the matrix A =

[
2 4

−1 6

]
.

Solution. From Definition 3.1,

det(A) = (2)(6)− (−1)(4) = 12+4 = 16

107
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♠

The 2×2 determinant can be used to find the determinant of larger matrices. We will now explore how

to find the determinant of a 3×3 matrix, using several tools including the 2×2 determinant.

We begin with the following definition.

Definition 3.3: The i jth Minor of a Matrix

Let A be a 3×3 matrix. The i jth minor of A, denoted as minor(A)i j , is the determinant of the 2×2

matrix which results from deleting the ith row and the jth column of A.

In general, if A is an n×n matrix, then the i jth minor of A is the determinant of the n−1×n−1

matrix which results from deleting the ith row and the jth column of A.

Hence, there is a minor associated with each entry of A. Consider the following example which

demonstrates this definition.

Example 3.4: Finding Minors of a Matrix

Let

A =




1 2 3

4 3 2

3 2 1




Find minor(A)12 and minor(A)23.

Solution. First we will find minor(A)12. By Definition 3.3, this is the determinant of the 2× 2 matrix

which results when you delete the first row and the second column. This minor is given by

minor(A)12 = det

[
4 2

3 1

]

Using Definition 3.1, we see that

det

[
4 2

3 1

]
= (4)(1)− (3)(2) = 4−6 =−2

Therefore minor(A)12 =−2.

Similarly, minor(A)23 is the determinant of the 2×2 matrix which results when you delete the second

row and the third column. This minor is therefore

minor(A)23 = det

[
1 2

3 2

]
=−4

Finding the other minors of A is left as an exercise. ♠

The i jth minor of a matrix A is used in another important definition, given next.
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Definition 3.5: The i jth Cofactor of a Matrix

Suppose A is an n×n matrix. The i jth cofactor, denoted by cof (A)i j is defined to be

cof (A)i j = (−1)i+ j
minor(A)i j

It is also convenient to refer to the cofactor of an entry of a matrix as follows. If ai j is the i jth entry of

the matrix, then its cofactor is just cof(A)i j .

Example 3.6: Finding Cofactors of a Matrix

Consider the matrix

A =




1 2 3

4 3 2

3 2 1




Find cof(A)12 and cof(A)23.

Solution. We will use Definition 3.5 to compute these cofactors.

First, we will compute cof(A)12. Therefore, we need to find minor(A)12. This is the determinant of

the 2×2 matrix which results when you delete the first row and the second column. Thus minor(A)12 is

given by

det

[
4 2

3 1

]
=−2

Then,

cof(A)12 = (−1)1+2
minor(A)12 = (−1)1+2 (−2) = 2

Hence, cof (A)12 = 2.

Similarly, we can find cof(A)23. First, find minor(A)23, which is the determinant of the 2×2 matrix

which results when you delete the second row and the third column. This minor is therefore

det

[
1 2

3 2

]
=−4

Hence,

cof(A)23 = (−1)2+3
minor(A)23 = (−1)2+3 (−4) = 4

♠

You may wish to find the remaining cofactors for the above matrix. Remember that there is a cofactor

for every entry in the matrix.

We have now established the tools we need to find the determinant of a 3×3 matrix.
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Definition 3.7: The Determinant of a Three By Three Matrix

Let A be a 3× 3 matrix. Then, det(A) is calculated by picking a row (or column) and taking the

product of each entry in that row (column) with its cofactor and adding these products together.

This process when applied to the ith row (column) is known as expanding along the ith row (col-

umn) as is given by

det(A) = ai1cof(A)i1+ai2cof(A)i2+ai3cof(A)i3

When calculating the determinant, you can choose to expand any row or any column. Regardless of

your choice, you will always get the same number which is the determinant of the matrix A. This method of

evaluating a determinant by expanding along a row or a column is called Laplace Expansion or Cofactor

Expansion.

Consider the following example.

Example 3.8: Finding the Determinant of a Three by Three Matrix

Let

A =




1 2 3

4 3 2

3 2 1




Find det(A) using the method of Laplace Expansion.

Solution. First, we will calculate det(A) by expanding along the first column. Using Definition 3.7, we

take the 1 in the first column and multiply it by its cofactor,

1(−1)1+1

∣∣∣∣
3 2

2 1

∣∣∣∣= (1)(1)(−1) =−1

Similarly, we take the 4 in the first column and multiply it by its cofactor, as well as with the 3 in the first

column. Finally, we add these numbers together, as given in the following equation.

det(A) = 1

cof(A)11︷ ︸︸ ︷
(−1)1+1

∣∣∣∣
3 2

2 1

∣∣∣∣+4

cof(A)21︷ ︸︸ ︷
(−1)2+1

∣∣∣∣
2 3

2 1

∣∣∣∣+3

cof(A)31︷ ︸︸ ︷
(−1)3+1

∣∣∣∣
2 3

3 2

∣∣∣∣

Calculating each of these, we obtain

det(A) = 1(1)(−1)+4(−1)(−4)+3(1)(−5) =−1+16+−15 = 0

Hence, det(A) = 0.

As mentioned in Definition 3.7, we can choose to expand along any row or column. Let’s try now by

expanding along the second row. Here, we take the 4 in the second row and multiply it to its cofactor, then

add this to the 3 in the second row multiplied by its cofactor, and the 2 in the second row multiplied by its

cofactor. The calculation is as follows.

det(A) = 4

cof(A)21︷ ︸︸ ︷
(−1)2+1

∣∣∣∣
2 3

2 1

∣∣∣∣+3

cof(A)22︷ ︸︸ ︷
(−1)2+2

∣∣∣∣
1 3

3 1

∣∣∣∣+2

cof(A)23︷ ︸︸ ︷
(−1)2+3

∣∣∣∣
1 2

3 2

∣∣∣∣
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Calculating each of these products, we obtain

det(A) = 4(−1)(−2)+3(1)(−8)+2(−1)(−4) = 0

You can see that for both methods, we obtained det(A) = 0. ♠

As mentioned above, we will always come up with the same value for det(A) regardless of the row or

column we choose to expand along. You should try to compute the above determinant by expanding along

other rows and columns. This is a good way to check your work, because you should come up with the

same number each time!

We present this idea formally in the following theorem.

Theorem 3.9: The Determinant is Well Defined

Expanding the n× n matrix along any row or column always gives the same answer, which is the

determinant.

We have now looked at the determinant of 2×2 and 3×3 matrices. It turns out that the method used

to calculate the determinant of a 3×3 matrix can be used to calculate the determinant of any sized matrix.

Notice that Definition 3.3, Definition 3.5 and Definition 3.7 can all be applied to a matrix of any size.

For example, the i jth minor of a 4×4 matrix is the determinant of the 3×3 matrix you obtain when you

delete the ith row and the jth column. Just as with the 3×3 determinant, we can compute the determinant

of a 4×4 matrix by Laplace Expansion, along any row or column

Consider the following example.

Example 3.10: Determinant of a Four by Four Matrix

Find det(A) where

A =




1 2 3 4

5 4 2 3

1 3 4 5

3 4 3 2




Solution. As in the case of a 3× 3 matrix, you can expand this along any row or column. Lets pick the

third column. Then, using Laplace Expansion,

det(A) = 3(−1)1+3

∣∣∣∣∣∣

5 4 3

1 3 5

3 4 2

∣∣∣∣∣∣
+2(−1)2+3

∣∣∣∣∣∣

1 2 4

1 3 5

3 4 2

∣∣∣∣∣∣
+

4(−1)3+3

∣∣∣∣∣∣

1 2 4

5 4 3

3 4 2

∣∣∣∣∣∣
+3(−1)4+3

∣∣∣∣∣∣

1 2 4

5 4 3

1 3 5

∣∣∣∣∣∣

Now, you can calculate each 3×3 determinant using Laplace Expansion, as we did above. You should

complete these as an exercise and verify that det(A) =−12. ♠
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The following provides a formal definition for the determinant of an n× n matrix. You may wish

to take a moment and consider the above definitions for 2× 2 and 3× 3 determinants in context of this

definition.

Definition 3.11: The Determinant of an n×n Matrix

Let A be an n×n matrix where n ≥ 2 and suppose the determinant of an (n−1)× (n−1) has been

defined. Then

det(A) =
n

∑
j=1

ai jcof(A)i j =
n

∑
i=1

ai jcof(A)i j

The first formula consists of expanding the determinant along the ith row and the second expands

the determinant along the jth column.

In the following sections, we will explore some important properties and characteristics of the deter-

minant.

3.1.2 The Determinant of a Triangular Matrix

There is a certain type of matrix for which finding the determinant is a very simple procedure. Consider

the following definition.

Definition 3.12: Triangular Matrices

A matrix A is upper triangular if ai j = 0 whenever i > j. Thus the entries of such a matrix below

the main diagonal equal 0, as shown. Here, ∗ refers to any nonzero number.




∗ ∗ · · · ∗
0 ∗ · · · ...
...

...
. . . ∗

0 · · · 0 ∗




A lower triangular matrix is defined similarly as a matrix for which all entries above the main

diagonal are equal to zero.

The following theorem provides a useful way to calculate the determinant of a triangular matrix.

Theorem 3.13: Determinant of a Triangular Matrix

Let A be an upper or lower triangular matrix. Then det(A) is obtained by taking the product of the

entries on the main diagonal.

The verification of this Theorem can be done by computing the determinant using Laplace Expansion

along the first row or column.

Consider the following example.
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Example 3.14: Determinant of a Triangular Matrix

Let

A =




1 2 3 77

0 2 6 7

0 0 3 33.7

0 0 0 −1




Find det(A) .

Solution. From Theorem 3.13, it suffices to take the product of the elements on the main diagonal. Thus

det(A) = 1×2×3× (−1) =−6.

Without using Theorem 3.13, you could use Laplace Expansion. We will expand along the first column.

This gives

det(A) = 1

∣∣∣∣∣∣

2 6 7

0 3 33.7

0 0 −1

∣∣∣∣∣∣
+0(−1)2+1

∣∣∣∣∣∣

2 3 77

0 3 33.7

0 0 −1

∣∣∣∣∣∣
+

0(−1)3+1

∣∣∣∣∣∣

2 3 77

2 6 7

0 0 −1

∣∣∣∣∣∣
+0(−1)4+1

∣∣∣∣∣∣

2 3 77

2 6 7

0 3 33.7

∣∣∣∣∣∣

and the only nonzero term in the expansion is

1

∣∣∣∣∣∣

2 6 7

0 3 33.7

0 0 −1

∣∣∣∣∣∣

Now find the determinant of this 3×3 matrix, by expanding along the first column to obtain

det(A) = 1×
(

2×
∣∣∣∣

3 33.7

0 −1

∣∣∣∣+0(−1)2+1

∣∣∣∣
6 7

0 −1

∣∣∣∣+0(−1)3+1

∣∣∣∣
6 7

3 33.7

∣∣∣∣
)

= 1×2×
∣∣∣∣

3 33.7

0 −1

∣∣∣∣
Next use Definition 3.1 to find the determinant of this 2×2 matrix, which is just 3×−1−0×33.7 =−3.

Putting all these steps together, we have

det(A) = 1×2×3× (−1) =−6

which is just the product of the entries down the main diagonal of the original matrix! ♠

You can see that while both methods result in the same answer, Theorem 3.13 provides a much quicker

method.

In the next section, we explore some important properties of determinants.
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3.1.3 Properties of Determinants I: Examples

There are many important properties of determinants. Since many of these properties involve the row

operations discussed in Chapter 1, we recall that definition now.

Definition 3.15: Row Operations

The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to itself.

We will now consider the effect of row operations on the determinant of a matrix. In future sections,

we will see that using the following properties can greatly assist in finding determinants. This section will

use the theorems as motivation to provide various examples of the usefulness of the properties.

The first theorem explains the affect on the determinant of a matrix when two rows are switched.

Theorem 3.16: Switching Rows

Let A be an n× n matrix and let B be a matrix which results from switching two rows of A. Then

det(B) =−det(A) .

When we switch two rows of a matrix, the determinant is multiplied by −1. Consider the following

example.

Example 3.17: Switching Two Rows

Let A =

[
1 2

3 4

]
and let B =

[
3 4

1 2

]
. Knowing that det(A) =−2, find det(B).

Solution. By Definition 3.1, det(A) = 1×4−3×2 =−2. Notice that the rows of B are the rows of A but

switched. By Theorem 3.16 since two rows of A have been switched, det(B) = −det(A) = −(−2) = 2.

You can verify this using Definition 3.1. ♠

The next theorem demonstrates the effect on the determinant of a matrix when we multiply a row by a

scalar.

Theorem 3.18: Multiplying a Row by a Scalar

Let A be an n×n matrix and let B be a matrix which results from multiplying some row of A by a

scalar k. Then det(B) = k det(A).
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Notice that this theorem is true when we multiply one row of the matrix by k. If we were to multiply

two rows of A by k to obtain B, we would have det(B) = k2 det(A). Suppose we were to multiply all n

rows of A by k to obtain the matrix B, so that B = kA. Then, det(B) = kn det(A). This gives the next

theorem.

Theorem 3.19: Scalar Multiplication

Let A and B be n×n matrices and k a scalar, such that B = kA. Then det(B) = kn det(A).

Consider the following example.

Example 3.20: Multiplying a Row by 5

Let A =

[
1 2

3 4

]
, B =

[
5 10

3 4

]
. Knowing that det(A) =−2, find det(B).

Solution. By Definition 3.1, det(A) = −2. We can also compute det(B) using Definition 3.1, and we see

that det(B) =−10.

Now, let’s compute det(B) using Theorem 3.18 and see if we obtain the same answer. Notice that the

first row of B is 5 times the first row of A, while the second row of B is equal to the second row of A. By

Theorem 3.18, det(B) = 5×det(A) = 5×−2 =−10.

You can see that this matches our answer above. ♠

Finally, consider the next theorem for the last row operation, that of adding a multiple of a row to

another row.

Theorem 3.21: Adding a Multiple of a Row to Another Row

Let A be an n× n matrix and let B be a matrix which results from adding a multiple of a row to

another row. Then det(A) = det(B).

Therefore, when we add a multiple of a row to another row, the determinant of the matrix is unchanged.

Note that if a matrix A contains a row which is a multiple of another row, det(A) will equal 0. To see this,

suppose the first row of A is equal to −1 times the second row. By Theorem 3.21, we can add the first row

to the second row, and the determinant will be unchanged. However, this row operation will result in a

row of zeros. Using Laplace Expansion along the row of zeros, we find that the determinant is 0.

Consider the following example.

Example 3.22: Adding a Row to Another Row

Let A =

[
1 2

3 4

]
and let B =

[
1 2

5 8

]
. Find det(B).

Solution. By Definition 3.1, det(A) =−2. Notice that the second row of B is two times the first row of A

added to the second row. By Theorem 3.16, det(B) = det(A) =−2. As usual, you can verify this answer

using Definition 3.1. ♠
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Example 3.23: Multiple of a Row

Let A =

[
1 2

2 4

]
. Show that det(A) = 0.

Solution. Using Definition 3.1, the determinant is given by

det(A) = 1×4−2×2 = 0

However notice that the second row is equal to 2 times the first row. Then by the discussion above

following Theorem 3.21 the determinant will equal 0. ♠

Until now, our focus has primarily been on row operations. However, we can carry out the same

operations with columns, rather than rows. The three operations outlined in Definition 3.15 can be done

with columns instead of rows. In this case, in Theorems 3.16, 3.18, and 3.21 you can replace the word,

"row" with the word "column".

There are several other major properties of determinants which do not involve row (or column) opera-

tions. The first is the determinant of a product of matrices.

Theorem 3.24: Determinant of a Product

Let A and B be two n×n matrices. Then

det(AB) = det(A)det(B)

In order to find the determinant of a product of matrices, we can simply take the product of the deter-

minants.

Consider the following example.

Example 3.25: The Determinant of a Product

Compare det(AB) and det(A)det(B) for

A =

[
1 2

−3 2

]
,B =

[
3 2

4 1

]

Solution. First compute AB, which is given by

AB =

[
1 2

−3 2

][
3 2

4 1

]
=

[
11 4

−1 −4

]

and so by Definition 3.1

det(AB) = det

[
11 4

−1 −4

]
=−40

Now

det(A) = det

[
1 2

−3 2

]
= 8
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and

det(B) = det

[
3 2

4 1

]
=−5

Computing det(A)× det(B) we have 8×−5 = −40. This is the same answer as above and you can

see that det(A)det(B) = 8× (−5) =−40 = det(AB). ♠

Consider the next important property.

Theorem 3.26: Determinant of the Transpose

Let A be a matrix where AT is the transpose of A. Then,

det
(
AT
)
= det(A)

This theorem is illustrated in the following example.

Example 3.27: Determinant of the Transpose

Let

A =

[
2 5

4 3

]

Find det
(
AT
)
.

Solution. First, note that

AT =

[
2 4

5 3

]

Using Definition 3.1, we can compute det(A) and det
(
AT
)
. It follows that det(A) = 2×3−4×5 =

−14 and det
(
AT
)
= 2×3−5×4 =−14. Hence, det(A) = det

(
AT
)
. ♠

The following provides an essential property of the determinant, as well as a useful way to determine

if a matrix is invertible.

Theorem 3.28: Determinant of the Inverse

Let A be an n×n matrix. Then A is invertible if and only if det(A) 6= 0. If this is true, it follows that

det(A−1) =
1

det(A)

Consider the following example.

Example 3.29: Determinant of an Invertible Matrix

Let A =

[
3 6

2 4

]
,B =

[
2 3

5 1

]
. For each matrix, determine if it is invertible. If so, find the

determinant of the inverse.
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Solution. Consider the matrix A first. Using Definition 3.1 we can find the determinant as follows:

det(A) = 3×4−2×6 = 12−12 = 0

By Theorem 3.28 A is not invertible.

Now consider the matrix B. Again by Definition 3.1 we have

det(B) = 2×1−5×3 = 2−15 =−13

By Theorem 3.28 B is invertible and the determinant of the inverse is given by

det
(
B−1

)
=

1

det(B)

=
1

−13

= − 1

13

♠

3.1.4 Properties of Determinants II: Some Important Proofs

This section includes some important proofs on determinants and cofactors.

First we recall the definition of a determinant. If A =
[
ai j

]
is an n×n matrix, then detA is defined by

computing the expansion along the first row:

detA =
n

∑
i=1

a1,icof(A)1,i. (3.1)

If n = 1 then detA = a1,1.

The following example is straightforward and strongly recommended as a means for getting used to

definitions.

Example 3.30:

(1) Let Ei j be the elementary matrix obtained by interchanging ith and jth rows of I. Then detEi j =
−1.

(2) Let Eik be the elementary matrix obtained by multiplying the ith row of I by k. Then detEik = k.

(3) Let Ei jk be the elementary matrix obtained by multiplying ith row of I by k and adding it to its

jth row. Then detEi jk = 1.

(4) If C and B are such that CB is defined and the ith row of C consists of zeros, then the ith row of

CB consists of zeros.

(5) If E is an elementary matrix, then detE = detET .

Many of the proofs in section use the Principle of Mathematical Induction. This concept is discussed

in Appendix A.2 and is reviewed here for convenience. First we check that the assertion is true for n = 2

(the case n = 1 is either completely trivial or meaningless).
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Next, we assume that the assertion is true for n− 1 (where n ≥ 3) and prove it for n. Once this is

accomplished, by the Principle of Mathematical Induction we can conclude that the statement is true for

all n×n matrices for every n ≥ 2.

If A is an n×n matrix and 1 ≤ j ≤ n, then the matrix obtained by removing 1st column and jth row

from A is an n−1×n−1 matrix (we shall denote this matrix by A( j) below). Since these matrices are used

in computation of cofactors cof(A)1,i, for 1 ≤ i 6= n, the inductive assumption applies to these matrices.

Consider the following lemma.

Lemma 3.31:

If A is an n×n matrix such that one of its rows consists of zeros, then detA = 0.

Proof. We will prove this lemma using Mathematical Induction.

If n = 2 this is easy (check!).

Let n ≥ 3 be such that every matrix of size n−1×n−1 with a row consisting of zeros has determinant

equal to zero. Let i be such that the ith row of A consists of zeros. Then we have ai j = 0 for 1 ≤ j ≤ n.

Fix j ∈ {1,2, . . . ,n} such that j 6= i. Then matrix A( j) used in computation of cof(A)1, j has a row

consisting of zeros, and by our inductive assumption cof(A)1, j = 0.

On the other hand, if j = i then a1, j = 0. Therefore a1, jcof(A)1, j = 0 for all j and by (3.1) we have

detA =
n

∑
j=1

a1, jcof(A)1, j = 0

as each of the summands is equal to 0. ♠

Lemma 3.32:

Assume A, B and C are n×n matrices that for some 1 ≤ i ≤ n satisfy the following.

1. jth rows of all three matrices are identical, for j 6= i.

2. Each entry in the jth row of A is the sum of the corresponding entries in jth rows of B and C.

Then detA = detB+detC.

Proof. This is not difficult to check for n = 2 (do check it!).

Now assume that the statement of Lemma is true for n− 1× n− 1 matrices and fix A,B and C as

in the statement. The assumptions state that we have al, j = bl, j = cl, j for j 6= i and for 1 ≤ l ≤ n and

al,i = bl,i + cl,i for all 1 ≤ l ≤ n. Therefore A(i) = B(i) =C(i), and A( j) has the property that its ith row

is the sum of ith rows of B( j) and C( j) for j 6= i while the other rows of all three matrices are identical.

Therefore by our inductive assumption we have cof(A)1 j = cof(B)1 j + cof(C)1 j for j 6= i.

By (3.1) we have (using all equalities established above)

detA =
n

∑
l=1

a1,lcof(A)1,l
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= ∑
l 6=i

a1,l(cof(B)1,l + cof(C)1,l)+(b1,i + c1,i)cof(A)1,i

= detB+detC

This proves that the assertion is true for all n and completes the proof. ♠

Theorem 3.33:

Let A and B be n×n matrices.

1. If A is obtained by interchanging ith and jth rows of B (with i 6= j), then detA =−detB.

2. If A is obtained by multiplying ith row of B by k then detA = k detB.

3. If two rows of A are identical then detA = 0.

4. If A is obtained by multiplying ith row of B by k and adding it to jth row of B (i 6= j) then

detA = detB.

Proof. We prove all statements by induction. The case n = 2 is easily checked directly (and it is strongly

suggested that you do check it).

We assume n ≥ 3 and (1)–(4) are true for all matrices of size n−1×n−1.

(1) We prove the case when j = i+1, i.e., we are interchanging two consecutive rows.

Let l ∈ {1, . . . ,n} \ {i, j}. Then A(l) is obtained from B(l) by interchanging two of its rows (draw a

picture) and by our assumption

cof(A)1,l =−cof(B)1,l. (3.2)

Now consider a1,icof(A)1,l. We have that a1,i = b1, j and also that A(i) = B( j). Since j = i+1, we have

(−1)1+ j = (−1)1+i+1 =−(−1)1+i

and therefore a1icof(A)1i =−b1 jcof(B)1 j and a1 jcof(A)1 j =−b1icof(B)1i. Putting this together with (3.2)

into (3.1) we see that if in the formula for detA we change the sign of each of the summands we obtain the

formula for detB.

detA =
n

∑
l=1

a1lcof(A)1l =−
n

∑
l=1

b1lB1l = detB.

We have therefore proved the case of (1) when j = i+1. In order to prove the general case, one needs

the following fact. If i < j, then in order to interchange ith and jth row one can proceed by interchanging

two adjacent rows 2( j− i)+1 times: First swap ith and i+1st, then i+1st and i+2nd, and so on. After

one interchanges j−1st and jth row, we have ith row in position of jth and lth row in position of l −1st

for i+1 ≤ l ≤ j. Then proceed backwards swapping adjacent rows until everything is in place.

Since 2( j− i)+1 is an odd number (−1)2( j−i)+1 =−1 and we have that detA =−detB.

(2) This is like (1). . . but much easier. Assume that (2) is true for all n− 1× n− 1 matrices. We

have that a ji = kb ji for 1 ≤ j ≤ n. In particular a1i = kb1i, and for l 6= i matrix A(l) is obtained from

B(l) by multiplying one of its rows by k. Therefore cof(A)1l = kcof(B)1l for l 6= i, and for all l we have

a1lcof(A)1l = kb1lcof(B)1l. By (3.1), we have detA = k detB.
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(3) This is a consequence of (1). If two rows of A are identical, then A is equal to the matrix obtained

by interchanging those two rows and therefore by (1) detA =−detA. This implies detA = 0.

(4) Assume (4) is true for all n−1×n−1 matrices and fix A and B such that A is obtained by multi-

plying ith row of B by k and adding it to jth row of B (i 6= j) then detA = detB. If k = 0 then A = B and

there is nothing to prove, so we may assume k 6= 0.

Let C be the matrix obtained by replacing the jth row of B by the ith row of B multiplied by k. By

Lemma 3.32, we have that

detA = detB+detC

and we ‘only’ need to show that detC = 0. But ith and jth rows of C are proportional. If D is obtained by

multiplying the jth row of C by 1
k

then by (2) we have detC = 1
k

detD (recall that k 6= 0!). But ith and jth

rows of D are identical, hence by (3) we have detD = 0 and therefore detC = 0. ♠

Theorem 3.34:

Let A and B be two n×n matrices. Then

det(AB) = det(A)det(B)

Proof. If A is an elementary matrix of either type, then multiplying by A on the left has the same effect as

performing the corresponding elementary row operation. Therefore the equality det(AB) = detAdetB in

this case follows by Example 3.30 and Theorem 3.33.

If C is the reduced row-echelon form of A then we can write A=E1 ·E2 · · · · ·Em ·C for some elementary

matrices E1, . . . ,Em.

Now we consider two cases.

Assume first that C = I. Then A = E1 ·E2 · · · · ·Em and AB = E1 ·E2 · · · · ·EmB. By applying the above

equality m times, and then m−1 times, we have that

detAB = detE1 detE2 ·detEm ·detB

= det(E1 ·E2 · · · · ·Em)detB

= detAdetB.

Now assume C 6= I. Since it is in reduced row-echelon form, its last row consists of zeros and by (4)

of Example 3.30 the last row of CB consists of zeros. By Lemma 3.31 we have detC = det(CB) = 0 and

therefore

detA = det(E1 ·E2 ·Em) ·det(C) = det(E1 ·E2 ·Em) ·0 = 0

and also

detAB = det(E1 ·E2 ·Em) ·det(CB) = det(E1 ·E2 · · · · ·Em)0 = 0

hence detAB = 0 = detAdetB. ♠

The same ‘machine’ used in the previous proof will be used again.
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Theorem 3.35:

Let A be a matrix where AT is the transpose of A. Then,

det
(
AT
)
= det(A)

Proof. Note first that the conclusion is true if A is elementary by (5) of Example 3.30.

Let C be the reduced row-echelon form of A. Then we can write A = E1 ·E2 · · · · ·EmC. Then AT =
CT ·ET

m · · · · ·ET
2 ·E1. By Theorem 3.34 we have

det(AT ) = det(CT ) ·det(ET
m) · · · · ·det(ET

2 ) ·det(E1).

By (5) of Example 3.30 we have that detE j = detET
j for all j. Also, detC is either 0 or 1 (depending on

whether C = I or not) and in either case detC = detCT . Therefore detA = detAT . ♠

The above discussions allow us to now prove Theorem 3.9. It is restated below.

Theorem 3.36:

Expanding an n× n matrix along any row or column always gives the same result, which is the

determinant.

Proof. We first show that the determinant can be computed along any row. The case n = 1 does not apply

and thus let n ≥ 2.

Let A be an n×n matrix and fix j > 1. We need to prove that

detA =
n

∑
i=1

a j,icof(A) j,i.

Let us prove the case when j = 2.

Let B be the matrix obtained from A by interchanging its 1st and 2nd rows. Then by Theorem 3.33 we

have

detA =−detB.

Now we have

detB =
n

∑
i=1

b1,icof(B)1,i.

Since B is obtained by interchanging the 1st and 2nd rows of A we have that b1,i = a2,i for all i and one

can see that minor(B)1,i = minor(A)2,i.

Further,

cof(B)1,i = (−1)1+iminorB1,i =−(−1)2+iminor(A)2,i =−cof(A)2,i

hence detB =−∑n
i=1 a2,icof(A)2,i, and therefore detA =−detB = ∑n

i=1 a2,icof(A)2,i as desired.

The case when j > 2 is very similar; we still have minor(B)1,i = minor(A) j,i but checking that detB =
−∑n

i=1 a j,icof(A) j,i is slightly more involved.

Now the cofactor expansion along column j of A is equal to the cofactor expansion along row j of AT ,

which is by the above result just proved equal to the cofactor expansion along row 1 of AT , which is equal
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to the cofactor expansion along column 1 of A. Thus the cofactor cofactor along any column yields the

same result.

Finally, since detA = detAT by Theorem 3.35, we conclude that the cofactor expansion along row 1

of A is equal to the cofactor expansion along row 1 of AT , which is equal to the cofactor expansion along

column 1 of A. Thus the proof is complete. ♠

3.1.5 Finding Determinants using Row Operations

Theorems 3.16, 3.18 and 3.21 illustrate how row operations affect the determinant of a matrix. In this

section, we look at two examples where row operations are used to find the determinant of a large matrix.

Recall that when working with large matrices, Laplace Expansion is effective but timely, as there are

many steps involved. This section provides useful tools for an alternative method. By first applying row

operations, we can obtain a simpler matrix to which we apply Laplace Expansion.

While working through questions such as these, it is useful to record your row operations as you go

along. Keep this in mind as you read through the next example.

Example 3.37: Finding a Determinant

Find the determinant of the matrix

A =




1 2 3 4

5 1 2 3

4 5 4 3

2 2 −4 5




Solution. We will use the properties of determinants outlined above to find det(A). First, add −5 times

the first row to the second row. Then add −4 times the first row to the third row, and −2 times the first

row to the fourth row. This yields the matrix

B =




1 2 3 4

0 −9 −13 −17

0 −3 −8 −13

0 −2 −10 −3




Notice that the only row operation we have done so far is adding a multiple of a row to another row.

Therefore, by Theorem 3.21, det(B) = det(A) .

At this stage, you could use Laplace Expansion to find det(B). However, we will continue with row

operations to find an even simpler matrix to work with.

Add −3 times the third row to the second row. By Theorem 3.21 this does not change the value of the

determinant. Then, multiply the fourth row by −3. This results in the matrix

C =




1 2 3 4

0 0 11 22

0 −3 −8 −13

0 6 30 9



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Here, det(C) =−3det(B), which means that det(B) =
(
−1

3

)
det(C)

Since det(A) = det(B), we now have that det(A) =
(
−1

3

)
det(C). Again, you could use Laplace

Expansion here to find det(C). However, we will continue with row operations.

Now replace the add 2 times the third row to the fourth row. This does not change the value of the

determinant by Theorem 3.21. Finally switch the third and second rows. This causes the determinant to

be multiplied by −1. Thus det(C) =−det(D) where

D =




1 2 3 4

0 −3 −8 −13

0 0 11 22

0 0 14 −17




Hence, det(A) =
(
−1

3

)
det(C) =

(
1
3

)
det(D)

You could do more row operations or you could note that this can be easily expanded along the first

column. Then, expand the resulting 3×3 matrix also along the first column. This results in

det(D) = 1(−3)

∣∣∣∣
11 22

14 −17

∣∣∣∣= 1485

and so det(A) =
(

1
3

)
(1485) = 495. ♠

You can see that by using row operations, we can simplify a matrix to the point where Laplace Ex-

pansion involves only a few steps. In Example 3.37, we also could have continued until the matrix was in

upper triangular form, and taken the product of the entries on the main diagonal. Whenever computing the

determinant, it is useful to consider all the possible methods and tools.

Consider the next example.

Example 3.38: Find the Determinant

Find the determinant of the matrix

A =




1 2 3 2

1 −3 2 1

2 1 2 5

3 −4 1 2




Solution. Once again, we will simplify the matrix through row operations. Add −1 times the first row to

the second row. Next add −2 times the first row to the third and finally take −3 times the first row and add

to the fourth row. This yields

B =




1 2 3 2

0 −5 −1 −1

0 −3 −4 1

0 −10 −8 −4




By Theorem 3.21, det(A) = det(B).
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Remember you can work with the columns also. Take −5 times the fourth column and add to the

second column. This yields

C =




1 −8 3 2

0 0 −1 −1

0 −8 −4 1

0 10 −8 −4




By Theorem 3.21 det(A) = det(C).

Now take −1 times the third row and add to the top row. This gives.

D =




1 0 7 1

0 0 −1 −1

0 −8 −4 1

0 10 −8 −4




which by Theorem 3.21 has the same determinant as A.

Now, we can find det(D) by expanding along the first column as follows. You can see that there will

be only one non zero term.

det(D) = 1det




0 −1 −1

−8 −4 1

10 −8 −4


+0+0+0

Expanding again along the first column, we have

det(D) = 1

(
0+8det

[
−1 −1

−8 −4

]
+10det

[
−1 −1

−4 1

])
=−82

Now since det(A) = det(D), it follows that det(A) =−82. ♠

Remember that you can verify these answers by using Laplace Expansion on A. Similarly, if you first

compute the determinant using Laplace Expansion, you can use the row operation method to verify.

Exercises

Exercise 3.1.1 Find the determinants of the following matrices.

(a)

[
1 3

0 2

]

(b)

[
0 3

0 2

]

(c)

[
4 3

6 2

]

Exercise 3.1.2 Let A =




1 2 4

0 1 3

−2 5 1


. Find the following.
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(a) minor(A)11

(b) minor(A)21

(c) minor(A)32

(d) cof(A)11

(e) cof(A)21

(f) cof(A)32

Exercise 3.1.3 Find the determinants of the following matrices.

(a)




1 2 3

3 2 2

0 9 8




(b)




4 3 2

1 7 8

3 −9 3




(c)




1 2 3 2

1 3 2 3

4 1 5 0

1 2 1 2




Exercise 3.1.4 Find the following determinant by expanding along the first row and second column.

∣∣∣∣∣∣

1 2 1

2 1 3

2 1 1

∣∣∣∣∣∣

Exercise 3.1.5 Find the following determinant by expanding along the first column and third row.

∣∣∣∣∣∣

1 2 1

1 0 1

2 1 1

∣∣∣∣∣∣

Exercise 3.1.6 Find the following determinant by expanding along the second row and first column.

∣∣∣∣∣∣

1 2 1

2 1 3

2 1 1

∣∣∣∣∣∣
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Exercise 3.1.7 Compute the determinant by cofactor expansion. Pick the easiest row or column to use.
∣∣∣∣∣∣∣∣

1 0 0 1

2 1 1 0

0 0 0 2

2 1 3 1

∣∣∣∣∣∣∣∣

Exercise 3.1.8 Find the determinant of the following matrices.

(a) A =

[
1 −34

0 2

]

(b) A =




4 3 14

0 −2 0

0 0 5




(c) A =




2 3 15 0

0 4 1 7

0 0 −3 5

0 0 0 1




Exercise 3.1.9 An operation is done to get from the first matrix to the second. Identify what was done and

tell how it will affect the value of the determinant.

[
a b

c d

]
→ ·· · →

[
a c

b d

]

Exercise 3.1.10 An operation is done to get from the first matrix to the second. Identify what was done

and tell how it will affect the value of the determinant.

[
a b

c d

]
→ ·· · →

[
c d

a b

]

Exercise 3.1.11 An operation is done to get from the first matrix to the second. Identify what was done

and tell how it will affect the value of the determinant.

[
a b

c d

]
→ ·· · →

[
a b

a+ c b+d

]

Exercise 3.1.12 An operation is done to get from the first matrix to the second. Identify what was done

and tell how it will affect the value of the determinant.

[
a b

c d

]
→ ·· · →

[
a b

2c 2d

]
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Exercise 3.1.13 An operation is done to get from the first matrix to the second. Identify what was done

and tell how it will affect the value of the determinant.

[
a b

c d

]
→ ·· · →

[
b a

d c

]

Exercise 3.1.14 Let A be an r× r matrix and suppose there are r−1 rows (columns) such that all rows

(columns) are linear combinations of these r−1 rows (columns). Show det(A) = 0.

Exercise 3.1.15 Show det(aA) = an det(A) for an n×n matrix A and scalar a.

Exercise 3.1.16 Construct 2×2 matrices A and B to show that the detAdetB = det(AB).

Exercise 3.1.17 Is it true that det(A+B) = det(A)+det(B)? If this is so, explain why. If it is not so, give

a counter example.

Exercise 3.1.18 An n×n matrix is called nilpotent if for some positive integer, k it follows Ak = 0. If A is

a nilpotent matrix and k is the smallest possible integer such that Ak = 0, what are the possible values of

det(A)?

Exercise 3.1.19 A matrix is said to be orthogonal if AT A = I. Thus the inverse of an orthogonal matrix is

just its transpose. What are the possible values of det(A) if A is an orthogonal matrix?

Exercise 3.1.20 Let A and B be two n× n matrices. A ∼ B (A is similar to B) means there exists an

invertible matrix P such that A = P−1BP. Show that if A ∼ B, then det(A) = det(B) .

Exercise 3.1.21 Tell whether each statement is true or false. If true, provide a proof. If false, provide a

counter example.

(a) If A is a 3× 3 matrix with a zero determinant, then one column must be a multiple of some other

column.

(b) If any two columns of a square matrix are equal, then the determinant of the matrix equals zero.

(c) For two n×n matrices A and B, det(A+B) = det(A)+det(B) .

(d) For an n×n matrix A, det(3A) = 3det(A)

(e) If A−1 exists then det
(
A−1

)
= det(A)−1

.

(f) If B is obtained by multiplying a single row of A by 4 then det(B) = 4det(A) .

(g) For A an n×n matrix, det(−A) = (−1)n
det(A) .

(h) If A is a real n×n matrix, then det
(
AT A

)
≥ 0.
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(i) If Ak = 0 for some positive integer k, then det(A) = 0.

(j) If AX = 0 for some X 6= 0, then det(A) = 0.

Exercise 3.1.22 Find the determinant using row operations to first simplify.

∣∣∣∣∣∣

1 2 1

2 3 2

−4 1 2

∣∣∣∣∣∣

Exercise 3.1.23 Find the determinant using row operations to first simplify.

∣∣∣∣∣∣

2 1 3

2 4 2

1 4 −5

∣∣∣∣∣∣

Exercise 3.1.24 Find the determinant using row operations to first simplify.

∣∣∣∣∣∣∣∣

1 2 1 2

3 1 −2 3

−1 0 3 1

2 3 2 −2

∣∣∣∣∣∣∣∣

Exercise 3.1.25 Find the determinant using row operations to first simplify.

∣∣∣∣∣∣∣∣

1 4 1 2

3 2 −2 3

−1 0 3 3

2 1 2 −2

∣∣∣∣∣∣∣∣

3.2 Applications of the Determinant

Outcomes

A. Use determinants to determine whether a matrix has an inverse, and evaluate the inverse using

cofactors.

B. Apply Cramer’s Rule to solve a 2×2 or a 3×3 linear system.

C. Given data points, find an appropriate interpolating polynomial and use it to estimate points.
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3.2.1 A Formula for the Inverse

The determinant of a matrix also provides a way to find the inverse of a matrix. Recall the definition of

the inverse of a matrix in Definition 2.33. We say that A−1, an n×n matrix, is the inverse of A, also n×n,

if AA−1 = I and A−1A = I.

We now define a new matrix called the cofactor matrix of A. The cofactor matrix of A is the matrix

whose i jth entry is the i jth cofactor of A. The formal definition is as follows.

Definition 3.39: The Cofactor Matrix

Let A =
[
ai j

]
be an n× n matrix. Then the cofactor matrix of A, denoted cof(A), is defined by

cof(A) =
[
cof(A)i j

]
where cof(A)i j is the i jth cofactor of A.

Note that cof (A)i j denotes the i jth entry of the cofactor matrix.

We will use the cofactor matrix to create a formula for the inverse of A. First, we define the adjugate

of A to be the transpose of the cofactor matrix. We can also call this matrix the classical adjoint of A, and

we denote it by adj(A).

In the specific case where A is a 2×2 matrix given by

A =

[
a b

c d

]

then adj(A) is given by

adj(A) =

[
d −b

−c a

]

In general, adj(A) can always be found by taking the transpose of the cofactor matrix of A. The

following theorem provides a formula for A−1 using the determinant and adjugate of A.

Theorem 3.40: The Inverse and the Determinant

Let A be an n×n matrix. Then

A adj(A) = adj(A)A = det(A)I

Moreover A is invertible if and only if det(A) 6= 0. In this case we have:

A−1 =
1

det(A)
adj(A)

Notice that the first formula holds for any n× n matrix A, and in the case A is invertible we actually

have a formula for A−1.

Consider the following example.
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Example 3.41: Find Inverse Using the Determinant

Find the inverse of the matrix

A =




1 2 3

3 0 1

1 2 1




using the formula in Theorem 3.40.

Solution. According to Theorem 3.40,

A−1 =
1

det(A)
adj(A)

First we will find the determinant of this matrix. Using Theorems 3.16, 3.18, and 3.21, we can first

simplify the matrix through row operations. First, add −3 times the first row to the second row. Then add

−1 times the first row to the third row to obtain

B =




1 2 3

0 −6 −8

0 0 −2




By Theorem 3.21, det(A) = det(B). By Theorem 3.13, det(B) = 1×−6×−2 = 12. Hence, det(A) = 12.

Now, we need to find adj(A). To do so, first we will find the cofactor matrix of A. This is given by

cof(A) =




−2 −2 6

4 −2 0

2 8 −6




Here, the i jth entry is the i jth cofactor of the original matrix A which you can verify. Therefore, from

Theorem 3.40, the inverse of A is given by

A−1 =
1

12




−2 −2 6

4 −2 0

2 8 −6




T

=




−1
6

1
3

1
6

−1
6

−1
6

2
3

1
2

0 −1
2




Remember that we can always verify our answer for A−1. Compute the product AA−1 and A−1A and

make sure each product is equal to I.

Compute A−1A as follows

A−1A =




−1
6

1
3

1
6

−1
6

−1
6

2
3

1
2

0 −1
2







1 2 3

3 0 1

1 2 1


=




1 0 0

0 1 0

0 0 1


= I
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You can verify that AA−1 = I and hence our answer is correct. ♠

We will look at another example of how to use this formula to find A−1.

Example 3.42: Find the Inverse From a Formula

Find the inverse of the matrix

A =




1
2

0 1
2

−1
6

1
3

−1
2

−5
6

2
3

−1
2




using the formula given in Theorem 3.40.

Solution. First we need to find det(A). This step is left as an exercise and you should verify that det(A) =
1
6
. The inverse is therefore equal to

A−1 =
1

(1/6)
adj(A) = 6 adj(A)

We continue to calculate as follows. Here we show the 2×2 determinants needed to find the cofactors.

A−1 = 6




∣∣∣∣∣∣

1
3

−1
2

2
3

−1
2

∣∣∣∣∣∣
−

∣∣∣∣∣∣

−1
6

−1
2

−5
6

−1
2

∣∣∣∣∣∣

∣∣∣∣∣∣

−1
6

1
3

−5
6

2
3

∣∣∣∣∣∣

−

∣∣∣∣∣∣

0 1
2

2
3

−1
2

∣∣∣∣∣∣

∣∣∣∣∣∣

1
2

1
2

−5
6

−1
2

∣∣∣∣∣∣
−

∣∣∣∣∣∣

1
2

0

−5
6

2
3

∣∣∣∣∣∣∣∣∣∣∣∣

0 1
2

1
3

−1
2

∣∣∣∣∣∣
−

∣∣∣∣∣∣

1
2

1
2

−1
6

−1
2

∣∣∣∣∣∣

∣∣∣∣∣∣

1
2

0

−1
6

1
3

∣∣∣∣∣∣




T

Expanding all the 2×2 determinants, this yields

A−1 = 6




1
6

1
3

1
6

1
3

1
6

−1
3

−1
6

1
6

1
6




T

=




1 2 −1

2 1 1

1 −2 1




Again, you can always check your work by multiplying A−1A and AA−1 and ensuring these products

equal I.

A−1A =




1 2 −1

2 1 1

1 −2 1







1
2

0 1
2

−1
6

1
3

−1
2

−5
6

2
3

−1
2



=




1 0 0

0 1 0

0 0 1



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This tells us that our calculation for A−1 is correct. It is left to the reader to verify that AA−1 = I. ♠

The verification step is very important, as it is a simple way to check your work! If you multiply A−1A

and AA−1 and these products are not both equal to I, be sure to go back and double check each step. One

common error is to forget to take the transpose of the cofactor matrix, so be sure to complete this step.

We will now prove Theorem 3.40.

Proof. (of Theorem 3.40) Recall that the (i, j)-entry of adj(A) is equal to cof(A) ji. Thus the (i, j)-entry of

B = A · adj(A) is :

Bi j =
n

∑
k=1

aikadj(A)k j =
n

∑
k=1

aikcof(A) jk

By the cofactor expansion theorem, we see that this expression for Bi j is equal to the determinant of the

matrix obtained from A by replacing its jth row by ai1,ai2, . . .ain — i.e., its ith row.

If i = j then this matrix is A itself and therefore Bii = detA. If on the other hand i 6= j, then this matrix

has its ith row equal to its jth row, and therefore Bi j = 0 in his case. Thus we obtain:

A adj(A) = det(A)I

Similarly we can verify that:

adj(A)A = det(A)I

And this proves the first part of the theorem.

Further if A is invertible, then by Theorem 3.24 we have:

1 = det(I) = det
(
AA−1

)
= det(A)det

(
A−1

)

and thus det(A) 6= 0. Equivalently, if det(A) = 0, then A is not invertible.

Finally if det(A) 6= 0, then the above formula shows that A is invertible and that:

A−1 =
1

det(A)
adj(A)

This completes the proof. ♠

This method for finding the inverse of A is useful in many contexts. In particular, it is useful with

complicated matrices where the entries are functions, rather than numbers.

Consider the following example.

Example 3.43: Inverse for Non-Constant Matrix

Suppose

A(t) =




et 0 0

0 cos t sint

0 −sin t cos t




Show that A(t)−1
exists and then find it.

Solution. First note det(A(t)) = et(cos2 t + sin2 t) = et 6= 0 so A(t)−1
exists.
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The cofactor matrix is

C (t) =




1 0 0

0 et cos t et sint

0 −et sint et cos t




and so the inverse is

1

et




1 0 0

0 et cos t et sin t

0 −et sin t et cos t




T

=




e−t 0 0

0 cos t −sin t

0 sin t cos t




♠

3.2.2 Cramer’s Rule

Another context in which the formula given in Theorem 3.40 is important is Cramer’s Rule. Recall that

we can represent a system of linear equations in the form AX = B, where the solutions to this system

are given by X . Cramer’s Rule gives a formula for the solutions X in the special case that A is a square

invertible matrix. Note this rule does not apply if you have a system of equations in which there is a

different number of equations than variables (in other words, when A is not square), or when A is not

invertible.

Suppose we have a system of equations given by AX = B, and we want to find solutions X which

satisfy this system. Then recall that if A−1 exists,

AX = B

A−1 (AX) = A−1B(
A−1A

)
X = A−1B

IX = A−1B

X = A−1B

Hence, the solutions X to the system are given by X = A−1B. Since we assume that A−1 exists, we can use

the formula for A−1 given above. Substituting this formula into the equation for X , we have

X = A−1B =
1

det(A)
adj(A)B

Let xi be the ith entry of X and b j be the jth entry of B. Then this equation becomes

xi =
n

∑
j=1

[
ai j

]−1
b j =

n

∑
j=1

1

det(A)
adj(A)i j b j

where adj(A)i j is the i jth entry of adj(A).

By the formula for the expansion of a determinant along a column,

xi =
1

det(A)
det




∗ · · · b1 · · · ∗
...

...
...

∗ · · · bn · · · ∗



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where here the ith column of A is replaced with the column vector [b1 · · · ·,bn]
T

. The determinant of this

modified matrix is taken and divided by det(A). This formula is known as Cramer’s rule.

We formally define this method now.

Procedure 3.44: Using Cramer’s Rule

Suppose A is an n × n invertible matrix and we wish to solve the system AX = B for X =
[x1, · · · ,xn]

T
. Then Cramer’s rule says

xi =
det(Ai)

det(A)

where Ai is the matrix obtained by replacing the ith column of A with the column matrix

B =




b1
...

bn




We illustrate this procedure in the following example.

Example 3.45: Using Cramer’s Rule

Find x,y,z if 


1 2 1

3 2 1

2 −3 2






x

y

z


=




1

2

3




Solution. We will use method outlined in Procedure 3.44 to find the values for x,y,z which give the solution

to this system. Let

B =




1

2

3




In order to find x, we calculate

x =
det(A1)

det(A)

where A1 is the matrix obtained from replacing the first column of A with B.

Hence, A1 is given by

A1 =




1 2 1

2 2 1

3 −3 2



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Therefore,

x =
det(A1)

det(A)
=

∣∣∣∣∣∣

1 2 1

2 2 1

3 −3 2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 2 1

3 2 1

2 −3 2

∣∣∣∣∣∣

=
1

2

Similarly, to find y we construct A2 by replacing the second column of A with B. Hence, A2 is given by

A2 =




1 1 1

3 2 1

2 3 2




Therefore,

y =
det(A2)

det(A)
=

∣∣∣∣∣∣

1 1 1

3 2 1

2 3 2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 2 1

3 2 1

2 −3 2

∣∣∣∣∣∣

=−1

7

Similarly, A3 is constructed by replacing the third column of A with B. Then, A3 is given by

A3 =




1 2 1

3 2 2

2 −3 3




Therefore, z is calculated as follows.

z =
det(A3)

det(A)
=

∣∣∣∣∣∣

1 2 1

3 2 2

2 −3 3

∣∣∣∣∣∣
∣∣∣∣∣∣

1 2 1

3 2 1

2 −3 2

∣∣∣∣∣∣

=
11

14

♠

Cramer’s Rule gives you another tool to consider when solving a system of linear equations.

We can also use Cramer’s Rule for systems of non linear equations. Consider the following system

where the matrix A has functions rather than numbers for entries.
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Example 3.46: Use Cramer’s Rule for Non-Constant Matrix

Solve for z if 


1 0 0

0 et cos t et sint

0 −et sint et cos t






x

y

z


=




1

t

t2




Solution. We are asked to find the value of z in the solution. We will solve using Cramer’s rule. Thus

z =

∣∣∣∣∣∣

1 0 1

0 et cos t t

0 −et sint t2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 0 0

0 et cos t et sin t

0 −et sin t et cos t

∣∣∣∣∣∣

= t ((cos t) t + sint)e−t

♠

3.2.3 Polynomial Interpolation

In studying a set of data that relates variables x and y, it may be the case that we can use a polynomial to

“fit” to the data. If such a polynomial can be established, it can be used to estimate values of x and y which

have not been provided.

Consider the following example.

Example 3.47: Polynomial Interpolation

Given data points (1,4),(2,9),(3,12), find an interpolating polynomial p(x) of degree at most 2 and

then estimate the value corresponding to x = 1
2
.

Solution. We want to find a polynomial given by

p(x) = r0 + r1x1 + r2x2
2

such that p(1) = 4, p(2) = 9 and p(3) = 12. To find this polynomial, substitute the known values in for x

and solve for r0,r1, and r2.

p(1) = r0 + r1 + r2 = 4

p(2) = r0 +2r1 +4r2 = 9

p(3) = r0 +3r1 +9r2 = 12

Writing the augmented matrix, we have



1 1 1 4

1 2 4 9

1 3 9 12






138 Determinants

After row operations, the resulting matrix is




1 0 0 −3

0 1 0 8

0 0 1 −1




Therefore the solution to the system is r0 =−3,r1 = 8,r2 =−1 and the required interpolating polyno-

mial is

p(x) =−3+8x− x2

To estimate the value for x = 1
2
, we calculate p(1

2
):

p(
1

2
) = −3+8(

1

2
)− (

1

2
)2

= −3+4− 1

4

=
3

4

♠

This procedure can be used for any number of data points, and any degree of polynomial. The steps

are outlined below.
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Procedure 3.48: Finding an Interpolating Polynomial

Suppose that values of x and corresponding values of y are given, such that the actual relationship

between x and y is unknown. Then, values of y can be estimated using an interpolating polynomial

p(x). If given x1, ...,xn and the corresponding y1, ...,yn, the procedure to find p(x) is as follows:

1. The desired polynomial p(x) is given by

p(x) = r0 + r1x+ r2x2 + ...+ rn−1xn−1

2. p(xi) = yi for all i = 1,2, ...,n so that

r0 + r1x1 + r2x2
1 + ...+ rn−1xn−1

1 = y1

r0 + r1x2 + r2x2
2 + ...+ rn−1xn−1

2 = y2
...

r0 + r1xn + r2x2
n + ...+ rn−1xn−1

n = yn

3. Set up the augmented matrix of this system of equations




1 x1 x2
1 · · · xn−1

1 y1

1 x2 x2
2 · · · xn−1

2 y2
...

...
...

...
...

1 xn x2
n · · · xn−1

n yn




4. Solving this system will result in a unique solution r0,r1, · · · ,rn−1. Use these values to con-

struct p(x), and estimate the value of p(a) for any x = a.

This procedure motivates the following theorem.

Theorem 3.49: Polynomial Interpolation

Given n data points (x1,y1),(x2,y2), · · · ,(xn,yn) with the xi distinct, there is a unique polynomial

p(x) = r0+r1x+r2x2+ · · ·+rn−1xn−1 such that p(xi) = yi for i = 1,2, · · · ,n. The resulting polyno-

mial p(x) is called the interpolating polynomial for the data points.

We conclude this section with another example.

Example 3.50: Polynomial Interpolation

Consider the data points (0,1),(1,2),(3,22),(5,66). Find an interpolating polynomial p(x) of de-

gree at most three, and estimate the value of p(2).

Solution. The desired polynomial p(x) is given by:

p(x) = r0 + r1x+ r2x2 + r3x3
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Using the given points, the system of equations is

p(0) = r0 = 1

p(1) = r0 + r1 + r2 + r3 = 2

p(3) = r0 +3r1 +9r2 +27r3 = 22

p(5) = r0 +5r1 +25r2 +125r3 = 66

The augmented matrix is given by:




1 0 0 0 1

1 1 1 1 2

1 3 9 27 22

1 5 25 125 66




The resulting matrix is 


1 0 0 0 1

0 1 0 0 −2

0 0 1 0 3

0 0 0 1 0




Therefore, r0 = 1,r1 = −2,r2 = 3,r3 = 0 and p(x) = 1−2x+3x2. To estimate the value of p(2), we

compute p(2) = 1−2(2)+3(22) = 1−4+12 = 9. ♠

Exercises

Exercise 3.2.1 Let

A =




1 2 3

0 2 1

3 1 0




Determine whether the matrix A has an inverse by finding whether the determinant is non zero. If the

determinant is nonzero, find the inverse using the formula for the inverse which involves the cofactor

matrix.

Exercise 3.2.2 Let

A =




1 2 0

0 2 1

3 1 1




Determine whether the matrix A has an inverse by finding whether the determinant is non zero. If the

determinant is nonzero, find the inverse using the formula for the inverse.

Exercise 3.2.3 Let

A =




1 3 3

2 4 1

0 1 1




Determine whether the matrix A has an inverse by finding whether the determinant is non zero. If the

determinant is nonzero, find the inverse using the formula for the inverse.
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Exercise 3.2.4 Let

A =




1 2 3

0 2 1

2 6 7




Determine whether the matrix A has an inverse by finding whether the determinant is non zero. If the

determinant is nonzero, find the inverse using the formula for the inverse.

Exercise 3.2.5 Let

A =




1 0 3

1 0 1

3 1 0




Determine whether the matrix A has an inverse by finding whether the determinant is non zero. If the

determinant is nonzero, find the inverse using the formula for the inverse.

Exercise 3.2.6 For the following matrices, determine if they are invertible. If so, use the formula for the

inverse in terms of the cofactor matrix to find each inverse. If the inverse does not exist, explain why.

(a)

[
1 1

1 2

]

(b)




1 2 3

0 2 1

4 1 1




(c)




1 2 1

2 3 0

0 1 2




Exercise 3.2.7 Consider the matrix

A =




1 0 0

0 cos t −sin t

0 sint cos t




Does there exist a value of t for which this matrix fails to have an inverse? Explain.

Exercise 3.2.8 Consider the matrix

A =




1 t t2

0 1 2t

t 0 2




Does there exist a value of t for which this matrix fails to have an inverse? Explain.

Exercise 3.2.9 Consider the matrix

A =




et cosht sinht

et sinht cosh t

et cosht sinht



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Does there exist a value of t for which this matrix fails to have an inverse? Explain.

Exercise 3.2.10 Consider the matrix

A =




et e−t cos t e−t sint

et −e−t cos t − e−t sint −e−t sin t + e−t cos t

et 2e−t sint −2e−t cos t




Does there exist a value of t for which this matrix fails to have an inverse? Explain.

Exercise 3.2.11 Show that if det(A) 6= 0 for A an n×n matrix, it follows that if AX = 0, then X = 0.

Exercise 3.2.12 Suppose A,B are n× n matrices and that AB = I. Show that then BA = I. Hint: First

explain why det(A) ,det(B) are both nonzero. Then (AB)A = A and then show BA(BA− I) = 0. From this

use what is given to conclude A(BA− I) = 0. Then use Problem 3.2.11.

Exercise 3.2.13 Use the formula for the inverse in terms of the cofactor matrix to find the inverse of the

matrix

A =




et 0 0

0 et cos t et sint

0 et cos t − et sint et cos t + et sin t




Exercise 3.2.14 Find the inverse, if it exists, of the matrix

A =




et cos t sint

et −sint cos t

et −cos t −sin t




Exercise 3.2.15 Suppose A is an upper triangular matrix. Show that A−1 exists if and only if all elements

of the main diagonal are non zero. Is it true that A−1 will also be upper triangular? Explain. Could the

same be concluded for lower triangular matrices?

Exercise 3.2.16 If A,B, and C are each n×n matrices and ABC is invertible, show why each of A,B, and

C are invertible.

Exercise 3.2.17 Decide if this statement is true or false: Cramer’s rule is useful for finding solutions to

systems of linear equations in which there is an infinite set of solutions.

Exercise 3.2.18 Use Cramer’s rule to find the solution to

x+2y = 1

2x− y = 2

Exercise 3.2.19 Use Cramer’s rule to find the solution to

x+2y+ z = 1

2x− y− z = 2

x+ z = 1



Chapter 4

Rn

4.1 Vectors in Rn

Outcomes

A. Find the position vector of a point in Rn.

The notation Rn refers to the collection of ordered lists of n real numbers, that is

Rn =
{
(x1 · · ·xn) : x j ∈ R for j = 1, · · · ,n

}

In this chapter, we take a closer look at vectors in Rn. First, we will consider what Rn looks like in more

detail. Recall that the point given by 0 = (0, · · · ,0) is called the origin.

Now, consider the case of Rn for n = 1. Then from the definition we can identify R with points in R1

as follows:

R= R1 = {(x1) : x1 ∈ R}
Hence, R is defined as the set of all real numbers and geometrically, we can describe this as all the points

on a line.

Now suppose n = 2. Then, from the definition,

R2 =
{
(x1,x2) : x j ∈ R for j = 1,2

}

Consider the familiar coordinate plane, with an x axis and a y axis. Any point within this coordinate plane

is identified by where it is located along the x axis, and also where it is located along the y axis. Consider

as an example the following diagram.

x

y

−3 2

1

4
Q = (−3,4)

P = (2,1)

143
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Hence, every element in R2 is identified by two components, x and y, in the usual manner. The

coordinates x,y (or x1,x2) uniquely determine a point in the plan. Note that while the definition uses x1 and

x2 to label the coordinates and you may be used to x and y, these notations are equivalent.

Now suppose n= 3. You may have previously encountered the 3-dimensional coordinate system, given

by

R3 =
{
(x1,x2,x3) : x j ∈ R for j = 1,2,3

}

Points in R3 will be determined by three coordinates, often written (x,y,z) which correspond to the x,

y, and z axes. We can think as above that the first two coordinates determine a point in a plane. The third

component determines the height above or below the plane, depending on whether this number is positive

or negative, and all together this determines a point in space. You see that the ordered triples correspond to

points in space just as the ordered pairs correspond to points in a plane and single real numbers correspond

to points on a line.

The idea behind the more general Rn is that we can extend these ideas beyond n = 3. This discussion

regarding points in Rn leads into a study of vectors in Rn. While we consider Rn for all n, we will largely

focus on n = 2,3 in this section.

Consider the following definition.

Definition 4.1: The Position Vector

Let P = (p1, · · · , pn) be the coordinates of a point in Rn. Then the vector
−→
0P with its tail at 0 =

(0, · · · ,0) and its tip at P is called the position vector of the point P. We write

−→
0P =




p1
...

pn




For this reason we may write both P = (p1, · · · , pn) ∈ Rn and
−→
0P = [p1 · · · pn]

T ∈ Rn.

This definition is illustrated in the following picture for the special case of R3.

P = (p1, p2, p3)

−→
0P =

[
p1 p2 p3

]T

Thus every point P in Rn determines its position vector
−→
0P. Conversely, every such position vector

−→
0P

which has its tail at 0 and point at P determines the point P of Rn.

Now suppose we are given two points, P,Q whose coordinates are (p1, · · · , pn) and (q1, · · · ,qn) re-

spectively. We can also determine the position vector from P to Q (also called the vector from P to Q)

defined as follows.

−→
PQ =




q1 − p1
...

qn − pn


=

−→
0Q−−→

0P
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Now, imagine taking a vector in Rn and moving it around, always keeping it pointing in the same

direction as shown in the following picture.

−→
0P =

[
p1 p2 p3

]T
A

B

After moving it around, it is regarded as the same vector. Each vector,
−→
0P and

−→
AB has the same length

(or magnitude) and direction. Therefore, they are equal.

Consider now the general definition for a vector in Rn.

Definition 4.2: Vectors in Rn

Let Rn =
{
(x1, · · · ,xn) : x j ∈ R for j = 1, · · · ,n

}
. Then,

~x =




x1
...

xn




is called a vector. Vectors have both size (magnitude) and direction. The numbers x j are called the

components of~x.

Using this notation, we may use ~p to denote the position vector of point P. Notice that in this context,

~p =
−→
0P. These notations may be used interchangeably.

You can think of the components of a vector as directions for obtaining the vector. Consider n = 3.

Draw a vector with its tail at the point (0,0,0) and its tip at the point (a,b,c). This vector it is obtained

by starting at (0,0,0), moving parallel to the x axis to (a,0,0) and then from here, moving parallel to the

y axis to (a,b,0) and finally parallel to the z axis to (a,b,c) . Observe that the same vector would result if

you began at the point (d,e, f ), moved parallel to the x axis to (d +a,e, f ) , then parallel to the y axis to

(d+a,e+b, f ) , and finally parallel to the z axis to (d +a,e+b, f + c). Here, the vector would have its

tail sitting at the point determined by A = (d,e, f ) and its point at B = (d +a,e+b, f + c) . It is the same

vector because it will point in the same direction and have the same length. It is like you took an actual

arrow, and moved it from one location to another keeping it pointing the same direction.

We conclude this section with a brief discussion regarding notation. In previous sections, we have

written vectors as columns, or n×1 matrices. For convenience in this chapter we may write vectors as the

transpose of row vectors, or 1× n matrices. These are of course equivalent and we may move between

both notations. Therefore, recognize that

[
2

3

]
=
[

2 3
]T

Notice that two vectors ~u = [u1 · · ·un]
T

and ~v = [v1 · · ·vn]
T

are equal if and only if all corresponding
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components are equal. Precisely,

~u =~v if and only if

u j = v j for all j = 1, · · · ,n

Thus
[

1 2 4
]T ∈ R3 and

[
2 1 4

]T ∈ R3 but
[

1 2 4
]T 6=

[
2 1 4

]T
because, even though

the same numbers are involved, the order of the numbers is different.

For the specific case of R3, there are three special vectors which we often use. They are given by

~i =
[

1 0 0
]T

~j =
[

0 1 0
]T

~k =
[

0 0 1
]T

We can write any vector ~u =
[

u1 u2 u3

]T
as a linear combination of these vectors, written as ~u =

u1
~i+u2

~j+u3
~k. This notation will be used throughout this chapter.

4.2 Algebra in Rn

Outcomes

A. Understand vector addition and scalar multiplication, algebraically.

B. Introduce the notion of linear combination of vectors.

Addition and scalar multiplication are two important algebraic operations done with vectors. Notice

that these operations apply to vectors in Rn, for any value of n. We will explore these operations in more

detail in the following sections.

4.2.1 Addition of Vectors in Rn

Addition of vectors in Rn is defined as follows.

Definition 4.3: Addition of Vectors in Rn

If~u =




u1
...

un


 , ~v =




v1
...

vn


 ∈ Rn then ~u+~v ∈ Rn and is defined by

~u+~v =




u1
...

un


+




v1
...

vn




=




u1 + v1
...

un + vn



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To add vectors, we simply add corresponding components. Therefore, in order to add vectors, they

must be the same size.

Addition of vectors satisfies some important properties which are outlined in the following theorem.

Theorem 4.4: Properties of Vector Addition

The following properties hold for vectors~u,~v,~w ∈ Rn.

• The Commutative Law of Addition

~u+~v =~v+~u

• The Associative Law of Addition

(~u+~v)+~w =~u+(~v+~w)

• The Existence of an Additive Identity

~u+~0 =~u (4.1)

• The Existence of an Additive Inverse

~u+(−~u) =~0

The additive identity shown in equation 4.1 is also called the zero vector, the n× 1 vector in which

all components are equal to 0. Further, −~u is simply the vector with all components having same value as

those of ~u but opposite sign; this is just (−1)~u. This will be made more explicit in the next section when

we explore scalar multiplication of vectors. Note that subtraction is defined as~u−~v =~u+(−~v) .

4.2.2 Scalar Multiplication of Vectors in Rn

Scalar multiplication of vectors in Rn is defined as follows.

Definition 4.5: Scalar Multiplication of Vectors in Rn

If~u ∈ Rn and k ∈ R is a scalar, then k~u ∈ Rn is defined by

k~u = k




u1
...

un


=




ku1
...

kun




Just as with addition, scalar multiplication of vectors satisfies several important properties. These are

outlined in the following theorem.
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Theorem 4.6: Properties of Scalar Multiplication

The following properties hold for vectors~u,~v ∈ Rn and k, p scalars.

• The Distributive Law over Vector Addition

k (~u+~v) = k~u+ k~v

• The Distributive Law over Scalar Addition

(k+ p)~u = k~u+ p~u

• The Associative Law for Scalar Multiplication

k (p~u) = (kp)~u

• Rule for Multiplication by 1

1~u =~u

Proof. We will show the proof of:

k (~u+~v) = k~u+ k~v

Note that:
k (~u+~v) = k [u1 + v1 · · ·un + vn]

T

= [k (u1 + v1) · · ·k (un + vn)]
T

= [ku1 + kv1 · · ·kun + kvn]
T

= [ku1 · · ·kun]
T +[kv1 · · ·kvn]

T

= k~u+ k~v

♠

We now present a useful notion you may have seen earlier combining vector addition and scalar mul-

tiplication

Definition 4.7: Linear Combination

A vector ~v is said to be a linear combination of the vectors ~u1, · · · ,~un if there exist scalars,

a1, · · · ,an such that

~v = a1~u1 + · · ·+an~un

For example,

3




−4

1

0


+2




−3

0

1


=




−18

3

2


 .

Thus we can say that

~v =




−18

3

2






4.2. Algebra in Rn 149

is a linear combination of the vectors

~u1 =




−4

1

0


 and~u2 =




−3

0

1




Exercises

Exercise 4.2.1 Find −3




5

−1

2

−3


+5




−8

2

−3

6


 .

Exercise 4.2.2 Find −7




6

0

4

−1


+6




−13

−1

1

6


 .

Exercise 4.2.3 Decide whether

~v =




4

4

−3




is a linear combination of the vectors

~u1 =




3

1

−1


 and~u2 =




2

−2

1


 .

Exercise 4.2.4 Decide whether

~v =




4

4

4




is a linear combination of the vectors

~u1 =




3

1

−1


 and~u2 =




2

−2

1


 .
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4.3 Geometric Meaning of Vector Addition

Outcomes

A. Understand vector addition, geometrically.

Recall that an element of Rn is an ordered list of numbers. For the specific case of n = 2,3 this can

be used to determine a point in two or three dimensional space. This point is specified relative to some

coordinate axes.

Consider the case n= 3. Recall that taking a vector and moving it around without changing its length or

direction does not change the vector. This is important in the geometric representation of vector addition.

Suppose we have two vectors,~u and~v in R3. Each of these can be drawn geometrically by placing the

tail of each vector at 0 and its point at (u1,u2,u3) and (v1,v2,v3) respectively. Suppose we slide the vector

~v so that its tail sits at the point of ~u. We know that this does not change the vector~v. Now, draw a new

vector from the tail of~u to the point of~v. This vector is~u+~v.

The geometric significance of vector addition in Rn for any n is given in the following definition.

Definition 4.8: Geometry of Vector Addition

Let ~u and ~v be two vectors. Slide ~v so that the tail of ~v is on the point of ~u. Then draw the arrow

which goes from the tail of~u to the point of~v. This arrow represents the vector~u+~v.

~u+~v

~u

~v

This definition is illustrated in the following picture in which~u+~v is shown for the special case n = 3.

✒~v

✗

~u

✕

~u+~v

■

✒

~v

x

z

y
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Notice the parallelogram created by ~u and~v in the above diagram. Then ~u+~v is the directed diagonal

of the parallelogram determined by the two vectors~u and~v.

When you have a vector~v, its additive inverse −~v will be the vector which has the same magnitude as

~v but the opposite direction. When one writes ~u−~v, the meaning is ~u+(−~v) as with real numbers. The

following example illustrates these definitions and conventions.

Example 4.9: Graphing Vector Addition

Consider the following picture of vectors~u and~v.

~u
~v

Sketch a picture of~u+~v,~u−~v.

Solution. We will first sketch ~u+~v. Begin by drawing ~u and then at the point of ~u, place the tail of ~v as

shown. Then ~u+~v is the vector which results from drawing a vector from the tail of~u to the tip of~v.

~u
~v

~u+~v

Next consider ~u−~v. This means ~u+(−~v) . From the above geometric description of vector addition,

−~v is the vector which has the same length but which points in the opposite direction to ~v. Here is a

picture.

~u

−~v

~u−~v

♠
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4.4 Length of a Vector

Outcomes

A. Find the length of a vector and the distance between two points in Rn.

B. Find the corresponding unit vector to a vector in Rn.

In this section, we explore what is meant by the length of a vector in Rn. We develop this concept by

first looking at the distance between two points in Rn.

First, we will consider the concept of distance for R, that is, for points in R1. Here, the distance

between two points P and Q is given by the absolute value of their difference. We denote the distance

between P and Q by d(P,Q) which is defined as

d(P,Q) =

√
(P−Q)2

(4.2)

Consider now the case for n = 2, demonstrated by the following picture.

Q = (q1,q2) (p1,q2)

P = (p1, p2)

There are two points P = (p1, p2) and Q = (q1,q2) in the plane. The distance between these points

is shown in the picture as a solid line. Notice that this line is the hypotenuse of a right triangle which

is half of the rectangle shown in dotted lines. We want to find the length of this hypotenuse which will

give the distance between the two points. Note the lengths of the sides of this triangle are |p1 −q1| and

|p2 −q2|, the absolute value of the difference in these values. Therefore, the Pythagorean Theorem implies

the length of the hypotenuse (and thus the distance between P and Q) equals

(
|p1 −q1|2 + |p2 −q2|2

)1/2

=
(
(p1 −q1)

2 +(p2 −q2)
2
)1/2

(4.3)

Now suppose n = 3 and let P = (p1, p2, p3) and Q = (q1,q2,q3) be two points in R3. Consider the

following picture in which the solid line joins the two points and a dotted line joins the points (q1,q2,q3)
and (p1, p2,q3) .
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Q = (q1,q2,q3) (p1,q2,q3)

(p1, p2,q3)

P = (p1, p2, p3)

Here, we need to use Pythagorean Theorem twice in order to find the length of the solid line. First, by

the Pythagorean Theorem, the length of the dotted line joining (q1,q2,q3) and (p1, p2,q3) equals

(
(p1 −q1)

2 +(p2 −q2)
2
)1/2

while the length of the line joining (p1, p2,q3) to (p1, p2, p3) is just |p3 −q3| . Therefore, by the Pythagorean

Theorem again, the length of the line joining the points P = (p1, p2, p3) and Q = (q1,q2,q3) equals

(((
(p1 −q1)

2 +(p2 −q2)
2
)1/2

)2

+(p3 −q3)
2

)1/2

=
(
(p1 −q1)

2 +(p2 −q2)
2 +(p3 −q3)

2
)1/2

(4.4)

This discussion motivates the following definition for the distance between points in Rn.

Definition 4.10: Distance Between Points

Let P = (p1, · · · , pn) and Q = (q1, · · · ,qn) be two points in Rn. Then the distance between these

points is defined as

distance between P and Q = d(P,Q) =

(
n

∑
k=1

|pk −qk|2
)1/2

This is called the distance formula. We may also write |P−Q| as the distance between P and Q.

From the above discussion, you can see that Definition 4.10 holds for the special cases n = 1,2,3, as

in Equations 4.2, 4.3, 4.4. In the following example, we use Definition 4.10 to find the distance between

two points in R4.

Example 4.11: Distance Between Points

Find the distance between the points P and Q in R4, where P and Q are given by

P = (1,2,−4,6)

and

Q = (2,3,−1,0)
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Solution. We will use the formula given in Definition 4.10 to find the distance between P and Q. Use the

distance formula and write

d(P,Q) =
(
(1−2)2 +(2−3)2 +(−4− (−1))2 +(6−0)2

) 1
2
= (47)

1
2

Therefore, d(P,Q) =
√

47.

♠

There are certain properties of the distance between points which are important in our study. These are

outlined in the following theorem.

Theorem 4.12: Properties of Distance

Let P and Q be points in Rn, and let the distance between them, d(P,Q), be given as in Definition

4.10. Then, the following properties hold .

• d(P,Q) = d(Q,P)

• d(P,Q)≥ 0, and equals 0 exactly when P = Q.

There are many applications of the concept of distance. For instance, given two points, we can ask what

collection of points are all the same distance between the given points. This is explored in the following

example.

Example 4.13: The Plane Between Two Points

Describe the points in R3 which are at the same distance between (1,2,3) and (0,1,2) .

Solution. Let P = (p1, p2, p3) be such a point. Therefore, P is the same distance from (1,2,3) and (0,1,2) .

Then by Definition 4.10,

√
(p1 −1)2 +(p2 −2)2 +(p3 −3)2 =

√
(p1 −0)2 +(p2 −1)2 +(p3 −2)2

Squaring both sides we obtain

(p1 −1)2 +(p2 −2)2 +(p3 −3)2 = p2
1 +(p2 −1)2 +(p3 −2)2

and so

p2
1 −2p1 +14+ p2

2 −4p2 + p2
3 −6p3 = p2

1 + p2
2 −2p2 +5+ p2

3 −4p3

Simplifying, this becomes

−2p1 +14−4p2 −6p3 =−2p2 +5−4p3

which can be written as

2p1 +2p2 +2p3 = 9 (4.5)

Therefore, the points P = (p1, p2, p3) which are the same distance from each of the given points form a

plane whose equation is given by 4.5. ♠
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We can now use our understanding of the distance between two points to define what is meant by the

length of a vector. Consider the following definition.

Definition 4.14: Length of a Vector

Let ~u = [u1 · · ·un]
T

be a vector in Rn. Then, the length of~u, written ‖~u‖ is given by

‖~u‖=
√

u2
1 + · · ·+u2

n

This definition corresponds to Definition 4.10, if you consider the vector ~u to have its tail at the point

0 = (0, · · · ,0) and its tip at the point U = (u1, · · · ,un). Then the length of~u is equal to the distance between

0 and U , d(0,U). In general, d(P,Q) = ‖−→PQ‖.

Consider Example 4.11. By Definition 4.14, we could also find the distance between P and Q as the

length of the vector connecting them. Hence, if we were to draw a vector
−→
PQ with its tail at P and its point

at Q, this vector would have length equal to
√

47.

We conclude this section with a new definition for the special case of vectors of length 1.

Definition 4.15: Unit Vector

Let ~u be a vector in Rn. Then, we call ~u a unit vector if it has length 1, that is if

‖~u‖= 1

Let ~v be a vector in Rn. Then, the vector ~u which has the same direction as ~v but length equal to 1 is

the corresponding unit vector of~v. This vector is given by

~u =
1

‖~v‖~v

We often use the term normalize to refer to this process. When we normalize a vector, we find the

corresponding unit vector of length 1. Consider the following example.

Example 4.16: Finding a Unit Vector

Let~v be given by

~v =
[

1 −3 4
]T

Find the unit vector~u which has the same direction as~v .

Solution. We will use Definition 4.15 to solve this. Therefore, we need to find the length of~v which, by

Definition 4.14 is given by

‖~v‖=
√

v2
1 + v2

2 + v2
3

Using the corresponding values we find that

‖~v‖ =

√
12 +(−3)2 +42
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=
√

1+9+16

=
√

26

In order to find ~u, we divide~v by
√

26. The result is

~u =
1

‖~v‖~v

=
1√
26

[
1 −3 4

]T

=
[

1√
26

− 3√
26

4√
26

]T

You can verify using the Definition 4.14 that ‖~u‖= 1. ♠

4.5 Geometric Meaning of Scalar Multiplication

Outcomes

A. Understand scalar multiplication, geometrically.

Recall that the point P = (p1, p2, p3) determines a vector ~p from 0 to P. The length of ~p, denoted ‖~p‖,

is equal to

√
p2

1 + p2
2 + p2

3 by Definition 4.10.

Now suppose we have a vector ~u =
[

u1 u2 u3

]T
and we multiply ~u by a scalar k. By Definition

4.5, k~u =
[

ku1 ku2 ku3

]T
. Then, by using Definition 4.10, the length of this vector is given by

√(
(ku1)

2 +(ku2)
2 +(ku3)

2
)
= |k|

√
u2

1 +u2
2 +u2

3

Thus the following holds.

‖k~u‖= |k|‖~u‖
In other words, multiplication by a scalar magnifies or shrinks the length of the vector by a factor of |k|.
If |k|> 1, the length of the resulting vector will be magnified. If |k|< 1, the length of the resulting vector

will shrink. Remember that by the definition of the absolute value, |k| ≥ 0.

What about the direction? Draw a picture of ~u and k~u where k is negative. Notice that this causes the

resulting vector to point in the opposite direction while if k > 0 it preserves the direction the vector points.

Therefore the direction can either reverse, if k < 0, or remain preserved, if k > 0.

Consider the following example.
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Example 4.17: Graphing Scalar Multiplication

Consider the vectors~u and~v drawn below.

~u
~v

Draw −~u, 2~v, and −1
2
~v.

Solution.

In order to find −~u, we preserve the length of ~u and simply reverse the direction. For 2~v, we double

the length of ~v, while preserving the direction. Finally −1
2
~v is found by taking half the length of ~v and

reversing the direction. These vectors are shown in the following diagram.

~u

−~u
~v

−1
2
~v

2~v

♠

Now that we have studied both vector addition and scalar multiplication, we can combine the two

actions. Recall Definition 9.12 of linear combinations of column matrices. We can apply this definition to

vectors in Rn. A linear combination of vectors in Rn is a sum of vectors multiplied by scalars.

In the following example, we examine the geometric meaning of this concept.

Example 4.18: Graphing a Linear Combination of Vectors

Consider the following picture of the vectors~u and~v

~u
~v

Sketch a picture of~u+2~v,~u− 1
2
~v.

Solution. The two vectors are shown below.
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~u 2~v

~u+2~v

~u

−1
2
~v

~u− 1
2
~v

♠

4.6 Parametric Lines

Outcomes

A. Find the vector and parametric equations of a line.

We can use the concept of vectors and points to find equations for arbitrary lines in Rn, although in

this section the focus will be on lines in R3.

To begin, consider the case n = 1 so we have R1 = R. There is only one line here which is the familiar

number line, that is R itself. Therefore it is not necessary to explore the case of n = 1 further.

Now consider the case where n = 2, in other words R2. Let P and P0 be two different points in R2

which are contained in a line L. Let ~p and ~p0 be the position vectors for the points P and P0 respectively.

Suppose that Q is an arbitrary point on L. Consider the following diagram.

P0

P

Q

Our goal is to be able to define Q in terms of P and P0. Consider the vector
−→
P0P = ~p− ~p0 which has its

tail at P0 and point at P. If we add ~p− ~p0 to the position vector ~p0 for P0, the sum would be a vector with

its point at P. In other words,

~p = ~p0 +(~p− ~p0)

Now suppose we were to add t(~p− ~p0) to ~p where t is some scalar. You can see that by doing so, we

could find a vector with its point at Q. In other words, we can find t such that

~q = ~p0 + t (~p− ~p0)
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This equation determines the line L in R2. In fact, it determines a line L in Rn. Consider the following

definition.

Definition 4.19: Vector Equation of a Line

Suppose a line L in Rn contains the two different points P and P0. Let ~p and ~p0 be the position

vectors of these two points, respectively. Then, L is the collection of points Q which have the

position vector~q given by

~q = ~p0 + t (~p− ~p0)

where t ∈ R.

Let ~d = ~p− ~p0. Then ~d is the direction vector for L and the vector equation for L is given by

~p = ~p0 + t~d, t ∈ R

Note that this definition agrees with the usual notion of a line in two dimensions and so this is consistent

with earlier concepts. Consider now points in R3. If a point P ∈ R3 is given by P = (x,y,z), P0 ∈ R3 by

P0 = (x0,y0,z0), then we can write




x

y

z


=




x0

y0

z0


+ t




a

b

c




where ~d =




a

b

c


. This is the vector equation of L written in component form .

The following theorem claims that such an equation is in fact a line.

Proposition 4.20: Algebraic Description of a Straight Line

Let ~a,~b ∈ Rn with~b 6=~0. Then~x =~a+ t~b, t ∈ R, is a line.

Proof. Let ~x1,~x2 ∈ Rn. Define ~x1 = ~a and let ~x2 − ~x1 =~b. Since ~b 6=~0, it follows that ~x2 6= ~x1. Then

~a+ t~b = ~x1 + t (~x2 −~x1). It follows that~x =~a+ t~b is a line containing the two different points X1 and X2

whose position vectors are given by~x1 and~x2 respectively. ♠

We can use the above discussion to find the equation of a line when given two distinct points. Consider

the following example.

Example 4.21: A Line From Two Points

Find a vector equation for the line through the points P0 = (1,2,0) and P = (2,−4,6) .

Solution. We will use the definition of a line given above in Definition 4.19 to write this line in the form

~q = ~p0 + t (~p− ~p0)
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Let~q =




x

y

z


. Then, we can find ~p and ~p0 by taking the position vectors of points P and P0 respectively.

Then,

~q = ~p0 + t (~p− ~p0)

can be written as 


x

y

z


=




1

2

0


+ t




1

−6

6


 , t ∈ R

Here, the direction vector




1

−6

6


 is obtained by ~p− ~p0 =




2

−4

6


−




1

2

0


 as indicated above in Defi-

nition 4.19. ♠

Notice that in the above example we said that we found “a” vector equation for the line, not “the”

equation. The reason for this terminology is that there are infinitely many different vector equations for

the same line. To see this, replace t with another parameter, say 3s. Then you obtain a different vector

equation for the same line because the same set of points is obtained.

In Example 4.21, the vector given by




1

−6

6


 is the direction vector defined in Definition 4.19. If we

know the direction vector of a line, as well as a point on the line, we can find the vector equation.

Consider the following example.

Example 4.22: A Line From a Point and a Direction Vector

Find a vector equation for the line which contains the point P0 = (1,2,0) and has direction vector

~d =




1

2

1




Solution. We will use Definition 4.19 to write this line in the form ~p = ~p0 + t~d, t ∈ R. We are given the

direction vector ~d. In order to find ~p0, we can use the position vector of the point P0. This is given by


1

2

0


 . Letting ~p =




x

y

z


, the equation for the line is given by




x

y

z


=




1

2

0


+ t




1

2

1


 , t ∈ R (4.6)

♠

We sometimes elect to write a line such as the one given in 4.6 in the form

x = 1+ t

y = 2+2t

z = t



 where t ∈ R (4.7)
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This set of equations gives the same information as 4.6, and is called the parametric equation of the line.

Consider the following definition.

Definition 4.23: Parametric Equation of a Line

Let L be a line in R3 which has direction vector ~d =




a

b

c


 and goes through the point P0 =

(x0,y0,z0). Then, letting t be a parameter, we can write L as

x = x0 + ta

y = y0 + tb

z = z0 + tc



 where t ∈ R

This is called a parametric equation of the line L.

You can verify that the form discussed following Example 4.22 in equation 4.7 is of the form given in

Definition 4.23.

There is one other form for a line which is useful, which is the symmetric form. Consider the line

given by 4.7. You can solve for the parameter t to write

t = x−1

t = y−2
2

t = z

Therefore,

x−1 =
y−2

2
= z

This is the symmetric form of the line.

In the following example, we look at how to take the equation of a line from symmetric form to

parametric form.

Example 4.24: Change Symmetric Form to Parametric Form

Suppose the symmetric form of a line is

x−2

3
=

y−1

2
= z+3

Write the line in parametric form as well as vector form.

Solution. We want to write this line in the form given by Definition 4.23. This is of the form

x = x0 + ta

y = y0 + tb

z = z0 + tc



 where t ∈ R
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Let t = x−2
3

, t = y−1
2

and t = z+3, as given in the symmetric form of the line. Then solving for x,y,z,

yields

x = 2+3t

y = 1+2t

z =−3+ t



 with t ∈ R

This is the parametric equation for this line.

Now, we want to write this line in the form given by Definition 4.19. This is the form

~p = ~p0 + t~d

where t ∈ R. This equation becomes



x

y

z


=




2

1

−3


+ t




3

2

1


 , t ∈ R

♠

Exercises

Exercise 4.6.1 Find the vector equation for the line through (−7,6,0) and (−1,1,4) . Then, find the

parametric equations for this line.

Exercise 4.6.2 Find parametric equations for the line through the point (7,7,1) with a direction vector

~d =




1

6

2


 .

Exercise 4.6.3 Parametric equations of the line are

x = t +2

y = 6−3t

z =−t −6

Find a direction vector for the line and a point on the line.

Exercise 4.6.4 Find the vector equation for the line through the two points (−5,5,1), (2,2,4) . Then, find

the parametric equations.

Exercise 4.6.5 The equation of a line in two dimensions is written as y = x−5. Find parametric equations

for this line.

Exercise 4.6.6 Find parametric equations for the line through (6,5,−2) and (5,1,2) .

Exercise 4.6.7 Find the vector equation and parametric equations for the line through the point (−7,10,−6)

with a direction vector ~d =




1

1

3


 .
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Exercise 4.6.8 Parametric equations of the line are

x = 2t +2

y = 5−4t

z =−t −3

Find a direction vector for the line and a point on the line, and write the vector equation of the line.

Exercise 4.6.9 Find the vector equation and parametric equations for the line through the two points

(4,10,0), (1,−5,−6) .

Exercise 4.6.10 Find the point on the line segment from P = (−4,7,5) to Q = (2,−2,−3) which is 1
7

of

the way from P to Q.

Exercise 4.6.11 Suppose a triangle in Rn has vertices at P1,P2, and P3. Consider the lines which are

drawn from a vertex to the mid point of the opposite side. Show these three lines intersect in a point and

find the coordinates of this point.

4.7 The Dot Product

Outcomes

A. Compute the dot product of vectors, and use this to compute vector projections.

4.7.1 The Dot Product

There are two ways of multiplying vectors which are of great importance in applications. The first of these

is called the dot product. When we take the dot product of vectors, the result is a scalar. For this reason,

the dot product is also called the scalar product and sometimes the inner product. The definition is as

follows.

Definition 4.25: Dot Product

Let ~u,~v be two vectors in Rn. Then we define the dot product ~u•~v as

~u•~v =
n

∑
k=1

ukvk

The dot product ~u•~v is sometimes denoted as (~u,~v) where a comma replaces •. It can also be written

as 〈~u,~v〉. If we write the vectors as column or row matrices, it is equal to the matrix product ~u~vT .

Consider the following example.
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Example 4.26: Compute a Dot Product

Find~u•~v for

~u =




1

2

0

−1


 ,~v =




0

1

2

3




Solution. By Definition 4.25, we must compute

~u•~v =
4

∑
k=1

ukvk

This is given by

~u•~v = (1)(0)+(2)(1)+(0)(2)+(−1)(3)

= 0+2+0+−3

= −1

♠

With this definition, there are several important properties satisfied by the dot product.

Proposition 4.27: Properties of the Dot Product

Let k and p denote scalars and~u,~v,~w denote vectors. Then the dot product~u•~v satisfies the follow-

ing properties.

• ~u•~v =~v•~u

• ~u•~u ≥ 0 and equals zero if and only if~u =~0

• (k~u+ p~v)•~w = k (~u•~w)+ p(~v•~w)

• ~u• (k~v+ p~w) = k (~u•~v)+ p(~u•~w)

• ‖~u‖2 =~u•~u

The proof is left as an exercise. This proposition tells us that we can also use the dot product to find

the length of a vector.

Example 4.28: Length of a Vector

Find the length of

~u =




2

1

4

2




That is, find ‖~u‖.



4.7. The Dot Product 165

Solution. By Proposition 4.27, ‖~u‖2 =~u•~u. Therefore, ‖~u‖=
√
~u•~u. First, compute~u•~u.

This is given by

~u•~u = (2)(2)+(1)(1)+(4)(4)+(2)(2)

= 4+1+16+4

= 25

Then,

‖~u‖ =
√
~u•~u

=
√

25

= 5

♠

You may wish to compare this to our previous definition of length, given in Definition 4.14.

The Cauchy Schwarz inequality is a fundamental inequality satisfied by the dot product. It is given

in the following theorem.

Theorem 4.29: Cauchy Schwarz Inequality

The dot product satisfies the inequality

|~u•~v| ≤ ‖~u‖‖~v‖ (4.8)

Furthermore equality is obtained if and only if one of~u or~v is a scalar multiple of the other.

Proof. First note that if~v=~0 both sides of 4.8 equal zero and so the inequality holds in this case. Therefore,

it will be assumed in what follows that~v 6=~0.

Define a function of t ∈ R by

f (t) = (~u+ t~v)• (~u+ t~v)

Then by Proposition 4.27, f (t)≥ 0 for all t ∈ R. Also from Proposition 4.27

f (t) = ~u• (~u+ t~v)+ t~v• (~u+ t~v)

= ~u•~u+ t (~u•~v)+ t~v•~u+ t2~v•~v
= ‖~u‖2 +2t (~u•~v)+‖~v‖2t2

Now this means the graph of y = f (t) is a parabola which opens up and either its vertex touches the t

axis or else the entire graph is above the t axis. In the first case, there exists some t where f (t) = 0 and

this requires ~u+ t~v =~0 so one vector is a multiple of the other. Then clearly equality holds in 4.8. In the

case where ~v is not a multiple of ~u, it follows f (t) > 0 for all t which says f (t) has no real zeros and so

from the quadratic formula,

(2(~u•~v))2 −4‖~u‖2‖~v‖2 < 0

which is equivalent to |~u•~v|< ‖~u‖‖~v‖. ♠
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Notice that this proof was based only on the properties of the dot product listed in Proposition 4.27.

This means that whenever an operation satisfies these properties, the Cauchy Schwarz inequality holds.

There are many other instances of these properties besides vectors in Rn.

The Cauchy Schwarz inequality provides another proof of the triangle inequality for distances in Rn.

Theorem 4.30: Triangle Inequality

For~u,~v ∈ Rn

‖~u+~v‖ ≤ ‖~u‖+‖~v‖ (4.9)

and equality holds if and only if one of the vectors is a non-negative scalar multiple of the other.

Also

|‖~u‖−‖~v‖| ≤ ‖~u−~v‖ (4.10)

Proof. By properties of the dot product and the Cauchy Schwarz inequality,

‖~u+~v‖2 = (~u+~v)• (~u+~v)

= (~u•~u)+(~u•~v)+(~v•~u)+(~v•~v)
= ‖~u‖2 +2(~u•~v)+‖~v‖2

≤ ‖~u‖2 +2 |~u•~v|+‖~v‖2

≤ ‖~u‖2 +2‖~u‖‖~v‖+‖~v‖2 = (‖~u‖+‖~v‖)2

Hence,

‖~u+~v‖2 ≤ (‖~u‖+‖~v‖)2

Taking square roots of both sides you obtain 4.9.

It remains to consider when equality occurs. Suppose ~u =~0. Then, ~u = 0~v and the claim about when

equality occurs is verified. The same argument holds if~v =~0. Therefore, it can be assumed both vectors

are nonzero. To get equality in 4.9 above, Theorem 4.29 implies one of the vectors must be a multiple of

the other. Say~v = k~u. If k < 0 then equality cannot occur in 4.9 because in this case

~u•~v = k‖~u‖2 < 0 < |k|‖~u‖2 = |~u•~v|
Therefore, k ≥ 0.

To get the other form of the triangle inequality write

~u =~u−~v+~v

so

‖~u‖= ‖~u−~v+~v‖
≤ ‖~u−~v‖+‖~v‖

Therefore,

‖~u‖−‖~v‖ ≤ ‖~u−~v‖ (4.11)

Similarly,

‖~v‖−‖~u‖ ≤ ‖~v−~u‖= ‖~u−~v‖ (4.12)

It follows from 4.11 and 4.12 that 4.10 holds. This is because |‖~u‖−‖~v‖| equals the left side of either 4.11

or 4.12 and either way, |‖~u‖−‖~v‖| ≤ ‖~u−~v‖. ♠
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4.7.2 The Geometric Significance of the Dot Product

Given two vectors, ~u and~v, the included angle is the angle between these two vectors which is given by

θ such that 0 ≤ θ ≤ π . The dot product can be used to determine the included angle between two vectors.

Consider the following picture where θ gives the included angle.

~v

~u

θ

Proposition 4.31: The Dot Product and the Included Angle

Let ~u and ~v be two vectors in Rn, and let θ be the included angle. Then the following equation

holds.

~u•~v = ‖~u‖‖~v‖cosθ

In words, the dot product of two vectors equals the product of the magnitude (or length) of the two

vectors multiplied by the cosine of the included angle. Note this gives a geometric description of the dot

product which does not depend explicitly on the coordinates of the vectors.

Consider the following example.

Example 4.32: Find the Angle Between Two Vectors

Find the angle between the vectors given by

~u =




2

1

−1


 ,~v =




3

4

1




Solution. By Proposition 4.31,

~u•~v = ‖~u‖‖~v‖cosθ

Hence,

cosθ =
~u•~v

‖~u‖‖~v‖

First, we can compute~u•~v. By Definition 4.25, this equals

~u•~v = (2)(3)+(1)(4)+(−1)(1)= 9

Then,

‖~u‖=
√

(2)(2)+(1)(1)+(1)(1)=
√

6

‖~v‖=
√

(3)(3)+(4)(4)+(1)(1)=
√

26
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Therefore, the cosine of the included angle equals

cosθ =
9√

26
√

6
= 0.7205766...

