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Preface

The book series Microwave and RF Design is a comprehensive treatment
of radio frequency (RF) and microwave design with a modern “systems-
first” approach. A strong emphasis on design permeates the series with
extensive case studies and design examples. Design is oriented towards
cellular communications and microstrip design so that lessons learned can
be applied to real-world design tasks. The books in the Microwave and RF
Design series are:

• Microwave and RF Design: Radio Systems, Volume 1
• Microwave and RF Design: Transmission Lines, Volume 2
• Microwave and RF Design: Networks, Volume 3
• Microwave and RF Design: Modules, Volume 4
• Microwave and RF Design: Amplifiers and Oscillators, Volume 5

The length and format of each is suitable for automatic printing and binding.

Rationale

The central philosophy behind this series’s popular approach is that the
student or practicing engineer will develop a full appreciation for RF and
microwave engineering and gain the practical skills to perform system-
level design decisions. Now more than ever companies need engineers with
an ingrained appreciation of systems and armed with the skills to make
system decisions. One of the greatest challenges facing RF and microwave
engineering is the increasing level of abstraction needed to create innovative
microwave and RF systems. This book series is organized in such a way that
the reader comes to understand the impact that system-level decisions have
on component and subsystem design. At the same time, the capabilities of
technologies, components, and subsystems impact system design. The book
series is meticulously crafted to intertwine these themes.

Audience

The book series was originally developed for three courses at North
Carolina State University. One is a final-year undergraduate class, another an
introductory graduate class, and the third an advanced graduate class. Books
in the series are used as supplementary texts in two other classes. There
are extensive case studies, examples, and end of chapter problems ranging
from straight-forward to in-depth problems requiring hours to solve. A
companion book, Fundamentals of Microwave and RF Design, is more suitable
for an undergraduate class yet there is a direct linkage between the material
in this book and the series which can then be used as a career-long reference
text. I believe it is completely understandable for senior-level students
where a microwave/RF engineering course is offered. The book series is a
comprehensive RF and microwave text and reference, with detailed index,
appendices, and cross-references throughout. Practicing engineers will find
the book series a valuable systems primer, a refresher as needed, and a
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reference tool in the field. Additionally, it can serve as a valuable, accessible
resource for those outside RF circuit engineering who need to understand
how they can work with RF hardware engineers.

Organization
This book is a volume in a five volume series on RF and microwave

design. The first volume in the series, Microwave and RF Design: Radio
Systems, addresses radio systems mainly following the evolution of cellular
radio. A central aspect of microwave engineering is distributed effects
considered in the second volume of this book series, Microwave and RF
Design: Transmission Lines. Here transmission lines are treated as supporting
forward- and backward-traveling voltage and current waves and these
are related to electromagnetic effects. The third volume, Microwave and RF
Design: Networks, covers microwave network theory which is the theory
that describes power flow and can be used with transmission line effects.
Topics covered in Microwave and RF Design: Modules, focus on designing
microwave circuits and systems using modules introducing a large number
of different modules. Modules is just another term for a network but the
implication is that is is packaged and often available off-the-shelf. Other
topics that are important in system design using modules are considered
including noise, distortion, and dynamic range. Most microwave and RF
designers construct systems using modules developed by other engineers
who specialize in developing the modules. Examples are filter and amplifier
modules which once designed can be used in many different systems. Much
of microwave design is about maximizing dynamic range, minimizing noise,
and minimizing DC power consumption. The fifth volume in this series,
Microwave and RF Design: Amplifiers and Oscillators, considers amplifier and
oscillator design and develops the skills required to develop modules.

Volume 1: Microwave and RF Design: Radio Systems

The first book of the series covers RF systems. It describes system concepts
and provides comprehensive knowledge of RF and microwave systems.
The emphasis is on understanding how systems are crafted from many
different technologies and concepts. The reader gains valuable insight into
how different technologies can be traded off in meeting system requirements.
I do not believe this systems presentation is available anywhere else in such
a compact form.

Volume 2: Microwave and RF Design: Transmission Lines

This book begins with a chapter on transmission line theory and introduces
the concepts of forward- and backward-traveling waves. Many examples are
included of advanced techniques for analyzing and designing transmission
line networks. This is followed by a chapter on planar transmission lines
with microstrip lines primarily used in design examples. Design examples
illustrate some of the less quantifiable design decisions that must be made.
The next chapter describes frequency-dependent transmission line effects
and describes the design choices that must be taken to avoid multimoding.
The final chapter in this volume addresses coupled-lines. It is shown how to
design coupled-line networks that exploit this distributed effect to realize
novel circuit functionality and how to design networks that minimize
negative effects. The modern treatment of transmission lines in this volume
emphasizes planar circuit design and the practical aspects of designing
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around unwanted effects. Detailed design of a directional coupler is used
to illustrate the use of coupled lines. Network equivalents of coupled lines
are introduced as fundamental building blocks that are used later in the
synthesis of coupled-line filters. The text, examples, and problems introduce
the often hidden design requirements of designing to mitigate parasitic
effects and unwanted modes of operation.

Volume 3: Microwave and RF Design: Networks

Volume 3 focuses on microwave networks with descriptions based on S
parameters and ABCD matrices, and the representation of reflection and
transmission information on polar plots called Smith charts. Microwave
measurement and calibration technology are examined. A sampling of
the wide variety of microwave elements based on transmission lines is
presented. It is shown how many of these have lumped-element equivalents
and how lumped elements and transmission lines can be combined as a
compromise between the high performance of transmission line structures
and the compactness of lumped elements. This volume concludes with an
in-depth treatment of matching for maximum power transfer. Both lumped-
element and distributed-element matching are presented.

Volume 4: Microwave and RF Design: Modules

Volume 4 focuses on the design of systems based on microwave modules.
The book considers the wide variety of RF modules including amplifiers,
local oscillators, switches, circulators, isolators, phase detectors, frequency
multipliers and dividers, phase-locked loops, and direct digital synthesizers.
The use of modules has become increasingly important in RF and microwave
engineering. A wide variety of passive and active modules are available
and high-performance systems can be realized cost effectively and with
stellar performance by using off-the-shelf modules interconnected using
planar transmission lines. Module vendors are encouraged by the market
to develop competitive modules that can be used in a wide variety of
applications. The great majority of RF and microwave engineers either
develop modules or use modules to realize RF systems. Systems must also
be concerned with noise and distortion, including distortion that originates
in supposedly linear elements. Something as simple as a termination
can produce distortion called passive intermodulation distortion. Design
techniques are presented for designing cascaded systems while managing
noise and distortion. Filters are also modules and general filter theory is
covered and the design of parallel coupled line filters is presented in detail.
Filter design is presented as a mixture of art and science. This mix, and the
thought processes involved, are emphasized through the design of a filter
integrated throughout this chapter.

Volume 5: Microwave and RF Design: Amplifiers and Oscillators

The fifth volume presents the design of amplifiers and oscillators in
a way that enables state-of-the-art designs to be developed. Detailed
strategies for amplifiers and voltage-controlled oscillators are presented.
Design of competitive microwave amplifiers and oscillators are particularly
challenging as many trade-offs are required in design, and the design
decisions cannot be reduced to a formulaic flow. Very detailed case studies
are presented and while some may seem quite complicated, they parallel the
level of sophistication required to develop competitive designs.
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Case Studies

A key feature of this book series is the use of real world case studies
of leading edge designs. Some of the case studies are designs done in
my research group to demonstrate design techniques resulting in leading
performance. The case studies and the persons responsible for helping to
develop them are as follows.

1. Software defined radio transmitter.
2. High dynamic range down converter design. This case study was

developed with Alan Victor.
3. Design of a third-order Chebyshev combline filter. This case study was

developed with Wael Fathelbab.
4. Design of a bandstop filter. This case study was developed with Wael

Fathelbab.
5. Tunable Resonator with a varactor diode stack. This case study was

developed with Alan Victor.
6. Analysis of a 15 GHz Receiver. This case study was developed with

Alan Victor.
7. Transceiver Architecture. This case study was developed with Alan

Victor.
8. Narrowband linear amplifier design. This case study was developed

with Dane Collins and National Instruments Corporation.
9. Wideband Amplifier Design. This case study was developed with Dane

Collins and National Instruments Corporation.
10. Distributed biasing of differential amplifiers. This case study was

developed with Wael Fathelbab.
11. Analysis of a distributed amplifier. This case study was developed with

Ratan Bhatia, Jason Gerber, Tony Kwan, and Rowan Gilmore.
12. Design of a WiMAX power amplifier. This case study was developed

with Dane Collins and National Instruments Corporation.
13. Reflection oscillator. This case study was developed with Dane Collins

and National Instruments Corporation.
14. Design of a C-Band VCO. This case study was developed with Alan

Victor.
15. Oscillator phase noise analysis. This case study was developed with

Dane Collins and National Instruments Corporation.
Many of these case studies are available as captioned YouTube videos and

qualified instructors can request higher resolution videos from the author.

Course Structures

Based on the adoption of the first and second editions at universities,
several different university courses have been developed using various parts
of what was originally one very large book. The book supports teaching
two or three classes with courses varying by the selection of volumes
and chapters. A standard microwave class following the format of earlier
microwave texts can be taught using the second and third volumes. Such
a course will benefit from the strong practical design flavor and modern
treatment of measurement technology, Smith charts, and matching networks.
Transmission line propagation and design is presented in the context of
microstrip technology providing an immediately useful skill. The subtleties
of multimoding are also presented in the context of microstrip lines. In such
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a class the first volume on microwave systems can be assigned for self-
learning.

Another approach is to teach a course that focuses on transmission line
effects including parallel coupled-line filters and module design. Such a class
would focus on Volumes 2, 3 and 4. A filter design course would focus
on using Volume 4 on module design. A course on amplifier and oscillator
design would use Volume 5. This course is supported by a large number of
case studies that present design concepts that would otherwise be difficult to
put into the flow of the textbook.

Another option suited to an undergraduate or introductory graduate class
is to teach a class that enables engineers to develop RF and microwave
systems. This class uses portions of Volumes 2, 3 and 4. This class then omits
detailed filter, amplifier, and oscillator design.

The fundamental philosophy behind the book series is that the broader
impact of the material should be presented first. Systems should be discussed
up front and not left as an afterthought for the final chapter of a textbook, the
last lecture of the semester, or the last course of a curriculum.

The book series is written so that all electrical engineers can gain an
appreciation of RF and microwave hardware engineering. The body of the
text can be covered without strong reliance on this electromagnetic theory,
but it is there for those who desire it for teaching or reader review. The book
is rich with detailed information and also serves as a technical reference.

The Systems Engineer

Systems are developed beginning with fuzzy requirements for components
and subsystems. Just as system requirements provide impetus to develop
new base technologies, the development of new technologies provides new
capabilities that drive innovation and new systems. The new capabilities
may arise from developments made in support of other systems. Sometimes
serendipity leads to the new capabilities. Creating innovative microwave
and RF systems that address market needs or provide for new opportunities
is the most exciting challenge in RF design. The engineers who can
conceptualize and architect new RF systems are in great demand. This book
began as an effort to train RF systems engineers and as an RF systems
resource for practicing engineers. Many RF systems engineers began their
careers when systems were simple. Today, appreciating a system requires
higher levels of abstraction than in the past, but it also requires detailed
knowledge or the ability to access detailed knowledge and expertise. So what
makes a systems engineer? There is not a simple answer, but many partial
answers. We know that system engineers have great technical confidence and
broad appreciation for technologies. They are both broad in their knowledge
of a large swath of technologies and also deep in knowledge of a few
areas, sometimes called the “T” model. One book or course will not make
a systems engineer. It is clear that there must be a diverse set of experiences.
This book series fulfills the role of fostering both high-level abstraction of
RF engineering and also detailed design skills to realize effective RF and
microwave modules. My hope is that this book will provide the necessary
background for the next generation of RF systems engineers by stressing
system principles immediately, followed by core RF technologies. Core
technologies are thereby covered within the context of the systems in which
they are used.
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Supplementary Materials

Supplementary materials available to qualified instructors adopting the book
include PowerPoint slides and solutions to the end-of-chapter problems.
Requests should be directed to the author. Access to downloads of the books,
additional material and YouTube videos of many case studies are available
at https://www.lib.ncsu.edu/do/open-education
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1.1 Introduction

The universe has a speed limit, the finite speed of causality or c, the speed
of light, which is embodied in Maxwell’s equations and in the special
theory of relativity. The result of this is that a cause, say a voltage, in one
part of a circuit produces an effect, say a current, in another part of the
circuit after a delay. When using circuits at low frequencies the impact of
this delay is insignificant as the effect occurs long before there is even the
slightest discernible change in the cause. However the delay is important at
microwave and higher frequencies. Electromagnetic (EM) radiation travels
30 cm in a nanosecond in free space. Thus a circuit operating at 1 GHz that
is 1 cm across will just see an appreciable affect due to the finite speed of the
EM signal which, of course, is how the voltage and current “communicate.”
The impact will be more significant at higher frequencies and if the EM signal
travels in a dielectric as a dielectric reduces the speed of light.

A microwave engineer must design circuits to manage this finite delay, but
what is particularly interesting is that the effect gives rise to an enormous
number of useful circuit elements that have no analog at lower frequencies.
Whole circuits, and quite complex circuits at that, can be designed by
exploiting distributed effects. This book explores the design of circuits
with transmission lines and introduces effects, such as coupling from one
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transmission line to another, that can be exploited to build novel circuits.
This book is the second volume in a series on microwave and RF design.

The first volume in the series addresses radio systems [1] mainly following
the evolution of cellular radio. The third volume [2] covers microwave
network theory which is the theory that describe power flow and can be
used to describe transmission line effects. Topics covered in this volume
include scattering parameters, Smith charts, and matching networks that
enable maximum power transfer. The fourth volume [3] focuses on designing
microwave circuits and systems using modules introducing a large number
of different modules. Modules is just another term for a network but the
implication is that is packaged and often available off-the-shelf. Other topics
in this chapter that are important in system design using modules are
considered including noise, distortion, and dynamic range. Most microwave
and RF designers construct systems using modules developed by other
engineers who specialize in developing the modules. Examples are filter
and amplifier chip modules which once designed can be used in many
different systems. Much of microwave design is about maximizing dynamic
range, minimizing noise, and minimizing DC power consumption. The
fifth volume in this series [4] considers amplifier and oscillator design and
develops the skills required to develop modules.

The books in the Microwave and RF Design series are:

• Microwave and RF Design: Radio Systems
• Microwave and RF Design: Transmission Lines
• Microwave and RF Design: Networks
• Microwave and RF Design: Modules
• Microwave and RF Design: Amplifiers and Oscillators

1.2 Book Outline

The telegraphist’s equations, used to analyze transmission lines, and their
interpretations are presented in Chapter 2 where transmission line theory
is presented. This leads to the analysis of terminated transmission lines with
key results being how these can be used as circuit elements to realize narrow-
band inductors and capacitors. The chapter concludes by developing circuit
models of transmission lines that are suitable for use in circuit simulators
and in designing circuits using transmission lines.

Chapters 2–6 describe transmission lines and the exploitation of
transmission effects that are used in RF and microwave engineering. One
of the aspects that distinguishes design at a few tens of megahertz and
below from design above a few megahertz up to a terahertz is that at low
frequencies design proceeds with the assumption that circuit elements and
indeed whole circuits exist at a point and there is no time-of-flight, e.g.
speed-of-light, limitation to a voltage and current at one point in a circuit
instantaneously impacting the voltage and current anywhere else in the
circuit. As the frequency of operation of a circuit increases, the effect of the
finite speed of light becomes significant and distributed effects often need to
be considered.

Chapter 3 focuses on a class of transmission lines called planar lines which
are lines usually fabricated starting with a low loss dielectric substrate with
metal sheets on both sides. The most important planar transmission line
is the microstrip line shown in Figure 1-1. This is the most widely used
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Figure 1-1: Microstrip transmission line.

interconnect at microwave frequencies. The strip of the line is formed by
patterning the top conductor and etching away the unwanted metal. The
defining distinction between a microstrip line, and any planar transmission
line, and a trace on a printed circuit board is that at microwave frequencies
attention must be given to providing a signal return path and maintaining
as uniform an environment as possible for the electric and magnetic fields.
Any discontinuity will introduce reflections of EM energy. This may actually
be desired when implementing circuit elements but if not it is important that
geometrical uniformity be maintained. Considering the microstrip line, see
Figure 1-1, the width, w, of the strip and the thickness, h, of the substrate
define the ratio of the voltage and current signals traveling along the
microstrip line. This ratio is called the characteristic impedance of the line
and it is critical for reliable signal transmission, i.e., good signal integrity,
that the cross-sectional geometry be the same along the line as then the
characteristic impedance of the line is constant.

While simple in concept, planar transmission lines needed to be invented.
As well as conceptualizing a transmission line that can be realized by etching
a planar metallic conductor on the printed circuit board, it is essential to
provide the analytic tools that enable the propagation characteristics of the
line to be calculated and enable structures such as couplers and filters to be
synthesized using planar transmission lines. The origins of microstrip trace
back to developments in the early 1940s, beginning with a coaxial line with
a flat center conductor forming a rectangular coaxial line [5]. At that time
printed circuit boards were being used for low-frequency circuits. In 1949
these came together when Barrett reasoned that the thick center conductor of
the rectangular coaxial transmission line could be very thin with little effect
on the properties of the line. This then meant that low-frequency printed
circuit board techniques could be employed in microwave circuits and the
transmission line system became known as stripline [5, 6].

The conceptual evolution of stripline is shown in Figure 1-2. The stripline
configuration is developed by sandwiching a metallic strip between two
metal-clad dielectric sheets. As initially envisioned, the strip could be
stamped out or silk-screened using silver ink. Today it is most common
to begin with a continuous metallic sheet bonded to one or both sides
of a dielectric sheet. A pattern of an etch resistant material is then
photolithographically defined on the sheet and the strip pattern appears
after etching. The next advance in 1952 when Grieg and Engelmann removed
one of stripline’s ground planes thus becoming microstrip [7]. With an
invention it is not sufficient to simply describe a structure, in this case
understanding had to be provided as evidenced by presenting design
equations for the electrical properties of the line. The essential electrical
properties of a transmission line are its characteristic impedance, the ratio
of the traveling voltage and current waves on the line, and its propagation
constant, which relates to the speed of propagation of the voltage and current
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Figure 1-2: Evolution of the
stripline transmission line: (a)
coaxial line with a round cen-
ter conductor; (b) square coax-
ial line with a square flat center
conductor; (c) rectangular coax-
ial line with a flat center con-
ductor; and (d) stripline.

waves on the lines.
Planar lines are not ideal transmission lines and undesired effects must

be anticipated and design adjusted to reduce their occurrence or impact.
These extraordinary effects are considered in Chapter 4. Understanding and
anticipating these effects is really where the art of microwave design comes
into play. Many of the effects occur when dimensions are too large but at
the same time manufacturability improves when dimensions are large, so
a design trade-off is required. Rarely is a design successful on the first pass.
Thus it is important for a microwave engineer to interpret undesirable results
and know what to modify in a design. It is difficult to do measurements
at microwave frequencies as anything that is introduced in a measurement,
e.g. a probe, will have significant impact on a circuit. Often a few indirect
measurements, some analysis, and great intuition is required to correctly
identify and hence resolve design issues.

Chapter 4 begins by considering frequency-dependent characteristics of
planar lines and then moves on to developing analysis equations and
design concepts for microstrip lines at high frequencies. As the transverse
dimensions of a planar line approach a wavelength, say greater than a tenth
of a wavelength, it is possible for the EM signal to travel down the line in
two (or more field) orientations called modes and these travel at different
velocities and corrupt a signal. Multimoding is nearly always undesirable
so understanding the origins of multiple modes and designing to avoid
multiple modes is an important consideration. However in some situations
these modes is exploited, e.g. in realizing a small area inductor on an RFIC.

When two planar lines are close to each other the fields of one line can
be in the vicinity of the other line and the lines are coupled. A portion of
the energy of a signal traveling on one of the lines can appear on the other
line. Many circuit elements can be developed by exploiting parallel coupled
lines (PCLs). Chapter 5 begins by presenting the physics of coupling and
then a generalization of the telegraphist’s equations for coupled transmission
lines. Design approaches and circuit models are developed and the circuit
models enable the synthesis of microwave designs using parallel coupled
lines Several PCL circuit elements are presented but many more will be
described in other volumes of this book series.

The final chapter of this volume, Chapter 6, discusses rectangular
waveguides. Instead of ‘rectangular waveguide’ just the term ‘waveguide’
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is usually used with the understanding that reference is being made
to a rectangular waveguide. This is a little confusing because really all
transmission lines guide waves and so are waveguides. A rectangular
waveguide is a very different type of transmission line that confines the EM
fields inside a rectangular metal pipe. These are important elements starting
at low microwave frequencies, 1 GHz and above, as they can carry very
powerful signals with very little loss. They are almost always used in radar
and similar high power applications. Waveguides are also very important
at higher frequencies even when power levels are relatively low. They are
often used at 15 GHz and above as they have very little loss while the loss
of coaxial lines grows tremendously with frequency. With waveguides it is
very difficult to use voltage and current concepts except over very narrow
fractional bandwidths, a few percent at most. This means that it is very
difficult to do circuit design using waveguides.

1.3 Chapter Outline

The chapter begins by considering distributed circuits in Section 1.4 and
identifying the types of structures to be considered in this book. Then
Section 1.5 revisits Maxwell’s equations from a perspective different from
the way it was (almost certainly) introduced to the reader. It is assumed
that the reader has a knowledge of Maxwell’s equations which are nearly
always introduced following a treatment of the static field laws: Biot–Savart
law, Ampere’s circuital law, Gauss’s law, Gauss’s law for magnetism, and
Faraday’s law. The classic treatment follows the historical time line and
then Maxwell’s equations are introduced. It was almost as though Maxwell’s
equations were derived from the static field laws but that was never stated
because they were not. Maxwell’s equations represent a separate physical
insight. Maxwell’s equations cannot be derived from the static field laws,
however the static field laws can be derived from Maxwell’s equations.
Maxwell had remarkable insight and interpreted the physical world in an
amazing way and this places him among the greatest physicists of all time.
He touched on relativity and quantum field theory in imagining that the
electric and magnetic fields, and light, formed a two-component field where
the spatial derivative of one component was related to the time derivative of
the other. He imagined that this relationship imposed a cosmic speed limit.
The components of Maxwell’s field are the electric and magnetic fields but
the insight was much more fundamental than that.

The next section, Section 1.6, demonstrates that all of the early static field
laws can be derived from Maxwell’s equation. Maxwell unified what seemed
to be a number of unconnected observations but at the time many suspected
that there was an underlying reality. The next few sections derive some
important short-hand techniques that are useful in working with distributed
circuits and in particular transmission lines. Section 1.7 describes how the
EM fields interact with lossless materials. It is no secret that Maxwell’s
equations are fiendishly difficult to work with unless great simplifications
are made. While tremendous computational EM analysis tools are available
the design engineer needs insight. One of the critical pieces of insight that
guides microwave engineers is to imagine a magnetic wall analogous to
a conductor which is an electric wall. A magnetic wall is approximated at
the interface of two dielectrics. The concepts of electric and magnetic walls
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analyzed in Section 1.8 provide an insight that is particularly useful to the
microwave engineer is developed. These results will be used throughout
the chapters in this book. Actual dielectrics and conductors are lossy so
the effect of loss is considered in Section 1.9. Examples of how insight
and fortuitous use of geometry, symmetries, and physical insight can be
used in EM calculations are given in Section 1.9. Generally only particular
structures with the requisite symmetries and simple geometry are used in
design because if a structure is too difficult to analyze then the important
intuitive insight is hard to acquire.

The final part of this chapter is an appendix on mathematical foundations
with the required essentials of trigonometric expansions, mathematical
identities, complex arithmetic, Butterworth and Chebyshev polynomials
used in matching network and filter design, the properties of circles on
a complex plane are used in dealing with complex numbers plotted on
a polar plot, Kron’s method used in network condensation and thus in
simplifying designs, and the mathematics of random processes which are
used in working with digitally modulated signals and with noise. Everything
in this appendix is used somewhere in this book series.

1.4 Distributed Circuits

RF and microwave engineering has as its basis transmission line effects also
known as distributed effects. As is well known, the voltage and current
at one point, A, cannot instantaneously affect the voltage and current at
another spatially separated point B. However if points A and B in a circuit
are sufficiently close then a circuit can nearly always be treated as a lumped
element circuit. What constitutes sufficiently close is related to the distance
between A and B, d, compared to a wavelength, λ. If d < λ/100 then nearly
always the circuit can be considered as being lumped. If d ≥ λ/10 then
distributed effects, limitations imposed by the finite time-of-flight, must be
considered and the circuit is always regarded as being distributed. When d
is between λ/100 and λ/10 then it is not clear whether the circuit must be
regarded as distributed or can be regarded as lumped. It is of course much
simpler to analyze and design with lumped-element circuits.

Distributed and transmission-line effects are synonymous. While a
distributed circuit may be difficult to analyze, distributed effects can be
exploited to realize a very large array of elements that usually have no
equivalent at lower frequencies. For example, the fields from two adjacent
transmission lines can overlap so that part of the signal (energy) from one of
the lines appears on the other. This could be a problem in some situations but
can be used to couple some of the power from one line onto another. Many
novel circuit elements are based on this coupling effect.

Distributed effects and transmission line effects result from a signal,
voltage or current, at one point in space not being able to instantaneously
change the voltage and current at another point in space. To be more
physical, voltage and current can be replaced by electric and magnetic field.
The finite speed of light is encapsulated in Maxwell’s equations which
were developed between 1861 and 1862 [8, 9]. For microwave engineers
Maxwell’s equations are the most convenient and complete description
of reality. They are the classical limit of a more fundamental theory
called quantum electrodynamics. Maxwell’s equations are important to the
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physical understanding of transmission line effects and distributed effects,
but in reality are very difficult to manipulate and use in calculations. What
are much more useful are the transmission line equations, or telegrapher’s
equations, developed by Heaviside in 1887 [10].

The telegrapher’s equations use voltage and current which are related to
the integral of electric field and integral of magnetic field respectively. The
teleprapher’s equations relate the time derivative of voltage (or current)
to the spatial variation of current (or voltage). This is analogous to how
Maxwell’s equations relate the electric and magnetic fields. Heaviside also
introduced the concept of phasors with the result that the four dimensions of
Maxwell’s equations, time and three spatial dimensions, are reduced to just
one spatial dimension, along the length of a transmission line. Microwave
designers, as with all circuit designers, is that they design based on lumped-
element circuits that are naturally described by voltage and current. What
is particularly important about the telegrapher’s equations is that they
enable direct relationship of transmission line circuits to lumped-element
circuits. Never-the-less the telegraphist’s equations are not always sufficient
to understand distributed circuits so (sometimes reluctantly) microwave
engineers must have working familiarity with Maxwell’s equations to
understand every situation that can be encountered. Putting this another
way, microwave engineers want to express circuit quantities as voltage
and currents rather than electric and magnetic fields but are always aware
that microwave circuits are intricately connected to electric and magnetic
fields and energy is stored in electric and magnetic fields. The telegraphist’s
equations provide a link between the voltage/current and EM field worlds
and introduce concepts of traveling wave voltages and currents which
further aid the connection.

1.5 Maxwell’s Equations

In this and following sections, EM theory is presented in a form that
aids in the understanding of distributed effects, such as propagation on
transmission lines, coupling of transmission lines, and how transmission line
effects can be used to realize components with unique functionality. While
this is a review of material that most readers have previously learned, it is
presented in a slightly different form than is usual. The treatment begins
with Maxwell’s equations and not the static field laws. This is not the way
EM theory is initially presented.

Maxwell’s equations are a remarkable insight and the early field laws
can be derived from them. Most importantly, Maxwell’s equations describe
the propagation of an EM field. Maxwell’s equations are presented
in point form in Section 1.5.1 and in integral form in Section 1.5.5.
From these, the early electric and magnetic field laws are derived. The
effect of boundary conditions are introduced in Section 1.8 to arrive at
implications for multimoding on transmission lines. Multimoding is almost
always undesirable, and in designing transmission line structures so that
multimoding is avoided, it is necessary to have rules that establish when
multimoding can occur.
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1.5.1 Point Form of Maxwell’s Equations

The characteristics of EM fields are described by Maxwell’s equations:

∇× Ē = −∂B̄
∂t

− J̄m (1.1)

∇· D̄ = ρV (1.2)

∇× H̄ =
∂D̄
∂t

+ J̄ (1.3)

∇· B̄ = ρmV , (1.4)

where µ is called the permeability of the medium and ε is called the permit-
tivity of the medium. (The left-hand side of Equation (1.1) is read as “curl E”
and the left-hand side of Equation (1.2) as “div E.”) They are the property
of a medium and describe the ability to store magnetic energy and electric
energy. The other quantities in Equations (1.1)–(1.4) are

• Ē , the electric field, with units of volts per meter (V/m), a time-varying
vector

• D̄, the electric flux density, with units of coulombs per square meter
(C/m2)

• H̄, the three-dimensional magnetic field, with units of amperes per
meter (A/m)

• B̄, the magnetic flux density, with units of teslas (T)
• J̄ , the electric current density, with units of amperes per square meter

(A/m2)
• ρV , the electric charge density, with units of coulombs per cubic meter

(C/m3)
• ρmV , the magnetic charge density, with units of webers per cubic meter

(Wb/m3)
• J̄m is the magnetic current density, with units of webers per second per

square meter (Wb · s−1 ·m−2).
Magnetic charges do not exist, but their introduction in Maxwell’s equations
through the magnetic charge density, ρmV , and the magnetic current density,
J̄m, introduce an aesthetically appealing symmetry. Maxwell’s equations are
differential equations, and as with most differential equations, their solution
is obtained with particular boundary conditions that here are imposed by
conductors. Electric conductors (i.e., electric walls) support electric charges
and hence electric current. By analogy, magnetic walls support magnetic
charges and magnetic currents. Magnetic walls also provide boundary
conditions to be used in the solution of Maxwell’s equations. The notion
of magnetic walls is important in RF and microwave engineering, as they
are approximated by the boundary between two dielectrics of different
permittivity. The greater the difference in permittivity, the more closely the
boundary approximates a magnetic wall. As a result, the analysis of many
structures with different dielectrics can be simplified, aiding in intuitive
understanding.

The fields in Equations (1.1)–(1.4) are three-dimensional fields, e.g.,

Ē = Exx̂+ Eyŷ + Ezẑ, (1.5)

where x̂, ŷ, and ẑ are the unit vectors (having a magnitude of 1) in the x, y
and z directions, respectively. Ex, Ey, and Ez are the electric field components
in the x, y, and z directions, respectively.

The symbols and units used with the various field quantities and some of
the other symbols to be introduced soon are given in Table 1-1. B̄ and H̄, and
D̄ and Ē are related to each other by the properties of the medium embodied
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Table 1-1: Quantities used in Maxwell’s equations. Magnetic charge and current are introduced
in establishing boundary conditions, especially at dielectric interfaces. The SI units of other
quantities used in RF and microwave engineering are given in Table 2-1.

Symbol SI unit SI unit Name and base units

E volts per meter V/m electric field intensity
base unit: kg·m·s−3 ·A−1

H amps per meter A/m magnetic field intensity
D coulombs per square meter C/m2 D = εE, electric flux density

base unit: A·s·m−2

B tesla, webers per square meter T B = µH , magnetic flux density
base unit: kg·s−2 ·A−1

I amp A electric current
M amps per meter A/m magnetization

base unit: A·m−1

qe coulomb C electric charge
base unit: A·s

qm weber Wb magnetic charge
base unit: kg·m2 ·s−2 ·A−1

ψe coulomb C electric flux
base unit: A·s

ψm weber Wb magnetic flux
base unit: kg·m2 ·s−2 ·A−1

ρV coulombs per cubic meter C·m−3 charge density
base unit: A·s·m−3

ρS coulombs per square meter C/m2 surface charge density
base unit: A·s·m−2

ρmV webers per cubic meter Wb/m3 magnetic charge density
base unit: kg·m−1 ·s−2 ·A−1

ρmS webers per square meter Wb/m2 surface magnetic charge density
base unit: kg·s−2 ·A−1

J amps per square meter A/m2 electric current density
JS amps per meter A/m surface electric current density
Jm webers per second per square

meter
Wb·s−1 ·m−2 magnetic current density

base unit: kg·s−3 ·A−1

JmS webers per second per meter Wb·s−1 ·m−1 surface magnetic current density
base unit: kg·m−1 ·s−3 ·A−1

S square meters m2 surface
V cubic meters m3 volume
ε farads per meter F/m permittivity

base unit: kg−1 ·m−3 ·A2 ·s4
µ henry per meter H/m permeability

base unit: kg·m·s−2 ·A−2

dS square meter m2 incremental area
dℓ meter m incremental length
dV cubic meter m3 incremental volume
∮

C
integral around a closed contour

∮

S
integral over a closed surface

∫

V
volume integral
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in µ and ε:

B̄ = µH̄ (1.6) D̄ = εĒ . (1.7)

The quantity µ is called the permeability and describes the ability to store
magnetic energy in a region. The permeability in free space (or vacuum) is
denoted µ0 and the magnetic flux and magnetic field are related as (where
µ0 = 4π × 10−7 H/m)

B̄ = µ0H̄. (1.8)

1.5.2 Moments and Polarization

In this subsection the response of materials to electric and magnetic fields are
described. In a later section there will be a more specific discussion about the
interaction of dielectrics and metals to electric fields. The main purpose here
is to define electric and magnetic polarization vectors.

Material Response to an Applied Electric Field

The generation of electric moments is the atomic-level response of a material
to an applied electric field. With an atom the center of negative charge, the
center of the electron cloud, and the center of the positive charge, the nu-
cleus, overlap. When an electric field is applied the centers of positive and
negative charge separate and electrical energy additional to that stored in
free space is stored in a manner very similar to potential energy storage in
a stretched spring. The separation of charge (charge by distance) forms an
electric dipole which has an electric dipole moment p̄ having the SI units of
C ·m or A · s ·m. The same occurs with solids but now the centers of positive
and negative charge could be separated even without an external electric
field and the material is said to be polarized. If there are n electric dipole
moments p̄ per unit volume (in SI per m3), then the polarization density (or
electric polarization or simply polarization) is

P̄ = np̄. (1.9)

which has the SI units of C/m2. P̄ has the same units and has the same effect
as the electric flux density D̄. In a homogeneous, linear, isotropic material,
P̄ is proportional to the applied electric field intensity Ē . A homogenous
material has the same average properties everywhere and an isotropic
material looks the same in all directions. Materials that are not isotropic
are called anisotropic and most commonly these are crystals that have
asymmetrical unit cells so that the separation of charge, the electric energy
stored by this separation of charge (the strength of the spring) in response to
an applied field depends on direction. As a result

P̄ = χ̌eε0Ē (1.10)

where χ̌e is called the electric susceptibility of the material. The electric
susceptibility has been written as a tensor, a 3 × 3 matrix that relates the
three directions of Ē to the three possible directions of P̄ . For an amorphous
solid or a crystal with high unit cell symmetry, the nine elements of χ̌e are
the same and so the tensor notation is dropped and χe is used as a scalar.
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Material Response to an Applied Magnetic Field

All materials contain electrons each having a charge and a spin. The
charges produce an electric field and the spin produces a magnetic field.
The magnetic field produced by an electron is almost that which would
be produced by a mechanically spinning charge, although there is no
actual mechanical rotation. Spin is a quantum mechanical property. Still it
is very hard to avoid using the rotating charge analogy. The spin of an
electron points in a particular direction and in most materials these spins
are randomly arranged and cancel each other out so that there is no net
magnetic effect. Some materials can be magnetized by a large externally
applied magnetic field and the spins are then permanently aligned even
when the external magnetic field is removed. Sometimes the alignment is
established by crystal geometry.

Consider a magnetic material without permanent magnetization. When a
magnetic field is applied to these materials the electron spin vector tends to
rotate and energy is stored. The ability to store magnetic energy above that
which would be stored in vacuum is described by the concept of relative
permeability.

The response of a material to an applied magnetic field is not directly
analogous to the response to an applied electric field because of the
fundamental difference in the source of magnetic moments. In most
materials the magnetic moment of one electron is paired with an electron
occupying the same orbital with a magnetic moment in the opposite
direction so that there is no net magnetic moment. In magnetic materials
there are some orbitals that do not have a pair of electrons so that there is
a net magnetic moment. Additional energy is stored when the net magnetic
moments are rotated away from their preferred long-term direction by an
externally applied magnetic field H̄. This is like storing energy in a spring.
It is as though there is an additional magnetic field called the magnetic
polarization which has a particular density. The net magnetic polarization
density is denoted M̄ which has the SI units of A/m and

M̄ = χ̌mH̄ (1.11)

where χ̌m is called the magnetic susceptibility of the material and in general
can be a 3× 3 matrix. The relative permeability is defined as

µ̌r = 1 + χ̌m. (1.12)

Summary

A vacuum can store electric and magnetic energy. Materials can store
additional energy and the propensity relative to vacuum is described by the
relative permittivity and permeability, respectively, of the material.

1.5.3 Field Intensity and Flux Density

Permeability, µ, is generally a scalar, but in magnetic materials it can be a 3×3
matrix called a dyadic tensor with the relative permeability tensor being µ̌r.
Then

B̄ = µ0(H̄+ M̄) (1.13)
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where M̄ is the magnetization of the material. Introducing phasors

B̄ = µ0(H̄ + χ̌mH̄) = µoµ̌rH̄ (1.14)




Bx

By

Bz



 = µ̌r





Hx

Hy

Hz



 =





µxx µxy µxz

µyx µyy µyz

µzx µzy µzz









Hx

Hy

Hz



 . (1.15)

The direction-dependent property indicated by this dyadic results from
alignment of electron spins in a material. However, in most materials there
is no alignment of spins and µ = µ0. The relative permeability, µr, refers to
the ratio of permeability of a material to its value in a vacuum:

µr =
µ

µ0
. (1.16)

So µr > 1 indicates that a material can store more magnetic energy than can
a vacuum in a given volume.

The other material quantity is the permittivity, ε, which is denoted ε0, and
in a vacuum

D = ε0E , (1.17)

where ε0 = 8.854 × 10−12 F·m−1. The relative permittivity, εr, refers to the
ratio of permeability of a material to its value in a vacuum:

εr =
ε

ε0
. (1.18)

So εr > 1 indicates that a material can store more electric energy in a volume
than can be stored in a vacuum. In some calculations it is useful to introduce
an electric polarization, Pe. Then

D = εE = ε0E + Pe, (1.19)

and so the polarization vector is

Pe = (ε− ε0) E = ε0χeE , (1.20)

where χe is called the electric susceptibility.
Some materials require a dyadic form of ε. This usually indicates a

dependence on crystal symmetry, and the relative movement of charge
centers in different directions when an E field is applied. Some commonly
used microwave substrates, such as sapphire, have permittivities that are
direction dependent rather than having full dyadic permittivity. A material
in which the permittivity is a function of direction is called an anisotropic
material or is said to have dielectric anisotropy. In an isotropic material the
permittivity is the same in all directions; the material has dielectric isotropy.
Most materials are isotropic.

Maxwell’s original equations were put in the form of Equations (1.1)–
(1.4) by the mathematician Oliver Heaviside from the less convenient form
Maxwell originally used. The above equations are called the point form of
Maxwell’s equations, relating the field components to each other and to
charge and current density at a point.
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Maxwell’s equations have three types of derivatives. First, there is the
time derivative, ∂/∂t. Then there are two spatial derivatives: ∇×, called
curl, capturing the way a field circulates spatially (or the amount that it
curls up on itself); and ∇·, called the div operator, describing the spreading
out of a field (i.e., its divergence). Curl and div have different forms in
different coordinate systems, and in the rectangular system can be expanded
as (A = Axx̂+Ayŷ +Az ẑ)

∇×A =

(

∂Az

∂y
− ∂Ay

∂z

)

x̂+

(

∂Ax

∂z
− ∂Az

∂x

)

ŷ +

(

∂Ay

∂x
− ∂Ax

∂y

)

ẑ (1.21)

and ∇·A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
. (1.22)

Curl and div in cylindrical and spherical coordinates are given in Equations
(1.134), (1.135), (1.143), and (1.144). Studying Equation (1.21) you will see
that curl, ∇×, describes how much a field circles around the x, y, and z axes.
That is, the curl describes how a field circulates on itself. So Equation (1.1)
relates the amount an electric field circulates on itself to changes of the B
field in time (and modified by the magnetic current). So a spatial derivative
of electric fields is related to a time derivative of the magnetic field. Also in
Equation (1.3), the spatial derivative of the magnetic field is related to the
time derivative of the electric field (and modified by the electric current).
These are the key elements that result in self-sustaining propagation.

Div, ∇·, describes how a field spreads out from a point. So the presence
of net electric charge (say, on a conductor) will result in the electric field
spreading out from a point (see Equation (1.2)). The magnetic field (Equation
(1.4)) can never diverge from a point, which is a result of magnetic charges
not existing. A magnetic wall approximation describes an open circuit and
then effectively magnetic charges terminate the magnetic field. What actually
happens in free space or on a transmission line depends on boundary
conditions, and in the case of transmission lines, the dimensions involved.

How fast a field varies with time, ∂B̄/∂t and ∂D̄/∂t, depends on frequency.
The more interesting property is how fast a field can change spatially, ∇× Ē
and ∇×H̄—this depends on wavelength relative to geometry. So if the cross-
sectional dimensions of a transmission line are much less than a wavelength
(say, less than λ/4), then it will be impossible for the fields to curl up on
themselves and so there will be only one or, in some cases, no solutions to
Maxwell’s equations.
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EXAMPLE 1.1 Energy Storage

Consider a material with a relative permittivity of 65 and a relative permeability of 1000.
There is a static electric field E of 1 kV/m. How much energy is stored in the E field in a
10 cm3 volume of the material?

Solution:

Energy stored in a static electric field =
∫

V

D̄ · Ē · dv:

D = εE and field is constant (uniform)

Energy stored = εE2 × (volume) = 65ε0 ·
(

103
)2 ·

(

10 · 10−6) = 5.75 · 10−9 J = 5.75 nJ.

The complete calculation using SI units is

Energy stored = 65(8.854 · 10−12 · F·m−1)
(

103 ·V·m−1)2 ·
(

10 · 10−6 ·m3)

= 65(8.854 · 10−12 · kg−1 ·m−3 ·A2 ·s4)·
(

103 · kg·m2 ·A−1 ·s−3 ·m−1
)2 ·

(

10−5 ·m3
)

= 65·8.854·10−12 ·106 ·10−5 ·kg·m2 ·s−2 = 5.75 · 10−9 · kg·m2 ·s−2

= 5.75 · 10−9 J = 5.75 nJ.

EXAMPLE 1.2 Polarization Vector

A time-varying electric field in the x direction has a strength of 100 V/m and a frequency
of 10 GHz. The medium has a relative permittivity of 10. What is the polarization vector?
Express this vector in the time domain?

Solution:

D̄ = εĒ = ε0Ē + P̄e.
The polarization vector is

P̄e = (ε− ε0) Ē = (10− 1) ε0Ē = 9ε0Ē .

Now Ē = 100cos
(

2 · π · 1010t
)

x̂

and ε0 = 8 · 85 · 1012, so

P̄e = 9
(

8.85× 10−12
)

· (100) cos
(

6.28 × 1010t
)

x̂

= 79.7 × 10−10 · cos
(

6.28× 1010t
)

x̂

= 7.79cos
(

6.28× 1010t
)

x̂ nC/m2. (1.23)

1.5.4 Maxwell’s Equations in Phasor Form

Phasors reduce the dimensionality of Maxwell’s equations by replacing
a time derivative by a complex scalar. The phasor form is used with a
cosinusoidally varying quantity so, for example, an x-directed electric field
in rectangular coordinates,

Ē = |Ex| cos (ωt+ φ)x̂, (1.24)

is represented as the phasor

Ex = |Ex|eφx̂. (1.25)
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The full three-dimensional electric field is

Ē = |Ex| cos (ωt+ φx)x̂+ |Ey| cos (ωt+ φy)ŷ + |Ez | cos (ωt+ φz)ẑ (1.26)

and has the phasor form

Ē = |Ex|eφx x̂+ |Ey|eφy ŷ + |Ez|eφz ẑ. (1.27)

To express Maxwell’s equations in phasor form, the full complex form of
Equation (1.26) must be considered. Using Equation (1.94), Equation (1.26)
becomes

Ē =
1

2

(

|Ex|eφx x̂+ |Ey|eφy ŷ + |Ez|eφz ẑ
)

eωt

+
1

2

(

|Ex|e−φx x̂+ |Ey|e−φy ŷ + |Ez |e−φz ẑ
)

e−ωt (1.28)

with the time derivative

∂E

∂t
=
1

2
ω

(

|Ex|eφx x̂+ |Ey|eφy ŷ + |Ez |eφz ẑ
)

eωt

− 1

2
ω

(

|Ex|e−φx x̂+ |Ey |e−φy ŷ + |Ez |e−φz ẑ
)

e−ωt. (1.29)

Equation (1.29) has the phasor form (from the eωt component)

2

eωt

{

eωt

component of

∂Ē
∂t

}

= ω
(

|Ex|eφxx̂+ |Ey |eφy ŷ + |Ez |eφz ẑ
)

. (1.30)

Noting this, Maxwell’s equations in phasor form, from Equations (1.1)–(1.4),
are

∇× Ē = −ωB̄ − J̄m (1.31)

∇× H̄ = ωD̄ + J̄ (1.32)

∇· D̄ = ρV (1.33)

∇· B̄ = ρmV . (1.34)

1.5.5 Integral Form of Maxwell’s Equations

It is sometimes more convenient to use the integral forms of Maxwell’s
equations, and Equations (1.1)–(1.4) become

∮

s

∇× Ē · ds =
∮

C

Ē · dℓ = −
∮

s

∂B̄
∂t

· ds−
∮

s

J̄m · ds (1.35)

∮

s

∇× H̄ · ds =
∮

C

H̄ · dℓ =
∫

s

∂D̄
∂t

· ds+ Ī (1.36)

∫

v

∇· D̄ dv =

∮

s

D̄ · ds =
∫

V

ρv dv = Qenclosed (1.37)

∫

v

∇· B̄ dv =

∮

s

B̄ · ds = 0, (1.38)

where Qenclosed is the total charge in the volume enclosed by the surface,
S. The subscript S on the integral indicates a surface integral and the circle
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on the integral sign indicates that the integral is over a closed surface. Two
mathematical identities were used in developing Equations (1.35)–(1.38). The
first identity is Stoke’s theorem, which states that for any vector field X,

∮

ℓ

X · dℓ ≡
∮

s

(∇×X) · ds. (1.39)

So the contour integral of X around a closed contour, C (with incremental
length vector dℓ), is the integral of ∇× X over the surface enclosed by the
contour and ds is the incremental area multiplied by a unit vector normal
to the surface. This identity is used in Equations (1.35) and (1.36). The
divergence theorem is the other identity and is used in Equations (1.37) and
(1.38). For any vector field X, the divergence theorem states that

∮

s

X · ds =
∫

v

∇·X dv. (1.40)

That is, the volume integral of ∇·X is equal to the closed surface integral of
X.

Using phasors the integral-based forms of Maxwell’s equations become
∮

C

Ē · dℓ = −ω

∮

s

B̄ · ds−
∮

s

J̄m · ds (1.41)

∮

C

H̄ · dℓ = ω

∫

s

D̄ · ds + Ī (1.42)

∮

s

D̄ · ds =
∫

V

ρv dv = Qenclosed (1.43)

∮

s

B̄ · ds = 0, (1.44)

1.6 Electric and Magnetic Field Laws

Before Maxwell’s equations were postulated, several laws of electromag-
netics were known. These are the Biot–Savart law, Ampere’s circuital law,
Gauss’s law, Gauss’s law for magnetism, and Faraday’s law. The laws are
for specific circumstances and mostly for static fields. In this section they are
derived from Maxwell’s equations.

1.6.1 Ampere’s Circuital Law

Ampere’s circuital law, often called just Ampere’s law, relates direct current
and the static magnetic field H̄. The relationship is based on Figure 1-3. In
the static situation, ∂D̄/∂t = 0, and so one of Maxwell’s equations, Equation
(1.36), reduces to

∮

ℓ

H̄ · dℓ = Ienclosed. (1.45)

This is Ampere’s circuital law.

1.6.2 Biot–Savart Law

The Biot–Savart law relates current to static magnetic field. With ∂D/∂t = 0,
Equation (1.3) becomes

∇× H̄ = J̄ . (1.46)



INTRODUCTION TO DISTRIBUTED MICROWAVE CIRCUITS 17

Figure 1-3: Diagram illustrating Ampere’s law. Am-
pere’s law relates the current on a wire to the mag-
netic field around it.

Figure 1-4: Diagram illustrating the Biot–Savart
law. The Biot–Savart law relates current to
magnetic field.

In Cartesian coordinates,

∇× H̄ =

(

∂Hz

∂y
− ∂Hy

∂z

)

x̂+

(

∂Hx

∂z
− ∂Hz

∂x

)

ŷ +

(

∂Hy

∂x
− ∂Hx

∂y

)

ẑ, (1.47)

and if the current is confined to a thin wire as shown in Figure 1-4, ∇× H̄
reduces to an operation along the wire, but also with vector information. So
the first step in the development of the Biot–Savart law, Equation (1.46), is
simplified to (ignoring vector information for now)

∂H

∂ℓ
=

I

4πR2
. (1.48)

With vector information and moving the infinitesimal length of wire, dℓ, from
the left side of the equation to the right, the final form of the Biot–Savart law
is obtained:

dH̄ =
Idℓ× âR

4πR2
, (1.49)

which has the units of amps per meter in the SI system. In Equation (1.49),
I is current, dℓ is a length increment of a filament of current I , âR is the
unit vector in the direction from the current filament to the magnetic field,
and R is the distance between the filament and the magnetic field increment.
So Equation (1.49) is saying that a filament of current produces a magnetic
field at a point. The total static magnetic field from a current on a wire or
surface can be found by modeling the wire or surface as a number of current
filaments, and the total magnetic field at a point is obtained by summing up
the contributions from each filament.

1.6.3 Gauss’s Law

The third law is Gauss’s law, which relates the static electric flux density
vector, D, to charge. With reference to Figure 1-5, Gauss’s law in integral
form is

∮

s

D̄ =

∫

v

ρv.dv = Qenclosed, (1.50)

which states that the integral of the electric flux density vector, D̄, is equal
to the total charge enclosed by the surface, Qenclosed. This is just the integral
form of the third Maxwell equation (Equation (1.37)).
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Figure 1-5: Diagram il-
lustrating Gauss’s law.
Charges are distributed in
the volume enclosed by the
closed surface. An incre-
mental area is described
by the vector ds which is
normal to the surface and
whose magnitude is the
area of the incremental area.

Figure 1-6: Diagram
illustrating Faraday’s
law. The contour ℓ
encloses the surface.

There is a similar law called Coulomb’s law which says that the magnitude
of the force between two stationary point charges is directly proportional to
the product of the magnitudes of charges and inversely proportional to the
square of the distance between them. This law can be derived from Gauss’s
law but is less general. Coulomb’s law applies only to stationary charges
whereas with Gauss’s law the charges can be moving.

Gauss’s law has also been used for magnetic field where it is called Gauss’s
law for magnetism. In integral form Gauss’s law for magnetism is

∮

s

B̄ = 0, (1.51)

where B̄, is the static magnetic flux density. This law is the same as saying
that there are no magnetic charges. “Gauss’s law for magnetism” is a name
that is not universally used and many people simply say that there are no
magnetic charges.

1.6.4 Faraday’s Law

Faraday’s law relates a time-varying magnetic field to an induced voltage
drop, V , which is now understood to be

∮

ℓ E · dℓ, that is, the closed contour
integral of the electric field,

V =

∮

ℓ

Ē · dℓ = −
∮

s

∂B̄
∂t

· ds, (1.52)

and this has the units of volts in the SI unit system. This is just the first of
Maxwell’s equations in integral form (see Equation (1.35)). The operation
described in Equation (1.52) is illustrated in Figure 1-6.
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1.7 Electromagnetic Fields in Dielectrics and Metals

The discussion in this section follows the description by Max Born [11] (who
was instrumental in the development of quantum mechanics). Extensions
are made to relates quantum descriptions to effects important to microwave
engineering. In particular the descriptions here relate phenomena at the
discrete particle level to continuum properties such as permittivity, ǫ.

1.7.1 Electromagnetic Fields in a Dielectric

A dielectric has no electrons that are free to move through a material under
the influence of an electric field. When an EM field is incident on a dielectric
the electric field moves charge centers. For a crystal these charge centers
are at the scale of the lattice, and for composite materials like plastics the
centers are at the molecular scale. With some materials, which we know as
materials having high permittivity, the charge centers are normally separated
but by less than the intra-atom spacing. With all dielectric materials, the
major impact of an applied electric field is movement of the charge centers,
alternately moving them apart and moving them together as the applied
electric field alternates. Now being a dielectric, the charges cannot move
freely through the material and the energy that is transferred to the charges
is stored as electric potential energy in stretched bonds or, sometimes, as a
distorted lattice (such as with the piezoelectric effect). This energy storage
is much like storing mechanical energy in a spring. Now the charges move
and thus excite an electric field of their own. However the charges move
sluggishly and so the phase of the EM signal they produce is out of phase
with respect to an externally applied alternating EM field. The charge centers
are moving the fastest at the peak of the applied sinusoidal field and the net
effect is a 90◦ phase lag.

Another phenomenon is that the combined effect of the reradiated fields
from the moving charge centers produces an EM wave with the same
frequency as the applied field but with a smaller phase velocity (smaller
because the phase velocity is averaged over many paths). The oscillating
charge centers radiate in all directions (which is called scattering) and so
some of the EM energy will be scattered in the direction from which the
applied EM wave came.

An ideal dielectric has no loss. That is, there is no dielectric relaxation
loss associated with heating as the charge centers move, and there is no
conductivity due to moving free charges in the dielectric.

1.7.2 Refractive Index

Dielectrics were first characterized by their refractive index long before the
concept of EM waves and permittivity were developed. The refractive index,
n, of a medium is defined as the ratio of the speed of light (i.e., of an EM
wave) in a vacuum, c, of an EM wave to the phase velocity, vp, of the wave
in the medium:

n =
c

vp
=

1√
ǫ0µ0

√
ǫµ

1
. (1.53)

For a loss-free medium n =
√
εrµr. (1.54)
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For a lossy medium the complex index of refraction is

ñ = n+ κ, (1.55)

where n is called the refractive index and is directly related to the phase
velocity, vp, and κ is called the extinction coefficient, which describes loss
when the EM wave propagates through the material.

Conversion between refractive index and permittivity is as follows [12, 13];
the complex permittivity

ε = ǫ1 + ǫ2 = (n+ κ)2, (1.56)

where ε1 = n2 − κ2 and ε2 = 2nκ. . (1.57)

The components of the complex index of refraction are then

n =

√

√

ε21 + ε22 + ε1
2

and κ =

√

√

ε21 + ε22 − ǫ1
2

. (1.58)

The permittivity is just the square of the (complex) refractive index in a
nonmagnetic medium (µr = 1). The refractive index is used with optics and
the permittivity is used when working with Maxwell’s equations and with
electronics.

The refractive index, and thus permittivity, of a dielectric can vary
significantly between microwave and optical frequencies, a result of how
quickly different types of charge centers can move. For water at 20◦C and
at the standard optical wavelength of 589 nm (the yellow doublet sodium
D-line), n = 1.333 (ǫr = 1.78) [14]. At 1 GHz n = 8.94 (ǫr = 80) [15].

1.7.3 Electromagnetic Fields in a Metal

The discussion here refers to the behavior of EM fields in metals at
frequencies from DC to 10 THz. Above these frequencies the EM wave
changes direction much faster than electrons can move. Metals have a large
number of free charges that can move through a metal under the influence
of an electric field. On transmission lines the energy is contained in the EM
fields between metal guides, and electric and magnetic fields are present at
the surface of the metal. The main effect of the EM fields at the surface of
the metal is to accelerate the free electrons at the surface, with the electrons
accelerating in the direction opposite to that of the electric field. While some
of the EM energy propagates into the metal, the overwhelming effect is
transfer of energy from the EM photons to kinetic energy of the free electrons.
There is also some transfer of energy to the bound electrons, however,
this effect is smaller as the bound electrons are shielded by the sea of free
electrons. Electrons have mass and accelerate relatively slowly. Even when
the electric field is reversed, the electrons will continue moving considerably
in the same direction as the electric field before reversing. The moving and
accelerating electrons also produce electric fields of their own that in turn
influence the movement of other electrons. Electrons are sluggish and their
position is almost 180◦ out of phase with the applied E field. The net effect
is that the electric field produced by the electrons almost completely cancels
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Table 1-2: Electromagnetic properties of metals at optical frequencies. (n and κ are measured, ε1
and ε2 are derived using Equation (1.57).

Metal Photon Wavelength, Frequency n κ ε1 ε2
energy (eV) λ (µm) f (THz)

Gold 0.1 12.398 24.197 8.17 82.83 −6794 1353
Copper 0.1 12.398 24.197 29.69 71.57 −4240 4250

Aluminum 0.1 12.398 24.197 98.595 203.7 -31 663 40 168

the incoming electric field. It is therefore almost meaningless to talk about the
(group or phase) velocity of the EM fields in the metal. The overriding effect
is transfer of energy to moving electrons that eventually make the lattice
move and transfer their energy to the lattice, producing heat.

The accelerating electrons radiate electric field in all directions and in turn
this field accelerates other electrons. There is also a damping force as the free
electrons collide with atoms. So there is a rapidly diminishing component
of the EM field that travels through the metal at the speed of light. Rather
than energy being stored in the electric field through the movement of
charge centers as in dielectrics, electric energy in the forward-propagating
field is almost entirely lost in the scattering and collision processes. So
at microwave frequencies the effective permittivity of a metal is almost
entirely imaginary (corresponding to loss), and this imaginary component
of the relative permittivity is 8–10 orders of magnitude greater than the
real component, which is believed to be 1 [16]. The real component of the
relative permittivity is 1 because the charge centers are masked by the sea
of free electrons. It is not possible to directly measure the real part of the
permittivity of metals at microwave frequencies. An ideal conductor has
infinite conductivity, so there are no EM fields inside the metal and net
charges are confined to the surface of the conductor. At optical frequencies
metals are known to have a negative permittivity (see Table 1-2).

1.8 Electric and Magnetic Walls

The boundaries imposed by conductors and the interface between dielectrics
define the mode structure (i.e., orientation of the fields) supported by
a transmission line. Understanding the fields at the interfaces provides
the intuition required to understand the operational frequency limits of
distributed structures such as transmission lines.

1.8.1 Electric Wall

An electric wall is formed by an ideal conductor, as shown in Figure 1-7,
where there are electric charges at the surface of the conductor. Consider
that the conductor in Figure 1-7(a) carries a current of density J and charge
of density ρV . As the conductivity of the conductor goes to infinity, the
conductor becomes a perfect conductor and forms an electric wall, as shown
in Figure 1-7(b). The current and charge now occupy the very skin of the
conductor at the interface to the region above which there is either free space
or a dielectric. The behavior of the fields at the interface can be understood
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Figure 1-7: Properties of an electric wall: (a) the electrical field is
perpendicular to a conductor and the magnetic field is parallel to it and is
orthogonal to the current; (b) a conductor can be approximated by an electric
wall; (c) cylinder used in deriving the normal electric field; (d) cylinder
used in showing that the tangential electric field is zero; (e) contour used
in deriving the tangential magnetic field in the y direction; and (f) contour
used in deriving the z- and x-directed magnetic fields (they are zero).

by considering the integration surfaces and volumes shown in Figure 1-7(c
and d). The cylinder in Figure 1-7(c) with height h and diameter d enables
Gauss’s law (Equation (1.50)) to be applied. As h −→ 0 (h approaching zero),
Equation (1.50) yields

∮

s

D̄.ds = Dz
1
4πd

2 =

∫

v

ρv.dv = Qenclosed = ρS
1
4πd

2, (1.59)

where ρS is the surface charge density (in SI units of C/m2) and so

Dz = ρS . (1.60)

Now considering the cylinder in Figure 1-7(d), again as h −→ 0,

∮

s

D̄.ds = Dx
1
4πd

2 =

∫

v

ρv.dv = Qenclosed

= ρSπdh −→ 0. (1.61)

That is, Dx = 0. (1.62)

Changing the orientation of the cylinder, it can be seen that

Dy = 0. (1.63)

So the electric field is normal to the surface of the conductor.
The properties of the magnetic field at the electric wall can be deduced

from Faraday’s circuital law and the Biot–Savart law (Equation (1.49)).
Consider the rectangular contour shown in Figure 1-7(e) with height h and
width w. With h −→ 0, only the y-directed component of the magnetic field
will contribute to the static magnetic field integral of Faraday’s law, so from
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Equation (1.52),
∮

ℓ

H̄ · dℓ = Hyw = Ienclosed = JSw, (1.64)

where JS is the surface current density (with SI units of A/m) and

Hy = JS . (1.65)

For the field oriented in the x direction, the rectangular contour shown in
Figure 1-7(f) can be used, but now no current is enclosed by the contour, so
that with h −→ 0,

∮

ℓ

H̄ · dℓ = Hxw = Ienclosed = 0 (1.66)

and Hx = 0. (1.67)

Hz has not yet been considered. Again, using the rectangle in Figure 1-7(f)
and with w −→ 0,

∮

ℓ

H · dℓ = Hzh = Ienclosed = 0 (1.68)

and Hz = 0. (1.69)

This could also have been derived from the Biot–Savart law (Equation (1.49)).
Immediately above the electric wall R −→ 0 and only the filament of current
immediately below the magnetic field contributes. Thus aR is normal to the
surface so that H will be perpendicular to the current, but in the plane of the
current.

Gathering the results together, the EM fields immediately above the elec-
tric wall have the following properties:

The E field is perpendicular to the electric
wall.

The H field is parallel to the electric wall.

Dnormal = ρS , the surface charge density. Hparallel = JS , the surface current density.

1.8.2 Magnetic Wall

A true magnetic wall does not exist, but it is approximated by the interface
between two dielectrics (as shown in Figure 1-8) when the permittivity of
the dielectrics differ so that ε2 ≫ ε1. Considering the top dielectric region,
the magnetic wall model can then be introduced at the interface between the
two dielectrics, complete with magnetic charges and magnetic current den-
sity, M . The situation is analogous to the electric wall situation with the roles
of the electric and magnetic fields interchanged. The EM fields immediately
above the magnetic wall have the following properties:

The H field is perpendicular to the mag-
netic wall.

The E field is parallel to the magnetic wall.

Hnormal = ρmS , the surface magnetic
charge density.

Eparallel = JmS , the surface magnetic
current density.
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Figure 1-8: Properties of the EM field at a magnetic wall: (a) the interface
of two dielectrics of contrasting permittivities approximates a magnetic wall
with the magnetic field perpendicular to the interface and the electric field
parallel to it; (b) the dielectric with lower permittivity can be approximated
as a magnetic conductor; and (c) the magnetic conductor forms a magnetic
wall at the interface with the material with higher permittivity.

Table 1-3: Properties of
electric and magnetic
walls.

Electric field Magnetic field

Electric wall Normal Parallel
Magnetic wall Parallel Normal

What constitutes a good magnetic wall is subject to debate, as the
contrast between dielectrics is not as great as the contrast between the
conductivity of a good conductor and that of a good dielectric. However,
it is an essential concept in understanding the coupling of signals and
approximating transmission lines to yield intuitive understanding.

The summary that is used in the text to understand multimoding is given
in Table 1-3.

1.9 Fields in Lossy Mediums

Lossy mediums result in power loss of EM fields. In RF and microwave
systems materials are ideally either perfect conductors or perfect dielectrics.
In practice, conductors and dielectrics have finite conductivity and
dielectrics have another type of loss called dielectric relaxation loss.
Dielectric relaxation loss is due to heating that can result from the movement
of charge centers in a material.

1.9.1 Lossy Dielectrics

In a lossy dielectric there can be both current flow and relaxation loss.
Current flow results from applied electric field and is described by the
conductivity, σ, of the material. Relaxation loss results from polarization
of the material and the transfer of energy to the lattice of the material as the
electric field changes direction. This is also referred to as dielectric damping.
The polarization vector describes the additional energy storage capacity of a
material (above that of vacuum) in response to an applied electric field. The
capacity is described by the electric susceptibility, χe, in Equation (1.20). In
phasor form, loss is captured by a complex χe or a complex permittivity:

ε = ε′ − ε′′ = ε(1 + χe). (1.70)
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Both current and relaxation respond to an applied electric field. In phasor
form, Maxwell’s curl equation for a magnetic field, Equation (1.32), becomes

∇× H̄ = ωD̄ + J̄ = ωεĒ + σĒ = ω(ε′ − ε′′)Ē + σĒ

= ωε′Ē + (σ + ωε′′)Ē

= ω
(

ε′ − ε′′ − 
σ

ω

)

Ē. (1.71)

In the above, ωε′ describes the ability to store electric energy, ωε′′ describes
dielectric damping loss, and σ describes conductivity loss. At a single
frequency, damping and conductivity losses are indistinguishable and so the
term (ωε′′ + σ) is taken as the effective conductivity. The effective (complex)
relative permittivity is

εe =
(

ε′ − ε′′ − 
σ

ω

) 1

ε0
. (1.72)

Another quantity that describes loss is the loss tangent, tan δ, which is the
ratio of power lost to energy stored:

tan δ =
ωε′′ + σ

ωε′
. (1.73)

For many dielectric materials used with EM structures, tan δ is approxi-
mately independent of frequency up to 100s of gigahertz, so it is commonly
used to characterize the dielectric loss of a material. Most exceptions are
semiconductors such as silicon which can have appreciable conductive loss.
The frequency independence of tan δ indicates that conductivity loss is neg-
ligible.

EXAMPLE 1.3 Electromagnetic Wave Propagation in a Lossy Dielectric

Consider a plane EM wave propagating in a medium with permittivity ε and permeability
µ. The complex permittivity measured at two frequencies is experimentally characterized
by the relative permittivity (ε/ε0) of the real, ℜ{ε/ε0}, and imaginary, ℑ{ε/ε0}, parts as
follows:

Measured relative permittivity:

Frequency Real Imaginary
part part

1 GHz 1.9 −0.0490
2 GHz 1.9 −0.0314

Measured relative permeability:

Frequency Real Imaginary
part part

1 GHz 1.9 −0.001
2 GHz 1.9 −0.001

Since there is an imaginary part of the dielectric constant, there could be loss due to either
dielectric damping or finite material conductivity, or both. When characterizing materials,
it is only possible to distinguish the contribution to the measured imaginary part of
the permittivity by considering the experimentally derived imaginary permittivity at two
different frequencies.

(a) Determine the dielectric loss tangent at 1 GHz.
(b) Determine the relative dielectric damping factor at 1 GHz (the part of the permittivity

due to dielectric damping).
(c) What is the conductivity of the dielectric?
(d) What is the magnetic conductivity of the medium?
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Solution:

(a) At 1 GHz, ε = εrε0, and the measured relative permittivity is

εr = 1.9− 0.049 = ε′r,e − ε′′r,e, (1.74)

where ε′r,e and ε′′r,e are the effective (measured) values of ε′r and ε′′r obtained from
measurement. Now ε′e = ε′, but the imaginary permittivity includes the effect of
dielectric conductivity, σ, as well as of dielectric damping, which is described by ε′′

alone. That is,

ε′′e = ε′′ +
σ

ω
· εr = ε′′r,e = 0.0490 and tan δ = 0.0490/1.9 = 0.0258.

(b) The imaginary relative permittivity is found by noting that ε′′r,e = ε′′r + σ/ω and
ωε′′r + σ = ωε′′r,e. Let ω1 = 2π (1 GHz). Then

ω2 = 2ω1

ω1ε
′′
r,e (1 GHz) = ω1ε

′′
r + σ = ω1 · 0.0490 (A)

ω2ε
′′
r,e (2 GHz) = ω2ε

′′
r + σ = ω2 · 0.0314

2ω1ε
′′
e + σ = 2ω1 (0.0314) (B)

(B)− (A) → ω1ε
′′
r = ω1 [0.0628 − 0.0490]

ε′′r = 0.0138 (at all frequencies) .

(c) Recall that ε′′r,e = ε′′r + σ/ω.
At 1 GHz, ω = 2π × 109, ε′′r,e = 0.0490, ε′′r = 0.0138, so

σ = ω
(

ε′′r,e − ε′′r
)

= 2 · π · 109 (0.0490 − 0.0138) = 0.221 · 109 S/m = 221 MS/m.

(d) Magnetic conductivity is nonexistent, thus magnetic conductivity is zero.

1.9.2 Lossy Conductors

Perfect conductors would have infinite conductivity, but since the conduc-
tivity of real conductors is finite, EM fields penetrate into the interior of a
conductor. Still the energy stored in the current is much greater than the (di-
electric) electric energy storage capability, σ ≫ ωε′, and the losses from con-
ductivity are much higher than dielectric loss, σ ≫ ωε′′, so that the effective
relative permittivity from Equation (1.72) is

εe =
(

ε′ − ε′′ − 
σ

ω

) 1

ε0
≈

(

−
σ

ω

) 1

ε0
≈

(

σ

ω

)

1

ε0
. (1.75)

For most conductors the permeability is µ0 and the working permittivity is

ε = εeε0 =
σ

ω
. (1.76)

The propagation constant of the field in a conductor is

γ = α+ β ≈ ω
√
µε ≈ ω

√
µ

√

σ

ω
≈ (1 + )

√

ωµσ

2
. (1.77)

So α =
√

ωµσ/2. The EM field in the conductor reduces in amplitude as e−αx

after a distance x. Thus the field reduces to 1/e of its value after a distance
called the skin depth, δs:

δs =

√

2

ωµσ
. (1.78)
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If the amplitude of the electric field at the surface of a conductor is A(0), after
a distance δs the amplitude of the electric field will have the amplitude

A(δs) = e−αx = e
−
(√

ωµσ/2
√

2/ωµσ
)

= e−1. (1.79)

Table 1-4 lists the skin depth and phase velocities of conductors commonly
used in microwave circuits. The resistivity values here are those of a single
crystal. The phase velocity, vp, is calculated from the propagation constant β.

From Equation (1.77), β =
√

ωµσ/2.

Now vp = ω/β, so that vp =
ω

β
=

ω
√
2√

ωµσ
=

√

2ω

µσ
. (1.80)

This can be simplified further if the relative permeability of the material is
1, as then µ = µ0 = 4π10−7 H/m. If SI units are used for f and σ:

vp =

√

2ω

µ0σ
=

√

4πf

4π10−7σ
=

√

107f

σ
. (1.81)

From Table 1-4 note that the skin depth at gigahertz frequencies is close to
the thickness of microstrip lines which are often only a few microns thick.
Also the speed of an EM wave in a conductor is very slow. The speed of EM
in copper (ideal), for example, is 0.004% of the speed of light in a vacuum.

Table 1-4: Skin depth and effective phase velocity at 1 GHz of several conductors commonly
used in microwave circuits.

Material Electrical conductivity, Skin depth, Phase velocity,
σ (MS.m−1) δ at 1 GHz (µm) vp at 1 GHz (km/s)

1 GHz
Aluminum (crystal) 37.7 2.59 16.3
Aluminum (2× resistivity) 18.9 3.66 23.0
Copper (single crystal) 59.6 2.06 13.0
Copper (2× resistivity) 29.8 2.92 18.3
Gold (single crystal) 45.2 2.37 14.9
Gold (2× resistivity) 22.6 3.35 21.0
Silver (single crystal) 63.0 2.01 12.6
Silver (2× resistivity) 31.5 2.84 17.8
Titanium (single crystal) 0.238 32.6 200
Titanium (2× resistivity) 0.119 46.1 290
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Figure 1-9: Two regions used in Example 1.4.

EXAMPLE 1.4 Electromagnetic Calculations

This example provides a review of basic EM theory. In Figure 1-9, a plane wave in free space
is normally incident on a lossless medium occupying a half space with a dielectric constant
of 16. Calculate the electric field reflection coefficient at the interface referred to the medium.

Solution:

Since it is not explicitly stated, assume µ1 = µ0. (This should be done in general since µ0 is
the default value for µ, as most materials have unity relative permeability.) The characteristic
impedance of a medium is η =

√

µ/ε. Now η is used for characteristic impedance (also called
wave impedance) of a TEM propagating wave in a medium. It is used instead of Z0, which
is generally reserved for the characteristic impedance of transmission lines. The electric field
reflection coefficient is

ΓE =
η1 − η0
η1 + η0

=
η1/η0 − 1

η1/η0 + 1

η1
η0

=

√

µ0

ε1
·
√

ε0
µ0

=

√

ε0
ε1

=

√

1

16
=

1

4
,

so

ΓE =
1/4− 1

1/4 + 1
=

1− 4

1 + 4
= −3

5
= −0.6.

EXAMPLE 1.5 Intuitive Solution of Electromagnetic Problems

This example provides an intuitive way of solving an EM problem. A plane wave in free
space is normally incident on a lossless medium occupying a half space with a dielectric
constant of 16. What is the magnetic field reflection coefficient?

Solution:

There are two ways to answer this question. An intuitive approach will be used first.

Intuitively |ΓH | = |ΓE |,.
With Ē and H̄ being vectors, the Poynting vector Ē ×H̄ points in the direction of propagation
for a plane wave, since the reflected wave is in the opposite direction to the incident wave,
thus

sign
(

ΓH
)

= −sign
(

ΓE
)

.

Therefore ΓH = −ΓE = +0.6. (ΓE was calculated in Example 1.4.)

Now the second approach. The formula for the magnetic field reflection coefficient is

ΓH =
η1 − η2
η1 + η2

=
1− η2/η1
1 + η2/η1

=
1− 1/4

1 + 1/4
=

3

5
= 0.6.
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EXAMPLE 1.6 Wave Impedance and Propagation Constant

A 4 GHz time-varying EM field is traveling in the +z
direction in Region 1 and is normally incident on another
material in Region 2. The boundary between the two regions
is in the z = 0 plane. The permittivity of Region 1 is ε1 = ε0
and that of Region 2 is ε2 = (4 −  0.4)ε0. For both regions,
µ1 = µ2 = µ0. The phasor of the forward-traveling electric
field (i.e., the incident field) is E

+ = 100 ŷ, and the phase is
normalized with respect to z = 0.

What are the wave impedance and propagation constant of Region 2?

Solution:

The wave impedance is

η =

√

µ

ε
=

√

µ0

ε0

√

µr

εr
= η0

√

µr

εr
= 377

√

1

(4− 0.4)
Ω

= 187.8 + 9.4 Ω. (1.82)

The propagation constant is

γ = ω
√
µε = ω

√
µ0ε0

√
µrεr

= 4 · 2π · 109 ·
√
4π · 10−7 · 8.854 · 10−12

√

4− 0.4 = (8.4 + 167.9) m−1. (1.83)

1.10 Summary

This introductory chapter provided the background for the following
chapters on distributed effects. A review of Maxwell’s equations and their
implications was presented. The notable change in the way these were
presented here to the first time they are introduced in electromagnetics
courses is the first time the static electric and magnetic field laws are
presented and then Maxwell’s equations are covered almost as though
there was a continuous derivation. However Maxwell’s equations cannot
be derived from the static laws even with some additional insight. Instead
Maxwell’s equations embed the quantum field theory that there are two
inseparable component fields which we call electric and magnetic fields, and
the fundamental relativity effect of the finite speed of light which results
from relating the spatial derivative of each of the field components to the
time derivative of the other component. The insight places Maxwell among
the ten greatest physicists of all time.

The finite speed for electromagnetic radiation is at the core of microwave
engineering. At microwave frequencies the finite speed at which information
can move means that microwave circuit design is quite different from low
frequency circuit design, and the distributed and electromagnetic coupling
effects lead to a large number of microwave circuit components that provide
a very rich design space.
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1.12 Exercises

1. The plane wave electric field of a radar
pulse propagating in free space in the z di-
rection is given by (with ω0 ≫ π/(2τ))

Ē(t) =
{

A cos
(

πt
2τ

)

cos (ω0t)x̂ −τ ≤ t ≤ τ
0 otherwise,

(a) Sketch Ē(t) over the interval −1.5τ ≤
t ≤ 1.5τ .

(b) What is, H̄(t).
(c) What is the Poynting vector, S̄(t).
(d) Determine the total energy density in

the pulse (in units of J/m2).

2. Consider a material with a relative permit-
tivity of 72, a relative permeability of 1, and
a static electric field (E) of 1 kV/m. How
much energy is stored in the E field in a
10 cm3 volume of the material? [Parallels
Example 1.1]

3. A time-varying electric field in the x direc-
tion has a strength of 1 kV/m and a fre-
quency of 1 GHz. The medium has a rel-
ative permittivity of 70. What is the time-
domain polarization vector? [Parallels Ex-
ample 1.2]
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4. A medium has a dielectric constant of 20.
What is the index of refraction?

5. Consider a plane EM wave propagating in
a medium with a permittivity ε and perme-
ability µ. The complex permittivity mea-
sured at two frequencies is characterized
by the relative permittivity (ε/ε0) of the
real ℜ{ε/ε0} and imaginary parts ℑ{ε/ε0}
as follows:

Measured relative permittivity:
Frequency Real Imaginary

part part

1 GHz 3.8 −0.05
10 GHz 4.0 −0.03

Measured relative permeability:
Frequency Real Imaginary

Part Part

1 GHz 0.999 −0.001
10 GHz 0.998 −0.001

Since there is an imaginary part of the di-
electric constant there could be either di-
electric damping or material conductivity,
or both. [Parallels Example 1.3]

(a) Determine the dielectric loss tangent at
10 GHz.

(b) Determine the relative dielectric damp-
ing factor at 10 GHz (the part of the per-
mittivity due to dielectric damping).

(c) What is the conductivity of the dielec-
tric at 10 GHz?

6. A medium has a relative permittivity of 13
and supports a 5.6 GHz EM signal. By de-
fault, if not specified otherwise, a medium
is lossless and will have a relative perme-
ability of 1.

(a) Calculate the characteristic impedance
of an EM plane wave.

(b) Calculate the propagation constant of
the medium.

7. A plane wave in free space is normally inci-
dent on a lossless medium occupying a half
space with a dielectric constant of 12. [Par-
allels Example 1.4]

(a) Calculate the electric field reflection
coefficient referred to the interface
medium.

(b) What is the magnetic field reflection co-
efficient?

8. Water, or more specifically tap water or sea
water, has a complex dielectric constant re-
sulting from two effects: conductivity re-
sulting from dissolved ions in the water
leading to charge carriers that can conduct
current under the influence of an electric
field, and dielectric loss resulting from ro-
tation or bending of the water molecules
themselves under the influence of an elec-
tric field. The rotation or bending of the wa-
ter molecules results in motion of the water
molecules and thus heat. The relative per-
mittivity is

εwr = ε′wr − ε′′wr (1.84)

and the real and imaginary components are

ε′wr = εw00 +
εw0 − εw00

1 + (2πfτw)2
(1.85)

ε′′wr =
2πfτw(εw0 − εw00)

1 + (2πfτw)2
+

σi

2πε0f
, (1.86)

where f is frequency, ε0 = 8.854 × 10−12

F/m is the permittivity magnitude, and
εw00 = 4.9 is the high-frequency limit of εr
and is known to be independent of salin-
ity and is also that of pure deionized wa-
ter. The other quantities are τw, the relax-
ation time of water; εw0, the static relative
dielectric constant of water (which for pure
water at 0◦C is equal to 87.13); and σi, the
ionic conductivity of the water. At 5◦C and
for tap water with a salinity of 0.03 (in parts
per thousand by weight) [17, 18], εw0 = 85.9,
τw = 14.6 ps, and σi = 0.00548 S/m.

(a) Calculate and then plot the real and
imaginary dielectric constant of water
over the frequency range from DC to 40
GHz for tap water at 5◦C. You should
see two distinct regions. Identify the
part of the imaginary dielectric constant
graph that results from ionic conductiv-
ity and the part of the graph that relates
to dielectric relaxation.

(b) Consider a plane wave propagating in
water. Determine the attenuation con-
stant and the propagation constant of
the wave at 500 MHz.
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(c) Consider a plane wave propagating in
water. Determine the attenuation con-
stant and the propagation constant of
the wave at 2.45 GHz.

(d) Consider a plane wave propagating in
water. Determine the attenuation con-
stant and the propagation constant of
the wave at 22 GHz.

(e) Again considering the plane wave in
water, calculate the loss factor over a
distance of 1 cm at 2.45 GHz. Express
your answer in terms of decibels.

(f) Consider a plane wave making normal
incidence from above into a bucket of
tap water that is 1 m deep so that you do
not need to consider the reflection at the
bottom of the bucket. Calculate the re-
flection coefficient of the incident plane
wave at 2.45 GHz referred to the air im-
mediately above the surface of the wa-
ter.

(g) Again consider the situation in (f), but
this time with the plane wave incident
on the air–water interface from the wa-
ter side, calculate the reflection coeffi-
cient of the incident wave at 2.45 GHz
referred to the water immediately be-
low the surface of the water.

(h) If the bucket in (f) and (g) is 0.5 cm deep
you will need to consider the reflection
at the bottom of the bucket. Consider
that the bottom of the bucket is a per-
fect conductor. Draw the bounce dia-
gram for calculating the reflection of the
plane wave in air. Determine the total
reflection coefficient of the plane wave
(referred to the air immediately above
the surface of the water) by using the
bounce diagram.

(i) Repeat (h) using the formula for multi-

ple reflections.

9. A 4 GHz time-varying EM field is travel-
ing in the +z direction in Region 1 and
is incident on another material in Re-
gion 2. The permittivity of Region 1
is ε1 = ε0 and that of Region 2 is ε2 =
(4−0.04)ε0. For both regions µ1 = µ2 = µ0.
[Parallels Example 1.6]

(a) What is the characteristic impedance (or
wave impedance) in Region 2?

