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Preface

The book series Microwave and RF Design is a comprehensive treatment
of radio frequency (RF) and microwave design with a modern “systems-
first” approach. A strong emphasis on design permeates the series with
extensive case studies and design examples. Design is oriented towards
cellular communications and microstrip design so that lessons learned can
be applied to real-world design tasks. The books in the Microwave and RF
Design series are:

• Microwave and RF Design: Radio Systems, Volume 1
• Microwave and RF Design: Transmission Lines, Volume 2
• Microwave and RF Design: Networks, Volume 3
• Microwave and RF Design: Modules, Volume 4
• Microwave and RF Design: Amplifiers and Oscillators, Volume 5

The length and format of each is suitable for automatic printing and binding.

Rationale

The central philosophy behind this series’s popular approach is that the
student or practicing engineer will develop a full appreciation for RF and
microwave engineering and gain the practical skills to perform system-
level design decisions. Now more than ever companies need engineers with
an ingrained appreciation of systems and armed with the skills to make
system decisions. One of the greatest challenges facing RF and microwave
engineering is the increasing level of abstraction needed to create innovative
microwave and RF systems. This book series is organized in such a way that
the reader comes to understand the impact that system-level decisions have
on component and subsystem design. At the same time, the capabilities of
technologies, components, and subsystems impact system design. The book
series is meticulously crafted to intertwine these themes.

Audience

The book series was originally developed for three courses at North
Carolina State University. One is a final-year undergraduate class, another an
introductory graduate class, and the third an advanced graduate class. Books
in the series are used as supplementary texts in two other classes. There
are extensive case studies, examples, and end of chapter problems ranging
from straight-forward to in-depth problems requiring hours to solve. A
companion book, Fundamentals of Microwave and RF Design, is more suitable
for an undergraduate class yet there is a direct linkage between the material
in this book and the series which can then be used as a career-long reference
text. I believe it is completely understandable for senior-level students
where a microwave/RF engineering course is offered. The book series is a
comprehensive RF and microwave text and reference, with detailed index,
appendices, and cross-references throughout. Practicing engineers will find
the book series a valuable systems primer, a refresher as needed, and a
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reference tool in the field. Additionally, it can serve as a valuable, accessible
resource for those outside RF circuit engineering who need to understand
how they can work with RF hardware engineers.

Organization
This book is a volume in a five volume series on RF and microwave

design. The first volume in the series, Microwave and RF Design: Radio
Systems, addresses radio systems mainly following the evolution of cellular
radio. A central aspect of microwave engineering is distributed effects
considered in the second volume of this book series, Microwave and RF
Design: Transmission Lines. Here transmission lines are treated as supporting
forward- and backward-traveling voltage and current waves and these
are related to electromagnetic effects. The third volume, Microwave and RF
Design: Networks, covers microwave network theory which is the theory
that describes power flow and can be used with transmission line effects.
Topics covered in Microwave and RF Design: Modules, focus on designing
microwave circuits and systems using modules introducing a large number
of different modules. Modules is just another term for a network but the
implication is that is is packaged and often available off-the-shelf. Other
topics that are important in system design using modules are considered
including noise, distortion, and dynamic range. Most microwave and RF
designers construct systems using modules developed by other engineers
who specialize in developing the modules. Examples are filter and amplifier
modules which once designed can be used in many different systems. Much
of microwave design is about maximizing dynamic range, minimizing noise,
and minimizing DC power consumption. The fifth volume in this series,
Microwave and RF Design: Amplifiers and Oscillators, considers amplifier and
oscillator design and develops the skills required to develop modules.

Volume 1: Microwave and RF Design: Radio Systems

The first book of the series covers RF systems. It describes system concepts
and provides comprehensive knowledge of RF and microwave systems.
The emphasis is on understanding how systems are crafted from many
different technologies and concepts. The reader gains valuable insight into
how different technologies can be traded off in meeting system requirements.
I do not believe this systems presentation is available anywhere else in such
a compact form.

Volume 2: Microwave and RF Design: Transmission Lines

This book begins with a chapter on transmission line theory and introduces
the concepts of forward- and backward-traveling waves. Many examples are
included of advanced techniques for analyzing and designing transmission
line networks. This is followed by a chapter on planar transmission lines
with microstrip lines primarily used in design examples. Design examples
illustrate some of the less quantifiable design decisions that must be made.
The next chapter describes frequency-dependent transmission line effects
and describes the design choices that must be taken to avoid multimoding.
The final chapter in this volume addresses coupled-lines. It is shown how to
design coupled-line networks that exploit this distributed effect to realize
novel circuit functionality and how to design networks that minimize
negative effects. The modern treatment of transmission lines in this volume
emphasizes planar circuit design and the practical aspects of designing
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around unwanted effects. Detailed design of a directional coupler is used
to illustrate the use of coupled lines. Network equivalents of coupled lines
are introduced as fundamental building blocks that are used later in the
synthesis of coupled-line filters. The text, examples, and problems introduce
the often hidden design requirements of designing to mitigate parasitic
effects and unwanted modes of operation.

Volume 3: Microwave and RF Design: Networks

Volume 3 focuses on microwave networks with descriptions based on S
parameters and ABCD matrices, and the representation of reflection and
transmission information on polar plots called Smith charts. Microwave
measurement and calibration technology are examined. A sampling of
the wide variety of microwave elements based on transmission lines is
presented. It is shown how many of these have lumped-element equivalents
and how lumped elements and transmission lines can be combined as a
compromise between the high performance of transmission line structures
and the compactness of lumped elements. This volume concludes with an
in-depth treatment of matching for maximum power transfer. Both lumped-
element and distributed-element matching are presented.

Volume 4: Microwave and RF Design: Modules

Volume 4 focuses on the design of systems based on microwave modules.
The book considers the wide variety of RF modules including amplifiers,
local oscillators, switches, circulators, isolators, phase detectors, frequency
multipliers and dividers, phase-locked loops, and direct digital synthesizers.
The use of modules has become increasingly important in RF and microwave
engineering. A wide variety of passive and active modules are available
and high-performance systems can be realized cost effectively and with
stellar performance by using off-the-shelf modules interconnected using
planar transmission lines. Module vendors are encouraged by the market
to develop competitive modules that can be used in a wide variety of
applications. The great majority of RF and microwave engineers either
develop modules or use modules to realize RF systems. Systems must also
be concerned with noise and distortion, including distortion that originates
in supposedly linear elements. Something as simple as a termination
can produce distortion called passive intermodulation distortion. Design
techniques are presented for designing cascaded systems while managing
noise and distortion. Filters are also modules and general filter theory is
covered and the design of parallel coupled line filters is presented in detail.
Filter design is presented as a mixture of art and science. This mix, and the
thought processes involved, are emphasized through the design of a filter
integrated throughout this chapter.

Volume 5: Microwave and RF Design: Amplifiers and Oscillators

The fifth volume presents the design of amplifiers and oscillators in
a way that enables state-of-the-art designs to be developed. Detailed
strategies for amplifiers and voltage-controlled oscillators are presented.
Design of competitive microwave amplifiers and oscillators are particularly
challenging as many trade-offs are required in design, and the design
decisions cannot be reduced to a formulaic flow. Very detailed case studies
are presented and while some may seem quite complicated, they parallel the
level of sophistication required to develop competitive designs.
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Case Studies

A key feature of this book series is the use of real world case studies
of leading edge designs. Some of the case studies are designs done in
my research group to demonstrate design techniques resulting in leading
performance. The case studies and the persons responsible for helping to
develop them are as follows.

1. Software defined radio transmitter.
2. High dynamic range down converter design. This case study was

developed with Alan Victor.
3. Design of a third-order Chebyshev combline filter. This case study was

developed with Wael Fathelbab.
4. Design of a bandstop filter. This case study was developed with Wael

Fathelbab.
5. Tunable Resonator with a varactor diode stack. This case study was

developed with Alan Victor.
6. Analysis of a 15 GHz Receiver. This case study was developed with

Alan Victor.
7. Transceiver Architecture. This case study was developed with Alan

Victor.
8. Narrowband linear amplifier design. This case study was developed

with Dane Collins and National Instruments Corporation.
9. Wideband Amplifier Design. This case study was developed with Dane

Collins and National Instruments Corporation.
10. Distributed biasing of differential amplifiers. This case study was

developed with Wael Fathelbab.
11. Analysis of a distributed amplifier. This case study was developed with

Ratan Bhatia, Jason Gerber, Tony Kwan, and Rowan Gilmore.
12. Design of a WiMAX power amplifier. This case study was developed

with Dane Collins and National Instruments Corporation.
13. Reflection oscillator. This case study was developed with Dane Collins

and National Instruments Corporation.
14. Design of a C-Band VCO. This case study was developed with Alan

Victor.
15. Oscillator phase noise analysis. This case study was developed with

Dane Collins and National Instruments Corporation.
Many of these case studies are available as captioned YouTube videos and

qualified instructors can request higher resolution videos from the author.

Course Structures

Based on the adoption of the first and second editions at universities,
several different university courses have been developed using various parts
of what was originally one very large book. The book supports teaching
two or three classes with courses varying by the selection of volumes
and chapters. A standard microwave class following the format of earlier
microwave texts can be taught using the second and third volumes. Such
a course will benefit from the strong practical design flavor and modern
treatment of measurement technology, Smith charts, and matching networks.
Transmission line propagation and design is presented in the context of
microstrip technology providing an immediately useful skill. The subtleties
of multimoding are also presented in the context of microstrip lines. In such
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a class the first volume on microwave systems can be assigned for self-
learning.

Another approach is to teach a course that focuses on transmission line
effects including parallel coupled-line filters and module design. Such a class
would focus on Volumes 2, 3 and 4. A filter design course would focus
on using Volume 4 on module design. A course on amplifier and oscillator
design would use Volume 5. This course is supported by a large number of
case studies that present design concepts that would otherwise be difficult to
put into the flow of the textbook.

Another option suited to an undergraduate or introductory graduate class
is to teach a class that enables engineers to develop RF and microwave
systems. This class uses portions of Volumes 2, 3 and 4. This class then omits
detailed filter, amplifier, and oscillator design.

The fundamental philosophy behind the book series is that the broader
impact of the material should be presented first. Systems should be discussed
up front and not left as an afterthought for the final chapter of a textbook, the
last lecture of the semester, or the last course of a curriculum.

The book series is written so that all electrical engineers can gain an
appreciation of RF and microwave hardware engineering. The body of the
text can be covered without strong reliance on this electromagnetic theory,
but it is there for those who desire it for teaching or reader review. The book
is rich with detailed information and also serves as a technical reference.

The Systems Engineer

Systems are developed beginning with fuzzy requirements for components
and subsystems. Just as system requirements provide impetus to develop
new base technologies, the development of new technologies provides new
capabilities that drive innovation and new systems. The new capabilities
may arise from developments made in support of other systems. Sometimes
serendipity leads to the new capabilities. Creating innovative microwave
and RF systems that address market needs or provide for new opportunities
is the most exciting challenge in RF design. The engineers who can
conceptualize and architect new RF systems are in great demand. This book
began as an effort to train RF systems engineers and as an RF systems
resource for practicing engineers. Many RF systems engineers began their
careers when systems were simple. Today, appreciating a system requires
higher levels of abstraction than in the past, but it also requires detailed
knowledge or the ability to access detailed knowledge and expertise. So what
makes a systems engineer? There is not a simple answer, but many partial
answers. We know that system engineers have great technical confidence and
broad appreciation for technologies. They are both broad in their knowledge
of a large swath of technologies and also deep in knowledge of a few
areas, sometimes called the “T” model. One book or course will not make
a systems engineer. It is clear that there must be a diverse set of experiences.
This book series fulfills the role of fostering both high-level abstraction of
RF engineering and also detailed design skills to realize effective RF and
microwave modules. My hope is that this book will provide the necessary
background for the next generation of RF systems engineers by stressing
system principles immediately, followed by core RF technologies. Core
technologies are thereby covered within the context of the systems in which
they are used.
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Supplementary Materials

Supplementary materials available to qualified instructors adopting the book
include PowerPoint slides and solutions to the end-of-chapter problems.
Requests should be directed to the author. Access to downloads of the books,
additional material and YouTube videos of many case studies are available
at https://www.lib.ncsu.edu/do/open-education
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CHAPTER 1

Introduction to RF and Microwave
Networks

1.1 Introduction to Microwave Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Book Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Introduction to Microwave Networks

At microwave frequencies a ground plane cannot always be defined as
circuits are large enough that a “ground” in one part of a circuit is not
the same as a “ground” in another spatially separated part of the circuit.
If they were the same “ground” then charges would need to be able to
instantaneously redistribute and this is not possible because of the finite
speed of causality (that is, the speed of light). One of the consequences of
this is that voltage and current occur as forward- and backward-traveling
voltage and current waves on transmission lines, or in microwave networks
as incident and reflected voltage and current waves at interfaces between
different parts of a circuit. At any point the sum of the forward-traveling
(or incident) voltage wave and the backward-traveling (or reflected) voltage
wave is the total voltage used with low-frequency circuits. A similar
description applies to currents. A voltage wave directly relates to the
movement of power or what are called power waves. Because of this, the
conventional circuit parameters, the y and z parameters defined when there
is a single ground, prove to be inadequate to describe signals in microwave
circuits. Scattering parameters, or S parameters, are the most convenient
network parameters to use with microwave circuits as they neatly describe
the properties of traveling waves of voltage and current. A further attribute
is that the S parameters relate directly to power flow.

In the early days of electrical engineering all circuits were called networks.
That usage remains with microwave circuits but it is more commonly used
with circuits that operate at microwave frequencies but only the external
terminals are presented and internal details often hidden. The use of the
network term also conveys a subtle reminder that there is not necessarily
a universal ground. S parameters are defined even when there is not a
universal ground.

Most RF and microwave design is concerned with the movement of signal
power and minimizing noise power to maintain a high signal-to-noise ratio
in a circuit. This maximizes the performance of communication, radar and
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sensor systems. Thus maximizing power transfer is critical and the design
technique that does this is called matching.

1.2 Book Outline

Chapter 2 presents microwave network analysis and in particular S
parameters and other parameters that are useful in design. One of the
characteristics of a microwave designer is thatthey work very well with
graphical information about a network. The visual display is the fastest
way to convey information to the human brain. A human recognizes
patterns very well so it is not surprising that microwave design methods
have evolved to make extensive use of graphical means of representing
network information, and of design strategies that are based on graphical
manipulations. Graphical methods for representing the description of
microwave networks are considered in the third chapter of this book,
Chapter 3, entitled Graphical Network Analysis. The all important Smith
chart is described here. Working knowledge of S parameters and of Smith
charts are the two biggest ‘barriers to entry’ to microwave design. They
are the two main topics that must be understood and absorbed before one
can become a competent microwave designer or even converse with other
engineers about microwave designs. There is no simpler way to describe the
intended or actual performance of a microwave circuit design.

The fourth chapter, Chapter 4, discusses microwave measurements and
how information about a network can be interpreted from the graphical
display of measured information or from a design solution sketched out
on a Smith chart. The Smith chart is the microwave engineer’s ‘back-of-the-
envelope’ sketch pad.

Chapter 5 introduces many novel microwave elements and these rarely
have an analog below microwave frequencies. These circuit elements exploit
distributed effects, i.e. transmission line effects. Sometimes there are a
few low frequency analogs but these were developed by first conceiving
the microwave element and then replacing transmission lines by their
approximate LC equivalent circuits. This chapter introduces transmission
line stubs, hybrids (which are four-port circuits that route signal power),
baluns (which interface balanced and unbalanced circuits), and power
combiners and dividers.

The final two chapters in this book, Chapter 6 on impedance matching,
i.e. matching for maximum power transfer, and Chapter 7 on broadband
matching are concerned with the design of impedance matching networks,
with managing the bandwidth of these networks, and with describing the
performance of microwave circuit elements.

This book is the third volume in a series on microwave and RF
design. The first volume in the series addresses radio systems [1] mainly
following the evolution of cellular radio. A central aspect of microwave
engineering is distributed effects considered in the second volume of his
book series [2]. Here the transmission lines are treated as supporting
forward- and backward-traveling voltage and current waves and these
are related to electromagnetic effects. The fourth volume [3] focuses on
designing microwave circuits and systems using modules introducing a
large number of different modules. Modules is just another term for a
network but the implication is that is is packaged and often available off-the-
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shelf. Other topics in this chapter that are important in system design using
modules are considered including metrics for describing noise, distortion,
and dynamic range. Most microwave and RF designers construct systems
using modules developed by other engineers who specialize in developing
the modules. Examples are filter and amplifier chip modules which once
designed can be used in many different systems. Much of microwave design
is about maximizing dynamic range, minimizing noise, and minimizing DC
power consumption. The fifth volume in this series [4] considers amplifier
and oscillator design and develops the skills required to develop modules.

The books in the Microwave and RF Design series are:

• Microwave and RF Design: Radio Systems
• Microwave and RF Design: Transmission Lines
• Microwave and RF Design: Networks
• Microwave and RF Design: Modules
• Microwave and RF Design: Amplifiers and Oscillators

1.3 References

[1] M. Steer, Microwave and RF Design, Radio Sys-
tems, 3rd ed. North Carolina State Univer-
sity, 2019.

[2] ——, Microwave and RF Design, Transmission
Lines, 3rd ed. North Carolina State Univer-
sity, 2019.

[3] ——, Microwave and RF Design, Modules,
3rd ed. North Carolina State University,
2019.

[4] ——, Microwave and RF Design, Amplifiers and
Oscillators, 3rd ed. North Carolina State Uni-
versity, 2019.
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2.1 Introduction

Analog circuits at frequencies up to a few tens of megahertz are characterized
by admittances, impedances, voltages, and currents. Above these frequencies
it is not possible to measure voltage, current, or impedance directly. One
reason for this is that measurement equipment is separated from the device
by lengths of transmission line that are electrically long (i.e., at least an
appreciable fraction of a wavelength long). It is better to use quantities such
as voltage reflection and transmission coefficients that can be quite readily
measured and are related to power flow. As well, in RF and microwave
circuit design the power of signals and of noise is always of interest. Thus
there is a predisposition to focus on measurement parameters that are related
to the reflection and transmission of power.

Scattering parameters, S parameters, embody the effects of reflection
and transmission. As will be seen, it is easy to convert these to more
familiar network parameters such as admittance and impedance parameters.
In this chapter S parameters will be defined and related to impedance
and admittance parameters, then it will be demonstrated that the use
of S parameters helps in the design and interpretation of RF circuits.
S parameters have become the most important parameters for RF and
microwave engineers and many design methodologies have been developed
around them.
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Figure 2-1: A two-
port network: (a)
port voltages; and
(b) with transmis-
sion lines at the
ports. (a) (b)

This chapter presents microwave circuit theory which is based on the
representation of distributed structures that are too large to be considered
to be dimensionless, by lumped element circuits. The origins of microwave
circuit theory were in the 1940s, 1950s and 1960s [1–3] with extensions for
networks with lossy transmission lines [4, 5].

2.2 Two-Port Networks

Many of the techniques employed in analyzing circuits require that the
voltage at each terminal of a circuit be referenced to a common point such
as ground. In microwave circuits it is generally difficult to do this. Recall
that with transmission lines it is not possible to establish a common ground
point. However, with transmission lines (and circuit elements that utilize
distributed effects) it was seen that for each signal current there is a signal
return current. Thus at radio frequencies, and for circuits that are distributed,
ports are used, as shown in Figure 2-1(a), which define the voltages and
currents for what is known as a two-port network, or just two-port.1 The
network in Figure 2-1(a) has four terminals and two ports. A port voltage is
defined as the voltage difference between a pair of terminals with one of the
terminals in the pair becoming the reference terminal. The current entering
the network at the top terminal of Port 1 is I1 and there is an equal current
leaving the reference terminal. This arrangement clearly makes sense when
transmission lines are attached to Ports 1 and 2, as in Figure 2-1(b). With
transmission lines at Ports 1 and 2 there will be traveling-wave voltages, and
at the ports the traveling-wave components add to give the total port voltage.
In dealing with nondistributed circuits it is preferable to use the total port
voltages and currents—V1, I1, V2, and I2, shown in Figure 2-1(a). However,
with distributed elements it is preferable to deal with traveling voltages and
currents—V +

1 , V −
1 , V +

2 , and V −
2 , shown in Figure 2-1(b). RF and microwave

design necessarily requires switching between the two forms.

2.2.1 Reciprocity, Symmetry, Passivity, and Linearity

Reciprocity, symmetry, passivity, and linearity are fundamental properties
of networks. A network is linear if the response (voltages and currents) is
linearly dependent on the drive level, and superposition also applies. So if
the two-port shown in Figure 2-1(a) is linear, the currents I1 and I2 are linear
functions of V1 and V2. An example of a linear network would be one with
resistors and capacitors. A network with a diode would be an example of a
nonlinear network.

1 Even when the term “two-port” is used on its own, the hyphen is used, as it is referring to a
two-port network.
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Port-based Global ground-based

(a) Port-based z parameters (b) z parameters with global ground

(c) Port-based y parameters (d) y parameters with global ground

(c) Port-based h parameters (d) h parameters with global ground

Figure 2-2: The z-, y-, and h- parameter equivalent circuits for port-based and global ground
representations. The immittances are shown as impedances.

A passive network has no internal sources of power and so a network with
an embedded battery is not a passive network. A symmetrical two-port has
the same characteristics at each of the ports. An example of a symmetrical
network is a transmission line with a uniform cross section.

A reciprocal two-port has a response at Port 2 from an excitation at Port 1
that is the same as the response at Port 1 to the same excitation at Port 2. As
an example, consider the two-port in Figure 2-1(a) with V2 = 0. If the network
is reciprocal, then the ratio I2/V1 with V2 = 0 will be the same as the ratio
I1/V2 with V1 = 0. Most networks with resistors, capacitors, and transmission
lines, for example, are reciprocal. A transistor amplifier is not reciprocal, as
gain, analogous to the ratio V2/V1, is in just one direction (or unidirectional).

2.2.2 Parameters Based on Total Voltage and Current

Here port-based impedance (z), admittance (y), and hybrid (h) parameters
will be described. These are similar to the more conventional z, y, and
h parameters defined with respect to a common or global ground. The
contrasting circuit representations of the parameters are shown in Figure 2-2.

Impedance parameters

First, port-based impedance parameters will be considered based on total
port voltages and currents as defined for the two-port in Figure 2-1. These
parameters are also referred to as port impedance parameters or just
impedance parameters when the context is understood to be ports.

Port-based impedance parameters, or z parameters, are defined as
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Figure 2-3: Circuit equivalence of
the z and y parameters for a recip-
rocal network (in (b) the elements
are admittances). (a) z parameters (b) y parameters

(a) Series connection (b) Parallel or shunt connection

Figure 2-4: Connection of a two-terminal element to a two-port.

V1 = z11I1 + z12I2 (2.1) V2 = z21I1 + z22I2, (2.2)

or in matrix form as V = ZI. (2.3)

The double subscript on a parameter is ordered so that the first refers to
the output and the second refers to the input, so zij relates the voltage
output at Port i to the current input at Port j. If the network is reciprocal,
then z12 = z21, but this simple type of relationship does not apply to all
network parameters. The reciprocal circuit equivalence of the z parameters
is shown in Figure 2-3(a). It will be seen that the z parameters are convenient
parameters to use when an element is in series with one of the ports, as then
the operation required in developing the z parameters of the larger network
is just addition.

Figure 2-4(a) shows the series connection of a two-terminal element with
a two-port designated as network A. The z parameters of network A are

ZA =

[

z
(A)
11 z

(A)
12

z
(A)
21 z

(A)
22

]

, (2.4)

so that V
(A)
1 = z

(A)
11 I1 + z

(A)
12 I2 (2.5) V2 = z

(A)
21 I1 + z

(A)
22 I2. (2.6)

Now V1 = zI1 + V
(A)
1 = zI1 + z

(A)
11 I1 + z

(A)
12 I2, (2.7)

so the z parameters of the whole network can be written as

Z =

[
z 0
0 0

]

+ ZA. (2.8)
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EXAMPLE 2.1 Thevenin equivalent of a source with a two-port

What is the Thevenin equivalent circuit of the
source-terminated two-port network on the
right.

Original circuit Thevenin equivalent
Solution:

From the original circuit

V1=Z11I1 + Z12I2 (2.9)

V2=Z21I1 + Z22I2 (2.10)

V2=E − I2ZL (2.11)

Substituting Equation (2.11) in Equation (2.10)

E=Z21I1 + (Z22 + ZL)I2 (2.12)

Multiplying Equation (2.9) by (Z22 + ZL) and

Equation (2.12) by Z12

(Z22 + ZL)V1 = (Z22 + ZL)Z11I1

+(Z22 + ZL)Z12I2 (2.13)

Z12E = Z12Z21I1 + Z12(Z22 + ZL)I2 (2.14)

Subtracting Equation (2.14) from Equation
(2.13)

(Z22 + ZL)V1 − Z12E = [(Z22 + ZL)Z11−]I1

V1=
Z12E

Z22 + ZL

+

(

Z11− Z12Z21

Z22 + ZL

)

I1 (2.15)

For the Thevenin equivalent circuit V1 = ETH + I1ZTH and so

ZTH =

(

Z11 − Z12Z21

Z22 + ZL

)

and ETH =
Z12E

Z22 + ZL

(2.16)

Admittance parameters

When an element is in shunt with a two-port, port-based admittance param-
eters, or y parameters, are the most convenient to use. These are defined as

I1 = y11V1 + y12V2 (2.17) I2 =y21V1 + y22V2, (2.18)

or in matrix form as I = YV. (2.19)

Now, for reciprocity, y12 = y21 and the circuit equivalence of the y parameters
is shown in Figure 2-3(b). Consider the shunt connection of an element
shown in Figure 2-4(b) where the y parameters of network A are

YA =

[

y
(A)
11 y

(A)
12

y
(A)
21 y

(A)
22

]

= Z
−1
A

. (2.20)

The port voltages and currents are related as follows

I
(A)
1 = y

(A)
11 V1 + y

(A)
12 V2 and I2 = y

(A)
21 V1 + y

(A)
22 V2 (2.21)

I1 = yV1 + I
(A)
1 = (y + y

(A)
11 )V1 + y

(A)
12 V2. (2.22)

Thus the y parameters of the whole network are

Y =

[
y 0
0 0

]

+YA. (2.23)
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Figure 2-5: Series connection of two two-port networks.

(a) (b)

Figure 2-6: Example of a series
connection of two-port networks: (a)
an amplifier; and (b) its components
represented as two-port networks.

Hybrid parameters

Sometimes it is more convenient to use hybrid parameters, or h parameters,
defined by

V1 = h11I1 + h12V2 and I2 = h21I1 + h22V2, (2.24)

or in matrix form as
[

V1

I2

]

= H

[
I1
V2

]

. (2.25)

These parameters are convenient to use with transistor circuits, as they
describe a voltage-controlled current source that is a simple model of a
transistor.

The choice of which network parameters to use depends on convenience,
but as will be seen throughout this text, some parameters naturally describe
a particular characteristic desired in a design. For example, with Port 1 being
the input port of an amplifier and Port 2 being the output port, h21 describes
the current gain of the amplifier.

2.2.3 Series Connection of Two-Port Networks

A series connection of two two-ports is shown in Figure 2-5. An example
of when the series connection occurs is shown in Figure 2-6, which is the
schematic of a transistor amplifier configuration with an inductor in the
source leg. The transistor and the inductor can each be represented as two-
ports so that the circuit of Figure 2-6(a) is the series connection of two two-
ports, as shown in Figure 2-6(b). In the following, two-port parameters of the
complete circuit are developed using the two-port parameter descriptions of
the component two-ports. The procedure with any interconnection is to write
down the relationships between the voltages and currents of the constituent
networks. Which network parameters to use requires identification of the
arithmetic path requiring the fewest operations.

Simple algebra relates the various total voltage and current parameters.
From Figure 2-5,



MICROWAVE NETWORK ANALYSIS 11

Figure 2-7: Parallel connec-
tion of two-port networks.

I
(A)
1 = I

(B)
1 = I1, I

(A)
2 = I

(B)
2 = I2, V1 = V

(A)
1 + V

(B)
1 , V2 = V

(A)
2 + V

(B)
2 ,

which in matrix form becomes
[

V
(A)
1

V
(A)
2

]

=

[

z
(A)
11 z

(A)
12

z
(A)
21 z

(A)
22

][

I
(A)
1

I
(A)
2

]

;

[

V
(B)
1

V
(B)
2

]

=

[

z
(B)
11 z

(B)
12

z
(B)
21 z

(B)
22

][

I
(B)
1

I
(B)
2

]

(2.26)

or [
V1

V2

]

= (ZA + Z
B)

[
I1
I2

]

. (2.27)

Thus the impedance matrix of the series connection of two-ports is

Z = ZA + ZB. (2.28)

2.2.4 Parallel Connection of Two-Port Networks

Admittance parameters are most conveniently combined to obtain the over-
all parameters of the two-port parallel connection of Figure 2-7. The total
voltage and current are related by

V
(A)
1 = V

(B)
1 = V1 (2.29)

V
(A)
2 = V

(B)
2 = V2 (2.30)

I1 = I
(A)
1 + I

(B)
1 (2.31)

I2 = I
(A)
2 + I

(B)
2 (2.32)

and [

I
(A)
1

I
(A)
2

]

=

[

y
(A)
11 y

(A)
12

y
(A)
21 y

(A)
22

][

V
(A)
1

V
(A)
2

]

(2.33)

[

I
(B)
1

I
(B)
2

]

=

[

y
(B)
11 y

(B)
12

y
(B)
21 y

(B)
22

][

V
(B)
1

V
(B)
2

]

. (2.34)

So the overall y parameter relation is

[
I1
I2

]

= (YA +YB)

[
V1

V2

]

. (2.35)

Figure 2-8 is an example of subcircuits that can be represented as two-ports
that are then connected in parallel.

2.2.5 Series-Parallel Connection of Two-Port Networks

A similar approach to that in the preceding subsection is followed in de-
veloping the overall network parameters of the series-parallel connection of
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Figure 2-8: Example of the parallel connection of
two two-ports: (a) a feedback amplifier; and (b) its
components represented as two-port networks A
and B. (a) (b)

Figure 2-9: Series-parallel connection of
two-ports.

Figure 2-10: Cas-
cade of two-port
networks.

two-ports shown in Figure 2-9. Now,

I
(A)
1 = I

(B)
1 = I1 (2.36)

V
(A)
2 = V

(B)
2 = V2 (2.37)

V1 = V
(A)
1 + V

(B)
1 (2.38)

I2 = I
(A)
2 + I

(B)
2 , (2.39)

and so, using hybrid parameters,

[

V
(A)
1

I
(A)
2

]

=

[

h
(A)
11 h

(A)
12

h
(A)
21 h

(A)
22

][

I
(A)
1

V
(A)
2

]

(2.40)

[

V
(B)
1

I
(B)
2

]

=

[

h
(B)
11 h

(B)
12

h
(B)
21 h

(B)
22

][

I
(B)
1

V
(B)
2

]

. (2.41)

Putting this in compact form:

[
V1

I2

]

= (HA +HB)

[
I1
V2

]

. (2.42)

2.2.6 ABCD Matrix Characterization of Two-Port Networks

ABCD parameters are the best parameters to use when cascading two-
ports, as in Figure 2-10, and total voltage and current relationships are
required. First, consider Figure 2-11, which puts the voltages and currents
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Figure 2-11: Two-port network with cascadable voltage and
current definitions.

in cascadable form with the input variables in terms of the output variables:
[

Va

Ia

]

=

[
A B
C D

][
Vb

Ib

]

. (2.43)

The reciprocity relationship of the ABCD parameters is not as simple as for
the z and y parameters. To see this, first express ABCD parameters in terms
of z parameters. Note that the current at Port 2 is in the opposite direction to
the usual definition of the two-port current shown in Figure 2-1(a). So

Va = V1 (2.44)

Ia = I1 (2.45)

Va = z11Ia − z12Ib (2.46)

Vb = V2 (2.47)

Ib = −I2 (2.48)

Vb = z21Ia − z22Ib. (2.49)

From Equation (2.49), Ia =
z22
z21

Ib +
1

z21
Vb, (2.50)

and substituting this into Equation (2.46) yields

Va =
z11
z21

Vb +

(

z11
z22
z21

− z12

)

Ib. (2.51)

Comparing Equations (2.50) and (2.51) to Equation (2.43) leads to

A = z11/z21 B = ∆z/z21
C = 1/z21 D = z22/z21,

(2.52)

where ∆z = z11z22 − z12z21. (2.53)

Rearranging,
z11 = A/C z12 = (AD −BC)/C
z21 = 1/C z22 = D/C.

(2.54)

Now the reciprocity condition in terms of ABCD parameters can be
determined. For z parameters, z12 = z21 for reciprocity; that is, from
Equation (2.54), for a reciprocal network,

AD −BC

C
=

1

C
and AD −BC = 1. (2.55)

Thus for a two-port network to be reciprocal, AD − BC = 1. The utility of
these parameters is that the ABCD matrix of the cascade connection of N
two-ports in Figure 2-10 is equal to the product of the ABCD matrices of the
individual two-ports:

[
A B
C D

]

=

[
A1 B1

C1 D1

][
A2 B2

C2 D2

]

· · ·
[

AN BN

CN DN

]

. (2.56)

See Table 2-1 for the ABCD parameters of several two-port networks.
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Table 2-1: ABCD parameters of several two-ports. The transmission line is lossless with a
propagation constant of β. (βℓ and θ are electrical lengths of transmission lines in radians.)

Series impedance, z

A = 1 B = z
C = 0 D = 1

Shunt admittance, y
A = 1 B = 0
C = y D = 1

Transmission line, length ℓ, Z0 = 1/Y0

A = cos (βℓ) B = Z0 sin (βℓ)
C = Y0 sin (βℓ) D = cos (βℓ)

Transformer, ratio n:1

A = n B = 0
C = 0 D = 1/n

Pi network
A = 1 + y2/y3 B = 1/y3
C = y1 + y2 + y1y2/y3
D = 1 + y1/y3

Tee network
A = 1 + z1/z3
B = z1 + z2 + z1z2/z3
C = 1/z3 D = 1 + z2/z3

Series shorted stub, electrical length θ

A = 1 B = Z0 tan θ
C = 0 D = 1

Series open stub, electrical length θ

A = 1 B = −Z0/(tan θ)
C = 0 D = 1

Shunt shorted stub, electrical length θ

A = 1 B = 0
C = −/(Z0 tan θ) D = 1

Shunt open stub, electrical length θ

A = 1 B = 0
C =  tan θ/Z0 D = 1

2.3 Scattering Parameters

Direct measurement of the z, y, h, and ABCD parameters requires that
the ports be terminated in either short or open circuits. For active circuits,
such terminations could result in undesired behavior, including oscillation
or destruction. Also, at RF it is difficult to realize a good open or short. Since
RF circuits are designed with close attention to maximum power transfer
conditions, resistive terminations are preferred, as these are closer to the
actual operating conditions. Thus the effect of measurement errors will have
less impact than when parameter extraction relies on imperfect opens and
shorts. The essence of scattering parameters (or S parameters2) is that they
relate forward- and backward-traveling waves on a transmission line, thus
S parameters are related to power flow.

The discussion of S parameters begins by considering the reflection
coefficient, which is the S parameter of a one-port network.

2.3.1 Reflection Coefficient

The reflection coefficient, Γ, of a load, as in Figure 2-12, can be determined by
separately measuring the forward- and backward-traveling voltages on the
transmission line:

Γ(x) =
V −(x)

V +(x)
. (2.57)

2 For historical reasons a capital “S” is used when referring to S parameters. For most other
network parameters, lowercase is used (e.g., z parameters for impedance parameters).
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Figure 2-12: Transmission line of
characteristic impedance Z0 and
length ℓ terminated in a load of
impedance ZL.

Figure 2-13: A Thevenin equivalent source with gener-
ator Vg and source impedance Zg terminated in a load
ZL.

Γ at the load is related to the impedance ZL by

Γ(0) =
ZL − Z0

ZL + Z0
, (2.58)

where Z0 is the characteristic impedance of the connecting transmission line.
This can also be written as

Γ(0) =
Y0 − YL

Y0 + YL
, (2.59)

where Y0 = 1/Z0 and YL = 1/ZL.

2.3.2 Reflection Coefficient with Complex Reference
Impedance

Here the reflection coefficient of ZL in Figure 2-13 will be developed with
respect to the complex reference impedance Zg.The total voltage and current
at the load are

V = Vg
ZL

Zg + ZL
(2.60) and I =

Vg

Zg + ZL
. (2.61)

To develop the reflection coefficient, first define equivalent forward- and
backward-traveling waves. This can be done by imagining that between
the generator and the load there is a transmission line of characteristic
impedance Zg which has infinitesimal length. The incident voltage and cur-
rent waves (V +, I+) are the total voltage and current obtained when the gen-
erator is conjugately matched to the load (i.e., ZL = Z∗

g ). So the equations of

forward-traveling voltage and current become3

V + = Vg

Z∗
g

Zg + Z∗
g

= VgZ
∗
g2R{Zg} (2.62) I+ = Vg

1

2R{Zg}
. (2.63)

Now return to considering the actual load, ZL. The reflected voltage and
current (V −, I−) are obtained by calculating the actual voltage and current
at the source using the relationships

V = V + + V − (2.64) I = I+ + I− (2.65)

3 Here ℜ is the real operator, which yields the real part of a complex number.
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to determine the backward-traveling components. In Equations (2.64) and
(2.65) the forward-traveling components are those in Equations (2.62) and
(2.63). From Equation (2.62),

Vg = V +
Zg + Z∗

g

Z∗
g

, (2.66)

and from Equations (2.60), (2.64), and (2.66),

V − = V − V + = Vg
ZL

Zg + ZL
− V + =

[
Zg + Z∗

g

Z∗
g

ZL

Zg + ZL
− 1

]

V +

=

[
ZgZL + Z∗

gZL − Z∗
gZg − Z∗

gZL

Z∗
g (Zg + ZL)

]

V +

=

(
ZL − Z∗

g

ZL + Zg

)
Zg

Z∗
g

︸ ︷︷ ︸

ΓV

V + = ΓV V +. (2.67)

Similarly I− = −
(
ZL − Z∗

g

ZL + Zg

)
Zg

Z∗
g

︸ ︷︷ ︸

ΓI

I+ = ΓI I+. (2.68)

ΓV is the voltage reflection coefficient, which is usually denoted as just Γ,
while ΓI is the current reflection coefficient. It is clear that ΓV = 0 = ΓI

when ZL = Z∗
g and ΓV = −ΓI = (ZL − Rg)/(ZL +Rg) when Zg is purely

resistive (i.e., when Zg = Rg). Generally the reflection coefficients are defined
using a purely resistive Zg. This becomes the reference resistance, which is
more commonly referred to as the reference impedance, Z0, or, if the same
reference impedance is used throughout, the system impedance.

2.3.3 Two-Port S Parameters

Two-port S parameters are defined in terms of traveling waves on transmis-
sion lines with real characteristic impedance Z0 attached to each of the ports
of the network, see Figure 2-1(b):

V −
1 = S11V

+
1 + S12V

+
2 (2.69) V −

2 = S21V
+
1 + S22V

+
2 , (2.70)

where Sij are the individual S parameters. In matrix form the equations
above become

[
V −
1

V −
2

]

=

[
S11 S12

S21 S22

] [
V +
1

V +
2

]

= S

[
V +
1

V +
2

]

. (2.71)

Individual S parameters are determined by measuring the forward- and
backward-traveling waves with loads ZL = Z0 at the ports. For the output
line the load cannot reflect power and so V +

2 = 0, then

S11 =
V −
1

V +
1

∣
∣
∣
∣
∣
V +

2
=0

. (2.72)

The remaining three parameters are determined similarly and so S22 is found
as
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S22 =
V −
2

V +
2

∣
∣
∣
∣
∣
V +

1
=0

(2.73)

and the transmission parameter as

S21 =
V −
2

V +
1

∣
∣
∣
∣
∣
V +

2
=0

. (2.74)

S21 is also called the transmission coefficient, T . In the reverse direction,

S12 =
V −
1

V +
2

∣
∣
∣
∣
∣
V +

1
=0

. (2.75)

In the above Z0 is referred to as the normalization impedance or
equivalently the reference impedance. In some circumstances ZREF is
used to denote reference impedance to avoid possible confusion with a
transmission line impedance that is not the same as the reference impedance.
The S parameters here are also called normalized S parameters, and the S
parameters are normalized to the same reference impedance at each port.
Calling them normalized S parameters also carrys the additional meaning
that the S parameters are referenced to the one real impedance.

The relationships between the two-port S parameters and the common
network parameters are given in Table 2-2. It is interesting to note that
S21/S12 = z21/z12 = y21/y12 = h21/h12. That is, the ratio of the forward
to reverse parameters (at least for S, z, y, and h parameters) are the same and
this ratio is one for a reciprocal device. An S parameter is a voltage ratio, so
when it is expressed in decibels Sij |dB = 20 log(Sij).

A reciprocal network has S12 = S21. If unit power flows into a two-

port (with ports terminated in the reference impedance), a fraction, |S11|2,

is reflected and a further fraction, |S21|2, is transmitted through the network.

EXAMPLE 2.2 Two-Port S Parameters

What are the S parameters of a 30 dB attenuator?

Solution:

An attenuator is shown with a system impedance
of Z0. An ideal attenuator has no reflection at each
of the two ports when the attenuator is embedded
in its system impedance. Thus Γin = 0 = Γout.
Since there is no reflection from the load or the
source, this implies that S11 = 0 = S22.
Since this is a 30 dB attenuator, the power delivered to the load impedance Z0 is 30 dB
below the power available from the source, thus S21 = −30 dB = 0.0316. The attenuator is
reciprocal and so S12 = S21. Thus the S parameters of the attenuator are

S =

[

0 0.0316
0.0316 0

]

. (2.76)

Note that the reference impedance did not need to be known to develop the S parameters.
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Table 2-2: Two-port S parameter conversion chart. The z, y, and h parameters are normalized to
Z0. Z ′, Y ′, and H ′ are the actual parameters. For ABCD parameter conversion see Section 2.7.2.

S In terms of S

z Z′
11 = z11Z0 Z′

12 = z12Z0 Z′
21 = z21Z0 Z′

22 = z22Z0

δz = (1 + z11)(1 + z22)− z12z21 δS = (1− S11)(1− S22)− S12S21

S11 = [(z11 − 1)(z22 + 1) − z12z21]/δz z11 = [(1 + S11)(1− S22) + S12S21]/δS
S12 = 2z12/δz z12 = 2S12/δS
S21 = 2z21/δz z21 = 2S21/δS
S22 = [(z11 + 1)(z22 − 1) − z12z21]/δz z22 = [(1− S11)(1 + S22) + S12S21]/δS

y Y ′
11 = y11/Z0 Y ′

12 = y12/Z0 Y ′
21 = y21/Z0 Y ′

22 = y22/Z0

δy = (1 + y11)(1 + y22)− y12y21 δS = (1 + S11)(1 + S22)− S12S21

S11 = [(1− y11)(1 + y22) + y12y21]/δy y11 = [(1− S11)(1 + S22) + S12S21]/δS
S12 = −2y12/δy y12 = −2S12/δS
S21 = −2y21/δy y21 = −2S21/δS
S22 = [(1 + y11)(1− y22) + y12y21]/δy y22 = [(1 + S11)(1− S22) + S12S21]/δS

h H ′
11 = h11Z0 H ′

12 = h12 H ′
21 = h21 H ′

22 = h22/Z0

δh = (1 + h11)(1 + h22)− h12h21 δS = (1− S11)(1 + S22) + S12S21

S11 = [(h11 − 1)(h22 + 1) − h12h21]/δh h11 = [(1 + S11)(1 + S22)− S12S21]/δS
S12 = 2h12/δh h12 = 2S12/δS
S21 = −2h21/δh h21 = −2S21/δS
S22 = [(1 + h11)(1− h22) + h12h21]/δh h22 = [(1− S11)(1− S22)− S12S21]/δS

Figure 2-14: A terminated two-port network
with transmission lines of infinitesimal length at
the ports.

2.3.4 Input Reflection Coefficient of a Terminated Two-Port
Network

A two-port is shown in Figure 2-14 that is terminated at Port 2 in a load with
a reflection coefficient ΓL. The lines at each of the ports are of infinitesimal
length (i.e., ℓ1 → 0 and ℓ2 → 0) and are used to make it easier to visualize the
separation of the voltage into forward- and backward-traveling components.
The aim in this section is to develop a formula for the input reflection
coefficient Γin = V −

1 /V +
1 . For the circuit in Figure 2-14 three equations can

be developed:

V −
1 = S11V

+
1 + S12V

+
2 (2.77)

V −
2 = S21V

+
1 + S22V

+
2 (2.78)

V +
2 = ΓLV

−
2 , i.e., V −

2 = V +
2 /ΓL. (2.79)

Note that V −
2 is the voltage wave that leaves the two-port but is incident on

the load ΓL. The aim here is to eliminate V +
2 and V −

2 . Substituting Equation
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Figure 2-15: Shunt element in the form of a two-port.

(2.79) into Equation (2.78) leads to

V +
2 /ΓL = S21V

+
1 + S22V

+
2 (2.80)

V +
2

(
1− S22ΓL

ΓL

)

= S21V
+
1 (2.81)

V +
2 =

(
S21ΓL

1− S22ΓL

)

V +
1 . (2.82)

Now substituting Equation (2.82) in Equation (2.77) yields

V −
1 = S11V

+
1 + S12

(
S21ΓL

1− S22ΓL

)

V +
1 (2.83)

and so

Γin = S11 +
S12S21ΓL

1− S22ΓL
. (2.84)

2.3.5 Evaluation of the Scattering Parameters of an Element

Scattering parameters can be derived analytically for various circuit
configurations and in this section the procedure is illustrated for the shunt
element of Figure 2-15. The procedure to find S11 is to match Port 2 so that
V +
2 = 0, then S11 is the reflection coefficient at Port 1:

S11 =
Y0 − Yin

Y0 + Yin
, (2.85)

where Yin = Y0 + Y , since the matched termination at Port 2 (i.e., Y0 = 1/Z0)
shunts the admittance Y . Thus

S11 =
Y0 − Y0 − Y

2Y0 + Y
=

−Y

2Y0 + Y
. (2.86)

From the symmetry of the two-port,

S22 = S11. (2.87)

S21 is evaluated by determining the transmitted wave, V −
2 , with the output

line matched so that again an admittance, Y0, is placed at Port 2 and V +
2 = 0.

After some algebraic manipulation,

S21 = 2Y0/(Y + 2Y0) (2.88)

is obtained. Since this is clearly a reciprocal network, S12 = S21 and all
four S parameters are obtained. A similar procedure of selectively applying
matched loads is used to obtain the S parameters of other networks.
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EXAMPLE 2.3 Calculation of the S Parameters of a Two-Port Network

Derive the two-port 50 Ω S param-
eters of the resistive circuit to the
right.

Solution:

Calculation of S11. This involves terminating Port 2
in the system reference impedance, 50 Ω, and then
calculating the input impedance of the augmented
network. This is then converted to a reflection
coefficient, which here is S11. The circuit for
calculation is to the right. Now

ZIN = 100 � [25 $ (50 � 50)] Ω = 100 � 50 Ω = 33.33 Ω, (2.89)

where � indicates the parallel-connection calculation and $ indicates the series-connection
calculation. Thus

S11 = ΓIN =
ZIN − Z0

ZIN + Z0
=

33.33 − 50

33.33 + 50
= −0.2. (2.90)

Calculation of S21. This involves terminating Port 2 in the system reference impedance, 50 Ω,
and then calculating the forward-traveling voltage wave at Port 1 and the reverse-traveling
voltage wave at Port 2. Note that the reverse-traveling voltage wave at Port 2 is leaving the
two-port.

Since there is no wave reflected from the termination
at Port 2, the total voltage at Port 2 is just V −

2 . The
circuit for calculation is on the right.

V1 = V +
1 + V −

1 = V +
1 (1 + S11) → V +

1 =
V1

1 + S11
= 1.25V1. (2.91)

The voltage at Port 1 is

V1 = I1ZIN = 33.33I1 → V +
1 = 1.25 · 33.33I1 = 41.66I1. (2.92)

The next step is to find an expression for I2:

V1 = I1ZIN = 33.33I1 = I2(25 $ 50 � 50) = 50I2. (2.93)

Rearranging, I2 = I1
33.33

50
= 0.6667I1. (2.94)

Now V −
2 = V2 = I2(50 � 50) = 25I2 = 16.67I1. (2.95)

So
S21 =

V −
2

V +
1

=
16.67

41.66
= 0.4. (2.96)

Calculation of S12. The two-port is a reciprocal network (as are all networks with only
lumped R, L, and C elements) and so S12 = S21.

Calculation of S22. Using a similar procedure
to that used for finding S11, the circuit for the
calculation is on the right:
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ZIN = 50 � [25 $ (100 � 50)] Ω = 50 � (25$33.33) = 50 � 58.33 = 26.92 Ω. (2.97)

Therefore S22 = ΓIN =
26.92 − 50

26.92 + 50
= −0.3. (2.98)

Collecting the individual S parameters:

S =

[

−0.2 0.4
0.4 −0.3

]

. (2.99)

2.3.6 Properties of a Two-Port in Terms of S Parameters

The properties of most interest are whether the two-port network is lossless,
passive, or reciprocal.

If a network is lossless, all of the power input to the network must leave
the network. The power incident on Port 1 of a network is

P+
1 =

∣
∣
∣
∣
∣

1
2V

+
1

Z0

∣
∣
∣
∣
∣

2

(2.100)

and the power leaving Port 1 is

P−
1 =

∣
∣
∣
∣
∣

1
2V

−
1

Z0

∣
∣
∣
∣
∣

2

. (2.101)

This can be repeated for Port 2 and the factor 1
2/Z0 appears in all expressions.

So cancelling this factor, the condition for the network to be lossless is

|S11|2 + |S21|2 = 1 and |S12|2 + |S22|2 = 1. (2.102)

For a network to be passive, no more power can leave the network than
enters it. So the condition for passivity is

|S11|2 + |S21|2 ≤ 1 and |S12|2 + |S22|2 ≤ 1. (2.103)

Reciprocity requires that S21 = S12.

2.3.7 Scattering Transfer or T Parameters

S parameters relate reflected waves to incident waves, thus mixing the
quantities at the input and output ports. However, in dealing with cascaded
networks it is preferable to relate the traveling waves at the input ports to
the output ports. Such parameters are called the scattering transfer (or ST )
parameters, which for a two-port network are defined by

[
V −
1

V +
1

]

=

[
ST 11

ST 12
ST 21

ST 22

][
V +
2

V −
2

]

, (2.104)

where

S
T =

[
ST 11

ST 12
ST 21

ST 22

]

. (2.105)



22 STEER MICROWAVE AND RF DESIGN, NETWORKS

Figure 2-16: N -port network
with traveling voltage and cur-
rent waves.

The two-port ST parameters and S parameters are related by

[
ST 11

ST 12
ST 21

ST 22

]

=

[
−(S11S22 − S12S21)/S21 (S11/S21)

−(S22/S21) (1/S21)

]

(2.106)

and

[
S11 S12

S21 S22

]

=

[
ST 12

ST
−1
22 (ST 11 − ST 12

ST
−1
22

ST 21)
ST

−1
22 −ST

−1
22

ST 21

]

. (2.107)

Very often the ST parameters are called T parameters, but there are at least
two types of T parameters, so it is necessary to be specific. (Another form will
be introduced in Section 2.6.) If networks A and B have parameters S

TA and
S
TB , then the S

T parameters of the cascaded network are

S
T = S

TA · STB. (2.108)

There are two forms of the scattering T parameters. Here the scattering
transfer parameters are designated as the ST parameters but often T on
its own is used. The other more common form are the chain scattering
parameters which will be considered in Section 2.6.

2.4 Generalized Scattering Parameters

The scattering parameters up to now are known as normalized S parameters
because they have the same reference impedance at each port. However the
qualification ‘normalized’ is not used unless it is necessary to distinguish
them from a more general form of S parameters. In this section generalized
S parameters that have different reference impedances at each of the ports
are considered. These are particularly useful in designing amplifiers but are
also useful in measurements where the system impedance of a design may
not be the same as the reference impedance of the measurement system.
For example an RFIC may have a system impedance of 100 Ω, but the
measurement system have a reference impedance of 50 Ω.

2.4.1 The N-Port Network

The N -port network is a generalization of a two-port, as you may have
guessed. A network with many ports is shown in Figure 2-16. Again, each
port consists of a pair of terminals, one of which is the reference for voltage.
Each port has equal and opposite currents at the two terminals. The incident
and reflected voltages at any port can be related to each other using the



MICROWAVE NETWORK ANALYSIS 23

voltage scattering parameter matrix relation:








V −
1

V −
2
...

V −
N







=








S11 S12 . . . S1N

S21 S22 . . . S2N

...
. . .

SN1 SN2 . . . SNN















V +
1

V +
2
...

V +
N







, (2.109)

or in compact form as V
− = SV

+ . (2.110)

Notice that

Sij =
V −
i

V +
j

�
�
�
�
�
V +

k
=0 for k�=j

. (2.111)

In words, Sij is found by driving Port j with an incident wave of voltage
V +
j and measuring the reflected wave V −

i at Port i, with all ports other than
j terminated in a matched load. Reflection and transmission coefficients can
also be defined using the above relationship, provided that the ports are
terminated in matched loads:

• Sii : reflection coefficient seen looking into Port i
• Sij : transmission coefficient from j to i.

2.4.2 Power Waves

The S parameters used so far have the same reference impedance at each
port. These can be generalized so that the reference impedances at each port
can be different. These are useful if the actual system being considered has
different loading conditions at the ports. Generalized S parameters, denoted
here as GS, are defined in terms of what are called root power waves,
which in turn are defined using forward- and backward-traveling voltage
waves. Consider the N -port network of Figure 2-16, where the nth port has a
reference transmission line of characteristic impedance Z0n, which can have
infinitesimal length. The transmission line at the nth port serves to separate
the forward- and backward-traveling voltage (V +

n and V −
n ) and current (I+n

and I−n ) waves.
The reference characteristic impedance matrix Z0 is a diagonal matrix, Z0

= diag(Z01 . . . Z0n . . . Z0N ), and the root power waves at the nth port, an and
bn, are defined by

an = V +
n /

�

ℜ{Z0n} and bn = V −
n /

�

ℜ{Z0n}, (2.112)

and shown in Figure 2-17 and are often called just power waves. The unit of

the a and b values is root power, that is, in the SI unit system,
√

W. In matrix
form

a = Z
−1/2
0 V

+ = Y
1/2
0 V

+, b = Z
−1/2
0 V

− = Y
1/2
0 V

−, (2.113)

V
+ = Z

1/2
0 a = Y

−1/2
0 a, V

− = Z
1/2
0 b = Y

−1/2
0 b, (2.114)

where

a = [a1 . . . an . . . aN ]T, b = [b1 . . . bn . . . bN ]T, (2.115)

V
+ = [V +

1 . . . V +
n . . . V +

N ]T, V
− = [V −

1 . . . V −
n . . . V −

N ]T, (2.116)
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Figure 2-17:
N -ports defining
the a and b root
power waves: (a) two-
terminal ports; and (b)
ports on their own. (a) (b)

and the characteristic admittance matrix is Y0 = Z
−1
0 . The power waves are

interpreted as describing power flow:

1√
2
|an| =

√

incident power at Port n

and 1√
2
|bn| =

√

power leaving at Port n. (2.117)

That is, for example, the incident (or available) power at Port n, referenced
to Z0n, is 1

2 |an|2 and the reflected power at the port is 1
2 |bn|2. Thus the power

delivered by the nth port is 1
2 (|bn|2 − |an|2).

After some manipulation it can be shown that on each reference line the
power waves can be related to the total voltages and currents as

a =
V + Z0I

2
√

ℜ{Z0}
and b =

V − Z
∗
0I

2
√

ℜ{Z0}
, (2.118)

whereV and I are vectors of total voltage and total current. Now, generalized
S parameters can be formally defined as

b = G
Sa, (2.119)

thus Y
1/2
0 V

− = G
SY

1/2
0 V

+, and so V
− = Y

−1/2
0

G
SY

1/2
0 V

+. This reduces
to V

− = G
SV

+ when all of the reference transmission lines have the same
characteristic impedance. However, when the ports have different reference
impedances, SV is used for voltage scattering parameters and S

I for current
scattering parameters, where V

− = S
V
V

+ and I
− = S

I
I
+.

The following conversion relationships can also be derived:

S
I = ℜ{Z0}−

1
2
G
Sℜ{Z0}

1
2 (2.120)

S
V = Z0ℜ{Z0}−

1
2
G
Sℜ{Z0}

1
2 {Z∗

0}−1, (2.121)

where ℜ{Z0}
1
2 = diag{

√

ℜ{Z01},
√

ℜ{Z02}, . . . ,
√

ℜ{Z0n}}.
Recall that G

S is in terms of a and b, SI is in terms of I− and I
+, and S

V

is in terms of V− and V
+ . When port impedances and reference resistances

are real, Equations (2.120) and (2.121) assume the simpler forms

S
I = −R

− 1
2

o
G
SR

1
2

0 = −G
S, (2.122)

S
V = R0 R

− 1
2

0
G
SR

1
2

0 R
∗
0
−1 = R0 (R

∗
0)

−1 G
S = G

S, (2.123)

where R
1
2

0 = diag{
√
R01,

√
R02, . . . ,

√
R0n}, with R0n being the reference

resistance at the nth port. In addition, if the reference resistances at each
port are the same, all of the various scattering parameter definitions become
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equivalent (i.e., S
V = −S

I = G
S = S), where S is the normalized S

parameter matrix, also called the normalized S parameter matrix.
The reciprocity condition for generalized S parameters is GS12 =

GS21Z01/Z02.

EXAMPLE 2.4 Generalized Scattering Parameters of a Through Connection

Develop the generalized
scattering parameters of a
through connection with a
reference impedance Z01

at Port 1 and a reference
impedance Z02 at Port 2.

(a) (b) (c)

Solution:

The through connection is shown in (a) and in (b) is the configuration to determine S11 as
V +
2 = 0 = a2 since Port 2 is terminated in Z02. Then

GS11 = Γin =
Z02 − Z01

Z02 + Z01
and similarly GS22 =

Z01 − Z02

Z02 + Z01
= −GS11 (2.124)

Figure (b) is used to determine S21 as here V +
2 = 0 = a2

V −
2 = b2

√

ℜ{Z02} = V1 = V +
1 + V −

1 = V +
1 (1 + S11) = a1

√

ℜ{Z01}. (2.125)

Thus,

GS21 =
b2
a1

∣

∣

∣

∣

a2=0

=

√

ℜ{Z01}
√

ℜ{Z02}
(1 + GS11) and also GS12 =

√

ℜ{Z02}
√

ℜ{Z01}
(1 + GS22). (2.126)

The generalized scattering parameter matrix of the through is

G
S =

1

Z01 + Z02

[

Z02 − Z01 2Z01

√

ℜ{Z02}/ℜ{Z01}
2Z02

√

ℜ{Z01}/ℜ{Z02} Z01 − Z02

]

(2.127)

and for real Z01 and Z02
G
S =

1

Z01 + Z02

[

Z02 − Z01 2
√
Z01Z02

2
√
Z01Z02 Z01 − Z02

]

(2.128)

For normalized S parameters the reference impedances at the ports are the same, i.e. Z01 =
Z0 = Z02, and the normalized S parameters of the through are (as expected)

S = N
S =

[

0 1
1 0

]

. (2.129)

2.4.3 Scattering Parameters in Terms of a and b waves

Previously S parameters were defined in terms of forward- and backward-
traveling voltage waves, see Section 2.3.3 and Equation (2.71). That definition
is adequate if only one reference impedance is used throughout. A more
general form of S parameters uses the a and b root power waves. This is still
valid if only one reference impedance is used but they can also be used when
the ports have different reference impedances. This more general definition
for a two-port network, with respect to Figure 2-18, is

[
b1
b2

]

=

[
S11 S12

S21 S22

] [
a1
a2

]

. (2.130)

Even if the reference impedances at ports 1 and 2 are the different. If the
references impedance are the same and real, the usual case, the scattering
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parameters are identical when used to relate traveling voltage waves as in
the following:

[
V −
1

V −
2

]

=

[
S11 S12

S21 S22

] [
V +
1

V +
2

]

. (2.131)

2.4.4 Normalized and Generalized S Parameters

S parameters measured with respect to a common reference resistance are
referred to as normalized S parameters. In almost all cases, measured S
parameters are normalized to 50 Ω, as 50 Ω cables and components are
used in measurement systems. In other words, Z01 = Z02 = . . . =
Z0N = R0 (= 50 Ω). Generalized S parameters can be used to simplify
the design process of devices such as amplifiers. For example, it is often
convenient to use the input and output impedances of an amplifier as the
normalization impedances. Also, it is often desirable to be able to convert
between measured S parameters (normalized to 50 Ω) and generalized S
parameters. Let NS be the measured (normalized) S parameter matrix. (So
NS is the conventional S parameter matrix.) The development is tedious, but
it can be shown that the generalized S parameters are

G
S = (D∗)−1(NS− Γ

∗)(U − Γ
N
S)−1

D, (2.132)

where U is the unit matrix (U = diag(1, 1, . . . , 1)), R0 is the reference
impedance of the normalized S parameters, N

S, and D is a diagonal matrix
with elements

Dii = |1− Γ∗
i |−1(1− Γi)

√

1− |Γi|2 (2.133)

Γi = (Z0i −R0)(Z0i +R0)
−1 i = 1, 2, . . . , N, (2.134)

and Γ is a diagonal matrix with elements Γi. Z0i is the system impedance at
Port i to which the generalized S parameters are to be referred.