With the cosine known, the angle can be determined by computing the inverse cosine of that angle,

giving approximately θ = 0.76616 radians. ♠

Another application of the geometric description of the dot product is in finding the angle between two

lines. Typically one would assume that the lines intersect. In some situations, however, it may make sense

to ask this question when the lines do not intersect, such as the angle between two object trajectories. In

any case we understand it to mean the smallest angle between (any of) their direction vectors. The only

subtlety here is that if ~u is a direction vector for a line, then so is any multiple k~u, and thus we will find

complementary angles among all angles between direction vectors for two lines, and we simply take the

smaller of the two.

Example 4.33: Find the Angle Between Two Lines

Find the angle between the two lines

L1 :




x

y

z


=




1

2

0


+ t




−1

1

2




and

L2 :




x

y

z


=




0

4

−3


+ s




2

1

−1




Solution. You can verify that these lines do not intersect, but as discussed above this does not matter and

we simply find the smallest angle between any directions vectors for these lines.

To do so we first find the angle between the direction vectors given above:

~u =




−1

1

2


 , ~v =




2

1

−1




In order to find the angle, we solve the following equation for θ

~u•~v = ‖~u‖‖~v‖cosθ

to obtain cosθ =−1
2

and since we choose included angles between 0 and π we obtain θ = 2π
3

.

Now the angles between any two direction vectors for these lines will either be 2π
3

or its complement

φ = π − 2π
3
= π

3
. We choose the smaller angle, and therefore conclude that the angle between the two lines

is π
3

. ♠

We can also use Proposition 4.31 to compute the dot product of two vectors.
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Example 4.34: Using Geometric Description to Find a Dot Product

Let~u,~v be vectors with ‖~u‖= 3 and ‖~v‖= 4. Suppose the angle between~u and~v is π/3. Find~u•~v.

Solution. From the geometric description of the dot product in Proposition 4.31

~u•~v = (3)(4)cos(π/3) = 3×4×1/2 = 6

♠

Two nonzero vectors are said to be perpendicular, sometimes also called orthogonal, if the included

angle is π/2 radians (90◦).

Consider the following proposition.

Proposition 4.35: Perpendicular Vectors

Let ~u and~v be nonzero vectors in Rn. Then,~u and~v are said to be perpendicular exactly when

~u•~v = 0

Proof. This follows directly from Proposition 4.31. First if the dot product of two nonzero vectors is equal

to 0, this tells us that cosθ = 0 (this is where we need nonzero vectors). Thus θ = π/2 and the vectors are

perpendicular.

If on the other hand ~v is perpendicular to ~u, then the included angle is π/2 radians. Hence cosθ = 0

and ~u•~v = 0. ♠

Consider the following example.

Example 4.36: Determine if Two Vectors are Perpendicular

Determine whether the two vectors,

~u =




2

1

−1


 ,~v =




1

3

5




are perpendicular.

Solution. In order to determine if these two vectors are perpendicular, we compute the dot product. This

is given by

~u•~v = (2)(1)+(1)(3)+(−1)(5)= 0

Therefore, by Proposition 4.35 these two vectors are perpendicular. ♠
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4.7.3 Projections

In some applications, we wish to write a vector as a sum of two related vectors. Through the concept

of projections, we can find these two vectors. First, we explore an important theorem. The result of this

theorem will provide our definition of a vector projection.

Theorem 4.37: Vector Projections

Let~v and~u be nonzero vectors. Then there exist unique vectors~v|| and~v⊥ such that

~v =~v||+~v⊥ (4.13)

where~v|| is a scalar multiple of~u, and~v⊥ is perpendicular to ~u.

Proof. Suppose 4.13 holds and ~v|| = k~u. Taking the dot product of both sides of 4.13 with ~u and using

~v⊥ •~u = 0, this yields

~v•~u = (~v||+~v⊥)•~u
= k~u•~u+~v⊥ •~u
= k‖~u‖2

which requires k =~v •~u/‖~u‖2. Thus there can be no more than one vector ~v||. It follows ~v⊥ must equal

~v−~v||. This verifies there can be no more than one choice for both~v|| and~v⊥ and proves their uniqueness.

Now let

~v|| =
~v•~u
‖~u‖2

~u

and let

~v⊥ =~v−~v|| =~v− ~v•~u
‖~u‖2

~u

Then~v|| = k~u where k = ~v•~u
‖~u‖2 . It only remains to verify~v⊥ •~u = 0. But

~v⊥ •~u = ~v•~u− ~v•~u
‖~u‖2

~u•~u

= ~v•~u−~v•~u
= 0

♠

The vector~v|| in Theorem 4.37 is called the projection of~v onto~u and is denoted by

~v|| = proj~u (~v)

We now make a formal definition of the vector projection.
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Definition 4.38: Vector Projection

Let ~u and~v be vectors. Then, the (orthogonal) projection of~v onto ~u is given by

proj~u (~v) =

(
~v•~u
~u•~u

)
~u =

~v•~u
‖~u‖2

~u

Consider the following example of a projection.

Example 4.39: Find the Projection of One Vector Onto Another

Find proj~u (~v) if

~u =




2

3

−4


 ,~v =




1

−2

1




Solution. We can use the formula provided in Definition 4.38 to find proj~u (~v). First, compute~v•~u. This

is given by




1

−2

1


•




2

3

−4


 = (2)(1)+(3)(−2)+(−4)(1)

= 2−6−4

= −8

Similarly,~u•~u is given by




2

3

−4


•




2

3

−4


 = (2)(2)+(3)(3)+(−4)(−4)

= 4+9+16

= 29

Therefore, the projection is equal to

proj~u (~v) = − 8

29




2

3

−4




=




−16
29

−24
29
32
29




♠
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We will conclude this section with an important application of projections. Suppose a line L and a

point P are given such that P is not contained in L. Through the use of projections, we can determine the

shortest distance from P to L.

Example 4.40: Shortest Distance from a Point to a Line

Let P = (1,3,5) be a point in R3, and let L be the line which goes through point P0 = (0,4,−2) with

direction vector ~d =




2

1

2


. Find the shortest distance from P to the line L, and find the point Q on

L that is closest to P.

Solution. In order to determine the shortest distance from P to L, we will first find the vector
−→
P0P and then

find the projection of this vector onto L. The vector
−→
P0P is given by




1

3

5


−




0

4

−2


=




1

−1

7




Then, if Q is the point on L closest to P, it follows that

−−→
P0Q = proj~d

−→
P0P

=

(−→
P0P• ~d
‖~d‖2

)
~d

=
15

9




2

1

2




=
5

3




2

1

2




Now, the distance from P to L is given by

‖−→QP‖= ‖−→P0P−−−→
P0Q‖=

√
26

The point Q is found by adding the vector
−−→
P0Q to the position vector

−→
0P0 for P0 as follows




0

4

−2


+ 5

3




2

1

2


 =




10
3
17
3
4
3




Therefore, Q = (10
3

, 17
3

, 4
3
).

♠
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Exercises

Exercise 4.7.1 Find




1

2

3

4


•




2

0

1

3


 .

Exercise 4.7.2 Use the formula given in Proposition 4.31 to verify the Cauchy Schwarz inequality and to

show that equality occurs if and only if one of the vectors is a scalar multiple of the other.

Exercise 4.7.3 For ~u,~v vectors in R3, define the product, ~u ∗~v = u1v1 +2u2v2 +3u3v3. Show the axioms

for a dot product all hold for this product. Prove

‖~u∗~v‖ ≤ (~u∗~u)1/2 (~v∗~v)1/2

Exercise 4.7.4 Let ~a,~b be vectors. Show that
(
~a•~b

)
= 1

4

(
‖~a+~b‖2 −‖~a−~b‖2

)
.

Exercise 4.7.5 Using the axioms of the dot product, prove the parallelogram identity:

‖~a+~b‖2 +‖~a−~b‖2 = 2‖~a‖2 +2‖~b‖2

Exercise 4.7.6 Let A be a real m×n matrix and let~u ∈ Rn and~v ∈Rm. Show A~u•~v =~u•AT~v. Hint: Use

the definition of matrix multiplication to do this.

Exercise 4.7.7 Use the result of Problem 4.7.6 to verify directly that (AB)T = BT AT without making any

reference to subscripts.

Exercise 4.7.8 Find the angle between the vectors

~u =




3

−1

−1


 ,~v =




1

4

2




Exercise 4.7.9 Find the angle between the vectors

~u =




1

−2

1


 ,~v =




1

2

−7




Exercise 4.7.10 Find proj~v (~w) where ~w =




1

0

−2


 and~v =




1

2

3


 .
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Exercise 4.7.11 Find proj~v (~w) where ~w =




1

2

−2


 and~v =




1

0

3


 .

Exercise 4.7.12 Find proj~v (~w) where ~w =




1

2

−2

1


 and~v =




1

2

3

0


 .

Exercise 4.7.13 Let P = (1,2,3) be a point in R3. Let L be the line through the point P0 = (1,4,5) with

direction vector ~d =




1

−1

1


. Find the shortest distance from P to L, and find the point Q on L that is

closest to P.

Exercise 4.7.14 Let P = (0,2,1) be a point in R3. Let L be the line through the point P0 = (1,1,1) with

direction vector ~d =




3

0

1


. Find the shortest distance from P to L, and find the point Q on L that is closest

to P.

Exercise 4.7.15 Does it make sense to speak of proj~0 (~w)?

Exercise 4.7.16 Prove the Cauchy Schwarz inequality in Rn as follows. For~u,~v vectors, consider

(~w−proj~v~w)• (~w−proj~v~w)≥ 0

Simplify using the axioms of the dot product and then put in the formula for the projection. Notice that

this expression equals 0 and you get equality in the Cauchy Schwarz inequality if and only if ~w = proj~v~w.

What is the geometric meaning of ~w = proj~v~w?

Exercise 4.7.17 Let~v,~w~u be vectors. Show that (~w+~u)⊥ = ~w⊥+~u⊥ where ~w⊥ = ~w−proj~v (~w) .

Exercise 4.7.18 Show that

(~v−proj~u (~v) ,~u) = (~v−proj~u (~v))•~u = 0

and conclude every vector in Rn can be written as the sum of two vectors, one which is perpendicular and

one which is parallel to the given vector.
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4.8 Planes in Rn

Outcomes

A. Find the vector and scalar equations of a plane.

Much like the above discussion with lines, vectors can be used to determine planes in Rn. Given a

vector~n in Rn and a point P0, it is possible to find a unique plane which contains P0 and is perpendicular

to the given vector.

Definition 4.41: Normal Vector

Let~n be a nonzero vector in Rn. Then~n is called a normal vector to a plane if and only if

~n•~v = 0

for every vector~v in the plane.

In other words, we say that~n is orthogonal (perpendicular) to every vector in the plane.

Consider now a plane with normal vector given by~n, and containing a point P0. Notice that this plane

is unique. If P is an arbitrary point on this plane, then by definition the normal vector is orthogonal to the

vector between P0 and P. Letting
−→
0P and

−→
0P0 be the position vectors of points P and P0 respectively, it

follows that

~n• (−→0P−−→
0P0) = 0

or

~n•−→P0P = 0

The first of these equations gives the vector equation of the plane.

Definition 4.42: Vector Equation of a Plane

Let ~n be the normal vector for a plane which contains a point P0. If P is an arbitrary point on this

plane, then the vector equation of the plane is given by

~n• (−→0P−−→
0P0) = 0

Notice that this equation can be used to determine if a point P is contained in a certain plane.

Example 4.43: A Point in a Plane

Let~n =




1

2

3


 be the normal vector for a plane which contains the point P0 = (2,1,4). Determine

if the point P = (5,4,1) is contained in this plane.
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Solution. By Definition 4.42, P is a point in the plane if it satisfies the equation

~n• (−→0P−−→
0P0) = 0

Given the above~n, P0, and P, this equation becomes




1

2

3


•






5

4

1


−




2

1

4




 =




1

2

3


•






3

3

−3






= 3+6−9 = 0

Therefore P = (5,4,1) is contained in the plane.

♠

Suppose~n =




a

b

c


, P = (x,y,z) and P0 = (x0,y0,z0).

Then

~n• (−→0P−−→
0P0) = 0


a

b

c


•






x

y

z


−




x0

y0

z0




 = 0




a

b

c


•




x− x0

y− y0

z− z0


 = 0

a(x− x0)+b(y− y0)+ c(z− z0) = 0

We can also write this equation as

ax+by+ cz = ax0 +by0 + cz0

Notice that since P0 is given, ax0 + by0 + cz0 is a known scalar, which we can call d. This equation

becomes

ax+by+ cz = d

Definition 4.44: Scalar Equation of a Plane

Let ~n =




a

b

c


 be the normal vector for a plane which contains the point P0 = (x0,y0,z0).Then if

P = (x,y,z) is an arbitrary point on the plane, the scalar equation of the plane is given by

ax+by+ cz = d

where a,b,c,d ∈ R and d = ax0 +by0 + cz0.
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Consider the following equation.

Example 4.45: Finding the Equation of a Plane

Find an equation of the plane containing P0 = (3,−2,5) and orthogonal to~n =




−2

4

1


.

Solution. The above vector~n is the normal vector for this plane. Using Definition 4.42, we can determine

the vector equation for this plane.

~n• (−→0P−−→
0P0) = 0


−2

4

1


•






x

y

z


−




3

−2

5




 = 0




−2

4

1


•




x−3

y+2

z−5


 = 0

Using Definition 4.44, we can determine the scalar equation of the plane.

−2x+4y+1z =−2(3)+4(−2)+1(5) =−9

Hence, the vector equation of the plane is




−2

4

1


•




x−3

y+2

z−5


= 0

and the scalar equation is

−2x+4y+1z =−9

♠

Suppose a point P is not contained in a given plane. We are then interested in the shortest distance

from that point P to the given plane. Consider the following example.

Example 4.46: Shortest Distance From a Point to a Plane

Find the shortest distance from the point P = (3,2,3) to the plane given by

2x+ y+2z = 2, and find the point Q on the plane that is closest to P.

Solution. Pick an arbitrary point P0 on the plane. Then, it follows that

−→
QP = proj~n

−→
P0P

and ‖−→QP‖ is the shortest distance from P to the plane. Further, the vector
−→
0Q=

−→
0P−−→

QP gives the necessary

point Q.
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From the above scalar equation, we have that~n =




2

1

2


. Now, choose P0 = (1,0,0) so that~n•−→0P =

2 = d. Then,
−→
P0P =




3

2

3


−




1

0

0


=




2

2

3


.

Next, compute
−→
QP = proj~n

−→
P0P.

−→
QP = proj~n

−→
P0P

=

(−→
P0P•~n
‖~n‖2

)
~n

=
12

9




2

1

2




=
4

3




2

1

2




Then, ‖−→QP‖= 4 so the shortest distance from P to the plane is 4.

Next, to find the point Q on the plane which is closest to P we have

−→
0Q =

−→
0P−−→

QP

=




3

2

3


− 4

3




2

1

2




=
1

3




1

2

1




Therefore, Q = (1
3
, 2

3
, 1

3
). ♠

4.9 The Cross Product

Outcomes

A. Compute the cross product and box product of vectors in R3.

Recall that the dot product is one of two important products for vectors. The second type of product

for vectors is called the cross product. It is important to note that the cross product is only defined in

R3. First we discuss the geometric meaning and then a description in terms of coordinates is given, both

of which are important. The geometric description is essential in order to understand the applications to

physics and geometry while the coordinate description is necessary to compute the cross product.
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Consider the following definition.

Definition 4.47: Right Hand System of Vectors

Three vectors, ~u,~v,~w form a right hand system if when you extend the fingers of your right hand

along the direction of vector~u and close them in the direction of~v, the thumb points roughly in the

direction of ~w.

For an example of a right handed system of vectors, see the following picture.

~u

~v

~w

In this picture the vector ~w points upwards from the plane determined by the other two vectors. Point

the fingers of your right hand along ~u, and close them in the direction of~v. Notice that if you extend the

thumb on your right hand, it points in the direction of ~w.

You should consider how a right hand system would differ from a left hand system. Try using your left

hand and you will see that the vector ~w would need to point in the opposite direction.

Notice that the special vectors,~i,~j,~k will always form a right handed system. If you extend the fingers

of your right hand along~i and close them in the direction ~j, the thumb points in the direction of~k.

~j

~i

~k

The following is the geometric description of the cross product. Recall that the dot product of two

vectors results in a scalar. In contrast, the cross product results in a vector, as the product gives a direction

as well as magnitude.
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Definition 4.48: Geometric Definition of Cross Product

Let~u and~v be two vectors in R3. Then the cross product, written~u×~v, is defined by the following

two rules.

1. Its length is ‖~u×~v‖= ‖~u‖‖~v‖sinθ ,

where θ is the included angle between ~u and~v.

2. It is perpendicular to both~u and~v, that is (~u×~v)•~u = 0, (~u×~v)•~v = 0,

and~u,~v,~u×~v form a right hand system.

The cross product of the special vectors~i,~j,~k is as follows.

~i×~j =~k ~j×~i =−~k
~k×~i = ~j ~i×~k =−~j
~j×~k =~i ~k×~j =−~i

With this information, the following gives the coordinate description of the cross product.

Recall that the vector~u =
[

u1 u2 u3

]T
can be written in terms of~i,~j,~k as ~u = u1

~i+u2
~j+u3

~k.

Proposition 4.49: Coordinate Description of Cross Product

Let ~u = u1
~i+u2

~j+u3
~k and~v = v1

~i+ v2
~j+ v3

~k be two vectors. Then

~u×~v = (u2v3 −u3v2)~i− (u1v3 −u3v1)~j+

+(u1v2 −u2v1)~k
(4.14)

Writing~u×~v in the usual way, it is given by

~u×~v =




u2v3 −u3v2

−(u1v3 −u3v1)
u1v2 −u2v1




We now prove this proposition.

Proof. From the above table and the properties of the cross product listed,

~u×~v =
(

u1
~i+u2

~j+u3
~k
)
×
(

v1
~i+ v2

~j+ v3
~k
)

= u1v2
~i×~j+u1v3

~i×~k+u2v1
~j×~i+u2v3

~j×~k++u3v1
~k×~i+u3v2

~k×~j

= u1v2
~k−u1v3

~j−u2v1
~k+u2v3

~i+u3v1
~j−u3v2

~i

= (u2v3 −u3v2)~i+(u3v1 −u1v3)~j+(u1v2 −u2v1)~k

(4.15)

♠
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There is another version of 4.14 which may be easier to remember. We can express the cross product

as the determinant of a matrix, as follows.

~u×~v =

∣∣∣∣∣∣

~i ~j ~k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
(4.16)

Expanding the determinant along the top row yields

~i(−1)1+1

∣∣∣∣
u2 u3

v2 v3

∣∣∣∣+~j (−1)2+1

∣∣∣∣
u1 u3

v1 v3

∣∣∣∣+~k (−1)3+1

∣∣∣∣
u1 u2

v1 v2

∣∣∣∣

=~i

∣∣∣∣
u2 u3

v2 v3

∣∣∣∣−~j

∣∣∣∣
u1 u3

v1 v3

∣∣∣∣+~k
∣∣∣∣

u1 u2

v1 v2

∣∣∣∣
Expanding these determinants leads to

(u2v3 −u3v2)~i− (u1v3 −u3v1)~j+(u1v2 −u2v1)~k

which is the same as 4.15.

The cross product satisfies the following properties.

Proposition 4.50: Properties of the Cross Product

Let~u,~v,~w be vectors in R3, and k a scalar. Then, the following properties of the cross product hold.

1. ~u×~v =−(~v×~u) ,and~u×~u =~0

2. (k~u)×~v = k (~u×~v) =~u× (k~v)

3. ~u× (~v+~w) =~u×~v+~u×~w

4. (~v+~w)×~u =~v×~u+~w×~u

Proof. Formula 1. follows immediately from the definition. The vectors ~u×~v and ~v×~u have the same

magnitude, |~u| |~v|sinθ , and an application of the right hand rule shows they have opposite direction.

Formula 2. is proven as follows. If k is a non-negative scalar, the direction of (k~u)×~v is the same as

the direction of~u×~v,k (~u×~v) and~u× (k~v). The magnitude is k times the magnitude of~u×~v which is the

same as the magnitude of k (~u×~v) and ~u× (k~v) . Using this yields equality in 2. In the case where k < 0,

everything works the same way except the vectors are all pointing in the opposite direction and you must

multiply by |k| when comparing their magnitudes.

The distributive laws, 3. and 4., are much harder to establish. For now, it suffices to notice that if we

know that 3. is true, 4. follows. Thus, assuming 3., and using 1.,

(~v+~w)×~u =−~u× (~v+~w)

=−(~u×~v+~u×~w)

=~v×~u+~w×~u

♠
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We will now look at an example of how to compute a cross product.

Example 4.51: Find a Cross Product

Find~u×~v for the following vectors

~u =




1

−1

2


 ,~v =




3

−2

1




Solution. Note that we can write~u,~v in terms of the special vectors~i,~j,~k as

~u =~i−~j+2~k

~v = 3~i−2~j+~k

We will use the equation given by 4.16 to compute the cross product.

~u×~v =

∣∣∣∣∣∣

~i ~j ~k
1 −1 2

3 −2 1

∣∣∣∣∣∣
=

∣∣∣∣
−1 2

−2 1

∣∣∣∣~i−
∣∣∣∣

1 2

3 1

∣∣∣∣~j+
∣∣∣∣

1 −1

3 −2

∣∣∣∣~k = 3~i+5~j+~k

We can write this result in the usual way, as

~u×~v =




3

5

1




♠

An important geometrical application of the cross product is as follows. The size of the cross product,

‖~u×~v‖, is the area of the parallelogram determined by ~u and~v, as shown in the following picture.

~u

~v

θ

‖~v‖sin(θ)

We examine this concept in the following example.

Example 4.52: Area of a Parallelogram

Find the area of the parallelogram determined by the vectors~u and~v given by

~u =




1

−1

2


 ,~v =




3

−2

1



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Solution. Notice that these vectors are the same as the ones given in Example 4.51. Recall from the

geometric description of the cross product, that the area of the parallelogram is simply the magnitude of

~u×~v. From Example 4.51, ~u×~v = 3~i+5~j+~k. We can also write this as

~u×~v =




3

5

1




Thus the area of the parallelogram is

‖~u×~v‖=
√
(3)(3)+(5)(5)+(1)(1)=

√
9+25+1 =

√
35

♠

We can also use this concept to find the area of a triangle. Consider the following example.

Example 4.53: Area of Triangle

Find the area of the triangle determined by the points (1,2,3) ,(0,2,5) ,(5,1,2)

Solution. This triangle is obtained by connecting the three points with lines. Picking (1,2,3) as a starting

point, there are two displacement vectors,
[
−1 0 2

]T
and

[
4 −1 −1

]T
. Notice that if we add

either of these vectors to the position vector of the starting point, the result is the position vectors of

the other two points. Now, the area of the triangle is half the area of the parallelogram determined by[
−1 0 2

]T
and

[
4 −1 −1

]T
. The required cross product is given by




−1

0

2


×




4

−1

−1


=




2

7

1




Taking the size of this vector gives the area of the parallelogram, given by
√
(2)(2)+(7)(7)+(1)(1)=

√
4+49+1 =

√
54

Hence the area of the triangle is 1
2

√
54 = 3

2

√
6. ♠

In general, if you have three points in R3,P,Q,R, the area of the triangle is given by

1

2
‖−→PQ×−→

PR‖

Recall that
−→
PQ is the vector running from point P to point Q.

P

Q

R

In the next section, we explore another application of the cross product.



184 Rn

4.9.1 The Box Product

Recall that we can use the cross product to find the the area of a parallelogram. It follows that we can use

the cross product together with the dot product to find the volume of a parallelepiped.

We begin with a definition.

Definition 4.54: Parallelepiped

A parallelepiped determined by the three vectors,~u,~v, and ~w consists of

{r~u+ s~v+ t~w : r,s, t ∈ [0,1]}

That is, if you pick three numbers, r,s, and t each in [0,1] and form r~u+ s~v+ t~w then the collection

of all such points makes up the parallelepiped determined by these three vectors.

The following is an example of a parallelepiped.

~u×~v

θ

~u

~v

~w

Notice that the base of the parallelepiped is the parallelogram determined by the vectors ~u and ~v.

Therefore, its area is equal to ‖~u×~v‖. The height of the parallelepiped is ‖~w‖cosθ where θ is the angle

shown in the picture between ~w and ~u×~v. The volume of this parallelepiped is the area of the base times

the height which is just

‖~u×~v‖‖~w‖cosθ = (~u×~v)•~w
This expression is known as the box product and is sometimes written as [~u,~v,~w] . You should consider

what happens if you interchange the ~v with the ~w or the ~u with the ~w. You can see geometrically from

drawing pictures that this merely introduces a minus sign. In any case the box product of three vectors

always equals either the volume of the parallelepiped determined by the three vectors or else −1 times this

volume.

Proposition 4.55: The Box Product

Let~u,~v,~w be three vectors in Rn that define a parallelepiped. Then the volume of the parallelepiped

is the absolute value of the box product, given by

|(~u×~v)•~w|

Consider an example of this concept.
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Example 4.56: Volume of a Parallelepiped

Find the volume of the parallelepiped determined by the vectors

~u =




1

2

−5


 ,~v =




1

3

−6


 ,~w =




3

2

3




Solution. According to the above discussion, pick any two of these vectors, take the cross product and then

take the dot product of this with the third of these vectors. The result will be either the desired volume or

−1 times the desired volume. Therefore by taking the absolute value of the result, we obtain the volume.

We will take the cross product of~u and~v. This is given by

~u×~v =




1

2

−5


×




1

3

−6




=

∣∣∣∣∣∣

~i ~j ~k
1 2 −5

1 3 −6

∣∣∣∣∣∣
= 3~i+~j+~k =




3

1

1




Now take the dot product of this vector with ~w which yields

(~u×~v)•~w =




3

1

1


•




3

2

3




=
(

3~i+~j+~k
)
•
(

3~i+2~j+3~k
)

= 9+2+3

= 14

This shows the volume of this parallelepiped is 14 cubic units. ♠
There is a fundamental observation which comes directly from the geometric definitions of the cross

product and the dot product.

Proposition 4.57: Order of the Product

Let ~u,~v, and ~w be vectors. Then (~u×~v)•~w =~u• (~v×~w) .

Proof. This follows from observing that either (~u×~v) • ~w and ~u • (~v×~w) both give the volume of the

parallelepiped or they both give −1 times the volume. ♠
Recall that we can express the cross product as the determinant of a particular matrix. It turns out

that the same can be done for the box product. Suppose you have three vectors, ~u =
[

a b c
]T

,~v =[
d e f

]T
, and ~w =

[
g h i

]T
. Then the box product~u• (~v×~w) is given by the following.

~u• (~v×~w) =




a

b

c


•

∣∣∣∣∣∣

~i ~j ~k
d e f

g h i

∣∣∣∣∣∣
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= a

∣∣∣∣
e f

h i

∣∣∣∣−b

∣∣∣∣
d f

g i

∣∣∣∣+ c

∣∣∣∣
d e

g h

∣∣∣∣

= det




a b c

d e f

g h i




To take the box product, you can simply take the determinant of the matrix which results by letting the

rows be the components of the given vectors in the order in which they occur in the box product.

This follows directly from the definition of the cross product given above and the way we expand

determinants. Thus the volume of a parallelepiped determined by the vectors ~u,~v,~w is just the absolute

value of the above determinant.

Exercises

Exercise 4.9.1 Show that if~a×~u =~0 for any unit vector ~u, then ~a =~0.

Exercise 4.9.2 Find the area of the triangle determined by the three points, (1,2,3) ,(4,2,0) and (−3,2,1) .

Exercise 4.9.3 Find the area of the triangle determined by the three points, (1,0,3) ,(4,1,0) and (−3,1,1) .

Exercise 4.9.4 Find the area of the triangle determined by the three points, (1,2,3) ,(2,3,4) and (3,4,5) .

Did something interesting happen here? What does it mean geometrically?

Exercise 4.9.5 Find the area of the parallelogram determined by the vectors




1

2

3


,




3

−2

1


 .

Exercise 4.9.6 Find the area of the parallelogram determined by the vectors




1

0

3


,




4

−2

1


 .

Exercise 4.9.7 Is ~u× (~v×~w) = (~u×~v)× ~w? What is the meaning of ~u×~v× ~w? Explain. Hint: Try(
~i×~j

)
×~k.

Exercise 4.9.8 Verify directly that the coordinate description of the cross product, ~u×~v has the property

that it is perpendicular to both~u and~v. Then show by direct computation that this coordinate description

satisfies

‖~u×~v‖2 = ‖~u‖2‖~v‖2 − (~u•~v)2

= ‖~u‖2‖~v‖2
(
1− cos2 (θ)

)

where θ is the angle included between the two vectors. Explain why ‖~u×~v‖ has the correct magnitude.
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Exercise 4.9.9 Suppose A is a 3×3 skew symmetric matrix such that AT =−A. Show there exists a vector
~Ω such that for all~u ∈ R3

A~u = ~Ω×~u

Hint: Explain why, since A is skew symmetric it is of the form

A =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




where the ωi are numbers. Then consider ω1
~i+ω2

~j+ω3
~k.

Exercise 4.9.10 Find the volume of the parallelepiped determined by the vectors




1

−7

−5


,




1

−2

−6


, and




3

2

3


.

Exercise 4.9.11 Suppose ~u,~v, and ~w are three vectors whose components are all integers. Can you con-

clude the volume of the parallelepiped determined from these three vectors will always be an integer?

Exercise 4.9.12 What does it mean geometrically if the box product of three vectors gives zero?

Exercise 4.9.13 Using Problem 4.9.12, find an equation of a plane containing the two position vectors, ~p
and~q and the point 0. Hint: If (x,y,z) is a point on this plane, the volume of the parallelepiped determined

by (x,y,z) and the vectors ~p,~q equals 0.

Exercise 4.9.14 Using the notion of the box product yielding either plus or minus the volume of the

parallelepiped determined by the given three vectors, show that

(~u×~v)•~w =~u• (~v×~w)

In other words, the dot and the cross can be switched as long as the order of the vectors remains the same.

Hint: There are two ways to do this, by the coordinate description of the dot and cross product and by

geometric reasoning.

Exercise 4.9.15 Simplify (~u×~v)• (~v×~w)× (~w×~z) .

Exercise 4.9.16 Simplify ‖~u×~v‖2 +(~u•~v)2 −‖~u‖2‖~v‖2.

Exercise 4.9.17 For~u,~v,~w functions of t, prove the following product rules:

(~u×~v)′ = ~u′×~v+~u×~v′

(~u•~v)′ = ~u′ •~v+~u•~v′
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4.10 Spanning, Linear Independence and Basis in Rn

Outcomes

A. Determine the span of a set of vectors, and determine if a vector is contained in a specified

span.

B. Determine if a set of vectors is linearly independent.

C. Understand the concepts of subspace, basis, and dimension.

D. Find the row space, column space, and null space of a matrix.

By generating all linear combinations of a set of vectors one can obtain various subsets of Rn which

we call subspaces. For example what set of vectors in R3 generate the XY -plane? What is the smallest

such set of vectors can you find? The tools of spanning, linear independence and basis are exactly what is

needed to answer these and similar questions and are the focus of this section. The following definition is

essential.

Definition 4.58: Subset

Let U and W be sets of vectors in Rn. If all vectors in U are also in W , we say that U is a subset of

W , denoted

U ⊆W

4.10.1 Spanning Set of Vectors

We begin this section with a definition.

Definition 4.59: Span of a Set of Vectors

The collection of all linear combinations of a set of vectors {~u1, · · · ,~uk} in Rn is known as the span

of these vectors and is written as span{~u1, · · · ,~uk}.

Consider the following example.

Example 4.60: Span of Vectors

Describe the span of the vectors~u =
[

1 1 0
]T

and~v =
[

3 2 0
]T ∈ R3.

Solution. You can see that any linear combination of the vectors ~u and ~v yields a vector of the form[
x y 0

]T
in the XY -plane.
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Moreover every vector in the XY -plane is in fact such a linear combination of the vectors ~u and ~v.

That’s because 


x

y

0


= (−2x+3y)




1

1

0


+(x− y)




3

2

0




Thus span{~u,~v} is precisely the XY -plane. ♠

You can convince yourself that no single vector can span the XY -plane. In fact, take a moment to

consider what is meant by the span of a single vector.

However you can make the set larger if you wish. For example consider the larger set of vectors

{~u,~v,~w} where ~w =
[

4 5 0
]T

. Since the first two vectors already span the entire XY -plane, the span

is once again precisely the XY -plane and nothing has been gained. Of course if you add a new vector such

as ~w =
[

0 0 1
]T

then it does span a different space. What is the span of~u,~v,~w in this case?

The distinction between the sets {~u,~v} and {~u,~v,~w} will be made using the concept of linear indepen-

dence.

Consider the vectors ~u,~v, and ~w discussed above. In the next example, we will show how to formally

demonstrate that ~w is in the span of~u and~v.

Example 4.61: Vector in a Span

Let ~u =
[

1 1 0
]T

and~v =
[

3 2 0
]T ∈ R3. Show that ~w =

[
4 5 0

]T
is in span{~u,~v}.

Solution. For a vector to be in span{~u,~v}, it must be a linear combination of these vectors. If ~w ∈
span{~u,~v}, we must be able to find scalars a,b such that

~w = a~u+b~v

We proceed as follows. 


4

5

0


= a




1

1

0


+b




3

2

0




This is equivalent to the following system of equations

a+3b = 4

a+2b = 5

We solve this system the usual way, constructing the augmented matrix and row reducing to find the

reduced row-echelon form. [
1 3 4

1 2 5

]
→ ·· · →

[
1 0 7

0 1 −1

]

The solution is a = 7,b =−1. This means that

~w = 7~u−~v

Therefore we can say that ~w is in span{~u,~v}. ♠
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4.10.2 Linearly Independent Set of Vectors

We now turn our attention to the following question: what linear combinations of a given set of vectors

{~u1, · · · ,~uk} in Rn yields the zero vector? Clearly 0~u1 + 0~u2 + · · ·+ 0~uk =~0, but is it possible to have

∑k
i=1 ai~ui =~0 without all coefficients being zero?

You can create examples where this easily happens. For example if ~u1 = ~u2, then 1~u1 −~u2 + 0~u3 +
· · ·+0~uk =~0, no matter the vectors {~u3, · · · ,~uk}. But sometimes it can be more subtle.

Example 4.62: Linearly Dependent Set of Vectors

Consider the vectors

~u1 =
[

0 1 −2
]T

,~u2 =
[

1 1 0
]T

,~u3 =
[
−2 3 2

]T
, and ~u4 =

[
1 −2 0

]T

in R3.

Then verify that

1~u1 +0~u2 +~u3 +2~u4 =~0

You can see that the linear combination does yield the zero vector but has some non-zero coefficients.

Thus we define a set of vectors to be linearly dependent if this happens.

Definition 4.63: Linearly Dependent Set of Vectors

A set of non-zero vectors {~u1, · · · ,~uk} in Rn is said to be linearly dependent if a linear combination

of these vectors without all coefficients being zero does yield the zero vector.

Note that if ∑k
i=1 ai~ui =~0 and some coefficient is non-zero, say a1 6= 0, then

~u1 =
−1

a1

k

∑
i=2

ai~ui

and thus~u1 is in the span of the other vectors. And the converse clearly works as well, so we get that a set

of vectors is linearly dependent precisely when one of its vector is in the span of the other vectors of that

set.

In particular, you can show that the vector ~u1 in the above example is in the span of the vectors

{~u2,~u3,~u4}.

If a set of vectors is NOT linearly dependent, then it must be that any linear combination of these

vectors which yields the zero vector must use all zero coefficients. This is a very important notion, and we

give it its own name of linear independence.
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Definition 4.64: Linearly Independent Set of Vectors

A set of non-zero vectors {~u1, · · · ,~uk} in Rn is said to be linearly independent if whenever

k

∑
i=1

ai~ui =~0

it follows that each ai = 0.

Note also that we require all vectors to be non-zero to form a linearly independent set.

To view this in a more familiar setting, form the n×k matrix A having these vectors as columns. Then

all we are saying is that the set {~u1, · · · ,~uk} is linearly independent precisely when AX = 0 has only the

trivial solution.

Here is an example.

Example 4.65: Linearly Independent Vectors

Consider the vectors ~u =
[

1 1 0
]T

, ~v =
[

1 0 1
]T

, and ~w =
[

0 1 1
]T

in R3. Verify

whether the set {~u,~v,~w} is linearly independent.

Solution. So suppose that we have a linear combinations a~u+b~v+c~w =~0. Then you can see that this can

only happen with a = b = c = 0.

As mentioned above, you can equivalently form the 3× 3 matrix A =




1 1 0

1 0 1

0 1 1


, and show that

AX = 0 has only the trivial solution.

Thus this means the set {~u,~v,~w} is linearly independent. ♠

In terms of spanning, a set of vectors is linearly independent if it does not contain unnecessary vectors.

That is, it does not contain a vector which is in the span of the others.

Thus we put all this together in the following important theorem.
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Theorem 4.66: Linear Independence as a Linear Combination

Let {~u1, · · · ,~uk} be a collection of vectors in Rn. Then the following are equivalent:

1. It is linearly independent, that is whenever

k

∑
i=1

ai~ui =~0

it follows that each coefficient ai = 0.

2. No vector is in the span of the others.

3. The system of linear equations AX = 0 has only the trivial solution, where A is the n× k

matrix having these vectors as columns.

The last sentence of this theorem is useful as it allows us to use the reduced row-echelon form of a

matrix to determine if a set of vectors is linearly independent. Let the vectors be columns of a matrix A.

Find the reduced row-echelon form of A. If each column has a leading one, then it follows that the vectors

are linearly independent.

Sometimes we refer to the condition regarding sums as follows: The set of vectors, {~u1, · · · ,~uk} is

linearly independent if and only if there is no nontrivial linear combination which equals the zero vector.

A nontrivial linear combination is one in which not all the scalars equal zero. Similarly, a trivial linear

combination is one in which all scalars equal zero.

Here is a detailed example in R4.

Example 4.67: Linear Independence

Determine whether the set of vectors given by








1

2

3

0


 ,




2

1

0

1


 ,




0

1

1

2


 ,




3

2

2

0








is linearly independent. If it is linearly dependent, express one of the vectors as a linear combination

of the others.

Solution. In this case the matrix of the corresponding homogeneous system of linear equations is




1 2 0 3 0

2 1 1 2 0

3 0 1 2 0

0 1 2 0 0



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The reduced row-echelon form is 


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




and so every column is a pivot column and the corresponding system AX = 0 only has the trivial solution.

Therefore, these vectors are linearly independent and there is no way to obtain one of the vectors as a

linear combination of the others. ♠

Consider another example.

Example 4.68: Linear Independence

Determine whether the set of vectors given by








1

2

3

0


 ,




2

1

0

1


 ,




0

1

1

2


 ,




3

2

2

−1








is linearly independent. If it is linearly dependent, express one of the vectors as a linear combination

of the others.

Solution. Form the 4×4 matrix A having these vectors as columns:

A =




1 2 0 3

2 1 1 2

3 0 1 2

0 1 2 −1




Then by Theorem 4.66, the given set of vectors is linearly independent exactly if the system AX = 0 has

only the trivial solution.

The augmented matrix for this system and corresponding reduced row-echelon form are given by




1 2 0 3 0

2 1 1 2 0

3 0 1 2 0

0 1 2 −1 0


→ ·· · →




1 0 0 1 0

0 1 0 1 0

0 0 1 −1 0

0 0 0 0 0




Not all the columns of the coefficient matrix are pivot columns and so the vectors are not linearly inde-

pendent. In this case, we say the vectors are linearly dependent.

It follows that there are infinitely many solutions to AX = 0, one of which is




1

1

−1

−1



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Therefore we can write

1




1

2

3

0


+1




2

1

0

1


−1




0

1

1

2


−1




3

2

2

−1


=




0

0

0

0




This can be rearranged as follows

1




1

2

3

0


+1




2

1

0

1


−1




0

1

1

2


=




3

2

2

−1




This gives the last vector as a linear combination of the first three vectors.

Notice that we could rearrange this equation to write any of the four vectors as a linear combination of

the other three. ♠

When given a linearly independent set of vectors, we can determine if related sets are linearly inde-

pendent.

Example 4.69: Related Sets of Vectors

Let {~u,~v,~w} be an independent set of Rn. Is {~u+~v,2~u+~w,~v−5~w} linearly independent?

Solution. Suppose a(~u+~v)+b(2~u+~w)+ c(~v−5~w) =~0n for some a,b,c ∈ R. Then

(a+2b)~u+(a+ c)~v+(b−5c)~w =~0n.

Since {~u,~v,~w} is independent,

a+2b = 0

a+ c = 0

b−5c = 0

This system of three equations in three variables has the unique solution a = b = c = 0. Therefore,

{~u+~v,2~u+~w,~v−5~w} is independent. ♠

The following corollary follows from the fact that if the augmented matrix of a homogeneous system

of linear equations has more columns than rows, the system has infinitely many solutions.

Corollary 4.70: Linear Dependence in Rn

Let {~u1, · · · ,~uk} be a set of vectors in Rn. If k > n, then the set is linearly dependent (i.e. NOT

linearly independent).

Proof. Form the n× k matrix A having the vectors {~u1, · · · ,~uk} as its columns and suppose k > n. Then A

has rank r ≤ n < k, so the system AX = 0 has a nontrivial solution and thus not linearly independent by

Theorem 4.66. ♠
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Example 4.71: Linear Dependence

Consider the vectors {[
1

4

]
,

[
2

3

]
,

[
3

2

]}

Are these vectors linearly independent?

Solution. This set contains three vectors in R2. By Corollary 4.70 these vectors are linearly dependent. In

fact, we can write

(−1)

[
1

4

]
+(2)

[
2

3

]
=

[
3

2

]

showing that this set is linearly dependent. ♠

The third vector in the previous example is in the span of the first two vectors. We could find a way to

write this vector as a linear combination of the other two vectors. It turns out that the linear combination

which we found is the only one, provided that the set is linearly independent.

Theorem 4.72: Unique Linear Combination

Let U ⊆Rn be an independent set. Then any vector~x ∈ span(U) can be written uniquely as a linear

combination of vectors of U .

Proof. To prove this theorem, we will show that two linear combinations of vectors in U that equal~x must

be the same. Let U = {~u1,~u2, . . . ,~uk}. Suppose that there is a vector~x ∈ span(U) such that

~x = s1~u1 + s2~u2 + · · ·+ sk~uk, for some s1,s2, . . . ,sk ∈ R, and

~x = t1~u1 + t2~u2 + · · ·+ tk~uk, for some t1, t2, . . . , tk ∈ R.

Then~0n =~x−~x = (s1 − t1)~u1 +(s2 − t2)~u2 + · · ·+(sk − tk)~uk.

Since U is independent, the only linear combination that vanishes is the trivial one, so si − ti = 0 for

all i, 1 ≤ i ≤ k.

Therefore, si = ti for all i, 1 ≤ i ≤ k, and the representation is unique. Let U ⊆ Rn be an independent

set. Then any vector~x ∈ span(U) can be written uniquely as a linear combination of vectors of U . ♠

Suppose that ~u,~v and ~w are nonzero vectors in R3, and that {~v,~w} is independent. Consider the set

{~u,~v,~w}. When can we know that this set is independent? It turns out that this follows exactly when

~u 6∈ span{~v,~w}.

Example 4.73:

Suppose that~u,~v and ~w are nonzero vectors in R3, and that {~v,~w} is independent. Prove that {~u,~v,~w}
is independent if and only if~u 6∈ span{~v,~w}.

Solution. If~u∈ span{~v,~w}, then there exist a,b∈R so that~u= a~v+b~w. This implies that~u−a~v−b~w=~03,

so~u−a~v−b~w is a nontrivial linear combination of {~u,~v,~w} that vanishes, and thus {~u,~v,~w} is dependent.
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Now suppose that~u 6∈ span{~v,~w}, and suppose that there exist a,b,c∈R such that a~u+b~v+c~w=~03. If

a 6= 0, then~u =−b
a
~v− c

a
~w, and~u ∈ span{~v,~w}, a contradiction. Therefore, a = 0, implying that b~v+c~w =

~03. Since {~v,~w} is independent, b = c = 0, and thus a = b = c = 0, i.e., the only linear combination of~u,~v
and ~w that vanishes is the trivial one.

Therefore, {~u,~v,~w} is independent. ♠

Consider the following useful theorem.

Theorem 4.74: Invertible Matrices

Let A be an invertible n×n matrix. Then the columns of A are independent and span Rn. Similarly,

the rows of A are independent and span the set of all 1×n vectors.

This theorem also allows us to determine if a matrix is invertible. If an n× n matrix A has columns

which are independent, or span Rn, then it follows that A is invertible. If it has rows that are independent,

or span the set of all 1×n vectors, then A is invertible.

4.10.3 A Short Application to Chemistry

The following section applies the concepts of spanning and linear independence to the subject of chemistry.

When working with chemical reactions, there are sometimes a large number of reactions and some are

in a sense redundant. Suppose you have the following chemical reactions.

CO+ 1
2
O2 →CO2

H2 +
1
2
O2 → H2O

CH4 +
3
2
O2 →CO+2H2O

CH4 +2O2 →CO2 +2H2O

There are four chemical reactions here but they are not independent reactions. There is some redundancy.

What are the independent reactions? Is there a way to consider a shorter list of reactions? To analyze this

situation, we can write the reactions in a matrix as follows



CO O2 CO2 H2 H2O CH4

1 1/2 −1 0 0 0

0 1/2 0 1 −1 0

−1 3/2 0 0 −2 1

0 2 −1 0 −2 1




Each row contains the coefficients of the respective elements in each reaction. For example, the top

row of numbers comes from CO+ 1
2
O2 −CO2 = 0 which represents the first of the chemical reactions.

We can write these coefficients in the following matrix




1 1/2 −1 0 0 0

0 1/2 0 1 −1 0

−1 3/2 0 0 −2 1

0 2 −1 0 −2 1



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Rather than listing all of the reactions as above, it would be more efficient to only list those which are

independent by throwing out that which is redundant. We can use the concepts of the previous section to

accomplish this.

First, take the reduced row-echelon form of the above matrix.



1 0 0 3 −1 −1

0 1 0 2 −2 0

0 0 1 4 −2 −1

0 0 0 0 0 0




The top three rows represent “independent" reactions which come from the original four reactions. One

can obtain each of the original four rows of the matrix given above by taking a suitable linear combination

of rows of this reduced row-echelon form matrix.

With the redundant reaction removed, we can consider the simplified reactions as the following equa-

tions
CO+3H2−1H2O−1CH4 = 0

O2 +2H2 −2H2O = 0

CO2 +4H2 −2H2O−1CH4 = 0

In terms of the original notation, these are the reactions

CO+3H2 → H2O+CH4

O2 +2H2 → 2H2O

CO2 +4H2 → 2H2O+CH4

These three reactions provide an equivalent system to the original four equations. The idea is that, in

terms of what happens chemically, you obtain the same information with the shorter list of reactions. Such

a simplification is especially useful when dealing with very large lists of reactions which may result from

experimental evidence.

4.10.4 Subspaces and Basis

The goal of this section is to develop an understanding of a subspace of Rn. Before a precise definition is

considered, we first examine the subspace test given below.

Theorem 4.75: Subspace Test

A subset V of Rn is a subspace of Rn if

1. the zero vector of Rn,~0n, is in V ;

2. V is closed under addition, i.e., for all~u,~w ∈V ,~u+~w ∈V ;

3. V is closed under scalar multiplication, i.e., for all~u ∈V and k ∈ R, k~u ∈V .

This test allows us to determine if a given set is a subspace of Rn. Notice that the subset V =
{
~0
}

is a

subspace of Rn (called the zero subspace ), as is Rn itself. A subspace which is not the zero subspace of

Rn is referred to as a proper subspace.
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A subspace is simply a set of vectors with the property that linear combinations of these vectors remain

in the set. Geometrically in R3, it turns out that a subspace can be represented by either the origin as a

single point, lines and planes which contain the origin, or the entire space R3.

Consider the following example of a line in R3.

Example 4.76: Subspace of R3

In R3, the line L through the origin that is parallel to the vector ~d =




−5

1

−4


 has (vector) equation




x

y

z


= t




−5

1

−4


 , t ∈ R, so

L =
{

t~d | t ∈ R

}
.

Then L is a subspace of R3.

Solution. Using the subspace test given above we can verify that L is a subspace of R3.

• First:~03 ∈ L since 0~d =~03.

• Suppose~u,~v ∈ L. Then by definition,~u = s~d and~v = t~d, for some s, t ∈ R. Thus

~u+~v = s~d + t~d = (s+ t)~d.

Since s+ t ∈ R,~u+~v ∈ L; i.e., L is closed under addition.

• Suppose~u ∈ L and k ∈ R (k is a scalar). Then ~u = t~d, for some t ∈ R, so

k~u = k(t~d) = (kt)~d.

Since kt ∈ R, k~u ∈ L; i.e., L is closed under scalar multiplication.

Since L satisfies all conditions of the subspace test, it follows that L is a subspace. ♠

Note that there is nothing special about the vector ~d used in this example; the same proof works for

any nonzero vector ~d ∈ R3, so any line through the origin is a subspace of R3.

We are now prepared to examine the precise definition of a subspace as follows.

Definition 4.77: Subspace

Let V be a nonempty collection of vectors in Rn. Then V is called a subspace if whenever a and b

are scalars and~u and~v are vectors in V , the linear combination a~u+b~v is also in V .

More generally this means that a subspace contains the span of any finite collection vectors in that

subspace. It turns out that in Rn, a subspace is exactly the span of finitely many of its vectors.
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Theorem 4.78: Subspaces are Spans

Let V be a nonempty collection of vectors in Rn. Then V is a subspace of Rn if and only if there

exist vectors {~u1, · · · ,~uk} in V such that

V = span{~u1, · · · ,~uk}

Furthermore, let W be another subspace of Rn and suppose {~u1, · · · ,~uk} ∈W . Then it follows that

V is a subset of W .

Note that since W is arbitrary, the statement that V ⊆ W means that any other subspace of Rn that

contains these vectors will also contain V .

Proof. We first show that if V is a subspace, then it can be written as V = span{~u1, · · · ,~uk}. Pick a vector

~u1 in V . If V = span{~u1} , then you have found your list of vectors and are done. If V 6= span{~u1} , then

there exists~u2 a vector of V which is not in span{~u1} . Consider span{~u1,~u2} . If V = span{~u1,~u2}, we are

done. Otherwise, pick ~u3 not in span{~u1,~u2} . Continue this way. Note that since V is a subspace, these

spans are each contained in V . The process must stop with ~uk for some k ≤ n by Corollary 4.70, and thus

V = span{~u1, · · · ,~uk}.

Now suppose V = span{~u1, · · · ,~uk}, we must show this is a subspace. So let ∑k
i=1 ci~ui and ∑k

i=1 di~ui be

two vectors in V , and let a and b be two scalars. Then

a
k

∑
i=1

ci~ui +b
k

∑
i=1

di~ui =
k

∑
i=1

(aci +bdi)~ui

which is one of the vectors in span{~u1, · · · ,~uk} and is therefore contained in V . This shows that span{~u1, · · · ,~uk}
has the properties of a subspace.

To prove that V ⊆W , we prove that if~ui ∈V , then~ui ∈W .

Suppose ~u ∈ V . Then ~u = a1~u1 +a2~u2 + · · ·+ak~uk for some ai ∈ R, 1 ≤ i ≤ k. Since W contain each

~ui and W is a vector space, it follows that a1~u1 +a2~u2 + · · ·+ak~uk ∈W . ♠

Since the vectors ~ui we constructed in the proof above are not in the span of the previous vectors (by

definition), they must be linearly independent and thus we obtain the following corollary.

Corollary 4.79: Subspaces are Spans of Independent Vectors

If V is a subspace of Rn, then there exist linearly independent vectors {~u1, · · · ,~uk} in V such that

V = span{~u1, · · · ,~uk}.

In summary, subspaces of Rn consist of spans of finite, linearly independent collections of vectors of

Rn. Such a collection of vectors is called a basis.



200 Rn

Definition 4.80: Basis of a Subspace

Let V be a subspace of Rn. Then {~u1, · · · ,~uk} is a basis for V if the following two conditions hold.

1. span{~u1, · · · ,~uk}=V

2. {~u1, · · · ,~uk} is linearly independent

Note the plural of basis is bases.

The following is a simple but very useful example of a basis, called the standard basis.

Definition 4.81: Standard Basis of Rn

Let~ei be the vector in Rn which has a 1 in the ith entry and zeros elsewhere, that is the ith column of

the identity matrix. Then the collection {~e1,~e2, · · · ,~en} is a basis for Rn and is called the standard

basis of Rn.

The main theorem about bases is not only they exist, but that they must be of the same size. To show

this, we will need the the following fundamental result, called the Exchange Theorem.

Theorem 4.82: Exchange Theorem

Suppose {~u1, · · · ,~ur} is a linearly independent set of vectors in Rn, and each ~uk is contained in

span{~v1, · · · ,~vs} Then s ≥ r.

In words, spanning sets have at least as many vectors as linearly independent sets.

Proof. Since each ~u j is in span{~v1, · · · ,~vs}, there exist scalars ai j such that

~u j =
s

∑
i=1

ai j~vi

Suppose for a contradiction that s < r. Then the matrix A =
[
ai j

]
has fewer rows, s than columns, r. Then

the system AX = 0 has a non trivial solution ~d, that is there is a ~d 6=~0 such that A~d =~0. In other words,

r

∑
j=1

ai jd j = 0, i = 1,2, · · · ,s

Therefore,

r

∑
j=1

d j~u j =
r

∑
j=1

d j

s

∑
i=1

ai j~vi

=
s

∑
i=1

(
r

∑
j=1

ai jd j

)
~vi =

s

∑
i=1

0~vi = 0

which contradicts the assumption that {~u1, · · · ,~ur} is linearly independent, because not all the d j are zero.

Thus this contradiction indicates that s ≥ r. ♠
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We are now ready to show that any two bases are of the same size.

Theorem 4.83: Bases of Rn are of the Same Size

Let V be a subspace of Rn with two bases B1 and B2. Suppose B1 contains s vectors and B2 contains

r vectors. Then s = r.

Proof. This follows right away from Theorem 9.35. Indeed observe that B1 = {~u1, · · · ,~us} is a spanning

set for V while B2 = {~v1, · · · ,~vr} is linearly independent, so s≥ r. Similarly B2 = {~v1, · · · ,~vr} is a spanning

set for V while B1 = {~u1, · · · ,~us} is linearly independent, so r ≥ s. ♠

The following definition can now be stated.

Definition 4.84: Dimension of a Subspace

Let V be a subspace of Rn. Then the dimension of V , written dim(V ) is defined to be the number

of vectors in a basis.

The next result follows.

Corollary 4.85: Dimension of Rn

The dimension of Rn is n.

Proof. You only need to exhibit a basis for Rn which has n vectors. Such a basis is the standard basis

{~e1, · · · ,~en}. ♠

Consider the following example.

Example 4.86: Basis of Subspace

Let

V =








a

b

c

d


 ∈ R4 : a−b = d− c





.

Show that V is a subspace of R4, find a basis of V , and find dim(V ).

Solution. The condition a−b = d − c is equivalent to the condition a = b− c+d, so we may write

V =








b− c+d

b

c

d


 : b,c,d ∈ R





=





b




1

1

0

0


+ c




−1

0

1

0


+d




1

0

0

1


 : b,c,d ∈ R





This shows that V is a subspace of R4, since V = span{~u1,~u2,~u3} where



202 Rn

~u1 =




1

1

0

0


 ,~u2 =




−1

0

1

0


 ,~u3 =




1

0

0

1




Furthermore,








1

1

0

0


 ,




−1

0

1

0


 ,




1

0

0

1








is linearly independent, as can be seen by taking the reduced row-echelon form of the matrix whose

columns are~u1,~u2 and~u3.




1 −1 1

1 0 0

0 1 0

0 0 1


→




1 0 0

0 1 0

0 0 1

0 0 0




Since every column of the reduced row-echelon form matrix has a leading one, the columns are

linearly independent.

Therefore {~u1,~u2,~u3} is linearly independent and spans V , so is a basis of V . Hence V has dimension

three. ♠

We continue by stating further properties of a set of vectors in Rn.

Corollary 4.87: Linearly Independent and Spanning Sets in Rn

The following properties hold in Rn:

• Suppose {~u1, · · · ,~un} is linearly independent. Then {~u1, · · · ,~un} is a basis for Rn.

• Suppose {~u1, · · · ,~um} spans Rn. Then m ≥ n.

• If {~u1, · · · ,~un} spans Rn, then {~u1, · · · ,~un} is linearly independent.

Proof. Assume first that {~u1, · · · ,~un} is linearly independent, and we need to show that this set spans Rn.

To do so, let ~v be a vector of Rn, and we need to write ~v as a linear combination of ~ui’s. Consider the

matrix A having the vectors~ui as columns:

A =
[
~u1 · · · ~un

]

By linear independence of the ~ui’s, the reduced row-echelon form of A is the identity matrix. Therefore

the system A~x =~v has a (unique) solution, so~v is a linear combination of the~ui’s.

To establish the second claim, suppose that m < n. Then letting~ui1 , · · · ,~uik be the pivot columns of the

matrix [
~u1 · · · ~um

]
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it follows k ≤ m < n and these k pivot columns would be a basis for Rn having fewer than n vectors,

contrary to Corollary 4.85.

Finally consider the third claim. If {~u1, · · · ,~un} is not linearly independent, then replace this list with

{~ui1 , · · · ,~uik} where these are the pivot columns of the matrix

[
~u1 · · · ~un

]

Then {~ui1 , · · · ,~uik} spans Rn and is linearly independent, so it is a basis having less than n vectors again

contrary to Corollary 4.85. ♠

The next theorem follows from the above claim.

Theorem 4.88: Existence of Basis

Let V be a subspace of Rn. Then there exists a basis of V with dim(V )≤ n.

Consider Corollary 4.87 together with Theorem 4.88. Let dim(V ) = r. Suppose there exists an inde-

pendent set of vectors in V . If this set contains r vectors, then it is a basis for V . If it contains less than r

vectors, then vectors can be added to the set to create a basis of V . Similarly, any spanning set of V which

contains more than r vectors can have vectors removed to create a basis of V .

We illustrate this concept in the next example.

Example 4.89: Extending an Independent Set

Consider the set U given by

U =








a

b

c

d


 ∈ R4

∣∣∣∣∣∣∣∣
a−b = d − c





Then U is a subspace of R4 and dim(U) = 3.

Then

S =








1

1

1

1


 ,




2

3

3

2








,

is an independent subset of U . Therefore S can be extended to a basis of U .

Solution. To extend S to a basis of U , find a vector in U that is not in span(S).




1 2 ?

1 3 ?

1 3 ?

1 2 ?



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


1 2 1

1 3 0

1 3 −1

1 2 0


→




1 0 0

0 1 0

0 0 1

0 0 0




Therefore, S can be extended to the following basis of U :






1

1

1

1


 ,




2

3

3

2


 ,




1

0

−1

0








,

♠
Next we consider the case of removing vectors from a spanning set to result in a basis.

Theorem 4.90: Finding a Basis from a Span

Let W be a subspace. Also suppose that W = span{~w1, · · · ,~wm}. Then there exists a subset of

{~w1, · · · ,~wm} which is a basis for W .

Proof. Let S denote the set of positive integers such that for k ∈ S, there exists a subset of {~w1, · · · ,~wm}
consisting of exactly k vectors which is a spanning set for W . Thus m ∈ S. Pick the smallest positive

integer in S. Call it k. Then there exists {~u1, · · · ,~uk} ⊆ {~w1, · · · ,~wm} such that span{~u1, · · · ,~uk}=W . If

k

∑
i=1

ci~wi =~0

and not all of the ci = 0, then you could pick c j 6= 0, divide by it and solve for~u j in terms of the others,

~w j = ∑
i 6= j

(
− ci

c j

)
~wi

Then you could delete ~w j from the list and have the same span. Any linear combination involving ~w j

would equal one in which ~w j is replaced with the above sum, showing that it could have been obtained as

a linear combination of ~wi for i 6= j. Thus k−1 ∈ S contrary to the choice of k . Hence each ci = 0 and so

{~u1, · · · ,~uk} is a basis for W consisting of vectors of {~w1, · · · ,~wm}. ♠
The following example illustrates how to carry out this shrinking process which will obtain a subset of

a span of vectors which is linearly independent.

Example 4.91: Subset of a Span

Let W be the subspace

span








1

2

−1

1


 ,




1

3

−1

1


 ,




8

19

−8

8


 ,




−6

−15

6

−6


 ,




1

3

0

1


 ,




1

5

0

1








Find a basis for W which consists of a subset of the given vectors.
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Solution. You can use the reduced row-echelon form to accomplish this reduction. Form the matrix which

has the given vectors as columns.



1 1 8 −6 1 1

2 3 19 −15 3 5

−1 −1 −8 6 0 0

1 1 8 −6 1 1




Then take the reduced row-echelon form



1 0 5 −3 0 −2

0 1 3 −3 0 2

0 0 0 0 1 1

0 0 0 0 0 0




It follows that a basis for W is 






1

2

−1

1


 ,




1

3

−1

1


 ,




1

3

0

1








Since the first, second, and fifth columns are obviously a basis for the column space of the reduced row-

echelon form, the same is true for the matrix having the given vectors as columns. ♠

Consider the following theorems regarding a subspace contained in another subspace.

Theorem 4.92: Subset of a Subspace

Let V and W be subspaces of Rn, and suppose that W ⊆ V . Then dim(W ) ≤ dim(V ) with equality

when W =V .

Theorem 4.93: Extending a Basis

Let W be any non-zero subspace Rn and let W ⊆ V where V is also a subspace of Rn. Then every

basis of W can be extended to a basis for V .

The proof is left as an exercise but proceeds as follows. Begin with a basis for W ,{~w1, · · · ,~ws} and

add in vectors from V until you obtain a basis for V . Not that the process will stop because the dimension

of V is no more than n.

Consider the following example.

Example 4.94: Extending a Basis

Let V = R4 and let

W = span








1

0

1

1


 ,




0

1

0

1








Extend this basis of W to a basis of Rn.
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Solution. An easy way to do this is to take the reduced row-echelon form of the matrix



1 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1


 (4.17)

Note how the given vectors were placed as the first two columns and then the matrix was extended in such

a way that it is clear that the span of the columns of this matrix yield all of R4. Now determine the pivot

columns. The reduced row-echelon form is



1 0 0 0 1 0

0 1 0 0 −1 1

0 0 1 0 −1 0

0 0 0 1 1 −1


 (4.18)

Therefore the pivot columns are 


1

0

1

1


 ,




0

1

0

1


 ,




1

0

0

0


 ,




0

1

0

0




and now this is an extension of the given basis for W to a basis for R4.

Why does this work? The columns of 4.17 obviously span R4. In fact the span of the first four is the

same as the span of all six. ♠

Consider another example.

Example 4.95: Extending a Basis

Let W be the span of




1

0

1

0


 in R4. Let V consist of the span of the vectors




1

0

1

0


 ,




0

1

1

1


 ,




7

−6

1

−6


 ,




−5

7

2

7


 ,




0

0

0

1




Find a basis for V which extends the basis for W .

Solution. Note that the above vectors are not linearly independent, but their span, denoted as V is a

subspace which does include the subspace W .

Using the process outlined in the previous example, form the following matrix



1 0 7 −5 0

0 1 −6 7 0

1 1 1 2 0

0 1 −6 7 1



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Next find its reduced row-echelon form




1 0 7 −5 0

0 1 −6 7 0

0 0 0 0 1

0 0 0 0 0




It follows that a basis for V consists of the first two vectors and the last.







1

0

1

0


 ,




0

1

1

1


 ,




0

0

0

1








Thus V is of dimension 3 and it has a basis which extends the basis for W . ♠

4.10.5 Row Space, Column Space, and Null Space of a Matrix

We begin this section with a new definition.

Definition 4.96: Row and Column Space

Let A be an m×n matrix. The column space of A, written col(A), is the span of the columns. The

row space of A, written row(A), is the span of the rows.

Using the reduced row-echelon form , we can obtain an efficient description of the row and column

space of a matrix. Consider the following lemma.

Lemma 4.97: Effect of Row Operations on Row Space

Let A and B be m×n matrices such that A can be carried to B by elementary row [column] operations.

Then row(A) = row(B) [col(A) = col(B)].

Proof. We will prove that the above is true for row operations, which can be easily applied to column

operations.

Let~r1,~r2, . . . ,~rm denote the rows of A.

• If B is obtained from A by a interchanging two rows of A, then A and B have exactly the same rows,

so row(B) = row(A).

• Suppose p 6= 0, and suppose that for some j, 1 ≤ j ≤ m, B is obtained from A by multiplying row j

by p. Then

row(B) = span{~r1, . . . , p~r j, . . . ,~rm}.
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Since

{~r1, . . . , p~r j, . . . ,~rm} ⊆ row(A),

it follows that row(B)⊆ row(A). Conversely, since

{~r1, . . . ,~rm} ⊆ row(B),

it follows that row(A)⊆ row(B). Therefore, row(B) = row(A).

• Suppose p 6= 0, and suppose that for some i and j, 1 ≤ i, j ≤ m, B is obtained from A by adding p

time row j to row i. Without loss of generality, we may assume i < j.

Then

row(B) = span{~r1, . . . ,~ri−1,~ri + p~r j, . . . ,~r j, . . . ,~rm}.

Since

{~r1, . . . ,~ri−1,~ri + p~r j, . . . ,~rm} ⊆ row(A),

it follows that row(B)⊆ row(A).

Conversely, since

{~r1, . . . ,~rm} ⊆ row(B),

it follows that row(A)⊆ row(B). Therefore, row(B) = row(A).

♠

Consider the following lemma.

Lemma 4.98: Row Space of a Row-Echelon Form Matrix

Let A be an m× n matrix and let R be its row-echelon form. Then the nonzero rows of R form a

basis of row(R), and consequently of row(A).

This lemma suggests that we can examine the row-echelon form of a matrix in order to obtain the

row space. Consider now the column space. The column space can be obtained by simply saying that it

equals the span of all the columns. However, you can often get the column space as the span of fewer

columns than this. A variation of the previous lemma provides a solution. Suppose A is row reduced to

its row-echelon form R. Identify the pivot columns of R (columns which have leading ones), and take the

corresponding columns of A. It turns out that this forms a basis of col(A).

Before proceeding to an example of this concept, we revisit the definition of rank.
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Definition 4.99: Rank of a Matrix

Previously, we defined rank(A) to be the number of leading entries in the row-echelon form of A.

Using an understanding of dimension and row space, we can now define rank as follows:

rank(A) = dim(row(A))

Consider the following example.

Example 4.100: Rank, Column and Row Space

Find the rank of the following matrix and describe the column and row spaces.

A =




1 2 1 3 2

1 3 6 0 2

3 7 8 6 6




Solution. The reduced row-echelon form of A is




1 0 −9 9 2

0 1 5 −3 0

0 0 0 0 0




Therefore, the rank is 2.

Notice that the first two columns of R are pivot columns. By the discussion following Lemma 4.98,

we find the corresponding columns of A, in this case the first two columns. Therefore a basis for col(A) is

given by 






1

1

3


 ,




2

3

7







For example, consider the third column of the original matrix. It can be written as a linear combination

of the first two columns of the original matrix as follows.




1

6

8


=−9




1

1

3


+5




2

3

7




What about an efficient description of the row space? By Lemma 4.98 we know that the nonzero rows

of R create a basis of row(A). For the above matrix, the row space equals

row(A) = span
{[

1 0 −9 9 2
]

,
[

0 1 5 −3 0
]}

♠

Notice that the column space of A is given as the span of columns of the original matrix, while the row

space of A is the span of rows of the reduced row-echelon form of A.

Consider another example.
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Example 4.101: Rank, Column and Row Space

Find the rank of the following matrix and describe the column and row spaces.




1 2 1 3 2

1 3 6 0 2

1 2 1 3 2

1 3 2 4 0




Solution. The reduced row-echelon form is




1 0 0 0 13
2

0 1 0 2 −5
2

0 0 1 −1 1
2

0 0 0 0 0




and so the rank is 3. The row space is given by

row(A) = span
{[

1 0 0 0 13
2

]
,
[

0 1 0 2 −5
2

]
,
[

0 0 1 −1 1
2

]}

Notice that the first three columns of the reduced row-echelon form are pivot columns. The column space

is the span of the first three columns in the original matrix,

col(A) = span








1

1

1

1


 ,




2

3

2

3


 ,




1

6

1

2








♠

Consider the solution given above for Example 4.101, where the rank of A equals 3. Notice that the

row space and the column space each had dimension equal to 3. It turns out that this is not a coincidence,

and this essential result is referred to as the Rank Theorem and is given now. Recall that we defined

rank(A) = dim(row(A)).

Theorem 4.102: Rank Theorem

Let A be an m× n matrix. Then dim(col(A)), the dimension of the column space, is equal to the

dimension of the row space, dim(row(A)).

The following statements all follow from the Rank Theorem.
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Corollary 4.103: Results of the Rank Theorem

Let A be a matrix. Then the following are true:

1. rank(A) = rank(AT ).

2. For A of size m×n, rank(A)≤ m and rank(A)≤ n.

3. For A of size n×n, A is invertible if and only if rank(A) = n.

4. For invertible matrices B and C of appropriate size, rank(A) = rank(BA) = rank(AC).

Consider the following example.

Example 4.104: Rank of the Transpose

Let

A =

[
1 2

−1 1

]

Find rank(A) and rank(AT ).

Solution. To find rank(A) we first row reduce to find the reduced row-echelon form.

A =

[
1 2

−1 1

]
→ ·· · →

[
1 0

0 1

]

Therefore the rank of A is 2. Now consider AT given by

AT =

[
1 −1

2 1

]

Again we row reduce to find the reduced row-echelon form.
[

1 −1

2 1

]
→ ·· · →

[
1 0

0 1

]

You can see that rank(AT ) = 2, the same as rank(A). ♠

We now define what is meant by the null space of a general m×n matrix.

Definition 4.105: Null Space, or Kernel, of A

The null space of a matrix A, also referred to as the kernel of A, is defined as follows.

null(A) =
{
~x : A~x =~0

}

It can also be referred to using the notation ker (A). Similarly, we can discuss the image of A, denoted

by im(A). The image of A consists of the vectors of Rm which “get hit” by A. The formal definition is as

follows.
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Definition 4.106: Image of A

The image of A, written im(A) is given by

im(A) = {A~x :~x ∈ Rn}

Consider A as a mapping from Rn to Rm whose action is given by multiplication. The following

diagram displays this scenario.
null(A)
Rn A→

im(A)

Rm

As indicated, im(A) is a subset of Rm while null(A) is a subset of Rn.

It turns out that the null space and image of A are both subspaces. Consider the following example.

Example 4.107: Null Space

Let A be an m×n matrix. Then the null space of A, null(A) is a subspace of Rn.

Solution.

• Since A~0n =~0m,~0n ∈ null(A).

• Let~x,~y ∈ null(A). Then A~x =~0m and A~y =~0m, so

A(~x+~y) = A~x+A~y =~0m+~0m =~0m,

and thus~x+~y ∈ null(A).

• Let~x ∈ null(A) and k ∈ R. Then A~x =~0m, so

A(k~x) = k(A~x) = k~0m =~0m,

and thus k~x ∈ null(A).

Therefore by the subspace test, null(A) is a subspace of Rn.

♠

The proof that im(A) is a subspace of Rm is similar and is left as an exercise to the reader.

We now wish to find a way to describe null(A) for a matrix A. However, finding null(A) is not new!

There is just some new terminology being used, as null(A) is simply the solution to the system A~x =~0.

Theorem 4.108: Basis of null(A)

Let A be an m×n matrix such that rank(A) = r. Then the system A~x =~0m has n− r basic solutions,

providing a basis of null(A) with dim(null(A)) = n− r.

Consider the following example.
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Example 4.109: Null Space of A

Let

A =




1 2 1

0 −1 1

2 3 3




Find null(A) and im(A).

Solution. In order to find null(A), we simply need to solve the equation A~x =~0. This is the usual proce-

dure of writing the augmented matrix, finding the reduced row-echelon form and then the solution. The

augmented matrix and corresponding reduced row-echelon form are




1 2 1 0

0 −1 1 0

2 3 3 0


→ ·· · →




1 0 3 0

0 1 −1 0

0 0 0 0




The third column is not a pivot column, and therefore the solution will contain a parameter. The solution

to the system A~x =~0 is given by 


−3t

t

t


 : t ∈ R

which can be written as

t




−3

1

1


 : t ∈ R

Therefore, the null space of A is all multiples of this vector, which we can write as

null(A) = span








−3

1

1







Finally im(A) is just {A~x :~x ∈ Rn} and hence consists of the span of all columns of A, that is im(A) =
col(A).

Notice from the above calculation that that the first two columns of the reduced row-echelon form are

pivot columns. Thus the column space is the span of the first two columns in the original matrix, and we

get

im(A) = col(A) = span








1

0

2


 ,




2

−1

3







♠

Here is a larger example, but the method is entirely similar.
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Example 4.110: Null Space of A

Let

A =




1 2 1 0 1

2 −1 1 3 0

3 1 2 3 1

4 −2 2 6 0




Find the null space of A.

Solution. To find the null space, we need to solve the equation AX = 0. The augmented matrix and

corresponding reduced row-echelon form are given by




1 2 1 0 1 0

2 −1 1 3 0 0

3 1 2 3 1 0

4 −2 2 6 0 0


→ ·· · →




1 0 3
5

6
5

1
5

0

0 1 1
5

−3
5

2
5

0

0 0 0 0 0 0

0 0 0 0 0 0




It follows that the first two columns are pivot columns, and the next three correspond to parameters.

Therefore, null(A) is given by




(
−3

5

)
s+
(
−6

5

)
t +
(
−1

5

)
r(

−1
5

)
s+
(

3
5

)
t +
(
−2

5

)
r

s

t

r




: s, t,r ∈ R.

We write this in the form

s




−3
5

−1
5

1

0

0



+ t




−6
5
3
5

0

1

0



+ r




−1
5

−2
5

0

0

1




: s, t,r ∈ R.

In other words, the null space of this matrix equals the span of the three vectors above. Thus

null(A) = span








−3
5

−1
5

1

0

0




,




−6
5
3
5

0

1

0




,




−1
5

−2
5

0

0

1








♠

Notice also that the three vectors above are linearly independent and so the dimension of null(A) is 3.

The following is true in general, the number of parameters in the solution of AX = 0 equals the dimension
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of the null space. Recall also that the number of leading ones in the reduced row-echelon form equals the

number of pivot columns, which is the rank of the matrix, which is the same as the dimension of either the

column or row space.

Before we proceed to an important theorem, we first define what is meant by the nullity of a matrix.

Definition 4.111: Nullity

The dimension of the null space of a matrix is called the nullity, denoted dim(null(A)).

From our observation above we can now state an important theorem.

Theorem 4.112: Rank and Nullity

Let A be an m×n matrix. Then rank(A)+dim(null(A)) = n.

Consider the following example, which we first explored above in Example 4.109

Example 4.113: Rank and Nullity

Let

A =




1 2 1

0 −1 1

2 3 3




Find rank(A) and dim(null(A)).

Solution. In the above Example 4.109 we determined that the reduced row-echelon form of A is given by




1 0 3

0 1 −1

0 0 0




Therefore the rank of A is 2. We also determined that the null space of A is given by

null(A) = span








−3

1

1







Therefore the nullity of A is 1. It follows from Theorem 4.112 that rank(A)+dim(null(A))= 2+1= 3,

which is the number of columns of A. ♠

We conclude this section with two similar, and important, theorems.
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Theorem 4.114:

Let A be an m×n matrix. The following are equivalent.

1. rank(A) = n.

2. row(A) = Rn, i.e., the rows of A span Rn.

3. The columns of A are independent in Rm.

4. The n×n matrix AT A is invertible.

5. There exists an n×m matrix C so that CA = In.

6. If A~x =~0m for some~x ∈ Rn, then~x =~0n.

Theorem 4.115:

Let A be an m×n matrix. The following are equivalent.

1. rank(A) = m.

2. col(A) = Rm, i.e., the columns of A span Rm.

3. The rows of A are independent in Rn.

4. The m×m matrix AAT is invertible.

5. There exists an n×m matrix C so that AC = Im.

6. The system A~x =~b is consistent for every~b ∈ Rm.

Exercises

Exercise 4.10.1 Here are some vectors.




1

1

−2


 ,




1

2

−2


 ,




2

7

−4


 ,




5

7

−10


 ,




12

17

−24




Describe the span of these vectors as the span of as few vectors as possible.

Exercise 4.10.2 Here are some vectors.




1

2

−2


 ,




12

29

−24


 ,




1

3

−2


 ,




2

9

−4


 ,




5

12

−10


 ,

Describe the span of these vectors as the span of as few vectors as possible.
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Exercise 4.10.3 Here are some vectors.




1

2

−2


 ,




1

3

−2


 ,




1

−2

−2


 ,




−1

0

2


 ,




1

3

−1




Describe the span of these vectors as the span of as few vectors as possible.

Exercise 4.10.4 Here are some vectors.




1

1

−2


 ,




1

2

−2


 ,




1

−3

−2


 ,




−1

1

2




Now here is another vector: 


1

2

−1




Is this vector in the span of the first four vectors? If it is, exhibit a linear combination of the first four

vectors which equals this vector, using as few vectors as possible in the linear combination.

Exercise 4.10.5 Here are some vectors.




1

1

−2


 ,




1

2

−2


 ,




1

−3

−2


 ,




−1

1

2




Now here is another vector: 


2

−3

−4




Is this vector in the span of the first four vectors? If it is, exhibit a linear combination of the first four

vectors which equals this vector, using as few vectors as possible in the linear combination.

Exercise 4.10.6 Here are some vectors.




1

1

−2


 ,




1

2

−2


 ,




1

−3

−2


 ,




1

2

−1




Now here is another vector: 


1

9

1




Is this vector in the span of the first four vectors? If it is, exhibit a linear combination of the first four

vectors which equals this vector, using as few vectors as possible in the linear combination.
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Exercise 4.10.7 Here are some vectors.



1

−1

−2


 ,




1

0

−2


 ,




1

−5

−2


 ,




−1

5

2




Now here is another vector: 


1

1

−1




Is this vector in the span of the first four vectors? If it is, exhibit a linear combination of the first four

vectors which equals this vector, using as few vectors as possible in the linear combination.

Exercise 4.10.8 Here are some vectors.



1

−1

−2


 ,




1

0

−2


 ,




1

−5

−2


 ,




−1

5

2




Now here is another vector: 


1

1

−1




Is this vector in the span of the first four vectors? If it is, exhibit a linear combination of the first four

vectors which equals this vector, using as few vectors as possible in the linear combination.

Exercise 4.10.9 Here are some vectors.



1

0

−2


 ,




1

1

−2


 ,




2

−2

−3


 ,




−1

4

2




Now here is another vector: 


−1

−4

2




Is this vector in the span of the first four vectors? If it is, exhibit a linear combination of the first four

vectors which equals this vector, using as few vectors as possible in the linear combination.

Exercise 4.10.10 Suppose {~x1, · · · ,~xk} is a set of vectors from Rn. Show that~0 is in span{~x1, · · · ,~xk} .

Exercise 4.10.11 Are the following vectors linearly independent? If they are, explain why and if they are

not, exhibit one of them as a linear combination of the others. Also give a linearly independent set of

vectors which has the same span as the given vectors.




1

3

−1

1


 ,




1

4

−1

1


 ,




1

4

0

1


 ,




1

10

2

1



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Exercise 4.10.12 Are the following vectors linearly independent? If they are, explain why and if they are

not, exhibit one of them as a linear combination of the others. Also give a linearly independent set of

vectors which has the same span as the given vectors.




−1

−2

2

3


 ,




−3

−4

3

3


 ,




0

−1

4

3


 ,




0

−1

6

4




Exercise 4.10.13 Are the following vectors linearly independent? If they are, explain why and if they are

not, exhibit one of them as a linear combination of the others. Also give a linearly independent set of

vectors which has the same span as the given vectors.




1

5

−2

1


 ,




1

6

−3

1


 ,




−1

−4

1

−1


 ,




1

6

−2

1




Exercise 4.10.14 Are the following vectors linearly independent? If they are, explain why and if they are

not, exhibit one of them as a linear combination of the others. Also give a linearly independent set of

vectors which has the same span as the given vectors.




1

−1

3

1


 ,




1

6

34

1


 ,




1

0

7

1


 ,




1

0

8

1




Exercise 4.10.15 Are the following vectors linearly independent? If they are, explain why and if they are

not, exhibit one of them as a linear combination of the others.




1

3

−1

1


 ,




1

4

−1

1


 ,




−3

−10

3

−3


 ,




1

4

0

1




Exercise 4.10.16 Are the following vectors linearly independent? If they are, explain why and if they are

not, exhibit one of them as a linear combination of the others. Also give a linearly independent set of

vectors which has the same span as the given vectors.




1

3

−3

1


 ,




1

4

−5

1


 ,




1

4

−4

1


 ,




1

10

−14

1



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Exercise 4.10.17 Are the following vectors linearly independent? If they are, explain why and if they are

not, exhibit one of them as a linear combination of the others. Also give a linearly independent set of

vectors which has the same span as the given vectors.




1

0

3

1


 ,




1

1

8

1


 ,




1

7

34

1


 ,




1

1

7

1




Exercise 4.10.18 Are the following vectors linearly independent? If they are, explain why and if they are

not, exhibit one of them as a linear combination of the others. Also give a linearly independent set of

vectors which has the same span as the given vectors.




1

4

−2

1


 ,




1

5

−3

1


 ,




1

7

−5

1


 ,




1

5

−2

1




Exercise 4.10.19 Are the following vectors linearly independent? If they are, explain why and if they are

not, exhibit one of them as a linear combination of the others.




1

2

2

−4


 ,




3

4

1

−4


 ,




0

−1

0

4


 ,




0

−1

−2

5




Exercise 4.10.20 Are the following vectors linearly independent? If they are, explain why and if they are

not, exhibit one of them as a linear combination of the others. Also give a linearly independent set of

vectors which has the same span as the given vectors.




2

3

1

−3


 ,




−5

−6

0

3


 ,




−1

−2

1

3


 ,




−1

−2

0

4




Exercise 4.10.21 Here are some vectors in R4.



1

1

−1

1


 ,




1

2

−1

1


 ,




1

−2

−1

1


 ,




1

2

0

1


 ,




1

−1

−1

1




Thse vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of

these vectors which has the same span as these vectors. In other words, find a basis for the span of these

vectors.
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Exercise 4.10.22 Here are some vectors in R4.



1

2

−2

1


 ,




1

3

−3

1


 ,




1

3

−2

1


 ,




4

3

−1

4


 ,




1

3

−2

1




Thse vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of

these vectors which has the same span as these vectors. In other words, find a basis for the span of these

vectors.

Exercise 4.10.23 Here are some vectors in R4.



1

1

0

1


 ,




1

2

1

1


 ,




1

−2

−3

1


 ,




2

−5

−7

2


 ,




1

2

2

1




Thse vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of

these vectors which has the same span as these vectors. In other words, find a basis for the span of these

vectors.

Exercise 4.10.24 Here are some vectors in R4.



1

2

−2

1


 ,




1

3

−3

1


 ,




1

−1

1

1


 ,




2

−3

3

2


 ,




1

3

−2

1




Thse vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of

these vectors which has the same span as these vectors. In other words, find a basis for the span of these

vectors.

Exercise 4.10.25 Here are some vectors in R4.



1

4

−2

1


 ,




1

5

−3

1


 ,




1

5

−2

1


 ,




4

11

−1

4


 ,




1

5

−2

1




Thse vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of

these vectors which has the same span as these vectors. In other words, find a basis for the span of these

vectors.

Exercise 4.10.26 Here are some vectors in R4.




1

3

−1

1


 ,




−3
2

−9
2
3
2

−3
2


 ,




1

4

−1

1


 ,




2

−1

−2

2


 ,




1

4

0

1



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Thse vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of

these vectors which has the same span as these vectors. In other words, find a basis for the span of these

vectors.

Exercise 4.10.27 Here are some vectors in R4.




1

3

−1

1


 ,




1

4

−1

1


 ,




1

0

−1

1


 ,




2

−1

−2

2


 ,




1

4

0

1




Thse vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of

these vectors which has the same span as these vectors. In other words, find a basis for the span of these

vectors.

Exercise 4.10.28 Here are some vectors in R4.




1

4

−2

1


 ,




1

5

−3

1


 ,




1

1

1

1


 ,




2

1

3

2


 ,




1

5

−2

1




Thse vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of

these vectors which has the same span as these vectors. In other words, find a basis for the span of these

vectors.

Exercise 4.10.29 Here are some vectors in R4.




1

−1

3

1


 ,




1

0

7

1


 ,




1

0

8

1


 ,




4

−9

−6

4


 ,




1

0

8

1




Thse vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of

these vectors which has the same span as these vectors. In other words, find a basis for the span of these

vectors.

Exercise 4.10.30 Here are some vectors in R4.




1

−1

−1

1


 ,




−3

3

3

−3


 ,




1

0

−1

1


 ,




2

−9

−2

2


 ,




1

0

0

1




Thse vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of

these vectors which has the same span as these vectors. In other words, find a basis for the span of these

vectors.
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Exercise 4.10.31 Here are some vectors in R4.




1

b+1

a

1


 ,




3

3b+3

3a

3


 ,




1

b+2

2a+1

1


 ,




2

2b−5

−5a−7

2


 ,




1

b+2

2a+2

1




Thse vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of

these vectors which has the same span as these vectors. In other words, find a basis for the span of these

vectors.

Exercise 4.10.32 Let H = span








2

1

1

1


 ,




−1

0

−1

−1


 ,




5

2

3

3


 ,




−1

1

−2

−2








. Find the dimension of H and de-

termine a basis.

Exercise 4.10.33 Let H denote span








0

1

1

−1


 ,




−1

−1

−2

2


 ,




2

3

5

−5


 ,




0

1

2

−2








. Find the dimension of H

and determine a basis.

Exercise 4.10.34 Let H denote span








−2

1

1

−3


 ,




−9

4

3

−9


 ,




−33

15

12

−36


 ,




−22

10

8

−24








. Find the dimension of

H and determine a basis.

Exercise 4.10.35 Let H denote span








−1

1

−1

−2


 ,




−4

3

−2

−4


 ,




−3

2

−1

−2


 ,




−1

1

−2

−4


 ,




−7

5

−3

−6








. Find the di-

mension of H and determine a basis.

Exercise 4.10.36 Let H denote span








2

3

2

1


 ,




8

15

6

3


 ,




3

6

2

1


 ,




4

6

6

3


 ,




8

15

6

3








. Find the dimension of

H and determine a basis.

Exercise 4.10.37 Let H denote span








0

2

0

−1


 ,




−1

6

0

−2


 ,




−2

16

0

−6


 ,




−3

22

0

−8








. Find the dimension of H

and determine a basis.
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Exercise 4.10.38 Let H denote span








5

1

1

4


 ,




14

3

2

8


 ,




38

8

6

24


 ,




47

10

7

28


 ,




10

2

3

12








. Find the dimension

of H and determine a basis.

Exercise 4.10.39 Let H denote span








6

1

1

5


 ,




17

3

2

10


 ,




52

9

7

35


 ,




18

3

4

20








. Find the dimension of H and

determine a basis.

Exercise 4.10.40 Let M =




~u =




u1

u2

u3

u4


 ∈ R4 : sin(u1) = 1





. Is M a subspace? Explain.

Exercise 4.10.41 Let M =




~u =




u1

u2

u3

u4


 ∈ R4 : ‖u1‖ ≤ 4





. Is M a subspace? Explain.

Exercise 4.10.42 Let M =




~u =




u1

u2

u3

u4


 ∈ R4 : ui ≥ 0 for each i = 1,2,3,4





. Is M a subspace? Ex-

plain.

Exercise 4.10.43 Let ~w,~w1 be given vectors in R4 and define

M =




~u =




u1

u2

u3

u4


 ∈ R4 : ~w•~u = 0 and ~w1 •~u = 0





.

Is M a subspace? Explain.

Exercise 4.10.44 Let ~w ∈ R4 and let M =




~u =




u1

u2

u3

u4


 ∈ R4 : ~w•~u = 0





. Is M a subspace? Explain.

Exercise 4.10.45 Let M =




~u =




u1

u2

u3

u4


 ∈ R4 : u3 ≥ u1





. Is M a subspace? Explain.
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Exercise 4.10.46 Let M =




~u =




u1

u2

u3

u4


 ∈ R4 : u3 = u1 = 0





. Is M a subspace? Explain.

Exercise 4.10.47 Consider the set of vectors S given by

S =








4u+ v−5w

12u+6v−6w

4u+4v+4w


 : u,v,w ∈ R



 .

Is S a subspace of R3? If so, explain why, give a basis for the subspace and find its dimension.

Exercise 4.10.48 Consider the set of vectors S given by

S =








2u+6v+7w

−3u−9v−12w

2u+6v+6w

u+3v+3w


 : u,v,w ∈ R





.

Is S a subspace of R4? If so, explain why, give a basis for the subspace and find its dimension.

Exercise 4.10.49 Consider the set of vectors S given by

S =








2u+ v

6v−3u+3w

3v−6u+3w


 : u,v,w ∈ R



 .

Is this set of vectors a subspace of R3? If so, explain why, give a basis for the subspace and find its

dimension.

Exercise 4.10.50 Consider the vectors of the form








2u+ v+7w

u−2v+w

−6v−6w


 : u,v,w ∈ R



 .

Is this set of vectors a subspace of R3? If so, explain why, give a basis for the subspace and find its

dimension.

Exercise 4.10.51 Consider the vectors of the form








3u+ v+11w

18u+6v+66w

28u+8v+100w


 : u,v,w ∈ R



 .

Is this set of vectors a subspace of R3? If so, explain why, give a basis for the subspace and find its

dimension.
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Exercise 4.10.52 Consider the vectors of the form








3u+ v

2w−4u

2w−2v−8u


 : u,v,w ∈ R



 .

Is this set of vectors a subspace of R3? If so, explain why, give a basis for the subspace and find its

dimension.

Exercise 4.10.53 Consider the set of vectors S given by








u+ v+w

2u+2v+4w

u+ v+w

0


 : u,v,w ∈ R





.

Is S a subspace of R4? If so, explain why, give a basis for the subspace and find its dimension.

Exercise 4.10.54 Consider the set of vectors S given by








v

−3u−3w

8u−4v+4w


 : u,v,w ∈ R



 .

Is S a subspace of R3? If so, explain why, give a basis for the subspace and find its dimension.

Exercise 4.10.55 If you have 5 vectors in R5 and the vectors are linearly independent, can it always be

concluded they span R5? Explain.

Exercise 4.10.56 If you have 6 vectors in R5, is it possible they are linearly independent? Explain.

Exercise 4.10.57 Suppose A is an m×n matrix and {~w1, · · · ,~wk} is a linearly independent set of vectors

in A(Rn)⊆ Rm. Now suppose A~zi = ~wi. Show {~z1, · · · ,~zk} is also independent.

Exercise 4.10.58 Suppose V ,W are subspaces of Rn. Let V ∩W be all vectors which are in both V and

W. Show that V ∩W is a subspace also.

Exercise 4.10.59 Suppose V and W both have dimension equal to 7 and they are subspaces of R10. What

are the possibilities for the dimension of V ∩W ? Hint: Remember that a linear independent set can be

extended to form a basis.

Exercise 4.10.60 Suppose V has dimension p and W has dimension q and they are each contained in

a subspace, U which has dimension equal to n where n > max(p,q) . What are the possibilities for the

dimension of V ∩W ? Hint: Remember that a linearly independent set can be extended to form a basis.

Exercise 4.10.61 Suppose A is an m×n matrix and B is an n× p matrix. Show that

dim(ker(AB))≤ dim(ker(A))+dim(ker(B)) .
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Hint: Consider the subspace, B(Rp)∩ker (A) and suppose a basis for this subspace is {~w1, · · · ,~wk} . Now

suppose {~u1, · · · ,~ur} is a basis for ker(B) . Let {~z1, · · · ,~zk} be such that B~zi = ~wi and argue that

ker(AB)⊆ span{~u1, · · · ,~ur,~z1, · · · ,~zk} .

Exercise 4.10.62 Show that if A is an m×n matrix, then ker (A) is a subspace of Rn.

Exercise 4.10.63 Find the rank of the following matrix. Also find a basis for the row and column spaces.




1 3 0 −2 0 3

3 9 1 −7 0 8

1 3 1 −3 1 −1

1 3 −1 −1 −2 10




Exercise 4.10.64 Find the rank of the following matrix. Also find a basis for the row and column spaces.




1 3 0 −2 7 3

3 9 1 −7 23 8

1 3 1 −3 9 2

1 3 −1 −1 5 4




Exercise 4.10.65 Find the rank of the following matrix. Also find a basis for the row and column spaces.




1 0 3 0 7 0

3 1 10 0 23 0

1 1 4 1 7 0

1 −1 2 −2 9 1




Exercise 4.10.66 Find the rank of the following matrix. Also find a basis for the row and column spaces.




1 0 3

3 1 10

1 1 4

1 −1 2




Exercise 4.10.67 Find the rank of the following matrix. Also find a basis for the row and column spaces.




0 0 −1 0 1

1 2 3 −2 −18

1 2 2 −1 −11

−1 −2 −2 1 11



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Exercise 4.10.68 Find the rank of the following matrix. Also find a basis for the row and column spaces.




1 0 3 0

3 1 10 0

−1 1 −2 1

1 −1 2 −2




Exercise 4.10.69 Find ker(A) for the following matrices.

(a) A =

[
2 3

4 6

]

(b) A =




1 0 −1

−1 1 3

3 2 1




(c) A =




2 4 0

3 6 −2

1 2 −2




(d) A =




2 −1 3 5

2 0 1 2

6 4 −5 −6

0 2 −4 −6




4.11 Orthogonality and the Gram Schmidt Process

Outcomes

A. Determine if a given set is orthogonal or orthonormal.

B. Determine if a given matrix is orthogonal.

C. Given a linearly independent set, use the Gram-Schmidt Process to find corresponding or-

thogonal and orthonormal sets.

D. Find the orthogonal projection of a vector onto a subspace.

E. Find the least squares approximation for a collection of points.
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4.11.1 Orthogonal and Orthonormal Sets

In this section, we examine what it means for vectors (and sets of vectors) to be orthogonal and orthonor-

mal. First, it is necessary to review some important concepts. You may recall the definitions for the span

of a set of vectors and a linear independent set of vectors. We include the definitions and examples here

for convenience.

Definition 4.116: Span of a Set of Vectors and Subspace

The collection of all linear combinations of a set of vectors {~u1, · · · ,~uk} in Rn is known as the span

of these vectors and is written as span{~u1, · · · ,~uk}.