(b) What is the propagation constant in Re-
gion 1?

10. A 4 GHz time-varying EM field is traveling
in the +z direction in Region 1 and is nor-
mally incident on another material in Re-
gion 2. The boundary between the two re-
gions is in the z = 0 plane. The permittivity
of Region 1 is ε1 = ε0, and that of Region 2
is ε2 = 4ε0. For both regions, µ1 = µ2 = µ0.
The phasor of the forward-traveling elec-
tric field (i.e., the incident field) is ffl̄E+ =
100 ŷ V/m and the phase is normalized
with respect to z = 0. Q0 = 0. [Parallels
Example 1.6]

(a) What is the wave impedance of Region
1?

(b) What is the wave impedance of Region
2?

(c) What is the electric field reflection coef-
ficient at the boundary?

(d) What is the magnetic field reflection co-
efficient at the boundary?

(e) What is the electric field transmission
coefficient at the boundary?

(f) What is the power transmitted into Re-
gion 2?

(g) What is the power reflected from the
boundary back into Region 1?

1.12.1 Exercises By Section
†challenging, ‡very challenging

§1.5 1†, 2†, 3† §1.7 4, 5† §1.9 6, 7†, 8‡, 9†, 10†

1.12.2 Answers to Selected Exercises

4 4.47 8(c) γ=49+468m−1 9 0.84 + 168 m−1
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1.A.1 Angles of a Triangle

The law of cosines relates the angles and lengths of the sides of the triangle in Figure 1-10(a):

c2 = a2 + b2 − 2ab cos(γ) (1.87)

cos(α) =
b2 + c2 − a2

2bc
, cos(β) =

a2 + c2 − b2

2ac
, cos(γ) =

a2 + b2 − c2

2ab
. (1.88)

Referring to the right-angle triangle in Figure 1-10(b):

sin(x) =
opposite

hypotenuse
, cos(x) =

adjacent

hypotenuse
, tan(x) =

opposite.

adjacent
(1.89)

(a) (b)

Figure 1-10: Triangles: (a) triangle with sides having lengths
a, b, and c, and angles α, β, and γ; and (b) right-angle
triangle.
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1.A.2 Trigonometric Identities

if sin(θ) = x then θ = arcsin(x) if cos(θ) = x then θ = arccos(x) (1.90)
if tan(θ) = x then θ = arctan(x) (1.91)

sin(−x) = − sinx cos(−x) = cosx tan(−x) = − tanx (1.92)
csc(−x) = − cscx sec(−x) = secx cot(−x) = − cotx (1.93)

cos(x) = 1
2 (e

x + e−x) sin(x) = 1
2  (e

−x − ex) (1.94)

sinx = 1/cscx cosx = 1/secx tanx = 1/cotx (1.95)
tanx = sinx/ cosx (1.96)

sin2 x+ cos2 x = 1 1 + tan2 x = sec2 x 1 + cot2 x = csc2 x (1.97)

sin
(

x− π
2

)

= − cosx cos
(

x− π
2

)

= sinx tan
(

x− π
2

)

= − cotx (1.98)
sin

(

x+ π
2

)

= cosx cos
(

x+ π
2

)

= − sinx tan
(

x+ π
2

)

= − cotx (1.99)
sin

(

π
2 − x

)

= cosx cos
(

π
2 − x

)

= sinx tan
(

π
2 − x

)

= cotx (1.100)
csc

(

x− π
2

)

= − secx sec
(

x− π
2

)

= cscx cot
(

x− π
2

)

= − tanx (1.101)
csc

(

x+ π
2

)

= secx sec
(

x+ π
2

)

= − cscx cot
(

x+ π
2

)

= − tanx (1.102)
csc

(

π
2 − x

)

= secx sec
(

π
2 − x

)

= cscx cot
(

π
2 − x

)

= tanx (1.103)

sin(2x) = 2 sinx cos y cos(2x) = cos2(x) − sin2(x) (1.104)

tan(2x) =
2 tanx

1− tan2 x
cot(2x) = 1

2 [cot(x)− tan(x)] (1.105)

sin2 x = 1
2 [1− cos(2x)] cos2 x = 1

2 [1 + cos(2x)] tan2 x =
1− cos(2x)

1 + cos(2x)
(1.106)

tan(x+ y) =
tan(x) + tan(y)

tan(x) − tan(y)
tan(x − y) =

tan(x) − tan(y)

tan(x) + tan(y)
(1.107)

sinx+ sin y = 2 sin
(

x+y
2

)

cos
(

x−y
2

)

sinx− sin y = 2 cos
(

x+y
2

)

sin
(

x−y
2

)

(1.108)

cosx+ cos y = 2 cos
(

x+y
2

)

cos
(

x−y
2

)

cosx− cos y = −2 cos
(

x+y
2

)

sin
(

x−y
2

)

(1.109)

sinx sin y = 1
2 [cos (x− y)− cos (x+ y)] sinx cos y = 1

2 [sin (x+ y) + sin (x− y)] (1.110)

cosx cos y = 1
2 [cos (x− y) + cos (x+ y)] cosx sin y = 1

2 [sin (x+ y)− sin (x− y)] (1.111)

1.A.3 Trigonometric Derivatives

d

dx
sin(x) = cos(x)

d

dx
cos(x) = − sin(x)

d

dx
tan(x) = sec2(x)

d

dx
csc(x) = − csc(x) cot(x)

d

dx
sec(x) = sec(x) tan(x)

d

dx
cot(x) = − csc2(x)

(1.112)

1.A.4 Complex Numbers and Phasors

A complex number z is an ordered pair of two real numbers x and y, and a complex number
has a special meaning when working in the frequency domain. The rectangular form of the
complex number is z = x + y, where  =

√
−1 is an imaginary number.1 The polar form of

the complex number z = r� ϕ relates directly to the amplitude and phase of a cosinusoid. In
determining phase, reference is made to a cosinusoid of the form u(t) = r cos (ωt+ ϕ), as this
has a value of r when the radian frequency ω = 0 (i.e., at DC). The cosinusoid is shown as the
solid line in Figure 1-11(a), where r is the amplitude and φ is the phase of the cosinusoid. The
cosinusoid can be presented as the complex valued function

f(t) = zeωt, where z = reφ (1.113)

1 Outside electrical engineering ı (i without the dot) is used for
√
−1, but this is replaced by  (j without the dot) in

electrical engineering to avoid confusion with the usage of i for current.
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(a) (b)

Figure 1-11: Sinusoidal signal representa-
tions: (a) waveform referenced to the zero-
phase cosinusoid shown as the dashed wave-
form; and (b) representation as a phasor on
the complex plane where Re is the real part
and Im is the imaginary part.

is called the phasor of u(t). The phasor contains the amplitude and phase of the cosinusoid,
and given the frequency of the cosinusoid, the original time-domain waveform can be
reconstructed. The time-domain form of the complex function is

u(t) = ℜ{f(t)} = ℜ
{

zeωt
}

= ℜ
{

reφeωt
}

= ℜ
{

re[(ωt+φ)]
}

= r cos (ωt+ φ). (1.114)

ℜ{} indicates that the real part of a complex number is taken, and similarly ℑ{} indicates that
the imaginary part of a complex number is taken. The complex number can be represented in
rectangular or magnitude-phase form so that

z = x+ y = r� φ = reφ = r(cosφ+  sinφ) (1.115)

with the relationship shown in Figure 1-11(b). Note that in Equation (1.115), φ must be
expressed in radians and anywhere it is used in calculations. Also

x = r cos(φ) and y = r sin(φ). (1.116)

Basic calculations using the complex numbers

w = a+ b = q� θ and z = c+ d = r� φ (1.117)

(with a, b, c, d , θ, φ, r, and q being real numbers) are

•  ·  = 2 = −1
• Addition: w + z = (a+ b) + (c+ d) = (a+ c) + (b+ d)
• Subtraction: w − z = (a+ b)− (c+ d) = (a− c) + (b− d)
• Multiplication: w · z = (a+ b) · (c+ d) = (ac− bd) + (bc+ ad)
• Magnitude: |w| =

√
a2 + b2 = q; |z| =

√
c2 + d2 = r

• Angle: θ = arctan(b/a) = arccos(a/q) = arcsin(b/q) (Correction may be required to get
the phase in the right quadrant. This requires that the signs of a and b be examined.)

• Multiplication (alternative): w · z = qr� (θ + φ)

• Division: w/z =
a+ b

c+ d
=

(a+ b)(c− d)

(c+ d)(c− d)
=

(

ac+ bd

c2 + d2

)

+ 

(

bc− ad

c2 + d2

)

• Division (alternative): w/z = q/r� (θ − φ)
• Square root:

√
w =

√
q� (θ/2+mπ), m = 0, 1 (i.e.

√
w =

√
q� (θ/2) and

√
q� (θ/2+π))

• nth root: n
√
w = n

√
q�

(

θ/n+ 2π
m

n

)

, m = 0, 1, . . . (n− 1)

• Negative: −w = −q� θ = q� (θ + π)
• Complex conjugate: w∗ = a− b = q� (−θ)
• Squared magnitude: |z|2 = z · z∗
• Conjugate addition: (w + z)∗ = w∗ + z∗

• Conjugate power: (zn)∗ = (z∗)n

• Conjugate multiplication: (wz)∗ = w∗z∗

• Conjugate division: (w/z)∗ = w∗/z∗

• Conjugate exponential: exp(z∗) = (exp z)∗
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• Conjugate logarithm: log(z∗) = (log z)∗

• Conjugate conjugate: (w∗)∗ = w
• Complex inverse: z−1 = z∗/|z|2
• Complex magnitude: |z∗| = |z|

EXAMPLE 1.7 Complex numbers

Consider the complex numbers w = −0.5 − 1.6 and z = 5 − 3, and the waveform
v(t) = 2.3 cos(2π10t − 1.2).

• In polar form, w = 1.676� (−1.874), where 1.874 is in radians; alternatively w =
1.676� (−107.4)◦.

• In polar form, z = 5.831� (−0.54).

• 2w = −1− 3.2 = 3.353� (−1.874).

• z ·w = w ·z = w ·z = (1.676 ·5.831)� (−1.874−0.54) = 9.774� (−2.414) = −7.3− 6.5.

• √
z = 2.327 − 0.645.

• Alternatively
√
z =

√
5.831� (−0.54/2) = 2.415� (−0.27).

• w/z = (1.676/5.831)� [−1.874 − (−0.54)] = 0.287� −1.333 = 0.068 − 6.5.

• The radian frequency of v(t) is 20π rads/s.

• The frequency of v(t) is 10 Hz.

• The phasor of v(t) is v = 2.3� (−1.2) = 2.3� (−68.755◦) = 0.833 − 2.144.

• If w is a phasor and its frequency is 1 GHz, the waveform equivalent of w is w(t) =
1.676 cos(2π · 109t− 1.874) and the phase is −1.874 radians or −107.35◦ or 252.65◦ .

1.A.5 Vector Operators

Vector Multiplication

There are two types of operations that multiply vectors. A, B, and C are vectors with

A = aii+ ajj+ akk, (1.118)

where i, j, and k, are orthogonal vectors such as the unit vectors of the Cartesian coordinate
system, that is, x̂, ŷ, and ẑ in the x, y and z directions, respectively.

Dot Product

A ·B is called the dot product, the scalar product or the inner product. It is read as “a dot b.”

A ·B = aibi + ajbj + . . .+ akbk.

Commutative property: A ·B = B ·A.

Distributive property: A · (B+C) = A ·B+A ·C.

Bilinear property (r is a scalar): A · (rB+C) = r(A ·B) + (A ·C).

Scalar multiplication property (r and s are scalars): (rA) · (sB) = (rs)(A ·B).

Orthogonal property: Two nonzero vectors A and B are orthogonal if and only if A ·B = 0.
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Cross Product A × B is called the cross product. It is read as “a cross b.” Now the vector
components of A, B, and C need to be more tightly specified as orthogonal vectors, typically
having unit amplitude, that have the property

i× j = k, j× k = i, k× i = j, and i× i = 0 = j× j = k× k (1.119)

j× i = −k, k× j = −i, i× k = −j. (1.120)

The unit vectors of the Cartesian coordinate system have this property with i, j, and k,
corresponding to the unit vectors x̂, ŷ, and ẑ in the x, y and z directions, respectively.

a× b = (aii+ ajj+ akk)× (bii+ bjj+ bkk)

= aibii× i+ aibji× j+ aibki× k+ ajbij× i+ ajbjj× j+ ajbkj× k+

akbik× i+ akbjk× j+ akbkk× k

= (ajbk − akbj)i + (akbi − aibk)j+ (aibj − ajbi)k. (1.121)

Anticommutative property: A×B = −B×A.

Distributive property: A× (B+C) = A×B+A×C.

Bilinear property (r is a scalar): A× (rB +C) = r(A ×B) + (A×C).

Scalar multiplication property (r and s are scalars): (rA) × (sB) = (rs)(A ×B).

Lagrange’s formula

A× (B×C) = B(B ·C)−C(A ·B).

Del (∇) Vector Operator

Operations in Cartesian, Cylindrical, and Spherical Coordinate Systems

This section defines the del, or the nabla ∇, a calculus operator that operates on vector
quantities and also on a scalar to create a vector. The various del operators in the Cartesian
(rectangular), spherical, and cylindrical coordinate systems are presented. Here a scalar is
denoted by f and a vector by F:

• grad, ∇, is the gradient of a scalar with direction. ∇f is read as “grad f.”

• div, ∇, is a measure of how a vector is spreading out from a point. ∇·F is read as “div F.”

• curl, ∇×, is a measure of the rotation of a vector. ∇× F is read as “curl F.”
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Cartesian (rectangular) coordinates (x, y, z):

x̂ is the unit vector in the x direction and Fx

is the component of the field in the x-direction.
Similarly for the other components. Figure 1-12

F = Fxx̂+ Fy ŷ + Fz ẑ (1.122)

grad ∇f =
∂f

∂x
x̂+

∂f

∂y
ŷ +

∂f

∂z
ẑ (1.123)

div ∇ · F =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
(1.124)

curl ∇× F =

(

∂Fz

∂y
− ∂Fy

∂z

)

x̂+

(

∂Fx

∂z
− ∂Fz

∂x

)

ŷ +

(

∂Fy

∂x
− ∂Fx

∂y

)

ẑ (1.125)

∇2F =
∂2F

∂x2
+

∂2F

∂y2
+

∂2F

∂z2
(1.126)

differential length, dℓ = dx x̂+ dy ŷ + dz ẑ (1.127)

differential normal area, ds = dy dz x̂+ dx dz ŷ + dx dy ẑ (1.128)

differential volume, dv = dx dy dz. (1.129)

Cylindrical coordinates (ρ, φ, z):

The cylindrical coordinates are ρ for radius, φ for
angle, and z for height. These are related to the
Cartesian coordinates by

Figure 1-13

x = ρ cosφ, y = ρ sinφ, z = z (1.130)

ρ =
√

x2 + y2, φ = atan2(y, x), z = z (1.131)

vector F = Fρρ̂+ Fφφ̂+ Fzẑ (1.132)

grad ∇f =
∂f

∂ρ
ρ̂+

1

ρ

∂f

∂φ
φ̂+

∂f

∂z
ẑ (1.133)

div ∇ · F =
1

ρ

∂ρFρ

∂ρ
+

1

ρ

∂Fφ

∂φ
+

∂Fz

∂z
(1.134)

curl ∇× F =

(

1

ρ

∂Fz

∂φ
− ∂Fφ

∂z

)

ρ̂+

(

∂Fρ

∂z
− ∂Fz

∂ρ

)

φ̂ +
1

ρ

(

∂(ρFφ)

∂ρ
− ∂Fρ

∂φ

)

ẑ (1.135)

differential length, dℓ = dρ ρ̂+ ρdφ φ̂+ dz ẑ (1.136)

differential normal area, ds = ρdφ dz ρ̂+ dρ dz φ̂+ ρdρ dφ ẑ (1.137)

differential volume, dv = ρdρ dφ dz. (1.138)
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Spherical coordinates (ρ, θ, φ):

The spherical coordinates are ρ for radius, θ for
angle of the horizontal projection, and φ for the
elevation angle. These are related to the Cartesian
coordinates by

Figure 1-14

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ (1.139)

r =
√

x2 + y2 + z2, θ = arccos(z/r), φ = atan2(y, x) (1.140)

vector F = Fr r̂+ Fθθ̂ + Fφφ̂ (1.141)

grad ∇f =
∂f

∂r
r̂+

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂ (1.142)

div ∇ · F =
1

r2
∂(r2Fr)

∂r
+

1

r sin θ

∂(Fθ sin θ)

∂θ
+

1

r sin θ

∂Fφ

∂φ
(1.143)

curl ∇× F =
1

r sin θ

(

∂(Fφ sin θ)

∂θ
− ∂Fθ

∂φ

)

r̂

+
1

r

(

1

sin θ

∂Fr

∂φ
− ∂(rFφ)

∂r

)

θ̂ +
1

r

(

∂(rFθ)

∂r
− ∂Fr

∂θ

)

φ̂ (1.144)

differential length dℓ = dr r̂+ r dθ θ̂ + r sin θdφ φ̂ (1.145)

differential area ds = r2 sin θ dθ dφ r̂+ r sin θ dr dφ θ̂ + r dr dθ φ̂ (1.146)

differential volume dv = r2 sin θ dr dθ dφ. (1.147)

Identities

Identities for the del, ∇, operator:

div grad f = ∇ · (∇f) = ∇2f = △f(Laplacian) (1.148)

△(fg) = f△g + 2∇f · ∇g + g△f (1.149)

curl grad f = ∇× (∇f) = 0 (1.150)

div curl F = ∇ · (∇× F) = 0 (1.151)

curl curl F = ∇× (∇× F) = ∇(∇ · F )−∇2F (1.152)

A× (B×C) = B(A ·C)−C(A ·B) . (1.153)

1.A.6 Hyperbolic Functions and Complex Numbers

cosh (x) = 1
2 (e

x + e−x) = cos(x) (1.154)
cosh (x) = 1

2 (e
x + e−x) = cos(x) (1.155)

cosh (−x) = cosh (x) (1.156)

sinh (x) = 1
2 (e

x − e−x) = − sin(x) (1.157)
sinh (x) = 1

2 (e
x − e−x) =  sin(x) (1.158)

sinh (−x) = − sinh (x) (1.159)

cosh2 (x)− sinh2 (x) = 1 (1.160)
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tanh(x) = sinh(x)/ cosh(x) (1.161)
tanh(x) = − tan(x) (1.162)
tanh(x) =  tan(x) (1.163)
tanh(−x) = − tanh(x) (1.164)

sin(x) =  sinh(x) (1.165)
cos(x) = cosh(x) (1.166)
tan(x) =  tanh(x) (1.167)

ex = cosh(x) + sinh(x) e−x = cosh(x) − sinh(x) (1.168)
ex = cos(x) +  sin(x) e−x = cos(x)−  sin(x) (1.169)

sin(x+ y) = sin(x) cosh(y) +  cos(x) sinh(y) (1.170)
cos(x+ y) = cos(x) cosh(y)−  sin(x) sinh(y) (1.171)

eγ = e(α+β) = eαeβ , where γ = α+ β (1.172)

cot(x) = 1
2 [cot(x/2)− tan(x/2)]. (1.173)

1.A.7 Volumes and Areas

Circle Sphere Cylinder Cone

r = radius r = radius r = radius r = radius of base
h = height h = height

Area πr2 4πr2 2πrh (cylinder)
2πr2 (base & top)

Volume 4πr3/3 πr2h πr2h/3

1.A.8 Series Expansions

Square root:

√
1 + x =

∞
∑

n=0

(−1)n(2n)!

(1− 2n)(n!)2(4n)
xn

= 1 + 1
2x− 1

8x
2 + 1

16x
3 − 5

128x
4 + . . . for − 1 < x ≤ 1. (1.174)

Exponential function (the natural number e raised to a power):

ex =

∞
∑

n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ · · · for all x. (1.175)
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Natural logarithm:

ln(1 − x) = −
∞
∑

n=1

xn

n
for − 1 ≤ x < 1 (1.176)

ln(1 + x) =

∞
∑

n=1

(−1)n+1x
n

n
for − 1 < x ≤ 1. (1.177)

Binomial series:

(1 + x)α =

∞
∑

n=0

(

α

n

)

xn for all |x| < 1 and all complex α (1.178)

where n is an integer and the binomial coefficient is

(

α

n

)

=

n
∏

k=1

α− k + 1

k
=

α(α− 1) · · · (α− n+ 1)

n!
. (1.179)

If α is replaced by an integer N the binomial coefficient is

(

N

n

)

=
N !

(N − n)!n!
. (1.180)

Infinite geometric series:

1

1− x
=

∞
∑

n=0

xn for |x| < 1. (1.181)

x

(1− x)2
=

∞
∑

n=1

nxn for |x| < 1. (1.182)

1

(1− x)2
=

∞
∑

n=1

nxn−1 for |x| < 1. (1.183)

1.A.9 Trigonometric Series Expansions

sinx =

∞
∑

n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+

x5

5!
− · · · for all x (1.184)

cosx =

∞
∑

n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+

x4

4!
− · · · for all x (1.185)

tanx = x+
x3

3
+

2x5

15
+ · · · for |x| < π

2
(1.186)

sinhx =

∞
∑

n=0

x2n+1

(2n+ 1)!
= x+

x3

3!
+

x5

5!
+ · · · for all x (1.187)

coshx =

∞
∑

n=0

x2n

(2n)!
= 1 +

x2

2!
+

x4

4!
+ · · · for all x (1.188)

tanhx =

∞
∑

n=1

B2n4
n(4n − 1)

(2n)!
x2n−1 = x− 1

3
x3 +

2

15
x5 − 17

315
x7 + · · · for |x| < π

2
(1.189)
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arsinh(x) =
∞
�

n=0

(−1)n(2n)!

4n(n!)2(2n+ 1)
x2n+1 for |x| ≤ 1 (1.190)

artanh(x) =

∞
�

n=0

x2n+1

2n+ 1
for |x| < 1. (1.191)

1.A.10 Special Polynomials

Several polynomials have special properties of use in the design of filters and matching
networks. Their arguments are put in terms of frequency and a transfer function of a two-port
is expressed in terms on one of the special polynomials or its inverse.

Butterworth Polynomial

The Butterworth polynomials have the general form

Bn(x) =











�n/2
k=1

�

x2 − 2x cos
�

(2k+n−1)π
2n

�

+ 1
�

for n even

(x+ 1)
�(n−1)/2

k=1

�

x2 − 2x cos
�

(2k+n−1)π
2n

�

+ 1
�

for n odd
(1.192)

These of course do not look like polynomials but their expansions are, see Table 1-5.

Chebyshev Polynomial

The nth-order Chebyshev polynomial of the first kind,
Tn(x), (often just called the Chebyshev polynomial) has
the special property that the maximum absolute value of
Tn(x) for −1 ≤ x ≤ 1 is 1. This can be seen in the figure to
the right where the first four Tchebyshev polynomials are
plotted.

When x is frequency this means that the frequency response in a bandwidth has equal
ripples across the passband and outside (both above and below) the value of Tn(x) rapidly
diverges (the magnitude becomes monotonically larger). For a filter or matching network
the reflection coefficient is expressed in terms of Tn(x) and so the skirts of the transmission
response are steep. Normalization of x and scaling of the Chebyshev polynomials is used to
scale the response in frequency and amplitude. The Chebyshev polynomial is obtained using
the recursion formula

Tn(x) = 2xTn−1(x)− Tn−2(x) with T1(x) = x and T2(x) = 2x2 − 1. (1.193)

For example, with n = 3,

T3(x) = 2xT3−1(x) − T3−2(x) = 2x(2x2 − 1)− x = 4x3 − 2x− x = 4x3 − 3x. (1.194)

Table 1-5:
Butterworth
polynomials.

n Butterworth polynomial Bn(x)

1 x+ 1
2 x2 + 1.4142x + 1
3 (x+ 1)(x2 + x+ 1)
4 (x2 + 0.7564x + 1)(x2 + 1.8478x + 1)
5 (x+ 1)(x2 + 0.1680x + 1)(x2 + 1.6180x + 1)
6 (x2 + 0.5176x + 1)(x2 + 1.4142x + 1)(x2 + 1.9319x + 1)
7 (x+ 1)(x2 + 0.4450x + 1)(x2 + 1.2470x + 1)(x2 + 1.8019x + 1)
8 (x2 + 0.3902x + 1)(x2 + 1.1111x + 1)(x2 + 1.6629x + 1)(x2 + 1.9616x + 1)
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Several useful expansions of Chebyshev polynomials are used in microwave engineering
to relate the frequency response of a function or circuit to the Chebyshev characteristic.
Generally the frequency is referred to the electrical length θ (which for a transmission line θ
is proportional to frequency). Some of the more useful expansions used in the text follow:

Tn(cos θ) = cos(nθ) (1.195)

and note that when θ = π/2, cos(nθ) = 0 when is odd and cos(nθ) = ±1 when is even. From
this identity two more useful identities are derived:

Tn(x) = cos
(

n cos−1 x
)

for |x| ≤ 1, and Tn(x) = cosh
(

n cosh−1 x
)

for |x| ≥ 1. (1.196)

A normalized argument cos θ/ cos θm is often used to define a passband as being between
θm and (π − θm). That is that we can relate the Chebyshev response to frequency and define a
frequency bandwidth. Then a useful Chebyshev polynomial expansion is

Tn (cos θ/cos θm) = Tn(sec θm cos θ) = cos
{

n
[

cos−1 (cos θ/cos θm)
]}

. (1.197)

From Section 1.A.2 note that cos2 θ = 1
2 [1+ cos(2θ)], cos θ cos(nθ) = 1

2 cos[(n+1)θ] cos[(n− 1)θ],
and sec(θm) = 1/ cos θm. Then (after ingenious manipulation) Equation (1.193) becomes

T1(cos θ/ cos θm) = sec θm cos θ

T2(cos θ/ cos θm) = sec2 θm[cos(2θ) + 1]− 1 = sec2 θm cos(2θ) + (sec2 θm − 1)

T3(cos θ/ cos θm) = sec3 θm[cos(3θ) + 3 cos θ]− 3 sec θm cos θ

= sec3 θm cos(3θ) + 3(sec3 θm − sec θm) cos θ

T4(cos θ/ cos θm) = sec4 θm[cos(4θ) + 4 cos(2θ) + 3]− 4 sec2 θm[cos(2θ) + 1] + 1

= sec4 θm cos(4θ) + 4(sec4 − sec2 θm) cos(2θ) + (3 sec4 θm − 4 sec2 θm + 1)

K5(cos θ/ cos θm) = sec5 θm[cos(5θ) + 5 cos(3θ) + 7 cos θ]− sec3 θm[5 cos(3θ) + 11 cos θ]

+ 4 sec θm cos θ

= sec5 θm cos(5θ) + 5(sec5 θm − sec3 θm) cos(3θ)

+ (7 sec5 θm − 11 sec3 θm + 4 sec θm) cos θ. (1.198)

1.A.11 Matrix Operations

A, B, and C are square matrices and V is a vector.
Determinant:

|A| = det(A). (1.199)

Transpose:

(ABC)T = CTBTAT (1.200)
(

ABCT
)T

= CBTAT. (1.201)

Inverse:

(ABC)−1 = C−1B−1A−1 (1.202)
(

ABC−1
)−1

=
(

C−1
)−1

B−1A−1 = CB−1A−1 (1.203)

AA−1 = A−1A = I = 1. (1.204)
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Two row square matrices and vectors

A =

[

a11 a12
a21 a22

]

B =

[

b11 b12
b21 b22

]

V =

[

v1
v2

]

(1.205)

Multiplication:

AV =

[

a11 a12
a21 a22

] [

v1
v2

]

=

[

(a11v1 + a12v2)
(a21v1 + a22v2)

]

(1.206)

AB =

[

a11 a12
a21 a22

] [

b11 b12
b21 b22

]

=

[

(a11b11 + a12b21) (a11b21 + a12b22)
(a21b11 + a22b21) (a21b12 + a22b22)

]

. (1.207)

Determinant:

|A| = det(A) = det

([

a b
c d

])

=
1

ad− bc
. (1.208)

Transpose:

AT =

[

a11 a12
a21 a22

]T

=

[

a11 a21
a12 a22

]

(1.209)

Inverse:

A−1 =

[

a b
c d

]−1

=
1

|A|

[

d −b
−c d

]

=
1

ad− bc

[

d −b
−c d

]

. (1.210)

1.A.12 Interpolation

Linear Interpolation

Linear interpolation can be used to extract data from tables. In the table below there are two
known points, (x0, y0) and (x1, y1), and the linear interpolant is the straight line between them.
The unknown point (x, y) is found by locating it on this straight line.

Variable
Independent Dependent

x0 y0
x y
x1 y1

Thus

y − y0
y1 − y0

=
x− x0

x1 − x0
(1.211)

so that, given x,

y = y0 + (x− x0)
y1 − y0
x1 − x0

. (1.212)
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Bilinear Interpolation

Bilinear interpolation is a two-dimensional generalization of linear interpolation. In the table
below, f(D) = f(x0, y0), f(A) = f(x0, y1), f(F) = f(x1, y0), and f(C) = f(x1, y1) are known
and f(x, y) is to be found. The bilinear interpolation technique is illustrated in the figure.

Variable
Independent Independent Dependent

x0 y0 f0
x y f
x1 y1 f1

First, find the value of the function at point B from the values at Point A and Point C. Thus,
from Equation (1.212),

f(B) = f(x, y1) = f(A) + (x− x0)
f(C)− f(A)

x1 − x0
. (1.213)

Similarly

f(E) = f(x, y0) = f(D) + (x− x0)
f(F)− f(D)

x1 − x0
. (1.214)

Linear interpolation between Point B and Point E yields

f(x, y) = f(E) + (y − y0)
f(B)− f(E)

y1 − y0
. (1.215)

Combining these, the function obtained from bilinear interpolation is

f(x, y) =
f(x0, y0)

(x1 − x0)(y1 − y0)
(x1 − x)(y1 − y) +

f(x1, y0)

(x1 − x0)(y1 − y0)
(x− x0)(y1 − y)

+
f(x0, y1)

(x1 − x0)(y1 − y0)
(x1 − x)(y − y0) +

f(x1, y1)

(x1 − x0)(y1 − y0)
(x− x0)(y − y0). (1.216)

When interpolating from a table, choosing the points closest to the final point will yield greatest
accuracy.

1.A.13 Circles on the Complex Plane

A common situation that occurs when working with complex numbers involves equating the
magnitude of a complex number being equal to a real number. As will be shown, this defines a
circle in the complex plane. Consider the relation

|S − c| = r, (1.217)
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Figure 1-15: A circle in the
S plane defined by the
relation |S − c| = r, where
c = a+ b and S = x+ y.

where S = x+ y and c = a+ b are complex numbers and r is a real number. Substituting for
S and c in Equation (1.217) yields

|(x− a) + (y − b)| = r, (1.218)

that is, [(x− a) + (y − b)] [(x− a)− (y − b)] = r2 (1.219)

(x− a)2 + (y − b)2 = r2. (1.220)

The above is a general equation for a circle in the x-y plane with center (a, b) and radius r (see
Figure 1-15).

1.A.14 Bilinear Transform

The bilinear transformation maps a circle in the complex plane onto another circle in the
complex plane [19]. The bilinear transformation of a complex variable z is

w =
Az +B

Cz + 1
. (1.221)

where A, B, and C are real numbers. In RF and microwave usage, z and w could be reflection
coefficients or impedances. Rearranging Equation (1.221) results in

w =
A

C
+

B − A
C

Cz + 1
, (1.222)

which can be rearranged again as
w − A

C

B − A
C

=
1

Cz + 1
. (1.223)

The complexity of the derivation is reduced by introducing the intermediate variables W and
Z defined as

W =
w − A

C

B − A
C

(1.224) and Z = Cz + 1, (1.225)

and noting that, from Equation (1.223), W = 1/Z. (1.226)

If, in Equation (1.225), the locus of z describes a circle, then the locus of Z will also be a circle
since C is a constant. If the center of the circle in Z space is CZ and the distance from any point
on the circle to the center is the radius RZ , then

|Z − CZ | = RZ . (1.227)

Considering Equation (1.225), then in z space, the center of the circle is

Cz =
CZ

C
− 1

C
(1.228)
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and its radius is

Rz = RZ/C. (1.229)

Removing the magnitude signs in Equation (1.227) leads to

(Z − CZ) (Z − CZ)
∗
= (Z − CZ) (Z

∗ − C∗
Z) = R2

Z , (1.230)

or

ZZ∗ − CZZ
∗ − C∗

ZZ + (|CZ |2 −R2
Z) = 0, (1.231)

which is the general equation for a circle in the complex plane.
Now, the circle in the Z plane will be related to what happens in the W plane. Substituting

Equation (1.226) into Equation (1.231) results in

1

WW ∗
− CZ

1

W ∗
− C∗

Z

1

W
+ (|CZ |2 −R2

Z) = 0, (1.232)

and rearranging,

WW ∗ − CZ

(|CZ |2 −R2
Z)

W − C∗
Z

(|CZ |2 −R2
Z)

W ∗ +
1

(|CZ |2 −R2
Z)

= 0. (1.233)

This is in the same form as Equation (1.231), so Equation (1.233) describes a circle in W space
with center

CW =
C∗

Z

(|CZ |2 −R2
Z)

(1.234)

and radius

RW =

∣

∣

∣

∣

RZ

|CZ |2 −R2
Z

∣

∣

∣

∣

. (1.235)

Now the locus of w will also be a circle. From Equation (1.224),

w = W

(

B − A

C

)

+
A

C
(1.236)

so that W is scaled and a constant added. The center of the circle in w space is

Cw = CW

(

B − A

C

)

+
A

C
=

C∗
Z (B −A/C)

(|CZ |2 −R2
Z)

+
A

C
(1.237)

and the radius is

Rw = RW

∣

∣

∣

∣

B − A

C

∣

∣

∣

∣

=

∣

∣

∣

∣

(B −A/C)

|CZ |2 −R2
Z

∣

∣

∣

∣

. (1.238)

Substituting Equations (1.228) and (1.229) in the above relates the centers and radii in the w
and z spaces:

Cw =
(CCz + 1)∗(B −A/C)
(

|CCz + 1|2 − |CRz |2
) +

A

C
(1.239)

Rw =

∣

∣

∣

∣

∣

(B −A/C)CRz

|CCz + 1|2 − |CRz|2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(BC −A)Rz

|CCz + 1|2 − |CRz |2

∣

∣

∣

∣

∣

. (1.240)

Thus the bilinear transform, Equation (1.221), maps all points on a circle in the z plane to points
on a circle in the w plane.
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1.A.15 Quadratic and Cubic Equations

Quadratic Equation

The general form of the quadratic equation in x is (a, b, and c can be complex)

ax2 + bx+ c = 0, (1.241)

where a �= 0. There are two solutions, called roots, given by the quadratic formula, [20]

x =
−b±

√
b2 − 4ac

2a
, (1.242)

and ± indicates two possible roots,

x+ =
−b+

√
b2 − 4ac

2a
and x− =

−b−
√
b2 − 4ac

2a
. (1.243)

Even if a, b, and c are real, the roots may be complex and they could be degenerate, that is, the
same. The factors of the quadratic equation come from the roots, that is,

ax2 + bx+ c = a (x− x+) (x− x−) . (1.244)

Cubic Equation

The general form of the cubic equation in x is (a, b, c and d can be complex)

ax3 + bx2 + cx+ d = 0, (1.245)

where a �= 0. There are three solutions, called roots, given by the cubic formula, [20]

xk =
1

3a

(

b+ uk +
∆0

ukC

)

, k ∈ {1, 2, 3} (1.246)

where the uks are the cube roots of one: u1 = 1, u2 = 1
2

(

−1 + 
√
3
)

, u3 = 1
2

(

−1− 
√
3
)

, and

C =

[

1
2

(

∆1 +
√

∆2
1 − 4∆3

0

)]1/3

(1.247)

with ∆0 = b2 − 3ac and ∆1 = 2b3 − 9abc + 27a2d. In Equation (1.247) any choice of the
square or cube roots can be made as the effect is simply to exchange x1, x2 and x3. Note that
ax3 + bx2 + cx+ d = (x− x1)(x− x2)(x − x3).

1.A.16 Kron’s Method: Network Condensation

Kron’s method [21–23] is also called network condensation and is used in developing simpler
equivalent networks of large linear circuits with algebraic y parameters, that is, for resistive
networks, or for general linear circuits in frequency-domain analysis where the y parameters
are complex numbers. Network condensation is a numerical approach particular to circuits. It
is of use in reduced-order modeling of linear circuits and in filter design.

The indefinite nodal admittance formulation of a network with four external terminals (see
Figure 1-16) is
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Figure 1-16: A four-
terminal network.
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, (1.248)

as there are no external current sources at the internal terminals 5, 6, · · · , k+1. Since the (k+1)th
current source is zero, the (k + 1)th row and column of Y can be eliminated, yielding
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


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, (1.249)

where y′ij = yij − yk+1,j
yi,k+1

yk+1,k+1
and v′i = vi − vk+1. (1.250)

It is of no concern that the terminal voltages have been altered, as they have all had the
same quantity added to them. This has the same effect as choosing another reference terminal.
The reference terminal is arbitrary until it is connected to the full circuit. The process can be
continued until the network equations are reduced to that of a four-terminal element, that is









y′′11 y′′12 y′′13 y′′14
y′′21 y′′22 y′′23 y′′24
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y′′41 y′′42 y′′43 y′′44

















v′′1
v′′2
v′′3
v′′4









=









J1
J2
J3
J4









. (1.251)

The y-parameter matrix in Equation (1.251) is that of the four-terminal element shown in Figure
1-16.
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2.1 Introduction

A transmission line stores electric and magnetic energy, and for an alternat-
ing signal at a position on the line, energy is converted from one form to the
other as time progresses. As such a line has a circuit form that combines
inductors, Ls (for the magnetic energy), capacitors, Cs (for the electric
energy), and resistors, Rs (modeling losses), whose values depend on the
line geometry and material properties.

The transmission lines considered in this chapter are restricted to just two
parallel conductors, as shown in Figure 2-1, with the distance between the
two wires (i.e., in the transverse direction) being substantially smaller than
the wavelengths of the signals on the line. The correct physical interpretation
is that the conductors of a transmission line confine and guide an EM field.
The EM field contains the energy of the signal and not the current on the line.

(a) Two-wire line (b) Strip-above-ground line

Figure 2-1: Two
conductor trans-
mission lines.
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However, with electrically small transverse dimensions, a two conductor line
may be satisfactorily analyzed on the basis of voltages and currents.

The earliest understanding of signal transmission led to telegraphy
over distances. The critical theoretical step that enabled transmission over
more than short distances was the development of an understanding of
signal transmission on lines using phasor analysis [1]. This frequency-
domain analysis is still the best way to understand transmission lines.
This transmission line theory with modern developments is presented in
Section 2.2 and useful formulas and concepts developed in Section 2.3 for
lossless transmission lines. Section 2.4 presents several configurations of
lossless lines that are particularly useful in microwave circuit design and
used in many places in this book series. Section 2.5 repeats the analysis of
lossless lines but now for lossy lines. Reflections and transmission of power
at multiple interacting interfaces is considered in Section 2.6. Important
network models for transmission lines are developed in Section Section 2.7.
The last section, Section 2.8, presents summary formulas for many two-
conductor transmission lines.

2.1.1 When Must a Line be Considered a Transmission Line

The key determinant of whether a transmission line can be considered as
an invisible connection between two points is whether the signal anywhere
along the interconnect has the same value at a particular instant. If the value
of the signal (say, voltage) varies along the line (at an instant), then it may be
necessary to consider transmission line effects. A typical criterion used is that
if the length of the interconnect is less than 1/20th of the wavelength of the
highest-frequency component of a signal, then transmission line effects can
be safely ignored and the circuit can be modeled as a single RLC circuit [2].
The actual threshold used—λ/20, λ/10, or λ/5—is based on experience and
the particular application. For example, an interconnect carrying a digital
signal clocking at 4 GHz has an appreciable frequency component at 20 GHz.
Then the interconnect reaches the λ/10 threshold when it is 4.5 mm long.
Thus it takes a finite time for the variation of a voltage at one end of the
interconnect to impact the voltage at the other end. The ultimate limit is
determined by the speed of light, c, but this is reduced by the relative
permittivity and permeability of the material in which the fields exist. The
relative permittivity and permeability describe the effect of excess potential
energy storage in the material, above that of vacuum, in a manner that is
analogous to storing mechanical energy in a spring.

2.1.2 Movement of a Signal on a Transmission Line

A coaxial line (Figure 2-2(a)) is the quintessential transmission line as it is
one of the few transmission line structures that can be described exactly
from first principles when there is no loss. This is because the cross section
of a coaxial line matches the cylindrical coordinate system, an orthogonal
coordinate system with boundary conditions that can be expressed in terms
of just one coordinate (the radius). It is known how to solve Maxwell’s
equations,which are just differential equations, in an orthogonal coordinate
system. This is done for a coaxial line in Section 2.9.

When a positive voltage pulse is applied to the center conductor of the
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(a) (b)

Figure 2-2: A coaxial
transmission line: (a)
three-dimensional
view; (b) the line
with pulsed voltage
source showing the
electric fields at an
instant in time as a
voltage pulse trav-
els down the line.
EL ≪ ET .

Figure 2-3: Fields, currents,
and charges on the coaxial
transmission line of Figure
2-2 at times t4> t3> t2> t1.
QCENTER is the net free
charge on the center conduc-
tor. ICENTER is the current on
the center conductor.

coaxial line, as shown in Figure 2-2(a), an electric field results that is directed
from the center conductor to the outer conductor. Referring to Figure 2-2(b),
the component of the field that is directed along the shortest path from the
center conductor to the outer conductor is denoted ET , and the subscript
T denotes the transverse component of the field with the transverse plane
being perpendicular to the direction of propagation along the line. Figure 2-
2(b) shows the fields in the structure after the pulse has started moving along
the line. This is shown in another view in Figure 2-3 at four different times.
The transverse voltage, VT , is given by ET integrated along a path between
the inner and outer conductors: VT ≈ ET (a − b). This is a good measure,
provided that the transverse dimensions are small compared to a wavelength
(otherwise the integral is then path dependent). The voltage pulse exciting
the line has a trapezoidal shape and Figure 2-3 shows the charge, QCENTER,
and current, ICENTER, on the center conductor and the transverse field, ET .
The voltage between the inner and outer conductor has the same form as
ET . As indicated by Maxwell’s equations, a change in time of the electric
field results in a spatial change in the magnetic field and hence current. As
a result there is a variation of the current in time and this results in a spatial
change of the electric field. The chasing from a time variation to a spatial
variation and then back to a time variation causes the pulse to move down
the line.

The pulse moves down the line at the group velocity, which for a lossless
coaxial line is the same as the phase velocity, vp.1 This is determined by the
physical properties of the region between the conductors. The permittivity,

1 The phase velocity is the apparent velocity of a point of constant phase on a sinewave and is
almost frequency independent for a low-loss coaxial line of small transverse dimensions (less
than λ/10).
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ε, describes energy storage associated with the electric field, E, and the
energy storage associated with the magnetic field, H , is described by the
permeability, µ. (Both ε and µ are properties of the medium—the material.)
It has been determined that2

vp = 1/
√
µε. (2.1)

In a vacuum ε = ε0, the free-space permittivity, and µ = µ0, the free-space
permeability. These are physical constants and have the values

Permittivity of free space: ε0 = 8.854× 10−12 F/m.
Permeability of free space: µ0 = 4π × 10−7 H/m.

One conclusion here is that EM energy can be stored in free space, i.e. in
a vacuum. In free space vp = c = 1/

√
µ0ε0 = 3 × 108 m/s. The free-space

wavelengths, λ0 = c/f , at several frequencies, f , are

f 100 MHz 1 GHz 10 GHz
λ0 3 m 30 cm 3.0 cm

Commonly λ0 is used to indicate the wavelength in free space and λg , the
guide wavelength, is used to denote the wavelength on a transmission line.
It is convenient to use the relative permittivity (or the less commonly used
term dielectric constant), εr, defined as

εr = ε/ε0. (2.2)

Similarly the relative permeability is

µr = µ/µ0, (2.3)

and most materials have µr = 1. The permittivity, permeability, and
conductivity of materials used in RF and microwave circuits are given in
Appendix 2.A.

EXAMPLE 2.1 Transmission Line Wavelength

A length of coaxial line is filled with a dielectric having a relative permittivity of 20 and is
designed to be 1/4 wavelength long at a frequency, f , of 1.850 GHz.

(a) What is the free-space wavelength?
(b) What is the wavelength of the signal in the dielectric-filled coaxial line?
(c) How long is the line?

Solution:

(a) λ0 = c/f = 3× 108/1.85 × 109 = 0.162 m = 16.2 cm.
(b) Note that for a dielectric-filled line with µr = 1, λ = vp/f = c/(

√
εrf) = λ0/

√
εr , so

λ = λ0/
√
εr = 16.2 cm/

√
20 = 3.62 cm.

(c) λg/4 = 3.62 cm/4 = 9.05 mm.

2 This is derived from Maxwell’s equations and describes the situation where the fields have a
very simple structure, in general where the fields are solely directed in the transverse plane.
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2.2 Transmission Line Theory

This section develops the theory of signal propagation on transmission
lines. The first section, Section 2.2.1, makes the argument that a circuit
with resistors, inductors, and capacitors is a good model for a transmission
line. The complete development of transmission line theory is presented in
Section 2.2.2, and Section 2.2.3 relates the RLGC transmission line model to
the properties of a medium. The dimensions of some of the quantities that
appear in transmission line theory are discussed in Section 2.2.4. Section
2.2.5 summarizes the important parameters of a lossless line and then
two particularly important lines, coaxial lines and microstrip lines, are
considered in Sections 2.2.6 and 2.2.7.

2.2.1 Transmission Line RLGC Model

Regardless of the actual structure, a segment of uniform transmission line
(i.e., a line with constant cross section along its length) as shown in Figure
2-4(a) can be modeled by the circuit shown in Figure 2-4(b) with

Resistance along the line = R
Inductance along the line = L all specified
Conductance shunting the line = G per unit length.
Capacitance shunting the line = C

Thus R, L, G, and C are also referred to as resistance, inductance,
conductance, and capacitance per unit length. (Sometimes p.u.l. is used
as shorthand for per unit length.) In the metric system, ohms per meter
(Ω/m), henries per meter (H/m), siemens per meter (S/m) and farads
per meter (F/m), respectively, are used. The values of R, L, G, and C
are affected by the geometry of the transmission line and by the electrical
properties of the dielectrics and conductors. C describes the ability to
store electrical energy and is mostly due to the properties of the dielectric.
G describes loss in the dielectric which derives from conduction in the
dielectric and from dielectric relaxation. Most microwave substrates have
negligible conductivity so dielectric relaxation loss dominates. Dielectric
relaxation loss results from the movement of charge centers which result
in distortion of the dielectric lattice (if a crystal) or molecular structure.
The periodic variation of the E field transfers energy from the EM field
to mechanical vibrations. R is due to ohmic loss in the metal more than
anything else. L describes the ability to store magnetic energy and is mostly
a function of geometry, as most materials used with transmission lines have
µr = 1 (so no more magnetic energy is stored than in a vacuum).

For most lines the effects due to L and C dominate because of the relatively
low series resistance and shunt conductance. The propagation characteristics
of the line are described by its loss-free, or lossless, equivalent line, although
in practice some information about R or G is necessary to determine power

(a) (b)

Figure 2-4: Transmission
line segment: (a) of
length ∆z; and (b)
lumped-element model.
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losses. The lossless concept is just a useful and good approximation.

2.2.2 Derivation of Transmission Line Properties

In this section the differential equations governing the propagation of signals
on a transmission line are derived. These are coupled first-order differential
equations and are akin to Maxwell’s Equations in one dimension. Solution of
the differential equations describes how signals propagate, and leads to the
extraction of a few parameters that describe transmission line properties.

Applying Kirchoff’s laws applied to the model in Figure 2-4(b) and taking
the limit as ∆z → 0 the transmission line equations are

∂v(z, t)

∂z
= −Ri(z, t)− L

∂i(z, t)

∂t
(2.4)

∂i(z, t)

∂z
= −Gv(z, t)− C

∂v(z, t)

∂t
. (2.5)

In sinusoidal steady-state using cosine-based phasors these becomeV (z) is a phasor and
v(z, t) =
ℜ
{

V (z)eωt
}

. ℜ{w}
denotes the real part
of w, a complex
number.

dV (z)

dz
= −(R+ ωL)I(z) (2.6) and

dI(z)

dz
= −(G+ ωC)V (z). (2.7)

Eliminating I(z) in the above yields the wave equation for V (z):

d2V (z)

dz2
− γ2V (z) = 0. (2.8) Similarly

d2I(z)

dz2
− γ2I(z) = 0, (2.9)

where the propagation constant is

γ = α+ β =
√

(R+ ωL)(G+ ωC), (2.10)

with SI units of m−1 and where α is the attenuation coefficient and has
units of nepers per meter (Np/m), and β is the phase-change coefficient,
or phase constant, and has units of radians per meter (expressed as rad/m
or radians/m). Nepers and radians are dimensionless units, but serve as
prompts for what is being referred to.

Equations (2.8) and (2.9) are second-order differential equations that have
solutions of the form

V (z) = V +
0 e−γz + V −

0 eγz (2.11) and I(z) = I+0 e−γz + I−0 eγz. (2.12)

The physical interpretation of these solutions is that V +(z) = V +
0 e−γz and

I+(z) = I+0 e−γz are forward-traveling waves (moving in the +z direction)
and V −(z) = V −

0 eγz and I−(z) = I−0 eγz are backward-traveling waves
(moving in the −z direction). V (z), V +

0 , V −
0 , I(z), I+0 and I−0 are all phasors.

Substituting Equation (2.11) in Equation (2.6) results in

I(z) =
γ

R+ ωL

[

V +
0 e−γz − V −

0 eγz
]

. (2.13)

Then from Equations (2.13) and (2.12)

I+0 =
γ

R+ ωL
V +
0 and I−0 =

γ

R + ωL
(−V −

o ). (2.14)

The characteristic impedance is defined as

Z0 =
V +
0

I+0
=

−V −
0

I−0
=

R+ ωL

γ
=

√

R+ jωL

G+ jωC
, (2.15)
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with the SI unit of ohms (Ω). Equations (2.11) and (2.12) can be rewritten as

V (z) = V +
0 e−γz + V −

0 eγz (2.16) and I(z) =
V +
0

Z0
e−γz − V −

0

Z0
eγz. (2.17)

Converting back to the time domain:

v(z, t) =
∣

∣V +
0

∣

∣ cos(ωt− βz + ϕ+)e−αz +
∣

∣V −
0

∣

∣ cos(ωt+ βz + ϕ−)eαz , (2.18)

where ϕ+ and ϕ− are phases of the forward- and backward-traveling waves,
respectively. The phasors of the traveling voltage waves are

V +
0 (z) =

∣

∣V +
0

∣

∣ eϕ
+

e−βz and V −
0 (z) =

∣

∣V −
0

∣

∣ eϕ
−

eβz. (2.19)

The following quantities are defined:

Characteristic impedance: Z0 =
√

(R + ωL)/(G+ ωC) (2.20)

Propagation constant: γ =
√

(R+ ωL)(G+ ωC) (2.21)

Attenuation constant: α = ℜ{γ} (2.22)

Phase constant: β = ℑ{γ} (2.23)

Wavenumber: k = −γ (2.24)

Phase velocity: vp = ω/β (2.25)

Wavelength: λ =
2π

|γ| =
2π

|k| , (2.26)

where ω = 2πf is the radian frequency and f is the frequency with
the SI units of hertz (Hz). The wavenumber k as defined here is used in
electromagnetics and where wave propagation is concerned. Considering
one of the traveling waves, the phase velocity refers to the apparent velocity
of which a point of constant phase on the sinewave appears to move.

For low-loss materials, α ≪ β, and so β ≈ |k|, then the following
approximations are valid:

Characteristic impedance: Z0 ≈
√

L/C (2.27)

Phase constant: β ≈ ω
√
LC (2.28)

Wavenumber: k ≈ β (2.29)

Phase velocity: vp = ω/β (2.30)

Wavelength: λ ≈ 2π

β
= vp/f. (2.31)

The important result here is that a voltage wave (and a current wave) can be
defined on a transmission line. One more parameter needs to be introduced:
the group velocity,

vg =
∂ω

∂β
. (2.32)

The group velocity is the velocity of a modulated waveform’s envelope and
describes how fast information propagates. It is the velocity at which the
energy (i.e. information) in the waveform moves. Thus group velocity can
never be more than the speed of light in a vacuum, c. Phase velocity, however,
can be more than c. If the speed at which information moves varies with
frequency, then a signal such as a pulse will spread out. Such a line is said
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to have dispersion. For a lossless, dispersionless line, the group and phase
velocity are the same. If the phase velocity is frequency independent, then β
is linearly proportional to ω.

Electrical length is used in designs with transmission lines prior to
establishing the physical length of the line. The electrical length of a line
is expressed either as a fraction of a wavelength or in degrees (or radians),
where a wavelength corresponds to 360◦ (or 2π radians). So if β is the phase
constant of a signal on the line and ℓ is its physical length, the electrical length
of the line in radians is βℓ.

EXAMPLE 2.2 Physical and Electrical Length

A transmission line is 10 cm long and at the operating frequency the phase constant β is
30 rad/m. What is the electrical length of the line?

Solution:

The physical length of the line is ℓ = 10 cm = 0.1 m. Then the electrical length of the line is
ℓe = βℓ = (30 rad/m) × 0.1 m = 3 radians. The electrical length can also be expressed in
terms of wavelength noting that 360◦ corresponds to 2π radians, which also corresponds to
λ. Thus ℓe = (3 radians) = 3× 360/(2π) = 171.9◦ or ℓe = 3/(2π) λ = 0.477 λ.

EXAMPLE 2.3 RLGC Parameters

A transmission line has the RLGC parameters R = 100 Ω/m, L = 80 nH/m, G = 1.6 S/m,
and C = 200 pF/m. Consider a traveling wave at 2 GHz on the line.

(a) What is the attenuation constant?
(b) What is the phase constant?
(c) What is the phase velocity?
(d) What is the characteristic impedance of the line?
(e) What is the group velocity?

Solution:

(a) α: γ = α+ β =
√

(R + ωL) (G+ ωC); ω = 12.57 · 109 rad/s

γ =
√

(100 + ω · 80 · 10−9) (1.6 + ω200× 10−12) = (17.94 + 51.85) m−1

α = ℜ{γ} = 17.94 Np/m

(b) Phase constant: β = ℑ{γ} = 51.85 rad/m
(c) Phase velocity:

vp =
ω

β
=

2πf

β
=

12.57 × 109rad · s−1

51.85 rad · m−1
= 2.42× 108 m/s

(d) Z0 = (R+ ωL)/γ = (100 + ω · 80 · 10−9)/(17.94 + 51.85) = (17.9 + j4.3) Ω
Note also that Z0 =

√

(R+ ωL)/(G+ jωC), which yields the same answer.
(e) Group velocity:

vg =
∂ω

∂β

∣

∣

∣

∣

f=2 GHz

Numerical derivatives will be used, thus vg = ∆ω/∆β. Now β is already known at
2 GHz. At 1.9 GHz, γ = 17.884 + 49.397 m−1, and so β = 49.397 rad/m.

vg =
2π(2 GHz − 1.9 GHz)

β(2 GHz)− β(1.9 GHz)
=

2π(2− 1.9)109 Hz

(51.85− 49.397) m−1
= 2.563 × 108 m/s.

(Note that Hz = s−1. Note that vg �= vp, and so the transmission line has dispersion.)
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2.2.3 Relationship of RLGC parameters to Permittivity and
Permeability of a Medium

In the previous section the telegrapher’s equations for a transmission
line modeled as subsections of RLGC elements was derived. Very good
accuracy is obtained if the length of a subsection is no more than one-
twentieth of a wavelength. The full transmission line model is the cascade
of many transmission line subsections (e.g. see Figure 2-5). In this section
the RLGC parameters are related to the physical parameters of permittivity
and permeability. The development does not go into much detail, as the
derivation is involved and can only be derived analytically for a few regular
transmission line structures. If you are curious, the development is done for
a parallel plate waveguide and a rectangular waveguide in Chapter 6 and
for a coaxial line in Section 2.9.

The main parameters describing propagation on a transmission line are Z0

and γ, and these depend on the permeability and permittivity of the medium
and the spatial variation of the E and H fields resulting from the geometry of
the conductors. Only a few geometries permit analytic solution of the fields
so in general a numerical field solution is required and Z0 and γ derived.
Very often equations are curve fit to the numerical solutions but the structure
of the equations have a theoretical foundation. It is found that there can be a
number of possible field solutions (not unusual for the solution of differential
equations) each of which is called a mode. Modes that have all the fields in
the transverse plane (perpendicular to the propagation direction) is called a
transverse EM (TEM) mode and these modes exist at DC. The other modes
are only possible above a cut-off frequency. It is found that the propagation
constant has the form

γ2 = −
(

k2 − k2c
)

, (2.33)

where kc is the cutoff wavenumber and for a particular line usually has a
different value for each mode. The wavenumber of a homogeneous line is

k = ω
√
µε. (2.34)

A mode can only exist and describe a propagating signal when β = ℑ{γ}
is not zero which requires that γ2 be negative. Thus a mode can support
a propagating mode only if the wavenumber is greater than the cut-off
wavenumber, i.e. when k > kc. A TEM mode has kc = 0 so a signal, other
than DC can always propagate on the line in a TEM mode. A homogeneous
line has just one type of medium supporting the EM fields. An example of
a homogeneous line is a teflon-filled coaxial line. A non-homogeneous line
has two or or more dielectric mediums, such as air and a dielectric. For non-
homogeneous lines the concept of an equivalent homogeneous line with an
effective permittivity εeff and effective permeability µeff is used. Then

k = ω
√
µeffεeff (2.35)

Figure 2-5: RLGC model of a
transmission line.
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Loss is incorporated in the imaginary parts of ε and µ for TEM modes. As
before, for any mode,

Attenuation constant: α = ℜ{γ} (2.36)

Phase constant: β = ℑ{γ} (2.37)

Phase velocity: vp = ω/β (2.38)

Wavelength: λ =
vp
f

=
2π

β
, (2.39)

Comparing γ in Equations (2.10) and (2.35), an equivalence can be developed
between the lumped-element form of transmission line propagation and the
propagation of an EM wave in a medium. Specifically,

−ω2µeffεeff = (R+ ωL)(G+ ωC). (2.40)

Lossless Medium

If the medium is lossless (µ and ε are real and R = 0 = G), then

µeffεeff = LC. (2.41)

When the medium is free space (a vacuum), then a subscript zero is used.
Free space is also lossless, so the following results hold:

α0 = 0 and β0 = −γ = ω
√
µ0ε0 = ω

√
LC. (2.42)

If frequency is specified in gigahertz (indicated by fGHz), in free space

β0 = 20.958fGHz units of rads/m. (2.43)

At 1 GHz, β0 = 20.958 rad/m and λ0 = 29.98 cm (use λ0 ≈ 30 cm at 1 GHz
as a reference). In a lossless medium with effective relative permeability
µe = µeff/µ0 = 1 and effective relative permittivity εe = εeff/ε0,

β =
√
εeβ0. (2.44)

Z0 depends strongly on the spatial variation of the fields. When there is
no variation in the plane transverse to the direction of propagation (i.e. for
plane wave propagation)

Z0 =
√

µ/ε. (2.45)

However, if there is variation of the fields

Z0 = κ
√

µeff/εeff = κ
√

µ0/ε0
√

µe/εe, (2.46)

where κ captures the effect of geometric variation of the fields. Spatial
variation of the fields stores additional energy in the E and H fields, affecting
γ as well as Z0.

If the boundary conditions on a transmission line are such that a required
spatial variation of the fields cannot be supported, then the signal cannot
propagate. The critical frequency at which k = ω

√
µε = kc is called the

cutoff frequency, fc. Signals cannot propagate on the line if the frequency is
below fc. For the rest of this chapter the only lines considered are those for
which kc = 0, (and fc = 0), i.e. TEM modes on transmission lines. That is,
the lines carry DC signals.
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Low Loss Medium

Transmission line loss is due to the resistance of conductors, which is de-
scribed by R, and loss in the dielectric described by G. For most dielectrics
there is very little conductive loss and loss is due almost entirely to dielec-
tric relaxation. (The most common exception is when the dielectric is silicon
as there can be appreciable conduction in silicon.) In dielectric relaxation an
electric field causes charge centers to move and these cause the lattice to vi-
brate which we know is heat so energy is transferred from the electric field
to heat. The energy lost is proportional to frequency and so G is directly pro-
portional to frequency and consequently, provided there is no conduction in
the dielectric, the loss tangent of the transmission line is thus defined as:

tan δ = G/ωC = independent of frequency. (2.47)

One consequence of Equation (2.47), and noting that C is approximately
independent of frequency, is that if G is known at one frequency then its
value at another frequency can be quickly determined.

The loss tangent of the dielectric medium and the loss tangent of the
transmission line may not be the same as the EM fields may not be confined
just to the medium, e.g. fields are in air and in a dielectric.

2.2.4 Dimensions of γ, α, and β

The SI unit of γ are inverse meters (m−1) and the attenuation constant, α, and
the phase constant, β, have, strictly speaking, the same units. However, the The name for e

derives from John
Napier, who
developed the theory
of logarithms [3]. e is
sometimes called
Euler’s constant.

convention is to introduce the dimensionless quantities Neper and radian
to convey additional information. Thus the attenuation constant α has the
units of Nepers per meter (Np/m) and the phase constant β has the units
radians per meter (rad/m). The unit Neper comes from the name of the
e (= 2.7182818284590452354. . .) symbol (written in upright font and not
italics since it is a constant), which is called the Neper. The Neper is used
in calculating transmission line signal levels, as in Equations (2.11) and
(2.12). The attenuation and phase constants are often separated and then the
attenuation constant describes the decrease in signal amplitude as the signal
travels down a transmission line. So when αℓ = 1 Np, where ℓ is the length of In engineering

log x ≡ log10 x and
lnx ≡ loge x.

the line, the signal has decreased to 1/e of its original value, and the power
drops to 1/e2 of its original value. The decrease in signal level represents
loss and the units of decibels per meter (dB/m) are used with 1 Np = 20 log e
= 8.6858896381 dB. So expressing α as 1 Np/m is the same as saying that
the attenuation loss is 8.6859 dB/m. To convert from dB to Np multiply by
0.1151. Thus α = x dB/m = x× 0.1151 Np/m.

EXAMPLE 2.4 Transmission Line Characteristics

A line has an attenuation of 10 dB/m and a phase constant of 50 radians/m at 2 GHz.

(a) What is the complex propagation constant of the transmission line?
(b) If the capacitance of the line is 100 pF/m and the conductive loss is zero (i.e., G = 0),

what is the characteristic impedance of the line?

Solution:

(a) α|Np = 0.1151 × α|dB = 0.1151× (10 dB/m) = 1.151 Np/m, β = 50 rad/m
Propagation constant, γ = α+ β = (1.151 + 50) m−1

(b) γ =
√

(R + ωL) (G+ ωC), and Z0 =
√

(R+ ωL)/(G+ ωC),
therefore Z0 = γ/(G+ ωC); ω = 2π · 2× 109 s−1; G = 0; C = 100× 10−12 F,
so Z0 = 39.8− 0.916 Ω.
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2.2.5 Lossless Transmission Line

If the conductor and dielectric are ideal (i.e., lossless), then R = 0 = G and
the equations for the transmission line characteristics simplify. The transmis-
sion line parameters from Equations (2.15) and (2.21)–(2.26) are then

Z0 =
√

L
C (2.48) α = 0 (2.49)

β = ω
√
LC (2.50) vp = 1/

√
LC (2.51)

λg =
2π

ω
√
LC

=
vp
f
. (2.52)

Note that there is a distinction between a transmission line and an RLC
circuit. When a transmission line is referred to as having an impedance of
50 Ω, this is referring to the line having a characteristic impedance of 50 Ω,
the line cannot be replaced by a 50 Ω resistor.

A line cannot be replaced by a lumped element except as follows:

1. When calculating the forward voltage wave of a line that is infinitely
long (or there are no reflections from the load). Then the line can be
replaced by an impedance equal to the characteristic impedance of the
line. The total voltage is then only the forward-traveling component.

2. The characteristic impedance and load impedance are used to calculate
the input impedance of the terminated line at a particular frequency.

2.2.6 Coaxial Line

The analytic calculation of the characteristic impedance of a transmission line
from geometry is not always possible except for a few regular geometries
(matching orthogonal coordinate systems). For a coaxial line, the electric
fields extend in a radial direction from the center conductor to the outer
conductor. So it is possible to calculate the voltage by integrating this E
field from the center to the outer conductor. The magnetic field is circular,
centered on the center conductor, so the current on the conductor can
be calculated as the closed integral of the magnetic field. (Here the field
lines and the conductor boundaries correspond to the cylindrical coordinate
system.) Solving for the fields in the region between the center and outer
conductors yields the following formula for the characteristic impedance of
a coaxial line (the derivation is presented in Section 2.9):

Z0 = 138

√

µr

εr
log

(

b

a

)

Ω = 60

√

µr

εr
ln

(

b

a

)

Ω, (2.53)

where εr is the relative permittivity of the medium between the center and
outer conductors, b is the inner diameter of the outer conductor, and a is
the outer diameter of the inner conductor. With a higher ε, more energy is
stored in the electric field and the capacitance per unit length of the line, C,
increases. As the relative permittivity of the line increases, the characteristic
impedance of the line reduces. Equation (2.53) is an exact formulation for
the characteristic impedance of a coaxial line. Such a formula can only be
approximated for nearly every other line.

Most coaxial cables have Z0 of 50 Ω, but different ratios of b and a yield
special properties of the coaxial line. When the ratio is 1.65 for an air-filled
line, Z0 = 30 Ω and the line has maximum power-carrying capability. The
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(a) (b) (c) (d) (e) (f) (g)

Figure 2-6: Coaxial line adaptors: (a) N-type female-to-female (N(f)-to-N(f)); (b) APC-7 to N-
type male (APC-7-to-N(m)); (c) APC-7 to SMA-type male (APC-7-to-SMA(m)); SMA adapters:
(d) SMA-type female-to-female (SMA(f)-to-SMA(f)); (e) SMA-type male-to-female (SMA(m)-to-
SMA(f)); (f) SMA-type male-to-male (SMA(m)-to-SMA(m)); and (g) SMA elbow. N, APC-7 and
SMA are known as connector series.

ratio for maximum voltage breakdown is 2.7, corresponding to Z0 = 60 Ω for
an air-filled line. The characteristic impedance for minimum attenuation in
an air-filled line is 77 Ω, with a diameter ratio of 3.59. This optimum ratio of
outer-to-inner conductors for minimum loss is independent of the dielectric
and typical dielectrics have negligible loss with line loss due almost entirely
due to the conductors. If the dielectric filling the coaxial line is polyethylene
(which is most common) with εr = 2.3, the characteristic impedance of the
minimum loss line is 50.6 Ω.

The velocity of propagation in a lossless coaxial line having uniform
medium is the same as that for a plane wave in the medium, i.e. vg =
c/
√
εr. There is one caveat. This is true for all transmission line structures

supporting the minimum variation of the fields corresponding to a TEM
mode. Higher-order modes, with greater spatial variations of the fields will
travel more slowly (i.e. vg < c/

√
εr), will be considered in Chapter 4. The

diameter of the outer conductor and the type of internal supports for the
internal conductor determines the frequency range of coaxial components.
At high frequencies, and hence short wavelengths, large internal dimensions
of a large diameter cable can support more than one spatial variation of
the EM fields, i.e. more than one mode. This is undesirable because two
modes will travel at different speeds and a propagating signal divides energy
between the two modes and, since the modes have different group velocities,
the signal will become garbled. Thus the transverse dimensions of the cable
determine its upper frequency limit for reliable signal transmission.

There are various coaxial lines with different diameters and different levels
of attention given to the uniformity of the lines. Each type of line is called a
series and it is necessary to convert between series using adaptors. Various
adaptors are shown in Figure 2-6. Primarily these have different cost, loss,
and uniformity of Z0. It is often necessary to convert between series and also
to convert between the sexes (male and female) of connectors. Note that a
plug (or jack) could be either female or male.

The different construction of connectors can be seen in Figure 2-7. With
the APC-7 connector shown in Figure 2-7(a) the inside diameter of the outer
conductor is 7 mm. The unique feature of this connector is that it is sexless,
with the interface plate being spring-loaded. That is, an APC-7 connector
can always be connected to another APC-7 connector. These are precision



64 STEER MICROWAVE AND RF DESIGN: TRANSMISSION LINES

(c) APC-7 (a) N(f) (b) SMA(m) (d) SMA attenuator (e) N-type inline filter

Figure 2-7: Various coaxial 50 Ω transmission line connectors: (a) APC-7 coaxial connector (7 mm
outer conductor diameter); (b) female N-type (N(f)) coaxial connector (7 mm); (c) male SMA-type
(SMA(m)) coaxial connector (3.5 mm); (d) DC to 26 GHz, 2-W SMA precision fixed attenuator;
and (e) N-type inline 500 MHz lowpass filter. ((d) and (e) copyright 2012 Scientific Components
Corporation d/b/a Mini-Circuits, used with permission [4]).

(c)

(a) (b) (d) (e)

Figure 2-8: Coaxial lines: (a) SMA cables (from the top): flexible cable type I, type II, type III, and
semirigid cable; (b) coaxial cables showing layers; (c) semirigid coaxial cable bender; (d) bender
with line; and (e) hand-formable cable supporting tight radius with low return and insertion
loss. ((b) Copyright Megaphase LLC, used with permission [5].) ((e) Copyright 2012 Scientific
Components Corporation d/b/a Mini-Circuits, used with permission [4].)

connectors used in some microwave measurements. The N-type connector
in Figure 2-7(b) and the SMA connector in Figure 2-7(c) are more common
day-to-day connectors. Different views of these connectors are shown in
Figures 2-7(d and e). Unlike an APC-7 connector, an N-type (or SMA) male
connector, for example, can only be connected to a female N-type connector.
There are a large number of different types or series of connectors for high-
power applications, different frequency ranges, distortion levels, and cost.

There are also many types of coaxial cables, as shown in Figure 2-
8(a). These are cables with SMA connectors (with 3.5 mm outer conductor
diameter). Microwave cables without connectors are shown in Figure 2-8(b).
These cables range in cost, flexibility, and the number of times they can be
reliably flexed or bent. The semirigid cable shown at the bottom of Figure
2-8(a) must be bent using a bending tool, as shown in Figure 2-8(c), and in
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Figure 2-9: Torque wrench used
in making repeatable coaxial con-
nections. Copyright MegaPhase
LLC, used with permission [5].

use in Figure 2-8(d). The controlled bending radius ensures minimal change
in the characteristic impedance and propagation constant of the cable.
Semirigid cables can only be bent once however. The highest precision bend
is realized using an elbow bend, shown in Figure 2-6(g). Various flexible
cables have different responses to bending, with higher precision (and more
expensive) cables having the least impact on characteristic impedance and
phase variations as cables are flexed.

Precision measurements require that connectors be repeatably attached
using a torque wrench, as shown in Figure 2-9. A torque wrench can be
used in a conventional manner, but once the prescribed torque is obtained
the wrench breaks just above the head. This ensures that two connectors
are repeatably joined with the same force and so the contact resistance and
quality of the connection is repeatable.

2.2.7 Microstrip Line

A microstrip line is shown in Figure 2-10(a). This is a commonly used
transmission line, as it can be cheaply fabricated using printed circuit
board techniques. This line consists of a metal-backed substrate of relative
permittivity εr on top of which is a metal strip. Above that is air. The
width of the strip determines the characteristic impedance of the line. The
characteristic impedance of microstrip lines having various strip widths is
shown in Figure 2-11 for several substrate permittivities. So the wider the
strip and the higher the substrate permittivity, the lower the characteristic
impedance of the line. The EM fields are partly in air and partly in the
dielectric and an effective permittivity must be used when calculating
the electrical length of the line. The results of field simulations of the
effective permittivity of lines of various widths and with various substrate
permittivities are shown in Figure 2-12, where it can be seen that the effective
relative permittivity, εe, increases for wide strips. This is because more of the
EM field is in the substrate. Microstrip transmission line structures are often
drawn showing just the layout of the strip, as shown in Figure 2-10(b), where

(a) Microstrip (b) Layout of microstrip lines

Figure 2-10: Microstrip
transmission line. The
layout (or top) view is
commonly used with
circuit designs using
microstrip. This is the
pattern of the strip
where (b) shows three
lines of different width.
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Figure 2-11: Dependence of Z0 of a microstrip
line at 1 GHz for various εr and aspect (w/h)
ratios. Calculated using EM simulation.

Figure 2-12: Dependence of effective relative
permittivity εe of a microstrip line at 1 GHz for
various permittivities and aspect ratios (w/h).

the three lines have different characteristic impedances. The next chapter
presents detailed analyses of microstrip and other planar transmission lines.

2.2.8 Summary

The important takeaway from this section is that a signal moves on a
transmission line as forward- and backward-traveling waves. The energy
transferred is in the traveling waves. The total voltage and current at a point
on the line is the sum of the traveling voltage and traveling current waves,
respectively, but the total voltage/current view is not sufficient to describe
how a transmission line works. Transmission line theory is expressed in
terms of traveling voltage and current waves and these are akin to a one-
dimensional form of Maxwell’s equations. An argument was developed that
posits a model of a line as cascaded sections of RLGC circuit and these circuit
elements can be loosely related to the material properties of the medium
in which the transmission line is embedded. There are a modification
factors due to the actual orientation of the electric and magnetic fields and
developing these requires detailed field analysis of the actual transmission
line geometry. This can be done for a coaxial line but a microstrip line
requires numerical analysis.

2.3 The Lossless Terminated Line

Microwave engineers want to work with total voltage and current when
possible and the art of design synthesis usually requires relating the total
voltage and current world of a lumped element circuit to the traveling
voltage world of transmission lines. This section develops the important
abstractions that enable the total voltage and current view of the world to
be used with transmission lines. The first step in this process is in Section
2.3.1 where total voltages and currents are related to forward- and backward-
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(a) (b)

Figure 2-13: A termi-
nated transmission
line.

traveling voltages and currents. Insight into traveling waves and reflections
is presented in Section 2.3.2. Important abstractions are presented first for
the input reflection coefficient of a terminated lossless line in Section 2.3.3
and then for the input impedance of the line in Section 2.3.4. The last section,
Section 2.3.5, presents a view of the total voltage on the transmission line and
describes the voltage standing wave concept.

2.3.1 Total Voltage and Current on the Line

Consider the terminated line shown in Figure 2-13(a). Assume an incident
or forward-traveling wave, with traveling voltage V +

0 e−βz and current
I+0 e−βz propagating toward the load ZL at z = 0. The characteristic
impedance of the transmission line is the ratio of the voltage and current
traveling waves so that

V +
0 (z)

I+0 (z)
=

V +
0 e−βz

I+0 e−βz
=

V +
0 (0)

I+0 (0)
=

V +
0

I+0
= Z0. (2.54)

The reflected wave has a similar relationship (but note the sign change):

V −
0 eβz

−I−0 eβz
=

V −
0

−I−0
= Z0. (2.55)

The load ZL imposes an additional constraint on the relationship of the total
voltage and current at z = 0:

VL

IL
=

V (z = 0)

I(z = 0)
= ZL. (2.56)

When ZL �= Z0 there must be a reflected wave with appropriate amplitude
to satisfy the above equations. Now the total voltage

V (z) = V +
0 e−βz + V −

0 eβz, (2.57)

and the total current, I(z), is related to the traveling current waves by

I(z) =
V +
0

Z0
e−βz − V −

0

Z0
eβz = I+0 e−βz + I−0 eβz. (2.58)

Thus at the termination of the line (z = 0),

V (0)

I(0)
= ZL = Z0

V +
0 + V −

0

V +
0 − V −

0

.
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This can be rearranged as the ratio of the reflected voltage to the incident
voltage:

V −
0

V +
0

=
ZL − Z0

ZL + Z0
.

This ratio is defined as the voltage reflection coefficient at the load,

ΓL = ΓV
L =

V −
0 (0)

V +
0 (0)

=
V −
0

V +
0

=
ZL − Z0

ZL + Z0
. (2.59)

That is, at the load

V −
0 = ΓLV

+
0 . (2.60)

The relationship of the traveling waves on the line can also be described
using the transmission coefficient T (this is the capital Greek letter tau which
looks the same as the English letter ‘T’.)

The voltage transmission coefficient from a port at position z to a port at
position 0 is (for the transmission line)

T = T V =
V +
0 (at end of line)

V +
0 (at start of line)

=
V +
0 (0)

V +
0 (z)

=
V +
0

V +
0 e−βz

= eβz. (2.61)

The relationship in Equation (2.59) can be rewritten so that the input load
impedance can be obtained from the reflection coefficient:

ZL = Z0
1 + ΓV

1− ΓV
. (2.62)

Similarly, the current reflection coefficient can be written as

ΓI =
I−0
I+0

=
−ZL + Z0

ZL + Z0
= −ΓV . (2.63)

The voltage reflection coefficient is used most of the time, so the reflection
coefficient, Γ, on its own refers to the voltage reflection coefficient, ΓV = Γ.

There are several special cases that are noteworthy. The most important of
these is the case when there is no reflected wave and Γ = 0. To obtain Γ = 0,
the value of load impedance, ZL, is equal to Z0, the characteristic impedance
of the transmission line as seen in Equation (2.59).

The total voltage and current waves on the line can be written as

V (z) = V +
0 [e−βz + Γeβz] (2.64) I(z) =

V +
0

Z0
[e−βz − Γeβz]. (2.65)

From Equations (2.64) and (2.65) it can be seen that the total voltage and
current on the line consist of superpositions of incident and reflected waves.
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EXAMPLE 2.5 Forward- and Backward-Traveling Waves at an Open Circuit

A lossless transmission line is terminated in an open circuit. What is the relationship between
the forward- and backward-traveling voltage waves at the end of the line?

Solution:

At the end of the line the total current is zero, so that I+ + I− = 0 and so

I− = −I+. (2.66)

The forward- and backward traveling voltages and currents are related to the characteristic
impedance by

Z0 = V +/I+ = −V −/I−, (2.67)

Note the change in sign, as a result of the direction of propagation changing but the positive
reference for current is in the same direction. Substituting for I− at the termination,

V + = −V −I+/I− = −V −I+/(−I+) = V −. (2.68)

Thus the total voltage at the end of the line, VTOTAL, is V + + V − = 2V +. Note that the total
voltage at the end of the line is twice the incident (forward-traveling) voltage.

EXAMPLE 2.6 Current Reflection Coefficient

A load consists of a shunt connection of a capacitor of 10 pF and a resistor of 60 Ω. The load
terminates a lossless 50 Ω transmission line. The operating frequency is 5 GHz.

(a) What is the impedance of the load?
(b) What is the normalized impedance of the load (normalized to Z0 of the line)?
(c) What is the reflection coefficient of the load?
(d) What is the current reflection coefficient of the load?

Solution:

(a) C = 10 · 10−12 F; R = 60 Ω; f = 5 · 109 Hz; ω = 2πf ; Z0 = 50 Ω

ZL = R||C = (1/R + ωC)−1 = 0.168 − 3.174 Ω.

(b) zL = ZL/Z0 = 3.368 · 10−3 − 0.063.
(c) This is the voltage reflection coefficient. ΓL = (zL − 1)/(zL + 1) = −0.985 − 0.126 =

0.993� 187.3◦.
(d) ΓI

L = −ΓL = 0.985 + 0.126 = 0.993� (187.3 − 180)◦ = 0.993� 7.3◦.

2.3.2 Forward- and Backward-Traveling Pulses

Reflections at the end of a line produce a backward-traveling signal.
Forward- and backward-traveling pulses are shown in Figure 2-14(a) for
the situation where the resistance at the end of the line is lower than the
characteristic impedance of the line (ZL < Z0). The voltage source is a step
voltage that is zero for time t < 0. At time t = 0, the step is applied to the line
and it begins traveling down the line, as shown at time t = 1. This voltage
step moving from left to right is called the forward-traveling voltage wave.

At time t = 2, the leading edge of the step reaches the load, and as the
load has lower resistance than the characteristic impedance of the line, the
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total voltage across the load drops below the level of the forward-traveling
voltage step. The reflected wave is called the backward-traveling wave and
it must be negative, as it adds to the forward-traveling wave to yield the
total voltage. Thus the voltage reflection coefficient, Γ, is negative and the
total voltage on the line, which is all that can be directly observed, drops. A
reflected, smaller, and opposite step signal travels in the backward direction
and adds to the forward-traveling step to produce the waveform shown at
t = 3. The impedance of the source matches the transmission line impedance
so that the reflection at the source is zero. The signal on the line at time
t = 4, the time for round-trip propagation on the line, therefore remains
at the lower value. The easiest way to remember the polarity of the reflected
pulse is to consider the situation with a short-circuit at the load. Then the
total voltage on the line at the load must be zero. The only way this can occur
when a signal is incident is if the reflected signal is equal in magnitude but
opposite in sign, in this case Γ = −1. So whenever |ZL| < |Z0|, the reflected
pulse will tend to subtract from the incident pulse.

The opposite situation occurs when the resistance at the load is higher
than the characteristic impedance of the line (Figure 2-14(b)). In this case
the reflected pulse has the same polarity as the incident signal. Again, to
remember this, think of the open-circuited case. The voltage across the load
doubles, as the reflected pulse has the same sign as well as magnitude as that
of the incident signal, in this case Γ = +1. This is required so that the total
current is zero.