2.4.5 Change of Reference Impedance

The result in the section above can be used to change scattering parameters
referenced to a real impedance R1 (i.e., R1

S) to scattering parameters
referenced to R2 (i.e., R2

S). Note that R1
S and R2

S are the conventional
or normalized S parameters. The elements in Equations (2.133) and (2.134)
become

Dii = D = |1− ΓR2|−1(1− ΓR2)
√

1− |ΓR2|2 =
√

1− |ΓR2|2 (2.135)

ΓR2 = (R2 −R1)(R2 +R1)
−1, (2.136)

and |ΓR2| < 1. So Equation (2.132) becomes

R2
S = D

−1(R1
S− Γ)(U − Γ

R1
S)−1

D = (R1
S− Γ)(U− Γ

R1
S)−1 (2.137)

Figure 2-18: Definition of S parameters in terms of a and b root

power waves. a1 = V +
1 /ℜ{Z01}, b1 = V −

1 /ℜ{Z01}, a2 =
V +
2 /ℜ{Z02}, b2 = V −

2 /ℜ{Z02}. Incident power at Port 1 (2) is |a1|2
(|a22). Power leaving Port 1 (2) is |b1|2 (|b22)
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since D is a diagonal matrix with all diagonal entries the same. So for a two-
port

R2
S =

[
R2S11

R2S12
R2S21

R2S22

]

=

[
R1S11 − ΓR2

R1S12
R1S21

R1S22 − ΓR2

] [
1− ΓR2

R1S11 −ΓR2
R1S12

−ΓR2
R1S21 1− ΓR2

R1S22

]−1

.

(2.138)

EXAMPLE 2.5 Change of Reference Impedance

An attenuator has the 50 Ω S parameters:

50
S =

[

0 0.3162
0.3162 0

]

. (2.139)

What are the S parameters referenced to 75 Ω?

Solution:

The conversion uses Equation (2.138) with R1 = 50 Ω and R2 = 75 Ω.
So Γ75 = (75− 50)/(75 + 50) = 0.2. Thus the S parameters referenced to 75 Ω are

75
S =

[

50S11 − Γ75
50S12

50S21
50S22 − Γ75

] [

1− Γ75
50S11 −Γ75

50S12

−Γ75
50S21 1− Γ75

50S22

]

=

[

−0.2 0.3162
0.3162 −0.2

] [

1 −0.2 · 0.3162
−0.2 · 0.3162 1

]

=

[

−0.2 0.3162
0.3162 −0.2

] [

1 0.06324
0.06324 1

]

=

[

−0.18 0.3036
0.3036 −0.18

]

. (2.140)

2.4.6 Passivity in Terms of Scattering Parameters

Consider an N -port characterized by its generalized scattering matrix S. The
time-averaged power dissipated in the N -port is

P =
1

2

N∑

i=1

(|ai|2 − |bi|2) = 1
2

(

a
∗T

a− b
∗T

b

)

, (2.141)

and so P = 1
2a

∗T [
U− (S∗)TS

]
a. (2.142)

In the above, the conjugate, a∗, of the matrix a is obtained from a by taking
the complex conjugate of each element. For a passive N -port,

U− (S∗)TS ≥ 0 for all real ω, (2.143)

This can also be written in summation form as

N∑

k=1

SkjS
∗
kj = Pj . (2.144)

Pj = 1 for all j if the network is lossless. For a network to be passive
Pj ≤ 1 for all j. By examining the S parameters it can be determined quickly
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whether a network is lossless, lossy, or perhaps has gain.

For a lossless N -port, U− S
∗T

S = 0. (2.145)

Rearranging, taking the transpose of both sides and noting that UT = U

S
∗
S
T = U. (2.146)

This is known as the unitary condition. That is, for a lossless N -port

S
∗ =

�
S
T
�−1

. (2.147)

The important result here is that for a lossless network (these are the unitary
conditions)

N�

k=1

SkjS
∗
kj = 1 (2.148)

N�

k=1

SkiS
∗
kj = 0 for i not equal to j. (2.149)

2.4.7 Impedance Matrix Representation

In this section N -port S parameters are related to N -port z parameters. The
basic relationship of voltage and current at any port using impedances is








V1

V2

...
VN







=








z11 z12 . . . z1N
z21 z22 . . . z2N

...
. . .

zN1 zN2 . . . zNN















I1
I2
...
IN







, (2.150)

or in compact form as V = ZI . (2.151)

Z is reciprocal if zij = zji. The z parameters defined here are more formally
called port-based z parameters, as the voltage and current variables are port
quantities.

Relating z and S parameters begins by relating the total voltage and
current at the nth terminal plane to the traveling voltage and current waves.
From Figure 2-16,

Vn = V +
n + V −

n , and In = I+n − I−n , (2.152)

and in vector form

V = V
+ +V

−
I = I

+ + I
−

V
+ = Z

∗
0I

+
V

− = −Z0I
−,

(2.153)

where Z0 = diag(Z01, Z02, . . . , Z0N ) (and z0n can be complex). After some
algebraic manipulation, the following relationships are obtained:

S
V = [U+ ZZ

−1
0 ]−1[Z(Z∗

0)
−1 −U] (2.154)

Z = [U+ S
V ][Z∗

0
−1 − Z

−1
0 (SV )]−1. (2.155)
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Note that SV is the voltage scattering parameter matrix. These are related
to the generalized scattering parameter matrix by Equation (2.123). For
normalized S parameters the same real reference impedance is used at all
ports (Z0n = Z0, n = 1, . . . , N), then Equations (2.154) and (2.155) become

S = [Z+ Z0U]
−1

[Z− Z0U] and Z = Z0 [U+ S] [U− S]
−1

. (2.156)

2.4.8 Admittance Matrix Representation

In this section, N -port S parameters are related to N -port y parameters. The
currents and voltages are related as








I1
I2
...
IN







=








y11 y12 . . . y1N
y21 y22 . . . y2N

...
. . .

yN1 yN2 . . . yNN















V1

V2

...
VN







, (2.157)

or in compact form the port-based y parameters are

I = YV. (2.158)

Using a similar approach to that in the previous subsection, the relation-
ship between S and y parameters can be developed. The development will
be done slightly differently and this development is applicable to general-
ized scattering parameters. First, consider the relationship of the total port
voltage V = [V1 . . . Vn . . . VN ]T and current I = [I1 . . . In . . . IN ]T to forward-
and backward-traveling voltage and current waves:

V = V
+ +V

− and I = I
+ + I

−, (2.159)

where I
+ = Y0V

+ = Y
1/2
0 a and I

− = −Y0V
− = −Y

1/2
0 b. (Each element

of Y0, Y0n = 1/Z0n and can be complex.) Using traveling waves, Equation
(2.158) becomes

I
+ + I

− = Y(V+ +V
−) (2.160)

Y0(V
+ −V

−) = Y(V+ +V
−) (2.161)

Y0(1−Y
−1/2
0 SY

1/2
0 )V+ = Y(1+Y

−1/2
0 SY

1/2
0 )V+, (2.162)

and so the port y parameters in terms of the generalized scattering
parameters are

Y = Y0(1−Y
−1/2
0

G
SY

1/2
0 )(1+Y

−1/2
0

G
SY

1/2
0 )−1. (2.163)

Alternatively, Equation (2.161) can be rearranged as

(Y0 +Y)V− = (Y0 −Y)V+ (2.164)

V
− = (Y0 +Y)−1(Y0 −Y)V+ (2.165)

Y
−1/2
0 b = (Y0 +Y)−1(Y0 −Y)Y

−1/2
0 a. (2.166)

Comparing this to the definition of generalized S parameters in Equation
(2.119) leads to

G
S = Y

1/2
0 (Y0 +Y)−1(Y0 −Y)Y

−1/2
0 . (2.167)
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Figure 2-19: An amplifier with an ac-
tive device and input (M1) and output
(M2) matching networks. The biasing ar-
rangement is not shown, but usually this
is done with the appropriate choice of
matching network topology.

(a) (b) (c)

Figure 2-20: Three forms of matching networks with increasing use of transmission line sections.

For the usual case where all of the reference transmission lines have the same
characteristic impedance Z0 = 1/Y0 (note S = N

S),

Y = Y0(U− S)(U + S)−1 and S = (Y0 +Y)−1(Y0 −Y). (2.168)

2.5 Scattering Parameter Matrices of Common Two-Ports

RF and microwave circuits can generally be represented as interconnected
two-ports, as most RF and microwave circuit designs involve cascaded
functional blocks such as amplifiers, matching networks, filters, etc.4 (see
Figure 2-19). Thus there is great interest in various manipulations that can
be performed on two-ports as well as the network parameters of common
two-port circuit topologies. As an example, consider the matching networks
in Figure 2-19. These are used to achieve maximum power transfer in an
amplifier by acting as impedance transformers. Matching networks assume
a variety of forms, as shown in Figure 2-20, and all can be viewed as two-
port networks and a combination of simpler components. In this section,
strategies are presented for developing the S parameters of two-ports.

Transmission Line

The traveling waves on a transmission line (Figure 2-21(a)) have a phase that
depends on the electrical length, θ, of the line. The transmission line has a
characteristic impedance, Z0, and length, ℓ, which in general is different from

4 This arrangement tends to maximize bandwidth, minimize losses, and maximize efficiency.
Lower-frequency analog design utilizes more complex arrangements; for example, feedback
high in the circuit hierarchy improves the reliability and robustness of design but comes at the
cost of reduced bandwidth and lower power efficiency.
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(a) (b)

Figure 2-21: Two-ports: (a) section of transmission
line; and (b) series element in the form of a two-port.

the system reference impedance, here Z01. Thus

S11 = S22 =
Γ(1 − e−2θ)

1− Γ2e−2θ
and S21 = S12 =

(1− Γ2)e−θ

1− Γ2e−2θ
, (2.169)

where θ = βℓ and

Γ =
Z0 − Z01

Z0 + Z01
. (2.170)

If the reference impedance is the same as the characteristic impedance of
the line, i.e. Z01 = Z0 and Γ = 0, the scattering parameters of the line are

S =

[
0 e−θ

e−θ 0

]

. (2.171)

Shunt Element

The S parameters of the shunt element (Figure 2-15) were developed in
Section 2.3.5. In a slightly different form these are

S11 = S22 = − y

(y + 2)
and S12 = S21 =

2

(y + 2)
, (2.172)

where y = Y/Y0 is the admittance normalized to the system reference
admittance (Y0 = 1/Z0).

Series Element

The S parameters of the series element (Figure 2-21(b)) are

S11 = S22 =
z

(z + 2)
and S12 = S21 =

2

(z + 2)
, (2.173)

where z = Z/Z0 is the normalized impedance.

2.6 T or Chain Scattering Parameters of Cascaded
Two-Port Networks

The T parameters, also known as chain scattering parameters, are a
cascadable form of scattering parameters. They are similar to regular S
parameters and can be expressed in terms of the a and b root power waves
or traveling voltage waves. Two two-port networks, A and B, in cascade
are shown in Figure 2-22. Here (A) and (B) are used as superscripts to
distinguish the parameters of each two-port network, but the subscripts A
and B are used for matrix quantities. Since

a
(A)
2 = b

(B)
1 and b

(A)
2 = a

(B)
1 , (2.174)
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Figure 2-22: Two cascaded
two-ports.

it is convenient to put the a and b parameters in cascadable form, leading to
the following two-port chain matrix or T matrix representation (with respect
to Figure 2-18):

[
a1
b1

]

=

[
T11 T12

T21 T22

] [
b2
a2

]

, (2.175)

where the T matrix or chain scattering matrix is

T =

[
T11 T12

T21 T22

]

. (2.176)

T is very similar to the scattering transfer matrix (ST) of Section 2.3.7. The
only difference is the ordering of the a and b components. You will come
across both forms, so be careful that you understand which is being used.
Both forms are used for the same function—cascading two-port networks.
The relationships between T and S are given by

T =

[
S−1
21 −S−1

21 S22

S−1
21 S11 S12 − S11S

−1
21 S22

]

(2.177)

S =

[
T21T

−1
11 T22 − T21T

−1
11 T12

T−1
11 −T−1

11 T12

]

.

(2.178)

For a two-port network, using Equations (2.174) and (2.175),

[

a
(A)
1

b
(A)
1

]

= TA

[

b
(A)
2

a
(A)
2

]

and

[

a
(B)
1

b
(B)
1

]

= TB

[

b
(B)
2

a
(B)
2

]

, (2.179)

thus
[

a
(A)
1

b
(A)
1

]

= TATB

[

b
(B)
2

a
(B)
2

]

. (2.180)

For n cascaded two-port networks, Equation (2.180) generalizes to

[

a
(1)
1

b
(1)
1

]

= T1T2 . . .Tn

[

b
(n)
2

a
(n)
2

]

, (2.181)

and so the T matrix of the cascaded network is the matrix product of the T

matrices of the individual two-ports.
Previously, in Section 2.3.7, the scattering transfer parameters were

introduced. Both the chain scattering parameters and scattering transfer
parameters are referred to as T parameters. Be careful to denote which form
is being used.
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EXAMPLE 2.6 Development of chain scattering parameters

Derive the T parameters of the two-port
network to the right using a reference
impedance Z0.

Solution:

Derivation of T11

Terminate Port 2 in a
matched load so that
a2 = 0. Then Equation
(2.175) becomes a1 =
T11b2 and b1 = T21b2
so

Γin = b1/a1 = T21/T11. (2.182)

Now Zin = 2r + Z0, therefore

Γin=
Zin − Z0

Zin + Z0

=
2r + Z0 − Z0

2r + Z0 + Z0
=

r

r + Z0
.

Thus

Γin =
T21

T11
=

r

r + Z0
. (2.183)

The next stage is relating b2 to a1 and since both
ports have the same reference impedance a and
b can be replaced by traveling voltages

V1 =
(

V +
1 + V −

1

)

=V +
1 (1 + Γin)

=V +
1

2r + Z0

r + Z0
.

Using voltage division (and since V +
2 = a2 =

0)

V2 = V −
2 =

Z0

2r + Z0
V1

=V +
1

Z0

2r + Z0

2r + Z0

r + Z0

V −
2 =V +

1

Z0

r + Z0

T11=
V +
1

V −
2

=
a1

b2
=

r + Z0

Z0
. (2.184)

Derivation of T21

Combining Equations (2.183) and (2.184)

T21 = ΓinT11 =
r

r + Z0

r + Z0

Z0
=

r

Z0
(2.185)

Derivation of T22

Terminate Port 2 in a
matched load so that
a1 = 0. Then Equation
(2.175) becomes

0=T11b2 + T12a2

Γin =
b2
a2

=
−T12

T11
→ T12 = −T11Γin (2.186)

b1=T21b2 + T22a2

b1
a2

=T21
b2
a2

+ T22. (2.187)

Now Zin = 2r + Z0 and so

Γin =
2r + Z0 − Z0

2r + Z0 + Z0
=

r

r + Z0
. (2.188)

Using voltage division

V1=V −
1 =

Z0

2r + Z0
V2 =

Z0

2r + Z0
V +
2 (1 + Γin)

=V +
2

Z0

2r + Z0

2r + Z0

r + Z0
= V +

2

Z0

r + Z0

V −
1

V +
2

=
b1
a2

=
Z0

r + Z0
. (2.189)

Substituting Equations (2.188) and (2.189) in
Equation (2.187) and rearranging

T22 =
Z0

r + Z0
− T21

r

r + Z0
.

Combining this with Equation (2.185)

T22 =
Z0

r + Z0
− r

Z0

r

r + Z0
=

Z2
0 − r2

Z0(r + Z0)
.

(2.190)

Derivation of T12

Combining Equations (2.184, 2.186 and 2.188)

T12 = −r + Z0

Z0

r

r + Z0
= − r

Z0
. (2.191)

Summary: The chain scattering matrix (T )
parameters are given in Equations (2.184),
(2.185), (2.190), and (2.191).
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EXAMPLE 2.7 Cascading chain scattering parameters

Develop the chain scattering parameters of the network
to the right. Use a reference impedance ZREF = Z0, the
characteristic impedance of the lines.

Solution:
The network comprises a transmission line
of electrical length θ in cascade with a
resistive network and another line of the
same electrical length. From Equation (2.171)
the scattering parameters of the transmission
line are

SL =

[

0 e−θ

e−θ 0

]

. (2.192)

From Equation (2.177) the chain scattering
matrix of the line is

TL =

[

eθ 0
0 e−θ

]

. (2.193)

From Example 2.6 the chain scattering matrix
of the resistive network is

Tr =
1

Z0

[

gr + Z0 −r
r (Z2

0 − r2)/(r + Z0)

]

.

(2.194)

Yielding the chain scattering matrix of the
cascade;

TLrL = TLTrTL

1

Z0

[

(r + Z0)e
2θ −r

r (Z2
0 − r2)/(r + Z0)e

−2θ

]

.

(2.195)

EXAMPLE 2.8 Input reflection coefficient of a terminated two-port.

What is the input reflection coefficient in terms of chain
scattering parameters of the terminated two-port to
the right where the two-port is described by its chain
scattering parameters.

Solution:

The chain scattering parameter relations are

[

a1

b1

]

=

[

T11 T12

T21 T22

] [

b2
a2

]

.

Expanding this matrix equation and using the
substitution a2 = ΓLb2

a1=T11b2 + T12ΓLb2 (2.196)

b1=T21b2 + T22ΓLb2. (2.197)

Multiplying Equation (2.196) by (T21 + T22ΓL)
and Equation (2.197) by (T11+T12ΓL) and then
subtracting

(T21 + T22ΓL)a1 =

(T21 + T22ΓL)(T11b2 + T12ΓL)b2

(T11 + T12ΓL)b1 =

(T11 + T12ΓL)(T21b2 + T22ΓL)b2

(T21 + T22ΓL)a1 = (T11 + T12ΓL)b1.

Thus the input reflection coefficient is

Γin =
b1
a1

=
T21 + T22γL
T11 + T12γL

. (2.198)

Now consider a transmission line of electrical
length θ and characteristic impedance Z0 (see
the figure b) in cascade with the two-port.

The input reflection coefficient now is found
by first determining the total chain scattering
matrix of the cascade:

T
T=TLT =

[

eθ 0

0 e−θ

] [

T11 T12

T21 T22

]

=

[

T11e
θ T12e

θ

T21e
−θ T22e

−θ

] [

TT 11
TT 12

TT 21
TT 22

]

.
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Thus the input reflection coefficient is now

Γin =
b1
a1

=
TT 21 +

TT 22ΓL

TT 11 + TT 12ΓL

=
T21e

−θ + T22e
−θΓL

T11eθ + T12eθΓL

=e−2θ

(

T21 + T22ΓL

T11 + T12ΓL

)

. (2.199)

If the load is now a short circuit ΓL = −1 and
the input reflection coefficient of the line and
two-port cascade is

Γin =e−2θ

(

T21 − T22

T11 − T12

)

. (2.200)

2.6.1 Terminated Two-Port Network

A two-port with Port 2 terminated in a load with reflection coefficient ΓL is
shown in Figure 2-23 and a2 = ΓLb2. Substituting this in Equation (2.175)
leads to

a1 = (T11 + T12ΓL)b2 and b1 = (T21 + T22ΓL)b2,

eliminating b2 results in

Γin =
b1
a1

=
T21 + T22ΓL

T11 + T12ΓL
. (2.201)

2.7 Scattering Parameter Two-Port Relationships

2.7.1 Change in Reference Plane

It is often necessary during S parameter measurements of two-port devices
to measure components at a position different from that actually desired.
An example is shown in Figure 2-24(a). From direct measurement the S
parameters are obtained, and thus the T matrix at Planes 1 and 2. However,

TDUT referenced to Planes 1
′

and 2
′

is required. Now,

T = Tθ1TDUTTθ2 , (2.202)

Figure 2-23: Terminated two-port
network.

(a)

(b)

Figure 2-24: Two-port measurement
setup: (a) a two-port comprising a device
under test (DUT) and transmission line
sections that create a reference plane at
Planes 1 and 2; and (b) representation as
cascaded two-port networks.
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Figure 2-25: Two-port with parameters suit-
able for defining S and ABCD parameters.

and so TDUT = T
−1
θ1

TT
−1
θ2

. (2.203)

A section of line with electrical length θ and port impedances equal to its
characteristic impedance has

S =

[
0 e−θ

e−θ 0

]

(2.204) and Tθ =

[
eθ 0
0 e−θ

]

. (2.205)

Therefore Equation (2.203) becomes

TDUT =

[
T11e

−(θ1+θ2) T12e
−(θ1−θ2)

T21e
(θ1−θ2) T22e

(θ1+θ2)

]

, (2.206)

and then the desired S parameters of the DUT are obtained as

SDUT =

[
S11e

2θ1 S12e
(θ1+θ2)

S21e
(θ1+θ2) S22e

2θ2

]

. (2.207)

2.7.2 Conversion Between S and ABCD Parameters

Figure 2-25 can be used to relate the parameters of the two views of the
network. If both ports have the same reference impedance Z0, then

[
V1

I1

]

=

[
A B
C D

] [
V2

I2

]

and

[
b1
b2

]

=

[
S11 S12

S21 S22

] [
a1
a2

]

.

The S parameters are then expressed as

S11 =
A+B/Z0 − CZ0 −D

△ S12 =
2(AD −BC)

△
S21 =

2

△ S22 =
−A+B/Z0 − CZ0 +D

△ ,
(2.208)

where △ = A+B/Z0 + CZ0 +D. (2.209)

The ABCD parameters can be expressed in terms of the S parameters as

A =
(1 + S11)(1 − S22) + S12S21

2S21
(2.210)

B = Z0
(1 + S11)(1 + S22)− S12S21

2S21
(2.211)

C =
1

Z0

(1− S11)(1 − S22)− S12S21

2S21
(2.212)

D =
(1− S11)(1 + S22) + S12S21

2S21
. (2.213)
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2.8 Return Loss, Substitution Loss, and Insertion Loss

2.8.1 Return Loss

Return loss, also known as reflection loss, is a measure of the fraction of
power that is not delivered by a source to a load. If the power incident on a
load is Pi and the power reflected by the load is Pr, then the return loss in
decibels is [6, 7]

RLdB = 10 log
Pi

Pr
. (2.214)

The better the load is matched to the source, the lower the reflected power
and hence the higher the return loss. RL is a positive quantity if the reflected
power is less than the incident power. If the load has a complex reflection
coefficient ρ, then

RLdB = 10 log

∣
∣
∣
∣

1

ρ2

∣
∣
∣
∣
= −20 log |ρ| . (2.215)

That is, the return loss is the negative of the input reflection coefficient
expressed in decibels [8].

When generalized to a terminated two ports, the return loss is defined with
respect to the input reflection coefficient of the terminated two port [9]. The
two port in Figure 2-26 has the input reflection coefficient

Γin = S11 +
ΓLS12S21

(1− ΓLS22)
, (2.216)

where ΓL is the reflection coefficient of the load. Thus the return loss of a
terminated two-port is

RLdB = −20 log |Γin| = −20 log

∣
∣
∣
∣
S11 +

ΓLS12S21

(1− ΓLS22)

∣
∣
∣
∣
. (2.217)

If the load is matched, i.e. ZL = Z∗
0 (the system reference impedance), then

RLdB = −20 log |S11| . (2.218)

This return loss is also called the input return loss since the reflection
coefficient is calculated at Port 1. The output return loss is calculated looking
into Port 2 of the two-port, where now the termination at Port 1 is just the
source impedance.

Figure 2-26: Terminated two-port used to define return loss.
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2.8.2 Substitution Loss and Insertion Loss

The substitution loss is the ratio of the power, iPL, delivered to the load by
an initial two-port identified by the leading superscript ‘i’, and the power
delivered to the load, fPL, with a substituted final two-port identified by the
leading superscript ‘f ’. In terms of generalized scattering parameters with
reference impedances Z01 at Port 1 and Z02 at Port 2 the substitution loss in
decibels is (using the results of Example 3.2 and noting that ΓS is referred to
Z01 and ΓL is referred to Z02)

LS |dB =
iPL

fPL
= 10 log

�
�
�
�
�

iS21

fS21

�
(1− fS11ΓS)(1− fS22ΓL)− fS12

fS21ΓSΓL

�

[(1− iS11ΓS)(1 − iS22ΓL)− iS12
iS21ΓSΓL]

�
�
�
�
�

2

.

(2.219)

Insertion loss is a special case of substitution loss with particular types of
initial two-port networks. There are a number of special cases to consider.

Insertion Loss with an Ideal Adaptor

Comparing the power delivered to the load with an inserted two-port with
that delivered with an ideal adaptor is the commonly accepted definition
of insertion loss [10]. That is, ‘insertion loss’ without qualifications is the
same as ‘insertion loss with an ideal adaptor.’ An ideal adaptor (as the
initial two-port network) transforms from the Port 1 reference impedance,
Z01, to the Port 2 reference impedance, Z02. In terms of generalized S
parameters the ideal adaptor has i

�
GS11

�
= 0 = i

�
GS22

�
(for no reflection),

i
�
GS12

�
i
�
GS21

�
= 1 (for no loss in the adaptor and there is no phase shift),

and i
�
GS12

�
= i

�
GS21

�
Z01/Z02 (for reciprocity). (If Z01 = Z02 this ideal

adaptor is the same as a direct connection.) Insertion loss in decibels is, using
Equation (2.219):

IL|dB =

10 log







Z02

Z01

�
�
�
�
�

�
1− f

�
GS11

�
ΓS

� �
1− f

�
GS22

�
ΓL

�
− f

�
GS12

�
f
�
GS21

�
ΓSΓL

f (GS12) (1− ΓSΓ)

�
�
�
�
�

2






(2.220)

Attenuation is defined as the insertion loss without source and load
reflections (ΓS = 0 = ΓL) [10], and Equation (2.220) becomes

A|dB = 10 log

�

Z02

Z01

1

|GS21|2

�

(= IL|dB with ΓS = 0 = ΓL). (2.221)

where GS21 is that of the final two-port.

Insertion Loss with Direct Connection

With normalized S parameters, i.e. Z01 = Z02, the insertion loss
with an initial direct connection is as given in Equation (2.220). With
different reference impedances at each port, the initial direct connection
‘i’, from Example 2.4, i

�
GS11

�
= (Z02 − Z01)/(Z02 + Z01),

i
�
GS22

�
=

−i
�
GS11

�
, i
�
GS21

�
=

�
1 + i

�
GS11

��
×

�

ℜ{Z02}/
�

ℜ{Z01}, and i
�
GS12

�
=
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(a) (b)

Figure 2-27: Two-port insertion and defini-
tion of variables for defining insertion loss:
(a) source and load before insertion; (b) in-
sertion of two-port network with source level
unchanged; and (c) insertion of two-port net-
work with source level adjusted to maintain a
constant voltage across the load. (c)

[
1 + i

(
GS22

)]√

ℜ{Z01}/
√

ℜ{Z02}. These S parameters of the initial two-port
network are substituted in Equation (2.219) to determine insertion loss with
a direct connection.

2.8.3 Measurement of Insertion Loss

If the S parameters of a two-port network can be measured it is simple to
calculate the insertion loss of the two-port. However there are situations
where the S parameters cannot be measured and this includes where
there is not a port connection (e.g., the air side of an antenna) and the
system reference impedances differ at the two ports. In this section methods
for measuring insertion loss in such difficult situations is described. If S
parameter measurements are not available the insertion loss of a two-port
network is defined as the ratio, in decibels, of voltages immediately beyond
the point of insertion, before and after insertion [6, 11]. Referring to Figure
2-27(a and b), insertion loss is expressed in decibels as

ILdB = 20 log

∣
∣
∣
∣

E2

E′
2

∣
∣
∣
∣
, (2.222)

where E2 is the voltage across the load (ZL) before insertion of the two-port
and E′

2 is the voltage across the load (ZL) after insertion of the two-port. The
power delivered to the load is proportional to the square of the magnitude of
the voltage across the load, so this definition is equivalent to that described
in section 2.8.2 where

ILdB = 10 log
PL

PT
, (2.223)

where PL is the power delivered to the load before the insertion of the two-
port and PT is the power delivered to the load following insertion.
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EXAMPLE 2.9 Insertion loss of a two-port in a different reference system

A 50 Ω attenuator has an attenuation of 3 dB and a return loss of 20 dB. If the attenuator is
used in a 75 Ω system what is the insertion loss of the attenuator?

Solution:

The insertion loss can be calculated using the insertion loss formula in Equation (2.219). To
apply this the 50 Ω S parameters of the attenuator are needed and then the load and source
reflection coefficients, ΓL and ΓS respectively, which will be the reflection coefficients of the
75 Ω load and source impedances referred to 50 Ω. Also note that Z01 = Z02 = 50 Ω. Since
there are two reference systems the leading superscripts 50 and 75 will be used to distinguish
them.
Step 1. Find ΓS and ΓL in the 50 Ω system: ΓS = ΓL = (55− 50)/(55 + 50) = 0.2000

Step 2. Find the S parameters in a 50 Ω system. (case 1, assume � S11 = � S21 = 0◦)

It is known that 50RL|dB = 20 dB and 50IL|dB = 3 dB. Also an attenuator is symmetrical so
that 50S11 = 50S22 and 50S12 = 50S21. Using Equations (2.218) and (2.221)

|50S11| = |50S22| = 10−
50RL|dB/20 = 10−20/20 = 0.1000

and |50S12| = |50S21| = 10−
50IL|dB/20 = 10−3/20 = 0.7080.

The phases of the S parameters are not known. Assume first (use the leading subscript ‘1’)
that the phases are 0◦ and consider alternatives later and then the S parameter matrix is

1S =

[

50
1S11

50
1S12

50
1S21

50
1S22

]

=

[

0.1000 0.7080
0.7080 0.1000

]

. (2.224)

From Equation (2.220)

75
1ILdB = 10 log

[

50

50

∣

∣

∣

∣

(1− 0.1 · 0.2) (1− 0.1 · 0.2) − 0.7080 · 0.7080 · 0.2 · 0.2
0.7080 (1− 0.2 · 0.2)

∣

∣

∣

∣

2
]

= 2.82 dB.

(2.225)

Step 3 Four phase assumptions for S11 and S22

Case 1 � S11 = � S22 = 0◦, � S21 = � S12 = 0◦ 75
1ILdB = 2.82 dB

Case 2 � S11 = � S22 = 0◦, � S21 = � S12 = 180◦ 75
2ILdB = 2.82 dB

Case 3 � S11 = � S22 = 180◦, � S21 = � S12 = 0◦ 75
3ILdB = 3.53 dB

Case 4 � S11 = � S22 = 180◦, � S21 = � S12 = 180◦ 75
4ILdB = 3.53 dB

Thus just knowing the return loss and insertion loss in one reference system is not enough to
know the insertion loss in another system without knowing the phases of the S parameters.
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EXAMPLE 2.10 Insertion loss calculation using change of reference impedance

A 50 Ω attenuator has an attenuation of 3 dB and a return loss of 20 dB. If the attenuator is
used in a 75 Ω system what is the insertion loss of the attenuator?

Solution:

This is alternative to the method used in Example 2.9. Using the S parameters of the
attenuator in Equation (2.224), in a 75 Ω system the S parameters are found using Equation
(2.138) and noting that Γ75 = 0.2 is the reflection coefficient of 75 Ω in a 50 Ω system:

75
S =

[

75S11
75S12

75S21
75S22

]

=

[

50
1S11 − Γ75

50
1S12

50
1S21

50
1S22 − Γ75

] [

1− Γ75
50
1S11 −Γ75

50
1S12

−Γ75
50
1S21 1− Γ75

50
1S22

]−1

=

[

−0.1 0.7080
0.7080 −0.1

] [

0.9800 −0.1416
−0.1416 0.9800

]−1

=

[

0.002379 0.7227
0.7227 0.002379

]

. (2.226)

In the 75 Ω system the load and source are matched and using Equation (2.220)

75
1ILdB = 10 log

1

|75S21|2
= 10 log

1

|0.7227|2 = 2.82 dB. (2.227)

which is in agreement with the calculation in Example 2.9, see Equation (2.225).

2.8.4 Minimum Transducer Loss, Intrinsic Attenuation

Another situation often required is determining the minimum possible loss
of a two-port. This is obtained with lossless two-port networks, M1 and
M2 at the input and output of the two-port of interest, M3. M1 and M2 are
adjusted to obtained the minimum possible loss of M3. This is not the same
as designing M1 and M2 to obtain matching. The minimum insertion loss,
also called the intrinsic attenuation, or minimum transducer loss in dB is [12]
(the derivation is involved),

LTM|dB = 10 log

[
Z02

Z01

|1− S22ΓTM|2 − | (S12S21 − S11S22) ΓTM + S11|2
|S21|2 (1− |ΓTM|2)

]

(2.228)

where the S parameters are of M3 Z01 and Z02 are the real reference
impedances at ports 1 and 2 respectively, and

ΓTM =
B

2A

(

1±
√

1− 2|A|
B

)

, (2.229)

where
A = S22 + S∗

11 (S12S21 − S11S22) (2.230)

and
B = 1− |S11|2 + |S22|2 − |S12S21 − S11S22|2. (2.231)

The intrinsic attenuation is a useful metric when a device is being developed
and has not yet been optimally matched.

Other insertion loss concepts are comparison loss, mismatch loss, and
conjugate mismatch loss, see [10].
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2.9 Scattering Parameters and Directional Couplers

Directional couplers were described in Section 5.8 of [13] but described
without the use of S parameters. A directional coupler with ports defined
as in Figure 2-28, and with the ports matched (so that S11 = 0 = S22 = S33 =
S44), has the following scattering parameter matrix:

S =







0 T 1/C 1/I
T 0 1/I 1/C

1/C 1/I 0 T
1/I 1/C T 0






. (2.232)

There are many types of directional couplers, and the phases of the traveling
waves at the ports will not necessarily be in phase as Equation (2.232)
implies. When the phase difference between traveling waves entering at Port
1 and leaving at Port 2 is 90◦, Equation (2.232) becomes

S =







0 −T 1/C 1/I
−T 0 1/I 1/C
1/C 1/I 0 −T
1/I 1/C −T 0






. (2.233)

Figure 2-28: Schematic of a directional coupler.

EXAMPLE 2.11 Identifying Ports of a Directional Coupler

A directional coupler has the following S parameters:

S =









0 0.9 0.001 0.1
0.9 0 0.1 0.001

0.001 0.1 0 0.9
0.1 0.001 0.9 0









.

(a) What are the through (i.e., transmission) paths? Identify two paths. That is, identify the
pairs of ports at the ends of the through paths.
First note that the assignment of ports to a directional coupler is arbitrary. So the
S parameters need to be considered to figure out how the ports are related. The S
parameters relate the forward-traveling waves to the backward-traveling waves and this
leads to the required understanding, thus









V −
1

V −
2

V −
3

V −
4









= S









V +
1

V +
2

V +
3

V +
4









=









0 0.9 0.001 0.1
0.9 0 0.1 0.001

0.001 0.1 0 0.9
0.1 0.001 0.9 0

















V +
1

V +
2

V +
3

V +
4









.

Writing the S parameters out this way makes it easier to identify the largest backward-
traveling waves for each of the inputs at Ports 1, 2, 3, and 4. The backward-traveling
wave will leave the directional coupler and the inputs will be forward-traveling waves.
Consider Port 1, the largest backward-traveling wave is at Port 2, and so Ports 1 and 2
define one of the through paths. The other through path is between Ports 3 and 4.
So the through paths are 1–2 and 3–4.
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(b) What is the coupled port for the signal entering Port 1?

The coupled port is identified by the port with the largest backward-traveling signal not
including the port at the other end of the through path. For Port 1 the coupled port is
Port 4.

(c) What is the coupling factor?

C =
V +
1

V −
4

=
1

0.1
= 10 = 20 dB.

(d) What is the isolated port for the signal entering Port 1?
The isolated port is Port 3. The backward-traveling wave at this port is the smallest given
an input at Port 1.

(e) What is the isolation factor?

I =
V +
1

V −
3

=
1

0.001
= 1000 = 60 dB.

(f) What is the directivity factor?
The directivity factor indicates how much stronger the signal is at the coupled port
compared to the isolated port for a signal at the input. For an input at Port 1, the
directivity factor is

D =
V −
4

V −
3

=
0.1

0.001
= 100 = 40 dB.

As a check D = I/C = 1000/10 = 100.
(g) Draw a schematic of the directional coupler.

There are four ways to draw it depending on which port is chosen to be the input port
(see Figure 2-29).

2.10 Summary

There are several network parameters used with RF and microwave circuits.
Which is used depends on which makes the task of visualizing circuit
operation more clear, which makes analyzing circuits more convenient, and
which makes design easier.

Scattering parameters are parameters that are almost exclusively used
by RF and microwave engineers. They describe power flow and traveling
waves and are essential to describing distributed circuits. Much of RF and
microwave engineering is concerned with managing the signal-to-noise
power ratio and with power efficiency. It is therefore natural to work with
parameters that directly relate to power flow. RF and microwave design
is characterized by conceptual insight and it is essential to use parameters

Figure 2-29: Directional coupler schematic drawn with each of the four possible input ports.
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and graphical representations that are close to the physical world. Scattering
parameters have very natural graphical representations, as will be seen in
the next chapter.

The next most important network parameters considered in this chapter
are the ABCD parameters. The special significance of these parameters in
microwave engineering is that they can be used to relate a distributed circuit
to a lumped-element circuit. Many RF designs begin as lumped-element
prototypes that are eventually transformed into electrically equivalent
distributed structures. This equivalence process nearly always involves
ABCD parameters.
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2.12 Exercises

1. A load has a reflection coefficient of 0.5 − 0.1
in a 75 Ω reference system. What is the reflection
coefficient in a 50 Ω reference system?

2. The 50 Ω S parameters of a two-port are S11 =
0.5+ 0.5, S12 = 0.95+ 0.25, S21 = 0.15− 0.05,
and S22 = 0.5 − 0.5. Port 1 is connected to a
50 Ω source with an available power of 1 W and
Port 2 is terminated in 50 Ω. What is the power
reflected from Port 1?

3. Derive the two-port 50 Ω S parameters for the
resistive circuit below.

4. Derive the two-port 50 Ω S parameters at 1 GHz

for the circuit below.

5. Derive the two-port 50 Ω S parameters at 1 GHz
for the circuit below.

6. Derive the two-port S parameters of a shunt
25 Ω resistor in a 50 Ω reference system using
the method presented in Section 2.3.5.

7. Derive the two-port S parameters of a series
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25 Ω resistor in a 100 Ω reference system using
the method presented in Section 2.3.5.

8. A two-port consists of a π resistor network as
shown. Derive the scattering parameters refer-
enced to 50 Ω using the method in Section 2.3.5.

9. A two-port consists of a T resistor network as
shown. Derive the scattering parameters refer-
enced to 1 Ω using the method in 2.3.5.

10. Derive the 50 Ω S parameters of the following.

11. Derive the 50 Ω S parameters of the following.

12. Derive the 100 Ω S parameters of the following.

13. The scattering parameters of a certain two-port
are S11 = 0.5 + 0.5, S12 = 0.95 + 0.25, S21 =
0.15 − 0.05, and S22 = 0.5 − 0.5. The system
reference impedance is 50 Ω.

(a) Is the two-port reciprocal? Explain.
(b) Consider that Port 1 is connected to a 50 Ω

source with an available power of 1 W. What
is the power delivered to a 50 Ω load placed
at Port 2?

(c) What is the reflection coefficient of the load
required for maximum power transfer at
Port 2?

14. In characterizing a two-port, power could only
be applied at Port 1. The signal reflected was
measured and the signal at a 50 Ω load at Port 2
was also measured. This yielded two S param-
eters referenced to 50 Ω: S11 = 0.3 − 0.4 and
S21 = 0.5.

(a) If the network is reciprocal, what is S12?

(b) Is the two-port lossless?
(c) What is the power delivered into the 50 Ω

load at Port 2 when the available power at
Port 1 is 0 dBm?

15. The S parameters of a two-port are S11 = 0.25,
S12 = 0, S21 = 1.2, and S22 = 0.5. The system
reference impedance is 50 Ω and ZG = 50 Ω.
The power available from the source is 1 mW.
ZL = 25 Ω.

(a) Is the two-port reciprocal and why?
(b) What is the voltage of the source?
(c) What is the power reflected from Port 1?
(d) Determine the z parameters of the two-port.
(e) Using z parameters, what is the power dis-

sipated by the load at Port 2?

16. The scattering parameters of a two-port network
are S11 = 0.25, S21 = 2., S21 = 0.1, and
S22 = 0.5 and the reference impedance is 50 Ω.
What are the scattering transfer (T ) parameters
of the two-port?

17. A matched lossless transmission line has a
length of one-quarter wavelength. What are the
scattering parameters of the two-port?

18. Consider a two-port comprising a 100 Ω resistor
connected in series between the ports.

(a) Write down the S parameters of the two-
port using a 50 Ω reference impedance.

(b) From the scattering parameters derive the
ABCD parameters of the two-port.

19. Consider a two-port comprising a 25 Ω resistor
connected in shunt.

(a) Write down the scattering parameters of the
two-port using a 50 Ω reference impedance.

(b) From the scattering parameters derive the
ABCD parameters of the two-port.

20. What are the scattering transfer T parameters of
a two port with the scattering parameters S11 =
0 = S22 and S12 = − = S21?

21. The scattering parameters of a two-port ampli-
fier referred to 50 Ω are S11 = 0.5, S21 = 2,
S12 = 0.1, and S22 = −0.01. What are the gen-
eralized scattering parameters of the two-port
network if the reference impedance at Port 1 is
100 Ω and at Port 2 is 10 Ω?

22. A 50 Ω, 10 dB attenuator is inserted in a 75 Ω
system. (That is, the attenuator is a two-port
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network and using a 50 Ω reference the S-
parameters of the attenuator are S11 = 0 = S22

and the insertion loss of the two-port in the 50 Ω
system is 10 dB. Now consider the same two-
port in a 75 Ω system.)

(a) What is the transmission coefficient in the
75 Ω system?

(b) What is the attenuation (i.e., the insertion
loss) in decibels in the 75 Ω system?

(c) What is the input reflection coefficient at
Port 1 including the 75 Ω at Port 2?

23. A two-port has the 50-Ω scattering parameters
S11 = 0.1; S12 = 0.9 = S21; S22 = 0.2. The 50-Ω
source at port 1 has an available power of 1 W.
(This is the power that would be delivered to a
50 Ω termination at the source.)

(a) What is the power delivered to a 50 Ω load
at port 2?

(b) What are the generalized scattering param-
eters with a 50 Ω reference at port 1 and a
75 Ω reference at port 2?

(c) Using the generalized scattering parame-
ters, calculate the power delivered to the
50 Ω load at port 2.

24. A two-port is matched to a source with a
Thevenin impedance of 50 Ω connected at Port
1 and a load of 25 Ω at Port 2. If the two-port
is represented by generalized scattering parame-
ters, what should the normalization impedances
at the ports be for S11 = 0 = S22?

25. A two-port is terminated at Port 2 in 50 Ω. At
Port 1 is a source with a Thevenin equivalent
impedance of 75 Ω. The generalized scattering
parameters of the two-port are S11 = 0, S21 =
2., S12 = 0.1, and S22 = 0.5. The reference
impedances are 75 Ω at Port 1 and 50 Ω at Port
2. If the Thevenin equivalent source has a peak
voltage of 1 V, write down the root power waves
at each port.

26. A two-port is terminated at Port 2 in 10 Ω. At
Port 1 is a source with a Thevenin equivalent
impedance of 100 Ω. The generalized scatter-
ing parameters of the two-port are S11 = 0.2,
S21 = 0.5, S12 = 0.1, and S22 = 0.3. The refer-
ence impedances are 100 Ω at Port 1 and 10 Ω at
Port 2. If the Thevenin equivalent source has a
peak voltage of 50 V, what are a1, b1, a2, and b2?

27. The scattering parameters of a two-port network
are S11 = 0.6, S21 = 0.8, S12 = 0.5, and
S22 = 0.3 and the reference impedance is 50 Ω.
At Port 1 a 50 Ω transmission line with an elec-
trical length of 90◦ is connected and at Port 2 a
50 Ω transmission line with an electrical length

of 180◦ is connected. What are the scattering pa-
rameters of the cascaded system (transmission
line–original two-port–transmission line)?

28. A connector has the scattering parameters S11 =
0.05, S21 = 0.9, S12 = 0.9, and S22 = 0.04 and
the reference impedance is 50 Ω. What is the re-
turn loss in dB of the connector at Port 1 in a 50 Ω
system?

29. The scattering parameters of an amplifier are
S11 = 0.5, S21 = 2., S12 = 0.1, and S22 = −0.2
and the reference impedance is 50 Ω. If the am-
plifier is terminated at Port 2 in a resistance of
25 Ω, what is the return loss in dB at Port 1?

30. A two-port network has the scattering param-
eters S11 = −0.5, S21 = 0.9, S12 = 0.8, and
S22 = 0.04 and the reference impedance is 50 Ω.

(a) What is the return loss in dB of the connector
at Port 1 in a 50 Ω system?

(b) Is the two-port reciprocal and why?

31. A two-port network has the scattering param-
eters S11 = −0.2, S21 = 0.8, S12 = 0.7, and
S22 = 0.5 and the reference impedance is 75 Ω.

(a) What is the return loss in dB of the connector
at Port 1 in a 75 Ω system?

(b) Is the two-port reciprocal and why?

32. A cable has the scattering parameters S11 = 0.1,
S21 = 0.7, S12 = 0.7, and S22 = 0.1. At Port 2 is
a 55 Ω load and the S parameters and reflection
coefficients are referred to 50 Ω.

(a) What is the load’s reflection coefficient?
(b) What is the input reflection coefficient of the

terminated cable?
(c) What is the return loss, at Port 1 and in dB,

of the cable terminated in the load?

33. A cable has the 50 Ω scattering parameters S11 =
0.05, S21 = 0.5, S12 = 0.5, and S22 = 0.05.
What is the insertion loss in dB of the cable if the
source at Port 1 has a 50 Ω Thevenin impedance
and the termination at Port 2 is 50 Ω?

34. A 1 m long cable has the 50 Ω scattering pa-
rameters S11 = 0.1, S21 = 0.7, S12 = 0.7, and
S22 = 0.1. The cable is used in a 55 Ω system.

(a) What is the return loss in dB of the cable in
the 55 Ω system? (Hint see Section 2.3.4 and
consider finding Zin.]

(b) What is the insertion loss in dB of the cable
in the 55 Ω system? Follow the procedure in
Example 2.9

(c) What is the return loss in dB of the cable in
a 50 Ω system?

(d) What is the insertion loss in dB of the cable
in a 50 Ω system?
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35. A 1 m long cable has the 50 Ω scattering pa-
rameters S11 = 0.1, S21 = 0.7, S12 = 0.7, and
S22 = 0.1. The cable is used in a 55 Ω system.
Follow the procedure in Example 2.10.

(a) What is the return loss in dB of the cable in
the 55 Ω system?

(b) What is the insertion loss in dB of the cable
in the 55 Ω system?

36. A 10 m long cable has the 50 Ω scattering pa-
rameters S11 = −0.1, S21 = 0.5, S12 = 0.5,
and S22 = −0.1. The cable is used in a 75 Ω
system. Use the change of S parameter reference
impedance method [Parallels Example 2.10]. Ex-
press your answers in decibels.

(a) What is the return loss of the cable in the
75 Ω system?

(b) What is the insertion loss of the cable in the
75 Ω system?

37. A 1 m long cable has the 50 Ω scattering param-
eters S11 = 0.05, S21 = 0.5, S12 = 0.5, and
S22 = 0.05. The Thevenin equivalent impedance
of the source and terminating load impedances
of the cable are 50 Ω.

(a) What is the return loss in dB of the cable?
(b) What is the insertion lossin dB of the cable?

38. A cable in a 50 Ω system has the S parameters
S11 = 0.1, S21 = 0.7, S12 = 0.7, and S22 = 0.1.
The available power at Port 1 is 0 dBm and at
Port 2 is a 55 Ω load. Γ is reflection coefficient
and an and bn are the root power waves at the
nth port..

(a) What is the load’s Γ?
(b) What is a1 (see Equation (2.117)?
(c) What is b2?
(d) What is a2?
(e) What is the power, in dBm, delivered to the

load?
(f) What is the power, in dBm, delivered to the

load if the cable is removed and replaced by
a direct connection?

(g) Hence what is the insertion loss, in dB, of the
cable?

39. A lossy directional coupler has the following

50 Ω S parameters:

S =









0 −0.95 0.005 0.1
−0.95 0 0.1 0.005
0.005 0.1 0 −0.95
0.1 0.005 −0.95 0









.

(a) What are the through (transmission) paths
(identify two paths)? That is, identify the
pairs of ports at the ends of the through
paths.

(b) What is the coupling in decibels?
(c) What is the isolation in decibels?
(d) What is the directivity in decibels?

40. A directional coupler has the following charac-
teristics: coupling factor C = 20, transmission
factor 0.9, and directivity factor 25 dB. Also, the
coupler is matched so that S11 = 0 = S22 =
S33 = S44.

(a) What is the isolation factor in decibels?
(b) Determine the power dissipated in the direc-

tional coupler if the input power to Port 1 is
1 W.

41. A lossy directional coupler has the following
50 Ω S parameters:

S =









0 0.25 −0.9 0.01
0.25 0 0.01 −0.9
−0.9 0.01 0 0.25
0.01 −0.9 0.25 0









.

(a) Which port is the input port (there could be
more than one answer)?

(b) What is the coupling in decibels?
(c) What is the isolation in decibels?
(d) What is the directivity factor in decibels?
(e) Draw the signal flow graph of the direc-

tional coupler.

42. A directional coupler using coupled lines has
a coupling factor of 3.38, a transmission factor
of −0.955, and infinite directivity and isolation.
The input port is Port 2 and the through port is
Port 2. Write down the 4× 4 S parameter matrix
of the coupler.

2.12.1 Exercises by Section
†challenging

§2.3 1, 2, 3†, 4†, 5†, 6†, 7†, 8†, 9†,
10, 11, 12, 13†, 14†, 15†, 16,
17†, 18†, 19†, 20, 21, 22†

§2.4 23†, 24, 25†, 26†

§2.6 27
§2.8 28, 29, 30, 31, 32, 33, 34†, 35,

36, 37, 38
§2.9 39†, 40†, 41†, 42†
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2.12.2 Answers to Selected Exercises

1 0.638 − 0.079

5

[

.096� −115◦ .995� −12.6◦

.995� −12.6◦ .097� −91◦

]

9 S21 = 0.2222

13(d) 50 + 100 Ω
22(c) −0.1807

25 b2 = 0.1155
28 26 dB

34(b) 2.99 dB
40(b) 187 mW
41(d) 28 dB
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3.1 Introduction

The network parameters that directly describe reflected and transmitted
power flow in circuits are scattering (S) parameters. This chapter introduces
two widely used graphical techniques for describing and solving problems
using S parameters. The first graphical technique is signal flow graph
analysis (SFG) and is a graphical way of representing equations and
variables. Simplifying an SFG is the same as solving simultaneous equations
and the equations can be kept in symbolic form. The second graphical
representation is an annotated polar plot of S parameters called a Smith
chart. This is one of the most powerful tools in RF and microwave
engineering and is used to present measured results, to conceptualize
designs, and to intuitively solve problems involving distributed networks.

3.2 Signal Flow Graph

SFGs are convenient ways to graphically represent systems of simultaneous
linear equations [1, 2]. SFGs are used in many disciplines, but they are
particularly useful with RF and microwave circuits.

An SFG represents a linear operation on an input. Consider the inductor
shown in Figure 3-1(a), where the circuit quantities are v and i, and these
are related by the impedance of the inductor sL. The SFG representation of
this relation is given in Figure 3-1(b), with the operation performed written
beside a directed edge. The operation here is simple, multiplying an input
quantity by a scale factor. The edge is directed from the excitation node to the
response node. The algebraic relationship between v and i is, in the Laplace
domain,

v = sLi, (3.1)
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and this is exactly how the SFG of Figure 3-1(b) is interpreted. Several linear
equations are represented in SFG form in Table 3-1.

3.2.1 SFG Representation of Mathematical Relations

In this section the basic rules for manipulating SFGs are presented. Think
back to when you first started working with circuits. The great abstraction
came about when the physical world was represented graphically as
connections of circuit elements. Provided that a few simple rules were
followed, the graphical representation enabled recognition of circuit
topologies and the selection of appropriate solution strategies (e.g., applying
the voltage divider rule). When it comes to working with S parameters and
interconnections of multiport networks, SFGs serve much the same purpose.
As well, SFG analysis enables the development of symbolic expressions.
Only a portion of SFG theory is considered here—the aspects relevant to
manipulating scattering parameter descriptions. Balabanian [3], Abrahams
and Coverly [4], and Di Stefano et al. [5] provide a more detailed and general
treatment.

3.2.2 SFG Representation of Scattering Parameters

Scattering parameters relate incident and reflected waves:

b = Sa, (3.2)

where a and b are vectors and their ith elements refer to the incident
and reflected waves, respectively. These relationships can be represented by
SFGs. Consider the two-port in Figure 3-2(a) described by the equations

b1 = S11a1 + S12a2 (3.3) b2 = S21a1 + S22a2, (3.4)

which are represented in SFG form in Figure 3-2(b).

3.2.3 Simplification and Reduction of SFGs

The power of SFG analysis is that an SFG can be formulated by building up
the set of equations describing a network by connecting together the SFGs
of sections. Pattern recognition can be used to identify patterns that can be

Figure 3-1: An inductor represented as: (a) a two-
terminal element; and (b) its signal flow graph. (a) (b)

Table 3-1: Mathematical
relations in the form
of signal flow graphs
with edges connecting
nodes. Edges and nodes
are used in graph the-
ory, a superset of SFG
theory. An edge is also
called a branch.

(a) y = a1x1 + a2x2

(b) y1 = ax1

y2 = ax1

(c) y1 = a3(a1x1+a2x2)
y2 = a4(a1x1+a2x2)
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(a) (b)

Figure 3-2: Two-port represented as
(a) a two-port network with incident
and reflected waves; and (b) its SFG
representation.

(a) (b)

Figure 3-3: Signal flow graph representation
of addition.

(a) (b)

Figure 3-4: Cascade reduction
of SFG: (a) three cascaded
blocks; and (b) reduced form.

(a) (b)

Figure 3-5: Signal flow graph
simplification eliminating a
variable.

reduced and simplified to arrive at a simple relationship between system
input and output. Humans are extraordinarily good at pattern recognition.

Addition

Figure 3-3 depicts SFG addition. Figures 3-3(a and b) denote

x2 = G1x1 +G2x1. (3.5)

Multiplication

Consider the three cascaded blocks represented by the SFG of Figure 3-4(a).
Here the output of the first block, x2, is described by x2 = G1x1. Now x2 is
the input to the second block with output x3 = G2x2, and so on. The total
response is the product of the individual responses (see Figure 3-4(b)):

x4 = G1G2G3x1. (3.6)

Commutation

The rules that govern the simplification of SFGs use the fact that each graph
represents a set of simultaneous equations. Consider the removal of the
internal node, b3, in Figure 3-5(a). Here

b3 = S31a1 + S32a2 and b4 = S43b3. (3.7)

Node b3 is called a mixed node (being both input and output) and can be
eliminated, so

b4 = S31S43a1 + S32S43a2, (3.8)

which has the SFG of Figure 3-5(b). In Figure 3-5(b) the node representing the
variable b3 has been eliminated. Thus elimination of a node corresponds to
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Figure 3-6: Signal flow graphs
having a self-loop: (a) original
SFG; and (b) after eliminating
a2. (a) (b)

Figure 3-7: Signal flow graph of (a) a self-loop;
and (b) with the loop eliminated. (a) (b)

Figure 3-8:
Signal flow
graph with
loop. (a) Embedded loop (b) Loop eliminated (c) Variable elimination

the elimination of a variable in the simultaneous. It is sufficient to recognize
the SFG pattern shown in Figure 3-5(a) and replace it with the SFG of Figure
3-5(b) to achieve SFG reduction.

Self-loop

Recognizing a self-loop and eliminating it is the best example yet of pattern
identification and direct application of SFG reduction strategies. Consider
the SFG of Figure 3-6(a), which has a self-loop, which describes The
equations for this graph are

b3 = S32a2, S23a2 = b2, b2 = S21a1 + S23a3, a3 = b3. (3.9)

Thus b3 = S32S21a1 + S32S23b3 and (1− S32) b3 = S32S21a1, (3.10)

where the variable b2 has been eliminated. The graph of Equation (3.10) is
shown in Figure 3-7(a). The loop attached to node b3 is called a self-loop.
Such loops are not particularly convenient and can be removed by writing
Equation (3.10) in the form

b3 =
S21S32

1− S23S32
a1, (3.11)

and the SFG for this equation is shown in Figure 3-7(b). The rule for
removing self-loops follows from the manner in which Figure 3-7(a) was
transformed into Figure 3-7(b). As an example, Figure 3-8(a) becomes Figure
3-8(b) and this can be reduced to the SFG of Figure 3-8(c).

As a further example, consider the more difficult multiple-loop case
shown in Figure 3-9(a). This may be redrawn as Figure 3-9(b). The two self-
loops are added and then the graph reduces to that in Figure 3-9(c).
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(a) (b) (c)

Figure 3-9: Signal flow graph with multiple loops.

Figure 3-10: Sequence of
graphical manipulations
in Example 3.1 reducing a
terminated two-port to a
reflection only.

EXAMPLE 3.1 Signal Flow Graph

Draw the SFG of a two-port with a load (at Port 2) having a voltage reflection coefficient of
ΓL, and at Port 1 a source has a reflection coefficient of ΓS . Using SFG analysis, derive an
expression for the input reflection coefficient looking into the two-port at Port 1.

Solution:

The two-port is shown to the right with the load
attached. The input reflection coefficient is Γin =
b1/a1 and the properties of the source here have no
impact.

The sequence of SFG manipulations is shown in Figure 3-10 beginning with the SFG in the
top left-hand corner. So the input reflection coefficient is

Γin =
b1
a1

= S11 +
S21S12ΓL

1− S22ΓL
. (3.12)
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Figure 3-11: Development
of the signal flow graph
model of a source. The
model in (a) is for a real
reference impedance Z0.

(a) SFG model of a source (b) Transmission line (c) SFG model

bS =
√
Z0E/(ZS + Z0) model used in development

3.2.4 SFG Model of a Source

The SFG model, referenced to a possibly complex impedance Z0, of a source
with a Thevenin equivalent voltage E and impedance ZS is shown in Figure
3-11(a). In developing this model the circuit shown in Figure 3-11(b) is used
where the transmission line of infinitesimal length separates the forward
and backward-traveling voltage waves, V +

1 and V −
1 for a system reference

impedance of Z0, the characteristic impedance of the transmission line. The
SFG model used with the transmission line-augmented source is shown in
Figure 3-11(c). The SFG model of Figure 3-11(c) describes

a1 = bs + ΓSb1. (3.13)

where the source reflection coefficient ΓS = (ZS −Z0)/(ZS +Z0). The circuit
equations for Figure 3-11(b) are

V1 = E − ISZS = V +
1 + V −

1 and IS =
V +
1

Z0
− V −

1

Z0
. (3.14)

Now, the traveling wave voltages are related to the a and b root power waves
as (see Equation (3.15))

a1 =
V +
1

√

ℜ{Z0}
and b1 =

V −
1

√

ℜ{Z0}
. (3.15)

Then combining Equations (3.14) and (3.15) yields

E = V +
1

ZS + Z0

Z0
− V −

1

ZS − Z0

Z0

Z0
√

ℜ{Z0}
1

ZS + Z0
E =

V +
1

√

ℜ{Z0}

(
ZS + Z0

ZS + Z0

)

− V −
1

√

ℜ{Z0}

(
ZS − Z0

ZS + Z0

)

Z0
√

ℜ{Z0}
1

ZS + Z0
E = a1 − b1ΓS . (3.16)

Comparing Equations (3.13) and (3.16) it is seen that

bs =
Z0

√

ℜ{Z0}
1

ZS + Z0
E. (3.17)

Thus the SFG model of a source is as shown in Figure 3-11(a) where the
model is shown for a real Z0.
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EXAMPLE 3.2 Power Delivered to a Load and Substitution Loss

This example illustrates the method for determining
powers using signal flow graph analysis with gener-
alized S parameters having reference impedances Z01

at Port 1 and Z02 at Port 2. This is then used to de-
termine substitution loss. The substitution loss is the
ratio of the power delivered to a load with an initial
two-port, to the power delivered with the substituted
final two-port network. The SFG elements are shown
on the right with ΓS referred to Z01 and ΓL referred to
Z02.

Solution:

The SFG manipulations that determine the power delivered to the load are shown in Figure
3-12 where

α =
S21

1− S22ΓL
, β =

1

1− ΓS (S11 + S12ΓLα)
(3.18)

and b2 = bSαβ = bS
S21

(1− S22ΓL)

1

{1− ΓS [S11 + S12S21ΓL/(1− S22ΓL)]}

= bS
S21

(1− S22ΓL)

(1− S22ΓL)

[(1− S22ΓL)− S11ΓS(1− S22ΓL) + S12S21ΓSΓL]

= bS
S21

1− S22ΓL − S11ΓS + S11S22ΓSΓL + S12S21ΓSΓL

= bS
S21

(1− S11ΓS)(1− S22ΓL)− S12S21ΓSΓL
(3.19)

Then the power delivered to the load is (using Equation (2.117))

PL = 1
2
|b2|2

(

1− |ΓL|2
)

=
1
2
|bSS21|2

(

1− |ΓL|2
)

|(1− S11ΓS)(1− S22ΓL)− S12S21ΓSΓL|2
(3.20)

The substitution loss, LS , is the ratio of the power delivered to the load by an initial
two-port identified by the leading superscript ‘i’, and the power delivered to the load with
a final two port identified by the leading superscript ‘f ’. In decibels

LS |dB = 10 log

∣

∣

∣

∣

iPL

fPL

∣

∣

∣

∣

= 10 log

∣

∣

∣

∣

∣

iS21

fS21

[

(1− fS11ΓS)(1− fS22ΓL)− fS12
fS21ΓSΓL

]

[(1− iS11ΓS)(1− iS22ΓL)− iS12
iS21ΓSΓL]

∣

∣

∣

∣

∣

2

(3.21)

Substitution loss is used in deriving formulas for insertion loss, see Section 2.8.2.