We call a collection of the form span{~u1, · · · ,~uk} a subspace of Rn.

Consider the following example.

Example 4.117: Span of Vectors

Describe the span of the vectors~u =
[

1 1 0
]T

and~v =
[

3 2 0
]T ∈ R3.

Solution. You can see that any linear combination of the vectors ~u and ~v yields a vector
[

x y 0
]T

in

the XY -plane.

Moreover every vector in the XY -plane is in fact such a linear combination of the vectors ~u and ~v.

That’s because 


x

y

0


= (−2x+3y)




1

1

0


+(x− y)




3

2

0




Thus span{~u,~v} is precisely the XY -plane. ♠

The span of a set of a vectors in Rn is what we call a subspace of Rn. A subspace W is characterized

by the feature that any linear combination of vectors of W is again a vector contained in W .

Another important property of sets of vectors is called linear independence.

Definition 4.118: Linearly Independent Set of Vectors

A set of non-zero vectors {~u1, · · · ,~uk} in Rn is said to be linearly independent if no vector in that

set is in the span of the other vectors of that set.

Here is an example.

Example 4.119: Linearly Independent Vectors

Consider vectors~u =
[

1 1 0
]T

,~v =
[

3 2 0
]T

, and ~w =
[

4 5 0
]T ∈R3. Verify whether

the set {~u,~v,~w} is linearly independent.
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Solution. We already verified in Example 4.117 that span{~u,~v} is the XY -plane. Since ~w is clearly also in

the XY -plane, then the set {~u,~v,~w} is not linearly independent. ♠

In terms of spanning, a set of vectors is linearly independent if it does not contain unnecessary vectors.

In the previous example you can see that the vector ~w does not help to span any new vector not already in

the span of the other two vectors. However you can verify that the set {~u,~v} is linearly independent, since

you will not get the XY -plane as the span of a single vector.

We can also determine if a set of vectors is linearly independent by examining linear combinations. A

set of vectors is linearly independent if and only if whenever a linear combination of these vectors equals

zero, it follows that all the coefficients equal zero. It is a good exercise to verify this equivalence, and this

latter condition is often used as the (equivalent) definition of linear independence.

If a subspace is spanned by a linearly independent set of vectors, then we say that it is a basis for the

subspace.

Definition 4.120: Basis of a Subspace

Let V be a subspace of Rn. Then {~u1, · · · ,~uk} is a basis for V if the following two conditions hold.

1. span{~u1, · · · ,~uk}=V

2. {~u1, · · · ,~uk} is linearly independent

Thus the set of vectors {~u,~v} from Example 4.119 is a basis for XY -plane in R3 since it is both linearly

independent and spans the XY -plane.

Recall from the properties of the dot product of vectors that two vectors ~u and ~v are orthogonal if

~u •~v = 0. Suppose a vector is orthogonal to a spanning set of Rn. What can be said about such a vector?

This is the discussion in the following example.

Example 4.121: Orthogonal Vector to a Spanning Set

Let {~x1,~x2, . . . ,~xk} ∈ Rn and suppose Rn = span{~x1,~x2, . . . ,~xk}. Furthermore, suppose that there

exists a vector~u ∈ Rn for which~u•~x j = 0 for all j, 1 ≤ j ≤ k. What type of vector is~u?

Solution. Write~u = t1~x1 + t2~x2 + · · ·+ tk~xk for some t1, t2, . . . , tk ∈ R (this is possible because~x1,~x2, . . . ,~xk

span Rn).

Then

‖~u‖2 = ~u•~u
= ~u• (t1~x1 + t2~x2 + · · ·+ tk~xk)

= ~u• (t1~x1)+~u• (t2~x2)+ · · ·+~u• (tk~xk)

= t1(~u•~x1)+ t2(~u•~x2)+ · · ·+ tk(~u•~xk)

= t1(0)+ t2(0)+ · · ·+ tk(0) = 0.

Since ‖~u‖2 = 0, ‖~u‖ = 0. We know that ‖~u‖= 0 if and only if ~u =~0n. Therefore, ~u =~0n. In conclusion,

the only vector orthogonal to every vector of a spanning set of Rn is the zero vector. ♠
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We can now discuss what is meant by an orthogonal set of vectors.

Definition 4.122: Orthogonal Set of Vectors

Let {~u1,~u2, · · · ,~um} be a set of vectors in Rn. Then this set is called an orthogonal set if the

following conditions hold:

1. ~ui •~u j = 0 for all i 6= j

2. ~ui 6=~0 for all i

If we have an orthogonal set of vectors and normalize each vector so they have length 1, the resulting

set is called an orthonormal set of vectors. They can be described as follows.

Definition 4.123: Orthonormal Set of Vectors

A set of vectors, {~w1, · · · ,~wm} is said to be an orthonormal set if

~wi •~w j = δi j =

{
1 if i = j

0 if i 6= j

Note that all orthonormal sets are orthogonal, but the reverse is not necessarily true since the vectors

may not be normalized. In order to normalize the vectors, we simply need divide each one by its length.

Definition 4.124: Normalizing an Orthogonal Set

Normalizing an orthogonal set is the process of turning an orthogonal (but not orthonormal) set into

an orthonormal set. If {~u1,~u2, . . . ,~uk} is an orthogonal subset of Rn, then

{
1

‖~u1‖
~u1,

1

‖~u2‖
~u2, . . . ,

1

‖~uk‖
~uk

}

is an orthonormal set.

We illustrate this concept in the following example.

Example 4.125: Orthonormal Set

Consider the set of vectors given by

{~u1,~u2}=
{[

1

1

]
,

[
−1

1

]}

Show that it is an orthogonal set of vectors but not an orthonormal one. Find the corresponding

orthonormal set.

Solution. One easily verifies that ~u1 •~u2 = 0 and {~u1,~u2} is an orthogonal set of vectors. On the other

hand one can compute that ‖~u1‖= ‖~u2‖=
√

2 6= 1 and thus it is not an orthonormal set.
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Thus to find a corresponding orthonormal set, we simply need to normalize each vector. We will write

{~w1,~w2} for the corresponding orthonormal set. Then,

~w1 =
1

‖~u1‖
~u1

=
1√
2

[
1

1

]

=




1√
2

1√
2




Similarly,

~w2 =
1

‖~u2‖
~u2

=
1√
2

[
−1

1

]

=




− 1√
2

1√
2




Therefore the corresponding orthonormal set is

{~w1,~w2}=








1√
2

1√
2


 ,




− 1√
2

1√
2







You can verify that this set is orthogonal. ♠

Consider an orthogonal set of vectors in Rn, written {~w1, · · · ,~wk} with k ≤ n. The span of these vectors

is a subspace W of Rn. If we could show that this orthogonal set is also linearly independent, we would

have a basis of W . We will show this in the next theorem.

Theorem 4.126: Orthogonal Basis of a Subspace

Let {~w1,~w2, · · · ,~wk} be an orthonormal set of vectors in Rn. Then this set is linearly independent

and forms a basis for the subspace W = span{~w1,~w2, · · · ,~wk}.

Proof. To show it is a linearly independent set, suppose a linear combination of these vectors equals~0,

such as:

a1~w1 +a2~w2 + · · ·+ak~wk =~0,ai ∈ R

We need to show that all ai = 0. To do so, take the dot product of each side of the above equation with the

vector ~wi and obtain the following.

~wi • (a1~w1 +a2~w2 + · · ·+ak~wk) = ~wi •~0
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a1(~wi •~w1)+a2(~wi •~w2)+ · · ·+ak(~wi •~wk) = 0

Now since the set is orthogonal, ~wi •~wm = 0 for all m 6= i, so we have:

a1(0)+ · · ·+ai(~wi •~wi)+ · · ·+ak(0) = 0

ai‖~wi‖2 = 0

Since the set is orthogonal, we know that ‖~wi‖2 6= 0. It follows that ai = 0. Since the ai was chosen

arbitrarily, the set {~w1,~w2, · · · ,~wk} is linearly independent.

Finally since W = span{~w1,~w2, · · · ,~wk}, the set of vectors also spans W and therefore forms a basis of

W .

♠

If an orthogonal set is a basis for a subspace, we call this an orthogonal basis. Similarly, if an orthonor-

mal set is a basis, we call this an orthonormal basis.

We conclude this section with a discussion of Fourier expansions. Given any orthogonal basis B of Rn

and an arbitrary vector~x ∈ Rn, how do we express~x as a linear combination of vectors in B? The solution

is Fourier expansion.

Theorem 4.127: Fourier Expansion

Let V be a subspace of Rn and suppose {~u1,~u2, . . . ,~um} is an orthogonal basis of V . Then for any

~x ∈V ,

~x =

(
~x•~u1

‖~u1‖2

)
~u1 +

(
~x•~u2

‖~u2‖2

)
~u2 + · · ·+

(
~x•~um

‖~um‖2

)
~um.

This expression is called the Fourier expansion of~x, and

~x•~u j

‖~u j‖2
,

j = 1,2, . . . ,m are the Fourier coefficients.

Consider the following example.

Example 4.128: Fourier Expansion

Let ~u1 =




1

−1

2


 ,~u2 =




0

2

1


, and ~u3 =




5

1

−2


, and let~x =




1

1

1


.

Then B = {~u1,~u2,~u3} is an orthogonal basis of R3.

Compute the Fourier expansion of~x, thus writing~x as a linear combination of the vectors of B.

Solution. Since B is a basis (verify!) there is a unique way to express ~x as a linear combination of the

vectors of B. Moreover since B is an orthogonal basis (verify!), then this can be done by computing the

Fourier expansion of~x.
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That is:

~x =

(
~x•~u1

‖~u1‖2

)
~u1 +

(
~x•~u2

‖~u2‖2

)
~u2 +

(
~x•~u3

‖~u3‖2

)
~u3.

We readily compute:

~x•~u1

‖~u1‖2
=

2

6
,
~x•~u2

‖~u2‖2
=

3

5
, and

~x•~u3

‖~u3‖2
=

4

30
.

Therefore, 


1

1

1


=

1

3




1

−1

2


+ 3

5




0

2

1


+ 2

15




5

1

−2


 .

♠

4.11.2 Orthogonal Matrices

Recall that the process to find the inverse of a matrix was often cumbersome. In contrast, it was very easy

to take the transpose of a matrix. Luckily for some special matrices, the transpose equals the inverse. When

an n×n matrix has all real entries and its transpose equals its inverse, the matrix is called an orthogonal

matrix.

The precise definition is as follows.

Definition 4.129: Orthogonal Matrices

A real n×n matrix U is called an orthogonal matrix if UUT =UTU = I.

Note since U is assumed to be a square matrix, it suffices to verify only one of these equalities UUT = I

or UTU = I holds to guarantee that UT is the inverse of U .

Consider the following example.

Example 4.130: Orthogonal Matrix

Show the matrix

U =




1√
2

1√
2

1√
2

− 1√
2




is orthogonal.

Solution. All we need to do is verify (one of the equations from) the requirements of Definition 4.129.

UUT =




1√
2

1√
2

1√
2

− 1√
2






1√
2

1√
2

1√
2

− 1√
2


=

[
1 0

0 1

]
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Since UUT = I, this matrix is orthogonal. ♠

Here is another example.

Example 4.131: Orthogonal Matrix

Let U =




1 0 0

0 0 −1

0 −1 0


 . Is U orthogonal?

Solution. Again the answer is yes and this can be verified simply by showing that UTU = I:

UTU =




1 0 0

0 0 −1

0 −1 0




T 


1 0 0

0 0 −1

0 −1 0




=




1 0 0

0 0 −1

0 −1 0






1 0 0

0 0 −1

0 −1 0




=




1 0 0

0 1 0

0 0 1




♠

When we say that U is orthogonal, we are saying that UUT = I, meaning that

∑
j

ui ju
T
jk = ∑

j

ui juk j = δik

where δi j is the Kronecker symbol defined by

δi j =

{
1 if i = j

0 if i 6= j

In words, the product of the ith row of U with the kth row gives 1 if i = k and 0 if i 6= k. The same is

true of the columns because UTU = I also. Therefore,

∑
j

uT
i ju jk = ∑

j

u jiu jk = δik

which says that the product of one column with another column gives 1 if the two columns are the same

and 0 if the two columns are different.

More succinctly, this states that if~u1, · · · ,~un are the columns of U , an orthogonal matrix, then

~ui •~u j = δi j =

{
1 if i = j

0 if i 6= j
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We will say that the columns form an orthonormal set of vectors, and similarly for the rows. Thus

a matrix is orthogonal if its rows (or columns) form an orthonormal set of vectors. Notice that the

convention is to call such a matrix orthogonal rather than orthonormal (although this may make more

sense!).

Proposition 4.132: Orthonormal Basis

The rows of an n×n orthogonal matrix form an orthonormal basis of Rn. Further, any orthonormal

basis of Rn can be used to construct an n×n orthogonal matrix.

Proof. Recall from Theorem 4.126 that an orthonormal set is linearly independent and forms a basis for

its span. Since the rows of an n×n orthogonal matrix form an orthonormal set, they must be linearly inde-

pendent. Now we have n linearly independent vectors, and it follows that their span equals Rn. Therefore

these vectors form an orthonormal basis for Rn.

Suppose now that we have an orthonormal basis for Rn. Since the basis will contain n vectors, these

can be used to construct an n × n matrix, with each vector becoming a row. Therefore the matrix is

composed of orthonormal rows, which by our above discussion, means that the matrix is orthogonal. Note

we could also have construct a matrix with each vector becoming a column instead, and this would again

be an orthogonal matrix. In fact this is simply the transpose of the previous matrix. ♠

Consider the following proposition.

Proposition 4.133: Determinant of Orthogonal Matrices

Suppose U is an orthogonal matrix. Then det(U) =±1.

Proof. This result follows from the properties of determinants. Recall that for any matrix A, det(A)T =
det(A). Now if U is orthogonal, then:

(det(U))2 = det
(
UT
)

det(U) = det
(
UTU

)
= det(I) = 1

Therefore (det(U))2 = 1 and it follows that det(U) =±1. ♠

Orthogonal matrices are divided into two classes, proper and improper. The proper orthogonal ma-

trices are those whose determinant equals 1 and the improper ones are those whose determinant equals

−1. The reason for the distinction is that the improper orthogonal matrices are sometimes considered to

have no physical significance. These matrices cause a change in orientation which would correspond to

material passing through itself in a non physical manner. Thus in considering which coordinate systems

must be considered in certain applications, you only need to consider those which are related by a proper

orthogonal transformation. Geometrically, the linear transformations determined by the proper orthogonal

matrices correspond to the composition of rotations.

We conclude this section with two useful properties of orthogonal matrices.

Example 4.134: Product and Inverse of Orthogonal Matrices

Suppose A and B are orthogonal matrices. Then AB and A−1 both exist and are orthogonal.
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Solution. First we examine the product AB.

(AB)(BT AT ) = A(BBT )AT = AAT = I

Since AB is square, BT AT = (AB)T is the inverse of AB, so AB is invertible, and (AB)−1 = (AB)T There-

fore, AB is orthogonal.

Next we show that A−1 = AT is also orthogonal.

(A−1)−1 = A = (AT )T = (A−1)T

Therefore A−1 is also orthogonal. ♠

4.11.3 Gram-Schmidt Process

The Gram-Schmidt process is an algorithm to transform a set of vectors into an orthonormal set spanning

the same subspace, that is generating the same collection of linear combinations (see Definition 9.12).

The goal of the Gram-Schmidt process is to take a linearly independent set of vectors and transform it

into an orthonormal set with the same span. The first objective is to construct an orthogonal set of vectors

with the same span, since from there an orthonormal set can be obtained by simply dividing each vector

by its length.

Algorithm 4.135: Gram-Schmidt Process

Let {~u1, · · · ,~un} be a set of linearly independent vectors in Rn.

I: Construct a new set of vectors {~v1, · · · ,~vn} as follows:

~v1 =~u1

~v2 =~u2 −
(
~u2 •~v1

‖~v1‖2

)
~v1

~v3 =~u3 −
(
~u3 •~v1

‖~v1‖2

)
~v1 −

(
~u3 •~v2

‖~v2‖2

)
~v2

...

~vn =~un −
(
~un •~v1

‖~v1‖2

)
~v1 −

(
~un •~v2

‖~v2‖2

)
~v2 −·· ·−

(
~un •~vn−1

‖~vn−1‖2

)
~vn−1

II: Now let ~wi =
~vi

‖~vi‖
for i = 1, · · · ,n.

Then

1. {~v1, · · · ,~vn} is an orthogonal set.

2. {~w1, · · · ,~wn} is an orthonormal set.

3. span{~u1, · · · ,~un}= span{~v1, · · · ,~vn}= span{~w1, · · · ,~wn}.

Proof. The full proof of this algorithm is beyond this material, however here is an indication of the argu-

ments.
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To show that {~v1, · · · ,~vn} is an orthogonal set, let

a2 =
~u2 •~v1

‖~v1‖2

then:
~v1 •~v2 =~v1 • (~u2 −a2~v1)

=~v1 •~u2 −a2(~v1 •~v1

=~v1 •~u2 −
~u2 •~v1

‖~v1‖2
‖~v1‖2

= (~v1 •~u2)− (~u2 •~v1) = 0

Now that you have shown that {~v1,~v2} is orthogonal, use the same method as above to show that {~v1,~v2,~v3}
is also orthogonal, and so on.

Then in a similar fashion you show that span{~u1, · · · ,~un}= span{~v1, · · · ,~vn}.

Finally defining ~wi =
~vi

‖~vi‖
for i = 1, · · · ,n does not affect orthogonality and yields vectors of length 1,

hence an orthonormal set. You can also observe that it does not affect the span either and the proof would

be complete. ♠

Consider the following example.

Example 4.136: Find Orthonormal Set with Same Span

Consider the set of vectors {~u1,~u2} given as in Example 4.117. That is

~u1 =




1

1

0


 ,~u2 =




3

2

0


 ∈ R3

Use the Gram-Schmidt algorithm to find an orthonormal set of vectors {~w1,~w2} having the same

span.

Solution. We already remarked that the set of vectors in {~u1,~u2} is linearly independent, so we can proceed

with the Gram-Schmidt algorithm:

~v1 = ~u1 =




1

1

0




~v2 = ~u2 −
(
~u2 •~v1

‖~v1‖2

)
~v1

=




3

2

0


− 5

2




1

1

0




=




1
2

−1
2

0



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Now to normalize simply let

~w1 =
~v1

‖~v1‖
=




1√
2

1√
2

0




~w2 =
~v2

‖~v2‖
=




1√
2

− 1√
2

0




You can verify that {~w1,~w2} is an orthonormal set of vectors having the same span as {~u1,~u2}, namely

the XY -plane. ♠

In this example, we began with a linearly independent set and found an orthonormal set of vectors

which had the same span. It turns out that if we start with a basis of a subspace and apply the Gram-

Schmidt algorithm, the result will be an orthogonal basis of the same subspace. We examine this in the

following example.

Example 4.137: Find a Corresponding Orthogonal Basis

Let

~x1 =




1

0

1

0


 ,~x2 =




1

0

1

1


 , and~x3 =




1

1

0

0


 ,

and let U = span{~x1,~x2,~x3}. Use the Gram-Schmidt Process to construct an orthogonal basis B of

U .

Solution. First ~f1 =~x1.

Next,

~f2 =




1

0

1

1


−

2

2




1

0

1

0


=




0

0

0

1


 .

Finally,

~f3 =




1

1

0

0


−

1

2




1

0

1

0


−

0

1




0

0

0

1


=




1/2

1

−1/2

0


 .

Therefore, 






1

0

1

0


 ,




0

0

0

1


 ,




1/2

1

−1/2

0







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is an orthogonal basis of U . However, it is sometimes more convenient to deal with vectors having integer

entries, in which case we take

B =








1

0

1

0


 ,




0

0

0

1


 ,




1

2

−1

0








.

♠

4.11.4 Orthogonal Projections

An important use of the Gram-Schmidt Process is in orthogonal projections, the focus of this section.

You may recall that a subspace of Rn is a set of vectors which contains the zero vector, and is closed

under addition and scalar multiplication. Let’s call such a subspace W . In particular, a plane in Rn which

contains the origin, (0,0, · · · ,0), is a subspace of Rn.

Suppose a point Y in Rn is not contained in W , then what point Z in W is closest to Y ? Using the

Gram-Schmidt Process, we can find such a point. Let~y,~z represent the position vectors of the points Y and

Z respectively, with~y−~z representing the vector connecting the two points Y and Z. It will follow that if

Z is the point on W closest to Y , then~y−~z will be perpendicular to W (can you see why?); in other words,

~y−~z is orthogonal to W (and to every vector contained in W ) as in the following diagram.

0

Y

Z ~z

~y
~y−~z

W

The vector~z is called the orthogonal projection of~y on W . The definition is given as follows.

Definition 4.138: Orthogonal Projection

Let W be a subspace of Rn, and Y be any point in Rn. Then the orthogonal projection of Y onto W

is given by

~z = projW (~y) =

(
~y•~w1

‖~w1‖2

)
~w1 +

(
~y•~w2

‖~w2‖2

)
~w2 + · · ·+

(
~y•~wm

‖~wm‖2

)
~wm

where {~w1,~w2, · · · ,~wm} is any orthogonal basis of W .

Therefore, in order to find the orthogonal projection, we must first find an orthogonal basis for the

subspace. Note that one could use an orthonormal basis, but it is not necessary in this case since as you

can see above the normalization of each vector is included in the formula for the projection.

Before we explore this further through an example, we show that the orthogonal projection does indeed

yield a point Z (the point whose position vector is the vector~z above) which is the point of W closest to Y .
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Theorem 4.139: Approximation Theorem

Let W be a subspace of Rn and Y any point in Rn. Let Z be the point whose position vector is the

orthogonal projection of Y onto W .

Then, Z is the point in W closest to Y .

Proof. First Z is certainly a point in W since it is in the span of a basis of W .

To show that Z is the point in W closest to Y , we wish to show that |~y−~z1|> |~y−~z| for all~z1 6=~z ∈W .

We begin by writing ~y−~z1 = (~y−~z)+ (~z−~z1). Now, the vector ~y−~z is orthogonal to W , and~z−~z1 is

contained in W . Therefore these vectors are orthogonal to each other. By the Pythagorean Theorem, we

have that

‖~y−~z1‖2 = ‖~y−~z‖2 +‖~z−~z1‖2 > ‖~y−~z‖2

This follows because~z 6=~z1 so ‖~z−~z1‖2 > 0.

Hence, ‖~y−~z1‖2 > ‖~y−~z‖2. Taking the square root of each side, we obtain the desired result. ♠

Consider the following example.

Example 4.140: Orthogonal Projection

Let W be the plane through the origin given by the equation x−2y+ z = 0.

Find the point in W closest to the point Y = (1,0,3).

Solution. We must first find an orthogonal basis for W . Notice that W is characterized by all points (a,b,c)
where c = 2b−a. In other words,

W =




a

b

2b−a


= a




1

0

−1


+b




0

1

2


 , a,b ∈ R

We can thus write W as

W = span{~u1,~u2}

= span








1

0

−1


 ,




0

1

2







Notice that this span is a basis of W as it is linearly independent. We will use the Gram-Schmidt

Process to convert this to an orthogonal basis, {~w1,~w2}. In this case, as we remarked it is only necessary

to find an orthogonal basis, and it is not required that it be orthonormal.

~w1 =~u1 =




1

0

−1




~w2 = ~u2 −
(
~u2 •~w1

‖~w1‖2

)
~w1
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=




0

1

2


−

(−2

2

)


1

0

−1




=




0

1

2


+




1

0

−1




=




1

1

1




Therefore an orthogonal basis of W is

{~w1,~w2}=








1

0

−1


 ,




1

1

1







We can now use this basis to find the orthogonal projection of the point Y = (1,0,3) on the subspace W .

We will write the position vector~y of Y as~y =




1

0

3


. Using Definition 4.138, we compute the projection

as follows:

~z = projW (~y)

=

(
~y•~w1

‖~w1‖2

)
~w1 +

(
~y•~w2

‖~w2‖2

)
~w2

=

(−2

2

)


1

0

−1


+

(
4

3

)


1

1

1




=




1
3
4
3
7
3




Therefore the point Z on W closest to the point (1,0,3) is
(

1
3
, 4

3
, 7

3

)
.

♠

Recall that the vector ~y−~z is perpendicular (orthogonal) to all the vectors contained in the plane W .

Using a basis for W , we can in fact find all such vectors which are perpendicular to W . We call this set of

vectors the orthogonal complement of W and denote it W⊥.

Definition 4.141: Orthogonal Complement

Let W be a subspace of Rn. Then the orthogonal complement of W , written W⊥, is the set of all

vectors~x such that~x•~z = 0 for all vectors~z in W .

W⊥ = {~x ∈ Rn such that~x•~z = 0 for all~z ∈W}
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The orthogonal complement is defined as the set of all vectors which are orthogonal to all vectors in

the original subspace. It turns out that it is sufficient that the vectors in the orthogonal complement be

orthogonal to a spanning set of the original space.

Proposition 4.142: Orthogonal to Spanning Set

Let W be a subspace of Rn such that W = span{~w1,~w2, · · · ,~wm}. Then W⊥ is the set of all vectors

which are orthogonal to each ~wi in the spanning set.

The following proposition demonstrates that the orthogonal complement of a subspace is itself a sub-

space.

Proposition 4.143: The Orthogonal Complement

Let W be a subspace of Rn. Then the orthogonal complement W⊥ is also a subspace of Rn.

Consider the following proposition.

Proposition 4.144: Orthogonal Complement of Rn

The complement of Rn is the set containing the zero vector:

(Rn)⊥ =
{
~0
}

Similarly, {
~0
}⊥

= (Rn)

Proof. Here,~0 is the zero vector of Rn. Since~x•~0 = 0 for all~x ∈ Rn, Rn ⊆ {~0}⊥. Since {~0}⊥ ⊆ Rn, the

equality follows, i.e., {~0}⊥ = Rn.

Again, since ~x •~0 = 0 for all ~x ∈ Rn, ~0 ∈ (Rn)⊥, so {~0} ⊆ (Rn)⊥. Suppose ~x ∈ Rn, ~x 6=~0. Since

~x•~x = ||~x||2 and~x 6=~0,~x•~x 6= 0, so~x 6∈ (Rn)⊥. Therefore (Rn)⊥ ⊆ {~0}, and thus (Rn)⊥ = {~0}. ♠

In the next example, we will look at how to find W⊥.

Example 4.145: Orthogonal Complement

Let W be the plane through the origin given by the equation x− 2y+ z = 0. Find a basis for the

orthogonal complement of W .

Solution.

From Example 4.140 we know that we can write W as

W = span{~u1,~u2}= span








1

0

−1


 ,




0

1

2









244 Rn

In order to find W⊥, we need to find all~x which are orthogonal to every vector in this span.

Let~x =




x1

x2

x3


. In order to satisfy~x•~u1 = 0, the following equation must hold.

x1 − x3 = 0

In order to satisfy~x•~u2 = 0, the following equation must hold.

x2 +2x3 = 0

Both of these equations must be satisfied, so we have the following system of equations.

x1 − x3 = 0

x2 +2x3 = 0

To solve, set up the augmented matrix.

[
1 0 −1 0

0 1 2 0

]

Using Gaussian Elimination, we find that W⊥ = span








1

−2

1





, and hence








1

−2

1





 is a basis

for W⊥. ♠

The following results summarize the important properties of the orthogonal projection.

Theorem 4.146: Orthogonal Projection

Let W be a subspace of Rn, Y be any point in Rn, and let Z be the point in W closest to Y . Then,

1. The position vector~z of the point Z is given by~z = projW (~y)

2. ~z ∈W and~y−~z ∈W⊥

3. |Y −Z| < |Y −Z1| for all Z1 6= Z ∈W

Consider the following example of this concept.

Example 4.147: Find a Vector Closest to a Given Vector

Let

~x1 =




1

0

1

0


 ,~x2 =




1

0

1

1


 ,~x3 =




1

1

0

0


 , and~y =




4

3

−2

5


 .

We want to find the vector in W = span{~x1,~x2,~x3} closest to~y.
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Solution. We will first use the Gram-Schmidt Process to construct the orthogonal basis, B, of W :

B =








1

0

1

0


 ,




0

0

0

1


 ,




1

2

−1

0








.

By Theorem 4.146,

projW (~y) =
2

2




1

0

1

0


+

5

1




0

0

0

1


+

12

6




1

2

−1

0


=




3

4

−1

5




is the vector in W closest to~y. ♠

Consider the next example.

Example 4.148: Vector Written as a Sum of Two Vectors

Let W be a subspace given by W = span








1

0

1

0


 ,




0

1

0

2








, and Y = (1,2,3,4).

Find the point Z in W closest to Y , and moreover write~y as the sum of a vector in W and a vector in

W⊥.

Solution. From Theorem 4.139, the point Z in W closest to Y is given by~z = projW (~y).

Notice that since the above vectors already give an orthogonal basis for W , we have:

~z = projW (~y)

=

(
~y•~w1

‖~w1‖2

)
~w1 +

(
~y•~w2

‖~w2‖2

)
~w2

=

(
4

2

)



1

0

1

0


+

(
10

5

)



0

1

0

2




=




2

2

2

4




Therefore the point in W closest to Y is Z = (2,2,2,4).
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Now, we need to write~y as the sum of a vector in W and a vector in W⊥. This can easily be done as

follows:

~y =~z+(~y−~z)
since~z is in W and as we have seen~y−~z is in W⊥.

The vector~y−~z is given by

~y−~z =




1

2

3

4


−




2

2

2

4


=




−1

0

1

0




Therefore, we can write~y as 


1

2

3

4


=




2

2

2

4


+




−1

0

1

0




♠

Example 4.149: Point in a Plane Closest to a Given Point

Find the point Z in the plane 3x+ y−2z = 0 that is closest to the point Y = (1,1,1).

Solution. The solution will proceed as follows.

1. Find a basis X of the subspace W of R3 defined by the equation 3x+ y−2z = 0.

2. Orthogonalize the basis X to get an orthogonal basis B of W .

3. Find the projection on W of the position vector of the point Y .

We now begin the solution.

1. 3x+ y− 2z = 0 is a system of one equation in three variables. Putting the augmented matrix in

reduced row-echelon form:

[
3 1 −2 0

]
→
[

1 1
3

−2
3

0
]

gives general solution x =−1
3
s+ 2

3
t, y = s, z = t for any s, t ∈ R. Then

W = span








−1
3

1

0


 ,




2
3

0

1







Let X =








−1

3

0


 ,




2

0

3





. Then X is linearly independent and span(X) =W , so X is a basis of

W .
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2. Use the Gram-Schmidt Process to get an orthogonal basis of W :

~f1 =




−1

3

0


 and ~f2 =




2

0

3


− −2

10




−1

3

0


=

1

5




9

3

15


 .

Therefore B =








−1

3

0


 ,




3

1

5





 is an orthogonal basis of W .

3. To find the point Z on W closest to Y = (1,1,1), compute

projW




1

1

1


 =

2

10




−1

3

0


+ 9

35




3

1

5




=
1

7




4

6

9


 .

Therefore, Z =
(

4
7
, 6

7
, 9

7

)
.

♠

4.11.5 Least Squares Approximation

It should not be surprising to hear that many problems do not have a perfect solution, and in these cases the

objective is always to try to do the best possible. For example what does one do if there are no solutions to

a system of linear equations A~x =~b? It turns out that what we do is find~x such that A~x is as close to~b as

possible. A very important technique that follows from orthogonal projections is that of the least square

approximation, and allows us to do exactly that.

We begin with a lemma.

Recall that we can form the image of an m × n matrix A by im(A) = {A~x :~x ∈ Rn}. Rephrasing

Theorem 4.146 using the subspace W = im(A) gives the equivalence of an orthogonality condition with

a minimization condition. The following picture illustrates this orthogonality condition and geometric

meaning of this theorem.

0
~z = A~x

~y
~y−~z

~u

A(Rn)
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Theorem 4.150: Existence of Minimizers

Let~y ∈ Rm and let A be an m×n matrix.

Choose~z ∈W = im(A) given by~z = projW (~y), and let~x ∈ Rn such that~z = A~x.

Then

1. ~y−A~x ∈W⊥

2. ‖~y−A~x‖< ‖~y−~u‖ for all~u 6=~z ∈W

We note a simple but useful observation.

Lemma 4.151: Transpose and Dot Product

Let A be an m×n matrix. Then

A~x•~y =~x•AT~y

Proof. This follows from the definitions:

A~x•~y = ∑
i, j

ai jx jyi = ∑
i, j

x ja jiyi =~x•AT~y

♠

The next corollary gives the technique of least squares.

Corollary 4.152: Least Squares and Normal Equation

A specific value of~x which solves the problem of Theorem 4.150 is obtained by solving the equation

AT A~x = AT~y

Furthermore, there always exists a solution to this system of equations.

Proof. For ~x the minimizer of Theorem 4.150, (~y−A~x) •A~u = 0 for all ~u ∈ Rn and from Lemma 4.151,

this is the same as saying

AT (~y−A~x)•~u = 0

for all u ∈ Rn. This implies

AT~y−AT A~x =~0.

Therefore, there is a solution to the equation of this corollary, and it solves the minimization problem of

Theorem 4.150. ♠

Note that~x might not be unique but A~x, the closest point of A(Rn) to~y is unique as was shown in the

above argument.

Consider the following example.
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Example 4.153: Least Squares Solution to a System

Find a least squares solution to the system




2 1

−1 3

4 5



[

x

y

]
=




2

1

1




Solution. First, consider whether there exists a real solution. To do so, set up the augmnented matrix given

by 


2 1 2

−1 3 1

4 5 1




The reduced row-echelon form of this augmented matrix is




1 0 0

0 1 0

0 0 1




It follows that there is no real solution to this system. Therefore we wish to find the least squares

solution. The normal equations are

AT A~x = AT~y
[

2 −1 4

1 3 5

]


2 1

−1 3

4 5



[

x

y

]
=

[
2 −1 4

1 3 5

]


2

1

1




and so we need to solve the system

[
21 19

19 35

][
x

y

]
=

[
7

10

]

This is a familiar exercise and the solution is

[
x

y

]
=

[
5
34
7
34

]

♠

Consider another example.

Example 4.154: Least Squares Solution to a System

Find a least squares solution to the system




2 1

−1 3

4 5



[

x

y

]
=




3

2

9



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Solution. First, consider whether there exists a real solution. To do so, set up the augmnented matrix given

by 


2 1 3

−1 3 2

4 5 9




The reduced row-echelon form of this augmented matrix is




1 0 1

0 1 1

0 0 0




It follows that the system has a solution given by x = y = 1. However we can also use the normal

equations and find the least squares solution.

[
2 −1 4

1 3 5

]


2 1

−1 3

4 5



[

x

y

]
=

[
2 −1 4

1 3 5

]


3

2

9




Then [
21 19

19 35

][
x

y

]
=

[
40

54

]

The least squares solution is [
x

y

]
=

[
1

1

]

which is the same as the solution found above. ♠

An important application of Corollary 4.152 is the problem of finding the least squares regression line

in statistics. Suppose you are given points in the xy plane

{(x1,y1) ,(x2,y2) , · · · ,(xn,yn)}

and you would like to find constants m and b such that the line~y = m~x+b goes through all these points.

Of course this will be impossible in general. Therefore, we try to find m,b such that the line will be as

close as possible. The desired system is




y1
...

yn


=




x1 1
...

...

xn 1



[

m

b

]

which is of the form~y = A~x. It is desired to choose m and b to make

∥∥∥∥∥∥∥
A

[
m

b

]
−




y1
...

yn




∥∥∥∥∥∥∥

2
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as small as possible. According to Theorem 4.150 and Corollary 4.152, the best values for m and b occur

as the solution to

AT A

[
m

b

]
= AT




y1
...

yn


 , where A =




x1 1
...

...

xn 1




Thus, computing AT A, [
∑n

i=1 x2
i ∑n

i=1 xi

∑n
i=1 xi n

][
m

b

]
=

[
∑n

i=1 xiyi

∑n
i=1 yi

]

Solving this system of equations for m and b (using Cramer’s rule for example) yields:

m =
−(∑n

i=1 xi)(∑
n
i=1 yi)+(∑n

i=1 xiyi)n(
∑n

i=1 x2
i

)
n− (∑n

i=1 xi)
2

and

b =
−(∑n

i=1 xi)∑n
i=1 xiyi +(∑n

i=1 yi)∑n
i=1 x2

i(
∑n

i=1 x2
i

)
n− (∑n

i=1 xi)
2

.

Consider the following example.

Example 4.155: Least Squares Regression Line

Find the least squares regression line~y = m~x+b for the following set of data points:

{(0,1),(1,2),(2,2),(3,4),(4,5)}

Solution. In this case we have n = 5 data points and we obtain:

∑5
i=1 xi = 10 ∑5

i=1 yi = 14

∑5
i=1 xiyi = 38 ∑5

i=1 x2
i = 30

and hence

m =
−10∗14+5∗38

5∗30−102
= 1.00

b =
−10∗38+14∗30

5∗30−102
= 0.80

The least squares regression line for the set of data points is:

~y =~x+ .8

One could use this line to approximate other values for the data. For example for x = 6 one could use

y(6) = 6+ .8 = 6.8 as an approximate value for the data.

The following diagram shows the data points and the corresponding regression line.
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−1 1 2 3 4 5

2

4

6

x

y

Regression Line

Data Points

♠

One could clearly do a least squares fit for curves of the form y = ax2 +bx+c in the same way. In this

case you want to solve as well as possible for a,b, and c the system



x2
1 x1 1
...

...
...

x2
n xn 1







a

b

c


=




y1
...

yn




and one would use the same technique as above. Many other similar problems are important, including

many in higher dimensions and they are all solved the same way.

Exercises

Exercise 4.11.1 Determine whether the following set of vectors is orthogonal. If it is orthogonal, deter-

mine whether it is also orthonormal.



1
6

√
2
√

3
1
3

√
2
√

3

−1
6

√
2
√

3


 ,




1
2

√
2

0
1
2

√
2


 ,




−1
3

√
3

1
3

√
3

1
3

√
3




If the set of vectors is orthogonal but not orthonormal, give an orthonormal set of vectors which has the

same span.

Exercise 4.11.2 Determine whether the following set of vectors is orthogonal. If it is orthogonal, deter-

mine whether it is also orthonormal.



1

2

−1


 ,




1

0

1


 ,




−1

1

1




If the set of vectors is orthogonal but not orthonormal, give an orthonormal set of vectors which has the

same span.
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Exercise 4.11.3 Determine whether the following set of vectors is orthogonal. If it is orthogonal, deter-

mine whether it is also orthonormal.




1

−1

1


 ,




2

1

−1


 ,




0

1

1




If the set of vectors is orthogonal but not orthonormal, give an orthonormal set of vectors which has the

same span.

Exercise 4.11.4 Determine whether the following set of vectors is orthogonal. If it is orthogonal, deter-

mine whether it is also orthonormal.




1

−1

1


 ,




2

1

−1


 ,




1

2

1




If the set of vectors is orthogonal but not orthonormal, give an orthonormal set of vectors which has the

same span.

Exercise 4.11.5 Determine whether the following set of vectors is orthogonal. If it is orthogonal, deter-

mine whether it is also orthonormal.




1

0

0

0


 ,




0

1

−1

0


 ,




0

0

0

1




If the set of vectors is orthogonal but not orthonormal, give an orthonormal set of vectors which has the

same span.

Exercise 4.11.6 Here are some matrices. Label according to whether they are symmetric, skew symmetric,

or orthogonal.

(a)




1 0 0

0 1√
2

− 1√
2

0 1√
2

1√
2




(b)




1 2 −3

2 1 4

−3 4 7




(c)




0 −2 −3

2 0 −4

3 4 0



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Exercise 4.11.7 For U an orthogonal matrix, explain why ‖U~x‖= ‖~x‖ for any vector ~x. Next explain why

if U is an n×n matrix with the property that ‖U~x‖ = ‖~x‖ for all vectors, ~x, then U must be orthogonal.

Thus the orthogonal matrices are exactly those which preserve length.

Exercise 4.11.8 Suppose U is an orthogonal n×n matrix. Explain why rank(U) = n.

Exercise 4.11.9 Fill in the missing entries to make the matrix orthogonal.




−1√
2

−1√
6

1√
3

1√
2

_ _

_
√

6
3

_




.

Exercise 4.11.10 Fill in the missing entries to make the matrix orthogonal.




2
3

√
2

2
1
6

√
2

2
3

_ _

_ 0 _




Exercise 4.11.11 Fill in the missing entries to make the matrix orthogonal.




1
3

− 2√
5

_

2
3

0 _

_ _ 4
15

√
5




Exercise 4.11.12 Find an orthonormal basis for the span of each of the following sets of vectors.

(a)




3

−4

0


 ,




7

−1

0


 ,




1

7

1




(b)




3

0

−4


 ,




11

0

2


 ,




1

1

7




(c)




3

0

−4


 ,




5

0

10


 ,




−7

1

1



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Exercise 4.11.13 Using the Gram Schmidt process find an orthonormal basis for the following span:

span








1

2

1


 ,




2

−1

3


 ,




1

0

0







Exercise 4.11.14 Using the Gram Schmidt process find an orthonormal basis for the following span:

span








1

2

1

0


 ,




2

−1

3

1


 ,




1

0

0

1








Exercise 4.11.15 The set V =








x

y

z


 : 2x+3y− z = 0



 is a subspace of R3. Find an orthonormal basis

for this subspace.

Exercise 4.11.16 Consider the following scalar equation of a plane.

2x−3y+ z = 0

Find the orthogonal complement of the vector~v =




3

4

1


. Also find the point on the plane which is closest

to (3,4,1) .

Exercise 4.11.17 Consider the following scalar equation of a plane.

x+3y+ z = 0

Find the orthogonal complement of the vector~v =




1

2

1


. Also find the point on the plane which is closest

to (3,4,1) .

Exercise 4.11.18 Let~v be a vector and let~n be a normal vector for a plane through the origin. Find the

equation of the line through the point determined by~v which has direction vector~n. Show that it intersects

the plane at the point determined by~v−proj~n~v. Hint: The line:~v+ t~n. It is in the plane if~n• (~v+ t~n) = 0.

Determine t. Then substitute in to the equation of the line.

Exercise 4.11.19 As shown in the above problem, one can find the closest point to~v in a plane through the

origin by finding the intersection of the line through~v having direction vector equal to the normal vector

to the plane with the plane. If the plane does not pass through the origin, this will still work to find the

point on the plane closest to the point determined by~v. Here is a relation which defines a plane

2x+ y+ z = 11
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and here is a point: (1,1,2). Find the point on the plane which is closest to this point. Then determine

the distance from the point to the plane by taking the distance between these two points. Hint: Line:

(x,y,z) = (1,1,2)+ t (2,1,1) . Now require that it intersect the plane.

Exercise 4.11.20 In general, you have a point (x0,y0,z0) and a scalar equation for a plane ax+by+cz= d

where a2 +b2 + c2 > 0. Determine a formula for the closest point on the plane to the given point. Then

use this point to get a formula for the distance from the given point to the plane. Hint: Find the line

perpendicular to the plane which goes through the given point: (x,y,z) = (x0,y0,z0) + t (a,b,c) . Now

require that this point satisfy the equation for the plane to determine t.

Exercise 4.11.21 Find the least squares solution to the following system.

x+2y = 1

2x+3y = 2

3x+5y = 4

Exercise 4.11.22 You are doing experiments and have obtained the ordered pairs,

(0,1) ,(1,2) ,(2,3.5) ,(3,4)

Find m and b such that~y = m~x+b approximates these four points as well as possible.

Exercise 4.11.23 Suppose you have several ordered triples, (xi,yi,zi) . Describe how to find a polynomial

such as

z = a+bx+ cy+dxy+ ex2 + f y2

giving the best fit to the given ordered triples.
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4.12 Applications

Outcomes

A. Apply the concepts of vectors in Rn to the applications of physics and work.

4.12.1 Vectors and Physics

Suppose you push on something. Then, your push is made up of two components, how hard you push and

the direction you push. This illustrates the concept of force.

Definition 4.156: Force

Force is a vector. The magnitude of this vector is a measure of how hard it is pushing. It is measured

in units such as Newtons or pounds or tons. The direction of this vector is the direction in which

the push is taking place.

Vectors are used to model force and other physical vectors like velocity. As with all vectors, a vector

modeling force has two essential ingredients, its magnitude and its direction.

Recall the special vectors which point along the coordinate axes. These are given by

~ei = [0 · · ·0 1 0 · · ·0]T

where the 1 is in the ith slot and there are zeros in all the other spaces. The direction of~ei is referred to as

the ith direction.

Consider the following picture which illustrates the case of R3. Recall that in R3, we may refer to these

vectors as~i,~j, and~k.

x

y

z

~e1 ~e2

~e3

Given a vector~u = [u1 · · ·un]
T

, it follows that

~u = u1~e1 + · · ·+un~en =
n

∑
k=1

ui~ei
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What does addition of vectors mean physically? Suppose two forces are applied to some object. Each

of these would be represented by a force vector and the two forces acting together would yield an overall

force acting on the object which would also be a force vector known as the resultant. Suppose the two

vectors are ~u = ∑n
k=1 ui~ei and ~v = ∑n

k=1 vi~ei. Then the vector ~u involves a component in the ith direction

given by ui~ei, while the component in the ith direction of ~v is vi~ei. Then the vector ~u+~v should have a

component in the ith direction equal to (ui + vi)~ei. This is exactly what is obtained when the vectors,~u and

~v are added.

~u+~v = [u1 + v1 · · ·un + vn]
T

=
n

∑
i=1

(ui + vi)~ei

Thus the addition of vectors according to the rules of addition in Rn which were presented earlier,

yields the appropriate vector which duplicates the cumulative effect of all the vectors in the sum.

Consider now some examples of vector addition.

Example 4.157: The Resultant of Three Forces

There are three ropes attached to a car and three people pull on these ropes. The first exerts a force

of ~F1 = 2~i+3~j−2~k Newtons, the second exerts a force of ~F2 = 3~i+5~j+~k Newtons and the third

exerts a force of 5~i−~j+2~k Newtons. Find the total force in the direction of~i.

Solution. To find the total force, we add the vectors as described above. This is given by

(2~i+3~j−2~k)+(3~i+5~j+~k)+(5~i−~j+2~k)

= (2+3+5)~i+(3+5+−1)~j+(−2+1+2)~k

= 10~i+7~j+~k

Hence, the total force is 10~i+7~j+~k Newtons. Therefore, the force in the~i direction is 10 Newtons. ♠

Consider another example.

Example 4.158: Finding a Vector from Geometric Description

An airplane flies North East at 100 miles per hour. Write this as a vector.

Solution. A picture of this situation follows.

Therefore, we need to find the vector ~u which has length 100 and direction as shown in this diagram.

We can consider the vector ~u as the hypotenuse of a right triangle having equal sides, since the direction
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of ~u corresponds with the 45◦ line. The sides, corresponding to the~i and ~j directions, should be each of

length 100/
√

2. Therefore, the vector is given by

~u =
100√

2
~i+

100√
2
~j =

[
100√

2

100√
2

]T

♠

This example also motivates the concept of velocity, defined below.

Definition 4.159: Speed and Velocity

The speed of an object is a measure of how fast it is going. It is measured in units of length per unit

time. For example, miles per hour, kilometers per minute, feet per second. The velocity is a vector

having the speed as the magnitude but also specifying the direction.

Thus the velocity vector in the above example is 100√
2
~i+ 100√

2
~j, while the speed is 100 miles per hour.

Consider the following example.

Example 4.160: Position From Velocity and Time

The velocity of an airplane is 100~i+~j+~k measured in kilometers per hour and at a certain instant

of time its position is (1,2,1) .

Find the position of this airplane one minute later.

Solution. Here imagine a Cartesian coordinate system in which the third component is altitude and the

first and second components are measured on a line from West to East and a line from South to North.

Consider the vector
[

1 2 1
]T

, which is the initial position vector of the airplane. As the plane

moves, the position vector changes according to the velocity vector. After one minute (considered as 1
60

of

an hour) the airplane has moved in the~i direction a distance of 100× 1
60

= 5
3

kilometer. In the ~j direction it

has moved 1
60

kilometer during this same time, while it moves 1
60

kilometer in the~k direction. Therefore,

the new displacement vector for the airplane is

[
1 2 1

]T
+
[

5
3

1
60

1
60

]T
=
[

8
3

121
60

61
60

]T

♠

Now consider an example which involves combining two velocities.

Example 4.161: Sum of Two Velocities

A certain river is one half kilometer wide with a current flowing at 4 kilometers per hour from East

to West. A man swims directly toward the opposite shore from the South bank of the river at a speed

of 3 kilometers per hour. How far down the river does he find himself when he has swam across?

How far does he end up swimming?

Solution. Consider the following picture which demonstrates the above scenario.
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4

3

First we want to know the total time of the swim across the river. The velocity in the direction across

the river is 3 kilometers per hour, and the river is 1
2

kilometer wide. It follows the trip takes 1/6 hour or

10 minutes.

Now, we can compute how far downstream he will end up. Since the river runs at a rate of 4 kilometers

per hour, and the trip takes 1/6 hour, the distance traveled downstream is given by 4
(

1
6

)
= 2

3
kilometers.

The distance traveled by the swimmer is given by the hypotenuse of a right triangle. The two arms of

the triangle are given by the distance across the river, 1
2
km, and the distance traveled downstream, 2

3
km.

Then, using the Pythagorean Theorem, we can calculate the total distance d traveled.

d =

√(
2

3

)2

+

(
1

2

)2

=
5

6
km

Therefore, the swimmer travels a total distance of 5
6

kilometers. ♠

4.12.2 Work

The mathematical concept of work is an application of vectors in Rn. The physical concept of work differs

from the notion of work employed in ordinary conversation. For example, suppose you were to slide a

150 pound weight off a table which is three feet high and shuffle along the floor for 50 yards, keeping the

height always three feet and then deposit this weight on another three foot high table. The physical concept

of work would indicate that the force exerted by your arms did no work during this project. The reason

for this definition is that even though your arms exerted considerable force on the weight, the direction of

motion was at right angles to the force they exerted. The only part of a force which does work in the sense

of physics is the component of the force in the direction of motion.

Work is defined to be the magnitude of the component of this force times the distance over which it

acts, when the component of force points in the direction of motion. In the case where the force points

in exactly the opposite direction of motion work is given by (−1) times the magnitude of this component

times the distance. Thus the work done by a force on an object as the object moves from one point to

another is a measure of the extent to which the force contributes to the motion. This is illustrated in the

following picture in the case where the given force contributes to the motion.

P

Q

~F⊥ ~F

~F||θ

Recall that for any vector~u in Rn, we can write~u as a sum of two vectors, as in

~u =~u||+~u⊥
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For any force ~F , we can write this force as the sum of a vector in the direction of the motion and a vector

perpendicular to the motion. In other words,

~F = ~F||+~F⊥

In the above picture the force, ~F is applied to an object which moves on the straight line from P to Q.

There are two vectors shown, ~F|| and ~F⊥ and the picture is intended to indicate that when you add these

two vectors you get ~F . In other words, ~F = ~F||+~F⊥. Notice that ~F|| acts in the direction of motion and ~F⊥
acts perpendicular to the direction of motion. Only ~F|| contributes to the work done by ~F on the object as it

moves from P to Q. ~F|| is called the component of the force in the direction of motion. From trigonometry,

you see the magnitude of ~F|| should equal ‖~F‖|cosθ | . Thus, since ~F|| points in the direction of the vector

from P to Q, the total work done should equal

‖~F‖‖−→PQ‖cosθ = ‖~F‖‖~q−~p‖cosθ

Now, suppose the included angle had been obtuse. Then the work done by the force ~F on the object

would have been negative because ~F|| would point in −1 times the direction of the motion. In this case,

cosθ would also be negative and so it is still the case that the work done would be given by the above

formula. Thus from the geometric description of the dot product given above, the work equals

‖~F‖‖~q−~p‖cosθ = ~F • (~q−~p)

This explains the following definition.

Definition 4.162: Work Done on an Object by a Force

Let ~F be a force acting on an object which moves from the point P to the point Q, which have

position vectors given by ~p and~q respectively. Then the work done on the object by the given force

equals ~F • (~q−~p) .

Consider the following example.

Example 4.163: Finding Work

Let ~F =
[

2 7 −3
]T

Newtons. Find the work done by this force in moving from the point

(1,2,3) to the point (−9,−3,4) along the straight line segment joining these points where distances

are measured in meters.

Solution. First, compute the vector~q−~p, given by

[
−9 −3 4

]T −
[

1 2 3
]T

=
[
−10 −5 1

]T

According to Definition 4.162 the work done is

[
2 7 −3

]T •
[
−10 −5 1

]T
=−20+(−35)+(−3)
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=−58 Newton meters

♠

Note that if the force had been given in pounds and the distance had been given in feet, the units on

the work would have been foot pounds. In general, work has units equal to units of a force times units of

a length. Recall that 1 Newton meter is equal to 1 Joule. Also notice that the work done by the force can

be negative as in the above example.

Exercises

Exercise 4.12.1 The wind blows from the South at 20 kilometers per hour and an airplane which flies at

600 kilometers per hour in still air is heading East. Find the velocity of the airplane and its location after

two hours.

Exercise 4.12.2 The wind blows from the West at 30 kilometers per hour and an airplane which flies at

400 kilometers per hour in still air is heading North East. Find the velocity of the airplane and its position

after two hours.

Exercise 4.12.3 The wind blows from the North at 10 kilometers per hour. An airplane which flies at 300

kilometers per hour in still air is supposed to go to the point whose coordinates are at (100,100) . In what

direction should the airplane fly?

Exercise 4.12.4 Three forces act on an object. Two are




3

−1

−1


 and




1

−3

4


 Newtons. Find the third

force if the object is not to move.

Exercise 4.12.5 Three forces act on an object. Two are




6

−3

3


 and




2

1

3


 Newtons. Find the third force

if the total force on the object is to be




7

1

3


 .

Exercise 4.12.6 A river flows West at the rate of b miles per hour. A boat can move at the rate of 8 miles

per hour. Find the smallest value of b such that it is not possible for the boat to proceed directly across the

river.

Exercise 4.12.7 The wind blows from West to East at a speed of 50 miles per hour and an airplane which

travels at 400 miles per hour in still air is heading North West. What is the velocity of the airplane relative

to the ground? What is the component of this velocity in the direction North?

Exercise 4.12.8 The wind blows from West to East at a speed of 60 miles per hour and an airplane can

travel travels at 100 miles per hour in still air. How many degrees West of North should the airplane head

in order to travel exactly North?
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Exercise 4.12.9 The wind blows from West to East at a speed of 50 miles per hour and an airplane which

travels at 400 miles per hour in still air heading somewhat West of North so that, with the wind, it is flying

due North. It uses 30.0 gallons of gas every hour. If it has to travel 600.0 miles due North, how much gas

will it use in flying to its destination?

Exercise 4.12.10 An airplane is flying due north at 150.0 miles per hour but it is not actually going due

North because there is a wind which is pushing the airplane due east at 40.0 miles per hour. After one

hour, the plane starts flying 30◦ East of North. Assuming the plane starts at (0,0) , where is it after 2

hours? Let North be the direction of the positive y axis and let East be the direction of the positive x axis.

Exercise 4.12.11 City A is located at the origin (0,0) while city B is located at (300,500) where distances

are in miles. An airplane flies at 250 miles per hour in still air. This airplane wants to fly from city A to

city B but the wind is blowing in the direction of the positive y axis at a speed of 50 miles per hour. Find a

unit vector such that if the plane heads in this direction, it will end up at city B having flown the shortest

possible distance. How long will it take to get there?

Exercise 4.12.12 A certain river is one half mile wide with a current flowing at 2 miles per hour from

East to West. A man swims directly toward the opposite shore from the South bank of the river at a speed

of 3 miles per hour. How far down the river does he find himself when he has swam across? How far does

he end up traveling?

Exercise 4.12.13 A certain river is one half mile wide with a current flowing at 2 miles per hour from

East to West. A man can swim at 3 miles per hour in still water. In what direction should he swim in order

to travel directly across the river? What would the answer to this problem be if the river flowed at 3 miles

per hour and the man could swim only at the rate of 2 miles per hour?

Exercise 4.12.14 Three forces are applied to a point which does not move. Two of the forces are 2~i+2~j−
6~k Newtons and 8~i+8~j+3~k Newtons. Find the third force.

Exercise 4.12.15 The total force acting on an object is to be 4~i+2~j−3~k Newtons. A force of −3~i−1~j+8~k
Newtons is being applied. What other force should be applied to achieve the desired total force?

Exercise 4.12.16 A bird flies from its nest 8 km in the direction 5
6
π north of east where it stops to rest

on a tree. It then flies 1 km in the direction due southeast and lands atop a telephone pole. Place an xy

coordinate system so that the origin is the bird’s nest, and the positive x axis points east and the positive y

axis points north. Find the displacement vector from the nest to the telephone pole.

Exercise 4.12.17 If ~F is a force and ~D is a vector, show proj~D

(
~F
)
=
(
‖~F‖cosθ

)
~u where ~u is the unit

vector in the direction of ~D, where~u = ~D/‖~D‖ and θ is the included angle between the two vectors, ~F and
~D. ‖~F‖cosθ is sometimes called the component of the force, ~F in the direction, ~D.

Exercise 4.12.18 A boy drags a sled for 100 feet along the ground by pulling on a rope which is 20 degrees

from the horizontal with a force of 40 pounds. How much work does this force do?
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Exercise 4.12.19 A girl drags a sled for 200 feet along the ground by pulling on a rope which is 30 degrees

from the horizontal with a force of 20 pounds. How much work does this force do?

Exercise 4.12.20 A large dog drags a sled for 300 feet along the ground by pulling on a rope which is 45

degrees from the horizontal with a force of 20 pounds. How much work does this force do?

Exercise 4.12.21 How much work does it take to slide a crate 20 meters along a loading dock by pulling

on it with a 200 Newton force at an angle of 30◦ from the horizontal? Express your answer in Newton

meters.

Exercise 4.12.22 An object moves 10 meters in the direction of ~j. There are two forces acting on this

object, ~F1 =~i+~j+2~k, and ~F2 =−5~i+2~j−6~k. Find the total work done on the object by the two forces.

Hint: You can take the work done by the resultant of the two forces or you can add the work done by each

force. Why?

Exercise 4.12.23 An object moves 10 meters in the direction of ~j+~i. There are two forces acting on this

object, ~F1 =~i+2~j+2~k, and ~F2 = 5~i+2~j−6~k. Find the total work done on the object by the two forces.

Hint: You can take the work done by the resultant of the two forces or you can add the work done by each

force. Why?

Exercise 4.12.24 An object moves 20 meters in the direction of~k+~j. There are two forces acting on this

object, ~F1 =~i+~j + 2~k, and ~F2 =~i+ 2~j − 6~k. Find the total work done on the object by the two forces.

Hint: You can take the work done by the resultant of the two forces or you can add the work done by each

force.



Chapter 5

Linear Transformations

5.1 Linear Transformations

Outcomes

A. Understand the definition of a linear transformation, and that all linear transformations are

determined by matrix multiplication.

Recall that when we multiply an m×n matrix by an n×1 column vector, the result is an m×1 column

vector. In this section we will discuss how, through matrix multiplication, an m×n matrix transforms an

n×1 column vector into an m×1 column vector.

Recall that the n×1 vector given by

~x =




x1

x2
...

xn




is said to belong to Rn, which is the set of all n×1 vectors. In this section, we will discuss transformations

of vectors in Rn.

Consider the following example.

Example 5.1: A Function Which Transforms Vectors

Consider the matrix A =

[
1 2 0

2 1 0

]
. Show that by matrix multiplication A transforms vectors in

R3 into vectors in R2.

Solution. First, recall that vectors in R3 are vectors of size 3×1, while vectors in R2 are of size 2×1. If

we multiply A, which is a 2×3 matrix, by a 3×1 vector, the result will be a 2×1 vector. This what we

mean when we say that A transforms vectors.

Now, for




x

y

z


 in R3 , multiply on the left by the given matrix to obtain the new vector. This product

looks like [
1 2 0

2 1 0

]


x

y

z


=

[
x+2y

2x+ y

]

The resulting product is a 2× 1 vector which is determined by the choice of x and y. Here are some

265
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numerical examples.
[

1 2 0

2 1 0

]


1

2

3


=

[
5

4

]

Here, the vector




1

2

3


 in R3 was transformed by the matrix into the vector

[
5

4

]
in R2.

Here is another example:
[

1 2 0

2 1 0

]


10

5

−3


=

[
20

25

]

♠
The idea is to define a function which takes vectors in R3 and delivers new vectors in R2. In this case,

that function is multiplication by the matrix A.

Let T denote such a function. The notation T : Rn 7→Rm means that the function T transforms vectors

in Rn into vectors in Rm. The notation T (~x) means the transformation T applied to the vector~x. The above

example demonstrated a transformation achieved by matrix multiplication. In this case, we often write

TA (~x) = A~x

Therefore, TA is the transformation determined by the matrix A. In this case we say that T is a matrix

transformation.

Recall the property of matrix multiplication that states that for k and p scalars,

A(kB+ pC) = kAB+ pAC

In particular, for A an m×n matrix and B and C, n×1 vectors in Rn, this formula holds.

In other words, this means that matrix multiplication gives an example of a linear transformation,

which we will now define.

Definition 5.2: Linear Transformation

Let T : Rn 7→Rm be a function, where for each~x ∈Rn,T (~x) ∈Rm. Then T is a linear transforma-

tion if whenever k, p are scalars and~x1 and~x2 are vectors in Rn (n×1 vectors),

T (k~x1 + p~x2) = kT (~x1)+ pT (~x2)

Consider the following example.

Example 5.3: Linear Transformation

Let T be a transformation defined by T : R3 →R2 is defined by

T




x

y

z


=

[
x+ y

x− z

]
for all




x

y

z


 ∈ R3

Show that T is a linear transformation.
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Solution. By Definition 9.55 we need to show that T (k~x1 + p~x2) = kT (~x1)+ pT (~x2) for all scalars k, p

and vectors~x1,~x2. Let

~x1 =




x1

y1

z1


 ,~x2 =




x2

y2

z2




Then

T (k~x1 + p~x2) = T


k




x1

y1

z1


+ p




x2

y2

z2






= T






kx1

ky1

kz1


+




px2

py2

pz2






= T






kx1 + px2

ky1 + py2

kz1 + pz2






=

[
(kx1 + px2)+(ky1 + py2)
(kx1 + px2)− (kz1+ pz2)

]

=

[
(kx1 + ky1)+(px2 + py2)
(kx1 − kz1)+(px2 − pz2)

]

=

[
kx1 + ky1

kx1 − kz1

]
+

[
px2 + py2

px2 − pz2

]

= k

[
x1 + y1

x1 − z1

]
+ p

[
x2 + y2

x2 − z2

]

= kT (~x1)+ pT (~x2)

Therefore T is a linear transformation. ♠

Two important examples of linear transformations are the zero transformation and identity transfor-

mation. The zero transformation defined by T (~x) =~0 for all ~x is an example of a linear transformation.

Similarly the identity transformation defined by T (~x) =~x is also linear. Take the time to prove these using

the method demonstrated in Example 5.3.

We began this section by discussing matrix transformations, where multiplication by a matrix trans-

forms vectors. These matrix transformations are in fact linear transformations.

Theorem 5.4: Matrix Transformations are Linear Transformations

Let T : Rn 7→ Rm be a transformation defined by T (~x) = A~x. Then T is a linear transformation.

It turns out that every linear transformation can be expressed as a matrix transformation, and thus linear

transformations are exactly the same as matrix transformations.
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Exercises

Exercise 5.1.1 Show the map T : Rn 7→ Rm defined by T (~x) = A~x where A is an m×n matrix and~x is an

m×1 column vector is a linear transformation.

Exercise 5.1.2 Show that the function T~u defined by T~u (~v) =~v−proj~u (~v) is also a linear transformation.

Exercise 5.1.3 Let ~u be a fixed vector. The function T~u defined by T~u~v =~u+~v has the effect of translating

all vectors by adding ~u 6=~0. Show this is not a linear transformation. Explain why it is not possible to

represent T~u in R3 by multiplying by a 3×3 matrix.

5.2 The Matrix of a Linear Transformation I

Outcomes

A. Find the matrix of a linear transformation with respect to the standard basis.

B. Determine the action of a linear transformation on a vector in Rn.

In the above examples, the action of the linear transformations was to multiply by a matrix. It turns

out that this is always the case for linear transformations. If T is any linear transformation which maps

Rn to Rm, there is always an m×n matrix A with the property that

T (~x) = A~x (5.1)

for all~x ∈ Rn.

Theorem 5.5: Matrix of a Linear Transformation

Let T : Rn 7→ Rm be a linear transformation. Then we can find a matrix A such that T (~x) = A~x. In

this case, we say that T is determined or induced by the matrix A.

Here is why. Suppose T : Rn 7→ Rm is a linear transformation and you want to find the matrix defined

by this linear transformation as described in 5.1. Note that

~x =




x1

x2
...

xn


= x1




1

0
...

0


+ x2




0

1
...

0


+ · · ·+ xn




0

0
...

1


=

n

∑
i=1

xi~ei

where~ei is the ith column of In, that is the n×1 vector which has zeros in every slot but the ith and a 1 in

this slot.

Then since T is linear,

T (~x) =
n

∑
i=1

xiT (~ei)



5.2. The Matrix of a Linear Transformation I 269

=




| |
T (~e1) · · · T (~en)

| |







x1
...

xn




= A




x1
...

xn




The desired matrix is obtained from constructing the ith column as T (~ei) . Recall that the set {~e1,~e2, · · · ,~en}
is called the standard basis of Rn. Therefore the matrix of T is found by applying T to the standard basis.

We state this formally as the following theorem.

Theorem 5.6: Matrix of a Linear Transformation

Let T : Rn 7→ Rm be a linear transformation. Then the matrix A satisfying T (~x) = A~x is given by

A =




| |
T (~e1) · · · T (~en)

| |




where~ei is the ith column of In, and then T (~ei) is the ith column of A.

The following Corollary is an essential result.

Corollary 5.7: Matrix and Linear Transformation

A transformation T : Rn →Rm is a linear transformation if and only if it is a matrix transformation.

Consider the following example.

Example 5.8: The Matrix of a Linear Transformation

Suppose T is a linear transformation, T : R3 → R2 where

T




1

0

0


=

[
1

2

]
, T




0

1

0


=

[
9

−3

]
, T




0

0

1


=

[
1

1

]

Find the matrix A of T such that T (~x) = A~x for all~x.

Solution. By Theorem 5.6 we construct A as follows:

A =




| |
T (~e1) · · · T (~en)

| |



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In this case, A will be a 2×3 matrix, so we need to find T (~e1) ,T (~e2) , and T (~e3). Luckily, we have

been given these values so we can fill in A as needed, using these vectors as the columns of A. Hence,

A =

[
1 9 1

2 −3 1

]

♠

In this example, we were given the resulting vectors of T (~e1) ,T (~e2) , and T (~e3). Constructing the

matrix A was simple, as we could simply use these vectors as the columns of A. The next example shows

how to find A when we are not given the T (~ei) so clearly.

Example 5.9: The Matrix of Linear Transformation: Inconveniently

Defined

Suppose T is a linear transformation, T : R2 → R2 and

T

[
1

1

]
=

[
1

2

]
, T

[
0

−1

]
=

[
3

2

]

Find the matrix A of T such that T (~x) = A~x for all~x.

Solution. By Theorem 5.6 to find this matrix, we need to determine the action of T on ~e1 and ~e2. In

Example 9.91, we were given these resulting vectors. However, in this example, we have been given T

of two different vectors. How can we find out the action of T on~e1 and~e2? In particular for~e1, suppose

there exist x and y such that [
1

0

]
= x

[
1

1

]
+ y

[
0

−1

]
(5.2)

Then, since T is linear,

T

[
1

0

]
= xT

[
1

1

]
+ yT

[
0

−1

]

Substituting in values, this sum becomes

T

[
1

0

]
= x

[
1

2

]
+ y

[
3

2

]
(5.3)

Therefore, if we know the values of x and y which satisfy 5.2, we can substitute these into equation

5.3. By doing so, we find T (~e1) which is the first column of the matrix A.

We proceed to find x and y. We do so by solving 5.2, which can be done by solving the system

x = 1

x− y = 0

We see that x = 1 and y = 1 is the solution to this system. Substituting these values into equation 5.3,

we have

T

[
1

0

]
= 1

[
1

2

]
+1

[
3

2

]
=

[
1

2

]
+

[
3

2

]
=

[
4

4

]



5.2. The Matrix of a Linear Transformation I 271

Therefore

[
4

4

]
is the first column of A.

Computing the second column is done in the same way, and is left as an exercise.

The resulting matrix A is given by

A =

[
4 −3

4 −2

]

♠

This example illustrates a very long procedure for finding the matrix of A. While this method is reliable

and will always result in the correct matrix A, the following procedure provides an alternative method.

Procedure 5.10: Finding the Matrix of Inconveniently Defined Linear Transformation

Suppose T : Rn → Rm is a linear transformation. Suppose there exist vectors {~a1, · · · ,~an} in Rn

such that
[
~a1 · · · ~an

]−1
exists, and

T (~ai) =~bi

Then the matrix of T must be of the form

[
~b1 · · · ~bn

][
~a1 · · · ~an

]−1

We will illustrate this procedure in the following example. You may also find it useful to work through

Example 5.9 using this procedure.

Example 5.11: Matrix of a Linear Transformation

Given Inconveniently

Suppose T : R3 → R3 is a linear transformation and

T




1

3

1


=




0

1

1


 ,T




0

1

1


=




2

1

3


 ,T




1

1

0


=




0

0

1




Find the matrix of this linear transformation.

Solution. By Procedure 5.10, A =




1 0 1

3 1 1

1 1 0



−1

and B =




0 2 0

1 1 0

1 3 1




Then, Procedure 5.10 claims that the matrix of T is

C = BA−1 =




2 −2 4

0 0 1

4 −3 6




Indeed you can first verify that T (~x) =C~x for the 3 vectors above:
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


2 −2 4

0 0 1

4 −3 6






1

3

1


=




0

1

1


 ,




2 −2 4

0 0 1

4 −3 6






0

1

1


=




2

1

3







2 −2 4

0 0 1

4 −3 6






1

1

0


=




0

0

1




But more generally T (~x) =C~x for any~x. To see this, let~y = A−1~x and then using linearity of T :

T (~x) = T (A~y) = T

(
∑

i

~yi~ai

)
= ∑~yiT (~ai)∑~yi

~bi = B~y = BA−1~x =C~x

♠

Recall the dot product discussed earlier. Consider the map~v7→ proj~u (~v) which takes a vector a trans-

forms it to its projection onto a given vector ~u. It turns out that this map is linear, a result which follows

from the properties of the dot product. This is shown as follows.

proj~u (k~v+ p~w) =

(
(k~v+ p~w)•~u

~u•~u

)
~u

= k

(
~v•~u
~u•~u

)
~u+ p

(
~w•~u
~u•~u

)
~u

= k proj~u (~v)+ p proj~u (~w)

Consider the following example.

Example 5.12: Matrix of a Projection Map

Let ~u =




1

2

3


 and let T be the projection map T : R3 7→ R3 defined by

T (~v) = proj~u (~v)

for any~v ∈ R3.

1. Does this transformation come from multiplication by a matrix?

2. If so, what is the matrix?

Solution.

1. First, we have just seen that T (~v) = proj~u (~v) is linear. Therefore by Theorem 5.5, we can find a

matrix A such that T (~x) = A~x.
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2. The columns of the matrix for T are defined above as T (~ei). It follows that T (~ei) = proj~u (~ei) gives

the ith column of the desired matrix. Therefore, we need to find

proj~u (~ei) =

(
~ei •~u
~u•~u

)
~u

For the given vector~u , this implies the columns of the desired matrix are

1

14




1

2

3


 ,

2

14




1

2

3


 ,

3

14




1

2

3




which you can verify. Hence the matrix of T is

1

14




1 2 3

2 4 6

3 6 9




♠

Exercises

Exercise 5.2.1 Consider the following functions which map Rn to Rn.

(a) T multiplies the jth component of~x by a nonzero number b.

(b) T replaces the ith component of~x with b times the jth component added to the ith component.

(c) T switches the ith and jth components.

Show these functions are linear transformations and describe their matrices A such that T (~x) = A~x.

Exercise 5.2.2 You are given a linear transformation T : Rn → Rm and you know that

T (Ai) = Bi

where
[

A1 · · · An

]−1
exists. Show that the matrix of T is of the form

[
B1 · · · Bn

][
A1 · · · An

]−1

Exercise 5.2.3 Suppose T is a linear transformation such that

T




1

2

−6


 =




5

1

3



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T




−1

−1

5


 =




1

1

5




T




0

−1

2


 =




5

3

−2




Find the matrix of T . That is find A such that T (~x) = A~x.

Exercise 5.2.4 Suppose T is a linear transformation such that

T




1

1

−8


 =




1

3

1




T




−1

0

6


 =




2

4

1




T




0

−1

3


 =




6

1

−1




Find the matrix of T . That is find A such that T (~x) = A~x.

Exercise 5.2.5 Suppose T is a linear transformation such that

T




1

3

−7


 =




−3

1

3




T




−1

−2

6


 =




1

3

−3




T




0

−1

2


 =




5

3

−3




Find the matrix of T . That is find A such that T (~x) = A~x.

Exercise 5.2.6 Suppose T is a linear transformation such that

T




1

1

−7


 =




3

3

3




T




−1

0

6


 =




1

2

3



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T




0

−1

2


 =




1

3

−1




Find the matrix of T . That is find A such that T (~x) = A~x.

Exercise 5.2.7 Suppose T is a linear transformation such that

T




1

2

−18


 =




5

2

5




T




−1

−1

15


 =




3

3

5




T




0

−1

4


 =




2

5

−2




Find the matrix of T . That is find A such that T (~x) = A~x.

Exercise 5.2.8 Consider the following functions T : R3 → R2. Show that each is a linear transformation

and determine for each the matrix A such that T (~x) = A~x.

(a) T




x

y

z


=

[
x+2y+3z

2y−3x+ z

]

(b) T




x

y

z


=

[
7x+2y+ z

3x−11y+2z

]

(c) T




x

y

z


=

[
3x+2y+ z

x+2y+6z

]

(d) T




x

y

z


=

[
2y−5x+ z

x+ y+ z

]

Exercise 5.2.9 Consider the following functions T : R3 → R2. Explain why each of these functions T is

not linear.

(a) T




x

y

z


=

[
x+2y+3z+1

2y−3x+ z

]
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(b) T




x

y

z


=

[
x+2y2 +3z

2y+3x+ z

]

(c) T




x

y

z


=

[
sinx+2y+3z

2y+3x+ z

]

(d) T




x

y

z


=

[
x+2y+3z

2y+3x− lnz

]

Exercise 5.2.10 Suppose [
A1 · · · An

]−1

exists where each A j ∈ Rn and let vectors {B1, · · · ,Bn} in Rm be given. Show that there always exists a

linear transformation T such that T (Ai) = Bi.

Exercise 5.2.11 Find the matrix for T (~w) = proj~v (~w) where~v =
[

1 −2 3
]T

.

Exercise 5.2.12 Find the matrix for T (~w) = proj~v (~w) where~v =
[

1 5 3
]T

.

Exercise 5.2.13 Find the matrix for T (~w) = proj~v (~w) where~v =
[

1 0 3
]T

.

5.3 Properties of Linear Transformations

Outcomes

A. Use properties of linear transformations to solve problems.

B. Find the composite of transformations and the inverse of a transformation.

Let T : Rn 7→Rm be a linear transformation. Then there are some important properties of T which will

be examined in this section. Consider the following theorem.
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Theorem 5.13: Properties of Linear Transformations

Let T : Rn 7→ Rm be a linear transformation and let~x ∈ Rn.

• T preserves the zero vector.

T (0~x) = 0T (~x). Hence T (~0) =~0

• T preserves the negative of a vector:

T ((−1)~x) = (−1)T (~x). Hence T (−~x) =−T (~x).

• T preserves linear combinations:

Let~x1, ...,~xk ∈ Rn and a1, ...,ak ∈ R.

Then if~y = a1~x1 +a2~x2 + ...+ak~xk, it follows that

T (~y) = T (a1~x1 +a2~x2 + ...+ak~xk) = a1T (~x1)+a2T (~x2)+ ...+akT (~xk).

These properties are useful in determining the action of a transformation on a given vector. Consider

the following example.

Example 5.14: Linear Combination

Let T : R3 7→ R4 be a linear transformation such that

T




1

3

1


=




4

4

0

−2


 ,T




4

0

5


=




4

5

−1

5




Find T




−7

3

−9


.

Solution. Using the third property in Theorem 9.57, we can find T




−7

3

−9


 by writing




−7

3

−9


 as a linear

combination of




1

3

1


 and




4

0

5


.

Therefore we want to find a,b ∈ R such that




−7

3

−9


= a




1

3

1


+b




4

0

5



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The necessary augmented matrix and resulting reduced row-echelon form are given by:




1 4 −7

3 0 3

1 5 −9


→ ·· · →




1 0 1

0 1 −2

0 0 0




Hence a = 1,b =−2 and 


−7

3

−9


= 1




1

3

1


+(−2)




4

0

5




Now, using the third property above, we have

T




−7

3

−9


 = T


1




1

3

1


+(−2)




4

0

5






= 1T




1

3

1


−2T




4

0

5




=




4

4

0

−2


−2




4

5

−1

5




=




−4

−6

2

−12




Therefore, T




−7

3

−9


=




−4

−6

2

−12


. ♠

Suppose two linear transformations act in the same way on ~x for all vectors. Then we say that these

transformations are equal.

Definition 5.15: Equal Transformations

Let S and T be linear transformations from Rn to Rm. Then S = T if and only if for every~x ∈ Rn,

S (~x) = T (~x)

Suppose two linear transformations act on the same vector ~x, first the transformation T and then a

second transformation given by S. We can find the composite transformation that results from applying

both transformations.
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Definition 5.16: Composition of Linear Transformations

Let T : Rk 7→ Rn and S : Rn 7→ Rm be linear transformations. Then the composite of S and T is

S ◦T : Rk 7→Rm

The action of S ◦T is given by

(S ◦T )(~x) = S(T (~x)) for all~x ∈ Rk

Notice that the resulting vector will be in Rm. Be careful to observe the order of transformations. We

write S ◦T but apply the transformation T first, followed by S.

Theorem 5.17: Composition of Transformations

Let T : Rk 7→ Rn and S : Rn 7→ Rm be linear transformations such that T is induced by the matrix

A and S is induced by the matrix B. Then S ◦T is a linear transformation which is induced by the

matrix BA.

Consider the following example.

Example 5.18: Composition of Transformations

Let T be a linear transformation induced by the matrix

A =

[
1 2

2 0

]

and S a linear transformation induced by the matrix

B =

[
2 3

0 1

]

Find the matrix of the composite transformation S ◦T . Then, find (S ◦T )(~x) for~x =

[
1

4

]
.

Solution. By Theorem 5.17, the matrix of S ◦T is given by BA.

BA =

[
2 3

0 1

][
1 2

2 0

]
=

[
8 4

2 0

]

To find (S ◦T )(~x), multiply~x by BA as follows
[

8 4

2 0

][
1

4

]
=

[
24

2

]

To check, first determine T (~x): [
1 2

2 0

][
1

4

]
=

[
9

2

]
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Then, compute S(T (~x)) as follows:
[

2 3

0 1

][
9

2

]
=

[
24

2

]

♠
Consider a composite transformation S ◦T , and suppose that this transformation acted such that (S ◦

T )(~x) =~x. That is, the transformation S took the vector T (~x) and returned it to~x. In this case, S and T are

inverses of each other. Consider the following definition.

Definition 5.19: Inverse of a Transformation

Let T : Rn 7→ Rn and S : Rn 7→ Rn be linear transformations. Suppose that for each~x ∈ Rn,

(S ◦T )(~x) =~x

and

(T ◦S)(~x) =~x

Then, S is called an inverse of T and T is called an inverse of S. Geometrically, they reverse the

action of each other.

The following theorem is crucial, as it claims that the above inverse transformations are unique.

Theorem 5.20: Inverse of a Transformation

Let T : Rn 7→ Rn be a linear transformation induced by the matrix A. Then T has an inverse trans-

formation if and only if the matrix A is invertible. In this case, the inverse transformation is unique

and denoted T−1 : Rn 7→ Rn. T−1 is induced by the matrix A−1.

Consider the following example.

Example 5.21: Inverse of a Transformation

Let T : R2 7→ R2 be a linear transformation induced by the matrix

A =

[
2 3

3 4

]

Show that T−1 exists and find the matrix B which it is induced by.

Solution. Since the matrix A is invertible, it follows that the transformation T is invertible. Therefore, T−1

exists.

You can verify that A−1 is given by:

A−1 =

[
−4 3

3 −2

]

Therefore the linear transformation T−1 is induced by the matrix A−1. ♠
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Exercises

Exercise 5.3.1 Show that if a function T : Rn →Rm is linear, then it is always the case that T
(
~0
)
=~0.

Exercise 5.3.2 Let T be a linear transformation induced by the matrix A =

[
3 1

−1 2

]
and S a linear

transformation induced by B =

[
0 −2

4 2

]
. Find matrix of S ◦T and find (S ◦T )(~x) for~x =

[
2

−1

]
.

Exercise 5.3.3 Let T be a linear transformation and suppose T

([
1

−4

])
=

[
2

−3

]
. Suppose S is a

linear transformation induced by the matrix B =

[
1 2

−1 3

]
. Find (S ◦T )(~x) for~x =

[
1

−4

]
.

Exercise 5.3.4 Let T be a linear transformation induced by the matrix A =

[
2 3

1 1

]
and S a linear

transformation induced by B =

[
−1 3

1 −2

]
. Find matrix of S ◦T and find (S ◦T )(~x) for~x =

[
5

6

]
.

Exercise 5.3.5 Let T be a linear transformation induced by the matrix A =

[
2 1

5 2

]
. Find the matrix of

T−1.

Exercise 5.3.6 Let T be a linear transformation induced by the matrix A =

[
4 −3

2 −2

]
. Find the matrix

of T−1.

Exercise 5.3.7 Let T be a linear transformation and suppose T

([
1

2

])
=

[
9

8

]
, T

([
0

−1

])
=

[
−4

−3

]
. Find the matrix of T−1.

5.4 Special Linear Transformations in R2

Outcomes

A. Find the matrix of rotations and reflections in R2 and determine the action of each on a vector

in R2.

In this section, we will examine some special examples of linear transformations in R2 including rota-

tions and reflections. We will use the geometric descriptions of vector addition and scalar multiplication

discussed earlier to show that a rotation of vectors through an angle and reflection of a vector across a line

are examples of linear transformations.
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More generally, denote a transformation given by a rotation by T . Why is such a transformation linear?

Consider the following picture which illustrates a rotation. Let ~u,~v denote vectors.

~u

~v

~u+~v~v

T (~u)

T (~u)+T (~v)

T (~v)

T (~v)

Let’s consider how to obtain T (~u+~v). Simply, you add T (~u) and T (~v). Here is why. If you add

T (~u) to T (~v) you get the diagonal of the parallelogram determined by T (~u) and T (~v), as this action is our

usual vector addition. Now, suppose we first add ~u and ~v, and then apply the transformation T to ~u+~v.

Hence, we find T (~u+~v). As shown in the diagram, this will result in the same vector. In other words,

T (~u+~v) = T (~u)+T (~v).

This is because the rotation preserves all angles between the vectors as well as their lengths. In par-

ticular, it preserves the shape of this parallelogram. Thus both T (~u)+T (~v) and T (~u+~v) give the same

vector. It follows that T distributes across addition of the vectors of R2.

Similarly, if k is a scalar, it follows that T (k~u) = kT (~u). Thus rotations are an example of a linear

transformation by Definition 9.55.

The following theorem gives the matrix of a linear transformation which rotates all vectors through an

angle of θ .

Theorem 5.22: Rotation

Let Rθ : R2 → R2 be a linear transformation given by rotating vectors through an angle of θ . Then

the matrix A of Rθ is given by [
cos(θ) −sin(θ)
sin(θ) cos(θ)

]

Proof. Let~e1 =

[
1

0

]
and~e2 =

[
0

1

]
. These identify the geometric vectors which point along the positive

x axis and positive y axis as shown.

~e1

~e2

Rθ (~e1)

Rθ (~e2)

(cos(θ),sin(θ))
(−sin(θ),cos(θ))

θ
θ
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From Theorem 5.6, we need to find Rθ (~e1) and Rθ (~e2), and use these as the columns of the matrix A

of T . We can use cos, sin of the angle θ to find the coordinates of Rθ (~e1) as shown in the above picture.

The coordinates of Rθ (~e2) also follow from trigonometry. Thus

Rθ (~e1) =

[
cosθ
sinθ

]
,Rθ (~e2) =

[
−sinθ

cosθ

]

Therefore, from Theorem 5.6,

A =

[
cosθ −sinθ
sinθ cosθ

]

We can also prove this algebraically without the use of the above picture. The definition of (cos(θ) , sin(θ))
is as the coordinates of the point of Rθ (~e1). Now the point of the vector~e2 is exactly π/2 further along the

unit circle from the point of~e1, and therefore after rotation through an angle of θ the coordinates x and y

of the point of Rθ (~e2) are given by

(x,y) = (cos(θ +π/2) , sin(θ +π/2)) = (−sinθ , cosθ)

♠

Consider the following example.

Example 5.23: Rotation in R2

Let R π
2

: R2 → R2 denote rotation through π/2. Find the matrix of R π
2
. Then, find R π

2
(~x) where

~x =

[
1

−2

]
.

Solution. By Theorem 5.22, the matrix of R π
2

is given by

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
=

[
cos(π/2) −sin(π/2)
sin(π/2) cos(π/2)

]
=

[
0 −1

1 0

]

To find R π
2
(~x), we multiply the matrix of R π

2
by~x as follows

[
0 −1

1 0

][
1

−2

]
=

[
2

1

]

♠

We now look at an example of a linear transformation involving two angles.

Example 5.24: The Rotation Matrix of the Sum of Two Angles

Find the matrix of the linear transformation which is obtained by first rotating all vectors through an

angle of φ and then through an angle θ . Hence the linear transformation rotates all vectors through

an angle of θ +φ .
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Solution. Let Rθ+φ denote the linear transformation which rotates every vector through an angle of θ +φ .

Then to obtain Rθ+φ , we first apply Rφ and then Rθ where Rφ is the linear transformation which rotates

through an angle of φ and Rθ is the linear transformation which rotates through an angle of θ . Denoting

the corresponding matrices by Aθ+φ , Aφ , and Aθ , it follows that for every~u

Rθ+φ (~u) = Aθ+φ~u = Aθ Aφ~u = Rθ Rφ (~u)

Notice the order of the matrices here!

Consequently, you must have

Aθ+φ =

[
cos(θ +φ) −sin(θ +φ)
sin(θ +φ) cos(θ +φ)

]

=

[
cosθ −sinθ
sinθ cosθ

][
cosφ −sinφ
sinφ cosφ

]
= Aθ Aφ

The usual matrix multiplication yields

Aθ+φ =

[
cos(θ +φ) −sin(θ +φ)
sin(θ +φ) cos(θ +φ)

]

=

[
cosθ cosφ − sinθ sinφ −cosθ sinφ − sinθ cosφ
sinθ cosφ + cosθ sinφ cosθ cosφ − sinθ sinφ

]

= Aθ Aφ

Don’t these look familiar? They are the usual trigonometric identities for the sum of two angles derived

here using linear algebra concepts.

♠

Here we have focused on rotations in two dimensions. However, you can consider rotations and other

geometric concepts in any number of dimensions. This is one of the major advantages of linear algebra.

You can break down a difficult geometrical procedure into small steps, each corresponding to multiplica-

tion by an appropriate matrix. Then by multiplying the matrices, you can obtain a single matrix which can

give you numerical information on the results of applying the given sequence of simple procedures.

Linear transformations which reflect vectors across a line are a second important type of transforma-

tions in R2. Consider the following theorem.

Theorem 5.25: Reflection

Let Qm : R2 →R2 be a linear transformation given by reflecting vectors over the line~y = m~x. Then

the matrix of Qm is given by
1

1+m2

[
1−m2 2m

2m m2 −1

]

Consider the following example.
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Example 5.26: Reflection in R2

Let Q2 : R2 → R2 denote reflection over the line~y = 2~x. Then Q2 is a linear transformation. Find

the matrix of Q2. Then, find Q2(~x) where~x =

[
1

−2

]
.

Solution. By Theorem 5.25, the matrix of Q2 is given by

1

1+m2

[
1−m2 2m

2m m2 −1

]
=

1

1+(2)2

[
1− (2)2 2(2)

2(2) (2)2−1

]
=

1

5

[
−3 8

8 3

]

To find Q2(~x) we multiply~x by the matrix of Q2 as follows:

1

5

[
−3 8

8 3

][
1

−2

]
=

[
−19

5
2
5

]

♠

Consider the following example which incorporates a reflection as well as a rotation of vectors.

Example 5.27: Rotation Followed by a Reflection

Find the matrix of the linear transformation which is obtained by first rotating all vectors through

an angle of π/6 and then reflecting through the x axis.

Solution. By Theorem 5.22, the matrix of the transformation which involves rotating through an angle of

π/6 is
[

cos(π/6) −sin(π/6)
sin(π/6) cos(π/6)

]
=




1
2

√
3 −1

2

1
2

1
2

√
3




Reflecting across the x axis is the same action as reflecting vectors over the line ~y = m~x with m = 0.

By Theorem 5.25, the matrix for the transformation which reflects all vectors through the x axis is

1

1+m2

[
1−m2 2m

2m m2 −1

]
=

1

1+(0)2

[
1− (0)2 2(0)

2(0) (0)2 −1

]
=

[
1 0

0 −1

]

Therefore, the matrix of the linear transformation which first rotates through π/6 and then reflects

through the x axis is given by

[
1 0

0 −1

]


1
2

√
3 −1

2

1
2

1
2

√
3


=




1
2

√
3 −1

2

−1
2

−1
2

√
3




♠
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Exercises

Exercise 5.4.1 Find the matrix for the linear transformation which rotates every vector in R2 through an

angle of π/3.

Exercise 5.4.2 Find the matrix for the linear transformation which rotates every vector in R2 through an

angle of π/4.

Exercise 5.4.3 Find the matrix for the linear transformation which rotates every vector in R2 through an

angle of −π/3.

Exercise 5.4.4 Find the matrix for the linear transformation which rotates every vector in R2 through an

angle of 2π/3.

Exercise 5.4.5 Find the matrix for the linear transformation which rotates every vector in R2 through an

angle of π/12. Hint: Note that π/12 = π/3−π/4.

Exercise 5.4.6 Find the matrix for the linear transformation which rotates every vector in R2 through an

angle of 2π/3 and then reflects across the x axis.

Exercise 5.4.7 Find the matrix for the linear transformation which rotates every vector in R2 through an

angle of π/3 and then reflects across the x axis.

Exercise 5.4.8 Find the matrix for the linear transformation which rotates every vector in R2 through an

angle of π/4 and then reflects across the x axis.

Exercise 5.4.9 Find the matrix for the linear transformation which rotates every vector in R2 through an

angle of π/6 and then reflects across the x axis followed by a reflection across the y axis.

Exercise 5.4.10 Find the matrix for the linear transformation which reflects every vector in R2 across the

x axis and then rotates every vector through an angle of π/4.

Exercise 5.4.11 Find the matrix for the linear transformation which reflects every vector in R2 across the

y axis and then rotates every vector through an angle of π/4.

Exercise 5.4.12 Find the matrix for the linear transformation which reflects every vector in R2 across the

x axis and then rotates every vector through an angle of π/6.

Exercise 5.4.13 Find the matrix for the linear transformation which reflects every vector in R2 across the

y axis and then rotates every vector through an angle of π/6.

Exercise 5.4.14 Find the matrix for the linear transformation which rotates every vector in R2 through

an angle of 5π/12. Hint: Note that 5π/12 = 2π/3−π/4.
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Exercise 5.4.15 Find the matrix of the linear transformation which rotates every vector in R3 counter

clockwise about the z axis when viewed from the positive z axis through an angle of 30◦ and then reflects

through the xy plane.

Exercise 5.4.16 Let ~u =

[
a

b

]
be a unit vector in R2. Find the matrix which reflects all vectors across

this vector, as shown in the following picture.

~u

Hint: Notice that

[
a

b

]
=

[
cosθ
sinθ

]
for some θ . First rotate through −θ . Next reflect through the x

axis. Finally rotate through θ .

5.5 One to One and Onto Transformations

Outcomes

A. Determine if a linear transformation is onto or one to one.

Let T : Rn 7→ Rm be a linear transformation. We define the range or image of T as the set of vectors

of Rm which are of the form T (~x) (equivalently, A~x) for some~x ∈ Rn. It is common to write TRn, T (Rn),
or Im(T ) to denote these vectors.

Lemma 5.28: Range of a Matrix Transformation

Let A be an m×n matrix where A1, · · · ,An denote the columns of A. Then, for a vector~x =




x1
...

xn




in Rn,

A~x =
n

∑
k=1

xkAk

Therefore, A(Rn) is the collection of all linear combinations of these products.

Proof. This follows from the definition of matrix multiplication. ♠

This section is devoted to studying two important characterizations of linear transformations, called

one to one and onto. We define them now.
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Definition 5.29: One to One

Suppose ~x1 and ~x2 are vectors in Rn. A linear transformation T : Rn 7→ Rm is called one to one

(often written as 1−1) if whenever~x1 6=~x2 it follows that :

T (~x1) 6= T (~x2)

Equivalently, if T (~x1) = T (~x2) , then ~x1 =~x2. Thus, T is one to one if it never takes two different

vectors to the same vector.

The second important characterization is called onto.

Definition 5.30: Onto

Let T : Rn 7→Rm be a linear transformation. Then T is called onto if whenever~x2 ∈Rm there exists

~x1 ∈ Rn such that T (~x1) =~x2.

We often call a linear transformation which is one-to-one an injection. Similarly, a linear transforma-

tion which is onto is often called a surjection.

The following proposition is an important result.

Proposition 5.31: One to One

Let T : Rn 7→ Rm be a linear transformation. Then T is one to one if and only if T (~x) =~0 implies

~x =~0.

Proof. We need to prove two things here. First, we will prove that if T is one to one, then T (~x) =~0 implies

that~x =~0. Second, we will show that if T (~x) =~0 implies that~x =~0, then it follows that T is one to one.

Recall that a linear transformation has the property that T (~0) =~0.

Suppose first that T is one to one and consider T (~0).

T (~0) = T
(
~0+~0

)
= T (~0)+T (~0)

and so, adding the additive inverse of T (~0) to both sides, one sees that T (~0) =~0. If T (~x) =~0 it must be

the case that~x =~0 because it was just shown that T (~0) =~0 and T is assumed to be one to one.