A more illustrative situation is shown in Figure 2-15, where a more

(a) RL < Z0 (b) RL > Z0

Figure 2-14: Reflection of a voltage pulse from a load: (a) when the resistance of the load, RL is
lower than the characteristic impedance of the line, Z0; and (b) when RL is greater than Z0.
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Figure 2-15: Reflection of a pulse on an interconnect showing forward- and backward-traveling
pulses. ZL > Z0.

complicated signal is incident on a load that has a resistance higher than
that of the characteristic impedance of the line. The peaking of the voltage
that results at the load is typically the design objective in many long digital
interconnects, as less overall signal energy needs to be transmitted down the
line, or equivalently a lower current drive capability of the source is required
to achieve first incidence switching. This is at the price of having reflected
signals on the interconnects, but these are dissipated through a combination
of line loss and absorption of the reflected signal at the driver.

2.3.3 Input Reflection Coefficient of a Lossless Line

The reflection coefficient looking into a line varies with position along the
line as the forward- and backward-traveling waves change in relative phase.
Referring to Figure 2-16, at a distance ℓ from the load (i.e., z = −ℓ), the input
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Figure 2-16: Terminated
transmission line: (a) a trans-
mission line terminated in a
load impedance, ZL, with an
input impedance of Zin; and
(b) a transmission line with
source impedance ZG and
load ZL. (a) (b)

Figure 2-17: The forward-
traveling wave v+(t, z) =
|V +| cos(ωt − βz) =
|V +| cos(ωt + φ(z)) and
the backward-traveling wave
v−(t, z) =
|V +| cos(ωt + βz) =
|V +| cos[ωt + φ(z)]. The
phase, φ, of the forward-
traveling wave becomes
increasingly negative along
the line as z increases, and
when reflected the phase φ
of the backward-traveling
wave becomes increasingly
negative as the wave moves
away from the load (i.e. as z
decreases).

reflection looking into a terminated lossless line is

Γin|z=−ℓ =
V −(z = −ℓ)

V +(z = −ℓ)
=

V −(z = 0)e−βℓ

V +(z = 0)e+βℓ
=

V −(z = 0)

V +(z = 0)

e−βℓ

e+βℓ
= ΓLe

−2βℓ

(2.69)

Note that Γin has the same magnitude as ΓL but rotates in the clockwise
direction (becomes increasingly negative) at twice the rate of increase of the
electrical length βℓ.

It is important to graphical concepts introduced later that there be a full
appreciation for the angle of Γin becoming increasingly negative at twice
the rate at which the electrical length of the line increases. Figure 2-17 is
a way of visualizing this. The transmission line here is λ/4 long with an
electrical length of 90◦ and is terminated in a load with reflection coefficient
ΓL = +1. At position z = 0 the forward-traveling voltage wave is v+(t, 0) =
|V +| cos(ωt), and this then propagates down the line in the +z direction. The
forward-traveling voltage at point z = λ/8 at t = 0 will be the same as the
voltage at z = 0 at a time one-eighth of a period in the past. The voltage at z =
λ/8 is v+(t, λ/8) = |V +| cos(ωt− 2π/8), i.e. there is a phase rotation of −45◦.
Then at z = λ/4, v+(t, λ/4) = |V +| cos(ωt − 2π/4), i.e. at time t = 0 there
is a phase rotation of −90◦ relative to v+(0, 0), and this is the negative of the
electrical length of the line. The voltage wave reflects at the load and becomes
a backward-traveling wave. Here ΓL = +1 and so, at the load, the phase of
the backward- and forward-traveling waves are the same. The backward-
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traveling wave continues to travel in the −z direction and its phase at t = 0
becomes increasingly negative as z gets closer to the input of the line. The
phase of the backward-traveling wave at z = 0 is rotated −90◦ with respect
to the backward-traveling wave at the load, and has rotated −180◦ relative
to the forward-traveling wave at z = 0. For a lossless line, in general, the
angle of Γin = [phase of V −(z = 0) relative to the phase of V +(z = 0)] +
(the phase of ΓL) = −2(electrical length of the line) + (the phase of ΓL).

2.3.4 Input Impedance of a Lossless Line

The impedance looking into a lossless line varies with position, as
the forward- and backward-traveling waves combine to yield position-
dependent total voltage and current. At a distance ℓ from the load (i.e.,
z = −ℓ), the input impedance seen looking toward the load is

Zin|z=−ℓ =
V (z = −ℓ)

I(z = −ℓ)
= Z0

1 + |Γ| e(Θ−2βℓ)

1− |Γ| e(Θ−2βℓ)
= Z0

1 + ΓLe
(−2βℓ)

1− ΓLe(−2βℓ)
. (2.70)

Another form is obtained by substituting Equation (2.59) in Equation (2.70):

Zin = Z0
(ZL + Z0)e

βℓ + (ZL − Z0)e
−βℓ

(ZL + Z0)eβℓ − (ZL − Z0)e−βℓ
= Z0

ZL cos(βℓ) + Z0 cos(βℓ)

Z0 cos(βℓ) + ZL cos(βℓ)

= Z0
ZL + Z0 tanβℓ

Z0 + ZL tanβℓ
. (2.71)

This is the lossless telegrapher’s equation. The electrical length, βℓ, is in
radians when used in calculations.

2.3.5 Standing Waves and Voltage Standing Wave Ratio

The total voltage on a terminated line is the sum of forward- and backward-
traveling waves. This sum produces what is called a standing wave. Figure
2-18 shows the total and traveling waveforms on a line terminated in a
reactance and evaluated at times equal to multiples of an eighth of a period.
Here the traveling waves have the same amplitude indicating that the
termination of the line is reactive, |Γ| = 1. The interesting property here is
that the total voltage appears as a standing wave with fixed points called
nodes where the total voltage is always zero. This is more easily seen in
Figure 2-19(a), where the total voltage is overlaid for many times. If the
termination has resistance, then the magnitude of the backward-traveling
wave will be less than that of the forward-traveling wave and the overlaid
total voltage is as shown in Figure 2-19(b). This is still a standing wave, but
the minima are now not zero. The envelope of this standing wave is shown
in Figure 2-19(c), where there is a maximum amplitude Vmax and a minimum
amplitude Vmin.

Now this situation will be examined mathematically to relate the standing
wave to the reflection coefficient. If Γ = 0, then the magnitude of the total
voltage on the line, |V (z)|, is equal to

∣

∣V +
0

∣

∣ anywhere on the line. For this
reason, such a line is said to be “flat.” If there is reflection the magnitude of
the total voltage on the line is not constant (see Figure 2-19(b)). Thus from
Equations (2.64) and (2.65):

|V (z)| =
∣

∣V +
0

∣

∣

∣

∣1 + Γe2βz
∣

∣ =
∣

∣V +
0

∣

∣

∣

∣1 + Γe−2βℓ
∣

∣, (2.72)
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(a) t = 0 (b) t = T/8 (c) t = 2T/8 (d) t = 3T/8

(e) t = 4T/8 (f) t = 5T/8 (g) t = 6T/8 (h) t = 7T/8

Figure 2-18: Evolution of a standing wave with a reactive load as the sum of forward- and
backward-traveling waves (to the right and left, respectively) of equal amplitude evaluated at
times t equal to eighths of the period T . At t = T/8 and t = 5T/8 the total voltage everywhere
on the line is zero.

(a) load is a reactance only (b) load is at least partially resistive (c) envelope of (b)

Figure 2-19: Standing waves as an overlay of waveforms at many times: (a) when the forward-
and backward-traveling waves have the same amplitude; (b) when the waves have different
amplitudes; and (c) the envelope of the standing wave. N is a node (a minimum) and AN is an
antinode (a maximum). Nodes, N, are separated by λ/2. Antinodes, AN, are separated by λ/2.

where z = −ℓ is the positive distance measured from the load at z = 0 toward
the generator. Or, setting Γ = |Γ|eΘ,

|V (z)| =
∣

∣V +
0

∣

∣

∣

∣

∣
1 + |Γ|e(Θ−2βℓ)

∣

∣

∣
, (2.73)

where Θ is the phase of the reflection coefficient (Γ = |Γ|eΘ) at the load. This
result shows that the voltage magnitude oscillates with position z along the
line. The maximum value occurs when e(Θ−2βℓ) = 1 and is given by

Vmax =
∣

∣V +
0

∣

∣(1 + |Γ|). (2.74)

Similarly the minimum value of the total voltage magnitude occurs when
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the phase term is e(Θ−2βl) = −1, and is given by

Vmin =
∣

∣V +
0

∣

∣(1− |Γ|). (2.75)

A mismatch can be defined by the voltage standing wave ratio (VSWR):

VSWR =
Vmax

Vmin
=

(1 + |Γ|)
(1− |Γ|) . (2.76) Also |Γ| = VSWR − 1

VSWR + 1
. (2.77)

Notice that in general Γ is complex, but VSWR is necessarily always real and
1 ≤ VSWR ≤ ∞. For the matched condition, Γ = 0 and VSWR = 1, and
the closer VSWR is to 1, the closer the load is to being matched to the line
and the more power is delivered to the load. The magnitude of the reflection
coefficient on a line with a short-circuit or open-circuit load is 1, and in both
cases the VSWR is infinite.

To determine the position of the standing wave maximum, ℓmax, consider
Equation (2.73) and note that at the maximum

Θ− 2βℓmax = 2nπ, n = 0, 1, 2, . . . . (2.78)

Here Θ is the angle of the reflection coefficient at the load:

Θ− 2nπ = 2
2π

λg
ℓmax . (2.79)

Thus the position of the voltage maxima, lmax, normalized to wavelength is

ℓmax

λg
=

1

2

(

Θ

2π
− n

)

, n = 0,−1,−2, . . . . (2.80)

Similarly the position of the voltage minima is (using Equation (2.73)):

Θ− 2βℓmin = (2n+ 1)π. (2.81)

After rearranging the terms,

ℓmin

λg
=

1

2

(

Θ

2π
− n+

1

2

)

, n = 0,−1,−2, . . . . (2.82)

Summarizing from Equations (2.80) and (2.82):

1. The distance between two successive maxima is λg/2.
2. The distance between two successive minima is λg/2.
3. The distance between a maximum and an adjacent minimum is λg/4.
4. From the measured VSWR the magnitude of the reflection coefficient

|Γ| can be found. From the measured ℓmax the angle Θ of Γ can be
found. Then from Γ the load impedance can be found.

In a similar manner to that above, the magnitude of the total current on
the line is

|I(ℓ)| =
∣

∣V +
0

∣

∣

Z0

∣

∣

∣
1− |Γ|e(Θ−2βℓ)

∣

∣

∣
. (2.83)

Hence the standing wave current is maximum where the standing-wave
voltage amplitude is minimum, and minimum where the standing-wave
voltage amplitude is maximum.
Zin in Equation 2.71 is a periodic function of length with period λ/2 and it

varies between Zmax and Zmin, where

Zmax =
Vmax

Imin
= Z0 × VSWR and Zmin =

Vmin

Imax
=

Z0

VSWR
. (2.84)
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EXAMPLE 2.7 Standing Wave Ratio

In Example 2.6 the load consisted of a capacitor of 10 pF in shunt with a resistor of 60 Ω. The
load terminated a lossless 50 Ω transmission line. The operating frequency is 5 GHz.

(a) What is the SWR?
(b) What is the current standing wave ratio (ISWR)? (When SWR is used on its own it is

assumed to refer to VSWR.)

Solution:

(a) From Example 2.6 ΓL = 0.993� 187.3◦ and so

VSWR =
1 + |ΓL|
1− |ΓL|

=
1 + 0.993

1− 0.993
= 285.

(b) ISWR = VSWR = 285.

EXAMPLE 2.8 Standing Waves

A load has an impedance ZL = 45+ 75 Ω and the system reference impedance, Z0, is 100 Ω.

(a) What is the reflection coefficient?
(b) What is the current reflection coefficient?
(c) What is the SWR?
(d) What is the ISWR?
(e) The power available from a source with a 100 Ω Thevenin equivalent impedance is 1 mW.

The source is connected directly to the load, ZL. Use the reflection coefficient to calculate
the power delivered to ZL.

(f) What is the total power absorbed by the Thevenin equivalent source impedance?
(g) Discuss the effect on power flow of inserting a lossless 100 Ω transmission line between

the source and the load.

Solution:

(a) The voltage reflection coefficient is

ΓL = (ZL − Z0)/(ZL + Z0) = (45 + 75− 100)/(45 + 75 + 100)

= (93.0� (2.204 rads))/(163.2� (0.4773 rads))

= 0.570� (1.726 rads) = 0.570� 98.9◦ = −0.0881 + 0.563 = ΓV . (2.85)

(b) The current reflection coefficient is

ΓI = −ΓV = 0.0881 − 0.563 = 0.570� (98.9◦ − 180◦) = 0.570� 81.1◦. (2.86)

(c) The SWR is the VSWR, so

SWR = VSWR =
Vmax

Vmin
=

1 + |ΓV |
1− |ΓV | =

1 + 0.570

1− 0.570
= 3.65. (2.87)

(d) The current SWR is ISWR = VSWR.
(e) To determine the reflection coefficient of the load, begin

by developing the Thevenin equivalent circuit of the
load. The power available from the source is PA =
1 mW, so the Thevenin equivalent circuit is

The power reflected by the load is

PR = PA

∣

∣Γ2
L

∣

∣ = 1 mW · (0.570)2 = 0.325 mW

and the power delivered to the load is

PD = PA

(

1−
∣

∣Γ2
L

∣

∣

)

= 0.675 mW.
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(a) (b) (c)

Figure 2-20:
Measurement of
standing waves: (a)
coaxial slotted line; (b)
schematic of slotted
line; (c) measured
standing wave.

(f) It is tempting to think that the power dissipated in RTH is just PR. However, this is not
correct. Instead, the current in RTH must be determined and then the power dissipated
in RTH found. Let the current through RTHcdot be I , and this is composed of forward-
and backward-traveling components:

I = I+ + I− = (1 + ΓI)I
+,

where I+ is the forward-traveling current wave. Thus

PA = 1
2
|I+|2RTH = 1

2
|I+|2 × 100 = 1 mW = 10−3 W,

so I+ = 4.47 mA, and

I = (1 + ΓI)I
+ = (1 + 0.0881 − 0.563) × 4.47× 10−3 A, |I | = 5.48 mA.

The power dissipated in RTH is

PTH = 1
2
|I |2RTH = 1

2
(5.48 × 10−3)2RTH = 1.50 mW. (2.88)

The circuit is that shown in part (e) and so the current in RTH is the same as the current
in ZL. Thus the power delivered to the load ZL is due to the real part of ZL:

PD = 1
2

∣

∣I2
∣

∣ℜ(ZL) =
1
2
(5.48 × 10−3)2 × 45 = 0.676 mW (2.89)

(g) Inserting a transmission line with the same characteristic impedance as the Thevenin
equivalent impedance will have no effect on power flow.

VSWR Measurement

The measurement of standing waves can be used to calculate the impedance
of a load. The device that does this measurement, called a slotted line,
is shown in Figure 2-20(a). A probe is inserted a small distance into the
transmission line to measure the electric field. The RF electric field produces
an RF voltage on the probe that is rectified by the diode detector. The DC
voltage at the output of the detector is proportional to the total voltage on
the line. The probe can be moved along the line and the ratio of Vmax to Vmin

determined. This is just the VSWR. To find the complex load impedance it is
also necessary to determine the position of the node of the standing wave.
From the measured VSWR the magnitude of the reflection coefficient |Γ| can
be found. From the measured ℓmax the angle Θ of Γ can be found. From Γ the
load impedance can be found. This is demonstrated in the next example.



78 STEER MICROWAVE AND RF DESIGN: TRANSMISSION LINES

EXAMPLE 2.9 Slotted Line Measurement of Impedance

A slotted line is used to determine the properties of the standing wave on a terminated 50 Ω
line see Figure 2-19(c). Vmax = 5 V and Vmin = 2 V, and the first minimum is 2 cm from the
load. The guide wavelength is 10 cm. What is the load impedance ZL?

Solution:

Now VSWR = Vmax/Vmin = 5/2 = 2.5. So from Equation (2.77)

|Γ| = |ΓL| =
VSWR − 1

VSWR + 1
=

2.5− 1

2.5 + 1
= 0.428. (2.90)

Equation (2.82) and the position of the first node can be used to determine the angle of ΓL.
For the first node (minimum), n = 0 and

ℓmin

λg
= 1

2

(

Θ

2π
+

1

2

)

. (2.91) Rearranging, Θ = 2π

(

2
ℓmin

λg
− 1

2

)

radians. (2.92)

Now ℓmin = 2 cm and λg = 10 cm. So, in degrees,

Θ = 360

(

2
ℓmin

λg
− 1

2

)

= 360

(

2
2

10
− 1

2

)

= −36◦. (2.93)

Thus ΓL = 0.428� (−36◦) = 0.3463 − 0.2516, so the load impedance is (where Z0 = 50 Ω)

ZL = Z0

(

1 + ΓL

1− ΓL

)

= 83.2− 51.3 Ω. (2.94)

2.3.6 Summary

This section related the physics of traveling voltage and current waves on
lossless transmission lines to the total voltage and current view. First the
input reflection coefficient of a terminated lossless line was developed and
from this the input impedance, which is the ratio of total voltage and total
current, derived. At any point along a line the amplitude of total voltage
varies sinusoidally, tracing out a standing wave pattern along the line and
yielding the VSWR metric which is the ratio of the maximum amplitude
of the total voltage to the minimum amplitude of that voltage. This is an
important metric that is often used to provide an indication of how good
a match, i.e. how small the reflection is, with a VSWR = 1 indicating
no reflection and a VSWR = ∞ indicating total reflection, i.e. a reflection
coefficient magnitude of 1.

2.4 Special Lossless Line Configurations

The lossless transmission line configurations considered in this section are
used as circuit elements in RF designs and are used elsewhere in this book
series. The first element considered in Section 2.4.1 is a short length of short-
circuited line which looks like an inductor. The element considered in Section
2.4.2 is a short length of open-circuited line which looks like a capacitor.
Then lengths of short-circuited and open-circuited lines, called stubs, used
nearly always as shunt elements to introduce an admittance in a circuit, are
described in Sections 2.4.3 and 2.4.4. Another type of element, described in
Section 2.4.5, is a short length of line with either high or low characteristic
impedance realizing a small series inductor or capacitor respectively. The
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final element described in Section 2.4.6 is a quarter-wave transformer, a
quarter-wavelength long line with a particular characteristic impedance
which is used in two ways. It can be used to provide maximum power
transfer from a source to a load resistance, and it can invert an impedance,
e.g. making a capacitor terminating the line look like an inductor.

2.4.1 Short Length of Short-Circuited Line

A transmission line terminated in a short circuit (ZL = 0) has the input
impedance (using Equation (2.71))

Zin = Z0 tan(βℓ). (2.95)

So a short length of line, ℓ < λg/4, looks like an inductor with inductance Ls,

Z0 tan(βℓ) = ωLs, and so Ls =
Z0

ω
tan

2πℓ

λg
. (2.96)

From Equation (2.96) it can be seen that for a given ℓ, Ls is proportional
to Z0. Hence, for larger values of Ls, sections of transmission line of high
characteristic impedance are needed. So microstrip lines with narrow strips
can be used to realize inductors in planar microstrip circuits.

2.4.2 Short Length of Open-Circuited Line

An open-circuited line has ZL = ∞ and so (using Equation (2.71))

Zin = −
Z0

tanβℓ
. (2.97)

For lengths ℓ such that ℓ < λ/4, an open-circuited segment of line realizes a
capacitor C0 for which

1

ωC0
=

Z0

tanβℓ
and so C0 =

1

Z0

tan(βℓ)

ω
. (2.98)

From the above relationship, it can be seen that C0 is inversely
proportional to Z0. Hence, for larger values of C0, sections of transmission
line with low characteristic impedance need to be used.

2.4.3 Short-Circuited Stub

A stub is a section of open-circuited or short-circuited transmission line and
is used as a series or shunt element in a microwave circuit. There are several
representations. A shorted stub is shown in Figure 2-21(a) as a transmission
line with characteristic impedance Z01 that is short circuited. The input
impedance of the line is Z1. If the line is lossless, the usual assumption,
then Z01 will be real and Z1 will be imaginary. Stubs are commonly used
in microwave circuits and generally all stubs in a network have the same
length, such as λ/4 long or λ/8 long. Which it is is specified in the design.
Realistically they do not need to have the same length but there are some
special properties for certain lengths, as will become clearer. A cleaner way
to indicate a shorted stub is shown in Figure 2-21(b), where the value of
the stub is as indicated. The absence of a 0 subscript (which would indicate
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Figure 2-21:
Transmission
line stubs: (a)–(e)
short-circuited
stubs; and (f)–(j)
open-circuited
stubs.

characteristic impedance) means that this is the reactive input impedance
of the stub. If a 0 subscript is used, as in Figure 2-21(c), the characteristic
impedance of the stub is indicated. If a numerical value is given then an
imaginary impedance indicates that the input impedance is being specified,
whereas a real impedance indicates the characteristic impedance of the stub.
The shorted stub is shown as a shunt element in Figure 2-21(d) and as a
series element in Figure 2-21(e). However in nearly all transmission line
technologies, including microstrip, only shunt stubs can be realized. The
open-circuited stubs with annotations are shown in Figures 2-21(f–j) with
similar assignments of meaning. The length of a stub is often indicated by its
resonant frequency, fr. This is the frequency at which the stub is λ/4 long.

The shorted stub in Figure 2-21(a) has the input impedance (from Equation
(2.71))

Z1 = Z01 tanβℓ, (2.99)

where ℓ is the physical length of the line. Since the stub is λ/4 long at fr, then
at frequency f , the input impedance of the stub is

Z1 = Z01 tan

(

π

2

f

fr

)

. (2.100)

A special situation, and the most commonly used in design, is when the
operating frequency is around one-half of the resonant frequency (i.e., f ≈
1
2fr). Then the stub is one-eighth of a wavelength long and the argument
of the tangent function in Equation (2.100) is approximately π/4 and Z1

becomes

Z1 ≈ Z01 tan
(π

4

)

= Z01, (2.101)

thus realizing an inductance at f = fr/2 with a reactance equal to the
characteristic impedance of the line.
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EXAMPLE 2.10 Short-Circuited Stub

Develop the electrical design of the shunt stub shown
with a load of impedance ZL = 75 + 15 Ω so that the
total impedance of the load and stub is real.

Solution:

The short-circuited stub has characteristic impedance Z01 and length ℓ1. Choose Z01 = 75 Ω
(generally this must be between 15 Ω and 100 Ω for most transmission line technologies).
The stub needs to be designed so that the susceptances of the stub and load sum to zero. The
admittance of the load YL = 1/ZL = 0.01282 − 0.002564 S. The required admittance of the
stub is YSTUB = 0.002564 S so, using Equation (2.99),

ZSTUB = 1/YSTUB = Z01 tanβℓ1 = −390 Ω.

Therefore, the electrical length of the stub is

βℓ1 = arctan(−390/75) = −1.381 + nπ radians, n = 0, 1, 2, . . . . (2.102)

The first positive angle is taken so the stub has the shortest length. So

βℓ1 = 1.761 radians = 100.9◦. (2.103)

The complete electrical design of the stub is that it is a shunt short-circuited stub with a
characteristic impedance of 75 Ω and with an electrical length of 100.9◦ . The combined
impedance of the stub and load is ZX = 1/(ℜ{YL}) = 1/0.01282 = 78.00 Ω.

EXAMPLE 2.11 Model of a Resonant Shorted Transmission Line

This example presents an analytic approach to developing the equivalent circuit of a shorted
stub at resonance. Consider a shorted transmission line with characteristic impedance Z0 =
12.28 Ω and resonant, i.e. a quarter-wavelength long, at 1850 MHz.

Solution:

At the first resonant frequency, fr = ωr/(2π),
the transmission line presents an open circuit
and the appropriate circuit model is shown on
the right.

The strategy here is to develop the LC equivalent circuit by equating the derivatives of the
resonator and the LC circuit. This is in addition to equating the input admittances of the two
circuits at the resonant frequency fr = ωr/(2π). That is, at frequency fr

Yin(fr) = 0 = YLC(fr) =  [ωrC − 1/(ωrL)] and so ω2
r = 1/(LC). (2.104)

The input impedance of the line at frequency f = ω/(2π) is Zin(ω) = Z0 tan (βℓ), and so its
input admittance is

Yin(ω) =
−

Z0
cot (βℓ). (2.105)

The derivative of the transmission line admittance is (using Equation (1.112))

∂Yin

∂ω
=

∂βℓ

∂ω

∂Yin

∂βℓ
=

∂βℓ

∂ω

(

−

Z0

)

[

− csc2 (βℓ)
]

. (2.106)

Now β is proportional to ω for a lossless dispersionless line so

∂Yin

∂ω
=

βℓ

ω



Z0
csc2 (βℓ).
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Since the line is approximately λ/4 long near the resonant frequency, for f ≈ fr , βℓ ≈ π/2,
csc(βℓ) ≈ 1 (which is a good approximation since at fr , [∂ csc(βℓ)]/(∂ω) = 0), and

∂Yin

∂ω

∣

∣

∣

∣

ωr

=
βℓ

ωrZ0
. (2.107)

The input admittance of the parallel LC circuit is

YLC = 

(

ωC − 1

ωL

)

and
∂YLC

∂ω
= 

(

C +
1

ω2L

)

. (2.108)

At and near resonance ω2 ≈ 1/(LC) and so

∂YLC

∂ω

∣

∣

∣

∣

ωr

= 2C. (2.109)

Equating the derivatives of Yin, Equation (2.107), and of YLC, Equation (2.109), yields

−βℓ

ωZ0
= 2C. (2.110)

Thus (since βℓ ≈ π/2)

C =
π

4ωrZ0
=

π

4 · 2π · 1850 · 106 · 12.28 = 5.502 · 10−12F = 5.502 pF (2.111)

and, since ω2
r = 1/(LC),

L =
1

ω2
rC

=
1

(2π · 1850 · 106)2 · 5.502 · 10−12
= 1.345 · 10−9 H = 1.345 nH. (2.112)

2.4.4 Open-Circuited Stub

An open-circuited transmission line is commonly used as a circuit element
called an open stub shown in Figure 2-21(f–j). From Equation (2.71) and
noting that ZL = ∞, the open stub input impedance is

Z1 = −Z01
1

tanβℓ
. (2.113)

With the stub one-quarter wavelength long at the frequency fr, the input
impedance at fr is a short circuit and the stub is said to be resonant at fr.
Then at a frequency f , the input impedance of the stub is

Z1 = −Z01 tan
−1

(

π

2

f

fr

)

. (2.114)

When f = 1
2fr the stub is one-eighth wavelength long and

Z1 = −Z01
1

tan
(

π
4

) = −Z01. (2.115)

So a λ/8 long open-circuited stub (λ/4 at fr, f = 1
2fr) realizes a capacitance

with a reactance equal to the characteristic impedance of the line.
If the length of a stub can be changed then the stub can be used as a tuning

element. A common microstrip tuning technique is shown in Figure 2-22,
where bonding to different pads enables a variable length stub to be realized.
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Figure 2-22: Open-circuited stub with variable length realized
using wire bonding from the fixed stub to one of the bond pads.
The bond pads are on the same layer as the strip metal layer and
bonding to them extends the length of the open-circuited stub.

EXAMPLE 2.12 Open-Circuited Stub

Develop the electrical design of the open-circuit stub
shown with a load of impedance ZL = 75 + 15 Ω so
that the total impedance of the load and stub is real.

Solution:

The open-circuited stub has characteristic impedance Z01 and length ℓ1. A good choice is to
choose Z01 around the impedance level of the load as long as it can be realized; so choose
Z01 = 75 Ω. The stub needs to be designed so that the susceptances of the stub and load
sum to zero. The admittance of the load YL = 1/ZL = 0.01282 − 0.002564 S. The required
admittance of the stub is YSTUB = 0.002564 S, so, using Equation (2.113),

ZSTUB = 1/YSTUB = −Z01/ tanβℓ1 = −390 Ω.

Therefore, the electrical length of the stub is

βℓ1 = arctan(75/390) = 0.1900 + nπ radians, n = 0, 1, 2, . . . . (2.116)

The first positive angle is taken so the stub has the shortest length. Then

βℓ1 = 0.1900 radians = 10.89◦. (2.117)

The complete electrical design of the stub is that it is a shunt open-circuited stub with a
characteristic impedance of 75 Ω and an electrical length of 10.89◦ . The combined impedance
of the stub and load is ZX = 1/(ℜ{YL}) = 1/0.01282 = 78.00 Ω.

2.4.5 Electrically Short Lossless Line

Consider the input impedance, Zin, of an electrically short line (i.e., βℓ is
small) (see Figure 2-23). Using Equation (2.71),

Zin ≈ ZL + Z0(βℓ)

1 + (ZL/Z0)(βℓ)
≈ [ZL + Z0(βℓ)]

[

1− 
ZL

Z0
(βℓ)

]

. (2.118)

Since Z0β =
√

L/C(ω
√
LC) = ωL and β/Z0 = (ω

√
LC)/

√

L/C) = ωC
(where L and C are the inductance and capacitance per unit length of the
line), Equation (2.118) can be written as

Zin ≈ ZL

[

1 + (βℓ)2
]

+ 
[

ω(Lℓ)− Z2
Lω(Cℓ)

]

. (2.119)

Since βℓ is small, (βℓ)2 is very small, and so the (βℓ)2 term can be
ignored. Then the input impedance of an electrically short line terminated
in impedance ZL is

Zin ≈ ZL + 
[

ω(Lℓ)− Z2
Lω(Cℓ)

]

. (2.120)

Some special cases of this result will be considered in the following examples.
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Figure 2-23: An electrically short line.

EXAMPLE 2.13 Capacitive Transmission Line Segment

This example demonstrates that a predominantly capacitive behavior can be obtained from
a short segment of transmission line, the Z01 line here, of low characteristic impedance.
Consider the transmission line system shown below with lines having the characteristic
impedances, Z01 and Z02, Z02 ≫ Z01 .

The value of Zin is (treating Z02 as the load)

Zin = Z01
Z02 + Z01 tan βℓ

Z01 + Z02 tan βℓ
. (2.121)

Now (1 + x)−1 ≈ 1− x− x2. Thus for a short line (and so dropping the tan2(βℓ) term)

Zin ≈ Z02 − 
Z2

02

Z01
tan(βℓ) + Z01 tan(βℓ) = Z02 + Z01 tan(βℓ)

[

1− Z2
02

Z2
01

]

. (2.122)

For Z02 ≫ Z01 and for a short line, tan(βℓ) ≈ βℓ, and this becomes

Zin ≈ Z02 − 
Z2

02

Z01
tan(βℓ) ≈ Z02 − 

Z2
02

Z01
βℓ, (2.123)

which is capacitive. Now consider the circuit to the right
where an effective capacitance Ceff is in shunt with a load
Z02. This has the input impedance

Zx =

(

ωCeff +
1

Z02

)−1

=
Z02

1 + ωCeffZ02
= Z02[1− ωCeffZ02 − (ωCeffZ02)

2 + . . . .

(2.124)

For ωCeffZ02 ≪ 1 (i.e. an electrically short line)

Zx ≈ Z02 − ωCeffZ
2
02 (2.125)

Equating Equations (2.123) and (2.125), the effective value of the shunt capacitor realized by
the short length of low-impedance line, the Z01 line, is

Ceff =
1

ωZ2
02

Z2
02βℓ

Z01
=

β

ω

ℓ

Z01
. (2.126)

Thus a shunt capacitor can be realized approximately
by a low-impedance line embedded between two high-
impedance lines. The microstrip layout of this is shown in
the figure on the right. Recall that a wide microstrip line
has a low characteristic impedance.
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EXAMPLE 2.14 Inductive Transmission Line Segment

This example demonstrates that a (predominantly) inductive behavior can be obtained from
a segment of transmission line. Consider the transmission line system shown below with
lines having two different characteristic impedances, Z01 and Z02, Z02 ≪ Z01.

The value of Zin is (using Equation (2.71))

Zin = Z01
Z02 + Z01 tanβℓ

Z01 + Z02 tanβℓ
, (2.127)

which for a short line can be expressed as

Zin ≈ Z02 [1 + tan(βl)] + Z01tan(βℓ) . (2.128)

Note that Z01tan(βℓ) is the dominant part for ℓ < λ/8 and Z02 ≪ Z01.

Thus a microstrip realization of a series inductor is
a high-impedance line embedded between two low-
impedance lines. A top view of such a configuration in
microstrip is shown in the figure. A narrow microstrip
line has high characteristic impedance.

The previous two examples showed how a shunt capacitance or series
inductance can be realized using short sections of line, the Z01 line here, with
low or high characteristic impedance respectively. This enables realization
of some lumped element circuits in microstrip form. A lumped element
lowpass filter is shown in Figure 2-24(a) and this can be realized using wide
and narrow microstrip lines, as shown in Figure 2-24(b).

2.4.6 Quarter-Wave Transformer

Figure 2-25(a) shows a resistive load RL and a section of transmission line
with length ℓ = λg/4 (hence the name quarter-wave transformer). The input

(a) (b)

Figure 2-24: A lowpass filter: (a) in the form of an LC ladder network; and (b) realized using
microstrip lines.

(a) (b)

Figure 2-25: The quarter-wave
transformer line: (a) trans-
forming a load; and (b) inter-
facing two lines.
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Figure 2-26: Layout of a microstrip
quarter-wave transformer.

impedance of the line is

Zin = Z1
RL + Z1 tan(βℓ)

Z1 + RL tan(βℓ)
= Z1

RL + Z1∞
Z1 + RL∞

=
Z2
1

RL
. (2.129)

The input impedance is matched to the transmission line Z0 if

Zin = Z∗
0 = Z0, (2.130)

since here the characteristic impedance is real. Thus

Z1 =
√

Z0RL (2.131)

and so the one-quarter wavelength long line acts as an ideal impedance
transformer.

Another example of the quarter-wave transformer is shown in Figure 2-
25(b). The input impedance looking into the quarter-wave transformer (from
the left) is given by

Zin = Z0
Z01 + Z0 tan(βℓ)

Z0 + Z01 tan(βℓ)
= Z0

Z01 + Z0∞
Z0 + Z01∞

=
Z2
0

Z01
. (2.132)

Hence a section of transmission line of length ℓ = λg/4 + nλg/2, where
n = 0, 1, 2, . . ., can be used to match lines having different impedances, Z01

and Z02, by constructing the line so that its characteristic impedance is

Z0 =
√

Z01Z02. (2.133)

Note that for a design center frequency f0, the matching section provides
a perfect match only at the center frequency and at frequencies where
ℓ = λg/4 + nλg/2.

The layout of a microstrip quarter-wave transformer is shown in Figure 2-
26, where ℓ = λg/4 and the characteristic impedance of the transformer, Z0, is
the geometric mean of the impedances on either side, that is, Z0 =

√
Z01Z02.

A quarter-wave transformer has an interesting property that is widely
used. Examine the final result in Equation (2.132), which is repeated here:

Zin =
Z2
0

Z01
. (2.134)

Equation (2.134) indicates that a one-quarter wavelength long line is an
impedance inverter presenting, at Port 1, the inverse of the impedance
presented at port 2, Z01. This result also applies to complex impedances
replacing Z01. This impedance inversion is scaled by the square of the
characteristic impedance of the line. This inversion holds in the reverse
direction as well.
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2.4.7 Summary

The lossless transmission line configurations considered in this section are
those most commonly used in microwave circuit design. It is important
to note that the stub line is almost always used in shunt configuration to
provide an admittance in a circuit. Most transmission line technologies,
including coaxial lines and microstrip, only permit shunt stubs. The quarter-
wave transformer is a particularly interesting element enabling maximum
power transfer from a source to a load that may be different. An interesting
feature that is widely exploited is that the quarter-wave transformer
inverts an impedance. For example, turning a small resistance into a large
resistance, or even turning a small capacitor into a large inductance. These
transformations are valid over a moderate bandwidth.

2.5 The Lossy Terminated Line

Previously Section 2.3 presented abstractions that enabled a total voltage
and current view to be used with lossless transmission lines. A similar
development is presented here for lossy lines. Important abstractions are
presented first for the input reflection coefficient of a terminated lossy line
in Section 2.5.1 and then for the input impedance of first a long lossy line
in Section 2.5.2 and then for a finite length line in Section 2.5.3. Section
2.5.4 presents a simple approximation for the attenuation on a line if it is
low loss. Power flow on a lossy line is considered in Section 2.5.5 and then
the impact of dispersion on signal integrity considered in Section 2.5.6. The
final section, Section 2.5.7, describes a technique for the design of a finite
bandwidth dispersion-less line.

2.5.1 Input Reflection Coefficient of a Lossy Line

Γin of a lossy line can be developed by replacing β in Section 2.3.3 by γ.
Referring to Figure 2-16, at a distance ℓ from the load (i.e., z = −ℓ), the input
reflection looking into a lossy line toward the load is

Γin|z=−ℓ =
V −(z = −ℓ)

V +(z = −ℓ)
=

V −(z = 0)e−γℓ

V +(z = 0)e+γℓ
=

V −(z = 0)

V +(z = 0)

e−γℓ

e+γℓ

= ΓLe
−2γℓ = ΓLe

−2αℓe−2βℓ (2.135)

As the line becomes longer the magnitude of Γindecreases exponentially,
approaching zero, because of attenuation described by the e−2αℓ term.

2.5.2 Input Impedance of a Long Lossy Line

Figure 2-27(a) shows an infinitely long line with characteristic impedance Z0.
The input impedance Zin of the line is the ratio of the total voltage V1 to the
total current I1 at the input of the line:

Zin =
V1

I1
. (2.136)

If the line is infinitely long or sufficiently lossy there is negligible reflected
wave and thus the total voltage and current are just the forward-traveling
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Figure 2-27: Transmission line
networks: (a) an infinitely long
line; and (b) with a finite-length
line of characteristic impedance
Z01 and an infinitely long trans-
mission line of characteristic
impedance Z02. (a) (b)

Figure 2-28: Terminated
transmission line: (a) a trans-
mission line terminated in a
load impedance, ZL, with an
input impedance of Zin; and
(b) a transmission line with
source impedance ZG and
load ZL. (a) (b)

voltage and current and

Zin =
V1

I1
=

V +(0)

I+(0)
= Z0. (2.137)

The infinitely long line is approximated by a very long, slightly lossy, cable.
It will not matter how the line is terminated (e.g., in a resistor, open circuit,
or short circuit), there will be a negligible backward-traveling wave, and the
input impedance of the cable will be its characteristic impedance.

2.5.3 Input Impedance of a Lossy Line

The impedance looking into the line varies with position, as the forward-
and backward-traveling waves combine to yield position-dependent total
voltage and current. At a distance ℓ from the load (i.e., z = −ℓ), the input
impedance seen looking toward the load is

Zin|z=−ℓ =
V (z = −ℓ)

I(z = −ℓ)
= Z0

1 + |Γ| e(Θ−2γℓ)

1− |Γ| e(Θ−2γℓ)
= Z0

1 + ΓLe
−2γℓ

1− ΓLe−2γℓ
. (2.138)

Another form comes from substituting Equation (2.59) in Equation (2.138):

Zin = Z0
(ZL + Z0)e

γℓ + (ZL − Z0)e
−γℓ

(ZL + Z0)eγℓ − (ZL − Z0)e−γℓ
= Z0

ZL cosh(γℓ) + Z0 cosh(γℓ)

Z0 cosh(γℓ) + ZL cosh(γℓ)

= Z0
ZL + Z0 tanh γℓ

Z0 + ZL tanh γℓ
. (2.139)

This equation is also known as the lossy telegrapher’s equation.
Note that Zin is a quasi-periodic function of ℓ and approaches Z0 for a

long lossy line (i.e. provided that there is attenuation and the line’s γ has a
real part as then tanh γℓ goes to one).
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EXAMPLE 2.15 Transmission Line Resonator

A shorted line is used as a resonator. The first resonance is a parallel resonance at 1 GHz.

(a) Draw the lumped-element equivalent circuit of the resonator.
(b) What is the impedance looking into the line at resonance?
(c) What is the electrical length of the resonator?
(d) If the resonator is λg/4 longer, what is the input impedance of the resonator now?

Solution:

(a)

LC is an open circuit at resonance.
If the line is lossless, R = 0.

(b) Zin = ∞ (for a lossless line).
(c) From Equation (2.71) and with ZL = 0, Zin = Z0 tan(βℓ).

Zin = ∞ when tan(βℓ) = ∞, i.e. when βℓ = π/2 =
λg/4 = 90◦.

(d) Zin = 0 Ω.

2.5.4 Attenuation on a Low-Loss Line

Recall that γ, the propagation constant, is given by

γ =
√

(R+ ωL)(G+ ωC). (2.140)

This can be written as

γ = ω
√
LC

√

(

1 +
R

ωL

)(

1 +
G

ωC

)

. (2.141)

With a low-loss line, R ≪ ωL and G ≪ ωC, and so, using a Taylor series
approximation (see Equation (1.174)),

(

1 +
R

ωL

)1/2

≈ 1 + 1
2

R

ωL
(2.142)

and

(

1 +
G

ωC

)1/2

≈ 1 + 1
2

G

ωC
, (2.143)

thus γ ≈ 1
2

(

R

√

C

L
+G

√

L

C

)

+ ω
√
LC. g (2.144)

Hence for low-loss lines (in Np/m if SI units are used),

α ≈ 1
2

(

R

Z0
+GZ0

)

(2.145) and β ≈ ω
√
LC . (2.146)

What Equation (2.145) indicates is that for low-loss lines the attenuation
constant, α, consists of dielectric- and conductor-related parts; that is,

α = αd + αc (2.147) αd ≈ GZ0/2 (2.148) and αc ≈ R/(2Z0) (2.149)

where αd is the attenuation contributed by dielectric loss and is called
dielectric attenuation, and αd is the attenuation contributed by the conductor
loss and is called ohmic or conductive attenuation.



90 STEER MICROWAVE AND RF DESIGN: TRANSMISSION LINES

Figure 2-29: A low-loss transmission line. The
propagation constant γ = α+ β.

2.5.5 Power Flow on a Terminated Lossy Line

In this section a lossy transmission line with low loss is considered so that

R ≪ ωL and G ≪ ωC, and the characteristic impedance is Z0 ≈
√

L/C.
Figure 2-29 is a lossy transmission line and the total voltage and current at
any point on the line are given by

V (z) = V +
0

[

e−γz + Γeγz
]

and I(z) =
V +
0

Z0

[

e−γz − Γeγz
]

. (2.150)

Section 2.5.3 derived the lossy telegrapher’s equation:

Zin = Z0
ZL + Z0 tanh γℓ

Z0 + ZL tanh γℓ
. (2.151)

For a lossy transmission line not all of the power applied at the input will
be delivered to the load as power will be lost on the line due to attenuation.
The power delivered to the load (which is at position z = 0) is

PL =
1

2
R{V (0)I∗(0)} =

∣

∣V +
0

∣

∣

2

2Z0
(1− | ΓL |2), (2.152)

where ΓL is the reflection coefficient of the load. Similarly the power at the
input of the line (at position z = −ℓ) is

Pin =
1

2
ℜ{V (−ℓ)I∗(−ℓ)} =

∣

∣V +
0

∣

∣

2

2Z0

[

1− | ΓL |2e−4αℓ
]

e2αℓ (2.153)

and the power lost in the line is

Ploss = Pin − PL =

∣

∣V +
0

∣

∣

2

2Z0

[(

e2αℓ − 1
)

+ | ΓL |2
(

1− e−2αℓ
)]

. (2.154)

EXAMPLE 2.16 Q of a Transmission Line Resonator Revisited

Energy is stored on a transmission line and
this must be considered in deriving the Q of a
transmission line resonator. Consider the λ/4-
long shorted transmission line examined in Ex-
amples 2.5 and 2.11. This line has a charac-
teristic impedance of 12.28 Ω, it is resonant at
1850 MHz, and a 10 kΩ resistor, R, is at the in-
put as shown in the left figure.
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Solution:

At resonance

Q = 2π
Peak energy stored

Energy dissipated per cycle
= ωr

Peak energy stored

Power loss in the resistor
(2.155)

Q = 1/(Fractional bandwidth), (2.156)

where ωr is the radian frequency at resonance. So there are two fundamental ways that the
Q can be determined: determining the peak energy stored and the power loss, and finding
the fractional bandwidth. However, using the fractional bandwidth is only an approximate
method, as Q is a measure of energy stored and energy dissipated.

For an RLC lumped-element resonator

Q =















1

R

�

L

C
=

ωrL

R
for a series RLC circuit

R

�

C

L
=

ωrC

G
for a shunt RLC circuit.

(2.157)

The narrowband lumped-element equivalent circuit of the resonator developed in Example
2.5, with C = 5.503 pF and L = 1.345 pH can be used. Thus

Q = R

�

C

L
= 10 · 103

�

5.503 · 10−12

1.345 · 10−9
= 640.

It is important to note that the input impedance of the transmission line at the resonant
frequency cannot be used to find the Q of the transmission line resonator, as it does not
convey any information about the energy stored. However, the narrowband model of the
resonator at resonance does capture the energy storage information and so can be used to
calculate the Q of the resonator, as was done here.

2.5.6 Lossy Transmission Line Dispersion

On a lossy line, phase velocity, group velocity, and attenuation constant are
frequency dependent and so a lossy line is, in general, dispersive. That is,
different frequency components of a signal travel at different speeds, and
the phase velocity, vp, and group velocity, vg, are functions of frequency. As
a result, the signal will spread out in time and, if the line is long enough, it
will be difficult to extract the original information.

In the previous section it was seen, in Equation (2.146), that for a TEM line
ω/β = vp = vg is approximately frequency independent for a low-loss line.
This is true for most two-conductor lines (lines that support TEM modes), but
not for all transmission line structures that guide EM waves (a rectangular
waveguide is an example of where vg and vp differ significantly). Also, the
conductive component of the attenuation constant, αc in Equation (2.149), is
approximately frequency independent. However, the dielectric component,
αd in Equation (2.148), is frequency dependent even for a low-loss line. This
is because G is mostly due to energy loss when a material lattice or molecular
components are distorted by the E field. So there is more loss and G increases
linearly as the frequency increases. (Conductivity of the dielectric also affects
G, but this is usually a much smaller effect except for a silicon substrate.) If
the transmission line has moderate loss, all of the propagation parameters
will be frequency dependent and the line is dispersive.
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2.5.7 Design of a Dispersionless Lossy Line

Over a moderate bandwidth a lossy line can be designed to be dispersionless
(i.e. vg ≈ vp ≈ constant). The parameters that are important in describing
signal propagation on a transmission line are the propagation constant, γ,
and the characteristic impedance, Z0. When considering dispersion it is more
appropriate to examine α and vp ≈ ω/β (for a low loss line), as these
parameters are generally frequency dependent for a lossy line. For a line to
be dispersionless α, ω/β, and Z0 should be independent of frequency.

For any low-loss line the propagation constant is

γ =
√

(R + ωL)(G+ ωC) = ω
√
LC

[(

1 +
R

ωL

)(

1 +
G

ωC

)]1/2

.

(2.158)
If the line is designed so that

R/L = G/C, (2.159)

then γ = α+ β = ω
√
LC

(

1 +
R

ωL

)

= R

√

C

L
+ ω

√
LC.

From this α = R

√

C

L
, β = ω

√
LC and vp = ω/β = 1/

√
LC. (2.160)

The analysis is completed by considering the characteristic impedance

Z0 =

√

R+ ωL

G+ ωC
=

√

L

C

√

R/L+ ω

G/C + ω
, (2.161)

and, referring to Equation (2.159), note that the last square root term is 1, so

Z0 =
√

L/C, (2.162)

which is frequency independent. The important characteristics describing
signal propagation are now frequency independent and the line is disper-
sionless. In practice a lossy dispersionless line can only be approximated
over a small bandwidth since G is linearly dependent on frequency because
of the frequency dependence of dielectric relaxation loss.

2.5.8 Summary

An earlier section developed the input reflection coefficient and input
impedance of a lossless line. This section did the same thing but for a lossy
line. Short-hand derivations were presented for the attenuation of a low loss
line in terms of the per-unit-length resistance and characteristic impedance
of the line. Dispersion on a line was discussed and a design technique
presented for the design of a dispersionless line. This design is valid over
a narrow or moderate bandwidth and this bandwidth limitation applies to
all transmission line-based designs.

2.6 Reflections at Interfaces

Transmission lines transfer power from one point to another and there are
often many interfaces at which power is reflected and transferred. This
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section is focused on developing an intuitive understanding of reflection and
transmission of power at interfaces and over a transmission line. Section
2.6.1 presents an understanding of power flow and introduces the return
loss concept applying this analysis to a single interface in Section 2.6.3.
Microwave engineering is greatly concerned with maximum power transfer
and the analysis that supports design choices, the maximum power transfer
theorem, is revisited in Section 2.6.2. Section 2.6.4 presents bounce diagram
analysis which is concerned with reflection and transmission at multiple
interfaces. This can be a confusing analysis but it provides the essential
understanding for the development of intuition for how power flows, and
understanding of situations where power flow may be disrupted. The final
section, Section 2.6.5, presents the theory of small reflections, derived from
bounce diagram analysis, which is used in several places in this book series
in the synthesis of transmission line networks.

2.6.1 Power Flow and Return Loss

Now consider the power flow on the lossless line in Figure 2-13. The incident
(forward-traveling) wave has the power

P+ =
1

2
ℜ
[

V +
(

I+
)∗
]

=
1

2
ℜ
[

V +

(

V +

Z0

)∗]

=
1

2
ℜ
{

(

V +
0 e−βz

)

(

V +
0 e−βz

Z0

)∗
}

=
1

2

∣

∣V +
0

∣

∣

2

Z0
, (2.163)

and the reflected wave has the power (using Equation (2.60))

P− =
1

2

∣

∣V −
0

∣

∣

2

Z0
=

|Γ|2
2

∣

∣V +
0

∣

∣

2

Z0
. (2.164)

Considering conservation of power, the power delivered to the load, PL, is
the difference of the forward- and backward-traveling powers:

PL =
1

2
ℜ{VLI

∗
L} = P+ − P− = P+

(

1− |Γ|2
)

. (2.165)

Noteworthy cases are when there is an open circuit, a short circuit, or a
purely reactive load at the end of a transmission line. These have |Γ| = 1.
Thus all power is reflected back to the source and PL = 0.

The power that is absorbed by the load appears as a loss as far as the
incident and reflected waves are concerned. To describe this, the concept of
return loss (RL) is introduced and defined as

RL = −20 log |Γ| dB . (2.166)

RL indicates the available power not delivered to the load. A matched load
(Γ = 0) has RL = ∞ dB, and a total reflection (|Γ| = 1) has RL = 0 dB.
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EXAMPLE 2.17 Transmission Line Model at the Load

A transmission line with a characteristic impedance of 75 Ω supports a forward-traveling
wave with a power of 1 µW. The line is terminated in a resistance of 100 Ω. Draw the lumped-
element equivalent circuit at the interface between the transmission line and the load.

Solution:

The equivalent circuit has the form

where ETH is the Thevenin equivalent generator and ZTH is
the Thevenin equivalent generator impedance.

The amplitude of the forward-traveling voltage wave is obtained by calculating the power
in the forward-traveling wave:

P+ = 1
2
(V +)2/Z0 = (V +)2/150 = 1 µW = 10−6 W.

So V + =
√
150 · 10−6 = 12.25 mV. Note that V + is not

ETH. To calculate ETH, consider the circuit to the right
that results in maximum power transfer.

So ETH = 2V + = 24.5 mV. Since the line has a
characteristic impedance of 75 Ω, then ZTH = 75 Ω.
So the lumped-element equivalent circuit at the load is

2.6.2 Maximum Power Transfer Theorem

Many transmission line calculations can be solved using the concepts
of maximum available power, incident power, and reflected power. At
microwave frequencies the output impedance of sources, for example,
cannot be ignored as can often be done at low frequencies. Thus the output
of an RF source is defined in terms of maximum available power.

Consider the source shown in Figure 2-30 with an impedance ZS =
RS + XS driving a load ZL = RL + XL. The aim here is to find ZL for
maximum delivery of power to the load. The phasor current in the load is

I =
E

ZS + ZL
(2.167)

and thus the average power in the load is

PL = 1
2 |I|

2RL = 1
2

( |E|
|ZS + ZL|

)2

RL =
1
2 |E|2 RL

(RS +RL)
2 + (XS +XL)

2 .

(2.168)

The load required for maximum power transfer is obtained by first consider-
ing a fixed value of RL and then finding the value of XL required to minimize

Figure 2-30: A source terminated in a load. Maximum
power transfer occurs when ZL = Z∗

S .
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Equation (2.168). Since XL only affects the denominator in Equation (2.168),
it is clear that the denominator is minimized by making XL = −XS . So now
Equation (2.168) reduces to

PL =
1
2 |E|2 RL

(RS +RL)
2 (2.169) and PL =

1
2 |E|2

(R2
S/RL + 2RS +RL)

. (2.170)

Now the power delivered to the load is maximized by minimizing the
denominator in Equation (2.170), which will occur when the derivative of
the denominator in Equation (2.170) is zero. That is, when

d

dRL

(

R2
S/RL + 2RS +RL

)2
=

−R2
S

R2
L

+ 1 = 0. (2.171)

The derivative is zero when

R2
S/R

2
L = 1, that is, when RL = ±RS. (2.172)

When the derivative is zero, the power transferred to the load is either the
minimum or maximum power that can be delivered to the load. Clearly
RL = −RS is a nonsensical solution as the load and source resistance should
be positive. In addition, the situations at the extremes need to be check, that
is, when RL is very small, RL → 0, and when RL is very large, RL → ∞.
As RL → 0, Equation (2.169) becomes PL → 0, and as RL → ∞, Equation
(2.169) becomes PL → 0. Clearly there will not be negative power dissipated
in RL, so when RL = RS the maximum power, PL|max, is dissipated in the
load. Equation (2.169) becomes

PL|max = 1
2

|E|2 RL

(RS +RS)
2 = 1

8

|E|2
RS

. (2.173)

This is called the maximum available power, or simply the available power
of the source. So the conditions for maximum power transfer are RL = RS

and XL = −XS ; that is, the maximum power transfer from source to load
requires

ZL = Z∗
S . (2.174)

Also note that if the source impedance in Figure 2-30 is resistive, V = 1
2E at

maximum power transfer.

EXAMPLE 2.18 Available Power

A 75 Ω source with an available power of 1 W is terminated in a short circuit. What is the
power dissipated in the Thevenin equivalent resistance of the source?

Solution:

At RF, “75 Ω source” refers to a source with a Thevenin
equivalent resistance of 75 Ω which here is ZS . The condition
for maximum power transfer, and when the full available
power is delivered to the load, is when the load impedance,
ZL is the complex conjugate of ZS = 75 Ω. The circuit for
maximum power transfer is as shown to the right.
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To solve the problem we must determine E as this will not change even though the current
through ZS , I , will depend on the load impedance. The available power is

PA = 1
2
|I |2ℜ(ZS) =

1
2
|I |2 × 75 = 1 W and so I =

√

2× 1/75 = 0.1633 A.
From this the voltage across the load can be determine:

V = IZL = 0.1633 × 75 = 12.25 V and from symmetry E = 2V = 24.50 V.

Now the condition with a short circuit, ZL = 0, can be
determined. Note that I and V will change but E will be fixed.
Considering the circuit to the right, now

I = E/(ZS + ZL) = 24.50/(75 + 0) = 0.3267 A.
The power dissipated in ZS is

PS = 1
2
I2ℜ(ZS) = 0.3267 × 75 = 4.002 W.

Some comments on this result can be made. With a short circuit the current that flows in
the circuit doubles compared to the maximum power transfer condition. Since the power
dissipated in ZS is proportion to the square of the current the power dissipated in the
Thevenin equivalent resistance increases by a factor of 4 (PS should be exactly 4 W). The
ideal voltage source E can provide unlimited power. However no matter what the value of
ZL, the power dissipated in ZL can never be more than the available power.

EXAMPLE 2.19 Forward-Traveling Wave Calculations

A transmission line is driven by a generator with a maximum available power of 20 dBm
and a Thevenin equivalent impedance of 50 Ω. The transmission line has a characteristic
impedance of 50 Ω.

(a) What is the Thevenin equivalent generator voltage?
(b) What is the magnitude of the forward-traveling voltage wave on the line? Assume that

the line is infinitely long.
(c) What is the power of the forward-traveling voltage wave?

Solution:

(a) Maximum available power is delivered to the load when it is conjugately matched to
the generator impedance (see right diagram). Then PLOAD = 1

2
V 2/R (V is peak voltage)

(i.e., PLOAD = 20 dBm = 0.1 W) and

V =
√
2PLOAD ·R =

√
2× 0.1× 50 Vpeak = 3.16 V, EG = 2V = 6.32 V.

(b) This is just V , so V + = 3.16 V. (c) P+ = 20 dBm.

2.6.3 A Single Interface

Many transmission line calculations are most conveniently addressed using
the maximum available power concept. This is particularly so when there
are multiple transmission lines. The concept is that the maximum available
power from a source is incident on a load and if there is a mismatch, power
is reflected and the rest of the power is transmitted. The circuits used to
illustrate these calculations are shown in Figure 2-31. The available power
of the source is Pav, which is incident on the reference plane shown in Figure
2-31(b) where it is called the incident power PI . At the reference plane power
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(a) (b)

Figure 2-31: Calculations using incident
and reflected power: (a) source termi-
nated in a load; and (b) reference plane il-
lustrating the use of incident and reflected
power at a load.

is reflected, PR, and power is transmitted, PT . Using the reflection coefficient
normalized to the impedance of the source (i.e., ZS)

PR = |Γ|2 PI , (2.175) where Γ =
ZS − ZL

ZS + ZL
(2.176)

and the transmitted power is

PT =
(

1− |Γ|2
)

PI . (2.177)

EXAMPLE 2.20 Transmission Line Power Calculations

The transmission line shown in Figure 2-27(b) consists of a source with Thevenin impedance
Z1 = 40 Ω and source E = 5 V (peak), connected to a λ/4 long line of characteristic
impedance Z01 = 40 Ω, which in turn is connected to an infinitely long line of characteristic
impedance Z02 = 100 Ω. The transmission lines are lossless. Two reference planes are shown
in Figure 2-27(b). At reference plane 1 the incident power is PI1 (the maximum available
power from the source), the reflected power is PR1, and the transmitted power is PT1. PI2

(the maximum available power from Z01), PR2, and PT2 are similar quantities at Reference
Plane 2. PI1, PR1, PT1, PI2, PR2, and PT2 are steady-state quantities.

(a) What is PI1?
(b) What is PT2?

Solution: Since the infinitely long line does not have a backward-traveling wave this problem
reduces to a single transmission line interface problem.

First develop some expectations. This will be a sanity check during the problem. PI1 and
PI2 are maximum available powers and since the Z01 line (this is a short way of talking about
the line with a characteristic impedance Z01) is lossless they should be equal: PI1 = PI2. PT1

and PT2 are the total powers delivered to the right of the respective interfaces. Again since
the Z01 line is lossless PT1 = PT2, Also PT1 ≤ PI1 as power PR1 is reflected from the
interface. Similarly PT2 ≤ PI2.

(a) PI1 is the available power from the generator. Since the
Thevenin impedance of the generator is 40 Ω, PI1 is the
power that would be delivered to a matched load (the
maximum available power). An equivalent problem is
shown to the right where V = 1

2
E = 2.5 Vpeak. So

PI1 = power in ZL = 1
2
(V )2

1

ZL
= 1

2
(2.5)2

1

40
= 0.07813 W = 78.13 mW. (2.178)

Note that the 1
2

occurs because peak voltage is used in RF calculations.
(b) Now the problem becomes interesting and there are many ways to solve it. One of the

key observations is that the first transmission line has the same characteristic impedance
as the Thevenin equivalent impedance of the generator, Z01 = Z1, and so can be ignored
where appropriate. This observation will be used in this example. One way to proceed is
to directly calculate PT2, and a second approach is to calculate the incident and reflected
powers at reference plane 2 and then to determine PT2.
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(i) First approach: looking to the left from reference
plane 2, the circuit can be modeled as an
equivalent circuit having a Thevenin equivalent
resistance of 40 Ω and a Thevenin equivalent
voltage that has an available power of 78.13 mW.
So in the circuit to the right, E2 is just E or 5 V.
The load is 100 Ω as the second transmission line is infinitely long. A reasonable
question to ask is why E2 is not 2.5 V, as this would be the voltage across ZL =
40 Ω in part (a). However, 2.5 V is the voltage of the forward-traveling voltage wave
on the first transmission line with characteristic impedance Z01 = 40 Ω. It is not the
Thevenin equivalent voltage of the source. The voltage across the load is

V = E2
100

40 + 100
= E

100

140
= 3.57 Vpeak. (2.179)

The power transmitted at reference plane 2 is also the power delivered to the load:

PT2 = PL = 1
2
(V )2

1

ZL
=

1

2
(3.57)2

1

100
= 0.0638 W = 63.8 mW. (2.180)

A quick check is that this is less than PI1, as it should be.
(ii) Second approach: This time PR2, the reflected power at reference plane 2, will be

calculated. The incident power at plane 2, PI2, is just PI1. PI2 is the maximum
available power at reference plane 2 and not necessarily the power that is incident
there. In general, to calculate PI2 the Thevenin equivalent source looking to the left
from reference plane 2 would need to be calculated. However since here Z01 = Z1,
PI2 = PI1 = 78.13 mW.
PR2 can be calculated from the voltage reflection coefficient at reference plane 2:

Γ2 =
ZL − Z01

ZL + Z01
=

100− 40

100 + 40
= 0.429 (2.181)

PR2 = Γ2
2PI2 = 0.4292 × 78 mW = 14.36 mW. (2.182)

So PT2 = PI2 − PR2 = 78.13 mW − 14.36 mW = 63.7 mW, which is the same as the
transmitted power calculated in the first approach, allowing for rounding error.

(iii) A third approach is to calculate the input impedance
looking to the right from reference plane 1, call
this Zin1. Using the lossless telegrapher’s equation,
Equation 2.71, Zin1 is calculated to be 16 Ω.
The voltage across the 16 Ω resistor is 16/(40 + 16)(5 V) = 1.429 V. So the power
dissipated in Zin1 is

P = 1
2
(1.429 V)2

1

16
= 0.0638 W = 63.8 mW,

as before. All of this power must be transmitted to the infinitely long line, i.e. it is
PT2, as the system is otherwise lossless.

2.6.4 Bounce Diagram

A bounce diagram is a graphical representation of reflections at the interfaces
between networks. A microwave network is shown in Figure 2-32 where
there are two reference planes at boundaries between different parts of the
network. At each boundary there are reflections and transmissions of what
could be viewed as small packets of sinusoidal signals. While the bounce
diagram yields a steady-state result such as the input impedance, the thought
experiment is that small sinusoidal packets bounce around the transmission-
line network. Bounce diagrams are used to explore the impact of multiple
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reflections in a network leading to understanding, and from that to design
decisions. Bounce diagrams are best illustrated through an example.

Reflection and Transmission Coefficients at a Boundary

Bounce diagram analysis requires that the reflection and transmission
coefficients at a boundary be referenced to a common impedance. Figure
2-33(a) shows the interface of two transmission lines of characteristic
impedance Z01 and Z02 at a reference plane. The problem is determining
the reflection coefficient, Γ, and transmission coefficient, T , at the boundary
referencing them to the same impedance. Here they will be referenced to Z01.
The reflection coefficient as seen from the Z01 line referenced to Z01 is

Γ =
Z02 − Z01

Z02 + Z01
. (2.183)

Now the transmission coefficient referenced to Z01 is

T = Z01V +
2 /V +

1 , (2.184)

where Z01V +
2 is the forward-traveling voltage wave on the Z02 line (traveling

to the right) referenced to Z01. It is not the actual forward-traveling voltage
on the Z02 line. V +

1 = Z01V +
1 is the traveling voltage wave on the Z01 line

that is incident at the boundary. It is obtained using the circuit in Figure 2-
33(b). Figure 2-33(b) shows the maximum power transfer condition so that

Figure 2-32: Transmission line
network with a finite-length
line of characteristic impedance
Z01 and an infinitely long trans-
mission line of characteristic
impedance Z02. AΓ1i is the ith
discrete reflection of an incident
wave at the left-hand side of
reference plane A. AT1i is the
transmission at reference plane A
for the same event. AΓ2i is the ith
discrete reflection of an incident
wave at the right-hand side of
reference plane A.

(a) (b) (c) (d)

Figure 2-33: Reflection (Γ) and transmission (T ) at the boundary between two transmission lines
of characteristic impedance Z01 and Z02.
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the forward-traveling wave on the Z01 line at the left of the boundary is

V +
1 = V1 = E

Z01

Z01 + Z∗
01

= E
Z01

2ℜ(Z01)
. (2.185)

(For real impedances V +
1 = 1

2E.)

The next parameter to determine is Z01V +
2 . This begins by determining the

total voltage, V2, at the boundary using the circuit in Figure 2-33(c):

V2 = E
Z02

Z01 + Z02
. (2.186)

Now consider that the Z02 line is infinitely long, then it is clear that
V2 = Z02V +

2 . This is the actual forward-traveling voltage on the Z02 line.
Now the problem is how to change the reference impedance of V +

2 . This is
done by noting that the forward-traveling power wave is independent of the
reference impedance, therefore the forward-traveling power wave on the Z02

line traveling to the right, away from the reference plane, is

PZ02 = 1
2

[

(

Z02V +
2

)2

ℜ(Z02)

]

= 1
2

[

(

Z01V +
2

)2

ℜ(Z01)

]

. (2.187)

So the desired forward-traveling voltage wave is (since Z02V +
2 = V2)

Z01V +
2 =

√

ℜ(Z01)

ℜ(Z02)
V2 = E

√

ℜ(Z01)

ℜ(Z02)

(

Z02

Z01 + Z02

)

. (2.188)

So the transmission coefficient referenced to Z01 is

T =
Z01V +

2

V +
1

= E

√

ℜ(Z01)

ℜ(Z02)

(

Z02

Z01 + Z02

)(

2ℜ(Z01)

Z01

1

E

)

=

√

ℜ(Z01)

ℜ(Z02)

[ℜ(Z01)

Z01

](

2Z02

Z01 + Z02

)

. (2.189)

An alternative way of determining T is to consider power conservation at
the boundary. Then

|T |2 = 1− |Γ|2, that is |T | = ±
√

1− |Γ|2. (2.190)

This can be used if T is expected to be real, which it will be if Z01 and Z02 are
real. The positive sign should be taken. The more general formula, Equation
(2.189), can be used with complex impedances.
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EXAMPLE 2.21 Bounce Diagram

In the transmission line system in Figure 2-32 the electrical length of the Z01 line (i.e., the
line with characteristic impedance Z01) is 45◦ and the Z02 line is infinitely long. The aim here
is to find the input impedance, Zin. This will be arrived at in two ways. The first technique
uses a bounce diagram approach and emphasizes reflection and transmission at the interface
planes. The second approach uses the telegrapher’s equation.

(a) What are the reflection and transmission parameters at reference plane A?
AΓ11 is the reflection coefficient of signals incident on Reference Plane A from the left.
AT21 is the transmission coefficient at the plane for signals from the left. AΓ22 and AT12

are the corresponding parameters for scattering from signals coming from the right to
the plane. So, normalizing to Z1,

AΓ11 =
Z01 − Z1

Z01 + Z1
= 0.333; AΓ22 = −AΓ11 = −0.333. (2.191)

Using Equation (2.189),

AT21 =

√

Z1

Z01

(

2Z01

Z1 + Z01

)

=

√

30

60

(

2 · 60
30 + 60

)

= 0.943. (2.192)

Similarly, AT12 = 0.943, which is due to reciprocity. As an additional sanity check (this
can only be done if Z01 and Z02 are real)

AT21 =
√

1− AΓ2
11 = 0.943, AT12 =

√

1− AΓ2
22 = 0.943. (2.193)

(b) What are the scattering parameters Γ2 and T2 at reference plane B?
The reference is Z0, and so the reflection coefficient going from the Z01 line to the Z02

line is
BΓ11 =

Z02 − Z0

Z02 + Z0
. (2.194)

The question now is what system reference impedance to use? Should it be Z1, Z01, or
even Z02? The problem could be solved using any of these, but the simplest procedure
is to use the same reference impedance throughout, and since the eventual aim is to
calculate the overall input reflection coefficient, the appropriate choice is Z0 = Z1. Note,
however, that the actual voltage levels on the lines are not being calculated (which would
need to be referenced to the characteristic impedance of the lines being considered), but
instead a traveling wave referenced to a universal system impedance. So the scattering
parameters at reference plane B referenced to the impedance Z1 are

BΓ11 =
Z02 − Z1

Z02 + Z1
= 0.143; BΓ22 = −BΓ11 = −0.143 (2.195)

BT21 =
√

1− AΓ2
11 = 0.990; BT12 =

√

1− BΓ2
22 = 0.990. (2.196)

The second transmission line is infinitely long and so no signal from the line will be
incident at reference plane B from the right.

(c) What is the transmission coefficient of the Z01 transmission line referenced to Z01?

T01 is the ratio of the forward-traveling wave at the end of the line to its value at the
start of the line. Using a reference impedance of Z01, the magnitude of the transmission
coefficient is one and it rotates by the line’s electrical length Θ1 = 45◦ or 0.785 radians:
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T01 = e−Θ1 = exp (−0.785) = 0.707 − 0.707. (2.197)

(d) Draw the bounce diagram of the transmission line network.

The bounce diagram is shown in Figure 2-34.
(e) What is Γin and hence what is Zin?

Γin is the steady-state input reflection coefficient and is obtained by adding all of the
signals going to the left from reference plane A in Figure 2-34. So

Γin =AΓ11 +
AT12

AT21T
2
01

BΓ11

+ AT12
AT21T

4
01

BΓ2
11

AΓ22 +
AT12

AT21T
6
01

BΓ3
11

AΓ2
22 · · ·

=AΓ11 +
AT12

AT21T
2
01

BΓ11

[

1 + x+ x2 + · · ·
]

, (2.198)

where x = T 2
01

BΓ11
AΓ22. Now 1/(1− x) = 1 + x+ x2 + · · · , and thus

Γin = AΓ11 +
AT12

AT21T
2
01

BΓ11

1− T01
2BΓ11

AΓ22

= 0.333 +
0.943 × 0.943 × (0.707 − 0.707)2 × (−0.2)

1− (0.707 − 0.707)2 × (−0.2) × (−0.333)

= 0.345 − 0.177. (2.199)

Γin is the reflection at reference plane A and is referenced to Z1 = 30 Ω. So the input
impedance is

Zin = Z1

(

1 + Γin

1− Γin

)

= 30

(

1 + 0.345 − 0.177

1− 0.345 + 0.177

)

= 55.39 + 23.08 Ω. (2.200)

(f) Use the lossless telegrapher’s equation, Equation (2.71), to find Zin.

The infinitely long line presents an impedance Z02 to the 60 Ω transmission line. So the
input impedance looking into the 60 Ω line at reference plane A is, using the lossless
telegrapher’s equation,

Zin = Z01

(

Z02 + Z01 tan βl

Z01 + Z02 tan βl

)

,

where the electrical length βl is 45◦ or π/4 radians. So

Zin = 60

(

40 + 60 tan (π/4)

60 + 40 tan (π/4)

)

= 55.39 + 23.08 Ω,

equivalent to the result obtained using the bounce diagram method (see Equation
(2.200)).

The bounce diagram technique aids in physical understanding, however using the
telegrapher’s equation is a less error prone approach to solving transmission line problems.

2.6.5 Theory of Small Reflections

If the discontinuity at the boundary A in Figure 2-32 is small (i.e. Z1 is
close to Z01 instead of the 30 Ω/60 Ω discontinuity shown) then a useful
approximation is obtained by noting that AΓ11 and AΓ22 are small and
AT 21 ≈ AT 12 ≈ 1 so that in Equation (2.198) x ≈ 0. Then Equation (2.198)
becomes, using Equation (2.197), [6]

Γin ≈ AΓ11 +
AT12

AT21T
2
01

BΓ11 ≈ AΓ11 +
BΓ11e

−2θ1 . (2.201)

That is, if the discontinuity at reference plane A is small then the input
reflection coefficient is dominated by the initial reflection at A, from Z1 to Z01,
and the initial reflection at B, from Z01 to Z02, rotated by twice the electrical
length, θ1, of the line.
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Figure 2-34:
Bounce
diagram of the
transmission line
network in
Figure 2-32.

EXAMPLE 2.22 Advanced Power Calculations

This example is similar to Example 2.20. Again, the transmission line network of Figure 2-27
is considered, but now the characteristic impedance of the first transmission line is not the
same as the generator impedance and so the simplification used in the previous example
can no longer be used. Now the generator has a Thevenin impedance Z1 = 40 Ω and source
E = 5 Vpeak, connected to a one-quarter wavelength long line of characteristic impedance
Z01 = 30 Ω that in turn is connected to an infinitely long line of characteristic impedance
Z02 = 100 Ω. The transmission lines are lossless. Two reference planes are shown in Figure
2-27. At reference plane 1 the incident power is PI1 (the maximum available power from
the source), the reflected power is PR1 and the transmitted power is PT1. PI2 (the maximum
available power from Z01), PR2, and PT2 are similar quantities at reference plane 2. PI1,
PR1, PT1, PI2, PR2, and PT2 are steady-state quantities.

(a) What is PI1?
(b) What is PT2?
(c) Determine PT1, PI2, PR1, and PR2.

Solution:

One of the first things to note is that the infinitely
long 100 Ω transmission line is indistinguishable
from a 100 Ω resistor, so the reduced form of the
problem is as shown to the right.
(a) PI1 was calculated in Example 2.20 in

Equation (2.178):

PI1 = 78.13 mW. (2.202)

PI1 is the available power from the source and this is the power that would be delivered
to a load that is conjugately matched to the Thevenin equivalent source impedance.

(b) The problem here is finding PT2. Recall that the powers here are steady-state quantities
so that multiple reflections of, say, a pulse are not being considered. Since the system
is lossless, the power delivered by the generator must be the power delivered to the
infinitely long transmission line Z02 (i.e., PT2). The telegrapher’s equation can be used
to calculate the input impedance, Zin, of the two transmission line system; that is, the
input impedance of Z01 from the generator end. However, a simpler way to find this
impedance is to realize that the Z01 line is a λ/4 transformer so that
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Z01 = 30 Ω =
√
ZinZ02 =

√
100Zin, (2.203)

and so
Zin = 9 Ω. (2.204)

The equivalent circuit is as shown to the right,
where E is the original generator voltage of 5 V and

V =
9

40 + 9
5 = 0.9184 V. (2.205)

The power delivered by the generator to the 9 Ω load is

PT2 = 1
2
V 2/9 = 0.04686 W = 46.86 mW. (2.206)

(c) The power transmitted into the system at reference plane 1, PT1, is the same as the power
transmitted to the 100 Ω load, as the first transmission line is lossless; that is,

PT1 = PT2 = 46.86 mW. (2.207)

Also PR1 = PI1 − PT1 = (78.13 − 46.86) mW = 31.27 mW. (2.208)

The two remaining quantities to determine are PI2 and PR2. There can be a number of
interpretations of what these should be, but one thing that is certain is that

PT2 = PI2 − PR2 = 46.86 mW. (2.209)

One interpretation that will be followed here is based on the equivalent circuit at
reference plane 2. Let Zout be the impedance looking to the left from reference plane
2. Again, using the property of a one-quarter wavelength long transmission line,

Z01 = 30 =
√
Zout × 40 (2.210)

and so

Zout = Z2
01/40 = 302/40 = 22.5 Ω. (2.211)

The equivalent circuit at reference plane 2 is then

Now determine Vx that results in a power PT2 being delivered to the 100 Ω load, so

PT2 = 1
2
V 2
x /100 = 0.04686 W (2.212) and Vx = 3.06 V. (2.213)

From the circuit above,

Vx =
100

100 + 22.5
E3 (2.214) and so E3 = 3.75 V. (2.215)

The available power from this source is obtained by considering

.
The available power at reference plane 2 is

PI2 = 1
2

(E3/2)
2

22.5
=

1.8752

2× 22.5
= 0.07813 W = 78.13 mW. (2.216)

From Equation (2.209),

PR2 = PI2 − PT1 = (78.13 − 46.86) mW = 31.27 mW. (2.217)

Note that PR2 in Equation (2.217) is the same as PR1 in Equation (2.208), as expected.
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2.7 Models of Transmission Lines

Models of transmissions lines enable lines to be incorporated in simulators
and related to lumped-element circuits. Section 2.7.1 presents models used
in circuit simulators such as Spice. Synthesis of microwave circuits often
requires that a lumped-element design be realized using an equivalent
transmission line network. The ABCD parameter technique described in
Section 2.7.2 is the main means for relating these networks and thus
synthesizing transmission line-based designs. This method is used many
times in designs in this book series.

2.7.1 Circuit Models of Transmission Lines

Circuit models of transmission lines are required if they are to be used
in a circuit simulator. RF and microwave engineering uses two types
of simulators. Spice-like simulators use lumped-element transmission line
models in which an RLGC model of a short segment of line is replicated for
the length of the line. If the ground plane is treated as a universal ground,
then the model of a segment of length ∆z is as shown in Figure 2-35(a). In
this segment r = R∆z, l = L∆z, g = G∆z, and c = C∆z, where R, L, G, and
C are the per unit length parameters of the line. Cascading the segments to
get the length of the line yields the complete lumped-element model of the
line, as shown in Figure 2-35(b). This model is adequate if there is a well-
defined ground plane. Otherwise the more accurate form of the segment
model shown in Figure 2-35(c) is used. The L and C of a two-conductor
transmission line model relate to the fields between the conductors and not
to the conductors themselves. So assigning them to just one conductor is not
accurate. The capacitor is already shared between the two conductors in the
original model, Figure 2-35(a), but the inductor was assigned to just one. The
change in the distributed ground model of Figure 2-35(c) is that inductance

Common ground plane model

→

(a) (b)

Distributed ground model

→

(c) (d)

Figure 2-35: Lumped-element transmission line models: (a) model of a short segment (e.g. λ/20
long); (b) complete model of a transmission line; (c) more accurate model of a segment ; and (d)
complete accurate model of a transmission line.
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is assigned to each of the conductors.
One of the problems with the lumped-element model is that it is not

possible to handle G correctly. G is largely due to dielectric relaxation loss
and so is linearly dependent on frequency. Fortunately it is very small for
RF and microwave substrates and so it can nearly always be ignored. An
exception is a silicon integrated circuit where there is appreciable dielectric
loss. Parasitic extraction software is used in silicon integrated circuit design
to extract models similar to that in Figure 2-35(d) but account for coupling
with other circuits. Especially in digital circuits, it is sometimes difficult to
identify a ground plane (a current return path) except for critical interconnect
networks such as clock and power distribution circuits.

EXAMPLE 2.23 Transmission Line Resonator

Communication filters are often constructed using several shorted transmission line
resonators that are coupled to each other. Consider a coaxial line that is short-circuited at one
end. The permittivity filling the coaxial line has ε = 20 and the resonator is to be designed to
resonate at a center frequency, f0, of 1850 MHz when it is λ/4 long.

(a) What is the wavelength in the dielectric-filled coaxial line?
(b) What is the form of the equivalent circuit (in terms of inductors and capacitors) of the

one-quarter wavelength long resonator if the coaxial line is lossless? Note that the input
impedance of a shorted λ/4-long line is infinite.

(c) What is the physical length of the resonator?

Solution:

The first thing to realize with this example is that the first resonance will occur when the
length of the resonator is one-quarter wavelength (λ/4) long. Resonance generally means
that the impedance is either an open or a short circuit and there is energy stored. When the
shorted line is λ/4 long, the input impedance is an open circuit and also energy is stored.

(a) λg = λ0/
√
εr = 16.2 cm/

√
20 = 3.62 cm. (Here λ0 = 30 cm at 1 GHz was used. Thus at

1850 MHz λ0 = (30 cm)/1.85 = 16.2 cm.)
(b)

Y = 0 at resonance

Y = YL + YC =
1

jωL
+ jωC =

ω−1

jL
+ jωC.

(c) ℓ = (0.0362 m)/4 = 9.05 mm.

EXAMPLE 2.24 Resonator Model

This example builds on Example 2.23. RF communication filters are often constructed using
several shorted transmission line resonators that are coupled to each other. Consider a coaxial
line that is short-circuited at one end. The dielectric filling the coaxial line has a ε = 20 and
the resonator is to be designed to resonate at a center frequency f0 = 1850 MHz.

(a) What is the wavelength in the dielectric-filled coaxial line?
(b) What is the form of the equivalent circuit (in terms of inductors and capacitors) of the

one-quarter wavelength long resonator if the coaxial line is lossless?
(c) What is the physical length of the resonator?
(d) Determine the derivative with respect to frequency of the admittance of the LC

equivalent circuit developed in (b). Determine an analytic expression for the derivative
at the resonant frequency.
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(e) If the diameter of the inner conductor of the coaxial line is 2 mm and the inside diameter
of the outer conductor is 5 mm, what is the characteristic impedance of the coaxial line?

(f) Calculate the input admittance of the dielectric-filled coaxial line at 0.99f0, f0, and 1.01f0.
Determine the numerical frequency derivative of the line admittance at f0.

(g) Derive the numeric values of the equivalent circuit of the resonator at resonance.

Solution:

The first thing to realize is that the first resonance will occur when the length of the resonator
is one-quarter wavelength (λ/4) long. Resonance generally means that the impedance is
either an open or a short circuit and there is energy stored. When the shorted line is λ/4
long, the input impedance will be an open circuit. When the line is of zero length energy is
not stored, so a zero-length line is not a resonator.