Figure 3-12: SFG manipulations in devel-
oping the power delivered to a load with
a two-port network between source and
load.
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3.2.5 Mason’s Rule

Mason’s rule is a general procedure for reducing SFGs with multiple loops
and is a systematic procedure for the reduction of SFGs to a single branch.
Mason [6] derived the formula with the aim of developing a general method
for the computer analysis of electrical circuits. First, a number of topology
definitions must be introduced.

A path begins at one node and traverses a number of successive edges in
the direction of the arrows to arrive at the final node or sink. In SFG anal-
ysis, a path is a forward path, as the successive edges are traversed in the
direction of the arrows. An open path encounters the same node only once,
and a closed path (or a loop) ends on the same node at which it is started.
The product of the transmittances of all edges in a loop is called the loop
transmittance. Two paths, open or closed, are said to be non-touching paths
if they have no nodes in common. Similarly, disjoint loops are loops that have
no nodes in common.

Mason’s rule:
If T represents the overall graph transfer function and Tk represents the
transfer function of the kth forward path from source to sink, then

T =
1

λ

∑

k

Tkλk, (3.22)

where λ is the determinant of the matrix of coefficients of the equations
represented by the SFG (usually called the determinant of the graph) and λk

is the determinant of that part of the graph (subgraph) that does not touch
the kth forward path. The determinant is given by

λ = 1−
∑

j

Pj1 +
∑

j

Pj2 −
∑

j

Pj3 + . . . , (3.23)

where the first summation in Equation (3.23) is the sum of the loop transfer
functions of all the loops in the graph. In the second summation, the products
of the transfer functions of all pairs of non-touching loops are added. In
the third summation, the products of the transfer functions of disjoint loops
taken three at a time are added, and so on. Mason’s rule can be quite difficult
to apply, but any problem that Mason’s rule can solve can also be solved
using multiple applications of SFG manipulations described previously.

EXAMPLE 3.3 Application of Mason’s Rule

Use Mason’s rule to reduce the SFG shown in Figure 3-13(a). Here, input node a1 is the
excitation and the output node b4 is the response. The transmittance T is equal to b4/a1.

Solution:

First, consider the determinant of the flow graph. Since all the loops have at least one node
in common, the expression for the determinant reduces to

λ = 1−
∑

j

Pj1. (3.24)

There are three loops identified in Figure 3-13(b) with transmittances A = S21S32S13, B =
S32S43S24, and C = S21S32S43S14. Thus the sum of the loop transmittances is
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(a) (b) (c)

Figure 3-13: Signal flow graph used in Example 3.3 applying Mason’s rule: (a) SFG; (b)
annotation identifying loops and through-path; and (c) final reduction.

∑

j

Pj1 = S21S32S13 + S32S43S24 + S21S32S43S14 (3.25)

and the determinant is given by

λ = 1− S21S32S13 − S32S43S24 − S21S32S43S14. (3.26)

This rule works well with the human ability to recognize patterns, in this case loops. There
is only one forward path, identified in Figure 3-13(b), from source a1 to sink b4, given by

T1 = S21S32S43. (3.27)

Since all the loops of the graph have nodes that touch T1, then λ1 = 1 and

∑

k

Tkλk = T1λ1 = S21S32S43. (3.28)

Thus
b4
a1

= T =
S21S32S43

1− S21S32S13 − S32S43S24 − S21S32S43S14
. (3.29)

This can be represented by a single edge from a1 to b4 as shown in Figure 3-13(c).

3.2.6 Summary

SFG reduction can be used with numerical values but the real power comes
from the ability to develop symbolic expressions. In RF and Microwave
engineering these expressions nearly always involve scattering parameters
but they can be used with any sets of equations. Design is best undertaken by
developing symbolic solutions as these enable optimization to be performed
and insights gained as to the significance of parameters.

3.3 Polar Representations of Scattering Parameters

Scattering parameters are most naturally represented in polar form with the
square of the magnitude relating to power flow. In this section a greater
rationale for representing S parameters on a polar plot is presented and this
serves as the basis for a more complicated representation of S parameters on
a Smith chart to be described in the next section.
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Figure 3-14: A two-port with scattering parameter
matrix S augmented by lines at each port with the line
at Port n having the reference characteristic impedance
at that port, i.e. Z0n and with electrical length (in
radians) of θn. The scattering parameter matrix of the
augmented two-port is S′.

3.3.1 Shift of Reference Planes as a S Parameter Rotation

A polar plot is a natural way to present S parameters graphically. In general
S parameters are referenced to different characteristic impedances Z0n at
each port. Adding additional lengths of the lines at each port rotates the S
parameters. Consider the two-port in Figure 3-14. Here the original two-port
with scattering parameter matrix S is augmented by lines at each port with
each having a characteristic impedance equal to the reference impedance.
The S parameter matrix of the augmented two-port, S′, are the same as the
original S parameter matrix but phase-shifted. That is

S
′ =

[
S′
11 S′

12

S′
21 S′

22

]

=

[
S11e

−2θ1 S12e
−(θ1+θ2)

S21e
−(θ1+θ2) S22e

−2θ2

]

. (3.30)

The shift in reference planes simply rotates the S parameters. This is one of
the main reasons why S parameters are commonly plotted on a polar plot.

3.3.2 Polar Plot of Reflection Coefficient

The polar plot of reflection coefficient is simply the polar plot of a complex
number. Figure 3-15 is used in plotting reflection coefficients and is a polar
plot that has a radius of one. So a reflection coefficient with a magnitude
of one is on the unit circle. The center of the polar plot is zero so the
reflection coefficient of a matched load, which is zero, is plotted at the
center of the circle. Plotting a reflection coefficient on the polar plot enables
convenient interpretation of the properties of a reflection. The graph has
additional notation that enables easy plotting of an S parameter on the
graph. Conversely, the magnitude and phase of an S parameter can be
easily read from the graph. The horizontal label going from 0 to 1 is used
in determining magnitude. The notation arranged on the outer perimeter of
the polar plot is used to read off angle information. Notice the additional
notation “ANGLE OF REFLECTION COEFFICIENT IN DEGREES” and the
scale relates to the actual angle of the polar plot. Verify that the 90◦ point is
just where one would expect it to be.

Figure 3-16 annotates the polar plot of reflection coefficient with real and
imaginary axes and shows the location of the short circuit and open circuit
points. Note that the reflection coefficient of an inductive impedance is in
the top half of the polar plot while the reflection coefficient of a capacitive
impedance is in the bottom half of the polar plot.

The nomograph shown in Figure 3-17 aids in interpretation of polar
reflection coefficient plots. The nomograph relates the reflection coefficient
(RFL. COEFFICIENT), ρ (ρ was originally used instead of Γ and is still
used with the Smith chart); the return loss (RTN. LOSS) (in decibels); and
the standing wave ratio (SWR); and the standing wave ratio (in decibels)
as 20 log(SWR). When printed together with the reflection coefficient polar
plot (Figures 3-15 and 3-17 combined) the nomograph is scaled properly, but
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Figure 3-15: Polar chart for plotting reflection coefficient and transmission coefficient.

it is expanded here so that it can be read more easily. So with the aid of a
compass with one point on the zero point of the polar plot and the other at
the reflection coefficient (as plotted on the polar plot), the magnitude of the
reflection coefficient is captured. The compass can then be brought down to
the nomograph to read ρ, the return loss, and VSWR directly.

3.3.3 Summary

This section introduced the plotting of reflection coefficients as a complex
number on a polar plot. The use of angle and magnitude scales make it easy
to plot a complex number in magnitude-angle form but it is also easy to
plot or read-off the complex number in real-imaginary form. Nomographs
also enable return loss and SWR to be developed without calculation. The
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Figure 3-16: Annotated polar plot of reflection
coefficient with real, ℜ, and imaginary, ℑ, axes.
The short circuit Γ = −1 and open circuit
Γ = +1 are indicated. The reflection coefficient
is referenced to a reference impedance ZREF .
Thus an impedance ZL has the reflection
coefficient Γ = (ZL − ZREF)/(ZL + ZREF)).
An interesting observation is that the angle
of Γ when ZL is inductive, i.e. has a positive
reactance, has a positive angle between 0◦ and
180◦ and so Γ is in the top half of the polar plot.
Similarly the angle of Γ when ZL is capacitive,
i.e. has a negative reactance, has a negative
angle between 0◦ and −180◦ and so Γ is in the
bottom half of the polar plot.

Figure 3-17: Nomograph relating the reflection coefficient (RFL. COEFFICIENT), ρ; the return
loss (RTN. LOSS) (in decibels); and the standing wave ratio (SWR).

transmission coefficient can be plotted on the same polar plot, i.e. Figure 3-
15, as the polar plot is the representation of a complex number.

3.4 Smith Chart

The Smith chart is a powerful graphical tool used in the design of microwave
circuits. Mastering the Smith chart is essential to entering the world of RF
and microwave circuit design as all practitioners use this as if it is well
understood by others. It takes effort to master but fundamentally it is quite
simple combining a polar plot used for plotting S parameters directly, curves
that enable normalized impedances and admittances to be plotted directly,
and scales that enable electrical lengths in terms of wavelengths and degrees
to be read off. The chart has many numbers printed in quite small font and
with signs dropped as there is not room.

The Smith chart was invented by Phillip Smith and presented in close to its
current form in 1937, see [7–10]. Once nomographs and graphical calculators
were common engineering tools mainly because of limited computing
resources. Only a few have survived in electrical engineering usage, with
Smith charts being overwhelmingly the most important.
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This section first presents the impedance Smith chart and then the
admittance Smith chart before introducing a combined Smith chart which
is the form needed in design. The Smith chart presents a large amount
of information in a confined space and interpretation, such as applying
appropriate signs, is required to extract values. The Smith chart is a ‘back-
of-the-envelope’ tool that designers use to sketch out designs.

3.4.1 Impedance Smith Chart

The reflection coefficient, Γ, is related to a load, ZL, by

Γ =
ZL − ZREF

ZL + ZREF
, (3.31)

where ZREF is the system reference impedance. With normalized load
impedance zl = r + x = ZL/ZREF, this becomes

Γ =
r + x− 1

r + x+ 1
. (3.32)

Commonly in network design reactive elements are added either in shunt
or in series to an existing network. If a reactive element is added in series
then the input reactance, x, is changed while the input resistance, r, is held
constant. So superimposing the loci of Γ (on the S parameter polar plot) with
fixed values of r, but varying values of x (x varying from −∞ to ∞), proves
useful, as will be seen. Another loci of Γ with fixed values of x and varying
values of r (r varying from 0 to ∞) is also useful. The combination of the
reflection/transmission polar plots, the nomographs, and the r and x loci is
called the impedance Smith chart, see Figure 3-18. This is still a polar plot
of reflection coefficient and the arcs and circles of constant and resistance
enable easy conversion between reflection coefficient and impedance.

The full impedance Smith chart shown in Figure 3-18 is daunting so
discussion will begin with the less dense form of the impedance Smith chart
shown in Figure 3-19(a) which is annotated in Figure 3-19(b). Referring
to Figure 3-19(b), the unit circle corresponds to a reflection coefficient
magnitude of one and hence a pure reactance. Note that there are lines
of constant resistance and arcs of constant reactance. All points in the
top half of the Smith chart have positive reactances and so all reflection
coefficient points plotted in the top half of the Smith chart indicate inductive
impedances. All points in the bottom half of the Smith chart have negative
reactances and so all reflection coefficient points plotted in the bottom half
of the Smith chart indicate capacitive impedances. The horizontal line across
the middle of the Smith chart indicates pure resistance.

A point on the unit circle indicate that the resistance of the point is zero,
while a reflection coefficient point inside the unit circle indicates a finite
positive resistance.

One big difference between the less dense form of the impedance Smith
chart, Figure 3-19(a), and the full impedance Smith chart of Figure 3-18 is
that the signs of the reactances are missing in the full impedance Smith chart.
This is simply because there is not enough room and the user must add the
appropriate sign when reading the chart. Thus it is essential that the user
keep the annotations in Figure 3-19(b) in mind. Yet another factor that makes
it difficult to develop essential Smith chart skills.
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Figure 3-18: Impedance Smith chart. Also called a normalized Smith chart since resistances and
reactances have been normalized to the system reference impedance ZREF: z = Z/ZREF.
A point plotted on the Smith chart represents a complex number A. The magnitude of A is
obtained by measuring the distance from the origin of the polar plot (the same as the origin of
the Smith chart in the center of the unit circle) to point A, say using a ruler, and comparing that
to the measurement of the radius of the unit circle which corresponds to a complex number with
a magnitude of 1. The angle in degrees of the complex number A is read from the innermost
circular scale. The technique used is to draw a straight line from the origin through point A out
to the circular scale.
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(a) Impedance Smith chart (b) Annotated impedance Smith chart

Figure 3-19: Normalized impedance Smith charts.

EXAMPLE 3.4 Impedance Plotting

Plot the normalized impedances zA = 1− 2
and zB = 0.3 + 0.6 on an impedance Smith
chart.

Solution:
The impedance zA = 1 − 2 is plotted
as Point A to the right. To plot this, first
identify the circle of constant normalized
resistance r = 1, and then identify the arc
of constant normalized reactance x = −2.
The intersection of the circle and arc locates
zA at point A. The reader is encouraged to
do this with the full impedance Smith chart
as shown in Figure 3-18. Recall that signs
of reactances are missing on the full chart.
As an exercise read off the reflection coeffi-
cient (the answer is 0.5−0.5 = 0.707� −45◦).

The impedance zB = 0.3 + 0.6 is plotted as Point B which is at the intersection of the circle
r = 0.3 and the arc x = +0.6. Interpolation is required to identify the required circle and arc.
The reader should do this with the full impedance Smith chart. As an exercise read off the
reflection coefficient (the answer is −0.268 + 0.585 = 0.644� 115◦).
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EXAMPLE 3.5 Impedance Synthesis

Use a length of terminated transmission line to realize an impedance of
Zin = 140 Ω.

Solution:
The impedance to be synthesized is reactive so the termination must also
be lossless. The simplest termination is either a short circuit or an open
circuit. Both cases will be considered. Choose a transmission line with
a characteristic impedance, Z0, of 100 Ω so that the desired normalized
input impedance is 140 Ω/Z0 = 1.4, plotted as point B in Figure 3-20.

First, the short-circuit case. In Figure 3-20, consider the path AB. The termination is a short
circuit and the impedance of this load is Point A with a reference length of ℓA = 0 λ (from the
outermost circular scale). The corresponding reflection coefficient reference angle from the
scale is θA = 180◦ (from the innermost circular scale labeled ‘WAVELENGTHS TOWARDS
THE GENERATOR’ which is the same as ‘wavelengths away from the load’). As the line
length increases, the input impedance of the terminated line follows the clockwise path
to Point B where the normalized input impedance is 1.4. (To verify your understanding
that the locus of the refection coefficient rotates in the clockwise direction, i.e. increasingly
negative angle, as the line length increases see Section 2.3.3 of [11].) At Point B the reference
line length ℓB = 0.1515 λ and the corresponding reflection coefficient reference angle from
the scale is θB = 71.2◦ . The reflection coefficient angle and length in terms of wavelengths
were read directly off the Smith chart and care needs to be taken that the right sign and
correct scale are used. A good strategy is to correlate the scales with the easily remembered
properties at the open-circuit and short-circuit points. Here the line length is

ℓ = ℓB − ℓA = 0.1515λ − 0λ = 0.1515λ, (3.33)

and the electrical length is half of the difference in the reflection coefficient angles,

θ = 1
2
|θB − θA| = 1

2
|71.2◦ − 180◦| = 54.4◦, (3.34)

corresponding to a length of (54.4◦/360◦)λ = 0.1511λ (the discrepancy with the previously
determine line length of 0.1515λ is small). This is as close as could be expected from using
the scales. So the length of the stub with a short-circuit termination is 0.1515λ.

For the open-circuited stub, the path begins at the infinite impedance point Γ = +1 and
rotates clockwise to Point A (this is a 90◦ or 0.25λ rotation) before continuing on to Point B.
For the open-circuited stub,

ℓ = 0.1515λ + 0.25λ = 0.4015λ. (3.35)

3.4.2 Admittance Smith Chart

The admittance Smith chart has loci for discrete constant susceptances
ranging from −∞ to ∞, and for discrete constant conductance ranging from
0 to ∞, see Figure 3-21. A less dense form is shown in Figure 3-22(a). This
chart looks like the flipped version of the impedance Smith chart but it is the
same polar plot of a reflection coefficient so that the positions of the open
and short circuit remain the same as do the capacitive and inductive halves
of the Smith chart. In the full version of the admittance Smith chart, Figure 3-
21, signs have been dropped as there is not room for them. Thus interpreting
admittances from the chart requires that the user separately determine the
signs of susceptances. The less dense version, Figure 3-22(a), retains the
signs making it easier to follow some of the discussions and examples. It is
important that the user readily understand the annotations on the less dense
form of the Smith chart, see Figure 3-22(b).
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Figure 3-20: Design of a short-circuit stub with a normalized input impedance of 1.4. The path
AB is actually on the unit circle but has been displaced here to avoid covering numbers. The
electrical length in wavelengths has been read from the outermost circular scale, and the angle,
θ, in degrees refers to the angle of the polar plot (and is twice the electrical length).

3.4.3 Combined Smith Chart

The combination of the reflection/transmission polar plots, nomographs,
and the impedance and admittance Smith chart leads to the combined
Smith chart (see Figure 3-23). This color Smith chart is the preferred version
for use in design and the separate impedance and admittance versions
of the Smith chart are rarely used. The combined Smith charts is rich
with information and care is required to identify the lines that correspond
to admittances (specifically lines of constant normalized conductance
and constant normalized susceptances), and the lines that correspond
to impedances (constant normalized resistances and constant normalized
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Figure 3-21: Admittance Smith chart.

reactances). The signs of the reactances and susceptible are missing and left
to the user to add them depending on whether a reflection coefficient point
is capacitive (in the lower half of the Smith chart and hence susceptances
are positive and reactances are negative) or whether a point is inductive (in
the upper half of the Smith chart and hence susceptances are negative and
reactances are positive). A less dense version of the combined Smith chart,
with the addition of signs, is shown in Figure 3-24(a).
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(a) Admittance Smith chart (b) Annotated admittance Smith chart

Figure 3-22: Normalized admittance Smith chart.

EXAMPLE 3.6 Impedance to Admittance Conversion

Use a Smith chart to convert the impedance z = 1− 2 to an admittance.

Solution:

The impedance z = 1−2 is plotted as Point A in Figure 3-24(b). To read the admittance from
the chart, the lines of constant conductance and constant susceptance must be interpolated
from the arcs and circles provided. The interpolations are shown in the figure, indicating a
conductance of 0.2 and a susceptance of 0.4. Thus

y = 0.2 + 0.4.

(This agrees with the calculation: y = 1/z = 1/(1− 2) = 0.2 + 0.4.)

Adding Reactance and Susceptance

A good amount of microwave design, such as designing a matching network
for maximum power transfer, involves beginning with a load impedance
plotted on a Smith chart and inserting series and shunt reactances, and
transmission lines, to transform the impedance to another value. The
preferred view of the design process is that of a reflection coefficient that
gradually evolves from one value to another. That is, in the case of a series
reactance, the effect is that of a reflection coefficient gradually changing as
the reactances increase from zero to its actual value. The path traced out by
the gradually evolving reflection coefficient value is called a locus. The loci
of common circuit elements added to various loads are shown in Figure 3-
25. For each locus the load is at the start of the arrow with the value of the
element increasing from zero to its actual final value at the arrow head.
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Figure 3-23: Normalized combined Smith chart combining impedance and admittance Smith
charts.
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(a) Combined impedance and admittance Smith chart (b) Smith chart used in Example 3.11

Figure 3-24: Combined impedance and admittance Smith chart.

x→ more positive x→ more negative b → more negative b→ more positive

(a) Series L (b) Series C (c) Shunt L (d) Shunt C

ℓ increasing ℓ increasing ℓ increasing ℓ increasing

(e) Transmission line (f) Line with reactive (g) Transmission line (h) Transmission line

Z0 = ZREF load, Z0 has any value Z0 < ZREF Z0 > ZREF

Figure 3-25: Reflection coefficient locus of a load augmented by elements as indicated. The
original load is at the start of the arrowed arc. In (a) and (b) the locus is with respect to increasing
|x| (normalized reactance magnitude), in (c) and (d) the locus is with respect to increasing |b|
(normalized susceptance magnitude), and in (e)–(h) with respect to increasing length ℓ. In (e)–
(h) the loci are parts of circles centered on the x = 0 line. x indicates that the locus cannot cross
infinity (open circuit for (a) and (b), short circuit for (c) and (d)).
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3.4.4 Smith Chart Manipulations

Microwave design often proceeds by taking a known load and transforming
it into another impedance, perhaps for maximum power transfer. Smith
charts are used to show these manipulations. In design the manipulations
required are not known up front and the Smith chart enables identification
of those required. Except for particular situations, lossless elements such
as reactances and transmission lines are used. The few situations where
resistances are introduced include introducing stability in oscillators and
amplifiers, and deliberately reduce signals levels. Most of the time
introducing resistances unnecessarily increases noise and reduces signal
levels thus reducing critical signal-to-noise ratios.

The circuit in Figure 3-26 will be used to illustrate the representation of
manipulations on a Smith chart. The most common view is to consider that
the Smith chart is a plot of the reflection coefficient at various stages in the
circuit, i.e., ΓA, ΓB , ΓC , ΓD, and ΓIN. Additionally the load, ZL, is plotted
and reactances, susceptances, or transmission lines transform the reflection
coefficient from one stage to the next. Yet another concept is the idea that
the effect of an element is regarded as gradually increasing from a negligible
value up to the final actual value and in so doing tracing out a locus which
ends in an arrow head. This is the approach nearly all RF and microwave
engineers use. The manipulations corresponding to the circuit are illustrated
in Figure 3-27. The individual steps are identified in Figure 3-28. The first
few steps are confined to the top half of the Smith chart which is repeated on
a larger scale in Figure 3-29 for the first three steps.

Step 1 L, a, b, c, d, e, f
The first step is to plot the load ZL on a Smith chart and this is the Point L

in Figures 3-27–3-29. The reference impedance ZREF is chosen to be 50 Ω, the
same as the characteristic impedance of the transmission line in the circuit.
The Smith chart is now known as a 50-Ω Smith chart. This is a common
choice because then the locus of reflection coefficient variation introduced
by the line will be a circle centered at the origin of the Smith chart. To plot L

derive the normalized load impedance zL = ZL/ZREF = 0.3 + 0.6 (future
numerical values are given in Figure 3-26).

To plot zL the normalized resistance circle for 0.3 and the normalized

Figure 3-26: Circuit used
in illustrating Smith
chart manipulations.
ZREF = 50 Ω,

YREF = 1/ZREF = 20 mS,

z = Z/ZREF, y = Y/YREF,

ZIN = ZREF = 50 Ω.
In the circuit B indicates
susceptance and X indi-
cates reactiance.

Circuit elements Normalized Derived values

ZL = 15 + 30 Ω
XAL = 30 Ω
BBA = 4.6 mS
XCB = −180 Ω
Z0 = 50 Ω
θ = 83◦

BID = 54.2 mS

zL = 0.3 + 0.6
xAL = 0.600
bBA = 0.230
xCB = −3.600
Z0 = 1
θ = 83◦

bID = 2.71

ΓL = 0.644� 115◦

ΓA = 0.785� 115◦

ΓB = 0.741� 59◦

ΓC = 0.805� −50◦

ΓD = 0.805� 144◦

ΓIN = 0

zA = 0.300 + 1.200
yA = 0.196 − 0.784
yB = 0.196 − 0.554
zB = 0.567 + 1.603
zC = 0.567 − 1.997
yD = 0.998 − 2.71
zIN = 1, yIN = 1
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Figure 3-27: Smith chart manipulations corresponding to the circuit in Figure 3-26 with circuit
elements added one at a time beginning with the load impedance at Point L.
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Figure 3-28: Steps
in the Smith chart
manipulations
shown in Figures
3-27 and 3-29.

Step 1 Step 2 Step 3

Locate ZL xA = xL + xAL bB = bA + bBA

zL = 0.3 + 0.6 zA = zL + xAL yB = yA + bBA

xAL = 0.600 bBA = 0.230

xL = 0.600, xA = 1.200 bA = −0.784, bB = −0.554

Step 4 Step 5 Step 6

xC = xB + xCB ΓD = ΓC � ∆φ, ∆φ = −2θ bI = bD + bID
zC = zB + xCB θ = 46.6◦,∆φ = 93.2◦ zI = zD + bID = 1

xCB = −3.600 φC = −50◦, φD = −144◦ bID = 2.717

xB = 1.603, xC = −1.997 bD = −2.717, bI = 0

reactance arc for +0.3 must be located. The resistance circle is identified
from the scale on the horizontal axis of the Smith chart, see the circled value
labeled ‘a’. Locating the +0.3 reactance arc is not as direct as the signs of
reactance are missing on the Smith chart. Referring back to Figure 3-19 it is
noted that an inductive impedance is in the top half of the Smith chart and
so positive reactances are in the top half. Thus the +0.3 reactance arc is in
the top half of the Smith chart and the correct arc is identified by ‘c’. From
the curves identified by ‘a’ and ‘c’ the arcs ‘b’ and ‘d’ are drawn with the
impedance zL, i.e. point L, at the intersection of the arcs.

It is instructive to determine ΓL, the reflection coefficient at L. On the Smith
chart the reflection coefficient vector ΓL is drawn from the origin to the point
L. ΓL is evaluated by separately determining its magnitude and angle. To
determine the magnitude measure the length of the ΓL| vector either using a
ruler, a compass, or marking the edge of a piece of paper. Then this length can
be compared against the reflection coefficient scale shown at the bottom of
Figure 3-27 yielding |ΓL| = 0.644. The angle of ΓL is read by extending the ΓL

vector out to the inner most circular scale on the Smith chart. This extension
is labeled as e. The angle is read at point ‘f’ as 115◦. Thus ΓL = 0.644� 115◦.
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Figure 3-29: The first three steps in the Smith chart manipulations in Figure 3-27.



74 STEER MICROWAVE AND RF DESIGN, NETWORKS

Step 2 Add the series reactance XAL, path L to A, g
In step 2 an inductor with reactance XAL is in series with ZL and the
reflection coefficient transitions from point L to point A. Now xL = ℑ{zL} =
0.6. To this xAL = 0.6 is added so that the normalized reactance at A is
xA = xL + xAL = 0.6 + 0.6 = 1.2. The locus of this operation is the arc,
‘g’, extending from L with gradually increasing series reactance until the full
value xAL, at the arrowhead of the locus, is obtained. The procedure is to
identify the arc of xA = +1.2 reactance and then follow the circle of constant
resistance (since the resistance is not changing) up to this arc. This operation
traces out the locus ’g’.

Step 3 Add the shunt susceptance BBA, path A to B, h
In step 3 a capacitor with susceptance XBA is in shunt with ZA and
the reflection coefficient transitions from point A to point B. The locus
of this operation follows a circle of constant conductance with only they
susceptance changing. The final value must be calculated as bB = bA + bBA.
The susceptance bB is read from the graph as −0.784. This value is read
by following the arc of constant susceptance out to the unit circle where
a value of 0.784 is read. Note that the arc must be interpolated and that
the user must realize that the susceptance is negative in the top half of the
Smith chart so the susceptance must be negative even though a minus sign is
not shown on the Smith chart. Thus the correct reading for xA is −0.784.
Now bBA = +0.230 so the locus, ‘h’, of the transition follows the circle
of constant conductance ending at the (interpolated arc) with susceptance
bB = ba + bBA = −0.784 + 0.230 = −0.554.

Step 4 Add the series reactance XCB , path B to C, i
In step 4 a capacitor with reactance XCB is in series with ZB and the
reflection coefficient transitions from point B to point C. Now xB is read
from the graph as +1.603. To this add xCB = −3.600 so that the normalized
reactance at C is xC = xB + xCB = 1.603 + (−3.600) = −1.997. The locus
from B to C, path ‘i’, begins at B and follows a circle of constant resistance
up to the arc with normalized reactance xC = −1.997. This reactance arc
is in the bottom half of the Smith chart as reactances are negative there
even though the signs are missing on the labels of the reactance arcs in the
bottom half of the chart. The locus of this operation is the arc, ‘g’, from L

with gradually increasing series reactance until the full value zCB, at the
arrowhead of the locus, is obtained. The procedure is to identify the arc of
xC = −1.997 reactance and then follow the circle of constant resistance (since
the resistance is not changing) up to this arc. This traces out the locus ’i’.

Step 5 Insert the transmission line, path C to D, j
Step 5 illustrates a different type of manipulation as now there is a
transmission line and the reflection coefficient transitions from ΓC , i.e. point
C to the input reflection coefficient of the line ΓD. The locus of this transition
must be clockwise, i.e. having increasingly negative angle (as discussed
in Section 2.3.3 of [11]). The electrical length of the transmission line is
θ = 83◦ and the reflection coefficient changes by the negative of twice this
amount, φDC = −2θ = −166◦. The locus is drawn in Figure 3-27 with the
transmission line gradually increasing in length tracing out a circle which,
since Z0 = ZREF, is centered at the origin of the Smith cart. The procedure is
to find the scale value of the angle at point C which is read by drawing a line
from the origin through C intersecting the reflection coefficient angle scale
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(the innermost circular scale) yielding φC = −50.4◦ and so φD = φC+φDC =
−50.4◦ − 166◦ + 360◦) = +143.6◦. The locus from C to D is drawn by first
drawing a line from the origin to the φD = −143.6◦ point on the angle scale.
Then point D will be at the intersection of this line and a circle of constant
radius drawn through C. The locus is shown as path ’j’ in Figure 3-27.

Step 6 Add the shunt susceptance BID, path D to I, k
The final step is to add the shunt capacitor with susceptance BID to ZD.
Following the previous procedure bD is read as −2.71 to which bID = 2.71 is
added so that bI = 0 which is just the horizontal line across the middle of the
Smith chart. This line corresponds to zero reactance and zero susceptance.
The locus, path ’k’, extends from D to I following the circle of constant
conductance. The final result is that zIN = 1.00 and ZIN = zIN · Z0 = 50 Ω.

Summary

The Smith chart manipulations considered here modified the reflection
coefficient of a load by adding shunt and series reactive elements. The final
result of the circuit manipulations is that the input impedance is ZIN =
50 Ω. If the source has a Thevenin source impedance of 50 Ω then there is
maximum power transfer to the circuit. Since all of the elements in the circuit
manipulations are lossless this means that there is maximum power transfer
from the source to the load ZL. Of course fewer circuit manipulations could
have been used to achieve this result. Note that manipulations resulting from
adding series and/or shunt resistances were not considered. It is rare that
this would be desired as that simply means that power is absorbed in the
resistance and additional noise is added to the circuit.

EXAMPLE 3.7 Reflection Coefficient of a Shorted Microstrip Line on a Smith Chart

Design Environment Project File: RFDesign Shorted Microstrip Line Smith.emp

The example in Section 3.5.2 of [11] calculated the input reflection coefficient, Γ, of the
shorted microstrip line on alumina substrate shown in Figure 3-30. The line had low loss
and so Γ was always close to 1. The microstrip line was designed to be 50 Ω and the locus of
Γ with respect to frequency of the low loss line is plotted on a 50-Ω Smith chart in Figure 3-
31(a). Plotting Γ on a 50-Ω Smith chart indicates that the reflection coefficient was calculated
with respect to 50 Ω. At a very low frequency, 0.1 GHz is the lowest frequency here, the locus
of the reflection coefficient is very close to Γ = −1, identifying a short circuit. As the electrical
length increases, in this case the frequency increases as the physical length of the line is fixed,
the locus of the reflection coefficient moves clockwise, hugging the unity reflection coefficient
circle. At the highest frequency, 30 GHz, the reflection coefficient is less than 1 and the locus
starts moving in from the unity circle. It is interesting to see what happens with a high-loss
line, and this is achieved by changing the loss tangent, tan δ, of the substrate from 0.001 to
0.1. The locus of the reflection coefficient of the high-loss line is shown in Figure 3-31(b). Loss
increases as the electrical length of the line increases and the locus of the reflection coefficient
traces out a clockwise inward spiral.

Figure 3-30: A 50 Ω shorted gold microstrip line with width w =
500 µm, length ℓ = 1 cm on a 600 µm thick alumina substrate with
relative permittivity εr = 9.8 and loss tangent tan δ = 0.001.
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3.4.5 An Alternative Admittance Chart

Design often requires switching between admittance and impedance. So it is
convenient to use the colored combined Smith chart shown in Figure 3-23.
Monochrome charts were once the only ones available and an impedance
Smith chart was used for admittance-based calculations provided that
reflection coefficients are rotated by 180◦. This form of the Smith chart is not
used now.

3.4.6 Expanded Smith Chart

Another form of the Smith chart is the expanded Smith chart shown in
Figure 3-32. This is used to plot reflection coefficients of loads with a negative
resistance that have a reflection coefficient magnitude greater than one. An
oscillator, for example, presents a negative resistance to a resonator. It is also
used to plot transmission parameters that have a magnitude greater than
one, such as the forward transmission parameter, S21, of a transistor.

3.4.7 Summary

The Smith chart is the most powerful of tools used in RF and Microwave
Design. Design using Smith charts will be considered in other chapters but
at this stage the reader should be totally conversant with the techniques
described in this section.

(a) tan δ = 0.001 (b) tan δ = 0.1

Figure 3-31: Smith chart plot of the reflection coefficient of the shorted 1 cm-long microstrip line
in Figure 3-30: (a) a low-loss substrate with tan δ = 0.001; and (b) a high-loss substrate with
tan δ = 0.1. Frequencies are marked in gigahertz.
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3.5 Transmission Lines and Smith Charts

The locus of a transmission line on a Smith chart is a circle. When
the characteristic impedance of the line is equal to the system reference
impedance this circle is centered at the origin of the Smith chart. The main
purpose of this section is to consider the situation where the characteristic
impedance and the system reference impedance differ.

3.5.1 Bilinear Transform

Mathematically the input reflection coefficient of a terminated transmission
line of characteristic impedance Z02 is referenced to a system impedance
Z01. The mathematics describing this is based on the bilinear transform. The
generalized bilinear transform of two complex numbers z and w is

w =
Az +B

Cz +D
, (3.36)

where A, B, C, and D are constants1 that may themselves be complex. This is
of interest in dealing with reflection coefficients where w and z are reflection
coefficients and A, B, C, and D describe the two-port network connected to a
load with a complex reflection coefficient z, and w is the reflection coefficient
looking into the network. The special property of the bilinear transform is
that a circle in the complex plane (here the locus of z) is mapped onto another
circle (here the locus of w) in the complex plane. (This is shown in Section
1.A.14 of [11].)

1 These are not the cascadable ABCD parameters, but simply the coefficients commonly used
with bilinear transforms.

Figure 3-32: Expanded Smith chart
used to plot scattering parameters
with a magnitude greater than 1. The
forward transmission parameter, S21,
of a transistor is shown with the ar-
rows in the direction of increasing fre-
quency. The unit circle of a conven-
tional Smith chart is shown



78 STEER MICROWAVE AND RF DESIGN, NETWORKS

3.5.2 Reference Impedance Change as a Bilinear Transform

In Figure 3-33 a fixed load terminates a transmission line of characteristic
impedance Z01 and the input reflection coefficient is Γin. As will be shown,
the locus of Γin, normalized to any system impedance, is a circle on the
complex plane as the electrical length of the line increases. The electrical
length of the line increases as the frequency increases with the physical
length of the line held constant, or as the physical length of the line increases
with the frequency held constant.

From Equation ((2.60)) of [11] the reflection coefficient of a load ZL

referenced to Z01 is

ΓL,Z01 =
ZL − Z01

ZL + Z01
(3.37)

and the input reflection coefficient referenced to Z01 is

Γin,Z01 = ΓL,Z01e
−2θ, (3.38)

where θ = βℓ is the electrical length of the line. As θ increases from zero,
Γin,Z01 plotted on a polar chart traces out a circle rotating in the clockwise
direction. The important result that will be developed in this section is that
when the input reflection coefficient is referenced to another impedance, the
new reflection coefficient will also trace out a circle. The development of
Γin,Z02 (the input reflection coefficient referred to Z02) begins by calculating
the input impedance of the line (in Figure 3-33):

Zin = Z01
1 + Γin,Z01

1− Γin,Z01
(3.39)

so that the reflection coefficient referenced to Z02 is

Γin,Z02 =
Zin − Z02

Zin + Z02
=

(Zin − Z02)(1 − Γin,Z01)

(Zin + Z02)(1 − Γin,Z01)

=
(Z01 + Z02)Γin,Z01 + (Z01 − Z02)

(Z01 − Z02)Γin,Z01 + (Z01 + Z02)

=
Γin,Z01 +B

BΓin,Z01 + 1
=

AΓin,Z01 +B

CΓin,Z01 +D
. (3.40)

This mapping has the form of a bilinear transform (Equation (3.36)) with

A = 1 = D, B =
Z01 − Z02

Z01 + Z02
= C. (3.41)

Since Equation (3.40) is a general bilinear transform, if the locus of Γin,Z01 is
a circle, then the locus of Γin,Z02 is also a circle.

Figure 3-33: Transmission line of characteristic
impedance Z01 terminated in a load with a
reflection coefficient ΓL.
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Figure 3-34: A Smith chart normalized to 50 Ω
with the input reflection coefficient locus of a
50 Ω transmission line with a load of 25 Ω.

Figure 3-35: A Smith chart normalized to 75 Ω
with the input reflection coefficient locus of a
50 Ω transmission line with a load of 25 Ω.

EXAMPLE 3.8 Reflection Coefficient, Reference Impedance Change

In the circuit to the right, a 50-Ω lossless line is terminated
in a 25-Ω load. Plot the locus, with respect to the length of
the line, of the reflection coefficient looking into the line,
referencing it first to a 50-Ω reference impedance and then
to a 75-Ω reference impedance.

Solution:

Let the input reflection coefficient referenced to a 50-Ω system be Γin,50, and when it is
referenced to 75-Ω it is Γin,75. In the 50-Ω system the reflection coefficient of the load is

ΓL,50 =
ZL − 50

ZL + 50
=

25− 50

25 + 50
= −0.3333 (3.42) and Γin,50 = ΓL,50e

−2θ , (3.43)

where θ = (βℓ) is the electrical length of the line. The locus, with respect to electrical length,
of Γin,50 is plotted in Figure 3-34 as the length ℓ ranges from 0 to λ/8 to λ/2, and completes
the circle at λ/2. Now

Zin = 50
1 + Γin,50

1− Γin,50
, (3.44)

so that the 75-Ω reflection coefficient is

Γin,75 =
Zin − 75

Zin + 75
. (3.45)

The locus of this reflection coefficient is plotted on a polar plot in Figure 3-35. This locus is
the plot of Γin,75 as the electrical length of the line, θ, is varied from 0 to π. The center of the
circle in Figure 3-35 is taken from the chart and determined to be −0.177.
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A circle is defined by its center and its radius, and Equations ((1.239)) and
((1.240)) of [11], enable the circles for the locus of Γin,Z01 and Γin,Z02 to be
related. Γin,Z01 has a center CZ01 and a radius RZ01:

CZ01 = 0 and RZ01 = |ΓL,Z01| . (3.46)

In Equation ((1.239)) of [11]CZ01 replaces the center Cz and |ΓL,Z01| takes the
place of the radius Rz . Similarly the center of the ΓZ02 circle, CZ02, replaces
Cw and the radius of the ΓZ02 circle, RZ02, replaces Rw. So the locus of the
reflection coefficient referenced to Z02 is described by a circle with center and
radius

CZ02 =
B −A/C

1− |CΓL,Z01|2
+

A

C
(3.47) RZ02 =

∣
∣
∣
∣

(BC −A)ΓL,Z01

1− |CΓL,Z01|2
∣
∣
∣
∣
. (3.48)

Since, from Equation (3.41), A = 1 and B = C (B is given in Equation
(3.41)), this further simplifies to

CZ02 =
B − 1/B

1− |BΓL,Z01|2
+

1

B
(3.49) RZ02 =

∣
∣
∣
∣

(B2 − 1)ΓL,Z01

1− |BΓL,Z01|2
∣
∣
∣
∣
. (3.50)

So the locus (with respect to frequency) of the input reflection coefficient
of a terminated transmission line (of characteristic impedance Z01) is a circle
no matter what normalization impedance is used and the center of the circle
will be on the real axis, the horizontal axis of the Smith chart.

EXAMPLE 3.9 Center of Reflection Coefficient Locus

In Example 3.8 the locus of the input reflection coefficient referenced to 75 Ω was plotted
for a 50-Ω line terminated in a load with reflection coefficient (in the 50-Ω system) of −1/3.
Calculate the center of the input reflection coefficient when it is referenced to 75 Ω.

Solution:

The center of the reflection coefficient normalized to Z01 is zero, that is, C50 = 0. From
Equation (3.49), the center of the reflection coefficient normalized to Z02 = 75 Ω is

C75 =
B − 1/B

1− |BΓL,50|2
+

1

B
, (3.51)

where B =
Z01 − Z02

Z01 + Z02
=

50− 75

50 + 75
= −0.2. (3.52)

So C75 =
−0.2 + 5

1− (0.2/3)2
− 5 = −0.17857, (3.53)

which compares favorably to a center of −0.177 determined manually from the polar plot in
the previous example.

3.5.3 Reflection Coefficient Locus

The direction of the locus of the input reflection coefficient of a terminated
transmission line is always clockwise with increasing frequency, even if the
Smith chart uses a reference or normalization impedance different from the
characteristic impedance of the line. In Figure 3-36, Z01 is the characteristic
impedance of the line and Z02 is the normalization impedance. The center
of the circle of the reflection coefficient normalized to Z02 is to the left of the
origin if Z02 > Z01, and to the right of the origin if normalized to Z02 < Z01,
but always on the real axis.
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Figure 3-36: The locus of the input reflection
coefficient normalized to Z02 of a terminated
line of characteristic impedance Z01. The locus
is with respect to the electrical length of the line
and the arrows show the direction of rotation
of the reflection coefficient. (Note that for the
same terminating impedance the radii will also
change, but this is not shown here.)

3.5.4 Summary

Smith charts are indispensable tools for RF and microwave engineers. Even
with the ready availability of CAD programs. Smith charts are generally
preferred for portraying measured and calculated data because of the easy
interpretation of S parameters. With experience, the properties of circuits can
be inferred. Also, with experience they are an invaluable design tool enabling
the designer to see the beginning and endpoints of a design and infer the type
of circuitry required to go from start to finish.

3.6 Summary

Graphical representations of power flow enable RF and microwave
engineers to quickly ascertain circuit performance and arrive at qualitative
design decisions. Humans are very good at processing graphical information
and seeing patterns, anomalies, and the path from one point to another.
Two powerful techniques were introduced in this chapter that provide this
insight. These are the signal flow graph and the Smith chart. Signal flow
graphs enable engineers to solve algebraic problems without using algebraic
equations. Signal flow graphs are also a convenient way to develop symbolic
expressions. Developing these expressions using algebraic manipulations
alone is error prone.

The Smith chart is a richly annotated polar plot for representing reflection
and transmission coefficients, and more generally, scattering parameters.
The Smith chart representation of scattering parameter data aligns very
well with the intuitive understanding of an RF designer. The experienced
RF designer is intrinsically familiar with the Smith chart and prefers that
circuit performance during design be represented on one. Representing
something as simple as an extension of a line length to a two-port is
quite complex if described using network parameters other than scattering
parameters. However, with scattering parameters this extension results in a
change of the angle of a scattering parameter, or on a Smith chart an arc.
Scattering parameters relate directly to power flow. So from a Smith chart an
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experienced designer can ascertain the effect of circuit design on power flow,
which then relates to signal-to-noise ratio and power gain. The Smith chart
will be an essential tool in many of the topics considered in later chapters.
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3.8 Exercises

1. Reduce the following signal flow graph to two
edges and three nodes. That is, write down the
expression for b2 in terms of a1 and a2, eliminat-
ing the variables x1, x2, and x3.

2. Reduce the following signal flow graph to one
edge and two nodes. That is, write down the
expression for b2 in terms of a1, eliminating the
variables x1 and x2.

3. The scattering parameters of a two-port are
S11 = 0.25, S12 = 0, S21 = 1.2, and S22 = 0.5.
The system reference impedance is 50 Ω and the
Thevenin equivalent impedance of the source at
Port 1 is ZG = 50 Ω. The power available from
the source connected to Port 1 is 1 mW. The load
impedance is ZL = 25 Ω. Using SFGs, determine
the power dissipated by the load at Port 2.

4. Draw the SFG of a two-port with a load at Port 2
having a voltage reflection coefficient of ΓL, and
at Port 1 a source reflection coefficient of ΓS . ΓS

is the reflection coefficient looking from Port 1
of the two-port toward the generator. Keep the
S parameters of the two-port in symbolic form
(e.g., S11, S12, S21, and S22). Using SFG analy-
sis, derive an expression for the reflection coef-
ficient looking into the two-port at Port 2. You
must show the stages in collapsing the SFG to
the minimal form required.

5. A three-port has the scattering parameters:




0 γ δ
α 0 ǫ
θ β 0



 .

Port 2 is terminated in a load with a reflection co-
efficient ΓL. Reduce the three-port to a two-port
using signal flow graph theory. Write down the
four scattering parameters of the final two-port.

6. The 50-Ω S parameters of a three-port are




0.2� 180◦ 0.8� − 45◦ 0.1� 45◦

0.8� − 45◦ 0.2� 0◦ 0.1� 90◦

0.1� 45◦ 0.1� 90◦ 0.1� 180◦



 .

(a) Is the three-port reciprocal? Explain your an-
swer.
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(b) Write down the criteria for a network to be
lossless.

(c) Is the three-port lossless? You must show
your work.

(d) Draw the SFG of the three-port.
(e) A 50 Ω load is attached to Port 3. Use SFG

operations to derive the SFG of the two-port
with just Ports 1 and 2. Write down the two-
port S parameter matrix.

7. The 50 Ω S parameters of a three-port are





0.2� 180◦ 0.8� − 45◦ 0.1� 45◦

0.8� − 45◦ 0.2� 0◦ 0.1� 90◦

0.1� 45◦ 0.1� 90◦ 0.1� 180◦



 .

(a) Is the three-port reciprocal? Explain.
(b) Write down the criteria for a network to be

lossless.
(c) Is the three-port lossless? Explain.
(d) Draw the SFG of the three-port.
(e) A 150 Ω load is attached to Port 3. Derive the

SFG of the two-port with just Ports 1 and 2.
Write down the two-port S parameter ma-
trix of the simplified network.

8. A system consists of 2 two-ports in cascade. The
S-parameter matrix of the first two-port is SA

and the S parameter matrix of the second two-
port is SB . The second two-port is terminated
in a load with a reflection coefficient ΓL. (Just
to be clear, SA is followed by SB , which is then
terminated in ΓL. Port 2 of SA is connected to
Port 1 of [SB].) The individual S parameters of
the two-ports are as follows:

SA =

�

a c
c b

�

and SB =

�

d f
f e

�

.

(a) Draw the SFG of the system consisting of the
two cascaded two-ports and the load.

(b) Ignoring the load, is the cascaded two-port
system reciprocal? If there is not enough in-
formation to decide, then say so. Give your
reasons.

(c) Ignoring the load, is the cascaded two-port
system lossless? If there is not enough infor-
mation to decide, then say so. Give your rea-
sons.

(d) Consider that the load has no reflection (i.e.,
ΓL = 0). Use SFG analysis to find the in-
put reflection coefficient looking into Port 1
of [SA]. Your answer should be Γin in terms
of a, b, . . ., f .

9. A circulator is a three-port device that is not re-
ciprocal and selectively shunts power from one
port to another. The S parameters of an ideal cir-

culator are

[S] =





0 1 0
0 0 1
1 0 0



 .

(a) Draw the three-port and discuss power flow.
(b) Draw the SFG of the circulator.
(c) If Port 2 is terminated in a load with reflec-

tion coefficient 0.2, reduce the SFG of the cir-
culator to a two-port with Ports 1 and 3 only.

(d) Write down the 2× 2 S parameter matrix of
the (reduced) two-port.

10. The S parameters of a certain two-port are S11 =
0.5 + 0.5, S21 = 0.95 + 0.25, S12 = 0.15 −
0.05, S22 = 0.5 − 0.5. The system reference
impedance is 50 Ω.

(a) Is the two-port reciprocal?
(b) Which of the following is a true statement

about the two-port?
(A) It is unitary.
(B) Overall power is produced by the two-

port.
(C) It is lossless.
(D) If Port 2 is matched, then the real part of

the input impedance (at Port 1) is nega-
tive.

(E) A and C.
(F) A and B.
(G) A, B, and C
(H) None of the above.

(c) What is the value of the load required for
maximum power transfer at Port 2? Express
your answer as a reflection coefficient.

(d) Draw the SFG for the two-port with a load
at Port 2 having a voltage reflection coeffi-
cient of ΓL and at Port 1 a source reflection
coefficient of ΓS .

11. The 50-Ω S parameters of a three-port are





0.2 0.8 0.1
0.8 0.2 0.1
0.1 0.1 0.1



 .

(a) Is the three-port reciprocal? Explain your an-
swer.

(b) Write down the criteria for a network to be
lossless.

(c) Is the three-port lossless? You must show
your work.

(d) Draw the SFG of the three-port.
(e) A 50 Ω load is attached to Port 3. Use SFG

operations to derive the SFG of the two-port
with just Ports 1 and 2. Write down the two-
port S parameter matrix.
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12. The 50-Ω S parameters of a three-port are





0.5 0.4 0.5
0.6 0.5 0.5
0.5 0.5 0.5



 .

(a) Is the three-port reciprocal? Explain.
(b) Write down the criteria for a network to be

lossless.
(c) Is the three-port lossless? Explain.
(d) Draw the SFG of the three-port.
(e) A 150 Ω load is attached to Port 3. Derive the

SFG of the two-port with just Ports 1 and 2.
Write down the two-port S parameter ma-
trix.

13. In the distribution of signals on a cable TV sys-
tem a 75-Ω coaxial cable is used, with a loss of
0.1 dB/m at 1 GHz. If a subscriber disconnects
a television set from the cable so that the load
impedance looks like an open circuit, estimate
the input impedance of the cable at 1 GHz and
1 km from the subscriber. An answer within 1%
is required. Estimate the error of your answer.
Indicate the input impedance on a Smith chart,
drawing the locus of the input impedance as the
line is increased in length from nothing to 1 km.
(Consider that the dielectric filling the line has
ǫr = 1.)

14. A resistive load has a reflection coefficient with a
magnitude of 0.7. If a transmission line is placed
in series with the load, on a polar plot sketch the
locus of the input reflection coefficient looking
into the input of the terminated line as the line
increases in electrical length from zero to λ/2. By
reading the Smith chart, determine the normal-
ized input impedance of the line when it has an
electrical length of π/2.

15. A complex load has a reflection coefficient of
0.5+0.5. If a transmission line is placed in series
with the load, on a polar plot sketch the locus of
the input reflection coefficient looking into the
input of the terminated line as the line increases
in electrical length from zero to π/2.

16. A resistive load has a reflection coefficient of
−0.5. If a transmission line is placed in series
with the load, on a polar plot sketch the locus of
the input reflection coefficient looking into the
input of the terminated line as the line increases
in electrical length from 0 to 3λ/8.

17. S21 of a two-port is 0.5. If a transmission line
is placed in series with Port 1, on a polar plot
sketch the locus of S21 of the augmented two-
port as the electrical length of the line increases
from zero to λ/2.

18. A load has an impedance Z = 115− 20 Ω.

(a) What is the reflection coefficient, ΓL, of the
load in a 50 Ω reference system?

(b) Plot the reflection coefficient on a polar plot
of reflection coefficient.

(c) If a one-eighth wavelength long lossless 50-
Ω transmission line is connected to the load,
what is the reflection coefficient, Γin, looking
into the transmission line? (Again, use the
50 Ω reference system.) Plot Γin on the polar
reflection coefficient plot of part (b). Clearly
identify Γin and ΓL on the plot.

(d) On the Smith chart, identify the locus of Γin

as the length of the transmission line in-
creases from 0 to λ/8 long. That is, on the
Smith chart, plot Γin as the length of the
transmission line varies.

19. A load has a reflection coefficient with a mag-
nitude of 0.5. If a transmission line is placed in
series with the load, on a polar plot sketch the
locus of the input reflection coefficient looking
into the input of the terminated line as the line
increases in electrical length from zero to λ/2.
What is the normalized input impedance of the
line when it has an electrical length of λ/2?

20. A resistive load has a reflection coefficient with a
magnitude of 0.7. If a transmission line is placed
in series with the load, on a polar plot sketch the
locus of the input reflection coefficient looking
into the input of the terminated line as the line
increases in electrical length from zero to λ/4. By
reading the Smith chart, determine the normal-
ized input impedance of the line when it has an
electrical length of λ/4.

Problems 21 to 27 refer to the normalized Smith
chart in Figure 3-38 with reference impedance
ZREF = 50Ω and reflection coefficientΓ, voltage
reflection coefficient V Γ, current reflection coef-
ficient IΓ, and normalized impedance z = r+x
and admittance y = g + b. Γ should be given in
magnitude-angle format.

21. (a) What is V Γ at A?
(b) What is IΓ at A?
(c) What is r at B?
(d) What is z at C?
(e) What is y at D?

(f) What is |Γ| at F?
(g) What is b at I?
(h) What is Γ at P?
(i) What is Γ at D?
(j) What is Γ at T?

22. (a) What is z at A?
(b) What is y at I?
(c) What is z at E?
(d) What is y at Z?
(e) What is y at H?

(f) What is |Γ| at W?
(g) What is b at F?
(h) What is x at K?
(i) What is Γ at K?
(j) What is Γ at R?
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23. (a) What is y at A?
(b) What is y at I?
(c) What is z at G?
(d) What is y at O?
(e) What is y at V?
(f) What is Γ at B?
(g) What is x at C?

(h) What is Γ at G?
(i) What is z at L,

label this zL?
(j) Use the Smith

chart to find zin of a 50 Ω
λ/8-long line with load
zL?

24. (a) What is V Γ at M?
(b) What is IΓ at M?
(c) What is r at W?
(d) What is z at Y?
(e) What is y at V?

(f) What is |Γ| at B?
(g) What is b at K?
(h) What is Γ at V?
(i) What is Γ at P?
(j) What is Γ at N?

25. (a) What is z at M?
(b) What is y at K?
(c) What is z at S?
(d) What is y at R?
(e) What is g at B?

(f) What is |Γ| at F?
(g) What is b at B?
(h) What is x at I?
(i) What is Γ at I?
(j) What is Γ at Q?

26. (a) What is g at M?
(b) What is r at K?
(c) What is y at S?
(d) What is z at R?
(e) What is y at Z?
(f) What is Γ at W?
(g) What is x at Y?

(h) What is Γ at T?
(i) What is z at O,

label this zO?
(j) Using the Smith

chart find zin of a 3λ/8-
long 50 Ω line with load
zO?

27. (a) What is g at P?
(b) What is y at J?
(c) What is Γ at L?
(d) What is z at N?
(e) What is y at S?

(f) What is |Γ| at U?
(g) What is V Γ at X?
(h) What is IΓ at X?
(i) What is g at B?
(j) What is x at I?

28. Design a short-circuited stub to realize a normal-
ized susceptance of 2.15. Show the locus of the
stub as its length increases from zero to its final
length. What is the minimum length of the stub
in terms of wavelengths?

29. Design a short-circuited stub to realize a normal-
ized susceptance of −0.56. Show the locus of the
stub as its length increases from zero to its final
length. What is the minimum length of the stub
in terms of wavelengths?

30. Design a short-circuited stub to realize a normal-
ized susceptance of −2.2. Show the locus of the
stub as its length increases from zero to its final
length. What is the minimum length of the stub
in terms of wavelengths?

31. A 75-Ω transmission line is terminated in a load
with a reflection coefficient, Γ, normalized to
75 Ω, of 0.5� 45◦. If Γ at the input of the line
is 0.5� −135◦, what is the minimum electrical
length of the line in degrees.

32. An open-circuited 75-Ω transmission line has an
input reflection coefficient with an angle of 40◦

what is the electrical length of the line in de-
grees? If there is more than one answer provide
at least two correct answers.

33. Use a Smith chart to design a microstrip net-
work to match a load YL = 28 − 12 mS to a
source YS = 6 + 12 mS. Use transmission lines
only and use short-circuited stubs. Use a refer-
ence impedance of 50 Ω.

(a) Draw the matching network problem label-
ing source and load admittances and label-
ing the admittance looking into the match-
ing network from the source as Y1.

(b) What is the condition for maximum power
transfer at the source side of the matching
network in terms of admittances?

(c) What is the condition for maximum power
transfer at the source side of the matching
network in terms of reflection coefficients?

(d) What is the reference admittance YREF?
(e) What is the value of the normalized source

admittance?
(f) What is the value of the normalized load ad-

mittance?
(g) On a Smith chart (not a sketch) identify, i.e.

draw, the electrical designs of two suitable
matching networks. Identify the designs us-
ing the labels D1 and D2 on the loci.

(h) Develop the complete electrical design of a
matching network using the Smith chart us-
ing 50 Ω lines only. You only need do one
design.

(i) Draw the microstrip layout of the match-
ing network and identify critical parameters
such characteristic impedances and electri-
cal length. Ensure that you identify which is
the source side and which is the load side.
You do not need to determine the widths of
the lies or their physical lengths.

34. Repeat Exercise 33 with YL = 20 + 20 mS to a
source YS = 4 + 20 mS.

35. Repeat Example 3.4 using the full impedance
Smith chart of Figure 3-18.

36. Plot the normalized impedances zA = 0.5+0.5,
zA = 0.5 + 0.5, and zB = 0.185 − 1.05 on the
full impedance Smith chart of Figure 3-18. [Par-
allels Example 3.4]

37. In Figure 3-37 the results of several different ex-
periments are plotted on a Smith chart. Each ex-
periment measured the input reflection coeffi-
cient from a low frequency (denoted by a cir-
cle) to a high frequency (denoted by a square)
of a one-port. Determine the load that was mea-
sured. The loads that were measured are one of
those shown below.
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Load Description

i An inductor

ii A capacitor
iii A reactive load at the end of a

transmission line
iv A resistive load at the end of a

transmission line
v A parallel connection of an induc-

tor, a resistor, and a capacitor go-
ing through resonance and with a
transmission line offset

vi A series connection of a resistor,
an inductor and a capacitor go-
ing through resonance and with a
transmission line offset

vii A series resistor and inductor
viii An unknown load and not one of

the above

For each of the measurements below indicate
the load or loads using the load identifier above
(e.g., i, ii, etc.).

(a) What load(s) is indicated by curve A?
(a) What load(s) is indicated by curve A?
(b) What load(s) is indicated by curve B?
(c) What load(s) is indicated by curve C?

(d) What load(s) is indicated by curve D?
(e) What load(s) is indicated by curve E?
(f) What load(s) is indicated by curve F?

38. A 50-Ω lossy transmission line is shorted at
one end. The line loss is 2 dB per wavelength.
Note that since the line is lossy the characteristic
impedance will be complex, but close to 50 Ω,
since it is only slightly lossy. There is no way
to calculate the actual characteristic impedance
with the information provided. That is, prob-
lems must be solved with small inconsistencies.
Microwave engineers do the best they can in de-
sign and always rely on measurements to cali-
brate results.

(a) What is the reflection coefficient at the load
(in this case the short)?

(b) Consider the input reflection coefficient, Γin,
at a distance ℓ from the load. Determine Γin

for ℓ going from 0.1λ to λ in steps of 0.1λ.
(c) On a Smith chart plot the locus of Γin from

ℓ = 0 to λ.
(d) Calculate the input impedance, Zin, when

the line is 3λ/8 long using the telegrapher’s
equation.

(e) Repeat part (d) using a Smith chart.

Figure 3-37: The locus of various loads plotted on a Smith chart.
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39. Design an open-circuited stub with an input
impedance of +75 Ω. Use a transmission line
with a characteristic impedance of 75 Ω. [Paral-
lels Example 3.5]

40. Design a short-circuited stub with an input
impedance of −50 Ω. Use a transmission line
with a characteristic impedance of 100 Ω. [Paral-
lels Example 3.5]

41. A load has an impedance ZL = 25− 100 Ω.

(a) What is the reflection coefficient, ΓL, of the
load in a 50 Ω reference system?

(b) If a one-quarter wavelength long 50 Ω trans-
mission line is connected to the load, what
is the reflection coefficient, Γin, looking into
the transmission line?

(c) Describe the locus of Γin, as the length of the
transmission line is varied from zero length
to one-half wavelength long. Use a Smith
chart to illustrate your answer

42. A network consists of a source with a Thevenin
equivalent impedance of 50 Ω driving first a se-
ries reactance of −50 Ω followed by a one-eighth
wavelength long transmission line with a char-
acteristic impedance of 40 Ω and an element
with a reactive impedance of 25 Ω in shunt with
a load having an impedance ZL = 25 − 50 Ω.
This problem must be solved graphically and no
credit will be given if this is not done.

(a) Draw the network.

(b) On a Smith chart, plot the locus of the reflec-
tion coefficient first for the load, then with
the element in shunt, then looking into the
transmission line, and finally the series ele-
ment. Use letters to identify each point on
the Smith chart. Write down the reflection
coefficient at each point.

(c) What is the impedance presented by the net-
work to the source?