Now assume that if T (~x) =~0, then it follows that~x =~0. If T (~v) = T (~u), then

T (~v)−T (~u) = T (~v−~u) =~0

which shows that~v−~u = 0. In other words,~v =~u, and T is one to one. ♠

Note that this proposition says that if A =
[

A1 · · · An

]
then A is one to one if and only if whenever

0 =
n

∑
k=1

ckAk

it follows that each scalar ck = 0.
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We will now take a look at an example of a one to one and onto linear transformation.

Example 5.32: A One to One and Onto Linear Transformation

Suppose

T

[
x

y

]
=

[
1 1

1 2

][
x

y

]

Then, T : R2 → R2 is a linear transformation. Is T onto? Is it one to one?

Solution. Recall that because T can be expressed as matrix multiplication, we know that T is a linear

transformation. We will start by looking at onto. So suppose

[
a

b

]
∈ R2. Does there exist

[
x

y

]
∈ R2

such that T

[
x

y

]
=

[
a

b

]
? If so, then since

[
a

b

]
is an arbitrary vector in R2, it will follow that T is onto.

This question is familiar to you. It is asking whether there is a solution to the equation

[
1 1

1 2

][
x

y

]
=

[
a

b

]

This is the same thing as asking for a solution to the following system of equations.

x+ y = a

x+2y = b

Set up the augmented matrix and row reduce.

[
1 1 a

1 2 b

]
→
[

1 0 2a−b

0 1 b−a

]
(5.4)

You can see from this point that the system has a solution. Therefore, we have shown that for any a,b,

there is a

[
x

y

]
such that T

[
x

y

]
=

[
a

b

]
. Thus T is onto.

Now we want to know if T is one to one. By Proposition 5.31 it is enough to show that A~x =~0 implies

~x =~0. Consider the system A~x =~0 given by:

[
1 1

1 2

][
x

y

]
=

[
0

0

]

This is the same as the system given by

x+ y = 0

x+2y = 0

We need to show that the solution to this system is x = 0 and y = 0. By setting up the augmented

matrix and row reducing, we end up with [
1 0 0

0 1 0

]
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This tells us that x = 0 and y = 0. Returning to the original system, this says that if

[
1 1

1 2

][
x

y

]
=

[
0

0

]

then [
x

y

]
=

[
0

0

]

In other words, A~x =~0 implies that~x =~0. By Proposition 5.31, A is one to one, and so T is also one to

one.

We also could have seen that T is one to one from our above solution for onto. By looking at the matrix

given by 5.4, you can see that there is a unique solution given by x = 2a− b and y = b− a. Therefore,

there is only one vector, specifically

[
x

y

]
=

[
2a−b

b−a

]
such that T

[
x

y

]
=

[
a

b

]
. Hence by Definition

5.29, T is one to one. ♠

Example 5.33: An Onto Transformation

Let T : R4 7→ R2 be a linear transformation defined by

T




a

b

c

d


=

[
a+d

b+ c

]
for all




a

b

c

d


 ∈ R4

Prove that T is onto but not one to one.

Solution. You can prove that T is in fact linear.

To show that T is onto, let

[
x

y

]
be an arbitrary vector in R2. Taking the vector




x

y

0

0


 ∈ R4 we have

T




x

y

0

0


=

[
x+0

y+0

]
=

[
x

y

]

This shows that T is onto.

By Proposition 5.31 T is one to one if and only if T (~x) =~0 implies that~x =~0. Observe that

T




1

0

0

−1


=

[
1+−1

0+0

]
=

[
0

0

]

There exists a nonzero vector~x in R4 such that T (~x) =~0. It follows that T is not one to one. ♠
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The above examples demonstrate a method to determine if a linear transformation T is one to one or

onto. It turns out that the matrix A of T can provide this information.

Theorem 5.34: Matrix of a One to One or Onto Transformation

Let T : Rn 7→ Rm be a linear transformation induced by the m×n matrix A. Then T is one to one if

and only if the rank of A is n. T is onto if and only if the rank of A is m.

Consider Example 5.33. Above we showed that T was onto but not one to one. We can now use this

theorem to determine this fact about T .

Example 5.35: An Onto Transformation

Let T : R4 7→ R2 be a linear transformation defined by

T




a

b

c

d


=

[
a+d

b+ c

]
for all




a

b

c

d


 ∈ R4

Prove that T is onto but not one to one.

Solution. Using Theorem 5.34 we can show that T is onto but not one to one from the matrix of T . Recall

that to find the matrix A of T , we apply T to each of the standard basis vectors~ei of R4. The result is the

2×4 matrix A given by

A =

[
1 0 0 1

0 1 1 0

]

Fortunately, this matrix is already in reduced row-echelon form. The rank of A is 2. Therefore by the

above theorem T is onto but not one to one. ♠

Recall that if S and T are linear transformations, we can discuss their composite denoted S ◦T . The

following examines what happens if both S and T are onto.

Example 5.36: Composite of Onto Transformations

Let T : Rk 7→ Rn and S : Rn 7→Rm be linear transformations. If T and S are onto, then S◦T is onto.

Solution. Let~z ∈ Rm. Since S is onto, there exists a vector~y ∈ Rn such that S(~y) =~z. Furthermore, since

T is onto, there exists a vector~x ∈ Rk such that T (~x) =~y. Thus

~z = S(~y) = S(T (~x)) = (ST )(~x),

showing that for each~z ∈ Rm there exists and~x ∈ Rk such that (ST )(~x) =~z. Therefore, S ◦T is onto. ♠

The next example shows the same concept with regards to one-to-one transformations.
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Example 5.37: Composite of One to One Transformations

Let T : Rk 7→ Rn and S : Rn 7→ Rm be linear transformations. Prove that if T and S are one to one,

then S ◦T is one-to-one.

Solution. To prove that S ◦ T is one to one, we need to show that if S(T (~v)) =~0 it follows that ~v =~0.

Suppose that S(T (~v)) =~0. Since S is one to one, it follows that T (~v) =~0. Similarly, since T is one to one,

it follows that~v =~0. Hence S ◦T is one to one. ♠

Exercises

Exercise 5.5.1 Let T be a linear transformation given by

T

[
x

y

]
=

[
2 1

0 1

][
x

y

]

Is T one to one? Is T onto?

Exercise 5.5.2 Let T be a linear transformation given by

T

[
x

y

]
=




−1 2

2 1

1 4



[

x

y

]

Is T one to one? Is T onto?

Exercise 5.5.3 Let T be a linear transformation given by

T




x

y

z


=

[
2 0 1

1 2 −1

]


x

y

z




Is T one to one? Is T onto?

Exercise 5.5.4 Let T be a linear transformation given by

T




x

y

z


=




1 3 −5

2 0 2

2 4 −6






x

y

z




Is T one to one? Is T onto?

Exercise 5.5.5 Give an example of a 3×2 matrix with the property that the linear transformation deter-

mined by this matrix is one to one but not onto.

Exercise 5.5.6 Suppose A is an m×n matrix in which m ≤ n. Suppose also that the rank of A equals m.

Show that the transformation T determined by A maps Rn onto Rm. Hint: The vectors~e1, · · · ,~em occur as

columns in the reduced row-echelon form for A.
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Exercise 5.5.7 Suppose A is an m×n matrix in which m ≥ n. Suppose also that the rank of A equals n.

Show that A is one to one. Hint: If not, there exists a vector,~x such that A~x = 0, and this implies at least

one column of A is a linear combination of the others. Show this would require the rank to be less than n.

Exercise 5.5.8 Explain why an n×n matrix A is both one to one and onto if and only if its rank is n.

5.6 Isomorphisms

Outcomes

A. Determine if a linear transformation is an isomorphism.

B. Determine if two subspaces of Rn are isomorphic.

Recall the definition of a linear transformation. Let V and W be two subspaces of Rn and Rm respec-

tively. A mapping T : V →W is called a linear transformation or linear map if it preserves the algebraic

operations of addition and scalar multiplication. Specifically, if a,b are scalars and~x,~y are vectors,

T (a~x+b~y) = aT (~x)+bT (~y)

Consider the following important definition.

Definition 5.38: Isomorphism

A linear map T is called an isomorphism if the following two conditions are satisfied.

• T is one to one. That is, if T (~x) = T (~y), then~x =~y.

• T is onto. That is, if ~w ∈W , there exists~v ∈V such that T (~v) = ~w.

Two such subspaces which have an isomorphism as described above are said to be isomorphic.

Consider the following example of an isomorphism.

Example 5.39: Isomorphism

Let T : R2 7→ R2 be defined by

T

[
x

y

]
=

[
x+ y

x− y

]

Show that T is an isomorphism.

Solution. To prove that T is an isomorphism we must show

1. T is a linear transformation;
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2. T is one to one;

3. T is onto.

We proceed as follows.

1. T is a linear transformation:

Let k, p be scalars.

T

(
k

[
x1

y1

]
+ p

[
x2

y2

])
= T

([
kx1

ky1

]
+

[
px2

py2

])

= T

([
kx1 + px2

ky1 + py2

])

=

[
(kx1 + px2)+(ky1+ py2)
(kx1 + px2)− (ky1+ py2)

]

=

[
(kx1 + ky1)+(px2 + py2)
(kx1 − ky1)+(px2 − py2)

]

=

[
kx1 + ky1

kx1 − ky1

]
+

[
px2 + py2

px2 − py2

]

= k

[
x1 + y1

x1 − y1

]
+ p

[
x2 + y2

x2 − y2

]

= kT

([
x1

y1

])
+ pT

([
x2

y2

])

Therefore T is linear.

2. T is one to one:

We need to show that if T (~x) =~0 for a vector~x ∈ R2, then it follows that~x =~0. Let~x =

[
x

y

]
.

T

([
x

y

])
=

[
x+ y

x− y

]
=

[
0

0

]

This provides a system of equations given by

x+ y = 0

x− y = 0

You can verify that the solution to this system if x = y = 0. Therefore

~x =

[
x

y

]
=

[
0

0

]

and T is one to one.
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3. T is onto:

Let a,b be scalars. We want to check if there is always a solution to

T

([
x

y

])
=

[
x+ y

x− y

]
=

[
a

b

]

This can be represented as the system of equations

x+ y = a

x− y = b

Setting up the augmented matrix and row reducing gives

[
1 1 a

1 −1 b

]
→ ·· · →

[
1 0 a+b

2

0 1 a−b
2

]

This has a solution for all a,b and therefore T is onto.

Therefore T is an isomorphism. ♠

An important property of isomorphisms is that its inverse is also an isomorphism.

Proposition 5.40: Inverse of an Isomorphism

Let T : V → W be an isomorphism and V ,W be subspaces of Rn. Then T−1 : W → V is also an

isomorphism.

Proof. Let T be an isomorphism. Since T is onto, a typical vector in W is of the form T (~v) where~v ∈ V .

Consider then for a,b scalars,

T−1 (aT (~v1)+bT (~v2))

where~v1,~v2 ∈V . Is this equal to

aT−1 (T (~v1))+bT−1 (T (~v2)) = a~v1 +b~v2?

Since T is one to one, this will be so if

T (a~v1 +b~v2) = T
(
T−1 (aT (~v1)+bT (~v2))

)
= aT (~v1)+bT (~v2).

However, the above statement is just the condition that T is a linear map. Thus T−1 is indeed a linear map.

If~v ∈V is given, then~v = T−1 (T (~v)) and so T−1 is onto. If T−1(~v) = 0, then

~v = T
(
T−1(~v)

)
= T (~0) =~0

and so T−1 is one to one. ♠

Another important result is that the composition of multiple isomorphisms is also an isomorphism.
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Proposition 5.41: Composition of Isomorphisms

Let T : V → W and S : W → Z be isomorphisms where V ,W ,Z are subspaces of Rn. Then S ◦T

defined by (S ◦T )(~v) = S (T (~v)) is also an isomorphism.

Proof. Suppose T : V →W and S : W → Z are isomorphisms. Why is S ◦T a linear map? For a,b scalars,

S ◦T (a~v1 +b(~v2)) = S (T (a~v1 +b~v2)) = S (aT~v1 +bT~v2)

= aS (T~v1)+bS (T~v2) = a(S ◦T )(~v1)+b(S ◦T )(~v2)

Hence S ◦T is a linear map. If (S ◦T )(~v) =~0, then S (T (~v)) =~0 and it follows that T (~v) =~0 and hence

by this lemma again,~v =~0. Thus S ◦T is one to one. It remains to verify that it is onto. Let~z ∈ Z. Then

since S is onto, there exists ~w ∈W such that S(~w) =~z. Also, since T is onto, there exists~v ∈ V such that

T (~v) = ~w. It follows that S (T (~v)) =~z and so S ◦T is also onto. ♠
Consider two subspaces V and W , and suppose there exists an isomorphism mapping one to the other.

In this way the two subspaces are related, which we can write as V ∼ W . Then the previous two propo-

sitions together claim that ∼ is an equivalence relation. That is: ∼ satisfies the following conditions:

• V ∼V

• If V ∼W , it follows that W ∼V

• If V ∼W and W ∼ Z, then V ∼ Z

We leave the verification of these conditions as an exercise.

Consider the following example.

Example 5.42: Matrix Isomorphism

Let T : Rn → Rn be defined by T (~x) = A(~x) where A is an invertible n× n matrix. Then T is an

isomorphism.

Solution. The reason for this is that, since A is invertible, the only vector it sends to~0 is the zero vector.

Hence if A(~x)=A(~y), then A(~x−~y) =~0 and so~x=~y. It is onto because if~y∈Rn,A
(
A−1(~y)

)
=
(
AA−1

)
(~y)

=~y. ♠
In fact, all isomorphisms from Rn to Rn can be expressed as T (~x) = A(~x) where A is an invertible n×n

matrix. One simply considers the matrix whose ith column is T~ei.

Recall that a basis of a subspace V is a set of linearly independent vectors which span V . The following

fundamental lemma describes the relation between bases and isomorphisms.

Lemma 5.43: Mapping Bases

Let T : V →W be a linear transformation where V ,W are subspaces of Rn. If T is one to one, then

it has the property that if {~u1, · · · ,~uk} is linearly independent, so is {T (~u1), · · · ,T (~uk)}.

More generally, T is an isomorphism if and only if whenever {~v1, · · · ,~vn} is a basis for V , it follows

that {T (~v1), · · · ,T (~vn)} is a basis for W .
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Proof. First suppose that T is a linear transformation and is one to one and {~u1, · · · ,~uk} is linearly inde-

pendent. It is required to show that {T (~u1), · · · ,T (~uk)} is also linearly independent. Suppose then that

k

∑
i=1

ciT (~ui) =~0

Then, since T is linear,

T

(
n

∑
i=1

ci~ui

)
=~0

Since T is one to one, it follows that
n

∑
i=1

ci~ui = 0

Now the fact that {~u1, · · · ,~un} is linearly independent implies that each ci = 0. Hence {T (~u1), · · · ,T (~un)}
is linearly independent.

Now suppose that T is an isomorphism and {~v1, · · · ,~vn} is a basis for V . It was just shown that

{T (~v1), · · · ,T (~vn)} is linearly independent. It remains to verify that span{T (~v1), · · · ,T (~vn)} = W . If

~w ∈W , then since T is onto there exists~v ∈V such that T (~v) = ~w. Since {~v1, · · · ,~vn} is a basis, it follows

that there exists scalars {ci}n
i=1 such that

n

∑
i=1

ci~vi =~v.

Hence,

~w = T (~v) = T

(
n

∑
i=1

ci~vi

)
=

n

∑
i=1

ciT (~vi)

It follows that span{T (~v1), · · · ,T (~vn)}=W showing that this set of vectors is a basis for W .

Next suppose that T is a linear transformation which takes a basis to a basis. This means that if

{~v1, · · · ,~vn} is a basis for V , it follows {T (~v1), · · · ,T (~vn)} is a basis for W . Then if w ∈ W , there exist

scalars ci such that w = ∑n
i=1 ciT (~vi) = T (∑n

i=1 ci~vi) showing that T is onto. If T (∑n
i=1 ci~vi) =~0 then

∑n
i=1 ciT (~vi) =~0 and since the vectors {T (~v1), · · · ,T (~vn)} are linearly independent, it follows that each

ci = 0. Since ∑n
i=1 ci~vi is a typical vector in V , this has shown that if T (~v) =~0 then~v =~0 and so T is also

one to one. Thus T is an isomorphism. ♠

The following theorem illustrates a very useful idea for defining an isomorphism. Basically, if you

know what it does to a basis, then you can construct the isomorphism.

Theorem 5.44: Isomorphic Subspaces

Suppose V and W are two subspaces of Rn. Then the two subspaces are isomorphic if and only if

they have the same dimension. In the case that the two subspaces have the same dimension, then

for a linear map T : V →W , the following are equivalent.

1. T is one to one.

2. T is onto.

3. T is an isomorphism.
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Proof. Suppose first that these two subspaces have the same dimension. Let a basis for V be {~v1, · · · ,~vn}
and let a basis for W be {~w1, · · · ,~wn}. Now define T as follows.

T (~vi) = ~wi

for ∑n
i=1 ci~vi an arbitrary vector of V ,

T

(
n

∑
i=1

ci~vi

)
=

n

∑
i=1

ciT~vi =
n

∑
i=1

ci~wi.

It is necessary to verify that this is well defined. Suppose then that

n

∑
i=1

ci~vi =
n

∑
i=1

ĉi~vi

Then
n

∑
i=1

(ci − ĉi)~vi =~0

and since {~v1, · · · ,~vn} is a basis, ci = ĉi for each i. Hence

n

∑
i=1

ci~wi =
n

∑
i=1

ĉi~wi

and so the mapping is well defined. Also if a,b are scalars,

T

(
a

n

∑
i=1

ci~vi +b
n

∑
i=1

ĉi~vi

)
= T

(
n

∑
i=1

(aci +bĉi)~vi

)
=

n

∑
i=1

(aci +bĉi)~wi

= a
n

∑
i=1

ci~wi +b
n

∑
i=1

ĉi~wi

= aT

(
n

∑
i=1

ci~vi

)
+bT

(
n

∑
i=1

ĉi~vi

)

Thus T is a linear transformation.

Now if

T

(
n

∑
i=1

ci~vi

)
=

n

∑
i=1

ci~wi =~0,

then since the {~w1, · · · ,~wn} are independent, each ci = 0 and so ∑n
i=1 ci~vi =~0 also. Hence T is one to one.

If ∑n
i=1 ci~wi is a vector in W , then it equals

n

∑
i=1

ciT (~vi) = T

(
n

∑
i=1

ci~vi

)

showing that T is also onto. Hence T is an isomorphism and so V and W are isomorphic.

Next suppose T : V 7→ W is an isomorphism, so these two subspaces are isomorphic. Then for

{~v1, · · · ,~vn} a basis for V , it follows that a basis for W is {T (~v1), · · · ,T (~vn)} showing that the two sub-

spaces have the same dimension.
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Now suppose the two subspaces have the same dimension. Consider the three claimed equivalences.

First consider the claim that 1. ⇒ 2. If T is one to one and if {~v1, · · · ,~vn} is a basis for V , then

{T (~v1), · · · ,T (~vn)} is linearly independent. If it is not a basis, then it must fail to span W . But then

there would exist ~w /∈ span{T (~v1), · · · ,T (~vn)} and it follows that {T (~v1), · · · ,T (~vn),~w} would be linearly

independent which is impossible because there exists a basis for W of n vectors.

Hence span{T (~v1), · · · ,T (~vn)}=W and so {T (~v1), · · · ,T (~vn)} is a basis. If ~w ∈W , there exist scalars

ci such that

~w =
n

∑
i=1

ciT (~vi) = T

(
n

∑
i=1

ci~vi

)

showing that T is onto. This shows that 1. ⇒ 2.

Next consider the claim that 2. ⇒ 3. Since 2. holds, it follows that T is onto. It remains to verify that

T is one to one. Since T is onto, there exists a basis of the form {T (~vi), · · · ,T (~vn)} . Then it follows that

{~v1, · · · ,~vn} is linearly independent. Suppose

n

∑
i=1

ci~vi =~0

Then
n

∑
i=1

ciT (~vi) =~0

Hence each ci = 0 and so, {~v1, · · · ,~vn} is a basis for V . Now it follows that a typical vector in V is of the

form ∑n
i=1 ci~vi. If T (∑n

i=1 ci~vi) =~0, it follows that

n

∑
i=1

ciT (~vi) =~0

and so, since {T (~vi), · · · ,T (~vn)} is independent, it follows each ci = 0 and hence ∑n
i=1 ci~vi =~0. Thus T is

one to one as well as onto and so it is an isomorphism.

If T is an isomorphism, it is both one to one and onto by definition so 3. implies both 1. and 2. ♠

Note the interesting way of defining a linear transformation in the first part of the argument by describ-

ing what it does to a basis and then “extending it linearly” to the entire subspace.

Example 5.45: Isomorphic Subspaces

Let V = R3 and let W denote

span








1

2

1

1


 ,




0

1

0

1


 ,




1

1

2

0








Show that V and W are isomorphic.

Solution. First observe that these subspaces are both of dimension 3 and so they are isomorphic by Theo-

rem 5.44. The three vectors which span W are easily seen to be linearly independent by making them the

columns of a matrix and row reducing to the reduced row-echelon form.
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You can exhibit an isomorphism of these two spaces as follows.

T (~e1) =




1

2

1

1


 ,T (~e2) =




0

1

0

1


 ,T (~e3) =




1

1

2

0




and extend linearly. Recall that the matrix of this linear transformation is just the matrix having these

vectors as columns. Thus the matrix of this isomorphism is



1 0 1

2 1 1

1 0 2

1 1 0




You should check that multiplication on the left by this matrix does reproduce the claimed effect resulting

from an application by T . ♠

Consider the following example.

Example 5.46: Finding the Matrix of an Isomorphism

Let V = R3 and let W denote

span








1

2

1

1


 ,




0

1

0

1


 ,




1

1

2

0








Let T : V 7→W be defined as follows.

T




1

1

0


=




1

2

1

1


 ,T




0

1

1


=




0

1

0

1


 ,T




1

1

1


=




1

1

2

0




Find the matrix of this isomorphism T .

Solution. First note that the vectors 


1

1

0


 ,




0

1

1


 ,




1

1

1




are indeed a basis for R3 as can be seen by making them the columns of a matrix and using the reduced

row-echelon form.

Now recall the matrix of T is a 4×3 matrix A which gives the same effect as T . Thus, from the way

we multiply matrices,

A




1 0 1

1 1 1

0 1 1


=




1 0 1

2 1 1

1 0 2

1 1 0



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Hence,

A =




1 0 1

2 1 1

1 0 2

1 1 0







1 0 1

1 1 1

0 1 1



−1

=




1 0 0

0 2 −1

2 −1 1

−1 2 −1




Note how the span of the columns of this new matrix must be the same as the span of the vectors defining

W . ♠

This idea of defining a linear transformation by what it does on a basis works for linear maps which

are not necessarily isomorphisms.

Example 5.47: Finding the Matrix of an Isomorphism

Let V = R3 and let W denote

span








1

0

1

1


 ,




0

1

0

1


 ,




1

1

1

2








Let T : V 7→W be defined as follows.

T




1

1

0


=




1

0

1

1


 ,T




0

1

1


=




0

1

0

1


 ,T




1

1

1


=




1

1

1

2




Find the matrix of this linear transformation.

Solution. Note that in this case, the three vectors which span W are not linearly independent. Nevertheless

the above procedure will still work. The reasoning is the same as before. If A is this matrix, then

A




1 0 1

1 1 1

0 1 1


=




1 0 1

0 1 1

1 0 1

1 1 2




and so

A =




1 0 1

0 1 1

1 0 1

1 1 2







1 0 1

1 1 1

0 1 1



−1

=




1 0 0

0 0 1

1 0 0

1 0 1




The columns of this last matrix are obviously not linearly independent. ♠



302 Linear Transformations

Exercises

Exercise 5.6.1 Let V and W be subspaces of Rn and Rm respectively and let T : V → W be a linear

transformation. Suppose that {T~v1, · · · ,T~vr} is linearly independent. Show that it must be the case that

{~v1, · · · ,~vr} is also linearly independent.

Exercise 5.6.2 Let

V = span








1

1

2

0


 ,




0

1

1

1


 ,




1

1

0

1








Let T~x = A~x where A is the matrix 


1 1 1 1

0 1 1 0

0 1 2 1

1 1 1 2




Give a basis for im(T ).

Exercise 5.6.3 Let

V = span








1

0

0

1


 ,




1

1

1

1


 ,




1

4

4

1








Let T~x = A~x where A is the matrix 


1 1 1 1

0 1 1 0

0 1 2 1

1 1 1 2




Find a basis for im(T ). In this case, the original vectors do not form an independent set.

Exercise 5.6.4 If {~v1, · · · ,~vr} is linearly independent and T is a one to one linear transformation, show

that {T~v1, · · · ,T~vr} is also linearly independent. Give an example which shows that if T is only linear, it

can happen that, although {~v1, · · · ,~vr} is linearly independent, {T~v1, · · · ,T~vr} is not. In fact, show that it

can happen that each of the T~v j equals 0.

Exercise 5.6.5 Let V and W be subspaces of Rn and Rm respectively and let T : V → W be a linear

transformation. Show that if T is onto W and if {~v1, · · · ,~vr} is a basis for V , then span{T~v1, · · · ,T~vr} =
W.

Exercise 5.6.6 Define T : R4 → R3 as follows.

T~x =




3 2 1 8

2 2 −2 6

1 1 −1 3


~x

Find a basis for im(T ). Also find a basis for ker(T ) .
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Exercise 5.6.7 Define T : R3 → R3 as follows.

T~x =




1 2 0

1 1 1

0 1 1


~x

where on the right, it is just matrix multiplication of the vector ~x which is meant. Explain why T is an

isomorphism of R3 to R3.

Exercise 5.6.8 Suppose T : R3 → R3 is a linear transformation given by

T~x = A~x

where A is a 3×3 matrix. Show that T is an isomorphism if and only if A is invertible.

Exercise 5.6.9 Suppose T : Rn → Rm is a linear transformation given by

T~x = A~x

where A is an m× n matrix. Show that T is never an isomorphism if m 6= n. In particular, show that if

m > n, T cannot be onto and if m < n, then T cannot be one to one.

Exercise 5.6.10 Define T : R2 → R3 as follows.

T~x =




1 0

1 1

0 1


~x

where on the right, it is just matrix multiplication of the vector ~x which is meant. Show that T is one to

one. Next let W = im(T ) . Show that T is an isomorphism of R2 and im (T ).

Exercise 5.6.11 In the above problem, find a 2×3 matrix A such that the restriction of A to im(T ) gives

the same result as T−1 on im(T ). Hint: You might let A be such that

A




1

1

0


=

[
1

0

]
, A




0

1

1


=

[
0

1

]

now find another vector~v ∈ R3 such that








1

1

0


 ,




0

1

1


 ,~v





is a basis. You could pick

~v =




0

0

1



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for example. Explain why this one works or one of your choice works. Then you could define A~v to equal

some vector in R2. Explain why there will be more than one such matrix A which will deliver the inverse

isomorphism T−1 on im(T ).

Exercise 5.6.12 Now let V equal span








1

0

1


 ,




0

1

1





 and let T : V →W be a linear transformation

where

W = span








1

0

1

0


 ,




0

1

1

1








and

T




1

0

1


=




1

0

1

0


 ,T




0

1

1


=




0

1

1

1




Explain why T is an isomorphism. Determine a matrix A which, when multiplied on the left gives the same

result as T on V and a matrix B which delivers T−1 on W. Hint: You need to have

A




1 0

0 1

1 1


=




1 0

0 1

1 1

0 1




Now enlarge




1

0

1


 ,




0

1

1


 to obtain a basis for R3. You could add in




0

0

1


 for example, and then pick

another vector in R4 and let A




0

0

1


 equal this other vector. Then you would have

A




1 0 0

0 1 0

1 1 1


=




1 0 0

0 1 0

1 1 0

0 1 1




This would involve picking for the new vector in R4 the vector
[

0 0 0 1
]T

. Then you could find A.

You can do something similar to find a matrix for T−1 denoted as B.
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5.7 The Kernel And Image Of A Linear Map

Outcomes

A. Describe the kernel and image of a linear transformation, and find a basis for each.

In this section we will consider the case where the linear transformation is not necessarily an isomor-

phism. First consider the following important definition.

Definition 5.48: Kernel and Image

Let V and W be subspaces of Rn and let T : V 7→W be a linear transformation. Then the image of

T denoted as im(T ) is defined to be the set

im(T ) = {T (~v) :~v ∈V}

In words, it consists of all vectors in W which equal T (~v) for some~v ∈V .

The kernel of T , written ker(T ), consists of all~v ∈V such that T (~v) =~0. That is,

ker (T ) =
{
~v ∈V : T (~v) =~0

}

It follows that im(T ) and ker(T ) are subspaces of W and V respectively.

Proposition 5.49: Kernel and Image as Subspaces

Let V ,W be subspaces of Rn and let T : V → W be a linear transformation. Then ker (T ) is a

subspace of V and im(T ) is a subspace of W .

Proof. First consider ker(T ) . It is necessary to show that if ~v1,~v2 are vectors in ker(T ) and if a,b are

scalars, then a~v1 +b~v2 is also in ker(T ) . But

T (a~v1 +b~v2) = aT (~v1)+bT (~v2) = a~0+b~0 =~0

Thus ker(T ) is a subspace of V .

Next suppose T (~v1),T (~v2) are two vectors in im(T ) . Then if a,b are scalars,

aT (~v2)+bT (~v2) = T (a~v1 +b~v2)

and this last vector is in im(T ) by definition. ♠

We will now examine how to find the kernel and image of a linear transformation and describe the

basis of each.



306 Linear Transformations

Example 5.50: Kernel and Image of a Linear Transformation

Let T : R4 7→ R2 be defined by

T




a

b

c

d


=

[
a−b

c+d

]

Then T is a linear transformation. Find a basis for ker(T ) and im(T ).

Solution. You can verify that T is a linear transformation.

First we will find a basis for ker(T ). To do so, we want to find a way to describe all vectors ~x ∈ R4

such that T (~x) =~0. Let~x =




a

b

c

d


 be such a vector. Then

T




a

b

c

d


=

[
a−b

c+d

]
=

[
0

0

]

The values of a,b,c,d that make this true are given by solutions to the system

a−b = 0

c+d = 0

The solution to this system is a = s,b = s,c = t,d = −t where s, t are scalars. We can describe ker(T ) as

follows.

ker(T ) =








s

s

t

−t








= span








1

1

0

0


 ,




0

0

1

−1








Notice that this set is linearly independent and therefore forms a basis for ker(T ).

We move on to finding a basis for im(T ). We can write the image of T as

im(T ) =

{[
a−b

c+d

]}

We can write this in the form

span =

{[
1

0

]
,

[
−1

0

]
,

[
0

1

]
,

[
0

1

]}

This set is clearly not linearly independent. By removing unnecessary vectors from the set we can create

a linearly independent set with the same span. This gives a basis for im(T ) as

im(T ) = span

{[
1

0

]
,

[
0

1

]}
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♠

Recall that a linear transformation T is called one to one if and only if T (~x) =~0 implies~x =~0. Using

the concept of kernel, we can state this theorem in another way.

Theorem 5.51: One to One and Kernel

Let T be a linear transformation where ker(T ) is the kernel of T . Then T is one to one if and only

if ker(T ) consists of only the zero vector.

A major result is the relation between the dimension of the kernel and dimension of the image of a

linear transformation. In the previous example ker(T ) had dimension 2, and im(T ) also had dimension of

2. Consider the following theorem.

Theorem 5.52: Dimension of Kernel and Image

Let T : V →W be a linear transformation where V ,W are subspaces of Rn. Suppose the dimension

of V is m. Then

m = dim(ker(T ))+dim(im(T ))

Proof. From Proposition 5.49, im(T ) is a subspace of W . We know that there exists a basis for im(T ),
written {T (~v1), · · · ,T (~vr)} . Similarly, there is a basis for ker (T ) ,{~u1, · · · ,~us}. Then if~v ∈ V , there exist

scalars ci such that

T (~v) =
r

∑
i=1

ciT (~vi)

Hence T (~v−∑r
i=1 ci~vi) = 0. It follows that~v−∑r

i=1 ci~vi is in ker (T ). Hence there are scalars ai such that

~v−
r

∑
i=1

ci~vi =
s

∑
j=1

a j~u j

Hence~v = ∑r
i=1 ci~vi +∑s

j=1 a j~u j. Since~v is arbitrary, it follows that

V = span{~u1, · · · ,~us,~v1, · · · ,~vr}

If the vectors {~u1, · · · ,~us,~v1, · · · ,~vr} are linearly independent, then it will follow that this set is a basis.

Suppose then that
r

∑
i=1

ci~vi +
s

∑
j=1

a j~u j = 0

Apply T to both sides to obtain

r

∑
i=1

ciT (~vi)+
s

∑
j=1

a jT (~u) j =
r

∑
i=1

ciT (~vi) = 0
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Since {T (~v1), · · · ,T (~vr)} is linearly independent, it follows that each ci = 0. Hence ∑s
j=1 a j~u j = 0 and so,

since the {~u1, · · · ,~us} are linearly independent, it follows that each a j = 0 also. Therefore {~u1, · · · ,~us,~v1, · · · ,~vr}
is a basis for V and so

n = s+ r = dim(ker(T ))+dim(im(T ))

♠

The above theorem leads to the next corollary.

Corollary 5.53:

Let T : V →W be a linear transformation where V ,W are subspaces of Rn. Suppose the dimension

of V is m. Then

dim(ker(T ))≤ m

dim(im(T ))≤ m

This follows directly from the fact that n = dim(ker(T ))+dim(im(T )).

Consider the following example.

Example 5.54:

Let T : R2 → R3 be defined by

T (~x) =




1 0

1 0

0 1


~x

Then im(T ) =V is a subspace of R3 and T is an isomorphism of R2 and V . Find a 2×3 matrix A

such that the restriction of multiplication by A to V = im(T ) equals T−1.

Solution. Since the two columns of the above matrix are linearly independent, we conclude that dim(im(T ))=
2 and therefore dim(ker(T )) = 2−dim(im(T )) = 2−2 = 0 by Theorem 5.52. Then by Theorem 5.51 it

follows that T is one to one.

Thus T is an isomorphism of R2 and the two dimensional subspace of R3 which is the span of the

columns of the given matrix. Now in particular,

T (~e1) =




1

1

0


 , T (~e2) =




0

0

1




Thus

T−1




1

1

0


=~e1, T−1




0

0

1


=~e2

Extend T−1 to all of R3 by defining

T−1




0

1

0


=~e1



5.7. The Kernel And Image Of A Linear Map 309

Notice that the vectors 






1

1

0


 ,




0

0

1


 ,




0

1

0







are linearly independent so T−1 can be extended linearly to yield a linear transformation defined on R3.

The matrix of T−1 denoted as A needs to satisfy

A




1 0 0

1 0 1

0 1 0


=

[
1 0 1

0 1 0

]

and so

A =

[
1 0 1

0 1 0

]


1 0 0

1 0 1

0 1 0



−1

=

[
0 1 0

0 0 1

]

Note that [
0 1 0

0 0 1

]


1

1

0


=

[
1

0

]

[
0 1 0

0 0 1

]


0

0

1


=

[
0

1

]

so the restriction to V of matrix multiplication by this matrix yields T−1. ♠

Exercises

Exercise 5.7.1 Let V = R3 and let

W = span(S) , where S =








1

−1

1


 ,




−2

2

−2


 ,




−1

1

1


 ,




1

−1

3







Find a basis of W consisting of vectors in S.

Exercise 5.7.2 Let T be a linear transformation given by

T

[
x

y

]
=

[
1 1

1 1

][
x

y

]

Find a basis for ker (T ) and im(T ).

Exercise 5.7.3 Let T be a linear transformation given by

T

[
x

y

]
=

[
1 0

1 1

][
x

y

]



310 Linear Transformations

Find a basis for ker (T ) and im(T ).

Exercise 5.7.4 Let V = R3 and let

W = span








1

1

1


 ,




−1

2

−1







Extend this basis of W to a basis of V .

Exercise 5.7.5 Let T be a linear transformation given by

T




x

y

z


=

[
1 1 1

1 1 1

]


x

y

z




What is dim(ker(T ))?

5.8 The Matrix of a Linear Transformation II

Outcomes

A. Find the matrix of a linear transformation with respect to general bases.

We begin this section with an important lemma.

Lemma 5.55: Mapping of a Basis

Let T : Rn 7→ Rn be an isomorphism. Then T maps any basis of Rn to another basis for Rn.

Conversely, if T : Rn 7→ Rn is a linear transformation which maps a basis of Rn to another basis of

Rn, then it is an isomorphism.

Proof. First, suppose T : Rn 7→Rn is a linear transformation which is one to one and onto. Let {~v1, · · · ,~vn}
be a basis for Rn. We wish to show that {T (~v1), · · · ,T (~vn)} is also a basis for Rn.

First consider why it is linearly independent. Suppose ∑n
k=1 akT (~vk) =~0. Then by linearity we have

T (∑n
k=1 ak~vk) =~0 and since T is one to one, it follows that ∑n

k=1 ak~vk =~0. This requires that each ak = 0

because {~v1, · · · ,~vn} is independent, and it follows that {T (~v1), · · · ,T (~vn)} is linearly independent.

Next take ~w ∈Rn. Since T is onto, there exists~v ∈Rn such that T (~v) = ~w. Since {~v1, · · · ,~vn} is a basis,

in particular it is a spanning set and there are scalars bk such that T (∑n
k=1 bk~vk) = T (~v) = ~w. Therefore

~w = ∑n
k=1 bkT (~vk) which is in the span{T (~v1), · · · ,T (~vn)} . Therefore, {T (~v1), · · · ,T (~vn)} is a basis as

claimed.

Suppose now that T : Rn 7→ Rn is a linear transformation such that T (~vi) = ~wi where {~v1, · · · ,~vn} and

{~w1, · · · ,~wn} are two bases for Rn.
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To show that T is one to one, let T (∑n
k=1 ck~vk) =~0. Then ∑n

k=1 ckT (~vk) = ∑n
k=1 ck~wk =~0. It follows

that each ck = 0 because it is given that {~w1, · · · ,~wn} is linearly independent. Hence T (∑n
k=1 ck~vk) =~0

implies that ∑n
k=1 ck~vk =~0 and so T is one to one.

To show that T is onto, let ~w be an arbitrary vector in Rn. This vector can be written as ~w=∑n
k=1 dk~wk =

∑n
k=1 dkT (~vk) = T (∑n

k=1 dk~vk) . Therefore, T is also onto. ♠

Consider now an important definition.

Definition 5.56: Coordinate Vector

Let B = {~v1,~v2, · · · ,~vn} be a basis for Rn and let~x be an arbitrary vector in Rn. Then~x is uniquely

represented as~x = a1~v1 +a2~v2 + · · ·+an~vn for scalars a1, · · · ,an.

The coordinate vector of~x with respect to the basis B, written CB(~x) or [~x]B, is given by

CB(~x) =CB (a1~v1 +a2~v2 + · · ·+an~vn) =




a1

a2
...

an




Consider the following example.

Example 5.57: Coordinate Vector

Let B =

{[
1

0

]
,

[
−1

1

]}
be a basis of R2 and let~x =

[
3

−1

]
be a vector in R2. Find CB(~x).

Solution. First, note the order of the basis is important so label the vectors in the basis B as

B =

{[
1

0

]
,

[
−1

1

]}
= {~v1,~v2}

Now we need to find a1,a2 such that~x = a1~v1 +a2~v2, that is:

[
3

−1

]
= a1

[
1

0

]
+a2

[
−1

1

]

Solving this system gives a1 = 2,a2 = −1. Therefore the coordinate vector of~x with respect to the basis

B is

CB(~x) =

[
a1

a2

]
=

[
2

−1

]

♠

Given any basis B, one can easily verify that the coordinate function is actually an isomorphism.
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Theorem 5.58: CB is a Linear Transformation

For any basis B of Rn, the coordinate function

CB : Rn →Rn

is a linear transformation, and moreover an isomorphism.

We now discuss the main result of this section, that is how to represent a linear transformation with

respect to different bases.

Theorem 5.59: The Matrix of a Linear Transformation

Let T : Rn 7→ Rm be a linear transformation, and let B1 and B2 be bases of Rn and Rm respectively.

Then the following holds

CB2
T = MB2B1

CB1
(5.5)

where MB2B1
is a unique m×n matrix.

If the basis B1 is given by B1 = {~v1, · · · ,~vn} in this order, then

MB2B1
= [CB2

(T (~v1))CB2
(T (~v2)) · · ·CB2

(T (~vn))]

Proof. The above equation 5.5 can be represented by the following diagram.

T

Rn → Rm

CB1
↓ ◦ ↓CB2

Rn → Rm

MB2B1

Since CB1
is an isomorphism, then the matrix we are looking for is the matrix of the linear transforma-

tion

CB2
TC−1

B1
: Rn 7→ Rm.

By Theorem 5.6, the columns are given by the image of the standard basis {~e1,~e2, · · · ,~en}. But since

C−1
B1

(~ei) =~vi, we readily obtain that

MB2B1
=
[
CB2

TC−1
B1

(~e1) CB2
TC−1

B1
(~22) · · · CB2

TC−1
B1

(~en)
]

= [CB2
(T (~v1)) CB2

(T (~v2)) · · · CB2
(T (~vn))]

and this completes the proof. ♠

Consider the following example.
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Example 5.60: Matrix of a Linear Transformation

Let T : R2 7→ R2 be a linear transformation defined by T

([
a

b

])
=

[
b

a

]
.

Consider the two bases

B1 = {~v1,~v2}=
{[

1

0

]
,

[
−1

1

]}

and

B2 =

{[
1

1

]
,

[
1

−1

]}

Find the matrix MB2,B1
of T with respect to the bases B1 and B2.

Solution. By Theorem 5.59, the columns of MB2B1
are the coordinate vectors of T (~v1),T (~v2) with respect

to B2.

Since

T

([
1

0

])
=

[
0

1

]
,

a standard calculation yields

[
0

1

]
=

(
1

2

)[
1

1

]
+

(
−1

2

)[
1

−1

]
,

the first column of MB2B1
is

[
1
2

−1
2

]
.

The second column is found in a similar way. We have

T

([
−1

1

])
=

[
1

−1

]
,

and with respect to B2 calculate: [
1

−1

]
= 0

[
1

1

]
+1

[
1

−1

]

Hence the second column of MB2B1
is given by

[
0

1

]
. We thus obtain

MB2B1
=

[
1
2

0

−1
2

1

]

We can verify that this is the correct matrix MB2B1
on the specific example

~v =

[
3

−1

]

First applying T gives

T (~v) = T

([
3

−1

])
=

[
−1

3

]
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and one can compute that

CB2

([
−1

3

])
=

[
1

−2

]
.

On the other hand, one compute CB1
(~v) as

CB1

([
3

−1

])
=

[
2

−1

]
,

and finally applying MB1B2
gives

[
1
2

0

−1
2

1

][
2

−1

]
=

[
1

−2

]

as above.

We see that the same vector results from either method, as suggested by Theorem 5.59. ♠

If the bases B1 and B2 are equal, say B, then we write MB instead of MBB. The following example

illustrates how to compute such a matrix. Note that this is what we did earlier when we considered only

B1 = B2 to be the standard basis.

Example 5.61: Matrix of a Linear Transformation with respect to an Arbitrary Basis

Consider the basis B of R3 given by

B = {~v1,~v2,~v3}=








1

0

1


 ,




1

1

1


 ,




−1

1

0







And let T : R3 7→R3 be the linear transformation defined on B as:

T




1

0

1


=




1

−1

1


 ,T




1

1

1


=




1

2

−1


 ,T




−1

1

0


=




0

1

1




1. Find the matrix MB of T relative to the basis B.

2. Then find the usual matrix of T with respect to the standard basis of R3.

Solution.

Equation 5.5 gives CBT = MBCB, and thus MB =CBTC−1
B .

Now CB(~vi) =~ei, so the matrix of C−1
B (with respect to the standard basis) is given by

[
C−1

B (~e1) C−1
B (~e2) C−1

B (~e2)
]
=




1 1 −1

0 1 1

1 1 0



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Moreover the matrix of TC−1
B is given by

[
TC−1

B (~e1) TC−1
B (~e2) TC−1

B (~e2)
]
=




1 1 0

−1 2 1

1 −1 1




Thus
MB =CBTC−1

B = [C−1
B ]−1[TC−1

B ]

=




1 1 −1

0 1 1

1 1 0



−1


1 1 0

−1 2 1

1 −1 1




=




2 −5 1

−1 4 0

0 −2 1




Consider how this works. Let~b =




b1

b2

b3


 be an arbitrary vector in R3.

Apply C−1
B to~b to get

b1




1

0

1


+b2




1

1

1


+b3




−1

1

0




Apply T to this linear combination to obtain

b1




1

−1

1


+b2




1

2

−1


+b3




0

1

1


=




b1 +b2

−b1 +2b2 +b3

b1 −b2 +b3




Now take the matrix MB of the transformation (as found above) and multiply it by~b.



2 −5 1

−1 4 0

0 −2 1






b1

b2

b3


=




2b1 −5b2 +b3

−b1 +4b2

−2b2 +b3




Is this the coordinate vector of the above relative to the given basis? We check as follows.

(2b1 −5b2 +b3)




1

0

1


+(−b1 +4b2)




1

1

1


+(−2b2 +b3)




−1

1

0




=




b1 +b2

−b1 +2b2 +b3

b1 −b2 +b3




You see it is the same thing.

Now lets find the matrix of T with respect to the standard basis. Let A be this matrix. That is,

multiplication by A is the same as doing T . Thus

A




1 1 −1

0 1 1

1 1 0


=




1 1 0

−1 2 1

1 −1 1



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Hence

A =




1 1 0

−1 2 1

1 −1 1






1 1 −1

0 1 1

1 1 0



−1

=




0 0 1

2 3 −3

−3 −2 4




Of course this is a very different matrix than the matrix of the linear transformation with respect to the non

standard basis. ♠

Exercises

Exercise 5.8.1 Let B =

{[
2

−1

]
,

[
3

2

]}
be a basis of R2 and let ~x =

[
5

−7

]
be a vector in R2. Find

CB(~x).

Exercise 5.8.2 Let B =








1

−1

2


 ,




2

1

2


 ,




−1

0

2





 be a basis of R3 and let ~x =




5

−1

4


 be a vector

in R2. Find CB(~x).

Exercise 5.8.3 Let T : R2 7→R2 be a linear transformation defined by T

([
a

b

])
=

[
a+b

a−b

]
.

Consider the two bases

B1 = {~v1,~v2}=
{[

1

0

]
,

[
−1

1

]}

and

B2 =

{[
1

1

]
,

[
1

−1

]}

Find the matrix MB2,B1
of T with respect to the bases B1 and B2.

5.9 The General Solution of a Linear System

Outcomes

A. Use linear transformations to determine the particular solution and general solution to a sys-

tem of equations.

B. Find the kernel of a linear transformation.

Recall the definition of a linear transformation discussed above. T is a linear transformation if

whenever~x,~y are vectors and k, p are scalars,

T (k~x+ p~y) = kT (~x)+ pT (~y)

Thus linear transformations distribute across addition and pass scalars to the outside.
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It turns out that we can use linear transformations to solve linear systems of equations. Indeed given

a system of linear equations of the form A~x =~b, one may rephrase this as T (~x) =~b where T is the linear

transformation TA induced by the coefficient matrix A. With this in mind consider the following definition.

Definition 5.62: Particular Solution of a System of Equations

Suppose a linear system of equations can be written in the form

T (~x) =~b

If T (~xp) =~b, then~xp is called a particular solution of the linear system.

Recall that a system is called homogeneous if every equation in the system is equal to 0. Suppose we

represent a homogeneous system of equations by T (~x) =~0. It turns out that the~x for which T (~x) =~0 are

part of a special set called the null space of T . We may also refer to the null space as the kernel of T , and

we write ker (T ).

Consider the following definition.

Definition 5.63: Null Space or Kernel of a Linear Transformation

Let T be a linear transformation. Define

ker(T ) =
{
~x : T (~x) =~0

}

The kernel, ker (T ) consists of the set of all vectors ~x for which T (~x) =~0. This is also called the

null space of T .

We may also refer to the kernel of T as the solution space of the equation T (~x) =~0.

Consider the following example.

Example 5.64: The Kernel of the Derivative

Let d
dx

denote the linear transformation defined on f , the functions which are defined on R and have

a continuous derivative. Find ker
(

d
dx

)
.

Solution. The example asks for functions f which the property that
d f
dx

= 0. As you may know from

calculus, these functions are the constant functions. Thus ker
(

d
dx

)
is the set of constant functions. ♠

Definition 5.63 states that ker(T ) is the set of solutions to the equation,

T (~x) =~0

Since we can write T (~x) as A~x, you have been solving such equations for quite some time.

We have spent a lot of time finding solutions to systems of equations in general, as well as homo-

geneous systems. Suppose we look at a system given by A~x =~b, and consider the related homogeneous
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system. By this, we mean that we replace ~b by ~0 and look at A~x =~0. It turns out that there is a very

important relationship between the solutions of the original system and the solutions of the associated

homogeneous system. In the following theorem, we use linear transformations to denote a system of

equations. Remember that T (~x) = A~x.

Theorem 5.65: Particular Solution and General Solution

Suppose~xp is a solution to the linear system given by ,

T (~x) =~b

Then if~y is any other solution to T (~x) =~b, there exists~x0 ∈ ker (T ) such that

~y =~xp +~x0

Hence, every solution to the linear system can be written as a sum of a particular solution,~xp, and a

solution~x0 to the associated homogeneous system given by T (~x) =~0.

Proof. Consider~y−~xp =~y+(−1)~xp. Then T (~y−~xp) = T (~y)−T (~xp). Since~y and~xp are both solutions

to the system, it follows that T (~y) =~b and T (~xp) =~b.

Hence, T (~y)−T (~xp) =~b−~b=~0. Let~x0 =~y−~xp. Then, T (~x0) =~0 so~x0 is a solution to the associated

homogeneous system and so is in ker(T ). ♠

Sometimes people remember the above theorem in the following form. The solutions to the system

T (~x) =~b are given by~xp +ker(T ) where~xp is a particular solution to T (~x) =~b.

For now, we have been speaking about the kernel or null space of a linear transformation T . However,

we know that every linear transformation T is determined by some matrix A. Therefore, we can also speak

about the null space of a matrix. Consider the following example.

Example 5.66: The Null Space of a Matrix

Let

A =




1 2 3 0

2 1 1 2

4 5 7 2




Find null(A). Equivalently, find the solutions to the system of equations A~x =~0.

Solution. We are asked to find
{
~x : A~x =~0

}
. In other words we want to solve the system, A~x =~0. Let
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~x =




x

y

z

w


 . Then this amounts to solving




1 2 3 0

2 1 1 2

4 5 7 2







x

y

z

w


=




0

0

0




This is the linear system

x+2y+3z = 0

2x+ y+ z+2w = 0

4x+5y+7z+2w = 0

To solve, set up the augmented matrix and row reduce to find the reduced row-echelon form.




1 2 3 0 0

2 1 1 2 0

4 5 7 2 0


→ ·· · →




1 0 −1
3

4
3

0

0 1 5
3

−2
3

0

0 0 0 0 0




This yields x = 1
3
z− 4

3
w and y = 2

3
w− 5

3
z. Since null(A) consists of the solutions to this system, it consists

vectors of the form, 


1
3
z− 4

3
w

2
3
w− 5

3
z

z

w



= z




1
3

−5
3

1

0


+w




−4
3
2
3

0

1




♠

Consider the following example.

Example 5.67: A General Solution

The general solution of a linear system of equations is the set of all possible solutions. Find the

general solution to the linear system,




1 2 3 0

2 1 1 2

4 5 7 2







x

y

z

w


=




9

7

25




given that




x

y

z

w


=




1

1

2

1


 is one solution.
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Solution. Note the matrix of this system is the same as the matrix in Example 5.66. Therefore, from

Theorem 5.65, you will obtain all solutions to the above linear system by adding a particular solution~xp

to the solutions of the associated homogeneous system,~x. One particular solution is given above by

~xp =




x

y

z

w


=




1

1

2

1


 (5.6)

Using this particular solution along with the solutions found in Example 5.66, we obtain the following

solutions,

z




1
3

−5
3

1

0


+w




−4
3
2
3

0

1


+




1

1

2

1




Hence, any solution to the above linear system is of this form. ♠

Exercises

Exercise 5.9.1 Write the solution set of the following system as a linear combination of vectors




1 −1 2

1 −2 1

3 −4 5






x

y

z


=




0

0

0




Exercise 5.9.2 Using Problem 5.9.1 find the general solution to the following linear system.




1 −1 2

1 −2 1

3 −4 5






x

y

z


=




1

2

4




Exercise 5.9.3 Write the solution set of the following system as a linear combination of vectors




0 −1 2

1 −2 1

1 −4 5






x

y

z


=




0

0

0




Exercise 5.9.4 Using Problem 5.9.3 find the general solution to the following linear system.




0 −1 2

1 −2 1

1 −4 5






x

y

z


=




1

−1

1



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Exercise 5.9.5 Write the solution set of the following system as a linear combination of vectors.




1 −1 2

1 −2 0

3 −4 4






x

y

z


=




0

0

0




Exercise 5.9.6 Using Problem 5.9.5 find the general solution to the following linear system.




1 −1 2

1 −2 0

3 −4 4






x

y

z


=




1

2

4




Exercise 5.9.7 Write the solution set of the following system as a linear combination of vectors




0 −1 2

1 0 1

1 −2 5






x

y

z


=




0

0

0




Exercise 5.9.8 Using Problem 5.9.7 find the general solution to the following linear system.




0 −1 2

1 0 1

1 −2 5






x

y

z


=




1

−1

1




Exercise 5.9.9 Write the solution set of the following system as a linear combination of vectors




1 0 1 1

1 −1 1 0

3 −1 3 2

3 3 0 3







x

y

z

w


=




0

0

0

0




Exercise 5.9.10 Using Problem 5.9.9 find the general solution to the following linear system.




1 0 1 1

1 −1 1 0

3 −1 3 2

3 3 0 3







x

y

z

w


=




1

2

4

3



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Exercise 5.9.11 Write the solution set of the following system as a linear combination of vectors



1 1 0 1

2 1 1 2

1 0 1 1

0 0 0 0







x

y

z

w


=




0

0

0

0




Exercise 5.9.12 Using Problem 5.9.11 find the general solution to the following linear system.



1 1 0 1

2 1 1 2

1 0 1 1

0 −1 1 1







x

y

z

w

r


=




2

−1

−3

0




Exercise 5.9.13 Write the solution set of the following system as a linear combination of vectors



1 1 0 1

1 −1 1 0

3 1 1 2

3 3 0 3







x

y

z

w


=




0

0

0

0




Exercise 5.9.14 Using Problem 5.9.13 find the general solution to the following linear system.



1 1 0 1

1 −1 1 0

3 1 1 2

3 3 0 3







x

y

z

w


=




1

2

4

3




Exercise 5.9.15 Write the solution set of the following system as a linear combination of vectors



1 1 0 1

2 1 1 2

1 0 1 1

0 −1 1 1







x

y

z

w


=




0

0

0

0




Exercise 5.9.16 Using Problem 5.9.15 find the general solution to the following linear system.



1 1 0 1

2 1 1 2

1 0 1 1

0 −1 1 1







x

y

z

w


=




2

−1

−3

1




Exercise 5.9.17 Suppose A~x =~b has a solution. Explain why the solution is unique precisely when A~x =~0
has only the trivial solution.



Chapter 6

Complex Numbers

6.1 Complex Numbers

Outcomes

A. Understand the geometric significance of a complex number as a point in the plane.

B. Prove algebraic properties of addition and multiplication of complex numbers, and apply

these properties. Understand the action of taking the conjugate of a complex number.

C. Understand the absolute value of a complex number and how to find it as well as its geometric

significance.

Although very powerful, the real numbers are inadequate to solve equations such as x2+1= 0, and this

is where complex numbers come in. We define the number i as the imaginary number such that i2 = −1,

and define complex numbers as those of the form z = a+bi where a and b are real numbers. We call this

the standard form, or Cartesian form, of the complex number z. Then, we refer to a as the real part of z,

and b as the imaginary part of z. It turns out that such numbers not only solve the above equation, but

in fact also solve any polynomial of degree at least 1 with complex coefficients. This property, called the

Fundamental Theorem of Algebra, is sometimes referred to by saying C is algebraically closed. Gauss is

usually credited with giving a proof of this theorem in 1797 but many others worked on it and the first

completely correct proof was due to Argand in 1806.

Just as a real number can be considered as a point on the line, a complex number z = a+ bi can be

considered as a point (a,b) in the plane whose x coordinate is a and whose y coordinate is b. For example,

in the following picture, the point z = 3+2i can be represented as the point in the plane with coordinates

(3,2) .

z = (3,2) = 3+2i

Addition of complex numbers is defined as follows.

(a+bi)+(c+di) = (a+ c)+(b+d) i

This addition obeys all the usual properties as the following theorem indicates.

323
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Theorem 6.1: Properties of Addition of Complex Numbers

Let z,w, and v be complex numbers. Then the following properties hold.

• Commutative Law for Addition

z+w = w+ z

• Additive Identity

z+0 = z

• Existence of Additive Inverse

For each z ∈ C, there exists − z ∈ C such that z+(−z) = 0

In fact if z = a+bi, then − z =−a−bi.

• Associative Law for Addition

(z+w)+ v = z+(w+ v)

The proof of this theorem is left as an exercise for the reader.

Now, multiplication of complex numbers is defined the way you would expect, recalling that i2 =−1.

(a+bi)(c+di) = ac+adi+bci+ i2bd

= (ac−bd)+(ad+bc) i

Consider the following examples.

Example 6.2: Multiplication of Complex Numbers

• (2−3i)(−3+4i) = 6+17i

• (4−7i)(6−2i) = 10−50i

• (−3+6i)(5− i) =−9+33i

The following are important properties of multiplication of complex numbers.
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Theorem 6.3: Properties of Multiplication of Complex Numbers

Let z,w and v be complex numbers. Then, the following properties of multiplication hold.

• Commutative Law for Multiplication

zw = wz

• Associative Law for Multiplication

(zw)v = z(wv)

• Multiplicative Identity

1z = z

• Existence of Multiplicative Inverse

For each z 6= 0, there exists z−1 such that zz−1 = 1

• Distributive Law

z(w+ v) = zw+ zv

You may wish to verify some of these statements. The real numbers also satisfy the above axioms, and

in general any mathematical structure which satisfies these axioms is called a field. There are many other

fields, in particular even finite ones particularly useful for cryptography, and the reason for specifying these

axioms is that linear algebra is all about fields and we can do just about anything in this subject using any

field. Although here, the fields of most interest will be the familiar field of real numbers, denoted as R,

and the field of complex numbers, denoted as C.

An important construction regarding complex numbers is the complex conjugate denoted by a hori-

zontal line above the number, z. It is defined as follows.

Definition 6.4: Conjugate of a Complex Number

Let z = a+bi be a complex number. Then the conjugate of z, written z is given by

a+bi = a−bi

Geometrically, the action of the conjugate is to reflect a given complex number across the x axis.

Algebraically, it changes the sign on the imaginary part of the complex number. Therefore, for a real

number a, a = a.
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Example 6.5: Conjugate of a Complex Number

• If z = 3+4i, then z = 3−4i, i.e., 3+4i = 3−4i.

• −2+5i =−2−5i.

• i =−i.

• 7 = 7.

Consider the following computation.

(
a+bi

)
(a+bi) = (a−bi)(a+bi)

= a2 +b2 − (ab−ab) i = a2 +b2

Notice that there is no imaginary part in the product, thus multiplying a complex number by its conjugate

results in a real number.

Theorem 6.6: Properties of the Conjugate

Let z and w be complex numbers. Then, the following properties of the conjugate hold.

• z±w = z±w.

• (zw) = z w.

• (z) = z.

•
(

z
w

)
= z

w
.

• z is real if and only if z = z.

Division of complex numbers is defined as follows. Let z = a+bi and w = c+di be complex numbers

such that c,d are not both zero. Then the quotient z divided by w is

z

w
=

a+bi

c+di
=

a+bi

c+di
× c−di

c−di

=
(ac+bd)+(bc−ad)i

c2 +d2

=
ac+bd

c2 +d2
+

bc−ad

c2 +d2
i.

In other words, the quotient z
w

is obtained by multiplying both top and bottom of z
w

by w and then

simplifying the expression.
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Example 6.7: Division of Complex Numbers

•
1

i
=

1

i
× −i

−i
=

−i

−i2
=−i

•
2− i

3+4i
=

2− i

3+4i
× 3−4i

3−4i
=

(6−4)+(−3−8)i

32 +42
=

2−11i

25
=

2

25
− 11

25
i

•
1−2i

−2+5i
=

1−2i

−2+5i
× −2−5i

−2−5i
=

(−2−10)+(4−5)i

22 +52
=−12

29
− 1

29
i

Interestingly every nonzero complex number a+bi has a unique multiplicative inverse. In other words,

for a nonzero complex number z, there exists a number z−1 (or 1
z
) so that zz−1 = 1. Note that z = a+bi is

nonzero exactly when a2 +b2 6= 0, and its inverse can be written in standard form as defined now.

Definition 6.8: Inverse of a Complex Number

Let z = a+bi be a complex number. Then the multiplicative inverse of z, written z−1 exists if and

only if a2 +b2 6= 0 and is given by

z−1 =
1

a+bi
=

1

a+bi
× a−bi

a−bi
=

a−bi

a2 +b2
=

a

a2 +b2
− i

b

a2 +b2

Note that we may write z−1 as 1
z
. Both notations represent the multiplicative inverse of the complex

number z. Consider now an example.

Example 6.9: Inverse of a Complex Number

Consider the complex number z = 2+6i. Then z−1 is defined, and

1

z
=

1

2+6i

=
1

2+6i
× 2−6i

2−6i

=
2−6i

22 +62

=
2−6i

40

=
1

20
− 3

20
i

You can always check your answer by computing zz−1.

Another important construction of complex numbers is that of the absolute value, also called the mod-

ulus. Consider the following definition.
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Definition 6.10: Absolute Value

The absolute value, or modulus, of a complex number, denoted |z| is defined as follows.

|a+bi|=
√

a2 +b2

Thus, if z is the complex number z = a+bi, it follows that

|z|= (zz)1/2

Also from the definition, if z = a+ bi and w = c+ di are two complex numbers, then |zw| = |z| |w| .
Take a moment to verify this.

The triangle inequality is an important property of the absolute value of complex numbers. There are

two useful versions which we present here, although the first one is officially called the triangle inequality.

Proposition 6.11: Triangle Inequality

Let z,w be complex numbers.

The following two inequalities hold for any complex numbers z,w:

|z+w| ≤ |z|+ |w|
||z|− |w|| ≤ |z−w|

The first one is called the Triangle Inequality.

Proof. Let z = a+bi and w = c+di. First note that

zw = (a+bi)(c−di) = ac+bd +(bc−ad) i

and so |ac+bd| ≤ |zw|= |z| |w| .
Then,

|z+w|2 = (a+ c+ i(b+d))(a+ c− i(b+d))

= (a+ c)2 +(b+d)2 = a2 + c2 +2ac+2bd +b2 +d2

≤ |z|2 + |w|2 +2 |z| |w|= (|z|+ |w|)2

Taking the square root, we have that

|z+w| ≤ |z|+ |w|

so this verifies the triangle inequality.

To get the second inequality, write

z = z−w+w, w = w− z+ z

and so by the first form of the inequality we get both:

|z| ≤ |z−w|+ |w| , |w| ≤ |z−w|+ |z|
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Hence, both |z|− |w| and |w|− |z| are no larger than |z−w|. This proves the second version because

||z|− |w|| is one of |z|− |w| or |w|− |z|. ♠

With this definition, it is important to note the following. You may wish to take the time to verify this

remark.

Let z = a+ bi and w = c+ di. Then |z−w| =
√

(a− c)2 +(b−d)2. Thus the distance between the

point in the plane determined by the ordered pair (a,b) and the ordered pair (c,d) equals |z−w| where z

and w are as just described.

For example, consider the distance between (2,5) and (1,8) . Letting z = 2+5i and w = 1+8i, z−w =
1−3i, (z−w)(z−w) = (1−3i)(1+3i) = 10 so |z−w|=

√
10.

Recall that we refer to z = a+bi as the standard form of the complex number. In the next section, we

examine another form in which we can express the complex number.

Exercises

Exercise 6.1.1 Let z = 2+7i and let w = 3−8i. Compute the following.

(a) z+w

(b) z−2w

(c) zw

(d) w
z

Exercise 6.1.2 Let z = 1−4i. Compute the following.

(a) z

(b) z−1

(c) |z|

Exercise 6.1.3 Let z = 3+5i and w = 2− i. Compute the following.

(a) zw

(b) |zw|

(c) z−1w

Exercise 6.1.4 If z is a complex number, show there exists a complex number w with |w|= 1 and wz = |z| .
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Exercise 6.1.5 If z,w are complex numbers prove zw = z w and then show by induction that z1 · · ·zm =
z1 · · ·zm. Also verify that ∑m

k=1 zk = ∑m
k=1 zk. In words this says the conjugate of a product equals the

product of the conjugates and the conjugate of a sum equals the sum of the conjugates.

Exercise 6.1.6 Suppose p(x) = anxn +an−1xn−1 + · · ·+a1x+a0 where all the ak are real numbers. Sup-

pose also that p(z) = 0 for some z ∈ C. Show it follows that p(z) = 0 also.

Exercise 6.1.7 I claim that 1 =−1. Here is why.

−1 = i2 =
√
−1

√
−1 =

√
(−1)2 =

√
1 = 1

This is clearly a remarkable result but is there something wrong with it? If so, what is wrong?

6.2 Polar Form

Outcomes

A. Convert a complex number from standard form to polar form, and from polar form to standard

form.

In the previous section, we identified a complex number z = a+bi with a point (a,b) in the coordinate

plane. There is another form in which we can express the same number, called the polar form. The polar

form is the focus of this section. It will turn out to be very useful if not crucial for certain calculations as

we shall soon see.

Suppose z = a+bi is a complex number, and let r =
√

a2 +b2 = |z|. Recall that r is the modulus of z

. Note first that (a

r

)2

+

(
b

r

)2

=
a2 +b2

r2
= 1

and so
(

a
r
, b

r

)
is a point on the unit circle. Therefore, there exists an angle θ (in radians) such that

cosθ =
a

r
, sinθ =

b

r

In other words θ is an angle such that a = r cosθ and b = r sinθ , that is θ = cos−1(a/r) and θ =
sin−1(b/r). We call this angle θ the argument of z.

We often speak of the principal argument of z. This is the unique angle θ ∈ (−π ,π ] such that

cosθ =
a

r
, sinθ =

b

r

The polar form of the complex number z = a+bi = r (cosθ + isinθ) is for convenience written as:

z = reiθ

where θ is the argument of z.
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Definition 6.12: Polar Form of a Complex Number

Let z = a+bi be a complex number. Then the polar form of z is written as

z = reiθ

where r =
√

a2 +b2 and θ is the argument of z.

When given z = reiθ , the identity eiθ = cosθ + isinθ will convert z back to standard form. Here we

think of eiθ as a short cut for cosθ + isinθ . This is all we will need in this course, but in reality eiθ can be

considered as the complex equivalent of the exponential function where this turns out to be a true equality.

z = a+bi = reiθ

θ

rr =
√

a2 +b2

Thus we can convert any complex number in the standard (Cartesian) form z = a+ bi into its polar

form. Consider the following example.

Example 6.13: Standard to Polar Form

Let z = 2+2i be a complex number. Write z in the polar form

z = reiθ

Solution. First, find r. By the above discussion, r =
√

a2 +b2 = |z|. Therefore,

r =
√

22 +22 =
√

8 = 2
√

2

Now, to find θ , we plot the point (2,2) and find the angle from the positive x axis to the line between

this point and the origin. In this case, θ = 45◦ = π
4

. That is we found the unique angle θ such that

θ = cos−1(1/
√

2) and θ = sin−1(1/
√

2).

Note that in polar form, we always express angles in radians, not degrees.

Hence, we can write z as

z = 2
√

2ei π
4

♠

Notice that the standard and polar forms are completely equivalent. That is not only can we transform

a complex number from standard form to its polar form, we can also take a complex number in polar form

and convert it back to standard form.
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Example 6.14: Polar to Standard Form

Let z = 2e2πi/3. Write z in the standard form

z = a+bi

Solution. Let z = 2e2πi/3 be the polar form of a complex number. Recall that eiθ = cosθ + isinθ . There-

fore using standard values of sin and cos we get:

z = 2ei2π/3 = 2(cos(2π/3)+ isin(2π/3))

= 2

(
−1

2
+ i

√
3

2

)

= −1+
√

3i

which is the standard form of this complex number. ♠

You can always verify your answer by converting it back to polar form and ensuring you reach the

original answer.

Exercises

Exercise 6.2.1 Let z = 3+3i be a complex number written in standard form. Convert z to polar form, and

write it in the form z = reiθ .

Exercise 6.2.2 Let z = 2i be a complex number written in standard form. Convert z to polar form, and

write it in the form z = reiθ .

Exercise 6.2.3 Let z = 4e
2π
3 i be a complex number written in polar form. Convert z to standard form, and

write it in the form z = a+bi.

Exercise 6.2.4 Let z = −1e
π
6 i be a complex number written in polar form. Convert z to standard form,

and write it in the form z = a+bi.

Exercise 6.2.5 If z and w are two complex numbers and the polar form of z involves the angle θ while the

polar form of w involves the angle φ , show that in the polar form for zw the angle involved is θ +φ .
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6.3 Roots of Complex Numbers

Outcomes

A. Understand De Moivre’s theorem and be able to use it to find the roots of a complex number.

A fundamental identity is the formula of De Moivre with which we begin this section.

Theorem 6.15: De Moivre’s Theorem

For any positive integer n, we have (
eiθ
)n

= einθ

Thus for any real number r > 0 and any positive integer n, we have:

(r (cosθ + isinθ))n = rn (cosnθ + isinnθ)

Proof. The proof is by induction on n. It is clear the formula holds if n = 1. Suppose it is true for n. Then,

consider n+1.

(r (cosθ + isinθ))n+1 = (r (cosθ + isinθ))n (r (cosθ + isinθ))

which by induction equals

= rn+1 (cosnθ + isinnθ)(cosθ + isinθ)

= rn+1 ((cosnθ cosθ − sinnθ sinθ)+ i(sinnθ cosθ + cosnθ sinθ))

= rn+1 (cos(n+1)θ + isin(n+1)θ)

by the formulas for the cosine and sine of the sum of two angles. ♠

The process used in the previous proof, called mathematical induction is very powerful in Mathematics

and Computer Science and explored in more detail in the Appendix.

Now, consider a corollary of Theorem 6.15.

Corollary 6.16: Roots of Complex Numbers

Let z be a non zero complex number. Then there are always exactly k many kth roots of z in C.

Proof. Let z = a+ bi and let z = |z|(cosθ + isinθ) be the polar form of the complex number. By De

Moivre’s theorem, a complex number

w = reiα = r (cosα + isinα)

is a kth root of z if and only if

wk = (reiα)k = rkeikα = rk (coskα + isinkα) = |z|(cosθ + isinθ)
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This requires rk = |z| and so r = |z|1/k. Also, both cos(kα) = cosθ and sin(kα) = sinθ . This can only

happen if

kα = θ +2ℓπ

for ℓ an integer. Thus

α =
θ +2ℓπ

k
, ℓ= 0,1,2, · · · ,k−1

and so the kth roots of z are of the form

|z|1/k

(
cos

(
θ +2ℓπ

k

)
+ isin

(
θ +2ℓπ

k

))
, ℓ= 0,1,2, · · · ,k−1

Since the cosine and sine are periodic of period 2π , there are exactly k distinct numbers which result from

this formula. ♠

The procedure for finding the k kth roots of z ∈ C is as follows.

Procedure 6.17: Finding Roots of a Complex Number

Let w be a complex number. We wish to find the nth roots of w, that is all z such that zn = w.

There are n distinct nth roots and they can be found as follows:.

1. Express both z and w in polar form z = reiθ ,w = seiφ . Then zn = w becomes:

(reiθ )n = rneinθ = seiφ

We need to solve for r and θ .

2. Solve the following two equations:

rn = s

einθ = eiφ (6.1)

3. The solutions to rn = s are given by r = n
√

s.

4. The solutions to einθ = eiφ are given by:

nθ = φ +2πℓ, for ℓ= 0,1,2, · · · ,n−1

or

θ =
φ

n
+

2

n
πℓ, for ℓ= 0,1,2, · · · ,n−1

5. Using the solutions r,θ to the equations given in (6.1) construct the nth roots of the form

z = reiθ .

Notice that once the roots are obtained in the final step, they can then be converted to standard form

if necessary. Let’s consider an example of this concept. Note that according to Corollary 6.16, there are

exactly 3 cube roots of a complex number.
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Example 6.18: Finding Cube Roots

Find the three cube roots of i. In other words find all z such that z3 = i.

Solution. First, convert each number to polar form: z = reiθ and i = 1eiπ/2. The equation now becomes

(reiθ )3 = r3e3iθ = 1eiπ/2

Therefore, the two equations that we need to solve are r3 = 1 and 3iθ = iπ/2. Given that r ∈R and r3 = 1

it follows that r = 1.

Solving the second equation is as follows. First divide by i. Then, since the argument of i is not unique

we write 3θ = π/2+2πℓ for ℓ= 0,1,2.

3θ = π/2+2πℓ for ℓ= 0,1,2

θ = π/6+
2

3
πℓ for ℓ= 0,1,2

For ℓ= 0:

θ = π/6+
2

3
π(0) = π/6

For ℓ= 1:

θ = π/6+
2

3
π(1) =

5

6
π

For ℓ= 2:

θ = π/6+
2

3
π(2) =

3

2
π

Therefore, the three roots are given by

1eiπ/6,1ei 5
6 π ,1ei 3

2 π

Written in standard form, these roots are, respectively,

√
3

2
+ i

1

2
,−

√
3

2
+ i

1

2
,−i

♠

The ability to find kth roots can also be used to factor some polynomials.

Example 6.19: Solving a Polynomial Equation

Factor the polynomial x3 −27.

Solution. First find the cube roots of 27. By the above procedure , these cube roots are 3,3

(
−1

2
+ i

√
3

2

)
,

and 3

(
−1

2
− i

√
3

2

)
. You may wish to verify this using the above steps.
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Therefore, x3 −27 =

(x−3)

(
x−3

(
−1

2
+ i

√
3

2

))(
x−3

(
−1

2
− i

√
3

2

))

Note also
(

x−3
(
−1
2
+ i

√
3

2

))(
x−3

(
−1
2
− i

√
3

2

))
= x2 +3x+9 and so

x3 −27 = (x−3)
(
x2 +3x+9

)

where the quadratic polynomial x2 +3x+9 cannot be factored without using complex numbers. ♠
Note that even though the polynomial x3 − 27 has all real coefficients, it has some complex zeros,

3

(
−1

2
+ i

√
3

2

)
, and 3

(
−1

2
− i

√
3

2

)
. These zeros are complex conjugates of each other. It is always

the case that if a polynomial has real coefficients and a complex root, it will also have a root equal to the

complex conjugate.

Exercises

Exercise 6.3.1 Give the complete solution to x4 +16 = 0.

Exercise 6.3.2 Find the complex cube roots of −8.

Exercise 6.3.3 Find the four fourth roots of −16.

Exercise 6.3.4 De Moivre’s theorem says [r (cos t + isin t)]n = rn (cosnt + isinnt) for n a positive integer.

Does this formula continue to hold for all integers n, even negative integers? Explain.

Exercise 6.3.5 Factor x3 +8 as a product of linear factors. Hint: Use the result of 6.3.2.

Exercise 6.3.6 Write x3 +27 in the form (x+3)
(
x2 +ax+b

)
where x2 +ax+b cannot be factored any

more using only real numbers.

Exercise 6.3.7 Completely factor x4 +16 as a product of linear factors. Hint: Use the result of 6.3.3.

Exercise 6.3.8 Factor x4 + 16 as the product of two quadratic polynomials each of which cannot be

factored further without using complex numbers.

Exercise 6.3.9 If n is an integer, is it always true that (cosθ − isinθ)n = cos(nθ)− isin(nθ)? Explain.

Exercise 6.3.10 Suppose p(x) = anxn +an−1xn−1 + · · ·+a1x+a0 is a polynomial and it has n zeros,

z1,z2, · · · ,zn

listed according to multiplicity. (z is a root of multiplicity m if the polynomial f (x) = (x− z)m
divides p(x)

but (x− z) f (x) does not.) Show that

p(x) = an (x− z1)(x− z2) · · ·(x− zn)
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6.4 The Quadratic Formula

Outcomes

A. Use the Quadratic Formula to find the complex roots of a quadratic equation.

The roots (or solutions) of a quadratic equation ax2 + bx+ c = 0 where a,b,c are real numbers are

obtained by solving the familiar quadratic formula given by

x =
−b±

√
b2 −4ac

2a

When working with real numbers, we cannot solve this formula if b2 − 4ac < 0. However, complex

numbers allow us to find square roots of negative numbers, and the quadratic formula remains valid for

finding roots of the corresponding quadratic equation. In this case there are exactly two distinct (complex)

square roots of b2 −4ac, which are i
√

4ac−b2 and −i
√

4ac−b2.

Here is an example.

Example 6.20: Solutions to Quadratic Equation

Find the solutions to x2 +2x+5 = 0.

Solution. In terms of the quadratic equation above, a = 1, b = 2, and c = 5. Therefore, we can use the

quadratic formula with these values, which becomes

x =
−b±

√
b2 −4ac

2a
=

−2±
√

(2)2 −4(1)(5)

2(1)

Solving this equation, we see that the solutions are given by

x =
−2i±

√
4−20

2
=

−2±4i

2
=−1±2i

We can verify that these are solutions of the original equation. We will show x = −1+ 2i and leave

x =−1−2i as an exercise.

x2 +2x+5 = (−1+2i)2 +2(−1+2i)+5

= 1−4i−4−2+4i+5

= 0

Hence x =−1+2i is a solution. ♠

What if the coefficients of the quadratic equation are actually complex numbers? Does the formula

hold even in this case? The answer is yes. This is a hint on how to do Problem 6.4.4 below, a special case

of the fundamental theorem of algebra, and an ingredient in the proof of some versions of this theorem.
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Consider the following example.

Example 6.21: Solutions to Quadratic Equation

Find the solutions to x2 −2ix−5 = 0.

Solution. In terms of the quadratic equation above, a = 1, b = −2i, and c = −5. Therefore, we can use

the quadratic formula with these values, which becomes

x =
−b±

√
b2 −4ac

2a
=

2i±
√

(−2i)2 −4(1)(−5)

2(1)

Solving this equation, we see that the solutions are given by

x =
2i±

√
−4+20

2
=

2i±4

2
= i±2

We can verify that these are solutions of the original equation. We will show x = i+ 2 and leave

x = i−2 as an exercise.

x2 −2ix−5 = (i+2)2−2i(i+2)−5

= −1+4i+4+2−4i−5

= 0

Hence x = i+2 is a solution. ♠

We conclude this section by stating an essential theorem.

Theorem 6.22: The Fundamental Theorem of Algebra

Any polynomial of degree at least 1 with complex coefficients has a root which is a complex number.

Exercises

Exercise 6.4.1 Show that 1+ i,2+ i are the only two roots to

p(x) = x2 − (3+2i)x+(1+3i)

Hence complex zeros do not necessarily come in conjugate pairs if the coefficients of the equation are not

real.

Exercise 6.4.2 Give the solutions to the following quadratic equations having real coefficients.

(a) x2 −2x+2 = 0
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(b) 3x2 + x+3 = 0

(c) x2 −6x+13 = 0

(d) x2 +4x+9 = 0

(e) 4x2 +4x+5 = 0

Exercise 6.4.3 Give the solutions to the following quadratic equations having complex coefficients.

(a) x2 +2x+1+ i = 0

(b) 4x2 +4ix−5 = 0

(c) 4x2 +(4+4i)x+1+2i = 0

(d) x2 −4ix−5 = 0

(e) 3x2 +(1− i)x+3i = 0

Exercise 6.4.4 Prove the fundamental theorem of algebra for quadratic polynomials having coefficients

in C. That is, show that an equation of the form

ax2 + bx+ c = 0 where a,b,c are complex numbers, a 6= 0 has a complex solution. Hint: Consider the

fact, noted earlier that the expressions given from the quadratic formula do in fact serve as solutions.





Chapter 7

Spectral Theory

7.1 Eigenvalues and Eigenvectors of a Matrix

Outcomes

A. Describe eigenvalues geometrically and algebraically.

B. Find eigenvalues and eigenvectors for a square matrix.

Spectral Theory refers to the study of eigenvalues and eigenvectors of a matrix. It is of fundamental

importance in many areas and is the subject of our study for this chapter.

7.1.1 Definition of Eigenvectors and Eigenvalues

In this section, we will work with the entire set of complex numbers, denoted by C. Recall that the real

numbers, R are contained in the complex numbers, so the discussions in this section apply to both real and

complex numbers.

To illustrate the idea behind what will be discussed, consider the following example.

Example 7.1: Eigenvectors and Eigenvalues

Let

A =




0 5 −10

0 22 16

0 −9 −2




Compute the product AX for

X =




5

−4

3


 ,X =




1

0

0




What do you notice about AX in each of these products?

Solution. First, compute AX for

X =




5

−4

3




This product is given by

AX =




0 5 −10

0 22 16

0 −9 −2






−5

−4

3


=




−50

−40

30


= 10




−5

−4

3




341
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In this case, the product AX resulted in a vector which is equal to 10 times the vector X . In other

words, AX = 10X .

Let’s see what happens in the next product. Compute AX for the vector

X =




1

0

0




This product is given by

AX =




0 5 −10

0 22 16

0 −9 −2






1

0

0


=




0

0

0


= 0




1

0

0




In this case, the product AX resulted in a vector equal to 0 times the vector X , AX = 0X .

Perhaps this matrix is such that AX results in kX , for every vector X . However, consider




0 5 −10

0 22 16

0 −9 −2






1

1

1


=




−5

38

−11




In this case, AX did not result in a vector of the form kX for some scalar k. ♠

There is something special about the first two products calculated in Example 7.1. Notice that for

each, AX = kX where k is some scalar. When this equation holds for some X and k, we call the scalar

k an eigenvalue of A. We often use the special symbol λ instead of k when referring to eigenvalues. In

Example 7.1, the values 10 and 0 are eigenvalues for the matrix A and we can label these as λ1 = 10 and

λ2 = 0.

When AX = λX for some X 6= 0, we call such an X an eigenvector of the matrix A. The eigenvectors

of A are associated to an eigenvalue. Hence, if λ1 is an eigenvalue of A and AX = λ1X , we can label this

eigenvector as X1. Note again that in order to be an eigenvector, X must be nonzero.

There is also a geometric significance to eigenvectors. When you have a nonzero vector which, when

multiplied by a matrix results in another vector which is parallel to the first or equal to 0, this vector is

called an eigenvector of the matrix. This is the meaning when the vectors are in Rn.

The formal definition of eigenvalues and eigenvectors is as follows.

Definition 7.2: Eigenvalues and Eigenvectors

Let A be an n×n matrix and let X ∈ Cn be a nonzero vector for which

AX = λX (7.1)

for some scalar λ . Then λ is called an eigenvalue of the matrix A and X is called an eigenvector of

A associated with λ , or a λ -eigenvector of A.

The set of all eigenvalues of an n×n matrix A is denoted by σ (A) and is referred to as the spectrum

of A.
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The eigenvectors of a matrix A are those vectors X for which multiplication by A results in a vector in

the same direction or opposite direction to X . Since the zero vector 0 has no direction this would make no

sense for the zero vector. As noted above, 0 is never allowed to be an eigenvector.

Let’s look at eigenvectors in more detail. Suppose X satisfies 7.1. Then

AX −λX = 0

or

(A−λ I)X = 0

for some X 6= 0. Equivalently you could write (λ I −A)X = 0, which is more commonly used. Hence,

when we are looking for eigenvectors, we are looking for nontrivial solutions to this homogeneous system

of equations!

Recall that the solutions to a homogeneous system of equations consist of basic solutions, and the

linear combinations of those basic solutions. In this context, we call the basic solutions of the equation

(λ I −A)X = 0 basic eigenvectors. It follows that any (nonzero) linear combination of basic eigenvectors

is again an eigenvector.

Suppose the matrix (λ I −A) is invertible, so that (λ I −A)−1
exists. Then the following equation

would be true.

X = IX

=
(
(λ I −A)−1 (λ I −A)

)
X

= (λ I −A)−1 ((λ I −A)X)

= (λ I −A)−1
0

= 0

This claims that X = 0. However, we have required that X 6= 0. Therefore (λ I −A) cannot have an inverse!

Recall that if a matrix is not invertible, then its determinant is equal to 0. Therefore we can conclude

that

det(λ I −A) = 0 (7.2)

Note that this is equivalent to det(A−λ I) = 0.

The expression det(xI −A) is a polynomial (in the variable x) called the characteristic polynomial

of A, and det(xI −A) = 0 is called the characteristic equation. For this reason we may also refer to the

eigenvalues of A as characteristic values, but the former is often used for historical reasons.

The following theorem claims that the roots of the characteristic polynomial are the eigenvalues of A.

Thus when 7.2 holds, A has a nonzero eigenvector.

Theorem 7.3: The Existence of an Eigenvector

Let A be an n×n matrix and suppose det(λ I −A) = 0 for some λ ∈ C.

Then λ is an eigenvalue of A and thus there exists a nonzero vector X ∈ Cn such that AX = λX .

Proof. For A an n×n matrix, the method of Laplace Expansion demonstrates that det(λ I −A) is a polyno-

mial of degree n. As such, the equation 7.2 has a solution λ ∈C by the Fundamental Theorem of Algebra.

The fact that λ is an eigenvalue is left as an exercise. ♠
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7.1.2 Finding Eigenvectors and Eigenvalues

Now that eigenvalues and eigenvectors have been defined, we will study how to find them for a matrix A.

First, consider the following definition.

Definition 7.4: Multiplicity of an Eigenvalue

Let A be an n×n matrix with characteristic polynomial given by det(xI −A). Then, the multiplicity

of an eigenvalue λ of A is the number of times λ occurs as a root of that characteristic polynomial.

For example, suppose the characteristic polynomial of A is given by (x−2)2
. Solving for the roots of

this polynomial, we set (x−2)2 = 0 and solve for x. We find that λ = 2 is a root that occurs twice. Hence,

in this case, λ = 2 is an eigenvalue of A of multiplicity equal to 2.

We will now look at how to find the eigenvalues and eigenvectors for a matrix A in detail. The steps

used are summarized in the following procedure.

Procedure 7.5: Finding Eigenvalues and Eigenvectors

Let A be an n×n matrix.

1. First, find the eigenvalues λ of A by solving the equation det(xI −A) = 0.

2. For each λ , find the basic eigenvectors X 6= 0 by finding the basic solutions to (λ I −A)X = 0.

To verify your work, make sure that AX = λX for each λ and associated eigenvector X .

We will explore these steps further in the following example.

Example 7.6: Find the Eigenvalues and Eigenvectors

Let A =

[
−5 2

−7 4

]
. Find its eigenvalues and eigenvectors.

Solution. We will use Procedure 7.5. First we find the eigenvalues of A by solving the equation

det(xI −A) = 0

This gives

det

(
x

[
1 0

0 1

]
−
[
−5 2

−7 4

])
= 0

det

[
x+5 −2

7 x−4

]
= 0

Computing the determinant as usual, the result is

x2 + x−6 = 0
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Solving this equation, we find that λ1 = 2 and λ2 =−3.

Now we need to find the basic eigenvectors for each λ . First we will find the eigenvectors for λ1 = 2.

We wish to find all vectors X 6= 0 such that AX = 2X . These are the solutions to (2I−A)X = 0.

(
2

[
1 0

0 1

]
−
[
−5 2

−7 4

])[
x

y

]
=

[
0

0

]

[
7 −2

7 −2

][
x

y

]
=

[
0

0

]

The augmented matrix for this system and corresponding reduced row-echelon form are given by

[
7 −2 0

7 −2 0

]
→ ·· · →

[
1 −2

7
0

0 0 0

]

The solution is any vector of the form

[
2
7
s

s

]
= s

[
2
7

1

]

Multiplying this vector by 7 we obtain a simpler description for the solution to this system, given by

t

[
2

7

]

This gives the basic eigenvector for λ1 = 2 as

[
2

7

]

To check, we verify that AX = 2X for this basic eigenvector.

[
−5 2

−7 4

][
2

7

]
=

[
4

14

]
= 2

[
2

7

]

This is what we wanted, so we know this basic eigenvector is correct.

Next we will repeat this process to find the basic eigenvector for λ2 =−3. We wish to find all vectors

X 6= 0 such that AX =−3X . These are the solutions to ((−3)I−A)X = 0.

(
(−3)

[
1 0

0 1

]
−
[
−5 2

−7 4

])[
x

y

]
=

[
0

0

]

[
2 −2

7 −7

][
x

y

]
=

[
0

0

]

The augmented matrix for this system and corresponding reduced row-echelon form are given by

[
2 −2 0

7 −7 0

]
→ ·· · →

[
1 −1 0

0 0 0

]
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The solution is any vector of the form

[
s

s

]
= s

[
1

1

]

This gives the basic eigenvector for λ2 =−3 as

[
1

1

]

To check, we verify that AX =−3X for this basic eigenvector.

[
−5 2

−7 4

][
1

1

]
=

[
−3

−3

]
=−3

[
1

1

]

This is what we wanted, so we know this basic eigenvector is correct. ♠

The following is an example using Procedure 7.5 for a 3×3 matrix.

Example 7.7: Find the Eigenvalues and Eigenvectors

Find the eigenvalues and eigenvectors for the matrix

A =




5 −10 −5

2 14 2

−4 −8 6




Solution. We will use Procedure 7.5. First we need to find the eigenvalues of A. Recall that they are the

solutions of the equation

det(xI −A) = 0

In this case the equation is

det


x




1 0 0

0 1 0

0 0 1


−




5 −10 −5

2 14 2

−4 −8 6




= 0

which becomes

det




x−5 10 5

−2 x−14 −2

4 8 x−6


= 0

Using Laplace Expansion, compute this determinant and simplify. The result is the following equation.

(x−5)
(
x2 −20x+100

)
= 0

Solving this equation, we find that the eigenvalues are λ1 = 5,λ2 = 10 and λ3 = 10. Notice that 10 is

a root of multiplicity two due to

x2 −20x+100 = (x−10)2
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Therefore, λ2 = 10 is an eigenvalue of multiplicity two.

Now that we have found the eigenvalues for A, we can compute the eigenvectors.

First we will find the basic eigenvectors for λ1 = 5. In other words, we want to find all non-zero vectors

X so that AX = 5X . This requires that we solve the equation (5I −A)X = 0 for X as follows.


5




1 0 0

0 1 0

0 0 1


−




5 −10 −5

2 14 2

−4 −8 6








x

y

z


=




0

0

0




That is you need to find the solution to




0 10 5

−2 −9 −2

4 8 −1






x

y

z


=




0

0

0




By now this is a familiar problem. You set up the augmented matrix and row reduce to get the solution.

Thus the matrix you must row reduce is




0 10 5 0

−2 −9 −2 0

4 8 −1 0




The reduced row-echelon form is 


1 0 −5
4

0

0 1 1
2

0

0 0 0 0




and so the solution is any vector of the form




5
4
s

−1
2
s

s


= s




5
4

−1
2

1




where s∈R. If we multiply this vector by 4, we obtain a simpler description for the solution to this system,

as given by

t




5

−2

4


 (7.3)

where t ∈ R. Here, the basic eigenvector is given by

X1 =




5

−2

4




Notice that we cannot let t = 0 here, because this would result in the zero vector and eigenvectors are

never equal to 0! Other than this value, every other choice of t in 7.3 results in an eigenvector.
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It is a good idea to check your work! To do so, we will take the original matrix and multiply by the

basic eigenvector X1. We check to see if we get 5X1.



5 −10 −5

2 14 2

−4 −8 6






5

−2

4


=




25

−10

20


= 5




5

−2

4




This is what we wanted, so we know that our calculations were correct.

Next we will find the basic eigenvectors for λ2,λ3 = 10. These vectors are the basic solutions to the

equation, 
10




1 0 0

0 1 0

0 0 1


−




5 −10 −5

2 14 2

−4 −8 6








x

y

z


=




0

0

0




That is you must find the solutions to



5 10 5

−2 −4 −2

4 8 4






x

y

z


=




0

0

0




Consider the augmented matrix 


5 10 5 0

−2 −4 −2 0

4 8 4 0




The reduced row-echelon form for this matrix is



1 2 1 0

0 0 0 0

0 0 0 0




and so the eigenvectors are of the form



−2s− t

s

t


= s




−2

1

0


+ t




−1

0

1




Note that you can’t pick t and s both equal to zero because this would result in the zero vector and

eigenvectors are never equal to zero.

Here, there are two basic eigenvectors, given by

X2 =




−2

1

0


 ,X3 =




−1

0

1




Taking any (nonzero) linear combination of X2 and X3 will also result in an eigenvector for the eigen-

value λ = 10. As in the case for λ = 5, always check your work! For the first basic eigenvector, we can

check AX2 = 10X2 as follows.



5 −10 −5

2 14 2

−4 −8 6






−1

0

1


=




−10

0

10


= 10




−1

0

1



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This is what we wanted. Checking the second basic eigenvector, X3, is left as an exercise. ♠

It is important to remember that for any eigenvector X , X 6= 0. However, it is possible to have eigen-

values equal to zero. This is illustrated in the following example.

Example 7.8: A Zero Eigenvalue

Let

A =




2 2 −2

1 3 −1

−1 1 1




Find the eigenvalues and eigenvectors of A.

Solution. First we find the eigenvalues of A. We will do so using Definition 7.2.

In order to find the eigenvalues of A, we solve the following equation.

det(xI −A) = det




x−2 −2 2

−1 x−3 1

1 −1 x−1


= 0

This reduces to x3 −6x2 +8x = 0. You can verify that the solutions are λ1 = 0,λ2 = 2,λ3 = 4. Notice

that while eigenvectors can never equal 0, it is possible to have an eigenvalue equal to 0.

Now we will find the basic eigenvectors. For λ1 = 0, we need to solve the equation (0I −A)X = 0.

This equation becomes −AX = 0, and so the augmented matrix for finding the solutions is given by




−2 −2 2 0

−1 −3 1 0

1 −1 −1 0




The reduced row-echelon form is 


1 0 −1 0

0 1 0 0

0 0 0 0




Therefore, the eigenvectors are of the form t




1

0

1


 where t 6= 0 and the basic eigenvector is given by

X1 =




1

0

1




We can verify that this eigenvector is correct by checking that the equation AX1 = 0X1 holds. The

product AX1 is given by

AX1 =




2 2 −2

1 3 −1

−1 1 1






1

0

1


=




0

0

0



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This clearly equals 0X1, so the equation holds. Hence, AX1 = 0X1 and so 0 is an eigenvalue of A.