(a) λg = λ0/
√
εr = 16.2 cm/

√
20 = 3.62 cm.

(b)

Y = YL + YC =
1

ωL
+ ωC =

ω−1

L
+ ωC.

Y = 0 at resonance.

(c) ℓ = (0.0362 m)/4 = 9.05 mm.
(d) From (b),

∂Y

∂ω
= −ω−2

L
+ C =



ω2L
+ C = 

(

1

ω2L
+C

)

. (2.218)

(e) From Equation (2.53), Z0 = 12.28 Ω.
(f) ZL = 0 Ω, ℓ = (0.0362 m)/4 = 9.05 mm, β = β0

√
εr, where β0 is the phase constant of

free space. From Equations (2.43) and (2.44),

β = 20.958 × f0|GHz ×
√
20 = 173.4 rad/m.

At 0.99f0 and using Equation (2.71), Zin = 781.7 Ω; Yin = −0.001279 S.
At f0, Zin = −∞ Ω; Yin = 0 S. At 1.01f0, Zin = −781.7 Ω; Yin = 0.001279 S.
So the derivative of the input admittance is

∂Y

∂ω
≈ ∆Yin

∆ω
=

(0.001279 + 0.001279)

2πf0(1.01 − 0.99)
= 1.101 · 10−11 S · s = 1.101 · 10−11 F.

(2.219)
Note the SI unit equivalence S · s = F obtained by examining Table 2-1.

(g) The LC circuit resonates at f0 = 1.85 GHz when 1/(ω0L) = −ω0C; ω0 = 2πf0. Thus

LC = ω−2
0 = 0.7401 × 10−20 s2. (2.220)

Equating Equations (2.218) and (2.219):

1

ω2
0L

+C = 1.101 × 10−11 F and so C = 1.101 × 10−11 − 1

ω2
0L

F. (2.221)

Substituting this in Equation (2.220) (noting the SI unit equivalence S−1 · s−1 = H:

L

(

1.101 × 10−11 − 1

ω2
0L

)

= 0.7401 × 10−20 H

1.101 × 10−11L = 1.4802 × 10−20 H and L = 1.345 × 10−9 H = 1.345 nH. (2.222)

From Equation (2.221),

C = 0.7401 × 10−20/L = 5.503 × 10−12 F = 5.503 pF. (2.223)
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Figure 2-36: Two-port network of a transmission line with
cascadable voltage and current definitions.

So the equivalent circuit of the
resonator is

with L = 1.345 nH and C = 5.503 pF.
This equivalent circuit is valid for a range (say 5%–
10%) of frequencies around 1.85 GHz. The broadband
equivalence was obtained here by matching both the
admittance and the derivative of the admittance.

2.7.2 ABCD (Chain) Parameters of a Transmission Line

ABCD parameters, also called chain parameters, are used in RF and
microwave engineering to electrically equate two different structures such
as a lumped-element network and a transmission line structure. Often the
electrical design is undertaken using lumped elements and then these are
converted to equivalent transmission line structures with the equivalence
achieved using ABCD parameters.

Figure 2-36, shows the voltages and currents of a two-port in cascadable
form so that the input variables can be written in terms of the output
variables:

[

Va

Ia

]

=

[

A B
C D

][

Vb

Ib

]

. (2.224)

Note that the current at port 2 is in the opposite direction to the usual
definition of the two-port current. So in terms of the port voltage and current
at port 1, (V1 and I1), and the port voltage and current at port 2, (V2 and I2),

Va = V1, Ia = I1, Vb = V2, and Ib = −I2. (2.225)

In terms of traveling-wave voltages, the total voltage and current on a line of
length ℓ, propagation constant γ, and characteristic impedance Z0 = 1/Y0 at
position z are

V (z) = V +
0 e−γ(z−ℓ) + V −

0 eγ(z−ℓ) (2.226)

I(z) = Y0V
+
0 e−γ(z−ℓ) − Y0V

−
0 eγ(z−ℓ). (2.227)

where V +
0 and V −

0 are the traveling wave voltage phasors at z = ℓ, (port 2),
i.e.

V +
0 = 1

2 (V2 + Z0I2) and V −
0 = 1

2 (V2 − Z0I2) . (2.228)

Substituting these into Equations (2.226) and (2.227),

V (z) = 1
2 (V2 + Z0I2) e

−γ(z−ℓ) + 1
2 (V2 − Z0I2) e

γ(z−ℓ) (2.229)

I(z) = 1
2 (Y0V2 + I2) e

−γ(z−ℓ) − 1
2 (Y0V2 − I2) e

γ(z−ℓ). (2.230)

At Port 1 (z = 0)

V1 = V (0) = 1
2 (V2 + Z0I2) e

γℓ + 1
2 (V2 − Z0I2) e

−γℓ (2.231)

I1 = I(0) = 1
2 (Y0V2 + I2) e

γℓ − 1
2 (Y0V2 − I2) e

−γℓ. (2.232)
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L =
|Z0|
ω

H L =
|Z0|
2ω

H

C =
1

|Z0|ω
F C =

1

|Z0|ω
F

(a) (b) (c)

Figure 2-37: Lumped equivalent circuit of a
one-quarter wavelength long line of charac-
teristic impedance Z0 which is the same as
that of an impedance inverter (of Z0 Ω): (a)
one-quarter wavelength long line segment;
(b) lumped-element equivalent circuit; and (c)
alternative lumped-element model.

Using the trigonometric identities in Section 1.A.2 (and noting that I2 = −Ib),

Va = V1 = cosh(γℓ)V2 − Z0 sinh(γℓ)I2 = cosh(γℓ)Vb + Z0 sinh(γℓ)Ib (2.233)

Ia = I1 = Y0 sinh(γℓ)V2 − cosh(γℓ)I2 = Y0 sinh(γℓ)Vb + cosh(γℓ)Ib. (2.234)

That is, the ABCD parameters of a lossy line are

A = cosh(γℓ) B = Z0 sinh(γℓ)
C = Y0 sinh(γℓ) D = cosh(γℓ)

(2.235)

and the ABCD parameters of a lossless transmission line, where γ = β, are

A = cos (βℓ) B = Z0 sin (βℓ)
C = Y0 sin (βℓ) D = cos (βℓ)

. (2.236)

EXAMPLE 2.25 Lumped Element Model of a Quarter-Wavelength Long Line

Develop the lumped-element model of a one-quarter wavelength long lossless transmission
line having characteristic impedance Z0.

Solution:

The model is developed by equating ABCD parameters. The ABCD parameters of a one-
quarter wavelength long lossless line (with βℓ = π/2) are

A = cos(βℓ) = 0 (2.237)
B = Z0 sin(βℓ) = Z0 (2.238)

C = Y0 sin(βℓ) = /Z0 (2.239)
D = cos(βℓ) = 0. (2.240)

The ABCD parameters of a Pi network (see Table 2-1 of [7]) are

A = 1 + y2/y3 (2.241)
B = 1/y3 (2.242)

C = y1 + y2 + y1y2/y3 (2.243)
D = 1 + y1/y3. (2.244)

Equating Equations (2.238) and (2.242), y3 = 1/(Z0), (2.245)

and with Equations (2.237), (2.240), (2.241), and (2.244),

y1 = y2 = −y3 = −1/(Z0). (2.246)

The lumped equivalent circuit of the quarter-wave transformer in Figure 2-37(a) is shown
in Figure 2-37(b). An alternative lumped-element model is shown in Figure 2-37(c). The
lumped-element model of the 50 Ω line at 400 MHz is shown in Figure 2-37(b) with
L = 19.89 nH and C = 7.968 pF. This is a simpler and more accurate model of a λ/4 long
line than a model with multiple short line segments as in Figure 2-35.
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2.8 Two-Conductor Transmission Lines

Nearly every two-conductor transmission line supports EM fields at
frequencies down to DC. As a result, such lines can usually be characterized
at DC and the properties of the lines will be essentially the same at RF
frequencies. In the following, the characteristic impedances of the most
common types of two-conductor lines are presented. For all of these lines the
phase constant is the same as it would be in the medium without conductors
(i.e., β = ω

√
µε). The characteristic impedances are modifications of the free-

space wave impedance η0 =
√

µ0/ε0 = 120π Ω = 376.73 Ω. The properties
of many other transmission lines are given in [8].

Coaxial line

Figure 2-38

Z0 =
η0
2π

√

µr

εr
ln

(

b

a

)

= 60

√

µr

εr
ln

(

b

a

)

(2.247)

Exact. See derivation in Section 2.9.

Square
coaxial line

Figure 2-39

Z0 ≈ η0

√

µr

εr

[

4

(

2a

b− a
+ 0.558

)]−1

(2.248)

Typical accuracy: <1% for b/a ≤ 4. Reference [9].

Rectangular
coaxial line

Figure 2-40

Z0 =
η0
4

√

µr

εr

(

w

b− t
+

1

π

{

b

b− t
ln

(

2b− t

t

)

+ ln

[

t(2b− t)

(b− t)2

]}

ln [1 + coth(πg/b)]

ln 2

)−1

(2.249)

Typical accuracy: 1%. References [10–12].

Rectangular
coaxial line,
thin strip
t → 0

Figure 2-41

Z0 =
η0
4

√

µr

εr

{

w

b
+

2

π
ln

[

1 + coth
(πg

b

)]

}−1

(2.250)

Typical accuracy: 1%. Reference [10].

Square coax with
circular inner
conductor

Figure 2-42

Z0 =
η0
2π

√

µr

εr
ln

(

1.0787b

a

)

(2.251)

Typical accuracy: 1.5%. References [8, 13–15].

Parallel wires

Figure 2-43

Z0 =
η0
π

√

µr

εr
arccosh

(

b

a

)

(2.252)

Typical accuracy: 1%. References [16, 17].

Characteristics of two-conductor transmission lines.
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Slab line

Figure 2-44

Z0 = 15

√

µr

εr
ln

[

1 + 1.314g +

√

(1.314g)
2
+ 2g

]

where g = (b/a)4 − 1 (2.253)

Typical accuracy: 0.5%. Reference [18].

Twisted pair with
T twists per unit
length

Figure 2-45

Z0 =
η0
π

√

µr

εe
arccosh

(

b

a

)

(2.254)

εe = 1 + q(εr − 1), q = 0.25 + 0.0004Θ2

T =
tanΘ

πD
so Θ = arctan(TπD)

Typical accuracy: 1%. Reference [19].

Characteristics of two-conductor transmission lines.

2.9 Coaxial Line

In this section the characteristic impedance of a coaxial line is calculated.
The technique assumes that the dynamic electric and magnetic fields will
be the same as they would be at DC. This physical insight enables the
problem to be solved relatively simply using the static field laws. Later the
dynamic situation is considered when the fields on a realistic coaxial line are
considered.

2.9.1 Characteristic Impedance of a Coaxial Line

In the following the per unit length parameters—R,L, G, and C—of a coaxial
line are obtained. From these the characteristic impedance and propagation
constant of the coaxial line are derived. The development is an example of
how these parameters can be developed for any transmission line. The key
is using a coordinate system that matches the structure being considered.
Then Maxwell’s equations can be expressed very simply, usually as one-
dimensional ordinary differential equations. Very often the static electric and
magnetic field laws can be used that make the development even simpler. If
an orthogonal coordinate system does not coincide with the dimensions of
the line, then sometimes it is possible to use a mathematical technique called
conformal mapping to map a nonconforming shape such as a microstrip line
into a shape that matches an orthogonal coordinate system [20]. Once the
transmission line parameters are derived the result is mapped back to the
original structure. Fortunately most transmission line structures conform to
an orthogonal coordinate system.

The cross section of a coaxial line is shown in Figure 2-46(a) and it has two
concentric conductors with the inner conductor having an outer radius of
a and the inside of the outer conductor with a radius b. The fields between
the conductors can be solved by expressing the field relations in cylindrical
coordinates. The following is a simplification of the treatment in [21], which
can be applied to a broader range of coaxial cables than just the circularly
symmetrical conventional coaxial cable in Figure 2-46. The simplest possible
field distribution is shown in Figure 2-46(b). The first parameter to be
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developed is C. For this, the charge on one of the conductors is related to
the voltage between the conductors. Consider a section of line of length ∆z,
then using Gauss’s law, Equation (1.50), the electric flux is related to the total
charge enclosed. So at radius r,

∮

s

D̄ = Qenclosed

2πrDr(r)∆z = ρℓ∆z and 2πrεEr(r)∆z = ρℓε∆z, (2.255)

where ρℓ is the charge on the inner conductor per unit length (in the z
direction). So the radial electric field is

Ē = Er(r)r̂ =
ρℓ

2πrε
r̂ (2.256)

and r is the unit vector in the radial direction. The voltage between the
conductors is

V =

∫ b

a

Er.dr =

∫ b

a

ρℓ
2πrε

.dr =
ρℓ
2πε

ln

(

b

a

)

. (2.257)

Now, the total capacitance of a section of line is

CTOTAL = C∆z =
Q

V
=

ρℓ∆z

V
, (2.258)

and so the capacitance per unit length of line is (with SI units of F/m)

C =
2πε

ln(b/a)
. (2.259)

The conductance of the line is found beginning with the current density in
the dielectric, which is

J = σE + ωεE. (2.260)

Integrating this over the volume of the dielectric,

I = GV + ωCV. (2.261)

Using a similar development to that which led to Equation (2.259), the
conductance per unit length is found to be (with the SI units of S/m)

G =
2πσ

ln(b/a)
. (2.262)

Figure 2-46: Coaxial line: (a)
with inner an conductor of
radius a and an outer conductor
with inside radius b; and (b)
with cylindrical coordinates
used in calculation. (a) (b)
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The development of the expressions for L and R is more involved, as
there will be current in the interior of the inner conductor. To simplify
matters the high-frequency limit will be considered where the skin effect is
fully established so that the currents on the inner and outer conductors are
confined to a thin layer near the surfaces of the conductors at radius a for the
inner conductor and at radius b for the outer conductor. Then the magnetic
field will be confined to the region between the conductors. Using Ampere’s
circuital law, Equation (1.45),

∮

ℓ

H̄ · dℓ =
∮

ℓ

Hφφ̂ · dℓ = Ienclosed = I, (2.263)

where the closed line integral is on a circle of constant radius. Noting that Hr

is only a function of r, then for a < r < b,

I = 2πrHr(r) and Br = µHr =
µI

2πr
. (2.264)

This enables the line inductance to be calculated as the total magnetic flux
(obtained by integrating over the cross section of the coaxial line between
radii a and b) per unit current. So the inductance of the line per unit length is

L =

∫ b

a

( µ

2πr

)

dr =
µ

2π
ln

(

b

a

)

, (2.265)

which has SI units of H/m.
The resistance of the lines is calculated using the surface resistance of the

conductors, Rs. So the resistance of the line per unit length is

R =
Rs

2π

(

1

a
+

1

b

)

, (2.266)

which has the SI units of Ω/m.
Then the lossless characteristic impedance of the coaxial line is

Z0 =

√

L

C
=

1

2π

√

µ

ε
ln

(

b

a

)

, (2.267)

which has units of Ωs if all the quantities in the expression are in
SI units. A complex characteristic impedance is derived using Z0 =
√

(R+ ωL)/(G+ ωC), but if the loss is small, this will be very close to the
lossless characteristic impedance. Also

Z0 =

√

µr

εr

1

2π

√

µ0

ε0
ln

(

b

a

)

= 60

√

µr

εr
ln

(

b

a

)

. (2.268)

Note that the 60 is exact and not an approximation.
For actual coaxial lines the dielectric has negligible loss and the resistance,

R, is small. Using the results developed in Section 2.5.4 for a low-loss line, the
attenuation coefficient for a low-loss coaxial line is, from Equation (2.149),

α ≈ αc =
R

2Z0
=

Rs

2π

(

1

a
+

1

b

)

2π

ln(b/a)

√

ε

µ
=

(

1

a
+

1

b

)

Rs

ln(b/a)

√

ε

µ
(2.269)
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Figure 2-47: A coax-
ial transmission line:
(a) three-dimensional
view; (b) the line
with pulsed voltage
source showing the
electric fields at an
instant in time as a
voltage pulse travels
down the line. (a) (b)

which is the attenuation due to the conductor, that is, due to ohmic or
conductor loss. From Equation (2.269) it is seen that for a given characteristic
impedance, and hence a fixed ratio b/a, the attenuation coefficient and thus
loss, is minimized when the line has a large cross section (i.e., large a and b).
With a fixed a, attenuation is minimized with b/a = 3.59 independent of µ
and ε [17]. For an air-filled coaxial line with µr = 1 = εr, the characteristic
impedance of this minimum-loss line is 76.7 Ω. For a typically Teflon-filled
coaxial line εr = 2.1 and the characteristic impedance of a minimum loss line,
from Equation (2.268), is 52.9 Ω. The above result is when the conductivity
of the inner and outer conductors is the same and the internal inductance of
the conductors is negligible. If the internal inductance is not negligible, or the
conductors have different conductivity, which happens when the conductors
are not solid, then the optimum characteristic impedance could be higher
or lower [17]. The choice of 50 Ω for the characteristic impedance is a good
compromise. Other optimum line dimensions can be derived for maximizing
breakdown voltage and optimizing power transfer [22].

The upper operating frequency and dimensions of coaxial lines are chosen
to ensure single-mode propagation [23–25]. A useful approximation to the
cutoff frequency of the first higher-order mode is [23]

λc ≈
π(a+ b)

2
, (2.270)

which is the circumference of a circle halfway between the inner and outer
conductors. Since b is several times a, then the radius of the outer conductor
largely determines the upper operating frequency. Minimizing loss given a
fixed cutoff frequency of the first higher-order mode yields another optimum
value of b/a for minimum loss (see [22]).

2.9.2 Electromagnetic Fields on a Realistic Coaxial Line

In this section a realistic coaxial line is considered with conductors having a
small amount of loss. This expands on the discussion in Section 2.1.2. When
a positive voltage pulse is applied to the center conductor of the coaxial
line, as shown in Figure 2-47(a), an electric field results that is essentially
directed from the center conductor to the outer conductor. A much smaller
component of the electric field will also be directed along the line. These
fields are shown in Figure 2-47(b), where the direction of the electric field is
the direction in which a positive charge would move if it was released into
the field. The component of the field that is directed along the shortest path
from the center conductor to the outer conductor (in the transverse plane)
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Figure 2-48: Fields, cur-
rents, and charges on the
coaxial transmission line
of Figure 2-2 at times t4>
t3 > t2 > t1. QCENTER

is the net free charge
on the center conductor.
ICENTER is the current
on the center conductor.

is denoted ET , and the component directed along the line is denoted EL.
(The subscripts T and L denote transverse and longitudinal components,
respectively.) Thus, while EL ≪ ET , it is necessary to accelerate electrons on
the conductors and so give rise to current flow, and hence the movement of
the pulse along the line. The electrons do not accelerate indefinitely, as they
collide with atoms and scatter so that there is a net velocity of free electrons
along the inner and outer conductors.

Snapshots of a pulse traveling along a line are shown in Figure 2-48 at four
different times.

2.10 Summary

In this chapter a classical treatment of transmission lines was presented.
Transmission lines are distributed elements and form the basis of microwave
circuits. A distinguishing feature is that they support forward- and
backward-traveling waves and they can be used to implement circuit
functions. RF and microwave engineers are, of course, electrical engineers
who learned how to design circuits using lumped elements. Distributed
circuits can be made functionally equivalent to lumped-element circuits,
at least over a narrow frequency range. The most important technique for
establishing this is equating the ABCD parameters of the distributed circuit
and those of a lumped-element circuit. As will be seen, this technique will
be exploited many times in the rest of this book. Distributed circuits enable
an RF designer to realize functions that often have superior performance to
their lumped-element analogs. At least at microwave frequencies, the loss
of lumped elements can be significantly higher than those of distributed
elements. Superior performance can be obtained by exploiting the intrinsic
behavior of distributed structures. Sometimes functionality can only be
conceived of using transmission-line structures, then, often, a low-frequency
lumped-element equivalent can be developed. Exploiting the functionality
of distributed structures requires a solid understanding of the behavior,
modeling, and circuits that can be realized using transmission lines. The
technology covered in this chapter provides the theoretical underpinning for
all of the other topics covered in this book.

The most important of the formulas presented in this chapter are listed
here. Reflection coefficients are referenced to an impedance Z0, the load
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impedance is ZL, and a line has a characteristic impedance Z0, physical
length ℓ, and propagation constant γ (or electrical length in radians of βℓ
where ℓ is the physical length of the line.

Reflection coefficient of a load
impedance ZL:

Load impedance in terms of
reflection coefficient Γ:

. Input reflection coefficient of
a lossless line of length ℓ

Γ = ΓV =
ZL − ZREF

ZL + ZREF
(2.59) ZL = ZREF

1 + Γ

1− Γ
(2.62) . Γin = ΓLe

−2βℓ (2.69)

Input reflection coefficient of
a lossy line of length ℓ

Input impedance of a lossless
line

. Input impedance of a lossy
line

Γin = ΓLe
−2γℓ

= ΓLe
−2αℓe−2βℓ (2.135)

Zin = Z0
ZL + Z0 tanβℓ

Z0 + ZL tanβℓ
(2.71)

. Zin = Z0
ZL + Z0 tanh γℓ

Z0 + ZL tanh γℓ
(2.151)

Reflection coefficient in terms
of VSWR

VSWR in terms of reflection
coefficient

.

|Γ| = VSWR − 1

VSWR + 1
(2.77) VSWR =

(1 + |Γ|)
(1− |Γ|) (2.76) .
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2.12 Exercises

1. A coaxial line is short-circuited at one end and is
filled with a dielectric with a relative permittiv-
ity of 64. [Parallels Example 2.1]

(a) What is the free-space wavelength at
18 GHz?

(b) What is the wavelength in the dielectric-
filled coaxial line at 18 GHz?

(c) The first resonance of the coaxial resonator
is at 18 GHz. What is the physical length of
the resonator?

2. A transmission line has the following RLGC
parameters: R = 100 Ω/m, L = 85 nH/m,
G = 1 S/m, and C = 150 pF/m. Consider a
traveling wave on the transmission line with a
frequency of 1 GHz. [Parallels Example 2.3]

(a) What is the attenuation constant?
(b) What is the phase constant?
(c) What is the phase velocity?
(d) What is the characteristic impedance of the

line?
(e) What is the group velocity?

3. A transmission line has the per-unit length pa-
rameters L = 85 nH/m, G = 1 S/m, and
C = 150 pF/m. Use a frequency of 1 GHz. [Par-
allels Example 2.3]

(a) What is the phase velocity if R = 0 Ω/m?
(b) What is the group velocity if R = 0 Ω/m?
(c) If R = 10 kΩ/m what is the phase velocity?

(d) If R = 10 kΩ/m what is the group velocity?

4. A line is 10 cm long and at the operating fre-
quency the phase constant β is 40 rad/m. What
is the electrical length of the line? [Parallels Ex-
ample 2.2]

5. A dielectric-filled lossless transmission line car-
rying a 1 GHz signal has the parameters L =
80 nH/m and C = 200 pF/m. When the di-
electric is replaced by air the line’s capacitance
is Cair = 50 pF/m. What is the relative permit-
tivity of the dielectric?

6. A coaxial transmission line is filled with lossy
dielectric material with a relative permittivity of
5 − 0.2. If the line is air-filled it would have a
characteristic impedance of 100 Ω. What is the
input impedance of the line if it is 1 km long?
Use reasonable approximations. [Hint: Does the
termination matter?]

7. A transmission line has the per unit length pa-
rameters R = 2 Ω/cm, L=100 nH/m, G =
1 mS/m, C = 200 pF/m.

(a) What is the propagation constant of the line
at 5 GHz?

(b) What is the characteristic impedance of the
line at 5 GHz?

(c) Plot the magnitude of the characteristic
impedance versus frequency from 100 MHz
to 10 GHz.
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8. A line is 20 cm long and at 1 GHz the phase con-
stant β is 20 rad/m. What is the electrical length
of the line in degrees?

9. What is the electrical length of a line that is a
quarter of a wavelength long,

(a) in degrees?
(b) in radians?

10. A lossless transmission line has an inductance of
8 nH/cm and a capacitance of 40 pF/cm.

(a) What is the characteristic impedance of the
line?

(b) What is the phase velocity on the line at
1 GHz?

11. A 50 Ω coaxial airline is a coaxial line without
a dielectric (i.e., it is air-filled) and with thin
dielectric discs supporting the inner conduc-
tor have negligible effect. If the air is replaced
by a dielectric having a relative permittivity of
20, what is the characteristic impedance of the
dielectric-filled line?

12. A transmission line has an attenuation of
2 dB/m and a phase constant of 25 radians/m
at 2 GHz. [Parallels Example 2.4]

(a) What is the complex propagation constant of
the transmission line?

(b) If the capacitance of the line is 50 pF·m−1

and G = 0, what is the characteristic
impedance of the line?

13. A very low-loss microstrip transmission line has
the following per unit length parameters: R =
2 Ω/m, L = 80 nH/m, C = 200 pF/m, and
G = 1 µS/m.

(a) What is the characteristic impedance of the
line if loss is ignored?

(b) What is the attenuation constant due to con-
ductor loss?

(c) What is the attenuation constant due to di-
electric loss?

14. A lossless transmission line carrying a 1 GHz
signal has the following per unit length param-
eters: L = 80 nH/m, C = 200 pF/m.

(a) What is the attenuation constant?
(b) What is the phase constant?
(c) What is the phase velocity?
(d) What is its characteristic impedance?

15. A transmission line has a characteristic
impedance Z0 and is terminated in a load with
a reflection coefficient of 0.8� 45◦. A forward-
traveling voltage wave on the line has a power
of 1 dBm.

(a) How much power is reflected by the load?
(b) What is the power delivered to the load?

16. A transmission line has an attenuation of
0.2 dB/cm and a phase constant of 50 radians/m
at 1 GHz.

(a) What is the complex propagation constant of
the transmission line?

(b) If the capacitance of the line is 100 pF/m and
G = 0, what is the complex characteristic
impedance of the line?

(c) If the line is driven by a source modeled
as an ideal voltage and a series impedance,
what is the impedance of the source for max-
imum transfer of power to the transmission
line?

(d) If 1 W is delivered (i.e. in the forward-
traveling wave) to the transmission line by
the generator, what is the power in the
forward-traveling wave on the line at 2 m
from the generator?

17. The transmission line shown in Figure 2-27 con-
sists of a source with Thevenin impedance Z1 =
40 Ω and source E = 5 V (peak) connected
to a λ/4 long line of characteristic impedance
Z01 = 50 Ω, which in turn is connected to an
infinitely long line of characteristic impedance
Z02 = 100 Ω. The transmission lines are lossless.
Two reference planes are shown in Figure 2-27.
At reference plane 1 the incident power is PI1,
the reflected power is PR1, and the transmitted
power is PT1. PI2, PR2, and (PT2) are similar
quantities at reference plane 2. [Parallels Exam-
ples 2.20 and 2.22]

(a) What is PI1?
(b) What is PT2?

18. A lossless, 10 cm-long, 75 Ω transmission line is
driven by a 1 GHz generator with a Thevenin
equivalent impedance of 50 Ω. The maximum
power that can be delivered to a load attached to
the generator is 2 W. The line is terminated in a
load that has a complex reflection coefficient (re-
ferred to 50 Ω) of 0.65 + 0.65. The effective rel-
ative permittivity, εe, of the non-magnetic trans-
mission line is 2.0.

(a) Calculate the forward-traveling voltage
wave (at the generator end of the transmis-
sion line). Ignore reflections from the load at
the end of the 75 Ω line.

(b) What is the load impedance?
(c) What is the wavelength of the forward-

traveling voltage wave?
(d) What is the VSWR on the line?
(e) What is line’s propagation constant?
(f) What is the input reflection coefficient (at the

generator end) of the line?
(g) What is the power delivered to the load?
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19. The first resonance of a lossless non-magnetic
open-circuited transmission line is at 30 GHz.
The effective relative permittivity of the line is
12.

(a) What is the resonator’s input impedance?
(b) Draw its LC equivalent circuit.
(c) What is its electrical length?
(d) What is its physical length?

20. An open-circuited transmission line is used as a
resonator. What is the electrical length of the line
at its first resonance?

21. The second resonance of an open-circuited
transmission line is used as a resonator.

(a) What is its input impedance?
(b) What is its electrical length?

22. A lossless transmission line is driven by a
1 GHz generator having a Thevenin equivalent
impedance of 50 Ω. The transmission line is loss-
less, has a characteristic impedance of 75 Ω, and
is infinitely long. The maximum power that can
be delivered to a load attached to the generator
is 2 W.

(a) What is the total (phasor) voltage at the in-
put to the transmission line?

(b) What is the magnitude of the forward-
traveling voltage wave at the generator side
of the line?

(c) What is the magnitude of the forward-
traveling current wave at the generator side
of the line?

23. A transmission line is terminated in a short
circuit. What is the ratio of the forward- and
backward-traveling voltage waves at the termi-
nation? [Parallels Example 2.5]

24. A 50 Ω transmission line is terminated in a 40 Ω
load. What is the ratio of the forward- to the
backward-traveling voltage waves at the termi-
nation? [Parallels Example 2.5]

25. A 50 Ω transmission line is terminated in an
open circuit. What is the ratio of the forward-
to the backward-traveling voltage waves at the
termination? [Parallels Example 2.5]

26. The resonator below is constructed from a 3.0 cm
length of 100 Ω air-filled coaxial line, shorted at
one end and terminated with a capacitor at the
other end.

(a) What is the lowest resonant frequency of
this circuit without the capacitor (ignore the
10 kΩ resistor)?

(b) What is the capacitor value to achieve the
lowest-order resonance at 6.0 GHz (ignore
the 10 kΩ resistor)?

(c) Assume that loss is introduced by placing a
10 kΩ resistor in parallel with the capacitor.
What is the Q of the circuit?

(d) Approximately what is the bandwidth of the
circuit?

27. A 50 Ω transmission line is terminated in a load
that results in a reflection coefficient of 0.5+0.5.

(a) What is the load impedance?
(b) What is the VSWR on the line?
(c) What is the input impedance if the line is

one-half wavelength long?

28. Communication filters are often constructed us-
ing several shorted transmission line resonators
that are coupled by passive elements such as ca-
pacitors. Consider a coaxial line that is short-
circuited at one end. The dielectric filling the
coaxial line has a relative permittivity of 64 and
the resonator is to be designed to resonate at a
center frequency, f0, of 800 MHz. [Parallels Ex-
ample 2.24]

(a) What is the wavelength in the dielectric-
filled coaxial line?

(b) What is the form of the equivalent circuit
(in terms of inductors and capacitors) of
the one-quarter wavelength long resonator
if the coaxial line is lossless?

(c) What is the length of the resonator?
(d) If the diameter of the inner conductor of the

coaxial line is 2 mm and the inside diameter
of the outer conductor is 5 mm, what is the
characteristic impedance of the coaxial line?

(e) Calculate the input admittance of the
dielectric-filled coaxial line at 0.99f0, f0, and
1.01f0. Determine the numerical derivative
of the line admittance at f0.

(f) Derive the values of the equivalent circuit
of the resonator at the resonant frequency
and derive the equivalent circuit of the res-
onator. Hint: Match the derivative expres-
sion derived in (e) with the actual derivative
derived in Example 2.24.

29. Develop an analytic formula relating a reflection
coefficient (Γ1) in one reference system (Z01) to
a reflection coefficient (Γ2) in another reference
system (Z02).

30. A line has a characteristic impedance Z0 and is
terminated in a load with a reflection coefficient
of 0.8. A forward-traveling voltage wave on the
line has a power of 1 W.

(a) How much power is reflected by the load?
(b) What is the power delivered to the load?
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31. A load consists of a shunt connection of a ca-
pacitor of 10 pF and a resistor of 25 Ω. The load
terminates a lossless 50 Ω transmission line. The
operating frequency is 1 GHz. [Parallels Exam-
ple 2.6]

(a) What is the impedance of the load?
(b) What is the normalized impedance of

the load (normalized to the characteristic
impedance of the line)?

(c) What is the reflection coefficient of the load?
(d) What is the current reflection coefficient of

the load?
(e) What is the standing wave ratio (SWR)?
(f) What is the current standing wave ratio

(ISWR)?

32. A 50 Ω air-filled transmission line is connected
between a 40 GHz source with a Thevenin
equivalent impedance of 50 Ω and a load. The
SWR on the line is 3.5.

(a) What is the magnitude of the reflection coef-
ficient, ΓL, at the load?

(b) What is the phase constant, β, of the line?
(c) If the first minimum of the standing wave

voltage on the transmission line is 2 mm
from the load, determine the electrical dis-
tance (in degrees) of the SWR minimum
from the load.

(d) Determine the angle of ΓL at the load.
(e) What is ΓL in magnitude-phase form?
(f) What is ΓL in rectangular form?
(g) Determine the load impedance, ZL.

33. A load consists of a resistor of 100 Ω in parallel
with a 5 pF capacitor with an electrical signal at
2 GHz.

(a) What is the load impedance?
(b) What is the reflection coefficient in a 50 Ω

reference system?
(c) What is the SWR on a 50 Ω transmission line

connected to the load?

34. An amplifier is connected to a load by a trans-
mission line matched to the amplifier. If the SWR
on the line is 1.5, what percentage of the avail-
able amplifier power is absorbed by the load?

35. An output amplifier can tolerate a mismatch
with a maximum SWR of 2.0. The amplifier is
characterized by a Thevenin equivalent circuit
with an impedance of 50 Ω and is connected di-
rectly to an antenna characterized by a load re-
sistance RL. Determine the tolerance limits on
RL so that the amplifier does not self-destruct.

36. A load has a reflection coefficient of 0.5 when re-
ferred to 50 Ω. The load is placed at the end of a
100 Ω-transmission line.

(a) What is the complex ratio of the forward-
traveling wave to the backward-traveling
wave on the 100 Ω line at the load end of
the line?

(b) What is the VSWR on the 100 Ω line?

37. A load has a reflection coefficient of 0.5 when re-
ferred to 50 Ω. The load is at the end of a line
with a 50 Ω characteristic impedance.

(a) If the line has an electrical length of 45◦,
what is the reflection coefficient calculated
at the input of the line?

(b) What is the VSWR on the 50 Ω line?

38. A 100 Ω resistor in parallel with a 5 pF capacitor
terminates a 100 Ω transmission line. Calculate
the SWR on the line at 2 GHz.

39. A lossless 50 Ω transmission line has a 50 Ω gen-
erator at one end and is terminated in 100 Ω.
What is the VSWR on the line?

40. A lossless 75 Ω line is driven by a 75 Ω generator.
The line is terminated in a load that with a reflec-
tion coefficient (referred to 50 Ω) of 0.5 + 0.5.
What is the VSWR on the line?

41. A load with a 20 pF capacitor in parallel with a
50 Ω resistor terminates a 25 Ω line. The operat-
ing frequency is 5 GHz. [Parallels Example 2.7]

(a) What is the VSWR?
(b) What is ISWR?

42. A load ZL = 55−55 Ω and the system reference
impedance, Z0, is 50 Ω. [Parallels Example 2.8]

(a) What is the load reflection coefficient ΓL?
(b) What is the current reflection coefficient?
(c) What is the VSWR on the line?
(d) What is the ISWR on the line?
(e) Now consider a source connected directly to

the load. The source has a Thevenin equiva-
lent impedance ZG = 60 Ω and an available
power of 1 W. Use ΓL to find the power de-
livered to ZL.

(f) What is the total power absorbed by ZG?

43. A slotted line, as shown in Figure 2-19(c), is
used to characterize a 50 Ω line terminated in a
load ZL. Vmax = 1 V and Vmin = 0.1 V, and the
first minimum is 5 cm from the load. The guide
wavelength is 30 cm. What is ZL? [Parallels Ex-
ample 2.9]

44. A shorted coaxial line is used as a resonator. The
first resonance is determined to be a parallel res-
onance and is at 1 GHz.

(a) Draw the lumped-element equivalent circuit
of the resonator.

(b) What is the electrical length of the res-
onator?
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(c) What is the impedance looking into the line
at resonance?

(d) If the resonator is λ/4 longer, what is the
impedance of the resonator now?

45. A load of 100 Ω is to be matched to a trans-
mission line with a characteristic impedance of
50 Ω. Use a quarter-wave transformer. What
is the characteristic impedance of the quarter-
wave transformer?

46. Determine the characteristic impedance of a
quarter-wave transformer used to match a load
of 50 Ω to a generator with a Thevenin equiva-
lent impedance of 75 Ω.

47. A transmission line is to be inserted between a
5 Ω line and a 50 Ω load so that there is maxi-
mum power transfer to the 50 Ω load at 20 GHz.

(a) How long is the inserted line in terms of
wavelengths at 20 GHz?

(b) What is the characteristic impedance of the
line at 20 GHz?

48. The resonator below is constructed from a 3.0 cm
length of 100 Ω air-filled coaxial line shorted at
one end and terminated with a capacitor at the
other end:

(a) What is the lowest resonant frequency of
this circuit without the capacitor (ignore the
resistor)?

(b) What is the capacitor value required to
achieve resonance at 6.0 GHz?

(c) Assume that loss is introduced by placing a
10 kΩ resistor in parallel with the capacitor.
What is the Q of the circuit?

(d) What is the bandwidth of the circuit?

49. A coaxial transmission line is filled with lossy
material with a relative permittivity of 5 − 0.2.
If the line is air-filled it would have a character-
istic impedance of 100 Ω.

(a) What is the characteristic impedance of the
dielectric-filled line?

(b) What is the propagation constant at
500 MHz?

(c) What is the input impedance of the line if it
has an electrical length of 280◦ and is termi-
nated in a 35 Ω resistor?

50. A coaxial line is filled with a very slightly lossy
material with a relative permittivity of 5. The
line would have a characteristic impedance of
100 Ω if it was air-filled.

(a) What is the characteristic impedance of the
dielectric-filled line?

(b) What is the propagation constant at 500
MHz? Use the fact that the velocity of an EM
wave in a lossless air-filled line is the same
as that of free-space propagation in air.

(c) What is the input impedance of the line if it
has an electrical length of 90◦ and it is termi-
nated in a 35 Ω resistor?

(d) What is the input impedance of the line if it
has an electrical length of 180◦ and is termi-
nated in an impedance 35 Ω?

(e) What is the input impedance of the line if
it is 1 km long? Use reasonable approxima-
tions.

51. A lossy transmission line with a characteristic
impedance of 60 − 2 Ω is driven by a genera-
tor with a Thevenin equivalent impedance Zg .
If the line is infinitely long, what is Zg for max-
imum power transfer from the generator to the
line?

52. A 25 Ω-transmission line is driven by a gener-
ator with an available power of 23 dBm and a
Thevenin equivalent impedance of 60 Ω. [Paral-
lels Example 2.19]

(a) What is the Thevenin equivalent generator
voltage?

(b) What is the magnitude of the forward-
traveling voltage wave on the line? Assume
the line is infinitely long.

(c) What is the power of the forward-traveling
voltage wave?

53. A open-circuited coaxial line is used as a res-
onator. The first resonance is a series resonance
at 2 GHz. [Parallels Example 2.15]

(a) Draw the lumped-element equivalent circuit
of the resonator.

(b) What is the resonator’s electrical length?
(c) What is the impedance looking into the line

at resonance?
(d) If the resonator is 3λg/4 longer, what is the

input impedance of the resonator?

54. The forward-traveling wave on a 60 Ω line has a
power of 2 mW. The line is terminated in a resis-
tance of 50 Ω. How much power is delivered to
the 50 Ω load.

55. The forward-traveling wave on a 40 Ω line has a
power of 2 mW. The line is terminated in a resis-
tance of 60 Ω. How much power is in the back-
ward traveling wave?

56. The forward-traveling wave on a 60 Ω line has a
power of 2 mW. The line is terminated in a resis-
tance of 50 Ω. Draw the lumped-element equiv-



122 STEER MICROWAVE AND RF DESIGN: TRANSMISSION LINES

alent circuit at the interface of the line and the
load. [Parallels Example 2.17]

57. A source is connected to a load by a one wave-
length long transmission line having a loss of
1.5 dB. The source reflection coefficient (referred
to the transmission line) is 0.2 and the load re-
flection coefficient is 0.5.

(a) What is the transmission coefficient?
(b) Draw the bounce diagram using the trans-

mission and reflection coefficients. Deter-
mine the overall effective transmission co-
efficient from the source to the load. Calcu-
late the power delivered to the load from a
source with an available power of 600 mW.

58. Consider a coaxial line that is short-circuited at
one end. The dielectric filling the line has εr =
20 and the line has its lowest frequency reso-
nance at 2.4 GHz. [Parallels Example 2.23]

(a) What is the guide wavelength?
(b) Draw the resonator’s equivalent circuit.
(c) What is the resonator’s physical length?

59. Consider a lossless coaxial line that is open-
circuited at one end and is used as a resonator
that is resonant at f0 = 2.4 GHz. The line’s di-
electric has εr = 81. [Parallels Example 2.24]

(a) What is the wavelength in the line?
(b) Draw the lumped-element equivalent circuit

of a λg/4 long resonator?

(c) What is the resonator’s physical length?
(d) What is the derivative with respect to fre-

quency of the admittance of the LC equiv-
alent circuit developed in (b).

(e) If the diameter of the inner conductor of the
line is 1 mm and the inside diameter of the
outer conductor is 3 mm, what is the charac-
teristic impedance of the line?

(f) Determine the numerical frequency deriva-
tive of the line admittance at f0.

(g) Derive the values of the equivalent circuit of
the resonator at resonance.

60. Develop the lumped-element model of a half
wavelength long line having characteristic
impedance Z0. [Parallels Example 2.25]

61. The diameter of the inner conductor of a coax-
ial line is 2 mm and the interior diameter of the
outer conductor 8 mm. The coaxial line is filled
with polyimide which has a relative permittivity
of 3.2.

(a) What is the characteristic impedance of the
line?

(b) Describe the conditions by which a non-
TEM mode can be supported. Refer to two
different families of higher-order modes.

(c) For the coaxial line here, at what frequency
will a second propagating mode be first sup-
ported?

2.12.1 Exercises By Section
†challenging, ‡very challenging

§2.1 1
§2.2 2†, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14†, 15
§2.3 16†, 17, 18‡, 19‡, 20, 21, 22,

23, 24, 25, 26†, 27‡, 28‡, 29,
30†, 31†, 32‡, 33‡, 34†, 35†,
36†, 37, 38, 39, 40, 41, 42, 43

§2.4 44†, 45, 46, 47

§2.5 48‡, 49†, 50†, 51, 52‡, 53
§2.6 54, 55, 56, 57†

§2.7 58, 59†, 60
§2.9 61

2.12.2 Answers to Selected Exercises

11 11.2 Ω
12 0.23 + 25 m−1

17(b) 74.0 mW
28(c) 1.17 cm

28(e) 4.55 · 10−11S · s
32(f) 0.544 + 0.116
33(f) 41.45

35 25 Ω ≤ ZL ≤ 100 Ω

46 61.2 Ω
57 354.2 mW
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2.A.1 SI Units

The main SI units used in RF and microwave engineering are given in Table 2-1. Symbols for SI units3

(from the French name Système International d’Unités) are written in upright roman font. (Source: U.S.
National Institute of Standards and Technology (2006) [26], and 2002 CODATA recommended values of
constants [27].)

The International Organization for Standardization (ISO) maintains the International System of
Quantities (ISQ) defines the quantities that are measured in SI units [28]. These are set out in the ISO 8000
standard (which is jointly published with the International Electrotechnical Commission (IEC) as the
IEC 8000).

• The fundamental units of the SI system are meter, kilogram, second, candela, mole, and Kelvin.
• The unit of length is spelled meter in the United States and metre in other countries.
• The unit designations, such as m for meter, is called a symbol and not an abbreviation.
• Symbols for units are written in lowercase unless the symbol is derived from the name of a person.

For example, the symbol for the unit of force is N as it is named after Isaac Newton. An exception
is the use of L for liter to avoid possible confusion with l, which looks like the numeral one and the
letter i.

• A space separates a value from the symbol for the unit (e.g., 5.6 kg). There is an exception for
degrees, with the symbol ◦. For example, 45 degrees is written 45◦.

SI Unit Combinations

When SI units are multiplied a center dot is used. For example, newton meters is written N·m. When a unit
is derived from the ratio of symbols then either a solidus (/) or a negative exponent is used; the symbol for
velocity (meters per second) is either m/s or m·s−1. The use of multiple solidi for a combination symbol is
confusing and must be avoided. So the symbol for acceleration is m·s−2 or m/s2 and not m/s/s. Another
example is the thermal conductivity of aluminum at room temperature which is k = 237 kW ·m−1 ·K−1

and not k = 237 kW/m/K or 237 kW/m·K. However, 237 kW /(m·K) is sometimes used.
Consider calculation of the thermal resistance of a rod of cross-sectional area A and length ℓ:

RTH =
ℓ

kA
. (2.271)

If A = 0.3 cm2 and ℓ = 2 mm, the thermal resistance is

RTH =
(2 mm)

(237 kW·m−1 ·K−1) · (0.3 cm2)
=

(2 · 10−3 m)

237 · (103 ·W·m−1 ·K−1) · 0.3 · (10−2 ·m)2
(2.272)

=
2 · 10−3

237 · 103 · 0.3 · 10−4
· m

W·m−1 ·K−1 ·m2
(2.273)

= 2.813 · 10−4 K·W−1 = 281.3 µK/W. (2.274)

This would be an error-prone calculation if the thermal conductivity was taken as 237 kW/m/K.
The use of SI units initially means that calculations can be undertaken without the tedium of tracing

units through calculations. This requires that the SI unit of the final result be known and assigned. Re-
peating the above calculation for the thermal resistance of a rod using Equation (2.271), first express the

3 The older metric systems used different fundamental units; for example, the mks metric system used meter, kilogram,
and second as fundamental units; the cgs metric system used centimeter, gram, and second as fundamental units.
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Table 2-1: Main SI units used in RF and microwave engineering. The SI units used in
electromagnetics are given in Table 1-1.

SI unit Name Usage In terms of fundamental units

A ampere current (abbreviated as amp) Fundamental unit

cd candela luminous intensity Fundamental unit

C coulomb charge A·s
F farad capacitance kg−1 ·m−2 ·A−2 ·s4
g gram weight =kg/1000
H henry inductance kg·m2 ·A−2 ·s−2

J joule unit of energy kg·m2 ·s−2

K kelvin thermodynamic temperature Fundamental unit

kg kilogram SI fundamental unit Fundamental unit

m meter length Fundamental unit

mol mole amount of substance Fundamental unit

N newton unit of force kg·m·s−2

Ω ohm resistance kg·m2 ·A−2 ·s−3

Pa pascal pressure kg·m−1 ·s−2

s second time Fundamental unit

S siemen admittance kg−1 ·m−2 ·A2 ·s3
V volt voltage kg·m2 ·A−1 ·s−3

W watt power J ·s−1

quantities in SI units: ℓ = 2 · 10−2 m; k = 2.37 · 105 W/(m·K); and A = 0.3 · 10−4 m2, then

RTH =
2

2.37 · 105 · 0.3 · 10−4
= 2.813 · 10−4. (2.275)

The SI unit of RTH is K/W, so that RTH = 2.813 · 10−4 K·W−1 = 281.3 µK/W.

SI Prefixes

A prefix before a unit indicates a multiple of a unit (e.g., 1 pA is 10−12 amps). (Source: 2015 ISO/IEC 8000
[28].) In 2009 new definitions of the prefixes for bits and bytes were adopted [28] removing the confusion
over the earlier use of quantities such as kilobit to represent either 1,000 bits or 1,024 bits. Now kilobit
(kbit) always means 1,000 bits and a new term kibibit (Kibit) means 1,024 bit. Also the now obsolete
usage of kbps is replaced by kbit/s (kilobit per second). The prefix k stands for kilo (i.e. 1,000) and Ki is
the symbol for the binary prefix kibi- (i.e. 1,024). (Note that “K” is sometimes used as an abbreviation for
1,024 but this is non-standard.) The symbol for byte (= 8 bits) is “B”.

Table 2-2: SI prefixes.

SI Prefixes

Symbol Factor Name

10−24 y yocto
10−21 z zepto
10−18 a atto
10−15 f femto
10−12 p pico
10−9 n nano
10−6

µ micro
10−3 m milli
10−2 c centi
10−1 d deci

SI Prefixes

Symbol Factor Name

101 da deca
102 h hecto
103 k kilo
106 M mega
109 G giga
1012 T tera
1015 P peta
1018 E exa
1021 Z zetta
1024 Y yotta

Prefixes for bits and bytes

Name

kilobit kbit 1000 bit
megabit Mbit 1000 kbit
gigabit Gbit 1000 Mbit
terabit Tbit 1000 Gbit
kibibit Kibit 1024 bit

mebibit Mibit 1024 Kibit
gibibit Gibit 1024 Mibit
tebibit Tibit 1024 Gibit

kilobyte kB 1000 B
kibibyte KiB 1024 B
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Physical and Mathematical Constants

Physical and mathematical constants in SI units. Source: U.S. National Institute of Standards and
Technology (2006) [26], and 2002 CODATA recommended values of constants [27].

Table 2-3: Physical and mathematical constants.

Parameter Value Description

c 299792458 m·s−1 Speed of light in a vacuum (free space)
e 1.6021765310−19 C Elementary charge (negative of an electron’s

charge)
e 2.718281828459045 Natural log base
γ 0.577215664901532 Euler’s ratio
φ 1.618033988749894 Golden ratio
ε0 8.854187817× 10−12 F·m−1 Permittivity of a vacuum (free space)
h 6.6260693× 10−34 J·s Planck constant (alt. h̄ = h/(2π))
k 1.3806505× 10−23 J·K−1 the Boltzmann constant
me 9.1093826× 10−31 kg Electron mass
µ0 12.566370614× 10−7 N·A−2 Permeability of free space = 4π × 10−7 N·A−2

π 3.14159265358979323846264 Pi, ratio of circumference to diameter of a
circle

101325 Pa Standard atmosphere (pressure)
η 376.730313461 Ω Characteristic impedance of vacuum (free

space)
6.241509× 1018 eV 1 joule of energy in terms of electron-volts
1.602176× 10−19 J 1 eV of energy in joules (the energy required

to move a charge e through a potential of 1 V)

Accuracy and Precision

Precision is a description of statistical variability or random error while accuracy includes
systematic errors in a measurement or calculation (and these are not random) combined with
statistical variability. For example, consider the calculation of the resistance of a uniform length
of metal using dimensions (length ℓ, width w, thickness t, which are known accurately) and
resistivity ρ where the ρ may not be known accurately. The resistance R = ρℓ/(wt).

The resistance calculation would not be accurate if the resistivity is not known accurately.
However the calculation would be precise if the resistivity of the metal is known to be fixed
(and not statisically variable). If the resistivity of the metal varies from place to place, i.e. it is
not homogeneous, then there is statistical variability of the resistivity depending on the section
of metal chosen and so both the precision and the accuracy of the resistance calculation would
be poor. You can have a precise answer that is not accurate, but you cannot have an accurate
result that is not precise.

The number of significant digits in a calculation or measurement implies the accuracy and/or
precision of a number. Sometimes the accuracy is explicitly stated, for example 4.01 ± 0.02 m,
but more commonly in engineering the number of significant digits implies the accuracy
and/or precision. Error is taken to be one half of the last significant digit. So 1200 m implies
an accuracy of 0.5 m. While 1.2 km would imply an accuracy of 0.05 km or 20 m. Usually 4 is
enough but there are departures from this.

One common situation is when we are talk about the center frequency of a carrier in a
communication system. That is because we can precisely set the frequency of a carrier and
can put communication bands very close together. For example, if we have frequency bands
that are 25 kHz wide on a carriers near 900 MHz. We would need to indicate the frequency of
the carrier to a fraction of a kilohertz. So there is a significant difference between specifying a
carrier as being at 1.000000 GHz or at 1.000001 GHz. Sometimes however it is not important
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to specify frequency so accurately. In the great majority of situations four digits of accuracy is
enough, in any case it is very difficult to fabricate something with better than 0.1% accuracy.

When using decibels, a logarithmic scale, two digits after the decimal point is the usually
sufficient and required. One digit after the decimal point is not enough accuracy. For example,
0 dB = 100 = 1.000 and 0.1 dB = 100.01 = 1.023. So if there is only one digit after the decimal
point is used then the accuracy implied is 1%. Now 0.01 dB = 100.001 = 1.0023 and so with
two digits after the decimal point the implied accuracy is 0.1% which is about four digits of
precision. With four digits after the decimal digit, 0.0001 dB = 100.00001 = 1.000023. which is
the same as claiming around 6 digits of accuracy. Achieving this is highly unlikely except in
circumstances involving frequency or when circuits are tuned after fabrication.

There are a few exceptions to the accuracy implied by the number of digits used with
decibels. When a number is written as 0 dB or 10 dB, for example, with no digits after
the decimal point, then the implication is that it is exactly 0 dB (= 1.00000000) or 10 dB (=
10.0000000). Another exception is a factor of 2 which in decibels is 3.01 dB. It is common to
write this as 3 dB and when one sees 3 dB then most people automatically recognize this as a
factor of exactly 2. Similarly for 6 dB the implication is that it refers to a factor of exactly 4.

Using more significant digits in a result than is justified can leave an impression of a
lack of understanding, that the result was simply a matter of plugging numbers into a
calculation rather than understanding what was being done. When an engineer presents
results, the observer, usually another engineer, wants to develop trust for the engineering
process. Engineering is pragmatic and abstractions are made, you always want to create an
impression that you are in control and know what you are doing. Sure interim results can have
many significant digits of accuracy but final results should have reasonable accuracy.

Standard Temperatures

Table 2-4: Temperature constants.

Description Value In Terms of Fundamental Units

Absolute zero tempera-
ture

0 K Fundamental unit = −273.15◦C

Room temperature 290–298 K 19–25◦C, generally used as an imprecise measure-
ment implying that properties are unchanged over
a few degrees variation.

Standard temperature 290 K In microwave engineering [29], different in other
disciplines.

Available noise of a re-
sistor at room tempera-
ture

−174 dBm/Hz. (e.g., in 2 Hz bandwidth the
available noise of a resistor at room temperature is
−171 dBm). (At 290 K the available noise power is
−173.97 dBm/Hz, at 293 K it is −173.93 dBm/Hz,
at 298 K it is −173.86 dBm/Hz.)
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2.A.2 Greek Alphabet and Additional Characters

Greek alphabet
Name Upper- Lower-

case case
alpha A α
beta B β
gamma Γ γ
delta ∆ δ
epsilon E ǫ
zeta Z ζ
eta H η
theta Θ θ
iota I ι
kappa K κ
lambda Λ λ
mu M µ

Greek alphabet
Name Upper- Lower-

case case
nu N ν
xi Ξ ξ
omicron O o
pi Π π
rho P ρ
sigma Σ σ
tau T τ
upsilon Υ υ
phi Φ φ
chi X χ
psi Ψ ψ
omega Ω ω

Additional characters
nabla ∇
cross ×
times ×
varepsilon ε
varphi ϕ
varpi ̟
varrho ̺
varsigma ς
vartheta ϑ
aleph ℵ

2.A.3 Conductors, Dielectrics, and Magnetic Materials

Electrical and thermal properties of RF and microwave materials are given in the tables below.
A parameter listed as a range indicates that the parameter depend on the formulation of the
alloy. ⊥ indicates the property in the direction perpendicular to the crystal axis. // indicates the
property in the direction parallel to the crystal axis.

Material data from several sources including the Standard Reference Data database of the
U.S. National Institute of Standards and Technology [26], the CODATA databases of the
International Council for Science, Committee on Data for Science and Technology [27], and
references [30–33]. Electrical and especially thermal properties are functions of temperature;
properties at temperatures other than 300 K should be researched.

Table 2-5:
Relative
permeability
of metals.

Material Relative
permeability µr

Aluminum 1.00000065
Cobalt 60
Copper 0.999 994
Ferrite (NiZn) 16–640
Gold 0.999 998
Iron 5 000–6 000
Lead 0.999 983
Magnesium 1.000 006 93
Manganese 1.000 125
Mumetal 20 000–1000 000

Material Relative
permeability µr

Nickel 50–600
Palladium 1.000 8
Permalloy 45 2 500
Platinum 1.000 265
Silver 0.99999981
Steel 100–40 000
Superconductors 0
Supermalloy 100 000
Tungsten 1.000 068
Wood (dry) 0.99999942

Some calculations require the use of volumetric heat capacity, cv obtained from

cv = cpρ (2.276)

but ensure the use of SI units, i.e. convert the denisty ρ to kg ·m−3.
The electrical resistivities listed in Table 2-8 for single-element metals are those of single-

crystal metals. The resistivity of the best fabricated metal with multiple crystal grains tends to
be up to 5% above that of a single-crystal. Poorly fabricated metals can have a resistivity twice
as high.
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Table 2-6: Electrical properties of dielectrics and nonconductors.

Material Resistivity Relative Loss tangent
(MΩ·m permittivity (tan δ

ρ, at 300 K) (εr at 1 GHz) at 1 GHz)

Air (dry, sea level) 4× 107 1.000 5 0.000
Alumina

99.5% > 106 9.8 0.000 1–0.000 2
96% > 106 9.0 0.000 6
85% > 106 8.5 0.001 5

Aluminum nitride 106 8.9 0.001
Bakelite 1–100 4.74 0.022
Beryllium oxide (toxic) > 108 6.7 0.004
Diamond 105–1010 5.68 < 0.000 1
Ferrite (MnZn) 0.1–10 Ω·m 13–16 0.000 4
Ferrite (NiZn) 0.1–12.4 13–16 0.000 4
FR-4 circuit board 8× 105 4.3–4.5 0.01
GaAs 1.0 12.85 0.000 6
InP Up to 0.001 12.4 0.001
Glass 2× 108 4–7 0.002
Mica 2× 105 5.4 0.000 6
Mylar 1010 3.2 0.005
Paper, white 3.5× 106 3 0.008
Polyethylene > 107 2.26 0.000 2
Polyimide 1010 3.2 0.005
Polypropylene > 107 2.25 0.000 3
Quartz (fused) 7.5× 1011 3.8 0.000 75
Sapphire
// > 106 11.6 0.000 04–0.000 07
⊥ > 106 9.4 0.000 04–0.000 07
Polycrystalline > 106 10.13 0.000 04–0.000 07

Silicon (undoped)
Low resistivity (used in CMOS) 50 µΩ·m 11.68 0.005
High resistivity 300 mΩ·m 11.68 0.005
Carbide (SiC) 100 10.8 0.002
Dioxide (SiO2) 5.8× 107 3.7–4.1 0.001
Nitride (Si3N4) 107 7.5 0.001
Poly 0.1–10 kΩ·m 11.7 0.005

Teflon (PTFE) 1010 2.1 0.000 3
Vacuum ∞ 1 0
Water

Distilled 182 80 0.1
Ice (273 K) 1 4.2 0.05

Wood (dry oak) 3× 1011 1.5–4 0.01
Zirconia (variable) 104 28 0.000 9
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Table 2-7: Thermal properties of dielectrics and nonconductors.

Material Thermal Specific heat Density, Speed of
conductivity, k capacity, cp ρ sound, cs
(W·m−1 ·K−1) (kJ·kg−1 ·K−1) (g·cm−3) (m·s−1)

(at 300 K) (at 25◦C) (at 25◦C) (at 25◦C)

Air (dry, sea level) 0.026 1.005 0.0018 343
Alumina (Al2O3) 9900–10520

100% 30 0.78 3.8
99.5% 26.9–30 0.78 3.8
96% 24.7 0.78 3.8
85% 16 0.92 3.5

Aluminum nitride 285 0.74 3.28 11000
Bakelite (wood filler) 0.2–1.4 1.38 1.25–1.36
Beryllium oxide (toxic) 64–210 1.75 (@0◦C) 1.85–2.85
Diamond 1 000–2 000 0.52–0.63 3.50–3.53 12000
Ferrite (MnZn) 3.5–5 0.7–0.8 4.9
Ferrite (NiZn) 3.5–5 0.75 4.5
FR-4 circuit board 0.16–0.3 0.6 1.3–1.8
Graphite 25–470 0.71–0.83 1.3–2.27 1200
GaAs 50–59 0.37 5.32 4730
InP 68 0.31 4.81
Glass 0.8–1.2 0.5–0.84 2.0–8.0 3950–5640
Mica 260–750 0.5 0.72
Mylar (polyethylene- 0.08 1.19 1.4 1900–2430
terephthalate)
Paper (white bond) 40–90 1.4 0.72
Polyethylene 0.42–0.51 2.3–2.9 2.30 1900–2430
Polyimide 0.12 1.09–1.15 1.43
Polypropylene 0.35–0.40 1.7–2.0 0.855 2740
Quartz (fused) 1.30–1.44 0.67–0.74 2.2 5800
Sapphire 11100
// 35 0.74–0.78 4.05
⊥ 32 0.74–0.78 4.05
Polycrystalline 31–33 0.74–0.78 3.97–4.05

Silicon (undoped)
low resistivity (CMOS) 149 0.705 2.34 8433
high resistivity 149 0.705 2.34 8433
carbide (SiC) 350–490 0.75 2.55 13060
dioxide (SiO2) 1.4 1.0 2.27–2.63
nitride (Si3N4) 28 0.711 3.44 11000
polysilicon 12.5–157 0.71–0.75 2.2–2.3

Teflon (PTFE) 0.20–0.25 0.97 2.1–2.2 1400
Vacuum 0 0 0
Water

Distilled 580 4.18 0.997 1480
Ice (at 273 K) 2.22 2.05 0.917 4000

Wood (dry oak) 170 2 0.6–0.9 3960
Zirconia (variable) 1.7–2.2 0.40–0.50 5.6–6.1
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Table 2-8: Thermal and electrical properties of conductors.

Conductors
Material Electrical Thermal Specific heat Density, Thermal Speed of

resistivity, conduct- capacity, cp ρ coefficient sound, cs
ρ (nΩ·m) ivity, k (W· (kJ·kg−1 (g·cm−3) of resistance (m·s−1)

m−1 ·K−1) ·K−1) (K−1)
(at 20 ◦C) (at 300 K) (at 25◦C) (at 25◦C) (at 20◦C) (at 20◦C)

Aluminum 26.50 237 0.897 2.70 0.004308 6420
Brass Variable 120 0.38 8.4–8.7 0.0015 3500–4700
Bronze Variable 110 0.38 7.4–8.9
Chromium 125 93.9 0.450 7.15 5490
Constantan 500 19.5 0.39 8.9 ±0.00003
Copper 16.78 401 0.39 8.94 0.004041 3560–4700
Gold 22.14 318 0.129 19.30 0.003715 3240
Graphite
// c-axis 1 200 1 950 0.71 2.09–2.23 -0.0002
⊥ c-axis 41 000 5.7 0.71 2.09–2.23 -0.0002

Iridium 47.1 147 0.131 22.6
Iron (cast,hard) 96.1 80.2 0.449 7.87 0.005671 5600–5900
Lead 208 35.3 0.127 11.3 1160–2200
Manganin 430–480 22 0.406 8.4 ±0.000015
Mercury 961 8.34 0.139 13.53 0.0089
Nickel 69.3 90.9 0.445 8.90 0.0058–0.0064 5600
NiChrome 1 100 11.3 0.432 8.40 0.00017
Palladium 105.4 71.8 0.244 12.0 3070
Platinum 105 71.6 0.133 21.5 0.0037–0.0038 3300
Silver 15.87 429 0.235 10.49 0.003819 3600–3650
Solder
tin-lead Pb, Sn 17.2 34 0.167 8.89
50% Pb
lead-free 170 53.5 0.23 7.25

77.2% Sn,
2.8% Ag,
20% In

Steel, stainless 720 16 0.483 7.48–8.00 5740–5790
Steel, carbon

(standard) 208 46 0.49 7.85 0.003–0.006 4880–5050
Tantalum 133 57.5 0.14 16.69 0.0038
Tin 115 66.8 0.227 7.27 3300
Titanium 4 200 21.9 0.522 4.51 6070–6100
Tungsten 52.8 173 0.132 19.3 0.004403 5200
Zinc 59.0 116 0.388 7.14 0.0037–0.0038 4200



CHAPTER 3

Planar Transmission Lines

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.2 Substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.3 Planar Transmission Line Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.4 Modeling of Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

3.5 Microstrip Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.6 Microstrip Design Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3.7 Stripline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.8 Co-Planar Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

3.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

3.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

3.1 Introduction

The majority of transmission lines used in high-speed digital, RF, and
microwave circuits are planar, as these can be defined using masks,
photoresist, and etching of metal sheets. The most common planar
transmission line is the microstrip line shown in Figure 3-1 and in cross
section in Figure 3-2. This cross section is typical of what would be found
on a semiconductor or printed wiring board (PWB), which is also called
a printed circuit board (PCB). Current flows in both the top and bottom
conductor, but in opposite directions. The physics is such that if there is a
signal current on the top conductor, there must be a return signal current,
which will tend to be as close to the signal current as possible to minimize
stored energy. The provision of a signal return path close to the signal path is
important in maintaining the integrity of (i.e., a predictable signal waveform
on) an interconnect.

Figure 3-1: Microstrip transmis-
sion line.
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Figure 3-2: Cross-sectional view of a microstrip
line showing electric and magnetic field lines and
current flow. The electric and magnetic fields are
in two mediums—the dielectric and air. If the line
is homogeneous (the same dielectric everywhere)
the electric and magnetic fields are only in the
transverse plane, a field configuration known as the
transverse electromagnetic mode (TEM).

Figure 3-3: Representations of a shorted microstrip
line with a short (or via) at port 2: (a) three-
dimensional (3D) view indicating via; (b) side view;
(c) top view with via indicated by X; (d) schematic
representation of transmission line; (e) alternative
schematic representation; and (f) representation as a
circuit element.

In the microstrip line, electric field lines start on one of the conductors and
finish on the other and are located almost entirely in the plane transverse
to the long length of the line. The magnetic field is also mostly confined
to the transverse plane, and so this line is referred to as a transverse
electromagnetic (TEM) line. Integrating the electric field along a path gives
the voltage. Since the voltage between the top and bottom conductors is more
or less the same everywhere, longer E field lines correspond to lower levels
of E field. The strength of the E field is also indicated by the density of the
E field lines. This is a drawing convention for both electric and magnetic
fields. A further comment is warranted for this line. This line is more
accurately called a quasi-TEM line, as the longitudinal fields, particularly
in the air region, are not negligible. The relative level of the longitudinal
fields increases with frequency, but below about 10 GHz and for typical
dimensions used, the line is still essentially TEM. In Figure 3-2 current flows
in the strip and a return current flows in what is normally regarded as the
ground conductor. Both the signal and return currents induce a magnetic
field and the closed path integral of the magnetic field is equal to the current
enclosed by the path.

Various schematic representations of a microstrip line are used. Consider
the representations in Figure 3-3 of a length of microstrip line shorted by
a via at the end denoted by “2” (specifically the “2” refers to Port 2).
The views in Figure 3-3(a and b) provide perspectives. The representations
shown in Figure 3-3(d–f) are symbols used in circuit diagrams with the one
used depending on the number of microstrip lines in a circuit diagram.
If a circuit diagram has many transmission line elements, then the simple
representation of Figure 3-3(f) is most common. If there are few transmission
line elements, then the representation of Figure 3-3(d) is most common.

3.2 Substrates

Planar transmission line design involves choosing both the transmission line
structure to use and the substrate. In this section the electrical properties of
materials will be discussed and then substrates commonly used with planar
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interconnects will be considered.

3.2.1 Dielectric Effect

The presence of material between the conductors alters the electrical
characteristics of the interconnect. With a dielectric, the application of an
electric field moves the centers of positive and negative charge at the atomic
and molecular level. Moving the charge centers changes the amount of
energy stored in the electric field—a process akin to storing energy in a
stretched spring. The extra energy storage property is described by the
relative permittivity, εr, which is the ratio of the permittivity of the material
to that of free space:

εr = ε/ε0. (3.1)

The relative permittivities of materials commonly used with interconnects
range from 2.08 for TeflonTM, used in high-performance PCBs and coaxial
cables, to 11.9 for silicon (Si), to 3.8–4.2 for silicon dioxide (SiO2), and 12.4 for
gallium arsenide (GaAs).

When the fields are in more than one medium (a nonhomogeneous
transmission line), as for the microstrip line, the effective relative
permittivity, εr,e (or usually just εe = εr,e), is used. The characteristics of
the nonhomogeneous line are then more or less the same as for the same
structure with a uniform dielectric of permittivity, εeff = εeε0. The εeff

changes with frequency as the proportion of energy stored in the different
regions changes. This effect is called dispersion and causes a pulse to spread
out as the different frequency components of the pulse want to travel at
different speeds.

3.2.2 Dielectric Loss Tangent, tan δ

Loss in a dielectric comes from two sources: (a) dielectric damping (also
called dielectric relaxation) and (b) conduction losses in the dielectric.
Dielectric damping originates from the movement of charge centers resulting
in mechanical distortion of the dielectric lattice. An alternating electric field
results in vibrational (or phonon) energy in the dielectric, thus energy is lost
from the electric field. It is easy to see that this loss increases linearly with
frequency and is zero at DC. Because of this, in the frequency domain loss
is described by incorporating an imaginary term in the permittivity. So now
the permittivity of a dielectric becomes

ε = εrε0 = ε′ − ε′′ = ε0 (ε
′
r − ε′′r ) . (3.2)

If there is no dielectric damping loss, ε′′ = 0. The other type of loss that
occurs in the dielectric is due to the movement of charge carriers in the
dielectric. The ability to move charges is described by the conductivity, σ,
and the loss due to current conduction is independent of frequency. So the
energy lost in the dielectric is proportional to ωε′′ + σ and the energy stored
in the electric field is proportional to ωε′. Thus a loss tangent is introduced:

tan δ =
ωε′′ + σ

ωε′
. (3.3)
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Also the relative permittivity can be redefined as

εr = ε′r − 

(

ε′′r +
σ

ωε0

)

. (3.4)

With the exception of silicon, the loss tangent is very small for dielectrics that
are useful at RF and microwave frequencies and so most of the time

|εr| ≈ ε′r, (3.5)

and this is what is quoted as the permittivity of a material. Thus

εr = ε′r −  (ε′′r + σ/(ωε0)) ≈ ε′r (1−  tan δ) . (3.6)

3.2.3 Magnetic Material Effect

A similar effect on energy storage in the magnetic field occurs for a few
materials. The magnetic properties of materials are due to the magnetic
dipole moments that result from alignment of electron spins—an intrinsic
property of electrons. In most materials the electron spins occur in pairs
with opposite signs, with the result that there is no net magnetic moment.
However, in magnetic materials, some of the electron spins are not canceled
and there is a net magnetic moment. This net magnetic moment aligns itself
with an applied H field and so provides a mechanism for additional storage
of magnetic energy. The relative permeability, µr, describes this effect and

µ = µrµ0. (3.7)

Most materials have µr = 1. One notable exception is nickel, which has a
high permeability, is a very convenient processing material, and is often used
in electronic packaging for its desirable processing properties.

As with dielectrics, the effect of loss in a magnetic material can be
described by its complex permeability:

µ = µ′ − µ′′. (3.8)

Lossy magnetic effects are due to the movement of magnetic dipoles, which
creates vibrations in a material and hence loss.

3.2.4 Substrates for Planar Transmission Lines

The properties of a number of common substrate materials are given in Table
3-1; more are given in Appendix 2.A. Crystal substrates such as sapphire,
quartz, and semiconductors (Si, GaAs, and InP) have very good dimensional
tolerances and uniformity of electrical properties. Many other substrates
have high surface roughness and electrical properties that can vary. For
example, FR4 is the most common type of printed circuit board substrate
and is a weave of fiberglass embedded in resin. So the material is not uniform
and in the assembly of a multilayer circuit board layers of FR4 are pressed
together and the resin flows so that there is an unpredictable localized
variation in the proportion of resin and glass. High-performance FR4 for
microwave applications has a fine weave.
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Material 104 tan δ
(at 10
GHz)

εr

Air (dry) ≈ 0 1
Alumina, 99.5% 1–2 10.1

Sapphire 0.4–0.7 9.4, 11.6

Glass, typical 20 5
Polyimide 50 3.2

Quartz (fused) 1 3.8

FR4 circuit board 100 4.3–4.5
RT-duroid 5880 5–15 2.16–2.24

RT-duroid 6010 10–60 10.2–10.7
AT-1000 20 10.0–13.0

Si (high resistivity) 10–100 11.9

GaAs 6 12.85
InP 10 12.4

SiO2 (on-chip) — 4.0–4.2

LTCC (typical, green tape(TM) 951) 15 7.8

Table 3-1: Properties of common
substrate materials. The dielec-
tric loss tangent is scaled. For ex-
ample, for glass, tan δ is typically
0.002.

(a) Microstrip (b) Stripline

Figure 3-4: Planar transmission lines.

3.3 Planar Transmission Line Structures

Planar transmission lines are the most common transmission lines for high-
speed digital, RF, and microwave circuits. Two planar transmission line
structures are shown in Figure 3-4. The reason these are so popular is that
they can be mass produced. For the microstrip line in Figure 3-4(a) the
fabrication process begins with a dielectric sheet with solid metal layers
on the top and bottom. One of these is covered with a photosensitive
material, called a photoresist, exposed to a prepared pattern that defines
the interconnect line network, then the photoresist is developed and the
unexposed (or exposed, depending on whether the photoresist is positive
or negative) metal on one side is etched away. The stripline in Figure 3-4(b)
is fabricated similarly to microstrip but followed by one more step in which
a dielectric sheet with a ground plane only is bonded on top.

There are two major categories of planar transmission lines that can
be sorted according to the uniformity of the medium surrounding the
transmission line conductors. When the embedding medium is uniform the
transmission line structures are referred to as homogeneous. If there are two
or more regions with different permittivity the transmission line is called
inhomogeneous. The most important planar transmission line structures
are shown in Figure 3-5. With the homogeneous lines virtually all of the
fields are in the plane transverse to the direction of propagation (i.e., the
longitudinal direction). Transmission lines where the longitudinal fields are
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Figure 3-5: Cross sections of
several homogeneous and inho-
mogeneous planar transmission
line structures.

Inhomogeneous Homogeneous

(a) Microstrip (d) Stripline

(b) Coplanar waveguide (CPW) (e) Embedded differential line

(c) Differential line

almost insignificant are referred to as supporting a TEM mode, and they are
called TEM lines.

The most important inhomogeneous lines are shown in Figure 3-5(a–c).
The main difference between the two sets of configurations (homogeneous
and inhomogeneous) is the frequency-dependent variation of the EM field
distributions with inhomogeneous lines. With inhomogeneous lines, the EM
fields are not confined entirely to the transverse plane even if the conductors
are perfect. However, they are largely confined to the transverse plane and
so these lines are called quasi-TEM lines. The inhomogeneous lines are
simpler to make. Each transmission line structure comprises a combination
of metal (shown as dense black) and dielectric (indicated by the shaded
region and having permittivity ε). It is common not to separately designate
the permeability, µ, of the materials because, except for magnetic materials,
µ = µ0. The region with permittivity ε0 is air. In most cases the dielectric

principally supports the metal pattern, acting as a substrate, and clearly
influences the wave propagation. The actual choice of structure depends on
several factors, including operating frequency and the type of substrate and
metallization system available.

3.3.1 Microstrip

Microstrip (Figure 3-5(a)) is the simplest structure to fabricate beginningMicrowave circuits
on compound semi-
conductor substrates
(e.g. GaAs) are
called monolithic

microwave integrated

circuits (MMICs).
Microwave circuits
on silicon (Si) semi-
conductor substrates
are called radio fre-

quency integrated

circuits (RFICs)
Microwave integrated
circuits (MICs) are
also called hybrid
MICs.

with a thin dielectric substrate with metal on both sides. One metal
sheet is kept as the electrical ground plane while the other is patterned
using photolithography. The metal is chemically etched to form a
microstrip transmission network. Although microstrip has a very simple
geometric structure, the EM fields involved are complex and cannot
be determined analytically. However, simple approaches to the field
calculations combined with frequency-dependent expressions yield quite
accurate designs. Microwave integrated circuits (MICs) using microstrip
can be designed for frequencies up to several tens of gigahertz. At higher
frequencies, particularly into the millimeter wavelength ranges (above
30 GHz), losses (including radiation) increase significantly, the transmission
line characteristics vary greatly with frequency (called frequency dispersion),
the field directions cannot be confined to the transverse plane, and
fabrication tolerances become exceedingly difficult to meet as the required
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substrate thickness becomes very thin. With monolithic ICs, fabrication
tolerances are much finer than with hybrid MICs and the options available
for both microstrip and other transmission structures are extended.

3.3.2 Coplanar Waveguide

Coplanar waveguide (CPW) (Figure 3-5(b)) [1] supports a quasi-TEM mode
of propagation with the active metallization and the ground planes on the
same side of the substrate. Each “side-plane” conductor is grounded and
the center strip carries the signal, thus much less field enters the substrate
when compared with microstrip. In conventional CPW the ground planes
extend indefinitely, but in finite ground CPW (FGCPW), the extent of
the grounds is limited. It is important to connect the ground strips every
tenth of a wavelength or so. This is done using wire bonds, via structures,
or in integrated circuit form using air bridges. CPW does a good job of
suppressing radiation, it has low frequency dispersion, and is preferred
to microstrip for large spatially distributed circuits at frequencies above
20 GHz or so. It does have drawbacks, including the increased area required
(compared with microstrip) and the need to use ground straps.

3.3.3 Coplanar Strip and Differential Line

This simple transmission structure (Figure 3-5(c)) is formed by two
conductors in the same plane. As with the embedded differential line, the
possible existence of ground planes is incidental and ideally these should
not influence the field pattern. In one realization, one of the conductors
is grounded, and this form is called coplanar stripline or coplanar strip
(CPS) [2–12]. In this configuration, CPS is used as an area-efficient variation
of CPW. When neither of the conductors is grounded and the line is driven
differentially, the interconnect is called a differential line. A differential line
is used extensively with RFICs and in critical nets in high-speed digital
ICs. The two forms have essentially identical electrical characteristics, with
differences resulting from interaction with other metallic structures such as
ground planes.

Silicon-based RFICs generally use differential signaling for analog signals
to overcome the problem of field coupling in high-density circuits and
problems due to the finite conductivity of the silicon substrate that results
in high levels of circuit noise in the substrate. The currents on each of
the differential signal paths balance each other and thus each provides the
signal return path for the other. This design practice effectively eliminates
RF currents that would occur on ground conductors.

3.3.4 Stripline

Stripline (Figure 3-5(d)) is a symmetrical structure somewhat like a coaxial
line completely flattened out so that the center conductor is a rectangular
metal strip and the outer grounded metal is an extended rectangular box. The
entire structure is 100% filled with dielectric, and therefore transmission is
TEM and completely dependent upon the relative permittivity, εr. Therefore
the wavelength is simply the free-space value divided by the square root of
εr. Stripline is fabricated similarly to microstrip, but now a substrate with a
ground plane backing is placed on top.
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Figure 3-6: A microstrip line
modeled as a zero-thickness
microstrip line. Also shown
is a more accurate alternative
simplified structure.

3.3.5 Embedded Differential Line

This simple transmission structure (Figure 3-5(e)) is formed by having just
two conductors embedded in a substrate with no specific ground plane.
In this structure the possible existence of ground planes is incidental, and
ideally these should not influence the field pattern. Essentially the substrate
acts as a mechanical supporting element and a quasi-TEM mode forms the
main propagating field distribution.

3.4 Modeling of Transmission Lines

Describing the signal on a line in terms of E and H requires a description
of the E and H fields in the transverse plane. This can be quite difficult. It
is fortunate that current and voltage descriptions can be successfully used
to describe the state of a transmission line at a particular position along
the line. This is an approximation and the designer needs to be aware of
situations where this breaks down. Such extraordinary effects are left to the
next chapter. Once the transmission line descriptions have been simplified to
current and voltage, R, L, G, and C models of the line can be developed. A
range of models are used for transmission lines depending on the accuracy
required and the frequency of operation.

Uniform interconnects (with regular cross section) can most accurately be
modeled using EM modeling software. Most commonly a specialized type
of software called 2 1

2D EM is used, which only considers current flowing
in the horizontal plane or in the vertical direction. A consequence is that
planar interconnects are modeled as having zero thickness, as shown in
Figure 3-6. This is reasonable for microwave interconnects, as the thickness
of a planar strip is usually much less than the width of the interconnect.
Many analytic formulas have also been derived for the characteristics of
uniform interconnects. These formulas are important in arriving at synthesis
formulas that can be used in design (i.e., arriving at the physical dimensions
of an interconnect structure from its required electrical specifications). Just
as importantly, the formulas provide insight into the effects of materials and
geometry.

Simplification of the geometry of the type illustrated in Figure 3-6 for
microstrip can lead to appreciable errors in some situations. More elaborate
computer programs that capture the true geometry must still simplify the
real situation. An example is that it is not possible to account for density
variations of the dielectric. Consequently characterization of many RF and
microwave structures requires measurements to “calibrate” simulations.
Unfortunately it is also difficult to make measurements at microwave
frequencies. Thus one of the paradigms in RF circuit engineering is requiring
intuition, measurements, and simulations to develop self-consistent models
of transmission lines and distributed elements.
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3.5 Microstrip Transmission Lines

Transmission lines with conductors embedded in an inhomogeneous The original analysis
of microstrip was
based on the un-
folding of a coaxial
line [13].

dielectric medium cannot support a pure TEM mode. This is the case even if
the conductors are lossless. The most important member of this class is the
microstrip transmission line (Figure 3-5(c)). Part of the field is in the air and
part in the dielectric between the strip conductor and the ground. In most
practical cases, the dielectric substrate is electrically thin, that is, h ≪ λ. Then
the transverse field is dominant and the fields are called quasi-TEM.