43. In the circuit below, a 75-Ω lossless line is termi-
nated in a 40-Ω load. On the complex plane plot
the locus, with respect to the length of the line,
of the reflection coefficient, looking into the line
referencing it first to a 50-Ω impedance. [Paral-
lels Example 3.8]

44. Consider the circuit below, a 60 Ω lossless line
is terminated in a 40 Ω load. What is the center
of the reflection coefficient locus on the complex
plane when it is referenced to 55 Ω? [Parallels
Example 3.9]

3.8.1 Exercises by Section
†challenging

§3.2 1, 2, 3†, 4†, 5†, 6†, 7†, 8†, 9†,
10†, 11, 12

§3.4 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36,
37†, 38†, 39†, 40†, 41†, 42†

§3.5 43†, 44†

3.8.2 Answers to Selected Exercises

1
β

1− τγ
(αa1 + γa2)

3 0.940 mW

6

[

−0.2 0.8� −45◦

−0.2 0.2

]

8(d) a+
dc2

1− bd
13 ΓIN = 10−10

37(c) ii & iii

38(d) 8.37 − 49.3 Ω
41 0.825� −50.9◦

42 ≈ 250− 41 Ω
44 0.0418
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Figure 3-38
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4.1 Introduction

At microwave frequencies it is almost never possible to measure voltage and
current directly and so it is not possible to measure z and y parameters, and
most other network parameters, directly. However S parameters are easy to
measure as they are based on power flow and instead of relying on short
and open circuit terminations, their definitions require matched loads which
minimize reflections and also ensure that circuits are stable.

4.2 Measurement of Scattering Parameters

S parameters are measured using a network analyzer called an automatic
network analyzer (ANA), or more commonly a vector network analyzer
(VNA).

4.2.1 Vector Network Analyzer

The VNA is based on separating the forward- and backward-traveling
voltage waves using a directional coupler. The separated traveling waves are
then the total voltages on the coupled lines of the directional coupler. They
are down-converted to perhaps 100 kHz and then sampled by an analog-to-
digital converter [1]. Schematics of modern VNAs are shown in Figures 4-1
and 4-2 and comprise

1. A frequency synthesizer for stable generation of a sinewave.
2. A display plotting the S parameters in various forms, with a Smith

chart being most commonly used.
3. An S parameter test set. This device generally has two measuring ports
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so that when required S11, S12, S21, and S22 can all be determined
under program control. The main components are switches and
directional couplers. Directional couplers separate the forward- and
backward-traveling wave components. Network analyzers with more
than two ports—four-port network analyzers are popular—have more
switches and directional couplers. The mixers map the amplitude and
phase of the RF signal to the IF, commonly around 100 kHz, which is
sampled by the ADC.

4. A computer controller used in correcting errors and converting the
results to the desired form.

For RF measurements up to a few tens of gigahertz, most of these functions
are incorporated in a single instrument. At higher frequencies and with older
equipment multiple units are used. An outline of such a system is shown in
Figure 4-3(a) and a photograph in Figure 4-3(c). In the foreground of Figure
4-3(c) is a probe station that has a stage for an IC or RF circuit board and
mounts for micropositioners to which microprobes are attached. The vertical
tube-shaped object is a microscope-mounted camera.
The probes are mounted on micromanipulators such as those shown in
Figure 4-4. These provide precision positioning with x-y-z movement and an
axis rotation to accommodate probing on substrates that are not completely
flat.

Figure 4-1: Switch-based vector
network analyzer system with two
receivers. The directional couplers
selectively couple forward- or
backward-traveling waves. With
the directional coupler (see inset),
a traveling wave inserted at Port 2
appears only at Port 1. A traveling
wave inserted at Port 1 appears
at Port 2 and a coupled version at
Port 3. A traveling wave inserted
at Port 3 appears only at Port 1.
Switch positions determine which
S parameter is measured.

Figure 4-2:
Vector network
analyzer sys-
tem with four
receivers.
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(a)

(b) (c)

Figure 4-3: S parameter measurement system: (a) shown in a configuration to do on-chip testing;
(b) details of coplanar probes with a GSG configuration and contacting pads; and (c) a vector
network analyzer in the background with probe station including camera.

Figure 4-4: Micropositioners used with coplanar
probes. Used with permission of J MicroTechnology,
Inc.

Probing elements required for on-wafer measurements are shown in Figure
4-5. Figure 4-5(a) shows a single RF probe that is essentially an extended
coaxial line. Figure 4-5(c) shows a microprobe making a connection to a
transmission line on an IC and the lower image in Figure 4-5(b) shows
greater detail of the contact area.
A typical microprobe is based on a micro coaxial cable with the center
conductor (carrying the signal) extended a millimeter or so to form a needle-
like contact. Two other needle-like contacts are made by attaching short
extensions to the outer conductor of the coaxial line on either side of the
signal connection (see the top image in Figure 4-5(b)). Such probes are called
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(a) RF probe (b) GSG probe (c) IC under test

(e) CPW calibration through

(d) CPW calibration substrate (f) Probe card

Figure 4-5: RF probes: (a) single RF probe probe; (b) detail of a GSG probe and contacting an
IC; (c) an IC under test; (d) layout of a calibration substrate used with GSG probes; (e) probes
contacting a through CPW structure on the calibration substrate; and (f) a probe card with 2 RF
probes (top and bottom) and 13 needle probes for DC and low-frequency connections. ((a), (b)
top, (d), (e), (f) Copyright GGB Industries Inc., used with permission [2].)
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(a) Layout (b) Calibration microstrip lines

(c) Transistor under test (d) Details of measurement configuration in (c)

Figure 4-6: Use of a CPW-to-microstrip adaptor enabling coplanar probes to be used in
characterizing a non-CPW device. The adaptors provide a low insertion loss CPW-to-microstrip
transition. Used with permission of J microTechnology, Inc.

ground-signal-ground (GSG) probes and transition from a coaxial cable to
an on-wafer CPW line, providing a smooth transition of the EM fields from
those of a coaxial line to those of the CPW line. The on-wafer pads can be as
small as 50 µm on a side.
Measurement using CPW probes and manipulators enables repeatable
measurements to be made from DC to above 100 GHz. Such measurements
require repeatability of probe connections that are better than 1 µm. When
the DUT has microstrip connections, it is necessary to use a CPW-to-
microstrip adapter, as shown in Figure 4-6. The layout of a suitable adapter
is shown in Figure 4-6(a). In Figure 4-6(c and d) two adaptors are shown
in use in the characterization of a microwave transistor. GSG probes contact
the adapters and the grounds are connected to the backside metalization by
vias. Calibration uses the microstrip transmission line calibration substrates
shown in Figure 4-6(b).

4.3 Calibration

The components of a microwave measurement system introduce substantial
errors. Fortunately a network analyzer is a very stable instrument and the
errors are faithfully reproduced. This means that a calibration procedure can
be used to determine the errors and then the errors can be removed from raw
measurements of the device being measured, which, by convention, is called
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(a) Matched load (b) Short (c) Open

Figure 4-7: Two-port error network with three different calibration loads.

the device under test (DUT). All that is needed to determine the parameters
of a two-port are three precisely known loads.
Calibration of the measurement system is critical, as the effect of cabling and
connectors can be more significant than that of the device being measured.
The process of removing the effect of cabling and connectors is called
de-embedding. Ideally, perfect short, open, and matched loads would be
available, but these can only be approximated, and numerous schemes have
been developed for alternative ways of calibrating an RF measurement
system. In some cases, for example, in measuring integrated circuits using
what is called on-wafer probing, it is very difficult to realize a good match.
A solution is to use calibration standards that consist of combinations
of transmission line lengths and repeatable reflections. These calibration
procedures are known mostly by combinations of the letters T, R, and L such
as through-reflect-line TRL [3] (which relies on a transmission line of known
characteristic impedance to replace the match); or through-line (TL), [4, 5]
(which relies on symmetry to replace the third standard).

4.3.1 One-Port Calibration

In one-port measurements the desired reflection coefficient cannot be
obtained directly. Instead, there is effectively an error network between the
measurement plane at the load and the ideal internal network analyzer
port. The network model [6] of the measurement system is shown in Figure
4-7 together with three ideal calibration standards. Calibration, here, is
concerned with determining the S parameters of the error two-port.
Various calibration schemes have been developed, some of which are better
in particular measurement environments, such as when measuring on-chip
structures. Calibration schemes share certain commonalities. One of these
is that the errors can be represented as a two-port (or several two-ports)
that exists between an effective reference plane internal to the measurement
equipment and the reference plane at the device to be measured. This
device is commonly called the device under test (DUT). Known standards
are placed at the device reference plane and measurements are made. The
concept is illustrated by considering the determination of the S parameters
of the two-port shown in Figure 4-7. With Z1 being a matched load, the input
reflection coefficient Γ1 is S11:

S11 = Γ1. (4.1)

The other commonly used calibration loads are Z2 = 0 (a short circuit) and
Z3 = ∞ (an open circuit). In calibration precision shorts and opens are
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(a) (b) (c) (d) (e)

Figure 4-8: Calibrations as mapping operations with each calibration mapping having a warped
Smith chart and an ideal Smith chart. The raw measurement of a reflection coefficient of a load is
not the actual reflection coefficient, ΓL, but instead is the raw measurement, ΓM , which appears
on a Smith chart that is warped (see (a)). In calibration, the raw measurements of standards also
appear on the warped Smith chart although their actual values are known: (b) calibration as
a mapping established using short, match, and open calibration standards; (c) mapping using
short and two offset short calibration standards; (d) mapping using a short, a match, and a
known load as calibration standards; and (e) mapping using a short, an open, and a sliding
matched load as calibration standards.

are used and the errors involved are known and incorporated in the more
detailed calibration procedure. From these, S12 = S21 and S22 can be derived:

S22 =
2S11 − Γ2 − Γ3

Γ2 − Γ3
(4.2)

and S21 = S12 = [(Γ3 − S11)(1 − S22)]
1
2 . (4.3)

The error two-port modifies the actual reflection coefficient of a DUT to a
warped (but calibrated) reflection coefficient according to Equation (3.12).
In Equation (3.12), the load reflection coefficient, ΓL, is a complex number
that is scaled, rotated, and shifted before being presented at Γin. Moreover,
circles of reflection coefficient are mapped to circles on the warped complex
plane; that is, the ideal Smith chart is mapped to a warped Smith chart. Here
the actual load reflection coefficient, ΓL, is warped to present a measured
reflection coefficient, ΓM , to the internal network analyzer. Calibration
can be viewed as a mapping operation from the complex plane of raw
measurements to the complex plane of ideal measurements, as shown in
Figure 4-8(a). That is, calibration develops the required mapping. Figure 4-
8(b–e) shows how the corrected mapping is developed using different sets of
calibration standards. The mapping operation shown in Figure 4-8(b) uses
the short, open, and match loads. This one-port calibration procedure is
called open-short-load or SOL calibration and is available as a calibration
algorithm in all network analyzers. The three standards are well distributed
over the Smith chart and so the mapping can be extracted with good
precision. While ideal short, open, and match loads are not available, if
the terminations are well characterized then appropriate corrections can be
made. The mapping in the one-port case is embodied in the extracted S
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Figure 4-9: Precision calibration
standards. (a) Precision open. (b) Sliding load.

parameters of the two-port.
Figure 4-9(a) shows the longitudinal section of a precision coaxial open. The
key feature is that the outer coaxial conductor is extended and the fringing
capacitance at the end of the center conductor can be calculated analytically.
Thus the precision open is not a perfect open, but rather an open that
can be modeled as a small capacitor whose frequency variation is known.
Figure 4-8(c) uses offset shorts (i.e., short-circuited transmission lines of
various lengths). This circumvents the problem of difficult-to-produce open
and matched loads. Care is required in the choice of offsets to ensure that
the mapping can be determined accurately. The calibration scheme shown
in Figure 4-8(d) introduces a known load. The mapping cannot be easily
extracted here, but in some situations this is the only option. Figure 4-8(e)
introduces a new concept in calibration with the use of a sliding matched
load such as that shown in Figure 4-9(b). A perfect matched load cannot be
produced and there is always, at best, a small resistance error and perhaps
parasitic capacitance. When measured, the reflection will have a small offset
from the origin. If the matched load is moved, as with a sliding matched
load, a small circle centered on the origin will be traced out and the center of
this circle is the ideal matched load.

4.3.2 De-Embedding

The one-port calibration described above can be repeated for two ports,
resulting in the two-port error model of Figure 4-10(a), the error model for
correcting two-port measurements. Using the chain scattering matrix (or T

matrix1) introduced in Section 2.6, the T parameter matrix measured at the
internal reference planes of the network analyzer is

TMEAS = TATDUTTB, (4.4)

where TA is the T matrix of the first error two-port, TDUT is the T matrix
of the device under test, and TB is the T matrix of the right-hand error two-
port. Manipulating Equation (4.4) leads to TDUT:

T
−1
A TMEAST

−1
B = T

−1
A TATDUTTBT

−1
B (4.5)

TDUT = T
−1
A TMEAST

−1
B , (4.6)

from which the S parameters of the DUT can be obtained.

4.3.3 Two-Port Calibration

The VNA architecture introduced in 1968 and still commonly used today
is shown in Figure 4-1. A key component of the system is the test set
that comprises mechanical microwave switches and directional couplers
that selectively couple energy in either the forward- or backward-traveling
waves. Many modern VNAs use multiple mixers and electronic switches to

1 Note that there are several T matrices, so it necessary to be specific.
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(a) 8-term error model

ef00: Forward directivity ef11: Forward source match

ef01: Forward reflection tracking ef22: Forward load match

ef30: Forward isolation ef32: Forward transmission tracking
er00: Reverse directivity er22: Reverse source match
er01: Reverse reflection tracking er11: Reverse load match
er10: Reverse isolation er32: Reverse transmission tracking

(b) 12-term error model

(c) 16-term error model

Figure 4-10: Two-port error models: (a) SFG representation of the 8-term two-port error model
(1968) [1]); (b) SFG of the 12-term two-port error model (1978) [7]; and (c) SFG of the 16-
term two-port error model (circa 1979) [8]. Sm

ij are the raw S parameter measurements, Sij

are the S parameters of the DUT, and eij , erij , and efij are error S parameters determined during
calibration.

eliminate the need for mechanical switches. Operation is similar. Returning
to the architecture of Figure 4-1, this architecture supports a single signal
source and a single test port at which the RF signal to be measured is mixed
down to a low frequency, typically 100 kHz, where it is captured by an ADC.
The mixing component is called the frequency converter, and it mixes the RF
signal with a version of the original RF signal offset in frequency to produce
a low-frequency version of the RF signal. This has the same phase as the
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RF signal and an amplitude that is linearly proportional to the RF signal.
When Hackborn introduced this system in 1968 [1], he also introduced the
8-term error model shown in Figure 4-10(a). This is an extension of the one-
port error model discussed in Section 4.3.1, with a two-port capturing the
measurement errors to each port.
Closer examination of the VNA system of Figure 4-1 indicates that the signal
path varies for each of the four scattering parameters for a DUT. Another
imperfection that is not immediately obvious is that there is leakage in the
system so that Ports 1 and 2 are coupled by a number of mechanisms that
do not involve transmission of the signal through the DUT. Leakage is due
to finite isolation in the mixers and direct coupling between probes used
to make contact at Ports 1 and 2, among other possible causes. The first
person to identify this was Shurmer [9] in 1973, leading eventually to the
12-term error model [7, 10] shown in Figure 4-10(b). Calibration yields the
error parameters, and the S parameters of the DUT are found as follows:

S11 =
1

δ

{[

Sm
11 − ef00

ef01

] [

1 +
Sm
22 − er00
er01

er22

]

− ef22

[

Sm
21 − ef30

ef32

] [
Sm
12 − er10
er32

]}

(4.7)

S21 =
1

δ

{[

Sm
21 − ef30

ef32

] [

1 +
Sm
22 − er00
er01

(

er22 − ef22

)]
}

(4.8)

S12 =
1

δ

{[
Sm
12 − er10
er32

][

1 +
Sm
11 − ef00

ef01

(

ef11 − er11

)
]}

(4.9)

S22 =
1

δ

{[
Sm
22 − er00
er01

][

1 +
Sm
11 − ef00

ef01
ef11

]

− er11

[

Sm
21 − ef30

ef32

] [
Sm
12 − er10
er32

]}

(4.10)

δ =

[

1 +
Sm
11 − ef00

ef01
ef11

] [

1 +
Sm
22 − er00
er01

er22

]

− ef22e
r
11

[

Sm
21 − ef30

ef32

][
Sm
12 − er10
er32

]

. (4.11)

The most complete model is the 16-term error model introduced in 1979
and shown in Figure 4-10(c), which incorporates a different model for each
parameter and fully captures the various signal paths resulting from the
different switch positions [8]. Nevertheless, the 12-term error model is the
one most commonly used in microwave measurements and is sufficient to
reliably extract the desired S parameters of the DUT from the raw VNA
measurements. This process of extracting the de-embedded parameters is
call de-embedding, or less commonly, unterminating.
The 12-term error model models the error introduced by leakage or crosstalk
internal to the network analyzer. The 16-term error model captures the
leakage or crosstalk of the 12-term error model, but in addition includes
switch leakage that results in error signals reflecting from the DUT and
leaking to the transmission port as well as common-mode leakage [11].
This method is called two-port 16-term singular value decomposition (SVD)
calibration, as the equations are solved in a least squares sense using the
singular value decomposition method [11]. In a coaxial environment, the
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extra leakage terms are small, provided that the switches have high isolation.
However, in wafer probing where direct coupling between the probes can be
appreciable, the transmission-related leakage can be important and the 16-
term error model captures errors that the 12-term error model does not.
These error models and the sequence of measurements to extract them are
included in the VNA control software. The user must select which to use.

Coaxial Two-Port Calibration

If the DUT has coaxial connectors then precision open, short, and matched
loads are available. While these are not ideal components, the open
has fringing capacitance; for example, they are well characterized over
frequency. The full set of standards required to develop the 12-term error
model includes one-port measurements for each port with open, short, and
match connections, a two-port measurement with a through connection, and
a two-port measurement with opens at each port. The last measurement
determines the internal isolation of the system. Most connectors come in
male and female counterparts. As such it is not possible to create a perfect
through by joining the connectors and a small delay is introduced. There
are, however, sexless connectors, such as the Amphenol precision connector
(APC-7) with a 7 mm outer diameter as it has a flush face that can be
connected for a near-perfect through. The APC-7 connector is no longer
commonly used, with most coaxial systems now using SMA connectors
or the higher-tolerance APC 3.5 connectors that come in male and female
connectors. The majority of the measurements desired these days are of
ICs and other planar structures for which there is no clear connector. The
connector, or fixture, problem has resulted in a variety of standards being
used.

Planar Circuit Calibration

Calibration standards are required in microwave measurements. For
measurements of microstrip and CPW systems, standard calibration alumina
substrates are available, see Figure 4-5(d and e). These calibration substrates
include various lengths of transmission lines that can be used as standards,
as well as an open, a short, and a laser-trimmed matched load.

4.3.4 Transmission Line-Based Calibration Schemes

A drawback of all de-embedding techniques that use repeated fixture
measurements during the de-embedding process is the generation of errors
caused by the lack of fixture reproducibility during measurements of each of
the required standards. These errors can be amplified during the course of
de-embedding.
The TRL technique [3] is a calibration procedure used for microwave
measurements when classical standards such as open, short, and matched
terminations cannot be realized. There are now a family of related
techniques, here denoted as TxL methods, with the commonality being the
two-port measurement of a through connection and of the same structure
with an inserted transmission line. The two-port connections required in
the TRL procedure are shown in Figure 4-11. The concept behind the
representation is that there is a measurement error that is captured by
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Figure 4-11: Measurement connections in two-
port calibration using the TRL procedure: (a)
through connection; (b) ideal line connection;
(c) realistic configuration with nonidentical
fixtures; and (d)with arbitrary reflection.

Figure 4-12: SFG representations of the two-
port connections shown in Figure 4-11: (a)
through connection; (b) ideal line connection;
and (c) arbitrary reflection connection.

the fixture two-port. The TRL procedure allows the fixtures on either side,
Fixtures A and B here, to have different two-port parameters. The SFG
representations of the connections are shown in Figure 4-12. Assuming that
the fixtures are faithfully reproduced when going from one connection to
another, then the SFGs shown in 4-12(a–c) need to be considered. With
each configuration, two-port measurements are made, and as the number of
independent S parameter measurements exceed the number of unknowns,
it would seem that it may be possible to solve the SFGs to obtain the
unknown parameters of the fixtures. This is all that is required to de-embed
measurements made with a DUT between the fixtures. Unfortunately this
is not possible. However, Engen and Hoer [3] developed a procedure that
enabled the complex propagation constant of the line to be extracted from
the external S parameter measurements of the through and line connections.
This procedure is considered in the next section.

4.3.5 Through-Line Calibration

The through and line measurement structures include fixtures as well as
the direct connection (for the through) and the inserted line (for the line)
(see Figure 4-11). Two-port measurements of these two structures yield the
propagation constant γL = α + β of the line [3]. Similar but earlier work
was presented by Bianco et al. [12]. For the through structure, the error
networks between the ideal internal port of a network analyzer and the
desired measurement reference plane are designated as Fixture A at Port 1
and Fixture B at Port 2. For the line measurement, fixturing is reestablished
(following the through measurement) with the line inserted. In general, the
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fixturing cannot be faithfully reproduced and therefore becomes Fixtures A′

and B′, respectively (see Figure 4-11).
The following is based on the derivation of Engen and Hoer [3]. As
well as presenting an important result indicating sources of error in
microwave measurement, the development demonstrates a technique for
solving measurement problems involving transmission lines.
The development begins using cascading matrices, R, defined as

�
b1
a1

�

= R

�
a2
b2

�

, (4.12)

which is related toscattering parameters S by

R =

�
R11 R12

R21 R22

�

=







S12 S21 − S11 S22

S21

S11

S21

−S22

S21

1

S21






. (4.13)

Thus the parameters describing the A and B fixtures are SA, SB and RA, RB,
respectively. The cascading matrix of the through is simply a unity matrix
and the line of length, ℓL, is described by

RL =

�
e−γLℓL 0

0 eγLℓL

�

. (4.14)

The characteristic impedance of the line is taken as the reference impedance,
Z0, of the measurement system and results in the off-diagonal zeros in
the above definition for the line standard. Because of this simplifying
assumption, γL can be computed using the equations that follow.
The cascading matrix of the through structure (i.e., the fixture-fixture
cascade) is

Rt = RARB (the through). (4.15)

For the line structure, a fixturing error ∆ is introduced. ∆ corresponds to a
small additional electrical length of the A fixture (i.e., R′

A = RARe), then the
cascading matrix of the fixture-line-fixture cascade is

Rd = R
′
ARLRB = RAReRLRB (the line) with Re =

�
e−∆ 0
0 e∆

�

.

(4.16)

Now introduce the matrix

T =

�
t11 t12
t21 t22

�

= RdR
−1
t . (4.17)

Thus T combines the line and through measurements and approximately
removes the through measurement from the line measurement. Most
importantly, all of the elements of the T matrix are measured quantities.
Continuing (note that if A and B are matrices, (AB)−1 = B

−1
A

−1), and
using Equations (4.15)–(4.17),

TRA = RdR
−1
t RA = R

′
ARLRB (RARB)

−1
RA

= RAReRLRBR
−1
B R

−1
A RA (4.18)

and so TRA = RAReRL, (4.19)
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which is referred to as the TL (for through-line) equation.
Expanding Equation (4.19) leads to a system of equations:

t11RA11 + t12RA21 = RA11e
−∆e−γLℓL (4.20)

t21RA11 + t22RA21 = RA21e
−∆e−γLℓL (4.21)

t11RA12 + t12RA22 = RA12e
∆eγLℓL (4.22)

t21RA12 + t22RA22 = RA22e
∆eγLℓL , (4.23)

which upon solution yields the propagation constant of the line standard [3],

γL =
1

2 ℓL

[

ln

(
t11 + t22 ± ζ

t11 + t22 ∓ ζ

)

− 2∆

]

(4.24)

ζ =
(
t11

2 − 2 t11t22 + t22
2 + 4 t21t12

)1/2
. (4.25)

If the fixtures are faithfully reproduced, then networks A and A′ are identical,
as are networks B and B′, and so ∆ = 0, and γL is

γL =
1

2 ℓL
ln

(
t11 + t22 ± ζ

t11 + t22 ∓ ζ

)

. (4.26)

The sign to use with ζ is chosen corresponding to the root selection [3].
That is, two-port S parameter measurements of the through connection
(shown in Figure 4-11(a)) and two-port S parameter measurements of the
line connection (shown in Figure 4-11(b)) enable the propagation constant of
the line to be determined. The characteristic impedance of the line standard
can be determined as described in Section 4.5.
Extraction of the propagation constant of the transmission line standard
is a common property of calibration techniques that use through and
line measurements instead of match measurements. Such techniques are
called TxL techniques, where x identifies an additional measurement used
in calibration. Unfortunately the TxL calibration techniques often result
in errors in de-embedding at frequencies where the length of the line
standard is a multiple of one-half wavelength (called critical lengths [13, 14]).
These are the lengths where the electrical length is a multiple of 180◦.
Buff et al. [15, 16] showed that small fixture repeatability errors result
in errors incorporated in ∆. These errors affect the entire calibration and
subsequent de-embedded measurements. These errors are minimized by
using measurements where the line standard has an electrical length not
within 20◦ of a critical length. Statistical means and the use of multiple
lines have been proposed to minimize the error [17, 18], as well as an
optimization scheme to determine the additional electrical length, ∆ [15, 16].
The optimization scheme significantly reduces the uncertainty and is based
on the assumption that a change of line length is the sole source of error
in fixture reproducibility (the fixture here includes, of course, the probe and
probe pad). This is seen in Figure 4-13 where the results of optimization are
seen most clearly for the attenuation constant in Figure 4-13(a), the curve
labeled fixture error de-embedded. The no fixture error curve was selected
as the best results from a large number of calibrations (multiple repeats of
probe-on-probe pad connections). The fixture error curve is the result of a
typical calibration measurement.
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(a) Attenuation constant (b) Phase constant

Figure 4-13: Extracted propagation constant from the through and line components of TRL with
fixture error introduced during the line measurement.

In the following, several of the TxL calibration techniques are described.
These are techniques incorporated in most vector network analyzers and
are particularly useful in characterizing on-chip circuits. An example of an
on-wafer two-port measurement is shown in Figure 4-14, showing on-chip
calibration standards. The VNA software leads the user through the required
set of calibration measurements and computes the error models to be used
in de-embedding.

Through Short Delay

Matched loads can be difficult to realize, especially when probing ICs and
planar circuits using probes. The through short delay (TSD) method uses
reflection and transmission measurements [19]. The delay is realized using a
line with a 50 Ω characteristic impedance. TSD experiences the 180◦ glitches
common to TxL schemes. The through could be another delay, but then
problems occur when the delay difference (the electrical length difference)
of the through and delay is an integer multiple of 180◦.

Through Reflect Line

What has become known as the through reflect line (TRL) calibration
technique was developed by Bianco et al. [12] and Engen and Hoer [3],
who used a through connection, an arbitrary reflection standard, and a
delay or line standard. The line standard can be of arbitrary length with
its propagation constant unknown, but it is assumed to be nonreflecting.
The result of this assumption is that the characteristic impedance of the line
becomes the system reference impedance. Also, the reflection standard, can
be any repeatable reflection load, with an open or short preferred. Again
the transmission line introduces calibration uncertainties when the electrical
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(a) Two-port DUT (b) Calibration standards

Figure 4-14: Two-port measurements: (a) two-port device under test with DC needle probes at
the bottom and GSG probes on the left and right; and (b) open, short, and through calibration
standards with GSG probes.

length is a multiple of one-half wavelength [3].

Through Reflect Match

Through reflect match (TRM) is a variation of TRL that replaces the through
by a matched load and is useful only when a matched load can be realized.
It retains the arbitrary reflection standard, which is particularly useful as
it can be difficult to produce a short or open with planar circuits. For
example, a via used in realizing a microstrip short circuit has finite resistance
and inductance and so does not create a good through, but does create a
useful repeatable arbitrary reflection. The technique does not have the critical
length glitches, but repeatable fixturing is always important.

Other Distributed Calibration Techniques

TRL and TRM are the most commonly accepted standards used in calibrating
measurements of planar circuit structures. There are several other related
techniques that also use transmission lines and are useful in certain
circumstances.
In 1982 Benet [20] developed the open-short-five-offset-line calibration
technique. The key concept is that the multiple offset through lines trace out
a circle on the Smith chart and the center of the circle provide the matched
load. Through least squares fitting Benet derived the propagation constant of
the through lines and the remaining error terms to develop the 12-term error
model.
Pennock et al. [21] introduced the double through line (DTL) calibration
system in 1987. This is useful for characterizing transitions between different
mediums. There is sufficient information to develop the 6-term error model.
SOLT (short-open-load-through) calibration requires precisely characterized
standards and is robust to 20 GHz.
SOLR (short-open-load-reciprocal-through) calibration is similar to SOLT
using precisely defined reflect standards as a standard.
LRRM, (line-reflect-reflect-match) calibration uses a line instead of a through,
one of the reflection standards is a short and the other is an open. This is



GRAPHICAL MICROWAVE NETWORK ANALYSIS AND MEASUREMENTS 105

Figure 4-15: Two-tier
calibration procedure.

usually the best calibration technique to use with probes, as these standards
are straightforward to incorporate in calibration substrates. The calibration
standards are the same as those used in SOLT, but LRRM does not require
precision short and open standards. The essentials of what must be known
are the characteristics of the through and the DC resistance of one of the load
standards. The inductance of the load is automatically determined.
LRM, (load-reflect-match) calibration is similar to LRRM calibration but does
not use a precision reflect standard. A modification is LRM+, for which the
DC resistances of the loads are required.

4.3.6 Two-Tier Calibration

With measurements in noncoaxial systems, it is difficult to produce precision
standards such as shorts, opens, and resistive loads. In these situations, two-
tier calibration is sometimes used. In a two-tier calibration procedure, two
sets of standards are used to establish first- and second-tier reference planes
(see Figure 4-15). It is preferable to use a highly repeatable set of standards
in Tier 1 (such as a non-TxL technique), and one that yields more precise
characterization in a particular environment (such as a TxL technique for
on-wafer measurement).
In the first-tier calibration, a precision set of standards is normally used. This
can be achieved using coaxial standards or perhaps a standard calibration
substrate used with probes. Referring to Figure 4-15, each of the 2 two-
ports from the internal reference planes of the network analyzer to the
external reference planes is established. Generally with the second tier, insitu
calibration standards are used, and the additional (e.g. on-chip) fixturing
is identical for the two ports. Precision calibration should be done using
standards fabricated in the medium of the DUT.
Two-tier calibration generally results in the fixtures in the second tier being
identical. This enables checks to be made for the integrity of the probe
connection. Connections to IC pads can be problematic because of oxide
build up, especially with aluminum pads. So ensuring symmetry of second-
tier calibrations by comparing the two-port measurements of symmetrical
structures such as transmission lines can greatly reduce the impact of the
fixture-induced errors discussed in Section 4.3.5. Recall that small fixturing
errors, such as bringing the probes down in slightly different positions,
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Figure 4-16: Measurement connections in
two-port second-tier calibration using the TL
calibration procedure: (a) through connection;
(b) ideal line connection; (c) realistic configu-
ration showing that the fixtures are not pre-
cisely reproduced; and (d) arbitrary reflection
configuration.

results in measurement errors at the half-wavelength frequencies (λ/2, λ,
3λ/2, etc.). For example, if the DUT is a device on a silicon wafer, the
optimum measurement technique is to realize the calibration standards on
the silicon wafer processed in the same way as for the DUT. The two-
tier calibration procedure removes fixturing errors associated with fringing
effects at the probes and with other nonidealities involved in creating the
landing pads for the probes.
In an example two-tier calibration scheme, a first tier is used to establish
the 12-term error model. Then a second calibration is used to develop a
secondary six-term error model, as in Figure 4-10(a) with S12 = S21. In such
a situation the standards used in developing the 12-term error model would
normally include an open, a short, and a matched load. These need not be
precise standards. Thus the 12-term error model need not be precise, and this
model does not suffer from the half-wavelength errors of the TxL techniques.

Through Line Symmetry

For planar measurements using probes, first-tier calibration using a standard
calibration substrate is to the end of the probe tips, and errors with using
other substrates (e.g., the probe pads are of different size or the substrate
permittivity is different) will be common to both probes (fixtures) in a two-
port measurement. With careful design, the fixtures employed in the second
tier will be identical and have the same S parameters. In the second-tier
calibration, measurements of a through and line will be symmetrical with
S11 = S22 and S12 = S21. This symmetry is exploited in the through line
(TL) technique which exploits symmetry and renders the half-wavelength
errors of TxL insignificant [4, 5]. The TL calibration connections in second-
tier calibration are shown in Figure 4-16. In the first calibration tier, a 12-term
error model is developed using open, short, load, and delay. Consequently
there are no half-wavelength glitches that occur when transmission line
standards are used. In the second calibration tier, probes are used with two
lengths of transmission line fabricated on the same substrate as the DUT. One
of the lines becomes a through.
The procedure proceeds by calculating the propagation constant of the line
using the technique developed for the TRL procedure (Equation (4.26)).
There is fixture symmetry in the TL connections (see Figure 4-16) and this
is reflected in the SFG representations of the connections as shown in Figure
4-17. As will be shown, this symmetry enables the arbitrary reflection used
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(a) Through connection (b) Line connection (c) Reflection connection

Figure 4-17: SFG representations of the two-port connections shown in Figure 4-16.

in the TRL procedure to be replaced by a virtual precise short or open circuit.
Let the S parameters of Fixture A be α = S11, β = S12 = S21, and γ = S22.
Using these parameters with the port reversal required to model the Fixture
at Port 2, the SFG shown in Figure 4-17(a) relates the measured S parameters
to the parameters of the fixtures. The input reflection coefficient of Fixture A
with a short circuit placed at Port 2 of A is

ρsc = α− β2

1 + γ
. (4.27)

Let the measured S parameters of the through connection be designated by a
leading superscript T . Using the self-loop (or Mason’s) rule with the SFG in
Figure 4-17(a) relates the measured S parameters to the fixture parameters:

TS11 = α+
β2γ

1− γ2
and TS21 =

β2

1− γ2
. (4.28)

Subtracting these expressions yields

TS11 − TS21 = α+
β2γ

1− γ2
− β2

1− γ2
= α+

β2γ − β2

(1− γ)(1 + γ)

= α− β2(1− γ)

(1− γ)(1 + γ)
= α− β2

1 + γ
= ρsc. (4.29)

That is, the input reflection coefficient of a fixture terminated in a virtual ideal
short circuit can be obtained from the through measurement of the back-to-
back fixtures in the through configuration:

ρsc =
TS11 − TS21. (4.30)

Similar results are obtained for a virtual ideal open circuit placed at Port 2 of
Fixture A:

ρoc =
TS11 +

TS21. (4.31)

Thus it is possible to effectively insert ideal open and short circuits within a
noninsertable medium.

4.4 Extraction of Transmission Line Parameters

This section describes approaches for extracting the per unit length
RLGC parameters of a transmission line, and the effective permittivity
and permeability of transmission line mediums, from measurements. The
measurements could be made experimentally or through simulation.
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Ideal Calibration

The procedure described here assumes ideal calibration to the ports of a
uniform transmission line that will yield symmetrical transmission line S
parameters with S11 = S22 and S12 = S21 for the reciprocal structure.
The propagation constant of a transmission line is

γ =
√

(R + ωL)(G+ ωC) (4.32)

and the characteristic impedance is

Z0 =

√

(R + ωL)

(G+ ωC)
. (4.33)

Then

R = ℜ{γZ0}, L = ℑ
{
γZ0

ω

}

, G = ℜ{γ/Z0}, C = ℑ
{
γ/Z0

ω

}

. (4.34)

These parameters can be extracted from the measured S parameters of
a transmission line provided that sufficiently accurate calibration can be
achieved. This extraction was described in [22–24], yielding the line’s
characteristic impedance

Z0 = ZREF

√

(1 + S11)
2 − S2

21

(1− S11)
2 − S2

21

, (4.35)

where ZREF is the reference impedance of the S parameters. The line’s
propagation constant is obtained from

e−γℓ =

(
1− S2

11 + S2
21

2S21
±K

)−1

, (4.36)

where K =

[(
S2
11 − S2

21 + 1
)2 − (2S11)

2

(2S21)
2

] 1
2

. (4.37)

It is also possible to use specialized test structures to obtain the transmission
line parameters. In [25] measurements of the input impedances of short- and
open-circuited stubs are used to derive the transmission line parameters.

Nonideal Calibration

The measurement of the S parameters of a transmission line described
above assumes that the error model of the fixtures can be accurately
calibrated. Sometimes it can be difficult to achieve a sufficiently accurate
calibration because of the difficulty of inserting a known resistive impedance
standard. In the through-line calibration methods described in Section 4.3.5,
measurement of a fixtured transmission line and measurement of back-to-
back fixtures (a through connection) yields the propagation constant γ of the
transmission line, even if an impedance standard is not available. One way
of extracting the characteristic impedance, Z0, of a line from measurements
in this situation was described in Section 4.5. The key idea was varying the
electrical length of a transmission line to trace out a circle on the Smith chart.
The frequency-dependent characteristic impedance can be obtained by using
a number of transmission lines of different length. So with γ and Z0 known,
the RLGC parameters can be obtained using Equation (4.34).
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4.4.1 Summary

The complexity and expense of equipment involved in measuring S
parameters depends greatly on the frequency range with vector network
analyzers able to measure S parameters above a hundred gigahertz
costing many 100s of thousands of dollars. Also the time involved in
calibration can be significant taking many hours to days at the very
highest of microwave frequencies but only a few minutes at single-
gigahertz frequencies. Microwave measurement requires the development
of considerable expertise.

4.5 Determining Z0 of a Line from the Smith Chart

It was shown in Section 3.5.2 that the reflection coefficient locus with respect
to frequency of a terminated line is a circle on the Smith chart even if
the characteristic impedance of the line is not the same as the reference
impedance of the Smith chart. The one caveat here is that the reflection
coefficient of the termination must be independent of frequency so a resistive
termination is sufficient. If the characteristic impedance of the line is Z01

and the Smith chart is referenced to Z02, which is usually the same as the
system impedance of the measurement system, then Z01 can be determined
from the center, CZ02, and radius, RZ02, of the reflection coefficient circle.
Thus measurements can be used to determine the unknown impedance Z01.
Another situation where this is useful is in design where a transmission
line circle can be drawn to complete a design problem and from this the
characteristic impedance of the line found. In both situations CZ02, RZ02,
and Z02 are known and Z01 must be determined.
A simple closed-form solution for the unkown characteristic impedance
Z01 cannot be obtained from Equations (3.49) and (3.50). However, by
substituting Equation (3.50) in Equation (3.49), and if Z01 and Z02 are close
(so that B is small), then

CZ02 ≈ B − 1

B
+

1

B
≈ B. (4.38)

The approximation is better for smaller |ΓL,Z01|. Also

RZ02 ≈ |ΓL,Z01| . (4.39)

So provided that the characteristic impedance of the line, Z01, is close to the
system reference impedance, Z02,

Z01

Z02
=

1 +B

1−B
≈ 1 + CZ02

1− CZ02
(4.40)

and this is just the normalized impedance reading at the center of the circle.
For example, if a line with a characteristic impedance (Z01) of 55 Ω is
terminated in a 45 Ω load, then in a (Z02 =) 50 Ω system, CZ02 = 0.0939
and RZ02 = 0.0996. Using Equation (4.40) the derived Z01 = 54.7 Ω and, using
Equation (4.39), ΓL,Z01 = 0.0996 compared to the ideal 0.1000.
Table 4-1 presents the actual characteristic impedance of the line as the ratio
ZZ01/ZZ02 for particular center and radius values measured on the polar
plot referenced to Z02. The actual value of impedance is compared to the
approximate value for ZZ01/ZZ02 ≈ 1 + CZ02/1− CZ02. It is seen that the
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approximation in Equation (4.40) provides a good estimate of the unknown
characteristic impedance (Z01) improving as the center of the locus is closer
to the origin.

4.6 Summary

The vendors of microwave test equipment program their instruments so
that they guide the user through the calibration procedure. Usually the
calibration procedures take much longer than the actual DUT measurement.
The higher the frequency the longer and more fastidious is calibration, with
calibration at 200 GHz perhaps taking days. Still calibration is absolutely
required and with it surprisingly accurate measurements can be made at
microwave and millimeter-wave frequencies.
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Table 4-1: Table of the normalized characteristic impedance Z01/Z02 of a terminated
transmission line having characteristic impedance Z01 plotted on a Smith chart with a reference
impedance of Z02 in terms of the center, CZ02, of the circular locus (with respect to line
length) of the line for various radii, RZ02, of the circular locus. CZ02 and RZ02 are in terms
of reflection coefficient measured on the Smith chart. Also shown is the approximation,
(1 + CZ02)/(1− CZ02), of Z01/Z02 (see Equation (4.40)) .

Z01/Z02 ≈ RZ02 = 0.2 RZ02 = 0.3 RZ02 = 0.4 RZ02 = 0.5

CZ02

(1 + CZ02)

(1− CZ02)
error Z01/Z02 error Z01/Z02 error Z01/Z02 error

0.00 1.000 1.000 0% 1.000 0% 1.000 0% 1.000 0%
0.02 1.041 1.043 < 1% 1.045 < 1% 1.050 1% 1.050 1%
0.04 1.083 1.088 < 1% 1.093 1% 1.100 2% 1.113 3%
0.06 1.128 1.130 < 1% 1.140 1% 1.155 2% 1.175 4%
0.08 1.174 1.183 < 1% 1.193 2% 1.210 3% 1.250 6%
0.10 1.222 1.230 < 1% 1.245 2% 1.270 4% 1.310 7%
0.12 1.273 1.285 1% 1.305 2% 1.335 5% 1.385 8%
0.14 1.326 1.340 1% 1.365 3% 1.408 6% 1.465 10%
0.16 1.381 1.400 1% 1.428 3% 1.475 6% 1.550 11%
0.18 1.439 1.460 1% 1.495 4% 1.550 7% 1.645 13%
0.20 1.500 1.528 2% 1.565 4% 1.635 8% 1.745 14%
0.22 1.564 1.595 2% 1.645 5% 1.720 9% 1.860 16%
0.24 1.632 1.670 2% 1.725 5% 1.815 10% 1.980 18%
0.26 1.703 1.745 2% 1.810 6% 1.920 11% 2.120 20%
0.28 1.778 1.830 3% 1.905 7% 2.030 12% 2.270 22%
0.30 1.857 1.915 3% 2.005 7% 2.150 14% 2.450 24%
0.32 1.941 2.008 3% 2.110 8% 2.285 15% 2.655 27%
0.34 2.030 2.105 4% 2.225 9% 2.435 16% 2.885 30%
0.36 2.125 2.215 4% 2.350 10% 2.600 18% 3.125 32%
0.38 2.226 2.325 4% 2.490 11% 2.785 20% 3.515 37%
0.40 2.333 2.455 5% 2.640 12% 3.000 22% 3.925 40%
0.42 2.585 2.585 5% 2.805 13% 3.240 24% – –
0.44 2.730 2.730 6% 2.985 14% 3.535 27% – –
0.46 2.704 2.885 6% 3.180 15% 3.865 30% – –

Z01/Z02 ≈ RZ02 = 0.6 RZ02 = 0.7

CZ02

(1 +CZ02)

(1−CZ02)
Z01/Z02 error Z01/Z02 error

0.00 1.000 1.000 0% 1.000 0%
0.02 1.041 1.065 2% 1.080 4%
0.04 1.083 1.135 5% 1.170 7%
0.06 1.128 1.208 7% 1.265 11%
0.08 1.174 1.285 9% 1.375 15%
0.10 1.222 1.370 11% 1.500 19%
0.12 1.273 1.465 13% 1.640 22%
0.14 1.326 1.565 15% 1.800 26%
0.16 1.381 1.685 18% 1.990 31%
0.18 1.439 1.820 21% 2.230 35%
0.20 1.500 1.965 24% 2.515 40%
0.22 1.564 2.130 27% 2.915 46%
0.24 1.632 2.330 30% 3.440 53%
0.26 1.703 2.555 33% 4.380 61%
0.28 1.778 2.830 37% – –
0.30 1.857 3.205 42% – –
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4.8 Exercises

1. In Section 4.3.1, the S parameters of a recipro-
cal error network were determined by apply-
ing three loads—Z1, Z2, and Z3—and measur-
ing the respective input reflection coefficients. If
Z1 is a matched load, Z2 is a short circuit, and Z3

is an open, the S parameters of Equations (4.1),
(4.2), and (4.3) are found. Use SFG theory to de-
rive these results.

2 The S parameters of a line with a physical length
of 20 cm was measured at 1 GHz in a Zref = 50 Ω
system and found to be S11 = S22 = 0.1 and
S21 = S12 = −0.9. What are the characteris-
tic impedance, attenuation constant, and phase
constant of the line at 1 GHz. It is known that
the line is less than a wavelength long.

3 At 10 GHz the propagation constant of a line is
γ = 4.6 + 400 and the characteristic impedance
is Z0 = 60 − 0.5. What are the R,L,G and C
parameters of the line?

4 At 100 GHz, the propagation constant of a line is
γ = 30 + 600 and the characteristic impedance
is Z0 = 27 + 0.7. What are the R,L,G and C
parameters of the line?

5 At 1 GHz, the propagation constant of a line is
γ = 2.5 + 36 and the characteristic impedance
is Z0 = 105. What are the R,L,G and C param-
eters of the line?

6 The S parameters of a line with a physical length
of 2 mm was measured at 10 GHz in a Zref =
50 Ω system and found to be S11 = S22 =
0.1 − 0.001 and S21 = S12 = −0.7 + 0.3. It
is known that the line is less than a wavelength
long. For the line find the following at 10 GHz:

(a) Characteristic impedance.

(b) Why is it important to know the approxi-
mate length of the line in terms of wave-
lengths?

(b) Complex propagation constant.
(c) Attenuation constant, .
(c) R, L, G, and C parameters.

7 Repeat 6 but now the line is between one and
two wavelengths long.

8. The properties of a 5 mm long microstrip line
on an unknown substrate are to be determined
by terminating the line in a known impedance
and measuring Γin, the reflection coefficient at
the input of the line. At 10 GHz the load has
a reflection coefficient ΓL = 0.9� 0◦ and Γin =
0.9� 170◦. When the frequency is swept, on a
Smith chart Γin traces out a circle centered at the
origin. All measurements are referenced to 50 Ω.
It is known that the substrate is not magnetic
and so the relative permeability of the substrate
is one.

(a) At 10 GHz what is the electrical length of the
line in degrees? (Assume that the line is less
than a half-wavelength long.)

(b) What is the electrical length of the line in
fractions of a wavelength?

(c) Since the line is 5 mm long, what is the guide
wavelength, λg , of the line?

(d) What is the free space wavelength, λ0?
(e) What is the relationship between λg , λ0, and

the line’s effective relative permittivity εe?
(f) What is εe?
(g) What is the characteristic impedance of the

line?
(h) What is the loss of the line in terms of dB per

meter?
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(i) If there was no substrate, i.e. ǫr = ǫ0, what
would the electrical length of the line be in
terms of λ0?

9 A long slightly lossy line has a frequency-
independent input reflection coefficient located
at the point Γin = 0.8 on a Smith chart. What is
the characteristic impedance of the line?

10 A long slightly lossy line has a frequency-
independent input reflection coefficient located
at the point Γin = −0.7 on a Smith chart. What
is the characteristic impedance of the line?

11 Port 2 of a transmission line with characteristic
impedance Z01 = 75 Ω is terminated in 75 Ω
and the input reflection coefficient Γin at Port 1
is measured and plotted on a 50 Ω Smith chart.
As the frequency is varied Γin traces out a circle.
What is the center and radius of that circle.

12 Port 2 of a transmission line with characteris-
tic impedance Z01 = 75 Ω is left open and the
input reflection coefficient Γin at Port 1 is mea-

sured and plotted on a 50 Ω Smith chart. As the
frequency is varied Γin traces out a circle. What
is the center (use polar coordinates) and radius
of that circle.

13 The input reflection coefficient Γin of a trans-
mission line with unknown characteristic
impedance Z01 and is measured using a VNA in
a 50 Ω system but the load terminating the line
is unkown. On a 50 Ω Smith chart the locus of
Γin with respect to frequency is a circle centered
at 0.7 on the horizontal axis of the Smith chart
with a radius of 0.3. What is Z01?

14 The input reflection coefficient Γin of a trans-
mission line with unknown characteristic
impedance Z01 and is measured using a VNA in
a 50 Ω system but the load terminating the line
is unknown. On a 50 Ω Smith chart the locus of
Γin with respect to frequency is a circle centered
at 1.2 on the horizontal axis of the Smith chart
with a radius of 0.25. What is Z01?

4.8.1 Exercises by Section
†challenging

§4.3 1† §4.4 2, 3†, 4, 5, 6, 7, 8 §4.5 9, 10, 11, 12, 13, 14

4.8.2 Answers to Selected Exercises

4 R = 476.0 Ω/m,
L = 381.9 nH/m,

G = 21.11 mS/m,
C = 106.1 pF/m
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5.1 Introduction

This chapter introduces a wide variety of passive components. It is not
possible to be comprehensive, as there is an enormous catalog of microwave
elements and scores of variations, and new concepts are introduced every
year. At microwave frequencies distributed components can be constructed
that have features with particular properties related to coupling, to traveling
waves, and to storage of EM energy. Sometimes it is possible to develop
lumped-element equivalents of the distributed elements by using the LC
ladder model of a transmission line thus realizing lumped-element circuits
that would be difficult to imagine otherwise.

5.2 Q Factor

RF inductors and capacitors also have loss and parasitic elements. With
inductors there is both series resistance and shunt capacitance mainly
from interwinding capacitance, while with capacitors there will be shunt
resistance and series inductance. A practical inductor or capacitor is limited
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Figure 5-1: Transfer characteristic of a
resonant circuit. (The transfer function
is V/I for the parallel resonant circuit
of Figure 5-2(a) and I/V for the series
resonant circuit of Figure 5-2(b).)

Figure 5-2: Second-order resonant
circuits. (a) Parallel (b) Series

to operation below the self-resonant frequency determined by the inductance
and capacitance itself resonating with its reactive parasitics. The impact of
loss is quantified by the Q factor (the quality factor). Q is loosely related to
bandwidth in general and the strict relationship is based on the response
of a series or parallel connection of a resistor (R), an inductor (L), and a
capacitor (C). The response of an RLC network is described by a second-
order differential equation with the conclusion that the 3 dB fractional
bandwidth of the response (i.e., when the power response is at its half-power
level below its peak response) is 1/Q. (The fractional bandwidth is ∆f/f0
where f0 = fr is the resonant frequency at the center of the band and ∆f is
the 3 dB bandwidth.) This is not true for any network other than a second-
order circuit, but as a guiding principle, networks with higher Qs will have
narrower bandwidths.

5.2.1 Definition

The Q factor of a component at frequency f is defined as the ratio of 2πf
times the maximum energy stored to the energy lost per cycle. In a lumped-
element resonant circuit, stored energy is transferred between an inductor,
which stores magnetic energy, and a capacitor, which stores electric energy,
and back again every period. Distributed resonators function the same way,
exchanging energy stored in electric and magnetic forms, but with the energy
stored spatially. The quality factor is

Q = 2πfr

(
average energy stored in the resonator at fr

power lost in the resonator

)

, (5.1)

where f1 = ωr/(2π) is the resonant frequency.
A simple response is shown in Figure 5-1. For a parallel resonant circuit with
elements L, C, and G = 1/R (see Figure 5-2(a)),

Q = ωrC/G = 1/(ωrLG), (5.2)

where fr = ωr/(2π) is the resonant frequency and is the frequency at which
the maximum amount of energy is stored in a resonator. The conductance,
G, describes the energy lost in a cycle. For a series resonant circuit (Figure
5-2(b)) with L, C, and R elements,

Q = ωrL/R = 1/(ωrCR). (5.3)
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(a) (b)

Figure 5-3: Loss elements of practical inductors and capacitors:
(a) an inductor has a series resistance R; and (b) for a capacitor,
the dominant loss mechanism is a shunt conductance G = 1/R.

These second-order resonant circuits have a bandpass transfer characteristic
(see Figure 5-1) with Q being the inverse of the fractional bandwidth of the
resonator. The fractional bandwidth, ∆f/fr, is measured at the half-power
points as shown in Figure 5-1. (∆f is also referred to as the two-sided −3 dB
bandwidth.) Then

Q = fr/∆f. (5.4)

Thus the Q is a measure of the sharpness of the bandpass frequency response.
The determination of Q using the measurement of bandwidth together
with Equation (5.4) is often not very precise, so another definition that
uses the much more sensitive phase change at resonance is preferred when
measurements are being used. With φ being the phase (in radians) of the
transfer characteristic, the definition of Q is now

Q =
ωr

2

∣
∣
∣
∣

dφ

dω

∣
∣
∣
∣
. (5.5)

Equation (5.5) is another equivalent definition of Q for parallel RLC or series
RLC resonant circuits. It is meaningful to talk about the Q of circuits other
than three-elementRLC circuits, and then its meaning is always a ratio of the
energy stored to the energy dissipated per cycle. The Q of these structures
can no longer be determined by bandwidth or by the rate of phase change.

5.2.2 Q of Lumped Elements

Q is also used to characterize the loss of lumped inductors and capacitors.
Inductors have a series resistance R, and the main loss mechanism of a
capacitor is a shunt conductance G (see Figure 5-3).
The Q of an inductor at frequency f = ω/(2π) with a series resistance R and
inductance L is

QINDUCTOR =
ωL

R
. (5.6)

Since R is approximately constant with respect to frequency for an inductor,
the Q will vary with frequency.
The Q of a capacitor with a shunt conductance G and capacitance C is

QCAPACITOR =
ωC

G
. (5.7)

G is due mainly to relaxation loss mechanisms of the dielectric of a capacitor
and so varies linearly with frequency. Thus the Q of a capacitor is almost
constant with respect to frequency. For microwave components invariably
QCAPACITOR ≫ QINDUCTOR, and QINDUCTOR is smaller than the Q of
transmission line networks. Thus, if the length of a transmission line is not
too long, transmission line networks are preferred. If lumped elements must
be used, the use of inductors should be minimized.
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5.2.3 Loaded Q Factor

The Q of a component as defined in the previous section is called the
unloaded Q, QU . However if a component is to be measured or used in any
way, it is necessary to couple energy in and out of it. The Q is reduced and
thus the resonator bandwidth is increased by the power lost to the external
circuit so that the loaded Q, then the loaded Q is

QL = 2πf0

(
average energy stored in the resonator atf0

power lost in the resonator and to the external circuit

)

=
1

1/Q+ 1/QX
, (5.8)

where QX is called the external Q. QL accounts for the power extracted from
the resonant circuit.
So a parallel LCG circuit with elements Lr, Cr, and Gr (at resonance) loaded
by a shunt conductance Gl has

QU = ωrCr/Gr = 1/(ωrLrGr) (5.9)

and QL = ωrCr/(Gr +Gl). (5.10)

Thus
1

QL
=

1

QU
+

1

QX
(5.11)

or QX =

(
1

QL
− 1

QU

)−1

. (5.12)

QX is called the external Q, and it describes the effect of loading. QL is the Q
that would actually be measured. QU normally needs to be determined, but
if the loading is kept very small, QL ≈ QU .

5.2.4 Summary of the Properties of Q

In summary:
(a) Q is properly defined and related to the energy stored in a resonator

for a second-order network, one with two reactive elements of opposite
types.

(b) Q is not well defined for networks with three or more reactive elements.
(c) However, Q is a frequently used parameter in the design equations for

more complex networks than second-order ones.
(d) For complex networks the Q is defined as the ratio of a reactance to a

resistance when looking into one end of the network at one frequency.
This value of Q should not be used to deduce the bandwidth of the
network.

(e) It is only used (as defined or some approximation of it) for guiding the
design.

5.3 Integrated Lumped Elements

This section considers lumped-elements used in integrated circuits operating
at microwave frequencies. Lumped elements such as capacitors, inductors
and resistors can rarely be regarded as pure elements at microwave
frequencies. Inductors and capacitors have significant loss and all of the
elements store energy in both electric and magnetic forms.
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Figure 5-4: Monolithic lumped ele-
ments: (a) parallel plate capacitor;
(b) gap capacitor; (c) interdigitated
capacitor; (d) meander line induc-
tor; and (e) spiral inductor.

5.3.1 On-Chip Capacitors

There are three primary forms of on-chip capacitor:

(a) Metal-dielectric-metal capacitor—using interconnect metalization.
(b) Metal-dielectric-semiconductor capacitor—essentially a MOS transis-

tor.
(c) Semiconductor junction capacitor—either the capacitance of a reverse-

biased pn junction or Schottky barrier.

In silicon technology it is common to refer to the first capacitor type as a
metal-oxide-metal (MOM) capacitor or as a metal-insulator-metal (MIM)
capacitor. A MOM capacitor can be realized as a parallel plate capacitance
(see Figure 5-4(a)), and multiple levels of metalization can be used to
increase the capacitance density. Relatively low capacitance values of up to
500 fF/µm2 are typically available.
An alternative MOM capacitance is available using lateral arrangements
of conductors on the same layer (see Figure 5-4(b)); that is, adjacent metal
structures are separated by a small horizontal gap. Again, there are two
distinct metal connections, and a smaller metal separation can be obtained
using photolithography than that possible using dielectric separation.
However the capacitance density is only increased by a factor of about three.
Higher values can be obtained using the interdigitated capacitor (IDC) of
Figure 5-4(c). Both types of MOM capacitance, parallel plate and lateral, are
geometrically defined, are voltage independent, have very low temperature
coefficients, and have initial fabrication tolerances of 20%–30%.
The second type of capacitor in MOS technology is referred to as a
metal-oxide-semiconductor (MOS) capacitor. MOS capacitors use a MOS
transistor with a parallel-plate capacitance between the gate of a MOS
transistor and a heavily inverted channel. The drain and source are
connected in this configuration and the separation between the conductors
is thin, being the gate oxide thickness. This leads to high values of
capacitance, although with a weak voltage dependence. Junction capacitance
is realized as the capacitance of a reverse-biased semiconductor junction.
This capacitance can be quite large, but has a strong voltage dependence.
This voltage dependence can be utilized to realize tunable circuits (e.g., a
voltage-controlled oscillator).
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(a) Plan view (b) Side view (c) Impedance magnitude

Figure 5-5: An on-chip spiral inductor.

5.3.2 Planar Inductors

Inductors are important components in RF and microwave circuits. In
addition to their role in matching networks, they are used to provide bias
to active devices while effectively blocking RF signals from the bias circuitry.
Inductors of up to 10 nH can be fabricated in compact form, with the spiral
inductor of Figure 5-4(e) being typical. Bond wires can also be used to realize
small inductances in the 0.5–1 nH range. One of the advantages of having
a portion of a large inductance on-chip is reduced sensitivity to die attach
(bondwire, etc.) connections used to connect to an external inductance. Small
values of inductance can be realized by the meander line inductor of Figure
5-4(d). This is based on a high-impedance length of line (narrow line in
microstrip) appearing inductive.
An on-chip spiral inductor is shown in Figure 5-5. An approximate
expression for the inductance of this structure was developed by Wheeler
[1–3]:

L ≈ 9.4µ0n
2a2

11d− 7a
, (5.13)

where a is the mean radius of the spiral and n is the number of turns. This
formula was derived for circular coils, but its accuracy for square spirals is
within 5% of values obtained using EM simulation [4]. It is therefore a very
useful formula in the early stages of design, but EM analysis is required to
obtain the necessary accuracy and frequency dependence of the inductor.
Fields produced by a spiral inductor penetrate the substrate, and as the
ground plane is located at a short distance away, the eddy currents on the
ground plane reduce the inductance that would otherwise be obtained. The
eddy current in the ground conductor rotates in a direction opposite to that
of the current on the spiral itself. As a result, the flux of the image inductor
in the ground is in the opposite direction to that produced by the spiral
itself, with the consequent effect that the effective total inductance is reduced.
By creating a broken conductor pattern, the ground inductance is largely
eliminated as the eddy currents cannot flow [5].
All inductors have appreciable resistive loss of conductors, and for inductors
on semiconductor substrates, loss due to induced substrate currents is
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(a) (b) (c)

Figure 5-6: Circuit board showing the use of surface-mount components: (a) chip resistor or
capacitor with metal terminals at the two ends; (b) populated RF microstrip circuit board
of a 5 GHz voltage-controlled oscillator [7] (the larger components have dimensions 1.6 mm
× 0.8mm); and (c) identification of several components including a varactor stack with four
varactor diodes and a shorting bar that is a 0 Ω resistor.

important and often dominates. Loss in the substrate is particularly large
in silicon substrates due to the finite conductivity of the substrate and the
resulting current flow. These induced currents follow a path under the
conductors of the spiral and, just as with ground plane eddy currents, lowers
the inductance achieved. However, the resistance of the lines is unchanged.
Thus on silicon it is difficult to achieve very high Qs (the ratio of stored
energy to energy dissipated per cycle).
Lumped inductors are based on coils of conductor, and there is parasitic
capacitance between the windings [6]. As a result there will be a frequency
where the capacitance and inductance resonate at what is called the self-
resonant frequency. The impedance of a realistic inductor is shown in Figure
5-5(c). If the practical inductor was purely inductive, then its impedance
would increase linearly with frequency. However, because of resonance, the
effective inductance increases just before resonance causing the impedance
of the practical inductor to increase more rapidly than linearly. This is seen in
Figure 5-5(c), and this effect is often used in narrowband microwave circuits.