Computing the other basic eigenvectors is left as an exercise. ♠

In the following sections, we examine ways to simplify this process of finding eigenvalues and eigen-

vectors by using properties of special types of matrices.

7.1.3 Eigenvalues and Eigenvectors for Special Types of Matrices

There are three special kinds of matrices which we can use to simplify the process of finding eigenvalues

and eigenvectors. Throughout this section, we will discuss similar matrices, elementary matrices, as well

as triangular matrices.

We begin with a definition.

Definition 7.9: Similar Matrices

Let A and B be n×n matrices. Suppose there exists an invertible matrix P such that

A = P−1BP

Then A and B are called similar matrices.

It turns out that we can use the concept of similar matrices to help us find the eigenvalues of matrices.

Consider the following lemma.

Lemma 7.10: Similar Matrices and Eigenvalues

Let A and B be similar matrices, so that A = P−1BP where A,B are n×n matrices and P is invertible.

Then A,B have the same eigenvalues.

Proof. We need to show two things. First, we need to show that if A = P−1BP, then A and B have the same

eigenvalues. Secondly, we show that if A and B have the same eigenvalues, then A = P−1BP.

Here is the proof of the first statement. Suppose A = P−1BP and λ is an eigenvalue of A, that is

AX = λX for some X 6= 0. Then

P−1BPX = λX

and so

BPX = λPX

Since P is one to one and X 6= 0, it follows that PX 6= 0. Here, PX plays the role of the eigenvector in

this equation. Thus λ is also an eigenvalue of B. One can similarly verify that any eigenvalue of B is also

an eigenvalue of A, and thus both matrices have the same eigenvalues as desired.

Proving the second statement is similar and is left as an exercise. ♠

Note that this proof also demonstrates that the eigenvectors of A and B will (generally) be different.

We see in the proof that AX = λX , while B(PX) = λ (PX). Therefore, for an eigenvalue λ , A will have

the eigenvector X while B will have the eigenvector PX .
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The second special type of matrices we discuss in this section is elementary matrices. Recall from

Definition 2.43 that an elementary matrix E is obtained by applying one row operation to the identity

matrix.

It is possible to use elementary matrices to simplify a matrix before searching for its eigenvalues and

eigenvectors. This is illustrated in the following example.

Example 7.11: Simplify Using Elementary Matrices

Find the eigenvalues for the matrix

A =




33 105 105

10 28 30

−20 −60 −62




Solution. This matrix has big numbers and therefore we would like to simplify as much as possible before

computing the eigenvalues.

We will do so using row operations. First, add 2 times the second row to the third row. To do so, left

multiply A by E (2,2). Then right multiply A by the inverse of E (2,2) as illustrated.




1 0 0

0 1 0

0 2 1






33 105 105

10 28 30

−20 −60 −62






1 0 0

0 1 0

0 −2 1


=




33 −105 105

10 −32 30

0 0 −2




By Lemma 7.10, the resulting matrix has the same eigenvalues as A where here, the matrix E (2,2) plays

the role of P.

We do this step again, as follows. In this step, we use the elementary matrix obtained by adding −3

times the second row to the first row.




1 −3 0

0 1 0

0 0 1






33 −105 105

10 −32 30

0 0 −2






1 3 0

0 1 0

0 0 1


=




3 0 15

10 −2 30

0 0 −2


 (7.4)

Again by Lemma 7.10, this resulting matrix has the same eigenvalues as A. At this point, we can easily

find the eigenvalues. Let

B =




3 0 15

10 −2 30

0 0 −2




Then, we find the eigenvalues of B (and therefore of A) by solving the equation det(xI −B) = 0. You

should verify that this equation becomes

(x+2)(x+2)(x−3) = 0

Solving this equation results in eigenvalues of λ1 = −2,λ2 = −2, and λ3 = 3. Therefore, these are also

the eigenvalues of A.

♠
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Through using elementary matrices, we were able to create a matrix for which finding the eigenvalues

was easier than for A. At this point, you could go back to the original matrix A and solve (λ I −A)X = 0

to obtain the eigenvectors of A.

Notice that when you multiply on the right by an elementary matrix, you are doing the column op-

eration defined by the elementary matrix. In 7.4 multiplication by the elementary matrix on the right

merely involves taking three times the first column and adding to the second. Thus, without referring to

the elementary matrices, the transition to the new matrix in 7.4 can be illustrated by




33 −105 105

10 −32 30

0 0 −2


→




3 −9 15

10 −32 30

0 0 −2


→




3 0 15

10 −2 30

0 0 −2




The third special type of matrix we will consider in this section is the triangular matrix. Recall Defi-

nition 3.12 which states that an upper (lower) triangular matrix contains all zeros below (above) the main

diagonal. Remember that finding the determinant of a triangular matrix is a simple procedure of taking

the product of the entries on the main diagonal.. It turns out that there is also a simple way to find the

eigenvalues of a triangular matrix.

In the next example we will demonstrate that the eigenvalues of a triangular matrix are the entries on

the main diagonal.

Example 7.12: Eigenvalues for a Triangular Matrix

Let A =




1 2 4

0 4 7

0 0 6


 . Find the eigenvalues of A.

Solution. We need to solve the equation det(xI −A) = 0 as follows

det(xI −A) = det




x−1 −2 −4

0 x−4 −7

0 0 x−6


= (x−1)(x−4)(x−6) = 0

Solving the equation (x−1)(x−4) (x−6) = 0 for x results in the eigenvalues λ1 = 1,λ2 = 4 and

λ3 = 6. Thus the eigenvalues are the entries on the main diagonal of the original matrix. ♠

The same result is true for lower triangular matrices. For any triangular matrix, the eigenvalues are

equal to the entries on the main diagonal. To find the eigenvectors of a triangular matrix, we use the usual

procedure.

In the next section, we explore an important process involving the eigenvalues and eigenvectors of a

matrix.
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Exercises

Exercise 7.1.1 If A is an invertible n×n matrix, compare the eigenvalues of A and A−1. More generally,

for m an arbitrary integer, compare the eigenvalues of A and Am.

Exercise 7.1.2 If A is an n×n matrix and c is a nonzero constant, compare the eigenvalues of A and cA.

Exercise 7.1.3 Let A,B be invertible n×n matrices which commute. That is, AB = BA. Suppose X is an

eigenvector of B. Show that then AX must also be an eigenvector for B.

Exercise 7.1.4 Suppose A is an n×n matrix and it satisfies Am = A for some m a positive integer larger

than 1. Show that if λ is an eigenvalue of A then |λ | equals either 0 or 1.

Exercise 7.1.5 Show that if AX = λX and AY = λY , then whenever k, p are scalars,

A(kX + pY ) = λ (kX + pY )

Does this imply that kX + pY is an eigenvector? Explain.

Exercise 7.1.6 Suppose A is a 3×3 matrix and the following information is available.

A




0

−1

−1


 = 0




0

−1

−1




A




1

1

1


 = −2




1

1

1




A




−2

−3

−2


 = −2




−2

−3

−2




Find A




1

−4

3


 .

Exercise 7.1.7 Suppose A is a 3×3 matrix and the following information is available.

A




−1

−2

−2


 = 1




−1

−2

−2




A




1

1

1


 = 0




1

1

1




A




−1

−4

−3


 = 2




−1

−4

−3



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Find A




3

−4

3


 .

Exercise 7.1.8 Suppose A is a 3×3 matrix and the following information is available.

A




0

−1

−1


 = 2




0

−1

−1




A




1

1

1


 = 1




1

1

1




A




−3

−5

−4


 = −3




−3

−5

−4




Find A




2

−3

3


 .

Exercise 7.1.9 Find the eigenvalues and eigenvectors of the matrix




−6 −92 12

0 0 0

−2 −31 4




One eigenvalue is −2.

Exercise 7.1.10 Find the eigenvalues and eigenvectors of the matrix




−2 −17 −6

0 0 0

1 9 3




One eigenvalue is 1.

Exercise 7.1.11 Find the eigenvalues and eigenvectors of the matrix




9 2 8

2 −6 −2

−8 2 −5




One eigenvalue is −3.

Exercise 7.1.12 Find the eigenvalues and eigenvectors of the matrix




6 76 16

−2 −21 −4

2 64 17



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One eigenvalue is −2.

Exercise 7.1.13 Find the eigenvalues and eigenvectors of the matrix




3 5 2

−8 −11 −4

10 11 3




One eigenvalue is -3.

Exercise 7.1.14 Is it possible for a nonzero matrix to have only 0 as an eigenvalue?

Exercise 7.1.15 If A is the matrix of a linear transformation which rotates all vectors in R2 through 60◦,

explain why A cannot have any real eigenvalues. Is there an angle such that rotation through this angle

would have a real eigenvalue? What eigenvalues would be obtainable in this way?

Exercise 7.1.16 Let A be the 2× 2 matrix of the linear transformation which rotates all vectors in R2

through an angle of θ . For which values of θ does A have a real eigenvalue?

Exercise 7.1.17 Let T be the linear transformation which reflects vectors about the x axis. Find a matrix

for T and then find its eigenvalues and eigenvectors.

Exercise 7.1.18 Let T be the linear transformation which rotates all vectors in R2 counterclockwise

through an angle of π/2. Find a matrix of T and then find eigenvalues and eigenvectors.

Exercise 7.1.19 Let T be the linear transformation which reflects all vectors in R3 through the xy plane.

Find a matrix for T and then obtain its eigenvalues and eigenvectors.

7.2 Diagonalization

Outcomes

A. Determine when it is possible to diagonalize a matrix.

B. When possible, diagonalize a matrix.
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7.2.1 Similarity and Diagonalization

We begin this section by recalling the definition of similar matrices. Recall that if A,B are two n× n

matrices, then they are similar if and only if there exists an invertible matrix P such that

A = P−1BP

In this case we write A ∼ B. The concept of similarity is an example of an equivalence relation.

Lemma 7.13: Similarity is an Equivalence Relation

Similarity is an equivalence relation, i.e. for n×n matrices A,B, and C,

1. A ∼ A (reflexive)

2. If A ∼ B, then B ∼ A (symmetric)

3. If A ∼ B and B ∼C, then A ∼C (transitive)

Proof. It is clear that A ∼ A, taking P = I.

Now, if A ∼ B, then for some P invertible,

A = P−1BP

and so

PAP−1 = B

But then (
P−1

)−1
AP−1 = B

which shows that B ∼ A.

Now suppose A ∼ B and B ∼C. Then there exist invertible matrices P,Q such that

A = P−1BP, B = Q−1CQ

Then,

A = P−1
(
Q−1CQ

)
P = (QP)−1

C (QP)

showing that A is similar to C. ♠

Another important concept necessary to this section is the trace of a matrix. Consider the definition.

Definition 7.14: Trace of a Matrix

If A = [ai j] is an n×n matrix, then the trace of A is

trace(A) =
n

∑
i=1

aii.
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In words, the trace of a matrix is the sum of the entries on the main diagonal.

Lemma 7.15: Properties of Trace

For n×n matrices A and B, and any k ∈ R,

1. trace(A+B) = trace(A)+ trace(B)

2. trace(kA) = k · trace(A)

3. trace(AB) = trace(BA)

The following theorem includes a reference to the characteristic polynomial of a matrix. Recall that

for any n×n matrix A, the characteristic polynomial of A is cA(x) = det(xI −A).

Theorem 7.16: Properties of Similar Matrices

If A and B are n×n matrices and A ∼ B, then

1. det(A) = det(B)

2. rank(A) = rank(B)

3. trace(A) = trace(B)

4. cA(x) = cB(x)

5. A and B have the same eigenvalues

We now proceed to the main concept of this section. When a matrix is similar to a diagonal matrix, the

matrix is said to be diagonalizable. We define a diagonal matrix D as a matrix containing a zero in every

entry except those on the main diagonal. More precisely, if di j is the i jth entry of a diagonal matrix D,

then di j = 0 unless i = j. Such matrices look like the following.

D =




∗ 0
. . .

0 ∗




where ∗ is a number which might not be zero.

The following is the formal definition of a diagonalizable matrix.

Definition 7.17: Diagonalizable

Let A be an n×n matrix. Then A is said to be diagonalizable if there exists an invertible matrix P

such that

P−1AP = D

where D is a diagonal matrix.
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Notice that the above equation can be rearranged as A = PDP−1. Suppose we wanted to compute

A100. By diagonalizing A first it suffices to then compute
(
PDP−1

)100
, which reduces to PD100P−1. This

last computation is much simpler than A100. While this process is described in detail later, it provides

motivation for diagonalization.

7.2.2 Diagonalizing a Matrix

The most important theorem about diagonalizability is the following major result.

Theorem 7.18: Eigenvectors and Diagonalizable Matrices

An n×n matrix A is diagonalizable if and only if there is an invertible matrix P given by

P =
[

X1 X2 · · · Xn

]

where the Xk are eigenvectors of A.

Moreover if A is diagonalizable, the corresponding eigenvalues of A are the diagonal entries of the

diagonal matrix D.

Proof. Suppose P is given as above as an invertible matrix whose columns are eigenvectors of A. Then

P−1 is of the form

P−1 =




W T
1

W T
2
...

W T
n




where W T
k X j = δk j, which is the Kronecker’s symbol defined by

δi j =

{
1 if i = j

0 if i 6= j

Then

P−1AP =




W T
1

W T
2
...

W T
n



[

AX1 AX2 · · · AXn

]

=




W T
1

W T
2
...

W T
n



[

λ1X1 λ2X2 · · · λnXn

]

=




λ1 0
. . .

0 λn



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Conversely, suppose A is diagonalizable so that P−1AP = D. Let

P =
[

X1 X2 · · · Xn

]

where the columns are the Xk and

D =




λ1 0
. . .

0 λn




Then

AP = PD =
[

X1 X2 · · · Xn

]



λ1 0
. . .

0 λn




and so [
AX1 AX2 · · · AXn

]
=
[

λ1X1 λ2X2 · · · λnXn

]

showing the Xk are eigenvectors of A and the λk are eigenvectors. ♠

Notice that because the matrix P defined above is invertible it follows that the set of eigenvectors of A,

{X1,X2, · · · ,Xn}, form a basis of Rn.

We demonstrate the concept given in the above theorem in the next example. Note that not only are

the columns of the matrix P formed by eigenvectors, but P must be invertible so must consist of a wide

variety of eigenvectors. We achieve this by using basic eigenvectors for the columns of P.

Example 7.19: Diagonalize a Matrix

Let

A =




2 0 0

1 4 −1

−2 −4 4




Find an invertible matrix P and a diagonal matrix D such that P−1AP = D.

Solution. By Theorem 7.18 we use the eigenvectors of A as the columns of P, and the corresponding

eigenvalues of A as the diagonal entries of D.

First, we will find the eigenvalues of A. To do so, we solve det(xI −A) = 0 as follows.

det


x




1 0 0

0 1 0

0 0 1


−




2 0 0

1 4 −1

−2 −4 4




= 0

This computation is left as an exercise, and you should verify that the eigenvalues are λ1 = 2,λ2 = 2,

and λ3 = 6.
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Next, we need to find the eigenvectors. We first find the eigenvectors for λ1,λ2 = 2. Solving (2I −A)X =
0 to find the eigenvectors, we find that the eigenvectors are

t




−2

1

0


+ s




1

0

1




where t,s are scalars. Hence there are two basic eigenvectors which are given by

X1 =




−2

1

0


 ,X2 =




1

0

1




You can verify that the basic eigenvector for λ3 = 6 is X3 =




0

1

−2




Then, we construct the matrix P as follows.

P =
[

X1 X2 X3

]
=




−2 1 0

1 0 1

0 1 −2




That is, the columns of P are the basic eigenvectors of A. Then, you can verify that

P−1 =




−1
4

1
2

1
4

1
2

1 1
2

1
4

1
2

−1
4




Thus,

P−1AP =




−1
4

1
2

1
4

1
2

1 1
2

1
4

1
2

−1
4







2 0 0

1 4 −1

−2 −4 4






−2 1 0

1 0 1

0 1 −2




=




2 0 0

0 2 0

0 0 6




You can see that the result here is a diagonal matrix where the entries on the main diagonal are the

eigenvalues of A. We expected this based on Theorem 7.18. Notice that eigenvalues on the main diagonal

must be in the same order as the corresponding eigenvectors in P. ♠

Consider the next important theorem.
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Theorem 7.20: Linearly Independent Eigenvectors

Let A be an n×n matrix, and suppose that A has distinct eigenvalues λ1,λ2, . . . ,λm. For each i, let

Xi be a λi-eigenvector of A. Then {X1,X2, . . . ,Xm} is linearly independent.

The corollary that follows from this theorem gives a useful tool in determining if A is diagonalizable.

Corollary 7.21: Distinct Eigenvalues

Let A be an n×n matrix and suppose it has n distinct eigenvalues. Then it follows that A is diago-

nalizable.

It is possible that a matrix A cannot be diagonalized. In other words, we cannot find an invertible

matrix P so that P−1AP = D.

Consider the following example.

Example 7.22: A Matrix which cannot be Diagonalized

Let

A =

[
1 1

0 1

]

If possible, find an invertible matrix P and diagonal matrix D so that P−1AP = D.

Solution. Through the usual procedure, we find that the eigenvalues of A are λ1 = 1,λ2 = 1. To find the

eigenvectors, we solve the equation (λ I −A)X = 0. The matrix (λ I −A) is given by

[
λ −1 −1

0 λ −1

]

Substituting in λ = 1, we have the matrix

[
1−1 −1

0 1−1

]
=

[
0 −1

0 0

]

Then, solving the equation (λ I −A)X = 0 involves carrying the following augmented matrix to its

reduced row-echelon form. [
0 −1 0

0 0 0

]
→ ·· · →

[
0 −1 0

0 0 0

]

Then the eigenvectors are of the form

t

[
1

0

]

and the basic eigenvector is

X1 =

[
1

0

]
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In this case, the matrix A has one eigenvalue of multiplicity two, but only one basic eigenvector. In

order to diagonalize A, we need to construct an invertible 2× 2 matrix P. However, because A only has

one basic eigenvector, we cannot construct this P. Notice that if we were to use X1 as both columns of P,

P would not be invertible. For this reason, we cannot repeat eigenvectors in P.

Hence this matrix cannot be diagonalized. ♠

The idea that a matrix may not be diagonalizable suggests that conditions exist to determine when it

is possible to diagonalize a matrix. We saw earlier in Corollary 7.21 that an n×n matrix with n distinct

eigenvalues is diagonalizable. It turns out that there are other useful diagonalizability tests.

First we need the following definition.

Definition 7.23: Eigenspace

Let A be an n×n matrix and λ ∈ R. The eigenspace of A corresponding to λ , written Eλ (A) is the

set of all eigenvectors corresponding to λ .

In other words, the eigenspace Eλ (A) is all X such that AX = λX . Notice that this set can be written

Eλ (A) = null(λ I −A), showing that Eλ (A) is a subspace of Rn.

Recall that the multiplicity of an eigenvalue λ is the number of times that it occurs as a root of the

characteristic polynomial.

Consider now the following lemma.

Lemma 7.24: Dimension of the Eigenspace

If A is an n×n matrix, then

dim(Eλ (A))≤ m

where λ is an eigenvalue of A of multiplicity m.

This result tells us that if λ is an eigenvalue of A, then the number of linearly independent λ -eigenvectors

is never more than the multiplicity of λ . We now use this fact to provide a useful diagonalizability condi-

tion.

Theorem 7.25: Diagonalizability Condition

Let A be an n× n matrix A. Then A is diagonalizable if and only if for each eigenvalue λ of A,

dim(Eλ (A)) is equal to the multiplicity of λ .
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7.2.3 Complex Eigenvalues

In some applications, a matrix may have eigenvalues which are complex numbers. For example, this often

occurs in differential equations. These questions are approached in the same way as above.

Consider the following example.

Example 7.26: A Real Matrix with Complex Eigenvalues

Let

A =




1 0 0

0 2 −1

0 1 2




Find the eigenvalues and eigenvectors of A.

Solution. We will first find the eigenvalues as usual by solving the following equation.

det


x




1 0 0

0 1 0

0 0 1


−




1 0 0

0 2 −1

0 1 2




= 0

This reduces to (x−1)
(
x2 −4x+5

)
= 0. The solutions are λ1 = 1,λ2 = 2+ i and λ3 = 2− i.

There is nothing new about finding the eigenvectors for λ1 = 1 so this is left as an exercise.

Consider now the eigenvalue λ2 = 2+ i. As usual, we solve the equation (λ I −A)X = 0 as given by


(2+ i)




1 0 0

0 1 0

0 0 1


−




1 0 0

0 2 −1

0 1 2




X =




0

0

0




In other words, we need to solve the system represented by the augmented matrix




1+ i 0 0 0

0 i 1 0

0 −1 i 0




We now use our row operations to solve the system. Divide the first row by (1+ i) and then take −i

times the second row and add to the third row. This yields




1 0 0 0

0 i 1 0

0 0 0 0




Now multiply the second row by −i to obtain the reduced row-echelon form, given by




1 0 0 0

0 1 −i 0

0 0 0 0



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Therefore, the eigenvectors are of the form

t




0

i

1




and the basic eigenvector is given by

X2 =




0

i

1




As an exercise, verify that the eigenvectors for λ3 = 2− i are of the form

t




0

−i

1




Hence, the basic eigenvector is given by

X3 =




0

−i

1




As usual, be sure to check your answers! To verify, we check that AX3 = (2− i)X3 as follows.




1 0 0

0 2 −1

0 1 2






0

−i

1


=




0

−1−2i

2− i


= (2− i)




0

−i

1




Therefore, we know that this eigenvector and eigenvalue are correct. ♠

Notice that in Example 7.26, two of the eigenvalues were given by λ2 = 2+ i and λ3 = 2− i. You may

recall that these two complex numbers are conjugates. It turns out that whenever a matrix containing real

entries has a complex eigenvalue λ , it also has an eigenvalue equal to λ , the conjugate of λ .

Exercises

Exercise 7.2.1 Find the eigenvalues and eigenvectors of the matrix




5 −18 −32

0 5 4

2 −5 −11




One eigenvalue is 1. Diagonalize if possible.

Exercise 7.2.2 Find the eigenvalues and eigenvectors of the matrix




−13 −28 28

4 9 −8

−4 −8 9




One eigenvalue is 3. Diagonalize if possible.



7.2. Diagonalization 365

Exercise 7.2.3 Find the eigenvalues and eigenvectors of the matrix




89 38 268

14 2 40

−30 −12 −90




One eigenvalue is −3. Diagonalize if possible.

Exercise 7.2.4 Find the eigenvalues and eigenvectors of the matrix




1 90 0

0 −2 0

3 89 −2




One eigenvalue is 1. Diagonalize if possible.

Exercise 7.2.5 Find the eigenvalues and eigenvectors of the matrix




11 45 30

10 26 20

−20 −60 −44




One eigenvalue is 1. Diagonalize if possible.

Exercise 7.2.6 Find the eigenvalues and eigenvectors of the matrix




95 25 24

−196 −53 −48

−164 −42 −43




One eigenvalue is 5. Diagonalize if possible.

Exercise 7.2.7 Suppose A is an n×n matrix and let V be an eigenvector such that AV = λV. Also suppose

the characteristic polynomial of A is

det(xI −A) = xn +an−1xn−1 + · · ·+a1x+a0

Explain why (
An +an−1An−1 + · · ·+a1A+a0I

)
V = 0

If A is diagonalizable, give a proof of the Cayley Hamilton theorem based on this. This theorem says A

satisfies its characteristic equation,

An +an−1An−1 + · · ·+a1A+a0I = 0

Exercise 7.2.8 Suppose the characteristic polynomial of an n×n matrix A is 1−Xn. Find Amn where m

is an integer.
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Exercise 7.2.9 Find the eigenvalues and eigenvectors of the matrix




15 −24 7

−6 5 −1

−58 76 −20




One eigenvalue is −2. Diagonalize if possible. Hint: This one has some complex eigenvalues.

Exercise 7.2.10 Find the eigenvalues and eigenvectors of the matrix




15 −25 6

−13 23 −4

−91 155 −30




One eigenvalue is 2. Diagonalize if possible. Hint: This one has some complex eigenvalues.

Exercise 7.2.11 Find the eigenvalues and eigenvectors of the matrix




−11 −12 4

8 17 −4

−4 28 −3




One eigenvalue is 1. Diagonalize if possible. Hint: This one has some complex eigenvalues.

Exercise 7.2.12 Find the eigenvalues and eigenvectors of the matrix




14 −12 5

−6 2 −1

−69 51 −21




One eigenvalue is −3. Diagonalize if possible. Hint: This one has some complex eigenvalues.

Exercise 7.2.13 Suppose A is an n× n matrix consisting entirely of real entries but a+ ib is a complex

eigenvalue having the eigenvector, X + iY Here X and Y are real vectors. Show that then a− ib is also an

eigenvalue with the eigenvector, X − iY . Hint: You should remember that the conjugate of a product of

complex numbers equals the product of the conjugates. Here a+ ib is a complex number whose conjugate

equals a− ib.

7.3 Applications of Spectral Theory

Outcomes

A. Use diagonalization to find a high power of a matrix.

B. Use diagonalization to solve dynamical systems.
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7.3.1 Raising a Matrix to a High Power

Suppose we have a matrix A and we want to find A50. One could try to multiply A with itself 50 times, but

this is computationally extremely intensive (try it!). However diagonalization allows us to compute high

powers of a matrix relatively easily. Suppose A is diagonalizable, so that P−1AP = D. We can rearrange

this equation to write A = PDP−1.

Now, consider A2. Since A = PDP−1, it follows that

A2 =
(
PDP−1

)2
= PDP−1PDP−1 = PD2P−1

Similarly,

A3 =
(
PDP−1

)3
= PDP−1PDP−1PDP−1 = PD3P−1

In general,

An =
(
PDP−1

)n
= PDnP−1

Therefore, we have reduced the problem to finding Dn. In order to compute Dn, then because D is

diagonal we only need to raise every entry on the main diagonal of D to the power of n.

Through this method, we can compute large powers of matrices. Consider the following example.

Example 7.27: Raising a Matrix to a High Power

Let A =




2 1 0

0 1 0

−1 −1 1


 . Find A50.

Solution. We will first diagonalize A. The steps are left as an exercise and you may wish to verify that the

eigenvalues of A are λ1 = 1,λ2 = 1, and λ3 = 2.

The basic eigenvectors corresponding to λ1,λ2 = 1 are

X1 =




0

0

1


 ,X2 =




−1

1

0




The basic eigenvector corresponding to λ3 = 2 is

X3 =




−1

0

1




Now we construct P by using the basic eigenvectors of A as the columns of P. Thus

P =
[

X1 X2 X3

]
=




0 −1 −1

0 1 0

1 0 1



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Then also

P−1 =




1 1 1

0 1 0

−1 −1 0




which you may wish to verify.

Then,

P−1AP =




1 1 1

0 1 0

−1 −1 0






2 1 0

0 1 0

−1 −1 1






0 −1 −1

0 1 0

1 0 1




=




1 0 0

0 1 0

0 0 2




= D

Now it follows by rearranging the equation that

A = PDP−1 =




0 −1 −1

0 1 0

1 0 1






1 0 0

0 1 0

0 0 2






1 1 1

0 1 0

−1 −1 0




Therefore,

A50 = PD50P−1

=




0 −1 −1

0 1 0

1 0 1






1 0 0

0 1 0

0 0 2




50


1 1 1

0 1 0

−1 −1 0




By our discussion above, D50 is found as follows.




1 0 0

0 1 0

0 0 2




50

=




150 0 0

0 150 0

0 0 250




It follows that

A50 =




0 −1 −1

0 1 0

1 0 1






150 0 0

0 150 0

0 0 250






1 1 1

0 1 0

−1 −1 0




=




250 −1+250 0

0 1 0

1−250 1−250 1




♠

Through diagonalization, we can efficiently compute a high power of A. Without this, we would be

forced to multiply this by hand!

The next section explores another interesting application of diagonalization.
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7.3.2 Raising a Symmetric Matrix to a High Power

We already have seen how to use matrix diagonalization to compute powers of matrices. This requires

computing eigenvalues of the matrix A, and finding an invertible matrix of eigenvectors P such that P−1AP

is diagonal. In this section we will see that if the matrix A is symmetric (see Definition 2.29), then we can

actually find such a matrix P that is an orthogonal matrix of eigenvectors. Thus P−1 is simply its transpose

PT , and PT AP is diagonal. When this happens we say that A is orthogonally diagonalizable

In fact this happens if and only if A is a symmetric matrix as shown in the following important theorem.

Theorem 7.28: Principal Axis Theorem

The following conditions are equivalent for an n×n matrix A:

1. A is symmetric.

2. A has an orthonormal set of eigenvectors.

3. A is orthogonally diagonalizable.

Proof. The complete proof is beyond this course, but to give an idea assume that A has an orthonormal

set of eigenvectors, and let P consist of these eigenvectors as columns. Then P−1 = PT , and PT AP = D a

diagonal matrix. But then A = PDPT , and

AT = (PDPT )T = (PT )T DT PT = PDPT = A

so A is symmetric.

Now given a symmetric matrix A, one shows that eigenvectors corresponding to different eigenvalues

are always orthogonal. So it suffices to apply the Gram-Schmidt process on the set of basic eigenvectors

of each eigenvalue to obtain an orthonormal set of eigenvectors. ♠

We demonstrate this in the following example.

Example 7.29: Orthogonal Diagonalization of a Symmetric Matrix

Let A =




1 0 0

0 3
2

1
2

0 1
2

3
2


 . Find an orthogonal matrix P such that PT AP is a diagonal matrix.

Solution. In this case, verify that the eigenvalues are 2 and 1. First we will find an eigenvector for the

eigenvalue 2. This involves row reducing the following augmented matrix.




2−1 0 0 0

0 2− 3
2

−1
2

0

0 −1
2

2− 3
2

0



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The reduced row-echelon form is 


1 0 0 0

0 1 −1 0

0 0 0 0




and so an eigenvector is 


0

1

1




Finally to obtain an eigenvector of length one (unit eigenvector) we simply divide this vector by its length

to yield: 


0
1√
2

1√
2




Next consider the case of the eigenvalue 1. To obtain basic eigenvectors, the matrix which needs to be

row reduced in this case is 


1−1 0 0 0

0 1− 3
2

−1
2

0

0 −1
2

1− 3
2

0




The reduced row-echelon form is 


0 1 1 0

0 0 0 0

0 0 0 0




Therefore, the eigenvectors are of the form 


s

−t

t




Note that all these vectors are automatically orthogonal to eigenvectors corresponding to the first eigen-

value. This follows from the fact that A is symmetric, as mentioned earlier.

We obtain basic eigenvectors 


1

0

0


 and




0

−1

1




Since they are themselves orthogonal (by luck here) we do not need to use the Gram-Schmidt process and

instead simply normalize these vectors to obtain




1

0

0


 and




0

− 1√
2

1√
2




An orthogonal matrix P to orthogonally diagonalize A is then obtained by letting these basic vectors be

the columns.

P =




0 1 0

− 1√
2

0 1√
2

1√
2

0 1√
2



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We verify this works. PT AP is of the form



0 − 1√
2

1√
2

1 0 0

0 1√
2

1√
2







1 0 0

0 3
2

1
2

0 1
2

3
2







0 1 0

− 1√
2

0 1√
2

1√
2

0 1√
2




=




1 0 0

0 1 0

0 0 2




which is the desired diagonal matrix. ♠
We can now apply this technique to efficiently compute high powers of a symmetric matrix.

Example 7.30: Powers of a Symmetric Matrix

Let A =




1 0 0

0 3
2

1
2

0 1
2

3
2


 . Compute A7.

Solution. We found in Example 7.29 that PT AP = D is diagonal, where

P =




0 1 0

− 1√
2

0 1√
2

1√
2

0 1√
2


 and D =




1 0 0

0 1 0

0 0 2




Thus A = PDPT and A7 = PDPT PDPT · · ·PDPT = PD7PT which gives:

A7 =




0 1 0

− 1√
2

0 1√
2

1√
2

0 1√
2







1 0 0

0 1 0

0 0 2




7




0 − 1√
2

1√
2

1 0 0

0 1√
2

1√
2




=




0 1 0

− 1√
2

0 1√
2

1√
2

0 1√
2







1 0 0

0 1 0

0 0 27







0 − 1√
2

1√
2

1 0 0

0 1√
2

1√
2




=




0 1 0

− 1√
2

0 1√
2

1√
2

0 1√
2







0 − 1√
2

1√
2

1 0 0

0 27√
2

27√
2




=




1 0 0

0 27+1
2

27−1
2

0 27−1
2

27+1
2






372 Spectral Theory

♠

7.3.3 Markov Matrices

There are applications of great importance which feature a special type of matrix. Matrices whose columns

consist of non-negative numbers that sum to one are called Markov matrices. An important application

of Markov matrices is in population migration, as illustrated in the following definition.

Definition 7.31: Migration Matrices

Let m locations be denoted by the numbers 1,2, · · · ,m. Suppose it is the case that each year the

proportion of residents in location j which move to location i is ai j. Also suppose no one escapes or

emigrates from without these m locations. This last assumption requires ∑i ai j = 1, and means that

the matrix A, such that A =
[
ai j

]
, is a Markov matrix. In this context, A is also called a migration

matrix.

Consider the following example which demonstrates this situation.

Example 7.32: Migration Matrix

Let A be a Markov matrix given by

A =

[
.4 .2

.6 .8

]

Verify that A is a Markov matrix and describe the entries of A in terms of population migration.

Solution. The columns of A are comprised of non-negative numbers which sum to 1. Hence, A is a Markov

matrix.

Now, consider the entries ai j of A in terms of population. The entry a11 = .4 is the proportion of

residents in location one which stay in location one in a given time period. Entry a21 = .6 is the proportion

of residents in location 1 which move to location 2 in the same time period. Entry a12 = .2 is the proportion

of residents in location 2 which move to location 1. Finally, entry a22 = .8 is the proportion of residents

in location 2 which stay in location 2 in this time period.

Considered as a Markov matrix, these numbers are usually identified with probabilities. Hence, we

can say that the probability that a resident of location one will stay in location one in the time period is .4.

♠

Observe that in Example 7.32 if there was initially say 15 thousand people in location 1 and 10 thou-

sands in location 2, then after one year there would be .4×15+ .2×10 = 8 thousands people in location

1 the following year, and similarly there would be .6×15+ .8×10 = 17 thousands people in location 2

the following year.

More generally let Xn = [x1n · · ·xmn]
T

where xin is the population of location i at time period n. We

call Xn the state vector at period n. In particular, we call X0 the initial state vector. Letting A be the

migration matrix, we compute the population in each location i one time period later by AXn. In order to
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find the population of location i after k years, we compute the ith component of AkX . This discussion is

summarized in the following theorem.

Theorem 7.33: State Vector

Let A be the migration matrix of a population and let Xn be the vector whose entries give the

population of each location at time period n. Then Xn is the state vector at period n and it follows

that

Xn+1 = AXn

The sum of the entries of Xn will equal the sum of the entries of the initial vector X0. Since the columns

of A sum to 1, this sum is preserved for every multiplication by A as demonstrated below.

∑
i

∑
j

ai jx j = ∑
j

x j

(
∑

i

ai j

)
= ∑

j

x j

Consider the following example.

Example 7.34: Using a Migration Matrix

Consider the migration matrix

A =




.6 0 .1

.2 .8 0

.2 .2 .9




for locations 1,2, and 3. Suppose initially there are 100 residents in location 1, 200 in location 2 and

400 in location 3. Find the population in the three locations after 1,2, and 10 units of time.

Solution. Using Theorem 7.33 we can find the population in each location using the equation Xn+1 = AXn.

For the population after 1 unit, we calculate X1 = AX0 as follows.

X1 = AX0


x11

x21

x31


 =




.6 0 .1

.2 .8 0

.2 .2 .9






100

200

400




=




100

180

420




Therefore after one time period, location 1 has 100 residents, location 2 has 180, and location 3 has 420.

Notice that the total population is unchanged, it simply migrates within the given locations. We find the

locations after two time periods in the same way.

X2 = AX1


x12

x22

x32


 =




.6 0 .1

.2 .8 0

.2 .2 .9






100

180

420



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=




102

164

434




We could progress in this manner to find the populations after 10 time periods. However from our

above discussion, we can simply calculate (AnX0)i, where n denotes the number of time periods which

have passed. Therefore, we compute the populations in each location after 10 units of time as follows.

X10 = A10X0


x110

x210

x310


 =




.6 0 .1

.2 .8 0

.2 .2 .9




10


100

200

400




=




115.08582922

120.13067244

464.78349834




Since we are speaking about populations, we would need to round these numbers to provide a logical

answer. Therefore, we can say that after 10 units of time, there will be 115 residents in location one, 120

in location two, and 465 in location three. ♠

A second important application of Markov matrices is the concept of random walks. Suppose a walker

has m locations to choose from, denoted 1,2, · · · ,m. Let ai j refer to the probability that the person will

travel to location i from location j. Again, this requires that

k

∑
i=1

ai j = 1

In this context, the vector Xn = [x1n · · ·xmn]
T contains the probabilities xin the walker ends up in location

i,1 ≤ i ≤ m at time n.

Example 7.35: Random Walks

Suppose three locations exist, referred to as locations 1,2 and 3. The Markov matrix of probabilities

A = [ai j] is given by 


0.4 0.1 0.5

0.4 0.6 0.1

0.2 0.3 0.4




If the walker starts in location 1, calculate the probability that he ends up in location 3 at time n = 2.

Solution. Since the walker begins in location 1, we have

X0 =




1

0

0




The goal is to calculate x32. To do this we calculate X2, using Xn+1 = AXn.

X1 = AX0
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=




0.4 0.1 0.5

0.4 0.6 0.1

0.2 0.3 0.4






1

0

0




=




0.4

0.4

0.2




X2 = AX1

=




0.4 0.1 0.5

0.4 0.6 0.1

0.2 0.3 0.4






0.4

0.4

0.2




=




0.3

0.42

0.28




This gives the probabilities that our walker ends up in locations 1, 2, and 3. For this example we are

interested in location 3, with a probability on 0.28. ♠

Returning to the context of migration, suppose we wish to know how many residents will be in a

certain location after a very long time. It turns out that if some power of the migration matrix has all

positive entries, then there is a vector Xs such that AnX0 approaches Xs as n becomes very large. Hence as

more time passes and n increases, AnX0 will become closer to the vector Xs.

Consider Theorem 7.33. Let n increase so that Xn approaches Xs. As Xn becomes closer to Xs, so too

does Xn+1. For sufficiently large n, the statement Xn+1 = AXn can be written as Xs = AXs.

This discussion motivates the following theorem.

Theorem 7.36: Steady State Vector

Let A be a migration matrix. Then there exists a steady state vector written Xs such that

Xs = AXs

where Xs has positive entries which have the same sum as the entries of X0.

As n increases, the state vectors Xn will approach Xs.

Note that the condition in Theorem 7.36 can be written as (I −A)Xs = 0, representing a homogeneous

system of equations.

Consider the following example. Notice that it is the same example as the Example 7.34 but here it

will involve a longer time frame.
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Example 7.37: Populations over the Long Run

Consider the migration matrix

A =




.6 0 .1

.2 .8 0

.2 .2 .9




for locations 1,2, and 3. Suppose initially there are 100 residents in location 1, 200 in location 2 and

400 in location 4. Find the population in the three locations after a long time.

Solution. By Theorem 7.36 the steady state vector Xs can be found by solving the system (I −A)Xs = 0.

Thus we need to find a solution to





1 0 0

0 1 0

0 0 1


−




.6 0 .1

.2 .8 0

.2 .2 .9








x1s

x2s

x3s


=




0

0

0




The augmented matrix and the resulting reduced row-echelon form are given by




0.4 0 −0.1 0

−0.2 0.2 0 0

−0.2 −0.2 0.1 0


→ ·· · →




1 0 −0.25 0

0 1 −0.25 0

0 0 0 0




Therefore, the eigenvectors are

t




0.25

0.25

1




The initial vector X0 is given by 


100

200

400




Now all that remains is to choose the value of t such that

0.25t +0.25t + t = 100+200+400

Solving this equation for t yields t = 1400
3

. Therefore the population in the long run is given by

1400

3




0.25

0.25

1


=




116.6666666666667

116.6666666666667

466.6666666666667




Again, because we are working with populations, these values need to be rounded. The steady state

vector Xs is given by 


117

117

466




♠
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We can see that the numbers we calculated in Example 7.34 for the populations after the 10th unit of

time are not far from the long term values.

Consider another example.

Example 7.38: Populations After a Long Time

Suppose a migration matrix is given by

A =




1
5

1
2

1
5

1
4

1
4

1
2

11
20

1
4

3
10




Find the comparison between the populations in the three locations after a long time.

Solution. In order to compare the populations in the long term, we want to find the steady state vector Xs.

Solve 





1 0 0

0 1 0

0 0 1


−




1
5

1
2

1
5

1
4

1
4

1
2

11
20

1
4

3
10










x1s

x2s

x3s


=




0

0

0




The augmented matrix and the resulting reduced row-echelon form are given by




4
5

−1
2

−1
5

0

−1
4

3
4

−1
2

0

−11
20

−1
4

7
10

0



→ ·· · →




1 0 −16
19

0

0 1 −18
19

0

0 0 0 0




and so an eigenvector is 


16

18

19




Therefore, the proportion of population in location 2 to location 1 is given by 18
16

. The proportion of

population 3 to location 2 is given by 19
18

. ♠
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Eigenvalues of Markov Matrices

The following is an important proposition.

Proposition 7.39: Eigenvalues of a Migration Matrix

Let A =
[
ai j

]
be a migration matrix. Then 1 is always an eigenvalue for A.

Proof. Remember that the determinant of a matrix always equals that of its transpose. Therefore,

det(xI −A) = det
(
(xI −A)T

)
= det

(
xI −AT

)

because IT = I. Thus the characteristic equation for A is the same as the characteristic equation for AT .

Consequently, A and AT have the same eigenvalues. We will show that 1 is an eigenvalue for AT and then

it will follow that 1 is an eigenvalue for A.

Remember that for a migration matrix, ∑i ai j = 1. Therefore, if AT =
[
bi j

]
with bi j = a ji, it follows

that

∑
j

bi j = ∑
j

a ji = 1

Therefore, from matrix multiplication,

AT




1
...

1


=




∑ j bi j
...

∑ j bi j


=




1
...

1




Notice that this shows that




1
...

1


 is an eigenvector for AT corresponding to the eigenvalue, λ = 1. As

explained above, this shows that λ = 1 is an eigenvalue for A because A and AT have the same eigenvalues.

♠

7.3.4 Dynamical Systems

The migration matrices discussed above give an example of a discrete dynamical system. We call them

discrete because they involve discrete values taken at a sequence of points rather than on a continuous

interval of time.

An example of a situation which can be studied in this way is a predator prey model. Consider the

following model where x is the number of prey and y the number of predators in a certain area at a certain

time. These are functions of n ∈ N where n = 1,2, · · · are the ends of intervals of time which may be of

interest in the problem. In other words, x(n) is the number of prey at the end of the nth interval of time.

An example of this situation may be modeled by the following equation

[
x(n+1)
y(n+1)

]
=

[
2 −3

1 4

][
x(n)
y(n)

]
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This says that from time period n to n+1, x increases if there are more x and decreases as there are more

y. In the context of this example, this means that as the number of predators increases, the number of prey

decreases. As for y, it increases if there are more y and also if there are more x.

This is an example of a matrix recurrence which we define now.

Definition 7.40: Matrix Recurrence

Suppose a dynamical system is given by

xn+1 = axn +byn

yn+1 = cxn +dyn

This system can be expressed as Vn+1 = AVn where Vn =

[
xn

yn

]
and A =

[
a b

c d

]
.

In this section, we will examine how to find solutions to a dynamical system given certain initial

conditions. This process involves several concepts previously studied, including matrix diagonalization

and Markov matrices. The procedure is given as follows. Recall that when diagonalized, we can write

An = PDnP−1.

Procedure 7.41: Solving a Dynamical System

Suppose a dynamical system is given by

xn+1 = axn +byn

yn+1 = cxn +dyn

Given initial conditions x0 and y0, the solutions to the system are found as follows:

1. Express the dynamical system in the form Vn+1 = AVn.

2. Diagonalize A to be written as A = PDP−1.

3. Then Vn = PDnP−1V0 where V0 is the vector containing the initial conditions.

4. If given specific values for n, substitute into this equation. Otherwise, find a general solution

for n.

We will now consider an example in detail.
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Example 7.42: Solutions of a Discrete Dynamical System

Suppose a dynamical system is given by

xn+1 = 1.5xn −0.5yn

yn+1 = 1.0xn

Express this system as a matrix recurrence and find solutions to the dynamical system for initial

conditions x0 = 20,y0 = 10.

Solution. First, we express the system as a matrix recurrence.

Vn+1 = AVn[
x(n+1)
y(n+1)

]
=

[
1.5 −0.5

1.0 0

][
x(n)
y(n)

]

Then

A =

[
1.5 −0.5

1.0 0

]

You can verify that the eigenvalues of A are 1 and .5. By diagonalizing, we can write A in the form

P−1DP =

[
1 1

1 2

][
1 0

0 .5

][
2 −1

−1 1

]

Now given an initial condition

V0 =

[
x0

y0

]

the solution to the dynamical system is given by

Vn = PDnP−1V0[
x(n)
y(n)

]
=

[
1 1

1 2

][
1 0

0 .5

]n[
2 −1

−1 1

][
x0

y0

]

=

[
1 1

1 2

][
1 0

0 (.5)n

][
2 −1

−1 1

][
x0

y0

]

=

[
y0 ((.5)

n −1)− x0 ((.5)
n −2)

y0 (2(.5)
n −1)− x0 (2(.5)

n −2)

]

If we let n become arbitrarily large, this vector approaches

[
2x0 − y0

2x0 − y0

]

Thus for large n, [
x(n)
y(n)

]
≈
[

2x0 − y0

2x0 − y0

]
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Now suppose the initial condition is given by

[
x0

y0

]
=

[
20

10

]

Then, we can find solutions for various values of n. Here are the solutions for values of n between 1

and 5

n = 1 :

[
25.0

20.0

]
,n = 2 :

[
27.5

25.0

]
,n = 3 :

[
28.75

27.5

]

n = 4 :

[
29.375

28.75

]
,n = 5 :

[
29.688

29.375

]

Notice that as n increases, we approach the vector given by

[
2x0 − y0

2x0 − y0

]
=

[
2(20)−10

2(20)−10

]
=

[
30

30

]

These solutions are graphed in the following figure.

x

y

28 29 30

27

28

29

♠

The following example demonstrates another system which exhibits some interesting behavior. When

we graph the solutions, it is possible for the ordered pairs to spiral around the origin.

Example 7.43: Finding Solutions to a Dynamical System

Suppose a dynamical system is of the form

[
x(n+1)
y(n+1)

]
=

[
0.7 0.7

−0.7 0.7

][
x(n)
y(n)

]

Find solutions to the dynamical system for given initial conditions.

Solution. Let

A =

[
0.7 0.7

−0.7 0.7

]

To find solutions, we must diagonalize A. You can verify that the eigenvalues of A are complex and are

given by λ1 = .7+ .7i and λ2 = .7− .7i. The eigenvector for λ1 = .7+ .7i is

[
1

i

]
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and that the eigenvector for λ2 = .7− .7i is [
1

−i

]

Thus the matrix A can be written in the form

[
1 1

i −i

][
.7+ .7i 0

0 .7− .7i

]


1
2

−1
2
i

1
2

1
2
i




and so,

Vn = PDnP−1V0

[
x(n)
y(n)

]
=

[
1 1

i −i

][
(.7+ .7i)n

0

0 (.7− .7i)n

]


1
2

−1
2
i

1
2

1
2
i



[

x0

y0

]

The explicit solution is given by

[
x0

(
1
2
(0.7−0.7i)n + 1

2
(0.7+0.7i)n

)
+ y0

(
1
2
i(0.7−0.7i)n − 1

2
i(0.7+0.7i)n

)

y0

(
1
2
(0.7−0.7i)n + 1

2
(0.7+0.7i)n

)
− x0

(
1
2
i(0.7−0.7i)n − 1

2
i(0.7+0.7i)n

)
]

Suppose the initial condition is [
x0

y0

]
=

[
10

10

]

Then one obtains the following sequence of values which are graphed below by letting n = 1,2, · · · ,20

In this picture, the dots are the values and the dashed line is to help to picture what is happening.

These points are getting gradually closer to the origin, but they are circling the origin in the clockwise

direction as they do so. As n increases, the vector

[
x(n)
y(n)

]
approaches

[
0

0

]
♠

This type of behavior along with complex eigenvalues is typical of the deviations from an equilibrium

point in the Lotka Volterra system of differential equations which is a famous model for predator-prey

interactions. These differential equations are given by

x′ = x(a−by)
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y′ = −y(c−dx)

where a,b,c,d are positive constants. For example, you might have X be the population of moose and Y

the population of wolves on an island.

Note that these equations make logical sense. The top says that the rate at which the moose population

increases would be aX if there were no predators Y . However, this is modified by multiplying instead

by (a−bY ) because if there are predators, these will militate against the population of moose. The more

predators there are, the more pronounced is this effect. As to the predator equation, you can see that the

equations predict that if there are many prey around, then the rate of growth of the predators would seem

to be high. However, this is modified by the term −cY because if there are many predators, there would

be competition for the available food supply and this would tend to decrease Y ′.

The behavior near an equilibrium point, which is a point where the right side of the differential equa-

tions equals zero, is of great interest. In this case, the equilibrium point is

x =
c

d
,y =

a

b

Then one defines new variables according to the formula

x+
c

d
= x, y = y+

a

b

In terms of these new variables, the differential equations become

x′ =
(

x+
c

d

)(
a−b

(
y+

a

b

))

y′ = −
(

y+
a

b

)(
c−d

(
x+

c

d

))

Multiplying out the right sides yields

x′ = −bxy−b
c

d
y

y′ = dxy+
a

b
dx

The interest is for x,y small and so these equations are essentially equal to

x′ =−b
c

d
y, y′ =

a

b
dx

Replace x′ with the difference quotient
x(t+h)−x(t)

h
where h is a small positive number and y′ with a

similar difference quotient. For example one could have h correspond to one day or even one hour. Thus,

for h small enough, the following would seem to be a good approximation to the differential equations.

x(t +h) = x(t)−hb
c

d
y

y(t +h) = y(t)+h
a

b
dx

Let 1,2,3, · · · denote the ends of discrete intervals of time having length h chosen above. Then the above

equations take the form [
x(n+1)
y(n+1)

]
=

[
1 −hbc

d
had

b
1

][
x(n)
y(n)

]
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Note that the eigenvalues of this matrix are always complex.

We are not interested in time intervals of length h for h very small. Instead, we are interested in much

longer lengths of time. Thus, replacing the time interval with mh,

[
x(n+m)
y(n+m)

]
=

[
1 −hbc

d
had

b
1

]m [
x(n)
y(n)

]

For example, if m = 2, you would have

[
x(n+2)
y(n+2)

]
=

[
1−ach2 −2b c

d
h

2a
b
dh 1−ach2

][
x(n)
y(n)

]

Note that most of the time, the eigenvalues of the new matrix will be complex.

You can also notice that the upper right corner will be negative by considering higher powers of the

matrix. Thus letting 1,2,3, · · · denote the ends of discrete intervals of time, the desired discrete dynamical

system is of the form [
x(n+1)
y(n+1)

]
=

[
a −b

c d

][
x(n)
y(n)

]

where a,b,c,d are positive constants and the matrix will likely have complex eigenvalues because it is a

power of a matrix which has complex eigenvalues.

You can see from the above discussion that if the eigenvalues of the matrix used to define the dynamical

system are less than 1 in absolute value, then the origin is stable in the sense that as n → ∞, the solution

converges to the origin. If either eigenvalue is larger than 1 in absolute value, then the solutions to the

dynamical system will usually be unbounded, unless the initial condition is chosen very carefully. The

next example exhibits the case where one eigenvalue is larger than 1 and the other is smaller than 1.

The following example demonstrates a familiar concept as a dynamical system.

Example 7.44: The Fibonacci Sequence

The Fibonacci sequence is the sequence given by

1,1,2,3,5, · · ·

which is defined recursively in the form

x(0) = 1 = x(1) , x(n+2) = x(n+1)+ x(n)

Show how the Fibonacci Sequence can be considered a dynamical system.

Solution. This sequence is extremely important in the study of reproducing rabbits. It can be considered

as a dynamical system as follows. Let y(n) = x(n+1) . Then the above recurrence relation can be written

as [
x(n+1)
y(n+1)

]
=

[
0 1

1 1

][
x(n)
y(n)

]
,

[
x(0)
y(0)

]
=

[
1

1

]

Let

A =

[
0 1

1 1

]
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The eigenvalues of the matrix A are λ1 =
1
2
− 1

2

√
5 and λ2 =

1
2

√
5+ 1

2
. The corresponding eigenvectors

are, respectively,

X1 =

[
−1

2

√
5− 1

2

1

]
,X2 =

[
1
2

√
5− 1

2

1

]

You can see from a short computation that one of the eigenvalues is smaller than 1 in absolute value

while the other is larger than 1 in absolute value. Now, diagonalizing A gives us




1
2

√
5− 1

2
−1

2

√
5− 1

2

1 1



−1[

0 1

1 1

]


1
2

√
5− 1

2
−1

2

√
5− 1

2

1 1




=




1
2

√
5+ 1

2
0

0 1
2
− 1

2

√
5




Then it follows that for a given initial condition, the solution to this dynamical system is of the form

[
x(n)
y(n)

]
=




1
2

√
5− 1

2
−1

2

√
5− 1

2

1 1





(

1
2

√
5+ 1

2

)n

0

0
(

1
2
− 1

2

√
5
)n


 ·




1
5

√
5 1

10

√
5+ 1

2

−1
5

√
5 1

5

√
5
(

1
2

√
5− 1

2

)



[

1

1

]

It follows that

x(n) =

(
1

2

√
5+

1

2

)n(
1

10

√
5+

1

2

)
+

(
1

2
− 1

2

√
5

)n(
1

2
− 1

10

√
5

)

♠

Here is a picture of the ordered pairs (x(n) ,y(n)) for n = 0,1, · · · ,n.

There is so much more that can be said about dynamical systems. It is a major topic of study in

differential equations and what is given above is just an introduction.
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7.3.5 The Matrix Exponential

The goal of this section is to use the concept of the matrix exponential to solve first order linear differential

equations. We begin by proving the matrix exponential.

Suppose A is a diagonalizable matrix. Then the matrix exponential, written eA, can be easily defined.

Recall that if D is a diagonal matrix, then

P−1AP = D

D is of the form 


λ1 0
. . .

0 λn


 (7.5)

and it follows that

Dm =




λ m
1 0

. . .

0 λ m
n




Since A is diagonalizable,

A = PDP−1

and

Am = PDmP−1

Recall why this is true.

A = PDP−1

and so

Am =

m times︷ ︸︸ ︷
PDP−1PDP−1PDP−1 · · ·PDP−1

= PDmP−1

We now will examine what is meant by the matrix exponental eA. Begin by formally writing the

following power series for eA:

eA =
∞

∑
k=0

Ak

k!
=

∞

∑
k=0

PDkP−1

k!
= P

(
∞

∑
k=0

Dk

k!

)
P−1

If D is given above in 7.5, the above sum is of the form

P




∞

∑
k=0




1
k!

λ k
1 0

. . .

0 1
k!

λ k
n





P−1

This can be rearranged as follows:

eA = P




∑∞
k=0

1
k!

λ k
1 0

. . .

0 ∑∞
k=0

1
k!

λ k
n


P−1
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= P




eλ1 0
. . .

0 eλn


P−1

This justifies the following theorem.

Theorem 7.45: The Matrix Exponential

Let A be a diagonalizable matrix, with eigenvalues λ1, ...,λnand corresponding matrix of eigenvec-

tors P. Then the matrix exponential, eA, is given by

eA = P




eλ1 0
. . .

0 eλn


P−1

Example 7.46: Compute eA for a Matrix A

Let

A =




2 −1 −1

1 2 1

−1 1 2




Find eA.

Solution. The eigenvalues work out to be 1,2,3 and eigenvectors associated with these eigenvalues are




0

−1

1


↔ 1,




−1

−1

1


↔ 2,




−1

0

1


↔ 3

Then let

D =




1 0 0

0 2 0

0 0 3


 ,P =




0 −1 −1

−1 −1 0

1 1 1




and so

P−1 =




1 0 1

−1 −1 −1

0 1 1




Then the matrix exponential is

eAt =




0 −1 −1

−1 −1 0

1 1 1






e1 0 0

0 e2 0

0 0 e3






1 0 1

−1 −1 −1

0 1 1







e2 e2 − e3 e2 − e3

e2 − e e2 e2 − e

−e2 + e −e2 + e3 −e2 + e+ e3



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♠

The matrix exponential is a useful tool to solve autonomous systems of first order linear differential

equations. These are equations which are of the form

X ′ = AX ,X(0) =C

where A is a diagonalizable n× n matrix and C is a constant vector. X is a vector of functions in one

variable, t:

X = X(t) =




x1(t)
x2(t)

...

xn(t)




Then X ′ refers to the first derivative of X and is given by

X ′ = X ′(t) =




x′1(t)
x′2(t)

...

x′n(t)


 , x′i(t) = the derivative of xi(t)

Then it turns out that the solution to the above system of equations is X (t)= eAtC. To see this, suppose

A is diagonalizable so that

A = P




λ1

. . .

λn


P−1

Then

eAt = P




eλ1t

. . .

eλnt


P−1

eAtC = P




eλ1t

. . .

eλnt


P−1C

Differentiating eAtC yields

X ′ =
(

eAtC
)′

= P




λ1eλ1t

. . .

λneλnt


P−1C

= P




λ1

. . .

λn







eλ1t

. . .

eλnt


P−1C
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= P




λ1

. . .

λn


P−1P




eλ1t

. . .

eλnt


P−1C

= A
(

eAtC
)
= AX

Therefore X = X(t) = eAtC is a solution to X ′ = AX .

To prove that X(0) =C if X(t) = eAtC:

X(0) = eA0C = P




1
. . .

1


P−1C =C

Example 7.47: Solving an Initial Value Problem

Solve the initial value problem

[
x

y

]′
=

[
0 −2

1 3

][
x

y

]
,

[
x(0)
y(0)

]
=

[
1

1

]

Solution. The matrix is diagonalizable and can be written as

A = PDP−1
[

0 −2

1 3

]
=

[
1 1

−1
2

−1

][
1 0

0 2

][
2 2

−1 −2

]

Therefore, the matrix exponential is of the form

eAt =

[
1 1

−1
2

−1

][
et 0

0 e2t

][
2 2

−1 −2

]

The solution to the initial value problem is

X(t) = eAtC[
x(t)
y(t)

]
=

[
1 1

−1
2

−1

][
et 0

0 e2t

][
2 2

−1 −2

][
1

1

]

=

[
4et −3e2t

3e2t −2et

]

We can check that this works:

[
x(0)
y(0)

]
=

[
4e0 −3e2(0)

3e2(0)−2e0

]

=

[
1

1

]
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Lastly,

X ′ =

[
4et −3e2t

3e2t −2et

]′
=

[
4et −6e2t

6e2t −2et

]

and

AX =

[
0 −2

1 3

][
4et −3e2t

3e2t −2et

]
=

[
4et −6e2t

6e2t −2et

]

which is the same thing. Thus this is the solution to the initial value problem. ♠

Exercises

Exercise 7.3.1 Let A =

[
1 2

2 1

]
. Diagonalize A to find A10.

Exercise 7.3.2 Let A =




1 4 1

0 2 5

0 0 5


. Diagonalize A to find A50.

Exercise 7.3.3 Let A =




1 −2 −1

2 −1 1

−2 3 1


. Diagonalize A to find A100.

Exercise 7.3.4 The following is a Markov (migration) matrix for three locations




7
10

1
9

1
5

1
10

7
9

2
5

1
5

1
9

2
5




(a) Initially, there are 90 people in location 1, 81 in location 2, and 85 in location 3. How many are in

each location after one time period?

(b) The total number of individuals in the migration process is 256. After a long time, how many are in

each location?

Exercise 7.3.5 The following is a Markov (migration) matrix for three locations




1
5

1
5

2
5

2
5

2
5

1
5

2
5

2
5

2
5




(a) Initially, there are 130 individuals in location 1, 300 in location 2, and 70 in location 3. How many

are in each location after two time periods?
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(b) The total number of individuals in the migration process is 500. After a long time, how many are in

each location?

Exercise 7.3.6 The following is a Markov (migration) matrix for three locations



3
10

3
8

1
3

1
10

3
8

1
3

3
5

1
4

1
3




The total number of individuals in the migration process is 480. After a long time, how many are in each

location?

Exercise 7.3.7 The following is a Markov (migration) matrix for three locations



3
10

1
3

1
5

3
10

1
3

7
10

2
5

1
3

1
10




The total number of individuals in the migration process is 1155. After a long time, how many are in each

location?

Exercise 7.3.8 The following is a Markov (migration) matrix for three locations



2
5

1
10

1
8

3
10

2
5

5
8

3
10

1
2

1
4




The total number of individuals in the migration process is 704. After a long time, how many are in each

location?

Exercise 7.3.9 A person sets off on a random walk with three possible locations. The Markov matrix of

probabilities A = [ai j] is given by 


0.1 0.3 0.7

0.1 0.3 0.2

0.8 0.4 0.1




If the walker starts in location 2, what is the probability of ending back in location 2 at time n = 3?

Exercise 7.3.10 A person sets off on a random walk with three possible locations. The Markov matrix of

probabilities A = [ai j] is given by 


0.5 0.1 0.6

0.2 0.9 0.2

0.3 0 0.2



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It is unknown where the walker starts, but the probability of starting in each location is given by

X0 =




0.2

0.25

0.55




What is the probability of the walker being in location 1 at time n = 2?

Exercise 7.3.11 You own a trailer rental company in a large city and you have four locations, one in

the South East, one in the North East, one in the North West, and one in the South West. Denote these

locations by SE,NE,NW, and SW respectively. Suppose that the following table is observed to take place.

SE NE NW SW

SE 1
3

1
10

1
10

1
5

NE 1
3

7
10

1
5

1
10

NW 2
9

1
10

3
5

1
5

SW 1
9

1
10

1
10

1
2

In this table, the probability that a trailer starting at NE ends in NW is 1/10, the probability that a trailer

starting at SW ends in NW is 1/5, and so forth. Approximately how many will you have in each location

after a long time if the total number of trailers is 413?

Exercise 7.3.12 You own a trailer rental company in a large city and you have four locations, one in

the South East, one in the North East, one in the North West, and one in the South West. Denote these

locations by SE,NE,NW, and SW respectively. Suppose that the following table is observed to take place.

SE NE NW SW

SE 1
7

1
4

1
10

1
5

NE 2
7

1
4

1
5

1
10

NW 1
7

1
4

3
5

1
5

SW 3
7

1
4

1
10

1
2

In this table, the probability that a trailer starting at NE ends in NW is 1/10, the probability that a trailer

starting at SW ends in NW is 1/5, and so forth. Approximately how many will you have in each location

after a long time if the total number of trailers is 1469.

Exercise 7.3.13 The following table describes the transition probabilities between the states rainy, partly

cloudy and sunny. The symbol p.c. indicates partly cloudy. Thus if it starts off p.c. it ends up sunny the

next day with probability 1
5
. If it starts off sunny, it ends up sunny the next day with probability 2

5
and so

forth.

rains sunny p.c.

rains 1
5

1
5

1
3

sunny 1
5

2
5

1
3

p.c. 3
5

2
5

1
3
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Given this information, what are the probabilities that a given day is rainy, sunny, or partly cloudy?

Exercise 7.3.14 The following table describes the transition probabilities between the states rainy, partly

cloudy and sunny. The symbol p.c. indicates partly cloudy. Thus if it starts off p.c. it ends up sunny the

next day with probability 1
10

. If it starts off sunny, it ends up sunny the next day with probability 2
5

and so

forth.

rains sunny p.c.

rains 1
5

1
5

1
3

sunny 1
10

2
5

4
9

p.c. 7
10

2
5

2
9

Given this information, what are the probabilities that a given day is rainy, sunny, or partly cloudy?

Exercise 7.3.15 You own a trailer rental company in a large city and you have four locations, one in

the South East, one in the North East, one in the North West, and one in the South West. Denote these

locations by SE,NE,NW, and SW respectively. Suppose that the following table is observed to take place.

SE NE NW SW

SE 5
11

1
10

1
10

1
5

NE 1
11

7
10

1
5

1
10

NW 2
11

1
10

3
5

1
5

SW 3
11

1
10

1
10

1
2

In this table, the probability that a trailer starting at NE ends in NW is 1/10, the probability that a trailer

starting at SW ends in NW is 1/5, and so forth. Approximately how many will you have in each location

after a long time if the total number of trailers is 407?

Exercise 7.3.16 The University of Poohbah offers three degree programs, scouting education (SE), dance

appreciation (DA), and engineering (E). It has been determined that the probabilities of transferring from

one program to another are as in the following table.

SE DA E

SE .8 .1 .3

DA .1 .7 .5

E .1 .2 .2

where the number indicates the probability of transferring from the top program to the program on the

left. Thus the probability of going from DA to E is .2. Find the probability that a student is enrolled in the

various programs.

Exercise 7.3.17 In the city of Nabal, there are three political persuasions, republicans (R), democrats (D),

and neither one (N). The following table shows the transition probabilities between the political parties,
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the top row being the initial political party and the side row being the political affiliation the following

year.

R D N

R 1
5

1
6

2
7

D 1
5

1
3

4
7

N 3
5

1
2

1
7

Find the probabilities that a person will be identified with the various political persuasions. Which party

will end up being most important?

Exercise 7.3.18 The following table describes the transition probabilities between the states rainy, partly

cloudy and sunny. The symbol p.c. indicates partly cloudy. Thus if it starts off p.c. it ends up sunny the

next day with probability 1
5
. If it starts off sunny, it ends up sunny the next day with probability 2

7
and so

forth.

rains sunny p.c.

rains 1
5

2
7

5
9

sunny 1
5

2
7

1
3

p.c. 3
5

3
7

1
9

Given this information, what are the probabilities that a given day is rainy, sunny, or partly cloudy?

Exercise 7.3.19 Find the solution to the initial value problem

[
x

y

]′
=

[
0 −1

6 5

][
x

y

]

[
x(0)
y(0)

]
=

[
2

2

]

Hint: form the matrix exponential eAt and then the solution is eAtC where C is the initial vector.

Exercise 7.3.20 Find the solution to the initial value problem

[
x

y

]′
=

[
−4 −3

6 5

][
x

y

]

[
x(0)
y(0)

]
=

[
3

4

]

Hint: form the matrix exponential eAt and then the solution is eAtC where C is the initial vector.

Exercise 7.3.21 Find the solution to the initial value problem

[
x

y

]′
=

[
−1 2

−4 5

][
x

y

]
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[
x(0)
y(0)

]
=

[
2

2

]

Hint: form the matrix exponential eAt and then the solution is eAtC where C is the initial vector.

7.4 Orthogonality

7.4.1 Orthogonal Diagonalization

We begin this section by recalling some important definitions. Recall from Definition 4.122 that non-zero

vectors are called orthogonal if their dot product equals 0. A set is orthonormal if it is orthogonal and each

vector is a unit vector.

An orthogonal matrix U , from Definition 4.129, is one in which UUT = I. In other words, the transpose

of an orthogonal matrix is equal to its inverse. A key characteristic of orthogonal matrices, which will be

essential in this section, is that the columns of an orthogonal matrix form an orthonormal set.

We now recall another important definition.

Definition 7.48: Symmetric and Skew Symmetric Matrices

A real n×n matrix A, is symmetric if AT = A. If A =−AT , then A is called skew symmetric.

Before proving an essential theorem, we first examine the following lemma which will be used below.

Lemma 7.49: The Dot Product

Let A =
[
ai j

]
be a real symmetric n×n matrix, and let~x,~y ∈ Rn. Then

A~x•~y =~x•A~y

Proof. This result follows from the definition of the dot product together with properties of matrix multi-

plication, as follows:

A~x•~y = ∑
k,l

aklxlyk

= ∑
k,l

(alk)
T xlyk

= ~x•AT~y

= ~x•A~y

The last step follows from AT = A, since A is symmetric. ♠

We can now prove that the eigenvalues of a real symmetric matrix are real numbers. Consider the

following important theorem.
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Theorem 7.50: Orthogonal Eigenvectors

Let A be a real symmetric matrix. Then the eigenvalues of A are real numbers and eigenvectors

corresponding to distinct eigenvalues are orthogonal.

Proof. Recall that for a complex number a+ ib, the complex conjugate, denoted by a+ ib is given by

a+ ib = a− ib. The notation, ~x will denote the vector which has every entry replaced by its complex

conjugate.

Suppose A is a real symmetric matrix and A~x = λ~x. Then

λ~x
T
~x =

(
A~x
)T
~x =~x

T
AT~x =~x

T
A~x = λ~x

T
~x

Dividing by ~x
T
~x on both sides yields λ = λ which says λ is real. To do this, we need to ensure that

~x
T
~x 6= 0. Notice that~x

T
~x = 0 if and only if~x =~0. Since we chose~x such that A~x = λ~x,~x is an eigenvector

and therefore must be nonzero.

Now suppose A is real symmetric and A~x = λ~x, A~y = µ~y where µ 6= λ . Then since A is symmetric, it

follows from Lemma 7.49 about the dot product that

λ~x•~y = A~x•~y =~x•A~y =~x•µ~y = µ~x •~y

Hence (λ −µ)~x•~y= 0. It follows that, since λ −µ 6= 0, it must be that~x•~y= 0. Therefore the eigenvectors

form an orthogonal set. ♠

The following theorem is proved in a similar manner.

Theorem 7.51: Eigenvalues of Skew Symmetric Matrix

The eigenvalues of a real skew symmetric matrix are either equal to 0 or are pure imaginary num-

bers.

Proof. First, note that if A = 0 is the zero matrix, then A is skew symmetric and has eigenvalues equal to

0.

Suppose A =−AT so A is skew symmetric and A~x = λ~x. Then

λ~x
T
~x =

(
A~x
)T
~x =~x

T
AT~x =−~xT

A~x =−λ~x
T
~x

and so, dividing by~x
T
~x as before, λ =−λ . Letting λ = a+ ib, this means a− ib =−a− ib and so a = 0.

Thus λ is pure imaginary. ♠

Consider the following example.

Example 7.52: Eigenvalues of a Skew Symmetric Matrix

Let A =

[
0 −1

1 0

]
. Find its eigenvalues.
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Solution. First notice that A is skew symmetric. By Theorem 7.51, the eigenvalues will either equal 0 or

be pure imaginary. The eigenvalues of A are obtained by solving the usual equation

det(xI −A) = det

[
x 1

−1 x

]
= x2 +1 = 0

Hence the eigenvalues are ±i, pure imaginary. ♠

Consider the following example.

Example 7.53: Eigenvalues of a Symmetric Matrix

Let A =

[
1 2

2 3

]
. Find its eigenvalues.

Solution. First, notice that A is symmetric. By Theorem 7.50, the eigenvalues will all be real. The

eigenvalues of A are obtained by solving the usual equation

det(xI −A) = det

[
x−1 −2

−2 x−3

]
= x2 −4x−1 = 0

The eigenvalues are given by λ1 = 2+
√

5 and λ2 = 2−
√

5 which are both real. ♠

Recall that a diagonal matrix D =
[
di j

]
is one in which di j = 0 whenever i 6= j. In other words, all

numbers not on the main diagonal are equal to zero.

Consider the following important theorem.

Theorem 7.54: Orthogonal Diagonalization

Let A be a real symmetric matrix. Then there exists an orthogonal matrix U such that

UT AU = D

where D is a diagonal matrix. Moreover, the diagonal entries of D are the eigenvalues of A.

We can use this theorem to diagonalize a symmetric matrix, using orthogonal matrices. Consider the

following corollary.

Corollary 7.55: Orthonormal Set of Eigenvectors

If A is a real n × n symmetric matrix, then there exists an orthonormal set of eigenvectors,

{~u1, · · · ,~un} .

Proof. Since A is symmetric, then by Theorem 7.54, there exists an orthogonal matrix U such that UT AU =
D, a diagonal matrix whose diagonal entries are the eigenvalues of A. Therefore, since A is symmetric and

all the matrices are real,

D = DT =UT ATU =UT ATU =UT AU = D
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showing D is real because each entry of D equals its complex conjugate.

Now let

U =
[
~u1 ~u2 · · · ~un

]

where the~ui denote the columns of U and

D =




λ1 0
. . .

0 λn




The equation, UT AU = D implies AU =UD and

AU =
[

A~u1 A~u2 · · · A~un

]

=
[

λ1~u1 λ2~u2 · · · λn~un

]

= UD

where the entries denote the columns of AU and UD respectively. Therefore, A~ui = λi~ui. Since the matrix

U is orthogonal, the i jth entry of UTU equals δi j and so

δi j =~uT
i ~u j =~ui •~u j

This proves the corollary because it shows the vectors {~ui} form an orthonormal set. ♠

Definition 7.56: Principal Axes

Let A be an n×n matrix. Then the principal axes of A is a set of orthonormal eigenvectors of A.

In the next example, we examine how to find such a set of orthonormal eigenvectors.

Example 7.57: Find an Orthonormal Set of Eigenvectors

Find an orthonormal set of eigenvectors for the symmetric matrix

A =




17 −2 −2

−2 6 4

−2 4 6




Solution. Recall Procedure 7.5 for finding the eigenvalues and eigenvectors of a matrix. You can verify

that the eigenvalues are 18,9,2. First find the eigenvector for 18 by solving the equation (18I −A)X = 0.

The appropriate augmented matrix is given by



18−17 2 2 0

2 18−6 −4 0

2 −4 18−6 0




The reduced row-echelon form is 


1 0 4 0

0 1 −1 0

0 0 0 0



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Therefore an eigenvector is 


−4

1

1




Next find the eigenvector for λ = 9. The augmented matrix and resulting reduced row-echelon form are




9−17 2 2 0

2 9−6 −4 0

2 −4 9−6 0


→ ·· · →




1 0 −1
2

0

0 1 −1 0

0 0 0 0




Thus an eigenvector for λ = 9 is 


1

2

2




Finally find an eigenvector for λ = 2. The appropriate augmented matrix and reduced row-echelon form are




2−17 2 2 0

2 2−6 −4 0

2 −4 2−6 0


→ ·· · →




1 0 0 0

0 1 1 0

0 0 0 0




Thus an eigenvector for λ = 2 is 


0

−1

1




The set of eigenvectors for A is given by








−4

1

1


 ,




1

2

2


 ,




0

−1

1







You can verify that these eigenvectors form an orthogonal set. By dividing each eigenvector by its magni-

tude, we obtain an orthonormal set:




1√
18




−4

1

1


 ,

1

3




1

2

2


 ,

1√
2




0

−1

1







♠

Consider the following example.

Example 7.58: Repeated Eigenvalues

Find an orthonormal set of three eigenvectors for the matrix

A =




10 2 2

2 13 4

2 4 13



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Solution. You can verify that the eigenvalues of A are 9 (with multiplicity two) and 18 (with multiplicity

one). Consider the eigenvectors corresponding to λ = 9. The appropriate augmented matrix and reduced

row-echelon form are given by




9−10 −2 −2 0

−2 9−13 −4 0

−2 −4 9−13 0


→ ·· · →




1 2 2 0

0 0 0 0

0 0 0 0




and so eigenvectors are of the form 


−2y−2z

y

z




We need to find two of these which are orthogonal. Let one be given by setting z = 0 and y = 1, giving


−2

1

0


.

In order to find an eigenvector orthogonal to this one, we need to satisfy




−2

1

0


•




−2y−2z

y

z


= 5y+4z = 0

The values y =−4 and z = 5 satisfy this equation, giving another eigenvector corresponding to λ = 9 as




−2(−4)−2(5)
(−4)

5


=




−2

−4

5




Next find the eigenvector for λ = 18. The augmented matrix and the resulting reduced row-echelon

form are given by




18−10 −2 −2 0

−2 18−13 −4 0

−2 −4 18−13 0


→ ·· · →




1 0 −1
2

0

0 1 −1 0

0 0 0 0




and so an eigenvector is 


1

2

2




Dividing each eigenvector by its length, the orthonormal set is





1√
5




−2

1

0


 ,

√
5

15




−2

−4

5


 ,

1

3




1

2

2







♠
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In the above solution, the repeated eigenvalue implies that there would have been many other orthonor-

mal bases which could have been obtained. While we chose to take z = 0,y = 1, we could just as easily

have taken y = 0 or even y = z = 1. Any such change would have resulted in a different orthonormal set.

Recall the following definition.

Definition 7.59: Diagonalizable

An n×n matrix A is said to be non defective or diagonalizable if there exists an invertible matrix

P such that P−1AP = D where D is a diagonal matrix.

As indicated in Theorem 7.54 if A is a real symmetric matrix, there exists an orthogonal matrix U

such that UT AU = D where D is a diagonal matrix. Therefore, every symmetric matrix is diagonalizable

because if U is an orthogonal matrix, it is invertible and its inverse is UT . In this case, we say that A is

orthogonally diagonalizable. Therefore every symmetric matrix is in fact orthogonally diagonalizable.

The next theorem provides another way to determine if a matrix is orthogonally diagonalizable.

Theorem 7.60: Orthogonally Diagonalizable

Let A be an n×n matrix. Then A is orthogonally diagonalizable if and only if A has an orthonormal

set of eigenvectors.

Recall from Corollary 7.55 that every symmetric matrix has an orthonormal set of eigenvectors. In fact

these three conditions are equivalent.

In the following example, the orthogonal matrix U will be found to orthogonally diagonalize a matrix.

Example 7.61: Diagonalize a Symmetric Matrix

Let A =




1 0 0

0 3
2

1
2

0 1
2

3
2


 . Find an orthogonal matrix U such that UT AU is a diagonal matrix.

Solution. In this case, the eigenvalues are 2 (with multiplicity one) and 1 (with multiplicity two). First

we will find an eigenvector for the eigenvalue 2. The appropriate augmented matrix and resulting reduced

row-echelon form are given by




2−1 0 0 0

0 2− 3
2

−1
2

0

0 −1
2

2− 3
2

0


→ ·· · →




1 0 0 0

0 1 −1 0

0 0 0 0




and so an eigenvector is 


0

1

1



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However, it is desired that the eigenvectors be unit vectors and so dividing this vector by its length gives




0
1√
2

1√
2




Next find the eigenvectors corresponding to the eigenvalue equal to 1. The appropriate augmented matrix

and resulting reduced row-echelon form are given by:




1−1 0 0 0

0 1− 3
2

−1
2

0

0 −1
2

1− 3
2

0


→ ·· · →




0 1 1 0

0 0 0 0

0 0 0 0




Therefore, the eigenvectors are of the form 


s

−t

t




Two of these which are orthonormal are




1

0

0


, choosing s = 1 and t = 0, and




0

− 1√
2

1√
2


, letting s = 0,

t = 1 and normalizing the resulting vector.

To obtain the desired orthogonal matrix, we let the orthonormal eigenvectors computed above be the

columns. 


0 1 0

− 1√
2

0 1√
2

1√
2

0 1√
2




To verify, compute UT AU as follows:

UT AU =




0 − 1√
2

1√
2

1 0 0

0 1√
2

1√
2







1 0 0

0 3
2

1
2

0 1
2

3
2







0 1 0

− 1√
2

0 1√
2

1√
2

0 1√
2




=




1 0 0

0 1 0

0 0 2


= D

the desired diagonal matrix. Notice that the eigenvectors, which construct the columns of U , are in the

same order as the eigenvalues in D. ♠

We conclude this section with a Theorem that generalizes earlier results.
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Theorem 7.62: Triangulation of a Matrix

Let A be an n×n matrix. If A has n real eigenvalues, then an orthogonal matrix U can be found to

result in the upper triangular matrix UT AU .

This Theorem provides a useful Corollary.

Corollary 7.63: Determinant and Trace

Let A be an n× n matrix with eigenvalues λ1, · · · ,λn. Then it follows that det(A) is equal to the

product of the λ1, while trace(A) is equal to the sum of the λi.

Proof. By Theorem 7.62, there exists an orthogonal matrix U such that UT AU = P, where P is an upper

triangular matrix. Since P is similar to A, the eigenvalues of P are λ1,λ2, . . . ,λn. Furthermore, since P is

(upper) triangular, the entries on the main diagonal of P are its eigenvalues, so det(P) = λ1λ2 · · ·λn and

trace(P) = λ1 +λ2 + · · ·+λn. Since P and A are similar, det(A) = det(P) and trace(A) = trace(P), and

therefore the results follow. ♠

7.4.2 The Singular Value Decomposition

We begin this section with an important definition.

Definition 7.64: Singular Values

Let A be an m×n matrix. The singular values of A are the square roots of the positive eigenvalues

of AT A.

Singular Value Decomposition (SVD) can be thought of as a generalization of orthogonal diagonaliza-

tion of a symmetric matrix to an arbitrary m×n matrix. This decomposition is the focus of this section.

The following is a useful result that will help when computing the SVD of matrices.

Proposition 7.65:

Let A be an m×n matrix. Then AT A and AAT have the same nonzero eigenvalues.

Proof. Suppose A is an m×n matrix, and suppose that λ is a nonzero eigenvalue of AT A. Then there exists

a nonzero vector X ∈ Rn such that

(AT A)X = λX . (7.6)

Multiplying both sides of this equation by A yields:

A(AT A)X = AλX

(AAT )(AX) = λ (AX).
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Since λ 6= 0 and X 6=~0n, λX 6=~0n, and thus by equation (7.6), (AT A)X 6=~0m; thus AT (AX) 6=~0m, implying

that AX 6=~0m.

Therefore AX is an eigenvector of AAT corresponding to eigenvalue λ . An analogous argument can be

used to show that every nonzero eigenvalue of AAT is an eigenvalue of AT A, thus completing the proof.

♠

Given an m×n matrix A, we will see how to express A as a product

A =UΣV T

where

• U is an m×m orthogonal matrix whose columns are eigenvectors of AAT .

• V is an n×n orthogonal matrix whose columns are eigenvectors of AT A.

• Σ is an m×n matrix whose only nonzero values lie on its main diagonal, and are the singular values

of A.

How can we find such a decomposition? We are aiming to decompose A in the following form:

A =U

[
σ 0

0 0

]
V T

where σ is of the form

σ =




σ1 0
. . .

0 σk




Thus AT =V

[
σ 0

0 0

]
UT and it follows that

AT A =V

[
σ 0

0 0

]
UTU

[
σ 0

0 0

]
V T =V

[
σ 2 0

0 0

]
V T

and so AT AV =V

[
σ 2 0

0 0

]
. Similarly, AATU =U

[
σ 2 0

0 0

]
. Therefore, you would find an orthonormal

basis of eigenvectors for AAT make them the columns of a matrix such that the corresponding eigenvalues

are decreasing. This gives U . You could then do the same for AT A to get V .

We formalize this discussion in the following theorem.
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Theorem 7.66: Singular Value Decomposition

Let A be an m×n matrix. Then there exist orthogonal matrices U and V of the appropriate size such

that A =UΣV T where Σ is of the form

Σ =

[
σ 0

0 0

]

and σ is of the form

σ =




σ1 0
. . .

0 σk




for the σi the singular values of A.

Proof. There exists an orthonormal basis, {~vi}n
i=1 such that AT A~vi =σ 2

i ~vi where σ 2
i > 0 for i= 1, · · · ,k,(σi > 0)

and equals zero if i > k. Thus for i > k, A~vi =~0 because

A~vi •A~vi = AT A~vi •~vi =~0•~vi = 0.

For i = 1, · · · ,k, define~ui ∈ Rm by

~ui = σ−1
i A~vi.

Thus A~vi = σi~ui. Now

~ui •~u j = σ−1
i A~vi •σ−1

j A~v j = σ−1
i ~vi •σ−1

j AT A~v j

= σ−1
i ~vi •σ−1

j σ 2
j~v j =

σ j

σi

(
~vi •~v j

)
= δi j.

Thus {~ui}k
i=1 is an orthonormal set of vectors in Rm. Also,

AAT~ui = AAT σ−1
i A~vi = σ−1

i AAT A~vi = σ−1
i Aσ 2

i ~vi = σ 2
i ~ui.

Now extend {~ui}k
i=1 to an orthonormal basis for all of Rm,{~ui}m

i=1 and let

U =
[
~u1 · · · ~um

]

while V = (~v1 · · ·~vn) . Thus U is the matrix which has the ~ui as columns and V is defined as the matrix

which has the~vi as columns. Then

UT AV =




~uT
1
...

~uT
k
...

~uT
m




A [~v1 · · ·~vn]

=




~uT
1
...

~uT
k
...

~uT
m




[
σ1~u1 · · · σk~uk

~0 · · · ~0
]
=

[
σ 0

0 0

]
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where σ is given in the statement of the theorem. ♠

The singular value decomposition has as an immediate corollary which is given in the following inter-

esting result.

Corollary 7.67: Rank and Singular Values

Let A be an m×n matrix. Then the rank of A and AT equals the number of singular values.

Let’s compute the Singular Value Decomposition of a simple matrix.

Example 7.68: Singular Value Decomposition

Let A =

[
1 −1 3

3 1 1

]
. Find the Singular Value Decomposition (SVD) of A.

Solution. To begin, we compute AAT and AT A.

AAT =

[
1 −1 3

3 1 1

]


1 3

−1 1

3 1


=

[
11 5

5 11

]
.

AT A =




1 3

−1 1

3 1



[

1 −1 3

3 1 1

]
=




10 2 6

2 2 −2

6 −2 10


 .

Since AAT is 2× 2 while AT A is 3× 3, and AAT and AT A have the same nonzero eigenvalues (by

Proposition 7.65), we compute the characteristic polynomial cAAT (x) (because it’s easier to compute than

cAT A(x)).

cAAT (x) = det(xI −AAT ) =

∣∣∣∣
x−11 −5

−5 x−11

∣∣∣∣
= (x−11)2 −25

= x2 −22x+121−25

= x2 −22x+96

= (x−16)(x−6)

Therefore, the eigenvalues of AAT are λ1 = 16 and λ2 = 6.

The eigenvalues of AT A are λ1 = 16, λ2 = 6, and λ3 = 0, and the singular values of A are σ1 =
√

16= 4

and σ2 =
√

6. By convention, we list the eigenvalues (and corresponding singular values) in non increasing

order (i.e., from largest to smallest).

To find the matrix V :

To construct the matrix V we need to find eigenvectors for AT A. Since the eigenvalues of AAT are

distinct, the corresponding eigenvectors are orthogonal, and we need only normalize them.
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λ1 = 16: solve (16I −AT A)Y = 0.




6 −2 −6 0

−2 14 2 0

−6 2 6 0


→




1 0 −1 0

0 1 0 0

0 0 0 0


 , so Y =




t

0

t


= t




1

0

1


 , t ∈ R.

λ2 = 6: solve (6I −AT A)Y = 0.




−4 −2 −6 0

−2 4 2 0

−6 2 −4 0


→




1 0 1 0

0 1 1 0

0 0 0 0


 , so Y =




−s

−s

s


= s




−1

−1

1


 ,s ∈ R.

λ3 = 0: solve (−AT A)Y = 0.




−10 −2 −6 0

−2 −2 2 0

−6 2 −10 0


→




1 0 1 0

0 1 −2 0

0 0 0 0


 , so Y =




−r

2r

r


= r




−1

2

1


 ,r ∈ R.

Let

V1 =
1√
2




1

0

1


 ,V2 =

1√
3




−1

−1

1


 ,V3 =

1√
6




−1

2

1


 .

Then

V =
1√
6




√
3 −

√
2 −1

0 −
√

2 2√
3

√
2 1


 .

Also,

Σ =

[
4 0 0

0
√

6 0

]
,

and we use A, V T , and Σ to find U .

Since V is orthogonal and A = UΣV T , it follows that AV = UΣ. Let V =
[

V1 V2 V3

]
, and let

U =
[

U1 U2

]
, where U1 and U2 are the two columns of U .

Then we have

A
[

V1 V2 V3

]
=

[
U1 U2

]
Σ[

AV1 AV2 AV3

]
=

[
σ1U1 +0U2 0U1 +σ2U2 0U1+0U2

]

=
[

σ1U1 σ2U2 0
]

which implies that AV1 = σ1U1 = 4U1 and AV2 = σ2U2 =
√

6U2.

Thus,

U1 =
1

4
AV1 =

1

4

[
1 −1 3

3 1 1

]
1√
2




1

0

1


=

1

4
√

2

[
4

4

]
=

1√
2

[
1

1

]
,
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and

U2 =
1√
6

AV2 =
1√
6

[
1 −1 3

3 1 1

]
1√
3




−1

−1

1


=

1

3
√

2

[
3

−3

]
=

1√
2

[
1

−1

]
.

Therefore,

U =
1√
2

[
1 1

1 −1

]
,

and

A =

[
1 −1 3

3 1 1

]

=

(
1√
2

[
1 1

1 −1

])[
4 0 0

0
√

6 0

]
 1√

6




√
3 0

√
3

−
√

2 −
√

2
√

2

−1 2 1




 .

♠

Here is another example.

Example 7.69: Finding the SVD

Find an SVD for A =




−1

2

2


.

Solution. Since A is 3×1, AT A is a 1×1 matrix whose eigenvalues are easier to find than the eigenvalues

of the 3×3 matrix AAT .

AT A =
[
−1 2 2

]



−1

2

2


=

[
9
]

.

Thus AT A has eigenvalue λ1 = 9, and the eigenvalues of AAT are λ1 = 9, λ2 = 0, and λ3 = 0. Further-

more, A has only one singular value, σ1 = 3.

To find the matrix V : To do so we find an eigenvector for AT A and normalize it. In this case, finding

a unit eigenvector is trivial: V1 =
[

1
]
, and

V =
[

1
]

.

Also, Σ =




3

0

0


, and we use A, V T , and Σ to find U .

Now AV =UΣ, with V =
[

V1

]
, and U =

[
U1 U2 U3

]
, where U1, U2, and U3 are the columns of

U . Thus

A
[

V1

]
=

[
U1 U2 U3

]
Σ
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[
AV1

]
=

[
σ1U1 +0U2 +0U3

]

=
[

σ1U1

]

This gives us AV1 = σ1U1 = 3U1, so

U1 =
1

3
AV1 =

1

3




−1

2

2


[ 1

]
=

1

3




−1

2

2


 .

The vectors U2 and U3 are eigenvectors of AAT corresponding to the eigenvalue λ2 = λ3 = 0. Instead

of solving the system (0I −AAT )X = 0 and then using the Gram-Schmidt process on the resulting set of

two basic eigenvectors, the following approach may be used.

Find vectors U2 and U3 by first extending {U1} to a basis of R3, then using the Gram-Schmidt algorithm

to orthogonalize the basis, and finally normalizing the vectors.

Starting with {3U1} instead of {U1} makes the arithmetic a bit easier. It is easy to verify that








−1

2

2


 ,




1

0

0


 ,




0

1

0







is a basis of R3. Set

E1 =




−1

2

2


 ,X2 =




1

0

0


 ,X3 =




0

1

0


 ,

and apply the Gram-Schmidt algorithm to {E1,X2,X3}.

This gives us

E2 =




4

1

1


 and E3 =




0

1

−1


 .

Therefore,

U2 =
1√
18




4

1

1


 ,U3 =

1√
2




0

1

−1


 ,

and

U =




−1
3

4√
18

0
2
3

1√
18

1√
2

2
3

1√
18

− 1√
2


 .

Finally,
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A =




−1

2

2


=




−1
3

4√
18

0
2
3

1√
18

1√
2

2
3

1√
18

− 1√
2







3

0

0


[ 1

]
.

♠

Consider another example.

Example 7.70: Find the SVD

Find a singular value decomposition for the matrix

A =

[
2
5

√
2
√

5 4
5

√
2
√

5 0
2
5

√
2
√

5 4
5

√
2
√

5 0

]

First consider AT A 


16
5

32
5

0
32
5

64
5

0

0 0 0




What are some eigenvalues and eigenvectors? Some computing shows these are








0

0

1


 ,




−2
5

√
5

1
5

√
5

0





↔ 0,








1
5

√
5

2
5

√
5

0





↔ 16

Thus the matrix V is given by

V =




1
5

√
5 −2

5

√
5 0

2
5

√
5 1

5

√
5 0

0 0 1




Next consider AAT [
8 8

8 8

]

Eigenvectors and eigenvalues are

{[
−1

2

√
2

1
2

√
2

]}
↔ 0,

{[
1
2

√
2

1
2

√
2

]}
↔ 16

Thus you can let U be given by

U =

[
1
2

√
2 −1

2

√
2

1
2

√
2 1

2

√
2

]

Lets check this. UT AV =

[
1
2

√
2 1

2

√
2

−1
2

√
2 1

2

√
2

][
2
5

√
2
√

5 4
5

√
2
√

5 0
2
5

√
2
√

5 4
5

√
2
√

5 0

]


1
5

√
5 −2

5

√
5 0

2
5

√
5 1

5

√
5 0

0 0 1



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=

[
4 0 0

0 0 0

]

This illustrates that if you have a good way to find the eigenvectors and eigenvalues for a Hermitian

matrix which has nonnegative eigenvalues, then you also have a good way to find the singular value

decomposition of an arbitrary matrix.

7.4.3 Positive Definite Matrices

Positive definite matrices are often encountered in applications such mechanics and statistics.

We begin with a definition.

Definition 7.71: Positive Definite Matrix

Let A be an n×n symmetric matrix. Then A is positive definite if all of its eigenvalues are positive.

The relationship between a negative definite matrix and positive definite matrix is as follows.

Lemma 7.72: Negative Definite Matrix

An n×n matrix A is negative definite if and only if −A is positive definite.

Consider the following lemma.

Lemma 7.73: Positive Definite Matrix and Invertibility

If A is positive definite, then it is invertible.

Proof. If A~v =~0, then 0 is an eigenvalue if ~v is nonzero, which does not happen for a positive definite

matrix. Hence~v =~0 and so A is one to one. This is sufficient to conclude that it is invertible. ♠

Notice that this lemma implies that if a matrix A is positive definite, then det(A)> 0.

The following theorem provides another characterization of positive definite matrices. It gives a useful

test for verifying if a matrix is positive definite.

Theorem 7.74: Positive Definite Matrix

Let A be a symmetric matrix. Then A is positive definite if and only if ~xT A~x is positive for all

nonzero~x ∈ Rn.

Proof. Since A is symmetric, there exists an orthogonal matrix U so that

UT AU = diag(λ1,λ2, . . . ,λn) = D,
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where λ1,λ2, . . . ,λn are the (not necessarily distinct) eigenvalues of A. Let ~x ∈ Rn, ~x 6=~0, and define

~y =UT~x. Then

~xT A~x =~xT (UDUT )~x = (~xTU)D(UT~x) =~yT D~y.

Writing~yT =
[

y1 y2 · · · yn

]
,

~xT A~x =
[

y1 y2 · · · yn

]
diag(λ1,λ2, . . . ,λn)




y1

y2
...

yn




= λ1y2
1 +λ2y2

2 + · · ·λny2
n.