3.5.1 Microstrip Line in the Quasi-TEM Approximation

In this section a number of relations are developed based on the principle
that the phase velocity of an EM wave in an air-only homogeneous
transmission with a TEM field line is just c. It is also shown that the static
solutions for the transverse electric field alone can be used to calculate the
characteristics of a transmission line. The procedure described is used in
many EM computer programs to calculate the characteristics of transmission
lines.

As a first step, the potential of the conductor strip is set to V0 and Laplace’s
equation is solved using an EM simulator for the electrostatic potential
everywhere in the dielectric. Then the per unit length (p.u.l.) electric charge,
Q, on the conductor is determined. Using this in the following relation gives
the line capacitance:

C =
Q

V0
.

In the next step, the process is repeated with εr = 1 to determine Cair (the
capacitance of the line without a dielectric).

If the microstrip line is now an air-filled lossless TEM structure,

vp,air = c =
1

LCair
(3.9) and so L =

1

c2Cair
. (3.10)

L is not affected by the dielectric properties of the medium.1 L calculated
above is the desired p.u.l. inductance of the line with the dielectric as well as
in free space. Once L and C have been found, the characteristic impedance
can be found using

Z0 =

√

L

C
, (3.11) rewritten as Z0 =

1

c

1√
C Cair

, (3.12)

and the phase velocity is

vp =
1√
LC

= c

√

Cair

C
. (3.13)

Now the field is distributed in the inhomogeneous medium and in free space,
as shown in Figure 3-7(a). So the effective relative permittivity, εe, of the
equivalent homogeneous microstrip line (see Figure 3-7(b)) is defined by

√
εe =

c

vp
. (3.14)

1 The assumption that L is not affected by the dielectric is a good approximation. However,
there is a small discrepancy as a change in the electric field orientation affects the magnetic
field, but there is little additional magnetic energy storage.
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(a) (b)

Figure 3-7: Microstrip /ink.sh micr (a) cross section; and (b) approximate equivalent structure
where the strip is embedded in a dielectric of semi-infinite extent with effective relative
permittivity εe.

Combining Equations (3.13) and (3.14), the effective relative permittivity
(usually just the term effective permittivity is used) is obtained:

εe =
C

Cair
. (3.15)

The effective permittivity can be interpreted as the permittivity of a
homogeneous medium that replaces the air and the dielectric regions of the
microstrip, as shown in Figure 3-7. Since some of the field is in the dielectric
and some is in air, the effective relative permittivity must satisfy

1 < εe < εr. (3.16)

However, the minimum εe will be greater than 1 as electrical energy will be
distributed in air and dielectric. The wavelength on a transmission line, the
guide wavelength λg , is related to the free space wavelength by λg = λ0/

√
εe.

EXAMPLE 3.1 Microstrip Calculations

A microstrip line has a characteristic impedance Z0 of 50 Ω derived from reflection coefficient
measurements and an effective permittivity, εe, of 7 derived from measurement of phase
velocity. What is the line’s per-unit-length inductance, L, and capacitance, C?

Solution: The key equations are Z0 =
√

L/C , εe = C/Cair, and for the air-filled microstrip
line (with a TEM mode) vp = 1/

√
LCair = c. Also assume that µr = 1 which is the default if

not specified otherwise and also that L does not change if only the dielectric is changed. Thus

Cair =
C

εe
and then L =

εe
c2C

so that Z0 =

√

L

C
=

√
εe

cC
, that is C =

√
εe

cZ0
.

So C =
√
7/(2.998 · 108 × 50) = 1.765 · 10−10 = 176.5pF/m and L = Z2

0C = 441.3 nH/m.

3.5.2 Input Impedance of a Shorted Microstrip Line Modeled
using a Field Solver

In this example a shorted microstrip line is examined with the aid of
a microwave computer-aided design tool. The specific tool used here
is National Instruments AWR Design Environment (AWRDE), but most
microwave analysis tools will provide the same insight. The project file for
the AWR Design Environment is RFDesign Shorted Microstrip Line.emp.
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(a)

(b) (c)

Figure 3-8: Microstrip line layout: (a) microstrip schematic; (b) stack-up of materials with
material 1 being the substrate, material 2 being the metal of the strip, and Material 3 being
vacuum; and (c) simulation layout. Dimensions are w = 500 µm, ℓ = 1 cm. The metal is t = 6 µm
thick gold (conductivity σ = 42.6 × 106 S/m) and the alumina substrate height is h = 600 µm
with relative permittivity εr = 9.8 and loss tangent 0.001. The size of the simulation box is defined
by W = 6 mm, L = 12 mm, and box height H = 2.61 mm.

The schematic of the microstrip line is shown in Figure 3-8(a). This is what
the microstrip looks like from above, with the black region indicating metal
and the white cross indicating a via that connects the strip to the ground
plane. The distance from the start of the line to the wall of the via is ℓ. The
via has a finite length and it is important to take the length of the line up to
the wall that terminates the propagating electric and magnetic fields of the
microstrip line and not to the center point of the via. While vias are typically
cylinders, and so there is not an electric wall across the microstrip, the part of
the wall of the via that first encounters the EM fields guided by the microstrip
line is a good approximation.

To perform an EM analysis of this line it is necessary to define an enclosure
with the cross section shown in Figure 3-8(b) and the top view shown in
Figure 3-8(c). The enclosure sets up the walls that terminate the EM field
lines. Here the enclosure is a metal box length L = 12 mm and width
W = 6 mm. The height of the enclosure depends on the thicknesses assigned
to the three materials that comprise the microstrip environment (see Figure
3-8(b)). The enclosure here is a metal box, but options are usually provided
to define walls as electric or magnetic walls, and in addition the top walls
of the box can be defined as absorbing walls. An absorbing or free-space
wall presents an approximation to the free-space conditions. In this example
six electric walls are used, with the side walls and top wall spaced a good
distance from the line so that the fields are not perturbed by the presence of
the side walls.

There are two main types of frequency-domain EM solvers used in
microwave engineering. One type uses the finite element method (FEM),
which solves for the fields at every grid point in a three-dimensional volume.
This can provide a wealth of information and handle a broad range of
microwave structures. However, it is very slow and runs into memory
problems for all but the simplest structures. The other type of solver is called
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Figure 3-9: Magnitude and phase of the
input impedance, Z1, of the microstrip
line in Figure 3-8.

a two-and-a-half dimensional (or 2 1
2D) field solver. This type of solver uses

what is called the method of moments to solve for the charges on the surfaces
of metals. Fields are not found at every point in space and so a 2 1

2D field
solver is much faster than a 3D solver. The type of solver that will be used
here is a 2 1

2D field solver available in the AWRDE environment and also
used in the Sonnet simulations used elsewhere in this book. The restriction
that comes with using a 2 1

2D field solver is that the conductors and dielectrics
must be arranged in layers, as shown in Figure 3-8(b). Metals are treated as
infinitely thin and, in some tools, dielectrics can be arranged as blocks, but
still following the layering protocol.

The layout in the horizontal x-y plane in Figure 3-8(c) is very close to
the schematic view shown in Figure 3-8(a). Port 1 (the only port) of the
microstrip line is shown on the left in Figure 3-8(a) and in Figure 3-8(c) it
is embedded in the left electric wall. As was mentioned, a 2 1

2D field solver
finds the charges on the metal. A grid of cells is established and most often
the grid is a regular rectangular mesh and curves and oblique angles can only
be approximated. Even when more sophisticated meshes are used, a curved
shape is approximated by straight lines. In Figure 3-8(c) the via is inserted as
a rectangular cuboid. Another restriction of 2 1

2D field solvers is that currents
must flow either in the x-y plane or in the vertical (z) direction. So as long as
the via has a small (relative to a wavelength) dimension in the z direction and
the x-y dimensions of the via are small, this is a small restriction in exchange
for a simulation that can be thousands of times faster than full 3D methods.

The dimensions of the microstrip were chosen for a characteristic
impedance of 50 Ω yielding w = 500 µm for the alumina dielectric with
relative permittivity εr = 9.8 and height h = 600 µm. Also ℓ = 1 cm. Often
it is necessary to include realistic loss for the materials to obtain physically
meaningful results. Here the metal of the line and of the bottom wall is gold
with conductivity σ = 42.6 × 106 S/m and the loss tangent of the alumina
is 0.001. The strip has a thickness t = 6 µm. The metal strip is simulated
as though it was infinitely thin, but the thickness is used in calculating
the resistance of the strip. The dielectric above the strip is free space with
permittivity ε0 and with a thickness of 2 mm. So the height of the box
H = h+ t+ 2 mm = 2.610 mm.

The input impedance, Zin, of the shorted microstrip line is shown in
Figure 3-9. The plots show the magnitude and phase of the input impedance.
The phase is mostly +90◦ or −90◦, indicating that Zin is mostly reactive.
At low frequencies near 0 GHz, the input impedance is inductive since
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Figure 3-10: Magnitude and phase of
the input reflection coefficient, Γ, of
the microstrip line in Figure 3-8 but
now with a high loss substrate with
tan δ = 0.1.

the phase is approximately +90◦. Zin increases as would be expected from
the approximate model of a shorted line. At 3 GHz, Zin changes from
inductive to capacitive going through a near-open circuit. The transition is
not instantaneous, as the line is lossy. Zin continues to cycle as the excitation
frequency increases.

It is interesting to view what happens when the loss is greatly increased.
Here this is done by increasing the loss tangent of the dielectric, tan δ, to
0.1. This is much higher than that of any useful substrate. The reflection
coefficient of the high loss line is shown in Figure 3-10. At very low
frequencies |Γ| ≈ 0 dB, i.e., |Γ| ≈ 1. The phase of Γ ≈ 180◦ so that Γ ≈ −1 (i.e.,
a short circuit). As frequency increases |Γ| decreases because of increasing
dielectric loss and the phase of Γ monotonically decreases as the line becomes
electrically longer.

3.5.3 Effective Permittivity and Characteristic Impedance

This section presents formulas for the effective permittivity and characteris-
tic impedance of a microstrip line. These formulas are fits to the results of
detailed EM simulations. Also, the form of the equations is based on good
physical understanding. First, assume that the thickness, t, is zero. This is
not a bad approximation, as t ≪ w, h for most microwave circuits.

Hammerstad and others provide well-accepted formulas for calculating
the effective permittivity and characteristic impedance of microstrip lines
[14–16]. Given εr, w, and h, the effective relative permittivity is Mostly the term

“effective permit-

tivity” is used to
mean effective relative
permittivity (check
the magnitude).

εe =
εr + 1

2
+

εr − 1

2

(

1 +
10h

w

)−a·b

, (3.17)

where a(u)|u=w/h = 1 +
1

49
ln

[

u4 + {u/52}2
u4 + 0.432

]

+
1

18.7
ln

[

1 +
( u

18.1

)3
]

(3.18)

and b(εr) = 0.564

[

εr − 0.9

εr + 3

]0.053

. (3.19)

Take some time to interpret Equation (3.17), the formula for effective
relative permittivity. If εr = 1, then εe = (1 + 1)/2 + 0 = 1, as expected.
If εr is not that of air, then εe will be between 1 and εr, dependent on the
geometry of the line, or more specifically, the ratio w/h. For a very wide line,
w/h ≫ 1, εe = (εr + 1)/2 + (εr − 1)/2 = εr, corresponding to the EM energy
being confined to the dielectric. For a thin line w/h ≪ 1, εe = (εr + 1)/2, the
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average of the dielectric and air permittivities.
The characteristic impedance is given by

Z0 =
Z01√
εe

, (3.20)

where the characteristic impedance of the microstrip line in free space is

Z01 = Z0|(εr=1) = 60 ln





F1h

w
+

�

1 +

�

2h

w

�2


 (3.21)

and F1 = 6 + (2π − 6) exp
�

− (30.666h/w)
0.7528

�

. (3.22)

The accuracy of Equation (3.17) is better than 0.2% for 0.01 ≤ w/h ≤ 100 and
1 ≤ εr ≤ 128. Also, the accuracy of Equation (3.21) is better than 0.1% for
w/h < 1000. Note that Z0 has a maximum value when w is small.

Now consider the special case where w is vanishingly small. Then εe has
its minimum value:

εe =
1
2 (εr + 1). (3.23)

This leads to an approximate (and convenient) form of Equation (3.17):

εe =
(εr + 1)

2
+

(εr − 1)

2

1
�

1 + 12h/w
. (3.24)

This approximation has its greatest error of 1% for low and high εr and
narrow lines, w/h ≪ 1. Again, Equation (3.20) is used to calculate the
characteristic impedance. A comparison of the line characteristics using the
more precise formula for εe (Equation (3.17)) and the slightly less accurate fit
(Equation (3.24)) is given in Table 3-2.

The more exact analysis, represented by Equation (3.17), was used to
develop Table 3-3, which can be used in the design of microstrip on a silicon
dioxide (SiO2) substrate and on an FR4 printed circuit board that both have
a relative permittivity of 4, on alumina with a permittivity of 10, on a silicon
(Si) substrate with a relative permittivity of 11.9, and on a gallium arsenide
(GaAs) substrate with a relative permittivity of 12.85.

EXAMPLE 3.2 Microstrip Calculations

The strip of a microstrip line has a width of 600 µm and is fabricated on a lossless substrate
that is 635 µm thick and has a relative permittivity of 4.1.

(a) What is the effective relative permittivity?
(b) What is the characteristic impedance?
(c) What is the propagation constant at 5 GHz ignoring any losses?

Solution:

Use the formulas for effective permittivity, character-
istic impedance, and attenuation constant from Sec-
tion 3.5.3 with w = 600 µm ; h = 635 µm ; εr = 4.1;
w/h = 600/635 = 0.945.
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εr w/h εe Z0 εe Z0
Eq. (3.17), 0.2% Eq. (3.24), 1%

1 0.01 1 401.1 1 401.1
1 0.1 1 262.9 1 262.9
1 1 1 126.5 1 126.5
1 10 1 29.04 1 29.04
1 100 1 3.61 1 3.61
2 0.01 1.525 322.5 1.514 325.9
2 0.1 1.565 210.0 1.545 211.5
2 1 1.645 98.64 1.639 98.83
2 10 1.848 21.36 1.837 21.43
2 100 1.969 2.58 1.972 2.58

10 0.01 5.683 165.8 5.630 169.0
10 0.1 6.016 107.0 5.909 108.2
10 1 6.705 48.86 6.748 48.70
10 10 8.556 9.93 8.534 9.94
10 100 9.707 1.16 9.752 1.16
20 0.01 10.88 119.6 10.77 122.2
20 0.1 11.57 77.14 11.36 78.00

20 1 13.01 35.07 13.13 34.91
20 10 16.93 7.06 16.91 7.06
20 100 19.38 0.821 19.48 0.819
128 0.01 66.90 48.15 66.30 49.25
128 0.1 71.51 31.02 70.27 31.37
128 1 81.12 14.05 82.11 13.96
128 10 71.51 2.80 70.27 2.80
128 100 123.8 0.325 124.5 0.324

Table 3-2: Comparison of two fitted equations for
the effective relative permittivity and characteristic
impedance of a microstrip line. Equation (3.17) has
an accuracy of better than 0.2% and Equation (3.24)
has an accuracy of better than 1%.
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= 0.541.

From Equation (3.17), εe = 2.967.
(b) In free space,

Z0|air = 60 ln


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F1 · h
w

+

�

1 +

�

2h

w

�2


 ,

where F1 = 6 + (2π − 6) exp
�

− (30.666h/ω)
0.7528

�

, Z0 = Z0|air /
√
εe

Z0|air = 129.7 Ω and Z0 = Z0|air/
√
εe = 75.3 Ω.

(c) f = 5 GHz, ω = 2πf , γ = ω
√
µ0ε0εe = 180.5/ m.
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Table 3-3: Microstrip line normalized width u (= w/h) and effective permittivity, εe, for specified
characteristic impedance Z0. Data derived from the analysis in Section 3.5.3.
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Table 3-3 continued.
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Figure 3-11: Dependence of the q factor
of a microstrip line at 1 GHz for
various permittivities and aspect (w/h)
ratios. (Data obtained from EM field
simulations using Sonnet.)

3.5.4 Filling Factor

Defining a filling factor, q, provides useful insight into the distribution of
energy in an inhomogeneous transmission line. The effective microstrip per-
mittivity is2

εe = 1 + q(εr − 1), (3.25)

where for a microstrip line q has the bounds

1
2 ≤ q ≤ 1. (3.26)

The useful aspect of q is that it is almost independent of εr. A q factor
of 1 would indicate that all of the fields are in the dielectric region. The
dependence of the q of a microstrip line at 1 GHz for various permittivities
and aspect (w/h) ratios is shown in Figure 3-11. The properties of a microstrip
line, and uniform transmission lines in general, can be described very well
by considering the geometric filling factor, q, and the dielectric permittivity
separately. Fitting of the microstrip data yields a formula for q in terms of the
geometry parameters [19]:

q = 1
2

(

1 +
1

√

1 + 12h/w

)

. (3.27)

3.5.5 Microstrip Resistance

R for a microstrip line is the sum of the resistance of the strip and the
resistance of the ground plane:

R = Rstrip +Rground (3.28)

(with SI units of Ω/m). At low frequencies the current is uniformly
distributed in the strip and so

Rstrip =
ρ

wt
=

Rs

w
, (3.29)

2 The effective permittivity in Equation (3.25) is the upper bound on the permittivity of mixtures
[17] and is known as the Maxwell Garnett mixing rule [18].
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where ρ (with units of Ωm) is the resistivity of the strip metal, Rs = ρ/t (with
units of Ω but referred to as Ω/sq, ohms per square) is the sheet resistance
(also called the surface resistance) of the strip, t is the thickness of the strip,
and w is the width of the strip. The sheet resistance is used to indicate the
resistance of a sheet of conductor without needing to factor in the thickness
t in calculations.

At DC the current is distributed in the ground plane over the full width of
the ground. At quite low frequencies this transitions so that the current is not
uniformly distributed in the ground plane and the resistance of the ground
plane is approximated as [19]

Rground =
Rsg

w

w/h

w/h+ 5.8 + 0.03h/w
, for 0.1 ≤ w/h ≤ 10, (3.30)

where the sheet resistance of the ground plane is Rsg . The transition
frequency from DC to the low-frequency approximation above has been
found to be 1.3 MHz for a microstrip with w = 200 µm, h = 100 µm, εr = 4,
and a ground plane width of 2 mm (i.e., a very wide ground) [20]. So at
RF and microwave frequencies Equation (3.30) should be used as the low-
frequency value of Rground. Both Rstrip and Rground will increase at higher
frequencies as then the charges rearrange at much higher frequencies. This
will be considered in the next chapter.

Finally, the attenuation due to the conductor loss, αc, from Equation
(2.149), is R/2Z0 and so

αc =
Rstrip +Rground

2Z0
. (3.31)

EXAMPLE 3.3 Microstrip Attenuation

If the strip in Example 3.2 has a resistance of 1 Ω/cm and the ground plane resistance can be
ignored, what is the attenuation constant at 5 GHz?

Solution:

For a low-loss line, α = R/(2Z0) (since there is no
dielectric loss),R = 1Ω/cm, Z0 = 75.3 Ω, and so, using
Equation (2.149),

α = 0.664 Np/m.

3.5.6 Microstrip Conductance

For a microstrip line, an estimate of G is [19]

G =
εe − 1

εr − 1
ω(tan δ)εrCair, (3.32)

where tan δ is the loss tangent of the microstrip substrate and ω is the radian
frequency. So from Equations (2.148), (3.12), and (3.32),

αd =
GZ0

2
= 1

2

εe − 1

εr − 1
ω(tan δ) εrCair

1

c
√
CCair

. (3.33)



150 STEER MICROWAVE AND RF DESIGN: TRANSMISSION LINES

Or, using Equation (3.15), this can be written as

αd =
ω

c
(tan δ)

εr(εe − 1)

2
√
εe(εr − 1)

Np/m. (3.34)

This formula can be used with any TEM transmission line, that is, any
transmission line in which the fields are perpendicular to the direction of
propagation.

EXAMPLE 3.4 Microstrip “Rule-Of-Thumb”

A rule of thumb is a guideline that is not intended to be accurate but can be easily
applied. The accurate formulas for the characteristic impedance and effective permittivity of
a microstrip line, Equations (3.20)–(3.24), indicate an underlying trend. The very approximate
‘rule of thumb,’ for characteristic impedance of a microstrip line is

Z0,ROT =
k√
ǫr

√

h

w
. (3.35)

where k is a constant which is established for a reference line. Taking the reference as
εr = 10 and w/h = 0.954 then from Tables 3-2 and 3-3, Z0,REF = 50 Ω. For this reference
k = 154.4 Ω. The following table indicates the accuracy of this rule of thumb.

εr w/h actual approximate error
Z0 (Ω) Z0,ROT (Ω)

10 1 48.86 48.8 1%
2 1 98.64 109 11%
20 1 35.07 34.5 2%
4 0.849 80 83.8 5%
10 0.288 80 91.0 14%

11.9 0.221 80 95.2 19%

εr w/h actual approximate error
Z0 (Ω) Z0,ROT (Ω)

4 2.056 50 53.8 8%
10 0.954 50 50.0 0%

11.9 0.800 50 50.0 0%
4 4.364 30 37.0 23%

10 2.355 30 31.8 6%
11.9 2.067 30 31.1 4%

Thus the trends are correctly described. Even the worst case (ε = 4, w/h = 4.364) has an
error of 23% for a factor of 11 parameter change from the reference (ε = 10, w/h = 0.954).

3.6 Microstrip Design Formulas

The formulas developed in Section 3.5.3 enable the electrical characteristics
to be determined given the material properties and the physical dimensions
of a microstrip line. In design, the physical dimensions must be determined
given the desired electrical properties. Several people have developed
procedures that can be used to synthesize microstrip lines [15, 21–24]. This
subject is considered in much more depth in [19], and here just one approach
is reported. The formulas are useful outside the range indicated, but with
reduced accuracy. Again, these formulas are the result of curve fits, but
starting with physically based equation forms.

3.6.1 High Impedance

For narrow strips, that is, when Z0 > (44− 2εr) Ω,

w

h
=

(

expH ′

8
− 1

4 expH ′

)−1

, (3.36)

where H ′ =
Z0

√

2(εr + 1)

119.9
+

1

2

(

εr − 1

εr + 1

)(

ln
π

2
+

1

εr
ln

4

π

)

. (3.37)
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For Z0 > (63− 2εr) Ω, [24]

εe =
εr + 1

2

[

1 +
29.98

Z0

(

2

εr + 1

)1/2 (
εr − 1

εr + 1

)(

ln
π

2
+

1

εr
ln

4

π

)

]2

. (3.38)

The formula for εe is accurate to better than 1% for Z0 > (44 − 2εr) Ω (i.e
w/h < 1.3) for 8 < εr < 12 [24]. Overall the synthesis of w/h has an accuracy
of better than 1%.

3.6.2 Low Impedance

Strips with low Z0 are relatively wide and the formulas below can be used
when Z0 < (44− 2εr) Ω. The cross-sectional geometry is given by

w

h
=

2

π
[(dεr − 1)− ln (2dεr − 1)] +

(εr − 1)

πεr

[

ln (dεr − 1) + 0.293− 0.517

εr

]

,

(3.39)

where dεr =
59.95π2

Z0
√
εr

. (3.40)

For Z0 < (63− 2εr) Ω [24]

εe =
εr

0.96 + εr(0.109− 0.004εr)[log (10 + Z0)− 1]
. (3.41)

The expression for εe is accurate to better than 1% [24] for 8 < εr < 12 and
8 ≤ Z0 ≤ (63− 2εr) Ω.

EXAMPLE 3.5 Microstrip Design

Design a microstrip line to have a characteristic impedance of 75 Ω at 10 GHz. The microstrip
a substrate that is 500 µm thick with a relative permittivity of 5.6. (a) What is the width of
the line? (b) What is the effective permittivity of the line?

Solution:

(a) The high-impedance (or narrow-strip) formula (Equation (3.36)) is to be used for Z0 >
(44− εr) [= (44− 5.6) = 38.4] Ω.
With εr = 5.6 and Z0 = 75 Ω, Equation (3.37) yields H ′ = 2.445. From Equation (3.36),
w/h = 0.704, thus w = w/h× h = 0.704 × 500 µm = 352 µm.

(b) The effective permittivity formula is Equation (3.38), and so εe = 3.82.

3.7 Stripline

A symmetrical stripline is shown in Figure 3-12(a). A stripline resembles
a microstrip line and comprises a center conductor pattern symmetrically
embedded completely within a dielectric, the top and bottom layers of which
are conducting ground planes. The strip of width w is considered to have a
thickness t that is very small so that the strip is a distance h from each of the
ground planes and the ground planes are separated by b = 2h. The strip
is completely surrounded by the dielectric and so this is a homogeneous
medium and there is no need to introduce an effective permittivity.
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Figure 3-12:
Stripline trans-
mission lines. In
the suspended
stripline the
strip is sup-
ported by a
membrane. (a) Stripline (b) Suspended stripline

Figure 3-13: Fringe capacitance at the corners of the strip
in a stripline transmission lines.

3.7.1 Characteristic Impedance of a Stripline

Finite Thickness

The characteristic impedance of a stripline is [25, 26]

Z0 =

�

30π√
εr

�

(1− t/b)

(weff/b) + Cf
, (3.42)

where the effective width of the strip, weff , is obtained from

weff

b
=











w

b
−

�

(0.35− w/b)2

(1 + 12t/b)

�

w

b
< 0.35

w

b

w

b
≥ 0.35

(3.43)

and Cf =
2

π
ln

�

1

1− (t/b)
+ 1

�

− t

πb
ln

�

1

[1− (t/b)]2
− 1

�

. (3.44)

Cf accounts for the fringing capacitance at the edges of the strip and
incorporates the effect of the strip thickness for t ≪ b. The fringing
capacitance per unit length (e.g., F/m) at each corner of the strip is

C ′
f =

ǫ0εrCf

1− t/b
(3.45)

and is shown in Figure 3-13. The accuracy of these formulas is better than 1%
for W/(b− t) > 0.05 and t/b < 0.025.

Zero Thickness

If the strip has zero thickness, the characteristic impedance of stripline is

Z0 =

�

30π√
εr

�

1

(weff/b) + 2 ln 2/π
=

94.25√
εr

1

(weff/b) + 0.441
, (3.46)

where the effective width of the strip, weff , is obtained from

weff

b
=











w

b
−

�

0.35− w

b

�2 w

b
< 0.35

w

b

w

b
≥ 0.35

. (3.47)
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The fringing capacitance per unit length at each corner of the strip is

C′
f =

ǫ0εr2 ln 2

π
= 0.441ǫ0εr. (3.48)

A stripline supports a purely TEM mode and there is no dielectric
dispersion due to an effective permittivity change with frequency. Losses
in a stripline are due to dielectric, conductor, and radiative losses. Radiative
losses are confined to energy lost to excitation of the parallel plate waveguide
mode, but this can be suppressed by shorting the ground planes together at
regular intervals (say every tenth of a wavelength).

Formulas have also been developed for the characteristic impedance of
asymmetrical stripline, that is, when the strip is not centered between the
ground planes [27].

EXAMPLE 3.6 Stripline

A thin strip of a symmetrical stripline has a width of 0.5 mm, is embedded in a
dielectric of relative permittivity 5.6, and is between ground planes separated by
1 mm. What is the characteristic impedance of the stripline?

Solution:

The structure is shown in Figure 3-12(a) with w = 0.5 mm and b = 1 mm. Since the
strip is thin, consider that t = 0. So from Equations (3.43) and (3.44)

weff

b
= 0.5 and Cf = 0.441, (3.49)

and so

Z0 =
94.25√
5.6

1

(0.5 + 0.441)
= 42.77 Ω. (3.50)

3.7.2 Attenuation on a Stripline

For a low-loss stripline with radiation loss suppressed by vias between
the ground planes, the attenuation, α, comprises two parts, the conductive
attenuation, αc, and the dielectric attenuation, αd, so that α = αc + αd. From
Equation (2.149)

αc =
R

2Z0
, (3.51)

where R is the resistance per unit length of the line. R is the sum of the strip
and ground resistances. At low frequencies the resistance of the strip is

Rstrip = Rs/w, (3.52)

where Rs is the sheet resistance of the strip and w is the width of the strip.
The treatment for the ground resistance is similar to that described in Section
3.5.5 for microstrip. At low microwave frequencies

Rground =
1

2

Rsg

w

w/h

w/h+ 5.8 + 0.03h/w
, for 0.1 ≤ w/h ≤ 10, (3.53)
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where the sheet resistance of the ground plane is Rsg . The factor of one-
half arises because there are two grounds and the resistance from each is
in parallel. The effect of the ground on the line resistance is small. Both Rstrip

and Rground will increase at higher frequencies as the charges rearrange at
much higher frequencies. This will be considered in the next chapter.

The formula for the dielectric attenuation comes from Equation (3.34). The
general formula for the attenuation constant due to dielectric loss is, for a
low-loss TEM line,

αd =
ω

c
(tan δ)

εr(εe − 1)

2
√
εe(εr − 1)

Np/m. (3.54)

Since the effective permittivity of a stripline is just the relative permittivity
of the substrate, εe = εr, then Equation (3.54) reduces to

αd =
ω

2c
(tan δ)

√
εr Np/m = 1

2ω
√
µ0ε0εr(tan δ) Np/m. (3.55)

(Note that here ω is the radian frequency and not the width w.)
The suspended stripline structure shown in Figure 3-12(b) has minimal

dielectric and hence minimal dielectric loss. Resonators built using a
suspended stripline have a high Q and this structure can be used to realize
high-performance filters.

EXAMPLE 3.7 Stripline Attenuation

What is the attenuation of a symmetrical stripline at 1 GHz with w = h = 0.5 mm, a
t = 4 µm-thick strip, silver metallization, and an FR-4 substrate. The ground planes
are 4 µm thick. Assume that high frequency effects on line resistance can be ignored.

Solution:

The strip is very thin and the results of Example 3.6 can be used so Z0 = 42.77 Ω.
The resistivity of silver is ρAg = 14.87 nΩ · m and so the sheet resistivity of the
strip, Rs = ρAg/t = (14.87 nΩ · m)/(4 µm) = 3.968 mΩ. From Equation (3.52) the
resistance of the strip is Rstrip = Rs/w = (3.968 mΩ)/(1 mm) = 3.968 Ω/m. The
sheet resistance of the grounds is the same as the strip so Rsg = 3.968 mΩ. From
Equation (3.53) the resistance of the grounds is

Rground = 1
2

Rsg

w

w/h

w/h+ 5.8 + 0.03h/w

= 1
2

(3.968 mΩ)

(1 mm)

1

1 + 5.8 + 0.03
=

3.968 Ω/m

6.83
= 0.581 Ω/m (3.56)

so that the total line resistance R = Rstrip + Rground = 4.549 Ω/m. Thus the
attenuation due to conductor loss is αc = R/(2Z0) = 0.1064 Np/m = 0.924 dB/m.

FR-4 has negligible conductivity and loss in the dielectric is due to dielectric
relaxation. FR-4 has a loss tangent at 1 GHz of 0.01 and a relative dielectric constant
of 4.3. From Equation (3.55)

αd = 1
2ω

√
µ0ε0εr(tan δ) Np/m. = 0.2172 Np/m = 1.886 dB/m. (3.57)

The total attenuation α = αc + αd = (0.924 + 1.886) dB/m = 2.810 dB/m.
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3.7.3 Design Formulas for a Stripline

The synthesis of a symmetrical stripline with a substrate having a relative
permittivity εr and thickness b requires determination of the width of the
strip for a particular characteristic impedance [25]. The width w is obtained
from

w

b
=

{

x for Z0 ≤ 120/
√
εr Ω

0.85−
√
0.6− x for Z0 > 120/

√
εr Ω,

(3.58)

where x =
30π√
εrZ0

− 2 ln 2

π
=

94.25√
εrZ0

− 0.441. (3.59)

3.8 Coplanar Waveguide

Microstrip is the most popular medium for circuit design at frequencies
ranging from several hundred megahertz to tens of gigahertz. However,
the electrical characteristics of a microstrip line are sensitive to variations
of substrate thickness, and radiation from a microstrip line increases when
the substrate is thick. The substrate thickness is not well controlled and can
vary by 1%–5% in many substrate technologies. As a result, the characteristic
impedance will change by about the same amount. This is not acceptable
in many designs where it is desirable that microstrip synthesis be accurate
to 1% or so. The lateral dimensions, however, are well controlled being
photolithographically defined and then etched.

A solution to the problems of microstrip is coplanar waveguide (CPW)
shown in Figure 3-14(a). CPW consists of a central strip flanked by two
metal half-planes that carry the return current. The outer conductors can
be regarded as ground, but they do not need to be explicitly connected
to ground. Provided that the substrate is sufficiently thick, in practice this
means that the substrate thickness is two or three times greater than both
the strip width w and the metal separation s, the electrical characteristics
of CPW are entirely determined by the lateral dimensions, since all of the
metallization is on one layer.

Of course, the infinite half-grounds of CPW cannot be produced so a
more realistic implementation of CPW is finite ground CPW (FGCPW),
shown in Figure 3-14(b), where the signal return conductors are of finite
width. For both the CPW and FGCPW lines, the vitalization and currents

(a) (b)

Figure 3-14: Coplanar waveguide (CPW): (a) conventional; and (b) finite ground CPW (FGCPW).
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are confined to a single layer. However, the following discussion focuses
on the idealized CPW structure in Figure 3-14(a) as this has been studied
extensively. However, the characteristics of FGCPW are very close to those
of CPW if w1 ≥ 3w (see Figure 3-14(b)).

3.8.1 Effective Permittivity and Characteristic Impedance of
CPW

The fields in CPW, and thus the EM energy, are almost equally divided
between air and dielectric, especially when the gap is small relative to the
thickness of the dielectric. The effective relative permittivity of CPW is [28]

εe = εr,e =0.5(εr + 1) {tanh[1.785 log(h/s) + 1.75]

+(ks/h)[0.04− 0.7k + 0.01(1− 0.1εr)(0.25 + k)]} , (3.60)

which is accurate to 1.5% for h/s ≥ 1. In Equation (3.60)

k =
w

w + 2s
. (3.61)

Simply taking the effective permittivity as (εr + 1)/2 is a good starting point
in analysis and design.

The characteristic impedance of CPW is [29]

Z0 =
30π√
εe

K ′(k)

K(k)
, (3.62)

where k′ =
√

(1− k2) and K ′(k) = K(k′). (3.63)

K(k) and K(k′) are elliptic integrals, but the ratio, which is all that is
required, is much simpler [30]:

K(k)

K ′(k)
≈ 1

π
ln

(

2
1 +

√
k

1−
√
k

)

0 ≤ k ≤ 0.707

K ′(k)

K(k)
≈ 1

π
ln

(

2
1 +

√
k′

1−
√
k′

)

0.707 < k ≤ 1

. (3.64)

Note that with CPW, Z0 is determined by the ratio of the center strip width
w to the gap width s. This makes the design of a CPW line with a particular
Z0 non unique because an infinite range of w and s values will result in a
specific Z0 requirement. This provides additional design flexibility.

EXAMPLE 3.8 CPW

A CPW line is fabricated on a 500 µm thick GaAs substrate, has a strip with a width
of 200 µm, and a gap of 200 µm between the strip and the ground planes. The relative
permittivity of the substrate is 12.85 and the strip is 10 µm thick. What is the effective
permittivity and characteristic impedance of the CPW line?

Solution:

The structure is that shown in Figure 3-14(a) with w = 500 µm, s = 200 µm, h = 500 µm,
and t = 10 µm. From Equation (3.61),

k =
w

w + 2s
=

500

500 + 400
= 0.556. (3.65)
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From Equation (3.60),

εe = 0.5(12.85 + 1) {tanh[1.785 log(500/200) + 1.75]

+(0.556 · 200/500)[0.04 − 0.7 · 0.556 + 0.01(1 − 0.1 · 12.85)(0.25 + 0.556)]}
= 6.28. (3.66)

This compares to εe = 6.925 if the permittivities of air and the substrate are averaged.

Several quantities need to be calculated before calculating Z0. Since 0 ≤ k ≤ 0.707,

K(k)

K′(k)
=

1

π
ln

(

2
1 +

√
k

1−
√
k

)

= 0.833. (3.67)

Thus from Equation (3.62),

Z0 =
30π√
εe

K′(k)

K(k)
= 45.1 Ω. (3.68)

3.8.2 Loss of CPW lines

Loss of a CPW line is primarily due to dielectric, radiative, and conductor
losses. Dielectric loss is lower in a CPW line than in a microstrip line as the
electric field lines are evenly divided between the air and dielectric, whereas
with a microstrip line most of the field is concentrated in the dielectric. Also,
radiation loss with CPW is much lower than with microstrip as the fields
lines with a CPW line are much more tightly confined. In practice, when
s/h is near to or greater than 1 the structure partially turns into a microstrip
transmission line and it is of no use as a CPW line. This transfer of energy
into the microstrip mode is another form of loss but can be avoided.

At low frequencies the strip resistance is

Rstrip = Rs/w, (3.69)

where Rs is the sheet resistance of the strip and w is the width of the central
strip. The ground resistance can be ignored as the ground current spreads out
considerably and the resistances of each ground are in parallel, thus further
reducing the ground resistance.

Approximately, the dielectric and conductive components of the attenua-
tion are (if ω, µ0, and ε0 have SI units) [19]

αD = 1
2ω

√
µ0ε0εr tan δ Np/m and αC =

Rstrip

2Z0
Np/m, (3.70)

respectively. So αD is almost entirely due to the choice of substrate material.
In summary, it is necessary to calculate the loss of CPW lines using EM

simulation software to obtain the required accuracy. This is due to the
more tightly confined fields and the greater variation of current densities
compared to microstrip and stripline. A key attribute of CPW is the relative
frequency independence of the effective permittivity, as this leads to almost
dispersion-free transmission of signals. Also, devices can be connected along
the signal path without using vias.

3.8.3 CPW Structures

The various CPW structures shown in Figure 3-15 are used to realize
transmission line elements. The CPW-to-microstrip transition shown in
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(a) Short circuit (b) Impedance step out (c) Right-angled bend

(d) Open circuit (e) Impedance step in (f) Mitered right-angled bend

(g) Gap capacitor (j) Series stub (k) CPW-to-microstrip transition

Figure 3-15: CPW structures.

Figure 3-16: Differential line or coplanar
strips (CPS).

Figure 3-15(k) requires vias to transfer the ground plane from the same
surface as the strip in the CPW line to the second metal plane that forms
the ground of microstrip.

3.8.4 Differential Line and Coplanar Strip

A coplanar strip (CPS) line is shown in Figure 3-16. CPS has only two
conductors separated by a narrow longitudinal slot. It is a balanced
line structure and is occasionally implemented in applications including
radiating elements and transitions. CPS has become important for on-
chip implementations, especially for RFICs and high-speed digital signal
transmission, where it is usually referred to as differential line.

CPS is closely related to CPW, as the signal return path is well defined
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and the electrical characteristics are independent of substrate thickness. CPS
is a good structure to use instead of CPW when space is at a premium.
Differential line is commonly used with RFICs, as the signal path on the IC is
almost always differential since differential circuits on-chip remove many of
the distortion and noise-coupling concerns. CPS suffers from relatively high
radiation losses when realized on low-permittivity substrates. The radiation
also results in substantial interaction and cross talk between adjacent circuits,
although this is lower than with a microstrip line.

3.8.5 Summary

Coplanar waveguide is the transmission medium of choice above 20 GHz
or so, although the threshold for the switch from microstrip to CPW is
higher for on-chip lines. CPW confines the EM fields in a more localized
manner than does microstrip, thus reducing spurious coupling, radiation,
and dispersion. The electrical characteristics of CPW are defined by the
lateral dimensions that can be accurately defined photolithographically. This
is a significant advantage when the thickness of a substrate cannot be
accurately controlled. CPW provides a precisely defined signal return path
and this reduces capacitive coupling of signal lines. CPS lines are also used as
digital interconnect mediums where the desirable attribute is the differential
signaling. Differential lines, having the same structure as CPS, are commonly
used as off-chip transmission lines connecting RFICs.

3.9 Summary

This chapter considered the most important planar transmission lines:
microstrip, CPW and stripline. These lines can be produced using printed
circuit board techniques. At frequencies below 1 GHz, economics require that
standard FR4 circuit boards be used. The weave of a conventional FR4 circuit
board can be a significant fraction of critical transmission line dimensions
and so affect electrical performance. Nonwoven substrates and sometimes
hard substrates such as alumina ceramic, sapphire, or silicon crystal wafers
are often required. These also provide higher-dimensional tolerance than
can be achieved using conventional woven FR4 substrates. In general, once
a design has been optimized in fabrication so that the desired electrical
characteristics are obtained, microwave circuits using planar transmission
lines can be cheaply and repeatably manufactured in volume. This is true
even with ceramic substrates that shrink when they are fired in a process
performed after the transmission lines have been patterned. Microstrip
and CPW are ideal transmission lines enabling surface modification in
design optimization. Buried transmission line mediums such as stripline
are difficult to rework, but of course allow more compact designs and thus
lower unit costs. However, the rework difficulty results in higher design
cost. Stripline does have an advantage over microstrip. Microstrip radiates,
but with the fields confined between ground planes, stripline does not. Also
stripline design enables multilayer circuit boards to be used, and thus results
in smaller overall circuit size, at the price of higher design cost since design
on-the-bench optimization are much more difficult.
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3.11 Exercises

1. At low frequencies a microstrip line has a capac-
itance of 1 nF/m and when the dielectric is re-
placed by air its capacitance is 0.5 nF/m. What
is the phase velocity of signals on the line with
the dielectric substrate in place? Consider that
the relative magnetic permeability is 1.

2. A non-magnetic microstrip line has a capaci-
tance of 100 pF/m and when the dielectric is re-
placed by air it has a capacitance of 25 pF/m.
What is the phase velocity of signals on the line
with the dielectric?

3. At low frequencies a non-magnetic microstrip
transmission line has a capacitance of 10 nF/m
and when the dielectric is replaced by air it has
a capacitance of 2.55 nF/m. What is the effective
permittivity of the microstrip line of signals on
the line with the dielectric substrate in place?

4. A microstrip line on 250 µm thick GaAs has a
minimum and maximum strip widths of 50 µm
and 250 µm respectively. What is the range of
characteristic impedances that can be used in de-
sign?

5. A microstrip line with a substrate having a rel-
ative permittivity of 10 has an effective permit-
tivity of 8. What is the wavelength of a 10 GHz
signal propagating on the microstrip?

6. A microstrip line has a width of 500 µm and a
substrate that is 635 µm thick with a relative per-
mittivity of 20. What is the effective permittivity
of the line?

7. The strip of a microstrip has a width of 250 µm
and is fabricated on a lossless substrate that is
500 µm thick and has a relative permittivity of
2.3. [Parallels Example 3.2]

(a) What is the effective relative permittivity of
the line?

(b) What is the characteristic impedance of the
line?

(c) What is the propagation constant at 3 GHz
ignoring any losses?

(d) If the strip has a resistance of 0.5 Ω/cm and
the ground plane resistance can be ignored,
what is the attenuation constant of the line
at 3 GHz?

8. A microstrip line on a 250 µm-thick silicon sub-
strate has a width of 200 µm. Use Table 3-3.

(a) What is line’s effective permittivity.
(b) What is its characteristic impedance?

9. A 600 µm-wide microstrip line on a 500 µm-
thick alumina substrate. Use Table 3-3.

(a) What is line’s effective permittivity.
(b) What is its characteristic impedance?

10. A microstrip line on a 1 mm-thick FR4 substrate
has a width of 0.497 mm. Use Table 3-3.

(a) What is line’s effective permittivity.
(b) What is its characteristic impedance?

11. Consider a microstrip line on a substrate with
a relative permittivity of 12 and thickness of
1 mm.

(a) What is the minimum effective permittiv-
ity of the microstrip line if there is no limit
on the minimum or maximum width of the
strip?

(b) What is the maximum effective permittiv-
ity of the microstrip line if there is no limit
on the minimum or maximum width of the
strip?

12. A microstrip line has a width of 1 mm and a sub-
strate that is 1 mm thick with a relative permit-
tivity of 20. What is the geometric filling factor
of the line?

13. The substrate of a microstrip line has a relative
permittivity of 16 but the calculated effective
permittivity is 12. What is the filling factor?

14. A microstrip line has a strip width of 250 µm and
a substrate with a relative permittivity of 10 and
a thickness of 125 µm. What is the filling factor?

15. A microstrip line has a strip width of 250 µm and
a substrate with a relative permittivity of 4 and
thickness of 250 µm. Determine the filling factor
and thus the effective relative permittivity of the
line?

16. A microstrip line has a strip with a width of
100 µm and the substrate which is 250 µm thick
and a relative permittivity of 8.

(a) What is the filling factor, q, of the line?
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(b) What is the line’s effective relative permit-
tivity?

(c) What is the characteristic impedance of the
line?

17. An inhomogeneous transmission line is fabri-
cated using a medium with a relative permittiv-
ity of 10 and has an effective permittivity of 7.
What is the fill factor q?

18. A microstrip technology uses a substrate with
a relative permittivity of 10 and thickness of
400 µm. The minimum strip width is 20 µm.
What is the highest characteristic impedance
that can be achieved?

19. A microstrip transmission line has a character-
istic impedance of 75 Ω, a strip resistance of
5 Ω/m, and a ground plane resistance of 5 Ω/m.
The dielectric of the line is lossless.

(a) What is the total resistance of the line in
Ω/m?

(b) What is the attenuation constant in Np/m?
(c) What is the attenuation constant in dB/cm?

20. A microstrip line has a characteristic impedance
of 50 Ω, a strip resistance of 10 Ω/m, and a
ground plane resistance of 3 Ω/m.

(a) What is the total resistance of the line in
Ω/m?

(b) What is the attenuation constant in Np/m?
(c) What is the attenuation constant in dB/cm?

21. A microstrip line has 10 µm-thick gold metal-
lization for both the strip and ground plane. The
strip has a width of 125 µm and the substrate is
125 µm thick.

(a) What is the low frequency resistance (in
Ω/m) of the strip?

(b) What is the low frequency resistance of the
ground plane?

(c) What is the total low frequency resistance of
the microstrip line?

22. A 50 Ω microstrip line has 10 µm-thick gold met-
allization for both the strip and ground plane.
The strip has a width of 250 µm and the lossless
substrate is 250 µm thick.

(a) What is the low frequency resistance (in
Ω/m) of the strip?

(b) What is the low frequency resistance of the
ground plane?

(c) What is the total low frequency resistance of
the microstrip line?

(c) What is the attenuation in dB/m of the line
at low frequencies?

23. A 50 Ω microstrip line with a lossless substrate
has a 0.5 mm-wide strip with a sheet resistance
of 1.5 mΩ and the ground plane resistance can

be ignored. What is the attenuation constant at
1 GHz? [Parallels Example 3.3]

24. A microstrip line operating at 10 GHz has a
substrate with a relative permittivity of 10 and
a loss tangent of 0.005. It has a characteristic
impedance of 50 Ω and an effective permittivity
of 7.

(a) What is the conductance of the line in S/m?
(b) What is the attenuation constant in Np/m?
(c) What is the attenuation constant in dB/cm?

25. A microstrip line has the per unit length pa-
rameters L = 2 nH/m and C = 1 pF/m, also
at 10 GHz the substrate has a conductance G of
0.001 S/m. The substrate loss is solely due to di-
electric relaxation loss and there is no substrate
conductive loss. The resistances of the ground
and strip are zero.

(a) What is G at 1 GHz?
(b) What is the magnitude of the characteristic

impedance at 1 GHz?
(c) What is the dielectric attenuation constant of

the line at 1 GHz in dB/m?

26. A microstrip line has the per unit length pa-
rameters L = 1 nH/m and C = 1 pF/m, also
at 1 GHz the substrate has a conductance G of
0.001 S/m. The substrate loss is solely due to di-
electric relaxation loss and there is no substrate
conductive loss. The resistance of the strip is
0.5 Ω/m and the resistance of the ground plane
is 0.1 Ω/m.

(a) What is the per unit length resistance of the
microstrip line at 1 GHz?

(b) What is the magnitude of the characteristic
impedance at 1 GHz?

(c) What is the conductive attenuation constant
in Np/m?

(d) What is the dielectric attenuation constant of
the line at 1 GHz in dB/m?

27. A microstrip line operating at 2 GHz has per-
fect metallization for both the strip and ground
plane. The strip has a width of 250 µm and the
substrate is 250 µm thick with a relative permit-
tivity of 10 and a loss tangent of 0.001.

(a) What is the filling factor, q, of the line?
(b) What is the line’s effective relative permit-

tivity?
(c) What is the line’s attenuation in Np/m?
(d) What is the line’s attenuation in dB/m?

28. A 50 Ω microstrip line operating at 1 GHz
has perfect metallization for both the strip and
ground plane. The substrate has a relative per-
mittivity of 10 and a loss tangent of 0.001. With-
out the dielectric the line has a capacitance of
100 pF/m.
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(a) What is the line conductance in S/m?
(b) What is the line’s attenuation in Np/m?
(c) What is the line’s attenuation in dB/m?

29. Design a microstrip line having a 50 Ω charac-
teristic impedance. The substrate has a permit-
tivity of 2.3 and is 250 µm thick. The operating
frequency is 18 GHz. You need to determine the
width of the microstrip line.

30. A load has an impedance Z = 75 + 15 Ω.

(a) What is the load reflection coefficient, ΓL,
with reference impedance of 75 Ω?

(b) Design an open-circuited stub at the load
that will make the impedance of the load
plus the stub, call this Z1, be purely real.
Choose a stub characteristic impedance of
75 Ω. At this stage do an electrical design
only. (This requires complete electrical infor-
mation such as the electrical length of the
stub.)

(c) Following on from (b), now design a
quarter-wave transformer between the
source and the stub that will present 50 Ω
at the input. (The design must include the
characteristic impedance of the transmis-
sion line and its electrical length. Thus the
structure is a λ/4 transformer, a stub, and
the load.)

(d) Now convert the electrical specifications of
the design into a physical design at 1 GHz
using microstrip technology with substrate
thickness h = 0.5 mm and relative permit-
tivity εr = 10. You must design the widths
and lengths of the stub and the quarter-
wave transformer.

31. Design a microstrip line to have a characteris-
tic impedance of 65 Ω at 5 GHz. The substrate is
635 µm thick with a relative permittivity of 9.8.
Ignore the thickness of the strip. [Parallels Ex-
ample 3.5]

(a) What is the width of the line?
(b) What is the effective permittivity of the line?

32. Design a microstrip shorted stub at 10 GHz with
the following characteristics:

• Characteristic impedance of 60 Ω.
• A substrate with a relative permittivity of

9.6 and thickness of 500 µm.
• Input impedance of 60 Ω.

(a) What is the width of the microstrip line?
(b) What is the length of the line in centimeters?
(c) What is the effective permittivity of the line?
(d) If the line is one-quarter wavelength longer

than that calculated in (b), what will the in-
put reactance be?

(e) Regardless of your calculations above, what
is the input admittance of a one-quarter
wavelength long shorted stub?

33. Design a microstrip line to have a characteristic
impedance of 20 Ω. The microstrip is to be con-
structed on a substrate that is 1 mm thick with
a relative permittivity of 12. [Parallels Example
3.5]

(a) What is the width of the line? Ignore
the thickness of the strip and frequency-
dependent effects.

(b) What is the effective permittivity of the line?

34. A load has an impedance Z = 75 + 15 Ω.

(a) What is the load reflection coefficient, ΓL, if
the system reference impedance is 75 Ω?

(b) Design a shorted stub at the load that will
make the impedance of the load plus the
stub, call this Z1, be purely real; that is, the
reflection coefficient of the effective load, Γ1,
has zero phase. Choose a stub characteris-
tic impedance of 75 Ω. At this stage do an
electrical design only. ( This require com-
plete electrical information , e.g. the electri-
cal length of the stub.)

(c) Following on from (b), now design a
quarter-wave transformer between the
source and the stub that will present 50 Ω
at the input. (The design must include the
characteristic impedance of the transmis-
sion line and its electrical length. Thus the
structure is a λ/4 transformer, a stub, and
the load.)

(d) Now convert the electrical design into a
physical design at 1 GHz using microstrip
technology with substrate thickness h =
0.5 mm and relative permittivity εr = 10.
You must design the widths and lengths of
the stub and the quarter-wave transformer.

35. The strip of a symmetrical stripline has a width
of 1 mm and the ground planes of the stripline
are separated by 2 mm. The dielectric has a rel-
ative permittivity of 4.2. The strip has negligible
thickness.

(a) What is the effective permittivity of the
stripline?

(b) What is the characteristic impedance of the
stripline at 1 GHz?

36. The strip of a symmetrical stripline has a width
of 500 µm and the ground planes of the stripline
are separated by 1 mm. The dielectric has a rela-
tive permittivity of 10. The strip has a thickness
of 0.1 mm.

(a) What is the effective permittivity of the
stripline?
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(b) What is the characteristic impedance of the
stripline?

(c) What is the total fringing capacitance in
pF/m?

37. The strip of a symmetrical stripline has a width
of 200 µm and the ground planes of the stripline
are separated by 1 mm. The dielectric has a rel-
ative permittivity of 4. The strip has a thickness
of 0.1 mm.

(a) What is the effective permittivity of the
stripline?

(b) What is the characteristic impedance of the
stripline?

(c) What is the total fringing capacitance in
pF/m?

38. The strip of a symmetrical stripline has a width
of 50 µm and the ground planes of the stripline
are separated by 300 µm. The dielectric has a rel-
ative permittivity of 10. The strip has a thickness
of 10 µm. What is the characteristic impedance
of the stripline?

39. The strip of a symmetrical stripline has a width
of 0.25 mm and the ground planes of the
stripline are separated by 1 mm. The dielectric
has a relative permittivity of 80. What is the ef-
fective width of the strip?

40. The strip of a symmetrical stripline has a width
of 100 µm and is embedded in a lossless medium
that is 400 µm thick and has a relative permittiv-
ity of 13, thus the separation, h, from the strip to
each of the ground planes is 200 µm.

(a) Draw the effective waveguide model of a
stripline with magnetic walls and an effec-
tive strip width, weff .

(b) What is the effective relative permittivity of
the stripline waveguide model?

(c) What is weff?

41. A symmetrical stripline has a thin strip with a
width of 200 µm, is embedded in a dielectric of
relative permittivity 12, and is between ground
planes separated by 500 µm. What is Z0 of the
line? [Parallels Example 3.6]

42. At 1 GHz a 60 Ω stripline has the per unit pa-
rameters R = 2 Ω/m and G = 1 mS/m. What is
the attenuation of the line in dB/m?

43. A 50 Ω symmetrical stripline has a 0.5 mm-
wide strip and the ground planes are separated
by 1.2 mm. The strip has a sheet resistance of
1.5 mΩ and each ground plane has a sheet re-
sistance of 1 mΩ. (Ignore high frequency effects
on resistance.) The substrate has a loss tangent
of 0.005 and a relative permittivity of 6. [Paral-
lels Example 3.7]

(a) What is the line’s effective permittivity?
(b) What is its characteristic impedance?
(c) What is the attenuation constant of the line

in dB/m at 2 GHz?

44. The strip of a CPW line has a width w = 400 µm
and separations from the in-plane grounds of
s = 250 µm. The substrate is h = 1000 µm
thick and the thickness of the metal is t = 5 µm.
What is the effective permittivity and character-
istic impedance of the CPW line.

45. A CPW line with a 250 µm thick GaAs sub-
strate, has a width of 125 µm and thickness of
3 µm, and a gap of 125 µm between the strip and
ground planes. [Parallels Example 3.8]

(a) What is the line’s effective permittivity?
(b) is the Z0 of the line?

3.11.1 Exercises by Section
†challenging, ‡very challenging

§3.2 1, 2, 3
§3.5 4, 5, 6†, 7†, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25†, 26†,
27, 28

§3.6 29†, 30†, 31†, 32‡, 33†

§3.7 34‡, 35†, 36†, 37†, 38†, 39†,
40‡, 41†, 42, 43

§3.8 44, 45†

3.11.2 Answers to Selected Exercises

6 12.75
7(c) 84.1 m−1

19(c) 0.579 dB/m
20(a) 13 Ω/m

25(b) 44.72 Ω
31(a) 340 µm
34(b) 100.9◦ for open stub,

10.89◦ for shorted stub

33(b) 9.17
39 245.5 µm

40(c) 969 µm
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4.1 Introduction

Previous chapters discussed the low-frequency operation of transmission
lines. This chapter describes the origins of, particularly of planar lines. Figure
4-1 shows the typical frequency dependence of a line’s RLGC parameters.
The variations of R, L, and C are of most interest, and, except with some
semiconductor substrates, G is usually negligible.

The major limitation on the dimensions and maximum operating
frequency of a transmission line is determined by the origination of
higher-order modes (i.e., orientations of the fields). Different modes on a
transmission line travel at different velocities. Thus the problem is that if
a signal on a line is split between two modes, then the information sent
from one end of the line will reach the other end in two packets arriving
at different times. The two modes have random partitioning of the signal

(a) R (b) L (c) G (d) C

Figure 4-1: Frequency de-
pendence of transmission
line parameters.
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Figure 4-2: Dispersion of a pulse
along a line.

energy and it is the combination that will be detected, and in general the
information will be lost as the two modes combine in an incoherent manner.
Multimoding must always be avoided.

4.2 Frequency-Dependent Characteristics

All interconnects have frequency-dependent behavior. In this section the
origins of the frequency-dependent behavior of a microstrip line are
examined because microstrip has the most significant frequency dependence
among interconnects of general interest. Frequency-dependent behavior
other than multimoding often results in dispersion. The effect can be seen
in Figure 4-2 for a pulse traveling along a line. The pulse spreads out
as the different frequency components travel at different speeds. For a
long line, successive pulses will start merging and the signal will become
unintelligible.

The most important frequency-dependent effects are

• changes of material properties (permittivity, permeability, and conduc-
tivity) with frequency (Section 4.2.1),

• current bunching (discussed in Section 4.2.3),
• skin effect (Sections 4.2.4 and 4.2.5),
• internal conductor inductance variation (Section 4.2.4),
• dielectric dispersion (Section 4.2.6), and
• multimoding (Section 4.4).

While the discussion focuses on microstrip lines, the effects occur with other
planar and nonplanar transmission lines.

4.2.1 Material Dependency

Changes of permittivity, permeability, and conductivity with frequency are
properties of the materials used. Fortunately the materials of interest in
microwave technology have characteristics that are almost independent of
frequency, at least up to 300 GHz or so.

4.2.2 Frequency-Dependent Charge Distribution

Skin effect, current bunching, and internal conductor inductance are all due
to the necessary delay in transferring EM information from one location to
another. This information cannot travel faster than the speed of light in the
medium. In a dielectric material the speed of an EM wave will be slower
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Figure 4-3: Cross-sectional
view of the charge distribution
on an interconnect at different
frequencies. The + and −
indicate charge concentrations
of different polarity and cor-
responding current densities.
There is no current bunching
or skin effect at DC.

than that in free space by a factor of
√
εr, where εr is the relative permittivity

of the material. Thus the speed of an EM wave in microwave dielectrics
is reduced typically by a factor ranging from just over 1 to 300. However,
the velocity in a conductor is extremely low because of high conductivity.
In brief, current bunching is due to changes related to the finite velocity of
information transfer through the dielectric, and skin effect and variations of
internal conductor inductance are due to the very slow speed of information
transfer inside a conductor. As frequency increases, only limited information
to rearrange charges can be sent before the polarity of the signal reverses and
information is sent to reverse the changes. The skin and charge-bunching
effects on a microstrip line are illustrated in cross section in Figure 4-3.

4.2.3 Current Bunching

Consider the charge distribution for a microstrip line shown in the cross-
sectional views in Figure 4-3. The microstrip cross sections shown here are
typical of an interconnect on a printed circuit board or a monolithically
integrated circuit where the top dielectric is a passivation layer. The
thickness of the microstrip is often a significant fraction of its width, although
this is exaggerated in Figure 4-3.

The charge distribution shown in Figure 4-3(a) applies when there is a
positive DC voltage on the strip (the top conductor). In this case there
are positive charges on the top conductor arranged with a fairly uniform
distribution. The individual positive charges (caused by the absence of
balancing electrons exposing positively charged ions) tend to repel each
other, but this has little effect on the charge distribution for practical
conductors with finite conductivity. (If the conductor had zero resistance
then these net charges would be confined to the surface of the conductor.)
The bottom conductor is known as the ground plane and there are balancing
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(a) DC (b) High frequency

Figure 4-4: Current bunching effect in time. Positive and negative charges are shown on the strip
and on the ground plane. The viewpoint is on the ground plane.

negative charges, or a surplus of electrons, so that electric field lines begin
on the positive charges and terminate on the negative charges. The negative
charges on the ground plane are uniformly distributed across the whole of
the ground plane. An important point is that where there are unbalanced
charges there can be current flow. So the charge distribution at DC, shown
in Figure 4-3(a), indicates that for the top conductor, current would flow
uniformly inside the conductors and the return current in the ground plane
would be distributed over the whole of the ground plane.

The charge distribution becomes less uniform as frequency increases
and eventually the signal changes so quickly that information to rearrange
charges on the ground plane is soon (half a period latter) countered by
reverse instructions. Thus the charge distribution depends on how fast the
signal changes. Another way of looking at this effect is to view the charges
on the strip of the microstrip line at one time. This is shown in Figure 4-4
for a DC signal on the line and for a high-frequency signal. The DC situation
is shown in Figure 4-4(a) where there is a uniform distribution of negative
charges on the strip. This uniform distribution (in this case of negative
charges) is seen from the viewpoint shown. The field then induces uniformly
distributed positive charges on the ground plane. At a high frequency the
charges on the strip alternate between negative and positive charges, as
shown in Figure 4-4(b). Now the effective charge on the strip that is “seen”
depends on how far the viewpoint is from the strip. When the viewpoint is
at a large distance, it will seem as though the positive and negative charges
cancel each other out. Thus on the ground plane at a large distance from the
strip there will effectively be very little net charge on the strip. Consequently,
at distance, there will be few matching charges on the ground plane that
match the charges on the strip. Closer into the strip the ground will “see” a
more concentrated charge on the strip and the charges on the ground plane
will correspond more closely to the DC situation.

The electric field lines, which must originate and terminate on charges,
will concentrate in the substrate more closely under the strip as frequency
increases. There will be fewer electric field lines in the air that go out to the
fewer distant charges in the ground plane. The two major effects are that
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the effective permittivity of the microstrip line increases with frequency, and
resistive loss increases as the average current density in the ground, which
corresponds to the net charge density, increases. Thus the line resistance
and capacitance increase with frequency (see Figure 4-1(a) and 4-1(d),
respectively). For the majority of substrates G is due to dielectric relaxation
rather than conduction in the dielectric. As such, G increases linearly with
frequency with a superlinear increase at very high frequencies when the
electric field is more concentrated in the dielectric (see Figure 4-1(c)).

In the frequency domain the current bunching effects are seen in the
higher-frequency views shown in Figures 4-3(b and c). (The concentration
of charges near the surface of the metal is a separate effect known as the
skin effect.) The longitudinal impact of current or charge bunching alone is
illustrated in Figures 4-5, 4-6, and 4-7. These figures present amplitudes of
the current and charge phasors at various frequencies and were calculated
using the Sonnet EM simulator. In interpreting these figures, take into
account the magnitudes of the current and charge distributions as identified
in the captions, as the scales are normalized. An alternative view (or time-
domain view) is the instantaneous snapshot of current and charge shown in
Figure 4-8.

This situation is not just confined to the transverse plane, and regions
further along the interconnect also send instructions. The net effect is
bunching of charges and hence of current on both the ground plane and the
strip.

4.2.4 Skin Effect and Internal Conductor Inductance

At low frequencies, currents are distributed uniformly throughout a
conductor. Thus there are magnetic fields inside the conductor and hence
magnetic energy storage. As a result, there is internal conductor inductance.
Transferring charge to the interior of conductors is particularly slow, and
as the frequency of the signal increases, charges are confined closer to the
surface of the metal. This effect is seen in Figure 4-9 where the current density
inside the strip of a microstrip line is plotted at various frequencies. Thus
time-varying EM fields are not able to penetrate the conductors as much
as frequency increases. This phenomenon is known as the skin effect. With
lower internal currents, the internal conductor inductance reduces and the
total inductance of the line drops [1–4]. Thus the redistribution of the current
results in a change of the inductance with frequency (see Figure 4-1(b)). Only
above a few gigahertz or so can the line inductance be approximated as a
constant for the transverse interconnect dimensions of a micron to several
hundred microns.

The skin effect is characterized by the skin depth, δs, which is the distance
at which the electric field, or equivalently the charge density, reduces to 1/e
of its value at the surface. The skin depth is determined to be

δs = 1/
√

πfµ0σ2. (4.1)

Here f is frequency and σ2 is the conductivity of the conductor. The
conductivity is a measured quantity that is determined by the same physical
phenomenon.1 The permittivity and permeability of metals typically used

1 This phenomenon is described by M. Born and E. Wolf [5]. In a conductor an electric field
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1 GHz

(b) Current on strip (d) Charge on strip

(a) Scale (c) Current on ground (e) Charge on ground

Figure 4-5: Normalized current and charge magnitudes on an alumina microstrip line at 1 GHz
(εr = 10.0): (a) scale; (b) longitudinal current, iz , on the strip (10–26 A/m); (c) on the ground
plane (0–3.2 A/m); (d) charge on the strip (80–400 nC/m2); and (e) on the ground (0–33 nC/m2).
See inside the back cover for a color image.

10 GHz

(b) Current on strip (d) Charge on strip

(a) Scale (c) Current on ground (e) Charge on ground

Figure 4-6: Normalized current and charge magnitudes on an alumina microstrip line at 10 GHz:
(a) scale; (b) longitudinal current, iz , on the strip (10–28 A/m); (c) on the ground plane (0–
4.1 A/m); (d) charge on the strip (114–512 nC/m2); and (e) on the ground (0–39 nC/m2). See
inside the back cover for a color image.

30 GHz

(b) Current on strip (d) Charge on strip

(a) Scale (c) Current on ground (e) Charge on ground

Figure 4-7: Normalized magnitudes of current and charge on an alumina microstrip line at
30 GHz: (a) scale; (b) longitudinal current, iz , on the strip (10–31 A/m); (c) on the ground plane
(0–6 A/m); (d) the charge on the strip (200–575 nC/m2); and (e) on the ground (0–68 nC/m2).
See inside the back cover for a color image.
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Longitudinal current

(b) On strip

Charge

(d) On strip

(a) Scale (c) On ground (e) On ground

Figure 4-8: Normalized in-
stantaneous current and
charge on an alumina mi-
crostrip line at 30 GHz.
Lighter regions have higher
current density in (b) and (c),
and more positive charge in
(d) and (e).

Figure 4-9: Cross sections of the strip of a microstrip line showing the impact of skin effect and
current bunching on current density: (a) at dc (uniform current density); (b) the strip thickness,
t, is equal to the skin depth, δs (i.e. at a low microwave frequency); (c) t = 3δs; (d) t = 5δs (i.e. at
a high microwave frequency); and (e) t = 5δs for a narrow strip. The plots are the result of 3D
simulations of a microstrip line using internal conductor gridding.

for interconnects (e.g., gold, silver, copper, and aluminum) are that of free
space, ε0 and µ0, respectively, as there is no mechanism to store electric
energy (there is no separation of charge centers) and, except for magnetic
materials, no mechanism to store magnetic energy (no unbalanced magnetic
moments).

4.2.5 Skin Effect and Line Resistance

The skin effect is illustrated in Figure 4-3(b) at 1 GHz. The situation is
more extreme as the frequency continues to increase (e.g., to 10 GHz) as in
Figure 4-3(c). There are several important consequences of this. On the top
conductor, as frequency increases, current flow is mostly concentrated near
the surface of the conductors and the effective cross-sectional area of the
conductor, as far as the current is concerned, is less. Thus the resistance of
the top conductor increases. A more dramatic situation exists for the charge
distribution in the ground plane. From the previous discussion of current
bunching it was noted that charge is not uniformly distributed over the
whole of the ground plane, but instead becomes more concentrated under

accelerates free electrons that in turn radiate around the direction of motion. This process is
repeated as the field penetrates the conductor. While the leading edge of the electric field
propagates quickly through the conductor it rapidly diminishes in amplitude. The average
field penetrates very slowly due to the large number of free electrons and multiple scattering
of the field. A rough guide is that the effective velocity at microwave frequencies for transfer
of the bulk of the energy is about c/1000. It is not possible to determine an accurate number.
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the strip as frequency increases. In addition to this, charges and current
are confined to the skin of the ground conductor so that the frequency-
dependent relative change of ground plane resistance with increasing
frequency is greater than that of the strip. On the strip, current bunching
results in charges being concentrated on the edges of the strip. This effect is
more pronounced the higher the permittivity of the substrate.

The skin effect and current bunching result in frequency dependence of
the line resistance, R, with

R(f) =







R(0) f such that t ≤ 3δs

R(0) +Rskin(f) f such that t > 3δs,
(4.2)

where R(0) = Rstrip(0) + Rground(0) is the resistance of the line at low
frequencies (see Equation (3.28)). R(f) describes the frequency-dependent
line resistance that is due to both the skin effect and current bunching.
Approximately,

Rskin(f) = R(0)k
�

f. (4.3)

Here k is a constant, and while Equation (4.3) indicates proportionality to√
f , this is an approximation, but R(f) always increases more slowly than

frequency [4, 6–8]. The dominant breakpoint is indicated in Equation (4.2).
The increased resistance of the strip at high frequencies results from both

current bunching, increasing the current density at the edges of the strip and
reducing it in the middle with respect to the width of the strip, and skin
effect, increasing the current density on the top and bottom surfaces of the
strip and reducing it in the middle with respect to the thickness of the strip
(this is of concern at frequencies where t > 3δs [4, 7]). At low frequencies the
contribution of the ground to the resistance of the line is small, but because
of current bunching the resistance of the ground becomes significant [8] at
higher frequencies. The resistance of the ground further increases because
of the skin effect and at high microwave frequencies the resistance of the
ground can be comparable to that of the strip. Surface roughness of the
metal also affects line resistance [9]. This is easy to imagine if the roughness
is comparable to the skin depth as the current path is increased by the
roughness. Roughness of the metal surface primarily reflects the roughness
of the substrate for hard substrates. With soft substrates the underside of the
metal is intentionally roughened so that the rough needle-like metal surface
penetrates into and anchors to the dielectric when the metal and dielectric are
pressed together. For these reasons it is not possible to develop a simple and
accurate expression for the frequency-dependent resistance of a microstrip
line, and EM simulation is also necessary, but even then roughness cannot
be accounted for. EM simulation is necessary in any case to determine
attenuation due to radiation. It is essential to incorporate measurements into
the design cycle of circuits at high microwave frequencies to account for
effects that cannot be modeled [10, 11]. One observation on the frequency
dependence of resistance is that it is pointless to make the thickness of the
strip or of the ground thicker than three times the skin depth.
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EXAMPLE 4.1 Skin Depth

Determine the skin depth for copper (Cu), silver (Ag), aluminum (Al), gold (Au), and
titanium (Ti) at 100 MHz, 1 GHz, 10 GHz, and 100 GHz.

Solution:

The skin depth is calculated using Equation (4.1) and the conductivity from Appendix 2.A.

Resistivity Conductivity Skin depth, δs (µm)
Metal (nΩ ·m) (MS/m) 100 MHz 1 GHz 10 GHz 100 GHz

Copper (Cu) 16.78 59.60 6.52 2.06 0.652 0.206
Silver (Ag) 15.87 63.01 6.34 2.01 0.634 0.201
Aluminum (Al) 26.50 37.74 8.19 2.59 0.819 0.259
Gold (Ag) 22.14 45.17 7.489 2.37 0.749 0.237
Titanium (Ti) 4200 0.2381 103.1 32.6 10.3 3.26

4.2.6 Dielectric Dispersion

Dispersion is principally the result of the propagation velocity of a sinusoidal
signal being dependent on frequency. For a pulse on the line, dispersion
manifests as the various frequency components of a signal traveling with
different velocities.

The electric field lines shift as a result of the different distributions of
charge, with more of the electric energy being in the dielectric as frequency
increases. Thus the effective permittivity of a microstrip line increases
with increasing frequency. At high frequencies, the fundamental result of
the field rearrangement is that the capacitance of the line increases, but
this change can be quite small—typically less than 10% over the range
of DC to 100 GHz. (This effect is described by the frequency dependence
of the effective permittivity of the transmission line.) To a lesser extent,
dispersion is also the result of other transmission line parameters changing
with frequency, such as an interconnect’s resistance. For an IC where the
interconnects can have very small transverse dimensions (e.g., microns) on
digital ICs, the line resistance is the most significant source of dispersion.
The qualitative effect of dispersion is the same whether it is related to
the resistance (resistance-induced dispersion) or change in the effective
permittivity (dielectric-inhomogeneity-induced dispersion).

Different interconnect technologies have different dispersion characteris-
tics. For example, with a microstrip line the effective permittivity changes
with frequency as the proportion of the EM energy in the air region to that in
the dielectric region changes. Dispersion is reduced if the fields are localized
and cannot change orientation with frequency. This is the case with copla-
nar interconnects—in particular, coplanar waveguide (CPW) and coplanar
strip (CPS) lines. The stripline of Figure 3-5(k) also has low dispersion, as the
fields are confined in one medium and the effective permittivity is just the
permittivity of the medium. Thus interconnect choices can have a significant
effect on the integrity of a signal being transmitted.

As discussed earlier, as the frequency is increased, the fields on a
microstrip line become more concentrated in the region beneath the strip.
Thus there is a frequency-dependent effective microstrip permittivity, εe(f).
This quantity increases with frequency and the wave is progressively slowed
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down. The effective microstrip permittivity is now

εe (f) = {c/ [vp (f)]}2 . (4.4)

Fundamentally, characterizing the dispersion problem then consists of
solving the transmission line fields for the frequency-dependent phase
velocity, vp(f). The limits of εe(f) are readily established; at the low-
frequency extreme it reduces to the static TEM value εe (or εe(0)), while
as frequency is increased indefinitely, εe(f) approaches the substrate
permittivity itself, εr. That is,

εe (f) →
{

εe(0) as f → 0
εr as f → ∞.

(4.5)

Between these limits εe(f) changes smoothly.

4.2.7 Summary

Various transmission line technologies have different frequency dispersion
characteristics. The two most important technologies for microwave circuits
are coaxial lines and microstrip. With both the variation of resistance with
frequency due principally to the skin effect are significant. However this has
little effect on characteristic impedance and effective permittivity with the
dominate effect being increased loss at higher frequencies. With microstrip,
but not with a coaxial line, variations due to changing orientation of the
EM fields is the most significant effect. With increasing frequency the
proportion of signal energy in the air region reduces and the proportion in
the dielectric increases. The overall trend with microstrip is for the fields
to be more concentrated in the dielectric as frequency increases and this
increases a microstrip line’s effective relative permittivity and hence slows
down propagation. The variation of characteristic impedance of microstrip
with frequency is more complex as the increasingly tight transverse rotation,
i.e. curl, of the fields tends to increase characteristic impedance but the
increasing effective permittivity tends to decrease characteristic impedance.
Thus following the initial design of a microstrip circuit, it is important to use
EM simulations to adjust designs to account for dispersion.

4.3 High-Frequency Properties of Microstrip Lines

Here the high-frequency properties of microstrip lines are discussed and
formulas incorporating frequency dependence are presented for effective
permittivity, characteristic impedance, and attenuation loss. The effective
permittivity at DC (as calculated in the previous chapter) is denoted εe(0)
and the characteristic impedance at DC is Z0(0). These are also called the
quasi-static effective permittivity and quasi-static characteristic impedance.
Detailed analysis [12] yields the following formula for the frequency-
dependent effective permittivity of a microstrip line:

εe(f) = εr −
εr − εe(0)

1 + (f/fa)
m , (4.6)
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where

fa =
fb

0.75 +
�

0.75− 0.332 ε−1.73
r

�

(w/h)
(4.7)

fb =
47.746× 106

h
�

εr − εe(0)
tan−1

�

εr

�

εe(0)− 1

εr − εe(0)

�

(4.8)

m =

�

m0mc m0mc ≤ 2.32
2.32 m0mc > 2.32

(4.9)

m0 = 1 +
1

1 +
�

w/h
+ 0.32

�

1 +
�

w/h
�−3

(4.10)

mc =







1 +
1.4

1 + w/h

�

0.15− 0.235e−0.45f/fa
�

, for w/h ≤ 0.7

1, for w/h > 0.7.
(4.11)

SI units are used in these equations. The accuracy of the equations is
better than 0.6% for 0.1 ≤ w/h ≤ 10, 1 ≤ εr ≤ 128, and for any value of h/λ
provided that h < λ/10. The free-space wave-

length is λ0, the
wavelength in the
medium is λ, and the
guide wavelength (the
wavelength on the
line) is λg .

The frequency-dependent characteristic impedance is, with reference to
Equations (3.21) and (3.20),

Z0(f) =
Z01

�

εe(f)
= Z0(0)

�

εe(0)
�

εe(f)
. (4.12)

4.3.1 Frequency-Dependent Loss

The effect of loss on signal transmission is captured by the attenuation
constant, α. There are two primary sources of loss: that resulting from the
dielectric, captured by the dielectric attenuation constant, αd, and that from
the conductor loss, captured by the conductor attenuation constant, αc. Thus

α|dB = αd|dB + αc|dB . (4.13)

When dielectric loss is significant (e.g., the substrate is silicon which has
appreciable conductivity), the previous formula for αd (Equation (3.34))
provides a good estimate for the attenuation when εe is replaced by the
frequency-dependent effective relative permittivity, εe(f).

Frequency-dependent conductor loss, described by the conductor attenu-
ation αc, results from the concentration of current as frequency increases:

αc(f) =
R(f)

2 Z0
, (4.14)

where R(f) is the frequency-dependent line resistance described in Section
4.2.5.

A third source of loss is radiation loss, leading to an attenuation factor, αr.
At the frequencies at which a transmission line is generally used, it is usually
smaller than dielectric and conductor losses. So, in full,

α(f) = αd(f) · αc(f) · αr(f), (4.15)

and in decibels

α(f)|dB = αd(f)|dB + αc(f)|dB + αr(f)|dB . (4.16)
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Figure 4-10: Dependence of Z0 of a microstrip
line at 1 GHz for various permittivities and
aspect (w/h) ratios.

Figure 4-11: Dependence of effective relative
permittivity, εe, of a microstrip line at 1 GHz for
various permittivities and aspect ratios (w/h).

4.3.2 Field Simulations

In this section, results are presented for EM simulations of microstrip lines
with a variety of parameters. These simulations were performed using the
Sonnet EM simulator. Figure 4-10 presents calculations of Z0 for various
aspect ratios (w/h) and substrate permittivities (εr) when there is no loss. The
key information here is that narrow strips and low-permittivity substrates
have high Z0. Conversely, wide strips and high-permittivity substrates have
low Z0. The dependence of permittivity on aspect ratio is shown in Figure 4-
11, where it can be seen that the effective permittivity, εe, increases for wide
strips. This is because more of the EM field is in the substrate.

When loss is incorporated, εe becomes complex and the imaginary
components indicate loss mostly due to conductor loss. Figure 4-12 presents
the frequency dependence of three microstrip lines with different substrates
and aspect ratios. These simulations took into account finite loss in the
conductors and in the dielectric. In Figure 4-12(a) it can be seen that the
effective permittivity, εe, increases with frequency as the fields become
confined more to the substrate. Also, the real part of the characteristic
impedance is plotted with respect to frequency. Up to 20 GHz a drop-off in Z0

is observed as frequency increases. This is due to both reduction of internal
strip and ground inductances as charges move to the skin of the conductor
and also to greater confinement of the EM fields in the dielectric as frequency
increases. It is not long before the characteristic impedance increases. This
effect is not due to the skin effect and current bunching that were previously
described. Rather it is due to other EM effects that are only captured in EM
simulation. It is a result of spatial variations being developed in the fields
(related to the fact that not all parts of the fields are in instantaneous contact).
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(a) w = 240 µm, h = 500 µm

(b) w = 70 µm, and h = 635 µm

(c) w = h = 635 µm

Figure 4-12: Frequency dependence of the real and imaginary parts of εe and Z0 of a gold
microstrip line on alumina with εr(DC).
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4.3.3 Summary

Today’s microwave designer is indeed fortunate that in the 1980s
considerable effort was put into developing frequency-dependent formulas
for effective permittivity and characteristic impedance, Equations (4.6) and
(4.12), and these can still be used. One effect that is not captured by these
formulas is the increased transverse curl of the EM fields with increasing
frequency and this tends to increase the characteristic impedance, e.g. see
Section 4.3.2. But the frequency-dependence of effective relative permittivity
is captured. To incorporate the geometric impact on frequency-dependent
characteristic impedance it is necessary to optimize a design using EM
field simulation following an initial design using the frequency-dependent
formulas.

4.4 Multimoding on Transmission Lines

Multimoding is a phenomenon that affects the integrity of a signal as it
travels on a transmission line. For transmission lines, multimoding occurs
when there are two or more EM field configurations that can support a
propagating wave. Different field configurations travel at different speeds
so that the information traveling in two or modes modes would combine
incoherently and, if the energy in the modes is comparable, it will be
impossible to discern the intended information being sent. It is critical
that the dimensions of transmission line structures be designed to avoid
multimoding. The most common mode on a transmission line is when there
is no, or the minimum possible, variation of the fields in the transverse
direction (perpendicular to the direction of propagation).

The transmission structures of interest here are those that have conductors
that establish boundary conditions to guide a wave along an intended
path. For these lines the lowest-order mode with minimum transverse field
variations is called the TEM mode. Higher-order modes occur when the
fields can vary. From here the discussion necessarily invokes EM theory. If
you need to do this, see Section 1.5, where EM theory is reviewed specifically
with respect to multimoding. One of the important concepts is that electric
and magnetic walls impose boundary conditions on the fields. Electric walls
are conductors, whereas a magnetic wall is formed approximately at the
interface of two regions having different permittivity.