5.4 Surface-Mount Components

The majority of the RF and microwave design effort goes into developing
modules and interconnecting modules on circuit boards. With these the most
common type of component to use is surface-mount. Figure 5-6(a) shows
a two-terminal element, such as a resistor or capacitor, in the form of a
surface-mount component. Figure 5-6(b and c) show the use of surface-
mount components on a microwave circuit board.
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Table 5-1: Sizes and designation of
two-terminal surface mount com-
ponents. Note the designation of
a surface-mount component refers
(approximately) to its dimensions in
hundredths of an inch.

Designation Size Metric Size
(inch × inch) designation (mm × mm)

01005 0.016 × 0.0079 0402 0.4× 0.2
0201 0.024 × 0.012 0603 0.6× 0.3
0402 0.039 × 0.020 1005 1.0× 0.5
0603 0.063 × 0.031 1608 1.6× 0.8
0805 0.079 × 0.049 2012 2.0× 1.25
1008 0.098 × 0.079 2520 2.5× 2.0
1206 0.13 × 0.063 3216 3.2× 1.6
1210 0.13 × 0.098 3225 3.2× 2.5
1806 0.18 × 0.063 4516 4.5× 1.6
1812 0.18× 0.13 4532 4.5× 3.2
2010 0.20 × 0.098 5025 5.0× 2.5
2512 0.25× 0.13 6432 6.4× 3.2
2920 0.29× 0.20 – 7.4× 5.1

Table 5-2: Parameters of the in-
ductors in Figure 5-7(a). Lnom is
the nominal inductance, SRF is
the self-resonance frequency, RDC

is the inductor’s series resistance,
and Imax is the maximum RMS
current supported.

Lnom 900 MHz 1.7 GHz SRF RDC Imax

(nH) L (nH) Q L (nH) Q (GHz) (Ω) (mA)

1.0 0.98 39 0.99 58 16.0 0.045 1600
2.0 1.98 46 1.98 70 12.0 0.034 1900
5.1 5.12 68 5.18 93 5.50 0.050 1400
10 10.0 67 10.4 85 3.95 0.092 1100
20 20.2 67 21.6 80 2.90 0.175 760
56 59.4 54 75.4 48 1.75 0.700 420

A two-terminal surface-mount resistor or capacitor is commonly called a
chip resistor or chip capacitor. These can be very small, and the smaller
the component often the higher the operating frequency due to reduced
parasitic capacitance or inductance. Common sizes of two-terminal chip
components are listed in Table 5-1. With a chip resistor or chip capacitor,
the parasitic inductance determines the maximum operating frequency with
the self-resonant frequency, in the case of a chip capacitor, being when the
capacitance resonates with the parasitic inductance. The usable maximum
frequency is below the self-resonant frequency.
Figure 5-7(a) shows an inductor in a surface-mount package and details
are shown in Figure 5-7(b). This inductor is wound on a dielectric former,
which, unfortunately, increases the inductor’s parasitic capacitance. The
resonance of this capacitance with the inductance establishes the self-
resonant frequency (SRF) of the inductor. The inductor is useable as an
inductor at a frequency backed-off from the SRF. The parasitic capacitance is
reduced if the inductor has an air core, as for the inductors shown in Figure
5-7(c), with details shown in Figure 5-7(d). The air enables the inductor
performance to be improved if the size remains the same or the inductor
is smaller for comparable performance. The performance of the two types of
inductors is listed in Tables 5-2 and 5-3.

5.5 Terminations and Attenuators

5.5.1 Terminations

Terminations are used to completely absorb a forward-traveling wave and
the defining characteristic is that the reflection coefficient of a termination is
ideally zero. If a transmission line has a resistive characteristic impedance
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(a) (b)

(c) (d)

Figure 5-7: Chip inductors: (a) inductor in an 0603 surface-mount package; (b) schematic
showing sizes and pads to be provided on a circuit board (A=64 mils (1.63 mm), B=33 mils
(0.84 mm), C=24 mils (0.61 mm), D=13 mils (0.33 mm), E=30 mils (0.76 mm), F=25 mils (0.64 mm),
G=25 mils (0.64 mm), and H=40 mils (1.02 mm)); (c) 0201 surface-mount air-core inductor; and
(d) detail (A=23 mils (0.58 mm), B=18 mils (0.46 mm), C=17.7 mils (0.45 mm), D=4 mils (0.1 mm),
E=15 mils (0.38 mm), F=9 mils (0.23 mm), G=7 mils (0.18 mm), and H=18 mils (0.46 mm)).
Copyright Coilcraft, Inc., used with permission [8].

Lnom 900 MHz 1.7 GHz SRF RDC Imax

(nH) L (nH) Q L (nH) Q (GHz) (Ω) (mA)

0.5 0.5 29 0.49 43 23.5 0.020 1250
1.2 1.16 42 1.16 60 17.9 0.042 870
2.3 2.28 45 2.28 64 16.5 0.070 670
5.2 5.21 36 5.21 55 10.0 0.170 430
9.6 9.62 38 9.64 53 6.2 0.400 280

14.0 14.13 37 14.37 51 5.1 0.440 270

Table 5-3: Parameters of the in-
ductors in Figure 5-7(c). Lnom is
the nominal inductance, SRF is
the self-resonance frequency, RDC

is the inductor’s series resistance,
and Imax is the maximum RMS
current supported.

R0 = Z0, then terminating the line in a resistance R0 will fully absorb the
forward-traveling wave and there will be no reflection. The line is then said
to be matched. At RF and microwave frequencies some refinements to this
simple circuit connection are required. On a transmission line the energy is
contained in the EM fields. For the coaxial line, a simple resistive connection
between the inner and outer conductors would not terminate the fields and
there would be some reflection. Instead, coaxial line terminations generally
comprise a disk of resistive material (see Figure 5-8(a)). The total resistance of
the disk from the inner to the outer conductor is the characteristic resistance
of the line, however, the resistive material is distributed and so creates a good
termination of the fields guided by the coaxial conductors.
Terminations are a problem with microstrip, as the characteristic impedance
varies with frequency, is in general complex, and the vias that would
be required if a lumped resistor was used has appreciable inductance at
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Table 5-4: IEEE standard symbols
for attenuators [9].

Component Symbol Alternate

Attenuator, fixed

Attenuator, balanced

Attenuator, unbalanced

Attenuator, variable

Attenuator, continuously variable

Attenuator, stepped variable

frequencies above a few gigahertz. A high-quality termination is realized
using a section of lossy line as shown in Figure 5-8(b). Here lossy material
is deposited on top of an open-circuited microstrip line. This increases the
loss of the line appreciably without significantly affecting the characteristic
impedance of the line. If the length of the lossy line is sufficiently long, say
one wavelength, the forward-traveling wave will be totally absorbed and
there will be no reflection. Tapering the lossy material, as shown in Figure
5-8(b), reduces the discontinuity between the lossless microstrip line and the
lossy line by ensuring that some of the power in the forward-traveling wave
is dissipated before the maximum impact of the lossy material occurs. Thus
a matched termination is achieved without the use of a via.

5.5.2 Attenuators

An attenuator is a two-port network used to reduce the amplitude of a
signal and it does this by absorbing power and without distorting the signal.
The input and output of the attenuator are both matched, so there are no
reflections. An attenuator may be fixed, continuously variable, or discretely
variable. The IEEE standard symbols for attenuators are shown in Table 5-4.
When the attenuation is fixed, an attenuator is commonly called a pad.
Resistive pads can be used to minimize the effect of shorts and opens on

Figure 5-8: Terminations: (a) coax-
ial line resistive termination; (b)
microstrip matched load. (a) (b)
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(a) Unbalanced (b) Balanced

R1 =
Z01(K + 1) − 2

√
KZ01Z02

K − 1
R2 =

Z02(K + 1)− 2
√
KZ01Z02

K − 1

R3 =
2
√
KZ01Z02

K − 1
(5.14)

If Z01 = Z02 = Z0, then

R1 = R2 = Z0

(
√
K − 1√
K + 1

)

and R3 =
2Z0

√
K

K − 1
(5.15)

Figure 5-9: T (Tee) attenuator. K is the (power) attenuation factor, e.g. a 3 dB
attenuator has K = 103/10 = 1.995.

(a) Unbalanced (b) Balanced

R1 =
Z01(K − 1)

√
Z02

(K + 1)
√
Z02 − 2

√
KZ01

R2 =
Z02(K − 1)

√
Z01

(K + 1)
√
Z01 − 2

√
KZ02

(5.16)

R3 =
(K − 1)

2

√

Z01Z02

K
(5.17)

If Z01 = Z02 = Z0, then

R1 = R2 = Z0

(
√
K + 1√
K − 1

)

and R3 =
Z0(K − 1)

2
√
K

. (5.18)

If R1 = R2, then Z01 = Z02 = Z0

Z0 =

√

R2
1R3

2R1 +R3
, and K =

(

R1 + Z0

R1 − Z0

)2

. (5.19)

Figure 5-10: Pi (Π) attenuator. K is the (power) attenuation factor, e.g. a 20 dB
attenuator has K = 1020/10 = 100.

the integrity of an RF circuit. An example of attenuator use in this situation
is in a cable TV system, where it is critical that the integrity of the system
is not compromised by a consumer disconnecting appliances from a cable
outlet.
Balanced and unbalanced resistive pads are shown in Figures 5-9 and 5-10
together with their design equations. The attenuators in Figure 5-9 are T
or Tee attenuators, where Z01 is the system impedance to the left of the
pad and Z02 is the system impedance to the right of the pad. The defining
characteristic is that the reflection coefficient looking into the pad from the
left is zero when referred to Z01. Similarly, the reflection coefficient looking
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(a) Coaxial attenuator (b) Microstrip attenuator (c) Precision fixed coaxial attenuators

Figure 5-11: Distributed attenuators. The attenuators in (c) have power handling ratings of 2W,
5W and 20 W (left to right). Copyright 2012 Scientific Components Corporation d/b/a Mini-
Circuits, used with permission [11].

from the right of the pad is zero with respect to Z02. The attenuation factor is

K =
Power in

Power out
. (5.20)

In decibels, the attenuation is

K|dB = 10 log10 K = (Power in)|dBm − (Power out)|dBm . (5.21)

If the left and right system impedances are different, then there is a minimum
attenuation factor that can be achieved [10]:

KMIN =







�

2Z01 − Z02 + 2
�

Z01 (Z01 − Z02)
�

/Z02 , Z01 ≥ Z02

�

2Z02 − Z01 + 2
�

Z02 (Z02 − Z01)
�

/Z01 , Z01 ≤ Z02

(5.22)

This limitation comes from the simultaneous requirement that the pad be
matched. If there is a single system impedance, Z0 = Z01 = Z02, then
KMIN = 1, and so any value of attenuation can be obtained.
Lumped attenuators are useful up to 10 GHz above which the size of
resistive elements becomes large compared to a wavelength. Also, for planar
circuits, vias are required, and these are undesirable from a manufacturing
standpoint, and electrically they have a small inductance. Fortunately
attenuators can be realized using a lossy section of transmission line, as
shown in Figure 5-11. Here, lossy material results in a section of line with
a high-attenuation constant. Generally the lossy material has little effect on
the characteristic impedance of the line, so there is little reflection at the
input and output of the attenuator. Distributed attenuators can be used at
frequencies higher than lumped-element attenuators can, and they can be
realized with any transmission line structure.
Another example of the use of attenuators in combining the output of two
sources is shown in Figure 5-12. This is a common situation in measurements
where the outputs of two instrumentation sources are to be combined. The
attenuators reduce the level of the signal presented to the output of one
source by the other. If the level of the second signal is high, most sources
would produce nonlinear distortion, including nonlinear mixing products.
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Figure 5-12: The use of attenuators to isolate the outputs
of two sources that are combined.

EXAMPLE 5.1 Pad Design

Design an unbalanced 20 dB pad in a 75 Ω system.

Solution:

There are two possible designs using resistive pads. These are the unbalanced Tee and Pi
pads shown in Figures 5-9 and 5-10. The Tee design will be chosen. The K factor is

K = 10(K|dB/10) = 10(20/10) = 100. (5.23)

Since Z01 = Z02 = 75 Ω, Equation (5.15) yields

R1 = R2 = 75

(
√
100− 1√
100 + 1

)

= 75

(

9

11

)

= 61.4 Ω (5.24)

R3 =
2 · 75

√
100

100− 1
= 150

(

10

99

)

= 15.2 Ω. (5.25)

The final design is

5.6 Transmission Line Stubs and Discontinuities

Interruptions of the magnetic or electric field create regions where additional
magnetic energy or electric energy is stored. If the additional energy stored
is predominantly magnetic, the discontinuity will introduce an inductance.
If the additional energy stored is predominantly electric, the discontinuity
will introduce a capacitance. Such discontinuities occur with all transmission
lines. In some cases transmission line discontinuities introduce undesired
parasitics, but they also provide an opportunity to effectively introduce
lumped-element components. In this section microstrip discontinuities will
be considered, but the principles apply to all transmission line structures.
The simplest microwave circuit element is a uniform section of transmission
line that can be used to introduce a time delay or frequency-dependent phase
shift. More commonly it is used to interconnect other components. Line
segments including bends and junctions are shown in Figure 5-13.

5.6.1 Open

Many transmission line discontinuities arise from fringing fields. One
element is the microstrip open, shown in Figure 5-14. The fringing fields at
the end of the transmission line in Figure 5-14(a) store energy in the electric
field, and this can be modeled by the fringing capacitance, CF , shown in
Figure 5-14(b). This effect can also be modeled by an extended transmission
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line, as shown in Figure 5-14(c). For a typical microstrip line with εr = 9.6, h
= 600 µm, and w/h = 1, CF is approximately 36 fF. However, CF varies with
frequency, and the extended length is a much better approximation to the
effect of fringing [12]. For the same dimensions, the length of the extension
is approximately 0.35h and almost independent of frequency [13]. As with
many fringing effects, a capacitance or inductance can be used to model the
effect of fringing, but generally a distributed model is better.

5.6.2 Discontinuities

Several microstrip discontinuities and their equivalent circuits are shown
in Figure 5-15. Discontinuities (Figure 5-15(b–g)) are modeled by capacitive
elements if the E field is affected and by inductive elements if the H field
(or current) is disturbed. The stub shown in Figure 5-15(b), for example,
is best modeled using lumped elements describing the junction as well as
the transmission line of the stub itself. Current bunches at the right angle
bends from the through line to the stub. The current bunching leads to excess
energy being stored in the magnetic field, and hence an inductive effect.
There is also excess charge storage in the parallel plate region bounded by
the left- and right-hand through lines and the stub. This is modeled by a
capacitance.

(a) Mitered bend (b) T junction

(c) Impedance step

Figure 5-13: Microstrip discontinuities.

Figure 5-14: An open on a mi-
crostrip transmission line: (a) mi-
crostrip line showing fringing
fields at the open; (b) fringing
capacitance model of the open;
and (c) an extended line model of
the open with ∆x being the extra
transmission line length that cap-
tures the open.
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Figure 5-15:
Microstrip dis-
continuities: (a)
quarter-wave
impedance trans-
former; (b) open
microstrip stub; (c)
step; (d) notch; (e)
gap; (f) crossover;
and (g) bend.

(a) (b) (c)

Figure 5-16: Microstrip stubs: (a) radial
shunt-connected stub; (b) conventional
shunt stub; and (c) butterfly radial stub.

5.6.3 Impedance Transformer

Impedance transformers interface two lines of different characteristic
impedance. The smoothest transition and the one with the broadest
bandwidth is a tapered line. This element can be long and then a quarter-
wave impedance transformer (see Figure 5-15(a)) is sometimes used,
although its bandwidth is relatively small and centered on the frequency at
which l = λg/4. Ideally Z0,2 =

√
Z0,1Z0,3. This topic is considered further in

Section 7.5 where the design of tapered lines and multi-stage quarter-wave
transformers are considered in detail.

5.6.4 Planar Radial Stub

The use of a radial stub (Figure 5-16(a)), as opposed to the conventional
microstrip stub (Figure 5-16(b)), can improve the bandwidth of many
microstrip circuits. A major advantage of a radial stub is that the input
impedance presented to the through line generally has broader bandwidth
than that obtained with the conventional stub. When two shunt-connected
radial stubs are introduced in parallel (i.e., one on each side of the microstrip
feeder line) the resulting configuration is termed a “butterfly” stub (see
Figure 5-16(c)). Critical design parameters include the radius, r, and the
angle of the stub.
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Stub transformations Transmission line circuit

(a) ↔

Electrical length = θ Electrical length = θ/2

(b)
↔

Electrical length = θ Electrical length = θ/2

(c) ↔

Z01 = Z2
1/(Z1 + Z2) Z02 = Z1Z2/(Z1 + Z2)

Figure 5-17: Stub network transformations: (a) open- and (b) short-circuited stubs after
application of the half-angle transform [14]; and (c) equivalence between series connection of
open- and short-circuited stubs and stepped impedance transmission line.

5.6.5 Stub Transformations

The stub transformations in Figure 5-17 enable the lengths of stubs to be
reduced. The first two stub transformations (Figure 5-17(a and b)) are called
half-angle transformations and enable a stub to be replaced by two shorter
stubs. The third stub transformation (Figure 5-17(c)) enables two stubs to be
replaced by two cascaded transmission lines.
Figure 5-17(a) is a half-angle transform of a series open-circuited stub.
Mathematically the transform is described as follows. Consider the input
impedance of an open-circuited stub [14] with electrical length θ = βℓ at
frequency f and which is a quarter-wavelength long at f0 (i.e., θ = π/2 at f0)
(from Section 2.4.4 of [15] and using Equation ((1.105)) of [15]):

Zoc = −Z0 cot (θ) =  (Z0/2) tan (θ/2)−  (Z0/2) / tan (θ/2) . (5.26)

In general, θ = (π/2) (f/f0). The right-hand side of Equation (5.26) describes
the series connection of short- and open-circuited stubs having characteristic
impedances of Z0/2 and half the original electrical length. This implies
that the resulting transmission line resonators are one-quarter wavelength
long at 2f0 (i.e., they are one-eighth wavelength long at f0). The half-angle
transformation applies at all frequencies and not just frequencies near f0.
Through a similar analytical treatment, the short-circuited stub has the
equivalence shown in Figure 5-17(b). The series short-circuited stub on the
left in Figure 5-17(b) has the series admittance

YT =
1

Z0 tan(θ)
=

1

Z0
cot(θ) (5.27)
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and the stubs in the transformation have an input impedance

Zoc = − 12Z0 cot(θ/2) and Zsc =  12Z0 tan(θ/2). (5.28)

These stubs are in parallel so that the total input admittance is

YT =
1

Zoc
+

1

Zsc
=

2

−Z0 cot(θ/2)
+

1

Z0 tan(θ/2)

=
2

Z0

[

− tan(θ/2) +
1

c
ot(θ/2)

]

=
1

Z0
cot(θ). (5.29)

Examining Equations (5.27) and (5.29) it is seen that they are identical, thus
Figure 5-17(b) represents another half-angle transformation.
For the series open- and short-circuited stubs in Figure 5-17(c), the input
impedances of the open- and short-circuited stubs are

Zoc = −Z02 cot(θ) and Zsc = Z01 tan(θ), (5.30)

respectively, so that the total series impedance is

ZT = Zoc + Zsc = −Z02 cot(θ) + Z01 tan(θ). (5.31)

For the transformation on the right, the impedance looking into the open
circuit (outer) stub is

Zx = −Z2 cot(θ) (5.32)

and the total impedance is

ZT = Z1

[−Z2 cot(θ) + Z1 tan(θ)

Z1 + Z2 cot(θ) tan(θ)

]

=
−Z1Z2 cot(θ)

Z1 + Z2
+

Z2
1 tan(θ)

Z1 + Z2
. (5.33)

Equating Equations (5.31) and (5.33) and collecting terms,

Z02 = Z1Z2/(Z1 + Z2) and Z01 = Z2
1/(Z1 + Z2), (5.34)

and the transmission line segments (of characteristic impedance Z01, Z02, Z1

and Z2) all have the same electrical length.
In summary, the stub transformations hold no matter what the lengths of the
stubs. The half-angle stub transformations enable transmission line circuits
to be miniaturized.

5.7 Resonators

Near resonance, the response of a microwave resonator is very similar to
the resonance response of a parallel or series LC resonant circuit, shown in
Figure 5-18(e and f). These equivalent circuits can be used over a narrow
frequency range of perhaps 5% fractional bandwidth.
Several types of resonators are shown in Figure 5-18. Figure 5-18(a) is a
rectangular cavity resonator coupled to an external coaxial line by a small
coupling loop. Figure 5-18(b) is a microstrip patch reflection resonator.
This resonator has large coupling to the external circuit. The coupling
can be reduced and photolithographically controlled by introducing a gap,
as shown in Figure 5-18(c), to create what is called a microstrip gap-
coupled transmission line reflection resonator. The Q of a resonator can
be dramatically increased by using a low-loss, high-dielectric constant
material, as shown in Figure 5-18(d), for a dielectric transmission resonator
in microstrip.
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Figure 5-18: Microwave res-
onators: (a) rectangular cavity
resonator, (b) microstrip patch res-
onator (c) microstrip gap-coupled
reflection resonator, (d) dielectric
transmission resonator in mi-
crostrip, (e) parallel equivalent
circuits, and (f) series equivalent
circuits.

5.7.1 Dielectric Resonators

Any dielectric structure can store EM energy, with the resonant frequency
dependent on both the permittivity and the physical dimensions. At the
resonance frequency, all resonators store the maximum amount of energy.
Two resonators that store particularly large amounts of energy are the cavity
resonator shown in Figure 5-18(a) and the dielectric resonator shown in
Figure 5-18(d).
Microwave ceramics can have very low loss and high permittivity (which
results in small wavelengths and hence small size) and are commonly used
in microwave resonators. Low-loss ceramic materials with permittivities in
the range of 21 to 150 are generally available and unloaded Q factors are in
the 5,000 to 10,000 range. Physical dimensions generally depend upon the
resonant frequencies desired.
The general theoretical expression for the resonant frequencies, applying to
a cylindrical dielectric resonator of radius a and height d, is

fmnl =
c

2
√
εr

√
(χmn

πa

)2

+

(
l

d

)2

, (5.35)

where the integer l denotes the number of half wavelengths in the vertical
direction and χmn is the mth extremum of the Bessel function Jn for a TM
mode (or alternatively the mth zero for a TE mode).
Figure 5-18(d) shows a common use of a dielectric resonator, often called a
puck, coupling to the fields of a microstrip line. The puck has a resonance
defined by the radius of the high permittivity puck. There can be several
modes of resonance, with some modes introducing a parallel resonant circuit
(Figure 5-18(e)) in shunt across the line and others introducing a series
resonant circuit in shunt across the line (Figure 5-18(f)).

5.8 Magnetic Transformer

In this section the use of magnetic transformers in microwave circuits will be
discussed. Magnetic transformers can be used directly up to a few hundred
megahertz or so, but the same transforming properties can be achieved using
coupled transmission lines.
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(a) (b) (c)

(d) (e)

Figure 5-19: Magnetic transformers: (a) a transformer as two magnetically coupled windings
with n1 windings on the primary (on the left) and n2 windings on the secondary (on the
right) (the dots indicate magnetic polarity so that the voltages V1 and V2 have the same sign);
(b) a magnetic transformer with a magnetic core; (c) identical representations of a magnetic
transformer with the magnetic polarity implied for the transformer on the right; (d) two
equivalent representations of a transformer having opposite magnetic polarities (an inverting
transformer); and (e) a magnetic transformer circuit.

5.8.1 Properties of a Magnetic Transformer

A magnetic transformer (see Figure 5-19) magnetically couples the current
in one wire to current in another. The effect is amplified using coils of wires
and using a core of magnetic material (material with high permeability)
to create greater magnetic flux density. When coils are used, the symbol
shown in Figure 5-19(a) is used, with one of the windings called the primary
winding and the other called the secondary winding. If there is a magnetic
core around which the coils are wound, then the symbol shown in Figure
5-19(b) is used, with the vertical lines indicating the core. However, even
if there is a core, the simpler transformer symbol in Figure 5-19(a) is more
commonly used. Magnetic cores are useful up to several hundred megahertz
and rely on the alignment of magnetic dipoles in the core material. Above
a few hundred megahertz the magnetic dipoles cannot react quickly enough
and so the core looks like an open circuit to magnetic flux. Thus the core is not
useful for magnetically coupling signals above a few hundred megahertz. As
mentioned, the dots above the coils in Figure 5-19(a) indicate the polarity of
the magnetic flux with respect to the currents in the coils so that, as shown,
V1 and V2 will have the same sign. Even if the magnetic polarity is not
specifically shown, it is implied (see Figure 5-19(c)). There are two ways
of showing inversion of the magnetic polarity, as shown in Figure 5-19(d),
where a negative number of windings indicates opposite magnetic polarity.
The interest in using magnetic transformers in high-frequency circuit design
is that configurations of magnetic transformers can be realized using
coupled transmission lines to extend operation to hundreds of gigahertz.
The transformer is easy to conceptualize, so it is convenient to first develop a
circuit using the transformer and then translate it to transmission line form.
That is, in “back-of-the-envelope” microwave design, transformers can be
used to indicate coupling, with the details of the coupling left until later
when the electrical design is translated into a physical design. Restrictions
must be followed as not all transformer configurations can be translated this
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way. Transformer characteristics are developed below.
The following notation is used with a magnetic transformer:
L1, L2: the self-inductances of the two coils
M : the mutual inductance
k: the coupling factor,

k =
M√
L1L2

. (5.36)

Referring to Figure 5-19(e), the voltage transformer ratio is

V2 = nV1, (5.37)

where n is the ratio of the number of secondary to primary windings. An
ideal transformer has “perfect coupling,” indicated by k = 1, and the self-
inductances are proportional to the square of the number of windings, so

V2

V1
=

√

L2

L1
. (5.38)

The general equation relating the currents of the circuit in Figure 5-19(e) is

RI2 + ωL2I2 + ωMI1 = 0, (5.39)

and so
I1
I2

= −R+ ωL2

ωM
. (5.40)

If R ≪ ωL2, then the current transformer ratio is

I1
I2

≈ −L2

M
= −

√
L2

L1
. (5.41)

Notice that combining Equations (5.38) and (5.41) leads to calculation of the
transforming effect on impedance. On the Coil 1 side, the input impedance
is (referring to Figure 5-19(e))

Zin =
V1

I1
= −V2

I2

(
L1

L2

)

= R
L1

L2
. (5.42)

In practice, however, there is always some magnetic field leakage—not all
of the magnetic field created by the current in Coil 1 goes through (or links)
Coil 2—and so k < 1. Then from Equations (5.38)–(5.42),

V1 = ωL1I1 + ωMI2 (5.43)

0 = RI2 + ωL2I2 + ωMI1. (5.44)

Again, assuming that R ≪ ωL2, a modified expression for the input
impedance is obtained that accounts for nonideal coupling:

Zin = R
L1

L2
+ ωL1(1− k2). (5.45)

Imperfect coupling, k < 1, causes the input impedance to be reactive and this
limits the bandwidth of the transformer. Stray capacitance is another factor
that impacts the bandwidth of the transformer.
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(a) (b)

(c) (d)

Figure 5-20: Commonly used symbols for hybrids: (a) through and coupled ports; (b) 180◦

hybrid; (c) 90◦ hybrid; and (d) hybrid with the isolated port terminated in a matched load.

5.9 Hybrids

Hybrids are transformers that combine or divide microwave signals among
a number of inputs and outputs. They can be implemented using distributed
or lumped elements and are not restricted to RF and microwave applications.
For example, a magnetic transformer is a hybrid and can be used to combine
the outputs of two or more transistor stages, or to obtain appropriate
impedance levels. A 3 dB directional coupler based on parallel coupled lines
is also a type of hybrid. Specific implementations will be considered later in
this chapter, but for now the focus is on their idealized characteristics. The
symbols commonly used for hybrids are shown in Figure 5-20.
A hybrid is a special type of four-port junction with the property that if
a signal is applied at any port, it emerges from two of the other ports at
half power, while there is no signal at the fourth or isolated port. The two
outputs have specific phase relationships and all ports are matched. Only
two fundamental types of hybrids are used: 180◦ and 90◦ hybrids. A hybrid
is a type of directional coupler, although the term directional coupler, or
just coupler, is most commonly used to refer to devices where only a small
fraction of the power of an input signal is sampled. Also, a balun is a special
type of hybrid.
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5.9.1 Quadrature Hybrid

The ideal 90◦ hybrid, or quadrature hybrid, shown in Figure 5-20(c), has the
scattering parameters

S90◦ =
1√
2







0 − 1 0
− 0 0 1
1 0 0 −
0 1 − 0






. (5.46)

The 90◦ phase difference between the through and coupled ports is indicated
by −. The actual phase shift, that is, +90◦ or −90◦ (indicated by ), between
the input and output ports depends on the specific hybrid implementation.
Another quadrature hybrid could have the parameters

S90◦ =
1√
2







0  1 0
 0 0 1
1 0 0 
0 1  0






. (5.47)

Recall the requirement of quadrature modulators that the local oscillator be
supplied as two components equal in magnitude but 90◦ out of phase. A
quadrature hybrid is just the circuit that can do this.
To convince yourself that Equation (5.47) describes a network that splits the
power, consider the power flow implied by Equation (5.47). The fraction of
power transmitted from Port i to Port j is described by |Sji|2. Consider the
power that enters Port 1. No power is reflected for an ideal hybrid, as the
input at Port 1 is matched and S11 = 0. Port 4 should be isolated so no power
will come out of Port 4, and so S41 = 0. The power should be split between
Ports 2 and 3, and these should be equal to half the power entering Port 1.
From Equation (5.47),

|S21|2 =

�
1√
2
||
�2

= 1
2 and |S31|2 =

�
1√
2
|1|

�2

= 1
2 . (5.48)

Thus the power entering Port 1 is split, with half going to Port 2 and half to
Port 3.

5.9.2 180◦ Hybrid

The scattering parameters of the 180
◦ hybrid, shown in Figure 5-20(b), are

S180◦ =
1√
2







0 1 −1 0
1 0 0 1

−1 0 0 1
0 1 1 0






, (5.49)

and this defines the operation of the hybrid. In terms of the root power waves
a and b, the outputs at the ports are

b1 = (a2 − a3)/
√
2 b2 = (a1 + a4)/

√
2

b3 = (−a1 + a4)/
√
2 b4 = (a2 + a3)/

√
2

. (5.50)

Imperfections in fabricating the hybrid will result in nonzero scattering
parameters at the ports where ideally Sji = 0, so that it is best to terminate
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Figure 5-21: A 180◦ hybrid as a combiner (with output
at the sum port, Σ) and as a comparator (with output at
the difference port, △): (a) equivalence between a 180◦

hybrid and a sum-and-difference hybrid; (b) the two
inputs are in phase; (c) the two inputs are 180◦ out of
phase; and (d) the two inputs are 90◦ out of phase.

the isolated port of the hybrid, as shown in Figure 5-20(d), to ensure that
there is no reflected signal (i.e., no a4) entering the hybrid at the isolated
port. Equation (5.50) shows that ports are interchangeable. That is, if a signal
is applied to Port 3, then it is split between Ports 1 and 4, and Port 2 becomes
the isolated port.
A hybrid can be used in applications other than splitting the input signal
into a through and a coupled component. An example of another use is in a
system that combines or compares two signals, as in Figure 5-21. Here a 180◦

hybrid with the scattering parameters of Equation (5.49) is shown. With a
signal x(t) applied to Port 2 in Figure 5-20(b), and another signal y(t) applied
to Port 3, the output at Port 4 is the sum signal, x(t) + y(t), and the output
at Port 1 is the difference signal, x(t) − y(t). More common names for the
output ports (when the 180◦ hybrid is used as a combiner) are to call Port 4
the sigma or sum port, often designated using the symbol Σ. Port 1 is called
the difference or delta port, △. Notice that if a signal is applied to the △ port
it will generate out-of-phase outputs.

5.9.3 Magnetic Transformer Hybrid

In the hybrid circuits of Figures 5-22 and 5-23, the number of windings
of each coil (there are three in each structure) is the same. The impedance
levels given are those required for maximum power transfer and indicate
the impedance transformations of the structures. Considering Figure 5-23
and equating powers,

1
2

(2V )2

Z2
= 1

2

V 2

Z0
,

4

Z2
=

1

Z0
, and so Z2 = 4Z0. (5.51)

That is, if Z2 = 4Z0, the impedance seen looking into Port 4 (of the
transformer in Figure 5-23) is Z0, and so the transformer has provided
matching to the large load. For example, if Z2 = 200 Ω (perhaps the input
of a transistor), the transformer matches this to 50 Ω.
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(a) (b)

Figure 5-22: Magnetic transformer hybrid with each coil having the same number of windings:
(a) showing general loading impedance; and (b) optimum loading to function as a 180◦ hybrid
with Port 2 (terminal 2 to ground) isolated and the balanced input at Port 1. For example, an
antenna could be attached to Port 1. A common flux passes through the three coils.

Figure 5-23: The magnetic transformer of Figure 5-22 as
an impedance transforming balun.

EXAMPLE 5.2 Magnetic Transformer Hybrid

Consider the magnetic transformer hybrid of Figure 5-22(a) with Z0 real. Determine what
type of hybrid this is and calculate the impedance transformations. Assume ideal coupling
(k = 1).

Solution:

Since the coupling is ideal and each coil has the same number of windings,

(V3 − V2) = V1 and (V2 − V4) = V1. (5.52)

The current levels in the transformer depend on the attached circuitry. For this circuit to
function as a hybrid with Port 2 isolated, the current I2 must be zero so that I3 and I4 are
equal in magnitude but 180◦ out of phase. The loading at Ports 3 and 4 must be the same.
Now V2 = 0, since I2 = 0, and so Equation (5.52) become

V3 = V1 and V4 = −V1, (5.53)

so this circuit is a 180◦ hybrid.
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To determine loading conditions at Ports 2, 3, and 4 the following transformer equation is
used:

V3 = ωL2I3 + ωMI1 − ωMI4, (5.54)

where L2 is the inductance of Coil 2 and M is the mutual inductance. Now I1 = −V1/Z0,
L2 = L3 = M since coupling is ideal, and V3 = V1. So Equation (5.54) becomes

V3 = ωM(2I3 − V3/Z0). That is, V3(1 + ωM/Z0) = 2ωMI3. (5.55)

If ωM≫|Z0|, this reduces to Zx = V3/I3 = 2Z0. (5.56)

For maximum power transfer Z3 = Z∗
x , but since Z0 is real, Z3 = Zx = 2Z0. From symmetry,

Z4 = Z3. Also, I3 = −I4 = I1/2.

(The above result can also be obtained by considering only maximum power transfer
considerations. The argument is as follows. An impedance Z0 is attached to Coil 1. Maximum
power transfer to the transformer through the coil requires that the input impedance be Z0

(since it is real). In the ideal hybrid operation the power is split evenly between the powers
delivered to the loads at Ports 3 and 4, since V1 = (V3 − V2) = (V2 − V4) and the power
delivered to Coil 1 is V 2

1 /(2Z0). The power delivered to Z3 (and Z4) is (V3 − V2)
2/(2Z3) =

V 2
1 /(2Z3) = V 2

1 /(4Z0). That is, Z3 = 2Z0 = Z4. It is a small extrapolation to say that
Z3 = 2Z∗

0 = Z4.)

The problem is not yet finished, as Z2 must be determined. For hybrid operation, a signal
applied to Port 2 should not have a response at Port 1. So the current at Port 2, I2, should be
split between Coils 2 and 3 so that I3 = −I2/2 = I4. Thus

V4 = −I4(2Z0) = (I2/2)(2Z0) = I2Z0 = V3. (5.57)

Now V3 − V2 = V1 = 0 = V2 − V4, and so V2 = V4 = I2Z0. (5.58)

That is, Z2 = V2/I2 = Z0. (5.59)

The final 180◦ hybrid circuit is shown in Figure 5-22(b) with the loading conditions for
matched operation as a hybrid.

In the example above it is seen that the number of windings in the coils are
the same so that the current in Coils 2 and 3 (of the transformer in Figure 5-
22) is half that in Coil 1. The general rule is that with an ideal transformer, the
sum of the amp-turns around the magnetic circuit must be zero. The precise
way the sum is calculated depends on the direction of the windings indicated
by the “dot” convention. A generalization of the rule for the transformer
shown in Figure 5-22 is

n1I1 − n2I2 − n3I3 = 0, (5.60)

where nj is the number of windings of Coil j with current Ij . The example
serves to illustrate the type of thinking behind the development of many
RF circuits. Considering maximum power transfer provided an alternative,
simpler start to the solution of the problem than one that used the full
transformer equations.

5.10 Baluns

A balun [16, 17] is a structure that joins balanced and unbalanced
circuits. The word itself (balun) is a contraction of balanced-to-unbalanced
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Figure 5-24: A balun: (a) as a two-port
with four terminals; (b) IEEE standard
schematic symbol for a balun [9]; and (c)
an (unbalanced) coaxial cable driving a
dipole antenna through a balun. (a) (b) (c)

Figure 5-25: Balun: (a) schematic represen-
tation as a transformer showing unbal-
anced and balanced ports; and (b) con-
nected to a single-ended unbalanced am-
plifier yielding a balanced output. (a) (b)

Figure 5-26:
Marchand balun:
(a) coaxial form of
the Marchand balun;
and (b) its equivalent
circuit. (a) (b)

transformer. Representations of a balun are shown in Figure 5-24. A situation
when a balun is required is with an antenna. Many antennas do not operate
correctly if part of the antenna is at the same potential electrically as the
ground. Instead, the antenna should be electrically isolated from the ground
(i.e., balanced). The antenna would usually be fed by a coaxial cable with its
outer conductor connected to ground, and so a balun is required between the
cable and the antenna.
A balun is a key component of many RF and microwave communications
systems [18, 19]. Baluns are used in balanced circuits, such as antennas,
double-balanced mixers, push-pull amplifiers, and frequency doublers [20].
Another application of a balun is in a system using RFICs, where a balun
transforms the differential outputs of an RFIC to unbalanced microwave
circuitry. The schematic of a magnetic transformer used as a balun is shown
in Figure 5-25(a) with one terminal of the unbalanced port grounded. Figure
5-24(b) is the standard schematic symbol for a balun and its use with a
dipole antenna is shown in Figure 5-24(c). The second port is floating and
is not referenced to ground. An example of the use of a balun is shown in
Figure 5-25(b), where the amplifier is called a single-ended amplifier and its
output is unbalanced, being referred to ground. A balun transitions from the
unbalanced transistor output to a balanced output.

5.10.1 Marchand Balun

The most common form of microwave balun is the Marchand balun [16, 20–
23]. An implementation of the Marchand balun using coaxial transmission
lines is shown in Figure 5-26(a) [24]. It can also be realized in planar form
[16]. The Z02 line acts as both a series stub and a shunt stub. Thus the model
of the Marchand balun is as shown in Figure 5-26(b).
The drawback of the conventional Marchand balun is that the center
frequency of the balun is actually the resonant frequency of the transmission
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Figure 5-27: Wilkinson
divider: (a) two-way
divider with Port 1 being
the combined signal and
Ports 2 and 3 being the
divided signals; (b) less
cluttered representation;
(c) lumped-element
implementation; (d)
three-way divider with
Port 1 being the com-
bined signal and Ports
2, 3, and 4 being the di-
vided signals; and (e)–(h)
steps in the derivation of
the input impedance.

line resonators forming the balun. Thus the overall size of a conventional
Marchand balun can be large, with the size determined by the transmission
line sections, which are one-quarter wavelength long at the balun center
frequency. Network synthesis can lead to miniaturized baluns by shifting the
one-quarter wavelength frequency up while maintaining the balun center
frequency [23].

5.11 Combiners and Dividers

Combiners are used to combine power from two or more sources. A typical
use is to combine power from two high power amplifiers to obtain a higher
power than would be otherwise be available. Dividers divide power so that
the power from an amplifier can be routed to different parts of a circuit.

5.11.1 Wilkinson Combiner and Divider

The Wilkinson divider can be used as a combiner or divider that divides
input power among the output ports [25]. Figure 5-27(a) is a two-way divider
that splits the power at Port 1 equally between the two output ports at Ports
2 and 3. A particular insight that Wilkinson brought was the introduction of
the resistor between the output ports and this acts to suppress any imbalance
between the output signals due to nonidealities. If the division is exact, no
current will flow in the resistor. The circuit works less well as a general
purpose combiner. Ideally power entering Ports 2 and 3 would combine
losslessly and appear at Port 1. A typical application is to combine the power
at the output of two matched transistors where the amplitude and the phase
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Figure 5-28:
Wilkinson combiner
and divider: (a) mi-
crostrip realization;
and (b) higher per-
formance microstrip
implementation. (a) (b)

of the signals can be expected to be closely matched. However, if the signals
are not identical, power will be absorbed in the resistor. The bandwidth of the
Wilkinson combiner/divider is limited by the one-quarter wavelength long
lines. However, the bandwidth is relatively large, approaching ±50% [25].
Arbitrary power ratios can also be obtained [26–28].
The operation of the Wilkinson divider can be seen by deriving the input
impedance of the two-way Wilkinson divider driven at Port 1 (see Figure
5-27(e)). Since the Wilkinson divider is driven, the signals at Ports 2 and 3
will be identical, so it is as though the resistor in the Wilkinson divider is
not there. The input impedance of one of the one-quarter wavelength long
sections in Figure 5-27(e) is

Z1 =

�√
2Z0

�2

Z0
= 2Z0, (5.61)

and so the Wilkinson model reduces to that in Figure 5-27(f). The two 2Z0

resistors are in parallel, resulting in the further model reductions in Figures
5-27(g) and 5-27(h). Thus Port 1 is matched. A similar analysis shows that
Ports 2 and 3 are matched (have an input impedance of Z0). The S parameters
of the two-way Wilkinson power divider with an equal split of the output
power are therefore

S =





0 −/
√
2 −/

√
2

−/
√
2 0 0

−/
√
2 0 0



 . (5.62)

Figure 5-27(b) is a compact representation of the two-way Wilkinson divider,
and a three-way Wilkinson divider is shown in Figure 5-27(d). This pattern
can be repeated to produce N -way power dividing. The lumped-element
version of the Wilkinson divider shown in Figure 5-27(c) is based on the LC
model of a one-quarter wavelength long transmission line segment. With a
50 Ω system impedance and center frequency of 400 MHz, the elements of
the lumped element are (from Figure 2-37(c)) L = 28.13 nH, C1 = 11.25 pF, C2

= 5.627 pF, and R = 100 Ω.
Figure 5-28(a) is the layout of a direct microstrip realization of a Wilkinson
divider. The obvious problem is how to incorporate the resistor. As long as
the resistor is placed symmetrically this is not as severe a problem as it would
initially seem, as power is not dissipated in the resistor unless there is an
imbalance. A higher-performance microstrip layout is shown in Figure 5-
28(b), where the transmission lines are curved to bring the output ports near
each other so that a chip resistor can be used.
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EXAMPLE 5.3 Lumped-Element Wilkinson Divider

Design a lumped-element 2-way Wilkinson divider in a 60 Ω system. The center frequency
of the design should be 10 GHz.

Solution:

The design begins with the transmission line form of the Wilkinson
divider which will be converted to a lumped-element form latter. The
design parameters are Z0 = 60 Ω, f = 10 GHz, ω = 2π1010 =
2.283 · 1010 rads/s and so

Z01 =
√
2Z0 = 84.85 Ω, R = 2Z0 = 120 Ω. ,

The next stage is to convert the transmission lines to lumped elements. A broadband design
of a quarter-wavelength transmission line was presented in Figure 2-37(b) of [15]. That is,
each of the quarter-wave lines has the model

with L = Z01/ω = 84.85/ω = 954.9 pH,
C = 1/(Z01ω) = 1/(84.85ω) = 265.3 fF.

So the final lumped element design is

with
C1 = 2C = 530.6 fF,
C2 = C = 265.3 fF,
L = 954.9 pH,
R = 120 Ω.

5.11.2 Chireix Combiner

One of the problems with the Wilkinson structure when it is used as a
combiner is that it is only efficient at combining when the two signals to be
combined are in phase. A better combiner is the Chireix combiner [29] shown
in Figure 5-29. This combiner is often used when combining the outputs of
two amplifiers achieving efficient combining even when the signals to be
combined are not identical [30–33].

5.12 Transmission Line Transformer

One of the challenges in RF engineering is achieving broadband operation
of transformers from megahertz up to several gigahertz. In this section,
several structures are presented that operate as magnetic transformers at
frequencies below several hundred megahertz but as coupled transmission
line structures at high frequencies. A transformer that achieves this and,

Figure 5-29: Chireix combiner.
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(a) (b) (c)

Figure 5-30: A broadband RF balun as coupled lines wound around a ferrite core: (a) physical
realization (the wires 1–2 and 3–4 form a single transmission line); (b) equivalent circuit using
a wire-wound transformer (the number of primary and secondary windings are equal); and
(c) packaged as a module (Model TM1-9 with a frequency range of 100–5000 MHz. Copyright
Synergy Microwave Corporation, used with permission [34]).

(a) Top view (b) Side view (c) With heightened contrast

Figure 5-31: Open-core surface-mount transformer. Copyright 2012 Scientific Components
Corporation d/b/a Mini-Circuits, used with permission [11].

in this configuration, realizes a balun is shown in Figure 5-30(a). Below a
few hundred megahertz this functions as a magnetic transformer. Above
this frequency the ferrite core cannot respond to the signal and the
magnetic circuit through the core appears as an open circuit. Then, since the
transformer is not operating as a magnetic transformer anymore, magnetic
leakage is inconsequential. At high frequencies the wire transmission lines
are closely coupled and appear as a perfect coupler if the lines (or wires here)
are long enough. The equivalent circuit of this structure is shown in Figure 5-
30(b). At high frequencies, stray capacitances between the windings becomes
important but become part of the transmission line capacitance. Many types
of transformers operating from several megahertz to several gigahertz can
be realized using the same principle and are available as surface-mount
components (see Figure 5-30(c)).
High-frequency coupling is enhanced by twisting the conductors as shown
in Figure 5-31. The combination of magnetic coupling at low frequencies
with transmission line coupling at high frequencies yields a transformer that
operates over very wide bandwidths.



PASSIVE COMPONENTS 145

5.12.1 Transmission Line Transformer as a Balun

The schematic of a broadband 1:1 RF balun is shown in Figure 5-30(b) and a
realization of it is shown in Figure 5-30(a and c). The 1:1 designation indicates
that there is no impedance transformation. The circuit equations describing
this balun are (from the ABCD parameters of a transmission line; see Table
2-1)

Va = Vbcos(βℓ) + IbZ0 sin(βℓ) and Ia = Ibcos(βℓ) + 
Vb

Z0
sin(βℓ) (5.63)

and the load resistance creates a third equation,

Vb = IbR. (5.64)

The aim in the following is the development of a design equation that
describes the essential properties of the structure. Substituting Equation
(5.64) in Equation (5.63) leads to

Va = Vb

[

cos(βℓ) + 
Z0

R
sin(βℓ)

]

and Ia =
Vb

R

[

cos(βℓ) + 
R

Z0
sin(βℓ)

]

.

(5.65)

Choosing Z0 = R yields (since eβℓ = cos(βℓ) +  sin(βℓ))

Va = Vbe
βℓ and Ia = (Vb/R)eβℓ, (5.66)

and so

Zin = Va/Ia = R. (5.67)

This analysis is idealized, as parasitics are eliminated (mainly parasitic
capacitances), but the above equation indicates that the essential function
of the structure is that of a balun with no impedance transformation.
The transformer arrangement shown in Figure 5-30(b) is of particular interest
as it can be realized using coupled transmission lines.

5.12.2 4:1 Impedance Transformer at High Frequencies

By changing the connection of the transformer terminals it is possible to
achieve impedance transformation. A 4:1 impedance transformer is shown
in Figure 5-32(a). A specific arrangement of the primary and secondary
windings puts this into what is called the transmission line form, shown
in Figure 5-33. At high frequencies port conditions are enforced so that the
currents at Ports 1 and 3 (and at Ports 2 and 4) are matched, as shown in
Figure 5-33. Showing that Zin = R begins with

Va = Vb cos(βℓ) + IbZ0 sin(βℓ), Ia = Ib cos(βℓ) +  Vb

Z0
sin(βℓ),

Vin = Va + R(Ia + Ib), and Vb = (Ia + Ib)R.
(5.68)

So the aim is to find Zin = Vin/Ia, as this defines the required electrical
function. Now

Vin = Va + Vb = Vb[1 + cos(βℓ)] + IbZ0 sin(βℓ), (5.69)



146 STEER MICROWAVE AND RF DESIGN, NETWORKS

Figure 5-32: A 4:1
impedance transformer:
(a) Schematic (the coils
have the same number
of windings); and (b) re-
alization as transformer
with twisted coupled
wires twisted around a
magnetic core. (a) (b)

Figure 5-33: A transmission line form
of the 4:1 impedance transformer of
Figure 5-32, after [35]. (The number of
primary and secondary windings are
the same.)

and using the equations above

Ia = Ib cos(βℓ) + (Ia + Ib)
R

Z0
sin(βℓ)

Ib = Ia
Z0 − R sin(βℓ)

Z0 cos(βℓ) + R sin(βℓ)
. (5.70)

Thus

Zin =
Vin

Ia
= Z0

2R[1 + cos(βℓ)] + Z0 sin(βℓ)

Z0 cos(βℓ) + R sin(βℓ)
. (5.71)

At very low frequencies the electrical length of the transmission line, βℓ, is
negligibly small and Zin = 4R. To see what happens when the length of
the transmission line has a significant effect, consider the special case when
Z0 = 2R, then

Zin = 2R(1 + e−βℓ). (5.72)

For a short line, that is, ℓ < 0.1λ or βℓ < 0.2π, Equation (5.72) can be
approximated as

Zin ≈ 2R[1 + 1− βℓ] = 4R− R(2βℓ). (5.73)

The imaginary component, −R2βℓ, is a capacitance and it must be
resonated out (e.g., by a series inductor) to obtain the required resistance
transformation.
The general approach described above can be used to design transformers
with higher impedance ratios. Two more, a 9:1 transformer and a 16:1
transformer, are shown in Figure 5-34.
A practical broadband transmission line realization of the 4:1 transformer
is shown in Figure 5-32(b), where the transmission line is a pair of twisted
wires.
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(a) A 9:1 transformer (b) A 16:1 transformer

Figure 5-34: High-order
impedance transformers.

Figure 5-35: Low-frequency schematic
of the 4:1 impedance transformer
shown in Figure 5-32(a).

5.12.3 4:1 Impedance Transformer at Low Frequencies

In the previous section it was shown that the impedance transformer in
Figure 5-32(a) acts as a 4:1 impedance transformer at high frequencies where
the structure can be considered to be a transmission line. In this section it
will be shown that the transformer is also a 4:1 impedance transformer at
low frequencies where the structure can be considered to be a wire-wound
transformer.
At low frequencies, the port conditions1 at the ends of the transmission
line are not enforced and so a better low frequency representation of
the transformer currents is shown in Figure 5-35. If at low frequencies
the transformer of Figure 5-33 has a self-inductance of Ls and a mutual
inductance of M , then the circuit equations for the transformer are

Vin − Vb = ωLsIa − ωMIb (5.74)

Vb = −ωLsIb + ωMIa (5.75)

Vb = (Ia + Ib)R. (5.76)

Equating Equations (5.75) and (5.76) and rearranging,

Ib = −
(
R− ωM

R+ ωLs

)

Ia. (5.77)

Combining Equations (5.74) and (5.76) and rearranging,

Vin = (R + ωLs) Ia + (R− ωM) Ib. (5.78)

1 Currents at the pair of terminals of a port are equal in magnitude and opposite in direction.
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(a) (b) (c)

Figure 5-36: A 180◦ hybrid transformer: (a) used as a combiner; (b) used as a splitter; and (c)
center-tapped transformer as a surface-mount component (Model TM1-2 with a frequency range
of 20–1200 MHz. Copyright Synergy Microwave Corporation, used with permission [34]).

Replacing Ib in Equation (5.78) using Equation (5.77) yields

Vin =

[

(R+ ωLs)−
(R− ωM)2

R+ ωLs

]

Ia. (5.79)

Thus the input impedance is

Zin =
Vin

Ia
=

R2 + 2RωLs − (ωLs)
2 −R2 + 2RωM + (ωM)2

R+ ωLs
. (5.80)

If ideal coupling is assumed (i.e., M = Ls) then Equation (5.80) reduces to

Zin =
4RωLs

R+ ωLs
. (5.81)

If ωLs ≫ R, then

Zin ≈ 4R. (5.82)

Thus the transformer is a 4:1 impedance transformer both at low frequencies
when the structure acts as a magnetic transformer and, as seen in Section
5.12.2, at higher frequencies when the structure acts like a transmission
line. Design of the impedance transformer is then directed at managing
the frequency transition region and ensuring that the required impedance
transformation occurs there as well. In practice, very broadband operation is
not difficult to achieve.

5.12.4 Hybrid Transformer Used as a Combiner

In Figure 5-36(a) a 180◦ hybrid transformer is used to combine the outputs of
two power amplifiers that are driven 180◦ out of phase with respect to each
other. This is commonly done when the power available from just one solid-
state transistor amplifier is not sufficient to meet power requirements. Since
the sum of the amp-turns of an ideal transformer must be zero,

nIo = m(I1 + I2) (5.83)
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and I1 = I2 since the two amplifiers are driven identically but 180◦ out of
phase. Then Vh = 0, V1 = V2 = (m/n)Vo, and both power amplifiers deliver
equal power to the load. Also, each amplifier sees a load impedance

Rin =
V1

I1
=

(m

n

)2

2R0. (5.84)

EXAMPLE 5.4 Transformer Design

The Thevenin equivalent output impedance of each amplifier in Figure 5-36(a) is 1 Ω and
the system impedance, R0, is 50 Ω. Choose the transformer windings for maximum power
transfer.

Solution:

For maximum power transfer, Rin = 1 Ω, and so from Equation (5.84),

1 =
(m

n

)2

· 2 · 50 and
m

n
= 0.1. (5.85)

Thus with a 10:1 winding ratio the required impedance transformation can be achieved.

5.12.5 Hybrid Transformer Used as a Power Splitter

The hybrid transformer can also be used to split power from a source to
drive two loads. The circuit of Figure 5-36(b) splits power from a current
source driver into two loads. With the number of primary and secondary
windings equal (i.e., m = n), the circuit equations are

I = I1 + I2, V1 = V + Vh, and V2 = Vh − V. (5.86)

Thus V1 − Vh = Vh − V2. (5.87)

Using V1 = R1I1, V2 = −I2R2, and Vh = (I2 − I1)Rh, the desired electrical
characteristics of the splitter are obtained:

I2
I1

=
R1 + 2Rh

R2 + 2Rh
. (5.88)

Several observations can be made about the performance of the power
splitter. If R1 = R2, then I1 = I2 for any value of Rh. Conversely, if
R1 �= R2, I1 �= I2 for a finite Rh. To obtain equal drive currents in both
power amplifiers in spite of variations in R1 and R2, the center tap of the
transformer needs to be omitted so that Rh = ∞.

5.12.6 Broadband Hybrid Combiner

A broadband hybrid combiner is shown in Figure 5-37. In what follows, it is
shown that this combiner has the property of accommodating mismatches of
the amplifiers. The development begins by assuming that the transformers
have an equal number of turns on each winding. These two transformers are
used to make a broadband (transmission line transformer) hybrid coupler.
The circuit equations are

I1 = Ia + Ib and I2 = Ia − Ib, (5.89)

Ia =
1

2
(I1 + I2) and Ib =

1

2
(I1 − I2), (5.90)

V1 =
Vo

2
+ Vh and V2 =

Vo

2
− Vh. (5.91)
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Figure 5-37: Broadband hybrid power combiner.

Figure 5-38: Topologies of ring-type
hybrids. (a) 180◦ hybrid. (b) 90◦ hybrid

Thus

V1

I1
= Rh

(

1− I2
I1

)

+
R0

2

(

1− I2
I1

)

(5.92)

V2

I2
=

R0

2

(

1 +
I1
I2

)

−Rh

(
I1
I2

− 1

)

. (5.93)

A special situation is when Rh = R0/2, and then V2/I2 = R0 and V1/I1 = R0.
Thus each of the amplifiers sees a constant load resistance, R0, even if the
amplifiers are mismatched, resulting, for example, when the amplifiers have
slightly different gains.

5.13 Transmission Line-Based Hybrids

Hybrids can be realized in a variety of transmission line structures. A
few of these, but representative ones, are discussed here. Hybrids can
also be realized using lumped-elements by modeling the transmission line
segments.

5.13.1 Branch-Line Hybrids Based on Transmission Lines

A branch-line hybrid is based on transmission line segments that introduce
phase delay. Two such hybrids are shown in Figure 5-38 where the different
signal paths result in constructive and destructive interference of signals.
This is a very different way of realizing the hybrid function than that
obtained using magnetic transformers. The operation of the 180◦ hybrid
(Figure 5-38(a)) can be verified approximately by counting the total number
of one-quarter wavelength (90◦) phase shifts in each path. It is not so
easy to verify the operation of the 90◦ hybrid. The various characteristic
impedances of the transmission line segments adjust the levels of the signals.
The operation of the 90◦ hybrid is examined in the example in this section.
(A complete analysis could be done using signal flow graphs.)
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Figure 5-39: Planar implementation of the 3 dB ring-
type branch-line hybrid with the topology of Figure
5-38(b).

(a)

(b) (c)

Figure 5-40: Rat-
race hybrid with
input at Port 1,
outputs at Ports
3 and 4, and
virtual ground
at Port 2: (a) im-
plementation as
a planar circuit;
(b) transmission
line model; and
(c) equivalent
circuit model.

These branch-line hybrids may be formed into a ring shape, as shown in
Figure 5-39. It is also worth considering the so-called rat-race or hybrid-
ring circuit shown in Figure 5-40(a). Output signals from Ports 2 and 4
differ in phase by 180◦ (in contrast to the branch-line coupler, where the
phase difference is 90◦). An interesting and important design feature arises
when considering the quarter-wave transformer action of this coupler. Only
Ports 2 and 4 exhibit this action, because Port 3 is half-wave separated
from the input feeding Port 1. Thus the net effective load on the inner
ring lines feeding Ports 2 and 4 amounts to 2Z0 (two Z0 loads appearing,
equivalently, in series). Now the characteristic impedance Z0 of any quarter-
wave transforming line between two impedances, Z01 and Z02, is equal to√
Z01Z02. In this case the two impedances are Z0 and 2Z0, respectively, so

(from Section 2.4.6 of [15]) the input impedance of the intervening quarter-
wave line is

Z ′
0 =

√

Z0 · 2Z0 =
√
2Z0. (5.94)
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Thus the characteristic impedance of the line forming the ring itself is
√
2

times that of the feeder line impedances. So when the impedance of all ports
is 50 Ω, the ring characteristic impedance is 70.7 Ω.

EXAMPLE 5.5 Rat-Race Hybrid

In this example the rat-race circuit shown in Figure 5-40(a) is considered. One of the
functions of this circuit is that with an input at Port 1, the power of this signal is split between
Ports 3 and 4. At the same time, no signal appears at Port 2. This example is an exercise in
exploiting the impedance transformation properties of the transmission line.

From Figure 5-40(a) it is seen that each port is separated from the other port by a specific
electrical length. Intuitively one can realize that there will be various possible outputs for
excitation from different ports. Each case will be studied.

When Port 1 of the hybrid is excited or driven, the outputs at Ports 3 and 4 are in phase, as
both are distanced from Port 1 by an electrical length of λg/4, while Port 2 remains isolated,
as the electrical length of the two paths from Port 1 to Port 2 differ by an even multiple of
λg/2. Thus Port 2 will be an electrical short circuit to the signal at Port 1.

In a similar way, a signal excited at Port 2 will result in outputs at Ports 3 and 4, though
with a phase difference of 180◦ between the two output ports and Port 1 remains isolated.

Finally, a signal excited at Ports 3 and 4 will result in the sum of the two signals at Port
1 and the difference of two signals at Port 2. This combination of output is again due to
varying electrical length between every port and every other port in the rat-race hybrid. The
equivalent transmission line model and equivalent circuit of the rat-race hybrid are shown
in Figures 5-40(b and c), respectively.

5.13.2 Lumped-Element Hybrids

Hybrids are developed based on transmission line principles, but it is
possible to create hybrids using lumped-element equivalents of transmission
line segments. In some cases the full circle of design can begin with the
magnetic transformer conceptualization, followed by a transmission line
realization, and then a lumped-element approximation. At least this is valid
over a bandwidth centered at a particular frequency, f = ω0/(2π). The
lumped-element equivalent of the 180◦ hybrid in Figure 5-38(a) is shown
in Figure 5-41(a) with

ω0L =
1

ω0C
=

√
2Z0. (5.95)

This result comes from the broadband equivalent circuit of a λ/4 line shown
in Figure 2-37. The lumped-element quadrature hybrid of Figure 5-41(b),
based on Figure 5-38(b), has

ω0Z0Ca = 1, Ca + Cb =
1

ω0
2L

, and ω0L =
Z0√
2
, (5.96)

where Z0 is the port impedance.
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(a) 180◦ hybrid (b) Quadrature (90◦) hybrid

Figure 5-41:
Lumped-
element
hybrids.

5.14 Summary

This chapter introduced the richness of microwave components available
to the RF designer. Microwave lumped-element R, L, and C components
are carefully constructed so that they function as intended up to 20 GHz
or so. They are usually in surface-mount form so that they can be
integrated in design without the parasitic effects of leads. To a limited
extent, transmission line discontinuities can be used as small-valued lumped
elements. Even if the transmission line discontinuities are not specifically
introduced for this purpose, their lumped-element equivalent circuits must
be included in circuit analysis. Transmission line stubs are widely used
to introduce capacitance and inductance in circuits. In most transmission
line technologies only shunt stubs are available, and thus there is a strong
preference for shunt elements in circuit designs. Many functionalities can
be developed using the interactions of forward- and backward-traveling
waves on transmission lines. Classic examples seen in this chapter are the
combiners and hybrids. Sometimes the functionality can only be visualized
using transmission line structures. Then coming full circle, lumped-element
equivalents can be realized.
There are many more passive components in the repertoire of the
RF designer. However, this chapter reviewed the most important and
introduced the concepts that can be used to analyze other structures
and to invent new ones. Each year new variants of microwave elements
are developed and documented in patents and publications. Microwave
engineers monitor these developments, especially in their field of expertise.
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5.16 Exercises

1. The Thevenin equivalent output impedance of
each of the amplifiers in Figure 5-36(a) is 5 Ω,
and the system impedance, R0, is 75 Ω. Choose
the transformer windings for maximum power
transfer. [Parallels Example 5.4]

2. A spiral inductor is modeled as an ideal induc-
tor of 10 nH in series with a 5 Ω resistor. What is
the Q of the spiral inductor at 1 GHz?