(⇒) First we will assume that A is positive definite and prove that~xT A~x is positive.

Suppose A is positive definite, and~x ∈Rn,~x 6=~0. Since UT is invertible,~y =UT~x 6=~0, and thus y j 6= 0

for some j, implying y2
j > 0 for some j. Furthermore, since all eigenvalues of A are positive, λiy

2
i ≥ 0 for

all i and λ jy
2
j > 0. Therefore,~xT A~x > 0.

(⇐) Now we will assume~xT A~x is positive and show that A is positive definite.

If~xT A~x > 0 whenever~x 6=~0, choose~x =U~e j, where~e j is the jth column of In. Since U is invertible,

~x 6=~0, and thus

~y =UT~x =UT (U~e j) =~e j.

Thus y j = 1 and yi = 0 when i 6= j, so

λ1y2
1 +λ2y2

2 + · · ·λny2
n = λ j,

i.e., λ j =~xT A~x > 0. Therefore, A is positive definite. ♠

There are some other very interesting consequences which result from a matrix being positive defi-

nite. First one can note that the property of being positive definite is transferred to each of the principal

submatrices which we will now define.

Definition 7.75: The Submatrix Ak

Let A be an n×n matrix. Denote by Ak the k×k matrix obtained by deleting the k+1, · · · ,n columns

and the k+1, · · · ,n rows from A. Thus An = A and Ak is the k× k submatrix of A which occupies

the upper left corner of A.

Lemma 7.76: Positive Definite and Submatrices

Let A be an n×n positive definite matrix. Then each submatrix Ak is also positive definite.

Proof. This follows right away from the above definition. Let~x ∈ Rk be nonzero. Then

~xT Ak~x =
[
~xT 0

]
A

[
~x
0

]
> 0
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by the assumption that A is positive definite. ♠

There is yet another way to recognize whether a matrix is positive definite which is described in terms

of these submatrices. We state the result, the proof of which can be found in more advanced texts.

Theorem 7.77: Positive Matrix and Determinant of Ak

Let A be a symmetric matrix. Then A is positive definite if and only if det(Ak) is greater than 0 for

every submatrix Ak, k = 1, · · · ,n.

Proof. We prove this theorem by induction on n. It is clearly true if n = 1. Suppose then that it is true for

n−1 where n ≥ 2. Since det(A) = det(An)> 0, it follows that all the eigenvalues are nonzero. We need to

show that they are all positive. Suppose not. Then there is some even number of them which are negative,

even because the product of all the eigenvalues is known to be positive, equaling det(A). Pick two, λ1 and

λ2 and let A~ui = λi~ui where ~ui 6=~0 for i = 1,2 and ~u1 •~u2 = 0. Now if~y = α1~u1 +α2~u2 is an element of

span{~u1,~u2} , then since these are eigenvalues and ~u1 •~u2 = 0, a short computation shows

(α1~u1 +α2~u2)
T

A(α1~u1 +α2~u2)

= |α1|2 λ1‖~u1‖2 + |α2|2 λ2‖~u2‖2 < 0.

Now letting~x ∈ Rn−1, we can use the induction hypothesis to write

[
xT 0

]
A

[
~x
0

]
=~xT An−1~x > 0.

Now the dimension of {~z ∈ Rn : zn = 0} is n−1 and the dimension of span{~u1,~u2}= 2 and so there must

be some nonzero~x ∈ Rn which is in both of these subspaces of Rn. However, the first computation would

require that~xT A~x < 0 while the second would require that~xT A~x > 0. This contradiction shows that all the

eigenvalues must be positive. This proves the if part of the theorem. The converse can also be shown to

be correct, but it is the direction which was just shown which is of most interest. ♠

Corollary 7.78: Symmetric and Negative Definite Matrix

Let A be symmetric. Then A is negative definite if and only if

(−1)k
det(Ak)> 0

for every k = 1, · · · ,n.

Proof. This is immediate from the above theorem when we notice, that A is negative definite if and only

if −A is positive definite. Therefore, if det(−Ak) > 0 for all k = 1, · · · ,n, it follows that A is negative

definite. However, det(−Ak) = (−1)k
det(Ak) . ♠
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The Cholesky Factorization

Another important theorem is the existence of a specific factorization of positive definite matrices. It is

called the Cholesky Factorization and factors the matrix into the product of an upper triangular matrix and

its transpose.

Theorem 7.79: Cholesky Factorization

Let A be a positive definite matrix. Then there exists an upper triangular matrix U whose main

diagonal entries are positive, such that A can be written

A =UTU

This factorization is unique.

The process for finding such a matrix U relies on simple row operations.

Procedure 7.80: Finding the Cholesky Factorization

Let A be a positive definite matrix. The matrix U that creates the Cholesky Factorization can be

found through two steps.

1. Using only type 3 elementary row operations (multiples of rows added to other rows) put A in

upper triangular form. Call this matrix Û . Then Û has positive entries on the main diagonal.

2. Divide each row of Û by the square root of the diagonal entry in that row. The result is the

matrix U .

Of course you can always verify that your factorization is correct by multiplying U and UT to ensure

the result is the original matrix A.

Consider the following example.

Example 7.81: Cholesky Factorization

Show that A =




9 −6 3

−6 5 −3

3 −3 6


 is positive definite, and find the Cholesky factorization of A.

Solution. First we show that A is positive definite. By Theorem 7.77 it suffices to show that the determinant

of each submatrix is positive.

A1 =
[

9
]

and A2 =

[
9 −6

−6 5

]
,

so det(A1) = 9 and det(A2) = 9. Since det(A) = 36, it follows that A is positive definite.

Now we use Procedure 7.80 to find the Cholesky Factorization. Row reduce (using only type 3 row
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operations) until an upper triangular matrix is obtained.




9 −6 3

−6 5 −3

3 −3 6


→




9 −6 3

0 1 −1

0 −1 5


→




9 −6 3

0 1 −1

0 0 4




Now divide the entries in each row by the square root of the diagonal entry in that row, to give

U =




3 −2 1

0 1 −1

0 0 2




You can verify that UTU = A. ♠

Example 7.82: Cholesky Factorization

Let A be a positive definite matrix given by




3 1 1

1 4 2

1 2 5




Determine its Cholesky factorization.

Solution. You can verify that A is in fact positive definite.

To find the Cholesky factorization we first row reduce to an upper triangular matrix.




3 1 1

1 4 2

1 2 5


→




3 1 1

0 11
3

5
3

0 5
3

14
5


→




3 1 1

0 11
3

5
3

0 0 43
11




Now divide the entries in each row by the square root of the diagonal entry in that row and simplify.

U =




√
3 1

3

√
3 1

3

√
3

0 1
3

√
3
√

11 5
33

√
3
√

11

0 0 1
11

√
11

√
43




♠
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7.4.4 QR Factorization

In this section, a reliable factorization of matrices is studied. Called the QR factorization of a matrix, it

always exists. While much can be said about the QR factorization, this section will be limited to real

matrices. Therefore we assume the dot product used below is the usual dot product. We begin with a

definition.

Definition 7.83: QR Factorization

Let A be a real m×n matrix. Then a QR factorization of A consists of two matrices, Q orthogonal

and R upper triangular, such that A = QR.

The following theorem claims that such a factorization exists.

Theorem 7.84: Existence of QR Factorization

Let A be any real m×n matrix with linearly independent columns. Then there exists an orthogonal

matrix Q and an upper triangular matrix R having non-negative entries on the main diagonal such

that

A = QR

The procedure for obtaining the QR factorization for any matrix A is as follows.

Procedure 7.85: QR Factorization

Let A be an m×n matrix given by A =
[

A1 A2 · · · An

]
where the Ai are the linearly indepen-

dent columns of A.

1. Apply the Gram-Schmidt Process 4.135 to the columns of A, writing Bi for the resulting

columns.

2. Normalize the Bi, to find Ci =
1

‖Bi‖Bi.

3. Construct the orthogonal matrix Q as Q =
[

C1 C2 · · · Cn

]
.

4. Construct the upper triangular matrix R as

R =




‖B1‖ A2 •C1 A3 •C1 · · · An •C1

0 ‖B2‖ A3 •C2 · · · An •C2

0 0 ‖B3‖ · · · An •C3
...

...
...

...

0 0 0 · · · ‖Bn‖




5. Finally, write A = QR where Q is the orthogonal matrix and R is the upper triangular matrix

obtained above.
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Notice that Q is an orthogonal matrix as the Ci form an orthonormal set. Since ‖Bi‖> 0 for all i (since

the length of a vector is always positive), it follows that R is an upper triangular matrix with positive entries

on the main diagonal.

Consider the following example.

Example 7.86: Finding a QR Factorization

Let

A =




1 2

0 1

1 0




Find an orthogonal matrix Q and upper triangular matrix R such that A = QR.

Solution. First, observe that A1, A2, the columns of A, are linearly independent. Therefore we can use the

Gram-Schmidt Process to create a corresponding orthogonal set {B1,B2} as follows:

B1 = A1 =




1

0

1




B2 = A2 −
A2 •B1

‖B1‖2
B1

=




2

1

0


− 2

2




1

0

1




=




1

1

−1




Normalize each vector to create the set {C1,C2} as follows:

C1 =
1

‖B1‖
B1 =

1√
2




1

0

1




C2 =
1

‖B2‖
B2 =

1√
3




1

1

−1




Now construct the orthogonal matrix Q as

Q =
[

C1 C2 · · · Cn

]

=




1√
2

1√
3

0 1√
3

1√
2

− 1√
3






418 Spectral Theory

Finally, construct the upper triangular matrix R as

R =

[
‖B1‖ A2 •C1

0 ‖B2‖

]

=

[ √
2

√
2

0
√

3

]

It is left to the reader to verify that A = QR. ♠

The QR Factorization and Eigenvalues

The QR factorization of a matrix has a very useful application. It turns out that it can be used repeatedly

to estimate the eigenvalues of a matrix. Consider the following procedure.

Procedure 7.87: Using the QR Factorization to Estimate Eigenvalues

Let A be an invertible matrix. Define the matrices A1,A2, · · · as follows:

1. A1 = A factored as A1 = Q1R1

2. A2 = R1Q1 factored as A2 = Q2R2

3. A3 = R2Q2 factored as A3 = Q3R3

Continue in this manner, where in general Ak = QkRk and Ak+1 = RkQk.

Then it follows that this sequence of Ai converges to an upper triangular matrix which is similar to

A. Therefore the eigenvalues of A can be approximated by the entries on the main diagonal of this

upper triangular matrix.

Power Methods

While the QR algorithm can be used to compute eigenvalues, there is a useful and fairly elementary tech-

nique for finding the eigenvector and associated eigenvalue nearest to a given complex number which is

called the shifted inverse power method. It tends to work extremely well provided you start with something

which is fairly close to an eigenvalue.

Power methods are based the consideration of powers of a given matrix. Let {~x1, · · · ,~xn} be a basis

of eigenvectors for Cn such that A~xn = λn~xn. Now let ~u1 be some nonzero vector. Since {~x1, · · · ,~xn} is a

basis, there exists unique scalars, ci such that

~u1 =
n

∑
k=1

ck~xk

Assume you have not been so unlucky as to pick~u1 in such a way that cn = 0. Then let A~uk =~uk+1 so that

~um = Am~u1 =
n−1

∑
k=1

ckλ m
k ~xk +λ m

n cn~xn. (7.7)

For large m the last term, λ m
n cn~xn, determines quite well the direction of the vector on the right. This is

because |λn| is larger than |λk| for k < n and so for a large m, the sum, ∑n−1
k=1 ckλ m

k ~xk, on the right is fairly



7.4. Orthogonality 419

insignificant. Therefore, for large m,~um is essentially a multiple of the eigenvector~xn, the one which goes

with λn. The only problem is that there is no control of the size of the vectors ~um. You can fix this by

scaling. Let S2 denote the entry of A~u1 which is largest in absolute value. We call this a scaling factor.

Then ~u2 will not be just A~u1 but A~u1/S2. Next let S3 denote the entry of A~u2 which has largest absolute

value and define ~u3 ≡ A~u2/S3. Continue this way. The scaling just described does not destroy the relative

insignificance of the term involving a sum in 7.7. Indeed it amounts to nothing more than changing the

units of length. Also note that from this scaling procedure, the absolute value of the largest element of~uk

is always equal to 1. Therefore, for large m,

~um =
λ m

n cn~xn

S2S3 · · ·Sm
+(relatively insignificant term) .

Therefore, the entry of A~um which has the largest absolute value is essentially equal to the entry having

largest absolute value of

A

(
λ m

n cn~xn

S2S3 · · ·Sm

)
=

λ m+1
n cn~xn

S2S3 · · ·Sm
≈ λn~um

and so for large m, it must be the case that λn ≈ Sm+1. This suggests the following procedure.

Procedure 7.88: Finding the Largest Eigenvalue with its Eigenvector

1. Start with a vector ~u1 which you hope has a component in the direction of ~xn. The vector

(1, · · · ,1)T
is usually a pretty good choice.

2. If~uk is known,

~uk+1 =
A~uk

Sk+1

where Sk+1 is the entry of A~uk which has largest absolute value.

3. When the scaling factors, Sk are not changing much, Sk+1 will be close to the eigenvalue and

~uk+1 will be close to an eigenvector.

4. Check your answer to see if it worked well.

The shifted inverse power method involves finding the eigenvalue closest to a given complex number

along with the associated eigenvalue. If µ is a complex number and you want to find λ which is closest to

µ , you could consider the eigenvalues and eigenvectors of (A−µI)−1
. Then A~x = λ~x if and only if

(A−µI)~x = (λ −µ)~x

If and only if
1

λ −µ
~x = (A−µI)−1~x

Thus, if λ is the closest eigenvalue of A to µ then out of all eigenvalues of (A−µI)−1
, the eigenvaue

given by 1
λ−µ would be the largest. Thus all you have to do is apply the power method to (A−µI)−1

and

the eigenvector you get will be the eigenvector which corresponds to λ where λ is the closest to µ of all

eigenvalues of A. You could use the eigenvector to determine this directly.
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Example 7.89: Finding Eigenvalue and Eigenvector

Find the eigenvalue and eigenvector for




3 2 1

−2 0 −1

−2 −2 0




which is closest to .9+ .9i.

Solution. Form






3 2 1

−2 0 −1

−2 −2 0


− (.9+ .9i)




1 0 0

0 1 0

0 0 1






−1

=




−0.61919−10.545i −5.5249−4.9724i −0.37057−5.8213i

5.5249+4.9724i 5.2762+0.24862i 2.7624+2.4862i

0.74114+11.643i 5.5249+4.9724i 0.49252+6.9189i




Then pick an initial guess an multiply by this matrix raised to a large power.




−0.61919−10.545i −5.5249−4.9724i −0.37057−5.8213i

5.5249+4.9724i 5.2762+0.24862i 2.7624+2.4862i

0.74114+11.643i 5.5249+4.9724i 0.49252+6.9189i




15


1

1

1




This equals 


1.5629×1013−3.8993×1012i

−5.8645×1012 +9.7642×1012i

−1.5629×1013 +3.8999×1012i




Now divide by an entry to make the vector have reasonable size. This yields



−0.99999−3.6140×10−5i

0.49999−0.49999i

1.0




which is close to 


−1

0.5−0.5i

1.0




Then 


3 2 1

−2 0 −1

−2 −2 0






−1

0.5−0.5i

1.0


=




−1.0−1.0i

1.0

1.0+1.0i




Now to determine the eigenvalue, you could just take the ratio of corresponding entries. Pick the two

corresponding entries which have the largest absolute values. In this case, you would get the eigenvalue is

1+ i which happens to be the exact eigenvalue. Thus an eigenvector and eigenvalue are



−1

0.5−0.5i

1.0


 ,1+ i
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♠
Usually it won’t work out so well but you can still find what is desired. Thus, once you have obtained

approximate eigenvalues using the QR algorithm, you can find the eigenvalue more exactly along with an

eigenvector associated with it by using the shifted inverse power method.

7.4.5 Quadratic Forms

One of the applications of orthogonal diagonalization is that of quadratic forms and graphs of level curves

of a quadratic form. This section has to do with rotation of axes so that with respect to the new axes,

the graph of the level curve of a quadratic form is oriented parallel to the coordinate axes. This makes

it much easier to understand. For example, we all know that x2
1 + x2

2 = 1 represents the equation in two

variables whose graph in R2 is a circle of radius 1. But how do we know what the graph of the equation

5x2
1 +4x1x2 +3x2

2 = 1 represents?

We first formally define what is meant by a quadratic form. In this section we will work with only real

quadratic forms, which means that the coefficients will all be real numbers.

Definition 7.90: Quadratic Form

A quadratic form is a polynomial of degree two in n variables x1,x2, · · · ,xn, written as a linear

combination of x2
i terms and xix j terms.

Consider the quadratic form q = a11x2
1+a22x2

2 + · · ·+annx2
n +a12x1x2+ · · · . We can write~x =




x1

x2
...

xn




as the vector whose entries are the variables contained in the quadratic form.

Similarly, let A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


 be the matrix whose entries are the coefficients of x2

i and

xix j from q. Note that the matrix A is not unique, and we will consider this further in the example below.

Using this matrix A, the quadratic form can be written as q =~xT A~x.

q = ~xT A~x

=
[

x1 x2 · · · xn

]




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann







x1

x2
...

xn




=
[

x1 x2 · · · xn

]




a11x1 +a21x2 + · · ·+an1xn

a12x1 +a22x2 + · · ·+an2xn
...

a1nx1 +a2nx2 + · · ·+annxn



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= a11x2
1 +a22x2

2 + · · ·+annx2
n +a12x1x2 + · · ·

Let’s explore how to find this matrix A. Consider the following example.

Example 7.91: Matrix of a Quadratic Form

Let a quadratic form q be given by

q = 6x2
1 +4x1x2 +3x2

2

Write q in the form~xT A~x.

Solution. First, let~x =

[
x1

x2

]
and A =

[
a11 a12

a21 a22

]
.

Then, writing q =~xT A~x gives

q =
[

x1 x2

][ a11 a12

a21 a22

][
x1

x2

]

= a11x2
1 +a21x1x2 +a12x1x2 +a22x2

2

Notice that we have an x1x2 term as well as an x2x1 term. Since multiplication is commutative, these

terms can be combined. This means that q can be written

q = a11x2
1 +(a21 +a12)x1x2 +a22x2

2

Equating this to q as given in the example, we have

a11x2
1 +(a21 +a12)x1x2 +a22x2

2 = 6x2
1 +4x1x2 +3x2

2

Therefore,

a11 = 6

a22 = 3

a21 +a12 = 4

This demonstrates that the matrix A is not unique, as there are several correct solutions to a21+a12 = 4.

However, we will always choose the coefficients such that a21 = a12 = 1
2
(a21 + a12). This results in

a21 = a12 = 2. This choice is key, as it will ensure that A turns out to be a symmetric matrix.

Hence,

A =

[
a11 a12

a21 a22

]
=

[
6 2

2 3

]

You can verify that q =~xT A~x holds for this choice of A. ♠

The above procedure for choosing A to be symmetric applies for any quadratic form q. We will always

choose coefficients such that ai j = a ji.
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We now turn our attention to the focus of this section. Our goal is to start with a quadratic form q

as given above and find a way to rewrite it to eliminate the xix j terms. This is done through a change of

variables. In other words, we wish to find yi such that

q = d11y2
1 +d22y2

2 + · · ·+dnny2
n

Letting ~y =




y1

y2
...

yn


 and D =

[
di j

]
, we can write q =~yT D~y where D is the matrix of coefficients from q.

There is something special about this matrix D that is crucial. Since no yiy j terms exist in q, it follows

that di j = 0 for all i 6= j. Therefore, D is a diagonal matrix. Through this change of variables, we find the

principal axes y1,y2, · · · ,yn of the quadratic form.

This discussion sets the stage for the following essential theorem.

Theorem 7.92: Diagonalizing a Quadratic Form

Let q be a quadratic form in the variables x1, · · · ,xn. It follows that q can be written in the form

q =~xT A~x where

~x =




x1

x2
...

xn




and A =
[
ai j

]
is the symmetric matrix of coefficients of q.

New variables y1,y2, · · · ,yn can be found such that q =~yT D~y where

~y =




y1

y2
...

yn




and D =
[
di j

]
is a diagonal matrix. The matrix D contains the eigenvalues of A and is found by

orthogonally diagonalizing A.

While not a formal proof, the following discussion should convince you that the above theorem holds.

Let q be a quadratic form in the variables x1, · · · ,xn. Then, q can be written in the form q =~xT A~x for a

symmetric matrix A. By Theorem 7.54 we can orthogonally diagonalize the matrix A such that UT AU = D

for an orthogonal matrix U and diagonal matrix D.

Then, the vector~y =




y1

y2
...

yn


 is found by~y =UT~x. To see that this works, rewrite~y =UT~x as~x =U~y.

Letting q =~xT A~x, proceed as follows:

q = ~xT A~x
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= (U~y)T A(U~y)

= ~yT (UT AU)~y

= ~yT D~y

The following procedure details the steps for the change of variables given in the above theorem.

Procedure 7.93: Diagonalizing a Quadratic Form

Let q be a quadratic form in the variables x1, · · · ,xn given by

q = a11x2
1 +a22x2

2 + · · ·+annx2
n +a12x1x2 + · · ·

Then, q can be written as q = d11y2
1 + · · ·+dnny2

n as follows:

1. Write q =~xT A~x for a symmetric matrix A.

2. Orthogonally diagonalize A to be written as UT AU = D for an orthogonal matrix U and

diagonal matrix D.

3. Write~y =




y1

y2
...

yn


. Then,~x =U~y.

4. The quadratic form q will now be given by

q = d11y2
1 + · · ·+dnny2

n =~yT D~y

where D =
[
di j

]
is the diagonal matrix found by orthogonally diagonalizing A.

Consider the following example.

Example 7.94: Choosing New Axes to Simplify a Quadratic Form

Consider the following level curve

6x2
1 +4x1x2 +3x2

2 = 7

shown in the following graph.

x1

x2

Use a change of variables to choose new axes such that the ellipse is oriented parallel to the new

coordinate axes. In other words, use a change of variables to rewrite q to eliminate the x1x2 term.
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Solution. Notice that the level curve is given by q= 7 for q= 6x2
1+4x1x2+3x2

2. This is the same quadratic

form that we examined earlier in Example 7.91. Therefore we know that we can write q =~xT A~x for the

matrix

A =

[
6 2

2 3

]

Now we want to orthogonally diagonalize A to write UT AU = D for an orthogonal matrix U and

diagonal matrix D. The details are left to the reader, and you can verify that the resulting matrices are

U =




2√
5

− 1√
5

1√
5

2√
5




D =

[
7 0

0 2

]

Next we write~y =

[
y1

y2

]
. It follows that~x =U~y.

We can now express the quadratic form q in terms of y, using the entries from D as coefficients as

follows:

q = d11y2
1 +d22y2

2

= 7y2
1 +2y2

2

Hence the level curve can be written 7y2
1 +2y2

2 = 7. The graph of this equation is given by:

y1

y2

The change of variables results in new axes such that with respect to the new axes, the ellipse is

oriented parallel to the coordinate axes. These are called the principal axes of the quadratic form. ♠

The following is another example of diagonalizing a quadratic form.
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Example 7.95: Choosing New Axes to Simplify a Quadratic Form

Consider the level curve

5x2
1 −6x1x2 +5x2

2 = 8

shown in the following graph.

x1

x2

Use a change of variables to choose new axes such that the ellipse is oriented parallel to the new

coordinate axes. In other words, use a change of variables to rewrite q to eliminate the x1x2 term.

Solution. First, express the level curve as~xT A~x where~x=

[
x1

x2

]
and A is symmetric. Let A=

[
a11 a12

a21 a22

]
.

Then q =~xT A~x is given by

q =
[

x1 x2

][ a11 a12

a21 a22

][
x1

x2

]

= a11x2
1 +(a12 +a21)x1x2 +a22x2

2

Equating this to the given description for q, we have

5x2
1 −6x1x2 +5x2

2 = a11x2
1 +(a12 +a21)x1x2 +a22x2

2

This implies that a11 = 5,a22 = 5 and in order for A to be symmetric, a12 = a21 =
1
2
(a12+a21) =−3. The

result is A =

[
5 −3

−3 5

]
. We can write q =~xT A~x as

[
x1 x2

][ 5 −3

−3 5

][
x1

x2

]
= 8

Next, orthogonally diagonalize the matrix A to write UT AU = D. The details are left to the reader and

the necessary matrices are given by

U =




1
2

√
2 1

2

√
2

1
2

√
2 −1

2

√
2




D =

[
2 0

0 8

]

Write~y =

[
y1

y2

]
, such that~x =U~y. Then it follows that q is given by

q = d11y2
1 +d22y2

2
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= 2y2
1 +8y2

2

Therefore the level curve can be written as 2y2
1 +8y2

2 = 8.

This is an ellipse which is parallel to the coordinate axes. Its graph is of the form

y1

y2

Thus this change of variables chooses new axes such that with respect to these new axes, the ellipse is

oriented parallel to the coordinate axes. ♠

Exercises

Exercise 7.4.1 Find the eigenvalues and an orthonormal basis of eigenvectors for A.

A =




11 −1 −4

−1 11 −4

−4 −4 14




Hint: Two eigenvalues are 12 and 18.

Exercise 7.4.2 Find the eigenvalues and an orthonormal basis of eigenvectors for A.

A =




4 1 −2

1 4 −2

−2 −2 7




Hint: One eigenvalue is 3.

Exercise 7.4.3 Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by

finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =




−1 1 1

1 −1 1

1 1 −1




Hint: One eigenvalue is -2.
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Exercise 7.4.4 Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by

finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =




17 −7 −4

−7 17 −4

−4 −4 14




Hint: Two eigenvalues are 18 and 24.

Exercise 7.4.5 Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by

finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =




13 1 4

1 13 4

4 4 10




Hint: Two eigenvalues are 12 and 18.

Exercise 7.4.6 Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by

finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =




−5
3

1
15

√
6
√

5 8
15

√
5

1
15

√
6
√

5 −14
5

− 1
15

√
6

8
15

√
5 − 1

15

√
6 7

15




Hint: The eigenvalues are −3,−2,1.

Exercise 7.4.7 Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by

finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =




3 0 0

0 3
2

1
2

0 1
2

3
2




Exercise 7.4.8 Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by

finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =




2 0 0

0 5 1

0 1 5




Exercise 7.4.9 Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by

finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.



7.4. Orthogonality 429

A =




4
3

1
3

√
3
√

2 1
3

√
2

1
3

√
3
√

2 1 −1
3

√
3

1
3

√
2 −1

3

√
3 5

3




Hint: The eigenvalues are 0,2,2 where 2 is listed twice because it is a root of multiplicity 2.

Exercise 7.4.10 Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by

finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =




1 1
6

√
3
√

2 1
6

√
3
√

6

1
6

√
3
√

2 3
2

1
12

√
2
√

6

1
6

√
3
√

6 1
12

√
2
√

6 1
2




Hint: The eigenvalues are 2,1,0.

Exercise 7.4.11 Find the eigenvalues and an orthonormal basis of eigenvectors for the matrix

A =




1
3

1
6

√
3
√

2 − 7
18

√
3
√

6

1
6

√
3
√

2 3
2

− 1
12

√
2
√

6

− 7
18

√
3
√

6 − 1
12

√
2
√

6 −5
6




Hint: The eigenvalues are 1,2,−2.

Exercise 7.4.12 Find the eigenvalues and an orthonormal basis of eigenvectors for the matrix

A =




−1
2

−1
5

√
6
√

5 1
10

√
5

−1
5

√
6
√

5 7
5

−1
5

√
6

1
10

√
5 −1

5

√
6 − 9

10




Hint: The eigenvalues are −1,2,−1 where −1 is listed twice because it has multiplicity 2 as a zero of

the characteristic equation.

Exercise 7.4.13 Explain why a matrix A is symmetric if and only if there exists an orthogonal matrix U

such that A =UT DU for D a diagonal matrix.

Exercise 7.4.14 Show that if A is a real symmetric matrix and λ and µ are two different eigenvalues, then

if X is an eigenvector for λ and Y is an eigenvector for µ , then X •Y = 0. Also all eigenvalues are real.
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Supply reasons for each step in the following argument. First

λXT X = (AX)T
X = XT AX = XT AX = XT λX = λXT X

and so λ = λ . This shows that all eigenvalues are real. It follows all the eigenvectors are real. Why? Now

let X ,Y , µ and λ be given as above.

λ (X •Y ) = λX •Y = AX •Y = X •AY = X •µY = µ (X •Y ) = µ (X •Y )

and so

(λ −µ)X •Y = 0

Why does it follow that X •Y = 0?

Exercise 7.4.15 Find the Cholesky factorization for the matrix




1 2 0

2 6 4

0 4 10




Exercise 7.4.16 Find the Cholesky factorization of the matrix




4 8 0

8 17 2

0 2 13




Exercise 7.4.17 Find the Cholesky factorization of the matrix




4 8 0

8 20 8

0 8 20




Exercise 7.4.18 Find the Cholesky factorization of the matrix




1 2 1

2 8 10

1 10 18




Exercise 7.4.19 Find the Cholesky factorization of the matrix




1 2 1

2 8 10

1 10 26




Exercise 7.4.20 Suppose you have a lower triangular matrix L and it is invertible. Show that LLT must

be positive definite.
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Exercise 7.4.21 Using the Gram Schmidt process or the QR factorization, find an orthonormal basis for

the following span:

span








1

2

1


 ,




2

−1

3


 ,




1

0

0







Exercise 7.4.22 Using the Gram Schmidt process or the QR factorization, find an orthonormal basis for

the following span:

span =








1

2

1

0


 ,




2

−1

3

1


 ,




1

0

0

1








Exercise 7.4.23 Here are some matrices. Find a QR factorization for each.

(a)




1 2 3

0 3 4

0 0 1




(b)

[
2 1

2 1

]

(c)

[
1 2

−1 2

]

(d)

[
1 1

2 3

]

(e)




√
11 1 3

√
6√

11 7 −
√

6

2
√

11 −4 −
√

6


 Hint: Notice that the columns are orthogonal.

Exercise 7.4.24 Using a computer algebra system, find a QR factorization for the following matrices.

(a)




1 1 2

3 −2 3

2 1 1




(b)




1 2 1 3

4 5 −4 3

2 1 2 1




(c)




1 2

3 2

1 −4


 Find the thin QR factorization of this one.
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Exercise 7.4.25 A quadratic form in three variables is an expression of the form a1x2 + a2y2 + a3z2 +
a4xy+a5xz+a6yz. Show that every such quadratic form may be written as

[
x y z

]
A




x

y

z




where A is a symmetric matrix.

Exercise 7.4.26 Given a quadratic form in three variables, x,y, and z, show there exists an orthogonal

matrix U and variables x′,y′,z′ such that




x

y

z


=U




x′

y′

z′




with the property that in terms of the new variables, the quadratic form is

λ1

(
x′
)2

+λ2

(
y′
)2

+λ3

(
z′
)2

where the numbers, λ1,λ2, and λ3 are the eigenvalues of the matrix A in Problem 7.4.25.

Exercise 7.4.27 Consider the quadratic form q given by q = 3x2
1 −12x1x2 −2x2

2.

(a) Write q in the form~xT A~x for an appropriate symmetric matrix A.

(b) Use a change of variables to rewrite q to eliminate the x1x2 term.

Exercise 7.4.28 Consider the quadratic form q given by q =−2x2
1 +2x1x2 −2x2

2.

(a) Write q in the form~xT A~x for an appropriate symmetric matrix A.

(b) Use a change of variables to rewrite q to eliminate the x1x2 term.

Exercise 7.4.29 Consider the quadratic form q given by q = 7x2
1 +6x1x2 − x2

2.

(a) Write q in the form~xT A~x for an appropriate symmetric matrix A.

(b) Use a change of variables to rewrite q to eliminate the x1x2 term.



Chapter 8

Some Curvilinear Coordinate Systems

8.1 Polar Coordinates and Polar Graphs

Outcomes

A. Understand polar coordinates.

B. Convert points between Cartesian and polar coordinates.

You have likely encountered the Cartesian coordinate system in many aspects of mathematics. There

is an alternative way to represent points in space, called polar coordinates. The idea is suggested in the

following picture.

x

y

θ

r

(x,y)
(r,θ)

Consider the point above, which would be specified as (x,y) in Cartesian coordinates. We can also

specify this point using polar coordinates, which we write as (r,θ). The number r is the distance from

the origin(0,0) to the point, while θ is the angle shown between the positive x axis and the line from the

origin to the point. In this way, the point can be specified in polar coordinates as (r,θ).

Now suppose we are given an ordered pair (r,θ) where r and θ are real numbers. We want to determine

the point specified by this ordered pair. We can use θ to identify a ray from the origin as follows. Let the

ray pass from (0,0) through the point (cosθ , sinθ) as shown.

(cos(θ),sin(θ))

The ray is identified on the graph as the line from the origin, through the point (cos(θ), sin(θ)). Now

if r > 0, go a distance equal to r in the direction of the displayed arrow starting at (0,0). If r < 0, move in

the opposite direction a distance of |r|. This is the point determined by (r,θ).

433
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It is common to assume that θ is in the interval [0,2π) and r > 0. In this case, there is a very simple

relationship between the Cartesian and polar coordinates, given by

x = r cos(θ) , y = r sin(θ) (8.1)

These equations demonstrate how to find the Cartesian coordinates when we are given the polar coor-

dinates of a point. They can also be used to find the polar coordinates when we know (x,y). A simpler

way to do this is the following equations:

r =
√

x2 + y2

tan(θ) = y
x

(8.2)

In the next example, we look at how to find the Cartesian coordinates of a point specified by polar

coordinates.

Example 8.1: Finding Cartesian Coordinates

The polar coordinates of a point in the plane are (5,π/6). Find the Cartesian coordinates of this

point.

Solution. The point is specified by the polar coordinates (5,π/6). Therefore r = 5 and θ = π/6. From 8.1

x = r cos(θ) = 5cos
(π

6

)
=

5

2

√
3

y = r sin(θ) = 5sin
(π

6

)
=

5

2

Thus the Cartesian coordinates are
(

5
2

√
3, 5

2

)
. The point is shown in the below graph.

(5
2

√
3, 5

2
)

♠

Consider the following example of the case where r < 0.

Example 8.2: Finding Cartesian Coordinates

The polar coordinates of a point in the plane are (−5,π/6) . Find the Cartesian coordinates.
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Solution. For the point specified by the polar coordinates (−5,π/6), r =−5, and xθ = π/6. From 8.1

x = r cos(θ) =−5cos
(π

6

)
=−5

2

√
3

y = r sin(θ) =−5sin
(π

6

)
=−5

2

Thus the Cartesian coordinates are
(
−5

2

√
3,−5

2

)
. The point is shown in the following graph.

(−5
2

√
3,−5

2
)

Recall from the previous example that for the point specified by (5,π/6), the Cartesian coordinates

are
(

5
2

√
3, 5

2

)
. Notice that in this example, by multiplying r by −1, the resulting Cartesian coordinates are

also multiplied by −1. ♠

The following picture exhibits both points in the above two examples to emphasize how they are just

on opposite sides of (0,0) but at the same distance from (0,0).

(5
2

√
3, 5

2
)

(−5
2

√
3,−5

2
)

In the next two examples, we look at how to convert Cartesian coordinates to polar coordinates.

Example 8.3: Finding Polar Coordinates

Suppose the Cartesian coordinates of a point are (3,4). Find a pair of polar coordinates which

correspond to this point.

Solution. Using equation 8.2, we can find r and θ . Hence r =
√

32 +42 = 5. It remains to identify the

angle θ between the positive x axis and the line from the origin to the point. Since both the x and y values

are positive, the point is in the first quadrant. Therefore, θ is between 0 and π/2 . Using this and 8.2, we

have to solve:

tan(θ) =
4

3
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Conversely, we can use equation 8.1 as follows:

3 = 5cos(θ)

4 = 5sin(θ)

Solving these equations, we find that, approximately, θ = 0.927295 radians. ♠

Consider the following example.

Example 8.4: Finding Polar Coordinates

Suppose the Cartesian coordinates of a point are
(
−
√

3,1
)

. Find the polar coordinates which

correspond to this point.

Solution. Given the point
(
−
√

3,1
)
,

r =

√
12 +(−

√
3)2

=
√

1+3

= 2

In this case, the point is in the second quadrant since the x value is negative and the y value is positive.

Therefore, θ will be between π/2 and π . Solving the equations

−
√

3 = 2cos(θ)

1 = 2sin(θ)

we find that θ = 5π/6. Hence the polar coordinates for this point are (2,5π/6). ♠

Consider this example. Suppose we used r = −2 and θ = 2π − (π/6) = 11π/6. These coordinates

specify the same point as above. Observe that there are infinitely many ways to identify this particular

point with polar coordinates. In fact, every point can be represented with polar coordinates in infinitely

many ways. Because of this, it will usually be the case that θ is confined to lie in some interval of length

2π and r > 0, for real numbers r and θ .

Just as with Cartesian coordinates, it is possible to use relations between the polar coordinates to

specify points in the plane. The process of sketching the graphs of these relations is very similar to that

used to sketch graphs of functions in Cartesian coordinates. Consider a relation between polar coordinates

of the form, r = f (θ). To graph such a relation, first make a table of the form

θ r

θ1 f (θ1)
θ2 f (θ2)
...

...

Graph the resulting points and connect them with a curve. The following picture illustrates how to begin

this process.
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θ1

θ2

To find the point in the plane corresponding to the ordered pair ( f (θ) ,θ), we follow the same process

as when finding the point corresponding to (r,θ).

Consider the following example of this procedure, incorporating computer software.

Example 8.5: Graphing a Polar Equation

Graph the polar equation r = 1+ cosθ .

Solution. We will use the computer software Maple to complete this example. The command which

produces the polar graph of the above equation is: > plot(1+cos(t),t= 0..2*Pi,coords=polar). Here we use

t to represent the variable θ for convenience. The command tells Maple that r is given by 1+ cos(t) and

that t ∈ [0,2π ].

x

y

The above graph makes sense when considered in terms of trigonometric functions. Suppose θ =
0,r = 2 and let θ increase to π/2. As θ increases, cosθ decreases to 0. Thus the line from the origin to the

point on the curve should get shorter as θ goes from 0 to π/2. As θ goes from π/2 to π , cosθ decreases,

eventually equaling −1 at θ = π . Thus r = 0 at this point. This scenario is depicted in the above graph,

which shows a function called a cardioid.

The following picture illustrates the above procedure for obtaining the polar graph of r = 1+ cos(θ).
In this picture, the concentric circles correspond to values of r while the rays from the origin correspond

to the angles which are shown on the picture. The dot on the ray corresponding to the angle π/6 is located

at a distance of r = 1+ cos(π/6) from the origin. The dot on the ray corresponding to the angle π/3 is

located at a distance of r = 1+ cos(π/3) from the origin and so forth. The polar graph is obtained by

connecting such points with a smooth curve, with the result being the figure shown above.
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♠

Consider another example of constructing a polar graph.

Example 8.6: A Polar Graph

Graph r = 1+2cosθ for θ ∈ [0,2π ].

Solution. The graph of the polar equation r = 1+2cosθ for θ ∈ [0,2π ] is given as follows.

x

y

To see the way this is graphed, consider the following picture. First the indicated points were graphed

and then the curve was drawn to connect the points. When done by a computer, many more points are

used to create a more accurate picture.

Consider first the following table of points.

θ π/6 π/3 π/2 5π/6 π 4π/3 7π/6 5π/3

r
√

3+1 2 1 1−
√

3 −1 0 1−
√

3 2

Note how some entries in the table have r < 0. To graph these points, simply move in the opposite
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direction. These types of points are responsible for the small loop on the inside of the larger loop in the

graph.

♠

The process of constructing these graphs can be greatly facilitated by computer software. However,

the use of such software should not replace understanding the steps involved.

The next example shows the graph for the equation r = 3+ sin

(
7θ

6

)
. For complicated polar graphs,

computer software is used to facilitate the process.

Example 8.7: A Polar Graph

Graph r = 3+ sin

(
7θ

6

)
for θ ∈ [0,14π ].

Solution.

x

y

♠

The next example shows another situation in which r can be negative.
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Example 8.8: A Polar Graph: Negative r

Graph r = 3sin(4θ) for θ ∈ [0,2π ].

Solution.

x

y

♠

We conclude this section with an interesting graph of a simple polar equation.

Example 8.9: The Graph of a Spiral

Graph r = θ for θ ∈ [0,2π ].

Solution. The graph of this polar equation is a spiral. This is the case because as θ increases, so does r.

x

y

♠

In the next section, we will look at two ways of generalizing polar coordinates to three dimensions.
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Exercises

Exercise 8.1.1 In the following, polar coordinates (r,θ) for a point in the plane are given. Find the

corresponding Cartesian coordinates.

(a) (2,π/4)

(b) (−2,π/4)

(c) (3,π/3)

(d) (−3,π/3)

(e) (2,5π/6)

(f) (−2,11π/6)

(g) (2,π/2)

(h) (1,3π/2)

(i) (−3,3π/4)

(j) (3,5π/4)

(k) (−2,π/6)

Exercise 8.1.2 Consider the following Cartesian coordinates (x,y). Find polar coordinates corresponding

to these points.

(a) (−1,1)

(b)
(√

3,−1
)

(c) (0,2)

(d) (−5,0)

(e)
(
−2

√
3,2
)

(f) (2,−2)

(g)
(
−1,

√
3
)

(h)
(
−1,−

√
3
)

Exercise 8.1.3 The following relations are written in terms of Cartesian coordinates (x,y). Rewrite them

in terms of polar coordinates, (r,θ).
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(a) y = x2

(b) y = 2x+6

(c) x2 + y2 = 4

(d) x2 − y2 = 1

Exercise 8.1.4 Use a calculator or computer algebra system to graph the following polar relations.

(a) r = 1− sin(2θ) ,θ ∈ [0,2π ]

(b) r = sin(4θ) ,θ ∈ [0,2π ]

(c) r = cos(3θ)+ sin(2θ) ,θ ∈ [0,2π ]

(d) r = θ , θ ∈ [0,15]

Exercise 8.1.5 Graph the polar equation r = 1+ sinθ for θ ∈ [0,2π ].

Exercise 8.1.6 Graph the polar equation r = 2+ sinθ for θ ∈ [0,2π ].

Exercise 8.1.7 Graph the polar equation r = 1+2sinθ for θ ∈ [0,2π ].

Exercise 8.1.8 Graph the polar equation r = 2+ sin(2θ) for θ ∈ [0,2π ].

Exercise 8.1.9 Graph the polar equation r = 1+ sin(2θ) for θ ∈ [0,2π ].

Exercise 8.1.10 Graph the polar equation r = 1+ sin(3θ) for θ ∈ [0,2π ].

Exercise 8.1.11 Describe how to solve for r and θ in terms of x and y in polar coordinates.

Exercise 8.1.12 This problem deals with parabolas, ellipses, and hyperbolas and their equations. Let

l,e > 0 and consider

r =
l

1± ecosθ

Show that if e = 0, the graph of this equation gives a circle. Show that if 0 < e < 1, the graph is an ellipse,

if e = 1 it is a parabola and if e > 1, it is a hyperbola.
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8.2 Spherical and Cylindrical Coordinates

Outcomes

A. Understand cylindrical and spherical coordinates.

B. Convert points between Cartesian, cylindrical, and spherical coordinates.

Spherical and cylindrical coordinates are two generalizations of polar coordinates to three dimensions.

We will first look at cylindrical coordinates .

When moving from polar coordinates in two dimensions to cylindrical coordinates in three dimensions,

we use the polar coordinates in the xy plane and add a z coordinate. For this reason, we use the notation

(r,θ ,z) to express cylindrical coordinates. The relationship between Cartesian coordinates (x,y,z) and

cylindrical coordinates (r,θ ,z) is given by

x = r cos(θ)

y = r sin(θ)

z = z

where r ≥ 0, θ ∈ [0,2π), and z is simply the Cartesian coordinate. Notice that x and y are defined as the

usual polar coordinates in the xy-plane. Recall that r is defined as the length of the ray from the origin to

the point (x,y,0), while θ is the angle between the positive x-axis and this same ray.

To illustrate this coordinate system, consider the following two pictures. In the first of these, both r

and z are known. The cylinder corresponds to a given value for r. A useful way to think of r is as the

distance between a point in three dimensions and the z-axis. Every point on the cylinder shown is at the

same distance from the z-axis. Giving a value for z results in a horizontal circle, or cross section of the

cylinder at the given height on the z axis (shown below as a black line on the cylinder). In the second

picture, the point is specified completely by also knowing θ as shown.

z

yx

r and z are known

(x,y,z)

(x,y,0)θ

y

z

x

r

z

r, θ and z are known

Every point of three dimensional space other than the z axis has unique cylindrical coordinates. Of

course there are infinitely many cylindrical coordinates for the origin and for the z-axis. Any θ will work

if r = 0 and z is given.
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Consider now spherical coordinates, the second generalization of polar form in three dimensions. For

a point (x,y,z) in three dimensional space, the spherical coordinates are defined as follows.

ρ : the length of the ray from the origin to the point

θ : the angle between the positive x-axis and the ray from the origin to the point (x,y,0)
φ : the angle between the positive z-axis and the ray from the origin to the point of interest

The spherical coordinates are determined by (ρ ,φ ,θ). The relation between these and the Cartesian coor-

dinates (x,y,z) for a point are as follows.

x = ρ sin(φ)cos(θ) , φ ∈ [0,π ]

y = ρ sin(φ)sin(θ) , θ ∈ [0,2π)

z = ρ cosφ , ρ ≥ 0.

Consider the pictures below. The first illustrates the surface when ρ is known, which is a sphere of

radius ρ . The second picture corresponds to knowing both ρ and φ , which results in a circle about the

z-axis. Suppose the first picture demonstrates a graph of the Earth. Then the circle in the second picture

would correspond to a particular latitude.

z

y

x

ρ is known ρ and φ are known

φ

z

yx

Giving the third coordinate, θ completely specifies the point of interest. This is demonstrated in the

following picture. If the latitude corresponds to φ , then we can think of θ as the longitude.

θ

y

z

x

φ

ρ , φ and θ are known
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The following picture summarizes the geometric meaning of the three coordinate systems.

y

z

x
(x,y,0)

θ

φ
ρ

r

(x,y,z)
(r,θ ,z)
(ρ ,φ ,θ)

Therefore, we can represent the same point in three ways, using Cartesian coordinates, (x,y,z), cylin-

drical coordinates, (r,θ ,z), and spherical coordinates (ρ ,φ ,θ).

Using this picture to review, call the point of interest P for convenience. The Cartesian coordinates for

P are (x,y,z). Then ρ is the distance between the origin and the point P. The angle between the positive

z axis and the line between the origin and P is denoted by φ . Then θ is the angle between the positive

x axis and the line joining the origin to the point (x,y,0) as shown. This gives the spherical coordinates,

(ρ ,φ ,θ). Given the line from the origin to (x,y,0), r = ρ sin(φ) is the length of this line. Thus r and

θ determine a point in the xy-plane. In other words, r and θ are the usual polar coordinates and r ≥ 0

and θ ∈ [0,2π). Letting z denote the usual z coordinate of a point in three dimensions, (r,θ ,z) are the

cylindrical coordinates of P.

The relation between spherical and cylindrical coordinates is that r = ρ sin(φ) and the θ is the same

as the θ of cylindrical and polar coordinates.

We will now consider some examples.

Example 8.10: Describing a Surface in Spherical Coordinates

Express the surface z = 1√
3

√
x2 + y2 in spherical coordinates.

Solution. We will use the equations from above:

x = ρ sin(φ)cos(θ) ,φ ∈ [0,π ]
y = ρ sin(φ)sin(θ) , θ ∈ [0,2π)
z = ρ cosφ , ρ ≥ 0

To express the surface in spherical coordinates, we substitute these expressions into the equation. This

is done as follows:

ρ cos(φ) =
1√
3

√
(ρ sin(φ)cos(θ))2 +(ρ sin(φ)sin(θ))2 =

1

3

√
3ρ sin(φ) .

This reduces to

tan(φ) =
√

3
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and so φ = π/3. ♠

Example 8.11: Describing a Surface in Spherical Coordinates

Express the surface y = x in terms of spherical coordinates.

Solution. Using the same procedure as the previous example, this says ρ sin(φ)sin(θ) = ρ sin(φ)cos(θ).
Simplifying, sin(θ) = cos(θ), which you could also write tan(θ) = 1. ♠

We conclude this section with an example of how to describe a surface using cylindrical coordinates.

Example 8.12: Describing a Surface in Cylindrical Coordinates

Express the surface x2 + y2 = 4 in cylindrical coordinates.

Solution. Recall that to convert from Cartesian to cylindrical coordinates, we can use the following equa-

tions:

x = r cos(θ) ,y = r sin(θ) ,z = z

Substituting these equations in for x,y,z in the equation for the surface, we have

r2 cos2 (θ)+ r2 sin2 (θ) = 4

This can be written as r2(cos2 (θ)+ sin2 (θ)) = 4. Recall that cos2 (θ)+ sin2 (θ) = 1. Thus r2 = 4 or

r = 2. ♠

Exercises

Exercise 8.2.1 The following are the cylindrical coordinates of points, (r,θ ,z). Find the Cartesian and

spherical coordinates of each point.

(a)
(
5, 5π

6
,−3

)

(b)
(
3, π

3
,4
)

(c)
(
4, 2π

3
,1
)

(d)
(
2, 3π

4
,−2

)

(e)
(
3, 3π

2
,−1

)

(f)
(
8, 11π

6
,−11

)

Exercise 8.2.2 The following are the Cartesian coordinates of points, (x,y,z). Find the cylindrical and

spherical coordinates of these points.



8.2. Spherical and Cylindrical Coordinates 447

(a)
(

5
2

√
2, 5

2

√
2,−3

)

(b)
(

3
2
, 3

2

√
3,2
)

(c)
(
−5

2

√
2, 5

2

√
2,11

)

(d)
(
−5

2
, 5

2

√
3,23

)

(e)
(
−
√

3,−1,−5
)

(f)
(

3
2
,−3

2

√
3,−7

)

(g)
(√

2,
√

6,2
√

2
)

(h)
(
−1

2

√
3, 3

2
,1
)

(i)
(
−3

4

√
2, 3

4

√
2,−3

2

√
3
)

(j)
(
−
√

3,1,2
√

3
)

(k)
(
−1

4

√
2, 1

4

√
6,−1

2

√
2
)

Exercise 8.2.3 The following are spherical coordinates of points in the form (ρ ,φ ,θ). Find the Cartesian

and cylindrical coordinates of each point.

(a)
(
4, π

4
, 5π

6

)

(b)
(
2, π

3
, 2π

3

)

(c)
(
3, 5π

6
, 3π

2

)

(d)
(
4, π

2
, 7π

4

)

(e)
(
4, 2π

3
, π

6

)

(f)
(
4, 3π

4
, 5π

3

)

Exercise 8.2.4 Describe the surface φ = π/4 in Cartesian coordinates, where φ is the polar angle in

spherical coordinates.

Exercise 8.2.5 Describe the surface θ = π/4 in spherical coordinates, where θ is the angle measured

from the positive x axis.

Exercise 8.2.6 Describe the surface r = 5 in Cartesian coordinates, where r is one of the cylindrical

coordinates.
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Exercise 8.2.7 Describe the surface ρ = 4 in Cartesian coordinates, where ρ is the distance to the origin.

Exercise 8.2.8 Give the cone described by z =
√

x2 + y2 in cylindrical coordinates and in spherical

coordinates.

Exercise 8.2.9 The following are described in Cartesian coordinates. Rewrite them in terms of spherical

coordinates.

(a) z = x2 + y2.

(b) x2 − y2 = 1.

(c) z2 + x2 + y2 = 6.

(d) z =
√

x2 + y2.

(e) y = x.

(f) z = x.

Exercise 8.2.10 The following are described in Cartesian coordinates. Rewrite them in terms of cylindri-

cal coordinates.

(a) z = x2 + y2.

(b) x2 − y2 = 1.

(c) z2 + x2 + y2 = 6.

(d) z =
√

x2 + y2.

(e) y = x.

(f) z = x.



Chapter 9

Vector Spaces

9.1 Algebraic Considerations

Outcomes

A. Develop the abstract concept of a vector space through axioms.

B. Deduce basic properties of vector spaces.

C. Use the vector space axioms to determine if a set and its operations constitute a vector space.

In this section we consider the idea of an abstract vector space. A vector space is something which has

two operations satisfying the following vector space axioms.

Definition 9.1: Vector Space

A vector space V is a set of vectors with two operations defined, addition and scalar multiplication,

which satisfy the axioms of addition and scalar multiplication.

In the following definition we define two operations; vector addition, denoted by + and scalar multipli-

cation denoted by placing the scalar next to the vector. A vector space need not have usual operations, and

for this reason the operations will always be given in the definition of the vector space. The below axioms

for addition (written +) and scalar multiplication must hold for however addition and scalar multiplication

are defined for the vector space.

It is important to note that we have seen much of this content before, in terms of Rn. We will prove in

this section that Rn is an example of a vector space and therefore all discussions in this chapter will pertain

to Rn. While it may be useful to consider all concepts of this chapter in terms of Rn, it is also important to

understand that these concepts apply to all vector spaces.

In the following definition, we will choose scalars a,b to be real numbers and are thus dealing with

real vector spaces. However, we could also choose scalars which are complex numbers. In this case, we

would call the vector space V complex.

449
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Definition 9.2: Axioms of Addition

Let~v,~w,~z be vectors in a vector space V . Then they satisfy the following axioms of addition:

• Closed under Addition

If~v,~w are in V , then~v+~w is also in V .

• The Commutative Law of Addition

~v+~w = ~w+~v

• The Associative Law of Addition

(~v+~w)+~z =~v+(~w+~z)

• The Existence of an Additive Identity

~v+~0 =~v

• The Existence of an Additive Inverse

~v+(−~v) =~0

Definition 9.3: Axioms of Scalar Multiplication

Let a,b ∈ R and let~v,~w,~z be vectors in a vector space V . Then they satisfy the following axioms of

scalar multiplication:

• Closed under Scalar Multiplication

If a is a real number, and~v is in V , then a~v is in V .

•

a(~v+~w) = a~v+a~w

•

(a+b)~v = a~v+b~v

•

a(b~v) = (ab)~v

•

1~v =~v

Consider the following example, in which we prove that Rn is in fact a vector space.
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Example 9.4: Rn

Rn, under the usual operations of vector addition and scalar multiplication, is a vector space.

Solution. To show that Rn is a vector space, we need to show that the above axioms hold. Let ~x,~y,~z be

vectors in Rn. We first prove the axioms for vector addition.

• To show that Rn is closed under addition, we must show that for two vectors in Rn their sum is also

in Rn. The sum~x+~y is given by:




x1

x2
...

xn


+




y1

y2
...

yn


=




x1 + y1

x2 + y2
...

xn + yn




The sum is a vector with n entries, showing that it is in Rn. Hence Rn is closed under vector addition.

• To show that addition is commutative, consider the following:

~x+~y =




x1

x2
...

xn


+




y1

y2
...

yn




=




x1 + y1

x2 + y2
...

xn + yn




=




y1 + x1

y2 + x2
...

yn + xn




=




y1

y2
...

yn


+




x1

x2
...

xn




= ~y+~x

Hence addition of vectors in Rn is commutative.

• We will show that addition of vectors in Rn is associative in a similar way.

(~x+~y)+~z =







x1

x2
...

xn


+




y1

y2
...

yn





+




z1

z2
...

zn



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=




x1 + y1

x2 + y2
...

xn + yn


+




z1

z2
...

zn




=




(x1 + y1)+ z1

(x2 + y2)+ z2
...

(xn + yn)+ zn




=




x1 +(y1 + z1)
x2 +(y2 + z2)

...

xn +(yn + zn)




=




x1

x2
...

xn


+




y1 + z1

y2 + z2
...

yn + zn




=




x1

x2
...

xn


+







y1

y2
...

yn


+




z1

z2
...

zn







= ~x+(~y+~z)

Hence addition of vectors is associative.

• Next, we show the existence of an additive identity. Let~0 =




0

0
...

0


 .

~x+~0 =




x1

x2
...

xn


+




0

0
...

0




=




x1 +0

x2 +0
...

xn +0




=




x1

x2
...

xn


=~x
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Hence the zero vector~0 is an additive identity.

• Next, we prove the existence of an additive inverse. Let −~x =




−x1

−x2
...

−xn


.

~x+(−~x) =




x1

x2
...

xn


+




−x1

−x2
...

−xn




=




x1 − x1

x2 − x2
...

xn − xn




=




0

0
...

0




= ~0

Hence −~x is an additive inverse.

We now need to prove the axioms related to scalar multiplication. Let a,b be real numbers and let~x,~y
be vectors in Rn.

• We first show that Rn is closed under scalar multiplication. To do so, we show that a~x is also a vector

with n entries.

a~x = a




x1

x2
...

xn


=




ax1

ax2
...

axn




The vector a~x is again a vector with n entries, showing that Rn is closed under scalar multiplication.

• We wish to show that a(~x+~y) = a~x+a~y.

a(~x+~y) = a







x1

x2
...

xn


+




x1

x2
...

xn






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= a




x1 + y1

x2 + y2
...

xn + yn




=




a(x1 + y1)
a(x2 + y2)

...

a(xn + yn)




=




ax1 +ay1

ax2 +ay2
...

axn +ayn




=




ax1

ax2
...

axn


+




ay1

ay2
...

ayn




= a~x+a~y

• Next, we wish to show that (a+b)~x = a~x+b~x.

(a+b)~x = (a+b)




x1

x2
...

xn




=




(a+b)x1

(a+b)x2
...

(a+b)xn




=




ax1 +bx1

ax2 +bx2
...

axn +bxn




=




ax1

ax2
...

axn


+




bx1

bx2
...

bxn




= a~x+b~x
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• We wish to show that a(b~x) = (ab)~x.

a(b~x) = a


b




x1

x2
...

xn







= a







bx1

bx2
...

bxn







=




a(bx1)
a(bx2)

...

a(bxn)




=




(ab)x1

(ab)x2
...

(ab)xn




= (ab)




x1

x2
...

xn




= (ab)~x

• Finally, we need to show that 1~x =~x.

1~x = 1




x1

x2
...

xn




=




1x1

1x2
...

1xn




=




x1

x2
...

xn




= ~x

By the above proofs, it is clear that Rn satisfies the vector space axioms. Hence, Rn is a vector space

under the usual operations of vector addition and scalar multiplication. ♠
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We now consider some examples of vector spaces.

Example 9.5: Vector Space of Polynomials

Let P2 be the set of all polynomials of at most degree 2 as well as the zero polynomial. Define ad-

dition to be the standard addition of polynomials, and scalar multiplication the usual multiplication

of a polynomial by a number. Then P2 is a vector space.

Solution. We can write P2 explicitly as

P2 =
{

a2x2 +a1x+a0|ai ∈ R for all i
}

To show that P2 is a vector space, we verify the axioms. Let p(x),q(x),r(x) be polynomials in P2 and let

a,b,c be real numbers. Write p(x) = p2x2 + p1x+ p0, q(x) = q2x2 +q1x+q0, and r(x) = r2x2 + r1x+ r0.

• We first prove that addition of polynomials in P2 is closed. For two polynomials in P2 we need to

show that their sum is also a polynomial in P2. From the definition of P2, a polynomial is contained

in P2 if it is of degree at most 2 or the zero polynomial.

p(x)+q(x) = p2x2 + p1x+ p0 +q2x2 +q1x+q0

= (p2 +q2)x
2 +(p1 +q1)x+(p0 +q0)

The sum is a polynomial of degree 2 and therefore is in P2. It follows that P2 is closed under

addition.

• We need to show that addition is commutative, that is p(x)+q(x) = q(x)+ p(x).

p(x)+q(x) = p2x2 + p1x+ p0 +q2x2 +q1x+q0

= (p2 +q2)x
2 +(p1 +q1)x+(p0 +q0)

= (q2 + p2)x
2 +(q1 + p1)x+(q0 + p0)

= q2x2 +q1x+q0 + p2x2 + p1x+ p0

= q(x)+ p(x)

• Next, we need to show that addition is associative. That is, that (p(x)+q(x))+r(x)= p(x)+(q(x)+
r(x)).

(p(x)+q(x))+ r(x) =
(

p2x2 + p1x+ p0 +q2x2 +q1x+q0

)
+ r2x2 + r1x+ r0

= (p2 +q2)x
2 +(p1 +q1)x+(p0 +q0)+ r2x2 + r1x+ r0

= (p2 +q2 + r2)x
2 +(p1 +q1 + r1)x+(p0 +q0 + r0)

= p2x2 + p1x+ p0 +(q2 + r2)x
2 +(q1 + r1)x+(q0 + r0)

= p2x2 + p1x+ p0 +
(
q2x2 +q1x+q0 + r2x2 + r1x+ r0

)

= p(x)+(q(x)+ r(x))

• Next, we must prove that there exists an additive identity. Let 0(x) = 0x2 +0x+0.

p(x)+0(x) = p2x2 + p1x+ p0 +0x2 +0x+0
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= (p2 +0)x2 +(p1 +0)x+(p0 +0)

= p2x2 + p1x+ p0

= p(x)

Hence an additive identity exists, specifically the zero polynomial.

• Next we must prove that there exists an additive inverse. Let −p(x)=−p2x2− p1x− p0 and consider

the following:

p(x)+(−p(x)) = p2x2 + p1x+ p0 +
(
−p2x2 − p1x− p0

)

= (p2 − p2)x
2 +(p1 − p1)x+(p0 − p0)

= 0x2 +0x+0

= 0(x)

Hence an additive inverse −p(x) exists such that p(x)+(−p(x)) = 0(x).

We now need to verify the axioms related to scalar multiplication.

• First we prove that P2 is closed under scalar multiplication. That is, we show that ap(x) is also a

polynomial of degree at most 2.

ap(x) = a
(

p2x2 + p1x+ p0

)
= ap2x2 +ap1x+ap0

Therefore P2 is closed under scalar multiplication.

• We need to show that a(p(x)+q(x)) = ap(x)+aq(x).

a(p(x)+q(x)) = a
(

p2x2 + p1x+ p0 +q2x2 +q1x+q0

)

= a
(
(p2 +q2)x

2 +(p1 +q1)x+(p0 +q0)
)

= a(p2 +q2)x
2 +a(p1 +q1)x+a(p0 +q0)

= (ap2 +aq2)x
2 +(ap1 +aq1)x+(ap0 +aq0)

= ap2x2 +ap1x+ap0 +aq2x2 +aq1x+aq0

= ap(x)+aq(x)

• Next we show that (a+b)p(x) = ap(x)+bp(x).

(a+b)p(x) = (a+b)(p2x2 + p1x+ p0)

= (a+b)p2x2 +(a+b)p1x+(a+b)p0

= ap2x2 +ap1x+ap0 +bp2x2 +bp1x+bp0

= ap(x)+bp(x)

• The next axiom which needs to be verified is a(bp(x)) = (ab)p(x).
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a(bp(x)) = a
(
b
(

p2x2 + p1x+ p0

))

= a
(
bp2x2 +bp1x+bp0

)

= abp2x2 +abp1x+abp0

= (ab)
(

p2x2 + p1x+ p0

)

= (ab)p(x)

• Finally, we show that 1p(x) = p(x).

1p(x) = 1
(

p2x2 + p1x+ p0

)

= 1p2x2 +1p1x+1p0

= p2x2 + p1x+ p0

= p(x)

Since the above axioms hold, we know that P2 as described above is a vector space. ♠

Another important example of a vector space is the set of all matrices of the same size.

Example 9.6: Vector Space of Matrices

Let M2,3 be the set of all 2×3 matrices. Using the usual operations of matrix addition and scalar

multiplication, show that M2,3 is a vector space.

Solution. Let A,B be 2×3 matrices in M2,3. We first prove the axioms for addition.

• In order to prove that M2,3 is closed under matrix addition, we show that the sum A+B is in M2,3.

This means showing that A+B is a 2×3 matrix.

A+B =

[
a11 a12 a13

a21 a22 a23

]
+

[
b11 b12 b13

b21 b22 b23

]

=

[
a11 +b11 a12 +b12 a13 +b13

a21 +b21 a22 +b22 a23 +b23

]

You can see that the sum is a 2×3 matrix, so it is in M2,3. It follows that M2,3 is closed under matrix

addition.

• The remaining axioms regarding matrix addition follow from properties of matrix addition. There-

fore M2,3 satisfies the axioms of matrix addition.

We now turn our attention to the axioms regarding scalar multiplication. Let A,B be matrices in M2,3

and let c be a real number.
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• We first show that M2,3 is closed under scalar multiplication. That is, we show that cA a 2×3 matrix.

cA = c

[
a11 a12 a13

a21 a22 a23

]

=

[
ca11 ca12 ca13

ca21 ca22 ca23

]

This is a 2×3 matrix in M2,3 which proves that the set is closed under scalar multiplication.

• The remaining axioms of scalar multiplication follow from properties of scalar multiplication of

matrices. Therefore M2,3 satisfies the axioms of scalar multiplication.

In conclusion, M2,3 satisfies the required axioms and is a vector space. ♠

While here we proved that the set of all 2×3 matrices is a vector space, there is nothing special about

this choice of matrix size. In fact if we instead consider Mm,n, the set of all m×n matrices, then Mm,n is a

vector space under the operations of matrix addition and scalar multiplication.

We now examine an example of a set that does not satisfy all of the above axioms, and is therefore not

a vector space.

Example 9.7: Not a Vector Space

Let V denote the set of 2×3 matrices. Let addition in V be defined by A+B = A for matrices A,B

in V . Let scalar multiplication in V be the usual scalar multiplication of matrices. Show that V is

not a vector space.

Solution. In order to show that V is not a vector space, it suffices to find only one axiom which is not

satisfied. We will begin by examining the axioms for addition until one is found which does not hold. Let

A,B be matrices in V .

• We first want to check if addition is closed. Consider A+B. By the definition of addition in the

example, we have that A+B = A. Since A is a 2×3 matrix, it follows that the sum A+B is in V ,

and V is closed under addition.

• We now wish to check if addition is commutative. That is, we want to check if A+B = B+A for

all choices of A and B in V . From the definition of addition, we have that A+B = A and B+A = B.

Therefore, we can find A, B in V such that these sums are not equal. One example is

A =

[
1 0 0

0 0 0

]
,B =

[
0 0 0

1 0 0

]

Using the operation defined by A+B = A, we have

A+B = A

=

[
1 0 0

0 0 0

]
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B+A = B

=

[
0 0 0

1 0 0

]

It follows that A+B 6= B+A. Therefore addition as defined for V is not commutative and V fails

this axiom. Hence V is not a vector space.

♠

Consider another example of a vector space.

Example 9.8: Vector Space of Functions

Let S be a nonempty set and define FS to be the set of real functions defined on S. In other words,

we write FS : S 7→R. Letting a,b,c be scalars and f ,g,h functions, the vector operations are defined

as

( f +g)(x) = f (x)+g(x)

(a f )(x) = a( f (x))

Show that FS is a vector space.

Solution. To verify that FS is a vector space, we must prove the axioms beginning with those for addition.

Let f ,g,h be functions in FS.

• First we check that addition is closed. For functions f ,g defined on the set S, their sum given by

( f +g)(x) = f (x)+g(x)

is again a function defined on S. Hence this sum is in FS and FS is closed under addition.

• Secondly, we check the commutative law of addition:

( f +g)(x) = f (x)+g(x) = g(x)+ f (x) = (g+ f )(x)

Since x is arbitrary, f +g = g+ f .

• Next we check the associative law of addition:

(( f +g)+h)(x) = ( f +g)(x)+h(x) = ( f (x)+g(x))+h(x)

= f (x)+(g(x)+h(x)) = ( f (x)+(g+h)(x)) = ( f +(g+h))(x)

and so ( f +g)+h = f +(g+h) .

• Next we check for an additive identity. Let 0 denote the function which is given by 0(x) = 0. Then

this is an additive identity because

( f +0)(x) = f (x)+0(x) = f (x)

and so f +0 = f .



9.1. Algebraic Considerations 461

• Finally, check for an additive inverse. Let − f be the function which satisfies (− f )(x) = − f (x) .

Then

( f +(− f ))(x) = f (x)+(− f )(x) = f (x)+− f (x) = 0

Hence f +(− f ) = 0.

Now, check the axioms for scalar multiplication.

• We first need to check that FS is closed under scalar multiplication. For a function f (x) in FS and real

number a, the function (a f )(x) = a( f (x)) is again a function defined on the set S. Hence a( f (x)) is

in FS and FS is closed under scalar multiplication.

•

((a+b) f )(x) = (a+b) f (x) = a f (x)+b f (x) = (a f +b f )(x)

and so (a+b) f = a f +b f .

•

(a( f +g))(x) = a( f +g)(x) = a( f (x)+g(x))

= a f (x)+ag(x) = (a f +ag)(x)

and so a( f +g) = a f +ag.

•

((ab) f )(x) = (ab) f (x) = a(b f (x)) = (a(b f ))(x)

so (ab) f = a(b f ).

• Finally (1 f )(x) = 1 f (x) = f (x) so 1 f = f .

It follows that V satisfies all the required axioms and is a vector space. ♠

Consider the following important theorem.

Theorem 9.9: Uniqueness

In any vector space, the following are true:

1. ~0, the additive identity, is unique

2. −~x, the additive inverse, is unique

3. 0~x =~0 for all vectors~x

4. (−1)~x =−~x for all vectors~x

Proof.



462 Vector Spaces

1. When we say that the additive identity,~0, is unique, we mean that if a vector acts like the additive

identity, then it is the additive identity. To prove this uniqueness, we want to show that another

vector which acts like the additive identity is actually equal to~0.

Suppose~0′ is also an additive identity. Then,

~0+~0′ =~0

Now, for~0 the additive identity given above in the axioms, we have that

~0′+~0 =~0′

So by the commutative property:

~0 =~0+~0′ =~0′+~0 =~0′

This says that if a vector acts like an additive identity (such as~0′), it in fact equals~0. This proves

the uniqueness of~0.

2. When we say that the additive inverse, −~x, is unique, we mean that if a vector acts like the additive

inverse, then it is the additive inverse. Suppose that~y acts like an additive inverse:

~x+~y =~0

Then the following holds:

~y =~0+~y = (−~x+~x)+~y =−~x+(~x+~y) =−~x+~0 =−~x
Thus if~y acts like the additive inverse, it is equal to the additive inverse −~x. This proves the unique-

ness of −~x.

3. This statement claims that for all vectors ~x, scalar multiplication by 0 equals the zero vector ~0.

Consider the following, using the fact that we can write 0 = 0+0:

0~x = (0+0)~x = 0~x+0~x

We use a small trick here: add −0~x to both sides. This gives

0~x+(−0~x) = 0~x+0~x+(−0~x)
~0 = 0~x+0

~0 = 0~x

This proves that scalar multiplication of any vector by 0 results in the zero vector~0.

4. Finally, we wish to show that scalar multiplication of −1 and any vector ~x results in the additive

inverse of that vector, −~x. Recall from 2. above that the additive inverse is unique. Consider the

following:

(−1)~x+~x = (−1)~x+1~x

= (−1+1)~x

= 0~x

= ~0

By the uniqueness of the additive inverse shown earlier, any vector which acts like the additive

inverse must be equal to the additive inverse. It follows that (−1)~x =−~x.
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♠

An important use of the additive inverse is the following theorem.

Theorem 9.10:

Let V be a vector space. Then~v+~w =~v+~z implies that ~w =~z for all~v,~w,~z ∈V

The proof follows from the vector space axioms, in particular the existence of an additive inverse (−~v).

The proof is left as an exercise to the reader.

Exercises

Exercise 9.1.1 Suppose you have R2 and the + operation is as follows:

(a,b)+(c,d) = (a+d,b+ c) .

Scalar multiplication is defined in the usual way. Is this a vector space? Explain why or why not.

Exercise 9.1.2 Suppose you have R2 and the + operation is defined as follows.

(a,b)+(c,d) = (0,b+d)

Scalar multiplication is defined in the usual way. Is this a vector space? Explain why or why not.

Exercise 9.1.3 Suppose you have R2 and scalar multiplication is defined as c(a,b) = (a,cb) while vector

addition is defined as usual. Is this a vector space? Explain why or why not.

Exercise 9.1.4 Suppose you have R2 and the + operation is defined as follows.

(a,b)+(c,d) = (a− c,b−d)

Scalar multiplication is same as usual. Is this a vector space? Explain why or why not.

Exercise 9.1.5 Consider all the functions defined on a non empty set which have values in R. Is this a

vector space? Explain. The operations are defined as follows. Here f ,g signify functions and a is a scalar.

( f +g)(x) = f (x)+g(x)

(a f )(x) = a( f (x))

Exercise 9.1.6 Denote by RN the set of real valued sequences. For~a ≡{an}∞
n=1 ,~b ≡{bn}∞

n=1 two of these,

define their sum to be given by

~a+~b = {an +bn}∞
n=1

and define scalar multiplication by

c~a = {can}∞
n=1 where~a = {an}∞

n=1
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Is this a special case of Problem 9.1.5? Is this a vector space?

Exercise 9.1.7 Let C2 be the set of ordered pairs of complex numbers. Define addition and scalar multi-

plication in the usual way.

(z,w)+(ẑ, ŵ) = (z+ ẑ,w+ ŵ) , u(z,w)≡ (uz,uw)

Here the scalars are from C. Show this is a vector space.

Exercise 9.1.8 Let V be the set of functions defined on a nonempty set which have values in a vector space

W . Is this a vector space? Explain.

Exercise 9.1.9 Consider the space of m×n matrices with operation of addition and scalar multiplication

defined the usual way. That is, if A,B are two m×n matrices and c a scalar,

(A+B)i j = Ai j +Bi j, (cA)i j ≡ c
(
Ai j

)

Exercise 9.1.10 Consider the set of n×n symmetric matrices. That is, A = AT . In other words, Ai j = A ji.

Show that this set of symmetric matrices is a vector space and a subspace of the vector space of n× n

matrices.

Exercise 9.1.11 Consider the set of all vectors in R2,(x,y) such that x + y ≥ 0. Let the vector space

operations be the usual ones. Is this a vector space? Is it a subspace of R2?

Exercise 9.1.12 Consider the vectors in R2,(x,y) such that xy = 0. Is this a subspace of R2? Is it a vector

space? The addition and scalar multiplication are the usual operations.

Exercise 9.1.13 Define the operation of vector addition on R2 by (x,y)+ (u,v) = (x+u,y+ v+1) . Let

scalar multiplication be the usual operation. Is this a vector space with these operations? Explain.

Exercise 9.1.14 Let the vectors be real numbers. Define vector space operations in the usual way. That

is x+y means to add the two numbers and xy means to multiply them. Is R with these operations a vector

space? Explain.

Exercise 9.1.15 Let the scalars be the rational numbers and let the vectors be real numbers which are the

form a+b
√

2 for a,b rational numbers. Show that with the usual operations, this is a vector space.

Exercise 9.1.16 Let P2 be the set of all polynomials of degree 2 or less. That is, these are of the form

a+bx+ cx2. Addition is defined as

(
a+bx+ cx2

)
+
(
â+ b̂x+ ĉx2

)
= (a+ â)+

(
b+ b̂

)
x+(c+ ĉ)x2

and scalar multiplication is defined as

d
(
a+bx+ cx2

)
= da+dbx+ cdx2
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Show that, with this definition of the vector space operations that P2 is a vector space. Now let V denote

those polynomials a+bx+ cx2 such that a+b+ c = 0. Is V a subspace of P2? Explain.

Exercise 9.1.17 Let M,N be subspaces of a vector space V and consider M +N defined as the set of all

m+n where m ∈ M and n ∈ N. Show that M+N is a subspace of V .

Exercise 9.1.18 Let M,N be subspaces of a vector space V . Then M∩N consists of all vectors which are

in both M and N. Show that M∩N is a subspace of V .

Exercise 9.1.19 Let M,N be subspaces of a vector space R2. Then N∪M consists of all vectors which are

in either M or N. Show that N∪M is not necessarily a subspace of R2 by giving an example where N∪M

fails to be a subspace.

Exercise 9.1.20 Let X consist of the real valued functions which are defined on an interval [a,b] . For

f ,g ∈ X , f +g is the name of the function which satisfies ( f +g)(x) = f (x)+g(x). For s a real number,

(s f )(x) = s( f (x)). Show this is a vector space.

Exercise 9.1.21 Consider functions defined on {1,2, · · · ,n} having values in R. Explain how, if V is the

set of all such functions, V can be considered as Rn.

Exercise 9.1.22 Let the vectors be polynomials of degree no more than 3. Show that with the usual

definitions of scalar multiplication and addition wherein, for p(x) a polynomial, (ap)(x) = ap(x) and for

p,q polynomials (p+q)(x) = p(x)+q(x) , this is a vector space.

9.2 Spanning Sets

Outcomes

A. Determine if a vector is within a given span.

In this section we will examine the concept of spanning introduced earlier in terms of Rn. Here, we

will discuss these concepts in terms of abstract vector spaces.

Consider the following definition.

Definition 9.11: Subset

Let X and Y be two sets. If all elements of X are also elements of Y then we say that X is a subset

of Y and we write

X ⊆ Y

In particular, we often speak of subsets of a vector space, such as X ⊆V . By this we mean that every

element in the set X is contained in the vector space V .
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Definition 9.12: Linear Combination

Let V be a vector space and let {~v1,~v2, · · · ,~vn} ⊆ V . A vector~v ∈ V is called a linear combination

of the~vi if there exist scalars ci ∈ R such that

~v = c1~v1 + c2~v2 + · · ·+ cn~vn

This definition leads to our next concept of span.

Definition 9.13: Span of Vectors

Let {~v1, · · · ,~vn} ⊆V . Then

span{~v1, · · · ,~vn}=
{

n

∑
i=1

ci~vi : ci ∈ R

}

When we say that a vector ~w is in span{~v1, · · · ,~vn} we mean that ~w can be written as a linear com-

bination of the ~vi. We say that a collection of vectors {~v1, · · · ,~vn} is a spanning set for V if V =
span{~v1, · · · ,~vn}.

Consider the following example.

Example 9.14: Matrix Span

Let A =

[
1 0

0 2

]
, B =

[
0 1

1 0

]
. Determine if A and B are in

span{M1,M2}= span

{[
1 0

0 0

]
,

[
0 0

0 1

]}

Solution.

First consider A. We want to see if scalars s, t can be found such that A = sM1+ tM2.

[
1 0

0 2

]
= s

[
1 0

0 0

]
+ t

[
0 0

0 1

]

The solution to this equation is given by

1 = s

2 = t

and it follows that A is in span{M1,M2}.

Now consider B. Again we write B = sM1+ tM2 and see if a solution can be found for s, t.

[
0 1

1 0

]
= s

[
1 0

0 0

]
+ t

[
0 0

0 1

]
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Clearly no values of s and t can be found such that this equation holds. Therefore B is not in span{M1,M2}.

♠

Consider another example.

Example 9.15: Polynomial Span

Show that p(x) = 7x2 +4x−3 is in span
{

4x2 + x,x2 −2x+3
}

.

Solution. To show that p(x) is in the given span, we need to show that it can be written as a linear

combination of polynomials in the span. Suppose scalars a,b existed such that

7x2 +4x−3 = a(4x2 + x)+b(x2 −2x+3)

If this linear combination were to hold, the following would be true:

4a+b = 7

a−2b = 4

3b = −3

You can verify that a = 2,b =−1 satisfies this system of equations. This means that we can write p(x)
as follows:

7x2 +4x−3 = 2(4x2 + x)− (x2 −2x+3)

Hence p(x) is in the given span. ♠

Consider the following example.

Example 9.16: Spanning Set

Let S =
{

x2 +1,x−2,2x2 − x
}

. Show that S is a spanning set for P2, the set of all polynomials of

degree at most 2.

Solution. Let p(x) = ax2 + bx+ c be an arbitrary polynomial in P2. To show that S is a spanning set, it

suffices to show that p(x) can be written as a linear combination of the elements of S. In other words, can

we find r,s, t such that:

p(x) = ax2 +bx+ c = r(x2 +1)+ s(x−2)+ t(2x2− x)

If a solution r,s, t can be found, then this shows that for any such polynomial p(x), it can be written as

a linear combination of the above polynomials and S is a spanning set.

ax2 +bx+ c = r(x2 +1)+ s(x−2)+ t(2x2− x)

= rx2 + r+ sx−2s+2tx2 − tx

= (r+2t)x2+(s− t)x+(r−2s)
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For this to be true, the following must hold:

a = r+2t

b = s− t

c = r−2s

To check that a solution exists, set up the augmented matrix and row reduce:




1 0 2 a

0 1 −1 b

1 −2 0 c


→ ·· · →




1 0 0 1
2
a+2b+ 1

2
c

0 1 0 1
4
a− 1

4
c

0 0 1 1
4
a−b− 1

4
c




Clearly a solution exists for any choice of a,b,c. Hence S is a spanning set for P2. ♠

Exercises

Exercise 9.2.1 Let V be a vector space and suppose {~x1, · · · ,~xk} is a set of vectors in V . Show that~0 is in

span{~x1, · · · ,~xk} .

Exercise 9.2.2 Determine if p(x) = 4x2 − x is in the span given by

span
{

x2 + x,x2 −1,−x+2
}

Exercise 9.2.3 Determine if p(x) =−x2 + x+2 is in the span given by

span
{

x2 + x+1,2x2 + x
}

Exercise 9.2.4 Determine if A =

[
1 3

0 0

]
is in the span given by

span

{[
1 0

0 1

]
,

[
0 1

1 0

]
,

[
1 0

1 1

]
,

[
0 1

1 1

]}

Exercise 9.2.5 Show that the spanning set in Question 9.2.4 is a spanning set for M22, the vector space of

all 2×2 matrices.
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9.3 Linear Independence

Outcomes

A. Determine if a set is linearly independent.

In this section, we will again explore concepts introduced earlier in terms of Rn and extend them to

apply to abstract vector spaces.

Definition 9.17: Linear Independence

Let V be a vector space. If {~v1, · · · ,~vn} ⊆V , then it is linearly independent if

n

∑
i=1

ai~vi =~0 implies a1 = · · ·= an = 0

where the ai are real numbers.

The set of vectors is called linearly dependent if it is not linearly independent.

Example 9.18: Linear Independence

Let S ⊆ P2 be a set of polynomials given by

S =
{

x2 +2x−1,2x2 − x+3
}

Determine if S is linearly independent.

Solution. To determine if this set S is linearly independent, we write

a(x2 +2x−1)+b(2x2 − x+3) = 0x2 +0x+0

If it is linearly independent, then a = b = 0 will be the only solution. We proceed as follows.

a(x2 +2x−1)+b(2x2 − x+3) = 0x2 +0x+0

ax2 +2ax−a+2bx2 −bx+3b = 0x2 +0x+0

(a+2b)x2+(2a−b)x−a+3b = 0x2 +0x+0

It follows that

a+2b = 0

2a−b = 0

−a+3b = 0
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The augmented matrix and resulting reduced row-echelon form are given by



1 2 0

2 −1 0

−1 3 0


→ ·· · →




1 0 0

0 1 0

0 0 0




Hence the solution is a = b = 0 and the set is linearly independent. ♠

The next example shows us what it means for a set to be dependent.

Example 9.19: Dependent Set

Determine if the set S given below is independent.

S =








−1

0

1


 ,




1

1

1


 ,




1

3

5







Solution. To determine if S is linearly independent, we look for solutions to

a




−1

0

1


+b




1

1

1


+ c




1

3

5


=




0

0

0




Notice that this equation has nontrivial solutions, for example a = 2, b = 3 and c = −1. Therefore S is

dependent. ♠

The following is an important result regarding dependent sets.

Lemma 9.20: Dependent Sets

Let V be a vector space and suppose W = {~v1,~v2, · · · ,~vk} is a subset of V . Then W is dependent if

and only if~vi can be written as a linear combination of {~v1,~v2, · · · ,~vi−1,~vi+1, · · · ,~vk} for some i ≤ k.

Revisit Example 9.19 with this in mind. Notice that we can write one of the three vectors as a combi-

nation of the others. 


1

3

5


= 2




−1

0

1


+3




1

1

1




By Lemma 9.20 this set is dependent.

If we know that one particular set is linearly independent, we can use this information to determine if

a related set is linearly independent. Consider the following example.

Example 9.21: Related Independent Sets

Let V be a vector space and suppose S ⊆ V is a set of linearly independent vectors given by

S = {~u,~v,~w}. Let R ⊆ V be given by R =
{

2~u−~w,~w+~v,3~v+ 1
2
~u
}

. Show that R is also linearly

independent.
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Solution. To determine if R is linearly independent, we write

a(2~u−~w)+b(~w+~v)+ c(3~v+
1

2
~u) =~0

If the set is linearly independent, the only solution will be a = b = c = 0. We proceed as follows.

a(2~u−~w)+b(~w+~v)+ c(3~v+
1

2
~u) = ~0

2a~u−a~w+b~w+b~v+3c~v+
1

2
c~u = ~0

(2a+
1

2
c)~u+(b+3c)~v+(−a+b)~w = ~0

We know that the set S = {~u,~v,~w} is linearly independent, which implies that the coefficients in the

last line of this equation must all equal 0. In other words:

2a+
1

2
c = 0

b+3c = 0

−a+b = 0

The augmented matrix and resulting reduced row-echelon form are given by:




2 0 1
2

0

0 1 3 0

−1 1 0 0


→ ·· · →




1 0 0 0

0 1 0 0

0 0 1 0




Hence the solution is a = b = c = 0 and the set is linearly independent. ♠

The following theorem was discussed in terms in Rn. We consider it here in the general case.

Theorem 9.22: Unique Representation

Let V be a vector space and let U = {~v1, · · · ,~vk} ⊆ V be an independent set. If ~v ∈ span U , then ~v
can be written uniquely as a linear combination of the vectors in U .

Consider the span of a linearly independent set of vectors. Suppose we take a vector which is not in this

span and add it to the set. The following lemma claims that the resulting set is still linearly independent.

Lemma 9.23: Adding to a Linearly Independent Set

Suppose~v /∈ span{~u1, · · · ,~uk} and {~u1, · · · ,~uk} is linearly independent. Then the set

{~u1, · · · ,~uk,~v}

is also linearly independent.
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Proof. Suppose ∑k
i=1 ci~ui + d~v =~0. It is required to verify that each ci = 0 and that d = 0. But if d 6= 0,

then you can solve for~v as a linear combination of the vectors, {~u1, · · · ,~uk},

~v =−
k

∑
i=1

(ci

d

)
~ui

contrary to the assumption that~v is not in the span of the ~ui. Therefore, d = 0. But then ∑k
i=1 ci~ui =~0 and

the linear independence of {~u1, · · · ,~uk} implies each ci = 0 also. ♠

Consider the following example.

Example 9.24: Adding to a Linearly Independent Set

Let S ⊆M22 be a linearly independent set given by

S =

{[
1 0

0 0

]
,

[
0 1

0 0

]}

Show that the set R ⊆M22 given by

R =

{[
1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]}

is also linearly independent.

Solution. Instead of writing a linear combination of the matrices which equals 0 and showing that the

coefficients must equal 0, we can instead use Lemma 9.23.

To do so, we show that [
0 0

1 0

]
/∈ span

{[
1 0

0 0

]
,

[
0 1

0 0

]}

Write

[
0 0

1 0

]
= a

[
1 0

0 0

]
+b

[
0 1

0 0

]

=

[
a 0

0 0

]
+

[
0 b

0 0

]

=

[
a b

0 0

]

Clearly there are no possible a,b to make this equation true. Hence the new matrix does not lie in the

span of the matrices in S. By Lemma 9.23, R is also linearly independent. ♠
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Exercises

Exercise 9.3.1 Consider the vector space of polynomials of degree at most 2, P2. Determine whether the

following is a basis for P2. {
x2 + x+1,2x2 +2x+1,x+1

}

Hint: There is a isomorphism from R3 to P2. It is defined as follows:

T~e1 = 1,T~e2 = x,T~e3 = x2

Then extend T linearly. Thus

T




1

1

1


= x2 + x+1,T




1

2

2


= 2x2 +2x+1,T




1

1

0


= 1+ x

It follows that if 






1

1

1


 ,




1

2

2


 ,




1

1

0







is a basis for R3, then the polynomials will be a basis for P2 because they will be independent. Recall

that an isomorphism takes a linearly independent set to a linearly independent set. Also, since T is an

isomorphism, it preserves all linear relations.

Exercise 9.3.2 Find a basis in P2 for the subspace

span
{

1+ x+ x2,1+2x,1+5x−3x2
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Hint: This is the situation in which you have a spanning set and you want to cut it down to form a

linearly independent set which is also a spanning set. Use the same isomorphism above. Since T is an

isomorphism, it preserves all linear relations so if such can be found in R3, the same linear relations will

be present in P2.

Exercise 9.3.3 Find a basis in P3 for the subspace

span
{

1+ x− x2 + x3,1+2x+3x3,−1+3x+5x2 +7x3,1+6x+4x2 +11x3
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Exercise 9.3.4 Find a basis in P3 for the subspace

span
{

1+ x− x2 + x3,1+2x+3x3,−1+3x+5x2 +7x3,1+6x+4x2 +11x3
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Exercise 9.3.5 Find a basis in P3 for the subspace

span
{

x3 −2x2 + x+2,3x3 − x2 +2x+2,7x3 + x2 +4x+2,5x3 +3x+2
}
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If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Exercise 9.3.6 Find a basis in P3 for the subspace

span
{

x3 +2x2 + x−2,3x3 +3x2 +2x−2,3x3 + x+2,3x3 + x+2
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Exercise 9.3.7 Find a basis in P3 for the subspace

span
{

x3 −5x2 + x+5,3x3 −4x2 +2x+5,5x3 +8x2 +2x−5,11x3 +6x+5
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Exercise 9.3.8 Find a basis in P3 for the subspace

span
{

x3 −3x2 + x+3,3x3 −2x2 +2x+3,7x3 +7x2 +3x−3,7x3 +4x+3
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Exercise 9.3.9 Find a basis in P3 for the subspace

span
{

x3 − x2 + x+1,3x3 +2x+1,4x3 + x2 +2x+1,3x3 +2x−1
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Exercise 9.3.10 Find a basis in P3 for the subspace

span
{

x3 − x2 + x+1,3x3 +2x+1,13x3 + x2 +8x+4,3x3 +2x−1
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Exercise 9.3.11 Find a basis in P3 for the subspace

span
{

x3 −3x2 + x+3,3x3 −2x2 +2x+3,−5x3 +5x2 −4x−6,7x3 +4x−3
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Exercise 9.3.12 Find a basis in P3 for the subspace

span
{

x3 −2x2 + x+2,3x3 − x2 +2x+2,7x3 − x2 +4x+4,5x3 +3x−2
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Exercise 9.3.13 Find a basis in P3 for the subspace

span
{

x3 −2x2 + x+2,3x3 − x2 +2x+2,3x3 +4x2 + x−2,7x3 − x2 +4x+4
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.
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Exercise 9.3.14 Find a basis in P3 for the subspace

span
{

x3 −4x2 + x+4,3x3 −3x2 +2x+4,−3x3 +3x2 −2x−4,−2x3 +4x2 −2x−4
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Exercise 9.3.15 Find a basis in P3 for the subspace

span
{

x3 +2x2 + x−2,3x3 +3x2 +2x−2,5x3 + x2 +2x+2,10x3 +10x2 +6x−6
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Exercise 9.3.16 Find a basis in P3 for the subspace

span
{

x3 + x2 + x−1,3x3 +2x2 +2x−1,x3 +1,4x3 +3x2 +2x−1
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Exercise 9.3.17 Find a basis in P3 for the subspace

span
{

x3 − x2 + x+1,3x3 +2x+1,x3 +2x2 −1,4x3 + x2 +2x+1
}

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Exercise 9.3.18 Here are some vectors.

{
x3 + x2 − x−1,3x3 +2x2 +2x−1

}

If these are linearly independent, extend to a basis for all of P3.

Exercise 9.3.19 Here are some vectors.

{
x3 −2x2 − x+2,3x3 − x2 +2x+2

}

If these are linearly independent, extend to a basis for all of P3.

Exercise 9.3.20 Here are some vectors.

{
x3 −3x2 − x+3,3x3 −2x2 +2x+3

}

If these are linearly independent, extend to a basis for all of P3.

Exercise 9.3.21 Here are some vectors.

{
x3 −2x2 −3x+2,3x3 − x2 −6x+2,−8x3 +18x+10

}

If these are linearly independent, extend to a basis for all of P3.

Exercise 9.3.22 Here are some vectors.

{
x3 −3x2 −3x+3,3x3 −2x2 −6x+3,−8x3 +18x+40

}
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If these are linearly independent, extend to a basis for all of P3.

Exercise 9.3.23 Here are some vectors.

{
x3 − x2 + x+1,3x3 +2x+1,4x3 +2x+2

}

If these are linearly independent, extend to a basis for all of P3.

Exercise 9.3.24 Here are some vectors.

{
x3 + x2 +2x−1,3x3 +2x2 +4x−1,7x3 +8x+23

}

If these are linearly independent, extend to a basis for all of P3.

Exercise 9.3.25 Determine if the following set is linearly independent. If it is linearly dependent, write

one vector as a linear combination of the other vectors in the set.

{
x+1,x2 +2,x2 − x−3

}

Exercise 9.3.26 Determine if the following set is linearly independent. If it is linearly dependent, write

one vector as a linear combination of the other vectors in the set.

{
x2 + x,−2x2 −4x−6,2x−2

}

Exercise 9.3.27 Determine if the following set is linearly independent. If it is linearly dependent, write

one vector as a linear combination of the other vectors in the set.

{[
1 2

0 1

]
,

[
−7 2

−2 −3

]
,

[
4 0

1 2

]}

Exercise 9.3.28 Determine if the following set is linearly independent. If it is linearly dependent, write

one vector as a linear combination of the other vectors in the set.

{[
1 0

0 1

]
,

[
0 1

0 1

]
,

[
1 0

1 0

]
,

[
0 0

1 1

]}

Exercise 9.3.29 If you have 5 vectors in R5 and the vectors are linearly independent, can it always be

concluded they span R5?

Exercise 9.3.30 If you have 6 vectors in R5, is it possible they are linearly independent? Explain.

Exercise 9.3.31 Let P3 be the polynomials of degree no more than 3. Determine which of the following

are bases for this vector space.

(a)
{

x+1,x3 + x2 +2x,x2 + x,x3 + x2 + x
}
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(b)
{

x3 +1,x2 + x,2x3 + x2,2x3 − x2 −3x+1
}

Exercise 9.3.32 In the context of the above problem, consider polynomials

{
aix

3 +bix
2 + cix+di, i = 1,2,3,4

}

Show that this collection of polynomials is linearly independent on an interval [s, t] if and only if




a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4




is an invertible matrix.

Exercise 9.3.33 Let the field of scalars be Q, the rational numbers and let the vectors be of the form

a+b
√

2 where a,b are rational numbers. Show that this collection of vectors is a vector space with field

of scalars Q and give a basis for this vector space.