It is the property of EM fields that spatial variations of the fields cannot
occur too quickly. This comes directly from Maxwell’s equations that relate
the spatial derivative (the derivative with respect to distance) of the electric
field to the time derivative of the magnetic field. The same is true for spatial
variation of the magnetic field and time variation of the electric field. How
fast a field varies with time depends on frequency. How fast an EM field
changes spatially, its curl, depends on wavelength relative to geometry and
on boundary conditions. Without electric and magnetic walls establishing
boundary conditions, as in free space, a full wavelength is required to obtain
the lowest-order variation of the fields. With electric or magnetic walls where
the fields can terminate, a smaller distance is sufficient. Between two electric
walls one-half wavelength of distance is required. The same is true for
magnetic walls. With one electric wall and one magnetic wall, a quarter-
wavelength separation of the walls will support a higher-order mode. A



EXTRAORDINARY TRANSMISSION LINE EFFECTS 179

E field H field

Electric wall Normal Parallel
Magnetic wall Parallel Normal

Table 4-1: Properties of the EM fields at
electric and magnetic walls.

(a) (b)

Figure 4-13: Parallel-plate waveguide: (a) three-dimensional view; and (b) cross-sectional
(transverse) view.

general rule for avoiding multimoding is that critical transverse geometries
must be kept to under a fraction of a wavelength (say, < λ/2 or < λ/4).

One type of multimoding has already been described. In the previous
chapter it was seen that the signals on a regular transmission line have two
simple solutions that are interpreted as the forward-traveling and backward-
traveling modes. Each mode is a possible solution of the differential
equations describing the signals. THese are not the modes being referred
to by the term multimoding. The boundary conditions in the longitudinal
direction are established by the source and load impedances, and so the
variation can be any fraction of a wavelength. This section is concerned
with other solutions to the equations describing the fields on a transmission
line structure. In general, the other solutions arise when the transverse
dimensions, such as the distance between the two conductors of a two-
conductor transmission line, permits a variation of the fields.

The boundary conditions established at electric and magnetic walls were
derived in Section 1.8 and are summarized in Table 4-1. Circuit structures
such as transmission lines, substrate thicknesses, and related geometries are
nearly always chosen so that only one solution of Maxwell’s equations is
possible. In particular, if the cross-sectional dimensions of a transmission line
are much less than a wavelength then it will be impossible for the fields to
curl up on themselves and so perhaps there will be only one or, in some cases,
no solutions to Maxwell’s equations.

4.5 Parallel-Plate Waveguide

The parallel-plate waveguide shown in Figure 4-13 is the closest regular
structure to planar transmission lines such as a microstrip line. The aim here
is to develop design guidelines that will enable transmission line structures
to be designed to avoid multimoding.
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(a) TEM mode. (b) TE mode.

Figure 4-14: Parallel-plate waveguide showing electric, E, and magnetic, H , field lines. The
electric (E) and magnetic (H) field lines are shown with the line thickness indicating field
strength. The shading of the E field lines indicates polarity (+ or −) and the arrows indicate
direction (and also polarity). The z direction is into the page.

4.5.1 Electromagnetic Derivation

The development of the wave equations begins with Maxwell’s equations
(Equations (1.1)–(1.4)). A simplification to the equations is to assume a linear,
isotropic, and homogeneous medium, a uniform dielectric, so that ε and µ
are independent of signal level and are independent of the field direction
and position. Thus (in the time domain)

∇× Ē =
∂B̄
∂t

∇× H̄ = J̄ +
∂D̄
∂t

(4.17)

∇ · D̄ = ρV ∇ · B̄ = 0, (4.18)

where ρV is the volume charge density and J̄ is the current density. J̄ and
ρV will be zero except at an electric wall. The above equations do not include
magnetic charge or magnetic current density. These do not actually exist
and so a modified form of Maxwell’s equations incorporating these is not
necessary to solve the fields on a structure.

In the lateral direction, the x direction, the parallel-plate waveguide in
Figure 4-13 extends indefinitely. For this regular structure, and with a few
assumptions, the form of Maxwell’s equations with multidimensional spatial
derivatives can be simplified. One approach to solving differential equations
is to assume a form of the solution and then test to see if it is a valid solution.
The first solution to be considered is called the TEM mode and corresponds
to the minimum possible variation of the fields. Also, it is assumed that the
variation in the z direction is described by the traveling-wave equations. So
the only fields of interest here are E and H in the transverse plane; all that is
seen in Figure 4-13(b). If all the fields are in the xy plane, then it is sufficient
to apply just the boundary conditions that come from the top and bottom
ground planes. At first it appears that there are many possible solutions to
the differential equations. This is simplified by assuming certain variational
properties of the Ex, Ey , Hx, and Hy fields and then seeing if these solutions
can be supported. The simplest solution is when there is no variation in the
fields and then the only possible outcome is that Ex = 0 = Hy . This is the
TEM mode indicated in Figure 4-14(a). At the boundaries, the top and bottom
metal planes, there is a divergence of the electric field, as immediately inside
the (ideal) conductor there is no electric field and immediately outside there
is. This divergence is supported by the surface charge on the ground planes
(see Equation (1.2)).

In Figure 4-14(a), the thickness of the lines indicates relative field strength
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and there is no variation in field strength in either the electric or magnetic
fields shown. The coefficients of the field components are determined by the
boundary conditions. The trial solution used here has Ex = 0 = Hy and Ez =
0 = Hz ; that is, the trial solution has the electric field in the y direction and
the magnetic field is in the x direction. Maxwell’s equations (Equations (4.17)
and (4.18)) become (note that Ē = Ēxx̂+ Ēyŷ + Ēzẑ)

∇× Ēyŷ = −∂B̄xx̂

∂t
∇× H̄xx̂ =

∂D̄yx̂

∂t
+ J̄ (4.19)

∇ · D̄yŷ = ρ ∇ · B̄xx̂ = 0. (4.20)

Expanding the curl, ∇×, and div, ∇·, operators using Equations (1.21) and
(1.22) these become (with D = εE and B = µH)

x̂
∂Ēy
∂z

=
∂B̄xx̂

∂t
=

∂µH̄xx̂

∂t
(4.21)

ŷ
∂H̄x

∂z
=

∂D̄yŷ

∂t
+ J̄ =

∂εĒyŷ
∂t

+ J̄ (4.22)

∂D̄y

∂y
=

∂εĒy
∂y

= ρ (4.23)

∂B̄x

∂x
=

∂µH̄x

∂x
= 0. (4.24)

These equations describe what happens at each point in space.
Equation (4.21) indicates that if there is a time-varying component of

the x-directed B field then there must be a z-varying component of the
Ey field component. This is just part of the wave equation describing a
field propagating in the z direction. Equation (4.22) indicates the same
thing, but now the roles of the electric and magnetic fields are reversed.
Equation (4.21) shows that the y component of the electric field can be
constant between the plates, but at the plates there must be a charge on
the surface of the conductors (see Equation (4.23)), to terminate the electric
field (as indicated by Equation (4.23)), as there is no electric field inside the
conductors. Equation (4.24) indicates that the x component of the magnetic
field cannot vary in the x direction (i.e., Bx and Hx are constant). Thus the
assumption behind the trial solution about the form of this mode is correct.
The electric and magnetic field are uniform in the transverse plane, the xy
plane, and the only variation is in the direction of propagation, the z direction
(but there is no z-directed component of the fields). Thus the test solution
satisfies Maxwell’s equations. This is the TEM mode, as all field components
are in the x and y directions and none are in the z direction. The TEM mode
can be supported at all frequencies in the parallel-plate waveguide.

In exploring the existence of higher-order modes, Maxwell’s equations
need to be simplified further. Putting Equations (4.21)–(4.24) in phasor form,
and considering the source free region between the plates (so J = 0 and
ρ = 0), these become (note that Ex is the phasor of Ex)

∂Ey

∂z
= ωµHx

∂Hx

∂z
= ωεEy (4.25)

∂Ey

∂y
= 0

∂Hx

∂x
= 0 (4.26)
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and the solution becomes

∂2Ey

∂z2
= γ2Ey and

∂2Hx

∂z2
= γ2Hx, (4.27)

where γ = ω
√
µε and there is no variation of the Ey component of the

electric field in the y direction and no variation of the Hx component of the
magnetic field in the x direction.

Another possible set of modes occurs when the electric field is only in the
y direction, but then there must be a variation of the field strength, as shown
in Figure 4-14(b). The simplest variation is when there is a half-sinusoidal
spatial variation of the Ey field component. Applying the methodology
described above, it is found that there must be a component of the magnetic
field in the z direction to support this mode. Hence these modes are called
transverse electric (TE) modes. (Interchanging the roles of the electric and
magnetic fields yields the transverse magnetic (TM) modes where there is
an electric field component in the z direction.) The half-sinusoidal variation
still enables the charge to support the existence of an Ey electric field.

A key result from our previous discussion is that there must be enough
distance for the field to curl and this is related to wavelength, λ. This
transverse electric mode can only exist when h ≥ λ/2. When h is smaller
than one-half wavelength, this mode cannot be supported, and is said to be
cut off. Only the TEM mode can be supported all the way down to DC, so
modes other than TEM have a cutoff frequency, fc, and a cutoff wavelength,
λc. The concept of wavenumber k(= 2π/λ = ω

√
µε) is also used. The

cutoff wavelength, λc, and the cutoff wavenumber, kc, are both related to
the dimension below which a mode cannot “curl” sufficiently to be self-
supporting. For the lowest TE mode, kc = 2π/λc with λc = 2h. In general,
for TE modes, there can be n variations of the electric field, and n indicates
the nth TE mode, denoted as TEn, for which kc,n = nπ/h and λc = 2h/n. The
propagation constant of any mode in a uniform lossless medium (not just in
a parallel-plate waveguide mode) is

β =
√

k2 − k2c . (4.28)

For the TEM mode, kc = 0. High-order modes are described by their own kc.
TM modes are similarly described, and again kc = nπ/h for the TMn

mode. A mode can be supported at any frequency above the cutoff frequency
of the mode, it just cannot be supported at frequencies below the cutoff
frequency as it is not possible for the fields to vary (or curl) below cutoff.

4.5.2 Multimoding and Electric and Magnetic Walls

In the above discussion, the parallel-plate waveguide had two electric
walls—the top and bottom metal walls. Here results will be presented when
magnetic walls are introduced. A magnetic wall can only be approximated,
as magnetic conductors do not exist (since magnetic charges do not exist).
Whereas an electric wall appears as a short circuit, a magnetic wall is an
open circuit. Maxwell’s equations and the electric and magnetic walls estab-
lish the following requirements on the fields:
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Electric wall Perpendicular electric field
Tangential magnetic field

Magnetic wall Perpendicular magnetic field
Tangential electric field

Table 4-2: Requirements imposed on fields by electric and magnetic walls.

The lowest-order modes that can be supported by combinations of electric
and magnetic walls are shown in Figure 4-15. With two electric or two
magnetic walls, a TEM mode (having no field variations in the transverse
plane) can be supported. Of course, there will be variations in the field
components in the direction of propagation. The modes with the simplest
geometric variations in the plane transverse to the direction of propagation
establish the critical wavelength. In Figure 4-15 the distance between the
walls is d. For the case of two like walls (Figures 4-15(a and c)), λc = 2h,
as one-half sinusoidal variation is required. With unlike walls (see Figure
4-15(b)), the varying modes are supported with just one-quarter sinusoidal
variation, and so λc = 4h.

EXAMPLE 4.2 Modes and Electric and Magnetic Walls

A magnetic wall and an electric wall are 1 cm apart and are separated by a lossless material
having εr = 9. What is the cut-off frequency of the lowest-order mode in this system?

Solution:

The EM field established by the electric and magnetic
walls is described in Figure 4-15(b). There is no solution
to the Maxwell’s equations that has no variation of
the EM fields since it is not possible to have a
spatially uniform electric field which is perpendicular
to an electric wall while also being perpendicular to a
parallel magnetic wall. The other solutions of Maxwell’s
equations require that the fields vary spatially, i.e.
curl. Without electric and magnetic walls the minimum
distance over which the EM fields will fold back on to
themselves is a wavelength. With parallel electric and
magnetic wall separated by h the minimum distance
for a solution of Maxwell’s equations is a quarter
wavelength, λ, of the walls as shown on the right in
Figure 4-15(b). That is

h = λ/4 or λ = 4h = 4 cm = λ0/(
√
εtµr). (4.29)

Since the relative permeability
has not been specified assume
that µr = 1 so

λ0 = λ
√
9 = 12 cm = c/f

The cut-off frequency is

f = (2.998 × 108 m/s)/(0.12 m)

= 2.498 GHz (4.30)

4.6 Microstrip Operating Frequency Limitations

Different types of higher-order modes can exist with microstrip and the two
maximum operating frequencies of microstrip lines are (a) the lowest-order
TM mode and (b) the lowest-order transverse microstrip resonance mode.
In practice, multimoding is a problem when two conditions are met. First it
must be possible for higher-order field variations to exist, and second, that
energy can be effectively coupled into the higher-order mode. Generally this
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Figure 4-15: Lowest-
order modes sup-
ported by combina-
tions of electric and
magnetic walls.

requires significant discontinuity on the line or that the phase velocities of
two modes approximately coincide. An early discussion said that the phase
velocities of two modes would be different and this is when the dielectric
is uniform. However, with a nonhomogeneous line like microstrip, there
can be frequencies where the phase velocities of two modes can coincide.
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Since discontinuities are inevitable it is always a good idea to use only the
first consideration. As was noted previously, the modal analysis that was
possible with the parallel-plate waveguide cannot be repeated easily for the
microstrip line because of the irregular cross section, but the phenomena is
very similar. Instead of a TEM mode, there is a quasi-TEM mode and there
are TE and TM modes.

4.6.1 Microstrip Dielectric Mode (Slab Mode)

A dielectric on a ground plane with an air region (of a wavelength or more
above it) can support a TM mode, generally called a microstrip dielectric
mode, substrate mode, microstrip TM mode, or slab mode. The microstrip
dielectric mode is a problem for narrow microstrip lines. Whether this
mode exists in a microstrip environment depends on whether energy can
be coupled from the quasi-TEM mode (which is always generated) of the
microstrip line into the TM dielectric mode. The critical frequency at which
the TM mode becomes important is when there is significant coupling.
Coupling is a problem with a microstrip line having a narrow strip, as the
field orientations of the quasi-TEM mode and the dielectric mode align. Also,
coupling occurs when the phase velocities of the two modes coincide. A
detailed analysis reported in Chapter 11 of [12] and in [13] shows that this
occurs at the first critical frequency,

fc1 =
c tan−1 (εr)√
2πh

√
εr − 1

. (4.31)

At fc1 the dielectric mode will be generated even if there is not a
discontinuity. If there is a discontinuity, say a split of one microstrip line into
two microstrip lines, multimoding will occur when the dielectric mode can
exist. From Figure 4-15(b), the dielectric slab mode can be supported when
h > λg/4, where λg is the wavelength in the dielectric. Now λg = λ0/

√
εr =

c/(f
√
εr), so the second critical frequency is

fc2 =
c

4h
√
εr

. (4.32)

This development assumes that the interface between the dielectric and air
forms a good magnetic wall. With a dielectric having a permittivity of 10,
typical for microwave circuits, the effective value of h would be increased by
up to 10%. However, it is difficult to place an exact value on this.

In summary, fc2 is the lowest frequency at which the dielectric mode will
exist if there is a discontinuity, and fc1 is the lowest frequency at which the
dielectric mode will exist if there is not a discontinuity.

EXAMPLE 4.3 Dielectric Mode

The strip of a microstrip has a width of 1 mm and
is fabricated on a lossless substrate that is 2.5 mm
thick and has a relative permittivity of 9. At what
frequency does the substrate (or slab) mode first
occur?
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Solution:

Two frequencies must be considered. One
that comes from the dimensions of the dielec-
tric slab and the other from considerations of
matching phase velocities. From phase veloc-
ity consideration used in developing Equa-
tion (4.31), the first critical frequency is

fc1 =
c tan−1 (εr)√
2πh

√
εr − 1

= 13.9 GHz.

The other critical frequency is when a

variation of the magnetic or electric field can
be supported between the ground plane and
the approximate magnetic wall supported
by the dielectric/free-space interface. This
is when h = 1

4
λ = λ0/(4

√
9) = 2.5 mm ⇒

λ0 = 3 cm. Thus the second slab mode
critical frequency is

fc2 = 10 GHz.

Since discontinuities cannot be avoided, fc2
is the critical frequency to use.

4.6.2 Higher-Order Microstrip Mode

If the cross-sectional dimensions of a microstrip line are smaller than a
fraction of a wavelength, then the electric and magnetic field lines will
be as shown in Figure 3-2. These field lines have the minimum possible
spatial variation and the fields are almost entirely confined to the transverse
plane; this mode is called the quasi-TEM microstrip mode. However, as the
frequency of the signal on the line increases it is possible for these fields to
have one-quarter or one-half sinusoidal variations. Deriving the frequency
at which a higher-order microstrip mode is supported is involved.

The following is a summary of a more complete discussion on operating
frequency limitations in Section 7.8 of [12]. Some variations of the fields
or modes do not look anything like the field orientations shown in Figure
3-2. However, the variations that are closest to the quasi-TEM mode are
called higher-order microstrip modes and the one that occurs at the lowest
frequency corresponds to a half-sinusoidal variation of the electric field
between the edge of the strip and the ground plane. This path is a little longer
than the path directly from the strip to the ground plane. However, for a wide
strip, most of the EM energy is between the strip and the ground plane (both
of which are electric walls) with approximate magnetic walls on the side of
the strip. The modes are then similar to the parallel-plate waveguide modes
described in Section 1.5. The next highest microstrip mode (or parallel-plate
TE mode) occurs when there can be a half-sinusoidal variation of the electric
field between the strip and the ground plane. This corresponds to Figure 4-
15(a). However, for finite-width strips the first higher-order microstrip mode
occurs at a lower frequency than implied by the parallel-plate waveguide
model. This is because the microstrip fields are not solely confined to the
dielectric region, and in fact the electric field lines do not follow the shortest
distance between the strip and the ground plane. Thus the fields along the
longer paths to the sides of the strip can vary at a lower frequency than on
the direct path. With detailed EM modeling and with experimental support
it has been established that the first higher-order microstrip mode can exist
at frequencies greater than [12]

fHigher−Microstrip =
c

4h
√
εr − 1

. (4.33)

This is, however, only an approximate guide.
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EXAMPLE 4.4 Higher-Order Microstrip Mode

The strip of a microstrip has a width of 1 mm and is fabricated on a lossless substrate that
is 2.5 mm thick and has a relative permittivity of 9. At what frequency does the first higher
microstrip mode first propagate?

Solution:

The higher-order microstrip mode occurs
when a half-wavelength variation of the
electric field between the strip and the
ground plane can be supported. When h =
λ/2 = λ0/(3 · 2) = 2.5 mm; that is, the mode
will occur when λ0 = 15 mm. So

fHigher−Microstrip = 20 GHz.

A better estimate of the frequency where
the higher-order microstrip mode becomes a
problem is given by Equation (4.33):

fHigher−Microstrip=c/(4h
√
εr − 1) =10.6GHz.

So two estimates have been calculated for
the frequency at which the first higher-order
microstrip mode can first exist. The first
estimate is approximate and is based on a
half-wavelength variation of the electric field
confined to the direct path between the strip
and the ground plane. The second estimate is
more accurate as it considers that on the edge
of the strip the fields follow a longer path to
the ground plane. It is the half-wavelength
variation on this longer path that determines
if the higher-order microstrip mode will exist.
Thus the more precise determination yields a
lower critical frequency.

4.6.3 Transverse Microstrip Resonance

For a wide microstrip line, a transverse resonance mode can exist. This is
the mode that occurs when EM energy bounces between the edges of the
strip with the discontinuity at the strip edges forming a weak boundary. This
is illustrated in Figure 4-16, where the microstrip shown in cross section in
Figure 4-16(a) is approximated as a rectangular waveguide in Figure 4-16(b)
with magnetic walls on the sides and an extended electrical wall on the top
surface of the dielectric. Figure 4-16(b) is called the microstrip waveguide
model. The transverse resonance mode corresponds to the lowest-order H
field variation between the magnetic walls. At the cutoff frequency for this
transverse-resonant mode, the equivalent circuit is a resonant transmission
line of length w + 2d, as shown in Figure 4-17, where d = 0.2h accounts for
the microstrip side fringing. A half-wavelength must be supported by the
length w + 2d. Therefore the cutoff half-wavelength is

λc

2
= w + 2d = w + 0.4h, that is,

c

2fc
√
εr

= w + 0.4h. (4.34)

Hence the critical frequency for transverse resonance is

fc,TRAN =
c√

εr (2w + 0.8h)
. (4.35)
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(a)

(b)

Figure 4-16: Approximation of a mi-
crostrip line as a waveguide: (a) cross
section of microstrip; and (b) microstrip
waveguide model having effective width
w + 0.4h with magnetic and electric walls.

Figure 4-17: Transverse resonance: standing wave
(|Ey|) and equivalent transmission line of length
w + 2d, where d = 0.2h.

EXAMPLE 4.5 Transverse Resonance Mode

The strip of a microstrip has a width of 1 mm and
is fabricated on a lossless substrate that is 2.5 mm
thick and has a relative permittivity of 9.
(a) At what frequency does the transverse reso-

nance first occur?
(b) What is the operating frequency range of the

microstrip line?

Solution:

h = 2.5 mm, w = 1 mm , λ = λ0/
√
εr = λ0/3

(a) The magnetic waveguide model of Figure 4-16 can be used in estimating the frequency
at which this occurs. The frequency at which the first transverse resonance mode occurs
is when there is a full half-wavelength variation of the magnetic field between the
magnetic walls, that is, when w + 0.4h = λ/2 = 2 mm:

λ0

3 · 2 = 2 mm ⇒ λ0 = 12 mm, and so fc,TRAN = 25 GHz. (4.36)

(b) All of the critical multimoding frequencies must be considered here and the minimum
taken: for the slab mode, fc1 (Equation (4.6.1)) and fc2 (Equation (4.6.1), see Example
4.3 for the calculation of these); for the higher-order microstrip mode, fHigh−Microstrip

(Equation (4.33), see Example 4.4 for this calculation)); and for the transverse resonance
mode (Equation (4.36), and calculated in this example). So the operating frequency range
is DC to 10 GHz.
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4.6.4 Summary

There are four principal higher-order modes that need to be considered with
microstrip transmission lines:

Mode Critical
frequency

Dielectric (or substrate) mode with no discontinuity Equation (4.31)
Dielectric (or substrate) mode with discontinuity Equation (4.32)
Higher order microstrip mode Equation (4.33)
Transverse resonance mode Equation (4.35)

The lowest frequency determines the upper frequency of transmission line
operation with a single mode.

4.7 High-Frequency Considerations for Coplanar
Waveguide

The field orientation on CPW is little affected when frequency increases and
as such the effective permittivity of CPW has little frequency dependence.
(This is in marked contrast to microstrip. )Thus dielectric-related dispersion
of CPW is minimal and this is one of the main advantages of using CPW over
microstrip. CPW has the frequency-dependent line resistance

R(f) =

{

R(0) f such that t ≤ 3δs

R(0) +Rskin(f) f such that t > 3δs,
(4.37)

where R(0) (= Rstrip(0) + Rground(0)) is the resistance of the line at low
frequencies. R(f) describes the frequency-dependent line resistance, which
is due to both the skin effect and current bunching. Approximately,

Rskin(f) = R(0)k
√

f, (4.38)

where k is a constant. As with microstrip, EM simulations are recommended
to determine line loss. This is necessary in any case to determine attenuation
due to radiation, which can be ignored at low microwave frequencies.

The discussion of multimoding on CPW will consider the finite ground
CPW structure (FGCPW) shown in Figure 4-18. Most of the considerations
pertaining to multimoding on microstrip apply to FGCPW. However, with
CPW the fields penetrate into the substrate a lesser distance and so it is
less likely that the substrate mode or microstrip mode will be excited.
To avoid the microstrip mode the FGCPW should be a sufficient distance
from the bottom ground plane. Generally a substrate height three or more
times both the gap and strip width is sufficient. A mode that can exist on
FGCPW that does not have an equivalent with microstrip occurs when the
ground strips on either side of the center strip acquire different voltages.
The correct functioning of FGCPW requires these to be at the same potential.
The solution is to connect the two side strips together using grounding
straps as shown in Figure 4-19(a). The straps are realized using bond wires
if FGCPW is used on a circuit board, or using air bridges if the line is on a
monolithic integrated circuit. Placing the strips at approximately one-quarter
wavelength distances is appropriate, although this can be relaxed if the line
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Figure 4-18: Finite ground CPW transmis-
sion line.

(a) With straps (b) T junction

Figure 4-19: CPW structures with ground straps to
suppress the parallel plate mode.

Figure 4-20: Stripline trans-
mission line.

is fairly free of discontinuities. The straps should be placed randomly to
avoid any filtering effect that could result from placing the straps at regular
intervals. The straps should also be used whenever there is a discontinuity
(see, e.g., the junction in Figure 4-19(b)).

4.8 High-Frequency Considerations for Stripline

A stripline transmission line is shown in Figure 4-20. Being a homogeneous
line, stripline does not have a frequency-dependent permittivity until
molecular effects become important at hundreds of gigahertz (depending on
the substrate). Stripline has the frequency-dependent line resistance

R(f) =

{

R(0) f such that t ≤ 3δs

R(0) +Rskin(f) f such that t > 3δs,
(4.39)

where R(0) = Rstrip(0) + Rground(0) is the resistance of the line at low
frequencies. R(f) describes the frequency-dependent line resistance, which
is due to both the skin effect and current bunching. Approximately,

Rskin(f) = R(0)k
√

f, (4.40)

where k is a constant.
As with microstrip, EM simulations are recommended to determine line

loss. However, provided that regular vias are used between the ground
planes (and eliminating the TEM parallel plate mode), attenuation due to
radiation loss is minimal.

The moding that is of most concern with stripline is the parallel plate
waveguide mode that can be excited at stripline discontinuities. The simplest
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parallel plate waveguide mode has no variation of the fields in the transverse
direction, so there is a uniform electric field from the top plate to the
bottom plate. This mode can propagate down to DC. In normal operation
a stripline has an E field directed from the strip to the top ground plane and
an oppositely directed E field from the strip to the bottom ground plane.
Thus excitation of the parallel plate waveguide mode can be suppressed
by making sure that the two ground planes are at the same potential. This
is done by periodically shorting the two ground planes together using
through-substrate vias. Apart from this consideration, the multimoding
considerations presented for the microstrip should also be considered.

4.9 Power Losses and Parasitic Effects

Four separate mechanisms lead to power losses in microstrip lines:
(a) Conductor losses.
(b) Dissipation in the dielectric of the substrate.
(c) Radiation losses.
(d) Surface-wave propagation.

The first two items are dissipative effects, whereas radiation losses and
surface-wave propagation are essentially parasitic phenomena. The reader
is directed to Chapter 8 of [12] for an extensive treatment. Here, summary
results are presented.

Conductor losses greatly exceed dielectric losses for most microstrip
lines fabricated on low-loss substrates. Lines fabricated on low-resistivity
silicon wafers, however, can have high dielectric loss. These wafers are
most commonly used for digital circuits, and the interconnect transverse
dimensions are generally very small so that line resistance is very high, and
again, resistive losses dominate.

Radiation from a microstrip line results from asymmetric structures. In
particular, discontinuities such as abruptly open-circuited microstrip (i.e.,
open ends), steps, and bends will all radiate to a certain extent. Such
discontinuities form essential features of microwave circuits and therefore
radiation cannot be avoided. Efforts must be made to reduce such radiation
and its undesirable effects. In most cases, radiation can be represented by a
shunt admittance.

Surface waves, trapped just beneath the surface of the substrate dielectric,
will propagate away from microstrip discontinuities as TE and TM modes.
The effect of surface waves can be treated as a shunt conductance.

Various techniques can be used to suppress radiation and surface waves:

(a) Metallic shielding or “screening.”
(b) The introduction of lossy (i.e., absorbent) material near any radiative

discontinuity.
(c) The utilization of compact, planar, inherently enclosed circuits such as

inverted microstrip and stripline.
(d) Reducing the current densities flowing in the outer edges of any metal

sections and concentrate currents toward the center and in the middle
of the microstrip.

(e) Possibly shaping the discontinuity in some way to reduce the radiative
efficiency.
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4.10 Lines on Semiconductor Substrates

Propagation on transmission line structures fabricated on semiconductor
substrates can have peculiar behavior. The interest in such lines is in rela-
tion to RF integrated circuits (RFICs) and monolithic microwave integrated
circuits (MMICs) using both silicon and compound semiconductor technolo-
gies. More specifically, interconnects on metal-oxide-semiconductor (MOS)
or metal-insulator-semiconductor (MIS) systems, where an insulating layer,
such as oxide, exists between the conductor and the semiconductor wafer
(see Figure 4-21(a)), are of particular interest due to their ability to support a
slow-wave mode. A slow-wave mode propagates much slower than would
be expected. In the case of a semiconductor substrate with intermediate con-
ductivity, the magnetic field penetrates into the substrate but the electric field
does not. This separation of magnetic and electric fields slows the wave.
Slow-wave structures find major use in distributed elements on-chip at RF.
In particular, a silicon substrate can have a significant impact on microstrip
propagation that derives from the charge layer formed at the silicon–silicon
dioxide interface. The slow-wave effect is utilized in delay lines, couplers,
and filters. With Schottky contact lines, the effect is used in variable-phase
shifters, voltage-tunable filters, and various other applications.

Now, an intuitive explanation of the propagation characteristics of
microstrip lines on layered substrates can be based on the parallel-plate
structure shown in Figure 4-22. For an exact EM analysis of the slow-
wave effect with silicon substrates, see [14]. As well as developing a very
useful approximation for the important situation of transmission lines on
an insulator such as silicon oxide on a semiconductor, the treatment below
indicates the type of approach that can be used to analyze unusual structures.
In this structure, assume a quasi-TEM mode of propagation. In other
words, the wave propagation parameters α, β, and Z0 can be deduced from
electrostatic and magnetostatic solutions for the per unit length parameters
C, G, L, and R.

The analysis begins with a treatment of the classic Maxwell–Wagner
capacitor. Figure 4-23(a) shows the structure of such a capacitor where there
are two different materials between the parallel plates of the capacitor with
different permittivities and conductivities. The equivalent circuit is shown in

(a) (b)

Figure 4-21: Transmission lines on silicon
semiconductor: (a) silicon-silicon dioxide
sandwich; and (b) bulk view.

Figure 4-22: Parallel-plate transmission line
structure.
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Figure 4-23(b) with the elements given by (A is the plate area)

C1 = ε1
A

d1
, R1 =

1

σ1

d1
A
, C2 = ε2

A

d2
, R2 =

1

σ2

d2
A

(4.41)

τ1 = R1C1 =
ε1
σ1

, τ2 = R2C2 =
ε2
σ2

. (4.42)

The admittance of the entire structure at radian frequency ω is

Y (ω) =
1

R1 +R2

(1 + ωτ1)(1 + ωτ2)

1 + ωτ
, (4.43)

where τ =
R1τ2 +R2τ1
R1 +R2

. (4.44)

Introducing Y (ω) = ω

(

εe
A

d

)

, (4.45)

the effective complex permittivity, εe = ε′e − ε′′e , can be defined in terms of
Equation (4.43). Using Equations (4.43) and (4.45) yields

ε′e =
τ1 + τ2 − τ + ττ1τ2ω

2

(R1 +R2) [1 + (ωτ)2]

d

A
. (4.46)

Consider now the case when R1 goes to infinity (i.e., Layer 1, the top layer,
in Figure 4-23 is an insulator). For this case, Equation (4.46) becomes

ε′e =
1 +

(

1 + d2

d1

ε1
ε2

)(

ωε2
σ2

)2

1 +
(

1 + d2

d1

ε1
ε2

)2 (
ωε2
σ2

)2

(

ε1
d

d1

)

. (4.47)

It is clear from Equations (4.46) and (4.47) that the effective complex
permittivity has a frequency-dependent component. Consider how this
varies with a few cases of ω. For ω = 0, the static value of the effective
permittivity is

ε′e,0 = ε1
d

d1
. (4.48)

For the case where ω goes to infinity (the optical value), the real part of the
effective permittivity is

ε′e,∞ =
ε1ε2 (d1 + d2)

ε2d1 + ε1d2
. (4.49)

Note also that the value of ε′e,∞ can be approximately achieved for a large
value of ωε2/σ2 (i.e., low-conductivity substrates can be used to ensure that
the displacement currents dominate). In a similar way, it is clear that ε′e,0 can
be achieved by having a small value of ωε2/σ2. Also note that ε′e,0 can be
made very large by making d1 much smaller than d.
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(a) structure

(b) equivalent circuit

Figure 4-23: Maxwell–Wagner capaci-
tor.

(a) (b) Quasi-TEM mode

(c) Skin-effect mode (d) Slow-wave mode

Figure 4-24: Modes on an MOS transmission line: (a)
equivalent structure of the MOS line of Figure 4-21.

EXAMPLE 4.6 Two-Layer Substrate

Consider the structure in Figure 4-22. Determine the guide wavelength, λg , and the
wavelength in the insulator, λ1, at a frequency of 1 GHz. SiO2 and Si are the dielectrics,
with permittivities ε1 = 4ε0 and ε2 = 13ε0 (the conductivities are zero). The depths d2 and
d1 of the two dielectrics are d2 = 250 µm and d1 = 0.1 µm.

Solution:

λ1 =
3×108

109
√
4
= 0.15 m = 15 cm,

ǫe =
ε1ε2(d1 + d2)

ε1d2 + ε2d1
= 12.99ε0, λg =

3×108

109
√
12.99

= 0.0832 m = 8.32 cm. (4.50)

4.10.1 Modes on the MIS (MOS) Line

The previous description of the properties of a Maxwell–Wagner capacitor
leads to a discussion of the possible modes on the MIS (MOS) line. To make
the problem tractable, the transmission line shown in Figure 4-21(a) will be
approximated as having the cross section shown in Figure 4-24(a).

Dielectric Quasi-TEM Mode

The first possible mode is the dielectric quasi-TEM mode, for which the
sectional equivalent circuit model of Figure 4-24(b) is applicable. In this
mode σ2 ≪ ωε2. This implies from the earlier discussion that ε′e = ε′e,∞ and
µ′
e = µ0. Thus the per unit length parameters are

L = µ0
d1
W

, C1 = ε1
W

d1
, C2 = ε2

W

d2
, G2 = σ2

W

d2
. (4.51)

These have the SI units H/m for L, F/m for C1, F/m for C2, and S/m for G2.



EXTRAORDINARY TRANSMISSION LINE EFFECTS 195

Skin-Effect Mode

The second possible mode is the skin-effect mode, for which the sectional
equivalent circuit model of Figure 4-24(c) is applicable. Here, σ2 ≪ ωε2 is
such that the skin depth δs = 1/

√
πfµ0σ2 in the semiconductor is much

smaller than d2 and

ε′e = ε′e,0, µ
′
e =

µ0

d

(

d1 +
δs
2

)

,

Thus

L1 = µ0
d1
W

, C1 = ε1
W

d1
(4.52)

L2 = µ0
1

W

(

δs
2

)

, R2 = 2πfµ0
1

W

(

δs
2

)

. (4.53)

These have the SI units H/m for L1 and L2, F/m for C1, and Ω/m for R2.

Slow-Wave Mode

The third possible mode of propagation is the slow-wave mode [15, 16], for
which the sectional equivalent circuit model of Figure 4-24(d) is applicable.
This mode occurs when f is not so large and the resistivity is moderate so
that the skin depth, δs, is larger than (or on the order of) d2. Thus ε′e = ε′e,0,
but µ′

e = µ0. Therefore

vp =
1

√

ε′eµ
′
e

=
1√
µ0ε0

1√
ε1

√

d1
d

(4.54)

(with SI units of m/s) and λg = λ1

√

d1/d, where λ1 is the wavelength in the
insulator.

4.11 Summary

Design is an iterative process and initial RF design is based on frequency-
independent characteristics. For a transmission line, quantities such as the
characteristic impedance, effective permittivity, phase and group velocities,
and the RLGC parameters are taken as fixed. The RLGC parameters are
the basis of the simplest lumped-element circuit model of a transmission
line. Each of the components of this model will vary with frequency. The
resistance per unit length, R, increases with frequency as charges concentrate
on the surface of conductors and charges bunch (i.e., become less spread out).
Both of these effects are due to the finite time it takes to transmit the EM
signal that rearranges charges to support an alternating wave.

An EM signal on a transmission line is described by Maxwell’s equations
and there can be many possible solutions depending on the boundary
conditions. With transmission lines and other microwave structures such
as resonators these are called modes. All transmission lines have at least
two solutions, the forward- and backward-traveling waves. While strictly
these are also modes, this classification is avoided by microwave engineers.
Microwave engineers identify modes as different solutions to Maxwell’s
equations that, for transmission lines, are different orientations of the
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fields largely in the transverse direction to propagation. Each mode will,
in general, have forward- and backward-traveling components. A two-
conductor transmission line is designed to have dimensions that are small
enough that there is only one mode, or else special precautions are taken
to avoid a second mode being established. Sometimes multimoding is
desirable. If these multimoded structures are used there are strict design
criteria that enable the special functionality that is made available to be
exploited. Multimoding sets the upper bound on the frequency of operation
of most transmission line structures.

The most popular microwave transmission lines—microstrip, stripline
and CPW—can all support multiple modes, but most are cut off by keeping
transverse dimensions small with respect to a wavelength. When it is
possible for a second (or higher-order) mode to exist, whether that mode
is generated depends on the coupling mechanism between modes. This
coupling mechanism is a discontinuity, which of course is common if circuit
structures are to be incorporated. Stripline and CPW can support a second
mode at quite low frequencies. With stripline the dominant second mode is
the parallel-plate waveguide mode supported by the two ground planes of
stripline.

A microwave designer must always be aware of frequency dependence
and multimoding and choose dimensions to avoid their occurrence except
when the use is intentional and controlled.

4.12 References

[1] C. Holloway and G. A. Hufford, “Internal in-
ductance and conductor loss associated with
the ground plane of a microstrip line,” IEEE
Trans. on Electromagnetic Compatibility, vol. 39,
no. 2, pp. 73–78, May 1997.

[2] G. Ponchak and A. Downey, “Characteriza-
tion of thin film microstrip lines on poly-
imide,” IEEE Trans. on Components, Packag-
ing, and Manufacturing Technology, Part B: Ad-
vanced Packaging, vol. 21, no. 2, pp. 171–176,
May 1998.

[3] Hai-Young Lee and T. Itoh, “Phenomenologi-
cal loss equivalence method for planar quasi-
tem transmission lines with a thin normal
conductor or superconductor,” IEEE Trans.
on Microwave Theory and Techniques, vol. 37,
no. 12, pp. 1904–1909, Dec. 1989.

[4] W. Heinrich, “Quasi-tem description of
MMIC coplanar lines including conductor-
loss effects,” IEEE Trans. on Microwave Theory
and Techniques, vol. 41, no. 1, pp. 45–52, Jan.
1993.

[5] M. Born and E. Wolf, Principles of Optics: Elec-
tromagnetic Theory of Propagation, Interference,
and Diffraction of Light, 7th ed. Cambridge
University Press, 1999.

[6] K. Coperich, J. Morsey, V. Okhmatovski,
A. Cangellaris, and A. Ruehli, “Systematic
development of transmission-line models

for interconnects with frequency-dependent
losses,” IEEE Trans. on Microwave Theory and
Techniques, vol. 49, no. 10, pp. 1677–1685, Oct.
2001.

[7] W. Heinrich, “Full-wave analysis of conduc-
tor losses on MMIC transmission lines,” IEEE
Trans. on Microwave Theory and Techniques,
vol. 38, no. 10, pp. 1468–1472, Oct. 1990.

[8] R. Faraji-Dana and Y. Chow, “The current
distribution and ac resistance of a microstrip
structure,” IEEE Trans. on Microwave Theory
and Techniques, vol. 38, no. 9, pp. 1268–1277,
Sep. 1990.

[9] A. Djordjevic and T. Sarkar, “Closed-form
formulas for frequency-dependent resistance
and inductance per unit length of microstrip
and strip transmission lines,” IEEE Trans.
on Microwave Theory and Techniques,, vol. 42,
no. 2, pp. 241–248, Feb. 1994.

[10] B. Biswas, A. Glasser, S. Lipa, M. Steer,
P. Franzon, D. Griffis, and P. Russell, “Exper-
imental electrical characterization of on-chip
interconnects,” in IEEE 6th Topical Meeting on
Electrical Performance of Electronic Packaging,
1997, pp. 57–59.

[11] A. Deutsch, R. Krabbenhoft, K. Melde,
C. Surovic, G. Katopis, G. Kopcsay, Z. Zhou,
Z. Chen, Y. Kwark, T.-M. Winkel, X. Gu, and
T. Standaert, “Application of the short-pulse



EXTRAORDINARY TRANSMISSION LINE EFFECTS 197

propagation technique for broadband char-
acterization of pcb and other interconnect
technologies,” IEEE Trans. on Electromagnetic
Compatibility, vol. 52, no. 2, pp. 266–287, May
2010.

[12] T. Edwards and M. Steer, Foundations for Mi-
crostrip Circuit Design. John Wiley & Sons,
2016.

[13] G. Vendelin, “Limitations on stripline Q,”
Microwave Journal, pp. 63–69, 1970.

[14] H. Hasegawa, M. Furukawa, and H. Yanai,
“Properties of microstrip line on si-sio2 sys-

tem,” IEEE Trans. on Microwave Theory and
Techniques, vol. 19, no. 11, pp. 869–881, Nov.
1971.

[15] D. Jager, “Slow-wave propagation along
variable schottky-contact microstrip line,”
IEEE Trans. on Microwave Theory and Tech-
niques, vol. 24, no. 9, pp. 566–573, Sep. 1976.

[16] Y. K. et al, “Quasi-tem analysis of ”slow-
wave” mode propagation on coplanar mi-
crostructure mis transmission lines,” IEEE
Trans. on Microwave Theory and Techniques,
vol. 35, no. 6, pp. 545–551, Jun. 1987.

4.13 Exercises

1. Current bunching and the skin effect result in
transmission line loss increasing with frequency.

(a) Show current bunching on a transverse dia-
gram of the microstrip line.

(b) Describe the skin effect on a transverse dia-
gram of the microstrip line.

2. What is the skin depth on a copper microstrip
line at 10 GHz? Assume that the conductivity
of the deposited copper forming the strip is half
that of bulk single-crystal copper. Use the data
in the table on page 130.

3. What is the skin depth on a silver microstrip line
at 1 GHz? Assume that the conductivity of the
fabricated silver conductor is 75% that of bulk
single-crystal silver. Use the data in the table on
page 130.

4. What is the dominant source of dispersion on a
microstrip transmission line?

5. Using Figure 4-12, determine the complex char-
acteristic impedance and complex effective per-
mittivity of a microstrip line at 12 GHz. The line
is fabricated on alumina with εr(0) = 9.9, w =
240 µm, h = 500 µm.

6. A magnetic wall and an electric wall are 2 cm
apart and are separated by a lossless material
having a relative permittivity of 10 and a relative
permeability of 23. What is the cut-off frequency
of the lowest-order mode in this system?

7. Describe the transverse resonance mode on
stripline. When can it occur?

8. The strip of a microstrip has a width of 600 µm
and is fabricated on a lossless substrate that is
1 mm thick and has a relative permittivity of 10.

(a) Draw the microstrip waveguide model of
the microstrip line. Put dimensions on your
drawing.

(b) Sketch the electric field distribution of the
first transverse resonance mode and calcu-

late the frequency at which the transverse
resonance mode occurs.

(c) Sketch the electric field distribution of the
first higher-order microstrip mode and cal-
culate the frequency at which it occurs.

(d) Sketch the electric field distribution of the
slab mode and calculate the frequency at
which it occurs.

9. A microstrip line has a width of 352 µm and is
constructed on a substrate that is 500 µm thick
with a relative permittivity of 5.6.

(a) Determine the frequency at which trans-
verse resonance would first occur.

(b) When the dielectric is slightly less than one-
quarter wavelength in thickness the dielec-
tric slab mode can be supported. Some of
the fields will appear in the air region as
well as in the dielectric, extending the ef-
fective thickness of the dielectric. Ignoring
the fields in the air (use a one-quarter wave-
length criterion), at what frequency will the
dielectric slab mode first occur?

10. The strip of a microstrip has a width of 600 µm
and uses a lossless substrate that is 635 µm thick
and has a relative permittivity of 4.1.

(a) At what frequency will the first transverse
resonance occur?

(b) At what frequency will the first higher-order
microstrip mode occur?

(c) At what frequency will the slab mode occur?
(d) Identify the useful operating frequency

range of the microstrip.

11. The design space for transmission lines in mi-
crostrip designs is determined by the design
project leader to be 20–100 Ω. The preferred sub-
strate has a thickness of 500 µm and a relative
permittivity of 8. What is the maximum oper-
ating frequency range of designs supported by
this technology choice. Ignore frequency disper-
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sion effects (i.e., frequency dependence of effec-
tive permittivity and losses). [Hint: First deter-
mine the dimensions of the strip that will pro-
vide the required impedance range and then
determine the frequency at which lowest-order
multimoding occurs.]

12. Consider the design of transmission lines in mi-
crostrip technology using a lossless substrate
with a relative permittivity of 10 and thickness
of 400 µm. You will want to use the formulas in
Section 3.5.3.

(a) What is the maximum characteristic
impedance that can be achieved for a trans-
mission line fabricated in this technology?

(b) Plot the characteristic impedance versus
strip width.

(c) From manufacturing tolerance considera-
tions, the minimum strip width that can be
manufactured is 20 µm. What is the maxi-
mum characteristic impedance that can be
achieved in practice?

(d) If the operating frequency range is 1–
10 GHz, determine the maximum width of
the strip from higher-order mode considera-
tions. You must consider the transverse res-
onance mode as well as higher-order mi-
crostrip modes.

(e) Identify the electrical design space (i.e., the
achievable characteristic impedance range).

(f) Identify the physical design space (i.e., the
range of acceptable strip widths).

(g) If the electrical design space requires that
transmission line impedances be achieved
within ±2 Ω, what tolerance must be
achieved in the manufacturing process if
the substrate thickness can be achieved ex-
actly? [Hint: First identify the critical physi-
cal process corner and thus the critical strip
width that is most susceptible to width vari-
ations. Then determine the tolerance on the
strip width to achieve the allowable charac-
teristic impedance variation. That is, char-
acteristic impedance is a function of strip
width and height. If the substrate is perfect
(no height variation), then how much can
the strip width vary to keep the impedance
within ±2 Ω of the desired value? You can
solve this graphically using a plot of Z0 ver-
sus width or you can iteratively arrive at the
answer by recalculating Z0.]

(h) If the electrical design space requires that
transmission line impedances be achieved
within ±2 Ω, what tolerance must be
achieved in the manufacturing process if
the substrate thickness tolerance is ±2 µm?

If the substrate is not perfect (the height
variation is ±2 µm), then how much can
the strip width vary to keep the impedance
within ±2 Ω of the desired value? This prob-
lem is directly applicable to real-world pro-
cess/design trade-offs.

13. The strip of a microstrip has a width of 500 µm
and is fabricated on a lossless substrate that is
635 µm thick and has a relative permittivity of
12. [Parallels Examples 4.3, 4.4, and 4.5]

(a) At what frequency does the transverse reso-
nance first occur?

(b) At what frequency does the first higher-
order microstrip mode first propagate?

(c) At what frequency does the substrate (or
slab) mode first occur?

14. The strip of a microstrip has a width of 250 µm
and uses a lossless substrate that is 300 µm thick
and has a relative permittivity of 15.

(a) At what frequency does the transverse reso-
nance first occur?

(b) At what frequency does the first higher-
order microstrip mode propagate?

(c) At what frequency does the substrate (or
slab) mode first occur?

(d) What is the highest operating frequency of
the microstrip?

15. A microstrip line has a strip width of 100 µm and
is fabricated on a substrate that is 150 µm thick
and has a relative permittivity of 9.

(a) Draw the microstrip waveguide model and
indicate and calculate the dimensions of the
model.

(b) Based only on the microstrip waveguide
model, determine the frequency at which
the first transverse resonance occurs?

(c) Based on the microstrip waveguide model,
determine the frequency at which the first
higher-order microstrip mode occurs?

(d) At what frequency will the slab mode occur?
For this you cannot use the microstrip wave-
guide model.

16. A microstrip line has a strip width of 100 µm and
is fabricated on a substrate that is 150 µm thick
and has a relative permittivity of 9.

(a) Define the properties of a magnetic wall.
(b) Identify two situations where a magnetic

wall can be used in the analysis of a mi-
crostrip line; that is, give two situations
where a magnetic wall approximation can
be used.

(c) Draw the microstrip waveguide model and
indicate and calculate the dimensions of the
model.
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17. Consider the design of transmission lines in mi-
crostrip technology using a lossless substrate
with relative permittivity of 20 and thickness of
200 µm.

(a) Using qualitative arguments, show that the
maximum characteristic impedance that can
be achieved for a transmission line fabri-
cated in this technology is 116 Ω. The maxi-
mum is not actually 116 Ω, but a simple ar-
gument will bring you to this conclusion.

(b) Plot the characteristic impedance versus
substrate width.

(c) From manufacturing tolerance considera-
tions, the minimum strip width that can be
manufactured is 20 µm. What is the maxi-
mum characteristic impedance that can be
achieved in practice?

(d) If the operating frequency range is 2–
18 GHz, determine the maximum width of
the strip from higher-order mode considera-
tions. You must consider the transverse reso-
nance mode, the higher-order mode, and the
slab mode.

(e) Identify the electrical design space (i.e., the
characteristic impedance range).

(f) Identify the physical design space (i.e., the
range of acceptable strip widths).

(g) If the electrical design space requires that
transmission line impedances be achieved
within ±2 Ω, what tolerance must be
achieved in the manufacturing process if the
substrate thickness can be achieved exactly?
[Hint: First identify the critical physical pro-
cess corner and thus the critical strip width
that is most susceptible to width variations.
Then determine the tolerance on the strip
width to achieve the allowable characteris-
tic impedance variation.]

(h) If the electrical design space requires that
transmission line impedances be achieved
within ±2 Ω, what tolerance must be
achieved in the manufacturing process if the
substrate thickness tolerance is ±2 µm?

18. The strip of a microstrip line has a width of
0.5 mm, and the microstrip substrate is 1 mm
thick and has a relative permittivity of 9 and rel-
ative permeability of 1.

(a) Draw the microstrip waveguide model and
calculate the dimensions of the model.
Clearly show the electric and magnetic walls
in the model.

(b) Use the microstrip waveguide model to cal-
culate the cut off frequency of the transverse
resonance mode?

(c) A substrate mode can also be excited but

the cut off frequency of this mode cannot be
calculated using the microstrip waveguide
model. Provide a brief description of the
substrate mode and calculate the lowest fre-
quency at which it can exist.

19. A microstrip technology uses a substrate with
a relative permittivity of 10 and thickness of
400 µm. If the operating frequency is 10 GHz,
what is the maximum width of the strip from
higher-order mode considerations.

20. A microstrip line operating at 18 GHz has a
200 µm thick substrate with a relative permittiv-
ity of 20.

(a) Determine the maximum width of the
strip from higher-order mode considera-
tions. Consider the transverse resonance
mode, the higher-order microstrip mode,
and the slab mode.

(b) Thus determine the minimum achievable
characteristic impedance.

21. A microstrip line has a strip width of 100 µm and
is fabricated on a 150 µm-thick lossless substrate
with a relative permittivity of 9.

(a) Define the properties of a magnetic wall.
(b) Identify two situations where a magnetic

wall can be used in determining multimod-
ing on a microstrip line. That is, give two lo-
cations where a magnetic wall approxima-
tion can be used.

22. Two magnetic walls are separated by 1 mm in
a lossless material having a relative permittivity
of 9 and a relative permeability of 1.

(a) What is the wavelength of a 10 GHz signal
in this material?

(b) Now consider a field variation, i.e. a mode
and not constant, established by the mag-
netic walls. Describe this lowest order field
variation. That is how does the H field vary
or how does the E field vary (one is suffi-
cient)?

(c) What is the lowest frequency at which a field
variation can be supported by those walls in
the specified medium?

23. A microstrip line has a strip width of 250 µm and
a 300 µm thick substrate with a relative permit-
tivity of 15. At what frequency can the substrate
mode first occur?

24. A microstrip line has a strip width of 250 µm
and a 300 µm thick substrate with a relative per-
mittivity of 15. At what frequency can a higher-
order microstrip mode first propagate?

25. A microstrip line has a strip width of 200 µm and
a substrate that is 400 µm thick and has a rela-
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tive permittivity of 4. Use the microstrip wave-
guide model to determine the lowest frequency
at which higher-order microstrip mode can oc-
cur.

26. A microstrip line has a strip width of 250 µm
and a 300 µm thick substrate with a relative per-
mittivity of 15. At what frequency can transverse
resonance first occur?

27. The figure below is the cross section of a finite
ground coplanar waveguide (FGCPW) trans-
mission line over a ground plane. The FGCPW
consists of the ground strips of width w1 and the
strip of width w. Now w1 = 2.5× s, w = 1.3× s,
and h = 4× s. The thickness is t = 0.3× s.

(a) Ignore the bottom ground plane for now. Re-
draw the structure and indicate the charge
and current distributions at microwave fre-
quencies using the convention shown. On
the strip the current flows in and the charge
is positive.

(b) Does this structure support a transverse EM
mode?

(c) Again ignoring the bottom ground plane, re-
draw the structure and indicate the region
where the energy is concentrated.

(d) Now consider the complete structure. If the
guide wavelength is λg , and the wavelength
in the dielectric is λ, indicate the criterion
for the lowest frequency at which transverse
resonance will become a problem.

28. Use a diagram to show the E and H fields of the
microstrip mode on finite ground CPW.

29. Does finite ground CPW support a transverse
resonance mode? Explain.

30. For a finite ground CPW line illustrate the fol-
lowing modes and the conditions under which
they occur.

(a) The microstrip mode.
(b) The cross mode (the ground planes not at

the same potential).
(c) The transverse mode mode.

31. Consider a symmetrical stripline with the fol-
lowing parameters: total substrate thickness, d
= 1.7 mm; strip width, w = 2.5 mm; relative per-
mittivity of the substrate = 9; and operating fre-
quency = 30 GHz.

(a) What is the value of the effective permittiv-
ity?

(b) What is the value of the free-space wave-
length?

(c) What is the value of the guide wavelength?

32. What is the dominant cause of dispersion on
a stripline? That is, what is most likely to
cause frequency dependence of the characteris-
tic impedance and propagation constant of the
line.

33. The strip of a microstrip line has a width of
200 µm and the substrate is 400 µm thick and
has a relative permittivity of 4.

(a) Draw the effective waveguide model of a
microstrip line with magnetic walls and an
effective strip width, weff .

(b) What is the effective relative permittivity of
the microstrip waveguide model?

(c) What is weff?
(d) Can the lowest frequency at which the trans-

verse resonance mode first occurs be de-
termined from the microstrip waveguide
model?

34. The strip of a symmetrical stripline has a width
of 200 µm and is embedded in a lossless medium
that is 400 µm thick and has a relative permittiv-
ity of 13, thus the separation, h, from the strip to
each of the ground planes is 200 µm.

(a) Draw the waveguide model of a stripline
with magnetic walls and an effective strip
width, weff , which will be approximately the
same as with a microstrip line.

(b) What is the effective relative permittivity of
the stripline waveguide model?

(c) What is weff?
(d) At what frequency will the first transverse

resonance occur?
(e) At what frequency will the first higher-order

stripline mode occur?
(f) At what frequency will the first parallel-

plate waveguide mode occur? Do not con-
sider the mode with no field variation, as
this cannot be excited.

(g) Identify the useful operating frequency
range of the stripline.

35. Describe the parallel-plate mode on stripline.

36. Consider the structure in Figure 4-22. Deter-
mine the guide wavelength, λg , and the wave-
length in the top insulator, λ1, at a frequency
of 20 GHz. The permittivities are ε1 = 3.9ε0 and
ε2 = 13ε0. The depths of the dielectrics are d2 =
100 µm and d1 = 1.0 µm. [Parallels Example 4.6]

37. Consider a metal-oxide-semiconductor trans-
mission medium as examined in Section 4.10.



EXTRAORDINARY TRANSMISSION LINE EFFECTS 201

The structure in the form of a Maxwell–Wagner
capacitor is shown in Figure 4-23(a) with d1 =
100 µm, d2 = 500 µm, and relative permittivities
εr1 = 3.9 and εr2 = 13. Ignore the finite con-

ductivity. What is the capacitance model of this
structure (see Figure 4-23(b)) and what are the
values of the capacitances?

4.13.1 Exercises by Section
†challenging, ‡very challenging

§4.2 1†, 2, 3
§4.3 4†

§4.4 5
§4.5 6, 7

§4.6 8†, 9†, 10†, 11‡, 12‡, 13†, 14†,
15†, 16†, 17‡, 18†, 19, 20, 21,
22, 23, 24, 25, 26

§4.7 27‡, 28, 29, 30

§4.8 31‡, 32†, 33†, 34‡, 35
§4.10 36, 37†

4.13.2 Answers to Selected Exercises

3 2.315 µm
6 247 MHz

8(c) 25 GHz
9(c) DC to 63.4 GHz

10(d) DC ≤ f ≤ 48.6 GHz
14 104.6 GHz

17(a) 116 Ω
17(f) 20µm<w<1.96mm

18(b) 55.6 GHz
34 207.9 GHz
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5.1 Introduction

This chapter describes what happens when two transmission lines are so
close together that the fields produced by one line interfere with the other
line. Then a portion of the signal energy on one line is transferred to the
other resulting in coupling. For microstrip lines the coupling reduces as the
lines separate and usually the coupling is small enough to be ignored if the
separation is at least three times the height of the strips. Transmission line
coupling may be undesirable in many situations, but the phenomenon is
exploited to realize many novel RF and microwave elements such as filters. A
coupled pair of transmissions lines also enables the forward- and backward-
traveling waves on a line to be separately measured.

The chapter begins with a discussion of the physics of coupling which
leads to the preferred description of propagation on a pair of parallel
coupled lines (PCLs) as supporting an even mode and an odd mode,
and forward- and backward-traveling versions of each. Many microwave
circuit elements are based on PCL elements such as PCL filters. The
separation of the fields into even and odd modes comes naturally from
a consideration of the fields. This is leads to a low-frequency circuit
model described in Section 5.4. Section 5.4.1 presents a high frequency
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model of a PCL with the L and C model of a single transmission line
replaced by multiple inductances, capacitances, and mutual inductances and
capacitances. As with single microstrip lines, formulas have been developed
for the propagation characteristics of a pair of coupled microstrip lines, and
these are presented in Section 5.6. The rest of the chapter builds up design
concepts and presents some particular applications on the way.

Section 5.7 presents the analysis used to determine reflection coefficients
of terminated coupled lines. The next section, Sections 5.8, describe two
types of couplers that use a pair of coupled lines to selectively separate
and tap off a portion of the power in either the forward-traveling wave,
the backward-traveling wave, or both. A design technique for synthesizing
them is presented and this is key to nearly all design using a pair of
coupled lines as a circuit element. Section 5.9 presents the circuit models
for various coupled line configurations and these models are essential to
the synthesis of PCL-based microwave components. There are other ways to
partition the modes on a pair of coupled lines and with RFICs the preferred
description uses differential and common modes as described in Section 5.10.
The difference between these modes and odd and even modes comes down
to bookkeeping with a preference to use differential and common modes
with circuits, and a preference to use odd and even modes when relating
to fields. The final section, Section 5.11, describes another type of coupling,
common impedance coupling. This is not always related to PCLs but this is
the appropriate place to consider this phenomenon.

5.2 Physics of Coupling

If the fields of one transmission line intersect the region around another
transmission line, then some of the energy propagating on the first line
appears on the second. This coupling discriminates in terms of forward- and
backward-traveling waves. In particular, consider the coupled microstrips
shown in Figure 5-1. The direction of propagation comes from Ē × H̄. Using
the right-hand rule, the direction of propagation of the signal on the left-
hand strip is out of the page. This is called the forward-traveling direction.
Now consider the fields around the right-hand strip, the inactive line, and
note the direction of the E field. The H field immediately to the left of the
right-hand strip is stronger than on the right of the strip. So effectively there
is a clockwise circulation of the H field around the right hand strip. By
applying Ē×H̄ to the signal induced on the right-hand strip, it is seen that the
induced signal travels into the page, or in the backward-traveling direction.
The coupling with parallel-coupled microstrip lines is called backward-
wave coupling. This is, of course, a frequency-domain view of coupling. In
practice, there is also a small component of forward coupling.

In digital systems the forward coupling is of most importance because
of the way traveling waves are reinforced. To appreciate this, consider a
voltage step traveling in the forward direction on one strip. The step edge
couples across to the neighboring line, producing a large backward-traveling
pulse and a smaller forward-traveling pulse (approximately the derivative of
the original step signal). The coupled forward-traveling pulse travels at the
same velocity as the step signal so that the coupled forward-traveling signal
integrates over time, whereas the backward-traveling signal does not.

The discussion now returns to the frequency-domain view, as this is the
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(a) (b)

Figure 5-1: Edge-coupled microstrip lines with the left line driven with the forward-traveling
field coming out of the page: (a) cross section of microstrip lines as found on a printed circuit
board showing a conformal top passivation or solder resist layer; and (b) in perspective showing
the direction of propagation of the driven line (left) and the direction of propagation of the main
coupled signal on the victim line (right).

required orientation in designing narrowband systems (i.e., most RF and
microwave circuits). Previously forward- and backward-traveling waves on
an individual transmission line were introduced as separate modes; each
mode is a self-sustaining and propagating field orientation on a transmission
line. By analogy, in understanding coupled line behavior, and to facilitate
design using transmission line coupling, it is a good idea to treat a pair of
coupled lines as a single transmission structure. This structure supports two
families of modes called the even mode and the odd mode, and both have
forward- and backward-traveling components (see Figure 5-2).

In the even mode (Figures 5-2(a and b)), the amplitude and polarity of
the voltages on the two signal conductors are the same. In the odd mode
(Figures 5-2(c and d)), the voltages on the two signal conductors are equal
but have opposite polarity. Any EM field orientation on the coupled lines
can be represented as a weighted addition of the even-mode and odd-mode
field configurations.

It is just as valid to consider the field orientations based on each of
the lines (taken one at a time) and to consider the effect of the other line
as a perturbation of the fields of the first line. However, the odd- and
even-mode view of the fields assists in understanding and quantitatively
describing coupling. This view facilitates the design of components that
exploit coupling. The configuration of the fields supported by the coupled
lines depends on how the lines are driven and terminated. The actual fields
will be a superposition of the even and odd modes. Also, at any instant the
voltages on the lines are composed of even and odd components.

The characteristic impedances of the even and odd modes will differ
because of the different field orientations. These are termed the even-
mode and odd-mode characteristic impedances, denoted by Z0e and Z0o,
respectively. Here the e subscript identifies the even mode and the o subscript
identifies the odd mode. With coupled microstrip lines, the phase velocities
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Figure 5-2: Modes on parallel-coupled
microstrip lines. In (b) and (d) the electric
fields are indicated as arrowed lines and
the magnetic field lines are dashed.

(a) Even mode (b) Even mode

(c) Odd mode (d) Odd mode

(a) Even mode (b) Odd mode (c)

Figure 5-3: Definitions of total voltages and even- and odd-mode voltage phasors on a pair of
coupled microstrip lines: (a) even-mode voltage definition; (b) odd-mode voltage definition; (c)
depiction of how even- and odd-mode voltages combine to yield the total voltages on individual
lines. F indicates front and B indicates back.

Figure 5-4: Coupled
microstrip lines: (a)
with total voltage and
current phasors at the
four terminals; and (b)
cross section. (a) (b)

of the two modes will differ since the two modes have different amounts
of energy in the air and in the dielectric, resulting in different effective
permittivities of the two modes.

Coupled lines are modeled by determining the propagation characteristics
of the even and odd modes. Also, at the circuit level, coupling can be
described by network parameters that relate total voltage and current. Using
the definitions shown in Figures 5-3 and 5-4, the total voltage and current
phasors on the original structure are a superposition of the even- and odd-
mode solutions:
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V1 = VFe + VFo I1 = IFe + IFo

V2 = VFe − VFo I2 = IFe − IFo

V3 = VBe + VBo I3 = IBe + IBo

V4 = VBe − VBo I4 = IBe − IBo















, (5.1)

with the subscripts F and B indicating the front and back, respectively, of
the even- and odd-mode components. Also

VFe = (V1 + V2)/2 IFe = (I1 + I2)/2
VFo = (V1 − V2)/2 IFo = (I1 − I2)/2
VBe = (V3 + V4)/2 IBe = (I3 + I4)/2
VBo = (V3 − V4)/2 IBo = (I3 − I4)/2















. (5.2)

The forward-traveling components can be written as

V +
1 = V +

Fe + V +
Fo I+1 = I+Fe + I−Fo

V +
2 = V +

Fe − V +
Fo I+2 = I+Fe − I−Fo

V +
3 = V +

Be + V +
Bo I+3 = I+Be + I−Bo

V +
4 = V +

Be − V +
Bo I+4 = I+Be − I−Bo















. (5.3)

The backward-traveling components are written similarly so that the total
front and back even- and odd-mode voltages are

VFe = V +
Fe + V −

Fe VBe = V +
Be + V −

Be

VFo = V +
Fo + V −

Fo VBo = V +
Bo + V −

Bo

�

. (5.4)

With an ideal voltmeter the V1, V2, V3, and V4 voltages would be measured
from a point on the strip to a point on the ground plane immediately
below. The voltages 2VFo and 2VBo are the voltages that would be measured
between the strips at the front and back of the lines, respectively (see Figure
5-2). It would not be possible to directly measure VFe and VBe.

One set of network parameters describing a pair of coupled lines is the
port-based admittance matrix equation relating the port voltages, V1–V4, to
the port currents, I1–I4:









I1
I2
I3
I4









=









y11 y12 y13 y14
y21 y22 y23 y24
y31 y32 y33 y34
y41 y42 y43 y44

















V1

V2

V3

V4









. (5.5)

These are port-based y parameters as the currents and voltages are defined
for ports. Since microstrip lines are fabricated (most of the time) on non-
magnetic dielectrics, then they are reciprocal so that yij = yji. Coupling from
one line to another is described by the terms y12 (=y21) and y34 (=y43).

Summary

The important concept introduced in this section is that fields and the
propagating waves on a pair of parallel coupled lines can be described as
a combination of odd and even modes each of which has forward- and
backward-wave versions.
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5.3 Coupled Transmission Line Theory

In this section coupled transmission line theory is developed in terms of the
quantities shown in Figure 5-4. The voltages and currents shown here are
phasors that vary along the line and are functions of x.

The quasi-TEM mode of propagation is also assumed, and the transmis-
sion line system is completely lossless with perfect conductors and insula-
tors. In phasor form, the generalized telegrapher’s equations for a pair of
coupled lines are1

dV1(x)

dx
= −ωL11I1(x) − ωL12I2(x) (5.6)

dV2(x)

dx
= −ωL21I1(x) − ωL22I2(x) (5.7)

dI1(x)

dx
= −ωC11V1(x) − ωC12V2(x) (5.8)

dI2(x)

dx
= −ωC21V1(x) − ωC22V2(x). (5.9)

These are generalizations of the telegrapher’s equations of a single
transmission line, and for reciprocity, C12 = C21 and L12 = L21. Compaction
of the equations is obtained by introducing the per unit length inductance
matrix, L, and the per unit length capacitance matrix, C, defined as

L =

[

L11 L12

L12 L22

]

and C =

[

C11 C12

C12 C22

]

. (5.10)

The next step is to express the voltage on the pair of coupled transmission
lines in vector form as

V(x) =

[

V1(x)
V2(x)

]

= [V1(x) V2(x)]
T, (5.11)

where T indicates transpose and converts the row vector into a column
vector. Similarly the vector of currents on the coupled transmission lines is

I(x) = [I1(x) I2(x)]
T
. (5.12)

Using the above relations, the telegrapher’s equation, from Equations (5.6)–
(5.9), is represented in matrix form as

d

dx
V(x) = −ωLI(x) (5.13) and

d

dx
I(x) = −ωCV(x). (5.14)

Rearranging Equations (5.13) and (5.14), taking derivatives, and after
substitution, the final wave-equation form is obtained:

d2

dx

2

V(x) + ω2LCV(x) = 0 (5.15) and
d2

dx

2

I(x) + ω2LCI(x) = 0. (5.16)

Solving these second-order differential equations yields descriptions of the

1 In Figure 5-4(a) V1 and V2 are the voltages at terminals 1 and 2 of lines 1 and 2. They are also
port voltages referenced to the ground immediately below the appropriate terminal. V1(x)
and V2(x) are the total voltage anywhere on lines 1 and 2, respectively, as shown in Figure
5-4(b). Similar notation will be used for voltages and traveling-wave components.
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propagation characteristics. With confidence, a solution in the form of
propagating waves can be assumed:

V(x) = V0β = V0 diag(e
−β1x, e−β2x) = V0

[

e−β1x 0
0 e−β2x

]

. (5.17)

Substituting this into Equation (5.15) yields

−β
2
V0 + ω2 LCV0 = 0. (5.18)

For a nontrivial solution of Equation (5.18), the determinant of the matrix
equation should be zero:

det

(

LC − β2

ω2
U

)

= 0, where the unit matrix U =

[

1 0
0 1

]

. (5.19)

Equation (5.19) is the characteristic equation that can be solved to determine
the phase constant, β. There are many possible solutions, and weighted
linear combinations of the solutions are also solutions.

If only the quasi-TEM modes are considered, then there are two possible
sets of solutions for the phase constant, with one set of solutions being

β1 = ±ωS1 (5.20) and the other β2 = ±ωS2. (5.21)

The different signs here are physically interpreted as referring to the
forward- and backward-traveling waves. Thus the coupled pair of
conductors supports two unique families of modes (each family comprising
forward- and backward-traveling waves) with each family relating to a
particular field configuration on the coupled line system.2 That is, S1 and S2

are each single numbers and, just considering the forward-traveling waves,
ωS1 is the propagation constant of one mode and ωS2 is the propagation
constant of the second mode.

The circuit-level model of a coupled line pair is developed by considering
the calculation of the L and C matrices. The elements of the capacitance
matrix are obtained in two simulations in which the line charge is
calculated. A variety of commercially available software packages exist
for the extraction of the per unit length L and C matrices. The matrix C
is calculated, in most packages, from the solutions of a two-dimensional
electrostatic problem. The steps involve solving for the charges on the lines
with voltages set on the conductors. With total voltages V1 and V2 on lines 1
and 2, the charges on lines Q1 and Q2 are

Q1 = C11V1 + C12V2 (5.22) and Q2 = C12V1 + C22V2. (5.23)

Simulation 1: With V1 = 1 and V2 = 0, the charges are calculated with the
result that

C11 = Q1 > 0 (5.24) and C12 = Q2 < 0. (5.25)

(Note that Cij , i �=j, is negative.)

2 Also it is up to the user to decide the form of the families to use. The most convenient family
in microwave analysis is to use even and odd modes. In general, a system with N active
conductors (and one reference conductor) will support 2×N (quasi-) TEM modes.
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Simulation 2: With V1 = 0 and V2 = 1, the charges are recalculated, and now

C22 = Q2 and C12 = Q1. (5.26)

The characterization of the lines is completed by determining the elements
of the inductance matrix. This is done by calculating the capacitances with
and without the dielectric. The principle effect of the dielectric is to alter
the configuration and magnitude of the electric field. The dielectric has
little effect on the magnitude and orientation of the magnetic field. With
the same current on the coupled lines, the same magnetic energy is stored,
and the inductances of the coupled line are unchanged by the dielectric.
The other assumption is that with a TEM mode on the lines, and in the

absence of a dielectric, the velocity of propagation is c = 1/
√
LC. Specifically,

the assumption is that for a TEM mode and without a dielectric, the
phase velocity is just c. This is a very good approximation and is exact
if the conductors have infinite conductivity. (If the conductors have finite
conductivity there would be field inside the conductors, and the wave slows
down slightly.) Determining the capacitance matrix without the dielectric
enables the inductance matrix to be calculated:

L = L0 =
1

c2
C−1

0 , (5.27)

where the subscript 0 indicates free space (but a subscript 0 on Z , e.g., Z0,
indicates characteristic impedance).

5.3.1 Summary

This section introduced the telegrapher’s equations for a pair of coupled
lines in a form that is an extension of the telegrapher’s equations of a single
line but with the L and C of a single line replaced by 2× 2 L and C matrices.
It is no longer necessary to deal with fields and a circuit model can be used.

5.4 Low-Frequency Capacitance Model of Coupled Lines

The low-frequency model of a pair of lossless coupled lines comprises only
capacitances. A pair of coupled lines, as shown in Figure 5-5(a), has four
terminals. At very low frequencies V1 and V3 are identical as are voltages V2

and V4. So the low-frequency model of the pair of coupled lines has just two
terminals in addition to ground, as shown in Figure 5-5(b).

The capacitances in Figure 5-5(b) are the shunt capacitance C1 and C2 and
the mutual capacitance Cg . In the even mode, the voltages at terminals 1
and 2 are the same so that Cg vanishes and the low-frequency capacitance
model of the pair of coupled lines in the even mode comprises just the self-
capacitances C1 and C2 (see Figure 5-5(c)). In the odd mode, the voltage
at terminal 2 is the negative of the voltage at terminal 1. The result is that
there is a virtual ground between the terminals. Now a better circuit model
is that shown in Figure 5-5(d). This is where the restriction that the lines are
of equal width is used. This assumption places the virtual ground between
equal-value capacitances. The symmetrical case is the one of most interest.
If asymmetrical coupled lines are to be analyzed, the analysis departs at this
point and EM simulation is required.

To proceed, the capacitance model must be put in the form of per unit
length capacitances and put in terms of the elements of a capacitance matrix.
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(a) Coupled line (b) Capacitance model

(c) Even mode (d) Odd mode

Figure 5-5: Very low frequency models
of a pair of coupled lines.

(a) Coupled-line (b) Even-mode

(c) Odd-mode

Figure 5-6:
Low frequency
capacitance
models of a
pair of coupled
lines of length
∆ℓ.

The indefinite nodal admittance matrix of the low-frequency coupled-line
model of Figure 5-5(b) is

Y = ω

[

C1 + Cg −Cg

−Cg C2 − Cg

]

= ωC∆ℓ, (5.28)

where ∆ℓ is the length of the coupled lines, and C is the per unit length
capacitance matrix (see Equation (5.10)). Thus the low-frequency capacitance
model of a pair of coupled lines of length ∆ℓ and equal width is as shown in
Figure 5-6(a). It is found in analysis that C12 is negative.

For symmetrical coupled lines (the strips having the same width) the per
unit length even- and odd-mode capacitances, as defined in the definition of
odd and even modes in Section 5.2, are

Ce = C11 + C12 and Co = C11 − C12. (5.29)

That is, C =

[

C11 C12

C12 C22

]

=

[ 1
2 (Ce + Co)

1
2 (Ce − Co)

1
2 (Ce − Co)

1
2 (Ce + Co)

]

. (5.30)
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5.4.1 Capacitance Matrix Extraction

This section describes a general procedure for the extraction of the
capacitance matrix of a number of coupled conductors [1]. Either
measurements or measurement-like simulations can be used. This is done
by evaluating one capacitance at a time for different connections of
interconnects to each other.

Without loss of generality, consider the three-line structure shown in
Figure 5-7, where there are four conductors, including ground. A 3 × 3
capacitance matrix is extracted from the capacitances of pairs of connected
conductors. There are seven possible combinations, as shown on the left-
hand side of Figure 5-8. However, because of reciprocity, Cij = Cji, there are
only six capacitances (C11, C12, C13, C22, C23, and C33) to be determined, and
only six sets of connections are required. The seventh set serves as a check.
In an EM simulation, the connections are conveniently realized by holding

the black group at one voltage (e.g., 1 V) and the white group at 0 V. The
corresponding capacitance connections are shown on the right in the figure:
the seven individual capacitance measurements areCA, CB , CC , CD , CE , CF ,
and CG. Thus the elements of the capacitance matrix are

C11 = C′
11 + C′

12 + C′
13 C12 = C21 = −C′

12

C22 = C′
22 + C′

12 + C′
23 C13 = C31 = −C′

13

C33 = C′
33 + C′

13 + C′
23 C23 = C32 = −C′

23







. (5.31)

Figure 5-7: Three-line struc-
ture with four conductors
labeled 1, 2, 3, and 4. (a) Coupled lines (b) Capacitance model

Figure 5-8: Combinations of conductors
leading to various capacitance measure-
ments. The capacitances CA, . . . , CG are
measured between the conductor identified
by the open square and the ground that is
connected to the conductors, indicated by
the closed squares.

CA = C′
11 + C′

12 + C′
13

CB = C′
22 + C′

12 + C′
23

CC = C′
33 + C′

13 + C′
23

CD = C′
11 + C′

13 + C′
22 + C′

23

CE = C′
11 + C′

12 + C′
23 + C′

33

CF = C′
22 + C′

12 + C′
13 + C′

33

CG = C′
11 + C′

22 + C′
33
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Using the first six measurements in Figure 5-8,

CA = C11 CD = C11 + 2C12 + C22

CB = C22 CE = C11 + 2C13 + C33

CC = C33 CF = C22 + 2C23 + C33







. (5.32)

Thus
C11 = CA C12 = C21 = 1

2 (CD − CA − CB)
C22 = CB C13 = C31 = 1

2 (CE − CA − CC)
C33 = CC C23 = C32 = 1

2 (CF − CB − CC)







. (5.33)

This extraction does not require the widths of the strips to be the same.

5.5 Symmetric Coupled Transmission Lines

In this section, even and odd modes are considered as defining independent
transmission lines. The development is restricted to a symmetrical pair of
coupled lines; that is, each transmission line of the pair is identical. Thus the
strips have the same self-inductance, Ls = L11 = L22, and self-capacitance,
Cs = C11 = C22, where the subscript s stands for “self.” Lm = L12 = L21

and Cm = C12 = C21 are the mutual inductance and capacitance of the lines,
and the subscript m stands for “mutual.” Equations (5.6)–(5.9) can thus be
written as

dV1(x)

dx
= −ωLsI1(x)− ωLmI2(x) (5.34)

dV2(x)

dx
= −ωLmI1(x) − ωLsI2(x) (5.35)

dI1(x)

dx
= −ωCsV1(x) − ωCmV2(x) (5.36)

dI2(x)

dx
= −ωCmV1(x) − ωCsV2(x). (5.37)

The even mode is defined as the mode corresponding to both conductors
being at the same potential and carrying the same currents:3

V1 = V2 = Ve and I1 = I2 = Ie. (5.38)

The odd mode is defined as the mode corresponding to the conductors
being at opposite potentials relative to the reference conductor and carrying
currents of equal amplitude but of opposite sign:4

V1 = −V2 = Vo and I1 = −I2 = Io. (5.39)

The characteristics of the two possible modes of the coupled transmission
lines are now described. For the even mode, from Equations (5.34) and (5.35),

d

dx
[V1(x) + V2(x)] = −ω [Lm + Ls] [I1(x) + I2(x)] , (5.40)

which becomes

dVe(x)

dx
= −ω (Ls + Lm) Ie(x). (5.41)

3 Here Ie = (I1 + I2)/2 and Ve = (V1 + V2)/2. The reason for the supposedly equally valid
definition Ie = I1 + I2 not being used is that the adopted definition results in the desirable
form of the even-mode characteristic impedance.

4 Here Io = (I1 − I2)/2 and Vo = (V1 − V2)/2.
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Similarly, using Equations (5.36) and (5.37),

d

dx
[I1(x) + I2(x)] = −ω (Cs + Cm) [V1(x) + V2(x)] , (5.42)

which in turn becomes

dIe(x)

dx
= −ω (Cs + Cm)Ve(x). (5.43)

Defining the even-mode inductance and capacitance, Le and Ce,
respectively, as

Le = Ls + Lm = L11 + L12 and Ce = Cs + Cm = C11 + C12 (5.44)

leads to the even-mode telegrapher’s equations:

dVe(x)

dx
= −ω LeIe(x) (5.45) and

dIe(x)

dx
= −ω CeVe(x). (5.46)

From these, the even-mode characteristic impedance can be found,

Z0e =

√

Le

Ce
=

√

Ls + Lm

Cs + Cm
, (5.47)

and also the even-mode phase velocity,

vpe =
1√
LeCe

. (5.48)

The characteristics of the odd-mode operation of the coupled transmission
line can be determined in a similar procedure to that used for the even
mode. Using Equations (5.34)–(5.37), the odd-mode telegrapher’s equations
become

dVo(x)

dx
= −ω (Ls − Lm) Io(x)

(5.49)

and
dIo(x)

dx
= −ω (Cs − Cm)Vo(x).