3. Consider the design of a 50 dB resistive T atten-
uator in a 75 Ω system. [Parallels Example 5.1]

(a) Draw the topology of the attenuator.
(b) Write down the design equations.
(c) Complete the design of the attenuator.

4. Consider the design of a 50 dB resistive Pi atten-
uator in a 75 Ω system. [Parallels Example 5.1]

(a) Draw the topology of the attenuator.
(b) Write down the design equations.
(c) Complete the design of the attenuator.

5. A 20 dB attenuator in a 17 Ω system is ide-
ally matched at both the input and output. Thus
there are no reflections and the power delivered
to the load is reduced by 20 dB from the applied
power. If a 5 W signal is applied to the attenua-
tor, how much power is dissipated in the atten-
uator?

6. A resistive Pi attenuator has shunt resistors of
R1 = R2 = 294 Ω and a series resistor R3 =
17.4 Ω. What is the attenuation (in decibels) and
the characteristic impedance of the attenuator?

7. A resistive Pi attenuator in a system with charac-
teristic impedance Z0 has equal shunt resistors
of R1 = R2 and a series resistor R3. Show that
Z0 =

�

(R2
1R3)/(2R1 +R3) and the attenuation

factor K =
�

(R1 + Z0)/(R1− Z0). [Start with
Equation (5.15).]

8. Design a resistive Pi attenuator with an attenua-
tion of 10 dB in a 100 Ω system.

9. Design a 3 dB resistive Pi attenuator in a 50 Ω
system.

10. A resistive Pi attenuator has shunt resistors
R1 = R2 = 86.4 Ω and a series resistor R3 =
350 Ω. What is the attenuation (in decibels) and
the system impedance of the attenuator?

11. Derive the 50 Ω scattering parameters of the
ideal transformer shown below where the num-
ber of windings on the secondary side (Port 2)
is twice the number of windings on the primary
side (Port 1).

(a) What is S11? [Hint: Terminate Port 2 in 50 Ω
and determine the input reflection coeffi-
cient.]

(b) What is S21?
(c) What is S22?
(d) What is S12?

12. Derive the two-port 50 Ω scattering parameters
of the magnetic transformer below. The primary
(Port 1) has 10 turns, the secondary (Port 2) has
25 turns.

(a) What is S11?
(b) What is S21?
(c) What is S22?
(d) What is S12?

13. An ideal quadrature hybrid has the scattering
parameters

S90◦ =
1√
2









0 − 1 0
− 0 0 1
1 0 0 −
0 1 − 0









.
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Draw the signal flow graph of the hybrid, label-
ing each of the edges and assigning a1, b1, etc., to
the nodes. (Do not start with the SFG of a generic
4-port network.)

14. An ideal 180◦ hybrid has the scattering parame-
ters

S180◦ =
1√
2









0 1 −1 0
1 0 0 1

−1 0 0 1
0 1 1 0









.

Draw the signal flow graph of the hybrid, label-
ing each of the edges and assigning a1, b1, etc.,
to the nodes. (Note, do not start with the SFG of
a generic 4-port network.)

15. A signal is applied to Ports 2 and 3 of a 180◦

hybrid, as shown in Figure 5-20(b). If the sig-
nal consists of a differential component of 0 dBm
and a common mode component of 10 dBm:

(a) Determine the power delivered at Port 1.
(b) Determine the power delivered at Port 4. As-

sume that the hybrid is lossless.

16. Silicon RFICs use differential signal paths to
minimize the introduction of substrate noise.
As well, differential amplifiers are an optimum
topology in current-biased circuits. Off-chip sig-
nals are often on microstrip lines and so the
source and load, being off-chip, are not differen-
tial. The off-chip circuits are then called single-
ended. Using 180◦ hybrids, diagrams, and ex-
planations, outline a system architecture accom-
modating this mixed differential and single-
ended environment.

17. Consider the hybrid shown in the figure below.
If the number of windings of Coils 2 and 3 are
twice the number of windings of Coil 1, show
that for matched hybrid operation 2Z2 = Z3 =
8Z0.

18. The balun of Figure 5-23 transforms an unbal-
anced system with a system impedance of Z0 to
a balanced system with an impedance of 4Z0.
The actual impedance transformation is deter-
mined by the number of windings of the coils.

Design a balun of the type shown in Figure 5-23
that transforms an unbalanced 50 Ω system to a
balanced 377 Ω system. [Hint: Find the ratio of
the windings of the coils.]

19. A balun can be realized using a wire-wound
transformer, and by changing the number
of windings on the transformer it is possi-
ble to achieve impedance transformation as
well as balanced-to-unbalanced functionality. A
500 MHz balun based on a magnetic transformer
is required to achieve impedance transformation
from an unbalanced impedance of 50 Ω to a bal-
anced impedance of 200 Ω. If there are 20 wind-
ings on the balanced port of the balun trans-
former, how many windings are there on the un-
balanced port of the balun?

20. Design a lumped-element two-way power split-
ter in a 75 Ω system at 1 GHz. Base your design
on a Wilkinson power divider.

21. Design a three-way power splitter in a 75 Ω sys-
tem. Base your design on a Wilkinson power
divider using transmission lines and indicate
lengths in terms of wavelengths.

22. Design a lumped-element three-way power
splitter in a 75 Ω system at 1 GHz. Base your de-
sign on a Wilkinson power divider.

23. A resistive power splitter is a three-port device
that takes power input at Port 1 and delivers
power at Ports 2 and 3 that are equal; that is,
S21 = S31. However, the sum of the power
at Ports 2 and 3 will not be equal to the in-
put power due to loss. Design a 75 Ω resistive
three-port power splitter with matched inputs,
S11 = 0 = S22 = S33. That is, draw the resistive
circuit and calculate its element values.

24. Design a balun based on a magnetic transformer
if the balanced load is 300 Ω and the unbalanced
impedance is 50 Ω.

(a) Draw the schematic of the balun with the
load and indicate the ratio of windings.

(b) If the number of windings on the unbal-
anced side of the transformer is 20, how
many windings are on the unbalanced side?

25. Develop the electrical design of a rat-race hybrid
at 30 GHz in a 50 Ω system.

26. Develop the electrical design of a rat-race hybrid
at 30 GHz in a 100 Ω system.

27. Design a lumped-element 180◦ hybrid at
1900 MHz using 1 nH inductors.

28. Design a 90◦ lumped-element hybrid at
1900 MHz using 1 nH inductors.

29. Design a 90◦ lumped-element hybrid at
500 MHz for a 75 Ω system.
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30. Design a lumped-element 180◦ hybrid at
1900 MHz matched to 50 Ω source and load

impedances.

5.16.1 Exercises by Section
†challenging, ‡very challenging

§5.1 1
§5.2 2, 3, 4, 5
§5.5 6†, 7†, 8, 9, 10†

§5.8 11†, 12†

§5.9 13†, 14†, 15†, 16†, 17‡

§5.10 18†, 19†

§5.11 20†, 21†, 22†

§5.12 23†

§5.13 24‡, 25†, 26†, 27, 28, 29, 30

5.16.2 Answers to Selected Exercises

2 12.57
3 R1=R2=74.5 Ω
4 75.48 Ω
5 4.95 W

11(c) 0.6
12 −0.6897
15 10 dBm

22 L=20.7 nH,C1=3.68 pF
C2=1.23 pF,R=75 Ω

24 ratio of windings is 2.45
30 Fig. 5-41(a)

L=5.92 nH, C=1.19 pF
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6.1 Introduction

The maximum transfer of signal power is one of the prime objectives in RF
and microwave circuit design. Power traverses a network from a source to a
load generally through a sequence of two-port networks. Maximum power
transfer requires that the Thevenin equivalent impedance of a source be
matched to the impedance seen from the source. That is, the source should
be presented with the complex conjugate of the source impedance. This is
achieved by designing what is called a matching network inserted between
the source and load. As long as the load has some nonzero real part (and so
can dissipate power), a matching network can always be found. Design of
the matching network is called impedance matching.
Section 6.2 describes two common matching objectives. Then design
approaches for impedance matching are presented first with an algorithmic
approach in Sections 6.3–6.6 and then a graphical approach based on using a
Smith chart in Sections 6.7–6.9.

6.2 Matching Networks

Matching networks are constructed using lossless elements such as lumped
capacitors, lumped inductors and transmission lines and so have, ideally,
no loss and introduce no additional noise. This section discusses matching
objectives and the types of matching networks.
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Figure 6-1: A source with Thevenin equivalent
impedance ZS and load with impedance ZL

interfaced by a matching network presenting an
impedance Zin to the source.

Table 6-1: Matching conditions with ref-
erence to Figure 6-1. Γin, ΓS , must be
with respect to a real ZREF.

Reflection-less match Maximum power transfer

Zin = ZS Zin = Z∗
S ,

Γin = Γ∗
S

6.2.1 Matching for Zero Reflection or for Maximum Power
Transfer

With RF circuits the aim of matching is to achieve maximum power transfer.
With reference to Figure 6-1 the condition for maximum power transfer
is Zin = Z∗

S (see Section 2.6.2 of [1]). An alternative matching objective,
used most commonly with digital circuits, is a reflection-less match. The
reflection-less match and the maximum power transfer match are only
equivalent if ZS and ZL are real. Nearly always in RF design the matching
objective is maximum power transfer, and this is assumed unless the
reflection-less match is specifically indicated.
The maximum power transfer matching condition can also be specified in
terms of reflection coefficients with respect to an real reference impedance
ZREF. (In the definition of reflection coefficient ZREF can be complex, but
many of the manipulations in this book only apply when ZREF is real and
this should be assumed unless it is specifically stated that it can be complex.)
The condition for maximum power transfer is Zin = Z∗

S which is equivalent
to Γin = Γ∗

S . The proof is as follows:

Γin =

(
Zin − ZREF

Zin + ZREF

)

, (6.1)

and for maximum power transfer Zin = Z∗
S , so

Γ∗
in =

Zin − ZREF

Zin + ZREF
=

(
Z∗
S − ZREF

Z∗
S + ZREF

)∗
=

(Z∗
S − Z0)

∗

(Z∗
S + Z0)∗

=
(Z∗

S)
∗ − Z∗

REF

(Z∗
S)

∗ + Z∗
REF

=
ZS − Z∗

REF

ZS + Z∗
REF

= ΓS . (6.2)

If ZREF is real, Z∗
REF = ZREF and then the condition for maximum power

transfer is

Γ∗
in =

ZS − ZREF

ZS + ZREF
= ΓS . (6.3)

Thus, provided that ZREF is real, the condition for maximum power transfer
in terms of reflection coefficients is Γ∗

in = ΓS or Γin = Γ∗
S . The matching

conditions are summarized in Table 6-1.

6.2.2 Types of Matching Networks

Up to a few gigahertz, lumped inductors and capacitors can be used in
matching networks. Above a few gigahertz, distributed parasitics (losses
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and additional capacitive or inductive effects) can render lumped-element
networks impractical. Inductors in particular have high loss and high
parasitic capacitances at microwave frequencies. Lumped capacitors are
useful circuit elements at much higher frequencies than are lumped
inductors. Segments of transmission lines are used in matching networks
and are used instead of lumped elements when loss must be kept to a
minimum, power levels are high, or the parasitics of lumped elements render
them unusable. This is because the loss of an appropriate transmission line
component is always much less than the loss of a lumped inductor.
Many factors affect the selection of the components of a matching
network. The most important of these are size, complexity, bandwidth, and
adjustability. The impact on a circuit of a distributed element is directly
related to its length compared to one-quarter of a wavelength (λ/4). At
1 GHz a circuit board, for example, with a relative permittivity of 4 has
λ/4 = 3.75 cm. This is far too large to fit in consumer wireless products
operating at 1 GHz.
Performance of lumped-element capacitors and inductors refers to both the
self-resonant frequency of an element and its loss. Inductors are a particular
case in point. An actual inductor must be modeled using capacitive elements,
capturing inter-winding capacitance as well as the primary inductive
element. At some frequency the inductive and capacitive elements will
resonate and this is called the self-resonant frequency of the element. The
self-resonant frequency is the maximum operating frequency of the element.
With regards to complexity, the simplest matching network design is most
often preferred. A simpler matching network is usually more reliable, less
lossy, and cheaper than a complex design. The pursuit of small size and/or
higher bandwidth, however, may necessitate that the simplest circuit not be
selected. Any type of matching network can ideally give, ignoring resistive
loses, a perfect match at a single frequency. Away from this center frequency
the match will not be ideal. From experience, achieving a reasonable match
over a 5% fractional bandwidth based on a single-frequency match can
usually be achieved with simple matching networks..
An impedance matching network may consist of

(a) Lumped elements only. These are the smallest networks, but have
the most stringent limit on the maximum frequency of operation. The
relatively high resistive loss of an inductor is the main limiting factor
limiting performance. The self resonant frequency of an inductor limits
operation to low microwave frequencies.

(b) Distributed elements (microstrip or other transmission line circuits)
only. These have excellent performance, but their size restricts their use
in systems to above a few gigahertz.

(c) A hybrid design combining lumped and distributed elements,
primarily small sections of lines with capacitors. These lines are shorter
than in a design with distributed elements only, but the hybrid design
has higher performance than a lumped-element-only design.

(d) Adhoc solutions (suggested by input impedance behavior and features
of various components).

This chapter concentrates on matching network design. One emphasis here is
on the development of design equations and synthesis of desired results. The
second emphasis is on graphical techniques for matching network design
based on using A Smith chart. This is particularly power as it enables



162 STEER MICROWAVE AND RF DESIGN, NETWORKS

Figure 6-2: A transformer as a match-
ing network. Port 1 is on the left or pri-
mary side and Port 2 is on the right or
secondary side.

typologies to traded-off. An alternative design approach used by some
designers is to choose a circuit topology and then use a circuit optimizer
to arrive at circuit values that yield the desired characteristics. This is
sometimes a satisfactory design technique, but is not a good solution for
new designs as it does not provide insight and does not help in choosing
new topologies.

6.2.3 Summary

There are many design choices in the type of matching network to be
developed but the common guidelines are to minimize losses and to keep
the matching network compact. These objectives are not always compatible.
Matching network design in this chapter is based on perfect matching at
one frequency and design decisions are made to maximize, or otherwise
manipulate, the bandwidth of the match. True broadband matching network
design is more like filter design.

6.3 Impedance Transforming Networks

Transformers and reactive elements considered in this section can be used to
losslessly transform impedance levels. his is a basic aspect of network design.

6.3.1 The Ideal Transformer

The ideal transformer shown in Figure 6-2 can be used to match a load to a
source if the source and load impedances are resistances. This will be shown
by starting with the constitutive relations of the transformer:

V1 = nV2 and I1 = −I2/n. (6.4)

Here n is the transformer ratio. For a wire-wound transformer, n is the ratio
of the number of windings on the primary side, Port 1, to the number of
windings on the secondary side, Port 2. Thus the input resistance, Rin, is
related to the load resistance, RL, by

Rin =
V1

I1
= −n2V2

I2
= n2RL. (6.5)

The matching problem with purely resistive load and source impedances is
solved by choosing the appropriate winding ratio, n. However, resistive-only
problems are rare at RF, and so other matching circuits must be used.

6.3.2 A Series Reactive Element

Matching using lumped elements is based on the impedance and admittance
transforming properties of series and shunt reactive elements. Even a single
reactive element can achieve limited impedance matching. Consider the
series reactive element shown in Figure 6-3(a). Here the reactive element, XS ,



IMPEDANCE MATCHING 163

(a) (b)

Figure 6-3: Matching us-
ing a series reactance: (a)
the series reactive element;
and (b) its equivalent shunt
circuit.

is in series with a resistance R. The shunt equivalent of this network is shown
in Figure 6-3(b) with a shunt susceptance of B. In this transformation the
resistance R has been converted to a resistance RP = 1/G. The mathematics
describing this transformation is as follows. The input admittance of the
series connection (Figure 6-3(a)) is

Yin(ω) =
1

Zin(ω)
=

1

R+ XS
=

R

R2 +X2
S

− 
XS

R2 +X2
S

. (6.6)

Thus the elements of the equivalent shunt network, Figure 6-3(b), are

G =
R

R2 +X2
S

and B = − XS

R2 +X2
S

. (6.7)

The “resistance” of the network, R, has been transformed to a new value,

RP = G−1 =
R2 +X2

S

R
> R. (6.8)

This is an important start to matching, as XS can be chosen to convert R (a
load, for example) to any desired resistance value (such as the resistance of a
source). However there is still a residual reactance that must be removed to
complete the matching network design. Before moving on to the solution of
this problem consider the following example.

EXAMPLE 6.1 Capacitive Impedance Transformation

Consider the impedance transforming properties of the capacitive series element in Figure
6-4(a). Show that the capacitor can be adjusted to obtain any positive shunt resistance.

Solution:

The concept here is that the series resistor and capacitor network has an equivalent shunt
circuit that includes a capacitor and a resistor. By adjusting CS any value can be obtained
for RP . From Equation (6.8),

RP =
R2

0 + (1/ω2C2
S)

R0
=

1 + ω2C2
SR

2
0

ω2C2
SR0

(6.9)

and the susceptance is B =
(1/ωCS)

R2
0 + 1/ω2C2

S

= ω
CS

1 + ω2C2
SR

2
0

. (6.10)

Thus CP =
B

ω
=

CS

1 + ω2C2
SR

2
0

. (6.11)

To match R0 to a resistive load RP (> R0) at a radian frequency ωd, then, from Equation
(6.9), the series capacitance required, i.e. the design equation for CS , comes from

ωdCS = 1/
√

R0RP −R2
0, (6.12)

To complete the matching design, use a shunt inductor L, as shown in Figure 6-4(c), where
ωdCP = 1/(ωdL). The equivalent impedance in Figure 6-4(c) is a resistor of value RP , with
a value that can be adjusted by choosing CS which then requires L to be adjusted.
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Figure 6-4: Impedance transfor-
mation by a series reactive ele-
ment: (a) a resistor with a series
capacitor; (b) its equivalent shunt
circuit; and (c) an LC network. (a) (b) (c)

Figure 6-5: A resistor with (a) a shunt
parallel reactive element where B is a
susceptance, and (b) its equivalent series
circuit. (a) (b)

6.3.3 A Parallel Reactive Element

The dual of the series matching procedure is the use of a parallel reactive
element, as shown in Figure 6-5(a). The input admittance of the shunt circuit

Yin =
1

R
+ B. (6.13)

This can be converted to a series circuit by calculating Zin = 1/Yin:

Zin =
R

1 + BR
=

R

1 +B2R2
− 

BR2

1 +B2R2
. (6.14)

So RS =
R

1 + B2R2
and XS =

−BR2

1 +B2R2
. (6.15)

Notice that RS < R.

EXAMPLE 6.2 Parallel Tuning

As an example of the use of a parallel reactive element to tune a resistance value, consider
the circuit in Figure 6-6(a) where a capacitor tunes the effective resistance value so that the
series equivalent circuit (Figure 6-6(b)) has elements

RS =
R0

1 + ω2C2
PR

2
0

and XS = − ωCPR
2
0

1 + ω2C2
PR

2
0

= − 1

ωCS
. (6.16)

So CS =
1 + ω2C2

PR
2
0

ω2CPR2
0

. (6.17)

Now consider matching R0 to a resistive load RS , which is less than R0 at a given frequency
ωd. This requires that

ωdCP =
√

1/(RSR0)− 1/R2
0.

To complete the design, use a series inductor to remove the reactive effect of the capacitor, as
shown in Figure 6-6(C). The value of the inductor required is found from

ωdL =
1

ωdCS
, that is, L =

1

ω2
dCS

. (6.18)

6.4 The L Matching Network

The examples in the previous two sections suggest the basic concept behind
lossless matching of two different resistance levels using an L network:
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(a) (b) (c)

Figure 6-6: Parallel-to-
series transformation: (a)
resistor with shunt ca-
pacitor; (b) its equivalent
series circuit; and (c) the
transforming circuit with
added series inductor.

(a) Lowpass RS < RL.

Q =
√

RL/RS − 1
Q = |XL|/RS = RL/|XC |

(b) Lowpass RS > RL.

Q =
√

RS/RL − 1
Q = |XL|/RL = RS/|XC |

(c) Highpass RS < RL.

Q =
√

RL/RS − 1
Q = |XC |/RS = RL/|XL|

(d) Highpass RS > RL.

Q =
√

RS/RL − 1
Q = |XC |/RL = RS/|XL|

Figure 6-7: L matching net-
works consisting of one
shunt reactive element and
one series reactive element.
(RS is matched to RL.) XC

is the reactance of the ca-
pacitor C, and XL is the re-
actance of the inductor L.
Note that with a two-
element matching network
the Q and thus bandwidth
of the match is fixed.

Step 1: Use a series (shunt) reactive element to transform a smaller (larger)
resistance up (down) to a larger (smaller) value with a real part equal
to the desired resistance value.

Step 2: Use a shunt (series) reactive element to resonate with (or cancel) the
imaginary part of the impedance that results from Step 1.

So a resistance can be transformed to any resistive value by using an LC
transforming circuit.
Formalizing the matching approach described above, note that there are
four possible two-element L matching networks (see Figure 6-7). The two
possible cases, RS < RL and RL < RS , will be considered in the following
subsections.
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Figure 6-8: Two-element matching network
topology for RS < RL. XS is the series
reactance and XP is the parallel reactance.

6.4.1 Design Equations for RS < RL

Consider the matching network topology of Figure 6-8. Here

Zin =
RL(XP )

RL + XP
=

RLX
2
P

R2
L +X2

P

+ 
XPR

2
L

R2
L +X2

P

(6.19)

and the matching objective is Zin = RS − XS so that

RS =
RLX

2
P

R2
L +X2

P

and XS =
−XPR

2
L

X2
P +R2

L

. (6.20)

From these
RS

RL
=

1

(RL/XP )
2 + 1

and − XS

RS
=

RL

XP
. (6.21)

Introducing the quantities

QS = the Q of the series leg = |XS/RS | (6.22)

QP = the Q of the shunt leg = |RL/XP | (6.23)

leads to the final design equations for RS < RL:

|QS| = |QP | =
√

RL

RS
− 1. (6.24)

The L matching network principle is that XP and XS will be either capacitive
or inductive and they will have the opposite sign (i.e., the L matching
network comprises one inductor and one capacitor). Also, once RS and RL

are given, the Q of the network and thus bandwidth is defined; with the L
network, the designer does not have a choice of circuit Q.

EXAMPLE 6.3 Matching Network Design

Design a circuit to match a 100 Ω source to a 1700 Ω load at 900 MHz. Assume that a DC
voltage must also be transferred from the source to the load.

Solution:

Here RS < RL, and so the topology of Figure 6-9(a) can be used and there are two versions,
one with a series inductor and one with a series capacitor. The series inductor version (see
Figure 6-9(b)) is chosen as this enables DC bias to be applied. From Equations (6.22)–(6.24)
the design equations are

|QS | = |QP | =
√

1700

100
− 1 =

√
16 = 4,

XS

RS
= 4, and XS = 4 · 100 = 400. (6.25)

This indicates that ωL = 400 Ω, and so the series element is

L =
400

2π · 9 · 108 = 70.7 nH. (6.26)

For the shunt element next to the load, |RL/XC | = 4, and so
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(a) (b) (c)

Figure 6-9: Matching
network development
for Example 6.3.

Figure 6-10: Two-element matching network
topology for RS > RL.

|XC | =
RL

4
=

1700

4
= 425. (6.27)

Thus 1/ωC = 425 and C =
1

2π · 9 · 108 · 425 = 0.416 pF. (6.28)

The final matching network design is shown in Figure 6-9(c).

6.4.2 L Network Design for RS > RL

For RS > RL, the topology shown in Figure 6-10 is used. The design
equations for the L network for RS > RL are similarly derived and are

|QS| = |QP | =
√

RS

RL
− 1 (6.29)

−QS = QP , QS =
XS

RL
, and QP =

RS

XP
. (6.30)

EXAMPLE 6.4 Two-Element Matching Network

Design a passive two-element matching network that will achieve maximum power transfer
from a source with an impedance of 50 Ω to a load with an impedance of 75 Ω. Choose a
matching network that will not allow DC to pass.

Solution:

RL > RS , so, from Figure 6-7, the appropriate matching network topology is

This topology can be either high pass or low pass
depending on the choice of XS and XP . Design
proceeds by finding the magnitudes of XS and XP .
In two-element matching the circuit Q is fixed. With
RL = 75 Ω and RS = 50 Ω.

The Q of the matching network is the same for the series and parallel elements:

|QS| = |XS |
RS

=

√

RL

RS
− 1 = 0.7071 and |QP | = RL

|XP |
= |QS | = 0.7071,

therefore |XS | = RS · |QS | = 50 · 0.7071 = 35.35 Ω. Also

|XP | = RL/|QP | = 75/0.7071 = 106.1 Ω.
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Figure 6-11: A matching net-
work matching a complex
load to a source with a com-
plex Thevenin impedance.

Specific element types can now be assigned to XS and XP , and note that they must be of
opposite type.

The lowpass matching network is

XS = +35.35 Ω, XP = −106.1 Ω.

The highpass matching network is

XS = −35.35 Ω, XP = +106.1 Ω.

This highpass design satisfies the design criterion that DC is not passed, as DC is
blocked by the series capacitor.

6.5 Dealing with Complex Sources and Loads

This section presents strategies for dealing with complex loads. In the
algorithmic matching approach design proceeds first by ignoring the
complex load and source and then accounting for them either through
topology choice or canceling their effect through resonance.

6.5.1 Matching

Input and output impedances of transistors, mixers, antennas, etc., contain
both resistive and reactive components. Thus a realistic impedance matching
problem looks like that shown in Figure 6-11. The matching approaches that
were presented in the previous sections can be directly applied if XS and XL

are treated as stray reactances that need to be either canceled or, ideally, used
as part of the matching network. There are two basic approaches to handling
complex impedances:

(a) Absorption: Absorb source and load reactances into the impedance
matching network itself. This is done through careful placement of
each matching element such that capacitors are placed in parallel with
source and load capacitances, and inductors in series with source and
load inductances. The stray values are then subtracted from the L
and C values for the matching network calculated on the basis of
the resistive parts of ZS and ZL only. The new (smaller) values, L′

and C′, constitute the elements of the matching network. Sometimes
it is necessary to perform a series-to-parallel, or parallel-to-series,
conversion of the source or load impedances so that the reactive
elements are in the correct series or shunt arrangement for absorption.

(b) Resonance: Resonate source and load reactances with an equal and
opposite reactance at the frequency of interest.

The very presence of a reactance in a load indicates energy storage, and
therefore bandwidth limiting of some kind. In the above approaches to
handling a reactive load, the resonance approach could easily result in a
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narrowband matching solution. The major problem in matching is often to
obtain sufficient bandwidth. What is sufficient will vary depending on the
application. To maximize bandwidth the general goal is to minimize the
total energy storage. Roughly the total energy stored will be proportional
to the sum of the magnitudes of the reactances in the circuit. Of course, the
actual energy storage depends on the voltage and current levels, which will
themselves vary in the circuit. A good approach leading to large bandwidths
is to incorporate the load reactance into the matching network. Thus the
choice of appropriate matching network topology is critical. However, if
the source and load reactance value is larger than the calculated matching
network element value, then absorption on its own cannot be used. In this
situation resonance must be combined with absorption. Overall, the majority
of impedance matching designs are based on some combination of resonance
and absorption.

EXAMPLE 6.5 Matching Network Design Using Resonance

For the configuration shown in Figure 6-12, design an impedance matching network that
will block the flow of DC current from the source to the load. The frequency of operation
is 1 GHz. Design the matching network, neglecting the presence of the 10 pF capacitance at
the load. Since RS = 50 Ω < RL = 500 Ω, and from Figure 6-7, consider the topologies of
Figures 6-13(a) and 6-13(b). The design criterion of blocking flow of DC from the source to
the load narrows the choice to the topology of Figure 6-13(b).

Solution:

Step 1: |QS| =
∣

∣

∣

∣

XS

RS

∣

∣

∣

∣

= |QP | =
∣

∣

∣

∣

RL

XP

∣

∣

∣

∣

=

√

RL

RS
− 1 = 3 and QP =

RL

XP
. (6.31)

So XP = ωL = RL/QP = 500/3. Reducing this gives

ωL =
500

3
, and so L =

500

3× 2π × 109
= 26.5 nH. (6.32)

Similarly −XS/RS = 3 and so

1/(ω C)

RS
= 3 or C =

1

3ωRS
=

1

3× 2π × 109 × 50
= 1.06 pF. (6.33)

Step 2:

Resonate the 10 pF capacitor using an inductor in parallel:

(

ωL′)−1
= ω × 10× 10−12 (6.34)

L′ =
1

ω210−11
=

1

(2π)2 1018 × 10−11
= 2.533 nH. (6.35)

Thus Figure 6-13(c) is the required matching network. Two inductors are in parallel and the
circuit can be simplified to that shown in Figure 6-14, where

LX = (26.5 nH � 2.533 nH) =
2.533 × 26.5

2.533 + 26.5
nH = 2.312 nH. (6.36)
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Figure 6-12: Matching problem con-
sidered in Example 6.5. (a) Source (b) Load

(a) (b) (c)

Figure 6-13: Matching network topology used in Example 6.5: a) and (b)
topology; and (c) intermediate matching network.

Figure 6-14: Final matching
network in Example 6.5.

EXAMPLE 6.6 Matching Network Design Using Resonance and Absorption

For the source and load configurations shown in Figure 6-15, design a lowpass impedance
matching network at f = 1 GHz.

Solution:

Since RS < RL, use the topology shown in Figure 6-16(a). For a lowpass response, the
topology is that of Figure 6-16(b). Notice that absorption is the natural way of handling the
3 nH at the source and the 5 pF at the load. The design process is as follows:

Step 1:

Design the matching network, neglecting the reactive elements at the source and load:

|QS| = |QP | =
√

RL

RS
− 1 =

√
10− 1 = 3 (6.37)

XS

RS
= 3, XS = 3× 100, ωL = 300 and L =

300

2π × 109
= 47.75 nH (6.38)

RP

XP
= −3 and

1000

−(1/ωC)
= −3 and C =

3

1000× 2π × 109
= 0.477 pF. (6.39)

This design is shown in Figure 6-17(a). This is the matching network that matches the 100 Ω
source resistance to the 1000 Ω load with the source and load reactances ignored.

Step 2:

Figure 6-17(b) is the interim matching solution. The source inductance is absorbed into the
matching network, reducing the required series inductance of the matching network. The
capacitance of the load cannot be fully absorbed. The design for the resistance-only case
requires a shunt capacitance of 0.477 pF, but 5 pF is available from the load. Thus there is an
excess capacitance of 4.523 pF that must be resonated out by the inductance L′′:

1

ωL′′
= ω4.523 × 10−12. So L′′ =

1

(2π)2 × 1018 × 4.523 × 10−12
= 5.600 nH. (6.40)

The final matching network design (Figure 6-17(c)) fully absorbs the source inductance into
the matching network, but only partly absorbs the load capacitance.
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(a) Source (b) Load

Figure 6-15: Matching problem in Example 6.6.

(a) (b)

Figure 6-16: Topologies referred to in Example
6.6.

(a)

(b)

(c)

Figure 6-17: Evolution of the
matching network in Exam-
ple 6.6: (a) matching net-
work design considering only
the source and load resis-
tors; (b) matching network
with the reactive parts of the
source and load impedances
included; and (c) final design.

6.6 Multielement Matching

The bandwidth of a matching network can be controlled by using multiple
matching stages either making the matching bandwidth wider or narrower.
This concept is elaborated on in this and several design approaches
presented.

6.6.1 Design Concept for Manipulating Bandwidth

The concept for manipulating matching network bandwidth is to do the
matching in stages as shown in Figure 6-18. Figure 6-18(a) shows the one-
stage matching problem using the common identification of the matching
network as ‘M’. The one-stage matching problem is repeated in Figure 6-
18(b) without explicitly showing the source generator. A two-stage matching
problem is shown in Figure 6-18(c) with the introduction of a virtual resistor
RV between the first, M1, and second, M2, stage matching networks. RV

is shown as a virtual connection as it is not actually inserted in the circuit.
Instead this is a short-hand way of indicating the matching problem to be
done in two stages as shown in Figure 6-18(d and e) with the first stage
matching the source resistor RS to RV and the second stage matching RV
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(a) One-stage matching (c) Two-stage matching

(b) One-stage matching (d) Stage 1 (e) Stage 2

Figure 6-18: Matching in stages: (a) matching network M matching RS to RL; (b) without an
explicit source; (c) two-stage matching with a virtual resistor RV ; (d) matching RS to RV ; and
(e) matching RV to RL.

to the load resistor RL. After M1 has been designed the resistance looking
into the right-hand port of M1, see Figure 6-18(d), will be RV so RV is the
Thevenin equivalent source resistance to M2. Similarly the input impedance
looking into the left-hand port of M2 is RV so RV is the effective load
resistor of M1. Of course these are the impedances at the center frequency
and away from the center frequency of the match the input impedances will
be complex.
The concept behind multi-stage matching network design is shown in Figure
6-19 where the standard one-stage match is shown in Figure 6-19(a). While
this is shown for RL > RS the concept holds for RL < RS . The arrows follow
the convention that design begins with the load and ends at the source. With
the one stage match the circuit Q is fixed designated here as the total circuit
Q, QT being the same as the Q of the one-stage RL to RS matching network,
QSL. The two-stage match that reduces bandwidth (compared to the one-
stage match) is shown in Figure 6-19(b). The total Q, QT , of the second stage
is higher than for the one-stage design because the ratio of RL to RV is
greater than the ratio of RV to RS . Bandwidth can also be reduced relative to
the one-stage match by assigning RV to be greater than both RL and RS , see
Figure 6-19(c).
Choosing RV to be between RS and RL will result in a circuit with lower
QT and the bandwidth of the match will increase, see Figure 6-19(d). The
maximum bandwidth for a two-stage match is to choose RV as the geometric
mean of RS and RL. This concept can be extended to multiple stages as
shown for a three-stage match in Figure 6-19(e).
This section presents various matching network designs for manipulating
bandwidth and all are based on the concept of choosing a virtual resistor.

6.6.2 Three-Element Matching Networks

With the L network (i.e., two-element matching), the circuit Q is fixed once
the source and load resistances, RS and RL, are fixed:

Q =

√

RL

RS
− 1, (RL > RS). (6.41)
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QT = QSL

Fixed bandwidth

(a) One-stage matching of RS to RL

QV L ≫ QSV , QV L > QSL

1

QT
≈ 1

QSV
+

1

QV L
≈ 1

QV L

QT ≈ QV L, lower bandwidth than (a)

(b) Two-stage matching of RS to RV to RL, (RV < min(RS , RL))

QSV ≫ QV L, QSV > QSL

1

QT
≈ 1

QSV
+

1

QV L
≈ 1

QSV

QT ≈ QSV , lower bandwidth than (a)

(c) Two-stage matching of RS to RV to RL, (RV > max(RS, RL))

(QSV = QLV ) < QSL

1

QT
≈ 1

QSV
+

1

QV L
<

1

QSL

QT < QSL, higher bandwidth than (a)

(d) Two-stage matching of RS to RV to RL, (RV =
√
RSRL)

(QS1 = Q12 = Q2L) < QSL

1

QT
≈ 1

QS1
+

1

Q12
+

1

Q2L
<

1

QSL

QT < QSV , higher bandwidth than (a), (d)

(e) Three-stage matching of RS to RV 1 to RV 2 to RL, (RV n = (RSRL)
n
3

Figure 6-19: Effect of
multi-stage matching
on total circuit Q, QT ,
and matching band-
width (which is ap-
proximately inversely
proportional to QT .)

(a) T network (b) Pi network

Figure 6-20: Two three-
element matching networks.

Thus the designer does not have a choice of circuit Q. Breaking the matching
problem into parts enables the circuit Q to be controlled. Introducing a third
element in the matching network provides the extra degree of freedom in the
design for adjusting Q, and hence bandwidth.
Two three-element matching networks, the T network and the Pi network,
are shown in Figure 6-20. Which network is used depends on

(a) the realization constraints associated with the specific design, and
(b) the nature of the reactive parts of the source and load impedances and

whether they can be used as part of the matching network.

The three-element matching network comprises 2 two-element (or L)
matching networks and is used to increase the overall Q and thus narrow
bandwidth. Given RS and RL, the circuit Q established by an L matching
network is the minimum circuit Q available in the three-element matching
arrangement. With three-element matching, the Q can only increase, so three-
element matching is used for narrowband (high-Q) applications. However,
lower Q can be obtained with more than three elements. The next subsections
consider matching with more than three elements.
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(a) (b)

Figure 6-21: Pi matching networks: (a) view of a Pi network; and (b) as two back-to-back L
networks with a virtual resistance, RV , between the networks.

6.6.3 The Pi Network

The Pi network may be thought of as two back-to-back L networks that are
used to match the load and the source to a virtual resistance, RV , placed
at the junction between the two networks, as shown in Figure 6-21(b). The
design of each section of the Pi network is as for the L network matching. RS

is matched to RV and RV is matched to RL.
RV must be selected smaller than RS and RL since it is connected to the
series arm of each L section. Furthermore, RV can be any value that is smaller
than the smaller of RS , RL. However, it is customarily used as the design
parameter for specifying the desired Q.
As a useful design approximation, the loaded Q of the Pi network can be
taken as the Q of the L section with the highest Q:

Q =

√

max(RS , RL)

RV
− 1. (6.42)

Given RS , RL, and Q, the above equation yields the value of RV .

EXAMPLE 6.7 Three-Element Matching Network Design

Design a Pi network to match a 50 Ω source to a 500 Ω load. The desired Q is 10. A suitable
matching network topology is shown in Figure 6-22 together with the virtual resistance, RV ,
to be used in design.

Solution: RS = 50 Ω and RL = 500 Ω so max(RS , RL) = 500 Ω and so the virtual resistor is

RV =
max(RS, RL)

Q2 + 1
=

500

101
= 4.95 Ω. (6.43)

Design proceeds by separately designing the L networks to the left and right of RV . For the
L network on the left,

Qleft =

√

50

4.95
− 1 = 3.017. so Qleft =

|Xa|
RV

=
RS

|X1|
= 3.017, (6.44)

Note that X1 and Xa must be of opposite types (one is capacitive and the other is inductive).
The left L network has elements

|Xa| = 14.933 Ω and |X1| = 16.6 Ω. (6.45)

For the L network on the right of RV ,
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Figure 6-22: Matching network problem of
Example 6.7.

Figure 6-23: Final matching network in
Example 6.7.

Conceptual → Final network

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6-24: Four possible
Pi matching networks: (a),
(c), (e), and (g) conceptual
circuits; and (b), (d), (f),
and (h), respectively, their
final reduced Pi networks.

Qright = Q = 10, thus
|Xb|
RV

=
RL

X3
= 10. (6.46)

Xb, X3 are of opposite types, and

|Xb| = 49.5 Ω and |X3| = 50 Ω. (6.47)

The resulting Pi network is shown in Figure 6-23 with the values

|X1| = 16.6 Ω, |X3| = 50 Ω, |Xa| = 14.933 Ω, and |Xb| = 49.5 Ω. (6.48)

Note that the pair Xa, X1 are of opposite types and similarly Xb, X3 are of opposite types.
So there are four possible realizations, as shown in Figure 6-24.

In the previous example there were four possible realizations of the three-
element matching network, and this is true in general. The specific choice
of one of the four possible realizations will depend on specific application-
related factors such as
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Figure 6-25: A three-element matching
network.

(a) elimination of stray reactances,
(b) the need to pass or block DC current, and
(c) the need for harmonic filtering.

It is fortunate that it may be possible to achieve multiple functions with the
same network.

EXAMPLE 6.8 Three-Element Matching with Reactive Source and Load

Design a Pi network to match the source to the load
shown. The design frequency is 900 MHz and the
desired Q is 10.

Solution:

The design objective is to arrive at an overall network which has a Q of 10. To achieve this
it is necessary to absorb the source and load reactances into the matching network. If they
were resonated instead, the overall Q of the network can be expected to higher than the Q of
the L matching network on its own.

Design begins by considering the matching
of RS = 50 Ω to RL = 500 Ω. Since the
Q is specified, three (or more) matching
elements must be used. The design starting
point is shown on the right:

The virtual resistor RV = max (Rs, RL)/(1 +
Q2) = (500 Ω)/(1 + 100) = 4.95 Ω.
The left subnetwork with X1 and Xa has
QLEFT =

√

RS/RV − 1 =
√

50/4.95 − 1 =
3.017. The right subnetwork with X2 and
Xb has QRIGHT =

√

RL/RV − 1 =
√

500/4.95 − 1 = 10.001.

Note that QRIGHT is almost exactly the
desired Q of the network and QLEFT

will have little effect on the Q of the
overall circuit. Now QLEFT = |Xa|/RV =
RS/|X1|, so |Xa| = 14.9 Ω and |X1| =
16.57 Ω. QRIGHT = |Xb|/RV = RS/|X2|,
so |Xb| = 49.5 Ω and |X2| = 50.0 Ω.

X1 must be chosen to be a capacitor C1 =
10.67 pF so that the 2 pF source capacitance
can be absorbed. Similarly X2 is a capacitor
C2 = 3.53 pF. Xa and Xb are both inductors
that combine in series for a total inductance
L3 = 11.38 nH. This leads to the final design
shown on the right where the matching
network is in the dashed box.

6.6.4 Matching Network Q Revisited

To demonstrate that the circuitQ established by an L matching network is the
minimum circuit Q for a network having at most three elements, consider the
design equations for RS > RL. Referring to Figure 6-25,

X1 =
RS

Q
, X3 = RL

(
RS/RL

Q2 + 1−RS/RL

)1
2
, X2 =

QRS +RSRL/X3

Q2 + 1
. (6.49)
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(a) T network (b) Virtual intermediate matching network view

Figure 6-26:
T network
design
approach.

Notice that the denominator of X3 can be written as

Q2 + 1− RS

RL
=

(

Q+

√

RS

RL
− 1

)(

Q −
√

RS

RL
− 1

)

. (6.50)

Then for a real solution we must have

Q ≥
√

RS

RL
− 1, (6.51)

and so Q ≥ QL network. For Q = QL network, X3 → ∞ and the Pi network
reduces to an L network that has two elements. Thus it is not possible to
have a lower Q with a three-element matching network than the Q of a two-
element matching network. Thus a three-element matching network must
have lower bandwidth than that of a two-element matching network.

6.6.5 The T Network

The T network may be thought of as two back-to-back L networks that are
used to match the load and the source to a virtual resistance, RV , placed
at the junction between the two L networks (see Figure 6-26). RV must be
selected to be larger than both RS and RL since it is connected to the shunt
leg of each L section. RV is chosen according to the equation

Q =

√

RV

min(RS , RL)
− 1, (6.52)

where Q is the desired loaded Q of the network. Each L network is calculated
in exactly the same manner as was done for the Pi network matching. That
is, RS is matched to RV and RV is matched to RL. Once again there will be
four possible designs for the T network, given RS , RL, and Q.

6.6.6 Broadband (Low Q) Matching

L network matching does not allow the circuit Q, and hence bandwidth, to be
selected. However, Pi network and T network matching allows the circuit Q
to be selected independent of the source and load impedances, provided that
the chosen Q is larger than that which can be obtained with an L network.
Thus the Pi and T networks result in narrower bandwidth designs.
One design solution for broadband matching is to use two (or more) series-
connected L sections (see Figure 6-27). Design is still based on the concept
of a virtual resistor, RV , placed at the junction of the two L networks (as in
Figure 6-28), but now RV is chosen to be between RS and RL:

Rmin ≤ RV ≤ Rmax, (6.53)
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(a) (b)

Figure 6-27: Broadband matching networks.

Figure 6-28: Matching network with
two L networks.

Figure 6-29:
Cascaded L
networks for
broadband
matching.

where Rmin = min(RL, RS) and Rmax = max(RL, RS). Then one of the two
networks will have

Q1 =

√

RV

Rmin
− 1 and the other Q2 =

√

Rmax

RV
− 1. (6.54)

The maximum bandwidth (minimum Q) available is obtained when

Q1 = Q2 =

√
RV

Rmin
− 1 =

√
Rmax

RV
− 1 . (6.55)

That is, the maximum matching bandwidth is obtained when RV is the
geometric mean of RS and RL:

RV =
√

RLRS . (6.56)

Even wider bandwidths can be obtained by cascading more than two L
networks, as shown in Figure 6-29. In this circuit

RS < RV 1 < RV 2 . . . < RV n−1 < RL. (6.57)

For optimum bandwidth the ratios should be equal,

RV1

RS
=

RV2

RV1

=
RV3

RV2

= · · · = RL

RVn−1

, (6.58)

and the Q is given by

Q =

√

RV1

RS
− 1 =

√

RV2

R1
− 1 = · · · =

√

RL

RVn−1

− 1. (6.59)

If there are N L networks used in the match, the maximum bandwidth will
be obtained if the ith virtual resistor is

RV i = (RSRL)
i/N

, i = 1, . . . , (N − 1). (6.60)
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EXAMPLE 6.9 Two-Section Matching Network Design

Consider matching a 10 Ω source to a 1000 Ω load using two L matching networks and
designing for a Q of 3. How many matching sections are required?

Solution:

Here the approximate Qs achieved with a single L matching network and with an optimum
two-section design are compared. For a single L network design

Q =

√

RL

RS
− 1 = 9.95. (6.61)

Now consider an optimum two-section design:

RV =
√
RSRL; Q2 =

√

RL

RV
− 1 =

√

√

RL

RS
− 1 = 3. (6.62)

Thus the Q is 3 compared to the Q of an L section of 9.95. If the fractional bandwidth is
inversely proportional to Q, then the bandwidth of the two-section design is 9.95/3 = 3.32
times more than that of the L section.

Now consider how many sections are required to obtain a Q of 2:

(1 +Q2) =
RV1

RS
=

RV2

RV1

= . . . =
RL

RVn−1

⇒ (6.63)

(

1 +Q2
)n

=
RL

RS
⇒ n ln

(

1 +Q2
)

= ln
RL

RS
⇒ n =

ln(RL/RS)

ln (1 +Q2)
. (6.64)

For Q = 2 and RL/RS = 100, n = 2.86, which rounds to n = 3, and three sections are
required.

6.7 Impedance Matching Using Smith Charts

The lumped-element matching networks presented up to now can also be
developed using Smith charts which provide a fairly intuitive approach to
network design. With experience it will be found that this is the preferred
approach to developing designs, as trade-offs can be captured graphically.
Smith chart-based design will be presented using examples.

6.7.1 Two-Element Matching

The examples here build on the preceding lumped-element matching
network designs now using the Smith chart introduced in Chapter 3.
Capacitive and inductive regions on the Smith chart are shown in Figure
6-30. In the design examples presented here, circles of constant resistance
or constant conductance are followed and these correspond to varying
reactance or susceptance, respectively.
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(a) Impedance Smith chart (b) Admittance Smith chart

Figure 6-30: Inductive and capacitive regions on Smith charts. Increasing capacitive impedance
(Z) indicates smaller capacitance; increasing inductive admittance (Y ) indicates smaller
inductance.

EXAMPLE 6.10 Two-Element Matching Network Design Using a Smith Chart

Develop a two-element matching network to match a source with an impedance of RS =
25 Ω to a load RL = 200 Ω (see Figure 6-31).

Solution:

The design objective is to present conjugate matched impedances to the source and load.
However, since here the source and load impedances are real, the design objective is Z1 = RS

and Z2 = RL. The load and source resistances are plotted on the Smith chart in Figure 6-
33(a) after choosing a normalization impedance of Z0 = 50 Ω (and so rS = RS/Z0 = 0.5
and rL = RL/Z0 = 4). The normalized source impedance, rS , is Point A, and the normalized
load impedance, rL, is Point C. The matching network must be lossless, which means that
the design must follow lines of constant resistance (on the impedance part of the Smith chart)
or constant conductance (on the admittance part of the Smith chart). So Points A and C must
be on the above circles and the circles must intersect if a design is possible. The design can
be viewed as moving back from the source toward the load or moving back from the load
toward the source. (The views result in identical designs.) Here the view taken is moving
back from the source toward the load.

One possible design is shown in Figure 6-33(a). From Point A, the line of constant resistance
is followed to Point B (there is increasing series reactance along this path). From Point B,
the locus follows a line of constant conductance to the final point, Point C. There is also an
alternative design that follows the path shown in Figure 6-33(b). There are only two designs
that have a path from A to B following just two arcs. At this point two designs have been
outlined. The next step is assigning element values.

The design shown in Figure 6-33(a) begins with rS followed by a series reactance, xS ,
taking the locus from A to B. Then a shunt capacitive susceptance, bP , takes the locus from
B to C and rL. At Point A the reactance xA = 0, at Point B the reactance xB = 1.323. This
value is read off the Smith chart, requiring that an arc as shown be interpolated between the
arcs provided. It should be noted that not all versions of Smith charts include negative signs,
as the chart becomes too complicated. Thus the user needs to be aware and add signs where
appropriate. The normalized series reactance is
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Figure 6-31: Design objectives for Example 6.10.
RS = 25 Ω, RL = 200 Ω.

XS = 66.1 Ω. XP = −75.6 Ω

Figure 6-32: Final design for Exam-
ple 6.10 using the path shown in Fig-
ure 6-33(a).

(a) Design 1 (b) Design 2

Figure 6-33: Alternative designs for Example 6.10. The normalization impedance is 50 Ω.

xS = xB − xA = 1.323− 0 = 1.323, (6.65)

that is, XS = xsZ0 = 1.323× 50 = 66.1 Ω. (6.66)

A shunt capacitive element takes the locus from Point B to Point C and

bP = bC − bB = 0− (−0.661) = 0.661, (6.67)

so BP = bP /Z0 = 0.661/50 = 13.22 mS or XP = −1/BP = −75.6 Ω.
(6.68)

The final design is shown in Figure 6-32.

One of the advantages of using the Smith chart is that the design progresses
in stages, with the structure of the design developed before actual numerical
values are calculated. Of course, it is difficult to extract accurate values from
a chart, so designs are regularly roughed out on a Smith chart and refined
using CAD tools. Example 6.10 matched a resistive source to a resistive
load. The next example considers the matching of complex load and source
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impedances. In the earlier algorithmic approach to matching network design
absorption and resonance were introduced as strategies for dealing with
complex terminations. Design was not always straightforward. It will be seen
that this complication disappears with a Smith chart-based design, as it is
conceptually not much different from the resistive problem of Example 6.10.

EXAMPLE 6.11 Matching Network Design With Complex Impedances

Develop a two-element matching network to match a source with an impedance of ZS =
12.5 + 12.5 Ω to a load ZL = 50− 50 Ω, as shown in Figure 6-34.

Solution:

The design objective is to present conjugate matched impedances to the source and load;
that is, Z1 = Z∗

S and Z2 = Z∗
L. The choice here is to design for Z1; that is, elements will

be inserted in front of ZL to produce the impedance Z1. The normalized source and load
impedances are plotted in Figure 6-35(a) using a normalization impedance of Z0 = 50 Ω, so
zS = ZS/Z0 = 0.25 + 0.25 (Point S) and zL = ZL/Z0 = 1−  (Point C).

The impedance to be synthesized is z1 = Z1/Z0 = z∗S = 0.25− 0.25 (Point A). The matching
network must be lossless, which means that the lumped-element design must follow lines of
constant resistance (on the impedance part of the Smith chart) or constant conductance (on
the admittance part of the Smith chart). Points A and C must be on the above circles and the
circles must intersect if a design is possible.

The design can be viewed as moving back from the load impedance toward the conjugate
of the source impedance. The direction of the impedance locus is important. One possible
design is shown in Figure 6-35(a). From Point C the line of constant conductance is followed
to Point B (there is increasing positive [i.e., capacitive] shunt susceptance along this path).
From Point B the locus follows a line of constant resistance to the final point, Point A.

The design shown in Figure 6-35(a) begins with a shunt susceptance, bP , taking the locus
from Point C to Point B and then a series inductive reactance, xS , taking the locus to Point A.
At Point C the susceptance bC = 0.5, at Point B the susceptance bB = 1.323. This value is read
off the Smith chart, requiring that an arc of constant susceptance, as shown, be interpolated
between the constant susceptance arcs provided. The normalized shunt susceptance is

bP = bB − bC = 1.323 − 0.5 = 0.823, (6.69)

that is, BP = bP /Z0 = 0.823/(50 Ω) = 16.5 mS or XP = −1/BP = −60.8 Ω. (6.70)

A series reactive element takes the locus from Point B to Point A, so

xS = xA − xB = −0.25− (−0.661) = 0.411, (6.71)

so XS = xSZ0 = 0.411 × 50 Ω = 20.6 Ω. (6.72)

The final design is shown in Figure 6-36.

There are only two designs that have a path from Point C to Point A following just two
arcs. In Design 1, shown in Figure 6-35(a), Path CBA is much shorter than Path CHA for
Design 2 shown in Figure 6-35(b). The path length is an approximate indication of the total
reactance required, and the higher the reactance, the greater the energy storage and hence
the narrower the bandwidth of the design. (The actual relative bandwidth depends on the
voltage and current levels in the network; the path length criteria, however, is an important
rule of thumb.) Thus Design 1 can be expected to have a much higher bandwidth than Design
2. Since designing broader bandwidth is usually an objective, a design requiring a shorter
path on a Smith chart is usually preferable.
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Figure 6-34: Design objectives for
Example 6.11.

(a) Design 1 (b) Design 2

Figure 6-35: Smith chart-based designs used in Example 6.11. (50 Ω normalization used.)

Figure 6-36: Final circuit for
Design 1 of Example 6.11.
XS = 20.6 Ω, XP = −60.8 Ω.

6.8 Distributed Matching

Matching using lumped elements leads to series and shunt lumped elements.
The shunt elements can be implemented using shunt transmission lines, as
a short length (less than one-quarter wavelength long) of short-circuited
transmission line looks like an inductor and a short section of open-circuited
transmission line looks like a capacitor. However, in most transmission
line technologies it is not possible to realize the series elements as lengths
of transmission lines. While it has been shown that a short length of
transmission line is inductive, replacing series inductors by a length of
transmission line of high characteristic impedance is not the best approach
to realizing networks. The solution is to use lengths of transmission line
together with shunt elements. If space is not at a premium, this is an
optimum solution, as transmission lines have much lower loss than a lumped
inductor. The series transmission lines rotate the reflection coefficient on the
Smith chart.
As with all matching design, using transmission lines begins with a topology
in mind. Several topologies are shown in Figure 6-37. Figure 6-37(a) is the
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Figure 6-37: Matching net-
works with transmission line
elements.

top view of a microstrip matching network with a series transmission line
and stub realized as an open-circuited transmission line. Figure 6-37(b) is a
shorthand schematic for this circuit. Matching network design then becomes
a problem of choosing the lengths and characteristic impedances of the lines.
The stub here is used to realize a capacitive shunt element. This network
corresponds to two-element matching with a shunt capacitor. The value of
the shunt capacitance can be increased using a dual stub, as shown in Figure
6-37(c), where the capacitive input impedances of each stub are in parallel.
The dual circuit to that in Figure 6-37(a) is shown in Figure 6-37(d) together
with its schematic representation in Figure 6-37(e). This circuit has a short-
circuited stub that realizes a shunt inductance.
Mixing lumped capacitors with a transmission line element, as shown in
Figure 6-37(f), realizes a much more space-efficient network design. There
are many variations to stub-based matching network design, including the
two-stub design in Figure 6-37(g).
A common situation encountered in the laboratory is the matching of
circuits that are in development. Laboratory items available for matching
include the stub tuner, shown in Figure 6-38(a), and the double-stub tuner,
shown in Figure 6-38(b). With the double-stub tuner the length of the series
transmission line is fixed, but stubs can have variable length using lengths
of transmission lines with sliding short circuits. Not all impedances can
be matched using a double stub tuner, however. A triple-stub tuner can
match all impedances presented to it [2]. The double-slug tuner shown in
Figure 6-38(c) has dielectric slugs each of which introduces a short section
of lower impedance line. The slugs are moved up and down the line and
avoid the rapid changes in impedances that occur with the stub tuners and
as a result the double-slug tuner provides a broader bandwidth match than
does the double stub tuner.. The slide-screw slug tuner shown in Figure 6-
38(d) can achieve a broadband match. Here a metal slug can be lowered into
the slabline changing the impedance of a section of transmission line and
mostly affects the magnitude of the reflection coefficient while moving the
metal slug along the line mostly affects the phase. This is the type of tuner
incorporated in computer-controlled automated tuners.
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(c) Double-slug tuner

(a) Single-stub tuner (b) Double-stub tuner (d) Slide-screw slug tuner

Figure 6-38: Laboratory tuners.

Figure 6-39: Rotation of the input
impedance of a transmission line on a
Smith chart normalized to Z01 as the line
length increases.

6.8.1 Stub Matching

In this section matching using one series transmission line and one stub will
be considered. This corresponds to the microstrip circuit topologies shown in
Figures 6-37(a and d). First, consider the terminated transmission line shown
in Figure 6-39. When the length, ℓ1, of the line is zero, the input impedance
of the line, Zin, equals ZL. How it changes is best described by considering
the input reflection coefficient, Γin, of the line. If the reflection coefficient is
normalized to Z01, then the magnitude of Γin and its phase varies as twice
the electrical length of the line. This situation is shown on the Smith chart in
Figure 6-39, where ZL is chosen arbitrarily. The input reflection coefficient of
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Figure 6-40: Design for Exam-
ple 6.12.

Figure 6-41: Single-stub match-
ing network design of Example
6.12: (a) electrical design; and
(b) electrical design with a shunt
stub.

ℓ = 0.1136λ XP = −50 Ω.
(a) (b)

the line rotates in a clockwise direction as the length of the line increases. One
way of remembering this is to consider an open-circuited line. When the line
length is zero, Yin = 0 and Γin = +1. A short length of this line is capacitive
so that its reflection coefficient will be in the bottom half of the Smith chart.
A length of line can be used to rotate the impedance to an appropriate point
to follow a line of constant conductance to the desired input impedance.

EXAMPLE 6.12 Matching Network Design With a Transmission Line and a Single Stub

Design a two-element matching network to match a source with an impedance ZS =
12.5 + 12.5 Ω to a load ZL = 50− 50 Ω, as shown in Figure 6-34. This example repeats the
design in Example 6.11, but now using a transmission line.

Solution:

As in Example 6.11, choose Z0 = 50 Ω and the design path is from zL = ZL/Z0 = 1−  to z∗s ,
where zs = 0.25 + 0.25. One possible design solution is indicated in Figure 6-40. The line
length, ℓ (taking the locus from Point C to Point B), is

ℓ = 0.4261λ − 0.3125λ = 0.1136λ,

and the normalized shunt susceptance, bP (taking the locus from Point B to Point C), is

bP = bA − bB = 2− 1 = 1.

Thus XP = (−1/bP )× 50 Ω = −50 Ω. The final design is shown in Figure 6-41(a). The stub
design of Figure 6-41(b) follows the procedure described in Example 6.5.
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6.8.2 Hybrid Lumped-Distributed Matching

A lossless matching network can have transmission lines as well as inductors
and capacitors. If the system reference or normalization impedance is the
characteristic impedance of a transmission line, then the locus of the input
impedance (or reflection coefficient) of the line with respect to the length of
the line is an arc on a circle centered at the origin of the Smith chart. The
direction of the arc is clockwise as the electrical length of the line moves
away from the load. So a hybrid matching network is possible that combines
a length of transmission line with a lumped element (preferably a capacitor
rather than an a inductor as the inductor would have a relatively lower Q).

6.9 Matching Options Using the Smith Chart

The purpose of this section is to use the Smith chart to present several design
options for matching a source to a load, see Figure 6-42. The designs here
provide another view of design using the Smith chart.