Exercise 9.3.34 Suppose V is a finite dimensional vector space. Based on the exchange theorem above, it

was shown that any two bases have the same number of vectors in them. Give a different proof of this fact

using the earlier material in the book. Hint: Suppose {~x1 ~, · · · ,xn} and {~y1 ~, · · · ,ym} are two bases with

m < n. Then define

φ : Rn 7→V ,ψ : Rm 7→V

by

φ (~a) =
n

∑
k=1

ak~xk, ψ
(
~b
)
=

m

∑
j=1

b j~y j

Consider the linear transformation, ψ−1 ◦φ . Argue it is a one to one and onto mapping from Rn to Rm.

Now consider a matrix of this linear transformation and its reduced row-echelon form.

9.4 Subspaces and Basis

Outcomes

A. Utilize the subspace test to determine if a set is a subspace of a given vector space.

B. Extend a linearly independent set and shrink a spanning set to a basis of a given vector space.

In this section we will examine the concept of subspaces introduced earlier in terms of Rn. Here, we

will discuss these concepts in terms of abstract vector spaces.

Consider the definition of a subspace.
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Definition 9.25: Subspace

Let V be a vector space. A subset W ⊆ V is said to be a subspace of V if a~x+ b~y ∈ W whenever

a,b ∈ R and~x,~y ∈W .

The span of a set of vectors as described in Definition 9.13 is an example of a subspace. The following

fundamental result says that subspaces are subsets of a vector space which are themselves vector spaces.

Theorem 9.26: Subspaces are Vector Spaces

Let W be a nonempty collection of vectors in a vector space V . Then W is a subspace if and only if

W satisfies the vector space axioms, using the same operations as those defined on V .

Proof. Suppose first that W is a subspace. It is obvious that all the algebraic laws hold on W because it is

a subset of V and they hold on V . Thus~u+~v =~v+~u along with the other axioms. Does W contain~0? Yes

because it contains 0~u =~0. See Theorem 9.9.

Are the operations of V defined on W? That is, when you add vectors of W do you get a vector in W?

When you multiply a vector in W by a scalar, do you get a vector in W ? Yes. This is contained in the

definition. Does every vector in W have an additive inverse? Yes by Theorem 9.9 because −~v = (−1)~v
which is given to be in W provided~v ∈W .

Next suppose W is a vector space. Then by definition, it is closed with respect to linear combinations.

Hence it is a subspace. ♠

Consider the following useful Corollary.

Corollary 9.27: Span is a Subspace

Let V be a vector space with W ⊆V . If W = span{~v1, · · · ,~vn} then W is a subspace of V .

When determining spanning sets the following theorem proves useful.

Theorem 9.28: Spanning Set

Let W ⊆V for a vector space V and suppose W = span{~v1,~v2, · · · ,~vn}.

Let U ⊆V be a subspace such that~v1,~v2, · · · ,~vn ∈U . Then it follows that W ⊆U .

In other words, this theorem claims that any subspace that contains a set of vectors must also contain

the span of these vectors.

The following example will show that two spans, described differently, can in fact be equal.

Example 9.29: Equal Span

Let p(x),q(x) be polynomials and suppose U = span{2p(x)−q(x), p(x)+3q(x)} and W =
span{p(x),q(x)}. Show that U =W .

Solution. We will use Theorem 9.28 to show that U ⊆W and W ⊆U . It will then follow that U =W .
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1. U ⊆W

Notice that 2p(x)−q(x) and p(x)+3q(x) are both in W = span{p(x),q(x)}. Then by Theorem 9.28

W must contain the span of these polynomials and so U ⊆W .

2. W ⊆U

Notice that

p(x) =
3

7
(2p(x)−q(x))+

1

7
(p(x)+3q(x))

q(x) = −1

7
(2p(x)−q(x))+

2

7
(p(x)+3q(x))

Hence p(x),q(x) are in span{2p(x)−q(x), p(x)+3q(x)}. By Theorem 9.28 U must contain the

span of these polynomials and so W ⊆U .

♠

To prove that a set is a vector space, one must verify each of the axioms given in Definition 9.2 and

9.3. This is a cumbersome task, and therefore a shorter procedure is used to verify a subspace.

Procedure 9.30: Subspace Test

Suppose W is a subset of a vector space V . To determine if W is a subspace of V , it is sufficient to

determine if the following three conditions hold, using the operations of V :

1. The additive identity~0 of V is contained in W .

2. For any vectors ~w1,~w2 in W , ~w1 +~w2 is also in W .

3. For any vector ~w1 in W and scalar a, the product a~w1 is also in W .

Therefore it suffices to prove these three steps to show that a set is a subspace.

Consider the following example.

Example 9.31: Improper Subspaces

Let V be an arbitrary vector space. Then V is a subspace of itself. Similarly, the set
{
~0
}

containing

only the zero vector is also a subspace.

Solution. Using the subspace test in Procedure 9.30 we can show that V and
{
~0
}

are subspaces of V .

Since V satisfies the vector space axioms it also satisfies the three steps of the subspace test. Therefore

V is a subspace.

Let’s consider the set
{
~0
}

.

1. The vector~0 is clearly contained in
{
~0
}

, so the first condition is satisfied.
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2. Let ~w1,~w2 be in
{
~0
}

. Then ~w1 =~0 and ~w2 =~0 and so

~w1 +~w2 =~0+~0 =~0

It follows that the sum is contained in
{
~0
}

and the second condition is satisfied.

3. Let ~w1 be in
{
~0
}

and let a be an arbitrary scalar. Then

a~w1 = a~0 =~0

Hence the product is contained in
{
~0
}

and the third condition is satisfied.

It follows that
{
~0
}

is a subspace of V . ♠

The two subspaces described above are called improper subspaces. Any subspace of a vector space

V which is not equal to V or
{
~0
}

is called a proper subspace.

Consider another example.

Example 9.32: Subspace of Polynomials

Let P2 be the vector space of polynomials of degree two or less. Let W ⊆ P2 be all polynomials of

degree two or less which have 1 as a root. Show that W is a subspace of P2.

Solution. First, express W as follows:

W =
{

p(x) = ax2 +bx+ c,a,b,c,∈ R|p(1) = 0
}

We need to show that W satisfies the three conditions of Procedure 9.30.

1. The zero polynomial of P2 is given by 0(x) = 0x2+0x+0 = 0. Clearly 0(1)= 0 so 0(x) is contained

in W .

2. Let p(x),q(x) be polynomials in W . It follows that p(1)= 0 and q(1)= 0. Now consider p(x)+q(x).
Let r(x) represent this sum.

r(1) = p(1)+q(1)

= 0+0

= 0

Therefore the sum is also in W and the second condition is satisfied.

3. Let p(x) be a polynomial in W and let a be a scalar. It follows that p(1) = 0. Consider the product

ap(x).

ap(1) = a(0)

= 0

Therefore the product is in W and the third condition is satisfied.
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It follows that W is a subspace of P2. ♠

Recall the definition of basis, considered now in the context of vector spaces.

Definition 9.33: Basis

Let V be a vector space. Then {~v1, · · · ,~vn} is called a basis for V if the following conditions hold.

1. span{~v1, · · · ,~vn}=V

2. {~v1, · · · ,~vn} is linearly independent

Consider the following example.

Example 9.34: Polynomials of Degree Two

Let P2 be the set polynomials of degree no more than 2. We can write P2 = span
{

x2,x,1
}

. Is{
x2,x,1

}
a basis for P2?

Solution. It can be verified that P2 is a vector space defined under the usual addition and scalar multipli-

cation of polynomials.

Now, since P2 = span
{

x2,x,1
}

, the set
{

x2,x,1
}

is a basis if it is linearly independent. Suppose then

that

ax2 +bx+ c = 0x2 +0x+0

where a,b,c are real numbers. It is clear that this can only occur if a = b = c = 0. Hence the set is linearly

independent and forms a basis of P2. ♠

The next theorem is an essential result in linear algebra and is called the exchange theorem.

Theorem 9.35: Exchange Theorem

Let {~x1, · · · ,~xr} be a linearly independent set of vectors such that each ~xi is contained in

span{~y1, · · · ,~ys} . Then r ≤ s.

Proof. The proof will proceed as follows. First, we set up the necessary steps for the proof. Next, we will

assume that r > s and show that this leads to a contradiction, thus requiring that r ≤ s.

Define span{~y1, · · · ,~ys}=V . Since each~xi is in span{~y1, · · · ,~ys}, it follows there exist scalars c1, · · · ,cs

such that

~x1 =
s

∑
i=1

ci~yi (9.1)

Note that not all of these scalars ci can equal zero. Suppose that all the ci = 0. Then it would follow that

~x1 =~0 and so {~x1, · · · ,~xr} would not be linearly independent. Indeed, if ~x1 =~0, 1~x1 +∑r
i=2 0~xi =~x1 =~0

and so there would exist a nontrivial linear combination of the vectors {~x1, · · · ,~xr} which equals zero.

Therefore at least one ci is nonzero.
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Say ck 6= 0. Then solve 9.1 for~yk and obtain

~yk ∈ span



~x1,

s-1 vectors here︷ ︸︸ ︷
~y1, · · · ,~yk−1,~yk+1, · · · ,~ys



 .

Define {~z1, · · · ,~zs−1} to be

{~z1, · · · ,~zs−1}= {~y1, · · · ,~yk−1,~yk+1, · · · ,~ys}

Now we can write

~yk ∈ span{~x1,~z1, · · · ,~zs−1}
Therefore, span{~x1,~z1, · · · ,~zs−1} = V . To see this, suppose ~v ∈ V . Then there exist constants c1, · · · ,cs

such that

~v =
s−1

∑
i=1

ci~zi + cs~yk.

Replace this~yk with a linear combination of the vectors {~x1,~z1, · · · ,~zs−1} to obtain~v∈ span{~x1,~z1, · · · ,~zs−1} .

The vector~yk, in the list {~y1, · · · ,~ys} , has now been replaced with the vector~x1 and the resulting modified

list of vectors has the same span as the original list of vectors, {~y1, · · · ,~ys} .

We are now ready to move on to the proof. Suppose that r > s and that

span
{
~x1, · · · ,~xl ,~z1, · · · ,~zp

}
=V

where the process established above has continued. In other words, the vectors~z1, · · · ,~zp are each taken

from the set {~y1, · · · ,~ys} and l + p = s. This was done for l = 1 above. Then since r > s, it follows that

l ≤ s < r and so l +1 ≤ r. Therefore,~xl+1 is a vector not in the list, {~x1, · · · ,~xl} and since

span
{
~x1, · · · ,~xl ,~z1, · · · ,~zp

}
=V

there exist scalars, ci and d j such that

~xl+1 =
l

∑
i=1

ci~xi +
p

∑
j=1

d j~z j. (9.2)

Not all the d j can equal zero because if this were so, it would follow that {~x1, · · · ,~xr} would be a linearly

dependent set because one of the vectors would equal a linear combination of the others. Therefore, 9.2

can be solved for one of the~zi, say~zk, in terms of~xl+1 and the other~zi and just as in the above argument,

replace that~zi with~xl+1 to obtain

span



~x1, · · ·~xl ,~xl+1,

p-1 vectors here︷ ︸︸ ︷
~z1, · · ·~zk−1,~zk+1, · · · ,~zp



=V

Continue this way, eventually obtaining

span{~x1, · · · ,~xs}=V .
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But then~xr ∈ span{~x1, · · · ,~xs} contrary to the assumption that {~x1, · · · ,~xr} is linearly independent. There-

fore, r ≤ s as claimed. ♠

The following corollary follows from the exchange theorem.

Corollary 9.36: Two Bases of the Same Length

Let B1, B2 be two bases of a vector space V . Suppose B1 contains m vectors and B2 contains n

vectors. Then m = n.

Proof. By Theorem 9.35, m ≤ n and n ≤ m. Therefore m = n. ♠

This corollary is very important so we provide another proof independent of the exchange theorem

above.

Proof. Suppose n > m. Then since the vectors {~u1, · · · ,~um} span V , there exist scalars ci j such that

m

∑
i=1

ci j~ui =~v j.

Therefore,
n

∑
j=1

d j~v j =~0 if and only if
n

∑
j=1

m

∑
i=1

ci jd j~ui =~0

if and only if
m

∑
i=1

(
n

∑
j=1

ci jd j

)
~ui =~0

Now since {~u1, · · · ,~un} is independent, this happens if and only if

n

∑
j=1

ci jd j = 0, i = 1,2, · · · ,m.

However, this is a system of m equations in n variables, d1, · · · ,dn and m < n. Therefore, there exists a

solution to this system of equations in which not all the d j are equal to zero. Recall why this is so. The

augmented matrix for the system is of the form
[

C ~0
]

where C is a matrix which has more columns

than rows. Therefore, there are free variables and hence nonzero solutions to the system of equations.

However, this contradicts the linear independence of {~u1, · · · ,~um}. Similarly it cannot happen that m > n.

♠

Given the result of the previous corollary, the following definition follows.

Definition 9.37: Dimension

A vector space V is of dimension n if it has a basis consisting of n vectors.

Notice that the dimension is well defined by Corollary 9.36. It is assumed here that n<∞ and therefore

such a vector space is said to be finite dimensional.
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Example 9.38: Dimension of a Vector Space

Let P2 be the set of all polynomials of degree at most 2. Find the dimension of P2.

Solution. If we can find a basis of P2 then the number of vectors in the basis will give the dimension.

Recall from Example 9.34 that a basis of P2 is given by

S =
{

x2,x,1
}

There are three polynomials in S and hence the dimension of P2 is three. ♠

It is important to note that a basis for a vector space is not unique. A vector space can have many

bases. Consider the following example.

Example 9.39: A Different Basis for Polynomials of Degree Two

Let P2 be the polynomials of degree no more than 2. Is
{

x2 + x+1,2x+1,3x2 +1
}

a basis for P2?

Solution. Suppose these vectors are linearly independent but do not form a spanning set for P2. Then by

Lemma 9.23, we could find a fourth polynomial in P2 to create a new linearly independent set containing

four polynomials. However this would imply that we could find a basis of P2 of more than three polyno-

mials. This contradicts the result of Example 9.38 in which we determined the dimension of P2 is three.

Therefore if these vectors are linearly independent they must also form a spanning set and thus a basis for

P2.

Suppose then that

a
(
x2 + x+1

)
+b(2x+1)+ c

(
3x2 +1

)
= 0

(a+3c)x2 +(a+2b)x+(a+b+ c) = 0

We know that
{

x2,x,1
}

is linearly independent, and so it follows that

a+3c = 0

a+2b = 0

a+b+ c = 0

and there is only one solution to this system of equations, a = b = c = 0. Therefore, these are linearly

independent and form a basis for P2. ♠

Consider the following theorem.

Theorem 9.40: Every Subspace has a Basis

Let W be a nonzero subspace of a finite dimensional vector space V . Suppose V has dimension n.

Then W has a basis with no more than n vectors.

Proof. Let~v1 ∈V where~v1 6= 0. If span{~v1}=V , then it follows that {~v1} is a basis for V . Otherwise, there

exists~v2 ∈ V which is not in span{~v1} . By Lemma 9.23 {~v1,~v2} is a linearly independent set of vectors.
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Then {~v1,~v2} is a basis for V and we are done. If span{~v1,~v2} 6= V , then there exists ~v3 /∈ span{~v1,~v2}
and {~v1,~v2,~v3} is a larger linearly independent set of vectors. Continuing this way, the process must stop

before n+1 steps because if not, it would be possible to obtain n+1 linearly independent vectors contrary

to the exchange theorem, Theorem 9.35. ♠

If in fact W has n vectors, then it follows that W =V .

Theorem 9.41: Subspace of Same Dimension

Let V be a vector space of dimension n and let W be a subspace. Then W = V if and only if the

dimension of W is also n.

Proof. First suppose W =V . Then obviously the dimension of W = n.

Now suppose that the dimension of W is n. Let a basis for W be {~w1, · · · ,~wn}. If W is not equal to

V , then let ~v be a vector of V which is not contained in W . Thus ~v is not in span{~w1, · · · ,~wn} and by

Lemma 9.74, {~w1, · · · ,~wn,~v} is linearly independent which contradicts Theorem 9.35 because it would be

an independent set of n+1 vectors even though each of these vectors is in a spanning set of n vectors, a

basis of V . ♠

Consider the following example.

Example 9.42: Basis of a Subspace

Let U =

{
A ∈M22

∣∣∣∣ A

[
1 0

1 −1

]
=

[
1 1

0 −1

]
A

}
. Then U is a subspace of M22 Find a basis of

U , and hence dim(U).

Solution. Let A =

[
a b

c d

]
∈M22. Then

A

[
1 0

1 −1

]
=

[
a b

c d

][
1 0

1 −1

]
=

[
a+b −b

c+d −d

]

and [
1 1

0 −1

]
A =

[
1 1

0 −1

][
a b

c d

]
=

[
a+ c b+d

−c −d

]
.

If A ∈U , then

[
a+b −b

c+d −d

]
=

[
a+ c b+d

−c −d

]
.

Equating entries leads to a system of four equations in the four variables a,b,c and d.

a+b = a+ c

−b = b+d

c+d = −c

−d = −d

or

b− c = 0

−2b−d = 0

2c+d = 0

.

The solution to this system is a = s, b =−1
2
t, c =−1

2
t, d = t for any s, t ∈ R, and thus

A =

[
s t

2

− t
2

t

]
= s

[
1 0

0 0

]
+ t

[
0 −1

2

−1
2

1

]
.
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Let

B =

{[
1 0

0 0

]
,

[
0 −1

2

−1
2

1

]}
.

Then span(B) = U , and it is routine to verify that B is an independent subset of M22. Therefore B is a

basis of U , and dim(U) = 2. ♠

The following theorem claims that a spanning set of a vector space V can be shrunk down to a basis of

V . Similarly, a linearly independent set within V can be enlarged to create a basis of V .

Theorem 9.43: Basis of V

If V = span{~u1, · · · ,~un} is a vector space, then some subset of {~u1, · · · ,~un} is a basis for V . Also,

if {~u1, · · · ,~uk} ⊆ V is linearly independent and the vector space is finite dimensional, then the set

{~u1, · · · ,~uk}, can be enlarged to obtain a basis of V .

Proof. Let

S = {E ⊆ {~u1, · · · ,~un} such that span{E}=V}.

For E ∈ S, let |E| denote the number of elements of E. Let

m = min{|E| such that E ∈ S}.

Thus there exist vectors

{~v1, · · · ,~vm} ⊆ {~u1, · · · ,~un}
such that

span{~v1, · · · ,~vm}=V

and m is as small as possible for this to happen. If this set is linearly independent, it follows it is a basis

for V and the theorem is proved. On the other hand, if the set is not linearly independent, then there exist

scalars, c1, · · · ,cm such that

~0 =
m

∑
i=1

ci~vi

and not all the ci are equal to zero. Suppose ck 6= 0. Then solve for the vector ~vk in terms of the other

vectors. Consequently,

V = span{~v1, · · · ,~vk−1,~vk+1, · · · ,~vm}
contradicting the definition of m. This proves the first part of the theorem.

To obtain the second part, begin with {~u1, · · · ,~uk} and suppose a basis for V is

{~v1, · · · ,~vn}

If

span{~u1, · · · ,~uk}=V ,

then k = n. If not, there exists a vector

~uk+1 /∈ span{~u1, · · · ,~uk}
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Then from Lemma 9.23, {~u1, · · · ,~uk,~uk+1} is also linearly independent. Continue adding vectors in this

way until n linearly independent vectors have been obtained. Then

span{~u1, · · · ,~un}=V

because if it did not do so, there would exist~un+1 as just described and {~u1, · · · ,~un+1} would be a linearly

independent set of vectors having n+1 elements. This contradicts the fact that {~v1, · · · ,~vn} is a basis. In

turn this would contradict Theorem 9.35. Therefore, this list is a basis. ♠

Recall Example 9.24 in which we added a matrix to a linearly independent set to create a larger linearly

independent set. By Theorem 9.43 we can extend a linearly independent set to a basis.

Example 9.44: Adding to a Linearly Independent Set

Let S ⊆ M22 be a linearly independent set given by

S =

{[
1 0

0 0

]
,

[
0 1

0 0

]}

Enlarge S to a basis of M22.

Solution. Recall from the solution of Example 9.24 that the set R ⊆ M22 given by

R =

{[
1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]}

is also linearly independent. However this set is still not a basis for M22 as it is not a spanning set. In

particular,

[
0 0

0 1

]
is not in spanR. Therefore, this matrix can be added to the set by Lemma 9.23 to

obtain a new linearly independent set given by

T =

{[
1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
0 0

0 1

]}

This set is linearly independent and now spans M22. Hence T is a basis. ♠

Next we consider the case where you have a spanning set and you want a subset which is a basis. The

above discussion involved adding vectors to a set. The next theorem involves removing vectors.

Theorem 9.45: Basis from a Spanning Set

Let V be a vector space and let W be a subspace. Also suppose that W = span{~w1, · · · ,~wm}. Then

there exists a subset of {~w1, · · · ,~wm} which is a basis for W .

Proof. Let S denote the set of positive integers such that for k ∈ S, there exists a subset of {~w1, · · · ,~wm}
consisting of exactly k vectors which is a spanning set for W . Thus m ∈ S. Pick the smallest positive

integer in S. Call it k. Then there exists {~u1, · · · ,~uk} ⊆ {~w1, · · · ,~wm} such that span{~u1, · · · ,~uk}=W . If

k

∑
i=1

ci~wi =~0
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and not all of the ci = 0, then you could pick c j 6= 0, divide by it and solve for~u j in terms of the others.

~w j = ∑
i 6= j

(
− ci

c j

)
~wi

Then you could delete ~w j from the list and have the same span. In any linear combination involving ~w j,

the linear combination would equal one in which ~w j is replaced with the above sum, showing that it could

have been obtained as a linear combination of ~wi for i 6= j. Thus k− 1 ∈ S contrary to the choice of k .

Hence each ci = 0 and so {~u1, · · · ,~uk} is a basis for W consisting of vectors of {~w1, · · · ,~wm}. ♠

Consider the following example of this concept.

Example 9.46: Basis from a Spanning Set

Let V be the vector space of polynomials of degree no more than 3, denoted earlier as P3. Consider

the following vectors in V .

2x2 + x+1,x3 +4x2 +2x+2,2x3 +2x2 +2x+1,

x3 +4x2 −3x+2,x3 +3x2 +2x+1

Then, as mentioned above, V has dimension 4 and so clearly these vectors are not linearly indepen-

dent. A basis for V is
{

1,x,x2,x3
}

. Determine a linearly independent subset of these which has the

same span. Determine whether this subset is a basis for V .

Solution. Consider an isomorphism which maps R4 to V in the obvious way. Thus




1

1

2

0




corresponds to 2x2 + x+1 through the use of this isomorphism. Then corresponding to the above vectors

in V we would have the following vectors in R4.




1

1

2

0


 ,




2

2

4

1


 ,




1

2

2

2


 ,




2

−3

4

1


 ,




1

2

3

1




Now if we obtain a subset of these which has the same span but which is linearly independent, then the

corresponding vectors from V will also be linearly independent. If there are four in the list, then the

resulting vectors from V must be a basis for V . The reduced row-echelon form for the matrix which has

the above vectors as columns is 


1 0 0 −15 0

0 1 0 11 0

0 0 1 −5 0

0 0 0 0 1



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Therefore, a basis for V consists of the vectors

2x2 + x+1,x3 +4x2 +2x+2,2x3 +2x2 +2x+1,

x3 +3x2 +2x+1.

Note how this is a subset of the original set of vectors. If there had been only three pivot columns in

this matrix, then we would not have had a basis for V but we would at least have obtained a linearly

independent subset of the original set of vectors in this way.

Note also that, since all linear relations are preserved by an isomorphism,

−15
(
2x2 + x+1

)
+11

(
x3 +4x2 +2x+2

)
+(−5)

(
2x3 +2x2 +2x+1

)

= x3 +4x2 −3x+2

♠

Consider the following example.

Example 9.47: Shrinking a Spanning Set

Consider the set S ⊆ P2 given by

S =
{

1,x,x2,x2 +1
}

Show that S spans P2, then remove vectors from S until it creates a basis.

Solution. First we need to show that S spans P2. Let ax2 +bx+ c be an arbitrary polynomial in P2. Write

ax2 +bx+ c = r(1)+ s(x)+ t(x2)+u(x2 +1)

Then,

ax2 +bx+ c = r(1)+ s(x)+ t(x2)+u(x2 +1)

= (t +u)x2 + s(x)+(r+u)

It follows that

a = t +u

b = s

c = r+u

Clearly a solution exists for all a,b,c and so S is a spanning set for P2. By Theorem 9.43, some subset

of S is a basis for P2.

Recall that a basis must be both a spanning set and a linearly independent set. Therefore we must

remove a vector from S keeping this in mind. Suppose we remove x from S. The resulting set would be{
1,x2,x2 +1

}
. This set is clearly linearly dependent (and also does not span P2) and so is not a basis.

Suppose we remove x2 + 1 from S. The resulting set is
{

1,x,x2
}

which is both linearly independent

and spans P2. Hence this is a basis for P2. Note that removing any one of 1,x2, or x2 +1 will result in a

basis. ♠
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Now the following is a fundamental result about subspaces.

Theorem 9.48: Basis of a Vector Space

Let V be a finite dimensional vector space and let W be a non-zero subspace. Then W has a basis.

That is, there exists a linearly independent set of vectors {~w1, · · · ,~wr} such that

span{~w1, · · · ,~wr}=W

Also if {~w1, · · · ,~ws} is a linearly independent set of vectors, then W has a basis of the form

{~w1, · · · ,~ws, · · · ,~wr} for r ≥ s.

Proof. Let the dimension of V be n. Pick ~w1 ∈ W where ~w1 6=~0. If ~w1, · · · ,~ws have been chosen such

that {~w1, · · · ,~ws} is linearly independent, if span{~w1, · · · ,~wr} = W , stop. You have the desired basis.

Otherwise, there exists ~ws+1 /∈ span{~w1, · · · ,~ws} and {~w1, · · · ,~ws,~ws+1} is linearly independent. Continue

this way until the process stops. It must stop since otherwise, you could obtain a linearly independent set

of vectors having more than n vectors which is impossible.

The last claim is proved by following the above procedure starting with {~w1, · · · ,~ws} as above. ♠

This also proves the following corollary. Let V play the role of W in the above theorem and begin with

a basis for W , enlarging it to form a basis for V as discussed above.

Corollary 9.49: Basis Extension

Let W be any non-zero subspace of a vector space V . Then every basis of W can be extended to a

basis for V .

Consider the following example.

Example 9.50: Basis Extension

Let V = R4 and let

W = span








1

0

1

1


 ,




0

1

0

1








Extend this basis of W to a basis of V .

Solution. An easy way to do this is to take the reduced row-echelon form of the matrix




1 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1


 (9.3)

Note how the given vectors were placed as the first two and then the matrix was extended in such a way

that it is clear that the span of the columns of this matrix yield all of R4. Now determine the pivot columns.
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The reduced row-echelon form is



1 0 0 0 1 0

0 1 0 0 −1 1

0 0 1 0 −1 0

0 0 0 1 1 −1


 (9.4)

These are 


1

0

1

1


 ,




0

1

0

1


 ,




1

0

0

0


 ,




0

1

0

0




and now this is an extension of the given basis for W to a basis for R4.

Why does this work? The columns of 9.3 obviously span R4 the span of the first four is the same as

the span of all six. ♠

Exercises

Exercise 9.4.1 Let M =
{
~u = (u1,u2,u3,u4) ∈ R4 : |u1| ≤ 4

}
. Is M a subspace of R4?

Exercise 9.4.2 Let M =
{
~u = (u1,u2,u3,u4) ∈ R4 : sin(u1) = 1

}
. Is M a subspace of R4?

Exercise 9.4.3 Let W be a subset of M22 given by

W =
{

A|A ∈ M22,AT = A
}

In words, W is the set of all symmetric 2×2 matrices. Is W a subspace of M22?

Exercise 9.4.4 Let W be a subset of M22 given by

W =

{[
a b

c d

]
|a,b,c,d ∈ R,a+b = c+d

}

Is W a subspace of M22?

Exercise 9.4.5 Let W be a subset of P3 given by

W =
{

ax3 +bx2 + cx+d|a,b,c,d ∈ R,d = 0
}

Is W a subspace of P3?

Exercise 9.4.6 Let W be a subset of P3 given by

W =
{

p(x) = ax3 +bx2 + cx+d|a,b,c,d ∈ R, p(2) = 1
}

Is W a subspace of P3?
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9.5 Sums and Intersections

Outcomes

A. Show that the sum of two subspaces is a subspace.

B. Show that the intersection of two subspaces is a subspace.

We begin this section with a definition.

Definition 9.51: Sum and Intersection

Let V be a vector space, and let U and W be subspaces of V . Then

1. U +W = {~u+~w | ~u ∈U and ~w ∈W} and is called the sum of U and W .

2. U ∩W = {~v |~v ∈U and~v ∈W} and is called the intersection of U and W .

Therefore the intersection of two subspaces is all the vectors shared by both. If there are no vectors

shared by both subspaces, meaning that U ∩W =
{
~0
}

, the sum U +W takes on a special name.

Definition 9.52: Direct Sum

Let V be a vector space and suppose U and W are subspaces of V such that U ∩W =
{
~0
}

. Then the

sum of U and W is called the direct sum and is denoted U ⊕W .

An interesting result is that both the sum U +W and the intersection U ∩W are subspaces of V .

Example 9.53: Intersection is a Subspace

Let V be a vector space and suppose U and W are subspaces. Then the intersection U ∩W is a

subspace of V .

Solution. By the subspace test, we must show three things:

1. ~0 ∈U ∩W

2. For vectors~v1,~v2 ∈U ∩W ,~v1 +~v2 ∈U ∩W

3. For scalar a and vector~v ∈U ∩W ,a~v ∈U ∩W

We proceed to show each of these three conditions hold.

1. Since U and W are subspaces of V , they each contain~0. By definition of the intersection,~0 ∈U ∩W .
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2. Let~v1,~v2 ∈U ∩W . Then in particular,~v1,~v2 ∈U . Since U is a subspace, it follows that~v1 +~v2 ∈U .

The same argument holds for W . Therefore~v1 +~v2 is in both U and W and by definition is also in

U ∩W .

3. Let a be a scalar and ~v ∈ U ∩W . Then in particular, ~v ∈ U . Since U is a subspace, it follows that

a~v ∈U . The same argument holds for W so a~v is in both U and W . By definition, it is in U ∩W .

Therefore U ∩W is a subspace of V . ♠

It can also be shown that U +W is a subspace of V .

We conclude this section with an important theorem on dimension.

Theorem 9.54: Dimension of Sum

Let V be a vector space with subspaces U and W . Suppose U and W each have finite dimension.

Then U +W also has finite dimension which is given by

dim(U +W ) = dim(U)+dim(W )−dim(U ∩W )

Notice that when U ∩W =
{
~0
}

, the sum becomes the direct sum and the above equation becomes

dim(U ⊕W ) = dim(U)+dim(W )

9.6 Linear Transformations

Outcomes

A. Understand the definition of a linear transformation in the context of vector spaces.

Recall that a function is simply a transformation of a vector to result in a new vector. Consider the

following definition.

Definition 9.55: Linear Transformation

Let V and W be vector spaces. Suppose T : V 7→W is a function, where for each~x ∈V ,T (~x) ∈W .

Then T is a linear transformation if whenever k, p are scalars and~v1 and~v2 are vectors in V

T (k~v1 + p~v2) = kT (~v1)+ pT (~v2)

Several important examples of linear transformations include the zero transformation, the identity

transformation, and the scalar transformation.
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Example 9.56: Linear Transformations

Let V and W be vector spaces.

1. The zero transformation

0 : V →W is defined by 0(~v) =~0 for all~v ∈V .

2. The identity transformation

1V : V →V is defined by 1V (~v) =~v for all~v ∈V .

3. The scalar transformation Let a ∈ R.

sa : V →V is defined by sa(~v) = a~v for all~v ∈V .

Solution. We will show that the scalar transformation sa is linear, the rest are left as an exercise.

By Definition 9.55 we must show that for all scalars k, p and vectors~v1 and ~v2 in V , sa (k~v1 + p~v2) =
ksa (~v1)+ psa (~v2). Assume that a is also a scalar.

sa (k~v1 + p~v2) = a(k~v1 + p~v2)

= ak~v1 +ap~v2

= k (a~v1)+ p(a~v2)

= ksa (~v1)+ psa (~v2)

Therefore sa is a linear transformation. ♠

Consider the following important theorem.

Theorem 9.57: Properties of Linear Transformations

Let V and W be vector spaces, and T : V 7→W a linear transformation. Then

1. T preserves the zero vector.

T (~0) =~0

2. T preserves additive inverses. For all~v ∈V ,

T (−~v) =−T (~v)

3. T preserves linear combinations. For all~v1,~v2, . . . ,~vm ∈V and all k1,k2, . . . ,km ∈ R,

T (k1~v1 + k2~v2 + · · ·+ km~vm) = k1T (~v1)+ k2T (~v2)+ · · ·+ kmT (~vm).

Proof.

1. Let~0V denote the zero vector of V and let~0W denote the zero vector of W . We want to prove that

T (~0V ) =~0W . Let~v ∈V . Then 0~v =~0V and

T (~0V ) = T (0~v) = 0T (~v) =~0W .
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2. Let~v ∈V ; then −~v ∈V is the additive inverse of~v, so~v+(−~v) =~0V . Thus

T (~v+(−~v)) = T (~0V )

T (~v)+T (−~v)) = ~0W

T (−~v) = ~0W −T (~v) =−T (~v).

3. This result follows from preservation of addition and preservation of scalar multiplication. A formal

proof would be by induction on m.

♠

Consider the following example using the above theorem.

Example 9.58: Linear Combination

Let T : P2 → R be a linear transformation such that

T (x2 + x) =−1;T (x2 − x) = 1;T (x2 +1) = 3.

Find T (4x2 +5x−3).

Solution. We provide two solutions to this problem.

Solution 1: Suppose a(x2 + x)+b(x2 − x)+ c(x2 +1) = 4x2 +5x−3. Then

(a+b+ c)x2 +(a−b)x+ c = 4x2 +5x−3.

Solving for a, b, and c results in the unique solution a = 6, b = 1, c =−3.

Thus

T (4x2 +5x−3) = T
(
6(x2 + x)+(x2 − x)−3(x2 +1)

)

= 6T (x2 + x)+T (x2 − x)−3T (x2 +1)

= 6(−1)+1−3(3) =−14.

Solution 2: Notice that S = {x2 + x,x2 − x,x2 +1} is a basis of P2, and thus x2, x, and 1 can each be

written as a linear combination of elements of S.

x2 = 1
2
(x2 + x)+ 1

2
(x2 − x)

x = 1
2
(x2 + x)− 1

2
(x2 − x)

1 = (x2 +1)− 1
2
(x2 + x)− 1

2
(x2 − x).

Then

T (x2) = T
(

1
2
(x2 + x)+ 1

2
(x2 − x)

)
= 1

2
T (x2 + x)+ 1

2
T (x2 − x)
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= 1
2
(−1)+ 1

2
(1) = 0.

T (x) = T
(

1
2
(x2 + x)− 1

2
(x2 − x)

)
= 1

2
T (x2 + x)− 1

2
T (x2 − x)

= 1
2
(−1)− 1

2
(1) =−1.

T (1) = T
(
(x2 +1)− 1

2
(x2 + x)− 1

2
(x2 − x)

)

= T (x2 +1)− 1
2
T (x2 + x)− 1

2
T (x2 − x)

= 3− 1
2
(−1)− 1

2
(1) = 3.

Therefore,

T (4x2 +5x−3) = 4T (x2)+5T (x)−3T (1)

= 4(0)+5(−1)−3(3) =−14.

The advantage of Solution 2 over Solution 1 is that if you were now asked to find T (−6x2 −13x+9), it

is easy to use T (x2) = 0, T (x) =−1 and T (1) = 3:

T (−6x2 −13x+9) = −6T (x2)−13T (x)+9T (1)

= −6(0)−13(−1)+9(3) = 13+27 = 40.

More generally,

T (ax2 +bx+ c) = aT (x2)+bT (x)+ cT (1)

= a(0)+b(−1)+ c(3) =−b+3c.

♠

Suppose two linear transformations act in the same way on ~v for all vectors. Then we say that these

transformations are equal.

Definition 9.59: Equal Transformations

Let S and T be linear transformations from V to W . Then S = T if and only if for every~v ∈V ,

S (~v) = T (~v)

The definition above requires that two transformations have the same action on every vector in or-

der for them to be equal. The next theorem argues that it is only necessary to check the action of the

transformations on basis vectors.

Theorem 9.60: Transformation of a Spanning Set

Let V and W be vector spaces and suppose that S and T are linear transformations from V to W .

Then in order for S and T to be equal, it suffices that S(~vi) = T (~vi) where V = span{~v1,~v2, . . . ,~vn}.

This theorem tells us that a linear transformation is completely determined by its actions on a spanning

set. We can also examine the effect of a linear transformation on a basis.
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Theorem 9.61: Transformation of a Basis

Suppose V and W are vector spaces and let {~w1,~w2, . . . ,~wn} be any given vectors in W that may

not be distinct. Then there exists a basis {~v1,~v2, . . . ,~vn} of V and a unique linear transformation

T : V 7→W with T (~vi) = ~wi.

Furthermore, if

~v = k1~v1 + k2~v2 + · · ·+ kn~vn

is a vector of V , then

T (~v) = k1~w1 + k2~w2 + · · ·+ kn~wn.

Exercises

Exercise 9.6.1 Let T : P2 →R be a linear transformation such that

T (x2) = 1;T (x2 + x) = 5;T (x2 + x+1) =−1.

Find T (ax2 +bx+ c).

Exercise 9.6.2 Consider the following functions T : R3 → R2. Explain why each of these functions T is

not linear.

(a) T




x

y

z


=

[
x+2y+3z+1

2y−3x+ z

]

(b) T




x

y

z


=

[
x+2y2 +3z

2y+3x+ z

]

(c) T




x

y

z


=

[
sinx+2y+3z

2y+3x+ z

]

(d) T




x

y

z


=

[
x+2y+3z

2y+3x− lnz

]

Exercise 9.6.3 Suppose T is a linear transformation such that

T




1

1

−7


 =




3

3

3




T




−1

0

6


 =




1

2

3



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T




0

−1

2


 =




1

3

−1




Find the matrix of T . That is find A such that T (~x) = A~x.

Exercise 9.6.4 Suppose T is a linear transformation such that

T




1

2

−18


 =




5

2

5




T




−1

−1

15


 =




3

3

5




T




0

−1

4


 =




2

5

−2




Find the matrix of T . That is find A such that T (~x) = A~x.

Exercise 9.6.5 Consider the following functions T : R3 → R2. Show that each is a linear transformation

and determine for each the matrix A such that T (~x) = A~x.

(a) T




x

y

z


=

[
x+2y+3z

2y−3x+ z

]

(b) T




x

y

z


=

[
7x+2y+ z

3x−11y+2z

]

(c) T




x

y

z


=

[
3x+2y+ z

x+2y+6z

]

(d) T




x

y

z


=

[
2y−5x+ z

x+ y+ z

]

Exercise 9.6.6 Suppose [
A1 · · · An

]−1

exists where each A j ∈ Rn and let vectors {B1, · · · ,Bn} in Rm be given. Show that there always exists a

linear transformation T such that T (Ai) = Bi.
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9.7 Isomorphisms

Outcomes

A. Apply the concepts of one to one and onto to transformations of vector spaces.

B. Determine if a linear transformation of vector spaces is an isomorphism.

C. Determine if two vector spaces are isomorphic.

9.7.1 One to One and Onto Transformations

Recall the following definitions, given here in terms of vector spaces.

Definition 9.62: One to One

Let V ,W be vector spaces with~v1,~v2 vectors in V . Then a linear transformation T : V 7→W is called

one to one if whenever~v1 6=~v2 it follows that

T (~v1) 6= T (~v2)

Definition 9.63: Onto

Let V ,W be vector spaces. Then a linear transformation T : V 7→W is called onto if for all ~w ∈ ~W
there exists~v ∈V such that T (~v) = ~w.

Recall that every linear transformation T has the property that T (~0) =~0. This will be necessary to

prove the following useful lemma.

Lemma 9.64: One to One

The assertion that a linear transformation T is one to one is equivalent to saying that if T (~v) =~0,

then~v = 0.

Proof. Suppose first that T is one to one.

T (~0) = T
(
~0+~0

)
= T (~0)+T (~0)

and so, adding the additive inverse of T (~0) to both sides, one sees that T (~0) =~0. Therefore, if T (~v) =~0,

it must be the case that~v =~0 because it was just shown that T (~0) =~0.

Now suppose that if T (~v) =~0, then ~v = 0. If T (~v) = T (~u), then T (~v)−T (~u) = T (~v−~u) =~0 which

shows that~v−~u = 0 or in other words,~v =~u. ♠
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Consider the following example.

Example 9.65: One to One Transformation

Let S : P2 →M22 be a linear transformation defined by

S(ax2 +bx+ c) =

[
a+b a+ c

b− c b+ c

]
for all ax2 +bx+ c ∈ P2.

Prove that S is one to one but not onto.

Solution. By definition,

ker(S) = {ax2 +bx+ c ∈ P2 | a+b = 0,a+ c = 0,b− c = 0,b+ c = 0}.

Suppose p(x) = ax2 +bx+ c ∈ ker(S). This leads to a homogeneous system of four equations in three

variables. Putting the augmented matrix in reduced row-echelon form:




1 1 0 0

1 0 1 0

0 1 −1 0

0 1 1 0


→ ·· · →




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


 .

The solution is a= b= c= 0. This tells us that if S(p(x))= 0, then p(x)= ax2+bx+c= 0x2+0x+0=
0. Therefore it is one to one.

To show that S is not onto, find a matrix A ∈M22 such that for every p(x) ∈ P2, S(p(x)) 6= A. Let

A =

[
0 1

0 2

]
,

and suppose p(x) = ax2 +bx+ c ∈ P2 is such that S(p(x)) = A. Then

a+b = 0 a+ c = 1

b− c = 0 b+ c = 2

Solving this system 


1 1 0 0

1 0 1 1

0 1 −1 0

0 1 1 2


→




1 1 0 0

0 −1 1 1

0 1 −1 0

0 1 1 2


 .

Since the system is inconsistent, there is no p(x) ∈ P2 so that S(p(x)) = A, and therefore S is not onto.

♠
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Example 9.66: An Onto Transformation

Let T : M22 → R2 be a linear transformation defined by

T

[
a b

c d

]
=

[
a+d

b+ c

]
for all

[
a b

c d

]
∈M22.

Prove that T is onto but not one to one.

Solution. Let

[
x

y

]
be an arbitrary vector in R2. Since T

[
x y

0 0

]
=

[
x

y

]
, T is onto.

By Lemma 9.64 T is one to one if and only if T (A) =~0 implies that A = 0 the zero matrix. Observe

that

T

([
1 0

0 −1

])
=

[
1+−1

0+0

]
=

[
0

0

]

There exists a nonzero matrix A such that T (A) =~0. It follows that T is not one to one. ♠

The following example demonstrates that a one to one transformation preserves linear independence.

Example 9.67: One to One and Independence

Let V and W be vector spaces and T : V 7→W a linear transformation. Prove that if T is one to one

and {~v1,~v2, . . . ,~vk} is an independent subset of V , then {T (~v1),T (~v2), . . . ,T (~vk)} is an independent

subset of W .

Solution. Let~0V and~0W denote the zero vectors of V and W , respectively. Suppose that

a1T (~v1)+a2T (~v2)+ · · ·+akT (~vk) =~0W

for some a1,a2, . . . ,ak ∈ R. Since linear transformations preserve linear combinations (addition and

scalar multiplication),

T (a1~v1 +a2~v2 + · · ·+ak~vk) =~0W .

Now, since T is one to one, ker(T ) = {~0V}, and thus

a1~v1 +a2~v2 + · · ·+ak~vk =~0V .

However, {~v1,~v2, . . . ,~vk} is independent so a1 = a2 = · · · = ak = 0. Therefore, {T (~v1),T (~v2), . . . ,T (~vk)}
is independent. ♠

A similar claim can be made regarding onto transformations. In this case, an onto transformation

preserves a spanning set.
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Example 9.68: Onto and Spanning

Let V and W be vector spaces and T : V →W a linear transformation. Prove that if T is onto and

V = span{~v1,~v2, . . . ,~vk}, then

W = span{T (~v1),T (~v2), . . . ,T (~vk)}.

Solution. Suppose that T is onto and let ~w ∈ W . Then there exists ~v ∈ V such that T (~v) = ~w. Since

V = span{~v1,~v2, . . . ,~vk}, there exist a1,a2, . . .ak ∈ R such that~v = a1~v1 +a2~v2 + · · ·+ak~vk. Using the fact

that T is a linear transformation,

~w = T (~v) = T (a1~v1 +a2~v2 + · · ·+ak~vk)

= a1T (~v1)+a2T (~v2)+ · · ·+akT (~vk),

i.e., ~w ∈ span{T (~v1),T (~v2), . . . ,T (~vk)}, and thus

W ⊆ span{T (~v1),T (~v2), . . . ,T (~vk)}.

Since T (~v1),T (~v2), . . . ,T (~vk) ∈W , it follows from that span{T (~v1),T (~v2), . . . ,T (~vk)} ⊆W , and there-

fore W = span{T (~v1),T (~v2), . . . ,T (~vk)}. ♠

9.7.2 Isomorphisms

The focus of this section is on linear transformations which are both one to one and onto. When this is the

case, we call the transformation an isomorphism.

Definition 9.69: Isomorphism

Let V and W be two vector spaces and let T : V 7→ W be a linear transformation. Then T is called

an isomorphism if the following two conditions are satisfied.

• T is one to one.

• T is onto.

Definition 9.70: Isomorphic

Let V and W be two vector spaces and let T : V 7→ W be a linear transformation. Then if T is an

isomorphism, we say that V and W are isomorphic.

Consider the following example of an isomorphism.
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Example 9.71: Isomorphism

Let T : M22 → R4 be defined by

T

[
a b

c d

]
=




a

b

c

d


 for all

[
a b

c d

]
∈M22.

Show that T is an isomorphism.

Solution. Notice that if we can prove T is an isomorphism, it will mean that M22 and R4 are isomorphic.

It remains to prove that

1. T is a linear transformation;

2. T is one-to-one;

3. T is onto.

T is linear: Let k, p be scalars.

T

(
k

[
a1 b1

c1 d1

]
+ p

[
a2 b2

c2 d2

])
= T

([
ka1 kb1

kc1 kd1

]
+

[
pa2 pb2

pc2 pd2

])

= T

([
ka1 + pa2 kb1 + pb2

kc1 + pc2 kd1 + pd2

])

=




ka1 + pa2

kb1 + pb2

kc1 + pc2

kd1 + pd2




=




ka1

kb1

kc1

kd1


+




pa2

pb2

pc2

pd2




= k




a1

b1

c1

d1


+ p




a2

b2

c2

d2




= kT

([
a1 b1

c1 d1

])
+ pT

([
a2 b2

c2 d2

])

Therefore T is linear.

T is one-to-one: By Lemma 9.64 we need to show that if T (A) = 0 then A = 0 for some matrix

A ∈M22.

T

[
a b

c d

]
=




a

b

c

d


=




0

0

0

0



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This clearly only occurs when a = b = c = d = 0 which means that

A =

[
a b

c d

]
=

[
0 0

0 0

]
= 0

Hence T is one-to-one.

T is onto: Let

~x =




x1

x2

x3

x4


 ∈ R4,

and define matrix A ∈M22 as follows:

A =

[
x1 x2

x3 x4

]
.

Then T (A) =~x, and therefore T is onto.

Since T is a linear transformation which is one-to-one and onto, T is an isomorphism. Hence M22 and

R4 are isomorphic. ♠

An important property of isomorphisms is that the inverse of an isomorphism is itself an isomorphism

and the composition of isomorphisms is an isomorphism. We first recall the definition of composition.

Definition 9.72: Composition of Transformations

Let V ,W ,Z be vector spaces and suppose T : V 7→ W and S : W 7→ Z are linear transformations.

Then the composite of S and T is

S ◦T : V 7→ Z

and is defined by

(S ◦T )(~v) = S(T (~v)) for all~v ∈V

Consider now the following proposition.

Proposition 9.73: Composite and Inverse Isomorphism

Let T : V →W be an isomorphism. Then T−1 : W →V is also an isomorphism. Also if T : V →W

is an isomorphism and if S : W → Z is an isomorphism for the vector spaces V ,W ,Z, then S ◦ T

defined by (S ◦T )(v) = S (T (v)) is also an isomorphism.

Proof. Consider the first claim. Since T is onto, a typical vector in W is of the form T (~v) where ~v ∈ V .

Consider then for a,b scalars,

T−1 (aT (~v1)+bT (~v2))

where~v1,~v2 ∈V . Consider if this is equal to

aT−1 (T (~v1))+bT−1 (T (~v2)) = a~v1 +b~v2?
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Since T is one to one, this will be so if

T (a~v1 +b~v2) = T
(
T−1 (aT (~v1)+bT (~v2))

)
= aT (~v1)+bT (~v2)

However, the above statement is just the condition that T is a linear map. Thus T−1 is indeed a linear map.

If~v ∈V is given, then~v = T−1 (T (~v)) and so T−1 is onto. If T−1(~v) =~0, then

~v = T
(
T−1(~v)

)
= T (~0) =~0

and so T−1 is one to one.

Next suppose T and S are as described. Why is S ◦T a linear map? Let for a,b scalars,

S ◦T (a~v1 +b~v2) ≡ S (T (a~v1 +b~v2)) = S (aT (~v1)+bT (~v2))

= aS (T (~v1))+bS (T (~v2))≡ a(S ◦T )(~v1)+b(S ◦T )(~v2)

Hence S ◦T is a linear map. If (S ◦T )(~v) = 0, then S (T (~v)) =~0 and it follows that T (~v) =~0 and hence

by this lemma again,~v =~0. Thus S ◦T is one to one. It remains to verify that it is onto. Let~z ∈ Z. Then

since S is onto, there exists ~w ∈W such that S(~w) =~z. Also, since T is onto, there exists~v ∈ V such that

T (~v) = ~w. It follows that S (T (~v)) =~z and so S ◦T is also onto. ♠

Suppose we say that two vector spaces V and W are related if there exists an isomorphism of one to

the other, written as V ∼W . Then the above proposition suggests that ∼ is an equivalence relation. That

is: ∼ satisfies the following conditions:

• V ∼V

• If V ∼W , it follows that W ∼V

• If V ∼W and W ∼ Z, then V ∼ Z

We leave the proof of these to the reader.

The following fundamental lemma describes the relation between bases and isomorphisms.

Lemma 9.74: Bases and Isomorphisms

Let T : V → W be a linear map where V ,W are vector spaces. Then a linear transformation

T which is one to one has the property that if {~u1, · · · ,~uk} is linearly independent, then so is

{T (~u1), · · · ,T (~uk)}. More generally, T is an isomorphism if and only if whenever {~v1, · · · ,~vn}
is a basis for V , it follows that {T (~v1), · · · ,T (~vn)} is a basis for W .

Proof. First suppose that T is a linear map and is one to one and {~u1, · · · ,~uk} is linearly independent. It is

required to show that {T (~u1), · · · ,T (~uk)} is also linearly independent. Suppose then that

k

∑
i=1

ciT (~ui) =~0

Then, since T is linear,

T

(
n

∑
i=1

ci~ui

)
=~0
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Since T is one to one, it follows that
n

∑
i=1

ci~ui = 0

Now the fact that {~u1, · · · ,~un} is linearly independent implies that each ci = 0. Hence {T (~u1), · · · ,T (~un)}
is linearly independent.

Now suppose that T is an isomorphism and {~v1, · · · ,~vn} is a basis for V . It was just shown that

{T (~v1), · · · ,T (~vn)} is linearly independent. It remains to verify that the span of {T (~v1), · · · ,T (~vn)} is all

of W . This is where T is onto is used. If ~w ∈W , there exists~v ∈V such that T (~v) = ~w. Since {~v1, · · · ,~vn}
is a basis, it follows that there exists scalars {ci}n

i=1 such that

n

∑
i=1

ci~vi =~v.

Hence,

~w = T (~v) = T

(
n

∑
i=1

ci~vi

)
=

n

∑
i=1

ciT~vi

which shows that the span of these vectors {T (~v1), · · · ,T (~vn)} is all of W showing that this set of vectors

is a basis for W .

Next suppose that T is a linear map which takes a basis to a basis. Then for {~v1, · · · ,~vn} a basis

for V , it follows {T (~v1), · · · ,T (~vn)} is a basis for W . Then if w ∈ W , there exist scalars ci such that

w = ∑n
i=1 ciT (~vi) = T (∑n

i=1 ci~vi) showing that T is onto. If T (∑n
i=1 ci~vi) = 0 then ∑n

i=1 ciT (~vi) =~0 and

since the vectors {T (~v1), · · · ,T (~vn)} are linearly independent, it follows that each ci = 0. Since ∑n
i=1 ci~vi

is a typical vector in V , this has shown that if T (~v) = 0 then~v =~0 and so T is also one to one. Thus T is

an isomorphism. ♠

The following theorem illustrates a very useful idea for defining an isomorphism. Basically, if you

know what it does to a basis, then you can construct the isomorphism.

Theorem 9.75: Isomorphic Vector Spaces

Suppose V and W are two vector spaces. Then the two vector spaces are isomorphic if and only if

they have the same dimension. In the case that the two vector spaces have the same dimension, then

for a linear transformation T : V →W , the following are equivalent.

1. T is one to one.

2. T is onto.

3. T is an isomorphism.

Proof. Suppose first these two vector spaces have the same dimension. Let a basis for V be {~v1, · · · ,~vn}
and let a basis for W be {~w1, · · · ,~wn}. Now define T as follows.

T (~vi) = ~wi
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for ∑n
i=1 ci~vi an arbitrary vector of V ,

T

(
n

∑
i=1

ci~vi

)
=

n

∑
i=1

ciT (~vi) =
n

∑
i=1

ci~wi.

It is necessary to verify that this is well defined. Suppose then that

n

∑
i=1

ci~vi =
n

∑
i=1

ĉi~vi

Then
n

∑
i=1

(ci − ĉi)~vi = 0

and since {~v1, · · · ,~vn} is a basis, ci = ĉi for each i. Hence

n

∑
i=1

ci~wi =
n

∑
i=1

ĉi~wi

and so the mapping is well defined. Also if a,b are scalars,

T

(
a

n

∑
i=1

ci~vi +b
n

∑
i=1

ĉi~vi

)
= T

(
n

∑
i=1

(aci +bĉi)~vi

)
=

n

∑
i=1

(aci +bĉi)~wi

= a
n

∑
i=1

ci~wi +b
n

∑
i=1

ĉi~wi

= aT

(
n

∑
i=1

ci~vi

)
+bT

(
n

∑
i=1

ĉi~vi

)

Thus T is a linear map.

Now if

T

(
n

∑
i=1

ci~vi

)
=

n

∑
i=1

ci~wi =~0,

then since the {~w1, · · · ,~wn} are independent, each ci = 0 and so ∑n
i=1 ci~vi =~0 also. Hence T is one to one.

If ∑n
i=1 ci~wi is a vector in W , then it equals

n

∑
i=1

ciT~vi = T

(
n

∑
i=1

ci~vi

)

showing that T is also onto. Hence T is an isomorphism and so V and W are isomorphic.

Next suppose these two vector spaces are isomorphic. Let T be the name of the isomorphism. Then

for {~v1, · · · ,~vn} a basis for V , it follows that a basis for W is {T~v1, · · · ,T~vn} showing that the two vector

spaces have the same dimension.

Now suppose the two vector spaces have the same dimension.

First consider the claim that 1. ⇒ 2. If T is one to one, then if {~v1, · · · ,~vn} is a basis for V , then

{T (~v1), · · · ,T (~vn)} is linearly independent. If it is not a basis, then it must fail to span W . But then
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there would exist ~w /∈ span{T (~v1), · · · ,T (~vn)} and it follows that {T (~v1), · · · ,T (~vn),~w} would be linearly

independent which is impossible because there exists a basis for W of n vectors. Hence

span{T (~v1), · · · ,T (~vn)}=W

and so {T (~v1), · · · ,T (~vn)} is a basis. Hence, if ~w ∈W , there exist scalars ci such that

~w =
n

∑
i=1

ciT (~vi) = T

(
n

∑
i=1

ci~vi

)

showing that T is onto. This shows that 1. ⇒ 2.

Next consider the claim that 2. ⇒ 3. Since 2. holds, it follows that T is onto. It remains to verify that

T is one to one. Since T is onto, there exists a basis of the form {T (~vi), · · · ,T (~vn)} . If {~v1, · · · ,~vn} is

linearly independent, then this set of vectors must also be a basis for V because if not, there would exist

~u /∈ span{~v1, · · · ,~vn} so {~v1, · · · ,~vn,~u} would be a linearly independent set which is impossible because by

assumption, there exists a basis which has n vectors. So why is{~v1, · · · ,~vn} linearly independent? Suppose

n

∑
i=1

ci~vi =~0

Then
n

∑
i=1

ciT~vi =~0

Hence each ci = 0 and so, as just discussed, {~v1, · · · ,~vn} is a basis for V . Now it follows that a typical

vector in V is of the form ∑n
i=1 ci~vi. If T (∑n

i=1 ci~vi) =~0, it follows that

n

∑
i=1

ciT (~vi) =~0

and so, since {T (~vi), · · · ,T (~vn)} is independent, it follows each ci = 0 and hence ∑n
i=1 ci~vi =~0. Thus T is

one to one as well as onto and so it is an isomorphism.

If T is an isomorphism, it is both one to one and onto by definition so 3. implies both 1. and 2. ♠
Note the interesting way of defining a linear transformation in the first part of the argument by describ-

ing what it does to a basis and then “extending it linearly”.

Consider the following example.

Example 9.76:

Let V = R3 and let W denote the polynomials of degree at most 2. Show that these two vector

spaces are isomorphic.

Solution. First, observe that a basis for W is
{

1,x,x2
}

and a basis for V is {~e1,~e2,~e3} . Since these two

have the same dimension, the two are isomorphic. An example of an isomorphism is this:

T (~e1) = 1,T (~e2) = x,T (~e3) = x2

and extend T linearly as in the above proof. Thus

T (a,b,c) = a+bx+ cx2

♠
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Exercises

Exercise 9.7.1 Let V and W be subspaces of Rn and Rm respectively and let T : V → W be a linear

transformation. Suppose that {T~v1, · · · ,T~vr} is linearly independent. Show that it must be the case that

{~v1, · · · ,~vr} is also linearly independent.

Exercise 9.7.2 Let

V = span








1

1

2

0


 ,




0

1

1

1


 ,




1

1

0

1








Let T~x = A~x where A is the matrix 


1 1 1 1

0 1 1 0

0 1 2 1

1 1 1 2




Give a basis for im(T ).

Exercise 9.7.3 Let

V = span








1

0

0

1


 ,




1

1

1

1


 ,




1

4

4

1








Let T~x = A~x where A is the matrix 


1 1 1 1

0 1 1 0

0 1 2 1

1 1 1 2




Find a basis for im(T ). In this case, the original vectors do not form an independent set.

Exercise 9.7.4 If {~v1, · · · ,~vr} is linearly independent and T is a one to one linear transformation, show

that {T~v1, · · · ,T~vr} is also linearly independent. Give an example which shows that if T is only linear, it

can happen that, although {~v1, · · · ,~vr} is linearly independent, {T~v1, · · · ,T~vr} is not. In fact, show that it

can happen that each of the T~v j equals 0.

Exercise 9.7.5 Let V and W be subspaces of Rn and Rm respectively and let T : V → W be a linear

transformation. Show that if T is onto W and if {~v1, · · · ,~vr} is a basis for V , then span{T~v1, · · · ,T~vr} =
W.

Exercise 9.7.6 Define T : R4 → R3 as follows.

T~x =




3 2 1 8

2 2 −2 6

1 1 −1 3


~x

Find a basis for im(T ). Also find a basis for ker(T ) .
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Exercise 9.7.7 Define T : R3 → R3 as follows.

T~x =




1 2 0

1 1 1

0 1 1


~x

where on the right, it is just matrix multiplication of the vector ~x which is meant. Explain why T is an

isomorphism of R3 to R3.

Exercise 9.7.8 Suppose T : R3 → R3 is a linear transformation given by

T~x = A~x

where A is a 3×3 matrix. Show that T is an isomorphism if and only if A is invertible.

Exercise 9.7.9 Suppose T : Rn → Rm is a linear transformation given by

T~x = A~x

where A is an m× n matrix. Show that T is never an isomorphism if m 6= n. In particular, show that if

m > n, T cannot be onto and if m < n, then T cannot be one to one.

Exercise 9.7.10 Define T : R2 → R3 as follows.

T~x =




1 0

1 1

0 1


~x

where on the right, it is just matrix multiplication of the vector ~x which is meant. Show that T is one to

one. Next let W = im(T ) . Show that T is an isomorphism of R2 and im (T ).

Exercise 9.7.11 In the above problem, find a 2×3 matrix A such that the restriction of A to im(T ) gives

the same result as T−1 on im(T ). Hint: You might let A be such that

A




1

1

0


=

[
1

0

]
, A




0

1

1


=

[
0

1

]

now find another vector~v ∈ R3 such that








1

1

0


 ,




0

1

1


 ,~v





is a basis. You could pick

~v =




0

0

1



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for example. Explain why this one works or one of your choice works. Then you could define A~v to equal

some vector in R2. Explain why there will be more than one such matrix A which will deliver the inverse

isomorphism T−1 on im(T ).

Exercise 9.7.12 Now let V equal span








1

0

1


 ,




0

1

1





 and let T : V →W be a linear transformation

where

W = span








1

0

1

0


 ,




0

1

1

1








and

T




1

0

1


=




1

0

1

0


 ,T




0

1

1


=




0

1

1

1




Explain why T is an isomorphism. Determine a matrix A which, when multiplied on the left gives the same

result as T on V and a matrix B which delivers T−1 on W. Hint: You need to have

A




1 0

0 1

1 1


=




1 0

0 1

1 1

0 1




Now enlarge




1

0

1


 ,




0

1

1


 to obtain a basis for R3. You could add in




0

0

1


 for example, and then pick

another vector in R4 and let A




0

0

1


 equal this other vector. Then you would have

A




1 0 0

0 1 0

1 1 1


=




1 0 0

0 1 0

1 1 0

0 1 1




This would involve picking for the new vector in R4 the vector
[

0 0 0 1
]T

. Then you could find A.

You can do something similar to find a matrix for T−1 denoted as B.
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9.8 The Kernel And Image Of A Linear Map

Outcomes

A. Describe the kernel and image of a linear transformation.

B. Use the kernel and image to determine if a linear transformation is one to one or onto.

Here we consider the case where the linear map is not necessarily an isomorphism. First here is a

definition of what is meant by the image and kernel of a linear transformation.

Definition 9.77: Kernel and Image

Let V and W be vector spaces and let T : V →W be a linear transformation. Then the image of T

denoted as im(T ) is defined to be the set

{T (~v) :~v ∈V}

In words, it consists of all vectors in W which equal T (~v) for some ~v ∈ V . The kernel, ker(T ),
consists of all~v ∈V such that T (~v) =~0. That is,

ker (T ) =
{
~v ∈V : T (~v) =~0

}

Then in fact, both im(T ) and ker(T ) are subspaces of W and V respectively.

Proposition 9.78: Kernel and Image as Subspaces

Let V ,W be vector spaces and let T : V → W be a linear transformation. Then ker(T ) ⊆ V and

im(T )⊆W . In fact, they are both subspaces.

Proof. First consider ker(T ) . It is necessary to show that if ~v1,~v2 are vectors in ker(T ) and if a,b are

scalars, then a~v1 +b~v2 is also in ker(T ) . But

T (a~v1 +b~v2) = aT (~v1)+bT (~v2) = a~0+b~0 =~0

Thus ker(T ) is a subspace of V .

Next suppose T (~v1),T (~v2) are two vectors in im(T ) . Then if a,b are scalars,

aT (~v2)+bT (~v2) = T (a~v1 +b~v2)

and this last vector is in im(T ) by definition. ♠

Consider the following example.
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Example 9.79: Kernel and Image of a Transformation

Let T : P1 → R be the linear transformation defined by

T (p(x)) = p(1) for all p(x) ∈ P1.

Find the kernel and image of T .

Solution. We will first find the kernel of T . It consists of all polynomials in P1 that have 1 for a root.

ker(T ) = {p(x) ∈ P1 | p(1) = 0}
= {ax+b | a,b ∈ R and a+b = 0}
= {ax−a | a ∈ R}

Therefore a basis for ker(T ) is

{x−1}
Notice that this is a subspace of P1.

Now consider the image. It consists of all numbers which can be obtained by evaluating all polynomi-

als in P1 at 1.

im(T ) = {p(1) | p(x) ∈ P1}
= {a+b | ax+b ∈ P1}
= {a+b | a,b ∈ R}
= R

Therefore a basis for im(T ) is

{1}
Notice that this is a subspace of R, and in fact is the space R itself. ♠

Example 9.80: Kernel and Image of a Linear Transformation

Let T : M22 7→ R2 be defined by

T

[
a b

c d

]
=

[
a−b

c+d

]

Then T is a linear transformation. Find a basis for ker(T ) and im(T ).

Solution. You can verify that T represents a linear transformation.

Now we want to find a way to describe all matrices A such that T (A) =~0, that is the matrices in ker(T ).

Suppose A =

[
a b

c d

]
is such a matrix. Then

T

[
a b

c d

]
=

[
a−b

c+d

]
=

[
0

0

]
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The values of a,b,c,d that make this true are given by solutions to the system

a−b = 0

c+d = 0

The solution is a = s,b = s,c = t,d =−t where s, t are scalars. We can describe ker(T ) as follows.

ker(T ) =

{[
s s

t −t

]}
= span

{[
1 1

0 0

]
,

[
0 0

1 −1

]}

It is clear that this set is linearly independent and therefore forms a basis for ker(T ).

We now wish to find a basis for im(T ). We can write the image of T as

im(T ) =

{[
a−b

c+d

]}

Notice that this can be written as

span

{[
1

0

]
,

[
−1

0

]
,

[
0

1

]
,

[
0

1

]}

However this is clearly not linearly independent. By removing vectors from the set to create an inde-

pendent set gives a basis of im(T ). {[
1

0

]
,

[
0

1

]}

Notice that these vectors have the same span as the set above but are now linearly independent. ♠

A major result is the relation between the dimension of the kernel and dimension of the image of a

linear transformation. A special case was done earlier in the context of matrices. Recall that for an m×n

matrix A, it was the case that the dimension of the kernel of A added to the rank of A equals n.

Theorem 9.81: Dimension of Kernel + Image

Let T : V →W be a linear transformation where V ,W are vector spaces. Suppose the dimension of

V is n. Then n = dim(ker (T ))+dim(im(T )).

Proof. From Proposition 9.78, im(T ) is a subspace of W . By Theorem 9.48, there exists a basis for

im(T ) ,{T (~v1), · · · ,T (~vr)} . Similarly, there is a basis for ker (T ) ,{~u1, · · · ,~us}. Then if~v ∈ V , there exist

scalars ci such that

T (~v) =
r

∑
i=1

ciT (~vi)

Hence T (~v−∑r
i=1 ci~vi) = 0. It follows that~v−∑r

i=1 ci~vi is in ker (T ). Hence there are scalars ai such that

~v−
r

∑
i=1

ci~vi =
s

∑
j=1

a j~u j
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Hence~v = ∑r
i=1 ci~vi +∑s

j=1 a j~u j. Since~v is arbitrary, it follows that

V = span{~u1, · · · ,~us,~v1, · · · ,~vr}

If the vectors {~u1, · · · ,~us,~v1, · · · ,~vr} are linearly independent, then it will follow that this set is a basis.

Suppose then that
r

∑
i=1

ci~vi +
s

∑
j=1

a j~u j = 0

Apply T to both sides to obtain

r

∑
i=1

ciT (~vi)+
s

∑
j=1

a jT (~u j) =
r

∑
i=1

ciT (~vi) =~0

Since {T (~v1), · · · ,T (~vr)} is linearly independent, it follows that each ci = 0. Hence ∑s
j=1 a j~u j = 0 and

so, since the {~u1, · · · ,~us} are linearly independent, it follows that each a j = 0 also. It follows that

{~u1, · · · ,~us,~v1, · · · ,~vr} is a basis for V and so

n = s+ r = dim(ker(T ))+dim(im(T ))

♠

Consider the following definition.

Definition 9.82: Rank of Linear Transformation

Let T : V → W be a linear transformation and suppose V ,W are finite dimensional vector spaces.

Then the rank of T denoted as rank(T ) is defined as the dimension of im(T ) . The nullity of T is

the dimension of ker(T ) . Thus the above theorem says that rank(T )+dim(ker (T )) = dim(V ) .

Recall the following important result.

Theorem 9.83: Subspace of Same Dimension

Let V be a vector space of dimension n and let W be a subspace. Then W = V if and only if the

dimension of W is also n.

From this theorem follows the next corollary.

Corollary 9.84: One to One and Onto Characterization

Let T : V →W be a linear map where the dimension of V is n and the dimension of W is m. Then

T is one to one if and only if ker(T ) =
{
~0
}

and T is onto if and only if rank(T ) = m.

Proof. The statement ker(T ) =
{
~0
}

is equivalent to saying if T (~v) =~0, it follows that ~v =~0 . Thus

by Lemma 9.64 T is one to one. If T is onto, then im(T ) = W and so rank(T ) which is defined as the
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dimension of im(T ) is m. If rank(T ) = m, then by Theorem 9.83, since im(T ) is a subspace of W , it

follows that im(T ) =W . ♠

Example 9.85: One to One Transformation

Let S : P2 →M22 be a linear transformation defined by

S(ax2 +bx+ c) =

[
a+b a+ c

b− c b+ c

]
for all ax2 +bx+ c ∈ P2.

Prove that S is one to one but not onto.

Solution. You may recall this example from earlier in Example 9.65. Here we will determine that S is one

to one, but not onto, using the method provided in Corollary 9.84.

By definition,

ker(S) = {ax2 +bx+ c ∈ P2 | a+b = 0,a+ c = 0,b− c = 0,b+ c = 0}.

Suppose p(x) = ax2 +bx+ c ∈ ker(S). This leads to a homogeneous system of four equations in three

variables. Putting the augmented matrix in reduced row-echelon form:




1 1 0 0

1 0 1 0

0 1 −1 0

0 1 1 0


→ ·· · →




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


 .

Since the unique solution is a = b = c = 0, ker(S) = {~0}, and thus S is one-to-one by Corollary 9.84.

Similarly, by Corollary 9.84, if S is onto it will have rank(S) = dim(M22) = 4. The image of S is given

by

im(S) =

{[
a+b a+ c

b− c b+ c

]}
= span

{[
1 1

0 0

]
,

[
1 0

1 1

]
,

[
0 1

−1 1

]}

These matrices are linearly independent which means this set forms a basis for im(S). Therefore the

dimension of im(S), also called rank(S), is equal to 3. It follows that S is not onto. ♠

Exercises

Exercise 9.8.1 Let V = R3 and let

W = span(S) , where S =








1

−1

1


 ,




−2

2

−2


 ,




−1

1

1


 ,




1

−1

3







Find a basis of W consisting of vectors in S.

Exercise 9.8.2 Let T be a linear transformation given by

T

[
x

y

]
=

[
1 1

1 1

][
x

y

]
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Find a basis for ker (T ) and im(T ).

Exercise 9.8.3 Let T be a linear transformation given by

T

[
x

y

]
=

[
1 0

1 1

][
x

y

]

Find a basis for ker (T ) and im(T ).

Exercise 9.8.4 Let V = R3 and let

W = span








1

1

1


 ,




−1

2

−1







Extend this basis of W to a basis of V .

Exercise 9.8.5 Let T be a linear transformation given by

T




x

y

z


=

[
1 1 1

1 1 1

]


x

y

z




What is dim(ker(T ))?

9.9 The Matrix of a Linear Transformation

Outcomes

A. Find the matrix of a linear transformation with respect to general bases in vector spaces.

You may recall from Rn that the matrix of a linear transformation depends on the bases chosen. This

concept is explored in this section, where the linear transformation now maps from one arbitrary vector

space to another.

Let T : V 7→W be an isomorphism where V and W are vector spaces. Recall from Lemma 9.74 that T

maps a basis in V to a basis in W . When discussing this Lemma, we were not specific on what this basis

looked like. In this section we will make such a distinction.

Consider now an important definition.
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Definition 9.86: Coordinate Isomorphism

Let V be a vector space with dim(V ) = n, let B = {~b1,~b2, . . . ,~bn} be a fixed basis of V , and let

{~e1,~e2, . . . ,~en} denote the standard basis of Rn. We define a transformation CB : V → Rn by

CB(a1
~b1 +a2

~b2 + · · ·+an
~bn) = a1~e1 +a2~e2 + · · ·+an~en =




a1

a2
...

an


 .

Then CB is a linear transformation such that CB(~bi) =~ei, 1 ≤ i ≤ n.

CB is an isomorphism, called the coordinate isomorphism corresponding to B.

We continue with another related definition.

Definition 9.87: Coordinate Vector

Let V be a finite dimensional vector space with dim(V ) = n, and let B = {~b1,~b2, . . . ,~bn} be an

ordered basis of V (meaning that the order that the vectors are listed is taken into account). The

coordinate vector of~v with respect to B is defined as CB(~v).

Consider the following example.

Example 9.88: Coordinate Vector

Let V = P2 and~x =−x2 −2x+4. Find CB(~x) for the following bases B:

1. B =
{

1,x,x2
}

2. B =
{

x2,x,1
}

3. B =
{

x+ x2,x,4
}

Solution.

1. First, note the order of the basis is important. Now we need to find a1,a2,a3 such that~x = a1(1)+
a2(x)+a3(x

2), that is:

−x2 −2x+4 = a1(1)+a2(x)+a3(x
2)

Clearly the solution is

a1 = 4

a2 = −2

a3 = −1

Therefore the coordinate vector is

CB(~x) =




4

−2

−1



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2. Again remember that the order of B is important. We proceed as above. We need to find a1,a2,a3

such that~x = a1(x
2)+a2(x)+a3(1), that is:

−x2 −2x+4 = a1(x
2)+a2(x)+a3(1)

Here the solution is

a1 = −1

a2 = −2

a3 = 4

Therefore the coordinate vector is

CB(~x) =




−1

−2

4




3. Now we need to find a1,a2,a3 such that~x = a1(x+ x2)+a2(x)+a3(4), that is:

−x2 −2x+4 = a1(x+ x2)+a2(x)+a3(4)

= a1(x
2)+(a1 +a2)(x)+a3(4)

The solution is

a1 = −1

a2 = −1

a3 = 1

and the coordinate vector is

CB(~x) =




−1

−1

1




♠

Given that the coordinate transformation CB : V → Rn is an isomorphism, its inverse exists.

Theorem 9.89: Inverse of the Coordinate Isomorphism

Let V be a finite dimensional vector space with dimension n and ordered basis B = {~b1,~b2, . . . ,~bn}.

Then CB : V → Rn is an isomorphism whose inverse,

C−1
B : Rn →V

is given by

C−1
B =




a1

a2
...

an


= a1

~b1 +a2
~b2 + · · ·+an

~bn for all




a1

a2
...

an


 ∈ Rn.
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We now discuss the main result of this section, that is how to represent a linear transformation with

respect to different bases.

Let V and W be finite dimensional vector spaces, and suppose

• dim(V ) = n and B1 = {~b1,~b2, . . . ,~bn} is an ordered basis of V ;

• dim(W ) = m and B2 is an ordered basis of W .

Let T : V → W be a linear transformation. If V = Rn and W = Rm, then we can find a matrix A so that

TA = T . For arbitrary vector spaces V and W , our goal is to represent T as a matrix., i.e., find a matrix A

so that TA : Rn → Rm and TA =CB2
TC−1

B1
.

To find the matrix A:

TA =CB2
TC−1

B1
implies that TACB1

=CB2
T ,

and thus for any~v ∈V ,

CB2
[T (~v)] = TA[CB1

(~v)] = ACB1
(~v).

Since CB1
(~b j) =~e j for each~b j ∈ B1, ACB1

(~b j) = A~e j, which is simply the jth column of A. Therefore,

the jth column of A is equal to CB2
[T (~b j)].

The matrix of T corresponding to the ordered bases B1 and B2 is denoted MB2B1
(T ) and is given by

MB2B1
(T ) =

[
CB2

[T (~b1)] CB2
[T (~b2)] · · · CB2

[T (~bn)]
]

.

This result is given in the following theorem.

Theorem 9.90:

Let V and W be vectors spaces of dimension n and m respectively, with B1 = {~b1,~b2, . . . ,~bn} an

ordered basis of V and B2 an ordered basis of W . Suppose T : V → W is a linear transformation.

Then the unique matrix MB2B1
(T ) of T corresponding to B1 and B2 is given by

MB2B1
(T ) =

[
CB2

[T (~b1)] CB2
[T (~b2)] · · · CB2

[T (~bn)]
]

.

This matrix satisfies CB2
[T (~v)] = MB2B1

(T )CB1
(~v) for all~v ∈V .

We demonstrate this content in the following examples.
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Example 9.91: Matrix of a Linear Transformation

Let T : P3 7→ R4 be an isomorphism defined by

T (ax3 +bx2 + cx+d) =




a+b

b− c

c+d

d +a




Suppose B1 =
{

x3,x2,x,1
}

is an ordered basis of P3 and

B2 =








1

0

1

0


 ,




0

1

0

0


 ,




0

0

−1

0


 ,




0

0

0

1








be an ordered basis of R4. Find the matrix MB2B1
(T ).

Solution. To find MB2B1
(T ), we use the following definition.

MB2B1
(T ) =

[
CB2

[T (x3)] CB2
[T (x2)] CB2

[T (x)] CB2
[T (x2)]

]

First we find the result of applying T to the basis B1.

T (x3) =




1

0

0

1


 ,T (x2) =




1

1

0

0


 ,T (x) =




0

−1

1

0


 ,T (1) =




0

0

1

1




Next we apply the coordinate isomorphism CB2
to each of these vectors. We will show the first in

detail.

CB2







1

0

0

1





= a1




1

0

1

0


+a2




0

1

0

0


+a3




0

0

−1

0


+a4




0

0

0

1




This implies that

a1 = 1

a2 = 0

a1 −a3 = 0

a4 = 1

which has a solution given by

a1 = 1

a2 = 0

a3 = 1
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a4 = 1

Therefore CB2
[T (x3)] =




1

0

1

1


.

You can verify that the following are true.

CB2
[T (x2)] =




1

1

1

0


 ,CB2

[T (x)] =




0

−1

−1

0


 ,CB2

[T (1)] =




0

0

−1

1




Using these vectors as the columns of MB2B1
(T ) we have

MB2B1
(T ) =




1 1 0 0

0 1 −1 0

1 1 −1 −1

1 0 0 1




♠

The next example demonstrates that this method can be used to solve different types of problems. We

will examine the above example and see if we can work backwards to determine the action of T from the

matrix MB2B1
(T ).

Example 9.92: Finding the Action of a Linear Transformation

Let T : P3 7→ R4 be an isomorphism with

MB2B1
(T ) =




1 1 0 0

0 1 −1 0

1 1 −1 −1

1 0 0 1


 ,

where B1 =
{

x3,x2,x,1
}

is an ordered basis of P3 and

B2 =








1

0

1

0


 ,




0

1

0

0


 ,




0

0

−1

0


 ,




0

0

0

1








is an ordered basis of R4. If p(x) = ax3 +bx2 + cx+d, find T (p(x)).

Solution. Recall that CB2
[T (p(x))] = MB2B1

(T )CB1
(p(x)). Then we have

CB2
[T (p(x))] = MB2B1

(T )CB1
(p(x))
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=




1 1 0 0

0 1 −1 0

1 1 −1 −1

1 0 0 1







a

b

c

d




=




a+b

b− c

a+b− c−d

a+d




Therefore

T (p(x)) = C−1
D




a+b

b− c

a+b− c−d

a+d




= (a+b)




1

0

1

0


+(b− c)




0

1

0

0


+(a+b− c−d)




0

0

−1

0


+(a+d)




0

0

0

1




=




a+b

b− c

c+d

a+d




You can verify that this was the definition of T (p(x)) given in the previous example. ♠

We can also find the matrix of the composite of multiple transformations.

Theorem 9.93: Matrix of Composition

Let V ,W and U be finite dimensional vector spaces, and suppose T : V 7→W , S : W 7→U are linear

transformations. Suppose V ,W and U have ordered bases of B1, B2 and B3 respectively. Then the

matrix of the composite transformation S ◦T (or ST ) is given by

MB3B1
(ST ) = MB3B2

(S)MB2B1
(T ).

The next important theorem gives a condition on when T is an isomorphism.

Theorem 9.94: Isomorphism

Let V and W be vector spaces such that both have dimension n and let T : V 7→ W be a linear

transformation. Suppose B1 is an ordered basis of V and B2 is an ordered basis of W .

Then the conditions that MB2B1
(T ) is invertible for all B1 and B2, and that MB2B1

(T ) is invertible for

some B1 and B2 are equivalent. In fact, these occur if and only if T is an isomorphism.

If T is an isomorphism, the matrix MB2B1
(T ) is invertible and its inverse is given by [MB2B1

(T )]−1 =
MB1B2

(T−1).
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Consider the following example.

Example 9.95:

Suppose T : P3 →M22 is a linear transformation defined by

T (ax3 +bx2 + cx+d) =

[
a+d b− c

b+ c a−d

]

for all ax3 +bx2 + cx+d ∈ P3. Let B1 = {x3,x2,x,1} and

B2 =

{[
1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
0 0

0 1

]}

be ordered bases of P3 and M22, respectively.

1. Find MB2B1
(T ).

2. Verify that T is an isomorphism by proving that MB2B1
(T ) is invertible.

3. Find MB1B2
(T−1), and verify that MB1B2

(T−1) = [MB2B1
(T )]−1

.

4. Use MB1B2
(T−1) to find T−1.

Solution.

1.

MB2B1
(T ) =

[
CB2

[T (1)] CB2
[T (x)] CB2

[T (x2)] CB2
[T (x3)]

]

=

[
CB2

[
1 0

0 1

]
CB2

[
0 1

1 0

]
CB2

[
0 −1

1 0

]
CB2

[
1 0

0 −1

] ]

=




1 0 0 1

0 1 −1 0

0 1 1 0

1 0 0 −1




2. det(MB2B1
(T )) = 4, so the matrix is invertible, and hence T is an isomorphism.

3.

T−1

[
1 0

0 1

]
= 1,T−1

[
0 1

1 0

]
= x,T−1

[
0 −1

1 0

]
= x2,T−1

[
1 0

0 −1

]
= x3,

so

T−1

[
1 0

0 0

]
=

1+ x3

2
,T−1

[
0 1

0 0

]
=

x− x2

2
,

T−1

[
0 0

1 0

]
=

x+ x2

2
,T−1

[
0 1

0 0

]
=

1− x3

2
.
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Therefore,

MB1B2
(T−1) =

1

2




1 0 0 1

0 1 1 0

0 −1 1 0

1 0 0 −1




You should verify that MB2B1
(T )MB1B2

(T−1)= I4. From this it follows that [MB2B1
(T )]−1 =MB1B2

(T−1).

4.

CB1

(
T−1

[
p q

r s

])
= MB1B2

(T−1)CB2

([
p q

r s

])

T−1

[
p q

r s

]
= C−1

B1

(
MB1B2

(T−1)CB2

([
p q

r s

]))

= C−1
B1




1

2




1 0 0 1

0 1 1 0

0 −1 1 0

1 0 0 −1







p

q

r

s







= C−1
B1




1

2




p+ s

q+ r

r−q

p− s







=
1

2
(p+ s)x3 +

1

2
(q+ r)x2 +

1

2
(r−q)x+

1

2
(p− s).

♠

Exercises

Exercise 9.9.1 Consider the following functions which map Rn to Rn.

(a) T multiplies the jth component of~x by a nonzero number b.

(b) T replaces the ith component of~x with b times the jth component added to the ith component.

(c) T switches the ith and jth components.

Show these functions are linear transformations and describe their matrices A such that T (~x) = A~x.

Exercise 9.9.2 You are given a linear transformation T : Rn → Rm and you know that

T (Ai) = Bi

where
[

A1 · · · An

]−1
exists. Show that the matrix of T is of the form

[
B1 · · · Bn

][
A1 · · · An

]−1
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Exercise 9.9.3 Suppose T is a linear transformation such that

T




1

2

−6


 =




5

1

3




T




−1

−1

5


 =




1

1

5




T




0

−1

2


 =




5

3

−2




Find the matrix of T . That is find A such that T (~x) = A~x.

Exercise 9.9.4 Suppose T is a linear transformation such that

T




1

1

−8


 =




1

3

1




T




−1

0

6


 =




2

4

1




T




0

−1

3


 =




6

1

−1




Find the matrix of T . That is find A such that T (~x) = A~x.

Exercise 9.9.5 Suppose T is a linear transformation such that

T




1

3

−7


 =




−3

1

3




T




−1

−2

6


 =




1

3

−3




T




0

−1

2


 =




5

3

−3




Find the matrix of T . That is find A such that T (~x) = A~x.

Exercise 9.9.6 Suppose T is a linear transformation such that

T




1

1

−7


 =




3

3

3



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T




−1

0

6


 =




1

2

3




T




0

−1

2


 =




1

3

−1




Find the matrix of T . That is find A such that T (~x) = A~x.

Exercise 9.9.7 Suppose T is a linear transformation such that

T




1

2

−18


 =




5

2

5




T




−1

−1

15


 =




3

3

5




T




0

−1

4


 =




2

5

−2




Find the matrix of T . That is find A such that T (~x) = A~x.

Exercise 9.9.8 Consider the following functions T : R3 → R2. Show that each is a linear transformation

and determine for each the matrix A such that T (~x) = A~x.

(a) T




x

y

z


=

[
x+2y+3z

2y−3x+ z

]

(b) T




x

y

z


=

[
7x+2y+ z

3x−11y+2z

]

(c) T




x

y

z


=

[
3x+2y+ z

x+2y+6z

]

(d) T




x

y

z


=

[
2y−5x+ z

x+ y+ z

]

Exercise 9.9.9 Consider the following functions T : R3 → R2. Explain why each of these functions T is

not linear.
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(a) T




x

y

z


=

[
x+2y+3z+1

2y−3x+ z

]

(b) T




x

y

z


=

[
x+2y2 +3z

2y+3x+ z

]

(c) T




x

y

z


=

[
sinx+2y+3z

2y+3x+ z

]

(d) T




x

y

z


=

[
x+2y+3z

2y+3x− lnz

]

Exercise 9.9.10 Suppose [
A1 · · · An

]−1

exists where each A j ∈ Rn and let vectors {B1, · · · ,Bn} in Rm be given. Show that there always exists a

linear transformation T such that T (Ai) = Bi.

Exercise 9.9.11 Find the matrix for T (~w) = proj~v (~w) where~v =
[

1 −2 3
]T

.

Exercise 9.9.12 Find the matrix for T (~w) = proj~v (~w) where~v =
[

1 5 3
]T

.

Exercise 9.9.13 Find the matrix for T (~w) = proj~v (~w) where~v =
[

1 0 3
]T

.

Exercise 9.9.14 Let B =

{[
2

−1

]
,

[
3

2

]}
be a basis of R2 and let~x =

[
5

−7

]
be a vector in R2. Find

CB(~x).

Exercise 9.9.15 Let B =








1

−1

2


 ,




2

1

2


 ,




−1

0

2





 be a basis of R3 and let~x =




5

−1

4


 be a vector

in R2. Find CB(~x).

Exercise 9.9.16 Let T : R2 7→ R2 be a linear transformation defined by T

([
a

b

])
=

[
a+b

a−b

]
.

Consider the two bases

B1 = {~v1,~v2}=
{[

1

0

]
,

[
−1

1

]}

and

B2 =

{[
1

1

]
,

[
1

−1

]}

Find the matrix MB2,B1
of T with respect to the bases B1 and B2.



Appendix A

Some Prerequisite Topics

The topics presented in this section are important concepts in mathematics and therefore should be exam-

ined.

A.1 Sets and Set Notation

A set is a collection of things called elements. For example {1,2,3,8} would be a set consisting of the

elements 1,2,3, and 8. To indicate that 3 is an element of {1,2,3,8} , it is customary to write 3∈ {1,2,3,8} .

We can also indicate when an element is not in a set, by writing 9 /∈ {1,2,3,8} which says that 9 is not an

element of {1,2,3,8} . Sometimes a rule specifies a set. For example you could specify a set as all integers

larger than 2. This would be written as S = {x ∈ Z : x > 2} . This notation says: S is the set of all integers,

x, such that x > 2.

Suppose A and B are sets with the property that every element of A is an element of B. Then we

say that A is a subset of B. For example, {1,2,3,8} is a subset of {1,2,3,4,5,8} . In symbols, we write

{1,2,3,8} ⊆ {1,2,3,4,5,8} . It is sometimes said that “A is contained in B" or even “B contains A". The

same statement about the two sets may also be written as {1,2,3,4,5,8} ⊇ {1,2,3,8}.

We can also talk about the union of two sets, which we write as A∪B. This is the set consisting of

everything which is an element of at least one of the sets, A or B. As an example of the union of two sets,

consider {1,2,3,8}∪{3,4,7,8}= {1,2,3,4,7,8}. This set is made up of the numbers which are in at least

one of the two sets.

In general

A∪B = {x : x ∈ A or x ∈ B}
Notice that an element which is in both A and B is also in the union, as well as elements which are in only

one of A or B.

Another important set is the intersection of two sets A and B, written A∩ B. This set consists of

everything which is in both of the sets. Thus {1,2,3,8}∩{3,4,7,8} = {3,8} because 3 and 8 are those

elements the two sets have in common. In general,

A∩B = {x : x ∈ A and x ∈ B}

If A and B are two sets, A\B denotes the set of things which are in A but not in B. Thus

A\B = {x ∈ A : x /∈ B}

For example, if A = {1,2,3,8} and B = {3,4,7,8}, then A\B = {1,2,3,8}\{3,4,7,8}= {1,2}.

A special set which is very important in mathematics is the empty set denoted by /0. The empty set, /0,

is defined as the set which has no elements in it. It follows that the empty set is a subset of every set. This

is true because if it were not so, there would have to exist a set A, such that /0 has something in it which is

not in A. However, /0 has nothing in it and so it must be that /0 ⊆ A.

We can also use brackets to denote sets which are intervals of numbers. Let a and b be real numbers.

Then

529



530 Some Prerequisite Topics

• [a,b] = {x ∈ R : a ≤ x ≤ b}

• [a,b) = {x ∈ R : a ≤ x < b}

• (a,b) = {x ∈ R : a < x < b}

• (a,b] = {x ∈ R : a < x ≤ b}

• [a,∞) = {x ∈ R : x ≥ a}

• (−∞,a] = {x ∈ R : x ≤ a}

These sorts of sets of real numbers are called intervals. The two points a and b are called endpoints,

or bounds, of the interval. In particular, a is the lower bound while b is the upper bound of the above

intervals, where applicable. Other intervals such as (−∞,b) are defined by analogy to what was just

explained. In general, the curved parenthesis, (, indicates the end point is not included in the interval,

while the square parenthesis, [, indicates this end point is included. The reason that there will always be

a curved parenthesis next to ∞ or −∞ is that these are not real numbers and cannot be included in the

interval in the way a real number can.

To illustrate the use of this notation relative to intervals consider three examples of inequalities. Their

solutions will be written in the interval notation just described.

Example A.1: Solving an Inequality

Solve the inequality 2x+4 ≤ x−8.

Solution. We need to find x such that 2x+ 4 ≤ x− 8. Solving for x, we see that x ≤ −12 is the answer.

This is written in terms of an interval as (−∞,−12]. ♠

Consider the following example.

Example A.2: Solving an Inequality

Solve the inequality (x+1)(2x−3)≥ 0.

Solution. We need to find x such that (x+1)(2x−3) ≥ 0. The solution is given by x ≤ −1 or x ≥ 3
2
.

Therefore, x which fit into either of these intervals gives a solution. In terms of set notation this is denoted

by (−∞,−1]∪ [3
2
,∞). ♠

Consider one last example.

Example A.3: Solving an Inequality

Solve the inequality x(x+2)≥−4.

Solution. This inequality is true for any value of x where x is a real number. We can write the solution as

R or (−∞,∞) . ♠

In the next section, we examine another important mathematical concept.
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A.2 Well Ordering and Induction

We begin this section with some important notation. Summation notation, written ∑
j
i=1 i, represents a sum.

Here, i is called the index of the sum, and we add iterations until i = j. For example,

j

∑
i=1

i = 1+2+ · · ·+ j

Another example:

a11 +a12 +a13 =
3

∑
i=1

a1i

The following notation is a specific use of summation notation.

Notation A.4: Summation Notation

Let ai j be real numbers, and suppose 1 ≤ i ≤ r while 1 ≤ j ≤ s. These numbers can be listed in a

rectangular array as given by

a11 a12 · · · a1s

a21 a22 · · · a2s
...

...
...

ar1 ar2 · · · ars

Then ∑s
j=1 ∑r

i=1 ai j means to first sum the numbers in each column (using i as the index) and then to

add the sums which result (using j as the index). Similarly, ∑r
i=1 ∑s

j=1 ai j means to sum the vectors

in each row (using j as the index) and then to add the sums which result (using i as the index).

Notice that since addition is commutative, ∑s
j=1 ∑r

i=1 ai j = ∑r
i=1 ∑s

j=1 ai j.

We now consider the main concept of this section. Mathematical induction and well ordering are two

extremely important principles in math. They are often used to prove significant things which would be

hard to prove otherwise.

Definition A.5: Well Ordered

A set is well ordered if every nonempty subset S, contains a smallest element z having the property

that z ≤ x for all x ∈ S.

In particular, the set of natural numbers defined as

N= {1,2, · · ·}

is well ordered.

Consider the following proposition.

Proposition A.6: Well Ordered Sets

Any set of integers larger than a given number is well ordered.
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This proposition claims that if a set has a lower bound which is a real number, then this set is well

ordered.

Further, this proposition implies the principle of mathematical induction. The symbol Z denotes the

set of all integers. Note that if a is an integer, then there are no integers between a and a+1.

Theorem A.7: Mathematical Induction

A set S ⊆Z, having the property that a ∈ S and n+1 ∈ S whenever n ∈ S, contains all integers x ∈Z

such that x ≥ a.