(5.50)

Defining Lo and Co for the odd mode such that

Lo = Ls − Lm = L11 − L12 and Co = Cs − Cm = C11 − C12, (5.51)

then the odd-mode characteristic impedance is

Z0o =

√

Lo

Co
=

√

Ls − Lm

Cs − Cm
(5.52)

and the odd-mode phase velocity is

vpo =
1√
LoCo

. (5.53)

Now for a sanity check. If the individual strips are widely separated, Lm

and Cm will become very small and Z0e and Z0o will be almost equal. As the
strips become closer, Lm and Cm will become larger and Z0e and Z0o will
diverge. This is as expected.
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5.5.1 Odd-Mode and Even-Mode Capacitances

The previous section used the even- and odd-mode capacitances for two
coupled microstrip lines with the strips having equal cross section so that
each strip had the same self-capacitances. In this section this restriction
is removed and the results apply to any pair of coupled lines in any
technology and of any cross section. The results enable the capacitances of
the capacitance matrix to be determined from calculations of the charges on
the lines. Repeating Equations (5.22) and (5.23),

Q1 = C11V1 + C12V2 and Q2 = C21V1 + C22V2, (5.54)

the capacitance matrix is

C =

[

C11 C12

C21 C22

]

. (5.55)

In the even mode V1 = V2 = Ve and so the even-mode charges on strip 1 and
strip 2 are

Q1e = (C11 + C12)Ve and Q2e = (C21 + C22)Ve, (5.56)

respectively. Defining the even-mode charge as

Qe = (Q1e +Q2e) /2, (5.57)

then the even-mode charge becomes

Qe = Ve(C11 + C22 + C12 + C21)/2. (5.58)

This leads to the even-mode per unit length capacitance,

Ce = Qe/Ve = (C11 + C22 + C12 + C21)/2. (5.59)

Similarly, in the odd mode, Vo = V1 = −V2, and the odd-mode charges on
strip 1 and strip 2 are

Q1o = (C11 − C12)Vo and Q2o = (C21 − C22)Vo, (5.60)

respectively. The odd-mode charge is then

Qo = (Q1o −Q2o) /2 = (C11 + C22 − C12 − C21) Vo/2. (5.61)

The odd-mode capacitance is

Co = Qo/Vo = (C11 + C22 − C12 − C21)/2. (5.62)

EXAMPLE 5.1 Parallel Line Capacitance

EM software can be used to determine the even- and odd-mode parameters of a coupled
line. This is usually done by setting the phasor voltages on the coupled line and evaluating
the phasor charges. Consider a pair of coupled microstrip lines as in Figure 5-4. The voltage
applied to the left strip is designated as V1 and the voltage applied to the right strip is V2.
The phasor charge on the strips are Q1 and Q2, respectively. The analysis is repeated, but this
time with the substrate removed, and so establishing the free-space situation. In this case the
charges are denoted by Q01 and Q02. The matrix of (computer-based) measurements is as
follows:

Case V1 (V) V2 (V) Q1 (pC/m) Q2 (pC/m) Q01 (pC/m) Q02 (pC/m)

A 1 −1 70 −80 22.2 −24.7
B 1 1 30 40 2.82 5.32

(a) What is the two-port capacitance matrix?
(b) What is the even-mode capacitance?
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(c) What is the odd-mode capacitance?
(d) What is the free-space (no dielectric) two-port capacitance matrix?
(e) What is the free-space even-mode capacitance?
(f) What is the free-space odd-mode capacitance?
(g) What is the even-mode effective relative permittivity?
(h) What is the odd-mode effective relative permittivity?
(i) Note that both the odd mode and even mode are TEM modes, so the phase velocity in

the free-space situation is c. Determine the odd-mode and even-mode inductances per
unit length in free space.

(j) Note that the inductances do not change when the dielectric is replaced. What is the
even-mode impedance?

(k) What is the odd-mode impedance?
(l) What is the even-mode phase velocity?

(m) What is the odd-mode phase velocity?

Solution:

(a) Begin by considering the cross section of a coupled
line shown to the right and use the basic equations
relating the charges on the line to the voltages on
them:

Q1 = C11V1 + C12V2 and Q2 = C21V1 +C22V2,

and consider two sets of voltage conditions.

Case A: This is the odd excitation, V1 = 1 V and V2 = −1 V and the charges are

Q1A = C11 − C12 (5.63) and Q2A = C21 − C22. (5.64)

Case B: This is the even excitation, V1 = V2 = 1 V and the charges are

Q1B = C11 + C12 (5.65) and Q2B = C21 + C22. (5.66)

Adding Equations (5.63) and (5.65) results in

Q1A +Q1B = 2C11, thus C11 = 1
2
(Q1A +Q1B) = (70 + 30)/2 pF/m = 50 pF.

(5.67)

Subtracting Equation (5.63) from Equation (5.65) yields

Q1B −Q1A = 2C12, thus C12 = 1
2
(Q1B −Q1A) =

1
2
(30− 70) pF/m = −20 pF/m.

(5.68)

Because of reciprocity, C21 = C12 = −20 pF/m.
Subtracting Equation (5.64) from Equation (5.66) results in

Q2B −Q2A = 2C22, thus C22 = 1
2
(Q2B −Q2A) =

1
2
(40 + 80) pF/m = 60 pF/m.

(5.69)

Thus the per unit length capacitance matrix of the coupled line is

C =

[

C11 C21

C12 C22

]

=

[

50 −20
−20 60

]

pF/m. (5.70)

(b) Even-mode capacitance, Ce:
The even mode has V1 = V2 and the even-mode voltage is Ve = (V1 + V2)/2.
The even-mode charge is Qe = (Q1 +Q2)/2 = (30 + 40)/2 pC/m = 35 pC/m, so

Ce = Qe/Ve = 35 pF/m. (5.71)
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(c) Odd-mode capacitance, Co:
The odd-mode voltage is Vo = (V1 − V2)/2 and the odd-mode charge is Qo =
(Q1 −Q2)/2. With V1 = +1V and V2 = −1V, V0 = 1,

Qo = 1
2
[70− (−80)] pC/m = 75 pC/m, thus Co = Q0/V0 = 75 pF/m. (5.72)

(d) Using a similar procedure to that in (a), but now using the free-space charge calculations,
Q01 and Q02 results in the unit capacitance matrix:

C0 =

[

12.5 −9.69
−9.69 15.0

]

pF/m. (5.73)

(e) Ce0 = 4.07 pF/m.
(f) Co0 = 23.5 pF/m.
(g) εre = Ce/Ce0 = 35/4.07 = 8.6.
(h) εro = Co/Co0 = 75/23.5 = 3.2.

(i) Phase velocity, vp = 1
/√

LC . With no dielectric, the phase velocity is c:

vp = c = 1
/√

L0C0 → L0 = 1
/(

c2C0

)

,

and the odd-mode free-space inductance is

Lo0 = 1
/(

c2Co0

)

= 1
/[

(

3 · 108
)2

23.5 · 10−12
]

H/m = 473 nH/m. (5.74)

The free-space even-mode inductance is

Le0 = 1
/(

c2Ce0

)

= 1
/[

(

3 · 108
)2 · 4.07 · 10−12

]

H/m = 2.73 µH/m. (5.75)

(j) Z0 =
√

L0/C0 ; Lo = Lo0 Z0 =
√

473 · 10−9
/

(75 · 10−12) Ω = 79.4 Ω.

(k) Ze =
√

Le/Ce ⇒ Ze =
√

2.73 · 10−6
/

(35 · 10−12) Ω = 279 Ω.

(l) vpe = 1
/√

LeCe = (2.73 · 10−6 · 35 · 10−12)−
1
2 = 1.023 · 108 m/s.

(m) vpo = 1
/√

LoCo = (473 · 10−9 · 75 · 10−12)−
1
2 = 1.68 · 108 m/s.

5.6 Formulas for Characteristic Impedance of Coupled
Microstrip Lines

Formulas for the characteristic impedance and effective permittivity of sym-
metric coupled microstrip lines, with the cross section shown in Figure 5-9,
were developed by Hammerstad and Jensen [2] based on the concept of even
and odd modes. The formulas are accurate to better than 1% for 0.1 ≤ u ≤ 10
and g > 0.01, where u is the normalized width, and g is the normalized gap:

u = w/h, g = s/h. (5.76)

In the following, Z0 and εe refer to the characteristic impedance and
effective permittivity of an individual microstrip line with a normalized
width of u on a substrate with a relative dielectric constant of εr.

Figure 5-9: Cross section of sym-
metrically coupled microstrip
lines.
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5.6.1 Even-Mode Coupled-Line Parameters

The even-mode characteristic impedance is

Z0e(u, g) = Z01e(u, g)/
√

εee(u, g, εr), (5.77)

where εee is the effective relative permittivity of the even mode and Z01e is
the even-mode characteristic impedance with the dielectric replaced by free
space:

Z01e(u, g) =
Z0(u)

1− Z0(u)φe(u, g)/η0
, (5.78)

where φe(u, g) =
ϕ(u)

ψ(g)
{

α(g)um(g) + [1− α(g)] u−m(g)
} (5.79)

and η0 = 376.73 Ω ≈ 377 Ω is the characteristic impedance of a TEM wave
in a vacuum (i.e., free space). Now Z0(u) is the free-space characteristic
impedance of an individual microstrip line and is given by Equation (3.21).
In Equations (5.77) and (5.78), the effective permittivity of the even mode is

εee(u, g, εr) =
εr + 1

2
+

εr − 1

2
Fe(u, g, εr), (5.80)

where

Fe(u, g, εr) =

[

1 +
10

µ(u, g)

]−a(u)b(εr)

(5.81)

a(u) = 1 +
1

49
ln

[

u4 + {u/52}2
u4 + 0.432

]

+
1

18.7
ln

[

1 +
( u

18.1

)3
]

(5.82)

b(ǫr) = 0.564

[

ǫr − 0.9

ǫr + 3

]0.053

(5.83)

ϕ(u) = 0.8645u0.172 (5.84)

ψ(g) = 1 +
g

1.45
+

g2.09

3.95
(5.85)

α(g) = 0.5 exp (−g) (5.86)

m(g) = 0.2175 +

[

4.113 +

(

20.36

g

)6
]−0.251

+
1

323
ln

[

g10

1 + (g/13.8)10

]

(5.87)

µ(u, g) = g exp (−g) +
u(20 + g2)

10 + g2
. (5.88)

5.6.2 Odd-Mode Coupled-Line Parameters

The odd-mode characteristic impedance is

Z0o(u, g) = Z01o(u, g)/
√

εeo(u, g, εr), (5.89)

where εeo is the effective relative permittivity of the odd mode and Z01o is
the odd-mode characteristic impedance with the dielectric replaced by free-
space:

Z01o(u, g) =
Z0(u)

1− Z0(u)φo(u, g)/η0
. (5.90)
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Z0(u) is the free-space characteristic impedance of an individual microstrip
line and is given by Equation (3.21). In Equations (5.89) and (5.90), the
effective permittivity of the odd mode is

εeo(u, g, εr) =
εr + 1

2
+

εr − 1

2
Fo(u, g, εr), (5.91)

where

Fo(u, g, εr) = fo(u, g, εr) (1 + 10/u)
−a(u)b(εr) (5.92)

φo(u, g) = φe(u, g)−
θ(g)

ψ(g)
exp

[

β(g)un(g) ln (u)
]

(5.93)

θ(g) = 1.729 + 1.175 ln

(

1 +
0.627

g + 0.327g2.17

)

(5.94)

β(g) = 0.2306 +
1

301.8
ln

[

g10

1 + (g/3.73)10

]

+
1

5.3
ln
(

1 + 0.646g1.175
)

(5.95)

n(g) =

{

1

17.7
+ exp

[

−6.424− 0.76 ln (g)− (g/0.23)5
]

}

× ln

(

10 + 68.3g2

1 + 32.5g3.093

)

(5.96)

fo(u, g, εr) = fo1(g, εr) exp

[

p(g) ln (u) + q(g) sin

(

π
lnu

ln 10

)]

(5.97)

p(g) = exp
(

−0.745g0.295
)

/cosh
(

g0.68
)

(5.98)

fo1(g, εr) = 1− exp

{

−0.179g0.15 − 0.328gr(g,εr)

ln [exp (1) + (g/7)2.8]

}

(5.99)

r(g, εr) = 1 + 0.15

{

1− exp
[

1− (εr − 1)2/8.2
]

1 + g−6

}

(5.100)

q(g) = exp (−1.366− g), (5.101)

and a(u), b(εr), and ψ(g) are the same as for the even mode (see Section 5.6.1).

5.6.3 System Impedance of Coupled Lines

The system impedance of a pair of coupled lines is

Z0S =
√

Z0eZ0o. (5.102)

This is derived in Section 5.7.1 where it is shown that there will be no odd-
mode reflections, and even-mode reflections will be small, at the ports of
a symmetrical coupled-line pair if each line of the directional coupler is
terminated in an impedance Z0S . That is, Z0S is the impedance required
for matching. Z0 is the characteristic impedance of an individual line of the
symmetrical coupled-line pair (when there is no coupling) and is only close
to Z0S when the separation, s, of the lines is large.

5.6.4 Discussion

Normalized even- and odd-mode characteristic impedances of a pair of
coupled lines are plotted in Figure 5-10 for various normalized widths u
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Figure 5-10: Normalized even-
mode and odd-mode characteristic
impedances of a pair of coupled
microstrip lines (ǫr = 10).

(= w/h) and as a function of normalized gap width g (= s/h). This plot
illustrates the utility of using even- and odd-mode descriptions. In Figure 5-
10, the even- and odd-mode impedances are normalized to the characteristic
impedance of an individual line, Z0. When the lines are far apart (i.e., g is
large), the even- and odd-mode impedances converge to the characteristic
impedance of a single line. As the lines get closer, the gap narrows, and the
even- and odd-mode impedances diverge in opposite directions. To obtain
the characteristic impedances of a coupled line the characteristic impedance
of a single microstrip line must be found. This was given in Section 3.5.3 and
the key result is repeated in Figure 5-11.

In the even mode, more of the field is in the dielectric than with the odd
mode. It is therefore not surprising that the effective permittivities of the two
modes differ. The normalized coupled-line effective permittivities are shown
in Figure 5-12. The deviation of the even- and odd-mode permittivities as
the gap between the lines narrows is not as large as the change in the
characteristic impedance. Also, there is a difference in the phase velocities
of the two modes along the line, and this has an appreciable effect on
the performance of components such as filters that use coupled lines as a
functional component. At the first reading of the plot (Figure 5-12) it would
seem that there is nonmonotonic behavior at low g. This is an artifact of
the normalization used, and the unnormalized permittivities are indeed
monotonic with respect to both u and g.

Figure 5-13 plots, as a function of normalized separation, g, and for
substrate permittivities ranging from 4 to 20, the even-mode and odd-mode
characteristic impedances normalized to the characteristic impedance of a
single strip for extremes of normalized widths (u = 0.5 and u = 5). The
figure highlights that the split of the even- and odd-mode characteristic
impedances is almost solely dependent on geometry (i.e., the separation of
the strips) and not the permittivity of the substrate. In the figure appropriate
normalization is used to highlight this fact. There are four families of curves,
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Figure 5-11:
Normalized
characteristic
impedance and
normalized
effective per-
mittivity of a
microstrip line
as a function of
u = w/h. For
example, if u = 1
and εr = 10, then
from the figure,
Z0

√
εe = 126 Ω

and εe/εr =
0.671; thus
Z0 = 48.6 Ω and
εe = 6.71.

Figure 5-12: Normalized even-mode
and odd-mode effective permittivity
of a pair of coupled microstrip lines.
The effective permittivity of an indi-
vidual microstrip line with the same
normalized width u is εe.

two for the even-mode characteristic impedances and two for the odd-mode
characteristic impedances. Each family comprises the results for three widely
different permittivities of the dielectric (specifically εr = 4, 10, and 20).
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Figure 5-13: Normalized even-
mode and odd-mode characteristic
impedances of a pair of coupled
microstrip lines for extremes of
u. Each family of three curves is
for εr = 4, 10, and 20. Z0 is the
characteristic impedance of an
individual microstrip line with the
same normalized width, u = w/h.
The strips have equal width.

EXAMPLE 5.2 Even- and Odd-Mode Parameters

A coupled line is constructed on an alumina substrate of thickness 500 µm and relative
permittivity εr = 10. The lines are 500 µm wide and the gap separation is 250 µm. What
are the even- and odd-mode characteristic impedances and effective permittivities of the
coupled line?

Solution:

The odd-mode characteristic impedance, Z0o, and even-mode characteristic impedance, Z0e,
can be found using Figures 5-10 and 5-11. Now

u = w/h = (500 µm)/(500 µm) = 1 and g = s/h = (250 µm)/(500 µm) = 0.5.

From Figure 5-10,

Z0e/Z0 = 1.21 and Z0o/Z0 = 0.76, (5.103)

where Z0 is the characteristic impedance of an individual line. From Figure 5-11, and using
the curve for εr = 10,

εe/εr = 0.671, and so εe = 10× 0.671 = 6.71. (5.104)

Also from Figure 5-11,

Z0
√
εe = 126, and so Z0 = 126/

√
6.71 = 48.6 Ω. (5.105)

Consequently, combining Equations (5.103) and (5.105),

Z0o = 37 Ω and Z0e = 59 Ω. (5.106)

The effective odd-mode and even-mode permittivities are obtained from Figure 5-12. The
normalized even-mode effective permittivity is εee/εe = 1.086 and the normalized odd-
mode effective permittivity is εeo/εe = 0.868. Since εe = 6.71, the final result is

εee = 7.28 and εeo = 5.82.
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(a) (b) (c)

Figure 5-14: Terminated
coupled lines: (a) with
a load described by the
y-parameter matrix Y ; (b)
symmetrical loads; (c) loads
considered in example.

5.6.5 Summary

This section presented formulas and graphs for determining the frequency-
independent parameters of coupled lines given their dimensions. Frequency
dependence of these electrical parameters are discussed in [3, 4]. The effect
of finite metallization thickness is also discussed in [3]. Synthesis of coupled
lines, i.e. determining their physical dimensions given their desired electrical
parameters, is undertaken in the context of their use and is generally based
on approximate, but reasonably accurate, models of a pair of coupled lines.
This will be considered in Section 5.9.

5.7 Terminated Coupled Lines

A pair of coupled lines supports even and odd modes and these can be
coupled by the terminations at the end of a line. Thus at a termination,
such as that shown in Figure 5-14(a), where the termination is general and
represented by a port-based admittance matrix Y , the reflected even and odd
modes will have contributions from both incident even and odd modes:

V −
e = ΓLeV

+
e + CeoV

+
o and V −

o = ΓLoV
+
o + CoeV

+
e (5.107)

where ΓLe and ΓLo are even- and odd-mode reflection coefficients and Coe

and Ceo describe coupling first from the odd mode to the even mode and
then from the even mode to the odd mode. The derivation of the reflection
coefficients and coupling coefficients is left for an example at the end of this
section. The summary results are

ΓLe =
2 + Z0oY∆ − Z0eYΣ − 2Z0eZ0oYD

2 + Z0oY∆ + Z0eYΣ + 2Z0eZ0oYD
(5.108)

Ceo =
2Z0eYE

2 + Z0oY∆ + Z0eYΣ + 2Z0eZ0oYD
= −Coe (5.109)

ΓLo =
1 + Z0o(y12 + y21)− Z0eZ0oYD

1 + Z0oY∆ + Z0eYΣ + Z0eZ0oYD
(5.110)

where YΣ = (y11 + y12 + y21 + y22), Y∆ = (y11 − y12 − y21 + y22)
YD = (y11y22 − y12y21) and YE = (y11 − y12 + y21 − y22).

}

(5.111)

Controlling the coupling can be used in filter design based on parallel
coupled lines.

5.7.1 Reflectionless Condition

In design of many coupled line sections it is important to minimize
reflections of coupled lines. One quasi-reflectionless condition is to terminate
individual lines of the coupled line in the system reference impedance
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Z0S =
√
Z0eZ0o. Then y11 = 1/Z0S = y22, and y12 = 0 = y21 and

referring to Equation (5.111), YΣ = Y∆ = 2/Z0S = 2/
√
Z0eZ0o, YE = 0,

and YD = 1/Z0eZ0o and Equation (5.108) becomes

ΓLe =
2 + 2

√
Z0oZ0e − 2

√
Z0eZ0o − 2

2 + 2
√
Z0oZ0e + 2

√
Z0eZ0o + 2

=

√
Z0oZ0e − 2

√
Z0eZ0o

2 +
√
Z0oZ0e +

√
Z0eZ0o

(5.112)

which is small and

ΓLo =
1 + 0− 1

D
= 0. (5.113)

Also note that the mode couplings Coe and Coe are both zero. So terminating
the individual lines of a pair of coupled lines in Z0S results in the odd-mode
reflection coefficient ΓLo being zero and the odd-mode reflection coefficient
ΓLo being small.

The even and odd-mode reflection coefficients can both be set to zero by
simultaneously setting the numerators of Equations (5.108) and (5.108) to
zero while maintaining symmetry, i.e. y11 = y22, and because of reciprocity
y12 = y21 thus ensuring that YE = 0 and coupling is zero.

EXAMPLE 5.3 Reflection at the End of a Pair of Coupled Lines

A pair of coupled lines with even- and odd-mode characteristic impedances Z0e and Z0o

respectively is loaded as shown in Figure 5-14(a) where the load has the two-port y-
parameter matrix, Y . Find the even and odd-mode reflections.

Solution:

The analysis begins by writing out the expressions relating the traveling-wave and total
voltages and currents at the termination.

Ve = 1
2
(V1 + V2) Vo = 1

2
(V1 − V2) Ie = 1

2
(I1 + I2) Io = 1

2
(I1 − I2)

V1 = (V +
1 + V −

1 ) V2 = (V +
2 + V −

2 ) I1 = (I+1 + I−1 ) I2 = (I+2 + I−2 )
V +
1 = (V +

e + V +
o ) V +

2 = (V +
e − V +

o ) I+1 = (I+e + I+o ) I+2 = (I−e − I+o )
V −
1 = (V −

e + V −
o ) V −

2 = (V −
e − V −

o ) I−1 = (I−e + I−o ) I−2 = (I−e − I−o )
I+e = V +

e /Z0e I−e = −V −
e /Z0e I+o = V +

o /Z0e I−o = −V −
o /Z0o

At the termination
[

I1
I2

]

=

[

I+e + I+o + I−e + I−o
I+e − I+o + I−e − I−o

]

= Y

[

V1

V2

]

=

[

y11 y12
y21 y22

] [

V1

V2

]

[

(V +
e − V −

e )/Z0e + (V +
o − V −

o )/Z0o

(V +
e − V −

e )/Z0e − (V +
o − V −

o )/Z0o

]

=

[

y11 y12
y21 y22

] [

V +
e + V +

o + V −
e + V −

o

V +
e − V +

o + V −
e − V −

o

]

(5.114)

The reflected even and odd modes have contributions from incident even and odd modes:

V −
e = ΓLeV

+
e +CeoV

+
o and V −

o = ΓLoV
+
o + CoeV

+
e (5.115)

where ΓLe and ΓLo are even- and odd-mode reflection coefficients, Coe and Ceo describe
coupling, and

ΓLe =
V −
e

V +
e

∣

∣

∣

∣

V +
o =0

,ΓLo =
V −
o

V +
o

∣

∣

∣

∣

V +
e =0

, Ceo =
V −
e

V +
o

∣

∣

∣

∣

V +
e =0

and Coe =
V −
o

V +
e

∣

∣

∣

∣

V +
o =0

. (5.116)

ΓLe and Ceo are obtained by expanding Equation (5.114) with V +
o = 0:
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(V +
e − V −

e )/Z0e − V −
o /Z0o = y11

(

V +
e + V −

e + V −
o

)

+ y12
(

V +
e + V −

e − V −
o

)

i.e.
V −
e

Z0e
(1 + y11Z0e + y12Z0e) =

V +
e

Z0e
(1− y11Z0e − y12Z0e)−

V −
o

Z0o
(1 + y11Z0o − y12Z0o)

(5.117)

(V +
e − V −

e )/Z0e + V −
o )/Z0o = y21

(

V +
e + V −

e + V −
o

)

+ y22
(

V +
e + V −

e − V −
o

)

i.e.
V −
o

Z0o
(−1 + y21Z0o − y22Z0o) =

V +
e

Z0e
(1− y21Z0e − y22Z0e) +

V −
e

Z0e
(−1− y21Z0e − y22Z0e)

(5.118)

ΓLe is obtained by eliminating V −
o by multiplying Equation (5.118) by (1+ y11Z0o − y12Z0o)

and subtracting it from Equation (5.117) multiplied by (−1 + y21Z0o − y22Z0o):

V −
e

a

Z0e
= V +

e
b

Z0e

∣

∣

∣

∣

V +
o =0

. Thus ΓLe =
b

a
(5.119)

where

a =(1 + y11Z0e + y12Z0e)(−1 + y21Z0o − y22Z0o)−(1 + y21Z0e + y22Z0e)(1 + y11Z0o − y12Z0o)

= −2− Z0oY∆ − Z0eYΣ − 2Z0eZ0oYD (5.120)

b = (1− y11Z0e − y12Z0e)(−1 + y21Z0o − y22Z0o)−(1− y21Z0e − y22Z0e)(1 + y11Z0o − y12Z0o)

= −2− Z0oY∆ + Z0eYΣ + 2Z0eZ0oYD (5.121)

YΣ = (y11 + y12 + y21 + y22), Y∆ = (y11 − y12 − y21 + y22), and YD = (y11y22 − y12y21)
(5.122)

ΓLe =
b

a
=

2 + Z0oY∆ − Z0eYΣ − 2Z0eZ0oYD

2 + Z0oY∆ + Z0eYΣ + 2Z0eZ0oYD
(5.123)

As a sanity check, if the load is symmetrical y11 = y22 = YL = 1/ZL, the differential load
impedance is infinite y12 = 0 = y21, if the lines are far apart Z0e = Z0o = Z0, then YΣ = 2YL,
Y∆ = 2YL, and YD = Y 2

L and Equation (5.123) becomes

ΓLe =
2 + 2Z0YL − 2Z0YL − 2Z2

0Y
2
L

2 + 2Z0YL + 2Z0YL + 2Z2
0Y

2
L

=
1− Z2

0Y
2
L

1 + 2Z0YL + Z2
0Y

2
L

=
(1− Z0YL)(1 + Z0YL)

(1 + Z0YL)(1 + Z0YL)

=
1− Z0YL

1 + Z0YL
=

ZL − Z0

ZL + Z0
. (5.124)

This is the reflection coefficient of a transmission line of characteristic impedance Z0

terminated in a load ZL as expected.

Find Ceo by expanding Equation (5.114) with V +
e = 0:

−V −
e /Z0e + (V +

o − V −
o )/Z0o = y11

(

V +
o + V −

e + V −
o

)

+ y12
(

−V +
o + V −

e − V −
o

)

i.e.
V −
e

Z0e
(1 + y11Z0e + y12Z0e) =

V +
o

Z0o
(1− y11Z0o + y12Z0o)− V −

o

Z0o
(1 + y11Z0o − y12Z0o)

(5.125)

−V −
e /Z0e − (V +

o − V −
o )/Z0o = y21

(

+V +
o + V −

e + V −
o

)

+ y22
(

−V +
o + V −

e − V −
o

)

i.e.
V −
o

Z0o
(−1 + y21Z0o − y22Z0o) = −V +

o

Z0o
(1 + y21Z0o − y22Z0o)− V −

e

Z0e
(1 + y21Z0e + y22Z0e)

(5.126)

To eliminate V −
o multiply Equation (5.126) by (1 + y11Z0o − y12Z0o) and subtract it from

Equation (5.125) multiplied by (−1 + y21Z0o − y22Z0o):

V −
e

Z0e
a =

V +
o

Z0o
c so that Ceo =

c

a

Z0e

Z0o
(5.127)

where a is as in Equation (5.120) and
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c = (1− y11Z0o + y12Z0o)(−1 + y21Z0o − y22Z0o)+(1 + y21Z0o − y22Z0o)(1 + y11Z0o − y12Z0o)

= −2Z0oYE where YE = (y11 − y12 + y21 − y22). (5.128)

Ceo =
2Z0oYE

2 + Z0oY∆ + Z0eYΣ + 2Z0eZ0oYD
(5.129)

Now for a sanity check. If the load is symmetrical y11 = y22 and y12 = y21, then YE = 0
and Ceo = 0 indicating that a signal is not converted from odd mode to even mode with
reflection from a symmetrical load, as expected.

The analysis is now repeated to find ΓLo and Coe. ΓLo is found by eliminating V −
e from

Equations (5.125) and (5.126) by multiplying Equation (5.126) by (1 + y11Z0e + y12Z0e) and
subtracting it from Equation (5.125) multiplied by (1 + y21Z0e + y22Z0e):

V +
o

Z0o
d =

V −
o

Z0o
e

∣

∣

∣

∣

V +
e =0

and ΓLo =
V −
o

V +
o

∣

∣

∣

∣

V +
e =0

=
d

e
(5.130)

d = (1− y11Z0o + y12Z0o) (1 + y21Z0e + y22Z0e)+(1 + y21Z0o − y22Z0o) (1 + y11Z0e + y12Z0e)

= 2 + 2Z0o(y12 + y21)− 2Z0eZ0oYD (5.131)

e = (1 + y11Z0o − y12Z0o) (1 + y21Z0e + y22Z0e)−(−1 + y21Z0o − y22Z0o) (1 + y11Z0e + y12Z0e)

= 2 + 2Z0oY∆ + 2Z0eYΣ + 2Z0eZ0oYD (5.132)

ΓLo =
1 + Z0o(y12 + y21)− Z0eZ0oYD

1 + Z0oY∆ + Z0eYΣ + Z0eZ0oYD
. (5.133)

Coe is found by eliminating V −
e achieved by multiplying Equation (5.118) by (1+ y11Z0e +

y12Z0e) and subtracting it from Equation (5.117) multiplied by (1 + y21Z0e + y22Z0e):

V −
o

f

Z0o
= V +

e
g

Z0e

∣

∣

∣

∣

V +
o =0

. Thus Coe =
g

f

Z0o

Z0e
where (5.134)

g = −(1− y11Z0e − y12Z0e)(1 + y21Z0e + y22Z0e)+(1− y21Z0e − y22Z0e)(1 + y11Z0e + y12Z0e)

= 2Z0e(y11 + y12 − y21 − y22) = 2Z0eYE (5.135)

f = −(1 + y11Z0o − y12Z0o)(1 + y21Z0e + y22Z0e)+(−1 + y21Z0e − y22Z0e)(1 + y11Z0e + y12Z0e)

= −2− Z0oY∆ − Z0eYΣ − 2Z0eZ0oYD (5.136)

Coe =
−2Z0oYE

2 + Z0oY∆ − Z0eYΣ + 2Z0eZ0oYD
= −Ceo. (5.137)

EXAMPLE 5.4 Even and Odd Mode Loads

A pair of coupled lines is loaded as shown in Figure 5-14(a). The even-mode characteristic
impedance is Z0e = 90 Ω and the odd-mode characteristic impedance is Z0o = 45 Ω.

(a) What is the even-mode reflection coefficient?
To simplify calculations let the forward-traveling even-mode voltage at the load
Ve+ = 1 V, and there is no forward-traveling odd-mode voltage. V −

e and V −
o are

the backward-traveling even- and odd-mode voltages and Ie+, I−e and I−o are the
corresponding currents. At Port 1

I1 = 1
60
V1 = V +

e + V +
o + V −

e + V −
o = 1

60
(1 + 0 + V −

e + Vo−)

I1 = I+e + I+o + I−e + I−o =
V +
e

Z0e
+ 0− V −

e

Z0e
− V −

o

Z0o
=

1

90
− V −

e

90
− V −

o

45

Equating these and multiplying by 180 1 + 5V −
e + 7Vo− = 0 (5.138)
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At Port 2

I2 = 1
100V1 = 1

100 (V
−
e V +

o + V −
e − Vo−) = 1

100 (1 + 0 + V −
e − Vo−)

I2 = I+e − I+o + I−e − Io− =
V +
e

Z0e
+ 0− V −

e

Z0e
+

V −
o

Z0o
=

1

90
− V −

e

90
+

V −
o

45

Equating these and multiplying by 900: 1− 19V −
e + 29Vo− = 0 (5.139)

Multiplying Equation (5.139) by 7 and subtracting it from Equation (5.138)
times 29:

(29− 7) + (145 + 133)V −
e + (203− 203)V −

o = 0 ⇒ V −
e = −0.07914 V

Thus ΓLe = V −
e /V +

e = V −
e /1 = −0.07914. (5.140)

Alternatively the general formula, Equation (5.108), can be used noting that
Z0e = 90 Ω, Z0e = 45 Ω, y11 = 1/60, y22 = 1/100, and y12 = 0 = y21. Then
y∆ = 0.026667 S, yΣ = 0.026667 S, yD = 0.00016667 S:

ΓLe=
2 + 45 · 0.026667− 90 · 0.026667− 2 · 45 · 90 · 0.00016667
2 + 45 · 0.026667+ 90 · 0.026667+ 2 · 45 · 90 · 0.00016667=−0.07914

(5.141)
The two evaluations of ΓLe are in agreement.

(b) What is the effective even-mode load resistance RLe?
RLe is the resistance that yields ΓLe when referred to Z0e. Thus

RLe = Z0e
1 + ΓLe

1− ΓLe
= 90

1 + (−0.07914)

1− (−0.07914)
= 76.80 Ω (5.142)

(c) What is the odd-mode reflection coefficient?
Calculating this directly using Equation (5.110):

ΓLo=
1 + 0− 45 · 90 · 0.00016667

1 + 45 · 0.026667+ 90 · 0.026667+ ·45 · 90 · 0.00016667 = 0.06180 (5.143)

(d) What is the effective odd-mode load resistance RLo?

RLo = Z0o
1 + ΓLo

1− ΓLo
= 45

1 + 0.06180

1− 0.06180
= 50.92 Ω (5.144)

5.8 Directional Coupler

Coupling can be exploited to realize a new type of element called a
directional coupler. The schematic of a directional coupler is shown in Figure
5-15(a) and a microstrip realization is shown in Figure 5-15(b). The microstrip
realization is typical of most directional couplers in that it comprises two
parallel signal lines with the electric and magnetic fields of a signal on
one line inducing currents and voltages on the other. A usable directional

(a) (b)

Figure 5-15: Directional cou-
plers: (a) schematic; and (b)
backward-coupled microstrip
coupler. (Note that not all
couplers are backward-wave
couplers as shown in (a).)
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Table 5-1: Ideal and typi-
cal parameters of a direc-
tional coupler.

Parameter Ideal Ideal (dB) Typical

Coupling, C - - 3–40 dB

Transmission, T |
√

1− 1/C2| 20 log |
√

1− 1/C2| −0.5 dB
Directivity, D ∞ ∞ 40 dB
Isolation, I ∞ ∞ 40 dB

coupler has a coupled line length of at least one-quarter wavelength, with
longer lengths of line resulting in broader bandwidth operation. Directional
couplers are used to sample a traveling wave on one line and to induce
a usually much smaller image of the wave on another line. That is, the
forward- and backward-traveling waves are separated. Here a prescribed
amount of the incident power is coupled out of the system. Thus, for
example, a 20 dB microstrip coupler is a pair of coupled microstrip lines in
which 1/100 of the power input is coupled from one microstrip line onto the
another.

Referring to Figure 5-15, a coupler is specified in terms of the following
parameters (always check the magnitude of the factors, as some papers and
books on couplers use the inverse of the C used here):

• Coupling factor:
C = V +

1 /V −
3 = inverse of the voltage fraction “transferred”

(coupled) across to the opposite arm (C > 1).
• Transmission factor ( inverse of insertion loss):

T = V −
2 /V +

1 = transmission directly through the “primary” arm
of the structure (T < 1).

• Directivity factor:
D = V −

3 /V −
4 = measure of the undesired coupling from Port 1 to

Port 4 relative to the signal level at Port 3 (D > 1).
• Isolation factor:

I = V +
1 /V −

4 = isolation between Port 4 and Port 1 (I > 1).

It is usual to quote these quantities in decibels. For example, the coupling
factor in decibels is C|dB = 20 logC. So 20 dB coupling indicates that the
coupling factor is 10. An ideal quarter-wave coupler has D = ∞ (i.e., infinite
directivity) and

C =
Z0e + Z0o

Z0e − Z0o
. (5.145)

This result comes from a detailed derivation for the case when the coupled-
line section is one-quarter wavelength long—the length when the coupling
is maximum. The derivation is given in Section 11.4 of [5]. In decibels the
coupling is

C|dB = 20 log

(

Z0e + Z0o

Z0e − Z0o

)

. (5.146)

Typical and ideal parameters of a directional coupler are given in Table
5-1. Since an ideal coupler does not dissipate power, the magnitude of the
transmission coefficient is

|T | = |
√

1− 1/C2|. (5.147)

There are many types of directional couplers, and the phases of the
traveling waves at the ports will not necessarily coincide. The microstrip



COUPLED LINES AND APPLICATIONS 229

coupler shown in Figure 5-15(b) has maximum coupling when the lines are
one-quarter wavelength long.5 At the frequency where they are one-quarter
wavelength long, the phase difference between traveling waves entering at
Port 1 and leaving at Port 2 will then be 90◦.

EXAMPLE 5.5 Directional Coupler Isolation

A lossless directional coupler has coupling C = 20 dB, transmission factor 0.8, and directivity
20 dB. What is the isolation? Express your answer in decibels.

Solution:

Coupling factor: C = V +
1 /V −

3

Transmission factor: T = V −
2 /V +

1

Directivity factor: D = V −
3 /V −

4

Isolation factor: I = V +
1 /V −

4

D = 20 dB = 10 and C = 20 dB = 10,

so the isolation is
I =

V +
1

V −
4

=
V −
3

V −
4

· V
+
1

V −
3

= D · C = 10 · 10 = 100 = 40 dB.

5.8.1 Design Equations for a Directional Coupler

In the previous section the coupling factor was expressed in terms of the
even- and odd-mode impedances. However, design starts with the specifica-
tion of the coupling level, and from this the required physical dimensions are
derived. A one-quarter wavelength long coupler will be considered, as this
is the optimum coupling length. From Equation (5.145), the desired coupling
factor is

C =
Z0e + Z0o

Z0e − Z0o
, (5.148)

where the coupling factor is an absolute voltage-referenced quantity and
usually must be derived from the coupling factor in decibels; let this be C|dB:

C = 10C|dB/20. (5.149)

The system impedance comes from

Z2
0S ≈ Z0eZ0o. (5.150)

Z0S is introduced here because Z0 is used for the characteristic impedance
of the individual lines of the coupler; note that Z0 is not equal to Z0S .
Z0S should match the characteristic impedance of the transmission lines
connected to the coupler. From these expressions, the even- and odd-mode
impedances required are

Z0e ≈ Z0S

√

C + 1

C − 1
(5.151) Z0o ≈ Z0S

√

C − 1

C + 1
, (5.152)

and the ratio of impedances is

Z0e/Z0o ≈ C + 1

C − 1
. (5.153)

5 This is shown in a detailed derivation provided in Section 11.4 of [5].
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EXAMPLE 5.6 Directional Coupler Electrical Design

Develop the electrical design of a 15 dB directional coupler in a 50 Ω system.

Solution:

The electrical design of a directional coupler comes down to determining the even-
and odd-mode characteristic impedances required. Now the coupling factor, C, is
(Z0e + Z0o) / (Z0e − Z0o) and

Z0e = Z0S

√

C + 1

C − 1
.

For a 15 dB directional coupler, C = 15 dB = 5.618 and, since Z0S = 50 Ω,

Z0e = 50

√

5.618 + 1

5.618 − 1
= 59.9 Ω and Z0o = Z2

0S

/

Z0e = 502
/

59.9 =41.7 Ω.

The above are the required electrical design parameters.

5.8.2 Directional Coupler With Lumped Capacitors

Directional couplers using only coupled transmission lines can be large at
low frequencies, as the minimum length is approximately one-quarter of a
wavelength. This can be a problem at RF and low microwave frequencies,
say, below 3 GHz. The length of the line can be reduced by incorporating
lumped elements, as shown in Figure 5-16(a). The equivalence is established
using ABCD parameters. Figure 5-16(b) shows a hybrid directional coupler
using a ferrite core, forming a magnetic transformer, to provide enhanced
coupling of the coupled lines at low frequencies with a frequency range of
1–700 MHz. At high frequencies the ferrite core is a magnetic open circuit
and the line coupling dominates.

5.8.3 Physical Design of a Pair of Coupled Lines

Equations (5.151)–(5.153) are the basic design expressions, as Z0e and Z0o

can be related to physical dimensions. When the two strips of a microstrip
directional coupler are close, the orientation of the field lines and hence
the characteristic impedances of the individual lines change. That is, the
characteristic impedance of each line on its own, Z0, will differ from the
system impedance, Z0S . For a normalized line width of u =(w/h), this effect
is shown in Figure 5-17. Here Z0S is the geometric mean of the even- and
odd-mode impedances.

Figure 5-16: Parallel coupled lines with
lumped capacitors bridging the ends to
provide compensation: (a) schematic il-
lustration; and (b) using a hybrid trans-
former to provide enhanced coupling
of the coupled lines at low frequencies
(Model GC6-2, copyright Synergy Mi-
crowave Corporation, used with permis-
sion [6]). (a) (b)
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Figure 5-17: Normalized even- and odd-
mode cvharacteristic impedances of cou-
pled microstrip lines with normalized
width, u = 0.5, versus normalized gap
spacing, g.

Microstrip coupler design proceeds as follows. The first step is to examine
the specifications and determine the substrate permittivity, εr, coupling
factor, C, and the system characteristic impedance, Z0S . From C find Z0e/Z0;
the data in Tables 5-2 and 5-3 enable some of the physical parameters to
be determined, including the normalized gap coupling parameter, g, and
the normalized strip width, u. The next step is to design the dimensions
of the individual microstrip lines connecting the directional coupler using
Table 3-3. At this stage the widths and spacings of the microstrip circuit are
normalized. Using the substrate height, these are unnormalized to obtain the
actual physical dimensions. Finally, the coupler is one-quarter wavelength
long, as this was the basis for the formula relating the even- and odd-
mode impedances to the coupling factor in Equation (5.145). The even
and odd modes have different effective permittivities and the λg/4 length
should apply to both the even and odd modes. Clearly both cannot be
satisfied. It is reasonable to use the average of the even- and odd-mode
permittivities to establish the coupler length. The length is not a very
sensitive parameter anyway. The connection of the individual lines to the
coupler is not specifically part of the synthesis described, but if designed
they should have the system characteristic impedance.

A comment on this design procedure is in order. The design procedure
above yields a narrowband directional coupler. A broadband directional
coupler, and indeed any component that is desired to have a broad
bandwidth, should be designed using filter principles. Another comment
is that the design flow is one of synthesis. An alternative procedure that is
often used is to start with an approximate design and rely on optimization
tools to obtain the desired characteristics. This works in many cases, but
does lead to novel design. Having said that, the synthesis procedure does
not yield a perfect design, as parasitic and dispersive effects are not taken
into account. Optimization from the synthesized design usually requires
only a small adjustment. In practice, the uncertainties of physical structures
(e.g., variations in the effective permittivity of actual materials) require
experimental iteration as well.
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Table 5-2: Design parameters for
coupled lines for εr = 4. The nor-
malized gap, g, is chosen to ob-
tain the desired coupled-line mode
impedance ratio, Z0e/Z0o. Data are
derived from the analysis in Sec-
tion 5.6. Z0 is the characteristic
impedance of an individual mi-
crostrip line with a normalized
width, u. For Z0S = 50 Ω, w/h =
2.056, from Table 3-3.

εr = 4 (SiO2 and FR4), Z0S = 50 Ω

g Z0e/Z0o u Z0e Z0o εee εeo Z0

(Ω) (Ω) (Ω)

0.1 2.20 1.57 74.12 33.72 3.20 2.61 58.60
0.2 1.87 1.72 68.38 36.52 3.23 2.65 55.60
0.3 1.70 1.80 65.26 38.37 3.25 2.68 54.10
0.4 1.59 1.86 62.93 39.66 3.26 2.70 53.10
0.5 1.50 1.90 61.26 40.74 3.27 2.72 52.20
0.6 1.44 1.93 59.93 41.63 3.27 2.74 52.00
0.7 1.39 1.95 58.90 42.42 3.27 2.76 51.60
0.8 1.35 1.97 57.95 43.05 3.28 2.78 51.30
0.9 1.31 1.98 57.25 43.67 3.28 2.79 51.20
1.0 1.28 1.99 56.61 44.20 3.27 2.80 51.00
1.2 1.23 2.01 55.46 45.03 3.27 2.82 50.70
1.4 1.19 2.02 54.64 45.76 3.27 2.84 50.50
1.6 1.16 2.03 53.93 46.32 3.26 2.85 50.40
1.8 1.14 2.03 53.48 46.88 3.25 2.87 50.40
2.0 1.12 2.04 52.94 47.21 3.25 2.88 50.20
2.5 1.09 2.05 52.08 47.91 3.23 2.91 50.10
3 1.07 2.05 51.62 48.46 3.20 2.93 50.10
4 1.04 2.06 50.93 48.98 3.17 2.96 49.90
5 1.03 2.06 50.64 49.35 3.15 2.98 49.90

10 1.00 2.07 50.06 49.89 3.10 3.02 49.80

Table 5-3: Design parameters for a
microstrip coupler on a substrate
with εr of 10. Data are derived
from the analysis in Section 5.6. Z0

is the characteristic impedance of
an individual microstrip line with
a normalized width, u. For Z0S =
50 Ω, w/h = 0.954, from Table 3-3.

εr = 10 (Alumina), Z0S = 50 Ω

g Z0e/Z0o u Z0e Z0o εee εeo Z0

(Ω) (Ω) (Ω)

0.1 2.72 0.65 82.26 30.25 6.95 5.59 59.40
0.2 2.18 0.75 73.90 33.82 7.06 5.64 55.90
0.3 1.91 0.81 69.06 36.10 7.13 5.69 54.00
0.4 1.74 0.84 66.19 37.96 7.17 5.73 53.10
0.5 1.62 0.87 63.66 39.29 7.20 5.77 52.20
0.6 1.53 0.89 61.79 40.42 7.22 5.81 51.70
0.7 1.46 0.90 60.45 41.47 7.23 5.85 51.40
0.8 1.40 0.91 59.25 42.32 7.23 5.88 51.10
0.9 1.35 0.92 58.17 43.01 7.24 5.92 50.90
1.0 1.31 0.93 57.19 43.57 7.24 5.95 50.60
1.2 1.25 0.94 55.78 44.59 7.23 6.01 50.30
1.4 1.21 0.94 54.90 45.55 7.21 6.06 50.30
1.6 1.17 0.94 54.19 46.30 7.19 6.11 50.30
1.8 1.14 0.95 53.34 46.66 7.17 6.16 50.10
2.0 1.12 0.95 52.87 47.14 7.14 6.20 50.10
2.5 1.09 0.95 52.05 47.97 7.08 6.29 50.10
3 1.06 0.95 51.54 48.50 7.02 6.36 50.10
4 1.04 0.95 50.97 49.08 6.92 6.46 50.10
5 1.03 0.95 50.69 49.39 6.85 6.53 50.10

10 1.03 0.95 50.26 49.94 6.73 6.62 50.10
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EXAMPLE 5.7 Physical Design of a 10 dB Microstrip Coupler

Design a microstrip directional coupler with the following specifications:

Transmission line technology Microstrip
Coupling coefficient C = 10 dB
Microstrip characteristic impedance Z0 = 50 Ω
Substrate permittivity εr = 10.0
Substrate thickness h = 1 mm
System center frequency (midband for the coupler) f0 = 5 GHz

The cross-sectional dimensions that must be determined are the strip width, w, and the strip
separation, s, as shown in Figure 5-18. The procedure is to first determine the coupling factor:

C = 10(C|dB/20) = 10(10/20) = 3.162. (5.154)

The ratio of the even- and odd-mode impedances required to achieve the desired coupling
is derived from Equation (5.153):

Z0e/Z0o =
C + 1

C − 1
=

3.162 + 1

3.162 − 1
= 1.925. (5.155)

Solution:

The problem now is to determine the physical geometry (i.e., the line widths and spacing).
The data in Table 5-3 apply here (as εr = 10), enabling the normalized gap, g = s/h,
and normalized line width, u = w/h, to be determined for a specified impedance ratio,
Z0e/Z0o. The table does not contain a line for Z0e/Z0o = 1.925 and so the table must be
interpolated (e.g. using linear or bilinear interpolation as described in Appendix 1.A.12).
The line for Z0e/Z0o = 2.15 has g = 0.2, and the line for Z0e/Z0o = 1.90 has g = 0.3. So for
Z0e/Z0o = 1.925,

g =

(

0.3− 0.2

1.9− 2.15

)

· (1.925 − 2.15) + 0.2 = 0.290, (5.156)

thus s = g · h = 0.290 mm. (5.157)

The value of u must also be interpolated from Table 5-3 and u = 0.805 is obtained; thus

w = u · h = 0.805 mm. (5.158)

The coupler should be one-quarter wavelength long, so the effective relative permittivity of
the even and odd modes is required. From Table 5-3, the interpolated values are

εee = 7.124 and εeo = 5.686. (5.159)

These effective permittivities are different, so determination of the optimum length of the
coupler is not straightforward. The only choice is to use the average of the permittivities:

εe,avg = (εee + εeo)/2 = 6.405. (5.160)

Thus the average wavelength is λg =
c

f
√
εe,avg

=
3 · 108

5 · 109
√
6.405

= 2.37 cm (5.161)

and the length of the coupler is L = λg/4 = 5.93 mm. (5.162)

Finally, the widths of the feed lines must be determined. The system impedance is 50 Ω
and, from Table 3-3, the width, w′, is found to be 0.954 mm. The final layout of the coupler
is shown in Figure 5-19. The realization of a microstrip directional coupler as a laboratory
component is shown in Figure 5-20.
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Figure 5-18: Dimensions
to be determined in the
physical design of a di-
rectional coupler. (a) Cross section (b) Layout

Figure 5-19: Final coupler layout for Example
5.7.

Figure 5-20: Connectorized directional couplers: (a) a
microstrip directional coupler with SMA connectors
connected to internal microstrip lines, the top right-hand
connector has a 50 Ω termination; (b) a 250 W, 0.9–9 GHz
coupler with N-type connectors on the through line and
an SMA connector on the coupled port, insertion loss is
less than 0.1 dB. Copyright 2012 Scientific Components
Corporation d/b/a Mini-Circuits, used with permission
[7].

(a)

(b)

EM analysis is often used to refine this synthesized coupler. There are two main
uncertainties in the design. One is the uncertainty in the length of the coupler (due to the
different even- and odd-mode effective permittivities). The other uncertainty is that the
coupled-line equations come from low-frequency analysis—EM analysis will capture the
frequency-dependent effects. However, only minor iteration would normally be required.

5.8.4 The Lange Coupler

A directional coupler comprised of two parallel microstrip lines cannot
achieve a coupling of 3 dB, which corresponds to splitting the power of a
traveling wave into two equal components. Lange [8] introduced a coupler,
now known as the Lange coupler, in 1969. The Lange coupler (see Figure
5-21) has a coupling factor of around 3 dB. In this design, true quadrature
coupling over an octave bandwidth is realized as a consequence of the
interdigital coupling section, which also compensates for the differences of
the even- and odd-mode phase velocities over the wide frequency range.
Note the use of the center bond wires—this was the key invention. The
bonding wires should look, electrically, as close as possible to a short-
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(a) Microstrip layout (b) Circuit symbol

Figure 5-21: A four-
finger Lange coupler.

Figure 5-22: Coupled microstrip lines with
total voltage and current phasors at the
four terminals.

circuit. This means that their lengths, ls, must be kept as short as possible:
ls ≪ λgm/4, where λgm is the midband wavelength. In semiconductor
technologies, these bond wires are replaced by air bridges, and in structures
with two or more metal layers the wirebonds are replaced by vias to another
metal layer and a short connection on the second metal layer. In some
designs, six coupling fingers are used instead of the four shown in Figure 5-
21. Note that the input-to-direct-output link meanders through the structure
and this DC connection identifies the through connection.

The physical length of the coupler is approximately one-quarter
wavelength long at the center frequency of the coupling band. As with
many distributed components, this element was invented using intuition
and empirical iterations. Since then, analytic design formulas have been
developed to enable synthesis of the electrical parameters of the coupler (see
[5]). The synthesis is based on even- and odd-mode impedances analogous to
those developed in Section 5.8 for a coupler comprised of coupled microstrip
lines. Synthesis leads to a design that is close to ideal, and subsequent
modeling in an EM simulator can be used to obtain an optimized design
accounting for frequency-dependent and parasitic effects.

5.9 Models of Parallel Coupled Lines

5.9.1 Chain Matrix Model of Coupled Lines

The chain matrix of a pair of coupled lines is the multiport version of the
two-port ABCD parameters and relates the input currents and voltages at
one end of a pair of coupled lines to the voltages and currents at the other
end. The chain matrix is derived here following the development in [9]. The
terminal characteristics of the coupled lines shown in Figure 5-22 can be
expressed in terms of the even and odd modes. For the even mode

[ 1
2 (V1 + V2)
1
2 (I1 + I2)

]

=

[

cos θe X0e sin θe
Y0e sin θe cos θe

] [ 1
2 (V3 + V4)
1
2 (I3 + I4)

]

(5.163)
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and for the odd mode
� 1

2 (V1 − V2)
1
2 (I1 − I2)

�

=

�

cos θo X0o sin θ0
Y0o sin θo cos θo

� � 1
2 (V3 − V4)

− 1
2 (I3 − I4)

�

, (5.164)

where Y0e = 1/Z0e is the even-mode characteristic admittance and Y0o =
1/Z0o is the characteristic admittance of the odd mode. Also, θe is the
electrical length of the lines for the even mode, and θo is the odd-mode
electrical length of the lines. Grouping Equations (5.163) and (5.164),









V1

V2

I1
I2









=









a11 a12 b11 b12
a21 a22 b21 b22
c11 c12 d11 d12
c21 c22 d21 d22

















V3

V4

−I3
−I4









, (5.165)

where a11 = a22 = d11 = d22 = 1
2 (cos θe + cos θo) (5.166)

a12 = a21 = d12 = d21 = 1
2 (cos θe − cos θo) (5.167)

b11 = b22 =  12 (Z0e sin θe + Z0o sin θo) (5.168)

b12 = b21 =  12 (Z0e sin θe − Z0o sin θo) (5.169)

c11 = c22 =  12 (Y0e sin θe + Y0o sin θo) (5.170)

c12 = c21 =  12 (Y0e sin θe − Y0o sin θo). (5.171)

Similarly the admittance equation for a pair of coupled lines is derived as
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


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V4




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=


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
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







, (5.172)

where y11 = y22 = y33 = y44 = − 12 (Y0e cot θe + Y0o cot θo) (5.173)

y12 = y21 = y34 = y43 = − 12 (Y0e cot θe − Y0o cot θo) (5.174)

y13 = y31 = y24 = y42 =  12 (Y0e csc θe + Y0o csc θo) (5.175)

y14 = y41 = y23 = y32 =  12 (Y0e csc θe − Y0o csc θo). (5.176)

5.9.2 ABCD Parameters of Coupled-Line Sections

The chain matrix of a pair of coupled lines, Equation (5.165), can be used
to develop the ABCD parameters of two-port coupled line networks [9].
Several networks that are commonly used in realizing filters and other
microwave circuits are shown in Table 5-4 with

�

V1

I1

�

=

�

A B
C D

� �

V2

−I2

�

. (5.177)

One approach to developing the physical layout of microwave circuits from
the electrical design equates the ABCD parameters of the coupled-line
networks to the ABCD of the synthesized lumped-element circuit.

5.9.3 Synthesis of Specific Coupled-Line Connections

The equivalence of ABCD parameters can be used in microwave network
synthesis to transform uncoupled transmission line structures into a
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Table 5-4: ABCD parameters of coupled-line sections. Usage described in [10–13].

(a) Open-circuited interdigital coupled-line sec-
tion (bandpass/bandstop networks)

A = D = (Z0e cot θe + Z0o cot θo)/∆

B =


2∆

[

Z2
0e + Z2

0o

−2Z0eZ0o (cot θe cot θo + csc θe csc θo)]
C = 2/∆

∆ = Z0e csc θe − Z0o csc θo (5.178)

(b) Short-circuited interdigital coupled-line sec-
tion (bandpass/bandstop networks)

A = D = (Y0e cot θe + Y0o cot θo)/∆

B = 2/∆

C =


2∆

[

Y 2
0e + Y 2

0o

−2Y0eY0o (cot θe cot θo + csc θe csc θo)]
∆ = Y0e csc θe − Y0o csc θo (5.179)

(c) Meander coupled-line section (lowpass
networks)

A = D = (Z0e cot θe − Z0o cot θo)/∆

B = 22Z0eZ0o cot θe tan θo/∆

C = 2/∆

∆ = Z0e cot θe + Z0o tan θo
(5.180)

(d) Shorted symmetric coupled-line section
(lowpass networks)

A = D = (Y0e cot θe + Y0o cot θo)/∆

B = 2/∆

C = [/(2∆)]
[

Y 2
0e + Y 2

0o

+2Y0eY0o (csc θe csc θo − cot θe cot θo)]
∆ = Y0e csc θe + Y0o csc θo (5.181)

(e) Open-circuited combline coupled-line sec-
tion (bandpass/bandstop networks)

A = D = (Z0e cot θe + Z0o cot θo)/∆

B = −2Z0eZ0o cot θe cot θo/∆

C = 2/∆

∆ = Z0e cot θe − Z0o cot θo (5.182)

(f) Short-circuited combline coupled-line sec-
tion (bandpass/bandstop networks)

A = D = (Y0o cot θo + Y0e cot θe)/∆

B = 2/∆

C = −2Y0eY0o cot θe cot θo/∆

∆ = Y0o cot θo − Y0e cot θe (5.183)

Z0e, Z0o

(a) (b) (c)

Figure 5-23: Coupled line equivalence: (a) a one-quarter wavelength long line with input and
output series capacitance; (b) microstrip layout; and (c) equivalent coupled lines laid out in
microstrip. The network in (a) is equivalent to the network in (c) if Z0e = (1/C + 2Z0) and
Z0o = Z0.

coupled-line section. As an example, consider the capacitively coupled one-
quarter wavelength long line shown in both Figures 5-23(a) and 5-23(b). This
configuration often occurs in filter design and an equivalent structure using
coupled lines and not requiring discrete capacitors is shown in Figure 5-23(c).
The equivalence is developed by equating the ABCD parameters of the two
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(a) (b)

Figure 5-24: Models of a pair of coupled lines using even- and odd-mode lines: (a) with coupling
network; and (b) with transformer-based coupling.

structures. The ABCD matrix of the coupled-line network of Figure 5-23(c)
is given in Table 5-4(a):

A =
Z0e cot θe + Z0o cot θo
Z0e csc θe − Z0o csc θo

= D C =
2

Z0e csc θe − Z0o csc θo

B =


2

Z2
0e + Z2

0o − 2Z0eZ0o (cot θe cot θo + csc θe csc θo)

Z0e csc θe − Z0o csc θo
, (5.184)

where Z0e and Z0o are the modal impedances, and θe and θo are the even-
and odd-mode electrical lengths.

Developing the ABCD parameters of the capacitively loaded one-quarter
wavelength long line in Figure 5-23(a) and equating them with the ABCD
parameters in Equation (5.184) leads to an equivalence between the loaded
line (Figure 5-23(b)) and the coupled line shown in Figure 5-23(c), where

Z0e = (1/C + 2Z0) and Z0o = Z0. (5.185)

5.9.4 Model Using Even- and Odd-Mode Lines

The pair of coupled lines in Figure 5-22 can be modeled using even-
and odd- mode transmission lines as shown in Figure 5-24(a). While the
partitioning of the terminal voltages and currents of the coupled lines into
even- and odd-mode components is simple to describe mathematically (e.g.,
the odd-mode voltage Vo = 1

2 (V1 − V2)), there is not a simple way to
represent the partitioning in circuit form. Instead, in a circuit simulator
the coupling network in Figure 5-24(a) is modeled using voltage-controlled
current sources [14]. A circuit model that is more convenient to use in
the analysis of a coupled line networks is shown in Figure 5-24(b). The
equivalence of this network to a coupled line is demonstrated by showing
that the chain matrix parameters of the circuit in Figure 5-24(b) are the same
as those in Equations (5.165)–(5.171), see Example 5.8.

Coupled lines are an important element in many microwave circuits,
including filters, matching networks, and biasing networks. Very often the
circuit development leads to a particular topology that can be implemented
using coupled-line networks. For example, the structure at the top in Figure
5-25(a) is known as an open-circuited interdigital section. The equivalent
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(a) Open-circuited interdigital
coupled-line section

(b) Short-circuited interdigital
coupled-line section

(c) Meander coupled-line section
(d) Short-symmetric coupled-line
section

(e) Open-circuited combline
coupled-line section

(f) Short-circuited combline
coupled-line section

Figure 5-25: Coupled-line sections with models comprising individual transmission lines
corresponsing to the even- and odd-modes.

circuit of this network, shown at the bottom in Figure 5-25(a), is derived from
the coupled-line equivalent circuit shown in Figure 5-24(b).
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EXAMPLE 5.8 Chain Matrix Parameters of Coupled Lines

Develop the chain matrix of the coupled-line model shown in Figure 5-24(b) and show that
these are the chain matrix parameters of a coupled line.

Solution:

The coupled-line model is annotated with voltages and currents in Figure 5-26. Using Table
2-1 of [15], the even- and odd-mode lines have the following ABCD parameters:

�

VW

IW

�

=

�

cos θe 2Ze sin θe
 1
2
Ye sin θe cos θe

� �

VY

IY

�

(5.186)

and

�

VX

IX

�

=

�

cos θo 2Zo sin θo
 1
2
Yo sin θo cos θo

� �

VZ

IZ

�

. (5.187)

While the ABCD parameters of the transformers could be used, it is more convenient to
write down the terminal characteristics of the transformers directly. First, the transformers
on the right-hand side are described by

VY = 1√
2
(V3 + V4) , IY = 1

2
√

2
[(−I3) + (−I4)]

VZ = 1√
2
(V3 − V4) , IZ = 1

2
√

2
[(−I3)− (−I4)] .

(5.188)

Combining Equations (5.186)–(5.188) yields
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(5.189)

The development is completed by using the voltage and current relations determined by the
transformers on the left-hand side:

V1 = 1

2
√

2
(VW + VX) , I1 =

√
2 (IW + IX)

V2 = 1

2
√

2
(VW − VX) , I2 =

√
2 (IW − IX) .

(5.190)

Combining Equations (5.189) and (5.190):
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, (5.191)

where
a′
11 = a′

22 = d′11 = d′22 = 1
2
(cos θe + cos θo) a′

12 = a′
21 = d′12 = d′21 = 1

2
(cos θe − cos θo)

b′11 = b′22 =  1
2
(Z0e sin θe + Z0o sin θo) b′12 = b′21 =  1

2
(Z0e sin θe − Z0o sin θo)

c′11 = c′22 =  1
2
(Y0e sin θe + Y0o sin θo) c′12 = c′21 =  1

2
(Y0e sin θe − Y0o sin θo),

which is identical to the chain matrix of the coupled transmission line, Equation (5.165).
Thus Figure 5-24(b) is an accurate circuit model of a pair of coupled transmission lines.

5.9.5 Alternative Coupled-Line Model

The previous section developed a model of a pair of coupled lines and it
was shown how the model related to various coupled-line sections. While
ABCD parameters can be used to equate two different implementations, it is
useful to have a topology that can be visualized and used to guide synthesis.



COUPLED LINES AND APPLICATIONS 241

Figure 5-26: Annotated
coupled-line model used
in Example 5.4.

(a) (b)

Figure 5-27: A pair of
symmetrical coupled
lines: (a) physical layout;
and (b) its approximate
equivalent circuit model
in a form that appears in
network synthesis. n =
(Z0e + Z0o)/(Z0e − Z0o).

The accurate form of the coupled-line model developed in the previous
section does not often occur in network synthesis. (In synthesis, such as
when designing a filter using coupled lines, a mathematical description can
sometimes be converted into circuit form which includes transmission lines
that are coupled.) An alternative but approximate model that has the same
topology as many synthesized networks is shown in Figure 5-27(b).

A physical pair of coupled lines is shown in Figure 5-27(a) with even-
mode characteristic impedance, Z0e, and odd-mode impedance, Z0o, with
the coupling coefficient6

K =
Z0e − Z0o

Z0e + Z0o
. (5.192)

The corresponding approximate equivalent network model of the coupled
line in Figure 5-27(a) was developed by Malherbe [16] and is shown in
Figure 5-27(b) with

Z01 =
Z0S√
1−K2

(5.193) Z02 = Z0S

√
1−K2

K2
(5.194)

n =
1

K
=

Z0e + Z0o

Z0e − Z0o
(5.195) Z0S =

√

Z0eZ0o. (5.196)

The electrical length of the Z01 and Z02 lines is the electrical length of the
coupled line. The reason this model is approximate is it assumes that the
coupled lines are symmetrical (e.g., equal width for the microstrip lines) and
uses a low-frequency capacitor-based development. Also a pair of coupled
lines has two electrical lengths, the electrical length of the even mode and

6 This is the inverse of the coupling factor, C used previously, see Equation (5.145). However
using C introduces confusion since ABCD parameters are often used in synthesis of coupled
line networks. Note that here K = 1/(coupling factor), that is, K = 1/C.
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the electrical length of the odd mode. So the best that can be done is to take
the electrical lengths of the Z01 and Z02 lines as the average electrical lengths
of the even and odd modes. Never-the-less this model is commonly used
in developing the initial design of coupled-line networks that must then be
followed by adjustment in a microwave circuit simulator.

5.9.6 Approximate Synthesis from the Coupled-Line Model

The electrical design of networks of coupled lines commonly leads to the
parameters of the coupled-line model shown in Figure 5-27(b). From these
the physical layout can be derived. That is, given n = 1/K , Z01, and Z02, the
coupled-line parameters Z0S , Z0e, and Z0o are found. Equations (5.193) and
(5.194) lead to two equations for Z0S :

Z0S,(5.197) = Z01

√

1−K2 (5.197)

Z0S,(5.198) = Z02
K2

√
1−K2

. (5.198)

These could be different and this is a result of the model being approximate.
If so, then the proper course forward is to use the geometric mean:

Z0S =
√

Z0S,(5.197)Z0S,(5.198). (5.199)

Rearranging Equation (5.195),

1 + n = 1 +
Z0e + Z0o

Z0e − Z0o
=

Z0e − Z0o + Z0e + Z0o

Z0e − Z0o
=

2Z0e

Z0e − Z0o

1− 2

n+ 1
=

n− 1

n+ 1
= 1− Z0e − Z0o

Z0e
=

Z0o − Z0e + Z0e

Z0e
=

Z0o

Z0e
. (5.200)

That is,

Z0e

Z0o
=

n+ 1

n− 1
. (5.201)

Combining this with Equation (5.196),

Z0o = Z0S

√

n− 1

n+ 1
and Z0e =

Z2
0S

Z0o
. (5.202)

These equations can be used in physical synthesis. For example, if Z0S is
close to 50 Ω and the substrate is alumina, then the ratio Z0e/Z0o can be
used to find the physical dimensions from Table 5-3. Otherwise the formulas
described in Section 5.6 can be used iteratively.

The physical length of the coupled line is determined by using the
geometric mean of the even- and odd-mode effective permittivities to
convert from the electrical length (in degrees or wavelengths). This initial
design is followed by adjustment in a microwave circuit simulator.
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5.10 Differential and Common Modes

In working with RFICs it is convenient to use differential and common mode
definitions, rather than odd and even mode definitions, as these directly
relate to the differential circuits most commonly used in CMOS design.
There are several reasons for this and one is that the most common type
of amplifier with CMOS circuits is a differential amplifier where there are
two input signal lines and two output signal lines and the actual signal is
the differential signal which, in terms of voltage, is the difference of the two
voltages on the lines. The situation is as shown in Figure 5-28(a) where there
are two signal conductors and a ground plane (at 0 V). Here the differential
voltage is Vd = (V1−V2). The common mode voltage is Vc =

1
2 (V1+V2) which

will normally consist of a DC voltage and a usually small, and ideally zero,
common mode signal which is the non-DC part of Vc. Most CMOS circuits
are designed so that the DC component of Vd = 0. It is a quirk of history
that microwave engineering and thus EM analysis used even- and odd-mode
signals whose definitions differ by a factor of two from the definitions of
common- and differential-mode signals. This section relates the two groups
of signals and parameters for the common/differential mode group and the
even/odd mode group.

The differential- and common-mode parameters of coupled lines can be
derived from the odd- and even-mode parameters. The difference is in the
definition of the voltage and currents in the modes as shown in Figure 5-28.
The even mode is defined with V1 = V2 = Ve and I1 = I2 = Ie, while for
the common mode V1 = V2 = Vc and I1 + I2 = Ic. Thus, in terms of the
even-mode characteristic impedance, Z0e, the common-mode characteristic
impedance is

Z0c =
1
2Z0e. (5.203)

The odd mode is defined with V1 = −V2 = Vo and I1 = −I2 = Io, while for
the differential mode V1 − V2 = Vd and I1 = −I2 = Id. Thus, in terms of the
odd-mode characteristic impedance, Z0o, the differential-mode characteristic
impedance is

Z0d = 2Z0o. (5.204)

(a) Definition of total

voltages and currents

(b) Even mode (c) Common mode

(d) Odd mode (e) Differential mode

Figure 5-28: Definition of coupled-line modes.
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Figure 5-29:
Driving
configurations. (a) Common mode (b) Differential mode

Other parameters remain unchanged. That is, the propagation constant,
phase and group velocities, and wavelengths are the same for common and
even modes, as they are for the differential and odd modes.

The driving and termination configurations for differential and common
mode signals are shown in Figure 5-29. The reflectionless (i.e. matched)
termination of coupled lines used in common mode is

RL = Z0c =
1
2Z0e, (5.205)

as in Figure 5-29(a). The reflectionless termination of a differential line is

RL = Z0d = 2Z0o, (5.206)

as shown in Figure 5-29(b).

EXAMPLE 5.9 Common and Differential Mode Reflections at the End of Coupled Lines

A pair of coupled lines with common- and differential-mode characteristic impedances ZcC

and Z0d respectively is loaded as shown in Figure 5-14(a) where the load has the two-port
y-parameter matrix, Y . Find the common and differential-mode reflections. This example
parallels Example 5.3 where even and odd modes were considered.

Solution:

The analysis begins by writing out the expressions relating the traveling-wave and total
voltages and currents at the termination.

Vc = 1
2
(V1 + V2) Vd = (V1 − V2) Ic = (I1 + I2) Id = 1

2
(I1 − I2)

V1 = (V +
1 + V −

1 ) V2 = (V +
2 + V −

2 ) I1 = (I+1 + I−1 ) I2 = (I+2 + I−2 )
V +
1 = (V +

c + 1
2
V +
d ) V +

2 = (V +
c − 1

2
V +
d ) I+1 = ( 1

2
I+c + I+d ) I+2 = ( 1

2
I−c − I+d )

V −
1 = (V −

c + 1
2
V −
d ) V −

2 = (V −
c − 1

2
V −
d ) I−1 = ( 1

2
I−c + I−d ) I−2 = ( 1

2
I−c − I−d )

I+c = V +
c /Z0c I−c = −V −

c /Z0c I+d = V +
d /Z0c I−d = −V −

d /Z0d

At the termination
[

I1
I2

]

=

[

1
2
I+c + I+d + 1

2
I−c + I−d

1
2
I+c − I+d + 1

2
I−c − I−d

]

= Y

[

V1

V2

]

=

[

y11 y12
y21 y22

] [

V1

V2

]

[

1
2
(V +

c − V −
c )/Z0c + (V +

d − V −
d )/Z0d

1
2
(V +

c − V −
c )/Z0c − (V +

d − V −
d )/Z0d

]

=

[

y11 y12
y21 y22

] [

V +
c + 1

2
V +
d + V −

c + 1
2
V −
d

V +
c − 1

2
V +
d + V −

c − 1
2
V −
d

]

(5.207)

The reflected even and odd modes have contributions from incident common and differen-
tial modes:

V −
c = ΓLcV

+
e + CcdV

+
d and V −

d = ΓLdV
+
d + CdcV

+
c (5.208)

where Γce and ΓLd are common- and differential-mode reflection coefficients, Cdc and Ccd

describe coupling, and

ΓLc =
V −
c

V +
c

∣

∣

∣

∣

V +

d
=0

,ΓLd =
V −
d

V +
d

∣

∣

∣

∣

V +
c =0

, Ccd =
V −
c

V +
d

∣

∣

∣

∣

V +
c =0

and Cdc =
V −
d

V +
c

∣

∣

∣

∣

V +

d
=0

. (5.209)
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ΓLc and Ced are obtained by expanding Equation (5.207) with V +
d = 0

(V +
c − V −

c )/Z0c − 2V −
d /Z0d = y11

(

2V +
c + 2V −

c + V −
d

)

+ y12
(

2V +
c + 2V −

c − V −
d

)

i.e.
V −
c

Z0c
(1 + 2y11Z0c + 2y12Z0c) =

V +
c

Z0c
(1− 2y11Z0c − 2y12Z0c)−

V −
d

Z0d
(2 + y11Z0d − y12Z0d)

(5.210)

(V +
c − V −

c )/Z0c + 2V −
d )/Z0d = y21

(

2V +
c + 2V −

c + V −
d

)

+ y22
(

2V +
c + 2V −

c − V −
d

)

i.e.
V −
d

Z0d
(−2 + y21Z0d − y22Z0d) =

V +
c

Z0c
(1− 2y21Z0c − 2y22Z0c) +

V −
c

Z0c
(−1− 2y21Z0c − 2y22Z0c)

(5.211)

ΓLc is obtained by eliminating V −
d by multiplying Equation (5.211) by (2+ y11Z0d − y12Z0d)

and subtracting it from Equation (5.210) multiplied by (−2 + y21Z0d − y22Z0d):

V −
c

a

Z0d
= V +

c
b

Z0c

∣

∣

∣

∣

V +

d
=0

. Thus ΓLe =
b

a
(5.212)

where

a=(1 + 2y11Z0c + 2y12Z0c)(−2 + y21Z0d − y22Z0d)−(1 + 2y21Z0c + 2y22Z0c)(2 + y11Z0d − y12Z0d)

= −2− Z0dY∆ − 4Z0cYΣ − 4Z0cZ0dYD (5.213)

b=(1− 2y11Z0c − 2y12Z0c)(−2 + y21Z0d − y22Z0d)−(1− 2y21Z0c−2y22Z0c)(2 + y11Z0d − y12Z0d)

= −4− Z0dY∆ + 4Z0cYΣ + 4Z0cZ0dYD (5.214)

YΣ = (y11 + y12 + y21 + y22), Y∆ = (y11 − y12 − y21 + y22), and YD = (y11y22 − y12y21)
(5.215)

ΓLc =
b

a
=

4 + Z0dY∆ − 4Z0cYΣ − 4Z0cZ0dYD

4 + Z0dY∆ + 4Z0cYΣ + 4Z0cZ0dYD
(5.216)

Compare this to the even-mode reflection coefficient, ΓLe, found in Example 5.3. Substituting
Z0d = 2Z0o and Z0c = 1

2
Z0e in Equation (5.216)

ΓLc =
4 + 2Z0oY∆ − 2Z0eYΣ − 4Z0cZ0dYD

4 + 2Z0oY∆ + 4Z0cYΣ + 4Z0cZ0dYD
= ΓLe. (5.217)

Find Ccd by expanding Equation (5.207) with V +
c = 0:

−V −
c /Z0c + (2V +

d − 2V −
d )/Z0d = y11

(

V +
d + 2V −

c + V −
d

)

+ y12
(

−V +
d + 2V −

c − V −
d

)

i.e.
V −
c

Z0c
(1 + 2y11Z0c + 2y12Z0c) =

V +
d

Z0d
(2− y11Z0d + y12Z0d)−

V −
d

Z0d
(2 + y11Z0d − y12Z0d)

(5.218)

−V −
c /Z0c − (2V +

d − 2V −
d )/Z0d = y21

(

+V +
d + 2V −

c + V −
d

)

+ y22
(

−V +
d + 2V −

c − V −
d

)

i.e.
V −
d

Z0d
(−2 + y21Z0d − y22Z0d) = −V +

d

Z0d
(2 + y21Z0d − y22Z0d)−

V −
c

Z0c
(1 + 2y21Z0c + 2y22Z0c)

(5.219)

To eliminate V −
d multiply Equation (5.219) by (2 + y11Z0d − y12Z0d) and subtract it from

Equation (5.218) multiplied by (−2 + y21Z0d − y22Z0d):

V −
c

Z0c
a =

V +
d

Z0d
c so that Ceo =

c

a

Z0c

Z0d
(5.220)

where a is as in Equation (5.213) and
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c = (2− y11Z0d + y12Z0d)(−2 + y21Z0d − y22Z0d)+(2 + y21Z0d − y22Z0d)(2 + y11Z0d − y12Z0d)

= −2Z0dYE where YE = (y11 − y12 + y21 − y22). (5.221)

Ccd =
4Z0cYE

4 + Z0dY∆ + 4Z0cYΣ + 4Z0cZ0dYD
= Ceo (5.222)

(which can be verified using the substitutions Z0d = 2Z0o and Z0c = 1
2
Z0e).

Similarly,

ΓLd =
2 + Z0d(y12 + y21)− 2Z0cZ0dYD

2 + Z0dY∆ + 4Z0cYΣ + 2Z0cZ0dYD
= ΓLo (5.223)

and Cdc =
−4Z0cYE

4 + Z0dY∆ + 4Z0cYΣ + 4Z0cZ0dYD
= Ccd = Coe, and (5.224)

5.11 Common Impedance Coupling

So far coupling has been discussed in terms of the EM fields shared
by two transmission lines. This is not the only way coupling of signals
occurs. Sharing of a return path results in coupling, often called common
impedance coupling, as there is a circuit element common to two or more
transmission lines. The simplest situation is a shared impedance rather than
a shared transmission line return, so that the return current attributed to
one interconnect induces a voltage across the common impedance element.
This signal then appears as though it is on the victim line. The common
impedance could be the inductance or resistance of the ground conductor
in the case of microstrip lines. In general, however, common impedance
coupling will occur whenever the current return path is common.

5.12 Summary

Coupling from one transmission line to a nearby neighbor may often be
undesirable. However, the coupling can be controlled and coupled lines
have become an important circuit component in distributed microwave
circuits. One example is a directional coupler, which is little more than
a pair of coupled lines, and this device forms the special function of
separating forward- and backward-traveling waves. Another example of the
application of coupled lines is their use in microwave filters. Bandpass filters
are essentially coupled resonators. In a filter that uses coupled lines, each
individual line becomes a resonator and the coupling of the resonators is
controlled by how far they are spaced.

The analysis and circuit model of a pair of coupled lines is based on
describing the voltages and currents on the lines as the linear combination of
an even mode and an odd mode. Each of these modes will have forward- and
backward-traveling wave components. Separating the signals on a coupled-
line pair into even and odd modes facilitates extraction of the coupled-line
parameters from simulation and measurement. It also enables a model of the
coupled line to be developed that consists of individual lines that are coupled
by transformers.

With the differential circuits used with RFICs it is more convenient to
consider the signals on a pair of coupled lines as comprising common and
differential modes. These can be directly related to even and odd modes
and the difference comes down to definitions of average voltage (i.e., the
common- and even-mode voltages) and the definition of the difference
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voltage (i.e., the differential- and odd-mode voltages). There is a similar
difference for the currents.

The suite of microwave elements that exploit distributed effects available
to a microwave designer is surprisingly large. Coupled lines comprise a large
proportion of these elements. This chapter concludes with an example of the
broadband response of a pair of coupled microstrip lines.

EXAMPLE 5.10 Shorted Coupled Lines

Design Environment Project File: RFDesign Coupled Shorted Microstrip Lines.emp

In this example a pair of shorted coupled microstrip lines are examined using EM analysis.
The layout of the coupled lines is shown in Figure 5-30. The box used in simulation has
electric side and top walls. The bottom of the box (below the strips) is an electric wall and
forms the ground plane. The ground plane is specified as gold and the finite conductivity
of gold is used for the strips and the ground plane. The coupled lines here are arranged
as a two-port structure. Scattering (S) parameters are used to describe the characteristics of
microwave structures. The transmission coefficient is S21, and for a matched structure S11

is the reflection coefficient. The coupled-line structure is symmetrical, as the widths of the
strips are the same so that S11 = S22 and S12 = S21. Each microstrip line on its own was
designed to have a characteristic impedance of 50 Ω.

The calculated two-portS parameters are plotted in Figure 5-31. The loss of 0 dB corresponds
to an S parameter absolute value of 1. Large S21 responses are centered at 1.5 GHz, 7.5 GHz,
and 13 GHz and are shaped as bandpass filter responses. This suggests that coupled-line
sections could be used as the basis of microwave bandpass filters. The passband frequencies
are related to the lengths of the lines. The effective dielectric constant for one of the microstrip
lines is 6.5 (from Table 3-2) and so at 1.5 GHz the 1 cm line length is λ/8 long, at 7.5 GHz it
is 5λ/8 long, and at 13 GHz it is 9λ/8 long. The round-trip lengths are λ/4, 5λ/4, and 9λ/4
long at the respective frequencies. Thus the round-trip lengths are separated by λ and so
the addition of half-wavelength sections of lossless line has no impact on the reflection and
transmitted response amplitudes.

(a) (b)

Figure 5-30: Coupled microstrip line layout: (a) schematic; and (b) layout in an EM field solver.
Dimensions of the coupled lines are w = 500 µm, s = 100 µm, ℓ = 1 cm, W = 6 mm, L = 12 mm,.
The metal is 6 µm thick gold (conductivity σ = 42.6 × 106) and the alumina substrate height is
600 µm with relative permittivity εr = 9.8 and a loss tangent of 0.001.
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Figure 5-31: Insertion loss (S21) and return loss (S11) of the coupled line of
Figure 5-30.
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5.14 Exercises

1. Consider the cross section of a coupled transmis-
sion line, as shown in Figure 5-1, with even and
odd modes both traveling out of the page.