6.9.1 Locating the Design Points

The first design choice to be made is the reference impedance to use. Here
ZREF = 50 Ω will be chosen largely because this is in the center of the design
space for microstrip lines. Generally the characteristic impedance, Z0, of a
microstrip line needs to be between 20 Ω and 100 Ω. A microstrip line with
Z0 < 20 Ω will be wide and there is a possibility of multimoding due to
transverse resonance. Also 20 Ω line is about six times wider than a 50 Ω line
and so takes up a lot of room and there is a good chance that it could be close
to other microstrip lines or perhaps the wall of an enclosure. This is based on

the rule of thumb (developed in Example 3.4 of [1]) that Z0 ∝
√

h/w where
h is the substrate thickness and w is the strip width. The thickness is usually
fixed, i.e. it is not always a readily changed design choice. If Z0 > 100 Ω
the characteristic impedance is getting close to the wave impedance of free
space and of the dielectric of the substrate. As such it is likely that field lines
are not tightly constrained by the metal of the strip and the fields can more
likely radiate. Then radiation loss can be high or coupling to a neighboring
microstrip can be high.
The normalized source and load impedances are zS = ZS/ZREF = [(29.36−
12.05) Ω]/(50 Ω) = 0.587 − 0.241 and zL = ZL/ZREF = [(132.7 −
148.8) Ω/(50 Ω) = 2.655 − 2.976 = rL + xL, respectively. Maximum
power transfer requires that the input impedance of the matching network
terminated in ZL be Z1 = Z∗

S , i.e. z1 = z∗S = 0.587 + 0.241 = r1 + x1. These
impedances are plotted on the normalized Smith chart in Figure 6-43.
The normalized load impedance is Point L. To locate this point the
arcs corresponding to the real and imaginary parts of zL are considered
separately. The resistive part of zL is rL = 2.655 and the resistance labels are

Figure 6-42: Matching problem with the matching network
between the source and load designed for maxium power
transfer. ZS = RS + XS = 29.36− 12.05,
Z1 = R1 + X1 = Z∗

S = RS − XS = 29.36 + 12.05,
and ZL = RL + XL = 32.7− 148.8.
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Figure 6-43: Locating ZL at Point L and Z1 = Z∗
S at Point 1.

located on the horizontal axis (or equator) of the Smith chart. There are two
sets of labels, one for normalized resistance, r (which is above the horizontal
axis), and one for normalized conductance, g (which is below the horizontal
axis). The way to remember which is which is to realize that the infinite
impedance point is at the Γ = +1 (open circuit) location on the right of the
graph. At the origin (center) of the Smith chart r = 1 = g and to the right of
the center the values of r should be greater than one. The closest r labels to
rL = 2.655 are r = 2.0 and r = 3.0. There are five divisions so the unlabeled
curves correspond to 2.2, 2.4, . . . . The arc corresponding to r = 2.655 must
be interpolated and this interpolation is shown as the Path ‘a’.
The imaginary part of zL is xL = −2.976. The labels for the arcs of constant
reactance are given adjacent to the unit circle. There are two sets of labels,
one for reactance and one for susceptance. To recall which is which, the point
of infinite impedance can be used and the required reactance labels should
increase towards the Γ = +1 point. Recall that the Smith chart does not
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include signs of reactances (there is not enough room) so note must be made
that positive reactances are in the top half of the Smith chart and negative
reactances are in the bottom half. Since xL is negative it will be in the bottom
half of the Smith chart. The closest labels are x = 2.0 (this is actually −2.0)
and x = 3.0 (this is actually −3.0) so the arc for x = −2.976 is interpolated as
the Path ‘b’. Point L, i.e. zL, is located at the intersection of Paths ‘a’ and‘b’.
The normalized impedance z1 is located similarly at Point 1 by finding the
point of intersection of the r1 = 0.587 arc, Path ‘c’, and the x1 = +0.241 arc,
Path ‘d’.

6.9.2 Design Options

By convention design follows a process of beginning with zL and adding
series and shunt elements in front of it evolving the impedance (or reflection
coefficient) until the input impedance is z1 = z∗S . Three electrical designs are
shown in Figure 6-44 and the corresponding lumped-element and microstrip
topologies are shown in Figure 6-45. The subscript on the circuit elements
correspond to the paths on the Smith chart in Figure 6-44 . The designs will
be elaborated in the following subsections.

6.9.3 Design 1, Hybrid Design

Design 1 on its own is shown in Figure 6-46. The concept here is to use a
transmission line and a shunt to go from the load Point L to the Point 1.
The reason why a shunt element is chosen and not a series element is that
the shunt element can be implemented as stub line and a series element,
i.e. a series stub, cannot be implemented in microstrip. A lumped element
limits a design to the low microwave range as losses become prohibitively
large especially for inductors. Also if a microstrip line is going to be used
anyway then a decision already has been made that there is enough room
to implement a transmission-line based design and so the shunt lumped
element can reasonably be replaced by a stub.
Design follows trial and error. The first attempt, and the one that works here,
is to draw a circle through L centered on the origin at Point O. This circle
describes a transmission line whose characteristic impedance is the same
as the reference impedance of the Smith chart, here 50 Ω. The next step is
to draw a circle of constant conductance through Point 1. The combination
path from L to 1 needs to lie on these circles and the intermediate point
will be where these circles intersect. One other constraint is that with a
transmission line the locus (as the line length increases) of the input reflection
coefficient of the line must rotate in the clockwise direction. It is seen that
there are two points of intersection and the first of these, at A, is chosen in
design. So the electrical design is defined by the directed Paths ‘g’ and ‘h’.
Path ‘g’ defines the properties of the transmission line and Path ’h’ defines
the properties of the shunt element. As ‘h’ is directed towards the infinite
inductive susceptance point, Path ‘h’ defines an inductor. The topology of
this design is shown in Figure 6-45(a).
The characteristic impedance of the transmission line (defined by Path ‘g’)
is Z0g = 50 Ω. The electrical length of the line is defined by the angle
subtended by the arc ‘g’. The electrical length of the line is determined from
the outermost circular scale which is labeled ‘WAVELENGTHS TOWARDS
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Figure 6-44: Three matching network electrical designs matching a load impedance ZL at Point
L to a source ZS showing Z1 = Z∗

S at Point 1.

(a) Design 1. Hybrid (b) Design 1. Hybrid (c) Design 1 with s/c stub

alternative schematic

(d) Design 1 with o/c stub (e) Design 2. Lumped element (f) Design 3. Single line

Figure 6-45: Matching network topologies using lumped elements and microstrip lines. In the
stub layouts x is a via to the ground plane implementing a short circuit (s/c) and an open circuit
o/c simply does not show a connection to the microstrip ground plane.
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Figure 6-46: Design 1. Hybrid design combining a transmission line with a lumped element in
shunt. The design is identified by paths ‘g’ and ‘h’.

GENERATOR.’ A line drawn from O through L intersecting the scale has a
scale reading of ℓL = 0.280λ. Then the scale reading at A is similarly found as
ℓA = 0.452λ and so the line length is ℓg = ℓA−ℓL = 0.452λ−0.280λ= 0.172λ.
Another way of determining the electrical length of the line is from the
change in reflection coefficient angle. For L the reflection coefficient angle
is φL = −21.8◦ read from the innermost circular scale. This angle is just the
angle from the polar plot. Then the angle at A is read as φA = −145.7◦. The
difference is |φA−φL| = |−145.7−(−21.8◦)| = 124.9◦. The electrical length of
the line is half the change in reflection coefficient angle and so the electrical
length of the line is θg = 1

2124.9
◦ = 62.5◦. Now λ corresponds to an electrical

length of 360◦ so θg corresponds to 62.5/360λ = 0.174λ corresponding to the
previously determined length of 0.172λ which is very good agreement given
that these were derived from graphical readings.
Path ‘h’ defines a shunt inductor and a circle of constant conductance is
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followed with only the susceptance changing. The susceptance indicated by
Path ‘g’ is bg = b1− bA. To obtain bA extend the circle of constant susceptance
through A out to the unit circle. The extended circle cross the unit circle
between the susceptance labels 2.0 and 3.0. A check is that susceptance is
positive in the bottom half of the Smith chart so the signs of the labels do
not need to be adjusted. There are two scales adjacent to the unit circle,
one for normalized susceptance and one for normalized reactance. Since
the intersection is close to the infinite susceptance point at the s/c (short-
circuit) so the values that are becoming very large towards s/c are used.
Interpolation results in the reading bA = 2.48. A similar process applied to
Point 1 results in b1 = −0.598 where the negative sign has been applied to
the scale reading since the point of intersection between the arc of constant
susceptance passing through Point 1 and the unit circle is in the top half of
the Smith chart. Thus bh = b1 − bA = −0.598 − 2.48 = −3.08 and so the
normalized reactance of the shunt element is xh = −1/bh = 0.325. The un-
normalized reactance of the shunt element is Xh = xhZREF = 16.2 Ω.
The final Design 1 hybrid layout is shown in Figure 6-45(a) with Xh = 16.2 Ω,
Z0g = 50 Ω, and ℓg = 0.172λ. That is all that is needed to define the electrical
design, providing the electrical length in degrees, θg = 62.5◦ is redundant
but provided anyway. The transmission line in Figure 6-45(a) is shown as as
the top view of the strip of a microstrip line as is commonly done. A more
common way of representing this schematic is shown in Figure 6-45(b) where
the ground connections at Ports 1 and 2 have been removed and the ground
connection of the inductor shown separately.

6.9.4 Design 1 with an Open-Circuited Stub

In the previous section Design 1 was left as a hybrid design with a
transmission line and a lumped-element inductor. In this section the lumped-
element inductor is implemented as an open-circuited stub, see Figure 6-
45(d). Recall that the 50 Ω-normalized susceptance of the inductor is bh =
−3.08. If the stub is also implemented as a 50 Ω line then bh can be used
unchanged. Point C in Figure 6-47 corresponds to the normalized admittance
0 − 3.08. The unit circle is the zero conductance circle (and is also the zero
resistance circle) and the susceptance is read from the scale adjacent to the
unit circle again using as reference that susceptances in the top half of the
Smith chart need to incorporate a negative sign and the susceptance scale
is identified by the susceptance values becoming larger approaching the s/c
point. Point C also corresponds to xh = −1/bh = 3.25 and indeed this is the
value read from the normalized reactance scale.
A transmission line needs to be designed to have a normalized input
susceptance of bh = −3.08. Choosing an open circuit, o/c, termination the
point corresponding to o/c is as identified in the figure. At the o/c point
the length scale reads ℓo/c = 0.250λ. The locus rotates in the clockwise
direction up to Point C where the direct electrical reading reading is ℓC =
0.050λ. Using this directly to determine the line length ℓk = ℓC − ℓo/c =
0.050λ − 0.250λ = −0.20λ which indicates that the stub has a negative
length. Clearly an erroneous result. This apparent discrepancy comes about
because the length scale resets at the short circuit point where the length scale
abruptly goes from 0.5λ to 0λ. Thus the corrected ℓC reading needs to have
an additional 0.5λ. Thus the corrected value of ℓC = (0.5 + 0.050)λ = 0.550λ
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Figure 6-47: Design 1. Design of an open-circuit stub having normalized input susceptance bh.

and ℓk = ℓC − ℓo/c = 0.550λ− 0.250λ = 0.300λ.
Thus the final design is as shown in Figure 6-45(d) with Z0k = 50 Ω, and
ℓg = 0.300λ, Z0g = 50 Ω, and ℓg = 0.172λ.
The stub could also have been implemented as a short-circuit stub as shown
in Figure 6-45(c). Now the beginning of the line would be at the s/c point
and the line length would be 0.050λ

6.9.5 Design 2, Lumped-Element Design

Design 2 is a lumped-element design and the Smith-chart-based electrical
design is shown in Figure 6-48 resulting in the schematic shown in Figure 6-
45(e). Design proceeds by identifying where circles of constant conductance
and constant resistance passing through the Points L and 1 intersect. One
solution is shown in Figure 6-48. A circle of constant conductance passes
through L and part of a circle of constant resistance passes through 1. If
the circle had continued there would have been a second intersection with



194 STEER MICROWAVE AND RF DESIGN, NETWORKS

Figure 6-48: Design 2.

the circle through L. Both of these intersections mean that there is a shunt
element adjacent to the load and series element adjacent to the source. Recall
that in a lumped-element design that under no circumstances can the locus of
a lumped element pass through the short circuit point (if it is a susceptance)
or open-circuit point (if it is a reactance), the susceptance and reactance
infinity points respectively.
Returning to the actual design shown in Figure 6-48. The first intersection
of the two circles is Point B so that the design is specified by the Paths ‘e’
and ’f’. Design has largely been completed by identifying these paths and
the next stage is determining the circuit elements that correspond to these
paths. Path ‘e’ follows a circle of constant conductance and so indicates a
shunt susceptance and the direction of the locus indicates a capacitance. The
value of this normalized susceptance is be = bB − bL = 0.506−0.187 = 0.319.
(Remember to check the signs of the readings since the Smith chart omits
signs of the reactances and susceptances.) Path ‘f’ identifies a series inductor
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with a reactance xf = x1 − xB = 0.241 − (−1.78) = 2.02. The final design
is shown in Figure 6-45(e) with Xe = Z0/be = 50/0.319 Ω = 158 Ω and
Xf = Z0xf = 50 · 2.02 Ω = 101 Ω.

6.9.6 Design 3, Single Line Matching

Design 3 uses a single transmission line to match the source and load as
shown in the schematic of Figure 6-45(f). This design is akin to using a
quarter-wave transmission line transformer but with a Smith chart being
used the approach can now be used with complex source and load
impedances. Recall from Sections 3.5.2 and 4.5 that the locus of a terminated
transmission line is a circle on the Smith chart even if the characteristic
impedance of the transmission line, Z0i in Design 3, and the reference
impedance, ZREF, are not the same. Furthermore the center of the circle will
be on the horizontal axis. The Smith-chart-based electrical design of Design 3
is shown in Figure 6-49 where ZREF = 50 Ω. There is only one way to draw a
circle that passes through two points with the center of the circle constrained
to be on the horizontal axis. That circle is shown in Figure 6-49 with Path ‘i’
on the circle going from Points L to 1 tracing out the locus of the reflection
coefficient. This locus must be in the clockwise direction. The center of the
circle is at Point D and the center of the circle is (the reflection coefficient
normalized to ZREF) is CD = 0.240. (The radius is also given but this is not
necessary.) The angle subtended by Path ‘i’ is twice the electrical length of
the line. This angle cannot be directly measured from the scales (although
it is possible by placing a chart over the top and and aligning the center of
the polar plot with D) and here was read using a protractor. The angle is
φD = 150◦ so that the electrical length of the line is θi = 1

2150
◦ = 75◦, i.e.

ℓi = 74/360λ = 0.208λ. The only parameter not known is the characteristic
impedance,Z0i, of the line. This must be arrived at iteratively. From Equation
(4.40) (after replacing Z01, Z02 and CZ02 by Z0i, ZREF and CD, respectively)

Z0i ≈ ZREF(1 + CD)/(1− CD) (6.73)

with the approximation improving the closer Z0i is to ZREF. Substituting
ZREF = 50 Ω and CD = 0.240, the first iteration of Z0i is

1Z0i = 50

(
1 + 0.240

1− 0.240

)

Ω = 82 Ω. (6.74)

Re-plotting using a new reference impedance of ZREF = 82 Ω yields a new
center of 0.07 from which an updated iterate is 2Z0i = 94 Ω and then a new
center of 0.02 and 3Z0i = 98 Ω. Continuing to iterate results in an asymptotic
value Z0i = 100 Ω. Z0i can also be estimated from the tabulated values
in Table 4-1. Reading the line with radius of 0.5 and center of 0.24 yields
Z0i = 50 · 1.980 = 99 Ω.
The final design is as shown in Figure 6-45(f) with ℓi = 0.208λ, θi = 75◦, and
Z0i = 100 Ω.
As was seen with the quarter-wave transformer design using multiple stages
significantly increases bandwidth by matching to intermediate resistances
determined as geometric means of the source and load resistance. The
corresponding strategy here is to draw a line between the Points 1 and L and,
if there are to be two stages, choose the intermediate matching impedance
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Figure 6-49: Design 3.

at the mid-point of the line. If the source and loads are complex then the
reactive storage elements in the source and load will set a limit on maximum
achievable bandwidth.

6.9.7 Summary

This section presented three quite different designs for a matching network.
One of the particular benefits of using the Smith chart is identifying
topologies and initial design values. Design can then transfer to a microwave
circuit simulator. The Smith chart enables back-of-the-envelope design
studies. While with experience it is possible to complete many of these steps
with a computer-based Smith chart tool, even experienced designers doodle
with a printed Smith chart when exploring design options.
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6.10 Summary

This chapter presented techniques for impedance matching that achieve
maximum power transfer from a source to a load. The simplest matching
network uses a series and a shunt element, a two-element matching network,
to realize a single-frequency match. This type of impedance matching
network uses lumped elements and can be used up to a few gigahertz.
Performance is limited by the self-resonant frequency of lumped elements
and by their loss, particularly that of inductors. The shunt element can
be replaced by a shunt stub, but in most transmission line technologies,
including microstrip, the series element cannot be implemented as a stub.
Matching networks can also be realized using transmission line segments
only, principally shunt stubs and cascaded transmission lines. A tunable
double-stub matching network, which uses two stubs separated by a
transmission line, is standard equipment in microwave laboratories and
facilitates matching of a circuit under development.
The bandwidth of a matching network is set by the maximum allowable
reflection coefficient of the terminated network. Two-element matching
nearly always results in a narrow match and for typical communications
applications often achieves acceptable matching over bandwidths of only
1%–3%. The most significant determinant of the quality of the match that
can be achieved is the ratio of the source and load resistances, as well as the
reactive energy storage of the source and load. Clearly if the load and source
are resistances of the same value, the bandwidth of the matching network is
infinite, as it is no more than a wired connection.
An important concept in matching network design is a technique for
controlling bandwidth. The concept is based on matching to an intermediate
resistance Rv . Increased bandwidth is obtained if Rv is the geometric mean
of the source and load resistances. This new network consists of two two-
element matching networks. If Rv is greater or less than both the source and
load resistances, then the bandwidth of the matching network is reduced.
Matching network synthesis can also be addressed using filter design
techniques, enabling simultaneous control over the quality and bandwidth
of the match. It is always a good idea to have no more bandwidth in the
system than is needed, as this minimizes the propagation of noise.
A powerful graphical matching tool is the Smith chart on which the load
and source can be plotted. The design objective is then to determine the
path, subject to constraints, from the load back to an input, which is the
complex conjugate of the source, a task that a human is particularly adept
at performing. Alternatively the perspective could be flipped and the role of
the source and load interchanged.
Design becomes increasingly more difficult as the required bandwidth
increases. Many times it is sufficient to have small-to-moderate bandwidths
that can be tuned rather than providing one large instantaneous bandwidth.
Also many of the evolving wireless systems require multiple functionality,
which in turn requires adjustability of a matching network. In some
applications the matching network may require adjustment to match a
variable load impedance. A good example is dealing with a cell phone
antenna where the user may put his or her hand over the antenna and alter
the load seen by the RF frontend. Some types of matching network designs
are more adjustable than others. Such designs require variable components,
so matching design can be a source of competitive advantage.
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6.12 Exercises

1. Consider the design of a magnetic transformer
that will match the 3 Ω output resistance of a
power amplifier (this is the source) to a 50 Ω
load. The secondary of the transformer is on the
load side.

(a) What is the ratio of the number of primary
turns to the number of secondary turns for
ideal matching?

(b) If the transformer ratio could be imple-
mented exactly (the ideal situation), what is
the reflection coefficient normalized to 3 Ω
looking into the primary of the transformer
with the 50 Ω load?

(c) What is the ideal return loss of the loaded
transformer (looking into the primary)? Ex-
press your answer in dB.

(d) If there are 100 secondary windings, how
many primary windings are there in your
design? Note that the number of windings
must be an integer. (This practical situation
will be considered in the rest of the prob-
lem.)

(e) What is the input resistance of the trans-
former looking into the primary?

(f) What is the reflection coefficient normalized
to 3 Ω looking into the primary of the trans-
former with the 50 Ω load?

(g) What is the actual return loss (in dB) of
the loaded transformer (looking into the pri-
mary)?

(h) If the maximum available power from the
amplifier is 20 dBm, how much power (in
dBm) is reflected at the input of the trans-
former?

(i) Thus, how much power (in dBm) is deliv-
ered to the load ignoring loss in the trans-
former?

2. Consider the design of a magnetic transformer
that will match a 50 Ω output resistance to the
100 Ω load presented by an amplifier. The sec-
ondary of the transformer is on the load (ampli-
fier) side.

(a) What is the ratio of the number of primary
turns to the number of secondary turns for
ideal matching?

(b) If the transformer ratio could be imple-
mented exactly (the ideal situation), what is

the reflection coefficient normalized to 50 Ω
looking into the primary of the transformer
with the load?

(c) What is the ideal return loss of the loaded
transformer (looking into the primary)? Ex-
press your answer in dB.

(d) If there are 20 secondary windings, how
many primary windings are there in your
design? Note that the number of windings
must be an integer? (This situation will be
considered in the rest of the problem.)

(e) What is the input resistance of the trans-
former looking into the primary?

(f) What is the reflection coefficient normal-
ized to 50 Ω looking into the primary of the
loaded transformer?

(g) What is the actual return loss (in dB) of
the loaded transformer (looking into the pri-
mary)?

(h) If the maximum available power from the
source is −10 dBm, how much power (in
dBm) is reflected from the input of the trans-
former?

(i) Thus, how much power (in dBm) is deliv-
ered to the amplifier ignoring loss in the
transformer?

3. Consider the design of an L-matching network
centered at 1 GHz that will match the 2 Ω out-
put resistance of a power amplifier (this is the
source) to a 50 Ω load. [Parallels Example 6.3 but
note the DC blocking requirement below.]

(a) What is the Q of the matching network?
(b) The matching network must block DC cur-

rent. Draw the topology of the matching net-
work.

(c) What is the reactance of the series element in
the matching network?

(d) What is the reactance of the shunt element
in the matching network?

(e) What is the value of the series element in the
matching network?

(f) What is the value of the shunt element in the
matching network?

(g) Draw and label the final design of your
matching network including the source and
load resistances.

(h) Approximately, what is the 3 dB bandwidth
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of the matching network?

4. Consider the design of an L-matching network
centered at 100 GHz that will match a source
with a Thevenin resistance of 50 Ω to the input
of an amplifier presenting a load resistance of
100 Ω to the matching network. [Parallels Exam-
ple 6.4 but note the DC blocking requirement be-
low.]

(a) What is the Q of the matching network?
(b) The matching network must block DC cur-

rent. Draw the topology of the matching net-
work.

(c) What is the reactance of the series element in
the matching network?

(d) What is the reactance of the shunt element
in the matching network?

(e) What is the value of the series element in the
matching network?

(f) What is the value of the shunt element in the
matching network?

(g) Draw and label the final design of your
matching network including the source and
load resistance.

(h) Approximately, what is the 3 dB bandwidth
of the matching network?

5. Design a Pi network to match the source con-
figuration to the load configuration below. The
design frequency is 900 MHz and the desired Q
is 10. [Parallels Example 6.8]

6. Design a Pi network to match the source con-
figuration to the load configuration below. The
design frequency is 900 MHz and the desired Q
is 10. [Parallels Example 6.8]

7. Develop the electrical design of an L-matching
network to match the source to the load below.

8. Develop the electrical design of an L-matching
network to match the source to the load below.

9. Design a lowpass lumped-element matching
network to match the source and load shown
below. The design frequency is 1 GHz. You must
use a Smith Chart and clearly show your work-
ing and derivations. You must develop the final
values of the elements.

10. Consider the design of an L-matching network
centered at 100 GHz that will match a source
with a Thevenin resistance of 50 Ω to the input
of an amplifier presenting a load resistance of
200 Ω to the matching network. [Parallels Exam-
ple 6.4 but note the DC blocking requirement be-
low.]

(a) What is the Q of the matching network?
(b) The matching network must block DC cur-

rent. Draw the topology of the matching net-
work.

(c) What is the reactance of the series element in
the matching network?

(d) What is the reactance of the shunt element
in the matching network?

(e) What is the value of the series element in the
matching network?

(f) What is the value of the shunt element in the
matching network?

(g) Draw and label the final design of your
matching network including the source and
load resistance.

(h) Approximately, what is the 3 dB bandwidth
of the matching network?

11. Consider the design of the output matching net-
work of a 15 GHz small-signal amplifier. The
amplifier consists of an active two-port and in-
put and output matching networks. Port 1 is the
input of the active device and Port 2 is its output,
and its 50 Ω S parameters are S11 = 0.5� 45◦,
S12 = 0.1� 0◦, S21 = 2� 90◦, and S22 = 0.75� −
45◦.

(a) If the input of the active device is terminated
in 50 Ω, what is the impedance looking into
the output of the amplifier?

(b) Design a two-element lumped-element
matching network for maximum power
transfer from the output of the transistor
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into a 50 Ω load. Develop at least two de-
signs and compare them. (Note that the out-
put of the active device physically appears
as a resistance in parallel with a capacitance
and this can be used in contrasting your
designs.)

12. Develop a two-element matching network for
the source/load configuration shown in the fig-
ure below. The matching network must pass DC.
The center frequency of the matching network
is f = 1 GHz. There are a number of design con-
siderations that should be considered before em-
barking on network synthesis.

(a) Source (b) Load

Consider the following:

(i) The source needs to be collapsed to an
equivalent circuit with one resistance and
one reactance.

(ii) The reactive elements in the source and the
load will be accommodated using absorp-
tion or resonance. Absorption is preferred,
but not always possible.

(iii) The DC requirements necessitate a low-
pass matching network. So there must be a
series inductance and a shunt capacitor in
the matching network. Since the load resis-
tance is greater than the source resistance,
the most likely design has a shunt capac-
itor on the load side. However, this may
change when the transforming properties
of the source and load reactances are con-
sidered.

(iv) The source reactance should be handled
by a series inductor or a shunt capacitor.
The input impedance of the source must be
considered to determine which.

(v) The load reactance will be resonated out
by a shunt capacitor. Looks like absorption
will be a possibility at the load.

(a) What is the input impedance of the source?
Treat the voltage generator as a short circuit.

(b) What is the reactance of the series element
that will resonate the effective input reac-
tance of the source?

(c) What is the input admittance of the load?
(d) What is the shunt reactance required to res-

onate the load?
(e) What is the resistive matching problem?

That is, since the reactances of the load and
source have been resonated out of consid-

eration, what are the effective source and
load resistances. Derive the required match-
ing network. Keep the element values of the
matching network as reactances.

(f) Draw the complete matching network
showing source and load elements required
for resonance as well as the matching net-
work for the resistive problem. Keep the
element values as reactances.

(g) Draw the final matching network combining
all resonant and matching elements. Keep
the element values as reactances. This is the
electrical design of the matching network.

(h) Calculate the inductance and capacitance
values of the matching network.

13. Design a two-element matching network to in-
terface a source with a 25 Ω Thevenin equivalent
impedance to a load consisting of a capacitor in
parallel with a resistor so that the load admit-
tance is YL = 0.02 + 0.02 S. Use the absorption
method to handle the reactive load.

14. Design a matching network to interface a source
with a 25 Ω Thevenin equivalent impedance to
a load consisting of a capacitor in parallel with
a resistor so that the load admittance is YL =
0.01 + 0.01 S.

(a) If the complexity of the matching network
is not limited, what is the minimum Q that
could possibly be achieved in the complete
network consisting of the matching network
and the source and load impedances?

(b) Outline the procedure for designing the
matching network for maximum bandwidth
if only four elements can be used in the net-
work. You do not need to design the net-
work.

15. Design a lumped-element matching network to
match a source, with a Thevenin equivalent
impedance of 50 Ω, to a load that consists of
a 100 Ω resistor in parallel with a 5 pF capaci-
tor. Design the matching network for maximum
bandwidth at 1 GHz using no more than four
lumped elements.

(a) How many elements are there in the match-
ing network?

(b) Outline how you will design the matching
network.

(c) Design the matching network. You must
draw the final design, including the source
and load elements, and label each of the
lumped elements using reactance values.
(That is, do not calculate values of the induc-
tance and capacitances in your design.) (Do
not use a Smith chart.)
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16. The output of a transistor amplifier is mod-
eled as a current source in parallel with both a
50 Ω resistor and a 1 pF capacitor. This is to be
matched to a load consisting of a 25 Ω resistor
in series with a 0.02 nH inductor. The task is to
design a matching network that will enable DC
bias to be applied from the load to the transis-
tor output, thus the matching network must be
a lowpass type. The center frequency of the sys-
tem is 10 GHz and a bandwidth of 50 MHz is
required.

(a) What is the fractional bandwidth of the sys-
tem?

(b) What is the Q of the system?
(c) Indicate the form of the matching network

if no more than four reactive elements are
to be used; that is, sketch the matching net-
work.

(d) Complete the design of the amplifier provid-
ing numerical element values.

17. Design a Pi network to match the source config-
uration to the load configuration below. The de-
sign frequency is 900 MHz and the desired Q is
10.

18. Design a passive matching network that will
achieve maximum bandwidth matching from a
source with an impedance of 2 Ω (typical of the
output impedance of a power amplifier) to a
load with an impedance of 50 Ω. The match-
ing network can have a maximum of three re-
active elements. You need only calculate reac-
tances and not the capacitor and inductor val-
ues.

19. Design a passive matching network that will
achieve maximum bandwidth matching from a
source with an impedance of 20 Ω to a load with
an impedance of 125 Ω. The matching network
can have a maximum of four reactive elements.
You need only calculate reactances and not the
capacitor and inductor values.

(a) Will you use two, three, or four elements in
your matching network?

(b) With a diagram, and perhaps equations, in-
dicate the design procedure.

(c) Design the matching network. It is sufficient
to use reactance values.

20. Design a passive matching network that will
achieve maximum bandwidth matching from a
source with an impedance of 60 Ω to a load with
an impedance of 5 Ω. The matching network can

have a maximum of four reactive elements. You
need only calculate reactances and not the ca-
pacitor and inductor values.

(a) Will you use two, three, or four elements in
your matching network?

(b) With a diagram and perhaps equations, in-
dicate the design procedure.

(c) Design the matching network. It is sufficient
to use reactance values.

21. Design a T network to match a 50 Ω source to a
1000 Ω load. The desired loaded Q is 15.

22. Repeat Example 6.2 with an inductor in series
with the load. Show that the inductance can be
adjusted to obtain any positive shunt resistance
value.

23. Design a three-lumped-element matching net-
work that interfaces a source with an impedance
of 5 Ω to a load with an impedance consisting of
a resistor with an impedance of 10 Ω. The net-
work must have a Q of 6.

24. A source with a Thevenin equivalent impedance
of 75 Ω must drive a load with an impedance of
5 Ω. A matching network with maximum possi-
ble bandwidth between the source and the load
must be designed to achieve maximum power
transfer. Design the matching network for max-
imum possible bandwidth using no more than
four reactive elements.

(a) Sketch the schematic of the matching net-
work.

(b) Describe the design procedure.
(c) Complete the design of the matching net-

work. Determine the values of the elements
if the center frequency is 1 GHz.

25. A two-port matching network is shown below
with a generator and a load. The generator
impedance is 40 Ω and the load impedance is
ZL = 50 − 20 Ω. Use a Smith chart to design
the matching network.

(a) What is the condition for maximum power
transfer from the generator? Express your
answer using impedances.

(b) What is the condition for maximum power
transfer from the generator? Express your
answer using reflection coefficients.

(c) What system reference impedance are you
going to use to solve the problem?
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(d) Plot ZL on the Smith chart and label the
point. (Remember to use impedance nor-
malization if required.)

(e) Plot ZG on the Smith chart and label the
point.

(f) Design a matching network using only
transmission lines. Show your work on the
Smith chart. You must express the lengths
of the lines in terms of electrical length (ei-
ther degrees or wavelengths). Characteristic
impedances of the lines are required. (You
will therefore have a design that consists of
one stub and one other length of transmis-
sion line.)

26. A two-port matching network is shown below
with a generator and a load. The generator
impedance is 60 Ω and the load impedance is
ZL = 30 + 30 Ω. Use a Smith chart to design
a lossless matching network. It is important that
your solution can be followed, so you must in-
dicate your solution clearly on the chart.

(a) What is the condition for maximum power
transfer from the generator? Express your
answer using impedances.

(b) What is the condition for maximum power
transfer from the generator? Express your
answer using reflection coefficients.

(c) What system reference impedance are you
going to use to solve the problem?

(d) Plot ZL on the Smith chart and label the
point. (Remember to use impedance nor-
malization if required.)

(e) Plot ZG on the Smith chart and label the
point.

(f) Design a lossless lumped-element matching
network showing your design process on
the Smith chart. Label critical points on the
Smith chart. Draw the matching network
and show the reactance values.

27. A two-port matching network is shown below
with a generator and a load. The generator
impedance is 30 Ω and the load impedance is
ZL = 90 − 30 Ω. Use a Smith chart to design
a lossless matching network.

(a) What is the condition for maximum power
transfer from the generator? Express your
answer using impedances.

(b) What is the condition for maximum power
transfer from the generator? Express your
answer using reflection coefficients.

(c) What system reference impedance are you
going to use to solve the problem?

(d) Plot ZL on the Smith chart and label the
point. (Remember to use impedance nor-
malization if required.)

(e) Plot ZG on the Smith chart and label the
point.

(f) Design a lossless matching network show-
ing your design process on the Smith chart.
Label critical points on the Smith chart.
Draw the matching network and show the
reactance values.

28. Use Smith chart techniques to design a double-
stub matching network to match a load with a
normalized admittance yL = 0.7− 5 to a source
with a normalized admittance of 1. The stubs are
short-circuited and are separated by a transmis-
sion line of length λ/8. The load is at the posi-
tion of the first stub. All transmission lines have
the system characteristic impedance. Your de-
sign should yield the lengths of the two stubs.

(a) Plot the load on a Smith chart. Clearly indi-
cate the load.

(b) Determine the admittances of each of the
stubs. Clearly show and describe your de-
sign technique so that it can be understood.
Label your efforts on a Smith chart and de-
scribe the design steps. Note that a descrip-
tion is required and not simply markings on
a Smith chart.

(c) Determine the electrical lengths of the stubs
(express your answer in terms of wave-
lengths or degrees).

29. Use a lossless transmission line and a series reac-
tive element to match a source with a Thevenin
equivalent impedance of 25 + 50 Ω to a load
of 100 Ω. (That is, use one transmission line and
one series reactance only.)

(a) Draw the matching network with the source
and load.

(b) What is the value of the series reactance in
the matching network (you can leave this in
ohms)?

(c) What is the length and characteristic
impedance of the transmission line?

30. Consider a load ZL = 100 − 150 Ω. Use the
Smith chart to design a two-stub matching net-
work that will match the load to a 50 Ω genera-
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tor. Use 50 Ω transmission lines throughout and
assume that the load is immediately next to the
first stub. The two stubs are separated by a line
with an electrical length of 45◦. Both stubs are
short-circuited.

(a) Draw the matching stub system.
(b) What is the normalized load impedance?
(c) Briefly indicate the procedure used to de-

sign the two-stub matching network. You
will need to use stylized Smith charts.

(d) Plot the load on a Smith chart.
(e) What is the admittance of the first stub (Stub

1)?
(f) What is the electrical length of Stub 1? (Note

that the stub is short circuited.)
(g) What is the admittance of the second stub

near the generator (Stub 2)?
(h) What is the electrical length of Stub 2? (Note

that the stub is short circuited.)

31. Consider a load ZL = 80 + 40 Ω. Use the Smith
chart to design a matching network consisting of
only two transmission lines that will match the
load to a generator of 40 Ω.

(a) Draw the matching network with transmis-
sion lines. If you use a stub, it should be a
short-circuited stub.

(b) Indicate your choice of characteristic
impedance for your transmission lines.
What is the normalized load impedance?
What is the normalized source impedance?

(c) Briefly outline the design procedure you
will use. You will need to use Smith chart
sketches.

(d) Plot the load and source on a Smith chart.
(e) Complete the design of the matching net-

work, providing the lengths of the transmis-
sion lines.

32. A two-port matching network is shown below
with a generator and a load. The generator
impedance is 40 Ω and the load impedance is
ZL = 20 − 50 Ω. Use a Smith chart to design
the matching network.

(a) What is the condition for maximum power
transfer from the generator? Express your
answer using impedances.

(b) What is the condition for maximum power
transfer from the generator? Express your
answer using reflection coefficients.

(c) What system reference impedance are you
going to use to solve the problem?

(d) Plot ZL on a Smith chart and label the point.
(Remember to use impedance normalization
if required.)

(e) Plot ZG on a Smith chart and label the point.
(f) Design a matching network using only

transmission lines and show your work on a
Smith chart. You must express the lengths of
the lines in terms of electrical length (either
degrees or wavelengths long). Characteristic
impedances of the lines are required. (You
will therefore have a design that consists of
one stub and one other length of transmis-
sion line.)

33. Use a Smith chart to design a microstrip network
to match a load ZL = 10 − 30 Ω to a source
ZS = 60 + 40 Ω. Use a substrate with permit-
tivity εr = 10.0 and thickness 500 µm.

(a) What is the condition for maximum power
transfer?

(b) Develop the electrical design of the match-
ing network using the Smith chart using
50 Ω lines only.

(c) Develop the full physical design of the
matching network. Draw the microstrip lay-
out and label critical dimensions. That is,
you need to find the dimensions of the mi-
crostrip circuit.

34. Use a Smith chart to develop the electrical de-
sign of a microstrip network to match a load
ZL = 25 Ω to a source ZS = 250 Ω. Use only
50 Ω transmission lines. Use one series transmis-
sion line and one open-circuited stub. You must
use an actual Smith chart and not a sketch of
one. Answer parts b, c, and j-q, on a sheet sepa-
rate from the Smith chart. Make your work easy
to follow.

(a) Draw the matching network problem label-
ing the matching network as M.

(b) What is the condition for maximum power
transfer in terms of the source impedance?

(c) What is the condition for maximum power
transfer in terms of the source reflection co-
efficient?

(d) Use a 50 Ω reference impedance and plot the
normalized source and load impedances on
a Smith chart.

(e) Draw the locus (as the line length in-
creases) of the reflection coefficient looking
into a 50 Ω line terminated in the source
impedance.

(f) Draw the locus of the reflection coefficient
looking into a 50 Ω line terminated in the
load impedance.
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(g) Draw the locus of a shunt susceptance in
parallel with the source (with the shunt sus-
ceptance varying in value).

(h) Draw the locus of a shunt susceptance in
parallel with the load.

(i) Hence identify two matching network de-
signs on the Smith chart identifying them as
Design 1 and Design 2. Make the trajectory
of the designs clearly visible including direc-
tions and label the critical lengths and sus-
ceptances on the Smith chart.

(j) Draw the topology of your Design 1 indicat-
ing the source and load ends and labeling
critical dimensions?

(k) What is the length of the series transmission
line in your Design 1?

(l) What is the normalized input admittance of
the stub in your Design 1?

(m) What is the length of the open-circuited stub
in your Design 1?

(n) Draw the topology of your Design 2 indicat-
ing the source and load ends and labeling
critical dimensions?

(o) What is the length of the series transmission
line in your Design 2?

(p) What is the normalized input admittance of
the stub in your Design 2?

(q) What is the length of the open-circuited stub
in your Design 2?

35. Repeat exercise 34 but now with ZL = 200 Ω
and ZS = 20 Ω).

36. Use a Smith chart to design a microstrip network
to match a load ZL = 100 − 100 Ω to a source
ZS = 34 − 40 Ω). Use transmission lines only

and do not use short-circuited stubs. Use a refer-
ence impedance of 40 Ω.

(a) Draw the matching network problem label-
ing impedances and the impedance looking
into the matching network from the source
as Z1.

(b) What is the condition for maximum power
transfer in terms of impedances?

(c) What is the condition for maximum power
transfer in terms of reflection coefficients?

(d) Identify, i.e. draw, at least two suitable mi-
crostrip matching networks.

(e) Develop the electrical design of the match-
ing network using the Smith chart using
40 Ω lines only. You only need do one de-
sign.

(f) Draw the microstrip layout of the match-
ing network identify critical parameters
such characteristic impedances and electri-
cal length. Ensure that you identify which is
the source side and which is the load side.
You do not need to determine the widths of
the lies or their physical lengths.

37. Repeat exercise S10.31 but now with ZL = 10−
40 Ω and ZS = 28− 28 Ω).

38. Use a Smith chart to design a two-element
lumped-element lossless matching network to
interface a source with an admittance YS =
6 − 12 mS to a load with admittance YL =
70− 50 mS.

39. Use a Smith chart to design a two-element
lumped-element lossless matching network to
interface a load ZL = 50 + 50 Ω to a source
ZS = 10 Ω.

6.12.1 Exercises by Section
†challenging

§6.3 1, 2
§6.4 3, 4
§6.5 5, 6, 7, 8, 9, 10, 11†, 12†, 13†,

14†, 15†, 16†, 17†

§6.6 18†, 19†, 20†, 21†, 22†, 23†,
24†

§6.7 25†, 26†, 27†, 28†, 29†, 30†,
31†, 32†

§6.9 33†, 34, 35, 36, 37, 38, 39

6.12.2 Answers to Selected Exercises

11 43.6 − 106 Ω
12(g) series: 219 Ω, shunt:

−225 Ω
16(b) 200

19(c) Q = 1.22467
22 C = 1/(ω2

dLP )
25(d) 1.25 − 0.5
29(b) −50 Ω

32(f) 40 Ω, 0.085 λ long line be-
fore load, 40 Ω, 0.076 λ
long shorted stub
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7.1 Introduction

This chapter presents techniques for developing broadband matching
networks. Sometimes these are akin to cascaded two-port matching
networks. The general concept that works most of the time is to gradually
step from an initial impedance to a final impedance. Design of broadband
matching networks should also be done with the understanding that many
RF systems will have multiple matching networks and so the maximum
passband transmission loss of an individual matching network needs to
be a fraction of a decibel so that when multiple networks are cascaded
the insertion loss at the overall band edges will accumulate to equal the
desired limit on loss. It is common to use a 1 dB insertion loss threshold to
define bandwidth so the individual matching networks may need to have a
bandwidth defined by a loss that is much less with insertion loss thresholds
as low as 0.1 dB often used.
Bandwidth is limited by energy storage and Section 7.2 introduces the Fano-
Bode limits which are theoretical limits of what can be achieved in matching
given reactive loads. It is not possible to exceed the Fano-Bode limits on
bandwidth. Section 7.3 introduces the constant Q circles plotted on Smith
charts to provide a visual guide for the design of broadband matching
networks. The next three sections describe three types of broadband
matching networks. The first, in Section 7.4, describes the stepped-
impedance transmission line transformer which is a generalization of the
quarter-wave transformer. Section 7.5 describes tapered transmission-line
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Figure 7-1: Fano-Bode limits for circuits with reactive loads.

Figure 7-2: Response looking
into matching network used in
defining nonintegral Fano-Bode
criteria. The bandwidth of the
passband (low Γ, is BW).

transformers which are generalizations of stepped impedance broadband
matching networks. An approach to broadband matching to reactive loads
is described in Section 7.7.

7.2 Fano-Bode Limits

A complex load having energy storage elements limits the bandwidth of the
match achieved by a matching network. Theoretical limits addressing the
bandwidth and the quality of the match were developed by Fano [1, 2] based
on earlier work by Bode [3]. These theoretical limits are known as the Fano-
Bode criteria or the Fano-Bode limits. The limits for simple loads are shown
in Figure 7-1. More general loads are treated by Fano [1]. The Fano-Bode
criteria are used to justify the broad assertion that the more reactive energy
stored in a load, the narrower the bandwidth of a match.
The Fano-Bode criteria include the term 1/ |Γ(ω)|, which is the inverse of the
magnitude of the reflection coefficient looking into the matching network, as
shown in Figure 7-1. A matching network provides matching over a radian
bandwidth BW, and outside the matching frequency band the magnitude
of the reflection coefficient approaches 1. Introducing Γavg as the average
absolute value of Γ(ω) within the passband, and with f0 = ω0/(2π) as the
center frequency of the match (see Figure 7-2), then the four Fano-Bode
criteria shown in Figure 7-1 can be written as

Parallel RC load:
BW

ω0
ln

(
1

Γavg

)

≤ π

R(ω0C)

(7.1)
Parallel RL load:
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(7.2)

Series RL load:
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)
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(7.3)
Series RC load:
BW

ω0
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)

≤ πR(ω0C).
(7.4)
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In terms of reactance and susceptance these can be written as

Parallel load:
BW

ω0
ln

(
1

Γavg

)

≤ πG

|B|
(7.5)

Series load:
BW

ω0
ln

(
1

Γavg

)

≤ πR

|X | ,
(7.6)

where G = 1/R is the conductance of the load, B is the load susceptance, and
X is the load reactance. BW/ω0 is the fractional bandwidth of the matching
network. Equations (7.5) and (7.6) indicate that the greater the proportion
of energy stored reactively in the load compared to the power dissipated in
the load, the smaller the fractional bandwidth (BW/ω0) for the same average
in-band reflection coefficient Γavg.
Equations (7.5) and (7.6) can be simplified one step further:

BW

ω0
ln

(
1

Γavg

)

≤ π

Q
, (7.7)

where Q is that of the load. Several general results can be drawn from
Equation (7.7) as follows:

1. If the load stores any reactive energy, so that the Q of the load is
nonzero, the in-band reflection coefficient looking into the matching
network cannot be zero across the passband.

2. The higher the Q of the load, the narrower the bandwidth of the match
for the same average in-band reflection coefficient.

3. The higher the Q of the load, the more difficult it will be to design the
matching network to achieve a specified matching bandwidth.

4. A match over all frequencies is only possible if the Q of the load is
zero; that is, if the load is resistive. In this case a resistive load could be
matched to a resistive source by using a magnetic transformer. Using
a matching network with lumped L and C components will result in a
match over a finite bandwidth. However, with more than two L and C
elements the bandwidth of the match can be increased.

5. Multielement matching networks are required to maximize the
matching network bandwidth and minimize the in-band reflection
coefficient. The matching network design becomes more difficult as the
Q of the load increases.

7.3 Constant Q Circles

One strategy for wideband matching is based on the concept of matching
to an intermediate resistance that is the geometric mean of the source and
load impedances. This concept was introduced in Section 6.6 and can be
generalized to intermediate impedances and can be represented on a Smith
chart using constant Q as shown in Figure 7-3. If the load and source
impedances, RL and RS , are resistive, then the normalizing resistance (Rv)
of the Smith chart should (although it is not necessary) be chosen as the
geometric mean of the source and load resistance (i.e., Rv =

√
RLRS). To

maintain a specific circuit Q, and hence bandwidth, the locus of impedances
in the design must stay within or touch, the corresponding constant Q circle.



208 STEER MICROWAVE AND RF DESIGN, NETWORKS

Figure 7-3: Impedance Smith chart
with constant Q circles.

Figure 7-4: Matching problem in Example 7.1. (a) Source (b) Load

EXAMPLE 7.1 Broadband Matching Using Constant Q Circles

Design a broadband matching network at 1 GHz for the situation shown in Figure 7-4.

Solution:

ZS = 100 − 94.25 Ω, YL = 0.02 + 0.01 S, and ZL = 40.0 − 20.0 Ω. Normalizing these
to 100 Ω results in zS = 1 − 0.9425, yL = 2 + 1, and zL = 0.400 − 0.200. Also the Q of
the source, QS = 0.9425 and the Q of the load is QL = 0.500. The matching design puts a
network in front of zL to present an impedance z∗S to the source. These values are plotted
in Figure 7-5. The design objective is to maintain maximum bandwidth and this is done by
staying inside the Q = 0.9425 circle, where the Q is the larger of the source and load Qs.

Design can proceed by moving back from the load toward the source, or from the source to
the load. Most commonly the perspective used is moving back from the load. Then the load
zL is transformed to z∗S . Maximum bandwidth is approximately achieved if the matching
stages do not exceed the maximum Q of the load or of the source. So the Q of the stages
cannot exceed 0.9425. An appropriate matching concept is shown in Figure 7-6. The locus is
B→C→D→E→F→G→A. The matching network is therefore of the form shown in Figure 7-
7. The rest of the design is extraction of numerical values, but the difficult part of the design
has been done.
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Figure 7-5: Impedance Smith chart indicating
the matching problem in Example 7.1 with
load and source plotted and their constant Q
circles. The normalization impedance is 100 Ω.

Figure 7-6: Outline of matching concept in
Example 7.1.

Figure 7-7: Matching net-
work M in Example
7.1.

7.4 Stepped-Impedance Transmission Line Transformer

The wideband matching techniques described in this section use multiple
quarter-wavelength-long transmission line sections with the lines having
characteristic impedances which are stepped from the source impedance to
the load impedance. They are conceptual extensions of the quarter-wave
transformer and differ by how the characteristic impedances of the sections
are chosen. The methods strictly are applicable to resistive source and load
impedances yet achieve reasonably wideband matches with moderately
reactive source and load impedances.

7.4.1 Quarter-Wave Transformer using Geometric Means

Design here uses multiple quarter-wave long transmission lines the
characteristic impedances of which are chosen as geometric means of the
source and load impedances. The procedure is described in the next example.
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(a) Microstrip layout, N = 1

(b) Microstrip layout, N = 2

(c) Microstrip layout, N = 3

(d) Transmission magnitude response

(e) Transmission phase response

Figure 7-8: Transmission line transformer designed in Example 7.2. Each section is of length
ℓ = λg/4 = 2.83 mm where λg is the midband wavelength (at 10 GHz).

EXAMPLE 7.2 Multisection Quarter-Wave Transmission Line Transformer

Design one-, two, and three-section quarter-wave transformers in microstrip to connect a
power amplifier with an output impedance of 10 Ω to a 50 Ω cable.

Solution:

The parameters are ZS = 10 Ω and ZL = 50 Ω. The characteristic impedance of a single,
N = 1, quarter-wave transformer is Z01 =

√
ZSZL = 22.36 Ω.

With a two-section, N = 2, quarter-wave transformer (using geometric means)

Z01 = 3

√

Z2
SZL = 17.10 Ω Z02 = 3

√

ZSZ2
L = 29.24 Ω.

With a three-section, N = 3, quarter-wave stepped-impedance transformer

Z01 =
√
ZSZ02 = 14.95 Ω Z02 =

√
ZSZL = 22.36 Ω Z03 =

√
Z02ZL = 33.44 Ω. (7.8)

The microstrip layouts are shown in Figure 7-8 where each section is a quarter-wavelength
long at mid band. The simulated transmission characteristics of the design realized at 10 GHz
(on alumina, εr = 10, and attenuation of 1.87 dB/m are shown in Figure 7-8(d and e).

7.4.2 Design Based on the Theory of Small Reflections

Another design method for choosing the characteristic impedances of
cascaded lines is based on the theory of small reflections [4, 5]. The reflection
coefficients at each boundary in Figure 7-9 are defined as

Γ0 =
Z01 − ZS

Z01 + ZS
Γn =

Zn+1 − Zn

Zn+1 + Zn
ΓN =

ZL − Z0N

ZL + Z0N
. (7.9)
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Figure 7-9: Stepped-impedance transmis-
sion line transformer with the nth section
having characteristic impedance Z0n and
electrical length θn. Γn is the reflection coef-
ficient, and Zn the impedance, considering
only the (n+ 1)th line.

As these are small reflections (since Z0n changes gradually) the theory of
small reflections (described in Section 2.6.5 of [6]) can be invoked and so,
using Equation ((2.201) of [6]), the total reflection coefficient seen from the
source ZS is

Γin ≈ Γ0 + e−2θ1
(
Γ1 + e−2θ2

(
Γ2 + · · · e−2θNΓN

))
. (7.10)

It is now necessary to make a design choice. It has been found that a
multisection transformer that provides a good broadband match at both the
source and load has symmetrical reflection coefficients, i.e. Γn = ΓN−n [5].
Another design choice is that the electrical lengths of the sections are the
same, i.e. θn = θ. Then Equation (7.10) becomes

Γin = Γ0 + Γ1e
−2θ1 + Γ2e

−4θ2 + · · ·ΓNe−2NθN (7.11)

= Γ0

[
1 + e−2Nθ

]
+ Γ1

[

e−2θ + e−2(N−1)θ
]

+ . . .

= e−Nθ
{

Γ0

[
eNθ + e−Nθ

]
+ Γ1

[

e(N−2)θ + e−(N−2)θ
]

+ . . .
}

= 2e−Nθ {Γ0 cos(Nθ) + Γ1 cos[(N − 2)θ] + . . . } (7.12)

using the trigonometric identity cosx = 1
2 (e

x + e−x) (and this is where
symmetry is used). The last term in Equation (7.12) is 1

2ΓN/2 if N is even
and Γ(N−1)/2 cos θ if N is odd.The design variables here are the reflection
coefficients at each line boundary (from which the characteristic impedances
of the lines can be found) and the mid-band electrical length θ0.
The general design approach is to assume a functional form for Γin(θ) and
then to derive the Γns that result in that functional form. Γin(θ) will now be
used to indicate that Γin is a function of θ and hence of frequency. Also the
mid-band electrical length θ0 is set to π/2 corresponding to the sections being
a quarter-wavelength long. This may seem arbitrary but it has been shown to
be optimum [7] (for maximum bandwidth). The final design step is to derive
the characteristic impedances of the line sections. Using Equation (7.9)

Z0N = ZL

(
1− ΓN

1 + ΓN

)

and Z0n = Z0(n+1)

(
1− Γn

1 + Γn

)

. (7.13)

7.4.3 Maximally Flat Stepped Impedance Transformer

The design objective here is to set the first N derivatives of Γin at midband
to zero. This results in a very smooth response and that is what is desired in
some situations. If the following assignment is made

|Γin(θ)| ∝ | cos(θ)|N (7.14)

then dn|Γin(θ)|/dθn = 0 at θ = π/2 = θ0 for n = 0, 1, . . . , (N − 1). An
assignment that results in this is the binomial expansion

Γin(θ) = A
(
1 + e−2θ

)N
=

N∑

n=0

(
N

n

)

e−2nθ (7.15)
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Figure 7-10:
Characteristics of
order N = 1, 2, 3 and 4
maximally flat stepped-
impedance transformers
with an impedance mis-
match δz =
max(ZL/ZS , ZS/ZL) = 2. (a) Input reflection coefficient (b) Transmission coefficient

where (since N and n are integers)

(
N

n

)

=
N !

(N − n)!n!
(7.16)

is the binomial coefficient. Equating Equations (7.11) and (7.15)

Γn = A

(
N

n

)

. (7.17)

To find A consider zero frequency. Then θ = 0 and the transformer has no
effect and Γin is just the mismatch of the source and load impedances and
Equation (7.15) becomes

Γin(0) = A2N =
ZL − ZS

ZL + ZS
so that A = 2−N

(
ZL − ZS

ZL + ZS

)

. (7.18)

Thus Γn(θ) = 2−N

(
ZL − ZS

ZL + ZS

)(
N

n

)

(7.19)

and Z0n comes from Equation (7.13) with the design accuracy determined
by the approximation of a small discontinuity at each transmission line
boundary.
The reflection Γin and transmission T characteristics of maximally flat
stepped-impedance transformers are shown in Figure 7-10 for various

orders. As with all lossless two-ports |T | =
√

1− |Γin|2. It can be seen
that the bandwidth increases with increasing order and the transmission is
remarkably flat.

EXAMPLE 7.3 Maximally Flat Multisection Transmission Line Transformer

Design a three-section maximally flat stepped-impedance transformer in microstrip to
connect a ZS = 5 Ω source to a ZL = 50 Ω load.

Solution:

The design will have three transmission lines of different characteristic impedance and each
section will be a quarter-wavelength long at mid band. Now N = 3 so from Equation (7.19)

Γn = 2−N

(

ZL − ZS

ZL + ZS

)

(

N

n

)

= 2−3

(

50− 5

50 + 5

)

(

3

n

)

=
45

8 · 55

(

3

n

)

. (7.20)

Γ3 = 0.1023
3!

0!3!
=

1

16

3 · 2 · 1
1 · 3 · 2 · 1 = 0.1023, Γ2 = 0.3068, Γ1 = 0.3068, Γ0 = 0.1023

resulting in (a sanity check is the expectation that ZL > Z03 > Z02 . . . )
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(a) Microstrip layout, δz = ZL/ZS = 10 (b) Transmission response

Figure 7-11: Maximally flat transmission line transformer designed in Example 7.3. At 10 GHz
each section is of length ℓ = λg/4 = 2.83 mm where λg is the midband wavelength.

Z03 = 50
1 − 0.1023

1 + 0.1023
Ω = 40.72 Ω, Z02 = 21.60 Ω, Z01 = 11.46 Ω, and Z′

S = 9.333 Ω

where Z′
S is ideally (the complex conjugate of) the original ZS but is actually significantly

different. This is because the design is based on the theory of small reflections and so
multiple reflections at the transmission line boundaries were not considered. As a further
investigation, and noting that each section is a quarter-wavelength long at midband, another
estimate for ZS , call this Z′′

S , is found using Equation ((2.132)) of [6],

Z2 = Z2
03/ZL = 33.16 Ω, Z1 = Z2

02/Z2 = 14.07 Ω, Z′′
S = Z2

01/Z1 = 9.334 Ω.

The microstrip layout is shown in Figure 7-11(a). Simulation of the design realized at 10 GHz
(on alumina, εr = 10, a 2.83 mm section length, and a line attenuation of 1.87 dB/m for
an overall attenuation of 0.016 dB) results in the transmission characteristics identified by
δz = ZL/ZS = 10 in Figure 7-11(b). The final design does not have the ideal maximally flat
transmission characteristics and this is due to deficiencies in the small reflection assumption.
Final design requires a small amount of optimization as the synthesized design has a
maximum in-band insertion loss of 0.4 dB (T = 0.953).

Repeating the design with ZS = 10 Ω and ZL = 50 Ω results in Γ0 = Γ3 = 0.08333,
Γ1 = Γ2 = 0.2500, Z01 = 15.23 Ω, Z02 = 25.38 Ω, Z03 = 42.31 Ω, and Z′

S = Z′′
S = 12.89 Ω.

The transmission characteristics are identified by δz = ZL/ZS = 5 in Figure 7-11(b). The
minimum in-band transmission coefficient is 0.990 for a maximum insertion loss of 0.091 dB.
Thus design accuracy improves for a lower impedance transformation ratio.

7.4.4 Stepped Impedance Transformer With Chebyshev
Response

Expressing the input reflection coefficient Γin of a stepped-impedance
transformer in terms of a Chebyshev polynomial results in a good match
in-band that rapidly transitions outside the passband. Compared to the
maximally flat transformer a much better match can be obtained for the
same number of line sections if the resulting ripples in the passband can be
tolerated. With reference to Equation (7.10), the design choice is

Γin(θ) = Γ0 + e−2θ
(
Γ1 + e−2θ

(
Γ2 + · · · e−2θΓN

))

= Ae−NθTN (cos θ/ cos θm). (7.21)
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Figure 7-12: Characteristics
of order N = 1, 2, 3 and 4
Chebyshev stepped-
impedance transformers
with impedance mismatch
δz = max(ZL/ZS , ZS/ZL) =
2 and θm = π/4. The
transmission ripple cannot
be seen for N ≥ 3. (a) Input reflection coefficient (b) Transmission coefficient

where TN is the N th order Chebyshev polynomial of the first kind (as de-
scribed in Section 1.A.10 of [6]). In Equation (7.21) θm defines the passband
of the transformer as being between θm ≤ θ ≤ (π − θm) and in the passband
|Γin(θ)| ≤ Γm and at θ = θm and θ = (π − θm) (the edges of the passband)

|Γin(θm)| = |Γin(π − θm)| = Γm = |ATN (cos θm/ cos θm)| = |ATN(1)|. (7.22)

Since |TN(1)| = 1 A = Γm (7.23)

To proceed another expression is needed for A so that Γm, N , and θm
(and thus bandwidth) can be related. This is obtained by considering the
mismatch at zero frequency, that is when θ = 0:

Γin(0) =

∣
∣
∣
∣

ZL − ZS

ZL + ZS

∣
∣
∣
∣
= ATN (sec θm). (7.24)

(where sec θm = 1/ cos θm) and so

A =

∣
∣
∣
∣

ZL − ZS

ZL + ZS

∣
∣
∣
∣

1

TN (sec θm)
. (7.25)

Substituting for A in Equation (7.21) and using Equation (7.10) results in

eNθΓin(θ) = ATN(cos θ/ cos θm) =

(
ZL − ZS

ZL + ZS

)
TN(cos θ/ cos θm)

TN(sec θm)

= 2 {Γ0 cos(Nθ) + Γ1 cos[(N − 2)θ] + . . . } . (7.26)

The expansion of TN (cos θ/ cos θm) is given in Equation ((1.198)) of [6] and
has terms in cos(mθ) and so design (which requires Γn) proceeds by equating
terms in Equation (7.26) having the same cos(mθ) for m = 1, . . . , N . This will
be illustrated in an example.
The reflection Γin and transmission T characteristics of Chebyshev stepped-
impedance transformers are shown in Figure 7-12 for orders from one to four
for θm = π/4 (this indicates a 100% bandwidth). It is seen that the maximum
inband Γin) reduces with increasing order. So with a Chebyshev response
there is a trade-off between passband ripple and bandwidth.
An expression for bandwidth of the match will now be developed. Equating
Equations (7.23) and (7.25)

TN(sec θm) =
1

Γm

∣
∣
∣
∣

ZL − ZS

ZL + ZS

∣
∣
∣
∣

(7.27)

Using the identity

TN(sec θm) = cosh
(
N cosh−1(sec θm)

)
=

1

Γm

∣
∣
∣
∣

ZL − ZS

ZL + ZS

∣
∣
∣
∣

(7.28)
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Table 7-1: Relationship of order N , fractional bandwidth, impedance ratio δz =
max(ZL/ZS , ZS/ZL), and reflection coefficient ripple Γm for a Chebyshev stepped-impedance
transformer. A transmission ripple of 0.1 dB has Γm = 0.151. (For example, a two-section (N = 2)
transformer has a 95.4% bandwidth with δz = 3.0.)