Proof. Let T consist of all integers larger than or equal to a which are not in S. The theorem will be proved

if T = /0. If T 6= /0 then by the well ordering principle, there would have to exist a smallest element of T ,

denoted as b. It must be the case that b > a since by definition, a /∈ T . Thus b ≥ a+1, and so b−1 ≥ a and

b−1 /∈ S because if b−1 ∈ S, then b−1+1 = b ∈ S by the assumed property of S. Therefore, b−1 ∈ T

which contradicts the choice of b as the smallest element of T . (b−1 is smaller.) Since a contradiction is

obtained by assuming T 6= /0, it must be the case that T = /0 and this says that every integer at least as large

as a is also in S. ♠

Mathematical induction is a very useful device for proving theorems about the integers. The procedure

is as follows.

Procedure A.8: Proof by Mathematical Induction

Suppose Sn is a statement which is a function of the number n, for n = 1,2, · · · , and we wish to show

that Sn is true for all n ≥ 1. To do so using mathematical induction, use the following steps.

1. Base Case: Show S1 is true.

2. Assume Sn is true for some n, which is the induction hypothesis. Then, using this assump-

tion, show that Sn+1 is true.

Proving these two steps shows that Sn is true for all n = 1,2, · · · .

We can use this procedure to solve the following examples.

Example A.9: Proving by Induction

Prove by induction that ∑n
k=1 k2 =

n(n+1)(2n+1)

6
.

Solution. By Procedure A.8, we first need to show that this statement is true for n = 1. When n = 1, the

statement says that

1

∑
k=1

k2 =
1(1+1)(2(1)+1)

6

=
6

6
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= 1

The sum on the left hand side also equals 1, so this equation is true for n = 1.

Now suppose this formula is valid for some n ≥ 1 where n is an integer. Hence, the following equation

is true.
n

∑
k=1

k2 =
n(n+1)(2n+1)

6
(1.1)

We want to show that this is true for n+1.

Suppose we add (n+1)2 to both sides of equation 1.1.

n+1

∑
k=1

k2 =
n

∑
k=1

k2 +(n+1)2

=
n(n+1)(2n+1)

6
+(n+1)2

The step going from the first to the second line is based on the assumption that the formula is true for n.

Now simplify the expression in the second line,

n(n+1)(2n+1)

6
+(n+1)2

This equals

(n+1)

(
n(2n+1)

6
+(n+1)

)

and
n(2n+1)

6
+(n+1) =

6(n+1)+2n2 +n

6
=

(n+2)(2n+3)

6

Therefore,
n+1

∑
k=1

k2 =
(n+1)(n+2)(2n+3)

6
=

(n+1)((n+1)+1)(2(n+1)+1)

6

showing the formula holds for n+ 1 whenever it holds for n. This proves the formula by mathematical

induction. In other words, this formula is true for all n = 1,2, · · · . ♠

Consider another example.

Example A.10: Proving an Inequality by Induction

Show that for all n ∈ N,
1

2
· 3

4
· · · 2n−1

2n
<

1√
2n+1

.

Solution. Again we will use the procedure given in Procedure A.8 to prove that this statement is true for

all n. Suppose n = 1. Then the statement says

1

2
<

1√
3

which is true.



534 Some Prerequisite Topics

Suppose then that the inequality holds for n. In other words,

1

2
· 3

4
· · · 2n−1

2n
<

1√
2n+1

is true.

Now multiply both sides of this inequality by 2n+1
2n+2

. This yields

1

2
· 3

4
· · · 2n−1

2n
· 2n+1

2n+2
<

1√
2n+1

2n+1

2n+2
=

√
2n+1

2n+2

The theorem will be proved if this last expression is less than
1√

2n+3
. This happens if and only if

(
1√

2n+3

)2

=
1

2n+3
>

2n+1

(2n+2)2

which occurs if and only if (2n+2)2 > (2n+3)(2n+1) and this is clearly true which may be seen from

expanding both sides. This proves the inequality. ♠

Let’s review the process just used. If S is the set of integers at least as large as 1 for which the formula

holds, the first step was to show 1 ∈ S and then that whenever n ∈ S, it follows n+ 1 ∈ S. Therefore, by

the principle of mathematical induction, S contains [1,∞)∩Z, all positive integers. In doing an inductive

proof of this sort, the set S is normally not mentioned. One just verifies the steps above.
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Selected Exercise Answers

1.1.1
x+3y = 1

4x− y = 3
, Solution is:

[
x = 10

13
,y = 1

13

]
.

1.1.2
3x+ y = 3

x+2y = 1
, Solution is: [x = 1,y = 0]

1.2.1
x+3y = 1

4x− y = 3
, Solution is:

[
x = 10

13
,y = 1

13

]

1.2.2
x+3y = 1

4x− y = 3
, Solution is:

[
x = 10

13
,y = 1

13

]

1.2.3

x+2y = 1

2x− y = 1

4x+3y = 3

, Solution is:
[
x = 3

5
,y = 1

5

]

1.2.4 No solution exists. You can see this by writing the augmented matrix and doing row operations.


1 1 −3 2

2 1 1 1

3 2 −2 0


, row echelon form:




1 0 4 0

0 1 −7 0

0 0 0 1


 . Thus one of the equations says 0 = 1 in an

equivalent system of equations.

1.2.5

4g− I = 150

4I −17g =−660

4g+ s = 290

g+ I + s−b = 0

, Solution is : {g = 60, I = 90,b = 200,s = 50}

1.2.6 The solution exists but is not unique.

1.2.7 A solution exists and is unique.

1.2.9 There might be a solution. If so, there are infinitely many.

1.2.10 No. Consider x+ y+ z = 2 and x+ y+ z = 1.

1.2.11 These can have a solution. For example, x+y = 1,2x+2y = 2,3x+3y = 3 even has an infinite set

of solutions.

1.2.12 h = 4

1.2.13 Any h will work.
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1.2.14 Any h will work.

1.2.15 If h 6= 2 there will be a unique solution for any k. If h = 2 and k 6= 4, there are no solutions. If h = 2

and k = 4, then there are infinitely many solutions.

1.2.16 If h 6= 4, then there is exactly one solution. If h = 4 and k 6= 4, then there are no solutions. If h = 4

and k = 4, then there are infinitely many solutions.

1.2.17 There is no solution. The system is inconsistent. You can see this from the augmented matrix.


1 2 1 −1 2

1 −1 1 1 1

2 1 −1 0 1

4 2 1 0 5


, reduced row-echelon form:




1 0 0 1
3

0

0 1 0 −2
3

0

0 0 1 0 0

0 0 0 0 1


 .

1.2.18 Solution is:
[
w = 3

2
y−1,x = 2

3
− 1

2
y,z = 1

3

]

1.2.19 (a) This one is not.

(b) This one is.

(c) This one is.

1.2.28 The reduced row-echelon form is




1 0 1
2

1
2

0 1 −1
4

3
4

0 0 0 0


 . Therefore, the solution is of the form z =

t,y = 3
4
+ t
(

1
4

)
,x = 1

2
− 1

2
t where t ∈ R.

1.2.29 The reduced row-echelon form is

[
1 0 4 2

0 1 −4 −1

]
and so the solution is z= t,y= 4t,x= 2−4t.

1.2.30 The reduced row-echelon form is




1 0 0 0 9 3

0 1 0 0 −4 0

0 0 1 0 −7 −1

0 0 0 1 6 1


 and so x5 = t,x4 = 1−6t,x3 =−1+

7t,x2 = 4t,x1 = 3−9t.

1.2.31 The reduced row-echelon form is




1 0 2 0 −1
2

5
2

0 1 0 0 1
2

3
2

0 0 0 1 3
2

−1
2

0 0 0 0 0 0




. Therefore, let x5 = t,x3 = s. Then

the other variables are given by x4 =−1
2
− 3

2
t,x2 =

3
2
− t 1

2
, ,x1 =

5
2
+ 1

2
t −2s.

1.2.32 Solution is: [x = 1−2t,z = 1,y = t]
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1.2.33 Solution is: [x = 2−4t,y =−8t,z = t]

1.2.34 Solution is: [x =−1,y = 2,z =−1]

1.2.35 Solution is: [x = 2,y = 4,z = 5]

1.2.36 Solution is: [x = 1,y = 2,z =−5]

1.2.37 Solution is: [x =−1,y =−5,z = 4]

1.2.38 Solution is: [x = 2t +1,y = 4t,z = t]

1.2.39 Solution is: [x = 1,y = 5,z = 3]

1.2.40 Solution is: [x = 4,y =−4,z =−2]

1.2.41 No. Consider x+ y+ z = 2 and x+ y+ z = 1.

1.2.42 No. This would lead to 0 = 1.

1.2.43 Yes. It has a unique solution.

1.2.44 The last column must not be a pivot column. The remaining columns must each be pivot columns.

1.2.45 You need

1
4
(20+30+w+ x)− y = 0

1
4
(y+30+0+ z)−w = 0

1
4
(20+ y+ z+10)− x = 0

1
4
(x+w+0+10)− z = 0

, Solution is: [w = 15,x = 15,y = 20,z = 10] .

1.2.57 It is because you cannot have more than min(m,n) nonzero rows in the reduced row-echelon form.

Recall that the number of pivot columns is the same as the number of nonzero rows from the description

of this reduced row-echelon form.

1.2.58 (a) This says B is in the span of four of the columns. Thus the columns are not independent.

Infinite solution set.

(b) This surely can’t happen. If you add in another column, the rank does not get smaller.

(c) This says B is in the span of the columns and the columns must be independent. You can’t have the

rank equal 4 if you only have two columns.

(d) This says B is not in the span of the columns. In this case, there is no solution to the system of

equations represented by the augmented matrix.

(e) In this case, there is a unique solution since the columns of A are independent.
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1.2.59 These are not legitimate row operations. They do not preserve the solution set of the system.

1.2.62 The other two equations are

6I3 −6I4 + I3 + I3 +5I3 −5I2 = −20

2I4 +3I4 +6I4 −6I3 + I4 − I1 = 0

Then the system is

2I2 −2I1 +5I2 −5I3 +3I2 = 5

4I1 + I1 − I4 +2I1 −2I2 =−10

6I3 −6I4 + I3 + I3 +5I3 −5I2 =−20

2I4 +3I4 +6I4 −6I3 + I4 − I1 = 0

The solution is:

I1 = −750

373

I2 = −1421

1119

I3 = −3061

1119

I4 = −1718

1119

1.2.63 You have

2I1 +5I1 +3I1 −5I2 = 10

I2 − I3 +3I2 +7I2 +5I2 −5I1 = −12

2I3 +4I3 +4I3 + I3 − I2 = 0

Simplifying this yields

10I1−5I2 = 10

−5I1 +16I2 − I3 = −12

−I2 +11I3 = 0

The solution is given by

I1 =
218

295
, I2 =−154

295
, I3 =− 14

295

2.1.3 To get −A, just replace every entry of A with its additive inverse. The 0 matrix is the one which has

all zeros in it.

2.1.5 Suppose B also works. Then

−A =−A+(A+B) = (−A+A)+B = 0+B = B

2.1.6 Suppose 0′ also works. Then 0′ = 0′+0 = 0.
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2.1.7 0A = (0+0)A = 0A+0A. Now add −(0A) to both sides. Then 0 = 0A.

2.1.8 A+(−1)A = (1+(−1))A = 0A = 0. Therefore, from the uniqueness of the additive inverse proved

in the above Problem 2.1.5, it follows that −A = (−1)A.

2.1.9 (a)

[
−3 −6 −9

−6 −3 −21

]

(b)

[
8 −5 3

−11 5 −4

]

(c) Not possible

(d)

[
−3 3 4

6 −1 7

]

(e) Not possible

(f) Not possible

2.1.10 (a)




−3 −6

−9 −6

−3 3




(b) Not possible.

(c)




11 2

13 6

−4 2




(d) Not possible.

(e)




7

9

−2




(f) Not possible.

(g) Not possible.

(h)

[
2

−5

]

2.1.11 (a)




3 0 −4

−4 1 6

5 1 −6




(b)

[
1 −2

−2 −3

]

(c) Not possible
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(d)




−4 −6

−5 −3

−1 −2




(e)

[
8 1 −3

7 6 −6

]

2.1.12
[
−1 −1

3 3

][
x y

z w

]
=

[
−x− z −w− y

3x+3z 3w+3y

]

=

[
0 0

0 0

]

Solution is: w =−y,x =−z so the matrices are of the form

[
x y

−x −y

]
.

2.1.13 XTY =




0 −1 −2

0 −1 −2

0 1 2


 ,XY T = 1

2.1.14
[

1 2

3 4

][
1 2

3 k

]
=

[
7 2k+2

15 4k+6

]

[
1 2

3 k

][
1 2

3 4

]
=

[
7 10

3k+3 4k+6

]

Thus you must have
3k+3 = 15

2k+2 = 10
, Solution is: [k = 4]

2.1.15
[

1 2

3 4

][
1 2

1 k

]
=

[
3 2k+2

7 4k+6

]

[
1 2

1 k

][
1 2

3 4

]
=

[
7 10

3k+1 4k+2

]

However, 7 6= 3 and so there is no possible choice of k which will make these matrices commute.

2.1.16 Let A =

[
1 −1

−1 1

]
,B =

[
1 1

1 1

]
,C =

[
2 2

2 2

]
.

[
1 −1

−1 1

][
1 1

1 1

]
=

[
0 0

0 0

]

[
1 −1

−1 1

][
2 2

2 2

]
=

[
0 0

0 0

]
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2.1.18 Let A =

[
1 −1

−1 1

]
,B =

[
1 1

1 1

]
.

[
1 −1

−1 1

][
1 1

1 1

]
=

[
0 0

0 0

]

2.1.20 Let A =

[
0 1

1 0

]
,B =

[
1 2

3 4

]
.

[
0 1

1 0

][
1 2

3 4

]
=

[
3 4

1 2

]

[
1 2

3 4

][
0 1

1 0

]
=

[
2 1

4 3

]

2.1.21 A =




1 −1 2 0

1 0 2 0

0 0 3 0

1 3 0 3




2.1.22 A =




1 3 2 0

1 0 2 0

0 0 6 0

1 3 0 1




2.1.23 A =




1 1 1 0

1 1 2 0

−1 0 1 0

1 0 0 3




2.1.26 (a) Not necessarily true.

(b) Not necessarily true.

(c) Not necessarily true.

(d) Necessarily true.

(e) Necessarily true.

(f) Not necessarily true.

(g) Not necessarily true.

2.1.27 (a)

[
−3 −9 −3

−6 −6 3

]

(b)

[
5 −18 5

−11 4 4

]



542 Selected Exercise Answers

(c)
[
−7 1 5

]

(d)

[
1 3

3 9

]

(e)




13 −16 1

−16 29 −8

1 −8 5




(f)

[
5 7 −1

5 15 5

]

(g) Not possible.

2.1.28 Show that 1
2

(
AT +A

)
is symmetric and then consider using this as one of the matrices. A =

A+AT

2
+ A−AT

2
.

2.1.29 If A is symmetric then A =−AT . It follows that aii =−aii and so each aii = 0.

2.1.31 (ImA)i j ≡ ∑ j δikAk j = Ai j

2.1.32 Yes B =C. Multiply AB = AC on the left by A−1.

2.1.34 A =




1 0 0

0 −1 0

0 0 1




2.1.35

[
2 1

−1 3

]−1

=




3
7

−1
7

1
7

2
7




2.1.36

[
0 1

5 3

]−1

=

[
−3

5
1
5

1 0

]

2.1.37

[
2 1

3 0

]−1

=

[
0 1

3

1 −2
3

]

2.1.38

[
2 1

4 2

]−1

does not exist. The reduced row-echelon form of this matrix is

[
1 1

2

0 0

]

2.1.39

[
a b

c d

]−1

=

[
d

ad−bc
− b

ad−bc

− c
ad−bc

a
ad−bc

]
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2.1.40




1 2 3

2 1 4

1 0 2



−1

=




−2 4 −5

0 1 −2

1 −2 3




2.1.41




1 0 3

2 3 4

1 0 2



−1

=




−2 0 3

0 1
3

−2
3

1 0 −1




2.1.42 The reduced row-echelon form is




1 0 5
3

0 1 2
3

0 0 0


. There is no inverse.

2.1.43




1 2 0 2

1 1 2 0

2 1 −3 2

1 2 1 2




−1

=




−1 1
2

1
2

1
2

3 1
2

−1
2

−5
2

−1 0 0 1

−2 −3
4

1
4

9
4




2.1.45 (a)




x

y

z


=




1

−2
3

0




(b)




x

y

z


=




−12

1

5







x

y

z


=




3c−2a
1
3
b− 2

3
c

a− c




2.1.46 Multiply both sides of AX = B on the left by A−1.

2.1.47 Multiply on both sides on the left by A−1. Thus

0 = A−10 = A−1 (AX) =
(
A−1A

)
X = IX = X

2.1.48 A−1 = A−1I = A−1 (AB) =
(
A−1A

)
B = IB = B.

2.1.49 You need to show that
(
A−1

)T
acts like the inverse of AT because from uniqueness in the above

problem, this will imply it is the inverse. From properties of the transpose,

AT
(
A−1

)T
=

(
A−1A

)T
= IT = I

(
A−1

)T
AT =

(
AA−1

)T
= IT = I

Hence
(
A−1

)T
=
(
AT
)−1

and this last matrix exists.
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2.1.50 (AB)B−1A−1 = A
(
BB−1

)
A−1 = AA−1 = I B−1A−1 (AB) = B−1

(
A−1A

)
B = B−1IB = B−1B = I

2.1.51 The proof of this exercise follows from the previous one.

2.1.52 A2
(
A−1

)2
= AAA−1A−1 = AIA−1 = AA−1 = I

(
A−1

)2
A2 = A−1A−1AA = A−1IA = A−1A = I

2.1.53 A−1A = AA−1 = I and so by uniqueness,
(
A−1

)−1
= A.

2.2.1 


1 2 0

2 1 3

1 2 3


=




1 0 0

2 1 0

1 0 1






1 2 0

0 −3 3

0 0 3




2.2.2 


1 2 3 2

1 3 2 1

5 0 1 3


=




1 0 0

1 1 0

5 −10 1






1 2 3 2

0 1 −1 −1

0 0 −24 −17




2.2.3 


1 −2 −5 0

−2 5 11 3

3 −6 −15 1


=




1 0 0

−2 1 0

3 0 1






1 −2 −5 0

0 1 1 3

0 0 0 1




2.2.4 


1 −1 −3 −1

−1 2 4 3

2 −3 −7 −3


=




1 0 0

−1 1 0

2 −1 1






1 −1 −3 −1

0 1 1 2

0 0 0 1




2.2.5 


1 −3 −4 −3

−3 10 10 10

1 −6 2 −5


=




1 0 0

−3 1 0

1 −3 1






1 −3 −4 −3

0 1 −2 1

0 0 0 1




2.2.6 


1 3 1 −1

3 10 8 −1

2 5 −3 −3


=




1 0 0

3 1 0

2 −1 1






1 3 1 −1

0 1 5 2

0 0 0 1




2.2.7 


3 −2 1

9 −8 6

−6 2 2

3 2 −7


=




1 0 0 0

3 1 0 0

−2 1 1 0

1 −2 −2 1







3 −2 1

0 −2 3

0 0 1

0 0 0




2.2.9 


−1 −3 −1

1 3 0

3 9 0

4 12 16


=




1 0 0 0

−1 1 0 0

−3 0 1 0

−4 0 −4 1







−1 −3 −1

0 0 −1

0 0 −3

0 0 0



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2.2.10 An LU factorization of the coefficient matrix is
[

1 2

2 3

]
=

[
1 0

2 1

][
1 2

0 −1

]

First solve [
1 0

2 1

][
u

v

]
=

[
5

6

]

which gives

[
u

v

]
=

[
5

−4

]
. Then solve

[
1 2

0 −1

][
x

y

]
=

[
5

−4

]

which says that y = 4 and x =−3.

2.2.11 An LU factorization of the coefficient matrix is



1 2 1

0 1 3

2 3 0


=




1 0 0

0 1 0

2 −1 1






1 2 1

0 1 3

0 0 1




First solve 


1 0 0

0 1 0

2 −1 1






u

v

w


=




1

2

6




which yields u = 1,v = 2,w = 6. Next solve



1 2 1

0 1 3

0 0 1






x

y

z


=




1

2

6




This yields z = 6,y =−16,x = 27.

2.2.13 An LU factorization of the coefficient matrix is



1 2 3

2 3 1

3 5 4


=




1 0 0

2 1 0

3 1 1






1 2 3

0 −1 −5

0 0 0




First solve 


1 0 0

2 1 0

3 1 1






u

v

w


=




5

6

11




Solution is:




u

v

w


=




5

−4

0


 . Next solve




1 2 3

0 −1 −5

0 0 0






x

y

z


=




5

−4

0



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Solution is:




x

y

z


=




7t −3

4−5t

t


 , t ∈ R.

2.2.14 Sometimes there is more than one LU factorization as is the case in this example. The given

equation clearly gives an LU factorization. However, it appears that the following equation gives another

LU factorization. [
0 1

0 1

]
=

[
1 0

0 1

][
0 1

0 1

]

3.1.3 (a) The answer is 31.

(b) The answer is 375.

(c) The answer is −2.

3.1.4 ∣∣∣∣∣∣

1 2 1

2 1 3

2 1 1

∣∣∣∣∣∣
= 6

3.1.5 ∣∣∣∣∣∣

1 2 1

1 0 1

2 1 1

∣∣∣∣∣∣
= 2

3.1.6 ∣∣∣∣∣∣

1 2 1

2 1 3

2 1 1

∣∣∣∣∣∣
= 6

3.1.7 ∣∣∣∣∣∣∣∣

1 0 0 1

2 1 1 0

0 0 0 2

2 1 3 1

∣∣∣∣∣∣∣∣
=−4

3.1.9 It does not change the determinant. This was just taking the transpose.

3.1.10 In this case two rows were switched and so the resulting determinant is −1 times the first.

3.1.11 The determinant is unchanged. It was just the first row added to the second.

3.1.12 The second row was multiplied by 2 so the determinant of the result is 2 times the original deter-

minant.

3.1.13 In this case the two columns were switched so the determinant of the second is −1 times the

determinant of the first.
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3.1.14 If the determinant is nonzero, then it will remain nonzero with row operations applied to the matrix.

However, by assumption, you can obtain a row of zeros by doing row operations. Thus the determinant

must have been zero after all.

3.1.15 det(aA)= det(aIA)= det(aI)det(A)= an det(A) . The matrix which has a down the main diagonal

has determinant equal to an.

3.1.16

det

([
1 2

3 4

][
−1 2

−5 6

])
=−8

det

[
1 2

3 4

]
det

[
−1 2

−5 6

]
=−2×4 =−8

3.1.17 This is not true at all. Consider A =

[
1 0

0 1

]
,B =

[
−1 0

0 −1

]
.

3.1.18 It must be 0 because 0 = det(0) = det
(
Ak
)
= (det(A))k

.

3.1.19 You would need det
(
AAT

)
= det(A)det

(
AT
)
= det(A)2 = 1 and so det(A) = 1, or −1.

3.1.20 det(A) = det
(
S−1BS

)
= det

(
S−1
)

det(B)det(S) = det(B)det
(
S−1S

)
= det(B).

3.1.21 (a) False. Consider




1 1 2

−1 5 4

0 3 3




(b) True.

(c) False.

(d) False.

(e) True.

(f) True.

(g) True.

(h) True.

(i) True.

(j) True.

3.1.22 ∣∣∣∣∣∣

1 2 1

2 3 2

−4 1 2

∣∣∣∣∣∣
=−6
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3.1.23 ∣∣∣∣∣∣

2 1 3

2 4 2

1 4 −5

∣∣∣∣∣∣
=−32

3.1.24 One can row reduce this using only row operation 3 to




1 2 1 2

0 −5 −5 −3

0 0 2 9
5

0 0 0 −63
10




and therefore, the determinant is −63.
∣∣∣∣∣∣∣∣

1 2 1 2

3 1 −2 3

−1 0 3 1

2 3 2 −2

∣∣∣∣∣∣∣∣
= 63

3.1.25 One can row reduce this using only row operation 3 to




1 4 1 2

0 −10 −5 −3

0 0 2 19
5

0 0 0 −211
20




Thus the determinant is given by ∣∣∣∣∣∣∣∣

1 4 1 2

3 2 −2 3

−1 0 3 3

2 1 2 −2

∣∣∣∣∣∣∣∣
= 211

3.2.1 det




1 2 3

0 2 1

3 1 0


=−13 and so it has an inverse. This inverse is

1

−13




∣∣∣∣
2 1

1 0

∣∣∣∣ −
∣∣∣∣

0 1

3 0

∣∣∣∣
∣∣∣∣

0 2

3 1

∣∣∣∣

−
∣∣∣∣

2 3

1 0

∣∣∣∣
∣∣∣∣

1 3

3 0

∣∣∣∣ −
∣∣∣∣

1 2

3 1

∣∣∣∣∣∣∣∣
2 3

2 1

∣∣∣∣ −
∣∣∣∣

1 3

0 1

∣∣∣∣
∣∣∣∣

1 2

0 2

∣∣∣∣




T

=
1

−13




−1 3 −6

3 −9 5

−4 −1 2




T

=




1
13

− 3
13

4
13

− 3
13

9
13

1
13

6
13

− 5
13

− 2
13



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3.2.2 det




1 2 0

0 2 1

3 1 1


= 7 so it has an inverse. This inverse is 1

7




1 3 −6

−2 1 5

2 −1 2




T

=




1
7

−2
7

2
7

3
7

1
7

−1
7

−6
7

5
7

2
7




3.2.3

det




1 3 3

2 4 1

0 1 1


= 3

so it has an inverse which is 


1 0 −3

−2
3

1
3

5
3

2
3

−1
3

−2
3




3.2.5

det




1 0 3

1 0 1

3 1 0


= 2

and so it has an inverse. The inverse turns out to equal




−1
2

3
2

0

3
2

−9
2

1

1
2

−1
2

0




3.2.6 (a)

∣∣∣∣
1 1

1 2

∣∣∣∣= 1

(b)

∣∣∣∣∣∣

1 2 3

0 2 1

4 1 1

∣∣∣∣∣∣
=−15

(c)

∣∣∣∣∣∣

1 2 1

2 3 0

0 1 2

∣∣∣∣∣∣
= 0

3.2.7 No. It has a nonzero determinant for all t

3.2.8

det




1 t t2

0 1 2t

t 0 2


= t3+2

and so it has no inverse when t =− 3
√

2
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3.2.9

det




et cosh t sinht

et sinh t cosh t

et cosh t sinht


= 0

and so this matrix fails to have a nonzero determinant at any value of t.

3.2.10

det




et e−t cos t e−t sin t

et −e−t cos t − e−t sint −e−t sint + e−t cos t

et 2e−t sint −2e−t cos t


= 5e−t 6= 0

and so this matrix is always invertible.

3.2.11 If det(A) 6= 0, then A−1 exists and so you could multiply on both sides on the left by A−1 and obtain

that X = 0.

3.2.12 You have 1 = det(A)det(B). Hence both A and B have inverses. Letting X be given,

A(BA− I)X = (AB)AX −AX = AX −AX = 0

and so it follows from the above problem that (BA− I)X = 0. Since X is arbitrary, it follows that BA = I.

3.2.13

det




et 0 0

0 et cos t et sint

0 et cos t − et sint et cos t + et sin t


= e3t .

Hence the inverse is

e−3t




e2t 0 0

0 e2t cos t + e2t sint −
(
e2t cos t − e2t sin

)
t

0 −e2t sint e2t cos(t)




T

=




e−t 0 0

0 e−t (cos t + sint) −(sint)e−t

0 −e−t (cost − sin t) (cos t)e−t




3.2.14




et cos t sint

et −sin t cos t

et −cos t −sin t



−1

=




1
2
e−t 0 1

2
e−t

1
2

cost + 1
2

sint −sin t 1
2

sint − 1
2

cos t
1
2

sint − 1
2

cos t cos t −1
2

cos t − 1
2

sint




3.2.15 The given condition is what it takes for the determinant to be non zero. Recall that the determinant

of an upper triangular matrix is just the product of the entries on the main diagonal.



551

3.2.16 This follows because det(ABC) = det(A)det(B)det(C) and if this product is nonzero, then each

determinant in the product is nonzero and so each of these matrices is invertible.

3.2.17 False.

3.2.18 Solution is: [x = 1,y = 0]

3.2.19 Solution is: [x = 1,y = 0,z = 0] . For example,

y =

∣∣∣∣∣∣

1 1 1

2 2 −1

1 1 1

∣∣∣∣∣∣
∣∣∣∣∣∣

1 2 1

2 −1 −1

1 0 1

∣∣∣∣∣∣

= 0

4.2.1




−55

13

−21

39




4.2.3 


4

4

−3


= 2




3

1

−1


−




2

−2

1




4.2.4 The system 


4

4

4


= a1




3

1

−1


+a2




2

−2

1




has no solution.

4.7.1




1

2

3

4


•




2

0

1

3


= 17

4.7.2 This formula says that ~u•~v = ‖~u‖‖~v‖cosθ where θ is the included angle between the two vectors.

Thus

‖~u•~v‖= ‖~u‖‖~v‖‖cosθ‖ ≤ ‖~u‖‖~v‖
and equality holds if and only if θ = 0 or π . This means that the two vectors either point in the same

direction or opposite directions. Hence one is a multiple of the other.

4.7.3 This follows from the Cauchy Schwarz inequality and the proof of Theorem 4.29 which only used

the properties of the dot product. Since this new product has the same properties the Cauchy Schwarz

inequality holds for it as well.
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4.7.6 A~x•~y = ∑k (A~x)k yk = ∑k ∑i Akixiyk = ∑i ∑k AT
ikxiyk =~x•AT~y

4.7.7

AB~x•~y = B~x•AT~y

= ~x•BT AT~y

= ~x• (AB)T~y

Since this is true for all~x, it follows that, in particular, it holds for

~x = BT AT~y− (AB)T~y

and so from the axioms of the dot product,

(
BT AT~y− (AB)T~y

)
•
(

BT AT~y− (AB)T~y
)
= 0

and so BT AT~y− (AB)T~y =~0. However, this is true for all~y and so BT AT − (AB)T = 0.

4.7.8

[
3 −1 −1

]T
•
[

1 4 2
]T

√
9+1+1

√
1+16+4

= −3√
11
√

21
=−0.19739 = cosθ Therefore we need to solve

−0.19739 = cosθ

Thus θ = 1.7695 radians.

4.7.9 −10√
1+4+1

√
1+4+49

= −0.55555 = cosθ Therefore we need to solve −0.55555 = cosθ , which gives

θ = 2.0313 radians.

4.7.10 ~u•~v
~u•~u~u = −5

14




1

2

3


=




− 5
14

−5
7

−15
14




4.7.11 ~u•~v
~u•~u~u = −5

10




1

0

3


=




−1
2

0

−3
2




4.7.12 ~u•~v
~u•~u~u =

[
1 2 −2 1

]T
•
[

1 2 3 0
]T

1+4+9




1

2

3

0


=




− 1
14

−1
7

− 3
14

0




4.7.15 No, it does not. The 0 vector has no direction. The formula for proj~0 (~w) doesn’t make sense either.
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4.7.16 (
~u− ~u•~v

‖~v‖2
~v

)
•
(
~u− ~u•~v

‖~v‖2
~v

)
= ‖~u‖2 −2(~u•~v)2 1

‖~v‖2
+(~u•~v)2 1

‖~v‖2
≥ 0

And so

‖~u‖2‖~v‖2 ≥ (~u•~v)2

You get equality exactly when ~u = proj~v~u = ~u•~v
‖~v‖2~v in other words, when ~u is a multiple of~v.

4.7.17

~w−proj~v (~w)+~u−proj~v (~u)

= ~w+~u− (proj~v (~w)+proj~v (~u))

= ~w+~u−proj~v (~w+~u)

This follows because

proj~v (~w)+proj~v (~u) =
~u•~v
‖~v‖2

~v+
~w•~v
‖~v‖2

~v

=
(~u+~w)•~v

‖~v‖2
~v

= proj~v (~w+~u)

4.7.18 (~v−proj~u (~v))•~u =~v•~u−
(
( ~v·u)
‖~u‖2~u

)
•~u =~v•~u−~v•~u = 0. Therefore,~v =~v−proj~u (~v)+proj~u (~v) .

The first is perpendicular to~u and the second is a multiple of~u so it is parallel to~u.

4.9.1 If~a 6=~0, then the condition says that ‖~a×~u‖= ‖~a‖sinθ = 0 for all angles θ . Hence~a =~0 after all.

4.9.2




3

0

−3


×




−4

0

−2


=




0

18

0


 . So the area is 9.

4.9.3




3

1

−3


×




−4

1

−2


=




1

18

7


. The area is given by

1

2

√
1+(18)2 +49 =

1

2

√
374

4.9.4
[

1 1 1
]
×
[

2 2 2
]
=
[

0 0 0
]
. The area is 0. It means the three points are on the same

line.

4.9.5




1

2

3


×




3

−2

1


=




8

8

−8


 . The area is 8

√
3

4.9.6




1

0

3


×




4

−2

1


=




6

11

−2


 . The area is

√
36+121+4 =

√
161
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4.9.7
(
~i×~j

)
×~j =~k×~j =−~i. However,~i×

(
~j×~j

)
=~0 and so the cross product is not associative.

4.9.8 Verify directly from the coordinate description of the cross product that the right hand rule applies

to the vectors~i,~j,~k. Next verify that the distributive law holds for the coordinate description of the cross

product. This gives another way to approach the cross product. First define it in terms of coordinates and

then get the geometric properties from this. However, this approach does not yield the right hand rule

property very easily. From the coordinate description,

~a×~b ·~a = εi jka jbkai =−ε jika jbkai =−ε jikbkaia j =−~a×~b ·~a

and so~a×~b is perpendicular to~a. Similarly,~a×~b is perpendicular to~b. Now we need that

‖~a×~b‖2 = ‖~a‖2‖~b‖2
(
1− cos2 θ

)
= ‖~a‖2‖~b‖2 sin2 θ

and so ‖~a×~b‖= ‖~a‖‖~b‖sinθ , the area of the parallelogram determined by ~a,~b. Only the right hand rule

is a little problematic. However, you can see right away from the component definition that the right hand

rule holds for each of the standard unit vectors. Thus~i×~j =~k etc.

∣∣∣∣∣∣

~i ~j ~k
1 0 0

0 1 0

∣∣∣∣∣∣
=~k

4.9.10

∣∣∣∣∣∣

1 −7 −5

1 −2 −6

3 2 3

∣∣∣∣∣∣
= 113

4.9.11 Yes. It will involve the sum of product of integers and so it will be an integer.

4.9.12 It means that if you place them so that they all have their tails at the same point, the three will lie

in the same plane.

4.9.13 ~x•
(
~a×~b

)
= 0

4.9.15 Here [~v,~w,~z] denotes the box product. Consider the cross product term. From the above,

(~v×~w)× (~w×~z) = [~v,~w,~z]~w− [~w,~w,~z]~v

= [~v,~w,~z]~w

Thus it reduces to

(~u×~v)• [~v,~w,~z]~w = [~v,~w,~z] [~u,~v,~w]

4.9.16

‖~u×~v‖2 = εi jku jvkεirsurvs =
(
δ jrδks −δkrδ js

)
urvsu jvk

= u jvku jvk −ukv ju jvk = ‖~u‖2‖~v‖2 − (~u•~v)2
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It follows that the expression reduces to 0. You can also do the following.

‖~u×~v‖2 = ‖~u‖2‖~v‖2 sin2 θ

= ‖~u‖2‖~v‖2
(
1− cos2 θ

)

= ‖~u‖2‖~v‖2 −‖~u‖2‖~v‖2 cos2 θ

= ‖~u‖2‖~v‖2 − (~u•~v)2

which implies the expression equals 0.

4.9.17 We will show it using the summation convention and permutation symbol.

(
(~u×~v)′

)
i

= ((~u×~v)i)
′ =
(
εi jku jvk

)′

= εi jku′jvk + εi jkukv′k =
(
~u′×~v+~u×~v′

)
i

and so (~u×~v)′ =~u′×~v+~u×~v′.

4.10.10 ∑k
i=1 0~xk =~0

4.10.40 No. Let~u =




π
2

0

0

0


 . Then 2~u /∈ M although~u ∈ M.

4.10.41 No.




1

0

0

0


 ∈ M but 10




1

0

0

0


 /∈ M.

4.10.42 This is not a subspace.




1

1

1

1


 is in it. However, (−1)




1

1

1

1


 is not.

4.10.43 This is a subspace because it is closed with respect to vector addition and scalar multiplication.

4.10.44 Yes, this is a subspace because it is closed with respect to vector addition and scalar multiplication.

4.10.45 This is not a subspace.




0

0

1

0


 is in it. However (−1)




0

0

1

0


=




0

0

−1

0


 is not.

4.10.46 This is a subspace. It is closed with respect to vector addition and scalar multiplication.

4.10.55 Yes. If not, there would exist a vector not in the span. But then you could add in this vector and

obtain a linearly independent set of vectors with more vectors than a basis.
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4.10.56 They can’t be.

4.10.57 Say ∑k
i=1 ci~zi =~0. Then apply A to it as follows.

k

∑
i=1

ciA~zi =
k

∑
i=1

ci~wi =~0

and so, by linear independence of the ~wi, it follows that each ci = 0.

4.10.58 If ~x,~y ∈ V ∩W , then for scalars α ,β , the linear combination α~x+β~y must be in both V and W

since they are both subspaces.

4.10.60 Let {x1, · · · ,xk} be a basis for V ∩W . Then there is a basis for V and W which are respectively

{
x1, · · · ,xk,yk+1, · · · ,yp

}
,
{

x1, · · · ,xk,zk+1, · · · ,zq

}

It follows that you must have k+ p− k+q− k ≤ n and so you must have

p+q−n ≤ k

4.10.61 Here is how you do this. Suppose AB~x =~0. Then B~x ∈ ker (A)∩B(Rp) and so B~x = ∑k
i=1 B~zi

showing that

~x−
k

∑
i=1

~zi ∈ ker(B)

Consider B(Rp)∩ker (A) and let a basis be {~w1, · · · ,~wk} . Then each ~wi is of the form B~zi = ~wi. Therefore,

{~z1, · · · ,~zk} is linearly independent and AB~zi = 0. Now let {~u1, · · · ,~ur} be a basis for ker(B) . If AB~x =~0,

then B~x ∈ ker (A)∩B(Rp) and so B~x = ∑k
i=1 ciB~zi which implies

~x−
k

∑
i=1

ci~zi ∈ ker (B)

and so it is of the form

~x−
k

∑
i=1

ci~zi =
r

∑
j=1

d j~u j

It follows that if AB~x =~0 so that~x ∈ ker(AB) , then

~x ∈ span(~z1, · · · ,~zk,~u1, · · · ,~ur) .

Therefore,

dim(ker(AB)) ≤ k+ r = dim(B(Rp)∩ker (A))+dim(ker (B))

≤ dim(ker (A))+dim(ker (B))

4.10.62 If~x,~y ∈ ker(A) then

A(a~x+b~y) = aA~x+bA~y = a~0+b~0 =~0

and so ker (A) is closed under linear combinations. Hence it is a subspace.
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4.11.6 (a) Orthogonal.

(b) Symmetric.

(c) Skew Symmetric.

4.11.7 ‖U~x‖2 =U~x•U~x =UTU~x•~x = I~x•~x = ‖~x‖2.

Next suppose distance is preserved by U . Then

(U (~x+~y))• (U (~x+~y)) = ‖Ux‖2 +‖Uy‖2 +2(Ux•Uy)

= ‖~x‖2 +‖~y‖2 +2
(
UTU~x•~y

)

But since U preserves distances, it is also the case that

(U (~x+~y)•U (~x+~y)) = ‖~x‖2 +‖~y‖2 +2(~x•~y)

Hence

~x•~y =UTU~x•~y
and so ((

UTU − I
)
~x
)
•~y = 0

Since y is arbitrary, it follows that UTU − I = 0. Thus U is orthogonal.

4.11.8 You could observe that det
(
UUT

)
= (det(U))2 = 1 so det(U) 6= 0.

4.11.9




−1√
2

−1√
6

1√
3

1√
2

−1√
6

a

0
√

6
3

b







−1√
2

−1√
6

1√
3

1√
2

−1√
6

a

0
√

6
3

b




T

=




1 1
3

√
3a− 1

3
1
3

√
3b− 1

3
1
3

√
3a− 1

3
a2 + 2

3
ab− 1

3
1
3

√
3b− 1

3
ab− 1

3
b2 + 2

3




This requires a = 1/
√

3,b = 1/
√

3.




−1√
2

−1√
6

1√
3

1√
2

−1√
6

1/
√

3

0
√

6
3

1/
√

3







−1√
2

−1√
6

1√
3

1√
2

−1√
6

1/
√

3

0
√

6
3

1/
√

3




T

=




1 0 0

0 1 0

0 0 1




4.11.10




2
3

√
2

2
1
6

√
2

2
3

−
√

2
2

a

−1
3

0 b







2
3

√
2

2
1
6

√
2

2
3

−
√

2
2

a

−1
3

0 b




T

=




1 1
6

√
2a− 1

18
1
6

√
2b− 2

9
1
6

√
2a− 1

18
a2 + 17

18
ab− 2

9
1
6

√
2b− 2

9
ab− 2

9
b2 + 1

9



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This requires a = 1

3
√

2
,b = 4

3
√

2
.




2
3

√
2

2
1
6

√
2

2
3

−
√

2
2

1

3
√

2

−1
3

0 4

3
√

2







2
3

√
2

2
1
6

√
2

2
3

−
√

2
2

1

3
√

2

−1
3

0 4

3
√

2




T

=




1 0 0

0 1 0

0 0 1




4.11.11 Try




1
3

− 2√
5

c

2
3

0 d

2
3

1√
5

4
15

√
5







1
3

− 2√
5

c

2
3

0 d

2
3

1√
5

4
15

√
5




T

=




c2 + 41
45

cd + 2
9

4
15

√
5c− 8

45

cd + 2
9

d2 + 4
9

4
15

√
5d + 4

9
4

15

√
5c− 8

45
4

15

√
5d + 4

9
1




This requires that c = 2

3
√

5
,d = −5

3
√

5
.




1
3

− 2√
5

2

3
√

5

2
3

0 −5

3
√

5

2
3

1√
5

4
15

√
5







1
3

− 2√
5

2

3
√

5

2
3

0 −5

3
√

5

2
3

1√
5

4
15

√
5




T

=




1 0 0

0 1 0

0 0 1




4.11.12 (a) 


3
5

−4
5

0


 ,




4
5
3
5

0


 ,




0

0

1




(b) 


3
5

0

−4
5


 ,




4
5

0
3
5


 ,




0

1

0




(c) 


3
5

0

−4
5


 ,




4
5

0
3
5


 ,




0

1

0




4.11.13 A solution is 


1
6

√
6

1
3

√
6

1
6

√
6


 ,




3
10

√
2

−2
5

√
2

1
2

√
2


 ,




7
15

√
3

− 1
15

√
3

−1
3

√
3



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4.11.14 Then a solution is



1
6

√
6

1
3

√
6

1
6

√
6

0


 ,




1
6

√
2
√

3

−2
9

√
2
√

3
5

18

√
2
√

3
1
9

√
2
√

3


 ,




5
111

√
3
√

37
1

333

√
3
√

37

− 17
333

√
3
√

37
22

333

√
3
√

37




4.11.15 The subspace is of the form 


x

y

2x+3y




and a basis is




1

0

2


 ,




0

1

3


. Therefore, an orthonormal basis is




1
5

√
5

0
2
5

√
5


 ,




− 3
35

√
5
√

14
1

14

√
5
√

14
3

70

√
5
√

14




4.11.21




1 2

2 3

3 5




T 


1 2

2 3

3 5


 =

[
14 23

23 38

][
14 23

23 38

][
x

y

]

=




1 2

2 3

3 5




T 


1

2

4


=

[
17

28

]

[
14 23

23 38

][
x

y

]
=

[
17

28

]

[
14 23

23 38

][
x

y

]
=

[
17

28

]
,

Solution is:

[
2
3
1
3

]

4.12.7 The velocity is the sum of two vectors. 50~i+ 300√
2

(
~i+~j

)
=
(

50+ 300√
2

)
~i+ 300√

2
~j. The component in

the direction of North is then 300√
2
= 150

√
2 and the velocity relative to the ground is

(
50+

300√
2

)
~i+

300√
2
~j

4.12.10 Velocity of plane for the first hour:
[

0 150
]
+
[

40 0
]
=
[

40 150
]

. After one hour it is at

(40,150) . Next the velocity of the plane is 150
[

1
2

√
3

2

]
+
[

40 0
]

in miles per hour. After two hours

it is then at (40,150)+150
[

1
2

√
3

2

]
+
[

40 0
]
=
[

155 75
√

3+150
]
=
[

155.0 279.9
]
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4.12.11 Wind:
[

0 50
]

. Direction it needs to travel: (3,5) 1√
34

. Then you need 250
[

a b
]
+
[

0 50
]

to have this direction where
[

a b
]

is an appropriate unit vector. Thus you need

a2 +b2 = 1

250b+50

250a
=

5

3

Thus a = 3
5
,b = 4

5
. The velocity of the plane relative to the ground is

[
150 250

]
. The speed of the plane

relative to the ground is given by

√
(150)2 +(250)2 = 291.55 miles per hour

It has to go a distance of

√
(300)2 +(500)2 = 583.10 miles. Therefore, it takes

583.1

291.55
= 2 hours

4.12.12 Water:
[
−2 0

]
Swimmer:

[
0 3

]
Speed relative to earth:

[
−2 3

]
. It takes him 1/6 of an

hour to get across. Therefore, he ends up travelling 1
6

√
4+9 = 1

6

√
13 miles. He ends up 1/3 mile down

stream.

4.12.13 Man: 3
[

a b
]

Water:
[
−2 0

]
Then you need 3a = 2 and so a = 2/3 and hence b =

√
5/3.

The vector is then
[

2
3

√
5

3

]
.

In the second case, he could not do it. You would need to have a unit vector
[

a b
]

such that 2a = 3

which is not possible.

4.12.17 proj~D

(
~F
)
=

~F•~D
‖~D‖

~D
‖~D‖ =

(
‖~F‖cosθ

)
~D
‖~D‖ =

(
‖~F‖cosθ

)
~u

4.12.18 40cos
(

20
180

π
)

100 = 3758.8

4.12.19 20cos
(

π
6

)
200 = 3464.1

4.12.20 20
(
cos π

4

)
300 = 4242.6

4.12.21 200
(
cos
(

π
6

))
20 = 3464.1

4.12.22




−4

3

−4


•




0

1

0


×10 = 30 You can consider the resultant of the two forces because of the prop-

erties of the dot product.
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4.12.23

~F1 •




1√
2

1√
2

0


10+~F2 •




1√
2

1√
2

0


10 =

(
~F1 +~F2

)
•




1√
2

1√
2

0


10

=




6

4

−4


•




1√
2

1√
2

0


10

= 50
√

2

4.12.24




2

3

−4


•




0
1√
2

1√
2


20 =−10

√
2

5.1.1 This result follows from the properties of matrix multiplication.

5.1.2

T~u (a~v+b~w) = a~v+b~w− (a~v+b~w•~u)
‖~u‖2

~u

= a~v−a
(~v•~u)
‖~u‖2

~u+b~w−b
(~w•~u)
‖~u‖2

~u

= aT~u (~v)+bT~u (~w)

5.1.3 Linear transformations take~0 to~0 which T does not. Also T~a (~u+~v) 6= T~a~u+T~a~v.

5.2.1 (a) The matrix of T is the elementary matrix which multiplies the jth diagonal entry of the identity

matrix by b.

(b) The matrix of T is the elementary matrix which takes b times the jth row and adds to the ith row.

(c) The matrix of T is the elementary matrix which switches the ith and the jth rows where the two

components are in the ith and jth positions.

5.2.2 Suppose 

~cT

1
...

~cT
n


=

[
~a1 · · · ~an

]−1

Thus~cT
i ~a j = δi j. Therefore,

[
~b1 · · · ~bn

][
~a1 · · · ~an

]−1
~ai =

[
~b1 · · · ~bn

]


~cT

1
...

~cT
n


~ai
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=
[
~b1 · · · ~bn

]
~ei

= ~bi

Thus T~ai =
[
~b1 · · · ~bn

][
~a1 · · · ~an

]−1
~ai =A~ai. If~x is arbitrary, then since the matrix

[
~a1 · · · ~an

]

is invertible, there exists a unique~y such that
[
~a1 · · · ~an

]
~y =~x Hence

T~x = T

(
n

∑
i=1

yi~ai

)
=

n

∑
i=1

yiT~ai =
n

∑
i=1

yiA~ai = A

(
n

∑
i=1

yi~ai

)
= A~x

5.2.3 


5 1 5

1 1 3

3 5 −2






3 2 1

2 2 1

4 1 1


=




37 17 11

17 7 5

11 14 6




5.2.4 


1 2 6

3 4 1

1 1 −1






6 3 1

5 3 1

6 2 1


=




52 21 9

44 23 8

5 4 1




5.2.5 


−3 1 5

1 3 3

3 −3 −3






2 2 1

1 2 1

4 1 1


=




15 1 3

17 11 7

−9 −3 −3




5.2.6 


3 1 1

3 2 3

3 3 −1






6 2 1

5 2 1

6 1 1


=




29 9 5

46 13 8

27 11 5




5.2.7 


5 3 2

2 3 5

5 5 −2






11 4 1

10 4 1

12 3 1


=




109 38 10

112 35 10

81 34 8




5.2.11 Recall that proj~u (~v) =
~v•~u
‖~u‖2~u and so the desired matrix has ith column equal to proj~u (~ei) . Therefore,

the matrix desired is

1

14




1 −2 3

−2 4 −6

3 −6 9




5.2.12

1

35




1 5 3

5 25 15

3 15 9



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5.2.13

1

10




1 0 3

0 0 0

3 0 9




5.3.2 The matrix of S ◦T is given by BA.

[
0 −2

4 2

][
3 1

−1 2

]
=

[
2 −4

10 8

]

Now, (S ◦T )(~x) = (BA)~x. [
2 −4

10 8

][
2

−1

]
=

[
8

12

]

5.3.3 To find (S ◦T )(~x) we compute S(T (~x)).

[
1 2

−1 3

][
2

−3

]
=

[
−4

−11

]

5.3.5 The matrix of T−1 is A−1. [
2 1

5 2

]−1

=

[
−2 1

5 −2

]

5.4.1

[
cos
(

π
3

)
−sin

(
π
3

)

sin
(

π
3

)
cos
(

π
3

)
]
=

[
1
2

−1
2

√
3

1
2

√
3 1

2

]

5.4.2

[
cos
(

π
4

)
−sin

(
π
4

)

sin
(

π
4

)
cos
(

π
4

)
]
=

[
1
2

√
2 −1

2

√
2

1
2

√
2 1

2

√
2

]

5.4.3

[
cos
(
−π

3

)
−sin

(
−π

3

)

sin
(
−π

3

)
cos
(
−π

3

)
]
=

[
1
2

1
2

√
3

−1
2

√
3 1

2

]

5.4.4

[
cos
(

2π
3

)
−sin

(
2π
3

)

sin
(

2π
3

)
cos
(

2π
3

)
]
=

[
−1

2
−1

2

√
3

1
2

√
3 −1

2

]

5.4.5

[
cos
(

π
3

)
−sin

(
π
3

)

sin
(

π
3

)
cos
(

π
3

)
][

cos
(
−π

4

)
−sin

(
−π

4

)

sin
(
−π

4

)
cos
(
−π

4

)
]

=

[
1
4

√
2
√

3+ 1
4

√
2 1

4

√
2− 1

4

√
2
√

3
1
4

√
2
√

3− 1
4

√
2 1

4

√
2
√

3+ 1
4

√
2

]

5.4.6 [
1 0

0 −1

][
cos
(

2π
3

)
−sin

(
2π
3

)

sin
(

2π
3

)
cos
(

2π
3

)
]
=

[
−1

2
−1

2

√
3

−1
2

√
3 1

2

]
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5.4.7 [
1 0

0 −1

][
cos
(

π
3

)
−sin

(
π
3

)

sin
(

π
3

)
cos
(

π
3

)
]
=

[
1
2

−1
2

√
3

−1
2

√
3 −1

2

]

5.4.8 [
1 0

0 −1

][
cos
(

π
4

)
−sin

(
π
4

)

sin
(

π
4

)
cos
(

π
4

)
]
=

[
1
2

√
2 −1

2

√
2

−1
2

√
2 −1

2

√
2

]

5.4.9 [
−1 0

0 1

][
cos
(

π
6

)
−sin

(
π
6

)

sin
(

π
6

)
cos
(

π
6

)
]
=

[
−1

2

√
3 1

2
1
2

1
2

√
3

]

5.4.10 [
cos
(

π
4

)
−sin

(
π
4

)

sin
(

π
4

)
cos
(

π
4

)
][

1 0

0 −1

]
=

[
1
2

√
2 1

2

√
2

1
2

√
2 −1

2

√
2

]

5.4.11 [
cos
(

π
4

)
−sin

(
π
4

)

sin
(

π
4

)
cos
(

π
4

)
][

−1 0

0 1

]
=

[
−1

2

√
2 −1

2

√
2

−1
2

√
2 1

2

√
2

]

5.4.12 [
cos
(

π
6

)
−sin

(
π
6

)

sin
(

π
6

)
cos
(

π
6

)
][

1 0

0 −1

]
=

[
1
2

√
3 1

2
1
2

−1
2

√
3

]

5.4.13 [
cos
(

π
6

)
−sin

(
π
6

)

sin
(

π
6

)
cos
(

π
6

)
][

−1 0

0 1

]
=

[
−1

2

√
3 −1

2

−1
2

1
2

√
3

]

5.4.14 [
cos
(

2π
3

)
−sin

(
2π
3

)

sin
(

2π
3

)
cos
(

2π
3

)
][

cos
(
−π

4

)
−sin

(
−π

4

)

sin
(
−π

4

)
cos
(
−π

4

)
]
=

[
1
4

√
2
√

3− 1
4

√
2 −1

4

√
2
√

3− 1
4

√
2

1
4

√
2
√

3+ 1
4

√
2 1

4

√
2
√

3− 1
4

√
2

]

Note that it doesn’t matter about the order in this case.

5.4.15 


1 0 0

0 1 0

0 0 −1






cos
(

π
6

)
−sin

(
π
6

)
0

sin
(

π
6

)
cos
(

π
6

)
0

0 0 1


=




1
2

√
3 −1

2
0

1
2

1
2

√
3 0

0 0 −1




5.4.16
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

][
1 0

0 −1

][
cos(−θ) −sin(−θ)
sin(−θ) cos(−θ)

]

=

[
cos2 θ − sin2 θ 2cosθ sinθ

2cosθ sinθ sin2 θ − cos2 θ

]
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Now to write in terms of (a,b) , note that a/
√

a2 +b2 = cosθ ,b/
√

a2 +b2 = sinθ . Now plug this in to the

above. The result is [
a2−b2

a2+b2 2 ab
a2+b2

2 ab
a2+b2

b2−a2

a2+b2

]
=

1

a2 +b2

[
a2 −b2 2ab

2ab b2 −a2

]

Since this is a unit vector, a2 +b2 = 1 and so you get

[
a2 −b2 2ab

2ab b2 −a2

]

5.5.5




1 0

0 1

0 0




5.5.6 This says that the columns of A have a subset of m vectors which are linearly independent. Therefore,

this set of vectors is a basis for Rm. It follows that the span of the columns is all of Rm. Thus A is onto.

5.5.7 The columns are independent. Therefore, A is one to one.

5.5.8 The rank is n is the same as saying the columns are independent which is the same as saying A is

one to one which is the same as saying the columns are a basis. Thus the span of the columns of A is all of

Rn and so A is onto. If A is onto, then the columns must be linearly independent since otherwise the span

of these columns would have dimension less than n and so the dimension of Rn would be less than n .

5.6.1 If ∑r
i ai~vr = 0, then using linearity properties of T we get

0 = T (0) = T (
r

∑
i

ai~vr) =
r

∑
i

aiT (~vr).

Since we assume that {T~v1, · · · ,T~vr} is linearly independent, we must have all ai = 0, and therefore we

conclude that {~v1, · · · ,~vr} is also linearly independent.

5.6.3 Since the third vector is a linear combinations of the first two, then the image of the third vector will

also be a linear combinations of the image of the first two. However the image of the first two vectors are

linearly independent (check!), and hence form a basis of the image.

Thus a basis for im(T ) is:

V = span








2

0

1

3


 ,




4

2

4

5








5.7.1 In this case dim(W ) = 1 and a basis for W consisting of vectors in S can be obtained by taking any

(nonzero) vector from S.
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5.7.2 A basis for ker(T ) is

{[
1

−1

]}
and a basis for im(T ) is

{[
1

1

]}
.

There are many other possibilities for the specific bases, but in this case dim(ker(T ))= 1 and dim(im(T ))=
1.

5.7.3 In this case ker(T ) = {0} and im(T ) = R2 (pick any basis of R2).

5.7.4 There are many possible such extensions, one is (how do we know?):








1

1

1


 ,




−1

2

−1


 ,




0

0

1







5.7.5 We can easily see that dim(im(T )) = 1, and thus dim(ker(T )) = 3−dim(im(T )) = 3−1 = 2.

5.8.2 CB(~x) =




2

1

−1


.

5.8.3 MB2B1
=

[
1 0

−1 1

]

5.9.1 Solution is:




−3t̂

−t̂

t̂


 , t̂3 ∈ R . A basis for the solution space is




−3

−1

1




5.9.2 Note that this has the same matrix as the above problem. Solution is:




−3t̂3
−t̂3

t̂3


+




0

−1

0


 , t̂3 ∈ R

5.9.3 Solution is:




3t̂

2t̂

t̂


 , A basis is




3

2

1




5.9.4 Solution is:




3t̂

2t̂

t̂


+




−3

−1

0


 , t̂ ∈ R

5.9.5 Solution is:




−4t̂

−2t̂

t̂


. A basis is




−4

−2

1




5.9.6 Solution is:




−4t̂

−2t̂

t̂


+




0

−1

0


 , t̂ ∈ R.
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5.9.7 Solution is:




−t̂

2t̂

t̂


 , t̂ ∈ R.

5.9.8 Solution is:




−t̂

2t̂

t̂


+




−1

−1

0




5.9.9 Solution is:




0

−t̂

−t̂

t̂


 , t̂ ∈ R

5.9.10 Solution is:




0

−t̂

−t̂

t̂


+




2

−1

−1

0




5.9.11 Solution is:




−s− t

s

s

t


 ,s, t ∈ R. A basis is








−1

1

1

0


 ,




−1

0

0

1








5.9.12 Solution is: 


−t̂

t̂

t̂

0


+




−8

5

0

5




5.9.13 Solution is: 


−1
2
s− 1

2
t

1
2
s− 1

2
t

s

t




for s, t ∈ R. A basis is 






−1

1

2

0


 ,




−1

1

0

1










568 Selected Exercise Answers

5.9.14 Solution is: 


3
2

−1
2

0

0


+




−1
2
s− 1

2
t

1
2
s− 1

2
t

s

t




5.9.15 Solution is:




−t̂

t̂

t̂

0


 , a basis is




1

1

1

0


 .

5.9.16 Solution is:




−t̂

t̂

t̂

0


+




−9

5

0

6


 , t ∈ R.

5.9.17 If not, then there would be a infintely many solutions to A~x=~0 and each of these added to a solution

to A~x =~b would be a solution to A~x =~b.

6.1.1 (a) z+w = 5− i

(b) z−2w =−4+23i

(c) zw = 62+5i

(d) w
z
=−50

53
− 37

53
i

6.1.4 If z = 0, let w = 1. If z 6= 0, let w =
z

|z|

6.1.5

(a+bi)(c+di) = ac−bd+(ad +bc) i = (ac−bd)− (ad +bc) i(a−bi)(c−di) = ac−bd − (ad+bc) i

which is the same thing. Thus it holds for a product of two complex numbers. Now suppose you have that

it is true for the product of n complex numbers. Then

z1 · · ·zn+1 = z1 · · ·zn zn+1

and now, by induction this equals

z1 · · ·zn zn+1

As to sums, this is even easier.
n

∑
j=1

(
x j + iy j

)
=

n

∑
j=1

x j + i
n

∑
j=1

y j

=
n

∑
j=1

x j − i
n

∑
j=1

y j =
n

∑
j=1

x j − iy j =
n

∑
j=1

(
x j + iy j

)
.
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6.1.6 If p(z) = 0, then you have

p(z) = 0 = anzn +an−1zn−1 + · · ·+a1z+a0

= anzn +an−1zn−1 + · · ·+a1z+a0

= an zn +an−1 zn−1 + · · ·+a1 z+a0

= anzn +an−1zn−1 + · · ·+a1z+a0

= p(z)

6.1.7 The problem is that there is no single
√
−1.

6.2.5 You have z = |z|(cosθ + isinθ) and w = |w|(cosφ + isinφ) . Then when you multiply these, you

get

|z| |w|(cosθ + isinθ)(cosφ + isinφ)

= |z| |w|(cosθ cosφ − sinθ sinφ + i(cosθ sinφ + cosφ sinθ))

= |z| |w|(cos(θ +φ)+ isin(θ +φ))

6.3.1 Solution is:

(1− i)
√

2,−(1+ i)
√

2,−(1− i)
√

2,(1+ i)
√

2

6.3.2 The cube roots are the solutions to z3 +8 = 0, Solution is: i
√

3+1,1− i
√

3,−2

6.3.3 The fourth roots of −16 are the solutions of x4 +16 = 0 and thus this is the same problem as 6.3.1

above.

6.3.4 Yes, it holds for all integers. First of all, it clearly holds if n = 0. Suppose now that n is a negative

integer. Then −n > 0 and so

[r (cos t + isint)]n =
1

[r (cos t + isint)]−n =
1

r−n (cos(−nt)+ isin(−nt))

=
rn

(cos(nt)− isin(nt))
=

rn (cos(nt)+ isin(nt))

(cos(nt)− isin(nt))(cos(nt)+ isin(nt))

= rn (cos(nt)+ isin(nt))

because (cos(nt)− isin(nt))(cos(nt)+ isin(nt)) = 1.

6.3.5 Solution is: i
√

3+1,1− i
√

3,−2 and so this polynomial equals

(x+2)
(

x−
(

i
√

3+1
))(

x−
(

1− i
√

3
))

6.3.6 x3 +27 = (x+3)
(
x2 −3x+9

)
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6.3.7 Solution is:

(1− i)
√

2,−(1+ i)
√

2,−(1− i)
√

2,(1+ i)
√

2.

These are just the fourth roots of −16. Then to factor, you get

(
x−
(
(1− i)

√
2
))(

x−
(
−(1+ i)

√
2
))

·
(

x−
(
−(1− i)

√
2
))(

x−
(
(1+ i)

√
2
))

6.3.8 x4 + 16 =
(

x2 −2
√

2x+4
)(

x2 +2
√

2x+4
)

. You can use the information in the preceding prob-

lem. Note that (x− z)(x− z) has real coefficients.

6.3.9 Yes, this is true.

(cosθ − isinθ)n = (cos(−θ)+ isin(−θ))n

= cos(−nθ)+ isin(−nθ)

= cos(nθ)− isin(nθ)

6.3.10 p(x) = (x− z1)q(x)+r (x) where r (x) is a nonzero constant or equal to 0. However, r (z1) = 0 and

so r (x) = 0. Now do to q(x) what was done to p(x) and continue until the degree of the resulting q(x)
equals 0. Then you have the above factorization.

6.4.1

(x− (1+ i))(x− (2+ i)) = x2 − (3+2i)x+1+3i

6.4.2 (a) Solution is: 1+ i,1− i

(b) Solution is: 1
6
i
√

35− 1
6
,−1

6
i
√

35− 1
6

(c) Solution is: 3+2i,3−2i

(d) Solution is: i
√

5−2,−i
√

5−2

(e) Solution is: −1
2
+ i,−1

2
− i

6.4.3 (a) Solution is : x =−1+ 1
2

√
2− 1

2
i
√

2, x =−1− 1
2

√
2+ 1

2
i
√

2

(b) Solution is : x = 1− 1
2
i, x =−1− 1

2
i

(c) Solution is : x =−1
2
, x =−1

2
− i

(d) Solution is : x =−1+2i, x = 1+2i

(e) Solution is : x =−1
6
+ 1

6

√
19+

(
1
6
− 1

6

√
19
)

i, x =−1
6
− 1

6

√
19+

(
1
6
+ 1

6

√
19
)

i

7.1.1 AmX = λ mX for any integer. In the case of −1,A−1λX = AA−1X = X so A−1X = λ−1X . Thus the

eigenvalues of A−1 are just λ−1 where λ is an eigenvalue of A.
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7.1.2 Say AX = λX . Then cAX = cλX and so the eigenvalues of cA are just cλ where λ is an eigenvalue

of A.

7.1.3 BAX = ABX = AλX = λAX . Here it is assumed that BX = λX .

7.1.4 Let X be the eigenvector. Then AmX = λ mX ,AmX = AX = λX and so

λ m = λ

Hence if λ 6= 0, then

λ m−1 = 1

and so |λ |= 1.

7.1.5 The formula follows from properties of matrix multiplications. However, this vector might not be

an eigenvector because it might equal 0 and eigenvectors cannot equal 0.

7.1.14 Yes.

[
0 1

0 0

]
works.

7.1.16 When you think of this geometrically, it is clear that the only two values of θ are 0 and π or these

added to integer multiples of 2π

7.1.17 The matrix of T is

[
1 0

0 −1

]
. The eigenvectors and eigenvalues are:

{[
0

1

]}
↔−1,

{[
1

0

]}
↔ 1

7.1.18 The matrix of T is

[
0 −1

1 0

]
. The eigenvectors and eigenvalues are:

{[
−i

1

]}
↔−i,

{[
i

1

]}
↔ i

7.1.19 The matrix of T is




1 0 0

0 1 0

0 0 −1


 The eigenvectors and eigenvalues are:








0

0

1





↔−1,








1

0

0


 ,




0

1

0





↔ 1

7.2.1 The eigenvalues are −1,−1,1. The eigenvectors corresponding to the eigenvalues are:







10

−2

3





↔−1,








7

−2

2





↔ 1

Therefore this matrix is not diagonalizable.
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7.2.2 The eigenvectors and eigenvalues are:








2

0

1





↔ 1,








−2

1

0





↔ 1,








7

−2

2





↔ 3

The matrix P needed to diagonalize the above matrix is




2 −2 7

0 1 −2

1 0 2




and the diagonal matrix D is 


1 0 0

0 1 0

0 0 3




7.2.3 The eigenvectors and eigenvalues are:








−6

−1

−2





↔ 6,








−5

−2

2





↔−3,








−8

−2

3





↔−2

The matrix P needed to diagonalize the above matrix is




−6 −5 −8

−1 −2 −2

2 2 3




and the diagonal matrix D is 


6 0 0

0 −3 0

0 0 −2




7.2.8 The eigenvalues are distinct because they are the nth roots of 1. Hence if X is a given vector with

X =
n

∑
j=1

a jVj

then

AnmX = Anm
n

∑
j=1

a jVj =
n

∑
j=1

a jA
nmVj =

n

∑
j=1

a jVj = X

so Anm = I.

7.2.13 AX = (a+ ib)X . Now take conjugates of both sides. Since A is real,

AX = (a− ib)X
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7.3.1 First we write A = PDP−1.

[
1 2

2 1

]
=

[
−1 1

1 1

][
−1 0

0 3

]


−1
2

1
2

1
2

1
2




Therefore A10 = PD10P−1.

[
1 2

2 1

]10

=

[
−1 1

1 1

][
−1 0

0 3

]10



−1
2

1
2

1
2

1
2




=

[
−1 1

1 1

][
(−1)10 0

0 310

]


−1
2

1
2

1
2

1
2




=

[
29525 29524

29524 29525

]

7.3.4 (a) Multiply the given matrix by the initial state vector given by




90

81

85


. After one time period

there are 89 people in location 1, 106 in location 2, and 61 in location 3.

(b) Solve the system given by (I −A)Xs = 0 where A is the migration matrix and Xs =




x1s

x2s

x3s


 is the

steady state vector. The solution to this system is given by

x1s =
8

5
x3s

x2s =
63

25
x3s

Letting x3s = t and using the fact that there are a total of 256 individuals, we must solve

8

5
t +

63

25
t + t = 256

We find that t = 50. Therefore after a long time, there are 80 people in location 1, 126 in location 2,

and 50 in location 3.

7.3.6 We solve (I −A)Xs = 0 to find the steady state vector Xs =




x1s

x2s

x3s


. The solution to the system is

given by

x1s =
5

6
x3s

x2s =
2

3
x3s
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Letting x3s = t and using the fact that there are a total of 480 individuals, we must solve

5

6
t +

2

3
t + t = 480

We find that t = 192. Therefore after a long time, there are 160 people in location 1, 128 in location 2, and

192 in location 3.

7.3.9

X3 =




0.38

0.18

0.44




Therefore the probability of ending up back in location 2 is 0.18.

7.3.10

X2 =




0.367

0.4625

0.1705




Therefore the probability of ending up in location 1 is 0.367.

7.3.11 The migration matrix is

A =




1
3

1
10

1
10

1
5

1
3

7
10

1
5

1
10

2
9

1
10

3
5

1
5

1
9

1
10

1
10

1
2




To find the number of trailers in each location after a long time we solve system (I −A)Xs = 0 for the

steady state vector Xs =




x1s

x2s

x3s

x4s


. The solution to the system is

x1s =
9

10
x4s

x2s =
12

5
x4s

x3s =
8

5
x4s

Letting x4s = t and using the fact that there are a total of 413 trailers we must solve

9

10
t +

12

5
t +

8

5
t + t = 413

We find that t = 70. Therefore after a long time, there are 63 trailers in the SE, 168 in the NE, 112 in the

NW and 70 in the SW.
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7.3.19 The solution is

eAtC =

[
8e2t −6e3t

18e3t −16e2t

]

7.4.1 The eigenvectors and eigenvalues are:





1√
3




1

1

1





↔ 6,





1√
2




−1

1

0





↔ 12,





1√
6




−1

−1

2





↔ 18

7.4.2 The eigenvectors and eigenvalues are:





1√
2




−1

1

0


 ,

1√
3




1

1

1





↔ 3,





1√
6




−1

−1

2





↔ 9

7.4.3 The eigenvectors and eigenvalues are:








1
3

√
3

1
3

√
3

1
3

√
3





↔ 1,








−1
2

√
2

1
2

√
2

0


 ,




−1
6

√
6

−1
6

√
6

1
3

√
2
√

3





↔−2




√
3/3 −

√
2/2 −

√
6/6√

3/3
√

2/2 −
√

6/6√
3/3 0 1

3

√
2
√

3




T 


−1 1 1

1 −1 1

1 1 −1




·




√
3/3 −

√
2/2 −

√
6/6√

3/3
√

2/2 −
√

6/6√
3/3 0 1

3

√
2
√

3




=




1 0 0

0 −2 0

0 0 −2




7.4.4 The eigenvectors and eigenvalues are:








1
3

√
3

1
3

√
3

1
3

√
3





↔ 6,








−1
6

√
6

−1
6

√
6

1
3

√
2
√

3





↔ 18,








−1
2

√
2

1
2

√
2

0





↔ 24

The matrix U has these as its columns.

7.4.5 The eigenvectors and eigenvalues are:








−1
6

√
6

−1
6

√
6

1
3

√
2
√

3





↔ 6,








−1
2

√
2

1
2

√
2

0





↔ 12,








1
3

√
3

1
3

√
3

1
3

√
3





↔ 18.

The matrix U has these as its columns.
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7.4.6 eigenvectors:








1
6

√
6

0
1
6

√
5
√

6





↔ 1,








−1
3

√
2
√

3

−1
5

√
5

1
15

√
2
√

15





↔−2,








−1
6

√
6

2
5

√
5

1
30

√
30





↔−3

These vectors are the columns of U .

7.4.7 The eigenvectors and eigenvalues are:








0

−1
2

√
2

1
2

√
2





↔ 1,








0
1
2

√
2

1
2

√
2





↔ 2,








1

0

0





↔ 3.

These vectors are the columns of the matrix U .

7.4.8 The eigenvectors and eigenvalues are:








1

0

0





↔ 2,








0

−1
2

√
2

1
2

√
2





↔ 4,








0
1
2

√
2

1
2

√
2





↔ 6.

These vectors are the columns of U .

7.4.9 The eigenvectors and eigenvalues are:








−1
5

√
2
√

5
1
5

√
3
√

5
1
5

√
5





↔ 0,








1
3

√
3

0
1
3

√
2
√

3


 ,




1
5

√
2
√

5
1
5

√
3
√

5

−1
5

√
5





↔ 2.

The columns are these vectors.

7.4.10 The eigenvectors and eigenvalues are:








−1
3

√
3

0
1
3

√
2
√

3





↔ 0,








1
3

√
3

−1
2

√
2

1
6

√
6





↔ 1,








1
3

√
3

1
2

√
2

1
6

√
6





↔ 2.

The columns are these vectors.

7.4.11 eigenvectors:








−1
3

√
3

1
2

√
2

1
6

√
6





↔ 1,








1
3

√
3

0
1
3

√
2
√

3





↔−2,








1
3

√
3

1
2

√
2

−1
6

√
6





↔ 2.

Then the columns of U are these vectors
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7.4.12 The eigenvectors and eigenvalues are:








−1
6

√
6

0
1
6

√
5
√

6


 ,




1
3

√
2
√

3
1
5

√
5

1
15

√
2
√

15





↔−1,








1
6

√
6

−2
5

√
5

1
30

√
30





↔ 2.

The columns of U are these vectors.




−1
6

√
6 1

3

√
2
√

3 1
6

√
6

0 1
5

√
5 −2

5

√
5

1
6

√
5
√

6 1
15

√
2
√

15 1
30

√
30




T




−1
2

−1
5

√
6
√

5 1
10

√
5

−1
5

√
6
√

5 7
5

−1
5

√
6

1
10

√
5 −1

5

√
6 − 9

10



·




−1
6

√
6 1

3

√
2
√

3 1
6

√
6

0 1
5

√
5 −2

5

√
5

1
6

√
5
√

6 1
15

√
2
√

15 1
30

√
30


=




−1 0 0

0 −1 0

0 0 2




7.4.13 If A is given by the formula, then

AT =UT DTU =UT DU = A

Next suppose A = AT . Then by the theorems on symmetric matrices, there exists an orthogonal matrix U

such that

UAUT = D

for D diagonal. Hence

A =UT DU

7.4.14 Since λ 6= µ , it follows X •Y = 0.

7.4.21 Using the QR factorization, we have:




1 2 1

2 −1 0

1 3 0


=




1
6

√
6 3

10

√
2 7

15

√
3

1
3

√
6 −2

5

√
2 − 1

15

√
3

1
6

√
6 1

2

√
2 −1

3

√
3






√
6 1

2

√
6 1

6

√
6

0 5
2

√
2 3

10

√
2

0 0 7
15

√
3




A solution is then 


1
6

√
6

1
3

√
6

1
6

√
6


 ,




3
10

√
2

−2
5

√
2

1
2

√
2


 ,




7
15

√
3

− 1
15

√
3

−1
3

√
3




7.4.22 


1 2 1

2 −1 0

1 3 0

0 1 1


=




1
6

√
6 1

6

√
2
√

3 5
111

√
3
√

37 7
111

√
111

1
3

√
6 −2

9

√
2
√

3 1
333

√
3
√

37 − 2
111

√
111

1
6

√
6 5

18

√
2
√

3 − 17
333

√
3
√

37 − 1
37

√
111

0 1
9

√
2
√

3 22
333

√
3
√

37 − 7
111

√
111



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·




√
6 1

2

√
6 1

6

√
6

0 3
2

√
2
√

3 5
18

√
2
√

3

0 0 1
9

√
3
√

37

0 0 0




Then a solution is 


1
6

√
6

1
3

√
6

1
6

√
6

0


 ,




1
6

√
2
√

3

−2
9

√
2
√

3
5

18

√
2
√

3
1
9

√
2
√

3


 ,




5
111

√
3
√

37
1

333

√
3
√

37

− 17
333

√
3
√

37
22

333

√
3
√

37




7.4.25

[
x y z

]



a1 a4/2 a5/2

a4/2 a2 a6/2

a5/2 a6/2 a3






x

y

z




7.4.26 The quadratic form may be written as

~xT A~x

where A = AT . By the theorem about diagonalizing a symmetric matrix, there exists an orthogonal matrix

U such that

UT AU = D, A =UDUT

Then the quadratic form is

~xTUDUT~x =
(
UT~x

)T
D
(
UT~x

)

where D is a diagonal matrix having the real eigenvalues of A down the main diagonal. Now simply let

~x′ =UT~x

9.1.20 The axioms of a vector space all hold because they hold for a vector space. The only thing left to

verify is the assertions about the things which are supposed to exist. 0 would be the zero function which

sends everything to 0. This is an additive identity. Now if f is a function, − f (x)≡ (− f (x)). Then

( f +(− f ))(x)≡ f (x)+(− f ) (x) ≡ f (x)+(− f (x)) = 0

Hence f +− f = 0. For each x ∈ [a,b] , let fx (x) = 1 and fx (y) = 0 if y 6= x. Then these vectors are

obviously linearly independent.

9.1.21 Let f (i) be the ith component of a vector~x ∈Rn. Thus a typical element in Rn is ( f (1) , · · · , f (n)).

9.1.22 This is just a subspace of the vector space of functions because it is closed with respect to vector

addition and scalar multiplication. Hence this is a vector space.

9.2.1 ∑k
i=1 0~xk =~0

9.3.29 Yes. If not, there would exist a vector not in the span. But then you could add in this vector and

obtain a linearly independent set of vectors with more vectors than a basis.
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9.3.30 No. They can’t be.

9.3.31 (a)

(b) Suppose

c1

(
x3 +1

)
+ c2

(
x2 + x

)
+ c3

(
2x3 + x2

)
+ c4

(
2x3 − x2 −3x+1

)
= 0

Then combine the terms according to power of x.

(c1 +2c3 +2c4)x3 +(c2 + c3 − c4)x2 +(c2 −3c4)x+(c1 + c4) = 0

Is there a non zero solution to the system

c1 +2c3 +2c4 = 0

c2 + c3 − c4 = 0

c2 −3c4 = 0

c1 + c4 = 0

, Solution is:

[c1 = 0,c2 = 0,c3 = 0,c4 = 0]

Therefore, these are linearly independent.

9.3.32 Let pi (x) denote the ith of these polynomials. Suppose ∑iCi pi (x) = 0. Then collecting terms

according to the exponent of x, you need to have

C1a1 +C2a2 +C3a3 +C4a4 = 0

C1b1 +C2b2 +C3b3 +C4b4 = 0

C1c1 +C2c2 +C3c3 +C4c4 = 0

C1d1 +C2d2 +C3d3 +C4d4 = 0

The matrix of coefficients is just the transpose of the above matrix. There exists a non trivial solution if

and only if the determinant of this matrix equals 0.

9.3.33 When you add two of these you get one and when you multiply one of these by a scalar, you get

another one. A basis is
{

1,
√

2
}

. By definition, the span of these gives the collection of vectors. Are they

independent? Say a+ b
√

2 = 0 where a,b are rational numbers. If a 6= 0, then b
√

2 = −a which can’t

happen since a is rational. If b 6= 0, then −a = b
√

2 which again can’t happen because on the left is a

rational number and on the right is an irrational. Hence both a,b = 0 and so this is a basis.

9.3.34 This is obvious because when you add two of these you get one and when you multiply one of

these by a scalar, you get another one. A basis is
{

1,
√

2
}

. By definition, the span of these gives the

collection of vectors. Are they independent? Say a+b
√

2 = 0 where a,b are rational numbers. If a 6= 0,

then b
√

2 =−a which can’t happen since a is rational. If b 6= 0, then −a = b
√

2 which again can’t happen

because on the left is a rational number and on the right is an irrational. Hence both a,b = 0 and so this is

a basis.

9.4.1 This is not a subspace.




1

1

1

1


 is in it, but 20




1

1

1

1


 is not.
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9.4.2 This is not a subspace.

9.6.1 By linearity we have T (x2) = 1, T (x) = T (x2+x−x2) = T (x2+x)−T (x2) = 5−1 = 5, and T (1) =
T (x2 + x+1− (x2 + x)) = T (x2 + x+1)−T (x2 + x)) =−1−5 =−6.

ThusT (ax2 +bx+ c) = aT (x2)+bT (x)+ cT (1) = a+5b−6c.

9.6.3 


3 1 1

3 2 3

3 3 −1






6 2 1

5 2 1

6 1 1


=




29 9 5

46 13 8

27 11 5




9.6.4 


5 3 2

2 3 5

5 5 −2






11 4 1

10 4 1

12 3 1


=




109 38 10

112 35 10

81 34 8




9.7.1 If ∑r
i ai~vr = 0, then using linearity properties of T we get

0 = T (0) = T (
r

∑
i

ai~vr) =
r

∑
i

aiT (~vr).

Since we assume that {T~v1, · · · ,T~vr} is linearly independent, we must have all ai = 0, and therefore we

conclude that {~v1, · · · ,~vr} is also linearly independent.

9.7.3 Since the third vector is a linear combinations of the first two, then the image of the third vector will

also be a linear combinations of the image of the first two. However the image of the first two vectors are

linearly independent (check!), and hence form a basis of the image.

Thus a basis for im(T ) is:

V = span








2

0

1

3


 ,




4

2

4

5








9.8.1 In this case dim(W ) = 1 and a basis for W consisting of vectors in S can be obtained by taking any

(nonzero) vector from S.

9.8.2 A basis for ker(T ) is

{[
1

−1

]}
and a basis for im(T ) is

{[
1

1

]}
.

There are many other possibilities for the specific bases, but in this case dim(ker(T ))= 1 and dim(im(T ))=
1.

9.8.3 In this case ker(T ) = {0} and im(T ) = R2 (pick any basis of R2).

9.8.4 There are many possible such extensions, one is (how do we know?):







1

1

1


 ,




−1

2

−1


 ,




0

0

1






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9.8.5 We can easily see that dim(im(T )) = 1, and thus dim(ker(T )) = 3−dim(im(T )) = 3−1 = 2.

9.9.1 (a) The matrix of T is the elementary matrix which multiplies the jth diagonal entry of the identity

matrix by b.

(b) The matrix of T is the elementary matrix which takes b times the jth row and adds to the ith row.

(c) The matrix of T is the elementary matrix which switches the ith and the jth rows where the two

components are in the ith and jth positions.

9.9.2 Suppose 

~cT

1
...

~cT
n


=

[
~a1 · · · ~an

]−1

Thus~cT
i ~a j = δi j. Therefore,

[
~b1 · · · ~bn

][
~a1 · · · ~an

]−1
~ai =

[
~b1 · · · ~bn

]


~cT

1
...

~cT
n


~ai

=
[
~b1 · · · ~bn

]
~ei

= ~bi

Thus T~ai =
[
~b1 · · · ~bn

][
~a1 · · · ~an

]−1
~ai =A~ai. If~x is arbitrary, then since the matrix

[
~a1 · · · ~an

]

is invertible, there exists a unique~y such that
[
~a1 · · · ~an

]
~y =~x Hence

T~x = T

(
n

∑
i=1

yi~ai

)
=

n

∑
i=1

yiT~ai =
n

∑
i=1

yiA~ai = A

(
n

∑
i=1

yi~ai

)
= A~x

9.9.3 


5 1 5

1 1 3

3 5 −2






3 2 1

2 2 1

4 1 1


=




37 17 11

17 7 5

11 14 6




9.9.4 


1 2 6

3 4 1

1 1 −1






6 3 1

5 3 1

6 2 1


=




52 21 9

44 23 8

5 4 1




9.9.5 


−3 1 5

1 3 3

3 −3 −3






2 2 1

1 2 1

4 1 1


=




15 1 3

17 11 7

−9 −3 −3




9.9.6 


3 1 1

3 2 3

3 3 −1






6 2 1

5 2 1

6 1 1


=




29 9 5

46 13 8

27 11 5



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9.9.7 


5 3 2

2 3 5

5 5 −2






11 4 1

10 4 1

12 3 1


=




109 38 10

112 35 10

81 34 8




9.9.11 Recall that proj~u (~v) =
~v•~u
‖~u‖2~u and so the desired matrix has ith column equal to proj~u (~ei) . Therefore,

the matrix desired is

1

14




1 −2 3

−2 4 −6

3 −6 9




9.9.12

1

35




1 5 3

5 25 15

3 15 9




9.9.13

1

10




1 0 3

0 0 0

3 0 9




9.9.15 CB(~x) =




2

1

−1


.

9.9.16 MB2B1
=

[
1 0

−1 1

]
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∩, 529

∪, 529

\, 529

row-echelon form, 16

reduced row-echelon form, 16

algorithm, 19

adjugate, 130

back substitution, 13

base case, 532

basic solution, 29

basic variable, 25

basis, 199, 200, 230, 481

any two same size, 483

box product, 184

cardioid, 437

Cauchy Schwarz inequality, 165

characteristic equation, 343

chemical reactions

balancing, 33

Cholesky factorization

positive definite, 414

classical adjoint, 130

Cofactor Expansion, 110

cofactor matrix, 130

column space, 207

complex eigenvalues, 362

complex numbers

absolute value, 328

addition, 323

argument, 330

conjugate, 325

conjugate of a product, 330

modulus, 328, 330

multiplication, 324

polar form, 330

roots, 333

standard form, 323

triangle inequality, 328

component form, 159

component of a force, 261, 263

consistent system, 8

coordinate isomorphism, 517

coordinate vector, 311, 518

Cramer’s rule, 135

cross product, 178, 180

area of parallelogram, 182

coordinate description, 180

geometric description, 179, 180

cylindrical coordinates, 443

De Moivre’s theorem, 333

determinant, 107

cofactor, 109

expanding along row or column, 110

matrix inverse formula, 130

minor, 108

product, 116, 121

row operations, 114

diagonalizable, 357, 401

dimension, 201

dimension of vector space, 483

direct sum, 492

direction vector, 159

distance formula, 153

properties, 154

dot product, 163

properties, 164

eigenvalue, 342

eigenvalues

calculating, 344

eigenvector, 342

eigenvectors

calculating, 344

elementary matrix, 79

inverse, 82

elementary operations, 9

elementary row operations, 15

empty set, 529

equivalence relation, 355

exchange theorem, 200, 481

extending a basis, 205
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field axioms, 323

finite dimensional, 483

force, 257

free variable, 25

Fundamental Theorem of Algebra, 323

Gauss-Jordan Elimination, 24

Gaussian Elimination, 24

general solution, 319

solution space, 318

hyper-planes, 6

idempotent, 93

identity transformation, 267, 494

image, 512

improper subspace, 480

included angle, 167

inconsistent system, 8

induction hypothesis, 532

injection, 288

inner product, 163

intersection, 492, 529

intervals

notation, 530

invertible matrices

isomorphism, 505

isomorphic, 293, 502

equivalence relation, 296

isomorphism, 293, 502

bases, 296

composition, 296

equivalence, 297, 506

inverse, 295

invertible matrices, 505

kernel, 211, 317, 512

Kirchhoff’s law, 38

Kronecker symbol, 71, 235

Laplace expansion, 110

leading entry, 16

least square approximation, 247

linear combination, 30, 148

linear dependence, 190

linear independence, 191

enlarging to form a basis, 486

linear independent, 229

linear map, 293

defining on a basis, 299

image, 305

kernel, 305

linear transformation, 266, 293, 493

composite, 279

image, 287

matrix, 269

range, 287

linearly dependent, 469

linearly independent, 469

lines

parametric equation, 161

symmetric form, 161

vector equation, 159

LU decomposition

non existence, 99

LU factorization, 99

by inspection, 100

justification, 102

solving systems, 101

main diagonal, 112

Markov matrices, 371

mathematical induction, 531, 532

matrix, 14, 53

addition, 55

augmented matrix, 14, 15

coefficient matrix, 14

column space, 207

commutative, 67

components of a matrix, 54

conformable, 62

diagonal matrix, 357

dimension, 14

entries of a matrix, 54

equality, 54

equivalent, 27

finding the inverse, 74

identity, 71

improper, 236

inverse, 71

invertible, 71

kernel, 211

lower triangular, 112

main diagonal, 357
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null space, 211

orthogonal, 128, 234

orthogonally diagonalizable, 368

proper, 236

properties of addition, 56

properties of scalar multiplication, 58

properties of transpose, 69

raising to a power, 367

rank, 31

row space, 207

scalar multiplication, 57

skew symmetric, 70

square, 54

symmetric, 70

transpose, 69

upper triangular, 112

matrix exponential, 385

matrix form AX=B, 61

matrix multiplication, 62

ijth entry, 65

properties, 68

vectors, 60

migration matrix, 371

multiplicity, 344

multipliers, 104

Newton, 257

nilpotent, 128

non defective, 401

nontrivial solution, 28

null space, 211, 317

nullity, 215, 307

one to one, 288

linear independence, 296

onto, 288

orthogonal, 231

orthogonal complement, 242

orthogonality and minimization, 247

orthogonally diagonalizable, 401

orthonormal, 231

parallelepiped, 184

volume, 184

parameter, 23

particular solution, 317

permutation matrices, 79

pivot column, 18

pivot position, 18

plane

normal vector, 175

scalar equation, 176

vector equation, 175

polar coordinates, 433

polynomials

factoring, 335

position vector, 144

positive definite, 411

Cholesky factorization, 414

invertible, 411

principal submatrices, 413

principal axes, 398, 423

principal axis

quadratic forms, 421

principal submatrices, 412

positive definite, 413

proper subspace, 197, 480

QR factorization, 416

quadratic form, 421

quadratic formula, 337

random walk, 374

range of matrix transformation, 287

rank, 307

rank added to nullity, 307

reflection

across a given vector, 287

regression line, 250

resultant, 258

right handed system, 178

row operations, 15, 114

row space, 207

scalar, 8

scalar product, 163

scalar transformation, 494

scalars, 147

scaling factor, 419

set notation, 529

similar matrices, 355

similar matrix, 350

singular values, 403

skew lines, 6
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solution space, 317

span, 188, 229, 466

spanning set, 466

basis, 204

spectrum, 342

speed, 259

spherical coordinates, 444

standard basis, 200

state vector, 372

subset, 188, 465

subspace, 198, 478

basis, 200, 230

dimension, 201

has a basis, 484

span, 199

sum, 492

summation notation, 531

surjection, 288

symmetric matrix, 395

system of equations, 8

homogeneous, 8

matrix form, 61

solution set, 8

vector form, 59

trace of a matrix, 356

transformation

image, 512

kernel, 512

triangle inequality, 166

trigonometry

sum of two angles, 284

trivial solution, 28

union, 529

unit vector, 155

variable

basic, 25

free, 25

vector, 145

addition, 146

addition, geometric meaning, 145

components, 145

coordinate vector, 311

corresponding unit vector, 155

length, 155

orthogonal, 169

orthogonal projection, 171

perpendicular, 169

points and vectors, 144

projection, 170, 171

scalar multiplication, 147

subtraction, 147

vector space, 449

dimension, 483

vector space axioms, 449

vectors, 58

basis, 200, 230

column, 58

linear dependent, 190

linear independent, 191, 229

orthogonal, 231

orthonormal, 231

row vector, 58

span, 188, 229

velocity, 259

well ordered, 531

work, 261

zero matrix, 54

zero subspace, 197

zero transformation, 267, 494

zero vector, 147



www.lyryx.com


	Table of Contents
	Preface
	Systems of Equations
	Systems of Equations, Geometry
	Systems of Equations, Algebraic Procedures
	Elementary Operations
	Gaussian Elimination
	Uniqueness of the Reduced Row-Echelon Form 
	Rank and Homogeneous Systems
	Balancing Chemical Reactions
	Dimensionless Variables
	An Application to Resistor Networks


	Matrices
	Matrix Arithmetic
	Addition of Matrices
	Scalar Multiplication of Matrices
	Multiplication of Matrices
	The ijth Entry of a Product
	Properties of Matrix Multiplication
	The Transpose
	The Identity and Inverses
	Finding the Inverse of a Matrix
	Elementary Matrices
	More on Matrix Inverses

	LU Factorization
	Finding An LU Factorization By Inspection
	LU Factorization, Multiplier Method
	Solving Systems using LU Factorization
	Justification for the Multiplier Method


	Determinants
	Basic Techniques and Properties
	Cofactors and 2x2 Determinants
	The Determinant of a Triangular Matrix
	Properties of Determinants I: Examples
	Properties of Determinants II: Some Important Proofs 
	Finding Determinants using Row Operations

	Applications of the Determinant
	A Formula for the Inverse
	Cramer's Rule
	Polynomial Interpolation


	Rn
	Vectors in Rn
	Algebra in Rn
	Addition of Vectors in Rn
	Scalar Multiplication of Vectors in Rn

	Geometric Meaning of Vector Addition
	Length of a Vector
	Geometric Meaning of Scalar Multiplication
	Parametric Lines
	The Dot Product
	The Dot Product
	The Geometric Significance of the Dot Product
	Projections

	Planes in Rn
	The Cross Product
	The Box Product

	Spanning, Linear Independence and Basis in Rn
	Spanning Set of Vectors
	Linearly Independent Set of Vectors
	A Short Application to Chemistry
	Subspaces and Basis
	Row Space, Column Space, and Null Space of a Matrix

	Orthogonality and the Gram Schmidt Process
	Orthogonal and Orthonormal Sets
	Orthogonal Matrices
	Gram-Schmidt Process
	Orthogonal Projections
	Least Squares Approximation

	Applications
	Vectors and Physics
	Work


	Linear Transformations
	Linear Transformations
	The Matrix of a Linear Transformation I
	Properties of Linear Transformations
	Special Linear Transformations in R2
	One to One and Onto Transformations
	Isomorphisms
	The Kernel And Image Of A Linear Map
	The Matrix of a Linear Transformation II
	The General Solution of a Linear System

	Complex Numbers
	Complex Numbers
	Polar Form
	Roots of Complex Numbers
	The Quadratic Formula

	Spectral Theory
	Eigenvalues and Eigenvectors of a Matrix
	Definition of Eigenvectors and Eigenvalues
	Finding Eigenvectors and Eigenvalues
	Eigenvalues and Eigenvectors for Special Types of Matrices

	Diagonalization
	Similarity and Diagonalization
	Diagonalizing a Matrix
	Complex Eigenvalues

	Applications of Spectral Theory
	Raising a Matrix to a High Power
	Raising a Symmetric Matrix to a High Power
	Markov Matrices
	Dynamical Systems
	The Matrix Exponential

	Orthogonality
	Orthogonal Diagonalization
	The Singular Value Decomposition
	Positive Definite Matrices
	QR Factorization
	Quadratic Forms


	Some Curvilinear Coordinate Systems
	Polar Coordinates and Polar Graphs
	Spherical and Cylindrical Coordinates

	Vector Spaces
	Algebraic Considerations
	Spanning Sets
	Linear Independence
	Subspaces and Basis
	Sums and Intersections
	Linear Transformations
	Isomorphisms
	One to One and Onto Transformations
	Isomorphisms

	The Kernel And Image Of A Linear Map
	The Matrix of a Linear Transformation

	Some Prerequisite Topics
	Sets and Set Notation
	Well Ordering and Induction

	Selected Exercise Answers
	Index