(a) For an even mode on the coupled line, con-
sider a phasor voltage of 1 V on each of the
lines above the ground plane at 0 V. Sketch
the directed electric field in the transverse
plane, i.e. show the direction of the electric
field.

(b) For the even mode, sketch the directed mag-
netic fields in the transverse plane (the plane
of the cross section).

(c) For an odd mode on the coupled line, con-
sider a phasor voltage of +1V on the left line
and a phasor voltage of −1 V on the right
line. Sketch the directed electric fields in the
transverse plane (the plane of the cross sec-
tion).

(d) For the odd mode, sketch the directed mag-
netic fields in the transverse plane (the plane
of the cross section).

2. EM software can be used to determine the even-
and odd-mode parameters of a coupled line.
This is usually done by setting the phasor volt-
age on the coupled line and evaluating the pha-
sor charge for each condition. The voltage ap-
plied to the left strip is V1 and the voltage ap-
plied to the right strip is V2. The phasor charges
on the strips are Q1 and Q2, respectively. The
analysis is repeated with the substrate replaced
by free space. In this case, the charges are de-
noted by Q01 and Q02. The (computer-based)
measurements follow. [Parallels Example 5.1]

Charge V1 = 1 V; V1 = 1 V;
V2 = −1 V V2 = 1 V

Q1 (pC/m) 40 20
Q2 (pC/m) −50 30
Q01 (pC/m) 13.25 6
Q02 (pC/m) −10 2.75

(a) What is the two-port capacitance matrix?
(b) What is the even-mode capacitance?
(c) What is the odd-mode capacitance?
(d) What is the free-space (no dielectric) two-

port capacitance matrix?
(e) What is the free-space even-mode capaci-

tance?
(f) What is the free-space odd-mode capaci-

tance?
(g) What is the even-mode effective relative per-

mittivity?
(h) What is the odd-mode effective relative per-

mittivity?

3. Two 50 Ω microstrip lines are to be run paral-
lel to each other on a 1 mm-thick printed circuit
board with a relative permittivity εr = 4. The
signal on the lines is 3 GHz. The effective permit-
tivity of the lines is 3.1 and it is determined that
the approximate distance over which the lines
will be parallel is 1.42 cm. The coupling of the
signals on the lines must be at least 30 dB down.

(a) What is the free-space wavelength, λ0, of the
signal?

(b) What is the guide wavelength, λg , of the sig-
nal?

(c) How long is the parallel run of the mi-
crostrip lines in terms of λg?

(d) What is the required maximum parallel-line
coupling factor? Explain your reasoning.

(e) What is the minimum separation of the
lines? Explain your reasoning.

4. A pair of coupled lines has an even-mode effec-
tive permittivity, εee, of 4.9 and an odd-mode ef-
fective permittivity of 5.2.

(a) What is the even-mode phase velocity?
(b) What is the odd-mode phase velocity?

5. A directional coupler using coupled lines is con-
structed on an alumina substrate of thickness
300 µm and εr = 10. The lines are 250 µm wide
and the gap separation is 100 µm. What are (a)
the characteristic impedances, (b) the effective
permittivities, and (c) the phase velocities of the
even and odd mode of the coupled line. (Hint: If
you use a table you need to use interpolation as
described in Section 1.A.12.)

6. An ideal directional coupler is lossless and there
are no reflections at the ports. If the coupling fac-
tor is 10, what is the the magnitude of the trans-
mission coefficient?

7. A directional coupler has the following charac-
teristics: coupling factor C = 20, transmission
factor 0.9, and directivity factor 25 dB. Also, the
coupler is matched so that there is no reflection
at any of the ports. What is the isolation in deci-
bels?

8. A lossy 6 dB directional coupler is matched so
that there is no reflection at any of the ports. The
insertion loss (considering the through path) is
2 dB. If 1 mW is input to the directional cou-
pler, what is the power in microwatts dissipated
in the directional coupler? Ignore power leaving
the isolated port.

9. A 1 GHz microstrip directional coupler has a
coupling factor of 20 dB. The coupler must have
a system impedance of 50 Ω.
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(a) Draw the layout of the directional coupler.
(b) What is the even-mode impedance of the

coupler?
(c) What is the odd-mode impedance of the

coupler?
(d) What is the optimum electrical length of the

directional coupler in degrees at the design
center frequency?

(e) If, in addition, the isolation of the directional
coupler is 40 dB, what is its directivity in
decibels?

10. A directional coupler comprising a coupled pair
of microstrip lines is to be designed in a 75 Ω
system. The coupling factor is 10.

(a) What is the system impedance Z0S?
(b) What is the odd-mode impedance of the

coupler?
(c) What is the even-mode impedance of the

coupler?

11. A matched directional coupler has a coupling
factor C of 20, transmission factor 0.9, and di-
rectivity of 25 dB. What is the power dissipated
in the directional coupler if the input power to
Port 1 is 1 W.

12. Develop the design of a 10 dB directional cou-
pler using coupled microstrip lines and a sub-
strate with a permittivity of 10, a substrate
thickness, h, of 600 µm, and a center fre-
quency of 1 GHz. Develop the electrical design
of the coupler (i.e., find the even- and odd-
mode impedances required) and then develop
the physical design (with widths and lengths) of
the directional coupler. Use a system impedance
of 50 Ω.

13. Design a microstrip directional coupler with the
following specifications:

Transmission line technology: Microstrip
Coupling coefficient, C: 20 dB
Characteristic impedance, Z0S : 50 Ω
Substrate permittivity, εr : 4.0
Substrate thickness, h: 635 µm
Center frequency, f0: 10 GHz.

14. A directional coupler using coupled lines is con-
structed on an alumina substrate of thickness
300 µm. The lines are 250 µm wide and the gap
separation is 100 µm. What are the characteristic
impedances, effective permittivities, and phase
velocities of the even- and odd-modes of the
coupled line? Port 1 is the input, Port 2 is the
through output, and Port 3 is the coupled out-
put. (Hint: See Table 5-3.)

(a) Draw the schematic of the directional cou-
pler and label the ports.

(b) What is the transmission coefficient of the
coupler?

(c) Can the directivity of the coupler be deter-
mined? If so, what is the directivity,D, of the
coupler?

15. Consider a pair of parallel microstrip lines sepa-
rated by a spacing, s, of 100 µm.

(a) What happens to the coupling factor of the
lines as s reduces?

(b) What happens to the system impedance as s
reduces and no other dimensions change?

(c) In terms of wavelengths, what is the opti-
mum length of the coupled lines for maxi-
mum coupling?

16. What is the coupling factor of a Lange coupler
in decibels?

17. Consider the open-circuited interdigital
coupled-line section in Table 5-4. If the cou-
pled line is λ/4 long, write down the simplified
ABCD parameters. Assume that θo = θe.

18. Consider the shorted symmetric coupled-line
section in Table 5-4. If the coupled line is λ/4
long, write down the simplified ABCD param-
eters. Assume that θo = θe.

19. Consider the open-circuited combline coupled-
line section in Table 5-4. If the coupled line is
λ/4 long, write down the simplified ABCD pa-
rameters. Assume that θo = θe.

20. Consider the short-circuited interdigital
coupled-line section in Table 5-4. If the cou-
pled line is λ/4 long, write down the simplified
ABCD parameters. Assume that θo = θe.

21. A coupled microstrip line has an odd-
mode impedance of 30 Ω and an even-mode
impedance of 65 Ω.

(a) What is the differential characteristic
impedance of the coupled lines?

(b) What is the common-mode characteristic
impedance of the coupled lines?

22. A pair of coupled microstrip lines has odd- and
even-mode characteristic impedances of 60 Ω
and 70 Ω respectively. If a load resistance, RL,
is placed at the end of the lines from one strip to
the other, what is the value of RL for no reflec-
tion of the even mode?

23. The coupled lines below have odd- and even-
mode characteristic impedances of 30 Ω and
60 Ω respectively.
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.

(a) What is the odd-mode reflection coefficient
Γ?

(b) What is the common-mode characteristic
impedance of the coupled lines?

24. The coupled lines below have odd- and even-
mode characteristic impedances of 60 Ω and
100 Ω respectively. The coupled lines have a
length ℓ and this is λ/4 long for the odd mode.

.
(a) What is the odd-mode reflection coefficient

at the load, call this ΓLo?
(b) What is the odd-mode reflection coefficient

at the input to the coupled lines?

25. The coupled microstrip lines below have an
odd-mode characteristic impedance of 40 Ω and
an even-mode characteristic impedance of 75 Ω.

.
(a) What is the differential-mode characteristic

impedance?

(b) What is the common-mode characteristic
impedance?

26. The coupled lines below have odd- and even-
mode characteristic impedances of 40 Ω and
75 Ω respectively.

.

(a) What is the differential-mode characteristic
impedance, Z0d?

(b) What is the differential-mode load resis-
tance, ZLd?

(c) What is the differential-mode reflection co-
efficient, ΓLd, at the load?

(d) What is the odd-mode reflection coefficient,
ΓLd, at the load?

27. The coupled lines below have odd- and even-
mode characteristic impedances of 60 Ω and
100 Ω respectively. The coupled lines have a
length ℓ and this is λ/4 long for the odd mode.

.

(a) What is the differential-mode reflection co-
efficient, Γd, at the load?

(b) What is Γd at the input of the lines?

5.14.1 Exercises by Section
†challenging, ‡very challenging

§5.2 1†

§5.5 2†, 3‡

§5.6 4, 5,

§5.8 6, 7, 8, 9†, 10†, 11, 12†, 13†,
14†, 15†, 16

§5.9 17, 18, 19, 20

§5.10 21, 22, 23, 24, 25, 26, 27

5.14.2 Answers to Selected Exercises

2(h) 3.87
5(c) vpo = 1.256 · 108 m/s

6 0.9950
7(b) 187 mW

9(e) D = 10 dB
10 Z0e = 67.84 Ω
17 C = 2/(Z0e − Z0o)
21 32.5 Ω

24 0.4118
26 −0.0323
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6.1 Introduction

Rectangular waveguides are used to route millimeter-wave signals and high
power microwave signals. The rectangular waveguide, often called just
waveguide, shown in Figure 6-1 has metal walls forming a rectangular pipe.
Charges and currents induced in the conductive walls guide propagating
EM fields in the +z and −z directions. The rectangular waveguide has very
little loss compared to a coaxial line because the EM field is away from the
walls and there is little current in the walls, and what is there is spread out
resulting in low current density. All of the waveguide loss, as with the loss
of most transmission systems, is resistive loss so minimizing current density
minimizes loss.

This chapter begins with Section 6.2 where symmetries and restricting

(a) Rectangular waveguide (b) Definition of planes

Figure 6-1: Rectangular waveguide.
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Figure 6-2: Parallel-plate wave-
guide.

propagation to only the ±z direction are applied to Maxwell’s equations
to yield the rectangular wave equation. These are then used in Section
6.3 to describe propagation between two metal planes forming what is
called a parallel-plate waveguide, see Figure 6-2. Then the rectangular wave
equations are applied to a rectangular waveguide in Section 6.4 to derive the
field distribution inside a rectangular waveguide.

6.2 The Rectangular Wave Equation

Maxwell’s equations will be put in a form that can be used in establishing
the field descriptions in parallel-plate and rectangular waveguides. The EM
fields in these structures vary sinusoidally with respect to both position and
time so the first simplification of Maxwell’s equations is to use phasors.
Boundary conditions are established by the metal walls, and these walls
match the Cartesian coordinate system. So Maxwell’s equations are put in
Cartesian coordinate form. Simplifications of the fields can be made that
relate to the positions of the metal walls. Another simplification is made by
assuming that there can only be propagation in the ±z direction. When the
wave propagates in the +z direction it is called the forward-traveling wave,
and when it propagates in the −z direction it is called the reverse-traveling
wave.

The development begins with Maxwell’s equations (Equations (1.1)–(1.4))
in a source-free region (ρ = 0 and J = 0). A simplification comes from as-
suming a linear, isotropic, and homogeneous medium so that ε and µ are
independent of signal level and are independent of the field direction and of
position, thus

∇× Ē = −∂B̄
∂t

= −µ
∂H̄
∂t

(6.1)

∇· D̄ = 0 = ∇ · Ē (6.2)

∇× H̄ =
∂D̄
∂t

= ε
∂Ē
∂t

(6.3)

∇· B̄ = 0 = ∇ · H̄. (6.4)

Taking the curl of Equation (6.1) leads to

∇×∇× Ē = −∇× µ
∂H̄
∂t

= −µ
∂(∇× H̄)

∂t
. (6.5)

Applying the identity ∇ × ∇ × Ā = ∇(∇ · Ā) − ∇2Ā to the left-hand side
of Equation (6.5), and replacing ∇× H̄ with the right-hand side of Equation
(6.3), the equation above becomes

−∇2Ē +∇(∇ · Ē) = −µ
∂

∂t

(

ε
∂Ē
∂t

)

= −µε
∂2Ē
∂t2

. (6.6)

Using Equation (6.2) this reduces to

∇2Ē = µε
∂2(Ē)
∂t2

, (6.7)
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where ∇2Ē =
∂2Ē
∂x2

+
∂2Ē
∂y2

+
∂2Ē
∂z2

= ∇2
t Ē +

∂2Ē
∂z2

. (6.8)

and ∇2
t Ē =

∂2Ē
∂x2

+
∂2Ē
∂y2

(6.9)

is used for fields propagating in the ±z direction and the subscript t indicates
the transverse plane (the x–y plane here). Equation (6.9) can be put into the
form of its components. Since

Ē = Exx̂+ Eyŷ + Ezẑ, (6.10)

then ∇2Ē =

(

∂2Ex
∂x2

x̂+
∂2Ey
∂x2

ŷ +
∂2Ez
∂x2

ẑ

)

+

(

∂2Ex

∂y2
x̂+

∂2Ey
∂y2

ŷ +
∂2Ez
∂y2

ẑ

)

+

(

∂2Ex

∂z2
x̂+

∂2Ey
∂z2

ŷ +
∂2Ez
∂z2

ẑ

)

(6.11)

=

(

∂2Ex

∂x2
+

∂2Ex
∂y2

+
∂2Ex
∂z2

)

x̂+

(

∂2Ey

∂x2
+

∂2Ey
∂y2

+
∂2Ey
∂z2

)

ŷ

+

(

∂2Ez
∂x2

+
∂2Ez
∂y2

+
∂2Ez
∂z2

)

ẑ, (6.12)

and ∇2
t Ē =

(

∂2Ex
∂x2

+
∂2Ex
∂y2

)

x̂+

(

∂2Ey
∂x2

+
∂2Ey
∂y2

)

ŷ +

(

∂2Ez
∂x2

+
∂2Ez
∂y2

)

ẑ.

(6.13)

Invoking the phasor form, ∂/∂t is replaced by ω, and with propagation
only in the ±z direction there is an assumed e(ωt−γz) dependence of the
fields. Development is now simplified by introducing the phasor Ē defined
so that

Ē = Ēe−γz. (6.14)

Now Equation (6.7) further reduces to

∇2Ē =

(

∇2
t Ē +

∂2Ē

∂z2

)

= ∇2
t Ē + γ2Ē = (ω)2µεĒ = −k2Ē, (6.15)

where k = ω
√
µε is the wavenumber (with SI units of m−1). Rearranging

Equation (6.15) yields

∇2
t Ē = −(γ2 + k2)Ē. (6.16)

A similar expression can be derived for the magnetic field:

∇2
t H̄ = −(γ2 + k2)H̄. (6.17)

Equations (6.16) and (6.17) are called wave equations, or Helmholtz equa-
tions, for phasor fields propagating in the z direction. Equations (6.16) and
(6.17) are usually written as

∇2
t Ē = −k2c Ē (6.18) ∇2

t H̄ = −k2c H̄, (6.19)

where the cutoff wavenumber is

k2c = γ2 + k2. (6.20)
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Equations (6.18) and (6.19) describe the transverse fields (the fields in
the x–y plane) between the conducting plates of the parallel-plate as
well as within the walls of the rectangular waveguide having a e(ωt−γz)

dependence. The general form of the solution of these equations is a
sinusoidal wave moving in the z direction. For propagating waves in a
lossless medium, γ = β, where β is the phase constant:

β = ±
�

k2 − k2c . (6.21)

If β is not real, which occurs when |kc| < |k|, then an EM wave cannot
propagate and such modes are called evanescent modes. These are like
fringing fields. If they are generated, say at a discontinuity, they will store
reactive energy locally.

Boundary conditions, resulting from the charges and current on the plates,
further constrain the solutions. Equation (6.1) with Equation (1.125) becomes

∇× Ē = ωµH̄. (6.22)

In rectangular coordinates, Ē = Exx̂+Eyŷ+Ezẑ and H̄ = Hxx̂+Hyŷ+Hzẑ,
and Equation (6.22) becomes

∂Ez

∂y
+ γEy = −ωµHx, −∂Ez

∂x
− γEx = −ωµHy,

∂Ey

∂x
− ∂Ex

∂y
= −ωµHz















. (6.23)

Similarly for ∇× H̄ = ωεĒ:

∂Hz

∂y
+ γHy = ωεEx, −∂Hz

∂x
− γHx = ωεEy,

∂Hy

∂x
− ∂Hx

∂y
= ωεEz















. (6.24)

Solving Equations (6.23) and (6.24) yields the rectangular wave equations
for kc �= 0 (k2c = k2 + γ2 and if there is no loss k2c = ω2µε− β2):

Ex =
−1

k2c

�

γ
∂Ez

∂x
+ ωµ

∂Hz

∂y

�

Ey =
1

k2c

�

−γ
∂Ez

∂y
+ ωµ

∂Hz

∂x

�

Hx =
1

k2c

�

−γ
∂Hz

∂x
+ ωε

∂Ez

∂y

�

Hy =
−1

k2c

�

γ
∂Hz

∂y
+ ωε

∂Ez

∂x

�

Ez =
−

ωε

�

∂Hy

∂x
− ∂Hx

∂y

�

Hz =


ωµ

�

∂Ey

∂x
− ∂Ex

∂y

�

.































(6.25)

The solution for kc = 0 is arrived at separately. Since kc = 0 there is no
loss. Also propagation at DC is a solution and the phasor fields at ω = 0 will
also be the field descriptions at any frequency. At ω = 0, γ = β = 0 and
k = 0. Equations (6.23)–(6.24) are now written as

∂Ez

∂y
+ 0 ·Ey = 0 ·Hx = 0, −∂Ez

∂x
− 0 · Ex = 0 ·Hy = 0,

∂Ey

∂x
− ∂Ex

∂y
= −0 ·Hz = 0,

∂Hz

∂y
+ 0 ·Hy = 0 ·Ex = 0,

−∂Hz

∂x
− 0 ·Hx = 0 · Ey = 0,

∂Hy

∂x
− ∂Hx

∂y
= 0 · Ez = 0.































. (6.26)
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The only solutions to these with ∂/∂x = 0 that also satisfies boundary
conditions are that Ez = 0 = Hz = Ex = Hy , and Hy and Ex are constants.

Now that the fields are in the appropriate forms, classification of possible
solutions (i.e. modes) can be developed for the parallel-plate and rectangular
waveguides. At this stage the following simplifications have been made to
Maxwell’s equations to get them into the form of Equation (6.25)):

• Using phasors
• Restriction of propagation to the +z and −z directions
• Assuming that ε and µ are constants
• Putting the wave equations in rectangular form so that boundary

conditions established by the metal walls can be easily applied.

6.3 Parallel-Plate Waveguide

This section derives the propagating EM fields for the parallel-plate
waveguide shown in Figure 6-3. The parallel-plate waveguide shown in
Figure 6-3(a) has conducting planes at the top and bottom that (as an
approximation) extend infinitely in the x direction. Electromagnetic fields
introduced between the plates, say by a sinusoidally varying voltage
generator across the plates, will be guided by the charges and currents
induced in the conductors.

The parallel-plate waveguide structure occurs in many planar circuits,
such as between the ground and power planes of circuit boards.
Understanding the EM propagation supported by parallel-plate waveguides
enables design choices to be made that suppress unwanted propagation
modes.

6.3.1 TEM Mode

In the transverse EM (TEM) mode, all of the E and H field components are
in the plane transverse to the direction of propagation, that is, Ez = 0 = Hz .
Thus Equation (6.26) requires that Ex, Ey , Hx, and Hy cannot vary with
position in the transverse plane (i.e., with respect to x and y). Thus Ex, Ey ,
Hx, and Hy must be constant between the plates. Furthermore, boundary
conditions require that Hy = 0 and Ex = 0 at the conductors. So in the TEM
parallel-plate mode, only Ey and Hx exist, and they are constant. Equation

(a) Three-dimensional view (b) Transverse view

Figure 6-3: Parallel-plate waveguide.
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Figure 6-4: Lowest-
order modes sup-
ported by combina-
tions of electric and
magnetic walls for the
TEM (= TM0 = TE0),
TM1, and TE1 modes.

(6.25) leads to

Hx =
γEy

ωµ
= ± ω

√
µε

ωµ
Ey = ±

√

ε

µ
Ey = ±1

η
Ey , (6.27)

where the plus sign describes forward-traveling fields (propagating in
the +z direction) and the minus sign describes backward-traveling fields

(propagating in the −z direction). The quantity η =
√

µ/ε is called the wave
impedance, it is the intrinsic impedance of the medium between the parallel
plates. This field variation is shown on the left in Figure 6-4(a). The TEM
mode exists down to DC.

To determine the characteristic impedance of the parallel-plate waveguide
first calculate the voltage of the top plate with respect to the bottom plate.
This voltage is the integral of the electric field between the plates:

V = −
∫ d

y=0

Eye
−γzdy = Eyde

−γz (6.28)

since Ey is a constant. The current on the top plate in the z direction
is obtained by integrating the surface current density in the x direction.
Assuming that the plates have a width W in the x direction then the current
on the top plate is

I = −
∫ W

x=0

Js · ẑ dx = HxW e−γz (6.29)

since Ey is a constant. In terms of voltage and current (and hence treating the
parallel-plate waveguide as a transmission line) the characteristic impedance
of the TEM mode is

Z0 =
V

I
=

Eyd

HxW
=

ηd

W
. (6.30)

Here η is the intrinsic impedance of a TEM mode in the medium. Since we
are considering a TEM mode, the wave impedance of the TEM mode is just
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the intrinsic impedance, that is,

ZTEM = Ey/Hx = Z0|free-space = η. (6.31)

With η0 =
√

µ0/ε0 being the free-space impedance, the characteristic
impedance can be written

Z0 =
η0d

W

√

µr

εr
and ZTEM = η = η0

√

µr

εr
. (6.32)

The phase velocity (= ω/β) is just the speed of light in the medium:

vp =
1√
µ0ε0

=
c√
µrεr

. (6.33)

Formulas for attenuation are developed in [1] and the conductor attenuation

αc =
Rs

ηd
(with SI units of Np/m) (6.34)

where Rs = 1/(σδs) is the surface resistance of the conductor, σ is the
conductivity of the conductor, and δs is the skin depth in the conductor. The
attenuation due to dielectric loss is

αd =
k2 tan δ

2β
(with SI units of Np/m). (6.35)

6.3.2 TM Mode

The Transverse Magnetic Mode (TM) is characterized by Hz = 0. Another
restriction that will be used here in developing the field equations is that
there is no variation of the fields in the x direction. Examining Equation
(6.25) the only components of the field that could exist are Ey , Ez , and Hx.
Everywhere Ey is perpendicular, and Hy is parallel, to the electrical walls so
boundary conditions are satisfied for Ey and Hx. Ez will be parallel to the
electrical walls at the walls so boundary conditions need to be applied in
deriving Ez .

The boundary conditions are that the E field parallel to the conducting
walls is zero. Considering Ez only, Equation (6.18) becomes

d2Ez

dy2
= −k2cEz . (6.36)

The solution to Equation (6.36) is

Ez = [E0 sin (kcy) + E1 cos (kcy)] e
−γz. (6.37)

To find the coefficients E0 and E1 boundary conditions are applied so that
Ez is zero at y = 0 and y = d (since the E field parallel to the conductors
must be zero), that is,

Ez |y=0 = 0 = E1 and Ez |y=d = 0 = E0 sin (kcd). (6.38)

This requires that sin (kcd) = 0, and thus requiring that there are discrete
values of kc:

kc = mπ/d m = 1, 2, 3, . . . . (6.39)
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(Note that m = 0 is also a solution but requires a separate derivation, see
the summary for this section.) Each value of kc identifies a different mode
and m is the mode index. The mth mode is the TMm mode and m indicates
the number of half-sinusoidal variations of the fields in the y direction. The
TMm mode propagates if the wavelength of the signal is such that λ ≥ λc,
where λc is the critical wavelength of the mth mode.

Substituting the above results and assumptions (e.g., ∂/∂x = 0) in
Equation (6.25),

Hz = 0 Ex = 0 Hy = 0 (6.40)

Ez = E0 sin (kcy)e
−γz (6.41)

Ey = − γ

k2c

dEz

dy
= − γ

kc
E0 cos (kcy)e

−γz (6.42)

Hx =
ωε

k2c

dEz

dy
=

ωε

kc
E0 cos (kcy)e

−γz. (6.43)

These are the complete field descriptions of the TM parallel-plate waveguide
modes with zero variation in the x direction. Recall that the wavenumber
k = ω

√
µε.

There are an infinite number of TM modes identified by the index m,
which determines the cutoff wavenumber, kc, of the particular mode. The
propagation constant of the mth mode, i.e. the TMm mode, is

γ =
√

k2c − k2 =

√

(mπ/d)2 − ω2µε. (6.44)

Propagation is only possible if γ has an imaginary component. Thus in a

lossless medium γ = β and β =
√

k2 − k2c . The cutoff frequency below
which propagation is not possible is

fc =
1

2π

kc√
µε

=
1

2π

mπ

d
√
µε

=
mν

2d
, (6.45)

where ν = 1/
√
µε is the velocity of a TEM mode in the medium. The cutoff

wavelength can also be defined as

λc =
ν

fc
=

2d

m
. (6.46)

where ν is the speed of light in the medium. The wavelength of the TMm

mode, at a particular frequency, is the guide wavelength

λg =
2π

β
=

λ
√

1− (fc/f)2
, (6.47)

where λ is the wavelength of a TEM mode in the medium: λ = ν/f (so
λg = λ when kc = 0). The phase velocity of the modes is dependent on the
mode index m through the cutoff frequency:

vp =
ω

β
=

ν
√

1− (fc/f)2
, (6.48)

and the group velocity is

vg =
dω

dβ
= ν

√

1− (fc/f)2. (6.49)
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The phase velocity, vp, of a TM mode is greater than ν while the group
velocity, vg , is slower than ν. The group velocity is the velocity at which
energy is transmitted and thus can never be faster than the speed of light,
c. The phase velocity, however, can be greater than c. The TM mode field
variation is shown on the right in Figure 6-4.

The wave impedance of the TMm mode is

ZTM = −Ey/Hx =
β

ωε
=

βη

k
. (6.50)

Formulas for attenuation are developed in [1] and the conductor attenuation

αc =
2kRs

βηd
(with SI units of Np/m) (6.51)

where Rs = 1/(σδs) is the surface resistance of the conductor, σ is the
conductivity of the conductor, and δs is the skin depth in the conductor. The
attenuation due to dielectric loss is

αd =
k2 tan δ

2β.
(with SI units of Np/m) (6.52)

6.3.3 TE Mode

The transverse electric (TE) mode is characterized by Ez = 0. Following
the same development as for the TM modes, the TEn mode fields with n
variations of the Hz are

Ez = 0, Ey = 0, Hx = 0 (6.53)

Hz = H0 cos (kcy)e
−γz (6.54)

Ex =
ωµ

kc
H0 sin (kcy)e

−γz (6.55)

Hy =
γ

kc
H0 sin (kcy)e

−γz. (6.56)

The equations for kc, vp, vg , fc, λc, and λg of the TEn mode are the same as
for the TMm mode considered in the previous section with the replacement
of the mode index m by n, n = 1, 2, 3, . . . . (Note that n = 0 is also a solution
but requires a separate derivation, see the summary for this section.) The TE
mode field variation is shown on the right in Figure 6-4.

The wave impedance of the TE mode is

ZTE =
kη

β
. (6.57)

Formulas for attenuation are developed in [1] and the conductor attenuation

αc =
2k2cRs

kβηd
(with SI units of Np/m) (6.58)

where Rs = 1/(σδs) is the surface resistance, η, of the conductor, σ is the
conductivity of the conductor, and δs is the skin depth pf the conductor. The
attenuation due to dielectric loss is

αd =
k2 tan δ

2β
(with SI units of Np/m). (6.59)
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6.3.4 Summary

The TEM mode (where kc = 0) is the same as the TM0 mode and the TE0

mode. Here derivations of the TE and TM modes began with from Equation
(6.25) and were only solutions for kc �= 0. Development of the 0th order TE
and TM modes requires derivation from Equation(6.26) but this was done
for the TEM mode and so was not repeated for the TE0 and TM0 modes.

6.4 Rectangular Waveguide

A rectangular waveguide is shown in Figure 6-5(a). Rectangular waveguides
guide EM energy between four connected electrical walls, and there is little
current created on the walls. As a result, resistive losses are quite low, much
lower than can be achieved using coaxial lines for example. One of the major
uses of a rectangular waveguide is when losses must be kept to a minimum,
so that a rectangular waveguide is used in very high-power situations such
as radar, and at a few tens of gigahertz and above. At higher frequencies the
loss of coaxial lines becomes very large, and it also becomes difficult to build
small-diameter coaxial lines at 100 GHz and above. As a result, a rectangular
waveguide is nearly always used above 100 GHz. There are many low- to
medium-power legacy systems that use rectangular waveguides down to
1 GHz.

A rectangular waveguide supports many different modes, but it does not
support the TEM mode. The modes are categorized as being either TM or TE,
denoting whether all of the magnetic fields are perpendicular to the direction
of propagation (these are the transverse magnetic fields) or whether all of
the electric fields are perpendicular to the direction of propagation (these are
the transverse electric fields). Dimensions of the waveguide can be chosen so
that only one mode can propagate for a range of frequencies. With more than
one mode propagating, the different components of a signal would travel at
different speeds and thus combine at a load incoherently, since the ratio of
the energy in the modes would vary (usually) randomly.

The TE and TM field descriptions are derived from the solution of dif-
ferential equations—Maxwell’s equations—subject to boundary conditions.
The general solutions for rectangular systems are sinewaves and there are
possibly many discrete solutions. The nomenclature that has developed over

(a) Three-dimensional view (b) Transverse cross section

Figure 6-5: Rectangular waveguide with internal dimensions of a and b.
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the years to classify modes references the number of variations in the x di-
rection, using the index m, and the number of variations in the y direction,
using the index n. So there are TEmn and TMmn modes, and dimensions are
usually selected so that only the TE10 mode can propagate.

6.4.1 TM Modes

The development of the field descriptions for the TM modes begins with
the rectangular wave equations derived in Section 6.2. Transverse magnetic
waves have zero Hz , but nonzero Ez . The differential equation governing Ez

is, in rectangular coordinates (from Equations (6.13) and (6.16)),

∇2
tEz =

∂2Ez

∂x2
+

∂2Ez

∂y2
= −k2cEz. (6.60)

Using a separation of variables procedure, this equation has the solution

Ez = [A′ sin(kxx) +B′ cos(kxx)] [C
′ sin(kyy) +D′ cos(kyy)] e

−γz, (6.61)

where k2x + k2y = k2c . (6.62)

The perfectly conducting boundary at x = 0 requires B′ = 0 to produce
Ez = 0 there. Similarly the ideal boundary at y = 0 requires D′ = 0.
Replacing A′C′ by a new constant A, then

Ez = A sin(kxx) sin(kyy)e
−γz. (6.63)

The axial electric field, Ez , must also be zero at x = a and y = b. This can
only be so (except for the trivial solution A = 0) if kxa is an integral multiple
of π so that sin(kxa) = 0:

kxa = mπ, m = 1, 2, 3, . . . . (6.64)

Similarly, for Ez to be zero at y = b, sin(kyb) = 0 and kyb must also be a
multiple of π:

kyb = nπ, n = 1, 2, 3, . . . . (6.65)

So the cutoff frequency of the TM wave with m variations in x and with n
variations in y (i.e., the TMmn mode) is, from Equation (6.62),

fcm,n
=

kcm,n

2π
√
µε

=
1

2π
√
µε

[

(mπ

a

)2

+
(

n
π

b

)2
]1/2

. (6.66)

The remaining field components of the TMmn wave are found with Hz = 0
and Ez from Equation (6.63) and Equation (6.25)):

Ex = − γkx
k2cm,n

A cos(kxx) sin(kyy)e
−γz (6.67)

Ey = − γky
k2cm,n

A sin(kxx) cos(kyy)e
−γz (6.68)

Hx =
ωεky
k2cm,n

A sin(kxx) cos(kyy)e
−γz (6.69)

Hy = − ωεkx
k2cm,n

A cos(kxx) sin(kyy)e
−γz. (6.70)
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Figure 6-6: Electric and magnetic
field distribution for the lowest-
order TM mode, the TM11 mode.

TM11 Mode

The spatial field variations depend on the x and y cutoff wavenumbers, kx
and ky , which in turn depend on the mode indexes and the cross-sectional
dimensions of the waveguide. The cutoff wavenumber, kc, is a function of
the m and n indexes, and so kcm,n

is often used for the cutoff wavenumber
with

k2cm,n
= k2x,m + k2y,n =

(mπ

a

)2

+
(nπ

b

)2

. (6.71)

The lowest-order TM mode is the TM11 mode, with m = 1 and n = 1,
and this has the minimum variation of the fields (of any TM mode); these are
shown in Figure 6-6.

In summary, a mode can propagate only at frequencies above the cutoff
frequency. Another quantity that defines when cutoff occurs is the cutoff
wavelength, defined as

λc =
ν

fcm,n

, (6.72)

where ν = 1/
√
µε is the velocity of a TEM mode in the medium (and of

course this is not a rectangular waveguide mode). The cutoff wavelength
is the wavelength in the medium (without the waveguide walls) at which
cutoff occurs. Since k2c is k2 − β2, the attenuation constant of a given mode
for frequencies below the cutoff frequency is

α =
√

k2cm,n
− k2 = kcm,n

√

1−
(

f

fcm,n

)2

, f < fcm,n
. (6.73)

The phase constant for frequencies above the cutoff frequency is

β =
√

k2 − k2cm,n
= k

√

1−
(

fcm,n

f

)2

, f > fcm,n
. (6.74)

For a propagating mode (i.e., f > fcm,n
) the wavelength of the mode,

called the guide wavelength, is

λg =
2π

β
=

λ
√

1− (fc/f)2
, (6.75)
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where λ is the wavelength of a TEM mode in the medium (but of course
not in the waveguide): λ = ν/f . The phase velocity of the mode is also
dependent on the mode indexes m and n through the cutoff frequency,

vp =
ω

β
=

ν
√

1− (fcm,n
/f)2

, (6.76)

and the group velocity is

vg =
dω

dβ
= ν

√

1− (fcm,n
/f)2. (6.77)

6.4.2 TE Modes

Transverse electric waves have zero Ez and nonzero Hz so that, in
rectangular coordinates,

∇2
tHz =

∂2Hz

∂x2
+

∂2Hz

∂y2
= −k2cHz. (6.78)

Solving using the separation of variables technique gives

Hz = [A′′ sin(kxx) +B′′ cos(kxx)] [C
′′ sin(kyy) +D′′ cos(kyy)] e

−γz, (6.79)

where k2x + k2y = k2c . (6.80)

Imposition of a boundary condition in this case is a little less direct, but the
electric field components are

Ex = − ωµ

k2c

∂Hz

∂y
(6.81)

= − ωµky
k2c

[A′′ sin(kxx) +B′′ cos(kxx)] [C
′′ cos(kyy)−D′′ sin(kyy)] e

−γz

Ey =
ωµ

k2c

∂Hz

∂x
(6.82)

=
ωµkx
k2c

[A′′ cos(kxx)−B′′ sin(kxx)] [C
′′ sin(kyy) +D′′ cos(kyy)] e

−γz.

For Ex to be zero at y = 0 for all x, C ′′ = 0; and for Ey = 0 at x = 0 for all
y, A′′ = 0. Defining B′′D′′ = B, then

Hz = B cos(kxx) cos(kyy) (6.83)

Ex =
ωµky
k2c

B cos(kxx) sin(kyy)e
−γz (6.84)

Ey = − ωµkx
k2c

B sin(kxx) cos(kyy)e
−γz. (6.85)

Ey is zero at x = a, that is, sin(kxa) = 0, so that kxa must be a multiple of π:

kxa = mπ, m = 1, 2, 3, . . . . (6.86)

Also, Ex is zero at y = b, that is, sin(kyb) = 0, so that kyb must be zero (so
that Ex is always zero) or that it is a multiple of π. Therefore

kyb = nπ n = 0, 1, 2, 3, . . . . (6.87)
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Figure 6-7: Electric and magnetic
field distribution for the lowest-
order TE mode.

TE10 Mode

The forms of the transverse electric field are then

Ex =
ωµky
k2cm,n

B cos(kxx) sin(kyy)e
−γz (6.88)

Ey = − ωµkx
k2cm,n

B sin(kxx) cos(kyy)e
−γz, (6.89)

and the corresponding transverse magnetic field components are

Hx =
γkx
k2cm,n

B sin(kxx) cos(kyy)e
−γz (6.90)

Hy =
γky
k2cm,n

B cos(kxx) sin(kyy)e
−γz. (6.91)

Here the use of kcm,n
emphasizes that the cutoff wavenumber is a function

of the m and n indexes:

k2cm,n
= k2x,m + k2y,n =

(mπ

a

)2

+
(nπ

b

)2

. (6.92)

The lowest-order TE mode is the TE10 mode (with m = 1 and n = 0) and
this has the minimum variation of the fields; these are shown in Figure 6-7.

6.4.3 Practical Rectangular Waveguide

The dimensions and operating frequencies of a rectangular waveguide are
chosen to support only one propagating mode. The operating frequency is
between the cutoff frequency of the mode with the lowest cutoff frequency
and the cutoff frequency of the mode with the next lowest cutoff frequency.
Thus only one mode propagates.

Referring to Figure 6-5, if the dimensions are chosen so that b is greater
than a, then the lowest-order TE mode (the TE10 mode) has one variation
of the fields in the x direction, while the lowest-order TM mode (the TM11

mode) has one variation of the field in the x direction and one variation in
the y direction. Thus the cutoff frequency of the TM11 mode will be higher
than the cutoff frequency of the TE10 mode. Below the cutoff frequency the
modes will not propagate (i.e., β (the imaginary part of the propagation
constant) is zero). The propagation constants of the rectangular waveguide
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Figure 6-8: Dispersion dia-
gram of waveguide modes in
air-filled Ka-band rectangular
waveguide with internal dimen-
sions of 0.280 × 0.140 inches
(7.112 mm× 3.556 mm). Ka-band
waveguide is used between 26.5
GHz and 40 GHz. Over this
frequency range only the TE10

mode propagates.

Mode Cut-off frequency (GHz)

TEM not supported
TE10 21.07 GHz
TE01 42.15 GHz
TE11 47.13 GHz
TM10 not supported
TM01 not supported
TM11 47.13 GHz

Table 6-1: Cut-off frequencies of several
modes in Ka-Band waveguide nominally
used between 26.5 GHz and 40 GHz.

modes with the lowest cutoff frequencies are shown in Figure 6-8 for a Ka-
band waveguide having internal dimensions of a = 0.280 inches and b =
0.140 inches. This figure is known as a dispersion diagram and is sometimes
plotted as β versus k. There are four modes supported below 60 GHz and the
line corresponding to the TEM mode is provided for reference, as the TEM
mode is not supported in a rectangular waveguide.

Not all possible low-order modes can be supported in rectangular
waveguide as the boundary conditions cannot be satisfied (see Table 6-1).
The cutoff frequency of the TE10 mode is 21.07 GHz and the next lowest
cutoff mode, the TE01 mode, has a cutoff frequency of 42.15 GHz. The
mode has a cutoff frequency which is the frequency when the wavelength
(in the medium, or free-space wavelength if the guide is air-filled) is twice
the a dimension of the waveguide (see Figure 6-5). The next higher-order
mode appears when it is possible for a variation in the y direction. This
occurs at a frequency corresponding to the b dimension being one-half
wavelength in the medium. The TE11 mode and TM11 modes have the
same cutoff frequency of 47.13 GHz. In determining the operating frequency
range both the phase and group velocity variations are considered. These
are shown in Figure 6-9 for the TE10 mode, where they are normalized to c
as the waveguide is air-filled. The group velocity, vg , varies substantially,
especially near the cutoff frequency of the mode. As a result, the lower
operating frequency of the mode is chosen to be substantially above the
cutoff frequency. The upper limit of the operating frequency is chosen to be
about 5% below the cutoff frequency of the second propagating mode. This
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Figure 6-9: Normalized phase and
group velocities of the TE10 mode in
air-filled Ka-band waveguide.

is because small discontinuities can launch the higher-order mode. Thus the
operating frequency of a Ka-band waveguide is 26.5 GHz–40 GHz, providing
a margin of 5.4 GHz at the low end, and 2.2 GHz margin at the high end. So
approximately one-half octave of bandwidth is supported by a rectangular
waveguide if the wide dimension is twice the height of the waveguide.
Since a rectangular waveguide is useful over a relatively narrow frequency
range, standard dimensions have been developed, as listed in Table 6-2.
A waveguide is referred to by its waveguide standard number (its WR
designation), however, the old letter designations of bands are commonly
used.

At times it is necessary to have a rectangular waveguide that can be used
over more than one-half octave of bandwidth. This is achieved by reducing
the height, b, of the waveguide, producing what is called a reduced-height
waveguide. By reducing b to one-quarter of a, an octave of bandwidth can be
obtained [2–4].

6.4.4 Rectangular Waveguide Components

Rectangular waveguide components require considerable machining, but
the equivalents of many of the components that are available in microstrip
can be realized. Invariably the lowest-order TE mode is used. This is the TE10

mode, with the field configuration shown in Figure 6-7. The characteristic of
this mode is that the E-field is transverse to the direction of propagation.
Many components have particular orientations to the planes of the E and
H fields. Consider the rectangular waveguide bends shown in Figure 6-10.
The bend in Figure 6-10(a) is called an H-plane bend, or H-bend, as the axis
of the waveguide (which is in the direction of propagation) always remains
parallel to the H field. With the E-plane bend, or E-bend, in Figure 6-10(b),
the axis of the waveguide remains parallel to the E field. The flat sections at
the end of the waveguide sections are called flanges. The pins in the flanges
are alignment pins that insert into holes in the opposite flange.

In building circuits using rectangular waveguides, it is frequently
necessary to rotate and twist the waveguide so that sections can be joined.
Bends enable this, but twists (as shown in Figure 6-11) are also used.
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Band EIA Operating Internal TE10

waveguide frequency dimensions Cutoff
band (GHz) (a× b, inches) (GHz)

WR–2300 0.32–0.49 23.000×11.500 0.257
WR–2100 0.35–0.53 21.000×10.500 0.281
WR–1800 0.43–0.62 18.000×9.000 0.328
WR–1500 0.49–0.74 15.000×7.500 0.393
WR–1150 0.64–0.96 11.500×5.750 0.513
WR–1000 0.75–1.1 9.975×4.875 0.592
WR–770 0.96–1.5 7.700×3.385 0.766
WR-650 1.12–1.70 6.500×3.250 0.908

R WR-430 1.70–2.60 4.300×2.150 1.37
D WR-340 2.20–3.30 3.400×1.700 1.74
S WR-284 2.60–3.95 2.840×1.340 2.08
E WR-229 3.30–4.90 2.290×1.150 2.58
G WR-187 3.95–5.85 1.872×0.872 3.15
F WR-159 4.90–7.05 1.590×0.795 3.71
C WR-137 5.85–8.20 1.372×0.622 4.30
H WR-112 7.05–10.00 1.122×0.497 5.26
X WR-90 8.2–12.4 0.900×0.400 6.56

Ku WR-62 12.4–18.0 0.622×0.311 9.49
K WR-51 15.0–22.0 0.510×0.255 11.6
K WR-42 18.0–26.5 0.420×0.170 14.1

Ka WR-28 26.5–40.0 0.280×0.140 21.1
Q WR-22 33–50 0.224×0.112 26.3
U WR-19 40–60 0.188×0.094 31.4
V WR-15 50–75 0.148×0.074 39.9
E WR-12 60–90 0.122×0.061 48.4
W WR-10 75–110 0.100×0.050 59.0
F WR-8 90–140 0.080×0.040 73.8
D WR-6 110–170 0.0650×0.0325 90.8
G WR-5 140–220 0.0510×0.0255 116

WR-4 170–260 0.0430×0.0215 137
WR-3 220–325 0.0340×0.0170 174

Y WR-2 325–500 0.0200×0.0100 295
WR-1.5 500–750 0.0150×0.0075 393
WR-1 750–1100 0.0100×0.0050 590

Table 6-2: Waveguide bands, operat-
ing frequencies, and internal dimen-
sions. Waveguide dimensions speci-
fied in inches (use 25.4 mm/inch to
convert to millimeters). The number
in the WR designation is the long in-
ternal dimension of the waveguide
in hundreds of an inch. The TE10

mode cutoff frequency is when the
long dimension is one-half wave-
length long (the free-space wave-
length if vacuum- or air-filled, or
modified by the square root of the
permittivity if the waveguide is di-
electric filled).

Waveguide tees are used to split and combine signals. There are both E-plane
and H-plane versions, as there were for bends (see Figure 6-12).

There is a wide variety of waveguide components. The components are
developed from EM field considerations and not derived from current and
voltage circuits. For example, a termination in a rectangular waveguide is
realized using a resistive wedge of material as shown in Figure 6-13(a). This
provides a termination with a lower reactive component than would be
obtained with a lumped resistor placed at the end of the line. The matched
load absorbs all of the power in the traveling wave incident on it. The
functional component is a lossy material, often shaped as a wedge or tall
pyramid, that absorbs power over a distance corresponding, perhaps, to
one-half wavelength or longer. So while the characteristic impedance of a
wave in the rectangular waveguide varies with frequency, the termination is
always matched to this impedance. A high-power waveguide matched load
is shown in Figure 6-13(b). This component uses the structure illustrated
in Figure 6-13(a) and has fins for the dissipation of heat. A waveguide
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(a) H-plane bend (b) E-plane bend (c) Various bends

Figure 6-10: Rectangular waveguide bends. In (c), top is X-band (8–12 GHz), middle is Ku-band
(12–18 GHz), and bottom is Ka-band (26–40 GHz).

Figure 6-11: Rectangular wave-
guide twist. (a) Diagrammatic view (b) Photograph

attenuator is realized by introducing resistive material, as shown in Figure
6-13(c). This introduces a section of line with a high attenuation coefficient.
By controlling the depth of the resistive vane, as shown in Figure 6-13(d), a
variable attenuator is obtained.

Discontinuities in the waveguide introduce inductive, capacitive, and
resonant elements. Several discontinuities that are used to realize these
elements are shown in Figure 6-14. These illustrate most clearly the use of
E and H field disturbances to realize capacitive and inductive components.
An E-plane discontinuity (Figure 6-14(a)) is modeled approximately by a
frequency-dependent capacitor. H-plane discontinuities (Figure 6-14(b and
c)) resemble inductors, as does the circular iris of Figure 6-14(d). The resonant
waveguide iris of Figure 6-14(e) disturbs the E and H fields and is modeled
by a parallel LC resonant circuit near the frequency of resonance. Posts in the
waveguide are used as reactive elements (Figure 6-14(f)) and to mount active
devices (Figure 6-14(g)). The equivalent circuits of waveguide discontinuities
are modeled by capacitive elements if the E field is interrupted and by
inductive elements if the H field (or current) is disturbed. Many papers (e.g.,
[5–8]) have been devoted to analytic field solutions that lead to equivalent
lumped element representations of waveguide discontinuities that can then
be used in synthesis.

A rectangular waveguide circulator is shown in Figure 6-15. A circulator
uses a special property of magnetized ferrites that provides a preferred
direction of EM propagation.

It is sometimes necessary to interface between waveguide series, and one
component to do this is the tapered waveguide section shown in Figure 6-
16(a). Alternatively the one-quarter wavelength long impedance transformer
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(a) E-plane tee (b) Signal flow in an E-plane tee

(c) H-plane tee (d) Signal flow in an H-plane tee

(e) E-plane tee (f) Various tees

Figure 6-12: Rectangular waveguide tees: (a) three-dimensional representation of an E-plane tee;
(b) description of the signal flow in an E-plane tee; (c) three-dimensional representation of an H-
plane tee; (d) description of the signal flow in an H-plane tee; (e) photograph of an E-plane tee;
and (f) photograph of waveguide tees for different waveguide bands (top, X-band H-plane tee;
middle, Ku-band H-plane tee; bottom, Ka-band E-plane tee).

shown in Figure 6-16(b) could be used. This section can be shorter than the
tapered waveguide section, which, however, has higher bandwidth.

Other components commonly encountered are the waveguide switch (see
Figure 6-16(c)), the coaxial-to-waveguide adaptor (see Figure 6-17), and the
waveguide horn antenna (see Figure 6-16(d)).

Distributed directional couplers are realized by two coupled transmission
lines. A rectangular waveguide directional coupler is shown in Figure 6-18.
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Figure 6-13:
Terminations and
attenuators
in a rectangular
waveguide.

(a) Termination (b) High-power termination

(c) Attenuator (d) Variable attenuator

Figure 6-14: Rectangular wave-
guide discontinuities and their
lumped equivalent circuits: (a) ca-
pacitive E-plane discontinuity; (b)
inductive H-plane discontinuity;
(c) symmetrical inductive H-plane
discontinuity; (d) inductive post
discontinuity; (e) resonant window
discontinuity; (f) capacitive post
discontinuity; and (g) diode post
mount.

Here the two transmission lines, the rectangular waveguides, are coupled by
slots in the common wall of the guides. In Figure 6-18(b) the EM wave from
the bottom waveguide leaks into the top waveguide through the coupling
slots. A quick check on phasing indicates that the coupled wave in the
reverse direction is canceled. Meanwhile, in the forward-traveling direction
there is constructive interference of the coupled EM wave.

Variable elements available in a rectangular waveguide include the
micrometer tuner, shown in Figure 6-19. The tuner shown in Figure 6-19(a)
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(a) (b)

Figure 6-15: Waveguide
circulator: (a) schematic;
and (b) three-dimensional
representation showing H
field lines magnetizing a
ferrite disk.

(a) Waveguide taper (b) λ/4 transformer (c) Waveguide switch (d) Waveguide horn

Figure 6-16: Waveguide components: (a) waveguide switch; (b) rectangular waveguide quarter-
wavelength impedance transformer; (c) rectangular waveguide taper connecting one waveguide
series to another; and (d) waveguide horn antenna.

(a) (b) (c)

Figure 6-17: Coaxial transmission
line to rectangular waveguide
adaptor: (a) photograph; (b) adap-
tor using a coupling stub; and (c)
adaptor using a coupling loop.

typically moves a reactive element along the waveguide. One example is
the movable short circuit shown in Figure 6-19(b). Another variable element
used in tuning is the waveguide slide tuner, shown in Figure 6-19(c). Here
a slot is cut in the wide wall of the waveguide and a metal probe is
inserted. The slot is in a region where the currents in the waveguide wall
are minimum, so little discontinuity is introduced. The probe introduces a
reactive discontinuity, and the reactance can be varied by changing the depth
of penetration of the probe using the knob seen on top. The probe can move
up-and-down along the slot to further increase the impedance range that can
be presented.

Hybrids in waveguides (Figure 6-20) do not look anything like their
microstrip equivalents.
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(a) (b)

(c) (d)

Figure 6-18: Rectangular waveguide directional couplers: (a) schematic; (b) and (c) waveguide
directional coupler showing coupling slots; and (d) three directional couplers with the fourth
port terminated in an integral matched load. In (d), from top to bottom: W-band, 10 cm long;
Ka-band, 15 cm long, and X-band, 35 cm long.

(a) (b) (c)

Figure 6-19: Waveguide tuners: (a) micrometer-driven variable short circuit; (b) internal details
of a variable short circuit; and (c) waveguide slide tuner.

6.5 Summary

Rectangular waveguides guide EM fields in a rectangular pipe. Parallel
plate waveguides are unintentional but are approximated by the planar
conductors found in printed circuit boards. Rectangular wave equations
describe propagation in these structures and are derived from Maxwell’s
equations by applying multiple simplifications such as using phasors,
restricting propagation to just one direction, and applying symmetries.
Important concepts that flow from the rectangular wave equations are
that rectangular and parallel-plate waveguides support multiple modes,
i.e. variations of the EM field, with all but the TEM mode having a finite
cut-off frequency below which a particular mode cannot propagate. The
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rectangular waveguide does not support a TEM mode, a mode with no
variations of the field between boundaries, so the rectangular waveguide
cannot support a propagating mode below the lowest cut-off frequency. A
mode with more variations of the field will have a higher cut-off frequency.
A separate physical result is that if two modes can propagate the EM energy
will be equally partitioned between them. Thus if two or more modes
can propagate the information will become garbled since different modes
travel at different speeds. This is observed in practice so for example, with
rectangular waveguide the useful frequency range of operation is between
the cut-off frequency of the mode with the simplest field variation, and hence
the lowest cut-off frequency, and the cut-off frequency of the next higher-
order mode.
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(a) Three-dimensional representation (b) Description of signal flow

Figure 6-20: Rectangular waveguide hybrid.
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6.7 Exercises

1. A four-layer circuit board has four levels of met-
alization with the two inner layers being sup-
ply and ground planes are RF grounds. The top
layer has a very dense concentration of signal
lines and for the purposes of understanding the
fields in the dielectric between the top two lay-
ers of metalization both layers of metalization
can be considered to be solid. The situation now
reduces to a parallel plate waveguide which al-
lows signals to travel in the dielectric from one
region of the circuit board to another. The dielec-
tric has a relative permittivity of 4 and the thick-
ness of the dielectric between the metal layers is
1 mm.

(a) What is the mode that propagates at the low-
est frequency and what is the cut-off wave-
number and cut-off frequency of this mode?

(b) What is the wave impedance of this mode at
1 GHz?

(c) What is the phase velocity of this mode at
1 GHz?

2. A multi-layer circuit board forms a parallel plate
waveguide between the metal planes (even if
they are broken up a little). Thus EM energy
propagates around the circuit board and not all
of the energy is confined by the circuit board
lines.

(a) What is the EM mode that is mostly to prop-
agates?

(b) Draw the E and H fields of the mode in
cross section.

(c) If the distance between the plates is 1 mm,
what is the lowest frequency at which this
lowest order mode can propagate.

3. Two adjacent layers of a circuit board are contin-
uous ground planes separated by a 0.5 mm-thick
dielectric having a relative permittivity of 4.

(a) What is the lowest frequency at which the
TEM mode propagates.

(b) What is the wave impedance of the TEM
mode at 10 GHz.

4. Two adjacent layers of a circuit board are con-
tinuous ground planes separated by a 0.5 mm-
thick dielectric having a relative permittivity of
4. What is the lowest frequency at which the
TM1 mode propagates.

5. Two adjacent layers of a circuit board are con-
tinuous ground planes separated by a 0.5 mm-
thick dielectric having a relative permittivity of
4. What is the lowest frequency at which the TE1

mode propagates.

6. An air-filled W-band waveguide has a 75–
100 GHz operating frequency, extends in the z
direction and has internal dimensions of ∆x =
0.100 in. by ∆y = 0.050 in. fc is the cut-off fre-
quency, and kc is the cutoff wavenumber.

(a) Does the waveguide support a transverse
electromagnetic (TEM) mode provide your
reasons?

(b) What is the distinguishing feature of the TE
waveguide modes?

(c) What is the distinguishing feature of the TM
waveguide modes?

(d) What modes other than TEM, TE, and
TM modes propagate in rectangular wave-
guide?

(e) Are TE00 and TM00 modes supported in the
waveguide and why?

(f) What is kc of the TE10 mode?
(g) What is kc of the TE01 mode?
(h) What is kc of the TE11 mode?
(i) What is fc of the TE10 mode?
(j) What is fc of the TE01 mode?

(k) What is the wavenumber of the TE01 mode
at 90 GHz, discuss if your answer is not real?

(l) What is the wavenumber of the TE10 mode
at 90 GHz, discuss if your answer is not real?

(m) What is fc of the TE11 mode?
(n) What is kc of the TM10 mode?
(o) What is kc of the TM01 mode?
(p) What is kc of the TM11 mode?
(q) What is kc of the TM10 mode?
(r) What is fc of the TM01 mode?
(s) What is fc of the TM11 mode?
(t) What can you say about the relative cut-off

frequency of the TEmn and TMmn, m+ n ≥
2, modes relative to the cutoff frequencies of
the TEmn and TMmn, m+ n = 1, modes?

(u) Sketch and label the dispersion curves for
the TEmn and TMmn, m,n = 0, 1, modes, i.e.
β versus frequency over the frequency range
0 to 200 GHz.

(v) What is the frequency range over which
only one mode can propagate?

(w) Why is it desirable that only one mode prop-
agate?

(x) Why is the operating frequency range spec-
ified for this waveguide less than the fre-
quency range over which only one mode can
exist.

7. An air-filled E-band waveguide has a 60–90 GHz
operating frequency and has internal dimen-
sions of 0.122 in by 0.061 in.

(a) What is the phase velocity of the TE10 mode
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at 60 GHz.
(b) What is the phase velocity of the TE10 mode

at 90 GHz.
(c) What is the wave impedance of the TE10

mode at 60 GHz.
(d) What is the wave impedance of the TE10

mode at 90 GHz.
(e) What is the difference between characteris-

tic impedance and wave impedance for the
waveguide?

8. An X-band waveguide has the dimensions
0.9 in × 0.4 in. Calculate the cut-off frequencies
for the TE10, TE01, and TM11, modes.

9. An X-band waveguide has the dimensions
0.9 in × 0.4 in. Calculate the cut-off frequencies
for the TE10, TE01, and TM11, modes.

10. A W-band waveguide has the dimensions
0.1 in × 0.05 in and the cut-off frequency of the
TE10 mode is 59.0 GHz. Verify this.

(a) What is the cut-off frequencies of the TE01

mode?
(b) What is the cut-off frequencies of the TM11

mode?
(c) What is the the operating frequency range

over which only one mode can exist?

11. An E-band waveguide has the dimensions
0.122 in × 0.061 in and the cut-off frequency
of the TE10 mode is 48.4 GHz. Verify this.

(a) What is the cut-off frequency of the TE01

mode?

(b) What is the cut-off frequency of the TM11

mode?
(c) What is the the frequency range over which

only one mode can exist?

12. A W-band waveguide has the dimensions
0.1 in × 0.05 in. At 100 GHz only the TE10

mode can propagate. At 100 GHz and for the
TE10 mode

(a) what is the wave impedance?
(b) what is the phase velocity?
(c) what is the group velocity?

13. An E-band waveguide has the dimensions
0.1 in × 0.05 in. At 38 GHz only the TE10 mode
can propagate. At 38 GHz and for the TE10 mode

(a) what is the wave impedance?
(b) what is the phase velocity?
(c) what is the group velocity?

14. A communication system at 60 GHz has a band-
width of 4 GHz so that the operating frequency
range is 58 GHz to 62 GHz. Waveguide is to be
used to route the millimeter-wave signal to an
antenna. What waveguide should be used to jus-
tify your answer.

15. A communication system 15 GHz has a band-
width of 1 GHz so that the operating frequency
range is 14.5 GHz to 15.5 GHz. Waveguide is to
be used to route the millimeter-wave signal to
an antenna. What waveguide should be used to
justify your answer.

6.7.1 Exercises by Section

§6.2 1, 2, 3, 4, 5 §6.4 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
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η, 260, 263

∇, 37

∇·, 12

∇×, 12

α, 57, 61

β, 57, 61

γ, 56, 61

δ, 171

ε, 54, 138

ε0, 12, 54

ε′, 135

ε0, 125

ε′′, 135

εe, 145

εr , 54, 135

εee, 220

εeo, 220

η0, 220

µ, 54, 138

µ0, 10, 54, 125, 138

µr , 54

λ, 52, 57

λ0, 54

λg , 54

π, 125

ρV , 8

ρmV , 8

σ, 135

σ, 171

χe, 12

ω, 57

A, 123

ABCD parameters

coupled line, 238

lossless transmission
line, 109

lossy transmission line,
109

transmission line, 108

absolute zero temperature,
126

adaptor

coax to waveguide, 273

air bridge, 237

air, electrical properties,
137

alumina

electrical properties, 137

microstrip, 146, 148

ampere, 123

Ampere’s law, 16

anisotropy, dielectric, 12

APC-7, 63

arcsinh series expansion,
41

arctanh series expansion,
41

area

formula, 40

incremental, 9

atmospheric pressure, 125

attenuation

coefficient, 56

low-loss line, 89

conductive, 89

constant, 60–62, 89, 91,
177

definition, 57

dielectric, 89

low-loss line, 89

ohmic, 89

attenuator, 276

rectangular waveguide,
272

available

power, 93, 95

B, 8

backward-traveling wave,
56, 69

bend

rectangular waveguide,
271

bilinear

interpolation, 45

transformation, 46

binomial

coefficients, 41

series expansion, 41

Biot–Savart law, 16

Boltzmann constant, 125

Born, 19

bounce diagram, 98

small reflections, 102

boundary

transmission and
reflection, 99

Butterworth

polynomial, 42

C, 123

C, 51, 230

c, 52, 125

candela, 123

capacitance matrix, 214

capacitor

Maxwell–Wagner, 194

Cartesian coordinates, 38

cd, 123

chain

parameters

transmission line, 108

characteristic

impedance, 56, 62, 67, 69,
145, 146

effective, 145

free space, 220

medium, 28

microstrip, 146

parallel wires, 110

rectangular coaxial line,
110

slabline, 111

square coaxial line, 110

stripline, 154

twisted pair, 111

charge

density, 9

magnetic, 9

surface, 9

electric, 8, 9

magnetic, 8, 9

Chebyshev

polynomial, 42

circle

area, 40

on complex plane, 45

circulator

rectangular waveguide,

272

closed

contour, 9

surface, 9

coaxial

line, 52, 53, 62, 111, 114

characteristic
impedance derivation,
111

maximum
power-carrying, 62

minimum loss, 63

rectangular, 110

RLGC, 111

square, 110

waveguide adaptor, 275

coefficient

attenuation, 56

phase-change, 56

combline

section, 238

common

impedance coupling, 248

mode, 245

complex

number, 34

hyperbolic function, 39

plane

circle, 45

complex permittivity, 24

conductive loss, 25

conductivity, 24, 135

electrical, table, 127

of materials, 127

thermal, 127

thermal, table, 127

conductor

and EM fields, 20

attenuation, 89

loss, microstrip, 193

lossy, 26

cone, area and volume, 40

constants

physical, 125

contour, closed, 9

coordinates

Cartesian, 38

cylindrical, 38

rectangular, 38

spherical, 39

coplanar

strip, 139, 160

waveguide, see CPW, 157

modes, 191

cos, 34, 39

series expansion, 41

cosh, 39

series expansion, 41

coulomb, 9, 123

Coulomb’s law, 18

coupled lines, 205, 206, 221

ABCD parameters, 238

capacitance matrix, 214

extraction, 214

characteristic impedance,
219

combline section, 238

common mode, 245

differential mode, 245
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directional coupler, 229,
230

even mode, 207, 220–222

even-mode capacitance,
217

interdigital section, 238

meander section, 238

model, 237, 242

low frequency, 212

modes, 207, 208

odd mode, 207, 220–222

effective permittivity,
220

odd-mode capacitance,
217

physics, 206

symmetric, 215

synthesis, 244

system impedance, 221

theory, 210, 211

traveling waves, 207

coupler, 229

20 dB, 230

Lange, 236

optimum length, 230

slow wave, 194

coupling

common impedance, 248

factor, 229–231

directional coupler, 230

CPS, 139, 160

crosstalk, 161

dispersion, 161, 175

radiation, 161

CPW, 138, 139, 157

dispersion, 175

finite ground, 139, 157

high frequency, 191

loss, 159

modes, 191

multimoding, 191

cross product, vector, 37

cubic equation, 48

curl, 12

operator, 37

current

bunching, 169

density

electric, 9

magnetic, 9

electric, 8, 9

magnetic, 8, 9

cutoff wavenumber, 257

cylinder

area and volume, 40

cylindrical coordinates, 38

D, 230

D, 8

dB

Np equivalence, 61

del operator, 37

identities, 39

delay line, slow wave, 194

density, 127

dielectric, 62, 135

and EM fields, 19

anisotropy, 12

attenuation, 89

constant, 54

damping, 24, 135

dispersion, 175

effect of, 135

isotropy, 12

loss, 135

microstrip, 193

lossy, 24

mode, 187

refractive index, 19

relaxation, 135

differential

interconnect, 160

line, 138–140, 160

embedded, 138, 140

mode, 245

directional

coupler, 229, 230, 233

coupling factor, 230

design equations, 231

design example, 231, 235

hybrid, 232

isolation, 230

Lange, 236

optimum length, 230

rectangular waveguide,
273

transmission factor, 230

with lumped capacitors,
232

directivity, 230

directional coupler, 230

factor, 229

discontinuity

rectangular waveguide,

272

dispersion, 91, 135, 175

dielectric, 175

resistance, 175

dispersionless line, lossy,
92

div, 12

operator, 37

divergence theorem, 16

dot product, vector, 36

duroid, electrical
properties, 137

dyadic, 11

permittivity, 12

E, 8

e, natural number, 40, 125

series expansion, 40

EL, 115

ET , 53, 114

effective

characteristic impedance,
145

permittivity, 141, 145

relative permeability, 60

relative permittivity, 60,
145

electric

charge, 8, 9

current, 8, 9

density, 9

field, 8

intensity, 9

flux, 8, 9

polarization, 12

susceptibility, 12, 24

wall, 21, 184, 186, 260

electrical length, 58

EM

fields

in a dielectric material,
19

in a lossy material, 24

in a magnetic material,
10

in a metal, 20

embedded differential line,
140

energy storage

electric, 135

magnetic, 136

equation

cubic, 48

Helmholtz, 257

Laplace, 141

Maxwell’s, 182, 256

quadratic, 48

wave, 56, 257

even-mode, 207

capacitance, 217

characteristic impedance,
207

coupled lines, 207

effective permittivity, 220

expansions

series, 40

trigonometric, 41

exponential, 39

series expansion, 40

Faraday’s law, 18

farads, 9

ferrite, 272

electrical properties, 137

FGCPW, 139, 157

field

electric, 8

intensity

electric, 9

magnetic, 9

magnetic, 8

filling factor, 150

filter

slow wave, 194

finite ground CPW, 157

flux

density

electric, 9

magnetic, 9

electric, 8, 9

magnetic, 8, 9

formulas

area, 40

cubic, 48

hyperbolic, 39

quadratic, 48

tanh, 39

telegrapher’s equation,
56

volume, 40

forward

traveling wave, 56, 69

FR4

electrical properties, 137

microstrip, 146, 148

free space, 54, 60, 146

frequency, 57

radian, 57

fundamental units, 123

g, 123

GaAs, 194

electrical properties, 137

gallium arsenide, 194

electrical properties, 137

Gauss’s law, 17

magnetism, 18

Gbps, 124

geometric series

expansion, 41

GiB, 124

gibi, 124

gibibit, 124

Gibit, 124

gigabit, 124

glass, electrical properties,
137

grad operator, 37

gram, 123

Greek alphabet, 127

Greek letters, 127

group

velocity, 53, 57, 91

and phase velocity, 57

guide wavelength, see λg
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H, 8

h, 125
Hammerstad, 219
heat capacity

specific, 127

volumetric, 127
Helmholtz equations, 257
henry, 9

homogeneous line, 137,
138

hybrid
directional coupler, 232

hyperbolic function, 39

I , 230
identities

∇, 39
del operator, 39
trigonometric, 34

ℑ{ }, 56
impedance

intrinsic, 260
wave, 260

incremental
area, 9
length, 9

volume, 9
index of refraction, 19
inductance

internal conductor, 171

inhomogeneous
line, 138
medium, 141

InP

electrical properties, 137
input

impedance

lossy line, 87
reflection coefficient
lossless line, 71
lossy line, 87

interconnect, 133, 135
interdigital section, 238
interpolation

bilinear, 45
linear, 44

intrinsic impedance, 260
inverse, matrix, 43, 44

inverter
lumped-element
model, 109

isolation, 230
directional coupler, 230

isotropy, dielectric, 12

J, 123
J, 8
, 34

Jensen, 219
Joule, 123

K, 123

k, 257

k, 184

kc, 184

kbps, 124

Kelvin, 123

kg, 123

KiB, 124

kibi, 124

kibibit, 124

Kibit, 124

kilo, 124

kilobit, 124

kilogram, 123

Kirchoff’s laws, 56

Kron’s method, 48

L, 51

Lagrange’s formula, 37

Lange coupler, 236

Laplace, 141

law of cosines, 33

length

electrical, 58

incremental, 9

line

characteristic impedance

rectangular coaxial line,
110

square coaxial line, 110

coaxial line, 111

lossless

input reflection
coefficient, 71

lossy

input impedance, 87

parallel wires, 110

rectangular coaxial line,
110

slabline, 111

square coaxial line, 110

twisted pair, 111

wire-in-box, 110

linear

interpolation, 44

ln

series expansion, 41

logarithm

series expansion, 41

longitudinal field, 115, 134

loss

dielectric, 25

tangent, 25, 135

transmission line, 61

lossless

line

input impedance, 73, 88

medium, 60

lossy

conductor, 26

dielectric, 24

line

input reflection
coefficient, 87

mediums

and EM fields, 24

low-loss line

attenuation

coefficient, 89

lowpass filter, 85

LTCC

electrical properties, 137

lumped element

inverter, 109

quarter-wavelength line,
109

m, 8

m, 123

me, 125

magnetic

charge, 8, 9

density, 9

current, 8, 9

density, 9

energy, 10

field, 8

intensity, 9

flux, 8, 9

density, 9

material, 136, 138

and EM fields, 10

moment, 136

wall, 23, 184, 186, 260

magnetostatic, 194

matching

network

coupled lines, 221

material, 135

dielectric and EM fields,
19

lossy mediums and EM
fields, 24

magnetic and EM fields,
10

metal and EM fields, 20

properties, 127

mathematical

foundations, 33

matrix

inverse, 43

operations, 43

transpose, 43

maximum

available power, 94

power transfer

theorem, 94

Maxwell, 7

Maxwell’s equations, 7,
182, 256

integral form, 15

phasor form, 14, 15
point form, 7

Maxwell–Wagner
capacitor, 194, 196

Mbps, 124
meander section, 238
mebi, 124

mebibit, 124
medium, 59, 136, 137

lossless, 60

megabit, 124
metal

-insulator-
semiconductor,
194

-oxide-semiconductor,
194

and EM fields, 20
meter, 123

metric system, 123
MiB, 124

Mibit, 124
MIC, 138
microstrip, 133, 134, 137,

138, 150, 151

alumina, 146, 148
characteristic impedance
frequency-dependent,
177

conductor loss, 193
coupler, 230
design formulas, 152

dielectric loss, 193
dielectric mode, 187
discontinuity

open-circuit, 193
effective permittivity
frequency-dependent,
176

FR4, 146, 148
frequency-dependent,

168
frequency-dependent

characteristic
impedance, 177

frequency-dependent
effective permittivity,
176

GaAs, 146

high-frequency, 176
higher-order mode, 185,

188
model, 140

multimoding, 184, 185,
187

operating frequency
limits, 185

parasitic effects, 193

PCB, 146, 148
permittivity
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frequency-dependent,
176

power losses, 193

quasi-TEM, 141, 187

mode, 187

radiation, 193

loss, 193

resistance, 150

Si, 146, 148

silicon substrate, 194

SiO2, 146, 148

slab mode, 187

substrate mode, 187

surface wave, 193

TE, 187

mode, 187

TM, 187

mode, 185, 187

TM mode, 187

transverse

resonance, 187, 189

resonance mode, 185

via, 134

waveguide model, 190

wide strip, 153, 188

microwave

integrated circuit MIC,
138

MIS, 194, 196

MMIC, 138, 194

mode, 181

dielectric, 196

quasi-TEM, 139

skin-effect, 197

slow-wave, 197

TE, 184, 193, 263

TEM, 259

TM, 184, 193, 261

transverse

electric, 184

magnetic, 184

model

lumped element

inverter, 109

quarter-wavelength line,
109

modes, 186, 260

mol, 123

mole, 123

monolithic microwave
integrated circuit, 194

MOS, 194

multimoding, 180, 184

microstrip, 185

multiplication, vector, 36

N, 123

nabla, 37

Napier, 61

natural

logarithm

series expansion, 41
number
series expansion, 40

Neper, 56, 61

network
condensation, 48

newton, 123

nickel, 136
noise

room temperature
resistor, 126

nonhomogeneous
line, 135
medium, 135

Np, 56, 61
dB equivalence, 61
definition, 61

odd-mode, 207
capacitance, 217

characteristic impedance,
207

coupled lines, 207
effective permittivity, 220

ohmic attenuation, 89
operations

matrix, 43
operator

vector, 36

p.u.l. parameters, 55
PA, 76
Pa, 123

parallel
lines, 205
plate waveguide, 256,

259
parallel coupled line, 205

parallel wires, 110
parameters

ABCD

lossless transmission
line, 109

lossy transmission line,
109

transmission line, 108

chain
transmission line, 108

pascal, 123

passivation, 169
PCB, 135, 169

microstrip, 146, 148
PCL, 205

ABCD parameters, 240
PD , 76
per unit length parameters,

55

permeability, 8–10, 52, 54
complex, 136

effective relative, 60

free space, 54

of materials, 127

relative, 12, 54

RLGC relationship, 59

permittivity, 8, 9, 12, 19, 52,
54, 135, 145

anisotropy, 12

complex, 135

dyadic, 12

effective, 141, 145, 147

effective relative, 60

free space, 54

imaginary part, 19, 135

of materials, 127

real part, 19, 135

refractive index, 20

relative, 12, 54, 135

RLGC relationship, 59

phase

change coefficient, 56

coefficient, 56

constant, 56, 60–62

definition, 57

velocity, 53, 60, 62, 91, 141

and group velocity, 57

definition, 57

phasor, 34, 35, 56

phonon, 135

physical constants, 125

planar

interconnect, 133

Planck constant, 125

polarization, electric, 12

polyimide, electrical
properties, 137

polynomial

Butterworth, 42

Chebyshev, 42

polynomial equation

cubic, 48

quadratic, 48

power

available, 76

delivered, 76

flow, 93

Poynting vector, 28

printed

circuit board, 135

wiring board, 133, 135

propagation

constant, 56, 89, 92

properties, material, 127

pulse, 135

q, 150

quadratic equation, 48

quarter-wave

transformer, 85

quarter-wavelength line

lumped-element model,
109

quartz, electrical
properties, 137

quasi-TEM, 134

line, 138–140

mode, 194

R, 51

Rs, 174

radian, 56, 61

radiation, 138

loss, microstrip, 193

radio

frequency integrated
circuit, 139

ℜ{ }, 56

rectangular

coordinates, 38

waveguide, 255, 264

attenuator, 272

bend, 271

circulator, 272

coaxial adaptor, 273

components, 270

directional coupler, 273

discontinuity, 272

tee, 271, 273

termination, 271

tuner, 274

twist, 270

variable attenuator, 272

reflection

coefficient, 99

current, 68

electric field, 28

formula, 68

magnetic field, 28

voltage, 68

diagram, 98

refractive index, 19

complex, 20

permittivity conversion,
20

relative permeability, 136

relaxation loss, 24

resistance

sheet, 151, 155, 159

surface, 151, 263

resistivity of materials, 127

resistor

noise at room
temperature, 126

return loss, 93

RFIC, 138, 139, 194

RL, 93

RLGC

permeability
relationship, 59
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permittivity relationship,
59

RLGC model, 59

room temperature, 126

noise of a resistor, 126

RTH, 77

s, 123

sapphire, electrical
properties, 137

Schottky, 194

semiconductor

lines, 194

series

expansion, 40

binomial series, 41

e, 40

exponential, 40

exponential function, 40

geometric series, 41

ln, 41

natural logarithm, 41

natural number, 40

square root, 40

trigonometric, 41

trigonometric functions,
41

sheet resistance, 151, 155,
159

short circuit, 70

SI, 61, 125

prefix, 124

unit combinations, 123

units, 123

Si, 135, 194

electrical properties, 137

microstrip, 148

silicon

dioxide, see SiO2

sin, 34, 39

series expansion, 41

sinh, 39

series expansion, 41

SiO2, 135

electrical properties, 137

microstrip, 148

skin

depth, 171

effect, 171, 173, 197

mode, 197

resistance, 174

slab mode, 187

slabline, 111

slotline

radiation, 161

slow-wave

effect, 194

mode, 197

SMA, 64

Sonnet, 171, 178

sound speed, 127

speed of light, see c, 125

speed of sound, 127

sphere

area and volume, 40

spherical coordinates, 39

square root

series expansion, 40

standard

atmosphere, 125

temperature, 126

Stoke’s theorem, 16

strip, 51

stripline, 138, 139, 153

attenuation, 155

characteristic impedance,
154

high frequency, 192

modes, 192

multimoding, 192

suspended substrate, 156

TEM, 139

stub

open, 82

substrate, 134, 136

properties, 137

substrate mode, 187

surface, 9

charge

density, 9

density, magnetic, 9

current

density, electric, 9

density, magnetic, 9

resistance, 151

wave, 193

microstrip, 193

surface resistance, 263

susceptibility

electric, 12, 24

symbols, 127

system

impedance

coupled lines, 221

Système International, see
SI

T , 230

tan, 34, 39

series expansion, 41

tan δ, 135

dielectric, 25

transmission line, 61

tanh, 39

series expansion, 41

Tbps, 124

TE mode, 184, 263

tebi, 124

tebibit, 124

tee, rectangular
waveguide, 271, 273

telegrapher’s equation,
210, 216

coupled lines, 210
even mode, 216

generalized, 210
lossless, 73
lossy, 88
odd mode, 216

TEM, 134, 139, 141, 180,
182

line, 138
mode, 259

temperature
absolute zero, 126
room, 126

standard, 126
tensor, 11
terabit, 124
termination

rectangular waveguide,
271

theory of small reflections,
102

thermal conductivity, 127

Thevenin, 76
resistance, see RTH

TiB, 124

Tibit, 124
TM mode, 184, 261
total

current, 67

voltage, 67
transformation

bilinear, 46

transformer
quarter-wave, 85

transmission

coefficient, 99
coupled lines, 230
voltage, 68

factor, 229, 230

directional coupler, 230
line, 51, 52, 70
ABCD parameters, 108

chain parameters, 108
coaxial, 52
coaxial, derivation of
Z0, 111

current bunching, 169
dispersion, 91
dispersionless, 92
equations, 56

homogeneous, 137
loss, 193
low-loss approximation,
89

microstrip, see
microstrip

mode, 181

model, 140

multimoding, 180, 184
non-TEM, 110, 141
nonhomogeneous, 135
open-circuited, 79

parallel wires, 110
planar, 137
quasi-TEM, 141

rectangular coaxial line,
110

schematic, 134
semiconductor, 194

short circuited, 79
slabline, 111
square coaxial line, 110
TEM, 110

terminated, 67, 72, 88
terminated lossy, 90
theory, 55, 56

transformer, 85
twisted pair, 111
two conductor, 110

wire-in-box, 110
Z0 of parallel wires, 110
Z0 of rectangular
coaxial line, 110
Z0 of slabline, 111

Z0 of square coaxial
line, 110
Z0 of twisted pair, 111

line, lossless, 62, 66, 83

input impedance, 73, 88
input reflection
coefficient, 71

line, lossy, 87, 90, 91

input impedance, 87
input reflection
coefficient, 87

line,lossless, 78

transpose, matrix, 43
transverse

direction, 180
electric mode, 184, see TE

mode

electromagnetic, 134
field, 53, 115, 141
magnetic mode, 184, see

TM mode

plane, 114
resonance, 189, 190

traveling

pulse, 69
step, 70
wave, 67, 69

triangle, relationship of

angles, 33
trigonometric

derivatives, 34
identity, 34

series expansions, 41
tuner
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rectangular waveguide,
274

twist

rectangular waveguide,
270

twisted pair, 111

two-wire line, 51

unit

amount of substance, 123

cgs, 123

charge, 123

current, 123

energy, 123

force, 123

length, 123

luminous intensity, 123

metric, 123

mks, 123

power, 123

SI, 123

time, 123

V, 123

vg , definition, 57

vp , definition, 57

vector

cross product, 37

dot product, 36

multiplication, 36

operator, 36

∇, 37

curl, 37

del, 37

div, 37

grad, 37

velocity

group, 53, 57, 91

phase, 53, 57, 91

volt, 123

voltage

reflection coefficient, 68

standing wave ratio, 75

transmission coefficient,
68

volume, 9

formula, 40

incremental, 9

integral, 9

VSWR, 73, 75

W, 123

wall

electric, 21

magnetic, 23

watt, 123

wave

equation, 56, 257

rectangular, 256

impedance, 28, 260

waveguide

attenuator, 274

bands, 271

bend, 271

circulator, 272

coaxial adaptor, 275

horn antenna, 275

hybrid, 277

impedance transformer,
272, 275

parallel-plate, 181, 256,
259

rectangular, 255, 264
switch, 273, 275
taper, 275
termination, 274

wavelength, 13, 60, 62, 181
definition, 57

wavenumber, 184, 257
cutoff, 184, 257
definition, 57

weber, 9
wirebond, 237

Z0, free-space impedance
(use η0), 220

Z0, 56
Z0o, see odd-mode

impedance
Z0e, see even-mode

impedance
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