N = 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
Γm = 0.05 0.1 0.151 0.05 0.1 0.151 0.05 0.1 0.151 0.05 0.1 0.151 0.05 0.1 0.151

δz Fractional bandwidth, ∆f/f0

1.0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1.2 0.741 ∞ ∞ 1.275 ∞ ∞ 1.502 ∞ ∞ 1.622 ∞ ∞ 1.696 ∞ ∞

1.3 0.501 1.112 ∞ 1.069 1.526 ∞ 1.346 1.680 ∞ 1.500 1.759 ∞ 1.596 1.807 ∞

1.4 0.388 0.819 1.441 0.951 1.333 1.714 1.252 1.544 1.808 1.425 1.655 1.856 1.534 1.722 1.885
1.6 0.278 0.571 0.907 0.814 1.134 1.395 1.137 1.396 1.588 1.330 1.540 1.689 1.455 1.629 1.750
1.8 0.224 0.455 0.708 0.735 1.024 1.250 1.066 1.310 1.483 1.271 1.471 1.607 1.405 1.573 1.684

2.0 0.192 0.388 0.598 0.683 0.951 1.158 1.018 1.252 1.415 1.229 1.424 1.554 1.369 1.534 1.641
2.5 0.149 0.300 0.458 0.604 0.844 1.026 0.943 1.162 1.313 1.164 1.351 1.607 1.313 1.472 1.574
3.0 0.128 0.256 0.390 0.561 0.784 0.954 0.900 1.110 1.254 1.125 1.307 1.426 1.280 1.436 1.535
4.0 0.106 0.213 0.324 0.513 0.718 0.874 0.850 1.051 1.188 1.081 1.257 1.372 1.241 1.393 1.490
6.0 0.085 0.179 0.271 0.471 0.660 0.804 0.805 0.997 1.128 1.040 1.211 1.322 1.204 1.354 1.449
8.0 0.082 0.164 0.249 0.452 0.634 0.772 0.784 0.971 1.100 1.020 1.189 1.299 1.187 1.335 1.429
10 0.078 0.156 0.236 0.441 0.618 0.754 0.772 0.957 1.083 1.009 1.176 1.285 1.176 1.323 1.417

and so θm = sec−1

{

cosh

[
1

N
cosh−1

(
1

Γm

∣
∣
∣
∣

ZL − ZS

ZL + ZS

∣
∣
∣
∣

)]}

. (7.29)

The fractional bandwidth can be obtained by noting that θ and thus θm
are proportional to frequency f . That is, f = kθ. At the passband center
frequency f0, θ = π/2 and so k = 2f0/π. Thus if fm is the frequency at the
lower band edge, fm = kθm = 2f0θm/π. Then the fractional bandwidth (with
the passband defined by when |Γin| ≤ Γm) is

∆f

f0
=

2(f0 − fm)

f0
= 2− 4θm

π
. (7.30)

Thus Equations (7.29) and (7.30) relate the fractional bandwidth, the
maximum passband reflection coefficient Γm, the impedance mismatch δz =
max(ZL/ZS , ZS/ZL), and the Chebyshev order, N . Table 7-1 enables the
required transformer order to be selected for a specified bandwidth and
impedance mismatch.

EXAMPLE 7.4 Chebyshev Multisection Transmission Line Transformer

Design a 100% bandwidth three-section Chebyshev stepped-impedance transformer in
microstrip to connect a power amplifier with an output impedance of 10 Ω to a 50 Ω cable.

Solution:

The design parameters are N = 3, ZS = 10 Ω, and ZL = 50 Ω. From Equation (7.30)
the fractional bandwidth ∆f/f0 = 1 = 2 − (4θm)/π so that θm = π/4. Then, with
sec θm = 1/ cos θm = 1/ cos(π/4) =

√
2 and T3(

√
2) = 7.071 (from Equation ((1.193) of [6])),

Equation (7.25) yields

Γm = A =

(

ZL − ZS

ZL + ZS

)

1

T3(sec θm)
=

(

50− 10

50 + 10

)

1

7.071
= 0.09428. (7.31)
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(a) Microstrip layout, ℓ = λg/4 = 2.83 mm (b) Transmission response

Figure 7-13: Chebyshev transformer of Example 7.4. (λg is the midband wavelength.)

Using Equation (7.26) and the Chebyshev expansion for T3 this leads to

AT3(cos θ/ cos θm) = A
{

sec3 θm[cos(3θ) + 3 cos θ]− 3 sec θm cos θ
}

= 2 [Γ0 cos(3θ) + Γ1 cos(θ)] . (7.32)

Thus after equating like terms in cos(mθ) (noting that Γn = Γ(N−n) since symmetry is
required)

Γ0 = Γ3 = 1
2
A sec3 θm = 1

2
0.09428 ·

(√
2
)3

= 0.1333

Γ1 = Γ2 = 3
2
A
[

sec3 θm − sec θm
]

= 3
2
0.09428 ·

[

(√
2
)3

−
√
2

]

= 0.2000 (7.33)

Then the characteristic impedances of the three line sections are (using Equation (7.13))

Z01 = 13.19 Ω, Z02 = 21.78 Ω, and Z03 = 35.94 Ω (7.34)

and each section is a quarter-wavelength long at midband. The microstrip layout is shown in
Figure 7-13(a). The simulated transmission characteristics of the design realized at 10 GHz
(on alumina, εr = 10, section lengths of 2.83 mm, and an attenuation of 1.87 dB/m (for an
overall attenuation of 0.016 dB) are shown in Figure 7-13(b). The expected lossless ripple
(from T =

√
1− Γ2

m = 0.9955 = −0.039 dB) is 0.039 dB. The simulated minimum insertion
loss is 0.024 dB and the maximum in-band insertion loss is 0.057 dB for a passband ripple of
0.033 dB (line loss is known to reduce ripple).

7.4.5 Stepped Impedance Transformer Design

The multisection stepped-impedance transformers change the characteristic
impedances of the section between the source and load resistances but do
so in steps. It is possible to achieve a similar result by continuously tapering
the characteristic impedance of the transmission line taper or, equivalently,
tapering the width of microstrip line as shown in Figure 7-14.

7.4.6 Summary

The multisection impedance transformer design described in this section is
based on transmission line sections each a quarter-wavelength long at the
center frequency of the match. It is tempting to think that a better result
could be obtained by having sections of various lengths. However it has been
shown that optimum matching transformer designs are of the quarter-wave
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(b) Linear taper

(c) Exponential taper

(a) Microstrip taper (d) Klopfenstein taper

Figure 7-14: Tapered
impedance transformers
with length ℓ. The width
of the microstrip line is
approximately inversely
proportional to the char-
acteristic impedance of
the line. (Here ZL > ZS

and both ZL and ZS are
resistive.)

Chebyshev type and only minimum enhancement is possible [7].

7.5 Tapered Matching Transformers

Tapered impedance transformers match an impedance ZS to an impedance
ZL using a transmission line having a characteristic impedance Z0 that
gradually and monotonically varies from ZS to ZL along the length of the
line, see Figure 7-14. This figure references a microstrip line but the key
aspect is the gradual change in characteristic impedance that applies to any
transmission line. The central design problem is how to choose the function
Z0(z). If the length of the line, ℓ here, is not constrained then the Klopfentein
taper [8, 9] is regarded as the optimum approach for design of the taper and
will be discussed after first reviewing approaches used when the length of
the line is constrained. Note that both ZL and ZS are resistive.

7.5.1 Small Reflection Theory and Tapered Lines

In this section the theory behind the synthesis of a taper is developed
beginning with the theory of small reflections. The reflection at point z on
the line for a taper segment of length ∆z is (refer to Figure 7-14(a))

∆Γ =
(Z0(z) + ∆Z)− Z0(z)

(Z0 +∆Z) + Z0(z)
=

∆Z

2Z0(z) + ∆Z
≈ ∆Z

2Z0(z)
, (7.35)

where Z0(z) is the characteristic impedance of the taper at z and ∆Z is the
change of Z0(z) from one side of the taper segment to the other. In the limit
as ∆Z → 0, ∆Z is replaced by dZ and ∆Γ is replaced by dΓ so that Equation
(7.35) becomes (and putting in differential operator form)

dΓ =
dZ0

2Z0(z)
→ dΓ

dz
=

dΓ

dz
=

1

2Z0(z)

dZ0

dz
. (7.36)

The next step is to refer all of the small reflections, ∆Γ, to the beginning of
the taper at z = −ℓ/2. The theory of small reflections is that these small
reflections, accounting for the electrical lengths from the start of the taper to
each taper segment, can be summed, see Equation (7.10). This is the same as
saying that the small reflection from one taper segment is not affected by its
own reflection from another taper segment. Noting that the electrical length
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from the beginning of the taper to a taper segment at z is θ = β(ℓ/2 + z), the
reflection at the input of the tapered line is found as

Γin(ℓ) =

∫ z=ℓ/2

z=−ℓ/2

e−2(ℓ/2+βz)dΓ (7.37)

= 1
2e

−βℓ

∫ ℓ/2

−ℓ/2

e−2βz

Z0(z)

dZ0(z)

dz
dz, (7.38)

where Γin is shown explicitly as a function of the length of the taper. So
the design problem becomes choosing the characteristic impedance function,
Z0(z) to provide the desired input reflection coefficient Γin. This is difficult
to achieve with the form of Equation (7.38). The problem can be simplified
by noting that (and introducing Z1 as a normalizing impedance so that the
argument of ln is dimensionless)

ln (Z0(z)/Z1)

dz
=

Z1

Z0(z)

d(Z0(z)/Z1)

dz
=

Z1

Z0(z)

1

Z1

d(Z0(z)/Z1)

dz

=
1

Z0(z)

d(Z0(z)/Z1)

dz
, (7.39)

and so, making it clear that dΓ varies along the taper,

dΓ(z) = 1
2

d(Z0(z)/Z1)

dz
dz. (7.40)

Thus after assuming the form of Z0(z), the incremental reflection coefficient
dΓ is obtained using Equation (7.37). Alternatively (after integrating
Equation (7.40)) a form for Γin can be assumed and dΓ(z) determined
and then Z0(z). This will become clearer below when specific tapers are
considered.

7.5.2 Linear taper

In the linear tapered line design Z0(z) varies linearly from the source
impedance ZS to ZL:

Z0(z) = ZS + (ZL − ZS)z/ℓ. (7.41)

This is often approximated in microstrip by a linear taper of the width of the
microstrip line as shown in Figure 7-14(b). A simple expression for the input
reflection coefficient is not available and so must be found from simulation.
This is the simplest taper and the taper performs better the greater its
electrical length (i.e. at higher frequencies or longer physical length). The
performance of the linear taper is compared to other tapers later.

7.5.3 Exponential taper

The exponential taper has an exponential taper of the line’s characteristic
impedance. Setting

Z0(z) = Zxe
az with a =

1

ℓ
ln (ZL/ZS) and Zx = ZSe

−aℓ/2 (7.42)
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results in the input reflection coefficient, derived using Equation (7.38),

Γin(ℓ) =
1
2Zxe

−βℓ

∫ ℓ/2

−ℓ/2

e−2βz d ln(e
az)

dz
dz = 1

2 ln (ZL/ZS)
sin(βℓ)

βℓ
. (7.43)

So Γin has a sinc function characteristic with the variations of Γin reducing
as the taper becomes longer. The main problem with this taper comes from
the abrupt impedance discontinuity at the ZL end of the taper. This taper
will not be considered further as the Klopfenstein taper considered next has
much better performance.

7.5.4 Klopfenstein taper

The Klopfenstein taper [8, 9] results in a specified reflection coefficient
ripple (and thus transmission ripple) above a minimum passband frequency.
It is believed to achieve the minimum taper length over a passband
defined by the maximum allowable reflection coefficient mismatch, Γm,
(and so minimum transmission loss) in the passband. The linear taper
and most other tapers used in matching [10, 11] assume the form of
a taper’s characteristic impedance profile and the broadband reflection
and transmission characteristics are whatever results. In contrast the
Klopfenstein taper derives the required impedance profile for a source and
load impedance mismatch ratio (ZL/ZS) and Γm.
Klopfenstein [8] showed that the input reflection coefficient of the taper
could be expressed as the limiting form of a high-order Chebyshev
polynomial. Thus the Klopfenstein taper has the passband ripples that
occur with Chebyshev-based multi-section impedance transformers and
Chebyshev filters. The maximum magnitude of the reflection coefficient in
the passband is determined by the line length. The appropriate characteristic
impedance is computed from [8, 9]

lnZ0(z) = ln
(√

ZSZL

)

+ ln
(√

ZL/ZS

)

· (coshA)−1

×
[
A2φ (2z/ℓ, A) + U

(
z − 1

2ℓ
)
+ U

(
z + 1

2ℓ
)
− 1

]
(7.44)

where U(x) is the unit step function so that U(x) = 0 for x < 0 and U(x) = 1
for x ≥ 0.
The maximum reflection coefficient amplitude Γm = ρ0/ coshA where ρ0 =
(ZL − ZS/(ZL + ZS) is the reflection coefficient when the load and source
are directly connected. Klopfenstein found that this introduced a small error
attributed to the limitation of the small reflection assumption. He determined
that a better estimate is ρ0 = 1

2 ln(ZL/ZS). Thus

A = cosh−1 [ln(ZL/ZS)/Γm] . (7.45)

That is, Γm, the maximum reflection coefficient in the passband, and the
mismatch, ZL/ZS , determines A. Substituting Equation (7.45) in Equation
(7.44) yields

lnZ0(z) = ln
(√

ZSZL

)

+ ln
(√

ZL/ZS

)

Γm
(ZL + ZS)

(ZL − ZS)

×
[
A2φ (2z/ℓ, A) + U

(
z − 1

2ℓ
)
+ U

(
z + 1

2ℓ
)
− 1

]
(7.46)
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(a) φ(w,A) (b) φ(w,A) detail

Figure 7-15: Klopfenstein taper function φ(w,A) used in designing a taper segment. The taper
has length ℓ, z is the coordinate at the center of a taper segment, the center of the taper is at z = 0,
and φ(−w,A) = −φ(w,A), w = 2z/ℓ.

and the function φ(w,A) is computed as [12]

φ(w,A) =
∞∑

k=0

akbk (7.47)

(summation up to k = 20 is sufficient) with the recursion formulas

a0 = 1, ak =
A2

4k(k + 1)
ak−1; b0 = 1

2w, bk =
1
2w(1 − w2)k + 2kbk−1

2k + 1
. (7.48)

The results are shown in Figure 7-15.
It is interesting to derive the characteristic impedance at the center of the
taper. At the center of the taper, z = 0, φ(0, A) = 0 and Equation (7.44)
becomes

lnZ0(0) =
1
2 ln (ZSZL), that is, Z0(0) =

√

ZSZL, (7.49)

which is the geometric mean of the source and load resistances.
The Klopfenstein taper trades off line length ℓ, minimum passband
frequency fmin, and maximum passband reflection coefficient Γm. The
passband of the taper is all frequencies above fmin. This is a remarkable result
with the line length being considerably less than that of a linear taper. The
limitation is that with such a short line the reflections along the line cannot
always be considered to be small so that it is often necessary to increase the
line length slightly above the length derived from this synthesis procedure.

7.5.5 Simplified Klopfenstein taper

The simplified form of the Klopfenstein taper is obtained by noting that
the acceptable value for the maximum in-band reflection coefficient Γm will
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w Exact Simplified Error
Z0(w)/ZS Z0(w)/ZS

−1.0 1.163 1.177 1.23%
−0.8 1.326 1.344 1.32%
−0.6 1.577 1.597 1.26%
−0.4 1.944 1.964 1.04%
−0.2 2.460 2.476 0.64%
0.0 3.162 3.162 0%
0.2 4.065 4.039 0.64%
0.4 5.145 5.092 1.03%
0.6 6.214 6.262 1.25%
0.8 7.539 7.440 1.31%
1.0 8.520 8.542 1.12%

Table 7-2: Comparison of Z0 of the exact and simpli-
fied Klopfenstein tapers (using Equation (7.46) with
Equations (7.47) and (7.50) respectively) for a maxi-
mum passband transmission loss Tm = 0.1 dB and
ZL/ZS = 10 (Γm = 0.151 and A = 2.72.) Errors are
less for larger Tm and smaller ZL/ZS :
For ZL/ZS = 20, Tm = 0.1 dB, the max. error is 2.78%.
For ZL/ZS = 20, Tm = 0.2 dB, the max. error is 1.49%.
For ZL/ZS = 10, Tm = 0.1 dB, the max. error is 1.33%.
For ZL/ZS = 10, Tm = 0.2 dB, the max. error is 0.66%.
For ZL/ZS = 5, Tm = 0.1 dB, the max. error is 0.44%.
For ZL/ZS = 5, Tm = 0.2 dB, the max. error is 0.21%.

typically be small and for a maximum transmission loss of between 0.1 dB
and 1 dB (corresponding to Γm = 0.151 and Γm = 0.454 respectively) and
maximum ZL/ZS = 10. Then the maximum value of A is 2.72 and this is
when the simplified Klopfenstein taper will have the most error. So retaining
only the first three terms in Equation (7.47), φ(w,A) can be approximated as

φ(w,A) = a0b0 + a1b1 + a2b2 (7.50)

and used in Equation (7.46). A comparison of the calculated impedances for
a relatively high transmission loss of 1 dB (0.1 dB is more typical) and a large
impedance mismatch ZL/ZS = 10 is given in Table 7-2. The maximum error
of 1.33% is comparable to the characteristic impedance error of fabricated
transmission lines. So for practical purpose the simplified approach can be
used to design the Klopfenstein taper.

EXAMPLE 7.5 Design of a Klopfenstein Taper

Design a microstrip Klopfenstein taper to match a ZS = 10 Ω source to a ZL = 50 Ω load.
The maximum transmission ripple is to be 0.1 dB and the minimum passband frequency is
8 GHz. The substrate has a thickness h = 0.635 µm, and relative permittivity εr = 10.0.

Solution:

First determine the maximum reflection coefficient Γm in the passband. The minimum
transmission in the passband is T = 100.1/20 and Γm =

√
1− T 2 = 0.151. Since ZL/ZS = 5

it is seen from Table 7-2 that the simplified Klopfenstein taper can be used with a maximum
error of 1.33%. Using Equation (7.45) the required electrical length of the taper at 8 GHz is

A = cosh−1 [ln(ZL/ZS)/Γm] = cosh−1 [ln(50/5)/0.151] = 2.720.

A taper with ten segments is chosen and in the table below the normalized length
w′ = 2z/ℓ is used to distinguish the parameter from the microstrip width w. The microstrip
parameters were obtained by interpolating Table 3-3 of [6]. Z̄0 and ε̄e are the average
characteristic impedance and effective permittivity of a segment, a linear taper, extending
from the width on the previous line to that on the same line. The electrical length of
each segment is β(∆ℓ) = A/10 = 0.272 radians so that the physical length of a segment
ℓ = 0.272λ8GHz/(2π

√
εe) where λ8GHz = 3.745 cm is the free-space wavelength at 8 GHz.
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Segment w′ φ(w′, A) Z0 (Ω) u = h/w w (mm) Z̄0 (Ω) ε̄e ∆ℓ (µm)

−1.0 −0.774 11.68 8.28
1 −0.8 −0.661 12.84 7.38 12.2 8.35
2 −0.6 −0.521 14.44 6.39 14.1 8.19
3 −0.4 −0.360 16.52 5.40 16.0 8.05
4 −0.2 −0.184 19.16 4.45 17.8 7.93
5 0 0 22.36 3.62 20.8 7.75
6 0.2 0.184 26.10 2.90 24.7 7.54
7 0.4 0.360 30.26 2.33 28.7 7.35
8 0.6 0.521 34.63 1.88 32.9 7.18
9 0.8 0.661 38.93 1.54 37.3 7.03
10 1.0 0.774 42.83 1.29 41.4 6.90

As well at w = (−1.0− 1/∞) Z0 = 510.03 Ω and at w = (1.0+ 1/∞) Z0 = 49.81 Ω matching
the source and load impedances respectively and thus there is a step discontinuity at both
ends, a characteristic of the Klopfenstein taper.

7.5.6 Comparison of Transmission Line Impedance
Transformers

In this section the four main impedance transformers are compared: the
linear taper, the Klopfenstein taper, the quarter-wave transformer and the
two-section quarter-wave transformer. These transformers are lengths of
nonuniform transmission line with a characteristic impedance that varies
along the length of the line, i.e. Z0 = Z0(z) where z is the position along
the line of total length ℓ. The N -section quarter-wave transformer has step
changes in Z0(z) at nλ/4 where n = 1, 2 < . . .N but practically N = 1 or 2
is the limit usually considered as much better performance can be obtained
with the Klopfenstein taper with a legth typically between λ/4 and λ/2.
Figure 7-16 compares the performance of the tapers for ZS = 25 Ω and
ZL = 50 Ω but the results are applicable in general for ZL/ZS = 2. Figure
7-16(a) shows the Z0 profile for the transmission line transformers and
where the length of the linear taper has been chosen to provide comparable
passband responses defined as where the transmission loss is less than
0.1 dB corresponding to a maximum reflection coefficient Γm = 0.151 and a
minimum transmission factor T = 0.989. The reflection coefficient response
is shown in Figure 7-16(b). First consider the responses of the quarter-wave
transformers. Both provide an ideal match at the passband center frequency
f0 = 10 GHz and this repeats at odd multiples of f0 as a 3λ/4-long line is
electrically identical to a λ/4-long line. The linear taper, chosen here as λm/2
long where λm is the guide wavelength at f0, has a reflection coefficient
mismatch that reduces as frequency increases as then the line becomes
electrically longer.
The Klopfenstein taper for Γm = 0.151 and ZL/ZS = 2 has A = 1.1103
so that the passband of the Klopfenstein taper extends indefinitely above
an electrical length of 1.1103 radians which defines the physical length of
the line for a chosen minimum passband frequency fmin. The design choice
here is fmin = 0.532f0 so that fmin was comparable to that of the two-
section quarter-wave transformer. Then the electrical line length required
is 0.87λm/2. That is, a slightly shorter Klopfenstein taper has the same
minimum passband frequency as a two-section quarter-wave transformer.
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(a) Impedance profile (b) Reflection

(c) Transmission (d) Transmission detail

ZS = 25 Ω
ZL = 50 Ω
εeff = 6.7

Figure 7-16: Characteristics of simulated transmis-
sion line transformers. Midband wavelength λm =
11.58 mm at f0 = 10 GHz. Linear: Linear taper,
ℓ = λm/2. λ/4: λ/4 transformer, ℓ = λm/4. 2xλ/4:
two-section λ/4 transformer, ℓ = λm/2. K: Klopfen-
stein taper, ℓ = 3.88 mm = 0.335λm.

The Klopfenstein taper has the distinct advantage that the passband extends
indefinitely above fmin where as one-stage and multi-stage quarter-wave
transformers have a finite bandwidth.
The previous paragraph considered matching when ZL/ZS = 2. A similar
comparison is shown in Figure 7-17 for a much higher source and load
impedance discontinuity with ZS = 5 Ω and ZL = 50 Ω and the results are
applicable in general for ZL/ZS = 10. Figure 7-17(a) shows the Z0 profile
for the transmission line transformers and where the length of the linear
taper has been chosen to provide comparable passband responses defined as
where the transmission loss is less than 0.1 dB (corresponding to a maximum
reflection coefficient magnitude of 0.151). The reflection coefficient response
is shown in Figure 7-17(b). First consider the responses of the single- and
two-section quarter-wave transformers. Both provide an ideal match at the
passband center frequency f0 = 10GHz and repeating at odd multiples of f0.
Again the passband defined by the two-section quarter-wave transformer is
used to determine the length of the linear and Klopfenstein tapers resulting
in the linear taper being 3λm long and the Klopfenstein taper being 0.595 λm

long, slightly longer than the two-section quarter-wave transformer. The
linear taper, chosen here to be λm/2 long where λm is the guide wavelength
at f0, has a reflection coefficient mismatch that reduces as frequency increases
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(a) Impedance profile (b) Reflection

(c) Transmission (d) Transmission detail

ZS = 5 Ω
ZL = 50 Ω
εeff = 6.7

Figure 7-17: Characteristics of simulated transmis-
sion line transformers. Midband wavelength λm =
11.58 mm at f0 = 10 GHz. Linear: Linear taper,
ℓ = λm/2. λ/4: λ/4 transformer, ℓ = λm/4. 2xλ/4:
two-section λ/4 transformer, ℓ = λm/2. K: Klopfen-
stein taper, ℓ = 3.88 mm = 0.335λm.

Table 7-3: Comparison of pass-
bands of the four transmission
line impedance transformers
considered in Section 7.5.6 with
λm being the guide wavelength at
10 GHz. The lengths of the tapers
were chosen to have the same
minimum passband frequency
as the two-section quarter-wave
transformer.

ZL/ZS = 2 ℓ Passband Bandwidth
Linear taper 0.5λm >6.53 GHz
λ/4 0.25λm 7.16–11.84 GHz 50%
2× λ/4 0.5λm 5.43–14.57 GHz 91%
Klopfenstein taper 0.335λm >5.43 GHz

ZL/ZS = 10

Linear taper 3λm >7.72 GHz
λ/4 0.25λm 9.32–10.69 GHz 14%
2× λ/4 0.5λm 7.87–12.12 GHz 42%
Klopfenstein taper 0.595λm >7.87GHz
exponential taper 1.68λm >7.87GHz

as the line becomes electrically longer.
The Klopfenstein taper for Γm = 0.151 and ZL/ZS = 10 has A = 2.720 so
that the passband of the Klopfenstein taper extends indefinitely above an
electrical length of 2.720 radians and so choosing the minimum passband
frequency fmin determines the physical length of the line.
The 0.1 dB passbands of the transmission line transformers are compared in
Table 7-3. The two-section quarter-wave transformer and the Klopfenstein
transformer have comparable performance near the center frequency of the
design with the choice being made on whether it is more important to have
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good transmission properties indefinitely above fmin or to provide some
frequency selectivity by having a poorer match at the second harmonic
frequency of the center match frequency, here f0.

7.5.7 Summary

The transmission line transformers considered in this section match resistive
source and load impedances. However these impedance transformers
provide guidance for design strategies when the source and load include
reactances. When the source and load are resistances then the clear choice for
a transmission-line-based impedance transformer is the Klopfenstein tape.
With a reactive load the challenge is achieving broadband match since of
course the reactance of the load and/or load will vary with frequency and
so impose an overall bandwidth constraint. Design of the matching network
needs to take into account the frequency characteristic of the load.
Different loads will have different frequency characteristics and hence
variations in the type of matching network required. Four basic loads that are
commonly encountered in microwave engineering and to which matching is
required include the series RC model of the input of a FET transistor with
a series reactance that is inversely proportional to frequency; the series LR
model encountered in bonding to the input of a device where the inductance
comes from a bond wire and which has a series reactance that is proportional
to frequency; and a parallel RC load encountered at the output of a transistor
with a susceptance that reduces with frequency. These two-element models
of sources and loads are simple and other parasitics may need to be included.
At microwave frequencies the Q of the impedances encountered with active
devices is typically in the range of 0.5 to 3, and source/load resistance
mismatch typically ranges from 1.5 to 10. For example, high mismatches are
encountered at the output of power amplifiers.

7.6 Matching a Series RC load

The matching network design described in this section is appropriate for
a real source impedance and series RC load where the load resistance is
less than the source resistance. Also a two-section quarter-wave impedance
transformer will be considered as this has performance that is representative
of what is reasonable to achieve using transmission-line based impedance
transformers. Tapers are not considered here as their particular advantage of
an indefinite passband when matching resistive source and load impedance
disappears when the load (or source) is reactive.

Design Examples

Figure 7-18(a) presents the problem of matching to the input of a transistor
which is modeled here as a capacitor in series with a resistive load. This is
the typical model for the input of a FET.
With a two-section cascaded quarter-wave transformer an appropriate
matching network is shown in Figure 7-18(b). This topology is based on the
design concepts shown in Figures 7-18(c, d and e) where the single-frequency
reflection coefficient loci with respect to increasing line length are shown. The
overall concept is that line 3 rotates the load impedance to a resistance RX

and then RX is matched to RS using a two-section quarter-wave transformer,
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(a) Matching problem with ZS = RS = 50 Ω (b) Matching network

(c) Z03 = 50 Ω (d) Low impedance, Z03 ≪ 50 Ω (e) High impedance, Z03 ≫ 50 Ω

Figure 7-18: Matching problem of the case study of Section 7.6 using a two-section cascaded
quarter-wave impedance transformer. The arrows in (c), (d), and (e) indicate increasing line
length at 10 GHz. The Smith charts are normalized to Z03 and present three design concepts.
(The choice of high Z03 is appropriate for RL < ZS and a capacitor in the load.)

that is, lines 1 and 2.
At 10 GHz the 294 fF capacitor has a reactance of −54.13 Ω and with the
resistive part of the load the input of the transistor has a Q of 2.36. This is
plotted on the 50 Ω Smith chart in Figure 7-18(c). The design concept is that
line 3 rotates the load ZL to a purely resistive load of 10.0 Ω. Then a λ/4-long
line, line 2, rotates the reflection coefficient to an intermediate impedance,
and this is followed by line 1, another λ/4-long line which takes the input
impedance to 50 Ω. Note that the electrical lengths of the lines are given by
the angle subtended by the arcs and do not correspond to the drawn lengths
of the arcs. Here the electrical length of line 1 is 50.0◦ and that of lines 2 and
3 are 90◦.
Two alternative design concepts are shown in Figures 7-18(d and e). Figure 7-
18(d) describes a low impedance (Z03 ≪ 50 Ω) design concept. If Z03 = 20 Ω
then the electrical length of the line is 72.3◦ and the intermediate impedance
ZX = 2.41 Ω. An alternative is to use a high characteristic impedance for line
3 as outlined in Figure 7-18(e). With Z03 = 100 Ω the electrical length of line
3 is 29.4◦ and ZX = 17.54 Ω. Of these three design concepts the third design
concept with the highest Z03 is preferable on two accounts. One of these
is that the electrical length of line 3 is the smallest, and since the electrical
lengths of lines 1 and 2 are fixed (each is λ/8 long), this results in the lowest
overall electrical line length. Secondly the intermediate resistance is closest
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Z03 βℓ3 ZX Z02 Z01 0.1 dB Bandwidth
(Ω) (Ω) (Ω) (Ω) (GHz)

10 81.1◦ 0.65 1.92 18.86 9.90–10.18 (0.28)
20 72.3◦ 2.41 5.14 23.4 9.76–10.25 (0.49)
30 64.1◦ 4.86 8.70 27.9 9.69–10.39 (0.70
40 56.6◦ 7.50 9.62 31.1 9.62–10.46 ( 0.84)
50 50.0◦ 10.0 9.55 33.4 9.55-10.52 (0.97)
60 44.4◦ 12.2 17.3 35.1 9.54-10.53 (0.99)
70 39.6◦ 14.0 19.2 36.3 9.48–10.60 (1.11)
80 35.6◦ 15.4 20.7 37.3 9.48–10.60 (1.11)
90 32.3◦ 16.6 21.9 38.0 9.48–10.60 (1.11)

100 29.4◦ 17.5 22.8 38.5 9.48–10.60 (1.11)

Table 7-4: Matching network perfor-
mance with different Z03 with electrical
length βℓ3. The minimum and maxium
frequencies of the passband are when
T = 0.989, i.e. when the transmission
loss is 0.1 dB.

(a) Transmission

Figure 7-19: Characteristics of the matching
network in Figure 7-18(b) for Z03 =
10 Ω, 30 Ω, 50 Ω, and 100 Ω. The Smith chart
in (b) is normalized to 22.9 Ω and show
the frequency loci of Γout for four matching
network designs for Z03 = 10 Ω, 30 Ω, 50 Ω,
and 100 Ω. The Smith chart also shows the
frequency locus of ZL and Z∗

L. Note that
Γout is equal to the reflection coefficient of
Z∗
L at 10 GHz for all matching networks.

(b) Γout

to the complex conjugate of the source impedance, Z∗
S , which of course is just

ZS here since the source is real.
Table 7-4 compares several trial designs with varying Z03 and it is apparent
that the characteristic impedance of Z03 needs to be high. A maximum Z03

of 100 Ω is typical of many transmission line technologies and especially of
planar transmission lines like microstrip. Note that the maximum bandwidth
is 11% which is considerably less than the approximately 90% bandwidth
that could be obtained for a two-section quarter-wave transformer if the
capacitance in the load was not present (see Table 7-3).
The transmission characteristics of the matching network designed using
four values of Z03 ranging from 10 Ω to 100 Ω are shown in Figure 7-19(a).
Examination of the Smith chart plot, Figure 7-19(b), reveals the fundamental
problem in broadband matching of reactive loads to a resistive source
impedance. First consider the frequency locus of the load ZL which is
seen to have a clockwise rotation on the Smith chart as is typical of non-
resonant impedances. Matching requires that the impedance presented by
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the network at port 2 be the complex conjugate of ZL, i.e. Z∗
L. Z∗

L is seen
to rotate in the counter-clockwise direction with increasing frequency. The
frequency loci of the reflection coefficients, Γout, that are presented looking
into port 2 of the matching network (in Figure 7-18(a)) for each of the four
designs are also plotted in Figure 7-19(b). These all rotate in the clockwise
direction so that it is only possible for these matching networks to present
the desired impedance Z∗

L at a single frequency, here 10 GHz. The angular
length of the Γout loci from 6 GHz to 14 GHz for the four designs differ.
The line with Z03 = 100 Ω has the shortest Γout locus having the shortest
total angular length (and hence shortest electrical and physical lengths). The
passband responses of the various designs are shown in Figure 7-19(a) and
the broadest passband response is obtained when Z03 = 100 Ω and this
impedance is about the largest that could be tolerated for a planar line as
otherwise the microstrip characteristic impedance is become close to the
377 Ω free space and radiation (and this loss) from the microstrip line is
starting to be significant.

7.6.1 Summary

The lessons learned from the design in this section can be generalized with
the results shown in Table 7-5. While these results were obtained for a
particular form of the load (a series RC load) they are a broad indication of

Table 7-5: Bandwidths achievable for various RL/ZS ratios and Qs using the two-section
quarter-wave transformer of Figure 7-18(b) and Z03 = 2ZS . The percentage bandwidth is
calculated as 100 times the difference of the high and low frequencies of the passband divided by
the ideal match frequency, f0. The notation >33 indicates that the passband is at all frequencies
above 0.33f0 as for small impedance discontinuities and low Q, the two-section transformer is
close to being a linear taper.Q is inversely proportion to frequency. Transmission losses of 0.1 dB,
0.2 dB, 0.5 dB, and 1.0 dB correspond to a maximum |Γin| in the passband of |Γm| = 0.151, 0.212,
0.330, and 0.454 respectively. (The same bandwidths are obtained with inverted values of RL/ZS

but requires a different design concept for the matching network.)

0.1 dB max. transmission loss, % bandwidth

ZL/ZS Q at f0
0 0.25 0.5 0.75 1.0 1.5 2.0 2.5 3.0

0.10 50 37 31 27 23 18 14 12 10
0.25 59 47 38 31 26 19 14 11 9
0.50 85 56 45 34 27 19 14 11 8
0.75 ∞ 78 50 36 27 18 13 9 7
1.00 ∞ 116 56 37 27 17 11 8 6

0.5 dB max. transmission loss, % bandwidth

ZL/ZS Q at f0
0 0.25 0.5 0.75 1.0 1.5 2.0 2.5 3.0

0.10 66 58 52 46 42 34 29 24 21
0.25 96 77 65 56 49 38 31 25 21
0.50 187 108 82 66 55 40 30 24 19
0.75 ∞ >41 104 75 58 39 28 22 17
1.00 ∞ >33 150 83 60 37 26 19 14

0.2 dB max. transmission loss, % bandwidth

ZL/ZS Q at f0
0 0.25 0.5 0.75 1.0 1.5 2.0 2.5 3.0

0.10 51 45 39 35 31 24 20 16 14
0.25 73 59 49 41 34 26 20 16 14
0.50 98 77 58 46 38 26 20 15 12
0.75 ∞ 106 68 50 39 25 18 14 11
1.00 ∞ 181 80 52 38 24 16 12 9

1.0 dB max. transmission loss, % bandwidth

ZL/ZS Q at f0
0 0.25 0.5 0.75 1.0 1.5 2.0 2.5 3.0

0.10 82 72 64 58 53 45 38 33 29
0.25 123 98 83 72 63 51 42 34 30
0.50 ∞ >38 114 88 74 55 42 34 27
0.75 ∞ >27 >47 172 82 55 40 31 24
1.00 ∞ >24 >43 160 88 53 37 27 21
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what can be achieved without exploiting resonance in the matching network.
(Resonance is a technique to obtain improved results and is be considered in
Section 7.7.) The performance metrics in Table 7-5 are much more realistic
than the Fano-Bode limits which could require lossless networks of infinite
complexity, and only consider the average passband reflection coefficient
rather than the maximum in-band reflection coefficient.
For example, with a factor of 2 difference between ZL and ZS and with a Q
of 1, the fractional bandwidth that can be readily achieved is 27%, 55%, 38%,
and 74% for maximum passband losses of 0.1 dB, 0.2 dB, 0.5 dB, and 1 dB
respectively. Since matching networks are not usually used for frequency
selectivity (which is more appropriate for a filter), and since there will be
multiple matching networks in a design, it is common to use a maximum
transmission loss of 0.1 dB as a passband criterion.

7.6.2 Matching using Cascaded Transmission Lines and
Constant Q Circles

The stepped-impedance transformer designs utilizing quarter-wavelength-
long lines can be very long. In this section the design of a stepped-impedance
transmission line transformer with shortened lines is considered. Design is
conceptually derived from the quarter-wave transformer but design choices
are made based on constant Q circles.
First consider the single-line matching problem shown in Figure 7-20(a).
The normalized impedances are plotted on a Smith chart with constant Q
circles in Figure 7-20(b). A detailed view is given in Figure 7-20(c) and this
will be used to describe the design procedure. The normalizing reference
impedance Z0 is arbitrary and does not need to be related to the source or
load impedance, or to the characteristic impedance of the line.
Figure 7-21(a) shows a quarter-wavelength-long transmission line matching
a normalized load zL to a normalized source impedance zS with the arrow
on the reflection coefficient locus indicating the direction of increasing line
length. The arc subtends an angle of 180◦ corresponding to the line having
an electrical length of 90◦, i.e. it is λ/4 long. The maximum Q along the arc is
near 0.6 indicating an approximate fractional bandwidth of 1/Q or 1.6.
Greater bandwidth of the match can be obtained by using more line sections
and matching to an intermediate impedance. This situation is shown in
Figure 7-21(b) where there are two quarter-wavelength-long transmission
lines each matching to a normalized intermediate resistance rv =

√
zszL

since both zs and zL are resistances. The two arcs in the locus each are part of
a circle whose center can be used to determine the characteristic impedance
of each of the lines. As an approximation, the center of the circle containing
the arc for transmission line n is Cn referenced to the impedance Z0 and
then Z0n ≈ Z0(1 + 2C0n) (see Section 4.5). (Of course we already know
that each of the lines is a quarter-wave transformer so Z01 = Z0

√
zsrv and

Z02 = Z0
√
zvrL). The maximum Q set by the matching network is now 0.28

so the fractional bandwidth has increased to 1/0.28 = 3.57. This process can
be continued indefinitely. With a matching network with three quarter-wave
lines, as shown in Figure 7-21(c) the maximum Q is further reduced and the
fractional bandwidth increased.
The cascaded quarter-wave lines can reliably be used to obtain wide-
bandwidth matching but the overall length of the network becomes quite
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(a) Transmission line matching network

(b) Smith chart with constant Q circles (c) Detailed view of Smith chart

Figure 7-20: Transmission line matching a source impedance ZS to a load impedance ZL.

large. A more compact matching network with shorter overall line length
can be obtained using lines that are shorter than λ/4. Such a network design
is shown in Figure 7-21(d) with electrical lengths of each of the three lines
being less than that of a quarter-wave line (each is about λ/8 long). The
design problem then becomes one of determining the number of lines (or
sections), determining the electrical lengths of the lines, the Θs, and then the
characteristic impedance of the lines.
A reasonably good estimate can be obtained using a Smith chart and the
constant Q circles. Generally maximum bandwidth is obtained if no one
point on the locus sets the maximum circuit Q. A better solution is when
multiple arcs on the locus all touch the same Q line.
While the illustration used here has resistive load and source impedances
the technique can be used with complex source and load impedances.
The complicating factor is that if the source and/or load impedances have
reactances, then the source and load impedances will vary with frequency.
Still resistive matching provides a good initial point in a design and starting
from here optimization in a microwave circuit simulator can be used to
finalize a design. A good approach is to absorb the impedance variation with
frequency into the matching network.
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(a) Quarter-wave transformer (c) Matching network with

three quarter-wave lines

(b) Matching network with (d) Matching network with

two quarter-wave lines three lines

Figure 7-21:
Broadband cascaded
line matching net-
works. The arrows in
the Smith chart locus
indicate the direction
with increasing line
length.

7.7 Broadband Matching to Reactive Loads

Previous sections presented methods for broadband matching to resistive
loads. Usually these techniques work quite well if the load is moderately
reactive but this is not always the case. Inputs and outputs of transistors
can have larger reactive parts than resistive parts. Broadband matching to
such loads requires customization taking into account the frequency locus of
the loads which nearly always rotates in the clockwise direction on a Smith
chart so that the locus of the complex conjugate match rotates in the counter-
clockwise direction. Circuits that achieve broadband match to these loads
exploit resonance and as such have limited bandwidths so that half-octave
matching is usually the most that can be achieved.

7.7.1 Broadband Matching to a Series RC Load

Consider matching to the input of a transistor. A transistor such as a FET
has an input that can be modeled as a capacitor in series with a resistor as
shown in Figure 7-22(a). At 10 GHz the 294 fF capacitor has a reactance of
−54.06 Ω so that the Q of the load is 2.36. The Fano-Bode limit, see Equation
(7.7), indicates that the maximum fractional bandwidth that can be achieved
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(a) Matching problem

(b) Broadband matching network

(d) Reactance normalized to 54.06 Ω

(c) RS = 1 Ω, C1 = 1 pF, L1 = L2 = 1 nH (e) Detailed normalized reactance and resistance

Figure 7-22: Broadband matching with normalized frequency f̄ in radians/s normalized to
10 GHz.

for an average reflection coefficient, Γavg, at Port 1 of 0.11 is 60%. This Γavg

corresponds to an average transmission loss of 0.05 dB for a maximum
transmission loss of approximately 0.1 dB in the bandwidth of the match.
(Note that if the load was purely resistive, then Q = 0 and it is theoretically
possible to achieve infinite bandwidth.)
Matching would be greatly simplified if the matching network presented a
negative capacitor to the load. The reactance normalized to 54.06 Ω versus
frequency of the required negative capacitance (of capacitance −294 fF) is
shown as the curve identified as −C in Figure 7-22(d). At the normalized
frequency f̄ = 1 (frequency normalized to 10 GHz) the slope of this curve
is −1. A circuit that approximates this over a moderate bandwidth is the
broadband matching network shown in Figure 7-22(b). To see how this
is achieved, consider the input impedance of the circuit in Figure 7-22(c).
The reactance of the parallel LC subcircuit is shown in Figure 7-22(d) as

the curve labeled C1�L1. At f̂ = 1 this reactance has a slope of −2 and
adding a series inductor, L2, (having the reactance curve L2 in Figure 7-
22(d)) results in a reactance x, see Figure 7-22(d), which does have a slope

of −1 at f̂ = 1. Thus the total reactance, x, closely matches the reactance of a
negative capacitor over a limited, but still broad, bandwidth. The other part
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w1 = 153 µm, w2 = 600 µm, w3 = 118 µm

w4 = 626 µm, ℓ1 = 581 µm, ℓ2 = 237 µm,

ℓ3 = 732 µm, ℓ4 = 1351 µm, ε = 9.8, h = 635 µm

(a) Broadband microstrip matching network

(b) Narrowband matching network (c) Γin, and S22 of the matching network

Figure 7-23: Broadband and narrowband matching networks with Γin of both networks and S22

of the broadband network shown with the the locus of the ideal conjugate match (identified as
the locus of negative capacitor). In (a) ℓ1 = 0.048 λ, ℓ2 = 0.020 λ, ℓ3 = 0.060 λ, and ℓ4 = 0.117 λ
at 10 GHz. In (b) a 50 Ω Smith chart is used.

of the matching problem is matching the source and load resistances and
with appropriate choice of matching network values the resistance r (ideally
22.9 Ω normalized to 54.06 Ω) will be approximately constant in the matching
region, see Figure 7-22(e).
A microstrip realization centered at 10 GHz of the broadband matching
network concept is shown in Figure 7-23(a). At Port 1 is an open-circuited
stub with a relatively short electrical length at 10 GHz and so presents the
capacitance C1. This is followed by a short section of line that separates the
two stubs and provides an extra degree of freedom to be used in matching
the source and load resistances. Then follows a short shorted stub that
implements L1. This is followed by a short high-impedance line which
introduces the series inductance L2 (see Section 2.4.5 of [6]). The performance
of the matching network is shown in Figure 7-23(c) where it is compared to
that of a narrowband matching network. The narrowband network, shown
in Figure 7-23(b), is a conventional two-element matching network designed
using the absorption method so that the 294 fF capacitor is absorbed into the
network but still requires an additional inductance L4 to compensate for the
capacitance. The match of both the broadband and narrowband matching
networks is ideal at 10 GHz. The Γin loci of the two networks are shown on
a 50 Ω Smith chart in Figure 7-23(c).
The range of match for a maximum transmission loss of 0.1 dB is from
9.04 GHz to 11.53 GHz (a 2.49 GHz bandwidth) for the broadband network
and 9.47 GHz to 10.62 GHz (a 1.15 GHz bandwidth) for the narrowband
network. Using a 0.5 dB bandwidth criterion the bandwidth of the region
of match for the broadband microstrip network is 8.13 GHz to 12.95 GHz



234 STEER MICROWAVE AND RF DESIGN, NETWORKS

(a 4.82 GHz bandwidth) and the narrowband network has a passband from
8.54 GHz to 12.34 GHz (a 3.80 GHz bandwidth).
Also plotted in Figure 7-23(c) is S22 of the broadband microstrip network and
from this the reason why a good match is achieved can be seen. Typically
the reflection coefficient locus of simple networks rotates clockwise on the
Smith chart with increasing frequency. For a small frequency range near the
center match frequency S22 has a loop and effectively rotates in the counter-
clockwise direction approximating the locus of a negative capacitor. Such
a behavior is obtained in the lumped element version of the broadband
network by the resonance of L1, C1, and L2. A very good match is therefor
possible over a small frequency range. The good match is obtained over
about half an octave (of frequency) and this is typically the best that can be
achieved when matching to the inputs and outputs of microwave transistors.
The microstrip broadband matching network has a finite length and width.
Including the widths as well as the lengths of the lines, the broadband
matching network has a width and length of 0.11 λ, considerably less than
that of a quarter-wave transformer used to match resistive source and load
impedances when they are resistive but not when the load has a large
reactance as here.

7.7.2 Summary

The broadband matching concept presented in this section is using resonance
to present an impedance to a load or source that rotates in the counter-
clockwise direction (with respect to frequency) on a Smith chart. This
is achievable only over a moderate bandwidth and typically half-octave
bandwidths are regarded as the limit of what can be achieved when
matching to a load that is more reactive than resistive. There are techniques
also that are sometimes able to achieve broader effective matches by
incorporating the parasitic reactances of a device to be matched into a
distributed transmission line.

7.8 Summary

This chapter presented design concepts for realizing matching networks
with broad bandwidths. Matching a load and/or a source with a reactance
presents a particular problem because reactive loads include energy storage
elements and energy storage elements limit bandwidth. Theoretically, if
negative capacitances and inductors could be realized then it would be
possible to have infinite bandwidth matching of complex loads and/or
sources provided that the elements of the matching network are lossless.
Since negative capacitors and inductors cannot be realized, there will be
a limit on matching bandwidth. The Fano-Body limits indicate the trade-
off between the quality of the match in terms of the minimum reflection
coefficient that can be achieved and the bandwidth of the match. While
ideal magnetic transformers can achieve infinite matching of source and
load resistors, actual magnetic transformers have self inductances and thus
energy storage and so matching bandwidth is limited even with magnetic
transformers.
All matching networks introduce energy storage elements. This includes
capacitor, inductor, and transmission line elements, as well as magnetic
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transformers. Thus design techniques are required that enable design trade-
offs of the quality of a match and bandwidth. The constant Q circles on a
Smith chart enable the maximum Q and hence fractional bandwidth, which
is very approximately 1/Q, of a matched to be controlled. As long as the
locus of the input reflection coefficient of an evolving terminated matching
network does not go outside a specific pair of equal-valued constant Q circles
the bandwidth is constrained. This concept applies to loads and sources that
are resistive only or include reactances. The stepped-impedance and tapered
transmission-line matching networks presented enable broadband matching
of source and load resistances but the concepts of gradual matching in stages
to interim resistances levels can be extrapolated to matching general sources
and loads.
The final concept of this chapter describes a topology for matching a reactive
load, in particular a load comprising a resistor and a capacitor. This is
what the input and output of a transistor looks like. The matching network
described in Section 7.7 approximates a negative capacitor over a limited
bandwidth and is one of the best such networks known and this matching
network topology is commonly used in matching the input and output
of transistors. Other broadband network topologies have been invented
and these developments are tracked by microwave engineers involved in
matching network design.
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7.10 Exercises

1. A load is modeled as a 50 Ω resistance in se-
ries with a reactance of 50 Ω. This load is to be
matched to a source with a Thevenin equivalent
resistance of 50 Ω. Use the Fano-Bode criteria to
determine the upper limit on the matching net-

work bandwidth when the average in-band re-
flection coefficient is −10 dB.

2. A load is modeled as a 50 Ω resistance in se-
ries with a reactance of 50 Ω. This load is to be
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matched to a source with a Thevenin equivalent
resistance of 50 Ω. Use the Fano-Bode criteria to
determine the upper limit on the matching net-
work bandwidth when the average in-band re-
flection coefficient is −20 dB.

3. The output of a transistor amplifier operating at
1 GHz is modeled as a 100 Ω resistor in parallel
with a 10 pF capacitor. The amplifier must drive
the input of a λ/2 dipole antenna with an input
resistance of 73 Ω. To do this efficiently a match-
ing network is required. Consider that the input
resistance of the antenna is independent of fre-
quency, and assume that the matching network
is lossless. This is the same as assuming that its
bandwidth is much greater than the bandwidth
required. If the required fractional bandwidth of
the matching network is 5%, and using the Fano-
Bode criteria, determine the following:

(a) The lower limit on the average in-band re-
flection coefficient of the matching network.

(b) The upper limit on the average transmission
coefficient of the matching network.

4. Design a broadband matching network at 1 GHz
to match a source ZS = 80+50 Ω to a load with
an impedance ZL = 60.0+20.0 Ω. Maintain the
maximum bandwidth possible with this source
and load. [Parallels Example 7.1]

5. Design a broadband matching network at 1 GHz
to match a source ZS = 45+10 Ω to a load with
an impedance ZL = 50.0+80.0 Ω. Maintain the
maximum bandwidth possible with this source
and load. [Parallels Example 7.1]

6. Consider the problem of matching a source with
a Thevenin equivalent impedance of 25 Ω to a
load of admittance 0.035 + 0.035.

(a) What is the minimum Q that can be
achieved for the network, and what is the
topology of the matching network that will
yield the match with the widest bandwidth?

(b) Design the matching network with the
widest bandwidth possible if the matching
network can have at most four elements.

7. Develop the electrical design of a three-section
quarter-wave transformer to match a 50 Ω cable
to an antenna with a 10 Ω input impedance. [Par-
allels Example 7.2]

8. Design of a two-section quarter-wave trans-
former to match a 50 Ω cable to a 75 Ω cable.
[Parallels Example 7.2]

9. Develop the electrical design of a two-section
quarter-wave transformer to match a 50 Ω cable
to a 75 Ω cable. [Parallels Example 7.2]

10. Develop the electrical design of a three-section
maximally flat stepped-impedance transformer
to match a sourceZS = 20 Ω to a load ZL = 50 Ω
load. [Parallels Example 7.3]

11. Design a stepped impedance transmission line
transformer with two transmission line sections
to match a 50 Ω source to a load with an
impedance of 25 Ω. Design for a maximally flat
response. [Parallels Example 7.3]

12. Design a maximally flat four-section stepped
impedance transmission line transformer
matching a basestation amplifier with a 2 Ω
output impedance to a 50 Ω cable. [Parallels
Example 7.3]

13. Develop the electrical design of a 100%
bandwidth three-section Chebyshev stepped-
impedance transformer in microstrip to connect
a power amplifier with an output impedance of
2 Ω to a 50 Ω cable. [Parallels Example 7.4]

14. Design a microstrip Klopfenstein taper to match
a ZS = 15 Ω source to a ZL = 75 Ω load. The
maximum transmission ripple is to be 0.5 dB and
the minimum passband frequency is 60 GHz.
Only an electrical design is required but draw
the microstrip layout. [Parallels Example 7.5]

7.10.1 Exercises by Section
†challenging, ‡very challenging

§7.2 1, 2, 3
§7.3 4, 5, 6

§7.4 7, 8, 9, 10, 11, 12, 13
§7.5 14

7.10.2 Answers to Selected Exercises

A 41.36 meV B 662.6 fJ C 3.25 cm
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double
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stub matching, 185
stub tuner, 184
through line, 104

DTL, 104
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edge, 50
error
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expanded Smith chart, 76
exponential taper, 218

Fano-Bode criterion, 206
fixturing, 100

four-port junction, 135
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gap, 129
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H parameters, 9

Hackborn, 98
half-angle transform, 130
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90
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magnetic, 137
parameters, 9

power divider, 149
power splitter, 149
quadrature, 136
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ring, 151

IDC, 119
impedance

matching, 159

matrix, 28
normalization, 17
normalized, 31
parameters, 7

conversion to S, 28
reference, 17
transformer, 129

4:1, 145
transforming network,

162
inductor

on-chip, 120
planar, 120
spiral, 120

insertion loss, 38

minimum, 41
interdigitated capacitor,

119
intrinsic attenuation, 41

Klopfenstein taper, 219

L matching network, 164
linear taper, 218

linearity, 6
loaded Q, 118
loop transmittance, 56

loss
insertion, 38
reflection, 37
return, 37

substitution, 38, 55
lossless
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planar inductor, 120

lumped element, 119
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circuit, 139

core, 133

flux

density, 133

transformer, 132

hybrid, 137

Marchand balun, 140

Mason’s rule, 56, 57, 107

matching, 159

complex conjugate, 160

double stub, 185

Fano-Bode criterion, 206

hybrid

lumped-distributed, 187

maximum power
transfer, 160

network

absorption, 168

broadband, 177

complex load, 168

distributed, 183

L, 164

Pi network, 174

resonance, 168

T network, 177

three-element, 171, 173

two-element, 164, 167

reflectionless, 160

using stub, 185

wideband, 207

matrix

diagonal, 26

unit, 26

maximum

power

transfer, 159

power transfer, 160

measurement

calibration

through-line symmetry,
106

TL, 106

coplanar probes, 91, 92

leakage, 98

network analyzer, 91, 92

non-coaxial, 105

one-port, 94

planar, 106

scattering parameters, 89

two-tier, 105

TxL, 106

metal

-insulator-metal, 119

-oxide-metal, 119
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passive components, 150

microprobe, 90, 91

microstrip, 129

attenuator, 126

bend, 129

crossover, 129

discontinuity, 128, 129

gap, 129

impedance transformer,
129

matched load, 124

notch, 129

quarter-wave impedance
transformer, 129

radial stub, 129

step, 129

tapered line, 129

MIM, 119

MIM capacitor, 119

minimum

insertion loss, 41

transducer loss, 41

mismatch loss, 41

conjugate, 41

MOM capacitor, 119

multi-section

line transformer, 209

Chebyshev, 213

Constant Q, 229

maximally flat, 211

shortened, 229

mutual inductance, 134

N -port

lossless, 28

network, 22

passive, 28

network

analysis, 5

analyzer, 89, 91, 92

automatic, 89

vector, 89

linear, 6

parameters, 7

cascading matrix, 101

passive, 6

reciprocal, 6

symmetrical, 6

two-port, 6

node, 50

normalization impedance,
17

normalized S parameters,
17

notch, 129

on-chip

capacitor, 119

inductor, 120

spiral inductor, 120

open, 127

operator

real, 15

pad, 124

parallel

connection

two-port network, 11

reactive element, 164

parameters

S to y, 29

S to z, 28

y to S, 29

z to S, 28

ABCD, 12

admittance, 9

to scattering, 29

hybrid, 9

impedance, 7

to scattering, 28

scattering, 14

to admittance, 29

to impedance, 28

passive

components, 115

two-port

S parameters, 21

passivity, 6

S parameters, 27

scattering parameters, 27

Pennock, 104

Pi network, 174

planar

inductor, 120

port definition, 6

power

divider, 149

splitter, 149

waves, 23

root, 23

probe

ground-signal-ground,
93

GSG, 93

puck, 132

Q, 115, 116

circles, Smith chart, 207

external, 118

loaded, 118

unloaded, 118

QL, 118

QU , 118
QX , 118
Q-factor

loaded, 118

quadrature, 136
hybrid, 136

quality factor, see Q

quarter-wave
transformer, 129

ℜ, 15
radial stub, 129
radio

frequency integrated
circuit, 119, 120

rat-race, 151, 152
real part, 15

reciprocal, 6
reciprocity, 6
S parameters, 17

y parameters, 9
z parameters, 8
ABCD parameters, 13
generalized S

parameters, 25

rectangular
cavity, 131

reference

impedance, 16, 17
change, 77

resistance, 16

reflection
coefficient, 14
graphical
representation, 58

loss, 37

resonant
circuit, 115, 116
frequency, 116

resonator, 131
bandwidth, 118
dielectric, 132

return loss, 37
RFIC, 119, 120, 140
root power wave, 23
root power waves, 23

S parameters, 14, 19, 58

cascadable form, 31
chain scattering

parameters, 31
change in reference

impedance, 26

conversion
to h, 18
to y, 18, 29
to z, 18, 28

to ABCD parameters, 36
conversion to



INDEX 239

y, 30

definition, 16
derivation, 19
generalized, 23, 26
graphical representation,

58
lossless, 28
measurement, 89
normalized, 26

of common two-ports, 30
of series element, 31
of shunt element, 31

of transmission line, 30
passivity, 27
polar plot, 58

reference plane change,
35

series element, 31
SFG, 50
shunt element, 19, 31

signal flow graph, 50
Smith chart, see Smith

chart
transmission line, 30

two-port
lossless condition, 21
passive condition, 21

relationships, 35
scattering parameters, 14,

19, 58
change in reference

impedance, 26, 27

conversion
to ABCD parameters, 36
to admittance, 29

to impedance, 28
definition, 16
derivation, 19
generalized, 26

graphical representation,
58

measurement, 89
normalized, 26

of common two-ports, 30
of series element, 31
of shunt element, 31

of transmission line, 30
passivity, 27
polar plot, 58
reference plane change,

35
shunt element, 19
two-port
lossless condition, 21

two-port relationships,
35

scattering transfer
parameters, 21

self-inductance, 134
self-resonant frequency,

116

series

connection
two-port network, 10

element, S parameters,
31

parallel connection, 11

reactive element, 162
SFG, 49–52, 56, 57
S parameters, 50

addition, 51
commutation, 51
in measurements, 97

loop transmittance, 56
manipulation, 50
Mason’s rule, 56, 57
multiple loops, 52

multiplication, 51
path, 56
reduction, 50

self-loop, 52
simplification, 50

shunt
element, S parameters,

19, 31

stub, 129
Shurmer, 98
signal flow graph, 49–52,

56

S parameters, 50
addition, 51
commutation, 51

manipulation, 50
Mason’s rule, 56
multiple loops, 52
multiplication, 51

reduction, 50
self-loop, 52
simplification, 50

slide-screw slug tuner, 184
SMA, 99
Smith, 60

Smith chart, 60, 61, 64, 65,
179

admittance chart, 76
determining

characteristic
impedance, 109

expanded, 76

path length, 182
Q circles, 207
two-element matching,

179

SOL calibration, 95
SOLR, 104
SOLT, 104

spiral inductor, 120
step, 129
stepped impedance

transformer, 209

Chebyshev, 213
Constant Q, 229

maximally flat, 211

shortened, 229

stub, 64, 127, 129, 183

matching, 185

radial, 129

transformations, 130

tuner, 184

subscript order, 8

substitution loss, 38, 55

surface

mount, 121

symmetry, 6

synthesizer, 89

system

impedance, 16

change, 77

T parameters, 21

chain scattering matrix,
32

relationship to S
parameters, 32

T network, 177

taper, 209

tapered

impedance transformer,
217

exponential, 218

Klopfenstein, 219

linear, 218

line, 129

termination, 122, 124, 126

thick-film passive

components, 150

three

-element matching, 171

through

line, 94, 100

reflect

line, 94, 99, 103

match, 104

short delay, 103

TL, 106

calibration, 94

transducer loss

minimum, 41

transformer, 162

ideal, 162

inverting, 133

magnetic, 132, 133

multi-section line, 209

Chebyshev, 213

Constant Q, 229

maximally flat, 211

shortened, 229

stepped impedance, 209

Chebyshev, 213

Constant Q, 229

maximally flat, 211

shortened, 229

tapered line, 217

exponential, 218

Klopfenstein, 219

linear, 218

transmission line, 143

balun, 145

transmission

line

S parameters, 30

discontinuities, 128

impedance transformer,
129

stub, 127

tapered line, 129

transformer, 143

transformer, balun, 145

line transformer, 209

Chebyshev, 213

Constant Q, 229

exponential taper, 218

Klopfenstein taper, 219

linear taper, 218

maximally flat, 211

shortened, 229

taper, 209, 217

TRL, 94, 99, 103

TRM, 104

TSD, 103

tuner, 185

slide-screw slug, 184

slug, 184

stub, 184

two-port network, 6

S parameters

lossless condition, 21

calibration, 94, 96

input reflection, 18

insertion loss, 38

parallel connection, 11

parameter relationships,
35

passivity, 27

reflection loss, 37

return loss, 37

scattering parameters

lossless condition, 21

of common two-ports,
30

of series element, 31

of shunt element, 31

of transmission line, 30

passive condition, 21

series connection, 10

series-parallel
connection, 11

two-tier measurements,
105

TxL, 106

U, 26
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unbalanced circuit, 139

unit

matrix, 26

unitary condition, 28

unloaded Q, 118

unterminating, 96, 98

VNA, 89, 90, 96, 98
calibration, see

calibration
voltage

reflection coefficient, 16

Wheeler, 120

wideband matching, 207
Wilkinson

combiner, 141
divider, 141

y, normalized, 31
y parameters, 7, 9

conversion

to S, 29

z, normalized, 31

z parameters, 7

conversion to S, 28
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